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Chapter 1

Introduction

This thesis consists of two clearly separate parts. The first deals with so called smooth

sets and the second with certain properties of sampling sequences and cyclic vectors in

Dirichlet-type spaces.

Throughout the text, the density of a set A in a set Q in Rn will refer to the quotient

D(Q) = |A ∩ Q|/|Q|, where | · | is the Lebesgue measure. In Chapter 2, we will study

smoothness of sets, in the sense inherent to the work by Kahane and formally introduced

by Hungerford:

Definition 1.0.1. A measurable set A ⊂ Rn is called smooth (in Rn) if

lim
δ→0

sup |D(Q)−D(Q′)| = 0

where the supremum is taken over all pairs of cubes Q,Q′ whose sides are parallel to the

axes with l(Q) = l(Q′) ≤ δ and with one face in common.

Sets A with |A| = 0 or |R\A| = 0 are trivially smooth but, as shown by Kahane (see

[24]), there are examples of other nontrivial smooth sets. In dimension n = 1, this notion

was studied by Hungerford, who, in his PhD Thesis (see [22], see also [26]) proved the

following result:

Theorem 1.0.2 (Hungerford, 1988.). If A ⊂ R is a nontrivial smooth set the Hausdorff

1



2 CHAPTER 1. INTRODUCTION

dimension of its boundary is 1.

Chapter 2 is based on our paper [27]. With the notation that Q(x, h) is the cube

centered at x and of sidelength h, the main result of the chapter is the following sharpening

and generalization of Hungerford’s result:

Theorem 1.0.3. Let A be a smooth set in Rn with |A| > 0 and |Rn\A| > 0. Fix 0 < α < 1.

Then the set

E(A,α) =
{
x ∈ Rn : lim

h→0
D(Q(x, h)) = α

}
has Hausdorff dimension n.

In its proof, we use a dyadic decomposition of the ambient space and stopping-time

techniques, to construct a Cantor-type set, contained in E(A,α). The good averaging

properties of the density are used to estimate the dimension of the Cantor set.

We also show that bilipschitz mappings with uniformly continuous Jacobian preserve

the smoothness of a set and that this is not true without the assumption on the Jacobian.

As a consequence of this preservation, the definition of smoothness can be based on other

families of cubes.

In chapter 3 we study sampling sequences from the Dirichlet space onto a space of

sequences `2∆, defined ad hoc. Sampling and interpolation phenomena have been studied

broadly, becoming a classical problem in analytic function space analysis. For other spaces,

a good reference is [34]. The Dirichlet space D is the space of all analytic functions f on

the unit disk D, f(z) =
∑∞

k=0 akz
k whose Taylor coefficients satisfy

‖f‖2D =
∞∑
k=0

(k + 1)|ak|2 <∞.

Consider a space of sequences ` and a sequence Z of points in D such that for all

f ∈ D, RZ(f) = {f(zn)}n∈N is an element of `. Then the operator RZ : D → ` is well

defined. We call RZ the restriction operator induced by Z from D into `. We say that a

sequence Z ⊂ D is a sequence of interpolation (from D into `) if the restriction operator

is bounded and surjective. Sequences of interpolation from D into a certain weighted
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space of sequences `2(ω) have been studied and characterized in the work by Marshall and

Sundberg ([25]), Bishop ([5]) and Boe ([7] and [8]).

Analogously, we say that Z ⊂ D is a sampling sequence (from D into `) if there exist

positive constants C1 and C2 such that, for all f ∈ D we have:

C1||f ||2D ≤ ||RZ(f)||2` ≤ C2||f ||2D (1.0.1)

It is well known (see, for instance, [32]) that the Dirichlet norm can also be defined by:

||f ||2D = |f(0)|2 +
1
π

∫
D

∫
D

|f(z)− f(w)|2

|1− zw|4
dA(z)dA(w)

Our aim in this chapter is to study sampling sequences from D into a space, `2∆, that

is constructed from a discrete version of this expression of the norm. `2∆ is defined as the

space of those sequences W = {wn}n∈N of complex numbers with:

||{wn}||2`2∆ = |w0|2 +
∑
n,k

|wn − wk|2(1− ρ(zn, zk)2)2 <∞

Here we study the conditions for a sequence to be sampling. Denote DH(z,R) the

hyperbolic disk centered at z of radius R.

Theorem 1.0.4. (a) Let Z = {zn} be a separated sequence. If Z is sampling then there

exists a radius R > 0 such that, for all z ∈ D, we have DH(z,R) ∩ Z 6= ∅.

(b) There exists a constant ε > 0, with the property that if Z is a sequence of points

in the unit disk and there exists 0 < R < ε such that for all z ∈ D, we have

DH(z,R) ∩ Z 6= ∅, then Z is a sampling sequence.

We do not arrive at a characterization. Another sufficient condition is given in terms

of harmonic measure in champagne-type domains, following ideas introduced by Ortega-

Cerdà and Seip in related contexts (see [28]). See also [1], [16] and [30]. A good reference

about harmonic measure is [18].
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Finally, chapter 4 is devoted to the joint work with Bénéteau, Condori, Liaw and Sola

studying the phenomenom of cyclicity in Dirichlet-type spaces ([4]).

For −∞ < α <∞, Dα is the space of all analytic functions f(z) =
∑∞

k=0 akz
k, where

z ∈ D, whose Taylor coefficients satisfy

‖f‖2α =
∞∑
k=0

(k + 1)α|ak|2 <∞. (1.0.2)

Three values of α correspond to spaces that have been studied extensively: α = −1

corresponds with the Bergman space; α = 0 with the Hardy space H2; and α = 1 is the

standard Dirichlet space D, as defined above.

Definition 1.0.5. A function f ∈ Dα is called cyclic (in Dα) if [f ] = Dα, where [f ] =

span{zkf : k = 0, 1, 2, . . .}, with closure in Dα norm.

It is well known that the cyclicity of a function f is equivalent with the existence of a

sequence of polynomials {pn} satisfying:

‖pnf − 1‖2α → 0, as n→∞.

Hence, cyclicity in Dα is a stronger condition than cyclicity in Dβ for all β < α.

Cyclic functions in the Dα spaces have been studied by numerous authors, but a

characterization is known only for the Hardy case and for the cases α > 1. Beurling

proved that a function is cyclic in the Hardy space if and only if it is outer (see [17]). For

Bergman spaces (α < 0), stronger sufficient conditions are known but they are not sharp

(see, for instance, [19]). For α > 1, a function is cyclic in Dα if and only if it is bounded

away from zero, as proved by Brown and Shields (see [11]). In the case of the Dirichlet

space, the problem is more complicated. Brown and Shields proved a necessary condition,

that the set of zeros of the function in the boundary, defined in a suitable manner, is

of logarithmic capacity zero (see [11]). They conjectured that cyclic functions in D were

exactly outer functions satisfying this condition. This problem has been studied by several

authors (see [9], [10], [11], [14], [15], [20], [31] and the survey [33]), but it remains open.



5

It is easy to show that analytic functions in the closed unit disk without zeros in the open

unit disk are cyclic in Dα for all α ≤ 1.

We are interested in the optimal norm

Nn,α(f) = inf ||pf − 1||2α

where the infimum is taken over all polynomials p of degree less or equal to n. For α < 1,

we set ϕα(t) = t1−α, t ∈ N. In the case α = 1, we take ϕ1(t) = log(t), t ∈ N. With this

notation, the main result in this chapter is the following:

Theorem 1.0.6. Fix α ≤ 1 and suppose f ∈ Dα can be extended analytically to a neigh-

borhood of the closed unit disc. Suppose also that f does not vanish in D. Then there

exists a constant C0 = C0(α, f), such that the optimal norm satifies

Nn,α(f) ≤ C0

ϕα(n+ 1)
.

Moreover, if f has at least one zero on the boundary of D, then there is a constant C1 =

C1(α, f) such that
C1

ϕα(n+ 1)
≤ Nn,α(f).

To prove the first part of this result (the upper bound for Nn,α), we start by considering

the case of a polynomial f with simple zeros on ∂D. We use generalized Riesz means to

provide good candidates to polynomials pn close to the sharp bounds for their degree.

Then we make use of convolution and cancelation properties of the Taylor coefficients of a

function f and its reciprocal 1/f , to achieve a control of the norm of pnf − 1. To extend

the result to functions f analytic on the closed unit disk, we show a uniform control of the

Wiener algebra norm of pnf . For the sharpness, we use the Hilbert space structure of the

Dα spaces to give necessary and sufficient conditions for the optimality of a polynomial in

the sense of the definition of Nn,α. We also construct explicitly the polynomials satisfying

such conditions for the particular function f(z) = 1 − z, using generalized Riesz means,

allowing to compute the optimal bounds and infere from these bounds, the sharpness for
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other functions.

The theorem is applicable to a small class of functions and it is therefore very far from

the state of the art around conditions for cyclicity in Dirichlet-type spaces, but it provides

insight about certain functions already known to be cyclic, in terms of control on the decay

of Nn,α.

In addition, we prove some results on sufficient conditions for cyclicity in Dα, studying

the problem of whether f ∈ Dα will be cyclic whenever log f ∈ Dα. We observe that this

is well known in the cases α > 1 and α = 0 and prove it for α = 1. The remaining cases

are solved only partially with a stronger hypothesis.



Chapter 2

Smooth sets in Euclidean spaces

2.1 Introduction

The Lebesgue Density Theorem tells us that the density of a measurable set approximates

the characteristic function of the set at almost every point. We are going to study sets

whose densities at small scales vary uniformly.

In this chapter, a cube will mean a cube in the Euclidean space Rn with sides parallel

to the axes. Two cubes Q,Q′ ⊂ Rn with the same sidelength l(Q) = l(Q′) are called

consecutive if the intersection of their closures is one of their faces. Given a measurable

set A ⊂ Rn, let |A| denote its Lebesgue measure and D(Q) its density in a cube Q ⊂ Rn,

that is, D(Q) = |A ∩Q|/|Q|. A measurable set A ⊂ Rn is called smooth (in Rn) if

lim
δ→0

sup |D(Q)−D(Q′)| = 0

where the supremum is taken over all pairs of consecutive cubes Q,Q′ with l(Q) = l(Q′) ≤

δ. In dimension n = 1, this notion was introduced by Hungerford ([22]) in relation to

the small Zygmund class. Actually, a set A ⊂ R is smooth if and only if its distribution

function g(t) = |A∩ (−∞, t)| is in the small Zygmund class, or equivalently, the restriction

of the Lebesgue measure to the set A is a smooth measure in the sense of Kahane ([24]).

Sets A ⊂ Rn with |A| = 0 or |Rn\A| = 0 are trivially smooth but a method of Kahane

7



8 CHAPTER 2. SMOOTH SETS IN EUCLIDEAN SPACES

allowed Hungerford to provide non trivial examples. In fact, one can consider a sharper

notion. Given a continuous increasing function ω : [0, 1] → [0,∞) with ω(0) = 0, a set

A ⊂ Rn is called ω-smooth (in Rn) if

|D(Q)−D(Q′)| ≤ ω(l(Q))

for any pair of consecutive cubes Q,Q′ ⊂ Rn of sidelength l(Q) = l(Q′). Notice that if

A ⊂ Rn and B ⊂ Rm are ω-smooth, then A × B is ω-smooth in Rn+m. The existence

of nontrivial ω-smooth sets was discussed in [2]. Let ω : [0, 1] → [0,∞) be a continuous

increasing function with ω(0) = 0. Assume that there exists ε > 0 such that the function

ω(t)/t1−ε is decreasing. (2.1.1)

Then there exists an ω-smooth set A ⊂ R, with |A| > 0 and |R\A| > 0 if and only if the

following quadratic condition holds:

∫
0
ω2(t)

dt

t
=∞ (2.1.2)

See [2]. In Section 2, we will discuss a slight variant of this result. As in [2], the necessity

of condition (2.1.2) follows easily from a standard martingale argument and does not use

the hypothesis (2.1.1). Our proof of the sufficiency of (2.1.2) is based on the examples of

smooth sets produced by Hungerford, who made use of a nice recursive construction by

Kahane. Actually, in our approach, we substitute the hypothesis (2.1.1) by the related

condition ω(4t) ≤ 3ω(t)/2, t ∈ [0, 1/4].

In dimension n = 1, Hungerford proved that the boundary of a nontrivial smooth set

has full Hausdorff dimension ([22], see also [26]). His argument shows that if A is a smooth

set in R with |A| > 0 and |R\A| > 0, then the set of points x ∈ R for which there exists a

sequence of intervals {Ij} containing x such that

lim
j→∞

D(Ij) = 1/2,
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with |Ij | → 0 as j → ∞, still has Hausdorff dimension 1. The main goal of this paper

is to sharpen this result and to extend it to higher dimensions. It is worth mentioning

that Hungerford arguments cannot be extended to several dimensions since it is used that

the image under a nontrivial linear mapping of an interval is still an interval, or more

generally, that an open connected subset of the real line is an interval and this obviously

does not hold for cubes in Rn, for n > 1. Given a point x ∈ Rn and h > 0, let Q(x, h)

denote the cube centered at x of sidelength h. With this notation, our main result is the

following:

Theorem 2.1.1. Let A be a smooth set in Rn with |A| > 0 and |Rn\A| > 0. Fix 0 < α < 1.

Then the set

E(A,α) =
{
x ∈ Rn : lim

h→0
D(Q(x, h)) = α

}
has Hausdorff dimension n.

Our result is local, meaning, given a cube Q ⊂ Rn with 0 < |A ∩ Q| < |Q|, we have

that E(A,α)∩Q has full Hausdorff dimension. As a consequence the Hausdorff dimension

of ∂A ∩Q is n.

Section 3 contains a proof of Theorem 2.1.1. A Cantor type subset of E(A,α) will be

constructed and its dimension will be computed using a standard result. The generations

of the Cantor set will be defined recursively by means of a stopping time argument. The

good averaging properties of the density are used to estimate the dimension of the Cantor

set.

The definition of smooth set concerns the behavior of the density of the set on the grid

of cubes in Rn with sides parallel to the axes. We consider two natural questions arising

from this definition. First, we study how the definition depends on the grid of cubes, that

is, if other natural grids, such as dyadic cubes or general parallelepipeds would lead to the

same notion. Second, we consider whether the class of smooth sets is preserved by regular

mappings. It turns out that these questions are related and in Section 4 we provide a

positive answer to both of them. A mapping φ : Rn → Rn is bilipschitz if there exists a

constant C ≥ 1 such that C−1||x− y|| ≤ ||φ(x)− φ(y)|| ≤ C||x− y|| for any x, y ∈ Rn.
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Theorem 2.1.2. Let φ : Rn → Rn be a bilipschitz C1 mapping with uniformly continuous

Jacobian. Let A ⊂ Rn be a measurable set. Then the following are equivalent:

(a) A is a smooth set

(b) φ−1(A) is a smooth set

(c) A verifies the smoothness condition taking, instead of the grid of cubes, their images

through φ, that is,

lim
|Q|→0

|A ∩ φ(Q)|
|φ(Q)|

− |A ∩ φ(Q′)|
|φ(Q′)|

= 0

As part (c) states, one could replace in the definition of smooth set, the grid of cubes

by other grids such as the grid of dyadic cubes or the grid of general parallelepipeds

with bounded eccentricity whose sides are not necessarily parallel to the axes or even the

pullback by φ of the grid of cubes. One can combine Theorems 2.1.1 and 2.1.2 to obtain

the following:

Corollary 2.1.3. Let A be a smooth set in Rn with |A| > 0 and |Rn\A| > 0. Let φ :

Rn → Rn be a bilipschitz C1 mapping with uniformly continuous jacobian. Fix 0 < α < 1.

Then the set {
x ∈ Rn : lim

h→0

|A ∩ φ(Q(x, h))|
|φ(Q(x, h))|

= α

}
has Hausdorff dimension n.

To conclude, we show that the assumption on the Jacobian of the function in Theorem

2.1.2 is relevant, answering a question of X. Tolsa:

Theorem 2.1.4. There exists a bilipschitz function from R to R that does not preserve

smoothness.

2.2 ω-smoothness

The main purpose of this section is to discuss the following result:

Theorem 2.2.1. Let ω : [0, 1]→ [0,∞) be a continuous increasing function with ω(0) = 0.
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(a) Let there be an ω-smooth set A in Rn with |A| > 0 and |Rn\A| > 0. Then

∫
0
ω2(t)

dt

t
=∞ (2.2.1)

(b) Assume ω(4t) ≤ 3ω(t)/2 for 0 < t < 1/4 and

∫
0
ω2(t)

dt

t
=∞ (2.2.2)

Then there exists an ω-smooth set A ⊂ Rn with |A| > 0 and |Rn\A| > 0.

We begin with a description of the basic tools. Given a measurable set A contained in

the unit cube of Rn, let D(Q) denote its density on the cube Q, that is, D(Q) = |Q∩A|/|Q|.

For j = 1, 2... let Dj be the family of the pairwise disjoint dyadic cubes Q of the form

Q = [k12−j , (k1 + 1)2−j) × ... × [kn2−j , (kn + 1)2−j) where k1, ..., kn are integers. Let

Qj(x) denote the unique dyadic cube in Dj containing the point x ∈ Rn. Fix a dyadic

cube Q ∈ Dj0 and consider the function fj defined as fj(x) = D(Qj+1(x))−D(Qj(x)) for

j ≥ j0, choose x ∈ Q and define the square function

< D >2
Q (x) =

∑
j≥j0

f2
j (x), x ∈ Q.

Observe that for any j0 ≤ k ≤ j and any Qk ∈ Dk we have the cancelation property∫
Qk

fj = 0. We will need the following well known identity:

Lemma 2.2.2. (L2 identity) Let Q be a dyadic cube. Then

∫
Q

(1A(x)−D(Q))2dx =
∫
Q
< D >2

Q (x)dx

Proof. Since
∑
j≥j0

fj = 1A −D(Q) one only needs to check the orthogonality relation

∫
Q
fjfk = 0, k 6= j (2.2.3)
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To see this, one may assume that k < j. Let R ∈ Dk+1. Since fk is constant on R and∫
R
fj = 0 we deduce

∫
R
fjfk = 0 and (2.2.3) follows.

Now we may proceed with the proof of Theorem 2.2.1.

Proof of Theorem 2.2.1. (a) We can assume that 0 < |A∩[0, 1]n| < 1. Take a large positive

integer j0, so that we can find cubes Q1, Q2 ∈ Dj0 with D(Q1) < 1/4 and D(Q2) > 3/4

and such that ω(2−j0) ≤ 1/2. Since A is ω-smooth there exists a dyadic cube Q ∈ Dj0

with 1/4 < D(Q) < 3/4. Then

∫
Q

(1A(x)−D(Q))2dx ≥ |Q|
16

so the L2 identity tells us that

|Q|
16
≤
∫
Q
< D >2

Q (x)dx ≤ n|Q|
∑
j≥j0

ω2(2−j)

Thus, ∑
j≥j0

ω2(2−j) ≥ 1
16n

Since one can take j0 as large as desired, one deduces
∑
ω2(2−j) = ∞ and condition

(2.2.1) is satisfied.

(b) Assuming that the integral condition (2.2.2) holds, we want to construct a non

trivial ω-smooth set. We start with the one dimensional case. The ω-smooth set A ⊂ R

will be constructed using a method introduced by Hungerford in [22], based on a nice

previous example by Kahane ([24]). For j = 1, 2... consider the family Qj formed by the

pairwise disjoint intervals {Ik} of the form Ik = [k4−j , (k + 1)4−j) where k is an integer.

These intervals will be called the quadriadic intervals of generation j.

1. Construction of the set.

We can assume that ω(1) < 1/2. Denote ωj = ω(4−j)/14, j = 1, 2, ... and observe that

ωj+1 ≥ 2ωj/3 (2.2.4)
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We will construct the ω-smooth set A via its density Dj(I) on each quadriadic interval I

of the generation j, meaning by density the proportion of the length of the interval lying

on the set A. To do this, we define these densities Dj inductively. Pick, firstly, D0 ≡ 1/2.

Assume that for any quadriadic interval I of the j-th generation, the quantity Dj(I) has

been defined, in such a way that 0 ≤ Dj(I) ≤ 1. We will define the next function Dj+1.

Let I ∈ Qj and let {Ii : i = 1, ..., 4} be the four intervals in Qj+1 which are contained in

I, ordered from left to right. In addition, let I ′ and I ′′ be the two intervals in Qj adjacent

to I on the left and right hand side respectively. We first define a sign function εj+1 which

will be used later. Take εj+1(I1) to be the sign of Dj(I ′)−Dj(I) and εj+1(I2) = −εj+1(I1).

Similarly, take εj+1(I4) to be the sign of Dj(I ′′)−Dj(I) and εj+1(I3) = −εj+1(I4). Notice

that
4∑

k=1

εj+1(Ik) = 0 (2.2.5)

For k = 1, ..., 4 define the density on the interval Ik as

Dj+1(Ik) = Dj(I) + min {Dj(I), 1−Dj(I), ωj+1} · εj+1(Ik) (2.2.6)

Observe that, if Dj(I) is zero or one, then Dj+1(Ik) = Dj(I) for any k = 1, ..., 4. Also,

whenever Dj(I) ≤ ωj+1 (respectively, Dj(I) ≥ 1 − ωj+1), two of the four intervals

{Ik : k = 1, ..., 4} will have density zero (respectively, one). Consider the step functions

Dj =
∑
Dj(I)1I where the sum is taken over all intervals I ∈ Qj . Condition (2.2.5) tells

us that {Dj} is a quadriadic martingale, that is, a discrete martingale with respect to the

filtration generated by the quadriadic intervals. We will use the following Theorem proved

by Doob:

{x ∈ R : ∃ lim
j→∞

Dj(x)} a.e.= {x ∈ R : sup
j
|Dj(x)| <∞} a.e.=

a.e.= {x ∈ R :< D > (x) <∞}

Here A a.e.= B means that the sets A and B coincide except for at most a set of Lebesgue
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measure zero. See, for instance, [35] (p. 65). Since 0 ≤ Dj(x) ≤ 1, x ∈ R, the martingale

converges at almost every point, that is, for almost every x ∈ R, the limit limDj(x) exists

when j →∞. We next show that at almost every x ∈ R, one has either limDj(x) = 0 or

limDj(x) = 1 when j →∞. Actually, considerB =
{
x ∈ R : lim

j→∞
Dj(x)(1−Dj(x)) 6= 0

}
.

Observe that, since ωj tends to 0, for any x ∈ B we have |Dj+1(x)−Dj(x)| = ωj+1 for j

sufficiently large. Then the quadratic condition (2.2.2) tells us that < D >2 (x) = ∞ for

x ∈ B. Since {Dj(x)} converges at almost every point x ∈ R, we have |B| = 0. We define

the set A to be

A =
{
x ∈ R : lim

j→∞
Dj(x) = 1

}
2. A is not trivial.

Next we check that 0 < |A ∩ [0, 1]| < 1. Let I ∈ Qj and observe that

|I ∩A|
|I|

=
1
|I|

lim
k→∞

∫
I
Dk(x)dx

The cancelation property (2.2.5) yields
∫
I
Dk(x)dx =

∫
I
Dj(x)dx for any k ≥ j. Hence

|I ∩A|
|I|

= Dj(I)

and so we have |A ∩ [0, 1]| = D0([0, 1]) ≡ 1/2.

3. A is ω-smooth.

Finally, we prove the remainder, that is, A is ω-smooth. We start by computing the

difference of densities on quadriadic intervals of the same generation and prove that for

any pair of consecutive intervals I, I ′ ∈ Qj , one has

∣∣Dj(I)−Dj(I ′)
∣∣ ≤ 14ωj ≤ w(4−j) (2.2.7)

If I and I ′ are contained in the same quadriadic interval of generation j − 1, (2.2.7)

follows from the definition (2.2.6) of the density function. Otherwise let Ĩ , Ĩ ′ be two

different intervals in Qj−1 with I ⊂ Ĩ , I ′ ⊂ Ĩ ′. If |Dj−1(Ĩ) − Dj−1(Ĩ ′)| ≤ ωj the only
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way for I, I ′ to increase their difference in density compared to their parents Ĩ , Ĩ ′ is for

Dj−1(Ĩ)−Dj−1(Ĩ ′) and Dj(I)−Dj(I ′) to have different signs. In this case the difference

is smaller than the sum of the two jumps from Dj−1(Ĩ) to Dj(I) and from Dj−1(Ĩ ′)

to Dj(I ′). Hence, (2.2.7) follows. If |Dj−1(Ĩ) − Dj−1(Ĩ ′)| > ωj then either Dj−1(Ĩ)

or Dj−1(Ĩ ′) lies on the central band (ωj , 1 − ωj) and hence by the choice of the sign

function εj one deduces that |Dj(I) − Dj(I ′)| ≤ |Dj−1(Ĩ) − Dj−1(Ĩ ′)| − ωj . Arguing by

induction we can assume that |Dj−1(Ĩ)−Dj−1(Ĩ ′)| ≤ 2ωj−1 and together with (2.2.4) we

get |Dj(I)−Dj(I ′)| ≤ 2ωj−1 − ωj ≤ 2ωj which is exactly (2.2.7).

We next apply (2.2.7) to estimate the difference of densities between arbitrary quadri-

adic intervals to obtain that if I ∈ Qj+k, I
′ ∈ Qj−1 with I ∩ I ′ 6= ∅, then

|Dj+k(I)−Dj−1(I ′)| ≤ 2ωj−1 +
j+k∑
l=j

ωl ≤ (4 + k)ωj (2.2.8)

Let I be an interval such that 4−j ≤ |I| < 4−j+1 for some positive integer j. Decompose

I into pairwise disjoint maximal quadriadic intervals. So, I =
⋃
k≥0

Aj+k, where Aj+k is a

union of at most six intervals of Qj+k. Fix I ′ ∈ Qj−1 with I ∩ I ′ 6= ∅. Then,

∣∣|I ∩A| − |I|Dj−1(I ′)
∣∣ =

∣∣∣∣∣∣
∑
k≥0

∑
J∈Aj+k

|J |(Dj+k(J)−Dj−1(I ′))

∣∣∣∣∣∣
Applying now (2.2.8) we deduce

∣∣|I ∩A| − |I|Dj−1(I ′)
∣∣ ≤ ωj∑

k≥0

∑
J∈Aj+k

|J |(4 + k)

As we can deduce from the decomposition of I in terms of the intervals J ∈ Ak, this

implies that ∣∣|I ∩A| − |I|Dj−1(I ′)
∣∣ ≤ 7ωj |I| (2.2.9)

Now, let I and I∗ be two consecutive intervals of the same size |I| = |I ′| ≤ 1. Pick a

positive integer j such that 4−j ≤ |I| < 4−j+1 and let I ′ ∈ Qj−1 such that I ′ ∩ I 6= ∅ and
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I ′ ∩ I∗ 6= ∅. Applying (2.2.9) to both intervals, one gets

∣∣|I ∩A| − |I ′ ∩A|∣∣ ≤ 14ωj |I|

Since 14ωj ≤ ω(|I|), A is an ω-smooth set in dimension n = 1. If A is an ω-smooth set in

R, then both Rn−1 ×A and An are ω-smooth sets in Rn.

2.3 Proof of Theorem 2.1.1

2.3.1 Preliminary results

We begin with a preliminary result on the Hausdorff dimension of certain Cantor type sets

which will be used in the proof of Theorem 2.1.1. In dimension n = 1, the result was given

by Hungerford in [22]. See also Theorem 10.5 in [29]. The proof in the higher dimensional

case only requires minor adjustments and it will be omitted.

Lemma 2.3.1. For s = 0, 1, 2, ... let G(s) be a collection of closed dyadic cubes in Rn

with pairwise disjoint interiors. Assume that the families are nested, that is, for every

Q ∈ G(s + 1) there is Q̃ ∈ G(s) with Q ⊂ Q̃. Suppose that there exist two positive

constants 0 < P < C < 1 such that the following two conditions hold:

(a) For any cube Q ∈ G(s+ 1) with Q ⊂ Q̃ ∈ G(s) one has |Q| ≤ P |Q̃|.

(b) For any Q̃ ∈ G(s) one has ∑
|Q| ≥ C|Q̃|

where the sum is taken over all cubes Q ∈ G(s+ 1) contained in Q̃.

Let E(s) =
⋃
Q, where the union is taken over all cubes in G(s) and E ≡

⋂∞
s=0E(s).

Then dimE ≥ n(1− logP C).

The next auxiliary result is the building block of the Cantor set on which the set has

a fixed density.
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Lemma 2.3.2. Let A be an ω-smooth set of Rn with 0 < |A ∩ [0, 1]n| < 1. Let Q be a

dyadic cube. Fix a constant ε > 0 such that nω(l(Q)) < ε < min{D(Q), 1 −D(Q)}. Let

A(Q) be the family of maximal dyadic cubes Qk contained in Q such that

|D(Qk)−D(Q)| ≥ ε (2.3.1)

Then:

(a) for any Qk ∈ A(Q) one has

|Qk| ≤ 2−ε/ω(l(Q))|Q|

(b) let A+(Q) (respectively A−(Q)) be the subfamily of A(Q) formed by those cubes Qk ∈

A(Q) for which D(Qk)−D(Q) ≥ ε (respectively D(Q)−D(Qk) ≥ ε); then

∑
|Qk| ≥ |Q|/4

where the sum is taken over all the cubes Qk ∈ A+(Q) (respectively Qk ∈ A−(Q)).

Proof. If Q1 ⊂ Q2 ⊂ Q are two dyadic cubes with l(Q1) = l(Q2)/2 then |D(Q1)−D(Q2)| ≤

nω(l(Q)). So if (2.3.1) holds, one deduces that log2 l(Qk)−1 ≥ log2 l(Q)−1 + ε/nω(l(Q)).

Therefore, (a) is proved.

To prove (b), we observe first that, by Lebesgue Density Theorem, one has
∑
A(Q)

|Qk| = |Q|.

Also, ∑
A(Q)

(D(Qk)−D(Q))|Qk| = 0 (2.3.2)

We argue by contradiction. Assume that
∑

Qk∈A+(Q)

|Qk| < |Q|/4 and hence
∑

Qk∈A−(Q)

|Qk| ≥

3|Q|/4, which gives us

∑
Qk∈A−(Q)

(D(Qk)−D(Q))|Qk| ≤ −3ε|Q|/4
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The maximality of Qk tells us that |D(Qk)−D(Q)| ≤ ε+ nω(l(Q)) < 2ε. Therefore

∑
Qk∈A+(Q)

(D(Qk)−D(Q))|Qk| ≤ ε|Q|/2

which contradicts (2.3.2). The same argument works for A−(Q).

2.3.2 The dyadic case

Our next goal is to prove a dyadic version of Theorem 2.1.1, which already contains its

core. Let Qk(x) be the dyadic cube of generation k which contains the point x ∈ Rn.

Proposition 2.3.3. Let A be a smooth set in Rn with 0 < |A∩ [0, 1]n| < 1. For 0 < α < 1

consider the set E1(A,α) =
{
x ∈ [0, 1]n : lim

k→∞
D(Qk(x)) = α

}
. Then dimE1(A,α) = n.

Proof. Fix 0 < α < 1. A Cantor type set contained in E1(A,α) will be constructed and

Lemma 2.3.1 will be used to calculate its Hausdorff dimension. The Cantor type set will

be constructed using generations G(s) which will be defined using Lemma 2.3.2, yielding

the estimates appearing in Lemma 2.3.1.

Given the smooth set A ⊂ Rn consider the function

ω(t) = sup |D(Q)−D(Q′)|, 0 < t ≤ 1

where the supremum is taken over all pair of consecutive cubes Q and Q′ of the same

sidelength l(Q) = l(Q′) ≤ t. Observe that limω(t) = 0 as t→ 0. Pick a positive integer k0

such that ω(2−k0) < min{α, 1− α}/20. Define an increasing sequence {ck} with ck →∞

as k → ∞ and ck ≥ 2n for any k, satisfying εk = ckω(2−k−k0) → 0 as k → ∞. We can

also assume εk < min{α, 1 − α}/10 for any k = 1, 2... Since 0 < |A ∩ [0, 1]n| < 1, there

are some small dyadic cubes in [0, 1]n with density close to 0 and others with density

close to 1. Since A is smooth, we can choose a dyadic cube Q1 with l(Q1) ≤ 2−k0−1

and |D(Q1) − α| < ε1/2. Then define the first generation G(1) = {Q1}. The next

generations are constructed inductively as follows. Assume that the k-th generation G(k)

has been defined so that the following two conditions are satisfied: l(Q) ≤ 2−k−k0 and
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|D(Q) − α| < εk/2 for any cube Q ∈ G(k). The generation G(k + 1) is constructed in

two steps. Roughly speaking, we first find cubes whose density is far away from α and

later we find subcubes with density close to α. For Q ∈ G(k) consider the family R(Q) of

maximal dyadic cubes R ⊂ Q such that |D(R)−D(Q)| ≥ εk. Observe that, by Lebesgue

Density Theorem,
∑
|R| = |Q|, where the sum is taken over all cubes R ∈ R(Q). Fix

R ∈ R(Q). Since the set A is ω-smooth, the difference of densities between two dyadic

cubes Q1 ⊂ Q2 ⊂ Q, with l(Q2) = 2l(Q1), is smaller than nω(l(Q)). Hence to achieve

such a cube R we need to go through at least εk/nω(2−k−k0) = ck/n dyadic steps. Hence

|R| ≤ 2−ck |Q| (2.3.3)

The maximality and the estimate l(Q) ≤ 2−k−k0 give that |D(R) − D(Q)| ≤ εk +

nω(2−k−k0−1). Since

|D(R)− α| > εk/2 > nω(2−k−k0) ≥ nω(l(R))

one can apply Lemma 2.3.2 with the parameter ε = |D(R)− α|. In this way, one obtains

two families A−(R) and A+(R) of dyadic cubes contained in R, according to whether

their densities are smaller or bigger than D(R), but we will only be interested on one

of them which will be called Gk+1(R). If D(R) > α we choose Gk+1(R) = A−(R).

Otherwise, take Gk+1(R) = A+(R). Fix, now, Q∗ ∈ Gk+1(R). The maximality gives that

|D(Q∗) − α| ≤ nω(l(R)). Since l(R) ≤ 2−k−k0−1 we deduce that |D(Q∗) − α| < εk+1/2.

Also, l(Q∗) < l(R)/2 ≤ 2−k−k0−1. Notice that any dyadic cube Q̃ with Q∗ ⊂ Q̃ ⊂ Q

satisfies

|D(Q̃)− α| ≤ 6εk (2.3.4)

The generation G(k + 1) is defined as

G(k + 1) =
⋃

Q∈G(k)

⋃
R∈R(Q)

Gk+1(R)
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Next we will compute the constants appearing in Lemma 2.3.1. Let Q ∈ G(k) and

R ∈ R(Q). Part (b) of Lemma 2.3.2 says that
∑
|Qj | ≥ |R|/4 where the sum is taken

over all cubes Qj ∈ Gk+1(R). Since
∑
R(Q)

|R| = |Q| one deduces that

∑
|Qj | ≥ |Q|/4 (2.3.5)

where the sum is taken over all cubes Qj ∈ G(k + 1), Qj ⊂ Q. Also, if Qj ∈ G(k + 1) and

Qj ⊂ Q ∈ G(k), estimate (2.3.3) guarantees that

|Qj | ≤ 2−ck |Q| (2.3.6)

For k = 1, 2... let E(k) be the union of the cubes of the family G(k) and let E =
⋂
E(k)

be the corresponding Cantor type set.

Next we show that E is contained in E1(A,α). To do this, fix x ∈ E and for any

k = 1, 2, ... pick the cube Qk ∈ G(k) containing x. Let Q be a dyadic cube which contains

x, and k the integer for which Qk+1 ⊂ Q ⊂ Qk. Observe that k → ∞ as l(Q) → 0. By

(2.3.4) one deduces that |D(Q)− α| ≤ 6εk and therefore x ∈ E1(A,α).

Finally, we apply Lemma 2.3.1 to show that the dimension of E is n. Actually (2.3.5)

and (2.3.6) give that one can take C = 1/4 and P = 2−ck in Lemma 2.3.1. Hence, the

dimension of E is bigger than n(1 − (2/ck)). Since ck → ∞ as k → ∞, we deduce that

dimE = n.

2.3.3 Affine control and Proof of Theorem 2.1.1

We want to study the density of a smooth set in non dyadic cubes. The proof of Theo-

rem 2.1.1 will be based on Proposition 2.3.3 and on the following auxiliary result on the

behavior of the densities with respect to affine perturbations.

Lemma 2.3.4. Let A be a smooth set in Rn. Consider the function

ω(t) = sup |D(Q)−D(Q′)|
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where the supremum is taken over all pairs of consecutive cubes Q,Q′ ⊂ Rn, of sidelength

l(Q) = l(Q′) ≤ t.

(a) Let Q, Q̃ be two cubes in Rn with non empty intersection such that l(Q) = l(Q̃). Then

|D(Q)−D(Q̃)| ≤ 3n2ω(l(Q))

(b) Let Q be a cube in Rn and let tQ denote the cube with the same center as Q and

sidelength tl(Q). Then for any 1 ≤ t ≤ 2 one has

|D(Q)−D(tQ)| ≤ c(n)ω(l(Q))

Here c(n) is a constant which only depends on the dimension.

Proof. To prove (a), suppose, without loss of generality, that Q = [0, 1]n. Let Q′ =

[x, 1 + x]× [0, 1]n−1 where −1 < x < 1. We will show that

|D(Q)−D(Q′)| ≤ 3nω(1) (2.3.7)

Since any Q′ intersecting Q is of the form Q′ = [x1, 1 + x1] × ... × [xn, 1 + xn] part (a)

follows using (2.3.7) n times.

To show (2.3.7), decompose [x, 1 + x] into dyadic intervals, that is, [x, 1 + x] =
⋃
Ik,

where Ik is a dyadic interval of length 2−k for k = 1, 2, ... Consider the parallelepiped Rk =

Ik× [0, 1]n−1 and the density D(Rk) of the set A on Rk, meaning, D(Rk) = |Rk ∩A|/|Rk|,

k = 1, 2.... The set Rk can be split into a family Fk of 2k(n−1) pairwise disjoint cubes S

of sidelength 2−k. Since |D(S)−D(Q)| ≤ nω(1)(k + 1) for any S ∈ Fk and D(Rk) is the

mean of D(S), S ∈ Fk, we deduce that |D(Rk)−D(Q)| ≤ nω(1)(k + 1). Since

D(Q′) =
∞∑
k=1

2−kD(Rk)

we deduce that |D(Q′)−D(Q)| ≤ 3nω(1) which is (2.3.7).

We turn now to (b). We can assume Q = [−1/2, 1/2)n. Consider the binary decom-

position of t, that is, t = 1 +
∞∑
k=1

tk2−k, with tk ∈ {0, 1}. For m = 1, 2, ... let Qm be
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the cube with the same center as Q but with sidelength l(Qm) = 1 +
m∑
k=1

tk2−k. Then

tQ =
∞⋃
m=0

Rm where R0 ≡ Q0 ≡ Q and Rm = Qm\Qm−1 for m ≥ 1. So for m ≥ 1, Rm

is empty whenever tm = 0 and otherwise we will estimate |D(Rm) − D(Q)|. With this

aim assume that tm = 1 and split Rm into a family Fm of pairwise disjoint cubes S of

sidelength 2−m−1. Thus, |D(S)−D(Q)| ≤ (n(m+ 1) + 1)ω(l(Q)) for any S ∈ Fm. Since

D(Rm) is the mean of D(S), S ∈ Fm, this implies that

|D(Rm)−D(Q)| ≤ (n(m+ 1) + 1)ω(l(Q)) m = 1, 2... (2.3.8)

As we also have

D(tQ) =
∞∑
m=0

|Rm|
|tQ|

D(Rm)

using (2.3.8) we obtain

|D(tQ)−D(Q)| ≤ ω(l(Q))
∞∑
m=0

|Rm|
|tQ|

(n(m+ 1) + 1)

Since |Rm| ≤ C(n)2−m the sum is convergent and the proof is complete.

We are now ready to prove Theorem 2.1.1.

Proof of Theorem 2.1.1. Applying Proposition 2.3.3, we only need to check that

lim
h→0

D(Q(x, h)) = α

for any x ∈ E1(A,α). Given 0 < h < 1/2, let k be the unique integer such that 2−k ≤ h <

2−k+1. Consider the cube h2kQk(x) and apply Lemma 2.3.4 to deduce that

lim
h→0
|D(Q(x, h))−D(Qk(x))| = 0
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2.4 Equivalent definitions and invariance

The definition of a smooth set involves the density of the set on the grid of all cubes

in Rn with sides parallel to the axes. The main purpose of this section is to study the

situation for perturbations of this grid of cubes. The first step consists of considering

linear deformations of the family of cubes, obtaining a certain grid of parallelepipeds in

Rn. Afterwards, we will consider the more general case of the grid arising from a bilipschitz

image of the family of cubes.

Proposition 2.4.1. Let φ : Rn → Rn be a linear mapping, and let A ⊂ Rn be a smooth

set. Then φ(A) is smooth.

Proof. We can assume that φ is a linear isomorphism. Given the smooth set A consider

ω(t) = sup |D(Q)−D(Q′)|, 0 < t ≤ 1

where the supremum is taken over all pairs of consecutive cubes Q and Q′ of the same

sidelength l(Q) = l(Q′) ≤ t. Since |φ(A)∩Q| = c(φ)|A∩φ−1(Q)|, where c(φ) is a constant

which only depends on φ, it is sufficient to show the smoothness condition, taking, instead

of cubes, their preimages through φ, that is

lim
|Q|→0

|A ∩ φ−1(Q)| − |A ∩ φ−1(Q′)|
|Q|

= 0 (2.4.1)

Apply the Singular Value Decomposition (see, for instance, Theorem 7.3.5 on [21]) to φ,

which allows us to write φ = V ΣW where V,W are orthogonal mappings and Σ is a

dilation, that is, the matrix of Σ is diagonal. Moreover the elements of the diagonal of Σ

are the positive square roots of the eigenvalues of φφ∗. It will prove useful later that the

elements λ ∈ R of the diagonal of Σ verify ||φ−1|| ≤ |λ| ≤ ||φ||, where ||φ|| denotes the

norm of φ as a linear mapping from Rn to Rn. So, we proceed to prove the Proposition

for these two cases: (a) φ is an orthogonal mapping and (b) φ is a dilation.

We study first case (a). As any orthogonal application is either a rotation or the
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composition of a rotation and a reflection by a subspace parallel to the axes (leaving

invariant the grid of cubes), we can reduce the orthogonal case to rotations. Furthermore,

we can assume that φ is the identity on a subspace of dimension n−2 generated by elements

of the canonical basis of Rn and a rotation of angle α ∈ [π/6, π/4] on its orthogonal

complement. Actually, any rotation can be written as the composition of at most 3n(n−1)

rotations of this form (see, for instance, [21]). Let Q̃ and Q̃′ be the cubes centered at the

centers of φ−1(Q) and φ−1(Q′),respectively, of sidelength l(Q) with sides parallel to the

axes. Observe that Q̃′ is a translation of Q̃ by a vector of norm less than nl(Q), so Lemma

2.3.4 implies that |D(Q̃) − D(Q̃′)| ≤ 3n3ω(l(Q)). Hence, to show (2.4.1) it is enough to

prove that

lim
|Q|→0

|A ∩ φ−1(Q)| − |A ∩ Q̃|
|Q|

= 0 (2.4.2)

We study first the case n = 2. We are going to decompose φ−1(Q) into squares as follows.

Let Q0 be the maximal square with sides parallel to the axes contained in φ−1(Q) and write

Figure 2.4.1: The shaded squares are the eight elements of F1 for α = π/6.

F0 = {Q0}. Observe that the ratio of the area ofQ0 to that of φ−1(Q) is C = 1/(1+sin(2α))

and that 0.5 ≤ C ≤ 4− 2
√

3. Then φ−1(Q)\Q0 is the union of eight right-angled triangles

whose hypothenuse is contained in ∂φ−1(Q). Take again the maximal square with sides
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parallel to the axes contained in each triangle, obtaining a family F1 of eight squares of

total area (1− C)2|Q|. See Figure 2.4.1. Thus φ−1(Q)\(F0 ∪ F1) is the union of 16 right-

angled triangles and we continue inductively, constructing, for k = 1, 2..., a family Fk of

2k+2 squares of total area Ck−1(1− C)2|Q|. Observe that

D(φ−1(Q))−D(Q̃) =
∑
k

∑
R∈Fk

|R|
|Q|

(D(R)−D(Q̃))

Let R be a square in Fk. Since A is smooth, there exists a constant C1 > 0 such that

|D(R)−D(Q̃)| ≤ C1kω(l(Q)). We deduce that

|D(φ−1(Q))−D(Q̃)| ≤ C1ω(l(Q))
∑
k

k

∣∣∣⋃Fk
R
∣∣∣

|φ−1(Q)|
≤

≤ C1(1− C)2C−1ω(l(Q))
∑
k

kCk = C1ω(l(Q))

This implies (2.4.2) and finishes the proof in dimension 2 when φ is a rotation.

We now study the higher dimensional case n > 2. Recall that φ−1 is a rotation on

a two dimensional subspace E and φ−1 is the identity on its orthogonal complement.

Without loss of generality, we may assume that E is generated by the two first vectors

of the canonical basis of Rn. Consider the orthogonal projection Π of Rn onto E and

decompose Π(φ−1(Q)) as in the two dimensional case, that is Π(φ−1(Q)) =
∞⋃
k=0

Fk, where

Fk is, as before, the union of 2k+2 (2 dimensional) squares with sides parallel to the axes

of total area Ck−1(1 − C)2l(Q)2. Since φ−1(Q) = Π(φ−1(Q)) × B where B is a cube in

Rn−2 with sides parallel to the axes, we have φ−1(Q) =
∞⋃
k=0

Gk where Gk =
⋃
R∈Fk

R×B.

Using the smoothness condition one can show that there exists a constant C2 > 0 such

that |D(R×B)−D(Q̃)| ≤ C2kω(l(Q)) for any square R ∈ Fk. Then

|D(φ−1(Q))−D(Q̃)| ≤ C2ω(l(Q))
∞∑
k=0

k
|Gk|
|Q|

Since |Gk| = (1 − C)2Ck−1|Q| with 0.5 < C < 4 − 2
√

3 we deduce that |D(φ−1(Q)) −
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D(Q̃)| ≤ C2ω(l(Q)) and thus (2.4.1) is satisfied, completing the proof in the case that φ

is a rotation.

Let us now assume that φ is a dilation, that is, φ has a diagonal matrix. Without loss

of generality we can assume φ−1(x1, ..., xn) = (λx1, x2, ..., xn) for some λ ∈ R. Assume

λ > 1. To prove (2.4.1) it is sufficient to find a constant C(λ) > 0 such that for any cube

Q ⊂ Rn and any cube Q̃ ⊂ φ−1(Q) with l(Q̃) = l(Q) we have

|D(φ−1(Q))−D(Q̃)| ≤ C(λ)ω(l(Q)) (2.4.3)

The proof of (2.4.3) resembles that of part (a) of Lemma 2.3.4. We can assume that

Q̃ is the unit cube. Let [λ] denote the integer part of λ and write the interval [[λ], λ)

as a union of maximal dyadic intervals {Ik} with |Ik| = 2−k, that is, [[λ], λ) =
⋃
Ik.

Consider Rk = Ik × [0, 1]n−1, k = 1, 2, .... Observe that the variation in density in

|D(φ−1(Q))−D(Q̃)| is equal to

[λ]−1∑
j=0

1
λ

(
D([j, j + 1)× [0, 1]n−1)−D(Q̃)

)
+
∞∑
k=1

2−k

λ
(D(Rk)−D(Q̃))

For j = 0, 1, ..., [λ] − 1, we have |D([j, j + 1) × [0, 1]n−1) −D(Q̃)| ≤ λω(1). Since Rk can

be split into a family of dyadic cubes of generation k, we deduce that |D(Rk)−D(Q̃)| ≤

(λ+ 1 + k)ω(1). Therefore

|D(φ−1(Q))−D(Q̃)| ≤ (λ+ 1 + 3/λ)ω(1)

which proves (2.4.3). An analogous argument can be used if λ < 1.

Remark 2.4.2. The first part of the proof shows that there exists a constant C = C(n) > 0

such that for any rotation φ in Rn and any ω-smooth set A ⊂ Rn, its image φ(A) is

Cω-smooth. When φ is a dilation in a single direction with parameter λ ∈ R and A ⊂ Rn

is an ω-smooth set, the proof shows that φ(A) is C(λ)ω-smooth, with C(λ) ≤ 4(λ+ 1/λ).

Remark 2.4.3. Let {Ti} be a countable family of linear isomorphisms in Rn for which
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there exists a constant M > 0 such that M−1||x|| ≤ ||Ti(x)|| ≤M ||x|| for any x ∈ Rn and

i = 1, 2... Then there exists a constant C = C(M,n) > 0 such that for any ω-smooth set

A and any i one has

||Ti(Q) ∩A| − |Ti(Q′) ∩A||
|Q|

≤ Cω(l(Q))

Remark 2.4.4. Proposition 2.4.1 and part (a) of Lemma 2.3.4 give that affine mappings

preserve smooth sets.

We could have defined smooth sets using the grid of dyadic cubes or, in the opposite

direction, using the grid of all cubes, even without taking them parallel to the axes. The

previous results imply that both grids would lead to equivalent definitions.

Corollary 2.4.5. Let A be a measurable set in Rn. The following are equivalent:

(a) For any ε > 0, there exists δ > 0 such that |D(Q) − D(Q′)| ≤ ε for any pair of

consecutive dyadic cubes Q,Q′, of the same side length l(Q) = l(Q′) < δ.

(b) For any ε > 0, there exists δ > 0 such that |D(Q) − D(Q′)| ≤ ε for any pair of

consecutive cubes Q,Q′ with sides non necessarily parallel to the axes, of the same

side length l(Q) = l(Q′) < δ.

(c) The measurable set A is a smooth set.

Proof. Since any cube in Rn is the affine image of a dyadic cube, Lemma 2.3.4 shows that

(a) implies (b). The other implications are obvious.

Applying locally Proposition 2.4.1, we can extend it to certain diffeomorphisms, but

we need extra assumptions to guarantee that the local bounds that we obtain are satisfied

uniformly, and this is the main idea behind the proof of Theorem 2.1.2, to which we

proceed now.

Proof of Theorem 2.1.2. Since φ is bilipschitz, |φ(Q)| is comparable to |Q|. Also, |Jφ| is

uniformly bounded from above and below. Therefore, Jφ−1 is uniformly continuous as
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well. We will also need that

lim
|Q|→0

|φ(Q)| − |φ(Q′)|
|Q|

= 0 (2.4.4)

To show this, observe that this quantity is

1
|Q|

(∫
Q
Jφ−

∫
Q′
Jφ

)

which tends to 0 uniformly when l(Q)→ 0 because of the uniform continuity of Jφ.

We first show that (b) is equivalent to (c). A change of variables gives that

|φ−1(A) ∩Q| − |φ−1(A) ∩Q′| =
∫
Jφ−1(x)

(
1A∩φ(Q)(x)− 1A∩φ(Q′)(x)

)
dx

Let p(Q) be a point in φ(Q) ∩ φ(Q′). Given ε > 0, if l(Q) is sufficiently small one has

||Jφ−1(x) − Jφ−1(p(Q))|| < ε for any x ∈ φ(Q). Hence, the uniform continuity of Jφ−1

gives us that

lim
|Q|→0

|φ−1(A) ∩Q| − |φ−1(A) ∩Q′|
|Q|

is equal to

lim
|Q|→0

(|A ∩ φ(Q)| − |A ∩ φ(Q′)|) Jφ−1(p(Q))
|Q|

Let D(φ(Q)) be the density of A in φ(Q), that is, D(φ(Q)) = |A∩φ(Q)|/|φ(Q)|. Applying

(2.4.4) we have that this last limit is equal to

lim
|Q|→0

(
D(φ(Q))−D(φ(Q′))

)
Jφ−1(p(Q))

Since Jφ−1 is uniformly bounded both from above and below, we deduce that (b) and (c)

are equivalent.

We now show that (a) implies (c). Observe that, applying (2.4.4), it is sufficient to

show

lim
|Q|→0

|A ∩ φ(Q)| − |A ∩ φ(Q′)|
|Q|

= 0 (2.4.5)
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Let z(Q) be a point in Q with dyadic coordinates. Let T = T (Q) be the affine mapping

defined by T (x) = φ(z(Q)) +Dφ(z(Q))(x− z(Q)), for any x ∈ Rn, where Dφ denotes the

differential of φ. Given ε > 0, the uniform continuity of Jφ tells that |φ(x)−T (x)| ≤ εl(Q),

for any x ∈ Q ∪ Q′ if l(Q) is sufficiently small. There thus exists a constant C1(n) > 0

such that if l(Q) is sufficiently small then

| (φ(Q)\T (Q)) ∪ (T (Q)\φ(Q)) | ≤ C1(n)ε|Q|

and similarly for Q′. So we deduce that (2.4.5) is equivalent to

lim
|Q|→0

|A ∩ T (Q)| − |A ∩ T (Q′)|
|Q|

= 0 (2.4.6)

Now (2.4.6) follows from Remark 2.4.3 because, since φ is bilipschitz, there exists a con-

stant M > 0 such that M−1||x|| ≤ ||Dφ(z(Q))(x))|| ≤ M ||x|| for any x ∈ Rn and any

cube Q in Rn. This finishes the proof that (a) implies (c). The proof that (b) implies (a)

follows applying the previous part to φ−1.

To end this chapter we give, now, the proof of Theorem 2.1.4.

Proof. Let A ⊂ R be a nontrivial smooth set and 0 < α < 1. Then, by Theorem 2.1.1,

there exists a point x0 ∈ E(A,α). We are going to define a bilipschitz function φ : R→ R

such that φ(A) is not smooth.

To do so, we choose φ as the only continuous function with φ(x0) = x0 satisfying:

φ′(x) a.e.= 1 + 1(−∞,x0)\A(x) (2.4.7)

Essentially, if x ∈ A ∪ (x0,∞) then φ′(x) = 1, and otherwise φ′(x) = 2. As a result, φ is

bilipschitz. Also, φ|(x0,∞) = Id.

We need to see that φ(A) is not smooth. Denote I = [x0− h, x0] and I ′ = [x0, x0 + h].
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By changing variables it is clear that:

|φ(A) ∩ I|
|I|

− |φ(A) ∩ I ′|
|I ′|

=
1
|I|

(∫
A∩φ−1(I)

φ′(t)dt−
∫
A∩φ−1(I′)

φ′(t)dt

)
(2.4.8)

That is, as φ′ is 1 on almost every point of A, the same as:

|A ∩ φ−1(I)|
|I|

− |A ∩ φ
−1(I ′)|
|I ′|

As φ is the identity over (x0,∞), so it is over I ′, and hence the previous quantity is

equal to:

D(φ−1(I)) · |φ
−1(I)|
|I|

−D(I ′)

If the size of I is small enough, then D(φ−1(I)) and D(I) are close to each other, and

to D(I ′). As x0 ∈ E(A,α), these values will be close to α.

Hence, if φ(A) is smooth, we must have that |φ
−1(I)|
|I| converges uniformly to 1 as h = |I|

tends to 0.

It remains to show this contradicts 0 < α < 1. By the Change of Variable Theorem,

we have:
|φ−1(I)|
|I|

=
|I ∩ φ(A)|
|I|

+
1
2
|I\φ(A)|
|I|

It is easy to see the right hand side is equal to:

1
2

+
1
2
|I ∩ φ(A)|
|I|

Applying again the Change of Variable Theorem we get:

|φ−1(I)|
|I|

=
1
2

+
1
2
|A ∩ φ−1(I)|

|I|

An algebraic manipulation and taking limits as |I| tends to 0, gives α = 1.



Chapter 3

Sampling in the Dirichlet space

3.1 Introduction

3.1.1 Sampling and interpolation in the Dirichlet space

The Dirichlet space is the space of analytic functions f(z) =
∑∞

k=0 akz
k for z ∈ D, whose

Taylor coefficients satisfy

‖f‖2α =
∞∑
k=0

(k + 1)|ak|2 <∞. (3.1.1)

It corresponds with the space of functions whose derivatives have finite area integral:

∫
D
|f ′(z)|2dA(z) <∞.

Recent surveys concerning the Dirichlet space D include [3] and [33].

Given a sequence Z of points in D, consider a space of sequences `, such that for all

f ∈ D, RZ(f) = {f(zn)} is an element of `. Then the operator RZ : D → ` is well defined.

We call RZ the restriction operator induced by Z from D into `. We say that a sequence

Z ⊂ D is a sequence of interpolation (from D onto `) if the restriction operator is bounded

and surjective. Analogously, we say that Z ⊂ D is a sampling sequence (from D into `) if

there exist positive constants C1 and C2 such that, for all f ∈ D we have:

31
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C1||f ||2D ≤ ||RZ(f)||2` ≤ C2||f ||2D (3.1.2)

3.1.2 Variational approach to the Dirichlet space

Marshall and Sundberg ([25]) characterized sequences of interpolation, from the Dirichlet

space into `2 with a certain weight. The same result was proved by Bishop ([5]), and in

two different ways by Boe ([7] and [8]). In order to study sampling sequences, it may be

of interest to search for a space of sequences which is more adequate to D, a space that

mimics some properties of the Dirichlet space.

Our focus will be on a space of sequences ` with the property that the restriction

operator RZ induced by any separated sequence Z from D into ` is bounded.

For this, we concentrate on the double integral description of the Dirichlet norm. It

is well known that for any function f in the Dirichlet space D with f(0) = 0 we have the

following identity of norms:

||f ||2D =
1
π

∫
D

∫
D

|f(z)− f(w)|2

|1− zw|4
dA(z)dA(w) (3.1.3)

For the sake of simplicity, during this chapter, we will deliberately ignore the term of

the norm that comes from the value of functions at z = 0. This assumption is equivalent

with working only with those functions f such that f(0) = 0.

It is by looking at a discrete version of (3.1.3) that we will construct the space of

sequences where the restriction operator will arrive. For this we need to introduce a last

basic concept which preserves the notions of distance and separation that are characteristic

of this environment. The pseudohyperbolic distance ρ between z and w in D is given by:

ρ(z, w) =
|z − w|
|1− zw|
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A transformation of this quantity is the hyperbolic distance β:

β(z, w) =
1
2

log
1 + ρ(z, w)
1− ρ(z, w)

Throughout the text we will denote by DH(z,R) the hyperbolic disk centered at z

of radius R, i.e., those points w ∈ D with β(z, w) < R. The most relevant fact that we

will use about such disks is that automorphisms of the unit disk take hyperbolic disks to

hyperbolic disks of the same radius.

We define a sequence Z = {zn}n∈N to be separated if there exists some R > 0 such

that, for any two different n and m in N, β(zn, zm) > R. If R is such a constant we say

that Z is R-separated. The optimal such R is the radius of separation. Given d > 0, we

say that a sequence Z = {zn} is d-dense if all points z ∈ D satisfy β(z, Z) < d. The

optimal such d is the radius of density.

Fix a separated sequence Z. Define ` = `2∆ to be the space of those sequences W =

{wn}n∈N ⊂ C with: ∑
n,k

|wn − wk|2(1− ρ(zn, zk)2)2 <∞

Remark 3.1.1. There is a more general statement than (3.1.3) in the context of Dirichlet-

type spaces. See [32] or [37]. All that we are going to do may, from there, be done also for

these spaces, leading to similar results, but we concentrate only on the Dirichlet space.

In Section 2 we start with some basics about sampling and interpolation between our

pair of spaces. We will firstly show that separated sequences generate bounded restriction

operators between D and `2∆. This justifies the choice of space of values, `2∆. We also show

that there are no infinite separated sequences of interpolation. To conclude the section,

we prove that a sampling sequence needs to be d-dense for some value of d and that there

exists a small enough radius d such that d-density is also sufficient for sampling.

To conclude, in Section 3, we deepen into sampling sequences, by analyzing properties

of harmonic measure in certain domains Ω associated to a sequence Z. For a separated

sequence Z = {zn}n∈N, consider the domain Ω = D\ ∪n Dn, where Dn = DH(zn, d) and
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let ωz be the harmonic measure in Ω. We will prove the main result in this chapter, saying

that a fast enough decay of the averages, over z ∈ Ω, of ωz(∂Dn) as n goes to infinity, is

sufficient for the sequence Z to be sampling.

By C, we will denote a constant whose value may change from line to line.

3.2 Basic results

Given a function f ∈ D, define the Z-norm of f as:

||f ||2Z =
∑
n,k

|f(zn)− f(zk)|2(1− |zn|2)2(1− |zk|2)2

|1− znzk|4
=

=
∑
n,k

|f(zn)− f(zk)|2(1− ρ(zn, zk)2)2

With the notation that we have introduced, Z is a sampling sequence if and only if

there exists positive constants C0, C1, so that for all f ∈ D we have:

C0||f ||2D ≤ ||f ||2Z ≤ C1||f ||2D

It is worth mentioning that this notion is conformally invariant, that is, Z is a sampling

sequence if and only if so is τ(Z), for any automorphism τ of the unit disc. Moreover, the

sampling constants C1 and C2 remain unchanged. The restriction operator boundedness,

needed also for interpolation, is the second of these inequalities.

Proposition 3.2.1. For any separated sequence Z the restriction operator RZ from D

into `2∆, is bounded.

Proof. The sequence Z = {zn}n∈N is separated and so, for some C > 0, we have:

inf
n6=m

β(zn, zm) > C

Thus, we can define a sequence of disjoint disks Dn = {z : β(z, zn) ≤ C/2}, satisfying

that for all f in D:
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∫
D

∫
D

|f(z)− f(w)|2

|1− zw|4
dA(z)dA(w) ≥

∑
n,m

∫
Dn

∫
Dm

|f(z)− f(w)|2

|1− zw|4
dA(z)dA(w)

Using the subharmonicity of the argument of the integrals we can see that, for some

constants C0, C1 > 0, the right hand side in the previous inequality is greater or equal to:

C0

∑
n,m

(diamDn)2 · (diamDm)2 · |f(zn)− f(zm)|2

|1− znzm|4
≥ C1||f ||2Z (3.2.1)

Hence, from now on, unless otherwise stated, we will assume for sequences to be

separated.

Let us mention, before going further, a well known property of the Dirichlet space (see,

for instance, [38]) that we will make use of. Functions f in D satisfy a hyperbolic version

of a Lipschitz-1/2 condition:

Lemma 3.2.2. There exists a universal constant C > 0 such that, for all f ∈ D, and all

z, w ∈ D, the following inequality holds:

|f(z)− f(w)|2 ≤ C||f ||2Dβ(z, w)

Now we will prove another basic fact:

Proposition 3.2.3. There are no sequences of interpolation from D into `2∆.

Proof. Suppose Z is a sequence of interpolation. By an automorphism of the disk, we can

suppose the first point of Z, z1 is 0.

Now, define W = {w1, w2} with w1 = 0 and w2 = 1
1−|z2| . As the norm squared of

W in `2∆ is at least 2 and Z is of interpolation, there exists a function f ∈ D, such that

||f ||2D ≤ C, for some C > 0, and moreover f(z1) = 0 and f(z2) = w2.
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Hence, from (3.2.2) we see:

1
(1− |z2|)2

≤ Cβ(0, z2)

This implies that the points of Z have to be at a positive fixed distance from the

boundary of D and it is a separated sequence. Hence Z must be finite.

Finally, now we will show a necessary and a sufficient condition for sampling. We don’t

know whether any of the two conditions is equivalent with sampling.

Proposition 3.2.4. (a) Let Z = {zn} be a separated sequence. If Z is sampling then it

is d-dense, for some d > 0.

(b) There exists a constant ε > 0, with the property that if Z is a sequence for which

there exists 0 < R < ε such that Z is R-dense, then Z is sampling.

Before we start with the proof of the proposition, we need to define notation. Given a

point z ∈ D\{0}, consider the Carleson square, Q(z) given by:

Q(z) = {reiθ : r ≥ 1− |z|, |θ −Arg(z)| < 2π(1− |z|)}

For 0 < λ < 1/(1 − |z|), λQ(z) means the Carleson square λQ(z) = Q(zλ) where zλ =

z
|z|(1− λ(1− |z|)).

Proof. Part (a). Suppose there is a sampling sequence Z that is not d-dense for any

d. This means that there exists a sequence of points in the unit disk {ξk}k∈N, such that

DH(ξk, k) ∩ Z = ∅. Let τk be an automorphism of the disk such that τk(ξk) = 0. The

image of DH(ξk, k) ∩ Z under τk is DH(0, k) ∩ {τk(zn)} which is, therefore, empty.

Now take, for instance, the function f(z) = z. One can check ||f ||2D = π.

First, as the definition of sampling sequence is conformally invariant, we have:

||τk(z)||2D = ||z||2D ≤ C
∑
n,m

|τk(zn)− τk(zm)|2(1− ρ2(zn, zm))2
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Just applying the definition of ρ we get that the right hand side above equals:

C
∑
n

(1− |τk(zn)|2)2
∑
m

|τk(zn)− τk(zm)|2(1− |τk(zm)|2)2

|1− τk(zn)τk(zm)|4

The inner sum (the one in m) can be decomposed in the sum over those points zm

of the sequence whose image under τ falls on each dyadic expansion, Qj = 2jQ0, of the

square Q0 = Q(τk(zn)). This inner sum is bounded by:

C

log 1
1−|τk(zn)|∑
j=0

∑
zm∈Qj

22j(1− |τk(zn)|2)2(1− |τk(zm)|2)2

24j(1− |τk(zn)|2)4

For zm ∈ Qj , since Z is a separated sequence, there exists a constant C, such that one

has
∑

zm∈Qj (1 − |τk(zm)|2)2 ≤ C22j(1 − |τk(zn)|2)2. We see that the overall sum in j is

bounded by some constant times the upper limit of summation, log 1
1−|τk(zn)| .

What we have, altogether, is:

π = ||z||2D ≤ C
∑
n

(1− |τk(zn)|2)2 log
1

1− |τk(zn)|

Here, as {τk(zn)} is separated and at a hyperbolic distance away from 0 larger than k,

we get:

π ≤ C
∫

D\DH(0,k)
log

1
1− |w|

dA(w)

As the function is integrable over the domain, we obtain a contradiction.

Part (b). We are going to work with the expression of the Dirichlet norm in terms of

a double integral:

||f ||2D =
1
π

∫
D

∫
D

|f(z)− f(w)|2

|1− zw|4
dA(z)dA(w), f ∈ D, f(0) = 0

Decompose the unit disk D in a sequence of subsets {Qk} with pairwise disjoint interiors

so that D =
⋃
kQk and so that the hyperbolic diameter of Qk is smaller or equal to R but
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Qk ∩ Z 6= ∅. Pick zk ∈ Qk ∩ Z. We have the identity:

||f ||2D =
1
π

∑
n,k

∫
Qn

∫
Qk

|f(z)− f(w)|2

|1− zw|4
dA(z)dA(w)

We can add and subtract the same quantity inside the absolute value, obtaining:

1
π

∑
n,k

∫
Qn

∫
Qk

|f(zn)− f(zk) + f(z)− f(zn) + f(zk)− f(w)|2

|1− zw|4
dA(z)dA(w)

We can separate this integral in 3 pieces, pairing the elements in the modulus. The

triangular inequality yields that, for some constant C1 > 0:

||f ||2D ≤
1
πC1
||f ||2Z +

2
π

∑
n,k

∫
Qn

∫
Qk

|f(z)− f(zk)|2

|1− zw|4
dA(z)dA(w) (3.2.2)

Let us see that, when R is smaller than some fixed constant, the second term in the

right hand side is essentially irrelevant. As the Qk have disjoint interiors and cover D, for

some universal constant C2 > 0, we have:

∑
n,k

∫
Qn

∫
Qk

|f(z)− f(zk)|2

|1− zw|4
dA(z)dA(w) ≤ C2

∑
k

∫
Qk

|f(z)− f(zk)|2

(1− |z|2)2
dA(z) (3.2.3)

To bound the argument of this last integral, first we see that there is a constant C3 > 0

such that, for any z ∈ Qk, we have:

|z − zk| ≤ C3R(1− |zk|) (3.2.4)

This allows us to control the variation of f . By the Fundamental Theorem of Calculus,

we know:

|f(z)− f(zk)| ≤
∫ z

zk

|f ′(w)||dw| (3.2.5)
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Now, we want to use the subharmonicity of f ′, and for this, we need to extend Qk

from its center by a fixed number a > 1. Choose Q̃k = {z ∈ D : β(z,Qk) ≤ a − 1} Then

there exists c = c(a) such that for all w ∈ Qk we have:

|f ′(w)|2 ≤ c

∫
Q̃k
|f ′(z)|2∫

Q̃k
dA(z)

Every point in D is inside at least 1, and at most 4, squares of the form Q̃k, k ∈ N.

From (3.2.5), we obtain that:

|f(z)− f(zk)| ≤ c
∫ z

zk

(∫
Q̃k
|f ′(z)|2dA(z)∫
Q̃k
dA(z)

)1/2

|dw| (3.2.6)

Now, the arguments of the integrals inside the parenthesis are independent of w.

Putting together (3.2.4) and (3.2.6), we control the variation of f :

|f(z)− f(zk)| ≤ CC3R(1− |zk|)

(∫
Q̃k
|f ′(z)|2dA(z)∫
Q̃k
dA(z)

)1/2

(3.2.7)

If we go back to (3.2.3), when we integrate over the union of {Q̃k}k∈N, as a > 1, for

some constant C4 > 0 we have:

2
π

∑
n,k

∫
Qn

∫
Qk

|f(z)− f(zk)|2

|1− zw|4
dA(z)dA(w) ≤ C4R

2||f ||2D (3.2.8)

What we have seen, altogether is that:

||f ||2D ≤
1
πC1
||f ||2Z + C4R

2||f ||2D

If R < 1/
√
C4, then we can divide by (1− C4R

2):

||f ||2D ≤
1

πC1(1− C4R2)
||f ||2Z
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3.3 Harmonic measure and sampling inequality

Remember a sequence Z is d-dense, if any point of D is at a hyperbolic distance at most

d of Z. In the previous section we’ve seen that a d-dense sequence, with d close to 0, is a

sampling sequence.

Now we want to find a more quantitative property that can be explicitly measured.

Consider Z = {zn}, a separated sequence and d > 0, with
⋃
nDH(zn, d) = D. Because

of the equivalence of the norms in Remark 3.1.1, what we want to see is whether, for a

C > 0 depending only on the sequence and for any function f ∈ D, the following holds:

∑
n,m

|f(zn)− f(zm)|2(1− ρ(zn, zm)2)2 ≥ C
∫

D

∫
D

|f(z)− f(w)|2

|1− wz|4
dA(z)dA(w)

Call Dn = DH(zn, ε) for a certain fixed and small ε > 0, so for the sequence Z to be

2ε-separated (and hence, for the disks Dn to be disjoint).

Define now a domain Ω formed by the unit disk from which we remove the disks {Dn}

forming a champagne-type domain (see [1], [16], [28] and [30]):

Ω = D\

(⋃
n∈N

Dn

)
(3.3.1)

Now, as Ω satisfies the so called exterior cone condition, it is well known that the

Dirichlet problem is solvable in Ω, and so, given f ∈ C(∂Ω), there exists a unique harmonic

function u on the domain, such that u|∂Ω ≡ f . Moreover, by Radon’s Representation

Theorem, for any z ∈ Ω there exists a probability measure (called harmonic measure) ω

with the following property:

u(z) =
∫
∂Ω
f(ξ)dω(z, ξ,Ω)

Furthermore, given a subset E of the boundary, ω(z, E,Ω) coincides with the proba-

bility that a brownian motion starting from z leaves Ω for the first time through the set

E.
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Remark 3.3.1. This measure has been broadly studied, and in particular, in [1], necessary

and sufficient conditions are established for the domain Ω to satisfy that the harmonic

measure of the unit circle is zero.

For that, it is sufficient, for instance, that, the hyperbolic radius of the disks is a

constant, although sharper results are known (see [1] and [28]).

Consider the measure mu in ∂Ω defined by µ(E) =
∫

Ω ω(z, E,Ω)dA(z) for E ⊂ ∂Ω.

Let us see that we can use this measure to prove the central result in this section. We

will establish the sufficiency of the density with an additional hypothesis for the obtention

of the sampling inequality.

For a separated sequence Z, denote C(Z) the optimal constant C > 0 so that for any

ξ ∈ D we have: ∑
m

(1− |zm|2)2

|1− ξzm|4
≤ C

(1− |ξ|2)2

Clearly 0 < C(Z) < ∞, but its actual numerical value is relevant to the statement

that we prove.

Theorem 3.3.2. Let Z = {zn} ⊂ D be a separated sequence. Suppose there exists a

constant d > 0 such that Z is d-dense and there exists c <
√

π
16C(Z) , such that for all

m ∈ N, the following holds:

µ(∂Dm) ≤ c(1− |zm|2)2 (3.3.2)

Then Z is a sampling sequence.

Let Z be a separated sequence with radius of density d and radius of separation R.

The decay of µ in (3.3.2) can be shown to hold if both d and d/R are sufficiently small.

The proof is too technical to be included here.

The proof of Theorem 3.3.2 will build on that of Proposition 3.2.4.

Proof. First, define Ω as in (3.3.1) and observe that the function h(z, w) = |f(z)−f(w)|2
|1−wz|4 is

subharmonic in both parameters z, w ∈ D and hence, in Ω× Ω.
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From there, fixing z, w ∈ Ω, we have that:

h(z, w) =
|f(z)− f(w)|2

|1− wz|4
≤
∫
∂Ω

∫
∂Ω

|f(ξ)− f(η)|2

|1− ηξ|4
dω(z, ξ,Ω)dω(w, η,Ω)

Now, by the definition of µ, and integrating on both sides of the previous inequality,

we obtain:

∫
Ω

∫
Ω

|f(z)− f(w)|2

|1− wz|4
dA(z)dA(w) ≤

∫
∂Ω

∫
∂Ω

|f(ξ)− f(η)|2

|1− ηξ|4
dµ(ξ)dµ(η)

In this moment, we apply Remark 3.1.1 to see that ω(z, ∂D,Ω) = 0 for any z ∈ Ω. As a

result, the right hand side in the previous inequality is an integral over those components

of the boundary of Ω lying inside the unit disk:

∫
Ω

∫
Ω

|f(z)− f(w)|2

|1− wz|4
dA(z)dA(w) ≤

∑
n,m

∫
∂Dn

∫
∂Dm

|f(ξ)− f(η)|2

|1− ηξ|4
dµ(ξ)dµ(η)

Adding and subtracting f(zn) − f(zm) inside the modulus in the argument of the

integral, the right hand side in the previous inequality is also equal to:

∑
n,m

∫
∂Dn

∫
∂Dm

|f(ξ)− f(zn) + f(zn)− f(zm) + f(zm)− f(η)|2

|1− ηξ|4
dµ(ξ)dµ(η)

Separate that integral, as in the proof of Theorem 3.2.4 part b), in 3 pieces, two

of which are symmetric (in terms of the roles played by the variables) and the other is

controlled by a constant C times the norm ||f ||2Z (the constant depends now on c, as we

substitute the element of area by dµ).

The remainder will be short once we prove an auxiliar lemma:

Lemma 3.3.3. Suppose that there exists c <
√

π
16C(Z) such that for all m ∈ N we have:

µ(∂Dm) ≤ c(1− |zm|2)2
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Then there exists a t = t(c, Z), such that 0 < t < 1 and:

∑
n,m

∫
∂Dn

∫
∂Dm

|f(ξ)− f(zn)|2

|1− ηξ|4
dµ(ξ)dµ(η) ≤ t||f ||2D

Proof of lemma. In the first place, we take out, from the inner integral, the term which

does not depend on m:

∑
n,m

∫
∂Dn

∫
∂Dm

|f(ξ)− f(zn)|2

|1− ηξ|4
dµ(ξ)dµ(η) =

=
∑
n

∫
∂Dn

|f(ξ)− f(zn)|2
(∑

m

∫
∂Dm

dµ(η)
|1− ξη|4

)
dµ(ξ) (3.3.3)

Consider the variation appearing inside the outer integral. By the Fundamental The-

orem of Calculus, between ξ and zn we can see that:

|f(ξ)− f(zn)| ≤
∫ ξ

zn

|f ′(s)|ds

Now, as a consequence of subharmonicity, taking the maximum when s runs over all

the points in the segment joining ξ and zn, it is clear that, for some constant C1(ε) that

tends to 1 when ε tends to 0, we have:

|f(ξ)− f(zn)| ≤ 4C1(ε)√
π

max
s

(∫
DH(s,ε)

|f ′(w)|2dA(w)

) 1
2

The disk in which we are integrating is contained in that centered at zn with hyperbolic

radius 2ε and so we know:

|f(ξ)− f(zn)|2 ≤ 16(C1(ε))2

π

∫
DH(zn,2ε)

|f ′(w)|2dA(w) (3.3.4)

On the other hand, each term in the inner sum of integrals in (3.3.3) is controlled by

the value of its argument at η = zm multiplied by the area of the disk:
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∑
m

∫
∂Dm

dµ(η)
|1− ξη|4

≤ C2(ε)
∑
m

µ(∂Dm)
|1− ξzm|4

Here, C2(ε) tends to 1 when ε tends to 0.

Applying our hypothesis we have:

∑
m

∫
∂Dm

dµ(η)
|1− ξη|4

≤ cC2(ε)
∑
m

(1− |zm|2)2

|1− ξzm|4

The right hand side is controlled by the definition of C(Z). Now, use this inequality

together with (3.3.4) in the sum of integrals we want to bound, (3.3.3). First, we have

just arrived to:

∑
n,m

∫
∂Dn

∫
∂Dm

|f(ξ)− f(zn)|2

|1− ηξ|4
dµ(ξ)dµ(η) ≤

≤ cC2(ε)C(Z)
∑
n

∫
∂Dn

|f(ξ)− f(zn)|2

(1− |ξ|2)2
dµ(ξ)

And now, using our initial estimate (3.3.4), we have that this is less or equal to:

16c(C1(ε))2C2(ε)C(Z)
π

∑
n

(∫
DH(zn,2ε)

|f ′(w)|2dA(w)

)
µ(∂Dn)

(1− |zn|2)2

Applying once more the hypothesis on µ(∂Dn), we can bound this by:

16c2(C1(ε))2C2(ε)C(Z)
π

∫
D
|f ′(w)|2dA(w)

So one can take t = 16c2(C1(ε))2C2(ε)C(Z)
π , for ε > 0 small enough.

Now, we have all the ingredients to end the proof of our Theorem. Until now we had

seen that, for some 0 < t < 1, and some constant C:

||f ||2D ≤ C||f ||2Z + t||f ||2D
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From here, we can conclude that:

||f ||2D ≤
C

(1− t)
||f ||2Z

This means, the sampling inequality holds.





Chapter 4

Cyclicity in Dirichlet-type spaces

4.1 Introduction

For −∞ < α <∞, the Dirichlet-type space of order α, Dα, consists of all analytic functions

f : D→ C whose Taylor coefficients in the expansion

f(z) =
∞∑
k=0

akz
k, z ∈ D,

satisfy

‖f‖2α =
∞∑
k=0

(k + 1)α|ak|2 <∞.

The spaces Dα become smaller as α increases, and f ∈ Dα if and only if the derivative

f ′ ∈ Dα−2. Three values of α correspond to spaces that have been studied extensively,

and are often defined in terms of integrability:

• α = −1 corresponds to the Bergman space B, consisting of functions with

∫
D
|f(z)|2dA(z) <∞, dA(z) =

dxdy

π
,

• α = 0 to the Hardy space H2, consisting of functions with

sup
0<r<1

1
2π

∫ π

−π
|f(reiθ)|2dθ <∞,

47
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• and α = 1 to the usual Dirichlet space D of functions f with

∫
D
|f ′(z)|2dA(z) <∞.

A description like that of the Dirichlet space, in terms of an integral is possible for the Dα

spaces for α < 2. Indeed, when α < 2, then f ∈ Dα if and only if

Dα(f) =
∫

D
|f ′(z)|2(1− |z|2)1−αdA(z) <∞. (4.1.1)

This expression may be used to define an equivalent norm for f ∈ Dα, which we use in

Section 4.2. We refer the reader to the books [12], [13] and [19] for in-depth treatments of

Hardy and Bergman spaces; recent surveys concerning the Dirichlet space D include [3]

and [33].

A function f ∈ Dα is said to be cyclic in Dα if the closed subspace generated by

polynomial multiples of f ,

[f ] = span{zkf : k = 0, 1, 2, . . .},

coincides with Dα. The multiplier space M(Dα) consists of the analytic functions ψ with

induced operator Mψ : f 7→ ψf maps Dα into itself; such a function ψ is called a multiplier.

Thus cyclic functions are precisely those that are cyclic with respect to the operator Mz.

Since the polynomials themselves are dense in the Dα spaces, [1] = Dα. It is well known

(see [11]) that an equivalent (and more useful) condition for the cyclicity of f is that there

exist a sequence of polynomials {pn}∞n=1 with

‖pnf − 1‖α → 0, as n→∞.

We note that for certain values of α, the multiplier spaces of Dα are relatively easy to

determine. For α ≤ 0, we have M(Dα) = H∞, and when α > 1 the multiplier space

coincides with Dα itself (see [11, p.273]).
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For a general α, it is not an easy problem to characterize cyclic functions in Dα.

However, for H2 (the case α = 0), a complete answer to the cyclicity problem is given

by a theorem of Beurling (see [12, Chapter 7]): f is cyclic if and only if f is an outer

function. In particular, a cyclic function f ∈ H2 cannot vanish in D; the additional

condition is that its singular factor must be trivial. In the Bergman space, the situation

is considerably more complicated (see [19, Chapter 7]). A common feature of all Dα is

that cyclic functions have to be non-vanishing in D. If α > 1, being non-vanishing in the

closed unit disk, or equivalently,

|f(z)| > c > 0, z ∈ D,

is a necessary and sufficient condition (see [11]), but when α ≤ 1, functions may still be

cyclic and have zeros on the unit circle T. Here, we define the zero set in an appropriate

sense via, for instance, non-tangential limits.

In [11], L. Brown and A.L. Shields studied the phenomenon of cyclicity in the Dirichlet

space. In particular, they established the following equivalent condition for cyclicity: f is

cyclic for Dα if and only if there exists a sequence of polynomials {pn} such that

sup
n
‖pnf − 1‖α <∞ (4.1.2)

and, pointwise as n→∞,

pn(z)f(z)→ 1, z ∈ D. (4.1.3)

Brown and Shields also obtained a number of partial results towards a characterization

of cyclic vectors in the Dirichlet space D. Their starting point was a result of Beurling,

stating that, for any f ∈ D, the non-tangential limit f∗(ζ) = limz→ζ f(z) exists quasi-

everywhere, that is, for every ζ ∈ ∂D except, possibly, a set of logarithmic capacity zero.

Brown and Shields proved that if the zeros of f∗,

Z(f∗) = {ζ ∈ T : f∗(ζ) = 0},
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form a set of positive logarithmic capacity, then f cannot be cyclic. On the other hand,

Brown and Shields proved that (1 − z)β is cyclic for any β > 0, and they also showed

that any polynomial without zeros in D is cyclic. Hence, they asked if being outer and

having cap(Z(f∗)) = 0 is enough for f to be cyclic. This problem remains open and is

usually referred to as the Brown-Shields conjecture; see however [15] for recent progress by

El-Fallah, Kellay, and Ransford, and for background material. Subsequently, Brown and

Cohn showed (see [10]) that sets of logarithmic capacity zero do support zeros of cyclic

functions, and later Brown (see [9]) proved that if f ∈ D is invertible, that is 1/f ∈ D,

then f is cyclic. Nevertheless, there exist functions that are cyclic but have 1/f /∈ D. An

example is the function f(z) = 1− z. The cyclicity properties of functions of this type is

one of the themes of this chapter.

The problem of cyclicity in D has been addressed in many papers. An incomplete

list includes [20], where sufficient conditions for cyclicity are given in terms of Bergman-

Smirnov exceptional sets; the paper [14], where these ideas are developed further, and

examples of uncountable Bergman-Smirnov exceptional sets are found; and [31] where mul-

tipliers and invariant subspaces are discussed, including, also, a proof that non-vanishing

univalent functions in the Dirichlet space are cyclic.

4.1.1 Plan of the chapter

Instead of addressing the Brown-Shields conjecture and general cyclicity problems directly,

we set for ourselves the more modest goal of understanding cyclicity better by studying

certain classes of cyclic functions in detail. Most of the results in this chapter are a

variation of the following themes: Suppose f ∈ Dα is cyclic. Can we obtain an explicit

sequence of polynomials {pn} such that

‖pnf − 1‖α
n→∞−→ 0?

Can we give an estimate on the rate of decay of these norms as n → ∞? What can we

say about the approximating polynomials?
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A natural first guess is to take {pn} as the Taylor polynomials of the function 1/f .

Then, since 1/f is analytic in D by the cyclicity assumption, we have pn → 1/f pointwise,

and hence (4.1.3) is satisfied. However, it may be the case that norm boundedness fails:

this is certainly true for the Taylor polynomials of 1/f , that we denote Tn(1/f), in the

case f(z) = 1− z. Clearly, 1/f /∈ B ⊃ H2 ⊃ D, and a computation shows that

‖Tn(1/f)f − 1‖2D = ‖zn+1‖2D = n+ 2.

Much of the development that follows is motivated by our goal of finding concrete

substitutes for the Taylor polynomials of 1/f .

Definition 4.1.1. Let f ∈ Dα. We say that a polynomial pn of degree at most n is an

optimal approximant of order n to 1/f if pn minimizes ‖pf − 1‖α, among all polynomials

p of degree at most n.

In other words, pn is an optimal polynomial of order n to 1/f if

‖pnf − 1‖α = distDα(1, f · Pn),

where Pn denotes the space of polynomials of degree at most n and

distX(x,A) = inf{‖x− a‖X : a ∈ A}

for any normed space X, A ⊆ X and x ∈ X.

Notice that, given f ∈ Dα \ {0}, the existence and uniqueness of an optimal approxi-

mant of order n to 1/f follows immediately from the fact that f ·Pn is a finite dimensional

subspace of the Hilbert space Dα. Thus, f is cyclic if and only if the optimal approxi-

mants pn of order n to 1/f satisfy ‖pnf − 1‖α → 0 as n → ∞. Furthermore, since

‖pnf − 1‖α ≤ ‖f − 1‖α, it follows from (4.1.2) and (4.1.3) that f is cyclic if and only if

the sequence of optimal approximants {pn}∞n=1 converges pointwise to 1/f .

In Section 4.2, we describe a constructive approach for computing the coefficients of
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the optimal approximant of order n to 1/f for a general function f . In particular, Theo-

rem 4.2.1 below states that the coefficients of the optimal approximants can be computed

as ratios of determinants of matrices whose entries can be explicitly computed via the

moments of the derivative of f . When f itself is a polynomial, these matrices are banded

(see Proposition 4.2.2). As a simple but fundamental example, we compute optimal ap-

proximants to the function 1/f when f(z) = 1− z.

We are also interested in the rate of convergence of these optimal approximants:

Definition 4.1.2. Let f ∈ Dα. The optimal norm of degree n associated with f is

Nn,α(f) = ‖pnf − 1‖2α,

where pn is the optimal approximant of 1/f of degree n.

Note that we use the word “norm” by abuse of terminology, even though we are

referring to the square of a norm. The optimal norm Nn,α(f) will decay exponentially

for any function f such that 1/f is analytic in the closed unit disk. Therefore, functions

that have zeros on the unit circle are of particular interest. In Section 4.3, we examine

the question of whether all functions with no zeros in the open unit disk but with zeros

on the boundary, admitting an analytic continuation to a bigger disk, have optimal norm

achieving a similar speed of decay. In other words, are all such functions “equally good”

for the purpose of cyclicity? In Theorem 4.3.7, we prove that this is, indeed, the case by

giving bounds for the optimal norms. We conclude the section with considerations about

the further extension of these results to a larger class of functions.

In Section 4.4, we deal with a generalization to all Dα of a subproblem of the Brown-

Shields conjecture. We ask the question whether a function f satisfying f ∈ Dα and

log f ∈ Dα, must be cyclic in Dα. We note that this is true in the simple cases of α = 0

or α > 1. In Theorem 4.4.4 we are able to solve in the affirmative the case α = 1. Then,

Theorem 4.4.5 shows that for the case α < 1, α 6= 0, the same holds with an additional

technical condition. We do not know if this condition is necessary; however, it is satisfied

by a large class of examples, namely, all the functions constructed in Brown-Cohn ([10]).
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We conclude, in Section 5, with open questions and basic computations around the

zero sets Z(pn) of the optimal approximants pn of 1/f for cyclic functions f .

4.2 Construction of optimal approximants

The optimal approximants pn of order n to 1/f are determined by the fact that pnf is the

orthogonal projection of 1 onto the space f · Pn, and hence, in principle, if f ∈ Dα \ {0},

they can be computed using the Gram-Schmidt process. More precisely, once a basis

for f · Pn is chosen, one can construct an orthonormal basis for f · Pn to compute the

coefficients of pn with respect to this orthonormal basis.

In this section, we present a simple method which yields the optimal approximants pn

without the use of the Gram-Schmidt process, for α < 2. To that end, we make use of the

integral norm of Dα defined in (4.1.1), namely,

‖f‖2α = |f(0)|2 +Dα(f).

Recall that we seek an explicit solution to

Problem 1. Let n ∈ N. Given f ∈ Dα \ {0},

minimize ‖pf − 1‖α over p ∈ Pn .

As mentioned in Section 4.1.1, there is a unique optimal approximant pn ∈ Pn of order n

to 1/f that solves Problem 1, that is,

‖pnf − 1‖α = distDα(1, f · Pn).
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Observe that for any polynomial p(z) =
∑n

k=0 ckz
k ∈ Pn,

‖pf − 1‖2α = |p(0)f(0)− 1|2 +
∫

D
|(pf)′|2dµα

= |p(0)f(0)− 1|2 +
∫

D

∣∣∣∣∣
n∑
k=0

ck(zkf)′
∣∣∣∣∣
2

dµα,

where dµα(z) = (1 − |z|2)1−α dA(z). Thus, if the optimal approximant of order n to 1/f

vanishes at the origin, then ‖pf − 1‖2α is minimal if and only if c0 = c1 = . . . = cn = 0.

Since we will be dealing with a cyclic f , we may assume pn(0) 6= 0. By replacing f

with pn(0)f , we may also assume that pn(0) = 1. Hence, under this latter assumption,

pn(z) = 1 +
∑n

k=1 c
∗
nz

k is the optimal approximant of order n to 1/f if and only if

(c∗1, . . . , c
∗
n) ∈ Cn is the unique solution to

Problem 2. Let n ∈ N. Given f ∈ Dα \ {0},

minimize
∫

D

∣∣∣∣∣f ′ +
n∑
k=1

ck(zkf)′
∣∣∣∣∣
2

dµα over (c1, . . . , cn) ∈ Cn.

It is evident that (c∗1, . . . , c
∗
n) ∈ Cn is the unique solution to Problem 2 if and only if

g =
n∑
k=1

c∗k(z
kf)′ satisfies ‖f ′ + g‖L2(µα) = distL2(µα)(f

′, Y ),

where Y = span{(zkf)′ : 1 ≤ k ≤ n}. Equivalently, f ′ + g is orthogonal to Y with respect

to the L2(µα) inner product; that is, for each j, 1 ≤ j ≤ n,

〈−f ′, (zjf)′〉L2(µα) = 〈g, (zjf)′〉L2(µα).

Hence, (c∗1, . . . , c
∗
n) ∈ Cn is the unique solution to Problem 2 if and only if it is the solution

to the non-homogeneous system of linear equations

n∑
k=1

ck〈(zkf)′, (zjf)′〉L2(µα) = 〈−f ′, (zjf)′〉L2(µα), 1 ≤ j ≤ n, (4.2.1)
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with (c1, . . . , cn) ∈ Cn.

Theorem 4.2.1. Let n ∈ N and f ∈ Dα\{0}. Let M denote the n×n matrix with entries

〈(zkf)′, (zjf)′〉L2(µα). Then the unique pn ∈ Pn satisfying

‖pnf − 1‖α = distDα(1, f · Pn)

is given by

pn(z) = pn(0)

(
1 +

n∑
k=1

detM (k)

detM
zk

)
, (4.2.2)

where M (k) denotes the n× n matrix obtained from M by replacing the kth column of M

by the column with entries 〈−f ′, (zjf)′〉L2(µα), 1 ≤ j ≤ n.

Proof. As mentioned before, if pn is the optimal approximant of order n to f and pn(0) 6= 0,

then the optimal approximant of order n to 1/fn is [pn(0)]−1pn, where fn = pn(0)f . If

[pn(0)]−1pn = 1 +
∑n

k=1 c
∗
kz
k, then (c∗1, . . . , c

∗
n) ∈ Cn is the unique solution to the system

in (4.2.1) because

〈(zkfn)′, (zjfn)′〉L2(µα) = |pn(0)|2〈(zkf)′, (zjf)′〉L2(µα)

for 0 ≤ k ≤ n and 1 ≤ j ≤ n. It follows now that the n × n matrix M with entries

〈(zkf)′, (zjf)′〉L2(µα) has non-zero determinant and thus

c∗k =
detM (k)

detM
, 1 ≤ k ≤ n,

by Cramer’s rule, where M (k) denotes the n×n matrix obtained from M by replacing the

kth column of M by the column with entries 〈−f ′, (zjf)′〉L2(µα), 1 ≤ j ≤ n. Hence pn is

given by (4.2.2).

If f is a polynomial, then the computation of the determinants appearing in Theorem

4.2.1 can be simplified in view of the following proposition.
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Proposition 4.2.2. Suppose f is a polynomial of degree t. Then the matrix M in Theorem

4.2.1 is banded and has bandwidth at most 2t+ 1.

Proof. The orthogonality of zl and zm for l 6= m (under the L2(µα) inner product) implies

that the (j, k)-entry of M equals 0 if the degree of (zkf)′ is strictly less than j−1, that is,

k+t−1 < j−1, or if the degree of (zjf)′ is strictly less than k−1, that is, j+t−1 < k−1.

Therefore, the only entries of M that do not necessarily vanish are the ones whose indices

j and k satisfy −t ≤ j− k ≤ t. Thus, M is banded and has bandwidth at most 2t+ 1.

4.2.1 An explicit example of optimal approximants

Now, we calculate explicitly optimal approximants to 1/f , where f(z) = 1 − z. This

example is already interesting because f is cyclic in Dα for α ≤ 1, even though it is not

invertible for any α ≥ −1.

We begin with some general computations. Let β = 1− α. Then

‖zm‖2L2(µα) =
∫ 1

0
um(1− u)1−α du =

−1
m+ 2− α

m∏
`=1

`

`+ β

holds for any non-negative integer m. Therefore, if f =
∑t

i=0 aiz
i, we have, under the

usual convention that ai = 0 for any integer i < 0 or i > t,

〈(zkf)′, (zjf)′〉L2(µα) =
t∑
i=0

t∑
`=0

aiā`(i+ k)(`+ j)〈zi+k−1, z`+j−1〉L2(µα)

=
t∑
i=0

aiāi+k−j(i+ k)2‖zi+k−1‖2L2(µα)

=
t∑
i=0

aiāi+k−j(i+ k)
i+k∏
`=1

`

`+ β
(4.2.3)

as zl and zm are orthogonal for l 6= m under the L2(µα) inner product. Since pn(0) is non-

zero, we conclude that the optimal approximant pn(z) = pn(0)
(
1 +

∑n
i=1 ciz

i
)

of order n
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to 1/f satisfies the system

n∑
k=1

ck〈(zkf)′, (zjf)′〉L2(µα) = 〈−f ′, (zjf)′〉L2(µα), 1 ≤ j ≤ n. (4.2.4)

Let n ∈ N and f(z) = 1 − z. We proceed to compute optimal approximants pn(z) =∑n
i=0 ciz

i of order n to 1/f . Let Mn = M and M
(k)
n = M (k) be the n × n matrices

corresponding to f as in Theorem 4.2.1. By Proposition 4.2.2, the matrix Mn is tridiagonal

and so it suffices to compute the coefficients above and below each entry of its main

diagonal. We simplify notation by calling, for k ∈ N,

Λβ(k) = k

k∏
`=1

`

`+ β

Since a0 = 1 and a1 = −1, it follows from (4.2.3) that

〈(zkf)′, (zk−1f)′〉L2(µα) = −Λβ(k),

〈(zkf)′, (zkf)′〉L2(µα) = Λβ(k) + Λβ(k + 1),

〈(zkf)′, (zk+1f)′〉L2(µα) = −Λβ(k + 1), and

〈−f ′, (zjf)′〉L2(µα) =

 Λβ(1) if j = 1

0 if j ≥ 2
.

Thus, in view of (4.2.4), the coefficients of pn satisfy the sytem of equations

c1 [Λβ(1) + Λβ(2)]− c2 [Λβ(2)] = Λβ(1)

−cj−1 [Λβ(j)] + cj [Λβ(j) + Λβ(j + 1)]− cj+1 [Λβ(j + 1)] = 0

−cn−1 [Λβ(n)] + cn [Λβ(n) + Λβ(n+ 1)] = 0

or, interpreting cn+1 = 0, equivalently, for all 2 ≤ j ≤ n+ 1:

Λβ(j)(cj − cj−1) = Λβ(1)(c1 − 1)
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For fixed k, 2 ≤ k ≤ n + 1, by a repeated use of the previous identity, we obtain the

following:

ck =

Λβ(1)
k∑
j=1

1
Λβ(j)

 (c1 − 1) + 1 (4.2.5)

On the other hand, we also have

Λβ(1)(c1 − 1) = −Λβ(n+ 1)cn

and so, we can recover the value of c1,

c1 − 1 = − 1
Λβ(1)

∑n+1
j=1

1
Λβ(j)

.

Finally, we obtain the explicit solution, which can be expressed as follows, for 1 ≤ k ≤ n:

ck =

 n+1∑
j=k+1

1
j

j∏
`=2

(
1 +

β

`

)n+1∑
j=1

1
j

j∏
`=2

(
1 +

β

`

)−1

(4.2.6)

Whenever the value of β is a natural number, the product in the previous equation,∏j
l=2(1 + β/l), has a large proportion of cancelations allowing to compute exactly the

polynomials general formula. In the particular case of the Dirichlet space, for any integer

n, the optimal approximant is an example of a generalized Riesz mean polynomial: more

specifically, defining Hn =
∑n

j=1
1
j and H0 = 0,

pn(z) = pn(0)

(
n∑
k=0

(
1− Hk

Hn+1

)
zk

)
.

If we look at the case β = 1, the Hardy space, the optimal approximant is a modified

Cesàro mean polynomial,

pn(z) = pn(0)

(
n∑
k=0

(
1− k +Hk

n+ 1 +Hn+1

)
zk

)
,
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and for the Bergman space, β = 2, the optimal approximants are

pn(z) = pn(0)

(
1 +

n∑
k=1

(
1− k(k + 7) + 4Hk

(n+ 1)(n+ 8) + 4Hn+1

)
zk

)
.

We will return to these polynomials in Section 4.3.

4.3 Rate of decay of the optimal norms

In this section, we obtain estimates for distDα(1, f · Pn) as n→∞, when f is an analytic

function in the closed unit disk without zeros in D. First, we study further the example

for which we computed the optimal polynomials at the end of the previous section. As we

will see, it is useful as a model for the general case.

To simplify notation, define the auxiliary function ϕα on [0,∞) to be

ϕα(s) =

 s1−α, if α < 1

log+(s), if α = 1.

Lemma 4.3.1. If f(z) = ζ−z, for ζ ∈ T, then dist2
Dα(1, f ·Pn) is comparable to 1/ϕα(n+

1).

Proof. First notice that if pn are polynomials such that pn(z)(1 − z) − 1 → 0 in Dα,

then, since rotation by ζ ∈ T is an isometry in Dα, the polynomials qn(z) := ζpn(ζz)

are approximants for ζ − z with exactly the same growth rate. Therefore, it is enough to

consider f(z) = 1− z.

Now, recall that by (4.2.6), if f(z) = 1− z, the optimal approximant of order n to 1/f

is

pn(z) = pn(0)
n∑
k=0

ckz
k

where

ck =

 n+1∑
j=k+1

1
j

j∏
`=2

(
1 +

β

`

)n+1∑
j=1

1
j

j∏
`=2

(
1 +

β

`

)−1

, 0 ≤ k ≤ n,
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and β = 1− α. We claim that ‖pnf − 1‖2α is comparable to 1/ϕα(n+ 1).

First of all, notice that

pn(z)f(z)− 1 = pn(0)− 1 + pn(0)

[
n∑
k=1

(ck − ck−1)zk − cnzn+1

]
.

To simplify notation, define for 1 ≤ k ≤ n

dk = ck − ck−1 = −

[
1
k

k∏
`=2

(
1 +

β

`

)]n+1∑
j=1

1
j

j∏
`=2

(
1 +

β

`

)−1

and dn+1 = −cn. Then

n∑
k=1

kα|dk|2 =

n+1∑
j=1

1
j

j∏
`=2

(
1 +

β

`

)−2
n∑
k=1

kα−2

[
k∏
`=2

(
1 +

β

`

)]2

. (4.3.1)

Recalling that x/2 ≤ log(1 + x) ≤ x holds for all x ∈ [0, 1], the product

k∏
`=2

(
1 +

β

`

)
= exp

[
k∑
`=2

log
(

1 +
β

`

)]

is comparable to

exp

[
β

k∑
`=2

1
`

]

and so, comparable to kβ. Thus, the sum in (4.3.1) is comparable to:

n+1∑
j=1

jβ−1

−2
n∑
k=1

k2β+α−2 =

n+1∑
j=1

1
jα

−2
n∑
k=1

1
kα

Moreover,

(n+ 1)α|dn+1|2 = (n+ 1)α
[

1
n+ 1

n+1∏
`=2

(
1 +

β

`

)]2
n+1∑
j=1

1
j

j∏
`=2

(
1 +

β

`

)−2

is comparable to (n+ 1)α−2
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Putting all together, since
∑n

j=1 j
−α is comparable to ϕα(n+ 1), the sum

n+1∑
k=1

kα|dk|2

is comparable to 1/ϕα(n+ 1). This proves the lemma.

We wonder whether such estimates also hold for more general functions and this is the

motivation for our following study. First, we will generalize the previous Lemma to the

case when f is a polynomial whose zeros are simple and lie in C \ D.

To begin, let us first introduce some notation. Let A(T) denote the Wiener algebra,

that is, A(T) consists of functions f , defined on T, whose Fourier coefficients are absolutely

sumable, and is equipped with the norm

‖f‖A(T) =
∞∑

k=−∞
|ak|.

The positive Wiener algebra consists of analytic functions whose Fourier coefficients sat-

isfy
∑∞

k=0 |ak| < ∞; in particular, these functions belong to H∞, the space of bounded

analytic functions in D and ‖f‖H∞ ≤ ‖f‖A(T) holds for all f ∈ H∞, where ‖f‖H∞ =

sup{|f(z)| : z ∈ D}.

Proposition 4.3.2. Let α ≤ 1, t ∈ N and f be a polynomial of degree t. If the zeros of f

are simple and lie in C\D, then for each n > t there is pn ∈ Pn such that (pnf)(0) = 1

and

‖pnf − 1‖2α ≤
C

ϕα(n+ 1)
, (4.3.2)

holds for some constant C that depends on f and α but not on n, and such that the

sequence {pnf}n>t is uniformly bounded in A(T)−norm.

Proof. Suppose f has simple zeros z1, . . . , zt ∈ C \ D. Then there are constants d1, . . . , dt

such that
1

f(z)
=

t∑
j=1

dj
zj − z

=
∞∑
k=0

 t∑
j=1

dj

zk+1
j

 zk.
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Define bk =
∑t

j=1 djz
−(k+1)
j for k ≥ 0. It follows that the sequence {bk}∞k=0 is bounded in

modulus by
∑t

j=1 |dj |, and the Taylor series of 1/f is of the form

1
f(z)

=
∞∑
k=0

bkz
k.

Let f(z) =
∑t

k=0 akz
k. Set ak = 0 for k > t. Consequently, f · 1/f − 1 = 0 translates into

k∑
j=0

bjak−j = 0 for k ∈ N\{0}. (4.3.3)

Consider the polynomial pn(z) =
∑n

k=0 ckz
k with coefficients

c0 = a−1
0 and ck =

(
1− ϕα(k)

ϕα(n+ 1)

)
bk for 1 ≤ k ≤ n.

For convenience of notation, we will consider ck = 0 if k > n. Evidently, (pnf)(0) = 1. Let

us prove (4.3.2). To estimate ‖pnf − 1‖2α, we consider separately the norms of

mp =
n+t∑
k=t+1

(
k∑
i=0

ciak−i

)
zk, and

sp =
t∑

k=1

(
k∑
i=0

ciak−i

)
zk,

and note that

‖pnf − 1‖2α = ‖mp‖2α + ‖sp‖2α (4.3.4)

and
k∑
i=0

ciak−i =
−1

ϕα(n+ 1)

k∑
i=0

ϕα(i)biak−i (4.3.5)

by (4.3.3). To estimate the norm of mp, we need the following result.

Lemma 4.3.3. Under the assumptions of Proposition 4.3.2, if k > t, there is a constant

C = C(α, f) such that ∣∣∣∣∣
k∑
i=0

ϕα(i)biak−i

∣∣∣∣∣ ≤ C

(k + 1)α
.
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We finish the proof of Proposition 4.3.2 before proving the Lemma.

By (4.3.5) and the Lemma 4.3.3,

‖mp‖2α =
n+t∑
k=t+1

∣∣∣∣∣
k∑
i=0

ciak−i

∣∣∣∣∣
2

(k + 1)α

≤ C1

ϕ2
α(n+ 1)

n+t∑
k=t+1

1
(k + 1)α

for some constant C1 = C1(α, f). It follows now that, for t ≤ n there is a constant

C2 = C2(α, f) such that
n+t∑
k=t+1

1
(k + 1)α

≤ C2ϕα(n+ 1) (4.3.6)

and so

‖mp‖2α ≤
C1C2

ϕα(n+ 1)
. (4.3.7)

Next, we estimate the norm of sp. Recalling (4.3.5), we see that

‖sp‖2α =
1

ϕ2
α(n+ 1)

t∑
k=1

∣∣∣∣∣
k∑
i=0

ϕα(i)biak−i

∣∣∣∣∣
2

(k + 1)α.

By the Triangle inequality and since ϕ is increasing, if 1 ≤ k ≤ t, then

∣∣∣∣∣
k∑
i=0

ϕα(i)biak−i

∣∣∣∣∣ ≤ ‖b‖`∞‖a‖`∞(t+ 1)ϕα(t), (4.3.8)

where a = {ak}∞k=0 and b = {bk}∞k=0. Thus,

‖sp‖2α ≤
1

ϕ2
α(n+ 1)

‖b‖2`∞‖a‖2`∞(t+ 1)2ϕ2
α(t)

t∑
k=1

(k + 1)α

and so, for some constant C3 = C3(α, f),

‖sp‖2α ≤
C3

ϕ2
α(n+ 1)

. (4.3.9)

Hence, (4.3.2) follows from (4.3.4), (4.3.7) and (4.3.9).
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Finally, we show that the sequence {pnf}n>t is bounded in A(T). Notice that, for

1 ≤ k ≤ n+ t, (4.3.5) and Lemma 4.3.3 imply

∣∣∣∣∣
k∑
i=0

ciak−i

∣∣∣∣∣ ≤ C

(k + 1)αϕα(n+ 1)
(4.3.10)

for some constant C = C(α, f). Therefore, by (4.3.6),

‖pnf‖A(T) =
n+t∑
k=1

∣∣∣∣∣
k∑
i=0

ciak−i

∣∣∣∣∣ ≤ C

ϕα(n+ 1)

n+t∑
k=1

1
(k + 1)α

≤ C(α, f).

We now proceed to prove Lemma 4.3.3.

Proof of Lemma 4.3.3. For k − t ≤ s ≤ k, for k ≥ t+ 1 and for any α we have

ϕ′α(s) ≤ C(α, t)(k + 1)−α (4.3.11)

and hence, for k ≥ i

ϕα(k)− ϕα(i) ≤ C(α, t)(k − i)(k + 1)−α.

Recalling (4.3.3) and that ai = 0 for i > t, we obtain

∣∣∣∣∣
k∑
i=0

ϕα(i)biak−i

∣∣∣∣∣ =

∣∣∣∣∣
k∑
i=0

[ϕα(k)− ϕα(i)]biak−i

∣∣∣∣∣
≤

k∑
i=k−t

|ϕα(k)− ϕα(i)| · |biak−i|

≤ ‖a‖`∞‖b‖`∞C(k + 1)−α
k∑

i=k−t
(k − i),

where a = {ai}∞i=0 and b = {bi}∞i=0.

It seems natural to ask whether the growth rate given in Proposition 4.3.2 is sharp,
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and whether the proof can be extended to polynomials f whose zeros are not necessarily

simple. Regarding the second question, however, even in the simple case of f(z) = (1 −

z)2, the coefficients of the Taylor series representation centered at the origin of 1/f are

not bounded; consequently, the proof of Proposition 4.3.2 cannot be extended directly

because the boundedness of these coefficients is needed. Nevertheless, if f is an arbitrary

polynomial, we will use Proposition 4.3.2 to obtain an estimate for distDα(1, f · Pn).

Now let’s show that the conclusion of Proposition 4.3.2 holds for any polynomial, and

that the growth rate is sharp.

Theorem 4.3.4. Let α ≤ 1. If f is a polynomial whose zeros lie in C \ D, then there

exists a constant C = C(α, f) such that

dist2
Dα(1, f · Pm) ≤ C

ϕα(m+ 1)
(4.3.12)

holds for all m. Moreover, this estimate is sharp, in the sense that if such a polynomial f

has at least one zero on T, then there exists a constant C̃ = C̃(α, f) such that

C̃

ϕα(m+ 1)
≤ dist2

Dα(1, f · Pm).

Proof. Suppose f has factorization

f(z) = K
s∏

k=1

(z − zk)rk

with r1, . . . , rs ∈ N, z1, . . . , zs ∈ C \ D are distinct, and K ∈ C \ {0}. Define

g(z) =
s∏

k=1

(z − zk) and h(z) = K−1
s∏

k=1

(z − zk)γ−rk ,

where γ = max{r1, . . . , rs}, and let d equal the degree of h. Then fh = gγ ,

distDα(1, f · Pn+d) ≤ distDα(1, fh · Pn) for n ∈ N. (4.3.13)
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Since the zeros of g are simple and lie in C\D, by Proposition 4.3.2, for n > s, we can

choose qn ∈ Pn such that (qng)(0) = 1 and

‖qng − 1‖2α ≤
C1

ϕα(n+ 1)
(4.3.14)

holds for some C1 = C1(α, g), and such that the sequence {qng}n>s is bounded in A(T).

Let dµα(z) = (1 − |z|2)1−α dA(z). Recalling that ‖p‖2α is comparable to |p(0)|2 +

Dα(p) = |p(0)|2 + ‖p′‖2L2(µα) for all p ∈ Dα, we obtain

‖qγngγ − 1‖2α ≤ C2‖(qγngγ)′‖2L2(µα)

≤ C2γ
2‖qng‖2γ−2

H∞ ‖q
′
ng + qng

′‖2L2(µα)

≤ C3γ
2‖qng‖2γ−2

A(T) ‖qng − 1‖2α (4.3.15)

for some constants C2 = C2(α) and C3 = C3(α), as (qng)(0) = 1. Therefore, (4.3.14) and

(4.3.15) imply that there is a constant C4 = C4(α, γ, g) such that

dist2
Dα(1, gγ · Pnγ) ≤ C4

ϕα(n+ 1)

because qγn ∈ Pnγ and {qng}n>s is bounded in A(T). Thus, by (4.3.13),

dist2
Dα(1, f · Pnγ+d) ≤

C4

ϕα(n+ 1)
. (4.3.16)

For fixed a and b, ϕα(n+ 1) is comparable to ϕα(am+ b). Hence, (4.3.12) holds.

Let us now show that the inequality is sharp. If f is any polynomial with zeros outside

D that has at least one zero on T, then f(z) = h(z)(ζ−z) for some polynomial h of degree

say d. Then for any polynomial pm of degree at most m,

‖pm(z)h(z)(ζ − z)− 1‖2α ≥ dist2
Dα(1, (ζ − z) · Pm+d).
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By Lemma 4.3.1, there exists a constant C1 = C1(α) such that

dist2
Dα(1, (ζ − z) · Pm+d) ≥

C1

ϕα(m+ d+ 1)
.

Now, we can choose a constant C2 = C2(α, d) such that

1
ϕα(m+ d+ 1)

≥ C2

ϕα(m+ 1)
.

Finally, letting C̃ = C1C2 and noting that the polynomial pm was arbitrary, we obtain the

desired result that

dist2
Dα(1, f · Pm) ≥ C̃

ϕα(m+ 1)
.

In fact, we are going to show that the rates in Theorem 4.3.4 hold for more general

functions f, namely functions that have an analytic continuation to the closed unit disk.

Since such functions can be factored as f(z) = h(z)g(z), where h is a polynomial with a

finite number of zeros on the circle and g is a function analytic in the closed disk with no

zeros there, the estimates in Theorem 4.3.4 hold for h. Moreover, we can obtain estimates

on g that will allow us to give upper bounds on the product h(z)g(z). The estimates

needed for g are contained in the following lemma.

Lemma 4.3.5. Let g be analytic in the closed unit disk. If Tn(g) is the Taylor polynomials

of g of degree n, then

‖g − Tn(g)‖2α = O(S−n),

for some S > 1. Moreover, there exists a constant C = C(α) such that

‖Tn(g)‖M(Dα) ≤ C.

Proof. Suppose g(z) =
∑∞

k=0 dkz
k is convergent in a disk of radius bigger than R > 1.
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Then there exists C1 > 0 such that |dk| ≤ C1R
−k. Therefore

‖g − Tn(g)‖2α =
∞∑

k=n+1

(k + 1)α|dk|2 ≤ C2
1

∞∑
k=n+1

(k + 1)αR−2k.

By factoring out R−2n and relabeling the index of summation, this last term is equal to

C2
1R
−2n

∞∑
j=1

(j + n+ 1)αR−2j ≤ C2R
−2n(n+ 1)α,

where C2 = C2(α,R) <∞. Therefore, we have that for all α ≤ 1,

‖g − Tn(g)‖2α ≤ C2R
−2n(n+ 1)α = O(S−n)

for some S > 1.

The same type of argument can be used to show that the Taylor polynomials Tn(g)

have uniformly bounded multiplier norms. Indeed, if f(z) =
∑∞

k=0 akz
k ∈ Dα, then in a

manner similar as above, one can easily show that for every integer k,

‖dkzk · f(z)‖α ≤ R−kC3‖f‖α,

where C3 = C3(k, α) is of polynomial type on k. Therefore,

‖Tn(g) · f‖α ≤
n∑
k=0

‖dkzk · f(z)‖α ≤

(
n∑
k=0

C3R
−k

)
‖f‖α.

Writing C =
∑∞

k=0C3R
−k, we obtain

‖Tn(g)‖M(Dα) ≤ C.

Remark 4.3.6. Furthermore, in the previous Lemma, one can show that the exponential

decay on ||g − Tn(g)||2α also holds for ||g − Tn(g)||2M(Dα). For the case when α > 1, Dα
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is an algebra, so our statement is obvious. This already implies that, for all α ≤ 1,

||g − Tn(g)||2M(Dα) decays exponentially as the norm || · ||M(Dα) is controlled by the norm

in D2.

Theorem 4.3.7. Let α ≤ 1. If f is a function admitting an analytic continuation to

a neighborhood of the closed unit disk and whose zeros lie in C \ D, then there exists a

constant C = C(α, f) such that

dist2
Dα(1, f · Pm) ≤ C

ϕα(m+ 1)

holds for all sufficiently large m. Moreover, this estimate is sharp, since if such a function

f has at least one zero on T, then there exists a constant C̃ = C̃(α, f) such that

C̃

ϕα(m+ 1)
≤ dist2

Dα(1, f · Pm).

Proof. Let us first examine the upper bound. As f is not identically 0, it can only have

a finite number of zeros on the unit circle T. Write f(z) = h(z)g(z), where h is the

polynomial formed from the zeros of f that lie on T, and g is analytic in the closed disk

with no zeros there. Therefore, 1/g is also analytic in the closed unit disk (and obviously

has no zeros there), and hence Lemma 4.3.5 applies to 1/g. Notice also that g and g′ are

bounded in the disk, and therefore g is a multiplier for Dα.

Now let qm be the optimal approximant of order m to 1/h, and define pm = qmTm(1/g).

Then

‖pmf − 1‖2α = ‖Tm(1/g)gqmh− 1‖2α.

Applying the triangle inequality after subtracting and adding Tm(1/g)g, we obtain

‖pmf − 1‖α ≤ ‖Tm(1/g)g(qmh− 1)‖α + ‖Tm(1/g)g − 1‖α.

We know that g is a multiplier for Dα, that qm is optimal for h, and that all Tm(1/g)

are uniformly bounded in multiplier norm by Lemma 4.3.5. Hence, the square of the
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first term on the right hand side is dominated by C/ϕα(m + 1), for some constant C

independent of m. On the other hand, by the second part of Lemma 4.3.5, the square of

the second term is o(1/ϕα(m+ 1)), and thus is negligeable by comparison. Therefore,

dist2
Dα(1, f · Pm) ≤ C

ϕα(m+ 1)

for some constant C = C(α, f), as desired.

Let us now address the lower bound for such functions f. Notice first that if the lower

bound holds for functions of the form (ζ − z)g(z), where g is analytic and without zeros

in the closed unit disk, then the conclusion holds for f. Moreover, as in the proof of

Lemma 4.3.1, it is enough to consider ζ = 1. Therefore, we write f(z) = h(z)g(z), where

h(z) = 1 − z and g as above. Again, since g is analytic and has no zeros in the closed

disk, note that both g and 1/g are multipliers for Dα. Therefore, if pm is any polynomial

of degree less than or equal to m,

‖pmf − 1‖α ≤ ‖g‖M(Dα)‖pmh− 1/g‖α ≤ ‖g‖M(Dα)‖1/g‖M(Dα)‖pmf − 1‖α.

Therefore, ‖pmf − 1‖2α and ‖pmh − 1/g‖2α have the same rate of decay as m → ∞. Now,

let’s choose pm to be the optimal polynomials of degree less than or equal to m for f .

Then by the above discussion, we can assume pmh − 1/g → 0 in Dα, and in particular,

the norms ‖pmh‖α are bounded. We thus obtain

‖pmf − 1‖α = ‖pmh(g − Tm(g) + Tm(g))− 1‖α

≥ ‖pmhTm(g)− 1‖α − ‖pmh(g − Tm(g))‖α

Now, by Lemma 4.3.5, ‖pmhTm(g)− 1‖2α is, at least, comparable to 1/ϕα(2m+ 1), which

in turn is comparable to 1/ϕα(m+ 1). On the other hand,

‖pmh(g − Tm(g))‖α ≤ ‖pmh‖α‖g − Tm(g)‖M(Dα),
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so by the Remark 4.3.6 and since the norms of ‖pmh‖α are bounded, this term decays

much faster than the other. Therefore, there exist constants C1 and C2 such that

dist2
Dα(1, f · Pm) = ‖pmf − 1‖2α ≥ C1‖pmhTm(g)− 1‖α ≥

C2

ϕα(m+ 1)
.

Remark 4.3.8. The methods used in the proofs of Theorems 4.3.4 and 4.3.7 can be used to

produce an independent proof of the upper bound for the optimal norm in the Dirichlet

space (the case α = 1), valid for a class of functions with the property that the Taylor

coefficients of f and of 1/f exhibit simultaneously rapid decay. More specifically, if {aj}

denotes the sequence of Taylor coefficients of a function f ∈ D, and {bk} denotes the

coefficients of 1/f , we say that f is a strongly invertible function if f has no zeros in D

and if for all j and k, we have |aj | ≤ C1
(j+1)3 , and |bk| ≤ C2

k+1 , for some constants C1 and

C2. For example, one can show that if f is strongly invertible, then 1/f is in the Dirichlet

space. In fact, much more is true, 1/f ∈ D2. That is, strongly invertible implies invertible

in D2, and such functions are known to be cyclic (see [11], p. 274). Now, by defining

polynomials analogous to those at the end of Section 2, namely,

Pn(z) =
n∑
k=0

(
1− Hk

Hn+1

)
bkz

k,

one can use the stronger condition on the decay of the coefficients of 1/f to prove a version

of the Lemma 4.3.3 with these coefficients Hk and then one can obtain the conclusion of

Theorem 4.3.7 for these strongly invertible functions. In particular, we obtain:

Corollary 4.3.9. Let f be a strongly invertible function, γ ∈ N and g = fγ. Then there

exist polynomials qn of degree n, for which ‖qng − 1‖2D ≤ C/ log(n+ 2).

It would be natural to investigate whether these Riesz-type polynomials provide close

to optimal approximants for more general functions, in particular functions of the form

fβ(z) = (1 − z)β, when β < 1. Another interesting question would be whether the rate
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of decay that we have observed for functions admitting an analytic continuation to the

closed disk holds for all functions that vanish only on a finite set.

4.4 Logarithmic conditions

It is well-known that if f is invertible in the Hardy or Dirichlet space, then f is cyclic

in that space. In addition, it is easy to see that if both f and 1/f are in Dα and f is

bounded then log f ∈ Dα, but the converse does not hold. The condition that log f ∈ Dα

can be thought of as an intermediate between f ∈ Dα and 1/f ∈ Dα. Indeed, log f ∈ Dα

is equivalent to f ′/f being a Dα−2 function. On the other hand, f ∈ Dα if and only if

f ′ ∈ Dα−2, while 1/f ∈ Dα if and only if f ′/f2 ∈ Dα−2. We therefore want to study the

following question:

Problem 4.4.1. Is any function f ∈ Dα, with logarithm q = log f ∈ Dα, cyclic in Dα?

In several cases the statement is true: If α > 1 or α = 0. Indeed, for α > 1, log f ∈ Dα

implies 1/f ∈ H∞, which is equivalent to the cyclicity of f (as explained on p. 274 of

[11]). For α = 0, it is easy to see that log f ∈ H1 is enough for a function to be outer, that

is, cyclic in H2. Moreover, the logarithmic condition implies the following interpolation

result, valid for all α < 2.

Lemma 4.4.2. Suppose f ∈ Dα and log f ∈ Dα. Then, for any τ ∈ (0, 1], we have

Dα(f τ ) ≤ τ2 (Dα(f) +Dα(log f)) ,

and consequently, f τ ∈ Dα.

Proof. It suffices to establish the bound on Dα(f τ ). To this end, we write

Dα(f τ ) =
∫

D
|(f τ )′(z)|2dµα(z) = τ2

∫
D

∣∣∣∣f ′(z)f(z)

∣∣∣∣2 |f(z)|2τdµα(z)

Splitting the unit disk between A = {z ∈ D : |f(z)| < 1} and D\A we have the following
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control:

Dα(f τ ) ≤ τ2

(∫
A

∣∣∣∣f ′(z)f(z)

∣∣∣∣2 dµα(z) +
∫

D\A
|f ′(z)|2dµα(z)

)

and the resulting integrals can be bounded respectively in terms of Dα(f) and Dα(log f),

as claimed.

This lemma allows us to show that for a function f in the Dirichlet space D, corre-

sponding to the case α = 1, the condition log f ∈ D does imply the cyclicity of f . The

proof relies on the following theorem due to Richter and Sundberg (see [31, Theorem 4.3]

and let µ be Lebesgue measure).

Theorem 4.4.3 (Richter and Sundberg, 1992). If f ∈ D is an outer function, and if

τ > 0 is such that f τ ∈ D, then [f ] = [f τ ].

In [31], Richter and Sundberg applied this theorem by showing that if f is univalent

and non-vanishing, then f τ ∈ D, and hence f is cyclic. In what follows, we do not require

univalence.

Theorem 4.4.4. Suppose f ∈ D and log f ∈ D. Then f is cyclic in the Dirichlet space.

Proof. As was pointed out before, the logarithmic condition log f ∈ D implies that f is

outer. Next, by Lemma 4.4.2, f τ ∈ D for all τ > 0, and so [f ] = [f τ ] for each τ . Since

the Lemma also implies f τ → 1 in D as τ → 0, we have [f ] = [1], and the assertion

follows.

The following is the main result for the remaining cases α < 0 and 0 < α < 1.

Theorem 4.4.5. Let f ∈ H∞ and q = log f ∈ Dα. Suppose there is a sequence of

polynomials {qn} that approach q in Dα norm with

2 sup
z∈D

Re(q(z)− qn(z)) + log(‖q − qn‖2α) ≤ C

for some constant C > 0. Then f is cyclic in Dα.
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Remark 4.4.6. An immediate consequence of Theorem 4.4.5 is that if q = log f can be

approximated in Dα by polynomials {qn} with supz∈D Re(q(z) − qn(z)) < C, then f is

cyclic. Brown and Cohn proved (see [10, Theorem B]) that for any closed set of logarithmic

capacity zero E ⊂ ∂D, there exists a cyclic function f in D such that Z(f∗) = E. The

functions they build satisfy this hypothesis on qn, and therefore, we understand Brown

and Cohn probably found this fact in the case α = 1, although they do not make any

such statement in their article [10], leaving the proof of cyclicity of certain functions, as

an exercise.

Proof of Theorem 4.4.5. We can assume α ≤ 1, because otherwise the statement is im-

mediate. As f is a multiplier of Dα−2 and f ′/f ∈ Dα−2, the function f is in Dα. The

function f is cyclic, if there exists a sequence of polynomials {pn} such that ‖pnf − 1‖2α

remains bounded as n goes to infinity while pn converge pointwise to 1/f .

Applying the triangle inequality, we obtain:

‖pnf − 1‖α ≤ ‖pnf − e−qnf‖α + ‖e−qnf − 1‖α. (4.4.1)

The first term on the right hand side can be bounded by:

‖(pn − e−qn)f‖α ≤ ‖pn − e−qn‖M(Dα)‖f‖α.

For α ≤ 1, we can see that the multiplier norm of a function is controlled by the H∞

norm of the derivative (see [11, Prop.3]).

Hence, a good choice of approximating polynomials is to select {pn} so that pn(0) =

e−qn(0) and ‖p′n + q′ne
−qn‖H∞ ≤ 1/n, which is possible as e−qn is entire. The polynomials

pn converge pointwise to 1/f . Hence, for the cyclicity of f , it is sufficient for the norm of

pnf − 1 to stay bounded.

Now, we have that the first term of the right hand side in (4.4.1) is negligible as n→∞.

So what remains is to show that, as n goes to infinity, ‖e−qnf − 1‖2α is uniformly

bounded. To evaluate this expression for large n, we use the norm in terms of the deriva-
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tive:

‖e−qnf − 1‖2α ≈ ‖ − q′ne−qnf + e−qnf ′‖2α−2 + |e−qn(0)f(0)− 1|2.

The last term tends to 0 since qn approaches q pointwise.

In the other term of the right hand side, taking out a common factor, we see that

‖ − q′ne−qnf + e−qnf ′‖2α−2 ≤ ‖eq−qn‖2H∞
∥∥∥∥f ′f − q′n

∥∥∥∥2

α−2

.

Therefore, we have:

‖ − q′ne−qnf + e−qnf ′‖2α−2 ≤ e2 sup Re(q−qn)‖q − qn‖2α.

With our assumptions, the right hand side is less than a constant. This concludes the

proof.

It would be interesting to determine whether the required approximation property of

the polynomials qn in Theorem 4.4.5 is a consequence of the other hypotheses.

4.5 Asymptotic zero distributions for approximating poly-

nomials

In this paper we have primarily been interested in functions f ∈ Dα that are cyclic and

have f∗(ζ) = 0 for at least one ζ ∈ T. Prime examples of such a function are

fβ(z) = (1− z)β, β ∈ [0,∞),

which we have examined closely in this paper for β a natural number.

In these cases, numerical experiments, described below, suggest that a study of the

zero sets Z(pn) of approximating polynomials may be interesting from the point of view of

cyclicity. It seems that the rate at which zeros approach the circle is related to the extent

to which the corresponding polynomials are adequate approximants in Dα. For instance,
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we have compared the zero sets associated with the Taylor polynomials of 1/fβ with those

of Riesz-type polynomials,

Rn
(

1
fβ

)
(z) =

n∑
k=0

(
1− Hk

Hn+1

)
bkz

k, n ≥ 1. (4.5.1)

Intuitively, since 1/fβ has a pole at z = 1, we should expect the approximating poly-

nomials pn to be “large” in the intersection of disks of the form B(1, r) with the unit

disk. On the other hand, the remainder functions pnf − 1 have to tend to zero in norm

(and hence pointwise). We note that since 1/fβ has a pole on T, the Taylor series of 1/fβ

cannot have radius of convergence greater than 1. It therefore follows from Jentzsch’s

theorem that every point on T is a limit point of the zeros of the sequence {Tn(1/fβ)}∞n=1.

See [23]. A more current reference is [6]. We also refer the reader to [36] for background

material concerning Taylor (and other) polynomials, and for useful computer code.

We start with the simplest case f1(z) = 1 − z. The zeros of the Taylor polynomials

Tn(1/f), the Cesàro polynomials Cn(1/f), and the Riesz polynomials Rn(1/f), for n =

1, . . . , 50, can be found in Figure 4.5.1. All the zeros of these polynomials are located

outside the unit disk, and inside a certain cardioid-like curve. In the case of the Taylor

polynomials, the explicit formula

Tn(1/f1)(z) =
1− zn+1

1− z

holds, and so Z(Tn) simply consists of the n-th roots of unity, minus the point ζ = 1.

Replacing Taylor polynomials by Cesàro polynomials has the effect of repelling zeros away

from the unit circle, and into the exterior of the disk. This effect is even more pronounced

for the Riesz polynomials (4.5.1), where it appears that convergence of roots to the unit

circumference, and the roots of unity in particular, is somewhat slower. Note also the

relative absence of zeros close to the pole of 1/f1, and the somewhat tangential approach

region at ζ = 1.
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Figure 4.5.1: Left to right: Successive zero sets Z(Tn), Z(Cn), and Z(Rn), for f1 = 1− z,
and n = 1, . . . , 50.

Next, we turn to a function with two simple zeros on T, namely

f = 1− z + z2.

Plots of zeros of successive approximating polynomials are displayed in Figure 4.5.2. While

Z(Tn) is more complicated, the general features of Figure 4.5.1 persist. We again note a

relative absence of zeros close to the two poles of 1/f , and the zeros of the Cesàro and

Riesz polynomials are again located in the exterior disk, and seem to tend to T more

slowly. We observe approach regions with vertices at the symmetrically placed poles, and

the angle at these vertices seems to decrease as we move from Taylor polynomials through
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Figure 4.5.2: Left to right: Successive zero sets Z(Tn), Z(Cn), and Z(Rn), for f1 =
1− z + z2, and n = 1, . . . , 50.

Cesàro polynomials to the polynomials in (4.5.1).

It seems natural to suspect that locally the picture would be similar for a polynomial

f with a large number of zeros on the unit circle.

It would be interesting to investigate whether there is a relationship between zeros of

approximating polynomials, the region of convergence of the Taylor series of 1/f, and the

cyclicity of f in future work.
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