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18 J. C. JARAMILLO

1. Introduction

Based on the work of Beretetskii et al., Lachieze-Rey, Gori et al., and Cartan, the spinor
(1
(>
complex conjugate ¢ in terms of the rotation matrices (see [2],[1],[8],[5] for more details).
Based on the work of the previously mentioned authors, there are two types of operations
on spinors, which are reflections and rotations. In group theory, the set of rotations
described by the matrices with complex entries is group SU(2), whose generators are the
Pauli matrices, described in the work of Zettili [16]. With respect to rotation matrices,
Gori et al. mention, in their work, the rotation matrices that originated the Pauli matrices
in the form:

¥ is defined as a magnitude components o = 1,2 expressed as Pp* = and its

isin(6/2) cos(6/2) sin(6/2) cos(6/2) 0 eie(/2)
1

being 6 the angle of rotation [5]. Beretetskii et al. define the covariance and contravari-

Ro(0) = cos(0/2) isin(G/?)} R,(6) = [cos(0/2) sin(0/2)]7Rz(9): [em/? 0 ]

ance over the spinors by the relation ¢! = 4y, 9> = —1); from the matrix gos = {01 (1)}

and, similarly, for pointed spinors, ¥; = %295 = —! [1]. The same author defines
bispinors as the pair (¢, ¢4 ), which form a broader group of Lorentz, and, with them,
the scalar product is formulated as (Y, ¢a) - (f*, ha). The author of the reference [8]
mentions algebra C1(3) as a space-time formulation generated by vectors e, which form
a basis for R'? that satisfies the relation e, - e, = g,,,, inducing a 16 -membered basis,
as described below:

. 1 scalar,
. (eo, €1, e2,e3) 4-vector,

1
2
3. (epe1, eoez, eoes, e1€2, €ae3, ezeq) 6- bivectors,
4. (e1eqes, epeaes, eperes, egeres) 4-trivectors,

)

. e5 = egereqes pseudoscalar.
In accordance with the above, the same author describes the Weyl spinors as

1 «
v and the Dirac spinor v , as defined in the work of Beretetskii et al [1].
¥? o

The g - Lorentzian algebra was defined in the reference [11]. The quantum complex
spinors have components 1, and ¥? and conjugates ¢! and ;. For all ¢ € R — {0}, they
satisfy the following ¢ - relations

Oi? = g1, PPl = qply?, (2)
et =o' —ala+ a7 Pespt, PPl =9l (3)
V1ps = qesthn,  9ros = q tespt. (4)
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An Introduction to Calculus in the g— Real Spinor Variables 19

Definition 1.1. Considering spinors 1%, % and {71, T2, 8%, 02} as the generators of the
q - Lorentzian algebra for the group U, (su(2)) [12], we have:

1. For %, a=1,2
i = 7,
T = 2t — g+ g7 ) T,
T?py = q ' 17,

Slwl = qw15’17

T2 = qy?T,

S = g 7y28" — o?,
o?py = o’

o2p? = 202,

2. Their complex conjugates %, a = 1,2

71@1 _ q7180171, (5)
Ty = qpsT, (6)
T2l = pIT? + g gyt (7)
T?ps = @5T7, (8)
S1¢i _ @1517 (9)
o?pt = qplo® + (g +q71)psS", (10)
02302 = q<p202. (11)

Deformed commutation relations for ¢ - Lorentzian algebra are defined in the next propo-
sition, on the quantum-symmetric plane and the quantum anti-symmetric plane.

Proposition 1.2. Consider generator T of the set {Tl,TQ,Sl,UQ} for the algebra
Uq(su(2)) and the relations 2, 3, and 4, defined in [11] and [12]. The q - Lorentzian
algebra for spinors in the deformed space is defined through the following relations:

P1p? — )T,
P19 — q29")T,

T(19® — qv*yr) = ( (12)
( (13)
(¢'os +qos")T, (14)
( (15)

(
T(pr9)® — qib?er)
i

T(p 0y +q st
T( 0y +q "3

1

Y= (ples +q Ty )T.

) =

Definition 1.3. The following are the bosonic ¢ - deformed Minkowskian Pauli spin
matrices defined in the Schmidt work [12]:
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20 J. C. JARAMILLO

@ =0 o @ai= ] o]

(16)
1/2 _—1/2
3 —n-12| 0 ¢ 0y . _ —1y-12| O q
(0)op=ala+q ) [q—1/2 0}7 (0ag=(a+q) |:q1/2 0 }
(17)
Likewise, the conjugated Pauli matrices are:
0 o0 gt 0
T O R N I
(18)
» L 0 1/2 . L 0 —-1/2
@ea=ata+a2| Qe 0] @a=taran 2| s O
q q
(19)

The inverse Pauli matrices

(20)
1 _ —1y-12| O q*/? _ 1[0 =gV
(05 )ap=alg+a ) / [q1/2 o | 9o Jag = (@+4q ) / q\/2 0
(21)
Finally
_ 0 0 _ gt 0
(U+1)Cvl3 = [0 q—1:| ) (U—l)aﬁ = |: 0 0:| ’
(22)
- N 0 1/2 - L 0 _,—1/2
(031)d5:q(q+q Y Yz —-1/2 ¢ ) (Uol)d/i:(‘J+q e 1/2 ! :
q 0 q 0
(23)

Definition 1.4. The ¢ - Lorentzian spinor variables or ¢ - spinor variables are defined
according to the expressions (2), (3), and (4) as follows:
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An Introduction to Calculus in the g— Real Spinor Variables 21

uf = hrg? — gy, (24)
ol? = 2ol —gply?, (25)
x}g = o' — ol + q(g+ 1) 050!, (26)
y? = g2l — ply?, (27)

2 = Prpy — s, (28)
tiy = P10y — qpsia. (29)

Definition 1.5. We consider the set U = {u%,viz,xié,z;,yn,tlé} C C. A function on

the ¢ - spinor variables is defined as W(U) = \I/(u%,012,x12,zé,y21,t12).

Definition 1.6. Let f,g : U — C be functions and u® € U. The following properties
are satisfy on the ¢ - spinor variables, we state some clear properties of the functions on
the ¢ - spinor variables.

L (f+9)@W?) = f(u?) + g(u?).
2. (f-9)(Wf) = f(uP)- g(u?).
3. (f —9)(@f) = f(uP) — g(uP).

! uB :f(“B) uB
4 (g)( )= 3w 2o

Definition 1.7. For a function f : U — C and v® € C, the ¢ - spinor derivative is
defined as [7] :

dof _ f((qu)?) —af(u”)

= 30
d,uf (qu)f —quf (30)

and its conjugate complex

dof _ J(g0)*) — af (o)
N 31

1.1. Clifford algebra and Dirac operator

Let {71,72, "+ ,¥n, } be an orthonormal basis of R™. The Clifford algebra is generated
over R™ under the relation

YuYv + TV = _25/1,1/)/07 72 = _|,y;l,‘2707 V= 1a 2) ey 10, (32)

where 6, is the Kronecker symbol (see [10], [3], [9] for more details). We will denote the
Clifford algebra by Cl,,, and each element in Cl,, can be expressed by its components as
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22 J. C. JARAMILLO

> VYala, Where a = (1, ..., 1) with each p; € {1,2,...,n}. Any element & € R" can be
identified with a 1-vector in the Clifford algebra [9]

(1,22, .., Ty) —> T=T171 + T2Y2 + -+ TpYn- (33)

On other hand, the Dirac operator used here is

0

D=,
I

we refer to reader to [3], [4], [?] for more details.

1.2. ¢— deformed Dirac matrices

Definition 1.8. The g— deformed Dirac matrices are defined in [13], and are given by

o 0 (0u)%
Yy 1= [(Uu)g 0 3] ; (35)

where (0,)¢ and (7, )% denote the Pauli matrices of ¢g— deformed Minkowski space (e.g.
] n/B

[12] for more details), and are defined as

o_ |0 0 o 0 ¢
(0+)B = |:0 kq1/2)\_1i_/2:| ) (03)6 =k |:1 0:| ) ( )
36
1/2)\1/2 0 0 —g !
a_ |4 A+ a _ q
(J*)B k |: 0 O:| ) (UO)@ k |:1 0 ’
and their conjugated counterparts
_ 0 0 v |0 1
@5 =0 s @3 =E[ o]
(37)

B o [ i VA1) IO VI
L PSR

where k, k are characteristic parameters associated to bosons (¢ = +1) and fermions
(¢=-1).
1.3. q— Spinor complex integral formulas

Definition 1.9. [7] Let I'; be the closed contour of the deformed quantum complex plane,

and ug ,v% C ', point spinors contained in the contour. The ¢ - spinor complex integral
formulas are defined by
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i D DI AN IO

r, (qu)? —quy 4

§ U S ) )

. (qu)P — qug o

§ A LS (o]

r, (qv) — 4 oo
U((qu)*)dgv® o). . R
fi—‘q W - Z {( “)aﬁ\l’((q 0) )]

1.4. Real spinors in the space

23

The real spinors in the space are defined based on the work of Zatloukal [15], which are

6 bivectors of the spacetime Clifford algebra

[Uy172) = —i%2|¥)",
|Uy270) = 2| ¥)",
[Ty370) = 45/¥),
[¥v370) = —%275|¥)",
[Uy173) = —i9295|P)",
[Wy2y1) = i|¥),

~— Y — ~— ~— ~—

where |U)* = (23, 27, 25, 25)T, and we denoted 45 = 90919273 as common, and z, 27, 25

and z3

2o = (P*(1+iv3m)),

21 = (MY (1 +ivm)),
25 = (137V* (1 +iv37)),
23 = (MY (1 +inm)),

(
(
(
(

being 4 the Dirac matrices in the standard representation respectively. Since 73 =1 [15],

[6], it follows readily that

<'Vu'YV\II| = <\I/"$/H’Ay,, w,v=0,1,2,3.

Motivation

(52)

Though the topic of this paper is ¢— real spinor calculus, the motivation comes from
the study of g— differential and integral calculus in spinor variables studied in [7] and
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24 J. C. JARAMILLO

the real spinors in the space based on the Zatloukal’s work ([15]). According to the
above, our interest here is to study and relate the g— differential and integral calculus
on g— spinor variables with the real spinor in the space, and their implications with the
differential equations. The main aim of this work is therefore to study the g— differential
and integral calculus and the differential equations on real spinor variables. Also it is
found the solutions to the differential equation in ¢— real spinor variables.

This paper is organized as follows. We briefly recall the preliminaries will be used in
this paper in Sect.2. The g— differential operators for ¢g— spinor variables, the ¢g— spinor
chain rule, the new g— differential operator, the ¢g— Dirac differential operator, and the
integral formulas in ¢— spinor variables are then proposed in Sect. 3. In Sect. 4 the
differential equations in g— real spinor variables are stablished. In the Sect. 5. Finally
in the last Section some suggestions for further work are presented.

Notation

In the section 2, we will denote by wg instead of Vufy,,ug, and the ¢g— real spinor derivative
CRY
by B

2. q— Difference operators for q— real spinor variables

In this section we will mention about the ¢g— difference operators for g— real spinor
variables considering the Section 1.4. To begin, first we define the function on g— real
spinor

2.5. Functions on q— real spinor variables

B

Proposition 2.1. We consider the set u} = {u2,v'2, zt zgi,yzi,tlg} C C. A function

12
on the q - real spinor variables is defined as

D (Vurul) = OVt Vv Vet g Yt 2 Yy Yuitss)- (53)
Proof. Tt is sufficient to use (52) together with the observation that Wufyuugw) =
(Vs v
Remark 2.2. For convenience we will to denote the function on ¢— real spinor variables
as 1 (a}).
Taking into account the above remark, we can define the following properties for functions

on the g— real spinor variables similary to Definition 1.6

Definition 2.3. Let f g : ug — R"™ Dbe functions and wg € ug The following properties

are satisfy on the functions of g - real spinor variables, and we state some clear properties
of the functions on the ¢ - spinor variables

L (f +9)(a2) = () + g(a2).
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An Introduction to Calculus in the g— Real Spinor Variables 25

2. (f - 9)(a5) = f(a) - gla)).

AR
o (5) - oy SO

2.6. q— Real spinor derivative

With the mathematical formalism of above section in hand, we are in a position to define
the g— real spinor derivative which is mentioned in the following proposition

Proposition 2.4. Let v : ug — R™. The q— real spinor derivative can be expressed by

(@ — qul) + v(qul)

= 54
o . , (54)
where u = (Vuu )
Proof. From (30) we can see that
. _ ¢((Q'Y/L7vu) L) — qw(u ) (55)
9y (@nwu)i —quy

writing (qv,/y,,u)g = :cB - qu yields (¢y.vu ) - qu’ﬁ = wg, interchanging ql/J(ug) by
—z/J(qug), we can rewrite (55) as

Oy (@l — quy) +v(quy)
0.l . |

this is the desired conclusion v

Theorem 2.5. Assume that ) : ug — R™ and ¢ : ug — R™ are spinorial differentiable
at atg € R™. Then,

1. the sum 1 + ¢ : ug — R™ s q— differentiable at ug and

9, 0.y 8

56
9.1 (Y + ) = mﬁ a:§ (56)
2. the product ¥y : ug — R™ is q— differentiable at ug and
9.9 o
2 — qu?) — (2 a¥ , 57
(WP) a:ﬁ o(xs — quy) — ¥( a)aqmﬁ (57)
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26 J. C. JARAMILLO

o . n—1 B . B
@) = (=DM (a - qud)" T gul) (58)
aq & k=1
Proof. 1.
9, (e — qui) + o(a — qui) + d(qul) + o(quy)
(Y +p) = mﬁ :
aq &
_ vl —qug) +qug) | e(eh — qup) + plquy)
, ] |
_ 0 ¢ aq
8,
2.
a, D@ — qui)e(a’ —qul) + (quf)e(quy)
8q 3(11%0): :Ei s
(el — e’ — qud) + p(au)e(el — qug) — dqul)e(al — qul) + blaug)e(auy)
- . :
3 _ B B By _ _ B
- [ qu§;+w(qu“) (el — quf) + w(ad) | £2%) iéz )|,

& &

for convenience we can interchange Lp(qug) by —cp(qug) into the above expression,
resulting

3.
a, (@ )"+ (qu)
527 ()" = 7 :
= (@h —qu)" ' — (2] — qu))" P (quy) + o+ (qup))"
n—1

v
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An Introduction to Calculus in the g— Real Spinor Variables 27

Example 2.6. Let ¢ : ug — R™ be a function on q— real spinor variables of the form
P(v'?) = (v12)? + qv'2. Applying (56) and (58) we have

aq¢
d,vi2

_ (,U12 _ qu12)(v12 _ 2qu12) +q.
Remark 2.7. We assume that fyM’y,,ug + (’yﬂ'y,,u)g.

This allows us to introduce the g— chain rule for real spinor variables.

2.7. q— chain rule for real spinor variables

Theorem 2.8. If ¥ and mg are both differentiable at xj,5 = 1,..,n and ¥(z;) is the
composite function defined by \I/[azg (x;)], then U is differentiable and g:f:

product

is given by the

8,0 8,V 9,z

= . (59)
0q; 3qw§ 0q;
Proof. The following assumptions will be needed throughout the proof:
Bx] _ ai(w; — q;) + af(x;) (60)
9y T ’
8,V W[af(x; — gu;) — qui(x; — qvy)] + Y[qug(w))] (61)
aql‘j T '
According to the above assumptions, we can claim that (54) can be written as
0,V _ Wl (w; — ;) — qui(w; — g35)] + Vg (z;)] (62
By w3 (2 — 4;)
replacing the denominator of (62) by zﬁ(:u] —qx;) + mg(xj) yields
8,V _ Wlaf(x; — qu;) — qui(w; — gx;)] + Ulqus (z))] (63)

8, T (v; — qu;) + @ (x;)

multipying both sides by 1/x; we obtain

@i (2 — quy) + a4 (x;) Y _ Wlaf(w; — qz;) — qug(z; — gxy)) + Vlgus ()]
T aq;[:’g Ly ,

in virtue of (60) and (61), finally we get (59), and therefore the proof is complete.
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28 J. C. JARAMILLO

Remark 2.9. Similar considerations apply to ug, namely

v 8,V 9,ul

= 64
0q; Bqu§ 9qz;’ (6
and % is given by
8,V _ W(u — qa}) + U(qal) (65
Bqu@ B u? . )

2.8. q— Difference operators for q— real spinor variables

Proposition 2.10. Let us consider the g— chain rule for q— real spinor variables (59).
According to the expressions (42), (43), (44), (45), (46), and (47), the q— difference
operator for q— real spinor variables can be expressed as

. 0
q
.. 0
D;]: ZVSB;’ (67)
q+]
D= ifnis 0 1,5 (68)
=j 2758:17" J IR A
q<]

Proof. If we prove that the square of (66), (67), and (68) are equivalent to _% and
’ J
—%, then the assertion follows. &

q+2

Remark 2.11. The expression (66) is called the the g- Dirac real operator.

Definition 2.12. From the (48), (49), (50), and (51), we define the ¢— conjugated real
spinor variables as

vy = (AR (L+ivm)), P = (wa(1+ivm)), (69)
v = (M (l+ivymn), pi = (nysus(l+ivm)), (70)
vy = <7370$§(1 +iv3m)), Py = <’YS’YOU§(1 +iv371)), (71)
vy = (Mg (1+ikm)), ps = (neul(l+ivm))- (72)

From the above definition we can construct a function on the ¢— conjugated real spinor
variables of the following form: 1 : (w;,p;) — R™ for all 0 < k < 3, this is (v, pj,)-

Theorem 2.13. For a function v : (v, p;) — R™, the g— conjugated derivatives are
defined as

80 w(v, —qzl) +v(qxl)

(9(11)]'C - vk ’ (73)
Oyt _ w(pi — qup) +¥(qug) (r4)
qu,-C Di
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An Introduction to Calculus in the g— Real Spinor Variables 29

Proof. 1t suffices to make the substitution acg by v;, and p;, into (55), which the proof is
complete v

Theorem 2.14. The q— difference operators associated to conjugated real spinor variables
are given by

9, 9q 9y o
D, = d 75
"= B T B T 35, ~ B0, T2 0 (75)
9, 9q 8
D, = g TNt Ny 76
T Bgpy 9y pi dyps 8qp3 (70)
2
Proof. Analysis similar to that in the proof of Proposition 5.8. shows that Dg = 38‘1’]2 —
2%
9; 9 2 2 _ 8 a2 a2 a2
9,8~ 9~ o, M Dy =50 T a0 T e T o .

Remark 2.15. The ¢— difference operators (75) and (76) can be written in terms of (73)
and (74) in explicit form as

DLy — 1o [7/1('"1 qa:%) + ¢(gxl) R - V(% qw%? +¢(qm§)] o
Do = s lwvg—qzé)w(qwé)]’ phy = Yt = 02) + U)o

vy C
o —— [w(pi - qug? + 9 (qup) . DR = i [w(p —un? + P(qug )] L (79)

W(py — quy) + P(qu))
Dy

U(p; — qull) + v (qul)

o . (80)

Dg¢ = M2 [ ] ; Dgw =

With these results, it is possible to define the g— spinor real integral formulas by the
following theorem.

3. q— Spinor real integral formulas

Theorem 3.1. Let ¢ : ug — R™ and let Q; be a subset over a manifold M in R™, the
q— spinor real integral formulas of the q— spinor conjugated variables are given by
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30 J. C. JARAMILLO

Y(qu;,)d qV; )
R qnz:‘) =y
zb[(l—Q)vk]dq’vk_ s n
/Q e q;w Yl - g)2l]]", (82)
wqpk qpk _ - 5% ek 83
pk+u q;[v ¥ (qup)]™, (83)
/ a(C qp’“ = ¢ [ el — g)ul]l”. (84)
p; + n=0

Proof. First, we present the following changes of variables in (73), qv;, = v}, — q:cg and
(' =1)v;, = mg, obtaining

g _ ¥lav) +¥lalg™ — Vvl

7 (85)
94, quj, + qzﬁ
multiplyng both sides by d,v;, we get
dyy = "/}(qvk)dqvk i Y[(1 - Q)Uk]dqvk’ (86)

qu; + qx; qv;, + qz;

integrating both sides over €,

/ dyth — P(qu,)d 'vk / P[(1 - q)v,ldg vk’ (87)
Q Q, qUj, + qmﬁ quj, + qmﬁ

q

hence, to solve the integral fQ d,v, we will use similary the proof of the Theorem 2.9 of
the reference [7], to obtain

o0

2[7 WWJ "4 Z o} ')/Vq/) 1 _ q)H
n=0
’l/) qvk d Uk: / 1/} v
2 qvk + qmﬁ q'Uk + q:lzﬁ ’
ﬁnally we get
S R Ak 88
Qq qU; +qa;§ ;[7 v zvb(q a)] ) ( )
A= Qvildgvi v By
/ﬂq qu, +qx) nZ::oh Y P[(1 = q)(@3)]]™ (89)
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An Introduction to Calculus in the g— Real Spinor Variables 31

The same process is applied to get (83) and (84) from (74) using the changes of variables
qpj, = p;, — qui, and uj = p; (¢! — 1). &

On other hand, we can stablish the ¢— spinor real integral from (65), (66), (67), and (68)
by our next theorem.

Theorem 3.2. The g— spinor real integral formulas over Q; associated to q— difference
operators (66), (67), and (68) are given by

[t 57 st e (90
/ wqfﬁf;ﬂi;)‘ - go[ 2y (@ (22))]", (91)
i W RIS (92)
[, i _ PILRIC I (93
5 (m = Ti:@[w V(g ()™, (94)
/ 1”5;?;,3‘;;‘ = ;[w%%mé(xj»]m- (95)

Proof. For the operator (66), first we rewrite (65) replacing u wg(xg) by qu to obtain

A Yluf — qal(z2)] + ¥(qah (x2))
Bqug B ’
_ w(quﬁ)w(qz{im))
quj +af(ws)

substituting the above expression into (64)

0,9 _ | w(qud) + (el () | Byus (96)
0412 qug + wi(xg) dqx2’

multiplying both sides by d,x2 we get

v = loug)dgus w(qwg(wz))quQ

qul) + @ (r2)  qul + @ (z2) (97)
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32 J. C. JARAMILLO

integrating both sides over 1,

B Y( qu wq:c’H (r2))
/quqlll_ Q, qu,, +m6 (x2) / qu;, +:c6 ) (%8)

we can now proceed analogously to the proof of above theorem, obtaining (90) and (91)

P( u P( mﬁxj
Q, quq+a:'8 (z2) / q(i +$ﬁ )
[Potele))]” + 3 [PoEien]” . 99)
m=0 m=0
therefore,

w(qu i [ )}m7

Qq QU —&—mﬂ (x2) m—0
wﬂ [es}
I f;ﬂi;‘ mZ_J vete]

The same reasoning applies to the operators (67) and (68), to obtain (92), (93), (94),
and (95). zl

Let us mention an important consequence of the above theorem.

4. Differential equations in q— real spinor variables

Let us consider the following g— real spinor differential equation
(DL —m)p(v;) =0, meR. (100)
In order to get solution of (100), it is necessary to put the following condition on ¢
/ Dypdgv; = (), o, f=1,2. (101)
Qq

and the following lemma.

Lemma 4.1. The integral (101) can be expressed in virtue of (81) as

/Q Djpd,v; = 7173 [Z[vlvgw(qwﬁ)]" + > (- el (102)
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Proof. According to (77), the operator D(i] is defined as 173 86:3’1’ Therefore (86) can be
expressed as

i v; )d,v; 1 —q)vi|d, v
D}]deqvi = 173 Y(qvi)dqv; + v[( q)vildqv; 7 (103)
qui + g qui + ]
integrating both sides over €1,
i ¥(qui)d Y[(1 Jvildgv;
Dlyd,vi =173 ildyvi : (104)
/Qq arme Q, qv1+qwﬂ qv1+qmﬁ
the right side of (104) may be equalated to (88) and (89) finally we obtain
. oo
/Q Dypdgvi =M [Z[ Z (1 —Q)fﬂg)]"] ;
q n=0
which is our claim. v
Remark 4.2. The expressions (101) and (102) are equivalent.
The solution of (100) is established by our next theorem.
Theorem 4.3. The solution of (100) over the subset Qq can be written as
1 oo o0
| vds = | Sl (e e - el (105)
Qq m n=0 n=0
Proof. We begin by rewriting (100) as
Dy(vi) = myp(vy), (106)
multiplying by dqvj,
Dy (vi)dgv; = mi(vi)dgvy, (107)
integrating both sides over the subset €2, and using (102)
/ D;@/}(’Ui)dq’vi = m/Q w('vi)dq'vi,
s | Y (g +Z VP e((1 - g)al)]” ] = m/Q (vi)dgvi,
n=0 = q
finally we get (105). &4
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However, the solution of (100) is not unique. According to (101) we can say that the
solution of (100) is given by

ns(al) = m / (vp)dyv;, (108)
Y(af) = [Zhlvgw (qz)] +va3w (1—q)z3)"|. (109)
n=0 n=0

Let us to consider the following examples

Example 4.4. Let Dgw(pé) = 0 be a differential equation in gq— real spinor variable.
This is a trivial case, where the solution is 0. For this case, is said that the solution is
monogenic.

Example 4.5. For aDgz/J(vg) +bf(vs3) =0 for all a,b € R. Using the results previously
mentioned, the solution is given by

oo

(@) = *Z > A e + Z Y2 = g)al)]”

n=0

Example 4.6. Let us consider the following differential equation

(D!~ N(al () =0, AeR (110)

In order to solve (110), it is sufficient to consider the following condition taking into
account (67)

/Q Dgw(ﬁ(xj))dqiﬂg = 59 (x;5), (111)

q

integrating both sides over (1,

/qu/zngj d_A/w d ]

Asth(zj) = 275/\{Z[ww D™+ [P = g)ay)]™ }
m=0

m=0

Therefore,

1&(%;‘):)\{2[@71/} D™+ DA% ((1 = g)a;)™ }
m=0 m=0
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5. Suggestions for further work

There is further topic arising from this paper which are worth investigation., there
is the problem of describing the function that depends on the quadratic variables
22, y%, 2% u? uz, uy, uz, vy and xz, this is f(ux,uy, uz, vy, vz, yz, 2%, y?, 2%, u?) and in-

troducing the ¢g— quadratic difference operator over f € k(x,y, z,u)

9p2f  _ f(a®u® + uz) — f(ux) 92f _ fld®u® + uy) — fluy) 92f _ f(d®u® 4 zuz) — f(u2)

D2 (uz) a*u? T 0p(uy) a?u? T 0p2(uz) a*u?
O2f _ f(d®y® +y2) — fy2) 02f _ f(@®y +ay) — f(xy) 0p2f _ f(a®2® +x2) — f(az)
042 (y2) a?y? T 9,2(y) a%y? T 9,2(z2) q222 ’

and for a function f: R® — R

0l _ J((a+ qPequu) — faw)  duf _ [y + qPeow)u) — f(yu)

Oq qu T 04y qu 7
Of _ fyz+d’eyy)) = flyz)  Oof _ f((u—deyy)y) — f(uy)
0qz qy T Oqu qy ’
0f _ flx+g°e.2)z) — f(xz)  Oof _ f(z+ qPeou)u) — f(2u)
Ogr qz T 0gr qu ’
0 f _ flly+Pe)z) = flyx)  Of _ f((2+ Pen)z) — f(22)
Oy qx ’ iz qz ’

Analogously, the above expressions can be written in terms of spinor variables.
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