BIDUALS OF P - LATTICE SUMMING OPERATORS

Beatriz Porras Pomares.

Dpto. Análisis Matemático. Facultad de Matemáticas. Universidad Complutense de Madrid. 28040 MADRID. Clasificación A. M. S. :47B55; 47B10.

Let E be a Banach space and F be a Banach lattice. A (linear, continuous) operator T: E \rightarrow F is said to be a p - lattice summing operator (1 \leq p \leq ∞) if there exists a constant K \geqslant 0 such that for every finite family $\{x_1, \ldots, x_n\}$ in E we have:

(1) $|\cdot| (\Sigma_{i=1}^{n} |Tx_{i}|^{p})^{1/p} |\cdot| \leq K \sup \{ (\Sigma_{i=1}^{n} |< x_{i}, x'> |^{p})^{1/p}, x' \in B_{E'} \}$ where $B_{E'}$ is the unit ball in E', and $(\Sigma_{i=1}^{n} |Tx_{i}|^{p})^{1/p}$, given by the Krivine calculus for 1 - homogeneous continuous expressions ({1}), can be writen in the form:

(2) $\left(\sum_{i=1}^{n} |Tx_{i}|^{p}\right)^{1/p} = \sup \left\{\sum_{i=1}^{n} a_{i}Tx_{i}, a_{1}, \ldots, a_{n} \in \mathbb{R}, \sum_{i=1}^{n} |a_{i}|^{q} \le 1\right\}$ (where 1/p + 1/q = 1). The smallest constant K which verifies (1) is denoted by $\lambda_{p}(T)$.

This class of operators is a natural extension of the p - summing operators defined by Fiestch (see $\{2\}$).

In this paper we present the following result:

"If E is a Banach space and F is a Banach lattice, then T: $E \to F$ is a p - lattice summing operator if and only if $T'': E'' \to F''$ is also a p - lattice summing operator".

The proof is based on the Local Reflexivity Principle ($\{3\}$), and on some results of lattice theory.

Local Reflexivity Principle:

Let G be a finite subspace of the bidual E" of a Banach space E, and H be a finite subspace of the dual E'. Given $t \ge 0$, there exists an operator R: G \rightarrow E such that: i) $||R|| \le 1 + t$; ii) < Rx'', y' > = < x'', y' > for every $x'' \in G$ and $y' \in H$; and iii), if $J: E \rightarrow E''$ is the canonical inclusion, then for every x'' in $G \cap J(E)$, $J \cdot Rx'' = x''$.

Proof of the result:

Let E be a Banach space and F be a Banach lattice. Obviously, if $T'': E'' \to F''$ is p - lattice summing, then T: E \to F must be p - lattice summing also. So, consider x_1'', \ldots, x_n'' in E"; we need to find a suitable

estimation for $\left| \left| \left(\sum_{j=1}^{n} \left| T''x_{j}^{n} \right|^{p} \right)^{1/p} \right| \right|$.

For each finite set C in the unit ball Bq of $(\mathbb{R}^q, ||.||_q)$, define $y_C^n = \sup \{ \sum_{i=1}^n a_i T^n x_i^n, a=(a_1,...,a_n) \in CU\{0\} \}.$ Then, by (2), we have ($\Sigma_{i=1}^{n} \mid T''x_{i}'' \mid^{p})^{1/p} = \sup_{C} y_{C}''$. The family $\{y_{C}''\}$ is an increasing net of positive vectors in F", norm bounded (by the norm of the supremum), and therefore it is $\sigma(F'',F''')$ - Cauchy and $\sigma(F'',F')$ - relatively compact. In particular $\{y_G^u\}$ has an accumulation point y_G^u for the $\sigma(F^u,F^t)$ topology, and y_C'' converges to y_O'' in $\sigma(F'',F')$. It can be shown that y_O'' = = sup y"C

Hence, given $\varepsilon \geqslant 0$ there exists $y' \in F'$ such that $y' \geqslant 0$, $||y'|| \leqslant 1$ $\left| \left| \left(\sum_{i=1}^{n} |T''x_{i}''|^{p} \right)^{1/p} \right| \right| = \left| \left| y_{o}'' \right| \right| \leq \langle y_{o}'', y' \rangle + \varepsilon = \lim_{c} \langle y_{c}'', y' \rangle + \varepsilon$

$$\langle y''_{C_0}, y' \rangle + 2 \varepsilon$$

for some finite set $C_0 = \{a^1, ..., a^m\}$ in Bq, with $0 \in C_0$. By $\{4\}$, II,5,5 and II,4,2:

for some y_1', \ldots, y_m' in F' with $y_i' \geqslant 0$, $1 \leqslant j \leqslant m$, and $y_1' + \ldots + y_m' = y'$.

We use now the local reflexivity principle, with $G = [x_1'', \dots, x_n']$ \leftarrow E", and H = $\left[T'y'_1, \dots, T'y'_m\right] \subset$ E': given t \geqslant 0, there is an operator R: G \rightarrow E such that $||R|| \le 1 + t$, and $\langle x_i'', x' \rangle = \langle Rx_i'', x' \rangle$ for every $x' \in H$. Writing $x_i = Rx_i'' : \langle x_i'', T'y_i' \rangle = \langle x_i, T'y_i' \rangle = \langle Tx_i, y_i' \rangle$, 1 \le i \le n, 1 \le j \le \le 1

$$\begin{split} |\,|\,y_0^{"}|\,| \; & \in \; \; \Sigma_{j=1}^{\;m} (\quad \Sigma_{i=1}^{\;n} \; a_i^{\;j} < Tx_i, y_j^{!}>\;) \; + \; 3\; \epsilon \; \xi \\ & \in \; < \; \sup \; \{ \quad \Sigma_{i=1}^{\;n} \; a_i^{\;j} \; Tx_i, \; 1 \; \xi \; j \; \xi \; m \}, \quad \Sigma_{j=1}^{\;m} y_j^{!} \; > \; + \; 3\; \epsilon \; \xi \\ & \in \; \; |\,|\, (\quad \Sigma_{i=1}^{\;n} \; |\, Tx_i^{\;j}|^p)^{1/p}|\,| \; + \; 3\; \epsilon \; . \end{split}$$
 As, by hypothesis, T is p - lattice summing,

$$||y_0"|| \leqslant \lambda_p(T) \sup \{(\Sigma_{i=1}^n | \langle x_i, x' \rangle |^p)^{1/p}, x' \in B_E, \} + 3 \epsilon.$$

Finally, for each x' in $B_{F!}$, $|\langle x_i, x' \rangle| = |\langle Rx_i'', x' \rangle| = |\langle x_i'', R'x' \rangle|$ where $R'x' : G \rightarrow K$ is a continuous linear form with $||R'x'|| \le 1 + t$, By the Hahn - Banach Theorem, there exists an extension x"' of x' to E", with $||x'''|| \le 1 + t$: and therefore

$$|\langle x_{i}^{"}, R^{t}x^{t} \rangle| = |\langle x_{i}^{"}, x^{"t} \rangle| = (1 +t) |\langle x_{i}^{"}, \frac{x^{"t}}{1+t} \rangle|$$

where $x'''/(1+t) \in B_{r'''}$.

Consequently

$$\sup \ \{ (\ \Sigma_{i=1}^{\ n}\ | < x_i, x' > |^p)^{1/p}, \ x' \in B_{E'} \} \le$$

$$\le (1 + t) \sup \ \{ (\ \Sigma_{i=1}^{\ i} | < x_i'', x''' > |^p)^{1/p}, \ x''' \in B_{E''} \}$$

We have obtained that for every $\varepsilon \geqslant 0$ and every $t \geqslant 0$

$$| | (\Sigma_{i=1}^{n} | T''x_{i}''|^{p})^{1/p} | | \leq \lambda_{p}(T) (1 + t) \sup \{ (\Sigma_{i=1}^{n} | \langle x_{i}'', x''' \rangle |^{p})^{1/p},$$

$$x''' \in B_{E'''} \} + 3 \epsilon$$

and then T" is p - lattice summing, with $\lambda_{\rm p}({\rm T"}) \leqslant \lambda_{\rm p}({\rm T}).$

Remarks:

1- The result is true also for $p = \infty$ (T: $E \to F$ is said to be ∞ - lattice summing if there is a constant $K \geqslant 0$ such that for every finite family $\{x_1, \ldots, x_n\}$ in E

$$||V_{i=1}^{n}||Tx_{i}||| \le K \max \{||x_{i}||, 1 \le i \le n\}$$
),

and the proof is very similar.

2- The same technics can be used to prove the well known result of Piestch which states that if T is a (p, q) - summing operator from a Banach space E into a Banach space F (i.e. $\exists \ K \ge 0$ such that $\forall \ x_1, \dots x_n$ in E, $(\sum_{i=1}^n ||Tx_i||^q)^{1/q} \le K$ sup $\{(\sum_{i=1}^n |< x_i, x^i >|^p)^{1/p}, x^i \in B_{E^i}\})$, then the bidual T": E" \rightarrow F" is also (p, q) - summing: for x_1^n, \dots, x_n^n in E", one has just to bound $(\sum_{i=1}^n ||T^nx_i^n||^q)^{1/q}$ with other expression of the form $(\sum_{i=1}^n |< T^nx_i^n, y_i^n >|^q)^{1/q}$ + ϵ , with $y_i^n \in F^n$, $||y_i^n|| \le 1, 1 \le i \le n$. ({3}, {5}).

References:

- {1}- LINDENSTRAUSS TZAFRIRI. "Classical Banach Spaces" II. Springer Verlag 1979.
- {2}- NIELSEN SZULGA. "p Lattice Summing Operators". Math. Nachr.
 119 (1984) (219 230).
- {3}- PIESTCH. "Operator Ideals" North Holland 1980.
- {4}- H.H. SCHAEFER. "Banach Lattices and Positive Operators" Springer Verlag 1974.
- {5}-S. SIMONS. "Local Reflexivity and (p, q) summing maps". Math. Ann.
 198 (1972) (335 344).