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ABSTRACT

En este art́ıculo presentamos un modelo de decisión inspirado en el formalismo ma-

temático de la Mecánica Cuántica. El modelo incorpora los resultados conocidos de la

utilidad esperada clásica y los ampĺıa. Tras detallar los supuestos, algunas aplicaciones y

otras peculiaridades del modelo, se ilustran sus posibilidades mediante una explicación de

la paradoja de Allais dentro del nuevo marco.

Palabras clave: [Formalismo cuántico Utilidad esperada Paradoja de Allais]

Área temática: [A5—Aspectos cuantitativos de problemas económicos y empresariales]
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ABSTRACT

In this paper we present a decision model inspired by the mathematical for-

malism of Quantum Mechanics. The model encompasses the well known results of

classical expected utility, and enhances them. After detailing the assumptions, some

applications, and further peculiarities of the model, its possibilities are illustrated

by giving an explanation of the Allais paradox within the new framework.

1 Introduction

The expected utility hypotheses, first enunciated by Daniel Bernoulli in 1730

in a paper (Bernoulli, 1954) he wrote while a member of the newly established

St. Petersburg Sciences Academy, was formalised by John von Neumann and Oskar

Morgenstern in their famous book of 1944 (von Neumann & Morgenstern, 1944),

with a relevant second edition in 1947. Since then, the expected utility theory is

at the heart of Economic Theory, with very important applications to fields such as

Decision Theory, Game Theory, or Finance.

However, in some experiments, the behaviour of agents when facing some par-

ticular choices has challenged the validity of the expected utility hypotheses. The

oldest and most famous of these challenges is probably the Allais paradox (Al-

lais, 1953). Other relevant puzzles are the Ellsberg paradox (Ellsberg, 1961) and

Machina’s paradox (Mas-Colell et al., 1995). In essence, all of these puzzles describe

situations when the actual decisions of the agents are different (sometimes, very

different) from those predicted by the theory. This fact has led to propose different

refinements of the expected utility theory, and even to new theories. Perhaps the

most relevant of them is Prospect Theory, proposed by Daniel Kahneman and Amos

Tversky in 1979 (Kahneman & Tversky, 1979; Wakker, 2010). The goal has always

been to explain these paradoxes while maintaining both the manageability and the
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normative and predictive power of expected-utility-based models (Machina, 1982,

1987).

Among those models that try to enhance—or even replace—the expected utility

paradigma, some based on the mathematical formalism of Quantum Mechanics have

been considered (see Haven & Khrennikov, 2013; Busemeyer & Bruza, 2012, and the

wide list of references therein). In this paper we present a simple model of this kind

that will allow us to shed light on the Allais paradox. As we shall see, our model

also includes the classical utility model as a particular case.

An outline of the paper is the following: Section 2 describes the model—a

quantum-like model of decision—; Section 3 shows the diagonal operators—which

are the simplest and allow us to include the classical utility in the model—; Section 4

is devoted to non-diagonal operators—which may lead to a reversal of a classical

utility—; Section 5 studies the Allais paradox in this new context; and, finally,

Section 6 summarises the paper.

2 A quantum-like model of decision

In this section we present our proposal for a model of decision. We describe

the decision process by considering five postulates, in turn inspired by the postu-

lates of the Copenhagen interpretation of Quantum Mechanics (see, for instance,

Alvarellos Bermejo et al., 2007).

We consider an agent who faces a decision among a finite number of alterna-

tives, a1, a2, . . . , aN .

• Postulate 1. For each 1 ⩽ i ⩽ N , the alternative ai is represented by a

vector ai in a complex Hilbert space H, so that the system of vectors B ≡

(a1,a2, . . . ,aN) is an orthonormal basis of H—the basis of alternatives. Thus

the space H is spanned by the vectors of alternatives and its dimension equals
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the number of options available to the agent.1

• Postulate 2. The state of mind of the agent when faced with this decision is

modelled by a vector ψ ∈ H such that ∥ψ∥ = 1—that is, a normalised vector

of the Hilbert space. We have:

ψ =
N

∑

i=1

ψiai for some ψi ∈ C, 1 ⩽ i ⩽ N, with
N

∑

i=1

∣ψi∣
2
= 1.

• Postulate 3. To try to make a decision, the agent applies some criterion. A

criterion is modelled by a linear operator defined on the space H—that is, an

endomorphism of H—that is diagonalisable.

• Postulate 4. Given an agent’s state of mind ψ ∈ H and a criterion U , the

agent applies the following procedure. Let V1, V2, . . . , Vp the eigenspaces

of the operator U . For each 1 ⩽ j ⩽ p, the squared norm of the projection

of ψ onto Vk is calculated: ∥π∣Vj
(ψ)∥

2
. Taking the projection with the greatest

squared norm among all projections onto the eigenspaces, the agent’s state of

mind is updated to the result of normalising this projection. That is, the new

state of mind is:

ψ′ =
π∣Vk
(ψ)

∥π∣Vk
(ψ)∥

such that max
1⩽j⩽p
∥π ∣

Vj
(ψ)∥

2
= ∥π ∣

Vk
(ψ)∥

2
.

In case there are more than one projection with the greatest squared norm—

that is, if this maximum is attained for more than one index 1 ⩽ i ⩽ N—, the

state of mind is postulated to update to the sum of all those projections.

• Postulate 5. The new state of mind ψ′ can be expanded in the basis B:

ψ′ = ∑
N
i=1ψ

′

iai for some ψ′i ∈ C. Let D be the set of those alternatives whose

corresponding coefficient in this expansion is non-null: D = {ai ∣ ψ′i ≠ 0}. We

1For instance, we could simply take the Hilbert space H = CN with the usual scalar prod-

uct: ⟨u∣v⟩ = ∑N
i=1 uivi for any u = (u1, u2, . . . , uN) and v = (v1, v2, . . . , vN) in CN .
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say that the alternatives of the agent has been reduced to those belonging to D.

If the set D has only one element, that is, for some 1 ⩽ i ⩽ N , D = {ai}—or

equivalently: ψ′ = ψ′iai—, then the agent has made a decision, namely the

alternative ai.

Given a state of the mind and a criterion, the set D may have more than one

element. In this case, as Postulate 2 states, the actual alternatives for the agent

after applying the decision process are those in D, but it is not possible to choose

among them without a further analysis: we are in a situation of indecision. If the

cardinal of D is (strictly) lower than N , applying the criterion has indeed reduced

the number of alternatives, but the agent would need to consider another criterion,

to be applied to the new state of mind, with which to try to achieve a single choice.

Those readers familiar with the formalism of Quantum Mechanics could recog-

nise some elements from this theory: the state of mind would correspond to the

wavefunction, the criterion would be an observable, and the updating of the state

would be similar to the collapse of the wavefunction due to a mesure represented by

the observable. There is a significant difference, however, concerning the role of the

eigenvalues: in Quantum Mechanics, they are very relevant—just the possible values

that the measure represented by the observable may take—, but in our theory their

specific value is in principle less important.

Just as in Quantum Mechanics—where the wavefunction “collects” all the phys-

ical information of the corresponding state, to be obtained by the observable—, when

a vector represents the state of mind of the agent facing those alternatives, this vec-

tor embodies all the information about the agent related to that decision, such as

tastes, preferences, impressions, thoughts, etc., and the objective of a criterion is to

extract that information, or at least part of it, and materialise it in a form relevant

to the decision-making process.

In the following sections, we will study different particular cases that will help
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us better understand the role of the different elements of the model.

3 Diagonal operators

In this section we focus on criteria that are diagonal in the basis of alternatives.

We start with a simple example.

Consider an agent trying to decide where to spend the holidays. There are two

alternatives (i.e. N = 2): beach and mountain. Write2 B = ( ∣beach⟩ , ∣mountain⟩)

to stand for an orthonormal basis of H = C2 representing these alternatives (the

system B could be, for instance, the usual canonical basis of C2). Let ψ ∈ C2 be

the agent’s state of mind; we have:

ψ = ψb ∣beach⟩ + ψm ∣mountain⟩ for some ψb ∈ C and ψm ∈ C with ∣ψb∣
2
+ ∣ψm∣

2
= 1.

To make a decision, the agent needs a criterion. Let U be a linear endomorphism

of C2 represented in the basis B by the diagonal matrix3

U =
⎛

⎜

⎝

a 0

0 b

⎞

⎟

⎠

,

where a and b are real numbers.

The basisB is in fact a basis of eigenvectors of the matrix U . Assume that a ≠ b,

that is: different eigenvalues. The corresponding eigenspaces have dimension equal

to 1: Vb = Lin( ∣beach⟩) and Vm = Lin( ∣mountain⟩), and the respective projections of

the state ψ onto these eigenspaces are

π ∣
Vb
(ψ) = ψb ∣beach⟩ and π ∣

Vm
(ψ) = ψm ∣mountain⟩ .

2In this example (and in others later), we find useful the Dirac bra-ket notation (see, for instance,

Dirac, 1958, or Hall, 2013), which is usual in Quantum Mechanics.
3With a slight abuse of notation, we use the same letter for both the endomorphism and the

matrix that represents it in the basis B.
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The squared norm of these projections are equal to ∣ψb∣
2
and ∣ψm∣

2
, respectively. If,

for instance, ∣ψb∣
2
> ∣ψm∣

2
, the agent’s state of mind updates to ψ′ = (ψb/ ∣ψb∣) ∣beach⟩,

and D = {beach}: the agent will go on vacation to the beach.

If we have that ∣ψb∣
2
= ∣ψm∣

2
, the agent’s state of mind is not actually updated,

and the alternatives are not reduced: a situation of indecision.

What would have happened if both eigenvalues coincide (a = b)? In this case,

there is a unique eigenspace: the entire C2, and a unique projection of ψ. The state

of mind is not really updated either, and the alternatives are the same: again, there

is indecision.

Come back to the case of different eigenvalues: a ≠ b. Assume that the agent has

defined a (classical) utility u for these alternatives. The decision according to this

utility would be beach if and only if u(beach) > u(mountain). The decision process

described replicates this utility-maximising behaviour if the numbers ∣ψb∣
2
and ∣ψm∣

2

are respectively proportional to the utilities u(beach) and u(mountain).

As we can notice with this example, when a criterion that is diagonal in the

basis of alternatives is applied, the existence of equal eigenvalues may make us lose

information from the agent’s state of mind, leading to indecision. In this paper,

from now on, we will make use only of criteria with different eigenvalues. We have

the following result, which generalises what we have just seen in the example with

a criterion of this type.

Theorem 1 Given the (orthonormal) basis of alternatives B = (a1,a2, . . . ,aN),

consider a state of mind ψ = ∑
N
i=1ψiai, and define: J = arg max1⩽i⩽N ∣ψi∣. Let U be

a criterion that is diagonal in the basis B and whose eigenvalues are distinct from

each other. The decision process, applying the criterion U to the state ψ, reduces

the actual agent’s alternatives to those in the set {ak ∣ k ∈ J}.

Proof. The basis of alternatives is a basis of eigenvectors of the matrix U , and

each eigenspace of U has dimension equal to 1. For each 1 ⩽ i ⩽ N , we have
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that Vi = Lin(ai), and the corresponding projection of ψ takes the form:

π ∣
Vi
(ψ) = ψiai.

Now we have:

max
1⩽i⩽N

∥π ∣
Vi
(ψ)∥

2
= max

1⩽i⩽N
∥ψiai∥

2
= max

1⩽i⩽N
∣ψi∣

2
,

and this maximum is attained at any k ∈ J . Therefore, the updated state is

ψ′ =
1

√

∑k∈J ∣ψk∣
2
∑

k∈J

ψkak,

and hence D = {ak ∣ k ∈ J}. ◻

If the set J has only one element—that is, the maximum of the numbers ∣ψi∣,

1 ⩽ i ⩽ N , is strict—, then the decision process leads the agent to a single choice.

Otherwise, there is indecision.

As in the previous example, if a utility function u is defined for each alterna-

tive, we retrieve the classical selection of the utility-maximising alternative if the

numbers ∣ψ1∣
2
, ∣ψ2∣

2
, . . . , ∣ψN ∣

2
are respectively proportional to the utilities u(a1),

u(a2), . . . , u(aN). Therefore, according to Theorem 1, the classical utility theory

can be included as a particular case of our framework, via any operator with different

eigenvalues that is diagonal in the basis of alternatives.

4 Non-diagonal operators

In this section, we study the effect of a criterion that is non-diagonal in the basis

of alternatives. As we could see in Section 3, looking at the expansion in the basis

of alternatives of the agent’s state of mind, in the diagonal case only the modulus

of its complex coefficients is relevant. We shall see that, with non-diagonal criteria,

also the arguments of those coefficients play a role.
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For the sake of simplicity, we consider only N = 2 alternatives (as in the example

in Section 3); thus the basis of alternatives is B = (a1,a2), and a state of mind takes

the form ψ = ψ1a1+ψ2a2 for some complex numbers ψ1 and ψ2 with ∣ψ1∣
2
+ ∣ψ2∣

2
= 1.

According to Theorem 1, if ∣ψ1∣ > ∣ψ2∣, a diagonal criterion (in the basis B) with

distinct eigenvalues would extract from the state of mind ψ the choice of the alter-

native a1. In the following theorem, we see that a criterion “almost” diagonal could

lead the agent to the other alternative.

Theorem 2 Consider the basis of alternatives B = (a1,a2) and the state of mind

ψ = ψ1a1 + ψ2a2, with ψj = ∣ψj ∣ eiθj , 1 ⩽ j ⩽ 2. Let V be the criterion whose matrix

with respect to the basis B is given by:

V =
⎛

⎜

⎝

a 0

c b

⎞

⎟

⎠

,

where a, b and c are real numbers and a ≠ b. If the following conditions are held:

2 ∣ψ1∣ ∣ψ2∣ ∣c∣ ∣cos(θ1 − θ2)∣ > ∣ ∣ψ1∣
2
− ∣ψ2∣

2
∣ ∣a − b∣ and (a − b)c cos(θ1 − θ2) < 0, (1)

then the decision process, applying the criterion V to the state ψ, leads the agent to

the alternative a2. If the conditions written in (1) are not held, there is indecision.

Proof. The following are normalised eigenvectors of the matrix V respectively as-

sociated to the eigenvalues a and b:

a ≡
1

√

(a − b)2 + c2
((a − b)a1 + ca2) and b ≡ a2.

The corresponding eigenspaces are V1 = Lin(a) and V2 = Lin(b), and the projections

of the state ψ onto these eigenspaces take the form:

π ∣
V1
(ψ) =

ψ1(a − b) + ψ2c
√

(a − b)2 + c2
a and π ∣

V2
(ψ) = ψ2b.
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On one hand, we have:

∥π ∣
V1
(ψ)∥

2
=

∣ψ1(a − b) + ψ2c∣
2

(a − b)2 + c2
=

∣ψ1∣
2
(a − b)2 + ∣ψ2∣

2
c2 + (a − b)c (ψ1ψ2 + ψ1ψ2)

(a − b)2 + c2

=

∣ψ1∣
2
(a − b)2 + ∣ψ2∣

2
c2 + 2(a − b)c ∣ψ1∣ ∣ψ2∣ cos(θ1 − θ2)

(a − b)2 + c2
;

on the other hand: ∥π∣V2
(ψ)∥

2
= ∣ψ2∣

2
. The inequality ∥π∣V1

(ψ)∥
2
< ∥π∣V2

(ψ)∥
2
—which

would indicate that the alternative a2 is chosen—is equivalent to:

2(a − b)c ∣ψ1∣ ∣ψ2∣ cos(θ1 − θ2) < − ∣ ∣ψ1∣
2
− ∣ψ2∣

2
∣ (a − b)2,

which is in turn equivalent to the inequalities written in (1). Finally, if ∥π∣V1
(ψ)∥ is

equal to ∥π∣V2
(ψ)∥, then the state of mind ψ remains unchanged; and if ∥π∣V1

(ψ)∥

is greater than ∥π∣V2
(ψ)∥, the state is updated to:

ψ′ =
π∣V1
(ψ)

∥π∣V1
(ψ)∥

=

ψ1(a − b) + ψ2c

∣ψ1(a − b) + ψ2c∣
a =K(a − b)a1 +Kca2,

for some number K ∈ C. In both cases, the final state of mind implies indecision. ◻

If a utility u is defined for these alternatives, with the numbers ∣ψ1∣
2
and ∣ψ2∣

2

respectively proportional to the utilities u(a1) and u(a2), Theorem 2 gives a con-

dition for choosing the alternative a2 even if u(a1) > u(a2). Notice that the differ-

ence ∣ ∣ψ1∣
2
− ∣ψ2∣

2
∣ is in turn proportional to the difference of utilities ∣u(a1) − u(a2)∣.

If these utilities are close, the first condition in (1) could be easily held. On the

other hand, the second condition in (1) can be satisfied if a > b, c > 0, and the com-

plex numbers ψ1 and ψ2 form (in the complex plane) and angle greater than π/2.

Therefore, a non-diagonal operator, “playing” with close utilities, could yield a sort

of reversal of utility.

5 Applying the model: the Allais paradox

The Allais paradox is the oldest and most famous example of an experimental

failure of the expected utility model (Allais, 1953). In this paradox, as presented in
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Mas-Colell et al. (1995), an agent faces two different choices:

L1 = {1.00 chance of $500,000 versus L2 =

⎧
⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪
⎩

0.10 chance of $2,500,000

0.89 chance of $500,000

0.01 chance of $0,

and

L3 =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

0.11 chance of $500,000

0.89 chance of $0
versus L4 =

⎧
⎪⎪⎪
⎨
⎪⎪⎪
⎩

0.10 chance of $2,500,000

0.90 chance of $0.

More formally, the agent has to choose between lotteries corresponding to three

different outcomes (which are monetary prizes, of $2,500,000, $500,000, $0): on one

hand, L1 = (0,1,0) and L2 = (0.1,0.89,0.01); on the other hand, L3 = (0,0.11,0.89)

and L4 = (0.1,0,0.9).

The expected utility model predicts that if L4 is preferred to L3, then L2

should be preferred to L1. However, it is experimentally observed that many agents

choose L4 and L1. We shall show how this paradox can fit into our model, also

unveiling some experimentally testable predictions about the agent’s behaviour.

Consider the diagonal criterion

U =
⎛

⎜

⎝

a 0

0 b

⎞

⎟

⎠

,

for some real numbers a and b, with a ≠ b. For the choice between L4 and L3, the

state of mind of the agent can be written as ψ43 = ψ4 ∣L4⟩+ψ3 ∣L3⟩. We assume that

the application of the criterion U to the state ψ43 yields the alternative L4, what is

equivalent (cf. Theorem 1) to ∣ψ4∣ > ∣ψ3∣.

On the other hand, for the choice between L2 and L1, the state of mind of the

agent would take the form: ψ21 = ψ2 ∣L2⟩ + ψ1 ∣L1⟩, so that the criterion U would

be to be applied to this state. But the lottery L1 represents a sure gain, while L2

includes a probability, however very low, of gaining nothing. This fact may perturb
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the perception of the agent, in the sense that there might be some regret of having

chosen L2 instead of L1 in case of a result of $0. We assume that this perturbation

makes the agent apply the diagonal criterion U , not in the basis B = (∣L2⟩ , ∣L1⟩),

but in a “slightly perturbed” basis B′ = (∣L′2⟩ , ∣L1⟩), with ∣L′2⟩ = α ∣L2⟩ + β ∣L1⟩

for some positive real numbers α and β such that α ≫ β and α2
+ β2

= 1.4 The

operator U is represented in the basis of alternatives B as a non-diagonal matrix,

namely:

V =
⎛

⎜

⎝

a 0

c b

⎞

⎟

⎠

, with c =
β

α
(a − b).

According to Theorem 2, applying the operator V to the state of mind ψ21 will

yield the choice of L1 if the following conditions are held:

2 ∣ψ1∣ ∣ψ2∣ ∣c∣ ∣cos(θ1 − θ2)∣ > ∣ ∣ψ1∣
2
− ∣ψ2∣

2
∣ ∣a − b∣ and (a − b)c cos(θ1 − θ2) < 0, (2)

where ψj = ∣ψj ∣ eiθj , 1 ⩽ j ⩽ 2. Note that (a − b)c > 0, so that the second condition is

verified for θ1 − θ2 > π/2. In addition, as we saw in Section 4, the first condition is

easily satisfied when the numbers ∣ψ1∣
2
and ∣ψ2∣

2
are close.

Now, consider a utility u defined on all these alternatives verifying the as-

sumptions of the expected utility theory. It is well known that u(L4) − u(L3) =

u(L2) − u(L1) (what in turn justifies that preferring L4 to L3 implies preferring L2

to L1), and it is also well known that this equality of differences of utilities remains

true if we change the amount of $500,000 for another one, say $1. However, those

differences are greater for $1 than for $500,000. Indeed, the difference u(L4)−u(L3),

4We are consdering that, due to the mentioned possible regret, the possibility of not gaining any

reward, albeit with low probability, induces the agent to entangle the sure gain and the uncertain

alternative.
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or u(L2) − u(L1), would take the form:

0.1u($2,500,000) + 0.01u(0) − 0.11u($500,000)

< 0.1u($2,500,000) + 0.01u(0) − 0.11u($1),

taking into account that the function u is increasing.

The Allais paradox can be translated to our model when the coefficients of the

states of mind take the following form:

ψ1 =

√
u1

√

u1 + u2
eiθ1 , ψ2 =

√
u2

√

u1 + u2
eiθ2 , ψ3 =

√
u3

√

u3 + u4
eiθ3 , ψ4 =

√
u4

√

u3 + u4
eiθ4 ,

where ui ≡ u(Li), 1 ⩽ i ⩽ 4. One can easily check that ∣ψ1∣
2
+ ∣ψ2∣

2
= ∣ψ3∣

2
+ ∣ψ4∣

2
= 1,

and also that:

∣ψ1∣
2
− ∣ψ2∣

2
= k12(u(L1) − u(L2)) and ∣ψ3∣

2
− ∣ψ4∣

2
= k34(u(L3) −U(L4)),

where kij = 1/(Ui + Uj), for i ∈ {1,3} and j ∈ {2,4}. Therefore we see that the

difference ∣ ∣ψ1∣
2
− ∣ψ2∣

2
∣ is greater (possibly much greater) considering the amount

of $1 than considering the original amount of $500,000. In the latter case, the

numbers ∣ψ1∣
2
and ∣ψ2∣

2
are closer, and the first inequality in (2) can be held for

a low value of c—and in turn for a low value of the coefficient β in the perturbed

basis B′. However, with the amount of $1, this inequality needs a much greater

value of the perturbation β to be held.

As we can see, in our model, the amount that is a sure gain in the lottery L1

has a clear effect on an eventual reversal of utility. If this amount is low, the

regret component—materialised in the perturbation β—reduces its influence, and

the agent’s behaviour is that prescribed by the classical theory. If the amount is high,

a very small perturbation can lead the agent to reverse the choice. This dependence

of the agent’s behaviour on the sure amount that defines the lottery might be tested

experimentally, to possibly confirm the validity of our model.
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6 Summary

In this paper we present a model for describing decision processes. This model

is built upon ideas borrowed from Quantum Mechanics and quantum models of

agents: the state of mind of the agent is described by a (normalised) vector in

a Hilbert space spanned by the vectors corresponding to the alternatives among

which the agent makes the choice. The criterion the agent applies to choose an

alternative are represented by linear operators acting in the Hilbert space. To make

a choice, the agent projects the state of mind onto the eigenspaces of the operator,

and updates this state of mind as the projection that exhibits the maximum squared

norm. If the resulting state of mind is proportional to one and only one vector of the

basis of alternatives, the agent has made a choice, consisting of the corresponding

alternative.

We also study both diagonal and non-diagonal operators. The former allows to

include the classical utility theory in the new framework, simply by considering that

the coefficients of the expansion of the state of mind in the basis of alternatives are

proportional to the corresponding utilities. On the contrary, non-diagonal operators

can lead to a reversal of utility under some conditions.

Finally, this model allows to explain the Allais paradox. The criterion used

by the agent is represented by a non diagonal operator that results in choices that

are paradoxical for the classical utility model. These non-diagonal terms arise from

cross effects within alternatives, as the regret of having chosen one alternative that

is revealed not to be optimal. Moreover, our model predicts that these perturbations

are important when the expected utilities of the alternatives are similar, and that

the behaviour of the agents will change depending on this difference, thus making

testable predictions.
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