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Chapter 1

Introduction

1.1 Introduction

Supervised classification consists on training a classiipable of predicting labels
(from a predefined set of labels) for new instances. In génenas, the more cor-
rect labels a classifier predicts the better its performasidbus, the training stage is
crucial the construction of a good classifier. In order toriowe the quality of data
with which the classifier is trained, a wide range of prepssagg techniques can be
found in the literature which are applied at feature or instalevel: feature selection
[67], feature construction/[/], discretization 7], principal component analysi$¥],
normalization, replacing missing value&q], instance over- or under-samplingq],
clustering, ... This thesis focuses on supervised Featuibse$ Selection (FSS), In-
stances Selection and Instances Balancing (re-sampling).

FSS methods use a training set of instances to learn whithrésaare the most
relevant given a filter metric or some classifier. By identifyrelevant features, large
databases with thousands of attributes are significardiyaed, improving the perfor-
mance of the classifier and helping experts to interpretekalting model. Further-
more, unlike other reduction techniques (e.g. featuretcocison or principal com-
ponent analysis ), FSS does not alter the original reprasent thus preserving the
original semantics of the features.
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The problem of imbalance in a dataset arises when the nunfbestances be-
longing to each of the predefined labels is very differentusihn the case of two
possible labelg+,-} corresponding to the result of a medical test, the most commo
case is that only a few patients test positive, while moshefrt are negative. Thus,
when constructing a classifier, this will be quite biasedams the negative class. So
for these cases, effective over- or under-sampling tecl@si@re mandatory in order to
improve classification.

Sometimes the balance among instances of different clesses a problem, but
the presence of outliers or noisy samples is. Thus, in the s@ay redundant or noisy
features can be discarded via feature selection, it is assilple (although it is not
such a well-known approach) to perform instance selectiamder to perform a more
optimal learning stage for the classifier.

1.2 Structure of the Dissertation

This dissertation is structured in 4 parts.

Partl is composed of this Chapter and Chag@ewhich presents an introduction to
Supervised Classification and Supervised Feature Seledtiosis an important chap-
ter since it will set out the basic principles underlying tireposals and experiments
in the rest of this thesis.

Partll is composed of Chapte8sto 6.

Chapter3 presents several improvements to the hybrid incrementaldt§orithm
IWSS: (1) a better criterion to decide the selection of a neatufiee in the incremental
process, (2) adding the option of replacing features ajreaticted in order to capture
(in)dependences between variables; and (3) embeddingdive Bayes classifier in
the incremental process, getting the same results buichtigreducing the complex-
ity in time.

Chapter4 presents a proposal to convert the deterministic IWSS algorinto a
stochastic one in order to use it in the construction stage BGRASP search. Thus,
the search space is expanded and results show that using GRASIVSS not only
improves the performance of IWSS but it also reduces its cexityl
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Chapters presents a new re-ranking method applicable to incremé&&8l algo-
rithms which test the selection of features in the orderdatid by a ranking based on
some score of each feature with respect to the class. Thmpabtakes into account
that some features ranked at the end of the ranking might fien $core increased
once some features have been selected, and so it is helpfedrémk them to early
positions and thus to stop the search before reaching thefahe ranking. Results
show that this re-ranking proposal improves the perforraaar@ drastically reduces
the necessary number of evaluations of several FSS algwritiver which re-ranking
is applied.

Chapter6 deals with the problem of datasets imbalance. A new familpstinces
re-sampling is proposed which re-samples whole new trgidatasets based on some
distribution learned from the original training sets. Savdistributions are tested and
results prove that they improve the performance aivi@ayes Multinomial classifier
applied to text categorization.

Partlll is composed of two chapters dealing with multimedia-relatatasets.

Chapter7 presents an introduction to common representation feaforemulti-
media documents, and makes comparisons between sevataldiirepresentation to
find out which perform better for the datasets used.

Chapter8 proposes to find out if the context of users when they are paifg
tasks related to multimedia search affects the quality sxfilts. Experiments suggest
that instances of datasets can be selected according torhextin which they were
created and thus improve the performance of classifiers.

Finally, partlV contains one chapter in which the main conclusions of tlasedt
tation are highlighted, and possible future work is sugggbstt also contains the list
of publications with which this thesis has contributed te éxisting literature.
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Chapter 2

Supervised Classification

2.1 Introduction

Classification is one of the tasks linked to Pattern Recognitimd it can be divided
into Supervised Classification and Unsupervised Classificaiihe latter aims to dis-
cover unknown class similarities for the instances in thakkse, while the former is
the process of predicting, as successfully as possibleldks (from a set of predefined
labels) corresponding to instances which contain the sammeat as those instances
used to learn the classifier.

In supervised classification, an instance (a.k.a. samptidbject) is defined over
a set of predictive variables (a.k.a. features or attrijulg, X,, ..., X,, and a class
variableC' which represents the class (a.k.a. label) such instanocadg®to. When we
store a set of instances with the same format, then we hagadaseor corpus as
shown in Table.1

Table 2.1: Canonical Format of Databases Used in Supervisessi@tation.

Instance ID| X, Xo ... X, C
1 11 I12 e T1in C1
2 To1 T99 - Ton Co
3 31 32 N T3n C3
4 41 Tq2 . Tan Cy4
N N1 IN2 ... XNn CN
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Each predictive variabl&’; can be numeric (don;)C R) or nominal (domg{; =
{z},...,2r}). Each entryz,;; in Table 2.1 represents an attribute value paitX;,
dom(X,)>. Predictive attributes in the same dataset can be of diffeypes. Some
classification algorithms restrict the type of predictiveibutes to use, e.g. all nomi-
nal or all numeric, or all in the same interval (a,b), so ifitli® not follow that format
the database then needs to be preprocessed; moreover, pracpssing algorithms
need a specific format so a previous preprocessing is alstedde.g. replacing miss-
ing values).

If C'is Numeric, then the Supervised Classification task is knawRegression. In
this thesis, the Class feature is assumed to be Nominal, dnavimedefined and finite
number of possible labels.

Definition 2.1 Given a databasé following the format in Tabl.1, such thatC' =
{c1,..., ¢} is the set of possible labels of the class attribute, the gbalipervised
classification is to build a classifier functidh: x, zs,...,z, — C which (usually)
computes a score for each labele C and returns the label which maximizes this
score.

Definition 2.2 The performance or goodness of a classifter z1, zo, ..., 2, — C
is usually a scalar value, where the computation of this valepends on the chosen
metric and evaluation method.

If one instanceal; can be assigned to more that one label, we are talking about
multi-label (a.k.a. overlapping-categorigsclassification; on the contrary we refer to
single-label(a.k.a. non overlapping-categori¢<lassification. If the class can take
only 2 values, this idbinomial classification, while if it can take more than 2 values
then it is amultinomialclassification.

Moreover, Definition2.1 refers to ahard classification since its returned values
indicate if a given instance belongs to a class or not. On therdand soft classi-
fication returns a ranking for the class labels constructadgua computed score for
which higher positions mean higher score of the instancengihg to that class label.

Furthermore, all the classification process (construatfariassifier and prediction
of labels for new records) may also be performed usingatomaticprocess based
on machine learningnethods;semi-automatiaf the classifier is built using feedback
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from the user or system; and finally, the whole process maebemnedby handand
this requires at least one human expert who decides on a sdesffor classification.

Supervised Classification, commonly single-labeled, hatdatomatic, has been
applied to a wide variety of fields in the literature, for exden

e Text Categorization (TC) [104]. Supervised TC consists in classifying text
documents into categories such as gef#, [e-mail foldering B], news P3],
... TC has attracted a lot of attention and it is still one & thain areas of
interest in the research community for supervised classidic.

e Genomics[76]. In the last decade, thanks to the development of automatic
methods for extracting DNA samples, databases can be dreatgaining in-
formation for DNA genes and, thus, supervised classificaten be performed
in order to predict an output (disease, physical properjy,and/or to perform
supervised selection of important genes to predict sucl@epty.

¢ Information Retrieval (IR) [4; 75]. IR systems deal with text or multimedia
documents (stored on a personal computer or on a networkhe.nternet ) and
their goal is to construct a ranking of documents which aeveat for the query
the user has performed. IR might be performed using sumehdkassification
methods or not; when the former is the case, then the clatgdemight take
values “Relevant” or “Non Relevant”, and only documents lalels “Relevant”
are returned, ranked by the score metric computed.

And, in general, any application in which a previously la&aetiataset is available to
train the classifier and there is a need to classify new data.

2.2 Evaluation of Sup. Classification Performance

There exist a wide variety of metrics to measure the perfaneaf the classifier and,
what is more, there are also several methods to compute theses to avoid over-
fitting conclusions and to evaluate the model in a scenargiragar to its posterior
real usage as possible. In this section, the most relevédidatian methods and the
most frequently used metrics are presented.
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2.2.1 Validation Techniques

As stated in Definitior2.1, let’s assume we have a classifier functionz, ..., z, —

C' which returns a labet € C after evaluating arinstance. This classifier is built
from a set of instances which are previously labeled. Thi®keecords from which
the classifier is built is known asteaining set and it must not be used to evaluate the
goodness of the learnt classifier since that wadr-fit conclusions. For evaluation
purposes, another set of labeled instances is needetkshset Then, the classifier
will be run to predict, for each instance in the test set, allabhd that will be compared
against the real label of such instance; from the resulteegd comparisons, several
metrics can be computed and, besides, there exist sevetabdseto construct the
training andtestsets from the available dataset, that is, there exist Sesreabuation
techniques:

e Percentage split This is the simplest evaluation technique and does not have
much scientific character. It consists in choosing, fromatailable database
of labeled instances, the number of instances to be usee inuitding process,
and the rest will be used for testing.

e Holdout. This method is a special caseRdrcentage splitwhere the training
set is built using one half of the database and the othersiaed for testing.

e Kk-fold Cross-Validation [79; 104]. This method is the most widely-found in the
literature, and it consists of randomly splitting the datds into k disjoint splits
(a.k.a. foldg) of the same sizé = {D;, D,,...,D;}. Then, a process is run
fori: =1,...,k: at the i-th step, fold); is used as test set and the union of the
remaining ones as training sbt . Consequently, training sef$~* sharek — 2
folds with each other. Finally, the performance is measasethe mean of thie
scores computed. Commonly, folds are constructedsinaified manner. This
means that each fold keeps the distribution of the clasabfarifrom the whole
datasetD.

The repetition of this schemletimes gives rise to the so-callédx k£ — fold
Cross-Validation And a common configuration for evaluation and statistical
comparison purposes is 5x24.

10
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e Leave-one-out This kind of evaluation is frequently used for small datased
it is a special case of tHefold CV, in whichk is set to the number of instances
in the database... Obviously, this leads to a very compuurtaliy expensive eval-
uation but it provides as much training instances as pastitthe classifier and,
besides, it is quite realistic since, in real life, we mayeafheed to classify new
incoming instances one by one, and retrain with all the alséelinstances again
before classifying a new one.

¢ Incremental time-based split validation As reported in§], using training/test
splits performed at random (e.g. as in standard cross valigdor classification
of data with a temporal nature (e.g.: when classifying elsh& not appropriate
because random splits may create unnatural dependenciesudgeof this fact
Bekkerman et al. (2005) proposed the so-callectemental time-based split
validation.

This validation scheme consists of ordering instance® ibased upon their
time — stamyp field and then splittingD into subsety D, ..., Dp,.} of size
i X z (except the last fold which might containx z plusr < z instances)
following the order given, where fol®; . ; contains instances in fol®; besides
the following z instances in time. Thus, far: 1,...,|D||/z the classifier is
trained withD; and tested withD,, ;, and then we getD|| /= — 1 scores which
are averaged in order to get the final performance of theifixss

2.2.2 Scores

The scores introduced in this section are common measuedsrughe machine learn-
ing community to evaluate a given classifier. All these ss@ecept “Accuracy” are
computed for each possible value the class (label) may takaddition, they all can
be expressed in terms of the counts of four primary scanese Positiveg#TP),False
Positives(#FP), True Negative$#TN) andFalse Negative§#FN), also computed for
each possible value of the class. For example, if an instelomgs to class and the
classifier predicts that it belongs to that class, then th&sTP.

Commonly, predictions are summarized i@ fusion matrixwhich is a matrix
of |Class| rows and columns, and from which it is possible to obtain thents of TP,
FP, TN and FN.

11
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An example of a confusion matrix is shown in TaBl&, in this example, the class
may take 4 different labels and 30 instances have beenfaakssihe diagonal matrix
shows the counts of TP for each class label, while the sumdh ealumn except the
cell belonging to the diagonal is the counts of FP, for theshalue corresponding to
such a column. Counts of TN for a given class label can be addxy summing all
the values in the matrix except those which are stored in @r@slumn representative
of such a class. Finally, the counts of FN for a class labdiéssum of the values in
the row corresponding to such a label except the value indhemn of this label. So,

for class labek:
e #TP(a)=6.

o #FP(@Q)=0+1+2=3.

e #TN(@)=7+2+1+0+3+0+0+0+5=18.

o #FN(a)=2+0+1=3.

Table 2.2: Example of a confusion matrix with 4 possible lalber class.

Predicted
a b c d
al6 2 0 1
Real b|0 7 2 1
c|ll1 0 3 O
d/ 2 0 0 5

Formally, these four primary scores can be expressed asxshdgquation.1to

2.4

#T P = #instances correctly predicted as belonging to class C.

#F' P = #instances incorrectly predicted as belonging to class C.

#TN = F#instances correctly predicted as not belonging to class C.

12
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#F N = #instances incorrectly predicted as not belonging to class c.  (2.4)

In terms of these primary scores, other scores can be cothpBtecision, Re-
call, Fs-measure, E-measure, Accuracy, Precision Average Precision, MAP, AUC,
LIFTQN, ...

1. Accuracy. Accuracy (Equatior2.5 can be interpreted as the mean of preci-
sions for all possible class labels without weighting by nlsenber of available
instances for each label.

IC]
> TP 5)

Accuracy = —5
ST P(e) + FP(c)

2. Area Under ROC Curve (AUC). There are also some measures which take into
account the imbalance (see Chayfipor skewness in the dataset. This happens
when a great deviation if found when comparing the numbenstfances for
each class label. In this situation, the commonly used méircuracyis not
of interest since it is quite biased toward the majority slaand the lower the
cardinality of the other class the greater the problem ig. example, imagine
a labeled test set with binary class and containing 100 deatsn 95 of them
belonging to the same class. If our classifier predicts @ldécuments belong-
ing to the majority class, Accuracy would be 95%, while Ay for minority
class would turn out to be 0 and, as is often the case, the @lasterest is the
minority class. In order to tackle this, we can use the welikn metric AUC,
which is robust to this problem.

AUC stands for “Area Under the ROC Curve”, whd®®Cstands for “Receiver
operating characteristics2f]. The ROC curve has been widely used in medical
research, since it is very common in that field to use very lari@ed datasets
with very few positive instances. ROC for class labed obtained by plotting in
the X axis the Specificity(c) or 1-Precision(c) and the Récptr Sensitivity(c)

in the Y axis. This curve can be interpreted as meaning thitssitier is better
the nearer the hump of the curve is to coordinate (0,1); hewéor comparison
purposes it might be of interest to obtain a scalar value fiteencurve, that is,

13
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the area under the ROC curve closed by a straight line betthedirst point of
the curve and point (1,1), as shown in Fig@ré&. Given two randomly chosen
instances il and i2, where il belongs to labéut i2 does not, the AUC value
for class labek can be interpreted as the probability of the evaluated ifileiss
to tag i1 with labek rather than i2.

100
80
60
40
20

04

—— Curva ROC

Recall

10 20 30 40 50 60 70 80 90 100

100 - Precision

Figure 2.1: ROC curve and AUC.

3. Precision and Recall

Precision(c) = #TPZE)TEE;)FP(C) (2.6)

_ #1TP(c)
Recall(c) = ATP(c) + £FN(0) (2.7)

Precision for class labelcan be interpreted as the probability of correctly clas-
sifying instances for class without making mistakes, that is, tlexactnes®f

the classifier; while recall can be interpreted as the prtibabf correctly tag-
ging all instances belonging to labelwithout giving importance to the failure
in predicting the rest of the labels, that is, t@mpletenessf classifier for class

c. So, classifying all instances with class labetould return Recall(c)=1, but
Precision would be extremely low. The natural tendency es¢htwo measures
is that one decreases as the other increases and, comniidhy are plotted
together they cross at one point called tineakevempoint [54], but it is possible
they never cross or that they cross more than once.

14
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—— Precision
~~~~~ Recall

100% -
90% -
80% -
70% A
60% -
50% -
40% -
30% A
20% -
10%

0%

Classifications Performed

Figure 2.2: Breakeven Point example

In domains other than Machine Learning, such as medicatfi®dcall is known
assensitivityand 1-Precision is known apecificity commonly mistaken for just
Precision.

. Fz-measure and B-measure. Due to this dependency between Precision and
Recall, it is often interesting to return a mean of both metrithe most usual
way to do this is with thé& ;-measurgEquation2.8). Whenj = 1 then Precision
and Recall are given the same importance and this is refesréteaharmonic
meanor F;-measurelf g = 0.5, precision is given twice as much importance as
recall; and the contrary happengsit= 2.

Precision(c) x Recall(c)
B2 % Precision(c) x Recall(c)

Fjs — measure(c) = (1 + %) x (2.8)

Another way to average together Precision and RecEliseasurg97] (Equa-
tion 2.9).

1+ 5

(2.9)

Ez — measure(c) =1 — R -
Recall(c) Precision(c)

. Lit@N The final score to present in this ChapteLig@N(c), which computes
a ratio of the classification success in tReinstances with highest probabil-
ity (top ranked) of belonging to classand the average success of the whole

15
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database. This measure is commonly used in market conéts yhich the

goal is to rank the most potential customers in the top of éim&ing. The rank-
ing is ordered by the probability (so it is used for soft cifisss) of belonging
to classc (in a market context, probability of becoming a customen) amight

be split into deciles, so thad would refer to Lift at decile N.

An interesting comparison between AUC and Area Under LiftJAis pre-
sented in124].

. Precision(c)@N

LiftaN(c)t =
i (€) Precision(c)Q|test set]|

(2.10)

6. AveragePrecision and MAPPrecision is a most important metric for Informa-
tion Retrieval systems. If the returned ranking is too lomgs more probable
that some documents classified as “Relevant” are indeed “Ndev&d” and
thus Precision decreagesThus, it is important to compute how good (in pre-
cision terms) the ranking algorithm is at a certain lengttof classified docu-
ments, wheréV stands for “topN documents in ranking”. The goal is to make
sure that the top ranked documents give a high precision.

The main problem of Precision@N is that it does not providg iaformation
about Recall. Maybe for enormous databases such as thedtezpall is not
very important but that is not the case for personal or ensgmatabases. In
order to tackle this problenffveragePrecisioran be used.

ApaP SN | Precision@n x isRelevant(nth document)
vgP =

2.11
Relevant documents in whole database ( )
The denominator in EquatioR.11 adds recall influence to the formula, but it
does not add any punishment when the ranking contains “NoevBRel” docu-
ments; and the same happens when compWMAd (Mean Average Precision)
which is the mean of computinyvgPfor several queries.

1As it happens in IR, class in market business is usually biabCustomer buys”, “Customer

does not buy”), so the usual notation for Lift@N(c) is justt@N, referring to the positive class label.
2When the class is binary, it is not usual to denote metricsoagxample, Precision(c), but just Pre-

cision, which refers to Precision of the positive classhm iR case, it refers to Precision of “Relevant”
documents.

16
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The comparison of classifiers using metrics can sometimdsdsed by just the
nature of the classifier; thusl]], performed a study to find out what metrics suit
best depending on the classifier used, using the same desadoad evaluation method.
Some of those metrics have been presented here and othensdialut the conclusion
is that one classifier might be better than another due to #téarand not just to the
classifier itself. Besides, it is well known that the naturéhef database might also bias
the comparison; for example, an imbalanced dataset clegsifth a classifier which
is non-robust against skewness will perform worse, in tesfm&ccuracy, than when
the same classifier is run over the same dataset but filtereaigh a balancing process.

So, as a consequence, a correct methodology is importdrd ttrte of comparison
or inferring conclusions. Thus, it is necessary to explahya given metric has been
chosen and why the applied evaluation method is appropiétesover, comparisons
should not be made based only on one database but severakintormake correct
statistical comparisons.

2.3 Algorithms for Supervised Classification

In the literature we can find a vast number of classifiers dédéht nature which are
used for supervised classification; that is, to predict tres€label given an instance
X composed of predictive featur¥s= {X;,..., X, }.

This section introduces some of the most important supesividassifiers from
different families:

¢ Naive Bayes Semi-Naive Baye®andTAN: these are Bayesian classifiers based
on the Bayes Theorem.

Neighbourhood-based classifiersa vicinity-based classifier.

c.45andID3: decision tree classifiers.

Neural Network: based on a set of neurons connected to each other and working

as black boxes.

Support Vector Machines one of the most important kernel-based methods.

17
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2.3.1 Bayesian Classifiers

Bayesian classifier2] are methods that are used to perform supervised clasgificat
They are a Bayesian network in which each node except the Clasgle represents
a predictive featureX;, and the goal is to compute the probability for each possible
value (label) of nod€"' using Bayes’s Theorem as shown in Equat2zoh?2 Then, the
label ¢ which maximizes this probabilitg posteriori(Equation2.13) is returned as
output.

p(C) (xla-"apn|c)
clxi,...,x,) = x p(c)p(x1, ..., pnlc 2.12
p(d] ) ) p(c)p(@1, .., pulc) (2.12)
cyap = argmax p(clxy, ..., xy,) (2.13)
ceQe

= argmax P21, s Znl)p(c) (2.14)

cEQe p(xb axn)
= argmax p(x1, ..., T,|c)p(c) (2.15)

ceQe

¢ Naive Bayes (NB)omputations in Equatiai 12involve managing distribution
tables with many features dependent upon each other. I tydevoid this
complexity, a series of alleviations have appeared in thediure.

The strongest alleviation is that which makes the assumpmifandependence
among all predictive features given the class, this modeliasvn as Néve Bayes
(NB) and its structure is shown in FiguPes.

As a consequence of this independence assumption, conopsta¢quired by
Equation2.13can be simplified to Equatio2 16

n

cyap = argmax p(xy, ..., T,|c)p(c) = argmax p(c) Hp(xz|c) (2.16)

ceQe ceQe i=1

Although it may seem that the independence assumption ameaiictive fea-
tures is too strong, it is possible to find in the literaturengnaases in which
the performance of NB classifiers has been as good as (or etten than) more

18
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2 O,

Figure 2.3: Structure of Nee Bayes Classifier.

complex methods3Z]. But, on the other hand, there are other cases in which NB
performs worse. Thus, some methods exist to add complexityetNB scheme
[39], resulting in new classifiersAugmented Networks, k-dependence Bayesian
and Semi-NRlassifiers.

¢ Augmented NetworksAugmented Networks are similar to the NB structure but
with the addition of the possibility for predictive featgr&’; to have as father
another predictive featur®; besides the class; this link betweenX; and X;
represents dependency between them.

Figure 2.4: Example of an Augmented Classifier.

Figure2.4 shows the structure of an Augmented Network; for this exaftple
cyrap Would be computed as shown in EquatibAi 7.

19
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cvap = argglaxp(c]xl, ey Ty )p(C) (2.17)
cello
= ple)p(z1|e)p(wa|zs, c)p(x3|z1, c)p(walc) (2.18)

e Tree Augmented Network (TAN). Finding the best Augmented Network is an
NP-hard problem; thus3B] proposes to add the restriction to this scheme of
having a tree structure (TAN). Another proposal can be foumB2], which
focuses on finding the augmented structure with highessifieation perfor-
mance. Finally, 38 and [85] compute the mutual information between two
predictive features given the class in order to increasékekhood.

e kDB. kDB structures10( are generalizations of TAN, where predictive features
are limited tok predictive features as parents, besides the class. So TAKOS
structure with k=1.

Figure 2.5: Example of kDB structure with k=2

Figure 2.5 shows an example on a kDB structure with k=2. In this case, the
¢y ap Value is computed as shown in Equati®i9

cuap = argmaxp(c|ry, ..., T,) (2.19)
ceQeo

= ple)p(xi1|c)p(za|z1, 24, )p(23|21, )p(24]C) (2.20)

e Semi-Ndve Bayes (SNB)SNB structures are identical to that of NB, but the
difference is found at the nodes, which candiemicor joint. Atomicnodes

20
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are ordinary nodes representing one predictive featyyevhile joint nodes rep-
resent two or more predictive features and, thus, a stalstelation between
them.

Figure 2.6: Example of SNB structure.

Since the structure is the same as in NB,dhg r is also computed in the same
way (Equatior2.16. Then, the most important part in SNB structures is how to
construct nodes.

When working with nominal predictive features, states ofiatjoode are the
result of the Cartesian product of the states of the prediédatures which com-
pose it BZ]. Pazzani presents two algorithms to construct an SNB tstreidfor-
ward sequential selection and joinirgndbackward sequential elimination and
joining. The former starts with just the class featdreadded to the classifier,
and the latter starts with an SNB structure with all the fezdu In both cases,
at each step the selected operation over the network is thiahwnaximizes
the performance of the classifier (wrapper approach). Infdhgard method,
possible operations are:

1. Add a predictive feature not yet added, making it dependerthe class
and non-dependent (given the class) on the rest of addeit{ivedeatures.

2. Join a predictive feature not yet added with a predice@agure previously
added.

While in thebackwardmethod, the possible operations are:

21
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1. Remove a predictive feature from the structure (atomioiot);.

2. Join a predictive feature in the structure with anothedfmtive feature also
in the structure.

2.3.2 Classification Trees

Classification Trees (Figurg.7) are models based on a recursive partition method
which aims to divide the dataset using only one predictiauiee at each level of
the tree structure. A decision tree can be used to visugtisesent a set of rules for
decision making. At each level of a tree, one predictiveuieais represented by a
node, and this node has as many branches as the number diipesies this feature
may take. Then, leaf nodes represent labels of the classéedhese labels may be
repeated across the same or different levels, since diffenées may lead to the same
classification.

Figure 2.7: Example of a Classification Tree structure.

The predictive feature at each level is selected based owea griterion or al-
gorithm; then, depending on the algorithm used we haverdifteclassification tree
models, the most widely known being ID3, and its improvedsiar C4.5 P0]. The
former uses as criterion for selecting a feature at eacl tlegdnfo Gain metric (Sec-
tion 2.4.7) and the latter uses Info Gain Ratio (Sectihi.]). Besides node selection,
tree construction algorithms need to specify the stop rasiteand the post-pruning
process to simplify the tree structure.
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2.3.3 Classification algorithms based on proximity.

Classification algorithms based on proximi82] are theoretically simple and have a
long background in supervised classification. Instancesseltlass is known are rep-
resented in a vectorial space, where each coordiraaesponds to thieth attribute
used in the representation of the instances.

These algorithms are called lazy because there does nbagrsasning step to build
a model which will be used to classify the instances. So déawha new instance is to
be assigned a class it will be necessary, in the most genatddasic case, to compute
the distance of this instance to all the other instanceserdtitabase. Thus, the NN
(Nearest Neighbgralgorithm would assign to this instance the label of theestsone
to it in the vectorial space.

From this NN algorithm, several algorithms based on neighbad have been de-
veloped. The straight evolution from NN is tKeNN algorithm, in which the assigned
class is the one which gets more votes amond<tmearest neighbors. In this way er-
roneous assignments are avoided in those cases where Hestdlostance does not
belong to the same class the new instance belongs to (sputision reduction or
noise). Among the many variants KENN we can summarize:

¢ Different weights for attributegl9]. When computing the distance between two
instances the value of each dimension of the instancesds Ggace dimensions
correspond to attributes used to represent the instanseeihs a good idea to
give more weight to those attributes which are more reletlaa others. A
way to decide this importance might be a prior selection okirgg of the set of
attributes.

e Use of a voting thresholdA minimum number of votes can be established that
a class should receive before assigning it to the instaniog loéassified. If no
class receives votes over this threshold the instance nsmaclassified.

e Average distanceK nearest neighbors are not used to vote, but average distance

is computed for the instance being classified to each oKtheighbors belong-
ing to the same class. Thus the assigned class is the one mimainizes the
average.
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2. SUPERVISED CLASSIFICATION

e Use of centroidsTheK-NCN [10Z algorithm selects, among all instances in the
training set, the instance or centroid representativedf elass. Then, distances
are not computed to each training instance but to each e¢énfrbis approach
drastically reduces the computational load, but it makesc#ntroid selection a
very important phase for a successful classification.

There exist two key decisions to make when designing a fieatson algorithm based
on proximity: the representation of dimensions (attrisyite samples and the distance
metric used to compute distances between two samples. ¥gtrd to the distance
metric, the most common are those belonging toNtrekowskidistances family 15]
(such as the Euclidean Distance).

2.3.4 Other classifiers: Support Vector Machines (SVM) and Ar-
tificial Neural Networks (ANN).

SVMs [10] are originally linear classifiers which aim to find the optihfset of) hy-
perplane(s) to separate instances in the training set batleéch separated group of
instances is tagged with the same class label. There maywbetbayperplanes sep-
arating classes, but the best hyperplamaxXimum-margin hyperplahés that which
maximizes the distance between the nearest instanceslofsoaps.

In [10] several new kernels are presented so that SVMs can be usenhdmear
classifiers.

ANNSs simulate properties of observed biological neurateys using statistical
methods. Figure€.8 shows a general structure of ANN, which consists of simple
elements callecheuronsconnected to each other, as well as being connected to the
input and output of the structure. These connections atedcsynapsesnd there is
a weight associated to each of them. Each neuron can be sadnlask box, which
receives an input through one or more weighted connectimhpeoduces a non-linear
output. Commonly, the most important parameters to tune ANIN are: number and
layout of neurons, non-linear activation functions andapge weighting
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= synapse\?\
inputs outputs
) )

Figure 2.8: General structure of a Neural Network.

2.4 Supervised Feature Selection

Feature (or variable, or attribute) Subset Selection (FS8)e process of identifying
the input variables which are relevant to a particular legyifor data mining) problem
[41; 67]. Though FSS is of interest in both supervised and unsupetdvilata mining,
this Chapter deals with supervised learning, and in pagdrcwith the classification
task. Classification-oriented FSS carries out the task obvémg most irrelevant and
redundant features from the data with respect to the clalss process helps to im-
prove the performance of the learned models because it:

1. Alleviates the effect of the curse of dimensionality.
2. Increases the generalization power.

3. Speeds up the learning and inference process.

4. Improves model understandability

Furthermore, unlike other reduction techniques (e.g.ufeatonstructiong7; 77]
or principal component analysisf]), FSS does not alter the original representation, so
it preserves the original semantics of the variables, hglgiomain experts to acquire
better understanding about their data by telling them whiehthe important features
and how they are related with the class.

The general process of FSS can be described by: (1) a Seatblodvind (2) an
Evaluation of Feature subset Method.

25



2. SUPERVISED CLASSIFICATION

There are several kinds of search method§]f[ the most important beindRanker
ExhaustiveSequentiglandMetahueristics On the other hand, Evaluation may Ibié:
ter, wrapperor hybrid.

Besides this classification, there also efistbedded FSS methodghich consist
of using classifiers which select by themselves the subsedridbles they need, as
happens with the C4.5 construction algorithm.

Original Set

| Subset GeneratidﬁSUbs—et>| Subset Evaluatioh

Goodness of Subset

No

_ Yes - -
Stop Criterion | Result Validatior]

Figure 2.9: General FSS process.

Evaluation methods:

1. Filter. Filter techniques are those that evaluate the goodness aitr@bute or
set of attributes by using only intrinsic properties of tretad(e.g. statistical
or information-based measures). Filter techniques havadvantage of being
fast and general, in the sense that the resultant subset Iisased in favor of a
specific classifier. Examples of frequently-used filter athmns are Relief$9),
FCBF [129 and different approaches based on the use of mutual infema
[6; 31; 69].

2. Wrapper On the other hand, wrapper algorithms are those that usssaifoér
(usually the one to be used later for test or validation) asreogate in order
to assess the quality of the attribute subset proposed asded® by the search
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algorithm. Wrapper algorithms have the advantage of aahgesigreater accu-
racy than filters but with the disadvantage of being (far) enome consuming
and obtaining an attribute subset that is biased towardl#ssi@er used.

3. Hybrid. Recently a new family of sequential search methods haveravitich
combine filter and wrapper evaluatior®2{ 98] in order to take advantage of
both techniques.

2.4.1 Filter Subset Evaluation

There exist a large number of filter metrics which computeptieglictive power of one
or more features with respect to the class (filter metricsépervised FSS). The main
advantage of these metrics is the low computational contglemmpared to wrapper
approaches.

The choice of the filter metric to use depends, among othegshion the per-
formance metric to be used for the classifier. For examplerimation Gain (1G) is
reported in B4] to be the best choice if the goal is Precision.

Evaluation may beinivariatefor single feature evaluation anultivariate if the
selection of a new candidate feature is evaluated usingutrerttly selected features
subset. The main problem of univariate evaluations is ti@y tannot detect condi-
tional dependences or independences. Thus, single feaharginally relevant to the
class are directly selected by univariate methods, ane tisemo check to see if they
are not relevant given that another features are curreatgcted. In this way, it is
possible that the addition of a marginally relevant featnegy decrease the goodness
of the current subset selected instead of increasing it. eSainthe best-known filter
metrics are based on Shannon Entropy (Equ&i@d), as shown here.

Entropy(X) = H(X) = — 3 pla;)logap(a:) (2.21)

i=1

¢ Info Gain (IG) . This metric measures the change in entropy for class eatur
once a predictive featup¢ is known.

IG(C,X) = H(C) — H(C|X) (2.22)
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¢ Info-Gain Ratio (IGR). It penalizes IG when the predictive feature has many
states.
IG(C, X)

IGR(C,X) = — oS

(2.23)

e Symmetrical Uncertainty (SU). SU is a nonlinear information theory-based
measure that can be interpreted as a sort of Mutual Infoomatormalized to
interval [0,1].

1G(C, X)

SU(C,X)=2x )+ H(X)

(2.24)

e Chi-Squared. This is not just a metric but a statistical test, which irstbase
can be used to evaluate the value of the chi-squared statigki respect to the
class, using as null hypothesis that featdns independent of the class.

e Correlation-based Feature Selection (CFS)This metric evaluates sets of pre-
dictive features in terms of SU between pairs of them and SWden each of
them and the class feature.

Yo, SU(C,X;)
\/2?21 > i1 SU(X, X;)

CFS(X,....X,) = (2.25)

e Conditional 1G-Battiti . Battiti [6] approximates the computation of IG for a
candidate featur&; given the already selected features sulseds shown in
Equation2.26 wheref is usually set to 0.5.

IG(X;,C|S") = IG(X;,C) — B> IG(X,s) (2.26)

ses’

e Conditional IG-Peng. Peng et al. §4] uses another approximation for the com-
putation of IG for a candidate featur¥; given the already selected features
subsets’.

IG(X;,C|S") = IG(X;,C) — 7 > IG(X, s) (2.27)

ses’

!S’I
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2.4.2 Search Methods

Following the taxonomies proposed ifnC] and [47] we can distinguish between com-
plete, deterministic (sequential) heuristic and non-uheiteistic (stochastic) heuristic
algorithms. In terms of complete algorithms we can consadigorithms which evalu-
ate all possible subsets by following depth-first and biedidst search strategie§d],
and the branch-and-bound algorithm proposedli®d]. The deterministic heuristic
approach refers to the family of methods that include fodneamd backward greedy
sequential algorithmsg[]], floating selection algorithms3p; 89] and best-first search
or hill climbing [62]. On the other handhon-deterministic heuristimethods use ran-
domness in order to avoid getting stuck in local optima. Eplasof this approach are
estimation of distribution algorithms (EDAS} 7] and genetic algorithms (GAs) q.

Since complete searches are usually too expensive, staobiesequential searches
are preferred. Usually in these searches, the more theswiugpace is explored, the
better the performance achieved is.

This thesis contains methods for deterministic seque(@hhpters3 and5) and
random sequential (Chaptéy FSS.

Some of the most important filter and wrapper search methads a

e Fast Correlation-Based Filter (FCBF) search.FCBF [L27] is a ranker search
method with two steps: (1) based on a given threshold, icsefeatures from
a filter ranking constructed with a univariate evaluatiorSyynmetrical Uncer-
tainty of features with respect to the class; and (2) basetth@® heuristics, it
removes features highly correlated between pairs from ¢hefsselected fea-
tures from the previous ranking. These heuristics avoidetrauation of SU
between each pair of features, and thus the FCBF search poobestfast filter
method at the time that it avoids the selection of redundsatufes.

e Sequential Forward Selection (SFS)SFS f1] starts with a subset of selected
featuresS’ = (), and performs a forward greedy selection with (usually)ppex
evaluation at each step. When no addition of any featur€&’ tonproves the
performance, then the stop criterion is triggered and theckas finished.

e Mutual Information-based Feature Selection (MIFS) MIFS [6] is a forward
greedy search which uses the filter evaluation shown in Eguat26 Starting
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with subsetS containing the featur&’; which maximized G(X; C'), the follow-
ing features added are those which maximize Equé&ti@a The stop criterion
is fulfilled when the cardinality of the final subset of setztteatures reaches a
pre-defined valu&.

¢ Max-Relevance and Min-Redundancy (mMRMR) mRMR [84] is also a for-
ward greedy search and also starts suld$etontaining the feature; which
maximizes/G(X; C), but the filter evaluation is the one shown in Equation
2.27. The stop criterion is the same as in MIFS.

e Conditional Mutual Information Maximization (CMIM). CMIM [3]1] is a
forward greedy search with the same start for subbéets MIFS and mRMR.
The incremental addition of the following feature is deddes the featureX;
not yet selected which maximizes the informati;; C'|s;), wheres; is the
features; € S" which minimizes that information (Equatiéh28).

VX; € S,Vs; € S add X; such that arg)r(nax{rr;}n I(X;;Clsj)}  (2.28)
The idea behind MIFS, mRMR and CMIM is to take into account fesgalready se-
lected when regarding a new featuxe to be added to the final subsgt of selected
features; this would mean computing conditional informfi( X; AC'AS”). As cardi-
nality in S” grows throughout the incremental process, computatiohisfirobability
becomes unfeasible, and thus MIFS, mRMR and CMIM provide bga@pproxima-
tions in order to simplify the computations as long as thaidttional relevance is still
detected. Chaptérintroduces a new FSS method based on this idea.

As mentioned above, there exists a new family of hybrid seanethods which
combine filter and wrapper evaluations to guide the searoimeSwvell-known sequen-
tial searches with hybrid evaluation are:

e Linear Forward Selection (LFS). LFS [40] is a simple complexity optimization
of SFS. It consists of first creating a filter ranking based bra8d selection of
thek first features; then, the SFS algorithm is run over the setefetatures.
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e Best Incremental Ranked Subset for Feature Selection (BIRS)I'he BIRS
[98] algorithm first produces a filter ranking and then it perferam incremen-
tal best-first selection throughout the ranking. The ind®f each feature in
ranking is tested by adding it t68' and performing a wrapper evaluation using
all features inS’. Moreover, BIRS provides a heuristic rule in order to decide
if the new feature must be kept i1 when it provides better performance than
before adding it.

e Best Agglomerative Ranked Subset for Feature Selection (BAR. BARS
[97] is based on a heuristic rule that obtains good subsets tatiitg between
two phases: (a) ranking of subsets and (b) generation of apdidate subsets by
combining (based on wrapper evaluation) those previoasiged. The heuristic
nature of the algorithm lets it evaluate a reduced numbeaindiclate subsets and
its outstanding characteristic is that it obtains very cantgubsets.

2.5 Summary

The task of supervised classification has been presentachvities several evaluation
methods and metrics in order to measure the goodness ofsdfielasonstructed with
the available tagged data. This goodness gives us an ideanoWvell the classifier
would perform when predicting the tag of new unlabeled ddia, is, in a future sce-
nario where the classifier would be trained with availabl&adad then applied on new
instances whose tag is unknown and this is what we want toraattcally predict.

Besides this, several methods for evaluating the standassiiers and a taxon-
omy of feature subset selection techniques have been peesés explained, feature
selection reduces the dimensionality of the database andythelp the classifier to
perform better.
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Chapter 3

Incremental Wrapper Selection

3.1 Summary

As mentioned in Chapte, wrapper techniques used to perform better than filter meth-
ods. However, wrapper searches are much slower and, withetige of this decade,
new databases have appeared which contain thousands of tansisands attributes,
making traditional wrapper algorithms unfeasible. Regemtlnew family of hybrid
search methods have arisen which combine filter and wrappduwaions in order to
guide the search, try to benefit from the advantages of bqiroaphes.

This chapter describes the Incremental Wrapper Subsett®eldd/NVSS) algo-
rithm, which is a hybrid search with two phases: (1) creatba filter ranking and
(2) performing a sequential forward search with wrappetuataons. This chapter
presents four contributions to the IWSS algorithm:

¢ (Relevance Criterion First, several Heuristic criteria are studied in order to
decide when to accept or reject a new feature along the segarocess.

e (ReplacementSecond, it is proposed a method to improve the subset swlect
process in order to obtain even more compact subsets. Thasdeat when a
new attribute is being analyzed, we test not only the pdgyibf adding it to the
selected subset, but also swapping it with any of the alreadlyded attributes.

e (Early stopping Third, it is studied the impact of reducing the number of pvra
per evaluations by stopping the process before analyzirigeavariables in the
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ranking.

e (Embeddiny And last, it is shown how for some classifiers (that can beeinc
mentally updated by progressively adding attributes) tbdehcan be embedded
in the selection process, obtaining in this way a (reallghsicant reduction in
the CPU time needed.

3.2 Introduction to IWSS

The idea behind IWSS is to use a filter measure in order to olataanking of the
attributes’ relevance with respect to the class. Then, aesdal algorithm is used to
run over the ranking by incrementally adding those varialtat are relevant to the
classification process, where the relevance of includingvavariable is measured in

a wrapper way. The main advantage of this approach is thatains a great part of
wrapper advantages, while reducing the computationaltoo8tn) wrapper evalua-
tions instead of9(n?) as happens with pure wrapper approaches. When dealing with
thousands of variables this point makes the difference d&twonsidering the task
computationally feasible or not.

An interesting contribution tdhcremental Wrapper-based FYBVSS) is intro-
duced in P8]. In that paper the authors propose the use of a relevaniion in
order to decide when a new attribute must be included in tleetse subset. The rel-
evance criterion is based on a t-test instead of just comgdhne mean accuracy, and
the results reported show that the use of this relevancerionit frees the algorithm
from noise and so more compact subsets can be obtained witlars{statistically
non-different) accuracy. In Sectidh3, a deeper study of the relevance criterion is
carried out by using different significance levels in thedtf and it is also considered
another statistical test (Wilcoxon signed rank test) anidgle heuristic criterion.

Let's describe as the canonical IWSS algorithm the one showAgure3.1

As it can be seen, steps 1 to 4 are devoted to computing théngankhis stage
requiresO(n) filter evaluations. As in other work89; 98], Symmetrical Uncertainty
(SU) (see Sectio.4.]) is used to evaluate the predictive attributes. Attribuges
ranked in increasing SU order; that is, more informativalaites are placed first.

36



3.2 Introduction to IWSS

In T training, M measureg classifier
Out 8 /I The selected subset
1 listR={} /I Theranking
2 for each attributed; € T
3 ScoreeMr(A;, class)
4 insertA; in R according toScore
5 8={R[1]}
6
7
8
9

BestData = evaluaté, S, T)
fori=2ton  /In = Rsize()
Saur =8 U { R[i]}
AuxData = evaluate, S, T)
10 if (AuxData> BestData)
11 8 = 8quz
12 BestData = AuxData

Figure 3.1: IWSS canonical algorithm.

Steps 5 and 6 carry out the initialization 8fby using the first variable in the
ranking. Also the data resulting from evaluating that stlase stored irBestData.
In particular, it is assumed that functienaluate(C, 8., T) learns and validates the
classifierC by using a 5-fold cross validation over the training ¥eprojected over
subseSU{C'}. Thus,BestData will contain an arrayBestData.f[1..5] with the accu-
racy obtained for each fold and a real vaBestData.av with the averaged accuracy
over the 5 folds.

Steps 7 to 12 carry out the main cycle of IWSS. Depending on #yestep 10, or to
be more precise operationis implemented we get different IWSS algorithms. Thus,
if (AuxData > BestData) is implemented agAuxData.av > BestData.av) we get
IWSS with the simplest relevance criterion(KuxData > BestData) is implemented
as follows:

if (AuxData.av > BestData.av) and
(test(t-testy = 0.1,BestData.f[],AuxData.f[]))

then we get the BIRS algorithn®§].
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In Section3.3, a deep study is performed in order to compare differenvasiee
criterion for operation-. Best relevance criterion found in those experimeMs{
FoldersBettercriterion) will be the default instantiation of operatisin the following
executions of IWSS in this chapter.

3.3 Relevance Criteria in IWSS

As reported in 8], using the relevance criterion based on statisticaliiggtrevents
the algorithm from including new variables due to noise dtiers (e.g. only in one
of k folds in cross-validation is the accuracy significarttlgher). On the other hand,
even based on statistical hypothesis testing, these relevaiteria are of a heuristic
nature because of the small number of samples (5), whicle$dite selection of non
standard values far.

3.3.1 Three criteria for relevance decision of new features.

Experiments in 8] only use the t-test witliw = 0.1 in order to instance operation
from Figure3.1 Since this proves to perform better than just acceptingatévbutes
which improve performance with any value, it is interestiogmake a deeper and
breadther research at this respect. Thus, in the followirggtcriteria are proposed to
be tested with different restrictive levels:

Criterion 1. Student t-testThis considers the relevance criterion propose@dj that

is, a parametric statistical tegtaired two-tailed Student’s testhis is likely one of the
most used test in machine learning statistical analysisglier it assumes a Gaussian
distribution over the paired differences between the twaskts, which is not always
satisfied. This is the case here because of the small samaplé5siolds), but as Ruiz
et al. g point out the goal is to have an objective criterion abowt tblevance of
including a new feature, not to make a statistical analyste@populations. Another
known problem of this test is that it is affected by outliets. [98] the authors set
a = 0.1, so here experiments will be performed to study the effeatsifg less re-
strictive « values (0.1, 0.15, 0.2 and 0.25).
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Criterion 2. Wilcoxon signed-ranks test1]. With the same idea of using an objec-
tive criterion as the described in the previous paragraplawoiding the Gaussianity
assumption, this criterion is the use of a non-parametsdt t this case Wilcoxon
signed-ranks test is selected because it is one of the nemgidntly used in the ma-
chine learning literature. In2[3] a expression to compute tlzestatistic value is pro-

vided for large sample size cases (exg.25) but, since this is not the case, exact

statistic values are used (which can be found in many statisboks) for given alpha

values and samples size in these experiments. This tedtss madffected by outliers (as

the t-test) since is checks values of paired differencdeaaisof values of each sample.
This is a rather important advantage specially in the cabawhg really few samples.

As in the previous case experiments are are run wat@.1, 0.15, 0.2 and 0.25.

Criterion 3. Minimum better folds heuristic In this case the goal is to test a pure
heuristic criterion that tries to reject the same null hyyesis than in the previous
cases in favor of the same alternative hypothesis, e.gmten of the values in set
AuxData.f[] is significantly different to mean of valu&estData.f[]. Thus, with the
idea of avoiding to include a new feature because a noisytyéss imposed that the
inclusion of a new variable i is allowed only when the following comparison holds:

if (AuxData.av > BestData.av) and #BestData.f[] > AuxData.f[]) >
mf

wherem f is the minimum number of folders in which it is requir8gl,. to be better
than8. Experiments are run witim f=2, 3, 4 and 5. The value ofif = 1 is not
considered because it favors the influence of outliers.

In addition it was done experiments using= 0.05 but they are not included here
because experiments show that because the small sampietaizes in a really strict
criterion, allowing in most of cases a single feature in thlected set which gives rise
to a poor accuracy.

3.3.2 Design of experiments for IWSS relevance criteria.

The performance of different criteria is the Accuracy of tesulting models (i.e. run-
ning the classifier over the selected subset) is measuredibyg a 10cv. With respect
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to the classifier it is only considered Naive Bayes (NB), whihuite sensitive to the
set of attributes used as input. Concretely it is used the WEKA][implementation
of NB which models numerical variables by using uni-dimensai Gaussian distribu-
tions.

Datasets for experiments are 7 publicly obtained micrgartzsed datasets, all of
them related to cancer prediction. Datagatdon, Leukemia, LymphonaadGCM are
the same used i®B] and can be downloaded in .arff format (e.g. WEKA data mining
suite input format) from sité@t t p: / / ww. upo. es/ eps/ agui | ar/ dat aset s
. ht M . DatasetdDLBCL-Stanford, ProstateCanceand LungCancer-HarvardZan
be downloaded from sitet t p: // sdnt. i 2r. a-star. edu. sg/ rp/ . Table3.1
shows the number of features and records each datasetroatal also the accuracy
achieved for each one when running a 10cv by using NB classifie last row shows
the mean values for each column.

Table 3.1: Microarrays properties.

Dataset #Features| Size | Acc.(%)
Colon 2000| 62| 53.23
Leukemia 7129| 72| 98.61
Lymphoma 4026| 96| 75.00
GCM 16063 | 190 | 66.84
DLBCL 4026 | 47| 97.87
Prostate 12600| 136| 55.88
Lung 12533| 181 | 98.34
Mean 8340 | 112| 77.97

The design of the experiments is easy. IWSS is run by using @aelof the pro-
posed criteria (3 criterix 4 « values = 12 criteria) over each one of the 7 datasets.
In order to have a baseline results for the analysis of bal&etween number of se-
lected features and obtained accuracy, IWSS is first run bygusgreedyrelevance
criterion: (AuxData > BestData) is implemented agAuxData.av > BestData.av)
and the results of this algorithm call&impleBIRS&re shown in Tabl&.2
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Table 3.2: Results for SimpleBIRS

Dataset #Features| Acc.(%)
Colon 6.3| 79.03
Leukemia 3.7| 93.06
Lymphoma 11.7| 77.08
DLBCL 3.7| 91.49
Prostate 12.2| 78.68
Lung 3.9| 98.90
GCM 50.8| 64.74
Mean 13.2| 83.28

3.3.3 Results of experiments for relevance criteria in IWSS

Results of experiments are shown in Tal8e% 3.4and3.5.

Table 3.3: Results when considering t-test as relevanaionit

Dataset a=0.1 « =0.15 o =0.2 o =0.25
Acc. #f| Acc #f | Acc. #f | Acc. #f
Colon 8226 2.4|77.42 26|77.42 3.1/ 8226 34

Leukemia | 86.11 1.6/ 86.11 1.6/ 90.28 2.2/ 90.28 2.2
Lymphoma| 67.71 5.2 63.54 5.1 7396 7.2/7292 75
DLBCL 87.23 1.6/ 8723 16/8511 1.8 87.23 1.8
Prostate 7426 4.1 75.74 4.7/ 7500 6.8/ 75.00 6.6

Lung 96.13 1.6/ 96.13 1.6/ 97.24 24/97.24 24
GCM 54.21 12.4/ 60.53 13.3| 59.47 19.4/ 60.53 18.5
Mean 78.27 4.1/ 78.10 4.4 79.78 6.1 80.78 6.1

From the tables, a straight-forward conclusion is that tleeenstrict is the signifi-
cance leveld or mf) used, the fewer the number of variables included in thectade
subset. Although more observations of this type can be drawworder to back con-
clusions, a statistical analysis is carried out as desd fiedow.

Because of the multiple algorithms (criteria) and multipdgassets, statistical anal-
ysis is performed following the recommendationsif][ Friedman test37] followed
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3. INCREMENTAL WRAPPER SELECTION

Table 3.4: Results when considering signed rank test asaretevcriterion.

Dataset a=0.1 a =0.15 a =0.2 a =0.25
Acc. #f| Acc #f | Acc. #f | Acc. #f
Colon 8226 2.1 77.42 2.6|79.03 2.7|79.03 27
Leukemia | 84.72 1.2/ 86.11 1.6 84.72 1.6/84.72 1.6
Lymphoma| 69.79 3.9/ 63.54 5.2| 64.58 5.3] 64.58 5.3
DLBCL 80.85 1.3/ 87.23 1.6/87.23 15/ 8723 15
Prostate 75.74 3.3/ 77.21 4.4/ 79.41 4.8/79.41 438
Lung 96.13 1.1/ 96.13 1.1/96.13 1.1/96.13 1.1
GCM 51.58 9.4/ 53.16 12.1] 58.95 14.1/ 58.95 14.1
Mean 7730 3.2/ 77.26 4.2/ 7858 45|7858 45

Table 3.5: Results when considering min folds better as aela criterion.

Dataset mf=2 mf=3 mf=4 mf=5
Acc. #| Acc #f | Acc. #f | Acc. #f
Colon 80.65 3.8/ 80.65 3.0/83.87 2.2/74.19 1.9
Leukemia | 87.50 2.5/ 86.11 1.7/83.33 1.2/83.33 1.1
Lymphoma| 76.04 8.8/ 71.88 6.1| 65.63 4.1| 66.67 3.2
DLBCL 85.11 1.9/87.23 15/80.85 1.3/78.72 1.1
Prostate 7794 11.1 7941 7.2 7574 3.7/75.74 2.6
Lung 97.24 2.7/96.13 1.7/ 96.69 1.2/96.13 1.0
GCM 64.21 36.6 64.74 24,5 50.53 11.4/ 47.37 5.8
Mean 81.24 9.6|80.88 6.5 76.66 3.6/ 74.59 2.4
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3.3 Relevance Criteria in IWSS

by a post-hoc Holm test4p]. Friedman test is used for statistical comparison over
three or more sets of values; in this case the inputs of thdysdte the set of mean
accuracies (and mean number of features selected) comfmutedch microarray in
each one of the 10 folds. The application of Friedman test datides if there exists
at least one set of values (e.g. one algorithm) which ismiffeto at least another set of
values (algorithm). Once this is known, then the post-holerHest is run by choosing

a control set of values and then comparing it with the resetd.s

The comparison process is performed as follows:

1. First, it is identified for eachelevancecriterion (i.e. t-test, Wilcoxon and min
better folds) the best significance)(values. To do this, the Friedman test is
run for each criterion regarding only accuracies as inpatsusing also as in-
put the results provided by SimpleBIRS (which is the basellgerdhm). So,
in this step three Friedman tests are run (one per critemoojder to identify
those configurationg ¢riterion,significance-valyg that are not statistically dif-
ferent from the accuracy achieved by SimpleBIRS. As in two efttiree cases
Friedman test returns that in fact there is at least oneigstatly significant)
different algorithm, the post-hoc Holm test is run by chagsas control the set
of values provided by SimpleBIRS. TalBe6 shows the results of this process,
where crossed cells mean that they are significantly difftstem SimpleBIRS
(the control) by using Holm test (p-value 0.05). Thus, these algorithms are
ruled out and therefore not considered in the subsequerg.ste

Table 3.6: Results of step one: local comparison for eaclvaet® criterion with
respect to accuracy.

a=| 0.1/0.15| 0.2]0.25

mf= 2 3 4 5
t-test 83| 841 | 798| 80.8
Wilcoxon 77.3|77.3|78.6| 78.6
MinValues | 81.2| 80.9| 767 | #4-6
SimpleBIRS ¢ 383.3

2. In the second step it is considered a single pool with allsthrvivor algorithms
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3. INCREMENTAL WRAPPER SELECTION

from the previous phase. Thus, the previous process is texpeser the eight
algorithms (1 using t-test criterion, 4 using Wilcoxon eribn, 2 using min folds
better criterion and SimpleBIRS). TabBe7 shows the results, where it can be
seen how two new algorithms are ruled out when consideriisggtbbal analy-
sis.

Table 3.7: Results of step two: global comparison with resggeaccuracy.

a=| 0.1]0.15| 0.2]|0.25

mf= 2 3 4 5
t-test 80.8
Wilcoxon 3| 3| 78.6| 78.6
MinValues | 81.2| 80.9
SimpleBIRS ¢ 83.3

3. To this point it has been obtained a set of six algorithnthdbhat the global
statistical analysis does not find significant differenae®iag them. Therefore,
it is time to consider the number of selected variables bgnthEhus, the previ-
ous process (Friedman + Holm) is repeated but taking assripatset of values
related to the mean number of selected features for eacloanfay in each one
of the 10 folds. The results are shown in TaBI8 (notice that now the control
is the algorithm with the smallest selected subset). It canliserved that two
configurations are ruled out, including the baseline athoni

Table 3.8: Results of step three: global comparison witheesfp the number of
selected features.

a=10.1|0.15| 0.2 | 0.25
mf=| 2 3 4 5
t-test 6.1
Wilcoxon e45| 45
MinValues | 96| 6.5
SimpleBIRS 132
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3.4 Incremental wrapper-based selection with replacement

Finally, from the originally 13 considered configuratiomsl¢vance criterion and
strictness level), after the global statistical analysieas been obtained a set of four
configurations whose results aren-significantly differenbeither with respect to ac-
curacy nor with respect to the number of features. As it candcexpected, neither
maximum accuracy nor minimum number of selected featuresIbeen able to remain
selected and only configurations with a good balance betaeeuracy and number of
selected features have survived.

3.3.4 Conclusions on relevance criteria for IWSS

As pointed out in 98], incremental wrapper selection works better when usinglan
jective relevance criterion (e.g. BIRS) than when using omlyraprovement in the
mean accuracy as criterion (e.g. SimpleBIRS). However, mghidy it has been de-
tected that when using a t-test based relevance criteisehétter to use a more relaxed
confidence level (0.25 vs 0.1). The same conclusion abousttictness applies to
the other two criteria (Wilcoxon and min folds better), #if@re, it can be concluded
that a more relaxed confidence level allows for the introduobf some extra feature
which helps to improve the accuracy. Also of interest is teavlee that using a non-
parametric test is a clear alternative and even the use akdhauirristic criterion which
defends itself from noise and outliers by forcing to the celé subset to achieve an
improvement in at least three (of the five) folds.

As a conclusion, it has been found that an optimal configometr > from Figure
3.1lis to impose that at least 2 or 3 values from the inner 5CV aratgrevhen adding
a new attribute than the respective folds without addinchsattribute. Thus, this
MinFoldersBettemwith m f = 2 or mf = 3 will remain as the configuration used for
IWSS in the following of this chapter.

3.4 Incremental wrapper-based selection with replace-
ment

This section presents one of the main contributions of thapter. The main advan-
tage of IWSS algorithms is their linear complexit9(¢)) in the number of wrapper
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evaluations. This is, of course, a favorable point whegrows large and exhaustive
search©(2")) or even approximate search algorithms like SFS or SB3Y)) are not
feasible. However, there are of course disadvantages indgh®f IWSS algorithms.
Perhaps the most important one is due to its greedy behdhatrjs, the algorithm
always tries the best ranked features first and once a featunguded in the selected
set, it is maintained therein until the end of the search.

What is proposed here is to alleviate some of these probleralidwing the algo-
rithm not only to include a new feature in the selected sdtalso to interchange it with
one of the features previously included. Let’'s explain tea by taking the Graph-
ical Model (Bayesian network8[]) shown in figure3.2 as starting point, but first it
should briefly be explained how to read (in)dependence seassfrom such graphical
representation. BN’s52] have two components, a numerical part which encodes the
probability distribution and the graphical component lgeindirected acyclic graph.
From the graphical part we can codify (conditional) indegerces, so, the absence of
a link between a pair of nodes is due to the conditional inddpace of such a pair of
nodes, and the presence of a direct link between a pair ofsnadesates direct/strong
relation or dependence between such a pair of nodes.

A Bayesian network (BN)g3] factorizes the joint probability distribution) by
means of the product of the local probability functions assed to the nodes/variables
(conditional probability of a variable given its parentshe graph). ABN is an I-MAP
of P, therefore, ifX is independent of” givenZ in the BN (< X|Z|Y >py), thenX
is independent of” givenZ in P (I(X|Z|Y)p), that is, all independences stated by a
BN hold in the joint probability distribution.

(In)Dependence sentences in a BN can be read by meansafstearatiorcrite-
rion [83]. Let = be an undirected path (that is, without considering thectima of the
arrows) from nodéd/ to V. Then, the pathr between/ andV is blocked by a set of
nodesZ if an only if exactly one of the following holds:

1. 7 contains a sequential connectidh— M — Y andM € Z,
2. w contains a divergent connectioh« M — Y andM € Z, or

3. w contains a convergent connectidn« M — Y and neitherM/ nor any of its
descendants in the graph are includein

If all the undirected paths betweéhandV are blocked byZ, then it is said that
U andV are d-separated & in the BN (and consequentl(U|Z|V') p).
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3.4 Incremental wrapper-based selection with replacement

The Markov Blanket (MB) of a nod« is formed by its parente6(X) = {Y
Y — X}), its children ¢o(X) = {Y : X — Y}) and its spousessp(X) =
pa(ch(X)) — {X}). By using the d-separation criterion it is easy to see fXiat
independent of the rest of the nodes (variables) given its B | M B(X)|rest >px.
Example 1 Let us consider the (graphical part of the) BN in fig@t& As we can
observe it contains 10 variablé¢s\, B,C' = Class, D, E, I, J, K, L, M} and can be
matched with a classification problem wheras the classM B(C) = {A, B, D, E}
are relevant foilC' and the rest of the variable$(, J, K, L, M }) are irrelevant with
respect ta”' if we know the value of variables i/ B(C).

¥
© ®

Figure 3.2: Network used in Example 1.

Therefore, in a feature selection problém, B, D, E'} should be the selected ones
while { K, I, J, L, M } should be discarded because they are irrelevant tad ke once
we know the value of variables itV B(C'). Thus, ithe following behavior when using
an IWSS algorithm should be expected :

e A parentor child variable has a strong (direct) dependence relation with the
class and so it should be ranked in the first places by anynr#ton-based
or correlation measure. Therefore, it should be considerethclusion in the
selected set before variables/features having a smalédegrrelation with the
class.

e Things are different fospousesbecause they are marginally independent of
the class, that is, they are unrelated, and so they shouldrid®d after those
variables that, to some degree, are relevant to the classis&p become relevant
when the children common with the class or any of its desasisdae included
in the selected set, because then the path between the spalidee class is no
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3. INCREMENTAL WRAPPER SELECTION

longer blocked and so they are not d-separated. Since spsiuseld have worse
ranking than children, when IWSS inspects spouses it is éggde¢hbat common
children are already included, and so spouses will alsodiaded.

O

However, the situation described in the previous examplkedasdeal one but not
usually the actual one. That is, in a real problem we have & @éh (sometimes
scarce) datasets, and most times that dataset is not faitduBayesian network. As
we know, this is the common situation specially when dealitd high-dimensional
data sets, e.g. microarrays, where we have thousands ablesibut only a few hun-
dred instances. The following example illustrates a moaéigtc situation.

Example 2.In the case of having few records with respect to the numbeagébles,
we cannot expect to deal with such accurate rankings. As amgbe, it is generated
the quantitative part (conditional probabilities) for tB&l in figure 3.2 and sampled
a data set with 1000 instances for it. Then, the ranks are stadpsing SU for the
dataset reduced to only the first 5, 10, 50 and 1000 records.r&ults are shown in
Table3.9.

Table 3.9: Rankings obtained/used in example 2

Rank Id | # records | SU-based Ranking

R1 5 EJDKLILABM
R2 10| E,K,B,M,L,D,I,A,J
R3 50| E,D,J,B KA ILLM
R4 1000| E, D, B,K,I,J,A, L, M

As it can be seen, rank R4 reflects what we should expect in da édse, that is,
parent and childreR E, D, B} being the first variables in the ranking. However, we
should observe that 1000 records in the dataset means hawogt all the possible
configurations in the problen2{®), which is highly unrealistic in real domains. Ranks
R1, R2 and R3 show more realistic situations. We can observénalgadhe spousel
is always ranked in the last positions.

As E has been ranked as the first variable in all the cases, letsusnasthat it is
always included in the selected SetAnyway, as this is not always the case, we should
remark that the treatment of the class’s parents and chiidranalogous.
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3.4 Incremental wrapper-based selection with replacement

¢ Inrank R3 it can be assumed that the first three variables agetigiincluded in
S because at the time of analyzing them, they are not irretdurashependent) to
the class. Notice thal and D cannot be d-separated with respecftbecause
they are directly connected (e.g. dependent) whiile not d-separated frory
given{FE, D} because the path — B — J is not blocked (condition 1 of d-
separation). Thus, when IWSS analyZe¢sve haveS = {F, D, J}. Now, there
are two possibilities:

— The inclusion ofB in 8 is judged as relevant by IWSS and so we get
{E, D, J, B}, which means that we have an extra feature in our selected
set, because onde has been included i§, variable.J becomes irrelevant
(d-separated) t@'lass.

— Theinclusion ofB in § is judged as irrelevant by IWSS. That i3,is not d-
separated frond’ given{ £, D, J} and although semantically it should be
added, because of the previous inclusion/and D, even if the accuracy
obtained when including? can increase the current one, the improvement
may not be big enough to be considered as relevant. Thereferget a
selected set that, even though it is good, is of worse quildy the best
possible one.

These situations can be solved if instead of just analyziegtfect of adding a
new attribute td experiments are carried out also with the possibility of gwa
ping each one of the already included variables with the neg; ohoosing in
the end the bestlevantoption. In the example above we have:

add(B) — 8p={E,D,J, B}
swap(FE) — 8p={B,D,J}
swap(D) — 8p={FE,B,J}
swap(J) — 8;={F,D,B}

S={E,D,J} —

and in this casé; should be the best relevant subset. Notice that if none of the
subsets tried is judged as relevant, tBeemains unchanged.

A similar situation to rank R3 appears in rank R2, whéfes included before
testingD (andJ).

R1 is the worst ranking with respect to the ideal one (R4) soisdhse more
problems were found when using IWSS. Thus, in ranking R1 it caoldserved
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how J appears in the second place, whibeis ranked at the end. Therefore,
by following the ranking it can be expected to directly irdd{ £, J, D} and to
reject K becausd” has been previously included. Now IWSS will also include
L because the path — B — I — L is not blocked; perhaps it includds
because the path — B — I is not blocked and should have more impact on
Class than L; A* should also be included; and perhapdor the same reason
as/. That is, the execution of IWSS could obtdin= {E,J, D, L,I, A, B}
orS§ ={E,J,D,L,A,B}or8§ = {E,J,D,L,1,A} or8§ = {E,J, D, L, A}
depending on the judgment of relevance performance whamgttyg include/
andB. Obviously, none of these sets is the desired one.

Let us analyze what might happen when starting at the poiereth= {E, J,
D, L } and using replacement:

— Testing!. In this case the best choice shoulddveap(/,L) soS = {E, J,
D, I}.

— TestingA. In this case the best choice shouldaail(A) sos = {E, J, D,
I, A}.

— TestingB. In this case the best choice shouldseeap(B,7) or swap(B,.J)
so8§ ={E,J,D,B,A}or§ ={E,B,D, I, A}.

— TestingM. In this case all the operations should be judged as nonarelev
and saS is not updated.

Therefore, a better subset than the ones listed above ivebidbecause even
there is a redundant variable included in the final set, tiehess redundancy
and the desired subset is fully contained.

O

IWSS with replacement, named as IWS$iSe., IWSS incorporating the proposal to
obtain better selected subsets is shown in Fi@u8ewhere the novelties with respect
to IWSS start at line 13.

Of course, having to test swapping and not only addition wéealyzing each
variable represents an increment in the complexity of therdghm. In the worst case,

1 Notice that there is no problem with the inclusiorspbused, even if it is ranked afteB, because
some descendants Bfappear earlier in the ranking.
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that is, if theadd operation is selected at each step, then wéget) (as in sequential
forward selection). However, that means that there is necteh at all and the:
variables are included i, which is not usual at all. In practice, the complexity is
O(mn), m being the number of selected variables. In large datasetsr(gcroarrays)
m << n and so we are quite far from(n?). More will be discussed about complexity
in Section3.6.5

In T training, M measureg classifier
Out §

1 listR={} /I Theranking

2 for each attributed; € T

3 ScoreMr(A;, class)

4 insertA; in R according tdScore

5 $={R[1]}

6 BestData = evaluat€, 8., T)

7 fori=2ton /In=Rsize()

8 bestOp = null;

9 forj=1toM /I M =8.size()
10 Squs = update§,swapg|[j, R[i]))
11 AuxData = evaluat&, S, T)
12 if (AuxDatar> BestData)

13 bestOp = updat8(swap(8[j], R[i]))
14 BestData = AuxData

15 Saus =S U{RIi]}

16 AuxData = evaluat®, S,,,, T)

17 if (AuxDatar> BestData)

18 bestOp = add(R([i])

19 BestData = AuxData

20 if (bestOp#£ null)

21 updateg,bestOp)

Figure 3.3: Algorithm: IWSS with replacement.
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3.5 IWSS with early stopping

One of the characteristics of IWSS is that it runs over the wiahking, giving each
attribute in the data set the chance of being selected. Tdsghe disadvantage of
increasing the number of wrapper evaluations carried petially when replacement
is used. At this point, we can ask ourselves: is it really ssagy to run over the
whole ranking? From the description/discussion in the ipresssection and because
the score used to build the rank only measures direct (majgielevance relations of
one attribute with the class, we can argue that all the rateatdributes will be ranked
in the first part of the rank, exceppousesThus, from a semantic point of view (e.g. it
is desirable to understand the interrelations among ttes elad the variables relevant
to it), it would be nice to identify all the relevant variab|éout for apurely predictive
task such as classification, perhaps it is not necessargham all these variables.

From extensive experiments with different versions of IWBSyas in fact ob-
served that variables with a bad ranking are almost nevkrded in the selected subset
8. A possible explanation of this fact is that although themeables have an indirect
relevance relation with the class, once the variables lgazistronger relevance rela-
tion have been included i8, their contribution to the classification task may not be
important enough to be judged as relevant. Furthermoreytihiy of such types of
variables depends on the complexity of the classifier usedeXxample, if Naive Bayes
is used, then adding spouses makes no sense, because timeygirally independent
with respect to the class, and BoX = x;|C') would be (almost) the same for all states
x; of spouseX. That is, we are adding an irrelevant variable.

Because of these reasons, and with the aim of saving some evrappluations
and so speeding up the IWSS process, dhdy stoppingcriterion proposes to stop
the main cycle before arriving at the end of the ranking. Qirse, the effect of
early stopping should be more beneficial for IWSkan for IWSS. In the following,
implementations of IWSS and IW$Sith early stopping are denoted as IW.S&d
IWSS, ; respectively.

The decision now is when the main cycle has to be stopped. Mipogal here is to
use a threshold) € (0, 1], which will limit the percentage of attributes to be studied
that is, considered for inclusion i However, instead of using this threshold as a
crisp limit, we prefer to use it in an adaptive way, that issletime a new featur&l
entersS the number of features to be visited is updated.

52



3.6 Experiments with Replacement and Early Stopping

In order to incorporate early stopping, IWSS and IWS$&ust be modified by
adding the following sentences:

e At the initialization:l = 0 - n
e The main cycle is replaced by: for i = 2 talo

e As the last sentence of the main cycle we include:
if (8 has been modified)
l=i+6-(n—1

For example, if we havé = 0.1 andn = 1000, then initially, we set = 100
and so it is expected to analyze only the first 100 variablegkenranking. Then, if
the first variable introduced i8 is in position 50 of the ranking, thenis updated as
50 + 0.1 - (1000 — 50) = 145, and so the number of variables expected to visit is
enlarged up to the first 145 variables in the ranking.

3.6 Experiments with Replacement and Early Stopping

This section performs a series of experiments with the airanaflyzing the type of
improvement introduced by the last two proposals explaingtlis chapter: replace-
ment and early stopping. To do this, a set of 12 high-dimeradidatasets is used (a
superset of those used i8d]) ranging between 500 and 100000 predictive attributes.
The idea is first to analyze the behavior of IWSS when usingaogphent, and then to
study how early stopping affects the quality and the efficyenf IWSS algorithms.

3.6.1 Datasets

Experiments will be run over 12 publicly obtained datas8&/en of them are the mi-
croarrays related to cancer prediction introduced in 8a&i3.2 In addition to these
microarrays datasets, another five datasets will be usechwdre known for being
provided in the NIPS 2003 feature selection challenge (Aecéadelon, Dorothea,
Dexter, and Gisette). Tab®10shows the number of features and records/instances
each dataset contains. As it can be seen, these datasetwaaeterized by a large
number of predictive attributes but a small number of alééanstances, this trend
being sharper in the case of microarray datasets.
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Table 3.10: Microarrays properties.

Dataset #Features | #Instances
Colon 2000 62
Leukemia 7129 72
Lymphoma 4026 96
DLBCL 4026 47
Prostate 12600 136
Lung 12533 181
GCM 16063 190
Arcene 10000 100
Madelon 500 2000
Dorothea 100000 800
Dexter 20000 300
Gisette 5000 6000
Mean 16156 2011

3.6.2 Classifiers and baseline algorithms

For the experiments three standard classifiers belongitigrée different paradigms
are considered: Naive Bayes, KNN (K=1) and C4.5 (Secfid), using the imple-
mentation of these algorithms included in the WEKA data ngrsnite [L23 and in
all the cases default parameter setting is applied. Of ttiese classification algo-
rithms, C4.5 implements its own attribute selection proces$sle Naive Bayes (NB)
is known to be quite sensitive to noise and redundant at&#)so special attention to
this classifier is payed.

With respect to feature selection algorithms, and in ordéest the two proposals,
the following three baseline algorithms are also used:

e Fast Correlation-based Filter (FCBF) algorith@®?f]. This algorithms lies in
the filter approach and uses a correlation measure in ordentove redundant
attributes while retaining the relevant ones.

e Sequential Forward Selection (SFS) algorithii][ This algorithm is a greedy
one that first includes the best attribute found, then look$He second-best by
trying to add any possible attribute to the one previouslgcted, and continues
in this way until no improvement is obtained when adding a aéiwbute. SFS
is usually combined with wrapper evaluation and so impraseinis measured
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in terms of accuracy. In the worst case it carries®(t*) wrapper evaluations.
In practice, ifm attributes are finally selected then it carries out alfout-1) - n
wrapper evaluationsy+ (n — 1) + ... + (n — m)).

¢ Incremental Wrapper-based Subset Selection (IWSS) algoighhe approach
to improve by using replacement. Therefore, it is used aslin&s using the
version that implements MinFoldersBetter as relevanceroit (see Section
3.9.

As validation criterion, standard 10-fold cross-validatiis run. Therefore, the
results reported in this section are the average of thetseshitained for each one of
the folds.

3.6.3 Testing IWSS with replacement

First, the impact of including replacement on incremengédtion is tested. Table
3.11shows the results when considerimg’ = 2 andm f = 3 as relevance criterion.
A superscript is used with the valueaff andr as subscript when using replacement.
Therefore, initially four algorithms are tested: IWS8VSS}, IWSS and IWSS.

From the results, it is observed how FCBF always includes (naoye attributes
in the selected subset than the wrapper-based ones. Wibates accuracy, there are
some differences depending on the dataset, but when cgoyira statistical analysis
with multiple datasets and multiple algorithms, no sigmificdifference is observed in
most of the cases (see Secti®s.6. Returning to the number of selected attributes,
IWSS selects less attributes than SFS in all the datasetpte®€&aM. In this case it
is also worth commenting that IWSS is faster than SFS becawsdyi carries out:
wrapper evaluations.

Whenreplacements introduced, then the number of variables selected by IWSS
is smaller than that by SFS and IWSS. With respect to compleadtit will analyzed
in Section3.6.5 IWSS. carries out almost the same number of wrapper evaluations as
SFS (but it selects fewer attributes). Of course, we can aiée how the relevance
criterion also plays its role, thus versions requiring lgebetter in 3 folders to be
judged as relevant, are more restrictive than versionsépiire being better in only
2 folders, therefore IWSSand IWSS selects less attributes than IWSshd IWSS.

With respect to the classifier used, a similar behavior iscet in the three cases.
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Table 3.11: Results of SFS, FCBF, IWSS and IWg&s classifiers NB, KNN and C4.5.
| Damset | s,s | FcBF | wss? | wss® | wssz | wss: |

Colon 83.87 59| 77.42 14.6| 80.65 3.8| 80.65 3| 83.87 2.8| 82.26 2.1
Leukemia | 87.50 3.2| 95.83 45.8| 87.50 251 86.11 1.7| 87.50 2| 86.11 1.6
Lymphoma | 83.33 7.1| 78.13 291 76.04 8.8| 71.88 6.1| 80.21 59| 73.96 5.6

DLBCL 80.85 3.6| 97.87 49.9| 85.11 19| 87.23 15| 80.85 18| 87.23 15
Prostate 75.00 54| 61.03 35.8| 77.94 11.1| 79.41 7.2| 78.68 7| 79.41 5
Lung 93.92 25| 99.45 115.2| 97.24 2.7] 96.13 17| 97.24 241 95.58 1.6
GCM 58.42 18.3| 68.95 57.1| 64.21 36.6| 64.74 245| 59.47 19.9| 5842 145
Arcen 68.00 4.6 | 70.00 34.2| 70.00 13.4| 70.00 6.3| 72.00 6.2| 71.00 5.5

Madelon 60.75 6.5| 61.75 4.6| 59.85 13.3| 60.00 8.9| 60.50 8.0 59.90 6.1
Dorothea 91.25 13.2| 92.63 92.8| 93.50 7.4| 93.63 3.6| 92.88 6.3 | 92.63 3.7

Dexter 76.00 13.8| 86.00 34.3| 81.00 19.6| 81.67 12.9| 83.00 12.9| 80.00 10.0

Gisette 94.05 26.00| 88.03 30.4| 9468 112.6| 9428 73.4| 9407 30.7| 93.28 20.8

| Mean | 7941 92| 8142 67.1] 8064 195| 8048 126/ 8086 8.8] 79.98 65|
(a) NB

| Dataset | sfs | FcBF | wss? | wss® [ wssz | wss? |

Colon 66.13  4.8] 80.65 14.6| 82.26  6.3| 7581 46| 7742 49| 8226 3.6

Leukemia | 88.89 23| 94.44 45.8| 88.89 2.8] 86.11 21| 875 2.2 | 90.28 1.9
Lymphoma | 79.17 8.2| 91.67 291.0| 81.25 12.5| 78.13 8.2| 78.13 7.7] 78.13 6

DLBCL 89.36 3.4 95.74 49.9| 85.11 35| 78.72 21| 8511 25| 78.72 2.1
Prostate 78.68 4.6 | 77.94 35.8| 86.03 8.6| 86.76 59| 88.97 5.3| 89.71 4.3
Lung 95.58 26| 99.45 115.2| 96.13 2.7] 95,58 2.2] 96.69 25| 95.03 2
GCM 56.84 17.9| 63.16 57.1| 65.26 34.1| 51.05 25| 55.79 20.5| 57.89 154
Arcene 71.00 4.6| 66.00 34.2| 76.00 13.2| 71.00 7.9] 72.00 6.9 77.00 5.2

Madelon 52.35 6.5| 55.50 4.6 | 88.00 11.7| 87.85 10.6| 87.85 8.1| 88.70 8.4
Dorothea 91.50 13.2| 91.88 92.8| 91.88 18.2| 92.00 8.7] 93.13 15.9| 91.63 8.1

Dexter 7367 13.8] 80.00 34.3| 8333 24.6| 8000 155| 80.21 20.1| 76.67 12.9

Gisette 9215  26.9] 90.03  30.4| 9597 100.4| 96.05 71.6 - -

| Mean | 7794 91[ 8221 6718501 1099|8150 118] 8207 88[ 8237 64|
(b) KNN

| Damset | sks | FcBF | wss? | wss* | wssz | wsst |

Colon 80.65  3.3| 8548 146] 7903 27| 8065 2| 79.03 23| 8226 2

Leukemia | 87.50 1.6| 81.94 45.8| 83.33 11| 83.33 1| 84.72 11| 84.72 1
Lymphoma | 71.88 8.2 82.29 291.0| 75.00 8.9| 78.13 6.2| 77.08 6.4| 77.08 51

DLBCL 78.72 15| 72.34 49.9| 76.60 15| 76.60 12| 82.98 1.3| 76.60 1.2
Prostate 78.68 6.9 79.41 35.8| 88.24 49| 88.97 3.8| 79.41 45| 88.24 35
Lung 93.92 1.8| 96.13 115.2| 95.03 1.3 | 95.08 1.3 | 93.92 1.3| 95.03 1.3
GCM 41.05 14.8| 51.58 57.1| 45.26 23.4| 46.32 16| 4158 15.6| 40.53 11.3
Arcen 65.00 4.6| 85.00 34.20| 82.00 7.5| 73.00 5.2| 80.00 54| 77.00 4.5

Madelon 61.55 6.5| 61.90 4.60| 77.25 23.1| 77.90 19| 7790 13.4| 78.10 12.0
Dorothea 91.25 13.2| 89.88 92.80| 91.63 9.7| 92.00 7.7 91.88 8.5| 97.75 7.5

Dexter 79.67 13.8| 81.67 34.30| 81.33 13.2| 81.33  7.7| 80.67 96| 81.33 7.2

Gisette 93.73  26.9| 91.32 3040| 93.70 67.8| 93.63 45.4| 93.75 358 93.28 276

Mean 76.97 86| 79.91 67.1\ 80.70 13.8\ 80.57 97| 80.24 88| 80.99 7.0
(c)C4.5
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3.6 Experiments with Replacement and Early Stopping

Therefore, for the sake of simplicity, from now on the stutiglscontinue using only
Naive Bayes.

3.6.4 Testing early stopping

In this section, the first performed is early stopping in carabon with replacement,
giving rise to algorithm IWSS,, but later, for the sake of completeness, it is also
analyzed the behavior of using early stopping without regtaent (IWS$9). In the
analysis three different values have been tested:fd.2, 0.4 and 0.6. The results
obtained by these algorithms are shown in Table2

From the results it is observed how the number of selectehwattsslightly in-
creases with the value 6f However, the difference both in number of attributes and
in accuracy is not statistically significant (as discusse&ection3.6.6. Of course,
there is a difference in the efficiency (CPU time) of the altijonis.

3.6.5 Testing Complexity

To analyze the complexity of the algorithms, focus is on thmhber of wrapper eval-
uations carried out. Obviously, no data is reported fordB&ISS because it ha$(n)
complexity and, in fact, exactly wrapper evaluations are carried out. Furthermore,
because no significant difference arises with resped, tihe smallest tested value
(@ = 0.2) is selected for the following analysis. Tal8el3(a) shows the number of
wrapper evaluations carried out by the different algorghM/ith respect to the com-
plexity order, we know that in the worst case SFS and all th@ants of IWSS have
worst-case complexity)(n?). However, in practice the algorithms are far from this
number of evaluations, so Tal8el3(b) shows the minimum and maximum complex-
ity order computed from the actual number of evaluationsi@dout over the twelve
datasets, and also the fitted value which minimizes the reaimsquared error.

From the results, is is observed how SFS is a bit more compkx WSS and
also how theestimatedactual complexity order for both algorithms is far frorh On
the other hand, when early stopping is introduced the aisalyslear: the number of
evaluations carried out by IWSS with replacement decreasks tinear, while when
replacement is not used the complexity order decreasesdolbknear.
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3. INCREMENTAL WRAPPER SELECTION

Table 3.12: Results obtained for NB when using early stopping
IWSS2 IwWss?

6=0.2 6=0.4 6=0.6 0=0.2 6=0.4 6=0.6

Dataset | Acc. #f| Acc. #f| Acc #f| Acc  #f|Acc. #f|Acc. #f
Colon 839 25839 25839 25823 21823 21823 21
Leukemia |87.5 2.0875 20875 20861 16861 1.686.1 1.6
Lymphoma 80.2 5.980.2 5.980.2 59771 55771 55740 5.9
DLBCL 809 17809 17809 17872 15872 15872 15
Prostate (779 56787 59779 6.680.9 47794 49787 49
Lung 97.2 24972 24972 24956 16956 16956 1.6
GCM 589 17.561.1 181584 18.860.0 13.059.5 13.759.5 13.7
Arcene 720 52690 56720 5973.0 43720 50700 517
Madelon |60.4 59604 6.759.9 7.360.2 41604 54600 5.6
Dorothea {93.0 5.2929 6.3929 6.392.6 35926 37926 3.7
Dexter 83.7 10.883.7 11.483.0 11.880.7 9.281.0 9.3810 9.8
Gisette 93.9 253939 28.§94.1 30.293.1 18.593.1 19.493.2 20.1
Mean 80.8 75808 8.180.7 8580.7 58805 61800 6.3

(a) With replacement
IWSS? IWSS3

0=0.2 0=0.4 0=0.6 0=0.2 0=0.4 6=0.6

Dataset |Acc. #f| Acc. #f| Acc. #f| Acc  #f| Acc  #f|Acc. #f
Colon 80.7 3.580.7 35807 36807 30807 3.0807 30
Leukemia |87.5 25875 25875 25872 1586.1 1.786.1 1.7
Lymphomg 76.0 8576.0 8.776.0 8.786.1 17719 61719 6.1
DLBCL 851 18851 19851 19719 6.187.2 15872 1.5
Prostate |78.7 10.878.7 10.878.7 11.077.9 6.8§79.4 6.9794 6.9
Lung 972 27972 27972 27961 17961 1.796.1 1.7
GCM 63.7 33.164.7 354653 35957.9 20.8§ 61.6 22.9 62.1 23.2
Arcene 72.0 12.370.0 13.270.0 13.470.0 5.769.0 5969.0 6.1
Madelon |60.3 11.7159.8 13.159.8 13.260.2 7.259.9 8.560.1 8.8
Dorothea | 93.5 7.4935 7.4935 74936 35936 36936 3.9
Dexter 83.0 17.283.3 185813 19.280.7 11.481.0 12.1 81.3 12.§
Gisette 94.8 109.394.7 112.494.7 112.694.3 72.0 94.3 73.1 94.3 73.4
Mean 81.0 184809 19.280.8 19.379.7 11.8§80.1 12.380.2 124

(b) Without replacement
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3.6 Experiments with Replacement and Early Stopping

Table 3.13: Number of evaluations and estimated complexiter ¢ = 0.2 is used
for algorithms implementing early stopping)

Dataset SFS || IWSS2 | IwsS? IWSS{S IWSS§’$ IWSS? | IwsSs?
Colon 13800 7277 6181 1177 1025 627 621
Leukemia 29942 21378 | 18489 2153 1942 1441 1472
Lymphoma 32611 27663 | 26238 3169 3376 982 962
DLBC 18520 11134 | 10062 1094 1009 815 807
Prostate 80640 94508 | 73422 12196 9370 4494 3949
Lung 43866 42604 | 32570 4274 5544 2516 3525
GCM 310016 || 309750 | 231983 50754 44233 9321 8987
Arcene 56000 67359 | 58928 8202 7149 3928 3183
Madelon 3750 3818 3078 700 397 287 249
Dorothea 1420000 || 441346 | 249337 73246 45704 28303 | 25667
Dexter 296000 || 255027 | 211480 32536 29420 6423 5354
Gisette 184500 || 137051 | 96267 32340 23999 2526 2408
Mean 207470 || 118243 | 84836 18487 14431 5139 4765
(a) Number of wrapper evaluations carried out

SFS || IWSS2 | IwsS? IWSS%S IWSS%"S IWSS? | Iwss?
min 1.13 1.12 1.08 0.84 0.83 0.81 0.81
fitted 1.23 1.13 1.08 0.97 0.93 0.89 0.88
max 142 1.39 1.35 1.22 1.18 0.94 0.94

(b) Estimated complexity ordef(n?))

3.6.6 Statistical Analysis

In order to corroborate conclusions, a statistical analigsiun based on the use of the
Friedman test37] followed by a post-hoc Holm testip], as recommended ir2f]
when having to analyze multiple algorithms.

Tests for the case ofi f = 2 andmf = 3 are performed separately, so for each
of these two cases the set of tested algorithms contains; BEBF, IWSS, IWSS
IWSS; (0=0.2,0.4,0.6) and IWSS (6=0.2,0.4,0.6). Since these algorithms could not
be run using classifier c4.5 nor classier k-NN for dataliaisettedue to its high com-
putational load (see Tab 13, this database is not included in the tests (and values
in Table3.14 are the mean of the other 11 datasets). Thus, the input foFriled-
man test for each classifier consists of 10 algorithms withnpiit values (mean of
the 10CV for each of the 11 datasets). The procedure of asatysimilar to the one
used in previous section; that is, for each classifier: figt, the Friedman test for
accuracy values. If any statistical difference is founéntkhe Holm test is performed
to find differences with the best algorithm found (contrgaithm). Secondly, atten-
tion is payed to the number of selected attributes, repgdiie previous process but
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3. INCREMENTAL WRAPPER SELECTION

considering only those algorithms not found to be stafdiigcdifferent with respect
to accuracy. Finally, the remaining algorithms are regarae not being statistically
different.

In order to get more general conclusions, the analysis i®peed over the three
classifiers considered in Secti8r6.2

Table3.14 shows the results for each classifier when running testdb@saccu-
racy, withmf = 2 (part (a)) andnf = 3 (part (b)) respectively. For botlhf = 2
andm f = 3, the Friedman test does not find any algorithm to be staidtidifferent
from the others.

Then, Table3.14(c) and (d) shows the result for the analysis over the nuraber
selected variables. In this case, the lower this numbehésbetter the algorithm per-
formed. As it can observed, algorithm IWSS with replacement @arly stopping
(¢ = 0.2) is always chosen as control classifier (marked wishia the table); then, a
Holm test is run and the algorithms found to be statisticatbyse than the control have
their cells marked grey in the table. Thus, algorithm IWS8 = 0.2) is found to be
statistically better than all the others algorithms exdepthe other three algorithms
also performing replacement and/or early stopping. This¢s that the proposed im-
provements for canonical IWSS (replacement and early stgppichieve statistically
lower cardinality in the final subset of selected featurabet downgrading accuracy
performance.

3.7 Optimizing IWSS with replacement for Naive Bayes
by embedding the classifier

In previous Sections it has been shown how IWB&s the same worst-case complexity
as sequential forward selectiérn?), but that in practice the algorithm is far from this
worst case. Furthermore, with the use of early stopping threber of evaluations
is drastically reduced (without degrading its performgneehieving a linear or sub-
linear number of wrapper evaluations. This Section goesstee further and shows
how for those classifiers that allow incremental constactvith respect to included
variables, the efficiency of the selection algorithm canipaeiBcantly improved.
Up to now we have dealt with the wrapper algorithm by managiegclassifier
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3.7 Optimizing IWSS with replacement for Naive Bayes by embeding the

classifier
Table 3.14: Results of the statistical analysis
SFS |FCBF|IWSS IWSS, IWSS, IWSS,
f =0.2|6 =0.4|6 =0.6 6 =0.2|0 =0.4/6 =0.6
NBayes 78.08 80.82 | 79.37|79.89 |79.64 |79.39 |79.65 |79.60 |79.43 |79.60
c4.5 |75.4478.88|79.52|79.43 |79.51 [79.51 |78.92 |79.08 [79.04 |79.01
k-NN |76.6581.49 |84.01|83.25 |83.54 |83.69 [82.05 |81.86 [82.42 |82.37
(a) Statistical tests regarding accuracy (MinFolders=2)
SFS |FCBF|IWSS IWSS; IWSS, IWSS;,
0 =0.2|6 =0.4/0 =0.6 6 =0.2|6 =0.4/0 =0.6
NBayes 78.08/80.82 | 79.22|78.63 |79.06 |79.10 |78.77 |79.44 |79.38 |78.81
c4.5 |75.44/78.88(79.39(79.11 |79.33 |79.39 |79.88 |79.36 [79.31 |79.44
k-NN |76.6581.49 |80.27|80.56 |80.69 [80.25 [82.36 |81.38 [82.08 |82.22
(b) Statistical tests regarding accuracy (MinFolders=3)
SFS |FCBF|IWSS IWSS; IWSS. IWSS;,
f =0.2|6 =0.4|6 =0.6 6 =0.2|0 =0.4/6 =0.6
NBayes#6 |75 (430 [46:3 |68 |1+0 (6.8 5.8 [6.3 6.5
c45 |693 |75 |885 |8.1 |87 (874 6.7 5.3 |59 6.1
k-NN |7.4 |76:5 |426 |13+9 |424 |125 |88 7.9 (83 8.6
(c) Statistical tests regarding number of selected sulfsiis-olders=2)
SFS |FCBF|IWSS IWSS, IWSS, IWSS,,
0.2 0.4 0.6 0.2 04 |0.6
NBayes#6 |#85 |#0 |64 |68 |70 5.2 4.6 (4.9 5.0
c45 |693 (705 |646 (58 |63 |64 5.1 43 |46 4.9
k-NN |#+4 |#65 |82 |#5 |80 (82 6.4 5.6 |59 6.1

(d) Statistical tests regarding number of selected sulfstitg-olders=3)
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3. INCREMENTAL WRAPPER SELECTION

like a black box That is, each time we need to evaluate a new sufisitten a new
classifier is constructed from scratch by using the prapectf the dataset over the
candidate subseT+(*““), and validated by classifying each instance of the test set.
In this case, and due to the 5-fold cross validation used sesasthe goodness of a
candidate subset, that means learning five classifiersg(l%s'mf the instances each
time) and validating each one ov?of the instances in the training set.

For example, if NB is the classifier used, which K#n) at training andO(cn)
for classifying one instance, then we get the following cteriy for IWSS and
IWSS. respectively:

o |WSS.

- Learning: 5 - O(3tm) - O(n), that is,4 - O(tmn) or simply O(tmn) by
removing the constant. In the worst case= n and so we ge®(tn?).

- ClassificatioR: 5 - £ - O(cm) - O(n), that is,O(tcmn). In the worst case
(m = n) and so we ge®(tcn?).

e IWSS.. The main difference is that now each time a variable is te&iebe
included or not in the selected subset,+ 1 candidate subsets are evaluated
(adding the new one and trying the possible replacements). Applying the
previous computations we get:

- Learning:O(tm?n + tmn). And in the worst case we had®in® + tn?).

- Classification:O(cm?tn +cmtn). And in the worst case we ha@g cn?t +

ctn?).

If the classifier is used askdack box this is what we get, but for some classifiers
that can be constructed incrementally with respect to tinet@u of variables included,
we can do it better by embedding the process of learning alidhtiag the classifier
inside the wrapper process. This is, for example, the caddavke Bayes, which is
described below, distinguishing between learning andsiflaation phases.

1 Notation: » is the number of attributes in the training seis the number of instances in the
training set,m is the number of attributes selected by the FSS algorithmcahd number of classes
(c=1C]).

2In this analysis by classification we do not refer to the cdstlassifying an instance with the
resulting classifier, but to the classification process eftést folders carried out in the inner validation
processes.
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3.7 Optimizing IWSS with replacement for Naive Bayes by embeding the
classifier

Learning.-

Because of its independence assumption, no structuraimgasrequired in NB,
so only parameter learning is required. Thus, in IWSS and IW8f&n a new attribute
is studied, learning is reduced to estimating its condéigumobability given the class.
Therefore, avoiding the constant (4), time complexity)ig) in each call, yielding
O(tn) in the whole process. Notice that this complexity order & shme in IWSS
and IWSS$S because the conditional probability table for each attelkis computed
only once. With respect to space complexity, we simultasgoneed to store the
probability tables of the attributes in the currently sedecsubset plus the one for the
attribute under study, that i§(mcr), r being the max number of values for a predictive
attribute. Therefore, both in time and space, the increatgmbcesses have the same
complexity as if we were learning the whole model one timenfisxratch.
Classification.-

In order to deal with classification in an incremental way tinst step is to move
computations to a log scale. In this way we can take into aucinwe impact of a new
variable by addition or discard it by subtraction (this @ets us from having problems
with zero values). Thus, instead of computing

m

plwy, @2, wmle) = p(e) - | [ p(wilo)

=1

now, we compute:

Lp(xy1, 23, ..., mc) = log(p(c)) + Z log(p(zi|c))

The second step is to maintain a table in memory witlbws for each instance
(ordered by using the test folder of the 5-fold cross valagt Columns of this table
store Lp(z;|c) for each attribute in the current selected subset, plus @roolcon-
taining the value.p(z4, ...,z |c) for the instance projected over the current selected
subset. Tabl8.15shows the structure of the table, where: ¢/5 andit;"" denotes the
projection of the first instance of the first folder over vateaX,, that is, we take the
value of variableX; in such an instance.

By using the previous table, IWSS and IWS&rform incremental classification
as follows:

e IWSS. Let us assume that= {X;,..., X,,} is the selected subset and is
the attribute under study. Then, at learning tifeX,;|C) has been estimated.
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3. INCREMENTAL WRAPPER SELECTION

Test for FoIdH instance id.‘ X1 ‘ ‘ Xm ‘ Lp(X1,..., Xnlc) ‘
i . B m L (X1, Xm
in | Lp(ify e | | IpG e | Ip(ir N ler)
in | Lo ee) | oo | LoGitmee) | LpGi )

1

. m X7 7Xm

ig | Lp(if, 'er) Lp(ify ™ [er) | LpGry ™) |er)
1X 1 Xm J( X1, Xm

ig | LG fee) | ... | IpGii) " lee) | LpGs ")
. m X 7X77L

is | Lp(i5er) | .. | L@ ler) | LGl ) |e)
; 5 1Xom IX1, 0 Xm

isi | Lp(ityee) | oo | Lo@E ™ lee) | Lot e
; - ) " J( X, Xm

isg | Lo(is) 'ler) | ... | Lp(ig;™|er) | Lp(isl™ ey
- 1 X X1, X

isg | Loty lee) | - | Loty ™ lee) | LGy " |ee)

Table 3.15: Table stored in memory for incremental classifin
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3.7 Optimizing IWSS with replacement for Naive Bayes by embeding the
classifier

Now, we compute a vector (column) as in TaBl&5for X, containinglog(z‘tlxj

for each state of’. Then we can compute the colurﬂm(z’tgx1 """ X’”’X-’)\C) just

by adding the content of the last column in the table with theter recently
computedLp(X;|C'). Thus, for each new variable the complexity of this step is
O(2ct) or justO(ct) avoiding the constant. Therefore, the global complexity is
O(ctn). With respect to table updating, if the variable under stixgys not in-
cluded in S then no modification is carried out over the taitlegrwise, the new

Because these two vectors have been previously computedpoiniter opera-
tions are required to add and replace the two columns indolve

IWSS.. Now, besides carrying out the same operations as befoelditional
vectors must be computed, each one corresponding to thecegpént of a vari-
ableX, € S by X,;. Computing each one of these vectors is done in the follow-
ing way:

Lp(if XXX 0y - Ly |C) + Lp(if|C)

Thus, onlyLp(X;|C) and the information (columns) contained in the table are
used, and son + 2 columns are computed instead of 2 as in IWSS, and the
complexity order i€ (mct+ct), which leads to a global complexity O nmct+

nct). Notice that as the search is best choice-driven, theremead to maintain

all the vectors simultaneously in memory.

Finally, it is obvious that space complexity during classifion time is higher than

in the black boxapproach where only the statistics for the instance beiagsdied
are maintained simultaneously in memory. Now, space coxiples O(tc(m + 3))

in IWSS andO(tc(m + 5)) in IWSS. becausen + 3 (or m + 5) columns must be
simultaneously in memory for IWSS (IWSS As in most cases: > 3 andm > 5,
the previous orders were reduced@@2tcm) or simply to O(tcm). Therefore, the
memory requirements increase, butras<< n, in practice the space requirement is
easily affordable in today’s computers.

Table3.16shows a summary of the complexity orders. The main conalusithat

in the case of IWSS the embedded methoat iSmes faster on average {n the worst
case) than the black box approach, both in learning andititag®on. With respect to
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3. INCREMENTAL WRAPPER SELECTION

Table 3.16: Summary of the complexity orders (average angtvease) for blackbox
and embedded NB
IWSS IWSS

average worst average worst
Black Box | O(tmn) | O(tn?) O(tm2n + tmn) O(tn® + tn?) | learning
O(tmnc) | O(tn?c) || O(tm?*nc+tmnc) | O(tn3c+ tn?c) | classification
Embedded, O(in) O(tn) O(tn) O(tn) learning
O(tnc) O(tnc) O(tnem + tnc) O(tnc +tnc) | classification

IWSSr, the reduction in classification is the same but a gresaéng is obtained in
the learning stage, while we get linear complexity for thenber of selected variables
(m) instead of cubic:(:®). Therefore, the more attributes are selected, the greager
gain in efficiency. On the other hand, the use of early stappilso has its impact,
because it reduces fromto approximately - n the number of attributes studied, and
this is a variable which appears in all the complexity oradaisulated above. The next
subsection shows an empirical analysis of the impact of eldibg the NB classifier
over the set of datasets considered.

3.7.1 Experimental testing of the embedded approach

The previous (big-O) complexity study has shown the expukitieoreticalgain when
using the embedded approach instead of the black-box oneevén, we know that
some implementation details, the use of logs, etc. can eedudncrease gain. In
this case, the gain is even more than expected due to thenttawith the embedded
approach no dataset management (mainly projections) idedeeTable3.17 shows
the number of times the embedded approach is faster tharable lox using Naive
Bayes, considering original algorithms and also early stapwith 6 = 0.2.

As observed from Tabl®.17 the gain is really significant, meaning that a painstak-
ing process requiring hours or days can be solved in secanasnoites. Table3.18
shows the ratio between the canonical algorithms (blackdral no early stopping)
with respect to the embedded approach plus early stoppimgselresults give an idea
of the improvement obtained when concatenating the twoorgments related to ef-
ficiency proposed up to here.
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3.8 Discussion of Related Work

Table 3.17: Ratio between the embedded and black-box agmedor Naive Bayes.
With and without early stopping(= 0.2).

IWSS? | IWSS? IWSS%S IWSS?
Colon 9.04 46.67 15.92 6.99
Leukemia 56.89 | 191.08 169.97 | 22.39
Lymphoma|| 18.68 | 123.58 29.87 8.67
DLBCL 31.60 | 83.63 25.76 16.06
Prostate 85.59 | 592.65 376.99 | 41.76
Lung 56.66 | 240.00 89.98 18.03
GCM 59.83 | 683.94 || 550.60 | 44.68
Arcene 77.43 | 457.53 || 234.75 | 33.62
Madelon 6.03 21.44 7.20 3.78
Dorothea 395.03 | 2040.40|| 1661.41| 232.20
Dexter 103.43 | 902.14 || 360.28 | 42.46
Gisette 78.04 | 188.20 154.15 | 43.66
Mean 81.52 | 464.27 || 306.41 | 42.86

Table 3.18: Ratio between the black-box (no early stoppipgy@ach and the embed-
ded one using early stopping € 0.2) for the Naive Bayes classifier.

| Dataset || IWWS | IwsS,
Colon 17.13 | 56.26
Leukemia 7459 | 257.96
Lymphoma|| 31.46 | 169.33

DLBCL 37.77 95.96

Prostate 121.61| 993.18
Lung 84.92 | 393.18
GCM 103.39 | 1427.03
Arcene 112,91 | 711.23

Madelon 10.08 40.40
Dorothea 968.38 | 5053.54

Dexter 210.90 | 2251.70
Gisette 112.63 | 279.41
Mean 157.15| 977.43

3.8 Discussion of Related Work

Apart from [98] and [33], which introduce the filter (or rank-based) wrapper apphoa
to feature subset selection and thus constitute the basthdaalgorithms presented
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here, there are two recent papers that must be commented.

Nakariyakul and Casaserit(] presented an improved version of floating feature
selection that, among other steps, includes what theyreplacing the weak feature
which is in fact atypeof replacement. The main difference with the approach i thi
Chapter lies in the fact that this only tests= |.S| subsets when studying replacement
for a given subset S, while i8(] m - n subsets are analyzed because each time a vari-
able X; of S is tested to beveak featurga new step of forward selection is carried out,
taking as starting subs8t— { X}, in order to decide which of the remaining variables
is the best choice to replace theeak ong(X;). Furthermore, as theeplacing of the
weakstrategy is inserted in a floating method that combines foiveand backward
selection phases, the resulting algorithm is quite expensbmputationally. As an
example, the authors report that for a dataset with 25(ates and selecting 15 of
them, their algorithm (termed IFFS) needs to evaluate 16820didate subsets while
forward selection only evaluates 7500. Thus, it is cleat #idnough IFSS obtains
subsets of very high quality, its use is prohibitive in higimensional datasets such as
the ones tested in this chapter.

3.9 Conclusions

This Chapter shows four contributions to the improvementietiehavior of the IWSS
approach to feature selection. The first provides a studyftereht relevance criterion
for addition of new attributes in the final subset of seledesttures, concluding than
the heuristic condition oM in FoldersBetter is an optimal configuration for IWSS.
The second contribution is related with getting more corhpabsets and is im-
plemented by allowing the algorithm to test not only the uisabn of a new attribute
(the next one in the ranking) but also the possibility of spiag it with any of the
already included attributes. From experiments, IWSS wigtlagement proves to be a
the better choice, because it maintains the accuracy off8ea®d IWSS algorithms,
but includes fewer attributes in the selected subset. Oottier hand, the number of
wrapper evaluations increases with respect to the lineshnibwn by IWSS, although
from the experiments in practice it is far from the theomtguadratic worst case.
The third contribution in this Chapter directly tackles tpi®blem by stopping
the algorithm early, that is, without analyzing all the posigie attributes. From the
experiments, is is concluded that the use of early stoppasgahsignificant effect on
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the efficiency of the algorithms without degrading theirfpanance (both in accuracy
and number of selected attributes).

Finally, this Chapter presents an optimization for incretakselection algorithms
when using classifiers that allow incremental constructitien adding variables, as
is the case of Naive Bayes. The idea is to avoid the use of tlesifiex as a black
box, and instead an embedded version of the classifier wétindremental selection
algorithm is proposed. The result (both theoretically arpegmentally) is a much
more efficient incremental selection process.

69



3. INCREMENTAL WRAPPER SELECTION

70



Chapter 4

An IWSS-based GRASP algorithm for
FSS

4.1 Summary

The IWSS approach introduced in ChapBepresents one major problem related to
the filter ranking: it is deterministic, what derives in twonsequences: (a) the search
space is highly reduced so it is very easy to fall in a locainopm and (b) features are
ordered based on a filter metric which does not capture ictierabetween features.
This Chapter proposes to improve the IWSS search with a GRASRoch&thich (1)
makes the ranking stochastic, (2) extends the search spdceda theoretically, might
capture (in)dependencies between features.

This proposal to improve the IWSS algorithm is tested usingifja dimensional
databases with extensive experiments and show, not ortlit ffexforms better (main-
taining accuracy and reducing cardinality of the final stibed number of evaluations)
than IWSS but also even better than another feature subsetisalalgorithms known
in the literature.

4.2 Greedy Randomized Adaptive Search Procedure

Following the classification of search algorithms in Cha@ethe IWSS algorithm
falls into the category of a Ranker+Sequential search, wtiereganking is created
using filter evaluations and the sequential search is ineneah (forward) with wrapper
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evaluations. Thus, IWSS is known as an hybrid FSS algorithetause it mixes
filter and wrapper evaluations. Since the created rankimpisrministic, the IWSS
approach presents two major problems:

e The incremental search is performed over a fixed rankindisséarch space is
highly reduced to a complexity @(n), and it is very probable to fall in a local
optimum.

e Some features ranked near the beginning of the ranking mighbe relevant
for the class anymore once previous features have beentesklacd, on the
contrary, features ranked at the end of the ranking mighbinecrelevant after
some features have been selected.

By utilizing GRASP search with the IWSS algorithm in the constilan stage, these
two problems are to be alleviated by (1) adding randomnetg®dime of creating the
ranking , (2) repeating the proces®gate ranking + incremental searehfixed number
of times to find several solutions and identify the best orge(&y reducing the size of
the ranking instead of using all features.

42.1 GRASP

The greedy randomized adaptive search procedure (GRASPIs[a meta-heuristic
algorithm commonly applied to combinatorial optimizatiproblems. There are two
clear stages in a GRASP algorithm:

1. Constructionphase. In this step a specific (deterministic) heuristicsfaving
the target problem is taken as a basis for constructing disoluThus, starting
from the empty set, the algorithm adds elements from all tssible candidates
until a solution is obtained. However, in GRASP some rand@sreintroduced
in this step in order to obtain a greedy randomized constnmughethod (also
known as semi-greedy heuristic). Thus, instead of choofiagoest element
at each step of the construction, the algorithm choosesdbra from a list of
promising ones.

2. Improvingphase. The solution constructed is taken as the starting pmi a
local search in order to get an improved solution.
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GRASP algorithms run the previous two phases a number of timesing in
this way as a multi-start method. Because of the quality plexvio the solution by the
deterministic greedy heuristic used as a basis, and beoatisevariability introduced
by the randomness added to the process, we can expect to gbtad starting points
but with enough variability, and so the multi-start methad ewventually find a global
optimum.

Recently, 29 proposed to use GRASP for feature selection and comparethit w
sequential floating algorithms (SFFS, SBFES]) and other meta-heuristics like tabu
search, genetic algorithms and memetic algorithms. Hetlasion is that tabu search
and GRASP outperform the other tested methods. The GRASPthlgdnases the
constructive phase on the randomized selectiod aftributes according to thein-
group variability (a filter measure). This process is repeated several timgghen
subset with the best fithess (computed by using the nearegibmur approach) is
passed as the starting point for the improving step, whicaiged out by means of a
standard hill-climbing algorithm that uses the same fitmesasure and that also looks
for subsets having exacttyvariables. Then, the previous steps are iterated a number
of times. This approach, though returning good results fRIAGP with respect to
other techniques, is not suitable when dealing with highetisional datasets. First, as
ot will be seen in the experiments, there is a great varighilithe number of variables
selected for each dataset, so we cannot fix a number a prind.sAcond, the number
of evaluations (tested candidate subsets) with respeletoumber of variables is too
high to be used with tens of thousands of variables. In faeteikperiments in129
only consider datasets having between 18 and 57 variables.

This section describes a proposal for the GRASP algorithirétuces the num-
ber of evaluations to be sub-linear (with respechte- |X|) and so it is suitable for
solving FSS in high-dimensional datasets. The pseudo-afithe proposed algorithm
is shown in Figured.2, and a detailed description is provided in the next two schbse
tions.

4.2.2 Construction Stage: Randomizing IWSS

The IWSS algorithm is a very efficient algorithm (linear in thember of attributes)
that does however have two main disadvantages: (1) it refiem univariate ranking,
S0 some interesting variables can be judged irrelevaetaet just because some oth-
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ers have been judged irrelevant/relevant before; and (Bgtsure all the potentially
relevant variables have been analyzed, the full rankingt ineisxplored. As an ex-
ample, let us observe Figudel which is a plot of the relation between the number of
variables in the datasets and the position in the SU-basdghgof the last variable
selected by IWSS for the twelve datasets used in our expetamAs we can observe,

in 8 out of the 12 datasets, variables after position 100 iftimaber selected by the
linear-forward algorithm40]) are selected, while the same happens in 6 out of the 12
datasets if we consider the first 10% of the ranking as thdsHidie proposal on this
chapter ties to (partially) alleviate these two disadvgesaby including randomness.
The idea is as follows:

e Since the process is to be repeated several times, eadioieoaly considers
a small number of attributes. In this way, the number of weagvaluations is
drastically reduced.

e The subset of variables considered at each iteration isteelen aninformed
random way. That is, each variahl has a selection probability that is pro-
portional toSU (X;, C). In this way,goodvariables will be selected more often,
while badvariables have only a small chance. This step is implemeantkde
7 of the algorithm in Figurd.2.

e Once we have selected the variables to be used, they aredrankerding to
SU(X;,C) (line 8 of Figure4.2). Notice, that as only a few variables (with
respect to the total) are considered, maintaining a gocer @ ssential, because
otherwise given the greedy behaviour of IWSS, very noisy (angk) subsets
will be selected.

e Because few variables are considered at each iteration, weergom to the
selection of variables that otherwise would always be dded For exam-
ple, let us suppose that our ranking starts with X5, X3,... and that in the
score assigned by the wrapper evaluator the following halds(X;, X,) >
acc(Xy); ace( Xy, X, X3) < ace(X1, Xs), andace(Xq, X3) > ace(Xy, Xa).
Then, if we consider this ranking, IWSS will always include guboptimal se-
lection (X, X») instead of(X;, X3), which is better. However, because of the
(pseudo)random selection of small subsets, it could happamnX, is not se-
lected in some iterations, and &8, X3) has its opportunity.
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Figure 4.1: Relation between the number of attributes in ttaskt and the position
of the last attribute selected by IWSS.

4.2.3 Improving step

As mentioned above, the usual improving step in a GRASP dlgoriakes the solu-
tion found in the constructive step, and tries to improve it by using a local search
(e.g. Hill-Climbing). However, given our goal of developiagnon-expensive-CPU
algorithm for high dimensional datasets, proceeding ia iandard way is not pos-
sible. Notice that a Hill-Climbing algorithm needs exactlyrapper evaluations just
in its first iteration, because it tries to include all the ned variables one by one,
and to remove the already selected variables in the sameBgagpuse we are dealing
with thousands of variables, the requirements of such d tqaamizer are too high.
Therefore, we must think in of a different way of improving.

Our idea is based on the fact that an FSS problem can be viewatiaobjective
problem, where two parameters are considered: the caitglioflthe selected subset
and the accuracy provided by such a subset. Taking this octouat we can give the
following definition:

Definition 1 Given two candidate subsets and S,, we say thas; dominatess, if
81| < |82| andacc(8)>t ace(8,). Otherwise we say tha, is non-dominated b§; .

1See Section.2for deep explanation of thecomparator.
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In T training set;M: filter measuref classifier algorithm;

size number of variables to consider at each iteration;

numlt: number of iterations; improving method
Out 8 // The selected subset

// initialization
1 NDS + )
2 foreach X; € X
3 scores[iFMr(X;, C) [/le.g.SU(X;,C)
4 foreach X; € X  // Prob. of selecting eacK;
5 probSel[i}= scoresli]/ >>i_, scores[j]

/I GRASP
6 for it=1 to numlt

/I constructive step
7 subset < samplesize variables fromX without replacement by using-obSel] |
8 R[] «+ create a rank for variables iubset by usingscores| |
9 §={R[1]} /I 8§ will contain the solution obtained by IWSS
10 BestData = evaluaté, S, T')
11 fori=2to Rsize()
12 Sauz =S U{RJi]}
13 AuxData = evaluat®, S,,,,, T)
14 if (AuxDatar BestData}hen
15 8 = 8aux
16 BestData = AuxData
/l improving step

17 if (update(N D.S,8)) then
18 Xnds ¢ Us;eNDs Si
19 8’ < runimprovingMethodK ,,4s, S, C,T)
20 update(NDS,8')
21  return all or bestsolution(s) inN DS

Figure 4.2: Proposed GRASP algorithm for FSS.
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In  NDS: the set of non dominated solutions.
sol: the candidate solution to be studied.

Out trueif NDS is modified,false otherwise
parameterV DS is modified
If sol is dominated by any € N DS then return false
else

delete fromV DS all solutions dominated byol

includesol in NDS

return true

ga b~ W NP

Figure 4.3: Auxiliary functiorupdate(N D.S,sol).

Thus, if we have two different solutionsl, = ({ X1, X5},0.9, (f{,..., f3)) and
soly = ({X1, X3, X4},0.92, (f2,..., f2)), where the first component is the subset of
selected variables, the second one is the average accuracyhe five folders, and
f7 is the accuracy in folder for solution;j, which one is better?. Perhaps the correct
answer depends on some context, but without extra infoomatieithersol; dominates
soly, nor doessoly, dominatesol;, so it is difficult to decide.

The proposed algorithm will maintain a set of non-dominadetlitions (VDJ5)
found during the search. Thus, each time a new solution ig¢bed by the constructive
step, theV DS set is updated by using it (functiarpdate in Figure4.3). Then, as we
can expect solutions insid¥ DS to be of good quality, a pool is made with all the
variables contained in the non-dominated solutiocXiggs. Finally, the improving step
consists of running an FSS algorithm whose search spacaited toP(X,qs). In
particular, the following ones are used:

e Hill-Climbing. The classical Hill-Climbing algorithm, taking as startipgint
the solution$ and X, 45 as the list of possible attributes. The neighbourhood
used is formed by all the subsets having the Hamming distageals to 1 with
respect to the current solution. In this way, the number afu@tions per itera-
tion is | X,as/-

e IWSS. This is the same algorithm (see Chag#peused in the constructive phase
(lines 8-16 in Figuret.2), but now it is limited to the variables iX,4s. The
number of evaluations is exactl¥X,,qs/|-

e IWSSr. This algorithm consists of an enhancement of IWSS by addieg t
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operation of replacement (see Chap¥er Thus, when an attribute ranked in
positioni is analyzed, not only is its inclusion studied but also itelichange
with any of the variables already included $n That way, the algorithm can
retract some of its previous decisions, that is, a previosslected variable can
become useless after adding some others. As shown in Clghées algorithm
obtains more compact subsets than IWSS. In the worst case IWi83eed
O(|Xnas|) evaluations, but in practice the exponent reduces to B2-1.

e SFS. The classical Sequential Forward Selecti6d] [Chapter2).

e BARS. Best Agglomerative Ranked Sulj$a{ alternates between the construc-
tion of a ranking of the available subsets (initially singégiables) and a growing
heuristic process that obtains all the combinations (bygmgj of the first three
subsets in the ranking with each one of the remaining oneter Afe growing
phase, all the subsets with worst accuracy than the curesttame are pruned.
A new ranking is created and so on. The worst case complekiBARS is
exponential, but in practice it evaluates fewer candidttas IWSSr.

Finally, the solution returned by thenproving search is used to (again) update
NDS (line 20 in Figured4.2).

Once the GRASP algorithm finishes, we have a set of solutiatead of a single
one, so itis possible to choose between returning all of thiedletting the user decide
which one to use depending on the application context, or avedirectly choose
one and return it. In this proposal, and in order to compatk standard algorithms
that only return one solution, a criterion has been decitdatienefits small subsets
but without compromising accuracy. Concretely the follogvprocedure is used: (1)
rank (from lowest to highest) the solutions MDS by using the number selected
attributes; (2) select the first solution in the rankindpast and (3) run over the ranking
and replacéestby the solution currently analyzed only if it is better aatiog to>
criterion.

4.3 EXxperiments

This section experimentally tests the GRASP proposal ovet afsigh-dimensional
datasets. Besides analyzing the different improving metagpropose, a comparison
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with state-of-the-art algorithms is also provided.

4.3.1 Methodology and Test Suite

In pursuit of our goal of dealing with high-dimensional dats, and in order to obtain
reliable conclusions, we selected 12 publicly-obtaineeyijpusly presented in Section
3.6.1.

With respect to FSS subset selection algorithms, takingactount that wrapper
evaluation is used and the high cardinality of the dataskésfollowing four state-
of-the-art algorithms are used as a baseline for compariB¥$S [33; 98], IWSSr
(Chapter3), BARS [97] and Linear Forward Selection (LFS) (Chapgr
With respect to our proposal, we test five different instaraiethe GRASP algorithm
depending on the method selected for the improving step: WSS, IWSSr, SFS and
BARS.

In the experiments, all the filter evaluations were perfatmsing Symmetrical
Uncertainty(SU) and for wrapper evaluation we selected Nave Bayes (NBalgo-
rithm Chapte2. The reason is two-fold: first, NB is known to be quite sewmsitb the
presence of redundant and irrelevant predictive attrfijude it is a clear candidate to
test FSS; and second, preliminary experiments with otlasssdiers (decision trees and
nearest neighbours) have been carried out and the sameisiomd were obtained, so
for the sake of clarity and conciseness, only the resultdlidare shown here.

4.3.2 Results

The algorithms IWSS and IWSSr do not need parameters. ForithlgotFS we
use the code in WEKA123 and follow the recommendations iA(] (fixed-set with
k=100). In the case of BARS we use the values recommended bytihera P7]: k=3
(number of subsets used as seed to form candidates by cdinbinath the remain-
ing ones in the ranking) ank50% (percentage of the rank to be explored). However,
when BARS is used in the improving stage of our GRASP algorithimset to 100%
since the search is run over just a few attributes.

Regarding GRASP parameters, we carried out some prelimiestg tvith dif-
ferent values, and in this study the results with subsetesigrls to 100 are reported,
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while two different values (50 and 100) were tested for theber of iterations (multi-
starts). The value of subset size can be tuned for each tidtagesver, our goal is to
carry out an experimentation showing that the results cagdmeralized to a wide
range of datasets without needing a specific tuning. In fhettested values are too
large for thesmallestdatasets (Madelon and Colon) but we maintain them in the test
suite for coherence with previous research.

Experiment 1.-

Table4.1 shows the results obtained when running the four detertigragyorithms:
IWSS, IWSSr, LFS and BARS. In all cases the average over a 10 foss walidation
is reported foraccuracy number of selected variablesmdnumber of wrapper evalu-
ations From the results, and before going into a deeper analysssclear that LFS
obtains more compact subsets, needs (by far) fewer evahsatbut also obtains the
worst accuracy. Of course, if we increase the percentadeeafink considered, these
values would be considerably modified, but as shown in Figukghe problem is that
we do not know in advance the correct percentage of the rabk tesed. In the limit
it is clear that LFS behaves like SFS, which is comparableauiacy to IWSSr, but
obtains less compact subsets and needs more wrapper exasu@hapte). With
regards to IWSS, it needs fewer evaluations than IWSSr and BARBdudes more
features in the selected subset. Regarding IWSSr and BARSattlee heeds fewer
evaluations and obtains more compact subsets. However, BARSexplores half
the ranking while IWSSr explores all the variables. If all tfagiables in the rank are
used as input in BARS, then the number of evaluations signiicancreases (notice
that BARS exploreSv subsets just in its first iteratiom,being the number of consid-
ered attributes). Finally, it can also be observed thatt@skataset is a sort of outlier,
because of the number of variables IWSS and IWSSr select icdisat

Experiment 2.-

With regards to the proposed GRASP algorithm, assuming (fsoetiminary experi-
ments) that 100 is an adequate subset size, let us firstigatesits performance by
allowing it to do50 iterations (or multi starts). Tabk.2 shows the obtained results
when considering the five improving methods described irti@ed.2.3 Now, the
same statistics as before are shown, besides also the nofhen-dominated solu-
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Dataset IWSS IWSSr LFS BARS
Acc Atts Acc Atts Acc Atts Acc Atts
Colon 80.65 3.8/ 83.87 28| 8065 35 8.71 3.0
Leukemia | 87.50 25/ 8750 2.0| 93.06 3.3/ 9054 23
Lymphoma| 76.04 8.8/ 80.21 59| 71.88 89| 73.67 6.1
DLBCL 85.11 19| 80.85 1.8/ 87.23 38| 76.00 24
Prostate 7794 11.1| 78.68 7.0| 69.12 5.3| 86.81 3.7
Lung 97.24 2719724 24| 96.69 26| 98.36 3.0
GCM 64.21 36.6| 59.47 19.9| 56.84 11.2| 60.00 15.9
Arcene 70.00 13.4| 72.00 6.2| 68.00 2.6| 74.00 4.9
Madelon 59.85 13.3/ 60.50 8.0| 60.45 5.4| 60.30 5.8
Dorothea | 93.50 74| 92.88 6.3 9238 55| 9388 7.3
Dexter 81.00 19.6| 83.00 12.9| 76.33 8.2| 82.67 12.8
Gisette 94.68 112.6| 94.07 30.7| 89.63 7.9| 93.10 13.6
Mean 80.64 195/ 8085 88| 7852 578125 6.7
Number Of Evaluations
Colon 2000.0 7276.5 450.0 5578.4
Leukemia 7129.0 21378.4 430.0 14541.0
Lymphoma 40260.0 27663.0 990.0 15576.0
DLBCL 4026.0 11134.0 480.0 9476.9
Prostate 12600.0 94507.8 630.0 22578.8
Lung 12533.0 42603.5 360.0 24658.1
GCM 16063.0 309750.4 1220.0 69223.7
Arcene 10000.0 67359.3 360.0 23785.9
Madelon 500.0 3818.0 640.0 1403.1
Dorothea 100000.0 441346.2 650.0 203418.0
Dexter 20000.0 255027.3 920.0 31153.7
Gisette 5000.0 137050.7 890.0 9452.2
Mean 19175.9 118242.9 668.3 35903.8

Table 4.1: Results for the use of four deterministic FSS #lgois.
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tions found in each case. Furthermore, because of the sttichature of GRASP, the
numbers now correspond to the average over 10 independeteach one using a
10-fold cross validation.

Experiment 3.-

Here it is investigated whether allowing the algorithm toadlarger number of itera-
tions (multi-starts) introduces a significant improveméiable4.2 shows the obtained
results.

4.3.3 Statistical Analysis

Statistical tests were performed in order to compare resiitained when running
9 different algorithms: 4 deterministic and the GRASP prapegth the five tested
improving methods. In order to be in a position to draw sigaifit conclusions, a
multiple-algorithms multiple-datasets comparison isdubg performing a Friedman
test 37] followed by a post-hoc Holm testlp], as suggested ir2[] and using the
code provided in39]. In all the cases the confidence level is set to the standdte:v
a = 0.05.

The analysis was performed in three stages. At each stagiéer@at parameter is
analyzed and only the algorithms considered non-diffet@itfte control one (marked
with the e symbol) passed to the following stage. The three stages are:

1. First, the accuracy of the algorithms is compared. That is not of interest to
design an algorithm too fast or that selects compact suldsatt$o the price of
degrading the classification accuracy.

2. Second, the cardinality of the selected subsets is cadp&@nce accuracy has
been guaranteed, then it seems appropiate to prefer algarihich select more
compact attribute subsets.

3. Finally, the number of wrapper evaluations required lyhesgorithm is com-
pared.

Tables4.4 and 4.5 show the results of the analysis faumlit equal to50 and
100 respectively. The three rows correspond to the three stagegusly described.
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Dataset HC IWSS IWSSr BARS SFS

Acc  Atts Acc  Atts Acc  Atts Acc  Atts Acc  Atts
Colon 81.13 3.0] 79.68 3.4 82.26 3.1| 80.00 2.9| 80.00 35
Leukemia | 92.64 2.7| 93.75 2.7| 91.67 2.8] 93.33 2.8| 93.61 3.3
Lymphoma | 74.90 6.1| 77.40 75| 77.29 6.8| 76.35 6.8| 78.75 7.5
DLBCL 86.17 2.2| 86.60 2.3| 87.02 2.1| 85.74 2.2| 87.66 25
Prostate 77.87 5.0| 78.68 5.7| 77.50 46| 78.60 5.1| 78.16 5.6
Lung 95.69 2.2] 95.08 2.2| 95.75 2.4| 96.02 2.3| 96.02 2.4
GCM 5595 11.7| 58.63 19.4| 53.63 14.1| 57.42 13.3| 5753 20.5
Arcene 80.00 5.7] 79.30 6.0| 78.50 5.7 | 79.00 5.2 79.30 6.3
Madelon 60.85 7.6 | 60.90 7.2| 60.85 7.2| 60.50 7.6| 60.80 7.9
Dorothea 93.36 3.7] 93.35 4.2| 92.99 3.8| 93.50 5.0| 93.23 4.4
Dexter 83.47 15.7| 83.27 15.5| 83.37 15.6| 83.07 15.6| 83.10 15.8
Gisette 93.06 159 9445 63.3| 92.17 31.9| 9241 26.3| 93.39 34.1
Mean 81.26 6.8 81.76 11.6| 81.08 8.3| 81.33 7.9| 81.80 9.5

Number Of Evaluations
Colon 5065.2 5018.6 5053.6 5081.3 5013.7
Leukemia 5472.0 5117.5 5333.3 5761.9 5173.9
Lymphoma 5608.6 5287.9 6076.6 7343.4 5411.8
DLBCL 5206.1 5063.2 5152.6 5272.9 5064.8
Prostate 5252.4 5135.5 5283.2 5361.3 5248.8
Lung 5940.1 5243.6 5802.5 6781.9 5397.2
GCM 6150.9 5519.6 7090.1 8669.2 7632.9
Arcene 5524.3 5203.3 5649.4 5755.4 5392.6
Madelon 5076.8 5016.9 5059.9 5083.8 5004.4
Dorothea 5172.2 5075.9 5227.2 5502.8 5147.5
Dexter 5543.2 5061.8 5421.7 5760.3 5019.5
Gisette 7206.2 6549.3 10437.5 11511.7 9651.9
Mean 5601.5 5274.4 5965.6 6490.5 5763.3
Number Of Non-Dominated Solutions

Colon 3.0 2.7 2.7 3.0 3.1
Leukemia 6.7 6.7 6.4 6.7 6.8
Lymphoma 4.2 5.7 5.6 5.4 6.4
DLBCL 5.9 6.0 6.1 6.2 6.1
Prostate 4.2 5.2 4.0 4.6 5.0
Lung 9.0 9.4 9.6 9.5 9.7
GCM 3.4 7.1 5.0 4.1 7.2
Arcene 5.2 6.1 55 5.1 6.9
Madelon 2.2 2.4 25 2.6 1.4
Dorothea 4.4 4.4 4.2 5.3 5.4
Dexter 3.9 3.1 3.8 4.6 3.1
Gisette 4.1 14.3 7.9 7.2 6.9
Mean 4.7 6.1 5.3 5.3 5.7
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Dataset HC IWSS IWSSr BARS SFS

Acc  Atts Acc  Atts Acc  Atts Acc  Atts Acc  Atts
Colon 80.97 3.1| 80.32 3.3| 80.97 3.3] 80.81 2.9 80.16 35
Leukemia | 93.33 29| 9431 3.0| 94.44 3.2| 94.58 3.0| 94.31 3.4
Lymphoma | 76.15 6.1| 77.81 7.2| 76.25 7.0| 78.33 7.0| 78.54 7.8
DLBCL 86.81 2.3| 86.38 22| 87.23 2.3| 89.36 2.3| 87.45 2.4
Prostate 78.24 5.0| 79.63 5.6| 78.01 4.7 | 80.22 5.4| 78.97 5.8
Lung 95.58 25| 9591 2.3] 96.13 2.3 ] 95.69 2.4 96.96 2.7
GCM 56.32 11.5| 5895 20.6| 54.42 14.8| 58.79 13.5| 59.68 20.3
Arcene 80.20 5.6 | 80.40 6.1| 80.30 5.7 | 80.80 5.8| 80.20 6.8
Madelon 60.85 7.6 | 60.90 7.2| 60.85 7.2| 60.50 7.6| 60.80 7.9
Dorothea 93.34 3.8 | 93.06 42| 92.95 3.9| 9354 55| 93.31 4.5
Dexter 83.63 15.7| 83.27 15.6| 83.30 15.6| 83.20 15.6| 83.17 15.9
Gisette 93.17 15.8| 9459 68.3| 9254 32.7| 9256 26.5| 93.57 29.8
Mean 81.55 6.8 82.13 12.1| 81.45 8.6 | 82.37 8.1| 82.26 9.2

Number Of Evaluations
Colon 10103.3 10026.9 10085.7 10116.7 10020.2
Leukemia 10804.9 10207.8 10625.4 11295.1 10318.5
Lymphoma 11122.2 10489.7 11912.2 14549.3 10793.3
DLBCL 10359.8 10099.4 10230.8 10444.3 10110.8
Prostate 10381.2 10185.6 10349.7 10519.2 10292.2
Lung 11839.5 10446.1 11493.7 13292.1 10809.8
GCM 11407.5 10800.7 12996.5 15093.9 14134.0
Arcene 10838.7 10330.4 10900.9 11339.5 10645.4
Madelon 10076.8 10016.9 10059.9 10083.8 10004.4
Dorothea 10283.9 101111 10279.0 10912.4 10200.7
Dexter 10530.4 10068.4 10462.5 10847.8 10023.9
Gisette 12691.2 12299.3 17846.9 19349.0 16367.6
Mean 10869.9 10423.5 11436.9 12320.2 11143.4
Number Of Non-Dominated Solutions

Colon 3.4 3.1 3.2 3.3 35
Leukemia 8.4 8.2 8.0 8.4 8.7
Lymphoma 5.0 6.9 6.8 6.4 8.2
DLBCL 6.8 7.0 6.9 7.0 7.2
Prostate 4.8 54 4.6 5.2 5.6
Lung 11.8 11.7 11.6 11.8 11.9
GCM 3.8 8.5 5.5 4.9 7.5
Arcene 6.4 7.6 6.6 6.5 8.2
Madelon 2.2 2.4 25 2.6 14
Dorothea 5.4 5.1 5.3 6.6 6.1
Dexter 3.8 3.3 3.9 4.8 3.1
Gisette 5.0 16.5 8.9 7.9 7.6
Mean 5.6 7.1 6.2 6.3 6.6

84

Table 4.3: Mean Results for the Grasp-based FSS algorithmawit: /¢t = 100.




4.3 Experiments

Deterministic algorithms are denoted by its hame in bolefachile for the GRASP
approach (five most right columns) the algorithm is denotethlke name of the used
improving method, followed by & superscript.

Stage | IWSS IWSSr LFS BARS HC* | IWSS* | IWSSr* | BARS* | SFS*
Acc | 8664 80.85 | #8552 81.25 81.26 ©81.76 81.08 81.33| 81.80
Atts 8.8 6.7 6.8 116 8.3 7.9 95

Evals 3182429 35003-8 | ¢5601.4 5965:6 64905

Table 4.4: Statistical Tests faumit = 50.

Stage | IWSS IWSSr LFS BARS HC* | IWSS* | IWSSr* | BARS* | SFS*
Acc | 8664 80.85 | #8:52 81.25 81.55 82.13 81.45 82.37 | 82.26
Atts 8.8 6.7 6.8 123 8.6 8.1 92

Evals 1182429 359038 | 10869.9 011436.9| 3423202

Table 4.5: Statistical Tests famnm It = 100.

From the tables, the conclusions are pretty clear, and aiedily the same in both
cases (50 and 100 iterations):

¢ None of the instances of the GRASP algorithm can be discargadduracy.
e LFS and IWSS are the worst algorithms in accuracy.

e Using SFS and IWSS as improving stage yields larger seleateskss than the
remaining algorithms.

e With respect to the number of evaluations, the GRASP appesackearly im-
prove IWSS and BARS.

e Between the three survival GRASP-approaches (HBBRS* and IWSSt) BARS"
is always tested as significantly worse when using the nuwih&rapper evalu-
ations as parameter. This may seem strange according tella@ibur of BARS
when used as a deterministic algorithm, however it has a elgalanation. The
good performance of BARS with respect to the number of eviaogais due to
the pruning of subsets that are worse than the current besguer, now the
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pool of available attributes is formed by very good attrdsufthose in the non-
dominated solutions), therefore the subsets created by tisese attributes are
also very good and only a few of them are pruned, increasirtgignway the
number of evaluations carried out by BARS in the improvingsta

It is also interesting to remark that the cases in which GRME&P) needs more
iterations (GCM and Gisette) are also those cases in whichihef HC as improving
method obtains better results with respect to the cardynaflithe selected subset. The
quality (few number of variables) in these two cases, als@nampact in the existence
of a small number of non-dominated solutions.

Finally, the same statistical study was conducted usin@esnpeters accuracy and
cardinality of the selected subset, and using as input thlet esurvival algorithms:
IWSS,, BARS, HC (numlt=50), BARS(numlt=50), IWSS$(numlt=50), HC(numlIt=100),
BARS*(numlt=100) and IWSSnumIt=100). The result was that no algorithm in this
set is found to be significantly worse with respect to thoseparameters.

Therefore, a clear recommendation supported by theseimemds is to use the
GRASP algorithm with 50 iterations or multi-starts, and gsHhC (or IWSSr) as im-
proving method.

4.3.4 Complexity Order

For the sake of completeness, the number of evaluationg & tbsted algorithms over
the 12 used datasets was used to estimate their in-practioplexity orderO(n”).
The value ofr has been computed as the one minimizing the mean squarengttnor
respect to the actual number of evaluations for the 12 dagta3able4.6 shows the
results rounded to two decimal digits.

With respect to the deterministic algorithms, letting oSS which is linear and
LFS that is sub-linear but whose complexity is controllectiy portion of attributes
used, it is interesting to see that IWSSr and BARS, whose wast¢ complexity
is quadratic and exponential respectively, have a betteayeur in practice with
O(n'1?) andO(n'%) respectively. With respect to the GRASP algorithms, the remb
of evaluations isiumIt - subsetSize+ ¢, e being the number of evaluations carried out
in the improving stage. Anyway, for comparison reasong tte@nplexity ordeiO(n”)
is also estimated, and in all the cases the fitted complexisyib-linear. Concretely
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IWSS IWSSr LFS BARS

min  1.00 1.12 0.56 1.04
fitted 1.00 1.13 0.64 1.06
max 1.00 1.39 1.04 1.17
numlt =50 HC* IWSS* IWSSr* BARS* SFS*
min  0.68 0.74 0.74 0.75 0.74
fited 0.76 0.86 0.86 0.87 0.85
max 1.37 1.37 1.37 1.37 1.37
numlt =100 HC* IWSS* IWSSr* BARS* SFS*
min  0.80 0.80 0.80 0.81 0.80
fited 0.87 0.87 0.87 0.87 0.87
max 1.48 1.48 1.48 1.48 1.48

Table 4.6: Complexity Ordep(n”) of the studied algorithms.

is between 0.76 and 0.87 wheam/t = 50 and is 0.87 for the five GRASP instances
whennumlt = 100 (the difference in this case is in the third decimal digit).

4.4 Conclusions and Future Work

This chapter has presented a GRASP-based algorithm foréesitinset selection in
high dimensional datasets. The main goal is to maintainén®pnance (accuracy and
degree of reduction in the number of selected attributett) m@spect to other state-of-
the-art FSS algorithms designed for this problem, but withadvantage of needing a
significantly smaller number of wrapper evaluations. Tolds,tthe proposed GRASP
algorithm only uses a small fraction of the available atit@s in each iteration, which
are selected in a pseudo-random way, that is, more promaingutes have more
chance to be selected. Another novelty lies in the improgitage, which instead of
only improving the last solution, forces cooperation betwall the previously found
non-dominated solutiorsy making a common pool with the variables they contain and
running a FSS algorithm over them. As a result, this chapf@oposal has obtained
a highly competitive algorithm for this problem maintaigithe performance of state-
of-the-art deterministic algorithms but in sub-linear raen of wrapper evaluations.
From the different GRASP instances tested, it is recommetmede those running
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Hill-Climbing or IWSSr in the improving stage.
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Chapter 5

Improvement of Incremental Wrapper
Selection Algorithms by Re-Ranking

5.1 Summary

As mentioned in Chaptét, a family of hybrid selection algorithms have recently ap-
peared in the literature: based on a filter ranking, theygoerian incremental wrapper
selection over that ranking, as shown in Chagter

Though working fine, these methods still have their own protd: (1) they rely on
a univariate ranking that does not take into account intemadetween the variables
already included in the selected subset and the remainieg; and (2) because of this,
a great portion of the rank must be explored, which meanghleatumber of wrapper
evaluations can still be too large.

This Chapter presents a proposal for working incrementaltyva levels: block
level andattribute-level. Block refers to a set of consecutive attributes in the rank-
ing. Thus, a hybrid algorithm starts with the first block oé ttanking and uses it for
attribute-level incremental subset selection. Once tlelbhas been analyzed, the
remaining attributes are re-ranked by taking into acco@tdurrent selected subset.
Then the process continues with the first block in the newirenknd so on. The
method stops when the exploration of a new block does notysedny change in
the selected subset. Experiments shown in this chapteutdr 3 proposal uses a fil-
ter re-ranking based on conditional mutual informatiord #re results show that the
re-ranking proposal drastically reduces the number of peapvaluations without de-
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grading the quality of the subset obtained; in fact, it astsethe same accuracy with a
reduction in the number of selected attributes.

5.2 Re-ranking in Hybrid Incremental Wrapper Selec-
tion Algorithms

The idea behind re-ranking is to improve the efficiency ofsbecalled hybrid filter-
wrapper FSS algorithms. To do this, the aim isct@sticallyreduce the number of
wrapper evaluations by increasing the number of the filtaluations carried out. This
proposal is based on working incrementally, not only at tiwbate level, but also at
the block or setof attributes level, taking into account the selected suByén the
previous blocks. Thus, the selection algorithm starts liygua filter measure to rank
the attributes, then an incremental wrapper algorithns applied but only over the
first block, that is, over the firsB ranked attributes. Le§ be the subset of attributes
selected from this first block. Then, a new ranking is comgeer the remaining
attributes but taking into account the already selected @#)e Then, algorithmA is
run again over the first block in this new ranking but inizédig the selected subset to
8 instead of). This process is iterated until no modification in the s&ldcubset is
obtained. As shown in experiments in secttB.2 the number ofe-rankscarried out
is very small, and so only a small percentage of attributegpdored, which leads to a
great reduction in wrapper evaluations (and so in CPU timeyitbout decreasing the
accuracy of the output obtained and there is even a reductitie size of the selected
subset.

Some of the incremental algorithms described in the liteeatise the ranking just
to get the first variables and then launch a more sophisticated method asrealer
search space. LinearForwartD] and BARS P7] take this decision at the initial stage
and in a static way, while IWSSand IWSS, (Chapter3) take this decision in a dy-
namic way, adjusting the number of attributes to study esuh 8 is modified. The
main criticism of this behaviour is that the ranking is basadheindividual merit of
each variable with respect to the class, but it does not tatkeaccount possible in-
teractions between the attributes. That is, if we have agdudisattributesX;, ..., X,
individually highly correlated with the class but (perhppkso correlated among each
other, therall these variables will be in the first positions of the rank@lthough only

90



5.2 Re-ranking in Hybrid Incremental Wrapper Selection Algorithms

one (or few) of them is likely to be selected at the wrappegestdn order to allevi-
ate this problem, the usual choice is to select a large nuoibariables (e.g. 20% -
50%), although this decision implies that a great numberrajpper evaluations have
to be carried out. On the other hand, there could be attshihit are marginally un-
correlated with the class, but conditionally correlatethwihe class given some other
attribute(s). In this case, those variables will be ranketthe last positions and so the
only way to explore them is to use the full ranking.

Thus the proposed improvement to hybrid incremental algms is to usere-
rankingas a way to overcome the two problems identified above. Threigl® work
by usingblocks(subsets) of variables computed from the ranking, but atsté always
using the initial (univariate) ranking we propose to rekréime remaining attributes by
taking into account the current selected sulssén this way: (1) attributes correlated
with 8 will be placed at the end of the new ranking because they attdngpto the
class once we know the value of variableSjrand (2) variables that are conditionally
correlated with the class will be placed early in the rankfripe conditional correla-
tion is due to variables included &

The algorithm forre-ranking-baseaohcremental selection is shown in Figusel
The following points should be mentioned:

e Selection algorithmAs for the selection algorithm, any incremental one can be
used. In the experiments section of this Chapter severaltg@ealgorithms are
tested: IWSS, IWSS SFS and BARS. The only modifications needed are: (1)
the algorithm is seeded with an initial selected subset;(a8hthere is no need
to compute the ranking (if it were necessary) because icisived as parameter
B.

e Stop criterion As can be observed, the algorithm stops when analyzing a new
block does not produce a modification in the selected subisatjs, it returns
the same subset received as seed. This is an interestingopoause there is no
need to decide in advance the number of attributes to explore

e Block size The block size is a key parameter in this approach. Thisevalust
be large enough to give some freedom to the wrapper algagrkibtmot so large
as to explore a great deal of useless attributes,thus ¢agaelt the advantages
of using re-ranking. Several block sizes are tested in tperxents at the end
of this Chapter.
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o _
S 5

T training set,M filter measureg classifier,B block size
8 /I The selected subset

© 00 NOoO OB~ WDN PP

N NNNRRRRERRRRR R R
W NEPO®OWOWNOOUDWNIERO

listR={} /I The ranking, best attributes first
for each predictive attributd; in T
ScoreMr(A;, class)
insertA; in R according tdScore
sol.8 = Il selected variables
sol.eval = null |/ data about the wrapper evaluationsot.S
B = first block of sizeBin R /I B is ordered
Remove firstB variables fromR
sol = IncrementalSelectiof{,B,C,S)
continue = true
while continue do
R ={}
for each predictive attributd; in R
ScoreMr(A;, class|sol.S)
insertA; in R’ according tdScore
R=FR
B =first block of sizeBin R // B is ordered
Remove firsB variables fromR
sol’ = IncrementalSelectiod{,B,C,8)
if(sol.8 == sol’.8) /Ino new feature selected
thencontinue = false
elsesol = sol’
return ol.S)

Figure 5.1: Re-Ranking Canonical Algorithm.
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e Re-ranking algorithm scordn order to build the ranking of the remaining at-
tributes,{ 4, ..., A,}, but considering the current selected subset, itis negessa
to scoreM (A;, C|8) for eachi = 1,...,r. As we know, exact computation of
this term is not feasible even for moderate size$ tecause very large (#in-
stances) training sets would be necessary as well as too timieland space.
Of course, if the size of grows, then this expression is simply computationally
intractable.

In the literature we can find different ways to approximats ficore. Then, several
approaches will be tested in order to identify which methaitedest.

1. Conditional Mutual Information Maximization (CMIM) . Based on using
conditional mutual information31], CMIM tries to balance the amount of in-
formation present for each candidate attribdteand class”, and the fact that
this information might have been already caught by someufeat; < 8.
Thus, this method selects features maximizing their mutufarmation with
the class but minimizing their pair-to-pair dependencythiis case, given that
we have a selected subsednd a set of attributes to ragld,, . . ., A, }, the merit
M(A;,C18),i=1,...,kis computed as:

M(4;,C18) = min (A5 C|4;)
J

2. Mutual Information-Based Feature Selection (MIFS) Similar to the main
idea in CMIM, Battiti presented MIFS irf]. Thus, Battiti suggests approximat-
ing the meritM (A;, C|8),i = 1,...,k by computing it as:

M(A;,C18) = I(A;;C) = B Y. (Ai; 4j)
Ajes

Wheref € [0, 1] and its commonly suggested value is 0.5.

3. Max-Relevance and Min-Redundancy (MRMR) Peng et. al§4] present an approx-
imation similar to MIFS; in this case, the mefif (A;, C|8),i = 1,..., k is computed
as:

M(4;,C18) = I(A;;C) — g X (Ai4)
A]‘GS
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Because this thesis deals with n-ary variables and not omlgrpiones, in the
experiments mutual informatiof() is replaced by Symmetrical Uncertain§l ().
As can be seen, the number of calls to the filter measure anteéng time isr - |§|.
However, these computations are more than compensatetefextreme reduction in
the number of calls to the wrapper evaluator.

5.3 Experiments

The test suite of databases used for the experiments is the aa that used for the
experiments in Chapté.

5.3.1 Algorithms in Experiments

The goal of these experiments is to test the goodness of @deiranking in hybrid

incremental subset selection algorithms. To do this, tleeofise-ranking is combined
with IWSS, IWSS (settingm f = 2 in both cases), BARS£100 andt=3) and SFS,

for block sizesB = 5, 10, 20, 30, 40, 50.

For comparisons, algorithms IWSS, IWSBARS (=50 andk=3), FSS and LFS
algorithms are also run without re-ranking. Finally, 7 ei#nt classifiers will be com-
pared in order to obtain much more general conclusions: eNBayes, C4.5, ibK
(k=1), AODE, Neural Networks (NN), SVM and TAN (see Chaggrin all cases the
average over a 10 fold cross validation is reported.

In the case of applying re-ranking to the BARS algorithm, ioidd) BARS is not
compatible with re-ranking in a simple manner. This happessause after finish-
ing a block, there is no clear decision about what to do witltiuees selected so far.
Therefore, in the experiments BARS is adapted to the propaseainking algorithm
by adding at the beginning of a new block all features seteloyeBARS up to the last
block.

Another possible way to adapt BARS would be to add selectadresin previous
blocks to the candidate subset at evaluation time, but tagenevaluations too complex
in terms of subset cardinality, so such an adaptation waseietted.
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5.3.2 Results for Néve Bayes Classifier

Due to the vast amount of results to report and compare, ¢aisos deals only with
Naive Bayes classifier through different feature selectioortigms. Tables.1 shows
accuracy, number of attributes selected and number of @&wahs (mean after 10cv
classification) using N&e Bayes classifier and well-known feature selection incre-
mental algorithms applied to 12 datasets.

Table 5.1: Results for several FSS methods using NB classifier

SFS LFS BARS IWSS IWSSr

Acc Atts Acc Atts Acc Atts Acc Atts Acc Atts
Colon 83.87 5.9| 80.65 35| 85.71 3.0| 80.65 3.8| 83.87 2.8
Leukemia | 87.50 3.2| 93.06 3.3| 90.54 2.3| 87.50 25| 87.50 2.0
Lymphoma | 83.33 7.1| 71.88 8.9| 73.67 6.1| 76.04 8.8| 80.21 5.9
DLBCL 80.85 3.6| 87.23 3.8| 76.00 24| 85.11 1.9| 80.85 1.8
Prostate 75.00 5.4| 69.12 5.3| 86.81 3.7| 77.94 11.1| 78.68 7.0
Lung 93.92 2.5| 96.69 2.6| 98.36 3.0| 97.24 27| 97.24 24
GCM 58.42 18.3| 56.84 11.2| 60.00 15.9| 64.21 36.6| 59.47 19.9
Arcene 68.00 4.6| 68.00 2.6| 74.00 49| 70.00 13.4| 72.00 6.2
Madelon 60.75 6.5| 60.45 5.4| 60.30 5.8| 59.85 13.3| 60.50 8.0
Dorothea 91.25 13.2| 92.38 5.5| 93.88 7.3| 93.50 7.41 92.88 6.3
Dexter 76.00 13.8| 76.33 8.2| 82.67 12.8| 81.00 19.6| 83.00 12.9
Gisette 94.05 26.9| 89.63 7.9| 93.10 13.6| 94.68 112.6| 94.07 30.7
Mean 79.41 9.3| 78.52 5.7| 81.25 6.7 | 80.64 19.5| 80.85 8.8

Evaluations

Colon 13800.0 450 5578.4 2000.0 7276.5
Leukemia 29941.8 430 14541.0 7129.0 21378.4
Lymphoma 32610.6 990 15576.0 40260.0 27663.0
DLBCL 18519.6 480 9476.90 4026.0 11134.0
Prostate 80640.0 630 22578.80 12600.0 94507.8
Lung 43865.5 360 24658.10 12533.0 42603.5
GCM 310015.9 1220 69223.7 16063.0 309750.4
Arcene 56000.0 360 23785.9 10000.0 67359.3
Madelon 3750.0 640 1403.10 500.0 3818.0
Dorothea 1420000.0 650 203418.0 100000.0 441346.2
Dexter 296000.0 920 31153.70 20000.0 255027.3
Gisette 184500.0 890 9452.20 5000.0 137050.7
Mean 207470.3 668.3 35903.82 19175.9 118242.9

Section5.2introduced 3 different scores to apply the re-ranking medthagy pro-
posed in this Chapter: CMIM, MIFS and MRMR. For the sake of order@arity, in
this section only CMIM will be used; later, experiments usMiFS and MRMR will
also be run.
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Tables5.2, 5.3 5.4 and5.5 show the results of applying the re-ranking (CMIM-
based) methodology to algorithms SFS, BARS, IWSS and IWSSectisply, for
block sizesB = 5, 10, 20, 30, 40, 50.
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Table 5.2: Results using Naive Bayes classifier, SFS selealgamithm and CMIM-based re-ranking with block sizes B.

| DataSet srs | B5 | B=10 | B=20 [ B=30 [ B=40 [ B=50 |
Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts

Colon 83.87 5.9| 82.26 2.2| 85.48 22| 83.87 2.4 83.87 2.4 83.87 2.3| 83.87 2.3
Leukemia 87.50 3.2| 87.50 19| 87.50 1.9| 87.50 1.9| 87.50 19| 87.50 1.9| 87.50 2.0
Lymphoma 83.33 7.1] 72.92 4.7| 75.00 5.6| 80.21 5.6| 81.25 5.7| 78.13 5.9| 76.04 5.9
DLBCL 80.85 3.6| 87.23 15| 82.98 1.6| 80.85 1.7| 80.85 1.7| 80.85 1.7| 80.85 1.7
Prostate 75.00 54| 73.53 3.2| 75.74 34| 77.21 42| 80.88 47| 80.15 47| 83.09 4.8
Lung 93.92 25| 96.69 2.2| 96.69 22| 97.24 241 97.24 241 97.24 24| 97.24 2.4
GCM 58.42 18.3| 51.58 74| 53.68 10.3| 57.89 10.9| 57.89 11.8| 60.00 13.4| 62.11 14.2
Arcene 68.00 46| 71.00 2.6| 70.00 3.7| 72.00 3.8| 73.00 4.3| 71.00 4.3] 69.00 4.3
Madelon 60.75 6.5| 61.65 2.0| 60.75 3.4 61.25 4.8| 60.25 5.9| 60.10 5.6 | 60.50 6.2
Dorothea 91.25 13.2| 94.25 3.0| 93.25 4.0| 93.38 5.0| 93.00 5.3] 92.88 5.3| 92.88 5.3
Dexter 76.00 13.8| 82.67 8.5| 81.00 10.1| 83.00 9.8| 82.67 9.7 | 82.67 9.8| 82.67 9.4
Gisette 94.05 26.9| 86.20 2.7| 88.47 6.4 90.77 10.8| 91.62 15.9| 9225 16.5| 9257 17.1
Geom. Mean| 78.51 71| 77.82 3.0| 78.16 3.8| 79.54 4.4 79.93 4.7 79.68 4.8| 79.85 4.9
Arith. Mean | 79.41 9.3| 78.96 3.5| 79.21 4.6| 80.43 5.3| 80.84 6.0| 80.55 6.2| 80.69 6.3
Test = I [ n] = nl = S n]
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Table 5.3: Results using Naive Bayes classifier, BARS seleatgorithm and CMIM-based re-ranking with block sizes B.

| DataSet | BARS | B=5 | B=10 | B=20 | B=30 | B=40 | B=50 |
Colon 8571 3.0] 79.03 35| 83.87 3.4 79.03 3.3] 77.42 3.1] 79.03 29| 79.03 3.0
Leukemia 90.54 23| 91.67 3.1| 93.06 3.3| 93.06 3.1| 93.06 3.1| 94.44 32| 9444 3.2
Lymphoma | 73.67 6.1| 71.88 8.3| 73.96 7.8| 79.17 92| 7813 91| 77.08 91| 79.17 95
DLBCL 76.00 24| 8511 3.1| 8511 3.3| 7447 3.4| 7447 36| 80.85 3.2| 76.60 3.3
Prostate 86.81 3.7| 76.47 40| 67.65 50| 6838 55| 7059 52| 7721 59| 7353 6.6
Lung 9836 3.0| 9558 3.1| 97.24 36| 96.13 3.7| 96.13 3.6| 96.13 35| 9669 35
GCM 60.00 15.9| 48.42 89| 55.26 11.4| 5526 14.0| 59.47 15.7| 60.53 17.2| 61.05 17.6
Arcene 7400 49| 76.00 46| 81.00 4.6| 8200 6.0| 7800 65| 83.00 7.3| 8500 6.7
Madelon 60.30 58| 61.00 27| 61.30 4.2| 61.05 6.3| 61.40 7.3| 61.20 89| 61.05 8.7
Dorothea 93.88 7.3| 93.88 6.3| 93.63 10.3| 9475 91| 9425 11.1] 9400 13.4| 9438 17.1
Dexter 82.67 12.8] 77.00 6.1| 84.67 12.8| 82.67 155| 83.33 155| 83.67 15.8| 84.67 15.2
Gisette 93.10 13.6] 87.05 3.8| 87.50 58| 88.98 7.5| 92.02 13.6| 92.28 14.3| 89.72 14.3
Geom. Mean| 80.29 54| 77.33 4.4]| 79.26 56| 7852 6.3| 78.94 6.8| 80.77 7.2| 80.41 7.39
Arith. Mean | 81.25 6.7| 7859 4.8]| 80.35 6.3| 79.58 7.2| 79.86 81| 81.62 87| 81.28 9.06
Test = =1 = =1 = =1 = NEE N =
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Table 5.4: Results using Naive Bayes classifier, I\W&Section algorithm and CMIM-based re-ranking with blocesiB.

| DataSset [ wss* | B=5 | B=10 [ B=20 [ B=30 | B=40 | B=50 |
Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts
Colon 80.6 3.8| 80.6 28| 83.9 3.0 823 3.2| 823 33| 823 3.3| 823 3.3

Leukemia 87.5 25| 875 20| 875 24| 875 24| 875 24| 875 24| 875 25
Lymphoma 76.0 8.8| 66.7 6.3| 75.0 76| 76.0 79| 77.1 8.0| 75.0 81| 77.1 8.2

DLBCL 85.1 19| 894 15| 872 16| 851 17| 851 17| 851 17| 851 17
Prostate 77.9 11.1| 721 41| 743 40| 77.9 56| 743 73| 721 78| 743 8.0
Lung 97.2 27| 96.7 22| 96.7 24| 97.2 27| 97.2 27| 97.2 27| 97.2 2.7
GCM 64.2 36.6| 54.2 12.3| 60.0 19.8| 62.1 21.4| 653 225| 64.2 244 647 27.4
Arcene 70.0 13.4| 70.0 35| 68.0 51| 70.0 6.8| 70.0 7.0| 70.0 7.8| 69.0 7.8
Madelon 59.9 13.3| 61.3 2.7| 60.9 48| 60.3 7.1| 59.8 8.0| 60.0 10.1| 59.6 11.4
Dorothea 93.5 74| 93.9 28| 941 36| 944 3.8| 94.0 43| 93.9 43| 93.8 4.5
Dexter 81.0 19.6| 81.7 11.9| 837 13.1| 83.7 148| 813 15.7| 83.0 15.2| 80.7 14.9
Gisette 94.7 112.6| 88.7 18.3| 92.3 41.3| 93.7 62.6| 93.9 69.5| 944 82.0| 94.1 77.2

Geom. Mean| 79.81 9.45| 7741 4.24| 79.34 552| 79.97 6.50| 79.81 6.94| 79.51 7.32| 79.59 7.49
Arith. Mean 80.6 19.5| 785 59| 80.3 9.1| 80.9 11.7| 80.6 12.7| 80.4 14.2| 80.4 14.1

Test = (! = (! = [} = [’ = 4 = 4
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Table 5.5: Results using Naive Bayes classifier, \WSSection algorithm and CMIM-based re-ranking with blockesi B.

[DataSet [ wss2 [ B5 [ B=10 | B=20 | B=30 | B=40 | B=50 |
Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts

Colon 83.9 28| 823 22| 855 22| 839 2.4 | 839 2.4 | 83.9 23| 83.9 2.3
Leukemia 87.5 20| 875 19| 875 19| 875 19| 875 19| 875 19| 875 2.0
Lymphoma 80.2 59| 729 47| 75.0 5.6| 80.2 56| 81.3 57| 78.1 59| 76.0 5.9
DLBCL 80.9 18| 87.2 15| 83.0 1.6| 80.9 1.7| 80.9 1.7| 80.9 17| 80.9 1.7
Prostate 78.7 7.0| 735 32| 757 34| 77.2 42| 80.9 47| 80.1 47| 83.1 4.8
Lung 97.2 24| 96.7 22| 96.7 22| 97.2 24| 97.2 24| 97.2 24| 97.2 2.4
GCM 59.5 19.9| 51.6 74| 53.7 10.3| 579 10.9| 57.9 11.8| 60.0 13.4| 62.1 14.2
Arcene 72.0 6.2| 71.0 2.6| 70.0 3.7| 72.0 3.8| 73.0 43| 71.0 43| 69.0 4.3
Madelon 60.5 8.0| 61.7 2.0| 60.8 34| 61.3 48| 60.3 59| 60.1 5.6| 60.5 6.2
Dorothea 92.9 6.3| 94.3 3.0| 933 40| 934 5.0 93.0 53| 92.9 5.3| 92.9 5.3
Dexter 83.0 12.9| 827 8.5| 81.0 10.1| 83.0 9.8| 827 9.7 | 827 9.8| 827 9.4
Gisette 94.1 30.7| 86.2 2.7| 885 6.4| 90.8 10.8| 91.6 15.9| 92.3 16.5| 92.6 17.1
Geom. Mean| 79.97 6.06| 77.82 3.01| 7816 3.81| 79.54 4.35| 79.93 4.72| 79.68 4.76| 79.85 4.85
Arith.Mean 80.9 8.8 | 79.0 35| 79.2 4.6| 804 5.3| 80.8 6.0| 80.6 6.2| 80.7 6.3
Test = vl o= V] o= V] = V| o= vl o= Y
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5.3 Experiments

The last two rows of the tables show the average value (agiicrand geomet-
ric mean) over the 12 datasets and the result of carrying lmuihbn-parametrical
Wilcoxon Matched-Pairs Signed-Ranks Tek2]] [23] between the original FSS al-
gorithm (second column) and the same algorithm with redirapfor each block size.
Statistical tests are performed with a confidence level ef 0.05, and the result of a
test is indicated in the corresponding cell asif there is no statistical difference, if
the re-rank algorithm returns a significantly larger valed | if the re-rank algorithm
returns a significantly smaller value.

As it can be observed, taking as input the averaged resudtsio® twelve datasets,
algorithms SFS, IWSS and IWSSr show that there is no differanaecuracy between
using re-ranking or not, while a significant reduction isasbéd with respect to the
size of the selected subset for all block sizes in algoritiiSS and IWSSr, and up
to B = 10 for SFS. The adapted BARS with re-ranking performs statilyicthe same
(in terms of both accuracy and number of selected attripatethe original BARS for
low block sizes.

Once it has been stated that the use of re-ranking does n@diethe quality of
the obtained output (on the contrary, it gets more compdusetds), let us study the
behaviour of the re-ranking algorithm in terms of wrappexleations (by far, the most
expensive ones). Tabte6shows the reduced % of evaluations and re-ranks carried out
by SFS, BARS, IWSS and IWS3vith Naive Bayes as classifier. The results shown are
for the 6 block sizes considered and averaged (arithmetigaametric mean) over the
12 datasets. As can be observed the reduction with respibet tmmber of evaluations
carried out is really impressive and the number of re-rargty 8mall. Resulting the
the proposed re-ranking algorithm proves to be a very optimaéce to improve subsets
compactness and evaluations complexity for at least theSAdigorithms tested.

A global comparison can be viewed in Fig&@ (note the log-scale on the Y-axis).

5.3.3 Re-Ranking Criteria

Once it has been shown that applying the CMIM-based re-rgngioposal to sev-
eral feature subset selection algorithms drastically cedihe number of evaluations,
maintaining the performance in terms of accuracy, and egdnaing the cardinality
of the final selected subset for low block sizBsit is now time to compare CMIM
with other criteria in order to find out if there is any diffee among them. Thus, 3
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Table 5.6: Mean number of evaluations and re-ranks perforer the 12 datasets.

#evals (arith.) | #evals (geom.)| %arith. %geom. | #re-ranks
B=5 45.43 55.93 99.98 99.91 1.53
B=10 120.03 156.24 99.94 99.75 1.84
B=20 264.76 338.38 99.87 99.47 1.84
B=30 442.74 621.43 99.79 99.02 1.97
B=40 565.14 821.40 99.73 98.71 1.78
B=50 699.00 959.81 99.66 98.49 1.63

SFS(arithm. 207470.28 evals., geom. 63691.78 evals.)
B=5 146.42 116.82 99.59 99.34 1.53
B=10 502.33 325.07 98.60 98.16 1.84
B=20 1012.50 626.37 97.18 96.45 1.84
B=30 1219.92 940.78 96.60 94.67 1.97
B=40 1614.92 1268.85 95.50 92.82 1.78
B=50 1801.17 1468.86 94.98 91.68 1.63
BARS (arithm. 35903.82 evals., geom. 17663.70 evals.)
B=5 18.33 15.97 99.90 99.82 2.47
B=10 40.83 33.60 99.79 99.63 2.98
B=20 81.67 66.62 99.57 99.26 3.03
B=30 113.75 95.10 99.41 98.95 2.76
B=40 152.00 126.61 99.21 98.60 2.78
B=50 185.17 157.43 99.03 98.26 2.68
IWSS? (arithm. 19175.92 evals., geom. 9027.88)
B=5 55.93 45.43 99.95 99.91 1.53
B=10 156.24 120.03 99.87 99.76 1.84
B=20 338.38 264.76 99.71 99.47 1.84
B=30 621.43 44274 99.47 99.11 1.97
B=40 821.40 565.14 99.31 98.87 1.78
B=50 959.81 699.00 99.19 98.60 1.63
IWSS? (arithm. 118242.93 evals., geom. 49877.48)

re-ranking methods will be compared:
1. CMIM.
2. MIFS.
3. MRMR.

Experiments are run again using the NB classifier and overat@sdts, reporting re-
sults of a 10 cross-validation in Talde?7, with block sizesB = 5 and B = 10.

Finally, Table5.8 shows the results of comparing all criteria re-ranking ithes
the original algorithm) for IWS5 IWSS, SFS and BARS by performing a Friedman
test [37] followed by a post-hoc Holm testP], as suggested ir2] and using the code

102



5.3 Experiments

Table 5.7: Results using Naive Bayes classifier, for re-rankeased on CMIM, MIFS
and MRMR criteria. Block size® = 5 andB = 10

[ Dataset | SFS [ cmmMs [ cMIMig | MIFS 5 [ MFS1o [ MRMRs [ MRMRio |
Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts
Colon 83.87 59| 85.48 24 | 82.26 3.9 | 83.87 2.7 | 82.26 4.2 | 85.48 21| 85.48 2.8
Leukemia 87.50 3.2 91.67 3.3 94.44 3.4 | 91.67 3.6 94.44 3.2 88.89 29 95.83 3.4
Lymphoma | 83.33 7.1 | 80.21 11.0 | 83.33 13.8 | 76.04 9.0 | 76.04 115 | 73.96 8.0 | 80.21 10.8
DLBCL 80.85 3.6 89.36 3.5 89.36 3.9 91.49 4.4 91.49 4.3 91.49 3.0 91.49 3.2
Prostate 75.00 54| 77.21 4.1 | 80.15 4.6 | 75.00 43 | 76.47 5.7 | 76.47 38| 77.21 4.5
Lung 93.92 25 95.03 3.6 96.13 3.1 96.13 3.4 96.13 3.0 95.58 2.8 96.13 2.8
GCM 58.42 18.3 | 55.26 179 | 56.32 18.5 | 65.26 19.9 | 70.00 245 | 50.53 13.2 | 51.58 10.5
Arcene 68.00 4.6 | 76.00 59 | 76.00 59 | 74.00 6.8 | 72.00 8.4 | 78.00 4.8 | 73.00 7.0
Madelon 60.75 6.5 | 61.25 3.5 | 60.80 42 | 61.25 24 | 60.75 3.7 | 61.25 2.4 | 60.75 3.7
Dorothea 91.25 13.2 | 92.75 6.6 | 92.63 45| 93.25 6.2 | 92.63 45| 93.25 45| 92.75 4.2
Dexter 76.00 13.8 | 87.00 15.8 | 87.67 18.5 | 80.00 12.0 | 83.00 13.5 | 75.00 6.4 | 80.67 7.7
Gisette 94.05 26.9 | 88.90 105 | 89.70 18.0 [ 90.83 16.7 | 89.70 15.8 | 88.00 9.0 | 88.10 11.2
Mean 79.41 9.3 81.68 7.3 82.40 8.5 | 8157 7.6 82.08 8.5 79.82 5.2 81.10 6.0
SFS
DataSet Iwss? CMIM 5 CMIM 1o MIFS 5 MIFS 19 MRMR 5 MRMR 19
Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts
Colon 80.65 3.8 80.65 2.8 83.87 3.0 | 80.65 2.8 83.87 2.9 80.65 2.7 83.87 2.9
Leukemia 87.50 25| 87.50 2.0 | 87.50 2.4 | 87.50 21| 87.50 2.4 | 87.50 1.8 | 87.50 21
Lymphoma 76.04 8.8 66.67 6.3 75.00 7.6 71.88 7.0 72.92 7.3 64.58 51 72.92 5.6
DLBCL 85.11 1.9 | 89.36 15| 87.23 1.6 | 89.36 15| 87.23 1.6 | 89.36 15| 87.23 1.6
Prostate 77.94 11.1| 72.06 4.1 74.26 4.0 73.53 4.5 66.91 4.3 70.59 3.2 70.59 3.9
Lung 97.24 2.7 | 96.69 2.2 | 96.69 2.4 | 96.69 2.3 | 96.69 24| 96.13 21| 96.13 2.2
GCM 64.21 36.6 | 54.21 12.3 | 60.00 19.8 | 65.26 149 | 60.53 18.9 | 49.47 8.9 | 48.95 8.7
Arcene 70.00 13.4| 70.00 3.5 | 68.00 5.1 | 73.00 4.4 | 73.00 7.4 | 74.00 3.1 | 73.00 4.9
Madelon 59.85 13.3| 61.25 2.7 60.90 4.8 61.15 3.0 60.65 4.7 61.15 3.0 60.65 4.7
Dorothea 93.50 7.4 | 93.88 2.8 | 94.13 3.6 | 93.50 34| 93.75 3.7 | 93.50 2.4 | 93.88 2.9
Dexter 81.00 19.6 | 81.67 119 | 83.67 13.1 | 84.00 10.7 | 83.33 125 | 72.00 5.1 77.67 53
Gisette 94.68 112.6 | 88.67 18.3 | 92.25 41.3 | 90.50 148 | 90.23 15.8 | 88.48 6.0 | 88.00 8.2
Mean 80.64 195 | 78.55 59 | 80.29 9.1 | 80.58 6.0 | 79.72 7.0 | 77.28 3.7 | 78.37 4.4
IWss?
DataSet IWSS2 CMIM 5 CMIM 19 MIFS 5 MIFS 1o MRMR 5 MRMR 10
Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts
Colon 83.87 28| 82.26 22| 8548 22| 82.26 2.0 | 8548 2.3 | 80.65 2.0 | 80.65 2.3
Leukemia 87.50 2.0 87.50 1.9 87.50 1.9 87.50 2.0 87.50 1.9 87.50 1.8 87.50 1.9
Lymphoma | 80.21 59| 72.92 4.7 | 75.00 56 | 72.92 57| 7813 51| 67.71 41| 72.92 4.8
DLBCL 80.85 1.8 87.23 1.5 82.98 1.6 | 87.23 1.5 82.98 1.6 87.23 1.5 82.98 1.6
Prostate 78.68 7.0| 7353 32| 7574 34| 7279 39| 7353 35| 7279 29| 74.26 31
Lung 97.24 2.4 96.69 2.2 96.69 2.2 96.69 2.2 96.69 2.3 96.13 2.1 96.13 2.1
GCM 59.47 19.9 | 51.58 7.4 | 53.68 10.3 | 55.79 9.1 | 61.58 125 | 48.95 6.5 | 47.37 8.3
Arcene 72.00 6.2 71.00 2.6 70.00 3.7 70.00 3.3 71.00 3.9 72.00 25 70.00 4.0
Madelon 60.50 8.0 | 61.65 2.0 | 60.75 3.4 | 61.10 21 | 60.55 3.6 | 61.10 2.1 | 60.55 3.6
Dorothea 92.88 6.3 94.25 3.0 93.25 4.0 | 93.50 3.7 93.63 5.0 93.75 3.8 92.63 3.9
Dexter 83.00 129 | 82.67 8.5 | 81.00 10.1 | 84.00 9.0 | 82.67 10.0 | 73.00 5.0 | 79.33 4.9
Gisette 94.07 30.7 | 86.20 2.7 | 88.47 6.4 | 90.10 10.8 | 90.02 9.7 | 88.28 5.8 | 88.38 7.1
Mean 80.85 8.8 | 78.96 35| 79.21 4.6 | 79.49 46 | 80.31 51| 77.42 33| 77.72 4.0
IWSS%
DataSet BARS CMIM 5 CMIM 1o MIFS 5 MIFS 19 MRMR 5 MRMR 19
Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts Acc #atts
Colon 85.71 3.0 | 79.03 3.5 | 83.87 3.4 | 82.26 3.1 | 8226 35| 82.26 29| 82.26 31
Leukemia 90.54 23| 91.67 3.1 | 93.06 3.3 | 91.67 3.0 | 91.67 3.2 | 91.67 22| 91.67 3.0
Lymphoma 73.67 6.1 71.88 8.3 73.96 7.8 73.96 6.8 75.00 7.9 69.79 5.5 71.88 5.6
DLBCL 76.00 24| 8511 31| 8511 3.3 | 82.98 2.8 | 93.62 34| 8511 24| 8511 2.8
Prostate 86.81 3.7 76.47 4.0 67.65 5.0 | 80.15 3.8 72.06 4.5 75.00 3.6 75.00 3.9
Lung 98.36 3.0 | 95.58 31| 97.24 3.6 | 96.13 33| 97.24 3.3 | 96.69 26| 97.24 33
GCM 60.00 15.9 | 48.42 8.9 55.26 11.4 | 55.79 10.8 | 66.32 12.9 | 48.42 6.9 | 46.84 7.2
Arcene 74.00 49 | 76.00 4.6 | 81.00 4.6 | 82.00 4.5 | 80.00 52| 77.00 4.8 | 79.00 4.2
Madelon 60.30 5.8 61.00 2.7 61.30 4.2 60.70 2.0 60.60 3.8 60.70 2.0 60.60 3.8
Dorothea 93.88 7.3 | 93.88 6.3 | 93.63 103 | 93.75 6.2 | 93.50 7.4 | 93.38 51| 93.75 53
Dexter 82.67 12.8 | 77.00 6.1 84.67 12.8 | 77.67 7.3 79.33 111 | 75.33 6.2 79.33 8.7
Gisette 93.10 13.6 | 87.05 3.8 | 87.50 5.8 | 88.42 5.8 | 88.69 8.6 | 88.55 6.3 | 87.77 8.1
Mean 81.25 6.7 78.59 4.8 80.35 6.3 | 80.46 5.0 81.69 6.2 78.66 4.2 79.20 4.9
BARS
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Figure 5.2: Number of Wrapper Evaluations for each selectigorithm and re-
ranking.

provided in 9]; the confidence level is set as= 0.05.

Friedman and Holm’s tests are run in two stages. At each stageontrol algo-
rithm is marked with the symbol, and algorithms found to be statistically worse than
the control algorithm are crossed out. The two stages are:

1. Tests are run comparing accuracy for all algorithms.

2. Tests are run comparing number of attributes selecte@faining algorithms.

The statistical tests shown in Talie8 always keep criterion CMIM withB = 5
as one of the best re-ranking criteria. Thus, this is one @ttiteria used in the next
section in order to compare the effect of re-ranking for ssveassifiers.

In case the reader is interested in the results for all blamkssand the three re-
ranking criteria, these are tabbed in Appendix
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5.3 Experiments

Table 5.8: Statistical Tests for different Re-ranking Créter

Stage| SFS | CMIM 5 | CMIM 19 | MIFS5 | MIFS19 | MRMR 5 | MRMR1g
Acc 79:41 81.68 ©82.40 81.57 82.08 79.82 81.10
Atts 7.3 85 76 85 5.2 6.0
SFS
Stage | IWSS2 | CMIM 5 | CMIM 19 | MIFS5 | MIFS19 | MRMR 5 | MRMRyq
Acc 80.64 78.55 ©80.29 80.58 79.72 7728 78.37
Atts 195 5.9 91 60 70 4.4
IWSS?
Stage | IWSS2 | CMIM 5 | CMIM 19 | MIFS5 | MIFS1o | MRMR5 | MRMR1g
Acc | 80.85 | 78.96 79.21 79.49 80.31 7742 7772
Atts 88 3.5 46 46 51
IWSS?2
Stage | BARS | CMIM 5 | CMIM 1o | MIFS5 | MIFS1, | MRMR 5 | MRMR1g
Acc 81.25 78.59 8035 80.46 81.69 7866 79.20
Atts 67 4.8 63 5.0 62 4.9
BARS

5.3.4 Re-Ranking Comparison Among Classifiers

In this section, the effect of re-ranking I’.55? and/W S S? is tested across different
classifiers, using CMIM as criterion. Since the search allgors used in comparisons
are wrapper-driven, and in the following experiments thessifier is changed, it is
interesting to test again all block sizes from 5 to 50.

Results for each database are not tabbed anymore, but theah#enaccuracy
and of the number of selected attributes obtained by thesponding classifier across
the 12 databases are. The classifiers used in the experiarentslave Bayes, c4.5,
ibK(k=1), Support Vector Machines (LibSVMLP]), Multi Layer Perception (MLP),
Tree Augmented Networks (TAN) and AODE; using for all of théme implementa-
tion provided by Wekal23. Results for each database can be found in AppeBdix

When a cell is filled in as “~”, it means that the experiment dawt finish after a
(pre-fixed) very long execution time (commonly with GiseidteDorothea databases).
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Table 5.9: Results, for different classifiers, using IW8&h CMIM-based re-ranking with block sizes B.

Classifier | IwsS®> | B=5 | B=10 | B=20 | B=30 | B=40 [ B=50 |
Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts
NB 80.64 19.48| 78.55 5.9 80.29 9.1| 80.85 11.7| 80.64 12.7| 80.38 14.2| 80.44 14.1
c4.5 80.70 13.8| 79.32 5.4| 80.34 6.8 | 81.08 8.4| 81.36 9.2| 80.87 9.8| 80.94 10.6
ibK 85.01 19.9| 82.01 7.0| 82.53 95| 82.71 12.7| 83.91 13.7| 84.42 14.0| 84.40 15.2
SVM 71.28 7.19| 70.82 2.8| 71.69 35| 71.33 41| 71.42 44| 71.43 43| 71.62 4.4
MLP - - | 81.23 6.7| 81.51 7.6| 81.48 8.6| 81.37 9.4| 81.13 9.3| 81.75 10.5
TAN 82.73 17.9| 81.39 6.7 | 82.38 9.0| 82.55 12.1| 83.43 13.3| 84.10 13.7| 84.15 14.4
AODE 85.76 17.36| 84.96 7.1| 86.23 9.3| 86.47 12.5| 86.21 12.2| 86.22 13.4| 86.26 13.8

Table 5.10: Results, for different classifiers, using IW&8h CMIM-based re-ranking with block sizes B.

Classifier | iwss2 |  B=5 [ B=10 | B=20 | B=30 | B=40 | B=50 |
Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts

NB 80.85 8.83| 78.96 35| 79.21 46| 80.43 5.3| 80.84 6.0| 80.55 6.2 | 80.69 6.3
c4.5 80.16 9.1| 79.21 3.7| 79.73 4.4| 80.26 5.3| 80.45 5.7| 80.76 5.9| 80.84 6.4
ibK 82.05 8.8| 82.79 49| 81.89 6.3| 82.76 7.3| 82.24 8.6 | 82.65 8.9| 82.69 9.5
SVM - — | 70.95 23| 71.82 29| 71.22 3.3| 70.61 3.4| 70.85 35| 70.79 3.5
MLP - — | 80.51 4.2| 80.10 4.8| 80.95 5.6| 82.25 58| 81.74 6.1| 81.44 6.1
TAN - — | 81.09 4.2| 8237 5.8 | 82.60 7.0| 83.73 78| 84.34 8.4 - -

AODE 86.64 9.5| 84.31 44| 85.57 5.8| 85.92 6.2| 86.34 7.3| 85.93 7.1| 85.54 7.9
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5.4 Conclusions

Results shown in Tablés9and5.10present one clear conclusion: the addition of
the re-ranking criterion makes it possible to run algorghitvSS and IWSS$ for alll
tested classifiers, while the original algorithms cannotdapleted (in limited time)
for all databases for complex classifiers (SVM, MLP and TAN).

Statistical tests are not run over the results since alk ee# not completed, but it
is easy to find a similar tendency to those in Tallesand5.5. the larger the block
size, the greater the accuracy and the size of the subseteskére, but statistically all
of them seem equals to the original algorithm in terms of ey but better in terms
of size of selected subset. Regarding the classifiers’ paebce, it seems that AODE
gets the best accuracy but pays for it by selected subsatdeofore cardinality than
most of the other classifiers.

5.4 Conclusions

This chapter has proposed a generic re-ranking algorithrahadan be applied to in-
cremental FSS algorithms. The idea behind re-ranking isdbme features which
are ranked at the end of the ranking used by the correspomirgmental FSS algo-
rithm might become more relevant after the algorithm hasctetl some features from
the beginning of the ranking. Thus, adding the re-rankirgppsal to an incremental
FSS algorithm lets these features come to earlier positiotie ranking, besides rel-
egating features which are not relevant anymore after seateife has been selected.
Furthermore, a stop-criterion has been proposed whiclegdyfsuits the re-ranking
proposal.

The re-ranking algorithm has been implemented with 3 dffére-ranking filter
criteria, 4 different FSS algorithms and 7 classifiers. Expents and statistical tests
prove that the re-ranking methodology drastically redubesnumber of evaluations
necessary, besides reducing the cardinality of the selesttbsets while maintaining
the accuracy obtained.
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Chapter 6

Distribution-based Balance of Datasets
In E-mail Foldering

6.1 Summary

A frequent problem found in databases coming from real lderses is the lack of
balance among classes. There exist several methods te thtkkkewness, of whom
this Chapter introduces a review and, besides, a new familgethods is presented:
Distribution-basedbalancing algorithms, making comparisons and experimasis
ing them and another state-of-the art method, on real lifaldeses: ENROM e-mail
foldering.

6.2 Introduction

This Chapter deals with databases representing e-mail daasmThus, notation is
changed respect to past chapters; thnstancesare also referred to asocuments
and consequentlgttributeswhich form the instance vector are referred taesns
Finally, the value of a term depends of the kind of represemtaof the documents:
where the most common case is to represent documents byefreguthat is, the
value of an attribute or term is the frequency such term ajspeahe corresponding
instance or document.

Imbalance appears in a dataset when the proportion of dausreab-concepts
among classes/within-classes is very unequal. This hasdeemmon problem in au-
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tomatic classification but it has not been properly tackletl the recent appearance
of highly skewed huge databases coming from real life saufceages, medical di-
agnosis, fraudulent operations, text...and some oth@ocay. In these databases the
need for some preprocessing in order to alleviate the imioal@roblem is a priority
[17].

The degree of imbalance or skewness refers to the ratio athengumber of doc-
uments from different classes. Thus, having a binomialsglagatio of 1:100 would
mean that the dataset contains 100 documents tagged withajogity class per each
document tagged with the minority class. This problem ismewerse when a class
presentsabsolute rarity[118], an expression used to refer to the lack of data to prop-
erly learn a predictive model for such a class. From theditee we can learn that
when dealing with skewed data, the major problem is not tHelemce itself, but the
overlapping between classes or disjunét3 B7]. This problem is known aketween-
class imbalanc¢50] and is the type of imbalance dealt in experiments in this @&rap
Thus, experiments in Sectidh3 are expected not just to balance classes but also to
remove between-class overlapping in the space region.

The imbalanced data problem can be approached from twaeiff@oints of view:
algorithm-levebr data-level Algorithm-level solutions are classifier-specific and-con
sist in the introduction of a specific bias in the learned nh¢d& 63; 65; 91]. Data-
levelsolutions are more popular and consist indh@iori modification of the training
set [L2; 16]. One way to do the former is by means of adjusting the degfr@apmor-
tance of each ternv[l] or just selecting some of them3d. Alternatively, and this is
the topic this Chapter focuses on, one can modify the traidatg in order to balance
it, by sampling from the original dataset.

Sampling-based balancing techniques can be divideaireosamplingandunder-
sampling although a combination of both can also be used. Besides#rngpling can
be performed in airected(intelligent) orrandomway. Over-sampling a training set
consists in creating new samples (from minority class) aidireg them to the train-
ing set, it being optional whether to remove the original gkes or not. On the other
hand, under-sampling chooses (in a random or directed veayples belonging to the
majority class and then removes them until the desired baleachieved. Directed
under-sampling is expected to remove documents of majoldys(es) from regions
which belong to minority class(es), while directed ovempéing is expected to repro-
duce more records of the minority class(es) and thus to défeneegion of that(those)
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class(es). Random under- and over-sampling only has the fabaancing the train-
ing set, without taking care of removing important recoi®ampling approaches were
compared in 49] and the conclusions state that over-sampling and undeplgag
perform roughly the same and, moreover, directed samplohgat significantly out-
perform random sampling. Later, in 2002 the well-known SNECAIgorithm was pre-
sented [6]. SMOTE is a combination of over and under-sampling whog#iegtion
results in an improvement in the accuracy for the minorigssl Anyway, the current
situation is that no final word has yet been said about whatoagp is best17].

Another aspect that must be taken into account is the fattntlost of the ap-
proaches to the imbalanced data problem found in the lisratfers to the problem
of having abinomial classwhile the contribution in this Chapter faces withmaulti-
class aggravated by the fact of having a large number of possibleommes for the
class variable. This point makes it difficult to transforre thulti-class problem into a
binary one 16|, because the large number of (binomial) models to be |ebneavily
increases the time and space requirements of the process.

All the studies found in the literature which work on imbatad multi-class datasets
are very recent, for bothlgorithm-leve[1; 131] and data-leve[72; 11( solutions. At
the moment, there are no clear statements about what ingeakoiution performs
best, and including the multi-class paradigm adds a new ity level. However,
one may find that this case is more realistic when the probdekidd is related to text
categorization, as this Chapter aims.

6.3 Methodological Contributions: Distribution-based
balancing of multi-class training sets

The approach presented here to deal with imbalanced datsésiton a two step pro-
cess: (1) for each predictive attribute or tetyw = 1,...,r and for each class state
¢;, learn a probability distributior(¢;|c;); and (2) for each class statg, sampleb

full instances$ (f1, ..., f., ¢;) by using the- previously learnt probability distributions
P(tilc;), i = 1,...,r. Itis clear that if we sample the same number of instances for
each class state, then we getatificially generated balancediining set. Therefore,

INotice that a full instance contains the frequerfeyf termt; in the sampled document plus the
class the document (e-mail) belongs to.
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taking into account the concepts introduced in the prevgmetion, our method be-
longs to the category afata-basedlgorithms that combinander-andover-sampling
with total replacement of the training set.

As mentioned in SectioB.2, the problems when dealing with imbalanced data
come not only from the fact of having skewed data but also foetween-class over-
lapping. It is expected that in many cases the contributi@sented Distribution-
based balancing of multi-class datagetan manage these two problems simultane-
ously. The idea is that when learnidg(¢;|C’ = ¢;) we are trying to represent class
statec; by termt,. If ¢; is a majority class state, then when the distribution is dadtp
the probability of producing outliers is small, and so, thelability of invading other
class states also decreases. On the other hangdjsfa minority class, as we learn
its concept for each term independently, the noise comiogy fother class states is
removed, and because we propose to sample the same numdréifiofal instances
for each class label, then its corresponding concept withbee clearly defined with
respect to majority classes. In this reasoning, it is assuimgt no disjunction exists,
that is, that, in general, a class state does not cover eliffesub-concepts and so the
concept can be represented by a uni-modal distributionisjfidctions exists, over-
lapping among classes cannot be removed and so our propdsainect the skewed
problem but not between-class overlapping. However, agsamis that the existence
of class states corresponding to different sub-conceptsre likely to exist in bino-
mial problems, while itis not so frequent in multi-classiplems. Experimental results
confirm this expectation.

In short, this proposal performs several tasks over thaitrgiset in a single pro-
cess:

Over-samples classes with less tibatocuments.

Under-samples classes with more thhadocuments.

Reduces over-lapping among classes.

Fully balances all classes.

Figure6.1shows the general scheme of the proposed distributiordizdgerithm.
As it can observed there are two clearly differentiatedsstégarning and sampling. At
learning time a probability distribution for each péierm,class stajds learnt from the
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unmodifiectraining set (corresponding to the current split of thedetion) projected
over the term and the cIasQf’“C). Then, at sampling time all the distributions learnt
for a class state are used to build (by sampling the correBpgrone for each term in
turn) each one of thedesired documents for such a class state. This samplinggsoc
is repeated for all the class states in order to get a balam¢édial training set.

In Dy training setC class variable
|V | = r the number of terms/featurds#new.instances to sample per class,
Out newDj, whole new and fully balanced training set
/* learning phase */
1 foreach class, € C do
for each term/featurg, i =1,...,r do
learn probability distributiorP;;, from D,ﬁt“c
/* sampling phase */
newDy, < 0
for each class, € C do
for p=1 tob do
newDoc = new double[r+1]
for each term/featurg, i =1,...,r do
newDocli] = sample value fron®;;
10 newDoc[r+1]=; //add class label
11 newDy = newDy, UnewDoc
12 returnnewDy,

w N

© 0N O O b~

Figure 6.1: Distribution-based balancing algorithm.

Of course there are some degrees of freedom in the previgastam: the num-
ber of documents to be sampled for each class and (mainlyRitideof probability
distribution used to model the training set. Experimentstiigs contribution are in-
stanced with four different probability distributiongniform, Gaussian, Poisscend
Multinomial

e Uniform Distribution. There are several works in the literature (e4$]] which,
using binomial classes, conclude that there is not muchbréifice whether sam-
pling by using information extracted from the learning datanot. Sampling
(almost) without using information about the training sahde modeled by
learning a uniform distribution. In this way the only infoation we collect is
the maxvalue found for ternt; restricted to those samples belonging to class
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c,. Later, in the sampling process an uniform number is geeérnatthe inter-
val [0, mazy;). This distribution is used as a baseline threshold to aeatlye
advantages of the more informed ones.

e Gaussian Distribution.

The univariate Gaussian distribution assumes the frequgnaf term¢; condi-
tioned to class state, as follows:

2
flti= ;) = e {—%} |
Thus, learning a univariate Gaussian Distribution coasgtply of computing
the mean and standard deviation of frequencies for tefram data restricted to
class state,. Sampling from a Gaussian distribution can be done, for gam
following the well known Box and Muller method (see for exam[il4], chapter
2).

It should be pointed out that whenever the sampled valuessstlean O, it is set
to 0 since we are working with frequencies and negative gainake no sense
for the case of work (text documents).

e Poisson Distribution. As pointed out in $8] “if we think that the occurrence
of each term is a random occurrence in a fixed unit of space &.length of
document), then the Poisson distribution is intuitivelitadole to model the term
frequencies in a given document”. Because of this, the Poisgmlel has been
investigated in the information retrieval community angblég to text classifi-
cation p8]. Thus, it is expected to be a good alternative to be consdlésr
distribution modeling in our balancing algorithm.

The Poisson distribution assumes the frequef)af termt, as follows:

e_A)\fj

P(t; = f;) = X

(6.1)

where)\ is the mean.

Therefore the learning step is simply a matter of computingtermt; restricted
to class state,. Sampling from a Poisson distribution is also a well-known
process (see for exampl@q], chapter 2).
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e Multinomial Distribution.

Following the generative distribution from the Naive Bayesltihomial Model

[57] described in formul®.2', and once we have learnt the term distribution by
class following expressiof.3, we are ready to generate as many documents as
the parameter indicates.

P(de;) = P(di])|d, |'H ““’f 6.2)

1+ SSPV A Py |dy)
V| + 30 S M Pl ds)

P(tilc;) = (6.3)

M;; being the number of times that terimappears in document, » = |V| the

size of our vocabulary,D| = m the number of documents to classify ajal

the length of document Notice thatP(c;|d;) in equation6.3is simply 1 if the
instance corresponding to documehtis labeled with class; in the dataset,
and 0 otherwise. Equatidh2assumes independence among terms, which is not
realistic in real databases. Besides, this assumption getsmeore troublesome

in the multinomial model§4] because it assumes not just independence among
different terms but also among various occurrences of theegarm.

In this case theP(|d;|) distribution is assumed to follow a Poisson distribution,
Equation6.1, which is unidimensional and independent of the class. Sihéy
estimation of the parametaras the mean number of terms in a document, that is,
the mean length of documents, we can simulate the numbemo$ i@ a newly-
generated document. Once the number of terms is given, e gre picked in
the generated document by simulating the probabilifiés|c;) as many times

as the number of terms has been indicated by the Poissoibdisin.

So, in the structure of the algorithm shown in Fig6r#& the changes are:

(1) Values to compute ark and the probabilities for each term given the class
following expressior6.3.

Where|d;| stands for number of words in documeft P(|c;) stands for the probability of
finding term! having frequency; in a document belonging to class
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(2) Each term will have the value representing the timesithaas drawn fol-
lowing the Multinomial distribution”(¢,|c;) according to the length of document
generated following a Poisson distribution.

6.4 Experiments on Text Categorization

This section presents an experimental study over e-maiéfoig using the proposed
distribution-based balancing method. It should be empldsihat this experiment is
directly related with e-mail foldering and because of theureof this problem, per-
haps the conclusions here obtained can be extended torsprolalems, that is, those
having a class variable with large cardinality and numéreaaables as predictive at-
tributes. For the sake of completeness, apart from usinggonoach instantiated with
Uniform, Gaussian, Poisson and Multinomial distributioiigs also considered the
well-known SMOTE algorithm, but slightly modified to dealttvimulti-class datasets.

6.4.1 Obtaining datasets: from text e-mails to a structured dataset

The main differences between standard classification addckassification are: the
need for preprocessing the unstructured documents in twdestain a standard data
mining dataset (bi-dimensional table) and the usuallydargmber of features or at-
tributes in the resulting dataset. Two other importantedéhces with respect to stan-
dard text classification tasks are the large number of statése class variable, and
the usual presence abisein the training set, due to the fact of (almost) all users of
e-mail, even having defined topical folders, later tend ®dimails belonging to dif-
ferent concepts into the same folder. This experimentssieswn thebag-of-words
model, that is, a document (mail) is regarded as a set of warrdsrms without any
kind of structure. The selection of the documents and terras the vocabulary”)
used in this study follows the preprocessing described]in [

e Documents: Non-topical folders (inbox, sents, trash, etc.) and foddeith only
one or two mails are not considered.

e Terms: Only consider words as predictive attributes (MIME attaehis are
removed) and no distinction is made with respect to wherevitrel appears (e-
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mail header or body). Stop-words and words appearing ordg amne removed.
After that we denote the size dfas|V| = r.

e Class: The folder hierarchy is flattened and each one of the regufbiders
constitutes a class label or state.

The representation of documents is also an important iSheemost typical repre-
sentations aréequenciesandtf-idf. The former represents a document using a vector
which contains the frequencies in that document of termsnrgghg to a predefined
bag-of-words or vocabulary. The latter also uses a vectiintthis case the position
of each term represents a mix of the frequency in that doctiarehits frequencies in
the rest of the documents. Other not so usual represerdai@n-grams| 7], hyper-
nyms[103, entities [L27], etc. The current literature is not able to say which repmnes
tation performs best, so the decision still depends on tke sader study and the type
of input accepted by the classifier used.

For the sake of completeness, in this experiment two difttkends of represen-
tations are used for the dataset. In particular, the vedtorodel is used to represent
documents, thus, after using information retrieval teghas [L01] to carry out the
previously described preprocessing, the datasets can dsrvalol as bi-dimensional
matricesM [numDocs, numTerms], whereM i, j] = M,; is a real number represent-
ing (1) the frequency of appearance of ternn document; or (2) the tf*idf values
normalized by the cosine function.

6.4.2 Test suite

As in [8; 61], datasets used correspond to seven users from the ENR@Nsc@mail
from these users and a temporal line in increasing order eadolwnloaded from

http://www.cs.umass.edufonb). The downloaded data was preprocessed according

to the process described in Secti®d.1 To do this it was necessary to code a home-
made program in Java, and design it to interact Witheneinformation retrieval APY
and to output a sparse matri{[numDocs, numTerms| codified as anarfffile, i.e.,
a file following the input format for the WEKA data mining su[te23.

Table6.1 describes the main characteristics of the datasets oltaire last two
columns are intended to show the degree of imbalance in ttasets. As in110Q,

http://lucene.apache.org/who.html
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(basegpealk is shown, wherdaseis the number of documents of the minority class
andpeakis the number of documents in the majority class. Howevas, éxpected
that this measure is not sufficiently representative of #grele of imbalance because
it represents different distributions in the same way,, €1g100) is valid for{1, 100}

or {1,100, 100,100} or {1,100, 1,100, 1, 100}, which clearly represents different de-
grees of imbalance. Because of this a new feature is added ttettription: g,0), i
being the mean of documents per class anlde standard deviation of the meanis
found to be a very informative value concerning the imbatamesent in the dataset.
A clear indication of the degree of imbalance in the probleralte-mail foldering) is
that in the seven users (datasets) considered, the staeldaadion is greater than the
average. Besides this, it is also computed the kurtosis ddgreeach dataset, which
in this case represents the degree of concentration of th@uof documents per
class around the mean number of documents per class. A gehpépresentation of
the imbalance in datasets is shown in a Box and Whisker plogsi{€6.2), where the
inputs used were the number of instances per class state.

Table 6.1: Instances, Classes, Attributes, and degree @llante in the datasets

’ H #l ‘ #C ‘ #A. ‘ (base : peak) ‘ ((T==x2)) ‘ Kurtosis ‘
lokay-m 2489 11 | 18903 (6:1159) | 226.3+316.3 2.75
sanders-r 1188 30 | 14463 (4:420) 39.6+75.6 17.05
beck-s 1971 | 101 | 13856 (3:166) 19.5+24.5 13.08
williams-w3 || 2769 | 18 | 10799 (3:1398) | 153.8+379.4 4.10
farmer-d 3672 25 | 18525 (5:1192) | 146.9+255.5 7.77
kaminski-v 4477 41 | 25307 (3:547) | 109.2:141.9 1.66
kitchen-I 4015 47 | 34762 (5:715) 85.4+122.8 11.75

6.4.3 Experimental design

The goal is to study whether the classifiers, specially NBages Multinomial (which
is designed for frequencies representation), perfornebatfter balancing the datasets.
To be more confident in our conclusions, a statistical amalgscarried out in which
we compare the results with and without balancing, and arashis also made with
the results obtained using different classifiers. The expents deal with the following
actors

e Balancing algorithms. To balance the training sets the proposed method is
instantiated with the four mentioned distributions: Unifp Gaussian, Poisson
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Figure 6.2: Graphical representation of the imbalanceakegrthe seven e-mail users.

and Multinomial. For comparison, it is also considered SNEQT6]. SMOTE

was initially proposed by its author for binomial classed gerforms the bal-
ancing by sampling synthetic documents from a minority <lasa given per-
centage, and then randomly under-sampling as many magasg documents

as desired. To apply SMOTE in a multi-class problem, it isassary to select
the number ) of documents to re-sample for each class and apply SMOTE to
over-sample, without replacement (the SMOTE algorithmsduat perform re-
placement), all classes with cardinality lower thieumtil obtainingb documents

for those classes; then, for classes with cardinality éyénere is to randomly
remove as many documents as necessary to get cardimality

e Document representation. Documents have been represented by using fre-
quencies and tf*idf. Computation of tf*idf is done incremaihy, that is, trying
to reproduce the fact that we have a dynamic problem and riatia sne, where
tf*idf can be computed at the beginning by using all the ala# information.
In this case the classifier should categorize incoming dsnagithey are down-
loaded into the user inbox folder. So, when testing usingtrased split eval-
uation (see Sectidn2.]), test e-mail should be represented with a tf*idf value

119


figuras/boxWhisker.eps

6. DISTRIBUTION-BASED BALANCE OF DATASETS IN E-MAIL
FOLDERING

where the idf part is computed using the training set andetestils from0 to
i — 1, instead of using al test documents, since documents 1 to s are not
supposed to be in the inbox folder yet. In this way, increraktinne-based split
validation needs more time but is more realistic.

When balancing is carried out by learning any of the distrdng presented in
Section6.3 the parameters neededdz, 11, o, A) are computed using frequency
representation, and then the new training set is samplédistig frequencies
representation. Thus, tf*idf conversions are performeerlevhen training and
testing the classifier.

e Classifiers. The three different classifiers used are commonly consitiethen
dealing with text categorization problems: Naive Bayes Malhial (NBM)
[78], Support Vector Machine (SVM)[0] andk-Nearest Neighbork{NN) [30].

For NBM it was used the implementation provided in the WEKA ARir SVM,

it was used the implementation available in WLSVRA], which can be viewed
as an implementation of the LibSVM.§] running under WEKA environment.
For k-NN, an own implementation was coded by using WEKA API. Diffietr
values ofk were tested and two distance metrics: Euclidean and Cosfe di
tances. Only the results for the best configuration foundshosvn: k=15 and
the Cosine distance which is also the standard similarityimigt text, and it is

—> —>
u-v

computed bysim(u,v) = i = \/Zgjz}?’fi:;@ — Wheren is the number of

dimensions (attributes) of each vector afydthe value of dimensionin vector
(documentu.

Having the previous setting in mind, three different exmemts are to be run:
Experiment 1.-To compute the baseline against which to compare, an incrine
time-based split evaluation is ran on each user in Tadlavithout balancing. With
respect to the value afin the time-based split evaluation, in all the experimeatsied
out it has been used the value recommended in Bekkerman’s thattks, the number
(s) of e-mails to classify in each split i€)0. The three mentioned classifiers were ran
for both types of document representation: frequenciestfitd. SVM performed
statistically the same in both cases so from now on it is ohlgws its results for
tf*idf, which is the configuration suggested in the litenatu For k-NN, only results
are shown for tf*idf because that is the configuration whictalfiy obtains the best
results. Finally,for NBM results are shown for both repréagons: frequencies and
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tfxidf. The results are tabbed in Tab&2 where each entry represent the accuracy
averaged over all the folds tested in the time-split valadaprocess.

Table 6.2: Baseline accuracy for 7 e-mail users.
] | NBMireq | NBMtfidf | SVMtfidf | k-NN tfidf |

lokay-m 75.27 63.65 79.12 39.54
sanders-r 55.51 48.90 66.20 35.97
beck-s 28.26 17.60 36.87 9.00
williams-w3 91.69 88.87 90.52 86.06
farmer-d 69.64 55.34 73.98 37.63
kaminski-v 45.61 34.75 54.26 9.92
kitchen-I 32.19 34.44 51.10 14.28
Mean 56.88 49.08 64.58 33.20

Experiment 2.4n this experiment a test is made for the effects of our prapdbat
is, instead of learning the classifiers from the originabdat, they are learnt from the
artificially balanced dataset. Because of the randomnesxlinted by the sampling
process,each balancing algorithm is ran five times and slievaged results. In all the
cases the number of document® sample per class is set to 30. Talle3and6.4
show the results obtained. Each entry in the tables repiefiem accuracy averaged
over all the folds tested in the time-split validation andniog from the five indepen-
dent executions. Comparison between baseline algorithatdg®.2) and balancing
algorithms was done by using a Wilcoxon signed rank 3t 121] («=0.05), taking
as input the time-split values from the corresponding etsssifier. When the bal-
anced user-classifier is found to be statistically betten tihe baseline (not balanced),
ae is placed inside its corresponding cell.

Table 6.3: Results when balancing with the SMOTE algorithm.

NBM freq | NBMtfidf | SVMtfidf | k-NN tfidf
lokay-m 67.94 67.72 68.82 ©57.79
sanders-r 07221 ©73.28 59.59 ©69.82
beck-s 045.41 045.49 42.80 039.86
williams-w3 87.20 74.43 87.75 64.84
farmer-d 61.21 44.70 72.77 37.15
kaminski-v 43.22 042.42 49.65 034.85
kitchen-I 35.92 038.54 49.72 032.68
Mean 59.02 55.23 61.59 48.14

Table6.5shows a paired comparison between each two kinds of baaneathods
over the four classification methods used (NBM freq, NBM td&W¥M tfidf and k-NN
tfidf). Comparison is in the form — y — z, wherex stands for#beats, y stands for
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Table 6.4: Results when balancing with the proposed digtabtbased algorithm.
y || NBMfreq | NBM tfidf | SVMtfidf [ k-nntfidf |

lokay-m 52.02 59.20 36.70 49.24
sanders-r 59.33 68.78 71.99 66.60
beck-s 043.32 048.76 39.93 043.13
williams-w3 63.56 66.44 46.42 38.81
farmer-d 52.05 51.38 35.29 046.31
kaminski-v 40.69 ¢51.80 28.72 049,52
kitchen-I 33.11 042.05 26.11 37.18
Mean 49.15 55.48 40.74 47.26
(a) Uniform Distribution
lokay-m 70.77 e71.51 47.58 55.95
sanders-r 72.39 ¢75.23 74.79 076.02
beck-s *45.88 ©50.55 044.33 ©45.00
williams-w3 84.27 80.78 81.50 77.22
farmer-d 67.11 64.15 65.93 e54.41
kaminski-v 52.02 ©56.68 55.39 52.20
kitchen-I 38.72 046.45 37.24 34.66
Mean 61.59 63.62 58.11 56.49
(b) Gaussian Distribution
lokay-m 70.68 ©73.20 69.95 ©60.35
sanders-r ¢75.40 ¢75.88 57.09 074.09
beck-s 45.17 ¢48.53 41.17 44.05
williams-w3 88.93 77.96 85.62 66.65
farmer-d 65.87 55.25 68.28 048.72
kaminski-v 46.54 ©49.36 45.67 45.07
kitchen-I ¢37.10 41.92 39.95 38.44
Mean 61.39 60.30 58.25 53.91
(c) Poisson Distribution
lokay-m 70.01 072.41 67.94 061.25
sanders-r 74.97 074.84 55.30 ¢71.66
beck-s *45.09 ©49.33 40.48 ©46.19
williams-w3 89.03 78.86 85.47 66.72
farmer-d 63.22 54.49 70.25 047.55
kaminski-v 44.48 047.49 46.10 042.34
kitchen-I 35.84 041.57 40.00 037.34
Mean 60.38 59.86 57.93 53.29

(d) Multinomial Distribution
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#ties andz stands for#loses. For example, in the first cell, the comparison 15-5-8
means that the SMOTE method performed statistically b#tger the Uniform Distri-
bution method 15 times, statistically the same 5 times asdokeaformed statistically
worse 8 times.

Table 6.5: Paired comparison between balancing methods.
] || Uniform | Gaussian| Poisson | Multinomial |

SMOTE 15-5-8 6-7-15 4-7-17 4-11-13
Uniform 2-3-23 3-8-17 3-10-15
Gaussian 13-11-4 14-10-4
Poisson 10-16-2

Experiment 3.Finally a study is carried on to measure the effect oh the perfor-
mance of the distribution-based balancing algorithms. fdhas is on a representative
case as is the case of using the Gaussian distribution fanbialg, the NBM classifier
and tf*idf document representation. This configuration veasusing values fdo from
10 to 60, and the results are shown in Figaré
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Figure 6.3: Different values fdy using NBM and tf*idf docs. representation.

6.4.4 Discussion of Results

Experiment 1: baseline Table6.2 shows the results obtained after performing time-
based split evaluation on seven users from the Enron Corpih®uwtipreprocessing
that instances set. Results show, as8j fhat SVM-tfidf outperforms by far other
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common classifiers such as NBM. Users with worst results argetlwith a lowelkr
value in Table5.1, which also corresponds with the higher cardinality of slaBhus,

it is found in this dataset that high class cardinality lead®w standard deviation in
the number of documents per class, and this is an indicatdassifiers’ performance
on such databases. We can also seehiliamsgets a very high performance so it is
not an easy target to improve.

Experiment 2: balancing Table6.3 presents the results obtained when balancing
training sets using thEMOTEmethod, and Tablé.4 shows results for the proposed
distribution-based balancing methods. Both tables includsymbol when the algo-
rithm associated to a cell performs statistically bettanths corresponding cell in the
baseline in Tabl&.2. Finally, a pairwise comparison between balancing meth®ds
presented in Tabl6.5.

SMOTEDbalancing proves to be a good choice for preprocessing skdatasets.
Its results outperform the baseline for some users, spetmalNBM-tfidf and k-NN-
tfidf classifier configuration. On the other hand, SVM onlysggatistical improvement
in one user and it even decreases in some others.

The proposed distribution-based methods can be classsi@ha random (Uni-
form) and three directed (Gaussian, Poisson and MultingniR&sults for Uniform re-
sampling are the worst although several statistical imgmoents are achieved. Com-
paring Gaussian, Poisson and Multinomial re-samplingobkihg at Table5.5 con-
clusion is that a reasonable order from best to worst couldb@ssian > Poisson >
Multinomial > Uniform. In particular, the best choice seems to be Gaussian bal-
ancing with the NBM classifier and tf*idf representation. fh@rmore, as happens
when usingSMOTE the SVM classifier does not get real improvement after walan
ing, thus indicating that SVM is strong in imbalanced sitmasg, so performing re-
sampling, at least in the case of using our methodsSIM®TE does not provide any
improvement and even worsens the learning stage. Thishomaites a study byb[l]
which concludes that SVM is robust against imbalanced de&tasFinally, compar-
ing random and directed re-sampling, it is found supportlierpersonal hypothesis
which expected that directed balancing alleviates thelappmg problem. Moreover,
this provides evidence to suggest that imbalance is not tihe gproblem in skewed
datasets.

When comparinggMOTEagainst the proposed distribution-based methods in Ta-
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ble 6.5, it is found thatSMOTEperforms better than the random distribution-based
method, but worse than our three suggestions for directatmilalition-based meth-
ods. This clearly concludes that the methodological prapis balancing (except for
Uniform distribution) outperformSMOTEat least when applied to text categorization
with more than 2 classes.

With respect to document representation, if we focus on NBRipse results are
shown with frequencies and tf*idf documents representatwe can see that in the
baseline NBM with frequencies performs better than NBM witidffbut, after bal-
ancing the data, NBM with tf*idf performs considerably betsad achieves statisti-
cally the same results as NBM with frequencies; thus, thisbsamterpreted as em-
pirical proof that tf*idf representation is more imbaladesensitive than frequency
representation.

Comparing users by looking at Tabiel, Figure6.2 and Table6.4, users which
usually obtain statistical improvement are: beck-s, kakiv, kitchen-l and sanders-
r. These four users are those with a larger cardinality feir tlass attribute and which
present lower outliers in their box and whisker plot. Funthere, with respect to their
(u, o) representation, they are also the user with loywestdo values; respect to kur-
tosis degree, higher values clearly point to a higher nedslaincing. Thus, based on
these results, it is suggested that a good way to prediatipeaince improvement after
balancing a dataset may be one of these: (1) cardinalitg,c{@¥ outliers in box and
whisker plot, (3) low(u, o) values and/or (4) high kurtosis values . For example, by
looking at Tables.1we could predict that a good order of datasets with a greated n
for a balancing process are (from more to less): beck-s esandkitchen-I, kaminski-
v, farmer-d, lokay-m and williams-w3. Finally, one may seggusing the kurtosis
value since this is just a single value and very related td#i@ncing need.

Experiment 3: number b of documents per class The configuration Gaussian
Distribution with classifier NBM and tf*idf representatiora@ ran using values fdr
from 10 to 60, and the results are shown in Figeu® Choosing the value fdy should
not only be based on performance but also on the computatiostof sampling new
instances for each class. Thus, based on Fi§Bat is suggested using values from
30 to 40, since the computational cost is quite high from 3@udments and above,
while the improvement achieved is not significant.

125



6. DISTRIBUTION-BASED BALANCE OF DATASETS IN E-MAIL
FOLDERING

6.4.5 Conclusions for Distribution-based balancing applied to Text
Categorization.

For the NBM classifier, a greatimprovement on its performavegachieved for the e-
mail foldering task, what is of great interest given that NBdvaiwell-known standard
for text classification.

A comparison has been presented of four kinds of distribsti@ne random and
three directed) to fully re-sample training datasets foltinnlass classification, applied
to e-mail categorization; besides, another comparisonmeaate for the proposed con-
tribution results and the well knowBMOT Ebalancing method. The results support the
main hypothesis, which stated that a directed re-sampletpoa not only balances the
training set but also reduces the problem of overlappingranotasses, while random
re-sampling is only capable of dealing with the imbalanagbfem. Furthermore, evi-
dence is found that the SVM classifier is very robust undemiarced conditions, so
its performance does not improve after balancing. Compamitiy SMOTE the pre-
sented distribution-based methods statistically ougperfit, except for the Uniform
distribution.

Finally, common characteristics have been found betwetsdts which usually
perform better after balancing; that is, it can be expedted datasets whose perfor-
mance improves after balancing will be those which preseatge cardinality class,
low outliers in a box and whisker plot, lofy, o) values and/o high kurtosis degree.

6.5 Conclusions

The problem of class imbalance in datasets has been prdsenteis Chapter. A
new kind of balancing algorithms has been propodeisiribution-basedbalancing,
and they have been compared among themselves and with th&ngeln SMOTE
algorithm; besides, experiment have been ran on a Text Qaeagon problem (E-
mail foldering). The main conclusion obtained is that thegmsed Distribution-based
methods outperform SMOTE in terms of Accuracy, concretedyrhultinomial model
performs quite well and thus it is an interesting contribntio the e-mail foldering
problem.
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Chapter 7

Video Representation in MIR

7.1 Summary

In this chapter an introduction is presented to Multimedfaimation Retrieval, focus-

ing on the “Semantic Gap” problem and the representationufimedia documents,

mainly “Visual Features”. Finally, several experiments egported about visual fea-
tures selection, dimensionality reduction and about atberplementary kinds of rep-
resentation for multimedia documents.

7.2 Introduction to Multimedia Information Retrieval

Multimedia Information Retrieval (MIR)Y] is a relatively new subfield of the Informa-
tion Retrieval (IR) problem. Usually, when one refers to IR iautomatically assumed
that one means “text” IR (TIR). However, the last two decade&lseen the birth of a
new discipline, MIR, which has the same goal (suggestionle¥amt documents given
a search topic) but applied to a wide variety of multimediaudoents which may con-
tain: (hyper)text, video, sound and/or still images. Witk exponential growth of the
Internet and multimedia contents, the MIR discipline hasaated the attention of the
research community over the last years.
An IR system presents the components stated in Definftitin

Definition 7.1 AnInformation Retrieval model is a sixtuple: D,{Q,C}, O, {R(q:,d;),
R’(ci,d;)}] where:
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1. D is the set of stored documents

2. Q is the set of queries a user can perform

3. C is the set of categorizations the user may request

4. O is the set of operations that can be applied on Documents eri€si

5. R(g;,d;) is a function returning a real value. This value is used taeimsglocu-
mentd, in a ranking of relevant documents for query

6. R'(ci,d;) is a function returning a real value. This value is used teemslocu-
mentd; in the corresponding set in order to perform the categor@apointed
outing;.

And we can find a more natural definition ing):

Definition 7.2 Information Retrieval is finding documents of an unstructured nature,
usually text, that meet an information need from within largkections, usually stored
on computers.

Multimedia data has become as much a part of our daily livasxdsdlocuments.
However, retrieval of the former presents much more tradtee issues than the latter.
In the 7th ACM SIGMM International Workshop on Multimedia émmation Retrieval,
the Panel Sessiod§] discussed the main problems in MIR:

e Semantic Gap. Multimedia documents are usually descrilsatylow-level
features(see SectiorY.4) such asColor Layoutor Texture The semantic gap
refers to the difficulty of expressing or representing higvel concepts using
these kinds of features. This is not so problematic in textliRere the semantics
of text is (almost) linked to the content of the document.

e Query-type. We can find multimedia queries performed by (feste the seman-
tic gap is most important) and by sample (e.g.: search foillainmages to the
one provided as input). Both techniques lead to differentckeaystems and
possibilities.

e Scalability and Search Speed. Storing and Processingmadia documents
requires low search-complexity MIR algorithms.
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e Benchmarking. Public and common evaluation databasesgueed to demon-
strate that MIR techniques are profitable in general and usitip particular
studies. One of the most important movements in this aspdiing made by
the TRECVID [107] research effort, which aims to tackle the most difficult
problems of content-based video retrieval.

e Modeling. “Move away from ane model fits alapproach” is a key decision,
which would lead to retrieval systems which would use ddferalgorithms or
document representation depending on factors such asdhehs®epic or user
context. For example, voice transcription could be mostartgnt in news re-
trieval while it would not be useful for unlabeled imageslediions.

e User Interfaces and Human Interaction. The difficulty of@ening multimedia
retrieval might be alleviated by designing interfacéswhich help the user to
perform better queries (text and content-based) orwhittirmedocuments in a
more user-friendly manner.

7.3 Semantic Gap

There is a certain agreement in the research communityhlibéémantic Gap is the
most important problem in MIR engines. The unsatisfactayfgrmance of video
retrieval systems is mainly due to the gap between low-ldestription (see Section
7.4) of multimedia documents and their high level semantics.

In [108 we find this definition:

Definition 7.3 The semantic gap is the lack of coincidence between the iat@m
that one can extract from the visual data and the interpretathat the same data
have for a user in a given situation.

How to link the physical descriptions of a document to thearsthnding of a human
being is part of the IR subfield known @ontent-based Information Retrie &@&BIR)
[108 and, up to now, the semantic gap has not been satisfactoiidged. The results
of TRECVid experiments up to now show the inadequency of cdriiesed search
systems and also the limited effectiveness of high-le\atliiee extraction systems.

ITRECVid is a large-scale evaluation campaign aimed at resgamoblems related with video data.
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One straightforward approach to solving this problem isrtanual annotation,
description or indexing of multimedia documents, whichuegk the content-based
problem to the original task of (text) information retriev&/hen applying these label-
ing techniques, two main problems arise identified: @byt since it is clear that the
manual description of thousands of images is extremelyresipe in time and staff,
although some automatic solutions haven been adoptéd®f]; and (2) Coverage
which aims that the whole semantics of an image cannot beieapby text descrip-
tion [3]. So manual labeling is not expected to solve the semanpggablem in all
cases and so CBIR is nowadays a very active research field.

cultm

perceptual

physical

Figure 7.1: Classes of Equalities for Content-Based ImagecBear

Figure 7.1 (adopted from 108) shows all the semantic equalities that a CBIR
system needs to address. If we are searching for any kinchgf,“& categorical equal-
ity is enough. However, we might aim for more complex requieats as: blue car
(physica), long car jeometrig or nice car perceptual. The most restrictive equal-
ity between images is “literal”, which would seek for litdyadentical objects. Thus,
bridging the semantic gap would mean building a CBIR systenthiban link the
semantic similarity a user is looking for and the data prsicgsof multimedia docu-
ments that computers provide.

There are some other fields of study to improve the performanhd1IR systems,
such as the design of collaborative systerid {vhich take into account the implicit
and/or explicit feedback of other users; the design of movegoful multimedia search
interfaces P; 114 which help guide the user in his/her specific needs; anah¢piito
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account the context of the usety. For example, the retrieval systems evaluated in
the TRECVid model retrieval in a “one result list only” apprbaevhich assumes the
user is focused on one particular search issue. An examplesafype of search task
is: “Find shots of Condoleezza Rice”

These tasks are useful in benchmarking various retriegatgihms as shown in the
TRECVid evaluation experiments, but they are not represgatat real world video
information seeking tasks. For example, a researcher ongdigt at a broadcasting
station who is searching for material to use in the produaadican item for the evening
news, may be interested in highlighting the achievemenisufiple swimmers at the
2008 Olympic Games in Beijing. However, as they progressutjinahe search task,
they may become interested in highlighting other issued) as preparatory issues re-
lated to the performance of Michael Phelps, or to highligetneed for more govern-
mental support in the development of future swimmers. Cunegnieval systems and
approaches fail to provide any support for such broad, Afatieted tasks. In a faceted
retrieval system, one may search for information aboutouariaspects of the under-
lying information need without interrupting the currenaeeh session. These kinds
of interfaces might be regarded as supportive complembuatghe main problem in
CBIR is still found in the representation and processing oftimeldia documents. So
this part of the thesis focuses on the representation bfretilges (video key-frames)
to help their processing and relevance prediction. BesidgShapter8 a deep study
of the influence of context on classifiers is presented.

7.4 Visual Features

Visual Feature410§ is another way of referring ttow-level featureor object fea-
tures These are arrays of real values describing a physical gsopean image. As
mentioned in Sectio.3, the use of visual features is a key factor in CBIR for MIR
systems.

7.4.1 Visual Features Description

One of the main goals in CBIR is the automatic indexing of mugtiila documents
such as images and videos. The information stored for eachnaent must be as
self-describing as possible and compatible with relevamediction algorithms which
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need to compute the high-level semantics of the document.

Visual features are used to describe both still images ageovshots In order
to describe a video shot, several key-frames are (autoatigliselected to represent
such a shot and then those key-frames are represented bsisgrhe features as for
still images.

To extract visual features from images or video shots, s¢t@ols can be used, the
most-used currently being the MPEG-7 Visual Standard fort€drDescription06g.
Text created from transcript speech is another common wagpoésenting shots. As
stated in 125, although it can be used to gain good performance, it cabnaatpplied
to all videos in general due to the lack of speech in some gideothe fact that the
speech does not relate to the visual content of the video.

Some of the most commonly used low-level features are:

1.

Color Histogram. There exist several color spaces (RGB, YCbCr, HSV) which
have a more discriminanting power than grey scale colorrgasms. The Color
Histogram [L11] in an image is one of the color descriptions most commonly
used, and it is invariant to translation and rotation. TheB@F7 standard codi-
fies this feature in the HSV color space, which makes the hojegoty invariant
with respect to the illumination.

Color Layout [74]. This vector is the result of a Discrete Cosine Transforamati
(DCT) over a 2D array of local representative colors in Y or CkCor This
feature is invariant to resolution.

. Dominant Color[74]. This vector describes the dominant color in the corre-

sponding color space, the percentage of the area it covéng image, its vari-
ance and some other relevant information.

Texture. The texture of an image can be codified using from sim@&} {o
more complex techniques such as i3]

. Edge Histogram This kind of texture represents the global distributioedfes

by edge histograms of several kinds of edges.

. Segmentation and Shape Different parts of an image can be identified using

several segmentation techniques and, then, each segnnde cepresented us-

LA video shot is a limited section of a video, commonly credietiveen a fade in and fade out
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ing any low-level feature. Furthermore, shapes can beiftEshinside an image
and thus different semantics found.

In Figure7.2 examples of some visual features are shown (obtained f8ajh [

In conclusion, there exist a wide variety of features andpdedand, it is difficult
to choose which to use. As shown below, several experimeawves lheen performed in
order to help to make this decision easier and more effective

.j—w

Color histogram

. 45-degree Bdge 135-degres Blge nowdirectimal Edge
Texture — Edge Histogram

Segrnentation

Figure 7.2: Examples of Low-Level Features.

7.4.2 Experiments on Visual Features Selection

Retrieval using low-level features faces two major probleise first is the already
mentionedsemantic gapand the second, the well-known “curse of dimensionality”,
which has been studied extensively, e.g.lih]]. To overcome this problem, solutions
have been proposed in the field of multidimensional indesingctures, involving the
creation of structures which allow efficient access to maéilia database$()5 113.

In this section a piece of work is presented in which dimemelity reduction is
performed for several visual features and, besides thigxhaustive search is per-
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formed for joining visual features. The metric used for dnsien reduction and fea-
ture selection is a wrapper classification to predict retieeaof video shots which are
represented by the description of one key-frame using theegponding visual fea-
tures. Thus, the MIR problem is projected on a classificatamk with a binomial
class (Relevant, Non Relevant) and the objective is to find kvdimensions in each
visual features are the most important when predicting ¢fevance of a document,
for several search topics.

In the following, the methodology used to solve the problensiewed data is
explained; then, starting from this solution, the probleimealucing features dimen-
sionality is dealt with. Finally, an exhaustive search f@ual feature selection and
combinations is performed.

Methodology

The corpus used for evaluation is the one provided in TRECVitb20he TRECVID
2006 data collection consists of approx. 160 hours of teieminews video in English,
Arabic and Chinese which were recorded in late 2005. The ddtalso includes the
output of an automatic speech recognition system, the dofpaumachine translation
system (Arabic and Chinese to English) and the master steerafe. The collection
has 79484 shots, where each shot is considered as a sepzrateetht and is repre-
sented by low-level visual features. This experiment useseét of 24 topics contained
in the data collection, where each topic contains a judgrmsrf 60 to 775 relevant
documents.

The video shots of the TRECVID 2006 corpus are the instancesaitodnd clas-
sify, from which only an average of 300 shots are relevan¢émh search topic. So this
is a highly-skewed set of shots to learn and to predict tled@vance. The evaluation
method used performs a 10 cross-fold validation 10 timex1@GQV). Since test sets
cannot be modified and splits are made randomly in each ramatlancing of training
sets needs to be performed in execution time. Since the vwdailbase consists of
about 80000 instances, 10x10CV proves to be quite a timedaang task so the bal-
ancing method should be as light as possible, so the metleatisigvhat is referred to
here as thélphamethod (also used in Chap®, which consists in randomly deleting
as many non-relevant documents from the training set asateti. Ifa = 100, then
the training set contains as many non-relevant documemtdeasnt.
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The process of the experiments is as follows:

1. Experiment to choose a classifier for selection.

2. Experiment to choose the degreaatghabalance for training sets.
3. Experiment for Dimensionality reduction.

4. Experiment for exhaustive Visual Feature selection.

Results obtained from evaluations are assessed using thmeaan measures in clas-
sification problems: (see Secti@rR.2 precision, recall andF; — measure, the three
of them computed for class value “Relevant”.

1) First, for each visual featurga 10x10CV was run over TRECVID 2006 repre-
senting each video shot with only that feature and for each@®4 search topics in
TRECVID 2006, using a balance degreenof= 100. This cross-folder validation was
performed using four different classifiers: Ma Bayes, AODE 16|, Support Vector
Machines and k-Nearest Neighbor. The probabilistic clesssAODE proved to be the
best trade-off between speed and performance.

2) Then, another 10x10CV was run using AODE for each visudlfeaand each
of the 24 search topics in TRECVID 2006, using balance degreaes® to 100.

Results for each topic are averaged and shown in FiguB8.4and7.5for eleven
different values oty and for five different visual features used to representssindhe
database.

Dominant ColorandColor Layoutvalues inprecision(R)present high precisions,
although that is due to outliers in one of the search topicEhvis related to sports
(green is the most common color), so their performancesatdrenexpected to be that
high in all topics. Thus, it is concluded that, in generag tWo best performing visual
features for all topics come down to extureandEdge Histogram

Figures7.3and7.4 reveal the common behavior pfecision andrecall: as one
increases the other goes down. To find a good break-even plognk; — measure

IPlease note thaisual featuraefers to a vector of values, where the length of such a veefoends
on the kind of visual feature in question.
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Figure 7.3: Precision for relevant shots prediction.

(Figure7.5) is computed and the conclusion is that a balance degree-o050 can be
set for the dimensionality reduction experiments.

Results on Dimensionality Reduction

The quality of the used set of features is of great importémicine classifier to achieve
a good performance8]. This performance will depend of the individual relevance
of each feature respect to the class, relationship amongrésaand the existence of
features which influence negatively on the classifier.

Itis possible to improve the quality of the available feagiby performing Feature
Subset Selection (see Sectid#d).

The information retrieval task is being tackled as a classifon problem and, as
such, it can be performed a dimensionality reduction fohedsual feature. Each
visual feature (Colour Layout, Dominant Colour, Content Shaxture and Edge
Histogram) is represented by a vector of double valued featurabler.1 shows the
number of dimensions that each visual feature contents.
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Figure 7.4: Recall for relevant shots prediction.
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Figure 7.5:F;-measure prediction.
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Table 7.1: Length of arrays describing visual features
Visual Feature Length
Colour Layout 10

Dominant Colour 15
Content Shape 130

Texture 62

Edge Histogram 80

A feature (dimension of a visual feature, in this case) canelgarded as an ob-
servation for a sample, and from that point of view it wouldileresting to have as
many observations as possible. However, a large array efedtsons might contain a
lot of noise which leads to wrong conclusions. Besides, TREC20D6 is a database
with a huge number of samples so no long visual features dimiineeded to feed
the classifier. Moreover, when studying visual featuretamsations to describe shots
in TRECVID 2006, it is found out that some dimensions are alwsststo 0. So the
hypothesis is that a dimensional subset selection mighelpdii to improve the classi-
fier's performance in terms of time and/Br — measure, for the TrecVid2006 corpus.
In [95] authors perform selection using a Feature Vector Redugtiooess on 2 Corel
corpus. Although results are good, they fix the reduced veotoepresent color and
texture visual features without explaining why. In thisdstuno previous selection for
any visual feature is done. Besides, no dimension nor vigadlife selection has been
found in the literature applied to TrecVid news corpus.

Since wrapper methods bias the results toward the wrapassifier and the goal
is to apply the results to information retrieval systemsefimetric is used to perform
dimension selection. Besides, TrecVid2006 is such a hugausdhat indeed a filter
metric is needed. Finally, evaluation of the goodness adctiein is performed via
wrapper classification. Thus, selection is a filter+metppraach.

[119 et. al present a mathematical study from where they corediuak information-
based metrics amformation Gainare biased, favoring the selection of nominal at-
tributes which have a higher number of states. However, &madern studyd4]
performed experiments over a huge workbench and conclidgdibformation Gain
metric is a decent choice if one’s goal is precision”, whigthie case since information
retrieval system aim for that performance measure. Forsnaatk compares differ-
ent information-based and statistical metrics (includihgsqure), and then concludes
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Figure 7.6: Precision (for relevant documents) over deffevalues forP.

that“Under low skew, IG performs best and eventually reathe performance of us-
ing all features”. Since we balance our training sets, weskavery low skew. So,
based on this work, a selection by Information Gain metrépeet to the class is used
for feature selection.

For each visual feature, the IG value for each dimensioreadp the class is used
to create a ranking to know which indexes of the vector in easiial feature is more
relevant respect to the class. Then, the best percerftagfefeatures in the ranking
is projected over the database and classification is peefdnm compute how good
this new subset results to the classifier. This classifinagerformed as described
in Section7.4.2 and training sets are balanced setting- 50 as it was computed to
result the best level of balance.

Several values fo are tested and again three different metrics are computed:
precision(R), recall(R) and;Fmeasure. For the sake of clarity it is only shown results
for precision in Figure .6.

Results in Figurer.6 show that the hypothesis is correct and thus a fine dimen-
sionality subset selection can be done for visual featufegping just the best 40%,
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50% and 60% of dimensions ordered by their IG with respedh¢octass makes the
classifier have a slightly loss in prediction (based on gienifor relevant documents)
power while dividing the dimensions of visual features ihtaves, so information

retrieval systems could be benefited by achieving a fastgrorese to user’'s queries
without losing quality in their final list of suggested doceaints.

Results on Visual Feature Selection

The hypothesis here is that the combination of two or morealifeatures might im-
prove the performance of the classifier. Since there ardadai5 visual features
(Colour Layout, Dominant Colour, Content Shape, Texture argeBdistogram), the
search space consists of — 1 possible combinations. Thus, although a quite time
consuming task, it is still possible to perform an exhaestearch to find out what
combination of visual features makes our classifier workebnet
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Figure7.7 shows the value foF; — measure averaged over all the 24 TRECVID
2006 topics. It shows that the best combinations are “Col@yout DomColour Tex-
ture EdgeHist [167]” and “Colour Layout DomColour ContShapetiiee EdgeHist
[297]", both reachingF; — measure = 0.1. Results show that combination of vi-
sual features tend to improve the performance of classifidr although this means
an increase in its computational load, this score is bettr ainy score achieved when
performing feature subset selection in Sectioh 2

A dimensionality subset selection (the same way than.f2 for the best two
combinations to check if it can kept their good performangedecreasing their high
dimensionality. The selection of 40% and 60% in an IG-rank&dof the features
belonging to each combination results shows fat measure does not decrease for
both combinations of features while their dimensionaktyalved.

Conclusions

Two problems have been tackled:

1. Dimensionality subset selection. The dimensionalityisfial features has been
successfully reduced without decreasing the performahtteecclassifier, find-
ing out that we can get rid up to the worst (based on 1G) 60% dgioas inside
each visual feature.

2. Visual features combination. An exhaustive search haa performed to find
what combination of 5 visual features performs best (in gofif; — measure)
to predict the relevance of documents. Conclusion is thab#st two com-
binations are all the visual features and all the visualuiest except Content
Shape visual feature. Since these combinations derivegimdimensionality, a
filter selection based on IG-ranking reduces these new diifoealities without
decreasing thé, — measure value.
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7.5 Study on Feature Construction for Video-shots Rep-
resentation

Low-level visual features is one of the most widespread ki@ presentative features
used in MIR systems. In this section, a study is presentedhichwfour different
kind of features (one of them including visual features) ased to represent video
shots. As mentioned in Sectiagh3, low-level features automatic extraction is most
important for the speed and scalability of CBIR systems. Haneseveral studies as
in [2] search for new document representations in order to ingtioe performance of
MIR engines. In this section a study on representation offkayes extracted from
video shots is presented and several interesting conasisice induced. Again, the
MIR problem is projected on a classification task where dabsomial (“Relevant”,
“Non Relevant”) and each instance in the database is a keyefii a video shot. In
this study, a comparison is made on classifiers’ performasoey four different kind
of representative features.

In order to avoid problems of overfiting and erroneous cagiohs, evaluations are
made over several different configurations:

e As it will be explained in more detail in Section5.1four different kind of
features are used to represent shots with which the classifed: features rep-
resenting behavior of users during user study, featuressepting physical and
metadata information about shots, vocabulary featuresnandowed vocabu-
lary features extracted from Automatic Speech Recoghih@R) in shots.

e The study is performed on two databases coming from two usdres, which
are introduced in Section5.1

e Three different classifiers are used: probabilistic (N&ages), distance-based
(KNN) and vectorial-based (SVM).

¢ In one of these databases two different kind of relevance {ays of deciding
class value) are used: official relevance and relevancerasiped by users.
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7.5.1 Methodology

In order to learn how different kinds of constructed feasiatéect relevance prediction,
data logs from two users experiments are used to constradirthl datasets using
different kinds of representative features, and thesesdtdaare used for evaluation
using several classifiers. This section explains how thaaédatasets are constructed,
the different kinds of features used and how the classifiergwaaluated.

Datasets creation from user logs

Itis denoted 'user study’ to refer to an experiment in whietesal users tested a video
retrieval system searching under different topics and itimmg. A log file was created
from each of the users studieklfy and [L14] (respectivel named “Collaborative” and
“StoryBoard” user studies). Each log file contains verboga daplaining the actions
each user performed (on which shogstions were performed, the kind of action per-
formed, timestamp, user condition, topic of search,.o).dach query search, the user
interacts with a set of shots. So, for each tugdearch, user, condition, topic, shot
a new instance is created from a log for the final dataset. iEetance in the final
dataset consists of: tuple featurésdarch, user, condition, topic, shiptRelevance
Prediction Features which are constructed to represerghbeand predict the class
feature, and the class feature itself. Class features isrbalavith values “Relevant”
and “Non Relevant”, and refers to the relevance of the shattHeosame log, different
final datasets have been constructed because differenbkiadtures have been tested
to predict relevance and additionally, different kinds eliewance decision have been
tested, as explained below.

Kind of features constructed to predict relevance

As mentioned previously, an instance in the final datasefelibw the pattern
Tuple Features, Relevance Prediction Features, Class Feature.

Four different kinds ofRelevance Prediction Features are used: User Behavior
Features, Object Features, Vocabulary Features and Wedldacabulary Features.

1In Multimedia IR systems, retrieved documents are not theleiideos but shots, where a shot is
one of the splits a video can be divided into.
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Table 7.2: Behavior Features used to predict shots relevance

Feature name Description
ClickFreq Number of mouse clicks on shot
ClickProb ClickFreqdivided by total number of clicks
ClickDev Deviation ofClickProb
TimeOnShot Time the user has been performing any action on shot
CumulativeTimeOnShots TimeOnShoadded to time on previous shots
TimeOnAllShots Sum of time on all shots
CumulativeTimeOnTopic Time spent under current topic
MeanTimePerShotForThisQuery| Mean of all values fofimeOnShot
DevAvgTimePerShotForThisQuery Deviation ofMeanTimePerShotForThisQuery
DevAvgCumulative TimeOnShots Deviation ofCumulativeTimeOnShots
DevAvgCumulativeTimeOnTopic Deviation of CumulativeTimeOnTopic
QueryLength Number of words in current text query
WordsSharedWithLastQuery Number of equal words in current query and last query

Thus, for the logs from each user study four final dataseis, DS2, DS3 and DS4
are derived, where the four datasets contain the same Valu&sple Features and
Class Feature but each one contains one of the four kind of features cocisttiu

The User Behavior Features where designed similalo These features give
information about how the user interacts with a documenthibicase, the information
is related to the actions the user performed through shgtgestied by the information
retrieval system after he/she ran a query under a concgtegnd condition. Behavior
features used in this study are shown in Tabl2 and they can be split into three
groups: Click-Through featurgswhich represent information about clicks the user
performed on shot®rowsing featureswhich show different metrics about time spent
on shots andQuery-Text featureswhich count words in the current text query and
make comparisons with other text queries. Note that theegafar these features
are computed for each tupléséarch,user,condition,topic,shidirom the users studies
logs.

Object Features are not extracted from the logs. They reptdémthLow-Level
Featuresand Metadataand they are shown in Tablé3. Using these features, the
Relevance Prediction Features describe the shot appearingiiuple Features.
Metadatakeeps information about length of shots and also informatatated to the
Automatic Speech Recognition (ASR) from shots audio. Texisicapts from a shots’
audio is filtered through a stop-words list and a Porter stemgrfilter [86], and then
used to extract some statistics about the text.
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Table 7.3: Object Features used to predict shots relevance

Feature name Description
Color Layout vector containing 10 values
Dominant Color vector containing 15 values
Texture vector containing 62 values
Edge Histogram vector containing 80 values
Content Based Shape vector containing 130 values
Length Time length of shot
Words #words in Automatic Speech Transcription from shot audio
DifferentWords #Different words in ASR from shot audio
Entropy Shannon entropy of ASR from shot audio

Vocabulary Features are a bag of words created from the ASRislicase the text
is not used to compute statistics about the text, but to er@atocabulary of words
to perform the task of text classification. The transcrigted is also filtered through
a stop-word list and a Porter stemming filter. Then, the tegputext is transformed
into Weka format using a tool based on Lucéneror this kind of feature the video
relevance classification becomes a problem of text clagsdic.

It is expected that video relevance classification based SR Avorks relatively
well due to the fact that text has more descriptive power tfamexample, low level
visual features. However, in the literature some compdaditout using ASR can be
found, as in 125 where the authors state that some speeches might not hgteran
in common with their respective shots, and the problem of ‘&age” (see Section
7.9.

Finally, Windowed Vocabulary Features refer to a commohnegue in video re-
trieval systems which use ASR to create the results lists Tibes the same procedure
performed when using Vocabulary Features but in this caséettt used to construct
the bag of words does not come only from the ASR of the cormedipg shot but also
from then previous shots in time and the lateshots. This is calh-Windowed ASR
and in this case it is used a 6-Windowed Vocabulary. It is etqzethat 6-Windowed
Vocabulary features perform better than creating a bag ofisvisom only the ASR of
a single shot.

When ASR is used to create a bag of words and evaluate usinggaibaylassifier,
Naive Bayes is not used but the Naive Bayes Multinomial, whsalecommended for
text classification ([8]).

http://lucene.apache.org/who.html
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Table 7.4: User studies used under different combinatibkisnd of features and kind
of relevance.

Official Relevance User Relevance
User Behavior Features Collaborative Collaborative & StoryBoard
Object Features Collaborative Collaborative & StoryBoard
Vocabulary Features Collaborative Collaborative & StoryBoard
W6-Vocabulary Features Collaborative Collaborative & StoryBoard

In the case of using Behavior Features, which are continualuges and user de-
pendent, it is not likely to construct a dataset with repgaistances. But, when using
Object or Vocabulary Features, the same shot can appeaffénedi tuples so the
Relevance Prediction Features are repeated; then we would have several repeated
instances in the dataset where the class feature is sonsetghadzelevant and other
times asNon Relevant. This contradiction is solved by deleting all repeatedanses
and setting the class feature to the most frequent value.

Kinds of relevance

Two sources of information are used to decide if a shot isvagiefor a topic or not:
Official Relevance and User Relevance. This means that forfeedllataset, its eval-
uation is performed twice, once for each kind of relevandg:Qfficial Relevance:
Shots used in the users experiments belong to the TRECVid 26l twon [107],
which provides a list of the relevant shots for each topiedasn the standard infor-
mation retrieval pooling method of relevance assessmault;(2) User Relevance:
In the user experiments, users could explicitly mark shetekevant to the topic. In a
dataset, a shot can be considered relevant if the user maksuch.

One of the user studies this work is based on did not use tleedffIRECVid 2006
topics, so Official Relevance for that study cannot be uselleTa4 summarizes all
the different evaluations performed for datasets obtaired each of the users studies
(Collaborative and StoryBoard studies).

Relevance predictions has a different meaning dependingekihd of features
and relevance used. Predicting User Relevance using UseviBeR&atures can be
seen as predicting explicit user feedback because usekedhaideos (or not) after
interacting with them. Predicting Official Relevance usinget)Behavior Features
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Table 7.5: F; — measure for datasets constructed from Collaborative users study -
Official Relevance.

Behavior | Object | Vocabulary | W6-Vocabulary
Nbayes/NBM 0.194 ¢0.06 ©0.047 ¢0.060
SVM 0.141 «0.07 ¢0.052 ¢0.086
k-NN 0.164 ¢0.06 ¢0.046 0.172
Mean 0.166 0.06 0.048 0.106

predicts the relevance of a shot decided by a third group bgrecusers performed
on the shots influenced by their perceptions. If Official Ratee is used when feed-
ing our classifier with Object or Vocabulary Features values assumed that low
level features (as Color Layout) are meaningful enough testbe semantic gap to
high level concepts. Similarly, when predicting User Retmeusing Object Features,
some influence between low level features and metadatalipasseption is assumed.
When using Vocabulary Features, relevance prediction igasito when Object Fea-
tures are used, but in this case the semantic gap is not thieprdout the “Coverage”
as stated in Section.3, besides of becoming a text classification task.

As Table7.4shows, 4 datasets were created from the Collaborative us®y ahd
2 datasets from the StoryBoard user study. For each of theasats, evaluation was
performed using each of the four kinds of feature introduoeskction7.5.1

7.5.2 Experiments

Experiments are carried out on datasets constructed frgsdbtained in two user
studies. For each constructed dataset, four new datasetteaved using either User
Behavior, Object, Vocabulary or Windowed-Vocabulary Fesdusee Sectiomr.5.])

to predict each shots’ relevance. For each dataset, a 5x2@&ffisrmed (using three
different classifiers ant kind of relevance (class): Offiaiad User relevance). For each
evaluation,F; — measure is computed as a representation of classifiers’ performance
To compare the four different kind of features used to regreshotsf; — measure

is compared for each pair of representation-classifier.

Results from evaluations are shown in Tables; 7.6 and7.7.

Mean F; — measure for databases using Behavior Features representationalway
performs best. A paired Wilcoxon signed rank te&3;[121] was run witha=0.05,
using, for each classifier in each table, Behavior Featuresrisol and comparing it
versus each other database for the same classifier and ajlg, for each compari-
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Table 7.6: F; — measure for datasets constructed from Collaborative users study -
User Relevance.

Behavior | Object | Vocabulary | W6-Vocabulary
Nbayes/NBM 0.433 | «0.074 ¢0.094 ¢0.086
SVM 0.490 | «0.078 «0.108 «0.095
k-NN 0.380 | «0.073 «0.104 ©0.145
Mean 0.434 0.075 0.102 0.108

Table 7.7:F; — measure for datasets constructed from StoryBoard users study - User
Relevance.

Behavior | Object | Vocabulary | W6-Vocabulary
Nbayes/NBM 0.397 | 0.313 ¢0.320 0.484
SVM 0.462 | «0.311 ¢0.317 0.472
k-NN 0.601 | «0.312 ¢0.286 00.438
Mean 0.487 0.312 0.307 0.465

son, was the 10 values coming from the 5x2 CV evaluation. Whenmeasure for a
classifier and database performed statistically less tiabdseline (behavior features
with the same classifier), the corresponding cell is marked save symbol. Results
suggest that Behavior Features databases make classifiaily yerform statistically
better than the others; this evidence supports the comneandtiusing collaborative
retrieval to improve information retrieval systems. Araticonclusion that can be ex-
tracted from result tables is that representing documesitgyiextended vocabulary
usually improves performance compared with single-doeumnecabulary represen-
tation.

Another interesting conclusion is that the semantic gapgnein Object Features
affects relevance prediction as much as the problem of ageeof manual tag label-
ing. Since ASR is not possible in images nor videos withoutejat can be seen as a
particular case of labeling. Thus, results suggests tlesditin of CBIR research com-
munity of automatic indexing of multimedia documents byithawv-level features is,
at least, more effective in terms of cost and effort than naintagging.

Feature Selection

Selection has only been run on Behavior and Object Featurne® selection on Vo-
cabulary features would only return a set of words with ncegalization power.

In Table7.8it is shown the constructed features chosen by the increhselec-
tion. With respect to Behavior Features, we can see thatrissattonstructed to rep-
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Table 7.8: Selected features when performing Incrementappar-Based Selection

Behavior Official R.  UserR. UserR.
ClickFreq X X X
ClickProb X X

ClickDev X X

TimeOnShot

CumulativeTimeOnShots

TimeOnAllShots X

CumulativeTimeOnTopic

MeanTimePerShotForThisQuery X X X

DevAvgTimePerShotForThisQuer)
DevAvgCumulative TimeOnShots
DevAvgCumulative TimeOnTopic X
QueryLength X
WordsSharedWithLastQuery X

Object Official R. UserR. UserR.
Color Layout[10]
Dominant Color[15] 1 5
Texture[62]
Edge Histogram[80] 10
Content Based Shape[130] 1
Length

Words

DifferentWords
Entropy X

X | X | X

5

Xlk(n|P

resent statistics about clicks performed are the most é&eityiselected. This makes
sense and can be expected, since clicks can be regardediat fequiback about the
interests of the user.

7.6 Experiments on Relevance Prediction for Video Shots

This section reports experiments for the proposed balgmoigthods in Sectiof.3 of
Chapter6. In Section6.4 the problem of imbalance was tackled for the task of Text
Categorization, concretely that of E-mail Foldering. Irstbase, the databases used
consist of video-shots represented using two differend kihpredictive features, and
the task to perform is the prediction of relevance for vidgbots, given different search
topics.
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7.6.1 Design of Experiments

Experiments have been ran over two datasets (for thesestlatamstruction method-
ology, see Sectioii.5.1) which were used to train a classifier for relevance judgment
These two datasets contain the same shots which the saraéuatasor each dataset,
a different kind of predictive features were used to repretee video-shots. The first
dataset consists of Behaviour Features as suggested byté&igieth al. P], containing
continuous values. The second dataset consists of Vocglisatures, containing a
bag-of-words where each work is an integer representing@uéncy. All datasets
contain a binomial clasgelevant, non-relevaht which is highly imbalanced towards
the negative class.

As in Section7.5.], the aim in this section is to test different balancing mdthas
a preprocessing step before classification. Thus, a cosguais performed for three
different approache®lpha which consists in randomly deleting as many non-relevant
documents from the training set as indicateda I 100, then the training set con-
tains as many non-relevant documents as relevant; thekwelln SMOTEalgorithm,
which is a state-of-the-art balancing method in data diaasion; and distribution-
based methods presented in Chagtewhich perform both oversampling and under-
sampling and, depending of the used probability distrddutyives rise to different
algorithms, as explained in Secti6rB.

Both the imbalanced and balanced datasets are evaluatedfoynpag a5 x 2
CV with three different classifiers: NBayes, SVM and kNN. In dase of Vocabulary
Features, NBayes is replaced with Multinomial NBayes sinisaistthe recommended
classifier in literatureq8] for text documents.

The main interest is two-fold:

1. analyse if balancing helps to outperform classificatisingiboth an imbalanced
dataset and a random-based balanced dataset

2. statistically assess which of the compared balancindnoaistis more suitable
for the multimedia IR problem

Since we are dealing with skewed datasets with a binomiakgclaccuracy is not an
appropriate metric to measure the performance of the @lxssjL1g. So the selected
metrics are Precision anfl-measure of documents tagged with the minority class
(relevant documents).
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Finally, a statistical comparison is ran by performing addion signed rank test
[121] with Conf. Level= 95% to compare all methods. Two sets of twelve values are
used for the test. Each set is the joined output of the three ciassifiers over each of
the four topics.

7.6.2 Datasets

In order to evaluate the previously introduced balancinghos, the log files of two
different user studiesl[L5 are used. In both studies, users were asked to interact with
multimedia information retrieval systems and retrieve amynresults as possible for
four pre-defined search tasks. In both evaluations, the TREC®6 video collection
[107] was used where news video shots, the atomic unit of refriav@indexed based
on the output of an automatic speech recognition system.ofishdefined as a part
of the broadcast that has been created by a continuous negdrom a single camera.
The log files contained every key stroke and mouse click wivat performed during
this evaluation. They hence contain information how thdigiaants of both studies
interacted with relevant and non-relevant shots whilegitiie system.

For every search task, a conversion was made of the log fitesfioio two different
dataset representations. The first dataset used Behaviaturée (see Tablé.2) such
as a click to start playing the video shot or the playing damatThe actual relevance
of the shot to the given search topic is defined as the clasbkle 70 provides an
overview of this dataset.

Table 7.9: Description of Dataset using Behaviour Features.

#Features| #Instances| Imbalance
Topic 1 13 5011 1:19
Topic 2 13 4542 1:16
Topic 3 13 4545 1:13
Topic 4 13 4701 1:40

The second dataset uses Vocabulary Features to repredeatshots. Therefore,
every shot is represented with the frequencies of termsn@kin a bag-of-words) in
their audio speech, where the speech of every shots is atitathetranscripted. Some
shots in the corpus do not contain any speech; thus, no tiphiscavailable for these
shots. Therefore these shots are ignored, what resultsvar festances in the dataset
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in comparison to the behaviour feature dataset. Again,hbé&ssrelevance was used
as class. Tablé.10provides an overview of the vocabulary feature dataset.

Table 7.10: Description of Datasets using Vocabulary Featu

#Features | #Instances| Imbalance
Topic 1 12957 2544 1:38
Topic 2 12957 2496 1:49
Topic 3 12957 2088 1:27
Topic 4 12957 2400 1:16

The last column of these tables depicts the imbalance ratiedch dataset. A ra-
tio of (1:n) means that for each relevant document, the dataset centaion-relevant
documents. It is clear that Topic 4 is the most skewed datasébth shot represen-
tations. Therefore, it is expected that the imbalance prakaffects classifiers more
aggressively in this case.

7.6.3 Settings

The balancing algorithms under study in this experimenisag various parameter
settings which will be introduced in the following.

SMOTEuses the default parameters in Weka except for the perceofaginor-
ity class cardinality, which is set as the necessary peagento getP minority class
documents. Then, random under-sampling of the majoritgscla performed until
P majority class documents remain. Distribution-based oatk/niform, Gaussian,
PoissonandMultinomial need the input parametér. If, for example,P = 500 then,
for each training set, 500 relevant documents will be sathfslam the corresponding
distribution and non-relevant documents will be uniforméleted until the training set
contains 500 non-relevant documents.

The Alpha approach needs parameterwhich indicates the percentage of non-
relevant documents to be randomly removed from the traisgtg It was set set as
a = 100, what means to remove as many non-relevant documents assaegé have
the same number of relevant and non-relevant documents.

Since the aim of this experiment is not to oversample noevegit documents but
to create training sets with the same number of relevant anedr@levant documents,
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P cannot be set to a higher value of the cardinality of nonveeledocuments in any
training set in the cross validation process. For exampi@ic 1 using Behaviour
Featuresis a dataset with 5011 instances where about 4750 are newargl Thus,
since it is performed a stratifiedl x 2 CV, each fold will have4750/2 non-relevant
documents, requiring® not to be greater than that value. Since it is desired to use
the sameP value along the four topics compared, the maximum value usdide
experiments is 2000 for Behaviour Features datasets andi@0@0cabulary Features
datasets.

7.6.4 Results and Discussion

Table7.11shows the mean precisidn and F-measure for classifiers NBayes, SVM
and KNN after training the imbalanced datasets using twiergint kind of predictive
features for video shots: Behaviour and Vocabulary featurbese results are used as
the baseline run to compare with classification after bateiesults with.

Table 7.11: PrecisionK) and F}-measure for relevant documents in imbalanced
datasets.

Behaviour | Vocabulary
P Fi P Fi
Topic1 | .104 .142| .050 .045
Topic2 | .114 .155| .041 .029
Topic 3 | .137 .166| .052 .054
Topic4 | .089 .124| .000 .000
Mean | .111 .147| .036 .032

Tables7.12and7.13list the computed precision arid-measure using Behaviour
and Vocabulary features representation for video shotsranding balancing tech-
nigues over the datasets prior to classification. The retieaiof this section discusses
the outcome of results using, for each kind of features, taeimum P value.

Balancing Vs. Non Balanced In terms of precision, it is concluded tHaMOTE
and distribution-basedJpiform, GaussianPoissorandMultinomial) balancing meth-
ods statistically outperform the baseline using the Behai@atures datasets. In the
case of Vocabulary Features datasets both Uniform and Gaudistributions are an
exemption though. Balancing methédbha does not outperform the baseline, what
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Table 7.12: Performance of Balancing Methods in Behavioutufes DatasetsH{ =
2000).

Alpha Uniform Gaussian Poisson | Multinomial SMOTE
P Fy P P P P P F P P P I3
Topic1 | .081 .136| .125 .076| .215 .111| .081 .046| .088 .043 | .113 .168
Topic2 | .092 .159| .164 .077| .212 .162| .131 .094| .141 .098 | .114 .173
Topic 3 | .126 .207| .268 .078| .191 .172| .239 .113| .282 .107 | .155 .229
Topic4 | .065 .116| .154 .122| .155 .142| .093 .062| .083 .063 | .100 .161
Mean .091 .154| .178 .088| .194 .147| .136 .079| .149 .078 | .121 .183

Table 7.13: Performance of Balancing Methods in Vocabulagtires Dataset$’(=
1000).

Alpha Uniform Gaussian Poisson | Multinomial SMOTE
P F P I3 P F P I P I3 P I3
Topicl | .028 .053| .015 .019| .076 .037| .051 .060| .053 .063 | .044 .065
Topic2 | .024 .045| .018 .021| .016 .022| .055 .057|.082 .074 | .044 .066
Topic3 | .043 .080| .020 .020| .043 .053| .084 .093| .098 .084 | .081 .112
Topic4 | .006 .012| .000 .000| .000 .000| .005 .008| .004 .006 | .001 .002
Mean .025 .047| .013 .015| .034 .028| .049 .054| .054 .059 | .042 .061

could indicate that randomly under-sampling the trainieggadone is not effective. In
terms of F;-measure, distribution-based methods under-perforns iShinterpreted as
distribution-based methods increase Precision whilengpBlecall, what makes sense
with conclusions in SectioB.4where Accuracy increased, and Accuracy is an average
of Precision for each class (see Sectiop.?).

Distribution-based Vs. SMOTE. Using the behaviour features dataset,@aais-
sian method significantly outperformSMOTE while the Multinomial method out-
performsSMOTEusing the vocabulary features datasets. This can be erpldin
the fact that theMultinomial distribution is designed to sample new text documents
from existing ones. Besides, Behaviour Features are contsualues which cannot
be modeled with this distribution, while the Gaussian Diisition is a quite general
model which fits well to this datasesMOTEbalanced classifiers, however, result in a
betterf}-measure.

Value for P. Balancing was performed in training sets by transformirnthnto
datasets with the same cardinalify)(for both positive and negative classes (see Table
7.14). It has been found that the larggris, the betteSMOTEand distribution-based
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Table 7.14: Precision in distribution-based and SMOTE mds$hasP increases

Gaussian Poisson Multinomial SMOTE
P Behav Vocab Behav Vocab Behav Vocabl Behav Vocab)
500 | 0.145 0.025| 0.104 0.041] 0.107 0.046| 0.102 0.039
1000| 0.170 0.034| 0.118 0.049| 0.131 0.059| 0.109 0.042
2000 | 0.194 0.136 0.149 0.121

methods perform in terms of Precision. Besides, non-randsimtuition-based meth-
ods improve most with increasing value. As mentioned abové), is limited by the
majority class cardinality so the maximum possible value fowas 2000 for Be-
haviour Features datasets and 1000 for Vocabulary Featatasets. For future works
where ratio (1:1) is not fixed, a larger study®finfluence would be of interest.

7.7 Conclusions and Future Work

When users use an information retrieval system, their int@lations while interacting

with the system can be exploited to predict relevance of oaus. This feedback
can be used to train a supervised classifier that effectipedgicts such relevance.
Considering classical information retrieval experiencsgrs will by far interact more
with non-relevant rather than relevant documents. Thuesnthin problem of using

such feedback data is that they are highly imbalanced. thGhiapter, this problem
was addressed by evaluating various balancing methods.

The performance of six balancing methods was evaluatei#-gtehe-artSMOTE
(directed over-sampling and random under-sampliAfpha(random under-sampling)
and four distribution-based methodstniform, Gaussian Poissonand Multinomial
(directed over-sampling with replacement and random usdepling). Results sug-
gest that balancing training sets using distribution-tdasethods result in a higher
Precision in comparison to the other methods. More pregitget GaussiarDistribu-
tion method provides the best balancing for continuousufeat(Behaviour Features)
while theMultinomial Distribution method is best for text-based features (Votaty
Features).

As future work, it would be interesting to search for optimeatios of (relevant :
non-relevant) documents instead of fully balance traisiets to ratios (1:1).
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7.8 Conclusions

One of the main problems in Multimedia Information Retriedathe known as “se-
mantic gap”; that is, the difficulty to link the low-level wial features describing an
image with the high-level concepts of that image. Howewgpyesentation of multi-
media documents using low-level features is very usefutdeinto perform automatic
indexation of images and videos, and that is a task relativ€dntent-based Infor-
mation Retrieval. Besides, there exist a wide amount of com@ftary multimedia
documents representations which try to improve the perdoca of MIR systems.

In this Chapter, visual feature selection and dimensignedduction has been per-
formed concluding that combination of visual features ltssn an important increase
in performance (measure in F1-measure terms). Besidesndiamality reduction
maintains the same performance reducing up to one half ofitval features array.

Besides, a study on four kinds of features representatividpiframes (still im-
ages) on video shots has been performed, concluding thavBelfr@atures is a very
helpful representation and, thus, results suggest th&bmohtive retrieval can lead
to good performance of MIR systems; concretely, after perfiog feature selection,
Click-Throughfeatures resulted the most frequently selected of the Beh&eatures
set. Respect to CBIR, both Object Features and Vocabulary lesagaem to provide
similar performance, what can be interpreted as the fatthieasemantic gap present
in Object Features affects relevance prediction as mucheagroblem of coverage of
manual tag labeling.

Respect to balancing of training sets using distributioseblamethods applied to a
Multimedia Information Retrieval problem (video-shotserednce prediction), conclu-
sions are similar to those obtained when balancing wasexppdi Text Categorization
in Chapter6: the proposed Distribution-based methods outperform SEI@esides,
other conclusion which can be extracted from both works & When datasets are
represented using continuous-values features, the Gaudsstribution is more opti-
mal, while in the case of bag-of-words representation, thatilbmial contribution
logically performs better.
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Chapter 8

Influence of Context on Classifiers in
MIR

8.1 Summary

This Chapter presents a relatively new field of study in IR: mrfice ofcontextin
retrieval. The semantics of “context” may vary in severgels, and along the next
two sections and introduction and state of the art is presenthen, experiments are
reported with conclusions about the effect of context ossifeers’s performance for
relevance prediction; concretely, in this case “contegférs to the way databases are
created, and the multimedia documents used for evaluatekey-frames representa-
tive of video shots.

8.2 Introduction to Context

Multimedia databases have become a reality and as suche#tehas arisen for ef-
fective multimedia information retrieval systems that Wwas accurately and fast as
possible. Much research has been carried out on this prdibtemdifferent points of
views: ranking algorithms, feature construction, collaive retrieval, etc., but unfor-
tunately the performance of Multimedia Information Retake(MIR) systems is still
far from that of text Information Retrieval (IR) due to the seti@ gap: there is a
discontinuity between low level visual features and thea®rs of the query.

In recent years a new point of view has arisen to better utateoth text and
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multimedia IR process, the so-calledntext.The main idea behind this is two-sided:
(1) relevance of documents might change dependently orotiiext on which search
is being performed and (2) some contexts might make it e&mielassifiers to learn
an appropriate model to predict relevance.

Context refers to a wide variety of situations. For examphe, relevance of a
document may change if a user is web searching from a desktapuwter or from a
mobile device. Moreover, the relevance may be differeneddmg on the place the
user is in the moment of search; thus, if her query is “typieataurants”, suggestions
of results will be different if she is in France or in Italy. Béss, is she adds the adverb
“near”, the semantics of such term is different if she isétang by car or on foot.

Context does not refer just to the physical properties of #es’si situation. Con-
text may also be related to user’s interests, web searclkiflg, conomical situa-
tion,...Or, on the other hand, context may refer to the diffjicof the search topic,
previous searches by other users for the same topic, .. Adwsion, “context” is a
very generic work for its purpose but the main idea behinslword is clear: improve
performance of MIR systems by adding extra information Wwh&not present in the
representation of documents but “around the search”.

8.3 Related Work on Context

A series of forums have been held to address aspects of tamtaformation seeking
and retrieval 18; 20; 21; 44; 45; 99]. The advances reported in the forums ranged
from theoretical such as creating a taxonomy of contexerlires, to empirical such
as deriving new context from environments, to construcsiveh as new applications
that exploit context. Our work aims to make a methodologamhlance in this area
by developing a framework to measure the impact of contétachors. Therefore,
this section discusses different approaches taken to meetigiimpact of context for
modeling document relevancy.

One way to examine the impact of contextual features is testigate the factors
that influenced people’s relevance judgements. For exaripldiscussed two sets of
semi-structured interviews carried out to establish titerca used to judge document
relevancy. The study identified ten criterion categorienmmmn to both the interviews.
Their results highlighted that people employed non-tdd@etors such as quality of
sources for relevance judgementklf] observed interactive search sessions to extract
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the factors that influenced people’s relevance judgem@imsy identified five groups

of influential factors based on 24 participants performimgé different search tasks
on the Web. Their results suggest that non-textual elemang®cuments such as
structure and visual features are affective to people&s/egice assessments.
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Figure 8.1: Context stratification for IRf].

Another way to examine the impact of contextual features isvtestigate their ef-
fect on searching behaviour. For exampt&] [studied the effect of tasks and searchers
on reading time of retrieved documents. Their experimembsvsa significant correla-
tion between the contextual features and searching balraReading time was found
to vary across search tasks as well as individual searcAdms. suggests that read-
ing time can be unreliable to model relevance without cantéx similar approach
was taken by12( who studied the effect of topic complexity, search experee and
search stage in the performance of implicit relevance faekibdmplicit feedback was
used to suggest expansion terms in the study. A mixture oSurea such as subject
assessments, take-up rate of suggested terms, retrieaetivefness was used to cap-
ture the effect of the contextual features. Their study shiat all three factors affect
the utility of implicit relevance feedback.

A distinct approach taken by3f] was to model document relevancy based on a
history of interactions. They analysed a couple of dozenasef interactions and
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explicit relevance judgements to construct predictive Bayemodels. It can be seen
that the accuracy of relevance prediction of the models wad as a measure of impact
in their study. An advantage of their approach is the numb&apables that can be
investigated. While the other approaches can examine twoee factors at a time, the
classifiers can allow us to investigate a large number ofrpiatiéy effective factors. A
disadvantage is that the dependency of features in the gfedamodels is not always
clear or interpretable.

Another way to find a dependency between contextual featssmeasure the
frequency of their co-occurrence in search environments. ekample, 36] looked
at two contextual features, document genres and work tésks)d the dependency
between them. The use of documents in a software enginesdrigplace was anal-
ysed in their study. The experiments show that there is afgignt correspondence of
document genres with the types of work tasks, suggestingtiecan learn relevant
genres by understanding the roles and tasks in an orgmisatio

Comparing to these existing studies, our work has the foligwiharacteristics.
First, like [117, we measure the impact of context based on searchersaretevas-
sessments, and besides we use official relevance lists eésed documents. This is
because relevance judgements are a fundamental processch sand also we are in-
terested in a better relevance modeling using context.rifeeee use a set of classifiers
to model document relevancy. This allows us to go beyondubgstive assessments
or simplistic frequency to measure the impact of contexteaiures on document rel-
evancy. Finally, the proposed approach enables us to uaddrthe dependency of
contextual features, a similar objective &%], in the same single framework.

8.4 Experiments on Context Influence on Classifiers for
Relevance Prediction

The goal of the experiments shown in this chapter is to medsaw context influences
classifiers when trying to predict relevance of multimedauments. Concretely, ex-
periments are carried on video shots represented by theiframe and the task per-
formed is binary supervised classification, where classddipt is “Relevant” or “Non
Relevant” for a given search topic.

In this case, “context” refers to how a database is createdXample, a database
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created with shots accessed by experimented users or adatateated when search-
ing easy topics. As it will be explained below, the final ol is to identify “cohe-
sive contexts”.

8.4.1 Methodology

As explained in Sectioid.5.1, experiments use data logs from two users experiments
and, from these logs, the final datasets are constructedpomeach of four kinds of
features and each of two kinds of relevance. The readerasreef to that section for
further explanation on the process.

Then, each of the datasets constructed is split in severis @ecording to a given
context and classifiers are evaluated and compared to tledinegdataset with no
context split).

Contexts in Databases Used

A deeper explanation on each of the two users studies uslked @xperiments is needed
in order to understand the identified context.

e Collaborative study|In this study, users where grouped into pairs and searched
for shots relevant to four TrecVid 2006(7] topics under four different condi-
tions: user A could see what user B was doing, user B could seeAj both
users could see each other and, lastly, both users perfaasedrch indepen-
dently. Thus, conditions can be: Watching, Watched, Mutimalependent. So
Tuple Features constructed from the log of this study are: User, Topic, Con-
dition, and ShotT'uple Feature are used to make the context splits, but at the
time of performing evaluation on any dataset they are rechoverder to predict
relevance just based upon the construd®ettvance Prediction Features.

e StoryBoard study In this study, users had to use two different interfaces (a
common interface as baseline and a storyboard-style aue)f to search for
shots relevant to two different non-TRECVid topicSuple Features created
from these logs are: User, Topic, System, Run and Shot. Wheter8ys either
the BaseLine interface of the designed StoryBoard interfand, Run shows
which system was used the first time and which second.
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Splitting into contexts

Each instance in datasets is made of
Tuple Features, Relevance Prediction Features, Class Feature.

where tuple features describe some context informationses1D, search topic, search
condition,... All these are nominal features and, by salgaine of these tuple features
the dataset can be split into as many possible values asl#wezbnominal attribute
might take. This is what is called in this work airibute-based contexplit.

Besides, another context split method is possible whichferned in this work
asproperty-based contextor examplegxperiencecontext can be made of two sub-
groups: less experienced users in the user study and moeei@xged users. This
kind of information needs to be obtained via a questionnamrapleted by the users.
Thus, if a user study is performed with 4 people and we leam ftheir answers in the
questionnaire that useff1,id3} are the least experienced meanwhile uget8,id4}
come down to be the most experienced, the dataset can bdapdtl on those two
subgroups, using theserIDtuple feature.

Finally, a third kind of context split is performed which isferred to asnixed
contex} being the result of splitting by two desired context (wharattribute-based
or property-basell being the number of splits the cartesian product of thesiptes
splits for each of the chosen contexts. In Tatesand8.2 contexts constructed for
each user study are shown and described.

Evaluation of Classifiers Under Contexts

Evaluation to compute a baseline is performed without usieq uple Features SO
that the evaluation is totally free of context differentat (or all contexts together,
we may say), using each of the four kind of constructed featufables3.1 and8.2
show all the different contexts defined for Collaborative &tdryBoard users study,
respectively; for example, in Tabk1 we see that the dataset can be split based on
contextUser ExperienceThis split would result in 2 datasets, one with shots aamkss
through the users study by less experienced users and adathset containing shots
accessed by more experienced users.

Thus, for each context shown in these tables, each datasgiti;to as possible
splitting values the corresponding context contains. Thesults obtained for each
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Table 8.1: Contexts costructed for Collaborative user study

Context(#splits) Type Split name Description
Individual User searches on his own.
Condition Attribute- Watched User is watched while searching.
(4) based Watching User watches sb. else also searching.
Mutual Two users watch the other’s search.
User Experience | Property- Less Exp. Less searching experience.
(2) based More Exp. More searching experience.
Task difficulty (2) Property- Easy Easy for users.
(as perceived by user) based Difficult Difficult for users.
Individual&less
Individual&more
Watched&less
Condition& Mixed Watched&more | Mix of corresponding descriptions
User Experience Watching&less
(8) Watching&more
Mutual&less
Mutual&more
Individual&easy
Individual&diff.
Watched&easy
Condition& Mixed Watched&diff. Mix of corresponding descriptions
Task Difficulty Watching&easy
(8) Watching&diff.
Mutual&easy
Mutual&diff.
less&easy
User Experience& Mixed less&diff. Mix of corresponding descriptions
Task Difficulty more&easy
(4) more& diff.

context will be compared against the previously computezklize to find how con-
text affect classifiers.

Accuracy is not used for evaluation because, although istauadard metric used
to evaluate the predictive power of classifiers, the testssse so unbalanced that com-
puting Accuracy is roughly the same as computing recall tor relevant documents.
Although training sets are balanced (using the methodnexden Section/.4.2), test
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Table 8.2: Contexts constructed for storyBoard user study

Context(#splits) Type Split name Description
User Experience Property- Less Less searching experience.
(2) based More More searching experience.
System Attribute- BaseLine Ordinary search system.
(2) based StoryBoard Improved search system.
Search Task | Attribute- A Difficult search task.
(2) based B Easy search task.
Run Attribute- Runl BL system was used first
(2) based Run2 BL system was used first second
BaseLine&A
Systemé& Mixed BaselLine&B Mix of corresponding descriptions
Task StoryBoard&A
4) StoryBoard&B
BaseLine&less
Systemé& Mixed BaseLine&more | Mix of corresponding descriptions
User Experience StoryBoard&less
4) StoryBoard&more
A&less
Task& Mixed A&more Mix of corresponding descriptions
User Experience B&less
(4) B&more

sets are not: if a classifier always marks documents as balpigthe majority class
value, accuracy would be incredibly high but documents riogiltg to the minority
class values would never be correctly predicted. For in&tiom retrieval systems,
documents belonging to minority class value (relevant duenits) are what is needed
to predict correctly so accuracy on its own is not an appeateninetric.

8.5 Experiments

This section shows the results obtained when performingsiflaation with three dif-
ferent classifiers. Evaluation is performed over two datebacreated from 2 users
studies. For each database, evaluation is performed useg@fthree kinds of fea-
tures (see Section.5.1), with the Collaborative users study represented twicegonc
for each kind of relevance. Windowed Vocabulary feature®mot been used because
we they add an extra context factor and it is desired to avoyccantextual bias in the
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Figure 8.2: Diagram showing the process of datasets cresagind evaluation to assess
how context affects classifiers.

results: the additional vocabulary of nearby shots worlanesxtra help for classifiers,
which is not desirable because the aim is to compute coméxience without any
extra factors.

Results are shown in two tables. Tal@e3 shows results obtained working on
Collaborative user study log, and Talfiel shows results for StoryBoard user study

log.

First row in both tables shows me&h — measure over NBayes, SVM and kNN,
for each kind of feature, using a dataset without context éply.: no context differ-
entiation, all contexts together). Remaining rows showltedar each dataset split
based on the corresponding context.

Independent t-test with=0.05 is performed to compare baseline with each context
result. Thus, input in each comparison is made of two veaorgaining each one a
total of 30 samples (enough samples to assume normal disbrioy the Law of Great
Numbers). Where 10 samples come from the results obtained) ahe performed
5x2 CV using one of the three classifiers. Thus, 30 samplesoare(pverages are
being compared) and contrasted versus other correspo@8@isgmples. When a cell
is shadowed in Table& 3and8.4, it means that the dataset split by context has derived
in a F; — measure statistically better than the baseline it is compared to.

Results, as discussed in next section, are very meaningfuhay show that con-
texts clearly affect classifiers’ performance.
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Table 8.3: Meart; — measure over NBayes, SVM and kNN evaluations. Collabora-
tive user study.

Official Relevance \ User Relevance
Behav. \ Object \ Vocab. \ Behav. \ Object \ Vocab.

| No differentiation | 0.166 | 0.065 | 0.048 || 0.434 | 0.075 | 0.102

Individual 0.161 | 0.054 | 0.042 || 0.503 | 0.088 | 0.143
Watched 0.126 | 0.054 | 0.058 || 0.474 | 0.116 | 0.181
Watching 0.179 | 0.098 | 0.069 || 0.373 | 0.118 | 0.142
Mutual 0.186 | 0.086 | 0.069 || 0.407 | 0.107 | 0.114
Less Exp. 0.159 | 0.067 | 0.047 || 0.154 | 0.051 | 0.036
More Exp. 0.172 | 0.078 | 0.075 || 0.616 | 0.144 | 0.182
Easy 0.172 | 0.105 | 0.069 || 0.431 | 0.109 | 0.137
Difficult 0.142 | 0.029 | 0.029 || 0.453 | 0.058 | 0.106

Individual &Less Exp.| 0.141 | 0.062 | 0.046 || 0.132 | 0.035 | 0.025
Individual &More Exp.| 0.168 | 0.054 | 0.057 0.703 | 0.169 | 0.238
Watched &Less Exp. | 0.141 | 0.049 | 0.054 || 0.121 | 0.032 | 0.021
Watched &More Exp. | 0.109 | 0.074 | 0.086 || 0.598 | 0.244 | 0.339
Watching & Less Exp.| 0.147 | 0.125 | 0.059 || 0.178 | 0.112 | 0.061
Watching &More Exp. | 0.214 | 0.099 | 0.082 || 0.538 | 0.175 | 0.242
Mutual &Less EXxp. 0.168 | 0.093 | 0.066 0.173 | 0.077 | 0.068
Mutual &More Exp. 0.177 | 0.126 | 0.106 || 0.539 | 0.196 | 0.215

Individual &Easy 0.140 | 0.096 | 0.067 || 0.167 | 0.065 | 0.064

Individual &Diff. 0.166 | 0.024 | 0.032 || 0.705 | 0.131 | 0.198
Watched &Easy 0.138 | 0.070 | 0.060 || 0.625 | 0.183 | 0.296
Watched &Diff. 0.105 | 0.040 | 0.052 || 0.112 | 0.029 | 0.043
Watching & Easy | 0.198 | 0.167 | 0.100 | 0.512 | 0.248 | 0.280
Watching &Diff. 0.153 | 0.054 | 0.048 || 0.122 | 0.035 | 0.035

Mutual &Easy 0.229 | 0.122 | 0.090 || 0.215 | 0.089 | 0.076

Mutual &Diff. 0.122 | 0.042 | 0.045 || 0.647 | 0.128 | 0.155
LessExp. &Easy | 0.182 | 0.105 | 0.066 | 0.205 | 0.080 | 0.054
LessExp. &Diff. 0.105 | 0.028 | 0.030 || 0.082 | 0.023 | 0.029
MoreExp. &Easy | 0.168 | 0.123 | 0.100 || 0.570 | 0.190 | 0.255
MoreExp. &Diff. 0.160 | 0.046 | 0.055 || 0.678 | 0.121 | 0.156

8.5.1 Discussion on Context Results

This section discusses the results obtained after splittimd evaluating the presented
datasets under different contexts.
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Table 8.4: Mearf; — measure over NBayes, SVM and kNN evaluations. StoryBoard
user study.

’ No differentiation ‘ 0.487 ‘ 0.312 ‘ 0.307 ‘
Less Exp. 0.437 | 0.286 | 0.309
More Exp. 0.519 | 0.363 | 0.327
BaseLine 0.522 | 0.377 | 0.356
StoryBoard 0.454 | 0.301 | 0.294
TaskA 0.415 | 0.282 | 0.254
TaskB 0.548 | 0.382 | 0.377
Runl 0.480 | 0.330 | 0.292
Run2 0.486 | 0.373 | 0.386

BaseLine & TaskA 0.375 | 0.215 | 0.237
BaseLine & TaskB 0.620 | 0.544 | 0.491
StoryBoard & TaskA 0.469 | 0.356 | 0.323
StoryBoard & TaskB 0.509 | 0.247 | 0.266

BaselLine & Less Exp. | 0.499 | 0.355 | 0.387
BaseLine & More Exp. | 0.562 | 0.440 | 0.362
StoryBoard & Less Exp.| 0.382 | 0.239 | 0.200
StoryBoard & More Exp.| 0.531 | 0.375 | 0.339

TaskA & Less Exp. 0.369 | 0.285 | 0.198
TaskA & More Exp. 0.464 | 0.307 | 0.269
TaskB & Less Exp. 0.499 | 0.330 | 0.343
TaskB & More Exp. 0.574 | 0.467 | 0.412

Is it a statistical improvement what we expect for every congxt split?

The answer is No. On one hand, it is expected from some cantextontain a
set of less coherent instances, like in “Difficult Tasks”,tbis would lead to a poor
learning for the classifier; we refer to this kind of conteats“disturbing” contexts.
On the other hand, cohesive instances are expected in sdweanintext splits, like
in “Experienced Users”. This latter kind of context can bgareled as “cohesive”
context.

Thus, some contexts make classifier’s task easier and sdraesatot or even the
contrary. The aim of this experiment is to find what contexesraore cohesive and
thus lead to better performance in classifiers.

When a split dataset performs statistically better, is it due to context influence
or to its smaller size?
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When randomly reducing the number of instances from a datasedre keeping
the same number of properties (attributes) but having alemalmber of records
for the model to learn. This makes the classifier to be traiesd efficiently and
thus evaluation would commonly decrease. However, if detabs split based on
some relevant attribute, entropy of database is decreaskdllzetter model is expected
to be learned. Thus, splitting a database based on the tpnauerty will increase
classifier’s performance due to not the decrease in size duredse in uncertainty;
that is, a context split will perform statistically betteh@n it is a cohesive context.

8.5.2 Context influence

Along this section a discussion is developed to try to untdasthe presented results
in Tables8.3and8.4. The most remarkable results obtained from the experinasts
pointed out:

e User Experience. Results show, explained in next itemizatiwat “More Expe-
rienced” is a cohesive context which helps the classifieesanr a better model
for classification.

— Collaborative User Relevance. When using Behavior featuresa¢tions
of more experienced users are consistent in their searclitfat they re-
gard as relevant shots - it is easier for the classifiers tqoerappropriate
statistics in order to predict relevance. For less expeedrusers, user
actions are less consistent, the classifier learns a wordelpand the per-
formance of the classifiers is worse. As for Object/Vocatyufaatures,
shots selected by more experienced users are more cohesivevith less
experienced users, so the statistics are learned fromasimgtances thus
producing a greater performance.

— Collaborative Official Relevance. Only Object features penfetatisti-
cally different from the baseline, although it is worth tomtien thatF; —
measure for the other two kind of features is still greater than theddme.

— StoryBoard. In this case, it is again found a statisticallpriavement just
for “More Experience” context. Although this is just for okimd of fea-
tures, again the other two features got a low p-value andtdrgreater
than baseline.
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e Task Difficulty. In this context, it is quite clear the posé@iimpact of splits based
on Easy tasks. In most cases for “Easy” splits in Collaboeadivd all in “TaskB”
in StoryBoard (which is the easy task), results are stadibyibetter than clas-
sifier's performance without context differentiation. Fhilearly suggests that
shots accessed while searching easy tasks make more @besvto predict
relevance.

e Condition. Interesting results were found for this kind ohtext.

— Collaborative. Results seem to suggest that search for dhattsvill be
marked as “Relevant” by users is more cohesive when the usemih
bookmark the shot is searching alone. On the contrary, whlenance is
officially tagged, performance is better for contexts maidghots accessed
by users helping each other or watching somebody’s actions.

— StoryBoard. Condition can be differentiated in two cases:nweers per-
form search using a state-of-the-art interface (BaseLiteface) or a new
improved interface they face for the first time (StoryBoariface). Re-
sults suggest that the use of an interface people are usedve th a more
coherent and compact search than search performed usitigeffirst time
a new interface, even though this is supposed to be improved.

e Run (storyBoard). This is quite a random and non determincsiitext since
this is just a random order in which users used the two passgibtrfaces. As a
consequence of this, no consistent conclusion can be foonsuggested.

e Mixed Contexts. Mixed contexts are more difficult to intetpdgut if interest
is focused on searching for corroboration of conclusioagestabove, the same
conclusions can be found again in mixed contexts. Thus, iteBotative user
study, statistical improvements are again achieved mogtgn one of the mixed
split contexts is “More Experienced” of “Easy”. Besides, itoiyBoard user
study, statistical improvement is achieved for all kind @&atures when we find
together mix of two cohesive contexts: “BaselLine&TaskB”, “Bame&More
Experienced” and “TaskB&More Experienced”.

e Itis also quite remarkable that no statistical improventers been achieved for
any kind of feature for context splits: “Less ExperiencetDjfficult”, “Task
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A’(difficult task’) nor “StoryBoard” (first contact with a nevinterface). So
this suggests that they are disturbing contexts which dserelassifiers’ per-
formance.

8.6 Conclusions

Besides multimedia documents representation, new fieldgidy $rave arisen in or-
der to improve performance of MIR systems. One of them is thdysof “context
influence”. In this Chapter, an introduction has been maddédoature on context
and a deep study has been presented on context influencessifieta for document
relevance prediction.

These experiments have searched for cohesive contexth whsitively influence
on classifiers. In order to not get biased conclusions, @xgeits were run on two user
studies, using two kind of relevance and three differend lohfeatures to represent
shots, plus three different classifiers. Results supporhyipothesis that classifiers
learn a better model when datasets on which they are evedlbatee been constructed
using shots accessed in cohesive contexts. Several celuesitexts have been found;
thus, shots accessed by more experienced users, or duriegsgrtask, or using a
search interface users are used to, makes cohesive setd®fsltearn a better model.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions and Future Work

Apart from Partl, which presents an introduction to supervised classiboand fea-
ture selection, in this thesis several methodologicalrdmnions haven been presented
for supervised pre-processing of high-dimensional tedtranltimedia databases: meth-
ods for feature selection and methods for instance sefeatid re-sampling.

Partll presents several proposals with experiments run on higieqsional text
databases. Chaptéstudies new criteria for the Incremental Wrapper Subset8ete
(IWSS) for feature subset selection methods to decide thesion of a new attribute
in the subset of selected subsets. Furthermore, a promos@de to add the possi-
bility of not just adding a new feature but replacing it by soof the features in the
selected subset; this option provides more compact substbisut decreasing accu-
racy. Moreover, an early stopping criterion is suggestetthvbffectively stops the
search without decreasing the performance of the increahalgorithm. Finally, the
Naive Bayes classifier is embedded inside the IWSS algorithm thattperformance
stays the same but the wrapper nature of the incrementalhssamaintained while
the complexity is reduced to just that of a filter nature. Thax@cution time is dras-
tically reduced while keeping the advantages of incremewi@pper search, and final
selected subsets are more compact.

While Chapter3 improves IWSS in its wrapper search, Chap#end5 present two
proposals for extending the search space of the IWSS algohthaltering the filter
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ranking over which the wrapper search is run. Chagtproposes the embedding of
a GRASP search by utilizing a stochastic filter ranking indtefsa deterministic one,
and several methods are studied for choosing the best@oligiuind by GRASP. On
the other hand, Chaptémproposes a technique for detecting features at later positi
in the ranking which become relevant after some featuras &arlier positions have
been selected; then, these low-ranked features are reddolearlier positions and so
the wrapper search can stop sooner. This results in moreamirapbsets as well as a
drastic reduction in number of evaluations needed; ancttmslusion is corroborated
by a vast number of experiments and statistical comparisons

Chapter6 focuses on improving the e-mail foldering performance efid@ve Bayes
Multinomial (NBM) by studying re-sampling methods of trangisets based on differ-
ent distributions. Experiments prove that our suggestetthods statistically improve
the performance of NBM.

In Partlll, Chapter7 presents a study of different kinds of features to represent
multimedia documents for relevance prediction under i€ search topics, with the
result that features which represent the actions of useilse wieb searching are very
relevant for implicit relevance feedback and, thus, theyloa useful for collaborative
search engines. In addition, it tests balancing methodgesigd in Chapte$ using
the different kinds of representations. Finally, Cha@gresents a study of context
influence on user while performing the search. The reswis gvidence to conclude
that documents accessed during a search by expert usergjerensy search topics,
construct cohesive sets of documents which benefit theitepstage of classifiers.
And, thus, this gives a new criterion for selection of inses to select those instances
which are representative of documents coming from cohesiagexts.

As future work, it would be interesting to extend the embaddf probabilistic
classifiers in the IWSS algorithm besides that ofi\¢aBayes. Furthermore, since
embedding a GRASP search in IWSS has proved to be so profitable @ompact
subsets and lower number of evaluations), new GRASP praposald be studied.
Finally, ChapteB gives a criterion for selecting instances which come froat-veorld
searches, but this is not applicable to synthetic databaseswould be interesting to
investigate other ways of detecting cohesive sets of isstmbesides the difficulty of
search or the experience of users.
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DataSet SFS B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts
Colon 83.87 59| 82.26 2.2| 85.48 2.2| 83.87 2.4| 83.87 2.4 83.87 2.3| 83.87 2.3
Leukemia 87.50 3.2| 87.50 19| 87.50 19| 87.50 19| 87.50 19| 87.50 1.9| 87.50 2.0
Lymphoma 83.33 71| 72.92 4.7 | 75.00 56| 80.21 56| 81.25 5.7| 78.13 59| 76.04 5.9
DLBCL 80.85 3.6| 87.23 15| 82.98 16| 80.85 1.7| 80.85 1.7| 80.85 1.7| 80.85 1.7
Prostate 75.00 5.4| 73.53 3.2| 75.74 34| 77.21 4.2 | 80.88 4.7| 80.15 4.7| 83.09 4.8
Lung 93.92 25| 96.69 2.2| 96.69 22| 97.24 24| 97.24 24| 97.24 24| 97.24 2.4
GCM 58.42 18.3| 51.58 7.4| 53.68 10.3| 57.89 10.9| 57.89 11.8| 60.00 13.4| 62.11 14.2
Arcene 68.00 46| 71.00 2.6| 70.00 3.7| 72.00 3.8| 73.00 43| 71.00 4.3| 69.00 4.3
Madelon 60.75 6.5| 61.65 2.0| 60.75 34| 61.25 4.8 | 60.25 5.9| 60.10 5.6| 60.50 6.2
Dorothea 91.25 13.2| 94.25 3.0| 93.25 4.0| 93.38 5.0| 93.00 5.3| 92.88 5.3| 92.88 5.3
Dexter 76.00 13.8| 82.67 8.5| 81.00 10.1| 83.00 9.8| 82.67 9.7| 82.67 9.8 | 82.67 9.4
Gisette 94.05 26.9| 86.20 2.7| 88.47 6.4| 90.77 10.8| 91.62 15.9| 92.25 16.5| 92.57 17.1
Geom. Mean| 78.51 71| 77.82 3.0| 78.16 3.8| 79.54 4.4| 79.93 4.7| 79.68 4.8| 79.85 4.9
Arith. Mean 79.41 9.3| 78.96 3.5| 79.21 4.6| 80.43 5.3| 80.84 6.0| 80.55 6.2| 80.69 6.3

Table A.1: Results using Naive Bayes classifier, SFS seleatgorithm and CMIM-based re-ranking with block sizes B.
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DataSet IWSS? B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts
Colon 80.6 3.8| 80.6 2.8| 83.9 3.0| 823 32| 823 33| 823 3.3| 823 3.3
Leukemia 87.5 25| 875 2.0| 875 24| 875 24| 875 24| 875 24| 875 25
Lymphoma 76.0 8.8| 66.7 6.3| 75.0 76| 76.0 79| 77.1 8.0| 75.0 81| 77.1 8.2
DLBCL 85.1 19| 894 15| 87.2 16| 85.1 1.7| 85.1 1.7| 851 17| 851 1.7
Prostate 77.9 11.1| 721 41| 743 40| 77.9 56| 74.3 73| 721 78| 743 8.0
Lung 97.2 27| 96.7 22| 96.7 24| 97.2 27| 97.2 27| 97.2 27| 97.2 2.7
GCM 64.2 36.6| 54.2 12.3| 60.0 19.8| 62.1 21.4| 65.3 225| 64.2 24.4| 64.7 27.4
Arcene 70.0 13.4| 70.0 3.5| 68.0 5.1| 70.0 6.8| 70.0 7.0| 70.0 7.8| 69.0 7.8
Madelon 59.9 13.3| 61.3 2.7| 60.9 48| 60.3 7.1| 59.8 8.0| 60.0 10.1| 59.6 11.4
Dorothea 93.5 7.4| 93.9 28| 941 36| 944 3.8| 94.0 43| 93.9 43| 93.8 4.5
Dexter 81.0 19.6| 81.7 11.9| 83.7 13.1| 83.7 14.8| 81.3 15.7| 83.0 15.2| 80.7 14.9
Gisette 94.7 112.6| 88.7 18.3| 92.3 41.3| 93.7 62.6| 93.9 69.5| 94.4 82.0| 94.1 77.2
Geom. Mean| 79.81 945| 7741 4.24| 79.34 5.52| 79.97 6.50| 79.81 6.94| 79.51 7.32| 79.59 7.49
Arith. Mean 80.6 19.5| 785 59| 80.3 9.1| 80.9 11.7| 80.6 12.7| 80.4 14.2| 80.4 14.1

Table A.2: Results using Naive Bayes classifier, IWWS&8ection algorithm and CMIM-based re-ranking with blociesiB.
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DataSet IWSS?. B=5 B=10 B=20 B=30 B=40 B=50
Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts
Colon 83.9 28| 823 22| 855 22| 83.9 24| 83.9 24| 83.9 23| 83.9 2.3

Leukemia 87.5 20| 875 19| 875 19| 875 19| 875 19| 875 19| 875 2.0
Lymphoma 80.2 59| 729 47| 75.0 56| 80.2 56| 813 57| 781 59| 76.0 5.9

DLBCL 80.9 1.8| 87.2 15| 83.0 1.6| 80.9 1.7| 80.9 1.7| 80.9 1.7| 80.9 1.7
Prostate 78.7 70| 735 3.2| 757 34| 77.2 4.2| 80.9 47| 80.1 47| 83.1 4.8
Lung 97.2 241 96.7 22| 96.7 22| 97.2 241 97.2 241 97.2 24| 97.2 2.4
GCM 59.5 19.9| 51.6 7.4| 53.7 10.3| 57.9 10.9| 57.9 11.8| 60.0 13.4| 621 14.2
Arcene 72.0 6.2 71.0 26| 70.0 3.7 72.0 3.8| 73.0 43| 71.0 43| 69.0 4.3
Madelon 60.5 8.0| 61.7 20| 60.8 34| 613 4.8 | 60.3 59| 60.1 5.6| 605 6.2
Dorothea 92.9 6.3 94.3 3.0 933 40| 934 50| 93.0 53| 92.9 53| 929 5.3
Dexter 83.0 12.9| 827 8.5| 81.0 10.1| 83.0 9.8 | 82.7 9.7 | 827 9.8| 827 9.4
Gisette 94.1 30.7| 86.2 27| 885 6.4| 90.8 10.8| 91.6 15.9| 923 16.5| 92.6 17.1

Geom. Mean| 79.97 6.06| 77.82 3.01| 78.16 3.81| 79.54 4.35| 79.93 4.72| 79.68 4.76| 79.85 4.85
Arith.Mean 80.9 8.8 | 79.0 3.5| 79.2 4.6 | 80.4 53| 80.8 6.0| 80.6 6.2| 80.7 6.3

Table A.3: Results using Naive Bayes classifier, IWS&8ection algorithm and CMIM-based re-ranking with blociesiB.
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DataSet BARS B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts
Colon 85.71 3.0| 79.03 3.5| 83.87 3.4| 79.03 3.3| 77.42 3.1| 79.03 2.9| 79.03 3.0
Leukemia 90.54 2.3| 91.67 3.1| 93.06 3.3| 93.06 3.1| 93.06 3.1| 94.44 3.2| 94.44 3.2
Lymphoma 73.67 6.1| 71.88 8.3| 73.96 7.8] 79.17 9.2| 78.13 9.1| 77.08 9.1| 79.17 9.5
DLBCL 76.00 241 8511 3.1| 85.11 3.3| 74.47 3.4 74.47 3.6 | 80.85 3.2| 76.60 3.3
Prostate 86.81 3.7| 76.47 40| 67.65 5.0| 68.38 5.5| 70.59 52| 77.21 5.9| 73.53 6.6
Lung 98.36 3.0| 95.58 3.1| 97.24 3.6| 96.13 3.7] 96.13 3.6| 96.13 3.5| 96.69 35
GCM 60.00 15.9| 48.42 89| 55.26 11.4| 55.26 14.0| 59.47 15.7| 60.53 17.2| 61.05 17.6
Arcene 74.00 49| 76.00 46| 81.00 4.6| 82.00 6.0| 78.00 6.5| 83.00 7.3| 85.00 6.7
Madelon 60.30 5.8| 61.00 2.7| 61.30 4.2| 61.05 6.3| 61.40 7.3] 61.20 8.9| 61.05 8.7
Dorothea 93.88 7.3 ] 93.88 6.3| 93.63 10.3| 94.75 9.1| 9425 11.1| 9400 13.4| 9438 17.1
Dexter 82.67 12.8| 77.00 6.1| 84.67 12.8| 82.67 155| 83.33 15.5| 83.67 15.8| 84.67 15.2
Gisette 93.10 13.6| 87.05 3.8| 87.50 5.8| 88.98 75| 92.02 13.6| 92.28 14.3| 89.72 143
Geom. Mean| 80.29 54| 77.33 4.4| 79.26 5.6| 78.52 6.3| 78.94 6.8| 80.77 72| 8041 7.39
Arith. Mean | 81.25 6.7| 78.59 4.8| 80.35 6.3| 79.58 7.2| 79.86 8.1| 81.62 8.7| 81.28 9.06

Table A.4: Results using Naive Bayes classifier, BARS seledtigorithm and CMIM-based re-ranking with block sizes B.
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DataSet SFS B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts
Colon 83.87 5.9 | 83.87 2.7| 82.26 4.2| 80.65 3.8| 82.26 4.4| 80.65 4.41 80.65 4.8
Leukemia 87.50 3.2| 91.67 3.6| 94.44 3.2| 94.44 35| 94.44 3.7 | 93.06 3.8| 93.06 3.7
Lymphoma 83.33 7.1| 76.04 9.0| 76.04 11.5| 82.29 9.2| 81.25 10.7| 80.21 9.2| 79.17 9.6
DLBCL 80.85 3.6| 91.49 4.41 91.49 4.3| 91.49 46| 91.49 45| 91.49 42| 89.36 4.2
Prostate 75.00 5.4| 75.00 43| 76.47 5.7| 75.74 51| 77.21 6.1| 75.00 5.7| 75.00 55
Lung 93.92 251 96.13 3.4] 96.13 3.0| 96.69 3.0| 97.79 3.0| 97.24 2.8 | 96.69 2.6
GCM 58.42 18.3| 65.26 19.9| 70.00 24.5| 67.89 25.0| 70.53 22.6| 7211 29.3| 65.79 23.0
Arcene 68.00 46| 74.00 6.8| 72.00 8.4| 75.00 7.0| 74.00 7.3| 73.00 8.1| 72.00 7.7
Madelon 60.75 6.5| 61.25 24| 60.75 3.7| 61.75 6.8 61.30 7.0| 61.10 6.4| 61.10 5.7
Dorothea 91.25 13.2| 93.25 6.2| 92.63 45| 93.50 7.4] 92.88 10.1| 92.50 9.9| 92.38 11.8
Dexter 76.00 13.8| 80.00 12.0| 83.00 13.5| 83.67 12.5| 83.67 13.0| 84.33 12.8| 80.33 10.8
Gisette 94.05 26.9| 90.83 16.7| 89.70 15.8| 90.47 19.1| 90.83 21.7| 91.20 23.9| 92.00 19.8
Geom. Mean| 78.51 7.1| 80.79 6.0| 81.34 6.7| 82.07 7.2| 82.43 7.8| 81.96 7.8| 80.68 7.4
Arith. Mean | 79.41 9.3| 81.57 7.6| 82.08 8.5| 82.80 8.9| 83.14 9.5| 8266 10.0| 81.46 9.1

Table A.5: Results using Naive Bayes classifier, SFS seleatgorithm and MIFS-based re-ranking with block sizes B.
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DataSet IWSS? B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts
Colon 80.65 3.8 | 80.65 2.8| 83.87 29| 83.87 3.2| 82.26 3.3| 82.26 3.4| 82.26 3.4
Leukemia 87.50 25| 87.50 21| 87.50 2.4| 87.50 2.4 87.50 2.4 87.50 24| 87.50 25
Lymphoma 76.04 8.8| 71.88 7.0| 72.92 7.3| 72.92 8.2 72.92 8.1| 76.04 8.2| 77.08 8.3
DLBCL 85.11 19| 89.36 15| 87.23 1.6| 85.11 1.7| 85.11 1.7| 85.11 1.7| 85.11 1.7
Prostate 77.94 11.1| 73.53 45| 66.91 4.3| 72.06 5.4 71.32 6.1| 69.85 6.3| 73.53 5.9
Lung 97.24 2.7 ] 96.69 2.3| 96.69 241 97.24 27| 97.24 27| 97.24 2.7| 97.24 2.7
GCM 64.21 36.6| 65.26 14.9| 60.53 18.9| 63.16 20.5| 61.58 21.3| 64.74 22.9| 64.21 23.2
Arcene 70.00 13.4| 73.00 4.41 73.00 7.4] 73.00 7.6| 72.00 7.3| 71.00 7.7| 65.00 8.4
Madelon 59.85 13.3| 61.15 3.0| 60.65 4.7| 60.25 7.1| 59.75 8.0| 59.95 10.1| 59.60 114
Dorothea 93.50 7.4] 93.50 3.4| 93.75 3.7| 94.13 4.0| 93.88 4.4| 93.88 43| 93.88 4.3
Dexter 81.00 19.6| 84.00 10.7| 83.33 125| 82.67 12.4| 8100 13.1| 79.33 13.6| 79.67 144
Gisette 94.68 112.6| 90.50 14.8| 90.23 15.8| 89.83 22.1| 90.60 33.1| 91.10 38.4| 9245 414
Geom. Mean| 79.81 9.4| 79.80 4.5| 78.77 5.2| 79.31 5.9| 78.71 6.3| 79.01 6.7| 78.88 6.9
Arith. Mean | 80.64 19.5| 80.58 6.0| 79.72 7.0| 80.14 8.1| 79.60 9.3| 79.83 10.1| 79.79 10.6

Table A.6: Results using Naive Bayes classifier, IWS&8ection algorithm and MIFS-based re-ranking with bldzkes B.
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DataSet IWsSs2 B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts
Colon 83.87 2.8 | 82.26 2.0| 85.48 2.3| 83.87 2.3| 83.87 2.3 | 83.87 2.3| 83.87 2.3
Leukemia 87.50 2.0| 87.50 2.0| 87.50 1.9| 87.50 1.9| 87.50 1.9| 87.50 1.9| 87.50 2.0
Lymphoma 80.21 5.9| 72.92 5.7| 78.13 5.1| 81.25 5.0| 80.21 5.4| 82.29 5.6| 78.13 5.6
DLBCL 80.85 1.8| 87.23 15| 82.98 1.6| 80.85 1.7| 80.85 1.7| 80.85 1.7| 80.85 1.7
Prostate 78.68 7.0] 72.79 3.9| 73.53 35| 75.74 4.2| 75.00 4.0| 75.74 43| 76.47 4.1
Lung 97.24 2.4 96.69 2.2| 96.69 23| 97.24 2.4 97.24 2.4 97.24 24| 97.24 2.4
GCM 59.47 19.9| 55.79 9.1| 6158 125| 64.74 12.6| 63.68 15.7| 65.79 14.8| 62.11 15.3
Arcene 72.00 6.2 | 70.00 3.3| 71.00 3.9| 70.00 3.9| 72.00 4.6| 72.00 5.3| 70.00 4.9
Madelon 60.50 8.0| 61.10 2.1| 60.55 3.6| 61.25 4.8| 60.25 5.9| 60.10 5.6| 60.50 6.2
Dorothea 92.88 6.3 | 93.50 3.7| 93.63 5.0| 93.50 5.3| 93.50 5.5| 93.63 5.3| 93.50 5.4
Dexter 83.00 12.9| 84.00 9.0| 82.67 10.0| 82.33 8.9 | 83.67 9.2 | 83.67 9.4| 82.67 9.5
Gisette 94.07 30.7| 90.10 10.8| 90.02 9.7] 91.32 11.5| 9150 14.8| 91.60 14.5| 92.05 19.0
Geom. Mean| 79.97 6.1| 78.46 3.7| 79.48 4.1| 80.05 4.4| 79.99 4.7 80.45 4.8| 79.58 4.9
Arith. Mean | 80.85 8.8| 79.49 4.6| 80.31 5.1| 80.80 5.4| 80.77 6.1| 81.19 6.1| 80.41 6.5

Table A.7: Results using Naive Bayes classifier, IWS&8ection algorithm and MIFS-based re-ranking with blazies B.
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DataSet BARS B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts
Colon 85.71 3.0| 82.26 3.1| 82.26 35| 77.42 3.4| 79.03 3.2| 79.03 2.8| 79.03 3.0
Leukemia 90.54 2.3 | 91.67 3.0| 91.67 3.2| 93.06 3.1| 93.06 3.1| 93.06 3.0| 93.06 3.0
Lymphoma 73.67 6.1| 73.96 6.8| 75.00 7.9 79.17 9.2 79.17 8.2| 77.08 8.3| 76.04 8.6
DLBCL 76.00 2.4 82.98 2.8| 93.62 3.4| 76.60 3.4 78.72 3.4 82.98 3.3| 82.98 34
Prostate 86.81 3.7 | 80.15 3.8| 72.06 45| 72.79 49| 76.47 48| 74.26 5.4| 75.00 5.4
Lung 98.36 3.0] 96.13 3.3| 97.24 3.3] 96.13 3.4 96.13 3.5] 96.13 3.3| 96.69 3.3
GCM 60.00 15.9| 55.79 10.8| 66.32 12.9| 63.68 15.2| 61.05 15.8| 63.68 17.2| 63.16 17.2
Arcene 74.00 49| 82.00 45| 80.00 5.2| 80.00 6.4 79.00 6.6 | 80.00 6.3| 81.00 5.9
Madelon 60.30 5.8| 60.70 2.0| 60.60 3.8| 61.05 6.3| 61.40 7.3] 61.20 8.9| 61.05 8.7
Dorothea 93.88 7.3] 93.75 6.2| 93.50 7.41 94.50 9.6| 94.00 10.0| 9400 10.5| 93.88 10.9
Dexter 82.67 12.8| 77.67 7.3| 79.33 11.1| 81.67 135| 8433 12.6| 83.33 13.5| 83.33 137
Gisette 93.10 13.6| 88.42 5.8| 88.69 8.6| 88.57 10.7| 8147 12.4| 86.17 11.6| 87.60 11.2
Geom. Mean| 80.29 5.4| 79.50 4.4| 80.89 5.5| 79.63 6.4| 79.57 6.5| 80.19 6.6| 80.31 6.6
Arith. Mean | 81.25 6.7| 80.46 5.0| 81.69 6.2| 80.39 7.4| 80.32 7.6| 80.91 7.8| 81.07 7.9

Table A.8: Results using Naive Bayes classifier, BARS selectigorithm and MIFS-based re-ranking with block sizes B.
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DataSet SFS B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts
Colon 83.87 5.9| 85.48 2.1| 85.48 2.8| 80.65 4.4| 82.26 3.9| 80.65 3.9| 80.65 4.3
Leukemia 87.50 3.2 | 88.89 2.9| 95.83 3.4| 94.44 3.2| 94.44 3.6 | 93.06 3.8| 93.06 3.7
Lymphoma 83.33 7.1| 73.96 8.0 80.21 10.8| 80.21 7.9 79.17 8.7| 77.08 8.2| 73.96 8.2
DLBCL 80.85 3.6| 91.49 3.0| 91.49 3.2| 89.36 3.8| 91.49 4.1| 89.36 4.1| 89.36 3.9
Prostate 75.00 5.4 76.47 3.8| 77.21 45| 75.00 3.6| 72.79 41| 74.26 40| 74.26 4.0
Lung 93.92 25| 95.58 2.8| 96.13 2.8| 96.69 3.0| 97.79 3.0| 97.24 2.8 | 96.69 2.6
GCM 58.42 18.3| 50.53 13.2| 5158 10.5| 51.05 11.5| 57.37 13.8| 53.16 12.6| 55.79 18.8
Arcene 68.00 46| 78.00 48| 73.00 7.0| 73.00 6.2| 71.00 5.8| 67.00 5.7| 69.00 4.9
Madelon 60.75 6.5| 61.25 24| 60.75 3.7| 61.75 6.8 61.30 7.0| 61.10 6.4| 61.10 5.7
Dorothea 91.25 13.2| 93.25 45| 92.75 4.2| 93.38 4.6| 93.00 6.4 92.88 5.3| 92.88 5.3
Dexter 76.00 13.8| 75.00 6.4| 80.67 7.7] 81.33 85| 84.00 11.0| 83.00 12.2| 80.67 9.9
Gisette 94.05 26.9| 88.00 9.0| 88.10 11.2| 89.20 14.1| 88.73 13.9| 89.75 13.1| 90.23 22.2
Geom. Mean| 78.51 7.1| 78.63 4.5| 79.86 5.2| 79.29 5.7| 80.06 6.2| 78.67 6.0| 78.72 6.2
Arith. Mean | 79.41 9.3| 79.82 52| 81.10 6.0| 80.50 6.5| 81.11 7.1| 79.88 6.8| 79.80 7.8

Table A.9: Results using Naive Bayes classifier, SFS seleatgorithm and MRMR-based re-ranking with block sizes B.

VI3 L1140 ONPDINVY-3H 'V



761

DataSet IWSS? B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts
Colon 80.65 3.8 | 80.65 2.7| 83.87 29| 83.87 3.0| 83.87 3.1| 83.87 3.2| 83.87 3.2
Leukemia 87.50 25| 87.50 1.8| 87.50 2.1| 87.50 2.1| 87.50 2.2 | 87.50 2.3| 87.50 2.4
Lymphoma 76.04 8.8 | 64.58 5.1| 72.92 56| 69.79 6.5| 70.83 6.8| 73.96 7.4| 75.00 7.8

DLBCL 85.11 1.9| 89.36 15| 87.238 1.6| 85.11 1.7| 85.11 1.7| 85.11 1.7| 85.11 1.7
Prostate 77.94 11.1| 70.59 3.2| 70.59 3.9| 74.26 49| 73.53 59| 72.79 6.1| 73.53 6.1
Lung 97.24 27| 96.13 2.1| 96.13 22| 97.24 27| 97.24 27| 97.24 27| 97.24 2.7
GCM 64.21 36.6| 49.47 8.9| 48.95 8.7| 55.79 13.1| 51.05 14.9| 52.63 17.9| 5421 179
Arcene 70.00 13.4| 74.00 3.1| 73.00 4.9| 69.00 5.9| 73.00 6.0| 74.00 6.5| 77.00 7.3
Madelon 59.85 13.3| 61.15 3.0| 60.65 4.7| 60.25 7.1| 59.75 8.0| 59.95 10.1| 59.60 114
Dorothea 93.50 7.4 93.50 2.4| 93.88 29| 94.25 3.2| 94.00 3.8| 94.00 3.8| 94.00 3.9
Dexter 81.00 19.6| 72.00 51| 77.67 5.3| 83.67 99| 82,67 11.6| 81.00 13.2| 79.67 14.3
Gisette 94.68 112.6| 88.48 6.0| 88.00 8.2| 86.68 13.3| 87.23 19.2| 88.28 19.1| 89.85 21.8

Geom. Mean| 79.81 9.4| 75.95 3.3| 77.09 3.9| 77.90 4.9| 77.61 55| 78.08 5.9| 78.65 6.2
Arith. Mean | 80.64 19.5| 77.28 3.7| 78.37 4.4| 78.95 6.1| 78.82 7.2| 79.19 78| 79.71 8.4

Table A.10: Results using Naive Bayes classifier, IWS&ection algorithm and MRMR-based re-ranking with bloclesiz
B.
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Table A.11: Results using Naive Bayes classifier, I\WWS8ection algorithm and MRMR-based re-ranking with bloclesiz
B.

DataSet IWSS? B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts
Colon 83.87 2.8 | 80.65 2.0| 80.65 2.3| 80.65 23| 82.26 2.3| 85.48 2.3| 85.48 2.3
Leukemia 87.50 2.0| 87.50 1.8| 87.50 1.9| 87.50 1.9| 87.50 19| 87.50 1.9| 87.50 2.0
Lymphoma 80.21 59| 67.71 41| 72.92 4.8| 79.17 4.8| 78.13 4.8| 80.21 5.4| 77.08 5.5
DLBCL 80.85 1.8| 87.23 15| 82.98 1.6| 80.85 1.7| 80.85 1.7| 80.85 1.7 | 80.85 1.7
Prostate 78.68 7.0] 72.79 29| 74.26 3.1| 77.94 3.6| 77.94 3.5| 75.74 3.6| 75.00 3.6
Lung 97.24 2.4 96.13 21| 96.13 2.1| 97.24 2.4 97.24 241 97.24 24| 97.24 2.4
GCM 59.47 19.9| 48.95 6.5| 47.37 8.3| 54.21 9.1| 53.68 9.3| 49.47 10.0| 48.42 105
Arcene 72.00 6.2 | 72.00 2.5| 70.00 4.0| 71.00 4.5| 71.00 4.8| 72.00 4.8| 73.00 4.8
Madelon 60.50 8.0| 61.10 2.1| 60.55 3.6| 61.25 4.8| 60.25 5.9| 60.10 5.6 | 60.50 6.2
Dorothea 92.88 6.3| 93.75 3.8| 92.63 3.9| 93.50 3.9| 93.38 4.0| 93.25 4.0| 93.25 4.0
Dexter 83.00 12.9| 73.00 5.0| 79.33 4.9| 82.00 7.7] 81.33 8.5| 81.00 8.9| 81.67 9.2
Gisette 94.07 30.7| 88.28 5.8| 88.38 7.1| 89.68 6.5| 88.67 7.3 | 88.40 9.8| 89.60 134
Geom. Mean| 79.97 6.1| 76.14 3.0| 76.43 3.5| 78.59 3.9| 78.32 4.1| 78.04 4.2| 77.86 4.4
Arith. Mean | 80.85 8.8| 77.42 33| 77.72 4.0| 79.58 4.4| 79.35 4.7 79.27 5.0 79.13 5.5
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Table A.12: Results using Naive Bayes classifier, BARS seleatigorithm and MRMR-based re-ranking with block sizes
B.

DataSet BARS B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts
Colon 85.71 3.0| 82.26 29| 82.26 3.1| 80.65 2.8| 79.03 2.8| 79.03 2.6| 79.03 2.6
Leukemia 90.54 2.3| 91.67 2.2| 91.67 3.0| 93.06 29| 93.06 2.9 | 93.06 2.8 | 93.06 2.8
Lymphoma 73.67 6.1| 69.79 5.5| 71.88 5.6| 70.83 7.3] 72.92 6.4 72.92 6.8| 70.83 7.1
DLBCL 76.00 241 8511 24| 8511 2.8| 76.60 2.7| 80.85 2.8 | 80.85 2.9| 80.85 2.9
Prostate 86.81 3.7| 75.00 3.6| 75.00 3.9| 73.53 3.7| 73.53 42| 75.74 42| 75.00 4.6
Lung 98.36 3.0] 96.69 26| 97.24 3.3] 96.13 3.4 96.13 3.5] 96.13 3.3| 96.69 3.3
GCM 60.00 15.9| 48.42 6.9 | 46.84 72| 47.37 8.6| 51.58 9.2| 49.47 10.6| 50.53 10.8
Arcene 74.00 49| 77.00 48| 79.00 4.2| 81.00 5.2| 77.00 5.0| 80.00 45| 82.00 4.1
Madelon 60.30 5.8| 60.70 2.0| 60.60 3.8| 61.05 6.3| 61.40 7.3] 61.20 8.9| 61.05 8.7
Dorothea 93.88 7.3] 93.38 5.1| 93.75 5.3| 94.63 6.1| 94.13 6.7 | 94.13 6.8 | 94.00 7.8
Dexter 82.67 12.8| 75.33 6.2| 79.33 8.7| 76.67 6.2 | 83.33 9.3| 82.67 13.1| 83.00 134
Gisette 93.10 13.6| 88.55 6.3| 87.77 8.1| 88.47 6.5| 88.70 6.5| 88.70 6.7 | 88.70 6.7
Geom. Mean| 80.29 54| 77.34 38| 77.81 4.6| 76.97 4.8| 78.16 5.1| 78.26 53| 78.34 54
Arith. Mean | 81.25 6.7| 78.66 4.2| 79.20 4.9| 78.33 5.1| 79.30 5.6| 79.49 6.1| 79.56 6.2
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B.1

B.2

IWSS and CMIM Criterion

| DataSet | wss? ] B=5 B=10 B=20 B=30 B=40 B=50
Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts
Colon 80.6 3.8| 80.6 28| 839 30| 823 32| 823 33| 823 33| 823 3.3
Leukemia 87.5 25| 875 20| 875 24| 875 24| 875 24| 875 24| 875 25
Lymphoma | 76.0 8.8| 66.7 6.3| 75.0 76| 76.0 79| 771 8.0| 75.0 8.1 771 8.2
DLBCL 85.1 19| 89.4 15| 87.2 16| 85.1 17| 851 17| 851 1.7] 85.1 1.7
Prostate 779 111 721 41| 743 40| 779 56| 74.3 73| 721 78| 743 8.0
Lung 97.2 27| 96.7 22| 96.7 24| 97.2 27| 97.2 27| 97.2 27| 97.2 2.7
GCM 642  36.6| 542 12.3| 600 19.8| 621 21.4| 653 225| 642 244| 647 274
Arcene 700  13.4| 70.0 35| 68.0 5.1| 70.0 6.8| 70.0 70| 70.0 78| 69.0 7.8
Madelon 59.9  13.3| 61.3 2.7| 60.9 48| 60.3 7.1| 59.8 80| 600 10.1| 59.6 11.4
Dorothea 935 74| 939 28| 94.1 36| 944 3.8| 94.0 43| 939 43| 93.8 45
Dexter 810 19.6| 817 11.9| 837 13.1| 837 14.8| 813 157| 83.0 15.2| 80.7 149
Gisette 947 112.6| 887 183| 923 41.3| 937 62.6| 939 69.5| 944 820| 941 77.2
Geom. Mean| 79.81  9.45| 77.41 4.24| 79.34 552| 79.97 6.50| 79.81 6.94| 79.51 7.32| 79.59 7.49
Arith. Mean | 80.6  19.5| 785 59| 80.3 9.1| 809 11.7| 806 12.7| 804 14.2| 804 14.1

Table B.1: NB classifier, IWSSand CMIM-based re-ranking with block sizes B.

IWSS with replacement and CMIM Criterion
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DataSet IWSS? B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts
Colon 79.03 2.7| 82.26 1.7| 82.26 1.7| 82.26 19| 82.26 2.0| 82.26 2.0| 80.65 2.3
Leukemia 83.33 11| 83.33 1.0| 83.33 1.0| 83.33 1.0| 83.33 11| 83.33 1.1| 83.33 11
Lymphoma 75.00 8.9 | 64.58 5.8| 65.63 6.4 78.13 7.8| 78.13 7.9| 76.04 8.1| 76.04 8.2
DLBCL 76.60 15| 76.60 14| 76.60 1.4| 76.60 14| 76.60 14| 76.60 1.4| 76.60 15
Prostate 88.24 49| 88.97 3.9| 89.71 4.0| 89.71 4.1| 91.18 44| 91.18 43| 91.18 4.3
LungCancer | 95.03 1.3| 95.58 1.1| 95.58 1.1| 95.58 1.2| 95.58 1.2| 95.58 1.2| 95.58 1.2
GCM 45.26  23.4| 45.26 8.5| 48.42 10.9| 45.79 13.6| 48.42 153| 44.74 143| 4526 141
Arcene 82.00 7.5| 78.00 4.0| 79.00 5.1| 79.00 5.6| 78.00 5.9| 78.00 6.0| 78.00 6.3
Madelon 77.25 23.1| 75.60 8.0| 76.15 9.6| 75.60 13.1| 76.70 13.8| 75.35 14.9| 76.05 19.8
Dorothea 91.63 9.7 ] 92.38 25| 92.25 3.5| 91.63 5.2| 91.75 5.3| 91.75 5.5| 91.88 5.7
Dexter 81.33 13.2| 76.33 5.4| 81.67 8.4| 81.67 8.7 | 80.67 9.4 82.33 9.3| 82.67 9.4
Gisette 93.70 67.8| 9295 21.2| 9348 28.1| 93.72 37.4| 93.70 42.3| 93.30 49.2| 94.08 52.9
Geom. Mean| 79.48 6.7| 77.97 3.6| 79.17 4.2| 79.88 4.9] 80.29 5.1| 79.58 5.2| 79.68 5.5
Arith. Mean | 80.70 13.8| 79.32 54| 80.34 6.8| 81.08 8.4| 81.36 9.2| 80.87 9.8| 80.94 10.6

Table B.2: c4.5 classifier, IWS%nd CMIM-based re-ranking with block sizes B.
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DataSet IWSS? B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts
Colon 82.26 6.3 | 83.87 4.0| 80.65 45| 77.42 5.1| 80.65 49| 80.65 5.2| 80.65 5.0
Leukemia 88.89 2.8 | 84.72 2.3| 83.33 2.4 84.72 25| 86.11 2.8 | 86.11 2.8| 87.50 2.8
Lymphoma 81.25 12.5| 75.00 8.0| 79.17 10.2| 81.25 10.9| 81.25 11.0| 85.42 11.3| 8542 115
DLBCL 85.11 3.5| 80.85 2.8| 78.72 3.0| 76.60 3.2| 78.72 3.2| 80.85 3.3| 80.85 3.3
Prostate 86.03 8.6 | 86.03 5.0| 89.71 5.9| 88.97 6.1| 90.44 6.7 | 88.97 6.7 | 88.97 6.7
LungCancer | 96.13 2.7 | 95.03 2.6| 95.58 2.6| 96.13 2.6| 96.13 2.6| 96.13 2.7| 96.13 2.7
GCM 65.26 34.1| 49.47 9.8| 50.00 11.6| 55.26 17.8| 59.47 21.4| 57.89 20.2| 57.89 23.6
Arcene 76.00 13.2| 78.00 5.9| 79.00 6.4| 76.00 8.2| 77.00 8.2 79.00 8.7 | 76.00 8.6
Madelon 88.00 11.7| 85.65 8.4| 85.45 7.7| 85.40 7.7| 86.75 9.1| 87.00 9.6| 87.00 9.6
Dorothea 91.88 18.2| 93.50 4.3] 93.38 6.0 93.13 7.5] 92.75 8.4| 92.50 8.7 | 92.63 9.9
Dexter 83.33 246| 81.67 12.0| 8167 15.2| 81.67 15.6| 81.67 15.9| 82.67 16.7| 83.67 16.9
Gisette 95.97 100.4| 90.37 18.5| 93.77 38.0| 9595 65.4| 9595 70.0| 95.88 72.0| 96.10 81.3
Geom. Mean| 84.58 11.3| 81.05 5.7| 81.56 6.8| 81.92 7.9| 83.29 8.4| 83.78 8.6| 83.74 8.9
Arith. Mean | 85.01 19.9| 82.01 7.0| 82.53 95| 8271 12.7| 8391 13.7| 84.42 14.0| 84.40 152

Table B.3: ibK classifier, IWSSand CMIM-based re-ranking with block sizes B.

ININIDV1d3d HLIM SSMI ANV

SSMI 404 SHAIFISSV1O LNJFH3441d ONISN ONIMNVYH-IH WIND g



66T

DataSet IWSS? B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts
Colon 67.74 11| 69.35 1.0| 69.35 1.0| 69.35 1.0| 69.35 1.0| 69.35 1.0| 69.35 1.0
Leukemia 65.28 1.0| 65.28 1.0| 65.28 1.0| 65.28 1.0| 65.28 1.0| 65.28 1.0| 65.28 1.0
Lymphoma 82.29 11.1| 80.21 8.2| 81.25 8.1| 80.21 8.8| 80.21 8.9| 80.21 9.0| 81.25 9.8
DLBCL 87.23 19| 89.36 15| 89.36 15| 87.23 16| 85.11 18| 87.23 1.9| 87.23 1.9
Prostate 73.53 12| 76.47 1.0| 76.47 1.0| 76.47 1.0| 76.47 1.0| 76.47 1.0| 76.47 1.0
LungCancer | 82.32 1.0| 82.32 1.0| 82.32 1.0| 82.32 1.0| 82.32 1.0| 82.32 1.0| 82.32 1.0
GCM 15.79 17| 14.74 1.3| 14.74 13| 14.74 14| 14.74 14| 14.74 14| 14.74 14
Arcene 61 3.8 | 64.00 15| 63.00 1.7 | 63.00 2.1| 63.00 2.2| 62.00 2.6| 63.00 2.7
Madelon 57.85 7.7 | 56.40 19| 56.30 1.8| 56.10 3.4| 56.60 3.7 | 56.65 3.8| 56.65 3.9
Dorothea 93.00 6.1| 93.38 3.3| 93.25 5.1| 92.75 5.5] 92.88 5.6 | 93.00 5.5| 93.13 5.5
Dexter 80.33 21.2| 71.33 4.0| 80.67 9.0| 80.00 12.0| 82.33 12.1| 81.33 12.0| 81.33 121
Gisette 89.03 28.5| 87.03 7.5| 88.33 9.2| 88.48 10.1| 88.72 13.0| 88.55 11.8| 88.72 11.9
Geom. Mean| 66.23 3.62| 65.56 2.02| 66.28 2.29| 65.99 2.60| 66.08 2.72| 66.07 2.75| 66.24 2.78
Arith. Mean | 71.28 7.19| 70.82 2.77| 71.69 3.48| 71.33 4.08| 71.42 4.39| 71.43 4.33| 71.62 4.43

Table B.4: SVM classifier, IWSSand CMIM-based re-ranking with block sizes B.

uouaIID WIND pue Juswade|dal yum SSMI Z2'd
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DataSet IWSS? B=5 B=10 B=20 B=30 B=40 B=50
Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts
Colon 62.90 42| 67.74 22| 67.74 25| 66.13 29| 64.52 3.2| 64.52 3.2 | 64.52 3.1
Leukemia 87.50 2.6 | 84.02 20| 84.72 2.1| 86.11 22| 86.11 24| 86.11 241 86.11 2.5
Lymphoma 81.25 11.3| 80.21 7.6| 80.21 8.0| 80.21 8.0| 72.92 8.1| 76.04 8.8 | 79.17 9.2
DLBCL 78.72 2.0| 82.98 1.3| 80.85 15| 76.60 1.7| 76.60 1.7| 76.60 1.7 | 74.47 1.8
Prostate 89.71 7.0| 87.00 4.1| 88.97 42| 90.44 45| 91.91 4.8| 91.18 45| 92.65 4.7
LungCancer | 97.79 2.4 96.69 2.1| 96.69 2.2| 96.69 2.2| 96.69 2.2| 96.69 2.2| 96.69 2.2
GCM 55.79 33.4| 50.50 13.2| 52.63 15.1| 54.74 17.4| 5842 19.6| 53.68 17.8| 59.47 211
Arcene 83.00 12.9| 78.00 4.3| 79.00 6.4 | 80.00 7.2| 78.00 8.6| 77.00 8.9| 76.00 9.4
Madelon 75.85 12.4| 75.20 8.5| 75.15 9.4| 75.75 10.4| 76.40 11.0| 76.75 11.2| 7640 115
Dorothea - - | 92.75 3.7] 92.25 6.0| 92.25 6.7 | 92.25 7.4 92.38 79| 92.88 7.8
Dexter 8.00 2149.4| 86.24 125| 86.33 13.1| 84.67 12.5| 88.00 13.5| 88.33 13.3| 87.33 13.2
Gisette - — | 9340 18.9| 9353 21.0| 94.23 26.9| 94.63 29.7| 9425 29.9| 9528 39.1
Geom. Mean — - | 80.17 4.8| 80.54 5.6| 80.56 6.1| 80.47 6.5| 80.08 6.6| 80.87 6.9
Arith. Mean - - | 81.23 6.7| 81.51 7.6| 81.48 8.6| 81.37 9.4| 81.13 9.3| 81.75 10.5

Table B.5: MLP classifier, IWSSand CMIM-based re-ranking with block sizes B.

ININIDV1d3d HLIM SSMI ANV

SSMI 404 SHAIFISSV1O LNJFH3441d ONISN ONIMNVYH-IH WIND g
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DataSet IWSS? B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts
Colon 87.10 3.0| 88.71 2.8| 87.10 29| 87.10 29| 87.10 29| 87.10 29| 87.10 3.0
Leukemia 91.67 3.2| 91.67 2.7| 91.67 2.8| 91.67 29| 91.67 29| 91.67 29| 91.67 2.9
Lymphoma 72.92 10.4| 64.58 7.0| 72.92 8.0| 72.92 9.7| 79.17 10.0| 80.21 9.5| 79.17 9.4
DLBCL 82.98 29| 8511 25| 82.98 2.7| 82.98 2.8| 82.98 2.8| 82.98 2.8| 82.98 2.8
Prostate 90.44 6.3 | 90.44 4.41 93.38 49| 94.12 5.1| 92.65 5.8| 93.38 6.0 94.12 6.1
LungCancer | 96.13 2.9 96.13 2.5| 96.69 2.6| 96.69 2.6| 96.69 2.6| 96.69 2.6| 96.69 2.6
GCM 55.79 34.8| 52.11 14.2| 51.05 17.0| 51.58 19.8| 54.74 25.0| 58.95 24.4| 60.53 26.6
Arcene 78.00 7.6| 84.00 4.41 82.00 5.1| 80.00 6.2 | 80.00 6.7 | 82.00 6.8| 81.00 7.0
Madelon 63.60 4.7 | 63.70 4.8| 63.60 4.7| 63.60 4.7 | 63.60 4.7 | 63.60 4.7 | 63.60 4.7
Dorothea 93.88 15.6| 92.50 6.8 | 93.00 7.5] 93.13 8.7 | 93.00 9.0| 93.25 9.7| 93.13 9.8
Dexter 84.00 11.0| 75.33 4.2 | 80.33 8.7| 81.67 11.3| 84.00 11.0| 84.00 11.0| 84.00 11.0
Gisette 96.25 112.8| 9243 24.0| 93.90 40.9| 95.18 68.2| 9562 75.7| 95.43 80.9| 95.87 86.9
Geom. Mean| 81.68 8.42| 80.10 51| 81.14 6.1| 81.31 6.9| 82.38 7.2| 83.21 7.3| 83.30 7.5
Arith. Mean | 82.73 17.93| 81.39 6.7| 82.38 9.0| 8255 12.1| 8343 13.3| 84.10 13.7| 84.15 144

Table B.6: TAN classifier, IWSSand CMIM-based re-ranking with block sizes B.

uouaIID WIND pue Juswade|dal yum SSMI Z2'd
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DataSet IWSS? B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts
Colon 87.10 3.1| 87.10 29| 87.10 3.1| 87.10 3.1| 87.10 3.1| 87.10 3.1| 87.10 3.1
Leukemia 88.89 19| 88.89 1.8| 88.89 1.8| 88.89 1.8| 88.89 19| 88.89 1.9| 88.89 1.9
Lymphoma 86.46 8.3| 84.38 7.0| 87.50 7.8| 88.54 8.3| 87.50 8.3| 87.50 8.3| 86.46 8.3
DLBCL 80.85 1.8| 80.85 15| 80.85 15| 80.85 15| 80.85 16| 80.85 1.7| 80.85 1.8
Prostate 91.18 5.2 91.18 4.7| 90.44 49| 91.18 5.2 | 90.44 5.1| 90.44 5.1| 90.44 5.0
LungCancer | 96.13 19| 96.13 15| 96.13 1.9| 96.13 19| 96.13 19| 96.13 1.9| 96.13 1.9
GCM 62.11 35.2| 67.37 14.9| 70.00 18.6| 70.00 19.5| 68.95 23.1| 68.42 25.7| 69.47 27.2
Arcene 93.00 6.0| 92.00 45| 93.00 5.3| 93.00 5.8| 93.00 5.8| 92.00 5.9| 92.00 5.9
Madelon 67.60 46| 67.65 47| 67.60 4.6| 67.60 4.6| 67.60 4.6| 67.60 46| 67.60 4.6
Dorothea 93.00 10.1| 93.25 3.4| 93.50 5.1| 92.50 5.9| 92.88 5.0| 93.25 48| 93.25 4.8
Dexter 86.67 13.4| 77.67 5.9| 86.00 12.2| 86.00 13.1| 85.67 12.7| 86.67 13.8| 87.00 13.5
Gisette 96.17 116.8| 93.10 32.6| 93.72 453| 95.85 79.3| 9553 73.7| 95.80 83.5| 95.92 87.2
Geom. Mean| 84.88 75| 84.41 4.6| 85.74 5.5| 85.97 6.0| 85.70 6.0| 85.70 6.2| 85.76 6.2
Arith. Mean | 85.64 18.7| 84.96 7.1| 86.23 9.3| 86.47 12.5| 86.21 12.2| 86.22 13.4| 86.26 138

Table B.7: AODE classifier, IWSSand CMIM-based re-ranking with block sizes B.

ININIDV1d3d HLIM SSMI ANV

SSMI 404 SHAIFISSV1O LNJFH3441d ONISN ONIMNVYH-IH WIND g
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DataSet IWsSs2 B B=10 B=20 B=30 B=40 B=50
Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts
Colon 83.9 28| 823 22| 855 22| 83.9 24| 839 24| 83.9 23| 83.9 2.3
Leukemia 87.5 20| 875 19| 875 19| 875 19| 875 19| 875 19| 875 2.0
Lymphoma 80.2 59| 729 47| 75.0 56| 80.2 56| 813 57| 78.1 59| 76.0 59
DLBCL 80.9 18| 87.2 15| 83.0 1.6| 80.9 1.7| 80.9 1.7| 80.9 1.7| 80.9 1.7
Prostate 78.7 70| 735 3.2| 757 34| 77.2 42| 809 4.7 | 80.1 47| 83.1 4.8
Lung 97.2 24| 96.7 22| 96.7 22| 97.2 24| 97.2 24| 97.2 24| 97.2 2.4
GCM 59.5 19.9| 51.6 7.4| 53.7 10.3| 57.9 10.9| 57.9 11.8| 60.0 13.4| 62.1 14.2
Arcene 72.0 6.2| 71.0 26| 70.0 37| 72.0 38| 73.0 43| 71.0 43| 69.0 4.3
Madelon 60.5 8.0| 61.7 20| 60.8 34| 613 48| 60.3 59| 60.1 56| 60.5 6.2
Dorothea 92.9 6.3| 94.3 3.0| 933 40| 934 50| 93.0 53| 92.9 53| 92.9 53
Dexter 83.0 129| 827 8.5| 81.0 10.1| 83.0 9.8 | 827 9.7| 827 9.8| 827 9.4
Gisette 94.1 30.7| 86.2 27| 885 6.4| 90.8 10.8| 91.6 159| 923 16.5| 92.6 171
Geom. Mean| 79.97 6.06| 77.82 3.01| 78.16 3.81| 79.54 4.35| 79.93 4.72| 79.68 4.76| 79.85 4.85
Arith.Mean 80.9 8.8 79.0 35| 79.2 46| 804 53| 80.8 6.0| 80.6 6.2| 80.7 6.3

Table B.8: NB classifier, IWSSand CMIM-based re-ranking with block sizes B.
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DataSet IWsSs2 B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts
Colon 79.03 2.3 | 80.65 1.7| 82.26 1.7| 82.26 2.0| 80.65 1.9| 80.65 1.9| 79.03 2.1
Leukemia 84.72 11| 84.72 1.0| 84.72 1.0| 84.72 1.0| 84.72 11| 84.72 1.1| 84.72 1.1
Lymphoma 77.08 6.4| 65.63 49| 65.63 5.0| 75.00 5.8| 76.04 5.7 | 75.00 5.9| 75.00 6.0
DLBCL 82.98 1.3| 80.85 12| 78.72 1.2| 78.72 13| 78.72 13| 78.72 1.3| 78.72 1.3
Prostate 79.41 45| 87.50 3.5| 86.76 3.4| 82.35 3.6| 82.35 3.6| 82.35 3.7| 82.35 3.7
LungCancer | 93.92 1.3| 94.48 1.1| 94.48 1.1| 94.48 1.2| 94.48 12| 94.48 1.2| 94.48 1.2
GCM 4158 15.6| 44.21 5.1| 43.68 5.6| 43.68 75| 44.21 7.3 | 49.47 9.1| 46.84 8.9
Arcene 80.00 5.4| 77.00 25| 79.00 3.4| 82.00 4.1| 82.00 4.4| 82.00 4.7 | 84.00 4.8
Madelon 77.90 13.4]| 75.70 6.4| 77.25 7.0| 76.95 7.8| 77.05 8.6 | 76.85 9.3| 78.95 109
Dorothea 91.88 8.5| 92.63 2.6| 92.75 3.4| 92.25 5.2 92.38 5.2 92.38 5.3| 92.38 5.3
Dexter 79.67 13.8| 75.33 4.2 79.33 6.4 77.33 6.8 79.33 6.9 79.33 6.8 | 80.00 6.9
Gisette 93.75 35.8| 91.87 10.2| 9220 13.0| 93.33 17.5| 93.50 21.5| 93.17 20.3| 93.57 24.2
Geom. Mean| 78.74 54| 77.84 29| 78.33 3.3| 78.96 3.8| 79.20 3.9| 79.81 4.1| 79.74 4.2
Arith. Mean | 80.16 9.1| 79.21 3.7| 79.73 4.4| 80.26 5.3| 80.45 5.7| 80.76 5.9| 80.84 6.4

Table B.9: c4.5 classifier, IWS%nd CMIM-based re-ranking with block sizes B.
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DataSet IWsSs2 B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts

Colon 77.42 49| 82.26 3.3| 82.26 3.7] 79.03 4.1| 70.97 3.8| 74.19 4.0] 79.03 4.0

Leukemia 87.50 2.2| 88.89 2.2| 87.50 2.2| 87.50 2.2| 87.50 2.2| 87.50 2.2| 87.50 2.2

Lymphoma 78.13 7.7| 80.21 5.5| 76.04 5.7| 82.29 6.3| 79.17 7.0| 77.08 7.0| 77.08 7.0

{074

DLBCL 85.11 2.5| 80.85 2.4| 80.85 2.4| 80.85 2.4| 80.85 2.5| 80.85 2.4| 80.85 2.4
Prostate 88.97 5.3| 89.71 3.5| 87.50 4.3| 86.76 4.4| 87.50 4.3 | 86.76 47| 88.24 4.6
LungCancer | 96.69 25| 96.13 2.3| 96.69 2.4| 96.69 2.5| 96.69 2.5| 96.69 2.5| 96.69 2.5
GCM 55.79 20.5| 41.58 5.5| 48.42 7.8| 48.95 8.6| 51.05 10.9| 58.42 11.4| 55.79 133
Arcene 72.00 6.9| 79.00 4.0| 76.00 4.9| 75.00 5.2| 78.00 6.0| 74.00 6.3| 71.00 6.2
Madelon 87.85 8.1| 86.25 6.4| 85.00 6.4| 85.40 6.4| 86.50 7.1| 87.20 7.2| 87.20 7.2
Dorothea 93.13 15.9| 93.88 4.4| 93.63 6.5| 93.88 6.6 | 92.88 7.8| 93.38 8.7| 92.63 9.2
Dexter 80.00 20.1| 85.33 9.7| 77.00 11.9| 8233 12.7| 80.67 13.5| 80.67 13.9| 81.00 13.6
Gisette - - | 89.35 9.8 91.80 17.2| 9440 26.1| 95.08 35.7| 95.08 36.6| 95.30 41.8

Geom. Mean| 81.25 6.6| 81.26 4.3| 80.81 5.2| 81.69 5.6| 81.23 6.1| 81.94 6.3| 81.88 6.5

Arith. Mean | 82.05 8.8| 82.79 4.9| 81.89 6.3| 82.76 7.3| 82.24 8.6| 82.65 8.9| 82.69 9.5

Table B.10: ibK classifier, IWSSand CMIM-based re-ranking with block sizes B.
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DataSet IWsSs2 B=5 B=10 B=20 B=30 B=40 B=50
Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts
Colon 64.52 1.0| 67.74 1.0| 66.13 1.0| 62.90 1.0| 62.90 1.0| 59.68 1.0| 59.68 1.0
Leukemia 70.83 1.0| 65.28 1.0| 65.28 1.0| 65.28 1.0| 65.28 1.0| 65.28 1.0| 65.28 1.0
Lymphoma 81.25 7.3| 80.21 6.5| 81.25 6.9| 80.21 6.7 | 79.17 6.7 | 79.17 6.9| 81.25 6.6
DLBCL 80.85 19| 87.23 15| 82.98 1.5| 80.85 1.6| 80.85 1.8| 82.98 1.9| 82.98 1.9
Prostate 72.06 1.0| 72.79 1.0| 71.32 1.0| 72.06 1.0| 72.06 1.0| 72.06 1.0| 72.06 1.0
LungCancer | 87.29 1.0| 83.98 1.0| 88.95 1.0| 87.85 1.0| 87.29 1.0| 87.29 1.0| 87.29 1.0
GCM 20.53 1.1| 16.84 11| 17.37 1.1| 16.32 11| 16.84 1.1| 17.89 1.1 17.37 1.1
Arcene 60.00 5.6 | 67.00 1.4| 69.00 1.6| 67.00 1.7| 63.00 2.3 | 65.00 2.1| 62.00 2.3
Madelon 57.65 5.8| 57.45 1.3| 57.10 15| 57.35 24| 57.35 24| 57.35 27| 57.35 2.7
Dorothea 92.50 5.1| 93.75 3.4| 92.88 4.6| 93.38 4.6| 93.00 5.0| 93.00 5.0| 93.00 5.0
Dexter 82.00 185| 71.33 3.8| 81.00 8.3| 82.00 10.0| 80.00 10.5| 80.67 10.4| 81.33 10.4
Gisette - - | 87.85 48| 88.62 54| 89.47 6.9 | 89.63 7.3 | 89.88 7.7| 89.95 7.9
Geom. Mean - - | 66.29 1.81| 67.16 2.05| 66.32 2.23| 6590 235| 66.32 2.38| 66.09 239
Arith. Mean - - | 7095 232| 71.82 291| 71.22 3.25| 70.61 3.43| 70.85 348| 70.79 3.49
Table B.11: SVM classifier, IWSSand CMIM-based re-ranking with block sizes B.
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DataSet IWsSs2 B=5 B=10 B=20 B=30 B=40 B=50
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Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts
Colon 72.58 3.0| 70.97 2.0| 70.97 2.1| 69.35 25| 69.35 26| 67.74 2.6| 69.35 2.5
Leukemia 87.50 2.1 86.11 17| 86.11 1.8| 86.11 1.8| 86.11 19| 86.11 19| 86.11 2.0
Lymphoma 83.33 7.5 73.96 5.0| 68.75 46| 78.13 5.8| 83.33 5.8| 83.33 6.3| 80.21 6.4
DLBCL 78.72 2.0| 82.98 1.3| 80.85 15| 76.60 1.7| 76.60 1.7| 76.60 1.7 | 74.47 1.8
Prostate 86.03 47| 91.18 2.9| 90.44 3.4] 91.91 4.0| 91.18 3.9| 91.18 3.8| 90.44 3.6
LungCancer | 97.24 2.2] 96.13 1.8| 96.13 1.8| 96.13 1.8| 96.13 1.8| 96.13 1.8| 96.13 1.8
GCM - - | 46.84 6.7 | 43.68 7.1] 52.11 7.7 | 60.00 95| 52.11 8.8| 54.21 9.7
Arcene 74.00 7.0| 78.00 3.9| 79.00 4.2| 77.00 5.3| 78.00 6.0 | 80.00 5.6| 79.00 5.4
Madelon 74.25 7.2| 72.60 6.0| 73.55 6.6 | 73.95 6.4| 74.10 6.9 | 75.45 7.1| 75.10 7.3
Dorothea - - | 93.88 3.1| 93.75 4.3| 94.25 5.5| 93.63 5.6 | 93.25 6.3| 93.25 6.9
Dexter - - | 82.00 7.4| 84.67 9.0 82.00 10.0| 84.67 10.5| 84.67 11.1| 85.00 10.6
Gisette - - | 9143 9.0| 93.27 11.2| 93.85 14.5| 93.87 13.8| 94.33 15.6| 94.02 154
Geom. Mean - - | 79.25 3.5| 78.59 3.9| 79.93 4.5| 81.53 4.7] 80.71 4.8| 80.53 4.8
Arith. Mean - - | 80.51 4.2| 80.10 4.8| 80.95 5.6| 82.25 58| 81.74 6.1| 81.44 6.1

Table B.12: MLP classifier, IWSSand CMIM-based re-ranking with block sizes B.
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DataSet IWsSs2 B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts
Colon 87.10 29| 88.71 2.7| 87.10 2.8| 87.10 2.8| 87.10 2.8| 87.10 2.8| 87.10 2.9
Leukemia 91.67 29| 91.67 2.7| 91.67 2.8| 91.67 29| 91.67 29| 91.67 29| 91.67 2.9
Lymphoma 85.42 8.0 69.79 5.5| 76.04 6.6 | 78.13 7.1| 83.33 7.8| 85.42 7.5| 85.42 7.7
DLBCL 85.11 2.7] 85.11 25| 82.98 2.6| 82.98 2.7| 82.98 2.7] 85.11 2.7| 85.11 2.7
Prostate 88.24 4.8| 89.71 4.1] 91.18 46| 91.91 45| 91.91 47| 91.18 47| 88.24 4.6
LungCancer | 95.58 2.3] 96.13 2.3| 95.58 2.3| 95.58 2.3| 95.58 2.3| 95.58 2.3| 95.58 2.3
GCM 52.63 20.9| 44.74 7.6| 49.47 9.4| 46.84 12.5| 53.68 13.4| 54.74 14.9| 52.63 14.8
Arcene 87.00 5.8| 84.00 3.6| 86.00 4.8| 84.00 5.3| 85.00 5.6 | 87.00 5.7| 87.00 6.0
Madelon 63.80 45| 63.95 4.4 63.85 45| 63.75 45| 63.75 45| 63.75 45| 63.75 4.5
Dorothea 91.38 11.6| 92.75 3.8| 93.25 5.6| 93.13 7.2 93.00 7.8 | 93.00 8.1| 92.50 8.3
Dexter 82.33 10.5| 77.00 42| 78.67 8.0| 82.00 10.8| 82.33 10.5| 82.33 10.5| 82.33 105
Gisette - - | 89.53 7.2| 92.62 16.0| 94.18 21.0| 94.48 28.3| 95.22 34.0 - -
Geom. Mean| 81.65 5.48| 79.53 3.9| 81.11 4.9| 81.19 5.5| 82.68 58| 83.32 59| 81.74 5.1
Arith. Mean | 82.75 6.99| 81.09 4.2| 82.37 5.8| 82.60 7.0| 83.73 7.8| 84.34 8.4| 82.85 6.1

Table B.13: TAN classifier, IWSSand CMIM-based re-ranking with block sizes B.
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DataSet IWsSs2 B=5 B=10 B=20 B=30 B=40 B=50

Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts | Acc #atts

Colon 87.10 29| 85.48 2.6| 87.10 29| 87.10 29| 87.10 2.9 87.10 2.9| 87.10 2.9

Leukemia 88.89 1.9| 88.89 1.8| 88.89 1.8| 88.89 1.8| 88.89 1.9| 88.89 1.9| 88.89 1.9

Lymphoma 90.63 6.4| 84.38 6.0| 89.58 6.3| 90.63 6.6 | 90.63 6.6 | 88.54 6.6| 88.54 6.6

60¢

DLBCL 82.98 1.7| 82.98 1.3| 82.98 1.3| 82.98 1.3| 82.98 14| 82.98 1.6| 82.98 1.7
Prostate 91.18 4.1| 90.44 44| 88.24 4.1| 86.76 41| 89.71 40| 89.71 4.0| 89.71 4.1
LungCancer | 96.13 1.9| 96.13 15| 96.13 1.9| 96.13 1.9| 96.13 1.9| 96.13 1.9| 96.13 1.9
GCM 66.84 19.0| 61.05 8.2| 64.21 11.3| 64.74 12.9| 65.79 14.0| 64.74 14.3| 60.53 14.2
Arcene 95.00 5.3| 93.00 4.2| 91.00 4.9| 94.00 5.0| 95.00 5.1| 92.00 5.3| 92.00 5.3
Madelon 67.15 3.6| 67.15 3.8| 67.15 3.6| 67.15 3.6| 67.15 3.6| 67.15 3.6| 67.15 3.6
Dorothea 92.50 8.3| 93.38 3.6| 93.50 45| 93.38 5.0| 92.63 5.6| 92.88 5.7| 92.75 5.7
Dexter 86.67 12.9| 79.00 6.8| 85.67 10.9| 86.67 12.8| 86.33 13.1| 87.33 13.1| 86.33 13.1
Gisette 94.67 46.2| 89.78 8.0| 9237 16.0] 92.60 16.6| 93.73 27.3| 93.70 23.7| 9435 33.5

Geom. Mean| 86.06 5.5| 83.62 3.7| 84.97 4.4| 85.31 4.6| 85.74 4.9| 85.33 4.9| 84.81 5.1

Arith. Mean | 86.64 9.5| 84.31 4.4| 85.57 5.8| 85.92 6.2| 86.34 7.3| 85.93 7.1| 85.54 7.9

Table B.14: AODE classifier, IWS%nd CMIM-based re-ranking with block sizes B.
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B. CMIM RE-RANKING USING DIFFERENT CLASSIFIERS FOR IWSS
AND IWSS WITH REPLACEMENT
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