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numbers. In the second part of the 2010’s, Goldstern, Kellner and Shelah
constructed a forcing model of Cichoń’s Maximum (meaning that all non-
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1. Tukey connections and cardinal characteris-
tics of the continuum

A large part of the contents of this section are taken almost verbatim from:
Section 1, up to Figure 3, of [14]; and Section 1, up to Fact 1.2, of [27].

Many cardinal characteristics of the continuum and their relations can be
represented by relational systems as follows. This presentation is based on [51,
6, 8].

Definition 1.1. We say that R = ⟨X,Y,<⟩ is a relational system if it consists
of two non-empty sets X and Y and a relation <.

(1) A set F ⊆ X is R-bounded if ∃ y ∈ Y ∀x ∈ F : x < y.

(2) A set E ⊆ Y is R-dominating if ∀x ∈ X ∃ y ∈ E : x < y.

We associate two cardinal characteristics with this relational system R:

b(R) := min{|F | : F ⊆ X is R-unbounded} the unbounding number of R,
and

d(R) := min{|D| : D ⊆ Y is R-dominating} the dominating number of R.

Note that d(R) = 1 iff b(R) is undefined (i.e. there are no R-unbounded
sets, which is the same as saying that X is R-bounded). Dually, b(R) = 1 iff
d(R) is undefined (i.e. there are no R-dominating families).

A very representative general example of relational systems is given by
directed preorders.

Definition 1.2. We say that ⟨S,≤S⟩ is a directed preorder if it is a preorder
(i.e. ≤S is a reflexive and transitive relation on S) such that

∀x, y ∈ S ∃ z ∈ S : x ≤S z and y ≤S z.

A directed preorder ⟨S,≤S⟩ is seen as the relational system S = ⟨S, S,≤S⟩,
and its associated cardinal characteristics are denoted by b(S) and d(S). The
cardinal d(S) is actually the cofinality of S, typically denoted by cof(S) or
cf(S).

Fact 1.3. If a directed preorder S has no maximum element then b(S) is
infinite and regular, and b(S) ≤ cf(d(S)) ≤ d(S) ≤ |S|. Even more, if L is a
linear order without maximum then b(L) = d(L) = cof(L).

Proof. First notice that d(S) is infinite, otherwise, by directedness, d(S) = 1
and S would have a top element.

We prove the less obvious b(S) ≤ cf(d(S)). Assume that λ < b(S) is a
cardinal and ⟨Aα : α < λ⟩ is a sequence of subsets of S of size <d(S). It is
enough to show that A :=

⋃
α<λAα is not cofinal in S. For each α < λ, since

|Aα| < d(S), Aα is not cofinal in S, so there is some xα ∈ S such that xα ≰S y
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for all y ∈ Aα. Now, |{xα : α < λ}| ≤ λ < b(S), so there is some x∗ ∈ S such
that xα ≤S x

∗ for all α < λ. Then, x∗ ≰S y for all y ∈ A, i.e. A is not cofinal
in S.

A similar argument shows that b(S) is regular.

Example 1.4. Consider ωω = ⟨ωω,≤∗⟩, which is a directed preorder. The
cardinal characteristics b := b(ωω) and d := d(ωω) are the well-known bounding
number and dominating number, respectively.

Example 1.5. For any ideal I on X, we consider the following relational
systems.

(1) I := ⟨I,⊆⟩ is a directed partial order. Note that

b(I) = add(I) := min
{
|F| : F ⊆ I,

⋃
F /∈ I

}
the additivity of I,

d(I) = cof(I).

(2) CI := ⟨X, I,∈⟩. When
⋃
I = X,

b(CI) = non(I) = min{|F | : F ⊆ X, F /∈ I} the uniformity of I,

d(CI) = cov(I) = min
{
|C| : C ⊆ I,

⋃
C = X

}
the covering of I.

Definition 1.6. Let Ξ: B → [0,∞] be a fam (finitely additive measure) on a
Boolean algebra B. We define the Ξ-null ideal by

N (Ξ) := {a ∈ B : Ξ(a) = 0}.

When B is a field of sets over X, we extend the definition to

N (Ξ) := {a ⊆ X : ∃ b ∈ B : a ⊆ b and Ξ(b) = 0}.

This is clearly an ideal on X. When
⋃
N (Ξ) = X, i.e. every singleton has

measure zero, we say that the fam Ξ is free.
Denote by Lb the Lebesgue measure on R, and let N := N (Lb).

Definition 1.7. Let X be a topological space. We say that F ⊆ X is nowhere
dense (nwd) if, for any non-empty open U ⊆ X, there is some non-empty open
U ′ ⊆ U disjoint from F . We say that A ⊆ X is meager (or of first category) if
A =

⋃
n<ω Fn for some nwd Fn (n < ω).

Denote by M(X) the collection of all meager subsets of X, and let M :=

M(R).

Definition 1 .8. Define by E the ideal generated by the Fσ  measure zero subsets

of R.

It is clear that E ⊆ M ∩ N , even more, E ⊊ M ∩ N ([5, Lem. 2.6.1], see 
also [23, Thm. 3.7]).
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Definition 1.9.

(1) For a, b ∈ [ω]ℵ0 , we define a ⊆∗ b iff a∖ b is finite;

(2) and we say that a splits b if both a ∩ b and b ∖ a are infinite, that is,
a ⊉∗ b and ω ∖ a ⊉∗ b.

(3) F ⊆ [ω]ℵ0 is a splitting family if every y ∈ [ω]ℵ0 is split by some x ∈ F .
The splitting number s is the smallest size of a splitting family.

(4) D ⊆ [ω]ℵ0 is an unreaping family if no x ∈ [ω]ℵ0 splits every member of
D. The reaping number r is the smallest size of an unreaping family.

(5) Define the relational system Spl := ⟨[ω]ℵ0 , [ω]ℵ0 ,<nsp⟩ by

a <nsp b iff either a ⊇∗ b or ω ∖ a ⊇∗ b.

Note that a ̸<nsp b iff a splits b, so b(Spl) = s and d(Spl) = r.

Inequalities between cardinal characteristics associated with relational sys-
tems can be determined by the dual of a relational system and also via Tukey
connections, which we introduce below.

Definition 1.10. If R = ⟨X,Y,<⟩ is a relational system, then its dual rela-
tional system is defined by R⊥ := ⟨Y,X,<⊥⟩ where y <⊥ x if ¬(x < y).

Fact 1.11. Let R = ⟨X,Y,<⟩ be a relational system.

(a) (R⊥)⊥ = R.

(b) The notions of R⊥-dominating set and R-unbounded set are equivalent.

(c) The notions of R⊥-unbounded set and R-dominating set are equivalent.

(d) d(R⊥) = b(R) and b(R⊥) = d(R).

Definition 1.12. Let R = ⟨X,Y,<⟩ and R′ = ⟨X ′, Y ′,<′⟩ be relational sys-
tems. We say that (Ψ−,Ψ+) : R→ R′ is a Tukey connection from R into R′ if
Ψ− : X → X ′ and Ψ+ : Y ′ → Y are functions such that

∀x ∈ X ∀ y′ ∈ Y ′ : Ψ−(x) <′ y′ ⇒ x < Ψ+(y′).

The Tukey order between relational systems is defined by R ⪯T R′ iff there is
a Tukey connection from R into R′. Tukey equivalence is defined by R ∼=T R′

iff R ⪯T R
′ and R′ ⪯T R

Fact 1.13. Assume that R = ⟨X,Y,<⟩ and R′ = ⟨X ′, Y ′,<′⟩ are relational
systems and that (Ψ−,Ψ+) : R→ R′ is a Tukey connection.

(a) If D′ ⊆ Y ′ is R′-dominating, then Ψ+[D′] is R-dominating.

(b) (Ψ+,Ψ−) : (R′)⊥ → R⊥ is a Tukey connection.
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(c) If E ⊆ X is R-unbounded then Ψ−[E] is R′-unbounded.

Corollary 1.14. (a) R ⪯T R
′ implies (R′)⊥ ⪯T R

⊥.

(b) R ⪯T R
′ implies b(R′) ≤ b(R) and d(R) ≤ d(R′).

(c) R ∼=T R
′ implies b(R′) = b(R) and d(R) = d(R′).

Example 1.15. The diagram in Figure 1 can be expressed in terms of the
Tukey order since CI ⪯T I and C⊥

I ⪯T I when I is an ideal on X such
that

⋃
I = X. The first inequality is obtained via the Tukey connection

x ∈ X 7→ {x} ∈ I and A ∈ I 7→ A ∈ I, and the second is obtained via
A ∈ I 7→ A ∈ I and B ∈ I 7→ yB ∈ X such that yB /∈ B.

ℵ0 add(I)

cov(I)

non(I)

cof(I)

|X|

|I|

Figure 1: Diagram of the cardinal characteristics associated with I. An arrow
x → y means that (provably in ZFC) x ≤ y.

ℵ1 add(N )

cov(N )

non(N )

cof(N )

add(M) cov(M)

non(M) cof(M)

b d

c

Figure 2: Cichoń’s diagram. The arrows mean ≤ and dotted arrows represent
add(M) = min{b, cov(M)} and cof(M) = max{d, non(M)}, which we call the
dependent values.

Cichoń’s diagram (Figure 2) illustrates the inequalities between the cardinal
characteristics associated with measure and category of the real numbers. The
initial study of this diagram was completed between 1981 and 1993. Inequalities
were proved by Bartoszyński, Fremlin, Miller, Rothberger and Truss. The name
“Cichoń’s diagram” was given by Fremlin [22]. On the other hand, the diagram
is complete in the sense that no more arrows can be added. Moreover, for any
ℵ1-ℵ2 assignment to the cardinals in Cichoń’s diagram that does not contradict
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the arrows (and the dependent values), there is a forcing poset that forces the
corresponding model. This part of the study was completed by Bartoszyński,
Judah, Miller and Shelah. In fact, the inequalities in Cichoń’s diagram can be
obtained via the Tukey connections as illustrated in Figure 3. See e.g. [5, 8]
for all the details.

C⊥
[R]<ℵ1 N⊥

CN

C⊥
N

N

M⊥ CM

C⊥
M M

(ωω)⊥ ωω

C[R]<ℵ1

Figure 3: Cichoń’s diagram via Tukey connections. Any arrow represents a
Tukey connection in the given direction.

We look at more classical cardinal characteristics. Concerning those asso-
ciated with E :

Lemma 1.16 ([5, Lem. 7.4.3]). CE ⪯T Spl.

Theorem 1.17 ([4], see also [5, Sec. 2.6]).

(a) min{b,non(N )} ≤ non(E) ≤ min{non(M),non(N )}.

(b) max{cov(M), cov(N )} ≤ cov(E) ≤ max{d, cov(N )}.

(c) add(E) = add(M) and cof(E) = cof(M).

Definition 1.18.

(1) D ⊆ [ω]ℵ0 is groupwise dense when:

(i) if a ∈ [ω]ℵ0 , b ∈ D and a ⊆∗ b, then a ∈ D,

(ii) if ⟨In : n < ω⟩ is an interval partition of ω then
⋃

n∈a In ∈ D for

some a ∈ [ω]ℵ0 .

The groupwise density number g is the smallest size of a collection of
groupwise dense sets whose intersection is empty.

(2) The distributivity number h is the smallest size of a collection of dense
subsets of ⟨[ω]ℵ0 ,⊆∗⟩ whose intersection is empty.

(3) Say that a ∈ [ω]ℵ0 is a pseudo-intersection of F ⊆ [ω]ℵ0 if a ⊆∗ b for all
b ∈ F .
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(4) The pseudo-intersection number p is the smallest size of a filter base of
subsets of [ω]ℵ0 without pseudo-intersection.

(5) The tower number t is the smallest length of a (transfinite) ⊆∗-decreasing
sequence in [ω]ℵ0 without pseudo-intersection.

(6) Given a class P of forcing notions, m(P) denotes the minimal cardinal κ
such that, for some Q ∈ P, there is some collection D of size κ of dense
subsets of Q without a filter in Q intersecting every member of D.

(7) Let P be a poset. A set A ⊆ P is k-linked (in P) if every k-element subset
of A has a lower bound in P. A is centered if it is k-linked for all k ∈ ω.

(8) A poset P is k-Knaster, if for each uncountable A ⊆ P there is a k-
linked uncountable B ⊆ A. And P has precaliber ℵ1 if such a B can be
chosen centered. For notational convenience, 1-Knaster means ccc, and
ω-Knaster means precaliber ℵ1.

(9) For 1 ≤ k ≤ ω denote mk := m(k-Knaster) and m := m1. We also set
m0 := ℵ1.

(10) Define the relational system Pred = ⟨ωω,Pr,<pr⟩ where Pr is the set of
functions π (called predictors) into ω with domain

⋃
n∈Dπ

ωn for some

Dπ ∈ [ω]ℵ0 , and

x <pr π iff ∃m < ω ∀n ≥ m : n ∈ Dπ ⇒ x(n) = π(x↾n),

in which case we say that π predicts x. We define e := b(Pred) the evasion
number.

(11) Two sets a and b are almost disjoint if a ∩ b is finite. A family A of sets
is an almost disjoint (a.d.) family if any pair of members of A are almost
disjoint. We say that A ⊆ [ω]ℵ0 is a maximal almost disjoint (mad) family
if A is ⊆-maximal among the a.d. families contained in [ω]ℵ0 . The almost
disjointness number a is the smallest size of an infinite mad family in
[ω]ℵ0 .

(12) The ultrafilter number u is the smallest size of a filter base generating an
ultrafilter contained in [ω]ℵ0 , i.e. a non-principal ultrafilter.

(13) Fn(A, 2) denotes the set of finite partial functions from A into 2 = {0, 1}
(see Definition 2.22). When A ⊆ P(ω), for s ∈ Fn(A, 2) denote

as :=
⋂

x∈s−1[{0}]

x ∩
⋂

x∈s−1[{1}]

(ω ∖ x).

A family A ⊆ P(ω) is said to be independent if as is infinite for all
s ∈ Fn(A, 2), and we say that it is a maximal independent family if it is
⊆-maximal among the independent families in P(ω). The independence
number i is defined as the smallest size of a maximal independent family.
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ℵ1

add(N )

cov(N )

cov(E)

b

add(M)

non(M)

non(E)

d

cov(M)

cof(M)

non(N )

cof(N )

s

r

c

m p h g

e

a u i

1Figure 4: Diagram of inequalities between classical cardinal characteristics

The inequalities between the cardinal characteristics presented so far are
summarized in Figure 4. See [8, 5] for the definitions and the proofs for the
inequalities (with the exception of cof(M) ≤ i, which was proved in [1]). Below
we list some additional properties of these cardinals. Unless noted otherwise,
proofs can be found in [8].

Fact 1.19.

(1) [40] p = t.1

(2) The cardinals add(N ), add(M),
b, t, h and g are regular.

(3) cf(s) ≥ t (see [20]).

(4) 2<t = c.

(5) cf(c) ≥ g.

(6) For 1 ≤ k ≤ k′ ≤ ω, mk ≤ mk′ .

(7) For 1 ≤ k ≤ ω, mk > ℵ1 im-
plies mk = mω (well-known, but
see e.g. [26, Lemma 4.2]).

Concerning cofinalities:

Fact 1.20. Let I be an ideal on X such that
⋃

I = X.

(1) add(I) is regular, cf(cof(I)) ≥ add(I) and cf(non(I)) ≥ add(I).

(2) cf(cov(M)) ≥ add(N ) (Bartoszyński and Judah 1989, [5, Thm. 5.1.5]).

(3) (Bartoszyński 1988, [5, Thm. 5.1.17]) cov(N ) ≤ b implies cf(cov(N )) >
ω.

(4) If cov(E) ≤ d then cf(cov(E)) > ω (Miller, see [5, Thm. 5.1.18]).

1Only the trivial inequality p ≤ t is used in this mini-course.
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The problem of the cofinality of cov(N ) was settled with the following result.

Theorem 1.21 (Shelah [49]). It is consistent with ZFC that cf(cov(N )) = ω.

The following question is still unsolved.

Question 1.22. Is it consistent with ZFC that cf(cov(E)) = ω?

To solve this problem in the positive, it is necessary to force d < cov(E),
which implies cov(E) = cov(N ) (see Theorem 1.17), so it would be necessary
to force cf(cov(N )) = ω via an ωω-bounding forcing.

Figure 4 is quite complete, but the following is still unknown.

Question 1.23. Is a ≤ i?

It is not even known how to solve:

Question 1.24. Does i = ℵ1 imply a = ℵ1?

A positive answer to this problem is implied by a positive answer to the
following famous problem in set theory.

Question 1.25 (Roitman’s problem). Does d = ℵ1 imply a = ℵ1?

The following strengthening of Roitman’s problem was formulated by Bren-
dle and Raghavan [11].

Question 1.26. Does b = s = ℵ1 imply a = ℵ1?

2. Finite Support iterations

2.1. Generic reals

We first look at the types of generic reals we intend to add by forcing. Recall
that a Polish space is a separable completely metrizable space. The real line
R and any product

∏
n<ω b(n) of countable discrete spaces, such as the Cantor

space 2ω and the Baire space ωω, are canonical examples. Polish spaces share
many of the combinatorial and descriptive set-theoretic properties of the real
line.

For a Polish space Z, denote by Σ̄(Z) the field of sets generated by the
analytic subsets of Z.

Definition 2.1. We say that R = ⟨X,Y,<⟩ is a relational system of the reals
if

(i) X ∈ Σ̄(Z1) and Y ∈ Σ̄(Z2) for some Polish spaces Z1 and Z2, and

(ii) < ∈ Σ̄(Z1 × Z2).
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In most of the cases, X = Z1 is a perfect Polish space and, for any y ∈ Y ,
{x ∈ X : x < y} is meager in X. More precisely, we are interested in the
following notion: We say that R = ⟨X,Y,<⟩ is a Polish relational system (Prs)
if it satisfies the requirements below:

(i) X is a perfect Polish space,

(ii) Y is a non-empty analytic subspace of some Polish space Z and

(iii) < =
⋃

n<ω <n where ⟨<n⟩n<ω is some increasing sequence of closed sub-
sets of X × Z such that (<n)y = {x ∈ X : x <n y} is closed nowhere
dense for any n < ω and y ∈ Y .

By (iii), the maps x 7→ x and y 7→ {x ∈ X : x < y} ∈ M(X) form a Tukey
connection for CM(X) ⪯T R.

Although it is enough to look at Prs’s for the applications, the results of this
section are valid for relational systems of the reals (and sometimes with extra
assumptions). The strength of the notion of Prs is necessary for the iteration
theorems in section 3.

The reason we use Σ̄ in the definition of relational system of the reals is to
have absoluteness of the statements “x ∈ X”, “y ∈ Y ” and “x < y”. In general,
we can just use definable sets X, Y and < such that the previous statements
are absolute for the arguments we are carrying out.

For the rest of this section, we fix a relational system of the reals R =
⟨X,Y,<⟩. We introduce the following type of (generic) reals related to R.

Definition 2.2. Let M be a (transitive) model of ZFC.2

(1) A point y∗ ∈ Y is R-dominating over M if ∀x ∈ X ∩M : x < y∗.

(2) A point x∗ ∈ X is R-unbounded over M if ∀ y ∈ Y ∩M : x∗ ̸< y.

We look at many Prs related to the cardinals in Cichoń’s diagram.

Definition 2.3 (Localization). For h ∈ ωω and H ⊆ ωω, define

S(ω, h) :=
∏
i<ω

[ω]≤h(i),

S(ω,H) :=
⋃
h∈H

S(ω, h).

Objects in these sets are usually called slaloms.
For functions x and y with domain ω, we define the relation “y localizes x”

by

x ∈∗ y iff ∃ m < ω ∀ i ≥ m : x(i) ∈ y(i).
2Since such set models cannot exist, most of the time this expression means that M satisfies   
a large enough fragment of ZFC to perform the arguments at hand.
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Define the following localization relational systems:

Lc(ω, h) := ⟨ωω,S(ω, h),∈∗⟩,
Lc(ω,H) := ⟨ωω,S(ω,H),∈∗⟩.

It is easy to check that these are Prs when H is countable. We often work with
H∗ := {idk+1 : k < ω} (powers of the identity function id on ω)

The localization relational systems work to easily characterize the cardinal
characteristics associated with N .

Theorem 2.4 (Bartoszyński [2](1984), see also [15, Sec. 4]).
If h → ∞ and H ⊆ ωω is a countable set containing some function diverging
to infinity, then

Lc(ω, h) ∼=T Lc(ω,H) ∼=T N .

In particular,

b(Lc(ω, h)) = b(Lc(ω,H)) = add(N ) and

d(Lc(ω, h)) = d(Lc(ω,H)) = cof(N ).

We now introduce a forcing to modify Lc(ω, h). In the context of forcing,
V always refers to the ground model.

Definition 2.5 (Localization forcing). For h ∈ ωω, define the poset3

Lch := {(n, φ) ∈ ω × S(ω, h) : ∃m < ω : φ ∈ S(ω,m)}

ordered by

(n′, φ′) ≤ (n, φ) iff n ≤ n′, φ′↾n = φ↾n and ∀ i < ω : φ(i) ⊆ φ′(i).

When h → ∞ we have that Lch is ccc (even σ-k-linked for any k < ω) and it
adds a generic slalom φ∗ ∈ S(ω, h) which localizes all functions in the ground
model, i.e. it is Lc(ω, h)-dominating over the ground model. If G is Lc(ω, h)-
generic over V , the generic slalom is defined by φ∗(i) := φ(i) when (n, φ) ∈ G
and i < n (this value is the same for any such (n, φ)).

We present a Prs that represents the relational system CN (more precisely,
its dual). For this purpose, we code measure zero sets as follows.

Definition 2.6. For any topological space X, denote by B(X) the σ-algebra
of Borel subsets of X. Let Lb2 be the measure on B(2ω) defined as the product
measure of the uniform measure on 2 = {0, 1}.4 Recall that {[s] : s ∈ 2<ω}
forms a base of 2ω and that each [s] is clopen in 2ω. Then, Lb2 is the unique
measure on B(2ω) such that Lb2([s]) = 2−|s| for any s ∈ 2<ω.5

3The m in S(ω,m) refers to the constant function with value m.
4The uniform measure on a finite non-empty set b assigns probability 1

|b| to each point.
5For s ∈ 2<ω , |s| = |dom s| is the length of s as a sequence.
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We abuse notation and denote [F ] :=
⋃

s∈F [s] for F ⊆ 2<ω. Since 2ω is
compact, we have that the clopen sets are precisely of the form [c] for c ⊆ 2<ω

finite.
We code measure zero subsets of 2ω in the following way. Fix a sequence

ε̄ = ⟨εn : n < ω⟩ of positive real numbers such that
∑

n<ω εn <∞. Define

Ωε̄ :=
{
c̄ = ⟨cn : n < ω⟩ : ∀n < ω : cn ∈ [2<ω]<ℵ0 and Lb2([cn]) < εn

}
.

For any sequence c̄ = ⟨cn : n < ω⟩ of finite subsets of 2<ω, denote

N(c̄) =
⋂

m<ω

⋃
n≥m

[cn],

i.e. for x ∈ 2ω, x ∈ N(c̄) iff x ∈ [cn] for infinitely many n.
Define the relational system Cn := ⟨Ωε̄, 2

ω, ▶̸⟩ such that c̄ ̸▶ y iff y /∈ N(c̄).
This is a Prs.

The sequences in Ωε̄ are simple codes of (a base of) measure zero sets in
2ω.

Fact 2.7 (See e.g. [5, Lemma 2.3.10]). If c̄ ∈ Ωε̄, then N(c̄) ∈ N (Lb2) and,
for any A ∈ N (Lb2), there exists c̄ ∈ Ωε̄ such that A ⊆ N(c̄).

In combinatorics of the reals, working in the Cantor space is the same as
working in R because functions in 2ω represent the numbers in [0, 1] when
expressed in base 2. For this reason, the measure theory of 2ω is equivalent
to the one of [0, 1] (with the Lebesgue measure), so N (R) ∼=T N (2ω) and
CN (R) ∼=T CN (2ω). See details in [39, Ch. VII, §3].

As a direct consequence of Fact 2.7, we obtain:

Fact 2.8. Cn ∼=T C⊥
N (2ω), so b(Cn) = cov(N ) and d(Cn) = non(N ).

Definition 2.9. Random forcing is B(2ω) ∖ N (2ω) ordered by ⊆ . If G is a
generic set over V , then we can define r ∈ 2ω by r :=

⋃
{s ∈ 2<ω : [s] ∈ G}.

Such r is called a random real (over V ).
Random forcing is ccc (even σ-k-linked for any k < ω).

Fact 2.10. If r is a random real over V , then r /∈ N(c̄) for any c̄ ∈ Ωε̄ ∩ V ,
i.e. any random real over V is Cn-dominating over V .

This says that any random real over V evades the Borel measure zero sets
coded in the ground model.

Concerning the directed preorder ⟨ωω,≤∗⟩:
Fact 2.11. ⟨ωω,≤∗⟩ is a Prs.

Definition 2.12. Hechler forcing is the poset D := ω<ω × ωω ordered by

(t, g) ≤ (s, f) iff s ⊆ t, ∀ i < ω : f(i) ≤ g(i), and ∀ i ∈ |t|∖ |s| : t(i) ≥ f(i).

This poset is ccc (even σ-centered).
If G is D-generic over V , then d :=

⋃
{s : ∃ f : (s, f) ∈ G} is ⟨ωω,≤∗⟩-

dominating over V .
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We now turn to CM. First, we introduce a useful characterization of its
cardinal characteristics.

Definition 2.13. Define the relational system Ed := ⟨ωω, ωω, ≠∗⟩ where

x ̸=∗ y iff ∃m < ω ∀ i ≥ m : x(i) ̸= y(i).

This is a Prs.

Theorem 2.14 (Miller [46], Bartoszyński [3], see also [15, Thm. 5.3]).
b(Ed) = non(M) and d(Ed) = cov(M).

Definition 2.15. Define the eventually different real forcing by

E :=

{
(s, φ) : s ∈ ω<ω, φ ∈

⋃
m<ω

S(ω,m)

}

ordered by

(t, ψ) ≤ (s, φ) iff s ⊆ t, ∀ i < ω : φ(i) ⊆ ψ(i), and ∀ i ∈ |t|∖ |s| : t(i) /∈ φ(i).

This forcing is ccc (even σ-centered).

If G is E-generic over V then e :=
⋃
{s : ∃φ : (s, φ) ∈ G} is Ed-dominating

over V .

∼= ∼=

∼= ∼=

Therefore, by Theorem 2.14, E can be used to increase non(M). But it
actually does more:

Theorem 2.16 (Cardona & Mej́ıa [17, Clm. 4.11]). E adds a CE -dominating 
real over V , i.e. an Fσ null subset of R that covers R ∩ V .

As for measure, we have that M(R) T M(2ω) and CM(R) T CM(2ω), 
so we obtain the same cardinal characteristics for the meager ideal using the

Cantor space instead of R. More generally, as a consequence of [34, Ex. 8.32 
& Thm. 15.10]:

Theorem 2.17. For any perfect Polish space X,

M(X) T M(R) and CM(X) T CM(R).

In particular:

Fact 2.18. Let R = ⟨X, Y, <⟩ be a Prs in V . Then, any Cohen real x ∈ X
over V is R-unbounded over V .

We now look at the effect of Cohen forcing on meager s ets. As we did with
measure zero, we introduce a coding of (a base of) meager subsets of 2ω.
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Definition 2.19. Let I be the set of interval partitions of ω. Define the
relational system M := ⟨2ω, 2ω × I,<m⟩ where

x <m (y, Ī) iff ∃m < ω ∀n ≥ m : x↾In ̸= y↾In.

This is a Prs. The members of 2ω × I are usually called matching reals. For
any matching real (y, Ī), define M(y, Ī) := {x ∈ 2ω : x <m (y, Ī)}.

Fact 2.20 (See e.g. [8]). For any matching real (y, Ī), M(y, Ī) is meager in
2ω. And, for any A ∈ M(2ω), there is some matching real (y, Ī) such that
A ⊆M(y, Ī).

Corollary 2.21. M ∼=T CM(2ω). In particular, b(M) = non(M) and d(M) =
cov(M).

Definition 2.22. Let I be a set and b̄ = ⟨b(i) : i ∈ I⟩ a sequence of non-empty
sets. Define the poset

Fn(b̄) := {p : p is a finite function, dom p ⊆ I and ∀ i ∈ dom p : p(i) ∈ b(i)}

ordered by ⊇. The generic real added by this poset is g :=
⋃
G ∈

∏
b̄ :=∏

i∈I b(i) whenever G is Fn(b̄)-generic over V .

We use this forcing to add Cohen reals, not just over 2ω or ωω, but over
any perfect space of the form

∏
n<ω b(n), endowed with the product topology

for countable discrete spaces b(n) (n < ω).

Fix a countable sequence b̄ := ⟨b(n) : n < ω⟩ of countable non-empty sets.
Note that

∏
b̄ is a perfect Polish space iff |b(n)| ≥ 2 for infinitely many n < ω.

In this case, we call Fn(b̄) the forcing adding a Cohen real in
∏
b̄, usually

referred to as Cohen forcing. We use c to denote the generic real in
∏
b̄ added

by this poset, which we often call Cohen real. For example, Ωε̄ is such a space,
and a Cohen real in Ωε̄ over V codes a measure zero set that covers 2ω ∩ V .
The letter C is reserved for any version of Cohen forcing.

For any set I, denote CI := Fn(b̂) where b̂ := ⟨b(i, n) : i ∈ I, n < ω⟩ is
defined by b(i, n) := b(n). This poset adds a sequence ⟨ci : i ∈ I⟩ where each
ci ∈

∏
n<ω b(n) is a Cohen real over V (and even over V CI∖{i}).

All the versions of Cohen forcing are forcing equivalent:

Theorem 2.23. Any countable atomless forcing notion is forcing equivalent
with C.

In general, for any perfect Polish space X, it is possible to define a countable
atomless forcing that adds a generic real c ∈ X.6 The main property of this 
generic real is that it evades all the Borel meager subsets of X coded in the
ground model. In particular,

6Using finite fragments of Cauchy sequences coming from a countable dense subset of X.
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Theorem 2.24. If c ∈ 2ω is a Cohen real over V , then c /∈ M(y, Ī) for any
matching real (y, Ī) ∈ V . In particular, any Cohen real is M-unbounded over
V .

Remark 2.25. Both M and Ed have the same cardinal characteristics as CM,
M ∼=T CM and CM ⪯T Ed. The converse Tukey-inequality is not provable
in ZFC. This follows by Zapletal’s result stating that there is a proper poset
adding an Ed-unbounded real but not adding Cohen reals [53].

2.2. FS iterations

We now turn to FS (finite support) iterations. Any FS iteration ⟨Pα, Q̇β : α ≤
π, β < π⟩ of length π is defined by recursion as follows:

(I) P0 := {⟨ ⟩} is the poset containing the empty sequence ⟨ ⟩, usually called
the trivial poset.

(II) When Pα has been defined, we pick a Pα-name Q̇α of a poset and define
Pα+1 = Pα ∗ Q̇α.

(III) For limit γ ≤ π, Pγ := limdirα<γ Pα =
⋃

α<γ Pα ordered by

q ≤γ p iff ∃α < γ : p, q ∈ Pα and q ≤α p.

Here, ≤α denotes the preorder of Pα. It can be proved by induction that Pα ⊂·
Pβ whenever α ≤ β ≤ π, where ⊂· denotes the complete-subposet relation.7

If G is Pπ-generic over V and α ≤ π, then Gα := Pα ∩G is Pα-generic over
V , so Gπ = G. In the context of FS iterations, we denote Vα := V [Gα], so
V0 = V . The relation ⊂· indicates that Vα ⊆ Vβ whenever α ≤ β ≤ π. So, when
α < π, we call Vα an intermediate generic extension, and Vπ the final generic
extension.

In this context, we abbreviate the forcing relation ⊩Pα
by ⊩α.

We review some basic facts about FS iterations of ccc posets.

Lemma 2.26. Any FS iteration of ccc posets is ccc, i.e. if ⊩β Q̇β is ccc for
all β < π, then Pα is ccc for all α ≤ π.

Lemma 2.27. In any FS iteration of ccc posets of length π: if cf(π) > ω then
R ∩ Vπ =

⋃
α<π R ∩ Vα.

Lemma 2.28. Any FS iteration of non-trivial8 posets adds Cohen reals at limit

stages. Concretely, Pα+ω adds a Cohen real over Vα.

The Cohen reals added by a FS iteration determine a Tukey connection for
CM as follows.

7P ⊂· Q iff P  i s a  s uborder o f Q , t he i ncompatibility r elation i s p reserved, and any predense 
subset of P is predense in Q.
8A poset is trivial if all its conditions are pairwise compatible. This is equivalent to saying 
that the poset is forcing equivalent with the trivial poset.
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Corollary 2.29. Any FS iteration of ccc posets of length π with uncountable
cofinality forces non(M) ≤ cf(π) ≤ cov(M), even more, π ⪯T CM and g ≤
cf(π).

Proof. Work in Vπ. For any matching real (y, Ī), by Lemma 2.27 there is some
αy,Ī < π such that (y, Ī) ∈ Vαy,Ī

. On the other hand, by Lemma 2.28, there is

some Cohen real cα ∈ 2ω ∩Vα+ω over Vα. Then by Theorem 2.24, cα ̸<m (y, Ī)
whenever (y, Ī) ∈ Vα, which happens when αy,Ī ≤ α. This indicates that the
maps α 7→ cα and (y, Ī) 7→ αy,Ī form a Tukey connection for π ⪯T M.

We now show that g ≤ cov(M) in Vπ. Let ⟨αξ : ξ < cf(π)⟩ be an increasing
sequence of limit ordinals with limit ν := cf(π). Set V ′

ξ := Vαξ
for ξ < ν and

V ′
ν := Vπ. Then ⟨ωω∩V ′

ξ : ξ < ν⟩ ∈ V ′
ν is strictly increasing and

⋃
ξ<ν ω

ω∩V ′
ξ =

ωω ∩ V ′
ν . Hence, by a result of Blass [7, Thm. 2] (see also Brendle’s proof [10,

Lem. 1.17]), it follows that g ≤ ν in V ′
ν .

The previous result puts a restriction on the models of Cichoń’s diagram
that can be obtained via FS iterations of ccc posets (of uncountable cofinal-
ity), since they force the inequalities non(M) ≤ cov(M) and g ≤ cov(M).
Therefore, in such models, the diagram of cardinal characteristics presented in
Figure 4 takes the form as in Figure 5.

ℵ1

add(N )

cov(N )

cov(E)

b

non(M)

non(E)

d

cov(M)

non(N )

cof(N )

s

r c

m

p h

g

e

a u i

Figure 5: Cichoń’s diagram with other classical cardinal characteristics after a
FS iteration of ccc (non-trivial) posets of length with uncountable cofinality,
as an effect of the forced inequalities non(M) ≤ cov(M) and g ≤ cov(M).

Below, we summarize the effect of the forcings introduced in this section to
modify the cardinals in Cichoń’s diagram:

(1) When h → ∞, Lch adds Lc(ω, h)-dominating reals (so it affects add(N )
and cof(N )).
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(2) Random forcing adds Cn-dominating reals (affecting cov(N ), non(N )).

(3) Hechler forcing adds ⟨ωω,≤∗⟩-dominating reals (affecting b and d).

(4) The forcing E adds Ed-dominating reals, and also CE -dominating reals
(affecting non(M), non(E) and cov(M), cov(E)).

(5) Cohen forcing adds M-unbounded reals (affecting cov(M) and non(M)).

We are going to use these forcings to modify the cardinals in Cichoń’s
diagram. However, we cannot just simply add dominating reals without any
particular restriction, as indicated in the following result.

Lemma 2.30. Let ⟨Pα, Q̇β : α ≤ π, β < π⟩ be a FS iteration of ccc posets.
Assume that cf(π) > ω, K ⊆ π is cofinal, R = ⟨X,Y,<⟩ is a relational system
of the reals (see Definition 2.1), and assume that, for α ∈ K, Q̇α adds an
R-dominating real over Vα.

Then Pπ forces d(R) ≤ cf(π) ≤ b(R), even R ⪯T π.
Moreover, if ZFC proves CM ⪯T R, then Pπ forces R ∼=T CM ∼=T π, so

b(R) = d(R) = non(M) = cov(M) = cf(π).

Proof. Work in Vπ. If x ∈ X, by Lemma 2.27 there is some αx < π such that
x ∈ Vαx . On the other hand, for any α < π, there is some βα ∈ K above α, so
Q̇βα adds an R-dominating real yα ∈ Y over Vβα . Then the maps x 7→ αx and
α 7→ yα form the Tukey connection for R ⪯T π.

The rest is a consequence of Corollary 2.29.

When aiming to force many different values to cardinal characteristics, we
cannot add full dominating reals as in the previous lemma. However, there is a
way to add restricted dominating reals, allowing better control of the cardinal
characteristics. We develop this technique in the following part.

2.3. Book-keeping arguments

Fix, for the rest of this section:

(1) A relational system R = ⟨X,Y,<⟩ of the reals (see Definition 2.1) such
that |X| = c = 2ℵ0

(2) A very definable (i.e. Suslin) ccc poset QR adding R-dominating reals
over the ground model, such that |QR| ≤ c. Note that Lch, D, E, random
forcing and Cohen forcing satisfy these conditions (for certain R as in the
previous subsection).

(3) An infinite cardinal θ.

We aim to force b(R) = θ. For the rest of this section we deal with b(R) ≥ θ,
and from the following section onwards we deal with the converse inequality.
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Forcing b(R) ≥ θ means to force that ∀F ∈ [X]<θ ∃ y ∈ Y ∀x ∈ F : x < y.
One way is to deal with one F at a time along a FS iteration. Concretely, if we
are at step α of a FS iteration, we pick some Fα ∈ [X]<θ ∩Vα and aim to add a
yα ∈ Y ∩Vα+1 that R-dominates all members of Fα. A very effective idea to do
this comes from Brendle [9]: in Vα, pick a transitive model Nα of ZFC such that
Fα ⊆ Nα and |Nα| = max{ℵ0, |Fα|} < θ.9 So forcing with Qα = QNα

R (which
is ccc) does the job: it adds an R-dominating yα over Nα, hence it dominates
all members of Fα. The hope is that this yα does not dominate much larger
fragments of X.

Now, assume that π is an ordinal of uncountable cofinality, and that we
perform a FS iteration of ccc posets of length π as explained before. To force
b(R) ≥ θ, it is enough to guarantee that, in Vπ, {Fα : α < π} is cofinal in
[X]<θ. Indeed, if F ∈ [X]<θ then F ⊆ Fα for some α < π, so yα dominates all
members of Fα, and then all members of F .

In the practice, we do not use all steps α < π to take care of b(R) ≥ θ,
but only steps α ∈ K for some (cofinal) K ⊆ π, while other steps can be used
to take care of something else. So we explain how to construct an iteration as
above ensuring that some choice of {Fα : α ∈ K} is cofinal in [X]<θ.

To do this, we first have to look at what happens to |X| in the final exten-
sion. Recall that |X| = c. Assume θ ≤ λ = λℵ0 . Then, in a FS iteration of
length π < λ+ of ccc posets, we can ensure that |Pα| ≤ λ and ⊩α c ≤ λ as long
as we have ⊩α |Q̇α| ≤ λ for all α < π. This is fine in this context because all
forcings we use to iterate have size ≤c.

If λ ≤ π < λ+ then, in Vπ, |X| = c = λ, so cof([X]<θ) = cof([λ]<θ). Now,
the existence of a collection {Fα : α ∈ K} cofinal in [X]<θ for some K ⊆ π,
K ∈ V , implies that cof([λ]<θ) = cof([X]<θ) ≤ |K| ≤ |π| ≤ λ. Hence, a
requirement to obtain such a cofinal family is that cof([λ]<θ) = λ and |K| = λ.

We now show that the assumptions θ ≤ cf(λ) ≤ λ = λℵ0 and cof([λ]<θ) = λ
are enough to construct such an iteration via a book-keeping argument. We
only explain the construction for π = λ, but it works when π = λδ (ordinal
product) for some 0 < δ < λ+ and cf(π) ≥ θ. Let K ⊆ λ of size λ and fix a
bijection h : K → λ × λ such that h(α) = (ξ, η) implies ξ ≤ α. Now, perform
a FS iteration of ccc posets and assume we have reached the stage α < λ.
Since cov([λ]<θ) is not modified by ccc forcing10, in Vα we can pick a cofinal
{Fα,η : η < λ} in [X]<θ∩Vα (because |X| = c ≤ λ). In the previous steps ξ ≤ α,
in the same way we had picked in Vξ a cofinal {Fξ,η : η < λ} in [X]<θ ∩ Vξ. If
α /∈ K then we can force with any ccc poset, but when α ∈ K, the book-keeping
function h makes the choice: letting h(α) = (ξ, η), pick Fh(α) = Fξ,η (which
exists because ξ ≤ α). As before, let Nα be a transitive model of ZFC such
that Fh(α) ⊆ Nα and |Nα| < θ, and we force with Qα := QNα

R to go to the step
α+ 1.

At the end of the iteration, in Vλ, we have ensured that each member of

9This is possible because the members of X are “reals”.
10Because, when θ is uncountable, in any ccc generic extension, any set of ordinals of size <θ
is covered by a set in the ground model of size <θ.
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{Fh(α) : α ∈ K} = {Fξ,η : ξ, η < λ} is R-bounded. It remains to ensure that

this family is cofinal in [X]<θ: If F ∈ [X]<θ then, since cf(λ) ≥ θ, we have that
F ∈ Vξ for some ξ < λ, so F ⊆ Fξ,η for some η < λ.

Concerning cof([λ]<θ), by Fact 1.3 we have cf(cof([λ]<θ)) ≥ add([λ]<θ) =
cf(θ), so cof([λ]<θ) = λ implies cf(λ) ≥ cf(θ), which is cf(λ) ≥ θ in the case
when θ is regular.

Using the book-keeping argument presented above, we are now ready to
present the first important construction of models with several pairwise differ-
ent cardinal characteristics.

Theorem 2.31. Let ℵ1 ≤ θ1 ≤ θ2 ≤ θ3 ≤ θ4 be regular cardinals, and assume
λ is a cardinal such that λ = λℵ0 and cf([λ]<θi) = λ for i = 1, . . . , 4. Then,
we can construct a FS iteration of length (and size) λ of ccc posets forcing
add(N ) = θ1, cov(N ) = θ2, b ≥ θ3, non(E) = non(M) = θ4 and cov(M) =
c = λ (see Figure 6).

The argument of the proof only gives b ≥ θ3. In section 4 we are going to
show how to obtain b = θ3, in addition.

In the first part of the proof we only deal with equalities of the form b(R) ≥
θi and c = λ. In the next section, we deal with the rest of the proof.

Proof of Theorem 2.31, part 1. Partition λ = K1 ∪ K2 ∪ K3 ∪ K4 with
|Ki| = λ. Proceed in two steps:

Step 1. Force with Cλ (i.e. add λ-many Cohen reals).

Step 2. In V0 := V Cλ , using book-keeping as before at each Ki, iterate with
length λ and at:

α ∈ K1: force with LcNα

id , |Nα| < θ1, which guarantees add(N ) ≥ θ1 in the
final extension;

α ∈ K2: force with (B(2ω)∖N (2ω))Nα , |Nα| < θ2, which guarantees cov(N ) ≥
θ2 in the final extension;

α ∈ K3: force with DNα , |Nα| < θ3, which guarantees b ≥ θ3 in the final
extension;

α ∈ K4: force with ENα , |Nα| < θ4, which guarantees non(M) ≥ θ4, and even
non(E) ≥ θ4 (by Theorem 2.16), in the final extension.

It is clear by the construction that, in Vλ, c = λ.

Note that we have not used the Cohen reals from step 1. These will be used
to prove the converse inequalities in the next section.
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Concerning cov([I]<θ), we have

cov([I]<θ) =

{
|I| if θ < |I|,
cf(θ) if θ = |I|.

Hence cov([I]<θ) = |I| when θ is regular.
Recall from the previous section the Polish relational systems describing

the cardinal characteristics in Cichoń’s diagram, as illustrated in Figure 7.

M ∼=T CM

Cn ∼=T C⊥
N

⟨ωω,≤∗⟩

N ∼=T Lc(ω,H∗)

Figure 7: Tukey connections between the relational systems determining the
non-dependant values in Cichoń’s diagram, along with their equivalent Polish
relational systems.

For the rest of this section, we fix a  Polish relational system R = ⟨X, Y, <⟩.
In this case, θ-R-unbounded families can easily be added using Cohen reals.

Lemma 3.3. Let λ be an uncountable cardinal. Then the Cohen reals {cα : α <
λ} ⊆ X added by Cλ form an ℵ1-R-unbounded family in V Cλ .

Proof. Working in V Cλ , let y ∈ Y . Since y is a real, it only depends on
countably many maximal antichains, so there is some C ∈ [λ]<ℵ1 ∩ V such that

y ∈ V CC . For any α ∈ λ ∖ C, cα is Cohen over V CC , hence R-unbounded 
over V CC by Fact 2.18, so cα ≮ y. Therefore, {α < λ : cα < y} ⊆ C, which is
countable.

Note that θ ≤ θ′ implies that any θ-R-unbounded family {xi : i ∈ I} is 
θ′-R-unbounded, as long as θ′ ≤ |I|. Therefore, the Cohen reals added by Cλ

form a θ-R-unbounded family for all ℵ1 ≤ θ ≤ λ.

The reason we start with Cλ in Step 1 of the proof of Theorem 2.31 is to 
add θi-unbounded families. Now we aim to show how to preserve them in the
iteration of Step 2. For this purpose, we introduce the preservation theory from
Judah and Shelah [31] and Brendle [9].

Definition 3 .4. Let κ be an infinite ca rdinal. A poset P is κ-R-good if, for any
P-name ẏ for a member of Y , there is a non-empty set H ⊆ Y (in the ground

Bolet́ın de Matemáticas 31(1)  (2024)



Diego A. Mejia

model) of size <κ such that, for any x ∈ X, if x is R-unbounded over H then
⊩ x ̸< ḣ.

We say that P is R-good if it is ℵ1-R-good.

Note that κ ≤ κ′ implies that any κ-R-good poset is κ′-R-good.
Goodness guarantees the preservation of strong unbounded families as fol-

lows.

Lemma 3.5. If κ and θ are infinite cardinals, and κ ≤ cf(θ), then any κ-R-
good poset preserves all the θ-R-unbounded families from the ground model.

Proof. Let P be a κ-R-good poset. Assume that {xi : i ∈ I} ⊆ X is a θ-R-
unbounded family. Let ẏ be a P-name of a member of Y . Find H ∈ [Y ]<κ

non-empty as in Definition 3.4. For each y ∈ H let Ay := {i ∈ I : xi < y} and
A :=

⋃
y∈H Ay. Then |Ay| < θ and |A| < θ, the latter because cf(θ) ≥ κ.

We claim that ⊩ {i ∈ I : xi < ẏ} ⊆ A. Indeed, if i ∈ I ∖ A, xi ̸< y for all 
y ∈ H, so ⊩ xi ̸< ẏ.

Now, goodness is preserved along FS iterations.

Theorem 3.6. Let κ be an uncountable regular cardinal. Then, any FS itera-
tion of κ-cc κ-R-good posets is again κ-R-good.

Proof. See e.g. [13, Thm. 4.15].

This result can be weakened as follows.

Theorem 3.7. Let κ and θ be uncountable cardinals such that κ is regular and
cf(θ) ≥ κ. Then, any FS iteration of κ-cc posets preserving θ-R-unbounded
families, preserves θ-R-unbounded families.

Proof. Let ⟨Pα, Q̇ 
β : α ≤ π, β < π⟩ be a FS iteration of κ-cc posets preserving 

θ-R-unbounded families, and let {xi : i ∈ I} be a θ-R-unbounded family (in

V ). We show by recursion on α ≤ π that Pα forces that {xi : i ∈ I} is θ-R-
unbounded. This is clear for α = 0 and for the successor step.

The limit step α with cf(α) ≥ κ is easy: if y ∈ Y ∩ Vα then y ∈ Vξ for
some ξ < α (becase a nice name of the real y depends on <κ-many conditions,
cf. Lemma 2.27), so Vξ |= |{i ∈ I : xi < y}| < θ by inductive hypothesis. The
same is satisfied in Vα.

We have to work more when cf(α) < κ. Fix an increasing cofinal sequence

{αξ : ξ < cf(α)} in α. Since Y is analytic, there is some continuous surjection

f : ωω → Y . Let ẏ be a Pα-name of a member of Y and pick some Pα-name ż 
of a real in ωω such that ⊩α f(ż) = ẏ. For each ξ < cf(α) pick Pαξ -names żξ
and ⟨ṗξn : n < ω⟩ such that Pαξ forces that ⟨ṗξn : n < ω⟩ is a decreasing sequence 
in Pα/Pαξ , żξ ∈ ωω, and ṗξn ⊩Pα/Pαξ 

ż↾n = żξ↾n for all n < ω. By induction

hypothesis, ⊩αξ |{i ∈ I : xi < f(żξ)}| < θ.
         To finish the proof, if is enough to show that, for any i ∈ I, Pα forces that xi ̸< 
f(ż) whenever xi is R-unbounded over {f(żξ) : ξ < cf(α)} (because
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cf(α) < κ ≤ cf(θ)). Fix p ∈ Pα, ℓ < ω and assume that p ⊩ xi <ℓ f(ż). Find
some ξ < cf(α) such that p ∈ Pαξ

. LetGαξ
be a Pαξ

-generic set containing p and

work in Vαξ
= V [Gαξ

]. Since ⊩Pα/Pαξ
xi <ℓ f(ż), we have that x <ℓ f(żξ[Gαξ

])

(otherwise, by [13, Lem. 4.9], there would be some n < ω such that ṗξn[Gαξ
]

forces xi ̸<ℓ f(ż)). Therefore, in V , p ⊩αξ
xi <ℓ f(żξ).

We now turn to particular cases. One very useful fact is that small posets
are good.

Lemma 3.8. Any poset P is κ-R-good for any infinite κ > |P|.
In particular, Cohen forcing is κ-R-good for all uncountable κ.

Proof. See [41, Lem. 4], also [13, Lem. 4.10].

More concrete examples ofR-good posets come from the connection between
the combinatorics of a forcing and R. We formalize this with the following
notions.

Definition 3.9 ([42]). We say that Γ is a linkedness property if Γ(P) ⊆ P(P)
for any poset P.

Let µ and κ be infinite cardinals.

(1) A poset P is µ-Γ-linked if it can be covered by ≤µ-many subsets in Γ(P).

When µ = ℵ0, we write σ-Γ-linked.

(2) A poset P is κ-Γ-Knaster if ∀B ∈ [P]κ ∃A ∈ [B]κ : A ∈ Γ(P).

When κ = ℵ1, we just write Γ-Knaster.

If Γ satisfies that Q′ ⊆ Q ∈ Γ(P) implies Q′ ∈ Γ(P), then any µ-Γ-linked
poset is µ+-Γ-Knaster. A more concrete discussion about linkedness properties
and iterations can be found in [42, Sec. 5].

Example 3.10. The following are examples of linkedness properties. Here, P
denotes an arbitrary poset.

(1) Λ<ω: Centered. Q ∈ Λ<ω(P) iff Q is a centered subset of P, i.e. for any
finite F ⊆ Q, there is a q ∈ P stronger than all members of F .

Then, µ-Λ<ω-linked means µ-centered, and κ-Λ<ω-Knaster means pre-
caliber κ.

(2) Λint: Positive intersection number. For n < ω non-zero and s ∈ Pn,
define

ι∗(s) := max {|e| : e ⊆ n and {si : i ∈ e} has a lower bound in P} .

For Q ⊆ P, define the intersection number of Q in P by

intP(Q) := inf

{
ι∗(s)

n
: s ∈ Qn, 0 < n < ω

}
.

We say that Q ∈ Λint(P) iff intP(Q) > 0.
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Notice that Λ<ω(P) ⊆ Λint(P) because any centered poset has intersection
number 1.

According to the following result, Λ<ω is good for Cn:

Theorem 3.11 (Brendle [9]). Any µ-centered poset is µ+-Cn-good. In partic-
ular, any σ-centered poset is Cn-good.

Inspired by a result of Kamburelis [33], we have that Λint is good for
Lc(ω,H∗). Recall that H∗ = {idk+1 : k < ω}.

Theorem 3.12. Any µ-Λint-linked poset is µ+-Lc(ω,H∗)-good.

Proof. Let P be a µ-Λint-linked poset witnessed by ⟨Qα : α < µ⟩ and let φ̇ be
a P-name of a member of S(ω,H∗). Notice that P is µ+-cc since no member
of Λint(P) contains infinite antichains. So find a maximal antichain A ⊆ P and
a sequence ⟨kp : p ∈ A⟩ of natural numbers such that p ⊩ φ̇ ∈ S(ω, idkp+1) for
all p ∈ A.

Fix α < µ and p ∈ A. Since intP(Qα) > 0, there is some mα < ω satisfying
1

mα
< intP(Qα). Define

φα,p(n) :=

{
{i < ω : ∃ q ∈ Qα : q ≤ p, q ⊩ i ∈ φ̇(n)} if n ≥ mα,
∅ if n < mα.

We show that |φα,p(n)| ≤ nkp+2 for all n < ω, i.e. φα,p ∈ S(ω, H∗). This 
is clear for n < mα. In the case n ≥ mα, for each i ∈ φα,p(n) pick some
qi ∈ Qα, stronger than p, forcing i ∈ φ̇(n), and let q̄  := ⟨qi : i ∈ φα,p(n)⟩. If
|φα,p(n)| ≥ nkp+2 then

ι∗(q̄) ≥ intP(Q)|φα,p(n)| ≥ intP(Q)nkp+2 > nkp+1,

so there is some q′ ∈ P such that a := {i ∈ φα,p(n) : q′ ≤ qi} has size > nkp+1. 
Then, q′ ⊩ a ⊆ φ̇(n), which contradicts that q′ ⊩ |φ̇(n)| ≤ nkp+1 (because 
q′ ≤ p). Therefore, |φα,p(n)| < nkp+2.

We show that S := {φα,p : α < µ, p ∈ A} (which has size ≤µ) witnesses
goodness. Let x ∈ ωω be Lc(ω, H∗)-unbounded over S, n0 < ω and p0 ∈
P. Then p0 is compatible with some p ∈ A, so there is a common stronger
condition q ∈ P. Now, pick an α < µ such that q ∈ Qα. Then, there is some
n ≥ max{mα, n0} such that x(n) ∈/ φα,p(n), so q ⊮ x(n) ∈ φ̇(n), i.e. there is
some q′ ≤ q forcing x(n) ∈/ φ̇(n). This shows that ⊩ x ∈/∗ 

φ̇.

Corollary 3.13. Any µ-centered poset is µ+-Lc(ω, H∗)-good.

Other examples are obtained using Boolean algebras with finitely additive
measures.

Theorem 3.14 (Kelley [35]). Let B be a Boolean algebra. Then B ∖ {0B} is 
σ-Λint-linked iff t here i s a  s trictly positive f am Ξ : B  →  [0, 1 ] ( i.e. Ξ(b) =  0  iff 
b = 0).
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In combination with Theorem 3.12, we obtain

Corollary 3.15. If N is a transitive model of ZFC, then (B(2ω) ∖ N (2ω))N

is Lc(ω,H∗)-good.

In the next section, we will present a good linkedness property for ⟨ωω,≤∗⟩.
For the moment, we present the following examples.

Theorem 3.16 (Miller [45]). E is ⟨ωω,≤∗⟩-good.

Theorem 3.17. Random forcing is ⟨ωω,≤∗⟩-good.11

We are finally ready to conclude the proof of Theorem 2.31.

Proof of Theorem 2.31, part 2. It remains to show that, in Vλ, add(N ) ≤
θ1, cov(N ) ≤ θ2, non(M) ≤ θ4 and λ ≤ cov(M).

By Lemma 3.3, the Cohen reals added at step 1 give us ℵ1-R-unbounded
families of size λ for any Polish relational system R, in particular, we ob-
tain in V Cλ an ℵ1-Lc(ω,H∗)-unbounded {c1α : α < λ}, an ℵ1-Cn-unbounded
{c2α : α < λ}, and an ℵ1-M-unbounded {c4α : α < λ}. Now, if we prove that
the iteration of step 2 is θ1-Lc(ω,H∗)-good, θ2-Cn-good and θ4-M-good, we
obtain by Lemma 3.5 that the previous families are, in the final extension, θ1-
Lc(ω,H∗)-unbounded, θ2-Cn-unbounded, and θ4-M-unbounded, respectively.
Therefore, by Lemma 3.2, add(N ) = b(Lc(ω,H∗)) ≤ θ1, cof(N ) = b(Cn) ≤ θ2,
non(M) = b(M) ≤ θ4 and cov(M) = d(M) ≥ cov([λ]<θ4) = λ.

By virtue of Theorem 3.6, it is enough to prove that all the iterands used
in step 2 are θ1-Lc(ω,H∗)-good, θ2-Cn-good and θ4-M-good. Indeed, for:

α ∈ K1: Qα = LcNα

id has size < θ1 because |Nα| < θ1, so it is θ1-R-good (and
κ-R-good for any κ ≥ θ1) for any Polish relational system R (by
Lemma 3.8).

α ∈ K2: Qα = (B(2ω)/N (2ω))Nα has size <θ2, so it is θ2-R-good for any Polish
relational system R. On the other hand, by Corollary 3.15, Qα is
Lc(ω,H∗)-good.

α ∈ K3: Qα = DNα has size <θ3, so it is θ3-R-good for any Polish relational
system R. On the other hand, Qα is Lc(ω,H∗)-good and Cn-good by
Theorem 3.11 and Corollary 3.13, respectively.

α ∈ K4: Qα = ENα has size <θ4, so it is θ4-R-good for any Polish relational
system R. On the other hand, Qα is Lc(ω,H∗)-good and Cn-good by
Theorem 3.11 and Corollary 3.13, respectively.

In the previous proof, we have that Qα is θ3-⟨ωω,≤∗⟩-good for α ∈ K1∪K2∪
K3. However, although E is ⟨ωω,≤∗⟩-good, there are examples of restrictions
of the form EN for transitive models N of ZFC that are not ⟨ωω,≤∗⟩-good.

11This easily follows from the fact that random forcing is ccc and ωω-bounding.
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Theorem 3.18 (Pawlikowski [47]). There is a proper-ωω-bounding generic
extension W of V in which EV and (B(2ω) ∖ N (2ω))V add dominating reals
over W .

Even more, in the case of random forcing:

Theorem 3.19 (Judah and Shelah [32]). There is a ccc forcing extension W
of V such that (B(2ω) ∖N (2ω))V adds dominating reals over W .

In the next section, we modify the forcing construction of Theorem 2.31 for
α ∈ K4 to guarantee that the set of Cohen reals {c3α : α < λ} added by Cλ

stays θ3-⟨ωω,≤∗⟩-unbounded in the final extension.

4. FS iterations with measures and ultrafilters
on the natural numbers

We show how to modify the iteration in Theorem 2.31 to force, in addition,
b ≤ θ3. We start by introducing the following good property for ⟨ωω,≤∗⟩.

Definition 4.1 ([42, 12]). Let F ⊆ P(ω) be a filter. We assume that all filters
are free, i.e. they contain the Frechet filter Fr := {ω ∖ a : a ∈ [ω]<ℵ0}. A set
a ⊆ ω is F -positive if it intersects every member of F . Denote by F+ the
collection of F -positive sets.

We define the linkedness property ΛF , which we call F -linked : given a poset
P and Q ⊆ P, Q is F -linked if, for any ⟨pn : n < ω⟩ ∈ Qω, there is some q ∈ P
such that

q ⊩ {n < ω : pn ∈ Ġ} ∈ F+, i.e. it intersects every member of F .

Note that, in the case F = Fr, the previous equation is “q ⊩ {n < ω : pn ∈ Ġ}
is infinite”.

We also define Λuf , which we call uf-linked (ultrafilter-linked): Q ∈ Λuf(P)
if Q ∈ ΛF (P) for every (ultra)filter F on ω.

If F ⊆ F ′ are filters on ω, it is clear that Λuf(P) ⊆ ΛF ′(P) ⊆ ΛF (P) ⊆
ΛFr(P). But, for ccc posets:

Lemma 4.2 ([42]). If P is ccc then Λuf(P) = ΛFr(P).

Proof. Assume that F is a filter on ω and that Q ⊆ P is not F -linked in P. We
show that Q is not Fr-linked. Since Q is not F -linked, there is some sequence
⟨pn : n < ω⟩ ∈ Qω such that P forces that ẇ := {n < ω : pn ∈ Ġ} does not
intersect some member of F . Since F is in the ground model, we can find a
maximal antichain A in P deciding a member of F disjoint with ẇ, namely,
there is some h : A→ F such that each p ∈ A forces ẇ ∩ h(p) = ∅.

Since A is countable and p is uncountable, we can find some c ∈ [ω]ℵ0 such
that c ⊆∗ h(p) for all p ∈ A. In detail: if A is finite, let c :=

⋂
p∈A h(p); oth-

erwise, enumerate A = {pn : n < ω} and, by recursion, construct an increasing
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sequence ⟨kn : n < ω⟩ of natural numbers such that kn ∈
⋂

ℓ≤n h(p) for each
n < ω, and set c := {kn : n < ω}.

Thus, each p ∈ A forces ẇ∩ c ⊆∗ ẇ∩h(p) = ∅, i.e. ẇ∩ c is finite. Since A is
a maximal antichain, P forces that ẇ∩c = {n ∈ c : pn ∈ Ġ} is finite. Therefore,
⟨pn : n ∈ c⟩ witnesses that Q is not Fr-linked in P.

Example 4.3.

(1) Any singleton is uf-linked. Hence, any poset P is |P|-uf-linked. In partic-
ular, Cohen forcing is σ-uf-linked.

(2) Random forcing is σ-uf-linked, in fact, any measure algebra is σ-uf-linked.
Indeed, if B is a complete Boolean algebra and µ : B → [0, 1] is a σ-
additive measure such that µ(p) ̸= 0 for all p ̸= 0B, then, for any δ > 0,
Bδ := {p ∈ B : µ(p) ≥ δ} is Fr-linked.

We use the characterization in Lemma 4.4 to show that Bδ is Fr-linked.
Let ṁ be a B-name of a natural number. Then

∑
n<ω µ(∥ṁ = n∥B) = 1,

so there is some m′ < ω such that
∑

n≥m′ µ(∥ṁ = n∥B) < δ. As a
consequence, µ(∥ṁ < m′∥B) > 1 − δ. Since any q ∈ Bδ is compatible
with ∥ṁ < m′∥B, it follows that q does not force m′ ≤ ṁ.

(3) The forcing E (see Definition 2.15) is σ-uf-linked. We show later that this
poset satisfies a stronger property.

The following series of results indicate that ΛFr is good for ⟨ωω,≤∗⟩.

Lemma 4.4. Let P be a poset and Q ⊆ P. Then Q is Fr-linked iff, for any
P-name ṁ for a natural number, there is some m′ ∈ ω (in the ground model)
such that no p ∈ Q forces m′ ≤ ṁ.

Proof. (⇒) [42] Assume that, for any n < ω, there is some pn ∈ Q forcing
n ≤ ṁ. Then, if G is P-generic over V , then {n < ω : pn ∈ G} must be finite
because pn ∈ G⇒ n ≤ ṁ[G] < ω. Therefore, in V , Q cannot be Fr-linked.

(⇐) (with Cardona) Assume that Q is not Fr-linked, so there is some

Ġ
⟨pn : n < ω⟩ ∈ Qω such that ⊩“{n < ω : pn ∈ Ġ } is finite”. S o p ick some 
P-name ṁ of a natural number such that ⊩“{n < ω : pn ∈ } ⊆ ṁ . Note that
pn ⊩ n < ṁ .

Lemma 4.5. Let P be a poset and Q be an Fr-linked subset of P. If ẏ is a
P-name of a member of ωω, then there is some y′ ∈ ωω (in the ground model)
such that, for any x ∈ ωω

x ≰∗ y′ ⇒ ∀ n < ω ∀ p ∈ Q : p ⊮ ∀ k ≥ n : x(k) ≤ ẏ(k).

Proof. Using Lemma 4.4, for each k < ω find y ′(k) <  ω  s uch t hat n o p  ∈  Q 
forces y′(k) ≤ ẏ(k). This defines y ′ ∈ ωω.

Now assume that x ∈ ωω and x ≰∗ y′. Let n < ω and p ∈ Q, so there is some 
k ≥ n such that x(k) > y′(k). On the other hand, p ⊮ y′(k) ≤ ẏ(k), so there is 
some q ≤ p forcing ẏ(k) < y′(k) < x(k), so p ⊮ ∀ k ≥ n : x(k) ≤ ẏ(k).
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Theorem 4.6 ([42]). Any µ-Fr-linked poset is µ+-ωω-good.

This theorem is an easy consequence of Lemma 4.5. However, we do not
know how to modify the construction in Theorem 2.31 to obtain a θ3-ωω-good
iteration. But we have some other way to preserve unbounded families, as in
the following result.

Theorem 4.7 ([12]). Let θ be an uncountable regular cardinal. Then any
θ-Fr-Knaster poset preserves θ-ωω-unbounded families.

Proof. Assume that {xi : i ∈ I} is a θ-ωω-unbounded family, and that there is
some p ∈ P forcing that it is not, i.e. for some P-name ẏ of a member of ωω, p
forces that |{i ∈ I : xi ≤∗ ẏ}| ≥ θ. This implies that the set

I0 := {i ∈ I : ∃ p′ ≤ p : p′ ⊩ xi ≤∗ ẏ}

has size ≥θ. Pick I1 ⊆ I0 of size θ and, for each i ∈ I1, choose pi ≤ p and
ni < ω such that pi ⊩ xi(k) ≤ ẏ(k) for all k ≥ ni. Since cf(θ) > ω, we can find
n < ω and I2 ⊆ I1 of size θ such that ni = n for all i ∈ I2.

Since θ is regular and P is θ-Fr-Knaster, there is some I ′ ⊆ I2 such that the
set Q := {pi : i ∈ I ′} is Fr-linked. Now find y′ ∈ ωω as in Lemma 4.5 for ẏ and
Q. Then, |{i ∈ I : xi ≤∗ y′}| < θ, so there is some i ∈ I ′ such that xi ≰∗ y′.
Hence, by Lemma 4.5, no p ∈ Q forces ∀ k ≥ n : xi(k) ≤ ẏ(k). But pi forces
this, a contradiction.

Because of the previous theorem, the plan now is to modify the construction
of Theorem 2.31 to obtain a θ3-Fr-Knaster poset. To achieve this, we strengthen
ultrafilter-linkedness as follows.

Definition 4.8 (cf. [24]). Given a (non-principal) ultrafilter D on ω, define
the linkedness property Λlim

D , called D-lim-linked : Q ∈ Λlim
D (P) if there are a

P-name Ḋ′ of an ultrafilter on ω extending D and a map limD : Qω → P such
that, whenever p̄ = ⟨pn : n < ω⟩ ∈ Qω,

limD p̄ ⊩ {n < ω : pn ∈ Ġ} ∈ Ḋ′.

Define the linkedness property Λlim
uf , called uf-lim-linked, by Q ∈ Λlim

uf (P) iff
Q ∈ Λlim

D (P) for any ultrafilter D on ω.
In addition, for an infinite cardinal µ, we say that a poset P is uniformly

µ-D-lim-linked if if is µ-Λlim
D -linked witnessed by some ⟨Qα : α < µ⟩, but the

Ḋ′ above can be the same for any Qα. And we say that P is uniformly µ-uf-
lim-linked if there is some ⟨Qα : α < µ⟩ witnessing that P is uniformly µ-D-
lim-linked for any ultrafilter D on ω.

Example 4.9. Any singleton is uf-lim-linked. As a consequence, any poset
P is uniformly |P|-uf-lim-linked, witnessed by its singletons: for p ∈ P , let
Qp := {p}, and limD on Qp is just the constant map with value p, when D is

an ultrafilter on ω. Since limD p̄ ⊩ {n < ω : pn ∈ Ġ} = ω for all p̄ ∈ Qω
p , Ḋ′

can be any P-name of an ultrafilter extending D.
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Theorem 4.10 ([24, 12]). E is uniformly σ-uf-lim-linked.

Proof. We only indicate the components and the limit functions. For s ∈ ω<ω

and m ∈ ω, consider the set Es,m of conditions in E of the form (s, φ) with
φ ∈ S(ω,m). If D is an ultrafilter on ω and p̄ = ⟨pn : n < ω⟩ ∈ Eω

s,m,

pn = (s, φn), define limD p̄ := (s, φ) where

k ∈ φ(i) iff {n < ω : k ∈ φn(i)} ∈ D.

It is clear that (s, φ) ∈ Es,m.
The sequence ⟨Es,m : s ∈ ω<ω, m < ω⟩ witnesses that E is uniformly σ-D-

lim-linked for any ultrafilter D on ω. This is proved by showing that, whenever
G is P-generic over V , the set

D ∪
⋃
s,m

{
{n < ω : pn ∈ G} : p̄ ∈ Eω

s,m ∩ V, limD p̄ ∈ G
}

has the finite intersection property.

Based on [24, 50], we present a framework to construct FS iterations that
allow ultrafilter limits. The candidates for such iterations can be presented in
a more general fashion. For an infinite cardinal θ, denote

θ− =

{
θ0 if θ = θ+0 for some cardinal θ0,
θ if θ is not a successor cardinal.

Definition 4.11. Let θ be an uncountable cardinal. A θ-Γ-iteration is a FS
iteration ⟨Pα,P−

α , Q̇ξ : α ≤ π, ξ < π⟩ satisfying:

(i) P−
ξ ⊂· Pξ for all ξ < π, and

(ii) P−
ξ forces that Q̇ξ is µξ-Γ-linked witnessed by a sequence of P−

ξ -names

⟨Q̇ξ,ζ : ζ < µξ⟩, where µξ < θ (known from the ground model).

Associated with this iteration, we define the following notions.

(1) A function h : dh → θ− with π ⊆ dh is usually called a guardrail for the
iteration.12

(2) For α ≤ π and h as above, let Ph
α be the set of conditions p ∈ Pα following

h, i.e. for ξ ∈ dom p, h(ξ) < µξ, p(ξ) is a P−
ξ -name and ⊩P−

ξ
p(ξ) ∈ Q̇ξ,h(ξ).

A guardrail h can have coordinates ξ satisfying h(ξ) ≥ µξ. Although
they are not interesting, allowing them considerably simplifies writing
the details of the construction of a θ-Γ-iteration.

(3) P∗
α :=

⋃
h∈θ−π Ph

α.

12The assumption π ⊆ dh is for practicality, e.g. to have that it is still a guardrail of the
iteration up to some ξ < π.
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(4) Let L be a linear order and ⟨pℓ : ℓ ∈ L⟩ a sequence of conditions in Pπ.
We say that ⟨pℓ : ℓ ∈ L⟩ is a uniform ∆-system if it satisfies the following:

(i) All dom pℓ (ℓ ∈ L) have the same size n: dom pℓ = {αℓ,k : k < n}
(increasing enumeration).

(ii) There is some v ⊆ n such that, for each k ∈ v, the sequence ⟨αℓ,k : ℓ ∈
L⟩ is constant with value α∗,k.

(iii) ⟨dom pℓ : ℓ ∈ L⟩ forms a ∆-system with root {α∗,k : k ∈ v}.

(iv) For k ∈ n∖ v, the sequence ⟨αℓ,k : ℓ ∈ L⟩ is increasing.

(v) There is some guardrail h such that {pℓ : ℓ ∈ L} ⊆ Ph
π.

By recursion on α ≤ π, we can show:

Fact 4.12. For any θ-Γ-iteration as in Definition 4.11, P∗
α is dense in Pα.

We focus on the case Γ = Λlim
uf . We plan to construct a θ-Λlim

uf -iteration
which is θ-Fr-Knaster (in our case, θ = θ3).

Lemma 4.13. For a θ-ΛFr-iteration as in Definition 4.11: Let H be a set of
guardrails, θ′ ≥ θ regular, and assume:

(i) Any countable partial function from π into θ− can be extended by some
h ∈ H.

(ii) If h ∈ H and p̄ = ⟨pn : n < ω⟩ ⊆ Ph
π forms a uniform ∆-system, then

there is some q ∈ Pπ forcing that {n < ω : pn ∈ Ġ} is infinite.

Then Pπ is θ′-Fr-Knaster.

Proof. Let A ⊆ Pπ have size θ′. Since θ′ is regular uncountable, we can
find an uniform ∆-system B ⊆ A of size θ′. Condition (ii) implies that B is
Fr-linked.

The q in (ii) is found as an ultrafilter limit similar to Definition 4.8, so this
requires to construct ultrafilters along the iteration. For the successor step, the
following lemma is useful.

N

MQ

NQD ∈

D− ∈ M ∋ D+ 

Figure 8: The situation in Lemma 4.14
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Lemma 4.14 ([12, Lem. 3.20]). Let M ⊆ N be transitive models of ZFC and
Q ∈M be a poset. Assume that M |=“D− is an ultrafilter on ω”, M |=“Ḋ+ is
a Q-name of an ultrafilter on ω extending D−”, and N |=“D is an ultrafilter on
ω extending D−”. Then, in N , Q forces that D∪Ḋ+ has the finite intersection
property, i.e. it can be extended to an ultrafilter (see Figure 8).

Definition 4.15. A θ-Λlim
uf -iteration as in Definition 4.11 has ultrafilter limits

for H when:

(i) H is a set of guardrails,

(ii) for h ∈ H, ⟨Ḋh
ξ : ξ ≤ π⟩ is a sequence such that Ḋh

ξ is a Pξ name of a
non-principal ultrafilter on ω,

(iii) if ξ < η ≤ π then ⊩Pη Ḋ
h
ξ ⊆ Ḋh

η ,

(iv) Pξ forces that Ḋh
ξ ∩ V P−

ξ ∈ V P−
ξ ,

and whenever h ∈ H, ⟨ξn : n < ω⟩ ⊆ π and ⊩P−
ξn

q̇n ∈ Q̇ξn,h(ξn):

(v) if ⟨ξn : n < ω⟩ is constant with value ξ then

⊩Pξ
lim

Ḋh
ξ

n q̇n ⊩Q̇ξ
{n < ω : q̇n ∈ Ġ(ξ)} ∈ Ḋh

ξ+1,

(vi) and if ⟨ξn : n < ω⟩ is increasing, then

⊩Pπ
{n < ω : q̇n ∈ Ġ(ξn)} ∈ Ḋh

π

Lemma 4.16. Any iteration as in Definition 4.15 satisfies (ii) of Lemma 4.13
for H.

Proof. Let ⟨pn : n < ω⟩ be an uniform ∆-system in Ph
π. Let ∆ be the root of

the ∆-system and define q ∈ Pπ with dom q := ∆ such that q(ξ) is a P−
ξ -name

of lim
Ḋh

ξ
n pn(ξ) for ξ ∈ ∆. Then q forces that {n < ω : pn ∈ Ġπ} ∈ Ḋh

π.

To obtain (i) of Definition 4.15 we could basically use H = θ−
π
. However,

there are steps ξ < π of the iteration where we want P−
ξ to be quite small,

so to guarantee (iv) of Definition 4 .15 w e n eed t hat H  i s a lso s mall. T his is
guaranteed by the following result.

Theorem 4.17 ([21, 48]). Let ν, κ be infinite cardinals a nd L  be a  s et such
that ν ≤ κ ≤ |L| ≤ 2κ. Then there exists an H ⊆ Lκ such that |H| ≤ κ<ν , and 
any partial function from L into κ with domain of size <ν can be extended by
a function in H.

The following two theorems indicate how to construct iterations as in Def-
inition 4.15.
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Theorem 4.18. Let Pπ+1 be a θ-Λlim
uf -iteration of length π+ 1 and H be a set

of guardrails such that, up to π, it has ultrafilter limits for H.
Assume that P−

π ⊂· Pπ and Pπ forces Ḋh
π ∩ V P−

π ∈ V P−
π . Then, for each

h ∈ H, we can find a Pπ+1-name Ḋh
π+1 of an ultrafilter extending Ḋh

π, which
together make Pπ+1 have ultrafilter limits for H.

Proof. Direct application of Lemma 4.14 to M = V [G ∩ P−
π ] and N = V [G],

where G is Pπ-generic over V .

Theorem 4.19. Assume that π is a limit ordinal and Pπ is a θ-Λlim
uf -iteration

of length π. Further assume that h is a guardrail and ⟨Ḋh
ξ : ξ < π⟩ is a sequence

witnessing that, for any ξ < π, Pξ is an iteration with uf-limits for h.

If, for any ξ < π, P−
ξ forces that Q̇ξ,h(ξ) is centered, then we can find a Ḋh

π

that makes Pπ have uf-limits for h.

Proof. Let E be the collection of sequences τ = ⟨(ξn, q̇n) : n < ω⟩ such that
⟨ξn : n < ω⟩ is an increasing sequence of ordinals with limit π and ⊩ξn q̇n ∈
Q̇ξn,h(ξn) for all n < ω. For such a τ , let ḋτ be a Pπ-name of the set {n <

ω : q̇n ∈ Ġ(ξn)}. It is enough to show that Pπ forces that
⋃

ξ<π Ḋ
h
ξ∪{ḋτ : τ ∈ E}

has the finite intersection property.
Fix p ∈ Pπ, a Pπ-name ḋ of a member of

⋃
ξ<π Ḋ

h
ξ , i∗ < ω and, for each i <

i∗, τ i = ⟨(ξin, q̇in) : n < ω⟩ ∈ E. Denote ḋi := ḋτ i . Without loss of generality,
by strengthening p if necessary, we may assume that, for some α < π, ḋ is a Pα-
name of a member of Ḋh

α. We can also increase α and say that p ∈ Pα. Since Ḋh
α

is forced non–principal, p forces in Pα that ḋ ∩
⋂

i<i∗{n < ω : ξin ≥ α} ∈ Ḋh
α,

so there are p′ ≤ p in Pα and k < ω such that ξik ≥ α for all i < i∗ and

p′ ⊩α k ∈ ḋ. To conclude the proof, it is enough to find some q ≤ p′ in Pπ such
that q ⊩ q̇ik ∈ Ġ(ξik) for all i < i∗.

Let L := {ξj : j < m} be the increasing enumeration of {ξik : i < i∗}. For

j < m, let Ij := {i < i∗ : ξik = ξj}. Since Pξj forces that Q̇ξj ,h(ξj) is centered,

there is some condition in Q̇ξj stronger than q̇ik for all i ∈ Ij . This allows to
define q ∈ Pπ with dom q = dom p′ ∪ L such that q(ξ) := p′(ξ) for ξ ∈ dom p′

and, for j < m and i ∈ Ij , ⊩ξj q(ξj) ≤ q̇ik. It is clear that q is as required.

We are now ready to present the main forcing construction of this section.

Theorem 4.20 (cf. [24, 25]). Let ℵ1 ≤ θ1 ≤ θ2 ≤ θ3 ≤ θ4 be regular cardinals,
and assume λ is a cardinal such that λ = λℵ0 and cf([λ]<θi) = λ for i = 1, . . . , 4.
Further assume that one of the following holds:

(i) θ3 = θ4.

(ii) θ−3 < θ4, θ
ℵ0 < θ4 for every cardinal θ < θ4, and λ ≤ 2κ for some cardinal

κ < θ4.

Then, we can construct a FS iteration of length (and size) λ of ccc posets
forcing add(N ) = θ1, cov(N ) = θ2, b = θ3, non(E) = non(M) = θ4 and
cov(M) = c = λ (see Figure 6).
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Proof. In case (i) the result follows directly from Theorem 2.31, so we focus
on the assumptions of case (ii), in which we can further assume that κ ≥ θ−3 .
We proceed exactly as in the proof of Theorem 2.31 to construct a FS iteration
of length π := λ+ λ, using Cohen forcing at the first λ stages, but we modify
the construction for α ∈ K4, the steps where we increase non(M) (and even
non(E)) using E, to obtain a θ3-Λlim

uf -iteration with ultrafilter limits on some
H of size <θ4. We aim to apply Lemma 4.13 and 4.16 to conclude that the
iteration is θ3-Fr-Knaster, hence ensuring, by Theorem 4.7, that the first λ-
many Cohen reals added in the iteration form a θ3-ωω-unbounded family in
the final extension, so the remaining b ≤ θ3 will be forced.

Using that θ−3 ≤ κ < θ4 and λ ≤ 2κ, by Theorem 4.17 we can find H0 ⊆ κπ

of size ≤κℵ0 < θ4 (by (ii)) such that any countable partial function from π into
κ can be extended by a function in H0. For any g ∈ κπ define g′ ∈ θ−3

π
by

g′(ξ) := g(ξ) if g(ξ) < θ−3 , and g′(ξ) := 0 otherwise. Then H := {g′ : g ∈ H0} ⊆
θ−3

π
has size <θ4 and any countable partial function from π into θ−3 can be

extended by a function in H. This guarantees requirement (i) of Lemma 4.13.
To construct the iteration, proceed by recursion, starting with an ultrafilter

Dh
0 on ω for h ∈ H. In the successor step ξ → ξ+1, we do some work in the case

ξ = λ+ α with α ∈ K4 because in other cases we proceed as in Theorem 2.31
and just pick µξ < θ3 such that ⊩Pξ

Q̇ξ = {q̇ξζ : ζ < µξ}, so we let P−
ξ := Pξ and

Q̇ξ,ζ be a Pξ-name of {q̇ξζ}, so any Pξ+1-name Ḋh
ξ+1 of an ultrafilter extending

Ḋh
ξ is suitable.

Using the book-keeping for K4, in stage ξ = λ+α we have picked some Pξ-

name Ḟα of a subset of ωω of size <θ4, and aim to add an eventually different
real over Ḟα in the following step by using a restriction of E. Since Pξ has the

ccc, we can find some να < θ4 such that Ḟα is represented by {ẋα,i : i < να}.
Using the assumption (ii), for large enough χ we can find M ≺ Hχ of size <θ4,

closed under countable sequences, such that Pξ and each ẋα,i (i < να) and Ḋh
ξ

(h ∈ H) are in M . Consider P−
ξ := Pξ ∩M , which is a complete suborder of

Pξ because the latter has the ccc and M is closed under countable sequences.

Then, we force with Q̇ξ := EV
P−
ξ

to advance to the next stage. Note that this
is a P−

ξ -name (for E). Enumerate ω<ω×ω = {(sk,mk) : k < ω} and let µξ := ω

and Q̇ξ,k be a P−
ξ -name of Esk,mk

for k < ω.

By the construction of P−
ξ , for any h ∈ H we can find a P−

ξ -name Ḋh,−
ξ of

Ḋh
ξ ∩ V P−

ξ (which exists because M is countably closed). Then, Theorem 4.18
applies.

Limit steps are guaranteed by Theorem 4.19, since all the components Q̇ 
ξ,ζ 

are centered.

Notice that the condition “2κ ≥ λ for some κ < θ4” in (ii) of Theorem 4.20 is 
incompatible with GCH in general, which would be a problem for applying the
methods to force Cichoń’s maximum in the following sections. This requirement
can be weakened to a condition compatible with GCH, as below. Recall the
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poset Fn<κ(I,B) of partial functions from I into B of size <κ, ordered by ⊇.

Theorem 4.21 ([25]). The conclusion of Theorem 4.20 is valid for the case:

(ii’) θ−3 < θ4, θ
ℵ0 < θ4 for every cardinal θ < θ4, and κ<κ = κ for some

uncountable cardinal κ < θ4.

Proof. Let V ′ be a generic extension of Fn<κ(λ, κ). Notice that 2κ ≥ λ holds
in V ′, and that the assumptions of this theorem are preserved. Then, the
construction of Theorem 4.20 can be executed in V ′. However, it is possible to
construct the iteration P = Pλ+λ in V even though the set of guardrails and
the sequences of (names of) ultrafilters live in V ′. The book-keeping can be
executed in V , and the strong unbounded families live in V P, so V P forces the
desired conclusion.

Remark 4.22. Theorem 4.20 has been improved in [12] without need of the
requirements (i) and (ii), even obtaining a model where θ4 ≤ cov(M) = θ5 ≤
d = non(N ) = c for a given regular θ5. The construction comes from a two-
dimensional iteration with ultrafilters.

A method preceding ultrafilter-limits, which is more powerful, is the method
of iterations with finitely additive measures (fams). Shelah [49] introduced this
method for random forcing to prove the consistency of ZFC with cf(cov(N )) =
ω, and it was formalized in [37] with applications in Cichoń’s diagram. Recently,
Andrés Uribe-Zapata [50] formalized the general framework of iterations with
fam-limits, which was further refined with Cardona and the author in [18].

Definition 4.23. Let P be a poset.

(1) Let Ξ: P(ω) → [0, 1] be a fam (with Ξ(ω) = 1 and Ξ({n}) = 0 for all
n < ω), I = ⟨In : n < ω⟩ be a partition of ω into finite sets, and ε > 0.

A set Q ⊆ P is (Ξ, I, ε)-linked if there is a function lim: Qω → P and a
P-name Ξ̇′ of a fam on P(ω) extending Ξ such that, for any p̄ = ⟨pℓ : ℓ <
ω⟩ ∈ Qω,

lim p̄ ⊩
∫
ω

|{ℓ ∈ Ik : pℓ ∈ Ġ}|
|Ik|

dΞ̇′ ≥ 1 − ε.

(2) The poset P is µ-FAM-linked, witnessed by ⟨Qα,ε : α < µ, ε ∈ (0, 1)∩Q⟩,
if:

(i) Each Qα,ε is (Ξ, I, ε)-linked for any Ξ and I.

(ii) For ε ∈ (0, 1) ∩Q,
⋃

α<ω Qα,ε is dense in P.

(3) The poset P is uniformly µ-FAM-linked if there is some ⟨Qα,ε : α < µ, ε ∈
(0, 1)∩Q⟩ as above, such that in (1) the name Ξ̇′ only depends on Ξ (and
not on any Qα,ε).

Example 4.24. The following are examples of the previous notions.
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(1) Any singleton is (Ξ, I, ε)-linked. Hence, any poset P is uniformly |P|-
FAM-linked. In particular, Cohen forcing is uniformly σ-FAM-linked.

(2) Shelah [49] proved, implicitly, that random forcing is uniformly σ-FAM-
linked. More generally, any measure algebra with Maharam type µ is
uniformly µ-FAM-linked [44].

(3) The creature ccc forcing from [30] adding eventually different reals is
(uniformly) σ-FAM-linked. This is proved in [37] and also in [43] in a
more general setting.

Iterations with fam limits can be constructed as in Definition 4.15. For all
the details, see [50, 18]. These can be used to prove:

Theorem 4.25 ([37]). Let ℵ1 ≤ θ1 ≤ θ2 ≤ θ3 ≤ θ4 be regular cardinals, and
assume λ is a cardinal such that λ = λℵ0 and cf([λ]<θi) = λ for i = 1, . . . , 4.
Further assume that one of the following holds:

(i) θ2 = θ3.

(ii) θ−2 < θ3, θ
ℵ0 < θi for every cardinal θ < θi and i ∈ {3, 4}, and κ = κ<κ

for some uncountable cardinal κ < θ3.

Then, we can construct a FS iteration of length (and size) λ of ccc posets
forcing add(N ) = θ1, b = θ2, cov(N ) = θ3, non(E) = non(M) = θ4 and
cov(M) = c = λ (see Figure 9).

ℵ1 add(N )

cov(N )

cov(E)

b

non(M)

non(E)

d

cov(M)

non(N )

cof(N ) c

θ1

θ3

θ2

θ4

λ

Figure 9: The constellation of Cichoń’s diagram forced in Theorem 4.25.

Remark 4.26. Several extensions of Theorem 4.21 and Theorem 4.25 (and
Cichoń’s Maximum) have been obtained by separating more cardinals simulta-
neously, like m, p, h, s and r [26, 27, 29]. Very recently, Yamazoe [52] developed
iterations with closed ultrafilter limits to separate e (and its dual) in additon.
He defines the linkedness notion Λlim

cD and Λlim
cuf as a variation of Definition 4.8
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where limD : Qω → Q (i.e., Q is closed under the ultrafilter limit), modifies the
iteration theory with ultrafilters for closed-ultrafilter limits (i.e. Definition 4.15
for Λlim

cuf), and proves that closed-ultrafilter limits help control e.
Preceding Yamazoe’s work, the author with Goldstern, Kellner and She-

lah [38] claimed the same result, using that fam-limits help to control e (and
its dual). For their forcing iteration costruction, they claimed that ultrafilter-
limits at limit steps (of countable cofinality) of the iteration can be obtained
by weaking the “centered” requirement for Q̇ξ,h(ξ) in Theorem 4.19. However,
this way to proceed is still unclear, which represents a hole in their argument.

As a follow up, the author with Cardona [16, 18] proved that fam-limits
help to control non(E) and cov(E).

5. Boolean ultrapowers

Goldstern, Kellner and Shelah [25] proved that applying Boolean ultrapowers to
the model from Theorem 4.21 yields a ccc poset that forces Cichoń’s maximum.

The effect of Boolean ultrapowers to Tukey connections between relational
systems is very relevant to this work. Indeed, we see how the main theorems
proved in the previous sections can be reformulated in terms of Tukey connec-
tions. First notice:

Lemma 5.1. Let K be a relational system, κ be an uncountable regular cardinal
and let P be a κ-cc poset.

(a) If κ ≤ b(K)V then P forces b(K) = b(K)V .

(b) If κ ≤ d(K)V then P forces d(K) = d(K)V .

(c) If κ ≤ θ ≤ λ are cardinals, then P forces [λ]<θ ∼=T [λ]<θ ∩ V and
C[λ]<θ

∼=T C[λ]<θ∩V .

Due to (c), since we mainly work with ccc forcing extensions, we can use
[λ]<θ with θ uncountable without specifying the model we are looking at.

Lemma 5.2 ([19, Fact 3.8]). Let θ ≤ λ be infinite cardinals. Then C[λ]<θ
∼=T

[λ]<θ iff θ is regular and cof([λ]<θ) = λ.

Lemma 5.3. For any relational system R = ⟨X, Y, <⟩, if b(R) exists, then
R ⪯T C[X]<b(R) .

Proof. Use the maps x 7→ x and B ∈ [X]<b(R) 7→ yB where yB is an upper 
bound of B.

Also recall from Lemma 3.2 that C[I]<θ ⪯T R iff there is some θ-R-unbound-
ed family indexed by I. As a consequence, we can reformulate Theorem 4.21:

Theorem 5.4. Let ℵ1 ≤ θ1 ≤ θ2 ≤ θ3 ≤ θ4 be regular cardinals, and assume
λ is a cardinal such that λ = λℵ0 and cf([λ]<θi ) = λ for i = 1, . . . , 4. Further 
assume that one of the following holds:
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(i) θ3 = θ4.

(ii) θ−3 < θ4, θ
ℵ0 < θ4 for every cardinal θ < θ4, and κ = κ<κ for some

uncountable cardinal κ < θ4.

Then, we can construct a FS iteration of length (and size) λ of ccc posets forcing
c = λ, N ∼=T C[λ]<θ1 , C

⊥
N

∼=T C[λ]<θ2 , ω
ω ∼=T C[λ]<θ3 and CM ∼=T CE ∼=T

C[λ]<θ4 and, for i = 1, . . . , 4, C[λ]<θi
∼=T C[λ]<θi∩V

∼=T [λ]<θi ∩ V ∼=T [λ]<θi .

Tukey connections have certain types of witnesses as follows.

Lemma 5.5. Let R = ⟨X,Y,<⟩ and K = ⟨A,B,�⟩ be relational systems.
Then:

(a) R ⪯T K iff there is some ⟨yb : b ∈ B⟩ ⊆ Y satisfying:

∀x ∈ X ∃ a ∈ A∀ b ∈ B : a � b⇒ x < yb.

(b) K ⪯T R iff there is some ⟨xa : a ∈ A⟩ ⊆ X satisfying:

∀ y ∈ Y ∃ b ∈ B ∀ a ∈ A : a ̸� b⇒ xa ̸< y.

In the context of the previous lemma, the role of K is a constant relational
system which is not interpreted (in principle) in forcing generic extensions, i.e.
we keep its meaning with respect to V . On the other hand, R is interpreted
according to its definition.

Elementary embeddings modify Tukey connections as follows. Recall that
a model M is <κ-closed if it is closed under sequences of length <κ.

Lemma 5.6. Let θ be an uncountable regular cardinal and P a θ-cc poset.
Let M ⊆ V be a <θ+-closed transitive model, j : V → M an elementary em-
bedding with critical point >θ, R = ⟨X,Y,<⟩ a relational system of the reals
(Definition 2.1) and let K = ⟨A,B,�⟩ be a relational system. Then:

(a) j(P) has the θ-cc and P ⊂· j(P).

(b) If ⊩P R ⪯T K is witnessed by ȳ = ⟨ẏb : b ∈ B⟩, then ⊩j(P),V R ⪯T j(K)
is witnessed by j(ȳ) = ⟨ẏ∗b′ : b′ ∈ j(B)⟩.

(c) If ⊩P K ⪯T R is witnessed by x̄ = ⟨ẋa : a ∈ A⟩, then ⊩j(P),V j(K) ⪯T R
is witnessed by j(x̄) = ⟨ẋ∗a′ : a′ ∈ j(A)⟩.

Proof. (a): If C ⊆ j(P) has size θ, then C ∈ M because M is <θ+-closed. 
Then, M |=“C ⊆ j(P)”. On the other hand, since j : V → M is an elementary 
embedding and θ is smaller than its critical point, M |=“j(P) has the θ-cc”, so 
C is not an antichain in j(P) (both in M and in V ). A similar argument shows 
that P ⊂· j(P).

(b): Let ẋ be a (nice) j(P)-name of a real in X. By (a), ẋ ∈ M . On the other 
hand, by elementarity, in M we have that R ⪯T J(K) is witnessed by j(ȳ),
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so ∃ a′ ∈ j(A) ∀ b′ ∈ j(B) : a′ j(�) b′ ⇒ ẋ < ẏ∗b′ . The same holds in V by
absoluteness, which concludes the proof.

(c) follows by (b) applied to R⊥ and K⊥.

Given the previous result, we plan to apply elementary embeddings to the
poset of Theorem 5.4 to obtain a forcing that modifies Tukey equivalences in
such a way that Cichoń’s maximum is forced.

The elementary embeddings come from Boolean ultrapowers. Let κ be a
strongly compact cardinal and B a <κ-distributive κ+-cc complete Boolean
algebra containing an antichain of size κ. Let V B

− be the class of nice B-names
of members of the ground model V , i.e. they are coded by a function h : A→ V
with domain a maximal antichain A in B. Given a κ-complete ultrafilter D on
B, define the following relations on V B

− :

σ =D τ iff ∥σ = τ∥ ∈ D,

σ ∈D τ iff ∥σ ∈ τ∥ ∈ D.

It is easy to show that =D is an equivalence relation on V B
− , which defines the

Boolean ultrapower BUP(B, D) := V B
−/=D. The relation obtained from ∈D

makes BUP(B, D) a well-founded model of ZFC, and ι : V → BUP(B, D) is an
elementary embedding, where ι(x) is the equivalence class of x̌ = {(y̌, 1B) : y ∈
x}. Let c : BUP(B, D) → M be the Mostowski collapse of BUP(B, D). Then,
j := c ◦ ι : V → M is an elementary embedding. The class M is a <κ-closed
(even <κ+-closed) transitive model of ZFC. Details can be found in [36].

Lemma 5.7 (cf. [36]). Let κ be a strongly compact cardinal and λ ≥ κ a cardi-
nal such that λκ = λ. Then, there is a κ-complete ultrafilter on the completion
of Fn<κ(λ, κ) such that its corresponding elementary embedding j : V → M
satisfies:

(a) M is <κ-closed (and even <κ+-closed).

(b) The critical point of j is κ.

(c) If |a| < κ then j(a) = j[a].

(d) If λ′ ≥ κ then max{λ, λ′} ≤ |j(λ′)| ≤ max{λ, λ′}κ.

(e) If S is a directed preorder and b(S) > κ, then j[S] is cofinal in j(S). In
particular, S ∼=T j(S).

Corollary 5.8. Under the framework of Lemma 5.7: if θ ≤ λ are infinite
cardinals, then:

(a) If θ < κ then j([λ]<θ) = [j(λ)]<θ.

(b) If cf(θ) > κ then j([λ]<θ) ∼=T [λ]<θ.
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We have developed enough material to prove Cichoń’s maximum, first by
using large cardinals.

Theorem 5.9. Assume that ℵ1 < κ0 < θ1 < κ1 < θ2 < κ2 < θ3 < κ3 < θ4 ≤
λ4 ≤ λ3 ≤ λ2 ≤ λ1 ≤ λ0 such that each θi is regular, cf([λ4]<θi) = λ4 = λℵ0

4 ,
condition (ii) of Theorem 5.4 holds, κℓ is strongly compact and λκℓ

ℓ = λℓ for
ℓ ≤ 3. Then there is a ccc poset of size λ0 forcing c = λ0, N ∼=T C[λ1]<θ1 ,

C⊥
N

∼=T C[λ2]<θ2 , ω
ω ∼=T C[λ3]<θ3 and CM ∼=T CE ∼=T C[λ4]<θ4 . In particular

(see Figure 10),

ℵ1 < add(N ) = θ1 < cov(N ) = θ2 < b = θ3 < non(E) = non(M) = θ4

≤ cov(M) = cov(E) = λ4 ≤ d = λ3 ≤ non(N ) = λ2 ≤ cof(N ) = λ1

≤ c = λ0.

ℵ1 add(N )

cov(N )

cov(E)

b

non(M)

non(E)

d

cov(M)

non(N )

cof(N ) c

θ1

θ2

θ3

θ4

λ4

λ3

λ2

λ1
λ0

∼

∼=

Figure 10: The constellation of Cichoń’s maximum forced in Theorem 5.9.

The previous theorem is originally from [25] under the restriction that all
λi are regular. In joint work of the author with Goldstern, Kellner, and Shelah,
we discovered Lemma 5.6 and realized that all λi are allowed to be singular.

Proof. Let P4 be the ccc poset obtained in Theorem 5.4 for λ = λ4. For each 
ℓ ≤ 3 let jℓ : V → Mℓ be an elementary embedding as in Lemma 5.7 for κ = κℓ
and λ = λℓ, and define P ℓ := jℓ(Pℓ+1) (by r ecursion). By using Lemma 5.6 and 
Corollary 5.8, we show that Pℓ forces the Tukey-equivalences and the value of 
c as illustrated in Table 1. In particular, P0 is the desired ccc poset.

By Theorem 5.4, P4 forces the Tukey-equivalences and c = λ4 as illustrated 
in Table 1. Then, by Lemma 5.6, P3 = j3(P4) has the ccc and it forces Tukey-
equivalences with j3([λ4]<θi ) for 1 ≤ i ≤ 4. Since θ4 > κ3, by Corollary 5.8 (b), 
j3([λ4]<θ4 ) =T [λ4]<θ4 ; and for 1 ≤ i ≤ 3, since θi < κ3, by Corollary 5.8 (a), 
j3([λ4]<θi ) = [j3(λ4)]<θi . On the other hand, by Lemma 5.7, |j3(λ4)| = λ3

κ3 = 
λ3, so j3([λ4]<θi ) T [λ3]<θi . Finally, by elementarity, in M3, P3 forces c = 
|j3(λ4)| = λ3, which is also forced in V because j3(P3) has the ccc and M3 is 
countably closed (so any P3-name of a real is in M3).
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Similarly, by using the elementary embedding j2, P2 = j2(P3) has the ccc,
j2([λi]

<θi) ∼=T [λi]
<θi for i = 3, 4, j2([λ3]<θi) = [j2(λ3)]<θi ∼=T [λ2]<θi for

i = 1, 2, and P2 forces c = j2(λ3) = λ2. Proceeding in the same way using j1
and j0, we can check the remaining information collected in Table 1.

P4 P3 P2 P1 P0

CM, CE [λ4]<θ4 [λ4]<θ4 [λ4]<θ4 [λ4]<θ4 [λ4]<θ4

ωω [λ4]<θ3 [λ3]<θ3 [λ3]<θ3 [λ3]<θ3 [λ3]<θ3

C⊥
N [λ4]<θ2 [λ3]<θ2 [λ2]<θ2 [λ2]<θ2 [λ2]<θ2

N [λ4]<θ1 [λ3]<θ1 [λ2]<θ1 [λ1]<θ1 [λ1]<θ1

c λ4 λ3 λ2 λ1 λ0

Table 1: This table illustrates that the forcing on the top forces a Tukey-
equivalence with the relational systems in the first column for the first four
rows, and the value it forces to the continuum in the last row.

In the same way, we can apply Boolean ultrapowers to the construction of
Theorem 4.25 to force an alternative order of Cichoń’s maximum. The result is
originally from [37] for λi regular, but our methods allow them to be singular.

ℵ1 add(N )

cov(N )

cov(E)

b

non(M)

non(E)

d

cov(M)

non(N )

cof(N ) c

θ1

θ3

θ2

θ4

λ4

λ2

λ3

λ1
λ0

Figure 11: The constellation of Cichoń’s maximum forced in Theorem 5.10.

Theorem 5.10. Assume that ℵ1 < κ0 < θ1 < κ1 < θ2 < κ2 < θ3 < κ3 <
θ4 ≤ λ4 ≤ λ3 ≤ λ2 ≤ λ1 ≤ λ0 such that each θi is regular, cf([λ4]<θi) = λ4,
condition (ii) of Theorem 4.25 holds, κℓ is strongly compact and λκℓ

ℓ = λℓ for
ℓ ≤ 3. Then there is a ccc poset of size λ0 forcing c = λ0, N ∼=T C[λ1]<θ1 ,

ωω ∼=T C[λ2]<θ2 , C
⊥
N

∼=T C[λ3]<θ3 and CM ∼=T CE ∼=T C[λ4]<θ4 . In particular
(see Figure 11),

ℵ1 < add(N ) = θ1 < b = θ2 < cov(N ) = θ3 < non(E) = non(M) = θ4

≤ cov(M) = cov(E) = λ4 ≤ non(N ) = λ3 ≤ d = λ2 ≤ cof(N ) = λ1

≤ c = λ0.
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There are four possible constellations of Cichoń’s maximum with non(M) <
cov(M). We have proved two of them, but the consistency of each of the other
two is not known.

Question 5.11. Is each of the constellations in Figure 12 and Figure 13 con-
sistent with ZFC (even under large cardinals)?

ℵ1 add(N )

cov(N )

cov(E)

b

non(M)

non(E)

d

cov(M)

non(N )

cof(N ) c

θ1

θ2

θ3

θ4

λ4

λ2

λ3

λ1
λ0

Figure 12: Cichoń’s maximum’s constellation like in Theorem 5.9, but with the
values of d and non(N ) interchanged.

ℵ1 add(N )

cov(N )

cov(E)

b

non(M)

non(E)

d

cov(M)

non(N )

cof(N ) c

θ1

θ3

θ2

θ4

λ4

λ3

λ2

λ1
λ0

Figure 13: Cichoń’s maximum’s constellation like in Theorem 5.10, but with
the values of d and non(N ) interchanged.

On the other hand, no instance of Cichoń’s maximum with cov(M) <
non(M) is known to be consistent with ZFC.

Question 5.12. Is Cichoń’s maximum with cov(M) < non(M) consistent
with ZFC (even under large cardinals)?

To finish t he p aper, w e b riefly me ntion so me fa cts ar ound th e me thod of
intersection with submodels, originally from [28], which is used to prove the
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consistency of Cichoń’s maximum without using large cardinals. We only do a
very brief presentation for comparison with the method of Boolean ultrapowers,
but we recommend the reader to check and learn the details from [14, Sec. 4
& 5].

From now on, we fix:

(F1) an uncountable regular cardinal κ, a κ-cc poset P;

(F2) a definable relational system R = ⟨X,Y,<⟩ of the reals; and

(F3) a large enough regular cardinal χ such that P ∈ Hχ, and Hχ contains all
the parameters defining R.

When intersecting a κ-cc poset with a <κ-closed model, we obtain a com-
pletely embedded subforcing.

Lemma 5.13. If N ⪯ Hχ is <κ-closed and P ∈ N , then P ∩N ⊂· P.

Note that this lemma was used implicitly in the proof of Theorem 4.20 (to
define P−

λ+α for α ∈ K4).
Semantically, there is a correspondence between some P ∩N -names and P-

names belonging to N , and we can also have a correspondence for the forcing
relation for some formulas.

Fact 5.14. If N is <κ closed then there is a one-to-one correspondence be-
tween:

(i) P-names τ ∈ N and

(ii) P ∩N -names σ

of members of Hκ (in particular, reals). Thus, if G is P-generic over V then

H
V [G]
κ ∩N [G] = H

V [G∩N ]
κ .

Corollary 5.15. For absolute φ(x̄) (e.g. Borel on the reals) if p ∈ P ∩ N ,
τ̄ ∈ N is a finite sequence of P-names of members of Hκ, and σ̄ is the sequence
of P ∩N -names corresponding to τ̄ , then

p ⊩P φ(τ̄) ⇔ p ⊩P∩N φ(σ̄).

The following result illustrates the main motivation to intersect κ-cc posets
with <κ-closed models, since it affects the Tukey relations forced by the posets.
As before, K denotes a constant relational system from the ground model, while
R is interpreted in the model of discourse.

Lemma 5.16. Let N ⪯ Hχ be <κ-closed and let K = ⟨A,B,�⟩ be a relational
system. Assume that P, K and the parameters of R are in N .

(a) If ⊩P R ⪯T K then ⊩P∩N R ⪯T K∩N where K∩N := ⟨A∩N,B∩N,�⟩.
Moreover, if ⟨ẏb : b ∈ B⟩ is a sequence of P-names of a witness of R ⪯T K,
then ⟨ẏb : b ∈ B ∩N⟩ is forced by P ∩N to witness R ⪯T K ∩N .
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(b) If ⊩P K ⪯T R then ⊩P∩N K ∩ N ⪯T R. Moreover, if ⟨ẋa : a ∈ A⟩ is a
sequence of P-names of a witness of K ⪯T R, then ⟨ẋa : a ∈ A ∩ N⟩ is
forced by P ∩N to witness K ∩N ⪯T R.

Therefore, if P forces R ∼=T K, then P ∩N forces R ∼=T K ∩N , i.e. b(R) =
b(K∩N) and d(R) = d(K∩N). This indicates that, to force different values of
cardinal characteristics using intersection with submodels, one should construct
an N such that b(K ∩ N) and d(K ∩ N) has the values one desires. In the
case of Cichoń’s diagram, one constructs a σ-closed N ⪯ Hχ such that P ∩N
forces Cichoń’s maximum, where P is the poset obtained from Theorem 5.4
(and Theorem 4.25).

Theorem 5.17 ([28]). Let ℵ1 ≤ θ1 ≤ θ2 ≤ θ3 ≤ θ4 ≤ λ4 ≤ λ3 ≤ λ2 ≤ λ1 be
regular cardinals and λ0 = λℵ0

0 ≥ λ1. Then, for each one of the constellations
in Figure 10 and Figure 11, there is a ccc poset of size λ0 forcing it.

We do not prove this theorem in detail but mention how the construction
of N goes. For details, see [14, Sec. 5]. We pick a large enough regular cardinal
κ0 > λ0 and assume, for the moment, that GCH holds above κ0, i.e. 2κ = κ+

for every cardinal κ ≥ κ0. We explain in Remark 5.18 how to remove this
assumption.

For j = 1, . . . , 4, pick a regular cardinal νj > κ0, which is the successor of
another regular cardinal ν−j , such that νj < ν−j+1 for j = 1, 2, 3. Finally, pick a
regular cardinal ν∞ > ν4.

To force Figure 10, we start with a forcing P as in Theorem 5.4 but applied
to ν1, ν2, ν3, ν4, and ν∞, i.e. it is a ccc poset of size ν∞ forcing N ∼=T [ν∞]<ν1 ,
C⊥

N
∼=T [ν∞]<ν2 , ωω ∼=T [ν∞]<ν3 , CM ∼=T CE ∼=T [ν∞]<ν4 , and c = ν∞. Recall

that, for 1 ≤ j ≤ 4, b([ν∞]<νj ) = ν1 and d([ν∞]<νj ) = ν∞.
Note that P forces the values in Cichoń’s diagram as in the top part of

Figure 14. Afterward, one constructs a σ-closed model N such that P ∩ N
forces the constellation at the bottom of Figure 14.

One constructs a sequence of elementary submodels of Hχ, containing all
the relevant information, as below:

N c ∈ Nb
1 ∈ Nd

1 ∈ Nb
2 ∈ Nd

2 ∈ Nb
3 ∈ Nd

3 ∈ Nb
4 ∈ Nd

4 .

For 1 ≤ j ≤ 4, Nd
j is constructed from a ∈-increasing sequence of length λj of

<νj-closed elementary submodels of Hχ of size νj , and Nb
j is constructed from

a ∈-increasing sequence of length θj of <ν−j -closed elementary submodels of

Hχ of size ν−j . The models are constructed by decreasing recursion on j, first

Nd
j , and Nb

j afterwards. At the end, N c is chosen as a σ-closed elementary
submodel of Hχ of size λ0.

Finally, N := N c∩
⋂4

j=1N
b
j ∩Nd

j . For 1 ≤ i ≤ 4, each model
⋂4

j=iN
b
j ∩Nd

j ,

after intersection with P, collapses the values forced at the top of Figure 14 to 
the values at the bottom, taking care of θj , λj for i ≤ j ≤ 4 in particular. The
final intersection with N c is to force that the continuum is λ0 and to conclude
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ν1

ν2

ν∞

ν∞

• ν∞

ν4 •

ν3 ν∞

ν∞

ν−2

ν−4
ν−3

ℵ1 θ1

θ2

λ2

λ1

• λ4

θ4 •

θ3 λ3

λ0

ν−1

Figure 14: Strategy to force Cichoń’s maximum: we construct a ccc poset P
forcing the constellation at the top, and find a σ-closed model N such that
P ∩N forces the constellation at the bottom.

b([ν∞]<νi ∩N) = θi and d([ν∞]<νi ∩N) = λi for 1 ≤ i ≤ 4. Moreover, it can

be proved that [ν∞]<νi ∩N ∼=T

∏4
j=i θj × λj (with the coordinate-wise order).

Remark 5.18. The method from [28] (and [14]) uses eventual GCH (i.e. for
some cardinal κ0, 2κ = κ+ for every cardinal κ ≥ κ0) as hypothesis to force 
Cichoń’s maximum. However, thanks to an observation from Elliot Glazer

(private communication), this assumption can be removed: Let κ∗ be a large 
enough regular cardinal, and let W be a set of ordinals coding Rκ∗ , the κ∗-
th level of the Von Neumann hierarchy of the universe of sets. Since L[W ]
models ZFC with eventual GCH, working inside L[W ] we can find a  ccc poset

Q forcing Cichoń’s maximum, which has size λ0, and hence, inside Rα for some 
α relatively small with respect to κ∗. As κ∗ is large enough, we actually have

that the collection of nice Q-names of reals are in Rκ∗ , so Rκ∗ , and hence V , 
satisfies that Q  i s as required.

Remark 5.19. In contrast with the method of Boolean ultrapowers, we do
not know how this method can be improved to allow λi singular for 1 ≤ i ≤ 4.
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[28] Martin Goldstern, Jakob Kellner, Diego A. Mej́ıa, and Saharon Shelah.
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