NORMS IN PRODUCT SPACES WHICH PRESERVE APPROXIMATION PROPERTIES

Carlos Benítez and Manuel Fernández

Departamento de Matemáticas. Universidad de Extremadura

06071. Badajoz. Spain.

Let E be a normed linear space over \mathbb{K} (\mathbb{R} or \mathbb{C}) and L be a subset of E.

A point $y \in L$ is said to be a <u>best approximation</u> to $x \in E$ from L, $y \in P_L(x)$, if $||x-y|| \le ||x-z||$, for every $z \in L$.

A point yeL is said to be better approximation to xeE from L than other point zeL, $y \le x$, if $||x-y|| \le ||x-z||$.

A point $x \in E$ is said to be <u>Birkhoff-orthogonal</u> to other point $y \in E$, $x \perp y$, if $||x|| \le ||x+ty||$, for every $t \in \mathbb{K}$, |2|, |3|.

Let E_1 and E_2 be normed linear spaces over IK . We shall say that a norm $||\ ||$ in E_1xE_2 is of type A, |1|, if

$$x_1 \perp y_1 - x_1, x_2 \perp y_2 - x_2 \implies ||(x_1, x_2)|| \le ||(y_1, y_2)||$$

and we shall say that || || is of type M, |1|, if

$$\|\mathbf{x}_1\|_{1} \le \|\mathbf{y}_1\|_{1}, \|\mathbf{x}_2\|_{2} \le \|\mathbf{y}_2\|_{2} \Rightarrow \|(\mathbf{x}_1, \mathbf{x}_2)\|_{2} \|(\mathbf{y}_1, \mathbf{y}_2)\|_{2}$$

The importance in Approximation Theory of the A and M-norms is due to the following facts.

THEOREM 1. A norm in $E_1 \times E_2$ is of type M if and only if for every $x_k \in E_k$ and every L_k subset of E_k , (k=1,2), it $ver\underline{i}$ fies

$$y_1 \in P_{L_1}(x_1), y_2 \in P_{L_2}(x_2) \Rightarrow (y_1, y_2) \in P_{L_1 \times L_2}(x_1, x_2)$$
 (1)

In other words, the M-norms are the only norms in $E_1 \times E_2$ satisfying the minimum requirement of compatibility given by (1). In this sense we propose the M-norms as the widest class of suitable norms for the approximation in normed product spaces.

THEOREM 2. |1|. A norm in $E_1 x E_2$ is of type A if and only

if for every $x_k \in E_k$ and every L_k linear subspace of E_k , (k=1,2) it verifies (1).

THEOREM 3. |1|. A norm in $E_1 \times E_2$ is of type M if and only if for every $\mathbf{x}_k \in \mathbf{E}_k$ and every \mathbf{L}_k linear subspace of \mathbf{E}_k , (k=1,2) it verifies

$$y_1 \langle x_1 \\ x_1, y_2 \rangle \langle x_2 \\ x_2 \\ x_2 \Rightarrow (y_1, y_2) \langle (x_1, x_2) \\ (x_1, x_2) \rangle (z_1, z_2)$$
 (2)

We can paraphrase the above theorems by saying that the A-norms (M-norms) are the only norms which preserve best (be tter) linear approximations in the passage to the product.

If is obvious that every M-norm is A-norm and it is easy to see that if $E_1=E_2=\mathbb{R}$, the norm in $E_1\times E_2$ defined by

$$||(\mathbf{x}_{1}, \mathbf{x}_{2})|| = \begin{cases} |\mathbf{x}_{1}| + |\mathbf{x}_{2}|, & \text{if } \mathbf{x}_{1}\mathbf{x}_{2} \ge 0 \\ \sup(|\mathbf{x}_{1}|, |\mathbf{x}_{2}|), & \text{if } \mathbf{x}_{1}\mathbf{x}_{2} \le 0 \end{cases}$$

is of type A but not of type M.

However, aside the trivial case in which $\rm E_1$ and $\rm E_2$ are real and of dimension 1, it is conjectured in |1| that every A-norm is M-norm, and this paper is essentially devoted to the proof that such conjecture is true in the case $\rm I\!K=\rm I\!R$.

THEOREM 4. If E₁ and E₂ are real normed linear spaces and if the dimension of any of them is $\gg 2$, then every A-norm in E₁xE₂ is an M-norm.

The proof is based in the following

LEMMA. Let E be the real linear space \mathbb{R}^2 endowed with any norm. If $x,y\in E$ are such that 0<||x||<||y||, then there exist a $f\underline{i}$ nite number of points $x_1,\ldots,x_m\in E$ and a real number $0<\theta \leq 1$ such that

$$x \perp x_1 - x$$
, $x_1 \perp x_2 - x_1$, ..., $x_m \perp \theta y - x_m$

REFERENCES

1. C. BENITEZ. Normas en espacios producto que conservan propiedades de aproximación. Rev. Mat. Hisp. Amer. 4ª serie, tomo XXXIV, nº4-5, 163-175 (1974).

- 2. G. BIRKHOFF. Orthogonality in linear metric spaces. Duke Math. J.1, 169-172 (1935).
- 3. R.C. JAMES. Orthogonality and linear functionals in normed linear spaces. Trans. Amer. Math. Soc. 6, 265-292(1974).
- 4. I. SINGER. Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces. Springer-Verlag, Berlin, 1970.

(To appear in Proc. Roy. Soc. Edinburgh Sect. A).