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2.3 Structure of Näıve Bayes Classifier. . . . . . . . . . . . . . . . . . .19

2.4 Example of an Augmented Classifier. . . . . . . . . . . . . . . . . .19

2.5 Example of kDB structure with k=2 . . . . . . . . . . . . . . . . . .20

2.6 Example of SNB structure. . . . . . . . . . . . . . . . . . . . . . . .21

2.7 Example of a Classification Tree structure. . . . . . . . . . . . .. . . 22

2.8 General structure of a Neural Network. . . . . . . . . . . . . . . .. . 25

2.9 General FSS process. . . . . . . . . . . . . . . . . . . . . . . . . . .26

3.1 IWSS canonical algorithm. . . . . . . . . . . . . . . . . . . . . . . .37

3.2 Network used in Example 1. . . . . . . . . . . . . . . . . . . . . . .47

3.3 Algorithm: IWSS with replacement. . . . . . . . . . . . . . . . . . .51

4.1 Relation between the number of attributes in the dataset and the posi-

tion of the last attribute selected by IWSS. . . . . . . . . . . . . . . .75

4.2 Proposed GRASP algorithm for FSS. . . . . . . . . . . . . . . . . . .76

4.3 Auxiliary functionupdate(NDS,sol). . . . . . . . . . . . . . . . . . 77

5.1 Re-Ranking Canonical Algorithm. . . . . . . . . . . . . . . . . . . .92

5.2 Number of Wrapper Evaluations for each selection algorithm and re-

ranking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104

6.1 Distribution-based balancing algorithm. . . . . . . . . . . .. . . . . 113

6.2 Graphical representation of the imbalance degree in theseven e-mail

users. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .119

xv



LIST OF FIGURES

6.3 Different values forb using NBM and tf*idf docs. representation. . .123

7.1 Classes of Equalities for Content-Based Image Search. . . . .. . . . 132

7.2 Examples of Low-Level Features. . . . . . . . . . . . . . . . . . . .135

7.3 Precision for relevant shots prediction. . . . . . . . . . . . .. . . . . 138

7.4 Recall for relevant shots prediction. . . . . . . . . . . . . . . . .. . 139

7.5 F1-measure prediction. . . . . . . . . . . . . . . . . . . . . . . . . .139

7.6 Precision (for relevant documents) over different values forP . . . . . 141

7.7 F1-measure for all possible combinations of visual features.. . . . . . 143

8.1 Context stratification for IR [46]. . . . . . . . . . . . . . . . . . . . . 163

8.2 Diagram showing the process of datasets creations and evaluation to

assess how context affects classifiers. . . . . . . . . . . . . . . . . .. 169

xvi



List of Tables

2.1 Canonical Format of Databases Used in Supervised Classification. . . 7

2.2 Example of a confusion matrix with 4 possible labels for class. . . . . 12

3.1 Microarrays properties. . . . . . . . . . . . . . . . . . . . . . . . . .40

3.2 Results for SimpleBIRS . . . . . . . . . . . . . . . . . . . . . . . . .41

3.3 Results when considering t-test as relevance criterion.. . . . . . . . . 41

3.4 Results when considering signed rank test as relevance criterion. . . . 42

3.5 Results when considering min folds better as relevance criterion. . . . 42

3.6 Results of step one: local comparison for each relevance criterion with

respect to accuracy. . . . . . . . . . . . . . . . . . . . . . . . . . . .43

3.7 Results of step two: global comparison with respect to accuracy. . . . 44

3.8 Results of step three: global comparison with respect to the number of

selected features. . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

3.9 Rankings obtained/used in example 2 . . . . . . . . . . . . . . . . .48

3.10 Microarrays properties. . . . . . . . . . . . . . . . . . . . . . . . . .54

3.11 Results of SFS, FCBF, IWSS and IWSSr for classifiers NB, kNN and

C4.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.12 Results obtained for NB when using early stopping. . . . . .. . . . . 58

3.13 Number of evaluations and estimated complexity order (θ = 0.2 is

used for algorithms implementing early stopping) . . . . . . . .. . . 59

3.14 Results of the statistical analysis . . . . . . . . . . . . . . . . .. . . 61

3.15 Table stored in memory for incremental classification .. . . . . . . . 64

3.16 Summary of the complexity orders (average and worst case) for black-

box and embedded NB . . . . . . . . . . . . . . . . . . . . . . . . .66

xvii



LIST OF TABLES

3.17 Ratio between the embedded and black-box approaches forNaive Bayes.

With and without early stopping (θ = 0.2). . . . . . . . . . . . . . . . 67

3.18 Ratio between the black-box (no early stopping) approach and the em-

bedded one using early stopping (θ = 0.2) for the Naive Bayes classifier.67

4.1 Results for the use of four deterministic FSS algorithms.. . . . . . . 81

4.2 Mean Results for the Grasp-based FSS algorithm withnumIt = 50. . 83

4.3 Mean Results for the Grasp-based FSS algorithm withnumIt = 100. 84

4.4 Statistical Tests fornumIt = 50. . . . . . . . . . . . . . . . . . . . . 85

4.5 Statistical Tests fornumIt = 100. . . . . . . . . . . . . . . . . . . . 85

4.6 Complexity OrderO(nx) of the studied algorithms. . . . . . . . . . . 87

5.1 Results for several FSS methods using NB classifier. . . . . .. . . . 95

5.2 Results using Naive Bayes classifier, SFS selection algorithm and CMIM-

based re-ranking with block sizes B. . . . . . . . . . . . . . . . . . .97

5.3 Results using Naive Bayes classifier, BARS selection algorithm and

CMIM-based re-ranking with block sizes B. . . . . . . . . . . . . . .98

5.4 Results using Naive Bayes classifier, IWSS2 selection algorithm and

CMIM-based re-ranking with block sizes B. . . . . . . . . . . . . . .99

5.5 Results using Naive Bayes classifier, IWSS2
r selection algorithm and

CMIM-based re-ranking with block sizes B. . . . . . . . . . . . . . .100

5.6 Mean number of evaluations and re-ranks performed over the 12 datasets.102

5.7 Results using Naive Bayes classifier, for re-ranking basedon CMIM,

MIFS and MRMR criteria. Block sizesB = 5 andB = 10 . . . . . . 103

5.8 Statistical Tests for different Re-ranking Criteria. . . .. . . . . . . . 105

5.9 Results, for different classifiers, using IWSS2 with CMIM-based re-

ranking with block sizes B. . . . . . . . . . . . . . . . . . . . . . . .106

5.10 Results, for different classifiers, using IWSS2
r with CMIM-based re-

ranking with block sizes B. . . . . . . . . . . . . . . . . . . . . . . .106

6.1 Instances, Classes, Attributes, and degree of imbalancein the datasets 118

6.2 Baseline accuracy for 7 e-mail users. . . . . . . . . . . . . . . . . .. 121

6.3 Results when balancing with the SMOTE algorithm. . . . . . . .. . 121

6.4 Results when balancing with the proposed distribution-based algorithm.122

xviii



LIST OF TABLES

6.5 Paired comparison between balancing methods. . . . . . . . .. . . . 123

7.1 Length of arrays describing visual features . . . . . . . . . .. . . . . 140

7.2 Behavior Features used to predict shots relevance . . . . . .. . . . . 147

7.3 Object Features used to predict shots relevance . . . . . . .. . . . . 148

7.4 User studies used under different combinations of kind of features and

kind of relevance. . . . . . . . . . . . . . . . . . . . . . . . . . . . .149

7.5 F1−measure for datasets constructed from Collaborative users study

- Official Relevance. . . . . . . . . . . . . . . . . . . . . . . . . . .150

7.6 F1−measure for datasets constructed from Collaborative users study

- User Relevance. . . . . . . . . . . . . . . . . . . . . . . . . . . . .151

7.7 F1 −measure for datasets constructed from StoryBoard users study -

User Relevance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151

7.8 Selected features when performing Incremental Wrapper-Based Selec-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152

7.9 Description of Dataset using Behaviour Features. . . . . . .. . . . . 154

7.10 Description of Datasets using Vocabulary Features. . .. . . . . . . . 155

7.11 Precision (P ) andF1-measure for relevant documents in imbalanced

datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156

7.12 Performance of Balancing Methods in Behaviour Features Datasets

(P = 2000). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157

7.13 Performance of Balancing Methods in Vocabulary Features Datasets

(P = 1000). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157

7.14 Precision in distribution-based and SMOTE methods asP increases . 158

8.1 Contexts costructed for Collaborative user study . . . . . . .. . . . . 167

8.2 Contexts constructed for storyBoard user study . . . . . . . . .. . . 168

8.3 MeanF1 −measure over NBayes, SVM and kNN evaluations. Col-

laborative user study. . . . . . . . . . . . . . . . . . . . . . . . . . .170

8.4 MeanF1 − measure over NBayes, SVM and kNN evaluations. Sto-

ryBoard user study. . . . . . . . . . . . . . . . . . . . . . . . . . . .171

A.1 Results using Naive Bayes classifier, SFS selection algorithm and CMIM-

based re-ranking with block sizes B. . . . . . . . . . . . . . . . . . .182

xix



LIST OF TABLES

A.2 Results using Naive Bayes classifier, IWSS2 selection algorithm and

CMIM-based re-ranking with block sizes B. . . . . . . . . . . . . . .183

A.3 Results using Naive Bayes classifier, IWSS2
r selection algorithm and

CMIM-based re-ranking with block sizes B. . . . . . . . . . . . . . .184

A.4 Results using Naive Bayes classifier, BARS selection algorithm and

CMIM-based re-ranking with block sizes B. . . . . . . . . . . . . . .185

A.5 Results using Naive Bayes classifier, SFS selection algorithm and MIFS-

based re-ranking with block sizes B. . . . . . . . . . . . . . . . . . .186

A.6 Results using Naive Bayes classifier, IWSS2 selection algorithm and

MIFS-based re-ranking with block sizes B. . . . . . . . . . . . . . .187

A.7 Results using Naive Bayes classifier, IWSS2
r selection algorithm and

MIFS-based re-ranking with block sizes B. . . . . . . . . . . . . . .188

A.8 Results using Naive Bayes classifier, BARS selection algorithm and

MIFS-based re-ranking with block sizes B. . . . . . . . . . . . . . .189

A.9 Results using Naive Bayes classifier, SFS selection algorithm and MRMR-

based re-ranking with block sizes B. . . . . . . . . . . . . . . . . . .190

A.10 Results using Naive Bayes classifier, IWSS2 selection algorithm and

MRMR-based re-ranking with block sizes B. . . . . . . . . . . . . .191

A.11 Results using Naive Bayes classifier, IWSS2
r selection algorithm and

MRMR-based re-ranking with block sizes B. . . . . . . . . . . . . .192

A.12 Results using Naive Bayes classifier, BARS selection algorithm and

MRMR-based re-ranking with block sizes B. . . . . . . . . . . . . .193

B.1 NB classifier, IWSS2 and CMIM-based re-ranking with block sizes B.196

B.2 c4.5 classifier, IWSS2 and CMIM-based re-ranking with block sizes B.197

B.3 ibK classifier, IWSS2 and CMIM-based re-ranking with block sizes B.198

B.4 SVM classifier, IWSS2 and CMIM-based re-ranking with block sizes B.199

B.5 MLP classifier, IWSS2 and CMIM-based re-ranking with block sizes B.200

B.6 TAN classifier, IWSS2 and CMIM-based re-ranking with block sizes B.201

B.7 AODE classifier, IWSS2 and CMIM-based re-ranking with block sizes

B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202

B.8 NB classifier, IWSS2r and CMIM-based re-ranking with block sizes B.203

B.9 c4.5 classifier, IWSS2r and CMIM-based re-ranking with block sizes B.204

xx



LIST OF TABLES

B.10 ibK classifier, IWSS2r and CMIM-based re-ranking with block sizes B.205

B.11 SVM classifier, IWSS2r and CMIM-based re-ranking with block sizes B.206

B.12 MLP classifier, IWSS2r and CMIM-based re-ranking with block sizes B.207

B.13 TAN classifier, IWSS2r and CMIM-based re-ranking with block sizes B.208

B.14 AODE classifier, IWSS2r and CMIM-based re-ranking with block sizes

B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209

xxi



LIST OF TABLES

xxii



Part I

Introduction

1





Chapter 1

Introduction

1.1 Introduction

Supervised classification consists on training a classifiercapable of predicting labels

(from a predefined set of labels) for new instances. In general terms, the more cor-

rect labels a classifier predicts the better its performanceis; thus, the training stage is

crucial the construction of a good classifier. In order to improve the quality of data

with which the classifier is trained, a wide range of preprocessing techniques can be

found in the literature which are applied at feature or instance level: feature selection

[67], feature construction [77], discretization [27], principal component analysis [55],

normalization, replacing missing values [66], instance over- or under-sampling [16],

clustering, . . . This thesis focuses on supervised Feature Subset Selection (FSS), In-

stances Selection and Instances Balancing (re-sampling).

FSS methods use a training set of instances to learn which features are the most

relevant given a filter metric or some classifier. By identifying relevant features, large

databases with thousands of attributes are significantly reduced, improving the perfor-

mance of the classifier and helping experts to interpret the resulting model. Further-

more, unlike other reduction techniques (e.g. feature construction or principal com-

ponent analysis ), FSS does not alter the original representation, thus preserving the

original semantics of the features.
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1. INTRODUCTION

The problem of imbalance in a dataset arises when the number of instances be-

longing to each of the predefined labels is very different. Thus, in the case of two

possible labels{+,-} corresponding to the result of a medical test, the most common

case is that only a few patients test positive, while most of them are negative. Thus,

when constructing a classifier, this will be quite biased towards the negative class. So

for these cases, effective over- or under-sampling techniques are mandatory in order to

improve classification.

Sometimes the balance among instances of different classesis not a problem, but

the presence of outliers or noisy samples is. Thus, in the same way redundant or noisy

features can be discarded via feature selection, it is also possible (although it is not

such a well-known approach) to perform instance selection in order to perform a more

optimal learning stage for the classifier.

1.2 Structure of the Dissertation

This dissertation is structured in 4 parts.

PartI is composed of this Chapter and Chapter2, which presents an introduction to

Supervised Classification and Supervised Feature Selection. This is an important chap-

ter since it will set out the basic principles underlying theproposals and experiments

in the rest of this thesis.

PartII is composed of Chapters3 to 6.

Chapter3 presents several improvements to the hybrid incremental FSS algorithm

IWSS: (1) a better criterion to decide the selection of a new feature in the incremental

process, (2) adding the option of replacing features already selected in order to capture

(in)dependences between variables; and (3) embedding the Näıve Bayes classifier in

the incremental process, getting the same results but drastically reducing the complex-

ity in time.

Chapter4 presents a proposal to convert the deterministic IWSS algorithm into a

stochastic one in order to use it in the construction stage ina GRASP search. Thus,

the search space is expanded and results show that using GRASPwith IWSS not only

improves the performance of IWSS but it also reduces its complexity.
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1.2 Structure of the Dissertation

Chapter5 presents a new re-ranking method applicable to incrementalFSS algo-

rithms which test the selection of features in the order indicated by a ranking based on

some score of each feature with respect to the class. This proposal takes into account

that some features ranked at the end of the ranking might find their score increased

once some features have been selected, and so it is helpful tore-rank them to early

positions and thus to stop the search before reaching the endof the ranking. Results

show that this re-ranking proposal improves the performance and drastically reduces

the necessary number of evaluations of several FSS algorithms over which re-ranking

is applied.

Chapter6 deals with the problem of datasets imbalance. A new family ofinstances

re-sampling is proposed which re-samples whole new training datasets based on some

distribution learned from the original training sets. Several distributions are tested and

results prove that they improve the performance of Naı̈ve Bayes Multinomial classifier

applied to text categorization.

PartIII is composed of two chapters dealing with multimedia-related datasets.

Chapter7 presents an introduction to common representation features for multi-

media documents, and makes comparisons between several kinds of representation to

find out which perform better for the datasets used.

Chapter8 proposes to find out if the context of users when they are performing

tasks related to multimedia search affects the quality of results. Experiments suggest

that instances of datasets can be selected according to the context in which they were

created and thus improve the performance of classifiers.

Finally, partIV contains one chapter in which the main conclusions of this disser-

tation are highlighted, and possible future work is suggested. It also contains the list

of publications with which this thesis has contributed to the existing literature.
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Chapter 2

Supervised Classification

2.1 Introduction

Classification is one of the tasks linked to Pattern Recognition, and it can be divided

into Supervised Classification and Unsupervised Classification. The latter aims to dis-

cover unknown class similarities for the instances in the database, while the former is

the process of predicting, as successfully as possible, theclass (from a set of predefined

labels) corresponding to instances which contain the same format as those instances

used to learn the classifier.

In supervised classification, an instance (a.k.a. sample orobject) is defined over

a set of predictive variables (a.k.a. features or attributes)X1, X2, . . . , Xn and a class

variableC which represents the class (a.k.a. label) such instance belongs to. When we

store a set of instances with the same format, then we have adatabaseor corpus, as

shown in Table2.1.

Table 2.1: Canonical Format of Databases Used in Supervised Classification.
Instance ID X1 X2 . . . Xn C

1 x11 x12 . . . x1n c1

2 x21 x22 . . . x2n c2

3 x31 x32 . . . x3n c3

4 x41 x42 . . . x4n c4

. . . . . . . . . . . . . . . . . .

N xN1 xN2 . . . xNn cN
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2. SUPERVISED CLASSIFICATION

Each predictive variableXi can be numeric (dom(Xi)⊆ R) or nominal (dom(Xi =

{x1
i , . . . , x

r
i}). Each entryxij in Table 2.1 represents an attribute value pair<Xj,

dom(Xj)>. Predictive attributes in the same dataset can be of different types. Some

classification algorithms restrict the type of predictive attributes to use, e.g. all nomi-

nal or all numeric, or all in the same interval (a,b), so if they do not follow that format

the database then needs to be preprocessed; moreover, some preprocessing algorithms

need a specific format so a previous preprocessing is also needed (e.g. replacing miss-

ing values).

If C is Numeric, then the Supervised Classification task is known as Regression. In

this thesis, the Class feature is assumed to be Nominal, having a predefined and finite

number of possible labels.

Definition 2.1 Given a databaseD following the format in Table2.1, such thatC =

{c1, . . . , c|C|} is the set of possible labels of the class attribute, the goalof supervised

classification is to build a classifier functionC : x1, x2, . . . , xn → C which (usually)

computes a score for each labelc ∈ C and returns the label which maximizes this

score.

Definition 2.2 The performance or goodness of a classifierC : x1, x2, . . . , xn → C

is usually a scalar value, where the computation of this valuedepends on the chosen

metric and evaluation method.

If one instancedi can be assigned to more that one label, we are talking about

multi-label (a.k.a. overlapping-categories) classification; on the contrary we refer to

single-label(a.k.a. non overlapping-categories) classification. If the class can take

only 2 values, this isbinomial classification, while if it can take more than 2 values

then it is amultinomialclassification.

Moreover, Definition2.1 refers to ahard classification since its returned values

indicate if a given instance belongs to a class or not. On the other hand,soft classi-

fication returns a ranking for the class labels constructed using a computed score for

which higher positions mean higher score of the instance belonging to that class label.

Furthermore, all the classification process (constructionof classifier and prediction

of labels for new records) may also be performed using anautomaticprocess based

on machine learningmethods;semi-automaticif the classifier is built using feedback

8



2.2 Evaluation of Sup. Classification Performance

from the user or system; and finally, the whole process may be performedby handand

this requires at least one human expert who decides on a set ofrules for classification.

Supervised Classification, commonly single-labeled, hard and automatic, has been

applied to a wide variety of fields in the literature, for example:

• Text Categorization (TC) [104]. Supervised TC consists in classifying text

documents into categories such as genre [29], e-mail foldering [8], news [93],

. . . TC has attracted a lot of attention and it is still one of the main areas of

interest in the research community for supervised classification.

• Genomics [76]. In the last decade, thanks to the development of automatic

methods for extracting DNA samples, databases can be created containing in-

formation for DNA genes and, thus, supervised classification can be performed

in order to predict an output (disease, physical property, ...) and/or to perform

supervised selection of important genes to predict such a property.

• Information Retrieval (IR) [4; 75]. IR systems deal with text or multimedia

documents (stored on a personal computer or on a network, e.g. the Internet ) and

their goal is to construct a ranking of documents which are relevant for the query

the user has performed. IR might be performed using supervised classification

methods or not; when the former is the case, then the class feature might take

values “Relevant” or “Non Relevant”, and only documents labeled as “Relevant”

are returned, ranked by the score metric computed.

And, in general, any application in which a previously labeled dataset is available to

train the classifier and there is a need to classify new data.

2.2 Evaluation of Sup. Classification Performance

There exist a wide variety of metrics to measure the performance of the classifier and,

what is more, there are also several methods to compute thesemetrics to avoid over-

fitting conclusions and to evaluate the model in a scenario assimilar to its posterior

real usage as possible. In this section, the most relevant validation methods and the

most frequently used metrics are presented.
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2. SUPERVISED CLASSIFICATION

2.2.1 Validation Techniques

As stated in Definition2.1, let’s assume we have a classifier functionC : x1, . . . , xn →
C which returns a labelc ∈ C after evaluating aninstance. This classifier is built

from a set of instances which are previously labeled. This set of records from which

the classifier is built is known as atraining set, and it must not be used to evaluate the

goodness of the learnt classifier since that wouldover-fit conclusions. For evaluation

purposes, another set of labeled instances is needed, thetest set. Then, the classifier

will be run to predict, for each instance in the test set, a label and that will be compared

against the real label of such instance; from the results of these comparisons, several

metrics can be computed and, besides, there exist several methods to construct the

training andtestsets from the available dataset, that is, there exist several evaluation

techniques:

• Percentage split. This is the simplest evaluation technique and does not have

much scientific character. It consists in choosing, from theavailable database

of labeled instances, the number of instances to be used in the building process,

and the rest will be used for testing.

• Holdout. This method is a special case ofPercentage split, where the training

set is built using one half of the database and the other half is used for testing.

• k-fold Cross-Validation [79; 104]. This method is the most widely-found in the

literature, and it consists of randomly splitting the datasetD into k disjoint splits

(a.k.a. folds) of the same sizeD = {D1, D2, . . . , Dk}. Then, a process is run

for i = 1, . . . , k: at the i-th step, foldDi is used as test set and the union of the

remaining ones as training setD−i. Consequently, training setsD−i sharek − 2

folds with each other. Finally, the performance is measuredas the mean of thek

scores computed. Commonly, folds are constructed in astratifiedmanner. This

means that each fold keeps the distribution of the class variable from the whole

datasetD.

The repetition of this schemel times gives rise to the so-calledl × k − fold

Cross-Validation. And a common configuration for evaluation and statistical

comparison purposes is 5x2cv [23].
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2.2 Evaluation of Sup. Classification Performance

• Leave-one-out. This kind of evaluation is frequently used for small datasets and

it is a special case of thek-fold CV, in whichk is set to the number of instances

in the database... Obviously, this leads to a very computationally expensive eval-

uation but it provides as much training instances as possible to the classifier and,

besides, it is quite realistic since, in real life, we may often need to classify new

incoming instances one by one, and retrain with all the available instances again

before classifying a new one.

• Incremental time-based split validation. As reported in [8], using training/test

splits performed at random (e.g. as in standard cross validation) for classification

of data with a temporal nature (e.g.: when classifying e-mails) is not appropriate

because random splits may create unnatural dependencies. Because of this fact

Bekkerman et al. (2005) proposed the so-calledIncremental time-based split

validation.

This validation scheme consists of ordering instances inD based upon their

time − stamp field and then splittingD into subsets{D1, . . . , D‖D‖/z} of size

i × z (except the last fold which might containi × z plus r < z instances)

following the order given, where foldDi+1 contains instances in foldDi besides

the following z instances in time. Thus, fori : 1, . . . , ‖D‖/z the classifier is

trained withDi and tested withDi+1, and then we get‖D‖/z − 1 scores which

are averaged in order to get the final performance of the classifier.

2.2.2 Scores

The scores introduced in this section are common measures used in the machine learn-

ing community to evaluate a given classifier. All these scores except “Accuracy” are

computed for each possible value the class (label) may take.In addition, they all can

be expressed in terms of the counts of four primary scores:True Positives(#TP),False

Positives(#FP),True Negatives(#TN) andFalse Negatives(#FN), also computed for

each possible value of the class. For example, if an instancebelongs to classc and the

classifier predicts that it belongs to that class, then this is a TP.

Commonly, predictions are summarized in aconfusion matrix, which is a matrix

of |Class| rows and columns, and from which it is possible to obtain the counts of TP,

FP, TN and FN.
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An example of a confusion matrix is shown in Table2.2; in this example, the class

may take 4 different labels and 30 instances have been classified. The diagonal matrix

shows the counts of TP for each class label, while the sum in each column except the

cell belonging to the diagonal is the counts of FP, for the class value corresponding to

such a column. Counts of TN for a given class label can be obtained by summing all

the values in the matrix except those which are stored in a rowor column representative

of such a class. Finally, the counts of FN for a class label is the sum of the values in

the row corresponding to such a label except the value in the column of this label. So,

for class labela:

• #TP(a)= 6.

• #FP(a)= 0 + 1 + 2 = 3.

• #TN(a)= 7 + 2 + 1 + 0 + 3 + 0 + 0 + 0 + 5 = 18.

• #FN(a)= 2 + 0 + 1 = 3.

Table 2.2: Example of a confusion matrix with 4 possible labels for class.
Predicted

a b c d

a 6 2 0 1

Real b 0 7 2 1

c 1 0 3 0

d 2 0 0 5

Formally, these four primary scores can be expressed as shown in Equations2.1to

2.4.

#TP = #instances correctly predicted as belonging to class c. (2.1)

#FP = #instances incorrectly predicted as belonging to class c. (2.2)

#TN = #instances correctly predicted as not belonging to class c. (2.3)
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2.2 Evaluation of Sup. Classification Performance

#FN = #instances incorrectly predicted as not belonging to class c. (2.4)

In terms of these primary scores, other scores can be computed: Precision, Re-

call, Fβ-measure, E-measure, Accuracy, Precision@N , Average Precision, MAP, AUC,

LIFT@N , . . .

1. Accuracy. Accuracy (Equation2.5) can be interpreted as the mean of preci-

sions for all possible class labels without weighting by thenumber of available

instances for each label.

Accuracy =

∑|C|
c TP (c)

∑|C|
c TP (c) + FP (c)

(2.5)

2. Area Under ROC Curve (AUC). There are also some measures which take into

account the imbalance (see Chapter6) or skewness in the dataset. This happens

when a great deviation if found when comparing the number of instances for

each class label. In this situation, the commonly used metric Accuracyis not

of interest since it is quite biased toward the majority class, and the lower the

cardinality of the other class the greater the problem is. For example, imagine

a labeled test set with binary class and containing 100 documents, 95 of them

belonging to the same class. If our classifier predicts all 100 documents belong-

ing to the majority class, Accuracy would be 95%, while Accuracy for minority

class would turn out to be 0 and, as is often the case, the classof interest is the

minority class. In order to tackle this, we can use the well-known metric AUC,

which is robust to this problem.

AUC stands for “Area Under the ROC Curve”, whereROCstands for “Receiver

operating characteristics” [26]. The ROC curve has been widely used in medical

research, since it is very common in that field to use very imbalanced datasets

with very few positive instances. ROC for class labelc is obtained by plotting in

the X axis the Specificity(c) or 1-Precision(c) and the Recall(c) or Sensitivity(c)

in the Y axis. This curve can be interpreted as meaning that a classifier is better

the nearer the hump of the curve is to coordinate (0,1); however, for comparison

purposes it might be of interest to obtain a scalar value fromthe curve, that is,
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2. SUPERVISED CLASSIFICATION

the area under the ROC curve closed by a straight line betweenthe first point of

the curve and point (1,1), as shown in Figure2.1. Given two randomly chosen

instances i1 and i2, where i1 belongs to labelc but i2 does not, the AUC value

for class labelc can be interpreted as the probability of the evaluated classifier

to tag i1 with labelc rather than i2.

Figure 2.1: ROC curve and AUC.

3. Precision and Recall.

Precision(c) =
#TP (c)

#TP (c) + #FP (c)
(2.6)

Recall(c) =
#TP (c)

#TP (c) + #FN(c)
(2.7)

Precision for class labelc can be interpreted as the probability of correctly clas-

sifying instances for classc without making mistakes, that is, theexactnessof

the classifier; while recall can be interpreted as the probability of correctly tag-

ging all instances belonging to labelc without giving importance to the failure

in predicting the rest of the labels, that is, thecompletenessof classifier for class

c. So, classifying all instances with class labelc would return Recall(c)=1, but

Precision would be extremely low. The natural tendency of these two measures

is that one decreases as the other increases and, commonly, if they are plotted

together they cross at one point called thebreakevenpoint [54], but it is possible

they never cross or that they cross more than once.
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2.2 Evaluation of Sup. Classification Performance

Figure 2.2: Breakeven Point example

In domains other than Machine Learning, such as medical fields, Recall is known

assensitivityand 1-Precision is known asspecificity, commonly mistaken for just

Precision.

4. Fβ-measure and Eβ-measure. Due to this dependency between Precision and

Recall, it is often interesting to return a mean of both metrics. The most usual

way to do this is with theFβ-measure(Equation2.8). Whenβ = 1 then Precision

and Recall are given the same importance and this is referred as theirharmonic

meanor F1-measure. If β = 0.5, precision is given twice as much importance as

recall; and the contrary happens ifβ = 2.

Fβ −measure(c) = (1 + β2)× Precision(c)×Recall(c)

β2 ∗ Precision(c) ∗Recall(c)
(2.8)

Another way to average together Precision and Recall isEβ-measure[92] (Equa-

tion 2.9).

Eβ −measure(c) = 1− 1 + β2

β2

Recall(c)
+ 1

Precision(c)

(2.9)

5. Lift@N The final score to present in this Chapter isLift@N(c), which computes

a ratio of the classification success in theN instances with highest probabil-

ity (top ranked) of belonging to classc and the average success of the whole
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database. This measure is commonly used in market contexts [9] in which the

goal is to rank the most potential customers in the top of the ranking. The rank-

ing is ordered by the probability (so it is used for soft classifiers) of belonging

to classc (in a market context, probability of becoming a customer) and it might

be split into deciles, so thenN would refer to Lift at decile N.

An interesting comparison between AUC and Area Under Lift (AUL) is pre-

sented in [124].

Lift@N(c)1 =
Precision(c)@N

Precision(c)@|test set| (2.10)

6. AveragePrecision and MAPPrecision is a most important metric for Informa-

tion Retrieval systems. If the returned ranking is too long, it is more probable

that some documents classified as “Relevant” are indeed “Non Relevant” and

thus Precision decreases2. Thus, it is important to compute how good (in pre-

cision terms) the ranking algorithm is at a certain lengthN of classified docu-

ments, whereN stands for “topN documents in ranking”. The goal is to make

sure that the top ranked documents give a high precision.

The main problem of Precision@N is that it does not provide any information

about Recall. Maybe for enormous databases such as the Internet, recall is not

very important but that is not the case for personal or enterprise databases. In

order to tackle this problem,AveragePrecisioncan be used.

AvgP =

∑N
n=1 Precision@n× isRelevant(nth document)

Relevant documents in whole database
(2.11)

The denominator in Equation2.11 adds recall influence to the formula, but it

does not add any punishment when the ranking contains “Non Relevant” docu-

ments; and the same happens when computingMAP (Mean Average Precision)

which is the mean of computingAvgPfor several queries.

1As it happens in IR, class in market business is usually binomial (“Customer buys”, “Customer

does not buy”), so the usual notation for Lift@N(c) is just Lift@N, referring to the positive class label.
2When the class is binary, it is not usual to denote metrics as, for example, Precision(c), but just Pre-

cision, which refers to Precision of the positive class. In the IR case, it refers to Precision of “Relevant”

documents.
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The comparison of classifiers using metrics can sometimes bebiased by just the

nature of the classifier; thus, [11], performed a study to find out what metrics suit

best depending on the classifier used, using the same databases and evaluation method.

Some of those metrics have been presented here and others have not, but the conclusion

is that one classifier might be better than another due to the metric and not just to the

classifier itself. Besides, it is well known that the nature ofthe database might also bias

the comparison; for example, an imbalanced dataset classified with a classifier which

is non-robust against skewness will perform worse, in termsof Accuracy, than when

the same classifier is run over the same dataset but filtered through a balancing process.

So, as a consequence, a correct methodology is important at the time of comparison

or inferring conclusions. Thus, it is necessary to explain why a given metric has been

chosen and why the applied evaluation method is appropriate. Moreover, comparisons

should not be made based only on one database but several in order to make correct

statistical comparisons.

2.3 Algorithms for Supervised Classification

In the literature we can find a vast number of classifiers of different nature which are

used for supervised classification; that is, to predict the Class label given an instance

X composed of predictive featuresX = {X1, . . . , Xn}.
This section introduces some of the most important supervised classifiers from

different families:

• Naive Bayes, Semi-Naive BayesandTAN : these are Bayesian classifiers based

on the Bayes Theorem.

• Neighbourhood-based classifiers: a vicinity-based classifier.

• c.45andID3: decision tree classifiers.

• Neural Network: based on a set of neurons connected to each other and working

as black boxes.

• Support Vector Machines: one of the most important kernel-based methods.
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2.3.1 Bayesian Classifiers

Bayesian classifiers [24] are methods that are used to perform supervised classification.

They are a Bayesian network in which each node except the ClassC node represents

a predictive featureXi, and the goal is to compute the probability for each possiblec

value (label) of nodeC using Bayes’s Theorem as shown in Equation2.12. Then, the

label c which maximizes this probabilitya posteriori (Equation2.13) is returned as

output.

p(c|xi, ..., xn) =
p(c)p(x1, ..., pn|c)

p(x1, ..., xn)
∝ p(c)p(x1, ..., pn|c) (2.12)

cMAP = argmax
c∈ΩC

p(c|x1, ..., xn) (2.13)

= argmax
c∈ΩC

p(x1, ..., xn|c)p(c)
p(x1, ..., xn)

(2.14)

= argmax
c∈ΩC

p(x1, ..., xn|c)p(c) (2.15)

• Näıve Bayes (NB)Computations in Equation2.12involve managing distribution

tables with many features dependent upon each other. In order to avoid this

complexity, a series of alleviations have appeared in the literature.

The strongest alleviation is that which makes the assumption of independence

among all predictive features given the class, this model isknown as Näıve Bayes

(NB) and its structure is shown in Figure2.3.

As a consequence of this independence assumption, computations required by

Equation2.13can be simplified to Equation2.16.

cMAP = argmax
c∈ΩC

p(x1, ..., xn|c)p(c) = argmax
c∈ΩC

p(c)
n
∏

i=1

p(xi|c) (2.16)

Although it may seem that the independence assumption amongpredictive fea-

tures is too strong, it is possible to find in the literature many cases in which

the performance of NB classifiers has been as good as (or even better than) more

18



2.3 Algorithms for Supervised Classification

C

X1 X2 . . . Xn

Figure 2.3: Structure of Naı̈ve Bayes Classifier.

complex methods [82]. But, on the other hand, there are other cases in which NB

performs worse. Thus, some methods exist to add complexity to the NB scheme

[38], resulting in new classifiers:Augmented Networks, k-dependence Bayesian

and Semi-NBclassifiers.

• Augmented NetworksAugmented Networks are similar to the NB structure but

with the addition of the possibility for predictive features Xi to have as father

another predictive featureXj besides the classC; this link betweenXi andXj

represents dependency between them.

C

X1 X2 X3 X4

Figure 2.4: Example of an Augmented Classifier.

Figure2.4shows the structure of an Augmented Network; for this example, the

cMAP would be computed as shown in Equation2.17.
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cMAP = argmax
c∈ΩC

p(c|x1, ..., xn)p(c) (2.17)

= p(c)p(x1|c)p(x2|x4, c)p(x3|x1, c)p(x4|c) (2.18)

• Tree Augmented Network (TAN). Finding the best Augmented Network is an

NP-hard problem; thus, [38] proposes to add the restriction to this scheme of

having a tree structure (TAN). Another proposal can be foundin [82], which

focuses on finding the augmented structure with highest classification perfor-

mance. Finally, [38] and [85] compute the mutual information between two

predictive features given the class in order to increase thelikelihood.

• kDB. kDB structures [100] are generalizations of TAN, where predictive features

are limited tok predictive features as parents, besides the class. So TAN isa kDB

structure with k=1.

C

X1 X2 X3 X4

Figure 2.5: Example of kDB structure with k=2

Figure2.5 shows an example on a kDB structure with k=2. In this case, the

cMAP value is computed as shown in Equation2.19

cMAP = argmax
c∈ΩC

p(c|x1, ..., xn) (2.19)

= p(c)p(x1|c)p(x2|x1, x4, c)p(x3|x1, c)p(x4|c) (2.20)

• Semi-Näıve Bayes (SNB).SNB structures are identical to that of NB, but the

difference is found at the nodes, which can beatomicor joint. Atomicnodes
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are ordinary nodes representing one predictive featureXi, while joint nodes rep-

resent two or more predictive features and, thus, a statistical relation between

them.

C

X1 X2,X3 X4

Figure 2.6: Example of SNB structure.

Since the structure is the same as in NB, thecMAP is also computed in the same

way (Equation2.16). Then, the most important part in SNB structures is how to

construct nodes.

When working with nominal predictive features, states of a joint node are the

result of the Cartesian product of the states of the predictive features which com-

pose it [82]. Pazzani presents two algorithms to construct an SNB structure: for-

ward sequential selection and joiningandbackward sequential elimination and

joining. The former starts with just the class featureC added to the classifier,

and the latter starts with an SNB structure with all the features. In both cases,

at each step the selected operation over the network is that which maximizes

the performance of the classifier (wrapper approach). In theforward method,

possible operations are:

1. Add a predictive feature not yet added, making it dependent on the class

and non-dependent (given the class) on the rest of added predictive features.

2. Join a predictive feature not yet added with a predictive feature previously

added.

While in thebackwardmethod, the possible operations are:
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1. Remove a predictive feature from the structure (atomic or joint).

2. Join a predictive feature in the structure with another predictive feature also

in the structure.

2.3.2 Classification Trees

Classification Trees (Figure2.7) are models based on a recursive partition method

which aims to divide the dataset using only one predictive feature at each level of

the tree structure. A decision tree can be used to visually represent a set of rules for

decision making. At each level of a tree, one predictive feature is represented by a

node, and this node has as many branches as the number of possible values this feature

may take. Then, leaf nodes represent labels of the class feature; these labels may be

repeated across the same or different levels, since different rules may lead to the same

classification.

X

c1 c3 Y

c3 c2

x1 x2 x3

y1 y2

Figure 2.7: Example of a Classification Tree structure.

The predictive feature at each level is selected based on a given criterion or al-

gorithm; then, depending on the algorithm used we have different classification tree

models, the most widely known being ID3, and its improved version C4.5 [90]. The

former uses as criterion for selecting a feature at each level the Info Gain metric (Sec-

tion 2.4.1) and the latter uses Info Gain Ratio (Section2.4.1). Besides node selection,

tree construction algorithms need to specify the stop criterion and the post-pruning

process to simplify the tree structure.
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2.3 Algorithms for Supervised Classification

2.3.3 Classification algorithms based on proximity.

Classification algorithms based on proximity [22] are theoretically simple and have a

long background in supervised classification. Instances whose class is known are rep-

resented in a vectorial space, where each coordinatei corresponds to thei-th attribute

used in the representation of the instances.

These algorithms are called lazy because there does not exist a training step to build

a model which will be used to classify the instances. So each time a new instance is to

be assigned a class it will be necessary, in the most general and basic case, to compute

the distance of this instance to all the other instances in the database. Thus, the NN

(Nearest Neighbor) algorithm would assign to this instance the label of the nearest one

to it in the vectorial space.

From this NN algorithm, several algorithms based on neighborhood have been de-

veloped. The straight evolution from NN is theK-NN algorithm, in which the assigned

class is the one which gets more votes among theK nearest neighbors. In this way er-

roneous assignments are avoided in those cases where the closest instance does not

belong to the same class the new instance belongs to (spatialintrusion reduction or

noise). Among the many variants ofK-NN we can summarize:

• Different weights for attributes[19]. When computing the distance between two

instances the value of each dimension of the instances is used. Since dimensions

correspond to attributes used to represent the instance, itseems a good idea to

give more weight to those attributes which are more relevantthan others. A

way to decide this importance might be a prior selection or ranking of the set of

attributes.

• Use of a voting threshold. A minimum number of votes can be established that

a class should receive before assigning it to the instance being classified. If no

class receives votes over this threshold the instance remains unclassified.

• Average distance. K nearest neighbors are not used to vote, but average distance

is computed for the instance being classified to each of theK neighbors belong-

ing to the same class. Thus the assigned class is the one whichminimizes the

average.
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• Use of centroids. TheK-NCN [102] algorithm selects, among all instances in the

training set, the instance or centroid representative of each class. Then, distances

are not computed to each training instance but to each centroid. This approach

drastically reduces the computational load, but it makes the centroid selection a

very important phase for a successful classification.

There exist two key decisions to make when designing a classification algorithm based

on proximity: the representation of dimensions (attributes) in samples and the distance

metric used to compute distances between two samples. With regard to the distance

metric, the most common are those belonging to theMinkowskidistances family [15]

(such as the Euclidean Distance).

2.3.4 Other classifiers: Support Vector Machines (SVM) and Ar-

tificial Neural Networks (ANN).

SVMs [10] are originally linear classifiers which aim to find the optimal (set of) hy-

perplane(s) to separate instances in the training set such that each separated group of

instances is tagged with the same class label. There may be several hyperplanes sep-

arating classes, but the best hyperplane (maximum-margin hyperplane) is that which

maximizes the distance between the nearest instances of such groups.

In [10] several new kernels are presented so that SVMs can be used asnon-linear

classifiers.

ANNs simulate properties of observed biological neural systems using statistical

methods. Figure2.8 shows a general structure of ANN, which consists of simple

elements calledneuronsconnected to each other, as well as being connected to the

input and output of the structure. These connections are called synapsesand there is

a weight associated to each of them. Each neuron can be seen asa black box, which

receives an input through one or more weighted connections and produces a non-linear

output. Commonly, the most important parameters to tune in anANN are: number and

layout of neurons, non-linear activation functions and synapse weighting
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inputs

synapse

outputs

Figure 2.8: General structure of a Neural Network.

2.4 Supervised Feature Selection

Feature (or variable, or attribute) Subset Selection (FSS)is the process of identifying

the input variables which are relevant to a particular learning (or data mining) problem

[41; 67]. Though FSS is of interest in both supervised and unsupervised data mining,

this Chapter deals with supervised learning, and in particular with the classification

task. Classification-oriented FSS carries out the task of removing most irrelevant and

redundant features from the data with respect to the class. This process helps to im-

prove the performance of the learned models because it:

1. Alleviates the effect of the curse of dimensionality.

2. Increases the generalization power.

3. Speeds up the learning and inference process.

4. Improves model understandability

Furthermore, unlike other reduction techniques (e.g. feature construction [67; 77]

or principal component analysis [55]), FSS does not alter the original representation, so

it preserves the original semantics of the variables, helping domain experts to acquire

better understanding about their data by telling them whichare the important features

and how they are related with the class.

The general process of FSS can be described by: (1) a Search Method and (2) an

Evaluation of Feature subset Method.
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2. SUPERVISED CLASSIFICATION

There are several kinds of search methods ([70]), the most important being:Ranker,

Exhaustive, Sequential, andMetahueristics. On the other hand, Evaluation may be:fil-

ter, wrapperor hybrid.

Besides this classification, there also existEmbedded FSS methods, which consist

of using classifiers which select by themselves the subset ofvariables they need, as

happens with the C4.5 construction algorithm.

Subset Generation Subset Evaluation

Stop Criterion Result Validation

Original Set

Subset

Goodness of Subset

YesNo

Figure 2.9: General FSS process.

Evaluation methods:

1. Filter. Filter techniques are those that evaluate the goodness of an attribute or

set of attributes by using only intrinsic properties of the data (e.g. statistical

or information-based measures). Filter techniques have the advantage of being

fast and general, in the sense that the resultant subset is not biased in favor of a

specific classifier. Examples of frequently-used filter algorithms are Relief [59],

FCBF [128] and different approaches based on the use of mutual information

[6; 31; 69].

2. Wrapper. On the other hand, wrapper algorithms are those that use a classifier

(usually the one to be used later for test or validation) as a surrogate in order

to assess the quality of the attribute subset proposed as candidate by the search
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algorithm. Wrapper algorithms have the advantage of achieving a greater accu-

racy than filters but with the disadvantage of being (far) more time consuming

and obtaining an attribute subset that is biased toward the classifier used.

3. Hybrid. Recently a new family of sequential search methods have arisen which

combine filter and wrapper evaluations [32; 98] in order to take advantage of

both techniques.

2.4.1 Filter Subset Evaluation

There exist a large number of filter metrics which compute thepredictive power of one

or more features with respect to the class (filter metrics forsupervised FSS). The main

advantage of these metrics is the low computational complexity compared to wrapper

approaches.

The choice of the filter metric to use depends, among other things, on the per-

formance metric to be used for the classifier. For example, Information Gain (IG) is

reported in [34] to be the best choice if the goal is Precision.

Evaluation may beunivariate for single feature evaluation ormultivariate if the

selection of a new candidate feature is evaluated using the currently selected features

subset. The main problem of univariate evaluations is that they cannot detect condi-

tional dependences or independences. Thus, single features marginally relevant to the

class are directly selected by univariate methods, and there is no check to see if they

are not relevant given that another features are currently selected. In this way, it is

possible that the addition of a marginally relevant featuremay decrease the goodness

of the current subset selected instead of increasing it. Some of the best-known filter

metrics are based on Shannon Entropy (Equation2.21), as shown here.

Entropy(X) = H(X) = −
n

∑

i=1

p(xi)log2p(xi) (2.21)

• Info Gain (IG) . This metric measures the change in entropy for class feature C

once a predictive featureX is known.

IG(C,X) = H(C)−H(C|X) (2.22)
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• Info-Gain Ratio (IGR) . It penalizes IG when the predictive feature has many

states.

IGR(C,X) =
IG(C,X)

H(X)
(2.23)

• Symmetrical Uncertainty (SU). SU is a nonlinear information theory-based

measure that can be interpreted as a sort of Mutual Information normalized to

interval [0,1].

SU(C,X) = 2× IG(C,X)

H(C) +H(X)
(2.24)

• Chi-Squared. This is not just a metric but a statistical test, which in this case

can be used to evaluate the value of the chi-squared statistic with respect to the

class, using as null hypothesis that featureX is independent of the class.

• Correlation-based Feature Selection (CFS). This metric evaluates sets of pre-

dictive features in terms of SU between pairs of them and SU between each of

them and the class feature.

CFS(X1, . . . , Xn) =

∑n
i=1 SU(C,Xi)

√

∑n
i=1

∑n
j=1 SU(Xi, Xj)

(2.25)

• Conditional IG-Battiti . Battiti [6] approximates the computation of IG for a

candidate featureXi given the already selected features subsetS ′ as shown in

Equation2.26, whereβ is usually set to 0.5.

IG(Xi, C|S ′) = IG(Xi, C)− β
∑

s∈S′

IG(Xi, s) (2.26)

• Conditional IG-Peng. Peng et al. [84] uses another approximation for the com-

putation of IG for a candidate featureXi given the already selected features

subsetS ′.

IG(Xi, C|S ′) = IG(Xi, C)− 1

|S ′|
∑

s∈S′

IG(Xi, s) (2.27)
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2.4.2 Search Methods

Following the taxonomies proposed in [70] and [47] we can distinguish between com-

plete, deterministic (sequential) heuristic and non-deterministic (stochastic) heuristic

algorithms. In terms of complete algorithms we can consideralgorithms which evalu-

ate all possible subsets by following depth-first and breadth-first search strategies [68],

and the branch-and-bound algorithm proposed in [109]. The deterministic heuristic

approach refers to the family of methods that include forward and backward greedy

sequential algorithms [60], floating selection algorithms [80; 89] and best-first search

or hill climbing [62]. On the other hand,non-deterministic heuristicmethods use ran-

domness in order to avoid getting stuck in local optima. Examples of this approach are

estimation of distribution algorithms (EDAs) [47] and genetic algorithms (GAs) [126].

Since complete searches are usually too expensive, stochastic or sequential searches

are preferred. Usually in these searches, the more the solutions space is explored, the

better the performance achieved is.

This thesis contains methods for deterministic sequential(Chapters3 and5) and

random sequential (Chapter4) FSS.

Some of the most important filter and wrapper search methods are:

• Fast Correlation-Based Filter (FCBF) search.FCBF [127] is a ranker search

method with two steps: (1) based on a given threshold, it selects features from

a filter ranking constructed with a univariate evaluation bySymmetrical Uncer-

tainty of features with respect to the class; and (2) based onthree heuristics, it

removes features highly correlated between pairs from the set of selected fea-

tures from the previous ranking. These heuristics avoid theevaluation of SU

between each pair of features, and thus the FCBF search proves to be a fast filter

method at the time that it avoids the selection of redundant features.

• Sequential Forward Selection (SFS). SFS [41] starts with a subset of selected

featuresS ′ = ∅, and performs a forward greedy selection with (usually) wrapper

evaluation at each step. When no addition of any feature toS ′ improves the

performance, then the stop criterion is triggered and the search is finished.

• Mutual Information-based Feature Selection (MIFS). MIFS [6] is a forward

greedy search which uses the filter evaluation shown in Equation 2.26. Starting
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with subsetS containing the featureXi which maximizesIG(X;C), the follow-

ing features added are those which maximize Equation2.26. The stop criterion

is fulfilled when the cardinality of the final subset of selected features reaches a

pre-defined valuek.

• Max-Relevance and Min-Redundancy (mRMR). mRMR [84] is also a for-

ward greedy search and also starts subsetS ′ containing the featureXi which

maximizesIG(X;C), but the filter evaluation is the one shown in Equation

2.27. The stop criterion is the same as in MIFS.

• Conditional Mutual Information Maximization (CMIM). CMIM [ 31] is a

forward greedy search with the same start for subsetS ′ as MIFS and mRMR.

The incremental addition of the following feature is decided as the featureXi

not yet selected which maximizes the informationI(Xi;C|sj), wheresj is the

featuresj ∈ S ′ which minimizes that information (Equation2.28).

∀Xi ∈ S, ∀sj ∈ S ′, add Xi such that argmax
Xi

{min
sj

I(Xi;C|sj)} (2.28)

The idea behind MIFS, mRMR and CMIM is to take into account features already se-

lected when regarding a new featureXi to be added to the final subsetS ′ of selected

features; this would mean computing conditional informationI(Xi∧C∧S ′). As cardi-

nality in S ′ grows throughout the incremental process, computation of this probability

becomes unfeasible, and thus MIFS, mRMR and CMIM provide heuristic approxima-

tions in order to simplify the computations as long as that conditional relevance is still

detected. Chapter5 introduces a new FSS method based on this idea.

As mentioned above, there exists a new family of hybrid search methods which

combine filter and wrapper evaluations to guide the search. Some well-known sequen-

tial searches with hybrid evaluation are:

• Linear Forward Selection (LFS).LFS [40] is a simple complexity optimization

of SFS. It consists of first creating a filter ranking based on SU and selection of

thek first features; then, the SFS algorithm is run over the selected features.
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• Best Incremental Ranked Subset for Feature Selection (BIRS).The BIRS

[98] algorithm first produces a filter ranking and then it performs an incremen-

tal best-first selection throughout the ranking. The inclusion of each feature in

ranking is tested by adding it toS ′ and performing a wrapper evaluation using

all features inS ′. Moreover, BIRS provides a heuristic rule in order to decide

if the new feature must be kept inS ′ when it provides better performance than

before adding it.

• Best Agglomerative Ranked Subset for Feature Selection (BARS). BARS

[97] is based on a heuristic rule that obtains good subsets by iterating between

two phases: (a) ranking of subsets and (b) generation of new candidate subsets by

combining (based on wrapper evaluation) those previously ranked. The heuristic

nature of the algorithm lets it evaluate a reduced number of candidate subsets and

its outstanding characteristic is that it obtains very compact subsets.

2.5 Summary

The task of supervised classification has been presented. Itprovides several evaluation

methods and metrics in order to measure the goodness of a classifier constructed with

the available tagged data. This goodness gives us an idea of how well the classifier

would perform when predicting the tag of new unlabeled data,that is, in a future sce-

nario where the classifier would be trained with available data and then applied on new

instances whose tag is unknown and this is what we want to automatically predict.

Besides this, several methods for evaluating the standard classifiers and a taxon-

omy of feature subset selection techniques have been presented. As explained, feature

selection reduces the dimensionality of the database and itmay help the classifier to

perform better.
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Chapter 3

Incremental Wrapper Selection

3.1 Summary

As mentioned in Chapter2, wrapper techniques used to perform better than filter meth-

ods. However, wrapper searches are much slower and, with thevenue of this decade,

new databases have appeared which contain thousands or tensof thousands attributes,

making traditional wrapper algorithms unfeasible. Recently, a new family of hybrid

search methods have arisen which combine filter and wrapper evaluations in order to

guide the search, try to benefit from the advantages of both approaches.

This chapter describes the Incremental Wrapper Subset Selection (IWSS) algo-

rithm, which is a hybrid search with two phases: (1) creationof a filter ranking and

(2) performing a sequential forward search with wrapper evaluations. This chapter

presents four contributions to the IWSS algorithm:

• (Relevance Criterion). First, several Heuristic criteria are studied in order to

decide when to accept or reject a new feature along the sequential process.

• (Replacement) Second, it is proposed a method to improve the subset selection

process in order to obtain even more compact subsets. The idea is that when a

new attribute is being analyzed, we test not only the possibility of adding it to the

selected subset, but also swapping it with any of the alreadyincluded attributes.

• (Early stopping) Third, it is studied the impact of reducing the number of wrap-

per evaluations by stopping the process before analyzing all the variables in the
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ranking.

• (Embedding) And last, it is shown how for some classifiers (that can be incre-

mentally updated by progressively adding attributes) the model can be embedded

in the selection process, obtaining in this way a (really) significant reduction in

the CPU time needed.

3.2 Introduction to IWSS

The idea behind IWSS is to use a filter measure in order to obtaina ranking of the

attributes’ relevance with respect to the class. Then, a sequential algorithm is used to

run over the ranking by incrementally adding those variables that are relevant to the

classification process, where the relevance of including a new variable is measured in

a wrapper way. The main advantage of this approach is that it retains a great part of

wrapper advantages, while reducing the computational costto O(n) wrapper evalua-

tions instead ofO(n2) as happens with pure wrapper approaches. When dealing with

thousands of variables this point makes the difference between considering the task

computationally feasible or not.

An interesting contribution toIncremental Wrapper-based FSS(IWSS) is intro-

duced in [98]. In that paper the authors propose the use of a relevance criterion in

order to decide when a new attribute must be included in the selected subset. The rel-

evance criterion is based on a t-test instead of just comparing the mean accuracy, and

the results reported show that the use of this relevance criterion frees the algorithm

from noise and so more compact subsets can be obtained with similar (statistically

non-different) accuracy. In Section3.3, a deeper study of the relevance criterion is

carried out by using different significance levels in the t-test, and it is also considered

another statistical test (Wilcoxon signed rank test) and a simple heuristic criterion.

Let’s describe as the canonical IWSS algorithm the one shown in Figure3.1.

As it can be seen, steps 1 to 4 are devoted to computing the ranking. This stage

requiresO(n) filter evaluations. As in other works [32; 98], Symmetrical Uncertainty

(SU) (see Section2.4.1) is used to evaluate the predictive attributes. Attributesare

ranked in increasing SU order; that is, more informative attributes are placed first.
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In T training,M measure,C classifier

Out S // The selected subset

1 listR = {} // The ranking

2 for each attributeAi ∈ T

3 Score=MT(Ai, class)

4 insertAi in R according toScore

5 S = {R[1]}
6 BestData = evaluate(C, Saux,T)

7 for i = 2 ton // n = R.size()

8 Saux = S ∪ {R[i]}
9 AuxData = evaluate(C, Saux,T)

10 if (AuxData⊲ BestData)

11 S = Saux

12 BestData = AuxData

Figure 3.1: IWSS canonical algorithm.

Steps 5 and 6 carry out the initialization ofS by using the first variable in the

ranking. Also the data resulting from evaluating that subset are stored inBestData.

In particular, it is assumed that functionevaluate(C, Saux,T) learns and validates the

classifierC by using a 5-fold cross validation over the training setT projected over

subsetS∪{C}. Thus,BestData will contain an arrayBestData.f[1..5] with the accu-

racy obtained for each fold and a real valueBestData.av with the averaged accuracy

over the 5 folds.

Steps 7 to 12 carry out the main cycle of IWSS. Depending on the way step 10, or to

be more precise operation⊲, is implemented we get different IWSS algorithms. Thus,

if (AuxData ⊲ BestData) is implemented as(AuxData.av > BestData.av) we get

IWSS with the simplest relevance criterion; if(AuxData ⊲ BestData) is implemented

as follows:

if (AuxData.av > BestData.av) and

(test(t-test,α = 0.1,BestData.f[],AuxData.f[]))

then we get the BIRS algorithm [98].
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In Section3.3, a deep study is performed in order to compare different relevance

criterion for operation⊲. Best relevance criterion found in those experiments (Min-

FoldersBettercriterion) will be the default instantiation of operation⊲ in the following

executions of IWSS in this chapter.

3.3 Relevance Criteria in IWSS

As reported in [98], using the relevance criterion based on statistical testing prevents

the algorithm from including new variables due to noise or outliers (e.g. only in one

of k folds in cross-validation is the accuracy significantlyhigher). On the other hand,

even based on statistical hypothesis testing, these relevance criteria are of a heuristic

nature because of the small number of samples (5), which forces the selection of non

standard values forα.

3.3.1 Three criteria for relevance decision of new features.

Experiments in [98] only use the t-test withα = 0.1 in order to instance operation⊲

from Figure3.1. Since this proves to perform better than just accepting newattributes

which improve performance with any value, it is interestingto make a deeper and

breadther research at this respect. Thus, in the following three criteria are proposed to

be tested with different restrictive levels:

Criterion 1. Student t-test.- This considers the relevance criterion proposed in [98]; that

is, a parametric statistical test:paired two-tailed Student’s test. This is likely one of the

most used test in machine learning statistical analysis, however it assumes a Gaussian

distribution over the paired differences between the two datasets, which is not always

satisfied. This is the case here because of the small sample size (5 folds), but as Ruiz

et al. [98] point out the goal is to have an objective criterion about the relevance of

including a new feature, not to make a statistical analysis of the populations. Another

known problem of this test is that it is affected by outliers.In [98] the authors set

α = 0.1, so here experiments will be performed to study the effect ofusing less re-

strictiveα values (0.1, 0.15, 0.2 and 0.25).
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Criterion 2. Wilcoxon signed-ranks test [121]. With the same idea of using an objec-

tive criterion as the described in the previous paragraph but avoiding the Gaussianity

assumption, this criterion is the use of a non-parametric test. In this case Wilcoxon

signed-ranks test is selected because it is one of the most frequently used in the ma-

chine learning literature. In [23] a expression to compute thez statistic value is pro-

vided for large sample size cases (e.g.> 25) but, since this is not the case, exactz

statistic values are used (which can be found in many statistics books) for given alpha

values and samples size in these experiments. This test is not so affected by outliers (as

the t-test) since is checks values of paired differences instead of values of each sample.

This is a rather important advantage specially in the case ofhaving really few samples.

As in the previous case experiments are are run withα=0.1, 0.15, 0.2 and 0.25.

Criterion 3. Minimum better folds heuristic. In this case the goal is to test a pure

heuristic criterion that tries to reject the same null hypothesis than in the previous

cases in favor of the same alternative hypothesis, e.g., themean of the values in set

AuxData.f[] is significantly different to mean of valuesBestData.f[]. Thus, with the

idea of avoiding to include a new feature because a noisy result, it is imposed that the

inclusion of a new variable inS is allowed only when the following comparison holds:

if (AuxData.av > BestData.av) and #(BestData.f[] > AuxData.f[]) ≥
mf

wheremf is the minimum number of folders in which it is requiredSaux to be better

thanS. Experiments are run withmf=2, 3, 4 and 5. The value ofmf = 1 is not

considered because it favors the influence of outliers.

In addition it was done experiments usingα = 0.05 but they are not included here

because experiments show that because the small sample sizeit turns in a really strict

criterion, allowing in most of cases a single feature in the selected set which gives rise

to a poor accuracy.

3.3.2 Design of experiments for IWSS relevance criteria.

The performance of different criteria is the Accuracy of theresulting models (i.e. run-

ning the classifier over the selected subset) is measured by using a 10cv. With respect
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to the classifier it is only considered Naive Bayes (NB), which is quite sensitive to the

set of attributes used as input. Concretely it is used the WEKA [123] implementation

of NB which models numerical variables by using uni-dimensional Gaussian distribu-

tions.

Datasets for experiments are 7 publicly obtained microarrays-based datasets, all of

them related to cancer prediction. DatasetsColon, Leukemia, LymphomaandGCM are

the same used in [98] and can be downloaded in .arff format (e.g. WEKA data mining

suite input format) from sitehttp://www.upo.es/eps/aguilar/datasets

.html. DatasetsDLBCL-Stanford, ProstateCancerandLungCancer-Harvard2can

be downloaded from sitehttp://sdmc.i2r.a-star.edu.sg/rp/. Table3.1

shows the number of features and records each dataset contains and also the accuracy

achieved for each one when running a 10cv by using NB classifier. The last row shows

the mean values for each column.

Table 3.1: Microarrays properties.
Dataset #Features Size Acc.(%)

Colon 2000 62 53.23

Leukemia 7129 72 98.61

Lymphoma 4026 96 75.00

GCM 16063 190 66.84

DLBCL 4026 47 97.87

Prostate 12600 136 55.88

Lung 12533 181 98.34

Mean 8340 112 77.97

The design of the experiments is easy. IWSS is run by using eachone of the pro-

posed criteria (3 criteria× 4 α values = 12 criteria) over each one of the 7 datasets.

In order to have a baseline results for the analysis of balance between number of se-

lected features and obtained accuracy, IWSS is first run by using agreedyrelevance

criterion: (AuxData ⊲ BestData) is implemented as(AuxData.av > BestData.av)

and the results of this algorithm calledSimpleBIRSare shown in Table3.2.
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Table 3.2: Results for SimpleBIRS
Dataset #Features Acc.(%)

Colon 6.3 79.03

Leukemia 3.7 93.06

Lymphoma 11.7 77.08

DLBCL 3.7 91.49

Prostate 12.2 78.68

Lung 3.9 98.90

GCM 50.8 64.74

Mean 13.2 83.28

3.3.3 Results of experiments for relevance criteria in IWSS

Results of experiments are shown in Tables3.3, 3.4and3.5.

Table 3.3: Results when considering t-test as relevance criterion.
Dataset α =0.1 α =0.15 α =0.2 α =0.25

Acc. #f Acc #f Acc. #f Acc. #f

Colon 82.26 2.4 77.42 2.6 77.42 3.1 82.26 3.4

Leukemia 86.11 1.6 86.11 1.6 90.28 2.2 90.28 2.2

Lymphoma 67.71 5.2 63.54 5.1 73.96 7.2 72.92 7.5

DLBCL 87.23 1.6 87.23 1.6 85.11 1.8 87.23 1.8

Prostate 74.26 4.1 75.74 4.7 75.00 6.8 75.00 6.6

Lung 96.13 1.6 96.13 1.6 97.24 2.4 97.24 2.4

GCM 54.21 12.4 60.53 13.3 59.47 19.4 60.53 18.5

Mean 78.27 4.1 78.10 4.4 79.78 6.1 80.78 6.1

From the tables, a straight-forward conclusion is that the more strict is the signifi-

cance level (α ormf ) used, the fewer the number of variables included in the selected

subset. Although more observations of this type can be drawn, in order to back con-

clusions, a statistical analysis is carried out as described below.

Because of the multiple algorithms (criteria) and multiple datasets, statistical anal-

ysis is performed following the recommendations in [23]: Friedman test [37] followed
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Table 3.4: Results when considering signed rank test as relevance criterion.
Dataset α =0.1 α =0.15 α =0.2 α =0.25

Acc. #f Acc #f Acc. #f Acc. #f

Colon 82.26 2.1 77.42 2.6 79.03 2.7 79.03 2.7

Leukemia 84.72 1.2 86.11 1.6 84.72 1.6 84.72 1.6

Lymphoma 69.79 3.9 63.54 5.2 64.58 5.3 64.58 5.3

DLBCL 80.85 1.3 87.23 1.6 87.23 1.5 87.23 1.5

Prostate 75.74 3.3 77.21 4.4 79.41 4.8 79.41 4.8

Lung 96.13 1.1 96.13 1.1 96.13 1.1 96.13 1.1

GCM 51.58 9.4 53.16 12.1 58.95 14.1 58.95 14.1

Mean 77.30 3.2 77.26 4.2 78.58 4.5 78.58 4.5

Table 3.5: Results when considering min folds better as relevance criterion.
Dataset mf=2 mf=3 mf=4 mf=5

Acc. #f Acc #f Acc. #f Acc. #f

Colon 80.65 3.8 80.65 3.0 83.87 2.2 74.19 1.9

Leukemia 87.50 2.5 86.11 1.7 83.33 1.2 83.33 1.1

Lymphoma 76.04 8.8 71.88 6.1 65.63 4.1 66.67 3.2

DLBCL 85.11 1.9 87.23 1.5 80.85 1.3 78.72 1.1

Prostate 77.94 11.1 79.41 7.2 75.74 3.7 75.74 2.6

Lung 97.24 2.7 96.13 1.7 96.69 1.2 96.13 1.0

GCM 64.21 36.6 64.74 24.5 50.53 11.4 47.37 5.8

Mean 81.24 9.6 80.88 6.5 76.66 3.6 74.59 2.4
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by a post-hoc Holm test [42]. Friedman test is used for statistical comparison over

three or more sets of values; in this case the inputs of the study are the set of mean

accuracies (and mean number of features selected) computedfor each microarray in

each one of the 10 folds. The application of Friedman test only decides if there exists

at least one set of values (e.g. one algorithm) which is different to at least another set of

values (algorithm). Once this is known, then the post-hoc Holm test is run by choosing

a control set of values and then comparing it with the rest of sets.

The comparison process is performed as follows:

1. First, it is identified for eachrelevancecriterion (i.e. t-test, Wilcoxon and min

better folds) the best significance (α) values. To do this, the Friedman test is

run for each criterion regarding only accuracies as inputs and using also as in-

put the results provided by SimpleBIRS (which is the baseline algorithm). So,

in this step three Friedman tests are run (one per criterion)in order to identify

those configurations (〈criterion,significance-value〉) that are not statistically dif-

ferent from the accuracy achieved by SimpleBIRS. As in two of the three cases

Friedman test returns that in fact there is at least one (statistically significant)

different algorithm, the post-hoc Holm test is run by choosing as control the set

of values provided by SimpleBIRS. Table3.6 shows the results of this process,

where crossed cells mean that they are significantly different from SimpleBIRS

(the control) by using Holm test (p-value< 0.05). Thus, these algorithms are

ruled out and therefore not considered in the subsequent steps.

Table 3.6: Results of step one: local comparison for each relevance criterion with

respect to accuracy.
α= 0.1 0.15 0.2 0.25

mf= 2 3 4 5

t-test 78.3 78.1 79.8 80.8

Wilcoxon 77.3 77.3 78.6 78.6

MinValues 81.2 80.9 76.7 74.6

SimpleBIRS • 83.3

2. In the second step it is considered a single pool with all the survivor algorithms
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from the previous phase. Thus, the previous process is repeated over the eight

algorithms (1 using t-test criterion, 4 using Wilcoxon criterion, 2 using min folds

better criterion and SimpleBIRS). Table3.7 shows the results, where it can be

seen how two new algorithms are ruled out when considering this global analy-

sis.

Table 3.7: Results of step two: global comparison with respect to accuracy.
α= 0.1 0.15 0.2 0.25

mf= 2 3 4 5

t-test 80.8

Wilcoxon 77.3 77.3 78.6 78.6

MinValues 81.2 80.9

SimpleBIRS • 83.3

3. To this point it has been obtained a set of six algorithms such that the global

statistical analysis does not find significant differences among them. Therefore,

it is time to consider the number of selected variables by them. Thus, the previ-

ous process (Friedman + Holm) is repeated but taking as inputs the set of values

related to the mean number of selected features for each microarray in each one

of the 10 folds. The results are shown in Table3.8 (notice that now the control

is the algorithm with the smallest selected subset). It can be observed that two

configurations are ruled out, including the baseline algorithm.

Table 3.8: Results of step three: global comparison with respect to the number of

selected features.
α= 0.1 0.15 0.2 0.25

mf= 2 3 4 5

t-test 6.1

Wilcoxon • 4.5 4.5

MinValues 9.6 6.5

SimpleBIRS 13.2
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Finally, from the originally 13 considered configurations (relevance criterion and

strictness level), after the global statistical analysis,it has been obtained a set of four

configurations whose results arenon-significantly differentneither with respect to ac-

curacy nor with respect to the number of features. As it couldbe expected, neither

maximum accuracy nor minimum number of selected features have been able to remain

selected and only configurations with a good balance betweenaccuracy and number of

selected features have survived.

3.3.4 Conclusions on relevance criteria for IWSS

As pointed out in [98], incremental wrapper selection works better when using anob-

jective relevance criterion (e.g. BIRS) than when using only an improvement in the

mean accuracy as criterion (e.g. SimpleBIRS). However, in this study it has been de-

tected that when using a t-test based relevance criteria, itis better to use a more relaxed

confidence level (0.25 vs 0.1). The same conclusion about thestrictness applies to

the other two criteria (Wilcoxon and min folds better), therefore, it can be concluded

that a more relaxed confidence level allows for the introduction of some extra feature

which helps to improve the accuracy. Also of interest is to observe that using a non-

parametric test is a clear alternative and even the use of a pure heuristic criterion which

defends itself from noise and outliers by forcing to the selected subset to achieve an

improvement in at least three (of the five) folds.

As a conclusion, it has been found that an optimal configuration for⊲ from Figure

3.1is to impose that at least 2 or 3 values from the inner 5CV are greater when adding

a new attribute than the respective folds without adding such attribute. Thus, this

MinFoldersBetterwith mf = 2 or mf = 3 will remain as the configuration used for

IWSS in the following of this chapter.

3.4 Incremental wrapper-based selection with replace-

ment

This section presents one of the main contributions of this chapter. The main advan-

tage of IWSS algorithms is their linear complexity (O(n)) in the number of wrapper
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evaluations. This is, of course, a favorable point whenn grows large and exhaustive

search (O(2n)) or even approximate search algorithms like SFS or SBS (O(n2)) are not

feasible. However, there are of course disadvantages in theuse of IWSS algorithms.

Perhaps the most important one is due to its greedy behavior,that is, the algorithm

always tries the best ranked features first and once a featureis included in the selected

set, it is maintained therein until the end of the search.

What is proposed here is to alleviate some of these problems byallowing the algo-

rithm not only to include a new feature in the selected set, but also to interchange it with

one of the features previously included. Let’s explain thisidea by taking the Graph-

ical Model (Bayesian network [83]) shown in figure3.2 as starting point, but first it

should briefly be explained how to read (in)dependence sentences from such graphical

representation. BN’s [52] have two components, a numerical part which encodes the

probability distribution and the graphical component being a directed acyclic graph.

From the graphical part we can codify (conditional) independences, so, the absence of

a link between a pair of nodes is due to the conditional independence of such a pair of

nodes, and the presence of a direct link between a pair of nodes indicates direct/strong

relation or dependence between such a pair of nodes.

A Bayesian network (BN) [83] factorizes the joint probability distribution (P ) by

means of the product of the local probability functions associated to the nodes/variables

(conditional probability of a variable given its parents inthe graph). A BN is an I-MAP

of P , therefore, ifX is independent ofY givenZ in the BN (< X|Z|Y >BN ), thenX

is independent ofY givenZ in P (I(X|Z|Y )P ), that is, all independences stated by a

BN hold in the joint probability distribution.

(In)Dependence sentences in a BN can be read by means of thed-separationcrite-

rion [83]. Let π be an undirected path (that is, without considering the direction of the

arrows) from nodeU to V . Then, the pathπ betweenU andV is blocked by a set of

nodesZ if an only if exactly one of the following holds:

1. π contains a sequential connectionX →M → Y andM ∈ Z,

2. π contains a divergent connectionX ←M → Y andM ∈ Z, or

3. π contains a convergent connectionX ← M → Y and neitherM nor any of its

descendants in the graph are included inZ.

If all the undirected paths betweenU andV are blocked byZ, then it is said that

U andV are d-separated byZ in the BN (and consequentlyI(U |Z|V )P ).
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The Markov Blanket (MB) of a nodeX is formed by its parents (pa(X) = {Y :

Y → X}), its children (ch(X) = {Y : X → Y }) and its spouses (sp(X) =

pa(ch(X)) − {X}). By using the d-separation criterion it is easy to see thatX is

independent of the rest of the nodes (variables) given its MB:< X|MB(X)|rest >BN .

Example 1. Let us consider the (graphical part of the) BN in figure3.2. As we can

observe it contains 10 variables{A,B,C = Class,D,E, I, J,K, L,M} and can be

matched with a classification problem whereC is the class,MB(C) = {A,B,D,E}
are relevant forC and the rest of the variables ({I, J,K, L,M}) are irrelevant with

respect toC if we know the value of variables inMB(C).

A

B

Class

D

E

I J

K

L M

Figure 3.2: Network used in Example 1.

Therefore, in a feature selection problem{A,B,D,E} should be the selected ones

while{K, I, J, L,M} should be discarded because they are irrelevant to theclass once

we know the value of variables inMB(C). Thus, ithe following behavior when using

an IWSS algorithm should be expected :

• A parent or child variable has a strong (direct) dependence relation with the

class and so it should be ranked in the first places by any information-based

or correlation measure. Therefore, it should be consideredfor inclusion in the

selected set before variables/features having a small degree of relation with the

class.

• Things are different forspouses, because they are marginally independent of

the class, that is, they are unrelated, and so they should be ranked after those

variables that, to some degree, are relevant to the class. Spouses become relevant

when the children common with the class or any of its descendants are included

in the selected set, because then the path between the spouseand the class is no
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longer blocked and so they are not d-separated. Since spouses should have worse

ranking than children, when IWSS inspects spouses it is expected that common

children are already included, and so spouses will also be included.

�

However, the situation described in the previous example isthe ideal one but not

usually the actual one. That is, in a real problem we have to deal with (sometimes

scarce) datasets, and most times that dataset is not faithful to a Bayesian network. As

we know, this is the common situation specially when dealingwith high-dimensional

data sets, e.g. microarrays, where we have thousands of variables but only a few hun-

dred instances. The following example illustrates a more realistic situation.

Example 2. In the case of having few records with respect to the number ofvariables,

we cannot expect to deal with such accurate rankings. As an example, it is generated

the quantitative part (conditional probabilities) for theBN in figure 3.2 and sampled

a data set with 1000 instances for it. Then, the ranks are computed using SU for the

dataset reduced to only the first 5, 10, 50 and 1000 records. The results are shown in

Table3.9.

Table 3.9: Rankings obtained/used in example 2
Rank Id # records SU-based Ranking

R1 5 E, J, D, K, L, I, A, B, M

R2 10 E, K, B, M, L, D, I, A, J

R3 50 E, D, J, B, K, A, I, L, M

R4 1000 E, D, B, K, I, J, A, L, M

As it can be seen, rank R4 reflects what we should expect in the ideal case, that is,

parent and children{E,D,B} being the first variables in the ranking. However, we

should observe that 1000 records in the dataset means havingalmost all the possible

configurations in the problem (210), which is highly unrealistic in real domains. Ranks

R1, R2 and R3 show more realistic situations. We can observe alsohow the spouseA

is always ranked in the last positions.

As E has been ranked as the first variable in all the cases, let us assume that it is

always included in the selected setS. Anyway, as this is not always the case, we should

remark that the treatment of the class’s parents and children is analogous.
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• In rank R3 it can be assumed that the first three variables are directly included in

S because at the time of analyzing them, they are not irrelevant (independent) to

the class. Notice thatE andD cannot be d-separated with respect toC because

they are directly connected (e.g. dependent) whileJ is not d-separated fromC

given{E,D} because the pathC → B → J is not blocked (condition 1 of d-

separation). Thus, when IWSS analyzesB we haveS = {E,D, J}. Now, there

are two possibilities:

– The inclusion ofB in S is judged as relevant by IWSS and so we getS =

{E,D, J,B}, which means that we have an extra feature in our selected

set, because onceB has been included inS, variableJ becomes irrelevant

(d-separated) toClass.

– The inclusion ofB in S is judged as irrelevant by IWSS. That is,B is not d-

separated fromC given{E,D, J} and although semantically it should be

added, because of the previous inclusion ofJ andD, even if the accuracy

obtained when includingB can increase the current one, the improvement

may not be big enough to be considered as relevant. Therefore, we get a

selected set that, even though it is good, is of worse qualitythan the best

possible one.

These situations can be solved if instead of just analyzing the effect of adding a
new attribute toS experiments are carried out also with the possibility of swap-
ping each one of the already included variables with the new one, choosing in
the end the bestrelevantoption. In the example above we have:

S = {E,D, J} −→























add(B) → SB = {E,D, J,B}
swap(E) → SE = {B,D, J}
swap(D) → SD = {E,B, J}
swap(J) → SJ = {E,D,B}

and in this caseSJ should be the best relevant subset. Notice that if none of the

subsets tried is judged as relevant, thenS remains unchanged.

• A similar situation to rank R3 appears in rank R2, whereM is included before

testingD (andJ).

• R1 is the worst ranking with respect to the ideal one (R4) so in this case more

problems were found when using IWSS. Thus, in ranking R1 it can be observed
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how J appears in the second place, whileB is ranked at the end. Therefore,

by following the ranking it can be expected to directly include{E, J,D} and to

rejectK becauseE has been previously included. Now IWSS will also include

L because the pathC → B → I → L is not blocked; perhaps it includesI

because the pathC → B → I is not blocked andI should have more impact on

Class thanL; A1 should also be included; and perhapsB for the same reason

as I. That is, the execution of IWSS could obtainS = {E, J,D, L, I, A,B}
or S = {E, J,D, L,A,B} or S = {E, J,D, L, I, A} or S = {E, J,D, L,A}
depending on the judgment of relevance performance when trying to includeI

andB. Obviously, none of these sets is the desired one.

Let us analyze what might happen when starting at the point whereS = {E, J ,

D, L } and using replacement:

– TestingI. In this case the best choice should beswap(I,L) soS = {E, J ,

D, I}.
– TestingA. In this case the best choice should beadd(A) soS = {E, J , D,

I, A}.
– TestingB. In this case the best choice should beswap(B,I) or swap(B,J)

soS = {E, J,D,B,A} or S = {E,B,D, I, A}.
– TestingM . In this case all the operations should be judged as non relevant

and soS is not updated.

Therefore, a better subset than the ones listed above is obtained, because even

there is a redundant variable included in the final set, thereis less redundancy

and the desired subset is fully contained.

�

IWSS with replacement, named as IWSSr, i.e., IWSS incorporating the proposal to

obtain better selected subsets is shown in Figure3.3, where the novelties with respect

to IWSS start at line 13.

Of course, having to test swapping and not only addition whenanalyzing each

variable represents an increment in the complexity of the algorithm. In the worst case,

1 Notice that there is no problem with the inclusion ofspouseA, even if it is ranked afterB, because

some descendants ofB appear earlier in the ranking.
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3.4 Incremental wrapper-based selection with replacement

that is, if theadd operation is selected at each step, then we getO(n2) (as in sequential

forward selection). However, that means that there is no selection at all and then

variables are included inS, which is not usual at all. In practice, the complexity is

O(mn), m being the number of selected variables. In large datasets (e.g. microarrays)

m << n and so we are quite far fromO(n2). More will be discussed about complexity

in Section3.6.5.

In T training,M measure,C classifier

Out S

1 list R = {} // The ranking

2 for each attributeAi ∈ T

3 Score=MT(Ai, class)

4 insertAi in R according toScore

5 S = {R[1]}
6 BestData = evaluate(C, Saux,T)

7 for i = 2 ton // n = R.size()

8 bestOp = null;

9 for j = 1 to M // M = S.size()

10 Saux = update(S,swap(S[j], R[i]))

11 AuxData = evaluate(C, Saux,T)

12 if (AuxData⊲ BestData)

13 bestOp = update(S, swap(S[j], R[i]))

14 BestData = AuxData

15 Saux = S ∪ {R[i]}
16 AuxData = evaluate(C, Saux,T)

17 if (AuxData⊲ BestData)

18 bestOp = add(R[i])

19 BestData = AuxData

20 if (bestOp6= null)

21 update(S,bestOp)

Figure 3.3: Algorithm: IWSS with replacement.
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3.5 IWSS with early stopping

One of the characteristics of IWSS is that it runs over the whole ranking, giving each

attribute in the data set the chance of being selected. This has the disadvantage of

increasing the number of wrapper evaluations carried out, specially when replacement

is used. At this point, we can ask ourselves: is it really necessary to run over the

whole ranking? From the description/discussion in the previous section and because

the score used to build the rank only measures direct (marginal) relevance relations of

one attribute with the class, we can argue that all the relevant attributes will be ranked

in the first part of the rank, exceptspouses. Thus, from a semantic point of view (e.g. it

is desirable to understand the interrelations among the class and the variables relevant

to it), it would be nice to identify all the relevant variables, but for apurely predictive

task such as classification, perhaps it is not necessary to include all these variables.

From extensive experiments with different versions of IWSS,it was in fact ob-

served that variables with a bad ranking are almost never included in the selected subset

S. A possible explanation of this fact is that although these variables have an indirect

relevance relation with the class, once the variables having a stronger relevance rela-

tion have been included inS, their contribution to the classification task may not be

important enough to be judged as relevant. Furthermore, theutility of such types of

variables depends on the complexity of the classifier used. For example, if Naive Bayes

is used, then adding spouses makes no sense, because they aremarginally independent

with respect to the class, and soP (X = xi|C) would be (almost) the same for all states

xi of spouseX. That is, we are adding an irrelevant variable.

Because of these reasons, and with the aim of saving some wrapper evaluations

and so speeding up the IWSS process, theearly stoppingcriterion proposes to stop

the main cycle before arriving at the end of the ranking. Of course, the effect of

early stopping should be more beneficial for IWSSr than for IWSS. In the following,

implementations of IWSS and IWSSr with early stopping are denoted as IWSSs and

IWSSr,s respectively.

The decision now is when the main cycle has to be stopped. The proposal here is to

use a threshold,θ ∈ (0, 1], which will limit the percentage of attributes to be studied,

that is, considered for inclusion inS. However, instead of using this threshold as a

crisp limit, we prefer to use it in an adaptive way, that is, each time a new featureX

entersS the number of features to be visited is updated.
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In order to incorporate early stopping, IWSS and IWSSr must be modified by

adding the following sentences:

• At the initialization:l = θ · n

• The main cycle is replaced by: for i = 2 tol do

• As the last sentence of the main cycle we include:

if (S has been modified)

l = i+ θ · (n− i)

For example, if we haveθ = 0.1 andn = 1000, then initially, we setl = 100

and so it is expected to analyze only the first 100 variables inthe ranking. Then, if

the first variable introduced inS is in position 50 of the ranking, thenl is updated as

50 + 0.1 · (1000 − 50) = 145, and so the number of variables expected to visit is

enlarged up to the first 145 variables in the ranking.

3.6 Experiments with Replacement and Early Stopping

This section performs a series of experiments with the aim ofanalyzing the type of

improvement introduced by the last two proposals explainedin this chapter: replace-

ment and early stopping. To do this, a set of 12 high-dimensional datasets is used (a

superset of those used in [98]) ranging between 500 and 100000 predictive attributes.

The idea is first to analyze the behavior of IWSS when using replacement, and then to

study how early stopping affects the quality and the efficiency of IWSS algorithms.

3.6.1 Datasets

Experiments will be run over 12 publicly obtained datasets.Seven of them are the mi-

croarrays related to cancer prediction introduced in Section 3.3.2. In addition to these

microarrays datasets, another five datasets will be used which are known for being

provided in the NIPS 2003 feature selection challenge (Arcene, Madelon, Dorothea,

Dexter, and Gisette). Table3.10shows the number of features and records/instances

each dataset contains. As it can be seen, these datasets are characterized by a large

number of predictive attributes but a small number of available instances, this trend

being sharper in the case of microarray datasets.
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Table 3.10: Microarrays properties.
Dataset #Features #Instances

Colon 2000 62

Leukemia 7129 72

Lymphoma 4026 96

DLBCL 4026 47

Prostate 12600 136

Lung 12533 181

GCM 16063 190

Arcene 10000 100

Madelon 500 2000

Dorothea 100000 800

Dexter 20000 300

Gisette 5000 6000

Mean 16156 2011

3.6.2 Classifiers and baseline algorithms

For the experiments three standard classifiers belonging tothree different paradigms

are considered: Naive Bayes, KNN (K=1) and C4.5 (Section2.3), using the imple-

mentation of these algorithms included in the WEKA data mining suite [123] and in

all the cases default parameter setting is applied. Of thesethree classification algo-

rithms, C4.5 implements its own attribute selection process, while Naive Bayes (NB)

is known to be quite sensitive to noise and redundant attributes, so special attention to

this classifier is payed.

With respect to feature selection algorithms, and in order to test the two proposals,

the following three baseline algorithms are also used:

• Fast Correlation-based Filter (FCBF) algorithm [128]. This algorithms lies in

the filter approach and uses a correlation measure in order toremove redundant

attributes while retaining the relevant ones.

• Sequential Forward Selection (SFS) algorithm [41]. This algorithm is a greedy

one that first includes the best attribute found, then looks for the second-best by

trying to add any possible attribute to the one previously selected, and continues

in this way until no improvement is obtained when adding a newattribute. SFS

is usually combined with wrapper evaluation and so improvement is measured
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3.6 Experiments with Replacement and Early Stopping

in terms of accuracy. In the worst case it carries outO(n2) wrapper evaluations.

In practice, ifm attributes are finally selected then it carries out about(m+1) ·n
wrapper evaluations (n+ (n− 1) + ...+ (n−m)).

• Incremental Wrapper-based Subset Selection (IWSS) algorithm is the approach

to improve by using replacement. Therefore, it is used as baseline, using the

version that implements MinFoldersBetter as relevance criterion (see Section

3.3).

As validation criterion, standard 10-fold cross-validation is run. Therefore, the

results reported in this section are the average of the results obtained for each one of

the folds.

3.6.3 Testing IWSS with replacement

First, the impact of including replacement on incremental selection is tested. Table

3.11shows the results when consideringmf = 2 andmf = 3 as relevance criterion.

A superscript is used with the value ofmf andr as subscript when using replacement.

Therefore, initially four algorithms are tested: IWSS2
r, IWSS3r, IWSS2 and IWSS3.

From the results, it is observed how FCBF always includes (many) more attributes

in the selected subset than the wrapper-based ones. With respect to accuracy, there are

some differences depending on the dataset, but when carrying out a statistical analysis

with multiple datasets and multiple algorithms, no significant difference is observed in

most of the cases (see Section3.6.6). Returning to the number of selected attributes,

IWSS selects less attributes than SFS in all the datasets except GCM. In this case it

is also worth commenting that IWSS is faster than SFS because it only carries outn

wrapper evaluations.

Whenreplacementis introduced, then the number of variables selected by IWSSr

is smaller than that by SFS and IWSS. With respect to complexity, as it will analyzed

in Section3.6.5, IWSSr carries out almost the same number of wrapper evaluations as

SFS (but it selects fewer attributes). Of course, we can alsonote how the relevance

criterion also plays its role, thus versions requiring being better in 3 folders to be

judged as relevant, are more restrictive than versions thatrequire being better in only

2 folders, therefore IWSS3 and IWSS3r selects less attributes than IWSS2 and IWSS2r.

With respect to the classifier used, a similar behavior is detected in the three cases.
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Table 3.11: Results of SFS, FCBF, IWSS and IWSSr for classifiers NB, kNN and C4.5.
DataSet SFS FCBF IWSS2 IWSS3 IWSS2

r IWSS3
r

Colon 83.87 5.9 77.42 14.6 80.65 3.8 80.65 3 83.87 2.8 82.26 2.1

Leukemia 87.50 3.2 95.83 45.8 87.50 2.5 86.11 1.7 87.50 2 86.11 1.6

Lymphoma 83.33 7.1 78.13 291 76.04 8.8 71.88 6.1 80.21 5.9 73.96 5.6

DLBCL 80.85 3.6 97.87 49.9 85.11 1.9 87.23 1.5 80.85 1.8 87.23 1.5

Prostate 75.00 5.4 61.03 35.8 77.94 11.1 79.41 7.2 78.68 7 79.41 5

Lung 93.92 2.5 99.45 115.2 97.24 2.7 96.13 1.7 97.24 2.4 95.58 1.6

GCM 58.42 18.3 68.95 57.1 64.21 36.6 64.74 24.5 59.47 19.9 58.42 14.5

Arcen 68.00 4.6 70.00 34.2 70.00 13.4 70.00 6.3 72.00 6.2 71.00 5.5

Madelon 60.75 6.5 61.75 4.6 59.85 13.3 60.00 8.9 60.50 8.0 59.90 6.1

Dorothea 91.25 13.2 92.63 92.8 93.50 7.4 93.63 3.6 92.88 6.3 92.63 3.7

Dexter 76.00 13.8 86.00 34.3 81.00 19.6 81.67 12.9 83.00 12.9 80.00 10.0

Gisette 94.05 26.09 88.03 30.4 94.68 112.6 94.28 73.4 94.07 30.7 93.28 20.8

Mean 79.41 9.2 81.42 67.1 80.64 19.5 80.48 12.6 80.86 8.8 79.98 6.5

(a) NB

DataSet SFS FCBF IWSS2 IWSS3 IWSS2
r IWSS3

r

Colon 66.13 4.8 80.65 14.6 82.26 6.3 75.81 4.6 77.42 4.9 82.26 3.6

Leukemia 88.89 2.3 94.44 45.8 88.89 2.8 86.11 2.1 87.5 2.2 90.28 1.9

Lymphoma 79.17 8.2 91.67 291.0 81.25 12.5 78.13 8.2 78.13 7.7 78.13 6

DLBCL 89.36 3.4 95.74 49.9 85.11 3.5 78.72 2.1 85.11 2.5 78.72 2.1

Prostate 78.68 4.6 77.94 35.8 86.03 8.6 86.76 5.9 88.97 5.3 89.71 4.3

Lung 95.58 2.6 99.45 115.2 96.13 2.7 95.58 2.2 96.69 2.5 95.03 2

GCM 56.84 17.9 63.16 57.1 65.26 34.1 51.05 2.5 55.79 20.5 57.89 15.4

Arcene 71.00 4.6 66.00 34.2 76.00 13.2 71.00 7.9 72.00 6.9 77.00 5.2

Madelon 52.35 6.5 55.50 4.6 88.00 11.7 87.85 10.6 87.85 8.1 88.70 8.4

Dorothea 91.50 13.2 91.88 92.8 91.88 18.2 92.00 8.7 93.13 15.9 91.63 8.1

Dexter 73.67 13.8 80.00 34.3 83.33 24.6 80.00 15.5 80.21 20.1 76.67 12.9

Gisette 92.15 26.9 90.03 30.4 95.97 100.4 96.05 71.6 - -

Mean 77.94 9.1 82.21 67.1 85.01 19.9 81.59 11.8 82.07 8.8 82.37 6.4

(b) KNN

DataSet SFS FCBF IWSS2 IWSS3 IWSS2
r IWSS3

r

Colon 80.65 3.3 85.48 14.6 79.03 2.7 80.65 2 79.03 2.3 82.26 2

Leukemia 87.50 1.6 81.94 45.8 83.33 1.1 83.33 1 84.72 1.1 84.72 1

Lymphoma 71.88 8.2 82.29 291.0 75.00 8.9 78.13 6.2 77.08 6.4 77.08 5.1

DLBCL 78.72 1.5 72.34 49.9 76.60 1.5 76.60 1.2 82.98 1.3 76.60 1.2

Prostate 78.68 6.9 79.41 35.8 88.24 4.9 88.97 3.8 79.41 4.5 88.24 3.5

Lung 93.92 1.8 96.13 115.2 95.03 1.3 95.03 1.3 93.92 1.3 95.03 1.3

GCM 41.05 14.8 51.58 57.1 45.26 23.4 46.32 16 41.58 15.6 40.53 11.3

Arcen 65.00 4.6 85.00 34.20 82.00 7.5 73.00 5.2 80.00 5.4 77.00 4.5

Madelon 61.55 6.5 61.90 4.60 77.25 23.1 77.90 19 77.90 13.4 78.10 12.0

Dorothea 91.25 13.2 89.88 92.80 91.63 9.7 92.00 7.7 91.88 8.5 97.75 7.5

Dexter 79.67 13.8 81.67 34.30 81.33 13.2 81.33 7.7 80.67 9.6 81.33 7.2

Gisette 93.73 26.9 91.32 30.40 93.70 67.8 93.63 45.4 93.75 35.8 93.28 27.6

Mean 76.97 8.6 79.91 67.1 80.70 13.8 80.57 9.7 80.24 8.8 80.99 7.0

(c) C4.5
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Therefore, for the sake of simplicity, from now on the study shall continue using only

Naive Bayes.

3.6.4 Testing early stopping

In this section, the first performed is early stopping in combination with replacement,

giving rise to algorithm IWSSr,s, but later, for the sake of completeness, it is also

analyzed the behavior of using early stopping without replacement (IWSSs). In the

analysis three different values have been tested forθ: 0.2, 0.4 and 0.6. The results

obtained by these algorithms are shown in Table3.12.

From the results it is observed how the number of selected attributesslightly in-

creases with the value ofθ. However, the difference both in number of attributes and

in accuracy is not statistically significant (as discussed in Section3.6.6). Of course,

there is a difference in the efficiency (CPU time) of the algorithms.

3.6.5 Testing Complexity

To analyze the complexity of the algorithms, focus is on the number of wrapper eval-

uations carried out. Obviously, no data is reported for basic IWSS because it hasO(n)

complexity and, in fact, exactlyn wrapper evaluations are carried out. Furthermore,

because no significant difference arises with respect toθ, the smallest tested value

(θ = 0.2) is selected for the following analysis. Table3.13.(a) shows the number of

wrapper evaluations carried out by the different algorithms. With respect to the com-

plexity order, we know that in the worst case SFS and all the variants of IWSSr have

worst-case complexityO(n2). However, in practice the algorithms are far from this

number of evaluations, so Table3.13.(b) shows the minimum and maximum complex-

ity order computed from the actual number of evaluations carried out over the twelve

datasets, and also the fitted value which minimizes the root mean squared error.

From the results, is is observed how SFS is a bit more complex than IWSSr and

also how theestimatedactual complexity order for both algorithms is far fromn2. On

the other hand, when early stopping is introduced the analysis is clear: the number of

evaluations carried out by IWSS with replacement decreases to be linear, while when

replacement is not used the complexity order decreases to besub-linear.
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Table 3.12: Results obtained for NB when using early stopping.
IWSS2

r,s IWSS3
r,s

θ=0.2 θ=0.4 θ=0.6 θ=0.2 θ=0.4 θ=0.6

Dataset Acc. #f Acc. #f Acc #f Acc #f Acc. #f Acc. #f

Colon 83.9 2.5 83.9 2.5 83.9 2.5 82.3 2.1 82.3 2.1 82.3 2.1

Leukemia 87.5 2.0 87.5 2.0 87.5 2.0 86.1 1.6 86.1 1.6 86.1 1.6

Lymphoma 80.2 5.9 80.2 5.9 80.2 5.9 77.1 5.5 77.1 5.5 74.0 5.6

DLBCL 80.9 1.7 80.9 1.7 80.9 1.7 87.2 1.5 87.2 1.5 87.2 1.5

Prostate 77.9 5.6 78.7 5.9 77.9 6.6 80.9 4.7 79.4 4.9 78.7 4.9

Lung 97.2 2.4 97.2 2.4 97.2 2.4 95.6 1.6 95.6 1.6 95.6 1.6

GCM 58.9 17.5 61.1 18.1 58.4 18.8 60.0 13.0 59.5 13.7 59.5 13.7

Arcene 72.0 5.2 69.0 5.6 72.0 5.9 73.0 4.3 72.0 5.0 70.0 5.1

Madelon 60.4 5.9 60.4 6.7 59.9 7.3 60.2 4.1 60.4 5.4 60.0 5.6

Dorothea 93.0 5.2 92.9 6.3 92.9 6.3 92.6 3.5 92.6 3.7 92.6 3.7

Dexter 83.7 10.8 83.7 11.4 83.0 11.8 80.7 9.2 81.0 9.3 81.0 9.8

Gisette 93.9 25.3 93.9 28.6 94.1 30.2 93.1 18.5 93.1 19.4 93.2 20.1

Mean 80.8 7.5 80.8 8.1 80.7 8.5 80.7 5.8 80.5 6.1 80.0 6.3

(a) With replacement

IWSS2
s IWSS3

s

θ=0.2 θ=0.4 θ=0.6 θ=0.2 θ=0.4 θ=0.6

Dataset Acc. #f Acc. #f Acc. #f Acc #f Acc #f Acc. #f

Colon 80.7 3.5 80.7 3.5 80.7 3.6 80.7 3.0 80.7 3.0 80.7 3.0

Leukemia 87.5 2.5 87.5 2.5 87.5 2.5 87.2 1.5 86.1 1.7 86.1 1.7

Lymphoma 76.0 8.5 76.0 8.7 76.0 8.7 86.1 1.7 71.9 6.1 71.9 6.1

DLBCL 85.1 1.8 85.1 1.9 85.1 1.9 71.9 6.1 87.2 1.5 87.2 1.5

Prostate 78.7 10.8 78.7 10.8 78.7 11.0 77.9 6.8 79.4 6.9 79.4 6.9

Lung 97.2 2.7 97.2 2.7 97.2 2.7 96.1 1.7 96.1 1.7 96.1 1.7

GCM 63.7 33.7 64.7 35.4 65.3 35.9 57.9 20.8 61.6 22.9 62.1 23.2

Arcene 72.0 12.1 70.0 13.2 70.0 13.4 70.0 5.7 69.0 5.9 69.0 6.1

Madelon 60.3 11.7 59.8 13.1 59.8 13.2 60.2 7.2 59.9 8.5 60.1 8.8

Dorothea 93.5 7.4 93.5 7.4 93.5 7.4 93.6 3.5 93.6 3.6 93.6 3.6

Dexter 83.0 17.2 83.3 18.5 81.3 19.2 80.7 11.6 81.0 12.1 81.3 12.8

Gisette 94.8 109.3 94.7 112.4 94.7 112.6 94.3 72.0 94.3 73.1 94.3 73.4

Mean 81.0 18.4 80.9 19.2 80.8 19.3 79.7 11.8 80.1 12.3 80.2 12.4

(b) Without replacement
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Table 3.13: Number of evaluations and estimated complexityorder (θ = 0.2 is used

for algorithms implementing early stopping)
Dataset SFS IWSS2r IWSS3r IWSS2r,s IWSS3r,s IWSS2s IWSS3s
Colon 13800 7277 6181 1177 1025 627 621

Leukemia 29942 21378 18489 2153 1942 1441 1472

Lymphoma 32611 27663 26238 3169 3376 982 962

DLBC 18520 11134 10062 1094 1009 815 807

Prostate 80640 94508 73422 12196 9370 4494 3949

Lung 43866 42604 32570 4274 5544 2516 3525

GCM 310016 309750 231983 50754 44233 9321 8987

Arcene 56000 67359 58928 8202 7149 3928 3183

Madelon 3750 3818 3078 700 397 287 249

Dorothea 1420000 441346 249337 73246 45704 28303 25667

Dexter 296000 255027 211480 32536 29420 6423 5354

Gisette 184500 137051 96267 32340 23999 2526 2408

Mean 207470 118243 84836 18487 14431 5139 4765

(a) Number of wrapper evaluations carried out

SFS IWSS2r IWSS3r IWSS2r,s IWSS3r,s IWSS2s IWSS3s
min 1.13 1.12 1.08 0.84 0.83 0.81 0.81

fitted 1.23 1.13 1.08 0.97 0.93 0.89 0.88

max 1.42 1.39 1.35 1.22 1.18 0.94 0.94

(b) Estimated complexity order (O(nx))

3.6.6 Statistical Analysis

In order to corroborate conclusions, a statistical analysis is run based on the use of the

Friedman test [37] followed by a post-hoc Holm test [42], as recommended in [23]

when having to analyze multiple algorithms.

Tests for the case ofmf = 2 andmf = 3 are performed separately, so for each

of these two cases the set of tested algorithms contains: SFS, FCBF, IWSS, IWSSr,

IWSSs (θ=0.2,0.4,0.6) and IWSSr,s (θ=0.2,0.4,0.6). Since these algorithms could not

be run using classifier c4.5 nor classier k-NN for databaseGisettedue to its high com-

putational load (see Table3.13), this database is not included in the tests (and values

in Table3.14 are the mean of the other 11 datasets). Thus, the input for theFried-

man test for each classifier consists of 10 algorithms with 11input values (mean of

the 10CV for each of the 11 datasets). The procedure of analysis is similar to the one

used in previous section; that is, for each classifier: first,run the Friedman test for

accuracy values. If any statistical difference is found, then the Holm test is performed

to find differences with the best algorithm found (control algorithm). Secondly, atten-

tion is payed to the number of selected attributes, repeating the previous process but
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considering only those algorithms not found to be statistically different with respect

to accuracy. Finally, the remaining algorithms are regarded as not being statistically

different.

In order to get more general conclusions, the analysis is performed over the three

classifiers considered in Section3.6.2.

Table3.14shows the results for each classifier when running tests based on accu-

racy, withmf = 2 (part (a)) andmf = 3 (part (b)) respectively. For bothmf = 2

andmf = 3, the Friedman test does not find any algorithm to be statistically different

from the others.

Then, Table3.14.(c) and (d) shows the result for the analysis over the numberof

selected variables. In this case, the lower this number is, the better the algorithm per-

formed. As it can observed, algorithm IWSS with replacement and early stopping

(θ = 0.2) is always chosen as control classifier (marked with a• in the table); then, a

Holm test is run and the algorithms found to be statisticallyworse than the control have

their cells marked grey in the table. Thus, algorithm IWSSsr (θ = 0.2) is found to be

statistically better than all the others algorithms exceptfor the other three algorithms

also performing replacement and/or early stopping. This proves that the proposed im-

provements for canonical IWSS (replacement and early stopping) achieve statistically

lower cardinality in the final subset of selected features without downgrading accuracy

performance.

3.7 Optimizing IWSS with replacement for Naive Bayes

by embedding the classifier

In previous Sections it has been shown how IWSSr has the same worst-case complexity

as sequential forward selectionO(n2), but that in practice the algorithm is far from this

worst case. Furthermore, with the use of early stopping the number of evaluations

is drastically reduced (without degrading its performance), achieving a linear or sub-

linear number of wrapper evaluations. This Section goes onestep further and shows

how for those classifiers that allow incremental construction with respect to included

variables, the efficiency of the selection algorithm can be significantly improved.

Up to now we have dealt with the wrapper algorithm by managingthe classifier
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Table 3.14: Results of the statistical analysis
SFS FCBF IWSS IWSSs IWSSr IWSSr,s

θ =0.2 θ =0.4 θ =0.6 θ =0.2 θ =0.4 θ =0.6

NBayes 78.08 80.82 79.37 79.89 79.64 79.39 79.65 79.60 79.43 79.60

c4.5 75.44 78.88 79.52 79.43 79.51 79.51 78.92 79.08 79.04 79.01

k-NN 76.65 81.49 84.01 83.25 83.54 83.69 82.05 81.86 82.42 82.37

(a) Statistical tests regarding accuracy (MinFolders=2)

SFS FCBF IWSS IWSSs IWSSr IWSSsr

θ =0.2 θ =0.4 θ =0.6 θ =0.2 θ =0.4 θ =0.6

NBayes 78.08 80.82 79.22 78.63 79.06 79.10 78.77 79.44 79.38 78.81

c4.5 75.44 78.88 79.39 79.11 79.33 79.39 79.88 79.36 79.31 79.44

k-NN 76.65 81.49 80.27 80.56 80.69 80.25 82.36 81.38 82.08 82.22

(b) Statistical tests regarding accuracy (MinFolders=3)

SFS FCBF IWSS IWSSs IWSSr IWSSsr

θ =0.2 θ =0.4 θ =0.6 θ =0.2 θ =0.4 θ =0.6

NBayes 7.6 70.5 11.0 10.3 10.8 11.0 6.8 •5.8 6.3 6.5

c4.5 6.93 70.5 8.85 8.1 8.7 8.7 6.7 •5.3 5.9 6.1

k-NN 7.4 70.5 12.6 11.9 12.4 12.5 8.8 •7.9 8.3 8.6

(c) Statistical tests regarding number of selected subsets(MinFolders=2)

SFS FCBF IWSS IWSSs IWSSr IWSSsr

0.2 0.4 0.6 0.2 0.4 0.6

NBayes 7.6 70.5 7.0 6.4 6.8 7.0 5.2 •4.6 4.9 5.0

c4.5 6.93 70.5 6.46 5.8 6.3 6.4 5.1 •4.3 4.6 4.9

k-NN 7.4 70.5 8.2 7.5 8.0 8.2 6.4 •5.6 5.9 6.1

(d) Statistical tests regarding number of selected subsets(MinFolders=3)
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like a black box. That is, each time we need to evaluate a new subsetS, then a new

classifier is constructed from scratch by using the projection of the dataset over the

candidate subset,T↓(S∪C), and validated by classifying each instance of the test set.

In this case, and due to the 5-fold cross validation used to assess the goodness of a

candidate subset, that means learning five classifiers (using 4
5

of the instances each

time) and validating each one over1
5

of the instances in the training set.

For example, if NB is the classifier used, which hasO(tn) at training1 andO(cn)

for classifying one instance, then we get the following complexity for IWSS and

IWSSr respectively:

• IWSS.

- Learning: 5 · O(4
5
tm) · O(n), that is,4 · O(tmn) or simply O(tmn) by

removing the constant. In the worst casem = n and so we getO(tn2).

- Classification2: 5 · t
5
· O(cm) · O(n), that is,O(tcmn). In the worst case

(m = n) and so we getO(tcn2).

• IWSSr. The main difference is that now each time a variable is tested to be

included or not in the selected subset,m + 1 candidate subsets are evaluated

(adding the new one and trying them possible replacements). Applying the

previous computations we get:

- Learning:O(tm2n+ tmn). And in the worst case we haveO(tn3 + tn2).

- Classification:O(cm2tn+cmtn). And in the worst case we haveO(cn3t+

ctn2).

If the classifier is used as ablack box, this is what we get, but for some classifiers

that can be constructed incrementally with respect to the number of variables included,

we can do it better by embedding the process of learning and validating the classifier

inside the wrapper process. This is, for example, the case ofNaive Bayes, which is

described below, distinguishing between learning and classification phases.

1 Notation: n is the number of attributes in the training set,t is the number of instances in the

training set,m is the number of attributes selected by the FSS algorithm andc the number of classes

(c = |C|).
2In this analysis by classification we do not refer to the cost of classifying an instance with the

resulting classifier, but to the classification process of the test folders carried out in the inner validation

processes.
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Learning.-

Because of its independence assumption, no structural learning is required in NB,

so only parameter learning is required. Thus, in IWSS and IWSSr when a new attribute

is studied, learning is reduced to estimating its conditional probability given the class.

Therefore, avoiding the constant (4), time complexity isO(t) in each call, yielding

O(tn) in the whole process. Notice that this complexity order is the same in IWSS

and IWSSr because the conditional probability table for each attribute is computed

only once. With respect to space complexity, we simultaneously need to store the

probability tables of the attributes in the currently selected subset plus the one for the

attribute under study, that is,O(mcr), r being the max number of values for a predictive

attribute. Therefore, both in time and space, the incremental processes have the same

complexity as if we were learning the whole model one time from scratch.

Classification.-

In order to deal with classification in an incremental way, the first step is to move

computations to a log scale. In this way we can take into account the impact of a new

variable by addition or discard it by subtraction (this prevents us from having problems

with zero values). Thus, instead of computing

p(x1, x2, . . . , xm|c) = p(c) ·
m
∏

i=1

p(xi|c)

now, we compute:

Lp(x1, x2, . . . , xm|c) = log(p(c)) +
m
∑

i=1

log(p(xi|c))

The second step is to maintain a table in memory withc rows for each instance

(ordered by using the test folder of the 5-fold cross validation). Columns of this table

storeLp(xi|c) for each attribute in the current selected subset, plus a column con-

taining the valueLp(x1, . . . , xm|c) for the instance projected over the current selected

subset. Table3.15shows the structure of the table, whereq = t/5 andi↓X1

11 denotes the

projection of the first instance of the first folder over variableX1, that is, we take the

value of variableX1 in such an instance.

By using the previous table, IWSS and IWSSr perform incremental classification

as follows:

• IWSS. Let us assume thatS = {X1, . . . , Xm} is the selected subset andXj is

the attribute under study. Then, at learning timeP (Xj|C) has been estimated.
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Test for Fold instance id. X1 . . . Xm Lp(X1, . . . , Xm|c)
i11 Lp(i↓X1

11 |c1) . . . Lp(i↓Xm

11 |c1) Lp(i
↓(X1,...,Xm)
11 |c1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

i11 Lp(i↓X1

11 |cc) . . . Lp(i↓Xm

11 |cc) Lp(i
↓(X1,...,Xm)
11 |cc)

1 . . . . . . . . . . . . . . .

i1q Lp(i↓X1

1q |c1) . . . Lp(i↓Xm

1q |c1) Lp(i
↓(X1,...,Xm)
1q |c1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

i1q Lp(i↓X1

1q |cc) . . . Lp(i↓Xm

1q |cc) Lp(i
↓(X1,...,Xm)
1q |cc)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

i51 Lp(i↓X1

51 |c1) . . . Lp(i↓Xm

51 |c1) Lp(i
↓(X1,...,Xm)
51 |c1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

i51 Lp(i↓X1

51 |cc) . . . Lp(i↓Xm

51 |cc) Lp(i
↓(X1,...,Xm)
51 |cc)

5 . . . . . . . . . . . . . . .

i5q Lp(i↓X1

5q |c1) . . . Lp(i↓Xm

5q |c1) Lp(i
↓(X1,...,Xm)
5q |c1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

i5q Lp(i↓X1

5q |cc) . . . Lp(i↓Xm

5q |cc) Lp(i
↓(X1,...,Xm)
5q |cc)

Table 3.15: Table stored in memory for incremental classification
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Now, we compute a vector (column) as in Table3.15for Xj, containinglog(i↓Xj

kl

for each state ofC. Then we can compute the columnLp(i↓(X1,...,Xm,Xj)
kl |C) just

by adding the content of the last column in the table with the vector recently

computedLp(Xj|C). Thus, for each new variable the complexity of this step is

O(2ct) or justO(ct) avoiding the constant. Therefore, the global complexity is

O(ctn). With respect to table updating, if the variable under studyXj is not in-

cluded in S then no modification is carried out over the table,otherwise, the new

vectorLp(Xj|C) is added and the last column replaced byLp(i
↓(X1,...,Xm,Xj)
kl |C).

Because these two vectors have been previously computed, only pointer opera-

tions are required to add and replace the two columns involved.

• IWSSr. Now, besides carrying out the same operations as before,m additional

vectors must be computed, each one corresponding to the replacement of a vari-

ableXr ∈ S by Xj. Computing each one of these vectors is done in the follow-

ing way:

Lp(i
↓(X1,...,Xr,...,Xm,Xj)
kl |C) =

Lp(i
↓(X1,...,Xr ,...,Xm)
kl |C)− Lp(i↓Xr

kl |C) + Lp(i
↓Xj

kl |C)

Thus, onlyLp(Xj|C) and the information (columns) contained in the table are

used, and som + 2 columns are computed instead of 2 as in IWSS, and the

complexity order isO(mct+ct), which leads to a global complexity ofO(nmct+

nct). Notice that as the search is best choice-driven, there is noneed to maintain

all the vectors simultaneously in memory.

Finally, it is obvious that space complexity during classification time is higher than

in the black boxapproach where only the statistics for the instance being classified

are maintained simultaneously in memory. Now, space complexity is O(tc(m + 3))

in IWSS andO(tc(m + 5)) in IWSSr becausem + 3 (or m + 5) columns must be

simultaneously in memory for IWSS (IWSSr). As in most casesm ≥ 3 andm ≥ 5,

the previous orders were reduced toO(2tcm) or simply toO(tcm). Therefore, the

memory requirements increase, but asm << n, in practice the space requirement is

easily affordable in today’s computers.

Table3.16shows a summary of the complexity orders. The main conclusion is that

in the case of IWSS the embedded method ism times faster on average (n in the worst

case) than the black box approach, both in learning and classification. With respect to
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Table 3.16: Summary of the complexity orders (average and worst case) for blackbox

and embedded NB
IWSS IWSSr

average worst average worst

Black Box O(tmn) O(tn2) O(tm2n+ tmn) O(tn3 + tn2) learning

O(tmnc) O(tn2c) O(tm2nc+ tmnc) O(tn3c+ tn2c) classification

Embedded O(tn) O(tn) O(tn) O(tn) learning

O(tnc) O(tnc) O(tncm+ tnc) O(tn2c+ tnc) classification

IWSSr, the reduction in classification is the same but a greater saving is obtained in

the learning stage, while we get linear complexity for the number of selected variables

(m) instead of cubic (m3). Therefore, the more attributes are selected, the greaterthe

gain in efficiency. On the other hand, the use of early stopping also has its impact,

because it reduces fromn to approximatelyθ · n the number of attributes studied, and

this is a variable which appears in all the complexity orderscalculated above. The next

subsection shows an empirical analysis of the impact of embedding the NB classifier

over the set of datasets considered.

3.7.1 Experimental testing of the embedded approach

The previous (big-O) complexity study has shown the expected theoreticalgain when

using the embedded approach instead of the black-box one. However, we know that

some implementation details, the use of logs, etc. can reduce or increase gain. In

this case, the gain is even more than expected due to the fact that with the embedded

approach no dataset management (mainly projections) is needed. Table3.17 shows

the number of times the embedded approach is faster than the black box using Naive

Bayes, considering original algorithms and also early stopping with θ = 0.2.

As observed from Table3.17, the gain is really significant, meaning that a painstak-

ing process requiring hours or days can be solved in seconds or minutes. Table3.18

shows the ratio between the canonical algorithms (black-box and no early stopping)

with respect to the embedded approach plus early stopping. These results give an idea

of the improvement obtained when concatenating the two improvements related to ef-

ficiency proposed up to here.
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Table 3.17: Ratio between the embedded and black-box approaches for Naive Bayes.

With and without early stopping (θ = 0.2).
IWSS2 IWSS2

r IWSS2

r,s IWSS2

s

Colon 9.04 46.67 15.92 6.99

Leukemia 56.89 191.08 169.97 22.39

Lymphoma 18.68 123.58 29.87 8.67

DLBCL 31.60 83.63 25.76 16.06

Prostate 85.59 592.65 376.99 41.76

Lung 56.66 240.00 89.98 18.03

GCM 59.83 683.94 550.60 44.68

Arcene 77.43 457.53 234.75 33.62

Madelon 6.03 21.44 7.20 3.78

Dorothea 395.03 2040.40 1661.41 232.20

Dexter 103.43 902.14 360.28 42.46

Gisette 78.04 188.20 154.15 43.66

Mean 81.52 464.27 306.41 42.86

Table 3.18: Ratio between the black-box (no early stopping) approach and the embed-

ded one using early stopping (θ = 0.2) for the Naive Bayes classifier.
Dataset IWWS IWSSr

Colon 17.13 56.26

Leukemia 74.59 257.96

Lymphoma 31.46 169.33

DLBCL 37.77 95.96

Prostate 121.61 993.18

Lung 84.92 393.18

GCM 103.39 1427.03

Arcene 112.91 711.23

Madelon 10.08 40.40

Dorothea 968.38 5053.54

Dexter 210.90 2251.70

Gisette 112.63 279.41

Mean 157.15 977.43

3.8 Discussion of Related Work

Apart from [98] and [33], which introduce the filter (or rank-based) wrapper approach

to feature subset selection and thus constitute the basis for the algorithms presented
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here, there are two recent papers that must be commented.

Nakariyakul and Casasent [80] presented an improved version of floating feature

selection that, among other steps, includes what they callreplacing the weak feature,

which is in fact atypeof replacement. The main difference with the approach in this

Chapter lies in the fact that this only testsm = |S| subsets when studying replacement

for a given subset S, while in [80] m · n subsets are analyzed because each time a vari-

ableXi of S is tested to beweak feature, a new step of forward selection is carried out,

taking as starting subsetS−{Xi}, in order to decide which of the remaining variables

is the best choice to replace theweak one(Xi). Furthermore, as thereplacing of the

weakstrategy is inserted in a floating method that combines forward and backward

selection phases, the resulting algorithm is quite expensive computationally. As an

example, the authors report that for a dataset with 250 attributes and selecting 15 of

them, their algorithm (termed IFFS) needs to evaluate 168200 candidate subsets while

forward selection only evaluates 7500. Thus, it is clear that although IFSS obtains

subsets of very high quality, its use is prohibitive in high-dimensional datasets such as

the ones tested in this chapter.

3.9 Conclusions

This Chapter shows four contributions to the improvement of the behavior of the IWSS

approach to feature selection. The first provides a study on different relevance criterion

for addition of new attributes in the final subset of selectedfeatures, concluding than

the heuristic condition ofMinFoldersBetter is an optimal configuration for IWSS.

The second contribution is related with getting more compact subsets and is im-

plemented by allowing the algorithm to test not only the inclusion of a new attribute

(the next one in the ranking) but also the possibility of swapping it with any of the

already included attributes. From experiments, IWSS with replacement proves to be a

the better choice, because it maintains the accuracy of the SFS and IWSS algorithms,

but includes fewer attributes in the selected subset. On theother hand, the number of

wrapper evaluations increases with respect to the linearity shown by IWSS, although

from the experiments in practice it is far from the theoretical quadratic worst case.

The third contribution in this Chapter directly tackles thisproblem by stopping

the algorithm early, that is, without analyzing all the predictive attributes. From the

experiments, is is concluded that the use of early stopping has a significant effect on
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the efficiency of the algorithms without degrading their performance (both in accuracy

and number of selected attributes).

Finally, this Chapter presents an optimization for incremental selection algorithms

when using classifiers that allow incremental constructionwhen adding variables, as

is the case of Naive Bayes. The idea is to avoid the use of the classifier as a black

box, and instead an embedded version of the classifier with the incremental selection

algorithm is proposed. The result (both theoretically and experimentally) is a much

more efficient incremental selection process.
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Chapter 4

An IWSS-based GRASP algorithm for

FSS

4.1 Summary

The IWSS approach introduced in Chapter3 presents one major problem related to

the filter ranking: it is deterministic, what derives in two consequences: (a) the search

space is highly reduced so it is very easy to fall in a local optimum and (b) features are

ordered based on a filter metric which does not capture interaction between features.

This Chapter proposes to improve the IWSS search with a GRASP method which (1)

makes the ranking stochastic, (2) extends the search space and, not theoretically, might

capture (in)dependencies between features.

This proposal to improve the IWSS algorithm is tested using 12high dimensional

databases with extensive experiments and show, not only that it performs better (main-

taining accuracy and reducing cardinality of the final subset and number of evaluations)

than IWSS but also even better than another feature subset selection algorithms known

in the literature.

4.2 Greedy Randomized Adaptive Search Procedure

Following the classification of search algorithms in Chapter2, the IWSS algorithm

falls into the category of a Ranker+Sequential search, wherethe ranking is created

using filter evaluations and the sequential search is incremental (forward) with wrapper
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evaluations. Thus, IWSS is known as an hybrid FSS algorithms because it mixes

filter and wrapper evaluations. Since the created ranking isdeterministic, the IWSS

approach presents two major problems:

• The incremental search is performed over a fixed ranking, so the search space is

highly reduced to a complexity ofO(n), and it is very probable to fall in a local

optimum.

• Some features ranked near the beginning of the ranking mightnot be relevant

for the class anymore once previous features have been selected and, on the

contrary, features ranked at the end of the ranking might become relevant after

some features have been selected.

By utilizing GRASP search with the IWSS algorithm in the construction stage, these

two problems are to be alleviated by (1) adding randomness atthe time of creating the

ranking , (2) repeating the processcreate ranking + incremental searcha fixed number

of times to find several solutions and identify the best one and (3) reducing the size of

the ranking instead of using all features.

4.2.1 GRASP

The greedy randomized adaptive search procedure (GRASP) [28] is a meta-heuristic

algorithm commonly applied to combinatorial optimizationproblems. There are two

clear stages in a GRASP algorithm:

1. Constructionphase. In this step a specific (deterministic) heuristic forsolving

the target problem is taken as a basis for constructing a solution. Thus, starting

from the empty set, the algorithm adds elements from all the possible candidates

until a solution is obtained. However, in GRASP some randomness is introduced

in this step in order to obtain a greedy randomized construction method (also

known as semi-greedy heuristic). Thus, instead of choosingthe best element

at each step of the construction, the algorithm chooses at random from a list of

promising ones.

2. Improvingphase. The solution constructed is taken as the starting point for a

local search in order to get an improved solution.
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GRASP algorithms run the previous two phases a number of times, working in

this way as a multi-start method. Because of the quality provided to the solution by the

deterministic greedy heuristic used as a basis, and becauseof the variability introduced

by the randomness added to the process, we can expect to obtain good starting points

but with enough variability, and so the multi-start method will eventually find a global

optimum.

Recently, [129] proposed to use GRASP for feature selection and compares it with

sequential floating algorithms (SFFS, SBFS [89]) and other meta-heuristics like tabu

search, genetic algorithms and memetic algorithms. Her conclusion is that tabu search

and GRASP outperform the other tested methods. The GRASP algorithm bases the

constructive phase on the randomized selection ofd attributes according to theirin-

group variability (a filter measure). This process is repeated several times and the

subset with the best fitness (computed by using the nearest neighbour approach) is

passed as the starting point for the improving step, which iscarried out by means of a

standard hill-climbing algorithm that uses the same fitnessmeasure and that also looks

for subsets having exactlyd variables. Then, the previous steps are iterated a number

of times. This approach, though returning good results for GRASP with respect to

other techniques, is not suitable when dealing with high-dimensional datasets. First, as

ot will be seen in the experiments, there is a great variability in the number of variables

selected for each dataset, so we cannot fix a number a priori. And second, the number

of evaluations (tested candidate subsets) with respect to the number of variables is too

high to be used with tens of thousands of variables. In fact, the experiments in [129]

only consider datasets having between 18 and 57 variables.

This section describes a proposal for the GRASP algorithm that reduces the num-

ber of evaluations to be sub-linear (with respect ton = |X|) and so it is suitable for

solving FSS in high-dimensional datasets. The pseudo-codeof the proposed algorithm

is shown in Figure4.2, and a detailed description is provided in the next two subsec-

tions.

4.2.2 Construction Stage: Randomizing IWSS

The IWSS algorithm is a very efficient algorithm (linear in thenumber of attributes)

that does however have two main disadvantages: (1) it relieson an univariate ranking,

so some interesting variables can be judged irrelevant/relevant just because some oth-
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ers have been judged irrelevant/relevant before; and (2) tobe sure all the potentially

relevant variables have been analyzed, the full ranking must be explored. As an ex-

ample, let us observe Figure4.1which is a plot of the relation between the number of

variables in the datasets and the position in the SU-based ranking of the last variable

selected by IWSS for the twelve datasets used in our experiments. As we can observe,

in 8 out of the 12 datasets, variables after position 100 (thenumber selected by the

linear-forward algorithm [40]) are selected, while the same happens in 6 out of the 12

datasets if we consider the first 10% of the ranking as theshold. The proposal on this

chapter ties to (partially) alleviate these two disadvantages by including randomness.

The idea is as follows:

• Since the process is to be repeated several times, each iteration only considers

a small number of attributes. In this way, the number of wrapper evaluations is

drastically reduced.

• The subset of variables considered at each iteration is selected in aninformed

random way. That is, each variableXi has a selection probability that is pro-

portional toSU(Xi, C). In this way,goodvariables will be selected more often,

while badvariables have only a small chance. This step is implementedin line

7 of the algorithm in Figure4.2.

• Once we have selected the variables to be used, they are ranked according to

SU(Xi, C) (line 8 of Figure4.2). Notice, that as only a few variables (with

respect to the total) are considered, maintaining a good order is essential, because

otherwise given the greedy behaviour of IWSS, very noisy (andlarge) subsets

will be selected.

• Because few variables are considered at each iteration, we give room to the

selection of variables that otherwise would always be discarded. For exam-

ple, let us suppose that our ranking starts withX1, X2, X3, . . . and that in the

score assigned by the wrapper evaluator the following holds: acc(X1, X2) >

acc(X1); acc(X1, X2, X3) < acc(X1, X2), andacc(X1, X3) > acc(X1, X2).

Then, if we consider this ranking, IWSS will always include the suboptimal se-

lection (X1, X2) instead of(X1, X3), which is better. However, because of the

(pseudo)random selection of small subsets, it could happenthanX2 is not se-

lected in some iterations, and so(X1, X3) has its opportunity.
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Figure 4.1: Relation between the number of attributes in the dataset and the position

of the last attribute selected by IWSS.

4.2.3 Improving step

As mentioned above, the usual improving step in a GRASP algorithm takes the solu-

tion found in the constructive step,S, and tries to improve it by using a local search

(e.g. Hill-Climbing). However, given our goal of developinga non-expensive-CPU

algorithm for high dimensional datasets, proceeding in this standard way is not pos-

sible. Notice that a Hill-Climbing algorithm needs exactlyn wrapper evaluations just

in its first iteration, because it tries to include all the non-used variables one by one,

and to remove the already selected variables in the same way.Because we are dealing

with thousands of variables, the requirements of such a local optimizer are too high.

Therefore, we must think in of a different way of improving.

Our idea is based on the fact that an FSS problem can be viewed as a bi-objective

problem, where two parameters are considered: the cardinality of the selected subset

and the accuracy provided by such a subset. Taking this into account we can give the

following definition:

Definition 1 Given two candidate subsetsS1 andS2, we say thatS1 dominatesS2 if

|S1| ≤ |S2| andacc(S1)⊲
1 acc(S2). Otherwise we say thatS2 is non-dominated byS1.

1See Section3.2for deep explanation of the⊲ comparator.
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In T: training set;M : filter measure;C classifier algorithm;

size number of variables to consider at each iteration;

numIt: number of iterations; improving method

Out S // The selected subset

// initialization

1 NDS ← ∅
2 for each Xi ∈ X

3 scores[i]=MT(Xi, C) // e.g.SU(Xi, C)

4 for each Xi ∈ X // Prob. of selecting eachXi

5 probSel[i]= scores[i]/
∑n

j=1 scores[j]

// GRASP

6 for it=1 to numIt

// constructive step

7 subset← samplesize variables fromX without replacement by usingprobSel[ ]

8 R[ ]← create a rank for variables insubset by usingscores[ ]

9 S = {R[1]} // S will contain the solution obtained by IWSS

10 BestData = evaluate(C, S,T)

11 for i = 2 to R.size()

12 Saux = S ∪ {R[i]}
13 AuxData = evaluate(C, Saux,T)

14 if (AuxData⊲ BestData)then

15 S = Saux

16 BestData = AuxData

// improving step

17 if (update(NDS,S)) then

18 Xnds ← ∪Si∈NDS Si

19 S′ ← runImprovingMethod(Xnds, S, C,T)

20 update(NDS,S′)

21 return all or bestsolution(s) inNDS

Figure 4.2: Proposed GRASP algorithm for FSS.

76



4.2 Greedy Randomized Adaptive Search Procedure

In NDS: the set of non dominated solutions.

sol: the candidate solution to be studied.

Out true if NDS is modified,false otherwise

parameterNDS is modified

1 If sol is dominated by anys ∈ NDS then return false

2 else

3 delete fromNDS all solutions dominated bysol

4 includesol in NDS

5 return true

Figure 4.3: Auxiliary functionupdate(NDS,sol).

Thus, if we have two different solutionssol1 = 〈{X1, X2}, 0.9, (f 1
1 , . . . , f

1
5 )〉 and

sol2 = 〈{X1, X3, X4}, 0.92, (f 2
1 , . . . , f

2
5 )〉, where the first component is the subset of

selected variables, the second one is the average accuracy over the five folders, and

f j
i is the accuracy in folderi for solutionj, which one is better?. Perhaps the correct

answer depends on some context, but without extra information, neithersol1 dominates

sol2 nor doessol2 dominatesol1, so it is difficult to decide.

The proposed algorithm will maintain a set of non-dominatedsolutions (NDS)

found during the search. Thus, each time a new solution is provided by the constructive

step, theNDS set is updated by using it (functionupdate in Figure4.3). Then, as we

can expect solutions insideNDS to be of good quality, a pool is made with all the

variables contained in the non-dominated solutions:Xnds. Finally, the improving step

consists of running an FSS algorithm whose search space is limited toP(Xnds). In

particular, the following ones are used:

• Hill-Climbing. The classical Hill-Climbing algorithm, taking as startingpoint

the solutionS andXnds as the list of possible attributes. The neighbourhood

used is formed by all the subsets having the Hamming distanceequals to 1 with

respect to the current solution. In this way, the number of evaluations per itera-

tion is |Xnds|.

• IWSS. This is the same algorithm (see Chapter3) used in the constructive phase

(lines 8-16 in Figure4.2), but now it is limited to the variables inXnds. The

number of evaluations is exactly|Xnds|.

• IWSSr. This algorithm consists of an enhancement of IWSS by adding the
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operation of replacement (see Chapter3). Thus, when an attribute ranked in

positioni is analyzed, not only is its inclusion studied but also its interchange

with any of the variables already included inS. That way, the algorithm can

retract some of its previous decisions, that is, a previously selected variable can

become useless after adding some others. As shown in Chapter3, this algorithm

obtains more compact subsets than IWSS. In the worst case IWSSrwill need

O(|Xnds|) evaluations, but in practice the exponent reduces to 1.2-1.3.

• SFS. The classical Sequential Forward Selection [60] (Chapter2).

• BARS. Best Agglomerative Ranked Subset[97] alternates between the construc-

tion of a ranking of the available subsets (initially singlevariables) and a growing

heuristic process that obtains all the combinations (by merging) of the first three

subsets in the ranking with each one of the remaining ones. After the growing

phase, all the subsets with worst accuracy than the current best one are pruned.

A new ranking is created and so on. The worst case complexity of BARS is

exponential, but in practice it evaluates fewer candidatesthan IWSSr.

Finally, the solution returned by theimproving search is used to (again) update

NDS (line 20 in Figure4.2).

Once the GRASP algorithm finishes, we have a set of solutions instead of a single

one, so it is possible to choose between returning all of themand letting the user decide

which one to use depending on the application context, or we can directly choose

one and return it. In this proposal, and in order to compare with standard algorithms

that only return one solution, a criterion has been decided that benefits small subsets

but without compromising accuracy. Concretely the following procedure is used: (1)

rank (from lowest to highest) the solutions inNDS by using the number selected

attributes; (2) select the first solution in the ranking asbest; and (3) run over the ranking

and replacebestby the solution currently analyzed only if it is better according to⊲

criterion.

4.3 Experiments

This section experimentally tests the GRASP proposal over a set of high-dimensional

datasets. Besides analyzing the different improving methods we propose, a comparison
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with state-of-the-art algorithms is also provided.

4.3.1 Methodology and Test Suite

In pursuit of our goal of dealing with high-dimensional datasets, and in order to obtain

reliable conclusions, we selected 12 publicly-obtained, previously presented in Section

3.6.1.

With respect to FSS subset selection algorithms, taking into account that wrapper

evaluation is used and the high cardinality of the datasets,the following four state-

of-the-art algorithms are used as a baseline for comparison: IWSS [33; 98], IWSSr

(Chapter3), BARS [97] and Linear Forward Selection (LFS) (Chapter2).

With respect to our proposal, we test five different instances of the GRASP algorithm

depending on the method selected for the improving step: HC, IWSS, IWSSr, SFS and

BARS.

In the experiments, all the filter evaluations were performed usingSymmetrical

Uncertainty(SU) and for wrapper evaluation we selected theNaive Bayes (NB)algo-

rithm Chapter2. The reason is two-fold: first, NB is known to be quite sensitive to the

presence of redundant and irrelevant predictive attributes, so it is a clear candidate to

test FSS; and second, preliminary experiments with other classifiers (decision trees and

nearest neighbours) have been carried out and the same conclusions were obtained, so

for the sake of clarity and conciseness, only the results forNB are shown here.

4.3.2 Results

The algorithms IWSS and IWSSr do not need parameters. For algorithm LFS we

use the code in WEKA [123] and follow the recommendations in [40] (fixed-set with

k=100). In the case of BARS we use the values recommended by the authors [97]: k=3

(number of subsets used as seed to form candidates by combination with the remain-

ing ones in the ranking) andℓ=50% (percentage of the rank to be explored). However,

when BARS is used in the improving stage of our GRASP algorithm,ℓ is set to 100%

since the search is run over just a few attributes.

Regarding GRASP parameters, we carried out some preliminary tests with dif-

ferent values, and in this study the results with subset sizeequals to 100 are reported,

79



4. AN IWSS-BASED GRASP ALGORITHM FOR FSS

while two different values (50 and 100) were tested for the number of iterations (multi-

starts). The value of subset size can be tuned for each dataset, however, our goal is to

carry out an experimentation showing that the results can begeneralized to a wide

range of datasets without needing a specific tuning. In fact,the tested values are too

large for thesmallestdatasets (Madelon and Colon) but we maintain them in the test

suite for coherence with previous research.

Experiment 1.-

Table4.1 shows the results obtained when running the four deterministic algorithms:

IWSS, IWSSr, LFS and BARS. In all cases the average over a 10 fold cross validation

is reported foraccuracy, number of selected variablesandnumber of wrapper evalu-

ations. From the results, and before going into a deeper analysis, it is clear that LFS

obtains more compact subsets, needs (by far) fewer evaluations, but also obtains the

worst accuracy. Of course, if we increase the percentage of the rank considered, these

values would be considerably modified, but as shown in Figure4.1, the problem is that

we do not know in advance the correct percentage of the rank tobe used. In the limit

it is clear that LFS behaves like SFS, which is comparable in accuracy to IWSSr, but

obtains less compact subsets and needs more wrapper evaluations (Chapter3). With

regards to IWSS, it needs fewer evaluations than IWSSr and BARS but includes more

features in the selected subset. Regarding IWSSr and BARS, the latter needs fewer

evaluations and obtains more compact subsets. However, BARSonly explores half

the ranking while IWSSr explores all the variables. If all thevariables in the rank are

used as input in BARS, then the number of evaluations significantly increases (notice

that BARS explores3v subsets just in its first iteration,v being the number of consid-

ered attributes). Finally, it can also be observed that Gisette dataset is a sort of outlier,

because of the number of variables IWSS and IWSSr select in thatcase.

Experiment 2.-

With regards to the proposed GRASP algorithm, assuming (frompreliminary experi-

ments) that 100 is an adequate subset size, let us first investigate its performance by

allowing it to do50 iterations (or multi starts). Table4.2 shows the obtained results

when considering the five improving methods described in Section 4.2.3. Now, the

same statistics as before are shown, besides also the numberof non-dominated solu-
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Dataset IWSS IWSSr LFS BARS

Acc Atts Acc Atts Acc Atts Acc Atts

Colon 80.65 3.8 83.87 2.8 80.65 3.5 85.71 3.0

Leukemia 87.50 2.5 87.50 2.0 93.06 3.3 90.54 2.3

Lymphoma 76.04 8.8 80.21 5.9 71.88 8.9 73.67 6.1

DLBCL 85.11 1.9 80.85 1.8 87.23 3.8 76.00 2.4

Prostate 77.94 11.1 78.68 7.0 69.12 5.3 86.81 3.7

Lung 97.24 2.7 97.24 2.4 96.69 2.6 98.36 3.0

GCM 64.21 36.6 59.47 19.9 56.84 11.2 60.00 15.9

Arcene 70.00 13.4 72.00 6.2 68.00 2.6 74.00 4.9

Madelon 59.85 13.3 60.50 8.0 60.45 5.4 60.30 5.8

Dorothea 93.50 7.4 92.88 6.3 92.38 5.5 93.88 7.3

Dexter 81.00 19.6 83.00 12.9 76.33 8.2 82.67 12.8

Gisette 94.68 112.6 94.07 30.7 89.63 7.9 93.10 13.6

Mean 80.64 19.5 80.85 8.8 78.52 5.7 81.25 6.7

Number Of Evaluations

Colon 2000.0 7276.5 450.0 5578.4

Leukemia 7129.0 21378.4 430.0 14541.0

Lymphoma 40260.0 27663.0 990.0 15576.0

DLBCL 4026.0 11134.0 480.0 9476.9

Prostate 12600.0 94507.8 630.0 22578.8

Lung 12533.0 42603.5 360.0 24658.1

GCM 16063.0 309750.4 1220.0 69223.7

Arcene 10000.0 67359.3 360.0 23785.9

Madelon 500.0 3818.0 640.0 1403.1

Dorothea 100000.0 441346.2 650.0 203418.0

Dexter 20000.0 255027.3 920.0 31153.7

Gisette 5000.0 137050.7 890.0 9452.2

Mean 19175.9 118242.9 668.3 35903.8

Table 4.1: Results for the use of four deterministic FSS algorithms.

81



4. AN IWSS-BASED GRASP ALGORITHM FOR FSS

tions found in each case. Furthermore, because of the stochastic nature of GRASP, the

numbers now correspond to the average over 10 independent runs, each one using a

10-fold cross validation.

Experiment 3.-

Here it is investigated whether allowing the algorithm to doa larger number of itera-

tions (multi-starts) introduces a significant improvement. Table4.2shows the obtained

results.

4.3.3 Statistical Analysis

Statistical tests were performed in order to compare results obtained when running

9 different algorithms: 4 deterministic and the GRASP proposal with the five tested

improving methods. In order to be in a position to draw significant conclusions, a

multiple-algorithms multiple-datasets comparison is used by performing a Friedman

test [37] followed by a post-hoc Holm test [42], as suggested in [23] and using the

code provided in [39]. In all the cases the confidence level is set to the standard value

α = 0.05.

The analysis was performed in three stages. At each stage, a different parameter is

analyzed and only the algorithms considered non-differentto the control one (marked

with the• symbol) passed to the following stage. The three stages are:

1. First, the accuracy of the algorithms is compared. That is, it is not of interest to

design an algorithm too fast or that selects compact subsets, but to the price of

degrading the classification accuracy.

2. Second, the cardinality of the selected subsets is compared. Once accuracy has

been guaranteed, then it seems appropiate to prefer algorithms which select more

compact attribute subsets.

3. Finally, the number of wrapper evaluations required by each algorithm is com-

pared.

Tables4.4 and 4.5 show the results of the analysis fornumIt equal to50 and

100 respectively. The three rows correspond to the three stagespreviously described.
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Dataset HC IWSS IWSSr BARS SFS

Acc Atts Acc Atts Acc Atts Acc Atts Acc Atts

Colon 81.13 3.0 79.68 3.4 82.26 3.1 80.00 2.9 80.00 3.5

Leukemia 92.64 2.7 93.75 2.7 91.67 2.8 93.33 2.8 93.61 3.3

Lymphoma 74.90 6.1 77.40 7.5 77.29 6.8 76.35 6.8 78.75 7.5

DLBCL 86.17 2.2 86.60 2.3 87.02 2.1 85.74 2.2 87.66 2.5

Prostate 77.87 5.0 78.68 5.7 77.50 4.6 78.60 5.1 78.16 5.6

Lung 95.69 2.2 95.08 2.2 95.75 2.4 96.02 2.3 96.02 2.4

GCM 55.95 11.7 58.63 19.4 53.63 14.1 57.42 13.3 57.53 20.5

Arcene 80.00 5.7 79.30 6.0 78.50 5.7 79.00 5.2 79.30 6.3

Madelon 60.85 7.6 60.90 7.2 60.85 7.2 60.50 7.6 60.80 7.9

Dorothea 93.36 3.7 93.35 4.2 92.99 3.8 93.50 5.0 93.23 4.4

Dexter 83.47 15.7 83.27 15.5 83.37 15.6 83.07 15.6 83.10 15.8

Gisette 93.06 15.9 94.45 63.3 92.17 31.9 92.41 26.3 93.39 34.1

Mean 81.26 6.8 81.76 11.6 81.08 8.3 81.33 7.9 81.80 9.5

Number Of Evaluations

Colon 5065.2 5018.6 5053.6 5081.3 5013.7

Leukemia 5472.0 5117.5 5333.3 5761.9 5173.9

Lymphoma 5608.6 5287.9 6076.6 7343.4 5411.8

DLBCL 5206.1 5063.2 5152.6 5272.9 5064.8

Prostate 5252.4 5135.5 5283.2 5361.3 5248.8

Lung 5940.1 5243.6 5802.5 6781.9 5397.2

GCM 6150.9 5519.6 7090.1 8669.2 7632.9

Arcene 5524.3 5203.3 5649.4 5755.4 5392.6

Madelon 5076.8 5016.9 5059.9 5083.8 5004.4

Dorothea 5172.2 5075.9 5227.2 5502.8 5147.5

Dexter 5543.2 5061.8 5421.7 5760.3 5019.5

Gisette 7206.2 6549.3 10437.5 11511.7 9651.9

Mean 5601.5 5274.4 5965.6 6490.5 5763.3

Number Of Non-Dominated Solutions

Colon 3.0 2.7 2.7 3.0 3.1

Leukemia 6.7 6.7 6.4 6.7 6.8

Lymphoma 4.2 5.7 5.6 5.4 6.4

DLBCL 5.9 6.0 6.1 6.2 6.1

Prostate 4.2 5.2 4.0 4.6 5.0

Lung 9.0 9.4 9.6 9.5 9.7

GCM 3.4 7.1 5.0 4.1 7.2

Arcene 5.2 6.1 5.5 5.1 6.9

Madelon 2.2 2.4 2.5 2.6 1.4

Dorothea 4.4 4.4 4.2 5.3 5.4

Dexter 3.9 3.1 3.8 4.6 3.1

Gisette 4.1 14.3 7.9 7.2 6.9

Mean 4.7 6.1 5.3 5.3 5.7

Table 4.2: Mean Results for the Grasp-based FSS algorithm with numIt = 50.

83



4. AN IWSS-BASED GRASP ALGORITHM FOR FSS

Dataset HC IWSS IWSSr BARS SFS

Acc Atts Acc Atts Acc Atts Acc Atts Acc Atts

Colon 80.97 3.1 80.32 3.3 80.97 3.3 80.81 2.9 80.16 3.5

Leukemia 93.33 2.9 94.31 3.0 94.44 3.2 94.58 3.0 94.31 3.4

Lymphoma 76.15 6.1 77.81 7.2 76.25 7.0 78.33 7.0 78.54 7.8

DLBCL 86.81 2.3 86.38 2.2 87.23 2.3 89.36 2.3 87.45 2.4

Prostate 78.24 5.0 79.63 5.6 78.01 4.7 80.22 5.4 78.97 5.8

Lung 95.58 2.5 95.91 2.3 96.13 2.3 95.69 2.4 96.96 2.7

GCM 56.32 11.5 58.95 20.6 54.42 14.8 58.79 13.5 59.68 20.3

Arcene 80.20 5.6 80.40 6.1 80.30 5.7 80.80 5.8 80.20 6.8

Madelon 60.85 7.6 60.90 7.2 60.85 7.2 60.50 7.6 60.80 7.9

Dorothea 93.34 3.8 93.06 4.2 92.95 3.9 93.54 5.5 93.31 4.5

Dexter 83.63 15.7 83.27 15.6 83.30 15.6 83.20 15.6 83.17 15.9

Gisette 93.17 15.8 94.59 68.3 92.54 32.7 92.56 26.5 93.57 29.8

Mean 81.55 6.8 82.13 12.1 81.45 8.6 82.37 8.1 82.26 9.2

Number Of Evaluations

Colon 10103.3 10026.9 10085.7 10116.7 10020.2

Leukemia 10804.9 10207.8 10625.4 11295.1 10318.5

Lymphoma 11122.2 10489.7 11912.2 14549.3 10793.3

DLBCL 10359.8 10099.4 10230.8 10444.3 10110.8

Prostate 10381.2 10185.6 10349.7 10519.2 10292.2

Lung 11839.5 10446.1 11493.7 13292.1 10809.8

GCM 11407.5 10800.7 12996.5 15093.9 14134.0

Arcene 10838.7 10330.4 10900.9 11339.5 10645.4

Madelon 10076.8 10016.9 10059.9 10083.8 10004.4

Dorothea 10283.9 10111.1 10279.0 10912.4 10200.7

Dexter 10530.4 10068.4 10462.5 10847.8 10023.9

Gisette 12691.2 12299.3 17846.9 19349.0 16367.6

Mean 10869.9 10423.5 11436.9 12320.2 11143.4

Number Of Non-Dominated Solutions

Colon 3.4 3.1 3.2 3.3 3.5

Leukemia 8.4 8.2 8.0 8.4 8.7

Lymphoma 5.0 6.9 6.8 6.4 8.2

DLBCL 6.8 7.0 6.9 7.0 7.2

Prostate 4.8 5.4 4.6 5.2 5.6

Lung 11.8 11.7 11.6 11.8 11.9

GCM 3.8 8.5 5.5 4.9 7.5

Arcene 6.4 7.6 6.6 6.5 8.2

Madelon 2.2 2.4 2.5 2.6 1.4

Dorothea 5.4 5.1 5.3 6.6 6.1

Dexter 3.8 3.3 3.9 4.8 3.1

Gisette 5.0 16.5 8.9 7.9 7.6

Mean 5.6 7.1 6.2 6.3 6.6

Table 4.3: Mean Results for the Grasp-based FSS algorithm with numIt = 100.
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Deterministic algorithms are denoted by its name in boldface, while for the GRASP

approach (five most right columns) the algorithm is denoted by the name of the used

improving method, followed by a∗ superscript.

Stage IWSS IWSSr LFS BARS HC∗ IWSS∗ IWSSr∗ BARS∗ SFS∗

Acc 80.64 80.85 78.52 81.25 81.26 •81.76 81.08 81.33 81.80

Atts 8.8 6.7 •6.8 11.6 8.3 7.9 9.5

Evals 118242.9 35903.8 •5601.4 5965.6 6490.5

Table 4.4: Statistical Tests fornumIt = 50.

Stage IWSS IWSSr LFS BARS HC∗ IWSS∗ IWSSr∗ BARS∗ SFS∗

Acc 80.64 80.85 78.52 81.25 81.55 82.13 81.45 •82.37 82.26

Atts 8.8 •6.7 6.8 12.1 8.6 8.1 9.2

Evals 118242.9 35903.8 10869.9 •11436.9 12320.2

Table 4.5: Statistical Tests fornumIt = 100.

From the tables, the conclusions are pretty clear, and are basically the same in both

cases (50 and 100 iterations):

• None of the instances of the GRASP algorithm can be discarded by accuracy.

• LFS and IWSS are the worst algorithms in accuracy.

• Using SFS and IWSS as improving stage yields larger selected subsets than the

remaining algorithms.

• With respect to the number of evaluations, the GRASP approaches clearly im-

prove IWSSr and BARS.

• Between the three survival GRASP-approaches (HC∗, BARS∗ and IWSSr∗) BARS∗

is always tested as significantly worse when using the numberof wrapper evalu-

ations as parameter. This may seem strange according to the behaviour of BARS

when used as a deterministic algorithm, however it has a clear explanation. The

good performance of BARS with respect to the number of evaluations is due to

the pruning of subsets that are worse than the current best, however, now the
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pool of available attributes is formed by very good attributes (those in the non-

dominated solutions), therefore the subsets created by using these attributes are

also very good and only a few of them are pruned, increasing inthis way the

number of evaluations carried out by BARS in the improving stage.

It is also interesting to remark that the cases in which GRASP(HC∗) needs more

iterations (GCM and Gisette) are also those cases in which theuse of HC as improving

method obtains better results with respect to the cardinality of the selected subset. The

quality (few number of variables) in these two cases, also has an impact in the existence

of a small number of non-dominated solutions.

Finally, the same statistical study was conducted using as parameters accuracy and

cardinality of the selected subset, and using as input the eight survival algorithms:

IWSSr, BARS, HC∗(numIt=50), BARS∗(numIt=50), IWSS∗(numIt=50), HC∗(numIt=100),

BARS∗(numIt=100) and IWSS∗(numIt=100). The result was that no algorithm in this

set is found to be significantly worse with respect to those two parameters.

Therefore, a clear recommendation supported by these experiments is to use the

GRASP algorithm with 50 iterations or multi-starts, and using HC (or IWSSr) as im-

proving method.

4.3.4 Complexity Order

For the sake of completeness, the number of evaluations of the 9 tested algorithms over

the 12 used datasets was used to estimate their in-practice complexity orderO(nx).

The value ofx has been computed as the one minimizing the mean square errorwith

respect to the actual number of evaluations for the 12 datasets. Table4.6 shows the

results rounded to two decimal digits.

With respect to the deterministic algorithms, letting out IWSS which is linear and

LFS that is sub-linear but whose complexity is controlled bythe portion of attributes

used, it is interesting to see that IWSSr and BARS, whose worst case complexity

is quadratic and exponential respectively, have a better behaviour in practice with

O(n1.13) andO(n1.06) respectively. With respect to the GRASP algorithms, the number

of evaluations isnumIt ·subsetSize+ǫ, ǫ being the number of evaluations carried out

in the improving stage. Anyway, for comparison reasons their complexity orderO(nx)

is also estimated, and in all the cases the fitted complexity is sub-linear. Concretelyx
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IWSS IWSSr LFS BARS

min 1.00 1.12 0.56 1.04

fitted 1.00 1.13 0.64 1.06

max 1.00 1.39 1.04 1.17

numIt = 50 HC∗ IWSS∗ IWSSr∗ BARS∗ SFS∗

min 0.68 0.74 0.74 0.75 0.74

fitted 0.76 0.86 0.86 0.87 0.85

max 1.37 1.37 1.37 1.37 1.37

numIt = 100 HC∗ IWSS∗ IWSSr∗ BARS∗ SFS∗

min 0.80 0.80 0.80 0.81 0.80

fitted 0.87 0.87 0.87 0.87 0.87

max 1.48 1.48 1.48 1.48 1.48

Table 4.6: Complexity OrderO(nx) of the studied algorithms.

is between 0.76 and 0.87 whennumIt = 50 and is 0.87 for the five GRASP instances

whennumIt = 100 (the difference in this case is in the third decimal digit).

4.4 Conclusions and Future Work

This chapter has presented a GRASP-based algorithm for feature subset selection in

high dimensional datasets. The main goal is to maintain the performance (accuracy and

degree of reduction in the number of selected attributes) with respect to other state-of-

the-art FSS algorithms designed for this problem, but with the advantage of needing a

significantly smaller number of wrapper evaluations. To do this, the proposed GRASP

algorithm only uses a small fraction of the available attributes in each iteration, which

are selected in a pseudo-random way, that is, more promisingattributes have more

chance to be selected. Another novelty lies in the improvingstage, which instead of

only improving the last solution, forces cooperation between all the previously found

non-dominated solutionsby making a common pool with the variables they contain and

running a FSS algorithm over them. As a result, this chapter’s proposal has obtained

a highly competitive algorithm for this problem maintaining the performance of state-

of-the-art deterministic algorithms but in sub-linear number of wrapper evaluations.

From the different GRASP instances tested, it is recommendedto use those running
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Hill-Climbing or IWSSr in the improving stage.
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Chapter 5

Improvement of Incremental Wrapper

Selection Algorithms by Re-Ranking

5.1 Summary

As mentioned in Chapter2, a family of hybrid selection algorithms have recently ap-

peared in the literature: based on a filter ranking, they perform an incremental wrapper

selection over that ranking, as shown in Chapter3.

Though working fine, these methods still have their own problems: (1) they rely on

a univariate ranking that does not take into account interaction between the variables

already included in the selected subset and the remaining ones; and (2) because of this,

a great portion of the rank must be explored, which means thatthe number of wrapper

evaluations can still be too large.

This Chapter presents a proposal for working incrementally at two levels: block-

level andattribute-level. Block refers to a set of consecutive attributes in the rank-

ing. Thus, a hybrid algorithm starts with the first block of the ranking and uses it for

attribute-level incremental subset selection. Once the block has been analyzed, the

remaining attributes are re-ranked by taking into account the current selected subset.

Then the process continues with the first block in the new ranking and so on. The

method stops when the exploration of a new block does not produce any change in

the selected subset. Experiments shown in this chapter for such a proposal uses a fil-

ter re-ranking based on conditional mutual information, and the results show that the

re-ranking proposal drastically reduces the number of wrapper evaluations without de-
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grading the quality of the subset obtained; in fact, it achieves the same accuracy with a

reduction in the number of selected attributes.

5.2 Re-ranking in Hybrid Incremental Wrapper Selec-

tion Algorithms

The idea behind re-ranking is to improve the efficiency of theso-called hybrid filter-

wrapper FSS algorithms. To do this, the aim is todrasticallyreduce the number of

wrapper evaluations by increasing the number of the filter evaluations carried out. This

proposal is based on working incrementally, not only at the attribute level, but also at

the block or setof attributes level, taking into account the selected subset S) in the

previous blocks. Thus, the selection algorithm starts by using a filter measure to rank

the attributes, then an incremental wrapper algorithmA is applied but only over the

first block, that is, over the firstB ranked attributes. LetS be the subset of attributes

selected from this first block. Then, a new ranking is computed over the remaining

attributes but taking into account the already selected ones (S). Then, algorithmA is

run again over the first block in this new ranking but initializing the selected subset to

S instead of∅. This process is iterated until no modification in the selected subset is

obtained. As shown in experiments in section5.3.2, the number ofre-rankscarried out

is very small, and so only a small percentage of attributes isexplored, which leads to a

great reduction in wrapper evaluations (and so in CPU time) but without decreasing the

accuracy of the output obtained and there is even a reductionin the size of the selected

subset.

Some of the incremental algorithms described in the literature use the ranking just

to get the firstk variables and then launch a more sophisticated method over asmaller

search space. LinearForward [40] and BARS [97] take this decision at the initial stage

and in a static way, while IWSSr and IWSSrs (Chapter3) take this decision in a dy-

namic way, adjusting the number of attributes to study each time S is modified. The

main criticism of this behaviour is that the ranking is basedon theindividual merit of

each variable with respect to the class, but it does not take into account possible in-

teractions between the attributes. That is, if we have a subset of attributesX1, . . . , Xn

individually highly correlated with the class but (perhaps) also correlated among each

other, thenall these variables will be in the first positions of the ranking,although only
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one (or few) of them is likely to be selected at the wrapper stage. In order to allevi-

ate this problem, the usual choice is to select a large numberof variables (e.g. 20% -

50%), although this decision implies that a great number of wrapper evaluations have

to be carried out. On the other hand, there could be attributes that are marginally un-

correlated with the class, but conditionally correlated with the class given some other

attribute(s). In this case, those variables will be ranked in the last positions and so the

only way to explore them is to use the full ranking.

Thus the proposed improvement to hybrid incremental algorithms is to usere-

rankingas a way to overcome the two problems identified above. The idea is to work

by usingblocks(subsets) of variables computed from the ranking, but instead of always

using the initial (univariate) ranking we propose to re-rank the remaining attributes by

taking into account the current selected subsetS. In this way: (1) attributes correlated

with S will be placed at the end of the new ranking because they add nothing to the

class once we know the value of variables inS; and (2) variables that are conditionally

correlated with the class will be placed early in the rankingif the conditional correla-

tion is due to variables included inS.

The algorithm forre-ranking-basedincremental selection is shown in Figure5.1.

The following points should be mentioned:

• Selection algorithm. As for the selection algorithm, any incremental one can be

used. In the experiments section of this Chapter several selection algorithms are

tested: IWSS, IWSSr, SFS and BARS. The only modifications needed are: (1)

the algorithm is seeded with an initial selected subset; and(2) there is no need

to compute the ranking (if it were necessary) because it is received as parameter

B.

• Stop criterion. As can be observed, the algorithm stops when analyzing a new

block does not produce a modification in the selected subset,that is, it returns

the same subset received as seed. This is an interesting point because there is no

need to decide in advance the number of attributes to explore.

• Block size. The block size is a key parameter in this approach. This value must

be large enough to give some freedom to the wrapper algorithm, but not so large

as to explore a great deal of useless attributes,thus canceling out the advantages

of using re-ranking. Several block sizes are tested in the experiments at the end

of this Chapter.
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In T training set,M filter measure,C classifier,B block size

Out S // The selected subset

1 listR = {} // The ranking, best attributes first

2 for each predictive attributeAi in T

3 Score=MT(Ai, class)

4 insertAi in R according toScore

5 sol.S = ∅ // selected variables

6 sol.eval = null // data about the wrapper evaluation ofsol.S

7 B = first block of sizeB in R // B is ordered

8 Remove firstB variables fromR

9 sol = IncrementalSelection(T,B,C,S)

10 continue = true

11 whilecontinue do

12 R′ = {}
13 for each predictive attributeAi in R

14 Score=MT(Ai, class|sol.S)

15 insertAi in R′ according toScore

16 R = R′

17 B = first block of sizeB in R // B is ordered

18 Remove firstB variables fromR

19 sol′ = IncrementalSelection(T,B,C,S)

20 if(sol.S == sol′.S) //no new feature selected

21 thencontinue = false

22 elsesol = sol′

23 return (sol.S)

Figure 5.1: Re-Ranking Canonical Algorithm.
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• Re-ranking algorithm score. In order to build the ranking of the remaining at-

tributes,{A1, . . . , Ar}, but considering the current selected subset, it is necessary

to scoreM(Ai, C|S) for eachi = 1, . . . , r. As we know, exact computation of

this term is not feasible even for moderate sizes ofS because very large (#in-

stances) training sets would be necessary as well as too muchtime and space.

Of course, if the size ofS grows, then this expression is simply computationally

intractable.

In the literature we can find different ways to approximate this score. Then, several

approaches will be tested in order to identify which method suits best.

1. Conditional Mutual Information Maximization (CMIM) . Based on using
conditional mutual information [31], CMIM tries to balance the amount of in-
formation present for each candidate attributeAi and classC, and the fact that
this information might have been already caught by some feature Aj ∈ S.
Thus, this method selects features maximizing their mutualinformation with
the class but minimizing their pair-to-pair dependency. Inthis case, given that
we have a selected subsetS and a set of attributes to rank{A1, . . . , Ar}, the merit
M(Ai, C|S), i = 1, . . . , k is computed as:

M(Ai, C|S) = min
Aj∈S

I(Ai;C|Aj)

2. Mutual Information-Based Feature Selection (MIFS). Similar to the main
idea in CMIM, Battiti presented MIFS in [6]. Thus, Battiti suggests approximat-
ing the meritM(Ai, C|S), i = 1, . . . , k by computing it as:

M(Ai, C|S) = I(Ai;C)− β
∑

Aj∈S

(Ai;Aj)

Whereβ ∈ [0, 1] and its commonly suggested value is 0.5.

3. Max-Relevance and Min-Redundancy (MRMR). Peng et. al [84] present an approx-

imation similar to MIFS; in this case, the meritM(Ai, C|S), i = 1, . . . , k is computed

as:

M(Ai, C|S) = I(Ai;C)− 1
|S|

∑

Aj∈S

(Ai;Aj)
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Because this thesis deals with n-ary variables and not only binary ones, in the

experiments mutual informationI() is replaced by Symmetrical UncertaintySU().

As can be seen, the number of calls to the filter measure at re-ranking time isr · |S|.
However, these computations are more than compensated for the extreme reduction in

the number of calls to the wrapper evaluator.

5.3 Experiments

The test suite of databases used for the experiments is the same as that used for the

experiments in Chapter3.

5.3.1 Algorithms in Experiments

The goal of these experiments is to test the goodness of adding re-ranking in hybrid

incremental subset selection algorithms. To do this, the use of re-ranking is combined

with IWSS, IWSSr (settingmf = 2 in both cases), BARS (ǫ=100 andk=3) and SFS,

for block sizesB = 5, 10, 20, 30, 40, 50.

For comparisons, algorithms IWSS, IWSSr, BARS (ǫ=50 andk=3), FSS and LFS

algorithms are also run without re-ranking. Finally, 7 different classifiers will be com-

pared in order to obtain much more general conclusions: Naive Bayes, C4.5, ibK

(k=1), AODE, Neural Networks (NN), SVM and TAN (see Chapter2). In all cases the

average over a 10 fold cross validation is reported.

In the case of applying re-ranking to the BARS algorithm, original BARS is not

compatible with re-ranking in a simple manner. This happensbecause after finish-

ing a block, there is no clear decision about what to do with features selected so far.

Therefore, in the experiments BARS is adapted to the proposedre-ranking algorithm

by adding at the beginning of a new block all features selected by BARS up to the last

block.

Another possible way to adapt BARS would be to add selected features in previous

blocks to the candidate subset at evaluation time, but this made evaluations too complex

in terms of subset cardinality, so such an adaptation was notselected.
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5.3.2 Results for Näıve Bayes Classifier

Due to the vast amount of results to report and compare, this section deals only with

Näıve Bayes classifier through different feature selection algorithms. Table5.1shows

accuracy, number of attributes selected and number of evaluations (mean after 10cv

classification) using Naı̈ve Bayes classifier and well-known feature selection incre-

mental algorithms applied to 12 datasets.

Table 5.1: Results for several FSS methods using NB classifier.
SFS LFS BARS IWSS IWSSr

Acc Atts Acc Atts Acc Atts Acc Atts Acc Atts

Colon 83.87 5.9 80.65 3.5 85.71 3.0 80.65 3.8 83.87 2.8

Leukemia 87.50 3.2 93.06 3.3 90.54 2.3 87.50 2.5 87.50 2.0

Lymphoma 83.33 7.1 71.88 8.9 73.67 6.1 76.04 8.8 80.21 5.9

DLBCL 80.85 3.6 87.23 3.8 76.00 2.4 85.11 1.9 80.85 1.8

Prostate 75.00 5.4 69.12 5.3 86.81 3.7 77.94 11.1 78.68 7.0

Lung 93.92 2.5 96.69 2.6 98.36 3.0 97.24 2.7 97.24 2.4

GCM 58.42 18.3 56.84 11.2 60.00 15.9 64.21 36.6 59.47 19.9

Arcene 68.00 4.6 68.00 2.6 74.00 4.9 70.00 13.4 72.00 6.2

Madelon 60.75 6.5 60.45 5.4 60.30 5.8 59.85 13.3 60.50 8.0

Dorothea 91.25 13.2 92.38 5.5 93.88 7.3 93.50 7.4 92.88 6.3

Dexter 76.00 13.8 76.33 8.2 82.67 12.8 81.00 19.6 83.00 12.9

Gisette 94.05 26.9 89.63 7.9 93.10 13.6 94.68 112.6 94.07 30.7

Mean 79.41 9.3 78.52 5.7 81.25 6.7 80.64 19.5 80.85 8.8

Evaluations

Colon 13800.0 450 5578.4 2000.0 7276.5

Leukemia 29941.8 430 14541.0 7129.0 21378.4

Lymphoma 32610.6 990 15576.0 40260.0 27663.0

DLBCL 18519.6 480 9476.90 4026.0 11134.0

Prostate 80640.0 630 22578.80 12600.0 94507.8

Lung 43865.5 360 24658.10 12533.0 42603.5

GCM 310015.9 1220 69223.7 16063.0 309750.4

Arcene 56000.0 360 23785.9 10000.0 67359.3

Madelon 3750.0 640 1403.10 500.0 3818.0

Dorothea 1420000.0 650 203418.0 100000.0 441346.2

Dexter 296000.0 920 31153.70 20000.0 255027.3

Gisette 184500.0 890 9452.20 5000.0 137050.7

Mean 207470.3 668.3 35903.82 19175.9 118242.9

Section5.2introduced 3 different scores to apply the re-ranking methodology pro-

posed in this Chapter: CMIM, MIFS and MRMR. For the sake of order and clarity, in

this section only CMIM will be used; later, experiments usingMIFS and MRMR will

also be run.
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Tables5.2, 5.3, 5.4 and5.5 show the results of applying the re-ranking (CMIM-

based) methodology to algorithms SFS, BARS, IWSS and IWSSr respectively, for

block sizesB = 5, 10, 20, 30, 40, 50.
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Table 5.2: Results using Naive Bayes classifier, SFS selectionalgorithm and CMIM-based re-ranking with block sizes B.
DataSet SFS B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 83.87 5.9 82.26 2.2 85.48 2.2 83.87 2.4 83.87 2.4 83.87 2.3 83.87 2.3

Leukemia 87.50 3.2 87.50 1.9 87.50 1.9 87.50 1.9 87.50 1.9 87.50 1.9 87.50 2.0

Lymphoma 83.33 7.1 72.92 4.7 75.00 5.6 80.21 5.6 81.25 5.7 78.13 5.9 76.04 5.9

DLBCL 80.85 3.6 87.23 1.5 82.98 1.6 80.85 1.7 80.85 1.7 80.85 1.7 80.85 1.7

Prostate 75.00 5.4 73.53 3.2 75.74 3.4 77.21 4.2 80.88 4.7 80.15 4.7 83.09 4.8

Lung 93.92 2.5 96.69 2.2 96.69 2.2 97.24 2.4 97.24 2.4 97.24 2.4 97.24 2.4

GCM 58.42 18.3 51.58 7.4 53.68 10.3 57.89 10.9 57.89 11.8 60.00 13.4 62.11 14.2

Arcene 68.00 4.6 71.00 2.6 70.00 3.7 72.00 3.8 73.00 4.3 71.00 4.3 69.00 4.3

Madelon 60.75 6.5 61.65 2.0 60.75 3.4 61.25 4.8 60.25 5.9 60.10 5.6 60.50 6.2

Dorothea 91.25 13.2 94.25 3.0 93.25 4.0 93.38 5.0 93.00 5.3 92.88 5.3 92.88 5.3

Dexter 76.00 13.8 82.67 8.5 81.00 10.1 83.00 9.8 82.67 9.7 82.67 9.8 82.67 9.4

Gisette 94.05 26.9 86.20 2.7 88.47 6.4 90.77 10.8 91.62 15.9 92.25 16.5 92.57 17.1

Geom. Mean 78.51 7.1 77.82 3.0 78.16 3.8 79.54 4.4 79.93 4.7 79.68 4.8 79.85 4.9

Arith. Mean 79.41 9.3 78.96 3.5 79.21 4.6 80.43 5.3 80.84 6.0 80.55 6.2 80.69 6.3

Test = ⇓ = ⇓ = ⇑ = ⇑ = ⇑ = ⇑
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Table 5.3: Results using Naive Bayes classifier, BARS selectionalgorithm and CMIM-based re-ranking with block sizes B.
DataSet BARS B=5 B=10 B=20 B=30 B=40 B=50

Colon 85.71 3.0 79.03 3.5 83.87 3.4 79.03 3.3 77.42 3.1 79.03 2.9 79.03 3.0

Leukemia 90.54 2.3 91.67 3.1 93.06 3.3 93.06 3.1 93.06 3.1 94.44 3.2 94.44 3.2

Lymphoma 73.67 6.1 71.88 8.3 73.96 7.8 79.17 9.2 78.13 9.1 77.08 9.1 79.17 9.5

DLBCL 76.00 2.4 85.11 3.1 85.11 3.3 74.47 3.4 74.47 3.6 80.85 3.2 76.60 3.3

Prostate 86.81 3.7 76.47 4.0 67.65 5.0 68.38 5.5 70.59 5.2 77.21 5.9 73.53 6.6

Lung 98.36 3.0 95.58 3.1 97.24 3.6 96.13 3.7 96.13 3.6 96.13 3.5 96.69 3.5

GCM 60.00 15.9 48.42 8.9 55.26 11.4 55.26 14.0 59.47 15.7 60.53 17.2 61.05 17.6

Arcene 74.00 4.9 76.00 4.6 81.00 4.6 82.00 6.0 78.00 6.5 83.00 7.3 85.00 6.7

Madelon 60.30 5.8 61.00 2.7 61.30 4.2 61.05 6.3 61.40 7.3 61.20 8.9 61.05 8.7

Dorothea 93.88 7.3 93.88 6.3 93.63 10.3 94.75 9.1 94.25 11.1 94.00 13.4 94.38 17.1

Dexter 82.67 12.8 77.00 6.1 84.67 12.8 82.67 15.5 83.33 15.5 83.67 15.8 84.67 15.2

Gisette 93.10 13.6 87.05 3.8 87.50 5.8 88.98 7.5 92.02 13.6 92.28 14.3 89.72 14.3

Geom. Mean 80.29 5.4 77.33 4.4 79.26 5.6 78.52 6.3 78.94 6.8 80.77 7.2 80.41 7.39

Arith. Mean 81.25 6.7 78.59 4.8 80.35 6.3 79.58 7.2 79.86 8.1 81.62 8.7 81.28 9.06

Test = = = = = = = ⇑ = ⇑ ⇑ =
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Table 5.4: Results using Naive Bayes classifier, IWSS2 selection algorithm and CMIM-based re-ranking with block sizes B.
DataSet IWSS2 B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 80.6 3.8 80.6 2.8 83.9 3.0 82.3 3.2 82.3 3.3 82.3 3.3 82.3 3.3

Leukemia 87.5 2.5 87.5 2.0 87.5 2.4 87.5 2.4 87.5 2.4 87.5 2.4 87.5 2.5

Lymphoma 76.0 8.8 66.7 6.3 75.0 7.6 76.0 7.9 77.1 8.0 75.0 8.1 77.1 8.2

DLBCL 85.1 1.9 89.4 1.5 87.2 1.6 85.1 1.7 85.1 1.7 85.1 1.7 85.1 1.7

Prostate 77.9 11.1 72.1 4.1 74.3 4.0 77.9 5.6 74.3 7.3 72.1 7.8 74.3 8.0

Lung 97.2 2.7 96.7 2.2 96.7 2.4 97.2 2.7 97.2 2.7 97.2 2.7 97.2 2.7

GCM 64.2 36.6 54.2 12.3 60.0 19.8 62.1 21.4 65.3 22.5 64.2 24.4 64.7 27.4

Arcene 70.0 13.4 70.0 3.5 68.0 5.1 70.0 6.8 70.0 7.0 70.0 7.8 69.0 7.8

Madelon 59.9 13.3 61.3 2.7 60.9 4.8 60.3 7.1 59.8 8.0 60.0 10.1 59.6 11.4

Dorothea 93.5 7.4 93.9 2.8 94.1 3.6 94.4 3.8 94.0 4.3 93.9 4.3 93.8 4.5

Dexter 81.0 19.6 81.7 11.9 83.7 13.1 83.7 14.8 81.3 15.7 83.0 15.2 80.7 14.9

Gisette 94.7 112.6 88.7 18.3 92.3 41.3 93.7 62.6 93.9 69.5 94.4 82.0 94.1 77.2

Geom. Mean 79.81 9.45 77.41 4.24 79.34 5.52 79.97 6.50 79.81 6.94 79.51 7.32 79.59 7.49

Arith. Mean 80.6 19.5 78.5 5.9 80.3 9.1 80.9 11.7 80.6 12.7 80.4 14.2 80.4 14.1

Test = ⇓ = ⇓ = ⇓ = ⇓ = ⇓ = ⇓
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Table 5.5: Results using Naive Bayes classifier, IWSS2
r selection algorithm and CMIM-based re-ranking with block sizes B.

DataSet IWSS2
r B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 83.9 2.8 82.3 2.2 85.5 2.2 83.9 2.4 83.9 2.4 83.9 2.3 83.9 2.3

Leukemia 87.5 2.0 87.5 1.9 87.5 1.9 87.5 1.9 87.5 1.9 87.5 1.9 87.5 2.0

Lymphoma 80.2 5.9 72.9 4.7 75.0 5.6 80.2 5.6 81.3 5.7 78.1 5.9 76.0 5.9

DLBCL 80.9 1.8 87.2 1.5 83.0 1.6 80.9 1.7 80.9 1.7 80.9 1.7 80.9 1.7

Prostate 78.7 7.0 73.5 3.2 75.7 3.4 77.2 4.2 80.9 4.7 80.1 4.7 83.1 4.8

Lung 97.2 2.4 96.7 2.2 96.7 2.2 97.2 2.4 97.2 2.4 97.2 2.4 97.2 2.4

GCM 59.5 19.9 51.6 7.4 53.7 10.3 57.9 10.9 57.9 11.8 60.0 13.4 62.1 14.2

Arcene 72.0 6.2 71.0 2.6 70.0 3.7 72.0 3.8 73.0 4.3 71.0 4.3 69.0 4.3

Madelon 60.5 8.0 61.7 2.0 60.8 3.4 61.3 4.8 60.3 5.9 60.1 5.6 60.5 6.2

Dorothea 92.9 6.3 94.3 3.0 93.3 4.0 93.4 5.0 93.0 5.3 92.9 5.3 92.9 5.3

Dexter 83.0 12.9 82.7 8.5 81.0 10.1 83.0 9.8 82.7 9.7 82.7 9.8 82.7 9.4

Gisette 94.1 30.7 86.2 2.7 88.5 6.4 90.8 10.8 91.6 15.9 92.3 16.5 92.6 17.1

Geom. Mean 79.97 6.06 77.82 3.01 78.16 3.81 79.54 4.35 79.93 4.72 79.68 4.76 79.85 4.85

Arith.Mean 80.9 8.8 79.0 3.5 79.2 4.6 80.4 5.3 80.8 6.0 80.6 6.2 80.7 6.3

Test = ⇓ = ⇓ = ⇓ = ⇓ = ⇓ = ⇓
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The last two rows of the tables show the average value (arithmetic and geomet-

ric mean) over the 12 datasets and the result of carrying out the non-parametrical

Wilcoxon Matched-Pairs Signed-Ranks Test [121] [23] between the original FSS al-

gorithm (second column) and the same algorithm with re-ranking for each block size.

Statistical tests are performed with a confidence level ofα = 0.05, and the result of a

test is indicated in the corresponding cell as:= if there is no statistical difference,⇑ if

the re-rank algorithm returns a significantly larger value,and⇓ if the re-rank algorithm

returns a significantly smaller value.

As it can be observed, taking as input the averaged results over the twelve datasets,

algorithms SFS, IWSS and IWSSr show that there is no differencein accuracy between

using re-ranking or not, while a significant reduction is obtained with respect to the

size of the selected subset for all block sizes in algorithmsIWSS and IWSSr, and up

toB = 10 for SFS. The adapted BARS with re-ranking performs statistically the same

(in terms of both accuracy and number of selected attributes) as the original BARS for

low block sizes.

Once it has been stated that the use of re-ranking does not degrade the quality of

the obtained output (on the contrary, it gets more compact subsets), let us study the

behaviour of the re-ranking algorithm in terms of wrapper evaluations (by far, the most

expensive ones). Table5.6shows the reduced % of evaluations and re-ranks carried out

by SFS, BARS, IWSS and IWSSr with Näıve Bayes as classifier. The results shown are

for the 6 block sizes considered and averaged (arithmetic and geometric mean) over the

12 datasets. As can be observed the reduction with respect tothe number of evaluations

carried out is really impressive and the number of re-ranks very small. Resulting the

the proposed re-ranking algorithm proves to be a very optimachoice to improve subsets

compactness and evaluations complexity for at least the 4 FSS algorithms tested.

A global comparison can be viewed in Figure5.2(note the log-scale on the Y-axis).

5.3.3 Re-Ranking Criteria

Once it has been shown that applying the CMIM-based re-ranking proposal to sev-

eral feature subset selection algorithms drastically reduces the number of evaluations,

maintaining the performance in terms of accuracy, and even reducing the cardinality

of the final selected subset for low block sizesB, it is now time to compare CMIM

with other criteria in order to find out if there is any difference among them. Thus, 3
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Table 5.6: Mean number of evaluations and re-ranks performed over the 12 datasets.
#evals (arith.) #evals (geom.) %arith. %geom. #re-ranks

B=5 45.43 55.93 99.98 99.91 1.53

B=10 120.03 156.24 99.94 99.75 1.84

B=20 264.76 338.38 99.87 99.47 1.84

B=30 442.74 621.43 99.79 99.02 1.97

B=40 565.14 821.40 99.73 98.71 1.78

B=50 699.00 959.81 99.66 98.49 1.63

SFS(arithm. 207470.28 evals., geom. 63691.78 evals.)

B=5 146.42 116.82 99.59 99.34 1.53

B=10 502.33 325.07 98.60 98.16 1.84

B=20 1012.50 626.37 97.18 96.45 1.84

B=30 1219.92 940.78 96.60 94.67 1.97

B=40 1614.92 1268.85 95.50 92.82 1.78

B=50 1801.17 1468.86 94.98 91.68 1.63

BARS (arithm. 35903.82 evals., geom. 17663.70 evals.)

B=5 18.33 15.97 99.90 99.82 2.47

B=10 40.83 33.60 99.79 99.63 2.98

B=20 81.67 66.62 99.57 99.26 3.03

B=30 113.75 95.10 99.41 98.95 2.76

B=40 152.00 126.61 99.21 98.60 2.78

B=50 185.17 157.43 99.03 98.26 2.68

IWSS2 (arithm. 19175.92 evals., geom. 9027.88)

B=5 55.93 45.43 99.95 99.91 1.53

B=10 156.24 120.03 99.87 99.76 1.84

B=20 338.38 264.76 99.71 99.47 1.84

B=30 621.43 442.74 99.47 99.11 1.97

B=40 821.40 565.14 99.31 98.87 1.78

B=50 959.81 699.00 99.19 98.60 1.63

IWSS2
r (arithm. 118242.93 evals., geom. 49877.48)

re-ranking methods will be compared:

1. CMIM.

2. MIFS.

3. MRMR.

Experiments are run again using the NB classifier and over 12 datasets, reporting re-

sults of a 10 cross-validation in Table5.7, with block sizesB = 5 andB = 10.

Finally, Table5.8 shows the results of comparing all criteria re-ranking (besides

the original algorithm) for IWSS2, IWSS2r, SFS and BARS by performing a Friedman

test [37] followed by a post-hoc Holm test [42], as suggested in [23] and using the code
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Table 5.7: Results using Naive Bayes classifier, for re-ranking based on CMIM, MIFS

and MRMR criteria. Block sizesB = 5 andB = 10
DataSet SFS CMIM 5 CMIM 10 MIFS5 MIFS10 MRMR 5 MRMR 10

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 83.87 5.9 85.48 2.4 82.26 3.9 83.87 2.7 82.26 4.2 85.48 2.1 85.48 2.8

Leukemia 87.50 3.2 91.67 3.3 94.44 3.4 91.67 3.6 94.44 3.2 88.89 2.9 95.83 3.4

Lymphoma 83.33 7.1 80.21 11.0 83.33 13.8 76.04 9.0 76.04 11.5 73.96 8.0 80.21 10.8

DLBCL 80.85 3.6 89.36 3.5 89.36 3.9 91.49 4.4 91.49 4.3 91.49 3.0 91.49 3.2

Prostate 75.00 5.4 77.21 4.1 80.15 4.6 75.00 4.3 76.47 5.7 76.47 3.8 77.21 4.5

Lung 93.92 2.5 95.03 3.6 96.13 3.1 96.13 3.4 96.13 3.0 95.58 2.8 96.13 2.8

GCM 58.42 18.3 55.26 17.9 56.32 18.5 65.26 19.9 70.00 24.5 50.53 13.2 51.58 10.5

Arcene 68.00 4.6 76.00 5.9 76.00 5.9 74.00 6.8 72.00 8.4 78.00 4.8 73.00 7.0

Madelon 60.75 6.5 61.25 3.5 60.80 4.2 61.25 2.4 60.75 3.7 61.25 2.4 60.75 3.7

Dorothea 91.25 13.2 92.75 6.6 92.63 4.5 93.25 6.2 92.63 4.5 93.25 4.5 92.75 4.2

Dexter 76.00 13.8 87.00 15.8 87.67 18.5 80.00 12.0 83.00 13.5 75.00 6.4 80.67 7.7

Gisette 94.05 26.9 88.90 10.5 89.70 18.0 90.83 16.7 89.70 15.8 88.00 9.0 88.10 11.2

Mean 79.41 9.3 81.68 7.3 82.40 8.5 81.57 7.6 82.08 8.5 79.82 5.2 81.10 6.0

SFS

DataSet IWSS2 CMIM 5 CMIM 10 MIFS5 MIFS10 MRMR 5 MRMR 10

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 80.65 3.8 80.65 2.8 83.87 3.0 80.65 2.8 83.87 2.9 80.65 2.7 83.87 2.9

Leukemia 87.50 2.5 87.50 2.0 87.50 2.4 87.50 2.1 87.50 2.4 87.50 1.8 87.50 2.1

Lymphoma 76.04 8.8 66.67 6.3 75.00 7.6 71.88 7.0 72.92 7.3 64.58 5.1 72.92 5.6

DLBCL 85.11 1.9 89.36 1.5 87.23 1.6 89.36 1.5 87.23 1.6 89.36 1.5 87.23 1.6

Prostate 77.94 11.1 72.06 4.1 74.26 4.0 73.53 4.5 66.91 4.3 70.59 3.2 70.59 3.9

Lung 97.24 2.7 96.69 2.2 96.69 2.4 96.69 2.3 96.69 2.4 96.13 2.1 96.13 2.2

GCM 64.21 36.6 54.21 12.3 60.00 19.8 65.26 14.9 60.53 18.9 49.47 8.9 48.95 8.7

Arcene 70.00 13.4 70.00 3.5 68.00 5.1 73.00 4.4 73.00 7.4 74.00 3.1 73.00 4.9

Madelon 59.85 13.3 61.25 2.7 60.90 4.8 61.15 3.0 60.65 4.7 61.15 3.0 60.65 4.7

Dorothea 93.50 7.4 93.88 2.8 94.13 3.6 93.50 3.4 93.75 3.7 93.50 2.4 93.88 2.9

Dexter 81.00 19.6 81.67 11.9 83.67 13.1 84.00 10.7 83.33 12.5 72.00 5.1 77.67 5.3

Gisette 94.68 112.6 88.67 18.3 92.25 41.3 90.50 14.8 90.23 15.8 88.48 6.0 88.00 8.2

Mean 80.64 19.5 78.55 5.9 80.29 9.1 80.58 6.0 79.72 7.0 77.28 3.7 78.37 4.4

IWSS2

DataSet IWSS2

r
CMIM 5 CMIM 10 MIFS5 MIFS10 MRMR 5 MRMR 10

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 83.87 2.8 82.26 2.2 85.48 2.2 82.26 2.0 85.48 2.3 80.65 2.0 80.65 2.3

Leukemia 87.50 2.0 87.50 1.9 87.50 1.9 87.50 2.0 87.50 1.9 87.50 1.8 87.50 1.9

Lymphoma 80.21 5.9 72.92 4.7 75.00 5.6 72.92 5.7 78.13 5.1 67.71 4.1 72.92 4.8

DLBCL 80.85 1.8 87.23 1.5 82.98 1.6 87.23 1.5 82.98 1.6 87.23 1.5 82.98 1.6

Prostate 78.68 7.0 73.53 3.2 75.74 3.4 72.79 3.9 73.53 3.5 72.79 2.9 74.26 3.1

Lung 97.24 2.4 96.69 2.2 96.69 2.2 96.69 2.2 96.69 2.3 96.13 2.1 96.13 2.1

GCM 59.47 19.9 51.58 7.4 53.68 10.3 55.79 9.1 61.58 12.5 48.95 6.5 47.37 8.3

Arcene 72.00 6.2 71.00 2.6 70.00 3.7 70.00 3.3 71.00 3.9 72.00 2.5 70.00 4.0

Madelon 60.50 8.0 61.65 2.0 60.75 3.4 61.10 2.1 60.55 3.6 61.10 2.1 60.55 3.6

Dorothea 92.88 6.3 94.25 3.0 93.25 4.0 93.50 3.7 93.63 5.0 93.75 3.8 92.63 3.9

Dexter 83.00 12.9 82.67 8.5 81.00 10.1 84.00 9.0 82.67 10.0 73.00 5.0 79.33 4.9

Gisette 94.07 30.7 86.20 2.7 88.47 6.4 90.10 10.8 90.02 9.7 88.28 5.8 88.38 7.1

Mean 80.85 8.8 78.96 3.5 79.21 4.6 79.49 4.6 80.31 5.1 77.42 3.3 77.72 4.0

IWSS2

R

DataSet BARS CMIM 5 CMIM 10 MIFS5 MIFS10 MRMR 5 MRMR 10

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 85.71 3.0 79.03 3.5 83.87 3.4 82.26 3.1 82.26 3.5 82.26 2.9 82.26 3.1

Leukemia 90.54 2.3 91.67 3.1 93.06 3.3 91.67 3.0 91.67 3.2 91.67 2.2 91.67 3.0

Lymphoma 73.67 6.1 71.88 8.3 73.96 7.8 73.96 6.8 75.00 7.9 69.79 5.5 71.88 5.6

DLBCL 76.00 2.4 85.11 3.1 85.11 3.3 82.98 2.8 93.62 3.4 85.11 2.4 85.11 2.8

Prostate 86.81 3.7 76.47 4.0 67.65 5.0 80.15 3.8 72.06 4.5 75.00 3.6 75.00 3.9

Lung 98.36 3.0 95.58 3.1 97.24 3.6 96.13 3.3 97.24 3.3 96.69 2.6 97.24 3.3

GCM 60.00 15.9 48.42 8.9 55.26 11.4 55.79 10.8 66.32 12.9 48.42 6.9 46.84 7.2

Arcene 74.00 4.9 76.00 4.6 81.00 4.6 82.00 4.5 80.00 5.2 77.00 4.8 79.00 4.2

Madelon 60.30 5.8 61.00 2.7 61.30 4.2 60.70 2.0 60.60 3.8 60.70 2.0 60.60 3.8

Dorothea 93.88 7.3 93.88 6.3 93.63 10.3 93.75 6.2 93.50 7.4 93.38 5.1 93.75 5.3

Dexter 82.67 12.8 77.00 6.1 84.67 12.8 77.67 7.3 79.33 11.1 75.33 6.2 79.33 8.7

Gisette 93.10 13.6 87.05 3.8 87.50 5.8 88.42 5.8 88.69 8.6 88.55 6.3 87.77 8.1

Mean 81.25 6.7 78.59 4.8 80.35 6.3 80.46 5.0 81.69 6.2 78.66 4.2 79.20 4.9

BARS
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Figure 5.2: Number of Wrapper Evaluations for each selectionalgorithm and re-

ranking.

provided in [39]; the confidence level is set asα = 0.05.

Friedman and Holm’s tests are run in two stages. At each stage, the control algo-

rithm is marked with the• symbol, and algorithms found to be statistically worse than

the control algorithm are crossed out. The two stages are:

1. Tests are run comparing accuracy for all algorithms.

2. Tests are run comparing number of attributes selected forremaining algorithms.

The statistical tests shown in Table5.8 always keep criterion CMIM withB = 5

as one of the best re-ranking criteria. Thus, this is one of the criteria used in the next

section in order to compare the effect of re-ranking for several classifiers.

In case the reader is interested in the results for all block sizes and the three re-

ranking criteria, these are tabbed in AppendixA.
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Table 5.8: Statistical Tests for different Re-ranking Criteria.
Stage SFS CMIM 5 CMIM 10 MIFS5 MIFS10 MRMR 5 MRMR10

Acc 79.41 81.68 •82.40 81.57 82.08 79.82 81.10

Atts 7.3 8.5 7.6 8.5 •5.2 6.0

SFS

Stage IWSS2 CMIM 5 CMIM 10 MIFS5 MIFS10 MRMR 5 MRMR10

Acc 80.64 78.55 •80.29 80.58 79.72 77.28 78.37

Atts 19.5 •5.9 9.1 6.0 7.0 4.4

IWSS2

Stage IWSS2
r CMIM 5 CMIM 10 MIFS5 MIFS10 MRMR 5 MRMR10

Acc •80.85 78.96 79.21 79.49 80.31 77.42 77.72

Atts 8.8 •3.5 4.6 4.6 5.1

IWSS2
r

Stage BARS CMIM 5 CMIM 10 MIFS5 MIFS10 MRMR 5 MRMR10

Acc 81.25 78.59 80.35 80.46 81.69 78.66 79.20

Atts 6.7 4.8 6.3 •5.0 6.2 4.9

BARS

5.3.4 Re-Ranking Comparison Among Classifiers

In this section, the effect of re-ranking inIWSS2 andIWSS2
r is tested across different

classifiers, using CMIM as criterion. Since the search algorithms used in comparisons

are wrapper-driven, and in the following experiments the classifier is changed, it is

interesting to test again all block sizes from 5 to 50.

Results for each database are not tabbed anymore, but the meanof the accuracy

and of the number of selected attributes obtained by the corresponding classifier across

the 12 databases are. The classifiers used in the experimentsare: Näıve Bayes, c4.5,

ibK(k=1), Support Vector Machines (LibSVM [13]), Multi Layer Perception (MLP),

Tree Augmented Networks (TAN) and AODE; using for all of themthe implementa-

tion provided by Weka [123]. Results for each database can be found in AppendixB.

When a cell is filled in as “–”, it means that the experiment could not finish after a

(pre-fixed) very long execution time (commonly with Gisetteor Dorothea databases).
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Table 5.9: Results, for different classifiers, using IWSS2 with CMIM-based re-ranking with block sizes B.
Classifier IWSS2 B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

NB 80.64 19.48 78.55 5.9 80.29 9.1 80.85 11.7 80.64 12.7 80.38 14.2 80.44 14.1

c4.5 80.70 13.8 79.32 5.4 80.34 6.8 81.08 8.4 81.36 9.2 80.87 9.8 80.94 10.6

ibK 85.01 19.9 82.01 7.0 82.53 9.5 82.71 12.7 83.91 13.7 84.42 14.0 84.40 15.2

SVM 71.28 7.19 70.82 2.8 71.69 3.5 71.33 4.1 71.42 4.4 71.43 4.3 71.62 4.4

MLP – – 81.23 6.7 81.51 7.6 81.48 8.6 81.37 9.4 81.13 9.3 81.75 10.5

TAN 82.73 17.9 81.39 6.7 82.38 9.0 82.55 12.1 83.43 13.3 84.10 13.7 84.15 14.4

AODE 85.76 17.36 84.96 7.1 86.23 9.3 86.47 12.5 86.21 12.2 86.22 13.4 86.26 13.8

Table 5.10: Results, for different classifiers, using IWSS2
r with CMIM-based re-ranking with block sizes B.

Classifier IWSS2
r B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

NB 80.85 8.83 78.96 3.5 79.21 4.6 80.43 5.3 80.84 6.0 80.55 6.2 80.69 6.3

c4.5 80.16 9.1 79.21 3.7 79.73 4.4 80.26 5.3 80.45 5.7 80.76 5.9 80.84 6.4

ibK 82.05 8.8 82.79 4.9 81.89 6.3 82.76 7.3 82.24 8.6 82.65 8.9 82.69 9.5

SVM – – 70.95 2.3 71.82 2.9 71.22 3.3 70.61 3.4 70.85 3.5 70.79 3.5

MLP – – 80.51 4.2 80.10 4.8 80.95 5.6 82.25 5.8 81.74 6.1 81.44 6.1

TAN – – 81.09 4.2 82.37 5.8 82.60 7.0 83.73 7.8 84.34 8.4 – –

AODE 86.64 9.5 84.31 4.4 85.57 5.8 85.92 6.2 86.34 7.3 85.93 7.1 85.54 7.9

106



5.4 Conclusions

Results shown in Tables5.9and5.10present one clear conclusion: the addition of

the re-ranking criterion makes it possible to run algorithms IWSS2 and IWSS2r for all

tested classifiers, while the original algorithms cannot becompleted (in limited time)

for all databases for complex classifiers (SVM, MLP and TAN).

Statistical tests are not run over the results since all cells are not completed, but it

is easy to find a similar tendency to those in Tables5.4 and5.5: the larger the block

size, the greater the accuracy and the size of the subset selected are, but statistically all

of them seem equals to the original algorithm in terms of accuracy, but better in terms

of size of selected subset. Regarding the classifiers’ performance, it seems that AODE

gets the best accuracy but pays for it by selected subsets of little more cardinality than

most of the other classifiers.

5.4 Conclusions

This chapter has proposed a generic re-ranking algorithm which can be applied to in-

cremental FSS algorithms. The idea behind re-ranking is that some features which

are ranked at the end of the ranking used by the correspondingincremental FSS algo-

rithm might become more relevant after the algorithm has selected some features from

the beginning of the ranking. Thus, adding the re-ranking proposal to an incremental

FSS algorithm lets these features come to earlier positionsin the ranking, besides rel-

egating features which are not relevant anymore after some feature has been selected.

Furthermore, a stop-criterion has been proposed which perfectly suits the re-ranking

proposal.

The re-ranking algorithm has been implemented with 3 different re-ranking filter

criteria, 4 different FSS algorithms and 7 classifiers. Experiments and statistical tests

prove that the re-ranking methodology drastically reducesthe number of evaluations

necessary, besides reducing the cardinality of the selected subsets while maintaining

the accuracy obtained.
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Chapter 6

Distribution-based Balance of Datasets

in E-mail Foldering

6.1 Summary

A frequent problem found in databases coming from real life sources is the lack of

balance among classes. There exist several methods to tackle this skewness, of whom

this Chapter introduces a review and, besides, a new family ofmethods is presented:

Distribution-basedbalancing algorithms, making comparisons and experimentsus-

ing them and another state-of-the art method, on real life databases: ENROM e-mail

foldering.

6.2 Introduction

This Chapter deals with databases representing e-mail documents. Thus, notation is

changed respect to past chapters; thus,instancesare also referred to asdocuments

and consequently,attributeswhich form the instance vector are referred to asterms.

Finally, the value of a term depends of the kind of representation of the documents:

where the most common case is to represent documents by frequency; that is, the

value of an attribute or term is the frequency such term appears in the corresponding

instance or document.

Imbalance appears in a dataset when the proportion of documents/sub-concepts

among classes/within-classes is very unequal. This has been a common problem in au-
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tomatic classification but it has not been properly tackled until the recent appearance

of highly skewed huge databases coming from real life sources (images, medical di-

agnosis, fraudulent operations, text. . . and some other corpora). In these databases the

need for some preprocessing in order to alleviate the imbalance problem is a priority

[17].

The degree of imbalance or skewness refers to the ratio amongthe number of doc-

uments from different classes. Thus, having a binomial class, a ratio of 1:100 would

mean that the dataset contains 100 documents tagged with themajority class per each

document tagged with the minority class. This problem is even worse when a class

presentsabsolute rarity[118], an expression used to refer to the lack of data to prop-

erly learn a predictive model for such a class. From the literature we can learn that

when dealing with skewed data, the major problem is not the imbalance itself, but the

overlapping between classes or disjuncts [53; 87]. This problem is known asbetween-

class imbalance[50] and is the type of imbalance dealt in experiments in this Chapter.

Thus, experiments in Section6.3 are expected not just to balance classes but also to

remove between-class overlapping in the space region.

The imbalanced data problem can be approached from two different points of view:

algorithm-levelor data-level. Algorithm-level solutions are classifier-specific and con-

sist in the introduction of a specific bias in the learned model [49; 63; 65; 91]. Data-

levelsolutions are more popular and consist in thea priori modification of the training

set [12; 16]. One way to do the former is by means of adjusting the degree of impor-

tance of each term [71] or just selecting some of them [130]. Alternatively, and this is

the topic this Chapter focuses on, one can modify the trainingdata in order to balance

it, by sampling from the original dataset.

Sampling-based balancing techniques can be divided intoover-samplingandunder-

sampling, although a combination of both can also be used. Besides this, sampling can

be performed in adirected(intelligent) orrandomway. Over-sampling a training set

consists in creating new samples (from minority class) and adding them to the train-

ing set, it being optional whether to remove the original samples or not. On the other

hand, under-sampling chooses (in a random or directed way) samples belonging to the

majority class and then removes them until the desired balance is achieved. Directed

under-sampling is expected to remove documents of majorityclass(es) from regions

which belong to minority class(es), while directed over-sampling is expected to repro-

duce more records of the minority class(es) and thus to definethe region of that(those)
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class(es). Random under- and over-sampling only has the aim of balancing the train-

ing set, without taking care of removing important records.Sampling approaches were

compared in [49] and the conclusions state that over-sampling and under-sampling

perform roughly the same and, moreover, directed sampling did not significantly out-

perform random sampling. Later, in 2002 the well-known SMOTE algorithm was pre-

sented [16]. SMOTE is a combination of over and under-sampling whose application

results in an improvement in the accuracy for the minority class. Anyway, the current

situation is that no final word has yet been said about what approach is best [17].

Another aspect that must be taken into account is the fact that most of the ap-

proaches to the imbalanced data problem found in the literature refers to the problem

of having abinomial classwhile the contribution in this Chapter faces with amulti-

class, aggravated by the fact of having a large number of possible outcomes for the

class variable. This point makes it difficult to transform the multi-class problem into a

binary one [16], because the large number of (binomial) models to be learned heavily

increases the time and space requirements of the process.

All the studies found in the literature which work on imbalanced multi-class datasets

are very recent, for bothalgorithm-level[1; 131] anddata-level[72; 110] solutions. At

the moment, there are no clear statements about what imbalance solution performs

best, and including the multi-class paradigm adds a new complexity level. However,

one may find that this case is more realistic when the problem tackled is related to text

categorization, as this Chapter aims.

6.3 Methodological Contributions: Distribution-based

balancing of multi-class training sets

The approach presented here to deal with imbalanced data is based on a two step pro-

cess: (1) for each predictive attribute or termti, i = 1, . . . , r and for each class state

cj, learn a probability distributionP (ti|cj); and (2) for each class statecj, sampleb

full instances1 〈f1, . . . , fr, cj〉 by using ther previously learnt probability distributions

P (ti|cj), i = 1, . . . , r. It is clear that if we sample the same number of instances for

each class state, then we get anartificially generated balancedtraining set. Therefore,

1Notice that a full instance contains the frequencyfi of term ti in the sampled document plus the

class the document (e-mail) belongs to.
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taking into account the concepts introduced in the previoussection, our method be-

longs to the category ofdata-basedalgorithms that combineunder-andover-sampling

with total replacement of the training set.

As mentioned in Section6.2, the problems when dealing with imbalanced data

come not only from the fact of having skewed data but also frombetween-class over-

lapping. It is expected that in many cases the contribution presented (Distribution-

based balancing of multi-class datasets) can manage these two problems simultane-

ously. The idea is that when learningP (ti|C = cj) we are trying to represent class

statecj by termti. If cj is a majority class state, then when the distribution is sampled,

the probability of producing outliers is small, and so, the probability of invading other

class states also decreases. On the other hand, ifcj is a minority class, as we learn

its concept for each term independently, the noise coming from other class states is

removed, and because we propose to sample the same number ofartificial instances

for each class label, then its corresponding concept will bemore clearly defined with

respect to majority classes. In this reasoning, it is assumed that no disjunction exists,

that is, that, in general, a class state does not cover different sub-concepts and so the

concept can be represented by a uni-modal distribution. If disjunctions exists, over-

lapping among classes cannot be removed and so our proposal will correct the skewed

problem but not between-class overlapping. However, assumption is that the existence

of class states corresponding to different sub-concepts ismore likely to exist in bino-

mial problems, while it is not so frequent in multi-class problems. Experimental results

confirm this expectation.

In short, this proposal performs several tasks over the training set in a single pro-

cess:

• Over-samples classes with less thanb documents.

• Under-samples classes with more thanb documents.

• Reduces over-lapping among classes.

• Fully balances all classes.

Figure6.1shows the general scheme of the proposed distribution-based algorithm.

As it can observed there are two clearly differentiated steps: learning and sampling. At

learning time a probability distribution for each pair〈term,class state〉 is learnt from the
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unmodifiedtraining set (corresponding to the current split of the validation) projected

over the term and the class (D↓ti,C
h ). Then, at sampling time all the distributions learnt

for a class state are used to build (by sampling the corresponding one for each term in

turn) each one of theb desired documents for such a class state. This sampling process

is repeated for all the class states in order to get a balancedartificial training set.

In Dh training set,C class variable

|V | = r the number of terms/features,b #new instances to sample per class,

Out newDh whole new and fully balanced training set

/* learning phase */

1 for each classck ∈ C do

2 for each term/featureti, i = 1, . . . , r do

3 learn probability distributionPik fromD↓ti,C
h

/* sampling phase */

4 newDh ← ∅
5 for each classck ∈ C do

6 for p=1 tob do

7 newDoc = new double[r+1]

8 for each term/featureti, i = 1, . . . , r do

9 newDoc[i] = sample value fromPik

10 newDoc[r+1]=ck //add class label

11 newDh = newDh ∪ newDoc

12 returnnewDh

Figure 6.1: Distribution-based balancing algorithm.

Of course there are some degrees of freedom in the previous algorithm: the num-

ber of documents to be sampled for each class and (mainly) thekind of probability

distribution used to model the training set. Experiments for this contribution are in-

stanced with four different probability distributions:Uniform, Gaussian, Poissonand

Multinomial.

• Uniform Distribution. There are several works in the literature (e.g. [49]) which,

using binomial classes, conclude that there is not much difference whether sam-

pling by using information extracted from the learning data, or not. Sampling

(almost) without using information about the training set can be modeled by

learning a uniform distribution. In this way the only information we collect is

the max value found for termti restricted to those samples belonging to class
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ck. Later, in the sampling process an uniform number is generated in the inter-

val [0,maxki]. This distribution is used as a baseline threshold to analyze the

advantages of the more informed ones.

• Gaussian Distribution.

The univariate Gaussian distribution assumes the frequency fj of termti condi-

tioned to class stateck as follows:

f(ti = fj) =
1

σ
√
2π

exp

[

−(fj − µ)2

2σ2

]

.

Thus, learning a univariate Gaussian Distribution consists simply of computing

the mean and standard deviation of frequencies for termti from data restricted to

class stateck. Sampling from a Gaussian distribution can be done, for example,

following the well known Box and Muller method (see for example [94], chapter

2).

It should be pointed out that whenever the sampled value is less than 0, it is set

to 0 since we are working with frequencies and negative values make no sense

for the case of work (text documents).

• Poisson Distribution. As pointed out in [58] “if we think that the occurrence

of each term is a random occurrence in a fixed unit of space (i.e. a length of

document), then the Poisson distribution is intuitively suitable to model the term

frequencies in a given document”. Because of this, the Poisson model has been

investigated in the information retrieval community and applied to text classifi-

cation [58]. Thus, it is expected to be a good alternative to be considered for

distribution modeling in our balancing algorithm.

The Poisson distribution assumes the frequencyfj of termti as follows:

P (ti = fj) =
e−λλfj

fj!
(6.1)

whereλ is the mean.

Therefore the learning step is simply a matter of computingλ of termti restricted

to class stateck. Sampling from a Poisson distribution is also a well-known

process (see for example [94], chapter 2).
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• Multinomial Distribution.

Following the generative distribution from the Naive Bayes Multinomial Model

[57] described in formula6.21, and once we have learnt the term distribution by

class following expression6.3, we are ready to generate as many documents as

the parameterb indicates.

P (di|cj) = P (|di|)|di|!
r
∏

l=1

P (tl|cj)Mil

Mil!
(6.2)

P (tl|cj) =
1 +

∑|D|
i=1 MilP (cj|di)

|V |+∑r
s=1

∑|D|
i=1 MisP (cj|di)

(6.3)

Mil being the number of times that termtl appears in documentdi, r = |V | the

size of our vocabulary,|D| = m the number of documents to classify and|di|
the length of documenti. Notice thatP (cj|di) in equation6.3 is simply 1 if the

instance corresponding to documentdj is labeled with classcj in the dataset,

and 0 otherwise. Equation6.2assumes independence among terms, which is not

realistic in real databases. Besides, this assumption gets even more troublesome

in the multinomial model [64] because it assumes not just independence among

different terms but also among various occurrences of the same term.

In this case theP (|di|) distribution is assumed to follow a Poisson distribution,

Equation6.1, which is unidimensional and independent of the class. So bythe

estimation of the parameterλ as the mean number of terms in a document, that is,

the mean length of documents, we can simulate the number of terms in a newly-

generated document. Once the number of terms is given, the terms are picked in

the generated document by simulating the probabilitiesP (tl|cj) as many times

as the number of terms has been indicated by the Poisson distribution.

So, in the structure of the algorithm shown in Figure6.1, the changes are:

(1) Values to compute areλ and the probabilities for each term given the class

following expression6.3.

1Where |di| stands for number of words in documentdi; P (tl|cj) stands for the probability of

finding terml having frequencytl in a document belonging to classcj
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(2) Each term will have the value representing the times thatit wasdrawn fol-

lowing the Multinomial distributionP (tl|cj) according to the length of document

generated following a Poisson distribution.

6.4 Experiments on Text Categorization

This section presents an experimental study over e-mail foldering using the proposed

distribution-based balancing method. It should be emphasized that this experiment is

directly related with e-mail foldering and because of the nature of this problem, per-

haps the conclusions here obtained can be extended to similar problems, that is, those

having a class variable with large cardinality and numerical variables as predictive at-

tributes. For the sake of completeness, apart from using ourapproach instantiated with

Uniform, Gaussian, Poisson and Multinomial distributions, it is also considered the

well-known SMOTE algorithm, but slightly modified to deal with multi-class datasets.

6.4.1 Obtaining datasets: from text e-mails to a structured dataset

The main differences between standard classification and text classification are: the

need for preprocessing the unstructured documents in orderto obtain a standard data

mining dataset (bi-dimensional table) and the usually large number of features or at-

tributes in the resulting dataset. Two other important differences with respect to stan-

dard text classification tasks are the large number of statesin the class variable, and

the usual presence ofnoisein the training set, due to the fact of (almost) all users of

e-mail, even having defined topical folders, later tend to file e-mails belonging to dif-

ferent concepts into the same folder. This experiments focuses on thebag-of-words

model, that is, a document (mail) is regarded as a set of wordsor terms without any

kind of structure. The selection of the documents and terms (i.e., the vocabularyV )

used in this study follows the preprocessing described in [8]:

• Documents: Non-topical folders (inbox, sents, trash, etc.) and folders with only

one or two mails are not considered.

• Terms: Only consider words as predictive attributes (MIME attachments are

removed) and no distinction is made with respect to where theword appears (e-
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mail header or body). Stop-words and words appearing only once are removed.

After that we denote the size ofV as|V | = r.

• Class: The folder hierarchy is flattened and each one of the resulting folders

constitutes a class label or state.

The representation of documents is also an important issue.The most typical repre-

sentations arefrequenciesandtf-idf. The former represents a document using a vector

which contains the frequencies in that document of terms belonging to a predefined

bag-of-words or vocabulary. The latter also uses a vector, but in this case the position

of each term represents a mix of the frequency in that document and its frequencies in

the rest of the documents. Other not so usual representations aren-grams[7], hyper-

nyms[103], entities [122], etc. The current literature is not able to say which represen-

tation performs best, so the decision still depends on the case under study and the type

of input accepted by the classifier used.

For the sake of completeness, in this experiment two different kinds of represen-

tations are used for the dataset. In particular, the vectorial model is used to represent

documents, thus, after using information retrieval techniques [101] to carry out the

previously described preprocessing, the datasets can be observed as bi-dimensional

matricesM [numDocs, numTerms], whereM [i, j] = Mij is a real number represent-

ing (1) the frequency of appearance of termtj in documentdi or (2) the tf*idf values

normalized by the cosine function.

6.4.2 Test suite

As in [8; 61], datasets used correspond to seven users from the ENRON corpus (mail

from these users and a temporal line in increasing order can be downloaded from

http://www.cs.umass.edu/∼ronb). The downloaded data was preprocessed according

to the process described in Section6.4.1. To do this it was necessary to code a home-

made program in Java, and design it to interact withLuceneinformation retrieval API1

and to output a sparse matrixM [numDocs, numTerms] codified as an.arff file, i.e.,

a file following the input format for the WEKA data mining suite[123].

Table6.1describes the main characteristics of the datasets obtained. The last two

columns are intended to show the degree of imbalance in the datasets. As in [110],

1http://lucene.apache.org/who.html
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(base,peak) is shown, wherebaseis the number of documents of the minority class

andpeakis the number of documents in the majority class. However, itis expected

that this measure is not sufficiently representative of the degree of imbalance because

it represents different distributions in the same way, e.g., (1,100) is valid for{1, 100}
or {1, 100, 100, 100} or {1, 100, 1, 100, 1, 100}, which clearly represents different de-

grees of imbalance. Because of this a new feature is added to the description: (µ,σ), µ

being the mean of documents per class andσ the standard deviation of the mean.σ is

found to be a very informative value concerning the imbalance present in the dataset.

A clear indication of the degree of imbalance in the problem dealt (e-mail foldering) is

that in the seven users (datasets) considered, the standarddeviation is greater than the

average. Besides this, it is also computed the kurtosis degree for each dataset, which

in this case represents the degree of concentration of the number of documents per

class around the mean number of documents per class. A graphical representation of

the imbalance in datasets is shown in a Box and Whisker plots (Figure6.2), where the

inputs used were the number of instances per class state.

Table 6.1: Instances, Classes, Attributes, and degree of imbalance in the datasets
#I #C #A. (base : peak) (µ± σ) Kurtosis

lokay-m 2489 11 18903 (6:1159) 226.3±316.3 2.75

sanders-r 1188 30 14463 (4:420) 39.6±75.6 17.05

beck-s 1971 101 13856 (3:166) 19.5±24.5 13.08

williams-w3 2769 18 10799 (3:1398) 153.8±379.4 4.10

farmer-d 3672 25 18525 (5:1192) 146.9±255.5 7.77

kaminski-v 4477 41 25307 (3:547) 109.2±141.9 1.66

kitchen-l 4015 47 34762 (5:715) 85.4±122.8 11.75

6.4.3 Experimental design

The goal is to study whether the classifiers, specially NaiveBayes Multinomial (which

is designed for frequencies representation), perform better after balancing the datasets.

To be more confident in our conclusions, a statistical analysis is carried out in which

we compare the results with and without balancing, and a contrast is also made with

the results obtained using different classifiers. The experiments deal with the following

actors:

• Balancing algorithms. To balance the training sets the proposed method is

instantiated with the four mentioned distributions: Uniform, Gaussian, Poisson
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Figure 6.2: Graphical representation of the imbalance degree in the seven e-mail users.

and Multinomial. For comparison, it is also considered SMOTE [16]. SMOTE

was initially proposed by its author for binomial classes and performs the bal-

ancing by sampling synthetic documents from a minority class in a given per-

centage, and then randomly under-sampling as many majorityclass documents

as desired. To apply SMOTE in a multi-class problem, it is necessary to select

the number (b) of documents to re-sample for each class and apply SMOTE to

over-sample, without replacement (the SMOTE algorithm does not perform re-

placement), all classes with cardinality lower thanb until obtainingb documents

for those classes; then, for classes with cardinality overb, there is to randomly

remove as many documents as necessary to get cardinalityb.

• Document representation. Documents have been represented by using fre-

quencies and tf*idf. Computation of tf*idf is done incrementally, that is, trying

to reproduce the fact that we have a dynamic problem and not a static one, where

tf*idf can be computed at the beginning by using all the available information.

In this case the classifier should categorize incoming e-mails as they are down-

loaded into the user inbox folder. So, when testing using time-based split eval-

uation (see Section2.2.1), test e-maili should be represented with a tf*idf value
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where the idf part is computed using the training set and teste-mails from0 to

i − 1, instead of using alls test documents, since documentsi + 1 to s are not

supposed to be in the inbox folder yet. In this way, incremental time-based split

validation needs more time but is more realistic.

When balancing is carried out by learning any of the distributions presented in

Section6.3, the parameters needed (max, µ, σ, λ) are computed using frequency

representation, and then the new training set is sampled still using frequencies

representation. Thus, tf*idf conversions are performed later when training and

testing the classifier.

• Classifiers. The three different classifiers used are commonly considered when

dealing with text categorization problems: Naive Bayes Multinomial (NBM)

[78], Support Vector Machine (SVM) [10] andk-Nearest Neighbors (k-NN) [30].

For NBM it was used the implementation provided in the WEKA API.For SVM,

it was used the implementation available in WLSVM [25], which can be viewed

as an implementation of the LibSVM [13] running under WEKA environment.

For k-NN, an own implementation was coded by using WEKA API. Different

values ofk were tested and two distance metrics: Euclidean and Cosine dis-

tances. Only the results for the best configuration found areshown: k=15 and

the Cosine distance which is also the standard similarity metric in text, and it is

computed by:sim(u, v) =
#»u · #»v

| #»u |×| #»v | =
∑

n

i=1
fiu×fiv√∑

n

i=1
f2

iu
×
∑

n

i=1
f2

iv

Wheren is the number of

dimensions (attributes) of each vector andfiu the value of dimensioni in vector

(document)u.

Having the previous setting in mind, three different experiments are to be run:

Experiment 1.-To compute the baseline against which to compare, an incremental

time-based split evaluation is ran on each user in Table6.1 without balancing. With

respect to the value ofs in the time-based split evaluation, in all the experiments carried

out it has been used the value recommended in Bekkerman’s work, that is, the number

(s) of e-mails to classify in each split is100. The three mentioned classifiers were ran

for both types of document representation: frequencies andtf*idf. SVM performed

statistically the same in both cases so from now on it is only shown its results for

tf*idf, which is the configuration suggested in the literature. For k-NN, only results

are shown for tf*idf because that is the configuration which finally obtains the best

results. Finally,for NBM results are shown for both representations: frequencies and
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tf*idf. The results are tabbed in Table6.2, where each entry represent the accuracy

averaged over all the folds tested in the time-split validation process.

Table 6.2: Baseline accuracy for 7 e-mail users.
NBM freq NBM tfidf SVM tfidf k-NN tfidf

lokay-m 75.27 63.65 79.12 39.54

sanders-r 55.51 48.90 66.20 35.97

beck-s 28.26 17.60 36.87 9.00

williams-w3 91.69 88.87 90.52 86.06

farmer-d 69.64 55.34 73.98 37.63

kaminski-v 45.61 34.75 54.26 9.92

kitchen-l 32.19 34.44 51.10 14.28

Mean 56.88 49.08 64.58 33.20

Experiment 2.-In this experiment a test is made for the effects of our proposal, that

is, instead of learning the classifiers from the original dataset, they are learnt from the

artificially balanced dataset. Because of the randomness introduced by the sampling

process,each balancing algorithm is ran five times and show averaged results. In all the

cases the number of documentsb to sample per class is set to 30. Tables6.3 and6.4

show the results obtained. Each entry in the tables represents the accuracy averaged

over all the folds tested in the time-split validation and coming from the five indepen-

dent executions. Comparison between baseline algorithms (Table6.2) and balancing

algorithms was done by using a Wilcoxon signed rank test [23; 121] (α=0.05), taking

as input the time-split values from the corresponding user-classifier. When the bal-

anced user-classifier is found to be statistically better than the baseline (not balanced),

a• is placed inside its corresponding cell.

Table 6.3: Results when balancing with the SMOTE algorithm.
NBM freq NBM tfidf SVM tfidf k-NN tfidf

lokay-m 67.94 •67.72 68.82 •57.79

sanders-r •72.21 •73.28 59.59 •69.82

beck-s •45.41 •45.49 •42.80 •39.86

williams-w3 87.20 74.43 87.75 64.84

farmer-d 61.21 44.70 72.77 37.15

kaminski-v 43.22 •42.42 49.65 •34.85

kitchen-l 35.92 •38.54 49.72 •32.68

Mean 59.02 55.23 61.59 48.14

Table6.5shows a paired comparison between each two kinds of balancing methods

over the four classification methods used (NBM freq, NBM tdidf,SVM tfidf and k-NN

tfidf). Comparison is in the formx − y − z, wherex stands for#beats, y stands for
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Table 6.4: Results when balancing with the proposed distribution-based algorithm.
NBM freq NBM tfidf SVM tfidf k-nn tfidf

lokay-m 52.02 59.20 36.70 49.24

sanders-r 59.33 68.78 71.99 66.60

beck-s •43.32 •48.76 39.93 •43.13

williams-w3 63.56 66.44 46.42 38.81

farmer-d 52.05 51.38 35.29 •46.31

kaminski-v 40.69 •51.80 28.72 •49.52

kitchen-l 33.11 •42.05 26.11 •37.18

Mean 49.15 55.48 40.74 47.26

(a) Uniform Distribution

lokay-m 70.77 •71.51 47.58 •55.95

sanders-r 72.39 •75.23 74.79 •76.02

beck-s •45.88 •50.55 •44.33 •45.00

williams-w3 84.27 80.78 81.50 77.22

farmer-d 67.11 •64.15 65.93 •54.41

kaminski-v •52.02 •56.68 55.39 •52.20

kitchen-l •38.72 •46.45 37.24 •34.66

Mean 61.59 63.62 58.11 56.49

(b) Gaussian Distribution

lokay-m 70.68 •73.20 69.95 •60.35

sanders-r •75.40 •75.88 57.09 •74.09

beck-s •45.17 •48.53 41.17 •44.05

williams-w3 88.93 77.96 85.62 66.65

farmer-d 65.87 55.25 68.28 •48.72

kaminski-v 46.54 •49.36 45.67 •45.07

kitchen-l •37.10 •41.92 39.95 •38.44

Mean 61.39 60.30 58.25 53.91

(c) Poisson Distribution

lokay-m 70.01 •72.41 67.94 •61.25

sanders-r 74.97 •74.84 55.30 •71.66

beck-s •45.09 •49.33 40.48 •46.19

williams-w3 89.03 78.86 85.47 66.72

farmer-d 63.22 54.49 70.25 •47.55

kaminski-v 44.48 •47.49 46.10 •42.34

kitchen-l •35.84 •41.57 40.00 •37.34

Mean 60.38 59.86 57.93 53.29

(d) Multinomial Distribution
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#ties andz stands for#loses. For example, in the first cell, the comparison 15-5-8

means that the SMOTE method performed statistically betterthan the Uniform Distri-

bution method 15 times, statistically the same 5 times and has performed statistically

worse 8 times.

Table 6.5: Paired comparison between balancing methods.
Uniform Gaussian Poisson Multinomial

SMOTE 15-5-8 6-7-15 4-7-17 4-11-13

Uniform 2-3-23 3-8-17 3-10-15

Gaussian 13-11-4 14-10-4

Poisson 10-16-2

Experiment 3.-Finally a study is carried on to measure the effect ofb on the perfor-

mance of the distribution-based balancing algorithms. Thefocus is on a representative

case as is the case of using the Gaussian distribution for balancing, the NBM classifier

and tf*idf document representation. This configuration wasran using values forb from

10 to 60, and the results are shown in Figure6.3.

Figure 6.3: Different values forb using NBM and tf*idf docs. representation.

6.4.4 Discussion of Results

Experiment 1: baseline. Table6.2shows the results obtained after performing time-

based split evaluation on seven users from the Enron Corpus without preprocessing

that instances set. Results show, as in [8], that SVM-tfidf outperforms by far other
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common classifiers such as NBM. Users with worst results are those with a lowerσ

value in Table6.1, which also corresponds with the higher cardinality of class. Thus,

it is found in this dataset that high class cardinality leadsto low standard deviation in

the number of documents per class, and this is an indicator ofclassifiers’ performance

on such databases. We can also see thatWilliamsgets a very high performance so it is

not an easy target to improve.

Experiment 2: balancing Table6.3presents the results obtained when balancing

training sets using theSMOTEmethod, and Table6.4 shows results for the proposed

distribution-based balancing methods. Both tables includea • symbol when the algo-

rithm associated to a cell performs statistically better than its corresponding cell in the

baseline in Table6.2. Finally, a pairwise comparison between balancing methodsis

presented in Table6.5.

SMOTEbalancing proves to be a good choice for preprocessing skewed datasets.

Its results outperform the baseline for some users, specially for NBM-tfidf and k-NN-

tfidf classifier configuration. On the other hand, SVM only gets statistical improvement

in one user and it even decreases in some others.

The proposed distribution-based methods can be classified as one random (Uni-

form) and three directed (Gaussian, Poisson and Multinomial). Results for Uniform re-

sampling are the worst although several statistical improvements are achieved. Com-

paring Gaussian, Poisson and Multinomial re-samplings by looking at Table6.5 con-

clusion is that a reasonable order from best to worst could be: Gaussian > Poisson >

Multinomial > Uniform. In particular, the best choice seems to be Gaussian bal-

ancing with the NBM classifier and tf*idf representation. Furthermore, as happens

when usingSMOTE, the SVM classifier does not get real improvement after balanc-

ing, thus indicating that SVM is strong in imbalanced situations, so performing re-

sampling, at least in the case of using our methods andSMOTE, does not provide any

improvement and even worsens the learning stage. This corroborates a study by [51]

which concludes that SVM is robust against imbalanced datasets. Finally, compar-

ing random and directed re-sampling, it is found support forthe personal hypothesis

which expected that directed balancing alleviates the overlapping problem. Moreover,

this provides evidence to suggest that imbalance is not the only problem in skewed

datasets.

When comparingSMOTEagainst the proposed distribution-based methods in Ta-
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ble 6.5, it is found thatSMOTEperforms better than the random distribution-based

method, but worse than our three suggestions for directed distribution-based meth-

ods. This clearly concludes that the methodological proposal for balancing (except for

Uniform distribution) outperformsSMOTEat least when applied to text categorization

with more than 2 classes.

With respect to document representation, if we focus on NBM, whose results are

shown with frequencies and tf*idf documents representation, we can see that in the

baseline NBM with frequencies performs better than NBM with tf*idf but, after bal-

ancing the data, NBM with tf*idf performs considerably better and achieves statisti-

cally the same results as NBM with frequencies; thus, this canbe interpreted as em-

pirical proof that tf*idf representation is more imbalanced-sensitive than frequency

representation.

Comparing users by looking at Table6.1, Figure6.2 and Table6.4, users which

usually obtain statistical improvement are: beck-s, kaminski-v, kitchen-l and sanders-

r. These four users are those with a larger cardinality for their class attribute and which

present lower outliers in their box and whisker plot. Furthermore, with respect to their

(µ, σ) representation, they are also the user with lowestµ andσ values; respect to kur-

tosis degree, higher values clearly point to a higher need ofbalancing. Thus, based on

these results, it is suggested that a good way to predict performance improvement after

balancing a dataset may be one of these: (1) cardinality class, (2) outliers in box and

whisker plot, (3) low(µ, σ) values and/or (4) high kurtosis values . For example, by

looking at Table6.1we could predict that a good order of datasets with a greater need

for a balancing process are (from more to less): beck-s, sanders-r, kitchen-l, kaminski-

v, farmer-d, lokay-m and williams-w3. Finally, one may suggest using the kurtosis

value since this is just a single value and very related to thebalancing need.

Experiment 3: number b of documents per class. The configuration Gaussian

Distribution with classifier NBM and tf*idf representation was ran using values forb

from 10 to 60, and the results are shown in Figure6.3. Choosing the value forb should

not only be based on performance but also on the computational cost of samplingb new

instances for each class. Thus, based on Figure6.3, it is suggested using values from

30 to 40, since the computational cost is quite high from 30 documents and above,

while the improvement achieved is not significant.
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6.4.5 Conclusions for Distribution-based balancing applied to Text

Categorization.

For the NBM classifier, a great improvement on its performancewas achieved for the e-

mail foldering task, what is of great interest given that NBM is a well-known standard

for text classification.

A comparison has been presented of four kinds of distributions (one random and

three directed) to fully re-sample training datasets for multi-class classification, applied

to e-mail categorization; besides, another comparison wasmade for the proposed con-

tribution results and the well knownSMOTEbalancing method. The results support the

main hypothesis, which stated that a directed re-sampling method not only balances the

training set but also reduces the problem of overlapping among classes, while random

re-sampling is only capable of dealing with the imbalance problem. Furthermore, evi-

dence is found that the SVM classifier is very robust under imbalanced conditions, so

its performance does not improve after balancing. Comparingwith SMOTE, the pre-

sented distribution-based methods statistically outperform it, except for the Uniform

distribution.

Finally, common characteristics have been found between datasets which usually

perform better after balancing; that is, it can be expected that datasets whose perfor-

mance improves after balancing will be those which present alarge cardinality class,

low outliers in a box and whisker plot, low(µ, σ) values and/o high kurtosis degree.

6.5 Conclusions

The problem of class imbalance in datasets has been presented in this Chapter. A

new kind of balancing algorithms has been proposed:Distribution-basedbalancing,

and they have been compared among themselves and with the well-known SMOTE

algorithm; besides, experiment have been ran on a Text Categorization problem (E-

mail foldering). The main conclusion obtained is that the proposed Distribution-based

methods outperform SMOTE in terms of Accuracy, concretely the multinomial model

performs quite well and thus it is an interesting contribution to the e-mail foldering

problem.
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Chapter 7

Video Representation in MIR

7.1 Summary

In this chapter an introduction is presented to Multimedia Information Retrieval, focus-

ing on the “Semantic Gap” problem and the representation of multimedia documents,

mainly “Visual Features”. Finally, several experiments are reported about visual fea-

tures selection, dimensionality reduction and about othercomplementary kinds of rep-

resentation for multimedia documents.

7.2 Introduction to Multimedia Information Retrieval

Multimedia Information Retrieval (MIR) [4] is a relatively new subfield of the Informa-

tion Retrieval (IR) problem. Usually, when one refers to IR it is automatically assumed

that one means “text” IR (TIR). However, the last two decades have seen the birth of a

new discipline, MIR, which has the same goal (suggestion of relevant documents given

a search topic) but applied to a wide variety of multimedia documents which may con-

tain: (hyper)text, video, sound and/or still images. With the exponential growth of the

Internet and multimedia contents, the MIR discipline has attracted the attention of the

research community over the last years.

An IR system presents the components stated in Definition7.1:

Definition 7.1 AnInformation Retrieval model is a sixtuple: [D,{Q,C}, O, {R(qi,dj),

R’(ci,dj)}] where:
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1. D is the set of stored documents

2. Q is the set of queries a user can perform

3. C is the set of categorizations the user may request

4. O is the set of operations that can be applied on Documents or Queries

5. R(qi,dj) is a function returning a real value. This value is used to insert docu-

mentdj in a ranking of relevant documents for queryqi.

6. R’(ci,dj) is a function returning a real value. This value is used to insert docu-

mentdj in the corresponding set in order to perform the categorization pointed

out in ci.

And we can find a more natural definition in [75]:

Definition 7.2 Information Retrieval is finding documents of an unstructured nature,

usually text, that meet an information need from within largecollections, usually stored

on computers.

Multimedia data has become as much a part of our daily lives astext documents.

However, retrieval of the former presents much more troublesome issues than the latter.

In the 7th ACM SIGMM International Workshop on Multimedia Information Retrieval,

the Panel Session [48] discussed the main problems in MIR:

• Semantic Gap. Multimedia documents are usually described using low-level

features(see Section7.4) such asColor Layoutor Texture. The semantic gap

refers to the difficulty of expressing or representing high-level concepts using

these kinds of features. This is not so problematic in text IR,where the semantics

of text is (almost) linked to the content of the document.

• Query-type. We can find multimedia queries performed by text(here the seman-

tic gap is most important) and by sample (e.g.: search for similar images to the

one provided as input). Both techniques lead to different search systems and

possibilities.

• Scalability and Search Speed. Storing and Processing multimedia documents

requires low search-complexity MIR algorithms.
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• Benchmarking. Public and common evaluation databases are required to demon-

strate that MIR techniques are profitable in general and not just in particular

studies. One of the most important movements in this aspect is being made by

the TRECVID1 [107] research effort, which aims to tackle the most difficult

problems of content-based video retrieval.

• Modeling. “Move away from aone model fits allapproach” is a key decision,

which would lead to retrieval systems which would use different algorithms or

document representation depending on factors such as the search topic or user

context. For example, voice transcription could be most important in news re-

trieval while it would not be useful for unlabeled images collections.

• User Interfaces and Human Interaction. The difficulty of performing multimedia

retrieval might be alleviated by designing interfaces [4] which help the user to

perform better queries (text and content-based) orwhich return documents in a

more user-friendly manner.

7.3 Semantic Gap

There is a certain agreement in the research community that the Semantic Gap is the

most important problem in MIR engines. The unsatisfactory performance of video

retrieval systems is mainly due to the gap between low-leveldescription (see Section

7.4) of multimedia documents and their high level semantics.

In [108] we find this definition:

Definition 7.3 The semantic gap is the lack of coincidence between the information

that one can extract from the visual data and the interpretation that the same data

have for a user in a given situation.

How to link the physical descriptions of a document to the understanding of a human

being is part of the IR subfield known asContent-based Information Retrieval(CBIR)

[108] and, up to now, the semantic gap has not been satisfactorilybridged. The results

of TRECVid experiments up to now show the inadequency of content based search

systems and also the limited effectiveness of high-level feature extraction systems.

1TRECVid is a large-scale evaluation campaign aimed at research problems related with video data.
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One straightforward approach to solving this problem is themanual annotation,

description or indexing of multimedia documents, which reduces the content-based

problem to the original task of (text) information retrieval. When applying these label-

ing techniques, two main problems arise identified: (1)Cost, since it is clear that the

manual description of thousands of images is extremely expensive in time and staff,

although some automatic solutions haven been adopted [14; 96]; and (2)Coverage,

which aims that the whole semantics of an image cannot be captured by text descrip-

tion [3]. So manual labeling is not expected to solve the semantic gap problem in all

cases and so CBIR is nowadays a very active research field.

Figure 7.1: Classes of Equalities for Content-Based Image Search.

Figure 7.1 (adopted from [108]) shows all the semantic equalities that a CBIR

system needs to address. If we are searching for any kind of “car”, a categorical equal-

ity is enough. However, we might aim for more complex requirements as: blue car

(physical), long car (geometric) or nice car (perceptual). The most restrictive equal-

ity between images is “literal”, which would seek for literally identical objects. Thus,

bridging the semantic gap would mean building a CBIR system which can link the

semantic similarity a user is looking for and the data processing of multimedia docu-

ments that computers provide.

There are some other fields of study to improve the performance of MIR systems,

such as the design of collaborative systems [43] which take into account the implicit

and/or explicit feedback of other users; the design of more powerful multimedia search

interfaces [2; 114] which help guide the user in his/her specific needs; and taking into
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account the context of the user [45]. For example, the retrieval systems evaluated in

the TRECVid model retrieval in a “one result list only” approach, which assumes the

user is focused on one particular search issue. An example ofthis type of search task

is: “Find shots of Condoleezza Rice”.

These tasks are useful in benchmarking various retrieval algorithms as shown in the

TRECVid evaluation experiments, but they are not representative of real world video

information seeking tasks. For example, a researcher or journalist at a broadcasting

station who is searching for material to use in the production of an item for the evening

news, may be interested in highlighting the achievements ofmultiple swimmers at the

2008 Olympic Games in Beijing. However, as they progress through the search task,

they may become interested in highlighting other issues, such as preparatory issues re-

lated to the performance of Michael Phelps, or to highlight the need for more govern-

mental support in the development of future swimmers. Current retrieval systems and

approaches fail to provide any support for such broad, multi-faceted tasks. In a faceted

retrieval system, one may search for information about various aspects of the under-

lying information need without interrupting the current search session. These kinds

of interfaces might be regarded as supportive complements,but the main problem in

CBIR is still found in the representation and processing of multimedia documents. So

this part of the thesis focuses on the representation of still images (video key-frames)

to help their processing and relevance prediction. Besides,in Chapter8 a deep study

of the influence of context on classifiers is presented.

7.4 Visual Features

Visual Features[108] is another way of referring tolow-level featuresor object fea-

tures. These are arrays of real values describing a physical property of an image. As

mentioned in Section7.3, the use of visual features is a key factor in CBIR for MIR

systems.

7.4.1 Visual Features Description

One of the main goals in CBIR is the automatic indexing of multimedia documents

such as images and videos. The information stored for each document must be as

self-describing as possible and compatible with relevanceprediction algorithms which
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need to compute the high-level semantics of the document.

Visual features are used to describe both still images and video shots1. In order

to describe a video shot, several key-frames are (automatically) selected to represent

such a shot and then those key-frames are represented using the same features as for

still images.

To extract visual features from images or video shots, several tools can be used, the

most-used currently being the MPEG-7 Visual Standard for Content Description [106].

Text created from transcript speech is another common way ofrepresenting shots. As

stated in [125], although it can be used to gain good performance, it cannotbe applied

to all videos in general due to the lack of speech in some videos, or the fact that the

speech does not relate to the visual content of the video.

Some of the most commonly used low-level features are:

1. Color Histogram. There exist several color spaces (RGB, YCbCr, HSV) which

have a more discriminanting power than grey scale color descriptions. The Color

Histogram [111] in an image is one of the color descriptions most commonly

used, and it is invariant to translation and rotation. The MPEG-7 standard codi-

fies this feature in the HSV color space, which makes the hue property invariant

with respect to the illumination.

2. Color Layout [74]. This vector is the result of a Discrete Cosine Transformation

(DCT) over a 2D array of local representative colors in Y or Cb orCr. This

feature is invariant to resolution.

3. Dominant Color[74]. This vector describes the dominant color in the corre-

sponding color space, the percentage of the area it covers inthe image, its vari-

ance and some other relevant information.

4. Texture. The texture of an image can be codified using from simpler [88] to

more complex techniques such as in [73].

5. Edge Histogram. This kind of texture represents the global distribution ofedges

by edge histograms of several kinds of edges.

6. Segmentation and Shape. Different parts of an image can be identified using

several segmentation techniques and, then, each segment can be represented us-

1A video shot is a limited section of a video, commonly createdbetween a fade in and fade out
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ing any low-level feature. Furthermore, shapes can be identified inside an image

and thus different semantics found.

In Figure7.2examples of some visual features are shown (obtained from [81]).

In conclusion, there exist a wide variety of features and, beforehand, it is difficult

to choose which to use. As shown below, several experiments have been performed in

order to help to make this decision easier and more effective.

Figure 7.2: Examples of Low-Level Features.

7.4.2 Experiments on Visual Features Selection

Retrieval using low-level features faces two major problems. The first is the already

mentionedsemantic gap; and the second, the well-known “curse of dimensionality”,

which has been studied extensively, e.g. in [117]. To overcome this problem, solutions

have been proposed in the field of multidimensional indexingstructures, involving the

creation of structures which allow efficient access to multimedia databases [105; 113].

In this section a piece of work is presented in which dimensionality reduction is

performed for several visual features and, besides this, anexhaustive search is per-
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formed for joining visual features. The metric used for dimension reduction and fea-

ture selection is a wrapper classification to predict relevance of video shots which are

represented by the description of one key-frame using the corresponding visual fea-

tures. Thus, the MIR problem is projected on a classificationtask with a binomial

class (Relevant, Non Relevant) and the objective is to find which dimensions in each

visual features are the most important when predicting the relevance of a document,

for several search topics.

In the following, the methodology used to solve the problem of skewed data is

explained; then, starting from this solution, the problem of reducing features dimen-

sionality is dealt with. Finally, an exhaustive search for visual feature selection and

combinations is performed.

Methodology

The corpus used for evaluation is the one provided in TRECVid 2006. The TRECVID

2006 data collection consists of approx. 160 hours of television news video in English,

Arabic and Chinese which were recorded in late 2005. The data set also includes the

output of an automatic speech recognition system, the output of a machine translation

system (Arabic and Chinese to English) and the master shot reference. The collection

has 79484 shots, where each shot is considered as a separate document and is repre-

sented by low-level visual features. This experiment uses the set of 24 topics contained

in the data collection, where each topic contains a judgmentlist of 60 to 775 relevant

documents.

The video shots of the TRECVID 2006 corpus are the instances to train and clas-

sify, from which only an average of 300 shots are relevant foreach search topic. So this

is a highly-skewed set of shots to learn and to predict their relevance. The evaluation

method used performs a 10 cross-fold validation 10 times (10x10CV). Since test sets

cannot be modified and splits are made randomly in each run, the balancing of training

sets needs to be performed in execution time. Since the wholedatabase consists of

about 80000 instances, 10x10CV proves to be quite a time-consuming task so the bal-

ancing method should be as light as possible, so the method used is what is referred to

here as theAlphamethod (also used in Chapter6), which consists in randomly deleting

as many non-relevant documents from the training set as indicated. Ifα = 100, then

the training set contains as many non-relevant documents asrelevant.
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The process of the experiments is as follows:

1. Experiment to choose a classifier for selection.

2. Experiment to choose the degree ofalphabalance for training sets.

3. Experiment for Dimensionality reduction.

4. Experiment for exhaustive Visual Feature selection.

Results obtained from evaluations are assessed using three common measures in clas-

sification problems: (see Section2.2.2) precision, recall andF1−measure, the three

of them computed for class value “Relevant”.

1) First, for each visual feature1, a 10x10CV was run over TRECVID 2006 repre-

senting each video shot with only that feature and for each ofthe 24 search topics in

TRECVID 2006, using a balance degree ofα = 100. This cross-folder validation was

performed using four different classifiers: Naı̈ve Bayes, AODE [116], Support Vector

Machines and k-Nearest Neighbor. The probabilistic classifier AODE proved to be the

best trade-off between speed and performance.

2) Then, another 10x10CV was run using AODE for each visual feature and each

of the 24 search topics in TRECVID 2006, using balance degrees from 0 to 100.

Results for each topic are averaged and shown in Figures7.3, 7.4and7.5for eleven

different values ofα and for five different visual features used to represent shots in the

database.

Dominant ColorandColor Layoutvalues inprecision(R)present high precisions,

although that is due to outliers in one of the search topics which is related to sports

(green is the most common color), so their performances cannot be expected to be that

high in all topics. Thus, it is concluded that, in general, the two best performing visual

features for all topics come down to beTextureandEdge Histogram.

Figures7.3 and7.4 reveal the common behavior ofprecision andrecall: as one

increases the other goes down. To find a good break-even point, theF1 − measure

1Please note thatvisual featurerefers to a vector of values, where the length of such a vectordepends

on the kind of visual feature in question.
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Figure 7.3: Precision for relevant shots prediction.

(Figure7.5) is computed and the conclusion is that a balance degree ofα = 50 can be

set for the dimensionality reduction experiments.

Results on Dimensionality Reduction

The quality of the used set of features is of great importancefor the classifier to achieve

a good performance [8]. This performance will depend of the individual relevance

of each feature respect to the class, relationship among features and the existence of

features which influence negatively on the classifier.

It is possible to improve the quality of the available features by performing Feature

Subset Selection (see Section2.4).

The information retrieval task is being tackled as a classification problem and, as

such, it can be performed a dimensionality reduction for each visual feature. Each

visual feature (Colour Layout, Dominant Colour, Content Shape, Texture and Edge

Histogram) is represented by a vector of double valued features. Table7.1 shows the

number of dimensions that each visual feature contents.
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Figure 7.4: Recall for relevant shots prediction.
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Figure 7.5:F1-measure prediction.
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Table 7.1: Length of arrays describing visual features
Visual Feature Length

Colour Layout 10

Dominant Colour 15

Content Shape 130

Texture 62

Edge Histogram 80

A feature (dimension of a visual feature, in this case) can beregarded as an ob-

servation for a sample, and from that point of view it would beinteresting to have as

many observations as possible. However, a large array of observations might contain a

lot of noise which leads to wrong conclusions. Besides, TRECVID2006 is a database

with a huge number of samples so no long visual features should be needed to feed

the classifier. Moreover, when studying visual features instantiations to describe shots

in TRECVID 2006, it is found out that some dimensions are alwaysset to 0. So the

hypothesis is that a dimensional subset selection might be helpful to improve the classi-

fier’s performance in terms of time and/orF1−measure, for the TrecVid2006 corpus.

In [95] authors perform selection using a Feature Vector Reductionprocess on 2 Corel

corpus. Although results are good, they fix the reduced vector to represent color and

texture visual features without explaining why. In this study, no previous selection for

any visual feature is done. Besides, no dimension nor visual feature selection has been

found in the literature applied to TrecVid news corpus.

Since wrapper methods bias the results toward the wrapper classifier and the goal

is to apply the results to information retrieval systems, filter metric is used to perform

dimension selection. Besides, TrecVid2006 is such a huge corpus that indeed a filter

metric is needed. Finally, evaluation of the goodness of selection is performed via

wrapper classification. Thus, selection is a filter+metric approach.

[119] et. al present a mathematical study from where they conclude that information-

based metrics asInformation Gainare biased, favoring the selection of nominal at-

tributes which have a higher number of states. However, a more modern study [34]

performed experiments over a huge workbench and concluded that “Information Gain

metric is a decent choice if one’s goal is precision”, which is the case since information

retrieval system aim for that performance measure. Forman’s work compares differ-

ent information-based and statistical metrics (includingchi-squre), and then concludes
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Figure 7.6: Precision (for relevant documents) over different values forP .

that“Under low skew, IG performs best and eventually reaches the performance of us-

ing all features”. Since we balance our training sets, we have a very low skew. So,

based on this work, a selection by Information Gain metric respect to the class is used

for feature selection.

For each visual feature, the IG value for each dimension respect to the class is used

to create a ranking to know which indexes of the vector in eachvisual feature is more

relevant respect to the class. Then, the best percentageP of features in the ranking

is projected over the database and classification is performed to compute how good

this new subset results to the classifier. This classification is performed as described

in Section7.4.2, and training sets are balanced settingα = 50 as it was computed to

result the best level of balance.

Several values forP are tested and again three different metrics are computed:

precision(R), recall(R) and F1-measure. For the sake of clarity it is only shown results

for precision in Figure7.6.

Results in Figure7.6 show that the hypothesis is correct and thus a fine dimen-

sionality subset selection can be done for visual features.Keeping just the best 40%,
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50% and 60% of dimensions ordered by their IG with respect to the class makes the

classifier have a slightly loss in prediction (based on precision for relevant documents)

power while dividing the dimensions of visual features intohalves, so information

retrieval systems could be benefited by achieving a faster response to user’s queries

without losing quality in their final list of suggested documents.

Results on Visual Feature Selection

The hypothesis here is that the combination of two or more visual features might im-

prove the performance of the classifier. Since there are available 5 visual features

(Colour Layout, Dominant Colour, Content Shape, Texture and Edge Histogram), the

search space consists of25 − 1 possible combinations. Thus, although a quite time

consuming task, it is still possible to perform an exhaustive search to find out what

combination of visual features makes our classifier work better.
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Figure7.7shows the value forF1 −measure averaged over all the 24 TRECVID

2006 topics. It shows that the best combinations are “Colour Layout DomColour Tex-

ture EdgeHist [167]” and “Colour Layout DomColour ContShape Texture EdgeHist

[297]”, both reachingF1 − measure = 0.1. Results show that combination of vi-

sual features tend to improve the performance of classifier and, although this means

an increase in its computational load, this score is better than any score achieved when

performing feature subset selection in Section7.4.2.

A dimensionality subset selection (the same way than in7.4.2) for the best two

combinations to check if it can kept their good performance but decreasing their high

dimensionality. The selection of 40% and 60% in an IG-rankedlist of the features

belonging to each combination results shows thatF1−measure does not decrease for

both combinations of features while their dimensionality is halved.

Conclusions

Two problems have been tackled:

1. Dimensionality subset selection. The dimensionality ofvisual features has been

successfully reduced without decreasing the performance of the classifier, find-

ing out that we can get rid up to the worst (based on IG) 60% dimensions inside

each visual feature.

2. Visual features combination. An exhaustive search has been performed to find

what combination of 5 visual features performs best (in terms ofF1−measure)

to predict the relevance of documents. Conclusion is that thebest two com-

binations are all the visual features and all the visual features except Content

Shape visual feature. Since these combinations derive in high dimensionality, a

filter selection based on IG-ranking reduces these new dimensionalities without

decreasing theF1 −measure value.
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7.5 Study on Feature Construction for Video-shots Rep-

resentation

Low-level visual features is one of the most widespread kindof representative features

used in MIR systems. In this section, a study is presented in which four different

kind of features (one of them including visual features) areused to represent video

shots. As mentioned in Section7.3, low-level features automatic extraction is most

important for the speed and scalability of CBIR systems. However, several studies as

in [2] search for new document representations in order to improve the performance of

MIR engines. In this section a study on representation of key-frames extracted from

video shots is presented and several interesting conclusions are induced. Again, the

MIR problem is projected on a classification task where classis binomial (“Relevant”,

“Non Relevant”) and each instance in the database is a key-frame of a video shot. In

this study, a comparison is made on classifiers’ performanceusing four different kind

of representative features.

In order to avoid problems of overfiting and erroneous conclusions, evaluations are

made over several different configurations:

• As it will be explained in more detail in Section7.5.1,four different kind of

features are used to represent shots with which the classifier is fed: features rep-

resenting behavior of users during user study, features representing physical and

metadata information about shots, vocabulary features andwindowed vocabu-

lary features extracted from Automatic Speech Recognition (ASR) in shots.

• The study is performed on two databases coming from two user studies, which

are introduced in Section7.5.1.

• Three different classifiers are used: probabilistic (NaiveBayes), distance-based

(kNN) and vectorial-based (SVM).

• In one of these databases two different kind of relevance (two ways of deciding

class value) are used: official relevance and relevance as perceived by users.
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7.5.1 Methodology

In order to learn how different kinds of constructed features affect relevance prediction,

data logs from two users experiments are used to construct the final datasets using

different kinds of representative features, and these datasets are used for evaluation

using several classifiers. This section explains how these final datasets are constructed,

the different kinds of features used and how the classifiers are evaluated.

Datasets creation from user logs

It is denoted ’user study’ to refer to an experiment in which several users tested a video

retrieval system searching under different topics and conditions. A log file was created

from each of the users studies [115] and [114] (respectivel named “Collaborative” and

“StoryBoard” user studies). Each log file contains verbose data explaining the actions

each user performed (on which shots1 actions were performed, the kind of action per-

formed, timestamp, user condition, topic of search,...). For each query search, the user

interacts with a set of shots. So, for each tuple〈search, user, condition, topic, shot〉
a new instance is created from a log for the final dataset. Eachinstance in the final

dataset consists of: tuple features (〈search, user, condition, topic, shot〉), Relevance

Prediction Features which are constructed to represent theshot and predict the class

feature, and the class feature itself. Class features is binomial with values “Relevant”

and “Non Relevant”, and refers to the relevance of the shot. For the same log, different

final datasets have been constructed because different kindof features have been tested

to predict relevance and additionally, different kinds of relevance decision have been

tested, as explained below.

Kind of features constructed to predict relevance

As mentioned previously, an instance in the final dataset will follow the pattern

Tuple Features, Relevance Prediction Features, Class Feature.

Four different kinds ofRelevance Prediction Features are used: User Behavior

Features, Object Features, Vocabulary Features and Windowed Vocabulary Features.

1In Multimedia IR systems, retrieved documents are not the whole videos but shots, where a shot is

one of the splits a video can be divided into.
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Table 7.2: Behavior Features used to predict shots relevance
Feature name Description

ClickFreq Number of mouse clicks on shot

ClickProb ClickFreqdivided by total number of clicks

ClickDev Deviation ofClickProb

TimeOnShot Time the user has been performing any action on shot

CumulativeTimeOnShots TimeOnShotadded to time on previous shots

TimeOnAllShots Sum of time on all shots

CumulativeTimeOnTopic Time spent under current topic

MeanTimePerShotForThisQuery Mean of all values forTimeOnShot

DevAvgTimePerShotForThisQuery Deviation ofMeanTimePerShotForThisQuery

DevAvgCumulativeTimeOnShots Deviation ofCumulativeTimeOnShots

DevAvgCumulativeTimeOnTopic Deviation ofCumulativeTimeOnTopic

QueryLength Number of words in current text query

WordsSharedWithLastQuery Number of equal words in current query and last query

Thus, for the logs from each user study four final datasetsDS1, DS2, DS3 andDS4

are derived, where the four datasets contain the same valuesfor Tuple Features and

Class Feature but each one contains one of the four kind of features constructed.

The User Behavior Features where designed similar to [2]. These features give

information about how the user interacts with a document. Inthis case, the information

is related to the actions the user performed through shots suggested by the information

retrieval system after he/she ran a query under a concrete topic and condition. Behavior

features used in this study are shown in Table7.2 and they can be split into three

groups: Click-Through features, which represent information about clicks the user

performed on shots;Browsing features, which show different metrics about time spent

on shots andQuery-Text features, which count words in the current text query and

make comparisons with other text queries. Note that the values for these features

are computed for each tuple (〈search,user,condition,topic,shot〉) from the users studies

logs.

Object Features are not extracted from the logs. They represent bothLow-Level

Featuresand Metadataand they are shown in Table7.3. Using these features, the

Relevance Prediction Features describe the shot appearing inTuple Features.

Metadatakeeps information about length of shots and also information related to the

Automatic Speech Recognition (ASR) from shots audio. Text transcripts from a shots’

audio is filtered through a stop-words list and a Porter stemming filter [86], and then

used to extract some statistics about the text.
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Table 7.3: Object Features used to predict shots relevance
Feature name Description

Color Layout vector containing 10 values

Dominant Color vector containing 15 values

Texture vector containing 62 values

Edge Histogram vector containing 80 values

Content Based Shape vector containing 130 values

Length Time length of shot

Words #words in Automatic Speech Transcription from shot audio

DifferentWords #Different words in ASR from shot audio

Entropy Shannon entropy of ASR from shot audio

Vocabulary Features are a bag of words created from the ASR. Inthis case the text

is not used to compute statistics about the text, but to create a vocabulary of words

to perform the task of text classification. The transcriptedtext is also filtered through

a stop-word list and a Porter stemming filter. Then, the resulting text is transformed

into Weka format using a tool based on Lucene1. For this kind of feature the video

relevance classification becomes a problem of text classification.

It is expected that video relevance classification based on ASR works relatively

well due to the fact that text has more descriptive power than, for example, low level

visual features. However, in the literature some complaints about using ASR can be

found, as in [125] where the authors state that some speeches might not have anything

in common with their respective shots, and the problem of “Coverage” (see Section

7.3).

Finally, Windowed Vocabulary Features refer to a common technique in video re-

trieval systems which use ASR to create the results list. This uses the same procedure

performed when using Vocabulary Features but in this case the text used to construct

the bag of words does not come only from the ASR of the corresponding shot but also

from then previous shots in time and the latern shots. This is calln-Windowed ASR

and in this case it is used a 6-Windowed Vocabulary. It is expected that 6-Windowed

Vocabulary features perform better than creating a bag of words from only the ASR of

a single shot.

When ASR is used to create a bag of words and evaluate using a bayesian classifier,

Naive Bayes is not used but the Naive Bayes Multinomial, which is recommended for

text classification ([78]).

1http://lucene.apache.org/who.html
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Table 7.4: User studies used under different combinations of kind of features and kind

of relevance.
Official Relevance User Relevance

User Behavior Features Collaborative Collaborative & StoryBoard

Object Features Collaborative Collaborative & StoryBoard

Vocabulary Features Collaborative Collaborative & StoryBoard

W6-Vocabulary Features Collaborative Collaborative & StoryBoard

In the case of using Behavior Features, which are continuous values and user de-

pendent, it is not likely to construct a dataset with repeated instances. But, when using

Object or Vocabulary Features, the same shot can appear in different tuples so the

Relevance Prediction Features are repeated; then we would have several repeated

instances in the dataset where the class feature is sometimes set asRelevant and other

times asNonRelevant. This contradiction is solved by deleting all repeated instances

and setting the class feature to the most frequent value.

Kinds of relevance

Two sources of information are used to decide if a shot is relevant for a topic or not:

Official Relevance and User Relevance. This means that for eachfinal dataset, its eval-

uation is performed twice, once for each kind of relevance: (1) Official Relevance:

Shots used in the users experiments belong to the TRECVid 2006 collection [107],

which provides a list of the relevant shots for each topic based on the standard infor-

mation retrieval pooling method of relevance assessment; and (2) User Relevance:

In the user experiments, users could explicitly mark shots as relevant to the topic. In a

dataset, a shot can be considered relevant if the user marks it as such.

One of the user studies this work is based on did not use the official TRECVid 2006

topics, so Official Relevance for that study cannot be used. Table 7.4 summarizes all

the different evaluations performed for datasets obtainedfrom each of the users studies

(Collaborative and StoryBoard studies).

Relevance predictions has a different meaning depending on the kind of features

and relevance used. Predicting User Relevance using User Behavior Features can be

seen as predicting explicit user feedback because users marked videos (or not) after

interacting with them. Predicting Official Relevance using User Behavior Features
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Table 7.5:F1 − measure for datasets constructed from Collaborative users study -

Official Relevance.
Behavior Object Vocabulary W6-Vocabulary

Nbayes/NBM 0.194 •0.06 •0.047 •0.060

SVM 0.141 •0.07 •0.052 •0.086

k-NN 0.164 •0.06 •0.046 0.172

Mean 0.166 0.06 0.048 0.106

predicts the relevance of a shot decided by a third group by actions users performed

on the shots influenced by their perceptions. If Official Relevance is used when feed-

ing our classifier with Object or Vocabulary Features values, it is assumed that low

level features (as Color Layout) are meaningful enough to cross the semantic gap to

high level concepts. Similarly, when predicting User Relevance using Object Features,

some influence between low level features and metadata in user perception is assumed.

When using Vocabulary Features, relevance prediction is similar to when Object Fea-

tures are used, but in this case the semantic gap is not the problem but the “Coverage”

as stated in Section7.3, besides of becoming a text classification task.

As Table7.4shows, 4 datasets were created from the Collaborative user study and

2 datasets from the StoryBoard user study. For each of these datasets, evaluation was

performed using each of the four kinds of feature introducedin section7.5.1.

7.5.2 Experiments

Experiments are carried out on datasets constructed from logs obtained in two user

studies. For each constructed dataset, four new datasets are derived using either User

Behavior, Object, Vocabulary or Windowed-Vocabulary Features (see Section7.5.1)

to predict each shots’ relevance. For each dataset, a 5x2CV isperformed (using three

different classifiers ant kind of relevance (class): Official and User relevance). For each

evaluation,F1−measure is computed as a representation of classifiers’ performance.

To compare the four different kind of features used to represent shots,F1 −measure

is compared for each pair of representation-classifier.

Results from evaluations are shown in Tables7.5, 7.6and7.7.

MeanF1 −measure for databases using Behavior Features representation always

performs best. A paired Wilcoxon signed rank test [23; 121] was run withα=0.05,

using, for each classifier in each table, Behavior Features ascontrol and comparing it

versus each other database for the same classifier and table.Input, for each compari-
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Table 7.6:F1 − measure for datasets constructed from Collaborative users study -

User Relevance.
Behavior Object Vocabulary W6-Vocabulary

Nbayes/NBM 0.433 •0.074 •0.094 •0.086

SVM 0.490 •0.078 •0.108 •0.095

k-NN 0.380 •0.073 •0.104 •0.145

Mean 0.434 0.075 0.102 0.108

Table 7.7:F1 −measure for datasets constructed from StoryBoard users study - User

Relevance.
Behavior Object Vocabulary W6-Vocabulary

Nbayes/NBM 0.397 •0.313 •0.320 0.484

SVM 0.462 •0.311 •0.317 0.472

k-NN 0.601 •0.312 •0.286 •0.438

Mean 0.487 0.312 0.307 0.465

son, was the 10 values coming from the 5x2 CV evaluation. WhenF1−measure for a

classifier and database performed statistically less than the baseline (behavior features

with the same classifier), the corresponding cell is marked with a • symbol. Results

suggest that Behavior Features databases make classifiers usually perform statistically

better than the others; this evidence supports the common idea of using collaborative

retrieval to improve information retrieval systems. Another conclusion that can be ex-

tracted from result tables is that representing documents using extended vocabulary

usually improves performance compared with single-document vocabulary represen-

tation.

Another interesting conclusion is that the semantic gap present in Object Features

affects relevance prediction as much as the problem of coverage of manual tag label-

ing. Since ASR is not possible in images nor videos without voice, it can be seen as a

particular case of labeling. Thus, results suggests that the aim of CBIR research com-

munity of automatic indexing of multimedia documents by their low-level features is,

at least, more effective in terms of cost and effort than manually tagging.

Feature Selection

Selection has only been run on Behavior and Object Features, since selection on Vo-

cabulary features would only return a set of words with no generalization power.

In Table7.8 it is shown the constructed features chosen by the incremental selec-

tion. With respect to Behavior Features, we can see that features constructed to rep-
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Table 7.8: Selected features when performing Incremental Wrapper-Based Selection
Behavior Official R. User R. User R.

ClickFreq x x x

ClickProb x x

ClickDev x x x

TimeOnShot x

CumulativeTimeOnShots x

TimeOnAllShots x

CumulativeTimeOnTopic

MeanTimePerShotForThisQuery x x x

DevAvgTimePerShotForThisQuery

DevAvgCumulativeTimeOnShots x

DevAvgCumulativeTimeOnTopic x x

QueryLength x x

WordsSharedWithLastQuery x

Object Official R. User R. User R.

Color Layout[10]

Dominant Color[15] 1 5

Texture[62] 1

Edge Histogram[80] 10 2 5

Content Based Shape[130] 1 1

Length x

Words

DifferentWords

Entropy x

resent statistics about clicks performed are the most frequently selected. This makes

sense and can be expected, since clicks can be regarded as explicit feedback about the

interests of the user.

7.6 Experiments on Relevance Prediction for Video Shots

This section reports experiments for the proposed balancing methods in Section6.3of

Chapter6. In Section6.4 the problem of imbalance was tackled for the task of Text

Categorization, concretely that of E-mail Foldering. In this case, the databases used

consist of video-shots represented using two different kind of predictive features, and

the task to perform is the prediction of relevance for video-shots, given different search

topics.
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7.6.1 Design of Experiments

Experiments have been ran over two datasets (for these datasets construction method-

ology, see Section7.5.1) which were used to train a classifier for relevance judgment.

These two datasets contain the same shots which the same class but, for each dataset,

a different kind of predictive features were used to represent the video-shots. The first

dataset consists of Behaviour Features as suggested by Agichtein et al. [2], containing

continuous values. The second dataset consists of Vocabulary Features, containing a

bag-of-words where each work is an integer representing a frequency. All datasets

contain a binomial class{relevant, non-relevant}, which is highly imbalanced towards

the negative class.

As in Section7.5.1, the aim in this section is to test different balancing methods as

a preprocessing step before classification. Thus, a comparison is performed for three

different approaches:Alpha, which consists in randomly deleting as many non-relevant

documents from the training set as indicated. Ifα = 100, then the training set con-

tains as many non-relevant documents as relevant; the well-knownSMOTEalgorithm,

which is a state-of-the-art balancing method in data classification; and distribution-

based methods presented in Chapter6, which perform both oversampling and under-

sampling and, depending of the used probability distribution gives rise to different

algorithms, as explained in Section6.3.

Both the imbalanced and balanced datasets are evaluated by performing a5 × 2

CV with three different classifiers: NBayes, SVM and kNN. In thecase of Vocabulary

Features, NBayes is replaced with Multinomial NBayes since this is the recommended

classifier in literature [78] for text documents.

The main interest is two-fold:

1. analyse if balancing helps to outperform classification using both an imbalanced

dataset and a random-based balanced dataset

2. statistically assess which of the compared balancing methods is more suitable

for the multimedia IR problem

Since we are dealing with skewed datasets with a binomial class, Accuracy is not an

appropriate metric to measure the performance of the classifiers [118]. So the selected

metrics are Precision andF1-measure of documents tagged with the minority class

(relevant documents).
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Finally, a statistical comparison is ran by performing a Wilcoxon signed rank test

[121] with Conf. Level= 95% to compare all methods. Two sets of twelve values are

used for the test. Each set is the joined output of the three used classifiers over each of

the four topics.

7.6.2 Datasets

In order to evaluate the previously introduced balancing methods, the log files of two

different user studies [115] are used. In both studies, users were asked to interact with

multimedia information retrieval systems and retrieve as many results as possible for

four pre-defined search tasks. In both evaluations, the TRECVid 2006 video collection

[107] was used where news video shots, the atomic unit of retrieval, are indexed based

on the output of an automatic speech recognition system. A shot is defined as a part

of the broadcast that has been created by a continuous recording from a single camera.

The log files contained every key stroke and mouse click whichwas performed during

this evaluation. They hence contain information how the participants of both studies

interacted with relevant and non-relevant shots while using the system.

For every search task, a conversion was made of the log file format to two different

dataset representations. The first dataset used Behaviour Features (see Table7.2) such

as a click to start playing the video shot or the playing duration. The actual relevance

of the shot to the given search topic is defined as the class. Table 7.9 provides an

overview of this dataset.

Table 7.9: Description of Dataset using Behaviour Features.
#Features #Instances Imbalance

Topic 1 13 5011 1:19

Topic 2 13 4542 1:16

Topic 3 13 4545 1:13

Topic 4 13 4701 1:40

The second dataset uses Vocabulary Features to represent video-shots. Therefore,

every shot is represented with the frequencies of terms (defined in a bag-of-words) in

their audio speech, where the speech of every shots is automatically transcripted. Some

shots in the corpus do not contain any speech; thus, no transcript is available for these

shots. Therefore these shots are ignored, what results in fewer instances in the dataset
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in comparison to the behaviour feature dataset. Again, the shot’s relevance was used

as class. Table7.10provides an overview of the vocabulary feature dataset.

Table 7.10: Description of Datasets using Vocabulary Features.
#Features #Instances Imbalance

Topic 1 12957 2544 1:38

Topic 2 12957 2496 1:49

Topic 3 12957 2088 1:27

Topic 4 12957 2400 1:16

The last column of these tables depicts the imbalance ratio for each dataset. A ra-

tio of (1:n) means that for each relevant document, the dataset containsn non-relevant

documents. It is clear that Topic 4 is the most skewed datasetfor both shot represen-

tations. Therefore, it is expected that the imbalance problem affects classifiers more

aggressively in this case.

7.6.3 Settings

The balancing algorithms under study in this experiments rely on various parameter

settings which will be introduced in the following.

SMOTEuses the default parameters in Weka except for the percentage of minor-

ity class cardinality, which is set as the necessary percentage to getP minority class

documents. Then, random under-sampling of the majority class is performed until

P majority class documents remain. Distribution-based methodsUniform, Gaussian,

PoissonandMultinomial need the input parameterP . If, for example,P = 500 then,

for each training set, 500 relevant documents will be sampled from the corresponding

distribution and non-relevant documents will be uniformlydeleted until the training set

contains 500 non-relevant documents.

The Alpha approach needs parameterα which indicates the percentage of non-

relevant documents to be randomly removed from the trainingset. It was set set as

α = 100, what means to remove as many non-relevant documents as necessary to have

the same number of relevant and non-relevant documents.

Since the aim of this experiment is not to oversample non-relevant documents but

to create training sets with the same number of relevant and non-relevant documents,
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P cannot be set to a higher value of the cardinality of non-relevant documents in any

training set in the cross validation process. For example,Topic 1 using Behaviour

Featuresis a dataset with 5011 instances where about 4750 are non-relevant. Thus,

since it is performed a stratified5 × 2 CV, each fold will have4750/2 non-relevant

documents, requiringP not to be greater than that value. Since it is desired to use

the sameP value along the four topics compared, the maximum value usedin the

experiments is 2000 for Behaviour Features datasets and 1000for Vocabulary Features

datasets.

7.6.4 Results and Discussion

Table7.11shows the mean precisionP andF1-measure for classifiers NBayes, SVM

and kNN after training the imbalanced datasets using two different kind of predictive

features for video shots: Behaviour and Vocabulary features. These results are used as

the baseline run to compare with classification after balancing results with.

Table 7.11: Precision (P ) and F1-measure for relevant documents in imbalanced

datasets.
Behaviour Vocabulary

P F1 P F1

Topic 1 .104 .142 .050 .045

Topic 2 .114 .155 .041 .029

Topic 3 .137 .166 .052 .054

Topic 4 .089 .124 .000 .000

Mean .111 .147 .036 .032

Tables7.12and7.13list the computed precision andF1-measure using Behaviour

and Vocabulary features representation for video shots andrunning balancing tech-

niques over the datasets prior to classification. The remainder of this section discusses

the outcome of results using, for each kind of features, the maximumP value.

Balancing Vs. Non Balanced. In terms of precision, it is concluded thatSMOTE

and distribution-based (Uniform, Gaussian, PoissonandMultinomial) balancing meth-

ods statistically outperform the baseline using the Behaviour Features datasets. In the

case of Vocabulary Features datasets both Uniform and Gaussian distributions are an

exemption though. Balancing methodAlpha does not outperform the baseline, what
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Table 7.12: Performance of Balancing Methods in Behaviour Features Datasets (P =

2000).
Alpha Uniform Gaussian Poisson Multinomial SMOTE

P F1 P F1 P F1 P F1 P F1 P F1

Topic 1 .081 .136 .125 .076 .215 .111 .081 .046 .088 .043 .113 .168

Topic 2 .092 .159 .164 .077 .212 .162 .131 .094 .141 .098 .114 .173

Topic 3 .126 .207 .268 .078 .191 .172 .239 .113 .282 .107 .155 .229

Topic 4 .065 .116 .154 .122 .155 .142 .093 .062 .083 .063 .100 .161

Mean .091 .154 .178 .088 .194 .147 .136 .079 .149 .078 .121 .183

Table 7.13: Performance of Balancing Methods in Vocabulary Features Datasets (P =

1000).
Alpha Uniform Gaussian Poisson Multinomial SMOTE

P F1 P F1 P F1 P F1 P F1 P F1

Topic 1 .028 .053 .015 .019 .076 .037 .051 .060 .053 .063 .044 .065

Topic 2 .024 .045 .018 .021 .016 .022 .055 .057 .082 .074 .044 .066

Topic 3 .043 .080 .020 .020 .043 .053 .084 .093 .098 .084 .081 .112

Topic 4 .006 .012 .000 .000 .000 .000 .005 .008 .004 .006 .001 .002

Mean .025 .047 .013 .015 .034 .028 .049 .054 .054 .059 .042 .061

could indicate that randomly under-sampling the training set alone is not effective. In

terms ofF1-measure, distribution-based methods under-perform. This is interpreted as

distribution-based methods increase Precision while losing Recall, what makes sense

with conclusions in Section6.4where Accuracy increased, and Accuracy is an average

of Precision for each class (see Section2.2.2).

Distribution-based Vs. SMOTE. Using the behaviour features dataset, theGaus-

sian method significantly outperformsSMOTE, while theMultinomial method out-

performsSMOTEusing the vocabulary features datasets. This can be explained by

the fact that theMultinomial distribution is designed to sample new text documents

from existing ones. Besides, Behaviour Features are continuous values which cannot

be modeled with this distribution, while the Gaussian Distribution is a quite general

model which fits well to this dataset.SMOTE-balanced classifiers, however, result in a

betterF1-measure.

Value for P . Balancing was performed in training sets by transforming them into

datasets with the same cardinality (P ) for both positive and negative classes (see Table

7.14). It has been found that the largerP is, the betterSMOTEand distribution-based
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Table 7.14: Precision in distribution-based and SMOTE methods asP increases
Gaussian Poisson Multinomial SMOTE

P Behav Vocab Behav Vocab Behav Vocab Behav Vocab

500 0.145 0.025 0.104 0.041 0.107 0.046 0.102 0.039

1000 0.170 0.034 0.118 0.049 0.131 0.059 0.109 0.042

2000 0.194 0.136 0.149 0.121

methods perform in terms of Precision. Besides, non-random distribution-based meth-

ods improve most with increasingP value. As mentioned above,P is limited by the

majority class cardinality so the maximum possible value for P was 2000 for Be-

haviour Features datasets and 1000 for Vocabulary Featuresdatasets. For future works

where ratio (1:1) is not fixed, a larger study ofP influence would be of interest.

7.7 Conclusions and Future Work

When users use an information retrieval system, their implicit actions while interacting

with the system can be exploited to predict relevance of documents. This feedback

can be used to train a supervised classifier that effectivelypredicts such relevance.

Considering classical information retrieval experiences,users will by far interact more

with non-relevant rather than relevant documents. Thus, the main problem of using

such feedback data is that they are highly imbalanced. In this Chapter, this problem

was addressed by evaluating various balancing methods.

The performance of six balancing methods was evaluated: state-of-the-artSMOTE

(directed over-sampling and random under-sampling),Alpha(random under-sampling)

and four distribution-based methods:Uniform, Gaussian, Poissonand Multinomial

(directed over-sampling with replacement and random under-sampling). Results sug-

gest that balancing training sets using distribution-based methods result in a higher

Precision in comparison to the other methods. More precisely, theGaussianDistribu-

tion method provides the best balancing for continuous features (Behaviour Features)

while theMultinomial Distribution method is best for text-based features (Vocabulary

Features).

As future work, it would be interesting to search for optimumratios of (relevant :

non-relevant) documents instead of fully balance trainingsets to ratios (1:1).
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7.8 Conclusions

One of the main problems in Multimedia Information Retrievalis the known as “se-

mantic gap”; that is, the difficulty to link the low-level visual features describing an

image with the high-level concepts of that image. However, representation of multi-

media documents using low-level features is very useful in order to perform automatic

indexation of images and videos, and that is a task relative to Content-based Infor-

mation Retrieval. Besides, there exist a wide amount of complementary multimedia

documents representations which try to improve the performance of MIR systems.

In this Chapter, visual feature selection and dimensionality reduction has been per-

formed concluding that combination of visual features results in an important increase

in performance (measure in F1-measure terms). Besides, dimensionality reduction

maintains the same performance reducing up to one half of thevisual features array.

Besides, a study on four kinds of features representative forkey-frames (still im-

ages) on video shots has been performed, concluding that Behavior Features is a very

helpful representation and, thus, results suggest that collaborative retrieval can lead

to good performance of MIR systems; concretely, after performing feature selection,

Click-Throughfeatures resulted the most frequently selected of the Behavior Features

set. Respect to CBIR, both Object Features and Vocabulary Features seem to provide

similar performance, what can be interpreted as the fact that the semantic gap present

in Object Features affects relevance prediction as much as the problem of coverage of

manual tag labeling.

Respect to balancing of training sets using distribution-based methods applied to a

Multimedia Information Retrieval problem (video-shots relevance prediction), conclu-

sions are similar to those obtained when balancing was applied to Text Categorization

in Chapter6: the proposed Distribution-based methods outperform SMOTE. Besides,

other conclusion which can be extracted from both works is that when datasets are

represented using continuous-values features, the Gaussian distribution is more opti-

mal, while in the case of bag-of-words representation, the Multinomial contribution

logically performs better.
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Chapter 8

Influence of Context on Classifiers in

MIR

8.1 Summary

This Chapter presents a relatively new field of study in IR: influence ofcontextin

retrieval. The semantics of “context” may vary in several layers, and along the next

two sections and introduction and state of the art is presented. Then, experiments are

reported with conclusions about the effect of context on classifiers’s performance for

relevance prediction; concretely, in this case “context” refers to the way databases are

created, and the multimedia documents used for evaluation are key-frames representa-

tive of video shots.

8.2 Introduction to Context

Multimedia databases have become a reality and as such, the need has arisen for ef-

fective multimedia information retrieval systems that work as accurately and fast as

possible. Much research has been carried out on this problemfrom different points of

views: ranking algorithms, feature construction, collaborative retrieval, etc., but unfor-

tunately the performance of Multimedia Information Retrieval (MIR) systems is still

far from that of text Information Retrieval (IR) due to the semantic gap: there is a

discontinuity between low level visual features and the semantics of the query.

In recent years a new point of view has arisen to better understand both text and
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multimedia IR process, the so-calledcontext.The main idea behind this is two-sided:

(1) relevance of documents might change dependently on the context on which search

is being performed and (2) some contexts might make it easierfor classifiers to learn

an appropriate model to predict relevance.

Context refers to a wide variety of situations. For example, the relevance of a

document may change if a user is web searching from a desktop computer or from a

mobile device. Moreover, the relevance may be different depending on the place the

user is in the moment of search; thus, if her query is “typicalrestaurants”, suggestions

of results will be different if she is in France or in Italy. Besides, is she adds the adverb

“near”, the semantics of such term is different if she is traveling by car or on foot.

Context does not refer just to the physical properties of the user’s situation. Con-

text may also be related to user’s interests, web searching skills, economical situa-

tion,. . . Or, on the other hand, context may refer to the difficulty of the search topic,

previous searches by other users for the same topic, . . . In conclusion, “context” is a

very generic work for its purpose but the main idea behind this word is clear: improve

performance of MIR systems by adding extra information which is not present in the

representation of documents but “around the search”.

8.3 Related Work on Context

A series of forums have been held to address aspects of context in information seeking

and retrieval [18; 20; 21; 44; 45; 99]. The advances reported in the forums ranged

from theoretical such as creating a taxonomy of contextual features, to empirical such

as deriving new context from environments, to constructivesuch as new applications

that exploit context. Our work aims to make a methodologicaladvance in this area

by developing a framework to measure the impact of contextual factors. Therefore,

this section discusses different approaches taken to measure the impact of context for

modeling document relevancy.

One way to examine the impact of contextual features is to investigate the factors

that influenced people’s relevance judgements. For example, [5] discussed two sets of

semi-structured interviews carried out to establish the criteria used to judge document

relevancy. The study identified ten criterion categories common to both the interviews.

Their results highlighted that people employed non-topical factors such as quality of

sources for relevance judgements. [112] observed interactive search sessions to extract
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the factors that influenced people’s relevance judgements.They identified five groups

of influential factors based on 24 participants performing three different search tasks

on the Web. Their results suggest that non-textual elementsin documents such as

structure and visual features are affective to people’s relevance assessments.

Figure 8.1: Context stratification for IR [46].

Another way to examine the impact of contextual features is to investigate their ef-

fect on searching behaviour. For example, [56] studied the effect of tasks and searchers

on reading time of retrieved documents. Their experiments show a significant correla-

tion between the contextual features and searching behaviour. Reading time was found

to vary across search tasks as well as individual searchers.This suggests that read-

ing time can be unreliable to model relevance without context. A similar approach

was taken by [120] who studied the effect of topic complexity, search experience, and

search stage in the performance of implicit relevance feedback. Implicit feedback was

used to suggest expansion terms in the study. A mixture of measures such as subject

assessments, take-up rate of suggested terms, retrieval effectiveness was used to cap-

ture the effect of the contextual features. Their study shows that all three factors affect

the utility of implicit relevance feedback.

A distinct approach taken by [35] was to model document relevancy based on a

history of interactions. They analysed a couple of dozens ofuser interactions and
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explicit relevance judgements to construct predictive Bayesian models. It can be seen

that the accuracy of relevance prediction of the models was used as a measure of impact

in their study. An advantage of their approach is the number of variables that can be

investigated. While the other approaches can examine two or three factors at a time, the

classifiers can allow us to investigate a large number of potentially effective factors. A

disadvantage is that the dependency of features in the generated models is not always

clear or interpretable.

Another way to find a dependency between contextual featuresis to measure the

frequency of their co-occurrence in search environments. For example, [36] looked

at two contextual features, document genres and work tasks,to find the dependency

between them. The use of documents in a software engineeringworkplace was anal-

ysed in their study. The experiments show that there is a significant correspondence of

document genres with the types of work tasks, suggesting that one can learn relevant

genres by understanding the roles and tasks in an orgnisation.

Comparing to these existing studies, our work has the following characteristics.

First, like [112], we measure the impact of context based on searchers’ relevance as-

sessments, and besides we use official relevance lists of accessed documents. This is

because relevance judgements are a fundamental process in search, and also we are in-

terested in a better relevance modeling using context. Second, we use a set of classifiers

to model document relevancy. This allows us to go beyond the subjective assessments

or simplistic frequency to measure the impact of contextualfeatures on document rel-

evancy. Finally, the proposed approach enables us to understand the dependency of

contextual features, a similar objective to [36], in the same single framework.

8.4 Experiments on Context Influence on Classifiers for

Relevance Prediction

The goal of the experiments shown in this chapter is to measure how context influences

classifiers when trying to predict relevance of multimedia documents. Concretely, ex-

periments are carried on video shots represented by their key-frame and the task per-

formed is binary supervised classification, where class to predict is “Relevant” or “Non

Relevant” for a given search topic.

In this case, “context” refers to how a database is created; for example, a database
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created with shots accessed by experimented users or a database created when search-

ing easy topics. As it will be explained below, the final objective is to identify “cohe-

sive contexts”.

8.4.1 Methodology

As explained in Section7.5.1, experiments use data logs from two users experiments

and, from these logs, the final datasets are constructed, onefor each of four kinds of

features and each of two kinds of relevance. The reader is referred to that section for

further explanation on the process.

Then, each of the datasets constructed is split in several parts according to a given

context and classifiers are evaluated and compared to the baseline (dataset with no

context split).

Contexts in Databases Used

A deeper explanation on each of the two users studies used in the experiments is needed

in order to understand the identified context.

• Collaborative study. In this study, users where grouped into pairs and searched

for shots relevant to four TrecVid 2006 [107] topics under four different condi-

tions: user A could see what user B was doing, user B could see user A, both

users could see each other and, lastly, both users performeda search indepen-

dently. Thus, conditions can be: Watching, Watched, Mutual, Independent. So

Tuple Features constructed from the log of this study are: User, Topic, Con-

dition, and Shot.Tuple Feature are used to make the context splits, but at the

time of performing evaluation on any dataset they are removed in order to predict

relevance just based upon the constructedRelevance Prediction Features.

• StoryBoard study. In this study, users had to use two different interfaces (a

common interface as baseline and a storyboard-style interface), to search for

shots relevant to two different non-TRECVid topics.Tuple Features created

from these logs are: User, Topic, System, Run and Shot. Where System is either

the BaseLine interface of the designed StoryBoard interface,and Run shows

which system was used the first time and which second.
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Splitting into contexts

Each instance in datasets is made of

Tuple Features, Relevance Prediction Features, Class Feature.

where tuple features describe some context information as:userID, search topic, search

condition,... All these are nominal features and, by selecting one of these tuple features

the dataset can be split into as many possible values as the selected nominal attribute

might take. This is what is called in this work asattribute-based contextsplit.

Besides, another context split method is possible which is referred in this work

asproperty-based context. For example,experiencecontext can be made of two sub-

groups: less experienced users in the user study and more experienced users. This

kind of information needs to be obtained via a questionnairecompleted by the users.

Thus, if a user study is performed with 4 people and we learn from their answers in the

questionnaire that users{id1,id3} are the least experienced meanwhile users{id2,id4}
come down to be the most experienced, the dataset can be splitbased on those two

subgroups, using theuserIDtuple feature.

Finally, a third kind of context split is performed which is referred to asmixed

context, being the result of splitting by two desired context (whereasattribute-based

or property-based), being the number of splits the cartesian product of the possible

splits for each of the chosen contexts. In Tables8.1 and8.2 contexts constructed for

each user study are shown and described.

Evaluation of Classifiers Under Contexts

Evaluation to compute a baseline is performed without usingtheTuple Features so

that the evaluation is totally free of context differentiation (or all contexts together,

we may say), using each of the four kind of constructed features. Tables8.1 and8.2

show all the different contexts defined for Collaborative andStoryBoard users study,

respectively; for example, in Table8.1 we see that the dataset can be split based on

contextUser Experience. This split would result in 2 datasets, one with shots accessed

through the users study by less experienced users and another dataset containing shots

accessed by more experienced users.

Thus, for each context shown in these tables, each dataset issplit into as possible

splitting values the corresponding context contains. Thus, results obtained for each
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Table 8.1: Contexts costructed for Collaborative user study
Context(#splits) Type Split name Description

Individual User searches on his own.

Condition Attribute- Watched User is watched while searching.

(4) based Watching User watches sb. else also searching.

Mutual Two users watch the other’s search.

User Experience Property- Less Exp. Less searching experience.

(2) based More Exp. More searching experience.

Task difficulty (2) Property- Easy Easy for users.

(as perceived by user) based Difficult Difficult for users.

Individual&less

Individual&more

Watched&less

Condition& Mixed Watched&more Mix of corresponding descriptions

User Experience Watching&less

(8) Watching&more

Mutual&less

Mutual&more

Individual&easy

Individual&diff.

Watched&easy

Condition& Mixed Watched&diff. Mix of corresponding descriptions

Task Difficulty Watching&easy

(8) Watching&diff.

Mutual&easy

Mutual&diff.

less&easy

User Experience& Mixed less&diff. Mix of corresponding descriptions

Task Difficulty more&easy

(4) more& diff.

context will be compared against the previously computed baseline to find how con-

text affect classifiers.

Accuracy is not used for evaluation because, although it is astandard metric used

to evaluate the predictive power of classifiers, the tests sets are so unbalanced that com-

puting Accuracy is roughly the same as computing recall for non relevant documents.

Although training sets are balanced (using the method referred in Section7.4.2), test

167



8. INFLUENCE OF CONTEXT ON CLASSIFIERS IN MIR

Table 8.2: Contexts constructed for storyBoard user study
Context(#splits) Type Split name Description

User Experience Property- Less Less searching experience.

(2) based More More searching experience.

System Attribute- BaseLine Ordinary search system.

(2) based StoryBoard Improved search system.

Search Task Attribute- A Difficult search task.

(2) based B Easy search task.

Run Attribute- Run1 BL system was used first

(2) based Run2 BL system was used first second

BaseLine&A

System& Mixed BaseLine&B Mix of corresponding descriptions

Task StoryBoard&A

(4) StoryBoard&B

BaseLine&less

System& Mixed BaseLine&more Mix of corresponding descriptions

User Experience StoryBoard&less

(4) StoryBoard&more

A&less

Task& Mixed A&more Mix of corresponding descriptions

User Experience B&less

(4) B&more

sets are not: if a classifier always marks documents as belonging to the majority class

value, accuracy would be incredibly high but documents belonging to the minority

class values would never be correctly predicted. For information retrieval systems,

documents belonging to minority class value (relevant documents) are what is needed

to predict correctly so accuracy on its own is not an appropriate metric.

8.5 Experiments

This section shows the results obtained when performing classification with three dif-

ferent classifiers. Evaluation is performed over two databases created from 2 users

studies. For each database, evaluation is performed using one of three kinds of fea-

tures (see Section7.5.1), with the Collaborative users study represented twice, once

for each kind of relevance. Windowed Vocabulary features have not been used because

we they add an extra context factor and it is desired to avoid any contextual bias in the
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Figure 8.2: Diagram showing the process of datasets creations and evaluation to assess

how context affects classifiers.

results: the additional vocabulary of nearby shots works asan extra help for classifiers,

which is not desirable because the aim is to compute context influence without any

extra factors.

Results are shown in two tables. Table8.3 shows results obtained working on

Collaborative user study log, and Table8.4 shows results for StoryBoard user study

log.

First row in both tables shows meanF1 −measure over NBayes, SVM and kNN,

for each kind of feature, using a dataset without context split (e.g.: no context differ-

entiation, all contexts together). Remaining rows show results for each dataset split

based on the corresponding context.

Independent t-test withα=0.05 is performed to compare baseline with each context

result. Thus, input in each comparison is made of two vectorscontaining each one a

total of 30 samples (enough samples to assume normal distribution by the Law of Great

Numbers). Where 10 samples come from the results obtained along the performed

5x2 CV using one of the three classifiers. Thus, 30 samples are joint (averages are

being compared) and contrasted versus other corresponding30 samples. When a cell

is shadowed in Tables8.3and8.4, it means that the dataset split by context has derived

in aF1 −measure statistically better than the baseline it is compared to.

Results, as discussed in next section, are very meaningful and they show that con-

texts clearly affect classifiers’ performance.
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Table 8.3: MeanF1 −measure over NBayes, SVM and kNN evaluations. Collabora-

tive user study.
Official Relevance User Relevance

Behav. Object Vocab. Behav. Object Vocab.

No differentiation 0.166 0.065 0.048 0.434 0.075 0.102

Individual 0.161 0.054 0.042 0.503 0.088 0.143

Watched 0.126 0.054 0.058 0.474 0.116 0.181

Watching 0.179 0.098 0.069 0.373 0.118 0.142

Mutual 0.186 0.086 0.069 0.407 0.107 0.114

Less Exp. 0.159 0.067 0.047 0.154 0.051 0.036

More Exp. 0.172 0.078 0.075 0.616 0.144 0.182

Easy 0.172 0.105 0.069 0.431 0.109 0.137

Difficult 0.142 0.029 0.029 0.453 0.058 0.106

Individual &Less Exp. 0.141 0.062 0.046 0.132 0.035 0.025

Individual &More Exp. 0.168 0.054 0.057 0.703 0.169 0.238

Watched &Less Exp. 0.141 0.049 0.054 0.121 0.032 0.021

Watched &More Exp. 0.109 0.074 0.086 0.598 0.244 0.339

Watching & Less Exp. 0.147 0.125 0.059 0.178 0.112 0.061

Watching &More Exp. 0.214 0.099 0.082 0.538 0.175 0.242

Mutual &Less Exp. 0.168 0.093 0.066 0.173 0.077 0.068

Mutual &More Exp. 0.177 0.126 0.106 0.539 0.196 0.215

Individual &Easy 0.140 0.096 0.067 0.167 0.065 0.064

Individual &Diff. 0.166 0.024 0.032 0.705 0.131 0.198

Watched &Easy 0.138 0.070 0.060 0.625 0.183 0.296

Watched &Diff. 0.105 0.040 0.052 0.112 0.029 0.043

Watching & Easy 0.198 0.167 0.100 0.512 0.248 0.280

Watching &Diff. 0.153 0.054 0.048 0.122 0.035 0.035

Mutual &Easy 0.229 0.122 0.090 0.215 0.089 0.076

Mutual &Diff. 0.122 0.042 0.045 0.647 0.128 0.155

LessExp. &Easy 0.182 0.105 0.066 0.205 0.080 0.054

LessExp. &Diff. 0.105 0.028 0.030 0.082 0.023 0.029

MoreExp. &Easy 0.168 0.123 0.100 0.570 0.190 0.255

MoreExp. &Diff. 0.160 0.046 0.055 0.678 0.121 0.156

8.5.1 Discussion on Context Results

This section discusses the results obtained after splitting and evaluating the presented

datasets under different contexts.
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Table 8.4: MeanF1−measure over NBayes, SVM and kNN evaluations. StoryBoard

user study.
No differentiation 0.487 0.312 0.307

Less Exp. 0.437 0.286 0.309

More Exp. 0.519 0.363 0.327

BaseLine 0.522 0.377 0.356

StoryBoard 0.454 0.301 0.294

TaskA 0.415 0.282 0.254

TaskB 0.548 0.382 0.377

Run1 0.480 0.330 0.292

Run2 0.486 0.373 0.386

BaseLine & TaskA 0.375 0.215 0.237

BaseLine & TaskB 0.620 0.544 0.491

StoryBoard & TaskA 0.469 0.356 0.323

StoryBoard & TaskB 0.509 0.247 0.266

BaseLine & Less Exp. 0.499 0.355 0.387

BaseLine & More Exp. 0.562 0.440 0.362

StoryBoard & Less Exp. 0.382 0.239 0.200

StoryBoard & More Exp. 0.531 0.375 0.339

TaskA & Less Exp. 0.369 0.285 0.198

TaskA & More Exp. 0.464 0.307 0.269

TaskB & Less Exp. 0.499 0.330 0.343

TaskB & More Exp. 0.574 0.467 0.412

Is it a statistical improvement what we expect for every context split?

The answer is No. On one hand, it is expected from some contexts to contain a

set of less coherent instances, like in “Difficult Tasks”, sothis would lead to a poor

learning for the classifier; we refer to this kind of contextsas “disturbing” contexts.

On the other hand, cohesive instances are expected in some other context splits, like

in “Experienced Users”. This latter kind of context can be regarded as “cohesive”

context.

Thus, some contexts make classifier’s task easier and some others not or even the

contrary. The aim of this experiment is to find what contexts are more cohesive and

thus lead to better performance in classifiers.

When a split dataset performs statistically better, is it due to context influence

or to its smaller size?
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When randomly reducing the number of instances from a dataset, we are keeping

the same number of properties (attributes) but having a smaller number of records

for the model to learn. This makes the classifier to be trainedless efficiently and

thus evaluation would commonly decrease. However, if database is split based on

some relevant attribute, entropy of database is decreased and a better model is expected

to be learned. Thus, splitting a database based on the correct property will increase

classifier’s performance due to not the decrease in size but decrease in uncertainty;

that is, a context split will perform statistically better when it is a cohesive context.

8.5.2 Context influence

Along this section a discussion is developed to try to understand the presented results

in Tables8.3and8.4. The most remarkable results obtained from the experimentsare

pointed out:

• User Experience. Results show, explained in next itemization, that “More Expe-

rienced” is a cohesive context which helps the classifier to learn a better model

for classification.

– Collaborative User Relevance. When using Behavior features, the actions

of more experienced users are consistent in their search forwhat they re-

gard as relevant shots - it is easier for the classifiers to compute appropriate

statistics in order to predict relevance. For less experienced users, user

actions are less consistent, the classifier learns a worse model, and the per-

formance of the classifiers is worse. As for Object/Vocabulary features,

shots selected by more experienced users are more cohesive than with less

experienced users, so the statistics are learned from similar instances thus

producing a greater performance.

– Collaborative Official Relevance. Only Object features perform statisti-

cally different from the baseline, although it is worth to mention thatF1 −
measure for the other two kind of features is still greater than the baseline.

– StoryBoard. In this case, it is again found a statistically improvement just

for “More Experience” context. Although this is just for onekind of fea-

tures, again the other two features got a low p-value and are still greater

than baseline.
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• Task Difficulty. In this context, it is quite clear the positive impact of splits based

on Easy tasks. In most cases for “Easy” splits in Collaborative and all in “TaskB”

in StoryBoard (which is the easy task), results are statistically better than clas-

sifier’s performance without context differentiation. This clearly suggests that

shots accessed while searching easy tasks make more cohesive sets to predict

relevance.

• Condition. Interesting results were found for this kind of context.

– Collaborative. Results seem to suggest that search for shots that will be

marked as “Relevant” by users is more cohesive when the user who will

bookmark the shot is searching alone. On the contrary, when relevance is

officially tagged, performance is better for contexts made of shots accessed

by users helping each other or watching somebody’s actions.

– StoryBoard. Condition can be differentiated in two cases: when users per-

form search using a state-of-the-art interface (BaseLine interface) or a new

improved interface they face for the first time (StoryBoard interface). Re-

sults suggest that the use of an interface people are used to derive in a more

coherent and compact search than search performed using forthe first time

a new interface, even though this is supposed to be improved.

• Run (storyBoard). This is quite a random and non deterministiccontext since

this is just a random order in which users used the two possible interfaces. As a

consequence of this, no consistent conclusion can be found nor suggested.

• Mixed Contexts. Mixed contexts are more difficult to interpret, but if interest

is focused on searching for corroboration of conclusions stated above, the same

conclusions can be found again in mixed contexts. Thus, in Collaborative user

study, statistical improvements are again achieved mostlywhen one of the mixed

split contexts is “More Experienced” of “Easy”. Besides, in StoryBoard user

study, statistical improvement is achieved for all kind of features when we find

together mix of two cohesive contexts: “BaseLine&TaskB”, “BaseLine&More

Experienced” and “TaskB&More Experienced”.

• It is also quite remarkable that no statistical improvementhas been achieved for

any kind of feature for context splits: “Less Experienced”,“Difficult”, “Task
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A”(difficult task’) nor “StoryBoard” (first contact with a newinterface). So

this suggests that they are disturbing contexts which decrease classifiers’ per-

formance.

8.6 Conclusions

Besides multimedia documents representation, new fields of study have arisen in or-

der to improve performance of MIR systems. One of them is the study of “context

influence”. In this Chapter, an introduction has been made to literature on context

and a deep study has been presented on context influence on classifiers for document

relevance prediction.

These experiments have searched for cohesive contexts which positively influence

on classifiers. In order to not get biased conclusions, experiments were run on two user

studies, using two kind of relevance and three different kind of features to represent

shots, plus three different classifiers. Results support thehypothesis that classifiers

learn a better model when datasets on which they are evaluated have been constructed

using shots accessed in cohesive contexts. Several cohesive contexts have been found;

thus, shots accessed by more experienced users, or during aneasy task, or using a

search interface users are used to, makes cohesive sets of shots to learn a better model.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions and Future Work

Apart from PartI, which presents an introduction to supervised classification and fea-

ture selection, in this thesis several methodological contributions haven been presented

for supervised pre-processing of high-dimensional text and multimedia databases: meth-

ods for feature selection and methods for instance selection and re-sampling.

Part II presents several proposals with experiments run on high-dimensional text

databases. Chapter3 studies new criteria for the Incremental Wrapper Subset Selection

(IWSS) for feature subset selection methods to decide the inclusion of a new attribute

in the subset of selected subsets. Furthermore, a proposal is made to add the possi-

bility of not just adding a new feature but replacing it by some of the features in the

selected subset; this option provides more compact subsetswithout decreasing accu-

racy. Moreover, an early stopping criterion is suggested which effectively stops the

search without decreasing the performance of the incremental algorithm. Finally, the

Näıve Bayes classifier is embedded inside the IWSS algorithm suchthat performance

stays the same but the wrapper nature of the incremental search is maintained while

the complexity is reduced to just that of a filter nature. Thus, execution time is dras-

tically reduced while keeping the advantages of incremental wrapper search, and final

selected subsets are more compact.

While Chapter3 improves IWSS in its wrapper search, Chapters4 and5 present two

proposals for extending the search space of the IWSS algorithm by altering the filter
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ranking over which the wrapper search is run. Chapter4 proposes the embedding of

a GRASP search by utilizing a stochastic filter ranking instead of a deterministic one,

and several methods are studied for choosing the best solution found by GRASP. On

the other hand, Chapter5 proposes a technique for detecting features at later positions

in the ranking which become relevant after some features from earlier positions have

been selected; then, these low-ranked features are re-ranked to earlier positions and so

the wrapper search can stop sooner. This results in more compact subsets as well as a

drastic reduction in number of evaluations needed; and thisconclusion is corroborated

by a vast number of experiments and statistical comparisons.

Chapter6 focuses on improving the e-mail foldering performance of the Näıve Bayes

Multinomial (NBM) by studying re-sampling methods of training sets based on differ-

ent distributions. Experiments prove that our suggested methods statistically improve

the performance of NBM.

In Part III , Chapter7 presents a study of different kinds of features to represent

multimedia documents for relevance prediction under different search topics, with the

result that features which represent the actions of users while web searching are very

relevant for implicit relevance feedback and, thus, they can be useful for collaborative

search engines. In addition, it tests balancing methods suggested in Chapter6 using

the different kinds of representations. Finally, Chapter8 presents a study of context

influence on user while performing the search. The results give evidence to conclude

that documents accessed during a search by expert users, or under easy search topics,

construct cohesive sets of documents which benefit the learning stage of classifiers.

And, thus, this gives a new criterion for selection of instances: to select those instances

which are representative of documents coming from cohesivecontexts.

As future work, it would be interesting to extend the embedding of probabilistic

classifiers in the IWSS algorithm besides that of Naı̈ve Bayes. Furthermore, since

embedding a GRASP search in IWSS has proved to be so profitable (more compact

subsets and lower number of evaluations), new GRASP proposals could be studied.

Finally, Chapter8 gives a criterion for selecting instances which come from real-world

searches, but this is not applicable to synthetic databases; so it would be interesting to

investigate other ways of detecting cohesive sets of instances besides the difficulty of

search or the experience of users.
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DataSet SFS B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 83.87 5.9 82.26 2.2 85.48 2.2 83.87 2.4 83.87 2.4 83.87 2.3 83.87 2.3

Leukemia 87.50 3.2 87.50 1.9 87.50 1.9 87.50 1.9 87.50 1.9 87.50 1.9 87.50 2.0

Lymphoma 83.33 7.1 72.92 4.7 75.00 5.6 80.21 5.6 81.25 5.7 78.13 5.9 76.04 5.9

DLBCL 80.85 3.6 87.23 1.5 82.98 1.6 80.85 1.7 80.85 1.7 80.85 1.7 80.85 1.7

Prostate 75.00 5.4 73.53 3.2 75.74 3.4 77.21 4.2 80.88 4.7 80.15 4.7 83.09 4.8

Lung 93.92 2.5 96.69 2.2 96.69 2.2 97.24 2.4 97.24 2.4 97.24 2.4 97.24 2.4

GCM 58.42 18.3 51.58 7.4 53.68 10.3 57.89 10.9 57.89 11.8 60.00 13.4 62.11 14.2

Arcene 68.00 4.6 71.00 2.6 70.00 3.7 72.00 3.8 73.00 4.3 71.00 4.3 69.00 4.3

Madelon 60.75 6.5 61.65 2.0 60.75 3.4 61.25 4.8 60.25 5.9 60.10 5.6 60.50 6.2

Dorothea 91.25 13.2 94.25 3.0 93.25 4.0 93.38 5.0 93.00 5.3 92.88 5.3 92.88 5.3

Dexter 76.00 13.8 82.67 8.5 81.00 10.1 83.00 9.8 82.67 9.7 82.67 9.8 82.67 9.4

Gisette 94.05 26.9 86.20 2.7 88.47 6.4 90.77 10.8 91.62 15.9 92.25 16.5 92.57 17.1

Geom. Mean 78.51 7.1 77.82 3.0 78.16 3.8 79.54 4.4 79.93 4.7 79.68 4.8 79.85 4.9

Arith. Mean 79.41 9.3 78.96 3.5 79.21 4.6 80.43 5.3 80.84 6.0 80.55 6.2 80.69 6.3

Table A.1: Results using Naive Bayes classifier, SFS selectionalgorithm and CMIM-based re-ranking with block sizes B.
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DataSet IWSS2 B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 80.6 3.8 80.6 2.8 83.9 3.0 82.3 3.2 82.3 3.3 82.3 3.3 82.3 3.3

Leukemia 87.5 2.5 87.5 2.0 87.5 2.4 87.5 2.4 87.5 2.4 87.5 2.4 87.5 2.5

Lymphoma 76.0 8.8 66.7 6.3 75.0 7.6 76.0 7.9 77.1 8.0 75.0 8.1 77.1 8.2

DLBCL 85.1 1.9 89.4 1.5 87.2 1.6 85.1 1.7 85.1 1.7 85.1 1.7 85.1 1.7

Prostate 77.9 11.1 72.1 4.1 74.3 4.0 77.9 5.6 74.3 7.3 72.1 7.8 74.3 8.0

Lung 97.2 2.7 96.7 2.2 96.7 2.4 97.2 2.7 97.2 2.7 97.2 2.7 97.2 2.7

GCM 64.2 36.6 54.2 12.3 60.0 19.8 62.1 21.4 65.3 22.5 64.2 24.4 64.7 27.4

Arcene 70.0 13.4 70.0 3.5 68.0 5.1 70.0 6.8 70.0 7.0 70.0 7.8 69.0 7.8

Madelon 59.9 13.3 61.3 2.7 60.9 4.8 60.3 7.1 59.8 8.0 60.0 10.1 59.6 11.4

Dorothea 93.5 7.4 93.9 2.8 94.1 3.6 94.4 3.8 94.0 4.3 93.9 4.3 93.8 4.5

Dexter 81.0 19.6 81.7 11.9 83.7 13.1 83.7 14.8 81.3 15.7 83.0 15.2 80.7 14.9

Gisette 94.7 112.6 88.7 18.3 92.3 41.3 93.7 62.6 93.9 69.5 94.4 82.0 94.1 77.2

Geom. Mean 79.81 9.45 77.41 4.24 79.34 5.52 79.97 6.50 79.81 6.94 79.51 7.32 79.59 7.49

Arith. Mean 80.6 19.5 78.5 5.9 80.3 9.1 80.9 11.7 80.6 12.7 80.4 14.2 80.4 14.1

Table A.2: Results using Naive Bayes classifier, IWSS2 selection algorithm and CMIM-based re-ranking with block sizes B.
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DataSet IWSS2
r B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 83.9 2.8 82.3 2.2 85.5 2.2 83.9 2.4 83.9 2.4 83.9 2.3 83.9 2.3

Leukemia 87.5 2.0 87.5 1.9 87.5 1.9 87.5 1.9 87.5 1.9 87.5 1.9 87.5 2.0

Lymphoma 80.2 5.9 72.9 4.7 75.0 5.6 80.2 5.6 81.3 5.7 78.1 5.9 76.0 5.9

DLBCL 80.9 1.8 87.2 1.5 83.0 1.6 80.9 1.7 80.9 1.7 80.9 1.7 80.9 1.7

Prostate 78.7 7.0 73.5 3.2 75.7 3.4 77.2 4.2 80.9 4.7 80.1 4.7 83.1 4.8

Lung 97.2 2.4 96.7 2.2 96.7 2.2 97.2 2.4 97.2 2.4 97.2 2.4 97.2 2.4

GCM 59.5 19.9 51.6 7.4 53.7 10.3 57.9 10.9 57.9 11.8 60.0 13.4 62.1 14.2

Arcene 72.0 6.2 71.0 2.6 70.0 3.7 72.0 3.8 73.0 4.3 71.0 4.3 69.0 4.3

Madelon 60.5 8.0 61.7 2.0 60.8 3.4 61.3 4.8 60.3 5.9 60.1 5.6 60.5 6.2

Dorothea 92.9 6.3 94.3 3.0 93.3 4.0 93.4 5.0 93.0 5.3 92.9 5.3 92.9 5.3

Dexter 83.0 12.9 82.7 8.5 81.0 10.1 83.0 9.8 82.7 9.7 82.7 9.8 82.7 9.4

Gisette 94.1 30.7 86.2 2.7 88.5 6.4 90.8 10.8 91.6 15.9 92.3 16.5 92.6 17.1

Geom. Mean 79.97 6.06 77.82 3.01 78.16 3.81 79.54 4.35 79.93 4.72 79.68 4.76 79.85 4.85

Arith.Mean 80.9 8.8 79.0 3.5 79.2 4.6 80.4 5.3 80.8 6.0 80.6 6.2 80.7 6.3

Table A.3: Results using Naive Bayes classifier, IWSS2
r selection algorithm and CMIM-based re-ranking with block sizes B.
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DataSet BARS B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 85.71 3.0 79.03 3.5 83.87 3.4 79.03 3.3 77.42 3.1 79.03 2.9 79.03 3.0

Leukemia 90.54 2.3 91.67 3.1 93.06 3.3 93.06 3.1 93.06 3.1 94.44 3.2 94.44 3.2

Lymphoma 73.67 6.1 71.88 8.3 73.96 7.8 79.17 9.2 78.13 9.1 77.08 9.1 79.17 9.5

DLBCL 76.00 2.4 85.11 3.1 85.11 3.3 74.47 3.4 74.47 3.6 80.85 3.2 76.60 3.3

Prostate 86.81 3.7 76.47 4.0 67.65 5.0 68.38 5.5 70.59 5.2 77.21 5.9 73.53 6.6

Lung 98.36 3.0 95.58 3.1 97.24 3.6 96.13 3.7 96.13 3.6 96.13 3.5 96.69 3.5

GCM 60.00 15.9 48.42 8.9 55.26 11.4 55.26 14.0 59.47 15.7 60.53 17.2 61.05 17.6

Arcene 74.00 4.9 76.00 4.6 81.00 4.6 82.00 6.0 78.00 6.5 83.00 7.3 85.00 6.7

Madelon 60.30 5.8 61.00 2.7 61.30 4.2 61.05 6.3 61.40 7.3 61.20 8.9 61.05 8.7

Dorothea 93.88 7.3 93.88 6.3 93.63 10.3 94.75 9.1 94.25 11.1 94.00 13.4 94.38 17.1

Dexter 82.67 12.8 77.00 6.1 84.67 12.8 82.67 15.5 83.33 15.5 83.67 15.8 84.67 15.2

Gisette 93.10 13.6 87.05 3.8 87.50 5.8 88.98 7.5 92.02 13.6 92.28 14.3 89.72 14.3

Geom. Mean 80.29 5.4 77.33 4.4 79.26 5.6 78.52 6.3 78.94 6.8 80.77 7.2 80.41 7.39

Arith. Mean 81.25 6.7 78.59 4.8 80.35 6.3 79.58 7.2 79.86 8.1 81.62 8.7 81.28 9.06

Table A.4: Results using Naive Bayes classifier, BARS selectionalgorithm and CMIM-based re-ranking with block sizes B.
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DataSet SFS B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 83.87 5.9 83.87 2.7 82.26 4.2 80.65 3.8 82.26 4.4 80.65 4.4 80.65 4.8

Leukemia 87.50 3.2 91.67 3.6 94.44 3.2 94.44 3.5 94.44 3.7 93.06 3.8 93.06 3.7

Lymphoma 83.33 7.1 76.04 9.0 76.04 11.5 82.29 9.2 81.25 10.7 80.21 9.2 79.17 9.6

DLBCL 80.85 3.6 91.49 4.4 91.49 4.3 91.49 4.6 91.49 4.5 91.49 4.2 89.36 4.2

Prostate 75.00 5.4 75.00 4.3 76.47 5.7 75.74 5.1 77.21 6.1 75.00 5.7 75.00 5.5

Lung 93.92 2.5 96.13 3.4 96.13 3.0 96.69 3.0 97.79 3.0 97.24 2.8 96.69 2.6

GCM 58.42 18.3 65.26 19.9 70.00 24.5 67.89 25.0 70.53 22.6 72.11 29.3 65.79 23.0

Arcene 68.00 4.6 74.00 6.8 72.00 8.4 75.00 7.0 74.00 7.3 73.00 8.1 72.00 7.7

Madelon 60.75 6.5 61.25 2.4 60.75 3.7 61.75 6.8 61.30 7.0 61.10 6.4 61.10 5.7

Dorothea 91.25 13.2 93.25 6.2 92.63 4.5 93.50 7.4 92.88 10.1 92.50 9.9 92.38 11.8

Dexter 76.00 13.8 80.00 12.0 83.00 13.5 83.67 12.5 83.67 13.0 84.33 12.8 80.33 10.8

Gisette 94.05 26.9 90.83 16.7 89.70 15.8 90.47 19.1 90.83 21.7 91.20 23.9 92.00 19.8

Geom. Mean 78.51 7.1 80.79 6.0 81.34 6.7 82.07 7.2 82.43 7.8 81.96 7.8 80.68 7.4

Arith. Mean 79.41 9.3 81.57 7.6 82.08 8.5 82.80 8.9 83.14 9.5 82.66 10.0 81.46 9.1

Table A.5: Results using Naive Bayes classifier, SFS selectionalgorithm and MIFS-based re-ranking with block sizes B.
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DataSet IWSS2 B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 80.65 3.8 80.65 2.8 83.87 2.9 83.87 3.2 82.26 3.3 82.26 3.4 82.26 3.4

Leukemia 87.50 2.5 87.50 2.1 87.50 2.4 87.50 2.4 87.50 2.4 87.50 2.4 87.50 2.5

Lymphoma 76.04 8.8 71.88 7.0 72.92 7.3 72.92 8.2 72.92 8.1 76.04 8.2 77.08 8.3

DLBCL 85.11 1.9 89.36 1.5 87.23 1.6 85.11 1.7 85.11 1.7 85.11 1.7 85.11 1.7

Prostate 77.94 11.1 73.53 4.5 66.91 4.3 72.06 5.4 71.32 6.1 69.85 6.3 73.53 5.9

Lung 97.24 2.7 96.69 2.3 96.69 2.4 97.24 2.7 97.24 2.7 97.24 2.7 97.24 2.7

GCM 64.21 36.6 65.26 14.9 60.53 18.9 63.16 20.5 61.58 21.3 64.74 22.9 64.21 23.2

Arcene 70.00 13.4 73.00 4.4 73.00 7.4 73.00 7.6 72.00 7.3 71.00 7.7 65.00 8.4

Madelon 59.85 13.3 61.15 3.0 60.65 4.7 60.25 7.1 59.75 8.0 59.95 10.1 59.60 11.4

Dorothea 93.50 7.4 93.50 3.4 93.75 3.7 94.13 4.0 93.88 4.4 93.88 4.3 93.88 4.3

Dexter 81.00 19.6 84.00 10.7 83.33 12.5 82.67 12.4 81.00 13.1 79.33 13.6 79.67 14.4

Gisette 94.68 112.6 90.50 14.8 90.23 15.8 89.83 22.1 90.60 33.1 91.10 38.4 92.45 41.4

Geom. Mean 79.81 9.4 79.80 4.5 78.77 5.2 79.31 5.9 78.71 6.3 79.01 6.7 78.88 6.9

Arith. Mean 80.64 19.5 80.58 6.0 79.72 7.0 80.14 8.1 79.60 9.3 79.83 10.1 79.79 10.6

Table A.6: Results using Naive Bayes classifier, IWSS2 selection algorithm and MIFS-based re-ranking with block sizes B.
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DataSet IWSS2
r B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 83.87 2.8 82.26 2.0 85.48 2.3 83.87 2.3 83.87 2.3 83.87 2.3 83.87 2.3

Leukemia 87.50 2.0 87.50 2.0 87.50 1.9 87.50 1.9 87.50 1.9 87.50 1.9 87.50 2.0

Lymphoma 80.21 5.9 72.92 5.7 78.13 5.1 81.25 5.0 80.21 5.4 82.29 5.6 78.13 5.6

DLBCL 80.85 1.8 87.23 1.5 82.98 1.6 80.85 1.7 80.85 1.7 80.85 1.7 80.85 1.7

Prostate 78.68 7.0 72.79 3.9 73.53 3.5 75.74 4.2 75.00 4.0 75.74 4.3 76.47 4.1

Lung 97.24 2.4 96.69 2.2 96.69 2.3 97.24 2.4 97.24 2.4 97.24 2.4 97.24 2.4

GCM 59.47 19.9 55.79 9.1 61.58 12.5 64.74 12.6 63.68 15.7 65.79 14.8 62.11 15.3

Arcene 72.00 6.2 70.00 3.3 71.00 3.9 70.00 3.9 72.00 4.6 72.00 5.3 70.00 4.9

Madelon 60.50 8.0 61.10 2.1 60.55 3.6 61.25 4.8 60.25 5.9 60.10 5.6 60.50 6.2

Dorothea 92.88 6.3 93.50 3.7 93.63 5.0 93.50 5.3 93.50 5.5 93.63 5.3 93.50 5.4

Dexter 83.00 12.9 84.00 9.0 82.67 10.0 82.33 8.9 83.67 9.2 83.67 9.4 82.67 9.5

Gisette 94.07 30.7 90.10 10.8 90.02 9.7 91.32 11.5 91.50 14.8 91.60 14.5 92.05 19.0

Geom. Mean 79.97 6.1 78.46 3.7 79.48 4.1 80.05 4.4 79.99 4.7 80.45 4.8 79.58 4.9

Arith. Mean 80.85 8.8 79.49 4.6 80.31 5.1 80.80 5.4 80.77 6.1 81.19 6.1 80.41 6.5

Table A.7: Results using Naive Bayes classifier, IWSS2
r selection algorithm and MIFS-based re-ranking with block sizes B.
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DataSet BARS B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 85.71 3.0 82.26 3.1 82.26 3.5 77.42 3.4 79.03 3.2 79.03 2.8 79.03 3.0

Leukemia 90.54 2.3 91.67 3.0 91.67 3.2 93.06 3.1 93.06 3.1 93.06 3.0 93.06 3.0

Lymphoma 73.67 6.1 73.96 6.8 75.00 7.9 79.17 9.2 79.17 8.2 77.08 8.3 76.04 8.6

DLBCL 76.00 2.4 82.98 2.8 93.62 3.4 76.60 3.4 78.72 3.4 82.98 3.3 82.98 3.4

Prostate 86.81 3.7 80.15 3.8 72.06 4.5 72.79 4.9 76.47 4.8 74.26 5.4 75.00 5.4

Lung 98.36 3.0 96.13 3.3 97.24 3.3 96.13 3.4 96.13 3.5 96.13 3.3 96.69 3.3

GCM 60.00 15.9 55.79 10.8 66.32 12.9 63.68 15.2 61.05 15.8 63.68 17.2 63.16 17.2

Arcene 74.00 4.9 82.00 4.5 80.00 5.2 80.00 6.4 79.00 6.6 80.00 6.3 81.00 5.9

Madelon 60.30 5.8 60.70 2.0 60.60 3.8 61.05 6.3 61.40 7.3 61.20 8.9 61.05 8.7

Dorothea 93.88 7.3 93.75 6.2 93.50 7.4 94.50 9.6 94.00 10.0 94.00 10.5 93.88 10.9

Dexter 82.67 12.8 77.67 7.3 79.33 11.1 81.67 13.5 84.33 12.6 83.33 13.5 83.33 13.7

Gisette 93.10 13.6 88.42 5.8 88.69 8.6 88.57 10.7 81.47 12.4 86.17 11.6 87.60 11.2

Geom. Mean 80.29 5.4 79.50 4.4 80.89 5.5 79.63 6.4 79.57 6.5 80.19 6.6 80.31 6.6

Arith. Mean 81.25 6.7 80.46 5.0 81.69 6.2 80.39 7.4 80.32 7.6 80.91 7.8 81.07 7.9

Table A.8: Results using Naive Bayes classifier, BARS selectionalgorithm and MIFS-based re-ranking with block sizes B.
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DataSet SFS B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 83.87 5.9 85.48 2.1 85.48 2.8 80.65 4.4 82.26 3.9 80.65 3.9 80.65 4.3

Leukemia 87.50 3.2 88.89 2.9 95.83 3.4 94.44 3.2 94.44 3.6 93.06 3.8 93.06 3.7

Lymphoma 83.33 7.1 73.96 8.0 80.21 10.8 80.21 7.9 79.17 8.7 77.08 8.2 73.96 8.2

DLBCL 80.85 3.6 91.49 3.0 91.49 3.2 89.36 3.8 91.49 4.1 89.36 4.1 89.36 3.9

Prostate 75.00 5.4 76.47 3.8 77.21 4.5 75.00 3.6 72.79 4.1 74.26 4.0 74.26 4.0

Lung 93.92 2.5 95.58 2.8 96.13 2.8 96.69 3.0 97.79 3.0 97.24 2.8 96.69 2.6

GCM 58.42 18.3 50.53 13.2 51.58 10.5 51.05 11.5 57.37 13.8 53.16 12.6 55.79 18.8

Arcene 68.00 4.6 78.00 4.8 73.00 7.0 73.00 6.2 71.00 5.8 67.00 5.7 69.00 4.9

Madelon 60.75 6.5 61.25 2.4 60.75 3.7 61.75 6.8 61.30 7.0 61.10 6.4 61.10 5.7

Dorothea 91.25 13.2 93.25 4.5 92.75 4.2 93.38 4.6 93.00 6.4 92.88 5.3 92.88 5.3

Dexter 76.00 13.8 75.00 6.4 80.67 7.7 81.33 8.5 84.00 11.0 83.00 12.2 80.67 9.9

Gisette 94.05 26.9 88.00 9.0 88.10 11.2 89.20 14.1 88.73 13.9 89.75 13.1 90.23 22.2

Geom. Mean 78.51 7.1 78.63 4.5 79.86 5.2 79.29 5.7 80.06 6.2 78.67 6.0 78.72 6.2

Arith. Mean 79.41 9.3 79.82 5.2 81.10 6.0 80.50 6.5 81.11 7.1 79.88 6.8 79.80 7.8

Table A.9: Results using Naive Bayes classifier, SFS selectionalgorithm and MRMR-based re-ranking with block sizes B.
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DataSet IWSS2 B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 80.65 3.8 80.65 2.7 83.87 2.9 83.87 3.0 83.87 3.1 83.87 3.2 83.87 3.2

Leukemia 87.50 2.5 87.50 1.8 87.50 2.1 87.50 2.1 87.50 2.2 87.50 2.3 87.50 2.4

Lymphoma 76.04 8.8 64.58 5.1 72.92 5.6 69.79 6.5 70.83 6.8 73.96 7.4 75.00 7.8

DLBCL 85.11 1.9 89.36 1.5 87.23 1.6 85.11 1.7 85.11 1.7 85.11 1.7 85.11 1.7

Prostate 77.94 11.1 70.59 3.2 70.59 3.9 74.26 4.9 73.53 5.9 72.79 6.1 73.53 6.1

Lung 97.24 2.7 96.13 2.1 96.13 2.2 97.24 2.7 97.24 2.7 97.24 2.7 97.24 2.7

GCM 64.21 36.6 49.47 8.9 48.95 8.7 55.79 13.1 51.05 14.9 52.63 17.9 54.21 17.9

Arcene 70.00 13.4 74.00 3.1 73.00 4.9 69.00 5.9 73.00 6.0 74.00 6.5 77.00 7.3

Madelon 59.85 13.3 61.15 3.0 60.65 4.7 60.25 7.1 59.75 8.0 59.95 10.1 59.60 11.4

Dorothea 93.50 7.4 93.50 2.4 93.88 2.9 94.25 3.2 94.00 3.8 94.00 3.8 94.00 3.9

Dexter 81.00 19.6 72.00 5.1 77.67 5.3 83.67 9.9 82.67 11.6 81.00 13.2 79.67 14.3

Gisette 94.68 112.6 88.48 6.0 88.00 8.2 86.68 13.3 87.23 19.2 88.28 19.1 89.85 21.8

Geom. Mean 79.81 9.4 75.95 3.3 77.09 3.9 77.90 4.9 77.61 5.5 78.08 5.9 78.65 6.2

Arith. Mean 80.64 19.5 77.28 3.7 78.37 4.4 78.95 6.1 78.82 7.2 79.19 7.8 79.71 8.4

Table A.10: Results using Naive Bayes classifier, IWSS2 selection algorithm and MRMR-based re-ranking with block sizes
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DataSet IWSS2
r B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 83.87 2.8 80.65 2.0 80.65 2.3 80.65 2.3 82.26 2.3 85.48 2.3 85.48 2.3

Leukemia 87.50 2.0 87.50 1.8 87.50 1.9 87.50 1.9 87.50 1.9 87.50 1.9 87.50 2.0

Lymphoma 80.21 5.9 67.71 4.1 72.92 4.8 79.17 4.8 78.13 4.8 80.21 5.4 77.08 5.5

DLBCL 80.85 1.8 87.23 1.5 82.98 1.6 80.85 1.7 80.85 1.7 80.85 1.7 80.85 1.7

Prostate 78.68 7.0 72.79 2.9 74.26 3.1 77.94 3.6 77.94 3.5 75.74 3.6 75.00 3.6

Lung 97.24 2.4 96.13 2.1 96.13 2.1 97.24 2.4 97.24 2.4 97.24 2.4 97.24 2.4

GCM 59.47 19.9 48.95 6.5 47.37 8.3 54.21 9.1 53.68 9.3 49.47 10.0 48.42 10.5

Arcene 72.00 6.2 72.00 2.5 70.00 4.0 71.00 4.5 71.00 4.8 72.00 4.8 73.00 4.8

Madelon 60.50 8.0 61.10 2.1 60.55 3.6 61.25 4.8 60.25 5.9 60.10 5.6 60.50 6.2

Dorothea 92.88 6.3 93.75 3.8 92.63 3.9 93.50 3.9 93.38 4.0 93.25 4.0 93.25 4.0

Dexter 83.00 12.9 73.00 5.0 79.33 4.9 82.00 7.7 81.33 8.5 81.00 8.9 81.67 9.2

Gisette 94.07 30.7 88.28 5.8 88.38 7.1 89.68 6.5 88.67 7.3 88.40 9.8 89.60 13.4

Geom. Mean 79.97 6.1 76.14 3.0 76.43 3.5 78.59 3.9 78.32 4.1 78.04 4.2 77.86 4.4

Arith. Mean 80.85 8.8 77.42 3.3 77.72 4.0 79.58 4.4 79.35 4.7 79.27 5.0 79.13 5.5

Table A.11: Results using Naive Bayes classifier, IWSS2
r selection algorithm and MRMR-based re-ranking with block sizes
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DataSet BARS B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 85.71 3.0 82.26 2.9 82.26 3.1 80.65 2.8 79.03 2.8 79.03 2.6 79.03 2.6

Leukemia 90.54 2.3 91.67 2.2 91.67 3.0 93.06 2.9 93.06 2.9 93.06 2.8 93.06 2.8

Lymphoma 73.67 6.1 69.79 5.5 71.88 5.6 70.83 7.3 72.92 6.4 72.92 6.8 70.83 7.1

DLBCL 76.00 2.4 85.11 2.4 85.11 2.8 76.60 2.7 80.85 2.8 80.85 2.9 80.85 2.9

Prostate 86.81 3.7 75.00 3.6 75.00 3.9 73.53 3.7 73.53 4.2 75.74 4.2 75.00 4.6

Lung 98.36 3.0 96.69 2.6 97.24 3.3 96.13 3.4 96.13 3.5 96.13 3.3 96.69 3.3

GCM 60.00 15.9 48.42 6.9 46.84 7.2 47.37 8.6 51.58 9.2 49.47 10.6 50.53 10.8

Arcene 74.00 4.9 77.00 4.8 79.00 4.2 81.00 5.2 77.00 5.0 80.00 4.5 82.00 4.1

Madelon 60.30 5.8 60.70 2.0 60.60 3.8 61.05 6.3 61.40 7.3 61.20 8.9 61.05 8.7

Dorothea 93.88 7.3 93.38 5.1 93.75 5.3 94.63 6.1 94.13 6.7 94.13 6.8 94.00 7.8

Dexter 82.67 12.8 75.33 6.2 79.33 8.7 76.67 6.2 83.33 9.3 82.67 13.1 83.00 13.4

Gisette 93.10 13.6 88.55 6.3 87.77 8.1 88.47 6.5 88.70 6.5 88.70 6.7 88.70 6.7

Geom. Mean 80.29 5.4 77.34 3.8 77.81 4.6 76.97 4.8 78.16 5.1 78.26 5.3 78.34 5.4

Arith. Mean 81.25 6.7 78.66 4.2 79.20 4.9 78.33 5.1 79.30 5.6 79.49 6.1 79.56 6.2

Table A.12: Results using Naive Bayes classifier, BARS selection algorithm and MRMR-based re-ranking with block sizes
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Appendix B

CMIM Re-ranking Using Different

Classifiers for IWSS and IWSS with

replacement
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B.1 IWSS and CMIM Criterion

DataSet IWSS2 B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 80.6 3.8 80.6 2.8 83.9 3.0 82.3 3.2 82.3 3.3 82.3 3.3 82.3 3.3

Leukemia 87.5 2.5 87.5 2.0 87.5 2.4 87.5 2.4 87.5 2.4 87.5 2.4 87.5 2.5

Lymphoma 76.0 8.8 66.7 6.3 75.0 7.6 76.0 7.9 77.1 8.0 75.0 8.1 77.1 8.2

DLBCL 85.1 1.9 89.4 1.5 87.2 1.6 85.1 1.7 85.1 1.7 85.1 1.7 85.1 1.7

Prostate 77.9 11.1 72.1 4.1 74.3 4.0 77.9 5.6 74.3 7.3 72.1 7.8 74.3 8.0

Lung 97.2 2.7 96.7 2.2 96.7 2.4 97.2 2.7 97.2 2.7 97.2 2.7 97.2 2.7

GCM 64.2 36.6 54.2 12.3 60.0 19.8 62.1 21.4 65.3 22.5 64.2 24.4 64.7 27.4

Arcene 70.0 13.4 70.0 3.5 68.0 5.1 70.0 6.8 70.0 7.0 70.0 7.8 69.0 7.8

Madelon 59.9 13.3 61.3 2.7 60.9 4.8 60.3 7.1 59.8 8.0 60.0 10.1 59.6 11.4

Dorothea 93.5 7.4 93.9 2.8 94.1 3.6 94.4 3.8 94.0 4.3 93.9 4.3 93.8 4.5

Dexter 81.0 19.6 81.7 11.9 83.7 13.1 83.7 14.8 81.3 15.7 83.0 15.2 80.7 14.9

Gisette 94.7 112.6 88.7 18.3 92.3 41.3 93.7 62.6 93.9 69.5 94.4 82.0 94.1 77.2

Geom. Mean 79.81 9.45 77.41 4.24 79.34 5.52 79.97 6.50 79.81 6.94 79.51 7.32 79.59 7.49

Arith. Mean 80.6 19.5 78.5 5.9 80.3 9.1 80.9 11.7 80.6 12.7 80.4 14.2 80.4 14.1

Table B.1: NB classifier, IWSS2 and CMIM-based re-ranking with block sizes B.

B.2 IWSS with replacement and CMIM Criterion
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DataSet IWSS2 B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 79.03 2.7 82.26 1.7 82.26 1.7 82.26 1.9 82.26 2.0 82.26 2.0 80.65 2.3

Leukemia 83.33 1.1 83.33 1.0 83.33 1.0 83.33 1.0 83.33 1.1 83.33 1.1 83.33 1.1

Lymphoma 75.00 8.9 64.58 5.8 65.63 6.4 78.13 7.8 78.13 7.9 76.04 8.1 76.04 8.2

DLBCL 76.60 1.5 76.60 1.4 76.60 1.4 76.60 1.4 76.60 1.4 76.60 1.4 76.60 1.5

Prostate 88.24 4.9 88.97 3.9 89.71 4.0 89.71 4.1 91.18 4.4 91.18 4.3 91.18 4.3

LungCancer 95.03 1.3 95.58 1.1 95.58 1.1 95.58 1.2 95.58 1.2 95.58 1.2 95.58 1.2

GCM 45.26 23.4 45.26 8.5 48.42 10.9 45.79 13.6 48.42 15.3 44.74 14.3 45.26 14.1

Arcene 82.00 7.5 78.00 4.0 79.00 5.1 79.00 5.6 78.00 5.9 78.00 6.0 78.00 6.3

Madelon 77.25 23.1 75.60 8.0 76.15 9.6 75.60 13.1 76.70 13.8 75.35 14.9 76.05 19.8

Dorothea 91.63 9.7 92.38 2.5 92.25 3.5 91.63 5.2 91.75 5.3 91.75 5.5 91.88 5.7

Dexter 81.33 13.2 76.33 5.4 81.67 8.4 81.67 8.7 80.67 9.4 82.33 9.3 82.67 9.4

Gisette 93.70 67.8 92.95 21.2 93.48 28.1 93.72 37.4 93.70 42.3 93.30 49.2 94.08 52.9

Geom. Mean 79.48 6.7 77.97 3.6 79.17 4.2 79.88 4.9 80.29 5.1 79.58 5.2 79.68 5.5

Arith. Mean 80.70 13.8 79.32 5.4 80.34 6.8 81.08 8.4 81.36 9.2 80.87 9.8 80.94 10.6

Table B.2: c4.5 classifier, IWSS2 and CMIM-based re-ranking with block sizes B.
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DataSet IWSS2 B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 82.26 6.3 83.87 4.0 80.65 4.5 77.42 5.1 80.65 4.9 80.65 5.2 80.65 5.0

Leukemia 88.89 2.8 84.72 2.3 83.33 2.4 84.72 2.5 86.11 2.8 86.11 2.8 87.50 2.8

Lymphoma 81.25 12.5 75.00 8.0 79.17 10.2 81.25 10.9 81.25 11.0 85.42 11.3 85.42 11.5

DLBCL 85.11 3.5 80.85 2.8 78.72 3.0 76.60 3.2 78.72 3.2 80.85 3.3 80.85 3.3

Prostate 86.03 8.6 86.03 5.0 89.71 5.9 88.97 6.1 90.44 6.7 88.97 6.7 88.97 6.7

LungCancer 96.13 2.7 95.03 2.6 95.58 2.6 96.13 2.6 96.13 2.6 96.13 2.7 96.13 2.7

GCM 65.26 34.1 49.47 9.8 50.00 11.6 55.26 17.8 59.47 21.4 57.89 20.2 57.89 23.6

Arcene 76.00 13.2 78.00 5.9 79.00 6.4 76.00 8.2 77.00 8.2 79.00 8.7 76.00 8.6

Madelon 88.00 11.7 85.65 8.4 85.45 7.7 85.40 7.7 86.75 9.1 87.00 9.6 87.00 9.6

Dorothea 91.88 18.2 93.50 4.3 93.38 6.0 93.13 7.5 92.75 8.4 92.50 8.7 92.63 9.9

Dexter 83.33 24.6 81.67 12.0 81.67 15.2 81.67 15.6 81.67 15.9 82.67 16.7 83.67 16.9

Gisette 95.97 100.4 90.37 18.5 93.77 38.0 95.95 65.4 95.95 70.0 95.88 72.0 96.10 81.3

Geom. Mean 84.58 11.3 81.05 5.7 81.56 6.8 81.92 7.9 83.29 8.4 83.78 8.6 83.74 8.9

Arith. Mean 85.01 19.9 82.01 7.0 82.53 9.5 82.71 12.7 83.91 13.7 84.42 14.0 84.40 15.2

Table B.3: ibK classifier, IWSS2 and CMIM-based re-ranking with block sizes B.
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DataSet IWSS2 B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 67.74 1.1 69.35 1.0 69.35 1.0 69.35 1.0 69.35 1.0 69.35 1.0 69.35 1.0

Leukemia 65.28 1.0 65.28 1.0 65.28 1.0 65.28 1.0 65.28 1.0 65.28 1.0 65.28 1.0

Lymphoma 82.29 11.1 80.21 8.2 81.25 8.1 80.21 8.8 80.21 8.9 80.21 9.0 81.25 9.8

DLBCL 87.23 1.9 89.36 1.5 89.36 1.5 87.23 1.6 85.11 1.8 87.23 1.9 87.23 1.9

Prostate 73.53 1.2 76.47 1.0 76.47 1.0 76.47 1.0 76.47 1.0 76.47 1.0 76.47 1.0

LungCancer 82.32 1.0 82.32 1.0 82.32 1.0 82.32 1.0 82.32 1.0 82.32 1.0 82.32 1.0

GCM 15.79 1.7 14.74 1.3 14.74 1.3 14.74 1.4 14.74 1.4 14.74 1.4 14.74 1.4

Arcene 61 3.8 64.00 1.5 63.00 1.7 63.00 2.1 63.00 2.2 62.00 2.6 63.00 2.7

Madelon 57.85 7.7 56.40 1.9 56.30 1.8 56.10 3.4 56.60 3.7 56.65 3.8 56.65 3.9

Dorothea 93.00 6.1 93.38 3.3 93.25 5.1 92.75 5.5 92.88 5.6 93.00 5.5 93.13 5.5

Dexter 80.33 21.2 71.33 4.0 80.67 9.0 80.00 12.0 82.33 12.1 81.33 12.0 81.33 12.1

Gisette 89.03 28.5 87.03 7.5 88.33 9.2 88.48 10.1 88.72 13.0 88.55 11.8 88.72 11.9

Geom. Mean 66.23 3.62 65.56 2.02 66.28 2.29 65.99 2.60 66.08 2.72 66.07 2.75 66.24 2.78

Arith. Mean 71.28 7.19 70.82 2.77 71.69 3.48 71.33 4.08 71.42 4.39 71.43 4.33 71.62 4.43

Table B.4: SVM classifier, IWSS2 and CMIM-based re-ranking with block sizes B.
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DataSet IWSS2 B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 62.90 4.2 67.74 2.2 67.74 2.5 66.13 2.9 64.52 3.2 64.52 3.2 64.52 3.1

Leukemia 87.50 2.6 84.02 2.0 84.72 2.1 86.11 2.2 86.11 2.4 86.11 2.4 86.11 2.5

Lymphoma 81.25 11.3 80.21 7.6 80.21 8.0 80.21 8.0 72.92 8.1 76.04 8.8 79.17 9.2

DLBCL 78.72 2.0 82.98 1.3 80.85 1.5 76.60 1.7 76.60 1.7 76.60 1.7 74.47 1.8

Prostate 89.71 7.0 87.00 4.1 88.97 4.2 90.44 4.5 91.91 4.8 91.18 4.5 92.65 4.7

LungCancer 97.79 2.4 96.69 2.1 96.69 2.2 96.69 2.2 96.69 2.2 96.69 2.2 96.69 2.2

GCM 55.79 33.4 50.50 13.2 52.63 15.1 54.74 17.4 58.42 19.6 53.68 17.8 59.47 21.1

Arcene 83.00 12.9 78.00 4.3 79.00 6.4 80.00 7.2 78.00 8.6 77.00 8.9 76.00 9.4

Madelon 75.85 12.4 75.20 8.5 75.15 9.4 75.75 10.4 76.40 11.0 76.75 11.2 76.40 11.5

Dorothea – – 92.75 3.7 92.25 6.0 92.25 6.7 92.25 7.4 92.38 7.9 92.88 7.8

Dexter 8.00 2149.4 86.24 12.5 86.33 13.1 84.67 12.5 88.00 13.5 88.33 13.3 87.33 13.2

Gisette – – 93.40 18.9 93.53 21.0 94.23 26.9 94.63 29.7 94.25 29.9 95.28 39.1

Geom. Mean – – 80.17 4.8 80.54 5.6 80.56 6.1 80.47 6.5 80.08 6.6 80.87 6.9

Arith. Mean – – 81.23 6.7 81.51 7.6 81.48 8.6 81.37 9.4 81.13 9.3 81.75 10.5

Table B.5: MLP classifier, IWSS2 and CMIM-based re-ranking with block sizes B.
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DataSet IWSS2 B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 87.10 3.0 88.71 2.8 87.10 2.9 87.10 2.9 87.10 2.9 87.10 2.9 87.10 3.0

Leukemia 91.67 3.2 91.67 2.7 91.67 2.8 91.67 2.9 91.67 2.9 91.67 2.9 91.67 2.9

Lymphoma 72.92 10.4 64.58 7.0 72.92 8.0 72.92 9.7 79.17 10.0 80.21 9.5 79.17 9.4

DLBCL 82.98 2.9 85.11 2.5 82.98 2.7 82.98 2.8 82.98 2.8 82.98 2.8 82.98 2.8

Prostate 90.44 6.3 90.44 4.4 93.38 4.9 94.12 5.1 92.65 5.8 93.38 6.0 94.12 6.1

LungCancer 96.13 2.9 96.13 2.5 96.69 2.6 96.69 2.6 96.69 2.6 96.69 2.6 96.69 2.6

GCM 55.79 34.8 52.11 14.2 51.05 17.0 51.58 19.8 54.74 25.0 58.95 24.4 60.53 26.6

Arcene 78.00 7.6 84.00 4.4 82.00 5.1 80.00 6.2 80.00 6.7 82.00 6.8 81.00 7.0

Madelon 63.60 4.7 63.70 4.8 63.60 4.7 63.60 4.7 63.60 4.7 63.60 4.7 63.60 4.7

Dorothea 93.88 15.6 92.50 6.8 93.00 7.5 93.13 8.7 93.00 9.0 93.25 9.7 93.13 9.8

Dexter 84.00 11.0 75.33 4.2 80.33 8.7 81.67 11.3 84.00 11.0 84.00 11.0 84.00 11.0

Gisette 96.25 112.8 92.43 24.0 93.90 40.9 95.18 68.2 95.62 75.7 95.43 80.9 95.87 86.9

Geom. Mean 81.68 8.42 80.10 5.1 81.14 6.1 81.31 6.9 82.38 7.2 83.21 7.3 83.30 7.5

Arith. Mean 82.73 17.93 81.39 6.7 82.38 9.0 82.55 12.1 83.43 13.3 84.10 13.7 84.15 14.4

Table B.6: TAN classifier, IWSS2 and CMIM-based re-ranking with block sizes B.
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DataSet IWSS2 B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 87.10 3.1 87.10 2.9 87.10 3.1 87.10 3.1 87.10 3.1 87.10 3.1 87.10 3.1

Leukemia 88.89 1.9 88.89 1.8 88.89 1.8 88.89 1.8 88.89 1.9 88.89 1.9 88.89 1.9

Lymphoma 86.46 8.3 84.38 7.0 87.50 7.8 88.54 8.3 87.50 8.3 87.50 8.3 86.46 8.3

DLBCL 80.85 1.8 80.85 1.5 80.85 1.5 80.85 1.5 80.85 1.6 80.85 1.7 80.85 1.8

Prostate 91.18 5.2 91.18 4.7 90.44 4.9 91.18 5.2 90.44 5.1 90.44 5.1 90.44 5.0

LungCancer 96.13 1.9 96.13 1.5 96.13 1.9 96.13 1.9 96.13 1.9 96.13 1.9 96.13 1.9

GCM 62.11 35.2 67.37 14.9 70.00 18.6 70.00 19.5 68.95 23.1 68.42 25.7 69.47 27.2

Arcene 93.00 6.0 92.00 4.5 93.00 5.3 93.00 5.8 93.00 5.8 92.00 5.9 92.00 5.9

Madelon 67.60 4.6 67.65 4.7 67.60 4.6 67.60 4.6 67.60 4.6 67.60 4.6 67.60 4.6

Dorothea 93.00 10.1 93.25 3.4 93.50 5.1 92.50 5.9 92.88 5.0 93.25 4.8 93.25 4.8

Dexter 86.67 13.4 77.67 5.9 86.00 12.2 86.00 13.1 85.67 12.7 86.67 13.8 87.00 13.5

Gisette 96.17 116.8 93.10 32.6 93.72 45.3 95.85 79.3 95.53 73.7 95.80 83.5 95.92 87.2

Geom. Mean 84.88 7.5 84.41 4.6 85.74 5.5 85.97 6.0 85.70 6.0 85.70 6.2 85.76 6.2

Arith. Mean 85.64 18.7 84.96 7.1 86.23 9.3 86.47 12.5 86.21 12.2 86.22 13.4 86.26 13.8

Table B.7: AODE classifier, IWSS2 and CMIM-based re-ranking with block sizes B.
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DataSet IWSS2
r B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 83.9 2.8 82.3 2.2 85.5 2.2 83.9 2.4 83.9 2.4 83.9 2.3 83.9 2.3

Leukemia 87.5 2.0 87.5 1.9 87.5 1.9 87.5 1.9 87.5 1.9 87.5 1.9 87.5 2.0

Lymphoma 80.2 5.9 72.9 4.7 75.0 5.6 80.2 5.6 81.3 5.7 78.1 5.9 76.0 5.9

DLBCL 80.9 1.8 87.2 1.5 83.0 1.6 80.9 1.7 80.9 1.7 80.9 1.7 80.9 1.7

Prostate 78.7 7.0 73.5 3.2 75.7 3.4 77.2 4.2 80.9 4.7 80.1 4.7 83.1 4.8

Lung 97.2 2.4 96.7 2.2 96.7 2.2 97.2 2.4 97.2 2.4 97.2 2.4 97.2 2.4

GCM 59.5 19.9 51.6 7.4 53.7 10.3 57.9 10.9 57.9 11.8 60.0 13.4 62.1 14.2

Arcene 72.0 6.2 71.0 2.6 70.0 3.7 72.0 3.8 73.0 4.3 71.0 4.3 69.0 4.3

Madelon 60.5 8.0 61.7 2.0 60.8 3.4 61.3 4.8 60.3 5.9 60.1 5.6 60.5 6.2

Dorothea 92.9 6.3 94.3 3.0 93.3 4.0 93.4 5.0 93.0 5.3 92.9 5.3 92.9 5.3

Dexter 83.0 12.9 82.7 8.5 81.0 10.1 83.0 9.8 82.7 9.7 82.7 9.8 82.7 9.4

Gisette 94.1 30.7 86.2 2.7 88.5 6.4 90.8 10.8 91.6 15.9 92.3 16.5 92.6 17.1

Geom. Mean 79.97 6.06 77.82 3.01 78.16 3.81 79.54 4.35 79.93 4.72 79.68 4.76 79.85 4.85

Arith.Mean 80.9 8.8 79.0 3.5 79.2 4.6 80.4 5.3 80.8 6.0 80.6 6.2 80.7 6.3

Table B.8: NB classifier, IWSS2r and CMIM-based re-ranking with block sizes B.
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DataSet IWSS2
r B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 79.03 2.3 80.65 1.7 82.26 1.7 82.26 2.0 80.65 1.9 80.65 1.9 79.03 2.1

Leukemia 84.72 1.1 84.72 1.0 84.72 1.0 84.72 1.0 84.72 1.1 84.72 1.1 84.72 1.1

Lymphoma 77.08 6.4 65.63 4.9 65.63 5.0 75.00 5.8 76.04 5.7 75.00 5.9 75.00 6.0

DLBCL 82.98 1.3 80.85 1.2 78.72 1.2 78.72 1.3 78.72 1.3 78.72 1.3 78.72 1.3

Prostate 79.41 4.5 87.50 3.5 86.76 3.4 82.35 3.6 82.35 3.6 82.35 3.7 82.35 3.7

LungCancer 93.92 1.3 94.48 1.1 94.48 1.1 94.48 1.2 94.48 1.2 94.48 1.2 94.48 1.2

GCM 41.58 15.6 44.21 5.1 43.68 5.6 43.68 7.5 44.21 7.3 49.47 9.1 46.84 8.9

Arcene 80.00 5.4 77.00 2.5 79.00 3.4 82.00 4.1 82.00 4.4 82.00 4.7 84.00 4.8

Madelon 77.90 13.4 75.70 6.4 77.25 7.0 76.95 7.8 77.05 8.6 76.85 9.3 78.95 10.9

Dorothea 91.88 8.5 92.63 2.6 92.75 3.4 92.25 5.2 92.38 5.2 92.38 5.3 92.38 5.3

Dexter 79.67 13.8 75.33 4.2 79.33 6.4 77.33 6.8 79.33 6.9 79.33 6.8 80.00 6.9

Gisette 93.75 35.8 91.87 10.2 92.20 13.0 93.33 17.5 93.50 21.5 93.17 20.3 93.57 24.2

Geom. Mean 78.74 5.4 77.84 2.9 78.33 3.3 78.96 3.8 79.20 3.9 79.81 4.1 79.74 4.2

Arith. Mean 80.16 9.1 79.21 3.7 79.73 4.4 80.26 5.3 80.45 5.7 80.76 5.9 80.84 6.4

Table B.9: c4.5 classifier, IWSS2r and CMIM-based re-ranking with block sizes B.
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DataSet IWSS2
r B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 77.42 4.9 82.26 3.3 82.26 3.7 79.03 4.1 70.97 3.8 74.19 4.0 79.03 4.0

Leukemia 87.50 2.2 88.89 2.2 87.50 2.2 87.50 2.2 87.50 2.2 87.50 2.2 87.50 2.2

Lymphoma 78.13 7.7 80.21 5.5 76.04 5.7 82.29 6.3 79.17 7.0 77.08 7.0 77.08 7.0

DLBCL 85.11 2.5 80.85 2.4 80.85 2.4 80.85 2.4 80.85 2.5 80.85 2.4 80.85 2.4

Prostate 88.97 5.3 89.71 3.5 87.50 4.3 86.76 4.4 87.50 4.3 86.76 4.7 88.24 4.6

LungCancer 96.69 2.5 96.13 2.3 96.69 2.4 96.69 2.5 96.69 2.5 96.69 2.5 96.69 2.5

GCM 55.79 20.5 41.58 5.5 48.42 7.8 48.95 8.6 51.05 10.9 58.42 11.4 55.79 13.3

Arcene 72.00 6.9 79.00 4.0 76.00 4.9 75.00 5.2 78.00 6.0 74.00 6.3 71.00 6.2

Madelon 87.85 8.1 86.25 6.4 85.00 6.4 85.40 6.4 86.50 7.1 87.20 7.2 87.20 7.2

Dorothea 93.13 15.9 93.88 4.4 93.63 6.5 93.88 6.6 92.88 7.8 93.38 8.7 92.63 9.2

Dexter 80.00 20.1 85.33 9.7 77.00 11.9 82.33 12.7 80.67 13.5 80.67 13.9 81.00 13.6

Gisette – – 89.35 9.8 91.80 17.2 94.40 26.1 95.08 35.7 95.08 36.6 95.30 41.8

Geom. Mean 81.25 6.6 81.26 4.3 80.81 5.2 81.69 5.6 81.23 6.1 81.94 6.3 81.88 6.5

Arith. Mean 82.05 8.8 82.79 4.9 81.89 6.3 82.76 7.3 82.24 8.6 82.65 8.9 82.69 9.5

Table B.10: ibK classifier, IWSS2r and CMIM-based re-ranking with block sizes B.

205



B
.C

M
IM

R
E

-R
A

N
K

IN
G

U
S

IN
G

D
IF

F
E

R
E

N
T

C
LA

S
S

IF
IE

R
S

F
O

R
IW

S
S

A
N

D
IW

S
S

W
IT

H
R

E
P

LA
C

E
M

E
N

T

DataSet IWSS2
r B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 64.52 1.0 67.74 1.0 66.13 1.0 62.90 1.0 62.90 1.0 59.68 1.0 59.68 1.0

Leukemia 70.83 1.0 65.28 1.0 65.28 1.0 65.28 1.0 65.28 1.0 65.28 1.0 65.28 1.0

Lymphoma 81.25 7.3 80.21 6.5 81.25 6.9 80.21 6.7 79.17 6.7 79.17 6.9 81.25 6.6

DLBCL 80.85 1.9 87.23 1.5 82.98 1.5 80.85 1.6 80.85 1.8 82.98 1.9 82.98 1.9

Prostate 72.06 1.0 72.79 1.0 71.32 1.0 72.06 1.0 72.06 1.0 72.06 1.0 72.06 1.0

LungCancer 87.29 1.0 83.98 1.0 88.95 1.0 87.85 1.0 87.29 1.0 87.29 1.0 87.29 1.0

GCM 20.53 1.1 16.84 1.1 17.37 1.1 16.32 1.1 16.84 1.1 17.89 1.1 17.37 1.1

Arcene 60.00 5.6 67.00 1.4 69.00 1.6 67.00 1.7 63.00 2.3 65.00 2.1 62.00 2.3

Madelon 57.65 5.8 57.45 1.3 57.10 1.5 57.35 2.4 57.35 2.4 57.35 2.7 57.35 2.7

Dorothea 92.50 5.1 93.75 3.4 92.88 4.6 93.38 4.6 93.00 5.0 93.00 5.0 93.00 5.0

Dexter 82.00 18.5 71.33 3.8 81.00 8.3 82.00 10.0 80.00 10.5 80.67 10.4 81.33 10.4

Gisette – – 87.85 4.8 88.62 5.4 89.47 6.9 89.63 7.3 89.88 7.7 89.95 7.9

Geom. Mean – – 66.29 1.81 67.16 2.05 66.32 2.23 65.90 2.35 66.32 2.38 66.09 2.39

Arith. Mean – – 70.95 2.32 71.82 2.91 71.22 3.25 70.61 3.43 70.85 3.48 70.79 3.49

Table B.11: SVM classifier, IWSS2r and CMIM-based re-ranking with block sizes B.
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DataSet IWSS2
r B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 72.58 3.0 70.97 2.0 70.97 2.1 69.35 2.5 69.35 2.6 67.74 2.6 69.35 2.5

Leukemia 87.50 2.1 86.11 1.7 86.11 1.8 86.11 1.8 86.11 1.9 86.11 1.9 86.11 2.0

Lymphoma 83.33 7.5 73.96 5.0 68.75 4.6 78.13 5.8 83.33 5.8 83.33 6.3 80.21 6.4

DLBCL 78.72 2.0 82.98 1.3 80.85 1.5 76.60 1.7 76.60 1.7 76.60 1.7 74.47 1.8

Prostate 86.03 4.7 91.18 2.9 90.44 3.4 91.91 4.0 91.18 3.9 91.18 3.8 90.44 3.6

LungCancer 97.24 2.2 96.13 1.8 96.13 1.8 96.13 1.8 96.13 1.8 96.13 1.8 96.13 1.8

GCM – – 46.84 6.7 43.68 7.1 52.11 7.7 60.00 9.5 52.11 8.8 54.21 9.7

Arcene 74.00 7.0 78.00 3.9 79.00 4.2 77.00 5.3 78.00 6.0 80.00 5.6 79.00 5.4

Madelon 74.25 7.2 72.60 6.0 73.55 6.6 73.95 6.4 74.10 6.9 75.45 7.1 75.10 7.3

Dorothea – – 93.88 3.1 93.75 4.3 94.25 5.5 93.63 5.6 93.25 6.3 93.25 6.9

Dexter – – 82.00 7.4 84.67 9.0 82.00 10.0 84.67 10.5 84.67 11.1 85.00 10.6

Gisette – – 91.43 9.0 93.27 11.2 93.85 14.5 93.87 13.8 94.33 15.6 94.02 15.4

Geom. Mean – – 79.25 3.5 78.59 3.9 79.93 4.5 81.53 4.7 80.71 4.8 80.53 4.8

Arith. Mean – – 80.51 4.2 80.10 4.8 80.95 5.6 82.25 5.8 81.74 6.1 81.44 6.1

Table B.12: MLP classifier, IWSS2r and CMIM-based re-ranking with block sizes B.
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DataSet IWSS2
r B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 87.10 2.9 88.71 2.7 87.10 2.8 87.10 2.8 87.10 2.8 87.10 2.8 87.10 2.9

Leukemia 91.67 2.9 91.67 2.7 91.67 2.8 91.67 2.9 91.67 2.9 91.67 2.9 91.67 2.9

Lymphoma 85.42 8.0 69.79 5.5 76.04 6.6 78.13 7.1 83.33 7.8 85.42 7.5 85.42 7.7

DLBCL 85.11 2.7 85.11 2.5 82.98 2.6 82.98 2.7 82.98 2.7 85.11 2.7 85.11 2.7

Prostate 88.24 4.8 89.71 4.1 91.18 4.6 91.91 4.5 91.91 4.7 91.18 4.7 88.24 4.6

LungCancer 95.58 2.3 96.13 2.3 95.58 2.3 95.58 2.3 95.58 2.3 95.58 2.3 95.58 2.3

GCM 52.63 20.9 44.74 7.6 49.47 9.4 46.84 12.5 53.68 13.4 54.74 14.9 52.63 14.8

Arcene 87.00 5.8 84.00 3.6 86.00 4.8 84.00 5.3 85.00 5.6 87.00 5.7 87.00 6.0

Madelon 63.80 4.5 63.95 4.4 63.85 4.5 63.75 4.5 63.75 4.5 63.75 4.5 63.75 4.5

Dorothea 91.38 11.6 92.75 3.8 93.25 5.6 93.13 7.2 93.00 7.8 93.00 8.1 92.50 8.3

Dexter 82.33 10.5 77.00 4.2 78.67 8.0 82.00 10.8 82.33 10.5 82.33 10.5 82.33 10.5

Gisette – – 89.53 7.2 92.62 16.0 94.18 21.0 94.48 28.3 95.22 34.0 – –

Geom. Mean 81.65 5.48 79.53 3.9 81.11 4.9 81.19 5.5 82.68 5.8 83.32 5.9 81.74 5.1

Arith. Mean 82.75 6.99 81.09 4.2 82.37 5.8 82.60 7.0 83.73 7.8 84.34 8.4 82.85 6.1

Table B.13: TAN classifier, IWSS2r and CMIM-based re-ranking with block sizes B.
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DataSet IWSS2
r B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts

Colon 87.10 2.9 85.48 2.6 87.10 2.9 87.10 2.9 87.10 2.9 87.10 2.9 87.10 2.9

Leukemia 88.89 1.9 88.89 1.8 88.89 1.8 88.89 1.8 88.89 1.9 88.89 1.9 88.89 1.9

Lymphoma 90.63 6.4 84.38 6.0 89.58 6.3 90.63 6.6 90.63 6.6 88.54 6.6 88.54 6.6

DLBCL 82.98 1.7 82.98 1.3 82.98 1.3 82.98 1.3 82.98 1.4 82.98 1.6 82.98 1.7

Prostate 91.18 4.1 90.44 4.4 88.24 4.1 86.76 4.1 89.71 4.0 89.71 4.0 89.71 4.1

LungCancer 96.13 1.9 96.13 1.5 96.13 1.9 96.13 1.9 96.13 1.9 96.13 1.9 96.13 1.9

GCM 66.84 19.0 61.05 8.2 64.21 11.3 64.74 12.9 65.79 14.0 64.74 14.3 60.53 14.2

Arcene 95.00 5.3 93.00 4.2 91.00 4.9 94.00 5.0 95.00 5.1 92.00 5.3 92.00 5.3

Madelon 67.15 3.6 67.15 3.8 67.15 3.6 67.15 3.6 67.15 3.6 67.15 3.6 67.15 3.6

Dorothea 92.50 8.3 93.38 3.6 93.50 4.5 93.38 5.0 92.63 5.6 92.88 5.7 92.75 5.7

Dexter 86.67 12.9 79.00 6.8 85.67 10.9 86.67 12.8 86.33 13.1 87.33 13.1 86.33 13.1

Gisette 94.67 46.2 89.78 8.0 92.37 16.0 92.60 16.6 93.73 27.3 93.70 23.7 94.35 33.5

Geom. Mean 86.06 5.5 83.62 3.7 84.97 4.4 85.31 4.6 85.74 4.9 85.33 4.9 84.81 5.1

Arith. Mean 86.64 9.5 84.31 4.4 85.57 5.8 85.92 6.2 86.34 7.3 85.93 7.1 85.54 7.9

Table B.14: AODE classifier, IWSS2r and CMIM-based re-ranking with block sizes B.
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