SOME QUESTIONS CONCERNING THE CUBIC NUMBER FIELD Q(0) GENERATED BY A ROOT OF $x^3 + abx + b = 0$

J.R. Delgado

We have solved the problem proposed by M. Scarowsky about this number field [4]; see [1,2,3] for definitions. It is easy to see that we may assume w.l.o.g. that $b = h^2 k$, where (h,k) = 1 and h,k are both square-free.

LEMMA: The following statements hold:

- (1) $disc(\theta) = -h^4 k^2 (4a^3b+27)$

- (2) $\theta_1 = \theta^2/h$ is an algebraic integer (3) $disc(1,\theta,\theta_2) = -h^2k^2(4a^3b+27)$ (4) $\theta_2 = (-4a^2h^2k+9\theta-6a\theta^2)/d$ is an algebraic integer, where $4a^3b+27=d^2q$ and q is square-free.
 - (5) $disc(1, \theta_1, \theta_2) = -3^4 k^2 k^2 q$
- (6) When $p \neq 3$ is any rational prime dividing hk, p is minimal in $disc(1,\theta_1,\theta_2)$, that is, p does not divide $|R/\mathbf{Z}(1,\theta_1,\theta_2)|$ if R is the ring of algebraic integers of $Q(\theta)$. In particular, the only probably non-minimal rational prime in $disc(1, \theta_1, \theta_9)$ is 3.

THEOREM 1: If $hk \equiv 0 \pmod{3}$, then:

- (1) In case that ah = 0 (mod 3), $disc(R) = -3^2h^2k^2q$ and $\{1, \theta_1, \theta_2/3\}$ is an integral basis of R.
- (2) In case that $k \equiv 0 \pmod{3}$ but $a \not\equiv 0 \pmod{3}$, $disc(R) = -h^2k^2q$ and $\{1, \theta_1, (A+B\theta_1+\theta_2/3)/3\}$ is an integral basis of R , where A,B=0,1,-1 , $A\neq 0$ satisfy the following system of congruences:

 $9-12ahkAB+hkdqB-ah^2kq \equiv 0 \pmod{27}$

 $-27A+54ahkB-9hkdqAB-27a^{2}h^{2}k^{2}AB^{2}+9ah^{2}kqA - \\ -27hk^{2}B+9ah^{2}k^{2}dqB^{2}-12a^{2}h^{3}k^{2}qB+h^{2}kdq^{2} \equiv 0 \pmod{729}$

COROLLARY: (M. Scarowsky) Suppose that θ is a root of $\overline{X^3+108A^2X}-12=0$ and $6^4A^6+1=B^2Q$, where Q is square-free. Then, $disc(R) = -2^2 3^5 Q$ and $\{1, \theta^2/2, (2^4 3^3 A^4 + \theta + 6^2 A^2 \theta^2)/B\}$ is an integral basis of the ring of integers of $Q(\theta)$.

AMS Subject Classification (1980):10B10,14G99.

THEOREM 2: If ahk $\not\equiv 0 \pmod 3$, then $disc(R) = -h^2 k^2 q$ and an integral basis of R is available by two applications of Harvey-Cohn's algorithm to $\{1,\theta_1,\theta_2\}$.

COROLLARY: If $ahk \not\equiv 0 \pmod{3}$, then one and only one of the following congruences are satisfied:

$$h^2kdq^2+3ah^2kq = 1 \pmod{27}$$

 $h^2kdq^2-3ah^2kq = -1 \pmod{27}$

THEOREM 3: If $a \equiv 0 \pmod{9}$ and $hk \not\equiv 0 \pmod{3}$, then :

- (1) $disc(R) = -h^2k^2q$ if and only if $h = \pm k \pmod{9}$
- (2) $disc(R) = -3^2h^2k^2q$ if and only if $h = \pm k \pmod{9}$

Moreover, in case (2) $\{1,\theta_1,\theta_2/3\}$ is an integral basis of R; in case (1) there are A,B = 0,3,-3 such that an integral basis of R can be expressed as $\{1,\theta_1,(A+B\theta_1+\theta_2)/9\}$ by just one application of Harvey-Cohn's algorithm to $\{1,\theta_1,\theta_2\}$.

<u>REMARK</u>: From last theorem one can deduce the discriminat and an integral basis of pure cubic fields.

THEOREM 4: If $a \equiv 0 \pmod{3}$, $a \not\equiv 0 \pmod{9}$ and $hk \not\equiv 0 \pmod{3}$, then:

- (1) If $(ahk, hk^2) \equiv (3,23), (12,14), (21,5)$ (mod 27), then $\{1, (1+\theta_1)/3, \theta_2/3\}$ is an integral basis of R and dis(R) = $-h^2k^2c$
- (2) If $(ahk,hk^2) = (6,22),(15,13),(24,4) \pmod{27}$, then $\{1,(-1+\theta_1)/3,\theta_2/3\}$ is an integral basis of R and disc(R) = $-h^2k^2a$.
- (3) If $(ahk, hk^2) = (3,1), (3,4), (3,7), (3,5) \pmod{9}$, except the three cases considered in (1), then $\{1,\theta_1,\theta_2/3\}$ is an integral basis of R and $disc(R) = -3^2h^2k^2q$.
- (4) If $(ahk,hk^2) \equiv (6,2),(6,5),(6,8),(6,4) \pmod{9}$, except the three cases considered in (2), then $\{1,\theta_1,\theta_2/3\}$ is an integral basis of R and $disc(R) = -3^2h^2k^2q$.
- (5) In any other case, that is, when $(ahk, hk^2) \equiv (3, 2)$, $(3, 8), (6, 1), (6, 7) \pmod{9}$, $\{1, \theta_1, \theta_2\}$ is an integral basis of R and $disc(R) = -3^4h^2k^2q$.

Furthermore, $q \equiv 0 \pmod{3}$ in cases (3)-(4) and $q \not\equiv 0 \pmod{3}$ in last case.

REFERENCES

- [1] Harvey-Cohn, A classical invitation to algebraic numbers and class fields, Springer-Verlag, Berlin-N. York, 1978.
- [2] D.A. Marcus, Number Fields, Springer-Verlag, N. York, 1977.
- [3] P. Samuel, Théorie algébrique des nombres, Hermann, 1967.
- [4] M. Scarowsky, On units of certain cubic fields and the diophantine equation $x^3+y^3+z^3=3$, Proc. Amer. Math. Soc. 91 (3),1984,351-56.

Departamento de Algebra, Universidad Complutense, 28040 Madrid (Spain)