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Abstract

In this work, we consider the problem of computing triangular bases of

integral closures of one-dimensional local rings.

“MaxMin” is presented, an efficient algorithm which employs OM rep-

resentations of prime ideals to compute local bases of fractional ideals of

number fields and function fields. The proposed algorithm generates bases

which are guaranteed to be reduced and triangular. In this way, it avoids

the application of triangularisation routines, such as the Hermite Normal

Form, which are slow for fields of large degree.

We show that this algorithm has the same asymptotic computational

complexity as existing methods based on OM representations.

MaxMin has been developed and included as part of the +Ideals package

for arithmetic in large fields. This implementation is almost always faster

than existing OM-based routines. It is also considerably faster than the

routines currently found in standard computer algebra systems, excepting

some cases involving very small field extensions.
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Resumen

En este trabajo, consideramos el problema de computar bases triangulares

de clausuras enteras de anillos locales unidimensionales.

Se presenta “MaxMin”, un algoritmo eficiente que emplea representa-

ciones OM de ideales primos para computar bases locales de ideales frac-

cionarios de cuerpos de números y cuerpos de funciones. MaxMin garantiza

que las bases generadas son reducidas y triangulares. De este modo, se evita

la aplicación de rutinas de triangularización, como el paso a la forma normal

de Hermite, que son lentas para cuerpos de grado alto.

Mostramos que este algoritmo tiene la misma complejidad computa-

cional asintótica que los métodos ya existentes basados en representaciones

OM.

MaxMin ha sido desarrollado e incluido en +Ideals, un paquete diseñado

para trabajar cuestiones aritméticas en cuerpos grandes. La implementación

casi siempre es más rápida que las otras rutinas basadas en representaciones

OM. Respecto a las rutinas que se encuentran actualmente en los sistemas

de álgebra computacional estándard, nuestra implementación de MaxMin

es de nuevo considerablemente más rápida, exceptuando casos concretos de

extensiones de cuerpos muy pequeñas.
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Resum

En aquest treball, considerem el problema de computar bases triangulars

de clausures enteres d’anells locals unidimensionals.

Es presenta “MaxMin”, un algoritme eficient que empra representacions

OM d’ideals primers per computar bases locals d’ideals fraccionaris de cossos

de nombres i cossos de funcions. MaxMin garanteix que les bases generades

són redüıdes i triangulars. D’aquesta manera, s’evita l’aplicació de rutines

de triangularització, com ara el pas a la forma normal d’Hermite, que són

lentes per a cossos de grau alt.

Mostrem que aquest algoritme té la mateixa complexitat computacional

asimptòtica que els mètodes ja existents basats en representacions OM.

MaxMin ha estat desenvolupat i inclòs en el paquet +Ideals, dissenyat

per treballar qüestions aritmètiques en cossos grans. La implementació quasi

sempre és més ràpida que la de les altres rutines basades en representa-

cions OM. Respecte a les rutines que es troben actualment als sistemes

d’àlgebra computacional estàndard, la nostra implementació de MaxMin és

també considerablement més ràpida, exceptuant casos concrets d’extensions

de cossos molt petites.
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Introduction

“It’s a rare gift, to know where you need to be, before you’ve been

to all the places you don’t need to be.”

– Ursula K. Le Guin, Tales from Earthsea

This work deals with the computation of triangular bases of integral

closures of one-dimensional local rings.

The theory of ideals of the ring of integers of a number field dates back

to R. Dedekind and E.E. Kummer in the mid 19th century. The theory

of the existence and the representation of these ideals was the objective of

work by K. Hensel, Ø. Ore, and S. MacLane which extended into the first

half of the 20th century.

In his 1999 Ph.D. thesis, J. Montes extended the ideas of Ore and

MacLane and implemented an algorithm that Ore had envisioned, to com-

1



2 Introduction

pute a representation of prime ideals by way of factoring the defining poly-

nomial over the ring of p-adic numbers. This “Montes algorithm” coupled

with work by K. Okutsu on constructing explicit integral bases of local

fields, gave rise to OM1 representations of prime ideals.

All these results extend in a well-known way to the computation of bases

of integral closures in function fields.

Traditionally, there are two methods of representing fractional ideals of

a number field or a function field in a computer system; either as a basis

as a free module over a certain base ring or as a pair of generators [PZ89].

While the basis representation needs more space than the generators, it has

the advantage of requiring less complex arithmetic.

In current computer algebra systems, most of the methods used to com-

pute integral bases are variants of the Round-2 and Round-4 routines by

Zassenhaus and Ford [Coh93][FPR02][Hal01][PZ89][Poh93][vH94].

Two OM-based routines have also been developed. The first of these

routines [GMN13] is based on an existing technique which produces a local

basis as the union of bases of prime ideals multiplied by a certain “multi-

plier” in each case. The advantage of starting from OM representations of

prime ideals is that all the requisite polynomials are fabricated from data

present in these OM representations.

The second is the “method of the quotients” [GMN], which constructs a

basis using the quotients of certain divisions with remainder performed as

part of the Montes algorithm, which produces OM representations.

Contribution

This memoir presents the MaxMin algorithm, a method of computing tri-

angular local bases of fractional ideals of number fields and function fields

directly from the OM representations of prime ideals.

Triangular bases have an advantage in that, given appropriate local tri-

angular bases, we may construct a global basis using the Chinese Remainder

Theorem, without having to first convert the local bases into a normal form,

1OM stands indistinctly for Ore-MacLane or Okutsu-Montes.



Structure of this memoir 3

a process which is often computationally expensive. Triangular bases also

often simplify arithmetic on the ideals they represent.

The proposed algorithm presents the same computational complexity

as the previous OM-based routines for computing bases, and in practice is

almost always faster. It is also considerably faster than the Round-2 and

Round-4 based routines present in current software packages for all but the

smallest fields.

As a product of the work presented in this document, the +Ideals pack-

age [GMN10a] has been extended to support this new method of computing

bases of fractional ideals. The latest version of the package can be down-

loaded from https://github.com/MontesProject/plus-ideals.

Structure of this memoir

In Chapter 1, we present the necessary algebraic background as well as a

discussion of two normal forms of bases of fractional ideals, focussing on

the local case. We conclude the chapter with a description of the standard

technique used to construct a global basis from the necessary local bases.

Chapter 2 describes the basic tools used in this work, the OM repre-

sentations of prime ideals. We discuss the “types” which represent prime

ideals, as well as an efficient computational method for computing these

objects, the Montes algorithm.

Our own results begin in Chapter 3 with a discussion of optimal polyno-

mials, the primary ingredient in our method for computing local triangular

bases. Here, we concern ourselves with reducing the space in which we must

search to find such optimal polynomials.

In Chapter 4, we present the main results of this thesis. MaxMin is an

efficient, and extremely simple algorithm for constructing local triangular

bases of the integral closure of a discrete valuation ring in a finite extension

of its field of fractions, directly from OM representations of the prime ideals

of the integral closure. The main theorem of this chapter shows that the

MaxMin algorithm performs this task.

Chapter 5 describes an adapted version of the MaxMin algorithm, which

can compute local triangular bases of fractional ideals using the same input

https://github.com/MontesProject/plus-ideals


4 Introduction

polynomials as in the “maximal order version”. The bases produced by the

MaxMin algorithm are always reduced. This has some advantages in certain

applications, such as the computation of bases of the Riemann-Roch spaces

attached to divisors of curves.

A detailed complexity analysis of the MaxMin algorithm is presented

in Chapter 6. The computational complexity is given for the entire pro-

cess required to compute a local triangular basis. An analysis of the space

complexity of the MaxMin algorithm is also presented.

In Chapter 7, the performance of an implementation of the MaxMin

algorithm is compared to two other OM-based routines as well as the routine

used internally by the Magma Computational Algebra System. We present

results in number fields as well as function fields over finite fields.



1 
Algebraic background

“I’d take the awe of understanding over the awe of ignorance any

day.”

– Douglas Adams, The Salmon of Doubt

1.1 Localisation and completion

Let A be a commutative ring with unity and let MaxpAq Ď SpecpAq denote

the maximal spectrum and the spectrum of A, respectively; that is, MaxpAq

is the set of maximal ideals of A, and SpecpAq the set of prime ideals.

For every p P SpecpAq we consider the local ring Ap :“ ArpAzpq´1s,

obtained from A by localisation at p. Also, if M is an A-module, we may

consider the Ap-module Mp :“M rpAzpq´1s, obtained by localisation at p.

5
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The elements of Mp are formal quotients x{a, where x P M , a P Azp, and

they satisfy:

x

a
“
x1

a1
ðñ D b P Azp such that bpa1x´ ax1q “ 0.

The localisation comes equipped with a natural map of A-modules

M ÝÑMp,

x ÞÑ x{1.

By the above identity, x{1 vanishes in Mp if and only if x is annihilated

in M by some element in Azp.

The assignment M ÞÑMp determines an exact functor from the category

of A-modules to the category of Ap-modules. Since the module Mp may be

identified to M bA Ap, the exactness of the functor shows that Ap is a flat

A-algebra.

The following result shows that certain properties may be deduced lo-

cally.

Lemma 1.1. Let M be an A-module, N ĂM an A-submodule and x PM .

• N “M if and only if Nm “Mm, for all m P MaxpAq.

• x P N if and only if x{1 P Nm, for all m P MaxpAq.

Suppose A is a noetherian ring and let a be an ideal of A. The a-adic

topology on A is determined by taking the subsets ta ` anuně0 as a fun-

damental system of neighbourhoods of any a P A. With this topology, A

becomes a topological ring; that is, the operations of addition and multipli-

cation are represented by continuous maps. Since A is noetherian, we have
Ş

ně0 a
n “ t0u, and A is a Hausdorff topological space.

Any A-module M inherits a similar topology by taking tx ` anMuně0

as a fundamental system of neighbourhoods of any x PM .

The ring A, or the module M , are said to be complete with respect to

the a-adic topology if any Cauchy sequence is convergent. It is possible to
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construct the completion of A, or M , as the inverse limit:

Â :“ lim
ÐÝ

A{an,

M̂ :“ lim
ÐÝ

M{anM.

The ring Â is a complete topological ring, and we have a canonical con-

tinuous ring monomorphism, A ãÑ Â. Any continuous ring homomorphism,

AÑ B, from A to a complete topological ring B, extends in a unique way

to a continuous ring homomorphism ÂÑ B.

The assignment M ÞÑ M̂ determines an exact functor from the category

of finitely generated A-modules to the category of finitely generated Â-

modules. Moreover, if M is finitely generated, the canonical map M bA

Â ÝÑ M̂ is an isomorphism of Â-modules. Thus, Â is also a flat A-algebra.

1.2 Finite extensions of Dedekind domains

Let A be a Dedekind domain; that is, A is a noetherian, integrally closed

domain of dimension 1. Every nonzero prime ideal of A is maximal; in other

words, SpecpAq “ MaxpAq Y t0Au.

Every nonzero ideal of A decomposes in a unique way as a product of

nonzero prime ideals. This is the essential property of Dedekind domains.

Let K be the field of fractions of A. A fractional ideal of A is a finitely

generated A-submodule I Ă K. The set IA of nonzero fractional ideals

has the structure of a commutative group with respect to the operation of

multiplication of fractional ideals. By the unique factorisation property, IA
is a free abelian group over the set of nonzero prime ideals:

IA “
à

mPMaxpAq

mZ.

The class group of A is the quotient group ClpAq :“ IA{PrA, where

PrA :“ txA : x P K˚u Ă IA,

is the subgroup of principal nonzero fractional ideals.
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Let m be a non-zero prime ideal of A and consider the map

vm : IA ÝÑ Z,

determined by:

I “
ź

mPMaxpAq

mvmpIq.

For any I, J P IA, we say that I � J if any of the following equivalent

conditions are satisfied :

1. J Ă I,

2. there exists an ideal a Ă A such that J “ aI,

3. vm pIq ď vm pJq for all m P MaxpAq.

The induced map

vm : K˚ ÝÑ Z,

x ÞÑ vm pxq :“ vm pxAq ,

with the extended value vm p0q :“ 8, is a discrete valuation of K. The local

ring Am may be identified with the valuation ring of vm:

Am “ tx P K : vm pxq ě 0u Ă K.

In particular, Am is a principal domain.

Let f P Arxs be a monic and irreducible polynomial of degree n ą 1.

Let θ P K be a root of f and L “ Kpθq the finite extension of K generated

by θ. The integral closure B of A in L is a Dedekind domain. We assume

throughout that the following hypothesis is satisfied.

Hypothesis. B is finitely generated as an A-module.

This condition holds under very natural assumptions; for instance, if

L{K is separable, or A is complete with respect to some discrete valuation,

or A is a finitely generated algebra over a field [Ser68, I, §4].
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Consider the factorisation of mB into a product of prime ideals in L:

mB “ p
epp1{mq
1 ¨ ¨ ¨ p

eppg{mq
g .

Let Km, Lp, be the completions of K and L with respect to the m-adic

and p-adic topology, respectively. Denote the ring of integers of these fields

by:

Âm Ă Km,

B̂p Ă Lp, @ p � m.

Finally, we denote by np :“ rLp : Kms “ epp{mqfpp{mq the local degrees,

where fpp{mq :“ rB{p : A{ms are the residual degrees.

The natural homomorphisms B ÝÑ B̂p induce a canonical isomorphism

of Âm-algebras [Ser68, II, Prop. 4]:

B bA Âm
„
ÝÑ

à

p�m
B̂p. (1.1)

By a classical theorem of Hensel [Hen08], the prime ideals p � m are in

1-1 correspondence with the different monic irreducible factors of fpxq in

Âmrxs.

Definition 1.2. For each prime ideal p � m, let us fix a continuous em-

bedding, ip : L Ă Lp ãÑ Km, with respect to the p-adic topology. Then

θp :“ ippθq is the root of a monic irreducible factor (say) Fppxq of fpxq in

Âmrxs. Also, we denote:

wp :“ epp{mq´1vp : L˚ ÝÑ epp{mq´1Z,

where vp is the discrete valuation of L attached to p.

Clearly, wp pαq “ v pippαqq for all α P L, where v :“ vm is the canonical

extension of vm to Km. Thus, for any polynomial gpxq P Arxs,

wp pgpθqq “ v pgpθpqq .
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This identity will be implicitly used throughout the memoir without

further mention, when we apply local results to a global situation.

The semilocal ring Bm “ BrpAzmq´1s may be identified to the integral

closure of Am in L; that is, to the subring of m-integral elements of L:

Bm “ tα P L : vp pαq ě 0, @ p P SpecpBq, p � mu Ă L.

The ring Bm is a torsion-free finitely generated Am-module. Since Am is

a PID, this implies that Bm is a free Am-module. Also, since Bm contains a

K-basis of L, it is a free Am-module of rank n.

Given any nonzero fractional ideal I P IB, there exists a P A such that

aI Ă B. Therefore, I is finitely generated as an A-module. As we argued

for the A-module B itself, the localised module Im is also a free Am-module

of rank n.

Definition 1.3. An m-integral basis of I is an Am-basis of Im.

Definition 1.4. Let I P IB be a fractional ideal of B. Consider the follow-

ing mapping:

w :“ wm,I : L ÝÑ QY t8u,

α ÞÝÑ wpαq “ min tpvp pαq ´ vp pIqq{epp{mqup�m .

The map w does not behave well with respect to multiplication, but it

has some of the typical properties of a valuation.

Lemma 1.5. Let I P IB, a P K, and α, β P L.

1. w paαq “ vm paq ` w pαq.

2. w pα` βq ě min tw pαq , w pβqu, and equality holds if w pαq ‰ w pβq.

Proof. The first item is an immediate consequence of wp paq “ vm paq.

Let us prove the second item. Denote ap :“ vp pIq {epp{mq, for all p � m.

Suppose w pβq ď w pαq, and let q � m such that

w pβq “ wq pβq ´ aq ď min twp pαq ´ apup�m .
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Take p1 � m such that w pα` βq “ wp1 pα` βq ´ ap1 . Clearly,

w pα` βq “ wp1 pα` βq ´ ap1 ě min
 

wp1 pβq , wp1 pαq
(

´ ap1 ě w pβq .

If w pβq ă w pαq, we have wq pβq´aq ă wp pαq´ap, for all p � m. Hence,

w pβq “ wq pβq ´ aq “ wq pα` βq ´ aq ě w pα` βq ě w pβq ,

so that all inequalities must be equalities. In particular, w pα` βq “ w pβq.

This map w “ wm,I is useful to detect what elements in L belong to Im.

Clearly,

Im “ tx P L : wm,I pxq ě 0u Ă L. (1.2)

1.3 Indices of lattices over principal ideal domains

Let A be a PID, with field of fractions K. Let

IA “ PrA “ txA : x P K˚u » K˚{A˚,

be the group of fractional ideals of A, that coincides with the subgroup of

nonzero principal ideals.

In this section we fix a K-vector space V of finite dimension n. Let us

be precise about the way we consider transition matrices between two bases

of V .

Definition 1.6. Let B “ pα1, . . . , αnq P V
n, B1 “ pα11, . . . , α1nq P V n be two

bases of V . The transition matrix from B to B1 is the matrix T “ T pB1 Ð
Bq P GLnpKq determined by:

pα11 ¨ ¨ ¨ α
1
nqT “ pα1 ¨ ¨ ¨ αnq.

Note that the j-th column of T collects the coordinates of αj with respect

to the basis B1.
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Definition 1.7. An A-lattice of V is a finitely generated A-submodule M Ă

V , containing a set of generators of V as a K-vector space.

Since our base ring A is a PID, our lattices will be free A-modules of rank

n. Thus, a lattice M is determined by an arbitrary basis B “ pα1, . . . , αnq

of V as a K-vector space, by taking M “ xα1, . . . , αnyA.

Definition 1.8. Let M,N Ă V be two lattices of V . The index rM : N s P

IA is defined to be the fractional ideal generated by the determinant of the

transition matrix from any A-basis of N to any A-basis of M .

The choice of different A-bases of N and M leads to transition matrices

T, T 1 P GLnpKq related by:

T 1 “ PTQ, P,Q P GLnpAq.

Thus, detpT 1q “ udetpT q, for some unit u P A˚, so that detpT q and

detpT 1q generate the same principal ideal. Therefore, the index rM : N s is

well-defined.

Lemma 1.9. Let L,M,N Ă V be lattices of V .

1. rL : N s “ rL : M srM : N s.

2. rM : N s “ rN : M s´1.

3. rxM : xN s “ rM : N s, for all x P K˚.

4. If N Ă M , then rM : N s “ pa1 ¨ ¨ ¨ anqA, where a1, . . . , an P Azt0u

satisfy

M{N » pA{a1Aq ˆ ¨ ¨ ¨ ˆ pA{anAq.

5. rM : N sm “ rMm : Nms, for all m P MaxpAq.

6. rM : N s bA Âm “ rM bA Âm : N bA Âms, for all m P MaxpAq.

Proof. The three first items are an immediate consequence of well-known

properties of the transition matrices.
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The fourth item follows from the theory of elementary divisors. There

exist an A-basis pα1, . . . , αnq of M , and nonzero elements a1, . . . , an P A

such that pa1α1, . . . , anαnq is an A-basis of N .

Let us prove (5). Consider the transition matrix T from an A-basis BN
of N to an A-basis BM of M ; then, T is the transition matrix from the Am-

basis BN of Nm to the Am-basis BM of Mm. Hence, rM : N sm “ detpT qAm “

rMm : Nms.

The same argument proves (6).

The next result follows immediately from these properties.

Lemma 1.10. Let N ĂM be two lattices of V and let m P MaxpAq.

1. N “M if and only if rM : N s “ A.

2. Nm “Mm if and only if m ffl rM : N s.

Remark 1.11. This index of lattices is a particular instance of a more gen-

eral invariant χpM,Nq introduced by J. P. Serre for an arbitrary Dedekind

ring A [Ser68].

1.4 Normal forms of bases of fractional ideals

Let A be a PID, with field of fractions K, and let L{K be a finite field

extension of degree n as in Section 1.2. By assumption, the integral closure

B of A in L is a finitely generated A-module. Since A a PID, B is a free

A-module of rank n.

The fractional ideals I P IB are lattices of the K-vector space V “ L.

As such they are free A-modules of rank n, and we are interested in the

computation of A-bases for them.

Proposition 1.12 ([Ser68]). For any fractional ideal I P IB, we have

rB : Is “ NL{KpIq.

From a computational perspective, we consider the elements of L as K-

linear combinations of the powers 1, θ, . . . , θn´1 of the root θ of the given
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polynomial fpxq P Arxs, defining the extension L{K. Consider the chain of

K-subspaces,

0 “ V0 Ă V1 “ K Ă V2 Ă ¨ ¨ ¨ Ă Vn “ L, (1.3)

where for 1 ď i ď n, Vi is the subspace generated by 1, θ, . . . , θi´1.

The A-bases of fractional ideals are more easily handled in practice if

they are given in adequate normal forms.

1.4.1 Triangular bases

Let P be a complete set of non-associate prime elements in A. Thus, every

prime element q P A is written as q “ up, for unique u P A˚, p P P. Let

PZ Ă K be the subset of elements which are finite products of powers of

primes in P, with integer exponents. Thus, for every x P K˚, there exist

unique u P A˚, y P PZ such that x “ uy. Finally, we denote PN :“ PZ X A;

clearly, PN is a complete set of non-associate elements in Azt0u.

Definition 1.13. Let pα0, . . . , αn´1q P L
n be an A-basis of a nonzero frac-

tional ideal I P IB. We say that the basis is triangular (with respect to the

choice of fpxq as a defining polynomial of L{K) if it satisfies the following

two properties:

1. For every 0 ď j ă n, αj “ djgjpθq, where dj P PZ and

gjpxq “ xj ` aj´1,jx
j´1 ` ¨ ¨ ¨ ` a1,jx` a0,j P Arxs

is a monic polynomial of degree j. We take aj,j :“ 1 by convention.

2. d0A Ă d1A Ă ¨ ¨ ¨ Ă dn´1A.

Our first aim is to show that every fractional ideal admits a triangular

basis. This is a specific property of fractional ideals, since not every lattice

of L admits a triangular basis. For instance, if A “ Z, K “ Q, and L “ Qpθq
is an arbitrary quadratic extension, then the lattice M “ x2, 2θ ` 1yZ does

not admit a triangular basis.
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Lemma 1.14. Let I P IB be a nonzero fractional ideal. For every integer

0 ď m ă n, denote

Im :“ td P K : dθm P I ` Vmu ,

for the chain V0 Ă ¨ ¨ ¨ Ă Vn´1 of K-subspaces of L defined in (1.3). Then,

1. Im P IA is a nonzero fractional ideal of A. In particular, there exists

a unique dm P PZ such that Im “ dmA.

2. I0 “ I XK.

3. I0 Ă I1 Ă ¨ ¨ ¨ Ă In´1.

4. I X Vm`1 Ă Im ¨ Vm`1.

Proof. Clearly, Im Ă K is an A-submodule. In order to prove (1) we need

only to check that it is nonzero and finitely generated as an A-module.

Let a, b P A be nonzero elements such that aI Ă Arθs and bArθs Ă I.

Clearly, b P Im for all m; thus Im is nonzero. Also, aIm Ă A, so that Im is

finitely generated.

The second item is an immediate consequence of the definition of I0.

The third item follows from the fact that I is stable by multiplication by θ.

Let us prove (4) by induction on m. For m “ 0 the statement is a

consequence of (2). Suppose that 0 ă m ă n and (4) holds for all indices

less than m. By item 3, we have dm´1 “ dma, for some a P A. If α :“

c0 ` c1θ ` ¨ ¨ ¨ ` cmθ
m P I, then cm P Im by definition; write cm “ dmb, for

some b P A. Consider now any β :“ e0 ` e1θ ` ¨ ¨ ¨ ` em´1θ
m´1 P I, with

em´1 “ dm´1. By the induction hypothesis, e0, . . . , em´1 P Im´1. Now, the

element aα´ bβθ P I is a polynomial in θ of degree m´ 1; by the induction

hypothesis, all its coefficients aci´bei´1 belong to Im´1. Since bei´1 P Im´1,

we deduce that aci P Im´1, for all 0 ď i ă m. Finally, aci P Im´1 “ dm´1A

is equivalent to ci P pdm´1{aqA “ dmA.

Definition 1.15. These elements d0, . . . , dn´1 P K
˚ are canonical invari-

ants of I (they depend only on the choice of fpxq P Arxs as a defining

polynomial of L{K). We allow an abuse of language and we say that they

are the elementary divisors of I.
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The next result shows the existence of triangular bases and the essential

property of these bases that may be used to construct them.

Theorem 1.16. Let I P IB be a nonzero fractional ideal. For every integer

0 ď m ă n, consider a pair of elements dm P K
˚ and βm “ b0,m ` b1,mθ `

¨ ¨ ¨ ` bm´1,mθ
m´1 ` θm P Arθs satisfying:

1. dmβm P I,

2. dmA is maximal (with respect to the inclusion of fractional ideals) with

this property, for all possible choices of βm.

Then, d0β0, . . . , dn´1βn´1 is a triangular basis of I.

Proof. By Lemma 1.14, d0, . . . , dn´1 are the elementary divisors of I. Thus,

we need only to show that d0β0, . . . , dn´1βn´1 is an A-basis of I.

Let α “ c0 ` c1θ ` ¨ ¨ ¨ ` cn´1θ
n´1 P I, for some c0, . . . , cn´1 P K. By

definition, cn´1 P In´1, so that there exists a P A such that cn´1 “ adn´1;

hence, α ´ adn´1βn´1 P I is a polynomial in θ of degree less than n ´ 1.

An iteration of this argument shows that α is an A-linear combination of

d0β0, . . . , dn´1βn´1.

Corollary 1.17. If I P IB has elementary divisors d0, . . . , dn´1, then:

1. rArθs : Is “ d0 ¨ ¨ ¨ dn´1A.

2. NL{KpIq “ rB : Arθss ¨ pd0 ¨ ¨ ¨ dn´1Aq.

Proof. Clearly, β0, . . . , βn´1 is an A-basis of Arθs; this proves the first item.

The second item is a consequence of Proposition 1.12 and the transitivity

of the index (first item of Lemma 1.9).

Remark 1.18. The maximality of dmA is equivalent to the minimality of

dm under the following partial ordering of PZ » K˚{A˚:

x ď y ðñ x � y ðñ there exists a P A such that y “ ax.

For I “ B, the elements dm are of the form 1{um, with um P A. In this

case, the minimality of dm is equivalent to the maximality of um P A, under

the same partial ordering.
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1.4.2 Hermitian bases

Definition 1.19. Let I P IB and let pα0, . . . , αn´1q P L
n be a triangular

A-basis of I; that is, conditions (1) and (2) of Definition 1.13 are satisfied.

We say that pα0, . . . , αn´1q is a Hermitian basis of I if it also satisfies:

3. For all 0 ď i ă j ă n, the element ai,j belongs to a fixed subset of

representatives of A{pdi{djqA.

This condition is equivalent to the fact that a certain nonsingular square

matrix over A is in Hermite normal form (HNF).

Definition 1.20. Let H “ pbi,jq P A
nˆn be a nonsingular matrix, with rows

and columns indexed by 0 ď i, j ă n. We say that H is in Hermite normal

form (under column transformations) over A if

1. It is an upper triangular matrix.

2. bi,i P PN, for 0 ď i ă n.

3. bi,j belongs to a fixed subset of representatives of A{bi,iA, for all 0 ď

i ă j ă n.

Every nonsingular square matrix M P Anˆn can be transformed into a

unique matrix in HNF by elementary column transformations with coeffi-

cients in A. In other words,

1. There exists Q P GLnpAq such that MQ is in HNF.

2. If H,H 1 P Anˆn are matrices in HNF and H 1 “ HQ for some Q P

GLnpAq, then H “ H 1.

The next result is a straightforward consequence of Lemma 1.14.

Lemma 1.21. Let I P IB be a fractional ideal of B and then let B “
pα0, . . . , αn´1q P L

n be an A-basis of I. Let Bθ “ p1, θ, . . . , θn´1q be the

standard A-basis of Arθs, and consider the transition matrix T “ T pBθ Ð
Bq P GLnpKq. Let d P A be any element such that dT P Anˆn. Then, the

basis B is Hermitian if and only if the matrix dT is in HNF over A.
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Corollary 1.22. Every I P IB admits a unique Hermite basis.

As usual, the Hermite basis of I depends on the choice of the defin-

ing polynomial fpxq P Arxs of the extension L{K. So, the “uniqueness”

statement implicitly assumes that this defining polynomial is fixed.

In practice, we may find the Hermite basis of I by the following proce-

dure:

1. Compute a triangular basis B of I. Let d0, . . . , dn´1 be the elementary

divisors of I.

2. Compute the transition matrix T “ T pBθ Ð Bq P GLnpKq.

3. Apply the HNF routine over A to the upper triangular matrix T 1 :“

d´1
n´1T P A

nˆn. Let H be the HNF of T 1.

4. The coordinates of the elements in the Hermite basis of I, with respect

to the K-basis 1, θ, . . . , θn´1 of L, are the columns of the matrix

dn´1H.

The crucial point is the computation of the triangular basis. The rest

of the steps are trivial and reasonably efficient. In step (3) the efficiency

relies on the fact that the input matrix to the HNF routine is already upper

triangular.

1.5 Local triangular bases

Local bases exist for arbitrary Dedekind domains A, as we saw in Section

1.2. For any fractional ideal I P IB and any m P MaxpAq the localised

ideal Im is a free Am-module of rank n and an Am-basis of Im is called an

m-integral basis of I (Definition 1.3). The local ring Am is a PID with

PpAmq “ tπu ,

PpAmq
Z
“ tπν : ν P Zu ,

where π P m is a local generator.

By the results of Section 1.4, Im admits triangular Am-bases, which may

be called m-triangular bases of I.
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Theorem 1.23. Let I P IB be a nonzero fractional ideal. For every integer

0 ď m ă n, consider a pair of elements νm P Z and βm “ b0,m ` b1,mθ `

¨ ¨ ¨ ` bm´1,mθ
m´1 ` θm P Arθs satisfying:

1. πνmβm P I,

2. νm is minimal with this property, for all possible choices of βm.

Then, πν0β0, . . . , π
νn´1βn´1 is an m-triangular basis of I.

Proof. This is a particular instance of Theorem 1.16 applied to the ring Am,

except for the fact that we require the βm’s to be polynomials in θ with

coefficients in A, and not merely in Am. However, if πνmβ1m P Im, for some

β1m “ b10,m ` b11,mθ ` ¨ ¨ ¨ ` b1m´1,mθ
m´1 ` θm P Amrθs, then we also have

πνmβm P Im for βm “ b0,m` b1,mθ` ¨ ¨ ¨ ` bm´1,mθ
m´1` θm P Arθs, if all bm

are sufficiently close to b1m in the m-adic topology.

We may be more precise about the link between νm and βm.

Corollary 1.24. With the above notation, νm “ r´wm,I pβmqs, for all 0 ď

m ă n. In particular, ν0 “ rmaxp�mtvp pIq {epp{mqus.

Proof. Fix one index 0 ď m ă n. By (1.2),

πνmβm P Im ðñ wm,I pπ
νmβmq ě 0 ðñ wm,I pβmq ě ´νm.

By the minimality of νm, we have necessarily νm “ r´wm,I pβmqs.

The statement about ν0 follows from β0 “ 1.

Condition (2) of Theorem 1.23 says that the integer twm,I pβmqu is max-

imal, for βm “ hmpθq with hm P Arxs running on all monic polynomials

of degree m. If we require the stronger property, that the rational number

wm,I pβmq is maximal, we obtain m-reduced bases.

Definition 1.25. A family α1, . . . , αr P B is called m-reduced if for any

family a1, . . . , ar P Am:

wm,I

´

ÿ

1ďiďr
aiαi

¯

“ min twm,I paiαiq : 1 ď i ď nu .
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We may strengthen Theorem 1.23 in the following way.

Theorem 1.26. Let I P IB be a nonzero fractional ideal. For every integer

0 ď m ă n, consider gm P Arxs a monic polynomial of degree m such that

wm,I pgmpθqq is maximal among all possible choices of gm. Denote νm :“

r´wm,I pgmpθqqs. Then, πν0g0pθq, . . . , π
νn´1gn´1pθq is an m-triangular m-

reduced basis of I.

Proof. By Theorem 1.23, πν0g0pθq, . . . , π
νn´1gn´1pθq is an m-triangular basis

of I, so it only remains to show that it is also m-reduced.

Denote αi :“ πνigipθq.

Given a family a0, . . . , an´1 P Am, let δ “ min twm,I paiαiq : 0 ď i ă nu.

By Lemma 1.5,

wm,I

´

ÿ

0ďiăn
aiαi

¯

ě min twm,I paiαiq : 1 ď i ă nu “ δ.

Hence, it suffices to show that wm,I

`
ř

0ďiăn aiαi
˘

ď δ.

Take i “ ti : wm,I paiαiq “ δu. By Lemma 1.5,

wm,I

´

ÿ

0ďiăn
aiαi

¯

“ wm,I

´

ÿ

iPi
aiαi

¯

.

Since 0 ď wm,I pαiq ă 1 for all i, the values vm paiq P Zě0 are all constant

for i P i. Dividing by an adequate π-power we may assume vm paiq “ 0 for

all i P i. If i0 “ maxpiq, we may divide everything by ai0 (which is now a

unit in Am) so that we may assume that ai0 “ 1. Now,

ÿ

iPi
aiαi “ πνi0hpθq,

for a certain monic polynomial h P Amrθs of degree i0. By the maximality

of gi0pθq we must have

wm,I

´

ÿ

iPi
aiαi

¯

ď wm,I pπ
νi0gi0pθqq “ wm,I pαi0q “ δ.
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1.6 Global triangular bases

If A is a PID, there is a standard procedure to patch triangular m-integral

bases of I into a triangular A-basis of I, by means of the CRT.

Notation. Denote by UpnpAq the subgroup of GLnpAq formed by the upper

triangular matrices such that all elements in the principal diagonal are equal

to 1.

Theorem 1.27. Let I P IB be a nonzero fractional ideal of B, and let

PI :“ SupppIq Y SuppprB : Arθssq Ă MaxpAq,

be the set of all m P MaxpAq such that m divides some p P SpecpBq with

vp pIq ‰ 0, or m divides rB : Arθss.

Suppose that for each m “ πmA P PI we have an m-triangular basis of

Im:

πν0,mm β0,m, . . . , π
νn´1,m
m βn´1,m, νj,m “ r´wm,I pβj,mqs,

where β0,m, . . . , βn´1,m is a triangular A-basis of Arθs, given by a transition

matrix Um P UpnpAq:

p1 θ ¨ ¨ ¨ θn´1qUm “ pβ0,m ¨ ¨ ¨ βn´1,mq.

Take U P UpnpAq whose columns U j are the solution of the following CRT

problem:

U j ” pUmq
j pmod π

ν0,m´νj,m
m q, @ m P PI ,

and consider the triangular A-basis β0, . . . , βn´1 of Arθs determined by:

p1 θ ¨ ¨ ¨ θn´1qU “ pβ0 ¨ ¨ ¨ βn´1q.

Then, d0β0, . . . , dn´1βn´1 is a triangular A-basis of I, where we denote

dj :“
ś

mPPI π
νj,m
m .
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Proof. Let us check first that dmβm belongs to I for all 0 ď m ă n. It is

sufficient to check that dmβm P Im, for all m P MaxpAq (cf. Section 1.1).

If m R PI , we have Im “ Arθsm. In fact, Im “ Bm, because m R SupppIq,

and Bm “ Arθsm by Lemma 1.10, because m ffl rB : Arθss. Now, since

dm P Am and βm P Arθs, clearly dmβm P Arθsm “ Im.

If m P PI , then by Corollary 1.24 we have

wp pβm ´ βm,mq ě ν0,m ´ νm,m ě
vp pIq

epp{mq
´ νm,m, @ p � m.

Hence, wm,I pβm ´ βm,mq ě ´νm,m. Since wm,I pβm,mq ě ´νm,m, Lemma

1.5 shows that wm,I pβmq ě ´νm,m and wm,I pdmβmq “ νm,m`wm,I pβmq ě 0.

Thus, dmβm belongs to Im, by (1.2).

Finally, it is clear that dmA is maximal amongst all ideals dA, for d P K˚

satisfying dβ1m P I for some β1m a monic polynomial in θ of degree m with

coefficients in A. In fact, if dmA Ĺ dA, then there must be a prime ideal m,

with vm pdmq ą vm pdq. If m R PI , we get 0 ą vm pdq, and this contradicts

the equality Im “ Arθsm “ Amrθs. If m P PI , we get νm,m ą vm pdq, and this

contradicts the minimality of νm,m, or equivalently, the fact that πνm,m is

the m-th elementary divisor of Im.

By Theorem 1.16, d0β0, . . . , dn´1βn´1 is a triangular basis of I.

1.7 Aim of this memoir

The fastest methods to construct m-integral bases of B are the OM method

given in [GMN13], and the method of the quotients developed in [GMN].

The second method is more efficient, but it has the disadvantage that it

only applies to finding m-integral bases of B, while the first method (based

on the construction of certain multipliers) is able to yield m-integral bases

of arbitrary fractional ideals.

These methods yield non-triangular bases. However, in many applica-

tions, such as the computation of global A-bases of fractional ideals when

A is a PID, we need local triangular bases, so that it is necessary to apply

a triangularisation routine to certain nonsingular matrices in Anˆn.

The main aim of this memoir is to find a direct construction of m-
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triangular bases of fractional ideals, which works as fast as the aforemen-

tioned methods, and avoids the triangularisation routine.

Even if we want to construct a Hermitian basis, the HNF routine is much

more efficient when it is applied to a matrix which is already triangular.

Our method for the constructions of m-triangular bases is called the

MaxMin algorithm and it is discussed in detail in Chapter 4. The m-

triangular bases computed by the MaxMin algorithm have a maximal wm,I -

value; hence they are m-reduced too, as shown by Theorem 1.26. This is

crucial for some applications to arithmetic properties of function fields (see

Section 5.4).

Since we are only interested in local bases, we shall work in a purely

local context. Our base ring will be an arbitrary discrete valuation ring O
with field of fractions K. We shall consider a finite field extension L{K

and our aim will be the computation of triangular O-bases of the integral

closure OL of O in L.

The MaxMin algorithm is also an OM method. It requires an initial

application of the Montes algorithm to compute OM representations of the

prime ideals of OL. For the convenience of the reader, we will review the

necessary background material in Chapter 2.
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2 
OM representations of prime

ideals

“One should never mistake pattern for meaning.”

– Iain M. Banks, The Hydrogen Sonata

Let pK, vq be a discrete valued field with valuation ring O. Let m be the

maximal ideal, π P m a generator of m and F “ O{m the residue class field.

Let Kv be the completion of K, and retain v : K
˚

v Ñ Q the canonical

extension of v to a fixed algebraic closure of Kv. Let Ov be the valuation

ring of Kv and mv its maximal ideal.

Let f P Orxs be a monic, irreducible polynomial of degree n and fix

a root θ P K in the algebraic closure of K. Let L “ Kpθq be the finite

extension of K defined by f and let OL be the integral closure of O in L,

25
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which is a Dedekind domain. We denote the set of prime ideals of OL by

P.

We suppose thatOL is finitely generated as anO-module. This condition

holds under very natural assumptions; for instance, if L{K is separable, or

pK, vq is complete, or O is a finitely generated algebra over a field [Ser68, I,

§4].

By a theorem of Hensel [Hen08], the prime ideals of OL are in 1-to-1

correspondence with the prime factors of f in Ovrxs. The construction of

“OM representations” of each prime factor of f yields computational data

about the prime ideals of OL, encoding relevant arithmetic information

about these ideals.

For this reason, we are initially interested in the representation of monic

irreducible polynomials F P Ovrxs.

2.1 Okutsu equivalence of prime polynomials

Definition 2.1. A prime polynomial with respect to v is a monic irreducible

polynomial with coefficients in Ovrxs. Let us denote by

P :“ PpOvrxsq :“ tF P Ovrxs : F monic, irreducibleu ,

the set of all prime polynomials.

Let F P P be a prime polynomial and fix θ P Kv a root of F . Let

KF “ Kvpθq be the finite extension of Kv generated by θ.

Definition 2.2. The Okutsu bound of F P P is defined as,

δ0pF q :“ degpF qmax tv pgpθqq {deg g : g P Orxs, g monic, deg g ă degF u .

Definition 2.3. Let F,G P P be two prime polynomials of the same degree,

and let θ P Kv be a root of F . We say that F and G are Okutsu equivalent,

and we write F « G, if

v pGpθqq ą δ0pF q.
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We denote by rF s Ď P the Okutsu class of F ; that is, the set of all

prime polynomials which are Okutsu equivalent to F . The idea behind this

concept is that all members of rF s share certain discrete invariants, which

are further described in the following section.

2.2 Types over pK, vq

A type t is a computational object consisting of discrete data, structured

into levels:

t “ pψ0; pφ1, λ1, ψ1q; ¨ ¨ ¨ ; pφr, λr, ψrqq. (2.1)

The number r of levels is called the order of the type.

A type t “ pψ0q of order 0 is determined by the choice of an arbitrary

monic irreducible polynomial ψ0 P Frys. It supports the following data at

level 0:

• Numerical data: e0 “ m0 “ 1, λ0 “ h0 “ 0.

• A discrete valuation v0 : Kpxq˚ ÝÑ Z, determined by the following

action on polynomials:

v0

˜

ÿ

ią0

aix
i

¸

:“ min tv0 paiq : i ą 0u .

• ψ0 P F0rys a monic irreducible polynomial.

• F1 “ F0rys{pψ0q a finite extension of F of degree f0 :“ degψ0.

• z0 P F1 the class of y. Hence, F1 “ F0rz0s and ψ0 is the minimal

polynomial of z0 over F0.

• The residual polynomial operator R0 : Krxs Ñ F0rys, where F0 “ F.

It is defined as R0pgq “ gpyq{πv0pgq for any non-zero g P Krxs.

If t0 “ pψ0; pφ1, λ1, ψ1q; . . . ; pφi´1, λi´1, ψi´1qq is a type of order i´1 ě 0,

then a type t “ pt0; pφi, λi, ψiqq of order i may be obtained by adding the

following data at the i-th level:
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• A representative φi of t0. That is, a monic polynomial φi P Orxs of

degree mi :“ ei´1fi´1mi´1 such that Ri´1pφiq “ ψi´1.

• The value Vi :“ vi´1 pφiq P Zě0.

• A Newton polygon operator Ni :“ Nvi´1,φi .

• A positive rational number λi “ hi{ei, with hi, ei positive coprime

integers. We say that λi is the slope of t at level i.

• The Bézout identity `ihi ` `
1
iei “ 1, 0 ď `i ă ei.

• A normalised augmented valuation vi of Kpxq.

• ψi P Firys a monic irreducible polynomial, ψi ‰ y.

• Fi`1 “ Firys{pψiq a finite extension of Fi of degree fi :“ degψi.

• zi P Fi`1 the class of y. Hence, Fi`1 “ Firzrs and ψi is the minimal

polynomial of zi over Fi.

• A residual polynomial operator Ri :“ Rvi´1,φi,λi .

The polynomials φ1, . . . , φi are prime polynomials with coefficients in O.

That is, they are irreducible over Ovrxs.
We will now describe the i-th level operators Ni, vi, and Ri in further

detail.

Newton polygon

At each level a type t defines a Newton polygon,

Ni :“ Nvi´1,φi : Krxs ÝÑ 2R
2
, 1 ď i ď r,

where 2R
2

is the set of subsets of the Euclidean plane. Any non-zero poly-

nomial g P Kvrxs has a canonical φi-development:

g “
ÿ

0ďs

asφ
s
i , deg as ă mi,
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Nipgq

0 ordφipgq ordψi´1
pRi´1pgqq `pNipgqq

vi´1pgq

Figure 2.1: Newton polygon of a polynomial g P Krxs.

and the polygon Nipgq is the lower convex hull of the cloud of all the points

ps, vi´1 pasφ
s
i qq. Figure 2.1 shows the typical shape of Nipgq.

If the Newton polygon N “ Nipgq is not a single point, we formally write

N “ S1 ` ¨ ¨ ¨ ` Sk, where Si are the sides of N , ordered by their increasing

slopes. The left and right end-points of N and the points joining two sides

of different slopes are called the vertices of N .

Usually, we are only interested in the principal Newton polygon N´i pgq Ď

Nipgq formed by the sides of negative slope. If there are no sides of negative

slope, then N´i pgq is the left end-point of Nipgq.

The length `pNq of a Newton polygon N is the abscissa of its right

end-point. For every non-zero polynomial g P Krxs, we have

`pN´i pgqq “ ordψi´1
pRi´1pgqq , in Fi´1rys. (2.2)

Let λ P Qą0 be a positive rational number and let L´λ be the line of

slope ´λ which first touches the polygon Nipgq from below. We define the

λ-component of N “ Nipgq as the segment

Sλ :“ tpx, yq P N : y ` λx is minimalu “ N X L´λ,

and we denote by sλpgq ď s1λpgq the abscissas of the end-points of Sλpgq.

If N has a side S of slope ´λ, then Sλ “ S and sλpgq ă s1λpgq, otherwise

Sλpgq is a vertex of N and sλpgq “ s1λpgq (see Figure 2.2).
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Nipgq

0

L´λ

H

sλpgq s1λpgq

Sλ describes a side of Nipgq

Nipgq

0

L´λ

H

sλpgq “ s1λpgq

Sλ describes a vertex of Nipgq

Figure 2.2: The λ-component of Nipgq.

Normalised augmented valuation

The Newton polygon operator Ni together with the slope λi define the

normalised augmented valuation vi of the field Kpxq.

Given a polynomial g P Krxs, let L “ L´λi be the line of slope ´λi first

touching Nipgq from below. Let p0, Hq be the point where L crossed the

vertical axis (see Figure 2.2). Then the vi-valuation of g is defined as,

vipgq “ Hei. (2.3)

Residual polynomial

A type t also has a residual polynomial operator at each level,

Ri :“ Rvi´1,φi,λi : Krxs ÝÑ Firys, 1 ď i ď r.

The operator Ri maps 0 to 0. For a non-zero g P Krxs with φi-expansion

g “
ř

0ďs asφ
s
i , let us denote by sipgq ď s1ipgq the abscissas of the end points

of the λi-component S “ SλipNipgqq of Nipgq.

Let d “ ps1ipgq ´ sipgqq{ei be the degree of S. There are d` 1 points of

integer coordinates P0, . . . , Pd lying on S, with abscissas sj :“ sipgq ` jei

for 0 ď j ď d (see Figure 2.3). Denote by Qj “ psj , vi´1pasjφ
sj
i qq the point

of abscissa sj in the cloud of points which is used to compute the Newton

polygon Nipgq.
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Nipgq

0

ˆ

ˆ

P0

Pj

Qj

Pd

sipgq sj s1ipgq

L´λi

vipgq{ei

Figure 2.3: Computation of Ripgq for a non-zero polynomial g P Krxs.

Consider the following residual coefficient:

cj :“

$

&

%

0, if Qj lies above Nipgq,

z
ti´1pasj q

i´1 Ri´1pasj qpzi´1q P F˚i , if Qj lies on Nipgq,
(2.4)

where for any a P Krxs we define t0paq “ 0 and tkpaq “ pskpaq´ `kvkpaqq{ek

if k ą 0. Then, we define

Ripgqpyq :“ Rvi´1,φi,λipgqpyq “ c0 ` c1y ` ¨ ¨ ¨ ` cdy
d P Firys.

Since c0cd ‰ 0, the polynomial Ripgq has degree d and it is never divisible

by y.

Remark. Note that a type t of order i determines the numerical values

mi`1 :“ eifimi,

Vi`1 :“ eifipeiVi ` hiq,

of any enlargement of t to a type of order i` 1.

In fact, any representative φ of t has degree mi`1 :“ eifimi by definition.

Also, Theorem 2.6 shows that Nipφq is one-sided of slope ´λi and length

eifi “ mi`1{mi. Hence, Vi`1 :“ vi pφq “ eipeifiVi ` fihiq by (2.3).



32 Chapter 2. OM representations of prime ideals

Definition 2.4. Let t be a type of order r over pK, vq.

The truncation Truncjptq of t at level j, is the type of order j obtained

from t by dropping all levels higher than j.

Definition 2.5. Let t be a type of order r. For any g P Krxs we specify

ordtpgq :“ ordψr Rrpgq in Frrys.

This function is multiplicative: ordtpghq “ ordtpgq ` ordtphq for all

g, h P Krxs.

If ordtpgq ą 0, we say that t divides g, and we write t � g.

Let F P P be a prime polynomial with respect to v as in Definition 2.1

and θ P Kv a root of F . The next result explains the use of the term “type”.

All prime polynomials divisible by a type t share certain common features

described by the parameters supported by t. It therefore makes sense to

say that these polynomials “are of type t”.

Theorem 2.6. Let t be a type of order r such that t � F . Then, for all

1 ď i ď r:

• NipF q is one-sided of slope ´λi and v pφipθqq “
Vi ` λi
e1 . . . ei´1

• degpF q “ degpφiq ¨ `pNipF qq

• RipF q “ ψai , a “ `pNipF qq{eifi

Moreover, if φ P Repptq is a representative of t such that φ ‰ F , then

• Nvr,φpF q is one-sided of slope ´λ, such that v pφpθqq “
Vr`1 ` λ

e1 . . . er

• degpF q “ degpφq ¨ `pNvr,φpF qq

• Rvr,φ,λpF q “ ψa, for ψ P Fr`1rys, monic irreducible, and

a “ `pNvr,φpF qq{peλ degpψqq,

where eλ is the least positive denominator of λ.

Additionally, the type t1 “ pt; pφ, λ, ψqq divides F .
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Nrpgq

`Vr

`

H

´λ

Lλr

λr ą λ

Nrpgq

`Vr

`

H

´λ

Lλr

λr “ λ

Nrpgq

`Vr

`

H
´λ

Lλr

λr ă λ

Figure 2.4: Three possible positions for line Lλr .

Theorem 2.7. Let t be a type of order r such that t � F and select any

g P Kvrxs. Let Lλr be the line of slope ´λr that first touches Nrpgq from

below. Then,

v pgpθqq ě
H

e1 ¨ ¨ ¨ er´1
,

where p0, Hq is the point where Lλr crosses the vertical axis. Equality occurs

if and only if t ffl g.

We can apply Theorem 2.7 to some prime polynomial g P P, such that

Truncr´1ptq � g, but t ffl g. Then, Theorem 2.6 and (2.2) show that

Rr´1pgq “ ψ`r´1 with ` “ `pN´r pgqq “ deg g{deg φr. Hence, a look at Figure

2.4 shows that,

v pgpθqq “
H

e1 ¨ ¨ ¨ er´1
“

deg g

deg φr
¨
Vr `mintλ, λru

e1 ¨ ¨ ¨ er´1
, (2.5)

where ´λ is the slope of N´r pgq, according to Theorem 2.6.

Construction of types

In this paragraph, we recall the existence of a concrete procedure to con-

struct a representative of a type.

Proposition 2.8. Let t be a type of order r ě 1. Let ϕ P Frrys be a non-

zero polynomial of degree less than fr and let b ě Vr`1 be an integer. Then,
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we may construct a polynomial g P Orxs such that

deg g ă mr`1, vr pgq “ b, ytsrpgq{eru Rrpgq “ ϕ.

In order to construct a representative φ of t we may apply the proce-

dure given in Proposition 2.8 to construct a polynomial g P Orxs such that

Rrpgq “ ψr ´ yfr , and take φ “ φerfrr ` g. In this way, we may efficiently

construct representatives of types.

We denote by Repptq the set of all representatives of a type t. By

Proposition 2.8 this is a nonempty subset of P.

Since the level data λi, ψi are arbitrarily chosen, we may construct types

of prescribed order r and prescribed numerical data hi, ei, fi for 1 ď i ď r.

In other words, we may construct local extensions of Kv with prescribed

arithmetic properties.

2.3 Types parameterise Okutsu classes of prime

polynomials

2.3.1 Equivalence of types

Definition 2.9. Let t, t1 be two types of order r, r1, respectively. We say

that t and t1 are “equivalent” if they have the same set of representatives:

Repptq “ Reppt1q. We write t ” t1 in this case.

This is clearly an equivalence relation. The properties shared by equiv-

alent types are studied in full detail in [Nar14]. Let us just mention that

t ” t1 ùñ vt “ vt1 and ordt “ ordt1 ,

where vt, vt1 are the valuations of the last level of the respective types.

Definition 2.10. Let t be a type of order r ě 0. We say that t is optimal

if m1 ă ¨ ¨ ¨ ă mr. We say that t is strongly optimal if in addition to being

optimal, mr ă mr`1.

We agree that a type of order zero is strongly optimal.
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Denote by T the set of all types over pK, vq and let T str Ď T be the

subset of all strongly optimal types.

Proposition 2.11. Consider two strongly optimal types:

t “ pψ0; pφ1, λ1, ψ1q; . . . ; pφr, λr, ψrqq,

t˚ “ pψ˚0 ; pφ˚1 , λ
˚
1 , ψ

˚
1 q; . . . ; pφ

˚
r˚ , λ

˚
r˚ , ψ

˚
r˚qq.

Then t and t˚ are equivalent if and only if they satisfy the following

conditions:

(i) r “ r˚.

(ii) φ˚i “ φi ` ai, deg ai ă mi, vipaiq ě vipφiq, for all 1 ď i ď r.

(iii) λ˚i “ λi for all 1 ď i ď r.

(iv) ψ˚i pyq “ ψipy ´ ηiq for all 0 ď i ď r with ηi defined as follows:

ηi “

$

&

%

0, if vi paiq ą vi pφiq ,

Ripaiq P F˚i , if vi paiq “ vi pφiq .
(2.6)

We denote by T “ T str{ ” the quotient set and we write rts Ď T str for

the class of all types equivalent to t.

We can link these classes of equivalent types to the Okutsu classes of

prime polynomials presented in Section 2.1.

Theorem 2.12. There is a canonical bijection between the set of equivalence

classes of strongly optimal types and the set of Okutsu classes of prime

polynomials:

T ÝÑ pP{ «q,

that sends the equivalence class rts of a strongly optimal type t to the Okutsu

class of any representative of t.

We denote by om : pP{ «q Ñ T the inverse of the above map.



36 Chapter 2. OM representations of prime ideals

2.3.2 MacLane-Okutsu invariants of prime polynomials

Let F P P be a prime polynomial. Let t be any strongly optimal type in

the class omprF sq.

The order r of t is called the Okutsu depth of F .

The basic MacLane-Okutsu invariants of F are the following positive

integers supported by t:

e1, . . . , er, h1, . . . , hr, f0, . . . , fr. (2.7)

Recall that hi, ei are coprime such that hi{ei “ λi for all 1 ď i ď r, and

fi “ degψi for all 0 ď i ď r.

By Proposition 2.11, these invariants are shared by all strongly optimal

types in the equivalence class of t.

There are a number of further invariants of F , which can be constructed

from these invariants.

Definition 2.13. A MacLane-Okutsu invariant of F is a rational number

that depends only on the basic invariants presented in (2.7).

For simplicity we shall refer to these invariants as OM invariants of F .

Some examples of OM invariants are,

mi :“ deg φi “ ei´1fi´1mi´1,

Vi :“ vi´1 pφiq “ ei´1fi´1pei´1Vi´1 ` hi´1q.

epF q :“ epKF {Kvq “ e1 ¨ ¨ ¨ er, the ramification index of KF {Kv,

fpF q :“ fpKF {Kvq “ f0, . . . , fr, the residual degree of KF {Kv,

δ0pF q :“ Vr`1{epF q,

cappF q :“ max tv pgpθqq : g P Orxs monic, deg g ă degF u

“ δ0pF q ´
r
ÿ

j“1

hj{pe1 ¨ ¨ ¨ ejq,

indpF q :“ lengthOv pOF {Ovrθsq “ n
`

cappF q ´ 1` epF q´1
˘

{2,

fpF q :“ min
!

δ P Zě0 : pmF q
δ Ă Ovrθs

)

“ 2 indpF q{fpF q,

exppF q “ min
!

δ P Zě0 : mδOF Ă Ovrθs
)

“ tcappF qu.
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The Okutsu bound δ0pF q was defined in Definition 2.2. The final four

operators are the capacity, index, conductor, and exponent of F respectively.

2.3.3 Tree structure on the set of types

Let us introduce a tree structure on the set T of types. Given two types

t, t1 P T , there is an oriented edge t1 Ñ t if and only if t1 “ Truncr´1ptq,

where r is the order of t. Thus, we have a unique path of length equal to

the order of t:

Trunc0ptq ÝÑ Trunc1ptq ÝÑ ¨ ¨ ¨ ÝÑ Truncr´1ptq ÝÑ t. (2.8)

The root nodes are the types of order zero. Thus, the connected com-

ponents of T are the subtrees Tϕ of all types t with Trunc0ptq “ pϕq, for ϕ

running on the set PpFrysq of all monic irreducible polynomials in Frys.

The branches of a type t of order r are parametrised by triplets pφ, λ, ψq,

where φ is a representative of t, λ is a positive rational number and ψ P

Fr`1rys is a monic irreducible polynomial such that ψ ‰ y. Such a triplet

determines an edge t Ñ t˚, where t˚ “ pt; pφ, λ, ψqq is the type obtained

by enlarging t with data pφ, λ, ψq at the pr ` 1q-th level.

Suppose t “ pψ0; pφ1, λ1, ψ1q; . . . ; pφr, λr, ψrqq. In practice, when we

represent a path like (2.8) we omit the labels of the vertices which are not

root nodes and we label the edges with the level data as follows:

ψ0

pφ1, λ1, ψ1q
¨ ¨ ¨

pφr, λr, ψrq

Figure 2.5: Visual path representation of a type t of order r.

Also, since the direction of the edges is self-evident, we draw them as

lines instead of vectors. We recover the real path (2.8) from its practical

representation (Figure 2.5) by attaching to each vertex of the path the type

obtained by gathering all level data from the previous edges.

All truncates of a strongly optimal type t are also strongly optimal,

hence the subset T str Ď T is a full subtree of T . Also, if t ” t˚ are strongly

optimal, then Trunciptq ” Truncipt
˚q for all 0 ď i ď r. Therefore, the
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tree structure on T str induces a natural tree structure on the quotient set

T “ T str{ ”.

Since the equivalence relation ” on T str only identifies vertices of the

same order, a path of length r in T str determines a path of length r in T.

For types of order zero, t ” t˚ holds only for t “ t˚; thus, the root

nodes of T are in 1-1 correspondence with the set PpFrysq.

Index of coincidence of types

Owing to the tree structure on the set of types, we are able to introduce a

measure of similarity on types.

Definition 2.14. Let t, t1 P T be two vertices of a tree of types T Ď T of

order r and r1 respectively. The index of coincidence,

ipt, t1q “ min
 

0 ď ` ď min
 

r, r1
(

: Trunc`ptq ‰ Trunc`pt
1q
(

,

is the lowest index ` such that truncation of both types at ` is not equal.

Two vertices with index of coincidence greater than 0, share the same

root node pψ0q. However, if two types have an index of coincidence of 0,

that indicates that they belong to distinct connected trees.

2.4 OM factorisation of polynomials

2.4.1 OM representations of prime polynomials

Let F P P be a prime polynomial and let tF be a strongly optimal type of

order r such that omprF sq “ rtF s. Let us denote by TpF q Ă T the unibranch

tree determined by the path joining rtF s with its root node in T.

For any polynomial φ P rF s XOrxs in the Okutsu class of F and having

coefficients in O, the pair rtF , φs is called an OM representation of F . If

φ “ F we say that the OM representation is exact.

Definition 2.15. The quality of φ as an approximation to F is defined as

the rational number v pφpθqq.



2.4. OM factorisation of polynomials 39

The polynomial φ is a “sufficiently good” approximation to F for many

purposes. The discrete data contained in the type tF is a kind of DNA

sequence common to all individuals in the Okutsu class rF s, and many

properties of F and the extension KF {Kv are described by this genetic

data, as we have seen in Section 2.3.2. In a more classical approach the

computation of these invariants has to be derived from extra routines that

may be computationally expensive. Further, the genetic information of F

is helpful in the construction of approximations with a prescribed quality

and, more generally, it leads to a new design of fast routines carrying out

basic arithmetic tasks in number fields and function fields.

2.4.2 OM representation of a square-free polynomial

Let f “ F1 ¨ ¨ ¨Ft be the prime factorisation in Ovrxs of a square-free monic

polynomial f P Orxs. For each 1 ď j ď t, let rj be the Okutsu depth of Fj

and θj P Kv a root of Fj .

Definition 2.16. The genomic tree of f is the finite tree Tpfq :“ TpF1q Y

¨ ¨ ¨ Y TpFtq Ă T.

Let us extend the notion of Okutsu equivalence in section 2.1 to non-

irreducible polynomials

Definition 2.17. Let g, h P Orxs be monic polynomials with prime factori-

sations g “ G1 ¨ ¨ ¨Gs, h “ H1 ¨ ¨ ¨Hs1 in Ovrxs. We say that g and h are

Okutsu equivalent, and we write g « h, if s “ s1 and Gj « Hj for all

1 ď j ď s, up to ordering.

An expression of the form, g « P1 ¨ ¨ ¨Ps, with P1, . . . , Ps P P X Orxs is

called an Okutsu factorisation of g.

Clearly, every g P Orxs admits a unique (up to «) Okutsu factorisation.

However, we need a stronger concept for our purposes. For instance, if

all factors of g are Okutsu equivalent to P , then g « P s is an Okutsu

factorisation of g which is unable to distinguish the true prime factors of g.
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Definition 2.18. We say that Pj P rFjs is a Montes approximation to Fj

as a factor of f if

v pPjpθjqq ą v pPjpθkqq , @ 1 ď k ‰ j ď t.

An OM factorisation of f is an Okutsu factorisation f « P1 ¨ ¨ ¨Pt such

that each approximate factor Pj is a Montes approximation to Fj as a factor

of f .

If f « P1 ¨ ¨ ¨Pt is an OM factorisation of f , the types tFj may be

extended to types

tj :“

$

&

%

`

tFj ; pPj , λrj`1,j , ψrj`1,jq
˘

, Pj ‰ Fj ,
`

tFj ; pPj ,8,´q
˘

, Pj “ Fj ,
(2.9)

satisfying

ordtj pFjq “ 1, tj ffl Fk, for all 1 ď k ‰ j ď t.

By Theorem 2.6, the quality of the approximations Pj « Fj is given by

the formula:

v pPjpθjqq “ δ0pFjq `
λrj`1,j

epFjq
.

If Pj ffl f , the slope λrj`1,j is an integer which may be computed as

the largest slope (in absolute value) of N´rj`1pfq “ N´vrj ,Pj
pfq. This slope

corresponds to a side whose end points have abscissas 0 and 1 (see Figure

2.8). Hence, Rrj`1pfq :“ Rvrj ,Pj ,λrj`1,j
pfq has degree one and ψrj`1,j is

equal to Rrj`1pfq divided by its leading coefficient.

The types tj are optimal, but not strongly optimal because erj`1,j “

frj`1,j “ 1, so that mrj`2,j “ mrj`1,j “ degFj .

Definition 2.19. Let T pfq Ă T str be a faithful pre-image of the genomic

tree of f ; that is, T pfq maps to Tpfq under the quotient map T str Ñ T, and

the vertices of T pfq are pairwise inequivalent.

An OM representation of f is the tree obtained by enlarging T pfq with
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the t new vertices tj and edges tFj Ñ tj determined by the choice of an OM

factorisation of f .

Thus, an OM representation of f gathers the information provided by a

family of OM representations of the prime factors. The information added

by the choice of an OM factorisation of f allows us to distinguish the dif-

ferent prime factors.

The leaves of an OM representation of f are in 1-1 correspondence with

the prime factors of f , whereas the root nodes are in 1-1 correspondence

with the monic irreducible factors of f in Frys (see Figure 2.6).

For instance, in the example presented in Figure 2.6, f “ F1F2F3F4

has four prime factors and F1, F2, F3, F4 are a power of the same prime

polynomial in Frys. The vertex tF1 has order 0, tF2 “ tF3 have order 3 and

tF4 has order 5.

We represent the edges tFj Ñ tj with dotted lines to emphasise that

the leaves tj are not strongly optimal types.

In general, the vertices tFi are not necessarily leaves of the tree T pfq.

It may happen that tFi coincides with a vertex in the path joining tFj with

its root node for some j ‰ i. Thus, the leaves of an OM representation of f

may sprout from arbitrary vertices in T pfq.

tF1

t1 tF2

t2

t3
tF4

t4

Figure 2.6: OM representation of f “ F1 ¨ ¨ ¨F4, with F2 « F3.

The factors F2, F3 have been distinguished thanks to a certain (unspec-

ified) OM factorisation of f .

Definition 2.20. We say that a leaf of an OM representation of f is iso-

lated if the previous node has only one branch. For instance, in Figure 2.6

the leaf corresponding to F4 is isolated, while the other three leaves are not.

The prj ` 1q-th Newton polygons for isolated and non-isolated leaves are

shown in Figure 2.8.
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2.5 The Montes algorithm

In this section, we describe the algorithm for OM factorisation developed

by Montes in 1999 [Mon99]. The algorithm was inspired by the ideas of Ore

[Ore23][Ore25] and MacLane [Mac36a][Mac36b].

The aim of the Montes algorithm is the computation of an OM repre-

sentation of a given square-free polynomial f P Orxs. Let

F “ tF1, . . . , Ftu ,

be the set of prime factors of f in Ovrxs. For any type t, we denote

Ft “ tF P F : t � F u Ď F .

Since ordtpfq “
ř

1ďjďt ordtpFjq, the set Ft is empty if and only if t ffl f .

Also, if ordtpfq “ 1, then there is an index j such that ordtpFjq “ 1 and

ordtpFkq “ 0 for all k ‰ j; thus, Ft “ tFju is a one-element subset in this

case.

The algorithm generates a tree of types T which constitutes an OM

representation of f . The leaf types t1, . . . , tt of this tree have the property

that Fti “ tFiu for all 1 ď i ď t.

2.5.1 Non-optimised Montes algorithm

Definition 2.21. A subtree T Ă T is called coherent if for every node

t P T , all edges with left end point t have the same φ-polynomial. An

example can be seen in Figure 2.7.

There is a non-optimised version of the Montes algorithm, which outputs

a coherent tree of types.

Let us briefly describe this version of the algorithm. Initially, f is fac-

torised in Frys. For each monic irreducible factor ϕ of f , a triplet pt, φ, ωq

is considered, where t “ pϕq is the type of order 0 determined by ϕ, φ is

a representative of t (that is, a monic lift of ϕ to Orxs), and ω “ ordϕpfq.

All these triplets pt, φ, ωq are stored in a stack.
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t
¨ ¨ ¨ ¨ ¨ ¨

...
. . .

¨ ¨ ¨

...
. . .

¨ ¨ ¨

...
. . .

pφ, λ1, ψ1q

pφ, λ, ψq

pφ, λ2, ψ2q

Figure 2.7: A segment of a coherent tree T .

Along the execution of the algorithm the stack always contains triplets

pt, φ, ωq, where t � f , φ is a representative of t and ω “ ordtpfq. The main

loop of the algorithm takes such a triplet and attaches to the type t one or

more branches tλ,ψ :“ pt; pφ, λ, ψqq of t such that tλ,ψ � f and the set Ft
splits as the disjoint union:

Ft “
ď

pλ,ψq

Ftλ,ψ .

Note that all these branches have the same φ-polynomial. The pairs

pλ, ψq are considered as follows,

• ´λ runs on the slopes of Nω
vt,φpfq, the piece of Nvt,φpfq contained in

r0, ωs ˆ R.

• ψ runs on the prime factors of Rvt,φ,λpfq in Ftrys.

Let φλ,ψ P Orxs be a representative of tλ,ψ and take

ωλ,ψ “ ordψpRvt,φ,λpfqq “ ordtλ,ψpfq.

If this positive integer is equal to one, then tλ,ψ singles out one of the prime

factors of f in Ovrxs. In this case, we add a final level to t:

t̃ “ pt; pφλ,ψ,´,´qq ,

as in (2.9) and we store the type t̃ in a list of “output types”. On the other

hand, if ωλ,ψ ą 1, then the triplet ptλ,ψ, φλ,ψ, ωλ,ψq is pushed back onto the

stack to bare further branching in future iterations of the main loop.
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After a finite number of iterations of this process, the algorithm outputs

a list t1, . . . , tt of types parametrising the prime factors of f in Ovrxs.

This describes a kind of “non-optimised” Montes algorithm, in which

the output tree having the types t1, . . . , tt as leaves is coherent. It is non-

optimised because the types tλ,ψ may not be optimal. In fact, if λ P Z and

degψ “ 1, we have

deg φλ,ψ “ eλ ¨ degψ ¨ deg φ “ deg φ,

where eλ is the positive denominator of λ. Hence, the type tλ,ψ is not

strongly optimal and its branches may even cease to be optimal. We must

avoid this situation, because the numerical data attached to the types will

not be intrinsic data of the prime factor of f .

For this reason, we are interested in an optimised version of the Montes

algorithm, which will ensure that the types it works with will be strongly

optimal and the numerical data attached to them will be the intrinsic genetic

data of the prime factors of f .

2.5.2 Optimised Montes algorithm

The optimised version of the Montes algorithm includes a “refinement pro-

cedure” which ensures that it only stores strongly optimal types (except

for the leaves of the output tree) and yields an OM representation of f .

However, a price must be paid; the output tree of OM representatives is no

longer coherent.

Let us describe the optimised Montes algorithm. The stack stores triplets

pt, φ, ωq where t is a strongly optimal type dividing f , φ is a representative

of t and ω “ ordtpfq is a positive integer. Initially, the stack stores the

triplets determined by the irreducible factors of f , as in the non-optimised

algorithm.

If the main loop finds a “bad” branch pφ, λ, ψq with λ P Z and degψ “ 1,

then it simply drops this level and pushes the triplet pt, φλ,ψ, ωλ,ψq onto

the stack instead of ptλ,ψ, φλ,ψ, ωλ,ψq as we would do in the non-optimised

algorithm. This is called a refinement step.



2.5. The Montes algorithm 45

The point is that the branching obtained by applying the main loop

to both triplets determines the same partition of the set Ftλ,ψ . Thus, the

two algorithms, optimised and non-optimised, yield the same successive

decomposition of the set F until all its elements are singled out.

The output types store a non-negative integer hcs, called the cutting

slope. If ωλ,ψ “ 1 occurs during a refinement step, we take hcs “ λ, and we

take hcs “ 0 otherwise. The output type is an isolated leaf of the output

tree T of OM representations if and only if hcs “ 0.

As explained in Section 2.4.2, if the corresponding prime factor of f has

Okutsu depth r, then the corresponding output type has order r`1 and the

side of the maximal slope (in absolute size) of Nr`1pfq has slope ´λr`1 and

end points of abscissas 0 and 1. The line Lcs of slope ´hcs, first touching

Nr`1pfq from below, separates this side from the rest of the sides of Nr`1pfq

(see Figure 2.8).

Nr`1pfq

0

´λr`1

1

vrpa0q

vrpa1φr`1q
Lcs

Isolated leaf (hcs “ 0).

Nr`1pfq

0

´λr`1

1

vrpa0q

vrpa1φr`1q

Lcs

Non-isolated leaf (hcs ą 0).

Figure 2.8: Newton polygon N´r`1pfq determined by a leaf of order r`1 of an
OM representation T of f . The line Lcs has slope´hcs and f “

ř

0ďs asφ
s
r`1.

The advantage of the optimised algorithm is twofold: first, it outputs

the genomic tree of f and all the canonical data it contains; second, it

works with types of smaller order, which saves a lot of execution time due

to the highly recursive nature of the routines for the computation of Newton

polygons and residual polynomials.

Nevertheless, it is worth keeping in mind the existence of the “non-

optimised” coherent tree of types, produced by the non-optimised Montes
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algorithm. The optimised tree of OM representations (the real output of

the Montes algorithm) may be derived from the non-optimised tree by an

iterative application of the following transformation. Any path,

t
pφ1, λ1, ψ1q

¨ ¨ ¨
pφn, λn, ψnq

t1

(2.10)

in which all edges except for the final one are bad edges satisfying λi P Z,

degψi “ 1 for 1 ď i ă n, collapses into

t
pφ˚, λ˚, ψ˚q

t2 (2.11)

where

φ˚ “ φn, λ˚ “ λ1 ` ¨ ¨ ¨ ` λn, ψ˚ “ ψn.

The types t1 and t2 are equivalent.

For instance, consider the segment of a non-optimised tree shown in

Figure 2.9, where the nodes whose previous edge is “bad” are represented by

˝ and the nodes following a “good” edge are represented by ‚. Additionally,

the “bad” edges are marked with a dotted line.

The same segment of the optimised tree derived from this coherent tree

is presented in Figure 2.10.

where ti ” t1i for all 1 ď i ď 5, and

φ˚1 “ φ1, λ˚1 “ λ` λ1, ψ˚1 “ ψ1,

φ˚2 “ φ2, λ˚2 “ λ` λ11 ` λ2, ψ˚2 “ ψ2,

φ˚3 “ φ2, λ˚3 “ λ` λ11 ` λ
1
2, ψ˚3 “ ψ12,

φ˚4 “ φ4, λ˚4 “ λ` λ21 ` λ4, ψ˚4 “ ψ4,

φ˚5 “ φ, λ˚5 “ λ1, ψ˚5 “ ψ1.

The optimised tree is no longer coherent, because amongst the five

branches of t we find four different φ-polynomials.

Remark 2.22. For a vertex n in a tree, we denote by tn the type obtained
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t

t11

t12

t13

t14

t15

pφ, λ, ψq

pφ, λ1, ψ1q

pφ1, λ1, ψ1q

pφ1, λ
1
1, ψ

1
1q

pφ1, λ
2
1, ψ

2
1q

pφ2, λ2, ψ2q

pφ2, λ
1
2, ψ

1
2q

pφ4, λ4, ψ4q

Figure 2.9: Segment of a non-optimised tree starting from t.

t

t1 “ pt; pφ
˚
1 , λ

˚
1 , ψ

˚
1 qq

t2 “ pt; pφ
˚
2 , λ

˚
2 , ψ

˚
2 qq

t3 “ pt; pφ
˚
3 , λ

˚
3 , ψ

˚
3 qq

t4 “ pt; pφ
˚
4 , λ

˚
4 , ψ

˚
4 qq

t5 “ pt; pφ
˚
5 , λ

˚
5 , ψ

˚
5 qq

Figure 2.10: Segment of an optimised tree starting from t.

by gathering all level data from the edges of the path joining n with its root

node.

As a merely combinatorial structure, we may identify the set of vertices

of the optimised tree Top as a subset of the set of vertices of the non-

optimised tree Tnop. However, for the same vertex n, the types tn for the

optimised and non-optimised trees are different. But they are equivalent.

The existence of the non-optimised tree is useful in many situations. Let

us see an example.
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Notation. For each type t P T, denote

Pptq :“ tF P P : t � F u .

Lemma 2.23. Let t, t1 P T be two different types of order r ą r1 respectively

such that t1 is the truncation of t at level r1. That is to say, t1 belongs to

the path joining t with its root node. Then, Pptq Ĺ Ppt1q.

Proof. We have t1 “ Truncr1ptq. Take any F P Pptq; by Theorem 2.6,

Rr1pF q is a power of ψr1 , so that t1 � F and F P Ppt1q. This shows that

Pptq Ď Ppt1q.
Finally, this inclusion is not an equality because t1 � φr1`1, while t ffl

φr1`1. In fact, Rr1`1pφr1`1q “ 1 implies that Truncr1`1ptq ffl φr1`1.

Lemma 2.24. Let T Ď T be a coherent tree. Let t, t1 P T such that neither

of them is a truncation of the other. Then Pptq X Ppt1q “ H.

Proof. The statement is obvious if t and t1 have different root nodes, be-

cause for all F P Pptq, the reduction F modulo m is a power of the monic

irreducible polynomial ψ0 corresponding to the root node of t.

Suppose that t, t1 have the same root node and let t0 be the greatest

common node in the paths joining t, t1 with their root node. By Lemma

2.23 we may assume that t and t1 are branches of t0, in other words, that

t0 is the previous node of both t an t1. By the coherence of T we have

t “ pt0; pφ, λ, ψqq, t1 “ pt0; pφ, λ1, ψ1qq,

where either λ ‰ λ1 or λ “ λ1, ψ ‰ ψ1.

Let r be the order of t0 and vr its attached valuation. Now, for any

F P Pptq, F 1 P Ppt1q, Theorem 2.6 shows that Nvr,φpF q and Nvr,φpF
1q are

one-sided of slopes ´λ and ´λ1 respectively. Hence, λ ‰ λ1 implies F ‰ F 1.

On the other hand, if λ “ λ1 then Rt0,φ,λpF q “ ψa and Rt0,φ,λpF
1q “ pψ1qa

1

and this implies F ‰ F 1, because ψ ‰ ψ1.

This result may be false for arbitrary incoherent trees. However, Lemma

2.24 is valid for the OM representations of square-free polynomials.
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Theorem 2.25. Let T Ď T be an OM representation of a monic square-

free polynomial f P Orxs. Let t, t1 P T be two nodes such that neither of

them is a truncation of the other. Then Pptq X Pptq “ H. In particular,

Ft X Ft1 “ H.

Proof. Clearly, the nodes t, t1 are equivalent to two nodes of the non-

optimised tree, neither of them belonging to the path joining the other type

with its root node. Since the non-optimised tree is coherent, the statement

is an immediate consequence of Lemma 2.24.

The final statement is a consequence of Ft “ Pptq X F .

While the Montes algorithm only produces optimised trees of types,

certain information is stored about the refinements that take place during

the execution.

Consider the chain of refinements that take place between (2.10) and

(2.11). During each refinement that provokes branching of a type, the in-

termediate φ and λ values are stored.

Let t, t˚ P T be two strongly optimal types with index of coincidence

ipt, t˚q “ `. Then suppose that at level `, each type has a list of refinements,

Ref`ptq “
”

pφtp1q, λ
t
p1q, ψ

t
p1qq, . . . , pφ

t
pkq, λ

t
pkq, ψ

t
pkqq

ı

,

Ref`pt
˚q “

”

pφt
˚

p1q, λ
t˚

p1q, ψ
t˚

p1qq, . . . , pφ
t˚

pk1q, λ
t˚

pk1q, ψ
t˚

pk1qq

ı

.
(2.12)

The final refinement in each list is the `-th level of the types t and t˚.

This allows us to extend our index of coincidence from Definition 2.14 to a

more precise indicator.

Definition 2.26. The minor index of coincidence ı̂pt, t˚q for two types

t, t˚ P T, is the least index `1, such that for the refinement lists given in

(2.12),

pφtp`1q, λ
t
p`1q, ψ

t
p`1qq ‰ pφ

t˚

p`1q, λ
t˚

p`1q, ψ
t˚

p`1qq.

We also define the extended index of coincidence of two types as,

Ipt, t˚q :“ ript, t˚q, ı̂pt, t˚qs,
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where extended indices of coincidence are ordered lexicographically, i.e. we

have the ordering r14, 9s ă r14, 10s and r14, as ă r15, bs, regardless of the

values of a and b.

Definition 2.27. Let t, t˚ P T be strongly optimal types with index of

coincidence ipt, t˚q “ ` and let the list of refinements of each type at level `

be as in (2.12).

1. The greatest common φ-polynomial of the pair pt, t˚q is φpt, t˚q “

φt
pjq “ φt

˚

pjq, with j maximal.

2. The hidden slopes of the pair pt, t˚q are λt
˚

t “ λt
pjq and λtt˚ “ λt

˚

pjq,

for this maximal value of j.

2.5.3 Complexity

The only algorithmic assumptions on the fields K and F for the algorithm

to work properly, are the existence of efficient routines for the division with

remainder of polynomials in Orxs and the factorisation of polynomials over

finite extensions of the residue class field F.

The performance will depend as well on the efficiency of these two tasks.

There is still no complexity analysis of the algorithm in the general case,

but for F a finite field, the following complexity estimation was obtained in

[BNS13, Thm. 5.14], under the assumption that the field extension L{K,

defined by f P Orxs, is separable.

Theorem 2.28. If F is a finite field, the complexity of the Montes algo-

rithm, measured in number of operations in F is

CMontes “ O
`

n2`ε ` n1`εp1` δq logpqq ` n1`εδ2`ε
˘

,

where q “ #F, n “ deg f and δ :“ v pdiscpfqq.

2.6 Single-factor lifting and v-adic factorisation

Let f P Orxs be a monic square-free polynomial and let f “ F1 ¨ ¨ ¨Ft be its

factorisation into a product of prime polynomials in Ovrxs.
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A v-adic factorisation of f is an approximate factorisation with a pre-

scribed precision; that is, a family of monic polynomials P1, . . . , Pt P Orxs
such that Pj ” Fj pmod mνq for all 0 ď j ď t, for a prescribed positive

integer ν.

For many purposes, it may be necessary to find an approximation to a

single prime factor F of f with a prescribed quality. This is the aim of the

single-factor lifting algorithm [GNP12], abbreviated as SFL in what follows.

The starting point of SFL is a leaf t of an OM representation of f

t “ pψ0; pφ1, λ1, ψ1q; . . . ; pφr, λr, ψrq; pφr`1, λr`1, ψr`1qq (2.13)

computed by the Montes algorithm. Let F be the prime factor of f singled

out by t, and let θ P Kv be a root of F . We denote

V :“ Vr`1, φ :“ φr`1, hφ :“ λr`1 “ hr`1, e :“ epF q “ e1 ¨ ¨ ¨ er.

The polynomial φ is a Montes approximation to F as a factor of f . By

Theorem 2.6, the quality of the approximation is:

v pφpθqq “
V ` hφ

e
“ δ0pF q `

hφ
e
.

The main loop of SFL computes a new Montes approximation Φ such

that

hΦ ě 2hφ ´ hcs.

The Newton polygon N´vr,Φpfq coincides with N´vr,φpfq except for the side

of largest slope (in absolute value) ´hΦ, whose end points have abscissas

0 and 1 (see Figure 2.8). In particular, the cutting slope hcs of t once

again separates this initial side from the remainder of the sides. Therefore,

we may apply the SFL loop to Φ and iterate the procedure until we get a

Montes approximation Φ with hΦ large enough. By Lemma [GN, Lem. 4.1],

if hΦ ě epν ` cappF q ´ δ0pF qq, then Φ ” F pmod mνq.

After k iterations of the SFL loop we get a Montes approximation Φk
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with

hΦk ě hφ ` p2
k ´ 1qphφ ´ hcsq.

Hence, for a given positive integer H, the number of iterations of the

SFL loop that are needed to achieve hΦk ě H is rlog2ppH´hcsq{phφ´hcsqqs.

2.6.1 Complexity

The complexity of the SFL routine was analysed in [GNP12, Lem. 6.5]

and [BNS13, Thm. 5.16]. As in Section 2.5.3, the complexity analysis that

follows assumes that the residue class field F is a finite field and that L{K

is separable. In the next result we denote n “ deg f , nF “ degF and

δF “ v pdiscpF qq.

Theorem 2.29. The SFL routine requires O
`

nnF ν
1`ε ` nδ1`ε

F

˘

operations

in F to compute a Montes approximation Φ to F as a factor of f , with

precision ν.

By applying the SFL routine to each leaf of an OM representation of f ,

we get an OM factorisation f « P1 ¨ ¨ ¨Pt such that Pj ” Fj pmod mνq for

all j.

Theorem 2.30. If F is a finite field, a combined application of the Montes

and SFL algorithms, computes an OM factorisation of f with precision ν,

at the cost of

O
`

n2`ε ` n1`εp1` δq log q ` n1`εδ2`ε ` n2ν1`ε
˘

,

operations in F.

2.7 OM representations of prime ideals

Suppose we are given an OM representation of f , as computed by the Montes

algorithm.

As was mentioned at the beginning of this chapter, the prime ideals

p P P of OL are in 1-to-1 correspondence with the prime factors of f in
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Ovrxs, which are, in turn, in 1-to-1 correspondence with the leaves of the

optimised tree of the OM representation of f . The OM representations of

each of these prime factors also hold a great deal of useful information about

the associated prime ideal.

Let p, q P P be prime ideals of OL and let tp, tq be their respective OM

representations. That is,

tp “
`

ψ0,p; pφ1,p, λ1,p, ψ1,pq; . . . ; pφrp,p, λrp,p, ψrp,pq; pφp, λrp`1,p, ψrp`1,pq
˘

,

and a similar notation for tq. Note that we denote by φp :“ φrp`1,p the

Montes approximation to Fp as a factor of f . Thus, the OM factorisation

of f attached to this OM representation is

f «
ź

pPP
φp.

We allow an abuse of notation regarding the definitions of the indices of

coincidence, greatest common φ-polynomial, and hidden slopes, which we

will write as ipp, qq, φpp, qq, and λqp respectively.

One advantage of working with OM representations of prime ideals, is

that we have explicit formulas for the p-valuation of the φ-polynomials at

each level of the type tq.

The following proposition will be heavily used throughout the remainder

of this memoir. The valuations wp were presented in Definition 1.2.

Proposition 2.31 ([GMN13, Prop. 4.7]). Let p P P, be a prime ideal of

OL of Okutsu depth rp. Then for any 1 ď i ď rp ` 1,

wp pφi,ppθqq “
Vi,p ` λi,p
e1,p ¨ ¨ ¨ ei´1,p

.

Let q P P, be another prime ideal of Okutsu depth rq such that p ‰ q
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and with index of coincidence ` “ ipp, qq. For any 1 ď i ď rq ` 1,

wp pφi,qpθqq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

0, if ` “ 0,

Vi ` λi
e1 ¨ ¨ ¨ ei´1

, if i ă `,

V` ` λ
q
p

e1 ¨ ¨ ¨ e`´1
, if i “ ` ą 0 and φ`,q “ φpp, qq,

V` `min
 

λqp, λ
p
q

(

e1 ¨ ¨ ¨ e`´1
, if i “ ` ą 0 and φ`,q ‰ φpp, qq,

mi,q

m`
¨
V` `min

 

λqp, λ
p
q

(

e1 ¨ ¨ ¨ e`´1
, if i ą ` ą 0.

In these formulas, we omit the subscript p, q when the invariants of the

two types coincide.

Corollary 2.32. Let f «
ś

pPP φp be an OM factorisation attached to an

OM representation of f . Then, for any pair p ‰ q of prime ideals, we have

wp pφqpθqq “ wp pFqpθqq.

Proof. Let ` “ ipp, qq. If ` ă rq ` 1, or if ` “ rq ` 1 and φq ‰ φpp, qq,

Proposition 2.31 shows that

wp pφqpθqq “
nq
m`

¨
V` `min

 

λqp, λ
p
q

(

e1 ¨ ¨ ¨ e`´1
. (2.14)

In the case ` “ rq ` 1 and φq “ φpp, qq, we have m` “ nq and

wq pφqpθqq “
V` ` λ

p
q

e1 ¨ ¨ ¨ e`´1
, wp pφqpθqq “

V` ` λ
q
p

e1 ¨ ¨ ¨ e`´1
.

Since φq is a Montes approximation to Fq as a factor of f , we have wq pφqpθqq

ą wp pφqpθqq, so that λpq ą λqp, and (2.14) is valid in this case too.

Now, let t be the first type of the non-optimised tree where the branches

of p and q diverge. If we denote φ “ φpp, qq, let t1 “ pt; pφ, λpq, ψ
p
qqq, t

2 “

pt; pφ, λqp, ψ
q
pqq be the types attached to the two branch nodes such that

t2 � Fp and t1 � Fq.

By Theorem 2.6, Nvt,φpFqq is one-sided of slope λpq. By Lemma 2.24,

t2 ffl Fq; hence (2.5) shows that wp pFqpθqq is given by (2.14) too.
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We will now clarify how the slopes λqp, λ
p
q are calculated. Consider

the segment of the non-optimised tree of types shown in Figure 2.11. We

see that the p and q types have a (non-optimised) index of coincidence

iptnop
p , tnop

q q “ `1. Note that nm corresponds to a type in the optimised

tree.

¨ ¨ ¨

nm

λm`1

nm`1

¨ ¨ ¨

n`1´1
¨ ¨ ¨ ¨ ¨ ¨ t

nop
p

¨ ¨ ¨ ¨ ¨ ¨ t
nop
q

pλqpq
nop

pλpqq
nop

nk,p

nk˚,q

Figure 2.11: The branching between t
nop
p and t

nop
q in a non-optimised tree.

The slopes pλqpq
nop and pλpqq

nop of Figure 2.11 are called the “hidden

slopes”, as they are not present in the optimised tree. Actually, they should

be called the “non-optimised hidden slopes”, because they do not coincide

with the “optimised hidden slopes” of Definition 2.27. The relationship

between these hidden slopes is:

λqp “ λm`1 ` ¨ ¨ ¨ ` λ`1´1 ` pλ
q
pq

nop,

λpq “ λm`1 ` ¨ ¨ ¨ ` λ`1´1 ` pλ
p
qq

nop,

where λi is the slope that corresponds to the path between ni´1 and ni for

all m` 1 ď i ď `1 ´ 1.
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3 
Optimal polynomials

“It is what you don’t expect... that most needs looking for.’

– Neal Stephenson, Anathem

We keep dealing with our discrete valued field pK, vq and we keep the

notation of the previous chapter.

The aim of this and the next chapter is to construct a triangular, reduced

O-basis of OL from a given OM representation of f . By Theorem 1.26, it

suffices to construct a family g0, . . . , gn´1 P Orxs of monic polynomials, such

that for all 0 ď i ă n:

1. deg gi “ i.

2. w pgipθqq is maximal amongst all monic polynomials in Orxs of degree

i.

57
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In Section 3.1 we recall the construction of Okutsu bases. For a prime

ideal p � m, corresponding to a prime factor Fp of f in Ovrxs, Okutsu con-

structed an Ov-basis of the completion Op of OL with respect to the p-adic

topology, by considering a similar family of polynomials g0,p, . . . , gnp´1,p P

Orxs having a maximal wp-value amongst all monic polynomials of the same

degree [Oku82a][Oku82b]. Also, in [GMN10b] it was shown that these poly-

nomials gi,p may be derived in a trivial way from any OM representation of

Fp.

Section 3.1 finalises the part of the memoir devoted to preliminary re-

sults. From this point onward, the rest of the results are original.

The rest of this chapter is dedicated to showing that the search for these

optimal polynomials, satisfying (1) and (2) may be restricted to polynomials

of a very special form:

gi “
ź

p�m

gip,p, deg i “ i.

That is, gi may be taken to be a product of exactly one polynomial in each

local Okutsu basis.

In Chapter 4, we develop and algorithm that performs an efficient search

to find the right choices for the factors gip,p.

3.1 Okutsu bases

Let Lp be the completion of L with respect to the p-adic topology. We

may consider a topological embedding L Ă Lp Ă Kv, so that Lp may be

identified to a finite extension of Kv of degree np “ ef , where e :“ epp{mq,

f :“ fpp{mq. We denote by Op :“ OLp the integral closure of Ov in Lp.

Let r be the Okutsu depth of Fp and suppose that

t “ pψ0; pφ1, λ1, ψ1q; . . . ; pφr`1, λr`1, ψr`1qq ,

is the leaf corresponding to Fp in the tree of an OM representation of f .

Recall that m1 � ¨ ¨ ¨ � mr � mr`1 and m1 ă ¨ ¨ ¨ ă mr ă mr`1.
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We shall say that the family of φ-polynomials

rφ1, . . . , φrs,

is an Okutsu frame of Fp. These polynomials determine a family of optimal

polynomials g0,p, . . . , gnp´1,p P Orxs as follows. Each 0 ď i ă np may be

expressed in a unique way as:

i “ a0 ` a1m1 ` ¨ ¨ ¨ ` armr, 0 ď aj ă mj`1{mj “ ejfj .

Thus, the polynomials:

gi,p :“ xa0
ź

j“1

φ
aj
j , 0 ď i ă np,

are monic polynomials in Orxs of degree deg gi,p “ i.

Theorem 3.1 ([GMN10b, Thm. 2.15, Thm. 3.9]). For all 0 ď i ă np,

wp pgi,pq is maximal amongst all monic polynomials in Orxs of degree i.

By Theorem 1.26, we get a triangular and reduced Ov-basis of Op by

taking:

αi :“ π´twppgi,ppθqqugi,ppθq, 0 ď i ă np.

We call Bp “ pαiq0ďiănp
the Okutsu basis of Op, or simply the Okutsu

p-basis.

The group of fractional ideals IOp is a cyclic infinite group generated by

p. Thus, the same family g0,p, . . . , gnp´1,p that was used for the construction

of an Ov-basis of Op yields a triangular and reduced Ov-basis of any fraction

ideal. In fact, consider a fractional ideal I “ pa, for some a P Z. The

function wm,I introduced in Definition 1.4, differs from wp only by a shift:

wp,I pαq “ wp pαq ´
a

epp{mq
.

Hence, Theorem 3.1 shows that these polynomials have a maximal wm,I -

value amongst all monic polynomials in Orxs of the same degree. Therefore,
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Theorem 1.26 shows that

βi :“ π´twm,Ipgi,ppθqqugi,ppθq, 0 ď i ă np,

is a triangular and reduced Ov-basis of I.

For further purposes, the family of numerators of an Okutsu basis of Op

is extended by adding an Okutsu approximation to Fp,

Np :“
 

1 “: g0,p, . . . , gnp´1,p, gnp,p :“ φp
(

. (3.1)

3.2 Optimal polynomials as products of

φ-polynomials

Let f P Orxs be a monic, irreducible polynomial of degree n and fix a root

θ P K of f . Let L “ Kpθq be the finite extension of K defined by f and OL
the integral closure of O in L which is a Dedekind domain.

We assume that OL is finitely generated as an O-module, and so OL is a

free O-module of rank n “ deg f . Since O is a local ring, OL is a semilocal

Dedekind domain. Let P “ MaxpOLq be the finite set of non-zero prime

ideals of OL.

The Montes algorithm with input pf, vq, produces a tree T “ ttp : p P Pu
of types. Each type is an OM representation of a prime factor Fp of f in

Ovrxs, corresponding to a prime ideal p P P, which has been extended to a

type of order rp ` 1, where rp is the Okutsu depth of Fp.

Definition 3.2. For a set S of prime ideals, the S-valuation of an element

in L is the minimum of the p-valuations for all primes in S,

wS pαq :“ min twp pαqupPS “ min

"

vp pαq

epp{mq

*

pPS

, @ α P L.

By convention, we take w :“ wP to indicate the minimum of the p-

valuations for all the prime ideals p of OL (i.e. p P P).

Definition 3.3. Let g P Ovrxs. The degree adjusted wp-valuation of the
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element gpθq P OL is defined as

ŵp pgpθqq :“
wp pgpθqq

deg g
.

The same concept holds for wS-valuations for any set S of prime ideals,

ŵS pgpθqq :“
wS pgpθqq

deg g
.

This brings us to the purpose of this section, p-optimal polynomials.

Definition 3.4. A monic polynomial g P Orxs of degree d is called p-optimal

if it has valuation wp pgpθqq maximal amongst all monic polynomials in Orxs
also of degree d.

A polynomial g P Orxs of degree d is v-optimal if w pgpθqq is maximal

amongst all monic polynomials in Orxs of the same degree.

A type tp corresponding to a prime ideal p of depth rp contains φ-

polynomials at each level,

φ1,p, . . . , φrp,p, φrp`1,p “: φp,

of degree m1 ă m2 ă ¨ ¨ ¨ ă mrp ă mrp`1 “ np.

Lemma 3.5. For any prime ideal p P P,

ŵp pφi,ppθqq ă ŵp pφi`1,ppθqq , 1 ď i ď rp.

Proof. By Proposition 2.31,

wp pφi,ppθqq “
Vi ` λi
e1 ¨ ¨ ¨ ei´1

“
eiVi ` hi
e1 ¨ ¨ ¨ ei

.

Recall that Vi`1 “ eifipeiVi ` hiq for all 1 ď i ď rp, so that

mi`1

mi
¨ wp pφi,ppθqq “ eifi ¨ wp pφi,ppθqq “

Vi`1

e1 ¨ ¨ ¨ ei
ă wp pφi`1,ppθqq .

The final polynomial φp is a Montes approximation to Fp as a factor of
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f and,

f «
ź

pPP
φp.

The φ-polynomials for all the prime ideals generate a semigroup.

Definition 3.6. Let S Ď P be a set of prime ideals. Then, ΦpSq Ă Orxs is

the multiplicative semigroup generated by

1, tφi,pupPS, 0ďiďrp ,
ď

pPS

Repptpq,

where Repptpq “ rFps XOrxs is the set of all representatives of tp.

We use Φppq to denote the semigroup generated by the φ-polynomials

belonging to a single prime ideal p P P and fix Φ :“ ΦpPq.

Recall that by Corollary 2.32, for p ‰ q, all φ P Repptpq Montes approx-

imations to Fp as a factor of f have the same q-valuation wq pφpθqq

We are interested in showing that we can restrict our search for v-optimal

polynomials of a given degree d to those in Φ.

Definition 3.7. For any node n P T or n P Tnop, Let Sn Ă P be the subset

of prime ideals p such that tn � Fp. Equivalently, n belongs to the path

joining the leaf of T (or Tnop) corresponding to p, with the root node.

We recall that tn is the type obtained by gathering the data correspond-

ing to all edges in the path joining n with its root node.

Lemma 3.8. Let n be a node in the non-optimised (connected) tree Tnop
ψ0

and let g, h P PpOvrxsq be two prime polynomials divisible by tn. Then, for

any prime ideal p P PzSn we have ŵp pgpθqq “ ŵp phpθqq.

Proof. Let m be the greatest common node in the paths of the non-optimised

tree Tnop
ψ0

joining tp and n with the root node. Since p R Sn, the node m

cannot be equal to n. Since tp is a leaf of the tree, m cannot be equal to

tp either. The structure of the non-optimised tree is shown in Figure 3.1.
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ψ0 ¨ ¨ ¨
m

¨ ¨ ¨

¨ ¨ ¨

m1

m2

tp

n

Figure 3.1: The node m is the greatest common node of n and tp.

Let m1,m2 be the nodes following m in each of the two paths. Since the

non-optimised tree is coherent, we have

tm1 “ ptm; pφm, λ
1, ψ1qq, tm2 “ ptm; pφm, λ

2, ψ2qq,

with a common choice for the representative φm of tm. Let us denote simply

by vm the valuation vtm attached to (the last level of) the type tm.

By Theorem 2.6, Nvm,φmpgq is one-sided of slope ´λ2 and Rvm,φm,λ2pgq

is a power of ψ2. Since pλ1, ψ1q ‰ pλ2, ψ2q, Theorem 2.6 shows that tm1 ffl g.

By (2.5), we have

wp pgpθqq “
deg g

deg φm
¨
Vr `min tλ1, λ2u

e1 ¨ ¨ ¨ er´1
, (3.2)

where r “ ordptmq ` 1. The same arguments show that tm1 ffl h and a

formula analogous to (3.2) holds for wp phpθqq. Hence,

ŵp pgpθqq “
wp pgpθqq

deg g
“
wp phpθqq

deg h
“ ŵp phpθqq .

The next result is the main aim of this section. For the search for v-

optimal polynomials, we may consider only polynomials in the semigroup

ΦpPq.

Theorem 3.9. Let S Ď P be a set of prime ideals. For any h P Orxs monic

of degree 0 ď d ă n, there exists φ P ΦpSq also of degree d such that,

wp pφpθqq ě wp phpθqq , @ p P S. (3.3)



64 Chapter 3. Optimal polynomials

Proof. The proof will proceed by induction on the degree d of the polyno-

mial. We will work in steps, in each one reducing the space in which we

need to consider h.

If d “ 0, then φ “ h “ 1 P ΦpSq.

Claim. It is sufficient to check (3.3) for h P PpOvrxsq.

Let h “ h1h2, with h1, h2 P Ovrxsmonic of degree d1, d2 ą 0 respectively.

Now, consider h ” H1H2 pmod mN q, with N ą max twp phpθqq : p P Su

and H1, H2 P Orxs monic, also of degree d1, d2 ą 0 respectively.

By an inductive argument on the number of prime factors of h, there

exist φi P ΦpSq of degree di such that,

wp pφipθqq ě wp pHipθqq , @ p P S,

for i “ 1, 2. Take φ “ φ1φ2 P ΦpSq. For any p P S we have

wp pφpθqq “ wp pφ1pθqφ2pθqq

“ wp pφ1pθqq ` wp pφ2pθqq

ě wp pH1pθqq ` wp pH2pθqq

“ wp pH1pθqH2pθqq

“ wp phpθqq .

The final equality is due to the triangle inequality of the p-adic valu-

ation. We can express h “ H1H2 ` πNG for some G P Orxs, and since

wp

`

πNGpθq
˘

ą wp phpθqq for all p P S, we deduce the equality wp phpθqq “

wp pH1pθqH2pθqq. This proves the claim.

Now, we only need to consider the case h P PpOvrxsq, which we will

divide into two cases, depending on whether the reductions mod m of f and

h share a common factor.

Case 1. h P PpOvrxsq, and gcdpf, hq “ 1.

In this case wp phpθqq “ 0 for all p P S. Thus, (3.3) is obviously satisfied.

Case 2. h P PpOvrxsq, h “ ψb0, b P N, for ψ0 P Frys a prime factor of f .



3.2. Optimal polynomials as products of φ-polynomials 65

Let Sψ0 Ă S be the subset of prime ideals p P S such that ψ0,p “ ψ0.

Let

ΦpSψ0q “
 

φ P ΦpSq : φ is a power of ψ0

(

.

It is sufficient to find φ P ΦpSψ0q of degree d such that (3.3) holds for all

p P Sψ0 , since

wp pφpθqq “ 0 “ wp phpθqq , @ p P SzSψ0 .

By hypothesis, the root node of Tnop
ψ0

divides h. Let n be the highest

order node in the non-optimised tree Tnop
ψ0

such that tn � h, and let i ´ 1

be the order of tn. We distinguish two cases according to n being a leaf or

not.

Case 2A. n is a leaf.

In this case, Sn “ tp0u contains only one prime ideal. The polynomial

φi´1 is an Okutsu approximation to Fp0 . Since tn � h, Theorem 2.6 shows

that deg h “ a ¨ deg φi´1 “ a ¨ degFp0 for some positive integer a. If a “ 1,

then h is a polynomial with minimal degree such that tn � h; that is, h is a

representative of tn, so that h P ΦpSq and the statement of the theorem is

obvious.

Suppose a ą 1. Since n is a leaf of Tnop
ψ0

, any representative of tn

is an Okutsu approximation to Fp0 and we may take φ0 P Repptnq with

wp0 pφ0pθqq arbitrarily large. Let us consider φ0 with

wp0 pφ0pθqq ě
wp0 phpθqq

a
,

and take φ “ φa0 P ΦpSψ0q. By construction, wp0 pφpθqq “ a ¨ wp0 pφ0pθqq ě

wp0 phpθqq. On the other hand, for any p P Sψ0 , p ‰ p0, Lemma 3.8 shows
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that ŵp pφ0pθqq “ ŵp phpθqq, so that

wp pφpθqq “ a ¨ wp pφ0pθqq

“ a ¨ deg φ0 ¨ ŵp pφ0pθqq

“ deg h ¨ ŵp phpθqq

“ wp phpθqq .

(3.4)

This proves wp pφpθqq ě wp phpθqq for all p P S.

Case 2B. n is not a leaf.

For a certain choice φn of a representative of tn, the node n has several

branches m in the non-optimised tree, with

tm “ ptn; pφn, λ, ψqq.

By the maximality of n, we have tm ffl h for all these branch nodes m.

Let λmax be the greatest slope (in absolute size) of these branches and let

mmax be any branch node of n with slope λmax.

If mmax is a node of the optimised tree, take nmax “mmax. Otherwise,

let nmax be any node of the optimised tree which has been derived from

mmax by a series of refinement steps as presented in Figure 3.2.

n

m

...

¨ ¨ ¨
pφ0, λ0, ψ0qmmax

nmax

Figure 3.2: The node nmax belongs to the optimised tree.

Let pφ0, λ0, ψ0q be the last level of tnmax in the non-optimised tree. As

explained in Section 2.5.2 the last level of tnmax as a type from the optimised

tree will be pφ0, λ
˚
0 , ψ0q, where λ˚0 is the sum of all the slopes of all bad levels

between nmax and its previous node in the optimised tree. This will be n if

n belongs to the optimised tree or some node prior to n if it does not.
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Thus, φ0 “ φj,p0 for all p0 P Snmax , where j is the order of nmax as

a node of the optimised tree. By construction, deg φ0 “ deg φn and since

tn � h, Theorem 2.6 shows that deg h “ a ¨ deg φn “ a ¨ deg φ0, for a certain

positive integer a. Let us take φ “ φa0 P ΦpSψ0q and let us show that

wp pφpθqq ě wp phpθqq for all p P Sψ0 .

For p R Sn we have ŵp phpθqq “ ŵp pφ0pθqq by Lemma 3.8, and (3.4)

shows that wp phpθqq “ wp pφpθqq.

For any p P Sn, Theorem 2.7 shows that

wp phpθqq “ a ¨
Vi `min tλp, λhu

e1 ¨ ¨ ¨ ei´1
,

where ´λh is the slope of Nvn,φnphq (which is one-sided) and ´λp is the

slope of the unique branch m of n for which tm � Fp.

If m ‰mmax, Proposition 2.31 shows that

wp pφpθqq “ a ¨ wp pφ0pθqq “ a ¨
Vi `min tλp, λmaxu

e1 ¨ ¨ ¨ ei´1
,

so that wp pφpθqq ě wp phpθqq, because

min tλp, λhu ď λp “ min tλp, λmaxu .

If m “ mmax, that is tmmax � Fp, then ipp, p0q ě i and by Proposition

2.31

wp pφpθqq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

a ¨
Vi ` λ

p0
p

e1 ¨ ¨ ¨ ei´1
, ipp, p0q “ i, φi,p “ φpp, p0q,

a ¨
Vi `min

 

λp0p , λ
p
p0

(

e1 ¨ ¨ ¨ ei´1
, ipp, p0q “ i, φi,p ‰ φpp, p0q,

a ¨
Vi ` λi,p0
e1 ¨ ¨ ¨ ei´1

, ipp, p0q ą i.

If ipp, p0q “ i then we have λp0p ě min
 

λp0p , λ
p
p0

(

ą λmax because in

the refinement procedure the slope grows strictly. On the other hand, if

ipp, p0q ą i then λi,p0 ě λmax and wp pφpθqq ě wp phpθqq for all p P Sψ0 .
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3.3 Optimal polynomials as products of numera-

tors of Okutsu bases

3.3.1 Partial Okutsu bases

Let S Ď P be a subset of P and let nS “
ř

pPS np be the degree of S.

Consider a sequence of monic polynomials:

1, g1, . . . , gnS´1 P Orxs, deg gi “ i, 0 ď i ă nS , (3.5)

such that gipθq has maximal S-valuation amongst all monic polynomials of

the same degree:

wS pgipθqq “ max twS pgpθqq : g P Orxs, g monic, deg g “ iu , 0 ď i ă nS .

These conditions imply that the sequence of all

gipθq

πtwSpgipθqqu
, 0 ď i ă nS ,

is a reduced triangular S-basis of L. That is, the images of these elements

under the topological embeddings

pιpqpPS : L ãÑ
à

pPS

Lp,

form an Ov-basis of
À

pPS Op.

Since
À

pPP Op is isomorphic to OLbOOv, a P-basis is a v-integral basis.

Also, for a one-element subset S “ tpu, a reduced triangular S-basis is just

a reduced triangular Ov-basis of Op with numerators having coefficients in

O.

As in Section 3.1, we shall consider extended families of Okutsu S-

numerators of S-bases by adding the (formal) polynomial gnS “ φS as the

numerator of degree nS ,

NS :“

#

g0,S , . . . , gnS´1,S , gnS ,S “ φS :“
ź

pPS

φp

+

.
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Let T be the tree of types of an OM representation of f . For any p P P
we denote by tp the leaf of T corresponding to p.

Definition 3.10. For S Ď P, let TS Ď T be the subtree formed by all paths

joining the leaves tp, for p P S, with each of their respective root nodes.

For t P TS we denote by St Ď S the subset of all p P S such that t

belongs to the path joining tp to its root node.

Definition 3.11. For a set S of prime ideals, we define,

OkpSq “

#

ź

pPS

gip,p : 0 ď ip ď np

+

,

as the set of all polynomials that are a product of exactly one Okutsu p-

numerator for each p P S.

For a set tpu containing a single prime ideal p P P, we simply use Okppq.

It should be noted that Okppq coincides with the extended family Np of

numerators of the Okutsu p-basis Bp given in (3.1).

Here we are interested in how closely we can replicate the results of

Lemma 3.5 for cross valuations, that is to say where the φ-polynomial be-

longs to a different prime to that of the valuation.

Lemma 3.12. Let p, q P P be two different prime ideals with index of

coincidence ` “ ipp, qq. Then:

1. ŵp pφi,qpθqq ă ŵp pφi`1,qpθqq, 1 ď i ă `,

2. ŵp pφi,qpθqq “ ŵp pφi`1,qpθqq, ` ă i ď rp.

Proof. For i, j ą `, Proposition 2.31 shows that

ŵp pφi,qpθqq “ ŵp pφj,qpθqq .

This proves item (2).

For i ă ` ´ 1, we have φi,q “ φi,p, φi`1,q “ φi`1,p and the inequality of

(1) is a direct consequence of Lemma 3.5.
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Assume i “ `´ 1. By Proposition 2.31, we have

ŵp pφ`´1,qpθqq “
1

m`´1
¨
V`´1 ` λ`´1

e1 ¨ ¨ ¨ e`´2

“
1

e`´1f`´1m`´1
¨
e`´1f`´1pe`´1V`´1 ` h`´1q

e1 ¨ ¨ ¨ e`´1

“
1

m`
¨

V`
e1 ¨ ¨ ¨ e`´1

,

ŵp pφ`,qpθqq “
1

m`
¨

$

’

’

’

&

’

’

’

%

V` ` λ
q
p

e1 ¨ ¨ ¨ e`´1
, or

V` `min
 

λqp, λ
p
q

(

e1 ¨ ¨ ¨ e`´1
.

Hence, ŵp pφ`´1,qpθqq ă ŵp pφ`,qpθqq and this ends the proof of (1).

It is easy to find examples where

ŵp pφ`,qpθqq ą ŵp pφ``1,qpθqq . (3.6)

Because of this fact, the proof of the validity of the MaxMin algorithm in

Chapter 4 is rather involved.

This pathology occurs with φ`,q “ φpp, qq and λqp is much larger than λpq

(see Proposition 2.31). Hence, it is also easy to find specific conditions that

avoid (3.6).

Lemma 3.13. Let p, q P P be two different prime ideals with ` “ ipp, qq ą 0

and such that λpq ě λqp. Then,

ŵp pφ`,qpθqq “ ŵp pφ``1,qpθqq .

Proof. By the hypothesis, min
 

λqp, λ
p
q

(

“ λqp and both cases for i “ ` in

Proposition 2.31 are equal, giving

ŵp pφ`,qpθqq “
1

m`
¨
V` ` λ

q
p

e1 ¨ ¨ ¨ e`´1

“
1

m``1
¨
m``1

m`
¨
V` ` λ

q
p

e1 ¨ ¨ ¨ e`´1
“ ŵp pφ``1,qpθqq .
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Definition 3.14. An Okutsu S-basis of L is a triangular S-basis with nu-

merators tgi : 0 ď i ă nSu, such that deg gi “ i and gi P OkpSq, for all

0 ď i ă nS.

Theorem 3.15, below, shows that Okutsu S-bases exist

3.3.2 Existence of partial Okutsu bases

A simple and very efficient algorithm, presented in Section 4.2, can be em-

ployed to choose an optimal combination of basis numerators for each degree

d. In this section, we show that such an optimal combination will be opti-

mal amongst all elements of Φ and therefore, by Theorem 3.9, amongst all

polynomials with coefficients in the discrete valuation ring O.

Theorem 3.15. Let S Ď P be a set of prime ideals. For any φ P ΦpSq,

monic of degree 0 ď d ď nS, there exists g P OkpSq also monic and of degree

d such that,

wp pgpθqq ě wp pφpθqq , @ p P S.

In order to prove this theorem, we define a pair of transforms which,

when used in conjunction, are able to convert any polynomial φ P ΦpSq to

another polynomial g P OkpSq, of equal or greater value, in a finite number

of steps.

Firstly, we require certain measures on polynomials in ΦpSq, which define

how close they are to also being included in OkpSq.

Definition 3.16. The irreducible factors of a polynomial φ P ΦpSq can be

grouped by the prime ideal p P S Ď P to which they belong,

φ “
ź

pPS

gp,

gp “

rp
ź

i“1

φaii,p
ź

ϕPrFps

ϕaϕ , p P S.

We call gp the p-part of φ. Using this grouping into p-parts, a measure
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of disorder can placed be on φ,

D : ΦpSq ÝÑ N

φ ÞÝÑ
ÿ

pPS

max tdegpgpq ´ np, 0u .

We recall that φ0,p “ x for all p P P by convention.

Definition 3.17. Let φ P Φppq and ` P N. We say that φ is `-canonical if

for all 0 ď i ď min t`, rpu we have 0 ď ordφi,ppφq ă ei,pfi,p.

A polynomial ϕ P ΦpSq is `-canonical if each p-part of ϕ is `-canonical.

Note that for any m P N, there is a unique rp-canonical polynomial

φ P Φppq of degree m. We have necessarily φ “ gi,pφ
a
p , with m “ anp ` i

and 0 ď i ă np.

Recall that e0,p “ 1, f0,p “ degpψ0,pq for all p P P. We understand that

“being p´1q-canonical” is an empty condition, so that all polynomials are

p´1q-canonical.

By the construction of OkpSq, a polynomial φ P ΦpSq belongs to OkpSq

if, and only if, it is r-canonical for r “ max trpupPS , and has disorder Dpgq “

0.

Making a polynomial ϕ P ΦpSq r-canonical for r “ max trpupPS is not

necessarily a straightforward task. Specifically, it is not sufficient to simply

replace the p-part of ϕ with its r-canonical equivalent for each p P S.

As an example, consider S “ tp, qu Ď P, such that ipp, qq “ 1 and

φ1,p “ φpp, qq “ φ1,q. Let p and q have the following OM invariants:

p : e1 “ 1, f1 “ 4, h1 “ 1; e2 “ 1, f2 “ 3, h2 “ 9; . . .

q : e1 “ 1, f1 “ 3, h1 “ 2;

for the first two levels for p and the first level for q, and additionally f0 “ 1.

Now consider φ “ φ2,pφ
4
1,p P ΦpSq, a polynomial of degree deg φ “ 8. By

Proposition 2.31, the p- and q-valuations for φ are respectively

wp pφpθqq “ 13 ¨ 1` 1 ¨ 4 “ 17,

wq pφpθqq “ 4 ¨ 1` 2 ¨ 4 “ 12.
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The polynomial φ is a product of numerators of the Okutsu p-basis only.

The 2-canonical polynomial of the same degree is g “ φ2
2,p. Again, referring

to Proposition 2.31, we may calculate the valuations of g as

wp pgpθqq “ 13 ¨ 2 “ 26,

wq pgpθqq “ 4 ¨ 2 “ 8.

Here we see that not only is the q-valuation of g less than φ, but this is

also the case for the S-valuation, wS pgpθqq ă wS pφpθqq. As such, we require

a more advanced transformation, one that does not just operate separately

within each individual p-part of a polynomial.

Consider the transformation Canonify, which is presented in Algorithm

3.1. For the case ` “ 0, in step 2, we agree that tt P TpSq : t of order ´ 1u

is the set of all root nodes of TpSq.

Lemma 3.18. Let U “ tϕp P ΦppqupPS be a set of polynomials that are

p` ´ 1q-canonical. Let U 1, b Ð CanonifypU, `q be the result of the algorithm

Canonify. Then either

• b is false and all polynomials in U 1 are `-canonical; or

• b is true and the number of rp-canonical polynomials in U 1 is strictly

greater than those in U .

Additionally, let φ “
ś

ϕpPU
ϕp and g “

ś

gpPU 1
gp, then

wq pgpθqq ě wq pφpθqq , @ q P S,

D pgq ď D pφq .

Proof. There are four distinct cases in the while loop of Algorithm 3.1. In

each case, one or more gp are changed. We will show that for each of these

cases, the constraints of the lemma are maintained.

At each iteration of the for loop, a prime p P SzS0 has two possibilities:

either p R St, and then ipp, qq ă ` for all q P St, or p P St and then gp is an

rp-canonical polynomial of degree dp ě np.
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Algorithm 3.1 CanonifyptϕpupPS , `q transformation

Input: An integer ` ě 0 and a set of polynomials tϕp P ΦppqupPS which are
all p`´ 1q-canonical.

Output: A set of polynomials tgp P ΦppqupPS and a boolean value b. If b is
false then all gp are `-canonical.

1: gp Ð ϕp, for all p P S
2: for t in tt P TpSq : t of order `´ 1u do
3: S0 Ð tp P St : gp not rp-canonical or degpgpq ă npu
4: Order S0 “ tp1, . . . , ps0u so that λ

pj
pi ď λpipj for all 1 ď i ă j ď s0

5: for p0 in S0 do
6: while ordφ`,p0 pgp0q ě e`,p0f`,p0 do

7: if wp

´

φ
e`,p0f`,p0
`,p0

pθq
¯

ď wp pφ``1,p0pθqq, @ p P S0 then

8: gp0 Ð gp0 ¨
´

φ
e`,p0f`,p0
`,p0

¯´1
¨ φ``1,p0

9: else
10: S0,φ “ tp P S0 : φ`,p0 P Ref`ptpqu
11: qÐ prime ideal in S0,φ such that λpq ě λqp, @ p P S0,φ

12: if degpgqq ě nq then
13: gq Ð gm,q, rq-canonical polynomial of degree m “ deg gq
14: S0 Ð S0z tqu
15: else if nq ´ degpgqq ą m` then
16: gp0 Ð gp0 ¨ pφ`,p0q

´1

17: gq Ð gq ¨ φ`,q
18: else
19: mÐ degpgqq `m` ´ nq
20: gp0 Ð gp0 ¨ pφ`,p0q

´1
¨ gm,p0

21: gq Ð φq
22: bÐ true

23: Exit algorithm.
24: end if
25: end if
26: end while
27: end for
28: end for
29: bÐ false
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In the first case, the p-valuation of the product gqgq1 for any two q, q1 P S0

will be unchanged, so long as gq and gq1 both remain p`´ 1q-canonical and

the sum of their degrees is constant.

In the second case, there is some φp P rFps X Orxs that divides gp. We

can apply the Single Factor Lifting algorithm (Section 2.6) to φp to raise

its p-valuation as high as necessary to get wp pgpθqq ě wp pφpθqq no matter

what changes in gq for q ‰ p have been made.

We will, therefore, only consider the valuations of those prime ideals in

S0.

Case 1. wp

´

φ
e`,p0f`,p0
`,p0

pθq
¯

ď wp pφ``1,p0pθqq, @ p P S0 (line 7). By the

condition of this case, wp

´

g
pnewq
p0 pθq

¯

ě wp

´

g
poldq
p0 pθq

¯

, for all p P S0.

Case 2. D p P S0 such that wp

´

φ
e`,p0f`,p0
`,p0

pθq
¯

ą wp pφ``1,p0pθqq (line 9).

Here, we select q P S0,φ such that λpq ě λqp, for all p P S0,φ. The prime ideal

q has the property that,

ŵp pφi,qpθqq ď ŵ pφi`1,qpθqq , @ p P S0, ` ď i ď rq. (3.7)

By Lemma 3.13, this is true for all p P S0,φ and for p P S0zS0,φ, we have

φ`,q ‰ φpp, qq and by Proposition 2.31 ŵp pφ`,qpθqq “ ŵ pφ``1,qpθqq. This will

be important in the following sub-cases.

Case 2A. degpgqq ě nq (line 12). At this step, we replace gq with the rq-

canonical polynomial of the same degree. By (3.7), we can safely perform

this operation. Since q no longer meets the inclusion criteria, we remove it

from S0. We will now return to the beginning of the while loop, since it is

possible that with the exclusion of q from S0, the condition for Case 1 will

now be met.

Case 2B. nq´degpgqq ą m` (line 15). In this case, for all p P S0,φ we have

λpp0 “ min
 

λpp0 , λ
p0
p

(

ď λqp “ min
 

λqp, λ
p
q

(

which implies that wp pφ`,p0pθqq ď

wp pφ`,qpθqq.

For p P S0zS0,φ, due to the refinement process, λpp0 “ λpq and λp0p “ λqp

and so wp pφ`,p0pθqq “ wp pφ`,qpθqq.
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Case 2C. nq ´ degpgqq ď m` (line 18). In this case, we must be careful

not to increase the disorder of φ. Here we remove a single φ`,p from gp and

insert gm,p0 , where 0 ď m ă m`. At the same time we replace gq with φq.

Actually, we can consider this step as

gq ÝÑ gqpgm,qq
´1φ`,q ÝÑ φq,

where m ă m` implies that gm,q “ gm,p. So for all p P S0, we have

wp pgp0pθqgqpθqq ď wp

`

gp0pθqφ`,p0pθq
´1gm,p0pθq ¨ gqpθqgm,qpθq

´1φ`,qpθq
˘

ď wp

`

gp0pθqφ`,p0pθq
´1gm,p0pθq ¨ φqpθq

˘

.

The first inequality is true by the argument given in Case 2B and the second

inequality is given by (3.7) using the same argument as Case 2A.

Since we may have moved a polynomial of degree less than m` from the

q-part to the p0-part of φ, we cannot guarantee that the p0-part will remain

p` ´ 1q-canonical. However, this change will not affect the p-valuation for

any p P S, since gm,q “ gm,p.

At this step, gq, which was previously of degree less than nq will become

rq-canonical of degree nq, fulfilling the requirement attached to b being

returned true.

All polynomials p P St which are rp-canonical of degree dp ě np are not

included in S0 and so the the p-part is not changed during Canonify. This

means that the number of polynomials fulfilling the condition attached to b

being true will never decrease.

Since the algorithm works through each p0 in S0, if b is not set to true

then all gp0 will be made `-canonical by the condition of the while loop.

Remark. It should be noted that when we run the Canonify transformation

for ` “ 0, we may have the case that we transfer a φ0,p “ x from ϕp for a

p with f0,p ą 1 to a gq where f0,q “ 1. In this situation, φ0,q “ φ1,q “ x

and although p and q belong to different disconnected trees, wq pφ0,ppθqq “

wq pφ1,qpθqq ą 0.

However, since this is only a conceptual change and doesn’t materially
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affect g as it differs from φ, there is no difference in the valuation.

Remark. We will never need to implement Algorithm 3.1! It is only a

theoretical construction whose aim is to justify Theorem 3.15.

Definition 3.19. The transformation Transfer
pÑq

for two prime ideals p, q P

P, converts a single φ-polynomial from the Okutsu p-frame into an element

from the Okutsu q-basis, multiplied by a power of the Okutsu approximation

to Fq.

Transfer
pÑq

: Φppq ÝÑ Φpqq

φi,p ÞÝÑ gm,q,

where gm,q P Φpqq is the rq-canonical polynomial of degree m “ mi,p.

The transformation Transfer has non-trivial valuation properties, so p

and q must be chosen carefully so that the l-valuation for specific l P S of

the resulting polynomial is not less than the original φi,p. To choose these

polynomials, we require further information about the relative valuations of

polynomials from the Okutsu bases of our prime ideals.

Using the extended index of coincidence presented in Definition 2.26,

the following Lemma gives us a link between the relative alikeness of prime

ideals and their respective cross-valuations.

Lemma 3.20. Let S P P be a set of prime ideals and fix a prime ideal

p0 P S. Now select q P Sz tp0u such that Ipp0, qq ě Ipp0, pq and in the case

of equality λp0q ě λp0p for all p P Sz tp0u. Then, for any 1 ď i ď rp0, if we

take gq :“ Transfer
p0Ñq

pφi,p0q, we have,

wp pgqpθqq ě wp pφi, p0pθqq , @ p P Sz tp0u . (3.8)

Proof. Let ` “ ipp0, qq, then if i ă ` then gq “ φi,q “ φi,p0 , so we only

need to consider i ě `, in which case m` � mi,p0 and so gq is the product

of φ-polynomials of index ` and greater. Meanwhile, by the maximality of

the numerators of an Okutsu basis, wq pgqq is maximal amongst all monic



78 Chapter 3. Optimal polynomials

polynomials of degree m. Hence the property required of (3.8) is clear for

p “ q.

Consider the following subsets of S,

S1 :“ tp P Sz tp0, qu : ipp0, pq ě ipp0, qqu ,

S0 :“ tp P S1 : Ipp0, pq ě Ipp0, qqu .

By the choice of q, there are no prime ideals in S that satisfy the strict

inequality in the set inclusion conditions and they may be replaced by

ipp0, pq “ ipp0, qq and Ipp0, pq “ Ipp0, qq respectively.

We will examine the prime ideals delimited by these sets separately.

Case 1. p P SzS1. We have ipp0, pq ă ipp0, qq, which implies ipp0, pq “

ipq, pq and so by Proposition 2.31,

wp pgqpθqq “ wp pφi,p0pθqq , 1 ď i ď rp0 , @ p P SzS1,

In fact, since ipp0, pq ă ipp0, qq, the result of Transfer is gq “ φi,q “ φi,p0 for

all i ď ipp0, pq. On the other hand, if i ą ipp0, pq “ ipq, pq, the p-valuation

depends only on the degree.

The following two cases are illustrated in Figure 3.3. Note that although

Figure 3.3 represents non-optimised trees, the hidden slopes we have written

are the optimised ones.

Case 2. p P S1zS0. Here, p0, q, and p share a common index of coincidence

` “ ipp0, qq “ ipp0, pq “ ipq, pq, but Ipp0, qq ą Ipp0, pq. From Figure 3.3 we

¨ ¨ ¨

¨ ¨ ¨ tp0

¨ ¨ ¨ tq

¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ tp

λpp0 “ λpq

λp0p “ λqp

λqp0

λp0q

Ipp0, qq ą Ipp0, pq (q R S0).

¨ ¨ ¨

¨ ¨ ¨ tp0

¨ ¨ ¨ tq

¨ ¨ ¨ tp

λqp0 “ λpp0

λp0q “ λpq

λp0p “ λqp

Ipp0, qq “ Ipp0, pq (q P S0).

Figure 3.3: Relative positions of tp0 , tq, and tp in the non-optimised tree.
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can see that in this case φ`,p0 ‰ φpp0, pq, φ`,q ‰ φpq, pq and also λpp0 “ λpq

and λp0p “ λqp.

Therefore, by Proposition 2.31,

wp pgqpθqq “
deg gq
m`

¨
V` `min

 

λqp, λ
p
q

(

e1 ¨ ¨ ¨ e`´1

“
mi,p0

m`
¨
V` `min

 

λp0p , λ
p
p0

(

e1 ¨ ¨ ¨ e`´1

“ wp pφi,p0pθqq .

Case 3. p P S0. Finally, we have the case where Ipp0, qq “ Ipp0, pq, as

shown in Figure 3.3, which implies φpp0, qq “ φpq, pq and by the hypothesis

on q we have min
 

λqp, λ
p
q

(

“ λqp and so by Proposition 2.31,

wp pgqpθqq “
deg gq
m`

¨
V` ` λ

q
p

e1 ¨ ¨ ¨ e`´1

“
mi,p0

m`
¨
V` ` λ

p0
p

e1 ¨ ¨ ¨ e`´1

ě

$

’

’

’

&

’

’

’

%

V` ` λ
p0
p

e1 ¨ ¨ ¨ e`´1
“ wp pφi,p0pθqq , if i “ `,

mi,p0

m`
¨
V` `min

 

λp0p , λ
p
p0

(

e1 ¨ ¨ ¨ e`´1
“ wp pφi,p0pθqq , if i ą `.

We may now prove Theorem 3.15.

Proof of Theorem 3.15. We will use the previously defined transforma-

tions Canonify and Transfer iteratively, to convert a polynomial φ P ΦpSq

into a polynomial g P OkpSq. At each step the p-valuation will be preserved

or raised for all p P S and the disorder will be reduced.

Consider the polynomial φ1, which we initially set to φ.

Step 1. First, we consider the p-part gp of φ1 for all p in S. For 0 ď ` ď

rmax “ max trpupPS , apply CanonifyptgpupPS , `q. If b is returned true, then

restart ` at 1.

By the condition in Lemma 3.18 that when b returns true the number

of rp-canonical polynomials with degree dp ě np increases (and even when
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b returns false it may never decrease), b can only return true up to #S

times. Therefore, this process will complete in a finite number of iterations.

Once Canonify has been run successfully up to ` “ rmax, all gp will be

rp-canonical.

Set φ1 “
ś

pPS gp. By Lemma 3.18, this φ1 will have greater or equal

p-valuation for all p P S and will have lesser or equal disorder. Additionally,

it will be rmax-canonical.

Step 2. Consider the set,

Overloadedpφ1q “ tp P S : degpgpq ą npu ,

of all prime ideals p for which the degree of gp, the p-component of φ1, is

greater than np the degree of the prime ideal itself.

If Overloadedpφ1q is empty, then the disorder Dpφ1q of φ1 is 0 and we

have g :“ φ1 P OkpSq, so we have finished.

Step 3. In the case that Overloadedpφ1q is not empty, we select an arbitrary

p0 P Overloadedpφ1q and consider the set S1 “ SzOverloadedpφ1q. Now,

select a prime ideal q P S1 such that Ipp0, qq ě Ipp0, pq and in the case of

equality λp0q ě λp0p for all p P S1 as in Lemma 3.20.

We then apply Transfer
p0Ñq

on φ1, converting the least degree φi,p0 dividing

gp0 into the rq-canonical polynomial gm,q P Φpqq of degree m “ mi,p0 .

By the selection of q, we have Ipp0, qq ě Ipp0, pq for all prime ideals

p P SzOverloadedpφ1q, and in the case of equality λp0q ě λp0p . By these

conditions, Lemma 3.20 shows that

wp pgm,qpθqq ě wp pφi,p0pθqq , @ p P S1.

For the remaining p P Overloadedpφ1q, the p-valuation of φ1 can be raised

by applying the Single Factor Lifting algorithm to φp, and so this covers all

p P S.

Since we are removing a degree mi,p0 polynomial from gp0 and including

a polynomial of the same degree in gq, the disorder will be reduced by

min tnq ´ deg gq,mi,p0u. Since q was chosen so that degpgqq ă nq, this
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reduction in disorder must be at least 1.

We now return to Step 1.

Clearly, this process will terminate after at most Dpφq iterations.
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4 
MaxMin

“Never accept the proposition that just because a solution satisfies

a problem, that it must be the only solution.”

– Raymond E. Feist, Magician

In this chapter we describe the MaxMin algorithm, its input require-

ments and output properties.

We retain the setting from the previous chapter.

4.1 Formal extension of the Okutsu p-bases

By Theorem 1.16, in order to construct a reduced triangular O-basis of OL
we need only to find a family of monic w-optimal polynomials of degree

0, 1, . . . , n ´ 1. By Theorem 3.9 and Theorem 3.15, we may restrict our

83
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search to polynomials constructed as the product of exactly one numerator

of each Okutsu p-basis, for p P P.

The aim of the MaxMin algorithm is to perform an efficient search for

these optimal polynomials in OkpPq.

To decide which numerators are chosen for each degree, we need only

to know the values wq

`

gip,ppθq
˘

for all p, q P P and 0 ď ip ď np. As

presented in Chapter 2, these values are given by OM invariants present

in an OM representation of f , which is provided by the Montes algorithm.

The exception is wp pφppθqq, which can be arbitrarily large, depending on

the choice of φp the Montes approximation to Fp as a factor of f .

For this reason, we do not choose a concrete polynomial φp beforehand,

but rather run the algorithm as if wp pφppθqq (formally) takes the value 8.

We define the following valuation function on polynomials in Φ:

Definition 4.1. For all p P P,

wp : Φ ÝÑ QY t8u

φ ÞÝÑ

$

&

%

wp pφpθqq , if φ˚ ffl φ,@ φ˚ P Repptpq,

8, if φ˚ � φ, for some φ˚ P Repptpq.

Therefore, wp pgq “ wp pgpθqq if φp ffl g, for all φp P Repptpq, however

wp pgq “ 8 if φp � g for some φp P Repptpq. This is practical as by Corollary

2.32 the value of wq pφppθqq for q ‰ p only depends on q and not the choice

of φp.

This valuation also extends to the P-valuation for the set P of prime

ideals (see Section 3.2). Therefore, w pgq “ w pgpθqq if for every φp dividing

g, we take a concrete choice for this polynomial with wp pφppθqq sufficiently

large.

In other words, φp is considered to be a symbolic polynomial. Its degree

is known to be np and its q-valuation for all q ‰ p, which is given by

Proposition 2.31, does not depend on the concrete choice of φp by Corollary

2.32. The algorithm will provide a recipe to construct numerators gi P Orxs
of degree i as a product of Oktusu p-numerators for each p in P. The
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corresponding member of the triangular basis will be

αi “ gipθqπ
´twpgiqu, 0 ď i ă n.

In order to compute αi, we must apply the Single Factor Lifting algo-

rithm to find concrete Okutsu approximations φp, with a valuation wp pφppθqq

large enough to guarantee that w pgiq “ w pgipθqq for all 0 ď i ă n.

4.2 The MaxMin algorithm

We fix an ordering P “ tp1, . . . , pNu on the set P, with the property that

for all types t in the tree of types T, the subset Pt Ď P of prime ideals

whose genomic tree contains the type t is an interval of P. That is, there

exist indices 1 ď at ď bt ď N such that,

Pt “ rat, bts :“ tpj : at ď j ď btu . (4.1)

As the branches of T do not cross one-another, the reader will easily be

convinced that it is always possible to consider such an ordering.

Consider a subset S “ tp1, . . . , psu Ď P with the induced ordering,

and extended Okutsu p-numerators
 

gip,p : 0 ď ip ď np
(

for each p P S, as

indicated in Section 4.1.

We consider multi-indices i “ piqqqPS of degree

deg i :“
ÿ

qPS

iq,

leading to monic polynomials in Orxs:

gi :“
ź

qPS

giq,q,

with deg gi “ deg i.

Definition 4.2. A multi-index i “ pipqpPS is said to be maximal if

wS pgiq ě wS pgjq ,
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for all multi-indices j with deg j “ deg i.

In this case, we also say that gi is a maximal numerator.

Notation. For 1 ď j ď s we denote by uj the multi-index with coordinates

iq “ 0 for all q ‰ qj and iqj “ 1.

Algorithm 4.1 MaxMinrSs algorithm

Input: A subset S “ tq1, . . . , qsu Ď P and Okutsu numerators
tgi,q : 0 ď i ď nqu of q-bases for each q P S.

Output: A family i0, i1, . . . , inS P Ns of multi-indices of degree 0, 1, . . . , nS
respectively.

1: i0 Ð p0, . . . , 0q
2: for k “ 0 Ñ nS ´ 1 do
3: j Ð min t1 ď i ď s : wqi pgikq “ wS pgikqu
4: ik`1 Ð ik ` uj
5: end for

The main aim of this chapter is to prove the following result.

Theorem 4.3. If TS is a connected tree, then all output multi-indices of

MaxMinrSs are maximal.

This gives the name MaxMin for the algorithm, because it finds the

maximal value amongst the minima of certain numerical data. This provides

a computation of an Okutsu S-basis of L as follows.

Theorem 4.4. Let i0, i1, . . . , inS be an output of MaxMinrSs. Choose

Okutsu approximations φp of all p P S, such that

wS pgikq “ wS pgikpθqq , 0 ď k ă nS .

Then, gi0 , gi1 , . . . , ginS´1 are numerators of an Okutsu S-basis of L.

In fact, Theorems 3.9 and 3.15 allow us to conclude from Theorem 4.3

that gi0 , . . . , ginS´1 are numerators of a reduced triangular S-basis of L.

Since all gik belong to OkpSq, this triangular basis is an Okutsu S-basis.

The discussion about finding the required valuation of all wp pφppθqq is

postponed until Section 4.7.

We will now present some remarks about the behaviour of the algorithm.
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4.2.1 Guaranteed termination

It is trivial to see that the algorithm MaxMinrSs always terminates after

exactly nS iterations.

Thanks to the convention wp pφpq “ 8, the index j in step 3 indicates

a prime qj such that for the multi-index ik “ piqqqPS , we will always have

iqj ă rqj . Therefore, the next multi-index ik`1 “ pi
1
qqqPS constructed in step

4 has indices i1q ď rq for all q P S.

Furthermore, the first and last output multi-indices are i0 “ p0, . . . , 0q

and inS “ pnq1 , . . . , nqsq. As such, gi0 “ 1 and ginS “
ś

qPS φq and

gi0 , . . . , ginS is an extended family of numerators of an Okutsu S-basis of L,

according to the convention introduced in Section 3.3.1.

4.2.2 Polynomial products are not computed

The algorithm does not compute the products gik . It only computes the

values wq pgikq for q P S, which are determined by the 3-dimensional array

of data wqk pgj,qiq indexed by i, j, and k in the ranges 1 ď i ď s, 0 ď ji ď nqi ,

and 1 ď k ď s, respectively.

If these numbers are replaced by arbitrary, non-negative rational num-

bers νk,ji,i P Qą0 and we take

νk,i :“
s
ÿ

i“1

νk,ji,i,

with i “ pjiq1ďiďs a multi-index as above, the MaxMin routine may fail to

compute

max tmin tνk,i : 1 ď k ď su : deg i “ du ,

a maximal multi-index of degree d.

4.2.3 Initial conditions

Suppose i “ pipqpPS is a multi-index with degree deg i “ d, such that wS pgiq

is maximal amongst all multi-indices of degree d. Then, it may not be true

that by increasing an adequate index by one, we get a multi-index j, of
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degree d ` 1, which renders a maximal value of wS pgjq amongst all multi-

indices of degree k ` 1.

For instance, let us consider the example presented in Section 4.2.5. The

output index of degree 3 is i3 “ p1, 2, 0q, resulting in the polynomial g3 “

φ1,pφ
2
1,q with valuations w pg3q “ p10, 8, 8q for wp, wq and wl respectively.

We could choose an alternative index j3 “ p1, 1, 1q which would give

a polynomial g13 “ φ1,pφ1,qφ1,l with the exact same valuations ~w pg13q “

p10, 8, 8q. However, in the second case, the next index would be j4 “ p1, 2, 1q

giving the polynomial g14 “ φ1,pφ
2
1,qφ1,l with valuations ~w pg14q “ p12, 11, 11q.

This is clearly not maximal as the polynomial constructed by the example

g4 “ φ1,pφ2,q has valuations w pg4q “ p12, 17, 16q.

However, the maximal multi-indices that are met along the flow of the

algorithm will lead to subsequent maximal indices. It is curious that the

(extremely) simple strategy that MaxMin employs to choose successive max-

imal multi-indices is able to avoid these pathological cases.

4.2.4 Ordering of input prime ideals

Theorem 4.3 shows that MaxMin produces a sequence of maximal multi-

indices regardless of the choice of ordering on P, as long as it satisfies (4.1).

However, the numerators gik produced from these multi-indices do depend

on the choice of ordering.

Condition (4.1) on the ordering of P has only been imposed for the

purpose of simplifying the proof of Theorem 4.3, which appears to be true

for an arbitrary ordering on P. However, we have not been able to give a

rigorous proof of this fact.

4.2.5 MaxMin Example

We will now present a small example for S “ tp, q, lu where TS is connected.

Consider the tree Tnop
S shown in Figure 4.1. We indicate only the data

pφ, λq for each edge.

Since all slopes have integer values, all denominators ei are equal to one.

Hence, for our choices of “good” and “bad” edges to be coherent, we must
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ψ0

pφ, 6q

pφ, 2q
pφ1, 1q

pφ2, 6q

pφ2, 5q

p

q

l

Figure 4.1: Example non-optimised connected tree Tnop
S of types.

have f1,p, f1,q “ f1,l, and f2,q greater than one. For instance:

p : e1 “ 1, f1 “ 4, h1 “ 6;

q : e1 “ 1, f1 “ 3, h1 “ 3; e2 “ 1, f2 “ 2, h2 “ 6;

l : e1 “ 1, f1 “ 3, h1 “ 3.

The data corresponding to the edges leading to a leaf are not specified

as we do not need them to run MaxMin.

The optimised tree Top
S is shown in Figure 4.2.

ψ0

pφ, 6q

pφ1, 3q

pφ2, 6q

p

q

l

Figure 4.2: Example optimised connected tree Top
S of types.

Here we can see the relationship between the polynomials in the non-

optimised and optimised trees,

φpp, qq “ φpp, lq “ φ1,p “ φ,

φ1,q “ φ1,l “ φ1,

φpq, lq “ φ2,q “ φ2,
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and the optimised hidden slopes are:

λqp “ λlp “ 6, λpq “ λpl “ 2,

λlq “ 6, λql “ 5.

The numerators of the extended Okutsu bases of each of the three prime

ideals will be,

Np : 1, φ1,p, φ
2
1,p, φ

3
1,p, φp;

Nq : 1, φ1,q, φ
2
1,q, φ2,q, φ2,qφ1,q, φ2,qφ

2
1,q, φq;

Nl : 1, φ1,l, φ
2
1,l, φl.

Using the explicit formulas of Proposition 2.31, we may compute the

valuations of each of the φ-polynomials. We write them as a tuple ~w “

pwp, wq, wlq.

~w pφ1,pq “ p6, 2, 2q, ~w pφpq “ p8, 8, 8q,

~w pφ1,qq “ p2, 3, 3q, ~w pφ2,qq “ p6, 15, 14q ~w pφqq “ p12,8, 28q,

~w pφ1,lq “ p2, 3, 3q, ~w pφlq “ p6, 14,8q.

We can now step through the results of running MaxMinrSs. The “min-

imal” valuation is underlined at each step. This indicates the index which

will be incremented in the following step.

i gi ~w pgiq w pgiq

0 1 ¨ 1 ¨ 1 p0, 0, 0q 0

1 φ1,p ¨ 1 ¨ 1 p6, 2, 2q 2

2 φ1,p ¨ φ1,q ¨ 1 p8, 5, 5q 5

3 φ1,p ¨ φ
2
1,q ¨ 1 p10, 8, 8q 8

4 φ1,p ¨ φ2,q ¨ 1 p12, 17, 16q 12

5 φ2
1,p ¨ φ2,q ¨ 1 p18, 19, 18q 18

6 φ3
1,p ¨ φ2,q ¨ 1 p24, 21, 20q 20

7 φ3
1,p ¨ φ2,q ¨ φ1,l p26, 24, 23q 23

8 φ3
1,p ¨ φ2,q ¨ φ

2
1,l p28, 27, 26q 26

9 φ3
1,p ¨ φ2,q ¨ φl p30, 35,8q 30
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10 φp ¨ φ2,q ¨ φl p8, 37,8q 37

11 φp ¨ φ2,qφ1,q ¨ φl p8, 40,8q 40

12 φp ¨ φ2,qφ
2
1,q ¨ φl p8, 43,8q 43

13 φp ¨ φq ¨ φl p8,8,8q 8

The final element g13 is the “extended” element, and is not included in

the v-integral basis of S.

4.3 Precomputation

Consider a partition of a subset S “ tq1, . . . , qsu Ď P:

S “ S1 Y ¨ ¨ ¨ Y St.

That is, a decomposition of S into the disjoint union of several subsets. We

require that the ordering of each Sj adhere to (4.1), and that S maintains

the ordering of the subsets, so that for 1 ď i ă j ď t all elements of Si come

before all elements of Sj . Denote

nj :“ nSj , 0 ď j ď t.

Take extended families of numerators g0,Sj , . . . , gnj ,Sj of Okutsu Sj-

bases, for all 0 ď j ď t.

Consider multi-indices i “ pi1, . . . , itq of degree deg i “ i1 ` ¨ ¨ ¨ ` it and

monic polynomials gi :“ gi1,S1 ¨ ¨ ¨ git,St P Orxs.
We may consider the version of MaxMin presented in Algorithm 4.2.

Algorithm 4.2 MaxMinrS “ S1 Y ¨ ¨ ¨ Y Sts algorithm

Input: A partition S “ S1 Y ¨ ¨ ¨ Y St of S Ď P, and extended families
 

gi,Sj : 0 ď i ď nSj
(

of numerators of Okutsu Sj-bases for all 1 ď j ď t.
Output: A family i0, i1, . . . , inS P Nt of multi-indices of degree 0, 1, . . . , nS ,

respectively.
1: i0 Ð p0, . . . , 0q P Nt
2: for k “ 0 Ñ nS ´ 1 do
3: j Ð min t1 ď i ď t : wSi pgikq “ wS pgikqu
4: ik`1 Ð ik ` uj
5: end for
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There is a double motivation for the consideration of this algorithm.

On one hand, the Montes algorithm is able to provide Okutsu S-bases for

certain subsets S P P in a very natural way. Thus, in practice we are going

to use this MaxMinrS “ S1 Y ¨ ¨ ¨ Y Sts algorithm instead of the “global”

one. On the other hand, such a decomposition of MaxMin will be useful for

the proof of Theorem 4.3 (see Section 4.5).

Definition 4.5. For indices 1 ď a ď b ď s, consider the following interval

of S:

I “ ra, bs :“ tqj : a ď j ď bu Ď S.

We say that I admits precomputation if, after natural identifications,

the algorithm MaxMinrSs has the same output as

MaxMin rS “ tq1u Y ¨ ¨ ¨ Y tqa´1u Y I Y tqb`1u Y ¨ ¨ ¨ Y tqsus , (4.2)

where we consider the output of the algorithm MaxMinrIs as an extended

Okutsu I-basis.

By “natural identifications” we mean that if the kth output of MaxMinrSs

is ik “ piq1 , . . . , iqsq, then the kth output of the algoritm (4.2) is:

jk “ piq1 , . . . , iqa´1, iI , iqb`1, . . . , iqsq ,

while the ithI output of MaxMinrIs is piqa , . . . , iqbq.

Let pikq0ďkďnS be the output of MaxMinrSs, leading to numerators

ik “ piq1 , . . . , iqsq ùñ gik “
ź

qPS

giq,q.

Let g10, g
1
1, . . . , g

1
nI

be the numerators deduced from the application of the

algorithm MaxMinrIs. Then, let pjkq0ďkďnS be the output of the MaxMin

algorithm (4.2). If I admits precomputation, these multi-indices lead to
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numerators

jk “ piq1 , . . . , iqa´1, iI , iqb`1, . . . , iqsq ùñ

g1jk “ g1iI

ź

qPSzI

giq,q “
ź

qPI

giq,q
ź

qPSzI

giq,q “ gik , (4.3)

so that MaxMinrSs and (4.2) lead to the same family of numerators of an

Okutsu S-basis.

The next result is an immediate consequence of the definition.

Corollary 4.6. Let S “ I1Y¨ ¨ ¨YIt be a decomposition of S into the disjoint

union of intervals Ij “ raj , bjs with increasing end points b1 ă ¨ ¨ ¨ ă bt.

If all intervals Ij admit precomputation, then MaxMinrS “ I1Y¨ ¨ ¨Y Its

has the same output as MaxMinrSs, after natural identifications.

Suppose that i0, . . . , inS and j0, . . . , jnS are the outputs of MaxMinrSs

and MaxMinrS “ I1 Y ¨ ¨ ¨ Y Its, respectively. The natural identifications in

this case are

ik “ piq1 , . . . , iqsq ùñ jk “ pi1, . . . , itq ,

and for all 1 ď j ď t, the ithj output of MaxMinrSjs is the multi-index

piqmqajďmďbj .

Let us give a criterion for an interval to admit precomputation.

Lemma 4.7. Let i0, i1, . . . , inS be the output of MaxMinrSs and let I Ď S

be an interval of S. For each 0 ď k ď nS, let ik “ piqqqPS and denote

gik “
ź

qPS

giq,q, Gik “
ź

qPSzI

giq,q.

Suppose that for each 0 ď k ď nS the following condition holds

wI pgikq “ wS pgikq ùñ wp pGikq “ wq pGikq , @ p, q P I.

Then, I admits precomputation.

Proof. Let pikq0ďkďnS be the output of MaxMinrSs and pjkq0ďkďnS be the

output of the precomputed MaxMin algorithm (4.2).
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Clearly, i0 and j0 may be identified. For k ě 0, suppose that ik may be

identified with jk. This means

ik “ piq1 , . . . , iqsq ,

jk “ piq1 , . . . , iqa´1, iI , iqb`1, . . . , iqsq ,

while the ithI output of MaxMinrIs is the multi-index
`

iqj
˘

aďjďb
.

With the notation of (4.3),

gik “ g1jk , g1iI “
b
ź

m“a

giqm ,qm .

The algorithm MaxMinrSs outputs ik`1 “ ik ` uj , where

j “ min t1 ď m ď s : wqm pgikq “ wS pgikqu .

If qj R I, then the qj-index in jk will also be the least index satisfying

wqj

´

g1jk

¯

“ wS

´

g1jk

¯

, since g1jk “ gik . Thus, the algorithm in (4.2) will also

increase the qj-coordinate.

If qj P I, then wI pgikq “ wS pgikq and wqm pgikq ą wS pgikq for all

m ă a; thus, (4.2) will increase iI by one. In this case, we must show

that the piI ` 1q-th output of MaxMinrIs is the multi-index obtained from
`

iqj
˘

aďjďb
by increasing the qj-coordinate by one.

The index increased by MaxMinrIs will be:

J “ min
 

a ď m ď b : wqm

`

g1iI
˘

“ wI
`

g1iI
˘(

.

By hypothesis, ν :“ wq pGikpθqq is independent of the choice of q P I.

Since gik “ Gikg
1
iI

, we have:

wq pgikq “ wq

`

g1iI
˘

` ν, @ q P I.

In particular, wS pgikq “ wI pgikq “ wI
`

g1iI
˘

` ν, so that J “ j.

One specific case of precomputation which we will make use of, is the

precomputation of certain intervals St Ď S defined by a type t.
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Lemma 4.8. For any t P TS, the interval St Ď S admits precomputation.

Proof. For every p P St and every q R St, the explicit formulas from Propo-

sition 2.31 show that wq pφi,qq is independent of p, for all i. Hence, the same

is true for all polynomials Gik that are a product of these φ-polynomials.

Thus, St meets the criterion of Lemma 4.7.

4.3.1 Precomputation counter-example

To illustrate the necessity of the precomputation criterion, we present a

small example where an incompatible interval is precomputed and this leads

to output multi-indices which are not optimal. Let S “ tp, q, lu and consider

the first levels of a non-optimised tree shown in Figure 4.3.

ψ0

λlp “ λlq

λpl “ λql “ λ1,l

¨ ¨ ¨ tp

¨ ¨ ¨ tq

¨ ¨ ¨ tl

I

Figure 4.3: Non-optimised tree with interval that does not meet the pre-
computation criterion.

In this example, the branch that divides to become part of tp and tq

includes a refinement step after its division from the branch that is part of

tl. Let us consider the following values for the slopes shown in Figure 4.3:

λ1,p “ 6, λ1,q “ 4, λ1,l “ 4, λlp “ 2.

The first monic lifting of ψ0 to Orxs chosen by the Montes algorithm is

φpp, lq “ φpq, lq “ φ1,l. The branch of slope 2 suffers refinement and this

polynomial is replaced with φpp, qq “ φ1,p “ φ1,q. This polynomial leads

to two branches which constitute the first level of two nodes of order 1

belonging to the paths joining tp and tq with the root node, respectively.

The optimised hidden slopes λqp, λ
p
q coincide with λ1,p and λ1,q respec-

tively.
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For the purpose of this example, this is sufficient information about the

types tp, tq, and tl, except to say that the order of all three types is greater

than 1.

According to the explicit formulas in Proposition 2.31, we can calculate

the following valuations for the first level φ-polynomials of each type. The

valuations are given as a tuple ~w “ pwp, wq, wlq. Note also that φ1,p “

φpp, qq “ φ1,q.

~w pφ1,pq “ ~w pφ1,qq “ p6, 4, 2q,

~w pφ1,lq “ p2, 2, 4q.

The interval I “ tq, lu does not meet the precomputation criterion, as

we cannot guarantee that when either the q- or the l-valuation of an output

numerator is minimal, the q- and l-valuations of the p-part of that numerator

will be equal.

Let us now consider the first three basis numerators computed by the

MaxMinrSs. The minimal valuation (and as such, the index to increment

for the following numerator) is marked with an underline.

i gi ~w pgiq w pgiq

0 1 ¨ 1 ¨ 1 p0, 0, 0q 0

1 φ1,p ¨ 1 ¨ 1 p6, 4, 2q 2

2 φ1,p ¨ 1 ¨ φ1,l p8, 6, 6q 6

Let I “ tq, lu Ă S be the interval shown in Figure 4.3 and consider the

first three output numerators of MaxMinrIs.

i hi ~w phiq w phiq

0 1 ¨ 1 p0, 0q 0

1 φ1,q ¨ 1 p4, 2q 2

2 φ1,q ¨ φ1,l p6, 6q 6

Finally, we may consider the output of MaxMinrS “ tpu Y Is, the algo-

rithm using the results from the precomputed interval I.
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i g1i ~w pg1iq w pg1iq

0 1 ¨ 1 p0, 0, 0q 0

1 φ1,p ¨ 1 p6, 4, 2q 2

2 φ1,p ¨ h1 “ φ1,p ¨ φ1,q p12, 8, 4q 4

Since w pg2q “ 6 ą w pg12q “ 4, the output of MaxMinrS “ tpu Y Is

is not optimal. From this example, we see that precomputing an interval

which does not meet the precomputation criterion may lead to non-optimal

numerators.

4.4 The block-wise MaxMin algorithm

Consider an ordered subset S “ tq1, . . . , qsu Ď P, such that the correspond-

ing tree TS is connected, and take

` “ ipSq :“ min tipp, qq : p, q P Su ,

so that `´ 1 is the order of the greatest common node of all paths joining

the leaves of TS with the root node.

The Okutsu frames of all primes p P S have the same first ` ´ 1 key

polynomials φ1, . . . , φ`´1. Thus, the first m` numerators of the Okutsu p-

bases coincide for all p P S. Let

N “ t1 “ h0, h1, . . . , hm`´1u ,

be the family of these common numerators. Note that

wp phq “ wq phq , @ p, q P S, @ h P N . (4.4)

Lemma 4.9. For all p, q P S and all 0 ď r, s ă m`:

wq phrhsq ď

$

&

%

wq phr`sq , if r ` s ă m`,

wq pφ`,pq ` wq phkq , if r ` s “ m` ` k.

Proof. If r ` s ă m`, the inequality wq phrhsq ď wq phr`sq is a consequence
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of the maximality of wq phr`sq amongst all monic polynomials of degree

r ` s.

Suppose now r ` s “ m` ` k. The recurrence Vi “ ei´1fi´1pei´1Vi´1 `

hi´1q shows that

Vi
e1 ¨ ¨ ¨ ei´1

“ wq

´

φ
ei´1fi´1

i´1

¯

ă wq pφiq “
Vi ` λi
e1 ¨ ¨ ¨ ei´1

, @ i ă m`.

Hence, in any product of powers of φ1, . . . , φ`´1 we may replace φ
ei´1fi´1

i´1

with φi to increase the q-valuation. Therefore,

wq phrhsq ď wq

´

φ
e`´1f`´1

`´1

¯

` wq phkq “
V`

e1 ¨ ¨ ¨ e`´1
` wq phkq , (4.5)

because the term on the right hand side is the maximal q-valuation of a

product of powers of φ1, . . . , φ`´1 of degree m` ` k. Now, the formulas in

Proposition 2.31 show the existence a slope λ (either hidden or not) for

which

wq pφ`,pq “
V` ` λ

e1 ¨ ¨ ¨ e`´1
ą

V`
e1 ¨ ¨ ¨ e`´1

.

This ends the proof of the second inequality.

Lemma 4.10. Let i be a maximal multi-index of degree divisible by m`.

1. There exists a maximal multi-index i1 “ pi1pqpPS of the same degree,

having all its coordinates i1p divisible by m`.

2. The elements in the family giN are maximal numerators of degree

degpiq, degpiq ` 1, . . . ,degpiq `m` ´ 1.

Proof. For 0 ď j ă m`, let j “ pjpqpPS be a multi-index of degree im` ` j.

Each index jp may be written

jp “ qpm` ` kp, 0 ď kp ă m`,

and the numerators gjp,p of the Okutsu p-basis may be written

gjp,p “ Gphkp , degGp “ qpm`.
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By (4.4), we have

wS pgjq “ wS

˜

ź

pPS

Gphkp

¸

“ wS

˜

ź

pPS

Gp

¸

` wp0

˜

ź

pPS

hkp

¸

,

where p0 is an arbitrary choice of a prime ideal in S.

Since all polynomials Gp have a degree which is a multiple of m`, we

have
ř

pPS kp “ qm` ` j, for some non-negative integer q. Consider the

polynomial h :“ φ
e`´1f`´1

`´1 of degree m`. By an iterative application of the

inequalities in (4.5), we get

wq

˜

ź

pPS

hkp

¸

ď wq ph
qq ` wq phjq , @ q P S.

Hence,

wS pgjqq ď wS

˜

hq
ź

pPS

Gp

¸

` wp0 phjq

“ wS

˜

hqhj
ź

pPS

Gp

¸

ă wS

˜

φq`,p0hj
ź

pPS

Gp

¸

.

The final inequality is a consequence of ŵp pφk,p0q ă ŵp pφ`,p0q, for all k ă `

and p P S, which is shown in Lemma 3.12.

These arguments, applied to j “ i (and j “ 0) prove item (1). Also,

applied to an arbitrary j of degree degpiq ` j show that

wS pgjq ď wS

˜

φq`,p0

ź

pPS

Gp

¸

` wp0 phjq

ď wS pgiq ` wp0 phjq

“ wS pgihjq ,

by the maximality of gi. This proves item (2).

Lemma 4.11. Let i “ piqqqPS be an output multi-index of MaxMinrSs of

degree divisible by m`.

1. All coordinates iq are divisible by m`.
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2. Let j “ min t1 ď m ď s : wqm pgiq “ wS pgiqu. Then, the next m` it-

erations of MaxMinrSs increase the coordinate qj.

Proof. All coordinates of i0 are zero; hence divisible by m`. Thus, it suffices

to prove that any output multi-index i “ piqqqPS whose coordinates are all

divisible by m` satisfies (2).

Let j “ min t1 ď m ď s : wqm pgiq “ wS pgiqu. If i “ ik is the k-th out-

put multi-index of MaxMinrSs, the algorithm selects ik`1 “ ik ` uj . Since

iqj is a multiple of m`, we have gik`1
“ gikh1; hence,

wq

`

gik`1

˘

“ wq pgikq ` wq ph1q

ě wS pgikq ` wq ph1q

“ wS
`

gik`1

˘

,

for all q P S. Thus, wq

`

gik`1

˘

“ wS
`

gik`1

˘

if and only if wq pgikq “ wS pgikq,

so that the next iteration increases the qj-coordinate again. By iterating

this argument, we get gik`m`´1
“ gikhm`´1. At this point, the qj-coordinate

will be increased once more to yield ik`m` “ ik `m`uj .

This result shows that MaxMinrSs works by blocks of length m`. Thus,

we may consider Algorithm 4.3.

Algorithm 4.3 MaxMinrS;m`s algorithm

Input: An ordered subset S “ tq1, . . . , qsu Ď P such that TS is connected,
and extended families tgi,q : 0 ď i ď nqu of numerators of Okutsu q-
bases of each q P S.

Output: A family i0, im` , i2m` , . . . , inS{m` of multi-indices with deg ik “ k,
having all coordinates divisible by m`.

1: i0 Ð p0, . . . , 0q
2: for k “ 0 Ñ pnS{m`q ´ 1 do

3: j Ð min
!

1 ď i ď s : wqi

´

gikm`

¯

“ wS

´

gikm`

¯)

4: ipk`1qm` Ð ikm` `m`uj
5: end for

Theorem 4.3 will be a consequence of the following result.

Theorem 4.12. The output multi-indices of MaxMinrS;m`s are maximal

amongst all multi-indices of the same degree with coordinates divisible by m`.
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In fact, by Lemma 4.10, all output multi-indices of MaxMinrS;m`s will

be maximal and by Lemma 4.11 these multi-indices coincide with the output

multi-indices of degree divisible by m` of MaxMinrSs.

Finally, Lemma 4.11 shows how to derive all other output multi-indices

of MaxMinrSs and Lemma 4.10 shows that these multi-indices are maximal

too.

4.5 Proof of Theorem 4.12

The proof of Theorem 4.12 makes a heavy use of the structure of the non-

optimised tree with base type t`´1 which is the greatest common node in

all paths joining the leaves of TS with the root node.

Let φ` be the first representative of t`´1 which leads to branching. Thus,

before constructing φ`, the Montes algorithm may have constructed other

representatives of t`´1 admitting unibranch refinements.

Let λmin be the least slope (in absolute size) occurring in the branching

based on φ`. Let Smin Ď S be the subset of all prime ideals derived from a

branches of slope λmin of φ`.

ψ0 ¨ ¨ ¨
t`´1

¨ ¨ ¨
φ`

λ, ψ1

λmin, ψ

Figure 4.4: Tree T with common node t`´1.

The basic idea is to split S “ U Y D (U for “up” and D for “down”)

into the disjoin union of two intervals which admit precomputation and then

analyse the behaviour of MaxMinrS “ U YDs for which the multi-indices

have only two coordinates.

Lemma 4.10 and Lemma 4.11 show that the output multi-indices of

MaxMinrS;m`s coincide with the output of an ordinary application of the

2-dimensional MaxMin applied to the precomputations MaxMinrU ;m`s and

MaxMinrD;m`s. We shall denote this algorithm by MaxMinrS “ U Y

D;m`s.
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We distinguish three cases according to the structure of the non-optimised

tree:

Case (A). There exists a branch with slope λmin which suffered refinement.

In this case, we take D to be the set of all prime ideals derived from this

branch. Note that φ`,p ‰ φ` @ p P D, and that there may be other λmin-

branches.

ψ0 ¨ ¨ ¨
t`´1

¨ ¨ ¨
φ` λ, ψ1

λmin, ψ

D
...

Figure 4.5: Case (A): Tree T with common node t`´1 and at least one
refined λmin-branch.

Case (B). None of the λmin-branches suffered refinement, and there are no

other slopes. In other words, λ`,p “ λmin and φ`,p “ φ` for all p P S “ Smin.

In this case, we take D “ St, where t :“ Trunc`ptp0q, for an arbitrary

choice of p0 P S.

ψ0 ¨ ¨ ¨

t`´1

pt`´1; pφ`, λmin, ψ
1qq

pt`´1; pφ`, λmin, ψ
˚qq

pt`´1; pφ`, λmin, ψqq “ t

Figure 4.6: Case (B): Tree T with common node t`´1 with only unrefined
λmin-branches.

Case (C). None of the λmin-branches suffered refinement, but there are

other slopes. In other words, λ`,p “ λmin and φ`,p “ φ`, for all p P Smin,

and Smin Ĺ S.

In this case, we take D “ Smin.

In all cases, we may change the ordering of P so that D and U “ SzD

are intervals.
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ψ0 ¨ ¨ ¨

t`´1

...

...

pt`´1; pφ2` , λ
2, ψ2qq

pt`´1; pφ1`, λ
1, ψ1qq

pt`´1; pφ`, λmin, ψ
˚qq

pt`´1; pφ`, λmin, ψqq

Smin

Figure 4.7: Case (C): Tree T with common node t`´1 with unrefined λmin-
branches and other slopes.

4.5.1 Proof of the Theorem in cases (A) and (B)

Let U “ SzD and denote

c :“
V` ` λmin

e1 ¨ ¨ ¨ e`´1
.

The explicit formulas from Proposition 2.31 show that

wp pφm,qq “ pm{m`qc “ wq pφm,pq , @ p P U, q P D, @ m ě `. (4.6)

On the other hand, all ideas and criteria about precomputation apply

to the MaxMin algorithms restricted to all multi-indices whose coordinates

are divisible by m`. Hence, (4.6) shows that D and U “ SzD meet the

condition of Lemma 4.7 and both intervals admit precomputation.

Denote the respective output families of numerators of MaxMinrU ;m`s

and MaxMinrD;m`s by:

1, g1, . . . , gnU {m` ,

1, g11, . . . , g
1
nD{m`

,

respectively. Note that deg gk “ deg g1k “ km`, for all k.

By Corollary 4.6, MaxMinrS;m`s has the same output as MaxMinrS “

U YD;m`s, after natural identifications of the respective multi-indices. In

other words, if pi, jq is the k-th output of MaxMinrS “ U YD;m`s (so that

k “ i` j), then the k-th numerator provided by MaxMinrS;m`s is gig
1
j .
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Definition 4.13. We say that a monic polynomial G P Orxs has support in

a subset S1 Ă S if it is a product of polynomials φm,p for p P S1 and m ě `.

Note that the degree of G is necessarily a multiple of m`.

In order to prove Theorem 4.12, we must show that the output numer-

ators of MaxMinrS;m`s are maximal amongst all polynomials of the same

degree with support in S.

We proceed by induction on #S. The case #S “ 1 being trivial, we

may assume by the induction hypothesis that both sequences of numerators

are maximal amongst all polynomials of the same degree with support in U

and D, respectively.

For all 0 ď i ď nU{m` and all 0 ď j ď nD{m`, denote

νi :“ wU pgiq ´ ic,

ν 1j :“ wD
`

g1j
˘

´ jc.
(4.7)

We agree that ν´1 “ ν 1´1 “ ´1.

Lemma 4.14. For all i, j ě 0,

νi ď νi`1, ν 1j ď ν 1j`1.

Proof. By Proposition 2.31, wq pφ`,qpθqq “ pV` ` λ`,qq{pe1 ¨ ¨ ¨ e`´1q for all

q P U . Since λ`,q ě λmin, the maximality of gi`1 implies

wU pgi`1q ě wU pgiφ`,qq ě wU pgiq ` c, @ q P U.

Similarly, the maximality of g1j`1 implies

wD
`

g1j`1

˘

ě wD
`

g1jφ`
˘

“ wD
`

g1j
˘

` c.

By the definition (4.7) of νi, ν
1
j , this ends the proof of the lemma.

For any bi-index i “ pi, jq, and any p P U , q P D, we have

wp pgiq “ wp

`

gig
1
j

˘

“ wp pgipθqq ` jc,

wq pgiq “ wq

`

gig
1
j

˘

“ wq

`

g1jpθq
˘

` ic.
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Hence,

wU pgiq “ νi ` pdeg iqc,

wD pgiq “ ν 1j ` pdeg iqc,

wS pgiq “ wS
`

gig
1
j

˘

“ min
 

νi, ν
1
j

(

` pdeg iqc.

Therefore, these numbers νi, ν
1
j determine the flow of MaxMinrS “

U Y D;m`s. If pi, jq is an output pair, the next output pair is decided as

follows:

wU
`

gig
1
j

˘

“ wS
`

gig
1
j

˘

ðñ νi ď ν 1j , “U -minimal”,

wD
`

gig
1
j

˘

“ wS
`

gig
1
j

˘

ðñ ν 1j ă νi, “D-minimal”.

The next output pair is pi ` 1, jq in the U -minimal case, and pi, j ` 1q

in the D-minimal case.

Proposition 4.15. The output bi-indices pi, jq of MaxMinrS “ U YD;m`s

satisfy the following properties:

1. Either ν 1j´1 ď νi ď ν 1j, or νi´1 ď ν 1j ă νi.

2. The output multi-indices i “ pipqpPS of MaxMinrS;m`s which are ob-

tained by joining the i-th output of MaxMinrU ;m`s and the j-th output

of MaxMinrD;m`s are maximal.

Proof. Clearly, the initial output pair p0, 0q satisfies (1). Let us check that

if an output pair pi, jq satisfies (1), then the next output pair satisfies (1)

as well.

Suppose that ν 1j´1 ď νi ď ν 1j , so that the next output pair is pi` 1, jq.

νi`1 ď ν 1j ùñ ν 1j´1 ď νi ď νi`1 ď ν 1j ,

νi`1 ą ν 1j ùñ νi ď ν 1j ă νi`1.
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Suppose that νi´1 ď ν 1j ă νi, so that the next output pair is pi, j ` 1q.

νi ď ν 1j`1 ùñ ν 1j ă νi ď ν 1j`1,

νi ą ν 1j`1 ùñ νi´1 ď ν 1j ď ν 1j`1 ă νi.

This proves item (1). As a consequence, for any k P Z such that 0 ď

i´ k ď nU{m` and 0 ď j ` k ď nD{m`, we have:

min
 

νi´k, ν
1
j`k

(

ď min
 

νi, ν
1
j

(

. (4.8)

In fact, if ν 1j´1 ď νi ď ν 1j , then min
!

νi´k, ν
1
j`k

)

ď νi, whereas in the

case νi´1 ď ν 1j ă νi, we have min
!

νi´k, ν
1
j`k

)

ď ν 1j .

In order to prove (2), suppose that pi, jq is an output pair of MaxMinrS “

U YD;m`s and let g be a polynomial of degree pi ` jqm` with support in

S. We may write g “ GG1, with G, G1 polynomials with support in U and

D, respectively.

Suppose degG “ pi ´ kqm`, degG1 “ pj ` kqm`, for certain k P Z. By

(4.6) and the maximality of the numerators gi´k, g
1
j`k, we have:

wU pgq “ wU
`

GG1
˘

“ wU pGq ` pj ` kqc

ď νi´k ` pi´ kqc` pj ` kqc

“ νi´k ` pi` jqc,

wD pgq “ wD
`

GG1
˘

“ wD
`

G1
˘

` pi´ kqc

ď ν 1j`k ` pj ` kqc` pi´ kqc

“ ν 1j`k ` pi` jqc.
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Hence, by using (4.8), we get:

wS pgq “ min twU pgq , wD pgqu

“ min
 

νi´k, ν
1
j`k

(

` pi` jqc

ď min
 

νi, ν
1
j

(

` pi` jqc

“ wS
`

gig
1
j

˘

.

This ends the proof of Theorem 4.12 in cases (A) and (B).

4.5.2 Precomputation in Case (C)

Recall that D “ Smin and U “ SzD. In this case, we have:

φ`,q “ φ`, @ q P D,

φpp, qq “ φ`, @ p P U, q P D.

For each p P S we denote by λp the slope of the branch of φ` in the

non-optimised tree to which the leaf of p belongs. Also, we denote

c :“
V` ` λmin

e1 ¨ ¨ ¨ e`´1
, δp :“

λp ´ λmin

e1 ¨ ¨ ¨ e`´1
.

The explicit formulas presented in Proposition 2.31 show that for all

p P U, q P D:

wq pφi,pq “ pmi{m`qc, @ i ě `,

wp pφi,qq “

$

&

%

pmi{m`qc, if i ą `,

δp ` c, if i “ `.

(4.9)

Let G be a polynomial of degree im` with support in U , and let G1

be a polynomial of degree jm` with support in D. If m :“ ordφ`pG
1q, the
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formulas (4.9) show that:

wU
`

GG1
˘

“ min twp pGq `mδpupPU ` jc,

wD
`

GG1
˘

“ wD
`

G1
˘

` ic.
(4.10)

The first formula of (4.9) shows that D meets the criterion of Lemma

4.7 and admits precomputation. In order to show that U admits precom-

putation too, we need another lemma.

Notation. For each p P D, we denote mp :“ m``1,p “ e`,pf`,pm`.

Note that e`,p is independent of p, because it is the least positive denom-

inator of λmin.

Lemma 4.16. Let i “ pipqpPS be an output of MaxMinrS;m`s and g “ gi the

corresponding numerator. Let p P S be the least prime with wp pgq “ wS pgq.

1. If p P D and mp � ip, then the next e`,pf`,p output numerators are

gφ`, gφ
2
` , . . . , gφ

e`,pf`,p´1
` ,

and finally

˜

ź

q‰p

giq,q

¸

¨ gip`mp,p.

2. If p P U , then mq � iq for all q P D.

Proof. Suppose p P D and mp � ip. Since the element gip,p, a numerator of

the Okutsu p-basis has degree divisible by mp, it is not divisible by φ`, and

gip`1,p “ gip,pφ`. Hence, the next output numerator is gφ`.

By (4.9), wp pgφ`q “ wp pgq ` c, while wq pgφ`q ě wq pgq ` c for all q P S.

Thus, the least prime with wq pgφ`q “ wS pgφ`q is, once again, the prime p.

This argument may be iterated as long as ordφ`pgip`km`,pq “ k ă e`,pf`,p.

For k “ f`,pf`,p ´ 1, the prime p is still the least one satisfying wp

`

gφk`
˘

“

wS
`

gφk`
˘

, so that the component of the multi-index corresponding to p is

increased and the output multi-index is i`mpup.
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Since ip`mp ” 0 pmod mpq, the polynomial gip`mp,p is not divisible by

φ`; in particular, it is not equal to φ` times the previous polynomial and

the prime p may cease to satisfy wp

`

gi`mpup

˘

“ wS
`

gi`mpup

˘

.

The second item follows immediately from the first.

Corollary 4.17. U admits precomputation.

Proof. Let us show that U meets the criterion of Lemma 4.7.

Let i “ pipqpPS be an output of MaxMinrS;m`s and let g “ gi be the

corresponding numerator. Suppose that wU pgq “ wS pgq. With respect to

the ordering of S, all elements in U are less than all elements in D; hence,

the least prime p with wp pgq “ wS pgq belongs to U . By (2) of Lemma 4.16,

mq � iq for all q P D, and this implies that none of the numerators giq,q, for

q P D, is divisible by φ`.

Therefore, (4.9) shows that wp

`

giq,q
˘

“ piq{m`qc for all p P U , and the

value wp pGiq “ wp

´

ś

qPD giq,q

¯

is independent of p P U .

4.5.3 Proof of the Theorem in Case (C)

Denote the respective output families of numerators of MaxMinrU ;m`s and

MaxMinrD;m`s by:

1, g1, . . . , gnU {m` ,

1, g11, . . . , g
1
nD{m`

,

respectively. Note that deg gk “ deg g1k “ km`, for all k.

Let i “ pipqpPS be an output of MaxMinrS;m`s. Since U and D admit

precomputation, Corollary 4.6, Lemma 4.10, and Lemma 4.11 show that

gi “ gig
1
j , for the k-th output pi, jq of MaxMinrS “ U YD;m`s.

Notation. We denote rjs :“ ordφ`pg
1
jq, for 0 ď j ď nD{m`.

By Lemma 4.16, all indices iq, for q P D are divisible by mq except

eventually for one, say iq0 . Hence, rjs is the residue of the euclidian division

of iq0 by mq0 . Note that rjs “ 0 if and only if mq � iq for all q P D.
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Let us consider rational numbers νi, ν
1
j as in (4.7). The formulas (4.10)

translate into

wU
`

gig
1
j

˘

“ min twp pgiq ` rjsδpupPU ` jc,

wD
`

gig
1
j

˘

“ wD
`

g1j
˘

` ic “ ν 1j ` pi` jqc.
(4.11)

Lemma 4.18. These data νi, ν
1
j satisfy the following properties for all i, j ą

0:

1. νi´1 ă νi.

2. ν 1j´1 ď ν 1j and if rjs ‰ 0 then equality holds.

Proof. Take any p P U . By Proposition 2.31, we have the value wp pφ`,pq “

pV` ` λ`,pq{pe1 ¨ ¨ ¨ e`´1q. Since λ`,q ą λmin, the maximality of gi implies

wU pgiq ě wU pgi´1φ`,pq ą wU pgi´1q ` c,

because wq pφ`,pq “ pV` ` λq{pe1 ¨ ¨ ¨ e`´1q for some λ ą λmin, for all q P U .

This proves (1). Similarly, the maximality of g1j implies ν 1j´1 ď ν 1j .

By Lemma 4.16, rjs ‰ 0 implies that g1j “ g1j´1φ`. Since wq pφ`q “ c for

all q P D, this implies wD

´

g1j

¯

“ wD

´

g1j´1

¯

` c. This proves (2).

Lemma 4.19. Let i “ pi, jq be an output pair of MaxMinrS “ U YD;m`s.

Then,

1. Either ν 1j´1 ď νi ď ν 1j, or νi´1 ď ν 1j ă νi.

2. The next output pair is pi` 1, jq in the first case, and pi, j ` 1q in the

second case.

Proof. Clearly, the initial pair p0, 0q satisfies (1), the next output pair is

p1, 0q, and it satisfies (1) too. Let us show by induction that if an output

pair satisfies (1) then the next output pair is given as indicated in (2) and

it satisfies (1) as well.

Suppose that ν 1j´1 ď νi ď ν 1j . If the previous output pair was pi´ 1, jq,

the induction hypothesis implies that we had ν 1j´1 ď νi´1 ď ν 1j . Since

ν 1j´1 ď νi´1 ă νi ď ν 1j , we have rjs “ 0 by item (2) of Lemma 4.18. If
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the previous output pair was pi, j ´ 1q, then ν 1j´1 ă νi by the induction

hypothesis. This leads again to ν 1j´1 ă ν 1j and to rjs “ 0.

Thus, (4.11) shows that

wU
`

gig
1
j

˘

“ wU pgiq ` jc

“ νi ` pi` jqc

ď ν 1j ` pi` jqc

“ wD
`

gig
1
j

˘

.

Thus, wU

´

gig
1
j

¯

“ wS

´

gig
1
j

¯

and the next output pair is pi`1, jq. The

arguments of the proof of Proposition 4.15 show that pi` 1, jq satisfies (1).

Suppose that νi´1 ď ν 1j ă νi. By (4.11), we have

wD
`

gig
1
j

˘

“ ν 1j ` pi` jqc

ă νi ` pi` jqc

“ wU pgiq ` jc

ď min twp pgiq ` rjsδpupPU ` jc

“ wU
`

gig
1
j

˘

.

Thus, wD

´

gig
1
j

¯

“ wS

´

gig
1
j

¯

and the next output pair is pi, j ` 1q.

The arguments of the proof of Proposition 4.15 show that pi, j` 1q satisfies

(1).

Lemma 4.20. Consider indices 0 ď k ď i and let G be a polynomial of

degree pi´ kqm` with support in U . Then,

min twp pGq ` kδpupPU ď νi ` pi´ kqc.

Proof. Let q P U be a prime ideal with a maximal value of λq. The statement
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follows from the following chain of inequalities:

min twp pGq ` kδpupPU ` kc ď wU

´

Gφk`,q

¯

ď wU pgiq

“ νi ` ic.

(4.12)

The second inequality of (4.12) follows from the maximality of gi. The

first inequality is deduced from the formulas from Proposition 2.31. In fact,

for any p P U , these formulas yield wp pφ`,qq “ pV` ` λq{pe1 ¨ ¨ ¨ e`´1q, for a

certain slope λ, depending on p, such that λ ě λp; hence,

wp

´

Gφk`,q

¯

“ wp pGq ` k
V` ` λ

e1 ¨ ¨ ¨ e`´1

ě wp pGq ` kpc` δpq,

for all p P U , which implies the first inequality in (4.12).

More precisely, if ipp, qq “ `, then λ “ λqp or λ “ min
 

λqp, λ
p
q

(

, according

to φpp, qq being equal to φ`,q or not. Now, if p and q belong to the same

φ`-branch of the non-optimised tree, we have (see Section 2.7)

λp “ λq ă min
 

λqp, λ
p
q

(

ď λ.

If p and q belong to different φ`-branches of the non-optimised tree, then

λqp “ λp, λ
p
q “ λq, so that, again,

λp “ min tλp, λqu “ min
 

λqp, λ
p
q

(

ď λ.

Finally, if ipp, qq ą `, then λ “ λ`,q “ λ`,p ě λp, by Proposition 2.31.

We are ready to prove Theorem 4.12 in Case (C).

Proposition 4.21. In Case (C), all output multi-indices of MaxMinrS;m`s

are maximal amongst the multi-indices of the same degree whose coordinates

are all divisible by m`.

Proof. Let i “ pipqpPS be an output multi-index of MaxMinrS;m`s, obtained

by joining the i-th output of MaxMinrU s and the j-th output of MaxMinrDs.
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Let g be a polynomial of degree pi ` jqm` with support in S. We may

write g “ GG1, with G, G1 polynomials with support in U and D, respec-

tively.

Suppose degG “ pi ´ kqm`, degG1 “ pj ` kqm`, for certain k P Z. Let

us write

G1 “ Hφm` , φ` ffl H, degH “ qm`.

Note that q `m “ j ` k. By (4.10),

wU
`

GG1
˘

“ min twp pGq `mδpupPU ` pj ` kqc,

wD
`

GG1
˘

“ wD
`

G1
˘

` pi´ kqc.

Since wp pφ`q “ c for all q P D, the last equality leads to

wD
`

GG1
˘

“ wD
`

G1
˘

` pi´ kqc

“ wD pHq ` pm` i´ kqc

ď wD
`

g1q
˘

` pm` i´ kqc

“ ν 1q ` pq `m` i´ kqc

“ ν 1q ` pi` jqc.

(4.13)

By Lemma 4.19, we may distinguish two cases according to the compar-

ison of νi with ν 1j .

Case 1. ν 1j´1 ď νi ď ν 1j . In this case, we saw during the proof of Lemma

4.19 that rjs “ 0. Hence, wS

´

gig
1
j

¯

“ wU

´

gig
1
j

¯

“ νi ` pi` jqc, by (4.11).

We want to show that

wS
`

GG1
˘

“ min
 

wU
`

GG1
˘

, wD
`

GG1
˘(

ď νi ` pi` jqc.
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If m ď k, then Lemma 4.20 shows that

wU
`

GG1
˘

“ min twp pGq `mδpupPU ` pj ` kqc

ď min twp pGq ` kδpupPU ` pj ` kqc

ď νi ` pi´ kqc` pj ` kqc

“ νi ` pi` jqc.

If m ą k, then q ă j, or equivalently q ď j ´ 1. Thus, (4.13) shows that

wD
`

GG1
˘

ď ν 1q ` pi` jqc

ď ν 1j´1 ` pi` jqc

ď νi ` pi` jqc.

Case 2. νi´1 ď ν 1j ă νi. In this case, Lemma 4.19 and (4.11) show that

wS

´

gig
1
j

¯

“ wD

´

gig
1
j

¯

“ ν 1j ` pi` jqc. We want to show that

wS
`

GG1
˘

“ min
 

wU
`

GG1
˘

, wD
`

GG1
˘(

ď ν 1j ` pi` jqc.

If m ă k, then m ď k ´ 1. Having in mind that degG{m` “ i ´ k “

pi´ 1q ´ pk ´ 1q, Lemma 4.20 shows that

wU
`

GG1
˘

“ min twp pGpθqq `mδpupPU ` pj ` kqc

ď min twp pGpθqq ` pk ´ 1qδpupPU ` pj ` kqc

ď νi´1 ` pi´ kqc` pj ` kqc

“ νi´1 ` pi` jqc

ď ν 1j ` pi` jqc.

If m ě k, then q ď j and (4.13) shows that

wD
`

GG1
˘

ď ν 1q ` pi` jqc ď ν 1jpi` jqc.
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4.6 MaxMin for unconnected trees

In this section we will discuss the application of the MaxMin algorithm to

a set of unconnected trees.

4.6.1 The separated MaxMin algorithm

Consider a partition

S “ S1 Y ¨ ¨ ¨ Y St Ď P, (4.14)

of a subset of Psuch that all elements in Si are less than all elements of Sj for

i ă j. We say that the partition of S is “separated” if for any 1 ď i ‰ j ď t

and any choice of p P Si, q P Sj , the following equivalent conditions hold:

1. ipp, qq “ 0.

2. tp and tq do not belong to the same connected subtree of T.

3. gcdpF p, F qq “ 1.

In this case, the formulas in Proposition 2.31 show that:

wp pφi,qq “ 0, 1 ď i ď rq ` 1. (4.15)

For any p, q P P, the condition “tp and tq belong to the same connected

subtree of T” defines an equivalence relation „ on P. Hence, every subset

S Ă P admits a unique separated partition (4.14) satisfying moreover:

p, q P Si ùñ p „ q,

for all 1 ď i ď t.

For separated partitions, we may consider the “separated MaxMin”,

presented in Algorithm 4.4.

The aim of this section is to prove the following result.

Theorem 4.22. The output multi-indices of SepMaxMinrS “ S1Y¨ ¨ ¨YSts

are maximal.
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Algorithm 4.4 SepMaxMinrS “ S1 Y ¨ ¨ ¨ Y Sts algorithm

Input: A separated partition S “ S1Y ¨ ¨ ¨YSt of S, and extended families
tGk,i : 0 ď k ď nSiu of numerators of Okutsu Si-bases for all 1 ď i ď t.

Output: A family i0, i1, . . . , inS P Nt of multi-indices ik “ pkiq1ďiďt of
degree 0, 1, . . . , nS , respectively.

1: i0 Ð p0, . . . , 0q P Nt
2: for k “ 0 Ñ nS ´ 1 do
3: j Ð min t1 ď i ď t : wSi pGki,iq “ wS pGikqu

4: ik`1 Ð ik ` uj
5: end for

Thanks to the separateness of the partition, condition (4.15) shows that

wSi pGki,iq “ wSi pGikq ,

for all 1 ď i ď t and all ik. Hence SepMaxMinrS “ S1 Y ¨ ¨ ¨ Y Sts has the

same output as MaxMinrS “ S1 Y ¨ ¨ ¨ Y Sts.

The only difference between the two algorithms is that in the separated

algorithm for the computation of wSi pGikq we only need to concern ourselves

with the Si-valuation of the polynomial Gki,i.

On the other hand, (4.15) implies that the criterion of Lemma 4.7 is

fulfilled, and so SepMaxMinrS “ S1 Y ¨ ¨ ¨ Y Sts has the same output as

MaxMinrSs after natural identification of the output multi-indices.

Therefore, we may drop the condition of the connectedness of TS in

Theorem 4.3. In fact, Theorem 4.3 and Theorem 4.22 imply the main result

of this memoir.

Theorem 4.23. All output multi-indices of MaxMinrSs are maximal.

In the remainder of this section, we will agree that wSi pG´1,iq “ ´1 for

all 1 ď i ď t.

Lemma 4.24. Let ik “ pkiq1ďiďt be the k-th output multi-index resulting

from SepMaxMinrS “ S1 Y ¨ ¨ ¨ Y Sts, and let j be the minimal index as in

line 3 of the algorithm. Then, for all 1 ď i ď t,

wSi pGki,iq ě wSj
`

Gkj ,j
˘

ě wSi pGki´1,iq . (4.16)
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Proof. The first inequality is a direct consequence of

wSj
`

Gkj ,j
˘

“ wS pgikq ď wSi pGkiq ,1 ď i ď t.

Let us prove the second inequality by induction on the degree k of the

output multi-index. Clearly, the initial multi-index i0 “ p0, . . . , 0q P Nt

satisfies (4.16). Let ` be the minimal index in the pk ´ 1q-th iteration, so

that

ik´1 “ ik ´ u`, ik`1 “ ik ` uj .

Let us assume that ik´1 satisfied (4.16). Thus

wS` pGk`´1,`q ě wSi pGki´1,iq , 1 ď i ď t.

If ` “ j, we immediately deduce:

wSj
`

Gkj ,j
˘

ě wSj
`

Gkj´1,j

˘

ě wSi pGki´1,iq , 1 ď i ď t.

On the other hand, if ` ‰ j, by construction ` satisfies:

wS` pGk`´1,`q “ wS
`

gik´1

˘

ď wSj
`

Gkj ,j
˘

,

and we also deduce the inequality we are looking for:

wSj
`

Gkj ,j
˘

ě wS` pGk`´1,`q ě wSi pGki´1,iq , 1 ď i ď t.

We can now proceed to prove this section’s main theorem.

Proof of Theorem 4.22. We will proceed by induction on the iteration

m. For m “ 0, i0 “ p0, . . . , 0q which is maximal by virtue of being unique.

Suppose all output multi-indices up to and including ik “ pk1, . . . , ktq

are maximal. Let Sj be minimal in iteration m so that ik`1 “ ik ` uj . It
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will be shown that

wS
`

Gik`1

˘

ě wS pGjq @ j, deg j “ k ` 1.

In order that j “ pj1, . . . , jtq ‰ ik`1 have degree k ` 1, it is necessary

that either

1. j “ ik ` u` for ` ‰ j; or

2. there exists at least one coordinate ` such that j` ă k`.

For case (1), wS pGjq “ wSj
`

Gkj ,j
˘

“ wS pGikq. In the case of (2), by

(4.16) we can see that,

wS pGikq “ wSj
`

Gkj ,j
˘

ě wS` pGk`´1,`q

ě wS` pGj`,`q

ě wS pGjq .

Meanwhile, by the construction of ik`1 from ik we have,

wS
`

Gik`1

˘

ě wS pGikq ě wS pGjpθqq ,

and so ik`1 is maximal.

4.7 Improvement of Okutsu approximations

During the execution of the MaxMin algorithm, as presented in Section 4.2,

we have taken the p-valuation of φp the Okutsu approximation to Fp to be

formally infinite. This is practical, as wp pφppθqq depends on the choice of

φp as an Okutsu approximation to Fp and can be arbitrarily large.

However, in order to construct a basis, a concrete approximation must

be chosen. The Montes algorithm provides us with an approximation and by

using the Single Factor Lifting (SLF) algorithm, we can efficiently improve

the approximation and raise its p-valuation.
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In this section, we will compute a lower bound on the required valuation

wp pφppθqq so that we may use the minimum number of iterations of the SFL

algorithm.

Let G0, G1, . . . , Gn´1 be the family of numerators of a v-integral basis

created by the MaxMin algorithm and let i0, i1, . . . , in´1 be the multi-indices

that define them so that

Gk “
ź

pPP
gikrps,p, 0 ď k ă n,

where irps is the p-coordinate of the multi-index i and gj,p is the j-th nu-

merator of the Okutsu p-basis.

Let νk P Q be the maximal w-valuation for a monic polynomial in Orxs
of degree k evaluated in θ. If we take the formally infinite p-valuation for

φp for all p P P, then w pGkpθqq “ νk.

For all p P P, wp pφppθqq must be large enough that for all 1 ď k ă n

such that φp � Gk, we have

wp pGkpθqq ě νk.

Definition 4.25. We define the required p-valuation for the Okutsu approx-

imation to Fp to be,

Wp :“ max

#

νk ´
ÿ

q‰p

wp

`

gikrqs,qpθq
˘

: ikrps “ rp ` 1

+

.

Computationally, the value of Wp is simple to calculate. At each iter-

ation k where ikrps has reached the value rp ` 1 we sum the precomputed

p-valuations for all the numerators being included in Gk, except the p-

numerator and then subtract this from minimum valuation (which we must

find to increment the multi-index for the next iteration anyway). We com-

pare this to the previously stored Wp and keep the greater value.
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4.8 Further optimisation

The MaxMin algorithm can benefit from a number of optimisations, de-

pending on the structure of the genetic tree T of types which represent the

prime ideals p P P of OL.

One optimisation is the precomputation of a subset St Ď P of prime

ideals which share a common type in their genetic tree. Another, related,

optimisation is the case where a set S of prime ideals has an index of coinci-

dence ipSq “ ` ą 1 greater than one. In this case, we can use MaxMinrS;m`s

to only calculate the indices divisible by m`, and fill in the remaining indices

as per Lemma 4.10.

Both of these optimisations will be further explored during the complex-

ity analysis in Chapter 6.

4.8.1 Terminal sides of a type

Let t be a type of order r with representative φ encountered during the

execution of the Montes algorithm. We consider the order r Newton polygon

N´vt,φ,ωpfq created using the data inherent in the type, as shown in Figure

4.8.

N´t,φ,ωpfq
Sλt

Sλt´1

Sλ1

ω

Figure 4.8: Higher order Newton polygon of f with multiple slopes.

For each side Sλ of the Newton polygon, we calculate a residual poly-

nomial and consider its irreducible factors in the extension of the residual
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class field Fr.

Rvt,φ,λpfq “ ζ
ź

ψωψ , ζ P Fr, ψ P Frrys.

A new type is created from the data t1 “ pt; pφ, λ, ψqq. In the case that

ωψ “ 1, this type is a leaf node of the genetic tree describing f and is an

OM representation of a prime ideal pt1 P P of OL. As such, we call this new

type t1 terminal. We also call the prime ideal pt1 a terminal prime ideal of

t.

Definition 4.26. Let t be a type of order r and φ a representative of t.

Consider the side Sλ of slope ´λ of the Newton polygon N´t,φ,ωpfq and let

St,φ,λ be the set of all prime ideals of this side Sλ. We call Sλ a terminal

side if it has one or more irreducible factors ψ with exponent ωψ “ 1.

For a terminal side Sλ, the set of terminal prime ideals of that side is

Iλ Ă St,φ,λ. Additionally,

I “
ď

λ

Iλ,

is the set of all terminal prime ideals of t.

Let Sλ be a terminal side of t, φ, then the terminal length of Sλ is given

by

`termpSλq “ eλ
ÿ

tψ:ωψ“1u

fψ,

where eλ is the denominator of λ “ hλ{eλ and fψ is the degree of ψ.

Let φ1, . . . , φr be the representatives at each level of the type t. For all

prime ideals p P St whose genetic tree contains t, the first mr elements of

the Okutsu p-basis will coincide. Let,

Nt “ t1 “ h0, h1, . . . , hr´1u ,

be the family of these common numerators. This is a similar construction

to that given in Section 4.4.
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Proposition 4.27. Let t be a type of order `´ 1 and φ a representative of

t such that t, φ have terminal prime ideals p P I “ Iλ1 Y ¨ ¨ ¨ Y Iλt. Let Nt

be the common family of numerators of t. Then for all λ,

Nλ “
`termpSλq

ď

a“0

φaNt Y tφλu , φλ “
ź

pPIλ

φp,

is an extended family of numerators of an Okutsu Iλ-basis.

Proof. We will first show that Iλ admits precomputation. We will then

show how the precomputed numerators can be substituted for powers of φ

and remain valid.

For p P Iλ and q P St,φ,λ1 Ď StzIλ,

wp pφk,qpθqq “

$

’

’

&

’

’

%

V` ` λ

e1 ¨ ¨ ¨ e`´1
, k “ ` and φ`,q “ φ,

mk,q

m`
¨
V` `min tλ, λ1u

e1 ¨ ¨ ¨ e`´1
, k ą ` or φ`,q ‰ φ.

Since these values depend only upon λ1 which will be fixed for each

q P St,φ,λ1 and λ which is equal for all p P Iλ, then the precomputation

criterion given in Lemma 4.7 is met, and Iλ admits precomputation in St.

The index of coincidence of any two prime ideals p, q P St in the subset

Iλ Ď St is ipp, qq “ `, so we can apply MaxMinrIλ;m`s as given in Algorithm

4.3. However, as we will see, the output of the MaxMin algorithm for this

set is fixed.

For two distinct prime ideals p, q P Iλ, we have the degree adjusted

p-valuations,

ŵp pφpθqq “
1

m`
¨

V` ` λ

e1 ¨ ¨ ¨ e`´1
“ ŵp pφqpθqq ă ŵp pφppθqq , p ‰ q. (4.17)
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As such, the output multi-indices of MaxMinrIλ;m`s will be,

i0 “ p0, 0, . . . , 0, 0q,

i1 “ p1, 0, . . . , 0, 0q,

...

ie`,p1f`,p1
“ pe`,p1f`,p1 , 0, . . . , 0, 0q,

ie`,p1f`,p1`1 “ pe`,p1f`,p1 , 1, . . . , 0, 0q,

...

i`termpSλq´1 “ pe`,p1f`,p1 , e`,p2f`,p2 , . . . , e`,ps´1f`,ps´1 , e`,psf`,ps ´ 1q,

i`termpSλq “ pe`,p1f`,p1 , e`,p2f`,p2 , . . . , e`,ps´1f`,ps´1 , e`,psf`,psq,

which will generate an extended family of numerators of degree divisible by

m`,

NIλ;m` “

!

1, φ, . . . , φe`,p1f`,p1´1, φp1 , . . . , φ
e`,psf`,ps´1φp1 ¨ ¨ ¨φps´1 ;φp1 ¨ ¨ ¨φps

)

.

Using (4.17), we can see that

wIλ pφppθqq “ wIλ

´

φe`,pf`,ppθq
¯

, @ p P Iλ,

and so we can replace all but the last of the numerators in NIλ;m` with

powers of φ,

N 1Iλ;m`
“

!

1, φ, φ2, . . . , φ`termpSλq´1;φp1 ¨ ¨ ¨φps

)

.

By applying part (2) of Lemma 4.10 to Nt and N 1Iλ;m`
, we can construct

an extended family of numerators of an Okutsu Iλ-basis. It can be seen

that this family of numerators will coincide with Nλ.

4.9 Basis element reduction modulo an m-power

During the construction of a triangular v-integral basis, the coefficients of

the numerators can grow larger than is necessary. It is beneficial to reduce
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the coefficients of each element of the basis modulo a power of m. This

leaves us with smaller basis elements and less computation should we wish

to then convert the basis to Hermite Normal Form or, in fact, perform any

computation with the basis. This is especially important in the case of

function fields, as the coefficients are themselves polynomials.

The following result is obvious.

Lemma 4.28. Let g,G P Orxs be monic polynomials of degree m and let

ν “ w pgpθqq. Then,

G ” g pmod mtνuq ùñ w pGpθqq ě tνu,

G ” g pmod mrνsq ùñ w pGpθqq ě ν.

Corollary 4.29. Let π´tν0ug0pθq, . . . , π
´tνn´1ugn´1pθq be a triangular v-

integral basis, where νi “ w pgipθqq. Let Gi P Orxs be monic polynomi-

als such that Gi ” gi pmod mtνiuq for all 0 ď i ă n. Then the elements

π´tν0uG0pθq, . . . , π
´tνn´1uGn´1pθq also form a triangular v-integral basis.

Proof. By Theorem 1.23 it suffices to show that tw pGipθqqu is maximal

amongst all monic polynomials in Orxs of the same degree. By Lemma

4.28, tw pGipθqqu “ tw pgipθqqu is maximal.

If g0, . . . , gn´1 are the numerators of a reduced triangular v-integral basis

as in Definition 1.25, then they must be reduced modulo a slightly higher

power of m to remain reduced.

Corollary 4.30. Let π´tν0ug0pθq, . . . , π
´tνn´1ugn´1pθq be an m-reduced tri-

angular v-integral basis, where νi “ w pgipθqq. Let Gi P Orxs be monic poly-

nomials such that Gi “ gi pmod mrνisq for all 0 ď i ă n. Then π´tν0uG0pθq,

. . . , π´tνn´1uGn´1pθq is also an m-reduced triangular v-integral basis.

Proof. By Theorem 1.26, for a triangular v-integral basis to be reduced,

the numerators must have maximal valuation amongst all polynomials of

the same degree. By the second part of Lemma 4.28, w pGiq “ w pgiq is

maximal.



5 
Triangular bases of fractional

ideals

“Everything is hard before it is easy.”

– Johann Wolfgang von Goethe

This chapter will provide details of how the MaxMin algorithm is adapted

to compute local bases of fractional ideals.

Let pK, vq be a discrete valued field with valuation ring O. Let m be the

maximal ideal, π P m a generator of m and F “ O{m the residue class field.

Let Kv be the completion of K, and retain v : K
˚

v Ñ Q the canonical

extension of v to a fixed algebraic closure of Kv. Let Ov be the valuation

ring of Kv, and mv its maximal ideal.

125
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Let f P Orxs be a monic, irreducible polynomial of degree n and fix

a root θ P K in the algebraic closure of K. Let L “ Kpθq be the finite

extension of K defined by f and OL the integral closure of O in L, which

is a Dedekind domain. We suppose that OL is finitely generated as an

O-module and denote by P the set of prime ideals of OL.

Let IL be the set of non-zero fractional ideals of OL and let I P IL be

one such ideal,

I “
ź

p�m

pap .

We consider the map analogous to wm,I , which is detailed in Definition

1.4, for a prime ideal p P P,

wp,I : L ÝÑ QY t8u,

α ÞÝÑ wp,I pαq “ wp pαq ´ ap{epp{mq.
(5.1)

Let S “ tp1, . . . , psu Ď P be a set of prime ideals of OL, then we may

define wS,I pαq :“ min twp,I pαqupPS as expected.

Let Op be the completion of OL with respect to the p-adic topology. As

we saw in Section 3.1, the numerators of an Okutsu basis of Op are also

numerators for a p-integral basis of the fractional ideal I “ I bOv Op of Op.

Let us now see that we may take combinations of these numerators to form

polynomials of degrees 0, 1, . . . , n´1 which are maximal with respect to the

valuation wI , leading in this way to a reduced integral O-basis of I.

5.1 Okutsu bases

Let S Ď P be a subset of the prime ideals of OL and let nS “
ř

pPS np be

the degree of S.

A triangular S-basis of a prime ideal I is determined by a sequence of

monic polynomials:

1, g1, . . . , gnS´1 P Orxs, deg gi “ i,



5.2. MaxMin for fractional ideals 127

such that wS,I pgiq is maximal amongst all monic polynomials of degree i.

In the next section, we will see how the MaxMin algorithm can also be

used to find these maximal polynomials amongst all polynomials in OkpSq.

As such, we are again interested in showing that OkpSq contains polynomials

which are maximal amongst all polynomials in Orxs.
Fix a prime ideal p P P and a fractional ideal I P IL. It is clear, from

the definition of wp,I that,

wp pgq ą wp phq ðñ wp,I pgq ą wp,I phq , (5.2)

for all g, h P Orxs.

Theorem 5.1. Let S Ď P be a set of prime ideals. For any h P Orxs monic

of degree 0 ď d ď n, there exists g P OkpSq also of degree d such that,

wp,I pgq ě wp,I phq , @ p P S.

Proof. From (5.2) it is clear that this follows from Theorem 3.9 and Theorem

3.15, which state the same condition for the valuations wp.

5.2 MaxMin for fractional ideals

The MaxMin algorithm can be adapted to produce an S-integral basis of

the fractional ideal I by substituting the valuation wp for wp,I for all p P S,

as presented in Algorithm 5.1.

Algorithm 5.1 MaxMinrS, Is algorithm

Input: A subset S “ tp1, . . . , psu Ď P and Okutsu p-numerators
tgi,p : 0 ď i ď npu for each p P S. Additionally, a fractional ideal I.

Output: A family i0, i1, . . . , inS P Ns of multi-indices of degree 0, 1, . . . , nS
respectively.

1: i0 Ð p0, . . . , 0q
2: for k “ 0 Ñ pnS ´ 1q do
3: j Ð min t1 ď i ď s : wpi,I pgikq “ wS,I pgikqu
4: ik`1 Ð ik ` uj
5: end for
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Proposition 5.2. All output multi-indices of MaxMinrS, Is are I-maximal.

Let us consider the series of pp, Iq-valuations of the Okutsu p-numerators,

wp,I pg0,pq , wp,I pg1,pq , . . . , wp,I

`

gnp´1,p

˘

, wp,I

`

gnp,p

˘

“ 8.

This series of valuations is a “shifted” version of the normal wp valuations

of the same numerators. Clearly, fixing p and I,

wp pgq ´ wp phq “ wp,I pgq ´ wp,I phq ,

for all g, h P Orxs. As such, the difference between any valuation and the

next is the same in both the wp and the wp,I cases.

This readily leads to the conclusion that by using the wp,I valuations the

MaxMin algorithm, which otherwise produces numerators of a v-integral

basis of the maximal order, will do the same for a fractional ideal.

However, some clarification is required to follow the proofs in Chapter

4 in the fractional ideal case.

Valuation of products

Let S Ď P be a set of prime ideals and let I be a fractional ideal. If h P Orxs
has the same q-valuation for all q P S, then we may write,

wS,I pghq “ wS,I pgq ` wq phq , (5.3)

for all g P Orxs. This form is used extensively for wS during the proof of The-

orem 4.12. As an example, let gi, g
1
j be output numerators of MaxMinrU ;m`s

and MaxMinrD,m`s respectively. In the fractional ideal case we would then

have, wD,I

´

gig
1
j

¯

“ ν 1j ` pi` jqc, where c retains the same value as in the

maximal order case.

Precomputation

Let S Ď P be a set of prime ideals and let J Ď S be an interval of S.

Lemma 4.7 gives a criterion which ensures that J admits precomputation

as given in Definition 4.5.
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Recall that for a multi-index ik “ piqqqPS , we may divide the k-th nu-

merator gik “ g1ikGik into the J-part and the pSzJq-part respectively,

g1ik “
ź

qPJ

giq,q, Gik “
ź

qPSzJ

giq,q.

Let I be a fractional ideal, then the criterion so that J admits precom-

putation should be interpreted as

wJ,I pgikq “ wS,I pgikq ùñ wp pGikq “ wq pGikq , @ p, q P J. (5.4)

This states that when the minimal prime ideal for a given muliti-index

lies in the interval J , then the p-valuation of the polynomial defined by the

part of that index not belonging to J must be the same for all p P J . It is

important to note that the valuation which must be the same is wp and not

wp,I .

The reason that we require the wp valuation to be equal is so that when

the minimal prime ideal is in J we have

wp,I pgikq ´ wq,I pgikq “ wp,I

`

g1ik
˘

´ wq,I

`

g1ik
˘

, @ p, q P J.

This is sufficient to ensure that the decision which the MaxMin algorithm

takes when precomputing J is the same that would have been taken in the

analogous iteration computing MaxMin for S. By utilising the expansion

in (5.3), we may show that

wp,I pgikq ´ wq,I pgikq “ wJ,p
`

g1ikGik

˘

´ wJ,q
`

g1ikGik

˘

“
`

wp,I

`

g1ik
˘

` wp pGikq
˘

´
`

wq,I

`

g1ik
˘

` wq pGikq
˘

“ wp,I

`

g1ik
˘

´ wq,I

`

g1ik
˘

,

are equal in the case where the fractional ideal precomputation criterion

(5.4) holds.
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Series of ν-values

In proving Theorem 4.12 we consider the division of a set of prime ideals

into two intervals U and D such that S “ UYD. Given the numerators of a

basis for each of them, we represent the principal part of the wU -valuation

of the numerators of the U basis by a series of rational numbers νi with

0 ď i ď nU . There is an equivalent series for the subset D, which are ν 1j

with 0 ď j ď nD.

For the purpose of the proofs of Proposition 4.15 and Lemma 4.19 we

agree that ν´1, ν
1
´1 “ ´1.

In fractional ideal case, we must instead specify that

ν´1, ν
1
´1 “ min

 

ν0, ν
1
0

(

´ 1.

This is compatible with the maximal order case, where ν0 “ ν 10 “ 0.

5.3 Basis element reduction modulo an m-power

Just as in the case of bases of the maximal order, it is possible to reduce

the elements of a v-integral basis of I modulo a power of m. However, due

to the nature of the map wm,I , the exponent may be different.

Consider the numerators g0, . . . , gn´1 of a v-integral basis of a fractional

ideal I, generated by the MaxMin algorithm, and let νm “ wI pgmq. The

v-integral basis of I is then

B “
´

π´tν0ug0pθq, . . . , π
´tνn´1ugn´1pθq

¯

Theorem 5.3. Let π´tν0ug0pθq, . . . , π
´tνn´1ugn´1pθq be a triangular v-integral

basis B of a fractional ideal I, where νi “ wI pgipθqq for all i. Let G0, . . . , Gn´1

P Orxs be monic polynomials of degree 0, . . . , n´ 1, respectively, such that

Gi ” gi pmod mrζisq, 0 ď i ă n,

where ζi “ tνiu`max
!

0,max tap{epp{mqup�m

)

.

Then, B1 “
`

π´tν0uG0pθq, . . . , π
´tνn´1uGn´1pθq

˘

is also a triangular v-
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integral basis of I.

If the basis B is v-reduced and Gi ” gi pmod mrζ1isq, where ζ 1i “ νi `

max
!

0,max tap{epp{mqup�m

)

for all 0 ď i ă n, then the resulting basis B1

will also be v-reduced.

Proof. We follow the proof of Corollary 4.29, which proves the same claim

for bases of the maximal order. By Theorem 1.23 it suffices to show that

twI pGipθqqu is maximal for all 0 ď i ă n.

To ensure this, it is sufficient to show that wp,I pGq ě tνiu for all p P P,

and that is an easy consequence of

wp,I pgiq ď νi ě tνiu, rζis ě tνiu`
ap

epp{mq
.

By Theorem 1.26, in the case that B is v-reduced we must show that

wI pGipθqq is maximal for all i. It suffices to show that wp,I pGipθqq ě νi

and this is an immediate consequence of

wp,I pgiq ě νi, rζis ě νi `
ap

epp{mq
.

5.4 Advantages of the application of MaxMin in

function fields

Let A “ krts, where k is a perfect field and t is an indeterminate. Let

K “ kptq be the field of fractions of A.

Let f P Arxs be a monic separable polynomial, so that L “ Krxs{pfq is

a function field over k.

A place of K is a discrete valuation

v : K˚ � Z,

which is trivial on the elements of k (the “constants”). The set of all places

of K may be identified with PpAqYt8u. Every monic irreducible polynomial
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pptq P A determines a discrete valuation

v “ ordp : A ÝÑ Z,

which extends to a place of K. Also, there is a place at infinity, defined as

ord8pa{bq “ deg b ´ deg a, for any a, b P A. Let A8 :“ krt´1spt´1q Ď K be

the valuation ring of ord8.

A place of L is a discrete valuation

vP : L˚ ÝÑ Q,

which extends a place of K. Let PL be the set of all places of L. We may

split PL “ P0pLq Y P8pLq into the disjoint union of two subsets containing

the finite places and the infinite places, according to vP |K “ ordp for some

p P PpAq or vP |K “ ord8, respectively.

A divisor D of L{k is a formal finite Z-linear combination of places of

L. It may be written in a unique way as D “ D0 `D8, where D0, D8 are

divisors with support in finite places and infinite places respectively. Let

DivpL{kq be the group of all divisors of L{k.

Denote the integral closures of A, A8 in L respectively as

OL :“ ClpA,Lq, OL,8 :“ ClpA8, Lq.

These two rings are Dedekind domains. There are natural bijections:

P0pLq ÝÑ MaxpOLq, P8pLq ÝÑ MaxpOL,8q,

which induce a group isomorphism:

DivpL{kq ÝÑ IOL ˆ IOL,8 ,

between the group of divisors and the product of the groups of fractional

ideals of OL and OL,8.

A divisor D0 “
ř

PPP0pLq
nPP with finite support determines the frac-

tional ideal
ś

PPP0pLq
p´nPP , where pP P MaxpOLq is the non-zero prime ideal
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attached to P . There is a similar identification of the divisors with support

at infinity and IOL,8 .

Given a divisor D, the Riemann-Roch space,

LpDq :“ ta P L˚ : divpaq ě ´Du Y t0u ,

is a fundamental invariant of D. It is a finite-dimensional k-vector space

whose computation is crucial for many arithmetic questions on the function

field.

If D corresponds to the pair of fractional ideals pI, I8q, then LpDq “
I X I8. For certain arithmetic questions concerning the divisor D and the

space LpDq, a reduction procedure is introduced, in the following terms:

• Compute an A-basis of I considered as an A-lattice of L.

• Consider a certain length function wI8 on L determined by I8.

• Compute a reduced basis of I with respect to this length function.

An efficient implementation of the reduction algorithm requires the com-

putation of an ord8-reduced basis of I8. In the language of [Bau14], this

basis leads to an “orthonormal basis” of L with respect to the considered

length function. Then we need to compute a transition matrix between the

input A-basis of L and the orthonormal basis. The reduction algorithm

consists of the application of a series of reduction steps to this matrix.

The implementation of this method uses the method of the quotients

to compute this ord8-reduced basis of OL,8. This non-triangular basis

could not be triangularised because the standard triangularisation routine

destroys the ord8-reducedness property. The input A-basis of L was com-

puted by applying the global method described in Section 1.6. Local trian-

gular bases are computed and gathered into a global triangular matrix. Of

course, the transition matrix between the two bases was not triangular, and

this slowed the reduction algorithm.

The application of the MaxMin algorithm leads to a substantial practical

improvement of this strategy.
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1. MaxMin is applied to compute a triangular ord8-reduced basis of

OL,8.

2. MaxMin is applied to compute triangular local bases which are gath-

ered into a global triangular basis of I.

In this way, the transition matrix between the two bases is a triangular

matrix and this accelerates the reduction routine.



6 
Complexity analysis

“Sometimes six and six make a dozen, and sometimes they make

a mess.”

– Robert Jordan, The Path of Daggers

Let pK, vq be a discrete valued field with valuation ring O, m the maxi-

mal ideal, π P m a generator of m and F “ O{m the residue class field.

Let f P Orxs be a monic, irreducible and separable polynomial of degree

n and fix a root θ P K in the algebraic closure of K. Let L “ Kpθq be

the finite separable extension of K defined by f , and let OL be the integral

closure of O in L. Let P “ tp1, . . . , psu be the set of non-zero prime ideals

of OL.

In this chapter we will analyse the computational complexity of an algo-

rithm which computes a v-integral basis of L. This process requires a num-

135
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ber of steps, based on the algorithms presented in Chapter 2 and Chapter

4:

1. Use the Montes algorithm to produce an OM representation T of f .

2. Run the MaxMin algorithm to generate a family of maximal indices

i0, . . . , in´1.

3. Apply the Single Factor Lifting algorithm to get an adequate improve-

ment of the Montes approximation of each prime factor of f .

4. Compute the Okutsu numerators g0, . . . , gn´1 specified by the maxi-

mal indices.

5. Divide the Okutsu numerators by the appropriate power of π to create

an integral basis.

In Chapter 2 we presented complexity estimates for steps (1) and (3),

although in the case of (3) we need to define the precision which we require

the SFL algorithm to reach, which is discussed in Section 6.3. Computation-

ally, the division in step (5) is negligible, as the numerator and denominator

will be stored separately and by construction, π does not divide the basis

numerators.

In Section 6.1 and Section 6.2 we will provide an analysis of the com-

plexity of the remaining two steps. In Section 6.4 the additional space

requirements of the MaxMin algorithm will be detailed.

Notation. All logarithms are base-2 unless otherwise stated.

From now on, we denote δ :“ v pdiscpfqq.

If δ “ 0 then OL “ Orθs and 1, θ, . . . , θn´1 is a v-integral basis of L. So,

we can assume δ ą 0 for the purpose of our analysis.

The results of this chapter yield the following total estimation.

Theorem 6.1. Suppose that F is a finite field with q elements. The total

cost of the computation of a v-integral basis of L by the application of the

Montes and the MaxMin algorithms is

O
`

n2`εδ1`ε ` n1`εδ logpqq ` n1`εδ2`ε
˘

,
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operations in F. If we assume q small, this will give us an estimation of

O
`

n2`εδ1`ε ` n1`εδ2`ε
˘

bit operations.

This theorem will be proved in Section 6.3.

6.1 Complexity analysis of the MaxMin algorithm

Compared to the other processes that are required, such as the Montes

algorithm, or polynomial multiplication to create the elements of a basis,

the computational cost of the MaxMin algorithm is small.

Proposition 6.2. The computational cost of the MaxMin algorithm is

O
`

n2 logpnδq1`ε
˘

,

bit operations

The computational complexity of the MaxMin algorithm itself can be

divided into two parts, preprocessing and the MaxMin loop. We shall study

them in Section 6.1.2 and Section 6.1.3, respectively. We shall see that both

tasks require at most O
`

n2 logpnδq1`ε
˘

bit operations. This will confirm

Proposition 6.2.

6.1.1 Upper bound on valuations

The height of a rational number a{b P Q, expressed as the quotient of two

coprime integers a, b is defined as:

hpa{bq “ max t|a|, |b|u .

The MaxMin algorithm primarily works with valuations of basis ele-

ments. The aim of this section is to find upper bounds for the height of the

rational numbers wp pgq, for p P P and g P OkpPq.
These bounds will be easily deduced from bounds for the values wp pφi,qq,

for p, q P P and 0 ď i ď rq ` 1.

Ideally, we would like to bound these numbers in terms of the parameters

n “ deg f and δ “ v pdiscpfqq. Unfortunately, this is not always possible,
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as the following example shows. For a prime number p, take O “ Zppq the

valuation ring of the p-adic valuation v “ ordp, and consider the following

irreducible polynomial

f “ x3 ` px` pN`1,

where N is a large positive integer.

Nv,xpfq

0

N ` 1

1

1 3

Figure 6.1: Newton polygon with “unbounded’ valuation.

The Newton polygon Nv,xpfq, shown in Figure 6.1, reveals that m “ pq

splits as the product of two prime ideals p, q admitting the following OM

representations:

tp “ py; pφp, λp, ψpqq, tq “ py; px, 1{2, y ` 1q; pφq, λq, ψqqq.

We have rp “ 0, np “ 1, and rq “ 1, nq “ 2. The valuation wp pφ1,pq “

wp pxq “ N may be arbitrarily large, while n “ δ “ 3.

Nevertheless, this value wp pφ1,qq “ N is irrelevant for the execution of

the MaxMin algorithm. The only information we need about this value is

wp pφ1,qq ą 1{2. In fact, the numerators of the respective extended Okutsu

bases are:

Np “ t1, φpu , Nq “ t1, x, φqu .

Thus, if we consider the ordered set S “ tp, qu, MaxMinrSs runs as:
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i gi ~w pgiq w pgiq

0 1 ¨ 1 p0, 0q 0

1 φp ¨ 1 p8, 1{2q 1/2

2 φp ¨ x p8, 1q 1

While for the reverse ordered set S1 “ tq, pu, MaxMinrS1s runs as:

i gi ~w pgiq w pgiq

0 1 ¨ 1 p0, 0q 0

1 x ¨ 1 p1{2, Nq 1/2

2 φq ¨ 1 p8, 1q 1

Note that in both cases, if we had worked with the symbolic value

wp pxq “ 8, the output of MaxMin would have been the same.

This example illustrates the strategy we are going to follow in order to

avoid the computation of the “unbounded” values wp pφi,qq:

1. Detect under what exact conditions on p, q and i the value wp pφi,qq

cannot be bounded in terms of n and δ.

2. Show that if these “bad” values are taken symbolically to be wp pφi,qq “

8, this does not affect the execution of MaxMin.

3. Find explicit bounds for the “boundable” values.

Notation. For any two prime ideals p, q P P denote:

δp :“ v pdiscpFpqq , δp,q :“ v pRespFp, Fqqq .

The well-known formula:

δ “
ÿ

pPP
δp `

ÿ

p,qPP
δp,q

shows that δp, δp,q ď δ for all p, q P P.

Definition 6.3. Let p ‰ q be two different prime ideals and consider an

index 0 ď ` ă rq ` 1. We say that wp pφ`,qq is virtually unbounded if the

following four conditions are satisfied:
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1. ` “ ipp, qq “ rp ` 1.

2. If t is the last node of the non-optimised tree satisfying t � Fp, t � Fq,

and t1 is the branch node dividing Fp, we have St1 “ tpu.

3. φ`,q “ φpp, qq.

4. λqp ą λpl for all l P St, l ‰ p.

Recall that for two prime ideals, Ipp, qq is the extended index of coinci-

dence as given in Definition 2.26.

Lemma 6.4. Let q P P be a prime ideal and let 0 ď ` ă rq` 1. Let p, p1 be

two prime ideals such that

1. ` “ ipp, qq “ rp ` 1 “ ipp1, qq “ rp1 ` 1.

2. φ`,q “ φpp, qq “ φpp1, qq.

Then, min
 

wp pφ`,qq , wp1 pφ`,qq
(

ď δp,p1{np.

Proof. Conditions (1) and (2) imply that Ipp, qq “ Ipp1, qq. Assume first

that φ`,q “ φpp, p1q. Then, Ipp, qq “ Ipp, p1q and the relative position of the

three primes in the non-optimised tree is as shown in Figure 6.2.

¨ ¨ ¨
t`´1

¨ ¨ ¨
t

tp

tp1

¨ ¨ ¨ tq

...

t`

λtp

λtp1

λtq

Figure 6.2: Non-optimised tree with potentially unbounded prime ideals,
φ`,q “ φpp, p1q.

As shown, let t be the last type in the non-optimised tree such that

t � Fp, t � Fp1 , and t � Fq, then λtp, λ
t
p1 , and λtq are the slopes corresponding

to the branches of t that lead to p, p1, and q respectively.
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If λ is the sum of all slopes corresponding to the edges between t`´1 and

t, then we have the following cutting slopes (from the optimised tree),

λp :“ λp
1

p “ λqp “ λtp ` λ,

λp1 :“ λpp1 “ λqp1 “ λtp1 ` λ,

λq :“ λpq “ λp
1

q “ λtq ` λ “ λ`,q.

By Proposition 2.31, we have,

wp

`

φp1
˘

“ wp1 pφpq “
V` `min

 

λp, λp1
(

e1 ¨ ¨ ¨ e`´1
,

wp pφ`,qq “
V` ` λp
e1 ¨ ¨ ¨ e`´1

,

wp1 pφ`,qq “
V` ` λp1

e1 ¨ ¨ ¨ e`´1
,

so either wp pφ`,qq “ wp

`

φp1
˘

or wp1 pφ`,qq “ wp

`

φp1
˘

. As we shall see in

Lemma 6.7, wp

`

φp1
˘

is equal to δp,p1{np.

Assume now φ`,q ‰ φpp, p1q as presented in Figure 6.3.

¨ ¨ ¨
t`´1

¨ ¨ ¨
t

t˚ tp

tp1

¨ ¨ ¨ tq

...

t`

λtp

λt
˚

p

λt
˚

p1

λtq

Figure 6.3: Non-optimised tree with potentially unbounded prime ideals,
φ`,q ‰ φpp, p1q.

In this case, Proposition 2.31 shows that

wp pφ`,qq “
V` ` λ

q
p

e1 ¨ ¨ ¨ e`´1
, wp

`

φp1
˘

“

V` `min
!

λp
1

p , λ
p
p1

)

e1 ¨ ¨ ¨ e`´1
.

Since λqp ă min
!

λp
1

p , λ
p
p1

)

“ λqp ` min
!

λt
˚

p , λt
˚

p1

)

, we have wp pφ`,qq ă

wp

`

φp1
˘

, and in Lemma 6.7 we will see that wp

`

φp1
˘

ď δp,p1{np.

The following lemma is a generalisation of Lemma 4.8, for types in an
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optimised tree.

Lemma 6.5. Let S Ď P be a set of prime ideals. For any type t P Tnop
S in

the non-optimised tree, the interval St Ď S admits precomputation.

Proof. Let t0 be the last type in the optimised tree which precedes t. By

Lemma 4.8, St0 Ď S admits precomputation, so we only need to show that

St Ď St0 admits precomputation with respect to the prime ideals in St0zSt.

Take any p P St and q P St0zSt. Let t˚ be the last type in the non-

optimised tree such that t˚ � Fp and t˚ � Fq. We take λ to be the sum of

all slopes corresponding to the edges linking t0 with t˚ and denote by λt

and λq the slopes corresponding to the branches of t˚ leading to t and tq

respectively. The relative positions of p and q are shown in Figure 6.4.

¨ ¨ ¨
t0

¨ ¨ ¨
t˚ t

¨ ¨ ¨ ¨ ¨ ¨ tp

¨ ¨ ¨ ¨ ¨ ¨ tq

λt

λq

Figure 6.4: St is precomputable for t in the non-optimised tree.

Then the hidden slopes between p and q are:

λpq “ λq ` λ, λqp “ λt ` λ.

Since both hidden slopes do not depend on the chosen p P St, Proposi-

tion 2.31 shows that the valuations wp pφi,qq for 1 ď i ď rq ` 1 only depend

on q and i. Hence, the precomputation criterion of Lemma 4.7 is obviously

satisfied.

Lemma 6.6. Suppose that all virtually unbounded values are given the value

wp pφ`,qq “ 8. Accordingly, we take wp pgq “ 8 for all g P OkpPq containing

a factor φi,q with wp pφi,qq “ 8. Then, these conventions do not affect the

output of the MaxMin algorithm.

Proof. Let p P P be a prime ideal admitting virtually unbounded values and

let t be the last type in the non-optimised tree such that t � Fp and t � Fq

for all q such that wp pφ`,qq “ 8 as depicted in Figure 6.2. Note that there
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may be different q with wp pφ`,qq “ 8, but the polynomial φ`,q “ φpp, qq is

the same for all of them.

By Lemma 6.5, the interval St admits precomputation; thus in order to

show that our convention on wp pφ`,qq does not affect the output of MaxMin,

it suffices to check this for MaxMinrSts. Since MaxMin works block-wise

(Section 4.4), we may suppose moreover that St “ P, and the least index

of coincidence in P is ` “ 1 and that m` “ deg φpp, qq “ 1.

By item (2) of Definition 6.3, the branch of t which leads to p contains

no other prime ideals. As such, we may assume that p is the first prime

ideal in P and satisfy the ordering criterion given in (4.1). The maximality

of the output of MaxMin under this ordering implies the maximality of the

output under any other ordering satisfying (4.1).

We have Np “ t1, φpu with deg φp “ 1. Since, p is the minimal element

in P “ St, MaxMin starts by choosing gi0 “ 1, gi1 “ φp. From this point

onward, we shall have wp pgikq “ 8 for all k ě 1, so that any assumption

on the values wp pφ`,qq is irrelevant.

Lemma 6.7. Let p ‰ q be two different prime ideals, and take 0 ď i ď rq`1.

1. For any 0 ď m ă rp ` 1, we have ŵp pφm,pq ď 2δp{n
2
p.

2. If i “ rq ` 1 then ŵp pφi,qq “ δp,q{pnpnqq.

3. If i ă rp ` 1 then ŵp pφi,qq ď 2δp{n
2
p.

4. If rp ` 1 ď i ă rq ` 1 and wp pφi,qq is not virtually unbounded, then

either ŵp pφi,qq ď 2δl{pnpnlq or ŵp pφi,qq ď δp,l{pnpnlq, for some l P P.

Proof. For item (1), if we denote r “ rp, ei “ ei,p, hr “ hrp,p, then Lemma

3.5 shows that

ŵp pφ1,pq ă ŵp pφ2,pq ă ¨ ¨ ¨ ă ŵp pφr,pq .

Now, the common bound ŵp pφr,pq can be expressed as:

ŵp pφr,pq “
1

mr,p
¨
Vr ` λr,p
e1 ¨ ¨ ¨ er´1

“
erfr

erfrmr,p
¨
erVr ` hr
e1 ¨ ¨ ¨ er

“
Vr`1

npepp{mq
“
δ0pFpq

np
,
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where δ0pFpq is the Okutsu bound introduced in Section 2.1. On the other

hand, it was shown in [BNS13, Lem. 2.2] that δ0pFpq ď 2δp{np. This ends

the proof of the first item.

The second item follows directly from the equalities:

wp pφqq “ wp pFqq “ δp,q{np,

because φi,q “ φq with degpφi,qq “ nq. The first equality was proved in

Corollary 2.32. The second equality follows from the well-known formula

RespFp, Fqq “
ź

θp
Fqpθpq,

for θp running on the roots of Fp in Kv. Since Fp is irreducible, its roots

are Galois conjugate and have the same v-value. Since Fq has coefficients

in Ov, all elements Fqpθpq have the same v-valuation too. Hence,

δp,q “ npv pFqpθpqq “ npwp pFqpθqq “ npwp pFqq .

Let us prove the third item. Let ` “ ipp, qq. If i ă `, then φi,q “ φi,p.

Hence, Lemma 3.5 and the first item show that

ŵp pφi,qq “ ŵp pφi,pq ď ŵp

`

φrp,p
˘

ď 2δp{n
2
p.

If i ě `, the explicit formulas of Proposition 2.31 show that

ŵp pφi,qq “
1

m`

$

’

’

’

&

’

’

’

%

V` ` λ
q
p

e1 ¨ ¨ ¨ e`´1
, if i “ `, φi,q “ φpp, qq and λqp ą λpq,

V` `min
 

λqp, λ
p
q

(

e1 ¨ ¨ ¨ e`´1
, otherwise.

Since λqp ď λ`,p and ` ď i ă rp ` 1, in both cases we get the same bound as

in the case i ă `:

ŵp pφi,qq ď ŵp pφ`,pq ď ŵp

`

φrp,p
˘

ď 2δp{n
2
p.

For the fourth item, let ` “ ipp, qq, so that i ě rp ` 1 ě `. If i ą `, or if
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i “ ` and φ`,q ‰ φpp, qq, Proposition 2.31 and item (1) yield:

ŵp pφi,qpθqq “
1

m`
¨
V` `min

 

λqp, λ
p
q

(

e1 ¨ ¨ ¨ e`´1
ď ŵq pφ`,qpθqq ď 2δq{n

2
q.

Finally, suppose that i “ rp ` 1 “ ` and φ`,q “ φpp, qq. Let t be the

last type in the non-optimised tree such that t � Fp and t � Fq, and let t1

be the branch of t dividing Fp. Since wp pφ`,qq is not virtually unbounded,

either St1 contains some other l ‰ p, or there exists l P St, l ‰ p such that

λqp ď λql . In both cases we have λqp ď λ`,l.

Proposition 2.31 shows that

ŵp pφi,qq ď
1

m`
¨
V` ` λ

q
p

e1 ¨ ¨ ¨ e`´1
ď

1

m`
¨
V` ` λ`,l
e1 ¨ ¨ ¨ e`´1

“ ŵl pφ`,lq .

If ipp, lq “ ` ă rl ` 1, then np ă nl and

ŵl pφ`,lq ď ŵl pφrl,lq ď 2δl{n
2
l ď 2δl{pnpnlq.

by Lemma 3.5 and item (1).

If ` “ rl`1, thenmi,q “ np “ nl and Lemma 6.4 shows that wp pφi,qpθqq ď

δp,l{np, so that ŵp pφi,qpθqq ď δp,l{pnpnlq.

Corollary 6.8. Let g “
ś

p gip,p be any element in OkpPq with wp pgq ă 8.

Then, for all p P P we have hpwp pgqq ď 2nδ.

Proof. Since, δp, δp,q ď δ for all p, q P P, Lemma 6.7 shows that ŵp pφi,qq ď

2δ{np, for each factor φi,q of g. As a consequence,

ŵp pgq “

˜

ÿ

i,q

wp pφi,qq

¸

M

˜

ÿ

i,q

mi,q

¸

ď 2δ{np,

where the sum runs on all factors φi,q of g, with due count of multiplicities.

Therefore, wp pgq ď degpgq2δ{np ď 2nδ{np. Since the denominator of

wp pgq is a divisor of epp{mq, the numerator is bounded by 2nepp{mqδ{np ď

2nδ.
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6.1.2 Preprocessing for MaxMinrSs

It is sufficient to discus the case S “ P.

The MaxMin algorithm requires the wp-valuation of φi,q for all 1 ď i ď

rq`1 for all p, q P P. By Proposition 2.31, we can calculate these values via

explicit formulas of MacLane invariants, reducing this operation to a small

number of calculations in Q for each valuation of each φ-polynomial.

In order to further reduce the complexity of the MaxMin algorithm, we

will store the wp-valuations of each Okutsu numerator gm,q for all 0 ď m ď

nq ` 1 for all p, q P P. As these numerators are products of φ-polynomials,

the valuations are sums of the precomputed valuations.

By Corollary 6.8, any sum of two of these valuations has a cost of

O
`

logpnδq1`ε
˘

word operations.

Lemma 6.9. Let V0, . . . ,Vn be the vectors of valuations:

Vkris :“ wpi pgkpθqq ,

where g0, . . . , gn are the output numerators of MaxMin. The cost of com-

puting the vectors V0, . . . ,Vn is Cpre “ Opn2 logpnδq1`εq word operations.

Proof. Let us first evaluate the cost of the computing valuations of all φ-

polynomials, excluding the trivial case wp pφpq “ 8. For each prime ideal

q P S , there are rq ` 1 φ-polynomials of degree,

m1 � m2 � ¨ ¨ ¨ � mrq � mrq`1 “ nq,

with mi ă mi`1 for 1 ď i ď rq. Since mi`1 ě 2mi for all 1 ď i ď rq, we

have rq ď logpnqq.

By Proposition 2.31, for any p, q P P we have

wp pφi,qpθqq “

$

’

’

&

’

’

%

V ` λ

e
, if p “ q or i ă ipp, qq,

mi

m`

V ` λ

e
, if p ‰ q and i ě ` “ ipp, qq.

All ingredients of these formulas have been computed and stored during the

execution of the Montes algorithm. Hence, the computation of wp pφi,qpθqq
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requires O
`

logpnδq1`ε
˘

operations, because it needs a few sums and multi-

plications of integers of size O pnδq, as indicated in Corollary 6.8.

Since rp ď logpnpq, for the computation of all p-valuations of each φ-

polynomial of each Okutsu q-frame, we must calculate,

O pplogpnp1q ` ¨ ¨ ¨ ` logpnpsqq ¨ sq “ O plogpnp1 ¨ ¨ ¨npsq ¨ sq ,

valuations. It is easy to see that this function maximises when we set

s “ n{2, with np “ 2 for all p P P. This gives a computational complexity

of,

logp2sq ¨ s “ s2 “ O
`

n2
˘

,

valuations, with a cost of Cpre1 “ O
`

n2 logpnδq1`ε
˘

bit operations.

Let νk,i,j :“ wpi

`

gk,pj
˘

for P “ tp1, . . . , psu and 1 ď i, j ď s, 0 ď k ď npj

be the valuations of the Okutsu numerators which we wish to store.

There are spn ` sq valuations in total, and each valuation can be con-

structed as the sum of a prior valuation and the valuation of a φ polynomial

for the same pair of primes pi, pj . As such, we have a computational com-

plexity of,

Cpre2 “ O
`

spn` sq logpnδq1`ε
˘

“ O
`

n2 logpnδq1`ε
˘

.

This gives a final computational complexity for precomputation of,

Cpre “ Cpre1 ` Cpre2 “ O
`

n2 logpnδq1`ε
˘

.

bit operations.

6.1.3 MaxMinrSs main loop

Again, we discuss only the case S “ P. In the version of MaxMinrPs given

in Algorithm 4.1, in each iteration we compute valuations of the output

polynomial from the previous iteration. Since this output polynomial is the
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product of Okutsu p-numerators for each p P P, we will make use of the

preprocessed valuations discussed in Section 6.1.2.

Lemma 6.10. The cost of executing the main loop of MaxMinrPs is Cloop “

O
`

n2 logpnδq1`ε
˘

word operations.

Proof. The numbers νk,i,j :“ wpi

`

gk,pj
˘

for P “ tp1, . . . , psu have already

been computed and stored. Now, consider the modifications presented in

Algorithm 6.1.

Algorithm 6.1 MaxMinrPs algorithm using preprocessed valuations

Input: Okutsu numerators tgi,q : 0 ď i ď npu of O-bases of OLq for each
q P P.

Output: A family i0, i1, . . . , in of multi-indices of degree 0, 1, . . . , n respec-
tively.

1: i0 Ð p0, . . . , 0q
2: V0 Ð p0, . . . , 0q
3: for k “ 0 Ñ pn´ 1q do
4: j Ð min t1 ď i ď s : Vkris “ minpVkqu
5: ik`1 Ð ik ` uj
6: Vk`1 Ð Vk `

`

νik`1rjs,i,j ´ νikrjs,i,j
˘

1ďiďs
7: end for

During each of the n iterations, there are two points where a variable

number of operations are performed.

On Line 4, the algorithm performs ps´ 1q comparisons of rational num-

bers. Then, on Line 6, Vk`1 is calculated from Vk, which requires s addition

and subtraction operations. By Corollary 6.8 any of these operations has a

cost of O
`

logpnδq1`ε
˘

bit operations.

This gives a computational cost,

Cloop “ O
`

nps´ 1` 2sq logpnδq1`ε
˘

“ O
`

ns logpnδq1`ε
˘

“ O
`

n2 logpnδq1`ε
˘

,

word operations.
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6.2 Complexity analysis of basis numerator com-

putation

In this section, we will analyse the computational complexity of the com-

putation of the numerators of an integral basis, g0, . . . , gn, for the set P “
tp1, . . . , psu of prime ideals of OL.

We keep the notation δ :“ v pdiscpfqq. By [BNS13, Thm. 3.14], for the

computation of a v-integral basis of OL we may work modulo mδ`1. Hence,

we assume that the elements of O are finite π-adic developments of length

δ ` 1.

Definition 6.11. An operation in O is called m-small if it involves two

elements belonging to a fixed system of representatives of F “ O{m.

Each multiplication in O costs O
`

δ1`ε
˘

m-small operations, if we assume

fast multiplication, using the techniques of Schönhage-Strassen [SS71]. It is

natural to assume that the ring O is given in a sufficiently good computa-

tional representation, so that the cost of an m-small operation coincides with

the cost of one operation in F. For instance, if F is a finite field and q :“ #F,

then an m-small operation in O requires O
`

logpqq1`ε
˘

word operations.

Lemma 6.12. The complexity of computing the numerators for a basis from

the output of the MaxMin algorithm is Cnum “ O
`

n2`εδ1`ε
˘

operations in

F.

Proof. The construction of the basis numerators requires all the numerators

of the Okutsu bases Bp for all p P P. All the degree 0 numerators are 1,

so there are n non-trivial numerators to be computed as a product of φ-

polynomials. Each numerator of an Okutsu basis can be constructed as the

product of a prior numerator and a φ-polynomial.

Therefore, we will require np multiplications of polynomials of degree

bounded by np to construct all the numerators of the Okutsu basis Bp,
which amounts to n2`ε

p operations in O if we assume fast multiplication.

The total cost is

O
`

n2`ε
p1 ` ¨ ¨ ¨ ` n2`ε

ps

˘

“ O
`

n2`ε
˘

,
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operations in O, or equivalently, O
`

n2`εδ1`ε
˘

operations in F.

Now that the numerators for each Okutsu basis have been computed, we

may continue to construct the numerators of a v-integral basis. Let gi be the

i-th element of the basis numerator, the next numerator can be constructed

as

gi`1 “ gi ¨ pgip,pq
´1 ¨ gip`1,p,

for the prime ideal p determined by the MaxMin algorithm.

At each step in the construction of the basis numerators a single poly-

nomial division and a single polynomial multiplication are required. The

complexity of each of these operations is O
`

n1`ε
˘

operations in O in both

cases if we assume fast multiplication. This gives a complexity for comput-

ing all n numerators in the basis of

Cnum “ O
`

n2`εδ1`ε ` n2`εδ1`ε
˘

“ O
`

n2`εδ1`ε
˘

,

operations in F.

6.3 Complexity of computing a v-integral basis

Before providing the proof of Theorem 6.1, we must specify the precision

which we require of the Okutsu approximations φp for each prime ideal

p P P. Recall that the precision is v0 pφp ´ Fpq, or equivalently the minimum

of the v-values of the coefficients of φp ´ Fp.

Lemma 6.13. Let φp be an Okutsu approximation to Fp, a prime factor of

f for all p P P. Then, for the construction of the numerators of a v-integral

basis chosen by the MaxMin algorithm, φp requires, at most, a precision of

δ “ v pdiscpfqq.

Proof. As was explained in Section 4.7, we require the valuation wp pφppθqq

to be high enough that

w pgkq “ w pgkpθqq , 0 ď k ă n.



6.3. Complexity of computing a v-integral basis 151

Since w pgkq grows with k, it suffices to achieve

wp pφppθqq ě w pgn´1q .

Now, the numerators g0pθq “ 1, g1pθq, . . . , gn´1pθq are an O-basis of

Orθs. Hence,

n´1
ÿ

i“0

tw pgiqu “ indpfq :“ v prOL : Orθssq .

On the other hand, in this separable context, there is a well known relation-

ship linking the index with the discriminant:

δ “ 2 indpfq ` v pdiscpL{Kqq ě 2 indpfq `
ÿ

pPP
pep ´ 1q.

Let q P P be a prime for which w pgn´1q “ wq pgn´1pθqq. Then,

δ

2
ě indpfq `

eq ´ 1

eq
ě tw pgn´1qu`

eq ´ 1

eq
ě w pgn´1q .

Therefore, if we achieve a precision

v0 pφp ´ Fpq ě
δ

2
ě w pgn´1q ,

we get wp pφqpθqq ě v0 pφp ´ Fpq ě w pgn´1q, as desired.

We may now prove the main theorem of this chapter.

If F is a finite field with q elements, then Theorem 2.30 gives the complete

complexity for an OM factorisation of f with precision ν as,

O
`

n2`ε ` n1`εp1` δq log q ` n1`εδ2`ε ` n2ν1`ε
˘

,

operations in F. This includes the complexity for both the Montes algorithm

and the Single Factor Lifting algorithm for each prime ideal p P P.

Substituting in our precision bound δ for ν, this a complexity of

CMontes ` CSFL “ O
`

n2`ε ` n1`εp1` δq log q ` n1`εδ2`ε ` n2δ1`ε
˘

, (6.1)
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operations in F.

Proof of Theorem 6.1. As stated at the beginning of this chapter, there

are four non-negligible steps involved in computing a v-integral basis using

the MaxMin algorithm.

By Proposition 6.2 and Lemma 6.12 the cost of CMaxMin is dominated

by that of Cnum. Using the estimation (6.1), we can now specify the total

complexity for computing a v-integral basis,

Cbasis “ CMontes ` CSFL ` CMaxMin ` Cnum

“ O
`

n2`ε ` n1`εp1` δq log q ` n1`εδ2`ε ` n2δ1`ε
˘

`O
`

n2`εδ1`ε
˘

“ O
`

n2`εδ1`ε ` n1`εδ logpqq ` n1`εδ2`ε
˘

,

operations in F. Clearly, if q is small, this gives O
`

n2`εδ1`ε ` n1`εδ2`ε
˘

.

6.4 Space complexity analysis

To complete the complexity analysis of the MaxMin algorithm, we will con-

sider the additional space that is required during its execution.

In order to run, the MaxMin algorithm requires the q-valuations for all

numerators of the Okutsu bases Bp. It produces a series of multi-indices,

which can be used, along with the numerators of each of the Okutsu p-bases,

to compute the numerators of the final basis.

As such, there are three sets of data which must be stored in memory

during the process of running the MaxMin algorithm.

1. Valuations

2. Final basis indices

3. Okutsu bases numerators

While the Okutsu bases numerators are not required by the MaxMin

algorithm, they are an output of the Montes algorithm, so they must be

stored during the running of MaxMin.
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Proposition 6.14. If F is a finite field with q elements, the additional

space required by MaxMin to compute an integral basis of OL is SMaxMin “

O
`

n2δ logpqq
˘

bits.

Proof. As stated in Section 6.1.2, the valuations required by MaxMin take

the form νk,i,j :“ wpi

`

gk,pj
˘

for P “ tp1, . . . , psu and 1 ď i, j ď s, 0 ď k ď

npj . There are n` s numerators, for each of which we require s valuations,

we must store

Sval “ O ppn` sqsq “ O
`

n2
˘

,

valuations. We have already seen that these valuations are positive rational

numbers of size at most δ “ v pdiscpfqq.

The MaxMin algorithm does not compute the numerators of the ba-

sis directly, but rather computes a family of multi-indices i0, . . . , in which

describe them. There are n ` 1, each of which contains s integers. This

gives

Sind “ O ppn` 1qsq “ O
`

n2
˘

,

integers. As the sum of each component of the multi-index ik is k, all these

positive integers must be less than n.

The final, and largest, set of elements which must be stored are the

numerators of the Okutsu p-bases. As we saw discussing the valuations,

there are n ` s numerators. Each numerator is stored as a polynomial of

degree less than or equal to n with coefficients in O. As stated in Section

6.2, we may consider elements in O to be a finite π-adic development of

length δ ` 1.

So, the space required to store these numerators is

Snum “ O ppn` sqnpδ ` 1qq “ O
`

n2δ
˘

,

elements of the residue field F. We have assumed a finite residue field, which

is of size q “ #F.



154 Chapter 6. Complexity analysis

From these three space complexity estimates, we can give an over space

complexity for computing a basis with the MaxMin algorithm. The space

requirement is

SMaxMin “ Sval ` Sind ` Snum

“ O
`

n2 logpδq
˘

`O
`

n2 logpnq
˘

`O
`

n2δ logpqq
˘

“ O
`

n2δ logpqq
˘

,

bits.



7 
Example computations

“When you want to know how things really work, study them when

they’re coming apart.”

– William Gibson, Zero History

The algorithms for computing triangular bases of integral closures pre-

sented in this work have been implemented as part of the “+Ideals” package

for the computer algebra system Magma [BCP97].

In this chapter, we will present a number of example computations,

comparing running times of the MaxMin based routines with pre-existing

routines used by Magma as well as two other OM-based methods

All executions were performed on GNU/Linux running on 8-core 3.0GHz

nodes with 32GB main memory. Each execution ran in a single core, using

Magma 2.18-5.

155



156 Chapter 7. Example computations

The defining polynomials of the algebraic fields used in the examples in

this chapter are detailed in Section 7.5.

7.1 Algorithms

We will present results from four different algorithms in this chapter. One

of these algorithms is that present in the Magma software package. The

remaining three are based on the use of OM representations of prime ideals.

The first, is our own MaxMin algorithm, as described in Chapter 4.

As presented in that chapter, the MaxMin algorithm produces triangular

v-integral bases, which are also v-reduced.

We will compare our algorithm with an improvement, due to Jens-

Dietrich Bauch [Bau14], of the “Multipliers” method of constructing an

integral basis presented in [GMN13]. In this algorithm, Okutsu bases are

multiplied by a product of Okutsu approximations to form a v-integral basis.

This method does not guarantee that the basis is triangular.

The third OM-based algorithm is the method of the quotients, described

in [GMN]. This method uses the quotients of certain divisions with re-

mainder generated as a byproduct of the Montes algorithm to construct an

v-integral basis.

These three OM-methods first apply the Montes algorithm and then

some specific ideas to compute v-integral bases. The running times of the

figures in this chapter are the total time in seconds of the concatenation of

the two procedures.

Finally, we consider the standard implementation found in Magma as a

single algorithm. In reality this is either the Round-2 [Coh93] or Round-4

[Poh93] algorithm, which Magma selects depending on the field which it is

being applied to.

7.2 Bases of p-maximal orders

Let p be a prime number and let f P Zrxs be a monic, irreducible polynomial

of degree n. Fix a root θ P Q of f and let K “ Qpθq be the corresponding
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algebraic number field. In this section we will present examples of computing

a p-integral basis of the maximal order of K.

7.2.1 Single prime ideal

There are cases where there is only a single prime ideal p lying over the prime

p. As mentioned in Chapter 3, when P “ tpu an Okutsu basis is already

a p-integral basis of the maximal order. In this case, no application of the

MaxMin algorithm is required, the Okutsu basis can be constructed directly

from the OM representation of p. Similar direct constructions are performed

by the Multipliers and Quotients algorithms, so there is essentially no dif-

ference in execution time between the three OM-based algorithms.

For the sake of completeness, we will compare the construction of an

Okutsu basis using the OM factorisation algorithm against the current rou-

tines existing in Magma. Although it is not guaranteed, Magma almost

always produces integral bases of number fields in Hermite normal form.

To make a correct comparison, we include the time to convert the Okutsu

basis into Hermite normal form as well.

Figure 7.1 shows the running time of the MaxMin and Magma algorithms

applied to number fields defined by the polynomials f “ A101,n,211,0pxq,

where n “ deg f ranges from 2 to 200 by increments of three.

It can be seen that Magma and MaxMin are equivalent for n ă 10, how-

ever Magma’s computational time quickly increases, while the OM-based

method does not increase much beyond a single second all the way up to

n “ 200. For n ą 107, Magma took over an hour to compute the p-integral

basis and the time is not included.

The second example we present also has only a single prime ideal dividing

p. Figure 7.2 shows the running times of the OM-based routine and the

Magma routine computing integral basis of the maximal order of number

field defined by the polynomials Ep,jpxq with 1 ď j ď 8.

In this case, Magma cannot compute a basis for the number field defined

by this polynomial for j ą 5 in less than 24 hours. The OM-based algorithm

requires 260 seconds in the final case, however most of this time is computing

the Hermite Normal Form, while the OM factorisation requires less than two
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Figure 7.1: Running time for maximal order Hermitian p-basis computation
defined by polynomials A101,n,211,0pxq with 2n P t2, 5, 8, . . . , 200u.
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Figure 7.2: Running time for maximal order Hermitian p-basis computation
defined by polynomials E13,jpxq with 1 ď j ď 8 of degree 2, 4, 12, 36, 72,
144, 432, 864.
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seconds in all cases.

From these examples it can be seen that the running time of the Magma

routine increases drastically with the degree of the defining polynomial,

whereas the Montes algorithm increases at a much slower rate.

7.2.2 Multiple prime ideals

In order to evaluate the performance of the MaxMin algorithm as compared

to other OM-based methods, it is necessary to choose defining polynomials

so that there are multiple prime ideals dividing p.

In this section, we are interested in showing the running time of the

different algorithms, varying some of the important characteristics of the

number field defined by these polynomials, which affect the computational

complexity of generating a p-integral basis of the maximal ideal.

In this section, we compare the time to compute a basis, however the

bases are not equal. The MaxMin algorithm will, of course, compute a

triangular basis, while the Multipliers and Quotients routines do not have

this guarantee.

Running time vs width

The width of a prime polynomial in Zprxs is defined in [GNP12]. It is an

upper bound for the number of refinement steps that may occur during an

execution of the Montes algorithm.

The first defining polynomial to be shown whose prime factors have

a varying width is f “ B101,kpxq with k ď 5000. The Bp,kpxq polynomials

have 2 prime ideals dividing p, the width of each of the corresponding prime

factors of f in Zprxs is rk{3s. Since the polynomial f has small degree

n “ 6, it is possible to include in Figure 7.3 the times for Magma as well

as the three OM-based algorithms. To correctly compare with the Magma

implementation, we have included the time to put the OM-based routine

output in HNF, however since the basis matrix is small, this requires a

negligible amount of time compared to the computation of the basis in each

case.

It can be seen that in this case, the three OM-based algorithms, MaxMin,
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Figure 7.3: Running time for maximal order Hermitian p-basis computation
defined by polynomials B101,kpxq with k ď 5000.

Multipliers and Quotients perform almost identically. The Magma routine is

faster while k ă 200, but quickly increases to be several orders of magnitude

greater than the other routines.

From this point onward, we will not include times for Magma in the

examples given. In all cases, Magma was significantly slower than the OM-

based algorithms, often unable to complete some of the larger examples in

less than 24 hours.

In Figure 7.4 a second example of a defining polynomial with varying

width is given. The polynomial f “ C101,kpxq defines number fields where

6 prime ideals divide p, each of the corresponding prime factors in Zprxs
has width 6k ´ 90. Different to the previous example, the prime ideals

dividing p have depth 3. Once again, the three OM-based algorithms are

quite similar, but this time the Multipliers routine takes longer than the

MaxMin and Quotients algorithms.
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Figure 7.4: Running time for maximal order p-basis computation defined
by polynomials C101,kpxq with k ď 5000.

Running time vs number of prime factors over Zprxs

To compare running times against the number of prime ideal factors of p,

we will use two further sets of defining polynomials.

Figure 7.5 shows the time required by the three OM-based routines

to compute a p-integral basis of the number fields defined by the poly-

nomials f “ Am1009,n,211pxq. The degree of the number field is deg f “

nm “ 1000 in all cases, with the number of prime ideals dividing p equal to

m P t5, 10, 20, 50, 100, 200, 500u.

In this example, the Quotients routine begins slower than Multipliers

and MaxMin, but as the number of factors increases, it performs better

than Multipliers, although still slower than MaxMin which remains fastest

in all cases.

Another example with a variable number of factors is shown in Figure

7.6. This example uses the set of defining polynomials f “ D101,p,2,21pxq,

with p P t1069, 1087, 1051, 1117, 1097, 919, 1009u.

In this example we have up to 50 prime ideals dividing p. We see that

the three OM-based methods perform similarly for a small number of prime
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Figure 7.7: Running time for maximal order p-basis computation defined
by polynomials EC101,jpxq with 1 ď j ď 8 of degree 38, 40, 48, 72, 108, 180,
468, 900.

ideals and then the Multipliers routine takes longer for the final case, while

Quotients and MaxMin are very similar.

Running time vs depth

In order to show how the running time of the OM-based routines varies

with the depth of a prime ideal dividing p, we construct a set of composite

defining polynomials f “ EC101,jpxq with 1 ď j ď 8. In this case, there will

be a single prime ideal with variable depth equal to j, and 6 further prime

ideals of constant depth 3. The time to compute a p-integral basis using

each of the algorithms is shown in Figure 7.7.

Due to the difference in depth of the prime ideals dividing p, the MaxMin

and Multipliers algorithms must both use the SFL algorithm to improve the

quality of some of the Okutsu approximations used in the construction of

their respective bases. The Quotients method does not require this step,

however it is still slower in practice.
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Figure 7.8: Running time for maximal order Hermitian p-basis computation
defined by polynomials C101,kpxq with k ď 5000.

7.2.3 Hermitian bases

In Section 7.2.2, we have simply compared the time to compute a local basis

for each of the OM-based routines. However, often a basis is required in a

specific format. The goal of the MaxMin algorithm is to compute triangular

bases, however in some cases a Hermitian basis may be required. In this

case, MaxMin has an advantage over the Multipliers and Quotients routines,

as less work is required to put a triangular matrix in Hermite Normal Form

(HNF) than to do the same for an arbitrary matrix.

We will look at two examples to see how the additional time required

to compute a Hermitian basis changes the comparison between OM-based

routines. The first example is a small (degree 36) polynomial, the second is

of variable degree.

Figure 7.8 shows the time required to compute a Hermitian basis of

the maximal order of number fields defined by the polynomials f “ C101,k

with k ď 5000. This should be compared to Figure 7.4, which shows the

computation time required for a basis (not in Hermite normal form).

We see that, while the Multipliers routine takes only slightly longer than
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Figure 7.9: Running time for maximal order Hermitian basis computation
defined by polynomials EC101,jpxq with 1 ď j ď 8 of degree 38, 40, 48, 72,
108, 180, 468, 900.

MaxMin to compute a basis, since it is not triangular in this case, it requires

much longer to compute the HNF. In the final case, k “ 5000, the bases

produced by the Multipliers and Quotients routines required an additional 9

seconds for the HNF computation, whereas the basis produced by MaxMin

required only 0.5 seconds.

In Figure 7.9 we can see the time required to compute a Hermitian

basis of the maximal order of number fields defined by the polynomials

f “ EC101,j with 1 ď j ď 8. The non-Hermitian basis computation time is

shown in Figure 7.7.

In this case, although MaxMin takes considerably less time to compute

the basis than both the Multipliers and Quotients routines, the difference

in time required to make that basis Hermitian is not as pronounced. For

the smaller degree polynomials, the MaxMin is approximately twice as fast.

For EC101,8 the basis is 900 ˆ 900 and MaxMin is 3.5 times faster than

Multipliers and 4.5 times faster than Quotients.
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7.3 Bases of pptq-maximal orders

For a given prime number q, denote by A :“ Fqrts and K :“ Fqptq the

polynomial ring and rational function field in the indeterminate t over the

finite field with q elements.

Let pptq P A be a prime polynomial, that is, monic and irreducible, and

let f P Arxs be a monic irreducible separable polynomial of degree n. Fix a

root θ P K of f and let L “ Kpθq be the function field defined by f .

In the same way that we did for algebraic number fields, in this section,

we will show examples of computing a pptq-integral basis of the maximal

order of K.

7.3.1 Single prime ideal

As in the number field case, construction of a pptq-integral basis of the

maximal order of a function field where only a single prime ideal divides

pptq do not make use of the MaxMin algorithm itself. As such, we will

consider only a single OM-based routine compared to the Magma routine.

The times compared here are to compute a Hermitian basis, as the

Magma routine produces bases in HNF in all these cases.

Figure 7.10 shows the running time for computing the pptq-integral ba-

sis of the maximal order for function fields defined by polynomials f “

Apptq,n,3,0pxq for 2 ď n ď 200. The prime polynomial used is pptq “ t2 ` 1 P

F3rts.

Magma was unable to compute a basis for n ą 95 in less then an hour.

The MaxMin algorithm took less than 400ms in all cases.

The running time for function fields defined by polynomials f “ Epptq,j

for 1 ď j ď 8 and pptq “ t2 ` 1 P F7rts are shown in Figure 7.11.

For j ą 5, Magma was unable to compute a pptq-integral basis of the

maximal order in less than 24 hours, while the OM-based routine completed

up to j “ 8. At the final computation, the OM-based routine required 8,580

seconds to complete, however only 173 seconds of those was the actual OM

routines. Most of the time was spent computing the HNF, which can be

especially costly for function fields.
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Figure 7.10: Running time for maximal order Hermitian pptq-basis compu-
tation defined by polynomials At2`1,n,3,0pxq with n P t2, 5, 8, . . . , 200u.
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Figure 7.11: Running time for maximal order Hermitian pptq-basis compu-
tation defined by polynomials Et2`1,jpxq for 1 ď j ď 8 of degree 2, 4, 12,
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Figure 7.12: Running time for maximal order Hermitian pptq-basis compu-
tation defined by polynomials Bt3`2,kpxq with k ď 5000.

7.3.2 Multiple prime ideals

Running time vs width

In Figure 7.12, the running times for the computation of the pptq-integral

bases of the maximal ideals of the function fields defined by the polynomials

f “ Bpptq,kpxq are presented. In all cases, the prime polynomial is pptq “ t3`

2 P F7rts. Similar to the number field case, the small degree of the defining

polynomial allows Magma to complete the computation for all values of

k ă 5000 in a reasonable amount of time. The time to convert the bases

computed by the OM-based routines to HNF has been included to allow

a fair comparison with the routine built into Magma, however as in the

number field case, the small size of the basis means that this time is a small

fraction of the overall computation.

This figure shows that all four routines require roughly the same amount

of time for small k, then the Magma routine presents a rapidly increasing

running time as k grows, while the three OM-based routines increase at the

same, much slower rate.

The polynomials, f “ Cpptq,kpxq in F7rt, xs define function fields where
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Figure 7.13: Running time for maximal order pptq-basis computation defined
by polynomials Ct3`2,kpxq with k ď 500.

six prime ideals divide pptq “ t3 ` 2. The three OM-based routines have

similar running times for this set of defining polynomials, with the Quotients

routine being slower across all cases and the MaxMin routine being slightly

faster than Quotients. The running times are displayed in Figure 7.13.

Running time vs number of prime factors over Ârxs

As arithmetic operations in functions fields are more costly than in number

fields, it is not possible to construct bases for function fields with very large

numbers of prime ideals dividing pptq. Therefore we limit this example

using defining polynomials f “ Ampptq,n,3pxq with nm “ 64, where we take

m P t2, 4, 8, 32u. The prime ideal is pptq “ t2 ` 4 P F37rts. The running

times are presented in Figure 7.14.

In this example we can see that the Quotients routine increases with the

number of factors at a much faster rate than the MaxMin and Multipliers

algorithms, although all three methods present linear running times in the

number of factors.
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Figure 7.14: Running time for maximal order pptq-basis computation defined
by polynomials Amt2`4,n,28pxq with n ¨m “ 64, m P t2, 4, 8, 32u.

Running time vs depth

Figure 7.15 presents the running times for the computation of the pptq-

integral bases of the maximal orders of function fields defined by the poly-

nomials ECpptq,jpxq for 1 ď j ď 6. The prime polynomial pptq “ t2`4 P F7rts

is divisible by 5 prime ideals, one of which has variable depth j, while the

others have fixed depth of 3.

The running times for the MaxMin and Multipliers algorithms are very

similar. If we compare this example to that shown in 7.11, it is evident this

polynomial defines a much more complex case than that of just Epptq,jpxq.

This is partly due to additional computation required to perform the Montes

algorithm, but can mostly be attributed to the requirement of the single

factor lifting algorithm - which accounts for almost all of the computation

time in the larger examples.

It is interesting that, even with the large computational requirement

imposed by the use of the SFL algorithm, both the MaxMin and the Mul-

tipliers routines are considerably faster than the Quotients routine, which

does not require SFL at all. The Quotients routine was unable to compute



7.3. Bases of pptq-maximal orders 171

 0.1

 1

 10

 100

 1000

 10000

 100000

 0  100  200  300  400  500  600  700  800  900

e
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
s
)

Defining polynomial degree

MaxMin
Multipliers
Quotients

Figure 7.15: Running time for maximal order pptq-basis computation defined
by polynomials ECt2`4,jpxq with 1 ď j ď 8 of degree 38, 40, 48, 72, 108,
180, 468, 900.

the final basis (j “ 8) in less than 24 hours.

Running time vs deg pptq

A characteristic specific to computing pptq-integral bases of the maximal

orders of function fields is the degree of the prime polynomial pptq. Figure

7.16 shows the running time for computing the pptq-integral bases of max-

imal orders of function fields defined by Cpptq,23pxq, where pptq P F23rts is

of degree 4 ď deg pptq ď 200 incrementing by steps of 2. Specifically, we

choose the lexicographically smallest polynomial for each degree.

This example presents approximately linear running time increase in

terms of the degree of the prime polynomial pptq for each of the three OM-

based routines. MaxMin runs consistently faster than Multipliers, which is

again faster than Quotients.
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Figure 7.16: Running time for maximal pptq-order basis computation defined
by polynomials Cpptq,23pxq with 4 ď deg pptq ď 200.

7.4 Fractional ideals

The MaxMin algorithm is also capable of constructing p-bases of fractional

ideals, as described in Chapter 5.

We retain the appropriate setting from the previous sections. Now, let

p1, . . . , ps be the prime ideals dividing p in the number field case and pptq

in the function field case. Consider a fractional ideal

I “
s
ź

i“1

paii , ai P Z. (7.1)

In this section, we will only compare the MaxMin and the Multipliers

algorithms, as the Quotients routine cannot compute bases for fractional

ideals.

7.4.1 Number Field

Consider the case where all ai are chosen randomly in the interval r´30, 30s.

Figure 7.17 shows the required time for the MaxMin and Multipliers algo-

rithms to compute a triangular base for the maximal order compared to a
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Figure 7.17: Running time for maximal order and fractional ideal p-basis
computation defined by polynomials C101,kpxq with k ď 5000.

random fractional ideal with these “small” exponents. In both cases, we

are working over number fields defined by the polynomials f “ C101,k with

k ď 5000.

It can be seen that constructing a basis of a random fractional ideal

requires slightly more time than MaxMin takes for the maximal order. This

is because the single factor lifting algorithm is required in the earlier case,

whereas in this example it is not required for the maximal order. The

Multipliers routine presents time that are much more similar, as it already

requires a number of rounds of the SFL algorithm in the maximal order

case.

To further explore the time required to construct a basis of a fractional

ideal, we consider the case of an ideal I “ pa11 with only one non-zero

exponent. In Figure 7.18, the running time is shown as the exponent a1 is

increased.

The running time increases with the difference in exponents. However,

since the SFL algorithm approximately doubles the precision of an approx-

imation at each step, the running time increase is logarithmic.
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Figure 7.18: Running time for fractional ideal I “ pa11 p-basis computation
defined by polynomials C101,1000pxq with exponent 0 ď a1 ď 10, 000.

7.4.2 Function Field

In Figure 7.19 we compare the running time for computing a basis of the

maximal order compared to that for computing a basis of a random frac-

tional ideal for both the MaxMin and Multipliers algorithms. The number

field is defined by the polynomials f “ Cpptq,kpxq with pptq “ t3 ` 2 P F7rts

and 23 ď k ď 500. The fractional ideal is the product of the 6 prime ideals

that divide pptq each raised to a random exponent in the interval r´30, 30s.

We see that the MaxMin algorithm takes less time to compute the max-

imal order than a fractional ideal. The Multipliers routine takes about that

same time to compute a either basis as MaxMin does to compute a basis

of a fractional ideal. As in the number field case, this is because the Single

Factor Lifting algorithm must be applied in both cases for the Multipliers

algorithm, but only in the fractional ideal case for the MaxMin routine.

Figure 7.20 compares the running times of the MaxMin and Multipliers

algorithm computing a local basis of a fractional ideal of the form I “ pa11 ,

where 0 ď a1 ď 2, 000. The underlying function field is the same in all

cases, defined by Cpptq,100pxq with pptq “ t3 ` 2 P F7rts.
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Figure 7.19: Running time for maximal order and fractional ideal pptq-basis
computation defined by polynomials Ct3`2,kpxq with k ď 500.
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Figure 7.20: Running time for fractional ideal I “ pa11 pptq-basis computa-
tion defined by polynomials Cpptq,100pxq with pptq “ t3`2 P F7 and exponent
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The running time for both routines is similar, with the MaxMin al-

gorithm taking less time. The time difference between the two methods

appears to be decreasing as a1 rises. This is most likely due to the time

required to perform Single Factor Lifting becoming dominant.

7.5 Example polynomials

In this section we show the defining polynomials used throughout this chap-

ter. All polynomials presented here are taken from [GNP12].

The first five polynomials are defined by their parameters,

Ap,n,k,rpxq “ px` 1` p` p2 ` ¨ ¨ ¨ ` prqn ` pk,

Amp,n,kpxq “ px
n ` 2pkqppx` 2qn ` 2pkq ¨ ¨ ¨ ppx` 2m´ 2qn ` 2pkq ` 2pmnk,

Bp,kpxq “ px
2 ´ 2x` 4q3 ` pk,

Cp,kpxq “ ppx
6 ` 4px3 ` 3p2x2 ` 4p2q2 ` p6q3 ` pk,

D`,p,n,kpxq “ px
`´1 ` ¨ ¨ ¨x` 1q ` pk.

The “E” polynomials are explicitly defined for each level,

Ep,1pxq “ x2 ` p,

Ep,2pxq “ Ep,1pxq
2 ` pp´ 1qp3x,

Ep,3pxq “ Ep,2pxq
3 ` p11,

Ep,4pxq “ Ep,3pxq
3 ` p29xEp,2pxq,

Ep,5pxq “ Ep,4pxq
2 ` pp´ 1qp42xEp,1pxqEp,3pxq

2,

Ep,6pxq “ Ep,5pxq
2 ` p88xEp,3pxqEp,4pxq,

Ep,7pxq “ Ep,6pxq
3 ` p295Ep,2pxqEp,4pxqEp,5pxq,

Ep,8pxq “ Ep,7pxq
2 ` pp´ 1qp632xEp,1pxqEp,2pxq

2Ep,3pxq
2Ep,6pxq.

Finally, the “EC” polynomials are specified as,

ECp,jpxq “ Ep,jpxq ¨ Cp,28 ` p
900.

The main characteristics of these polynomials can be found in [GNP12].



A 
Catalogue of routines

In this appendix, we will present details of the most important routines in

the “+Ideals” package that provide support for constructing triangular bases

of integral closures following the MaxMin algorithm. Firstly, the existing

routines which we make use of will be described, and then we will proceed

to describe the new routines that have been added.

A.1 The +Ideals package

The OM factorisation algorithm presented in Chapter 2 has already been

implemented as a package for Magma, the computer algebra system. This

is the +Ideals package [GMN10a], which implements the Montes algorithms

as well as various related routines for operating on OM representations of

ideals.

The package may be downloaded from the web-site listed below, where

an in depth list of all sub-routines in the package can also be found.
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http://www-ma4.upc.edu/~guardia/+Ideals.html

We are primarily concerned with three routines from the +Ideals pack-

age.

A.1.1 Montes(K, p : Basis:=false)

Input

• K is a number field defined by the monic irreducible polynomial f P

Zrxs.

• p is a prime number.

• Basis determines whether a p-integral basis is computed (default:

false).

This routine has no explicit output, but it does store data in the struc-

ture representing K. Let θ be a root of f , and let OK be the ring of integers

of K. The following data are computed:

• K`PrimeIdeals[p]: A list of OM representations of the prime ideals

dividing p.

• K`LocalIndex[p]: The p-adic valuation of pOK : Zrθsq.

Additionally, if the parameter Basis is set to true, then

• K`pBasis[p]: A p-integral basis of OK .

The p-integral basis is computed using the method of the quotients de-

scribed in Section 7.1.

A.1.2 pHermiteBasis(K, p)

Input

• K is a number field defined by the monic irreducible polynomial f P

Zrxs.

• p is a prime number.
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This routine will compute a p-integral basis of K in Hermite Normal

Form. It requires a p-integral basis, so if necessary, it will call the Montes

routine with Basis set to true to obtain one.

Output

• K`pHermiteBasis[p] is a p-integral basis of OK in Hermite Normal

Form.

A.1.3 SFL(K, P, slope)

Input

• K is a number field defined by the monic irreducible polynomial f P

Zrxs.

• P is a prime ideal of K.

• slope is a positive integer.

Let FP P Zprxs be the prime factor of f associated to the prime ideal P

and let φP P Zrxs be the Montes approximation to FP as a factor of f .

The SFL routine performs Single Factor Lifting on φP, to improve the

quality of the approximation as detailed in Section 2.6. The new polyno-

mial will then be stored in the OM representation of P found in the list

K`PrimeIdeals[p].

Let r be the Okutsu depth of Fp, so that r ` 1 be the order of the OM

representation of P. Then, the new approximation φ1P will have P-valuation

wP

`

φ1Ppθq
˘

ě
Vr`1 ` slope

e1 ¨ ¨ ¨ er
.

A.2 New routines supporting MaxMin

The routines based on the algorithms presented in Chapter 4 are organised

into a subpackage of +Ideals, called IdealsBases.

In this section, we will present the routines made available to the user,

as well as the fundamental routines that are used to compute bases of ideals.



180 Appendix A. Catalogue of routines

Throughout this section, K is a number field defined by a monic irre-

ducible polynomial f P Zrxs of degree n, θ is a root of f , and OK is the

integer ring of K.

A.2.1 MaxMin(K, p, exp)

Input

• K is a number field defined by the monic irreducible polynomial f P

Zrxs.

• p is a prime number.

• exp is a sequence of integer exponents for each of the prime ideals of

K dividing p.

This routine applies the MaxMin algorithm to the set of prime ideals of

K that divide p. If the sequence of exponents exp is all zeros, it will compute

the data needed to construct the maximal order of K, in the contrary case

the data produced will construct a fractional ideal of the form

I “
s
ź

i“0

p
exp[i]
i , exp[i] P Z,

where s is the number of prime ideals of K dividing p.

The data produced by the routine is the indices of the elements of the

Okutsu p-bases which are used to construct each element of the p-integral

basis, as well as the p-valuation of each of these elements.

Output

• nums ind is sequence of indices used to construct the p-integral basis

numerators

• dens exp is a sequence of exponents, such that the p-integral basis

denominators are pexp[i] for 0 ď i ă n.
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A.2.2 ComputeNumerators(K, p, nums ind)

Input

• K is a number field defined by the monic irreducible polynomial f P

Zrxs.

• p is a prime number.

• nums ind is a sequence of indices of elements from Okutsu p-bases.

The ComputeNumerators routine complements the MaxMin routine, com-

puting the numerators of the basis from the indices which the MaxMin routine

outputs. The numerators are elements of K, which computationally, can be

thought of as polynomials in θ, the root of f .

The elements of the Okutsu p-bases, which are used to compute the

final basis elements, are constructed from the φ-polynomials held in the OM

representations of the prime ideal p, stored in the list K`PrimeIdeals[p].

Output

• nums is a sequence of polynomials in θ which form the numerators of a

p-reduced triangular basis of either a fractional ideal or the maximal

order of K, depending on the indices given.

A.2.3 pTriangularBasis(K, p)

Input

• K is a number field defined by the monic irreducible polynomial f P

Zrxs.

• p is a prime number.

This routine produces a p-integral basis of OK . The basis is triangular

and reduced. The pTriangularBasis routine requires OM representations

of the prime ideals of K dividing p, so if necessary it will run the Montes

routine (with Basis set to false).
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Output

• K`pBasis[p] is a reduced, triangular p-integral basis of OK .

A.2.4 pTriangularIdealBasis(I, p)

Input

• I is a fractional ideal of the number field K defined by the monic

irreducible polynomial f P Zrxs.

• p is a prime number.

This routine produces a p-integral basis of I. The basis is triangular

and reduced. The pTriangularIdealBasis routine requires OM represen-

tations of the prime ideals of K dividing p, so if necessary it will run the

Montes routine (with Basis set to false).

Output

• A list containing a reduced, triangular p-integral basis of I.

A.2.5 pHermiteBasis(K, p : Alg:="MaxMin")

Input

• K is a number field defined by the monic irreducible polynomial f P

Zrxs.

• p is a prime number.

• Alg determines the algorithm used to create the p-integral basis (de-

fault: "MaxMin"), valid options are

– "MaxMin" : The pTriangularBasis routine will be used, em-

ploying the MaxMin algorithm.

– "Quotients" : The quotients method will be used.
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In this routine, a p-integral basis of OK is computed in Hermite Normal

Form. The parameter Alg determines the routine used to produce the p-

integral basis which will then be converted to Hermite Normal Form.

If Alg is set to "MaxMin", then the p-integral basis will be computed

using the pTriangularBasis routine - thereby starting with a triangular

basis.

If the second option, "Quotients", is set then the Montes routine will

be used with the Basis parameter set to true. This basis may not be

triangular.

The user should note that this routine overwrites the routine of the same

name present in the base +Ideals package. Setting Alg to "Quotients" will

use the functionality from the original routine.

Output

• K`pHermiteBasis[p] is a p-integral basis of OK in Hermite Normal

Form.
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[Ore25] Öystein Ore. Bestimmung der Diskriminanten Algebraischer

Körper. Acta Mathematica, 45(1):303–344, 1925.

[Poh93] Michael E. Pohst. Computational Algebraic Number Theory.

DMV Seminar Band 21. Birkhäuser Verlag, 1993.
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