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Abstract. In the original version of this paper, we assume a theory T in the
logic Lκ,ℵ0 is categorical in a cardinal λ > κ, and κ is a measurable cardinal.
There we prove that the class of models of T of cardinality < λ but ≥ |T |+ κ
has the amalgamation property under a natural order; this is a step toward
understanding the character of such classes of models.

In this revised version we replaced the class of models of T by k, an AEC (ab-
stract elementary class) which has LST-number <κ, or at least which behaves
nicely for ultra-powers by D, some normal ultra-filter on κ or just LST+

k -
complete non-principal ultra-filters on κ.

Presently sub-section §2A deals with T ⊆ Lκ+,ℵ0
(and so does a large part of

the introduction and little in the rest of §2), but otherwise, all is done in the
context of AEC.

The reader may in the first reading for transparency fix D, a normal ultrafilter
on the measurable cardinal κ and either fix the T ⊆ Lκ,ℵ0 or fix an AEC k
with LSTk < κ.

We leave the original introduction adding a few comments at the end, after
the three stars.
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Resumen. En la versión original de este art́ıculo, suponemos que una teoŕıa
T en la lógica Lκ,ℵ0 es categórica en un cardinal λ > κ, y que κ es un cardinal
medible. Alĺı demostramos que la clase de modelos de T de cardinalidad < λ
con ≥ |T |+κ tiene la propiedad de amalgamación bajo un orden natural; este
es un paso hacia la comprensión del carácter de dichas clases de modelos.

En esta versión revisada, reemplazamos la clase de modelos de T por k, una
AEC (clase elemental abstracta) que tiene número de Löwenheim-Skolem-
Tarski < κ, o al menos que se comporta bien para ultrapotencias por D, algún
ultrafiltro normal sobre κ o simplemente ultrafiltros no principales LST+

k -
completos sobre κ.

Actualmente, la subsección §2A trata con T ⊆ Lκ+,aleph0
(y también una gran

parte de la introducción y poco en el resto del §2), pero por lo demás, todo se
hace en el contexto de las AEC.

Para una primera lectura, y en aras de la transparencia, el lector puede fijar
D un ultrafiltro normal sobre el cardinal medible κ, y bien fijar T ⊆ Lκ,ℵ0 o
bien fijar una AEC k con LSTk < κ

Dejamos la introducción original añadiendo algunos comentarios al final, de-
spués de los tres asteriscos.

Palabras claves: teoŕıa de modelos, clases elementales abstractas, AEC,
categoricidad, lógica infinitaria, amalgamación.

Mathematics Subject Classification: Primary 03C48. Secondary 03C45,
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Annotated Content

§0 Introduction, pg. 4.
§1 Preliminaries, pg. 6.

[In §2A we review materials on fragments F of Lκ,ℵ0 (including the
theory T ) and basic model-theoretic properties (Tarski-Vaught property
and L.S.T.), and we define amalgamation. In §2B we move to AEC
k = (K,≤k) which is our main framework now, and spell out the con-
nection. In §3C, D we deal with indiscernibles and E.M. models, then
we deal with limit ultra-powers which are suitable (for Lκ,ℵ0 and for our
AECs) and in particular ultra-limits. Next, we introduce a notion basic
for this paper: M ≤

nice
N if there is a ≤k-embedding of N into suitable

ultra-limit of M extending the canonical embbeding.]

§2 The amalgamation property for regular categoricity, pg. 19.

[We get amalgamation in (Kλ,≤k) when one of the extensions is nice, see
Claim 2.1. We prove that if k is categorical in the regular λ > LSTk + κ,
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then (K<λ,≤k) has the amalgamation property. For this, we show that
nice extension (in K<λ) preserves being a non-amalgamation basis. We
also start investigating (in Theorem 2.5) the connection between extend-
ing the linear order I and the model EM(I): I ⊆

nice
J ⇒ EM(I) ≤

nice

EM(J); and give sufficient condition for I ⊆
nice

J (in Criterion 2.6). From

this, we get in Kλ a model such that any sub-model of a suitable ex-
pansion is a ≤

nice
-sub-model (in Fact 2.8, Theorem 2.11(2)), and conclude

the amalgamation property in (K<λ,≤k) when λ is regular (in Theorem
2.10) and something for singulars in Theorem 2.11.]

§3 Toward removing the assumption of regularity from the existence of
universal extensions, pg. 26.

[The problem is that EM(λ) has many sub-models which “sit” well in
it and we can prove that there are many amalgamation bases but we
need to get this simultaneously. First in Theorem 3.1 we show that, if
⟨Mi : i < θ+⟩ is ≤k-increasing continuous sequence of models from Kθ,
then for a club of i < θ+ we have Mi ≤

nice

⋃
{Mj : j < θ+}. In Definition

3.6, we define nice models (essentially, every reasonable extension is nice).
Next (in Theorem 3.4) we show that nice models are dense in Kθ. Also
(by Theorem 3.5) many embeddings are nice and (in Corollary 3.6) we
show that being nice implies being amalgamation base. Then we define a
universal extension of M ∈ Kθ in K∂ (Definition 3.7), we prove existence
over a model in Lemma 3.10 and after preparation prove the existence
(Corollary 3.13, Corollary 3.14).]

§4 (θ, ∂)-saturated models, pg. 32.

[If Mi ∈ Kθ for i ≤ ∂ is increasing continuous, Mi+1 universal over
Mi, and each Mi is nice, then1 we say M∂ is (θ, ∂)-saturated over M0.
We show existence (and uniqueness). We connect this to more usual
saturation and prove that (θ, ∂)-saturation implies niceness (in Theorem
4.11).]

§5 The amalgamation property for K<λ, pg. 38.

[After preliminaries we prove that for θ ≤ λ (and θ ≥ LST(k) + κ of
course) every member of Kθ can be extended to one with many nice
sub-models, this is done by induction on θ using the niceness of (θ1, ∂1)-
saturated models. Lastly, we conclude that every M ∈ K<λ is nice hence
K<λ has the amalgamation property.]

1In [33] we say Mj is (θ, ∂)-brimmed.
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0. Introduction

The main result2 of this paper is a proof of the following theorem:

Theorem 0.1. Suppose that T is a theory in a fragment of Lκ,ℵ0 where κ is a
measurable cardinal. If T is categorical in the cardinal λ > κ+ |T |, then K<λ,
the class of models of T of power strictly less than λ (but ≥ χ = κ+ |T |), has
the amalgamation property (see Definition 1.12 (1)(2)).

The interest in this theorem stems in part from its connection with the
study of categoricity spectra. For a theory T in a logic L let us define Cat(T ),
the categoricity spectrum of T , to be the collection of those cardinals λ in which
T is categorical. In the 1950’s  Los conjectured that if T is a countable the-
ory in first-order logic, then Cat(T ) contains every uncountable cardinal or no
uncountable cardinal. This conjecture, based on the example of algebraically
closed fields of fixed characteristic, was verified by Morley [12], who proved
that if a countable first-order theory is categorical in some uncountable cardi-
nal, then it is categorical in every uncountable cardinal. Following advances
made by Rowbottom [15], Ressayre [14] and Shelah [17], Shelah [18] proved the
 Los conjecture for uncountable first-order theories: if T is a first-order theory
categorical in some cardinal λ > |T |+ℵ0, then T is categorical in every cardinal
λ > |T | + ℵ0. It is natural to ask whether analogous results hold for theories
in logics other than first-order logic. Perhaps the best-known extensions of
first-order logic are the infinitary logics Lλ,κ. As regards theories in Lκ,ℵ0

,
Shelah (see [21] and [22]) continuing work begun in [19] introduced the concept
of excellent classes: these have models in all cardinalities, have the amalgama-
tion property and satisfy the  Los conjecture. In particular, if φ is an excellent
sentence of Lℵ1,ℵ0

, then the  Los conjecture holds for φ. Furthermore, under
some set-theoretic assumptions (weaker than the Generalized Continuum Hy-
pothesis) if φ is a sentence in Lℵ1,ℵ0

which is categorical in ℵn for every natural
number n (or even just if φ is a sentence in Lℵ1,ℵ0 with at least one uncount-
able model not having too many models in each ℵn), then φ is excellent. Now,
[25], [34] try to develop classification theory in some non-elementary classes.
We cannot expect much for Lλ,κ for κ > ℵ0. The first author conjectured that
if φ is a sentence in Lℵ1,ℵ0

categorical in some λ > ℶω1
, then φ is categor-

ical in every λ > ℶω1 . (Recall that the Hanf number of Lℵ1,ℵ0 is ℶω1 , so if
ψ is a sentence in Lℵ1,ℵ0 and ψ has a model of power λ ≥ ℶω1 , then ψ has
a model in every power λ ≥ ℶω1

, see [8]) . There were some who asked why
so tardy the beginning. Recent work of Hart and Shelah [5] showed that for
every natural number k greater than 1 there is a sentence ψk in Lℵ1,ℵ0

which is
categorical in the cardinals ℵ0, . . . ,ℵk−1, but which has many models of power
λ for every cardinal λ ≥ 2ℵk−1 . The general conjecture for Lℵ1,ℵ0 remains open
nevertheless. As regards theories in Lκ,ℵ0 , progress has been recorded under
the assumption that κ is a strongly compact cardinal. Under this assumption

2In the old version.
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Shelah and Makkai [11] have established the following results for a λ-categorical
theory T in a fragment F of Lκ,ℵ0

:

1) if λ is a successor cardinal and λ > ((κ′)κ)+ where κ′ = max(κ, |F|),
then T is categorical in every cardinal greater than or equal to min(λ,ℶ(2κ′ )+),

2) if λ > ℶκ+1(κ′), then T is categorical in every cardinal of the form ℶδ

with δ divisible by (2κ
′
)+ (i.e. for some ordinal α > 0, δ = (2κ

′
)+ · α (ordinal

multiplication)).

In proving theorems of this kind, one has recourse to the amalgamation
property which makes possible the construction of analogs of saturated mod-
els. In turn, these are of major importance in categoricity arguments. The
amalgamation property holds for theories in first-order logic [2] and in Lκ,κ

when κ is a strongly compact cardinal (see e.g. [11]: although ≺Lκ,κ
fails the

Tarski-Vaught property for unions of chains of length <κ (whereas ≺Lκ,ℵ0
satis-

fies it), under a categoricity assumption it can be shown that ≺Lκ,ℵ0
and ≺Lκ,κ

coincide). However, it is not known in general for theories in Lκ,ℵ0 or Lκ,κ

when one weakens the assumption on κ, in particular when κ is just a measur-
able cardinal. Nevertheless, categoricity does imply the existence of reasonably
saturated models in an appropriate sense, and it is possible to begin classifica-
tion theory. This is why the main theorem of the present paper is of relevance
regarding the categoricity spectra of theories in Lκ,ℵ0 when κ is measurable.

A sequel to this paper under preparation (which is now [31]) tries to provide
a characterization of Cat(T ) at least parallel to that in [11] and we hope to deal
with the corresponding classification theory later. This division of labor both
respects historical precedent and is suggested by the increasing complexity of
the material. Another sequel deals with abstract elementary classes (in the
sense of [23]) (see [31], [29] respectively). On more work see [30], [33].

The paper is divided into five sections. Section 2 is preliminary and nota-
tional. In section 3 it is shown that if the theory T ⊆ Lκ,ℵ0

or just suitable
AEC K is categorical in the regular cardinal λ > κ + |T |, then K<λ has the
amalgamation property. Section 4 deals with weakly universal models, section
5 with (θ, ∂)-saturated and θ̄-saturated models. In section 6 the amalgamation
property for K<λ is established.

All the results in this paper (other than those explicitly credited) are due
to Saharon Shelah.

∗ ∗ ∗

On a more recent survey see [35] and a recent one see [36], in particular on 
the history of κ-compact AEC.

We had stated that clearly, the proof of [9] works for AEC, but the referee 
of [36] asked to do it explicitly. Here we justify [36, 4.7]. Note that, [9, 1.1, 
1.2] essentially proves that (Mod(T ), ≺T ) is an AEC ignoring Ax. V of AEC 
(see Definition 1.17), so Fact 1.11(2) was added.

We thank Shimoni Garti for his help in proofreading and the referee for 
pointing out some obscure points.
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1. Preliminaries

To start things off in this section, let us fix notation, provide basic definitions
and well-known facts, and formulate our working assumptions.

The working assumptions in force throughout the paper are these.

Assumption 1.1. κ is an uncountable cardinal, and D is an uniform non-
principal ultra-filter on κ.

Assumption 1.2.
(1) The theory T is a theory in the infinitary logic Lκ,ℵ0 , χ = κ + |T |

and vocabulary τ = τT , and κ is a measurable cardinal, D is a κ-complete
non-principal ultra-filter on κ, or

(2) k is an AEC which is D-compact (see Definition 1.17 and Definition 1.40
respectively) and χ = κ+ LST(k).

Our main theorem for the logic Lκ,ℵ0
is:

Theorem 1.3. If T ⊆ Lκ,ℵ0
is categorical in λ > κ + |τT | then the class of

models of T of cardinality < λ but ≥ κ + |τT | (under the so called ≺F , see
Notation 1.8(2)(7), (8)) has the amalgamation property.

Proof. Use Theorem 1.19 on AEC which is applicable by Conclusion 1.23 and
recalling Definition 1.21 and Claim 1.22.

From these assumptions follow certain facts, of which the most important
are these.

Fact 1.4. For each model M of T , κ-complete ultra-filter D over I and suitable
set G of equivalence relations on I×I (see Definition 1.32) the limit ultra-power
Op(M) = Op(M, I,D,G) is a model of T .

Fact 1.5. For each linear order I = (I,≤) there exists an Ehrenfeucht-Mostowski
model EM(I) of T (see Definition 1.26(6)).

This section is divided into several subsections: in §1A we deal with a theory

T in Lκ,ℵ0 , in §1B we move to AEC k showing that the context in §1A is a 
special case. Then in §1C we deal with EM models. Finally, in §1D we deal 
with ultra-powers, ultra-limits, and nice sub-models.

1(A). Frame for Lκ,ℵ0

Relevant set-theoretic and model-theoretic information on measurable cardinals 
can be found in [7], [2], and [4].

Notation 1.6. Let τ denote3 a vocabulary, i.e. a set of finitary relation and 
function symbols, including equality (i.e. the arity of the symbols in τsk is 
always finite). So |τ | is the cardinality of the vocabulary τ .
3In the old version it was called “language” and denoted by L.
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Definition 1.7.
(1) For cardinals κ ≤ λ, Lλ,κ is the logic such that for any vocabulary τ,

Lλ,κ(τ) is the smallest set of (possibly infinitary) formulas in the vocabulary τ
which contains all first-order formulas and which is closed under:

(A) the formation of conjunctions (disjunctions) of any set of formulas of
power less than λ, provided that the set of free variables in the conjunc-
tions (disjunctions) has power less than κ,

(B) the formation of ∀x̄φ,∃x̄φ, where x̄ = ⟨xα : α < α∗⟩ is a sequence with
no repetitions of variables of length α∗ < κ.

(2) Whenever we use the notation φ(x̄) to denote a formula in Lλ,κ, we
mean that x̄ is a sequence ⟨xα : α < α∗⟩ as above. So if φ(x̄) is a formula in
Lκ,ℵ0 , then x̄ is a finite sequence of variables.

(3) So L = Lℵ0,ℵ0
is a first order logic.

Notation 1.8.
(1) F denotes a fragment of Lκ,ℵ0

(τ), i.e. a set of formulas of Lκ,ℵ0
(τ) which

contains all atomic formulas of τ , and which is closed also under negations,
finite conjunctions (finite disjunctions), and the formation of subformulas. An
F-formula is just an element of F .

(2) T is a theory in Lκ,ℵ0
(τ), so there is a fragment F of Lκ,ℵ0

such that
T ⊆ F and |F| < |T |+ + κ. Let FT be the minimal such F . If not said
otherwise, T and F = FT are fixed.

(3) Models of T (invariably referred to as models) are τ -structures which
satisfy the sentences of T . They are generally denoted M,N, . . . , and |M | is
the universe of the τ -structure M ; ∥M∥ is the cardinality of |M |.

(4) For a set A, |A| is the cardinality of A and <ωA is the set of finite
sequences in A and for ā = ⟨a0 . . . an−1⟩ ∈ <ωA, lg(ā) = n is the length of ā.
Similarly, if ā = ⟨aζ : ζ < δ⟩, we write lg(ā) = δ, where δ is an ordinal.

(5) For an element R of τ and a τ -model M , let val(M,R), or RM , be the
interpretation of R in the τ -structure M . Similary for a function symbol F ∈ τ .

(6) We ignore models of power less than κ. K is the class of all models of
T ;

Kλ = {M ∈ K : ||M || = λ},K<λ =
⋃
µ<λ

Kµ,K≤λ =
⋃
µ≤λ

Kµ,K[µ,λ) =
⋃

µ≤χ<λ

Kχ.

(7) We write f : M →
F

N (may be abbreviated f : M → N) to mean

that f is an F-elementary embedding (briefly, an embedding) of M into N ,
i.e. f is a function with domain |M | into |N | such that for every F-formula
φ(x̄), and ā ∈ <ω|M | with lg(ā) = lg(x̄),M ⊨ φ[ā] iff N ⊨ φ[f(ā)], where if
ā = ⟨ai : i < n⟩, then f(ā) := ⟨f(ai) : i < n⟩.

(8) In the special case where an embedding f is a set-inclusion (so that
|M | ⊆ |N |), we write M ≺F N (briefly M ≺ N), instead of f : M →

F
N. We
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may say that M is an F-elementary sub-model of N , or N is an F-elementary
extension of M .

Notation 1.9.
(1) (I,≤I), (J,≤J) are partial orders; we will not bother to subscript the

order relation unless really necessary; we may write I for (I,≤). We say (I,≤)
is directed iff for every i1 and i2 in I, there is i ∈ I such that i1 ≤ i and i2 ≤ i.
(I,<)∗ is the (reverse) partial order (I∗, <∗) where I∗ = I and s <∗ t iff t < s.

(2) A sequence ⟨Mi : i ∈ I⟩ of models indexed by I is a ≺F -directed system
iff (I,≤) is a directed partial order and for i ≤ j in I,Mi ≺F Mj .

Note that, the union ∪
i∈I
Mi of a ≺F -directed system ⟨Mi : i ∈ I⟩ of τ -

structures is an τ -structure. In fact, more is true.

Fact 1.10.
(1) (Tarski-Vaught property) The union of a ≺F -directed system ⟨Mi : i ∈

I⟩ of models of T is a model of T , and for every j ∈ I,Mj ≺F ∪
i∈I
Mi.

(2) For M̄ as above, if M is a fixed model of T such that for every i ∈ I
there is fi : Mi →

F
M, I is directed, and for all i ≤ j in I, fi ⊆ fj , then

∪
i∈I
fi : ∪

i∈I
Mi →

F
M . In particular, if Mi ≺F M and fi is the identity function

on Mi for every i ∈ I, then ∪
i∈I
Mi ≺F M . Let α be an ordinal. A ≺F -chain

of models of length α is a sequence ⟨Mβ : β < α⟩ of models such that if
β < γ < α, then Mβ ≺F Mγ . The chain is continuous if for every limit ordinal
β < α,Mβ = ∪

γ<β
Mγ .

Fact 1.11.
(1) (Downward Löwenheim-Skolem Property): Suppose that M is a model

of T , A ⊆ |M | and max(κ + |T |, |A|) ≤ λ ≤ ||M ||. Then there is a model N
such that A ⊆ |N |, ||N || = λ and N ≺F M .

(2) If N and M1 ⊆M2 are τ -models, F is a fragment of Lκ,ℵ0
, and Mℓ ≺F N

for ℓ = 1, 2 then M1 ≺F M2.

Now we turn from the rather standard model-theoretic background to the 
more specific concepts which are central in our investigation.

Definition 1.12.
(1) Suppose that < is a binary relation on a class K of models (mainly 

(K, <) = (Kk, <k), see below). We say K = ⟨K, <⟩ has the amalgamation 
property (AP) iff for every M, M1, M2 ∈ K, if fi is an isomorphism from M 
onto rng(fi) and rng(fi) < Mi for i = 1, 2, then there exist N ∈ K and 
isomorphisms gi from Mi onto rng(gi) for i = 1, 2 such that rng(gi) < N and 
g1f1 = g2f2. The model N is called an amalgam of M1, M2 over M with 
respect to f1, f2.

(2) An τ -structure M is an amalgamation base (a.b.) for K = ⟨K, <⟩ iff 
M ∈ K and whenever for i = 1, 2, Mi ∈ K and fi is an isomorphism from
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M onto rng(fi), rng(fi) < Mi, then there exist N ∈ K and isomorphisms
gi (i = 1, 2) from Mi onto rng(gi) such that rng(gi) < N and g1f1 = g2f2.

(3) We say K = ⟨K,<⟩ has AP iff every model in K is an a.b. for K.

Example 1.13. Suppose that T is a theory in first-order logic having an
infinite model. Define, for M,N in the class K≤|T |+ℵ0

of models of T of power
at most |T | + ℵ0, M < N iff the indentity on |M | is an embedding of M onto
an elementary sub-model of N. Then K≤|T |+ℵ0

= ⟨K≤|T |+ℵ0
, <⟩ has AP, (see

[2]).

Example 1.14. Suppose that T is a theory in Lκ,ℵ0
and F is a fragment of

Lκ,ℵ0 containing T with |F| < |T |+ + κ. Let < be the binary relation ≺F
defined on the class K of all models of T . M ∈ K is an a.b. for K iff whenever
for i = 1, 2,Mi ∈ K and fi is an ≺F -elementary embedding of M into Mi,
there exist N ∈ K and F-elementary embeddings gi(i = 1, 2) of Mi into N
such that g1f1 = g2f2.

Definition 1.15. Suppose that < is a binary relation on a class K of models.
Let µ be a cardinal. M ∈ K≤µ is a µ-counter amalgamation basis (µ-c.a.b.) of
K = ⟨K,<⟩ iff there are M1,M2 ∈ K≤µ and isomorphisms fi from M into Mi

such that:

(a) rng(fi) < Mi(i = 1, 2),

(b) there is no amalgam N ∈ K≤µ of M1,M2 over M with respect to f1, f2.

Observation 1.16. Suppose that T,F and < are as in Example 1.14 and
κ+ |T | ≤ µ < λ. Note that if there is an amalgam N ′ of M1,M2 over M (for
M1,M2,M in K≤µ), then by Fact 1.11(1) there is an amalgam N ∈ K≤µ of
M1,M2 over M .

1(B). Replacing T by AEC

On AEC see [23], [32] or [1], recall:

Definition 1.17. We say k = (Kk,≤k) is an a.e.c. with L.S.T. number λ(k) =
LSTk = LST(k), we may write K for Kk, when K is a class of τk-models, ≤k a
two-place relation on K and

� Ax 0: The holding of M ∈ K,N ≤k M depend on N,M only up to
isomorphism, i.e. [M ∈ K,M ∼= N ⇒ N ∈ K] and [if N ≤k M and
f is an isomorphism from M onto the τ -model M ′ and f ↾ N is an
isomorphism from N onto N ′ then N ′ ≤k M

′.]

� Ax I: if M ≤k N then M ⊆ N (i.e. M is a sub-model of N).

� Ax II: M0 ≤k M1 ≤k M2 implies M0 ≤k M2 and M ≤k M for M ∈ K.
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� Ax III: If λ is a regular cardinal, Mi (i < λ) is a ≤k-increasing (i.e.
i < j < λ implies Mi ≤k Mj) and continuous (i.e. for every limit ordinal
δ < λ,Mδ =

⋃
i<δMi) then M0 ≤k

⋃
i<λMi. Hence Mj ≤κ

⋃
i<λMi for

every j < λ.

� Ax IV: If λ is a regular cardinal and Mi (for i < λ) is ≤k-increasing
continuous and Mi ≤k N for i < λ then

⋃
i<λMi ≤k N .

� Ax V: If N0 ⊆ N1 ≤k M and N0 ≤k M then N0 ≤k N1.

� Ax VI: If A ⊆ N ∈ K and |A| ≤ LST(k) then for some M ≤k N,A ⊆
|M | and ∥M∥ ≤ LST(k) (and LST(k) is the minimal infinite cardinal
satisfying this axiom which is ≥ |τ |; the ≥ |τ | is for notational simplicity).

Definition 1.18.
(1) We define “k categorical in λ”, k<λ, “k has amalgamation” “M ∈ Kk is

a.b.”, “M is c.a.b.” naturally (see Definitions 1.12 and 1.15).
(2) Let kλ = (Kλ,≤k↾ Kλ), where Kλ = {M ∈ Kk : ∥M∥ = λ}.
(3) For χ < λ, let k[χ,λ) = (K[χ,λ),≤k↾ K[χ,<λ)]), where K[χ,λ) =

⋃
{Kµ : µ ∈

[χ, λ)}.

So our main theorem is:

Theorem 1.19. Assume κ is a measurable cardinal, k is an AEC, and χ =
LSTk + κ < λ, and LSTk < κ or just k is D-compact (see Definition 1.2(1)
and Assumption 1.1). If k is categorical in λ then k[χ,λ) has amalgamation, see
Definition 1.12.

Proof. First, without loss of generality, assume that Hypothesis 1.45 holds.
[Why? If LSTk < κ then by Claim 1.28(0), without loss of generality

|τk| ≤ 2LST(k), hence |τk| < χ and by Claim 1.41(1), k is D-compact (see
Assumption 1.1). So in any case k is D-compact and by Claim 1.42, Hypothesis
1.45(1) holds.

By Claim 1.28(1), (2) also Hypothesis 1.45(2) holds. So Hypothesis 1.45
holds indeed.]

Recall that, in §2-§5 we assume Hypothesis 1.45.
Second, if λ is regular, then the desired conclusion holds by §2, that is, by

Theorem 2.10.
Third, if λ is singular, then the desired conclusion holds by §5, that is, by

Corollary 5.6.

Claim 1.20. Assume k is an AEC and τ = τk. Then;
There are τ1 = τk,1 ⊇ τk of cardinality |τ | + LSTk and a set P of q.f.

(quantifier free) 1-types in L(τ1) such that:

(A) a τ -structure M belongs to Kk iff it can be expanded to a τ1-model M+

from K+, where:
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� K+ = K+
k = {N : N a τ1-structure omitting every p ∈ P}.

(B) If M+ ∈ K+ and M+ ↾ τ ≤k N then there is a model N+ ∈ K+ expanding
N such that M+ ⊆ N+. Also, for M,N ∈ K, we have M ≤k N iff there
are expansions M+, N+ ∈ K+ of M,N respectively such that M+ ⊆ N+.

(C) (K+,⊆) is an AEC with LST(K+,⊆) = LST(k).

(D) There is a set τ ′1 ⊆ τ1 of cardinality LSTk such that A ⊆ M+ ∈ K+ ⇒
clτ ′

1
(A,M+) ⊆ M+.

(E) Some ψ ∈ L(2λ)+,ℵ0
defines Kk,1 where λ = LSTk + |τk|.

Proof. 1.20 By [32, 1.7].

Definition 1.21.
Assume T is a theory in Lκ,ℵ0(τT ), τT determined by T (so |T | ≤ (|τT | +

κ)<κ) and recall FT is the set of formulas φ(x̄) such that φ(x̄) is a sub-formula
of some sentence ψ ∈ T. We define k = kT as follows:

(A) Kk is the class of τT -models of T of cardinality ≥ κ+ |T |.

(B) M ≤k N iff:

(a) M,N ∈ Kk,

(b) M ⊆ N,

(c) M ⪯F N i.e., if φ(x̄) ∈ FT (see below, so lg(x̄) is finite and ā ∈
lg(x̄)M) then M |= φ[ā] iff N |= φ[ā].

Claim 1.22. If T is a theory in Lκ,ℵ0
(τT ), then:

(A) kT is an AEC.

(B) LSTkT = LST(kT ) ≤ |T | + κ.

(C) If T ⊆ Lλ+,ℵ0
(τT ) then LSTk ≤ |T | + λ.

(D) kT has no model of cardinality < |τ | + κ but for any τ(T )-model M of
cardinality ≥ |T | + κ, M ∈ KkT ⇔M |= T.

(E) If D is a κ-complete non-principal ultra-filter on κ, then the AEC k is
D-compact (By  Los’s theorem for Lκ,ℵ0 , even Lκ,κ) proved by Hanf (see
Definition 1.40).

Proof. Mainly, this holds by Fact 1.10 and Fact 1.11, but see fully in the proof 
of Claim 1.25, except clause (E) which is proved in 1.41.

Conclusion 1.23. To prove our results for T ⊆ Lκ,ℵ0 it suffices to prove them 
for the AEC kT (see Definition 1.21).
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Proof. By Claim 1.22 just check the definitions and assumptions.

Definition 1.24. We say the AEC k is (µ, λ, κ)-representable when there are
(τ1, T1,Γ) such that:

(a) τ1 ⊇ τk has cardinality ≤ λ,

(b) T1 ⊆ L(τ1) is a first order logic universal theory, so |T1| ≤ λ,

(c) Γ is a set of ≤ µ qf-types in L(τ1), each of cardinality < κ,

(d) M ∈ Kk iff M is the τk-reduct of some M2 ∈ EC(T1,Γ), where

EC(T1,Γ) = {N : N a τ1-model of T1 omitting every p(x) ∈ Γ},

(e) M ≤k N iff for every M1 ∈ EC(T1,Γ) expanding M , there is N1 ∈
EC(T1,Γ) expanding N and extending M1.

Claim 1.25.
(1) Let k be an AEC. If λ ≥ LSTk + |τk|, then k is (2λ, λ, λ+)-representable.
(2) If T ⊆ Lκ,ℵ0

is a theory then kT is (|τ | + κ, |τ | + κ, κ)-representable. If
in addition κ is a limit regular cardinal and |T | < κ hence is ⊆ Lθ,ℵ0

for some
θ < κ, then it is (|FT |, |FT |, θ)-representable.

Proof.
(1) By Claim 1.20, that is, by [32] and classical theorems, see e.g. [28,

Ch. VII].
(2) Just consider Definition 1.24 and the proof of Claim 1.22.

1(C). Indiscernibles and Ehrenfeucht-Mostowski structures

The basic results on generalized Ehrenfeucht-Mostowski models can be found
in [20] or [26, VII].

Definition 1.26.
(1) We recall here some notation. Let I be a class of models which we call

the index models. Denote the members of I by I, J . . . , etc.
(2) For I ∈ I we say that ⟨as : s ∈ I⟩ is indiscernible in M iff the as-s

are pairwise distinct and for every s̄, t̄ ∈ <ωI realizing the same atomic type
in I, ās̄ and āt̄ realize the same quatifier free type in M (where ā⟨s0,...,sn⟩ =
⟨as0 , . . . , asn⟩).

(3) Assume τ ⊆ τ ′ are vocabularies and Φ is a function with domain in-
cluding

{tpat(s̄, ∅, I) : s̄  ∈ <ωI for some I ∈ I}

and if s̄  ∈ nI then Φ(tp(s̄, ∅, I)) is a complete quantifier free n-type in L(τ ′), let 
τΦ = τ ′. Moreover, if I ∈ I, we let GEM′(I, Φ) be an τ ′-model generated
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by {as : s ∈ I} such4 that tpat(ās̄, ∅,M) = Φ
(
tpat(s̄, ∅, I)

)
; ⟨as : s ∈ I⟩ is called

the skeleton.
(4) We say that Φ is proper for I if for every I ∈ I, GEM′(I,Φ) is well-

defined.
(5) Let GEM(I,Φ) be the τ -reduct of GEM′(I,Φ).
Pedantically, we should write GEMτ (I,Φ) but τ is constant.
(6) For the purposes of this paper we’ll let I be the class LO of linear orders

and Φ will be proper for LO and then write EM (instead GEM). For I ∈ LO
we may abbreviate EM′(I,Φ) by EM′(I) and EM(I,Φ) by EM(I), when Φ is
clear from the context.

We first deal with pairs (T,F).

Claim 1.27. If T ⊆ Lκ,ℵ0
(τ) is a theory which has a model of cardinality

≥ κ, then there are τ, Φ as in Definition 1.26 such that, for each linear order
I = (I,≤) there exists a Ehrenfeucht-Mostowski model EM(I,Φ) is a model of
T.

Proof. See Nadel [13] and Dickmann [3] or [26, VII, §5] or see the limit ultra-
power below.

But now we use the AEC framework.

Claim 1.28.
(0) If k is an AEC then without loss of generality τk has cardinality ≤

2LST(k). Fully we have τk/Ek has ≤ 2LST(k) equivalent classes when Ek =
{(R1, R2) : R1, R2 are both predicates or both function symbols and are of the
same arity and M ∈ Kk ⇒ RM

1 = RM
2 }.

(1) Assume k is an AEC, µ = 2LST(k)+|τ(k)|. If k has a model of cardinality
≥ ℶµ+ (or just model of cardinality ≥ ℶα for every α < µ+) then there is Φ
such that:

(a) Φ is as in Definition 1.26,

(b) τΦ = τk,1, where τk,1 is from Claim 1.20 or Definition 1.24,

(c) EM(I) ∈ Kk has cardinality LSTk + |I|,

(d) for (τ1, T1,Γ) as in Definition 1.24, every model of the form EM′(I) is in
EC(Γ, T1) and τΦ = τ1.

(2) In particular,

(a) EM′(I) is a τ1-model,

(b) EM(I) = EM′(I) ↾ τ belongs to K,

(c) (follows) if I ⊆ J then EM(I) ≤k EM(J), both models from K of cardi-
nality |I| + LST(k).

Proof. As in [32, 1.13], [26, Ch. VII].
4Equivalently, we can use tpqf , the quantifier free type.
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1(D). Limit ultra-powers, iterated ultra-powers and nice
extensions

An important technique we shall use in studying the categoricity spectrum
of a theory in Lκ,ℵ0

or suitable AECs is the limit ultra-power. It is convenient to
record here the well-known definitions and properties of limit and iterated ultra-
powers (see Chang and Keisler [2], Hodges-Shelah [6]) and then to examine nice
extensions of models.

Definition 1.29. Suppose that M is an τ -structure, I is a non-empty set, D
is an ultra-filter on I (but see Definition 1.30(5)), and G is a filter on I × I.

(1) For each g ∈ I |M |, let

(a) eq(g) := {⟨i, j⟩ ∈ I × I : g(i) = g(j)}, and

(b) g/D := {f ∈ I |M | : g = f Mod D} where,

g = f Mod D iff {i ∈ I : g(i) = f(i)} ∈ D.

(2) Let Π
D/G

|M | := {g/D : g ∈ I |M | and eq(g) ∈ G}. Note that Π
D/G

|M |

is a non-empty subset of ΠD|M | = {g/D : g ∈ I |M |} and is closed under the
constants and functions of the ultra-power ΠDM of M modulo D.

(3) The limit ultra-power Π
D/G

M of the τ -structure M (with respect to

(I,D,G)) is the substructure of ΠDM whose universe is the set Π
D/G

|M |. The

canonical map d from M into Π
D/G

M is defined by d(a) = ⟨ai : i ∈ I⟩/D, where

ai = a for every i ∈ I.
(4) Note that the limit ultra-power Π

D/G
M depends only on the equivalence

relations which are in G, i.e. if E is the set of all equivalence relations on I
and G∩ E = G′∩ E, where G′ is a filter on I × I, then Π

D/G
M = Π

D/G′
M .

Definition 1.30. Assume,

(a) M be an τ -structure, ⟨Y,<⟩ = ⟨Y,<Y ⟩ a linear order,

(b) for each y ∈ Y , let Dy be an ultra-filter on a non-empty set Iy,

(c) Ī = ⟨Iy : y ∈ Y ⟩,

(d) D̄ = ⟨Dy : y ∈ Y ⟩,

(e) I = Π
y∈Y

Iy.

Then,
(1) Let E = Π

y∈Y
Dy be the set of s ⊆ I such that there are y1 < · · · < yn in

Y satisfying:
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(α) for all i, j ∈ I, if i ↾ {y1, . . . , yn} = j ↾ {y1, . . . , yn} then i ∈ s iff j ∈ s,

(β) {⟨i(y1), . . . , i(yn)⟩ : i ∈ s} ∈ Dy1
× · · · ×Dyn

.

(2) The iterated ultra-power
∏

D̄ |M | or
∏

E |M | of the set |M |, noting E
is a filter on I, is the set {f/E : f ∈ I |M | and for some finite Zf ⊆ Y for all
i, j ∈ I, if i ↾ Zf = j ↾ Zf , then f(i) = f(j)}.

(2A) Note that ⟨Y,<⟩, Ī, D̄, E, I and E can be defined from E and can be
defined from D̄, so we may indeed write ΠE , ΠD̄ above.

(3) The iterated ultra-power
∏

E M of the τ -structure M with respect to
⟨Dy : y ∈ Y ⟩ is the τ -structure whose universe is the set ΠE |M |; for each n-ary
predicate symbol R of L,RΠEM (f1/E, . . . , fn/E) iff
{i ∈ I : RM (f1(i), . . . , fn(i))} ∈ E; for each n-ary function symbol F of L,
FΠEM (f1/E, . . . , fn/E) = ⟨FM (f1(i), . . . , fn(i)) : i ∈ I⟩/E.

(4) The canonical map d : M → ΠEM is defined as usual by:

d(a) = ⟨a : i ∈ H⟩/E.

(5) In Definition 1.29, we do not need “D is an ultra-filter on I”, just “D
is a filter on I such that, if e ∈ G is an equivalence relation on I, then D/e is
an ultra-filter on I/e”.

(6) We say u is an iterated ultra-powers parameter when it consists of ⟨Y,<⟩,
Ī = ⟨Iy : y ∈ Y ⟩, D̄ = ⟨Dy : y ∈ Y ⟩ and I as in the beginning of Definition 1.30,
E as in Definition 1.30(1) and

� G = {e : is an equivalence relation on I such that, for some finite subset
Z of Y , we have f, g ∈ I ∧ f ↾ Z = g ↾ Z ⇒ f e g}.

(6A) So u = (Yu, . . . , ) definable from D̄u and from Eu and we may write∏
u .

Remark 1.31.
(1) Every ultra-power is a limit ultra-power: take G = P(I × I) and note

that ΠDM = Π
D/G

M .

(2) Every iterated ultra-power is a limit ultra-power, hence in Definition
1.30 we may write OpD̄, OpE or Opu .

[Why? let the iterated ultra-power be defined by ⟨Y,<⟩ and ⟨(Iy, Dy) : y ∈
Y ⟩ (see Definition 1.30). For Z ∈ [Y ]<ω, let AZ = {(i, j) ∈ I × I : i ↾ Z =
j ↾ Z}. Note that {AZ : Z ∈ [Y ]<ω} has the finite intersection property and
hence can be extended to a filter G on I × I. Now for any model M we
have ΠEM ∼= Π

D/G
M for every filter D over I extending E under the map

f/E → f/D.]

Definition 1.32.
(1) We say that (I,D,G) is suitable when:

Bolet́ın de Matemáticas 31(1)  (2024)



S. Shelah & O. Kolman

(a) D is an ultra-filter on a non-empty set I (or just a filter, see Definition
1.30(5)),

(b) G is a suitable, pedantically a D-suitable filter on I × I or just a set of
equivalence relations on I, which means:

(i) if e ∈ G and e′ is an equivalence relation on I coarser than e, then
e′ ∈ G,

(ii) G is closed under finite intersections,

(iii) (I,D,G) is κ-complete, which means that, if e ∈ G, then D/e =
{A ⊆ I/e : ∪

x∈A
x ∈ D} is a κ-complete ultra-filter on I/e which, for

simplicity, has cardinality κ.

(2) A an iterated ultra-power parameter u is suitable when (Iu, Eu, Gu) is.
(3) Suppose that M is an τ -structure and (I,D,G) is suitable. Then

Op(M, I,D,G) = OpI,D,G(M) is the limit ultra-power Π
D/Ĝ

M where Ĝ is the

filter on I × I generated by G. When clear from the context one abbreviates
Op(M, I,D,G) by Op(M), pedantically Op stand for OpI,M,G and one writes
fOp = fOp,M for the canonical map d : M → Op(M); so we may write fOp or
fMOp instead fOp,M when M is clear from the context.

Recall that,

Observation / Convention 1.33.
(1) For any τ -structure N, fOp = fOp,N is an elementary embedding of N

into Op(N) and if N ∈ Kk then fOp : N →
k

Op(N).

(2) Since fOp is canonical, one very often identifies N with the τ -structure
rng(fOp) which is an k-elementary substructure of Op(N), and one writes N ≤k

Op(N). In particular for any model M ∈ K and Op, fOp : M →k Op(M)
(briefly written M ≤k Op(M)) so that Op(M) is a model from K too.

(3) Remark that if D is a κ-complete ultra-filter on I and G is a filter on
I × I, then Op(M, I,D,G) is well defined.

(4) Suitable limit ultra-power means one using a suitable triple, for such
Op in Observation/Convention 1.33(2) we get a Lκ,ℵ0 -elementary embedding. 

More information on limit and iterated ultra-powers can be found in [2] and 
[6].

Observation 1.34. (1) Given κ-complete ultra-filters D1 on I1, D2 on I2 and 
suitable filters G1 on I1 ×I1, G2 on I2 ×I2 respectively, there exist a κ-complete 
ultra-filter D on a set I and a filter G on I × I such that:

Op(M, I, D, G) = Op(Op(M, I1, D1, G1), I2, D2, G2)

and (D, G, I) is κ-complete.
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(2) Also iterated ultra-power (along any linear order) with each iterand
being ultra-power by κ-complete ultra-filter, gives a suitable triple (in fact,
even iteration of suitable limit ultra-powers is a suitable ultra-power).

Definition 1.35. Suppose that K is a class of τ -structures and <=<K is
a binary relation on K (usually (K,<) = (Kk, <k)). For M,N ∈ K, write
f : M ≤nice

K N to mean (if < is clear from the context we may write f : M →
nice

N

and, if f = idM we may write M ≤
nice

N):

(a) f is an isomorphism from M onto rang(f) = N ↾ rang(f) and rng(f) <
N. Which means f(M) < N, where f(M) is the model M ′ with universe
rng(f) such that f is an isomorphism from M into M ′,

(b) for some5 ultra-limit parameter u = (Y,<Y , Ī, D̄, I, E,G), so G is a
suitable set of equivalence relations on I (so Definition 1.32 clause (i),
(ii), (iii) holds) each6 Di is isomorphic to D, and an isomorphism g
from N onto rang(g) = Op(M, I,E,G) ↾ rang(g), such that rng(g) <
Op(M, I,E,G) and gf = fOp, where fOp is the canonical embedding of
M into Op(M, I,E,G). Then f is called a <-nice embedding of M into
N . Of course, one writes f : M →

nice
N and says that f is a nice embedding

of M into N when < is clear from the context.

Example 1.36. Consider T,F and K = ⟨K,<⟩ = (K,<K) as set up in
Example 1.14. In this case f : M →

nice
N holds iff f : M →

F
N and for some

suitable ultra-limit parameter u and some g : N →
F

Opu(M) we have gf = fOp.

Abusing notation one may writes M →
nice

N to mean that there are f, g and

Op such that f : M →
nice

N using g and Op . IF NOT SAID OTHERWISE, < is

<k. We may also write M ≤
nice

N , and for linear orders we use I ⊆
nice

J .

Example 1.37. Let LO be the class of linear orders and let (I,≤I) < (J,≤J)
mean that (I,≤I) ⊆ (J,≤J), i.e. (I,≤I) is a suborder of (J,≤J). If f : (I,≤I)
→
nice

(J,≤J), then identifying isomorphic orders, one has (I,≤I) ⊆ (J,≤J) ⊆
Op(I,≤I) and we may write (I,≤I) ⊆

nice
(I,≤J).

Observation 1.38. Assume that K = (K,<K) is as in Def. 1.35. Suppose
further M ≤

nice
N and M ⊆M ′ ≤k N where M,M ′, N ∈ K. Then M ≤

nice
M ′.

5We could use here and Theorem 2.5 suitable tuples (I,D,G). However, then we have to
add to the definition of “k is (I,D,G)-compact” a clause saying:

(∗) if M ∈ Kk, e1 ⊇ e2 are from G and Mℓ =
∏

D/G M ↾ {f ∈ IM : eq(f) ⊇ eℓ} for

ℓ = 1, 2, then M1 ≤k M2.

In [9] this issue does not arise.
6Can fix a family of filters.
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Proof. For some f, g and Op, f : M →
k
N , g : N →

k
Op(M) and gf = fOp.

Now g : M ′ →
k

Op(M) (since M ′ ≤k N) and gf = fOp so that M ≤
nice

M ′.

Observation 1.39. Suppose that δ is any ordinal, ⟨Mi : i ≤ δ⟩ is a continuous
increasing chain and for each i < δ, Mi ≤

nice
Mi+1. Then for every i < δ,

Mi ≤
nice

Mδ.

Proof. Like the proof of Remark 1.31(2). For each i < δ, there is a ui as in
Definition 1.32 which witnesses Mi ≤

nice
Mi+1 and and let Yi = Yui

for i < δ.

Without loss of generality, ⟨Yi : i < δ⟩ are pairwise disjoint. We define u by:

(a) Y =
⋃
{Yi : i < δ},

(b) s <y t iff
∨

i<δ s <i t or s ∈ Yui
∧ t ∈ Yuj

∧ i < j,

(c) Dj = Dui,s when s ∈ Yui for i < δ.

This is enough and the rest should be clear.

Definition 1.40.
(1) Assume D is an ultra-filter on κ. For an AEC k = (Kk,≤k) we say k is

D-compact when:

(a) if M ∈ Kk then the ultra-power Mκ/D belongs to Kk,

(b) moreover, the canonical embedding of M into Mκ/D is a ≤k-embedding,

(c) if M ≤k N then the canonical embedding of Mκ/D into Nκ/D is a
≤k-embedding,

(d) k has a model of cardinality ≥ κ (or at least of cardinality ≥ θ where D
is not θ-complete).

(2) If u = (Y, Ī, D̄, I, E,G) is as in Definition 1.30, then for an AEC k we
say k is u-compact and E-compact when:

(a) if M ∈ Kk and
∏

E M ∈ Kk,

(b) moreover, the canonical embedding of M into
∏

E M is a ≤k-embedding,

(c) if M ≤k N then the canonical embedding of
∏

E M into
∏

E N is a ≤k-
embedding.

Claim 1.41. Assume D is a non-principal κ-complete ultra-filter (usually on
κ).

(1) If k is an AEC and |τk| + LST(k) < κ then k is D-compact.
(2) If k is (µ, λ, κ)-representable, then k is D-compact.
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(3) Also the claim on Op generalizes, that is, if ⟨Y,<⟩, Ī, D̄, E, I is as in
Definition 1.30 and ks is Ds-compact for every s ∈ Y then in (1) and (2), k is
E-compact.

(4) So if there is one ultra-filter D on κ which is normal or just non-principal
κ-complete ultra-filter on κ, then for every linear order ⟨Y,<⟩ then we can find
Ī , D̄, E, I such that they together are as in 1.41(3)

Proof.
(1) By 1.25 and part (c).
(2), (3), (4) Easy.

Claim 1.42. Assume D is a non-principal κ-complete ultra-filter on κ and k1 is
a D-compact AEC, χ ≥ LSTk1 and let k2 = (k1)[χ,∞), see Definition 1.18(3).

(1) If χ ≥ κ and k1 is D-compact then k2 is D-compact.
(2) If λ ≥ χ, then k1 is categorical in λ iff k1 is categorical in λ.
(3) If λ ≥ χ, then (k2)[χ,<λ) has amalgamation iff (k1)[χ,<λ) has amalgama-

tion.

Proof. Straightforward.

Remark 1.43.
(1) Claim 1.41 justifies the assumption LSTk ≥ χ in Hypothesis 1.45 below

(e.g. to prove 1.19).
(2) Usually λ denotes a power in which k is categorical.

Claim 1.44. For every model M of cardinality ≥ κ and λ ≥ κ + LSTk + ∥M∥
there is N such that M ≤

nice
N , M ̸= N and ∥N∥ = λ.

Proof. As k is D-compact, by Assumption 1.2(2) no M ∈ K≥κ is ≤k-maximal,
so by Definition 1.17 we are done.

For the rest of this work,

Hypothesis 1.45. Assume χ ≥ κ.
(1) k is a D-compact AEC with LSTk = χ, no M ∈ Kk has cardinality < χ,

D a κ-complete non-principal ultra-filter on κ, K = Kk and similarly for any
⟨Y,<⟩, Ī, D̄, I or E derived from D as in Definition 1.30.

(2) Φ, a = ⟨as : s ∈ I⟩ are as in Definition 1.26 for k with τΦ of cardinality
≤ χ, hence λ ≥ χ⇒ (Kk)λ ̸= ∅.

2. The amalgamation property for regular cate-
goricity

The main aim of this section is to show that if K is categorical in the regular
cardinal λ > LSTk, then k<λ = ⟨K<λ,≤k⟩ has the amalgamation property (AP)
(Definition 1.12 (1)). Categoricity is not presumed if not required.

Recall Hypothesis 1.45 is assumed.
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Lemma 2.1. Suppose that χ ≤ µ ≤ λ,M,M1,M2 ∈ K≤µ, f1 : M →
nice

M1, f2 :

M →
k
M2. Then there is an amalgam N ∈ K≤µ of M1,M2 over M with respect

to f1, f2.
Moreover, there are N and gℓ : Mℓ →

k
N for ℓ = 1, 2 such that g1f1 = g2f2

hence rng(g2f2) = rng(g1f1) and g1 : M1 →
nice

N.

Proof. There are g and Op such that g : M1 →
k

Op(M), and gf1 = fOp,M .

Now, f2 induces an ≤k-elementary embedding f∗2 of Op(M) into Op(M2) such
that f∗2 f

M
Op = fM2

Op f2. Let g1 = f∗2 g and g2 = fOp,M2 . By Fact 1.11 one finds
N ∈ K≤µ such that rng(g1)∪ rng(g2) ⊆ N ≤k Op(M2). Now N is an amalgam
of M1,M2 over M with respect to f1, f2 since g1f1 = f∗2 gf1 = f∗2 f0p,M =
fOp,M2

f2 = g2f2. The last phrase in the lemma is easy by properties of Op.

Lemma 2.2. Suppose that M ∈ K≤µ is a µ-c.a.b., χ ≤ µ < λ. Then N ∈ K<λ

is a ∥N∥-c.a.b. whenever f : M →
nice

N .

Proof. By the assumption, there is g : N →
k

Op(M) such that gf = fOp,M .

Recall M is a µ- c.a.b., so for some Mi ∈ K≤µ and fi : M →
k
Mi (for i =

1, 2) there is no amalgam of M1,M2 over M w.r.t. f1, f2. Let f∗i be the
≤k-elementary embedding from Op(M) into Op(Mi) induced by fi (note that
f∗i fOp,M = fOp,Mifi, i = 1, 2). Choose Ni of power ||N || such that Mi ∪
rng(f∗i g) ⊆ Ni ≤k Op(Mi). Note that f∗i g : N →

k
Ni. It suffices to show that

there is no amalgam of N1, N2 over N w.r.t. f∗1 g, f
∗
2 g.

Well, suppose that one could find an amalgam N∗ and hi : Ni →
k
N∗, i =

1, 2, with h1(f∗1 g) = h2(f∗2 g). Using Fact 1.11 choose M∗, ||M∗|| ≤ µ,M∗ ≤k

N∗, rng(h1fOp ↾ M1) ∪ rng(h2fOp ↾ M2) ⊆ |M∗|. Set gi = hifOp ↾ Mi, for
i = 1, 2, and note that:

g1f1 = h1fOpf1 = h1f
∗
1 fOp = h1f

∗
1 gf = h2f

∗
2 gf = h2f

∗
2 fOp

= h2fOpf2 = g2f2.

In other words, M∗ is an amalgam of M1,M2 over M w.r.t. f1, f2-contradic-
tion. It follows that N is a ∥N∥-c.a.b.

Corollary 2.3. Suppose that µ, λ satisfy χ ≤ µ < λ. If M ∈ Kµ is a µ-c.a.b.,
then there exists M∗ ∈ Kλ such that:

(∗) M ≤k M
∗ and for every M ′ ∈ K<λ, if M ≤k M

′ ≤k M
∗, then M ′ is a

||M ′||-c.a.b.

Proof. As ∥M∥ ≥ κ, for some appropriate Op one has ||Op(M)|| ≥ λ, and by
Fact 1.11 one finds M∗ ∈ Kλ such that M ⊆M∗ ≤k Op(M), hence M ≤k M

∗.
Let us check that M∗ works in (∗). Take M ′ ∈ K<λ,M ≤k M

′ ≤k M
∗; so

M ≤
nice

M ′ since M∗ ≤k Op(M), see Observation 1.38; hence by Lemma 2.2,

M ′ is a ||M ′||-c.a.b.
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Theorem 2.4. Suppose that k is λ-categorical, λ = cf(λ) > χ. If K<λ fails
AP, then there is N∗ ∈ Kλ such that for some continuous increasing ≤k-chain
⟨Ni ∈ K<λ : i < λ⟩ of models,

(1) N∗ = ∪
i<λ

Ni,

(2) for every i < λ,Ni ≰
nice

Ni+1 (and so Ni ≰
nice

N∗).

Proof. By an assumption k<λ fails AP, so for some µ ∈ [χ, λ) and M ∈ K≤µ,M
is a µ-c.a.b. recalling Definition 1.15. By Lemma 2.2 and Claim 1.44 without
loss of generality M ∈ Kµ. Choose by induction a continuous strictly increasing
≤k-chain ⟨Ni ∈ K<λ : i < λ⟩ as follows:

N0 = M ; at a limit ordinal i, take the union; at a successor ordinal i = j+1,
if there is N ∈ K<λ such that Nj ≤k N and Nj ≰

nice

N (so necessarily Nj <k

N), choose Ni = N , otherwise choose for Ni any non-trivial ≤k-elementary
extension of Nj of power less than λ. Next, we prove:

⊞ (∃j0 < λ)(∀j ∈ (j0, λ))(Nj is a ||Nj ||-c.a.b.).

Why ⊞ holds? Suppose not. So one has a strictly increasing sequence
⟨ji : i < λ⟩ such that for each i < λ,Nji is not a ∥Nji∥-c.a.b. Let N∗ = ∪

i<λ
Nji .

So ∥N∗∥ = λ. Applying 2.3 one can find M∗ ∈ Kλ such that M ∈ K<λ and
M ≤k M

∗ and whenever M ′ ∈ K<λ and M ≤k M
′ ≤k M

∗, then M ′ is a
∥M ′∥-c.a.b.

Since k is λ-categorical, there is an isomorphism g of N∗ onto M∗. Let
N = g−1(M) and Mi = g−1(Ni) for i < λ. Now, ||N || = µ < cf(λ) = λ, so
there is i0 < λ such that N ⊆ Nji0

, hence N ≤k Nji0
.

In fact Nji0
is a ||Nji0

||-c.a.b. [Otherwise, consider Nji0
. Since M ≤k

f−1(Nji0
) ≤k M∗ and ∥Mji0

∥ < λ,Mji0
is a ∥Mji0

∥-c.a.b., so there are
fℓ : Mji0

→
F
M ′

ℓ, (ℓ = 1, 2), with no amalgam of M ′
1,M

′
2 over Mji0

w.r.t. f1, f2.

If Nji0
is not a ||Nji0

||-c.a.b., then one can find an amalgam N+ ∈ K≤||Nji0
||

of M ′
1,M

′
2 over Nji0

w.r.t. f1g, f2g such that hℓ : M ′
ℓ →

k
N+ and h1(f1g) =

h2(f2g); so h1f1 = h2f2 and N+ is thus an amalgam of M ′
1,M

′
2 over Mji0

w.r.t.
f1, f2, ∥N+∥ ≤ ∥Nji0

∥ = ||Mji0
||-contradiction.] This contradicts the choice of

Nji0
. So the statement ⊞ is correct.

It follows that for each j ∈ (j0, λ) there are N1
j , N

2
j in K<λ and fℓ : Nj →k

N ℓ
j such that no amalgam of N1

j , N
2
j over Nj w.r.t. f1, f2 exists. By Lemma

2.1 for both ℓ ∈ {1, 2}, Nj ≰
nice

N ℓ
j+1. So by the inductive choice of ⟨Nj+1 : j <

λ⟩,∀j ∈ (j0, λ)(Nj ≰
nice

Nj+1). Taking N∗ = ∪
j0<j<λ

Nj , one completes the proof

(of course for j0 < j < λ,Nj ≰
nice

N∗: if Nj ≤
nice

N∗ ≤k Op(Nj), then by

Observation 1.38 Nj ≤
nice

Nj+1-contradiction).
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Theorem 2.5. Suppose that I = (I,<I), J = (J,<J) are linear orders and I
is a suborder of J . Let EM′(I,Φ) be as in Definition 1.26, so let ⟨a1s : s ∈ I⟩
be a skeleton of M ′

1 = EM′(I) = EM′(I,Φ), a τΦ-model, ⟨a1s : s ∈ I⟩ is an in-
discernible sequence in EM′(I) which generates it. Similarly, M ′

2 = EM′(J,Φ),
⟨as ∈ s ∈ J⟩ and as standard, we assume M ′

1 ⊆ M ′
2, s ∈ I ⇒ a1s = as, let

Mℓ = EM(I) = M ′
ℓ ↾ τk. If (I,<I) ⊆

nice
(J,<J), then EM(I) ≤

nice
EM(J).

Proof. So there is a suitable ultra-limit7 parameter u = (Y,<Y , Ī, D̄, Iu, E,G)
witnessing (I,<I) ⊆

nice
(J,<J), that is, we have (I,≤I) ⊆ OpI,D,G((I,<I)) and

(J,<) is isomorphic over (I,≤) to some (J ′, <) such that (I,<I) ⊆ (J ′, <) ⊆
OpI,D,G((I,<)) and let π be such isomorphism.

So for each t ∈ J , there exists ft ∈ I(u)I such that π(t) = ft/D. Note
that if t ∈ I, then ft/D = fOp(t) so that without loss of generality for all
i ∈ Iu, ft(i) = t. Define a map h from EM(J) into Op(EM(I)) as follows. An
element of EM(J) has the form

σEM′(J)(at1 , . . . , atn),

where t1, . . . , tn ∈ J , σ an τΦ-term. Define, for t ∈ J, gt ∈ I EM(I) by
gt(i) = aft(i).

Note that ft(i) ∈ I, so that aft(i) ∈ EM(I) and so gt/D ∈ Op(EM(I)). Let

h(σEM′(J)(at1 , . . . , atn)) = σOp(EM′(I))(gt1/D, . . . , gtn/D) which is an element
in Op(EM(I)). The reader is invited to check that h is an ≤k-elementary
embedding of EM(J) into Op(EM(I)), and consequently EM(I) ≤k EM(J),
but we elaborate. Prove by induction on n < ω that:

⊕ if s̄ = ⟨si : i < n⟩ is <Y -increasing then let m ≤ n and Ns̄ := M2 ↾
{f ∈ HM : eq(f) is refined by eqs̄↾m = {(h1, h2) : h1, h2 ∈

∏
s∈I Is and

ℓ < m⇒ h1(sℓ) = h2(sℓ)}},

⊞ for s̄ = ⟨sℓ : ℓ < n⟩ as above, Ns̄↾m ≤k Ns̄.

[Why? Prove by induction on n that it suffices to conclude that m = n− 1
and now read the Definition.]

⊞ if s̄ is as above and t̄ is a sub-sequence of s̄ then Nt̄ ≤k Ns̄.

Why? By Ax. V of AEC (see Definition 1.17): The rest should be clear.

Finally note that if b = σEM′(I)(at1 , . . . , atn ) ∈ EM(I), t1, . . . , tn ∈ I, then 
h(a) = σOp(EM′(I))(gt1/D, . . . , gtn/D) = σOp(EM′(I))(⟨afti(i) : i < µ⟩/D, . . . ,
⟨aftn(i) : i < µ⟩/D) = fOp(σEM′(I)(at1 , . . . , atn )) = fOp(b). Thus EM(I) ≤

nice

EM(J).

7We write Iu = I(u) to distinguish it from (I, <I ).
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Criterion 2.6. Suppose that (I,<) is a suborder of the linear order (J,<).
We have (I,≤) ⊆

nice
(J,<) when:

(∗) for every t ∈ J \ I,

(ℵ) cf((I,<) ↾ {s ∈ I : (J,<) |= s < t}) = κ,

or

(ℶ) cf((I,<)∗ ↾ {s ∈ I : (J,<)∗ |= s <∗ t}) = κ.

Notation 2.7. (I,<)∗ is the (reverse) linear order (I∗, <∗) where I∗ = I and
(I∗, <∗) ⊨ s <∗ t iff (I,<) ⊨ t < s.

Proof. We shall use freely Assumption 1.1, that is, “D is a uniform ultra-filter
on κ”. Let us list some general facts which facilitate the proof.

Fact (A): Let κ denote the linear order (κ,<) where < is the usual order
∈↾ κ × κ. If J1 = κ + J0, then κ ⊆

nice
J1 (+ is the addition of linear orders in

which all elements in the first order precede those in the second).
Fact (B): If κ ⊆ (I,<), κ is unbounded in (I,<) and J1 = I + J0, then

I ⊆
nice

J1.

Fact (C): If I ⊆
nice

J , then I + J1 ⊆
nice

J + J1.

Fact (D): I ⊆
nice

J iff (J <)∗ ⊆
nice

(I,<)∗.

Fact (E): If ⟨Iα : α ≤ δ⟩ is a continuous increasing sequence of linear orders
and for α < δ, Iα ⊆

nice
Iα+1, then Iα ⊆

nice
Iδ.

Now using these facts, let us prove the criterion. Define an equivalence
relation E on J \ I as follows: tEs iff t and s define the same Dedekind cut in
(I,<). Let {tα : α < δ} be a set of representatives of the E-equivalence classes.
For each β ≤ δ, define

Iβ = J ↾

t : t ∈ I ∨
∨
α<β

tEtα


so I0 = I, Iδ = J and ⟨Iα : α ≤ δ⟩ is a continuous increasing sequence of linear
orders. By Fact (E), to show that I ⊆

nice
J , it suffices to show that Iα ⊆

nice
Iα+1

for each α < δ.
Fix α < δ. Now tα belongs to J \ I, so by (∗), (ℵ) or (ℶ) holds. By

Fact (D), it is enough to treat the case (ℵ). So without loss of generality
cf
(
(I,<) ↾ {s ∈ I : (J,<) |= s < tα}

)
= κ.

Let
Iα
a = {t ∈ Iα : t < tα},

Ibα = {t ∈ Iα+1 : t ∈ Iα
a ∨ tEtα},
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show that IX ⊆
nice

I, we can assume without loss of generality that IX ̸= I and

then one employs Criterion 2.6. Consider t ∈ I − IX , say t = (i, α) (note that
α < κ and i < λ, since λ ∈ X) and i /∈ X. Let j = min(X − i); note that j is
well-defined, since λ ∈ X − i, and j ̸= i. Now, if s ∈ IX and s ≤I t, then for
every β < κ, one has s <I (j, β) and (j, β) ∈ IX . Also if s ∈ IX and t <I s,
then for some β < κ, we have (j, β) <I s. Thus ⟨(j, β) : β < κ⟩ is a cofinal
sequence in (IX ↾ {s ∈ I : t <I s})∗. By the criterion, IX ⊆

nice
I.

Theorem 2.9. Suppose that κ = cf(δ) ≤ δ < λ. Then EM(δ) ≤
nice

EM(λ).

Proof. By Fact (B) of Criterion 2.6, one has that δ ⊆
nice

λ; so by Theorem 2.5,

EM(δ) ≤
nice

EM(λ).

Now let us turn to the main theorem of this section.

Theorem 2.10. Suppose that k is categorical in the regular cardinal λ > χ.
Then k<λ has the amalgamation property.

Proof. 2.10 Suppose that k<λ fails AP. Note that ∥EM(λ)∥ = λ. Apply The-
orem 2.4 to find M∗ ∈ Kλ and ⟨Mi : i < λ⟩ satisfying Theorem 2.4(1) and
Theorem 2.4(2). Since k is λ-categorical, M∗ ∼= EM(λ), so without loss of
generality EM(λ) = ∪

i<λ
Mi and so C = {i < λ : Mi = EM(i)} is a club of λ.

Choose δ ∈ C, cf(δ) = κ. By Theorem 2.9, EM(δ) ≤
nice

EM(λ), so Mδ ≤
nice

M∗.

But of course by Theorem 2.4(2) Mδ ≰
nice

M∗-contradiction.

The last theorem of this section applies to singular cardinals as well.

Theorem 2.11. Suppose that K is categorical in λ > χ (notice that λ is not
necessarily regular). Then:

(1) K has a model M of power λ such that if N ≤k M and ∥N∥ < λ, then
there exists N ′ such that:

(α) N ≤k N
′ ≤k M,

(β) ∥N ′∥ = ∥N∥ + χ,

(γ) N ′ ≤
nice

M.

(2) K has a model M of power λ and an expansion M+ of M by at most
χ functions such that if N+ ⊆M+, then N+ ↾ τ ≤

nice
M .

Proof. (1) Let ⟨I, ⟨Ai : i ≤ λ⟩⟩ be as in Fact 2.8. Let M = EM(I). Suppose
that N ≤k M, ∥N∥ < λ. Then there exists J ⊆ I, |J | < λ such that N ⊆ EM(J)
so by Fact 2.8 there exists X ⊆ λ+1 such that λ ∈ X, |X| < λ and J ⊆ ∪

i∈X
Ai.
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Note that

∣∣∣∣ ∪
i∈X

Ai

∣∣∣∣ ≤ |X| · κ < λ. Now N ′ = EM(I ↾ ∪
i∈X

Ai) is as required,

since I ↾ ∪
i∈X

Ai ≤
nice

I and so by Theorem 2.5 EM(I ↾
(⋃

i∈X Ai

)
) ≤

nice
EM(I).

This proves (1).
(2) We expand M = EM(I) with skeleton ⟨as : s ∈ I⟩ as follows:

(a) by all functions of EM′(I),

(b) by the unary functions fℓ(ℓ < n) which are chosen as follows: we know
that for each b ∈M there is σb an τ1-term (τ1-the vocabulary of EM′(I))
and t(b, 0) < t(b, 1) < . . . < t(b, nσb

− 1) from I such that

b = σb(at(b,0), at(b,1), . . . , at(b,nσb
−1))

(it is not unique, but we can choose one; really if we choose it with nb
minimal it is almost unique). We let

fℓ(b) =

{
at((b,ℓ)), if ℓ < nσb

,

b, if ℓ ≥ nσb
.

(c) by unary functions gα, gα for α < κ such that if t < s are in I, α =
otp[(t, s)∗I ] then gα(at) = as,

∨
β<κ

gβ(as) = at (more formally gα(a(i,β)) =

a(i,β+α) and gα(a(i,β)) = a(i,α)) in the other cases gα(b) = b, gα(b) = b.

(d) by individual constants cα = a(λ,α) for α < κ.

Call the expanded model M+. Now suppose N+ is a sub-model of M+ and

N its τ -reduct. Let J
def
= {t ∈ I : at ∈ N}, now J is a subset of I of cardinality

≤ ||N || as for t ̸= s from J , at ̸= as. Also if b ∈ N by clause (b), at(b,ℓ) ∈ N
hence b ∈ EM(J); on the other hand if b ∈ EM(J) then by clause (a) we
have b ∈ N ; so we can conclude N = EM(J). So far this holds for any linear
suborder of I.

By clause (c) J =
⋃
i∈X

Ai for some X ⊆ λ+ 1, and by clause (d), λ ∈ X.

Now EM(J) ≤
nice

EM(I) = M by Fact 2.8.

3. Towards removing the assumption of regular-
ity from the existence of universal extensions

In §2 we showed that k<λ has the amalgamation property when k is categorical in
the regular cardinal λ > χ. We now study the situation in which λ is not
assumed to be regular.

Our problem is that while we know that most sub-models of N ∈ Kλ sit well in
N (see Theorem 2.11(2)) and that there are quite many N ∈ K<λ which are
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amalgamation bases, our difficulty is to get those things together: constructing
N ∈ Kλ as

⋃
i<λ

Ni, Ni ∈ K<λ means N has ≤k-sub-models not included in any

Ni.
Recall we are assuming Hypothesis 1.45.

Theorem 3.1. Suppose that k is categorical in λ and χ ≤ θ < λ. If ⟨Mi ∈
Kθ : i < θ+⟩ is an increasing continuous ≤k-chain, then:{

i < θ+ : Mi ≤
nice

(∪j<θ+Mj)

}
∈ Dθ+ .

Remark 3.2.
(1) We cannot use Theorem 2.11(1) as possibly λ has cofinality < χ.
(2) Recall that Dθ+ is the closed unbounded filter on θ+.

Proof. Write Mθ+ = ∪
i<θ+

Mi. Choose an operation Op such that for all i <

θ+, ∥Op(Mi)∥ ≥ λ. Let M∗
i = Op(Mi), hence Mi ≤

nice
M∗

i . Applying Fact 1.11

for non-limit ordinals, Fact 1.10 for limit ordinals, one finds inductively an
increasing continuous ≤k-chain ⟨Ni : i ≤ θ+⟩ such that for i < θ+,Mi ≤k Ni ≤k

M∗
i , ∥Ni∥ = λ, so Mi ≤

nice
Ni and Nθ+ = ∪

i<θ+
Ni. Note that ∥Nθ+∥ = θ+ ·λ = λ.

Since k is λ-categorical, Nθ+
∼= EM(I) where Fact 2.8 furnishes I of power

λ. By Theorem 2.11(2), there is an expansion N+
θ+ of Nθ+ by at most κ+ |τk|

functions such that if A ⊆ |N+
θ+ | is closed under the functions of N+

θ+ , then

(N+
θ+ ↾ τk) ↾ A ≤

nice
Nθ+ .

Choose a set Ai and an ordinal ji, by induction on i < θ+, satisfying:
(1) Ai ⊆ |Nθ+ |, |Ai| ≤ θ; ⟨Ai : i < θ+⟩ is continuous increasing,
(2) ⟨ji : i < θ+⟩ is continuous increasing,
(3) Ai is closed under the functions of N+

θ+ ,
(4) Ai ⊆ |Nji+1 |,
(5) |Mi| ⊆ Ai+1.
This is possible: for zero, let A0 := ∅, j0 := 0 and for limit ordinals unions

work; for i + 1 choose ji+1 to satisfy (2) and (4), and Ai+1 to satisfy (1), (3)
and (5).

By (2), C = {i < θ+ : i is a limit ordinal and ji = i} is a club of θ+ i.e.
C ∈ Dθ+ .

Fix i ∈ C. Note that |Mi| ⊆ Ai and Ai ⊆ |Ni| (since |Mi| = ∪
j<i

|Mj | ⊆

∪
j<i
Aj+1 = Ai = ∪

i′<i
Ai′ ⊆ ∪

i′<i
|Nji′+1

| = Nji = Ni (using (5), (1), (4), (2) and

ji = i)) and recalling (3), Mi ≤k (N+
θ+ ↾ τk) ↾ Ai ≤k Ni ≤k M

∗
i = Op(Mi),

so that Mi ≤
nice

(N+
θ+ ↾ τk) ↾ Ai. However by (3) and the choice of Nθ+ and

N+
θ+ one has also that (N+

θ+ ↾ τk) ↾ Ai ≤
nice

Nθ+ . So by transitivity of ≤
nice

, one

obtains Mi ≤
nice

Nθ+ .
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Finally remark that Mθ+ ≤k Nθ+ since Mi ≤
nice

Ni ≤k Nθ+ for every i < θ+.

Hence i ∈ C ⇒Mi ≤k Mθ+ ≤k Nθ+ , so recalling i ∈ C ⇒Mi ≤
nice

Nθ+ we have

i ∈ C ⇒Mi ≤
nice

Mθ+ ; so C ⊆
{
i < θ+ : Mi ≤

nice
Mθ+

}
∈ Dθ+ .

Definition 3.3. Suppose that θ ∈ [χ, λ) and M ∈ Kθ. M is nice iff whenever
M ≤k N ∈ Kθ, then M ≤

nice
N . (The analogous ≤k-elementary embedding

definition runs: M is nice iff whenever f : M →
k
N ∈ Kθ then f : M →

nice
N).

Theorem 3.4. Suppose that k is categorical in λ and M ∈ Kθ, θ ∈ [χ, λ).
Then there exists N ∈ Kθ such that M ≤k N and N is nice.

Proof. Suppose otherwise. We’ll define a continuous increasing ≤k-chain ⟨Mi ∈
Kθ : i < θ+⟩ such that for j < θ+:

(∗)j Mj ≰
nice

Mj+1.

For i = 0, put M0 = M ; if i is a limit ordinal, put Mi = ∪
j<i
Mj ; if i = j+ 1,

then since Theorem 3.4 is assumed to fail, Mj+1 exists as required in (∗)j
(otherwise Mj works as N in Theorem 3.4). But now ⟨Mi : i < θ+⟩ yields a
contradiction to Theorem 3.1, since C = {i < θ+ : Mi ≤

nice
∪

j<θ+
Mj} ∈ Dθ+ by

Theorem 3.1 so that choosing j from C one has Mj ≤
nice

Mj+1 by Observation

1.38, contradicting (∗)j .

Theorem 3.5. Suppose that k is categorical in λ and θ ∈ [χ, λ). If M ∈ Kθ is
nice and f : M →

k
N ∈ K≤λ, then f : M →

nice
N .

Proof. Choosing an appropriate Op and using Fact 1.11 one finds N1 such
that N ≤k N1 and ∥N1∥ = λ. Find M ′

1 ≤
nice

N1 by Theorem 2.11(2) such that

rng(f) ⊆ |M ′
1|, ∥M ′

1∥ = θ. So M ′
1 ≤k N1 and therefore N1 ↾ rng(f) ≤k M

′
1.

Recall M is nice, so f : M →
nice

M ′
1. Now M ′

1 ≤
nice

N1, therefore f : M →
nice

N1.

So there are Op and g : N1 →
k

Op(M) satisfying gf = fOp. Since N ≤k N1 it

follows that f : M →
nice

N as required.

Corollary 3.6. Suppose that M ∈ Kθ is nice, θ ∈ [χ, λ). Then M is an a.b.
in k≤λ i.e. if fi : M →

k
Mi,Mi ∈ K≤λ(i = 1, 2), then there exists an amalgam

N ∈ K≤λ of M1,M2 over M w.r.t. f1, f2.

Proof. By Definition 3.5 fi : M →
nice

Mi(i = 1, 2). Hence by Lemma 2.1 there

is an amalgam N ∈ K≤λ of M1,M2 over M w.r.t. f1, f2.
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Definition 3.7. Suppose that θ ∈ [χ, λ) and ∂ is a cardinal.
(1) A model M ∈ Kθ is ∂-universal iff for every N ∈ K∂ , there exists

an ≤k-elementary embedding f : N →
k
M . We say M is universal iff M is

∥M∥-universal.
(2) A model M2 ∈ Kθ is ∂-universal over the model M1 (and one writes

M1 ⪯
∂−univ

M2) iff M1 ≤k M2 and whenever M1 ≤k M
′
2 ∈ K∂ , then there

exists an ≤k-elementary embedding f : M ′
2 →

k
M2 such that f ↾ M1 is the

identity. (The embedding version runs: there exists h : M1 →
k
M2 and whenever

g : M1 →
k
M ′

2 ∈ K∂ , then there exists f : M ′
2 →

k
M2 such that fg = h.) M2 is

universal over M1 (M1 ⪯
univ

M2) iff M2 is ∥M2∥-universal over M1.

(3) A model M2 is ∂-universal over M1 in M iff M1 ≤k M2 ≤k M , ||M1|| ≤ ∂
and whenever M ′

2 ∈ K∂ and M1 ≤k M ′
2 ≤k M , then there exists an ≤k-

elementary embedding f : M ′
2 →

k
M2 such that f ↾ M1 is the identity. M2 is

universal over M1 in M iff M2 is ∥M2∥-universal over M1 in M .
(4) M2 is weakly ∂-universal over M1 (written M1 ≺

∂−wu
M2) iff M1 ≤k

M2 ∈ K∂ and whenever M2 ≤k M
′
2 ∈ K∂ , then there exists an ≤k-elementary

embedding f : M ′
2 →

k
M2 such that f ↾ M1 is the identity. (The embedding

version is: there exists h : M1 →
k
M2 and whenever g : M2 →

k
M ′

2 ∈ K∂ , then

there exists f : M ′
2 →

k
M2 such that h = fgh (written h : M1 →

∂−wu
M2)). We

say M2 is weakly universal over M1(M1 ⪯
wu
M2) iff M2 is ∥M2∥-weakly universal

over M1.

Remark 3.8. In k<λ, if M1 is an a.b., then weak universality over M1 is equiv-
alent to universality over M1.

Proof. Suppose that h : M1 →
wu

M2 and g : M1 →
k
M ′

2 ∈ K∥M2∥. Since M1

is an a.b. there exist a model N and h′ : M2 →
k
N, g′ : M ′

2 →
k
N satisfying

h′h = g′g. By Fact 1.11 without loss of generality ∥N∥ = ∥M2∥. Since M2

is weakly universal over M1, there exists h
′′

: N →
k
M2, h = h

′′
h′h. Let

f = h
′′
g′ : M ′

2 →M2, and note that fg ↾M1 = h
′′
g′g = h

′′
h′h = h, so that M2

is universal over M1.

Remark 3.9. For any model M , universality over M implies weak universality
over M .

Lemma 3.10. Suppose that k is categorical in λ, θ ∈ [χ, λ). If M ∈ Kθ and
M ≤k N ∈ Kλ, then there exists M+ ∈ Kθ such that:

(a) M ≤k M
+ ≤k N,

(b) M+ is universal over M in N.
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Proof. We choose I such that:

(∗) (a) I is a linear order of cardinality λ,

(b) if ∂ ∈ [ℵ0, λ), J0 ⊆ I, |J0| = ∂ then there is J1 satisfying J0 ⊆
J1 ⊆ I, |J1| = ∂, and for every J∗ ⊆ I of cardinality ≤ ∂ there is
an order-preserving (one to one) mapping from J0 ∪ J∗ into J0 ∪ J1
which is the identity on J0.

Essentially the construction follows Laver [10] and [24, Appendix], see more
in §2 of [16]; but for our present purpose let I = ( ω>λ,<ℓex); given θ and J0 we
can increase J0 so without loss of generality J0 = ω>A, A ⊆ λ, |A| = θ. Define
an equivalence relation E on I \ J0: ηEν ⇔ (∀ρ ∈ J0)(ρ <ℓex η ≡ ρ <ℓex ν),
easily it has ≤ θ equivalence classes, so let {η∗i : i < i∗ ≤ θ} be a set of
representatives each of minimal length, so η∗i ↾ (lg η∗i − 1) ∈ J0, η∗i (lg η∗i − 1) ∈
λ \A.

Let J1 = I ∪ {η∗i ˆν : ν ∈ ω>θ and i < i∗}, so clearly J0 ⊆ J1 ⊆ I, |J1| = θ.
Suppose J0 ⊆ J ⊆ I, |J | ≤ θ, and we should find the required embedding h.
As before without loss of generality J = ω>B, |B| = θ and A ⊆ B. Now
h ↾ J0 = idJ0 so it is enough to define h ↾ (J1 ∩ (η∗i /E)), hence it is enough to
embed J1 ∩ (η∗i /E) into {η∗i ˆν : ν ∈ ω>θ} (under <ℓex).

Let γ = otp(B), so it is enough to show ( <ωγ,<ℓex) can be embedded into
ω>θ, where of course |γ| ≤ θ. This is proved by induction on γ.

Since k is λ-categorical and EM(I) is a model of k of power λ, there is an iso-
morphism g from EM(I) onto N . It follows from (∗) that M+ = g

′′
(EM(J)) ∈

Kθ satisfies (1) and (2). (Analogues of (1) and (2) are checked in more detail
in the course of the proof of Corollary 3.14.)

Lemma 3.11. Suppose that k is categorical in λ, θ ∈ [χ, λ), and ⟨Mi ∈ Kθ : i <
θ+⟩, ⟨Ni ∈ Kλ : i < θ+⟩ are continuous ≤k-chains such that for every i < θ+

we have Mi ≤k Ni. Then there exists i(∗) < θ+ such that (i(∗), θ+) ⊆ C :=
{i < θ+ : Mi+1 can be ≤k-elementarily embedded into Ni over M0}.

Proof. Apply Lemma 3.10 for M0 ∈ Kθ and Nθ+ = ∪
i<θ+

Ni ∈ Kλ (noting that

M0 ≤k N0 ≤k Nθ+) to find M+ ∈ Kθ such that M0 ≤k M
+ ≤k Nθ+ and M+ is

universal over M0 in Nθ+ .
For some i(∗) < θ+,M+ ⊆ Ni(∗) and so M+ ≤k Ni(∗). If i ∈ (i(∗), θ+),

then Mi+1 ∈ Kθ and M0 ≤k Mi+1 ≤k Ni+1 ≤k Nθ+ , so there is an ≤k-
elementary embedding f : Mi+1 →

k
M+ and f ↾ M0 is the identity. Now

M+ ≤k Ni(∗) ≤k Ni, so f : Mi+1 →
k
Ni. Hence (i(∗), θ+) ⊆ C as required.

Theorem 3.12. Suppose that k is categorical in λ, θ ∈ [χ, λ),M ∈ Kθ. Then
there exists M+ ∈ Kθ such that:

(ℵ) M ≤k M
+ and M+ is nice,

(ℶ) M+ is weakly universal over M.
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Proof. Define by induction on i < θ+ continuous ≤k-chains ⟨Mi ∈ Kθ : i <
θ+⟩, ⟨Ni ∈ Kλ : i < θ+⟩ such that:

(0) M0 = M,

(1) Mi ≤k Ni,

(2) if (∗)i holds, then Mi+1 cannot be ≤k-elementarily embedded into Ni

over M0, where (∗)i is the statement:

(∗)i there are M ′ ∈ Kθ and N ′ ∈ Kλ such that Mi ≤k M ′, Ni ≤k N ′,
M ′ ≤k N

′ and M ′ cannot be ≤k-elementarily embedded into Ni over M0,

(3) Mi+1 ≤
nice

Ni+1.

This is possible. N0 is obtained by an application of Fact 1.11 to an ap-
propriate Op(M0) of power at least λ. At limit stages, continuity dictates
that one take unions. Suppose that Mi, Ni have been defined. If (∗)i does
not hold, by Theorem 2.11(2) there is M ′′ ∈ Kθ, Mi ≤k M

′′ ≤
nice

Ni. Let

Mi+1 = M ′′, Ni+1 = Ni. If (∗)i does hold for M ′, N ′, let Ni+1 = N ′; note
that by Theorem 2.11(2) there exists M

′′ ∈ Kθ,M
′ ≤k M

′′ ≤
nice

N ′; now let

Mi+1 = M
′′
. Note that in each case, (3) is satisfied.

Find i(∗) < θ+ and C as in Lemma 3.11 and choose i ∈ C. By (1), we have
Mi+1 ≤k Ni+1 so by Lemma 3.10 there exists M− ∈ Kθ such that Mi+1 ≤k

M− ≤k Ni+1 and M− is weakly universal over Mi+1 in Ni+1. By Theorem 3.4
one can find M+ ∈ Kθ such that M− ≤k M

+ and M+ is nice. So M+ satisfies
(ℵ). It remains to show that M+ is weakly universal over M . Suppose not and
let g : M+ →

k
M∗ ∈ Kθ where M∗ cannot be ≤k-elementarily embedded in M+

over M hence cannot be ≤k-elementarily embedable in M− over M , hence in
Ni+1 over M . Now, Mi+1 ≤k M

∗ ∈ Kθ and by (3) Mi+1 ≤
nice

Ni+1 ∈ Kλ, so

by 2.1 there is an amalgam N∗ ∈ Kλ of M∗, Ni+1. The existence of M∗, N∗ 

implies that (∗)i+1 holds since M∗ cannot be ≤k-elementarily embedded into 
Ni+1 over M0, hence Mi+2 cannot be ≤k-elementarily embedded into Ni+1 in 
contradiction to the choice of i as by Lemma 3.10 i + 1 is in C.

Corollary 3.13. If k is categorical in λ, θ ∈ [χ, λ) and M ∈ Kθ is an a.b. (e.g.
M is nice, see 2.1), then there exists M+ ∈ Kθ such that:

(ℵ) M ≤k M
+ and M+ is nice,

(ℶ) M+ is universal over M .

Proof. By Theorem 3.12 and Remark 3.8.

Corollary 3.14. Suppose that k is categorical in λ and θ ∈ [χ, λ). Then there
is a nice universal model M ∈ Kθ.

Bolet́ın de Matemáticas 31(1)  (2024)



S. Shelah & O. Kolman

Proof. By 3.4 it suffices to find a universal model of power θ, noting that
universality is preserved under ≤k-elementary extensions in the same power. As
in the proof of 3.10, there is a linear order (I,<I) of power λ and J ⊆ I, |J | = θ,
such that:

(∗) (∀J ′ ⊆ I) (if |J ′| ≤ θ, then there is an order-preserving injective map g
from J ′ into J).

To finish the proof it suffices to prove:

⊞ EM(J) ∈ Kθ is universal.

Why ⊞ holds? EM(J) is a model of power θ since max(|J |, χ) ≤ θ and
θ = |J | ≤ ∥EM(J)∥. Let us show that EM(J) is universal. Suppose that
N ∈ Kθ. Applying Fact 1.11 to a suitably large Op(N) find M ∈ Kλ, N ≤k M ,
so that by λ-categoricity of k,M ∼= EM(I). There is a surjective ≤k-elementary
embedding h : N →

k
N ′ ≤k EM(I) and there exists J ′ ⊆ I, |J ′| ≤ ∥N ′∥+χ = θ,

such that N ′ ⊆ EM(J ′). So by (∗) there is an order preserving injective map
g from J ′ into J . Now g induces an ≤k-elementary embedding ĝ from EM(J ′)
into EM(J). Let f = ĝh, then f : N →

k
EM(J) is as required.

Theorem 3.15. Suppose that k is categorical in λ, θ ∈ [κ+ |T |, λ), N ∈ K<λ

is nice, M ∈ Kθ and M ≤
nice

N . Then M is nice.

Proof. Let B ∈ Kθ, M ≤k B and we show that M ≤
nice

B. Well, since M ≤
nice

N

and M ≤k B, by Lemma 3.1 there exists an amalgam M∗ ∈ K<λ of N,B over
M . Without loss of generality by 1.16 ∥M∗|| = ||N ||. But N is nice, hence
N ≤

nice
M∗. Since M ≤

nice
N , it follows by Observation 1.34 that M ≤

nice
M∗.

Since M ≤k B ≤k M
∗, it follows by Observation 1.39 that M ≤

nice
B.

4. (θ, ∂)-saturated models

In this section, we define notions of saturation which will be of use in proving
amalgamation for kλ.

Definition 4.1. Suppose that ∂ is an ordinal, ℵ0 ≤ ∂ ≤ θ ∈ [χ, λ).
(1) An τ -structure M is (θ, ∂)-saturated8 iff:

(a) ∥M∥ = θ,

(b) there exists a continuous ≤k-chain ⟨Mi ∈ Kθ : i < ∂⟩ witnessing it, which
means:

(i) M0 is nice and universal,

8Called (θ, ∂)-trimmed in [33].
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(ii) Mi+1 is universal over Mi,

(iii) Mi is nice, and,

(iv) M = ∪
i<∂

Mi.

(2) M is θ-saturated iff M is (θ, cf(θ))-saturated.
(3) M is (θ, ∂)-saturated over N iff M is (θ, ∂)-saturated as witnessed by a

chain ⟨Mi : i < ∂⟩ such that N ≤k M0.
The principal facts established in this section connect the existence, unique-

ness and niceness of (θ, ∂)-saturated models.

Theorem 4.2. Suppose that k is categorical in λ and ∂ ≤ θ ∈ [χ, λ). Then:
(1) there exists a (θ, ∂)-saturated model M,
(2) for ∂ a limit ordinal, M is unique up to isomorphism,
(3) M is nice.

Proof. One proves (1), (2), and (3) simultaneously by induction on ∂.
Ad (1). Choose a continuous ≤k-chain ⟨Mi ∈ Kθ : i < ∂⟩ of nice models by

induction on i as follows. For i = 0, apply 3.14 to find a nice universal model
M0 ∈ Kθ. For i = j + 1, note that Mj is an a.b. by 3.6 (since Mj is nice),
hence by 3.13 there exists a nice model Mi ∈ Kθ,Mj ≤k Mi,Mi universal over
Mj . For limit i, let Mi = ∪

j<i
Mj . Note that by the inductive hypothesis (3)

on ∂ for i < ∂, since Mi is (θ, i)-saturated, Mi is nice. Thus M = ∪
i<∂

Mi is

(θ, ∂)-saturated (witnessed by ⟨Mi : i < ∂⟩). Note that M is universal since
⟨Mi : i < ∂⟩ is continuous and M0 is universal.

Ad (2). Recall that each Mi is an amalgamation base by Lemma 2.1. As
∂ is a limit ordinal standard back-and-forth argument shows that if M and N
are (θ, ∂)-saturated models, then M and N are isomorphic.

Ad (3). By the uniqueness (i.e. by Ad(2)) it suffices to prove that some
(θ, ∂)-saturated model is nice. Suppose that M is (θ, ∂)-saturated. We’ll show
that M is nice.

If cf(∂) < ∂, then M is also (θ, cf(∂))-saturated and hence by the inductive
hypothesis (3) on ∂ for cf(∂),M is nice. So we’ll assume that cf(∂) = ∂. Choose
a continuous ≤k-chain ⟨Mi ∈ Kθ : i < θ+⟩ such that: M0 is nice and universal
(possible by 3.14); if Mi is nice, then Mi+1 ∈ Kθ is nice and universal over Mi

(possible by 3.6 and 3.13); if Mi is not nice (so necessarily i is a limit ordinal),
then Mi+1 ∈ Kθ,Mi ≤k Mi+1 and Mi ≰

nice

Mi+1. By Theorem 3.1 and Fact

1.38 there is a club C of θ+ such that if i ∈ C, then Mi ≤
nice

Mi+1. So by the

choice of ⟨Mi : i < θ+⟩, if i ∈ C, then Mi is nice. Choose i ∈ C, i = sup(i∩C),
cf(i) = ∂. It suffices to show that Mi is (θ, ∂)-saturated (for then by (2) Mi is
isomorphic to M and so M is nice). Choose a continuous increasing sequence
⟨αζ : ζ < ∂⟩ ⊆ C such that i =

⋃
{αζ : ζ < ∂} (recall that i = sup(i∩C), cf(i) =

∂). Now Mi = ∪
ζ<∂

Mαζ
. Of course Mα0

is universal (since M0 is universal and

M0 ≤k Mα0
), Mαζ+1

is universal over Mαζ
since Mαζ+1 is universal over Mαζ
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and Mαζ
≤k Mαζ+1 ≤k Mαζ+1

. Also Mαζ
is nice for each ζ < ∂ since αζ ∈ C.

Hence Mi is (θ, ∂)-saturated, recall that Mi is nice because i ∈ C, so we are
done.

Remark 4.3. Remember that by Theorem 3.15, if k is categorical in λ, θ ∈ [χ, λ),
N ∈ K<λ is nice, M ∈ Kθ and M ≤

nice
N, then M is nice.

Theorem 4.4. Suppose that k is categorical in λ, χ ≤ θ < θ+ < λ. If ⟨Mi ∈
Kθ : i < θ+⟩ is a continuous ≤k-chain of nice models such that Mi+1 is universal
over Mi for i < θ+, then

⋃
i<θ+

Mi is (θ+, θ+)-saturated.

Remark 4.5. Why this is not trivial? Because here Mi is of cardinality θ
whereas in Definition 4.1 the Mi are of cardinality θ+.

Proof. Write M =
⋃

i<θ+

Mi. Note that if ⟨M ′
i ∈ Kθ : i < θ+⟩ is any other

continuous ≤k-chain of nice models such that M ′
i+1 is universal over M ′

i then⋃
i<θ+

M ′
i
∼= M (use again the back and forth argument recalling that M0, is an

a.b., so as Mj is universal over M0, it is universal).
By Theorem 4.2 there exists a (θ+, θ+)-saturated model N which is unique

and nice. In particular ||N || = θ+ and there exists a continuous ≤k-chain
⟨Ni ∈ Kθ+ : i < θ+⟩ such that:

(i) N0 is nice and universal,

(ii) Ni+1 is universal over Ni,

(iii) Ni is nice,

(iv) N =
⋃

i<θ+

Ni.

It suffices to prove that M and N are isomorphic models.
Without loss of generality |N | = θ+. By Fact 1.11, the set C1 = {δ <

θ+ : N ↾ δ ≤k N} contains a club of θ+. By Theorem 3.1 there exists a club
C2 ⊆ C1 of θ+ such that for every δ ∈ C2, N ↾ δ ≤

nice
N . Since {|Ni| : i < θ+}

is a continuous increasing sequence of subsets of θ+, it follows that C3 = {δ <
θ+ : δ ⊆ |Nδ|} is a club of θ+. Hence there is a club C4 of θ+ such that
C4 ⊆ C1 ∩ C2 ∩ C3 ∩ [θ, θ+). Note that for δ ∈ C4 one has N ↾ δ ≤

nice
N ,

|N ↾ δ| = δ ⊆ |Nδ| and Nδ ≤k N , so that N ↾ δ ≤k Nδ ≤k N and so by
1.38 N ↾ δ ≤

nice
Nδ. Also, ⟨Nδ : δ ∈ C4⟩ is a continuous increasing ≤k-chain,

Nδ ∈ Kθ+ and N ↾ δ ∈ Kθ.

By Theorem 3.15 N ↾ δ is nice since Nδ is nice (by (iii)). So by Corollary 
3.13 N ↾ δ has a nice ≤k-extension Bδ ∈ Kθ which is universal over N ↾ δ, 
without loss of generality N ↾ δ ≤k Bδ ≤k N .

Bolet́ın de Matemáticas 31(1)  (2024)



Categoricity and amalgamation for AEC, and κ measurable

[Why? since N ↾ δ ≤k Bδ (in fact N ↾ δ ≤
nice

Bδ) and N ↾ δ ≤
nice

Nδ, by

Lemma 2.1 there exists an amalgam Aδ ∈ K≤θ+ of Bδ, Nδ over N ↾ δ. Let
fδ : Bδ →

k
Aδ be a witness. But Nδ+1 is universal over Nδ (by (ii)), so Aδ can

be ≤k-elementarily embedded into Nδ+1 over Nδ (say by gδ), hence Bδ can be
≤k-elementarily embedded into N (using gδfδ).]

Let C5 = {δ ∈ C4 : if α ∈ C4 ∩ δ, then |Bα| ⊆ δ}. Note that C5 is a club
of θ+ since ||Bα|| = θ. [Why? For α ∈ C4, let Eα = (sup |Bα|, θ+) ∩ C4, let
Eα = θ+ for α ̸∈ C4 and let E be the diagonal intersection of ⟨Eα : α < θ+⟩, i.e.
E = {δ < θ+ : (∀α < δ)(δ ∈ Eα)}. Note that E is a club of θ+ and C5 ⊇ E∩C4

which is a club of θ+.]
Thus ⟨N ↾ δ : δ ∈ C5⟩ is a continuous ≤k-chain of nice models, each of power

θ. If δ1 ∈ C5 and δ2 = min(C5 \ (δ1 + 1)), then N ↾ δ1 ≤k Bδ1 ≤k N ↾ δ2.
Hence N ↾ δ2 is universal over N ↾ δ1 (since Bδ1 is universal over N ↾ δ1). Let
{δi : i < θ+} enumerate C5 and set M ′

i = N ↾ δi. Note that N =
⋃

i<θ+

M ′
i . Then

⟨M ′
i ∈ Kθ : i < θ+⟩ is a continuous ≤k-chain of nice models, M ′

i+1 is universal
over M ′

i . Therefore N and M are isomorphic (as said at the beginning of the
proof), as required.

Notation 4.6. Θ = {θ : θ = ⟨θi : i < δ⟩ is a (strictly) continuous increasing
sequence of cardinals, χ < θ0, δ < θ0 (a limit ordinal),

⋃
i≤δ

θi ≤ λ} and Θ− =

{θ̄ ∈ Θ: sup θi < λ}.

Remark 4.7. Let θ = sup(θ) = sup{θi : i < lg(θ̄)} for θ̄ ∈ Θ. Then θ is singular,
since cf(θ) ≤ δ < θ0 ≤ θ.

Definition 4.8. Let θ̄ ∈ Θ. A model M is θ-saturated iff there is a continuous
≤k-chain ⟨Mi ∈ Kθi : i < δ⟩ such that M =

⋃
i<δ

Mi, Mi is nice and Mi+1 is

θi+1-universal over Mi.

Definition 4.9. Suppose that θ ∈ Θ. Pr(θ) holds iff every θ-saturated model
is nice.

Remark 4.10. (1) If θ̄1, θ̄2 ∈ Θ, rng(θ̄1) ⊆ rng(θ̄2), sup rng(θ̄1) = sup rng(θ̄2),
and M is θ̄2-saturated, then M is θ̄1-saturated.

(2) For θ̄ ∈ Θ− and Pr(θ̄′) whenever θ̄′ ∈ Θ is a proper initial segment of
θ̄, there is a θ̄-saturated model and it is unique.

Theorem 4.11. Suppose that θ ∈ Θ− and for every limit ordinal α < lg(θ),
Pr(θ ↾ α). Then Pr(θ).

Proof. Let θ = sup(θ̄). By Remark 4.10(1) and the uniqueness of θ-saturated
models 4.10(2), without loss of generality one may assume that lg(θ) = cf(sup(θ)) =
cf(θ). Now, by Remark 4.7, we know (cf(θ))+ < θ (= sup(θ̄)), so by [27, §1]
there exists ⟨S, ⟨Cα : α ∈ S⟩⟩ such that:

(α) S ⊆ θ+ is a set of ordinals; 0 /∈ S,
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(β) S1 = {α ∈ S : cf(α) = cf(θ)} is a stationary subset of θ+,

(γ) if α ∈ S then α = sup(Cα) and, if α ∈ S \ S1 then otp(Cα) < cf(θ),

(δ) if β ∈ Cα, then β ∈ S and Cβ = Cα ∩ β,

(ϵ) Cα is a set of successor ordinals.

[Note that the existence of ⟨S, ⟨Cα : α ∈ S⟩⟩ is provable in ZFC.]
Without loss of generality S \ S1 = ∪{Cα : α ∈ S1}. We shall construct

the required model by induction, using ⟨Cα : α ∈ S⟩. Remember θ̄ = ⟨θζ : ζ <
cf(θ)⟩. Let us start by defining by induction on α < θ+ the following entities:
Mα, Mα,ξ (for α < θ+, ξ < cf(θ)), and Nα (only when α ∈

⋃
β∈S

Cβ) such that:

(A1) Mα ∈ Kθ,

(A2) ⟨Mα : α < θ+⟩ is a continuous increasing ≤k-chain of models,

(A3) Mα+1 is nice, and if Mα is not nice, then Mα ̸≰
nice

Mα+1,

(A4) Mα ̸= Mα+1,

(A5) Mα+1 is weakly universal over Mα,

(B1) Mα =
⋃

ξ<cf(θ)

Mα,ξ, ||Mα,ξ|| = θξ,

(B2) if α ∈ S1 , β ∈ Cα , γ ∈ Cα , β < γ, then:

(a) Nβ ≤k Mβ ,

(b) ||Nβ || = θotp(Cβ),

(c) (∀ξ < otp(Cβ))(Mβ,ξ ≤k Nγ),

(d) Nβ is nice,

(e) Nγ is θotp(Cγ)-universal over Nβ .

There are now two tasks at hand. First of all, we shall explain how to
construct these entities (THE CONSTRUCTION, below). Then we shall use
them to build a nice θ-saturated model (PROVING Pr(θ), below). From the
uniqueness of θ-saturated models it will thus follow that Pr(θ) holds.

THE CONSTRUCTION: we consider several cases:
Case (i): β = 0. Choose M0 ∈ Kθ and ⟨M0,ξ ∈ Kθ : ξ < cf(θ)⟩ with

M0 =
⋃

ξ<cf(θ)

M0,ξ using Fact 1.11. There is no need to define N0 since 0 ̸∈ Cα.

Case (ii): β is a limit ordinal. Let Mβ =
⋃

γ<β

Mγ and choose ⟨Mβ,ξ : ξ <

cf(θ)⟩ using Fact 1.11. Again there’s no call to define N β s ince C α i s always a
set of successor ordinals.
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Case (iii): β is a successor ordinal, β = γ + 1. Choose M ′
γ ∈ Kθ such that

Mγ ≤k M
′
γ and if possible Mγ ≰

nice

M ′
γ ; without loss of generality M ′

γ is weakly

universal over Mγ . If β ̸∈ S, then define things as above, taking into account
(A3). The definitions of Mβ , Mβ,ξ present no special difficulties. Now suppose
that β ∈ S. The problematic entity to define is Nβ .

If Cβ = ∅, choose for Nβ any nice sub-model (of power θ0) of Mγ .

If Cβ ̸= ∅, then first define N−
β =

⋃
γ∈Cβ

Nγ . Note that N−
β is nice. [If Cβ

has a last element β′, then N−
β = Nβ′ which is nice; if Cβ has no last element,

then N−
β =

⋃
γ∈Cβ

Nγ is θ ↾ otp(Cβ)-saturated, and, by the hypothesis of the

theorem, Pr(θ ↾ otp(Cβ)), so N−
β is nice.] Also N−

β ⪯k Mγ . If otp(Cβ) is a

limit ordinal we let Nβ = N−
β and Mβ = M ′

γ , so we have finished, so assume
otp(Cβ) is a successor ordinal. To complete the definition of Nβ , one requires
a Lemma (the proof of which is similar to Corollary 3.12, Theorem 3.13):

(∗) if A ⊆ M ∈ Kθ, |A| ≤ θj < θ, then there exist a nice M+ ∈ Kθ,
M ≤k M

+, and nice models N∗, N+ ∈ Kθj , A ⊆ N∗ ≤k N
+ ≤k M

+ and
N+ is universal over N∗.

Why is this enough? Use the Lemma with M = M ′
β and A = N−

β ∪⋃
ξ<otp(Cβ)

γ∈Cβ

Mγ,ξ to find N∗, N+, M+ and choose N+, M+ as Nβ , Mβ respec-

tively.

Now, why (∗) holds? The proof of (∗) is easy as M ′
β is nice.

PROVING Pr(θ):

For α ∈ S1, consider ⟨Nβ : β ∈ Cα⟩. For β, γ ∈ Cα, β < γ, one has by
(B2)(c)

⋃
ξ<otp(Cβ)

Mβ,ξ ⊆ Nγ . Therefore Mβ ⊆
⋃

γ∈Cα

Nγ . (Recalling Mβ =⋃
ξ<cf(θ)

Mβ,ξ =
⋃

ξ<cf(α)

Mβ,ξ (since α ∈ S1); for ξ < cf(α), choose γ ∈ Cα,

ξ < γ, β < γ; so Mβ,ξ ⊆ Nγ and Mβ ⊆
⋃

γ∈Cα

Nγ).

Thus for every β ∈ Cα, Mβ ⊆
⋃

γ∈Cα

Nγ hence Mα =
⋃

β∈Cα

Mβ ⊆
⋃

γ∈Cα

Nγ

(remember α = sup(Cα) as α ∈ S1). If γ ∈ Cα, then Nγ ≤k Mγ (by (B2)(a)),
and so

⋃
γ∈Cα

Nγ ⊆
⋃

β∈Cα

Mβ = Mα by continuity. So Mα =
⋃

β∈Cα

Nβ hence

⟨Nβ : β ∈ Cα⟩ exemplifies Mα is θ̄-saturated (remember Pr(θ̄ ↾ δ) for every
limit δ < lg(θ̄)). So Mα is θ-saturated for every α ∈ S1. In other words
{α < θ+ : Mα is θ-saturated} ⊇ S1 and is stationary, so, applying 3.1, there
exists α < θ+ such that Mα is θ-saturated and Mα ≤

nice

⋃
β<θ+

Mβ . Hence by 1.38

Mα ≤
nice

Mα+1 and so, since Mα+1 is nice (A3), Mα is nice (by Theorem 3.15).

We conclude that Pr(θ) holds.
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To round off this section of the paper, let us make the connection between
θ-saturation and (θ, cf(θ))-saturation (Notation follows 4.6–Remark 5.10).

Theorem 4.12. Let θ̄ ∈ Θ− and θ = sup
i

(θi). Every θ-saturated model is

(θ, cf(θ))-saturated.

Proof. Let ⟨Mα : α < θ+⟩ be as in the proof of Theorem 4.11. By Theorem
3.1 there exists a club C of θ+ such that for every α ∈ C, Mα ≤

nice

⋃
β<θ+

Mβ

hence by the construction Mα is nice. So if α, β ∈ C and α < β, then Mβ

is a universal extension of Mα and for γ = sup(γ ∩ C), γ ∈ C, one has that
Mγ is (θ, cf(γ))-saturated. Choose γ ∈ S1 ∩ C and sup(γ ∩ C) = γ. So Mγ

is (θ, cf(θ))-saturated and also θ̄-saturated (see proof of 4.11). Together we
finish.

5. The amalgamation property for k<λ

Corollaries 5.5 and 5.6 are the goal of this section, showing that if K is categori-
cal in λ then every element of k<λ is nice (see 5.5) and k<λ has the amalgamation
property (see 5.6).

Lemma 5.1. Suppose that µ is singular, ⟨µi : i < cf(µ)⟩ is a continuous strictly
increasing sequence of cardinals, µ = sup

i<cf(µ)

µi, and χ ≤ µ0 < µ ≤ λ. Then

there exist a linear order I of power µ and a continuous increasing sequence
⟨Ii : i < cf(µ)⟩ of linear orders such that:

(a) χ ≤ |Ii| ≤ µi and |Ii| < |Ii+1| for each i,

(b)
⋃

i<cf(µ)

Ii = I,

(c) every t ∈ Ii+1 \ Ii defines a Dedekind cut of Ii in which (at least) one
side of the cut has cofinality κ.

Proof. Let I = ({0} × µ) ∪ ({1} × κ), Ii = ({0} × µi) ∪ ({1} × κ) ordered by:

(i, α)<I
(j, β) iff i < j or (0 = i = j and α < β) or (1 = i = j and α > β).

Lemma 5.2. Suppose that k is categorical in λ > cf(λ), κ + LSTk < µ ≤ λ.
If M ∈ Kλ, then there exists a continuous increasing ≤k-chain ⟨Mi : i < cf(λ)⟩
of models such that:

(a) M ≤k

⋃
i<cf(λ)

Mi,

(b) ∥ ∪
i<cf(λ)

Mi∥ = λ,
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(c) κ+ |T | ≤ ∥Mi∥ < ∥Mi+1∥ < λ,

(d) for each i < cf(λ),Mi ≤
nice

(
∪

j<cf(λ)
Mj

)
.

Proof. As λ is a limit cardinal, choose a continuous increasing sequence ⟨µi : i <
cf(λ)⟩, λ = sup

i<cf(λ)

µi, κ+ |T | ≤ µ0 < λ. Let ⟨I, ⟨Ii : i < cf(λ)⟩⟩ be as in 5.1. By

λ-categoricity of k without loss of generality M = EM(λ). Let Mi = EM(Ii)
for i < cf(λ). Clearly (a), (b), and (c) hold. To obtain (d), observe that by 2.6
and Corollary 3.6 it suffices to remark that by demand (c) from Lemma 5.1 on
⟨Ii : i < cf(λ)⟩ clauses (ℵ) or (ℶ) in 2.6 holds for each t ∈ I \ Ii.

Theorem 5.3. For every µ ∈ [χ, λ] and M ∈ Kµ, there exists M ′ ∈ Kµ,M ≤k

M ′ such that:

(∗)M ′ for every A ⊆ |M ′|, |A| < λ ∧ |A| ≤ µ, there is N ∈ Kχ+|A| such that
A ⊆ N ≤k M

′ and N is nice.

Proof. The proof is by induction on µ.
Case 1: µ = χ. By Theorem 3.4 there is M ′ ∈ Kµ, M ≤k M

′ and M ′ is
nice. Given A ⊆ |M ′| let N = M ′ and note that N is as required in (∗)M ′ .

Case 2: χ < µ. Without loss of generality, one can replace M by any ≤k-
extension in Kµ. Choose a continuous increasing sequence ⟨µi : i < cf(µ)⟩ such
that if µ is a limit cardinal it is a strictly increasing sequence with limit µ; if µ
is a successor, use µ+

i = µ for every i < cf(µ), and in both cases χ ≤ µi < µ.
Find M̄ = ⟨Mi : i < cf(µ)⟩ such that:

(a) M ≤k

⋃
i<cf(µ)

Mi,

(b) ||
⋃

i<cf(µ)

Mi|| = µ,

(c) ||Mi|| = µi,

(d) Mi ≤
nice

⋃
j<cf(µ)

Mj .

Why does M̄ exist? If µ = λ by Lemma 5.2, otherwise by Theorem 4.4 (µ
regular) and Theorem 4.12 (µ singular).

Choose by induction on i < cf(µ) models Li
0, Li

1, Li
2 in that order such that:

(α) Mi ≤k Li
0 ≤k Li

1 ≤k Li
2 ∈ Kµi ,

(β) j < i ⇒ Lj
2 ≤k Li

0,

(γ) (∗)Li
1 holds , i.e. for each A ⊆ |Li

1|, there is N ∈ K≤κ+|T |+|A| such that 
A ⊆ N ≤k Li

1 and N is nice (so in particular Li
1 is nice, letting A = |Li

1|),
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(δ) L2
i is nice and µi-universal over L1

i ,

(ε) L0
i is ≤k-increasing continuous,

(ζ) Lℓ
i ∩

⋃
j<cf(µ)Mj = Mi (or use system of ≤k-embeddings).

For i = 0, let L0
i = M0. For i = j + 1, note that by Criterion 2.1 there

is an amalgam L0
i ∈ Kµi of Mi, L

2
j over Mj since Mj ≤

nice
Mi and Mj ≤k L

2
j

(use last phrase of Fact 1.11 for clause (ζ)); actually not really needed. For
limit i, continuity necessitates choosing L0

i =
⋃

j<i L
0
j (note that in this case

L0
i =

⋃
j<i L

2
j ). To choose L1

i apply the inductive hypothesis with respect to

µi, L
0
i to find L1

i so that L0
i ≤k L

1
i and (γ)(∗)(L1

i )
holds. To choose L2

i apply

Lemma 3.10 to L1
i ∈ Kµi

giving L1
i ≤k L

2
i , L

2
i is nice and µi-universal over L1

i

(so (δ) holds).

Let L =
⋃

i<cf(µ) L
0
i =

⋃
i<cf(µ) L

1
i =

⋃
i<cf(µ) L

2
i , and let Li = L0

i if i is a

limit, L1
i otherwise. Now show by induction on i < cf(µ) that Li is nice.

[Why? show by induction on i for i = 0 or i successor that Li = L1
i hence

use clause (γ), if i is limit then Li is (θ̄ ↾ i)-saturated, hence Li is nice by
Theorem 4.9, 4.11.]

Now ⟨Li : i < cf(µ)⟩ witnesses that if µ is regular, L is (µ, µ)-saturated by
Theorem 4.4, if µ is singular, L is µ̄-saturated; in all cases L is µ̄-saturated of
power µ, hence by the results of section 5 (Theorem 4.9, 4.11) if µ < λ then L
is nice. Claim 5.4 below provides the desired model M ′, so we are done.

Claim 5.4. M ′ = L is as required (in 5.3).

Proof. M ≤k ∪
i<cf(µ)

Mi ≤k ∪
i<cf(µ)

L0
i = L ∈ Kµ. Suppose that A ⊆ |L|. If

|A| = µ, then necessarily µ < λ and we take N = L. So without loss of
generality, |A| < µ. If µ = cf(µ) or |A| < cf(µ), then there is i < cf(µ) such
that A ⊆ L1

i and, by (γ), (∗)L1
i

holds, so there is N ∈ Kκ+LST(k)+|A|, A ⊆
N ≤k L

1
i , N is nice and N ≤k L as required. So suppose that cf(µ) ≤ |A| < µ.

Choose by induction on i < cf(µ) models N0
i , N

1
i , N

2
i in that order such that:

(α) N0
i ≤k N

1
i ≤k N

2
i ,

(β) N2
i ≤k N

0
i+1,

(γ) A ∩ L0
i ⊆ N0

i ≤k L
0
i ,

(δ) N1
i ≤k L

1
i and N1

i is nice,

(ε) N2
i ≤k L

2
i , N

2
i is nice and universal over N1

i ,

(ζ) N0
i , N

1
i , N

2
i have power at most min{χ+ |A|, µi}.
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For i = 0, apply Fact 1.11 for A ∩ L0
0, L

0
0; for i = j + 1, apply Fact 1.11

to find N0
i ∈ Kµi

, (A ∩ L0
i ) ∪ N2

j ⊂ N0
i ≤k L

0
i (in particular N2

j ≤k N
0
i ); for

limit i,N0
i = ∪

j<i
N0

j . To choose N1
i , use (∗)L1

i
for the set Ai = N0

i to find a

nice N1
i ∈ K≤χ+|A|, N

0
i ≤k N

1
i ≤k L

1
i . Note that ∥N1

i ∥ ≤ µi. Finally to choose

N2
i note that by Lemma 3.12 the model N1

i has a nice extension N+
i (of power

∥N1
i ∥) weakly universal over N1

i . Now N1
i is nice, hence N+

i is universal over
N1

i (by Definition 3.7(5)) and by Lemma 2.1 there is an amalgam Ni of N+
i , L

1
i

over N1
i such that ∥Ni∥ ≤ µi. Since L2

i is universal over L1
i one can find an

≤k-elementary sub-model N2
i of L2

i isomorphic to Ni. Let Ni be N0
i if i is a

limit, N1
i otherwise; prove by induction on i that Ni is nice (by Theorem 4.2).

Now ∪
i<cf(µ)

N0
i is an ≤k-elementary sub-model of L of power at most κ +

|T |+ |A|, including A (by (γ)) and ∪
i<cf(µ)

N0
i is (χ+ |A|, cf(µ))-saturated, hence

(by Theorem 4.2) nice, as required.

Corollary 5.5. If K is categorical in λ then every element of K<λ is nice.

Proof. 5.5 Suppose otherwise and let N0 ∈ K<λ be a model which is not
nice. Choose a suitable Op such that ∥Op(N0)∥ ≥ λ and by Fact 1.11 find
M0 ∈ Kλ, N0 ≤k M0 ≤k Op(N0) i.e. N0 ≤

nice
M0. It follows that:

⊞ if N0 ≤k N ≤k M0 and N ∈ K<λ then N is not nice.

[Why? By 4.3; alternatively, suppose contrariwise that N is nice. So there is
N1 ∈ K<λ, N0 ≤k N1, N0 ≤

nice
N1, so N0 ≤

nice
N since N0 ≤

nice
M0 and N ≤k M0,

hence there is an amalgam N ′ ∈ K<λ of N1, N over N0. But N is nice, so
N ≤

nice
N ′;N0 ≤

nice
N , so N0 ≤

nice
N ′ and so N0 ≤

nice
N1 contradiction.]

On the other hand, applying Theorem 5.3 for µ = λ there exists M ′ ∈ Kλ

satisfying (∗)M ′ . By λ-categoricity of k without loss of generality, (∗)M0
holds

(see Theorem 5.3) and A = |N0| yields a nice model N ∈ Kκ+|T |+∥N0∥ such
that N0 ≤k N ≤k M0 contradicting ⊞.

Corollary 5.6. If K is categorical in λ, then k<λ has the amalgamation prop-
erty.

Proof. 5.6 As every nice M ∈ K<λ is an amalgamation base (by Corollary
3.6) we are done by the previous corollary.
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