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Abstrat

Online data storage is often regarded as a growing business, yet many unre-

solved issues linger in this spei� �eld and prevent researhers from driving

it to full apaity. Data repliation (most ommonly known as bakup) is

simply not e�ient when improving persistene and aessibility of suh data.

Error orreting odes are known for their e�ieny when adding redundany

to avoid lose of information. Unfortunately, the use of error orreting odes

entail additional problems suh as the repair problem: how do we replae a

storage node downloading as less data as possible from other nodes.

In this dissertation, we deepen on state-of-the-art of odes applied to dis-

tributed storage systems. Additionally, a family of regenerative odes whih

we all quasi-yli �exible regenerating odes is provided. Quasi-yli �ex-

ible minimum storage regenerating (QCFMSR) odes are onstruted and

their existene is well-proven. Quasi-yli �exible regenerating odes with

minimum bandwidth onstruted from a base QCFMSR ode are also pro-

vided.

Quasi-yli �exible regenerating odes are very interesting beause of

their simpliity and low omplexity. They allow exat repair-by-transfer in

the minimum bandwidth ase and an exat pseudo repair-by-transfer in the

MSR ase, where operations are needed only when a new node enters into

the system replaing a lost one.

Finally, we propose a new model whereby storage nodes are plaed in

two raks. This unpreedented two-rak model is generalized to any number

of raks. In this spei� set-up, storage nodes have di�erent repair osts

depending on the rak where they are plaed. A threshold funtion, whih

minimizes the amount of stored data per node and bandwidth needed to

regenerate a failed node, is also shown. This latter threshold funtion gen-

eralizes those given by previous distributed storage models. Tradeo� urves

obtained from this threshold funtion are ompared with those obtained from

previous models, and it is shown that this new model outperforms previous

ones in terms of repair ost.
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Resum

Enara que l'emmagatzematge online d'informaió és un negoi reixent, no

està exempt de problemàtiques, una d'elles és la persistènia i aessibilitat

de les dades. Cal repliar les dades de manera que si es perd una òpia

no es perdi la informaió de forma de�nitiva. Malauradament, la repliaió

de dades (oneguda om a �bakup�) no és una soluió e�ient, ja que in-

trodueix molta redundània que provoa sobre ostos. Els odis orretors

d'errors són oneguts per augmentar la persistènia i l'aessibilitat de les

dades minimitzant la redundània neessària. Però el seu us introdueix al-

tres problemes om l'anomenat �repair problem�: om substituir un node

d'emmagatzematge desarregant el mínim de dades dels altres nodes.

En aquesta dissertaió, estudiem l'estat de l'art pel que fa als odis apli-

ats a sistemes d'emmagatzematge distribuïts, om per exemple el �loud

storage�. També ens introduïm al �repair problem� des de la vessant més

apliada, usant topologies de sistemes reals om els �data enters�.

Conretament, aportem una família de odis regeneratius que anomenem

quasi-yli �exible regenerating odes i que es arateritza per minimitzar

l'ús de reursos omputaionals en el proés de regeneraió d'un node. Al-

hora, aquesta soluió minimitza les dades emmagatzemades i l'ample de

banda neessari per regenerar un node que falla.

També estudiem el as en que els ostos de desàrrega de les dades no

són homogenis. En onret, ens entrem en el as dels raks, on els nodes

d'emmagatzematge estan distribuïts en raks, i el ost de desàrrega de dades

dels nodes en el mateix rak és molt menor que el ost de desàrrega de dades

dels nodes en un altre rak. Aquest nou model generalitza els models teòris

anteriors i ens permet omprovar que els ostos poden disminuir si adaptem

el model teòri a la topologia onreta del sistema d'emmagatzematge dis-

tribuït.
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Chapter 1

Introdution

Sine the beginning of time, humans have had a keen desire to explain ativ-

ities, thoughts, disoveries, ustoms or any other information that we think

would be relevant now or in the future. This desire has led us to �nd ways

of representing suh information.

The proess of representing information requires three elements: the in-

formation, the tehnique used to represent it and the objet used to store

it. Prehistori paintings are information about ativities done by prehistori

humans, this information is represented by paintings and it is stored in stone.

Nowadays digital ameras apture images of a spei� instant of time, repre-

sent them using bytes, and store them in a digital storage devie, for example

a solid state ard.

The seond law of thermodynamis says that entropy always inreases,

whih means that all the elements used for storage wear out as time passes,

and the information stored in them will irretrievably be lost. From prehistori

paintings drawn on stone to digital newspaper, one of the main goals is to

keep the information available over the maximum possible amount of time. If

the information is lost, there is no way of reovering it, so we have to prevent

this situation. For example, old prehistori paintings are usually restored by

experts, and digital data is repliated to tolerate storage devie failures.

In this researh, we fous on digital information. We assume that it is

relevant enough to keep it available over time, and that it is stored using a

digital storage devie.

To approximate the reader to the big piture of digital data storage, it is

interesting to know that in 2002, humanity started to store more information

on digital than on analog storage devies. In 2007, Intl. Data Corp (IDC)

estimated that the amount of information reated, aptured, or repliated

1



2 Chapter 1. Introdution

exeeded available storage for the �rst time. In the same year, the world's

stored information was 295 exabytes, whih orresponds approximately to

two staks of CDs strething from the earth to the moon. Moreover, the

amount of stored information is doubling roughly every 3 years.

The inreasing use of the Internet, the appearane of lots of devies that

use it (suh as tablets or mobile phones), and globalization has hanged

the omputer siene paradigm in many senses. From the storage point of

view, users want their information to be available from anywhere easily and

instantly. For example, a user edits his data using a personal omputer and

wants this data to be available on his mobile phone immediately, so he an

send it to his friends. Or a user wants to share a doument with his work-

group, so they an edit it without the mess that di�erent versions, emails

and rossed editions ause.

Network Distributed Storage Systems (NDSS) has been proposed as the

main tool to store and manage information. NDSS is based on storing the

data in devies whih are onneted through a network. The data stored

in an NDSS an be aessible from anywhere with an Internet onnetion,

edition is instantaneously applied and persistene is assured. Examples of

NDSS are everywhere, email web based appliations like gmail, shared do-

ument appliations like Google Drive [In12℄, network storage appliations

like Dropbox [In07℄ or BitTorrent �le sharing appliation [Coh09℄.

In general, one an divide NDSS into two big families: peer-to-peer (P2P)

appliations and data enters. P2P appliations are based on sharing �les

between users. Firstly, a user has a �le and shares it using a P2P appliation.

Then, other users an download the �le, store it, and share it with others. The

more users have replias of the �le, the more the �le is available, beause if one

user goes o�ine, the �le is still aessible via the other replias. Moreover,

eah �le is split into piees, so it is possible to parallelize the download

proess, dereasing the time needed to download the �le and inreasing the

availability of the �le.

Data enters are probably the most usual NDSS nowadays. Data enters

are physial buildings keeping lots of storage devies usually organized in

raks, metalli supports designed to hold eletroni equipment. Eah data

enter is typially keeping thousands of raks, eah one keeping dozens of

storage devies. Most of the biggest information tehnology ompanies like

Google, Yahoo or Mirosoft have their own data enters.

Coding theory has been proposed as the latest evolution to keep all the

stored information persistent over time while adding as little redundany as
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possible in an NDSS. Nowadays, it is already assumed that repliation (bak-

ups) is not a realisti option for NDSS beause it is not salable. However,

oding theory does not address some of the problems that NDSS has to fae,

simply beause oding theory was designed with a di�erent purpose.

Many urrent data enters still use repliation beause of the drawbaks

that lassial oding theory introdue, espeially the overhead in the band-

width used to repair one devie. However, beause of the reent improve-

ments in this �eld, ompanies are slowly introduing oding theory in their

NDSS. The implementation of an upper layer to the Hadoop Distributed File

System [Apa12℄ by Faebook, and the latest Google File System are examples

of appliations for NDSS where oding theory is used.

Storage devies have an approximate failure probability per year between

2% and 4%. In a data enter, a �le is distributed in between 3 and 14 storage

devies approximately. Eah data enter stores hundreds of thousands of

storage devies. This means that the failure of a storage devie is a ommon

ourrene, but simultaneously losing another storage devie ontaining the

same �les is very improbable. In this dissertation, we address the problem

of replaing a single storage devie in NDSS using oding theory.

In the following two paragraphs, the goals of this dissertation are ex-

plained. The �rst goal of the dissertation is to study the appliation of

regenerating odes in real environments and onstrut, if possible, a family

of realisti regenerating odes. Nowadays, odes are inreasingly used in real

appliations. However, regenerating odes are still in the theoretial envi-

ronment. In this dissertation, we have studied the regenerating odes from

a pratial point of view and we have proposed a new family of regenerating

odes speially suitable for real environments. The results of this study have

been published in [GPV11b℄, [GPV11a℄ and [GPV13a℄.

The seond goal is to study how the spei� topology of a distributed

storage system an be used to improve the performane of the regenerating

odes. In this diretion, we have studied the data enters and their rak based

topology and we have developed a model to represent these data enters.

Using this model, we have realized that the use of the spei� topology

allows us to derease the theoretial limit of regenerating odes. The results

of this study have been published in [GPV13b℄ and [GPV13℄.

This memory is organized as follows. In hapter 2, we review the basi

onepts of oding theory and graph theory that have been used to develop

the ontributions exposed in the following hapters. In hapter 3, we ex-

pose our �rst ontribution, the reation of a family of regenerating odes

speially suitable for being applied in a pratial environment. We all this
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family quasi-yli �exible regenerating odes beause they �exibilize some

restritions of regenerating odes whih make them more suitable for realis-

ti environments. In hapter 4, we expose our seond ontribution, the rak

model. This model uses the rak based topology of data enters to provide a

better performane on the regenerating odes in these kind of arhitetures.

Finally, in hapter 5, we expose our onlusions. We also disuss the ontri-

butions of this dissertation and we provide some further lines of researh.



Chapter 2

Bakground

In this hapter, we introdue the basis of oding theory, network distributed

storage systems and oding theory applied to network distributed storage sys-

tems (NDSS). Firstly, in Setion 2.1, we explain some of the most important

onepts of oding theory. Then, in Setion 2.2, we introdue the Network

Distributed Storage Systems. In Setion 2.3, we explain the most important

onepts that appear when oding theory tehniques are applied to NDSS.

Finally, we show the two most known approahes of using oding theory in

an NDSS: tehniques based on designing odes for NDSS are seen in Setion

2.4 and network oding tehniques ombined with odes are seen in Setion

2.5.

2.1 Coding theory

On the one hand, from the information theory point of view, the informa-

tion is de�ned as the set of symbols whih ompose the message. On the

other hand, the data is omposed of the information plus the redundany.

The redundany is the set of symbols whih do not add information to the

message.

Coding theory [MS77℄ is a well known mathematial theory introdued by

Shannon [Sha49℄. The main goal of oding theory is to produe redundany

for a given information by using odes, a mapping from a set of information

symbols to a set of information and redundany symbols. This redundany

added is used to orret errors (symbols that have hanged their value) or era-

sures (symbols that have been erased). Moreover, suh redundany should be

produed with three main goals: redue the amount of redundany needed,

5



6 Chapter 2. Bakground

inrease the apaity to error/erasure orretion and redue the omputa-

tional omplexity of the algorithms used.

Codes transform a set of information symbols into odewords omposed

of the information symbols and the redundany symbols, and this proess is

alled enoding. Eah one of the symbols of a odeword is alled oordinate.

Then, the odewords are sent through a noisy hannel whih may produes

errors and/or erasures hanging and/or erasing some oordinates. Finally,

the reeived symbols are deoded at the output of the hannel to obtain the

original set of information symbols.

There are a lot of appliations using oding theory tehniques for trans-

mission like ADSL+ [GDJ05℄, satellite ommuniations [Eva08℄ or TCP/IP

protool [For81℄ among others. There are also oding theory tehniques

applied to storage appliations like CD/DVD [Imm94℄ or RAID systems

[PGK88℄.

2.1.1 Galois �elds

Finite �elds [LN96℄, also alled Galois �elds in honor of the mathematiian

Evariste Galois, are algebrai strutures whih ontain a �nite number of

elements (symbols) and in whih the operations of addition, subtration,

multipliation and division (exept by zero) between any two elements of the

�eld, result in another element of the �eld.

Let p be a prime number and let q = pm, m ≥ 1. We denote by Fq, the

�nite �eld of q elements. Moreover, Fq ontains the sub�eld Fp, and it is a

vetor spae over Fp of dimension m, unique up to isomorphism.

Let f(x) be an irreduible polynomial of degree m in Fp[x]. Then,

Fp[x]/(f(x)) is a �nite �eld with pm elements. Therefore, the elements of

any �nite �eld Fq an be seen as polynomials over Fp of degree less than m.

Example 1 (The binary �eld). The binary �eld F2 an be onstruted from

Z2[x]/(x) and ontains two elements, that is, F2 = {0, 1}.

Example 2 (The �eld F22). The polynomial f(x) = x2 + x+1 is irreduible

in F2[x]. The �nite �eld F4 an be onstruted from F2[x]/(f(x)) and their

elements an be seen as polynomials of degree less than 2. This means that

F4 = {0, 1, x, x+ 1}.

As we have said, an element in Fpm an be seen as a polynomial of degree

less than m with oe�ients over Fp. Any polynomial a0 + a1x + · · · +
am−1x

m−1
of degree less than m an be represented by an ordered array of
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m oe�ients as (am−1, . . . , a1, a0). If m = 2, for example, the polynomial

x + 2 an be represented by the array (1, 2), or the polynomial 1 an be

represented by (0, 1). Finally, one an see the �eld Fpm as an extension of

the sub�eld Fp, where eah element of Fpm is an array of m oe�ients over

Fp. The same an be done for any sub�eld of a �eld, for example, sine F22 is

a sub�eld of F24 , we an see the �eld F24 as an extension of F22 , where eah

element of F24 is an array of two oe�ients over F22 .

2.1.2 Coding preliminaries

In this subsetion, we summarize the basi onepts of oding theory [MS77℄.

A ode over Fq is a map from F
k
q to F

n
q whih onverts vetors of k oordinates

over Fq to vetors of n oordinates over the same �eld, alled odewords. In

this dissertation, we are only interested in linear odes, whih means that

the map is linear and that the set of odewords in F
n
q forms a subspae of

F
n
q .

Linear odes, generator and parity hek matries

Let F
n
q denote the vetor spae of all n-tuples over the �nite �eld Fq. An

(n,M) ode C over Fq is a subset of F
n
q of size M . A vetor v ∈ C is alled

odeword and the set of odewords is alled the odebook of C.

If C is a k-dimensional subspae of F
n
q , then C is alled [n, k] linear ode

over Fq. Any [n, k] linear ode C over Fq has M = qk odewords, length n

and dimension k. A generator matrix for an [n, k] linear ode C over Fq is

any k × n matrix G, whose rows from a basis of C. Given a linear ode C

with generator matrix G, the enoding funtion from F
k
q to F

n
q an be de�ned

by c = vG, where v ∈ F
k
q and c ∈ C.

For any set of k linear independent olumns of a generator matrix G,

the orresponding set of oordinates forms an information set for the or-

responding [n, k] linear ode C. The remaining n − k oordinates are the

redundany set of C. If the �rst k oordinates form an information set, the

linear ode has a unique generator matrix of the form [Ik|A], where Ik is the
k × k identity matrix. In this ase, the information set is plaed in the �rst

k oordinates and the linear ode C is alled systemati.

De�nition 1 (Transmission rate). The transmission rate, or rate of a ode

of length n and dimension k, is de�ned as R = k/n.
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Example 3 (The binary repetition ode). An information binary symbol

v ∈ F2 an be enoded by repeating it n times. For example, if n = 3, the

information symbol 0 is enoded by 000 and the information symbol 1 by 111.

In general, a binary repetition ode is an [n, 1] binary linear ode C with

generator matrix G = (1 1 · · · 1) and R = 1
n
.

Example 4 (The binary parity hek ode). An information vetor (v1, v2,

. . . , vk) ∈ F
k
2 is enoded by adding a single parity hek symbol vk+1 =

∑k

i=1 vi ∈ F2. For instane, if k = 2 then n = 3, and (v1, v2) ∈ F
2
2 is

enoded as (v1, v2, v1 + v2) ∈ F
3
2. In general, a single parity hek ode is a

[k + 1, k] binary linear ode C with generator matrix

G =











1 0 · · · 0 1

0 1 · · · 0 1
.

.

.

0 0 · · · 1 1











and R = k
k+1

.

If the generator matrix has the form G = [Ik|A], like in the above exam-

ples, where Ik is the k × k identity matrix and A is a k × (n − k) matrix,

the information vetor v is plaed at the beginning of the odeword c = vG,

and the ode is said to be systemati. This means that in every odeword of

length n, the information is in the �rst k oordinates and the redundany is

in the last n− k oordinates.

As a [n, k] linear ode C is a subspae of a vetor spae, it is the kernel

of some linear transformation. In partiular, there is an (n− k) × n matrix

H , alled parity hek matrix for the [n, k] linear ode C, de�ned as

C = {x ∈ F
n
q | HxT = 0

T}.

If G = [Ik|A] is a generator matrix for an [n, k] linear ode C, then H =

[−AT |In−k] is a parity hek matrix for C, where AT
means the transposition

of A. Let C⊥
be the dual ode of C, that is, C⊥

is the linear ode generated

by the parity hek matrix H . Notie that C⊥
is an [n, n − k] linear ode.

Moreover, C⊥
an also be de�ned as C⊥ = {w ∈ F

n
q | w · c = 0, ∀c ∈ C},

where w · c =
∑n

j=1wjcj denotes the ordinary inner produt of vetors in F
n
q .

Example 5 (The binary repetition ode). The parity hek matrix of the

binary repetition ode of length 3 and dimension 1 with generator matrix

G =
(

1 1 1
)

,
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is

H =

(

1 0 1

0 1 1

)

.

Example 6 (The binary parity hek ode). The parity hek matrix of the

binary parity hek ode of length 3 and dimension 2 with generator matrix

G =

(

1 0 1

0 1 1

)

,

is

H =
(

1 1 1
)

.

Note that the parity hek matrix of a binary repetition ode is the gen-

erator matrix of a binary parity hek ode and vie-versa.

Example 7 (Hamming ode). The parity hek matrix of the Hamming ode

of length 7 and dimension 4 with generator matrix

G =









1 0 0 0 1 1 0

0 1 0 0 0 1 1

0 0 1 0 1 0 1

0 0 0 1 1 1 1









,

is

H =





1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1



 .

We have seen that the enoding in a linear ode an be done using a

produt matrix multipliation, involving the information vetor and the gen-

erator matrix to produe a odeword. Moreover, given an [n, k] linear ode

C and a vetor v in F
n
q , it is possible to determine whether v is a odeword

of the ode C by using a parity hek matrix H of C. Spei�ally, v ∈ C if

and only if HvT = 0
T
.

The parity hek matrix an be used to detet errors in a odeword. The

proedure of obtaining the information vetor from the reeived vetor is

alled deoding. The deoding proedure is muh more omplex than the

enoding. In this dissertation, we are not interested in deoding algorithms,

whih usually depends on the spei� ode used [MS77℄. For us, it is enough

to know that the deoding is possible and that its omplexity depends on the

ode used.
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Measure onepts

Redundany is added to orret errors and erasures introdued by the han-

nel. In this dissertation, we only onsider erasures beause, as we will see in

Setion 2.2, NDSS is a�eted only by erasures.

Assume that a soure sends one symbol over a noisy hannel. If this sym-

bol is erased, the reeiver an not know the symbol that was sent. However,

if the soure uses a binary repetition ode of length 3, like the one shown in

Example 3, the reeiver an deode the reeived vetor even if it is a�eted

by two erasures.

The next question to arise is, given a linear ode of length n and dimension

k, whih is the maximum number of arbitrary oordinate erasures that the

ode an tolerate? In this ontext, tolerate means that the reeiver is able to

deode the reeived vetor. In order to measure this tolerane, some onepts

need to be de�ned.

De�nition 2 (Hamming distane). The Hamming distane dH(u, v) between

two vetors u, v ∈ F n
q is de�ned as the number of oordinates in whih u and

v di�er.

De�nition 3 (Hamming weight). The Hamming weight wH(v) of a vetor

v ∈ F
n
q is the number of nonzero oordinates of v.

De�nition 4 (Minimum Hamming distane). The minimum Hamming dis-

tane (minimum distane) d(C) of a linear ode C is the minimum Hamming

distane between any two di�erent odewords c1, c2 ∈ C, that is,

d(C) = min
c1,c2∈C,c1 6=c2

{d(c1, c2)} = min
c1,c2∈C,c1 6=c2

{wH(c1 − c2)}.

Sine for any u, v ∈ F
n
q , dH(u, v) = wH(u − v), if C is a linear ode, the

minimum distane d(C) is the same as the minimum weight of the nonzero

odewords of C.

A linear ode C of length n, dimension k, and minimum distane d = d(C)

is also denoted as an [n, k, d] linear ode C.

Example 8. The parity hek ode over F2 of dimension 2, so of length 3,

has the following odebook {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0)}. Therefore, its
minimum distane is 2.

A reeived vetor may ontain both errors and erasures. Let C be an

[n, k, d] linear ode. If a odeword c is sent and the orresponding reeived



2.1. Coding theory 11

vetor y ontains t errors and e erasures, then C is apable to orret these

t errors and e erasures provided that 2t+ e < d.

Sine we are only interested in orreting erasures, we de�ne the erasure

orretion apability as the maximum number of erasures that a ode an

orret. From now on, we will talk about erasure orretion apability or

orretion apability indistintly. Note that the erasure orretion apability

of an [n, k, d] linear ode C is d− 1.

Maximum distane separable odes

There is a relation between the redundany of the set of odewords of a

ode and the minimum distane (and then the erasure orretion apability)

of this ode. If no redundany is added, the minimum distane is 1. If a

redundany symbol is added, the minimum distane is either 1 or 2.

Coneptually, an e�ient ode in terms of minimum distane (or orre-

tion apability) means a ode with a �xed transmission rate and a minimum

distane as higher as possible. The highest e�ieny is ahieved when, for

eah redundany symbol added, the minimum distane is inreased by one.

These kind of odes are alled maximum distane separable (MDS) odes.

Theorem 5. [MS77℄ Let C be an [n, k, d] linear ode and let H be a parity

hek matrix of C. The minimum distane of C is d if and only if any set of

d − 1 olumns of H are linearly independent and some set of d olumns are

linearly dependent.

Theorem 6 (Singleton bound). [MS77℄ Let C be an [n, k, d] linear ode.

Then d ≤ n− k + 1.

De�nition 7 (Maximum distane separable ode). [MS77℄ A ode is alled

maximum distane separable (MDS) if it ahieves the Singleton bound and

an tolerate (orret) up to n− k erasures.

There exist well known MDS odes, whih are used in a lot of applia-

tions. An MDS ode is speially suitable when the redundany added must

be minimized. Reed-Solomon odes are probably the most used MDS odes

and they are based on an algebrai onstrution using polynomials. The

main drawbak of Reed-Solomon odes for data transmission is that they

need a �xed set of k oordinates before enoding or deoding, and that the

omplexity of their deoding algorithm (in the general ase) is O(n2). How-

ever, their e�ieny in terms of transmission rate and their existene for a

lot of parameters n and k, make them a good hoie for most oding theory

based appliations.
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Array odes

As it is explained in Subsetion 2.1.1, it is possible to see a �eld Fqt as an

extension of the sub�eld Fq, also alled base �eld. This means that any

element of Fqt an be seen as an array of t elements over Fq.

Reall that using an [n, k, d] ode over Fqt , we an enode an information

vetor v ∈ F
k
qt and generate a odeword c ∈ F

n
qt. Sine the symbols of this

odeword an always be represented as an array of symbols over Fq, this ode

is also referred to as an array ode. The symbols over Fqt of an array ode are

alled array oordinates, while the symbols over Fq are alled oordinates.

The importane of array odes lies in that one the information vetor is

enoded into a odeword, the oordinates an be treated over Fq or over Fqt

indistintly, depending on the properties needed at eah spei� moment. A

well known example of an array ode is the EVENODD ode [TS02℄.

Example 9 (The EVENODD ode). Assume that we want to enode a vetor

v ∈ F
5
24 given by 5 array oordinates over F24 using a systemati EVENODD

ode of length 7 and dimension 5. Eah array oordinate an be seen as

an array of 4 oordinates over the base �eld F2. Therefore, we an repre-

sent the vetor v as a 4 × 5 matrix where eah olumn represent one array

oordinate omposed by the oordinates of the base �eld. For example, let

v = (v1, v2, v3, v4, v5) ∈ F
5
24 be the vetor represented by the following matrix:









1 0 1 1 0

0 1 1 0 0

1 1 0 0 0

0 1 0 1 1









,

where the �rst olumn is v1, the seond v2, the third v3, the fourth v4 and the

�fth v5.

Now, to obtain a odeword c ∈ F
7
24, we need to reate two array oordinates

r1 and r2 that ontain the redundany of v. If we assume that the matrix

entries are ai,j, then the enoding de�ned by the EVENODD ode is

al,6 = al,1
⊕

al,2
⊕

al,3
⊕

al,4
⊕

al,5
⊕

, 1 ≤ l ≤ 4,

a1,7 = S
⊕

a1,1
⊕

a4,3
⊕

a3,4
⊕

a2,4
⊕

,

a2,7 = S
⊕

a2,1
⊕

a1,2
⊕

a4,4
⊕

a3,5
⊕

,

a3,7 = S
⊕

a3,1
⊕

a2,2
⊕

a1,3
⊕

a4,5
⊕

,

a4,7 = S
⊕

a4,1
⊕

a3,2
⊕

a2,3
⊕

a1,4
⊕

,

where S = a4,2
⊕

a3,3
⊕

a2,4
⊕

a1,5
⊕

. Note that the enoding is given

over the base �eld. For example, for the above information vetor v =
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(v1, v2, v3, v4, v5), the orresponding systemati odeword (v1, v2, v3, v4, r1, r2)

an be represented by the 4× 7 matrix









1 0 1 1 0 1 0

0 1 1 0 0 0 0

1 1 0 0 0 0 1

0 1 0 1 1 1 0









,

where eah olumn is an array oordinate stored in a di�erent storage node.

The �rst �ve olumns are the information array oordinates and the last two

olumns are the redundany array oordinates.

Note that the redundany is produed by single oordinates over F2, but

the MDS property is given by the ode seen over F24.

2.2 Network distributed storage systems

De�nition 8 (Storage node). A storage node is a network element that

unites one or more physial storage devies to provide a simple blok storage

servie. Suh term an inlude di�erent elements suh as desktops and laptop

omputers, network attahed storage (NAS) devies, set-top boxes (STB) or

storage omponents from data enters [PJ11℄.

De�nition 9 (Network distributed storage system (NDSS)). A network dis-

tributed storage system is a distributed omputer system omposed of multiple

autonomous storage nodes that ommuniate through a omputer network.

The aim of a network distributed storage system is to integrate all theses

storage nodes into a single and uniform data storage servie that appliations

and users an aess through a ommuniation network [PJ11℄.

From a formal point of view, an [n, k, d] NDSS is a (d−1)-fault tolerane

system omposed of n storage nodes and where a subset of k storage nodes

ontain enough information to reover the �le.

De�nition 10 (Network bandwidth). The network bandwidth is a measure-

ment for ommuniation resoures expressed in data units per time unit, for

example bits per seond.

There are NDSS where the network bandwidth has no importane, for ex-

ample the Redundant Array of Independent Disks (RAID) [PGK88℄. RAID

is a storage tehnology that ombines multiple disk drive omponents into

one logial unit. It an be designed for two main proposes: inrease the
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input/output (i/o) speed by parallelizing these operations into multiple in-

dependent disks, or inrease the availability of the stored data by using oding

theory tehniques. In RAID, the bandwidth limitations introdued by the

buses omposing the ommuniation network an be onsidered negligible

ompared with the lateny introdued by the i/o operations.

However, there are other NDSS where the network bandwidth is limited

and its redution is a desired goal. The ommuniation network of this kind

of NDSS is usually a Loal Area Network (LAN) or a Wide Area Network

(WAN). An example of an NDSS using LAN an be a data enter and an

example of an NDSS using WAN an be a P2P �le sharing system.

In data enters, the data is plaed in storage nodes whih are onneted

through a network. These storage nodes are usually organized in a rak, a

metalli support designed to aommodate eletroni equipment. The om-

muniation (bandwidth) ost between nodes whih are in the same rak is

muh lower than between nodes whih are in di�erent raks. In fat, in

[AGSS11℄, it is said that reading from a loal disk is nearly as e�ient as

reading from the disk of another node in the same rak.

There are many drawbaks in the use of NDSS whih are being stud-

ied nowadays. The problem of the data insertion is an interesting researh

topi: how to e�iently hange the already stored data and propagate the

hanges through the NDSS [PJOD13℄. In this dissertation, we fous on an-

other problem: how to minimize the bandwidth in the NDSS using oding

theory tehniques.

In this dissertation, we onsider �les as a blak box of information sym-

bols. We have no interest in the tehniques that may have been applied

previously to the �les like ompression or enryption. This means that we

onsider the �le as a sequene of information symbols to be stored.

Assume that a user wants to store a �le and he wants this �le to be

available. The availability of a �le is given by two onditions: the user is

allowed to aess the �le and the �le exists. The �rst ondition is the objet

of study of omputer seurity, while the seond ondition is related to the

persistene of the data and it is an objet of study of this researh.

The �rst approah to inrease the persistene of a �le is the reation of

replias, whih is usually known as bakups. A bakup is an exat repliation

of the �le, whih is stored in a di�erent storage node. Then, if one storage

node fails and the �le is lost, there is another replia of the information. Note

that the bakup is in fat, redundany of the stored information.

De�nition 11 (i-fault tolerane system). An i-fault tolerane system, 1 ≤
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i ≤ n where n is the number of storage nodes of the system, is de�ned as an

NDSS that is able to tolerate any i number of storage node failures without

irreversibly losing partially or ompletely the information stored in it.

Note that the fault tolerane is de�ned over the storage nodes, and not

over a spei� stored �le. This means that an i-fault tolerane system ensures

that any information stored in any nodes of the system tolerates any i number

of storage node failures.

It an be seen that to reate an i-fault tolerane system with i ≥ 1, it is

neessary to reate redundany for the stored information. This means that

an NDSS also has a transmission rate whih is the rate between the stored

information and this information plus the redundany. Coneptually, if the

transmission rate is dereased, it is possible to inrease the fault tolerane of

an NDSS.

A similar problem was already addressed by Shannon in 1948. Shannon-

Hartley theorem [Sha49℄ shows the maximum rate at whih information an

be transmitted over a ommuniation hannel of a spei�ed bandwidth in

the presene of noise. Assume that a soure sends a message to a reeiver

over a ommuniation hannel whih is a�eted by noise. Depending on

the amount of noise, whih is the maximum transmission rate at whih the

entire message an be understood by the reeiver? Noise a�ets information,

hanging symbols or erasing them, and the goal is to be able to reover the

original information at the output of the hannel.

As it an be seen, there is a diret relation between the ommuniation of

information over a noisy hannel and the persistene of the stored data over

an NDSS. The information to be sent is the �le, the hannel is the NDSS,

the noise is the failure of storage nodes and �nally, the reeiver is the user

who wants to reover the �le by aessing to some storage nodes. This lose

relation between both problems explains why oding theory, the study of

e�ient and reliable data transmission methods, an also be used in NDSS.

Assume that a �le is going to be stored using an NDSS, so it should be

persistent. To ahieve this persistene, it an be repliated and stored over

di�erent storage nodes in an NDSS. In this ase, we are using a repetition

erasure orreting ode. However, there exist muh better odes than the

repetition one in terms of the transmission rate and erasure orreting a-

pability [WK02℄, so the �rst idea is to use these better odes instead of the

repetition one.

Some well known e�ient odes are used for storage, like Hamming and

Reed Solomon odes [MS77℄ or EVENODD odes [TS02℄. However, NDSS
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introdues a problem whih is not addressed by lassial oding theory and

that ahieves a high importane in order to establish the e�ieny of an

NDSS.

Classial oding theory is foused on reovering the whole set of informa-

tion symbols whih were sent, not a subset of them. In NDSS, it is usual

that only one storage node fails, and usually, this storage node only ontains

a small subset of symbols from the same �le (usually only one to inrease

the fault tolerane). If a new storage node replaes the lost one, the goal of

this storage node, alled newomer, is to e�iently store the data that was

lost, where e�iently means either reduing the amount of downloaded data

(repair bandwidth) or the omplexity of the operations needed.

2.3 Codes and NDSS

As we have seen in Setion 2.2, lassial oding theory do not address some

of the problems that the appliation of odes to NDSS introdues. In this

setion, we show the key points in the design of e�ient oding tehniques

for NDSS.

2.3.1 The repair problem

The repair problem is related to the amount of data needed to repair a single

storage node failure. Assume that a �le is stored using an erasure orreting

ode. This means that the �le is split into a vetor v of k oordinates, v is

enoded into a odeword c of n oordinates, and eah oordinate is stored

in a di�erent storage node. Repairing a single storage node is the same as

repairing a single oordinate of c. The amount of data needed to repair this

oordinate is alled the repair bandwidth γ.

From the storage point of view, inreasing the transmission rate means

that less redundany is stored, and inreasing the orretion apability means

that more node failures are tolerated. The use of odes in NDSS an produe

the same bene�ts than in the data transmission ase, sine the transmission

rate and the fault tolerane are also two key parameters. Figure 2.1 shows

a 1-fault tolerane [2, 1, 2] repetition ode and a 1-fault tolerane [3, 2, 2]

parity hek ode. These odes are applied to two information oordinates

v1 and v2. One an assume that these oordinates represent a �le to be

stored. Using the parity hek ode, the information (v1, v2) enoded gives

the odeword (v1, v2, v1 + v2) and the transmission rate is R = 2/3. Using
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v1 v2

v1 v1 v2 v2

v1 v2

v1 v2 v1 + v2

Figure 2.1: Left: a [2, 1, 2] repetition ode applied to two oordinates. Right:

a [3, 2, 2] parity hek ode applied to two oordinates.

the repetition ode, the information (v1) and (v2) enoded give (v1, v1) and

(v2, v2), respetively, whih represent (v1, v1, v2, v2), and the transmission rate

is R = 1/2. The use of a more sophistiate oding tehnique in the parity

hek ode has inreased the transmission rate while maintaining the fault

tolerane.

Assume that eah oordinate of the odeword is stored in a di�erent

storage node, one of them fails and we want to replae it. On the one hand,

in a repetition sheme, the storage node an be repaired by downloading one

replia of the lost oordinate and opying it. This means that the downloaded

and the stored data per newomer are the same. On the other hand, the

lassial deoding using linear odes always needs and uses n− d+1 orret

oordinates no matter whether the odeword has one or more (up to d − 1)

erasures. Then, the repair bandwidth needed per newomer is grater than

the stored data per newomer.

Figure 2.1 illustrates the repair problem. To repair a single oordinate

failure, using the parity hek ode it is neessary to download two symbols

b, a + b and ompute a = (a + b) − b, while using the repetition ode it is

only neessary the opy of a. In general, repairing a single oordinate in a

repetition ode needs a repair bandwidth of γ = α, where α is the amount

of stored data in one storage node, in this ase, the size of one oordinate.

In the parity hek ode, repairing a single oordinate implies downloading

any n − d + 1 = k = 2 oordinates, so γ = 2α = M , where M is the size of

the �le.

The use of odes in NDSS dramatially dereases the amount of redun-

dany needed to ahieve the same fault tolerane as using a repetition sheme

[RL05℄. However, the use of the parity hek ode needs a repair bandwidth

of γ = M to repair any subset of less than d oordinates, while the use of

the repetition ode needs γ = α for eah lost oordinate. In general, we

know that α ≪ M , so it an be seen that the repair problem is an important

drawbak. This drawbak is the main reason why the appliation of oding

theory in NDSS is being postponed and its resolution is related to the next
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question: is it possible to repair one single erasure requiring less than n−d+1

oordinates?

2.3.2 Important properties inherited from odes

When odes are applied to NDSS, there are some properties and onepts

from lassial oding theory that an be seen from a di�erent perspetive.

MDS odes

As we have seen in Subsetion 2.1.2, when a ode is MDS it has the maximum

minimum distane for a given redundany. In other words, it is the best ode

in terms of the ompromise between the transmission rate and the orretion

apability. It also means that the distane is d = n− k+ 1, so it an orret

n−k erasures, whih means that any k oordinates are enough to reover the

information. When we say that a ode has the minimum storage overhead,

it means that the ode is MDS, so its rate is R = k/(d+ k − 1).

Now, we are going to do an abuse of notation on some parameters of the

odes. Let an [n, k, d] NDSS be a (d − 1)-fault tolerane system omposed

of n storage nodes and where a subset of k storage nodes ontain enough

information to reover the �le. Assume that eah storage node stores the

same amount of data α then, the transmission rate of the NDSS is R =

(kα)/(nα) = k/n. When a MDS ode is applied to an NDSS and eah

oordinate of the odeword is stored in a di�erent storage node, the MDS

property means that the [n, k, d] NDSS is a (n−k)-fault tolerane system and

so any k storage nodes have enough information to reover the �le. Note the

di�erene between �a subset of k storage nodes� and �any subset of k storage

nodes�. Moreover, this �any k� property, whih means that d = n− k + 1, is

ahieved by all MDS odes, but an be also ahieved by non MDS odes.

A ode applied to an [n, k, d] NDSS is MDS if and only if it minimizes

the storage overhead and d = n − k + 1. Note that eah oordinate of the

odeword is stored in one node if and only if the parameters of the NDSS

oinide with the parameters of the linear odes. From the oding theory

point of view, a MDS ode means that d = n− k + 1. However, when array

odes are used in NDSS, it is possible to design non MDS odes ahieving

d = n− k + 1, but they do not have the minimum storage overhead.

Example 10 (Non MDS ode ahieving d = n− k + 1). Assume that a �le

is split into a vetor of 2 oordinates and enoded using a [8, 2, 5] ode, whih
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is not MDS ode sine 5 6= 8−2+1. This ode has has an erasure orretion

apability of 4 and any 8− 4 = 4 oordinates are enough to reover the �le.

Now, the resulting odeword is stored in a [4, 2, 3] NDSS where eah stor-

age node stores 2 oordinates of the odeword. It an be seen that the NDSS

is a 2-fault tolerane system, beause any 2 storage nodes have enough infor-

mation to reover the �le. However, as said before, the ode is not MDS.

Loality

Let C be a linear ode and c be a odeword of C. We say that a oordinate

i of c has repair degree ri if we an reover any symbol at oordinate i by

aessing at least ri other oordinates, and the set of these oordinates is

alled a repair set of i. In other words, the repair degree ri of a oordinate

i is the minimum ardinal of all the repair sets of i. The repair sets of i

are also alled the repair alternatives of i. The repair degree of C, r, is the

maximum of ri, i = 1, . . . , n. When we say that a ode has a high loality,

it means that the number of repair alternatives is big and their ardinals are

small. As a result r is also small. It is also worth to mention that the repair

degree is a good metri for repair bandwidth [OD11b℄, [PLD

+
12℄.

In [GHSY12℄, it is shown that the minimum distane d of a ode is upper

bounded by d ≤ n−k−⌈k
r
⌉+2, whih means that as r inreases (approahing

to k), d dereases. This bound is equivalent to the singleton bound when

r ≥ k. Note that in the MDS odes, r = k. When r < k, the minimum

distane d dereases and the optimality is ahieved when d = n−k−⌈k
r
⌉+2.

2.4 Coding tehniques for NDSS

In this setion, we show some of the most known odes that have been de-

signed spei�ally for NDSS. It is not the aim of this dissertation to deeply

explain these onstrutions, whih is already done in [OD12℄. In these kind

of odes, eah oordinate is stored in one storage node of the NDSS, whih

means that the parameters of the odes and of the NDSS oinide. Moreover,

the orretion apability of the ode also oinides with the fault tolerane

of the NDSS.

2.4.1 Loally reonstrutible odes

Loally reonstrutible odes use a tehnique where odes are applied to

other odes with the goal to inrease their loality. They are inspired in
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the produt odes [Eli54℄, whih ombine two erasure odes to tolerate both

random and burst erasures. The base of the produt odes is a k× k matrix

whih ontains the information symbols to be enoded. Firstly, the rows

of the matrix are enoded using an [n, k] linear ode, resulting in a k × n

matrix. Then, the olumns of this matrix are enoded with another [n, k]

linear ode, resulting in a n×n matrix. This �nal matrix has horizontal and

vertial redundany. Despite the minimum distane of these kind of odes is

low, their loality is inreased by produing two repair alternatives for eah

oordinate.

Hierarhial odes

Hierarhial odes [DB08℄ an be seen as a bottom-up approah on the ap-

pliation of odes on other odes. Hierarhial odes use two di�erent types

of odes. The �rst one takes subsets of information oordinates and enode

them independently from the other subsets to reate what is alled loal re-

dundany. The seond one enodes the loal redundany to reate what is

alled global redundany.

Example 11. Let the information vetor of a �le be v = (v1, v2, v3, v4).

Split v into two vetors (v1, v2) and (v3, v4) and enode them independently

using a [3, 2] parity hek ode into (v1, v2, v1 + v2) and (v3, v4, v3 + v4). The

loal redundany oordinates an be seen as a vetor (v1 + v2, v3 + v4) and

enoded using the same ode into (v1 + v2, v3 + v4, v1 + v2 + v3 + v4), where

v1+v2+v3+v4 is a global redundany oordinate. Finally, store the odeword

(v1, v2, v1+v2, v3, v4, v3+v4, v1+v2+v3+v4) in the NDSS with one oordinate

in eah storage node.

Note that the information and loal redundany oordinates have repair

degree 2, however, the resulting NDSS is only a 1-fault tolerane system with

a transmission rate of R = 4/7. This spei� enoding example an be seen

as a produt ode where the information is a 2 × 2 matrix and the verti-

al redundany is omputed only over the olumn ontaining the horizontal

redundany





v1 v2 v1 + v2
v3 v4 v3 + v4
− − v1 + v2 + v3 + v4



 .

This example an be generalized by using more sophistiated odes for

the loal and for the global redundanies, bigger information matries, or

the iteration of the proedure multiple times. The motivation behind hierar-

hial odes is the use of loal redundany to have a small repair degree for
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some spei� oordinates, while the global redundany provides the orre-

tion apability.

Pyramid odes

Pyramid odes [Hua07℄ an be seen as a top-down approah on the applia-

tion of odes on other odes. Firstly, a MDS ode enodes the information

vetor and produes the global redundany. Then, the information vetor

is split into smaller vetors whih are padded with zeros and enoded again

with the same ode produing the loal redundany. Note that, the global

redundany oe�ients are in fat linear ombinations of the loal redun-

dany oe�ients. Finally, some loal and global redundany oe�ients are

stored.

Example 12. An information vetor v = (v1, . . . , v8) is enoded using a

[11, 8] systemati MDS ode with generator matrix G. Then (v1, . . . , v8)G =

(v1, . . . , v8, ρ1, ρ2, ρ3), where ρ1, ρ2 and ρ3 are the global redundany oe�-

ients. Next, enode the vetors (v1, . . . , v4, 0, 0, 0, 0)G = (v1, . . . , v4, 0, 0, 0, 0,

ρ1,1, ρ2,1, ρ3,1) and (v5, . . . , v6, 0, 0, 0, 0)G = (v5, . . . , v6, 0, 0, 0, 0, ρ1,2, ρ2,2, ρ3,2).

Note that ρ1 = ρ1,1 + ρ1,2, ρ2 = ρ2,1 + ρ2,2 and ρ3 = ρ3,1 + ρ3,2. Finally, take

some global redundany oe�ients and some loal redundany oe�ients

orresponding to the rejeted global oe�ients. For example ρ1,1, ρ1,2, ρ2, ρ3,

and store (v1, . . . , v8, ρ1,1, ρ1,2, ρ2, ρ3).

Note that the global oe�ients are split into loal oe�ients, dereas-

ing the minimum distane of the ode but inreasing its loality. In pyramid

odes, larger odes are reused to build smaller odes, in ontrast to hierarhi-

al odes where smaller odes are assembled together to form a bigger ode.

Pyramid odes ahieve similar loality ompared with Hierarhial odes,

but with a better fault tolerane. It is worth to mention that a variation of

pyramid odes are the base odes used in Mirosoft Azure [HSX

+
12℄.

2.4.2 Loally repairable odes

Loally repairable odes (LRC) are odes designed to inrease the loality,

while trying to keep a high fault tolerane. The di�erene with the odes

proposed in Subsetion 2.4.1, is that LRC are odes spei�ally designed for

these two goals.

Let C be an [n, k, d] linear ode and let C⊥
be its dual ode, that is,

C⊥ = {ω ∈ F
n
q | ω · c = 0, ∀c ∈ C}, where ω · c =

∑n

j=1 ωjcj. Then, we
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say that ω ∈ C⊥
is a parity hek vetor of C and C⊥

is the set of parity

hek vetors of C. Given c ∈ C and ω ∈ C⊥
, the reparation of a single

oordinate means that an spei� ci is missing and it an be reovered by

solving

∑n

j=1 ωjcj = 0, where ci is the unknown. Note that the parity hek

vetor ω has wH(ω) nonzero oordinates, where wH(ω) means the Hamming

weight of ω. The reparation of a single spei� oordinate ci of a odeword

c requires to have a parity hek vetor ω ∈ C⊥
suh that ωi 6= 0. Then,

retrieve wH(ω)− 1 symbols from c orresponding to the nonzero oordinates

of ω exept for i, and solve the above equation for ci. Given an index i =

1, . . . , n, we de�ne Ω(i) = {ω ∈ C⊥ | ωi 6= 0}. This set represents all possible
parity hek vetors whih repair the oordinate ci, so it is the set of repair

alternatives of ci.

De�nition 12 (Repair degree of an LRC). The repair degree of the ith oor-

dinate of a LRC is de�ned as ri = min{wH(ω)−1 | ω ∈ Ω(i)}, and the overall
repair degree r is its maximum repair degree r = max{ri}

n
i=1 [PJHH13℄.

Moreover, note that the MDS odes have degree r = k. Loally repairable

odes (LRC) try to keep r at very low rates, this means that for LRC it is

a goal that r ≪ k. However, as it is explained in Subsetion 2.3.2, the low

repair degree dereases the upper bound on the minimum distane d of a ode,

whih also dereases the orretion apability. There are many onstrutions

of LRC and it is a hot topi at the moment, probably, the most known ones

are [OD11a℄, [OD11b℄ and [PD12℄.

In general, good LRC are those odes with a low repair degree and a high

number of repair alternatives. To ahieve a low repair degree, we need for

eah oordinate i, one parity hek vetor ω, ω 6= 0 with wH(ω) as low as

possible. Moreover, to ahieve a high number of repair alternatives, we need

a high number of those parity hek vetors.

There is a lot of researh done on loally repairable odes, and an in-

reasing number of artiles being published eah year. However, it is not

the aim of this dissertation to deeply explain this kind of onstrutions. An

interested reader an �nd more information in the ited artiles and surveys

of this setion.

2.5 Network oding tehniques for NDSS

The odes shown in the previous setion derease the repair degree, and

dereasing the repair degree also means dereasing the repair bandwidth.
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However, in those onstrutions, d ≪ n − k + 1 whih is a drawbak in the

ase of simultaneous node fails. Regenerating odes are a family of odes

designed to ahieve d = n− k+ 1, and derease the repair bandwidth at the

same time. In this setion, regenerating odes are deeply explained.

In Subsetion 2.5.1, some basi onepts on graph theory and information

�ow graphs are explained. In Subsetion 2.5.2, network oding is introdued.

In Subsetions 2.5.3, and 2.5.4, homogeneous models and non-homogeneous

modes are shown, respetively. In Subsetion 2.5.5, regenerating odes are

presented. Finally, in Subsetion 2.5.6, we introdue a new solution whih

lies between regenerating odes and loally repairable odes and that we all

�exible regenerating odes.

2.5.1 Graph theory

Graph theory is a well known mathematial topi whih studies mathematial

strutures used to model pairwise relations between objets. Graph theory is

an extensive topi [Ber01℄. However, we fous only on those onepts whih

are neessary to understand regenerating odes.

De�nition 13 (Graph). A graph is a olletion of points and lines onneting

a subset of points. The points of a graph are alled verties and the lines are

alled edges. A graph G(W,E) is a pair of sets with E ⊆ W ×W . There is

an edge from w1 ∈ W to w2 ∈ W if an only if (w1, w2) ∈ E [Wei℄.

A weighted graph is a graph where eah edge has an assoiated weight.

A direted graph is a graph where the edges (w1, w2) ∈ E have diretion.

This means that (w1, w2) ∈ E goes from w1 to w2 but not from w2 to

w1. An edge with diretion is alled an ar.

An ayli graph is a direted graph where it is not possible to start at a

vertex w1 ∈ W , follow a sequene of onneted verties, and loop bak

to w1.

A simple graph is an unweighted and undireted graph ontaining no graph

loops (edges that onnet a vertex to itself) or multiple edges (more

than one edge that onnet the same two nodes).

A bipartite graph is a graph whose verties an be divided into two dis-

joint subsets W1 and W2, where eah edge onnets one vertex of

W1 with one vertex of W2. A bipartite graph is usually denoted as

G(W1 ∪W2, E).
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w13

w21

w22

w23

Figure 2.2: Bipartite graph assoiated with a square matrix.

A mathing in a graph G(W,E) is a set of pairwise non-adjaent edges.

This means that no two edges share a ommon vertex. A perfet math-

ing is a mathing whih mathes all verties of G(W,E). In a bipartite

graph G(W1 ∪W2, E), we de�ne a omplete mathing from W1 to W2

(resp. W2 to W1), if there is a mathing whih mathes all verties of

W1 (resp. W2).

As we have said, a graph an be used to represent pairwise relations

between objets. In [Har69℄, the relation between retangular matries and

bipartite graphs is shown. Spei�ally, one an represent a retangular matrix

using a bipartite graph, where W1 represent the rows and W2 the olumns of

the matrix and the matrix entries are the weights of the edges.

Example 13 (Square matries and bipartite graphs). The square matrix





1 0 1

0 1 0

0 0 1



 ,

an be represented by the bipartite graph G(W1∪W2, E) of Figure 2.2, where

w1i ∈ W1 is the i-th row and w2j ∈ W2 is the j-th olumn of the matrix.

Let ps(ζ1, ζ2, . . . , ζm) ∈ Fq[ζ1, ζ2, . . . , ζm] be the polynomial assoiated

with the determinant of a m′ × m′
square matrix over Fq with m ≤ m′2

.

For example, the polynomial ps(ζ1, ζ2, ζ3, ζ4) assoiated with the 2×2 square

matrix

(

ζ1 ζ2
ζ3 ζ4

)

is ps(ζ1, ζ2, ζ3, ζ4) = ζ1ζ4 − ζ2ζ3.

Let δ be the degree of ps(ζ1, ζ2, . . . , ζm). The polynomial ps(ζ1, ζ2, . . . , ζm)

is de�ned over Fq. If the polynomial ps(ζ1, ζ2, . . . , ζm) is not identially zero,
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it means that, when it is expanded as a summation of terms, there exists at

least one term with a nonzero oe�ient.

Let G(W1∪W2, E) be the bipartite graph assoiated with a square matrix.

Let E(w1i) (resp. E(w2i)) denote the neighbors of w1i ∈ W1 (resp. w2i ∈ W2)

in the graph G(W1 ∪W2, E).

Lemma 14 (Hall's theorem). [Hal35℄ A bipartite graph G(W1∪W2, E) on-

tains a omplete mathing from W1 to W2 (resp. W2 to W1) if and only

if it satis�es Hall's ondition, that is, for any T ⊆ W1 (resp. T ⊆ W2),

|T | ≤ |E(T )|, where T = {t1, . . . , tm} and E(T ) =
⋃m

i=1E(ti). Moreover,

if |W1| = |W2|, the omplete mathing is ahieved in both diretions, so it

orresponds to a perfet mathing.

Lemma 15. [MR95℄ The polynomial assoiated with the determinant of a

square matrix, ps(ζ1, ζ2, . . . , ζm), is not identially zero if and only if the

bipartite graph G(W1∪W2, E) assoiated with the square matrix has a perfet

mathing.

If ps(ζ1, ζ2, . . . , ζm) is not identially zero beause G(W1 ∪ W2, E) has a

perfet mathing, we an use the Shwartz-Zippel lemma to determine the

probability that, for a random hoie of the oe�ients ζ1, ζ2, . . . , ζm then,

ps(ζ1, ζ2, . . . , ζm) = 0.

Lemma 16 (Shwartz-Zippel lemma). [Zip89℄ Let ps(ζ1, . . . , ζm) be a poly-

nomial of degree δ over Fq. Assume that ps(ζ1, . . . , ζm) is not identially zero.

If (ζ1, . . . , ζm) are hosen independently and uniformly over Fq, then

Pr[ ps(ζ1, . . . , ζm) = 0 ] ≤
δ

|Fq|
.

Information �ow graphs

De�nition 17 (Information �ow graph). An information �ow graph is a

direted ayli and weighted graph whih represents a �ow of information

from a set of soures to a set of sinks. The soure verties are the ones

sending data and the sink verties are the ones reeiving data. Eah ar is

able to ommuniate an amount of data per time unit equivalent to its weight.

The maximum �ow of an information �ow graph is given by the minut

between the soures and the sinks.
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Figure 2.3: Butter�y network using network oding.

De�nition 18 (Minut of a graph). Let G(W,E) be a weighted graph with

nonnegative weights. A ut of G from wi ∈ W to wj ∈ W is a partition of

W into two disjoint subsets where the �rst one ontains wi and the seond

one ontains wj. The weight of the ut is the sum of the weights of the edges

rossing the ut. The minut is the ut with minimum weight [Wei℄.

Information �ow graphs an be used to represent a NDSS. We an sim-

ulate node fails over time and apply network tehniques to minimize the

amount of stored data per node α and the repair bandwidth γ.

2.5.2 Network oding

Network oding is a oding tehnique applied to networks with the idea of

improving the throughput, e�ieny and salability of the network. This

tehnique was introdued in [ACLY00℄ for multiast purposes but nowadays,

it has many other uses in the �elds of seurity, ompression, and oding

theory among others.

The goal of network oding is to redue the amount of data transmitted

between a soure and a set of sinks. To ahieve this redution, the inter-

mediate nodes are allowed to produe and send linear ombinations of the

inoming symbols. The sinks reeive these linear ombinations, whih an

be treated as equations. When a sink has enough equations it an solve the

system and reover the original symbols. To do that, the sinks aumulate

equations in a matrix, when they have a full rank matrix, they reover the

original symbols by applying the Gauss method.

If the network is modeled as an information �ow graph, the verties of
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the graph are the nodes of the network and the ars are the ommuniation

hannels. Figure 2.3 shows the information �ow graph known as the butter�y

network. Assume that a soure sends two information symbols a and b to two

sinks, and that eah ar has weight 1. This means that the ar (w1, w2) ∈
E, an ommuniate 1 symbol from w1 to w2 for eah time unit. If the

intermediate verties are able to send linear ombinations of the inoming

symbols, and the sinks an solve systems of equations, the soure an send

a and b at the same time instead of sending a and then b whih introdue a

delay in the sinks.

The maximum number of symbols per time unit that the soure an send

through a network is given by the minimum minut between the soure and

the sinks. In [Med03℄, it is shown that the use of random oe�ients, over a

su�iently large �eld, in the linear ombinations of the intermediate nodes

is enough to produe full rank matries to solve the equations in the sinks,

so they an reover the original information symbols.

2.5.3 Homogeneous model

Information �ow graphs an be used to simulate the life of an NDSS. The

soure of the graph is the �le to be stored in a NDSS and a sink of the

graph is the user who wants to reover the �le. The intermediate nodes

represent the life of the NDSS, they are the storage nodes in di�erent time

units. During the life of a NDSS some nodes fail and some others join the

system in order to replae the failed ones. The nodes send information to

eah other in order to maintain the fault tolerane. The information �ow

graph is like a state mahine, eah step is produed by a fail and produes a

new stable state. Finally, the sink wants to reover the stored information by

onneting to a subset of these nodes. In this subsetion, the �rst proposed

model [DGWR10℄ whih is based on the homogeneity of nodes and edges and

is explained.

Let si, where i = 1, . . . ,∞, be the i-th storage node. Let G(W,E) be an

information �ow graph, with a set of verties W and a set of ars E. The

set W ontains three kinds of verties:

• Soure vertex S: it represents the �le to be stored. There is only one

soure vertex in the graph.

• Data olletor vertex DC: it is the sink vertex that represents the user

who is allowed to aess the data in order to reonstrut the �le.
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• Storage node verties wi
in and wi

out: eah storage node si, where i =

1, . . . ,∞, is represented by one inner vertex wi
in and one outer vertex

wi
out.

In general, there is an ar (w1, w2) ∈ E of weight ς from vertex w1 ∈ W to

vertex w2 ∈ W if w1 an send ς data units to w2.

At the beginning of the life of an NDSS, there is a �le to be stored

in n storage nodes si, i = 1, . . . , n. This an be represented by a soure

vertex S with outdegree n onneted to verties wi
in, i = 1, . . . , n. As there

is no restrition on the amount of information that the �le sends to the

storage nodes, the weight of the ars is in�nite. To represent that eah one

of the storage nodes si, i = 1, . . . , n, stores α data units, eah vertex wi
in is

onneted to the vertex wi
out with an ar of weight α.

When the �rst storage node fails, the �rst newomer sn+1 onnets to r,

0 < r < n existing storage nodes sending, eah one of them, β data units.

This an be represented by adding one ar from wi
out, i = 1, . . . , n, to wn+1

in

of weight β if si sends β data units to sn+1 in the regenerating proess. The

new vertex wn+1
in is also onneted to its assoiated vertex wn+1

out with an ar

of weight α. This proess an be repeated for every failed node. Let the

newomers be denoted by sj , where j = n + 1, . . . ,∞.

Finally, after some failures, a data olletor wants to reonstrut the �le.

Therefore, a vertex DC is added to G(W,E) along with one ar from vertex

wi
out to DC if the data olletor onnets to the storage node si. Note that

if si has been replaed by sj, the vertex DC an not onnet to wi
out, but it

an onnet to wj
out. The vertex DC has indegree k and eah ar has weight

in�nite, beause the user is able to get as many information as he wants from

eah one of the storage nodes.

If the minut from vertex S to DC, denoted by minut(S,DC), ahieves

that minut(S,DC) ≥ M , the data olletor an reonstrut the �le from the

k storage nodes given by the k edges arriving to the DC, sine there is enough

information �ow from the soure to the data olletor. If we want that any

subset of k storage nodes are enough to reover the �le, the data olletor

should be able to onnet to any k nodes, so min(minut(S,DC)) ≥ M ,

whih is ahieved when the data olletor onnets to k storage nodes that

have already been replaed by a newomer [DGWR10℄. Note that using the

minimum of all the minuts we are assuming that any subset of k storage

nodes have enough information to reover the �le.

If we want to represent a ode designed for an NDSS like the ones ex-

plained in Setion 2.4 using an information �ow graph, eah oordinate is
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Figure 2.4: Information �ow graph of a [4, 2, 3] NDSS with r = 3.

stored in one node and α = β. In this kind of odes, not any k storage

nodes are enough to reover the �le, so min(minut(S,DC)) ≥ M has no

sense beause the minut will be di�erent for eah set of k storage nodes

onneted to the DC. Moreover, β does not appear in the minut equation.

Finally, one an onlude that no optimization is possible on the resulting

graph using network oding tehniques.

Figure 2.4 illustrates the information �ow graph G(W,E) assoiated to an

[4, 2, 3] NDSS with r = 3. Remember that an [n, k, d] NDSS is a (d−1)-fault

tolerane system omposed of n storage nodes and where a subset of k storage

nodes ontain enough information to reover the �le. In this setion, we

assume that d = n−k+1, so any subset of k storage nodes is enough to reover

the �le. Note that in Figure 2.4, minut(S,DC) = min(3β, α) + min(2β, α)

whih is the minimum minut for this information �ow graph. In general, it

an be laimed [DGWR10℄ that

minut(S,DC) ≥
k−1
∑

i=0

min((r − i)β, α) ≥ M. (2.1)

It is possible to obtain a threshold funtion minimizing α and γ by using

linear optimization tehniques on the general equation (2.1) [DGWR10℄

α∗(r, γ) =















M
k
, γ ∈ [f(0),+∞)

M−g(i)γ
k−i

, γ ∈ [f(i), f(i− 1))

i = 1, . . . , k − 1,

(2.2)

where

f(i) =
2Mr

(2k − i− 1)i+ 2k(r − k + 1)
and g(i) =

(2r − 2k + i+ 1)i

2r
,

where γ = rβ.
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Figure 2.5: Optimal tradeo� urve between α and γ for a [10, 5, 6] NDSS

with r = 9.

To ahieve this threshold funtion, multiple tehniques have been used,

like interferene alignment [SRKR11℄, produt-matrix onstrution [RSK11℄,

or designs [RR10℄, among others. Behind these tehniques, there are two

main ideas: the use of array odes, whih allows the NDSS to treat the data

inside a node as a sequene of (small) oordinates over the base �eld; and

the use of network oding to send linear ombinations of these oordinates

through the network.

This threshold funtion an be represented by a tradeo� urve like the

one shown in Figure 2.5 for some spei� parameters n, k and r. The optimal

tradeo� urve represents the minimum tradeo� between α and γ. The two

extremes of the urve are alled the Minimum Storage Regenerating (MSR)

and the Minimum Bandwidth Regenerating (MBR) points. In Figure 2.5,

these points are plaed approximately in (0.36, 0.2) and (0.258, 0.258). Be-

tween these two points, there are the alled interior points.

Using the information �ow graph G(W,E), we an see that there are ex-

atly k points in the tradeo� urve, or equivalently, k intervals in the thresh-

old funtion α∗(r, γ), whih represent k newomers. In the minut equation,

the k terms in the summation are omputed as the minimum between two

parameters: the sum of the weights of the ars that we have to ut to isolate

the orresponding vjin from S, and the weight of the ar that we have to ut

to isolate the orresponding vjout from S. Let the �rst parameter be alled

the inome of the orresponding newomer sj. Note that the inome of the

newomer sj depends on the previous newomers.

It an be seen that the newomers an be ordered aording to their
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inome from the highest to the lowest. In this model, this order is only de-

termined by the order of replaement of the failed nodes. Moreover, the MSR

point orresponds to the lowest inome, whih is given by the last newomer

added to the information �ow graph; and the MBR point orresponds to the

highest, whih is given by the �rst newomer. It is important to note also

that, in this model, the order of replaement of the nodes does not a�et

to the �nal result, sine the minut is always the same independently of the

spei� set of k failed nodes.

2.5.4 Non-homogeneous models

In the previous subsetions, we have introdued the onept of information

�ow graphs and we have assoiated it with an NDSS. However, we have based

our analysis in the homogeneity of the parameters α and γ. This homogeneity

means that every single node stores α data units and every single helper node

(a node ontributing to the replaement of a spei� lost node) sends β data

units in order to repair a failed node. A non-homogeneous model means

either the amount of stored data per node or the amount of sent data per

helper node depends on the spei� storage node. In this work we fous on

the seond ase, while the �rst one has also been studied [YSS11℄, [VYL12℄.

In [AKG10℄, Akhlaghi et al. presented another distributed storage model,

where the storage nodes are partitioned into two sets W 1
and W 2

. Let W 1

be the set of �heap bandwidth� nodes, from where eah data unit sent osts

Cc, and W 2
be the set of �expensive bandwidth� nodes, from where eah data

unit sent osts Ce suh that Ce > Cc. This means that when a newomer

replaes a lost storage node, the ost of downloading data from a node in W 1

will be lower than the ost of downloading the same amount of data from a

node in W 2
.

Consider the same situation as in the model desribed in Subsetion 2.5.3.

Now, when a storage node fails, the newomer node sj, j = n + 1, . . . ,∞,

onnets to rc existing storage nodes from W 1
sending eah one of them βc

data units to sj, and to re existing storage nodes from W 2
sending eah

one of them βe data units to sj. Let r = rc + re be the number of helper

nodes. Assume that r, rc, and re are �xed, that is, they do not depend on

the newomer sj , j = n + 1, . . . ,∞. In terms of the information �ow graph

G, there is one ar from wi
out to wj

in of weight βc or βe, depending on whether

si sends βc or βe data units, respetively, in the regenerating proess. This

new vertex wj
in is also onneted to its assoiated vertex wj

out with an ar of

weight α.
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Let the repair ost be CT = rcCcβc + reCeβe and the repair bandwidth

γ = rcβc + reβe. To simplify the model, we an assume, without loss of

generality, that βc = τβe for some real number τ ≥ 1. This means that we

an minimize the repair ost CT by downloading more data units from the set

of �heap bandwidth� nodes W 1
than from the set of �expensive bandwidth�

nodes W 2
. Note that if τ is inreased, the repair ost is dereased and vie-

versa.

Again, it must be satis�ed that min(minut(S,DC)) ≥ M . Moreover, the

newomers an also be ordered aording to their inome from the highest

to the lowest. However, in this model, the order is not only determined by

the order of replaement of the failed nodes, as it happened in the model

desribed in Subsetion 2.5.3. It is important to note that, in this model, the

order of replaement of the nodes a�ets to the �nal result and the minut

depends on the spei� set of failed nodes.

The goal is also to �nd the min(minut(S,DC)), so the next problem

arises: whih is the set of k newomers that minimize the minut between S

and DC? The minimum minut is given by the set of k newomers with the

minimum sum of inomes. As it is shown in [AKG10℄, this set is omposed

of any rc + 1 newomers from W 1
plus the remaining newomers from W 2

.

Moreover, the MSR point orresponds to the lowest inome, whih is given

by the last newomer; and the MBR point orresponds to the highest inome,

whih is given by the �rst newomer. Depending on k and rc, it is neessary

to distinguish between two ases.

Case k ≤ rc + 1

This ase orresponds to the situation when the data olletor onnets to

k newomers from the set W 1
. With this senario shown in the information

�ow graph of Figure 2.6, the minut analysis leads to

k−1
∑

i=0

min(rcβc + reβe − iβc, α) ≥ M. (2.3)

After applying βc = τβe and an optimization proess, the minut equation

(2.3) leads to the following threshold funtion:

α∗(rc, re, βe) =



















M
k
, βe ∈ [f(0),+∞)

2M−g(i)βe

2(k−i)
, βe ∈ [f(i), f(i− 1))

i = 1, . . . , k − 1,

(2.4)
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Figure 2.6: General information �ow graphs orresponding to the ase k ≤
rc + 1.

where

f(i) =
2M

2k(rcτ + re − τk) + τ(i+ 1)(2k − i)
and

g(i) = i(2rcτ + 2re − 2kτ + (i+ 1)τ).

Case k > rc + 1
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Figure 2.7: General information �ow graphs orresponding to the ase k >

rc + 1.

This ase orresponds to the situation when the data olletor onnets

to rc + 1 replaed nodes from the set W 1
and to k − rc − 1 replaed nodes

from the set W 2
. With this senario shown in the information �ow graph of

Figure 2.7, the minut analysis leads to



34 Chapter 2. Bakground

rc
∑

i=0

min(rcβc + reβe − iβc, α) +

k−1
∑

i=rc+1

min((rc + re − i)βe, α) ≥ M. (2.5)

After applying βc = τβe and an optimization proess, the minut equation

(2.5) leads to the following threshold funtion:

α∗(rc, re, βe) =











































M
k
, βe ∈ [f1(0),+∞)

2M−g(i)βe

2(k−i)
, βe ∈ [f1(i), f1(i− 1))

i = 1, . . . , k − rc − 1

2M−(g1(i)(k−rc−1)g2(i))βe

2(rc−i)
, βe ∈ [f2(i), f2(i− 1)),

i = k − rc, . . . , k − 1,

(2.6)

where

f1(i) =
2M

2k(r − k) + (i+ 1) + (2k − 1)
,

f2(i) =
2M

(2kr − k2 − r2c − rc + k + 2rcτ) + iτ(2rc − i− 1)
,

g1(i) = i(2r − 2k + i+ 1), and

g2(i) = (i+ 1)(2re + iτ).

2.5.5 Regenerating odes

Let C be a [n, k, r] regenerating ode, where the length n is the total number

of nodes in the system; the dimension k is the value suh that any k nodes

ontain the minimum amount of information neessary to reonstrut the �le;

and the ardinal of the set of helper nodes r is the number of nodes neessary

to regenerate one failed node. Let the distane d of C be d = n − k + 1.

Regenerating odes are array odes over Fqt designed to approximate (and

ahieve if possible) the optimal parameters of the threshold funtion on the

information �ow graph for an [n, k, n− k + 1] NDSS with repair degree r.

Let v ∈ F
k
qt be the information vetor representing the �le to be stored in

an NDSS. Let c ∈ F
n
qt be the orresponding odeword after enoding v using

C, whih is an array ode as the ones explained in Subsetion 2.1.2. If eah

array oordinate of c is stored in a node, and the linear ode C is MDS, the

parameters n, k and d of the regenerating ode oinide with the parameters
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n, k, and d, of the linear ode C. Moreover, in this ase C is alled a Minimum

Storage Regenerating (MSR) ode. When a ode is MDS, it means that it

minimizes the storage overhead. In other words, it is not possible to ahieve a

higher orretion apability with equal transmission rate and it is not possible

to ahieve a higher transmission rate with equal orretion apability. If eah

oordinate of a odeword is stored in one storage node, there are n storage

nodes and beause of the MDS property d = n− k + 1, k storage nodes are

enough to reover the original information. We an then say that MSR odes

are MDS odes, however not all MDS odes are MSR odes sine not all of

them are able to ahieve optimal repair bandwidth γ.

Note that, it is also possible to store more data in the same storage

node, for example by adding an extra set of elements over the base �eld

Fq, produing more redundany whih ould be used to regenerate a failed

node requiring less repair bandwidth γ. Using this tehnique, it is possible

to minimize the repair problem at the ost of some extra storage overhead,

but maintaining d = n− k + 1. When C ahieves the minimum α suh that

α = γ, C is alled a Minimum Bandwidth Regenerating (MBR) ode, and it

an be seen that the parameters n, k and d of the regenerating ode do not

oinide with the ones de�ned for a linear ode C.

Regenerating odes assume the data reonstrution ondition: any k

nodes must be enough to reover the �le, whih means that the minimum

distane must be d = n−k+1, so it is neessary to have αk ≥ M . Moreover,

if d = n − k + 1 and αk = M , we have an MDS ode. Another ondition

is that the regeneration of any node in the system must require less repair

bandwidth than the total �le size M , that is γ < M . If eah helper node

sends β data units, the repair bandwidth used is γ = βr. We know that any

k nodes must ontain enough information to reover the �le so, unlike in the

LRC ase, the parameter r must ahieve r > k. Note that if r < k then

d < n − k + 1 and if r = k, there is no possible optimization in the repair

bandwidth. Moreover, as there are n storage nodes and one is the newomer,

then k < r < n. It is lear that as k < r, in order to derease the repair

bandwidth γ, eah helper node must send β < α data units.

Note the di�erene between LRC and regenerating odes. In both ases,

the repair degree is the number of helper nodes r neessary to regenerate a

failed node. However, in LRC, eah oordinate of a odeword c is stored in

one node, and when we aess to one helper node it means that we download

the entire oordinate ontained in it. Therefore, in order to derease γ, we

need r ≪ k. In regenerating odes, to maintain the distane d = n− k + 1,

we need r ≥ k. Thus, sine a odeword c an be seen as a vetor of array
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Figure 2.8: Fragmentation, onstrution and regeneration of a 2-fault toler-

ane [4, 2, 3] regenerating ode.

oordinates, in order to derease γ we an inrease r but downloading less

than an entire array oordinate from eah helper node. In other words, LRC

are the result of reating new odes adapted to an NDSS, while regenerating

odes are lassial odes in whih a network oding tehnique is used to

redue the repair bandwidth γ.

If any newomer is able to exatly repliate the lost node, we say that the

regenerating ode has the exat repair property. Otherwise, if the newomers

store a linear ombination that does not redue the dimension of C and it

does not oinide with the data inluded in the lost node, we say that the

regenerating ode has the funtional repair property [DRW11℄. Exat repair

is muh more desirable than funtional repair, sine despite the number of

failed nodes that the NDSS has repaired over an interval of time, it is pos-

sible to use systemati enoding of the information and keep this systemati

representation over the time. This means that there is always one aessible

opy of the original �le stored in the NDSS. It is worth to mention that in

[SRKR12℄ it is proved that the interior points of the tradeo� urve are not

ahievable using exat repair.

We say that a regenerating ode has the unoded repair property if it is

possible to replae a failed node without doing any linear operation in the

newomer neither in the helper nodes. There exist unoded onstrutions

for the MBR point like the ones shown in [RSK11℄ and [RR10℄. However,

for the MSR point, there only exist unoded onstrutions using funtional

repair [HLS13℄.

Example 14 (Regenerating ode). Assume that a �le of size M is stored in a

[4, 2, 3] NDSS with r = 3. The information �ow graph of this NDSS is shown
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in Figure 2.4 and its minut equation is minut(S,DC) = min(3β, α) +

min(2β, α). The minimization of this equation is given by the threshold fun-

tion (2.2) and provides two points in the tradeo� urve. The MSR point with

α = M/2 and γ = 3M/4 and the MBR point with α = γ = 3M/5.

Now, we design an example of a regenerating ode that ahieves the MSR

point, a [4, 2, 3] MSR ode. A ode ahieving these parameters is shown in

Figure 2.8. Firstly, the �le is divided into four oordinates over F3 and en-

oded into eight oordinates over the same �eld. Eah storage node stores two

of these oordinates produing an array odeword with four array oordinates

over F32. It an be seen that any two storage nodes have enough information

to reover the �le. Finally, the funtional repair of the �rst node is shown in

the �gure for γ = 3M/4.

2.5.6 Flexible regenerating odes

In Subsetion 2.5.5, regenerating odes are desribed. We have said that a

regenerating ode always ahieve d = n − k + 1, despite if the ode used is

MDS or not. We have shown that this is the most important di�erene, from

a pratial point of view, between regenerating odes and LRC, beause it

indiates if �any� or �a� subset of k storage nodes ontain enough information

to reover the �le.

However, we have intrinsially assumed that, in regenerating odes, the

set of helper nodes onsists on any r non failed nodes. If the set of helper

nodes is a subset with r spei� storage nodes, the resulting odes are alled

[n, k, r] �exible regenerating odes. Note that these new odes are regen-

erating odes, beause r ≥ k and any subset of k storage nodes ontain

enough information to reover the �le. However, they share the idea of hav-

ing a spei� set of helper nodes given in Subsetion 2.4.2 for LRC. Flexible

regenerating odes an be seen as an hybrid solution between LRC and regen-

erating odes, where d = n− k+1 but the set of helper nodes per newomer

onsists of spei� storage nodes.

The �rst �exible onstrution of regenerating odes was given in [SRKR12℄.

In that artile, the authors onstruted �exible regenerating odes ahieving

the same optimal parameters than MBR odes for r = n−1. Later, in [RR10℄,

the authors used mathematial designs [MS77℄ to generalize the onstrution

of these MBR odes for any r. Moreover, they disovered that by using this

kind of onstrutions, the optimal MBR point of the tradeo� urve ould

be beaten. We all, to the resulting odes, �exible regenerating odes with

minimum bandwidth. Note that the minimum γ is ahieved when γ = α.
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In this setion, we formalize those ontributions by giving a general on-

strution for �exible regenerating odes with minimum bandwidth along with

their bounds and key parameters. In other words, we are rewriting the on-

tributions on this topi and unifying the nomenlature, sine they have been

published separately. This setion has three subsetions whih over the

three main aspets of any regenerating ode, the ode onstrution, the node

regeneration and the data reonstrution.

Code onstrution

Let C be an [n, k, r] MSR ode over Fqt , where any subset of k storage

nodes is enough to reonstrut the �le. In this subsetion, we explain how

to onstrut a new [n̄, k̄, r̄] regenerating ode C̄ with minimum bandwidth

over Fqtr̄ , from the base ode C. Despite it is possible to onstrut C̄ from

any regenerating ode, the onstrution makes sense if the regenerating ode

C is MSR (so MDS viewed as an array ode), beause then, C̄ ahieves the

optimal parameters α and γ.

Lemma 19. Given n ≥ 3, there exists a simple, undireted, and r̄-regular

graph H(W,E), where W is the set of verties where |W | = n̄ and E is the

set of edges where |E| = n, satisfying the following onditions: |W | = n̄,

|E| = n, 1 < r̄ < n̄, and r̄n̄ = 2n.

Proof. Condition r̄n̄ = 2n is given by the Handshaking lemma for a simple,

undireted, and r̄-regular graph. By Erdos-Gallai degree sequene theorem,

for r̄ > 1 and r̄ < n̄, there exists at least a simple, undireted, and r̄-regular

graph suh that r̄n̄ = 2n.

For example, for r̄ = n̄ − 1, we have the omplete graph H = Kn̄, and

for r̄ = 2 we have the yle graph H = Cn̄. As |E| = n in H(W,E), it is

possible to assume that eah edge in E orresponds to a di�erent oordinate

cj over Fqt of a odeword c = (c1, . . . cn) ∈ C. Note that cj ould be also

seen as an array oordinate omposed of oordinates over the base �eld Fq,

but in this setion, we onsider the base �eld Fqt, so cj is a oordinate of

Fqt . Given a odeword c ∈ C, sine |W | = n̄ in H(W,E), we an onstrut

a odeword c̄ = (c̄1, . . . , c̄n̄) ∈ C̄, where eah array oordinate c̄i orresponds

to a di�erent vertex wi ∈ W and ontains the oordinates of c given by the r̄

edges inident to wi. Moreover, sine the graph is simple, any two verties an

not be onneted by more than one edge, so eah oordinate of c is ontained

in two array oordinates of c̄. As C is de�ned over Fqt , C̄ is de�ned over
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Figure 2.9: A [10, 9, 2]MDS ode used to reate a [5, 3, 4] �exible regenerating

ode with minimum bandwidth.

Fqtr̄ . Figure 2.9 shows an example of a [5, 3, 4] �exible regenerating ode

with minimum bandwidth reated from a [10, 9, 2] MDS ode, whih an be

used to illustrate this onstrution.

In the next subsetions, we prove that C̄ is a regenerating ode with min-

imum bandwidth. Firstly, in the node regeneration subsetion, we show that

γ = α. Then, in the data reonstrution subsetion, we look for the mini-

mum α suh that any k̄ array oordinates of c̄ ∈ C̄ are enough to reonstrut

the �le. Note that C̄ is a regenerating ode, but not a ode from the lassial

oding theory point of view, sine |C̄| = |C| and k̄ is not the dimension of

the ode but an integer suh that 1 < k̄ < n̄.

Node regeneration

Assume that a storage node fails, whih is the same as erasing one array

oordinate c̄i, i = 1, . . . , n̄ of a odeword c̄ = (c̄1, . . . , c̄n̄) ∈ C̄, or equivalently

one vertex wi ∈ W of H(W,E). The newomer an replae the failed node

by downloading and storing the r̄ oordinates of c inluded in eah one of

the r̄ neighbors of wi, and given by the orresponding r̄ edges inidents to

wi. Aording to this regeneration proess, γ = α.

Note that these regenerating odes with minimum bandwidth, have the

exat repair and the unoded repair properties. Also note that the node
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regeneration is given by an spei� subset of r̄ helper nodes, so they are

�exible regenerating odes.

Data reonstrution

Let E(wi), i = 1, . . . , n̄, be the set of edges inident to the vertex wi ∈ W .

Let S̄ be the set of all subsets of {1, . . . , n̄} of size k̄ > 1 and let s̄ ∈ S̄.

For a subset s̄, |
⋃

i∈s̄ E(wi)| =
∑

i∈s̄ |E(wi)| − θs̄, where θs̄ represents the

intersetion terms in the inlusion-exlusion formula. Sine eah edge is

inident to two verties, for s̄′ ⊆ s̄ of size |s̄′| > 2, |
⋂

i∈s̄′ E(wi)| = 0, so

θs̄ =
∑

i<j, i,j∈s̄ |E(wi) ∩ E(wj)|. Let θ be the maximum of all θs̄, s̄ ∈ S̄.

Sine |E(wi) ∩ E(wj)| ≤ 1 for any i, j ∈ {1, . . . , n̄} and i 6= j, we have that

θ ≤
(

k̄

2

)

.

Lemma 20. Let C be an [n, k, r] MSR ode over Fqt with n ≥ 3. Choose n̄,

k̄ and r̄ suh that r̄n̄ = 2n, 1 < k̄ < n̄, 1 < r̄ < k and k ≤ k̄r̄ − θ. Then,

there is a [n̄, k̄, r̄] regenerating ode C̄ over Fqtr̄ . Moreover, the minimum α

is ahieved when k = k̄r̄ − θ.

Proof. Given a �le distributed using C, we know that there are n nodes and

that any k of those n nodes are enough to reonstrut the �le. By Lemma

19, we know that if n ≥ 3, there exists a set of n̄ verties W and a set of n

edges E, suh that it is possible to onstrut H(W,E) with 1 < r̄ < n̄ and

r̄n̄ = 2n. Then, from H(W,E) it is possible to onstrut a ode C̄ as it is

desribed in the ode onstrution subsetion.

The onditions 1 < k̄ < n̄ and r̄ < k are neessary beause if they are

not ahieved, the ode C̄ has no sense as a regenerating ode. Note that a

subset of ardinal r̄ < k oordinates of c ontained in r̄ di�erent nodes an

regenerate a failed one, so γ < M . Finally, in order to reonstrut the �le

distributed using C̄, any subset of k̄ nodes must store at least k oordinates

of c ∈ C, so k ≤ |
⋃

i∈s̄E(wi)|. Sine k ≤ k̄r̄ − θ ≤ k̄r̄ − θs̄ = |
⋃

i∈s̄E(wi)|
this ondition is satis�ed. Therefore, C̄ is a regenerating ode.

In the node regeneration subsetion, it is shown that γ = α. Moreover,

r̄ is the number of oordinates of c whih ompose an array oordinate of c̄.

Then, the minimum r̄ will lead to the minimum α. As r̄ ≥ (k + θ)/k̄, the

minimum r̄ is ahieved when k = k̄r̄ − θ.

As we are trying to minimize α, we assume the equality k = k̄r̄ − θ

given by Lemma 20, and we establish an upper bound for the parameter θ

in Proposition 1.
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Proposition 1. In the graph H(W,E) with k = k̄r̄ − θ, we have that

1. θ ≤
(

k̄

2

)

if k̄ ≤ r̄ + 1,

2. θ ≤ ⌊ k̄
r̄+1

⌋
(

r̄+1
2

)

+
(

k̄ mod (r̄+1)
2

)

if k̄ > r̄ + 1.

Proof. Eah node wi ∈ W has r̄ inident edges, so k̄ nodes have k̄r̄ edges.

Now, we distinguish two ases.

Case k̄ ≤ r̄+1: In H(W,E), eah vertex wi, i = 1, . . . , n̄, shares one, and

only one, edge with another vertex wj. Eah vertex wi, i ∈ s̄ and |s̄| = k̄, an

share a maximum of one edge with eah one of the other verties wj , j ∈ s̄,

i 6= j. Then, the maximum number of shared edges is

(

k̄

2

)

. In other words,

when k̄ ≤ r̄ + 1, it is possible to reate a omplete subgraph of k̄ verties in

H(W,E) with
(

k̄

2

)

edges.

Case k̄ > r̄ + 1: Given H(W,E) and s̄, we are going to onstrut a

subgraph whih maximizes the number of shared edges. Eah vertex wi,

i ∈ s̄, an share a maximum of r̄ edges with the remaining verties wj, j ∈ s̄,

i 6= j. Therefore, the maximum number of shared edges is when we onsider

a omplete subgraph with r̄ + 1 verties and

(

r̄+1
2

)

edges. As k̄ > r̄ + 1,

there ould be ⌊ k̄
r̄+1

⌋ omplete subgraphs, eah one with

(

r̄+1
2

)

edges. The

verties out of these omplete subgraphs an share a maximum of

(

k̄ mod (r̄+1)
2

)

edges, whih leads to the upper bound θ ≤ ⌊ k̄
r̄+1

⌋
(

r̄+1
2

)

+
(

k̄ mod (r̄+1)
2

)

for

k̄ > r̄ + 1.
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Chapter 3

Quasi-yli Flexible

Regenerating Codes

In this hapter, we present our �rst ontribution, a new family of regenerating

odes based on quasi-yli odes. This ontribution has been partially pub-

lished in international onferenes [GPV11a℄, [GPV11b℄ and submitted as a

journal paper in [GPV13a℄. Quasi-yli �exible minimum storage regenerat-

ing (QCFMSR) odes are onstruted and their existene is proved. Quasi-

yli �exible regenerating odes with minimum bandwidth onstruted from

a base QCFMSR ode are also provided. These odes not only ahieve op-

timal MBR parameters in terms of stored data and repair bandwidth, but

also for an spei� hoie of the parameters involved, they an be dereased

under the optimal MBR point.

Quasi-yli �exible regenerating odes are very interesting beause of

their simpliity and low omplexity. They allow exat repair-by-transfer in

the minimum bandwidth ase and an exat pseudo repair-by-transfer in the

MSR ase, where operations are needed only when a newomer enters into

the system.

3.1 Quasi-yli Flexible MSR odes

In this setion, we desribe the quasi-yli �exible minimum storage regen-

erating (QCFMSR) odes in detail. We show how to onstrut them and

some of their properties; we see how to regenerate a failed node; we prove

their existene by showing that the data reonstrution ondition is ahieved;

and �nally, we desribe an example of a [6, 3, 4] QCFMSR ode.

43
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3.1.1 Code Constrution

Let C be an array ode, like the ones explained in Subsetion 2.1.2, of length

n = 2k and dimension k over Fq2 onstruted from the nonzero oe�ients

ζ1, . . . , ζk over Fq, and for whih the enoding is done over the base �eld

Fq in the following way. An information vetor v ∈ F
k
q2

is seen as a vetor

v = (v1, . . . , vn) over Fq, and is enoded into c ∈ F
n
q2 seen as a odeword

c = (c1, . . . , c2n) = (v1, . . . , vn, ρ1, . . . , ρn) over Fq, where the redundany

oordinates ρ1, . . . , ρn are given by the following equation:

ρi =

k+i
∑

j=i+1

ζj−ivj i = 1, . . . , n, (3.1)

where ζl ∈ Fq \ {0} for l = 1, . . . , k and j = i + 1, . . . , k + i mod n. The

rate of the ode is R = 1/2 and the enoding over Fq is done by using a

quasi-yli ode [MS77℄ as we will see later. Quasi-yli odes are known

by their simpliity for enoding-deoding operations.

A [2k, k, r] QCFMSR ode over Fq2 is a regenerating ode onstruted

from the array ode C. Take a �le of size M and split it into k piees

over Fq2 , or equivalently, into n = 2k piees over Fq organized as a vetor

v = (v1, . . . , vn) over Fq. The [2k, k, r] QCFMSR ode over Fq2 is omposed

of a set of n = 2k storage nodes, denoted by {s1, s2, . . . , sn}, where eah

storage node si, i = 1, . . . , n, stores two oordinates over Fq, (vi, ρi) whih

an be seen as one array oordinate over Fq2 . The size of eah oordinate over

Fq is M/2k and the size of eah array oordinate stored in si is α = M/k.

Let S be the set of all subsets of {1, . . . , n} of size k. Let D be an n× n

matrix over Fq and let s = {i1, . . . , ik} ∈ S. Let D{i}
denote the ith olumn

vetor of D and Ds
denote the n× k submatrix of D given by the k olumns

determined by the set s.

Let F = (I|Z) be a n×2nmatrix, where I is the n×n identity matrix, and

Z is a n× n irulant matrix de�ned from the nonzero oe�ients ζ1, . . . , ζk
as follows:

Z =

























0 0 · · · 0 ζk ζk−1 · · · ζ1
ζ1 0 · · · 0 0 ζk · · · ζ2
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

ζk ζk−1 · · · ζ1 0 0 · · · 0

0 ζk · · · ζ2 ζ1 0 · · · 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 · · · ζk ζk−1 ζk−2 · · · 0

























. (3.2)
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Information oordinates

Storage nodes

Figure 3.1: Constrution proess for a [n, k, r] quasi-yli �exible MSR ode.

The matrix F represents the array ode C, so also the QCFMSR ode

onstruted from C. Eah row is the enoding of one oordinate over the

base �eld Fq, and eah node is represented by two olumns, one from I and

another one from Z. Atually, the node si whih stores (vi, ρi), is also given

by

(vi, ρi) = (vI{i}, vZ{i}).

Note that the information oordinates are represented by the identity matrix

I, while the redundany oordinates are represented by the irulant matrix

Z.

Cirulant matries have been deeply studied beause of their symmetri

properties [Dav79℄. Moreover, F an be seen as a generator matrix of a double

irulant ode over Fq [MS77℄. Double irulant odes are a speial ase of

quasi-yli odes whih are a family of quadrati residue odes. Quasi-yli

odes have already been used for distributed storage [BBBM11℄ whih points

out the signi�ane of these odes for NDSS.

Figure 3.1, shows the onstrution of a QCFMSR ode. First, the �le is

split into n symbols over Fq. Then, these symbols are enoded using F and

produing 2n symbols over Fq. Finally, eah two symbols are stored together

in one node, this reates the array ode with oordinates over Fq that an be

seen as array oordinates over Fq2.
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3.1.2 Node Regeneration

In this subsetion, we show how to regenerate a failed node si whih stores

(vi, ρi), minimizing the required repair bandwidth. Atually, we an just

follow the next algorithm:

1. Download the information oordinates vj , j = i+ 1, . . . , i+ k mod n,

from the next k nodes. Note that due to the irulant sheme, the

next node of sn is s1. From these information oordinates, ompute

the redundany oordinate ρi of the newomer.

2. Download the redundany oordinate ρi−1 from the previous node, fol-

lowing the same irulant sheme. Solving a simple equation, obtain

the information oordinate vi of the newomer.

It an be seen that r = ri = k + 1 for any si, i = 1, . . . , n, and when the

repair problem is faed, it is lear that QCFMSR odes are optimal in terms

of the tradeo� urve given by the threshold funtion (2.2) for r = k + 1.

Note that QCFMSR odes are in fat a family of regenerating odes beause

r > k. However, unlike regenerating odes, for these �exible regenerating

odes the set of r helping nodes is not any but an spei� set of remaining

nodes with ardinality r. In other words, the set of nodes whih is going to

send data to an spei� newomer is �xed.

Note that QCFMSR odes have also the exat repair property whih

means that one enoded, the information and the redundany an be rep-

resented for the whole life of the NDSS by c = (v1, . . . , vn, ρ1, . . . , ρn), where

vi and ρi are the information and redundany oordinates, respetively. It is

shown in [SRKR10℄ and [SRKR11℄ that when r < 2k − 3, exat MSR odes

do not exist. However, QCFMSR odes exist for r = k + 1 whih satis�es

r < 2k − 3 for k > 4. These fats illustrate the importane of the �exibility

over the set of helper nodes in this onstrution. Moreover, despite QCFMSR

odes do not ahieve unoded repair, they are very e�ient regenerating one

node, beause they need only two simple operations on the newomer and

no operation on the helper nodes.

3.1.3 Data Reonstrution

In Subsetion 3.1.1, we have seen that M = αk. In this subsetion, we prove

that the array ode over Fq2, used to onstrut a QCFMSR ode, satis�es

that d = n − k + 1 for some ζ1, . . . , ζk and, as a onsequene, QCFMSR

odes are MDS odes over Fq2 applied to NDSS, so they are MSR odes. In
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[GPV11b℄, we performed a omputational searh to laim the existene of

QCFMSR odes. In this subsetion, we prove their existene theoretially.

Let F s = (Is|Zs) denote the n × n submatrix of F determined by s =

{i1, . . . , ik} ∈ S. Let ps(ζ1, ζ2, . . . , ζk) ∈ Fq[ζ1, . . . , ζk] be the multivariate

polynomial assoiated with the determinant of F s = (Is|Zs).

Assume that a DC wants to obtain the �le. Then, it onnets to any

k nodes {si1, . . . , sik} and downloads (vi1 , ρi1), . . . , (vik , ρik), so the DC is

downloading the enoding given by F s
. In order to obtain the �le given by

v = (v1, v2, . . . , vn), we need F s
to be full rank. Moreover, in order to satisfy

the data reonstrution ondition, we need F s
to be full rank for all s ∈ S.

Therefore, we want to use the Lemma 16 to prove that for a random hoie of

the nonzero oe�ients ζ1, . . . , ζk, the polynomial ps(ζ1, ζ2, . . . , ζk) assoiated

with the determinant of F s
is nonzero with high probability.

It has been explained in Setion 2.5.1 that there exists a relation between

determinants of matries and bipartite graphs and that to use the Lemma 16,

we need that ps(ζ1, ζ2, . . . , ζk) is not identially zero. Let G(Wr ∪Wc, E) be

the bipartite graph assoiated with a matrix F s
, where eah row of the matrix

is represented by a vertex wri in Wr, and eah olumn of F s
is represented by

a vertex wci in Wc, where i = 1, . . . , n. Two verties wri ∈ Wr, wci ∈ Wc are

adjaent if the entry in the row i and olumn j of F s
is nonzero. Moreover,

the weight of this edge is the nonzero value of this i, jth entry. Let E(wci)

(resp. E(wri)) denote the neighbors of wci (resp. wri) in the graph G. Let

T = {t1, . . . , tm} ⊆ Wc be a subset of verties of Wc or T ⊆ Wr be a subset

of verties of Wr indistintly. Let E(T ) denote the set
⋃m

i=1E(ti).

By Lemma 15, we know that the polynomial assoiated with the determi-

nant of F s
, ps(ζ1, ζ2, . . . , ζk), is not identially zero if and only if the bipartite

graph G(Wr∪Wc, E) assoiated with F s
has a perfet mathing. By Lemma

14, a bipartite graph G(Wr ∪Wc, E) ontains a omplete mathing from Wr

to Wc (resp. Wc to Wr) if and only if it satis�es Hall's ondition, that is,

for any T ⊆ Wc (resp. T ⊆ Wr), |T | ≤ |E(T )|. Moreover, if |Wr| = |Wc|,
the omplete mathing is ahieved in both diretions, so it orresponds to a

perfet mathing.

Lemma 21. Let T ⊆ Wc suh that T 6= ∅, then |E(T )| ≥ |T |.

Proof. Note that Wc has k verties of degree 1 and k verties of degree k.

We an deompose T = T1 ∪ T2, where T1 ontains the verties of degree

1 and T2 ontains the verties of degree k. It is lear that |E(T1)| = |T1|
by onstrution, and it is easy to see that |E(T2)| ≥ k + |T2| − 1 ≥ |T2| by
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s1 s2 s3 s4 s5 s6

v1 v2 v3 v4 v5 v6

v2 + v3 + 2v4 v3 + v4 + 2v5 v4 + v5 + 2v6 v5 + v6 + 2v1 v6 + v1 + 2v2 v1 + v2 + 2v3

Figure 3.2: A [6, 3, 4] QCFMSR ode with oordinates over Fq and array

oordinates over F
2
q .

the irular onstrution of matrix Z and beause k > 1. Therefore, we an

assume that T1 6= ∅ and T2 6= ∅.
If |T1| ≤ k − 1, sine |E(T1) ∩ E(T2)| ≤ |E(T1)| = |T1|, we have that

|E(T )| = |E(T1)| + |E(T2)| − |E(T1) ∩ E(T2)| ≥ |T1| + k + |T2| − 1 − |T1| ≥
|T1|+|T2| = |T |. On the other hand, if |T1| = k, then |E(T1)∩E(T2)| ≤ |T1|−1

sine for eah di�erent vertex ti ∈ T2, there exists a di�erent vertex tj ∈ T1

suh that E(ti) ∩ E(tj) = ∅. Thus, we also have that |E(T )| = |E(T1)| +
|E(T2)|−|E(T1)∩E(T2)| ≥ |T1|+k+ |T2|−1−|T1|+1 ≥ |T1|+ |T2| = |T |.

Proposition 2. The polynomial assoiated with the determinant of F s
, ps(ζ1,

ζ2, . . . , ζk), is not identially zero.

Proof. Sine |Wr| = |Wc|, by using Lemma 14 and Lemma 21, we have that

the bipartite graph G(Wr∪Wc, E) assoiated with F s
has a perfet mathing.

Finally, by Lemma 15, we know that ps(ζ1, ζ2, . . . , ζk) is not identially zero.

For the seond statement, we have to prove that for a random hoie of

the nonzero oe�ients ζ1, . . . , ζn, the multipliation of all the multivariate

polynomials assoiated with the determinant of all matries F s, s ∈ S, is

nonzero with high probability.

Let p(ζ1, . . . , ζk) ∈ Fq[ζ1, . . . , ζk] be the multivariate polynomial p(ζ1, . . . ,

ζk) =
∏

s∈S ps(ζ1, . . . , ζk). Note that if p(ζ1, . . . , ζk) 6= 0, then ps(ζ1, . . . , ζk) 6=
0 for all s ∈ S.

Lemma 22. The degree of p(ζ1, . . . , ζk) is less than or equal to k
(

n

k

)

. For-

mally, deg(p(ζ1, . . . , ζk)) ≤ k
(

n

k

)

.

Proof. Eah ζi, i = 1, . . . , k, an appear a maximum of k times in F s
. By

Lagrange minor's theorem, ps(ζ1, . . . , ζk) has a maximum degree of k. By the

de�nition of p(ζ1, . . . , ζk), deg(p(ζ1, . . . , ζk)) ≤ k
(

n

k

)

.

Theorem 23. The

(

n

k

)

submatries F s, s ∈ S, are full rank with high prob-

ability for a su�iently large �nite �eld Fq.
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Proof. By Proposition 2 and using Lemma 16, we know that

Pr(p(ζ1, . . . , ζk) = 0) ≤
deg(p(ζ1, . . . , ζk))

q
.

Therefore, Pr(p(ζ1, . . . , ζk) 6= 0) ≥ 1 − deg(p(ζ1,...,ζk))
q

. And by Lemma 22, we

know that deg(p(ζ1, . . . , ζk)) ≤ k
(

n

k

)

, so for a su�iently large �eld size q,

submatries F s, s ∈ S, are full rank with high probability.

Summarizing, there is a set of full rank matries F s
, s ∈ S, for a random

hoie of the nonzero oe�ients ζ1, . . . , ζn and a su�iently large �nite �eld.

This means that there exists suh F that represents a QCFMSR ode with

the property that any k storage nodes have enough information to reonstrut

the �le. In other words, a random hoie of the oe�ients over a su�iently

large �nite �eld gives the enoding for a quasi-yli MDS array ode of length

n over Fq2 where eah array oordinate of a odeword is (vi, ρi). As this ode

is implemented in a NDSS following the onstrution given in Subsetion

3.1.1, it gives a QCFMSR ode.

It is worth to mention that using QCFMSR odes, an unoded piee of

the �le is always kept in the system. Moreover, if more than one storage node

fails, up to n−k, the deoding for the quasi-yli odes has linear omplex-

ity in ontrast with the one for Reed-Solomon odes whih has quadrati

omplexity [MS77℄.

3.1.4 Example

In this subsetion, we desribe the onstrution of a [6, 3, 4] QCFMSR ode

over F52 .

First, the �le is fragmented into 6 information oordinates v = (v1, . . . , v6).

Then, eah vi for i = 1, . . . , 6 is stored in a node si = (vi, ρi), along with its

orresponding redundany symbol ρi whih is omputed using a quasi-yli

matrix F of the following form:

F =

















1 0 0 0 0 0 0 0 0 ζ3 ζ2 ζ1
0 1 0 0 0 0 ζ1 0 0 0 ζ3 ζ2
0 0 1 0 0 0 ζ2 ζ1 0 0 0 ζ3
0 0 0 1 0 0 ζ3 ζ2 ζ1 0 0 0

0 0 0 0 1 0 0 ζ3 ζ2 ζ1 0 0

0 0 0 0 0 1 0 0 ζ3 ζ2 ζ1 0

















. (3.3)
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By onstrution, the node regenerating ondition is always ahieved. In

order to satisfy the data reonstrution ondition, we need to �nd nonzero

oe�ients ζ1, ζ2, ζ3 suh that p(ζ1, ζ2, ζ3) 6= 0 over F5. Sine p(ζ1, ζ2, ζ3) =

ζ241 ζ122 ζ53(−ζ22+ζ1ζ3)
5(ζ33+ζ31 )(−ζ1ζ

2
3+ζ22ζ3)(−ζ33−ζ31 ), a possible solution over

F5 is (ζ1, ζ2, ζ3) = (1, 1, 2). Figure 3.2 shows the distribution of information

and redundany oordinates in the nodes. Eah array oordinate over F52 is

represented by one storage node. It an be seen that d = 4− 2 + 1 and that

αk = M , so the quasi-yli �exible ode is a MSR ode.

Using the same argument, it is also possible to onstrut a [6, 3, 4]QCFMSR

ode over F82 with nonzero oe�ients (ζ1, ζ2, ζ3) = (1, 1, z) over F8, where

z is a primitive element of this �eld. Note that there is not any [6, 3, 4]

QCFMSR ode over F22 , F32 , F42 and F72 .

3.2 Quasi-yli �exible regenerating odes

with minimum bandwidth

It is possible to use QCFMSR odes as base regenerating odes to reate

regenerating odes with minimum bandwidth using the tehnique desribed

in Subsetion 2.5.6. In this subsetion, we analyze the resulting parame-

ters of these alled quasi-yli �exible regenerating odes with minimum

bandwidth.

Corollary 24. For k̄ ≤ r̄ + 1, there exists a [n̄, k̄, r̄] quasi-yli �exible

regenerating ode with minimum bandwidth onstruted from a [2k, k, k + 1]

QCFMSR ode if the set of parameters

{

k, n̄, k̄, r̄
}

ahieve:

k =
k̄(2r̄ − k̄ + 1)

2
,

n̄ =
2k̄(2r̄ − k̄ + 1)

r̄
,

1 < r̄ < k.

Proof. Straightforward from Lemmas 19, 20 and Proposition 1.

Figure 3.3 shows an example of a quasi-yli �exible regenerating ode

with minimum bandwidth for k̄ ≤ r̄ + 1 reated from a [6, 3, 4] QCFMSR

ode. Eah node ωi ∈ W an be repaired downloading half node ωi−1 and

half node ωi+1. Moreover, any k̄ = 2 nodes in C̄ ontain at least k = 3

di�erent oordinates of c ∈ C whih allow us to reonstrut the �le. Note



3.2. Quasi-yli �exible regenerating odes with minimum bandwidth 51

[6, 3, 4] QCFMSR ode

[6, 2, 2] quasi-yli �exible regenerating ode with minimum bandwidth

v1 v2 v3 v4 v5 v6

v2 +

v3 + 2v4

v3 +

v4 + 2v5

v4 +

v5 + 2v6

v5 +

v6 + 2v1

v5 +

v6 + 2v1

v1 +

v2 + 2v3

v1 v2 v3 v4 v5 v6

v2 +

v3 + 2v4

v3 +

v4 + 2v5

v4 +

v5 + 2v6

v5 +

v6 + 2v1

v5 +

v6 + 2v1

v1 +

v2 + 2v3

v2 v3 v4 v5 v6 v1

v3 +

v4 + 2v5

v4 +

v5 + 2v6

v5 +

v6 + 2v1

v5 +

v6 + 2v1

v1 +

v2 + 2v3

v2 +

v3 + 2v4

Figure 3.3: Constrution of a [6, 2, 2] quasi-yli �exible regenerating ode

with minimum bandwidth from a [6, 3, 4] QCFMSR ode.

that α = 2M
3

is equal to the value given in [DGWR10℄ for a [6, 3, 4] MBR

ode.

Corollary 25. For k̄ > r̄ + 1, there exists a [n̄, k̄, r̄] quasi-yli �exible

regenerating ode with minimum bandwidth onstruted from a [2k, k, k + 1]

QCFMSR ode if the set of parameters

{

k, n̄, k̄, r̄
}

ahieves:

k = k̄r̄ −

⌊

k̄

r̄ + 1

⌋(

r̄ + 1

2

)

+

(

k̄ mod (r̄ + 1)

2

)

,

n̄ =
2n

r̄
,

1 < r̄ < k.

Proof. Straightforward from Lemmas 19, 20 and Proposition 1.

Figure 3.4 shows an example of a quasi-yli �exible regenerating ode

with minimum bandwidth for k̄ > r̄ + 1 reated from a [10, 5, 6] QCFMSR

ode. Eah node ωi ∈ W an be repaired downloading half node ωi−1 and

half node ωi+1. Moreover, any k̄ = 4 nodes in C̄ ontain at least k = 5

di�erent oordinates of c ∈ C whih allows us to reonstrut the �le. Note

that α = 2
5
M whih is less than

4
7
M , the value given in [DGWR10℄ for a
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[10, 5, 6] QCFMSR ode

[10, 4, 2] quasi-yli felxible regenerating ode with minimum bandwidth

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

v2 +5v3 +

2v4 +

v5 + v6

v3 +5v4 +

2v5 +

v6 + v7

v4 +5v5 +

2v6 +

v7 + v8

v5 +5v6 +

2v7 +

v8 + v9

v6 +5v7 +

2v8 +

v9 + v10

v7 +5v8 +

2v9 +

v10 + v1

v8 +5v9 +

2v10 +

v1 + v2

v9+5v10+
2v1 + v2 +

v3

v10+5v1+
2v2 + v3 +

v4

v1 +5v2 +

2v3 +

v4 + v5

v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

v2 +5v3 +

2v4 +

v5 + v6

v3 +5v4 +

2v5 +

v6 + v7

v4 +5v5 +

2v6 +

v7 + v8

v5 +5v6 +

2v7 +

v8 + v9

v6 +5v7 +

2v8 +

v9 + v10

v7 +5v8 +

2v9 +

v10 + v1

v8 +5v9 +

2v10 +

v1 + v2

v9+5v10+
2v1 + v2 +

v3

v10+5v1+
2v2 + v3 +

v4

v1 +5v2 +

2v3 +

v4 + v5

v2 v3 v4 v5 v6 v7 v8 v9 v10 v1

v3 +5v4 +

2v5 +

v6 + v7

v4 +5v5 +

2v6 +

v7 + v8

v5 +5v6 +

2v7 +

v8 + v9

v6 +5v7 +

2v8 +

v9 + v10

v7 +5v8 +

2v9 +

v10 + v1

v8 +5v9 +

2v10 +

v1 + v2

v9+5v10+
2v1 + v2 +

v3

v10+5v1+
2v2 + v3 +

v4

v1 +5v2 +

2v3 +

v4 + v5

v2 +5v3 +

2v4 +

v5 + v6

Figure 3.4: Constrution of a [10, 4, 2] quasi-yli �exible regenerating ode

with minimum bandwidth from a [10, 5, 6] QCFMSR ode.

[10, 5, 6] MBR ode. It is worth to mention that the reason of the dereasing

on the lower bound given in [DGWR10℄ is the �exibility on the parameter r̄.

Figure 3.5 shows the parameters of some quasi-yli �exible regenerat-

ing odes with minimum bandwidth. The �rst olumn shows the parameters

[n̄, k̄, r̄] of the quasi-yli �exible regenerating odes with minimum band-

width. The seond olumn shows the parameters [n, k, r] of the orresponding

QCFMSR odes. The third and forth olumns ompare the minimum α suh

that α = γ for MBR odes as stated in [DGWR10℄ with the one ahieved by

the quasi-yli �exible regenerating odes with minimum bandwidth. First

part of the table shows ases when k̄ ≤ r̄+1, and the seond part ases when

k̄ > r̄ + 1
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[n̄, k̄, r̄] [n, k, r] α = γ [DGWR10℄ α = γ

[6, 2, 2] [6, 3, 4] 2M/3 2M/3

[8, 3, 3] [12, 6, 7] M/2 M/2

[7, 2, 4] [14, 7, 8] 4M/7 4M/7

[10, 4, 4] [20, 10, 11] 2M/5 2M/5

[10, 4, 2] [10, 5, 6] 4M/7 2M/5

[10, 5, 2] [10, 6, 7] 5M/9 M/3

[12, 5, 3] [18, 9, 10] 5M/12 M/3

[16, 7, 3] [24, 12, 13] 7M/18 M/4

Figure 3.5: Parameters [n̄, k̄, r̄] for some quasi-yli �exible regenerating

odes with minimum bandwidth onstruted from [n, k, r] QCFMSR odes,

and omparison between the α = γ values given in [DGWR10℄ and the ones

ahieved with the proposed onstrution.
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Chapter 4

Two-rak model

In Subsetion 2.5.5, we desribed the model proposed in [AKG10℄ based on

a non-homogeneous repair bandwidth whih we all stati ost model. The

stati ost model is based on di�erent repair bandwidth osts where there is

one set of �heap� and one set of �expensive� helper nodes.

In realisti data enters, the data is plaed in storage nodes whih are

onneted through a network. These storage nodes are usually organized in

a rak, a metalli support designed to aommodate eletroni equipment.

Figure 4.1 shows the rear of a real rak used in a data enter. The ommuni-

ation (bandwidth) ost between nodes whih are in the same rak is muh

lower than between nodes whih are in di�erent raks. In fat, in [AGSS11℄

it is said that reading from a loal disk is nearly as e�ient as reading from

the disk of another node in the same rak.

In this hapter we present our seond ontribution, a model designed

to represent the desribed situation. This ontribution has been partially

Figure 4.1: Rear of a real rak used in a data enter.

55
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published in the international onferene [GPV13b℄ and summarized as a

journal paper [GPV13℄.

4.1 The model

In this model, the ost of sending data to a newomer in a di�erent rak

is higher than the ost of sending data to a newomer in the same rak.

Note the di�erene of this rak model ompared with the stati ost model

desribed in Subsetion 2.5.5. In that model, there is a stati lassi�ation of

the storage nodes between the ones having �heap bandwidth� and the ones

having �expensive bandwidth�. In our new model, this lassi�ation depends

on eah newomer. When a storage node fails and a newomer enters into

the system, nodes from the same rak are in the �heap bandwidth� set, while

nodes in other raks are in the �expensive bandwidth� set. In this setion,

we analyze the ase when there are only two raks. Let W1 and W2 be the

sets of n1 and n2 storage nodes from the �rst and seond rak, respetively.

Consider the same situation as in Subsetion 2.5.5, but now the sets of

�heap bandwidth� and �expensive bandwidth� nodes depend on the spei�

replaed node. Again, we an assume, without loss of generality, that βc =

τβe for some real number τ ≥ 1. Let the newomers be the storage nodes

sj, j = n + 1, . . . ,∞. Let r = r1c + r1e = r2c + r2e be the number of helper

nodes for any newomer, where r1c , r
1
e and r2c , r

2
e are the number of heap

and expensive bandwidth helper nodes of a newomer in the �rst and seond

rak, respetively. We an always assume that r1c ≤ r2c , by swapping raks if

it is neessary. Figure 4.2 shows a sheme of a two rak model.

In the stati ost model, the repair bandwidth γ is the same for any

newomer. In the rak model, it depends on the rak where the newomer is

plaed. Let γ1 = βe(r
1
cτ + r1e) be the repair bandwidth for any newomer in

the �rst rak with repair ost C1
T = βe(Ccr

1
cτ+Cer

1
e), and let γ

2 = βe(r
2
cτ+r2e)

be the repair bandwidth for any newomer in the seond rak with repair ost

C2
T = βe(Ccr

2
cτ+Cer

2
e). Note that if r

1
c = r2c or τ = 1, then γ1 = γ2

, otherwise

γ1 < γ2
. As it is mentioned in [DGWR10℄, in order to represent a distributed

storage system, the information �ow graph is restrited to γ ≥ α. In the rak

model, it is neessary that γ1 ≥ α whih means that γ2 ≥ α.

Moreover, unlike the models desribed in Setion 2.5, where it is straight-

forward to establish whih is the set of nodes whih minimize the minut, in

the rak model, this set of nodes may hange depending on the parameters

k, r1c , r
2
c , n1 and τ . We all to this set of newomers, the minimum minut
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Figure 4.2: Sheme of a two rak model.

set. Reall that the inome of a newomer sj , j = n + 1, . . . ,∞, is the sum

of the weights of the ars that should be ut in order to isolate wj
in from

S. Let I be the indexed multiset ontaining the inomes of k newomers

whih minimize the minut. It is easy to see that in the model desribed

in Subsetion 2.5.3, I = {(r − i)β | i = 0, . . . , k − 1}, and in the one de-

sribed in Subsetion 2.5.5, I = {((rc − i)τ + re)βe | i = 0, . . . ,min(rc, k −
1)} ∪ {(re − i)βe | i = 1, . . . , k − rc − 1}. Note that when k ≤ rc + 1,

{(re− i)βe | i = 1, . . . , k− rc−1} is empty. In Figure 2.4, it an be seen that

I = {(r − i)β | i = 0, . . . , k − 1} = {3β, 2β}. In Figure 2.7, if we �x k = 5,

rc = 3 and re = 2 that I = {((rc − i)τ + re)βe | i = 0, . . . ,min(rc, k − 1)} ∪
{(re− i)βe | i = 1, . . . , k−rc−1} = {(3τ+2)βe, (2τ+2)βe, (τ+2)βe, 2βe, βe}.

In order to establish I in the rak model, the set of k newomers whih

minimize the minut must be found. First, note that sine r1c ≤ r2c , the

inome of the newomers is minimized by replaing �rst r1c+1 nodes from the

rak with less number of helper nodes, whih in fat minimizes the minut.

Therefore, the indexed multiset I always ontains the inomes of a set of r1c+1

newomers fromW1. De�ne I1 = {((r1c−i)τ+r1e)βe | i = 0, . . . ,min(r1c , k−1)}
as the indexed multiset where I1[i], i = 0, . . . ,min(r1c , k−1), are the inomes

of this set of r1c +1 newomers from V 1
. If k ≤ r1c +1, then I = I1, otherwise
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I1 ⊂ I and k − r1c − 1 more newomers whih minimize the minut must

be found. Taking τ = 2 in Figure 4.3, I1 = {((r1c − i)τ + r1e)βe | i =

0, . . . ,min(r1c , k − 1)} = {(τ + 3)βe, 3βe} = {5βe, 3βe}.

S

w2
in

wn

in

w1
in

∞

∞

∞

∞

∞

∞

w1
out

w2
out

wn

out

wn+1

in wn+1
out

wn+2

in wn+2
out

wn+3

in wn+3
out

wn+4

in wn+4
out

DC

∞

∞

∞

∞

βc

βe

βe

βe

βc

βe

βe

βe

βe

βe

βc

βc

βe

βe

βc

βc

α

α

α

α

α

α

α

α

α

α

Figure 4.3: Information �ow graph orresponding to the rak model when

k > r1c + 1, with k = 4, r1c = 1, r2c = 2, r = 4 and n1 = n2 = 3.

When k > r1c + 1, we will see that there are two possibilities, either the

remaining nodes from W1 are in the set of newomers whih minimize the

minut or not. De�ne I2 = {r1eβe | i = 1, . . . ,min(k − r1c − 1, n1 − r1c − 1)} ∪
{(r2c − i)τβe | i = 0, . . . ,min(r2c , k − n1 − 1)} as the indexed multiset where

I2[i], i = 0, . . . , k − r1c − 2, are the inomes of a set of k − r1c − 1 newomers,

inluding the remaining n1−r1c −1 newomers from W1 and newomers from

W2. Note that if n1 − r1c − 1 > k − r1c − 1, it only ontains newomers

from W1. De�ne I3 = {(r2c − i)τβe | i = 0, . . . ,min(r2c , k − r1c − 2)} as the

indexed multiset where I3[i], i = 0, . . . , k − r1c − 2, are the inomes of a set

of k − r1c − 1 newomers from W2. When r2c < k − r1c − 1 or r2c < k − n1,

aording to the information �ow graph, the remaining inomes neessary

to omplete the set of k − r1c − 1 newomers are zero. Therefore, it an be

assumed that r2c ≥ k − r1c − 1 ≥ k − n1, sine the minut equation does not

hange when r2c < k − r1c − 1 or r2c < k − n1. Taking τ = 2 in Figure 4.3,

it an be seen that I2 = {r1eβe | i = 1, . . . ,min(k − r1c − 1, n1 − r1c − 1)} ∪
{(r2c − i)τβe | i = 0, . . . ,min(r2c , k − n1 − 1)} = {3βe, 2τβe} = {3βe, 4βe} and

I3 = {(r2c − i)τβe | i = 0, . . . ,min(r2c , k − r1c − 2)} = {2τβe, τβe}{4βe, 2βe}.

Proposition 3. If k > r1c+1, we have that |I2| = |I3| = k−r1c−1. Moreover,

if

∑k−r1c−2
i=0 I2[i] <

∑k−r1c−2
i=0 I3[i], then I = I1 ∪ I2; otherwise I = I1 ∪ I3.

Proof: We need to prove that I2 and I3 are the only possible sets

of inomes whih minimize the minut. We will see that it is not possible
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to �nd a set of inomes suh that the sum of all its elements is less than

min(
∑|I2|−1

i=0 I2[i],
∑|I3|−1

i=0 I3[i]).

Let A = I2−(I2∩I3) = {a1, a2, . . . , an | ai = aj , i < j} and B = I3−(I2∩
I3) = {b1, b2, . . . , bn | bi > bj , i < j}. Let D = A ∪ B = {d1, d2, . . . , d2n | di ≥
dj, i < j}. Then,

∑n

i=1 di ≥
∑n

i=1 bi and
∑n

i=1 di ≥
∑n

i=1 ai. Note that A, B

and D are inomes of an information �ow graph whih means that one an

not add d2 without having added d1 to the sum. The same happens with

A or B, so the elements must be inluded in order from the highest to the

lowest.

If k ≤ r1c + 1, I = I1 and the orresponding minut equation is

|I1|−1
∑

i=0

min(I1[i], α) ≥ M. (4.1)

On the other hand, if k > r1c + 1 and I = I1 ∪ I2, the orresponding minut

equation is

|I1|−1
∑

i=0

min(I1[i], α) +

|I2|−1
∑

i=0

min(I2[i], α) ≥ M, (4.2)

and if I = I1 ∪ I3, the equation is

|I1|−1
∑

i=0

min(I1[i], α) +

|I3|−1
∑

i=0

min(I3[i], α) ≥ M. (4.3)

In the previous models desribed in Setion 2.5, the dereasing behavior

of the inomes inluded in the minut equation is used to �nd the threshold

funtion whih minimizes the parameters α and γ. In the rak model, the

inomes inluded in the minut equations may not have a dereasing behavior

as the newomers enter into the system, so it is neessary to �nd the threshold

funtion in a di�erent way.

Let L be the inreasing ordered list of values suh that for all i, i =

0, . . . , k − 1, I[i]/βe ∈ L and |I| = |L|. Note that any of the information

�ow graphs, whih represent the rak model or any of the two models from

Setion 2.5, an be desribed in terms of I, so they an be represented by

L. Therefore, one L is found, it is possible to �nd the parameters α and

βe (and then γ or γ1
and γ2

) using the threshold funtion given in the next

theorem. Note that the way to represent this threshold funtion for the rak

model an be seen as a generalization, sine it also represents the behavior

of the minut equations for the previous given models.
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Theorem 26. The threshold funtion α∗(βe) (whih also depends on r, r1c ,

r2c , k and τ) is the following:

α∗(βe) =















M
k
, βe ∈ [f(0),+∞)

M−g(i)βe

k−i
, βe ∈ [f(i), f(i− 1))

i = 1, . . . , k − 1,

(4.4)

subjet to γ1 = (r1cτ + r1e)βe ≥ α, where

f(i) =
M

L[i](k − i) + g(i)
and g(i) =

i−1
∑

j=0

L[j].

Note that f(i) is a dereasing funtion and g(i) is an inreasing funtion.

Proof: We want to obtain the threshold funtion whih minimizes α,

that is,

α∗(βe) = minα

subjet to:

∑k−1
i=0 min(L[i]βe, α) ≥ M.

(4.5)

Therefore, we are going to show the optimization of (4.5) whih leads to the

threshold funtion (4.4).

De�ne M∗
as

M∗ =
k−1
∑

i=0

min(L[i]βe, α).

Note that M∗
is a pieewise linear funtion of α. Sine L is a sorted list of

k values, if α is less than the lowest value L[0], then M∗ = kα. As α grows,

the values from L are added to the equation, so

M∗ =



































kα, α ∈ [0, L[0]βe]

(k − i)α +
∑i−1

j=0 L[j]βe, α ∈ (L[i− 1]βe, L[i]βe]

i = 1, . . . , k − 1

∑k−1
j=0 L[j]βe, α ∈ (L[k − 1]βe,∞).

(4.6)

Using that M∗ ≥ M , we an minimize α depending on M . Note that

the term

∑k−1
j=0 L[j]βe of the previous equation has no signi�ane in the

minimization of α, so it an be ignored. Therefore, we obtain the funtion
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α∗ =



























M
k
, M ∈ [0, kL[0]βe]

M−
∑i−1

j=0
L[j]βe

k−i
, M ∈ (L[i− 1]βe(k − i) +

∑i−1
j=0L[j]βe,

L[i]βe(k − i) +
∑i−1

j=0L[j]βe]

i = 1, . . . , k − 1.

(4.7)

Finally, de�ne g(i) =
∑i−1

j=0L[j] and f(i) = M
L[i](k−i)+g(i)

. Then, the above

expression of α∗
an be de�ned over βe instead of over M , and the threshold

funtion (4.4) follows.
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Figure 4.4: Information �ow graph orresponding to the rak model when

k > r1c + 1, with k = 4, r1c = 1, r2c = 2, r = 4 and n1 = n2 = 3.

Example 15. Figure 4.4 shows the example of an information �ow graph

orresponding to a regenerating ode with k = 4, r1c = 1, r2c = 2, r = 4

and n1 = n2 = 3. Taking for example τ = 2, we have that I1 = {5βe, 3βe},
I2 = {3βe, 4βe} and I3 = {4βe, 2βe}. By Proposition 3, sine

∑1
i=0 I2[i] >

∑1
i=0 I3[i], I = I1 ∪ I3 = {5βe, 3βe, 4βe, 2βe}, and then L = [2, 3, 4, 5]. The

orresponding minut equation is (4.3) and applying L to the threshold fun-

tion (4.4), we obtain

α∗(βe) =











































M
4
, βe ∈ [M

8
,+∞)

M−2βe

3
, βe ∈ [M

11
, M

8
)

M−5βe

2
, βe ∈ [M

13
, M
11
)

M − 9βe, βe ∈ [M
14
, M
13
).

(4.8)
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Figure 4.5: Information �ow graph orresponding to the rak model when

k > r1c + 1, with k = 3, r1c = 1, r2c = 2, r = 4 and n1 = n2 = 3.

It an happen that two onseutive values in L are equal, that is L[i] =

L[i − 1], so f(i) = f(i − 1). In this ase, we onsider that the interval

[f(i), f(i− 1)) is empty and it an be deleted.

Example 16. Figure 4.5 shows the same example as Figure 4.3 with an

information �ow graph orresponding to a regenerating ode with r1c = 1,

r2c = 2, r = 4 and n1 = n2 = 3, but taking k = 3 instead of k = 4. If for

example τ = 2, we have that I1 = {5βe, 3βe}, I2 = {3βe} and I3 = {4βe}. By
Proposition 3, sine

∑0
i=0 I2[i] <

∑0
i=0 I3[i], I = I1∪I2 = {5βe, 3βe, 3βe}, and

then L = [3, 3, 5]. The orresponding minut equation is (4.2) and applying

L to the threshold funtion (4.4), we obtain

α∗(βe) =























M
3
, βe ∈ [M

9
,+∞)

M−3βe

2
, βe ∈ [M

9
, M

9
)

M − 6βe, βe ∈ [M
11
, M

9
).

(4.9)

Note that the seond interval is empty and it an be deleted.

Finally, note that when k ≤ r1c+1, the minut equations and the threshold

funtion (4.4) for the rak model are exatly the same as the ones shown in

[AKG10℄ for the model desribed in Subsetion 2.5.5. Atually, it an be

seen that r1c of the rak model is equivalent to rc of the stati ost model.
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Figure 4.6: Tradeo� urve for the rak model with M = 1, k = 10, r1c = 5,

r2c = 6, r = 11, n1 = n2 = 6 and τ = 2.

Indeed, it an be seen that when k ≤ r1c + 1, the rak model and the stati

ost model have the same behavior beause I = I1.

4.1.1 MSR and MBR points

The threshold funtion (4.4) leads to a tradeo� urve between α and βe. Note

that, like in the stati ost model, sine there is a di�erent repair bandwidth

γ1
and γ2

for eah rak, this urve is based on βe instead of γ1
and γ2

.

At the MSR point, the amount of stored data per node is αMSR = M/k.

Moreover, at this point, the minimum value of βe is βe = f(0) = M
L[0]k

, whih

leads to

γ1
MSR =

(r1cτ + r1e)M

L[0]k
and γ2

MSR =
(r2cτ + r2e)M

L[0]k
.

On the other hand, at the MBR point, as f(i) is a dereasing funtion, the

parameter βe whih leads to the minimum repair bandwidths is βe = f(|L|−
1) = M

L[|L|−1](k−|L|+1)+g(|L|−1)
. Then, the orresponding amount of stored data

per node is αMBR = ML[|L|−1]
(k−|L|+1)L[|L|−1]+g(|L|−1)

, and the repair bandwidths are

γ1
MBR =

(r1cτ + r1e)M

L[|L| − 1](k − |L|+ 1) + g(|L| − 1)
and

γ2
MBR =

(r2cτ + r2e)M

L[|L| − 1](k − |L|+ 1) + g(|L| − 1)
.

Figure 4.6 shows the tradeo� urve for a rak model with M = 1, k = 10,

r1c = 5, r2c = 6, r = 11, n1 = n2 = 6 and τ = 2. The MSR point is the one

with minimum α while the MBR point is the one with minimum βe.
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4.1.2 Non-feasible situation

As we have seen, the threshold funtion (4.4) is subjet to γ1 = (r1cτ+r1e)βe ≥
α.

Proposition 4. If the inequality γ1 ≥ α is ahieved, then max(L) = I1[0]/βe.

Proof: Sine L is an inreasing ordered list, for i = 0, . . . , k − 1,

max(L) = L[k − 1]. As I1[0] is the inome of the �rst newomer, then

I1[0]/βe = r1cτ + r1e ∈ L. Atually, L is onstruted from all elements in I

and I1 ⊆ I, by Proposition 3.

If γ1 ≥ α, then taking βe = f(k − 1) in Theorem 26, we have that

γ1 = (r1cτ + r1e)βe = (r1cτ + r1e)f(k − 1) ≥ M − g(k − 1)f(k − 1). After

some operations, we obtain that

(r1cτ+r1e)M∑k−1

j=0
L[j]

≥ L[k−1]M
∑k−1

j=0
L[j]

, so r1cτ + r1e ≥ L[k−1].

Sine I1[0]/βe = r1cτ + r1e ∈ L and max(L) = L[k − 1], r1cτ + r1e = L[k − 1] =

I1[0]/βe.

Sine any NDSS satis�es that γ1 ≥ α, we have that max(L) = I1[0]/βe,

by Proposition 4. In order to have this situation, we an use two di�erent

approahes. If we allow a non-homogeneous system, then, it is possible to

de�ne a di�erent α for eah rak as it is shown in [PYGP13℄. However, this

dissertation is based on a homogeneous behavior for α, so we need to remove

from L any value L[i] suh that L[i] > I1[0]/βe, i = 0, . . . , k − 1. After that,

we an assume that L[|L|−1] = I1[0]/βe. In terms of the tradeo� urve, this

means that there is no point in the urve that outperforms the MBR point.

Example 17. In order to illustrate this situation, we an onsider the ex-

ample of a regenerating ode with k = 3, r1c = 1, r2c = 4, r = 6, n1 = 2

and n2 = 5, and the information �ow graph given in Figure 4.7. Taking

τ = 2, the inomes of the newomers sn+1, sn+2 and sn+3 are 7βe, 5βe and

8βe, respetively. Atually, we have that I = I1 ∪ I2, where I1 = {7βe, 5βe}
and I2 = {8βe}. Then, L = [5, 7, 8], so max (L) = 8 > I[0]/βe = 7. Applying

L to the threshold funtion (4.4), the resulting minimization of α and βe is

α∗(βe) =























M
3
, βe ∈ [M

15
,+∞)

M−5βe

2
, βe ∈ [M

19
, M
15
)

M − 12βe, βe ∈ [M
20
, M
19
).

Note that onsidering the last interval, we have that for βe = f(k − 1) =
M
20
, αMBR = 8M

20
and γ1

MBR = (r1cτ + r1e)f(k − 1) = 7M
20
. Applied to the
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Figure 4.7: Information �ow graph with k = 3, n1 = 2, n2 = 5, r1c = 1,

r2c = 4 and r = 6.

information �ow graph, we obtain that minut(S,DC) = 7M
20

+ 5M
20

+ 8M
20

= M

whih is true. However, sine αMBR > γ1
MBR, it gives a non-feasible situation

for a distributed storage sheme. Note also that if we delete this non-feasible

interval, then γ1
MBR = 7M

19
and αMBR = 7M

19
whih orresponds to the MBR

point beause γ1
MBR = αMBR.

It is important to note that more than one element from I an be greater

than any element from I1, whih will result in more impossible intervals. In

onlusion, any value from I greater than the greatest value from I1, must

be deleted beause otherwise it would lead to a non-feasible situation.

4.1.3 Case r1
e
βe ≥ r2

c
τβe

In this ase, the minut equation has a dereasing behavior as i inreases

for i = 0, . . . , k − 1. Therefore, it is possible to de�ne an injetive funtion

with a dereasing behavior, whih will be used to determine the intervals of

the threshold funtion. Basially, it is possible to use the same proedure

shown in [AKG10℄ and [DGWR10℄ to �nd the threshold funtion. Moreover,

it an be seen that the set of inomes whih minimize the minut is always

the same, it does not depend on any parameter.

It is easy to see that if r1eβe ≥ r2cτβe and k ≤ r1c +1, the minut equations

(and so the threshold funtions) orresponding to the model explained in this



66 Chapter 4. Two-rak model

setion and the model explained in Subsetion 2.5.5 are exatly the same.

Therefore, we will fous on the situation that r1eβe ≥ r2cτβe and k > r1c + 1.

Note that this is in fat a partiular ase of the general threshold funtion

(4.4), where it is possible to reate a dereasing funtion for any feasible i,

and then �nd the threshold funtion giving more details.

Theorem 27. When r1e ≥ r2cτ and k > r1c + 1, the threshold funtion α∗(βe)

(whih also depends on r, r1c , r
2
c , k and τ) is the following:

α∗(βe) =







































































M
k
, βe ∈ [f1(0),+∞)

M−g1(i)τβe

k−i
, βe ∈ [f1(i), f1(i− 1))

i = 1, . . . , k − r1c − 2

M−g1(k−r1c−1)τβe

k−i
, βe ∈ [f2(k − r1c − 1),

f1(k − r1c − 2))

M−g1(k−r1c−1)τβe−g2(i−k+r1c+1)βe

k−i
, βe ∈ [f2(i), f2(i− 1))

i = k − r1c , . . . , k − 1,

(4.10)

where

g1(i) =
i

2
(2r − 2k + i+ 1),

g2(i) =
i

2
(2r1e + τi− τ),

f1(i) =
2M

τ(2k(r − k) + (i+ 1)(2k − i))
, and

f2(i) =
2M

2r1e + 2r1er
1
c − τ(i(i− 2k + 1) + 2(k2 − k − kr + r1e + r1er

1
c ))

.

Note that f1(i) and f2(i), i = 0, . . . , k−1, are dereasing funtions, and g1(i)

and g2(i), i = 1, . . . , k − 1, are inreasing funtions.

Proof: Note that r1e = r2c + 1 and r2e = r1c + 1. We onsider the

minut equation (4.3) of the rak model, sine if r1e ≥ r2cτ , then we have that

I = I1 ∪ I3, by Proposition 3. In other words, the n1 − r1c − 1 remaining

newomers from W 1
are not in the set of newomers whih minimizes the

minut. Assume that k ≤ r = r1c+r1e beause if r < k, requiring any r storage

nodes to have a �ow of M will lead to the same ondition as requiring any
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k storage nodes to have a �ow of M [DGWR10℄. We want to obtain the

threshold funtion whih minimizes α, that is,

α∗(βe) = minα

subjet to:

∑r1c
i=0min(r1cβc + r1eβe − iβc, α)+

∑k−1
i=r1c+1min((r1c + r1e − i)βc, α) ≥ M.

(4.11)

Therefore, we are going to show the optimization of (4.11) whih leads to

(4.10).

Applying that βc = τβe, we an de�ne the minimum M as M∗
, so

M∗ =

r1c
∑

i=0

min((r1cτ + r1e − iτ)βe, α) +
k−1
∑

i=r1c+1

min((r1c + r1e − i)τβe, α).

In order to hange the order of the above summation, we de�ne

b(i1, i2) = r1c + r1e − k + 1 + i1 + i2τ.

Note that M∗
is a pieewise linear funtion of α. The minimum value of

{(r1cτ + r1e − iτ)βe | i = 0, . . . , r1c}∪{(r1c + r1e − i)τβe | i = r1c +1, . . . , k−1} is
when i = k − 1. Therefore, if α is less than this value, then M∗ = kα. Sine

r1e = r2c+1 and r2e = r1c+1 the lowest value of {(r1cτ+r1e−iτ)βe | i = 0, . . . , r1c}
whih is r1eβe, is higher than or equal to the highest value of {(r1c + r1e −
i)τβe | i = r1c + 1, . . . , k − 1}, whih is (r1e − 1)τβe. This means that as

α inreases, the term (r1c + r1e − i)τβe is added more times in M∗
while

i = k − 1, . . . , r1c . When i = r1c , . . . , 0, the term (r1cτ + r1e − iτ)βe is added

more times in M∗
.
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M∗ =







































































































































kα, α ∈ [0, b(0, 0)τβe]

(k − i)α +
∑i−1

j=0 b(j, 0)τβe, α ∈ (b(i− 1, 0)τβe, b(i, 0)τβe]

i = 1, . . . , k − r1c − 2

(r1c + 1)α+
∑k−r1c−2

j=0 b(j, 0)τβe, α ∈ (b(k − r1c − 2, 0)τβe,

b(k − r1c − 1, 0)βe]

(k − i)α +
∑k−r1c−2

j=0 b(j, 0)τβe+
∑i−k+r1c

j=0 b(k − r1c − 1, j)βe, α ∈ (b(k − r1c − 1, i− k + r1c )βe,

b(k − r1c − 1, i− k + r1c + 1)βe]

i = k − r1c , . . . , k − 1
∑k−r1c−2

j=0 b(j, 0)τβe+
∑r1c

j=0 b(k − r1c − 1, j)βe, α ∈ (b(k − r1c − 1, r1c )βe,∞).

(4.12)

Using that M ≥ M∗
, we an minimize α depending on M . Note that the

last term of (4.12) does not a�et in the minimization of α, so it is ignored.

Therefore, we obtain the funtion

α∗ =



























































M
k
, M ∈ [0, kb(0, 0)τβe]

M−
∑i−1

j=0
b(j,0)τβe

k−i
, M ∈ (A(i− 1), A(i)]

i = 1, . . . , k − r1c − 2
M−

∑i−1

j=0
b(j,0)τβe

k−i
, M ∈ (A(i− 1), B(i)]

M−
∑k−r1c−2

j=0
b(j,0)τβe−

∑i−k+r1c
j=0

b(k−r1c−1,j)βe

k−i
, M ∈ (B(i− 1), B(i)]

i = k − r1c , . . . , k − 1,
(4.13)

where A(i) = τβe(b(i, 0)(k − i− 1) +
∑i

j=0 b(j, 0)) and B(i) = βe(b(k − r1c −

1, i− k + r1c + 1)(k − i− 1) +
∑k−r1c−2

j=0 b(j, 0)τ +
∑i−k+r1c+1

j=0 b(k − r1c − 1, j)).
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From the de�nition of b(i1, i2),

i−1
∑

j=0

b(j, 0) =
i

2
(2r − 2k + i+ 1) = g1(i),

i−1
∑

j=0

b(k − r1c − 1, j) =
i

2
(2r1e + τi− τ) = g2(i),

τ((k − i− 1)b(i, 0) +

i
∑

j=0

b(j, 0)) =
2M

τ(2k(r − k) + (i+ 1)(2k − i))
=

M

f1(i)

and

b(k−r1c−1, i−k+r1c+1)(k−i−1)+

k−r1c−2
∑

j=0

b(j, 0)τ+

i−k+r1c+1
∑

j=0

b(k−r1c−1, j) =
M

f2(i)
.

The funtion (4.13) for α∗
an be de�ned over βe instead of over M , and

then funtion (4.10) follows.

4.2 General rak model

Let m ≥ 2 be the number of raks of a distributed storage system. Let nj ,

j = 1, . . . , m, be the number of storage nodes in the j-th rak. Let rjc be the

number of helper nodes providing heap bandwidth and rje be the number

of helper nodes providing expensive bandwidth to any newomer in the j-th

rak. We assume that the total number of helper nodes r is �xed, so it is

satis�ed that r = rjc + rje for j = 1, . . . , m. Moreover, it an be seen that

rje =
∑m

z=1,z 6=j(r
z
c + 1). Let the raks be inreasingly ordered by number of

heap bandwidth nodes, so i ≤ j if and only if ric ≤ rjc . First, we onsider

the ase when r = n− 1, and then the general ase, that is, when r ≤ n− 1

4.2.1 When r = n− 1

In this ase, we impose that any available node in the system is a helper

node, that is, r = n − 1. If one node fails in the j-th rak, rjc = nj − 1

nodes from the same rak and rje = n − nj nodes from other raks help in

the regeneration proess.
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The indexed multiset I ontaining the inomes of the k newomers whih

minimize the minut is

I =

m
⋃

j=1

{((rjc − i)τ + rje−

j−1
∑

z=1

(rzc − j+1)βe | i = 0, . . . ,min(rjc , k−

j−1
∑

z=1

rzc − j)},

(4.14)

where

∑0
z=1 x = 0 for any value x. Therefore, the resulting minut equation

is

∑k−1
i=0 min(I[i], α) ≥ M .

Finally, the threshold funtion (4.4) an be applied, so α and βe an be

minimized. Note that the set of k newomers whih minimize the minut is

�xed independently of τ , so there is only one andidate set to be the minimum

minut set.

4.2.2 When r ≤ n− 1

In this ase, there may exist nodes in the system that, after a node failure,

do not help in the regeneration proess. These kind of systems introdue the

di�ulty of �nding the minimum minut set in the information �ow graph.

Note that in the two-rak model, after inluding the �rst r1c+1 nodes from the

�rst rak, we need to known whether the remaining n1 − r1c − 1 are inluded

in the minimum minut set or not. In order to solve this point, we reate

two andidate sets to be the minimum minut set, one with these nodes and

another one without them.

De�ne the indexed multiset I ′ =
⋃m

j=1{((r
j
c − i)τ + rje −

∑j−1
z=1 r

z
c − j +

1)βe | i = 0, . . . , rjc} ∪ Ij , where Ij = {(rje −
∑j−1

z=1 r
z
c − j + 1)βe | i =

1, . . . , nj−rjc−1} ontains the inomes of the remaining nj−rjc−1 newomers

one the �rst rjc + 1 storage nodes have already been replaed. Note that I ′

represents the inomes of all the n newomers. Also note that in the m-th

rak, (rme −
∑m−1

z=1 rzc −m+1)βe = 0, and that Subsetion 4.2.1 desribes the

partiular ase when nj − rjc − 1 = 0 for all j = 1, . . . , m.

We say that a rak is involved in the minimumminut if at least one of its

nodes is in a andidate set to be the minimumminut set. The involved raks

are always the �rst m′
raks, where m′

is the minimum number suh that

∑m′

j=1(r
j
c + 1) ≥ k. Sine the newomers orresponding to the inomes from

Im
′

are never inluded in the minimum minut set, the number of andidate

sets to be the minimum minut set is 2m
′−1

. However, as the goal is to �nd

the set having the minimum sum of its orresponding inomes, it is possible

to design a linear algorithm with omplexity O(m′−1) to solve this problem.

This algorithm is desribed in the next paragraph.
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For all j = 1, . . . , m′ − 1, if
∑k−1

i=0 I ′[i] >
∑k−1

i=0 (I
′ − Ij)[i], where I ′ − Ij

means removing the elements of Ij inside I ′, the new I ′ beomes I ′−Ij. This

proess is repeated for every j. Finally, after m′ − 1 omparisons, we obtain

that I = I ′. Then, we an assure that I ontains the inomes of the minimum

minut set of newomers. One I is found, we an de�ne L as in the two-rak

model and apply the threshold funtion (4.4) in order to minimize α and βe.

Example 18. Let the number of raks be m = 3 with n1 = 3, n2 = 4, n3 = 4

and k = 7. Let the number of helper nodes for any newomer be r = 8 with

r1c = 1, r2c = 2 and r3c = 3, so with r1e = 7, r2e = 6 and r3e = 5. Note that

r1c ≤ r2c ≤ r3c . The information �ow graph orresponding to these parameters

is shown in Figure 4.8.

Sine m′ = 3, the three raks are involved in the minimum minut and

the inomes in I depend on whether the sets I1 and I2 are inluded or not:

• Inluding I1 and I2: I ′{1,2} = {(τ + 7)βe, 7βe, 7βe, (2τ + 4)βe, (τ +

4)βe, 4βe, 4βe}.

• Inluding I1 but not I2: I ′{1} = {(τ + 7)βe, 7βe, 7βe, (2τ + 4)βe, (τ +

4)βe, 4βe, 3τβe}.

• Inluding I2 but not I1: I ′{2} = {(τ+7)βe, 7βe, (2τ+4)βe, (τ+4)βe, 4βe,

4βe , 3τβe}.

• Exluding I1 and I2: I ′∅ = {(τ+7)βe, 7βe, (2τ+4)βe, (τ+4)βe, 4βe, 3τβe,

2τβe}.

Then, if for example τ = 2.2, the sum of the elements of the above multisets

are 45.8βe, 48.4βe, 45.4βe and 45.8βe, respetively. So I = I ′{2} ontains the

inomes orresponding to the minimum minut set.

We an obtain the same result by using the algorithm proposed in this

setion, that is, following these steps:

1. Create I ′ = {(τ+7)βe, 7βe, 7βe, (2τ+4)βe, (τ+4)βe, 4βe, 4βe 3τβe, 2τβe,

τβe, 0}.

2. Create I1 = {7βe}. Sine

∑6
i=0 I

′[i] = 45.8βe >
∑6

i=0(I
′ − I1)[i] =

45.4βe, the new I ′ beomes I ′ = I ′ − I1 = I{2}.

3. Create I2 = {4βe}. Sine

∑6
i=0 I

′[i] = 45.4βe ≤
∑6

i=0(I
′ − I2)[i] =

45.8βe, I = I ′ = I ′{2} and

∑6
i=0 I[i] = 45.4βe.
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Figure 4.8: Information �ow graph orresponding to the rak model with

k = 7, r1c = 1, r2c = 2, r3c = 3 and r = 8.
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Figure 4.9: Chart omparing the rak model with the stati ost model for

M = 1, k = 10, r1c = 5, r2c = 6, r = 11, n1 = n2 = 6 and τ = 2.
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Figure 4.10: Chart showing the tradeo� urves between α and βe for M = 1,

k = 10, r1c = 5, r2c = 6, r = 11 and n1 = n2 = 6, so with k > r1c + 1.

4.3 Analysis

When τ = 1, we have that βe = βc, so γj = γ = rβe for any j. This situation

orresponds to the ase when the three models shown in Subsetions 2.5.3,

2.5.5 and Setion 4.2 oinide in terms of the threshold funtion, sine we

an assume that βc = βe = β. When τ > 1 and k ≤ r1c + 1, the rak model

oinides with the stati ost model desribed in Subsetion 2.5.5.

In order to ompare the rak model with the stati ost model when

τ > 1 and k > r1c + 1, it is enough to onsider the ase m = 2. Moreover, it

only makes sense to onsider the equation C1
T = βe(Ccr

1
cτ + Cer

1
e). Using

the de�nitions given for the stati ost model and the rak model, note

that rc = r1c and re = r1e . When omparing both models using C1
T , all

the parameters are the same exept for βe = f(i) = M
L[i](k−i)+g(i)

. Now, we

are going to prove that the resulting L will always be greater in the rak

model, so both βe and C1
T will be less.

Assume that the inomes are in terms of I. For the stati ost model,

I = {((r1c−i)τ+r1e)βe | i = 0, . . . , r1c}∪{(r
1
e−i)βe | i = 1, . . . , k−r1c−1}. Note

that {(r1e−i)βe | i = 1, . . . , k−r1c−1} = {(r2c−i)βe | i = 0, . . . , k−r1c−2}. In
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Figure 4.11: Chart showing the repair ost in the rak model for M = 1,

k = 5, r1c = 5, r2c = 6, d = 11, n1 = n2 = 6, Cc = 1 and Ce = 10. The points

orrespond to the k = 5 values given by f(i), i = 0, . . . , 4.

this ase, both models are equal for the �rst r1c +1 newomers, and di�erent

for the remaining k − r1c − 1 newomers. If I = I1 ∪ I3 for the rak model,

the inomes of the remaining k− r1c − 1 newomers from the seond rak are

(r2c − i)τβe, whih are greater than (r2c − i)βe of the stati ost model. If

I = I1 ∪ I2, it an also be seen that r1eβe > (r1e − i)βe. Finally, we an say

that the repair ost in the rak model is less than the repair ost in the stati

ost model.

The omparison between both, the rak model and the stati model, is

shown in Figure 4.9 whenM = 1, k = 10, r1c = 5, r2c = 6, r = 11, n1 = n2 = 6

and τ = 2. It an be seen that the urve of the rak model is below the urve

of the stati model, whih means that the rak model requires less stored data

per node α and less expensive repair bandwidth βe than the stati model.

As βe is dereased in the rak model, this means that the repair ost is going

to be less in the rak model than in the stati model.

The dereasing behavior of βe as τ inreases is shown in Figure 4.10 by

giving several tradeo� urves for di�erent values of τ . As we have said, if βe

is dereased, the repair ost is also dereased. This fat is shown in Figure

4.11, where it an be seen that the repair ost dereases as τ inreases.

Summarizing, when τ is inreased, βe dereases whih also dereases the

repair ost.



Chapter 5

Conlusions

The information age is the urrent period in human history where there is

a shift from traditional industry to an eonomy based on information om-

puterization. In this new era, the amount of digital data is inreasing ex-

ponentially eah year and the physial plae where this data is stored and

treated is no longer de�ned by the users or authors of suh data [Hi011℄. The

omputer loud is a perfet example of this ontext.

Despite the fat that stored data an be aessed by users from the In-

ternet as if by magi, the ompanies or organizations in harge of it must

assure its seurity and its persistene. The data is usually stored in a Net-

work Distributed Storage System (NDSS), a system omposed of multiple

independent storage nodes. However, the ost of maintaining those NDSS

not only in terms of money, but also in terms of spae or eologial ost, is

high and must be addressed.

In this dissertation, we assume that the amount of data stored in a NDSS

is minimized by using oding theory, a well known mathematial art used

for data transmission. The inreasing use of oding theory tehniques in

the urrent storage systems, by some of the most in�uential ompanies like

Faebook or Google, is a lear example of suh advantage. However, oding

theory is not foused on solving some of the problems that NDSS introdues.

Firstly, we have explained the urrent state of the art of odes applied

to NDSS. We have seen some of the most important oding theory onepts

and parameters, and we have shown the advantages and problems of using

odes in a NDSS. It is lear that the use of odes in NDSS has some huge ad-

vantages, speially regarding the minimization of the redundany needed to

assure the persistene of the stored data. However, oding theory tehniques

also introdue some problems, like the extra amount of bandwidth needed to

75
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regenerate a failed node (repair problem) or data insertion, among others.

In this dissertation, we have seen that there are two di�erent approahes

to address the repair problem. On the one hand, the odes designed for NDSS

whih address the repair problem by inreasing the loality of the oordinates

stored in the storage nodes. This kind of odes not only derease the repair

bandwidth, but also the repair degree whih is the number of other storage

nodes needed to regenerate a failed one. However, they do that at the ost

of dereasing the fault tolerane of the system, so the persistene of the data

is redued.

On the other hand, the regenerating odes address the repair problem by

using network oding tehniques. The regenerating odes treat the odes as

a blak box and use network oding to derease the repair bandwidth. In this

ase, the fault tolerane is maintained at the ost of some extra omputational

omplexity in the storage nodes. This dissertation is based on regenerating

odes.

In real environments like a data enter or a P2P system, the omputa-

tional ost introdued by the use of regenerating odes is a big issue that

must be addressed. If regenerating odes are used, the ost of doing linear

ombinations in both the helper nodes and the newomers is a real prob-

lem. This is beause most of the storage nodes are omposed of storage de-

vies without omputational resoures. Moreover, it is also important from

a pratial point of view that the repair used is exat whih ompliates the

problem. It has been proven in [HLS13℄, that it is impossible to ahieve an

exat repair-by-transfer (an exat repair without linear ombinations) when

the regenerating ode has the minimum storage overhead.

5.1 Main Results

In the �rst ontribution, we onstrut a family of low omplexity �exible

regenerating odes using quasi-yli odes, where a spei� set of helper

nodes is used to repair a storage node failure. The �rst onstrution is

designed to minimize the storage per node, the resulting odes are alled

quasi-yli �exible minimum storage regenerating (QCFMSR) odes. We

provide an exat repair solution for all parameters ahieving r = k + 1 and

n = 2k. This onstrution is minimum aording to the MSR point in the

fundamental tradeo� urve. Moreover, QCFMSR odes have a very simple

regenerating algorithm that approahes to the repair-by-transfer property.

In our solution, the helper nodes do not need to do any linear ombination
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among their symbols. The only linear ombination is done in the newomer

to obtain the symbols the �rst time that it enters into the system. As far as

we are onerned, this is the �rst onstrution ahieving this repair simpliity

for the MSR point. We also laim that suh odes exist with high probability.

Moreover, it is shown in [SRKR10℄ and [SRKR11℄ that when r < 2k−3, exat

MSR odes do not exist. However, QCFMSR odes exist for r = k+1 whih

satis�es r < 2k − 3 for k > 4. These fats illustrate the importane of the

�exibility over the set of helper nodes in this onstrution.

From a orporate point of view, it is interesting to have odes with

high rates, sine these are the ones desired for atual data enters. De-

spite there are onstrutions with an equal [TWB11℄ or a higher [PD11℄ rate

than QCFMSR odes, their other properties (unoded repair at the helper

nodes, low deoding and repairing omplexity, good rate, low repair degree

r = k + 1 and exat repair) makes them very interesting.

The seond onstrution is designed to minimize the repair bandwidth,

the resulting odes are alled quasi-yli �exible regenerating odes with

minimumbandwidth. To onstrut them, we use a tehnique shown in [RR10℄

and [SRKR12℄ whih provide minimum bandwidth odes from existing MSR

odes using graphs. We analyze and prove this onstrution giving bounds on

the parameters of these odes. This onstrution gives the minimum possible

bandwidth γ = α ahieved by an spei� set of helper nodes and it has the

repair-by-transfer property. Finally, we show that QCFMSR odes an be

used as base odes to onstrut quasi-yli �exible regenerating odes with

minimum bandwidth. We provide the onditions needed on the parameters

{n, k, d, n̄, k̄, r̄} for both ases, when k̄ ≤ r̄ + 1 and k̄ > r̄ + 1.

The seond ontribution is the design of a new mathematial model used

to represent a data enter, where the storage nodes are plaed in raks. In

this new model, the ost of downloading data units from nodes in di�erent

raks is introdued. That is, the ost of downloading data units from nodes

loated in the same rak is muh lower than the ost of downloading data

units from nodes loated in a di�erent rak. The rak model is an approah

to a more realisti distributed storage environment like the ones used in

ompanies dediated to the task of storing information.

Firstly, the rak model is deeply analyzed in the ase that there are two

raks. The di�erenes between this model and previous models are shown.

Due to it is a less simpli�ed model ompared to the ones presented previ-

ously, the rak model introdues more di�ulties in order to be analyzed.

The main ontribution in this ase, is the generalization of the proess to
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�nd the threshold funtion of a distributed storage system. This new gener-

alized threshold funtion �ts in the previous models and allows to represent

the information �ow graphs onsidering di�erent repair osts. We have also

provided the tradeo� urve between the repair bandwidth and the amount

of stored data per node and we have ompared it with the ones found in

previous models. We have analyzed the repair ost of this new model, and

we an onlude that the rak model outperforms previous models in terms

of repair ost.

Finally, we have also studied the general rak model where there are

m ≥ 2 raks. This generalization represents two main ontributions: the

making of a model of a distributed storage system using any number of

raks, and the desription of the algorithm to �nd the minimumminut set of

newomers (whih is a new problem ompared to the previous models). One

the minimum minut set is found, we an apply the generalized threshold

funtion whih shows the minimum tradeo� between the amount of stored

data per node and the repair bandwidth needed to regenerate a failed node.

5.2 Further Researh

From the point of view of the rak model, it is for further researh the ase

where there are three di�erent osts: one for nodes within the same rak,

another for nodes within di�erent raks but in the same data enter, and a

third one for nodes within di�erent data enters. It would also be important

to give some onstrutions that ahieve the optimal bounds. Construting

suh regenerating odes is not trivial and we don't know if it is possible.

However, the bounds and optimal tradeo� given in this dissertation is an

initial step to provide a omparison point for further researh on this �eld.

It is also interesting to study loally repairable odes within a rak. The rak

model provides some oneptual loality given by eah rak and eah data

enter, so it an be interesting to see how LRC performs in these kind of

environments. In our opinion, LRC is probably the most natural solution to

the problem of applying oding theory to raks. However, our dissertation

an be also interesting for LRC, beause there are no bounds on the e�ieny

of odes in terms of repair bandwidth neither in terms of fault tolerane for

LRC. This dissertation is an initial step in designing LRC for raks and

omparing them with the provided optimal tradeo�.

In general, we have foused on solving the problem of oding theory in

real NDSS. From a big piture point of view, a lot of work an still be



5.2. Further Researh 79

done. Computational omplexity is a problem whih is not usually addressed

by researhers but whih ahieves a high importane. Moreover, we have

theoretial limits to the e�ieny of the repair and reonstrution in NDSS

that an be broken by using new models whih adopt the spei� topology

of the NDSS. For example, we have seen that by using the rak model or the

�exible regenerating odes, the theoretial bounds given in [DGWR10℄ an

be supersede.

Another interesting and unaddressed problem is the introdution of the

�le ontext. In this moment, the researh on NDSS is based on the assump-

tion that the �le is a blak box of bits. However, ompression tehniques that

use the ontext of the �les ahieve higher ompression rates than general om-

pression tehniques. Designing a NDSS using oding and ompression ould

be an interesting abstration to provide a di�erent point of view. Coneptu-

ally, if the ontext of the �le is added, we should be able to provide a better

ompression rate, whih means that the stored data an be redued.

There are other odes that ould be used in NDSS apart from LRC or

regenerating odes. Convolutional odes have some interesting loality prop-

erties, sine eah redundany symbol an be omposed of a small set of other

symbols. This property an redue the repair degree of the NDSS. Moreover,

if some memory is used in the onvolutional ode, eah oordinate might have

multiple repair alternatives. From this perspetive, other odes like LDPC

may also be interesting. LDPC have the desired property of ontaining a

lot of zeros in their parity hek matrix. This means that the words of the

dual have low weight and low repair degree whih leads to a high loality.

Moreover its deoding algorithm is simple whih redues the omputation

omplexity needed to reonstrut a �le.
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