Ir al contenido

Documat


Resumen de Phase-field modeling of fracture in ferroelectric materials

Amir Abdollahi Hosnijeh

  • Los materiales ferroeléctricos poseen únicas propiedades electro-mecánicas y por eso se utilizan para los micro-dispositivos como sensores, actuadores y transductores. No obstante, debido a la fragilidad intrínseca de los ferroeléctricos, el diseño óptimo de los dispositivos electro-mecánicos es altamente dependiente de la comprensión del comportamiento de fractura en estos materiales. Los procesos de fractura en ferroeléctricos son notoriamente complejos, sobre todo debido a las interacciones entre campos de tensión y eléctricos y los fenómenos localizados en zona de fractura (formación y evolución de los dominios de las diferentes variantes cristalográficas). Los modelos de campo de fase son particularmente útiles para un problema tan complejo, ya que una sola ecuación diferencial parcial que gobierna el campo de fase lleva a cabo a la vez (1) el seguimiento de las interfaces de una manera suave (grietas, paredes de dominio) y (2) la modelización de los fenómenos interfaciales como las energías de la pared de dominio o las condiciones de las caras de grieta. Tal modelo no tiene ninguna dificultad, por ejemplo en la descripción de la nucleación de los dominios y las grietas o la ramificación y la fusión de las grietas. Además, la naturaleza variacional de estos modelos facilita el acoplamiento de múltiples físicas (campos eléctricos y mecánicos en este caso). La principal aportación de esta tesis es la propuesta de un modelo campo de fase para la simulación de la formación y evolución de la microestructura y la nucleación y propagación de grietas en materiales ferroeléctricos. El modelo aúna dos modelos de campo de fase para la fractura frágil y para la formación de dominios ferroeléctricos. La aplicación de elementos finitos a la teoría es descrita. Las simulaciones muestran las interacciones entre la microestructura y la fractura del bajo cargas mecánicas y electro-mecánicas. Otro de los objetivos de esta tesis es la codificación de diferentes condiciones de contorno de grieta porque estas condiciones afectan en gran medida el comportamiento de la fractura de ferroeléctricos. La imposición de estas condiciones se discuten y se comparan con los resultados de modelos clasicos para validar los modelos propuestos. Las simulaciones muestran los efectos de diferentes condiciones, cargas electro-mecánicas y medios que llena el hueco de la grieta en la propagación de las fisuras y la microestructura del material. En un tercer paso, el modelo se modifica mediante la introducción de una condición que representa el comportamiento asimétrico en tensión y compresión. El modelo modificado hace posible explicar el crecimiento de la grieta anisotrópica en ferroeléctricos. Este modelo también se utiliza para el análisis de la fractura de los actuadores ferroeléctricos, lo que demuestra el potencial del modelo para su futura aplicación. El modelo se extiende también a policristales mediante la introducción de microestructuras policristalinas realistas en el modelo. Modos de fractura inter y trans-granulares de propagación se observan en las simulaciones. Por último y para completar, la teoría del campo de fase se extiende para la simulación de las grietas conductivas y algunas simulaciones preliminares también se realizan en tres dimensiones. Principales características del fenómeno de la propagación de la grieta predicho por las simulaciones de esta tesis se comparan directamente con las observaciones experimentales.


Fundación Dialnet

Mi Documat