\oint

Revista Integración

Escuela de Matemáticas Universidad Industrial de Santander Vol. 43, N° 1, 2025, pág. 37–48

Extended b-metric preserving functions

REINALDO MARTÍNEZ-CRUZ $^a \boxtimes$, MARIAN C. CRUZ-CRUZ b , TOMAS PÉREZ-BECERRA c

 a,b Universidad Autónoma de Tlaxcala, Facultad de Ciencias Básicas Ingeniería y Tecnología, Apizaco Tlaxcala, México. c Universidad Tecnológica de la Mixteca, Instituto de Física y Matemáticas, Huajuapan de León, Oaxaca, México.

Abstract. In a previous investigation, we present the current state of the family of functions that preserve the weak ultrametric \mathcal{UD} and the set of maps that preserve the extended b-metric \mathcal{BE} and their relation to those existing in the literature. In this article, we continue with the investigation by providing a characterization for the space \mathcal{BE} , and this fact allows us to verify that the graph of the elements in \mathcal{BE} are found in the region proposed by J. Doboš and Z. Piotrowski. Furthermore, we generalize some results from Tammatada Khemaratchatakumthorn, Prapanpong Pongsriiam and Suchat Samphavat.

Keywords: Metric spaces, ultrametric, inframetric, extended b-metric, metric preserving functions.

MSC2020: 54E40; 28D05, 28D15.

Funciones que preservan la b-métrica extendida

Resumen. En una investigación previa, presentamos el estado actual de la familia de funciones que preservan la ultramétrica débil \mathcal{UD} y el conjunto de funciones que preservan la b-métrica extendida \mathcal{BE} y su relación con las existentes en la literatura. En este artículo, continuamos con la investigación proporcionando una caracterización para el espacio \mathcal{BE} , y este hecho nos permite verificar que la gráfica de los elementos en \mathcal{BE} se encuentran en la región propuesta por J. Doboš y Z. Piotrowski. Además, generalizamos algunos resultados de Tammatada Khemaratchatakumthorn, Prapanpong Pongsriiam and Suchat Samphavat.

E-mail: a reinaldo.martinez.c@uatx.mx $^{\boxtimes}$, b maristar1943@gmail.com, c tomas@mixteco.utm.mx . Received: 19 January 2024, Accepted: 13 March 2025.

To cite this article: R. Martínez-Cruz, M.C. Cruz-Cruz and T. Pérez-Becerra, Extended b-metric preserving functions, $Rev.\ Integr.\ Temas\ Mat.$, 43 (2025), No. 1, 37-48. doi: 10.18273/revint.v43n1-2025003

Palabras clave: Espacios métricos, ultramétricos, inframétricos, funciones que preservan la b-métrica extendida.

1. Introduction

Previously, we introduced two families of functions denoted by \mathcal{UD} and \mathcal{BE} , we present the relationship between them and other known classes (see [9]). In this article, we continue the investigation by showing that many of the results of Tammatada Khemaratchatakumthorn and Prapanpong Pongsriiam (see [8]) can be generalized to the family \mathcal{BE} (see Theorems 3.1, 3.3, 3.6) and obtain as Corollaries 3.2, 3.8 and 3.9. We providing a characterization for the space \mathcal{BE} , and this fact allows us to verify that the graph of the elements in \mathcal{BE} are found in the region proposed by J. Doboš and Z. Piotrowski (see [5]). In Theorem 4.1 we establish that the graph of these elements is contained in said area, and replacing the interval (0,b] by (0,1], we obtain Corollary 4.2.

2. Preliminaries

To make this work self-contained, we will briefly expose the results and definitions necessary to read this work. The interested reader can consult the references [6], [7], and [8]. The definitions of metric, ultrametric, weak ultrametric, b-metric and extended b-metrics are as follows:

Definition 2.1. Let X be a non-empty set. A function $d: X \times X \to [0, \infty)$ is called a *metric* if for all $x, y, z \in X$ it satisfies:

- (MI) d(x,y) = 0 if and only if x = y,
- (M2) d(x,y) = d(y,x),
- (M3) $d(x,y) \le d(x,z) + d(z,y)$.

It is well known that the notion of metric currently has various generalizations; among others:

Definition 2.2. Let X be a nonempty set and $d: X \times X \to [0, \infty)$ a function. We say that d is a *ultrametric* if for all $x, y, z \in X$ it satisfies:

- (U1) d(x,y) = 0 if and only if x = y,
- $(U2) \ d(x,y) = d(y,x),$
- (U3) $d(x,y) \le \max\{d(x,z), d(z,y)\}.$

The pair (X, d) is called an ultrametric space when d is an ultrametric in X.

Definition 2.3. Let X be a nonempty set and $d: X \times X \to [0, \infty)$ a function. We say that d is a weak ultrametric or inframetric if for all $x, y, z \in X$ it satisfies:

- (I1) d(x,y) = 0 if and only if x = y,
- $(I2) \ d(x,y) = d(y,x),$
- (I3) there exists $C \ge 1$ such that $d(x, y) \le C \max\{d(x, z), d(z, y)\}$.

The pair (X, d) is called a weak ultrametric space when d is a weak ultrametric in X.

Ultrametric spaces originate in the studio of p-adic numbers and non-archimedean analysis ([1] and [13]), topology and dynamical systems ([2]), topological algebra ([3]), and theoretical computer science ([12]).

Definition 2.4. Let X be a non-empty set. A function $d: X \times X \to [0, \infty)$ is called a b-metric if for all $x, y, z \in X$ it satisfies:

- (B1) d(x,y) = 0 if and only if x = y,
- (B2) d(x,y) = d(y,x),
- (B3) there exist $s \ge 1$ such that $d(x,y) \le s[d(x,z) + d(z,y)]$ (s-triangle inequality).

If d is a b-metric on X, then (X, d) is called a b-metric space.

Previously, Tammatada Khemaratchatakumthorn, Prapanpong Pongsriiam and Suchat Samphavat show that definitions 2.3 and 2.4 are equivalent.

Theorem 2.5. ([8, Theorem 3.3]) Suppose X is a nonempty set and $d: X \times X \to \mathbb{R}$. Then d is a b-metric if and only if d is a weak ultrametric.

As a consequence of the definitions 2.1, 2.2, 2.4 and the double inequality:

$$\max\{d(x,z),d(z,y)\} \le d(x,z) + d(z,y)$$

$$\le s(d(x,z) + d(z,y)), \text{ for all } x,y,z \in X \text{ and some } s \ge 1,$$
(1)

we obtain the following observation.

Remark 2.6. Every ultrametric space (X, d) is a metric space and every metric space (X, d) is a b-metric space.

In [10, Examples 3.6 and 4.4], R. Martínez-Cruz, M. C. Cruz-Cruz, J. E. Pérez-Vázquez and R. López-Hernández verified that the reciprocals were not satisfied.

Definition 2.7. ([6]) Let X be a nonempty set and $\theta: X \times X \to [1, \infty)$. A function $d_{\theta}: X \times X \to [0, \infty)$ is called an *extended b-metric* if for all $x, y, z \in X$ it satisfies:

- $(d_{\theta}1)$ $d_{\theta}(x,y) = 0$ if and only if x = y,
- $(d_{\theta}2) \ d_{\theta}(x,y) = d_{\theta}(y,x),$
- $(d_{\theta}3)$ $d_{\theta}(x,z) \leq \theta(x,z)(d_{\theta}(x,y)+d_{\theta}(y,z))$. The pair (X,d_{θ}) is called an extended b-metric space.

Remark 2.8. If for any $x, y \in X$, $\theta(x, y) = s$, for some $s \ge 1$, then we obtain the definition of a b-metric space.

In [10, Example 3.4], R. Martínez-Cruz, M. C. Cruz-Cruz, J. E. Pérez-Vázquez and R. López-Hernández verified that the reciprocal is not satisfied.

The existence of several generalizations to the notion of a metric and a function that preserves the metric naturally leads to generalizing the concept of a function that preserves the metric.

Definition 2.9. Let $f:[0,\infty)\to[0,\infty)$ a function and

 $\mathcal{P} \in \{\text{ultrametric}, \text{weak ultrametric}, \text{extended } b\text{-metric}\}.$

We say that f is \mathcal{P} preserving, if $f \circ d := \mathcal{P}$ with $d := \mathcal{P}$.

Definition 2.10. (1) A triangle triplet is a triple (a, b, c) with $a, b, c \ge 0$ such that $a \le b + c$, $b \le a + c$ and $c \le a + b$,

- (2) Let $s \ge 1$ and $a, b, c \ge 0$. A triplet (a, b, c) is said to be an s-triangle triplet if $a \le s(b+c)$, $b \le s(a+c)$, and $c \le s(a+b)$.
- (3) Let $\kappa: X \times X \to [1, \infty)$ and $a, b, c \ge 0$. A triple (a, b, c) is said to be a κ triplet if $a \le \kappa(x, y)(b + c)$, $b \le \kappa(x, z)(a + c)$, and $c \le \kappa(z, y)(a + b)$, for all $x, y, z \in X$.

We denote for \triangle , \triangle_s and \triangle_{κ} the set of all triangle triplets, s-triangle triplets and κ -triangle triplets, respectively.

Remark 2.11.

- (i) For all $(a, b, c) \in \Delta$, we obtain $(a, b, c) \in \Delta_s$.
- (ii) If for any $x, y \in X$, $\kappa(x,y) = s$, for some $s \ge 1$, then we obtain the definition of an s-triangle triplet.

We will focus our attention on the ultrametric, weak ultrametric and extended b-metric.

Definition 2.12. Let $f:[0,\infty)\to[0,\infty)$. We said

- (A) f ultrametric-preserving, if for all ultrametric (X, d) space, $f \circ d$ is an ultrametric, and we denote the set of all ultrametric-preserving-functions to the class \mathcal{U} ;
- (B) f weak ultrametric-preserving, if for all weak ultrametric (X, d) space, $f \circ d$ is a weak ultrametric, and we denote the set of all weak ultrametric-preserving-functions to the class \mathcal{UD} ;
- (C) f extended b-metric-preserving, if for all extended b-metric (X, d_{θ}) space, there exits an $\hat{\theta}: X \times X \to [1, \infty)$ such that $(f \circ d_{\theta})_{\hat{\theta}}$ is an extended b-metric, and we denote the set of all extended b-metric-preserving-functions to the class \mathcal{BE} ;
- (D) f metric-preserving, if for all metric (X, d) space, $f \circ d$ is metric, and we denote the set of all metric-preserving-functions to the class \mathcal{M} ;

- (E) f b-metric-preserving, if for all b-metric space (X, d), $f \circ d$ is an b-metric on X, and we denote the set of all b-metric-preserving-functions to the class \mathcal{B} ;
- (F) f metric-b-metric-preserving, if for all metric spaces (X,d), $f \circ d$ is a b-metric on X, and we denote the set of all metric-b-metric-preserving-functions to the class \mathcal{MB} , and
- (G) f b-metric-metric-preserving, if for all b-metric spaces (X,d), $f \circ d$ is a metric on X, and we denote the set of all b-metric-metric-preserving-functions to the class \mathcal{BM} .

Next, we recall classical results concerning the classes given in the previous definition.

Theorem 2.13. ([7, Theorem 15, Example 16] and [8, Theorem 3.1]) The following relationships are satisfied.

- 1. $\mathcal{BM} \subseteq \mathcal{M} \subseteq \mathcal{B} \subseteq \mathcal{MB}$, $\mathcal{M} \not\subseteq \mathcal{BM}$ and $\mathcal{B} \not\subseteq \mathcal{M}$.
- 2. $\mathcal{MB} = \mathcal{B}$.

Definition 2.14. Let $f:[0,\infty)\to[0,\infty)$. We said

- (A) f is amenable if and only if $f^{-1}(\{0\}) = \{0\}$,
- (B) f is subadditive if for all $a, b \in [0, \infty)$, $f(a+b) \le f(a) + f(b)$,
- (C) f is quasi-subadditive if there exists $s \ge 1$ such that $f(a+b) \le s(f(a)+f(b))$ for all $a,b \in [0,\infty)$,
- (D) f is concave if $(1-t)f(x)+tf(y) \leq f((1-t)x+ty)$ for all $x,y \in [0,\infty)$ and $t \in [0,1]$.

The following statements are easy to verify.

Remark 2.15. Let $f : [0, \infty) \to [0, \infty)$.

- (i) If f is subadditive, then f is quasi-subadditive.
- (ii) If f is amenable and concave, then f is increasing and subadditive.

Theorem 2.16. ([7, Theorem 20]) Let $f:[0,\infty)\to [0,\infty)$. If $f\in\mathcal{MB}$, then f is amenable and quasi-subadditive.

Theorem 2.17. ([8, Corollary 3.2]) Let $f:[0,\infty)\to[0,\infty)$ amenable. Then the following statements are equivalent.

- (i) $f \in \mathcal{B}$.
- (ii) $f \in \mathcal{MB}$.
- (iii) There exists $s \geq 1$ such that $(f(a), f(b), f(c)) \in \triangle_s$ for all $(a, b, c) \in \triangle$, where \triangle and \triangle_s are given in the Definition 2.10.

Previously, R. Martínez-Cruz and E. Hernández-Piña ([9]) obtained the following results.

Proposition 2.18. ([9, Theorem 4.12]) We have $\mathcal{B} = \mathcal{UD}$.

Proposition 2.19. ([9, Theorem 5.5]) We have $\mathcal{B} \subseteq \mathcal{BE}$.

Proposition 2.20. ([9, Counterexample 4.16]) We have $\mathcal{U} \neq \mathcal{UD}$.

Corollary 2.21. ([11, Erratum: Funciones que preservan la b-métrica y otras métricas relacionas]) $\mathcal{U} \neq \mathcal{B}$ and $\mathcal{U} \neq \mathcal{B}\mathcal{E}$.

Moreover, R. Martínez-Cruz, M. C. Cruz-Cruz, J. E. Pérez-Vazquez, and R. López-Hernández proved the following corollaries.

Corollary 2.22. ([10, Observación 4.18]) If $f \in \mathcal{UD}$, then $f \in \mathcal{BE}$.

The following result was useful to demonstrate that the graph of the elements in the class \mathcal{UD} is contained in the region proposed by J. Doboš and Z. Piotrowski (see Figure 1).

Corollary 2.23. ([10, Proposición 4.13]) Let $f:[0,\infty)\to[0,\infty)$ be amenable. Then the following statements are equivalent.

- (i) $f \in \mathcal{UD}$.
- (ii) $f \in \mathcal{B}$.
- (iii) $f \in \mathcal{MB}$.
- (iv) There exists $s \ge 1$ such that $(f(a), f(b), f(c)) \in \triangle_s$ for all $(a, b, c) \in \triangle$, where \triangle and \triangle_s are given in the Definition 2.10.

3. Main Results

From now on, we will focus on the class \mathcal{BE} . We will see that the results given for class \mathcal{B} are particular cases for the \mathcal{BE} family (see [8]). In the following result, we establish that the elements of the \mathcal{BE} class satisfy the amenable and quasi-subadditive properties.

Theorem 3.1. If $f \in \mathcal{BE}$, then f is amenable and quasi-subadditive.

Proof. Assume that $f \in \mathcal{BE}$. Then for any extended b-metric space (X, d_{θ}) , there exists $\hat{\theta}: X \times X \to [1, \infty)$ such that $(f \circ d_{\theta})_{\hat{\theta}}$ is a extended b-metric. In particular, if $d_{\theta}(x, y) = |y - x|$ for all $x, y \in \mathbb{R}$. Then $(f \circ d_{\theta})_{\hat{\theta}}$ is an extended b-metric in \mathbb{R} . Then

$$f(0) = f(d_{\theta}(0,0)) = (f \circ d_{\theta})_{\hat{\theta}}(0,0) = 0.$$

In addition, suppose $x \in [0, \infty)$ and f(x) = 0. Then

$$0 = f(x) = f(d_{\theta}(0, x)) = (f \circ d_{\theta})_{\hat{\theta}}(0, x).$$

Since $(f \circ d_{\theta})_{\hat{\theta}}(0, x) = 0$ and $(f \circ d_{\theta})_{\hat{\theta}}$ is an extended *b*-metric, we have x = 0. This shows that f is amenable. Next, since f extended *b*-metric-preserving, there exists $\hat{\theta} : \mathbb{R} \times \mathbb{R} \to [1, \infty)$ such that, for all $x, y, z \in \mathbb{R}$,

$$(f \circ d_{\theta})_{\hat{\theta}}(x,y) \le \theta(x,y)((f \circ d_{\theta})_{\hat{\theta}}(x,z) + (f \circ d_{\theta})_{\hat{\theta}}(z,y)).$$

To show that f is quasi-subadditive, let $a, b \in [0, \infty)$ and $s = \theta(0, a + b)$. We have $s \ge 1$ and

$$f(a+b) = f(d_{\theta}(0, a+b))$$

$$= (f \circ d_{\theta})_{\hat{\theta}}(0, a+b)$$

$$\leq \theta(0, a+b)((f \circ d_{\theta})_{\hat{\theta}}(0, a) + (f \circ d_{\theta})_{\hat{\theta}}(a, a+b))$$

$$= s(f(a) + f(b)).$$

That's to say $f(a+b) \leq s(f(a)+f(b))$. This shows that f is quasi-subadditive.

Corollary 3.2. If $f \in \mathcal{B}$, then f is quasi-subadditive.

Proof. Assume that $f \in \mathcal{B}$. Then by Proposition 2.19, $f \in \mathcal{BE}$, and by Theorem 3.1, f is amenable and quasi-subadditive.

Of course, a natural question is:

If $f:[0,\infty)\to[0,\infty)$ is amenable and subadditive, then f is an element of \mathcal{BE} ?

So far, the authors do not know an answer to the above question; however, if we add as a hypothesis that f is concave, the answer to the previous question is affirmative:

Theorem 3.3. Let $f:[0,\infty)\to [0,\infty)$. If f is amenable and concave, then $f\in \mathcal{BE}$.

Proof. Assume that f is amenable and concave. Let (X, d_{θ}) be a extended b-metric space, then there exists $\theta: X \times X \to [1, \infty)$ such that

$$d_{\theta}(x,y) \le \theta(x,y) (d_{\theta}(x,z) + d_{\theta}(z,y)), \text{ for all } x, y, z \in X.$$
 (2)

Next, we will verify that $(f \circ d_{\theta})_{\hat{\theta}}$ is an extended b-metric on X. As f is amenable and d_{θ} is an extended b-metric,

$$0 = (f \circ d_{\theta})_{\hat{\theta}}(x, y)$$
 if and only if $x = y$.

The property $d_{\theta}2$ is direct to verify. Leaving $x, y, z \in X$, we will see that the $d_{\theta}3$ is satisfied. Since f is amenable and concave, then

$$\frac{1}{\theta(x,y)}f(d_{\theta}(x,y)) = 0f(0) + \frac{1}{\theta(x,y)}f(d_{\theta}(x,y))$$

$$\leq f\left(0 + \frac{1}{\theta(x,y)}d_{\theta}(x,y)\right)$$

$$= f\left(\frac{1}{\theta(x,y)}d_{\theta}(x,y)\right).$$
(3)

By Observation 2.15, f is increasing and subadditive. By inequalities (2) and (3), we obtain

$$\frac{1}{\theta(x,y)}(f \circ d_{\theta})_{\hat{\theta}}(x,y) = \frac{1}{\theta(x,y)}f(d_{\theta}(x,y))$$

$$\leq f\left(\frac{1}{\theta(x,y)}d_{\theta}(x,y)\right)$$

$$\leq f(d_{\theta}(x,z) + d_{\theta}(z,y))$$

$$\leq f(d_{\theta}(x,z)) + f(d_{\theta}(z,y)).$$
(4)

The latter implies that

$$(f \circ d_{\theta})_{\hat{\theta}}(x,y) \le \theta(x,y)((f \circ d_{\theta})_{\hat{\theta}}(x,z) + (f \circ d_{\theta})_{\hat{\theta}}(z,y)).$$

This shows that $(f \circ d_{\theta})_{\hat{\theta}}$ is an extended b-metric and the proof is complete.

Applying the triangular inequality and the previous definition, we obtain the following.

Remark 3.4. If (X, d_{θ}) is a extended b-metric spaces, then

$$(d_{\theta}(x,y), d_{\theta}(x,z), d_{\theta}(y,z)) \in \Delta_{\theta} \text{ for all } x, y, z \in X.$$

The following proposition is useful to prove Theorem 3.6.

Proposition 3.5. ([4, Proposition 1, pag. 15]) Let a, b and c be positive real numbers. Then $(a,b,c) \in \Delta$ iff there are $u,v,w \in \mathbb{R}^2$, $u \neq v \neq w \neq u$, such that a = d(u,v), b = d(u,w) and c = d(v,w), where d denotes the Euclidean metric on \mathbb{R}^2 .

The following characterization is useful for showing that the graph of the elements of class \mathcal{BE} is in the region proposed by Doboš and Piotrowski in section 4.

Theorem 3.6. Suppose $f:[0,\infty)\to [0,\infty)$ is amenable. Then $f\in \mathcal{BE}$ if and only if there exists $\kappa:X\times X\to [1,\infty)$ such that $(f(a),f(b),f(c))\in \triangle_{\kappa}$ for all $(a,b,c)\in \triangle_{s}$.

Proof. Assume that $f \in \mathcal{BE}$. Then for any extended b-metric space (X, d_{θ}) , there exists $\hat{\theta}: X \times X \to [1, \infty)$ such that $(f \circ d_{\theta})_{\hat{\theta}}$ is an extended b-metric. In particular, if d_{θ} is the Euclidean metric on \mathbb{R}^2 . Then $f \circ d_{\theta}$ is an extended b-metric. So there exist $\theta: X \times X \to [1, \infty)$ such that

$$(f \circ d_{\theta})_{\hat{\theta}}(x,y) \le \theta(x,y)((f \circ d_{\theta})_{\hat{\theta}}(x,z) + (f \circ d_{\theta})_{\hat{\theta}}(z,y)) \text{ for all } x,y,z \in \mathbb{R}^2.$$

Let $(a, b, c) \in \triangle_s$ and $\kappa(x, y) = \theta(x, y)$ for any $x, y \in X$. By the Proposition 3.5, there are $u, v, w \in \mathbb{R}^2$, with $u \neq v \neq w \neq u$, such that $d_{\theta}(u, w) = a$, $d_{\theta}(u, v) = b$ and $d_{\theta}(v, w) = c$. Then

$$f(a) = f(d_{\theta}(u, w))$$

$$= (f \circ d_{\theta})_{\hat{\theta}}(u, w)$$

$$\leq \theta(u, w)((f \circ d_{\theta})_{\hat{\theta}}(u, v) + (f \circ d_{\theta})_{\hat{\theta}}(v, w))$$

 \checkmark

$$= \kappa(u, w)(f(b) + f(c)).$$

Similarly,

$$f(b) \le \kappa(u, v)(f(a) + f(c))$$
 and $f(c) \le \kappa(v, w)(f(a) + f(b))$.

Therefore, $(f(a), f(b), f(c)) \in \triangle_{\kappa}$.

For the converse, assume that there exists $\kappa: X \times X \to [1, \infty)$ such that

$$(f(a), f(b), f(c)) \in \triangle_{\kappa}$$
 for all $(a, b, c) \in \triangle_{s}$.

Let (X, d_{θ}) be a extended *b*-metric space and $x, y, z \in X$. Since f is amenable, $(f \circ d_{\theta})(x, y) = 0$ if and only if x = y. The condition $d_{\theta}2$ is obvious. So it remains to show that $(f \circ d_{\theta})_{\hat{\theta}}$ satisfies $d_{\theta}3$. Since $(d_{\theta}(x, y), d_{\theta}(x, z), d_{\theta}(z, y)) \in \Delta_s$, it follows that $(f(d_{\theta}(x, y)), f(d_{\theta}(x, z)), f(d_{\theta}(z, y))) \in \Delta_{\kappa}$. Set $\hat{\theta}(x, y) = \kappa(x, y)$ for any $x, y \in X$. It follows that

$$(f \circ d_{\theta})_{\hat{\theta}}(x,y) \le \theta(x,y)((f \circ d_{\theta})_{\hat{\theta}}(x,z) + (f \circ d_{\theta})_{\hat{\theta}}(z,y)).$$

Hence $f \circ d_{\theta}$ is an extended b-metric. This completes the proof.

If we replace \mathcal{BE} with \mathcal{MB} in Theorem 3.6, we obtain as a corollary the results given by Khemaratchatakumthorn and Pongsrijam in [7, Theorem 17].

Corollary 3.7. Let $f:[0,\infty)\to [0,\infty)$. If $f\in \mathcal{MB}$, then f is amenable and quasi-subadditive.

Proof. Assume that $f \in \mathcal{MB}$. By the Theorem 2.13 and Propositions 2.18 and 2.19, we obtain that $f \in \mathcal{BE}$. By Theorem 3.1, f is amenable and quasi-subadditive.

Corollary 3.8. Suppose $f \in \mathcal{UD}$ and is amenable, then there exists $\kappa : X \times X \to [1, \infty)$ such that $(f(a), f(b), f(c)) \in \triangle_{\kappa}$ for all $(a, b, c) \in \triangle_{s}$.

Proof. Assume that $f \in \mathcal{UD}$. By the Propositions 2.18 and 2.19, we obtain that $f \in \mathcal{BE}$. Now by Theorem 3.6, there exists $\kappa : X \times X \to [1, \infty)$ such that $(f(a), f(b), f(c)) \in \Delta_{\kappa}$ for all $(a, b, c) \in \Delta_s$.

Another natural question is

If there exists $\kappa: X \times X \to [1, \infty)$ such that $(f(a), f(b), f(c)) \in \triangle_{\kappa}$ for all $(a, b, c) \in \triangle_{s}$, then $f \in \mathcal{UD}$?

Again, the authors do not know the answer to the above question.

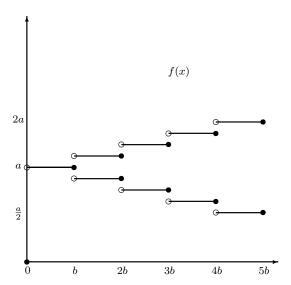


Figure 1. J. Doboš and Z. Piotrowski affirm that the graph of any function distance-preserving is contained in this linear region (Modified of [5, Fig. 6]).

4. Graph of the elements of class BE

Through Proposition 2.19 and Corollary 2.21, we verify that the largest family that contains \mathcal{B} and \mathcal{UD} is \mathcal{BE} . Next, we verify that if f belongs to \mathcal{BE} , $\lim_{x\to 0^+} f(x) = a$ and f(x) = a for all $x \in (0, b]$, then the graph of f is contained in the Doboš and Piotrowski region (Figure 1).

Theorem 4.1. Suppose that $f \in \mathcal{BE}$, $\lim_{x\to 0^+} f(x) = a$ and f(x) = a for all $x \in (0, b]$, then for each $n \in \mathbb{N}$ and each $x \in (nb, (n+1)b]$,

$$\frac{a}{2} \le f(x) \le 2^n a.$$

Proof. We will apply the principle of mathematical induction. Let us see that, for n=1, the conclusion is satisfied

$$\frac{a}{2} \le f(x) \le 2a \text{ for all } x \in (b, 2b].$$

To see this first inequality

$$\frac{a}{2} \le f(x)$$
 for all $x \in (b, 2b]$,

suppose that there exists an $x \in (b, 2b]$ such that $f(x) < \frac{a}{2}$. Let $z \in (0, b]$.

We have (x, x, z) is a s-triangle triplet, while (f(x), f(x), f(z)) does not, since

$$f(x) + f(x) < \frac{a}{2} + \frac{a}{2} = a = f(z).$$

That is, for each, $\kappa: X \times X \to [1,\infty)$, there exist a triplet $(x,x,z) \in \Delta_s$ such that

$$f(z) \not \leq \kappa(x, z)(f(x) + f(x)).$$

So by Theorem 3.6, f does not extended b-metric preserving, which contradicts the hypothesis.

To see this other inequality: $f(x) \leq 2a$ for all $x \in (b, 2b]$, suppose that there exists $x \in (b, 2b]$ such that f(x) > 2a.

We have $(\frac{x}{2}, \frac{x}{2}, x)$ is a s-triangle triplet, while

$$\left(f\left(\frac{x}{2}\right), f\left(\frac{x}{2}\right), f(x)\right)$$

does not, since

$$f\left(\frac{x}{2}\right) + f\left(\frac{x}{2}\right) = a + a = 2a < f(x).$$

That is, for each, $\kappa: X \times X \to [1,\infty)$ there exists a triplet $(\frac{x}{2}, \frac{x}{2}, x) \in \triangle_s$ such that

$$f(x) \not\leq \kappa\left(\frac{x}{2}, x\right) \left(f\left(\frac{x}{2}\right) + f\left(\frac{x}{2}\right)\right).$$

Again, Theorem 3.6 implies f does not extended b—metric preserving, which is a contradiction.

Assume that, for n = k the inequality is satisfied,

$$f(x) \le 2^k a$$
 for all $x \in (kb, (k+1)b]$.

We will show that for n = k + 1 it is also satisfied. Namely

$$f(x) \le 2^{k+1}a$$
 for all $x \in ((k+1)b, (k+2)b]$

Suppose that there exists an element $x \in ((k+1)b, (k+2)b]$ such that $f(x) > 2^{k+1}a$.

Note that $(\frac{x}{2}, \frac{x}{2}, x)$ is a s-triangle triplet and $(f(\frac{x}{2}), f(\frac{x}{2}), f(x))$ does not, since by the inductive hypothesis

$$f\left(\frac{x}{2}\right) + f\left(\frac{x}{2}\right) \le 2^k a + 2^k a = 2(2^k a) = 2^{k+1} a < f(x).$$

That is, for each, $\kappa: X \times X \to [1,\infty)$ there exists a triplet $(\frac{x}{2},\frac{x}{2},x) \in \triangle_s$ such that

$$f(x) \not \leq \kappa \left(\frac{x}{2}, x\right) \left(f\left(\frac{x}{2}\right) + f\left(\frac{x}{2}\right)\right).$$

So by Theorem 3.6, f does not extended b-metric preserving, which contradicts the hypothesis.

Hence, this last result confirms the conjecture of Doboš and Piotrowski for the functions in \mathcal{BE} .

If in Theorem 4.1 we substitute the interval (0, b] by (0, 1] we obtain the following:

Corollary 4.2. If $f \in \mathcal{BE}$, $\lim_{x\to 0^+} f(x) = a$ and f(x) = a for each $x \in (0,1]$, then for each $n \in \mathbb{N}$ and $x \in (n,(n+1)]$, $\frac{a}{2} \leq f(x) \leq 2^n a$.

Acknowledgements: The authors would like to thank the referees for their thorough review and suggestions on our work. They have contributed to making this research a reality.

References

- [1] Bosch S., Guntzer U. and Remmert R., Non-Archimedean Analysis, A sistematic Approach to Rigid Analytic Geometry, 1984. https://link.springer.com/book/9783540125464
- [2] Cencelj M., Repovš D. and Zarichnyi M., "Max-min measures on ultrametric spaces", Topology and its Applications, 160 (2013), No. 5, 673-681. doi: 10.1016/j.topol.2013.01.022
- [3] Coleman J.P., "Nonexpansive algebras", Algebra Universalis, 55 (2006), 479–494. doi: 10.1007/s00012-006-1997-6
- [4] Doboš J., Metric Preserving Functions, Universidad Pavol Jozef afárik, Koice, 2012.
- [5] Doboš J. and Piotrowski Z., "When distance means money", Internat. J. Math Ed. Sci. Tech. 28 (1997), No. 4, 513-518. doi: 10.1080/0020739970280405
- [6] Kamran T., Samreen M. and Ain Ul Q., "A Generalization of b-Metric Space and Some Fixed Point Theorems", Mathematics, 5 (2017), No. 2, 1–7. doi: 10.3390/math5020019
- [7] Khemaratchatakumthorn T. and Pongsriiam P., "Remarks on b-metric and metric-preserving functions", Math. Slovaca, 68 (2018), No. 5, 1009–1016. doi: 10.1515/ms-2017-0163
- [8] Khemeratchatakumthorn T., Pongsriiam P. and Samphavat S., "Further remarks on b-metrics, metric-preserving functions, and other related metrics", Int. J. Math. Com. Sci., 14 (2019), No. 2, 473–480.
- [9] Martínez-Cruz R. and Hernández-Piña E., "Funciones que preservan la b-métrica extendida y otras métricas relacionadas", Pädi Bol. Cienc. Bás. Ing. ICBI, 9 (2022), No. 18, 47–55.
- [10] Martínez-Cruz R., Cruz-Cruz M., Pérez-Vázquez J.E. and López-Hernández R., "Funciones que preservan la Ultramétrica débil e implicaciones", Pädi Bol. Cienc. Bás. Ing. ICBI, 11 (2024), No. 22, 110-117. doi: 10.29057/icbi.v11i22.11090
- [11] Martínez-Cruz R. and Hernández. P. E., "Erratum: Funciones que preservan la b-métrica extendida y otras métricas relacionadas", Pädi Bol. Cienc. Bás. Ing. ICBI, (2022), 1–2.
- [12] Priess C.S. and Ribenboim P., "Ultrametric spaces and logic programming", Journal of Logic Programming, 42 (2000), No. 2, 59–70. doi: 10.1016/S0743-1066(99)00002-3
- [13] Yurova E., "On ergodicity of p-adic dynamical Systems for arbitrary prime p", P-Adic Numbers, Ultrametric Anal. Appl., 5 (2013), 239–241. doi: 10.1134/S2070046613030072