UNB

Universitat Autonoma de Barcelona

Facultat de Ciencies

Departament de Matematiques

Triangular bases of integral
closures

Thesis submitted by Hayden
Duncan Stainsby for the de-
gree of Philosophiae Doctor by
the Universitat Autonoma de
Barcelona, under the supervision
of Prof. Jesis Montes and Prof.
Enric Nart

Barcelona, October 2014

Triangular bases of integral

closures

Thesis submitted by Hayden Duncan Stainsby for the degree of
Philosophiae Doctor by the Universitat Autonoma de Barcelona, under
the supervision of Prof. Jesis Montes and Prof. Enric Nart, in the

Department of Mathematics.

Barcelona, October 2014

Author

Hayden Duncan Stainsby

Supervisors

Prof. Jestis Montes Prof. Enric Nart

Abstract

In this work, we consider the problem of computing triangular bases of
integral closures of one-dimensional local rings.

“MaxMin” is presented, an efficient algorithm which employs OM rep-
resentations of prime ideals to compute local bases of fractional ideals of
number fields and function fields. The proposed algorithm generates bases
which are guaranteed to be reduced and triangular. In this way, it avoids
the application of triangularisation routines, such as the Hermite Normal
Form, which are slow for fields of large degree.

We show that this algorithm has the same asymptotic computational
complexity as existing methods based on OM representations.

MaxMin has been developed and included as part of the +Ideals package
for arithmetic in large fields. This implementation is almost always faster
than existing OM-based routines. It is also considerably faster than the
routines currently found in standard computer algebra systems, excepting

some cases involving very small field extensions.

iii

Resumen

En este trabajo, consideramos el problema de computar bases triangulares
de clausuras enteras de anillos locales unidimensionales.

Se presenta “MaxMin”, un algoritmo eficiente que emplea representa-
ciones OM de ideales primos para computar bases locales de ideales frac-
cionarios de cuerpos de niimeros y cuerpos de funciones. MaxMin garantiza
que las bases generadas son reducidas y triangulares. De este modo, se evita
la aplicacion de rutinas de triangularizacién, como el paso a la forma normal
de Hermite, que son lentas para cuerpos de grado alto.

Mostramos que este algoritmo tiene la misma complejidad computa-
cional asintética que los métodos ya existentes basados en representaciones
OM.

MaxMin ha sido desarrollado e incluido en +Ideals, un paquete disenado
para trabajar cuestiones aritméticas en cuerpos grandes. La implementacién
casi siempre es més rapida que las otras rutinas basadas en representaciones
OM. Respecto a las rutinas que se encuentran actualmente en los sistemas
de algebra computacional estandard, nuestra implementacién de MaxMin
es de nuevo considerablemente mas rapida, exceptuando casos concretos de

extensiones de cuerpos muy pequenas.

iv

Resum

En aquest treball, considerem el problema de computar bases triangulars
de clausures enteres d’anells locals unidimensionals.

Es presenta “MaxMin”, un algoritme eficient que empra representacions
OM d’ideals primers per computar bases locals d’ideals fraccionaris de cossos
de nombres i cossos de funcions. MaxMin garanteix que les bases generades
sén reduides i triangulars. D’aquesta manera, s’evita ’aplicacié de rutines
de triangularitzacié, com ara el pas a la forma normal d’Hermite, que sén
lentes per a cossos de grau alt.

Mostrem que aquest algoritme té la mateixa complexitat computacional
asimptotica que els metodes ja existents basats en representacions OM.

MaxMin ha estat desenvolupat i inclos en el paquet +Ideals, dissenyat
per treballar qiiestions aritmetiques en cossos grans. La implementacié quasi
sempre és més rapida que la de les altres rutines basades en representa-
cions OM. Respecte a les rutines que es troben actualment als sistemes
d’algebra computacional estandard, la nostra implementacié de MaxMin és
també considerablement més rapida, exceptuant casos concrets d’extensions

de cossos molt petites.

Acknowledgements

First, I must thank my advisors Jesiis Montes and Enric Nart. I would like to
thank Jesus for the original idea behind my thesis and his encouragement. It
is clear that I wouldn’t be here without the support and assistance of Enric.
In accepting me to be his student, I think he was more conscious of the way
ahead us than I was. Thanks to his advice, support, and mentorship, today
I can venture to call myself a mathematician.

I would like thank Jiirgen Kliiners for hosting me in Paderborn and
providing invaluable advice and a fantastic experience while I was there.
The company and friendship of Inga, Thorsten, and Friedrich made my
visit so much more enjoyable, I thank you all!

To my friends and workmates at the UAB, the last four years have been
an incredible experience, and it’s been wonderful to share it with all of you,
especially Jens Bauch, my fellow “student of the Montes algorithm”.

I want to thank everyone in the Barcelona number theory group. Espe-
cially to my fellow students, Carlos, Elisa, lago, Jens, Nuno, and Piermarco,
and to my fellow seminar organisers Montse and Piermarco.

A la familia Martinez-Trujillo-Zaguirre-Heras, mi familia aqui en el hem-
isferio del norte. Me habéis aceptado como uno més de la familia con vuestro
amor y apoyo. Quiero agradecer a Mari Carmen y Manolo, quienes espe-
cialmente han hecho de Granada mi segunda casa.

To Thea and Bruce, you are my parents, my mentors, and my friends.
Thank you for the unconditional support you've given me, growing up and
then in the nearly ten years since I packed up and left to live on the other
side of the world. To my brother Evan, and to Steph, it’s always fantastic
to see you guys and catch up on our lives apart. Let’s see if we can spend
a few years living on the same continent at some point!

I have, of course, left the most important person to last. To Andrea
who, through the entirety of our respective theses, has been my constant
companion, partner, friend, and more. There are too few words in any
language to describe what you mean to me. I would not have made it here

without your love! Thank you for everything!

vii

To Dijkstra, Lamport, Schneier, and Wallace.

Although weve never met,
it’s all your fault that I started this.

Contents

Introduction

1 Algebraic background

1.1 Localisation and completion
1.2 Finite extensions of Dedekind domains
1.3 Indices of lattices over principal ideal domains
1.4 Normal forms of bases of fractional ideals

1.4.1 Triangular bases

1.4.2 Hermitian bases 0.
1.5 Local triangular bases
1.6 Global triangular bases.

1.7 Aim of thismemoir

2 OM representations of prime ideals

2.1 Okutsu equivalence of prime polynomials

2.2 Typesover (K,v) . . . o o v v v vt

2.3 Types parameterise Okutsu classes of prime polynomials . . .
2.3.1 Equivalence of typeso
2.3.2 MacLane-Okutsu invariants of prime polynomials . . .
2.3.3 Tree structure on the set of types

2.4 OM factorisation of polynomials
2.4.1 OM representations of prime polynomials
2.4.2 OM representation of a square-free polynomial

2.5 The Montes algorithm
2.5.1 Non-optimised Montes algorithm

xi

2.5.2 Optimised Montes algorithm 44

2.5.3 Complexity 50
2.6 Single-factor lifting and v-adic factorisation 50
2.6.1 Complexity o 52
2.7 OM representations of prime ideals 52
Optimal polynomials 57
3.1 Okutsubases 58
3.2 Optimal polynomials as products of ¢-polynomials 60
3.3 Optimal polynomials as products of numerators of Okutsu
bases 68
3.3.1 Partial Okutsu bases 68
3.3.2 Existence of partial Okutsu bases 71
MaxMin 83
4.1 Formal extension of the Okutsu p-bases 83
4.2 The MaxMin algorithm 85
4.2.1 Guaranteed termination 87
4.2.2 Polynomial products are not computed 87
4.2.3 Initial conditionso 87
4.2.4 Ordering of input prime ideals 88
4.2.5 MaxMin Example 88
4.3 Precomputation Lo oL 91
4.3.1 Precomputation counter-example 95
4.4 The block-wise MaxMin algorithm 97
4.5 Proof of Theorem 4.12 101
4.5.1 Proof of the Theorem in cases (A) and (B) 103
4.5.2 Precomputation in Case (C) 107
4.5.3 Proof of the Theorem in Case (C) 109
4.6 MaxMin for unconnected trees 115
4.6.1 The separated MaxMin algorithm 115
4.7 Improvement of Okutsu approximations 118
4.8 Further optimisation oL 120
4.8.1 Terminal sidesof atype 120

xii

4.9 Basis element reduction modulo an m-power

Triangular bases of fractional ideals

5.1 Okutsubases
5.2 MaxMin for fractional ideals
5.3 Basis element reduction modulo an m-power

5.4 Advantages of the application of MaxMin in function fields

Complexity analysis

6.1 Complexity analysis of the MaxMin algorithm
6.1.1 Upper bound on valuations
6.1.2 Preprocessing for MaxMin[S]
6.1.3 MaxMin[S] mainloop

6.2 Complexity analysis of basis numerator computation

6.3 Complexity of computing a v-integral basis

6.4 Space complexity analysis

Example computations

7.1 Algorithms

7.2 Bases of p-maximal orders
7.2.1 Single prime ideal
7.2.2 Multiple primeideals.
7.2.3 Hermitian bases L.

7.3 Bases of p(t)-maximal orders
7.3.1 Single prime ideal
7.3.2 Multiple prime ideals

7.4 Fractionalideals oL
7.4.1 Number Field
7.4.2 Function Field

7.5 Example polynomials oL

Catalogue of routines

A.1 The +Ideals package
A.1.1 Montes(K, p : Basis:=false)
A.1.2 pHermiteBasis(K, p) v v v v v v vt

xiii

A2

A1.3 SFL(K, P, slope)« v v v v i ii i 179
New routines supporting MaxMin 179
A21 MaxMin(K, p, exp) 180
A.2.2 ComputeNumerators(K, p, nums_ind) 181
A.2.3 pTriangularBasis(K, p) 181
A.2.4 pTriangularIdealBasis(I, p) 182
A.2.5 pHermiteBasis(K, p : Alg:="MaxMin") 182

Xiv

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

2.9
2.10
2.11

3.1
3.2
3.3

4.1
4.2
4.3

4.4
4.5

Newton polygon of a polynomial g€ K|[z]. 29
The A-component of N;(g). 30
Computation of R;(g) for a non-zero polynomial g € K[z]. . . 31
Three possible positions for line Ly.. 33
Visual path representation of a type ¢t of order 37
OM representation of f = Fy--- Fy, with Fo ~ F5. 41
A segment of a coherent tree T. 43

Newton polygon N ;(f) determined by a leaf of order r + 1
of an OM representation ¥ of f. The line L. has slope —hes

and f =20 @s®lqe oo 45
Segment of a non-optimised tree starting from t. 47
Segment of an optimised tree starting from ¢. 47

The branching between t,°” and t4°” in a non-optimised tree. 55

The node m is the greatest common node of m and t,. 63
The node my,,x belongs to the optimised tree. 66

Relative positions of ty,, t4, and t, in the non-optimised tree. 78

Example non-optimised connected tree ‘Eg()p of types. 89
Example optimised connected tree TZ of types. 89
Non-optimised tree with interval that does not meet the pre-

computation criterion. Lo Lo 95
Tree ¥ with common node tp_1.. 101

Case (A): Tree T with common node ty,_; and at least one
refined Apip-branch. oo oL 102

XV

4.6

4.7

4.8

6.1
6.2

6.3

6.4

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

Case (B): Tree ¥ with common node t,_; with only unrefined

Amin-branches.o 102
Case (C): Tree ¥ with common node t,_; with unrefined

Amin-branches and other slopes. 103
Higher order Newton polygon of f with multiple slopes. . . . 120
Newton polygon with “unbounded’ valuation. 138

Non-optimised tree with potentially unbounded prime ideals,

Gog =0, P) . o . 140
Non-optimised tree with potentially unbounded prime ideals,

Gog # OPP). o 141
S¢ is precomputable for ¢ in the non-optimised tree. 142

Running time for maximal order Hermitian p-basis compu-
tation defined by polynomials Ao ,211,0(z) with 2n € {2, 5,
8, .., 200}, L L 158
Running time for maximal order Hermitian p-basis computa-
tion defined by polynomials F13 j(x) with 1 < j < 8 of degree
2,4,12,36, 72,144,432, 864. 158
Running time for maximal order Hermitian p-basis computa-
tion defined by polynomials Bjo1 () with & < 5000. 160
Running time for maximal order p-basis computation defined
by polynomials Cjo1 4 (x) with £ < 5000. 161
Running time for maximal order p-basis computation defined
by polynomials Afjgg ,, 211 (2) With nm = 1000 and m € {5, 10,
20,50,100,200,500}. 162
Running time for maximal order p-basis computation defined
by polynomials D11 p2,21(z) with p € {1069, 1087,1051,1117,
1097,919, 1009} of degree 1, 2, 5, 10, 20, 25, 50. 162
Running time for maximal order p-basis computation defined
by polynomials EC1o1,(x) with 1 < j < 8 of degree 38, 40,
48, 72, 108, 180, 468, 900.o 163
Running time for maximal order Hermitian p-basis computa-

tion defined by polynomials Co1 x(2) with k£ < 5000. 164

xvi

7.9 Running time for maximal order Hermitian basis computa-
tion defined by polynomials ECip1 ;(x) with 1 < j < 8 of
degree 38, 40, 48, 72, 108, 180, 468, 900.

7.10 Running time for maximal order Hermitian p(t)-basis compu-
tation defined by polynomials A2 1 ,,30(z) with n € {2,5,8,
C200Y

7.11 Running time for maximal order Hermitian p(¢)-basis com-
putation defined by polynomials F2 4 ;(x) for 1 < j < 8 of
degree 2, 4, 12, 36, 72, 144, 432, 864.

7.12 Running time for maximal order Hermitian p(t)-basis com-
putation defined by polynomials Bys () with & < 5000. . .

7.13 Running time for maximal order p(t)-basis computation de-
fined by polynomials Cys o j(z) with £ <500.

7.14 Running time for maximal order p(t)-basis computation de-
fined by polynomials A:§+4’n728(;v) with n-m = 64, m €
{2,4,8,32}. . . L

7.15 Running time for maximal order p(t)-basis computation de-
fined by polynomials ECy2,4 ;(x) with 1 < j < 8 of degree
38, 40, 48, 72, 108, 180, 468, 900.

7.16 Running time for maximal p(¢)-order basis computation de-
fined by polynomials C ;) 23(2) with 4 < degp(t) < 200. . .

7.17 Running time for maximal order and fractional ideal p-basis
computation defined by polynomials Cjo1 x(z) with & < 5000.

7.18 Running time for fractional ideal I = p{* p-basis computation
defined by polynomials C1o1,1000(x) with exponent 0 < a; <
10,000« o o

7.19 Running time for maximal order and fractional ideal p(t)-
basis computation defined by polynomials Cys 5 x(2) with
E<B00. e

7.20 Running time for fractional ideal I = pJ* p(t)-basis computa-
tion defined by polynomials Cy,) 100() with p(t) = t*+2 € Fy

and exponent 0 < a; <2000.

Xvii

172

173

List of Algorithms

3.1
4.1
4.2
4.3
4.4
5.1
6.1

Canonify ({¢p} g ,¢) transformation 74
MaxMin[S] algorithm 86
MaxMin[S = S; U --- U S¢] algorithm 91
MaxMin[S;myg] algorithm 100
SepMaxMin[S = S} U --- U S;] algorithm 116
MaxMin[S, I algorithm 127
MaxMin[P] algorithm using preprocessed valuations 148

xix

Introduction

“It’s a rare gift, to know where you need to be, before you’ve been
to all the places you don’t need to be.”
— Ursula K. Le Guin, Tales from Earthsea

This work deals with the computation of triangular bases of integral
closures of one-dimensional local rings.

The theory of ideals of the ring of integers of a number field dates back
to R. Dedekind and E.E. Kummer in the mid 19*" century. The theory
of the existence and the representation of these ideals was the objective of
work by K. Hensel, @. Ore, and S. MacLane which extended into the first
half of the 20" century.

In his 1999 Ph.D. thesis, J. Montes extended the ideas of Ore and

MacLane and implemented an algorithm that Ore had envisioned, to com-

1

2 Introduction

pute a representation of prime ideals by way of factoring the defining poly-
nomial over the ring of p-adic numbers. This “Montes algorithm” coupled
with work by K. Okutsu on constructing explicit integral bases of local
fields, gave rise to OM! representations of prime ideals.

All these results extend in a well-known way to the computation of bases
of integral closures in function fields.

Traditionally, there are two methods of representing fractional ideals of
a number field or a function field in a computer system; either as a basis
as a free module over a certain base ring or as a pair of generators [PZ89].
While the basis representation needs more space than the generators, it has
the advantage of requiring less complex arithmetic.

In current computer algebra systems, most of the methods used to com-
pute integral bases are variants of the Round-2 and Round-4 routines by
Zassenhaus and Ford [Coh93][FPR02][Hal01|[PZ89][Poh93][vH94].

Two OM-based routines have also been developed. The first of these
routines [GMN13] is based on an existing technique which produces a local
basis as the union of bases of prime ideals multiplied by a certain “multi-
plier” in each case. The advantage of starting from OM representations of
prime ideals is that all the requisite polynomials are fabricated from data
present in these OM representations.

The second is the “method of the quotients” [GMN], which constructs a
basis using the quotients of certain divisions with remainder performed as

part of the Montes algorithm, which produces OM representations.

Contribution

This memoir presents the MaxMin algorithm, a method of computing tri-
angular local bases of fractional ideals of number fields and function fields
directly from the OM representations of prime ideals.

Triangular bases have an advantage in that, given appropriate local tri-
angular bases, we may construct a global basis using the Chinese Remainder

Theorem, without having to first convert the local bases into a normal form,

LOM stands indistinctly for Ore-MacLane or Okutsu-Montes.

Structure of this memoir 3

a process which is often computationally expensive. Triangular bases also
often simplify arithmetic on the ideals they represent.

The proposed algorithm presents the same computational complexity
as the previous OM-based routines for computing bases, and in practice is
almost always faster. It is also considerably faster than the Round-2 and
Round-4 based routines present in current software packages for all but the
smallest fields.

As a product of the work presented in this document, the +Ideals pack-
age [GMN10a] has been extended to support this new method of computing
bases of fractional ideals. The latest version of the package can be down-

loaded from https://github.com/MontesProject/plus-ideals.

Structure of this memoir

In Chapter 1, we present the necessary algebraic background as well as a
discussion of two normal forms of bases of fractional ideals, focussing on
the local case. We conclude the chapter with a description of the standard
technique used to construct a global basis from the necessary local bases.

Chapter 2 describes the basic tools used in this work, the OM repre-
sentations of prime ideals. We discuss the “types” which represent prime
ideals, as well as an efficient computational method for computing these
objects, the Montes algorithm.

Our own results begin in Chapter 3 with a discussion of optimal polyno-
mials, the primary ingredient in our method for computing local triangular
bases. Here, we concern ourselves with reducing the space in which we must
search to find such optimal polynomials.

In Chapter 4, we present the main results of this thesis. MaxMin is an
efficient, and extremely simple algorithm for constructing local triangular
bases of the integral closure of a discrete valuation ring in a finite extension
of its field of fractions, directly from OM representations of the prime ideals
of the integral closure. The main theorem of this chapter shows that the
MaxMin algorithm performs this task.

Chapter 5 describes an adapted version of the MaxMin algorithm, which

can compute local triangular bases of fractional ideals using the same input

https://github.com/MontesProject/plus-ideals

4 Introduction

polynomials as in the “maximal order version”. The bases produced by the
MaxMin algorithm are always reduced. This has some advantages in certain
applications, such as the computation of bases of the Riemann-Roch spaces
attached to divisors of curves.

A detailed complexity analysis of the MaxMin algorithm is presented
in Chapter 6. The computational complexity is given for the entire pro-
cess required to compute a local triangular basis. An analysis of the space
complexity of the MaxMin algorithm is also presented.

In Chapter 7, the performance of an implementation of the MaxMin
algorithm is compared to two other OM-based routines as well as the routine
used internally by the Magma Computational Algebra System. We present

results in number fields as well as function fields over finite fields.

Algebraic background

“I’d take the awe of understanding over the awe of ignorance any

2

day.
— Douglas Adams, The Salmon of Doubt

1.1 Localisation and completion

Let A be a commutative ring with unity and let Max(A) < Spec(A) denote
the maximal spectrum and the spectrum of A, respectively; that is, Max(A)
is the set of maximal ideals of A, and Spec(A) the set of prime ideals.

For every p € Spec(A) we consider the local ring Ap := A[(A\p)~!],
obtained from A by localisation at p. Also, if M is an A-module, we may

consider the Ap-module M, := M[(A\p)~!], obtained by localisation at p.

5

6 Chapter 1. Algebraic background

The elements of My, are formal quotients z/a, where x € M, a € A\p, and

they satisfy:
=T — Jpe A\p such that b(a'z — az’) = 0.
a
The localisation comes equipped with a natural map of A-modules

M —> My,

x— x/l.

By the above identity, /1 vanishes in M, if and only if « is annihilated
in M by some element in A\p.

The assignment M — My determines an exact functor from the category
of A-modules to the category of Ap-modules. Since the module My may be
identified to M ®4 Ap, the exactness of the functor shows that Ay is a flat
A-algebra.

The following result shows that certain properties may be deduced lo-

cally.

Lemma 1.1. Let M be an A-module, N < M an A-submodule and x € M.
e N = M if and only if Ny = My, for all m € Max(A).
e z € N if and only if ©/1 € Ny, for all m € Max(A).

Suppose A is a noetherian ring and let a be an ideal of A. The a-adic
topology on A is determined by taking the subsets {a + a"},>0 as a fun-
damental system of neighbourhoods of any a € A. With this topology, A
becomes a topological ring; that is, the operations of addition and multipli-
cation are represented by continuous maps. Since A is noetherian, we have
(Nnso @ = {0}, and A is a Hausdorff topological space.

Any A-module M inherits a similar topology by taking {z + a"M },>
as a fundamental system of neighbourhoods of any x € M.

The ring A, or the module M, are said to be complete with respect to

the a-adic topology if any Cauchy sequence is convergent. It is possible to

1.2. Finite extensions of Dedekind domains 7

construct the completion of A, or M, as the inverse limit:

A~

A:=lim A/a",
M := lim M /a" M.

The ring Aisa complete topological ring, and we have a canonical con-
tinuous ring monomorphism, A <— A. Any continuous ring homomorphism,
A — B, from A to a complete topological ring B, extends in a unique way
to a continuous ring homomorphism A - B.

The assignment M — M determines an exact functor from the category
of finitely generated A-modules to the category of finitely generated A-
modules. Moreover, if M is finitely generated, the canonical map M ®4

A—> Mis an isomorphism of A-modules. Thus, A is also a flat A-algebra.

1.2 Finite extensions of Dedekind domains

Let A be a Dedekind domain; that is, A is a noetherian, integrally closed
domain of dimension 1. Every nonzero prime ideal of A is maximal; in other
words, Spec(A) = Max(A) u {0A}.

Every nonzero ideal of A decomposes in a unique way as a product of
nonzero prime ideals. This is the essential property of Dedekind domains.

Let K be the field of fractions of A. A fractional ideal of A is a finitely
generated A-submodule I ¢ K. The set 74 of nonzero fractional ideals
has the structure of a commutative group with respect to the operation of
multiplication of fractional ideals. By the unique factorisation property, Z4

is a free abelian group over the set of nonzero prime ideals:

Ty = @ m”.

meMax(A)

The class group of A is the quotient group CI(A) := Z4/Pr4, where
Pra:={zA:2e K*} c Iy,

is the subgroup of principal nonzero fractional ideals.

8 Chapter 1. Algebraic background

Let m be a non-zero prime ideal of A and consider the map
Um Lo — Z,

determined by:

N)

meMax(A)

For any I,J € T4, we say that I | J if any of the following equivalent

conditions are satisfied :
1. Jc 1,
2. there exists an ideal a © A such that J = al,
3. vm (I) < vy (J) for all m e Max(A).
The induced map

Um: K* — 7,

T Uy (T) 1= v (TA),

with the extended value vy (0) := 00, is a discrete valuation of K. The local

ring A, may be identified with the valuation ring of vy:
An={re K :vyn(z) >0} c K.

In particular, Ay is a principal domain.

Let f € A[x] be a monic and irreducible polynomial of degree n > 1.
Let 6 € K be a root of f and L = K(6) the finite extension of K generated
by 6. The integral closure B of A in L is a Dedekind domain. We assume
throughout that the following hypothesis is satisfied.

Hypothesis. B is finitely generated as an A-module.

This condition holds under very natural assumptions; for instance, if
L/K is separable, or A is complete with respect to some discrete valuation,

or A is a finitely generated algebra over a field [Ser68, I, §4].

1.2. Finite extensions of Dedekind domains 9

Consider the factorisation of mB into a product of prime ideals in L:

(pr/m) _e(pg/m)
9)

mB = p} P
Let Ky, Ly, be the completions of K and L with respect to the m-adic
and p-adic topology, respectively. Denote the ring of integers of these fields

by:

flmcKm,

Finally, we denote by ny, := [Ly : K] = e(p/m) f(p/m) the local degrees,
where f(p/m):=[B/p: A/m] are the residual degrees.
The natural homomorphisms B — Bp induce a canonical isomorphism

of Ay-algebras [Ser68, II, Prop. 4]:

B®Af1m;>@p‘mép. (1.1)

By a classical theorem of Hensel [Hen08|, the prime ideals p | m are in

1-1 correspondence with the different monic irreducible factors of f(x) in

Anlx].

Definition 1.2. For each prime ideal p | m, let us fix a continuous em-
bedding, i, : L < L, — K, with respect to the p-adic topology. Then
Op = ip(0) is the oot of a monic irreducible factor (say) Fy(x) of f(x) in

Anlz]. Also, we denote:
wy = e(p/m) v, 1 L* — e(p/m) 7,

where vy is the discrete valuation of L attached to p.

Clearly, wy () = v (ip()) for all a € L, where v := vy, is the canonical

extension of vy to K. Thus, for any polynomial g(x) € A[z],

wy (9(0)) = v (9(6y))-

10 Chapter 1. Algebraic background

This identity will be implicitly used throughout the memoir without
further mention, when we apply local results to a global situation.
The semilocal ring By, = B[(A\m)~!] may be identified to the integral

closure of Ay, in L; that is, to the subring of m-integral elements of L:
Bn={aeL:vy(a) =0, VpeSpec(B), p | m}c L.

The ring By, is a torsion-free finitely generated Ap-module. Since Ay, is
a PID, this implies that By, is a free Ap-module. Also, since By, contains a
K-basis of L, it is a free An-module of rank n.

Given any nonzero fractional ideal I € Zp, there exists a € A such that
al < B. Therefore, I is finitely generated as an A-module. As we argued
for the A-module B itself, the localised module I, is also a free Ay-module

of rank n.
Definition 1.3. An m-integral basis of I is an An-basis of In,.

Definition 1.4. Let I € I be a fractional ideal of B. Consider the follow-

ing mapping:

W= Wy, : L — Qu {0},

a — w(a) = min {(vy (@) — vy (I))/e(p/m)}, 4, -

The map w does not behave well with respect to multiplication, but it

has some of the typical properties of a valuation.
Lemma 1.5. Let I €1p, a€ K, and o, B € L.
1. w(aa) = vy (a) + w (@).
2. w(a+) = min{w (a),w(B)}, and equality holds if w () # w (B).

Proof. The first item is an immediate consequence of wy (a) = v (a).
Let us prove the second item. Denote ay, := vy (1) /e(p/m), for all p | m.
Suppose w () < w («), and let q | m such that

w (B) = wq (B) — aqg < min {wy (@) — ap}, |, -

1.3. Indices of lattices over principal ideal domains 11

Take p’ | m such that w (« + 8) = wy (o +) — ay. Clearly,
w(a+ B) = wy (a+) — ay = min {wpr (B) , wy (a)} —ay =w(B).
If w(B) < w (), we have wq (8) —aq < wp () —ay, for all p | m. Hence,

w(B) = wq(B) —aqg = wq(a+) —ag = w(a+B) =w(p),

so that all inequalities must be equalities. In particular, w (o + 8) = w ().
[

This map w = wy, 1 is useful to detect what elements in L belong to In.

Clearly,

Im ={zeL:wys(xz)>0}cL. (1.2)

1.3 Indices of lattices over principal ideal domains

Let A be a PID, with field of fractions K. Let
Ia=Pra={zA:0e K*} ~ K*/A*,

be the group of fractional ideals of A, that coincides with the subgroup of
nonzero principal ideals.

In this section we fix a K-vector space V of finite dimension n. Let us
be precise about the way we consider transition matrices between two bases
of V.

Definition 1.6. Let B = (ay,...,a,) € V™, B = (af,...,al) € V" be two
bases of V.. The transition matriz from B to B’ is the matriz T = T(B' <
B) € GL,(K) determined by:

Note that the j-th column of T' collects the coordinates of o; with respect
to the basis B’.

12 Chapter 1. Algebraic background

Definition 1.7. An A-lattice of V is a finitely generated A-submodule M <

V', containing a set of generators of V' as a K-vector space.

Since our base ring A is a PID, our lattices will be free A-modules of rank
n. Thus, a lattice M is determined by an arbitrary basis B = (a1, ..., ay)

of V as a K-vector space, by taking M = {aq, ..., anya.

Definition 1.8. Let M, N c V be two lattices of V. The index [M : N] €
L4 is defined to be the fractional ideal generated by the determinant of the

transition matriz from any A-basis of N to any A-basis of M.

The choice of different A-bases of N and M leads to transition matrices
T,T" € GL,,(K) related by:

T = PTQ, P,Q e GL,(A).

Thus, det(T") = wdet(T), for some unit u € A* so that det(T") and
det(T") generate the same principal ideal. Therefore, the index [M : N] is
well-defined.

Lemma 1.9. Let L, M, N c V be lattices of V.
1. [L:N]=[L:M][M: NJ.
2. [M:N]=[N:M]
3. |[xM : xN]| = [M : N, for all x € K*.

4. If N ¢ M, then [M : N| = (a1---an)A, where ay,...,a, € A\{0}
satisfy

M/N ~ (AfaiA) x - x (AJan A).

5. [M : Nlm = [Mn : Nul, for all m € Max(A).
6. [M:N|®4sAn = [M ®4 A : N ®4 A, for all m € Max(A).

Proof. The three first items are an immediate consequence of well-known

properties of the transition matrices.

1.4. Normal forms of bases of fractional ideals 13

The fourth item follows from the theory of elementary divisors. There
exist an A-basis (aq,...,ay) of M, and nonzero elements ay,...,a, € A
such that (ajaq,...,a,0) is an A-basis of N.

Let us prove (5). Consider the transition matrix 7" from an A-basis By
of N to an A-basis By; of M; then, T is the transition matrix from the Ay-
basis By of Ny, to the Ay-basis By of My,. Hence, [M : Ny = det(T)An =
[My : Ny

The same argument proves (6). O

The next result follows immediately from these properties.
Lemma 1.10. Let N < M be two lattices of V' and let m € Max(A).

1. N =M if and only if [M : N| = A.

2. Ny = My, if and only if m f [M : NJ.

Remark 1.11. This index of lattices is a particular instance of a more gen-
eral invariant x (M, N) introduced by J. P. Serre for an arbitrary Dedekind
ring A [Ser68].

1.4 Normal forms of bases of fractional ideals

Let A be a PID, with field of fractions K, and let L/K be a finite field
extension of degree n as in Section 1.2. By assumption, the integral closure
B of Ain L is a finitely generated A-module. Since A a PID, B is a free
A-module of rank n.

The fractional ideals I € Zp are lattices of the K-vector space V = L.
As such they are free A-modules of rank n, and we are interested in the

computation of A-bases for them.

Proposition 1.12 ([Ser68]). For any fractional ideal I € Zp, we have

From a computational perspective, we consider the elements of L as K-

linear combinations of the powers 1,6,...,6" ! of the root 6 of the given

14 Chapter 1. Algebraic background

polynomial f(x) € A[z], defining the extension L/K. Consider the chain of

K-subspaces,
0=VocVi=KcVc.-.-cV,=1L, (1.3)

where for 1 < i < n, V; is the subspace generated by 1,6,...,0" 1.
The A-bases of fractional ideals are more easily handled in practice if

they are given in adequate normal forms.

1.4.1 Triangular bases

Let P be a complete set of non-associate prime elements in A. Thus, every
prime element g € A is written as ¢ = up, for unique v € A*, p € P. Let
PZ < K be the subset of elements which are finite products of powers of
primes in P, with integer exponents. Thus, for every x € K™, there exist
unique u € A*, y € PZ such that = uy. Finally, we denote PN := PZ n A;

clearly, PV is a complete set of non-associate elements in A\{0}.

Definition 1.13. Let (ag,...,an—1) € L™ be an A-basis of a nonzero frac-
tional ideal I € Tg. We say that the basis is triangular (with respect to the
choice of f(z) as a defining polynomial of L/K) if it satisfies the following

two properties:

1. For every 0 < j <n, a;j = djg;(0), where dj € PZ and
gj(a:) =7 + aj_17j.%'j71 +---t+a;xr+ap; € A[m]

is a monic polynomial of degree j. We take aj; := 1 by convention.
2. dyAc d1Ac---cd,—1A.

Our first aim is to show that every fractional ideal admits a triangular
basis. This is a specific property of fractional ideals, since not every lattice
of L admits a triangular basis. For instance, if A = Z, K = Q, and L = Q(0)
is an arbitrary quadratic extension, then the lattice M = (2, 20 + 1) does

not admit a triangular basis.

1.4. Normal forms of bases of fractional ideals 15

Lemma 1.14. Let I € Iy be a nonzero fractional ideal. For every integer

0 < m < n, denote
Ij,:={de K :df" eI+ V,},

for the chain Vo < --- < Vy,—1 of K-subspaces of L defined in (1.3). Then,

1. I, € Z4 is a nonzero fractional ideal of A. In particular, there exists

a unique d,, € PZ such that I, = d,A.
2. h=1nK.
3. IOC11C-'-CIH_1.

4. I Vg1 © Ly - Vit

Proof. Clearly, I, € K is an A-submodule. In order to prove (1) we need
only to check that it is nonzero and finitely generated as an A-module.

Let a,b € A be nonzero elements such that al < A[f] and bA[f] < I.
Clearly, b € I,,, for all m; thus I, is nonzero. Also, al,, < A, so that I, is
finitely generated.

The second item is an immediate consequence of the definition of Ij.
The third item follows from the fact that I is stable by multiplication by 6.

Let us prove (4) by induction on m. For m = 0 the statement is a
consequence of (2). Suppose that 0 < m < n and (4) holds for all indices
less than m. By item 3, we have d,,_1 = dna, for some a € A. If o :=
co+ 10+ -+ ™ e I, then ¢, € I, by definition; write ¢,,, = d,,b, for
some b € A. Consider now any § := eg + €10 + --- + e;p_10™" ! € I, with
ém—1 = dmym—1. By the induction hypothesis, eg,...,emn—1 € I,—1. Now, the
element ac — bB0 € I is a polynomial in 6§ of degree m — 1; by the induction
hypothesis, all its coefficients ac; —be; 1 belong to I,,,_1. Since be; 1 € I, 1,
we deduce that ac; € I),,_1, for all 0 < ¢ < m. Finally, ac; € I;,_1 = dm—14
is equivalent to ¢; € (dp—1/a)A = dp, A. O

Definition 1.15. These elements dy,...,d,_1 € K* are canonical invari-
ants of I (they depend only on the choice of f(x) € Alx] as a defining
polynomial of L/K). We allow an abuse of language and we say that they

are the elementary divisors of I.

16 Chapter 1. Algebraic background

The next result shows the existence of triangular bases and the essential

property of these bases that may be used to construct them.

Theorem 1.16. Let I € Tg be a nonzero fractional ideal. For every integer
0 < m < n, consider a pair of elements d,, € K* and By, = bom + b1.mb +
oo b1 0™+ 0™ € A[6] satisfying:

1. dpfBm €1,

2. dpn A is mazimal (with respect to the inclusion of fractional ideals) with

this property, for all possible choices of Byy,.
Then, dofBo, - .., dn_1Bn—1 1$ a triangular basis of I.

Proof. By Lemma 1.14, dy, ..., d,_1 are the elementary divisors of I. Thus,
we need only to show that dyfg, ..., dn—18r—1 is an A-basis of I.

Let « = cg+c10+ -+ c,10" 1 € I, for some cg,...,cn_1 € K. By
definition, ¢,_1 € I,,_1, so that there exists a € A such that ¢,_1 = ad,_1;
hence, o — ad,—15,-1 € I is a polynomial in 6 of degree less than n — 1.

An iteration of this argument shows that « is an A-linear combination of
doBo, - - s dn—1Pn-1- O

Corollary 1.17. If I € Ip has elementary divisors do, .. .,dn—1, then:
1. [A[0] - I] = do---dp1A.
2. Nyyx(I) = [B: A[0]] - (do -+ - dn1A).

Proof. Clearly, By, ..., Bn—1 is an A-basis of A[0]; this proves the first item.
The second item is a consequence of Proposition 1.12 and the transitivity

of the index (first item of Lemma 1.9). O

Remark 1.18. The maximality of d,, A is equivalent to the minimality of

d,, under the following partial ordering of P% ~ K*/A*:
r < y<= x| y<= there exists a € A such that y = ax.

For I = B, the elements d,, are of the form 1/u,,, with w,, € A. In this
case, the minimality of d,,, is equivalent to the maximality of u,, € A, under

the same partial ordering.

1.4. Normal forms of bases of fractional ideals 17

1.4.2 Hermitian bases

Definition 1.19. Let I € Iy and let («g,...,an—1) € L™ be a triangular
A-basis of I; that is, conditions (1) and (2) of Definition 1.13 are satisfied.

We say that (ag, .. .,an—1) is a Hermitian basis of I if it also satisfies:

3. For all 0 < i < j < n, the element a;; belongs to a fized subset of
representatives of A/(d;/d;)A.

This condition is equivalent to the fact that a certain nonsingular square

matrix over A is in Hermite normal form (HNF).

Definition 1.20. Let H = (b; ;) € A™*™ be a nonsingular matriz, with rows
and columns indexed by 0 < 1,7 <n. We say that H is in Hermite normal

form (under column transformations) over A if
1. It is an upper triangular matrix.
2. bj;€ PN, for 0 <i <n.
3. b;; belongs to a fized subset of representatives of A/b;; A, for all 0 <
1<j<n.

Every nonsingular square matrix M € A™*™ can be transformed into a
unique matrix in HNF by elementary column transformations with coeffi-

cients in A. In other words,
1. There exists @ € GLy,(A) such that M@ is in HNF.

2. If H,H' € A™"™ are matrices in HNF and H' = HQ for some Q €
GL,(A), then H = H'.

The next result is a straightforward consequence of Lemma 1.14.

Lemma 1.21. Let I € Iy be a fractional ideal of B and then let B =
(ag,...,cn_1) € L™ be an A-basis of I. Let By = (1,0,...,0"1) be the
standard A-basis of A[f], and consider the transition matric T = T(Bp «—
B) € GL,(K). Let d € A be any element such that dT' € A™*™. Then, the
basis B is Hermitian if and only if the matriz dT" is in HNF over A.

18 Chapter 1. Algebraic background

Corollary 1.22. Every I € Ip admits a unique Hermite basis.

As usual, the Hermite basis of I depends on the choice of the defin-
ing polynomial f(z) € A[x] of the extension L/K. So, the “uniqueness”
statement implicitly assumes that this defining polynomial is fixed.

In practice, we may find the Hermite basis of I by the following proce-

dure:

1. Compute a triangular basis B of I. Let dy,...,d,_1 be the elementary

divisors of 1.
2. Compute the transition matrix 7' = T'(By < B) € GL,(K).

3. Apply the HNF routine over A to the upper triangular matrix 7" :=
d.1, T e A" Let H be the HNF of T".

4. The coordinates of the elements in the Hermite basis of I, with respect
to the K-basis 1, 0, ..., "' of L, are the columns of the matrix

dn_1H.

The crucial point is the computation of the triangular basis. The rest
of the steps are trivial and reasonably efficient. In step (3) the efficiency
relies on the fact that the input matrix to the HNF routine is already upper

triangular.

1.5 Local triangular bases

Local bases exist for arbitrary Dedekind domains A, as we saw in Section
1.2. For any fractional ideal I € Zp and any m € Max(A) the localised
ideal I, is a free Ap-module of rank n and an Ay-basis of I, is called an

m-integral basis of I (Definition 1.3). The local ring Ay, is a PID with

P(Am) = {7},
P(Am)? = {7" : v e Z},

where m € m is a local generator.
By the results of Section 1.4, I, admits triangular Ap-bases, which may

be called m-triangular bases of I.

1.5. Local triangular bases 19

Theorem 1.23. Let I € Ip be a nonzero fractional ideal. For every integer
0 < m < n, consider a pair of elements vy, € Z and By, = bom + 1m0 +

co A b1 0™ 4 0™ € A[0] satisfying:
1. 7™ B, €1,
2. Um s minimal with this property, for all possible choices of By,.
Then, m°0Bg, ..., 7""15,_1 is an m-triangular basis of I.

Proof. This is a particular instance of Theorem 1.16 applied to the ring Ay,
except for the fact that we require the f,,’s to be polynomials in 6 with
coefficients in A, and not merely in Ay,. However, if 773! € I, for some
B = o + U + -+, 0™ + 0™ € Ag[0], then we also have

T/ By € Iy for B, = bom + b1,m0 + - + b1 0™ 1 + 0™ € A[0], if all by,

are sufficiently close to b, in the m-adic topology. 0
We may be more precise about the link between v,,, and 5,,.

Corollary 1.24. With the above notation, vy = [—wm,1 (Bm)], for all 0 <
m < n. In particular, vy = [maxy m{vy (1) /e(p/m)}].

Proof. Fix one index 0 < m < n. By (1.2),
ﬂymﬁm €Iln = W, 1 (Wymﬁm) =0 <= W, T (Bm) = —Vp.

By the minimality of v, we have necessarily vy, = [—wm,1 (Bm)].

The statement about vy follows from 5y = 1.]

Condition (2) of Theorem 1.23 says that the integer |wy 1 (Bm)] is max-
imal, for B, = hp(f) with hy,, € A[z] running on all monic polynomials
of degree m. If we require the stronger property, that the rational number

Wm,1 (Bm) is maximal, we obtain m-reduced bases.

Definition 1.25. A family aq,...,q, € B is called m-reduced if for any

family ay,...,a, € An:

Wm, 1 (Zl<i<r aiai) = min {wm,f (aiai) 1< < n} .

20 Chapter 1. Algebraic background

We may strengthen Theorem 1.23 in the following way.

Theorem 1.26. Let I € Tg be a nonzero fractional ideal. For every integer
0 < m < n, consider g, € Alx] a monic polynomial of degree m such that
Wi, 1 (gm(0)) is mazimal among all possible choices of gm. Denote vy, =
[—wm,1 (gm(0))]. Then, ©°go(0),..., 7" 1gp—1(0) is an m-triangular m-

reduced basis of I.

Proof. By Theorem 1.23, 10gy(6), ..., m""1g,_1(0) is an m-triangular basis

of I, so it only remains to show that it is also m-reduced.

Denote «; := 7"ig;(6).

Given a family ag,...,an—1 € Ay, let 6 = min {wy 1 (a;04) : 0 <7 < n}.
By Lemma 1.5,

Wi, T (ZKK” aiai> > min {wy, 1 (a;04) 1 1 < i <n} =24

Hence, it suffices to show that wy 1 (20<i<n aiai) < 4.

Take 1 = {7 : wn 1 (a;04) = 6}. By Lemma 1.5,

Wm, 1 <20<i<n aiai> = Wm,J (Zieﬁ aiai) .

Since 0 < w1 (o) < 1 for all 7, the values vy, (a;) € Zx(are all constant
for i € 1. Dividing by an adequate m-power we may assume vy (a;) = 0 for
all i € 1. If ip = max(i), we may divide everything by a;, (which is now a

unit in Ay) so that we may assume that a;, = 1. Now,

Zieﬁ a;0; = T 0 h(&),

for a certain monic polynomial h € Any[6] of degree iy. By the maximality

of gi,(#) we must have

i (3, 1) < s (77053,(6)) = w1 (0) =

1.6. Global triangular bases 21

1.6 Global triangular bases

If A is a PID, there is a standard procedure to patch triangular m-integral

bases of I into a triangular A-basis of I, by means of the CRT.

Notation. Denote by Upy(A) the subgroup of GL,(A) formed by the upper
triangular matrices such that all elements in the principal diagonal are equal

to 1.
Theorem 1.27. Let I € Iy be a nonzero fractional ideal of B, and let
Pr := Supp(I) u Supp([B : A[f]]) € Max(A),

be the set of all m € Max(A) such that m divides some p € Spec(B) with
vp (I) # 0, or m divides [B : A[f]].

Suppose that for each m = Ty A € Pr we have an m-triangular basis of
In:

mi”’mﬁo,m, e ,an_lvmﬁn—l,ma Vjm = [_wm,l (Bj’m)]’

where Bom, - -, Pn—1,m is a triangular A-basis of A[f], given by a transition

matriz Up € Upp(A):
(16 - 0" NYUn = (Bom - Bu-1m):

Take U € Upyn(A) whose columns U’ are the solution of the following CRT

problem:
Ul = (Up) (mod g™ ™), vV me Py,
and consider the triangular A-basis Bo, ..., Bn—1 of A[0] determined by:
(16 "0 = (B Bur).

Then, dofBo, - ..,dn_18n—1 1s a triangular A-basis of I, where we denote

e Vj,m
d] T HmePI Tm -

22 Chapter 1. Algebraic background

Proof. Let us check first that d,,5,, belongs to I for all 0 < m < n. It is
sufficient to check that d,,[,, € Iy, for all m € Max(A) (cf. Section 1.1).

If m ¢ Pr, we have I, = A[f]n. In fact, I, = By, because m ¢ Supp([),
and By = A[f]m by Lemma 1.10, because m } [B : A[f]]. Now, since
dm € Am and S, € A[0)], clearly dp,Bm € Al0]m = In.

If m € Py, then by Corollary 1.24 we have

_ _ v ()
Wy (Bm 5m,m) Z Vm — Vmm = 6(]3/111) Vm,m, Vp|m

Hence, wm 1 (Bm — Bmm) = —Vmm. Since W 1 (Bmm) = —Vm,m, Lemma
1.5 shows that wy 1 (Bm) = —Vm,m and w1 (dmBm) = Vmm+Wm,1 (Bm) = 0.
Thus, d,, [, belongs to Iy, by (1.2).

Finally, it is clear that d,, A is maximal amongst all ideals dA, for d € K*
satisfying df}, € I for some !, a monic polynomial in 6 of degree m with
coefficients in A. In fact, if d,, A & dA, then there must be a prime ideal m,
with vy (dm) > vm (d). If m ¢ Py, we get 0 > vy (d), and this contradicts
the equality Iy = A[f]m = An[0]. If m € Pr, we get vy m > v (d), and this
contradicts the minimality of v, m, or equivalently, the fact that 7"=m is
the m-th elementary divisor of I,.

By Theorem 1.16, dgfy, - - -, dn—18n—1 is a triangular basis of I. O

1.7 Aim of this memoir

The fastest methods to construct m-integral bases of B are the OM method
given in [GMN13], and the method of the quotients developed in [GMN].
The second method is more efficient, but it has the disadvantage that it
only applies to finding m-integral bases of B, while the first method (based
on the construction of certain multipliers) is able to yield m-integral bases
of arbitrary fractional ideals.

These methods yield non-triangular bases. However, in many applica-
tions, such as the computation of global A-bases of fractional ideals when
A is a PID, we need local triangular bases, so that it is necessary to apply
a triangularisation routine to certain nonsingular matrices in A™*™,

The main aim of this memoir is to find a direct construction of m-

1.7. Aim of this memoir 23

triangular bases of fractional ideals, which works as fast as the aforemen-
tioned methods, and avoids the triangularisation routine.

Even if we want to construct a Hermitian basis, the HNF routine is much
more efficient when it is applied to a matrix which is already triangular.

Our method for the constructions of m-triangular bases is called the
MaxMin algorithm and it is discussed in detail in Chapter 4. The m-
triangular bases computed by the MaxMin algorithm have a maximal wp, ;-
value; hence they are m-reduced too, as shown by Theorem 1.26. This is
crucial for some applications to arithmetic properties of function fields (see
Section 5.4).

Since we are only interested in local bases, we shall work in a purely
local context. Our base ring will be an arbitrary discrete valuation ring O
with field of fractions K. We shall consider a finite field extension L/K
and our aim will be the computation of triangular O-bases of the integral
closure Op, of O in L.

The MaxMin algorithm is also an OM method. It requires an initial
application of the Montes algorithm to compute OM representations of the
prime ideals of Op. For the convenience of the reader, we will review the

necessary background material in Chapter 2.

OM representations of prime

ideals

“One should never mistake pattern for meaning.”

— lain M. Banks, The Hydrogen Sonata

Let (K, v) be a discrete valued field with valuation ring O. Let m be the
maximal ideal, 7 € m a generator of m and F = O/m the residue class field.

Let K, be the completion of K, and retain v : f: — @ the canonical
extension of v to a fixed algebraic closure of K,. Let O, be the valuation
ring of K, and m, its maximal ideal.

Let f € O[z] be a monic, irreducible polynomial of degree n and fix
a oot § € K in the algebraic closure of K. Let L = K(f) be the finite
extension of K defined by f and let Of be the integral closure of O in L,

25

26 Chapter 2. OM representations of prime ideals

which is a Dedekind domain. We denote the set of prime ideals of Of, by
P.

We suppose that Oy, is finitely generated as an O-module. This condition
holds under very natural assumptions; for instance, if L/K is separable, or
(K, v) is complete, or O is a finitely generated algebra over a field [Ser68, I,
§4].

By a theorem of Hensel [Hen08], the prime ideals of Oy, are in 1-to-1
correspondence with the prime factors of f in O,[z]. The construction of
“OM representations” of each prime factor of f yields computational data
about the prime ideals of Op, encoding relevant arithmetic information
about these ideals.

For this reason, we are initially interested in the representation of monic

irreducible polynomials F' € O,[x].

2.1 Okutsu equivalence of prime polynomials

Definition 2.1. A prime polynomial with respect to v is a monic irreducible

polynomial with coefficients in O,[x]. Let us denote by
P:=P(O,z]) := {F € Oy[z] : F monic, irreducible} ,

the set of all prime polynomials.

Let F € P be a prime polynomial and fix § € K, a root of F. Let
Kr = K,(0) be the finite extension of K, generated by 6.

Definition 2.2. The Okutsu bound of F' € P is defined as,
0o(F) := deg(F)max{v (g(0))/degg : g € Olz],g monic,degg < deg F'}.

Definition 2.3. Let F,G € P be two prime polynomials of the same degree,
and let § € K, be a root of F. We say that F and G are Okutsu equivalent,

and we write F' ~ G, if

v (G(0)) > 6o(F).

2.2. Types over (K,v) 27

We denote by [F] € P the Okutsu class of F'; that is, the set of all
prime polynomials which are Okutsu equivalent to F'. The idea behind this
concept is that all members of [F'] share certain discrete invariants, which

are further described in the following section.

2.2 Types over (K,v)

A type t is a computational object consisting of discrete data, structured

into levels:

t = (Yo; (d1, A1, ¥1)5 - 5 (Dr, Ary Ur)). (2.1)

The number r of levels is called the order of the type.
A type t = (1) of order 0 is determined by the choice of an arbitrary
monic irreducible polynomial ¢y € F[y]. It supports the following data at

level O:

e Numerical data: e = mg =1, A\g = hg = 0.

A discrete valuation vy : K(z)* — Z, determined by the following

action on polynomials:

v (Z aiwi> := min {vg (a;) : i > 0}.

>0

Yo € Foly] a monic irreducible polynomial.

Fy = Foly]/(w0) a finite extension of I of degree fy := degy.

2o € Fy the class of y. Hence, F; = Fy[z] and 1) is the minimal

polynomial of zy over Fy.

e The residual polynomial operator Ry : K[z] — Fo[y], where Fy = F.
It is defined as Ro(g) = g(y)/m?0@) for any non-zero g € K|[z].

Ifto = (Yo; (1, A1,¥1); .5 (dim1, Ai—1,%i—1)) is a type of order i—1 > 0,
then a type t = (to; (¢i, Ai, ¥;)) of order i may be obtained by adding the
following data at the i-th level:

28 Chapter 2. OM representations of prime ideals

o A representative ¢; of tg. That is, a monic polynomial ¢; € O[x] of

degree m; := e;_1 fi_1m;—1 such that Ri—1(¢i) = ;_1.
e The value V; := v, (¢;) € Z>o.
e A Newton polygon operator N; := Ny, | 4,.

e A positive rational number \; = h;/e;, with h;, e; positive coprime

integers. We say that \; is the slope of ¢ at level i.
e The Bézout identity ¢;h; + lie; = 1,0 < 4; < e;.
e A normalised augmented valuation v; of K(z).
e ¢; € F;[y] a monic irreducible polynomial, v; # y.
o ;11 =TF;[y]/(¢;) a finite extension of F; of degree f; := deg);.

e 2; € F; the class of y. Hence, F;11 = F;[z:] and 1); is the minimal

polynomial of z; over [F;.

A residual polynomial operator R; := Ry, | 4,2,

The polynomials ¢1, . .., ¢; are prime polynomials with coefficients in O.
That is, they are irreducible over O, [z].

We will now describe the i-th level operators N;, v;, and R; in further
detail.

Newton polygon

At each level a type t defines a Newton polygon,
Ni = Ny,_,0 1 K[z] — 2% 1<i<r,

where 2% is the set of subsets of the Euclidean plane. Any non-zero poly-

nomial g € K,[x] has a canonical ¢;-development:

g = Z as(;ﬁf, degas < m;,

0<s

2.2. Types over (K,v) 29

vi—1(9)

0 ordg,(g) ordy, , (Ri—1(g)) ¢(N;(9))

Figure 2.1: Newton polygon of a polynomial g € K[z].

and the polygon N;(g) is the lower convex hull of the cloud of all the points
(s,vi—1 (as95)). Figure 2.1 shows the typical shape of N;(g).

If the Newton polygon N = N;(g) is not a single point, we formally write
N =51+ -+ Sk, where S; are the sides of N, ordered by their increasing
slopes. The left and right end-points of N and the points joining two sides
of different slopes are called the wvertices of N.

Usually, we are only interested in the principal Newton polygon N; (g) <
N;(g) formed by the sides of negative slope. If there are no sides of negative
slope, then N (g) is the left end-point of N;(g).

The length ¢(N) of a Newton polygon N is the abscissa of its right

end-point. For every non-zero polynomial g € K[z], we have

¢(N; (9)) = ordy, , (Ri—1(9)) , in F;_1[y]. (2.2)

Let A € Q-¢ be a positive rational number and let L_) be the line of
slope —\ which first touches the polygon N;(g) from below. We define the
A-component of N = N;(g) as the segment

Sy = {(z,y) € N : y + Az is minimal} = N n L_j,

and we denote by sx(g) < s)(g) the abscissas of the end-points of S\(g).
If N has a side S of slope —\, then Sy = S and s)(g) < s)(g), otherwise
Sx(g) is a vertex of N and s)(g) = s)(g) (see Figure 2.2).

30 Chapter 2. OM representations of prime ideals

S describes a side of N;(g) S describes a vertex of N;(g)

Figure 2.2: The A-component of N;(g).

Normalised augmented valuation

The Newton polygon operator N; together with the slope \; define the
normalised augmented valuation v; of the field K (x).

Given a polynomial g € K[z], let L = L_y, be the line of slope —)\; first
touching N;(g) from below. Let (0, H) be the point where L crossed the

vertical axis (see Figure 2.2). Then the v;-valuation of g is defined as,

vi(g) = He;. (2.3)

Residual polynomial

A type t also has a residual polynomial operator at each level,
Ri:=Ro,_ ¢\ ¢ K[z] — Fi[y], I<isr

The operator R; maps 0 to 0. For a non-zero g € K|[z] with ¢;-expansion
g = Dlo<s @59}, let us denote by s;(g) < s;(g) the abscissas of the end points
of the A\j-component S = S),(N;(g)) of N;(g).

Let d = (s;(g9) — si(g))/ei be the degree of S. There are d 4+ 1 points of
integer coordinates P, ..., P; lying on S, with abscissas s; := s;(g) + je;
for 0 < j < d (see Figure 2.3). Denote by Q; = (s;,v;—1(as,#;’)) the point
of abscissa s; in the cloud of points which is used to compute the Newton

polygon N;(g).

2.2. Types over (K,v) 31

vi(g)/ei ™

0 si(g) sj si(g)

Figure 2.3: Computation of R;(g) for a non-zero polynomial g € K[z].

Consider the following residual coefficient:

0, if Q; lies above N;(g),

2Ry (ag) (zinr) € FE, i Q) Ties on Ni(g),

Cj =

(2.4)

where for any a € K|[z] we define tg(a) = 0 and t;(a) = (sg(a) —lrvr(a))/ex
if kK > 0. Then, we define

Ri(9)(y) := Ru_1.0:0:(9) () = co + c1y + -+ + cay® € Fi[y].

Since cocgq # 0, the polynomial R;(g) has degree d and it is never divisible
by y.

Remark. Note that a type t of order ¢ determines the numerical values

M1 = € fimy,

Vier = eifi(ei Vi + hy),

of any enlargement of ¢ to a type of order ¢ + 1.

In fact, any representative ¢ of t has degree m; 1 := e; f;m; by definition.
Also, Theorem 2.6 shows that N;(¢) is one-sided of slope —\; and length
eifi = miy1/mji. Hence, Viy1 :=v; (¢) = ei(eifiVi + fihi) by (2.3).

32 Chapter 2. OM representations of prime ideals

Definition 2.4. Let t be a type of order r over (K,v).
The truncation Trunc;(t) of t at level j, is the type of order j obtained
from t by dropping all levels higher than j.

Definition 2.5. Let t be a type of order r. For any g € K[x] we specify
ord¢(g) := ordy, Ry(g) in F.[y].

This function is multiplicative: ordg(gh) = ordg(g) + ordg(h) for all
g,h e K[z].
If ord4(g) > 0, we say that t divides g, and we write t | g.

Let F' € P be a prime polynomial with respect to v as in Definition 2.1
and 6 € K, aroot of F. The next result explains the use of the term “type”.
All prime polynomials divisible by a type t share certain common features
described by the parameters supported by t. It therefore makes sense to
say that these polynomials “are of type t”.

Theorem 2.6. Let t be a type of order r such that ¢t | F'. Then, for all
1<i<gr:
Vit A

o N;(F) is one-sided of slope —\; and v (¢i(0)) = P
1o €1

o deg(F') = deg(¢i) - £(N;(F))
o Ri(F) =4f, a=LUN;(F))/eif:

Moreover, if ¢ € Rep(t) is a representative of t such that ¢ # F, then
Vig1 + A

e1...6r

o Ny, o(F) is one-sided of slope —\, such that v (¢(0)) =
o deg(F') = deg(¢) - £(Ny, 4(F))

o Ry s \(F) =9, for e Frp1|y], monic irreducible, and

a = {(Ny, »(F))/(exdeg(v)),

where ey, is the least positive denominator of A.

Additionally, the type t' = (t; (¢, A\,) divides F.

2.2. Types over (K,v) 33

N:(9) N:(g)
He
-\
v, “ Ly, D
L, ! ¢ ¢
A > A A=A A < A

Figure 2.4: Three possible positions for line Ly, .

Theorem 2.7. Let t be a type of order r such that t | F and select any
g € Ky|x]. Let Ly, be the line of slope —\, that first touches N,(g) from
below. Then,

H

v(g(0) =z ———,
€1 €r—1

where (0, H) is the point where Ly, crosses the vertical azis. Equality occurs

if and only if t f g.

We can apply Theorem 2.7 to some prime polynomial g € P, such that
Trunc,_i(¢) | g, but ¢ } g. Then, Theorem 2.6 and (2.2) show that
Ry—1(9) = ¢;_ with £ = ¢(N (g)) = deg g/ deg ¢,. Hence, a look at Figure
2.4 shows that,

H degg V, + min{\, A}
v(9(0)) = = ‘)

= 2.5
€1 €ep_1 deg ¢7‘ €1 €p_1 ()

where —\ is the slope of N, (g), according to Theorem 2.6.

Construction of types

In this paragraph, we recall the existence of a concrete procedure to con-

struct a representative of a type.

Proposition 2.8. Let t be a type of order r = 1. Let p € F.[y] be a non-

zero polynomial of degree less than f, and let b = V,..1 be an integer. Then,

34 Chapter 2. OM representations of prime ideals

we may construct a polynomial g € O[z] such that
degg <mpp1, or(g)=b, ylrOIR(g) = 0.

In order to construct a representative ¢ of t we may apply the proce-
dure given in Proposition 2.8 to construct a polynomial g € O[x] such that
R.(9) = ¢, —y!", and take ¢ = ¢S + g. In this way, we may efficiently
construct representatives of types.

We denote by Rep(t) the set of all representatives of a type t. By
Proposition 2.8 this is a nonempty subset of P.

Since the level data A;, v; are arbitrarily chosen, we may construct types
of prescribed order r and prescribed numerical data h;,e;, f; for 1 < < r.
In other words, we may construct local extensions of K, with prescribed

arithmetic properties.

2.3 Types parameterise Okutsu classes of prime

polynomials

2.3.1 Equivalence of types

Definition 2.9. Let t,t’ be two types of order r,r’, respectively. We say
that t and t' are “equivalent” if they have the same set of representatives:

Rep(t) = Rep(t’). We write t = t’ in this case.

This is clearly an equivalence relation. The properties shared by equiv-

alent types are studied in full detail in [Narl4]|. Let us just mention that
t=t — vy =vy and ords = ordy,
where vy, vy are the valuations of the last level of the respective types.

Definition 2.10. Let t be a type of order r = 0. We say that t is optimal
ifmy <--- <m,. We say that t is strongly optimal if in addition to being
optimal, m, < my41.

We agree that a type of order zero is strongly optimal.

2.3. Types parameterise Okutsu classes of prime polynomials 35

Denote by 7 the set of all types over (K,v) and let 75" < T be the
subset of all strongly optimal types.

Proposition 2.11. Consider two strongly optimal types:

t = (Yo; (01, A1, ¥1)5 - - -5 (s Ars Yr)),
t* = (55 (01, AT, 01)5+ -5 (@, A, Ui)).

Then t and t* are equivalent if and only if they satisfy the following

conditions:

(i) r=r*.

(1) ¢F = ¢; + a;, dega; < my, vi(a;) = vi(¢P;), for all1 < i <.
(111) Nf =X foralll <i<r.

(v) V¥ (y) = vi(y —mi) for all 0 < i < r with n; defined as follows:

0, f vi (a; 1 \Pi)
b= if vi (a;) > vi (¢;) (26)
Ri(a:) € F}, if vi(a;) = vi (¢) .

We denote by T = T/ = the quotient set and we write [t] < T for

the class of all types equivalent to t.

We can link these classes of equivalent types to the Okutsu classes of

prime polynomials presented in Section 2.1.

Theorem 2.12. There is a canonical bijection between the set of equivalence
classes of strongly optimal types and the set of Okutsu classes of prime

polynomials:
T— (P/~),

that sends the equivalence class [t] of a strongly optimal type t to the Okutsu

class of any representative of t.

We denote by om : (P/ ~) — T the inverse of the above map.

36 Chapter 2. OM representations of prime ideals

2.3.2 MacLane-Okutsu invariants of prime polynomials

Let F' € P be a prime polynomial. Let ¢ be any strongly optimal type in
the class om([F]).

The order r of t is called the Okutsu depth of F.

The basic MacLane-Okutsu invariants of F are the following positive

integers supported by t:

€ly...,€Ep, hl,...,hr, f(),...,fr. (27)

Recall that h;,e; are coprime such that h;/e; = \; for all 1 < ¢ < r, and
fi =deg; for all 0 <@ < 7.

By Proposition 2.11, these invariants are shared by all strongly optimal
types in the equivalence class of t.

There are a number of further invariants of F', which can be constructed

from these invariants.

Definition 2.13. A MacLane-Okutsu invariant of F' is a rational number

that depends only on the basic invariants presented in (2.7).

For simplicity we shall refer to these invariants as OM invariants of F.

Some examples of OM invariants are,

m; = deg¢; = e;—1 fi—1m;1,
Vii=wvi—1 (i) = ei—1fi—1(ei—1Vie1 + hi—1).

(F):=e(Kp/K,) =e1--- e, the ramification index of Kr/K,,
f(F):= f(Kr/Ky) = fo,-.., fr, the residual degree of Kp/K,,
(F)
(F)

ind(F) := lengthy, (Op/O,[0]) =n (cap(F) — 1+ e(F)7') /2,
F(F) := min {5 € Zso : (mp)® ov[a]} — 2ind(F)/f(F),

exp(F') = min {5 € Z=o: m°Op (’)U[H]} = |cap(F)|.

2.3. Types parameterise Okutsu classes of prime polynomials 37

The Okutsu bound dyg(F') was defined in Definition 2.2. The final four

operators are the capacity, index, conductor, and exponent of F respectively.

2.3.3 Tree structure on the set of types

Let us introduce a tree structure on the set 7 of types. Given two types
6,1’ € T, there is an oriented edge t' — ¢ if and only if ¢/ = Trunc,_1(t),
where r is the order of ¢. Thus, we have a unique path of length equal to

the order of t:
Truncy(t) — Truncy (t) — - -+ — Trunc,_;(t) — t. (2.8)

The root nodes are the types of order zero. Thus, the connected com-
ponents of 7 are the subtrees 7, of all types t with Truncy(t) = (¢), for ¢
running on the set P(F[y]) of all monic irreducible polynomials in F[y].

The branches of a type t of order r are parametrised by triplets (¢, A, 1),
where ¢ is a representative of t, A is a positive rational number and v €
F,+1[y] is a monic irreducible polynomial such that ¢ # y. Such a triplet
determines an edge t — t*, where t* = (t; (¢, A\, %)) is the type obtained
by enlarging ¢ with data (¢, A, %) at the (r + 1)-th level.

Suppose t = (¢o; (d1,A\1,%1);.-.;(dry Ary¥r)). In practice, when we
represent a path like (2.8) we omit the labels of the vertices which are not

root nodes and we label the edges with the level data as follows:

(¢17)\1,¢1) ((;Sr))\rawr)
Ype——e@ -+ e&—— @

Figure 2.5: Visual path representation of a type t of order 7.

Also, since the direction of the edges is self-evident, we draw them as
lines instead of vectors. We recover the real path (2.8) from its practical
representation (Figure 2.5) by attaching to each vertex of the path the type
obtained by gathering all level data from the previous edges.

All truncates of a strongly optimal type ¢ are also strongly optimal,
hence the subset 75% < T is a full subtree of 7. Also, if t = t* are strongly
optimal, then Trunc;(t) = Trunc;(t*) for all 0 < ¢ < r. Therefore, the

38 Chapter 2. OM representations of prime ideals

tree structure on 7 induces a natural tree structure on the quotient set
T =75/=.
Since the equivalence relation = on 7% only identifies vertices of the
same order, a path of length r in 75 determines a path of length r in T.
For types of order zero, t = t* holds only for ¢ = ¢*; thus, the root
nodes of T are in 1-1 correspondence with the set P(F[y]).

Index of coincidence of types

Owing to the tree structure on the set of types, we are able to introduce a

measure of similarity on types.

Definition 2.14. Let t,t' € T' be two vertices of a tree of types T < T of

order r and 1’ respectively. The index of coincidence,
i(t,t") = min {0 < ¢ < min {r,7'} : Trunc,(t) # Trunc,(t')},
is the lowest index £ such that truncation of both types at { is not equal.

Two vertices with index of coincidence greater than 0, share the same
root node (1g). However, if two types have an index of coincidence of 0,

that indicates that they belong to distinct connected trees.

2.4 OM factorisation of polynomials

2.4.1 OM representations of prime polynomials

Let F' € P be a prime polynomial and let tz be a strongly optimal type of
order r such that om([F]) = [tr]. Let us denote by T(F') < T the unibranch
tree determined by the path joining [t] with its root node in T.

For any polynomial ¢ € [F'] n O[] in the Okutsu class of F' and having
coefficients in O, the pair [tp, ¢] is called an OM representation of F. If
¢ = F' we say that the OM representation is ezact.

Definition 2.15. The quality of ¢ as an approximation to F is defined as
the rational number v (¢(0)).

2.4. OM factorisation of polynomials 39

The polynomial ¢ is a “sufficiently good” approximation to F' for many
purposes. The discrete data contained in the type tg is a kind of DNA
sequence common to all individuals in the Okutsu class [F'], and many
properties of F' and the extension Kp/K, are described by this genetic
data, as we have seen in Section 2.3.2. In a more classical approach the
computation of these invariants has to be derived from extra routines that
may be computationally expensive. Further, the genetic information of F
is helpful in the construction of approximations with a prescribed quality
and, more generally, it leads to a new design of fast routines carrying out

basic arithmetic tasks in number fields and function fields.

2.4.2 OM representation of a square-free polynomial

Let f = Fy --- F; be the prime factorisation in O,[z] of a square-free monic
polynomial f e O[z]. For each 1 < j <t, let r; be the Okutsu depth of Fj
and 0; € K, a root of F;.

Definition 2.16. The genomic tree of f is the finite tree T(f) := T(Fy) u
- uT(F) cT.

Let us extend the notion of Okutsu equivalence in section 2.1 to non-

irreducible polynomials

Definition 2.17. Let g,h € O[zx] be monic polynomials with prime factori-
sations g = Gy---Gs, h = Hy---Hy in Oy[z]. We say that g and h are
Okutsu equivalent, and we write g ~ h, if s = s’ and G; ~ H; for all
1< j <s, up to ordering.

An expression of the form, g ~ Py --- Py, with Py,...,Ps € P n Olx] is

called an Okutsu factorisation of g.

Clearly, every g € O[z] admits a unique (up to ~) Okutsu factorisation.
However, we need a stronger concept for our purposes. For instance, if
all factors of g are Okutsu equivalent to P, then g ~ P? is an Okutsu

factorisation of g which is unable to distinguish the true prime factors of g.

40 Chapter 2. OM representations of prime ideals

Definition 2.18. We say that P; € [F}] is a Montes approximation to Fj

as a factor of f if
v (Pj(05)) > v (P;(0r)) , Vi<k#j<t

An OM factorisation of f is an Okutsu factorisation f ~ Py --- P such

that each approximate factor Pj is a Montes approzimation to F; as a factor

of f.

It f ~ P ---F is an OM factorisation of f, the types tp, may be
extended to types

fﬁj - (ﬂ;Fj; (PJ’)‘Tj+1aj’w7’j+17j)) s P] # Fja (2.9)

(ﬂ;Fj;(Pj,OO,—)), Pj:‘Fja
satisfying
ordg,(Fj) =1, 5/ Fy, foralll1 <k=#j<t.

By Theorem 2.6, the quality of the approximations P; ~ F} is given by

the formula:

N Ari+1,5
e(Fj)

If P; t f, the slope A, 41,5 is an integer which may be computed as
the largest slope (in absolute value) of N alf) = N;Tj 7 P]-(f). This slope
corresponds to a side whose end points have abscissas 0 and 1 (see Figure
2.8). Hence, Ry, +1(f) := ij,pj’,\rjﬂﬁj(f) has degree one and ¥, 415 is
equal to Ry, 11(f) divided by its leading coefficient.

The types t; are optimal, but not strongly optimal because e, 1, =

fT‘j+1J = 1, so that mrj+27j = mrj+1,j = deg .F]

Definition 2.19. Let T(f) < T be a faithful pre-image of the genomic
tree of f; that is, T(f) maps to T(f) under the quotient map T°% — T, and
the vertices of T'(f) are pairwise inequivalent.

An OM representation of f is the tree obtained by enlarging T(f) with

2.4. OM factorisation of polynomials 41

the t new vertices t; and edges t g, — t; determined by the choice of an OM

factorisation of f.

Thus, an OM representation of f gathers the information provided by a
family of OM representations of the prime factors. The information added
by the choice of an OM factorisation of f allows us to distinguish the dif-
ferent prime factors.

The leaves of an OM representation of f are in 1-1 correspondence with
the prime factors of f, whereas the root nodes are in 1-1 correspondence
with the monic irreducible factors of f in F[y] (see Figure 2.6).

For instance, in the example presented in Figure 2.6, f = F1FoF3F)y
has four prime factors and Fy, Fy, F3, Fy are a power of the same prime
polynomial in F[y]. The vertex ¢z, has order 0, t, = ¢, have order 3 and
tr, has order 5.

We represent the edges t5, — t¢; with dotted lines to emphasise that
the leaves t; are not strongly optimal types.

In general, the vertices tr, are not necessarily leaves of the tree T'(f).
It may happen that ¢, coincides with a vertex in the path joining tx; with
its root node for some j # i. Thus, the leaves of an OM representation of f

may sprout from arbitrary vertices in T'(f).

.. to
t tr, L

.1$4

Figure 2.6: OM representation of f = Fy --- Fy, with F» ~ F3.

The factors Fy, F3 have been distinguished thanks to a certain (unspec-
ified) OM factorisation of f.

Definition 2.20. We say that a leaf of an OM representation of f is iso-
lated if the previous mode has only one branch. For instance, in Figure 2.6
the leaf corresponding to Fy is isolated, while the other three leaves are not.
The (rj + 1)-th Newton polygons for isolated and non-isolated leaves are

shown in Figure 2.8.

42 Chapter 2. OM representations of prime ideals

2.5 The Montes algorithm

In this section, we describe the algorithm for OM factorisation developed
by Montes in 1999 [Mon99]. The algorithm was inspired by the ideas of Ore
[Ore23|[Ore25] and MacLane [Mac36a][Mac36b].

The aim of the Montes algorithm is the computation of an OM repre-

sentation of a given square-free polynomial f € O[x]. Let
F ={F,...,F},
be the set of prime factors of f in O,[x]. For any type t, we denote
Fi={FeF:t|F}cF.

Since ordg(f) = Zlgjst ord¢(F}), the set Fy is empty if and only if ¢ t f.
Also, if ords(f) = 1, then there is an index j such that ords(F;) = 1 and
ordg(Fy) = 0 for all k # j; thus, Fy = {F}} is a one-element subset in this
case.

The algorithm generates a tree of types ¥ which constitutes an OM
representation of f. The leaf types t1,...,t; of this tree have the property
that Fi, = {F;} for all 1 <i <t.

2.5.1 Non-optimised Montes algorithm

Definition 2.21. A subtree T < T is called coherent if for every node
t € T, all edges with left end point t have the same ¢-polynomial. An

example can be seen in Figure 2.7.

There is a non-optimised version of the Montes algorithm, which outputs
a coherent tree of types.

Let us briefly describe this version of the algorithm. Initially, f is fac-
torised in F[y]. For each monic irreducible factor ¢ of f, a triplet (¢, ¢,w)
is considered, where ¢t = () is the type of order 0 determined by ¢, ¢ is

a representative of t (that is, a monic lift of ¢ to O[z]), and w = ordy(f).
All these triplets (t, ¢,w) are stored in a stack.

2.5. The Montes algorithm 43

(¢, A", 9")

Figure 2.7: A segment of a coherent tree T'.

Along the execution of the algorithm the stack always contains triplets
(t,¢,w), where t | f, ¢ is a representative of t and w = ord¢(f). The main
loop of the algorithm takes such a triplet and attaches to the type t one or
more branches ty := (t; (¢, A\, 9)) of t such that ty, | f and the set Fy

splits as the disjoint union:

Fe = U Fep o
A)

Note that all these branches have the same ¢-polynomial. The pairs

(A, ¢) are considered as follows,

e —\ runs on the slopes of Ni, ,(f), the piece of Ny, 4(f) contained in
[0,w] x R.

e ¢ runs on the prime factors of Ry, ¢ A(f) in Fg[y].

Let ¢y € O[x] be a representative of ty , and take

Wy = ordy (Re, g1 (f)) = ordy, ,(f)-

If this positive integer is equal to one, then t) , singles out one of the prime

factors of f in O,[z]. In this case, we add a final level to t:

t = (t; (dry, — —)),

as in (2.9) and we store the type t in a list of “output types”. On the other
hand, if wy 4 > 1, then the triplet (t 4, ®xp,wx) is pushed back onto the

stack to bare further branching in future iterations of the main loop.

44 Chapter 2. OM representations of prime ideals

After a finite number of iterations of this process, the algorithm outputs
a list t1,...,t; of types parametrising the prime factors of f in O,[z].

This describes a kind of “non-optimised” Montes algorithm, in which
the output tree having the types t1,...,t; as leaves is coherent. It is non-
optimised because the types t) , may not be optimal. In fact, if A € Z and
degy = 1, we have

deg gy = ey -deg1) - deg ¢ = deg ¢,

where ey is the positive denominator of A. Hence, the type t), is not
strongly optimal and its branches may even cease to be optimal. We must
avoid this situation, because the numerical data attached to the types will
not be intrinsic data of the prime factor of f.

For this reason, we are interested in an optimised version of the Montes
algorithm, which will ensure that the types it works with will be strongly
optimal and the numerical data attached to them will be the intrinsic genetic

data of the prime factors of f.

2.5.2 Optimised Montes algorithm

The optimised version of the Montes algorithm includes a “refinement pro-
cedure” which ensures that it only stores strongly optimal types (except
for the leaves of the output tree) and yields an OM representation of f.
However, a price must be paid; the output tree of OM representatives is no
longer coherent.

Let us describe the optimised Montes algorithm. The stack stores triplets
(t, ¢,w) where t is a strongly optimal type dividing f, ¢ is a representative
of t and w = ord¢(f) is a positive integer. Initially, the stack stores the
triplets determined by the irreducible factors of f, as in the non-optimised
algorithm.

If the main loop finds a “bad” branch (¢, A\, ¥) with A € Z and deg¢) = 1,
then it simply drops this level and pushes the triplet (t, @y, wx) onto
the stack instead of (t) ., ®x 4, wxy) as we would do in the non-optimised

algorithm. This is called a refinement step.

2.5. The Montes algorithm 45

The point is that the branching obtained by applying the main loop
to both triplets determines the same partition of the set Fy, ,. Thus, the
two algorithms, optimised and non-optimised, yield the same successive
decomposition of the set F until all its elements are singled out.

The output types store a non-negative integer hcs, called the cutting
slope. If wy y = 1 occurs during a refinement step, we take hes = A, and we
take hes = 0 otherwise. The output type is an isolated leaf of the output
tree T of OM representations if and only if A = 0.

As explained in Section 2.4.2, if the corresponding prime factor of f has
Okutsu depth r, then the corresponding output type has order r+1 and the
side of the maximal slope (in absolute size) of N, (f) has slope —A,+1 and
end points of abscissas 0 and 1. The line Lcs of slope —heg, first touching
N,+1(f) from below, separates this side from the rest of the sides of N, ;1 (f)
(see Figure 2.8).

vr(ap) ¢ vr(ap)

vr(a1¢r41)

0 1 0 1
Isolated leaf (hes = 0). Non-isolated leaf (hcs > 0).

Figure 2.8: Newton polygon N ; (f) determined by a leaf of order r+1 of an
OM representation ¥ of f. The line L. has slope —h.s and f = Zogs asPy ;.

The advantage of the optimised algorithm is twofold: first, it outputs
the genomic tree of f and all the canonical data it contains; second, it
works with types of smaller order, which saves a lot of execution time due
to the highly recursive nature of the routines for the computation of Newton
polygons and residual polynomials.

Nevertheless, it is worth keeping in mind the existence of the “non-

optimised” coherent tree of types, produced by the non-optimised Montes

46 Chapter 2. OM representations of prime ideals

algorithm. The optimised tree of OM representations (the real output of
the Montes algorithm) may be derived from the non-optimised tree by an

iterative application of the following transformation. Any path,

ﬂ; .(¢17)‘17¢1)’ (d)n))\nﬂ/}n)' ﬂ;/

(2.10)

in which all edges except for the final one are bad edges satisfying \; € Z,
deg; = 1 for 1 < i < n, collapses into

*a)‘*a * "

where
OF = ¢n, M= X+ 4+ A, V* = hy,.

The types t’ and t” are equivalent.

For instance, consider the segment of a non-optimised tree shown in
Figure 2.9, where the nodes whose previous edge is “bad” are represented by
o and the nodes following a “good” edge are represented by e. Additionally,
the “bad” edges are marked with a dotted line.

The same segment of the optimised tree derived from this coherent tree
is presented in Figure 2.10.

where t; =t} for all 1 <¢ <5, and

T =1, AT =A+ A, Yi =1,
5 =d2, A5 =A+AN A+ A, Y5 =,
5 =2, AF=A+AN 4N, Y =1y,
P =ba, ANi=AFAN AN, YL =y,
o5 = 9, 5=N, 5 =1

The optimised tree is no longer coherent, because amongst the five

branches of ¢ we find four different ¢-polynomials.

Remark 2.22. For a vertex m in a tree, we denote by t, the type obtained

2.5. The Montes algorithm 47

t
(1, A1,71))
(¢2, A2, 12) b2
7)‘7 LT
020
t e (¢27 é?wé) ﬂ;g

(¢17 ,1,7 /1/)

(¢4, A1, a) o

e’

Figure 2.9: Segment of a non-optimised tree starting from t.

t1 = (t; (67, AT, ¥7))
to = (t; (63, A3,¢3))
¢ o B3 = (t; (93, A3, 93))
ta = (t; (01, A1, 1))

t5 = (E; (ng, gﬂ/);))

Figure 2.10: Segment of an optimised tree starting from t.

by gathering all level data from the edges of the path joining m with its root

node.

As a merely combinatorial structure, we may identify the set of vertices
of the optimised tree T°P as a subset of the set of vertices of the non-
optimised tree T"°P. However, for the same vertex m, the types ¢, for the

optimised and non-optimised trees are different. But they are equivalent.

The existence of the non-optimised tree is useful in many situations. Let

us see an example.

48 Chapter 2. OM representations of prime ideals

Notation. For each type t € T, denote
P(t):={FeP:t| F}.

Lemma 2.23. Let t,t' € T be two different types of order r > r' respectively
such that t' is the truncation of t at level v'. That is to say, t' belongs to

the path joining t with its root node. Then, P(t) < P(t').

Proof. We have t' = Trunc,(t). Take any F € P(t); by Theorem 2.6,
R,/ (F) is a power of 9., so that ¢/ | F and F € P(t’). This shows that
P(t) < P(t).

Finally, this inclusion is not an equality because t' | ¢,/,1, while t }

¢rr1. In fact, Ryvq(¢v41) = 1 implies that Trunc, 1 (t) } ¢priq. O

Lemma 2.24. Let T < ¥ be a coherent tree. Let t,t' € T such that neither
of them is a truncation of the other. Then P(t) n P(t') = &.

Proof. The statement is obvious if ¢ and t’ have different root nodes, be-
cause for all F' € P(t), the reduction F' modulo m is a power of the monic
irreducible polynomial iy corresponding to the root node of t.

Suppose that t,t’ have the same root node and let ty be the greatest
common node in the paths joining t,t’ with their root node. By Lemma
2.23 we may assume that t and t’ are branches of tg, in other words, that

to is the previous node of both ¢ an t’. By the coherence of T' we have

t = (ﬂ;O; (Qb,)‘717[}))7 Tt/ = (ﬂ;o; (¢7)‘,aw,))v

where either A #) or A = N ¢ # /.

Let r be the order of tg and v, its attached valuation. Now, for any
F e P(t), F' € P(t'), Theorem 2.6 shows that N, 4(F) and N, 4(F") are
one-sided of slopes —\ and —\ respectively. Hence, A # X implies F' # F'.
On the other hand, if A = X’ then Ry, ¢ (F) = ¥ and Ry g1 (F') = (¢')°
and this implies F' # F’, because v # 1'. O

!

This result may be false for arbitrary incoherent trees. However, Lemma

2.24 is valid for the OM representations of square-free polynomials.

2.5. The Montes algorithm 49

Theorem 2.25. Let T' < T be an OM representation of a monic square-
free polynomial f € Olx]. Let t,t' € T be two nodes such that neither of
them is a truncation of the other. Then P(t) nP(t) = &. In particular,
FenFy = .

Proof. Clearly, the nodes t,t¢’ are equivalent to two nodes of the non-
optimised tree, neither of them belonging to the path joining the other type
with its root node. Since the non-optimised tree is coherent, the statement
is an immediate consequence of Lemma 2.24.

The final statement is a consequence of Fy = P(t) n F. O

While the Montes algorithm only produces optimised trees of types,
certain information is stored about the refinements that take place during
the execution.

Consider the chain of refinements that take place between (2.10) and
(2.11). During each refinement that provokes branching of a type, the in-
termediate ¢ and A values are stored.

Let t,t* € T be two strongly optimal types with index of coincidence

i(t,t*) = £. Then suppose that at level £, each type has a list of refinements,

Refe(t) = | (@1 Mfays ¥f1))s -+ (6 Ay ¥ | o1
Refo(t) = | (615) Afly> 01 -+ (6 Mo)|

The final refinement in each list is the ¢-th level of the types ¢t and ¢*.
This allows us to extend our index of coincidence from Definition 2.14 to a

more precise indicator.

Definition 2.26. The minor index of coincidence i(t,t*) for two types
t,t* € T, is the least index ¢', such that for the refinement lists given in
(2.12),

* * *
(S Ny Vi) # (@larys Nerys i)
We also define the extended index of coincidence of two types as,

I(t,t%) = [i(¢, t%),i(t,)],

50 Chapter 2. OM representations of prime ideals

where extended indices of coincidence are ordered lexicographically, i.e. we
have the ordering [14,9] < [14,10] and [14,a] < [15,b], regardless of the

values of a and b.

Definition 2.27. Let t,t* € ¥ be strongly optimal types with index of
coincidence i(t,t*) = £ and let the list of refinements of each type at level £
be as in (2.12).

1. The greatest common ¢-polynomial of the pair (t,t*) is ¢(t,t*) =
‘(tj) = gbf(“;), with j maximal.

2. The hidden slopes of the pair (t,t*) are)\E* =\

) and)\E* — \tF

()
for this maximal value of j.

2.5.3 Complexity

The only algorithmic assumptions on the fields K and F for the algorithm
to work properly, are the existence of efficient routines for the division with
remainder of polynomials in O[z] and the factorisation of polynomials over
finite extensions of the residue class field F.

The performance will depend as well on the efficiency of these two tasks.
There is still no complexity analysis of the algorithm in the general case,
but for F a finite field, the following complexity estimation was obtained in
[BNS13, Thm. 5.14], under the assumption that the field extension L/K,
defined by f € O[x], is separable.

Theorem 2.28. If F is a finite field, the complexity of the Montes algo-

rithm, measured in number of operations in F is
CMontes =0 (n2+6 + n1+6(1 + 5) log(q) + n1+€52+e) :

where ¢ = #F, n = deg f and § := v (disc(f)).

2.6 Single-factor lifting and v-adic factorisation

Let f € O[z] be a monic square-free polynomial and let f = Fj --- F} be its

factorisation into a product of prime polynomials in O,[x].

2.6. Single-factor lifting and v-adic factorisation 51

A v-adic factorisation of f is an approximate factorisation with a pre-
scribed precision; that is, a family of monic polynomials Py, ..., P, € O[z]
such that P; = F; (mod m”) for all 0 < j < ¢, for a prescribed positive

integer v.

For many purposes, it may be necessary to find an approximation to a
single prime factor F' of f with a prescribed quality. This is the aim of the
single-factor lifting algorithm [GNP12], abbreviated as SFL in what follows.

The starting point of SFL is a leaf ¢t of an OM representation of f

t = (10: (@1, A1, V1) -5 (D Ary V)5 (D1 Art1, Yrg1)) (2.13)

computed by the Montes algorithm. Let F' be the prime factor of f singled
out by t, and let § € K, be a root of F. We denote

V=V, ¢:=0¢ri1, hg =X y1=hry1, e:= e(F)=e1- e

The polynomial ¢ is a Montes approximation to F' as a factor of f. By

Theorem 2.6, the quality of the approximation is:

:ngo(F)Jr@'

(& (&

v (¢(0))

The main loop of SFL computes a new Montes approximation ® such

that

he = 2h¢ — Pes-

The Newton polygon N;@(f) coincides with A\ ¢(f) except for the side
of largest slope (in absolute value) —hg, whose end points have abscissas
0 and 1 (see Figure 2.8). In particular, the cutting slope h¢s of ¢ once
again separates this initial side from the remainder of the sides. Therefore,
we may apply the SFL loop to ® and iterate the procedure until we get a
Montes approximation ® with hg large enough. By Lemma [GN, Lem. 4.1],
if he = e(v + cap(F) — 6o(F)), then & = F' (mod m”).

After k iterations of the SFL loop we get a Montes approximation ®j

52 Chapter 2. OM representations of prime ideals

with
ha, = hg + (28 = 1)(hg — hes)-

Hence, for a given positive integer H, the number of iterations of the
SFL loop that are needed to achieve he, = H is [logy((H —hes)/(hg —hes))]-

2.6.1 Complexity

The complexity of the SFL routine was analysed in [GNP12, Lem. 6.5]
and [BNS13, Thm. 5.16]. As in Section 2.5.3, the complexity analysis that
follows assumes that the residue class field I is a finite field and that L/K
is separable. In the next result we denote n = deg f, nrp = degF and
dp = v (disc(F)).

Theorem 2.29. The SFL routine requires O (nnpl/1+E + né}yﬂ) operations
in F to compute a Montes approximation ® to F as a factor of f, with

precision v.

By applying the SFL routine to each leaf of an OM representation of f,
we get an OM factorisation f ~ P;--- P; such that P; = F; (mod m”) for
all 7.

Theorem 2.30. If T is a finite field, a combined application of the Montes
and SEFL algorithms, computes an OM factorisation of f with precision v,

at the cost of
9] (n2+e + nlJre(l + 5) logq + n1+662+6 + n2yl+e) ,

operations in F.

2.7 OM representations of prime ideals

Suppose we are given an OM representation of f, as computed by the Montes
algorithm.
As was mentioned at the beginning of this chapter, the prime ideals

p € P of O are in 1-to-1 correspondence with the prime factors of f in

2.7. OM representations of prime ideals 53

Oy|z], which are, in turn, in 1-to-1 correspondence with the leaves of the
optimised tree of the OM representation of f. The OM representations of
each of these prime factors also hold a great deal of useful information about

the associated prime ideal.

Let p,q € P be prime ideals of Oy, and let tp, t4 be their respective OM

representations. That is,

ty = (¢0,p; (¢1,p,)\1,pa¢1,p)§ S (¢rp,p,)\rp,p,¢rp,p>§ (¢p7>\rp+1,p7¢rp+1,p))a

and a similar notation for t,. Note that we denote by ¢p := ¢, 41, the
Montes approximation to Fj as a factor of f. Thus, the OM factorisation

of f attached to this OM representation is

f%H%

peP

We allow an abuse of notation regarding the definitions of the indices of
coincidence, greatest common ¢-polynomial, and hidden slopes, which we

will write as i(p,q), ¢(p,q), and Aj respectively.

One advantage of working with OM representations of prime ideals, is
that we have explicit formulas for the p-valuation of the ¢-polynomials at

each level of the type t,.

The following proposition will be heavily used throughout the remainder

of this memoir. The valuations w, were presented in Definition 1.2.

Proposition 2.31 ([GMN13, Prop. 4.7]). Let p € P, be a prime ideal of
O, of Okutsu depth ry,. Then for any 1 <i < rp+1,

Vip + Aip

€lp€i-lp

wy (¢ip(0)) =

Let q € P, be another prime ideal of Okutsu depth rq such that p # q

54 Chapter 2. OM representations of prime ideals

and with index of coincidence £ = i(p,q). For any 1 <i <rq+1,

-

0, if £ =0,
Vit ifi<e
€1 ei—1
Vit+ N .
wy (66,9(0) = 3 o ep ifi=10>0 and ¢gq = d(p,),
Vi + min {\J, \?
¢+ min {5 A} ifi=0>0 and deq # $(p,q),
€1---€p—1
mig Vo o+ min {73 A ifi>0>0.
my er---ep—1

In these formulas, we omit the subscript p, q when the invariants of the

two types coincide.

Corollary 2.32. Let f ~ HpeP ¢p be an OM factorisation attached to an
OM representation of f. Then, for any pair p # q of prime ideals, we have

wp (¢q(0)) = wy (F4(0))-

Proof. Let £ = i(p,q). If £ < rq+1, orif £ = ry+ 1 and ¢q # o(p,q),
Proposition 2.31 shows that

ng Ve + min{)\q,/\ﬂ}
my e1- ey

wy (¢4(0)) = (2.14)

In the case £ = r4 + 1 and ¢q = ¢(p, q), we have my = nq and

Vi+ A Vi+ X\
wq ($(0)) = = wy (6g(6) = ——
1 .. .eéfl 61 .. 'eﬁfl

Since ¢ is a Montes approximation to Fy as a factor of f, we have wq (¢q(0))
> wy (¢q(#)), so that A > A}, and (2.14) is valid in this case too.

Now, let t be the first type of the non-optimised tree where the branches
of p and q diverge. If we denote ¢ = ¢(p,q), let t' = (t; (¢, Aj, 1)), t” =
(t; (o,)\g,wg)) be the types attached to the two branch nodes such that
t” | Fp and t' | Fy.

By Theorem 2.6, N,, 4(Fy) is one-sided of slope /\E. By Lemma 2.24,
t” / Fy; hence (2.5) shows that wy, (F4(0)) is given by (2.14) too. O

2.7. OM representations of prime ideals 55

We will now clarify how the slopes)\g,)\2 are calculated. Consider
the segment of the non-optimised tree of types shown in Figure 2.11. We
see that the p and q types have a (non-optimised) index of coincidence

i(t6p°", ") = ¢. Note that m,, corresponds to a type in the optimised

tree.
ng

()\g)no_po o— o ,p ﬂ;gop

Mgy Nm+1 g1

° o -+ o

)\m-‘rl . nop
(ADyuopo < o - g
q IIlk*7q

Figure 2.11: The branching between ¢, and $4° in a non-optimised tree.

The slopes (A1)"P and (A§)"°P of Figure 2.11 are called the “hidden
slopes”, as they are not present in the optimised tree. Actually, they should
be called the “non-optimised hidden slopes”, because they do not coincide
with the “optimised hidden slopes” of Definition 2.27. The relationship

between these hidden slopes is:

where); is the slope that corresponds to the path between m;_; and m; for

alm+1<i<g<d —1.

Optimal polynomials

“It is what you don’t expect... that most needs looking for.’

— Neal Stephenson, Anathem

We keep dealing with our discrete valued field (K, v) and we keep the
notation of the previous chapter.

The aim of this and the next chapter is to construct a triangular, reduced
O-basis of Op, from a given OM representation of f. By Theorem 1.26, it
suffices to construct a family go, . .., gn—1 € O[z] of monic polynomials, such

that for all 0 <7 < n:
1. degg; = 1.

2. w(g;(M)) is maximal amongst all monic polynomials in O[z] of degree

i.

57

58 Chapter 3. Optimal polynomials

In Section 3.1 we recall the construction of Okutsu bases. For a prime
ideal p | m, corresponding to a prime factor Fy, of f in O,[z], Okutsu con-
structed an O,-basis of the completion O, of Oy, with respect to the p-adic
topology, by considering a similar family of polynomials gop, ..., gn,~1p €
Ol[z] having a maximal wy-value amongst all monic polynomials of the same
degree [Oku82a][Oku82b]. Also, in [GMN10b] it was shown that these poly-
nomials g; , may be derived in a trivial way from any OM representation of
F,.

Section 3.1 finalises the part of the memoir devoted to preliminary re-
sults. From this point onward, the rest of the results are original.

The rest of this chapter is dedicated to showing that the search for these
optimal polynomials, satisfying (1) and (2) may be restricted to polynomials

of a very special form:

gi =] 195 degi=i.

plm

That is, g; may be taken to be a product of exactly one polynomial in each

local Okutsu basis.

In Chapter 4, we develop and algorithm that performs an efficient search

to find the right choices for the factors g;, y.

3.1 Okutsu bases

Let L, be the completion of L with respect to the p-adic topology. We
may consider a topological embedding L < L, < K,, so that L, may be
identified to a finite extension of K, of degree n, = ef, where e := e(p/m),

[= f(p/m). We denote by O, := Or, the integral closure of O, in Lj.
Let r be the Okutsu depth of F, and suppose that

t = (vo; (01, A1, ¥1)5 -5 (Prs1s Mgt Urg1))

is the leaf corresponding to Fj in the tree of an OM representation of f.

Recall that my | -+- | my | mpa1 and my < -+ < my < Mypyq.

3.1. Okutsu bases 59

We shall say that the family of ¢-polynomials

[¢1a ce 7¢7’]7

is an Okutsu frame of F},. These polynomials determine a family of optimal
polynomials gop, ..., gn,—1,p € O[z] as follows. Each 0 < i < n, may be

expressed in a unique way as:
1=ag+amy+ -+ apmy, O<aj<mj+1/mj:ejfj.
Thus, the polynomials:

a; .
Gip = z“ol—[quj, 0<1i<ny,
j=1

are monic polynomials in O[z] of degree degg; , = 1.

Theorem 3.1 ([GMN10b, Thm. 2.15, Thm. 3.9]). For all 0 < i < ny,

wyp (gip) s mazimal amongst all monic polynomials in Olx] of degree 1.

By Theorem 1.26, we get a triangular and reduced O,-basis of O, by
taking:

a; = ﬁ—[wp(gi,p(e))ng(Q)’ 0<i< Nyp.

We call B, = (o)
p-basis.

O<i<ny the Okutsu basis of Op, or simply the Okutsu

The group of fractional ideals Zp, is a cyclic infinite group generated by
p. Thus, the same family gop, . .., gn, 1, that was used for the construction
of an O,-basis of O, yields a triangular and reduced O,-basis of any fraction
ideal. In fact, consider a fractional ideal I = p?, for some a € Z. The

function wy, 1 introduced in Definition 1.4, differs from wy only by a shift:

wp,1 (@) = wy (@) — e(p/m)’

Hence, Theorem 3.1 shows that these polynomials have a maximal wp, ;-

value amongst all monic polynomials in O[z] of the same degree. Therefore,

60 Chapter 3. Optimal polynomials

Theorem 1.26 shows that
B = W_[wm,l(gi,D(e))Jng(0)’ 0<i< Ny,

is a triangular and reduced O,-basis of I.

For further purposes, the family of numerators of an Okutsu basis of O,

is extended by adding an Okutsu approximation to Fy,

Np = {1 =: gO,p7 tt 7g”p—1vp’g”p43 = ¢p} : (31)

3.2 Optimal polynomials as products of

¢-polynomials

Let f € O[x] be a monic, irreducible polynomial of degree n and fix a root
0 e K of f. Let L = K(0) be the finite extension of K defined by f and Oy,
the integral closure of O in L which is a Dedekind domain.

We assume that Oy, is finitely generated as an O-module, and so Oy, is a
free O-module of rank n = deg f. Since O is a local ring, Op, is a semilocal
Dedekind domain. Let P = Max(Op,) be the finite set of non-zero prime
ideals of Oy..

The Montes algorithm with input (f,v), produces a tree ¥ = {t, : p € P}
of types. Each type is an OM representation of a prime factor F, of f in
O,|z], corresponding to a prime ideal p € P, which has been extended to a

type of order 7, + 1, where 7y, is the Okutsu depth of Fj.

Definition 3.2. For a set S of prime ideals, the S-valuation of an element

in L is the minimum of the p-valuations for all primes in S,

ws (a) := min {wy (@)}, g = min { :(i(/il)) }pes , VaelL.

By convention, we take w := wp to indicate the minimum of the p-

valuations for all the prime ideals p of O (i.e. p€ P).

Definition 3.3. Let g € Oy[x]. The degree adjusted wy-valuation of the

3.2. Optimal polynomials as products of ¢-polynomials 61

element g(0) € Oy is defined as

wp (9(0)

iy (9(0)) = 2

The same concept holds for wg-valuations for any set S of prime ideals,

ws (9(60))

D 0)) :=
i (9(0)) 1= 5T
This brings us to the purpose of this section, p-optimal polynomials.

Definition 3.4. A monic polynomial g € O[z] of degree d is called p-optimal
if it has valuation wy (g(6)) mazimal amongst all monic polynomials in O|x]
also of degree d.

A polynomial g € Olx] of degree d is v-optimal if w(g(0)) is mazimal

amongst all monic polynomials in O[z] of the same degree.

A type t, corresponding to a prime ideal p of depth r, contains ¢-

polynomials at each level,

¢1,p7 B ¢Tp,p7 Qbrp-i-l,p = ¢p7

of degree mi <mg < -+ <my, <My, 11 = ny.

Lemma 3.5. For any prime ideal p € P,

Wy (Gip(0)) < Wy (Piv15(0)) 1<i<ry.

Proof. By Proposition 2.31,

Vi+ N e;Vi + h;
wy (Gip(0)) = = :

el..-ei_l 61...62-

Recall that Viy1 = e; fi(e;Vi + hy) for all 1 <@ < ry, so that

mi+1

~wy (D5 p(0)) = eifi - wp (hip(0)) = Vit

ml el...ei

< wp (hir1,(0)) .

O]

The final polynomial ¢, is a Montes approximation to F} as a factor of

62 Chapter 3. Optimal polynomials

f and,

f”Hﬁbp-

peP

The ¢-polynomials for all the prime ideals generate a semigroup.

Definition 3.6. Let S < P be a set of prime ideals. Then, ®(S) < O[z] is

the multiplicative semigroup generated by

1, {¢i,p}p65, 0<i<ryp» U Rep(ﬂ;p),
pesS
where Rep(ty) = [Fp] n O[z] is the set of all representatives of ty.
We use ®(p) to denote the semigroup generated by the ¢-polynomials
belonging to a single prime ideal p € P and fix & := ®(P).

Recall that by Corollary 2.32, for p # q, all ¢ € Rep(t,) Montes approx-
imations to F} as a factor of f have the same g-valuation wq (¢(6))
We are interested in showing that we can restrict our search for v-optimal

polynomials of a given degree d to those in ®.

Definition 3.7. For any node m € ¥ or m € T"°P_ Let S, < P be the subset
of prime ideals p such that t, | F,. FEquivalently, m belongs to the path
joining the leaf of T (or T"°P) corresponding to p, with the root node.

We recall that t, is the type obtained by gathering the data correspond-

ing to all edges in the path joining m with its root node.

Lemma 3.8. Let m be a node in the non-optimised (connected) tree ‘Zzzp

and let g, h € P(Oy[z]) be two prime polynomials divisible by tn. Then, for
any prime ideal p € P\Sn we have wy (g(6)) = wy (h(9)).

Proof. Let m be the greatest common node in the paths of the non-optimised
tree ‘Zzzp joining t, and n with the root node. Since p ¢ Sp, the node m
cannot be equal to m. Since t, is a leaf of the tree, m cannot be equal to

tp either. The structure of the non-optimised tree is shown in Figure 3.1.

3.2. Optimal polynomials as products of ¢-polynomials 63

!
m by
m
Yopo—® -
m” n

Figure 3.1: The node m is the greatest common node of m and t,.

Let m’, m” be the nodes following m in each of the two paths. Since the

non-optimised tree is coherent, we have

tm: = (bm; (Pm, /\/ﬂp/»a tmr = (tm; (¢1m7)\”7¢”)),

with a common choice for the representative ¢p, of t,. Let us denote simply
by vy the valuation vy, attached to (the last level of) the type tyy.

By Theorem 2.6, N, 4. (g) is one-sided of slope —A" and R, 4. »(9)
is a power of ¥”. Since (X,¢) # (N, ¢"), Theorem 2.6 shows that t,, } g.
By (2.5), we have

degg V,+ min{\N,\"}
wy (9(0)) = : :

= 2
deg ¢m e er—1 (3:2)

where 7 = ord(tm) + 1. The same arguments show that t, } h and a

formula analogous to (3.2) holds for wy (h(6)). Hence,

iy (9(0)) = 2200 _ OO _ g, (n(o)).

O]

The next result is the main aim of this section. For the search for v-
optimal polynomials, we may consider only polynomials in the semigroup

O(P).

Theorem 3.9. Let S € P be a set of prime ideals. For any h € O[x] monic
of degree 0 < d < n, there exists ¢ € ®(S) also of degree d such that,

wy (4(0)) = wy (h(0)), VpeS. (3-3)

64 Chapter 3. Optimal polynomials

Proof. The proof will proceed by induction on the degree d of the polyno-
mial. We will work in steps, in each one reducing the space in which we
need to consider h.

If d =0, then ¢ = h =1€ ®(9).
Claim. It is sufficient to check (3.3) for h € P(O,[x]).

Let h = hyhgy, with hy, hy € O,[z] monic of degree dy, dy > 0 respectively.

Now, consider h = HyHy (mod m"), with N > max {wy (h(9)) : p € S}
and Hy, Hy € O[z] monic, also of degree dy,ds > 0 respectively.

By an inductive argument on the number of prime factors of h, there

exist ¢; € ®(S) of degree d; such that,
wy (¢5(0)) = wp (Hi(0)), VpebS,

for i = 1,2. Take ¢ = ¢12 € ®(S). For any p € S we have

The final equality is due to the triangle inequality of the p-adic valu-
ation. We can express h = HiHy + 7V G for some G € O[z], and since
wy (TN G(0)) > w, (h(9)) for all p € S, we deduce the equality w, (h(0)) =
wy (H1(0)H2(0)). This proves the claim.

Now, we only need to consider the case h € P(O,[z]), which we will
divide into two cases, depending on whether the reductions mod m of f and

h share a common factor.

Case 1. h e P(O,[z]), and ged(f,h) = 1.
In this case wy, (h(#)) = 0 for all p € S. Thus, (3.3) is obviously satisfied.

Case 2. he P(O,[z]), h = §, be N, for 1 € F[y] a prime factor of f.

3.2. Optimal polynomials as products of ¢-polynomials 65

Let Sy, < S be the subset of prime ideals p € S such that g, = 1.
Let

®(Sy,) = {p € ®(S) : ¢ is a power of ¢} .

It is sufficient to find ¢ € ®(Sy,) of degree d such that (3.3) holds for all

p € Sy,, since

wy (9(0)) = 0 = wy (h(0)), V p € S\Sy,.

By hypothesis, the root node of ‘Izzp divides h. Let m be the highest
order node in the non-optimised tree ‘Zzzp such that t, | h, and let ¢ — 1
be the order of t,. We distinguish two cases according to m being a leaf or

not.

Case 2A. n is a leaf.

In this case, Sp = {po} contains only one prime ideal. The polynomial
¢;—1 is an Okutsu approximation to Fj,. Since ty | h, Theorem 2.6 shows
that degh = a - deg ¢;—1 = a - deg F,, for some positive integer a. If a = 1,
then h is a polynomial with minimal degree such that t, | h; that is, h is a
representative of ¢y, so that h € ®(S) and the statement of the theorem is

obvious.

Suppose a > 1. Since m is a leaf of Tzﬁp, any representative of ty,
is an Okutsu approximation to F,, and we may take ¢y € Rep(tn) with
Wy, (¢0(6)) arbitrarily large. Let us consider ¢¢ with

wp, (h(0))
wpy (¢0(6)) >~

a

and take ¢ = ¢f € ®(Sy,). By construction, wy, (¢(0)) = a - wp, (¢o(8)) =
Wy, (h(#)). On the other hand, for any p € Sy, p # po, Lemma 3.8 shows

66 Chapter 3. Optimal polynomials

that wy (¢0(0)) = Wy (h(0)), so that

wy (¢(0)) = a-wy (¢o(0))
= a - deg ¢o - Wy (¢o(0))
— deg h - b (h(0))
= wp (h(0)) -

(3.4)

This proves wy (¢(0)) = wy (h(0)) for all pe S.

Case 2B. n is not a leaf.

For a certain choice ¢, of a representative of ¢, the node m has several

branches m in the non-optimised tree, with
tm = (ﬂ;m; (¢H17 Avdj))

By the maximality of m, we have t, t h for all these branch nodes m.
Let Amax be the greatest slope (in absolute size) of these branches and let
IMpax be any branch node of m with slope Apax.

If my,ax is a node of the optimised tree, take myax = Mpayx. Otherwise,
let mpyax be any node of the optimised tree which has been derived from

mmpax Dy a series of refinement steps as presented in Figure 3.2.

Mmax (¢Oa)‘Oa ¢0)
E—. e e e Mpax
m .
m

Figure 3.2: The node mpyax belongs to the optimised tree.

Let (¢0, Ao, ?o) be the last level of ¢, . in the non-optimised tree. As

explained in Section 2.5.2 the last level of ¢ as a type from the optimised

Nmax
tree will be (¢, A§, ¥0), where Aj is the sum of all the slopes of all bad levels
between my,,x and its previous node in the optimised tree. This will be m if

n belongs to the optimised tree or some node prior to m if it does not.

3.2. Optimal polynomials as products of ¢-polynomials 67

Thus, ¢9 = ¢jp, for all pg € Sy,.., where j is the order of my.x as
a node of the optimised tree. By construction, deg ¢y = deg ¢, and since
tn | h, Theorem 2.6 shows that degh = a - deg ¢, = a - deg ¢g, for a certain
positive integer a. Let us take ¢ = ¢f € ®(Sy,) and let us show that
wp (¢(0)) = wy (R(F)) for all p e Sy, .

For p ¢ S, we have wy (h(f)) = W, (¢po(f)) by Lemma 3.8, and (3.4)
shows that wy, (h(6)) = wy (6(0)).

For any p € Sy, Theorem 2.7 shows that

Vi 4+ min {Ap, Ay}

wy (h(0)) = a ——
€1 €i—1

where —\, is the slope of N, 4 (h) (which is one-sided) and —\;, is the

slope of the unique branch m of m for which t., | Fj.

If m # mymay, Proposition 2.31 shows that

‘ Vi + min {\p, Amax}
61 “ e 6171 ’

wy (9(0)) = a-wy (¢o(0)) = a
so that wy (¢(0)) = wy (h()), because

min {Ap, Ap} < Ay = min {\y, Amax} -

If m = mpyax, that is tm,,. | Fp, then i(p,pg) = ¢ and by Proposition
2.31

[Vi AP . _

a - 7"37 1(137130) = Zv(bi,p = ¢(p7p0)7
€1 €6i—1
Vi 4+ min {\2°, AP

wp ($(0)) = { - S {e o i) = i.60p # 00 90)
1 €i—1

a - mj Z(p7p0) > Z

€1 €61

If i(p,po) = ¢ then we have)\go > min{/\go,)\go} > Amax because in
the refinement procedure the slope grows strictly. On the other hand, if

i(p,po) > @ then \jp; = Amax and wy, (¢(0)) = wy (h(0)) for all p € Sy,. O

68 Chapter 3. Optimal polynomials

3.3 Optimal polynomials as products of numera-

tors of Okutsu bases

3.3.1 Partial Okutsu bases

Let S < P be a subset of P and let ng = >, cgnp be the degree of S.

Consider a sequence of monic polynomials:
17917"'agn57160[l’]’ deggi:ia 0<1i<ng, (35)

such that g;(f) has maximal S-valuation amongst all monic polynomials of

the same degree:
wg (¢i(#)) = max{wg (g(#)) : g € O[x],g monic,degg =i}, 0<i<ng.

These conditions imply that the sequence of all

gi(0)

Tws@ @]’ 0<v<ns,

is a reduced triangular S-basis of L. That is, the images of these elements

under the topological embeddings

(tp)pes : L — @Lp,
pesS
form an O,-basis of B,cs Op.

Since @peP Oy is isomorphic to OL,®p O,, a P-basis is a v-integral basis.
Also, for a one-element subset S = {p}, a reduced triangular S-basis is just
a reduced triangular O,-basis of O, with numerators having coefficients in
0.

As in Section 3.1, we shall consider extended families of Okutsu S-
numerators of S-bases by adding the (formal) polynomial g,, = ¢g as the

numerator of degree ng,

Ns = {9075’ 1 Gns—1,8:Yng,§ = @5 1= H¢p}

pesS

3.3. Optimal polynomials as products of numerators of Okutsu bases 69

Let ¥ be the tree of types of an OM representation of f. For any p € P
we denote by t, the leaf of T corresponding to p.

Definition 3.10. For S € P, let Tg S T be the subtree formed by all paths
joining the leaves ty,, for p € S, with each of their respective root nodes.

For t € g we denote by Sy < S the subset of all p € S such that t
belongs to the path joining t, to its root node.

Definition 3.11. For a set S of prime ideals, we define,

pes

as the set of all polynomials that are a product of exactly one Okutsu p-
numerator for each p € S.

For a set {p} containing a single prime ideal p € P, we simply use Ok(p).

It should be noted that Ok(p) coincides with the extended family N, of
numerators of the Okutsu p-basis B, given in (3.1).

Here we are interested in how closely we can replicate the results of
Lemma 3.5 for cross valuations, that is to say where the ¢-polynomial be-

longs to a different prime to that of the valuation.

Lemma 3.12. Let p,q € P be two different prime ideals with index of

coincidence ¢ = i(p,q). Then:
1. by (¢ig(0)) <y (div14(0)), 1<i<U,
2. Wy (¢iq(0)) = Wy (Piv1,4(0)), £ <i<ry.
Proof. For i,j > ¢, Proposition 2.31 shows that
Wy (Gig(0)) = Wy (¢5,4(0)) -

This proves item (2).
For i < £ —1, we have ¢;q = ¢ip, Pit1,q = ¢i+1,p and the inequality of

(1) is a direct consequence of Lemma 3.5.

70 Chapter 3. Optimal polynomials

Assume ¢ = ¢ — 1. By Proposition 2.31, we have

L Vi + A
my—1 €1 €p—2
1 e frma(er1 Vi + hea)
er—1fe—1mp—1 er--ep_1
1 Vi

mey €1---€p-1

Wy (pr—1,4(0)) =

)

Vi+ A\
1 er---ep1’ o
Wy (dr(0) = — - B
p (¢ea(8)) me | Vy+ min {\], \j}
e1---ep_1 :
Hence, Wy (¢r—1,4(0)) < Wy (¢r,4(0)) and this ends the proof of (1). O
It is easy to find examples where
Wy (e,q(0)) > wp (Pe11,4(0)) - (3.6)

Because of this fact, the proof of the validity of the MaxMin algorithm in
Chapter 4 is rather involved.

This pathology occurs with ¢, 4 = ¢(p, q) and)\g is much larger than)\g
(see Proposition 2.31). Hence, it is also easy to find specific conditions that
avoid (3.6).

Lemma 3.13. Let p,q € P be two different prime ideals with ¢ = i(p,q) > 0
and such that)\f, >)\g. Then,

wp (¢€,q(9)) = wp (¢£+1,q (0)) :

Proof. By the hypothesis, min{)\q, /\g} =)\g and both cases for ¢ = £ in
Proposition 2.31 are equal, giving
. 1 Ve+ A
iy (60,4(0)) = — - — 2

P (Pal)) = e

1 mMe+1 W +)\g
met1 my €1---€-1

3.3. Optimal polynomials as products of numerators of Okutsu bases 71

Definition 3.14. An Okutsu S-basis of L is a triangular S-basis with nu-
merators {g; : 0 <i <ng}, such that degg; = i and g; € Ok(S), for all

0<17<ng.

Theorem 3.15, below, shows that Okutsu S-bases exist

3.3.2 Existence of partial Okutsu bases

A simple and very efficient algorithm, presented in Section 4.2, can be em-
ployed to choose an optimal combination of basis numerators for each degree
d. In this section, we show that such an optimal combination will be opti-
mal amongst all elements of ® and therefore, by Theorem 3.9, amongst all

polynomials with coefficients in the discrete valuation ring O.

Theorem 3.15. Let S € P be a set of prime ideals. For any ¢ € ®(S5),
monic of degree 0 < d < ng, there exists g € Ok(S) also monic and of degree
d such that,

wy (9(0)) = wy (¢(0)) Vpes.

In order to prove this theorem, we define a pair of transforms which,
when used in conjunction, are able to convert any polynomial ¢ € ®(S) to
another polynomial g € Ok(S), of equal or greater value, in a finite number
of steps.

Firstly, we require certain measures on polynomials in ®(.5), which define

how close they are to also being included in Ok(.5).

Definition 3.16. The irreducible factors of a polynomial ¢ € ®(S) can be
grouped by the prime ideal p € S S P to which they belong,

d): ngv

peS
Tp

g =]1¢% [] ¢ pes.
i=1 pe[Fp]

We call g, the p-part of ¢. Using this grouping into p-parts, a measure

72 Chapter 3. Optimal polynomials

of disorder can placed be on ¢,

D:®(S) —N

¢ —> Z max {deg(gy) — np, 0} .
pesS

We recall that ¢op, = x for all p € P by convention.

Definition 3.17. Let ¢ € ®(p) and £ € N. We say that ¢ is {-canonical if
for all 0 < i <min{f,ry} we have 0 < ordy, ,(¢) < €ipfip-

A polynomial v € ®(S) is (-canonical if each p-part of ¢ is {-canonical.

Note that for any m € N, there is a unique rp-canonical polynomial
¢ € ®(p) of degree m. We have necessarily ¢ = g; p¢y, with m = any + i
and 0 <@ < ny.

Recall that egp = 1, fo, = deg(vo,) for all p € P. We understand that
“being (—1)-canonical” is an empty condition, so that all polynomials are
(—1)-canonical.

By the construction of Ok(S), a polynomial ¢ € ®(.5) belongs to Ok(S)
if, and only if, it is r-canonical for = max {rp} _g, and has disorder D(g) =

0.

pesS?

Making a polynomial ¢ € ®(S) r-canonical for 7 = max {rp}, s is not
necessarily a straightforward task. Specifically, it is not sufficient to simply
replace the p-part of ¢ with its r-canonical equivalent for each p € S.

As an example, consider S = {p,q} < P, such that i(p,q) = 1 and
b1p = ¢(p,q) = $1,4. Let p and q have the following OM invariants:

prer=1fi=4h =1 e2 =1, f2 =3, ha=9;...
qg:er =1, fi =3, hy = 2;

for the first two levels for p and the first level for q, and additionally fy = 1.
Now consider ¢ = d)g,qu‘ip € ®(5), a polynomial of degree deg¢p = 8. By

Proposition 2.31, the p- and g-valuations for ¢ are respectively

wy (4(6)) =13-1+1-4 =17,
wq ((0) =4-1+2-4 =12,

3.3. Optimal polynomials as products of numerators of Okutsu bases 73

The polynomial ¢ is a product of numerators of the Okutsu p-basis only.
The 2-canonical polynomial of the same degree is g = gb%’p. Again, referring

to Proposition 2.31, we may calculate the valuations of g as

wy (9(0)) = 13 -2 = 26,
wy (9(6)) =42 = 8.

Here we see that not only is the g-valuation of g less than ¢, but this is
also the case for the S-valuation, wg (g(0)) < wgs (¢(6)). As such, we require
a more advanced transformation, one that does not just operate separately
within each individual p-part of a polynomial.

Consider the transformation Canonify, which is presented in Algorithm
3.1. For the case £ = 0, in step 2, we agree that {t € T(S5) : ¢ of order — 1}
is the set of all root nodes of T(.5).

Lemma 3.18. Let U = {pp € ®(p)},c
(¢ — 1)-canonical. Let U',b < Canonify (U, £) be the result of the algorithm

be a set of polynomials that are

Canonify. Then either
e b is false and all polynomials in U are £-canonical; or

e b is true and the number of r,-canonical polynomials in U’ is strictly

greater than those in U.
Additionally, let ¢ = l_LppeU @p and g = ngeU’ Gp, then

wq (9(0)) = wq (6(9)) Vagebs,
D(g) < D(9).

Proof. There are four distinct cases in the while loop of Algorithm 3.1. In
each case, one or more g, are changed. We will show that for each of these
cases, the constraints of the lemma are maintained.

At each iteration of the for loop, a prime p € S\Sp has two possibilities:
either p ¢ Sy, and then i(p,q) < £ for all g € Sy, or p € Sy and then g, is an

rp-canonical polynomial of degree dy, = ny.

74 Chapter 3. Optimal polynomials

Algorithm 3.1 Canonify({¢p} ?) transformation

pesS

Input: An integer £ > 0 and a set of polynomials {p, € ®(p)}, 5 which are
all (¢ — 1)-canonical.
Output: A set of polynomials {g, € ®(p)},.s and a boolean value b. If b is
false then all g, are {-canonical.
L gp < @p, forallpe S
2: for ¢ in {t € T(S) : t of order £ — 1} do
3: So < {p € S : gp not rp-canonical or deg(gy) < nyp}

4: Order Sy = {p1,...,ps,} so that)\EZ <)\E; forall 1 <i<j<sg
5. for pg in Sy do
6: while ordg, . (9po) = €tpo fpo dO
7 if w, (cpjf;;gof‘“"o (9)) < wy (Ges1py(0)), ¥ p € So then
-1
8: 9po < Gpo * <¢Z‘SEOJCMO> '¢Z+1,p0
: else
10: So,6 = {p € So : dup, € Refy(tp)}
11: q < prime ideal in Sp 4 such that)\fl >)\g, Vpe Sy
12: if deg(gq) = ngq then
13: 9q < 9m,q» Tq-canonical polynomial of degree m = deg gq
14: So < So\ {a}
15: else if ngy — deg(gq) > my then
16: Ipo < oo (Do)
17: 9g < Yq - Puq
18: else
19: m <« deg(gq) + My — ng
20: 9po < Gpo - (qbﬁmo)il " Gm.po
21: 9q < (bq
22: b« true
23: Exit algorithm.
24: end if
25: end if
26: end while
27: end for
28: end for

29: b < false

3.3. Optimal polynomials as products of numerators of Okutsu bases 75

In the first case, the p-valuation of the product gqgy for any two q,q’" € Sp
will be unchanged, so long as gq and gy both remain (¢ — 1)-canonical and
the sum of their degrees is constant.

In the second case, there is some ¢, € [F,] n O[z] that divides g,. We
can apply the Single Factor Lifting algorithm (Section 2.6) to ¢, to raise
its p-valuation as high as necessary to get wy (9(#)) = wy (¢(#)) no matter
what changes in gq for q # p have been made.

We will, therefore, only consider the valuations of those prime ideals in
So.

Case 1. w, (gbx;gofe"’o (0)) < Wy (Peg1,p,(0)), ¥ p € Sp (line 7). By the

condition of this case, wy (gggew)w)) > wy (géﬁld) (0)), for all p € Sp.

wol, .
Case 2. 3 p € Sy such that w, (¢§fpf)0 o (9)> > Wy (Bs1p0(0)) (line 9).
Here, we select q € Sp 4 such that)\g >)\g, for all p € Sp,4. The prime ideal

q has the property that,

Wy (¢iq(0)) < W (Pit1,4(0)), VpeSy, £<i<rg (3.7)

By Lemma 3.13, this is true for all p € Sy 4 and for p € Sp\Sp 4, we have
beq # O(p,q) and by Proposition 2.31 wy (¢¢,q(0)) = W (¢dr41,4(6)). This will

be important in the following sub-cases.

Case 2A. deg(gq) = nq (line 12). At this step, we replace gq with the r4-
canonical polynomial of the same degree. By (3.7), we can safely perform
this operation. Since q no longer meets the inclusion criteria, we remove it
from Sy. We will now return to the beginning of the while loop, since it is
possible that with the exclusion of q from Sy, the condition for Case 1 will

now be met.

Case 2B. ny —deg(gq) > my (line 15). In this case, for all p € Sy 4 we have
Apo = min {5, AR°} < A = min {\], Aj} which implies that wy (¢g,(0)) <
wy (¢e,q(0))-

For p € Sp\So,¢, due to the refinement process,)\go =)\g and A’;O =)\g
and s0 wy (Pr,p, () = wp (dr,q(0)).-

76 Chapter 3. Optimal polynomials

Case 2C. ng — deg(gq) < my (line 18). In this case, we must be careful
not to increase the disorder of ¢. Here we remove a single ¢y, from g, and
insert g p,, where 0 < m < my. At the same time we replace gq with ¢,.

Actually, we can consider this step as

99 — gq(gm,q)_ld’&q — g,

where m < my implies that g, q = gmp. So for all p € Sp, we have

Wy (gpo (0)94(0)) < wp (Gpo (0)P,p0(0) ' Gmpo (0) - 9(0)gm.q(0) " deq(6))
< Wy (Gpo (0) P,p0 (0) ' Gmpo (0) - D4 (0)) -

The first inequality is true by the argument given in Case 2B and the second
inequality is given by (3.7) using the same argument as Case 2A.

Since we may have moved a polynomial of degree less than my from the
g-part to the pg-part of ¢, we cannot guarantee that the po-part will remain
(¢ — 1)-canonical. However, this change will not affect the p-valuation for
any p € S, since grmq = Gmp-

At this step, gq, which was previously of degree less than ng will become
rq-canonical of degree ng, fulfilling the requirement attached to b being

returned true.

All polynomials p € Sy which are ry-canonical of degree d, > n, are not
included in Sy and so the the p-part is not changed during Canonify. This
means that the number of polynomials fulfilling the condition attached to b
being true will never decrease.

Since the algorithm works through each pg in S, if b is not set to true

then all gy, will be made ¢-canonical by the condition of the while loop. [

Remark. It should be noted that when we run the Canonify transformation
for £ = 0, we may have the case that we transfer a ¢g, = x from ¢, for a
p with fop, > 1 to a gq where foq = 1. In this situation, ¢oq = ¢14 = @
and although p and g belong to different disconnected trees, wq (¢o,(8)) =
wq (¢14(0)) > 0.

However, since this is only a conceptual change and doesn’t materially

3.3. Optimal polynomials as products of numerators of Okutsu bases 77

affect g as it differs from ¢, there is no difference in the valuation.

Remark. We will never need to implement Algorithm 3.1! It is only a

theoretical construction whose aim is to justify Theorem 3.15.

Definition 3.19. The transformation Tr:;g%fer for two prime ideals p,q €
P, converts a single ¢p-polynomial from the Okutsu p-frame into an element
from the Okutsu q-basis, multiplied by a power of the Okutsu approrimation
to Fy.

Tr?nsfer : ®(p) — P(q)
—q

¢i,p = gm,q7
where g q € ©(q) is the rq-canonical polynomial of degree m = my .

The transformation Transfer has non-trivial valuation properties, so p
and q must be chosen carefully so that the [-valuation for specific [€ S of
the resulting polynomial is not less than the original ¢;,. To choose these
polynomials, we require further information about the relative valuations of
polynomials from the Okutsu bases of our prime ideals.

Using the extended index of coincidence presented in Definition 2.26,
the following Lemma gives us a link between the relative alikeness of prime

ideals and their respective cross-valuations.

Lemma 3.20. Let S € P be a set of prime ideals and fix a prime ideal
po € S. Now select q € S\{po} such that I(po,q) = I(po,p) and in the case
of equality \§° = X0 for all p € S\{po}. Then, for any 1 < i < ry,, if we

take gq := Trp%Icher (ipo)s we have,

wp (99(0)) = wp (61, po(0)) v peS\{po}. (3.8)

Proof. Let £ = i(po,q), then if i < ¢ then g3 = ¢iq = Pip,, S0 wWe only
need to consider ¢ > ¢, in which case my | m;p, and so gq is the product
of ¢-polynomials of index ¢ and greater. Meanwhile, by the maximality of

the numerators of an Okutsu basis, wq (gq) is maximal amongst all monic

78 Chapter 3. Optimal polynomials

polynomials of degree m. Hence the property required of (3.8) is clear for
p=aq
Consider the following subsets of S,

S1:={p e S\{po,q} : i(po,p) = i(po,a)},
So = {p € S1:1(po,p) = I(po,q)}-

By the choice of ¢, there are no prime ideals in S that satisfy the strict
inequality in the set inclusion conditions and they may be replaced by

i(po,p) = i(po,q) and I(po,p) = I(po,q) respectively.

We will examine the prime ideals delimited by these sets separately.

Case 1. p € S\S1. We have i(po,p) < i(po,q), which implies i(po,p) =
i(q,p) and so by Proposition 2.31,

Wy (gCI(a)) = Wy (¢i7po(0))v 1 <i<’l”p0, VPES\SL

In fact, since i(po, p) < i(po,q), the result of Transfer is gq = ¢iq = ¢ip, for
all i < i(po,p). On the other hand, if i > i(po,p) = i(q,p), the p-valuation
depends only on the degree.

The following two cases are illustrated in Figure 3.3. Note that although
Figure 3.3 represents non-optimised trees, the hidden slopes we have written

are the optimised ones.

Case 2. p € 51\5). Here, po, g, and p share a common index of coincidence

¢ =1i(po,q) = i(po,p) = i(q,p), but I(po,q) > I(po,p). From Figure 3.3 we

AL T, " o
Ao = A§
_— tq
AR = Al
........................ t tp
I(po,q) > I(po.p) (q ¢ So). I(po,q) = I(po,p) (q € So).

Figure 3.3: Relative positions of t,, tq, and t, in the non-optimised tree.

3.3. Optimal polynomials as products of numerators of Okutsu bases 79

can see that in this case ¢y, # é(po,p), deq # ¢(q,p) and also)\';0 =)\E
and AR = Al

Therefore, by Proposition 2.31,

_ degygy Vi + min { A}, A\j}

wy (94(0)) e 1 er1
_ Mipy Ve + min { A%, Ap, }
my e1- e
= wp (Pipo (0)) -

Case 3. p € Syp. Finally, we have the case where I(po,q) = I(po,p), as
shown in Figure 3.3, which implies ¢(po,q) = ¢(q,p) and by the hypothesis
on q we have min {)\q,)\g} = /\;'J and so by Proposition 2.31,

degg Vi + A\

Po
_ Mipo Vet A
my €1 €r1

w +)\p0 . .
P = wy (i (9)) ifi= o,
< €1 €r—1
mip, Ve+min {25, A5} "
) . = w i 9 s lf 7> Z
mé 61...66_1 p(d) 7P0())

We may now prove Theorem 3.15.

Proof of Theorem 3.15. We will use the previously defined transforma-
tions Canonify and Transfer iteratively, to convert a polynomial ¢ € ®(5)
into a polynomial g € Ok(S). At each step the p-valuation will be preserved
or raised for all p € S and the disorder will be reduced.

Consider the polynomial ¢’, which we initially set to ¢.

Step 1. First, we consider the p-part g, of ¢’ for all pin S. For 0 < £ <
Tmax = max {rp},cq, apply Canonify({gp},cq¢). If b is returned true, then
restart £ at 1.

By the condition in Lemma 3.18 that when b returns true the number

of ry-canonical polynomials with degree dy > n; increases (and even when

80 Chapter 3. Optimal polynomials

b returns false it may never decrease), b can only return true up to #S
times. Therefore, this process will complete in a finite number of iterations.
Once Canonify has been run successfully up to ¢ = ryay, all g, will be
rp-canonical.

Set ¢' = [[yes9p- By Lemma 3.18, this ¢’ will have greater or equal
p-valuation for all p € S and will have lesser or equal disorder. Additionally,

it will be rpax-canonical.

Step 2. Consider the set,
Overloaded(¢') = {p € S : deg(gy) > np},

of all prime ideals p for which the degree of gy, the p-component of ¢, is
greater than n, the degree of the prime ideal itself.

If Overloaded(¢') is empty, then the disorder D(¢’) of ¢’ is 0 and we
have g := ¢’ € Ok(S), so we have finished.

Step 3. In the case that Overloaded(¢’) is not empty, we select an arbitrary
po € Overloaded(¢’) and consider the set S’ = S\ Overloaded(¢’). Now,
select a prime ideal q € S’ such that I(po,q) = I(po,p) and in the case of
equality)\EO >)\50 for all p € S’ as in Lemma 3.20.

We then apply Trarf,fer on ¢, converting the least degree ¢; , dividing
Jp, into the rq—canonfgalqpolynomial Gm.,q € P(q) of degree m = m; p,.

By the selection of q, we have I(pg,q) = I(po,p) for all prime ideals
p € S\ Overloaded(¢’), and in the case of equality)\EO >)\EO. By these

conditions, Lemma 3.20 shows that

Wy (Gm,q(0)) = wy (¢ipy(0)) 5 Vpeld

For the remaining p € Overloaded(¢'), the p-valuation of ¢’ can be raised
by applying the Single Factor Lifting algorithm to ¢y, and so this covers all
pes.

Since we are removing a degree m; p, polynomial from gy, and including
a polynomial of the same degree in gq, the disorder will be reduced by

min {nq — deg gq, Mip,}. Since q was chosen so that deg(gq) < ngq, this

3.3. Optimal polynomials as products of numerators of Okutsu bases 81

reduction in disorder must be at least 1.

We now return to Step 1.

Clearly, this process will terminate after at most D(¢) iterations. O

MaxMin

“Never accept the proposition that just because a solution satisfies
a problem, that it must be the only solution.”

— Raymond E. Feist, Magician

In this chapter we describe the MaxMin algorithm, its input require-
ments and output properties.

We retain the setting from the previous chapter.

4.1 Formal extension of the Okutsu p-bases

By Theorem 1.16, in order to construct a reduced triangular O-basis of O,
we need only to find a family of monic w-optimal polynomials of degree

0,1,...,n — 1. By Theorem 3.9 and Theorem 3.15, we may restrict our

83

84 Chapter 4. MaxMin

search to polynomials constructed as the product of exactly one numerator
of each Okutsu p-basis, for p € P.

The aim of the MaxMin algorithm is to perform an efficient search for
these optimal polynomials in Ok(P).

To decide which numerators are chosen for each degree, we need only
to know the values wq (g, p(0)) for all p,qg € P and 0 < iy < np. As
presented in Chapter 2, these values are given by OM invariants present
in an OM representation of f, which is provided by the Montes algorithm.
The exception is wy (¢y(#)), which can be arbitrarily large, depending on
the choice of ¢, the Montes approximation to F} as a factor of f.

For this reason, we do not choose a concrete polynomial ¢, beforehand,
but rather run the algorithm as if wy (¢,(#)) (formally) takes the value oo.

We define the following valuation function on polynomials in ®:

Definition 4.1. For allp e P,

wp 1 & — Q u {0}

wy (¢(0)), if ¢* 1 ¢,V ¢* € Rep(ty),
0, if 9* | ¢, for some ¢* € Rep(ty).

¢ —>

Therefore, wy (9) = wy (9(0)) if ¢y 1 g, for all ¢, € Rep(t,), however
wy (g) = o0 if ¢y | g for some ¢, € Rep(t,). This is practical as by Corollary
2.32 the value of wq (¢p(0)) for q # p only depends on q and not the choice
of ¢p.

This valuation also extends to the P-valuation for the set P of prime
ideals (see Section 3.2). Therefore, w (g) = w (g(#)) if for every ¢, dividing
g, we take a concrete choice for this polynomial with wy (¢,(6)) sufficiently

large.

In other words, ¢, is considered to be a symbolic polynomial. Its degree
is known to be n, and its g-valuation for all ¢ # p, which is given by
Proposition 2.31, does not depend on the concrete choice of ¢, by Corollary
2.32. The algorithm will provide a recipe to construct numerators g; € O[z]

of degree i as a product of Oktusu p-numerators for each p in P. The

4.2. The MaxMin algorithm 85

corresponding member of the triangular basis will be
o = gi(G)w_lw(gi)J, 0<t<n.

In order to compute «;, we must apply the Single Factor Lifting algo-
rithm to find concrete Okutsu approximations ¢, with a valuation wy (¢p(6))

large enough to guarantee that w (g;) = w(g;(9)) for all 0 < i < n.

4.2 The MaxMin algorithm

We fix an ordering P = {p1,...,pnx} on the set P, with the property that
for all types t in the tree of types ¥, the subset Py < P of prime ideals
whose genomic tree contains the type t is an interval of P. That is, there

exist indices 1 < ay < by < N such that,
Pt = [at,bt] = {p] oy < J < bt} . (41)

As the branches of ¥ do not cross one-another, the reader will easily be
convinced that it is always possible to consider such an ordering.

Consider a subset S = {pi1,...,ps} S P with the induced ordering,
and extended Okutsu p-numerators {gip,p 0< g < np} for each p € 5, as
indicated in Section 4.1.

We consider multi-indices i = (iq)qes of degree

degi := Z iq,

qesS

leading to monic polynomials in O[z]:

gi = Hgiq,q,

qes
with deg g; = degi.

Definition 4.2. A multi-index 1 = (ip)pes is said to be maximal if

ws (gi) = ws () »

86 Chapter 4. MaxMin

for all multi-indices j with deg] = degi.

In this case, we also say that g; is ¢ maximal numerator.

Notation. For 1 < j < s we denote by u; the multi-index with coordinates

ig =0 for all q # q; and iq; = 1.

Algorithm 4.1 MaxMin[S] algorithm

Input: A subset S = {q1,...,9s} < P and Okutsu numerators
{giq : 0 < i < ng} of g-bases for each g€ S.
Output: A family 1, 11, ..., 1,5 € N° of multi-indices of degree 0,1,...,ng
respectively.
1: 1g <« (0,...,0)
2: for k=0—->ng—1do
3: j<—min{1<i<s:wqi (gﬁk):wS(gﬂk)}
4: Tpyq < I + 1
5: end for

The main aim of this chapter is to prove the following result.

Theorem 4.3. If Tg is a connected tree, then all output multi-indices of

MaxMin[S] are mazimal.

This gives the name MaxMin for the algorithm, because it finds the
maximal value amongst the minima of certain numerical data. This provides

a computation of an Okutsu S-basis of L as follows.

Theorem 4.4. Let ig,11,...,1, be an output of MaxMin[S]. Choose
Okutsu approzimations ¢p of all p € S, such that

ws (gflk) = ws (gﬂk (9)) y 0<k<ng.

Then, iy, Giys- - - s Ging_1 Gr€ numerators of an Okutsu S-basis of L.

In fact, Theorems 3.9 and 3.15 allow us to conclude from Theorem 4.3
that giy, ..., gi,,_, are numerators of a reduced triangular S-basis of L.
Since all g;, belong to Ok(S), this triangular basis is an Okutsu S-basis.

The discussion about finding the required valuation of all wy (¢p(0)) is
postponed until Section 4.7.

We will now present some remarks about the behaviour of the algorithm.

4.2. The MaxMin algorithm 87

4.2.1 Guaranteed termination

It is trivial to see that the algorithm MaxMin[S] always terminates after
exactly ng iterations.

Thanks to the convention wy (¢p) = 00, the index j in step 3 indicates
a prime q; such that for the multi-index 1, = (iq)qes, we will always have
iq; < Tq;- Therefore, the next multi-index iy = (i;)qeg constructed in step
4 has indices 1,

q
Furthermore, the first and last output multi-indices are ip = (0,...,0)

<rgforallgeS.

and ing = (ng,,...,nq). As such, gi, = 1 and gi,, = [[jes@q and
Gig» - - - » Jing 18 an extended family of numerators of an Okutsu S-basis of L,

according to the convention introduced in Section 3.3.1.

4.2.2 Polynomial products are not computed

The algorithm does not compute the products g;,. It only computes the
values wyq (gi,) for q € S, which are determined by the 3-dimensional array
of data wg, (gj,q,) indexed by ¢, j, and k in the ranges 1 <4 < s, 0 < j; < ng,,
and 1 < k < s, respectively.

If these numbers are replaced by arbitrary, non-negative rational num-

bers vy, j, i € Q=0 and we take

S
Vi = Z Vk,ji,is
i=1

with 1 = (j;)1<i<s & multi-index as above, the MaxMin routine may fail to

compute
max {min {ry; : 1 <k < s} : degi = d},
a maximal multi-index of degree d.

4.2.3 Initial conditions

Suppose 1 = (ip)pes is a multi-index with degree degi = d, such that wg (g;)
is maximal amongst all multi-indices of degree d. Then, it may not be true

that by increasing an adequate index by one, we get a multi-index j, of

88 Chapter 4. MaxMin

degree d + 1, which renders a maximal value of wg (g;) amongst all multi-
indices of degree k + 1.

For instance, let us consider the example presented in Section 4.2.5. The
output index of degree 3 is i3 = (1,2,0), resulting in the polynomial g3 =
¢1,P¢%,q with valuations w (g3) = (10,8, 8) for wy, wq and wy respectively.

We could choose an alternative index j3 = (1,1,1) which would give
a polynomial g5 = ¢1,¢1,4¢1, with the exact same valuations W (g5) =
(10, 8,8). However, in the second case, the next index would be j4 = (1,2,1)
giving the polynomial ¢} = ¢1,P¢%,q¢1,[with valuations o (¢}) = (12,11, 11).
This is clearly not maximal as the polynomial constructed by the example
g4 = ¢1pp2,q has valuations w (g4) = (12,17, 16).

However, the maximal multi-indices that are met along the flow of the
algorithm will lead to subsequent maximal indices. It is curious that the
(extremely) simple strategy that MaxMin employs to choose successive max-

imal multi-indices is able to avoid these pathological cases.

4.2.4 Ordering of input prime ideals

Theorem 4.3 shows that MaxMin produces a sequence of maximal multi-
indices regardless of the choice of ordering on P, as long as it satisfies (4.1).
However, the numerators g;, produced from these multi-indices do depend
on the choice of ordering.

Condition (4.1) on the ordering of P has only been imposed for the
purpose of simplifying the proof of Theorem 4.3, which appears to be true
for an arbitrary ordering on P. However, we have not been able to give a

rigorous proof of this fact.

4.2.5 MaxMin Example

We will now present a small example for S = {p, q, [} where Tg is connected.
Consider the tree T¢’” shown in Figure 4.1. We indicate only the data
(¢, A) for each edge.
Since all slopes have integer values, all denominators e; are equal to one.

Hence, for our choices of “good” and “bad” edges to be coherent, we must

4.2. The MaxMin algorithm 89

o p
(¢,6)
¢0 4 " 6 °
(¢72) (¢/a1) (¢/’) !
(".5) o .

Figure 4.1: Example non-optimised connected tree ‘IEOP of types.

have f1,, f1,4 = fi,, and f2 4 greater than one. For instance:

p: er=1,f1=4mn =6
q: e1=1,f1=3,h1 =3; ea=1, fo=2,hy =6;
[: €1=1,f1=3,h1=3.

The data corresponding to the edges leading to a leaf are not specified

as we do not need them to run MaxMin.

The optimised tree TJ is shown in Figure 4.2.

®p

Yo

(¢',3)
Figure 4.2: Example optimised connected tree T& of types.

Here we can see the relationship between the polynomials in the non-

optimised and optimised trees,

¢(p7 q) = (b(pu [) = ¢1,p = ¢7
brq=d11=¢,
Qb(q, [) = ¢2,q = ”7

90 Chapter 4. MaxMin

and the optimised hidden slopes are:

—)\ = —)\ _
A=A =6 A=A =2
Ay = 6, Al = 5.

The numerators of the extended Okutsu bases of each of the three prime

ideals will be,

2 3
M : 1> ¢1,pa ¢17p7 qbl,p? ¢pa
/\/’q:]-7 ¢1,q7 Qﬁ,qa ¢2,qa ¢2,q¢1,qa ¢2,q¢iq7 d)q;
M : 17 ¢1,[7 ¢%7[7 ¢['

Using the explicit formulas of Proposition 2.31, we may compute the
valuations of each of the ¢-polynomials. We write them as a tuple @ =

(wpvwcpw[)'

W (P1p) = (6,2,2), W (Pp) = (0,8,8),
(Cbl,q) = (27373)7 w(ﬁbzq) = (6a 15, 14) (¢CI) (12 o0 28)
W(pr) =(2,3,3), w(d) = (6,14,00).

g

We can now step through the results of running MaxMin[S]. The “min-
imal” valuation is underlined at each step. This indicates the index which

will be incremented in the following step.

i i @(g) | wig)
0 1-1-1 (0,0,0) 0
1 Prp-1-1 (6,2,2) 2
2 Grp - P11 (8,5,5) 5
3| dup-digc1 | (10,8,8) 8
4| ¢rp-daq-1 | (12,17,16) | 12
5| 63, 21 | (18,19,18) | 18
6 | ¢f, d2q-1 | (24,21,20)| 20
T @3, doq iy | (26,24,23) | 23
8 | ¢, b2 (28,27,26) | 26
9 | @1, doq o0 | (30,35,0) | 30

4.3. Precomputation 91

10 | ¢p-d2q- o (Yy | 37
11| ¢p - 2qP1q- b1 | (00,40,00) | 40
12 | by - P2,407 4 @1 | () | 43
13 Pp - Pq - P ()

The final element ¢;3 is the “extended” element, and is not included in
the v-integral basis of S.
4.3 Precomputation

Consider a partition of a subset S = {q1,...,qs} S P:
S=5u---US;.

That is, a decomposition of S into the disjoint union of several subsets. We
require that the ordering of each S; adhere to (4.1), and that S maintains
the ordering of the subsets, so that for 1 < i < j < t all elements of S; come

before all elements of S;. Denote

nj = ns;, 0<j<t.
Take extended families of numerators gos;, ..., 9n;,s; of Okutsu Sj-
bases, for all 0 < j < t.
Consider multi-indices 1 = (i1, ...,4;) of degree degi =iy + -+ + i; and

monic polynomials g; := ¢i,,s, - - 9,5, € Olz].

We may consider the version of MaxMin presented in Algorithm 4.2.

Algorithm 4.2 MaxMin[S = S; U --- U S;] algorithm

Input: A partition S = S; U ---u S of § € P, and extended families
{gi,sj 0<i < nsj} of numerators of Okutsu S;-bases for all 1 < j <.

Output: A family i, 11, .., 1,5 € N' of multi-indices of degree 0,1,...,ng,
respectively.
ip < (0,...,0) e N
:fork=0—->ng—1do

jemin{l <i<t:ws, (9,) = ws (g;,)}

Tpyq < 1 + oY
end for

A >

92 Chapter 4. MaxMin

There is a double motivation for the consideration of this algorithm.
On one hand, the Montes algorithm is able to provide Okutsu S-bases for
certain subsets S € P in a very natural way. Thus, in practice we are going
to use this MaxMin[S = S; U -+ U Sy] algorithm instead of the “global”
one. On the other hand, such a decomposition of MaxMin will be useful for

the proof of Theorem 4.3 (see Section 4.5).

Definition 4.5. For indices 1 < a < b < s, consider the following interval

of S:

I=1Ja,bl:={qj:a<j<bfcs.

We say that I admits precomputation if, after natural identifications,

the algorithm MaxMin[S] has the same output as

MaxMin[$ = {q1} U+ U{dact} UL U @} - U fad], (42)

where we consider the output of the algorithm MaxMin|[I] as an extended

Okutsu I-basis.

By “natural identifications” we mean that if the k™ output of MaxMin[S]
is ik = (iqys- - - iq,), then the k™ output of the algoritm (4.2) is:

Ik = (igrs- s 9qa—1591, lqyt1s - - - 5 9qs) 5

while the i output of MaxMin[I] is (iq,, .-, iq,)-

Let (ik)o<p<ng De the output of MaxMin[S], leading to numerators

flk = (iql,...,iqs) —— gﬁk = Hgiq’q'
qes

Let gg, 91, - - - » g, be the numerators deduced from the application of the
algorithm MaxMin[I]. Then, let (jx)o<k<ng b€ the output of the MaxMin

algorithm (4.2). If I admits precomputation, these multi-indices lead to

4.3. Precomputation 93

numerators
Ik = (iql, ey lg—15 0Ty bgy 415 - - .,iqs) —
/ /
95, = G5y H Giqq = Hgiq,q H Giq,q = Gigs (4.3)
qeS\t qgel qeS\I

so that MaxMin[S] and (4.2) lead to the same family of numerators of an
Okutsu S-basis.

The next result is an immediate consequence of the definition.

Corollary 4.6. Let S = Iy u---Ul; be a decomposition of S into the disjoint
union of intervals Ij = [aj,b;] with increasing end points by < --- < by.
If all intervals I; admit precomputation, then MaxMin[S = Iy U - - - U I}]

has the same output as MaxMin[S], after natural identifications. O

Suppose that 1o, ...,1, and jo,...,Jns are the outputs of MaxMin[S]
and MaxMin[S = I; U --- U I;], respectively. The natural identifications in

this case are

flkz (iql,...,iqs) — J]kz (il,...,it),

and for all 1 < j < t, the if" output of MaxMin[S;] is the multi-index

(iqm)a]- <m<b;*

Let us give a criterion for an interval to admit precomputation.

Lemma 4.7. Let 19,11, ..,1n4 be the output of MaxMin[S] and let I < S

be an interval of S. For each 0 < k < ng, let iy, = (iq)qu and denote

Gi, = Hgiq,qv Gﬁk = H Jiqq-

qesS qeS\I
Suppose that for each 0 < k < ng the following condition holds
wr (gﬁk) :’Ll)s(gﬁk) = Wy (Gﬁk) = Wq (Gﬂk>v Vp,qel

Then, I admits precomputation.

Proof. Let (ix)o<k<ng be the output of MaxMin[S] and (jx)o<k<ns be the
output of the precomputed MaxMin algorithm (4.2).

94 Chapter 4. MaxMin

Clearly, 19 and o may be identified. For k& > 0, suppose that 1; may be
identified with j;. This means

i = (qyy---»lqs) 5

Je = (iqla cee 7Z.C|a—17i17iqb+17 s 7%5)7

while the it" output of MaxMin[I] is the multi-index (iqj)a <j<b'
With the notation of (4.3),

b
g =G 9 = [] Giamsam:
m=a
The algorithm MaxMin[S] outputs i1 = 15 + u;, where
J=min{l <m < s:wg, (g;,) = ws (9i,)} -

If g; ¢ I, then the gqj-index in j; will also be the least index satisfying
wg, (g£k> = wg <g£k>, since g; = gi,- Thus, the algorithm in (4.2) will also
increase the gj-coordinate.

If q; € I, then wy(g;,) = ws(gi,) and wg,, (g;,) > ws (gs,) for all
m < a; thus, (4.2) will increase iy by one. In this case, we must show
that the (i; + 1)-th output of MaxMin[I] is the multi-index obtained from
(iqj)a <j<b by increasing the q;-coordinate by one.
The index increased by MaxMin[I] will be:

J =min{a <m <b:wy, (9,) =wr(d,)}

By hypothesis, v := wq (G, (0)) is independent of the choice of q € I.

Since gi,, = Gi,9;,, We have:
wq(gﬁk):wQ(gz{I)+V7 Vagel.
In particular, ws (g5,) = wy (gi,) = wr (g),) + v, 50 that J = j. O

One specific case of precomputation which we will make use of, is the

precomputation of certain intervals Sy € S defined by a type t.

4.3. Precomputation 95

Lemma 4.8. For any t € Tg, the interval Sy S S admits precomputation.

Proof. For every p € Sy and every q ¢ S, the explicit formulas from Propo-
sition 2.31 show that wq (¢;,q) is independent of p, for all . Hence, the same
is true for all polynomials Gj, that are a product of these ¢-polynomials.

Thus, S; meets the criterion of Lemma 4.7. O

4.3.1 Precomputation counter-example

To illustrate the necessity of the precomputation criterion, we present a
small example where an incompatible interval is precomputed and this leads
to output multi-indices which are not optimal. Let S = {p, q, [} and consider

the first levels of a non-optimised tree shown in Figure 4.3.

.ﬂ;p

.ﬂ:q

-t

Figure 4.3: Non-optimised tree with interval that does not meet the pre-
computation criterion.

In this example, the branch that divides to become part of t, and t,
includes a refinement step after its division from the branch that is part of

tr. Let us consider the following values for the slopes shown in Figure 4.3:
Ap=6, Ag=4, Ay=4, A\ =2

The first monic lifting of 1y to O[x] chosen by the Montes algorithm is
o(p,1) = ¢(q,1) = ¢1,. The branch of slope 2 suffers refinement and this
polynomial is replaced with ¢(p,q) = ¢1p = ¢1,4. This polynomial leads
to two branches which constitute the first level of two nodes of order 1
belonging to the paths joining t, and tq with the root node, respectively.
The optimised hidden slopes Aj,)\fl coincide with A;p and Aj 4 respec-

tively.

96 Chapter 4. MaxMin

For the purpose of this example, this is sufficient information about the
types tp, tq, and t, except to say that the order of all three types is greater
than 1.

According to the explicit formulas in Proposition 2.31, we can calculate
the following valuations for the first level ¢-polynomials of each type. The

valuations are given as a tuple @ = (wy, wq,w). Note also that ¢, =

(b(pa q) = </71,q-

W (h1,p) = W (¢1,4) = (6,4,2),
u_j((bl,[) = (2a 2a 4)'

The interval I = {q,[} does not meet the precomputation criterion, as
we cannot guarantee that when either the g- or the [-valuation of an output
numerator is minimal, the g- and [-valuations of the p-part of that numerator
will be equal.

Let us now consider the first three basis numerators computed by the
MaxMin[S]. The minimal valuation (and as such, the index to increment

for the following numerator) is marked with an underline.

i ‘ gi ‘ W (g:) ‘ w (gi)
0 1-1-1 (0,0,0) | 0
Ll ¢rp-1-1 | (6,4,2) 2
2 ¢17p -1 ¢1,K (8767 6) 6

Let I = {q,[} < S be the interval shown in Figure 4.3 and consider the

first three output numerators of MaxMin[I].

ol 1-1 | ©0] o
1 ¢17q -1 (4,2) 2
2| ¢1q 010 | (6,6) 6

Finally, we may consider the output of MaxMin[S = {p} U I], the algo-

rithm using the results from the precomputed interval I.

4.4. The block-wise MaxMin algorithm 97

i 4 | di(g) | wig)
0 1-1 (Q) 0
1 (pr -1 (6) 2
2| Grp-h1=0d1p- 01,4 | (12,8,4) 4

Since w (g2) = 6 > w(gh) = 4, the output of MaxMin[S = {p} U I]
is not optimal. From this example, we see that precomputing an interval
which does not meet the precomputation criterion may lead to non-optimal

numerators.

4.4 The block-wise MaxMin algorithm

Consider an ordered subset S = {q1,...,qs} € P, such that the correspond-

ing tree Tg is connected, and take

¢ =1(S) := min{i(p,q) : p,q € 5},

so that ¢ — 1 is the order of the greatest common node of all paths joining
the leaves of Tg with the root node.

The Okutsu frames of all primes p € S have the same first £ — 1 key
polynomials ¢1,...,¢s_1. Thus, the first m, numerators of the Okutsu p-

bases coincide for all p € S. Let
N ={1=ho,hi,...,°m—1},
be the family of these common numerators. Note that
wy (h) = wq (h), Vp,qesS, VheN. (4.4)
Lemma 4.9. For allp,qe S and all 0 < r,s < my:

wq (Arys), ifr+s < my,
wq(hrhs)< q(+) f ¢

wq (Pep) +wq(hy), ifr+s=my+Ek.

Proof. If r + s < my, the inequality wq (h,hs) < wq (hr4s) is a consequence

98 Chapter 4. MaxMin

of the maximality of wq (h,+s) amongst all monic polynomials of degree
T+ S.
Suppose now r + s = my + k. The recurrence V; = e;_1 fi—1(e;—1Vi—1 +

hi—1) shows that

‘/:L' ei—1fi 1) ‘/7, + >\Z .
——=wy (¢,) < wqy(Py) = ———, Vi < my.
€1 €1 q <¢Z_1 q (¢Z) €1 €i—1 ¢

Hence, in any product of powers of ¢1, . .., ¢y—1 we may replace ¢; 7' fim1

with ¢; to increase the g-valuation. Therefore,

Vi

+ wq (hg), 4.5
), (@)

wq (hrhs) < wyq (¢Zf’11fé*1> + wq (hg) =
because the term on the right hand side is the maximal g-valuation of a
product of powers of ¢1,...,¢s_1 of degree my + k. Now, the formulas in
Proposition 2.31 show the existence a slope A (either hidden or not) for
which

Vith Vi

61"’6e_1 61"'66—1

Wy (¢Z,p)

This ends the proof of the second inequality.]

Lemma 4.10. Let i be a maximal multi-index of degree divisible by my.

1. There exists a mazimal multi-index i = (iy)pes of the same degree,

having all its coordinates z';, divisible by my.

2. The elements in the family ¢iN are maximal numerators of degree

deg(1),deg(i) + 1,...,deg(1) + my — 1.

Proof. For 0 < j < my, let j = (jp)pes be a multi-index of degree imy + j.

Each index j, may be written
Jp = gy + ky, 0 < ky < my,
and the numerators g, , of the Okutsu p-basis may be written

Gjpp = Gplik,, deg Gp = gy

4.4. The block-wise MaxMin algorithm 99

By (4.4), we have

ws (g5) = ws (H Gphkp> = wg (H Gp> + Wy, (H hkp> ,
pesS pesS peS
where pg is an arbitrary choice of a prime ideal in S.
Since all polynomials Gy have a degree which is a multiple of m,, we
have Zpes ky = gmg + j, for some non-negative integer q. Consider the
e—1fe—1

polynomial h := ¢, of degree my. By an iterative application of the

inequalities in (4.5), we get

w, (Hhkp> < wy (h?) + wq (hy), Vges.

pesS

Hence,

ws (95)) < wg (thGp> + Wy, (hy)

pesS
= wg (hth HG,,) < wg <¢;{p0hj HGP> :
pes pesS

The final inequality is a consequence of Wy (Pr,p,) < Wp (Prp,), for all k < £
and p € S, which is shown in Lemma 3.12.

These arguments, applied to j = 1 (and j = 0) prove item (1). Also,
applied to an arbitrary j of degree deg(i) + j show that

ws (g5) < wg (sz,po H GP> + wy, (Ry)

pesS
< ws (93) + wp, (hy)
= ws (gihy) ,
by the maximality of g;. This proves item (2). O

Lemma 4.11. Let i = (iq)qes be an output multi-index of MaxMin[S] of

degree divisible by my.

1. All coordinates iq are divisible by my.

100 Chapter 4. MaxMin

2. Let j = min{l <m <s:w,y, (g:) = ws (gi)}. Then, the next my it-

erations of MaxMin[S] increase the coordinate q;.

Proof. All coordinates of i are zero; hence divisible by my,. Thus, it suffices
to prove that any output multi-index 1 = (iq)qes Whose coordinates are all
divisible by my satisfies (2).

Let j = min{l <m < s:wy,, (1) = ws (gi)}. If i = 1y is the k-th out-
put multi-index of MaxMin[S], the algorithm selects 141 = 1) + 1. Since

iq, is a multiple of my, we have g, , = g1, h1; hence,

Wy (gflk+1) = Wy (gﬁk) + wq (h1)
s (93,) + wq (h1)

= ws (Girs:) »

\%
S

for all g € S. Thus, wy (gﬁkﬂ) = wg (gﬁkﬂ) if and only if wq (g3,) = ws (g3,)
so that the next iteration increases the qj-coordinate again. By iterating
this argument, we get Girsmp—1 = i, hm,—1. At this point, the q;-coordinate

will be increased once more to yield x4, = 1 + mu;.]

This result shows that MaxMin[S] works by blocks of length m,. Thus,

we may consider Algorithm 4.3.

Algorithm 4.3 MaxMin[S; m,| algorithm

Input: An ordered subset S = {q1,...,qs} S P such that Tg is connected,
and extended families {gijq:0 < i < nq} of numerators of Okutsu g-
bases of each g € S.

Output: A family 1o, iy, , 12my, - - - ; Ipg/m, Of multi-indices with deg i = k,
having all coordinates divisible by my.
1: I'10<—(0,...,0)
2: for k =0 — (ng/my) —1 do
33 Jeminil <i<s:wg gﬁkm) = wg (gﬂkmz)}
4 kt1)m, < Tkm, + MUy
5. end for

Theorem 4.3 will be a consequence of the following result.

Theorem 4.12. The output multi-indices of MaxMin[S;my] are maximal

amongst all multi-indices of the same degree with coordinates divisible by my.

4.5. Proof of Theorem 4.12 101

In fact, by Lemma 4.10, all output multi-indices of MaxMin[.S; my] will
be maximal and by Lemma 4.11 these multi-indices coincide with the output
multi-indices of degree divisible by m, of MaxMin[S].

Finally, Lemma 4.11 shows how to derive all other output multi-indices
of MaxMin[S] and Lemma 4.10 shows that these multi-indices are maximal

too.

4.5 Proof of Theorem 4.12

The proof of Theorem 4.12 makes a heavy use of the structure of the non-
optimised tree with base type ty_; which is the greatest common node in
all paths joining the leaves of Tg with the root node.

Let ¢4 be the first representative of t,_; which leads to branching. Thus,
before constructing ¢y, the Montes algorithm may have constructed other
representatives of ty_; admitting unibranch refinements.

Let Amin be the least slope (in absolute size) occurring in the branching
based on ¢;. Let Spin € S be the subset of all prime ideals derived from a
branches of slope Apin of ¢y.

o

- A) !
te—1 Gp v

¢Oo—o cer e—o o -+ O

e . ._‘Amin7 d}

o

Figure 4.4: Tree ¥ with common node ty_.

The basic idea is to split S = U v D (U for “up” and D for “down”)
into the disjoin union of two intervals which admit precomputation and then
analyse the behaviour of MaxMin[S = U u D] for which the multi-indices
have only two coordinates.

Lemma 4.10 and Lemma 4.11 show that the output multi-indices of
MaxMin[S; my] coincide with the output of an ordinary application of the
2-dimensional MaxMin applied to the precomputations MaxMin[U; m] and
MaxMin[D;myg]. We shall denote this algorithm by MaxMin[S = U u
D;my).

102 Chapter 4. MaxMin

We distinguish three cases according to the structure of the non-optimised

tree:

Case (A). There exists a branch with slope Amin which suffered refinement.
In this case, we take D to be the set of all prime ideals derived from this
branch. Note that ¢pp, # ¢¢ ¥V p € D, and that there may be other Amin-

branches.

[e]

ﬂ:ﬂfl (bz)\7 1/]/

1/)00—0 e ——mo o -+ O
. -)\min7¢ .

ol > D

Figure 4.5: Case (A): Tree T with common node t,_; and at least one
refined A\pi,-branch.

Case (B). None of the Apin-branches suffered refinement, and there are no
other slopes. In other words, Agy = Amin and ¢gp = ¢4 for allp € S = Spin.
In this case, we take D = Sy, where t := Trunc(ty,), for an arbitrary

choice of po € S.

(te—15 (0, Amin, ')
Yoe——e - (te—1;5 (P, Amin, ¥™))

(te—1; (Pe; Amin,) = ¢

Figure 4.6: Case (B): Tree ¥ with common node t,_; with only unrefined
Amin-branches.

Case (C). None of the Amin-branches suffered refinement, but there are
other slopes. In other words, Npy = Amin and ¢pp = ¢¢, for all p € Spin,
and Smin & S.

In this case, we take D = Spin.

In all cases, we may change the ordering of P so that D and U = S\D

are intervals.

4.5. Proof of Theorem 4.12 103

(ﬂ;f—l; (¢Z7)‘”a W/))

(ﬂlffl; (QS%, >‘/7 "‘//))
(fﬁé—l; (¢£a)\mina W))

Yoo—e -

Smin

(ﬂ;f—l; (d)Za)\minv ¢))

Figure 4.7: Case (C): Tree T with common node t,_; with unrefined Apyin-
branches and other slopes.

4.5.1 Proof of the Theorem in cases (A) and (B)

Let U = S\D and denote

. Vi + Amin
ci= ——

61 .. .ee_l

The explicit formulas from Proposition 2.31 show that
Wy (Pmq) = (m/my)c = wq (dmp), VpeU qeD, Vm=L (4.6)

On the other hand, all ideas and criteria about precomputation apply
to the MaxMin algorithms restricted to all multi-indices whose coordinates
are divisible by my. Hence, (4.6) shows that D and U = S\D meet the

condition of Lemma 4.7 and both intervals admit precomputation.

Denote the respective output families of numerators of MaxMin[U; my]
and MaxMin[D;my] by:

Lg,... yGny fmygs

179/17 R ’g;LD/mw

respectively. Note that deg g, = deg g} = kmy, for all k.
By Corollary 4.6, MaxMin[S; m,] has the same output as MaxMin[S =

U u D;my], after natural identifications of the respective multi-indices. In
other words, if (7, 7) is the k-th output of MaxMin[S = U u D;my] (so that
k =i+ j), then the k-th numerator provided by MaxMin[S;m,] is gg;.

104 Chapter 4. MaxMin

Definition 4.13. We say that a monic polynomial G € O[x] has support in
a subset S" < S if it is a product of polynomials ¢r,y for pe S" and m = ¢.

Note that the degree of G is necessarily a multiple of my.

In order to prove Theorem 4.12, we must show that the output numer-
ators of MaxMin[S;my]| are maximal amongst all polynomials of the same
degree with support in S.

We proceed by induction on #S. The case #S = 1 being trivial, we
may assume by the induction hypothesis that both sequences of numerators
are maximal amongst all polynomials of the same degree with support in U
and D, respectively.

For all 0 < i < ny/my and all 0 < j < np/my, denote

v; = wy (g;) — ic, (47)

V;- = wp (g;) — jc.

We agree that v_ =1/ = —1.

Lemma 4.14. For alli,j = 0,

/ /
Vi < Vg1, Vi S Vjyq-

Proof. By Proposition 2.31, wq(¢eq(0)) = (Vo + Aeq)/(e1---er—1) for all

qe U. Since A\pq = Amin, the maximality of g;;1 implies
wy (giv1) = wu (gideq) = wu (9) + ¢, Vqel.
Similarly, the maximality of g} 41 implies
wp (g541) = wp (9j6¢) = wp (g}) + c.

By the definition (4.7) of v, v}, this ends the proof of the lemma. O

For any bi-index 1 = (7,), and any p € U, q € D, we have

wy (9i(0)) + je,
wq (g3) = wq (9i9}) = wq (95(0)) + ic.

wy (1) = wy (9i95)

4.5. Proof of Theorem 4.12 105

Hence,

wy (g1) = v; + (degi)c,
wp (g3) = V; + (degi)c,

ws (gi) = wg (gig;-) = min {I/i, V;} + (deg1i)ec.

Therefore, these numbers v;, Vj,- determine the flow of MaxMin[S =
U v D;myg]. If (i,7) is an output pair, the next output pair is decided as

follows:

wy (91’9}) = Wg (91’9;-) < v; <V, “U-minimal”,

wp (9i9;) = ws (9i9;) <= Vi <wi, “D-minimal”.

The next output pair is (i + 1,75) in the U-minimal case, and (i,j + 1)

in the D-minimal case.

Proposition 4.15. The output bi-indices (i,7) of MaxMin[S = U u D;my]
satisfy the following properties:

1. Either 1/}_1 <y < V;-, orvi_1 <V

]<Vi-

2. The output multi-indices 1 = (iy)pes of MaxMin[S;my| which are ob-
tained by joining the i-th output of MaxMin|U; m¢] and the j-th output

of MaxMin[D;my| are mazimal.

Proof. Clearly, the initial output pair (0,0) satisfies (1). Let us check that
if an output pair (7, j) satisfies (1), then the next output pair satisfies (1)

as well.

Suppose that l/;~_1 <y < VJ’~, so that the next output pair is (i + 1, 7).

= 1SV S Vg1 SV

Viy1 S Vj i

/
J
Vit1 > 1/;~ = U; < 1/;» < Vj41.

106 Chapter 4. MaxMin

Suppose that v;_1 < 1/ < v;, so that the next output pair is (4,7 + 1).

/ /
v SV 41 - 7/ <V1<V]+17

I/i>l/j+1 — Vi71<l/j<Vj+1<I/i.

This proves item (1). As a consequence, for any k € Z such that 0 <

i—k<ny/mgand 0 <j+k<np/my, we have:

min {yi,k, V;-Jrk} < min {Vi, 1/;} . (4.8)

In fact, if V],~_1 <y < Vj’., then min{yi_k,V§-+k} < v;, whereas in the

case vj_1 < V§~ < v;, we have min {I/i_k,l/;_,’_k} < 1/3.

In order to prove (2), suppose that (i, j) is an output pair of MaxMin[S =
U u D;my] and let g be a polynomial of degree (i + j)my with support in
S. We may write g = GG’, with G, G’ polynomials with support in U and
D, respectively.

Suppose deg G = (i — k)my, deg G’ = (j + k)my, for certain k € Z. By

(4.6) and the maximality of the numerators g; , g;- 1k We have:

wy (9) = wy (GG')
=wy (G) + (j + k)c
Svig+(@—ke+ (+k)c

= Vi + (7’ +j)ca

wp (9) = wp (GG/)
0 (@)
J+k +(j+ k)c—l— (i —k)c

=]+k+(z+])

4.5. Proof of Theorem 4.12 107

Hence, by using (4.8), we get:

ws (9) = min{wy (9) ,wp (9)}
= min{yi_k, V],~+k} + (i +7)c
< min{yi, 1/]'} + (i+j)c

= ws (9i95) -

This ends the proof of Theorem 4.12 in cases (A) and (B).

4.5.2 Precomputation in Case (C)

Recall that D = Sy, and U = S\D. In this case, we have:

buq = P, YqgeD,
o(p,q) = de, VpeUqeD.

For each p € S we denote by A, the slope of the branch of ¢, in the

non-optimised tree to which the leaf of p belongs. Also, we denote

W +)\min
Cci=—)
el .. 'ef—l

)\p -)\min

5y =
p - .
e1---€ep_1

The explicit formulas presented in Proposition 2.31 show that for all

pelU,qe D:

wq (@ip) = (mi/mye)c, Vixd,

(mi/me)e, if i >, (4.9)
Wy (¢i7q) =

(Sp + C, le = E

Let G be a polynomial of degree im, with support in U, and let G’
be a polynomial of degree jmy with support in D. If m := ordy,(G’), the

108 Chapter 4. MaxMin

formulas (4.9) show that:

wy (GG/) = min {U)p (G) + mdp}peU + jc’

(4.10)
wp (GG') = wp (G’) + ic.

The first formula of (4.9) shows that D meets the criterion of Lemma
4.7 and admits precomputation. In order to show that U admits precom-

putation too, we need another lemma.

Notation. For each p € D, we denote my := myy1p = egpfrpmy.

Note that e/, is independent of p, because it is the least positive denom-

inator of Amin-

Lemma 4.16. Leti = (iy)pes be an output of MaxMin[S;my] and g = g; the

corresponding numerator. Let p € S be the least prime with wy (g) = ws (g).

1. If pe D and my | iy, then the next egpfo, output numerators are

pfep—1
g¢f7 ggb?? SRR g¢22p o)

and finally

(H giq,q> " Gig+myp,p-

q#p
2. If pe U, then mq | iq for all ge D.

Proof. Suppose p € D and my, | iy. Since the element g;, », a numerator of
the Okutsu p-basis has degree divisible by my, it is not divisible by ¢, and
Gip+1,p = Yip p®e- Hence, the next output numerator is goy.

By (4.9), wp (9¢¢) = wy (g) + ¢, while wq (9¢¢) = wq (g) + ¢ for all g€ S.
Thus, the least prime with wq (g¢¢) = ws (g¢¢) is, once again, the prime p.

This argument may be iterated as long as ordg, (g, +km,p) = k < erpfrp-
For k = fopfep — 1, the prime p is still the least one satisfying wy (gqﬁ?) =
wg (g(;ﬁlg), so that the component of the multi-index corresponding to p is

increased and the output multi-index is 1 + mypuy.

4.5. Proof of Theorem 4.12 109

Since iy +mp = 0 (mod my), the polynomial g;, 1, p is not divisible by
¢p; in particular, it is not equal to ¢, times the previous polynomial and
the prime p may cease to satisfy wy (gHmpup) = wg (gHmpup).

The second item follows immediately from the first. O

Corollary 4.17. U admits precomputation.

Proof. Let us show that U meets the criterion of Lemma 4.7.

Let 1 = (ip)pes be an output of MaxMin[S;m,] and let g = g; be the
corresponding numerator. Suppose that wy (g) = wgs (¢g). With respect to
the ordering of S, all elements in U are less than all elements in D; hence,
the least prime p with wy, () = wg (g) belongs to U. By (2) of Lemma 4.16,
my | iq for all g € D, and this implies that none of the numerators g;, 4, for
q € D, is divisible by ¢,.

Therefore, (4.9) shows that wy (gi,q) = (iq/me)c for all p € U, and the
value wy, (Gi) = wy (quD giq7q> is independent of p € U. O

4.5.3 Proof of the Theorem in Case (C)

Denote the respective output families of numerators of MaxMin[U; my] and
MaxMin|[D;my] by:

Lg,... yGny fmygs
179/11 e 79;D/m27

respectively. Note that deg g, = deg g} = kmy, for all k.
Let 1 = (ip)pes be an output of MaxMin[S;my|. Since U and D admit
precomputation, Corollary 4.6, Lemma 4.10, and Lemma 4.11 show that

9i = 9ig;, for the k-th output (4, j) of MaxMin[S = U u D;my].
Notation. We denote [j] := ordg,(g;), for 0 < j <np/my.

By Lemma 4.16, all indices iy, for q € D are divisible by mq except
eventually for one, say iq,. Hence, [j] is the residue of the euclidian division

of iq, by mgq,. Note that [j] = 0 if and only if mq | iq for all g € D.

110 Chapter 4. MaxMin

Let us consider rational numbers v;, v} as in (4.7). The formulas (4.10)

translate into

wy (gig}) = min {wy (g:) + [§10 byeyr + . (4.11)

wp (gig;-) = wp (g;) +ic=vj + (i + j)c.

Lemma 4.18. These data v;, I/} satisfy the following properties for alli,j >
0:

1. v 1 <vy.

2. 1/]/471 < 1/3- and if [j] # 0 then equality holds.

Proof. Take any p € U. By Proposition 2.31, we have the value wy (¢¢p) =
(Ve + Aep)/(e1---ep—1). Since Apq > Amin, the maximality of g; implies

wy (gi) = wu (gi—1¢ep) > wu (gi-1) + ¢,

because wq (¢ep) = (Ve + A)/(e1 -+ eg—1) for some X\ > Ayin, for all ge U.
This proves (1). Similarly, the maximality of g} implies v} _; < v/}.
By Lemma 4.16, [j] # 0 implies that g; = g’ _;¢,. Since wq (¢¢) = ¢ for

all g € D, this implies wp (gg) = wp (93;1) + ¢. This proves (2). O

Lemma 4.19. Let i = (i,7) be an output pair of MaxMin[S = U u D;my].
Then,

1. Either 1/;-_1 <y < VJ’-, or vi_1 < V;- < y;.

2. The next output pair is (i + 1,7) in the first case, and (i,7 + 1) in the

second case.

Proof. Clearly, the initial pair (0,0) satisfies (1), the next output pair is
(1,0), and it satisfies (1) too. Let us show by induction that if an output
pair satisfies (1) then the next output pair is given as indicated in (2) and
it satisfies (1) as well.

Suppose that 1/;»_1 <y < V;-. If the previous output pair was (i — 1, 5),

the induction hypothesis implies that we had v;_; < v;—1 < v}. Since

Vi < vi-1 < v < vj, we have [j] = 0 by item (2) of Lemma 4.18. If

4.5. Proof of Theorem 4.12 111

the previous output pair was (i,7 — 1), then 1/]’;1 < v; by the induction

hypothesis. This leads again to V;_l < 1/§~ and to [j] = 0.

Thus, (4.11) shows that

wy (9i9;) = wo (gi) + je
vi+ (i+j)c

<vj+ (i +j)c

wp (gig;) .

Thus, wy (gig3> = wg (gig;~> and the next output pair is (i + 1, j). The
arguments of the proof of Proposition 4.15 show that (i + 1, j) satisfies (1).

Suppose that v;—1 < v} < ;. By (4.11), we have

wp (9ig}) = v + (i + j)e
<vi+(i+j)c
= wy (g:) + je
< min {wy (g;) + [j]dp}peU +Jje

= Wy (91’9;') .
Thus, wp (gig}) = wg (gig;) and the next output pair is (i,j + 1).

The arguments of the proof of Proposition 4.15 show that (i, j + 1) satisfies
(1). O

Lemma 4.20. Consider indices 0 < k < ¢ and let G be a polynomial of

degree (i — k)my with support in U. Then,

min {wy (G) + kdp},ey < vi + (i — k)e.

Proof. Let q € U be a prime ideal with a maximal value of \;. The statement

112 Chapter 4. MaxMin

follows from the following chain of inequalities:

min {wy (G) + kdp} ey + ke < wy <G¢Zq)
=v; + ic.
The second inequality of (4.12) follows from the maximality of g;. The
first inequality is deduced from the formulas from Proposition 2.31. In fact,

for any p € U, these formulas yield wy (¢rq) = (Vo + A)/(e1---ee—1), for a

certain slope A, depending on p, such that A > Ay; hence,

Ve+ A

el ...eeil

wy (Gqﬁzq) =wy, (G)+k

for all p € U, which implies the first inequality in (4.12).
More precisely, if i(p,q) = £, then A = A§ or A = min {A\}, \J}, according
to ¢(p,q) being equal to ¢y 4 or not. Now, if p and q belong to the same

¢¢-branch of the non-optimised tree, we have (see Section 2.7)
Ap =N < min{)\q,)\’;} <A\

If p and q belong to different ¢y-branches of the non-optimised tree, then
)\g = Ap,)\E = \g, so that, again,

Ap = min {\y, \g} = min{)\g,)\g < A

Finally, if i(p,q) > £, then A = A\gq = Agp = Ap, by Proposition 2.31. O
We are ready to prove Theorem 4.12 in Case (C).

Proposition 4.21. In Case (C), all output multi-indices of MaxMin[.S; my]
are mazximal amongst the multi-indices of the same degree whose coordinates

are all divisible by my.

Proof. Let 1 = (ip)pes be an output multi-index of MaxMin[.S; my], obtained
by joining the i-th output of MaxMin[U | and the j-th output of MaxMin|D].

4.5. Proof of Theorem 4.12 113

Let g be a polynomial of degree (i + j)m, with support in S. We may
write ¢ = GG’, with G, G’ polynomials with support in U and D, respec-
tively.

Suppose deg G = (i — k)my, deg G' = (j + k)my, for certain k € Z. Let

us write

G/ :H(Z)Zna (ZSE*Ha degH:qm[

Note that ¢ + m = j + k. By (4.10),

wy (GG') = min {w, (G) + mbp}oerr + (7 + ke,
wp (GG') =wp (G') + (i — k)c.

Since wy (¢¢) = c for all q € D, the last equality leads to

wp (GG') = wp (G') + (i — k)c
(

<wp (gy) + (m+i—k)c (4.13)
=y, +(g+m+i—k)c
= v, + (i +j)c

By Lemma 4.19, we may distinguish two cases according to the compar-

ison of v; with V],-.

Case 1. V§~_1
4.19 that [j] = 0. Hence, wg (gig;) = wy (gigD =v;+ (i +j)c, by (4.11).

We want to show that

<y < V],-. In this case, we saw during the proof of Lemma

wg (GG’) = min {wU (GG') , WD (GG’)}

<vi+ (i+j)e

114

Chapter 4.

MaxMin

If m < k, then Lemma 4.20 shows that

If m > k, then ¢ < j, or equivalently ¢ <

Case 2. v;_1 < 1/; < ;.

wy (GG') = min {w, (G

)
< min {wp (G) + kdp} ey + (G + ke

<vi+(i—k)e+ (j+ k)
)

wp (GG') <V, + (i + j)c

q
/

\V] 1+('L+])C

A

<vi+ (i +j)e.

wg (GG’) = min {wU (GG') , WP (GG’)}

<vi+ (i+j)e

+mbpter + (7 + K)e

j — 1. Thus, (4.13) shows that

In this case, Lemma 4.19 and (4.11) show that
wg (gig;) = wp (gig;) =vj + (i + j)c. We want to show that

If m < k, then m < k — 1. Having in mind that degG/my =i — k =

(t—1)— (k-

1), Lemma 4.20 shows that

< min {wy (G(0)) + (k= 1)dp} ey + (5 + K)c

<1/i,1~|—(i—kc (j+k)c

If m > k, then ¢ < j and (4.13) shows that

wp (GG') <V, + (i + j)e < V(i + j)e.

4.6. MaxMin for unconnected trees 115

4.6 MaxMin for unconnected trees

In this section we will discuss the application of the MaxMin algorithm to
a set of unconnected trees.
4.6.1 The separated MaxMin algorithm

Consider a partition
S=5u---uScP, (4.14)

of a subset of Psuch that all elements in S; are less than all elements of .S; for
1 < j. We say that the partition of S is “separated” if for any 1 <17 # j <t

and any choice of p € S;, q € S;, the following equivalent conditions hold:

1 i(p,q) = 0.
2. t, and ¢4 do not belong to the same connected subtree of T.
3. ged(Fy, Fy) = 1.

In this case, the formulas in Proposition 2.31 show that:
wy (Pig) =0, 1<i<rg+l. (4.15)

For any p, q € P, the condition “t, and t4 belong to the same connected
subtree of T defines an equivalence relation ~ on P. Hence, every subset

S < P admits a unique separated partition (4.14) satisfying moreover:
p,geSi—=—p~q,

forall 1 <7<t
For separated partitions, we may consider the “separated MaxMin”,
presented in Algorithm 4.4.

The aim of this section is to prove the following result.

Theorem 4.22. The output multi-indices of SepMaxMin[S = Sy u--- US|

are mazximal.

116 Chapter 4. MaxMin

Algorithm 4.4 SepMaxMin[S = S; U --- U S¢] algorithm

Input: A separated partition S = S;u---U S; of S, and extended families
{Gk,i: 0 <k <ng,} of numerators of Okutsu S;-bases for all 1 <i < t.

Output: A family ig,11,...,1ns € N’ of multi-indices iy, = (k;)1<i<t of
degree 0,1, ...,ng, respectively.
ip < (0,...,0) e N
: for k=0—->ng—1do

j—min{l <i<t:wg (ka) = wg (Gi,)}

Ig41 < Ix + ;
end for

A > vy

Thanks to the separateness of the partition, condition (4.15) shows that
wg, (Gr,,i) = ws, (Gy,) ,

for all 1 <i <t and all 1. Hence SepMaxMin[S = S; U - -+ U S¢] has the
same output as MaxMin[S = S; u -+ U S¢].

The only difference between the two algorithms is that in the separated
algorithm for the computation of wg, (G,) we only need to concern ourselves
with the S;-valuation of the polynomial Gy, ;.

On the other hand, (4.15) implies that the criterion of Lemma 4.7 is
fulfilled, and so SepMaxMin[S = S; U --- U S;] has the same output as
MaxMin[S] after natural identification of the output multi-indices.

Therefore, we may drop the condition of the connectedness of Tg in
Theorem 4.3. In fact, Theorem 4.3 and Theorem 4.22 imply the main result

of this memoir.
Theorem 4.23. All output multi-indices of MaxMin[S] are mazimal.

In the remainder of this section, we will agree that wg, (G_1;) = —1 for

all 1 <7 <t.

Lemma 4.24. Let iy, = (ki)1<i<t be the k-th output multi-index resulting
from SepMaxMin[S = Sy U --- U S|, and let j be the minimal index as in
line 8 of the algorithm. Then, for all 1 < i < t,

ws; (Gr, i) = ws; (Gr;j) = ws, (Gr,—1,0) - (4.16)

4.6. MaxMin for unconnected trees 117

Proof. The first inequality is a direct consequence of
ws; (ij7j) = wg (gi,) < ws, (Gg,),1 <i<t.

Let us prove the second inequality by induction on the degree k of the
output multi-index. Clearly, the initial multi-index ig = (0,...,0) € N
satisfies (4.16). Let ¢ be the minimal index in the (k — 1)-th iteration, so
that

1 = I — Uy, g1 = 1 + Uy

Let us assume that 1, satisfied (4.16). Thus

wg, (Gkg—l,é) = wg, (Gki—Li) , 1<t
If £ = j, we immediately deduce:
ws; (Gr, ;) = ws; (Gr;-1,5) = ws; (Gr—1,) , I<i<t

On the other hand, if ¢ # j, by construction ¢ satisfies:

ws, (Gry—1,0) = ws (91,_,) < ws; (Gr,.5) »

and we also deduce the inequality we are looking for:

A
N

ij (Gk]a]) 2 wsl (Gk,‘g—l,ﬂ) = wSi (Gki—l,’i)) 1

We can now proceed to prove this section’s main theorem.

Proof of Theorem 4.22. We will proceed by induction on the iteration
m. For m =0, 1p = (0,...,0) which is maximal by virtue of being unique.
Suppose all output multi-indices up to and including ix = (k1,..., k)

are maximal. Let S; be minimal in iteration m so that i1 = 1y +uy. It

118 Chapter 4. MaxMin

will be shown that
ws (Giy,y) = ws (Gj) Y j, degj =k + 1.

In order that j = (j1,...,Jt) # 1x+1 have degree k + 1, it is necessary
that either

1. j =1 + uy for £ # j; or
2. there exists at least one coordinate ¢ such that j, < ky.

For case (1), ws (Gj) = ws, (G, ;) = ws (Gy,). In the case of (2), by
(4.16) we can see that,

ws (Gy,) = ws, (G, ;)

Meanwhile, by the construction of i, from i we have,
ws (Giy,,) = ws (Giy) = ws (G;(9)),

and so 141 is maximal. O

4.7 Improvement of Okutsu approximations

During the execution of the MaxMin algorithm, as presented in Section 4.2,
we have taken the p-valuation of ¢, the Okutsu approximation to F} to be
formally infinite. This is practical, as wy (¢y(0)) depends on the choice of
¢p as an Okutsu approximation to F, and can be arbitrarily large.
However, in order to construct a basis, a concrete approximation must
be chosen. The Montes algorithm provides us with an approximation and by
using the Single Factor Lifting (SLF) algorithm, we can efficiently improve

the approximation and raise its p-valuation.

4.7. Improvement of Okutsu approximations 119

In this section, we will compute a lower bound on the required valuation

wy (¢p(#)) so that we may use the minimum number of iterations of the SFL

algorithm.
Let Go,G1,...,Gr_1 be the family of numerators of a v-integral basis
created by the MaxMin algorithm and let 19, 11, . . ., 1,,—1 be the multi-indices

that define them so that

G = Hgﬁk[p],p, 0<k<n,
peP

where [p] is the p-coordinate of the multi-index 1 and g is the j-th nu-

merator of the Okutsu p-basis.

Let v, € Q be the maximal w-valuation for a monic polynomial in O[z]
of degree k evaluated in 6. If we take the formally infinite p-valuation for
¢p for all p e P, then w (Gy(0)) = v4.

For all p € P, wy (¢y(#)) must be large enough that for all 1 < k < n
such that ¢, | G}, we have

wy (Gi(0)) = v

Definition 4.25. We define the required p-valuation for the Okutsu approz-

imation to F, to be,

W, := max {I/k - 2 Wy (Gipfala(0)) : Bklp] =7y + 1} ’

q#p

Computationally, the value of W) is simple to calculate. At each iter-
ation k where ix[p] has reached the value 7, + 1 we sum the precomputed
p-valuations for all the numerators being included in Gy, except the p-
numerator and then subtract this from minimum valuation (which we must
find to increment the multi-index for the next iteration anyway). We com-

pare this to the previously stored W), and keep the greater value.

120 Chapter 4. MaxMin

4.8 Further optimisation

The MaxMin algorithm can benefit from a number of optimisations, de-
pending on the structure of the genetic tree ¥ of types which represent the
prime ideals p € P of Op.

One optimisation is the precomputation of a subset S; < P of prime
ideals which share a common type in their genetic tree. Another, related,
optimisation is the case where a set .S of prime ideals has an index of coinci-
dence i(S) = £ > 1 greater than one. In this case, we can use MaxMin[S; my]
to only calculate the indices divisible by my, and fill in the remaining indices
as per Lemma 4.10.

Both of these optimisations will be further explored during the complex-

ity analysis in Chapter 6.

4.8.1 Terminal sides of a type

Let ¢t be a type of order r with representative ¢ encountered during the
execution of the Montes algorithm. We consider the order » Newton polygon
N, . (f) created using the data inherent in the type, as shown in Figure
4.8.

Figure 4.8: Higher order Newton polygon of f with multiple slopes.

For each side S) of the Newton polygon, we calculate a residual poly-

nomial and consider its irreducible factors in the extension of the residual

4.8. Further optimisation 121

class field F,.

Ry, o (f) = C] [, ¢ ey 1p e Fofy).

A new type is created from the data t' = (t; (¢, A, %)). In the case that
wy = 1, this type is a leaf node of the genetic tree describing f and is an
OM representation of a prime ideal py € P of Op. As such, we call this new
type t’ terminal. We also call the prime ideal py a terminal prime ideal of
t.

Definition 4.26. Let t be a type of order r and ¢ a representative of t.
Consider the side Sy of slope —\ of the Newton polygon N;¢7w(f) and let
St.0.x be the set of all prime ideals of this side Sx. We call Sy a terminal
side if it has one or more irreducible factors 1 with exponent wy = 1.

For a terminal side Sy, the set of terminal prime ideals of that side is

I\ © St ¢ Additionally,

I=Jn,
A

s the set of all terminal prime ideals of ¢.

Let Sy be a terminal side of t, ¢, then the terminal length of S) is given
by

gterm(s)\) =€)\ Z f’(/))
{wzwwzl}

where ey is the denominator of A = hy/ey and fy, is the degree of .
Let ¢1,..., ¢, be the representatives at each level of the type t. For all
prime ideals p € Sy whose genetic tree contains t, the first m, elements of

the Okutsu p-basis will coincide. Let,
Ny ={1=ho,h1,...,h—1},

be the family of these common numerators. This is a similar construction

to that given in Section 4.4.

122 Chapter 4. MaxMin

Proposition 4.27. Let t be a type of order £ — 1 and ¢ a representative of
t such that t,¢ have terminal prime ideals p € I = Iy, U --- U Iy,. Let Ny

be the common family of numerators of t. Then for all X,

Ztcrm(s)\)
M= | o"Mouial, o =] ¢
a=0 pely

is an extended family of numerators of an Okutsu Iy-basis.

Proof. We will first show that I, admits precomputation. We will then
show how the precomputed numerators can be substituted for powers of ¢

and remain valid.

Forpel, and q€ S¢’¢7,\f o Sﬁ;\[)\,

Vit A
et k=0 and grq = b,
wy (drg(0) =4 !
p kzq = . !
Mpq Ve + min {\, X'}
. , k>/lor # .
my €1 er-1 Pta @

Since these values depend only upon)\ which will be fixed for each
q € Siex and A which is equal for all p € Iy, then the precomputation

criterion given in Lemma 4.7 is met, and I, admits precomputation in Ss.

The index of coincidence of any two prime ideals p, q € St in the subset
I, < Sy isi(p,q) = ¢, so we can apply MaxMin[Iy; my] as given in Algorithm
4.3. However, as we will see, the output of the MaxMin algorithm for this

set is fixed.

For two distinct prime ideals p,q € I, we have the degree adjusted

p-valuations,

Wy (D(0) = — - ————— =Wy (¢q(0)) <y (¢p(0)), p#q (417)

my oer-c-epy

4.9. Basis element reduction modulo an m-power 123

As such, the output multi-indices of MaxMin[ly; m,] will be,

ﬁeé,plfé,pl = (ef,m ff,pl s 07 cee 707 0)7

ﬁe(g,plfgml-‘rl = (eﬁ,plff,pla 1,...,0, 0)7
ierm(Sx)—1 = (€tpy foprs €opafepss - s €opo s fopoir€ep. fep, — 1),
ﬁfterm(s,\) = (ef,m ff,pl) ef,pzf@,pw s Clpg ff,ps_l » €Lps ff,lﬂs)v

which will generate an extended family of numerators of degree divisible by

my,
N]A;me = {17 RN ,¢8Z,p1fi,p1_1’ ¢P1a s ’¢6Z,psf€,ps_l¢pl T ¢P571?¢p1 T ¢Ps})
Using (4.17), we can see that

wiy (65(0)) = wr, (47 (9)) Vpely,

and so we can replace all but the last of the numerators in N7, .,, with

powers of ¢,

I/A;mg = {17 ¢a ¢2a s 7¢£term(s}\)_l; ¢P1 e ¢ps} .

By applying part (2) of Lemma 4.10 to Ny and N7, . . we can construct
an extended family of numerators of an Okutsu [y -basis. It can be seen

that this family of numerators will coincide with Ay. O

4.9 Basis element reduction modulo an m-power

During the construction of a triangular v-integral basis, the coefficients of

the numerators can grow larger than is necessary. It is beneficial to reduce

124 Chapter 4. MaxMin

the coefficients of each element of the basis modulo a power of m. This
leaves us with smaller basis elements and less computation should we wish
to then convert the basis to Hermite Normal Form or, in fact, perform any
computation with the basis. This is especially important in the case of
function fields, as the coefficients are themselves polynomials.

The following result is obvious.

Lemma 4.28. Let g,G € O[z] be monic polynomials of degree m and let
v=w/(g()). Then,

G=g (modm) — w(G(9)) = |v],
G=g (modml) — w(G(®)) =v.
Corollary 4.29. Let 7 "lgo(@), ..., 7= ln=lg, 1(0) be a triangular v-

integral basis, where v; = w(g;(0)). Let G; € Olx] be monic polynomi-
als such that G; = g; (mod ml“l) for all 0 < i < n. Then the elements

)
= lGy(8), ..., 711G, 1 (8) also form a triangular v-integral basis.

Proof. By Theorem 1.23 it suffices to show that |w (G;(f))] is maximal
amongst all monic polynomials in O[z] of the same degree. By Lemma
4.28, |w (Gi(0))]| = |w (g:(0))] is maximal. O

If go, . . ., gn—1 are the numerators of a reduced triangular v-integral basis
as in Definition 1.25, then they must be reduced modulo a slightly higher

power of m to remain reduced.

Corollary 4.30. Let 7 "0lgy(6), ..., 7= ln=1lg,_1(6) be an m-reduced tri-
angular v-integral basis, where v; = w (g;(0)). Let G; € Olx] be monic poly-
nomials such that G; = g; (mod m[””) for all0 < i <n. Then ﬂ*lVOJGO(H),

, mWnGL () s also an m-reduced triangular v-integral basis.

Proof. By Theorem 1.26, for a triangular v-integral basis to be reduced,
the numerators must have maximal valuation amongst all polynomials of
the same degree. By the second part of Lemma 4.28, w (G;) = w(g;) is

maximal. O

Triangular bases of fractional

ideals

“Fverything is hard before it is easy.”

— Johann Wolfgang von Goethe

This chapter will provide details of how the MaxMin algorithm is adapted
to compute local bases of fractional ideals.

Let (K, v) be a discrete valued field with valuation ring O. Let m be the
maximal ideal, 7 € m a generator of m and F = O/m the residue class field.

Let K, be the completion of K, and retain v : F: — @ the canonical
extension of v to a fixed algebraic closure of K,. Let O, be the valuation

ring of K, and m, its maximal ideal.

125

126 Chapter 5. 'Triangular bases of fractional ideals

Let f € O[z] be a monic, irreducible polynomial of degree n and fix
a root § € K in the algebraic closure of K. Let L = K(6) be the finite
extension of K defined by f and Op the integral closure of O in L, which
is a Dedekind domain. We suppose that Oj is finitely generated as an
O-module and denote by P the set of prime ideals of Op,.

Let Z;, be the set of non-zero fractional ideals of O, and let I € Zy, be

one such ideal,

1= Hp%.

plm

We consider the map analogous to wy, 7, which is detailed in Definition
1.4, for a prime ideal p € P,
wp,r: L — Qu {00},

(5.1)
a— wy 1 (@) = wy (@) — ag/e(p/m).

Let S = {p1,...,ps} S P be a set of prime ideals of O, then we may

define wg s (o) := min {wy s ()}, ¢ as expected.

pe

Let O, be the completion of Oy, with respect to the p-adic topology. As
we saw in Section 3.1, the numerators of an Okutsu basis of O, are also
numerators for a p-integral basis of the fractional ideal I = I ®o, Oy of O,.
Let us now see that we may take combinations of these numerators to form
polynomials of degrees 0, 1,...,n—1 which are maximal with respect to the

valuation wry, leading in this way to a reduced integral O-basis of I.

5.1 Okutsu bases

Let S < P be a subset of the prime ideals of O, and let ng = ZpeS nyp be
the degree of S.

A triangular S-basis of a prime ideal I is determined by a sequence of

monic polynomials:

L g1, s gng—1 € Olz], deg g; = i,

5.2. MaxMin for fractional ideals 127

such that wg s (g;) is maximal amongst all monic polynomials of degree i.
In the next section, we will see how the MaxMin algorithm can also be
used to find these maximal polynomials amongst all polynomials in Ok(S).
As such, we are again interested in showing that Ok(S) contains polynomials
which are maximal amongst all polynomials in O[z].
Fix a prime ideal p € P and a fractional ideal I € 7. It is clear, from

the definition of wy ; that,
wy (9) > wy (h) <= wy 1 (9) > wy 1 (h), (5.2)

for all g,h € O[z].

Theorem 5.1. Let S € P be a set of prime ideals. For any h € O[z] monic
of degree 0 < d < n, there exists g € Ok(S) also of degree d such that,

wy 1 (9) = wy 1 (h), Vpes.

Proof. From (5.2) it is clear that this follows from Theorem 3.9 and Theorem

3.15, which state the same condition for the valuations wy. O

5.2 MaxMin for fractional ideals

The MaxMin algorithm can be adapted to produce an S-integral basis of
the fractional ideal I by substituting the valuation wy for wy ; for all p € S,

as presented in Algorithm 5.1.

Algorithm 5.1 MaxMin[S, I] algorithm

Input: A subset S = {p1,...,ps} S P and Okutsu p-numerators
{gip : 0 <i < np} for each p € S. Additionally, a fractional ideal I.
Output: A family 19,1y, ...,1,; € N° of multi-indices of degree 0,1, ...,ng

respectively.

ig < (0,...,0)

: for k=0— (ng—1) do
J < min{l AR Wy, 1 (gflk) = ws,1 (gﬁk)}
Ig41 <—f1k+uj

end for

o Wy

128 Chapter 5. 'Triangular bases of fractional ideals

Proposition 5.2. All output multi-indices of MaxMin[S, I] are I-mazimal.

Let us consider the series of (p, I)-valuations of the Okutsu p-numerators,

Wy 1 (go,p) s Wp,1 (G1p) 5+ - Wy, (gnp—l,p) » Wp, 1 (gnp,p) = 0.

This series of valuations is a “shifted” version of the normal wj valuations

of the same numerators. Clearly, fixing p and I,

wy (g) — wp () = wy 1 (9) —wp,1 (h),

for all g,h € O[z]. As such, the difference between any valuation and the
next is the same in both the wy and the wy ; cases.

This readily leads to the conclusion that by using the wy ; valuations the
MaxMin algorithm, which otherwise produces numerators of a v-integral
basis of the maximal order, will do the same for a fractional ideal.

However, some clarification is required to follow the proofs in Chapter

4 in the fractional ideal case.

Valuation of products

Let S < P be a set of prime ideals and let I be a fractional ideal. If h € O[z]

has the same g-valuation for all q € S, then we may write,

ws,r (gh) = ws,1 (g) + wq (h), (5.3)

for all g € O[x]. This form is used extensively for wg during the proof of The-
orem 4.12. As an example, let g;, g; be output numerators of MaxMin[U; my]
and MaxMin[D, my] respectively. In the fractional ideal case we would then
have, wp r (gigé) = v} + (i + j)c, where c retains the same value as in the

maximal order case.

Precomputation

Let S € P be a set of prime ideals and let J < S be an interval of S.
Lemma 4.7 gives a criterion which ensures that J admits precomputation

as given in Definition 4.5.

5.2. MaxMin for fractional ideals 129

Recall that for a multi-index 1 = (iq) qes» we may divide the k-th nu-

merator g;, = g]{lkGﬁk into the J-part and the (S\J)-part respectively,

i, = Hgiq,m Gy, = H Giq,a-

qeJ qeS\J

Let I be a fractional ideal, then the criterion so that J admits precom-

putation should be interpreted as

wy g (93,) = ws,1 (g1,) = wy (Gy,) = wq (Gy,), Vp,qed. (54)

This states that when the minimal prime ideal for a given muliti-index
lies in the interval J, then the p-valuation of the polynomial defined by the
part of that index not belonging to J must be the same for all p € J. It is

important to note that the valuation which must be the same is w, and not

wp’l.

The reason that we require the wy, valuation to be equal is so that when

the minimal prime ideal is in J we have

wy 1 (giy,) — wa,1 (93,) = wp,1 (98,) — wa,r (95,) Vp,qgeld

This is sufficient to ensure that the decision which the MaxMin algorithm
takes when precomputing J is the same that would have been taken in the
analogous iteration computing MaxMin for S. By utilising the expansion

in (5.3), we may show that

Wy, 1 (gﬁk) — Wq,1 (gﬁk) = WyJp (g]{lijk) —WJjg (g]ngﬁk)
= (w1 (g},) +wp (Gs,)) — (wqr (¢l,) + wq (Gy))
= Wp,1 (gﬁk) — Wy, 1 (gflk))

are equal in the case where the fractional ideal precomputation criterion
(5.4) holds.

130 Chapter 5. 'Triangular bases of fractional ideals

Series of v-values

In proving Theorem 4.12 we consider the division of a set of prime ideals
into two intervals U and D such that S = U u D. Given the numerators of a
basis for each of them, we represent the principal part of the wy-valuation
of the numerators of the U basis by a series of rational numbers v; with
0 <% < ny. There is an equivalent series for the subset D, which are u]’-
with 0 < j < np.

For the purpose of the proofs of Proposition 4.15 and Lemma 4.19 we
agree that v_y,v | = —1.

In fractional ideal case, we must instead specify that
v,V = min{ug, V(l)} — 1.

This is compatible with the maximal order case, where vy = /) = 0.

5.3 Basis element reduction modulo an m-power

Just as in the case of bases of the maximal order, it is possible to reduce
the elements of a v-integral basis of I modulo a power of m. However, due
to the nature of the map wn, , the exponent may be different.

Consider the numerators go, . . ., gn—1 of a v-integral basis of a fractional
ideal I, generated by the MaxMin algorithm, and let v, = wy (gm). The

v-integral basis of I is then
B = <7T_lVOJgo(0), . ,W_lynfljgn,1(9)>

Theorem 5.3. Let m—"0lgo(8), ... 7= ¥=1lg, 1(0) be a triangular v-integral
basis B of a fractional ideal I, where v; = wy (g;(0)) for alli. Let Gy,...,Gp—1

€ O[z] be monic polynomials of degree 0, ...,n — 1, respectively, such that
G;=g; (mod m[m), 0<i<n,

where (; = |v;| + max {O,max {ap/e(p/m)}p‘m}.
Then, B' = (W‘lVOJGO(O),...,ﬂ_l”"—lJGn,l(O)) is also a triangular v-

5.4. Advantages of the application of MaxMin in function fields 131

integral basis of I.
If the basis B is v-reduced and G; = g; (mod ml<l), where ¢/ = v; +
maX{O,maX {ap/e(p/m)}plm} for all 0 < i < n, then the resulting basis B’

will also be v-reduced.

Proof. We follow the proof of Corollary 4.29, which proves the same claim
for bases of the maximal order. By Theorem 1.23 it suffices to show that
|wr (Gi(0))] is maximal for all 0 < i < n.

To ensure this, it is sufficient to show that wy 1 (G) > |v;]| for all p € P,

and that is an easy consequence of

wp,r (g5) <viz vl (Gl = |w] + G(S;m)'

By Theorem 1.26, in the case that B is v-reduced we must show that
wr (G;(0)) is maximal for all 4. It suffices to show that wy ; (G;(0)) = v;
and this is an immediate consequence of

wy 1 (9:) = vi, [Gl=vi+ - (s;m)'

5.4 Advantages of the application of MaxMin in

function fields

Let A = k[t], where k is a perfect field and ¢ is an indeterminate. Let
K = k(t) be the field of fractions of A.

Let f € A[x] be a monic separable polynomial, so that L = K[z]/(f) is
a function field over k.

A place of K is a discrete valuation
v: K* -7,

which is trivial on the elements of k (the “constants”). The set of all places

of K may be identified with P(A)u{oo}. Every monic irreducible polynomial

132 Chapter 5. 'Triangular bases of fractional ideals

p(t) € A determines a discrete valuation
v=ord,: A—7Z,

which extends to a place of K. Also, there is a place at infinity, defined as
ordy(a/b) = degb — dega, for any a,b e A. Let Ay := k[t™!]4-1) = K be

the valuation ring of ord.

A place of L is a discrete valuation
vp L* — Q7

which extends a place of K. Let Py, be the set of all places of L. We may
split Py, = Po(L) u Py (L) into the disjoint union of two subsets containing
the finite places and the infinite places, according to vp g = ord, for some

p € P(A) or vp|x = ordy, respectively.

A divisor D of L/k is a formal finite Z-linear combination of places of
L. It may be written in a unique way as D = Dy + Do, where Dgy, Do, are
divisors with support in finite places and infinite places respectively. Let
Div(L/k) be the group of all divisors of L/k.

Denote the integral closures of A, Ay, in L respectively as
O :=Cl(A, L), OL.ow := Cl(Aw, L).
These two rings are Dedekind domains. There are natural bijections:
Py(L) — Max(Oyr), Py (L) — Max(Op.x),
which induce a group isomorphism:
Div(L/k) — Zo, x Lo,

between the group of divisors and the product of the groups of fractional
ideals of O, and Oy, .

A divisor Dy =) PePo(L) npP with finite support determines the frac-

tional ideal [[pep, () pp'", where pp € Max(Oy) is the non-zero prime ideal

5.4. Advantages of the application of MaxMin in function fields 133

attached to P. There is a similar identification of the divisors with support
at infinity and Zo, .

Given a divisor D, the Riemann-Roch space,
L(D) :={a€ L* :div(a) = —D} u {0},

is a fundamental invariant of D. It is a finite-dimensional k-vector space
whose computation is crucial for many arithmetic questions on the function
field.

If D corresponds to the pair of fractional ideals (I,I), then £(D) =
I n Iy. For certain arithmetic questions concerning the divisor D and the

space L(D), a reduction procedure is introduced, in the following terms:
e Compute an A-basis of I considered as an A-lattice of L.
e Consider a certain length function wy,, on L determined by I.
e Compute a reduced basis of I with respect to this length function.

An efficient implementation of the reduction algorithm requires the com-
putation of an ordy-reduced basis of I,. In the language of [Baul4], this
basis leads to an “orthonormal basis” of L with respect to the considered
length function. Then we need to compute a transition matrix between the
input A-basis of L and the orthonormal basis. The reduction algorithm
consists of the application of a series of reduction steps to this matrix.

The implementation of this method uses the method of the quotients
to compute this orde-reduced basis of Op . This non-triangular basis
could not be triangularised because the standard triangularisation routine
destroys the ordy-reducedness property. The input A-basis of L was com-
puted by applying the global method described in Section 1.6. Local trian-
gular bases are computed and gathered into a global triangular matrix. Of
course, the transition matrix between the two bases was not triangular, and
this slowed the reduction algorithm.

The application of the MaxMin algorithm leads to a substantial practical

improvement of this strategy.

134 Chapter 5. 'Triangular bases of fractional ideals

1. MaxMin is applied to compute a triangular ord.-reduced basis of
OL,OO‘

2. MaxMin is applied to compute triangular local bases which are gath-

ered into a global triangular basis of 1.

In this way, the transition matrix between the two bases is a triangular

matrix and this accelerates the reduction routine.

Complexity analysis

“Sometimes six and six make a dozen, and sometimes they make
a mess.”

— Robert Jordan, The Path of Daggers

Let (K,v) be a discrete valued field with valuation ring O, m the maxi-
mal ideal, 7 € m a generator of m and F = O/m the residue class field.

Let f € O[x] be a monic, irreducible and separable polynomial of degree
n and fix a root § € K in the algebraic closure of K. Let L = K () be
the finite separable extension of K defined by f, and let Of, be the integral
closure of @ in L. Let P = {p1,...,ps} be the set of non-zero prime ideals
of Oy,

In this chapter we will analyse the computational complexity of an algo-

rithm which computes a v-integral basis of L. This process requires a num-

135

136 Chapter 6. Complexity analysis

ber of steps, based on the algorithms presented in Chapter 2 and Chapter
4:

1. Use the Montes algorithm to produce an OM representation ¥ of f.

2. Run the MaxMin algorithm to generate a family of maximal indices

B0y Ayt

3. Apply the Single Factor Lifting algorithm to get an adequate improve-

ment of the Montes approximation of each prime factor of f.

4. Compute the Okutsu numerators gy, ..., gn—1 specified by the maxi-

mal indices.

5. Divide the Okutsu numerators by the appropriate power of 7 to create

an integral basis.

In Chapter 2 we presented complexity estimates for steps (1) and (3),
although in the case of (3) we need to define the precision which we require
the SFL algorithm to reach, which is discussed in Section 6.3. Computation-
ally, the division in step (5) is negligible, as the numerator and denominator
will be stored separately and by construction, w does not divide the basis
numerators.

In Section 6.1 and Section 6.2 we will provide an analysis of the com-
plexity of the remaining two steps. In Section 6.4 the additional space

requirements of the MaxMin algorithm will be detailed.

Notation. All logarithms are base-2 unless otherwise stated.

From now on, we denote 6 := v (disc(f)).

If § = 0 then Op = O[] and 1,6,...,0" ! is a v-integral basis of L. So,
we can assume 0 > 0 for the purpose of our analysis.

The results of this chapter yield the following total estimation.

Theorem 6.1. Suppose that F is a finite field with q elements. The total
cost of the computation of a v-integral basis of L by the application of the
Montes and the MaxMin algorithms is

9] (n2+651+6 + n1+€5 log(q) + n1+652+6) ,

6.1. Complexity analysis of the MaxMin algorithm 137

operations in F. If we assume q small, this will give us an estimation of

O (n2+651+e + n1+e52+e) bit operations.

This theorem will be proved in Section 6.3.

6.1 Complexity analysis of the MaxMin algorithm

Compared to the other processes that are required, such as the Montes
algorithm, or polynomial multiplication to create the elements of a basis,

the computational cost of the MaxMin algorithm is small.

Proposition 6.2. The computational cost of the MaxMin algorithm is
O (n?log(né)'*) ,

bit operations

The computational complexity of the MaxMin algorithm itself can be
divided into two parts, preprocessing and the MaxMin loop. We shall study
them in Section 6.1.2 and Section 6.1.3, respectively. We shall see that both
tasks require at most O (n2 log(n5)1+€) bit operations. This will confirm

Proposition 6.2.

6.1.1 Upper bound on valuations

The height of a rational number a/b € Q, expressed as the quotient of two

coprime integers a, b is defined as:
h(a/b) = max{|al, |b[} .

The MaxMin algorithm primarily works with valuations of basis ele-
ments. The aim of this section is to find upper bounds for the height of the
rational numbers wy, (g), for p € P and g € Ok(P).

These bounds will be easily deduced from bounds for the values wy, (¢;q),
forp,ge Pand 0 <7 <ry+ 1.

Ideally, we would like to bound these numbers in terms of the parameters

n = deg f and § = v (disc(f)). Unfortunately, this is not always possible,

138 Chapter 6. Complexity analysis

as the following example shows. For a prime number p, take O = Z,) the
valuation ring of the p-adic valuation v = ord,, and consider the following

irreducible polynomial
f=a%+px+pNth

where N is a large positive integer.

N +1

0 1 3

Figure 6.1: Newton polygon with “unbounded’ valuation.

The Newton polygon N, (f), shown in Figure 6.1, reveals that m = pq
splits as the product of two prime ideals p, q admitting the following OM

representations:

ty = (U3 (Dp, Aps Up)), tq = (y; (2, 1/2,y + 1); (dq, Ag, ¥q))-

We have 1, = 0, ny = 1, and rq = 1, ng = 2. The valuation wy (¢1,) =
wp (x) = N may be arbitrarily large, while n = § = 3.

Nevertheless, this value wy (¢1,4) = N is irrelevant for the execution of
the MaxMin algorithm. The only information we need about this value is
wy (¢1,4) > 1/2. In fact, the numerators of the respective extended Okutsu

bases are:

'/\/13:{17 (bp}, NCI:{17 Z, ¢q}

Thus, if we consider the ordered set S = {p, q}, MaxMin[S] runs as:

6.1. Complexity analysis of the MaxMin algorithm 139

l‘ 9i ‘ W (gi) ‘w(gi)

ol 1-1] (00 0
1| gp-1] (0,1/2) | 1/2
2| ¢p-x| (0,1) 1

While for the reverse ordered set S” = {q,p}, MaxMin[S’] runs as:

Note that in both cases, if we had worked with the symbolic value
wy (z) = 0, the output of MaxMin would have been the same.
This example illustrates the strategy we are going to follow in order to

avoid the computation of the “unbounded” values wy (¢ q):

1. Detect under what exact conditions on p, q and ¢ the value wy (¢;,q)

cannot be bounded in terms of n and ¢.

2. Show that if these “bad” values are taken symbolically to be wy (¢;q) =

00, this does not affect the execution of MaxMin.

3. Find explicit bounds for the “boundable” values.

Notation. For any two prime ideals p,q € P denote:
dp 1= v (disc(F})), dp,q := v (Res(Fy, Fy)) -

The well-known formula:
5= 6+ D Opg
peP p,qeP
shows that dy,0p q < 0 for all p,q e P.

Definition 6.3. Let p # q be two different prime ideals and consider an
index 0 < £ < rq+ 1. We say that wy (¢rq) 4s virtually unbounded if the

following four conditions are satisfied:

140 Chapter 6. Complexity analysis

1. 0 =i(p,q) =1 + 1.

2. Ift is the last node of the non-optimised tree satisfying t | Fy, t | Fy,
and t’ is the branch node dividing Fy,, we have Sy = {p}.

3. (;Sf,q = ¢(p7q)
4.)\g >>\'[J for all e Sy, 1 # p.

Recall that for two prime ideals, I(p,q) is the extended index of coinci-

dence as given in Definition 2.26.

Lemma 6.4. Let q € P be a prime ideal and let 0 < ¢ <rq+ 1. Let p,p’ be

two prime ideals such that
1. 0=i(p,q) =rp+1=1i(p',q) =ry + 1.
2. rq=9(p,q) = 0¥, a).

Then, min {wy (¢rq) , Wy (Gr,q)} < Op /M-

Proof. Conditions (1) and (2) imply that I(p,q) = I(p’,q). Assume first
that ¢gq = ¢(p,p’). Then, I(p,q) = I(p,p’) and the relative position of the

three primes in the non-optimised tree is as shown in Figure 6.2.

)\g 0 ° tp
t_ t....© o By
. l; ! o --- o At/
p
1
)‘q ety
L7

Figure 6.2: Non-optimised tree with potentially unbounded prime ideals,

boq = o(p,p).

As shown, let t be the last type in the non-optimised tree such that
t| Fp,t| Fy,and t | Fy, then)\g, Xg,, and Xé are the slopes corresponding
to the branches of ¢ that lead to p, p’, and q respectively.

6.1. Complexity analysis of the MaxMin algorithm 141

If X is the sum of all slopes corresponding to the edges between t,_; and

t, then we have the following cutting slopes (from the optimised tree),

Ap = Ap = Al = Ab+ A,

NN S
)\P/ =)\p/—)\p/—)\p/“‘)\,
Agi= A= AF = A5+ X = Ay

By Proposition 2.31, we have,

wy (Sy) = wy (ép) ;

er--ep—1
Ve +Ap
wy (brq) = 1 ep1
Vi +)‘p’
Wy ((Z)Z,q) = el 68717

so either wy (¢gq) = wp ((Z)p/) or wy (¢rq) = wp (qﬁp/). As we shall see in
Lemma 6.7, wy (¢p/) is equal to &y /1.
Assume now ¢y q # ¢(p,p’) as presented in Figure 6.3.

AL*
* P oo o tp
NoE
to_1 t £ O o Ty
° o .- - Ay
\
AL '
q
e g
ty

Figure 6.3: Non-optimised tree with potentially unbounded prime ideals,

buq # (P, 9).

In this case, Proposition 2.31 shows that

Vi+ A

wy (Pr,q) = ey W (dy) = e epq

Vi + min {)\g/,)\g,}

Since A} < min{/\’;,,/\i,} = A+ min{)\g*,)\g:k}, we have wy (¢rq) <
wy (@), and in Lemma 6.7 we will see that wy (¢p) < 6 p/np. O

The following lemma is a generalisation of Lemma 4.8, for types in an

142 Chapter 6. Complexity analysis

optimised tree.

Lemma 6.5. Let S € P be a set of prime ideals. For any type t € ‘IEOP mn

the non-optimised tree, the interval Sy € S admits precomputation.

Proof. Let tg be the last type in the optimised tree which precedes t. By
Lemma 4.8, Sg, < S admits precomputation, so we only need to show that
St € St, admits precomputation with respect to the prime ideals in Sg,\Sg.

Take any p € Sy and q € Sg,\Sg. Let t* be the last type in the non-
optimised tree such that t* | F, and t* | F;. We take A to be the sum of
all slopes corresponding to the edges linking ty with t* and denote by A4
and Ag the slopes corresponding to the branches of t* leading to t and t,

respectively. The relative positions of p and q are shown in Figure 6.4.

o t* Ayt

° o -+ O o -+ O on'ﬂip
A
1 o o ° 'th

Figure 6.4: Sy is precomputable for ¢ in the non-optimised tree.
Then the hidden slopes between p and q are:
A=A+ A, Ap = As + A

Since both hidden slopes do not depend on the chosen p € S;, Proposi-
tion 2.31 shows that the valuations wy (¢;,4) for 1 < <74+ 1 only depend
on q and ¢. Hence, the precomputation criterion of Lemma 4.7 is obviously
satisfied. O

Lemma 6.6. Suppose that all virtually unbounded values are given the value
wy (¢r,q) = 0. Accordingly, we take wy (g) = © for all g € Ok(P) containing
a factor ¢; q with wy (¢iq) = ©. Then, these conventions do not affect the

output of the MaxMin algorithm.

Proof. Let p € P be a prime ideal admitting virtually unbounded values and
let ¢ be the last type in the non-optimised tree such that ¢t | F, and t | Fj
for all q such that wy (¢¢,q) = o as depicted in Figure 6.2. Note that there

6.1. Complexity analysis of the MaxMin algorithm 143

may be different q with wy (¢q) = 00, but the polynomial ¢y q = ¢(p,q) is
the same for all of them.

By Lemma 6.5, the interval S; admits precomputation; thus in order to
show that our convention on wy (¢¢,q) does not affect the output of MaxMin,
it suffices to check this for MaxMin[Sg]. Since MaxMin works block-wise
(Section 4.4), we may suppose moreover that Sy = P, and the least index
of coincidence in P is ¢ = 1 and that m, = deg ¢(p,q) = 1.

By item (2) of Definition 6.3, the branch of ¢ which leads to p contains
no other prime ideals. As such, we may assume that p is the first prime
ideal in P and satisfy the ordering criterion given in (4.1). The maximality
of the output of MaxMin under this ordering implies the maximality of the
output under any other ordering satisfying (4.1).

We have N, = {1, ¢y} with deg ¢, = 1. Since, p is the minimal element
in P = Sg, MaxMin starts by choosing g;, = 1, gi; = ¢p. From this point
onward, we shall have wy (g3,) = o0 for all k£ > 1, so that any assumption

on the values wy (¢¢,q) is irrelevant. O
Lemma 6.7. Letp # q be two different prime ideals, and take 0 < i < rq+1.
1. For any 0 < m <1y + 1, we have Wy (¢mp) < 25p/ng.
2. If i = rq + 1 then Wy (¢i,q) = 0p,q/(Npnq)-
8. If i <1y + 1 then wy (¢iq) < 20p/n;.

4. If rp+1 <i <rqg+1 and wy (¢iq) is not virtually unbounded, then

either Wy (¢5,q) < 201/ (npn) or Wy (¢iq) < 61/ (npn), for some L€ P.

Proof. For item (1), if we denote 7 = ry, €; = €;p, hy = Ry, p, then Lemma
3.5 shows that

Wy (P1,p) < Wp (P2p) <+ < Wy (Brp) -

Now, the common bound 1y (¢,p) can be expressed as:

) 1 Vit A, erfr e Vot by Vis1 So(Fp)
iy (Grp) = —— - b ‘ Sy

Mpp €1 €—1 ErfrMpp €1---€ npe(p/m) Ny

144 Chapter 6. Complexity analysis

where 6o(Fp) is the Okutsu bound introduced in Section 2.1. On the other
hand, it was shown in [BNS13, Lem. 2.2] that do(F}) < 20,/ny. This ends
the proof of the first item.

The second item follows directly from the equalities:

wy (¢q) = wy (Fy) = bp,q/Mp,

because ¢;q = ¢q with deg(¢;q) = ng. The first equality was proved in

Corollary 2.32. The second equality follows from the well-known formula

Res(Fy, Fy) = H(,p Fy(6p),

for 6, running on the roots of F, in K,. Since F} is irreducible, its roots
are Galois conjugate and have the same v-value. Since Fy has coefficients

in O,, all elements Fg(6,) have the same v-valuation too. Hence,
Op,q = npv (Fq(6p)) = nywy (Fy(6)) = nypwy (Fy) -

Let us prove the third item. Let £ = i(p,q). If i < ¢, then ¢;q = ¢;p.

Hence, Lemma 3.5 and the first item show that
Wy (Dig) = Wy (Dip) < Wy (ryp) < 285/my.

If ¢ = ¢, the explicit formulas of Proposition 2.31 show that

Vi+ X\
N 1 €e1---€r—1
w i = —
P0i) = v min { A, AP}

el .. .66—1

’ if i =4, qbi,q = ¢(p7q) and)‘g >)\57

, otherwise.

Since)\g < Agp and £ <@ < rp + 1, in both cases we get the same bound as

in the case 7 < ¢:
Wy (Biq) < Wy (Prp) < Wy (drpp) < 20p/15.

For the fourth item, let £ = i(p,q), so that i > r, + 1> £. If i > ¢, or if

6.1. Complexity analysis of the MaxMin algorithm 145

i = and ¢y q # ¢(p,q), Proposition 2.31 and item (1) yield:

1 W+min{)\g,)\g} -

my €1 €1

Wy (Giq(0)) = W (he,q(0)) < 25q/n2.

Finally, suppose that ¢ = r, + 1 = £ and ¢yq = ¢(p,q). Let t be the
last type in the non-optimised tree such that t | F}, and t | Fy, and let t’
be the branch of t dividing Fj,. Since wy (¢¢q) is not virtually unbounded,
either Sy contains some other [# p, or there exists [€ Sg, [# p such that

)\g <)\?. In both cases we have)\g < Agje

Proposition 2.31 shows that

1 Vi+ A 1 Vi+ Ao

0 L)< — - < — = = .
B i) S e S e O

Ifi(p,[) = £ < r + 1, then n, < n; and

Wy (der) < Wy (Bryr) < 201/nf < 281/ (npmy).

by Lemma 3.5 and item (1).

A\

If ¢ = r(+1, then m; y = ny = ny and Lemma 6.4 shows that wy (¢,4(0)) <
O,/ Mp, s0 that Wy (¢iq(0)) < 8p.1/(npm). O

Corollary 6.8. Let g = Hp Gipp be any element in Ok(P) with wy (g) < .
Then, for all p € P we have h(wy (g)) < 2nd.

Proof. Since, 0y, 0p,q < 0 for all p,q € P, Lemma 6.7 shows that wy (¢;q) <

26/ny, for each factor ¢; 4 of g. As a consequence,

Wy (9) = (pr (¢z‘,q)> / <2 mi,q) < 26/ny,
4, i,

where the sum runs on all factors ¢; 4 of g, with due count of multiplicities.

Therefore, wy (9) < deg(g)2d/ny, < 2nd/n,. Since the denominator of
wy (g) is a divisor of e(p/m), the numerator is bounded by 2ne(p/m)d/n, <
2no. O

146 Chapter 6. Complexity analysis

6.1.2 Preprocessing for MaxMin[S]

It is sufficient to discus the case S = P.

The MaxMin algorithm requires the wy-valuation of ¢; 4 for all 1 < <
rq+1for all p,q € P. By Proposition 2.31, we can calculate these values via
explicit formulas of MacLane invariants, reducing this operation to a small
number of calculations in QQ for each valuation of each ¢-polynomial.

In order to further reduce the complexity of the MaxMin algorithm, we
will store the wy-valuations of each Okutsu numerator g, q for all 0 < m <
ng + 1 for all p,q € P. As these numerators are products of ¢-polynomials,
the valuations are sums of the precomputed valuations.

By Corollary 6.8, any sum of two of these valuations has a cost of

O (log(nd)**¢) word operations.

Lemma 6.9. Let Vy,...,V, be the vectors of valuations:

Vi[i] := wp, (gx(0)) ,

where qo, ..., gn are the output numerators of MaxMin. The cost of com-

puting the vectors Vo, ..., V,, is Cpre = O(n?log(nd)**¢) word operations.

Proof. Let us first evaluate the cost of the computing valuations of all ¢-
polynomials, excluding the trivial case wy (¢p) = 0. For each prime ideal

q€ S, there are 74 + 1 ¢-polynomials of degree,
my | ma | e | My, | Mpg41 = Ny,

with m; < m;yq1 for 1 <@ < rq. Since m;1 = 2m; for all 1 <7 < ry, we
have rq <log(ng).

By Proposition 2.31, for any p,q € P we have

V+A, if p=qori<i(pq),
wy (¢iq(0)) = ,
%V+)\, ifp#qgandi=~l=i(p,q).
4

All ingredients of these formulas have been computed and stored during the

execution of the Montes algorithm. Hence, the computation of wy (¢;,4(0))

6.1. Complexity analysis of the MaxMin algorithm 147

requires O (log(nd)”e) operations, because it needs a few sums and multi-
plications of integers of size O (nd), as indicated in Corollary 6.8.

Since rp, < log(ny), for the computation of all p-valuations of each ¢-

polynomial of each Okutsu g-frame, we must calculate,

O ((log(np,) + - - - +log(ny,)) - s) = O (log(np, ---nyp,) - 5) ,

valuations. It is easy to see that this function maximises when we set
s = n/2, with n, = 2 for all p € P. This gives a computational complexity

of,
log(2%) -s =s>=0 (nQ) ,

valuations, with a cost of Cpre, = O (n2 10g(n5)1+6) bit operations.

Let vg;; 1= wp, (Qk,pj) for P = {p1,...,pspand 1 <4,j < 5,0 <k <my,
be the valuations of the Okutsu numerators which we wish to store.

There are s(n + s) valuations in total, and each valuation can be con-
structed as the sum of a prior valuation and the valuation of a ¢ polynomial
for the same pair of primes p;,p;. As such, we have a computational com-

plexity of,

Cpre, = O (s(n + 5) 10g(n6)1+5)
= O (n*log(nd)'*°).

This gives a final computational complexity for precomputation of,
Core = Cpre; + Cpre, = O (n*log(nd)'*e).

bit operations. O

6.1.3 MaxMin[S] main loop

Again, we discuss only the case S = P. In the version of MaxMin[P] given
in Algorithm 4.1, in each iteration we compute valuations of the output

polynomial from the previous iteration. Since this output polynomial is the

148 Chapter 6. Complexity analysis

product of Okutsu p-numerators for each p € P, we will make use of the

preprocessed valuations discussed in Section 6.1.2.

Lemma 6.10. The cost of executing the main loop of MaxMin|[P] is Cioop =

O (n?log(nd)'*¢) word operations.

Proof. The numbers vy, ; j 1= wp, (g;wj) for P = {p1,...,ps} have already
been computed and stored. Now, consider the modifications presented in
Algorithm 6.1.

Algorithm 6.1 MaxMin[P] algorithm using preprocessed valuations

Input: Okutsu numerators {g;q:0 <1 < nyp} of O-bases of Op, for each
qgeP.
Output: A family 1g, 1, ..., 1, of multi-indices of degree 0, 1, ..., n respec-
tively.
f10<— (0,,0)
: Vo < (0,...,0)
:fork=0—(n—1)do
Jje—min{l <i<s:Vg[i] =min(Vg)}
Tpyq < 1 + 1
Virt < Vit (Vi [lig — Vielilii) 1<ies
end for

I A L AT

During each of the n iterations, there are two points where a variable

number of operations are performed.

On Line 4, the algorithm performs (s — 1) comparisons of rational num-
bers. Then, on Line 6, V4 is calculated from Vj, which requires s addition
and subtraction operations. By Corollary 6.8 any of these operations has a

cost of O (log(nd)**€) bit operations.

This gives a computational cost,

Cioop = O (n(s — 1 + 2s) log(né)”ﬁ) =0 (ns log(né)Hé)
= O (n®log(nd)' ™),

word operations.]

6.2. Complexity analysis of basis numerator computation 149

6.2 Complexity analysis of basis numerator com-

putation

In this section, we will analyse the computational complexity of the com-
putation of the numerators of an integral basis, go, ..., gn, for the set P =
{p1,...,ps} of prime ideals of Oy.

We keep the notation 6 := v (disc(f)). By [BNS13, Thm. 3.14], for the
computation of a v-integral basis of @7, we may work modulo m®*!. Hence,
we assume that the elements of O are finite m-adic developments of length
0+ 1.

Definition 6.11. An operation in O is called m-small if it involves two

elements belonging to a fized system of representatives of F = O/m.

Each multiplication in O costs O ((5 HE) m-small operations, if we assume
fast multiplication, using the techniques of Schonhage-Strassen [SS71]. It is
natural to assume that the ring O is given in a sufficiently good computa-
tional representation, so that the cost of an m-small operation coincides with
the cost of one operation in F. For instance, if F is a finite field and q := #TF,

l+e)

then an m-small operation in O requires O (log(q) word operations.

Lemma 6.12. The complexity of computing the numerators for a basis from
the output of the MaxMin algorithm is Coum = O (R?*¢6'7) operations in
F.

Proof. The construction of the basis numerators requires all the numerators
of the Okutsu bases By, for all p € P. All the degree 0 numerators are 1,
so there are m non-trivial numerators to be computed as a product of ¢-
polynomials. Each numerator of an Okutsu basis can be constructed as the
product of a prior numerator and a ¢-polynomial.

Therefore, we will require ny, multiplications of polynomials of degree
bounded by n, to construct all the numerators of the Okutsu basis By,

+e

which amounts to ng operations in O if we assume fast multiplication.

The total cost is

O (mp 4+ +my[) = O (7).

150 Chapter 6. Complexity analysis

operations in O, or equivalently, O (n?*6'*¢) operations in F.

Now that the numerators for each Okutsu basis have been computed, we
may continue to construct the numerators of a v-integral basis. Let g; be the
i-th element of the basis numerator, the next numerator can be constructed

as

9i+1 = Gi (gz‘p,p)fl " Gip+1p;

for the prime ideal p determined by the MaxMin algorithm.

At each step in the construction of the basis numerators a single poly-
nomial division and a single polynomial multiplication are required. The
complexity of each of these operations is O (n”e) operations in O in both
cases if we assume fast multiplication. This gives a complexity for comput-

ing all » numerators in the basis of

Cnurn =0 (n2+651+6 + n2+€51+6)

-0 (n2+561+e) ’

operations in F.]

6.3 Complexity of computing a v-integral basis

Before providing the proof of Theorem 6.1, we must specify the precision
which we require of the Okutsu approximations ¢, for each prime ideal
p € P. Recall that the precision is vo (¢p — F}), or equivalently the minimum

of the v-values of the coefficients of ¢, — Fy,.

Lemma 6.13. Let ¢, be an Okutsu approximation to F,, a prime factor of
f for allp € P. Then, for the construction of the numerators of a v-integral
basis chosen by the MaxMin algorithm, ¢y, requires, at most, a precision of
d = v (disc(f)).

Proof. As was explained in Section 4.7, we require the valuation wy (¢,(0))

to be high enough that

w (gr) = w (gx(0)), 0<k<n.

6.3. Complexity of computing a v-integral basis 151

Since w (gx) grows with k, it suffices to achieve

wy (¢p(0)) = w (gn—1) -

Now, the numerators go(6) = 1,91(0),...,9n—1(f) are an O-basis of
O[6]. Hence,

n—1

2 lw (gi)] = ind(f) == v ([Or : O[6]]).

i=0
On the other hand, in this separable context, there is a well known relation-

ship linking the index with the discriminant:

§ = 2ind(f) + v (disc(L/K)) = 2ind(f) + >_(ep — 1).
peP

Let g € P be a prime for which w (g,—1) = wq (9n-1(0)). Then,

eq—1 eq—1
= _
2 wl)

NGRS

> ind(f) + > w(gn-1) -

Therefore, if we achieve a precision
o
U0(¢P _FP) = 5 >w(gn—1)7
we get wy (¢q(0)) = vo (¢p — Fy) = w (gn—1), as desired. O

We may now prove the main theorem of this chapter.
If IF is a finite field with ¢ elements, then Theorem 2.30 gives the complete

complexity for an OM factorisation of f with precision v as,
9] (n2+6 + n1+6(1 + 5) 1qu + n1+€52+6 + n2yl+e) ,

operations in F. This includes the complexity for both the Montes algorithm
and the Single Factor Lifting algorithm for each prime ideal p € P.

Substituting in our precision bound ¢ for v, this a complexity of

Chontes + CspL, = O (n®1€ + n!T¢(1 + 0) log g + n't<6* T + n?5'7) | (6.1)

152 Chapter 6. Complexity analysis

operations in F.

Proof of Theorem 6.1. As stated at the beginning of this chapter, there
are four non-negligible steps involved in computing a v-integral basis using
the MaxMin algorithm.

By Proposition 6.2 and Lemma 6.12 the cost of Cyfaxmin is dominated
by that of Chum. Using the estimation (6.1), we can now specify the total

complexity for computing a v-integral basis,

Cbasis = CMontes + CSFL + CMaxMin + Cnum
=0 (n2+e + n1+e(1 + 5) logq + n1+€52+6 + n251+e) +0 (n2+651+6)

=0 (n2+551+e + n1+66 10g(q) + n1+€52+6) 7

operations in F. Clearly, if ¢ is small, this gives O (n?*T¢g'Fe 4+ nplte§2te).

O]

6.4 Space complexity analysis

To complete the complexity analysis of the MaxMin algorithm, we will con-
sider the additional space that is required during its execution.

In order to run, the MaxMin algorithm requires the g-valuations for all
numerators of the Okutsu bases B,. It produces a series of multi-indices,
which can be used, along with the numerators of each of the Okutsu p-bases,
to compute the numerators of the final basis.

As such, there are three sets of data which must be stored in memory

during the process of running the MaxMin algorithm.
1. Valuations
2. Final basis indices
3. Okutsu bases numerators

While the Okutsu bases numerators are not required by the MaxMin
algorithm, they are an output of the Montes algorithm, so they must be

stored during the running of MaxMin.

6.4. Space complexity analysis 153

Proposition 6.14. If F is a finite field with q elements, the additional
space required by MaxMin to compute an integral basis of Or 1S SMaxMin =
O (n%§log(q)) bits.

Proof. As stated in Section 6.1.2, the valuations required by MaxMin take
the form vy ; ; 1= wy, (Qk,pj) for P ={p1,...,ps}and 1 <i,j <s,0<k <
ny;. There are n + s numerators, for each of which we require s valuations,

we must store
Sl = O ((n+s)s) = O (n?),

valuations. We have already seen that these valuations are positive rational
numbers of size at most § = v (disc(f)).

The MaxMin algorithm does not compute the numerators of the ba-
sis directly, but rather computes a family of multi-indices 1y, ..., 1, which
describe them. There are n + 1, each of which contains s integers. This

gives
Sma = O ((n+1)s) = O (n?),

integers. As the sum of each component of the multi-index 1, is k, all these
positive integers must be less than n.

The final, and largest, set of elements which must be stored are the
numerators of the Okutsu p-bases. As we saw discussing the valuations,
there are n 4+ s numerators. Each numerator is stored as a polynomial of
degree less than or equal to n with coefficients in 0. As stated in Section
6.2, we may consider elements in O to be a finite m-adic development of
length § + 1.

So, the space required to store these numerators is

Soum = O ((n + s)n(d + 1)) = O (n?3),

elements of the residue field F. We have assumed a finite residue field, which

is of size ¢ = #F.

154 Chapter 6. Complexity analysis

From these three space complexity estimates, we can give an over space

complexity for computing a basis with the MaxMin algorithm. The space

requirement is

SMaxMin = Sval + Sind + Snum
= 0 (n®log(8)) + O (n*log(n)) + O (n*Slog(q))
=0 (n25log(q)) ,

bits. =

Example computations

“When you want to know how things really work, study them when
they’re coming apart.”

— William Gibson, Zero History

The algorithms for computing triangular bases of integral closures pre-
sented in this work have been implemented as part of the “+Ideals” package
for the computer algebra system Magma [BCP97].

In this chapter, we will present a number of example computations,
comparing running times of the MaxMin based routines with pre-existing
routines used by Magma as well as two other OM-based methods

All executions were performed on GNU /Linux running on 8-core 3.0GHz
nodes with 32GB main memory. Each execution ran in a single core, using

Magma 2.18-5.

155

156 Chapter 7. Example computations

The defining polynomials of the algebraic fields used in the examples in

this chapter are detailed in Section 7.5.

7.1 Algorithms

We will present results from four different algorithms in this chapter. One
of these algorithms is that present in the Magma software package. The
remaining three are based on the use of OM representations of prime ideals.

The first, is our own MaxMin algorithm, as described in Chapter 4.
As presented in that chapter, the MaxMin algorithm produces triangular
v-integral bases, which are also v-reduced.

We will compare our algorithm with an improvement, due to Jens-
Dietrich Bauch [Baul4], of the “Multipliers” method of constructing an
integral basis presented in [GMN13]. In this algorithm, Okutsu bases are
multiplied by a product of Okutsu approximations to form a v-integral basis.
This method does not guarantee that the basis is triangular.

The third OM-based algorithm is the method of the quotients, described
in [GMN]. This method uses the quotients of certain divisions with re-
mainder generated as a byproduct of the Montes algorithm to construct an
v-integral basis.

These three OM-methods first apply the Montes algorithm and then
some specific ideas to compute v-integral bases. The running times of the
figures in this chapter are the total time in seconds of the concatenation of
the two procedures.

Finally, we consider the standard implementation found in Magma as a
single algorithm. In reality this is either the Round-2 [Coh93] or Round-4
[Poh93] algorithm, which Magma selects depending on the field which it is
being applied to.

7.2 Bases of p-maximal orders

Let p be a prime number and let f € Z[z] be a monic, irreducible polynomial

of degree n. Fix a root # € Q of f and let K = Q() be the corresponding

7.2. Bases of p-maximal orders 157

algebraic number field. In this section we will present examples of computing

a p-integral basis of the maximal order of K.

7.2.1 Single prime ideal

There are cases where there is only a single prime ideal p lying over the prime
p. As mentioned in Chapter 3, when P = {p} an Okutsu basis is already
a p-integral basis of the maximal order. In this case, no application of the
MaxMin algorithm is required, the Okutsu basis can be constructed directly
from the OM representation of p. Similar direct constructions are performed
by the Multipliers and Quotients algorithms, so there is essentially no dif-
ference in execution time between the three OM-based algorithms.

For the sake of completeness, we will compare the construction of an
Okutsu basis using the OM factorisation algorithm against the current rou-
tines existing in Magma. Although it is not guaranteed, Magma almost
always produces integral bases of number fields in Hermite normal form.
To make a correct comparison, we include the time to convert the Okutsu
basis into Hermite normal form as well.

Figure 7.1 shows the running time of the MaxMin and Magma algorithms
applied to number fields defined by the polynomials f = Ajo1n211,0(2),
where n = deg f ranges from 2 to 200 by increments of three.

It can be seen that Magma and MaxMin are equivalent for n < 10, how-
ever Magma’s computational time quickly increases, while the OM-based
method does not increase much beyond a single second all the way up to
n = 200. For n > 107, Magma took over an hour to compute the p-integral
basis and the time is not included.

The second example we present also has only a single prime ideal dividing
p. Figure 7.2 shows the running times of the OM-based routine and the
Magma routine computing integral basis of the maximal order of number
field defined by the polynomials E, ;(z) with 1 < j < 8.

In this case, Magma cannot compute a basis for the number field defined
by this polynomial for j > 5 in less than 24 hours. The OM-based algorithm
requires 260 seconds in the final case, however most of this time is computing

the Hermite Normal Form, while the OM factorisation requires less than two

Chapter 7. Example computations

158
1
0000 —
\\\\\\\\\\\\\\\\\\\\\\\\\‘ Magma
" o =
-g q\\\\\\\\“\\\\\\
3 o
[0}
£
s
=
S
3 1
(9}
x
[}
04 | .
0.01 —
0 20 40 60 80 100 120 140 160 180 200

Defining polynomial degree

Figure 7.1: Running time for maximal order Hermitian p-basis computation
defined by polynomials A1g15.211,0(z) with 2n € {2, 5, 8, ..., 200}.

00000 MaxMin s
Magma QU

1wrmrr/mm/munmu

10000

1000

100

10

execution time (seconds)

0.1 |

300 400 500 600 700 800 900
Defining polynomial degree

0.01 : :
0 100 200

Figure 7.2: Running time for maximal order Hermitian p-basis computation
defined by polynomials 13 ;(x) with 1 < j < 8 of degree 2, 4, 12, 36, 72,

144, 432, 864.

7.2. Bases of p-maximal orders 159

seconds in all cases.
From these examples it can be seen that the running time of the Magma
routine increases drastically with the degree of the defining polynomial,

whereas the Montes algorithm increases at a much slower rate.

7.2.2 Multiple prime ideals

In order to evaluate the performance of the MaxMin algorithm as compared
to other OM-based methods, it is necessary to choose defining polynomials
so that there are multiple prime ideals dividing p.

In this section, we are interested in showing the running time of the
different algorithms, varying some of the important characteristics of the
number field defined by these polynomials, which affect the computational
complexity of generating a p-integral basis of the maximal ideal.

In this section, we compare the time to compute a basis, however the
bases are not equal. The MaxMin algorithm will, of course, compute a
triangular basis, while the Multipliers and Quotients routines do not have

this guarantee.

Running time vs width

The width of a prime polynomial in Z,[z] is defined in [GNP12]. It is an
upper bound for the number of refinement steps that may occur during an
execution of the Montes algorithm.

The first defining polynomial to be shown whose prime factors have
a varying width is f = By x(z) with k£ < 5000. The B, ;(z) polynomials
have 2 prime ideals dividing p, the width of each of the corresponding prime
factors of f in Z,[z] is [k/3]. Since the polynomial f has small degree
n = 6, it is possible to include in Figure 7.3 the times for Magma as well
as the three OM-based algorithms. To correctly compare with the Magma
implementation, we have included the time to put the OM-based routine
output in HNF, however since the basis matrix is small, this requires a
negligible amount of time compared to the computation of the basis in each
case.

It can be seen that in this case, the three OM-based algorithms, MaxMin,

160 Chapter 7. Example computations

MaxMin - s
Multipliers o
1000 Quotients e
M ag ma
—_
| TG
: \\\\\\\\\\\\\m\\\m.\\\\\m\\\\mm
C 1 00 \Y\\\\H\\\l\\\\\\\\N\H\\
o ‘\Y\\\\\\\\\l\\\\\\\\‘\\l\\\‘\Y\\\H\\h\\\““
O \\\\\\‘\\\l\\\\\\\\
: \m\\\\\\\\\\\\\\\\\\\\\\\\\
: \\\\\u\\\\\\\\\\\\\\“\
e
OEJ 1 0 aw W
=1
c
o
=
3
O
Q
x
[}

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
k

Figure 7.3: Running time for maximal order Hermitian p-basis computation
defined by polynomials Big ;(2) with & < 5000.

Multipliers and Quotients perform almost identically. The Magma routine is
faster while £ < 200, but quickly increases to be several orders of magnitude

greater than the other routines.

From this point onward, we will not include times for Magma in the
examples given. In all cases, Magma was significantly slower than the OM-
based algorithms, often unable to complete some of the larger examples in

less than 24 hours.

In Figure 7.4 a second example of a defining polynomial with varying
width is given. The polynomial f = Cio1(z) defines number fields where
6 prime ideals divide p, each of the corresponding prime factors in Z,[z]
has width 6k — 90. Different to the previous example, the prime ideals
dividing p have depth 3. Once again, the three OM-based algorithms are
quite similar, but this time the Multipliers routine takes longer than the

MaxMin and Quotients algorithms.

7.2. Bases of p-maximal orders 161

18 , |
MaxMin - s

16 i Mu|t|p||ers LTI
QUOtients unnunn

execution time (seconds)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
k

Figure 7.4: Running time for maximal order p-basis computation defined
by polynomials Cig1 x(2) with & < 5000.

Running time vs number of prime factors over Z,[x]

To compare running times against the number of prime ideal factors of p,
we will use two further sets of defining polynomials.

Figure 7.5 shows the time required by the three OM-based routines
to compute a p-integral basis of the number fields defined by the poly-
nomials f = Affyg,,011(2). The degree of the number field is deg f =
nm = 1000 in all cases, with the number of prime ideals dividing p equal to
m € {5, 10, 20, 50, 100, 200, 500}.

In this example, the Quotients routine begins slower than Multipliers
and MaxMin, but as the number of factors increases, it performs better
than Multipliers, although still slower than MaxMin which remains fastest
in all cases.

Another example with a variable number of factors is shown in Figure
7.6. This example uses the set of defining polynomials f = Do1p2.21(),
with p € {1069, 1087,1051,1117,1097,919, 1009}.

In this example we have up to 50 prime ideals dividing p. We see that

the three OM-based methods perform similarly for a small number of prime

162 Chapter 7. Example computations

MaxMin s

execution time (seconds)

0 50 100 150 200 250 300 350 400 450 500
#p-adic factors = m

Figure 7.5: Running time for maximal order p-basis computation de-
fined by polynomials Afggg,, 911() with nm = 1000 and m € {5,10,
20, 50, 100, 200, 500}.

5 T T
4.5 Multipliers s
QUOtIents unnunn
4
w
2 35
o
[&]
& 3
£ 25
s 2
5
8 1.5
x
(0]
1 R
v
0.5 r

0 5 10 15 20 25 30 35 40 45 50
#p-adic factors

Figure 7.6: Running time for maximal order p-basis computation defined by
polynomials D1g1,p2,21(x) with p € {1069,1087,1051,1117, 1097,919, 1009}
of degree 1, 2, 5, 10, 20, 25, 50.

7.2. Bases of p-maximal orders 163

R
20 |
o
— S
n R
© &
c A
o] R
Q S o
S o
(0] 15 Q R
- S R
n & o
~ ™ “\\‘
N o
Q S W
O o
E o -
= S o
=] S o
S o
c S o
c 10 o o
= S o
5 *
O
(&)
x
()
o
e
w il
\\\\\\‘\‘::‘l\\\‘lunull““
TR

0 100 200 300 400 500 600 700 800 900
Defining polynomial degree

Figure 7.7: Running time for maximal order p-basis computation defined
by polynomials EC1o1,;(z) with 1 < j < 8 of degree 38, 40, 48, 72, 108, 180,
468, 900.

ideals and then the Multipliers routine takes longer for the final case, while

Quotients and MaxMin are very similar.

Running time vs depth

In order to show how the running time of the OM-based routines varies
with the depth of a prime ideal dividing p, we construct a set of composite
defining polynomials f = ECiq1 j(x) with 1 < j < 8. In this case, there will
be a single prime ideal with variable depth equal to j, and 6 further prime
ideals of constant depth 3. The time to compute a p-integral basis using

each of the algorithms is shown in Figure 7.7.

Due to the difference in depth of the prime ideals dividing p, the MaxMin
and Multipliers algorithms must both use the SFL algorithm to improve the
quality of some of the Okutsu approximations used in the construction of
their respective bases. The Quotients method does not require this step,

however it is still slower in practice.

164 Chapter 7. Example computations

execution time (seconds)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
k

Figure 7.8: Running time for maximal order Hermitian p-basis computation
defined by polynomials Cig1 x(x) with k& < 5000.

7.2.3 Hermitian bases

In Section 7.2.2, we have simply compared the time to compute a local basis
for each of the OM-based routines. However, often a basis is required in a
specific format. The goal of the MaxMin algorithm is to compute triangular
bases, however in some cases a Hermitian basis may be required. In this
case, MaxMin has an advantage over the Multipliers and Quotients routines,
as less work is required to put a triangular matrix in Hermite Normal Form
(HNF) than to do the same for an arbitrary matrix.

We will look at two examples to see how the additional time required
to compute a Hermitian basis changes the comparison between OM-based
routines. The first example is a small (degree 36) polynomial, the second is
of variable degree.

Figure 7.8 shows the time required to compute a Hermitian basis of
the maximal order of number fields defined by the polynomials f = Cig1
with k£ < 5000. This should be compared to Figure 7.4, which shows the
computation time required for a basis (not in Hermite normal form).

We see that, while the Multipliers routine takes only slightly longer than

7.2. Bases of p-maximal orders 165

500
450
400
350
300

250
200
150
100

50

execution time (seconds)

0 100 200 300 400 500 600 700 800 900
Defining polynomial degree

Figure 7.9: Running time for maximal order Hermitian basis computation
defined by polynomials FC1o1,j(x) with 1 < j < 8 of degree 38, 40, 48, 72,
108, 180, 468, 900.

MaxMin to compute a basis, since it is not triangular in this case, it requires
much longer to compute the HNF. In the final case, k& = 5000, the bases
produced by the Multipliers and Quotients routines required an additional 9
seconds for the HNF computation, whereas the basis produced by MaxMin

required only 0.5 seconds.

In Figure 7.9 we can see the time required to compute a Hermitian
basis of the maximal order of number fields defined by the polynomials
f = ECi01,; with 1 < j < 8. The non-Hermitian basis computation time is

shown in Figure 7.7.

In this case, although MaxMin takes considerably less time to compute
the basis than both the Multipliers and Quotients routines, the difference
in time required to make that basis Hermitian is not as pronounced. For
the smaller degree polynomials, the MaxMin is approximately twice as fast.
For ECi01,8 the basis is 900 x 900 and MaxMin is 3.5 times faster than
Multipliers and 4.5 times faster than Quotients.

166 Chapter 7. Example computations

7.3 Bases of p(t)-maximal orders

For a given prime number ¢, denote by A := Fy[t] and K := F,(t) the
polynomial ring and rational function field in the indeterminate ¢ over the
finite field with ¢ elements.

Let p(t) € A be a prime polynomial, that is, monic and irreducible, and
let f € A[z] be a monic irreducible separable polynomial of degree n. Fix a
root # € K of f and let L = K () be the function field defined by f.

In the same way that we did for algebraic number fields, in this section,
we will show examples of computing a p(t)-integral basis of the maximal
order of K.

7.3.1 Single prime ideal

As in the number field case, construction of a p(t)-integral basis of the
maximal order of a function field where only a single prime ideal divides
p(t) do not make use of the MaxMin algorithm itself. As such, we will
consider only a single OM-based routine compared to the Magma routine.

The times compared here are to compute a Hermitian basis, as the
Magma routine produces bases in HNF in all these cases.

Figure 7.10 shows the running time for computing the p(t)-integral ba-
sis of the maximal order for function fields defined by polynomials f =
Aptynso(x) for 2 <n < 200. The prime polynomial used is p(t) = t* + 1 €
Fs[t].

Magma was unable to compute a basis for n > 95 in less then an hour.
The MaxMin algorithm took less than 400ms in all cases.

The running time for function fields defined by polynomials f = E,) ;
for 1 < j < 8 and p(t) = t> + 1 € F7[t] are shown in Figure 7.11.

For j > 5, Magma was unable to compute a p(t)-integral basis of the
maximal order in less than 24 hours, while the OM-based routine completed
up to j = 8. At the final computation, the OM-based routine required 8,580
seconds to complete, however only 173 seconds of those was the actual OM
routines. Most of the time was spent computing the HNF, which can be

especially costly for function fields.

7.3. Bases of p(t)-maximal orders 167

1
o MaxMin - s
Magma [
1000
)
2
g 100}
[0}
L
g 10f
<
RS
3 1}
(&)
x
()
0.1
0.01 e
0O 20 40 60 80 100 120 140 160 180 200

Defining polynomial degree

Figure 7.10: Running time for maximal order Hermitian p(¢)-basis compu-
tation defined by polynomials A2, 30(7) with n € {2,5,8, ...,200}.

! I ' ') ' T T T
o MaxMin s
Magma [
10000 | =

e 1000 f

o

O

3 H
2 100 £ -

[}

£

= ol

RS

5

(&)

2 1

¢ :

0.1 k
0.01 - : . . , . . |
0 100 200 300 400 500 600 700 800 900

Defining polynomial degree

Figure 7.11: Running time for maximal order Hermitian p(t)-basis compu-
tation defined by polynomials Ey_q ;(z) for 1 < j < 8 of degree 2, 4, 12,

36, 72, 144, 432, 864.

168 Chapter 7. Example computations

MaxMin
10000 f Multipliers

Quotients s
M ag ma
| TN il
1 o 00 H\Y\\\\\\“I\\\\\\\Y\\I\\“H\\\\”W\\l\\l\\ 2\
‘D Y\\\\\\\ll\\\‘\\\\\\\\\\\\\\\‘I\\\\Y\\\\l\
T
C \\\\\\\\‘\l\l\\\Y\\\\‘U\\\\\\\K\“\Y\\\“\Y
VI\\\\\H\\\\\\
O \\\“\\\\\\
\\Y\\\\\\\\\\\
: \\\\\\\\\\\\\\\
- \\\\\\N
3 100 >
&
\“\\\\\\\\\“\‘\
o
o P
S .
=
c
: s
3
3
x
(0]

0.01
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

k

Figure 7.12: Running time for maximal order Hermitian p(t)-basis compu-
tation defined by polynomials Bys 5 i (x) with k < 5000.

7.3.2 Multiple prime ideals

Running time vs width

In Figure 7.12, the running times for the computation of the p(t¢)-integral
bases of the maximal ideals of the function fields defined by the polynomials
[= Bp),x(x) are presented. In all cases, the prime polynomial is p(t) = 3+
2 € F7[t]. Similar to the number field case, the small degree of the defining
polynomial allows Magma to complete the computation for all values of
k < 5000 in a reasonable amount of time. The time to convert the bases
computed by the OM-based routines to HNF has been included to allow
a fair comparison with the routine built into Magma, however as in the
number field case, the small size of the basis means that this time is a small
fraction of the overall computation.

This figure shows that all four routines require roughly the same amount
of time for small k£, then the Magma routine presents a rapidly increasing
running time as k grows, while the three OM-based routines increase at the
same, much slower rate.

The polynomials, f = Cp) () in Fr[t,x] define function fields where

7.3. Bases of p(t)-maximal orders 169

MaxMin s
Multipliers s
1000 Quotients
L
A \I\I\l\l\l\l\‘\‘\‘llAltl\l\l\l\l\l\\\‘ I\I\I\I
| 1]
-§ W \\\\\\\\\m\\\ mm
o
o
@ 100
&2
o
£
c
S 10
5
5]
Q
)
1
0.1

0 50 100 150 200 250 300 350 400 450 500
k

Figure 7.13: Running time for maximal order p(t)-basis computation defined
by polynomials Cys_ o j(z) with & < 500.

six prime ideals divide p(t) = t3 + 2. The three OM-based routines have
similar running times for this set of defining polynomials, with the Quotients
routine being slower across all cases and the MaxMin routine being slightly

faster than Quotients. The running times are displayed in Figure 7.13.

Running time vs number of prime factors over fl[x]

As arithmetic operations in functions fields are more costly than in number
fields, it is not possible to construct bases for function fields with very large
numbers of prime ideals dividing p(t). Therefore we limit this example
using defining polynomials f = Az%t)’n,z,)(:v) with nm = 64, where we take
m € {2,4,8,32}. The prime ideal is p(t) = t*> + 4 € F37[t]. The running
times are presented in Figure 7.14.

In this example we can see that the Quotients routine increases with the
number of factors at a much faster rate than the MaxMin and Multipliers
algorithms, although all three methods present linear running times in the

number of factors.

170 Chapter 7. Example computations

10 |
MaxMin s
g [Multipliers T
QUOtientS nnnn
8 - \Y
— §
7 i
2 7t
; \\\\‘\‘
o o
2 6
Py
0
'g 5 - \\\\\\\\\\
< \\\\\
g 4 \\\\‘\\\‘
L)
= o
5 o
8 31 \\\\“‘\‘
x o
(0] \‘\‘\‘\\\ N
2 I W
o W
L\
! m\\\\\“\“‘\‘
\‘\\\‘\‘ il Ill|I||IllII||IIlII|IIIIIIIIIl'Illllllllllllllllllll
0
0 5 10 15 20 o5 30 35

#p(t)-adic factors = m

Figure 7.14: Running time for maximal order p(t)-basis computation defined

by polynomials A7, o(x) with n-m = 64, m € {2,4,8, 32}.

Running time vs depth

Figure 7.15 presents the running times for the computation of the p(t)-
integral bases of the maximal orders of function fields defined by the poly-
nomials EC,4 j(z) for 1 < j < 6. The prime polynomial p(t) = t*+4 € F[t]
is divisible by 5 prime ideals, one of which has variable depth j, while the
others have fixed depth of 3.

The running times for the MaxMin and Multipliers algorithms are very
similar. If we compare this example to that shown in 7.11, it is evident this
polynomial defines a much more complex case than that of just Ey ;(z).
This is partly due to additional computation required to perform the Montes
algorithm, but can mostly be attributed to the requirement of the single
factor lifting algorithm - which accounts for almost all of the computation
time in the larger examples.

It is interesting that, even with the large computational requirement
imposed by the use of the SFL algorithm, both the MaxMin and the Mul-
tipliers routines are considerably faster than the Quotients routine, which

does not require SFL at all. The Quotients routine was unable to compute

7.3. Bases of p(t)-maximal orders 171

MaxMin s
3 Multipliers s
100000 Quotients unnunn
& 10000 f
c
(o]
(&)
& 1000
()
£
= 100 }
S
5
3 10 |
x
()
1 L
0.1

0 100 200 300 400 500 600 700 800 900
Defining polynomial degree

Figure 7.15: Running time for maximal order p(t)-basis computation defined
by polynomials ECy2, 4 j(z) with 1 < j < 8 of degree 38, 40, 48, 72, 108,
180, 468, 900.

the final basis (j = 8) in less than 24 hours.

Running time vs degp(t)

A characteristic specific to computing p(t)-integral bases of the maximal
orders of function fields is the degree of the prime polynomial p(t). Figure
7.16 shows the running time for computing the p(t)-integral bases of max-
imal orders of function fields defined by Cj) 23(x), where p(t) € Fa3[t] is
of degree 4 < degp(t) < 200 incrementing by steps of 2. Specifically, we

choose the lexicographically smallest polynomial for each degree.

This example presents approximately linear running time increase in
terms of the degree of the prime polynomial p(t) for each of the three OM-
based routines. MaxMin runs consistently faster than Multipliers, which is

again faster than Quotients.

172 Chapter 7. Example computations

—
(]
©
c
Q 200
O
(0]
(2
~
[0
£ 150 .
-— S
LA §
[o e
(@] N G
= o oV
3 100 uf
o RO -
e oy
Q v o
W o
3 . S
@ ot o™
\\\./m\ - R\
e ™!
50 S
W
S\
0N
\\\mm\\‘ "
o R
O W
7N st
W 1>

0 20 40 60 80 100 120 140 160 180 200
Degree of p(t)

Figure 7.16: Running time for maximal p(t)-order basis computation defined
by polynomials Cy4) 23(z) with 4 < degp(t) < 200.

7.4 Fractional ideals

The MaxMin algorithm is also capable of constructing p-bases of fractional
ideals, as described in Chapter 5.

We retain the appropriate setting from the previous sections. Now, let
P1,...,ps be the prime ideals dividing p in the number field case and p(t)

in the function field case. Consider a fractional ideal
I=1T]w, a; € Z. (7.1)
i=1

In this section, we will only compare the MaxMin and the Multipliers
algorithms, as the Quotients routine cannot compute bases for fractional

ideals.

7.4.1 Number Field

Consider the case where all a; are chosen randomly in the interval [—30, 30].
Figure 7.17 shows the required time for the MaxMin and Multipliers algo-

rithms to compute a triangular base for the maximal order compared to a

7.4. Fractional ideals 173

100
MaxMin (maximal order) =
MaxMin (fractional ideal)
Multipliers (maximal order) s
Multipliers (fractional ideal) |

%) 10
©
c
o
[&]
(0]
L
E 1
<
RS
=
[&]
(&)
s 01

0.01

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
k

Figure 7.17: Running time for maximal order and fractional ideal p-basis
computation defined by polynomials Cig1 k() with £ < 5000.

random fractional ideal with these “small” exponents. In both cases, we
are working over number fields defined by the polynomials f = Cp1 ; with
k < 5000.

It can be seen that constructing a basis of a random fractional ideal
requires slightly more time than MaxMin takes for the maximal order. This
is because the single factor lifting algorithm is required in the earlier case,
whereas in this example it is not required for the maximal order. The
Multipliers routine presents time that are much more similar, as it already
requires a number of rounds of the SFL algorithm in the maximal order

case.

To further explore the time required to construct a basis of a fractional
ideal, we consider the case of an ideal I = pj' with only one non-zero
exponent. In Figure 7.18, the running time is shown as the exponent a; is

increased.

The running time increases with the difference in exponents. However,
since the SFL algorithm approximately doubles the precision of an approx-

imation at each step, the running time increase is logarithmic.

174 Chapter 7. Example computations

1.4 .
MaxMin s
Multipliers s
1.2
R ———

?n\ R s ™
-CC) ! LTI, st e
8 RO e
o o
(0] o A’
(0]
£
c 06
i)
5
3
e 04
(0]

0.2

0

0 2000 4000 6000 8000 10000

k

Figure 7.18: Running time for fractional ideal I = pj* p-basis computation
defined by polynomials Cio1,1000(z) with exponent 0 < a; < 10, 000.

7.4.2 Function Field

In Figure 7.19 we compare the running time for computing a basis of the
maximal order compared to that for computing a basis of a random frac-
tional ideal for both the MaxMin and Multipliers algorithms. The number
field is defined by the polynomials f = Cp) 1 (x) with p(t) = 3+ 2 e F7[t]
and 23 < k < 500. The fractional ideal is the product of the 6 prime ideals
that divide p(t) each raised to a random exponent in the interval [—30, 30].

We see that the MaxMin algorithm takes less time to compute the max-
imal order than a fractional ideal. The Multipliers routine takes about that
same time to compute a either basis as MaxMin does to compute a basis
of a fractional ideal. As in the number field case, this is because the Single
Factor Lifting algorithm must be applied in both cases for the Multipliers
algorithm, but only in the fractional ideal case for the MaxMin routine.

Figure 7.20 compares the running times of the MaxMin and Multipliers
algorithm computing a local basis of a fractional ideal of the form I = p7*,
where 0 < a; < 2,000. The underlying function field is the same in all
cases, defined by Ciy) 100(2) with p(t) = t* + 2 € Fr[t].

7.4. Fractional ideals

175

MaxMin (maximal order) =
MaxMin (fractional ideal)
1000 Multipliers (maximal order) s
Multipliers (fractional ideal) e
o puosssssst
b} ogasis
c A
8 100
[0}
L
[
£
< 10
RS
5
[&]
(&)
o)
1
0.1 : : : : : : : : ;
0 50 100 150 200 250 300 350 400 450 500

k

Figure 7.19: Running time for maximal order and fractional ideal p(t)-basis
computation defined by polynomials Cys 9 (7) with & < 500.

22 . |
MaxMin - s
20 | Multipliers s
o
““‘um‘
18 - ll\llll\“““
“‘\llm“‘
o™
16 - \\\‘lm\“““

™

%)
©
c
o
O
[0}
2
o 14t
E
s 12
§=]
8 10 "‘\
(&)
x
o 8
6
4 L . "
0 500 1000 1500 2000
k

Figure 7.20: Running time for fractional ideal I = p* p(t)-basis computa-
tion defined by polynomials Cy, ;) 100(z) With p(t) = t34+2 € F; and exponent
0 < a1 < 2000.

176 Chapter 7. Example computations

The running time for both routines is similar, with the MaxMin al-
gorithm taking less time. The time difference between the two methods
appears to be decreasing as aj rises. This is most likely due to the time

required to perform Single Factor Lifting becoming dominant.

7.5 Example polynomials

In this section we show the defining polynomials used throughout this chap-
ter. All polynomials presented here are taken from [GNP12].

The first five polynomials are defined by their parameters,

Appir@) =@+ 14+p+p*+-- +p")" +p,
A (@) = (2" 4 207) (@ +2)" + 208) - (@ + 2m — 2)" + 2p%) + 29",
By k(z) = (562 — 2z + 4)3 + pk’

Cypl(x) = (28 + 4pa® + 3p%a% + 4p»)? + p%)3 + pF,

Dypni(x) = (@ 42 +1) +p*.

The “E” polynomials are explicitly defined for each level,

Epi(z) = 2" +p,

Epa(z) = Epi(2)® + (p— 1p’a,

Epa(x) = Epa(z)® +p'',

Epa(x) = Eps(a)’ + p* 2By (),

Ep5(x) = Epa(x)® + (p— Dp*?2Ep 1 () Eps(x)?,

Eps(z) = Eps(2)® + p*wEp3(2) Epa(e),

Epq(w) = Byg(2)” + p*P Epa (@) Bya(2) Eps (),

Eps(x) = Epr(2)? + (p — D)p*?2 By 1 (2) Epa(2) Eps(2)* Epe(«)

Finally, the “EC” polynomials are specified as,
ECyj(x) = Epj(x) - Cpos + ™.

The main characteristics of these polynomials can be found in [GNP12].

Catalogue of routines

In this appendix, we will present details of the most important routines in
the “+Ideals” package that provide support for constructing triangular bases
of integral closures following the MaxMin algorithm. Firstly, the existing
routines which we make use of will be described, and then we will proceed

to describe the new routines that have been added.

A.1 The +Ideals package

The OM factorisation algorithm presented in Chapter 2 has already been
implemented as a package for Magma, the computer algebra system. This
is the +Ideals package [GMN10a], which implements the Montes algorithms
as well as various related routines for operating on OM representations of
ideals.

The package may be downloaded from the web-site listed below, where

an in depth list of all sub-routines in the package can also be found.

177

178 Appendix A. Catalogue of routines

http://www-mad.upc.edu/ guardia/+Ideals.html

We are primarily concerned with three routines from the +Ideals pack-
age.
A.1.1 Montes(X, p : Basis:=false)
Input

e K is a number field defined by the monic irreducible polynomial f €
Z|x].

e p is a prime number.

e Basis determines whether a p-integral basis is computed (default:

false).

This routine has no explicit output, but it does store data in the struc-
ture representing K. Let 6 be a root of f, and let O be the ring of integers
of K. The following data are computed:

e K Primeldeals[p]: A list of OM representations of the prime ideals
dividing p.

e K LocallIndex[pl: The p-adic valuation of (O : Z[f]).
Additionally, if the parameter Basis is set to true, then
e K pBasis[p]: A p-integral basis of Ok

The p-integral basis is computed using the method of the quotients de-

scribed in Section 7.1.

A.1.2 pHermiteBasis(K, p)
Input

e K is a number field defined by the monic irreducible polynomial f €
Z|z].

e p is a prime number.

A.2. New routines supporting MaxMin 179

This routine will compute a p-integral basis of K in Hermite Normal
Form. It requires a p-integral basis, so if necessary, it will call the Montes

routine with Basis set to true to obtain one.

Output

e K pHermiteBasis[p] is a p-integral basis of Ox in Hermite Normal

Form.

A.1.3 SFL(X, P, slope)
Input

e K is a number field defined by the monic irreducible polynomial f €
Z|x].

e P is a prime ideal of K.

e slope is a positive integer.

Let Fp € Zp[x] be the prime factor of f associated to the prime ideal P
and let ¢p € Z[x] be the Montes approximation to Fp as a factor of f.

The SFL routine performs Single Factor Lifting on ¢p, to improve the
quality of the approximation as detailed in Section 2.6. The new polyno-
mial will then be stored in the OM representation of P found in the list
K PrimeIdeals[p].

Let r be the Okutsu depth of Fj, so that r + 1 be the order of the OM

representation of P. Then, the new approximation ¢, will have P-valuation

Vri1 + slope
wp (¢p(6)) > ~HLT S0P

el...er

A.2 New routines supporting MaxMin

The routines based on the algorithms presented in Chapter 4 are organised
into a subpackage of +Ideals, called IdealsBases.
In this section, we will present the routines made available to the user,

as well as the fundamental routines that are used to compute bases of ideals.

180 Appendix A. Catalogue of routines

Throughout this section, K is a number field defined by a monic irre-
ducible polynomial f € Z[x] of degree n, 6 is a root of f, and Ok is the
integer ring of K.

A.2.1 MaxMin(X, p, exp)
Input

e X is a number field defined by the monic irreducible polynomial f €
Z|x].

e p is a prime number.

e exp is a sequence of integer exponents for each of the prime ideals of

K dividing p.

This routine applies the MaxMin algorithm to the set of prime ideals of
K that divide p. If the sequence of exponents exp is all zeros, it will compute
the data needed to construct the maximal order of K, in the contrary case

the data produced will construct a fractional ideal of the form
S .
=[] xpli] e,
i=0

where s is the number of prime ideals of K dividing p.
The data produced by the routine is the indices of the elements of the
Okutsu p-bases which are used to construct each element of the p-integral

basis, as well as the p-valuation of each of these elements.

Output

e nums_ind is sequence of indices used to construct the p-integral basis

numerators

e dens_exp is a sequence of exponents, such that the p-integral basis

denominators are p**Pt for 0 < i < n.

A.2. New routines supporting MaxMin 181

A.2.2 ComputeNumerators(K, p, nums_ind)
Input

e X is a number field defined by the monic irreducible polynomial f €
Z|x].

e p is a prime number.

e nums_ind is a sequence of indices of elements from Okutsu p-bases.

The ComputeNumerators routine complements the MaxMin routine, com-
puting the numerators of the basis from the indices which the MaxMin routine
outputs. The numerators are elements of K, which computationally, can be
thought of as polynomials in 6, the root of f.

The elements of the Okutsu p-bases, which are used to compute the
final basis elements, are constructed from the ¢-polynomials held in the OM

representations of the prime ideal p, stored in the list K™PrimeIdeals[p].

Output

e nums is a sequence of polynomials in # which form the numerators of a
p-reduced triangular basis of either a fractional ideal or the maximal

order of K, depending on the indices given.
A.2.3 pTriangularBasis(K, p)

Input

e K is a number field defined by the monic irreducible polynomial f €
Z|z].

e p is a prime number.

This routine produces a p-integral basis of Ok . The basis is triangular
and reduced. The pTriangularBasis routine requires OM representations
of the prime ideals of K dividing p, so if necessary it will run the Montes

routine (with Basis set to false).

182 Appendix A. Catalogue of routines

Output

e K pBasis[p] is a reduced, triangular p-integral basis of Ok

A.2.4 pTriangularIdealBasis(I, p)
Input

e I is a fractional ideal of the number field K defined by the monic
irreducible polynomial f € Z[x].

e p is a prime number.

This routine produces a p-integral basis of I. The basis is triangular
and reduced. The pTriangularIdealBasis routine requires OM represen-
tations of the prime ideals of K dividing p, so if necessary it will run the

Montes routine (with Basis set to false).

Output

e A list containing a reduced, triangular p-integral basis of I.

A.2.5 pHermiteBasis(K, p : Alg:="MaxMin")
Input

e X is a number field defined by the monic irreducible polynomial f €
Z|x].

e p is a prime number.

e Alg determines the algorithm used to create the p-integral basis (de-

fault: "MaxMin"), valid options are

— "MaxMin" : The pTriangularBasis routine will be used, em-

ploying the MaxMin algorithm.

— "Quotients" : The quotients method will be used.

A.2. New routines supporting MaxMin 183

In this routine, a p-integral basis of Ok is computed in Hermite Normal
Form. The parameter Alg determines the routine used to produce the p-
integral basis which will then be converted to Hermite Normal Form.

If Alg is set to "MaxMin", then the p-integral basis will be computed
using the pTriangularBasis routine - thereby starting with a triangular
basis.

If the second option, "Quotients", is set then the Montes routine will
be used with the Basis parameter set to true. This basis may not be
triangular.

The user should note that this routine overwrites the routine of the same
name present in the base +Ideals package. Setting Alg to "Quotients" will

use the functionality from the original routine.

Output

e K pHermiteBasis[p] is a p-integral basis of Ox in Hermite Normal

Form.

Bibliography

[Bauld4]

[BCP97]

[BNS13]

[Coh93]

[FPR02]

[GMN]

[GMN10a]

Jens-Dietrich Bauch. Lattices over polynomial Rings and Appli-
cations to Function Fields. PhD thesis, Universitat Autonoma
de Barcelona, July 2014.

Wieb Bosma, John Cannon, and Catherine Playoust. The
Magma algebra system. I. The user language. Journal of Sym-
bolic Computation, 24(3-4):235-265, 1997. Computational alge-
bra and number theory (London, 1993).

Jens-Dietrich Bauch, Enric Nart, and Hayden D. Stainsby. Com-
plexity of OM factorization of polynomials over local fields.
LMS Journal of Computation and Mathematics, 16:139-171,
July 2013.

Henri Cohen. A Course in Computational Algebraic Num-
ber Theory, volume 138 of Graduate Texts in Mathematics.
Springer-Verlag Berlin Heidelberg New York, 1993.

David Ford, Sebastian Pauli, and Xavier-Francois Roblot. A
fast algorithm for polynomial factorization over Q,. Journal de
Théorie des Nombres de Bordeaux, 14(1):151-169, 2002.

Jordi Guardia, Jesis Montes, and Enric Nart. Higher Newton
polygons and integral bases. to appear in the Journal of Number

Theory.

Jordi Guardia, Jests Montes, and Enric Nart. Arithmetic in big
number fields: the '+Ideals’ package. arXiv.org, May 2010.

185

186

Bibliography

[GMN10b] Jordi Guardia, Jesis Montes, and Enric Nart. Okutsu invariants

[GMN13]

[GNP12]

[HalO1]

[HenO8]

[Mac36a]

[Mac36b]

[Mon99)]

[Narl4]

[Oku82a

and Newton polygons. Acta Arithmetica, 145(1):83-108, 2010.

Jordi Guardia, Jestis Montes, and Enric Nart. A new compu-
tational approach to ideal theory in number fields. Foundations

of Computational Mathematics, 13(5):729-762, 2013.

Jordi Guardia and Enric Nart. Genetics of polynomials over
local fields. to appear in the Proceedings of AGCTM, Contem-

porary Mathematics.

Jordi Guardia, Enric Nart, and Sebastian Pauli. Single-factor
lifting and factorization of polynomials over local fields. Journal
of Symbolic Computation, 47(11):1318-1346, 2012.

Emmanuel Hallouin. Computing local integral closures. Journal
of Symbolic Computation, 32(3):211-230, 2001.

Kurt Hensel. Theorie de algebraischen Zahlen. B. G. Teubner,
1908.

Saunders MacLane. A construction for absolute values in poly-
nomial rings. Transactions of the American Mathematical Soci-
ety, 40(3):363-395, 1936.

Saunders MacLane. A construction for prime ideals as abso-
lute values of an algebraic field. Duke Mathematical Journal,
2(3):492-510, September 1936.

Jesus Montes. Poligonos de Newton de orden Superior y Aplica-
ciones Aritméticas. PhD thesis, Universitat de Barcelona, July
1999.

Enric Nart. On the equivalence of types. arXiv.org, September
2014.

Kosaku Okutsu. Construction of integral basis. I. Proceedings of
the Japan Academy, Series A, Mathematical Sciences, 58(1):47—
49, 1982.

Bibliography 187

[Oku82b]

[Ore23|

[Ore25]

[Poh93]

[PZ89)

[Ser68)

[SST71]

[vH94]

Kosaku Okutsu. Construction of integral basis. II. Proceedings of
the Japan Academy, Series A, Mathematical Sciences, 58(2):87—
89, 1982.

Oystein Ore. Zur Theorie der Algebraischen Korper. Acta Math-
ematica, 44(1):219-314, 1923.

Oystein Ore. Bestimmung der Diskriminanten Algebraischer

Korper. Acta Mathematica, 45(1):303-344, 1925.

Michael E. Pohst. Computational Algebraic Number Theory.
DMV Seminar Band 21. Birkh&auser Verlag, 1993.

Michael E. Pohst and Hans Zassenhaus. Algorithmic Algebraic
Number Theory, volume Encyclopaedia of mathematics and its

applications. Cambridge University Press, Cambridge, 1989.

Jean-Pierre Serre. Corps locaur. Hermann, second edition edi-

tion, 1968.

A Schénhage and V Strassen. Schnelle Multiplikation grofie
Zahlen. Computing, 7(3-4):281-292, September 1971.

Mark van Hoeij. An algorithm for computing an integral basis
in an algebraic function field. Journal of Symbolic Computation,
18(4):353-363, 1994.

	Introduction
	Algebraic background
	Localisation and completion
	Finite extensions of Dedekind domains
	Indices of lattices over principal ideal domains
	Normal forms of bases of fractional ideals
	Triangular bases
	Hermitian bases

	Local triangular bases
	Global triangular bases
	Aim of this memoir

	OM representations of prime ideals
	Okutsu equivalence of prime polynomials
	Types over (K,v)
	Types parameterise Okutsu classes of prime polynomials
	Equivalence of types
	MacLane-Okutsu invariants of prime polynomials
	Tree structure on the set of types

	OM factorisation of polynomials
	OM representations of prime polynomials
	OM representation of a square-free polynomial

	The Montes algorithm
	Non-optimised Montes algorithm
	Optimised Montes algorithm
	Complexity

	Single-factor lifting and v-adic factorisation
	Complexity

	OM representations of prime ideals

	Optimal polynomials
	Okutsu bases
	Optimal polynomials as products of -polynomials
	Optimal polynomials as products of numerators of Okutsu bases
	Partial Okutsu bases
	Existence of partial Okutsu bases

	MaxMin
	Formal extension of the Okutsu p-bases
	The MaxMin algorithm
	Guaranteed termination
	Polynomial products are not computed
	Initial conditions
	Ordering of input prime ideals
	MaxMin Example

	Precomputation
	Precomputation counter-example

	The block-wise MaxMin algorithm
	Proof of Theorem 4.12
	Proof of the Theorem in cases (A) and (B)
	Precomputation in Case (C)
	Proof of the Theorem in Case (C)

	MaxMin for unconnected trees
	The separated MaxMin algorithm

	Improvement of Okutsu approximations
	Further optimisation
	Terminal sides of a type

	Basis element reduction modulo an m-power

	Triangular bases of fractional ideals
	Okutsu bases
	MaxMin for fractional ideals
	Basis element reduction modulo an m-power
	Advantages of the application of MaxMin in function fields

	Complexity analysis
	Complexity analysis of the MaxMin algorithm
	Upper bound on valuations
	Preprocessing for MaxMin[S]
	MaxMin[S] main loop

	Complexity analysis of basis numerator computation
	Complexity of computing a v-integral basis
	Space complexity analysis

	Example computations
	Algorithms
	Bases of p-maximal orders
	Single prime ideal
	Multiple prime ideals
	Hermitian bases

	Bases of p(t)-maximal orders
	Single prime ideal
	Multiple prime ideals

	Fractional ideals
	Number Field
	Function Field

	Example polynomials

	Catalogue of routines
	The +Ideals package
	Montes(K, p : Basis:=false)
	pHermiteBasis(K, p)
	SFL(K, P, slope)

	New routines supporting MaxMin
	MaxMin(K, p, exp)
	ComputeNumerators(K, p, nums_ind)
	pTriangularBasis(K, p)
	pTriangularIdealBasis(I, p)
	pHermiteBasis(K, p : Alg:="MaxMin")

