Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 34, No. 72.
L-ISSN: 0121-1129, e-ISSN: 2357-5328.

DOI: 10.19053/01211129.v34.n72.2025.18997

IMPLEMENTATION GUIDE OF SOFTWARE DEVELOPMENT BEST
PRACTICES BASED ON DEVOPS

Guia de implementacion de buenas practicas para desarrollo de software basada
en DevOps

Manuel Pastrana
Institucion Universitaria Antonio José Camacho, Cali, Colombia. RORr
mapastrana@admon.uniajc.edu.co

Hugo-Armando Ordofiez-Erazo
Universidad del Cauca, Popayan, Colombia.Ror
hugoordonez@unicauca.edu.co

Carlos-Alberto Cobos-Lozada
Universidad del Cauca, Popayan, Colombia.ror
ccobos@unicauca.edu.co

Mirna Muioz
Centro de Investigacion en Matematicas-CIMAT, Zacatecas, Mexico.ROR
mirna.munoz@cimat.mx

Received: 04-02-2025
Accepted: 05-05-2025

ABSTRACT

Software development processes face the constant challenge of improving quality controls within the project’s construction
without affecting operational efficiency and meeting customer needs. DevOps offers a potential solution by enabling software
development with the best practices; however, the disadvantage of frameworks such as DevOps is that they indicate that they
create the practices, but not how to implement them through precise guidelines and under specific tools, leaving this step to
an experimental process of trial and error, which can sometimes be costly. To address that issue, this article proposes a guide
that facilitates the step-by-step adoption of five practices: version control, change requests controlled with manual code
inspection, continuous integration, static code analysis, and implementing an automated pipeline for continuous integration.
The methodology involves: 1) identifying software development best practices and organizing them into a step-by-step
process that allows for phased implementation; 2) detailing the steps to implement each practice with specific technologies;
3) practical application; and 4) analysis and discussion of the results. The guide was presented to students, who used it to
develop a short course project. Implementing the guide’s practices allowed them to recognize that the information from
different tools allows for quality control as the project evolves, making the process more efficient.

Keywords: best practices for software development; DevOps; implementation guide; software engineering; software quality
assurance.

How to cite: M. Pastrana, H. A. Ordofez-Erazo, C. A. Cobos-Lozada, M. Mufioz, “Implementation Guide of Software Development
Best Practices Based on DevOps”. Revista Facultad de Ingenieria, vol. 34, no. 72,e18997, 2025. https://doi.org/10.19053/01211129.
v34.n72.2025.18997

https://doi.org/10.19053/01211129.v34.n72.2025.18997
https://revistas.uptc.edu.co/index.php/ingenieria
https://orcid.org/0000-0002-6506-0659
mailto:mapastrana%40admon.uniajc.edu.co?subject=
https://orcid.org/0000-0003-1874-4684
mailto:hugoordonez%40unicauca.edu.co%20?subject=
https://orcid.org/0000-0002-6263-1911
mailto:ccobos%40unicauca.edu.co?subject=
https://orcid.org/0000-0001-8537-2695
mailto:mirna.munoz%40cimat.mx?subject=
https://doi.org/10.19053/01211129.v34.n72.2025.18997
https://doi.org/10.19053/01211129.v34.n72.2025.18997
https://creativecommons.org/licenses/by/4.0/
https://ror.org/030v7ct83
https://ror.org/04fybn584
https://ror.org/04fybn584
https://ror.org/02nhmp827

Implementation Guide of Software Development Best Practices Based on DevOps

RESUMEN

Los procesos para desarrollo de software tienen el reto constante de mejorar los controles de calidad dentro de la
construccién del proyecto, sin afectar a la eficiencia operativa y la capacidad de respuesta frente a las necesidades de los
clientes. DevOps ofrece una solucién potencial al proporcionar un conjunto de buenas practicas de desarrollo de software;
sin embargo, la desventaja que poseen los marcos de trabajo como DevOps es que indican que crean las practicas, pero no
cémo implementarlas através de guias precisas y bajo herramientas especificas, dejando este paso a un proceso experimental
de ensayoy error, que en algunos casos puede resultar costoso. Para abordar dicha situacién, este articulo propone una guia
que facilite laadopcién paso a paso de cinco practicas: control de versiones, solicitudes de cambio controladas con inspeccién
manual de cédigo, integracién continua, analisis de codigo estatico e implementacién de una canalizacién automatizada para
la integracion continua. La metodologia utilizada implica: 1) identificar las mejores practicas de desarrollo de software y
organizarlas en un paso a paso que permita una implementacion escalonada; 2) detallar los pasos para implementar cada
practica con tecnologias especificas; 3) aplicacion practica y 4) analisis y discusion de los resultados. La guia fue presentada a
estudiantes, quienes la utilizaron para desarrollar un proyecto de curso corto. La implementacién de las practicas de la guia
les permitié reconocer que la informacién de diferentes herramientas permite el control de calidad a medida que el proyecto
evoluciona haciendo mas eficiente su proceso.

Palabras clave: aseguramiento de calidad de software; buenas practicas para desarrollo de software; DevOps; guia de
implementacién; ingenieria de software.

GUIA DE IMPLEMENTAGAO DE BOAS PRATICAS PARA DESENVOLVIMENTO DE SOFTWARE BASEADA
EM DEVOPS

RESUMO

Os processos de desenvolvimento de software enfrentam constantemente o desafio de melhorar os controles de qualidade
na construcao dos projetos sem comprometer a eficiéncia operacional e a capacidade de resposta as necessidades dos
clientes. O DevOps oferece uma solucdo potencial ao fornecer um conjunto de boas praticas para o desenvolvimento de
software. No entanto, uma das desvantagens de estruturas como o DevOps é que, embora definam as praticas, ndo indicam
como implementa-las por meio de guias precisos e ferramentas especificas, deixando esse processo a um experimento de
tentativa e erro, que pode ser custoso em certos casos. Para enfrentar essa situacao, este artigo propde um guia que facilita
a adocado passo a passo de cinco praticas: controle de versao, solicitacdes de alteracido controladas com inspecdo manual
de cdédigo, integracdo continua, andlise estatica de cédigo e implementacdo de um pipeline automatizado para integracao
continua. A metodologia utilizada envolve: 1) identificar as melhores praticas de desenvolvimento de software e organiza-
las em um passo a passo que permita uma implementacdo escalonada; 2) detalhar os passos para implementar cada pratica
com tecnologias especificas; 3) aplicacio pratica e 4) analise e discussio dos resultados. O guia foi apresentado a estudantes,
que o utilizaram para desenvolver um projeto de curso de curta duracdo. A implementacao das praticas do guia permitiu que
reconhecessem que a informacao proveniente de diferentes ferramentas possibilita o controle de qualidade a3 medida que o
projeto evolui, tornando o processo mais eficiente.

Palavras-chave: boas praticas de desenvolvimento de software; DevOps; engenharia de software; garantia da qualidade de
software; guia de implementacao.

2 Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 34, No. 72

Pastranaetal.

1. INTRODUCTION

Software development companies constantly face problems associated with the improvement of
their production processes, especially when thinking of significantly increasing quality [1]. However,
companies with the greatest economic possibility of reinvesting in a continuous improvement plan
manage to make their products and services more profitable; therefore, they stand out in the industry
[2].

While DevOps offers a potential solution to the challenges of modern software development by
integrating development and operations through collaborative practices, automation, and continuous
feedback loops, effectively implementing it in practice remains a significant challenge for both industry
and educational settings [3]. Although there are academic proposals, like Grotta and Prado’s DevOpsBL
[4], which emphasizes project-based learning, they often remain tool-agnostic by prioritizing soft skills
over concrete technical guidance; DevOpsEnvy, presented by Rong et al. [5], which creates a simulated
DevOps environment but lacks the detailed implementation steps needed to translate theoretical
understandinginto practical expertise; other authorsunderscore the challenges of balancing automation
with pedagogical goals [6], which highlights the need for hands-on experience without providing a
structured methodology for tool adoption. Additionally, Hobeck et al. [7] focus on integrating CI/CD
pipelines in graduate-level courses, thus demonstrating the value of real-world toolchains, but their
approach lacks the phased, incremental model necessary for broader educational contexts. To address
those limitations, this article proposes a structured implementation guide with detailed instructions
for specific practices and technologies, thus enabling both students and interns to build competency
incrementally while experiencing quality improvements at each stage.

This highlights that academic training programs in higher education institutions are not far from this
context; therefore, they constantly seek new ways to address the needs of the industry and solve them
through the courses that make up curricula [7].

Reducing the gap between academia and industry in undergraduate training programs is essential
to propose exercises that confront students with real situations [8]; for instance, the latent need to
implement best practices for software development in a software engineering course, where the
DevOps framework stands out as an alternative with clear directions on what should be done to
improve the development process [?]. However, because there is a wide variety of practices and tools
that could be implemented, the trial-and-error process for adoption is slow and costly [10]. In addition,
the documentation associated with carrying out step-by-step and staggered adoption for a specific set
of technologies is scarce, thus making it more difficult, both in industry and academia.

Regardless of their size, software development companies face multiple challenges associated with
their daily activity, such as managing technical debt, speeding up product delivery, maintaining high-
quality standards that meet the market’s needs, and ensuring customer loyalty [11]. To overcome them,
it is key to implement best practices for software development based on DevOps because it enables
setting different preventive quality filters up [12], such as control points and continuous feedback that
serve the development team directly during construction, empowering those who build the product to
focus on quality [13]. This scenario, according to [14], allows collaborators to know the actual status of
the project in terms of quality to avoid and reduce rework resulting from the need for adjustments after
the completion of one or more functionalities during a development sprint —a time box that goes from
one to four weeks where commitments are agreed. Feedback is obtained from the interested parties at
the end of it, as mentioned above [15].

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 34, No. 72 3

Implementation Guide of Software Development Best Practices Based on DevOps

Although frameworks such as DevOps propose a set of best practices that can be applied manually
atinitial stages, as suggested by [6], implementing an automated cycle can help mitigate these problems
by allowing early detection of errors, efficient code construction, and continuous quality analysis. It also
generates continuous information and will enable it to be always consulted, as mentioned in [16] and
[17]. Hence, this context is not isolated from undergraduate training processes, where professionals are
trained for the industry.

This work proposes an approach to reduce the gap between both contexts (industry and academia)
with the aim of training students under real scenarios in the adoption of some of the main practices
suggested by DevOps, following a clear and well-structured process with specific tools and their gradual
implementation.

Inrecentyears,severalstudieshave addressed thechallenges and opportunities ofintegrating DevOps
practices into software engineering education. Notably, Grotta and Prado’s DevOpsBL framework
emphasizes project-based learning, where students engage with DevOps concepts through capstone
projects that simulate real-world scenarios [4]. Their approach is primarily tool-agnostic, focusing on
the development of soft skills and team collaboration rather than prescribing specific technologies or
step-by-step technical procedures. While this fosters adaptability, it can leave students without clear
guidance on how to operationalize DevOps best practices with concrete tools.

Similarly, Ronget al.[5] present DevOpsEnvy, an educational support system that creates a simulated
DevOps environment for students to experience the workflow and collaboration typical of industry
settings. Thissystem provides avirtualized ecosystemthat allows students to practice DevOps principles
in a controlled setting. However, like DevOpsBL, DevOpsEnvy does not provide detailed, technology-
specific implementation steps; instead, it prioritizes the simulation of roles and processes.

In both cases, there is a gap associated with the specific selection of tools that clearly guide the
learning process. Furthermore, they lack gradual implementation, which could lead to some difficulties
in teaching such practices, their implementation, and their interconnectedness.

Likewise, Bruel and Jiménez, in their education panel, highlight the ongoing challenges in teaching
DevOps, such as the need for meaningful feedback and the difficulty of balancing automation with
pedagogical goals [6]. Their analysis underscores the importance of hands-on experience but stops
short of offering a granular, staged methodology for tool adoption and process automation.

Likewise, Hobeck et al. [7] contribute further by comparing DevOps teaching approaches at two
universities, focusing on the integration of CI/CD pipelines and the use of industry tools like Jenkins
and Ansible. Their work demonstrates the value of exposing students to real-world tool chains and
deployment scenarios. Nevertheless, their methodology is largely centered on graduate-level courses.
It does not provide a phased, incremental adoption model suitable for diverse educational contexts or
students at earlier stages of their training. This differentiates it from the proposal of this work.

In contrast to prior works, the guide proposed in this paper offers a structured, step-by-step
methodology that explicitly details the adoption of DevOps practices using aspecific tool chain, including
GitHub, SonarCloud, and JUnit. Each stage—from version control and manual code review to continuous
integration, static code analysis, and full pipeline automation—is accompanied by concrete instructions
and scripts, enabling immediate application in academic projects. This approach not only demystifies the
implementation process for students but also ensures that quality assurance mechanisms are embedded
in each stage of development. Furthermore, the guide has been validated through its application in ten
parallel student projects. Its scalability and effectiveness inimproving software quality and development
efficiency in an educational setting was proven.

4 Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 34, No. 72

Pastranaetal.

By bridging the gap between abstract DevOps principles and practical, tool-based implementation,
this guide addresses the limitations identified in previous educational frameworks. Additionally, it
provides educators and students with a reproducible model for phased DevOps adoption, supporting
competency-based learning and continuous quality improvement throughout the software development
lifecycle.

This article presents an implementation guide of the five best practices for software development
recommended by DevOps used in a software engineering course as a learning strategy. The article is
organized as follows: Section 2 describes the methodology, Section 3 shows the results, and Section 4
presents the conclusions and future work.

2.METHOD

Software development processes are made up of phases such as analysis and planning, design,
development, and quality, as well as the deployment and maintenance of applications[18]. This last phase
could include having to cycle again in which changes or improvements are analyzed, new elements are
designed within the solution, implemented, validated, and finally deployed again [18]. When executing
a software development project, this phased lifecycle specifically guides what must be done to build the
desired application. However, to fully comply with each phase, it is necessary to use a methodology, for
example. Rational Unified Process - RUP is a development framework like Scrum, XP, or a combination
of frameworks (Scrum + DevOps, Iconix, or similar). The above aims to delimit the roles, artifacts, events,
and practices to be carried out during the development process.

DevOps focuses on the development, quality, deployment, and maintenance phases [3], applying
specific practices that allow controlling the evolution of the increment, managing changes, creating
quality filters associated with moments such as development, preventive tests prior to the creation
of the deployable unit, integration of the changes made by all developers, creation of the deployable
unit, release and operation, functional test, continuous monitoring of its operation, and generation of
information that allows planning how to continue improving the development process [19].

The step-by-step model proposed in this article is based on the integration of DevOps practices
through an automated cycle that consists of the following key steps mentioned in [20]. Specifically in
the development and quality phases.

In the first step, source code versioning works as the starting point to manage the evolutionary
changes of the software under construction. It is the starting point that will allow the detection of the
incorporated changes and trigger the cycle. For this, changes cannot be entered directly into a branch
of integration, so it is required to take the second step, where a developer, through a pull request, will ask
to include these changes. Here, another member of the team must perform a manual inspection of the
code; if it is approved, they merge it with the integration branch, and the third step is triggered, which
is automation with a pipeline that starts building the code depending on the instructions associated
with the programming language [16]. To achieve this, it is necessary to run the unit tests and then try
to build and create the deployable unit. If this is successful, the fourth step would be the static analysis of
code using an external tool such as Sonar Cloud to measure elements such as security, possible errors
(bugs), vulnerabilities, code duplicity, and odorous codes; i.e., the use of bad programming practices that
increase technical debt. Finally, in the fifth step, all this is implemented in a script that allows, from the
moment a change is detected, to automatically chain all practices, identifying whether the objectives
of each step are met and generating useful information for continuous improvement before obtaining
sprint results. The above is summarized in Fig. 1. Each step is detailed below.

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 34, No. 72 5

Implementation Guide of Software Development Best Practices Based on DevOps

Fig. 1. Steps to successful implementation of DevOps practices.

2.1. Source Code Versioning

According to [20] using a version control system like Bitbucket, GitHub, and Gitlab is essential to
managing software’s evolutionary changes. Code versioners allow a detailed track of all modifications
made to the code, identifying who made them, when, and what has been modified. They also facilitate
collaboration between developers and ensure a clear and complete project history.

Steps to be taken when using the versioner:

1.

Initialize the Repository: Developers must create a repository using a tool like GitHub, GitLab, or
Bitbucket. This initializes the project and provides a centralized, highly available space to store the
source code.

Branch Structure: It is necessary to define a clear branch structure that includes:

2.1 Create a main branch (called main/master), where the most stable and final version of the
code will be blocked for direct changes and where changes are only uploaded when the delivery is
approved.

2.2 Create an integration branch of development changes (it can be called develop, development,
integration, etc.); it must be blocked to direct changes, and integration requests can only be made to
this branch by pull request.

2.3 Finally, developers work on their branches derived from the integration branch, where they
manage their developments.

Commits and Branches: Developers create branches from the integration branch to implement new
features or fix bugs. Each change is committed regularly, and a detailed record of the modifications
is kept. The comments have a structure where the one that has been made is indicated as follows:
Addition of, to include new functionalities; Modification of, to detail that something has been changed

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 34, No. 72

Pastranaetal.

in existing functionality; and Correction of, to comment that it is an adjustment either because it was
detected during development or after it. Additionally, no final periods or ellipses should be used at
the end of the comment because it would denote that it is incomplete, and the comment should be
at most fifty (50) characters.

2.2 Pull Requests and Code Review

The work of [21] recommends using Pull Requests (PRs) to maintain control over change evolution.
PRs are afundamental practice for ensuring the quality of code. Through PRs, developers review changes
before being integrated into the project’s main branch.

Steps:

1. Creating the Pull Request: The developer creates a PR in the version control tool, describing the
changes made and their purpose.

2. Manual Code Inspection: Another team member must review the PR to ensure it meets quality
standardsanddoesnotintroduceerrorsorvulnerabilitiesaccordingtothe company’sdevelopment
standards. This review may include comments and requests for changes if required.

3. Approval and Merging: If the revisionis successful, the PR is approved, and changes will be merged

into the integrations branch, triggering the next step in the automated pipeline.

2.3 Automation with Pipeline

An automated pipeline manages the creation (building) of the deployable unit, pre-executing the
tests of the code as a quality control point, ensuring that the code has a first seal of quality performed
by the software developer by validating correctness and handling errors in addition to determining if
there are no syntactic errors that allow the construction according to [22]. This increases efficiency in
the development process, allowing for a decrease in post-delivery rework. The pipeline is configured to
run automatically whenever changes are merged into the integrations branch.

Steps:

1.

Unit Test Execution: The pipeline automatically executes unit tests to verify that new features
or modifications to existing ones do not introduce errors in the code. These tests are essential to
ensure that each part of the code works correctly and maintains the system’s operability in case
of failures by controlling possible errors.

Code Construction: If unit tests are successful, the code is built using the specific instructions of
the programming language with which the project is developed. Building the code converts the
source code into an executable or package ready to be deployed.

Deployable Unit Creation: If the building is successful, a deployable unit (artifact) can be used
in test or production environments. This artifact is the result of the construction process and
is ready to be deployed or distributed, leaving the door open to include other practices such as
continuous deployment.

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 34, No. 72 7

Implementation Guide of Software Development Best Practices Based on DevOps

2.4 Static Code Analysis - SCA

The Static Code Analysis (SCA), according to [20], uses tools that can be implemented in the
development environment with measurements only on programming practices or in external tools
that review the entire project, as is the case of SonarQube and SonarCloud, where many more rules
are evaluated. They aim at measuring code’s quality and reducing technical debt. This analysis can
be integrated with the pipeline to ensure that each new code version meets the quality standards
determined by the company. It can also serve as a threshold to identify whether it is ready to deliver.
Steps:

1. SCAintegration: Configurethe pipelinetorun SCAusingatool. Thisintegration enables automatic
and continuous evaluation of the code by measuring several aspects, which are consistently
displayed on adashboard accessible to the development team. This visibility encourages a culture
of continuous improvement throughout the development process.

2. Execution of the Analysis: The pipeline executes static analysis, evaluating security, bugs,
vulnerabilities, code duplication, and code smells. By providing this information to the team,
all modifications required to increase the delivery quality will be executed before the sprint’s
completion.

3. Review of Results: The team reviews the reports generated by SonarCloud and takes corrective
action if necessary. Detailed reports allow them to identify and correct problems before
implementing improvements becomes more costly.

2.5 Automation Script

All the previous steps must be taken to a script that enables the integration and chaining of the
practices above, so that whenever a change is detected, the quality is measured and reported to the
development team to take immediate actions that allow the best possible result, as suggested by [23].

3. RESULTS

Following the recommendations in [24], 10 identical software development projects were
implemented and conducted by students from the Antonio José Camacho University Institution as part
of a software engineering course. The objective was to create the backend of an application that allows
them to consult and reserve books in the institutional library, limiting it to the university community
only. Professors, students and administrators can consult the books available in the library’s catalog,
and those that are available can be reserved for use for a period of no more than two weeks, then they
must return it, or a fine will be issued, which will prevent that person to reserve any other books until
it is paid. This implies the management of books (creation, updating, consultation, and inactivation of
their availability), loans (creation, updating, consultation, and deletion), and fines (creation, updating,
consultation, and deletion). It exposes the API’s available methods and communicates with the logical
layer to send a request or receive a response. Finally, once the backend is created, the presentation
layer allows APl consumption. For this exercise, students focused on the backend creation and the
application of versioning, unit testing, Continuous Integration, and Static Code Analysis. Projects start
from the source code baseline with a REST services API archetype. The project includes a multilayer

8 Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 34, No. 72

Pastranaetal.

architecture based on a model-view-controller (MVC) structure as the predominant structural pattern.
It was developed in Java 17 with Spring Boot 3.2.2, Swagger 2V 2.9.2, JPA, Lombok, Junit, and Jacoco,
and the dependency manager was Gradle 8.5. Postgres 11 was used as a database, and Flyway migration
was used to manage all the project’s database scripts. Spring Initializr was used to generate the initial
structure of the project. These technologies have been selected by the training process of students in
previous courses, such as web software development, to facilitate learning within the course with prior
knowledge.

The project is composed of a folder to store the model classes, which are in-memory representations
of the database entities; these classes use the notation language provided by Lombok to autogenerate
the empty constructor, the constructor with all the attributes, and the class’s accessor methods (get
and set). These classes are used by DAOs or data access classes, called a registry, which allows JPAs
to inherit generic methods in operations with the database, thus making coding faster. In addition, the
latter classes are also organized in their own folder, different from those of the models. Together, they
represent the data access layer of the system.

Registries are consumed by business logic classes and named services by the Spring Boot framework.
There is no direct usage relationship; instead, the dependency injection pattern optimizes resource
usage in object creation. This represents the logical layer of the system. Fig. 2 summarizes the solution’s
architecture.

Fig. 2. Solution’s architecture.
3.1 Source Code Versioning

The first step taken by all the students was to take the initial version of the project built into the code
versioner, which contains complete functionality in which each class is implemented as an example of

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 34, No. 72 9

Implementation Guide of Software Development Best Practices Based on DevOps

how they should be implemented in other project functionalities. This is called an archetype. In this case,
Bitbucket—a version control system based on Git—was used.

Using the tool properly requires a structure based on [15]. The model proposed in [20] suggested
that a branch called master needs to contain the most stable version of the code in production. Also, a
branch called “develop,” derived from the master, must include the code prepared for the next version,
continuously evolving until the quality has been checked. This branch is locked to changes directly,
so making a Pull Request (PR) to include them is mandatory. Finally, from the last branch mentioned
for integrations, the branches of each developer are derived, allowing each to develop the various
functionalities in an organized way and have traceability of the changes. This allowed the teams to place
an order and not overwrite changes to the work of the other members. A necessary recommendation
for teams is to use clear and descriptive commit messages when pushing changes, following commit
message conventions such as Conventional Commits. This facilitates the mandatory manual code
inspection in the PR to approve the merge. The sample source code is available at https://bitbucket.
org/Mpastrana/demo/src/master/ and can be cloned with a git bash using the command git clone https://
Mpastrana@bitbucket.org/Mpastrana/demo.git (Fig. 3).

Fig. 3. Branches' structure.

All participating students successfully adopted version control practices, with 100% compliance in
using descriptive commit messages and following the established branching strategy. This uniformity
in practices enhanced the overall project management and traceability of changes, leading to a more
organized development process. By establishing a clear branching strategy and requiring pull requests
for code integration, developers could work concurrently on different features without interfering with
eachother’swork, thusfacilitating smoother collaboration. This led to a reduction in merge conflicts among
team members.

10 Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 34, No. 72

https://bitbucket.org/Mpastrana/demo/src/master/
https://bitbucket.org/Mpastrana/demo/src/master/
https://Mpastrana@bitbucket.org/Mpastrana/demo.git
https://Mpastrana@bitbucket.org/Mpastrana/demo.git

Pastranaetal.

3.2 Pull Requests and Code Inspection

As mentioned in the method, it is necessary to implement this practice to take three steps: First, a
team member who needs to include the changes in the integration branch (develop) must request the
Bitbucket (Pull Request - PR). This assigns another team member to do the manual code inspection, which
involves reviewing logic, architecture, and compliance with coding standards and providing detailed
comments and suggestions for improvement if required. Finally, the reviewer of the code must approve
PR and merge using pull requests for code inspection allowed for cleaner code submissions, making the
review process faster and more efficient.

This allowed development teams to understand that the integration of the changes within the
versioner should not be uploaded without a prior review to ensure that the modifications will not
negatively affect the evolution of the project. By doing code inspections requested by the PR, students
are more aware of the evolution of the project, they control syntactic errors or problems in coding that
cause them to go out of the programming standard agreed upon by them, guaranteeing not only greater
cleanliness and maintainability of the code, but also increasing communication and collaboration of the
entire team. All the students applied this effectively.

3.3 Automation with Pipeline

Versioners like Bitbucket allow these practices to be integrated into the same tool and facilitate
the learning process for students. Once the previous step is completed and approved, a script can be
created to execute the continuous integration, which implies that all the project unit tests have been
executed and have passed satisfactorily. If this does not happen, the process is interrupted, and the team
is notified that it is impossible to do so. The objective is to have control over the evolution of the project
at the syntactic level of the coding, detecting possible changes that generate errors to be corrected
immediately. Then, when all the unit tests are approved, the deployable unit’s code construction (build) is
automated. Each commit in the integration branch of Bitbucket triggers this.

To do this, aninitial script is explained in detail and created to guide all the students in this step. This
must be placed at the root folder level and is called bitbucket-pipelines.yml. The script used is presented
below:

1. image: amazoncorretto:17 # Docker image containing the required JDK

2. clone:

3. depth: full # Does the full cloning of the branch download the latest version
4. definitions: # If caches are required for any tool, it is indicated here

5. caches:

6. steps: # Steps to be executed
7. -step: &build

8 name: Build and Test

9 caches:

10. -gradle

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 34, No. 72 11

Implementation Guide of Software Development Best Practices Based on DevOps

11. script:
12. - chmod +x gradlew # Grant gradle execute permissions
13. -./gradlew build # Use gradle to build the project

14. artifacts:

15. - build/libs/**

16. pipelines: # Indicates when the step is executed
17. branches:

18. develop:

19. - step: *build

20. pull-requests:

21. "

22. - step: *build

One of the advantages of using the Bitbucket tool is that it provides atemplate for the implementation
of this step. So, it is useful for explaining how it can be done for this project or other projects with other
technologies. Thanks to the use of the template, the explanation of the steps required by the script, and
the detailed explanation of the elements that compose them, complexity is reduced and students were
able to implement it satisfactorily.

3.4 Static Code Analysis

For this step, SonarCloud was used. This tool evaluates a detailed inspection of the code without
executing it, providing an accurate evaluation of the quality of the code through different rules that
allow evaluating vulnerability, security-based aspects, possible bugs, code duplicity, and bad coding
practices in the project (code smell), as shown in Fig.4.

Fig. 4. SonarCloud control panel view.

To use SonarCloud, an account must be created at https://sonarcloud.io/login, using the Bitbucket
account credentials to link the two tools using a private key. Once the account is created, a next-next
optionformis followed to guide the configuration of the analysis project, starting by requesting to select
the repository from the versioner.

12 Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 34, No. 72

https://sonarcloud.io/login

Pastranaetal.

Finally, SonarCloud requests to indicate which analysis method will be used to integrate the static
code analyzer with the tool that is doing the continuous integration (Cl). This is done to suggest how to
tell the Cl script that it should add the step of calling this tool, as shown below in Fig. 5.

Fig. 5. Selection of the tool for automation of integration through pipelines.

To create the key, they must go to the repository in the Bitbucket tool. As this is the first time, the tool
will prompt them to activate the pipeline to trigger the practices from the approved merger of changes in
the integrations branch. Once the above is done, the environment variable is created, as shown in Fig. 6.

Fig. 6. Variable environment creation for the tool-to-tool linking key.

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 34, No. 72 13

Implementation Guide of Software Development Best Practices Based on DevOps

By integrating source code versioning, pull requests, and static code analysis into the pipeline, the
team could identify potential issues early in the development process, reducing the likelihood of defects
in the production environment, which is in line with what was stated by [25].

One of the positive aspects of using SonarCloud in the exercise is that, like BitBucket, the tool provides
a template to modify the initial script, which makes it easy to include specific changes to adopt the tool.
Therefore, to complete the exercise, students must modify the script as indicated in the next step and
thus be able to perform the inspection automatically.

With the first linking of the project in the SonarCloud, the tool provides an initial inspection that
tells teams their code quality with respect to aspects such as security, code duplication, cyclomatic
complexity, and adjustments required in terms of the international coding standard, such as the proper
use of constants instead of duplicating standard messages several times, do not leave defined variables,
methods or libs unused, do not leave unnecessary comments, correctly control errors, among other
elements that the tool reviews. Additionally, the tool indicates if there is the presence of unit tests and
how much coverage they have on the code.

According to the exercise presented here, the dashboard provided by SonarCloud made it easier for
students to detect the necessary improvements in their code, as well as to understand each suggestion
made by the tool and how to solve it. This helps not only with continuous code improvement but also
allows them to learn about the way the team is coding so as not to repeat the same thing in the future
and generates a gradual improvement in the way they code their projects.

3.5 Automation Script

Finally, the bitbucket-pipelinesyml script is modified to include a SonarCloud review, where
continuous code quality monitoring through version control, integration, and automated analysis
allowed the team to address technical debt, improving the codebase’s maintainability proactively. These
practices allowed for early technical debt identificationduring the software engineering course, enabling
the team to address potential issues before they escalated. This proactive approach not only improved
code quality but also reduced the long-term costs associated with fixing accumulated technical debt,
ultimately leading to a more maintainable and efficient codebase, which is consistent with the findings
reported by [25]. The result is shown below.

1. image: amazoncorretto:17 # Docker image containing the required JDK

2. clone:

3. depth: full # Does the full cloning of the branch download the latest version

4. definitions: # If caches are required for any tool, it is indicated here

5. caches:

6. sonar: ~/.sonar/cache # Caching SonarCloud artifacts will speed up your build
7. steps: # Steps to be executed

8. -step: &build-text-sonarcloud

9 name: Build, test, and analyze on SonarCloud

10. caches:

14 Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 34, No. 72

Pastranaetal.

11. - gradle

12. - sonar

13. script:

14. -chmod +x gradlew # Grant gradle execute permissions
15. -./gradlew build # Use gradle to build the project

16. artifacts:
17. - build/libs/**

16. pipelines: # Indicates when the step is executed
17. branches:

18. develop:

19. - step: *build-text-sonarcloud

20. pull-requests:
21. ™

22. - step: *build-text-sonarcloud

4. CONCLUSIONS AND FUTURE WORK

The article presents a step-by-step guide that allows unifying five practices proposed by DevOps:
versioningwith pull request to apply manual code inspection before integrating the changes, Unit Testing
(UT), Continuous Integration (Cl), Static Code Analysis, and an automation script, which integrates the
practices.

Results from the ten student projects demonstrated tangible benefits from adopting this guide.
Specifically, it promotes a preventive quality axis when carrying out software development projects.
The combination of these practices allows software development teams to maintain control over the
evolution of the project, identifying a history of changes and allowing the maintenance of a high-quality
and stable version. In the same way, it allows the maintenance of standards and response quickly to
changes in the software development environment, identifying whether the merged changes have
brought syntactic errors that prevent the construction of the deployable unit or have modified the
work of others without previously reviewing and adjusting it (through unit testing and continuous
integration). Additionally, static code analysis plays a fundamental role in the codification quality, aiming
to detect bad software development practices as soon as possible, teaching team members the best way
to solve them, and promoting continuous improvement. Additionally, the feedback from the student
teams indicated that these practices enabled them to identify and resolve quality issues early in the
development cycle, before formal testing phases, as demonstrated by them in the results. This early
detection was facilitated by the continuous feedback loop established through the automated pipeline,
enabling students to iteratively improve their code quality.

Given the scarcity of detailed implementation guides with specific tools, this paper introduces a
structured, easy-to-implement framework for development teams to adopt DevOps-recommended
practices. Sequentially presenting the process facilitates a step-by-step understanding and gradual

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 34, No. 72 15

Implementation Guide of Software Development Best Practices Based on DevOps

adoption of each practice, helping teams to implement a software development process guided by
DevOps, specifically in improving the development, testing, and deployment phases. This approach
encourages teams to leverage the continuous flow of information generated during implementation,
promoting proactive decision-making and responsiveness. As demonstrated in the results, maintaining
rigorous control over project evolution enables teams to address unforeseen issues early rather than
discovering them during the testing phases. This not only enhances project outcomes but also fosters
a culture of automation and quality-focused practices, ultimately contributing to improved software
development processes.

Furthermore, the implementation of continuous integration practices resulted in a more streamlined
building process, allowing for faster feedback on code changes. Student feedback indicated that this
rapid feedback cycle enabled them to address integration issues more efficiently, reducing debugging
and resolving conflicts more easily due to the information provided by the implemented tools.

While the scope of this study is limited to an educational setting, results suggest that the proposed
implementation guide offers a viable approach for introducing DevOps practices in a structured and
incremental manner. The guide’s step-by-step nature and tool-specific instructions facilitated the
adoption of these practices by students with varying levels of prior experience, as mentioned in the
results section.

Future work should focus on evaluating the guide’s effectiveness in industrial settings and exploring
its applicability to different types of software projects. Additionally, it is necessary to quantify the impact
of each practice on specific quality metrics and to develop more comprehensive assessment methods
for evaluating DevOps competencies. Additionally, it is recommended to create similar guides for
other technologies and compare results to identify possible generic models that facilitate the practices’
adoption and implementation. Likewise, in a real-world scenario or when applying the guide to large-
scale systems with multiple microservices, cloud deployments, or multi-region architectures, it would
be necessary to test its scalability.

AUTHORS’ CONTRIBUTION

Manuel Pastrana: Conceptualization, Methodology, Writing - original draft.

Hugo-Armando Ordofez-Erazo: Conceptualization, Methodology, Supervision, Writing - reviewing
and editing.

Carlos-Alberto Cobos-Lozada: Supervision, Writing - reviewing and editing.

Mirna Munoz: Supervision, Writing - reviewing and editing.
REFERENCES

[1] S. Hastie, S. Wojewoda, Standish Group 2015 Chaos Report - Q&A with Jennifer Lynch, 2015.
http://www.infoq.com/articles/standish-chaos-2015

[2] M. A. Pastrana, H. A. Ordofiez-Erazo, C. A. Cobos-Lozada, “Adaptando DevOps alanorma ISO 29110
a través de metodologias agiles en VSE desarrolladoras de software colombianas,” Investigacion e
Innovacion en Ingenierias, vol. 12, no. 1, pp. 189-203, jun. 2024.
https://doi.org/10.17081/INVINNO.12.1.6916

16 Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 34, No. 72

http://www.infoq.com/articles/standish-chaos-2015
https://doi.org/10.17081/INVINNO.12.1.6916

Pastranaetal.

[3] R.Jabbari, N. bin Ali, K. Petersen, B. Tanveer, “Towards a benefits dependency network for DevOps
based on a systematic literature review,” Journal of Software: Evolution and Process, vol. 30, no. 11,
e1957,Nov. 2018. https://doi.org/10.1002/smr.1957

[4] A. Grotta, E. P. V Prado, “DevOpsBL: DevOps-based learning on information systems higher
education,” Federal Institute of Sao Paulo (IFSP), Brazil: Association for Information Systems, 2021.

[5] G.Rong, S. Gu, H. Zhang, D. Shao, “DevOpsEnvy: An Education Support System for DevOps,” in IEEE
30th Conference on Software Engineering Education and Training (CSEE&T), 2017, pp. 37-46.
https://doi.org/10.1109/CSEET.2017.17

[6] J-M. Bruel, M. Jiménez, “Devops’18 education panel: Teaching feedback and challenges,” in Lecture
Notes in Computer Science, 2019. https://doi.org/10.1007/978-3-030-06019-0_17

[7] R. Hobeck, I. Weber, L. Bass, H. Yasar, “Teaching DevOps: A tale of two universities,” in Proceedings of
the 2021 ACM SIGPLAN International Symposium on SPLASH-E, 2021, pp. 26-31.
https://doi.org/10.1145/3484272.3484962

[8] K. Kuusinen, S. Albertsen, “Industry-academy collaboration in teaching devops and continuous
delivery to software engineering students: Towards improved industrial relevance in higher
education,” in [EEE/ACM 41st International Conference on Software Engineering: Software Engineering
Education and Training (ICSE-SEET), 2019, pp. 23-27. https://doi.org/10.1109/ICSE-SEET.2019.00011

[9] R. Jabbari, N. Bin Ali, K. Petersen, B. Tanveer, “What is DevOps? A Systematic Mapping Study on
Definitions and Practices,” in Proceedings of the Scientific Workshop, 2016.
https://doi.org/10.1145/2962695.2962707

[10] M. A. Pastrana Pardo, H. A. Ordéiiez Erazo, C. A. Cobos Lozada, “Approach to the Best Practices of
Software Development Based on DevOps and SCRUM Used in Very Small Entities,” Revista Facultad
de Ingenieria, vol. 31, no. 61,e14828, Sep. 2022.
https://doi.org/10.19053/01211129V31.N61.2022.14828

[11] A.D.Robinson, “Very small entities (VSE); The final systems engineering (SE) frontier,” in 12th Annual
|IEEE International Systems Conference, SysCon, 2018, pp. 1-4.
https://doi.org/10.1109/SYSCON.2018.8369570

[12] M. Senapathi, J. Buchan, H. Osman, “DevOps capabilities, practices, and challenges: Insights from a
case study,” in ACM International Conference Proceeding Series, 2018.
https://doi.org/10.1145/3210459.3210465

[13]K.Maroukian,S.R.Gulliver, “The Link between Transformational and Servant Leadership in DevOps-
Oriented Organizations,” in PervasiveHealth: Pervasive Computing Technologies for Healthcare, 2020,
pp. 21-29. https://doi.org/10.1145/3393822.3432340

[14] A.Belalcazar, “Incorporation of Good Practices in the Development and Deployment of Applications
through Alignment of ITIL and Devops,’ in International Conference on Information Systems and
Computer Science (INCISCOS), Nov. 2017, pp. 224-230. https://doi.og/10.1109/INCISC0OS.2017.31

[15] K. Schwaberm, J. Sutherland, La Guia Definitiva de Scrum: Las Reglas del Juego, 2020.
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-Spanish-European.pdf

[16] S. Vadapalli, DevOps: Continuous Delivery, Integration, and Deployment with DevOps Dive into the core
DevOps strategies, 2018. https://books.google.com.mx/books?id=N5RRDwWAAQBAJ

Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 34, No. 72 17

https://doi.org/10.1002/smr.1957
https://doi.org/10.1109/CSEET.2017.17
https://doi.org/10.1007/978-3-030-06019-0_17
https://doi.org/10.1145/3484272.3484962
https://doi.org/10.1109/ICSE-SEET.2019.00011
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.19053/01211129.V31.N61.2022.14828
https://doi.org/10.1109/SYSCON.2018.8369570
https://doi.org/10.1145/3210459.3210465
https://doi.org/10.1145/3393822.3432340
https://doi.og/10.1109/INCISCOS.2017.31
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-Spanish-European.pdf
https://books.google.com.mx/books?id=N5RRDwAAQBAJ

Implementation Guide of Software Development Best Practices Based on DevOps

[17] T. Pandiyavathi, B. Sivakumar, “DevOps Challenges and Practices in Software Engineering,” Lecture
Notes in Networks and Systems, vol. 665 LNNS, pp. 49-57,2023.
https://doi.org/10.1007/978-981-99-1726-6_5

[18] R. S. Pressman, B. R. Maxim, Software Engineering: A Practitioner’s Approach, Boston, USA: McGraw-
Hill, 2015.

[19] W.de Kort, “What Is DevOps?” in DevOps on the Microsoft Stack, Berkeley, CA: Apress, 2016, pp. 3-8.
https://doi.org/10.1007/978-1-4842-1446-6_1

[20] M-A. Pastrana-Pardo, H.-A. Ordoénez-Erazo, C.-A. Cobos-Lozada, “Process Model Represented in
BPMN for Guiding the Implementation of Software Development Practices in Very Small Companies
Harmonizing DEVOPS and SCRUM,” Revista Facultad de Ingenieria, vol. 31,no. 62,e15207, Dec. 2022.
https://doi.org/10.19053/01211129v31.n62.2022.15207

[21] V. Ivanov, K. Smolander, “Implementation of a DevOps Pipeline for Serverless Applications,” Lecture
Notes in Computer Science, vol. 11271 LNCS, pp. 48-64,2018.
https://doi.org/10.1007/978-3-030-03673-7_4

[22] A. Agarwal, S. Gupta, T. Choudhury, “Continuous and Integrated Software Development using
DevOps,” in International Conference on Advances in Computing and Communication Engineering, 2018,
pp. 290-293. https://doi.org/10.1109/icacce.2018.8458052

[23] P. Mumbarkar, S. Prasad, “Adopting DevOps: Capabilities, practices, and challenges faced by
organizations,” in AIP Conference Proceedings, 2022. https://doi.org/10.1063/5.0110594/2828181

[24] R. Chatley, I. Procaccini, “Threading DevOps Practices through a University Software Engineering
Programme,” in IEEE 32nd Conference on Software Engineering Education and Training (CSEE&T), 2020,
pp. 90-94. https://doi.org/10.1109/CSEET49119.2020.9206211

[25] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, B. Vasilescu, “The impact of continuous integration on
other software development practices: A large-scale empirical study,” in 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE), IEEE, Oct. 2017, pp. 60-71.
https://doi.org/10.1109/ASE.2017.8115619

18 Revista Facultad de Ingenieria (Rev. Fac. Ing.) Vol. 34, No. 72

https://doi.org/10.1007/978-981-99-1726-6_5
https://doi.org/10.1007/978-1-4842-1446-6_1
https://doi.org/10.19053/01211129.v31.n62.2022.15207
https://doi.org/10.1007/978-3-030-03673-7_4
https://doi.org/10.1109/icacce.2018.8458052
https://doi.org/10.1063/5.0110594/2828181
https://doi.org/10.1109/CSEET49119.2020.9206211
https://doi.org/10.1109/ASE.2017.8115619

	_heading=h.mlv8ruyeig2z
	_heading=h.z9p03dty7u0
	_heading=h.xifvhmtmgpdr
	_heading=h.gjdgxs

