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Caracteristicas geométricas y topoldgicas de la lemniscata de
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ABSTRACT. The lemniscate of Bernoulli was, in a sense, what paved the way for
modern Elliptic Function Theory. This curve can be generalized in the following way:
L =z—-CQ)z—¢C) (2= C)| = r",r € R, € C. In this paper, this
generalized curve is meticulously studied when r = 1, and ¢; is a n**-root of the unity,
which we call the nt"-order lemniscate. In the first section, the historical background of
this curve is presented. In the second section, an analytic description of tangent lines
and the singularity (in real plane R?) is presented together with a study of curvature,
Schwarz function, and Joukowski maps applied to our curve. Finally, in the third section,
calculations of some topological and geometric invariants (in the complex-projective
plane CP?) are shown.

Key words: nt"-order lemniscate, Schwarz function, Joukowski maps, ramification
points, genus.

RESUMEN. La lemniscata de Bernoulli abri6 las puertas al desarrollo de la teoria
de funciones elipticas por propiedades geométricas elementales intrinsecas a la curva.
Esta curva se puede generalizar como: %, = [(z — (1)(z — (2) -+ - (2 — Cn)| = 77,
r € R, (; € C. En este articulo, esta curva es estudiada con detalle para el caso cuando
r = 1y (; es una raiz n-ésima de la unidad, a la cual llamamos la lemniscata de
orden n. En la primera seccidn, se presenta el contexto histérico de esta curva. En
la segunda seccidn, se presenta una descripcién analitica de las rectas tangentes y la
singularidad de la curva (en el plano real R?) junto con un estudio de la curvatura, la
funcién de Schwarz y los mapas de Joukowski aplicados a nuestra curva. Finalmente,
en la tercera seccion, se calculan algunos invariantes topoldgicos y geométricos (en el
plano proyectivo complejo CP?).

Palabras clave: lemniscata de orden n, funcién de Schwarz, mapas de Joukowski, punto
de ramificacion, género.
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1 Introduction

Since antiquity, the notion of “infinity” has played a central role in the history of human
thought. Aristotle, in his famous book Physics, exhibits the necessity of investigating
whether infinity exists or not, and if it exists, what it is. Nevertheless, without a proper
understanding of it, according to Aristotle, the Pythagoreans and geometers started to use
this concept. It was not until the middle of the seventeenth century that the contemporary
symbol was introduced. The symbol oo was first used by John Wallis in De sectionibus
conics (Fig. 1). The choice of the symbol was unjustified, but very appropriate.

Figure 1. Cover of De sectionibus conics (1655) and first documented appearance of co.
Taken from archive.org.

The pertinence of the symbol lies in the fact that it resembles a curve known as the
lemniscate (Lemniscus) of Bernoulli. While Wallis was studying conic sections, the curve
was initially described by Perseus, a Greek geometer, as a toric section. Toric sections are
the intersections of a torus with a plane parallel to the rotation axis of the torus.

Figure 2. Lemniscate as toric section


https://archive.org/details/bub_gb_03M_AAAAcAAJ/page/n5/mode/2up
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One example of toric sections was proposed by the Italian astronomer Giovanni
Domenico Cassini (1625-1712) in 1680. In an effort to describe the Sun’s trajectory,
Cassini fixed two points in the plane: f; and f> —called focal points— and considered the
locus of all points p such that the product of its distance to these two points was constant,
i.e., points for which |pfi| - |pfa| = k, where k is a positive constant. Each value of k
determines a trajectory. Cassini believed that the Sun traveled around the Earth (located at
one of the focal points) through one of those trajectories. Considering a torus with minor
radius r and major radius R, the toric section corresponds to the lemniscate (Fig. 2) —as

U . R . .
one of the Cassini trajectories— exactly when » = —. In this case, the distance between

the focal points is 2R and the distance between the intersection plane and the rotation axis
is R — r (Fig. 3).

Figure 3. Lemniscate as Cassini’s trajectory

Later, Jacob Bernoulli (1654-1705) in 1694 took up this work, but with a more analyti-
cal perspective. Bernoulli proved that the arc length of the lemniscate was given by the
elliptic integral:

/I#dt
0o V1—tt .

This result inspired a series of arguments that allowed the rigorous advance of Elliptic
Function Theory. A remarkable case of this progress was the addition theorem by Leonhard
Euler (1707-1783). Those results were motivated by Giovanni Fagnano’s works in 1718
to double the arc length of the lemniscate. In fact, Carl G. J. Jacobi (1804-1851) named
December 23, 1751 —the day Euler received Fagnano’s work— as “the birthday of Elliptic
Function Theory” [22, p. 232].

As we have seen, the lemniscate can be ascribed to a broad family of curves (toric
sections, Cassini’s trajectories). However, the lemniscate can also be thought of as a curve
of two petals. In what follows, we denote it by -%%. A naive generalization of %, gives us
a curve with n petals denoted by .7, (we will formalize this shortly).

In this paper, we study some of the main results of [12] and [13] regarding %5 and
%3 in order to generalize some techniques and results to .%,,. Our presentation is divided
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into two sections. Each section is dedicated to the study of geometric and topological
characteristics of .%, in the ambient space R? and CP?, respectively. Both sections are
part of the author’s undergraduate thesis at Los Andes University. All results presented
here are, to our best knowledge, new contributions to the subject, unless explicitly stated
otherwise. The author would like to thank his advisor Alexander Getmanenko for his many
helpful insights and his friendly encouragement.

2 Real geometry of %,
2.1 Analytic description of .%),

Definition 1. Let ¢ € (0, c0) be a positive number, and let f; = (¢,0) and fo = (—¢,0)
two points —which we call focal points'. If p = (x,y) and k > 0, then, by the Pythagorean
theorem, the locus such that [pfi| - [pfz| = k is given by

W+ @+ )Y+ (2 —0)?) = K,

or equivalently by
(22 + )% — 22 (2? — ) = k2 — L. )
This family of curves (parametrized by k) is the Cassini’s curves.

Definition 2. The lemniscate of Bernoulli %5 is the Cassini’s curve when k2 — c* = 0.

Hence, .%, has Cartesian equation:
(@® +%)? = 2%(@® —y*) = 0. )
It can be shown that in the polar coordinates (r, #) of R? the equation (2) is equivalent to
r? = 2¢% cos(26). 3)
Without loss of generality, we take ¢ = 1. The equation (3) is convenient because it is
easily generalizable.

Definition 3. The lemniscate of n'"-order £, is the curve with polar and Cartesian
equations

" = 2cos(nb), 4)
(2® +y*)" =2 Z ’“/2< ) kg (5)
keven

respectively.

Note that %, is a curve of degree 2n. This analytic description of ., delineates
the object under investigation here because there are many n-petals shaped curves. For
instance, %% is different from the well-known trifolium curve.

'In the next section we prove that the name corresponds to the classic definition. See Proposition 15
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Remark 1. The curve .%, is an example of the classic curves sinusoidal spirals (Fig. 4).
That name was given by Colin MacLaurin (1698-1746) in his book Geometria Organica:
Sive descriptio linearum curvarum universalis, to curves with equation ¥ = a” cos(v6)
with v € Q (cf. [14, p. 184]).

(@v=2 (b)yv =23 ©v =275 dv=3

Figure 4. Sinusoidal spirals fora = 1

Letting z = x + 1y, where x,y € R, it can be shown that an equivalent form of the
equation (5) is

pa(2)? = 1(z = )z = G2) - (= = Gu)* =, ©)

where (; is a n"-root of the unity and = 1. This equation shows that our algebraic

generalization (see equation 5) is indeed a generalization of Cassini’s curves with n focal

points at (; € C. We call this family of curves |p,,(z)|? = r, parametrized by r, generalized
lemniscates (Fig. 5).

Figure 5. Family |ps(2)|* = r

2.2 Singularity of .%),

Definition 4. Let C be a curve defined by the polynomial® f(z,y) and L a line such that
C N L # 0. Suppose the coordinate system on R? is chosen such that o = (0,0) € C N L

2Unless otherwise indicated, we will work only with polynomials.
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and L = {t(a1,a2) : t € R; (a1, az2) # (0,0)}. Define the intersection multiplicity of L
and C' at o as the multiplicity m of the root t = 0 of f(a1t, ast) (¢f [21, pp. 15-16]).

Definition 5. Let C' be a curve defined by f(x,y) = 0 and let p = (a, b) be a point of C.

i. The multiplicity mult,(C') > 0 of C at p is the order of the lowest non-vanishing
term in the Taylor expansion of f at p.

ii. The tangents to C at p are the lines through p that cut C' with multiplicity m >
mult, (C). It is known that, counting multiplicities, C' has at most mult,(C') (real)
tangents to C' at p.

iii. The point p is a regular point when mult,(C') = 1. Otherwise, p is called a singular
point.

Remark 2. In the previous definition, we have used affine coordinates. However, it is well
known that it is independent of the choice of coordinates.

Remark 3. Our definition of singular points is different and, in fact, not equivalent to the
definition of parametric singular points found in —for example— [20, p. 13]. Parametric
singular points are those where the derivative of the parametrization of the curve is zero.
We know that, for example, a straight line —which has no singular points according to
Definition 5—- has a parametrization with parametric singular points. The definition we
adopted here coincides with the more general definition of singular algebraic varieties, but,
because of the dimension we are working in, does not force us to introduce localization
rings and tangent spaces yet (cf- [21, p. 234], [7, p. 62], [8, p. 227]).

Proposition 1. The point o = (0,0) is a singular point of £,,. Moreover, mult,(%£,) = n.

Proof. This follows easily since equation (5) is the Taylor expansion of the curve. O

Remark 4. Actually, £, has no other singular point besides o. This is easy to see because
singular points are preserved under diffeomorphisms (in particular, under the change to
polar coordinates) (see Eq. (4)).

Proposition 2. The n tangent lines to £, at o are

Yy = p;T,
Wi —
where ji; = ﬁ withj =1,--- ,n foreach w;, a n*"-root of —1 different from —1.
7 Wy
For n odd, there exists k such that wi, = —1. This root corresponds to the tangent line
z = 0.

Proof. Following the method of [23, pp. 53-54], the tangents are given by
pr — Ay =0,

where the ratios s : A satisfy
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Figure 6. Tangent lines to %} at o

ATt = 0. (7
(0,0)

5 () [

i=0

For .%,, we have that, as in Proposition 1,

of —~ (n TN n—2ki, 2k—i
oo [Z (k) (2n —2k)  (2k) = YR
(00) Lk=0
-2 Z (12 <k> (n—Fk) (k) 2" ki]
o

b
Herea =a(a—1)---(a — b+ 1) denotes the falling factorial®.

The first sum is a polynomial of degree 2n with no constant term. Therefore, when
evaluating at o it vanishes. Similarly, for ¢ odd, the second sum is a constant-term free
polynomial. Because the powers of y in the equation (5) are even, for ¢ even we have

o f

drn—igyt| (_1)“%12(7?) (1) = (=)o),

7

(0,0)

Thus, the equation (7) for .%,, is

3Indices must be understood as a positive expression or 0 otherwise. Analogously in the sequel.
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Z z/2+12( >n;)\n i, —0. 9)

1=0
even

Case 1: )\ # 0. Without loss of generality, we take A = 1. It is sufficient to find the

solution of .
> )”“1( >u = 0. (10)

=0
2 par

It is straightforward to check that equation (10) is equivalent to

(L+dp)" + (1 —ip)" =0. (11)
We find that )
(,dj — .
R - = . 12
M= 50wy’ o (12

solves the equation (11), where w; is a nth-root of —1 different from —1. Observe that
1 € R since
53— 1)
w; —1 w; —1
2(1+w) 2014w
L —wi —wiwy + 14wy —wy — wijwy + 1+ w; (13)
2(1 4+ w;)(1 +wy)
2(w;w;j —1)
2(1 4+ wj)(1 +wj)

Im(p;) =

=0.

Case 2: A\ = 0. If n is even, the equation (9) implies that ¢ = 0, but 0 : 0 is undefined.
For n odd, z = 0 is a tangent line (see below). Note that only for n odd w; = —1lisa
h_root of —1. Consequently, 11 = oo is undefined, but it is associated to z = 0.

Since the solutions to the equation (11) are simple, .%,, has n different tangent lines at
o given by the equations:

Y= pyT

Now, we verify that the intersection multiplicity of L = {(1, ;)¢ : t € R} and .%,, at
o is greater than n. Because j1; satisfies the equation (10), when we substitute x = ¢ and
y = p;t in the equation of .Z;, we see that:

ftpuit) = (£ +p3t?)" — | 2 Z (—1)k/2 (Z) pho [t = (2 + pit?)"
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Therefore, the multiplicity of the root t = 0 of f(¢, u1;t) is m = 2n > n. Analogously, for
L = {(0,1)t : t € R} when n is odd we have f(0,t) = (t?)". Hence, m = 2n in this
case too. O

2.3 Curvature

One of the main intrinsic characteristics of a curve is its curvature function. In classical
theory, curvature is defined using a parametrization of the curve. Since we are working over
R, %, is the image of a regular parametrization (it is an immersion), so the curvature is
defined. However, curvature —in this classical sense— is not defined at parametric singular
points. In this subsection we derive a formula for the curvature of %, using only its
algebraic description. Our approach is based on the presentation in [6]. We will show that
the curvature is well-defined at the singular point of .%,.

Definition 6. Let y(s) be a unit-speed parametrization (and therefore, regular) of a curve

in R2, and let ¢ = d—’y be the unit tangent vector. The signed normal vector 7is is the
S

—

- dt
anticlockwise rotation by g of t. Since s is parallel to 775 (because of the unit-speed
s

—

dt
parametrization), there exists x(s) € R such that == k(8)7is. We define k = |k(s)] as
s

the curvature of the curve at s.

It is clear that £ and 7 are perpendicular, so {f,7} is an (orthonormal) basis of R2.
This basis is called the Frenet-Serret frame. The natural implicit analogue of the preceding

(NI NY)

definition for a curve given by f(x,y) = 0 is as follows: take N/ = 2 Ny

il
as the normal vector and T/ = (—NJ, N1) as the unitary tangent vector (which is a

T .
— rotation of N/).

/‘\ P

Figure 7. Frenet-Serret frame for .%» at p

In [6, p. 632, Proposition 3.1] it is proved that:



14 R. Cifuentes Monroy. Geometric and topological characteristics...

Proposition 3. The curvature of a plane curve (at regular points) implicitly defined by

f(z,y) =0is
_ [T Hess(f) - (T7)']
2 92 2 2 92
O\ *f 05 0F PF | (0F\? Of "
oy ) 0x? Ox Oy dyx ox | 0Oy?
B 2 b 2\ 3/2
ot of
ox oy
Proof. From the definition,
k(s) = —d—ﬁf
ds
The implicit analogous of that is
I
k(s) = —dé\; f

By the chain rule,

AN’ ONT dx ONT dy
=——T/ = — 4+ —2 )1 = -T/VNI (T
(s) ds ( Oz ds dy ds> VNAUTY)

Applying the quotient rule (and the fact that V f - T/ = 0) we obtain the desired formula.
O

dt
For points where — = 0, the Frenet-Serret basis degenerates and « is undefined. The

s
same thing happens for singular points in the implicit Frenet-Serret basis. Nevertheless,
there exists a notion of curvature at singular points along the tangent lines of the curve at
those points. In general, this curvature depends on the tangent line chosen.

Definition 7. Let p = (a,b) be a singular point of the curve C' with mult,(C) = r.
Consider the parametric curve (conic) I' defined by

1 1
PR = Rt 7(t) = (a +ayt + §a2t2, b+bit+ §b2t2>,
dr . . .
where s (0) = (aq, b1) is the director vector of one of the tangent lines, say L, of C at

p. Since (a1,b1) # (0,0), p is a parametric regular point of I". Hence, the curvature « at
p € I'is (cf. [20, p. 31, Proposition 2.1.2]):
dr d*7
’det (dt dtQ) ‘ |a1bs — a2b|
dr |3 T (03
dt
We define x as the curvature of C at p along the tangent L.
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In [15, p. 5, Theorem 1], the authors proved that this definition coincides with the

—

dt
curvature of the Proposition 3 when applied to points where s = (. Definition 7 allows
s

us to calculate the curvature at points where N/ = 0, by measuring it through an auxiliary
conic —this is the geometric meaning of curvature: the inverse of the radius of the best
circular approximation. The following proposition not only gives an explicit formula for
the curvature at regular points of .%},, but also shows that the curvature is unambiguously
determined at the singular point o. In [15, pp. 6-8] there are examples where, even though
the values of the curvature is the same along all the tangent lines, the value does not
continuously extend the curvature function around that point. For .%,,, however, it is a
continuous extension.

Proposition 4. The curvature function of £, at regular points is
an® (2% +9%)" = (@ —ip)") ((#* +9°)" + (v +iy)")
(22 + y2)(3n*1)/2

X (2 (x2 + y2)n +(n—=1)((x —iy)" — (x + zy)"))

)

and it is 0 at o. Thus, the curvature function of £, is continuously extended to o.

Proof. The general formula is obtained after some calculations and simplifications. To
1 1

calculate the curvature at o, substitute © = at + §a2t2 and y = byt + §b2t2 into the

equation (5):

2

g(t) = <(a1t+ ;a2t2>2 + (b1t+ ;b2t2)2> +

= X n—k\ pssfaz ok (kN i (b ks

()@ ) (S0 () )
1 5\° 1 5\2 ?

= ((a1t+2a2t) +<b1t+§b2t) ) +

() (S L))

k=0 a=n—
k E s (b2\"7 5
(Sl

k even
We are interested in the coefficients of the powers ¢ and t"*! of this polynomial of
degree 4n. When we expand, we see that

Cp=-2) (~1)F? (Z) atkpk, (16)

15)
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and

=22 [ Y (5)
() (i (5)

are such coefficients, respectively. When C),, = 0, a; = b1, where p; is as in equation
(12) (as expected!). Fix j € {1,--- ,n} and take b; = 1. Then C,,1 = 0 implies (after

straightforward calculations) that by, = %. Thus x = 0 for all j. O
K

Figure 8 displays the curvature function of .%,, for some values of n. We observe that
the curvature attains maximum values proportional to n at points that minimize the distance
from the focal points in each petal of the curve (e.g., for n = 2, the maximum curvature is
2.1213203, and for n = 5 it is 5.223303). It is not hard to see that the coordinates of those
points are p; = (Re(/2),Im(¥/2)) .

(a) Curvature of %3 (b) Curvature of %%

Figure 8. Curvature of .%,

2.4 Schwarz function

Despite its name, the Schwarz function does not, to the best of our knowledge, appear
explicitly in Schwarz’s work. The concept was introduced systematically by Philip J. Davis
(1923-2018) in [3]. In this subsection, we define the Schwarz function for .%,, and describe
the sense in which .%, is the multiplicative inverse of the n-hyperbola. This was suggested
in [12] and [13], but we complete and generalize it.

2 and

Definition 8. Let 2 = x4+ iy and Z = = — iy with z,y € R. Since z =

z2—z . — s . .
y=— the coordinate system (z, Z) is referred to as the conjugated coordinate system.
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Definition 9. Let C C C be a plane curve defined by f(x,y) = 0. In conjugated

coordinates, ¢g(z,z) = f (Z tE A is analytic“. If, for zyp € C, we have that
0
8—8 # 0, by the implicit function theorem, we can (locally) solve Z from g(z, %) :
Zlzg
z = 5(z).
The function
Sc:C = C;z— S(2). (18)

is called the Schwarz function associated to C.

A priori, the Schwarz function can be analytically extended to many other points of
.. 0 . .
C\ C. The condition 8—? # 0 is only sufficient.
z zZ0
Remark 5. The uniqueness of the Schwarz function is evident, while its existence is
established a posteriori. Moreover, the Schwarz function associated to C fixes the curve if
it is symmetric with respect to the z-axis —just like .Z,.

Part of the following proposition can be found in [3, p. 27]

Proposition 5. The Schwarz function associated to %, is
n

Zn—1"

Se, Ly —=Ciz— § (19)

Since it is a multivalued function, we choose the root such that S, (p;) = P; for every
point of maximum curvature p;, with i = 1,--- n. In fact, S, analytically extends to

D=C\{G:¢ =1}

Proof. In conjugated coordinates, ., is given by
_\ 2 N2\ "
_ Z+z Z—Z
—_\ n—k —\ k
+z Z—Z
_9 1)k/2 z =0.
S (5) () -

k even

When we expand we get

9(2,2) = (22)" = 2" =Zz" =0. (20)
Note that this elegant identity exposes the inherent symmetry of .%},, reducing the problem
of solving for Z to a straightforward algebraic manipulation:

ZTL

Zn—1

n

Z =

“In general, that is the condition we impose when f is not a polynomial
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n
n

Nonetheless,

1 represents n different complex numbers. Because of that, we must

choose, for each petal (branch) of .%,,, the number that satisfies S, (2) = Z (that was our
geometric definition of S¢). It suffices to impose one condition over p; = {/2 € C, with
i =1,---,n, the points of maximum curvature, and analytically extend the function. This
uniquely associates each branch of %, with an analytic branch of the complex function

{/z. Note that %ﬁ =nz"z" ! —pz" ! = 0ifand only if Z = 0 0 2" — 1 = 0. This
z
finishes the proof. O

Figure 9 shows the action of S, in a region D C D from its domain, formed by
circles of different radii and .%5. In panel (b), the image of each circle under S &, retains
the color of its preimage shown in panel (a), providing visual coherence.

(a) Region D from the domain of S ¢, (b) S, (D), with D as in (a)

Figure 9. Action of S,

The previous figure shows, on the one hand, that S, (%) = % as we mentioned
early (because of the symmetry). On the other hand, it hints that S, : D — D is, actually,
an involution. Finally, we can see that S, (S1) = 5%, where S* = {2 : |2| = 1} y /%
is the hyperbola defined by the equation 2(z? — 3?) — 1 = 0. The following proposition
formalize these observations.

Proposition 6. The function S, defined as in Proposition 5, is an involution.

Proof. When we calculate the composition, we find out that
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with ¢; a nt"-root of the unity. Since S, o S (p;) = p;, it follows that ¢; = 1 for all 4,
and thus S, is indeed an involution: S¢, 0S¢, = id. O

(b) S, (£), with £ as in (a)

Figure 10. Action of S, on z2

In fact’, S preserves the whole family of re-escalated lemniscates % given by

Mz? 4y -2 Z ’“/2( ) " Fyk =0 (1)

CVCH

according to the relation S, (£7) = £2~*. When 2 — \ < 0, the lemniscate is just a
g-rotation of the corresponding curve XAQ_M (Fig. 10).

Definition 10. When we generalize the equation of a hyperbola with two foci, we get that

the equation
2 Z k/2< ) 2" FyF —1=0 (22)

k even

SThis was a captivating remark by professor Getmanenko.
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describe a “hyperbola” with n foci. We call the curve determined by this equation the
n-hyperbola with foci at (; —the n*"-root of the unity— and we denote it by .77,.

We verify that the image of S* under S, satisfies the defining equation of .77, in
conjugated coordinates.

Proposition 7. The image of S under S ¢, is the n-hyperbola ;.

Proof. In conjugated coordinates the equation (22) corresponds to

2"+zZ"—-1=0. (23)
Let 29 € S'. Then S (20) = ¢ %0 T satisfies the equation (23), since
ZO —
1 1
= n=——"n =n . n =N
N E——T 2y Zo" 2070 —2zy +Z0 2y —Zo
S S =0 = =1
‘fn (ZO) + gn (ZO) Z6L _ 1 7071 _ 1 Z(’I;L%Tl _Z6L _ %n + 1
1
This, together with the Proposition 6, completes the proof. O
As a matter of fact, the relation between .Z,, and .77;, is stronger.
Proposition 8. The image of S under S, is %,,.
Proof. From the equation (23) is easy to see that
S, :C—=Ciz— Y1 —2n 24)

is the Schwarz function associated to .J7;,. As we did with S, , we must establish some
condition on S, to define it unambiguously. In this case, it is enough that S, (a;) = @,
where a; are the vertices of .77,.

Let zo € S'. Then S, (20) = {/1 — 23 satisfies the equation (20) because

(vi=3)" (Vi=m) = (=1 —5") = 1= 5 — 7" + 207"
=(-m")+0-2) = (yT-%) +(V/1-)
It is straightforward to check that S, is also an involution, which completes the proof. [
Definition 11. (informal)® Let X be the space of algebraic plane curves. Given two curves
C1,Cy € X with associated Schwarz function S, and S¢,, respectively, we define the

operation (whenever defined) Invg, Co = C where C' is the curve with associated Schwarz
function S¢, o S;' 0 Sc, .
2

The rigorous presentation of this definition requires the concept of Jordan arc, but the general idea is the same.
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@n=3 b)yn="7

Figure 11. Triad S*, %, and /2,

With this informal definition, X can be understood with a non-associative operation in
which the identity (base) element varies in the space X. This product satisfies the axioms
of a symmetric space (cf. [16, p. 63, Definition 1 ]). Some of them are the following:

1. IIIVCC = C,

2. Inve, (Inve, C3) = Cy, and

3. Invg, (Inve, C3) = Iy, ., (Inve, Cs).
1

Proposition 9. In the space X, the inverse curve of £, with base S, is #, and vice
versa. That is, Inv ¢, 7, = Inv o, %, = S*.

Proof. The result follows from the two precedent propositions, and the following calcula-

tion:
z" Z" 1
{ oV1l—2z"0 { = -
2" =1 =1 =z

[ 2" 1
vV1—2z"no { an_lo\"/'l—z”:;.

1. . . 1. .
Note that ~ is the Schwarz function associated to S* because Z = - if and only if
z

z
Z=a2+y? =1 O
Remark 6. In section 1 we mentioned that .%,, is an example of sinusoidal spiral with
v = n and ¢¥ = 2. It is amusing to observe that %, is so too, but with v = —n and
a’ = }

2

To conclude this subsection, we present a compelling result from [3, pp. 41-45] that
connects the Schwarz function with the curvature function of a curve.
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Proposition 10. The curvature of the curve C with associated Schwarz function Sc(z) is

1
K= 5\5"(2)\ (25)
Proof. Since Z = S(z) along C,
1o
S,(Z):@:dx—&-z.dy: do
dz  dx —idy 14 Z@
dz

d
Solving d—y from the previous equation, we get that
X

dy  1-5'(2)

dr 1+ S'(z) (26)

Now, in [20, p. 38, Proposition 2.2.3] it is proved that the signed curvature is given by

do
I{(S) = Ev

where ¢ is the turning angle, i.e., the angle the tangent line to C' at a given point makes
with the z-axis. Let zg € C. It is easily seen that the tangent line of C at z; has equation

z = S¢(20)(2 — 20) + Zo-
Additionally, we have that

dy _ 1—5¢(20)
t = — = —{——F=.
ang = 2 21+Sé;(zo)

Therefore,

dy
-1 @y
dﬁ dtan <dac> dj%

=— "7 . 27
ds dx dz ds @7)
On the other hand, ds? = d2? + dy? = dzdz = S/ (z)(dz)?. Thus,
dz 1
e 28
ds = V50() e
d dx +id d 2
Moreover, £ = % =1+ 'Ld—y = H—T/C() and consequently,
@ _ dr ) dz _ 4iS4(2) . (29)

dx? dz dr (1+55(2))3

Substituting the equations (28) and (29) into the equation (27) we obtain
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n(s) = 48— _5c(2) (30)

ds 2 ()"

Taking the absolute value, we get the curvature of C' and the desired formula. O

As a result, we have gotten a more compact expression for the curvature function of

%, namely,
n
n—2n <
n+1 & Vozr—1

T2 (zr—1)2 |’

where the choice of the root corresponds to the one made in the definition of S, (z).

2.5 Joukowski maps

In this subsection, we introduce the Joukowski maps. Joukowski maps play a crucial role
in the differential structure of .Z,. Our goal, then, is to consolidate a solid understanding
of them in relation to .%,, and other generalized lemniscates.

Definition 12. We define positive and negative Joukowski maps, respectively, as follows:

. . ) 1 1
j+: C —)C,Zl—>2<2+z> .

1 1
j:(C*—>(C;z»—>2(z—)

z

It is clear that these maps are not injective, but rather 2 : 1 since j4 (2) = j4(1/2) and
J-(2) =j-(=1/2).

One of the visualization tools we have for complex-valued functions is the color domain
technique. This method was popularized at the end of the twentieth century (cf. [19]), but
Frank Farris was the one who named it. If we assign a color to each complex number, we
could link a number z € C (in the domain) with the color assigned to w = f(z) € C (in
the image). In the standard formulation of the color domain method, the assignment of
the color to the complex number z follows the HSL model. The color of z € C is formed

2 - 100% (where
|z|* +1
a > 0; here a =0.4). Thus, for example, the identity function f(z) = z on the domain
{z: =3 <Re(z),Im(z) < 3} would have the representation of Figure 12.

by the Hue = Arg(z), the Saturation= 100% and the Lightness =

Thus, the graphic representation of Joukowski maps in {z : —3 < Re(z),Im(z) < 3}
are shown in Figure 12.

In fact, as observed in [12], Joukowski maps give us back the structure of %, 5% and
S from a symmetric configuration displayed in Figure 14.
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Figure 12. Color domain of f(z) = z

(a) Color domain of j4(z) (b) Color domain of j_(z)

Figure 13. Color domain of Joukowski maps

The set Eé is formed by two circles centered at 4-¢ with radius V2, two circles centered
at +1 with radius v/2 and the two lines y = 4z (which are the tangent lines to % at o).
This explains the number 6. Symmetric results are easily obtained using j_. It turns out
that there exists a sense in which .25, and more generally, the triad j (Eé) is already
contained in .%,,. Let’s consider the generalized Joukowski maps:

jﬁ:C*—)C;zH%(z"—i—zin),
(32)

3

j_:C*%C;zH%(z"—i>.

zn
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(a) Symmetric configuration [,é (b) Triad j+ (,Cé)

Figure 14. Configuration £§

In subsection 2.1, we indicated that .%,, is described by the equation |pa,(2)[? = 1.
On the other hand, the 2n'" roots of —1 can be split into two groups: zjl = {3/i} and
zj2 = {{/—i}. With these two groups of roots, we can define two different curves in the
family of generalized lemniscates |p,(2)[? = 7:

Ci: ‘ H(z—z})’z =2
j=1

Co ‘ (Z—ZJQ-)‘2:2
j=1

Strictly speaking, these curves are rotations of the originally defined generalized lemnis-
cates |p,(2)|> = r, to which %, belongs. The 2n : 1 image under j7 of C; and Cs is
precisely S*. This new construction is, truly, a generalization of the case when n = 1.
This completely elucidates the notation L.

Similarly, the 2n** roots of unity can be split into two groups: wjl = {{/1} and
w? = {{/—1}. Once again, we define two curves, members of the family |p, (2)|* = r of

generalized lemniscates:

Cs : ‘ﬁ(z—wj)‘g =9
j=1

Cy: ‘ﬁ(z—w?)‘g =9
j=1

As before, Cy is a rotation of the actual curve of |p,(2)|? = r. The 2n : 1 image under
j% of C3 and Cy is Z5. To complete the triad j (£§), observe that j% (T, ) = 3, where

Ty, denotes the tangent lines of .%%,, at the origin o.
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Accordingly, we have generalized the configuration £. Defining
Lg ={C1,C2,C3,Cy, T2},

we conclude that:

]i(ﬂg) = {527'%751}'

(a) Symmetric configuration L% (b) Symmetric configuration Lg

Figure 15. Configuration Lg

3 Complex-projective geometry of %,

Definition 13. Define the complex projective plane as the quotient CP? = C3\{(0,0,0)}/~,
where (21, 22, 23) ~ (w1, ws, ws) if and only if z; = Aw; for some A € C\ {0} and
all j = 1,2,3. Thus, CP? = {[X : Y : Z]. : X,Y,Z € C, notall 0}. The coordinates
X, Y, Z of the complex projective plane are the homogeneous coordinates.

We henceforth denote by [X : Y : Z] the equivalence class [X : Y : Z]..

Definition 14. If C' C C? is an affine curve defined by f(x,y) = 0, the homogenization
of f represents the projectivization of C' C CP?. In other words, the projectivization of C
is given by
XY
FX,Y,2)=2%(>,5 ) =0
( ) 9 ) f < Z ) Z) )
where d is the degree of f. We say that C'is a curve of degree d.

Therefore, by the equation (5), the complex projectivization of .%,, is the locus of
[X : Y : Z] such that:
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(XY —22" Y (~1)M? (Z) Xnky*t = . (33)
k=0
k even

Equation (33) is equivalent to
(X2 +YH" - ZM(X +iY)" — Z"(X —iY)" = 0. (34)

Remark 7. When Z = 1, the curve C' C CP? determined by F’ can be sent onto C2. When
Z = 0, the points [X : Y : 0] that satisfy F/(X,Y, Z) = 0 are called points at infinity.
It is simple to see that %, has only two points at infinity, namely, I = [¢ : 1 : 0] and
J = [—i:1: 0], called circular points because every projective circle passes through
these points.

Figure 16 is a visualization of % in a restricted domain (see Fig. 12).

Figure 16. Projection of %, C CP? onto C>

Observe that the real part of %% is split in two panels:

Definition 15. The coordinates x = X +¢Y,y = X —¢Y and z = Z are called isotropic
coordinates. In this new coordinate system, the points I, J, O become the coordinate
points or reference points A=[1:0:0B=[0:1:0andC =[0:0:1](= 0),
respectively.
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Figure 18. Real part of. % C C>

In isotropic coordinates, the equation of .%,, simplifies to

F = (zy)" — (zx)" — (zy)" = 0. 35)

Consistently with our definition of singular points from the previous section, we have
the following definition.

Definition 16. Let C' be a curve defined by F'(X,Y, Z) = 0 and let P be a point of C.

i. The multiplicity mult,(C') > 0 of C at P is the order of the lowest non-vanishing
term in the Taylor expansion of I at P.

ii. P is called a regular point whenever mult,(C) = 1. Otherwise, P is a singular
point. The finite set of singular points (cf., [10, p. 55, Corollary 3.10]) of C'is
denoted by Sing(C).

Proposition 11. The points I = [i : 1: 0, J =[—i:1:0land O = [0: 0 : 1] are
singular points of £, each one with multiplicity n.

Proof. Straightforward using isotropic coordinates O
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Remark 8. Due to the fact that the multiplicity of .Z), at the circular points I and J is n,
%, is known as a n-circular curve. This property is significant because the singular points
I and J are the most interesting points at infinity.

Definition 17. Let C C CP? be a curve defined by F(X,Y, Z). The Hessian curve
associated to C, Hess(C'), is the locus that satisfies

0*F
det () =0
0Xi0X; ) 1<ii<a

where X1 = X, Xy =Y, X3 = Z. The regular points in C N Hess(C') are called inflection
points.

It is known that Hess(C') is a curve of degree 3(d—2), if d is the degree of C'. Moreover,
if P is a singular point of C, P € Hess(C'). Indeed, by the Euler equation (cf. [4, p. 45])
oF
applied to X, = Fx, we get:
0’F n—1 nk Fx Iy
/0%,y <2 (n—1)Fy Fxy Fyy

And, given that P is a singular point of C, the first row of this matrix vanishes. This
shows that P € Hess(C').

Definition 18. Let C be a curve in CP? determined by F. If F' can be factorized into
homogeneous polynomials F; of positive degree F' = F1 F5 - - - F}, the curves determined
by F; are called components of C. When F does not admit such a factorization, C'is said
to be irreducible.

We now turn to the structure of the Hessian curve Hess(.%},) and examine its compo-
nents.

For .%, the polynomial H that defines Hess(.%},) is

H=73"2(X24+YH" 2 (X +iV)" + (X —iV)") +
222X+ (X2 + YD) - (X +iY)™ + (X —iY)*)] +  (36)
Zn—Q(XQ 4 Y2)2n—2 ((X + Z'Y)" + (X _ ZY)") ,
2n% — 2n + 2
where a = % (remember that n > 1).
n—
In particular, Z = 0 is an irreducible component of Hess(.%),) for n > 2. For n = 2
the only points at infinity of Hess(%%) are [1 : 1 : 0],[1 : —1 : 0], I, and J. Figure 19
shows the real part of the curve Hess(.%;,) for some values of n.

In isotropic coordinates, Hess(-%,,) is given by
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H = n3$n—2yn—2zn—2 a(n)wnynzn + b(n)a:Qnyn _ b<n)$2nzn + b(n)y%w"—l—
—b(n)y* 2™ + b(n)z*"x" — b(n)z*"y" —|—d37)

where a(n) = 4n3 — 6n? 4+ 6n — 2 and b(n) = 2n? — 3n + 1.

@n=2 b)yn=3

Dyl
—

%

©n=4

Figure 19. Real part of Hess(.%,)

Proposition 12. %), has no inflection points.

Proof. We want to find the intersection points C' N Hess(C'). Given that I and J are
singular points, we can suppose Z = 1, then (X2 + Y2) # 0, and we can divide H by
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(X2 +Y?)"=2, Substituting the relation (X2 + Y?)" = (X +iY)" + (X —iY)" from
equation (34) into the equation (36) we get:

(X +3Y)"+ (X —iY)" +a (X +iY)" + (X —iY)") — (X +4Y)*" — (X —iV)*"+
+(X+YV)"+ (X —iV)") (X +i)"+ (X —iY)") =0.
This equation is equivalent to:

(@ + DX +3Y)" + (a+ DX —i¥)" +2(X +iV)"(X —iV)"

=(a+1)(X +iY)" + (a+1)(X i)+ 2(X2 4 Y2
= (a+1)(X +iY)" + (a+ 1)(X —iY)" +2((X +iY)" + (X —iY)")  (38)
=(a+3)(X+iY)" + (a+3)(X —i¥)"

=0

Therefore, solving the resulting equation, we find that the solutions satisfy
Y = ,u]X .

with 41 as in equation (12). Substituting in the equation of .Z,, we note that

v Jui 00—
(5 + 1) ’

because ; are the roots of the polynomial (1 +X)" + (1 —iX)™ (see Eq. (11)). Thus,
the only affine point of intersection between .%;, and Hess(.%,,) is O, which completes the
proof. O

Corollary 1. Except for I, J and O, .Z,, has no other singular points.

Definition 19. Let C and D be curves determined by P(X,Y, Z) and Q(X, Y, Z), respec-
tively, and P = [P; : Py : Ps] be a point. Define Ip(C, D), the intersection multiplicity of
C and D at P, as follows:

i. Ip(C,D) = oo, if P lies on a component that is common to both of C' and D.
ii. Ip(C,D)=0,ifp¢ CND.
iii. Assuming that C' and D have no common components, and the coordinates are such
that [0 : 1 : 0] ¢ C'U D and does not lie in any line joining two points of C' N D, we

have that Ip(C, D) = k, where k is the multiplicity of the root (Ps, P;) of Rpg[Y],
the resultant of P and () with respect to Y (see [10, p. 59, Theorem 3.18]).

Part (iii) of the previous definition is satisfied by making a change of coordinates, if
necessary. Nonetheless, computing these resultants can be algebraically intensive.

Definition 20. Let C be a curve in CP?. A line L is tangent of C at P if it passes through
P and Ip(C, L) > mult,(C). This definition is analogous to the Definition 5 for the affine
case.
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The following useful result is proved in [1].

Proposition 13. Let C' and D two curves without common components and let P € CN D.
Then

i. I,(C,D) > mult,(C)mult,(D)

ii. I,(C,D) = mult,(C)mult,(D) if and only if the tangent lines of C' at P are pairwise
different to the tangent lines of D at P.

Proof. See [1, p. 235, Proposition 3]. O

oF
Proposition 14. Let D the curve determined by the polynomial —. Then we have that
I;(%4,,D) = 1,(%,, D) = n(n — 1). Moreover, for n even Io(%,,, D) = n(n — 1)

Proof. Ttis easily verified that {O, I, J} C %, N D. It is known that the tangent lines of
%, at P are given by

1 O _
: Xyizk =

_Z Njlk! [8X18YJBZ’C] | 0, (39
l+j+k=m P

where m = mult,,(£,). For P = O, Proposition 2 shows that the tangents of ., at O are
X —-Y =0, (40)

where p; is as in equation (12).

Now let’s consider the case P = I. If 0 < k < n, from equation (34) follows that
OmF ]

m = —nl2"", Thus, let

:O,andifk:nweget[

OmF
o0XloYipzk ,
k = 0. Then, by equation (8),

O"F

dan=idyl || Z( ) (@n—2k) (2k) ()" = nl2n()PI (4l)

With these observations, it can be seen that the equation (39) is equivalent to
(X —iY)"=Z" =0. (42)
Consequently, the tangent lines of ., at I are
X —iY - (;Z =0, (43)
with (; a n*"-root of the unity. Similarly, the tangents of .%, at .J are

X +iY —¢Z=0. 44)
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On the other hand, by Proposition 11, mult,(D) = p;(D) = py(D) = n — 1. Now
we calculate the tangents of D at O, I and J. We find out that they are given by:

(X +Y)" - GX -Y)" =0, (45)
(X —iY)" 1 =0, and (46)
(Y —ix)" 1 =0, (47)

respectively. Therefore, the tangent lines are:
(t—i()) X+ (1+ ()Y =0, (48)
where ¢; is a (n — 1)*-root of the unity’,
X —iY =0, (49)

Y —iX =0, (50)

respectively. The Proposition 13 implies that I;(.%,,, D) = I;(%,., D) = n(n — 1), since
it is clear that the tangents of .Z,, and D at I and J are pairwise different. Similarly, when
n is even, we have that I5(.%,, D) = n(n — 1). When n is odd, —1is a (n — 1)*"*-root
of the unity, and then X = 0 is a common tangent line. Proposition 13 implies that
Io(%,, D) > n(n—1). O

Definition 21. A point P € CP? is called focal of a curve C' if the lines TP and J P are
tangents of the curve. Equivalently, P is focal if P = L; N Lo, where L; is any tangent of
C'at I, and L, one at J

Proposition 15. The points [(; : 0 : 1] are n of the n? focal points of £, where Gjisa
nth-root of the unity.

Proof. From equations (43)-(44) it is easy to see that [¢; : O : 1] lies in the intersection of
the j*" tangent of .%, at I and J. O

Remark 9. Note that these points can be projected onto the affine plane C? to take the
form ({;,0) € C? which, at the same time, can be projected onto C as ¢;. This justifies
the use of the term in the previous section.

Definition 22. Let C be a curve defined by F/(X,Y, Z) = 0 of degree d > 1. Making a
change of coordinates, if necessary, the map

0:C—CPYLIX: Y : Z]— [X:Z]

is well-defined. Let P = [P, : P5 : Ps] be a point of C. We define the ramification index
v, P of ¢ at P as the multiplicity of the root Y = P, of the polynomial F'(P;,Y, Ps). The
point P is said to be a ramification point if v, P > 1.

7According to our definition, giving a line L, the tangent to L at a point on L is the line L itself.
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Remark 10. The definition of ramification points is more general and depends on the map
between, generally, the two Riemann surfaces (cf. [18, p. 45, Definition 4.5], [7, p. 217]).
We are interested in the maps from the curve C' to CPP! and the ramification points which,
up to change of coordinates, are the points determined by ¢.
. . . oF
It is easy to see that v, P > 1if and only if F/(Py, P>, P3) = a—y(Pl, Py, P3) = 0.
Therefore, if P is a singular point, then v, P > 1, but the converse is not true in general.

In fact, it is easy to show that v, P > mult,(C).

The following proposition describes the ramification points of %}, . Its proof is simple
but tedious. For this reason, we omit it.

Proposition 16. %, has exactly 2n? + 5n ramification points if n is even, and exactly
2n? 4 4n if n is odd (counting multiplicities).
Knowing all the ramification points, we are in a position to use the definition to

complete Proposition 14. We omit the proof.

Proposition 17. For n odd, 15(.%,,, D) = n? where D is as in Proposition 14.

(@An=23 b)yn=>5

Figure 20. real ramification points of .7,

In what follows we make use of concepts of algebraic geometry following the termi-
nology of [7] and [21]. Temporarily, we work in a different ambient space, but we will
return to CP?.

Definition 23. A complex-valued function ¢ : X — C of an affine variety X C C? is
regular if there exists a polynomial f € C[z,y] such that o(p) = f(p) forall p € X.

Definition 24. Let G be a finite group of automorphisms of C2. It is weel-known that
A = Cl[z,y] is an algebra. Let AY = {f € A: g*(f) = f forall g € G} the subalgebra
of invariants of G in A. It can be proved that there is a closed set (in the Zariski topology)
Y such that C[Y] =2 A% (here C[Y] denotes the ring of regular functions of Y) and a
regular map 1 : C2 — Y such that n*(C[Y]) = AY. The set Y is called the quotient
variety of C? by the action of G and it is denoted by C?/G.
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Definition 25. Assume that G is a finite group of linear transformations of C2 such that
det(g) = 1 forevery g € G, thatis, G < SL(2,C). Define a du Val singularity as the
pair (C?/G, q), where ¢ is the image under 7 of the origin 0 € C2.

du Val singularities is a very important class of singularities that refine, to some
extent, the algebraic classification of singularities. In [5, p. 33], the singularities (or
singular points) are ordinary if all the tangent lines are different, and they are non-ordinary
otherwise. However, many singularities have a distinct geometric “origin” that is captured
by du Val singularities.

Fortunately, the finite subgroups G < SL(2, C) are well-studied. It turns out that G is
one of the following form:

¢
0 ¢

2. Binary dihedral group of order 4n: D,, = (o, 7), where 0 = <8 C(_)1> with
0 1
2n __ —
¢*"=1l,and 7 = <_1 O> .

3. Binary tetrahedral group of order 24: 2T = (o, 7, p), where o = (Z 0,) ,

0 —1
(0 -1y 114 1
“\ o0 )P T 11— )
4. Binary octahedral group of order 48: 20 = (o, 7, p) wherecr*L 1+ 0
M y g p . - 77/07 *\/5 0 1_l7
(0 1Y g, L1 1
=l oo )P T o\ 1-d )
o 30
5. Binary icosahedral group of order 120: 2I = (o, T, p), where 0 = 0 )

(0 -1 I A O G X S T
7'—(1 0),andp—\/g<_c2+c3 C_<4>w1th(5_1.

Calculating the subalgebras of the invariants of each of these groups (we omit the
calculations for brevity) we find that the du Val singularities (Fig. 21) are given, up to
formal analytic automorphisms of C2, by the following equations, respectively:

1. Cyclic group of order n: Z,, = (g), where g = ( 01> with (" = 1.

1. A,_1 : Clz,y)? = Cla, B,7]/{aB — ) = Cla,y,2]/(x? + y? + 2"), where
a =z™, [ = y™ and 7 = xy are the generators of the whole subalgebra of invariants.

Similarly, we get the singularities:

2. Dn+2:x2+yz2+z”+1:0,n22,
3. Bg: 2?2+ + 24 =0,
4. By 224+ 2 +y23 =0,
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5. Eg:2? +93+2°=0.

It can be proved that du Val singularities are precisely simple hypersurface singularities
A-D-E.

52 ol

(a) As (b) Ay (c) 46

(d) Dy (e) D5 ) Es

Figure 21. du Val singularities

Some singularities originate from others in a geometric (limit) way. They are known
as compound singularities; the others are usually called simple singularities. Particular
care must be taken here because all du Val singularities are called simple in other contexts,
as they are the singularities of the lowest multiplicity (2 and 3). When n increases, 4,
remains a singularity of multiplicity 2, but its geometric nature is much more complex. For
example, A5 is the composition of a tacnode (the degeneration of two nodes to only one
point) and a node. Similarly, it is possible to describe D,,, F, 7, and Eg, which are of
multiplicity 3. Suffice it to mention that D, corresponds to the ordinary (simple) triple
point and Ejg to the non-ordinary (simple) point with only one tangent.

Since this local description is invariant under analytic automorphisms, we can use
them in the projective plane within a local chart of a given point. Therefore, we close the
parentheses with a different ambient space and return to the projective plane.

Definition 26. A morphism 7 : X — Y between two algebraic varieties is birational if
there exists a proper algebraic subvariety Y/ C Y such that 7 induces an isomorphism
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Tlx\r-1(yry : X\ 71 (Y’) = Y \ Y. The map = is called proper if the preimage of
compact subsets is compact.

Definition 27. Let C be a singular curve. A resolution of singularities of C' is a proper
birational morphism

m:C' = C

such that C” is a non-singular curve. C’ is, in general, an abstract variety (not necessarily
embedded in CP?).

The resolution of singularities for curves has been known since Newton (1676) and
Riemann (1857), but a rigorous understanding was not achieved until 1944 with the works
of Oscar Zariski (1899-1986). In fact, in 1970 the Japanese mathematician Heisuke
Hironaka won the Fields medal for the proof of the following theorem:

Teorema 1. Every complex variety (more generally, a variety over a field of characteristic
zero) admits a resolution of singularities. Furthermore, the map can be taken to be a
projection from a higher dimensional space [9].

A resolution of the real singularity of .%,, C R? as a projection from a higher dimen-
sional space is displayed in Figure 22. There are many techniques to define the map 7, but
to resolve the singularities in a way that we guarantee that C is again a plane curve requires
a quadratic transformation (cf. [5, pp. 87-88]). Hereunder, we solve the singularities of
%, . Itis interesting to note that only one transformation is necessary to find a smooth
model of .Z,, i.e., a resolution of its singularities. In general, the first transformation only
“improves” the singularities (reduces the multiplicity or makes them geometrically simpler).
Returning to the isotropic coordinates equation for %, (see Eq. (35)), a simple calculation
shows that mult,(.%,) = n for any P € {4, B, C}. Now, let

Fy,=F(yz,xzz,x2y) = —x"y" 2" (" +y" — z").

Thus, .Z is determined by F’ = x™ + y"™ — 2" (¢f. [5, p. 88]). This renowned curve is
the Fermat curve and we denote it by F,,. Therefore, the resolution of the singularities of
%, 1s:

7L =F, = Lyleiy: 2zl [yz 2 xyl. (51)
It is crystal clear that 7 is birational (7—! = 7). Since .%,, is compact and Hausdorff, and
|7~1(P)| < co we obtain that 7 is proper.

Remark 11. Surprisingly, when we return to homogeneous coordinates, the affine Fermat
curve, e, x" +y"* —1=01is 7,

Proposition 18. For P € {A: B: C},

7 Y(P)| =n.
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DS
&8

(@) B={(z,y,2) ER3 : y = x2} (b) Projection of closure of %> \ 0in B

9

(¢) Resolution .5 of %5 as a projection map

Figure 22. Resolution of real singularity of .25

1
Proof. Let P=C=[0:0:1] € .%,. Thenz=0andy = e It follows that

W_l(P):{[a::y:z]:z:O,y:1}.

xTr

1
Butz" + — = (Oifand only if z = */—1. Thus,
x

w—l(P):{[z"—lzmll:OH.

Nevertheless, these are only n points because

0] = [~wj: —w; 0] = [wg s wy ' 0]

-1
[wj : w; ;

J

with w; 2n*" roots of —1. A similar argument shows that [ ~!(P)| = nfor P = A, B. O
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Definition 28. Let C be a curve determined by F' and P € C' be a point in a coordinate
system such that [0 : 1 : 0] lies neither in C' nor in the tangents of the inflection points. We

define ) oF
In [1, pp. 601-627], it is proved that 6(P) € N and in [10, p. 219], that, under the
mentioned hypothesis, 6(P) is independent of the choice of the coordinate system.

Remark 12. This number §(P) has a variety of equivalent expressions in terms of the
Milnor number at P or the multiplicity (in different senses) at P (cf. [1, pp. 601-627], [2,
p. 111], [17, pp. 85-100])

It is well-known that every compact surface admits a triangulation (cf. [20, p. 350,
Theorem 13.4.3]). The notion of triangulation allows us to associate with each surface an
integer, defined below:

Definition 29. The Euler characteristic x(S) of a compact surface S is
X(8) = V] = |E| + |F|.
It can be shown that this definition is independent of the triangulation. For a proof, see
[20, p. 351, Corollary 13.4.6]

Definition 30. The (topological) genus of a compact surface S is the positive integer

where x(S) is the Euler characteristic of S.

Proposition 19. Let C C CP? be a non-singular curve determined by F (of degree d).
Then C' has a holomorphic atlas, that is, C is a Riemann surface.

Proof. See [10, p. 127, Proposition 5.28]. L

Definition 31. Since a non-singular curve C’ has the Riemann surface structure, we define
the genus of a singular curve C' as the genus of its resolution of singularities.

Remark 13. As we mentioned, the non-singular model of C' is not unique, but there is
minimal resolution, that is, a normalization. Any other resolution is equivalent, as a
Riemann surface, to this minimal resolution (cf. [11, p. 76, Theorem 2.16]). Therefore, the
genus of a singular curve is well-defined. Nevertheless, we have been preparing the way to
find the genus of .%,, in a way that partially avoids the resolution.

Teorema 2. (Noether, M.) The genus g of a projective curve C of degree d in CP? is

g=5@d-D@-2- Y &P
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Proof. We prove that x(C’) = d(3 — d) + Z 26(P), where C' is the resolution
PeSing(C)

of singularities of C'. Let R = {P € C : v, P > 1} be the set of ramification points of C'
(with respect to ) and {{V'}, {E}, {F}} be a triangulation of CP" such that p(R) C V.
This triangulation induces a triangulation of C” such that V' = (¢ o)~ 1(V),|E'| = d|E|
and |F'| = d|F)|.

By the Riemann-Hurwitz formula applied to ¢ (see [18, p.52, Theorem 4.16]) the
preimage of any point € CP! under ¢ contains exactly d — Z (v, P — 1) points;

Pep=1(Q)

Now, if P ¢ R, v,P =1, and since R C ¢~ *(V),

e V) =dIV] = D ((P) — 1).

PeR

Using the fact that ¢~ (V) contain all the singularities of C, we get

VI =la e (V) =dVI= Y we(P) =D+ D (7 '(P)-1).

PER PeSin(C)
Therefore,
X(C) = V'] = |E| + |F'|
=d(V|I =Bl +|F)) = Y @) -1+ Y (= ' (P)-1).

Pen(R) PeSin(C)
RCo (V) C C L4 CP!
7T ]‘
Cl

On the other hand, we know that |V'| — |E| + |F| = x(CP!) = 2 and it is easy to see

OF
that if P € R \ Sing(C), v, P =2 and Ip (F, W

PN UAISESVESEDY IP(F,Z—§>.

PER\Sing(C) PER\Sin(C)

) = 1. In particular,
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OF
By definition, Sing(C') C R, and since the degree of ——

B is d — 1 —by Bezout’s

theorem— we obtain that:

> IP<F,Z§>:d(d—1)— > Ip<F,gl;>.

PeR\Sin(C) PeSin(C)
Therefore,
x(@=2d- > Ip 72+ > (nH P —1—v,P+1)
. )% ®
Pen(R)\Sin(C) PGS’L’I’L(C)
=2d—dd—1)+ Y (I o + |7~ Y(P)| - v, P
= , P\ I oy Yo
PeSin(C)
=d3-d)+ > 2(P).
PeSing(C)
which completes the proof, because
! 1 ! 1
9(C)=g(C) =1-x(C") =1~ 5 | dB3~d) + > 20(p)

PeSing(C)

= %(d— Hd-2)— Y &P

PeSing(C)

1
Proposition 20. The genus of £, is 3 (n—1)(n—2).

Proof. Tt follows from Noether’s theorem and the Propositions 14, 16, 17 and 18. O

Remark 14. Note that the genus of the Fermat curve, and therefore of .7, (by Clebsch’s

1
formula, see [4, p. 179]) is precisely 3 (n — 1)(n — 2). This is, therefore, the genus of any
smooth curve.
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