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Resumen

Existe una creciente demanda de métodos eficientemente rentables para la
estimación de la distribución de las clases en una muestra de individuos. Una
tarea de aprendizaje automático recientemente formalizada como cuantificación.
Su principal objetivo es la estimación precisa del número de casos positivos (o
distribución de clases) en un conjunto de evaluación, empleando un conjunto de
entrenamiento que puede tener una distribución sustancialmente distinta.

Tras analizar la superficie del problema, la conclusión directa podría ser que
cuantificar la proporciones de las clases en una muestra es tan simple como contar
las predicciones de un clasificador estándar. Sin embargo, debido a los cambios de
distribución que ocurren de forma natural en los problemas del mundo real esta
solución suele ser poco efectiva, dado que las diferencias de distribución entre los
conjuntos de entrenamiento y evaluación pueden tener un gran impacto negativo
en la efectividad de clasificadores de vanguardia.

La suposición general que suelen establecer los métodos de clasificación es
que las muestras son representativas, lo cual implica que las densidades intra-
clases, Pr(x|y), y la distribución a priori de las clases, Pr(y), son invariables.
Obviamente, la segunda parte no se cumple para cuantificación, dado que por
definición su objetivo es estimar Pr(y). En esta tesis se estudia este problemática
y el trabajo relacionado con cuantificación bajo condiciones de prior-shift, en donde
sólo las densidades intra-clases se consideran constates.

Esta tesis propone tres contribuciones principales: (1) se presenta el primer
estudio de investigación que formaliza una metodología específica para realizar
comparativas estadísticas de varios cuantificadores evaluados sobre múltiples
prevalencias; (2) se validan dos estrategias sencillas y computacionalmente
rentables de ponderación por pesos aplicadas a algoritmos del vecino más cercano,
las cuales resultan competitivas empíricamente; y (3) se implementa el primer
método de aprendizaje que optimiza una métrica de cuantificación, proponiendo
una nueva familia de funciones de pérdida parametrizables, capaces de balancear
medidas de cuantificación y clasificación simultáneamente.

La contribución principal de la metodología propuesta es que nos permite analizar
propiedades relevantes de estas comparativas desde un punto de vista estadístico,
a la vez que ofrece indicadores sobre qué algoritmos son significativamente
mejores. En comparación con la validación-cruzada estándar y los tests estadísticos
relacionados, la validación de cuantificadores requiere medir su eficacia sobre un
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gran abanico de conjuntos de evaluación con diferentes distribuciones de clases.
Este es el motivo por el que las comparativas estadísticas de clasificadores no son
aplicables directamente.

La segunda contribución ofrece un nuevo método de base para resolver problemas
de cuantificación binaria, basado en algoritmos del vecino más próximo (NN). Se
presentan dos estrategias sencillas y computacionalmente rentables de ponderación
por pesos, que destacan entre modelos de cuantificación recientes. Las conclusiones
extraídas de los test estadísticos de Nemenyi muestran que nuestras propuestas son
las únicas de entre las estudiadas que ofrecen diferencias significativas con respecto
a modelos menos robustos, como son CC, AC o T50; los cuales están considerados
como enfoques vanguardistas por la mayoría de autores.

Nuestra última contribución está relacionada con el hecho de que los modelos
actuales de cuantificación se basan en clasificadores, presentando la problemática
de que son entrenados con una función de pérdida enfocada a clasificación, en lugar
de a cuantificación. Otros intentos recientes de abordar este problema sufren
ciertas limitaciones en cuanto a fiabilidad. Por lo que presentamos un método
de aprendizaje que optimiza un métrica basada en estimación sobre muestras
completas, combinando medidas de cuantificación y clasificación simultáneamente.
Nuestra propuesta ofrece un nuevo enfoque que permite construir cuantificadores
binarios que son capaces de estimar la proporción de positivos de forma precisa,
basados a su vez en modelos con habilidades de clasificación fiables.

En el último capítulo se analizan las conclusiones principales, presentando
directrices para futuras investigaciones; incluyendo la optimización de modelos de
base que minimice la varianza durante la calibración de sus umbrales de decisión
y el análisis empírico de la potencia y estabilidad de test estadísticos aplicados en
experimentos de cuantificación.

“En tiempos de cambio, quienes estén abiertos al aprendizaje heredarán el futuro,
mientras que aquellos que crean saberlo todo se encontrarán excelentemente
equipados para vivir en un mundo que ya no existe” — Eric Hoffer
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Conclusiones

Las tres contribuciones principales de esta tesis son las siguientes:

• Presentación del primer estudio de investigación que formaliza una
metodología especializada en comparaciones estadísticas de varios cuantificadores
sobre múltiples distribuciones de evaluación [Barranquero et al., 2013].

• Diseño e implementación de dos estrategias de ponderación por pesos,
sencillas y eficientes, para algoritmos del vecino más próximo; las cuales
ofrecen un redimiendo competitivo en tares de cuantificación [Barranquero
et al., 2013].

• Diseño e implementación del primer método de aprendizaje que optimiza
una métrica de cuantificación, proponiendo además una familia de funciones
de pérdida parametrizable, las cuales son capaces de balancear criterios de
cuantificación y clasificación [Barranquero et al., under review].

Metodología para comparación estadística de cuantificadores

Dado que la metodología de experimentación que requiere la tarea de cuantificación
es relativamente infrecuente y todavía necesita estandarizarse y validarse por
la comunidad de aprendizaje automático, en el Capítulo 4 proponemos una
nueva metodología para comparaciones estadísticas de varios cuantificadores sobre
múltiples distribuciones de evaluación a través de re-muestreo estratificado.

La contribución principal de esta nueva metodología es que nos permite analizar
propiedades relevantes de estas comparativas desde un punto de vista estadístico.
Además, también ofrece indicios sobre qué algoritmos son significativamente
mejores, con un cierto grado de confianza, gracias a la adaptación de los dos
test estadísticos post-hoc basados en el test de Friedman propuestos por Demšar
[2006], y el re-diseño del procedimiento de generación de conjuntos de evaluación
de la validación-cruzada estratificada de k-particiones.

La principal diferencias con respecto a la validación-cruzada estándar y los test
estadísticos relacionados es que es necesario evaluar el rendimiento sobre conjuntos
completos, en lugar de sobre resultados individuales de clasificación. Más aún,
dicha valoración requiere evaluar el rendimiento sobre un amplio espectro de
distribuciones de test, en contrapartida a usar un único conjunto de test. Es
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por esto que las técnicas tradicionales para realizar comparativas de modelos de
clasificación no son directamente aplicables y necesitan ser adaptadas.

Por todo ello realizamos una revisión exhaustiva de estos procedimientos
estadísticos relacionados, discutiendo sus pros y contras. Tras este estudio
describimos nuestra propuesta en detalle, adaptando los procedimientos existentes
a los requerimientos específicos de las comparativas de cuantificación. En este
sentido, consideramos que unos de los puntos fuertes de nuestra propuesta es que
hemos prevalecido la robustez, en términos de reducir los errores Tipo I, frente a
reducir los errores de Tipo II (ver Sección 4.2.4).

Cuantificación por vecinos más próximos

En el Capítulo 5, presentamos varios algoritmos basados en reglas tipo vecino más
próximo, incluido el ampliamente conocido KNN y dos estrategias de ponderación
identificadas como PWK y PWKα. Partiendo del objetivo principal de estudiar el
comportamiento de métodos NN en el contexto de la cuantificación, proponemos
un enfoque capaz de proveer rendimiento competitivo con un balance entre
simplicidad y efectividad. Este estudio establece un nuevo enfoque baseline para
afrontar el problema de la estimación de prevalencia en problemas binarios.

Encontramos que, en general, las versiones ponderadas basadas en NN ofrecen
un rendimiento eficiente y de bajo coste. Las conclusiones extraídas de los test
Nemenyi analizados en la Sección 5.3 sugieren que PWK y PWKα destacan como
los mejores sistemas, sin diferencias estadísticas entre ambos, pero sí ofrecen
diferencias estadísticas con respecto a modelos menos robustos como CC, AC o
T50.

Nuestros experimentos no ofrecen ningún indicador que ayude a discriminar cuál
de estas dos estrategias de ponderación es más recomendable en aplicaciones del
mundo real. La decisión final debería basarse en los requerimientos específicos del
problema, las restricción del entorno, o la complejidad de los datos, entre otros.

Sin embargo, teniendo en cuenta las observaciones que se discuten en la
Sección 5.3.5, parece que PWK puede ser más apropiado cuando la clase
minoritaria es más relevante, mientras que PWKα aparenta ser mucho más
conservativo respecto a la clase mayoritaria. Teniendo en cuenta otros factores,
PWK es más sencillo, sus pesos son más fácilmente interpretables y sólo requiere
calibrar el número de vecinos.

Cuantificación mediante funciones de pérdida robustas

Finalmente, en el Capítulo 6 estudiamos el problema desde una perspectiva
totalmente diferente. Tal y como Esuli y Sebastiani afirman en [Esuli and

viii
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Sebastiani, 2010], los algoritmos de cuantificación actuales no optimizan la
función de pérdida que se emplea en la validación o comparación. Continuando
su línea de investigación, consideramos que optimizar sólo una métrica de
cuantificación durante el aprendizaje no aborda el problema de forma suficiente.
Podríamos obtener cuantificadores con un comportamiento pobre, debido a que el
modelo subyacente es incoherente en términos de habilidades de clasificación (ver
Sección 6.1). En este sentido, la pregunta más importante que trata de responder
este estudio es si es realmente recomendable confiar en modelos de cuantificación
que que no distingan entre positivos y negativos a nivel individual.

Formalmente, la forma de resolver problemas de aprendizaje automático implica
dos pasos: definir una métrica apropiada y un algoritmo que la optimice. Por
tanto, la combinación de Q-measure, definida en la Sección 6.2, y el algoritmo
multivariate de Joachims [2005], presentado in la Sección 6.3, ofrecen una solución
formal para el aprendizaje de cuantifiacadores.

Las contribuciones principales son el estudio del primer procedimiento de
aprendizaje orientado a cuantificación, es decir, el primer algoritmo que optimiza
una métrica de cuantificación; y la definición de una función de pérdida
parametrizable. Esta propuesta no sólo está teóricamente bien fundamentada, sino
que además ofrece rendimiento competitivo en comparación con los algoritmos de
cuantificación actuales.

Overall discussion of contributions

A pesar de que las propuestas basadas en NN pueden parecer técnicamente simples,
es importante valorar el esfuerzo invertido en analizar el problema de cara a poder
adaptar estos algoritmos a una tarea de optimización moderna. Este estudio
también nos ha ayudado a entender el problema más profundamente.

Adicionalmente, el valor de soluciones simples ha sido recalcada mucha veces en
la literatura. Uno no podría decir nunca a priori, cuánto de la estructura de
un dominio puede ser captura por una regla de decisión sencilla. Puede ser que
además sea ventajosa por cuestiones teóricas o practicas.

De hecho, lo modelos simples (iniciales) usualmente ofrecen las mayores mejoras,
que pueden superar el 90% del poder predictivo que puede conseguirse, mientras
que son menos propensos a sobreajustarse [Hand, 2006; Holte, 2006]. Obviamente,
esto no significa que haya que menospreciar las reglas de decisión más complejas,
sino que las sencillas no deberían descartarse. Este podría ser el caso de nuestras
soluciones NN, que se basan la distancia euclídea y estrategias de ponderación
simples. Sin embargo, tampoco significa que los enfoques NN no puedan proveer
reglas de decisión más complejas a su vez.

Por el contrario, el enfoque multivariate para optimizar Q-measure podría sufrir de
demasiada complejidad, medida en términos de coste computacional. Esta es una

ix
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de las razones por las que no hemos aplicado la corrección de Forman durante la
validación de experimentos, resultando que estos experimentos no son comparables
directamente con el estudio previo sobre NN. En cualquier caso consideramos que
ambos enfoques son complementarios.

Curiosamente, Demšar [2006] dirige la atención a una opinión alternativa entre los
expertos en estadística acerca de que los test de significancia no deberían realizares
en ningún caso porque normalmente se emplean mal, bien por mala interpretación
o por dar demasiado peso a los resultados. De todas formas, considera que los test
estadísticos proveen de cierta validez y no-aleatoriedad de resultados públicos,
aunque, deberían realizarse con cuidado.

El punto más relevante remarcado por Demšar es que los test estadísticos no
deberían ser el factor decisivo a favor o en cuentea de un trabajo. Deberían
valorarse otros méritos del algoritmo propuesto más allá de los resultados de estos
tests.

En este sentido, nuestro enfoque Q-measure ofrece resultados de cuantificación
competitivos con respecto al resto de modelos. Sin embargo, como ya hemos
discutido, está formalmente bien definido y no se basa en ninguna regla heurística.
Desde ese punto de vista creemos firmemente que pueda ser considerado en futuros
estudios de cuantificación. Por lo menos ofrecen un sesgo de aprendizaje diferente
a los actuales, pudiendo producir mejores resultados en algunos dominios.

Finalmente, es importante remarcar que los resultados experimentales de
Q-measure no están ajustados por medio de la Equación (3.1). Por lo que estos
métodos pueden considerarse variantes del CC, pudiendo mejorarse con estrategias
similares a las aplicadas en AC, Max, X, MS or T50.

x
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Abstract

There is an increasing demand in real-world applications for cost-effective methods
to estimate the distribution of classes from a sample. A machine learning task that
has been recently formalized as quantification. Its key objective is to accurately
estimate the number of positive cases (or class distribution) in a test set, using a
training set that may have a substantially different distribution.

After a first look at the problem, the straightforward conclusion could be that
quantifying the proportions of classes in a sample is as simple as counting the
predictions of a standard classifier. However, due to natural distribution changes
occurring in real-world problems this solution is unsatisfactory, because different
distributions of train and test data may have a huge impact on the performance
of state-of-the-art classifiers.

The general assumption made by classification methods is that the samples are
representative, which implies that the within-class probability densities, Pr(x|y),
and the a priori class distribution, Pr(y), do not vary. Obviously, the second part
does not hold for quantification, given that by definition it is aimed at estimating
Pr(y). We study this problem and the related work in quantification under prior-
shift conditions, which assume that only within-class probability densities are
constant.

This dissertation proposes three main contributions: (1) we present the
first research study that formalizes an specialized methodology for statistical
comparisons of several quantifiers over multiple test prevalences; (2) we validate
two simple and cost-effective weighting strategies for nearest neighbour algorithms,
offering competitive quantification performance in practice; and (3) we implement
the first learning method that optimizes a quantification metric, proposing a new
family of parametric loss functions that are able to balance quantification and
classification measurements simultaneously.

The key contribution of our proposed methodology is that it allows us to analyze
relevant properties of these comparatives from a statistical point of view, while
providing meaningful insights about which algorithms are significantly better. In
contrast with standard cross-validation procedures and related statistical tests,
quantification assessment requires evaluating performance over a broad spectrum
of test sets with different class distributions. That is why statistical comparisons
of classification models are not directly applicable.
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The second contribution offers a new baseline approach for solving binary
quantification problems based on nearest neighbor (NN) algorithms. We present
two simple and cost-effective weighting strategies, which stand out from state-
of-the-art quantifiers. The conclusions drawn from Nemenyi post-hoc statistical
tests show that our proposals are the only ones among studied methods that offer
significant differences with respect to less robust algorithms, like CC, AC or T50;
which are considered as state-of-the-art approaches by most authors.

Our last contribution is related with the fact that current quantification models
are based on classifiers, presenting the weakness of being trained with a loss
function aimed at classification, rather than quantification. Other recent attempts
to address this issue suffer some limitations regarding reliability. Thus, we
present a learning method that optimizes a multivariate metric that combines
quantification and classification performance simultaneously. Our proposal offers
a new framework that allows constructing binary quantifiers that are able to
accurately estimate the proportion of positives, based on models with reliable
classification abilities (high sensitivity).

In last chapter we discuss our main conclusions, presenting directions for future
research; including optimization of root models for minimizing variance in
threshold calibration and the empirical analysis of power and stability of statistical
tests for quantification experiments.

“In times of change, learners inherit the future, while the learned find themselves
beautifully equipped to deal with a world that no longer exists” — Eric Hoffer

xii
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Chapter 1

Introduction

This chapter reviews the main concepts that will be developed along this
dissertation, trying to set out the problem and to motivate the research work
behind it. We also establish our three primary research goals, including a new
methodology for statistical comparisons of quantification models and two novel
approaches for solving this relatively new task grounded in the field of machine
learning.

1.1 Motivation

Any data scientist that had dealt with real-world problems knows that there exist
classification domains that are inherently complex, being very difficult to obtain
accurate predictions when focusing on each specific example; that is, to achieve
high classification accuracy. However, it is not so strange to require estimations
about the characteristics of the overall sample instead, mainly regarding data
distribution.

For instance, in order to measure the success of a new product, there is
an increasing demand of methods for tracking the overall consumer opinion,
superseding classical approaches aimed at individual perceptions. To answer
questions like how many clients are satisfied with our new product?, we need
effective algorithms focused on estimating the distribution of classes from a sample.
This has emerging relevance when dealing with tracking of trends over time
[Rakthanmanon et al., 2012], as early detection of epidemics and endangered
species, risk prevalence, market and ecosystem evolution, or any other kind of
distribution change in general.

In many business, scientific and medical applications, it is sufficient, and sometimes
even more relevant, to obtain estimations at an aggregated level in order to plan
proper strategies. Companies could obtain greater return on investment if they
were able to accurately estimate the proportion of events that will involve higher
costs or benefits. This will avoid wasting resources in guessing the class of each
specific event; a task that usually reveals itself as complex, expensive and error-
prone. For example, the estimation of the proportion of policy holders that will
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Chapter 1. Introduction

be involved in accidents during the next year, or the estimation of the overall
consumer satisfaction with respect to any specific product, service or brand.

Tentative application scopes include opinion mining [Esuli and Sebastiani, 2010],
network-behavior analysis [Tang et al., 2010], remote sensing [Guerrero-Curieses
et al., 2009], quality control [Sánchez et al., 2008], word-sense disambiguation
[Chan and Ng, 2006], monitoring of support-call logs [Forman et al., 2006], credit
scoring [Hand, 2006], species distribution modeling [Dudık et al., 2007; Phillips
et al., 2004], seminal quality control [González-Castro, 2011], or adaptive fraud-
detection [Provost and Fawcett, 2001], among others.

In our case, the work described in [González et al., 2013] is the seminal work that
gives origin to this thesis, in which we present a cost-sensitive learning approach to
solve a real world problem: the biomass estimation of several plankton taxonomic
groups. The method consist, basically, in attach to each instance its corresponding
misclassification cost and then minimize a cost-sensitive loss function. Related con
this dissertation, the most important achievement is the appearance of a real world
dataset where prevalence of the different classes change with the time: the presence
of any type of plankton can be increased or decreased by many factors. However,
we later concluded that the problem under study was not directly addressable
through quantification based on prior-shift restrictions, given that this dataset
does not fulfill the learning assumptions formalized in Chapter 2.

1.2 Problem description

In machine learning, the task of quantification is to accurately estimate the
number of positive cases (or class distribution) in a test set, using a training
set that may have a substantially different distribution [Forman, 2008]. Despite
having many potential applications, this problem has been barely tackled within
the community, and needs yet to be properly standardized in terms of error
measurement, experimental setup and methodology in general. Unfortunately,
quantification has attracted little attention due to the mistaken belief of being
somehow trivial. The key problem is that it is not as simple as classifying
and counting the examples of each class, because different distributions of train
and test data may have a huge impact on the performance of state-of-the-art
classifiers. The general assumption made by classification methods is that the
samples are representative [Duda et al., 2001], which implies that the within-class
probability densities, Pr(x|y), and the a priori class distribution, Pr(y), do not
vary. Obviously, the second part does not hold for quantification, given that by
definition it is aimed at estimating Pr(y).

The influence of different changing environments on classification and knowledge-
based systems performance have been analyzed in several studies (see, for instance,
[Kelly et al., 1999; Groot et al., 2005; Hand, 2006; Alaiz-Rodríguez and Japkowicz,
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Section 1.2. Problem description

2008; Cieslak and Chawla, 2009]). This suggests that addressing distribution drifts
is a complex and critical problem. Moreover, many published works are focused on
addressing distribution changes for classification, offering different views of what is
subject to change and what is supposed to be constant. As in recent quantification-
related works, we are only focused on studying changes on the a priori class
distribution, but maintaining within-class probability densities constant. That
is, we are focused on prior-shift problems. This kind of domains are identified as
Y → X problems by Fawcett and Flach [2005]. Provided that we use stratified
sampling [Fleiss et al., 2003], an example of situations where Pr(x|y) does not
change is when the number of examples of one or both classes is conditioned by
the costs associated with obtaining and labeling them [Weiss and Provost, 2003].
The explicit study of other types of distribution shifts, as well as X → Y domains,
are out of the scope of this dissertation [for further reading refer to Webb and Ting,
2005; Holte, 2006; Quionero-Candela et al., 2009; Moreno-Torres et al., 2012a].

ROC-based methods [Provost and Fawcett, 2001; Fawcett, 2004] and cost curves
[Drummond et al., 2006] have been successfully applied to adjust the classification
threshold, given that new class priors are known in advance. However, as already
stated by Forman [2008], these approaches are not useful for estimating class
distributions from test sets. Similarly, if these new priors are unknown, two main
approaches have been followed in the literature. On the one hand, most of the
published works are focused on adapting deployed models to the new conditions
[Latinne et al., 2001; Vucetic and Obradovic, 2001; Saerens et al., 2002; Xue and
Weiss, 2009; Alaiz-Rodríguez et al., 2011]. On the other hand, the alternative
view is mainly concerned with enhancing robustness in order to learn models that
are more resilient to changes in class distribution [Alaiz-Rodríguez et al., 2007].
Anyhow, the aim of these methods, although related, is quite different from that of
quantification because adapting a classifier for improving individual classification
performance does not imply obtaining better quantification predictions, as we shall
discuss in Chapter 3. Moreover, there exists a natural connection with imbalance-
tolerant methods [Weiss, 2004; Vucetic and Obradovic, 2001], mainly those based
on preprocessing of data [Ramentol et al., 2012; López et al., 2011]. Actually,
quantification was originally designed to deal with highly imbalanced datasets;
however, those preprocessing techniques are not directly applicable in changing
environments [Forman, 2008].

The main approach that has been studied in the literature for learning an
explicit binary-quantification model is based on standard classifiers, following a
two-step training procedure. The first step is to train a classifier optimizing a
classification metric, usually accuracy. Afterwards, the next step is to study some
relevant properties of this classifier. The aim of this second step is to correct the
quantification prediction obtained from aggregating classifier estimates [Forman,
2008; Bella et al., 2010].
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Chapter 1. Introduction

1.3 Research goals and contributions

This thesis pursues three main objectives. In order to validate the results
from our experiments, we establish a new experiment methodology for the
task of quantification, based on the widespread cross-validation procedure and
the two step Friedman-Nemenyi statistical test. The development of this
experimental procedure is conducted in parallel with the design and validation
of two complementary novel approaches for addressing quantification.

For our first milestone we evaluate how simple weighting strategies can improve the
performance of NN-based classification algorithms over quantification problems.
Then, we analyze the viability of a pure quantification-based learning approach
(in contrast with a classification one), along with the designing of a new metric
from scratch.

1.3.1 Methodology for statistical comparisons of quantifiers

Since the beginning of our research, we observed the lack of a standardized
experimental design for comparing quantification algorithms, mainly in terms
of statistical procedures. That is why we started by studying the most recent
approaches, trying to redefine a new methodology that could cover the specific
requirements of statistical comparisons of several quantifiers over multiple test
prevalences, while preserving the core concepts already validated for standard
machine learning methodologies.

The key contribution of our proposal is that this new methodology for
quantification allows us to analyze relevant properties of these comparatives from
a statistical point of view. Furthermore, it also provides meaningful insights about
which algorithms are significantly better, with a certain confidence degree, thanks
to the adaptation of two Friedman post-hoc statistical tests [Demšar, 2006], and
the redesign of test set generation in stratified k-fold cross-validation [Refaeilzadeh
et al., 2009].

Analyzing the inherent requirements of quantification, it is straightforward to
conclude that it demands evaluating performance over whole sets, rather than
by means of individual classification outputs. Moreover, quantification assessment
also requires evaluating performance over a broad spectrum of test distributions
in order for it to be representative. Thus, traditional machine learning techniques
for comparing classification models [Garcia and Herrera, 2008; Demšar, 2006] are
not directly applicable and need to be adapted.

The main difference with previous experimental setups followed for quantification
is that our methodology is not focused on a particular domain, nor a specific range
of train or test prevalences. We aim to cover a broader or more general scope.
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Our proposed methodology is described in more detail in Chapter 4, and applied
in the experiments discussed in Chapter 5 and Chapter 6, which cover the
two remaining research objectives that we introduce in next sections. This
experimental setup has been also successfully published on Pattern Recognition
[Barranquero et al., 2013].

1.3.2 Aggregative nearest neighbour quantification

The first experimental study of this dissertation is aimed at analyzing the behavior
of nearest neighbor (NN) algorithms for prevalence estimation in binary problems.
It is well-known that each learning paradigm presents a specific learning bias,
which is best suited for some particular domains. As it happens in other machine
learning tasks, we expect that NN approaches should outperform other methods
in some quantification domains.

The motivational intuition beyond this work is that the inherent behavior of
NN algorithms should yield appropriate quantification results based on the
assumption that they may be able to remember details of the topology of the data,
independently of the presence of distribution changes between training and test.
Moreover, bearing in mind that once the distance matrix has been constructed we
are able to compute many different estimations in a straightforward way, we shall
explain why we consider that these methods offer a cost-effective alternative for
this problem. At the very least, they reveal themselves to be competitive baseline
approaches, providing performance results that challenge more complex methods
proposed in previous works.

In summary, we seek for a quantification approach with competitive performance
that could offer simplicity and robustness. Earlier proposals are mostly based
on SVM classifiers [Forman, 2008; Esuli and Sebastiani, 2010], which are one
of the most effective state-of-the-art learners. These previous quantification
methods showed promising empirical results due to theoretical developments aimed
at correcting the aggregation of individual classifier outputs. Thus, our main
hypothesis is whether we could apply the aforementioned theoretical foundations
with simpler classifiers, such as NN-based algorithms, in order to stress the
relevance of corrections of this kind over the use of any specific family of classifiers
as base learners for quantification.

The results of this research have been recently published on Pattern Recognition
[Barranquero et al., 2013], and are described in more detail in Chapter 5.

1.3.3 Robust quantification via reliable loss minimization

In parallel with our NN study, we realize that there exist an open issue regarding
the fact that current learning processes are not taking into account the target
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Chapter 1. Introduction

performance measure. That is, the algorithms are designed to optimize the results
from a classification loss function, while they are then evaluated and compared
with another loss function, which is usually aimed at quantification performance.

Therefore, our third objective is to evaluate whether it may be more effective
to learn a classifier optimizing a quantification metric, in contrast with a
classification-based one. Conceptually, this alternative strategy is more formal,
because the learning process is taking into account the target performance measure.
This issue will be explored in more detail in Chapter 6.

The idea of optimizing a pure quantification metric during learning was introduced
by Esuli and Sebastiani [2010], although they neither implement nor evaluate it.
Their proposal is based on learning a binary classifier with optimum quantification
performance. We argue that this method has a pitfall. The key problem that arises
when optimizing a pure quantification measure is that the resulting hypothesis
space contains several global optimums (see Figures 6.4 and 6.5). However, in
practice, those optimum hypotheses are not equally good because they differ in
terms of the quality of their future quantification predictions.

This dissertation claims that the robustness of a quantifier based on an underlying
classifier is directly related to the reliability of such classifier. For instance, given
several models showing equivalent quantification performance during training,
the learning method should prefer the best one in terms of its potential of
generalization. As we shall explain in Chapter 6, this factor is closely related
with their classification abilities. We believe that these ideas, primarily those
regarding trustability, open an interesting research area within quantification.

This lead us to further explore the approach of Esuli and Sebastiani, trying to
build a learning method able to induce more robust quantifiers based on classifiers
that are as reliable as possible. In order to accomplish this goal, we introduce a
new metric that combines both factors. That is, a metric that mix in classification
performance to the training objective, resulting in better quantification models.

As it happens with any other quantification metric, our proposal measures the
performance from an aggregated perspective, taking into account the results over
the whole sample. The difficulty for optimizing such functions is that they are
not decomposable as a linear combination of the individual errors. Hence, not all
binary learners are capable of optimizing them directly, requiring a more advanced
learning machine. Therefore, we adapt Joachim’s multivariate SVMs [Joachims,
2005] to implement our proposal and the idea presented by Esuli and Sebastiani.
In order to validate them, another key contribution is to perform an exhaustive
study in which we compare both approaches, as well as several state-of-the-art
quantifiers by means of benchmark datasets.

This study is currently under review on Pattern Recognition [Barranquero et al.,
under review]. The final results are discussed in Chapter 6.

6
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1.4 Document outline

Chapter 2 introduces the core concepts related with quantification, along with
a brief review of different learning assumptions under dataset-shift. Chapter 3
examines current state-of-the-art approaches for addressing quantification.
Chapter 4 establishes the foundations of our proposed methodology in order to
present the experimental results of NN algorithms in Chapter 5, and of multivariate
optimization in Chapter 6. Finally, in Chapter 7 we discuss our main conclusions
and directions for future research.
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Chapter 2

Quantification: notation,
definitions and loss functions

Before going into the details of other related works and our own proposals, this
chapter presents a formal view of quantification, defined in terms of a traditional
machine learning task. We start presenting a standard definition for the problem
and its notation. Then we introduce the state-of-the-art loss functions that are
already used on previous works. And finally we review some alternative views of
the task, contextualizing it within the general dataset-shift framework.

2.1 Notation

From a statistical point of view, a binary quantification task is aimed at estimating
the prevalence of an event or property within a sample. During the learning
stage, we have a training set with examples labeled as positives or negatives;
formally, D = {(xi, yi) : i = 1 . . . S}, in which xi is an object of the input space
X and yi ∈ Y = {−1,+1}. This dataset shows a specific distribution that can be
summarized with the actual proportion of positives or prevalence. The learning
objective is to obtain a model being able to predict the prevalence of another
sample (p), usually identified as the test set, that may show a remarkably different
distribution of classes. Thus, the input data is equivalent to that of traditional
classification problems, but the focus is stressed over the estimated prevalence of
the sample (p′), rather than the labels assigned to each test individual. Notice
that we use p and p′ to identify actual and estimated prevalences of any sample,
these variables are not tied to training or test sets in any way.

Table 2.1 summarizes the notation that we shall employ throughout this
dissertation. First an algorithm is applied over the training set in order to learn
a classifier. Then, we apply it over the test test, where P represents the count
of actual positives and N the count of actual negatives. Once the classifier is
applied over this second sample to predict its classes, we have that P ′ is the count
of individuals predicted as positives, N ′ the count of predicted negatives, while
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Chapter 2. Quantification: notation, definitions and loss functions

TP , FN , TN and FP represent the count of true positives, false negatives, true
negatives and false positives.

Table 2.1: Contingency table for binary problems

P N

P ′ TP FP

N ′ FN TN

(S = P +N = P ′ +N ′)

Once computed all the values presented in Table 2.1, we can then obtain actual
prevalence

p =
P

S
=

TP + FN

S
, (2.1)

and estimated prevalence

p′ =
P ′

S
=

TP + FP

S
. (2.2)

Notice that they only differ with respect to one term, being FN and FP
respectively. This suggests that both FN and FP values may play an important
role during performance evaluation.

2.2 Binary quantification loss functions

This section presents a brief review of several quantification loss functions that
have been proposed on relevant papers related with binary quantification. In
Section 6.2.2 we discuss them in more detail, along with our own proposals,
and including meaningful graphical interpretations for balanced (Figure 6.4) and
unbalanced (Figure 6.5) scenarios.

2.2.1 Estimation bias

According to Forman [2008], the estimation bias is a natural error metric for
quantification, which is computed as the estimated percent positives minus the
actual percent positives

bias = p′ − p =
P ′ − P

S
=

FP − FN

S
. (2.3)

When a method outputs more FP than FN then it shows a positive bias, and vice-
versa. Therefore, this metric measures whether the model tends to overestimate

10



i

i

“phd” — 2013/12/20 — 9:46 — page 11 — #31
i

i

i

i

i

i
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or underestimate the proportion of the positive class. However, this metric is not
useful to evaluate the overall performance in terms of average error (for a set of
samples), because negative and positive biases are neutralized. That is, as Forman
points out, a method that guesses 5% too high or too low equally often will have
zero bias on average.

2.2.2 Absolute and squared errors

Forman proposed the Absolute Error (AE ) between actual and predicted positive
prevalence as standard loss function for quantification [Forman, 2005, 2006, 2008],
which is simple, interpretable and directly applicable:

AE = |p′ − p| = |P
′ − P |
S

=
|FP − FN |

S
. (2.4)

As an alternative to AE , the Squared Error (SE ) is proposed by Bella et al. [2010]

SE = (p′ − p)2 =

(

P ′ − P

S

)2

=

(

FP − FN

S

)2

. (2.5)

Actually, Mean Absolute Error (MAE) and Mean Squared Error (MSE) are
probably the most commonly used loss functions for regression problems. The
concept of computing the absolute or squared error of real value estimations can
be extended to any problem based on a continuos variable, like p. However, in
the case of quantification we have a single prediction per sample, and averaging
among samples with different actual prevalence or from different domains has some
implications that should be carefully taken into account [Forman, 2008]. Note, for
instance, that having a 5% AE for a test set with 45% of positive examples may
not be equivalent to obtaining the same error over a test set with only 10%.
Nevertheless, as Esuli and Sebastiani [2010] suggest, a function must deteriorate
with |FP − FN | in order to be considered an appropriate quantification metric,
which is fulfilled by AE and SE . In fact, both loss functions are definitely suitable
for evaluating quantification performance, provided that they are only averaged
over specific testing prevalences, as in standard cross-validations.

2.2.3 Kullback-Leibler Divergence

Kullback-Leibler Divergence (KLD), also known as normalized cross-entropy
[Forman, 2008; Esuli and Sebastiani, 2010, see] can be applied in the context
of quantification. Assuming that we have only two classes, the final equation is:

KLD =
P

S
· log

(

P

P ′

)

+
N

S
· log

(

N

N ′

)

. (2.6)
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This metric determines the error made in estimating the predicted distribution
(P ′/S, N ′/S), with respect to the true distribution (P/S, N/S).

The main advantages of KLD are that it may be more appropriate to average over
different test prevalences and more suitable for extending the quantification task
for multiclass problems. However, a drawback of KLD is that it is less interpretable
than other measures, like AE .

Furthermore, we also need to define its output for those cases where P , N , P ′

or N ′ are zero. This implies that KLD is not properly bounded, obtaining
undesirable results, like infinity or indeterminate values, when the actual or
estimated proportions are near 0% or 100%, needing further corrections to be
applicable [Forman, 2008]. According to Forman’s recommendations, we fix these
issues as follows:

Algorithm 1 Correction of KLD under extreme conditions

if (p′ == 0 || p′ == 1) then
p′ ⇐ | p′ − (0.5/S) |

end if

2.3 Quantification as a dataset-shift problem

Although the term quantification has been recently formalized within the umbrella
of machine learning [Forman, 2008], obviously it is not a new problem in the
more global sense. In fact, after a deep review of possible complementary works,
we found that there exists alternatives views on similar problems with different
names and aims. It is common to find abstractions like data fracture [Moreno-
Torres et al., 2010], learning transfer [Storkey, 2009], distributional divergence
[Cieslak and Chawla, 2009], distribution matching [Gretton et al., 2009], changing
environments [Alaiz-Rodríguez and Japkowicz, 2008], contrast mining [Yang et al.,
2008], or changes of classification [Wang et al., 2003], among others. These related
lines of research show different outlooks of what is subject to change and what
is supposed to be constant. In this regard, the book by Quionero-Candela et al.
[2009], and the paper by Moreno-Torres et al. [2012a] offer a unifying view on the
field, contextualizing these problems under the general term dataset-shift.

The novelty about quantification is on the perspective adopted, because the
problem is faced from a completely different approach. Most of similar problems
are mainly focused on adapting learned models for improving classification
accuracy on a test set that shows a different distribution with respect to the train
set. However, with quantification, the aim is no longer on adapting the individual
outputs, but on estimating the test class distribution directly. Although in many
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Figure 2.1: Schematics of X → Y and Y → X domains [Fawcett and Flach, 2005].

cases this global outcome may also require to be calibrated, as we shall discuss in
Chapter 3.

2.3.1 Dataset-shift in machine learning

Dataset-shift is defined as a change between training and test joint distribution or
Pr(x, y) [Moreno-Torres et al., 2012a]. In this context, we can distinguish two
main types of problems, already introduced as X → Y (predictive) and Y → X
(causal); where the joint probability distribution can be rewritten as Pr(y|x)Pr(x)
and Pr(x|y)Pr(y) respectively.

The paper by Webb and Ting [2005] and the response to that paper by Fawcett
and Flach [2005] set out a very interesting discussion of these two domains in the
context of ROC analysis (see Figure 2.1, taken from [Fawcett and Flach, 2005]).
On the one hand, Webb and Ting put ROC analysis under suspect for X → Y
problems, given that tpr and fpr characteristics varies between training and test
(see Section 2.3.3). On the other hand, Fawcett and Flach counter-argue in favor
of ROC techniques, with examples of Y → X problems.

Interestingly enough, both papers propose a manufacturing fault detection
problem as one of their application examples, but from two alternative views;
which could help in highlighting the core differences between both domains. An
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Chapter 2. Quantification: notation, definitions and loss functions

example of an X → Y scenario is when the fault, y, is conditioned by production
line configuration, x. In this case, it is unrealistic that a faulty product could cause
the production line to be in a specific configuration, while a change in the frequency
of faults will result from a change in the frequency of specific configurations (see
Figure 2.1a). However, we could state this problem as a Y → X scenario if we
consider that the feature vector x is built from the outcomes of different sensors
for detecting defective properties of the products. As long as these sensors do not
alter the nature of the products, it is also unrealistic that a specific lecture from
these sensors could cause the product to be faulty, while a change in the frequency
of faults will result in a change in the frequency of active sensors (see Figure 2.1b).

There are three main types of dataset-shift are prior-shift, covariate-shift and
concept-shift. On next subsection we go into further details of the learning
assumptions under prior-shift as a Y → X problem, which is the core assumption
followed in the experiments presented in this dissertation. Then we briefly review
the general assumptions under covariate-shift and concept-shift in order to present
prior-shift in a more general context.

2.3.2 Learning assumptions under prior-shift

The learning assumptions established by Forman on his seminal works [Forman,
2008, 2006; Forman et al., 2006; Forman, 2005, 2002] are focused on prior-shift
problems [Quionero-Candela et al., 2009]. Nevertheless, the concept of prior-
shift is broader than that of quantification, existing many complementary works
that are focused on different goals, where it is also referred as prior probability
shift [Moreno-Torres et al., 2012a], class prior change [du Plessis and Sugiyama,
2012], shifting priors [Cieslak and Chawla, 2009], class distribution change [Alaiz-
Rodríguez and Japkowicz, 2008], or even varying class distributions [Webb and
Ting, 2005].

Recall that the general postulation made by traditional machine learning methods
is that the samples are representative [Duda et al., 2001]. This premise implies that
the within-class probability densities, Pr(x|y), and the a priori class distribution,
Pr(y), must be constant between training and test. Not surprisingly, the second
assertion is discarded for quantification, given that this task is aimed at estimating
test class distribution or Pr(y).

Therefore, prior-shift is defined under the assumption that the a priori class
distribution, Pr(y), changes, but the within-class probability densities, Pr(x|y)
still remains constant between training and test. These conditions are fulfilled,
for instance, when the changes in class priors are obtained by means of stratified
sampling [Webb and Ting, 2005] or when the number of examples of one or both
classes is conditioned by the costs associated with obtaining and labeling them
[Weiss and Provost, 2003]. This kind of domains are identified as Y → X problems
by Fawcett and Flach [2005], as already discussed in Section 2.3.1.
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Section 2.3. Quantification as a dataset-shift problem

In general, prior-shift is also assumed to imply a change in joint probability,
Pr(x, y), a posteriori probability, Pr(y|x), and covariate distribution, Pr(x)
[González-Castro et al., 2013; Cieslak and Chawla, 2009]. Therefore, only Pr(x|y)
should be considered constant.

Figure 2.2 shows a graphical interpretation for a binary problem, with positives
depicted as red crosses (y = +1), and negatives as blue circles (y = −1). On top
we have a training set with a specific class distribution (Figure 2.2a), while on the
bottom-left we can observe that the test set shows a higher proportion for positive
class (Figure 2.2b). Given that the set of examples from the negative class is not
modified, then it is self-proven that Pr(x|y = −1) is constant. Additionally, for
the positive class this equally holds, Pr(x|y = +1) is also constant, because its
instances follows the same distribution between both figures. That is, the shape
and position of the cloud drawn by positive instances is invariant, only changes its
density. For the bottom-right hand side (Figure 2.2c), we have that both Pr(x|y)
and P (y) change, showing a completely different problem that is not covered by
prior-shift framework.

It is also worth mentioning that Storkey [2009] alternatively formalizes the problem
as a causal model Pr(x|y)Pr(y), which can be used for inferentially obtain
Pr(y|x). In this probabilistic classification context, he sets out two main possible
situations: knowing Pr(y) for test set or not. For the first case, we could have
a potential application for quantification, given that it may be used as a tool for
estimating test Pr(y). For the latter case he proposes a more complicated solution
in which the main idea is to estimate test Pr(y|x) given that Pr(x|y) is known,
and therefore certain distributions over class variable are more likely.

2.3.3 Invariant model characteristics under prior-shift

The key issue about preserving within-class probabilities is that this guarantees
that some of the intrinsic characteristics of the model are independent of prior-
shift changes in class distribution. The two more important in the context
of quantification are tpr (true positive rate) and fpr (false positive rate)
characteristics [Forman, 2008; Webb and Ting, 2005], defined as

tpr =
TP

P
and fpr =

FP

N
. (2.7)

These two rates are crucial for understanding state-of-the-art algorithms, as we
discuss in Chapter 3. Observing Figure 2.2, it easy to see that for Figure 2.2b
these rates are constant: the proportion of instances that falls on the wrong side
of the hyperplane is equivalent with respect to Figure 2.2a. This does not hold for
Figure 2.2c, where the count of TP weighted in terms of P is not comparable.
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(a) Binary problem

(b) Pr(x|y) constant (c) Pr(x|y) changes

Figure 2.2: Graphical interpretation of prior-shift for binary classification. The
figure on top (a) shows a dataset with a specific class distribution. The figure
on bottom-left (b) shows a prior-shift change over this dataset with a higher
proportion for positive class (i.e, Pr(y) changes), while maintaining within-class
probabilities constant. The figure on bottom-right (c) shows another change in
class distribution, which is not considered a prior-shift because it does not preserve
within-class probabilities.

16



i

i

“phd” — 2013/12/20 — 9:46 — page 17 — #37
i

i

i

i

i

i

Section 2.3. Quantification as a dataset-shift problem

(a) Input data densities

(b) Objective function

Figure 2.3: Graphical interpretation of covariate-shift for regression [Yamazaki
et al., 2007]. Top figure (a) represents the data distribution for input variable x, in
both training and test datasets. Bottom figure (b) represents the objective function
and the position of (x, y) points, observing a possible problem of overfitting due
to covariate-shift.

2.3.4 Other types of dataset-shift

Although the explicit study of other types of dataset-shift are out of the scope of
this dissertation, we present here a brief review of the most important in order to
contextualize prior-shift on a more general framework.

Covariate-shift (population-drift)

Covariate-shift problem refers to changes in the input variables, x, also known as
covariates or features. It is probably one of the most studied problems related with
dataset-shift, which was defined several years ago by Shimodaira [2000]. Although,
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Chapter 2. Quantification: notation, definitions and loss functions

there exist equivalent terms, like population drift [Alaiz-Rodríguez and Japkowicz,
2008; Hand, 2006; Kelly et al., 1999], they are less widely used.

The formal definition proposed by Moreno-Torres et al. [2012a] is that covariate-
shift is a change in Pr(x) where Pr(y|x) remains constant. They also argue
that this problem only happens on X → Y domains. This definition is based on
[Storkey, 2009], where covariate-shift is defined as a change that occurs when the
data is generated according to a model Pr(y|x)Pr(x) and where the distribution
Pr(x) changes between training and test scenarios.

Figure 2.3, taken from [Yamazaki et al., 2007], shows an example of covariate-shift
for a non-linear regression task, which highlights the overfitting problem usually
associated with this type of dataset-shift. The top graph represents two data
distributions for variable x, one for training and another for test, showing a strong
shift in the distribution of this covariate (moved to the right). The lower graph
represents both x and y values, as well as the actual objective function, given
by Pr(y|x), which is common for both training and test. Any learner that only
takes into account the training distribution will result in a model with very poor
generalization abilities with respect to unseen test data.

There are many different approaches for tackling covariate-shift. One of the most
widely studied is based on re-weighting the training data such that its distribution
more closely matches that of the test data, commonly known as distribution
matching [Gretton et al., 2009; Sugiyama et al., 2009, 2007b; Yamazaki et al.,
2007]. Similar works are focused on unbiased error estimation under covariate-
shift, like importance weighted cross validation [Sugiyama et al., 2007a].

Other appealing alternatives include discriminative learning [Bickel and Scheffer,
2009], where neither training nor test distribution are modeled explicitly, rewriting
the problem as an integrated optimization problem solved through kernel logistic
regression. Finally, Globerson et al. [2009] also propose an adversarial view
through a minimax approach, in which the problem is addressed as a two-player
game where the model is trained against a feature removal algorithm. For further
reading, a recent book by Sugiyama and Kawanabe [2012] offer a deeper review
on covariate-shift.

Concept-shift (concept-drift)

The problem of concept-shift is formally defined by Moreno-Torres et al. [2012a]
as a change in the relationship between input and class variables, with two main
forms depending on the domain. For X → Y , it is defined as a change in Pr(y|x)
(usually known as functional relational change [Yamazaki et al., 2007]), where
Pr(x) remains constant. Similarly for Y → X, it is defined a change in Pr(x|y)
(or class definition change [Alaiz-Rodríguez and Japkowicz, 2008; Hand, 2006]),
where Pr(y) remains constant. Although it is more commonly referred as concept-
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Section 2.3. Quantification as a dataset-shift problem

drift, Moreno et al. proposed the term shift for unifying the names of all types of
dataset-shift.

It is identified as one of the hardest of the three types of changes that we have
reviewed until now, and possibly the oldest and most widespread. In fact, there
exists many works that have address this problem with very different approaches;
including incremental learning in imbalance scenarios [Hoens et al., 2012] and in
dynamic contexts [Syed et al., 1999; Schlimmer and Granger, 1986], adaptation of
classes and subclasses [Alaiz-Rodríguez et al., 2011], conceptual equivalence [Yang
et al., 2008], minimizing disagreements [Helmbold and Long, 1994], etc.

Other related works are in turn focused on tracking this type of changes
[Klinkenberg and Joachims, 2000; Widmer and Kubat, 1996, 1993], with more
recent ones using techniques like boosting [Grbovic and Vucetic, 2011]. For further
reading refer to the technical reports by Žliobaitė [2010] and Tsymbal [2004].

2.3.5 Common causes of dataset-shift

The two main causes of dataset-shift are sample selection bias [Zadrozny, 2004]
and non-stationary environments [Sugiyama and Kawanabe, 2012]. There are
some confusion around these terms, being usually confused as dataset-shifts on
their own [Cieslak and Chawla, 2009]. However they are better categorized as
causes for some of them, as proposed by [Moreno-Torres et al., 2012a].

Sample selection bias is the most common cause of dataset-shift [Phillips et al.,
2009; Huang et al., 2007; Dudık et al., 2005], with three variants: missing
completely at random (MCAR), missing at random (MAR), missing at random-
class (MARC), and missing not at random (MNAR). All of them are based on
the assumption that the training examples have been obtained through a biased
method, and thus do not represent reliably the operating environment where the
classifier is to be deployed. That is, the training joint probability is defined as
Pr(s = 1|x, y), where s represents the event of choosing an individual for training
or not (the bias).

The main difference between the four alternatives is based on the independence
properties of this bias. For MCAR, s is not related with x nor y: Pr(s = 1|x, y) =
Pr(s = 1), resulting in no dataset-shift at all. For MAR, s is independent of y
given x: Pr(s = 1|x, y) = Pr(s = 1|x), which is a common cause of covariate-shift.
For MARC, s is independent of x given y: Pr(s = 1|x, y) = Pr(s = 1|y), which
usually involves a prior-shift (also known as stratified sampling [Fleiss et al., 2003]).
And finally, for MNAR, the is no independence assumption, which can potentially
produce any type of dataset-shift.

In order to be able to address sample selection bias Quionero-Candela et al. [2009]
give a set of sufficient and necessary conditions. The support condition simply
states that any covariate vector x that can be found in training set must also
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Chapter 2. Quantification: notation, definitions and loss functions

can be drawn from test distribution. The selection condition goes a step further,
applying the same restriction to any pair (x, y). In other words, the training joint
distribution must be contained within test joint distribution.

Non-stationary environments are the second most common cause of dataset-shift,
occurring when the difference between training and test data is a consequence of
a temporal or spatial change. Usually, this happens in adversarial scenarios like
spam filtering, network intrusion detection, and security in general [Barreno et al.,
2010; Biggio et al., 2010; Laskov and Lippmann, 2010]. Other tentative application
scopes are also remote sensing and seasonal-based changes [Alaiz-Rodríguez et al.,
2009].

This type of problem is receiving an increasing amount of attention in the machine
learning field; and usually copes with non-stationary environments due to the
existence of an adversary that tries to work around the existing classifier’s learned
concepts. In terms of the machine learning task, this adversary warps the test set
so that it becomes different from the training set, thus introducing any possible
kind of dataset-shift [Moreno-Torres et al., 2012a].
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Chapter 3

Related work on
quantification

Quantification problem has been addressed formally in a limited number of
papers during the last years, where several complementary approaches have been
proposed. This chapter presents a review of the most relevant quantification
methods, focusing on two-class problems. For completeness, on last section we
also describe other related quantification methods, which are less related with the
core of this dissertation, like quantification for cost-based learning and regression.

The fact is that for many classification problems it is very costly or rather
impossible to induce an accurate classifier; given that real-world concepts can be
very difficult to learn, even for state-of-the-art classification algorithms. Moreover,
the dataset-shifts that we have reviewed on previous chapter are fundamental to
many application domains, specifically for tracking of trends. However, it is also
common that machine learning methods assume that training set is a random
sample drawn from test distribution, as we have already discussed in previous
chapter.

For some application domains it may be enough to detect the change or simply
knowing the direction of the trend. However, many business problems require more
precise estimates of the proportion of classes. In this regard, it is sufficient, but not
necessary, to induce a perfect classifier. Actually, if the number of FN compensates
the count of FP errors, the estimated prevalence is correct. Therefore, most of
the state-of-the-art quantifiers no longer focus on estimating accurate individual
outputs: shifting the nature of uncertainty from individuals to aggregate count of
cases [Bella et al., 2010; Forman, 2008, 2006, 2005].

Furthermore, these new approaches offers other benefits given that they also
perform well with limited number of samples and under high class imbalance,
as depicted in Figure 3.1.

Forman [2008] states several reasons why quantification may have been
unrecognized as a formal machine learning task. First of all, it might seem
trivial, although empirical experiments give reasons to think otherwise. Moreover,
it does not fit well with traditional machine learning techniques for empirical
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Chapter 3. Related work on quantification

(a) Training with P = 100 and N = 900 (b) Training with P = 10 and N = 90

Figure 3.1: Classification vs quantification under prior-shift [Forman, 2008]. These
figures shows the comparative behavior of a classifier vs a quantifier for a fictitious
trend, training both models on day 0. On left figure (a) the training dataset size
is 1000, showing that classifier systematically overestimates test class distribution
when the proportion of positives decreases, and vice-versa. On right figure (b)
the training size is reduced to 100, observing a more robust performance for the
quantifier with respect to sample size.

error estimation. Examples are standard cross-validation and statistical tests for
comparing models, which usually assume that both training and test distributions
are equivalent. In fact, it requires a different, and more complex, methodology for
experimentation (see Chapter 4).

3.1 Naïve quantification: classify and count

It is worth noting that quantification is traditionally linked with classification
algorithms. The most simple method for building a quantifier is to learn a
classifier, use the resulting model to label the instances of the sample and count
the proportions of each class. This method is taken as baseline by Forman [2008],
identifying it as Classify & Count (CC). Actually, it is straightforward to conclude
that a perfect classifier would lead to a perfect quantifier. The key problem is that
developing a perfect classifier is unrealistic, getting instead imperfect classifiers in
real-world environments. This also implies that the quantifier will inherit the bias
of the underlying classifier.

For instance, given a binary classification problem where the learned classifier
tends to misclassify some positive examples, then the derived quantifier will
underestimate the proportion of the positive class. This effect becomes even more
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problematic in a changing environment, in which the test distribution usually
is substantially different from that of the training set. Following the previous
example, when the proportion of the positive class goes up uniformly in the test
set, then the number of misclassified positive instances increases and the quantifier
will underestimate the positive class even more (see Figure 3.1). Forman pointed
out and studied this behavior for binary quantification, proposing several methods
to undertake the classification bias.

3.2 Quantification via adjusted classification

Aimed at correcting such bias, Forman [2005] proposed a new method termed
Adjusted Count (AC), where the process is to train a classifier and estimate its
tpr and fpr characteristics, defined in Equation (2.7), through cross-validation
over the training set. That is, for each fold we compute TP , FP , P and N to
average tpr and fpr among all folds. Then, the next step is to count the positive
predictions of the classifier over the test examples (i.e., just like the CC method)
and adjust this value with the following formula

p′′ =
p′ − fpr

tpr − fpr
, (3.1)

where p′′ denotes the adjusted proportion of positive test examples and p′ is the
estimated proportion via counting the classifier outputs over the test set. In some
cases, this leads to infeasible estimates of p, requiring a final step in order to clip
the estimation into the range [0, 1].

Taking into account that the values of tpr and fpr are also estimates, we obtain
an approximation p′′ of the actual proportion p. These two rates are crucial in
understanding quantification methods as proposed by Forman because they are
designed under the assumption that the a priori class distribution, Pr(y), changes,
but the within-class probability densities, Pr(x|y), do not (see Section 2.3.2).

Note that due to (2.7), only the tpr fraction of any shift in P will be perceived by
the already-trained classifier (TP = tpr · P ). Observe also that when Pr(x|y) is
preserved the proportion of TP versus FN is also constant. That is, the estimation
of tpr in Figure 2.2a is still representative of the data distribution in Figure 2.2b,
but not in Figure 2.2c.

In the same way, the fpr fraction of N is misclassified by any CC-based method as
false positives (FP = fpr ·N). According to all these observations, Forman [2008]
states the following theorem and its corresponding proof:

Theorem 3.1 (Forman’s Theorem). For an imperfect classifier, the CC method
will underestimate the true proportion of positives p in a test set for p > p∗, and
overestimate for p < p∗, where p∗ is the particular proportion at which the CC
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method estimates correctly; i.e., the CC method estimates exactly p∗ for a test set
having p∗ positives.

Proof. The expected prevalence p′ of classifier outputs over the test set, written
as a function of the actual positive prevalence p, is

p′(p) = tpr · p + fpr · (1− p) (3.2)

Given that p′(p∗) = p∗, then for a strictly different prevalence p∗+∆, where ∆ 6= 0,
CC does not produce the correct prevalence

p′(p∗ +∆) = tpr · (p∗ +∆) + fpr · (1− (p∗ +∆))

= tpr · p∗ + fpr · (1− p∗) + (tpr − fpr) ·∆
= p′(p∗) + (tpr − fpr) ·∆
= p∗ + (tpr − fpr) ·∆.

Moreover, since Forman’s theorem assumes an imperfect classifier, then we have
that (tpr − fpr) < 1, and thus

p′(p∗ +∆)

{

< p∗ +∆ if ∆ > 0
> p∗ +∆ if ∆ < 0.

The overall conclusion is that a non-adjusted classifier, like CC, tends to
underestimate the prevalence of the positive class when it rises, and vice-versa
(see Figure 3.1).

3.2.1 Quantification via threshold selection policies

Provided that the AC method allows using any base classifier for building a
quantifier, the underlying learning process has attracted little attention. Much
of the efforts are, again, due to Forman, who proposed a collection of methods
that are based on training a linear SVM classifier, with a posterior calibration of
its threshold. The main difference among these methods is the threshold selection
policy employed, trying to alleviate some drawbacks of AC correcting formula from
alternative perspectives.

A key problem related with the AC method is that its performance depends mostly
on the degree of imbalance in the training set, degrading when the positive class
is scarce [Forman, 2006]. In this case the underlying classifier tends to minimize
the false positive errors, which usually implies a low tpr [see Fawcett, 2004] and
a small denominator in Equation (3.1). This fact implies a high sensitivity to
fluctuations in the estimation of tpr or fpr .
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Figure 3.2: Graphical interpretation of threshold selection policies.

For highly imbalanced situations, the main intuition is that selecting a threshold
that allows more true positives, even at the cost of many more false positives,
could deserve better quantification performance. The objective is to choose those
thresholds where the estimates of tpr and fpr have less variance or where the
denominator in Equation (3.1) is big enough to be more resistant to estimation
errors.

The three main policies proposed by Forman are:

• X: selects a threshold where fpr = 1− tpr , avoiding the tails of both curves.

• T50: selects a threshold with tpr = 50%, avoiding only the tails of tpr curve.

• Max: selects a threshold that maximizes the difference between tpr and fpr

Figure 3.2 shows an example of fpr and 1−tpr curves, obtained from a dataset with
1000 negative and 100 positive instances. Since there are many more negatives, the
fpr curve is smoother than that of 1− tpr . Note also that, as expected, the default
threshold used in AC is clearly biased towards the negative class, with a very low
fpr value and an intermediate value for tpr . T50 fixes a specific performance over
the positive class, which in this example degrades the tpr from the AC threshold,
although this depends on the complexity of each problem.

In the example presented in Figure 3.2, the point where the two curves intersect
is clearly identified by means of the X policy. However, this point is not always
unique, because although one curve is monotonically decreasing and the other
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is monotonically increasing, there could be parts of both curves where they are
constant. The same occurs with Max and T50; there could be several points where
(tpr − fpr) are maximized or where tpr = 50%. Therefore, several strategies could
be applied to resolve these ties. For the experiments presented in this dissertation,
we always select the lowest threshold fulfilling the specific conditions, i.e., the first
occurrence starting from the left, which provides the highest tpr value.

Median Sweep (MS)

Notwithstanding, there is another problem related with all these methods, due to
the fact that the estimation of tpr and fpr may differ significantly from the real
values. Thus, Forman proposed a more advanced method, Median Sweep (MS),
based on estimating the prevalence for all thresholds during testing, in order to
compute their median. He also points out that this method may show an odd
behavior when the denominator in Equation (3.1) is too small, recommending
to discard any threshold with tpr − fpr < 1/4. However, he does not make
any recommendation in case there is no threshold that avoids that restriction.
Therefore, we decide to fix these missing values with the Max method, which
provides the threshold with the greatest value for that difference. The empirical
results provided in [Forman, 2008] suggests that the MS method is comparatively
consistent, claiming that it may smooth over estimation errors like in bootstrap-
based algorithms.

3.2.2 Quantification via probability estimators

Bella et al. [2010] have recently developed a family of methods identified by
them as probability estimation & average. Their core proposal is to develop a
probabilistic version of AC. First they introduce a simple method called Probability
Average (PA), which is clearly aligned with CC. The key difference is that in this
case the classifier learned is probabilistic (see also [Bella et al., 2013a]). Once
the probability predictions are obtained from test dataset, the average of these
probabilities is computed for the positive class as follows

p′ = π̂PA
Test(⊕) =

1

S

S
∑

i=1

Pr(yi = 1|xi). (3.3)

As might be expected, when the proportion of positives changes between training
and test, then PA will underestimate or overestimate as with happens with
CC. Therefore, they propose an enhanced version of this method, termed Scaled
Probability Average (SPA). In resemblance with CC and AC, the estimation p′

obtained from Equation (3.3) is corrected according to a simple scaling formula:

p′′ = π̂SPA
Test (⊕) =

p′ − FPpa

TPpa − FPpa

, (3.4)
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Section 3.3. Quantification-oriented learning

Figure 3.3: Graphical interpretation of SPA method [Bella et al., 2010]. The limits
in the training set are placed at 0.3 and 0.9. The estimated value for the training
set is 0.54 whereas the actual proportion in the training set is 0.4. The scaling
would move a case at 0.4 to 0.23 and a case at 0.8 to 0.83.

where TPpa and FPpa are values estimated from the training set, defined
respectively as TP probability average or positive probability average of the positives

TPpa = π̂Train⊕
(⊕) =

∑

{i|yi=1} Pr(yi = 1|xi)

#{yi = 1} , (3.5)

and FP probability average or positive probability average of the negatives

FPpa = π̂Train⊖
(⊕) =

∑

{i|yi=−1} Pr(yi = 1|xi)

#{yi = −1}
. (3.6)

The expression defined in Equation(3.4) yields a probabilistic version of Forman’s
adjustment defined with Equation (3.1). The graphical interpretation of this
scaling procedure is presented in Figure 3.3. In their experiments, SPA method
outperforms CC, AC and T50; although they do not compare their proposal with
other methods based on threshold selection policies like Max, X or MS.

3.3 Quantification-oriented learning

Esuli and Sebastiani [2010] suggest the first training approach explicitly designed
to learn a binary quantifier, in the context of a sentiment quantification task.
However, a key limitation is that they neither implement nor validate it in
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Chapter 3. Related work on quantification

practice. For this dissertation, we present the first experiment results based
on this approach, compared with other state-of-the-art algorithms and our own
quantification-oriented learning proposal (see Chapter 6).

They justify the motivation for applying quantification on opinion mining problems
arguing that it has been traditionally neglected whether the analysis of large
quantities of text should be carried out at the individual or aggregate level.
Actually, this is an important issue because some applications like open-answer
classification for customer satisfaction analysis demand attention at the individual
level, while others such as open-answer classification for market research or review
classification for product or brand positioning are best analyzed at the aggregate
level.

Moreover, they raise and interesting point regarding the fact that it would seem
obvious that the more we improve a classifier’s accuracy at the individual level,
the higher its accuracy at the aggregate level will become, leading to a misleading
conclusion about that the only way to improve a classifier’s ability to correctly
estimate the test class distribution is to improve its ability to classify each
individual. However, this mostly depends on what we mean by accuracy at the
individual level.

For instance, most standard classification loss functions (see Section 6.2.1) may
reject a classifier h1 with FP = 50 and FN = 50 when comparing it with a
classifier h2 with FP = 10 and FN = 0. Nevertheless, they state that h1 is
better than h2 according to to any reasonable measure for evaluating quantification
accuracy. Indeed, h1 is a perfect quantifier since FP and FN are equal and thus
compensate each other, so that the distribution of the test items is estimated
perfectly.

Although the training method that they describe is also based on building a
classifier, in this case the learning process optimizes the quantification error,
without taking into consideration the classification performance of the model.
Essentially, as their focus is on binary quantification problems, they argue that
compensating the errors between both classes provides the means for obtaining
better quantifiers. Therefore, the key idea is to optimize a metric derived from the
expression |FP −FN |. That is, a perfect quantifier should simply counterbalance
all false positives with the same amount of false negative errors. In fact, all loss
functions reviewed in Section 2.2 reach their optimum when this difference is 0.

3.4 Alternative approaches

The quantification methods described so far are those that are directly related
with the core research objectives of this dissertation. In this last section we briefly
introduce other related approaches for the sake of completeness.
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A recent work by Bella et al. [2013b] establishes a more general framework for
quantification, proposing a new taxonomy of quantification tasks and presenting
the first experimental study focused on quantification for regression. One of they
contributions is the distinction between the estimation of the expected value versus
the whole distribution, for both classification and regression. After discussing
that current quantification methods are not suitable for aggregating regression
outcomes they propose several alternatives based on discretization that show good
performance in practice.

This last work is closely related with the discussion presented by Esuli and
Sebastiani [2010] about the application of quantification for ordinal regression,
suggesting the use of Earth Mover’s Distance as quality measure. Moreover,
another recent work by Esuli and Sebastiani [under review] introduce a tentative
application domain for quantification of radiology reports under the ACR Index.

Forman [2008] introduced in turn the problem of quantification for cost sensitive
learning (see also [Hernández-Orallo et al., 2013]), while setting the foundations
for extending binary quantification for the general multi-class scenario. There
exist also other approaches regarding class distribution estimation under prior-
shift, which mainly cover distribution matching through semi-supervised leaning
[du Plessis and Sugiyama, 2012] and Hellinger distance [González-Castro et al.,
2013, 2010], among others.
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Chapter 4

Methodology for statistical
comparisons of quantifiers

This chapter describes the methodology followed on the experiments discussed
in this dissertation. We have also applied this experimental setup in practice,
publishing our results in two articles: [Barranquero et al., 2013] (see Chapter 5)
and [Barranquero et al., under review] (see Chapter 6).

Since the beginning of our research, we observed the lack of a standardized
experimental design for comparing quantification algorithms, mainly in terms
of statistical procedures. That is why we started by studying the most recent
approaches, trying to redefine a new methodology that could cover the specific
requirements of statistical comparisons of multiple quantifiers, while preserving
the core concepts already validated for standard machine learning methodologies.

The key contribution of our proposal is that this new methodology for
quantification allows us to analyze relevant properties of these comparatives from
a statistical point of view. Furthermore, it also provides meaningful insights about
which algorithms are significantly better, with a certain confidence degree, thanks
to the adaptation of the two-step Friedman-Nemenyi statistical test [Demšar, 2006;
Nemenyi, 1963; Friedman, 1940, 1937], and the redesign of test set generation in
stratified k-fold cross-validation (see, e.g., [Refaeilzadeh et al., 2009]).

The fact is that the required experiment methodology for quantification is
relatively uncommon and has yet to be properly standardized and validated by
machine learning community. Its main difference with respect to traditional
classification methodology is that we need to evaluate performance over whole sets,
rather than by means of individual classification outputs. Moreover, quantification
assessment requires evaluating performance over a broad spectrum of test sets with
different class distributions, instead of using a single test set.

Therefore, traditional machine learning techniques for comparing classification
models are not directly applicable and needs to be adapted. On next sections
we introduce our proposed methodology, which is based in turn on the global
guidelines already established by Forman [2008] for evaluating quantifiers.
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Chapter 4. Methodology for statistical comparison of multiple quantifiers

This new methodology is mostly focused on providing statistical relevance
to quantification experiments, adapting techniques borrowed from statistical
classification comparatives [García et al., 2010; Garcia and Herrera, 2008; Demšar,
2006], proposing several variations and improvements in order to enhance
replicability for comparisons among quantification algorithms.

4.1 Adaptation of stratified k-fold cross-validation

Classical paradigm for error estimation in machine learning assumes that the
distributions do not change over time [Hand, 2006; Holte, 2006]. However, this
is not the case in real-world domains. For example, in commercial applications
customers will change their behavior with changes in prices, products, competition,
economic conditions or marketing efforts.

Although stratified cross validation is a mature and widespread procedure [Stone,
1974a,b], with many asymptotic studies [Kohavi, 1995; Stone, 1977], the problem
is that it does not take into account any kind of dataset-shift, assuming invariant
sample distribution between training and test. There exist other alternatives, like
.632+ bootstrap [Efron and Tibshirani, 1997] or jackknife [Efron and Gong, 1983],
which try to compensate for possible estimation bias. However they also lack of
mechanisms to tackle dataset-shift.

Recent research works have tried to address these drawbacks, but mainly for the
case of covariate-shift. Some examples are density-preserving sampling [Budka and
Gabrys, 2013], distribution optimally-balanced stratified cross-validation [Moreno-
Torres et al., 2012b] (which is an improvement on distribution-balanced stratified
cross-validation [Raeder et al., 2010]) and importance-weighted cross-validation
[Sugiyama et al., 2007a] (which is focused on problems that already suffer from
covariate-shift).

However, we have not found any work that addresses the problem of prior-shift by
adapting cross-validation procedure, and that is why we design a new extension
for quantification problems under prior-shift. Next section presents our proposed
setup in detail.

4.1.1 Error estimation procedure

Assuming that we have a dataset with known positive prevalence, the error
estimation procedure proposed consists in a modified version of standard stratified
k-fold cross-validation, taking into account specific requirements for quantification,
while preserving the original prevalence in all training iterations.

In summary, once a model is trained with k−1 folds, the remaining fold is used to
generate several different random test sets with specific positive proportions, by
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Section 4.2. Adaptation of Friedman post-hoc tests

means of stratified under-sampling [Fleiss et al., 2003]. This setup guarantees that
the within-class distributions P (x|y) are maintained between training and test, as
stated in Section 2.3.2, due to the fact that resampling processes are uniformly
randomized through stratified sampling [Webb and Ting, 2005; Fawcett and Flach,
2005]. Furthermore, given that sampling is controlled from the experiment setup,
it allows using any dataset for validation, independently of being from X → Y or
Y → X domains. Notwithstanding, for deployable models the estimated error is
only representative of the problem fulfills the learning assumptions of prior-shift
(see Section 2.3).

This variation in testing conditions may seem rather unnatural, requiring more
appropriate collections of data. Changes in training and test conditions should
be extracted directly from different snapshots of the same population, showing
natural shifts in their distribution. However, for the time being we have not been
able to find publicly-available collections of datasets offering these features, while
maintaining at the same time the aforementioned within-class distributions.

The specific parameters of the setup are not fixed, offering the possibility of
adapting this procedure to the requirement of a particular experiment. For this
dissertation, we use 10-fold cross-validation for training, generating 11 test sets
from test fold, with positive prevalence ranging from 0% to 100% in steps of
10%. Provided that we test for 0% and 100% positive proportions, this approach
guarantees that all the examples are tested at least once: we are using all the
negative and positive examples of test fold, respectively. For further reading, the
book chapter by Refaeilzadeh et al. [2009] offers a comprehensive summary with
specific statistical properties of different k-fold configurations, in addition to hold-
out and leave-one-out.

4.2 Adaptation of Friedman post-hoc tests

As already introduced, the key contribution of our proposed methodology is that
it offers the possibility of evaluating which quantifiers are statistically better than
others with a certain significance level.

There exist other approaches that propose statistical tests for detecting dataset-
shifts Cieslak and Chawla [2009], or for comparing multiple classifiers over multiple
datasets [García et al., 2010; Garcia and Herrera, 2008; Demšar, 2006].

However, these are not directly applicable for the case of comparing multiple
quantifiers over multiple test prevalences of multiple problems (datasets).
Obviously this a more complex scenario, which requires further adaptation.

In next section, we briefly review the available alternatives for comparing
classifiers, laying the foundations to present our non-parametric proposal for
comparing quantifiers in Section 4.2.4.
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Chapter 4. Methodology for statistical comparison of multiple quantifiers

4.2.1 Discussion on statistical comparisons of classifiers

The de-facto standard for comparisons of classifiers over multiple datasets was
published by [Demšar, 2006] in Journal of Machine Learning Research (JMLR).
He focus his work in the analysis of new machine learning algorithms, proposing a
set of simple, yet safe and robust non-parametric tests for statistical comparisons of
classifiers: the Wilcoxon signed ranks test [Wilcoxon, 1945] for comparison of two
classifiers and the Friedman test [Friedman, 1940, 1937] for multiple classifiers.
He also introduces the corresponding post-hoc tests for comparison of several
classifiers over multiple data sets: the Nemenyi test for making all pairwise
comparisons [Nemenyi, 1963], and the Bonferroni-Dunn [Dunn, 1961] test for
comparing with a control classifier (usually the new proposed method).

Two years later, in the same journal, Garcia and Herrera [2008] propose several
alternative tests, which they claim that offer higher power, i.e., lower Type II
error or false negative rate (see Table 4.1). Actually, they argue against Demšar’s
proposal of using Nemenyi post-hoc test because it is very conservative and it may
not find any significant difference in most of the experimentations [Yang et al.,
2007b; Núñez et al., 2007], requiring to employ many datasets [Yang et al., 2007a].

However, we strongly believe that not only this is not a weakness, but a strength
of this method because as Demšar notes: the resulting conclusions from statistical
tests should be drawn cautiously. Furthermore, statistical tests should not be the
deciding factor for or against publishing a well-founded research work. Other
merits of the proposed algorithm that are beyond the grasp of statistical testing
should also be considered and possibly even favored over pure improvements in
predictive power. As a matter of fact, we have prevailed robustness, in terms
of lower Type I errors, against statistical power in the design of our proposed
methodology (see Section 4.2.4).

4.2.2 State-of-the-art tests for comparing classifiers

As we have already introduced, the analysis of results can be done through two
alternatives: single-problem analysis and multiple-problem analysis. The first
one corresponds to the study of the performance of several algorithms over a
unique dataset. The second one study several algorithms over more than one
dataset simultaneously, assuming the fact that each problem has a specific degree
of difficulty and that the results obtained among different problems are not
comparable.

The single-problem analysis is well-known and is usually found in specialized
literature, like grid-search through 5×2 cross-validation [Alpaydm, 1999;
Dietterich, 1998]. Although the required conditions for using parametric statistics
are not usually checked, a parametric statistical study could obtain similar

34



i

i

“phd” — 2013/12/20 — 9:46 — page 35 — #55
i

i

i

i

i

i
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Table 4.1: Type I and Type II errors

True H0 False H0

Accept H0 Success (TP ) Type II (FN)
Reject H0 Type I (FP ) Success (TN)

conclusions to a nonparametric one. However, in a multiple-problem analysis,
a parametric test may reach erroneous conclusions [Demšar, 2006].

On the other hand, a distinction between pairwise and multiple comparison tests
is necessary. The former are valid procedures to compare two algorithms and
the latter should be used when comparing more than two methods. The main
reason that distinguishes both kinds of test is related to the control of the Family
Wise Error Rate (FWER) [Sheskin, 2003], which is the probability of making false
positive discoveries or Type I errors (see Table 4.1) . Intended pairwise tests, such
as the Wilcoxon test [Demšar, 2006; Wilcoxon, 1945], do not control the error
propagation of making more than one comparison and they should not be used in
multiple comparisons.

If we want to make multiple comparisons using several statistical inferences
simultaneously, then we have to take into account this multiplicative effect in order
to control the family wise error. Demšar [2006] described a set of nonparametric
tests for performing multiple comparisons and he analyzed them in contrast to
well-known parametric tests in terms of power, obtaining that the nonparametric
tests are more suitable for comparisons of machine learning algorithms. He
presents the Friedman test [Friedman, 1940, 1937] as base test for multiple
comparisons, and some post-hoc procedures, such as Nemenyi [Nemenyi, 1963]
for all pair-wise comparisons. For comparisons based on a control method he
reviews Bonferroni–Dunn [Dunn, 1961], Holm [Holm, 1979], Hochberg [Hochberg,
1988] and Hommel [Hommel, 1988].

The paper by Garcia and Herrera [2008] is an extension of [Demšar, 2006].
Authors deal in depth some topics related to multiple comparisons involving
all the algorithms, as well as computations of adjusted p-values. They also
describe additional testing procedures for conducting all pairwise comparisons in a
multiple-dataset comparison analysis [Shaffer, 1995, 1986; Rom, 1990; Bergmann
and Hommel, 1988].

García et al. [2010] extend the set of non-parametric procedures for performing
multiple statistical comparisons between more than two algorithms focusing on the
case in which a control treatment is compared against other treatments, presenting
an experimental analysis of power and stability of these statistical tests.
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Chapter 4. Methodology for statistical comparison of multiple quantifiers

4.2.3 Standard formulation of Friedman post-hoc tests

The Friedman test [Friedman, 1940, 1937] is a non-parametric equivalent of
the repeated-measures or within-subjects ANOVA [Fisher, 1959]. It ranks the
algorithms for each data set separately, assigning average ranks in case of ties.

Let rji be the rank of the j-th of k algorithms on the i-th of N data sets. The
Friedman test compares the average ranks of algorithms:

Rj =
1

N

∑

i

rji . (4.1)

Under the null-hypothesis, which states that all the algorithms are equivalent and
so their ranks Rj should be equal, the Friedman statistic

χ2
F =

12N

k(k + 1)





∑

j

R2
j −

k(k + 1)2

4



 (4.2)

is distributed according to χ2
F with k − 1 degrees of freedom, when N and k are

big enough (N > 10 and k > 5). For a smaller number of algorithms and datasets,
exact critical values have been computed [Demšar, 2006].

After showing that Friedman statistic is undesirable conservative, Iman and
Davenport [1980] derive an adjusted statistic

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

, (4.3)

which is distributed according to the F -distribution with k− 1 and (k− 1)(N − 1)
degrees of freedom. The table of critical values can be found in any statistical
book or computed with any standard statistical software.

Nemenyi all-vs-all post-hoc test

When Friedman’s null-hypothesis is rejected, we can then proceed with a post-
hoc test. The Nemenyi test (Nemenyi, 1963) is similar to the Tukey test [Tukey,
1949] for ANOVA and is used when all pairwise comparisons are tested. The
performance of two classifiers is significantly different if the corresponding average
ranks differ by at least the critical difference

CD = qα

√

k(k + 1)

6N
(4.4)

where critical values qα are based on the Studentized range statistic divided by√
2 (see Table 4.2a).
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k 2 3 4 5 6 7 8 9 10

q0.05 1.960 2.343 2.569 2.728 2.850 2.949 3.031 3.102 3.164
q0.10 1.645 2.052 2.291 2.459 2.589 2.693 2.780 2.855 2.920

(a) Critical values for two-tailed Nemenyi post-hoc test

k 2 3 4 5 6 7 8 9 10

q0.05 1.960 2.241 2.394 2.498 2.576 2.638 2.690 2.724 2.773
q0.10 1.645 1.960 2.128 2.241 2.326 2.394 2.450 2.498 2.539

(b) Critical values for two-tailed Bonferroni-Dunn post-hoc test

Table 4.2: Critical values for Friedman post-hoc tests [Demšar, 2006]

Bonferroni-Dunn one-vs-all post-hoc test

If we want to compare all classifiers with a control method, the Bonferroni
correction or similar procedures can be used to control the family-wise error in
multiple hypothesis testing. Although these methods usually have little power,
they are more powerful than the Nemenyi test for one-vs-all comparatives, since
the latter adjusts the critical value for making k(k− 1)/2 comparisons while when
comparing with a control we only make k − 1 comparisons.

The test statistics for comparing the i-th and j-th classifier with these methods is

z = (Ri −Rj)

/
√

k(k + 1)

6N
. (4.5)

The z-value is used to find the corresponding probability from the table of normal
distribution, which is then compared with an appropriate α. The tests differ in
the way they adjust the value of α to compensate for multiple comparisons.

The proposal suggested by Demšar [2006] is Bonferroni-Dunn test [Dunn, 1961],
which controls the family-wise error rate by dividing a by the number of
comparisons (k − 1). An alternative way to compute the same test is to calculate
the CD using the same equation as for the Nemenyi test, but using the critical
values for α/(k − 1) (see Table 4.2b). If we compare these critical values with
those presented for Nemenyi in Table 4.2a, it is straightforward to conclude that
the power of the post-hoc test is much greater when all classifiers are compared
only to a control classifier and not between themselves. Therefore, all pairwise
comparisons should only be done when we want to perform a global comparative,
but we do not want to test whether a newly proposed method is better than the
existing ones.
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Chapter 4. Methodology for statistical comparison of multiple quantifiers

4.2.4 Statistical comparisons over multiple test prevalences

As in [Demšar, 2006], we propose two adaptations for post-hoc statistical tests.
In both cases, the first step consists of a Friedman test [Friedman, 1940, 1937] of
the null hypothesis that all approaches perform equally. When this hypothesis is
rejected, a Nemenyi post-hoc test [Nemenyi, 1963] (for all-vs-all comparatives) or a
Bonferroni-Dunn test [Dunn, 1961] (for one-vs-all comparatives) is then conducted
to compare the methods in a pairwise way. All tests are based on the average of
the ranks.

The comparisons are performed over several models that are trained with a
collection datasets or domains, following a stratified cross-validation procedure,
and then evaluated over different test prevalences for each of these datasets. These
test sets are generated from each test fold by means of stratified under-sampling
(see Section 4.1.1).

As Demšar notes, there are variations of the ANOVA and Friedman tests which
can consider multiple repetitions per problem, provided that the observations are
independent [Zar, 2009]. However, since each collection of test sets is sampled
from the same fold, we cannot guarantee the assumption of independence among
them. For the best of our knowledge there is no statistical test that could take
this into account for the time being.

Moreover, as proposed by Demšar, multiple resampling from each data set is used
only to assess the performance score and not its variance. The sources of the
variance are the differences in performance over independent datasets and not on
(usually dependent) samples, so the uncertainty about elevated Type I error is
not an issue. In addition, given that multiple resampling does not bias the score
estimation, various types of cross-validation or leave-one-out procedures can be
used without any risk.

The problems with the multiple dataset tests are quite different, even in a
sense complementary: the measurements from different datasets are usually
incommensurate, and the normality of their distributions and the homogeneity
of variance is questionable at best [Demšar, 2006]. Hence, running the algorithms
on multiple datasets naturally gives a sample of independent measurements, where
comparisons are even simpler than comparisons on a single dataset.

In order to take into account the differences between algorithms over several
test prevalences from the same dataset, we first obtain their ranks for each test
prevalence and then compute an average rank per dataset, which is used to rank
algorithms on that problem. As an alternative, averaging results over all the
prevalences that are tested for each dataset suffers the problem of how to handle
large outliers and the inconsistency of averaging along different test prevalences,
so we do not average results in any case.

We also discard the option of performing the tests for each specific test prevalence
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because it would imply analyzing too much results, without offering the possibility
of obtaining a global conclusion and with the additional problem of reducing
confidence due to the multiplicative effect of the family wise error [Sheskin, 2003]
associated to multiple dependent statistical tests.

Therefore, we only consider the original number of datasets to calculate the critical
difference (CD) defined in Equation (4.4), rather than using all test cases, resulting
in a more conservative value. The reason for this is not only that the assumption
of independence is not fulfilled, but also that the number of test cases is not bound.
Otherwise, simply taking a wider range of prevalences to test would imply a lower
CD value, which appears to be unjustified from a statistical point of view and can
be prone to distorted conclusions.

4.3 Additional notes on evaluation methodology

For our experiments we use AE as default error measure, complementing this view
with KLD where required (see Section 2.2). The main advantages of KLD are that
it may be more appropriate to average over different test prevalences and more
suitable for extending the quantification task for multiclass problems. However, a
drawback of KLD is that it is less interpretable than other measures, like AE .

Furthermore, we also need to define its output for those cases where P , N , P ′ or
N ′ are cancelled. This implies that KLD is not properly bounded, obtaining
undesirable results, like infinity or indeterminate values, when the actual or
estimated proportions tend to 0% or 100%, needing further corrections to be
applicable (see Section 2.2.3).

As might be expected, the experimental setting proposed in this chapter have been
redesigned several times before reaching the final form followed in this dissertation
and its associated publications. In this regard, we would like to point out that
having more test prevalences may reduce variance, but may also imply more
dependence among test results. This issue should deserve more research for future
work, although finally, we have decided to fix the test procedure to 11 prevalences,
offering an appropriate tradeoff between range of tests and independence of results.

Other important source of debate is where to stress the relevance on the range
from 0% to 100%. For our experiments we distribute the relevance over the whole
range, though some reviewers have stated that it may be more appropriate to give
higher weight to lower prevalences (< 25%), in order to focus the conclusions on
unbalanced scenarios. Nevertheless, our experiments are designed to validate our
proposals over a broader range of contexts, and that is why we do not restrict the
range of prevalences with any such assumption. However, the methodology that
we propose is open to other interpretations, in which the criterium followed to
distribute the test prevalences could be neither linear nor uniform. It will depend
mostly on the final aim of the experiment.
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Chapter 5

Study and adaptation of
Nearest Neigbor (NN)

algorithms for quantification

This chapter presents a new approach for solving binary quantification problems
based on nearest neighbor (NN) algorithms. Our main objective is to study the
behavior of these methods in the context of prevalence estimation. We seek for
NN-based quantifiers able to provide competitive performance while balancing
simplicity and effectiveness. The results of this research have been recently
published on Pattern Recognition [Barranquero et al., 2013].

Our first intuition was that the inherent behavior of NN algorithms should
yield appropriate quantification results based on the assumption that they may
be able to remember details of the topology of the data. However, the main
motivation behind this work is that similar NN approaches have been successfully
applied in a wide range of learning tasks, providing simple and competitive
algorithms for classification [Cover and Hart, 1967], regression [Hardle, 1992],
ordinal regression [Hechenbichler and Schliep, 2004], clustering [Wong and Lane,
1983], preference learning [Broos and Branting, 1994] and multi-label [Zhang and
Zhou, 2007] problems, among others.

The key contribution is the adaptation of k-nearest neighbor (KNN) algorithm, by
means of the correction defined with Equation (3.1), as well as the proposal of two
effective weighting strategies, PWK and PWKα, which stand out among state-
of-the-art quantifiers. These weight-based proposals are the only ones that offer
statistical differences with respect to less robust algorithms, like CC or AC. Our
final aim is to explore the applicability of NN algorithms for binary quantification,
using standard benchmark datasets from different domains.
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5.1 Nearest neighbour quantification

NN approaches present significative advantages in order to build an AC-based
quantifier. In fact, they allow to implement more efficient methods for estimating
tpr and fpr , which are required to compute the quantification correction defined
in Equation (3.1). The standard procedure for the computations of these rates
is cross-validation [Forman, 2008]. When working with SVM as base-learner for
AC, we have to re-train a model for each partition, while NN approaches allow us
to compute the distance matrix once and use it for all partitions. Thus, we can
estimate tpr and fpr at a small computational cost, even applying a leave-one-out
(LOO) procedure, which may provide a better estimation for some domains.

5.1.1 K-nearest neighbor (KNN)

One of the best known NN-based methods is the k-nearest neighbor (KNN)
algorithm. Despite its simplicity, it has been demonstrated to yield very
competitive results in many real world situations. In fact, Cover and Hart [1967]
pointed out that the probability of error of the NN rule is upper bounded by twice
the Bayes probability of error.

Given a binary problem D = {(xi, yi) : i = 1 . . . S}, consisting of a collection of
labels ȳ = (y1, ..., yn) and their corresponding predictor features x̄ = (x1, ...,xn),
in which xi represents an object of the input space X and yi ∈ Y = {+1,−1}.
Thus, for a test example xj , the resulting output for KNN is computed as

h(xj) = sign





k
∑

i ∼ j

yi



 ; (5.1)

where i ∼ j denotes the k-nearest neighbors of the test example xj .

Regarding the selection of k, Hand and Vinciotti [2003] pointed out that, as the
number of neighbors determines the bias versus variance tradeoff of the model, the
value assigned to k should be smaller than the smallest class. This is especially
relevant with unbalanced datasets, which is the common case in many domains.
Another widely cited study, by Enas and Choi [1986], proposes n2/8 or n3/8

as heuristic values, arguing that the optimal k is a function of the dimension
of the sample space, the size of the space, the covariance structure and the
sample proportions. In practice, however, this optimal value is usually determined
empirically through a standard cross-validation procedure. Moreover, the selection
of an appropriate metric or distance is also decisive and complex, in which the
Euclidean norm is usually the default option (known as vanilla KNN). For our
study we decided to simplify all these decisions where possible, limiting our search
to selecting the k value that leads to better empirical performance through a grid-
search procedure (see Section 5.2.2), and using the Euclidean distance.
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Section 5.1. Nearest neighbour quantification

5.1.2 Proportion-weighted KNN (PWKα)

Although KNN has provided competitive quantification results in our experiments,
Forman states that quantification models should be ready to learn from highly
imbalanced datasets, like in one-vs-all multiclass scenarios or in narrowly defined
categories. This gave us the idea of complementing it with weighting policies,
mainly those depending on class proportions, in order to counteract the bias
towards the majority class.

The main drawback when addressing the definition of a suitable strategy for any
weight-based method is the broad range of weighting alternatives depending on the
focus of each problem or application. Two major directions for assigning weights
in NN-based approaches are identified by Kang and Cho [2008]. On the one hand,
we can assign weights to features or attributes before distance calculation, usually
through specific kernel functions or flexible metrics [Domeniconi et al., 2002]. On
the other hand, we can assign weights to each neighbor after distance calculation.
We have focused our efforts on the latter approach.

This problem has already been studied by Tan [2005], as the core of neighbor-
weighted k-nearest neighbor (NWKNN) algorithm, mostly aimed at unbalanced
text problems. Tan’s method is based on assigning two complementary weights
for each test document: one based on neighbour distributions and another based
on similarities between documents. The former assigns higher relevance to smaller
classes and the latter adjusts the contribution of each neighbor by means of its
relative distance to the test document. Similarly as in (5.1), for a binary problem
and given a test example xj , the estimated output can be obtained as

h(xj) = sign





k
∑

i ∼ j

sim(xi,xj) yi wyi



 . (5.2)

We discarded similarity score for our study,

h(xj) = sign





k
∑

i ∼ j

yi wyi



 , (5.3)

simplifying the notation and the guidelines for computing the class weights
described by Tan. In summary, he proposes class weights that balance the
relevance between classes, compensating the natural influence bias of bigger classes
in multi-class scenarios. He also includes an additional parameter, which can be
interpreted as a shrink factor: when this parameter grows, the penalization of
bigger classes is softened progressively. In this paper, we use α to identify this
parameter. We compute each class weight during training as the adjusted quotient
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Chapter 5. Study and adaptation of NN algorithms for quantification

between the cardinalities of that class (Nc) and the minority class (M)

w(α)
c =

(

Nc

M

)−1/α

,with α ≥ 1 (5.4)

Therefore, the bigger the class size observed during training, the smaller its weight.
To illustrate this fact, Table 5.1 shows the weights assigned to one of the classes,
varying its prevalence from 1% to 99% for different values of α. Note that when
we compute the weight of the minority class, or when the problem is balanced
(50%), we always get a weight of 1; i.e., there is no penalization. However, when
we compute the weight for the majority class, we get a penalizing weight ranging
from 0 to less than 1. The simplified algorithm defined by (5.3) and (5.4) is
renamed as the proportion-weighted k-nearest neighbor (PWKα) algorithm.

Table 5.1: PWKα weights w.r.t. different training prevalences (binary problem)

α 1% · · · 50% 60% 70% 80% 90% 99%

1 1 · · · 1 0.67 0.43 0.25 0.11 0.01

2 1 · · · 1 0.82 0.65 0.50 0.33 0.10

3 1 · · · 1 0.87 0.75 0.63 0.48 0.22

4 1 · · · 1 0.90 0.81 0.71 0.58 0.32

5 1 · · · 1 0.92 0.84 0.76 0.64 0.40

5.1.3 Naïve proportion-weighted KNN (PWK)

As an alternative to Equation (5.4), we propose the following class weight

wc = 1− Nc

S
, (5.5)

which produces equivalent weights for α = 1. This expression makes it easier to
see that each weight wc is inversely proportional to the size of the class c, with
respect to the total size of the sample, denoted by S.

Theorem 5.1. For any binary problem, the prediction rule in Equation (5.3)
produces the same results regardless of whether class weights are calculated using
Equation (5.4) or Equation (5.5), fixing α = 1.

Proof. Let c1 be the minority class and c2 the majority class, then the idea is
to prove that weights w

(1)
c1 and w

(1)
c2 , computed by means of Equation (5.4), are

equal to their respective wc1 and wc2 , computed by means of Equation (5.5), when
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Section 5.2. Nearest neighbour quantification

they are divided by a unique constant, which happens to be equal to wc1 . For the
majority class:

w(1)
c2 =

Nc1

Nc2

=
Nc1/S

Nc2/S
=

1−Nc2/S

1−Nc1/S
=

wc2

wc1

.

Given that by definition w
(1)
c1 = 1, we can rewrite it as w(1)

c1 = wc1 / wc1 . Thus, if we
fix α = 1 in (5.4) and divide all the weights obtained from (5.5) by the minority
class weight, wc1 , the weights obtained from both equations are equivalent and
prediction results are found to be equal.

The combination of (5.3) and (5.5) is identified as PWK in our experiments. We
initially considered this simplified PWK method as a naïve baseline for weighted
NN approaches. However, despite their simplicity, the resulting models have shown
competitive results in our experiments. Moreover, PWK fits both binary and
multiclass problems. Within a binary context, Equation (5.5) weights each class in
terms of the training proportion of the opposite class; while in multiclass scenarios,
each class is weighted with respect to the training proportion of all other classes.

5.1.4 Additional notes on NN algorithms

The key benefit of PWKα over PWK is that the former provides additional
flexibility to further adapt the model to each dataset through its α parameter,
usually increasing precision when α grows, but decreasing recall. Conversely,
PWKα requires a more expensive training procedure due to the calibration of this
free parameter. Our experiments in Section 5.3 suggest no statistical difference
between both, so the final decision for a real-world application should be taken in
terms of the specific needs of the problem, the constraints of the environment, or
the complexity of the data, among others.

It is worth noting that for binary problems when α tends to infinity Equation (5.4)
produces a weight of 1 for both classes, and given that PWKα is equivalent to PWK
when α = 1, then KNN and PWK can be interpreted as particular cases of PWKα.
The parameter α can be thus reinterpreted as a tradeoff between traditional KNN
and PWK.

The exhaustive analysis of alternative weighting approaches for KNN is beyond
the scope of this dissertation. A succinct review of weight-based KNN proposals is
given in [Kang and Cho, 2008], including attractive approaches for quantification
like weighting examples in terms of their classification history [Cost and Salzberg,
1993], or accumulating the distances to k neighbors from each of the classes in order
to assign the class with the smallest sum of distances [Hattori and Takahashi, 1999].
Tan has also proposed further evolutions of his NWKNN, such as the DragPushing
strategy [Tan, 2006], in which the weights are iteratively refined taking into account
the classification accuracy of previous iterations.

45



i

i

“phd” — 2013/12/20 — 9:46 — page 46 — #66
i

i

i

i

i

i

Chapter 5. Study and adaptation of NN algorithms for quantification

5.2 Experimental setup

The specific settings described in this section follow the general principles
introduced in Chapter 4. That is, we use standard datasets with known positive
prevalence, along with the adaptations of stratified cross-validation and Friedman-
Nemenyi statistical test. The main objective is to evaluate state-of-the-art
quantifiers, comparing them with simpler NN-based models.

5.2.1 Datasets

In order to enable fair comparisons among our proposals and those presented in
the literature, we have selected a collection of datasets from the UCI Machine
Learning Repository [Frank and Asuncion, 2010], taking problems with ordinal or
continuous features with at the most three classes, and ranges from 100 to 2,500
examples. The summary of the 24 datasets meeting these criteria is presented in
Table 5.2.

Notice that the percentage of positive examples goes from 8% to 78%. This fact
offers the possibility of evaluating the methods over a wide spectrum of different
training conditions. For datasets that originally have more than two classes, we
followed a one-vs-all decomposition approach. We also extracted two different
datasets from acute, which provides two alternative binary labels.

For datasets with positive class over 50%, ctg.1 in our experiments, an alternative
approach when using T50 method is to reverse the labels between both classes. We
have tried both setups, but we have found no significant differences. Therefore,
we decided to preserve the actual labeling, because we consider that it is more
relevant to perform the comparisons between systems under the same conditions.

Moreover, as given that algorithms use Euclidean distance and linear kernels,
which are not scale invariant, we have applied a normalization for transfusion and
wine datasets. After this normalization all feature columns in these datasets have
mean 0 and standard deviation 0.5. The transformation enables that both SVM
and NN algorithms achieve more consistent results.

5.2.2 Error estimation

We collected results from all datasets, applying a stratified 10-fold cross-validation
for each of them, preserving their original class distribution. After each training,
we always assess the performance of the resulting model with 11 test sets generated
from the remaining fold, varying the positive prevalence from 0% to 100% in steps
of 10% (see Section 4.1.1).
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Section 5.2. Experimental setup

We therefore performed 240 training processes and 2,640 tests for every system
we evaluated. This setup generates 264 cross-validated results for each algorithm,
that is, 24 datasets × 11 test distributions.

5.2.3 Algorithms

As one of the experiment baselines, we selected a dummy method that always
predicts the distribution observed in training data, irrespective of the test
distribution, which is denoted by BL. This allows us to verify the degree of
improvement provided by other methods, that is, the point upon which they learn
something significant. Although this baseline can be considered a non-method, it
is able to highlight deficiencies in some algorithms. Actually, as we shall discuss
later in Section 5.3, there are methods that do not show significant differences
with respect to BL.

We chose CC, AC, Max, X, T50 and MS as state-of-the-art quantifiers from
Forman’s proposals, considering CC as primary baseline. The underlying classifier
for all these algorithms is a linear SVM from the LibSVM library [Chang and
Lin, 2011]. The process of learning and threshold characterization, discussed in
Section 5.2.6, is common to all these models, reducing the total experiment time
and guaranteeing an equivalent base SVM for them all.

The group of NN-based algorithms consists of KNN, PWK and PWKα. For the
sake of simplicity, we always use the standard Euclidean distance and perform a
grid-search procedure to select the best k value, as discussed in Section 5.1. It is
worth noting that we apply Forman’s correction defined in (3.1) for all these NN
algorithms. The main objective is to verify whether we can obtain competitive
results with instance-based methods, while taking into account the formalisms
already introduced by Forman. In contrast with threshold quantifiers, those based
on NN rules do not calibrate any threshold after learning the classification model.

5.2.4 Parameter tuning via grid-search

We use a grid-search procedure for parameter configuration, consisting of a 2×5
cross-validation [Alpaydm, 1999; Dietterich, 1998]. The loss function applied for
discriminating the best values is the geometric mean (GM) of tpr and tnr (true
negative rate, defined as TN/N), i.e., sensitivity and specificity. This measure is
particularly useful when dealing with unbalanced problems in order to alleviate
the bias towards the majority class during learning [Barandela et al., 2003]. For
those algorithms that use SVM as base learner, the search space for the regularizer
parameter C is {0.01, 0.1, 1, 10, 100}. For NN-based quantifiers, the range for k
parameter is {1, 3, 5, 7, 11, 15, 25, 35, 45}. In the case of PWKα, we also adjust
parameter α over the integer range from 1 to 5. The grid-search for NN models
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Table 5.2: Summary of datasets used for the experiments

Dataset Identifier Size Attrs. Pos. Neg. %pos.

Acute Inflammations (urinary bladder) acute.a 120 6 59 61 49%
Acute Inflammations (renal pelvis) acute.b 120 6 50 70 42%
Balance Scale Weight & Distance (left) balance.1 625 4 288 337 46%
Balance Scale Weight & Distance (balanced) balance.2 625 4 49 576 8%
Balance Scale Weight & Distance (right) balance.3 625 4 288 337 46%
Contraceptive Method Choice (no use) cmc.1 1473 9 629 844 43%
Contraceptive Method Choice (long term) cmc.2 1473 9 333 1140 23%
Contraceptive Method Choice (short term) cmc.3 1473 9 511 962 35%
Cardiotocography Data Set (normal) ctg.1 2126 22 1655 471 78%
Cardiotocography Data Set (suspect) ctg.2 2126 22 295 1831 14%
Cardiotocography Data Set (pathologic) ctg.3 2126 22 176 1950 8%
Haberman’s Survival Data haberman 306 3 81 225 26%
Johns Hopkins University Ionosphere ionosphere 351 34 126 225 36%
Iris Plants Database (setosa) iris.1 150 4 50 100 33%
Iris Plants Database (versicolour) iris.2 150 4 50 100 33%
Iris Plants Database (virginica) iris.3 150 4 50 100 33%
Sonar, Mines vs. Rocks sonar 208 60 97 111 47%
SPECTF Heart Data spectf 267 44 55 212 21%
Tic-Tac-Toe Endgame Database tictactoe 958 9 332 626 35%
Blood Transfusion Service Center transfusion 748 4 178 570 24%
Wisconsin Diagnostic Breast Cancer wdbc 569 30 212 357 37%
Wine Recognition Data (1) wine.1 178 13 59 119 33%
Wine Recognition Data (2) wine.2 178 13 71 107 40%
Wine Recognition Data (3) wine.3 178 13 48 130 27%
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Section 5.3. Empirical analysis

is easily optimizable, because once the distance matrix has been constructed
and sorted, the computations with different values of k can be obtained almost
straightforwardly.

5.2.5 Estimation of tpr and fpr characteristics

All quantification outputs are adjusted by means of Equation (3.1), except for BL
and CC. The estimations of tpr and fpr for quantification corrections are obtained
through a standard 10-fold cross-validation in all cases. Other alternatives like
50-fold CV or LOO are discarded because they are much more computationally
expensive for SVM-based models. In the case of NN-based algorithms, the
straightforward method for estimating these rates is by means of the distance
matrix, applying a LOO procedure. However, we finally decided to use only one
common estimation method for all competing algorithms for fairer comparisons.

5.2.6 Additional notes on learning methodology

The learning procedure established by Forman [2008] does not involve the
calibration of the underlying SVM parameters. He states that the focus is no longer
on the accuracy of individual outputs, but on the correctness of the aggregated
estimations. Thus, in some sense, the goodness of the original classifier is not
relevant, as long as its predictions are correctly adjusted. This approach is followed
for comparing the proposed quantification-oriented learners in Chapter 6.

However, in this chapter we present a new quantification approach based on
Nearest Neighbour rules, which require the calibration of parameter k. Realizing
that it would be unfair to compare them with SVM models without previously
adjusting the regularization parameter C, our proposed learning process for
the experimental setup starts by selecting the best value for this regularization
parameter through a grid-search procedure (see Section 5.2.2). Once this optimized
model has been obtained, its default threshold is varied over the spectrum of
raw training outputs, and the tpr and fpr values for each of these thresholds are
estimated through cross-validation. After collecting all this information, several
threshold selection policies can be applied in order to prepare the classifier for the
following step, as already set out in Section 3.2.1. Each of these strategies provides
a derived model which is ready to be used and compared.

5.3 Empirical analysis

Given that we obtain almost equivalent conclusions for AE and KLD results in
Sections 5.3.1–5.3.3, for the sake of readability we focus our analyses on AE scores
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Chapter 5. Study and adaptation of NN algorithms for quantification

for Sections 5.3.4 and 5.3.5. In fact, one of the key drawbacks that we encountered
during the analysis of these experiments is the broad range of standpoints that can
be adopted and the information overload with respect to classification problems.
Therefore, we consider that coherent and meaningful summaries of this information
are crucial to understand, analyze and discuss the results properly.

5.3.1 Overview analysis of results

The first approach that we followed is to represent the AE results for all 11 test
conditions in all 24 datasets by means of a boxplot of each system under study.
Thus, in Figure 5.1a we can observe the range of errors for every system. Each
box represents the first and third quartile by means of the lower and upper side
respectively and the median or second quartile by means of the inner red line.
The whiskers extend to the most extreme results that are not considered outliers,
while the outliers are plotted individually with crosses. In this case, we consider as
outliers any point greater than the third quartile plus 1.5 times the inter-quartile
range. Note that we are not discarding the outliers for any computation, we are
simply plotting them individually.

We distinguish four main groups in Figure 5.1a according to the learning procedure
followed. The first one comprises only BL, covering a wide range of the spectrum
of possible errors. This is probably due to the varying training conditions of each
dataset, given that this system always predicts the proportion observed during
training. The second group, including CC and AC, shows strong discrepancies
between actual and estimated prevalences of up to 100% in some outlier cases.
These systems appear to be quite unstable under specific circumstances, which we
shall analyze later. The third group includes T50, MS, X and Max, all of which
are based on threshold selection policies (see Section 3.2.1). However, as we shall
also discuss later, the T50 method stands out as the worst approach in this group
due to the evident upward shift of its box. The final group comprises NN-based
algorithms: KNN, PWK and PWKα. The weighted versions of this last group
offer the most stable results, with the third quartile below 15% in all cases. The
weight-based versions present maximum outlier values below 45%.

Figure 5.1a provides other helpful insights regarding the algorithms under study.
Taking into account the main elements of each box, we can observe that PWK
and PWKα stand out as the most compact systems in terms of the inter-quartile
range. Both of them have their third quartile, their median and their first quartile
around 10%, 5% and 2.5%, respectively. Note also that most of the models have
a median AE of around 5%, meaning that 50% of the tests over those systems
appear to yield competitive quantification predictions. Once again, however, the
major difference is highlighted by the upper tails of the boxes, including the third
quartile, the upper whisker and the outliers. From the shape and position of the
boxes, KNN, Max, X and MS also appear to be noteworthy.
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Section 5.3. Empirical analysis

5.3.2 Friedman-Nemenyi statistical test

According to the experimental methodology presented in Chapter 4, we have
carried out an adapted version of Friedman-Nemenyi. The experiment includes a
comparison of 10 algorithms over 24 datasets or domains, tested over 11 different
prevalences, resulting in 264 test cases per algorithm. As already discussed on
Section 4.2, since each collection of 11 test sets is sampled from the same fold, we
cannot guarantee the assumption of independence among them. Hence, in order to
take into account the differences between algorithms over several test prevalences
from the same dataset, we first obtain their ranks for each test prevalence and
then compute an average rank per dataset, which is used to rank algorithms on
that domain.

Friedman’s null hypothesis is rejected at the 5% significance level and the CD for
the Nemenyi test with 24 datasets and 10 algorithms is 2.7654. The overall results
of the Nemenyi test are shown in Figure 5.1b, in which each system is represented
by a thin line, linked to its name on one side and to its average rank on the other.
The thick horizontal segments connect models that are not significantly different
at a confidence level of 5%. Therefore, this plot suggests that PWKα and PWK are
the models that perform best in this experiment in terms of AE loss comparison
for Nemenyi’s test. In this setting, we have no statistical evidence of differences
between the two approaches. Neither do they show clear differences with KNN,
Max or X. We can only appreciate that PWKα and PWK are significantly better
than CC, AC, MS, T50 and BL; Max is still connected with CC and MS, while X
and KNN are also connected with AC. It is worth noting that neither AC nor T50
show clear differences with respect to BL, suggesting a lack of consistency in the
results provided by the former systems.

5.3.3 Complementary analysis of KLD measurements

This section presents the results of the experiment in terms of KLD , which are
omitted in previous discussion. In summary, we observe that AE results provide
similar statistical evidences as with KLD . However, we consider that AE results
are more interpretable because they have actual meaning.

KLD values presented in Figure 5.2 show a similar shape with respect to the AE
boxplot presented in Figure 5.1. It is also worth noting that in Figure 5.2a we
have to use a logarithmic scale, reducing its readability. The most relevant finding
is that this metric is able to highlight extreme cases. However, as the comparison
with Friedman-Nemenyi is performed in terms of wins and losses, this fact is not
relevant from a statistical point of view. It may be only useful as an alternative
visualization tool.

If we observe the Nemenyi output presented in Figure 5.2b, the conclusions drawn
are almost the same. Only T50 and BL show a different behavior, which is
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Figure 5.1: Statistical comparisons for NN experiments in terms of AE
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Figure 5.2: Statistical comparisons for NN experiments in terms of KLD
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irrelevant from the perspective of the study. All other methods behave likewise,
without benefiting any of the competing systems. This supports the analysis
described in previous sections.

5.3.4 Pair-wise comparisons with PWKα

Since PWKα appears to be the algorithm that yields the lowest values for AE in
general, obtaining the best average rank in the Nemenyi test, from now on we shall
use it as a pivot model so as to compare it to all the other systems under study.
Thus, in Figure 5.3 we present pair-wise comparisons of each system with respect
to PWKα. Each point represents the cross-validated AE values of the compared
system on the y-axis and of PWKα on the x-axis, for the same dataset and test
prevalence. The red diagonal depicts the boundary where both systems perform
equally. Therefore, when the points are located above the diagonal, PWKα yields
a lower AE value, and vice-versa. It should be noted that as we are using PWKα

as a pivot model for all comparisons, there is always the same number of points
at each value of the x-axis. Thus, the movement of these points along the y-axis,
among all the comparisons, provides visual evidence of which systems are more
competitive with respect to PWKα.

We also include several metrics within each plot. The inner triplet shows the
number of wins, losses and ties of PWKα versus the compared system. The
values below each plot reveal the difference between wins and losses (DWL),
and within parentheses the mean of the differences between AE results of both
algorithms (MDAE). Positive values of DWL and MDAE indicate better results
for PWKα, though they are only conceived for clarification purposes during
visual interpretation. The aim of the DWL metric is to show the degree of
competitiveness between two systems, values close to zero indicating that they are
less differentiable, in terms of wins and losses, than systems with higher values.
Moreover, MDAE can also be used as a measure of the symmetry of both models.
Note that being symmetric in this context does not refer to similarity of results,
but to compensation of errors. This means that systems with an MDAE value
close to zero are less differentiable in terms of differences of errors.

From the shape drawn by the plots in Figure 5.3, we can observe some interesting
interactions between models, always with respect to PWKα. As expected, the
comparison with PWK, for example, shows a clear connection between both
systems; all points present a strong trend towards the diagonal. Moreover, DWL
indicates that PWK is the most competitive approach, while MDAE shows that
the average difference of errors is only 0.26, being highly symmetric.

The points in KNN’s plot are not so close to the diagonal, being mainly situated
slightly upwards. This behavior suggests that KNN is less competitive (78) and
less symmetric (2.28) than PWK. Nevertheless, in general, NN-based algorithms
present the best performance.
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Figure 5.3: Pair-wise comparisons with respect to PWKα, in terms of AE. The
results over all test prevalences are aggregated into a single plot, where each one
represents 264 cross-validated results. The inner triplet shows the number of wins,
losses and ties of PWKα versus the compared system. The numbers below each
plot reveal the difference between wins and losses (DWL), and within parentheses
the mean of the differences between AE values (MDAE).
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Chapter 5. Study and adaptation of NN algorithms for quantification

Although Max, X, MS and T50 are all based on threshold selection policies, the
DWL and MDAE values differ noticeably among them. As already observed in
Figure 5.1b, Max seems to outperform the others, both in competitiveness (29) and
symmetry (2.09), while T50 stands out as the less competitive approach among
these quantification models.

The distribution of errors in Figure 5.1a for BL, CC and AC is once again evidenced
in Figure 5.3. The presence of outliers in CC and AC is emphasized through high
values of MDAE, combined with intermediate values of DWL. As regards BL,
this algorithm shows the worst values in Figure 5.3 for competitiveness (200) and
symmetry (23.97). This poor behavior can be also observed in Figure 5.1b.

5.3.5 Analysis of results by test prevalence

Although Figures 5.1a, 5.1b and 5.3 provide interesting evidence, they fail to show
other important issues. For instance, we cannot properly analyze the performance
of each system with respect to specific prevalences. Furthermore, they only offer a
general overview of the limits and distribution of AE values, without taking into
account the magnitude of the error with respect to the actual test proportions.

Figure 5.4 follows the same guidelines as those introduced for Figure 5.3; however,
in this case we split each plot into eleven subplots, placed by rows. Each of these
subplots represents the comparative results of a particular system with respect to
PWKα for a specific test prevalence. This decision is again supported by the fact
that PWKα appears to be the system that performs best in terms of AE metric.
Moreover, despite the overload of information available, this summarization allows
us to represent the values of all systems with fewer plots, to simplify the comparison
of every system with respect to the best of our proposed models, and to visualize
the degree of improvement among systems, all at the same time. The axes of those
comparisons where DWL has negatives values are highlighted in red, while ties
in DWL values are visualized by means of a gray axis. Notice that there are also
cases where values of DWL and MDAE have a different sign.

The average training prevalence among all datasets is 34.22%; hence, test
prevalences at 30% and 40% are the closest to the original training distribution
for the average case. This can be observed in Figure 5.4 through the BL results,
which always predict the proportion observed during training. As expected, when
the test distribution resembles that of the training, it yields competitive results,
although the performance is significantly degraded to the worst case when the test
proportions are different from those observed during training. Taking the plots of
BL as reference, we observe that the behavior of PWKα seems to be heading in
the right direction in terms of both DWL and MDAE. Notice that the MDAE
values in this column rise and fall in keeping with changes in test prevalence.

The CC method performs well over low prevalence conditions, obtaining the best
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Figure 5.4: Pair-wise comparisons with respect to PWKα, in terms of AE. The
results over different test prevalences are plotted individually (by rows), where
each plot represents the cross-validated results over 24 datasets. See caption of
Figure 5.3 for further details about the metrics placed below each graph.

57



i

i

“phd” — 2013/12/20 — 9:46 — page 58 — #78
i

i

i

i

i

i

Chapter 5. Study and adaptation of NN algorithms for quantification

DWL results for 10% and 20%. However, it apparently tends to increasingly
underestimate for higher proportions of positives, as evidenced by the MDAE
values. This supports the conclusions regarding uncalibrated quantifiers drawn
by Forman [2008]. On the other hand, we expected a more decisive improvement
of AC over CC results in general. Actually, when the positive class becomes
the majority class, for test prevalences greater than 50%, the AC correction
produces an observable improvement in terms of DWL, and especially for MDAE.
From a general point of view, however, the results that we have obtained with
this experiment show that simply adjusting SVM outputs may not be sufficient,
providing even worse results than traditional uncalibrated classifiers, mainly when
testing low prevalence scenarios. This fact is mostly highlighted by the MDAE
results of CC and AC over prevalences below 50%.

The most promising results among state-of-the-art quantifiers are obtained by Max
and X, although the former provides more competitive results for the average case.
The greatest differences between MDAE results are observed for test prevalences
below 50%, where Max yields lower values. These differences are softened in favor
of X for higher prevalences. We suspect that these threshold selection policies
could entail an intrinsic compensation of the underlying classification bias shown
by CC, which tends to overestimate the majority class. This intuition is supported
by the observation that they still perform worse than CC for low test prevalences,
as they may tend to overestimate the minority class. Additionally, both provide
better DWL and MDAE results than CC or AC for prevalences higher than 40%.

T50 presents the worst results of this family of algorithms, showing surprisingly
good performance in test prevalence at 0%. Conversely, MS shows an intermediate
behavior, performing appealingly in MDAE but discouragingly in DWL,
obtaining competitive results when the test prevalence is 100%. This good
performance for extreme test prevalences could be due to the fact that corrected
values are clipped into the feasible range after applying Equation (3.1), as described
in Section 3.2. Therefore, this kind of behavior is not representative, unless
it is reinforced with more stable results in near test prevalences. Moreover,
Figures 5.1a, 5.3 and 5.4 highlight cases where Max and MS share some results.
As described in Section 5.2.3, this is due to missing values in the latter method,
which happens to be linked with outlier cases in Max. This suggests a possible
connection between the complexity of these cases and their lack of thresholds
where the denominator in (3.1) is big enough, being less robust with respect to
estimation errors in tpr and fpr .

At first glance, KNN yields interesting results. Excluding CC, it improves DWL
below 30% with respect to SVM-based models. Actually, both CC and KNN
are the most competitive models over lowest prevalences, probably because they
tend to misclassify the minority class, so that they are biased to overestimate
the majority class. Thus, when the minority class shrinks, the quantification error
also decreases. Notwithstanding, KNN behaves more consistently, providing stable
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Section 5.3. Empirical analysis

MDAE results over higher prevalences. Comparing KNN with AC, we also observe
that, in general, KNN also appears to be more robust in terms of MDAE. This
suggests that KNN produces AE results with lower variance and less outliers than
CC and AC, as previously observed in Figures 5.1a and 5.3.

As already mentioned, the red (black) color in Figure 5.4 represent cases where
the compared system yields better (worse) DWL than PWKα, while ties are
depicted in gray. Hence, these plots reinforce the conclusion that PWKα is
usually the algorithm that performs best, with a noticeable dominance in terms
of MDAE. Apparently, adding relatively simple weights offers an appreciable
improvement, which is clearly observable when compared with traditional KNN.
With the exception of PWK, there exists only one case where both DWL and
MDAE produce negative values in Figure 5.4, corresponding to CC at a test
prevalence of 10%. This is probably caused by the fact that CC is supposed to
yield exact results over a specific prevalence, identified as p∗ in Forman’s theorem.
Therefore, this result is not relevant in terms of global behavior. Furthermore,
except for PWK over prevalences higher than 50%, the values for the MDAE
metric are positive in all cases. This implies that AE values provided by PWKα

and PWK are generally lower and have less variance than those of all the other
systems.

The resemblance between PWKα and PWK is once again emphasized through
low values of MDAE over all test prevalences. However, previous figures failed to
shed light on a very important issue. Observing the last column in Figure 5.4, it
appears that PWKα is more conservative and robust over lower prevalences, while
PWK is more competitive over higher ones. These differences are softened towards
intermediate prevalences. This behavior is supported by the fact that, although
PWKα and PWK use weights based on equivalent formulations, the parameter
α in PWKα tends to weaken the influence of these weights when it increases.
Moreover, as already stated in Section 5.1.2, since these weights are designed to
compensate the bias towards the majority class, when the parameter α grows, the
recall decreases, and vice-versa.

Finally, in order to bring the analysis of the experimental results to an end,
Figure 5.5 shows the raw AE scores for each dataset and each test prevalence.
We have only included four representative algorithms, being AC, Max, KNN and
PWKα. The aim of this figure is to enable us to check graphically whether
it does exist any correlation between the original training prevalence and the
performance of the systems under study, or not. Each plot depicts the results of
all four systems for every test prevalence, sorting the plots by training prevalence.
Observing Figure 5.5 we cannot conclude that the training prevalence influences
the quantification performance, it seems that the intrinsic complexity of each
dataset is more relevant.
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Figure 5.5: Bar plots of AE results for AC, Max, KNN and PWKα over all the
datasets. Each bar plot depicts the results of all four systems, for every test
prevalence. The titles show the acronym of the dataset and its original prevalence,
sorting the plots by training prevalence from left to right and from top to bottom.
The y-axis range is fixed from 0% to 50% for comparison purposes.

60



i

i

“phd” — 2013/12/20 — 9:46 — page 61 — #81
i

i

i

i

i

i

Chapter 6

Design and optimization of
quantification loss functions

State-of-the-art quantification models based on classifiers present the drawback
of being trained with a loss function aimed at classification, rather than
quantification. Other recent attempts to address this issue suffer some limitations
regarding reliability, measured in terms of classification abilities. Thus, in
this chapter we present a learning method that optimizes an alternative metric
that combines quantification and classification performance simultaneously. Our
proposal offers a new framework that allows constructing binary quantifiers that
are able to accurately estimate the proportion of positives, based on models with
reliable classification abilities (high sensitivity). This study is currently under
review on Pattern Recognition [Barranquero et al., under review].

The two major frameworks described in Chapter 3 may present some disadvantages
under specific conditions, as it happens with all learning paradigms. On the one
hand, Forman’s methods [Forman, 2008] provide estimations that are obtained in
terms of modified classification models, optimized to improve their classification
accuracy, instead of training them to reduce their quantification error. Although
these algorithms showed promising quantification performance in practice, it seems
more orthodox to build quantifiers optimizing a quantification metric, as stated
by Esuli and Sebastiani [2010].

However, on the other hand, their proposal does not take into account the
classification accuracy, as long as the quantifier balances the number of errors
between both classes, even at the cost of obtaining a rather poor classifier. That
is, Esuli and Sebastiani propose that the learning method should optimize a
quantification measure that simply deteriorate with |FP − FN |. We strongly
believe that it is also important that the learner considers the classification
performance as well. Our claim is that this aspect is crucial to guarantee a
minimum level of confidence for deployed models. The key problem is that pure
quantification measures do not take into account the classification abilities of the
model, producing several optimum points within the hypothesis search space (any
that fulfills FP = FN); with some of these hypotheses being less reliable than
others.
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Figure 6.1: Graphical representation of two conflicting perfect quantifiers.

6.1 Balancing quantification and classification

In order to analyze this issue we will use the example in Figure 6.1, which represents
all instances of iris dataset. This training set contains three classes, with the same
percentage for each of them. The learning task is to obtain a quantifier for class 3,
that is, class 3 is the positive class, while the negative class is composed by classes
1 and 2. The figure depicts two hypotheses: w1 and w2; the former classifies all
examples of class 1 as positives, while the latter predicts the majority of examples
of class 3 as positives. Both hypotheses are perfect quantifiers according to training
data. Thus, any learning method that only takes into account the quantification
performance is not able to distinguish between them. In practice, it will end up
choosing one depending on the particular learning bias of its underlying algorithm.

Our claim is that a reliable learner should prefer w2, because it offers better
classification abilities, being more robust to changes in class distribution. Actually,
w1 will quantify any change in the proportion of class 3 on the opposite
direction, due to the fact that the hyperplane defined by w1 is irrelevant to the
positive/negative distinction. That is, using w1, any increment in the proportion
of class 3 results in a decrement of the quantification of that class, and vice-versa.
Conversely, the estimations of w2 increases or decreases in the same direction of
these changes.
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Table 6.1: Perfect quantifier with worst possible recall

P N

P ′ TP = 0 FP = P

N ′ FN = P TN = N − P

As matter of fact, the hyperplane defined by w1 happens to be the worst case in
terms of classification performance. This is because even been a perfect quantifier,
it misclassifies all the examples of the positive class, counteracting them with the
same amount of false positive errors. Table 6.1 shows the contingency table for
this hypothesis. Obviously, this is an undesired extreme case, which nonetheless
current algorithms have not addressed properly for the time being.

In summary, Forman’s methods are designed to build and characterize classifiers
in order to apply them as quantifiers. On the other hand, the proposal presented
by Esuli and Sebastiani emphasizes quantification ability during optimization;
although they do not implement nor evaluate it. This chapter explores this
second alternative in detail, presenting also a new proposal that may be able
to soften some drawbacks of previous methods, considering both classification and
quantification performance during learning, and thus producing more reliable and
robust quantifiers.

In fact, given that confidence is always a key issue for the application of machine
learning methods in practice, the open question is how to measure the reliability
that offers a quantifier, or whether it is reasonable that it was not able to classify
correctly a minimum number of examples. We consider that this is the main
potential pitfall of the proposal presented by Esuli and Sebastiani, because it is
based on learning a binary classifiers that simply compensates the errors between
both classes, even when the underlying classifier shows a rather poor classification
performance.

The key problem that arises when optimizing a pure quantification measure is
that the resulting hypothesis space contains several global optimums. However, as
we have analyzed before, those optimum hypotheses are not equally good because
they differ in terms of the quality of their future quantification predictions (see
Table 6.1 and Figure 6.1). Our claim is that the robustness of a quantifier based
on an underlying classifier is directly related to the reliability of such classifier.
For instance, given several models showing equivalent quantification performance
during training, the learning method should prefer the best one in terms of its
potential of generalization.

The formal approach to obtain such quantifiers is to design a metric that combines
somehow classification and quantification abilities, and then applying a learning
algorithm able to select a model that optimizes such metric. This is the core idea
of the proposal presented in this chapter.
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Conceptually, the strategy of merging two complementary learning objectives
is not new; we find the best example in information retrieval. The systems
developed for these tasks are trained to balance two goals, retrieving as many
relevant documents as possible, but discarding non-relevant ones. The metric that
allows assessing how close are these complementary goals of being accomplished
is F -measure [van Rijsbergen, 1979, 1974]. Actually, this metric emerges from
the combination of two ratios: recall (TP/P ), which is already defined as tpr in
Equation (2.7), and precision (TP/P ′). In some sense, we face a similar problem
in quantification.

6.2 Q-measure: a new parametric loss function

All previous discussion lead us to present a new metric, termed Q-measure, which
balances quantification and classification performance simultaneously. The first
point to emphasize is that quantification is mostly explored for binary problems, in
which the positive class is usually more relevant and must be correctly quantified.
Thus, the design of Q-measure is focused on a binary quantification setting.

The standard classification metric F -measure is defined as

Fβ = (1 + β2) · precision · recall
β2 · precision + recall

, (6.1)

which balances an adjustable tradeoff between precision and recall . Analogously,
we suggest Q-measure, defined as

Qβ = (1 + β2) · cperf · qperf
β2 · cperf + qperf

. (6.2)

The β parameter allows weighting cperf and qperf measures, providing an AND-
like behavior. Note that cperf and qperf stand for classification performance and
quantification performance respectively. The selection of these metrics depends on
the final learning goal, keeping in mind that they should be bounded between 0 and
1 in order to be effectively combined, representing worst and best case respectively.

Therefore, the first element of our proposal is a new family of score functions,
inspired in the aforementioned F -measure. We need two core ingredients, a metric
for quantification and another for classification. The additional advantage of this
approach is flexibility, in terms that almost any combination of measures can
be potentially selected by practitioners. This new family is mainly aimed at
guiding model selection during the learning stage. But, up to some extent, it
also allows comparing quantifiers trained with different approaches, whether or
not they are based on these ideas. Evaluating quantifiers from this two-view
perspective provides us the possibility of analyzing their reliability.
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Section 6.2. Q-measure: a new parametric loss function

We now explore some alternatives through graphical representations. The
motivation behind Figures 6.2–6.7 is to enable us to analyze the behavior of
different loss functions with respect to all combinations of values for FP and
FN ; both under balanced (6.2, 6.4 and 6.6) and unbalanced (6.3, 6.5 and 6.7)
training conditions. Each of the 2D plots is the xy-projection of its lower 3D
graphic. Darker colors mean better scores. Notice also that 3D views are rotated
over z-axis in order to ease the visualization of the surfaces and that x-axis range
is different between balanced and unbalanced cases. Intuitively, a well-conceived
learning procedure should tend to move towards those models whose scores are
within darkest areas. In other words, these graphs illustrate the hypothesis search
space of each metric.

6.2.1 Classification performance

In Figures 6.2 and 6.3 we look over some candidate classification metrics. Following
with the binary quantification setting introduced before, a natural choice for cperf
is accuracy , defined as (TP + TN)/S. However, it has some drawbacks because
quantification is usually applied over an unbalanced binary problem, in which
negatives are the majority class, resulting from a combination of several related
classes (one-vs-all).

Other standard alternatives are F1 , defined in Equation (6.1), or the geometric
mean of tpr (recall) and tnr (true negative rate), defined as

GM =

√

TP

P
· TN
N

; (6.3)

i.e., the geometric mean of sensitivity and specificity. This measure is particularly
useful when dealing with unbalanced problems in order to alleviate the bias towards
the majority class during learning [Barandela et al., 2003].

An interesting property of both tpr and tnr is that their corresponding search
space is only defined over one of the two classes, and then they are invariant to
changes in the dimension of the other. Notice that the graphical representation of
tnr is equivalent to tpr (recall) in Figures 6.2 and 6.3, but rotated 90o over z-axis.
That is why GM also shows a constant shape between balanced (Figure 6.2) and
unbalanced cases (Figure 6.3), with a proper scaling for y-axis. It is also worth
noting that accuracy approximate to tnr when the size of positive class is negligible

(TP + TN)

S
≈ TN

N
, when P → 0.

Therefore, we consider that accuracy could be appropriate only in those cases
where we were dealing with problems where both classes had similar size, so we
discard it for the general case. Regarding, F1 and GM , although both could
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Chapter 6. Design and optimization of quantification loss functions

be appropriate, we finally focus on recall for our study. A potential benefit
of maximizing recall is motivated by the fact that this may lead to a greater
denominator in Equation (3.1), providing more stable corrections. It is also
interesting that this metric is included in F -measure and GM , in order to weight
the relevance of the positive class accordingly. Thus, this decision is also supported
by the fact that the goal of the applications described in quantification literature
is focused on estimating the prevalence of the positive class, which is usually more
relevant.

In practical terms, Q-measure is able to discard pointless qperf optimums thanks
to the use of recall . The key idea is that recall acts as a hook, forcing the quantifier
to avoid incoherent classification predictions over the positive class. This reduces
the amount of FN errors, restricting in turn the search space for the quantification
part in Q-measure. Notice also that pure quantification metrics tends to overlook
positive class relevance in unbalanced scenarios.

6.2.2 Quantification performance

We have considered several alternatives for qperf , starting from standard measures
described in Section 2.2. Unfortunately, none of the reviewed metrics fulfill
all the requirements imposed by the design of Q-measure. Hence, we also
analyze the normalized versions of AE and SE . Figures 6.4 and 6.5 provide
a graphical representation to assist in interpretation and discussion of these
functions. Anyhow, it is worth mentioning that the decision about qperf does
not depend on whether we need to estimate the prevalence of one or both classes,
because in binary problems both values are complementary (p = 1−n, where n is
the proportion of negatives or N/S).

Estimation bias, defined in Section 2.2.1, is clearly out of scope because it can yield
negative predictions. We also discard KLD because it is not properly bounded and
it yields unwieldy results when estimated proportions are near 0% or 100%, like
infinity or indeterminate values. According to Forman [2008], this problem can
be fixed by backing off by half a count (see Section 2.2.3). Moreover, as can be
observed in Figures 6.4 and 6.5, we also have to crop its range after subtracting
from 1. These adjustments are not exempt from controversies, so we have focused
on other alternatives.

We consider that AE and SE , defined in Section 2.2.2, are the most appropriate
candidates because both are bounded between 0 and 1. However, they do not
reach value 1 for almost all possible class proportions, except for p ∈ {0, 1}, getting
further away from 1 in correlation with the degree of imbalance (notice that in
Figures 6.4 and 6.5 AE and SE values are subtracted from 1). This may produce
an awkward behavior when combining these metrics with cperf in Equation (6.2).
Observe also that in Figures 6.2 and 6.3 both components of F -measure cover the
whole range between 0 (worst) and 1 (best case), and so does require Q-measure.
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Looking at Equation (2.4) and (2.5) in more detail, we observe that given a
particular value for p their effective upper bounds are max(p, n) and max(p, n)2

respectively. Thus, we need to normalize them. Moreover, as they are defined
as loss functions, with optimum at 0, we also need to redefine them as score
functions. Taking into account these factors, it is straightforward to obtain two
derived measures for quantification, denoted as Normalized Absolute Score (NAS )

NAS = 1− |p′ − p|
max(p, n)

= 1− |FN − FP |
max(P,N)

, (6.4)

and Nomalized Squared Score (NSS )

NSS = 1−
(

p′ − p

max(p, n)

)2

= 1−
(

FN − FP

max(P,N)

)2

. (6.5)

Figures 6.4 and 6.5 show that NAS and NSS are uniform and easily interpretable,
following equivalent shapes to those offered by standard quantification loss
functions. For instance, NSS is quite similar to 1-KLD . From Figure 6.4, we
can observe that when the problem is balanced, then all functions returns the best
scores on the diagonal. This represents where FP and FN values neutralize each
other, i.e., where |FP − FN | cancels. On the other hand, Figure 6.5 provide an
example of an unbalanced problem. The optimal region lies again over the line
where these values compensate each other, as it may be expected.

For the sake of simplicity, we only focus on NAS in our study. If we look for the
maximum possible value of |FP−FN |, we conclude that it is always the number of
individuals of the majority class. Assuming that N is greater than P , as it is usual,
the proof is that the worst quantification score is achieved when all the examples
of the minority class are classified correctly (TP = P and FN = 0), but all the
examples of the majority class are misclassified (TN = 0 and FP = N), and thus
Equation (6.4) evaluates to 0. With such a simple metric, we can observe that the
|FP − FN | count is weighted in terms of the predominant class (denominator),
forcing the output on the whole range between 0 and 1.

6.2.3 Graphical analysis of Q-measure

The graphical representation in Figures 6.6 and 6.7 provides an intuitive view to
understand the behavior of Q-measure, selecting recall as cperf and NAS as qperf
for Equation (6.2). Its interpretation is exactly the same as in previous figures.
Again, we present two alternative learning conditions: balanced (Figure 6.6) and
unbalanced (Figure 6.7). For each of them, from left to right, we show different
search spaces obtained from five target measures: first NAS , then those obtained
from three different β values (Q2, Q1 and Q0.5), and finally recall . Notice that
recall and NAS are equivalent to Q0 and Q∞ respectively. When the value of β
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Figure 6.2: Graphical representation of all possible values for different classification loss functions, varying FP and FN
between 0 and their maximum value. Balanced case with 1000 examples of each class (P = 1000, N = 1000). Darker
colors mean better scores.
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Figure 6.3: Graphical representation of all possible values for different classification loss functions, varying FP and FN
between 0 and their maximum value. Unbalanced case (9%) with 1100 examples (P = 100, N = 1000). Darker colors
mean better scores.

69



i

i

“phd”
—

2013/12/20
—

9:46
—

page
70

—
#

90
i

i

i

i

i

i

C
h
a
p
ter

6.
D

esign
a
n
d

o
p
tim

iza
tio

n
o
f
qu

a
n
tifi

ca
tio

n
lo

ss
fu

n
ctio

n
s

0 250 500 750 1000
0

250

500

750

1000
1 − AE

FP

F
N

0
250

500
750

1000

0
250

500
750

1000

0

0.5

1

FPFN

0 250 500 750 1000
0

250

500

750

1000
1 − SE

FP

0
250

500
750

1000

0
250

500
750

1000

0

0.5

1

FPFN

0 250 500 750 1000
0

250

500

750

1000
1 − KLD

FP

0
250

500
750

1000

0
250

500
750

1000

0

0.5

1

FPFN

0 250 500 750 1000
0

250

500

750

1000
NSS

FP

0
250

500
750

1000

0
250

500
750

1000

0

0.5

1

FPFN

0 250 500 750 1000
0

250

500

750

1000
NAS

FP

0
250

500
750

1000

0
250

500
750

1000

0

0.5

1

FPFN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 6.4: Graphical representation of all possible values for different quantification loss functions, varying FP and FN
between 0 and their maximum value. Balanced case with 1000 examples of each class (P = 1000, N = 1000). Darker
colors mean better scores.
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Figure 6.5: Graphical representation of all possible values for different quantification loss functions, varying FP and FN
between 0 and their maximum value. Unbalanced case (9%) with 1100 examples (P = 100, N = 1000). Darker colors
mean better scores.
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Figure 6.6: Graphical representation of all possible values for our proposed loss function Qβ , varying FP and FN between
0 and their maximum value. Each row shows the progression from NAS (β → ∞) to recall (β = 0) through different
values of β. Balanced case with 1000 examples of each class (P = 1000, N = 1000). Darker colors mean better scores.
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Figure 6.7: Graphical representation of all possible values for our proposed loss function Qβ , varying FP and FN between
0 and their maximum value. Each row shows the progression from NAS (β → ∞) to recall (β = 0) through different
values of β. Unbalanced case (9%) with 1100 examples (P = 100, N = 1000). Darker colors mean better scores.
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Chapter 6. Design and optimization of quantification loss functions

is 1 (on the middle graphic), both classification and quantification performance
measures are equally weighted; when its value decreases to 0, then Q-measure

tends to be more similar to cperf , and when it rises from 1, it tends to resemble
qperf . Obviously, for the intermediate values of β, the obtained search spaces are
significantly different from that of the seminal metrics.

In summary, recall drives the model to yield accurate predictions over the positive
class, minimizing FN . While, on the other hand, NAS evaluates the compensation
between FP and FN . Hence, we have that Q-measure degrades when |FP −FN |
is high, but we are also penalizing those models with high FN .

Figures 6.6 and 6.7 suggest that the search space defined by β = 2 may be able to
produce competitive quantifiers. An interesting property of this learning objective
is that Q2 preserves the general shape of the optimal region defined by NAS , while
degrading these optimums in consonance with recall . That is, it offers the benefits
of a quantification-oriented target, avoiding incoherent optimums (see Section 6.1).

We can also observe that with β = 1 we are forcing the learning method to obtain
models in the proximities of the lower values of FP and FN . Specifically, in
Figure 6.3 and Figure 6.7 we see that the shape of Q1 reminds that of GM when
the dataset is unbalanced. This similarity is originated by the fact that both share
recall as one of their components, while NAS is similar to tnr on highly unbalanced
datasets. On the extreme case, when positive class is minimal, the score 1 − AE

approximates to NAS , accuracy and tnr :

1− |FP − FN |
N + P

≈ 1− FP

N
=

TN

N
≈ (TP + TN)

N + P
, when P → 0.

Therefore, the main motivation for mixing in recall is that the alternative of using
only a pure quantification metric could imply optimizing a similar target to that
of accuracy or tnr on highly unbalanced problems. In fact, as we will analyze in
the following section, the empirical results obtained from our experiments suggest
that the behavior of a model learned though NAS is very similar to that of CC,
which is a classifier trained with accuracy . On balanced cases, we believe that the
contribution of recall to Q-measure also offers a more coherent learning objective,
providing more robust quantifiers in practice.

6.3 Multivariate learning hypothesis

The main challenge of our proposed Q-measure is that not all binary learners
are capable of optimizing this kind of metrics, because such functions are not
decomposable as a linear combination of the individual errors. Hence, this
approach requires a more advanced learning machine, like SVM∆

multi [Joachims,
2005], which provides an efficient base algorithm for optimizing non-linear
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Section 6.3. Multivariate learning hypothesis

functions computed from the contingency table (see Table 2.1). Nevertheless, the
straightforward benefit is that these methods address the quantification problem
from an aggregated perspective, taking into account the performance over whole
samples, which seems more appropriate for the problem.

Therefore, rather than learning a traditional classification model like

h : X → Y,

the core idea of SVM∆
multi is to transform the learning problem into a multivariate

prediction one. That is, the goal is to induce a hypothesis h̄ that maps all feature
vectors of a sample x̄ = (x1, . . . ,xS), to a tuple ȳ = (y1, . . . , yS) of S labels

h̄ : X̄ → Ȳ,

in which x̄ ∈ X̄ = XS and ȳ ∈ Ȳ = {−1,+1}S . This multivariate mapping is
implemented with a linear discriminant function

h̄w(x̄) : arg max
ȳ′∈Ȳ

{〈w,Ψ(x̄, ȳ′)〉} ,

where h̄w(x̄) yields the tuple ȳ′ = (y′1, . . . , y
′
S) of S predicted labels with higher

score according to the linear function defined by the parameter vector w. The
joint feature map Ψ describes the match between a tuple of inputs and a tuple of
outputs. For the quantification-oriented methods presented in this dissertation,
we use the same form proposed by Joachims for binary classification

Ψ(x̄, ȳ′) =

S
∑

i=1

xiy
′
i.

This setup allows the learner to consider the predictions for all the examples, and
optimize in turn a sample-based loss function ∆. The optimization problem for
obtaining w given a non-negative ∆ is as follows

min
w,ξ≥0

1

2
〈w,w〉+ Cξ (6.6)

s.t. 〈w,Ψ(x̄, ȳ)−Ψ(x̄, ȳ′)〉 ≥ ∆(ȳ′, ȳ)− ξ, ∀ȳ′ ∈ Ȳ \ ȳ.

Notice that the constraint set of this optimization problem is extremely large,
including one constraint for each tuple ȳ′. Solving this problem directly is
intractable due to the exponential size of Ȳ. Instead, we obtain an approximate
solution applying Algorithm 2 [Joachims, 2005], which is the sparse approximation
algorithm of [Tsochantaridis et al., 2005, 2004] adapted to the multivariate
SVM∆

multi.

The key idea of this algorithm is to iteratively construct a sufficient subset of the
set of constraints CS. In each iteration, the most violated constraint is added
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Algorithm 2 Algorithm for solving quadratic program of multivariate SVM∆
multi

1: Input: x̄ = (x1, . . . ,xn) and ȳ = (y1, . . . , yn), ǫ
2: CS ← ∅

3: ξ ← 0
4: repeat
5: ȳ′ ← arg maxȳ′∈Ȳ {∆(ȳ′, ȳ) + 〈w,Ψ(x̄, ȳ′)〉}
6: ξ′ ← ∆(ȳ′, ȳ)− 〈w,Ψ(x̄, ȳ)−Ψ(x̄, ȳ′)〉
7: if ξ′ ≥ ξ + ǫ then
8: CS ← CS ∪ {ȳ′}
9: w, ξ ← optimize SVM∆

multi objective over CS
10: end if
11: until CS has not changed during last iteration
12: Return: w

to the active subset of constraints, i.e., the constraint corresponding to the label
that maximizes H(ȳ) = {∆(ȳ′, ȳ) + 〈w,Ψ(x̄, ȳ′)〉}. Obviously, the search of this
constraint depends on the target loss function. After adding each new constraint,
the next approximation to the solution of optimization problem (6.6) is computed
on the new set of constraints. The algorithm stops when no constraint is violated
by more than ξ.

This method guarantees that the solution returned fulfills all constraints up to
precision ξ, while the norm of w is no bigger than the norm of the exact solution
of (6.6). Furthermore, Tsochantaridis et al. [2004] demonstrate that this algorithm
terminates after a polynomial number of iterations, while Joachims [2005] restate
this theorem for the SVM∆

multi optimization problem. Hence, if the search for the
most violated constraint can be performed in polynomial time:

arg max
ȳ′∈Ȳ

{∆(ȳ′, ȳ) + 〈w,Ψ(x̄, ȳ′)〉}, (6.7)

the overall algorithm has polynomial time complexity.

It is worth noting that an exhaustive search over all ȳ′ ∈ Ȳ \ ȳ is not feasible.
However, the computation of the argmax in Eq. (6.7) can be stratified over
all different contingency tables. Therefore, given any metric computed from the
contingency table, including any variation of Q-measure based on different seminal
metrics for cperf and qperf , Algorithm 3 efficiently returns the most violated
constraint [Joachims, 2005]. Note also that the non-negativity condition imposed
to ∆ implies that estimation bias cannot be optimized because it may return
negative values.

Algorithm 3 is based on the observation that there are only order O(n2) different
contingency tables for a binary classification problem with n examples. Therefore,
any loss function that can be computed from the contingency table can take at
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Algorithm 3 Algorithm for computing arg max with non-linear loss functions
1: Input: x̄ = (x1, . . . ,xn) and ȳ = (y1, . . . , yn), Ȳ
2: (ip1, . . . , i

p
#pos)← sort {i : yi = +1} by 〈w,xi〉

3: (in1 , . . . , i
n
#neg)← sort {i : yi = −1} by 〈w,xi〉

4: for a = 0 to #pos do
5: c← #pos− a
6: set y′

ip1
, . . . , y′

ipa
to +1 AND y′

ip
a+1

, . . . , y′
ip
#pos

to −1
7: for d = 0 to #neg do
8: b← #neg − d
9: set y′in1 , . . . , y

′
in
b

to +1 AND y′in
b+1

, . . . , y′in
#neg

to −1
10: v ← ∆(a, b, c, d) +w

T
∑n

i=1 y
′
ixi

11: if v is the largest so far then
12: ȳ∗ ← (y′1, . . . , y

′
n)

13: end if
14: end for
15: end for
16: Return: ȳ∗

most O(n2) different values. Thus, by slightly rewriting the algorithm, it can be
implemented to run in time O(n2); while exploiting that many loss functions are
upper bounded, pruning can further improve the runtime of the algorithm.

6.4 Experimental setup

The main objective of this section is to study the behavior of the method
that optimizes the quantification loss presented in this chapter, comparing its
performance with other state-of-the-art approaches. The main difference with
first experimental designs followed for quantification is that our empirical analysis
is neither focused on a particular domain, nor a specific range of train or test
prevalences. We aim to cover a broader or more general scope, following the
methodology that we have previously introduced Chapter 4 and applied with
success in Chapter 5. Again, we use standard datasets with known positive
prevalence, along with the adaptations of stratified cross-validation and Friedman-
Nemenyi statistical test. Specifically, the experiments are designed to answer the
following questions:

1. Do the empirical results support the use of a learner optimizing a
quantification loss function instead of a classification one?

2. Do we obtain any clear benefit by considering both classification and
quantification simultaneously during learning?
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Chapter 6. Design and optimization of quantification loss functions

The rest of section is organized as follows. First we describe the experimental
setup, including datasets, algorithms and statistical tests. Then we present the
results obtained from the experiments, evaluating them in terms of AE and KLD .
Finally we discuss these results, trying to answer the questions stated before.

6.4.1 Datasets

In summary, we collected results from the last 22 datasets in Table 5.2, excluding
acute.a and acute.b because they are too simple to extract any relevant insight by
applying a complex learning algorithm like Joachim’s SVM∆

multi [Joachims, 2005]..
We then apply a stratified 10-fold cross-validation for each of them, preserving their
original class distribution. After each training, we always assess the performance
of the resulting model with 11 test sets generated from the remaining fold, varying
the positive prevalence from 0% to 100% in steps of 10% (see Section 4.1.1).

We therefore performed 220 training processes and 2,420 tests for every system
we evaluated. This setup generates 242 cross-validated results for each algorithm,
that is, 22 datasets × 11 test distributions.

6.4.2 Algorithms

We choose CC, AC, Max, X, T50 and MS as state-of-the-art quantifiers from
Forman’s proposals (see Sections 3.1 and 3.2), considering CC as baseline. The
underlying classifier for all these algorithms is a linear SVM from the libsvm
library [Chang and Lin, 2011], with default parameters. The process of learning
and threshold characterization, discussed in Section 3.2.1, is common to all these
models, reducing the total experiment time and guaranteeing an equivalent root
SVM for them all. Moreover, as Forman points out, MS method may show an odd
behavior when the denominator in Equation (3.1) is too small, recommending
to discard any threshold with tpr − fpr < 1/4. However, he does not make
any recommendation in case there is no threshold that avoids that restriction.
Therefore, we decided to fix these missing values with the values obtained by Max
method, which provides the threshold with the greatest value for that difference.

The group of models based on learning a classifier optimizing a quantification
metric consists of two approaches. On the one hand, our proposed Q-measure,
using recall and NAS as seminal metrics (see Section 6.2). We consider three
Q-measure variants: Q0.5, Q1 and Q2, representing models that optimize
Equation (6.2) with β at 0.5, 1 and 2 respectively. On the other hand, we also
include a method called NAS, which represents the approach suggested by Esuli
and Sebastiani [2010] using NAS as the target measure. The reasoning for choosing
NAS instead of any other quantification loss function is that we consider that
both approaches should use the same quantification metric, differing in that our
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proposal combines that measure with recall . This guarantees a fair comparison.
All these systems are learned by means of SVM∆

multi Joachims [2005], described
in Section 6.3.

6.4.3 Estimation of tpr and fpr characteristics

The estimations of tpr and fpr for quantification correction, defined in
Equation (3.1), are obtained through a standard 10-fold cross-validation after
learning the root model. Other alternatives like 50-fold or LOO are discarded
because they are much more computationally expensive and they are prone to
yield biased estimations, producing uneven corrections in practice.

It is also worth noting that we do not apply this correction for Q0.5, Q1, Q2 and
NAS. Hence, end models just counts how many items are predicted as positive,
like in CC method. This decision is supported by the fact that our main objective
is to evaluate the performance of models obtained from the optimization of these
metrics, isolated from any other factor. Moreover, given that these systems are
based on SVM∆

multi, the estimation of tpr and fpr is much more expensive and it
did not show a clear improvement in our preliminary experiments.

In fact, although the theory behind Equation (3.1) is well founded, in practice
there exist cases where this correction involves a greater quantification error.
Anyhow, these issues are out of the scope of this dissertation, offering an interesting
opportunity to perform a deeper analysis for future works.

6.5 Empirical analysis

This section presents the experimental results in terms of two standard
quantification measures: AE and KLD . Each of them provides a different
perspective. In summary, we collect results from 22 datasets, applying a stratified
10-fold cross-validation for them all and assessing the performance of the resulting
model with 11 test sets generated from the remaining fold (see Section 4.1). Recall
that only the quantification outputs provided by AC, X, Max, T50 and MS are
adjusted by means of Equation (3.1).

Thus, we consider that the 10 algorithms are compared over 22 domains, regardless
of the number of prevalences that are tested for each of them, resulting in a CD
of 2.8883 for the Nemenyi post-hoc test at 5% significance level.

6.5.1 Analysis of AE measurements

The first approach that we follow is to represent the results for all test conditions
in all datasets with a boxplot of each system under study. Thus, in Figure 6.8a
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(a) Boxplots of all AE results

(b) Nemenyi at 5% (CD = 2.8883)

Figure 6.8: Statistical comparisons for Qβ experiments in terms of AE
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(a) Boxplots of all KLD results

(b) Nemenyi at 5% (CD = 2.8883)

Figure 6.9: Statistical comparisons for Qβ experiments in terms of KLD
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we can observe the range of errors for every system for AE measurements. Each
box represents the first and third quartile by means of the lower and upper side
respectively and the median or second quartile by means of the inner red line. The
whiskers extend to the most extreme results that are not considered outliers, while
the outliers are plotted individually. In this representation, we consider as outliers
any point greater than the third quartile plus 1.5 times the inter-quartile range.

We distinguish three main groups in Figure 6.8a according to the learning
procedure followed. The first one, including CC and AC, shows strong
discrepancies between actual and estimated prevalences of up to 100%. These
systems appear to be very unstable under specific circumstances. The second
group includes T50, MS, X and Max, all of which are based on threshold selection
policies (see Section 3.2.1). The T50 method stands out as the worst approach in
this group due to the upward shift of its box. The final group comprises SVM∆

multi

models: Q0.5, Q1, Q2 and NAS. The Qβ versions of this last group seems more
stable than NAS, without extreme values over 70 and showing more compact boxes.

Friedman’s null hypothesis is rejected at the 5% significance level. The overall
results of the Nemenyi test are shown in Figure 6.8b, in which each system is
represented by a thin line, linked to its name on one side and to its average rank
on the other. The thick horizontal segments connect non significantly different
methods at a confidence level of 5%. Therefore, this plot suggests that Max
and our proposal, represented by Q2, are the methods that perform best in this
experiment in terms of AE score comparison for Nemenyi’s test. In this setting,
we have no statistical evidence of differences between the two approaches. Neither
do they show clear differences with other systems. We can only appreciate that
Max is significantly better than T50.

It is worth noting that the results of Friedman-Nemenyi test are exactly the same
for AE and NAS . The reason is that given any two systems, their ranking order
is equal in both metrics. The mathematical proof is straightforward. Note that
this is not fulfilled for other metrics, like KLD .

6.5.2 Analysis of KLD measurements

Although in most cases the analysis of AE results could be sufficient in order to
discriminate an appropriate model for a specific real-world task, we also provide
a complementary analysis of our experiments in terms of KLD . Looking at
Figure 6.8, we can notice that the differences between some systems are quite
subtle in terms of AE , while in Figure 6.9 we observe that these differences are
evidenced a little bit more. For instance, Max and MS shows larger outliers in
terms of KLD , due to the fact that this metric is closer to a quadratic error (see
Figures 6.4 and 6.5).

Analyzing the results of Nemenyi test in Figure 6.9b, our approach obtains the
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best rank, represented again by Q2, which is designed to give more weight to
quantification metric during learning. However, except for T50, this system is not
significantly better than other models. Q1, Max and NAS are also statistically
differentiable from T50.

6.5.3 Discussion of results

In order to make more clear the discussion of the results, we try to answer the
questions raised at the beginning of Section 6.4:

1. Do the empirical results support the use of a learner optimizing a
quantification loss function instead of a classification one?

The fact is that the best ranks are dominated by this kind of methods,
in conjunction with Max. Although the differences with respect to other
systems are not statistically significant in general.

In any case, our approach, initially suggested by Esuli and Sebastiani, is
theoretically well-founded and it is not based on any heuristic rule. From
that point of view, we strongly believe that the methods presented here
should be considered for future studies in the field of quantification. At
least, they offer a different learning bias with respect to current approaches,
which can produce better results in some domains.

Moreover, it is also remarkable that none of the quantification methods
evaluated in this experiment are corrected by means of Equation (3.1), as
discussed in Section 6.4.3. Thus, these methods can be considered as variants
of CC, which can be further improved with similar strategies as those applied
in AC, Max, X, MS or T50.

2. Do we obtain any clear benefit by considering both classification and
quantification simultaneously during learning?

As we suspected, our variant obtains better results than the original proposal
of Esuli and Sebastiani in terms of pure quantification performance (see AE

results in Figure 6.8 and KLD results in Figure 6.9).

In some cases NAS induces very poor classification models, despite it benefits
from the definition of the optimization problem of SVM∆

multi, presented
in Equation (6.6). Note that the constraints of the optimization problem
(Ψ(x̄, ȳ)−Ψ(x̄, ȳ′)) are established with respect to the actual class of each
example, which would be produced by the perfect classifier. Thus, the
algorithm is biased to those models that are more similar to the perfect
classifier even when the target loss function is not. Nevertheless, in practice,
this learning bias is not able to rectify the drawbacks derived from the
intrinsic design of pure quantification metrics, which assigns equal score
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to any model that simply neutralizes false positive errors with the same
amount of false negative errors. Actually, our first intuition was that their
proposal should provide even worse classifiers due to this fact. As we discuss
in Section 6.1, the key problem is that pure quantification metrics produce
several optimum points within the hypothesis search space, conversely to
what occurs with other metrics, in which there is only one.

In summary, not only our approach provides better quantification results
than NAS, but also we consider that it is more reliable in general. Moreover,
it is more flexible, allowing the practitioner to adjust the weight of both
components of Q-measure taking into account the specific requirements of
the problem under study by means of β parameter. In fact, provided that
when β → ∞ our method optimizes only the quantification component, it
includes NAS as a particular case. This calibration is not needed in general
and can be fixed from the experimental design. As rule of thumb, we suggest
β = 2, because according to discussion of Figures 6.6 and 6.7, and to the
analysis of empirical results, it effectively combines the best features of both
components.
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Chapter 7

Conclusions and Future Work

After a comprehensive discussion of the general background related to dataset-shift
in Chapter 2 and state-of-the-art quantification algorithms in Chapter 3, we have
discussed the core research studies of this dissertation. We started by formalizing
a new methodology for statistical comparisons of quantifiers in Chapter 4, which
is then applied to validate our proposed quantification approaches studied in
Chapter 5 and Chapter 6.

This final chapter is divided in two main parts, first one highlights our most
relevant contributions, in order to present directions for future work on last section.

7.1 Conclusions

The three main contributions of this dissertation are:

• Presentation of the first research study that formalizes an specialized
methodology for statistical comparisons of several quantifiers over multiple
test prevalences [Barranquero et al., 2013].

• Design and implementation of two simple and cost-effective weighting
strategies for nearest neighbour algorithms, offering competitive quantification
performance in practice [Barranquero et al., 2013].

• Design and implementation of the first learning method that optimizes a
quantification metric, proposing a new family of parametric loss functions
that are able to balance quantification and classification measurements
[Barranquero et al., under review].

7.1.1 Methodology for statistical comparisons of quantifiers

Given that the required experiment methodology for quantification is relatively
uncommon and has yet to be properly standardized and validated by machine
learning community, in Chapter 4 we have proposed a new methodology for

85



i

i

“phd” — 2013/12/20 — 9:46 — page 86 — #106
i

i

i

i

i

i

Chapter 7. Conclusions and Future Work

statistical comparisons of several quantifiers over multiple test prevalences through
stratified resampling.

The key contribution of this new methodology for quantification is that it allows
us to analyze relevant properties of these comparatives from a statistical point of
view. Furthermore, it also provides meaningful insights about which algorithms
are significantly better, with a certain confidence degree, thanks to the adaptation
of the two Friedman post-hoc statistical tests proposed by Demšar [2006], and the
redesign of test set generation in stratified k-fold cross-validation.

The main difference with respect to standard cross-validation procedures and
related statistical tests is that we need to evaluate performance over whole sets,
rather than by means of individual classification outputs. Moreover, quantification
assessment requires evaluating performance over a broad spectrum of test sets
with different class distributions, instead of using a single test set. That is why
traditional machine learning techniques for statistical comparisons of classification
models are not directly applicable and need to be adapted.

Therefore we perform an exhaustive review of these related statistical approaches,
discussing their main strengths and weaknesses. After this study we describe our
proposed methodology in detail, adapting these existing procedures to the specific
requirements of quantification comparatives. We consider that the core strength
of our proposal is that we have prevailed robustness, in terms of lower Type I
errors, against reducing Type II errors (see Section 4.2.4).

7.1.2 Cost-effective nearest neighbour quantification

In Chapter 5, we present several alternative quantification algorithms based on
traditional NN rules, including the well-known KNN and two simple weighting
strategies, identified as PWK and PWKα. From the main objective of studying the
behavior of NN methods in the context of quantification, we propose an instance-
based approach able to provide competitive performance while balancing simplicity
and effectiveness. This study establishes a new baseline approach for dealing with
prevalence estimation in binary problems.

We have found that, in general, weighted NN-based algorithms offer cost-
effective performance. The conclusions drawn from Nemenyi post-hoc tests
analized in Section 5.3 suggest that PWK and PWKα stand out as the best
approaches, without statistical differences between them, but offering clear
statistical differences with respect to less robust models like CC, AC or T50.

Our experiments do not provide any discriminative indicator regarding which of
these two weighting strategies is more recommendable for real-world applications.
The final decision should be taken in terms of the specific needs of the problem,
the constraints of the environment, or the complexity of the data, among other
factors.
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Notwithstanding, taking into account the observations discussed in Section 5.3.5,
it appears that PWK could be more appropriate when the minority class is much
more relevant, while PWKα seems to behave more conservatively with respect
to the majority class. Furthermore, PWK is simpler, its weights are more easily
interpretable and it only requires calibrating the number of neighbors.

7.1.3 Quantification optimization via robust loss functions

Finally, in Chapter 6 we study the problem from a completely different perspective.
As Esuli and Sebastiani [2010] point out, state-of-the art quantification algorithms
do not optimize the loss function applied during model validation or comparison.
Following their line of research, we claim that optimizing only a quantification
metric during model training do not address sufficiently the problem, because we
could obtain quantifiers having poor quantification behavior, due to an incoherent
underlying model in terms of classification abilities (see Section 6.1).

In this regard, the most important question behind this study is whether is it really
advisable to rely on quantification models that do not distinguish between positives
and negatives at an individual level. But, how could this issue be alleviated during
quantifier training? Formally, the way to solve any machine learning problem
comprises two steps: we have to define a suitable metric and design an algorithm
that optimizes it. Therefore, the combination of Q-measure, defined in Section 6.2,
and the multivariate algorithm by Joachims [2005], presented in Section 6.3, offers
a formal solution for quantifier learning.

The main contributions of this research are the study of the first quantification-
oriented learning approach, that is, the first algorithm that optimizes a
quantification metric; and the definition of a parametric loss function for
quantification. This proposal is not only theoretically well-founded, but also offers
competitive performance compared with state-of-the-art quantifiers.

7.1.4 Overall discussion of contributions

Although NN-based proposals may seem technically simple, it is worth noting the
valuable effort that have been invested in analyzing the problem in order to adapt
these algorithms to a relatively new optimization task. This study has also allowed
us to understand the problem more deeply, setting the foundations for designing
our proposed methodology.

Moreover, the value of simple solutions has been praised many times in the
literature. As a matter of fact, one can never tell, a priori, how much of the
structure in a domain can be captured by a very simple decision rule, while
simplicity is advantageous for theoretical, practical and even academical reasons.
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Actually, simple (early) models usually provide largest gains, which can be over
90% of the predictive power that can be achieved, while they are less likely to over-
fit [Hand, 2006; Holte, 2006]. Obviously, this does not mean that the more complex
decision rules should be cast aside, but that the simple decision rules should not
be dismissed out of hand. This is the case for our proposed NN solutions, which
are based on euclidean distance and simple weighting strategies. However, this
neither mean that NN approaches could not provide more complex decision rules
in turn.

Conversely, the proposed multivariate approach for optimizing Q-measure may
suffer from excessive complexity, measured in terms of computational cost. This
is the one of the reasons why we have not applied Forman’s correction during
its experimental validation, resulting in that these experiments are not directly
comparable with our previous NN study. Nevertheless, we consider that both
approaches are complementary.

Interestingly, Demšar [2006] draws attention to an alternative opinion among
statisticians about that significance tests should not be performed at all since
they are often misused, either due to misinterpretation or by putting too much
stress on their results. Nevertheless he claims that statistical tests provide certain
reassurance about the validity and non-randomness of published results, though,
they should be performed correctly and the resulting conclusions should be drawn
cautiously.

But the most relevant point raised by him is that statistical tests should not be
the deciding factor for or against publishing a work. Other merits of the proposed
algorithm that are beyond the grasp of statistical testing should also be considered
and possibly even favored over pure improvements in predictive power.

In this regard, our Q-measure approach provides competitive quantification results
with respect to state-of-the-art quantifiers, although it seems that it is not as
cost-effective as our NN-proposals. However, as we have already discussed, it is
theoretically well-founded and it is not based on any heuristic rule. From that
point of view, we strongly believe that it may be considered for future studies in
the field of quantification. At least, it offers a different learning bias with respect
to current approaches, which can produce better results in some domains.

Moreover, it is also worth remarking that Q-measure experimental results are not
adjusted by means of Equation (3.1). Thus, these methods can be considered as
variants of CC, which can be further improved with similar strategies as those
applied in AC, Max, X, MS or T50.
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7.2 Future work

Some of the results obtained during the development of our research suggest that
correcting by means of Equation (3.1) may produce undesired results, obtaining
even worse quantification predictions than without correction in some particular
cases. The big problem is behind the estimation of tpr and fpr , which theoretically
are invariant distribution characteristics, but in practice, estimating them through
empirical data or evidence is not exempt of pitfalls. In fact, all threshold selection
policies proposed by Forman [2008] are more or less focused on finding thresholds
where the estimation of those rates have less variance, i.e., where these estimations
are more stable.

7.2.1 Optimization of root models for threshold calibration

However, there is another source of problems, originated by the fact that threshold
search is performed over a base hyperplane that may not be the best seed model.
In other words, given that the classification accuracy of the underlying classifier
may be irrelevant as long as the estimations of tpr and fpr are reliable; therefore,
it is possible that this root model may play a crucial role.

If this was the case, a new question arises as an interesting area of research for
optimizing classification models that were more robust in terms of minimizing the
variability of tpr and fpr estimations. A completely different approach, where new
bodies of knowledge may be applied, could be addressed through meta-heuristic
optimization of root models.

Possible future directions for NN-based quantification could involve the selection
of parameters through grid-search procedures, optimizing metrics with respect to
equivalent rules as those applied for Max, X or T50, or even using these rules to
calibrate the weights of each class during learning.

7.2.2 Analysis of power and stability of statistical tests

As might be expected, the experimental setting proposed in this dissertation
have been redesigned several times before reaching the final form followed in
this dissertation and its associate publications. In this regard, we would like to
point out that having more test prevalences may reduce variance, but imply more
dependence among test results.

This issue should deserve more research for future work, where a straightforward
research study may be based on experimental analysis of power and stability
of statistical tests for quantification comparatives, as it has been already done
for equivalent statistical test for classification [García et al., 2010; Garcia and
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Herrera, 2008; Demšar, 2006]. While analyzing alternative statistical tests based
on resampling [Westfall and Young, 2004].

Moreover, appropriate collections of data, extracted directly from different
snapshots of the same populations and showing natural shifts in their distributions,
are required in order to further analyze the quantification problem from a real-
world perspective.
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