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los resultados han dado lugar a las publicaciones indexadas que avalan esta “Tesis

por compendio de publicaciones” y que no han sido utilizadas en tesis anteriores:

1. Transforming Numerical Feature Models into Propositional Formulas & the Universal Variability Language

2. Uniform Random Sampling Product Configurations of Feature Models That Have Numerical Features

3. Finding Correlations of Features Affecting Energy Consumption and Performance of Web Servers Using

the HADAS Eco-Assistant

4. Energy-Aware Environments for the Development of Green Applications for Cyber-Physical Systems

5. Detecting Feature Influences to Quality Attributes in Large and Partially Measured Spaces Using Smart

Sampling and Dynamic Learning

6. Category Theory Framework for Variability Models with Non-functional Requirements

7. Quality-aware Analysis and Optimisation of Virtual Network Functions

Por todo ello, consideran que esta Tesis es apta para su presentación al Tribunal

que ha de juzgarla. Y para que conste a efectos de lo establecido, se AUTORIZA

la presentación de esta Tesis en la Universidad de Málaga.

Málaga, julio de 2023

Fdo.: Lidia Fuentes Fernández Fdo.: Mónica Pinto Alarcón

ii





Acknowledgements

This PhD. thesis has been supported by the European Union’s H2020

research and innovation programme under grant agreement DAEMON

H2020-101017109, by the projects IRIS PID2021-12281

2OB-I00 (co-financed by FEDER funds), Rhea P18-FR-1081 (MCI/

AEI/ FEDER, UE), and LEIAUMA18-FEDERIA-157, and the PRE2019-

087496 grant from the Ministerio de Ciencia e Innovación.





Special Acknowledgements

Destiny Is All!

† † † † † † † † †

Es un dilema complicado ponerse a escribir esto ahora que ya parece

que ha acabado el largo proceso, pero toca reconocer la parte que les

toca a los que estuvieron conmigo en el camino.

A mis supervisoras, o como yo las llamo fuera, las jefas. Habrá más
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Chapter 1

Introduction

According to theOrganisation for Economic Co-operation and Development (OECD),

energy consumption is a fuel for economic growth, particularly in the fast-developing

economies of the world [1]. Unfortunately, energy consumption is closely related

to global climate change through greenhouse gas emissions. Any energy source,

particularly the most common, burning fossil fuels, is the primary source of human-

induced greenhouse gas emissions. The gasses in the atmosphere absorb solar en-

ergy and trap heat close to the Earth’s surface, causing global warming. This is

proven to cause extreme weather, wildfires, droughts, food supply disruptions, and

even geopolitical wars, which will modify the existing international order [2]. The

recent Russia and Ukraine war has led directly to emissions of 33 million tons of

greenhouse gases by smart weapons, as well as an increase in electricity and gas

prices which shows the dependency of first-world countries on petrostates [3]. To

minimise these problems, we need to reduce the energy requirements

of the world.

1.1 The Energy Consumption of the Software

The software runs on hardware, and as the former grows, so does reliance on the

machines to make it run. Software systems do not consume energy themselves but

affect hardware utilisation, leading to indirect energy consumption. This is espe-

cially critical in edge computing systems based on smart devices like Cyber-Physical
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1. INTRODUCTION

Systems (CPSs), which are powered by low batteries due to lithium scarcity (e.g.,

smartwatches) [4]. Reducing the energy consumption of CPS requires a compre-

hensive study of the various actors, components and surrounding environment.

Energy consumption is not only limited to the energy impact of the device it-

self but the entire ecosystem impacted by the usage of CPS (such as networking,

servers and data centres, database storage, etc.). According to a report by the

International Energy Agency (IEA), just data centres and running networks con-

sume 1% of the world’s electricity[5]. The researchers have proved mathematically

that relatively simple hardware modifications could cut the energy requirements in

half. Energy-aware software design can reduce overall energy consumption by 30%

to 90% [6]. In measuring the energy consumption of a software application, one

must account for the processing elements and their interactions with the memory

sub-system and other components during the execution of algorithms.

1.1.1 Modelling and Storing Energy Information

We must directly measure the energy consumption of the hardware components in

real time to measure the running software’s energy consumption accurately. There

are different ways to obtain energy information depending on the type of system

and level of detail needed. One way is to use simulation tools that can model the

energy consumption of a system based on different parameters. Another way is to

use specialised hardware to measure and store real-time energy information. The

measuring tools usually depend on the device or system to measure, so

we may look for solutions that balance measuring accuracy, usability

and availability.

The most balanced energy measuring tools are power meters, which are de-

vices that plug into the power outlet and measure the amount of electricity flow-

ing through it, allowing users to measure total system or device-specific power

consumption (e.g., Watts Up Pro?, USB meters) 1. Another good alternative is

hardware energy models with predicting software tools that display how much

power any component uses for a specific process (e.g., Intel Power Gadget, Intel

1When calculating the energy consumption of a running process with power meters, we
need first to measure and then subtract to the recording values the energy consumption of the
operating system and other unrelated tasks.
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PCM).

Depending on the tool, the energy readings are provided as the total energy

consumption in Joules or the energy consumption rate in Watts. The Joules per

task is a more interesting metric for battery-powered devices, so we can perform

analyses to stretch battery life. But the most common metric is the Watts per task,

which analyses aim to reduce the electricity bill, and hence it is more interesting

for electricity-powered devices [6]. Nevertheless, as the measuring tools also report

the run-time in Seconds, we can easily convert Joules in Watts and vice-versa 1.

To model and store these readings, we could follow the standard approach of

describing them as a characteristic of individual components. The most straight-

forward case is the monetary cost, where the total cost aggregates the individual

costs. For example, the price of a computer is the added cost of the Computer Pro-

cessing Unit (CPU), the motherboard, the different memories and other periph-

erals. While this could be the case for other efficiency qualities such as run-time,

it would be highly inaccurate for energy consumption. For example, every CPU

has an advertised peak energy-consumed value (i.e., Wattage), but the constant

use of peak power would destroy (i.e., burn) that hardware. Even in the fictional

scenario of running a stress-CPU benchmark, the thermal throttle of the CPU

will down-clock it to prevent burning the electronics, reducing the true Wattage

compared to the peak value. Consequently, the energy consumption values

present many interactions between components; hence, it is not feasi-

ble to describe them by individual and static energy values. Further,

the aggregation function will be utterly complex, as it must register all

levels of interaction and different behaviours.

We can find several intents to store and collaboratively populate databases with

the energy information of running systems. One of them is the already mentioned

IEA which provides free datasets, including world aggregated data for different

countries in different periods [7]. Another database is Datarade which provides

energy consumption data commonly used for energy efficiency and sustainability

analysis [8]. While the energy information is accurate, the system’s description is

1Joules (J) is the unit of energy. It is defined as the amount of work done when a force of
one newton is applied over a distance of one meter. Seconds (S) is the unit of time. Watts (W)
is the unit of power. It is the rate at which work is done, or energy is transferred per unit time.
One watt is equal to one joule per second.

5



1. INTRODUCTION

scarce. The reason is that databases do not scale for highly configurable

systems, as complex database queries suffer from the curse of dimensionality 1

when performing many-to-many table-joins [9].

1.1.2 Unmeasured Alternatives in Colossal Systems

To measure the energy consumption of a complete family of systems is generally

impractical due to the requiring the full availability of hardware and measuring

tools, as well as the expertise in running and evaluating all the different methods.

This is especially proven with CPSs, which are characterised by high configurabil-

ity and adaptability to changing environments. Consequently, they present many

alternatives and a colossal number of different running systems. For example, just

the kernel of their operating system (i.e., Linux) comprises 6467 alternatives and

Boolean variables, which represents a family of ∼ 3.90 × 101672 different versions

of CPS systems [10]. This number is called the size of the search/solution space.

Its proper definition is the set of all possible points (sets of values of the choice

variables) of an optimisation problem that satisfy the problem’s constraints, po-

tentially including inequalities, equalities and integer constraints. Linux presents

a colossal solution space, making an exhaustive exploration intractable to optimise

the energy consumption of CPSs executing Linux software.

Consequently,we tend to work with incomplete solution spaces that are

not entirely measured for energy consumption. Hence, we deal with par-

tially measured solution spaces, where some family members are not fully known

and measured. Somewhat unknown solution spaces are common in many fields,

such as computer engineering, machine learning, artificial intelligence and goal-

oriented optimisation.

1.2 Constraint Satisfaction Problems

Constraint Satisfaction Problems (CSPs) are mathematical questions defined as a

set of objects whose state must satisfy several constraints [11]. CSPs represent the

1The Curse of Dimensionality is a phenomenon typically increasing computational efforts
required for the processing and analysis of high-dimensional spaces.
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entities in a problem as a homogeneous collection of finite constraints over variables

solved by constraint satisfaction methods. The solution space of software and sys-

tems can be represented as CSPs, where the different configurable alternatives are

the objects and the limitations are the constraints. CSP on finite solution spaces

is typically solved using a form of search. The most used techniques to generate

the solution space of a CSP are variants of backtracking, constraint propagation,

and local search [12].

1.2.1 Variability Models and Numerical Characteristics

Variability models (VMs) are a tree-like structure used to represent the common-

alities and differences in a CSP. Hence, we can describe a family of software and

systems as VMs. The nodes of the tree represent alternatives to build different so-

lutions, and the edges represent propositional dependencies between the nodes [13].

An example of a technical dependency is that to execute a Java Library, we re-

quire a Java Virtual Machine running – we can represent both components

as VM nodes located in different branches of the same VM tree.

Numerical characteristics are those that have a value in a numerical domain

(e.g. integer). They can be used in VMs to represent the quantitative properties

of the system. A different value in a numerical characteristic identifies a different

software family member of the solution space. An example of a CPS numerical

node is Buffer Size ∈ [1, 1024] bytes. When considering numerical charac-

teristics in a VM, the dependencies involving those numerical nodes are arithmetic

formulas. For example, Buffer Size + Cache Size ≤ 1024 Bytes.

Unfortunately, most tools compatible with VMs do not support numer-

ical characteristics [14]. Additionally, numerical characteristics increment

the size of the solution space by multiplying it by its domain size, turn-

ing large solution spaces into colossal ones. For example, the entire model

of the Linux Kernel comprises an extra 55 numerical variables added to the 6467

alternatives; this increases the size of the solution space from ∼ 3.90 × 101672 to

∼ 5.66× 101953 [15] different solutions.

7



1. INTRODUCTION

1.2.2 Issues of Modelling Variability with Quality Values

Quality Models (QMs) are another tree-like structure used to determine which

quality characteristics will be taken into account when evaluating the properties

of a system [16]. There are different QM formalisations that we can consider as

standards. The most popular is ISO/IEC 25010, which considers eight super-type

quality characteristics: functionality, reliability, usability, efficiency, maintainabil-

ity, portability, compatibility and security.

The natural approach to integrating these quality characteristics is to provide

each VM node with a value registering their share of that quality in the running

system (e.g., the CPU cost is 300€) alongside an aggregation formula (e.g., cost

addition) [17]. But, as specified in previous paragraphs, energy consumption is

an efficiency quality linked to complete running systems and cannot be

described by independent characteristics of individual nodes. Another

approach is to merge VMs and QMs through propositional dependencies where

specific VM nodes forming a running system require specific QM-valued nodes [18],

although at the cost of reasoning performance due to the number and

size of crossed relationships. For example, hardware nodes + software

nodes require 500 W.

1.3 Variability and Quality Analysis and Rea-

soning

Automated reasoning is the automation of formal logical reasoning to compute

different types of information about models of systems [19]. It is commonly used

in hardware and software verification, theorem-proving, and artificial intelligence.

Automated reasoning tools are known in the literature as solvers. A direct example

would be to provide a variability and quality model to a reasoning tool and request

the generation of the entire solution space. In other words, to generate all the

sound systems of the family represented in a provided model. Other examples

are calculating the size of the solution space, checking the satisfiability of the

model, and only generating optimal systems based on qualities-goal functions (e.g.,

energy-efficient ones). When we pair reasoning tools with statistical methods and

8



learning, we can detect energy-consuming concerns – the alternative characteristics

of a family of systems that notably increase energy consumption negatively.

Unfortunately, most solvers only support regular VMs and cannot of-

fer quality-aware reasoning [14]. The few supporting quality information are

limited to superficial quality characteristics at the node level and simple optimi-

sation goals (e.g., minimising cost). The main reason is that merged VMs and

QMs do not scale due to the many restrictions used to link them, which decreases

the tool’s efficiency. Hybrid solutions, where one tool is used for native VM rea-

soning and another for native QM reasoning, perform better at the native level

but still do not scale when merging their results, especially with colossal solution

spaces. Remember that each energy characteristic registered in the model dupli-

cates the solution space size. For example, if we measure for energy consumption

and runtime a solution space size of 10100, the resulting quality-measured solution

space size is 2 ∗ 10100. Consequently, we should aim to find a native modelling and

reasoning approach for a unified Variability and Quality model(VQM).

In this thesis, we tackle the issues mentioned above and complexities by fol-

lowing a Software Product Line Engineering (SPLE) approach. Specifically, we

have developed: a) a tool to support the modelling and optimisation-oriented rea-

soning of numerical characteristics in the existing state-of-the-art solver [20, 21],

b) an algebraic framework for unified QVMs allowing extended modelling and

native multi-objective reasoning [22, 23], c) an online eco-assistant that provides

graphs and advises to optimise a user-restricted and quality-measured solution

space [24, 25], and d) an algorithm and web-tool to learn the energy and char-

acteristics influences of user restricted, domain-unknown, and partially measured

solution spaces [26].
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Chapter 2

Background

This section presents the background of this thesis. It summarises what is already

known about this topic and how our research will contribute to the existing knowl-

edge. It also provides the context and justification for the research question and

aims to explain why the research was conducted. Concretely, we divide it into

three sections corresponding to the three areas upon which we built this thesis:

Software Product Lines(SPLs), Category Theory(CT), and statistical analyses.

2.1 Feature-Oriented Software Product Lines

SPLs are software engineering methods, tools and techniques for creating a col-

lection of similar software systems from a shared set of software assets using a

standard means of production [27]. SPLs consist of a family of software systems

with some common reusable functionality and some variable and distinctive func-

tionality. An SPL engineering approach involves dealing with one or many of the

following aspects of a family of systems: the compatibility and developer require-

ments, the architecture, and the implementation of components. This approach

reconciles mass production and mass customisation and helps to reduce devel-

opment costs and time-to-market while improving product quality and customer

satisfaction.

In this thesis, we focus on the feature-oriented branch of SPLs, which aims to

increase the efficiency and quality of software development by focusing on reusable

11



2. BACKGROUND

software artefacts called features. These features are combined to create an SPL

that guides developers to build, maintain and update products (e.g., a software

program) with minimum time and effort [13].

2.1.1 Numerical Variability Models

Variability Models(VMs) are a common way for the representation of commonal-

ities and specifics of the software artefacts. VMs are widely used during the SPL

development process, specifically as the input of automated reasoners to generate

other assets such as statistics, documents, architecture definitions, and even code.

Cost Aggregation Formula

Requires

Cyberphysical 
System

Software Hardware

Debian

Firmware

RTOS

Temperature

Humidity
SensorLib

CO2

Megabytes
RAM: Integer

Mediatek Snapdragon

Microphone
chromaprint

CPUCPUC LibrariesC Libraries

Libc

SensorsSensors Operating
System

Operating
System

FeatureFeature

Feature Feature

And groupFeatureFeature

Or group

Mandatory

Optional

Attribute: Value Attributes

Legend

Cost: 80 €

Cost:
5 €

Cost: 
0.01 €

Cost: 
90 €

Cost CPSx =  Cost(Fi)

N

i=1

; 

x∈ 1, Solution Space Size , Fi∈ CPSx 

CO2 || Temperature || Humidity 
REQUIRES SensorLib

Figure 2.1: Example of an extended numerical feature model of a CPS family

Graphically, they are tree-like structures where the nodes of the tree (i.e., fea-

tures) represent the alternatives to build different systems, the hierarchical edges

represent cardinality-based parent-children relationships, and the cross-tree edges

represent dependencies between branched nodes. In Figure 2.1, we can see an ex-
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ample of a VM representing a reduced family of CPS comprising C Libraries,

optional Operating System, and alternative Hardware. While the hierarchi-

cal relationships, we can visualise two cross-tree dependencies among features: the

Microphone requires the chromaprint C library, and the rest of the Sensors

require the SensorLib C library.

The SPL community considers Feature Models (FM) as the VM standard.

Feature-oriented Domain Analysis (FODA) was the first formalisation of variabil-

ity modelling and reasoning [28] as FMs. Feature models have been widely used

during the whole SPL development process. They are commonly the reasoners’

input to produce other assets such as documents, architecture definitions, or pieces

of code.

A Propositional Formula (PF) is a type of logical formula which is well formed

and has a truth value. If the values of all (Boolean) variables in a PF are given,

it determines a unique truth value. As the classical FM formalisation defines SPL

variability by Boolean-valued features and Boolean constraints (i.e., dependencies),

we can transform classical FMs into PFs. Consequently, a PF becomes a relation-

ship among features where the presence or absence of some features requires or

excludes other features. Another alternative is to represent FMs as Binary Deci-

sion Diagrams (BDDs) [29], as they are Boolean functions in the form of directed

acyclic graphs [30]. Consequently, we call configuration to: the different valid

combinations of features [13], the sets of values determining a PF to True [31],

and the complete paths of a BDD [29]. Finally, the set of all legal configurations

is the SPLs’ solution space.

Unfortunately, classical FMs are insufficient to represent real-world SPLs with

numerical characteristics. An FM that supports Numerical Features (NFs) and

mixed propositional logic and arithmetic constraints is a Numerical Feature Model

(NFM) [20]. Its name, domain and metric define an NF. The domain can be

a constant value (i.e., discrete NF) or a range of values. We find an example

of the latter in Figure 2.1 with the NF Megabytes of RAM available and its

Integer valued domain. Another example is the SPL of Linux repositories where

packages have different versions and configurable parameters like X86 MINIMUM

CPU FAMILY [32].

If we need to add specific information about individual features, we can do
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it through the so-called feature attributes in extended FMs. Each leaf feature 1

can have a set of attributes which consist of valued variables of any domain (e.g.,

Boolean, numerical, string) [17]. An example could be the authorship of features

if more than one modelling expert created the FM.

2.1.2 Modelling Quality Attributes

Quality Attributes (QAs) are characteristics of a system to evaluate its perfor-

mance from the perspective of the end-user. Similarly to VMs, Quality Models

(QMs) are tree-like structures used to determine which quality characteristics

will be taken into account when evaluating a system’s properties. Similarly to

FMs, the community considers the ISO/IEC 25010 the most popular standard,

comprising eight quality super-types: functionality, reliability, usability, efficiency,

maintainability, portability, compatibility and security.

There are two types of relationships between QAs and a system’s variabil-

ity [33]:

• Feature-wise: The system’s QA value is associated with the respective QA

values of individual features and an aggregation formula. In other words,

they belong to the feature space. This relationship matches features with

non-interacting QA values, as we can define a simple and constant aggre-

gation function. The extended NFM of Figure 2.1 acts as an example with

the attribute Cost as a valued natural number representing the price of

Hardware in €. The Cost Aggregation Formula adds the features

cost per configuration.

• Variant-wise: The absolute QA value of a system, configuration or product.

In other words, they belong to the solution space. This relationship matches

interacting features, as even if we can approximate an aggregation function, it

will be utterly complex and deprecates if we update the quality information.

Energy consumption is one of these QAs. Each of the 565248 configurations

of Figure 2.12 is linked to an absolute energy consumption value. For ex-

1A feature is a leaf if it is a terminal node in a tree data structure, meaning it has no children.
2565248 configurations considering a maximum RAM of 4096 megabytes.
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ample, the configuration [Debian, Chromaprint, Libc, Mediatek,

Microphone and 64 megabytes of RAM] consumes 5 Watts.

2.1.3 Modelling and Automated Reasoning with Solvers

Constraint Satisfaction Problems (CSPs) are mathematical questions defined as a

set of objects whose state must satisfy several constraints. Constraint satisfaction

methods calculate the solution space of CSPs represented as VMs, typically using

a search form. The most used methods are variants of backtracking, constraint

propagation, and local search.

The most popular types of CSPs for which we can find solver tools are sat isfiability

(SAT), Satisfiability Modulo Theories (SMT) and Constraint Programming (CP):

• SAT: This CSP determines the existence of an interpretation that satisfies

a given Boolean formula. In other words, we can find at least one value

that makes the input PF resolve to true. SAT solvers support FMs if we

transform them into PFs [34].

• SMT: This CSP determines whether a mathematical formula is satisfiable.

It generalises SAT to more complex formulas involving numerical variables,

arithmetic and various data structures such as lists, arrays and bit vectors.

In practice, SMT solvers combine SAT solvers with more theory solvers [35].

SMT solvers support NFs and arithmetic.

• CP: This CSP determines whether a combinatorial problem is satisfiable.

It solves Boolean, numerical and linear problems by backtracking and con-

straint propagation – reduce domains of variables, strengthen constraints, or

create new ones [11]. CP solvers also support NFs and arithmetic.

Further, the basic and most used operations that the solvers of these problems

support are:

• Model checking: It checks if the model does not present contradictions and

if it represents any solution space. Practically, they try to generate one

solution to check model correctness.
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• Model enumeration: It records all solutions of a formula. In other words, it

generates all the configurations of the solution space.

• Model count: Directly calculate the solution space size instead of a computing-

based enumeration. The # versions of the solvers truly perform this opera-

tion. # Solvers are any solver modified to perform a true model counting.

For example, a #SAT solver checks that the solution space size is above zero

instead of solving the PF once as a classical SAT solver [36]. An alterna-

tive outperforming approach is to count the different complete paths of the

respective BDD [29].

• Optimisation: It is a goal-oriented process to find optimal solutions within

the solution space. This operation requires some support from QAs.

2.2 Fundamentals of Category Theory

Category Theory (CT) is an algebraic theory of mathematical structures [37]. It

allows us to capture and relate similar aspects of structures while abstracting from

the individual specifics of their dissimilarities. Consequently, it is a viable algebra

worth testing in unifying variability, quality modelling, and reasoning.

A category C represents spaces as a collection of objects related to one another

via arrows (i.e., morphisms). Two examples are the categories Vec, where the

objects are vector spaces and the arrows are linear maps, and Set, where objects

are sets and arrows are functions from one set to another. The main concepts of

CT are:

• Object: a structured templateX ∈Ob(C), graphically depicted as a node •X .

• Arrow: a structure-preserving function a ∈ Arr(C) with source and target

objects X = src(a) and Y = tgt(a), respectively, depicted
X• a−→ Y•.

– Identity: for every X ∈ Ob(C) exists exactly one arrow
X• id−→ X•.

– Composition: if
X• a1−→ Y• and

Y• a2−→ Z•, then X• a2 ◦ a1−−−−→ Z•.
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Composition is associative, i.e.,

a1 ◦ (a2 ◦ a3) = (a1 ◦ a2) ◦ a3.

• Category: consists of Ob(C) ∪ Arr(C) in a labelled directed graph.

• Functor: a process F between categories C = src(F ) and D = tgt(F ),

depicted
C• F−→ D•, which preserves identity and function composition.

Also, we shall introduce algebraic data integration CT concepts [38]:

• Path: a finite sequence of composed arrows:
X0• a1−→ X1• · · ·

Xn−1• an−→ Xn• .

• Element: for X ∈ Ob(C), a generalised element of X is a morphism
U• elem−−→

X•, where U is a select “unit” object. For example
Ux• Name−−−→

String
• .

• Instance: a set-valued functor Inst that assigns values to elements. For

example,
Ux• Name−−−→ Java and

Ux• Value−−−→ True.

2.3 Statistical Analyses and Machine Learning

In statistical analyses, machine learning can be used to predict the outcome of a

model or the behaviour of some of its features. This can be useful when the model

is too large or complex to solve analytically or when there are too many variables to

consider. This is exacerbated when measuring variant-wise and feature-wise QAs

for the respective reasons. Machine learning can also optimise predictive models

(e.g., performance models) by finding the best set of parameters that fit the data.

Instead of analysing an ample solution space, we can work with a reduced ver-

sion, meaning a subset of solutions called samples. Sampling is the selection and

measurement of a subset of the search space formed by pairs [configuration, QA]

and [feature, QA] [39]. Random and guided sampling are popular solutions in the

literature, although we can find many types depending on probabilities, knowledge

and heuristics [40, 41, 42]. Unfortunately, choosing a proper representative set of

samples is complex, as most real-world QAs and feature relationships do not follow

a normal distribution. Additionally, we want to generate different sample sets to

ensure that the features and interactions that we are identifying as the ones most
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affecting a QA are meaningful. We can check that the analysed samples are as

generally distributed as the system – the null hypothesis. In the context of our

problem, a statistical normality test tells if two sets of samples have equally dis-

tributed interactions. To tackle abnormal distributions, the variability community

integrates non-parametric tests. The most common ones are the Student’s t-test,

the Unequal Variance t-test, and the Mann-Whitney U test (MWU). The most

used is the Student’s t-test, which is accurate for assumed normally distributed

data.

On the other hand, it is stated that the Unequal Variance t-test is superior

to comparing the central tendency of 2 populations based on sets of unranked

data. To sum up, the most accurately flexible is the MWU, independent of the

sets’ distribution, size and ranking. Furthermore, for ranked data, the MWU is

superior to the alternatives [43]. Therefore, the MWU is the best test to assess

whether a particular feature or interaction influences a QA, such as an energy

footprint.

On the other hand, machine learning is a vast conglomerate of predictive and

self-learning techniques [44] that allow machines to learn from data and improve

their performance on a specific task without being explicitly programmed. It is

used to solve problems that are too complex or expensive for human programmers

to solve by developing algorithms. Instead, a computer learns how to solve the

problem by discovering its own algorithms from the given data, which will then

help make predictions or decisions on new data. As processing capacity has in-

creased and deep learning become more powerful, computers have been able to

design their own models. These generated models are empirically demonstrated

to be effective with small learning sets [45], something that is crucial to improve

scalability by reducing the number of requested samples. The four main types of

machine learning paradigms are:

• Supervised Learning: The data consists of labelled 1 samples.

• Unsupervised Learning: Learning patterns from unlabelled data.

• Reinforcement Learning: It balances data exploration and exploitation.

1Labelling: Takes a set of unlabelled data and augments them with informative tags
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• Transfer Learning (TL): Knowledge learned from task X is re-used to

improve a related task Y.

This thesis focuses on supervised learning and TL. Applied in our context, we

can make use of supervised learning methods to classify features and interactions

influences to a QA, and approximate QA values of unmeasured configuration by

generating regression formulas. For example, completing a partially measured

solution space for the energy consumption QA. On the other hand, TL registers

knowledge obtained while solving specific problems and applies it to another similar

situation. A simple example is directly extrapolating the energy consumption

behaviour of the GNU/Linux operating system Debian from version 10 to 11.
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Chapter 3

Motivation and Approach

This section defines and elaborates the three Research Questions (RQs) that mo-

tivates this thesis. In short, we will follow an SPL approach to automatically

perform different energy efficiency analyses of emergent domain systems like CPS

and B5G networks. These systems present complexities like complex numerical

components and arithmetic relationships, as well as colossal solution spaces [46].

On the other hand, energy efficiency also presents complexities as variant-wise

relationships and partially measured solution spaces [47].

3.1 Motivated Research Questions

Emergent domains present many features of different domains and are constantly

evolving. Additionally, each developer imposes a different set of feature constraints

(e.g., requiring the Windows operating system). If both the NFM and the imposed

constraints vary, also does the solution space to analyse. Hence, we cannot rely

on guided sampling and domain-knowledge approaches.

Model counting configurations enable a fast, unbiased random sampling of

large product spaces [48, 49]. This allows locating near-optimal configurations

in a solution space with statistical guarantees (e.g., x% from optimal with y%

confidence), given a defined workload [49, 50, 51].

SAT, CP, and SMT solvers perform poorly on counting as they enumerate con-

figurations, which is infeasible for solutions spaces of size ≥106 [39]. Consequently,
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we need solvers supporting true model counting, meaning # versions and BDDs.

SMT and CP solvers support NFM, but while we can find some algorithms in the

literature, #SMT or #CP solvers have not been successfully developed yet [52].

On the other hand, #SAT and BDD solvers exist, but they do not support NFMs.

Consequently, we define the first RQ:

RQ1: How can we extend the state-of-the-art (Boolean) solvers to auto-

matically support NFMs without performance degradation?

It is not realistic to think that every developer knows how to program or update

any system with the specific suggested near-optimal one, as emergent domains

can involve hundreds of changes (i.e., alternative features). Following a different

approach, we can focus on the noteworthy features that strongly affect the energy

consumption —the energy consuming concerns. Certain features influence a par-

ticular QA more than others. Moreover, one feature can affect another feature’s

impact on the quality value of a specific configuration - interacting features (e.g.,

selecting features A and B degrades the behaviour of C). Identifying noteworthy

and interacting features will reduce the required domain-specific knowledge, as the

developer can be informed about how certain features affect the energy efficiency

of its systems. Then it is in his hands to decide the realistic and feasible ones.

Unfortunately, we cannot fully automatise the building and measuring of a

variant-wise QA-like energy consumption, as we cannot aim to have all the ’fea-

tures’, measuring tools and expertise available for a large solution space [53]. Like-

wise, it is not feasible to do it manually in a possible time frame (e.g., ≥106 [39]

measurements). Current approaches deal with QAs mostly making use of sam-

pling [39] with machine learning [44], basically as follows: sampling selects and

measures a subset of the valid configurations generating a partial solution space,

and machine learning predicts the rest of the space based on the (training) sam-

ples. While some predictive approaches based on learning performance models

could be re-used for energy models, their accuracy requires specific initially mea-

sured samples, and the solution space is mostly static [49].

But even if that was not an issue, to our knowledge, none of the SPL tools

supports the modelling and reasoning of variant-wise QAs like energy consump-

tion [54]. Further, the lack of community consensus has led to entirely different
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ideas which are finally not materialised in a sound analysis tool [55, 56], ending in

the literature eluding the discussion of this issue [57]. The three assets which we

can work with are:

• Generate certain configurations of a specific solution space with a solver that

supports NFMs.

• Model variant-wise QAs in a QM.

• Having non-guided energy measurements of feasible configurations stored in

data centres.

This means we lack the interconnection between a) configurations from a spe-

cific solution space given by an NFM and b) an incomplete measured solution

space given by a QM and a data repository. But even if we can perform auto-

mated analyses of an interconnected NFM and QM, providing configurations and

interacting features insights of large and partially measured solutions spaces is not

straightforward. Quality reasoning methods for extended NFMs are linear tech-

niques, but variant-wise information requires exponential techniques to discern

statistically noteworthy interactions [39]. In other words, a brute-force approach

is impossible in a reasonable time [58]. In summary, we need domain-agnostic

methods that identify and analyse meaningful features and interacting features

for variant-wise QAs when many configuration measurements are unavailable and

cannot be requested on the fly. Consequently, we define the second RQ:

RQ2: How can we automatically provide energy efficiency insights when

dealing with colossal, partially unknown, and partially-measured solution

spaces based on NFMs and variant-wise QAs?

While answering RQ1 and RQ2 would allow obtaining energy efficiency insights for

systems developers, it will not be a rounded solution. In other words, constantly

executing a process that interconnects NFM and QM solutions spaces would be

less scalable than a completely integrated solution with native reasoning. It can

also present maintainability issues, like the respective reasoners being outdated or

deprecated, forcing us to update the interconnecting process if we want to support
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the new versions or solvers. Further, based on the limited reasoning operations that

the NFM and QM reasoners support, we are bounded by what the interconnection

process implements. Additionally, those base operations are not QA-aware; for

example, while we can test the satisfiability of the NFM and the correctness of the

QM, we cannot formally define and natively check the satisfiability of their union.

An example would be a configuration with two energy consumption measurements

with different values; At the same time, this is feasible in an integrated energy

and variability model; the formal definition of satisfiability does not consider any

QA. This ambiguity can create formal questions: Is having two different energy

consumption values for the same configuration unsatisfiable? Why?

Furthermore, a rounded solution will support the modelling and reasoning of

any extended NFM alongside varia-wise QAs. An important one is the interactions

and constraints between feature-wise and variant-wise QAs. A modelling example

could be a constraint where the monetary cost of a feature is proportional to the

energy consumption of the configurations in which that feature is involved (e.g.,

CPU cost). A reasoning example could be a multi-objective goal function consid-

ering a trade-off between aggregated cost and energy consumption. This is feasible

to implement in an Integrated Development Environment (IDE) supporting a uni-

fied extended NFM and QM. Finally, it will be more scalable and intuitive than

interconnecting two distant reasoners. Consequently, we define the third RQ:

RQ3: How can we properly unify extended NFMs and QMs while having

the native support of automated reasoning tools?

3.2 Approach Overview

This chapter also presents the general overview of the incremental approaches

followed to answer RQs[1-3]. In Figure 3.1, we summarised in columns the already

discussed motivated Problem, our scientific Contributions, the Tools that we have

developed and published, and the Output results. We sequentially elaborate our

approach divided into the different paths shown in Figure 3.1.
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Figure 3.1: Graphical Overview of the Motivation and the Followed Approach
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3.2.1 Numerical Features and Near-Optimal Search

Based on RQ1, a straightforward approach transforms NFMs into FMs and PFs,

creating a direct compatibility of the fastest model counting reasoners. Thus, we

can perform the state-of-the-art near-optimal search based on unbiased random

sampling. This corresponds to the first path in Figure 3.1.

To transform numerical domains into Boolean domains, we can use bit-vectors

- a fixed-size sequence of bits that can be used to represent numbers. In the

logic community, transforming numerical variables and arithmetic formulas into

bit-vectors is called flattening and Bit-Blasting. Numerical variables are bit-

vectors, and arithmetic operations are propositional clauses that reference bits.

The resulting PF is satisfiable whenever the original arithmetic formula is.

In our approach, we propose to Bit-Blast the NFs and arithmetic constraints

of an NFM to transform it into any FM or PF standard. Our work focuses on the

most popular arithmetic relationships and operations. We present them ordered

by their usage frequency in real-world NFMs [59]: equality (=), inequalities (=/,

>, >), addition (+), subtraction (-), multiplication (*), division (/), and modulo

(%). Furthermore, and by composition, we could transform nonlinear equations 1

(e.g., exponential encoded as a sequence of self-multiplications).

The main property of bit-vectors is the width which defines: a) the minimum

and maximum value limits of numerical variables, and b) whether the vector is

unsigned (i.e., binary sign-magnitude encoding) or signed (i.e., binary two’s

complement encoding) 2. We also use the Big-Endian representation 3 where the

first bit of the bit-vector encodes the sign as positive (0) or negative (1). For the

concrete details of the transformations, we kindly refer the readers to chapters 7

and 8.

Manually applying Bit-Blasting to arithmetic requiring large bit-widths will

take too much time. Therefore, we automated the process by developing the tool

Nemo2. As summarised in Figure 3.1, it defines a complete NFM modelling lan-

1Nonlinear equation: It is an equation that does not have a linear relationship between its
variables. In other words, it looks like a curve when graphed.

2 Two’s complement negative integer encoding is the binary complement of the positive
encoding plus one.

3 Big-Endian: An order of bits in which the ‘Big end’ (most significant value in the sequence)
is first in the sequence.
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guage supporting all Boolean and arithmetic variables and operations. Addition-

ally, it supports the inputs and outputs standards compatible with the different

state-of-the-art solvers:

• DIMACS 1: A set of clauses in Conjunctive Normal Form (CNF), while

the classical PF and the Universal Variability Language (UVL) [60] model

can contain implications, equivalences, nested clauses, and parenthesis.

• UVL: This model is a textual variability tree with a Root feature and the

respective hierarchical constraints among features (i.e., father and children)

followed by independent cross-tree constraint clauses.

• Classical PF: Defined in Chapter 2.

Further, Nemo2 allows to extend/compose already modelled FMs and PFs in

those standards with extra NFs, arithmetic constraints and NFM branches. Fi-

nally, Nemo2 presents specific model optimisations, trying to generate the smallest

and fastest to reason models in any of the supported formats.

Now that we can automatically obtain a Boolean and propositional represen-

tation of an NFM, we can perform model counting followed by a fast and accurate

near-optimal search of configurations in a QA-measured solution space. Given a

random integer j in [1..|C|], where C is the solution space, the trick is to convert

j into the jth configuration in C. This is done by a binary search by choosing a

feature f and counting the size of the space of configurations with f . If j ≤ |ϕ∧fi|,
the jth configuration has feature f , recurse on the space (ϕ∧ f), otherwise the jth

configuration has feature ¬f and recurse on (ϕ ∧ ¬f).
At each iteration, a new feature is chosen, counting is performed, and the

features belonging to the jth configuration are eventually found. Finally, the con-

fidence of that configuration is checked by performing a Student t-test analysis

against another set of samples. The algorithm returns the best-performing con-

figuration ¢ in a sample of size n, requiring in n · f calls to a counting tool (i.e.,

#SAT or BDD). Our sampling strategies rely on unbiased and random techniques:

1DIMACS is the de-facto standard for SAT solvers: http://archive.dimacs.rutgers.
edu/pub/challenge/satisfiability
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• Uniform Random Sampling (URS) [49]: We select samples randomly.

Its accuracy depends on the uniform distribution of the search space and the

randomiser.

• Statistical Recursive Search (SRS) [49]: It is a refined URS with re-

cursion by fixing statistically meaningful features. We force the noteworthy

features that passed the Student t-Test on each recursion in the next set of

samples.

In case of URS, configuration ¢ is on average 100
n+1

percentiles away from the

best-performing configuration in C with 100
n+1

percentiles standard deviation. In

case of SRS with m recursions, the average decreases to
100
n+1

10∗m . So, if 99 random

samples are selected by URS, the best-performing configuration out of the 99 is

an average 1%±1% away from the best configuration in C. Details are in [49, 51].

3.2.2 Hybrid Solver and Database Reasoning

Developers of CPSs have limited, and even erroneous, knowledge of how to reduce

their energy consumption [61]. Consequently, they require an automated tool that

acts as an eco-assistant by informing the CPS developers about how to improve

their current systems. To propose an eco-assistant while answering RQ2, we fol-

low two complementary approaches corresponding to the doubled second path in

Figure 3.1. For the first part, we focus on including the most popular storage of

energy consumption data in the reasoning process – databases [62]. Naturally, this

implies interconnecting an NFM solver with a database manager. Further, mixing

the variant-wise QA information of different real-world database impose three new

complexities:

• Different metrics: We can use several metrics in the values of the same QA

depending on its nature and final purpose. Energy is an excellent example

of this; Joule is the standard unit, but kiloWatt-hour is used for large de-

vices, and power in Watts is the most common metric to describe electronic

components except for battery capacities in milliAmperes-hour. In a broader

scope, the list is larger (e.g., calories, electron volts).
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• Multiple measurements: A single configuration can have multiple values for

the same QA. For example, it is proven that the energy measurement of the

same CPS but using different measuring tools and environmental conditions

will produce drastically different values [63]– although all of them are correct

and valid from the perspective of variability.

• Meta-data: Specific information of a valued QA. This can involve the energy

measuring tools used, the person or firm that performed the measurements,

the environmental conditions like temperature, etc.

In any case, a solver should consider all the metrics and values in its reasoning

operations and report interesting meta-data. For example, meta-data could help

to avoid outliers 1 if we detect that a measuring tool is inaccurate. This will reduce

the size of the measured solution space, which, if wholly measured, is at least as

big as the solution space.

In our approach, we propose to define a process that, by externally linking

configurations and variant-wise QA values, can provide valuable insights about the

quality of each valid configuration but yet makes use of the existing tools. This

means that the process will give quality-aware reasoning operations by composing

the solutions of NFM solvers and database managers. Our solution is to create

index-based symbolic links between valid configurations and their valued QAs. In

practice, we assign a static identifier to leaf features, and a registered QA value

must comprise the set of those identifiers that conforms to its associated complete

configuration. As a result, we can directly perform statistical analyses of the

solution space. For instance, providing quality-aware information on alternative

configurations, analysing the effect of replacing a feature including a different

value of an NF, or simply including a QA value requirement (e.g., generating all

the configurations that consume less than 10 Watts).

We implemented this approach in our second tool coined HADAS – a cross-

platform web-app 2 comprising:

1Outlier: A extremely low or extremely high straggler in a given data-set that induces inac-
curacies in statistic analyses.

2HADAS web-app: https://hadas.caosd.lcc.uma.es/
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3. MOTIVATION AND APPROACH

• Solver-based NFM reasoning based on features selection and quality require-

ments;

• a collaborative database that stores all types of information of variant-wise

QAs;

• a back-end process that interconnects solver-based (i.e., variability) and

database manager (i.e., variant-wise QAs) reasonings;

• a graphical and interactive user interface for the complete reasoning process;

• a statistic influence analysis to complement the graphical results;

• a micro-service for third-party applications interaction; and

• a plugin for IntelliJ IDEA that integrates HADAS analyses as code improve-

ment suggestions to the developers.

In step-by-step summary of its architecture and functionality is the following:

1. A graphical representation of an NFM internally defined in Clafer Modelling

Language. This interface also supports click-based feature requirements as

well as several analysis parameters.

2. Clafer-solver generates all the possible configurations of the user-restricted

solution space.

3. Our proposed process generates a SQL query to retrieve the QA values of

those configurations based on the identifiers of the leaf features. Here, user-

defined QA constraints are also added to the query.

4. MariaDB process that query where the identifiers act as primary keys, and

the specific values are indexed by them (i.e., foreign keys).

5. Having calculated the measured solution space, it performs a Pearson’s chi-

squared differentials and Bootstrapping analysis.

6. Finally, it plots graphs and statistic results showing the effect a feature

change by an alternative will have in a configuration. This also includes

the exclusive domain of each NF.
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When using a plugin, the first and the last steps are replaced by the interface

of the third application. At the same time, the data is interchanged in JSON

format 1. For more details, we kindly refer the readers to chapters 9 and 10.

Having successfully reached a viable Whendatabase reasoning approach, we

encountered an extra set of complexities when taking HADAS into practice. They

match the second part of the second path in Figure 3.1:

• Reasoning time of colossal spaces: When the number of configurations and

measurements defined in HADAS essentially increase, and the HADAS ’ users

unconstrained the NFM, hence performing reasoning of the entire space,

HADAS runtime proportionally increased. Considering that it is an expected

behaviour, users start to drop software if it takes more than 3 seconds to

load [64]. While we could think that developers are professionals with trained

patience, its maximum limit is around 60 minutes [65].

• T-wise Interacting features: Interactions are identified when the presence of

a set of others influences one feature’s behaviour. Furthermore, interactions

sometimes cannot be deduced from individual behaviours, as they genuinely

exist when following a complex equation. The higher the order of interac-

tions, the harder to detect them (e.g., pairs are a quadratic increase, and

triplets are cubic). This analysis increases reasoning time even further, as

the number of potential interactions in a system is exponential in the num-

ber of features. Depending on T , the accuracy and computationally demands

vary in an increasing pattern; up to 2 is considered balanced, while 6 reaches

exponential cost [66].

• Partially Measured Solution Space: For hard-to-measure variant-wise QAs

of large spaces, we probably find unmeasured configurations, whether by the

impossibility of manually measuring that space size or by the infeasibility to

automatise the building and measuring process. Consequently, techniques

that involve specific prior knowledge (i.e., measurements) are not accurate

in these scenarios, as we cannot assure that particular configurations are

1JavaScript Object Notation (JSON) is a data interchange format that uses human-readable
text to store and transmit data objects consisting of attribute–value pairs and arrays
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3. MOTIVATION AND APPROACH

measured for a QA. This makes us discard guided sampling and learning-

based predictive techniques (e.g., providing an approximate QA value for a

specific configuration).

Summarising, we now need to: a) in a maximum of 60 minutes, b) derive

noteworthy and interacting features without predicting absolute values, c) while

supporting a variable search space, and d) without relying on initial domain knowl-

edge. Consequently, we have defined the SAVRUS approach that: navigates

through large and hard-to-measure spaces with partially-unknown QAs values,

works with just available data, and provides fast identification of features and

up to pairwise interactions ranked by their importance. SAVRUS is a modular

strategy comprising five sequential steps. We developed a prototype 1 with the

following choices of techniques for each step:

1. Solver-based sampling: Based on Nemo2 results, we continued using SRS,

but additionally implemented Diversified Distance-based Sampling (DDbS)

[67] – a faster T-wise sampling where we select fewer samples and up to T

interactions, based on a configurable distance metric and probability distri-

bution, and where diversity is increased by prioritising configurations con-

taining the least frequently sampled features and interactions.

2. Lazy learning: We will use k-Nearest Neighbours (kNN) as a regression tech-

nique by assigning the mean of the k-closest observations. Our implemen-

tation uses the Manhattan distance 2 – also called the City-Block distance,

as it is the recommended one in the literature for the variety of dimensions

that the configurations of a CPSs SPL comprises [68]. We left the k hyper-

parameter user-defined, being the default value, the minimum required for a

mean (i.e., k = 2).

3. Statistical test: In this step, SAVRUS performs an MWU-based statistical

test to identify with a 95% confidence the noteworthy and noticeably inter-

acting features affecting a QA based on the sample set.

1SAVRUS web-app: https://hadas.caosd.lcc.uma.es/savrus.php
2Manhattan distance of N dimension = |x1 − y1| + |x2 − y2| + ... + |xN − yN |
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4. TL: SAVRUS We implemented an anomaly-shifted detection with unsuper-

vised instance selection to keep a dynamic track of their features’ notewor-

thiness scoring and pairwise combinations based on previous executions. It

uses the Local Outlier Factor (LOF) method, which measures the local de-

viation of the density of an unknown sample. The ranking scoring goes from

0 to 1, meaning not affecting and always affecting, respectively. On each

SAVRUS execution, if any of them are detected as statistically noteworthy,

the LOF is executed. And the weights are updated depending on their new

LOF value.

5. Weighted sorting: SAVRUS uses the updated scoring weights to rank feature

combinations – the highest the weights and lowest the rank, the strongest is

the features-QA interaction.

Hence, SAVRUS is an interactive approach that developers will normally ex-

ecute several times while taking decisions based on previous executions. In each

execution, they can decide if using DDbS or SRS, the number of samples and the

k hyperparameter. For more details, we kindly refer the readers to Chapter 11.

With SAVRUS, developers can now get fast insights into features and variant-wise

quality interactions of large yet partially measured models without requiring spe-

cific domain knowledge, supporting features and quality constraints, and sampling

method selection and adjustment. With those insights, developers optimise the

systems by directly replacing the noteworthy redder features and shielding the

noteworthy greener ones.

3.2.3 Quality Variability Models and Reasoning

To answer RQ3 and become independent of maintaining an exogenous process in-

terconnecting two reasoning tools of different application areas, we followed the

unification approach of the third path in Figure 3.1. With this objective, we lever-

aged the modelling and reasoning flexibility of CT, formalising an SPL framework

that unifies extended NFMs with any QAs related to an SPL category; this means

supporting both Boolean and numerical features alongside feature-wise QAs and

QMs with variant-wise values. Structuring a category is similar to defining a meta-
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3. MOTIVATION AND APPROACH

model, that in our case, we coined the Quality Variability Model (QVM) category.

QVM comprises three data-type categorical objects (i.e., Boolean, Integer, and

String for characters sets) and five structured categorical objects:

• Features: It defines the extended NFM as name and domain arrows to String,

NF value to Integer, and self-object arrow for hierarchical (i.e., Parent) and

cross-tree constraints, and additional arrows depending on the number of

feature-wise.

• Qualities: It hosts the QM as name and domain arrows to String, variant-wise

value to Integer, and again self-object arrow for hierarchical and cross-QA

constraints.

• Configurations: It links the leaf features of specific complete configurations

by categorical instances. Please note that non-leaf features can be traced

back to the root by Parent arrows.

• QAs: It links valued variant-wise QAs in sets (e.g., energy consumption = 1

Joule and latency = 1 second).

• Span: This categorical property is translated into a mapping between single

Configurations and single sets of variant-wise values QAs. They are pairs of

arrows to identifiers acting similarly to database foreign keys.

Further, a QVM instance means filling the category with information matching

the defined structure - i.e., creating a model based on the meta-model.

Having defined the unifying category QVM, the next step is to define quality-

reasoning operations on SPL configurations, which allow developers to directly

perform quality-aware analyses of the now united as one space the features, so-

lutions and measured spaces. While some of those operations are quality-aware

re-definitions of the classical ones, the complex ones were impossible with the state-

of-the-art previous to this thesis. We can summarise the operations as follows:

• Report: Number of features, NFs, first-order constraints, arithmetic con-

straints, feature-wise QAs and variant-wise QAs, and QAs meta-data.
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• Satisfiability [69]: Check that there exists at least one measured configuration

of a QVM for a set of QAs.

• Count [20]: Count the instances of a QVM measured solution space without

generating them.

• Filter [14]: State advanced variability and QAs requirements over a QVM

and generate its corresponding reduced and measured solution space.

• Bound [14]: Directly restrict the size of a QVM measured solution space.

• Random [70, 20]: Randomise the generation of a QVM measured solution

space for any operation (e.g., random seed).

• Aggregate: Transform feature-wise QAs into variant-wise based on aggrega-

tion functions.

• Optimisation: Quality-goal function search. The function supports weighted

arithmetic relationships between multiple feature-wise and quality-wise QAs

and commonly is a maximisation or minimisation of a set of valued QAs.

To test them, we defined these operations as lambda functions in functional

programming, as they are functors between our unified category (i.e., QVM) and

a resulting category. For example, for Satisfiability, the resulting category is just

one categorical object with a single Boolean element, and its formal definition is

SAT : QVM
Satisfiability−−−−−−−→ B.

The definition of categories like QVM and functor-based reasoning is supported

in categorical tools where CQL IDE 1 is the state-of-the-art. CQL IDE processes

our defined operations with its set of reasoners: an automated theorem prover with

Knuth-Bendix completion for PFs and arithmetic equations, hashing, balanced

trees and chasing for data-type and cross-object arrows. Further, the composition

of operations is a natural operation in algebras and formal theories like CT and

is likewise supported by CQL IDE. For example, URS reasoning is the functorial

composition of Random and Bounding. The main advantage of this composition is

that we can now reuse reasoning operations to create more complex ones. Finally,

1CQL IDE: https://www.categoricaldata.net/
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we ultimately developed and published our CQL IDE code as a framework that

allows direct SPL modelling and reasoning without notions of CT. Technically, the

complete QVM and all the reasoning operations are categorically implemented in

CQL IDE. Hence, a user can directly fill the category with the extended NFM

and QM data and relationship and execute reasoning operations among the ones

presented in this thesis. It is also developed to support extending the NFM and

the operations for new domains, properties or reasoning goals. In other words,

to support future SPL extensions, we do not need to extend CQL IDE as a tool,

but its configuration – our QVM framework. This is the main advantage of using

generalistic tools like categorical ones. The result is a unified and scalable solution

to model extended NFMs with QA’s relationships and reasoning of any complexity.

We kindly refer the readers to chapters 12 and 13 for more details.

36



Chapter 4

Discussion of Results

This chapter answers the research question by discussing this thesis’s main results

and contributions.

Our first contribution starts with the approach implemented in Nemo2,

empirically achieving to model, extend, automatically optimise, and transform

NFMs into the most common formats of classical FMs using bit-blasting.

We can represent complex formulas up to 12 bit-width and transform real-world

NFMs to colossal sizes without overhead for almost every combination of Boolean

and arithmetic operations in under 15 minutes. This contribution is elaborated in

our work [15].

Our second contribution is related to the Nemo2 generated models, with

which we can search for (near) optimal configurations in colossal solution

spaces based on URS or SRS reaching a size of 1045 configurations in under 10

seconds with a BDD solver. Additionally, we can count the number of config-

urations of a solution space size of 10248 in under 5 hours with a #SAT solver.

These solution spaces correspond to the NFMs of the embedded Linux Busybox

version 1.18.5 and 1.28, respectively.This contribution and these results are

elaborated in our highlighted works [20, 21] (chapters 7 and 8).
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A1: We can encode NFs and arithmetic constraints into bit-

vectors and PFs. Consequently, with Nemo2, we automati-

cally extend FMs with NFM branches, run NFMs in classi-

cal (Boolean) solvers, and perform (near) optimal configuration

search with a minimum performance degradation (e.g., seconds).

Our third contribution is to design a hybrid reasoning approach where an

exogenous process interconnects an NFM solver and a database manager

that hosts real information of the respective variant-wise QAs. This is

the core of our tool HADAS, where a PHP backend interconnects the Clafer solver

with a MariaDB database indexed-based. This database is a repository collecting

from third-parties energy consumption measurements of real-world CPSs. Nat-

urally, this information includes outliers and multiple values of a single QA and

configuration. This contribution is elaborated in our works [71, 72, 73]

Our fourth contribution is to provide rich reasoning analyses in the

form of graphical energy efficiency insights, statistic correlations, and

contextual code advice of CPSs with the HADAS web tool and its JetBrains

IDE plugins. Our experiments reached up to a 90% decrease in the required

energy consumption if the CPS (i.e., Waspmote) sends large amounts of data in

big batches through Wi-Fi. However, HADAS also detects crossed conclusions,

like, and following the previous results, Bluetooth is more energy efficient for tiny

bits of data. Other sets of results are to detect which level of code granularity

is worth analysing and uncovering linear relationships of edge computing micro-

servers with the number of requests and data size. Finally, we ran a survey with

17 CPS developers using the HADAS plugin while coding their applications in

their work, resulting in many positive experiences with an average of 4 out of 5

Likert scale points. This contribution and these results are elaborated

in our highlighted works [25, 24] (chapters 9 and 10) and also in the

publications [74, 75, 76, 77]

For our fifth contribution, we defined the SAVRUS approach, which al-

lows to create a ranking of influencing features and interactions (i.e.,

concerns) by fast navigating through large measured spaces containing

many randomly-unknown configurations. As a result, we can uncover the

energy-consuming concerns of an NFM with ∼ 5.3 ∗ 108 configurations with only
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132, 500 random measurements in 1-minute average – SAVRUS runtime is pro-

portional to the selected number of samples. Additionally, we tested the ranking

results with 4 real-world and completely measured NFMs. We generated several

rankings after artificially degrading their measured spaces to resemble real-world

databases’ random and biased energy measurements; SAVRUS presents coverage

and accuracy of ∼ 80%. This contribution and these results are elaborated

in our highlighted work [26] (Chapter 11)

A2: We can provide rich insights into the variant-wise QAs of

SPL products by developing our HADAS index-based process

that interconnects an NFM solver reasoning with database man-

agers that host measurements such as energy efficiency values.

For cases in which the measured space is large, biased and in-

complete, we can provide a ranking of the energy-consuming con-

cerns by following the SAVRUS sequence of techniques: solver-

based sampling, lazy learning, statistical tests, transfer learning

and weighted sorting.

Our sixth contribution is to formally define the category QVM that

integrates into a unified model the extended NFM and QM, natively

supporting any feature, QA, and constraint among them. We empirically

evaluated this approach by transforming into a single QVM the NFM and database

model of our HADAS tool and having implemented the resulting categorical in-

stance (i.e., HADAS) in CQL IDE, we generated the respective energy-measured

solution space 10 times faster than the with the regular HADAS tool. In short, our

categorical approach allows us to easily extend a model with new properties (e.g.,

ranged NFs, features with string domain) and perform native and faster reasoning.

This contribution and result is elaborated in our highlighted work [22]

(Chapter 12) and also in the publication [78]

Our seventh contribution is to formally define the categorical QVM

framework revealing 8 groups of lambda operations for quality-aware

reasoning supported by the categorical solver CQL IDE. Additionally, we

show how to combine operations to form complex ones. We empirically tested

this framework with 5 real-world NFMs. Two of them are part of the European
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H2020 project DAEMON 1 of which we are partners, and involve incredibly com-

plex CPSs, Beyond5G networks and virtual network functions. We also compared

our framework against the state-of-the-art for up to 20 quality-aware reasoning

operations. Our implementation in CQL IDE is the only solver compatible with

the complete models and the 20 operations, and on average, it is also the fastest

solution. However, in rare cases, one of the compared solvers was slightly shorter

for a particular combination of model and operation (e.g., SATIBEA [79] for basic

near-optimal search). This contribution and its results are elaborated in

our highlighted work of an industrial track [23] (Chapter 13) and also

in the publications [80, 81]

A3: With a CT approach, we can unify the extended NFM and

QM as the category QVM, as well as define any quality-aware

operation for a categorical solver like CQL IDE, allowing native

reason over quality-measured solution spaces.

1European H2020 project DAEMON: https://h2020daemon.eu/
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Chapter 5

Related Work

This section starts by reviewing the current studies for efficient CPSs. It follows by

grouping the current state-of-the-art and most influential related works matching

the paths division of Figure 3.1, meaning the support of NFs and arithmetic con-

straints, measured variant-wise QAs in colossal spaces, and algebraic approaches to

unify NFMs and QMs. Additionally, Table 5.1 summarises the current modelling

and reasoning tools and alternatives.

Energy efficiency is critical in CPSs since it determines the device’s autonomy.

However, developers tend to underestimate the energy requirements of their de-

vices at a software level [82]. For example, [83] proposes a green energy-powered

architecture based on composing services in fog computing. However, the usage

context and the insights for the deployed functionality are avoided. In [84], the

context is considered to be lifetime increased by minimising the amount of cloud-

transmitted data. Nonetheless, the focus is only on communication while tackling

any operation of existing configurations. The goal of a usable high-performance

environment is presented in [85] by investigating complex CPSs with application

scenarios serving as case studies; instead of real devices and measurements, soft-

ware simulations were used. The energy consumption of multi-core algorithms

for CPSs is studied in [86]. However, the insights are assembly level – hard to

implement in real-world SPLs. In [87], a framework for CPS development is for-

malised. They evaluate the effectiveness of their proposal in terms of resiliency and

reliability but not energy consumption. In Embedded Systems, the total energy
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Table 5.1: Support for reasoning about quality in feature modelling
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Automatic Quality Reasoning
Model Analyses Operations (sat, counting) Q
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* Product Q Q Q Q Q Q

* Mean Q Q
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* Maximum Q Q Q Q Q Q Q Q Q

* Minimum Q Q Q Q Q Q Q Q

* Multiobjective Q Q Q Q Q Q

* Range optimisation Q Q Q

It supports the characteristic. Out of the scope of the approach. T: The approach is an SPL tool.

It partially supports it. Q Quality-aware native operation. A: Algorithm approach for FMs.
It doesn’t support the characteristic.
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consumption is minimised while the timing constraint is satisfied in [88]. They

also continue by proposing a heuristic approach to obtain a near-optimal solution

efficiently. However, it is only helpful for hybrid memory systems.

5.1 Numerical Features and Arithmetic

Works dealing with NFMs are rare, and those who did it, for various reasons, did

not describe how numerical variables were represented [89]. Some considered NFs

as classical features with just present/absent states [90, 32, 91]. Others encoded

NFs as alternative features, where each valued NF is a feature [92]. Shi [93] used

‘pseudo-boolean’ features only supporting Successor (+1) and Predecessor

(-1) operations. Another popular approach is that each Boolean feature has at-

tributes – a set of variables in the form (name, value, domain) [94]. However,

attributes and NFs are essentially different: attributes are not nodes of the vari-

ability tree, and as opposed to an actual NF, a change in the value of an attribute

does not result in a different configuration [24]. Hence, counting the size of a

product space will return a lower-than-expected value.

SMT and CP solvers natively support the representation and reasoning of

NFMs. However, the # versions are nonexistent. This is to be expected, as CP and

SMT are unbounded by default [95], being unaware of allocated memory or domain

definitions (e.g., undefined maximum of x in x≥1). In SAT ones, all variables are

bounded (i.e., Boolean). Consequently, SMT approximation counting has been

proposed but not yet empirically tested [96]. Solvers Z3 [97] and Yices [98] apply

bit-blasting to every operation besides equality, which a specialised solver then

handles. They also add axioms dynamically from array theory. STP solver [99]

implements a bit-vector approach for counting. It performs array optimisations,

arithmetic, and Boolean simplifications before bit-blasting to MiniSat [100]. While

it works to test satisfiability by counting at least one, it does not preserve counting

or model equivalence. This aligns with the most recent model counting competi-

tion (2020), where they tested 34 versions of the 8 fastest counting solvers. Model

counting is commonly found in BDDs [30] and SAT-based [36] solvers. The results

indicate that while fast, even so-called ‘exact solvers’ count a close but inexact

number of configurations.
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5.2 Colossal Variant-Wise Quality Reasoning

Typically, a CPS developer would like to obtain the configurations with a QA

below a threshold (e.g., < 3 Joules) or generate the best-qualified configuration

(e.g. trade-off between energy consumption and performance). We have already

discussed the differences between feature-wise and variant-wise QAs. Feature-

wise QAs are the most common in the literature and are supported by Clafer-

Moo [101], FAMA [17], FeatureIDE [56], pure::variants 1, SPL Conqueror [102]

and STEAM [103]. In QAMTool [104], authors use an alternative representation

and extend the FM by incorporating QA-specific features in a sub-tree. Another

alternative is to have some external storage to relate features and quality measure-

ments as usually done in genetic algorithms (SATIBEA [105], MILPIBEA [106],

MO-DAGAME [107]). An exception is the GIA algorithm [108], defined to be ap-

plied to an attributed FM that also uses the Z3 solver. Only a few approaches, such

as QAMTool [104] and HADAS [24], support variant-wise QAs. SPL Conqueror

supports them only partially by calculating an approximated value for the feature

attributes based on the set of measured configurations during the generation of

the solution space. Our CT framework [22] supports both types of QAs.

SPL tools (labelled with T: in Table 5.1) that only support feature-wise QAs

(ClaferMoo, FAMA, pure::variant) commonly use a declarative paradigm (e.g.

CSP, BDD, SAT) to represent the FM and reason about its quality. In other

cases, an external quality model is defined (e.g., a goal model), and the QAs

measurements are usually linked to the configurations through a database. The

FM is still represented using a declarative paradigm, but an additional structure

is used to store and reason about variant-wise QAs. This is the case with the

SPL Conqueror, HADAS and QAMTool tools. SPL Conqueror creates a perfor-

mance model by using sampling and aggregation techniques and uses this model

to approximate near-optimal configurations. The HADAS tool uses Clafer plus a

relational database, and the QAMTool uses the NFR framework [55] to represent

QAs in a goal model externally. For algorithms generating optimum configura-

tions (labelled with A: in Table 5.1), a genetic algorithm is usually complemented

with a representation of the FM as genes and a measurements database with the

1https://www.pure-systems.com/pv-update/additions/doc/latest/pv-user-manual.pdf
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feature-wise QA measurements. In some cases, a declarative solver is also used, as

in the SATIBEA algorithm, defined as a combination of an SAT solver, the IBEA

genetic algorithm, and the GIA algorithm that uses a Z3 solver.

Prior work on SPLs performed statistical analyses to reason on colossal (> 1082)

and complex configuration spaces. To estimate the influence of a feature on

performance, samples were benchmarked and compared for performance differ-

ences [109, 110]. To find optimal configurations, samples were used to search the

configurations throughout the space [111, 112, 113, 114, 115, 116]. To evaluate

different sampling approaches to locate variability bugs, URS was considered the

baseline to compare with other approaches [117, 42, 118].

Studies for finding interactions without prior knowledge are rare, especially

in energy-aware CPSs. Most of them aim to minimise the costs while maintain-

ing the latency. In [119], we find a meta-review of predicting energy values of

reusable software by integrating big data and artificial intelligence. Unfortunately,

the work concludes that the accuracy of the reviewed solutions was insufficient.

MIGRATE is a three-step machine learning framework for intelligent energy pro-

filing [120]. MoMo is a dynamic variability approach but works with well-known

absolute values [121]. Federated learning creates performance models based on pre-

viously learned aggregations and provides accuracy and cost balance [122]. [123]

follows the same aim by using orthogonal versions of extended FMs, and a series

of mappings and transformations compatible with FAMA framework. However,

that mapping and those analyses are neither reusable nor extendable for evolved

or user-constrained models. Deep software variability is coined in [124] to exploit

multi-layered SPLs. Thermal-aware Scheduling and Tuning (TaSat) proposed a

Pareto algorithm for the latency, energy consumption and temperature. While it

does not require specific measurements to perform accurately, its domain is specif-

ically heterogeneous [125]. Similarly, we have TOFFEE, which uses a stochastic

algorithm [126]. Unfortunately, these solutions consider the quality of space as

well-known.

Another approach proposes pre-defined templates based on FPGAs architec-

ture for energy-aware edge computing [127]. These are regularly called energy

models in the literature and tend to be used to detect worst-case scenarios. The

tool Serapis [128] is an example, but still, they do not match our objectives. Green-

45



5. RELATED WORK

Scaler provides automatic test generation for CPS, and the results are stored in a

local repository and used to detect energy-aware configurations [129].

All SPL tools (labelled with T: in Table 5.1) offer some level of model analysis

operations. ClaferMoo, FAMA, FeatureIDE, pure::variants and STEAM provide

implementations of all or a subset of the operations defined in [94] (e.g. sat-

isfiability, type and number of features, type and number of model constraints,

number of configurations). Others (e.g. SPL Conqueror, QAMTool, HADAS) use

a third-party variability modelling language that provides such support. Algo-

rithms (labelled with A: in Table 5.1) focus on optimisation. Regarding quality-

aware operations, current approaches do not natively support the complete set of

quality-aware operations. Native support would mean that the variability model

implements quality-enriched operations as primitives. Regarding the aggregation

function and the optimal search operations, the support is variable, as shown in

Table 5.1. The operations supported by ClaferMoo are almost as complete as in

our approach. It supports both addition and product aggregation functions and

all the optimisation operations under consideration in this paper. pure::variants

also support addition, product and mean aggregation functions, although approx-

imation arithmetic equations are not supported, and thus, reasoning about the

combination of several quality attributes is not possible. Neither optimal search

operations are supported. SPL Conqueror supports addition, product and some

equations and allows optimal search operations with maximums and ranges. Fea-

tureIDE, QAMTool and HADAS do not provide any support for optimisation.

Regarding the genetic algorithms, they approximate optimal configurations using

sampling strategies and considering feature-wise QAs. They all support the addi-

tion aggregation function and the maximum, minimum and multi-objective search

operations. They do not support range optimisation. CT framework supports all

the quality-aware operations discussed in Table 5.1.

5.3 Data Integration with Algebraic Theories

As discussed in Section 2, a complete and tested solution for unified modelling and

reasoning was nonexistent. Suppose we broaden the scope to non-SPL theories. In

that case, we find Set Theory (ST), which, similarly to CT, is a branch of mathe-
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matical logic that studies set, which informally are collections of objects [130]. ST

lacks support for numerical equations, inequalities, and infinite datatypes. Simi-

larly, Higher-Order Logic(HOL) deals just with declarative propositions, predicates

and quantification (e.g., ∀x) [131]. Codd Theory is the first and only formalisation

of relational algebra, which uses algebraic structures with well-founded semantics

for modelling data and defining queries on it. While databases support various

numerical components such as datatypes, counting, grouping, arithmetic, etc.,

they are programming workarounds outside Codd’s Theory. In other words, it is

unclear that Codd relational algebra should be extended above a pure Boolean

domain [132]. Pseudo-Boolean (i.e. [0,1]) reasoners are based on Arithmetic [132]

– the study of numbers and their operations. While they are promising, if not

considering the complexity and overload of model-transforming HOL, their per-

formance in current SAT competitions is often quite poor [133]. It should be

pointed out that all of the theories mentioned above (ST, HOL, Codd Algebra)

are well-formalised categories in CT.
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Chapter 6

Conclusions and Future Work

This chapter presents the conclusions of the thesis and future work.

6.1 Conclusions

Our research has focused on covering all the modelling properties and reasoning

techniques required to develop energy-efficient CPS and IoT devices. We started

by following a traditional SPL approach but end-up welcoming exotic techniques

from other fields like abstract algebra. Concretely, what we needed to integrate and

support that are not considered in a classical SPL approach were: (i) modelling

and optimal reasoning of NFs and arithmetic constraints in the form of NFMs,

(ii) measuring, modelling and reasoning of variant-wise complex QAs like energy

efficiency which information is stored in independent third party databases, (iii)

fast analyses of colossal solution spaces linked with energy-efficiency values, (iv)

consider partially-unmeasured solution spaces with random, biased, duplicated

and contradictory measurements alongside the respective meta-data, (iv) arith-

metic constraints among variant-wise and aggregated feature-wise QAs, (v) com-

plex quality-aware reasoning operations and multi-objective optimisation functions

of measured solution spaces defined by a unified variability and quality model.

Our approach can be summarised by integrating current modelling standards

into one, extending it with the discussed variability and quality requirements, and

providing direct analysis and advanced reasoning support that generate fast and
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rich insights into CPS’s energy efficiency. To do it, we followed three main paths:

1. The design of a bit-blasting technique to transform extended NFMs into

extended FMs. This allows direct use of the state-of-the-art (Boolean) solvers

for counting and near-optimal search of colossal spaces.

2. To develop an index-based process to link the reasoning of NFM solvers and

database managers hosting variant-wise QAs information. Due to the com-

plexities of the energy consumption information stored in different databases,

we integrated this solution into a sequence of 5 steps: solver-based sampling,

kNN, statistical tests, TL, and a weighted sorting of noteworthy features and

interactions affecting a QA.

3. To unify extended NFMs, variant-wise QA values, and QMs into the QVM

category, as well as lambda, define and group 8 different types of quality-

aware reasoning operations: report, satisfiability, count, filter, bound, ran-

dom, aggregate and optimisation. Additionally, due to the nature of CT,

these operations can be reused and compounded to form more complex ones

(e.g., URS : QVM
Bound ◦ Random−−−−−−−−−→ Configurations).

Besides the academic contributions, we develop 3 tools and 1 framework re-

spectively: Nemo2 to model NFMs and generate the respective FM in the common

standards, HADAS web-services that interconnect Clafer solver and MariaDB to

provide graphical and statistic insights of the energy consumption of CPS devices,

SAV RUS that generates in seconds a ranking of up to pairwise influencing fea-

tures of a colossal but randomly-unmeasured solution space, and QVM framework

in CQL IDE to directly model and quality-aware reason over QVMs without prior

CT or functional programming knowledge.

Consequently, approach and tools provide (1) CPS and IoT developers with the

necessary services and methods to directly uncover the most efficient alternatives

of their applications regardless of the quality of the data and the development time

available, (2) tools developers with micro-services to include reasoning in third-

party applications like integrated development environments (i.e., IDEs), and (3)

the SPL community a extended variability and quality modelling standard com-

patible with a new set of (categorical) solvers and reasoning algorithms. Finally,
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we expect this thesis to increase the consciousness of energy-efficient alternatives

and good practices while keeping the performance and costs of the current solu-

tions. As a global conclusion, we desire that our tools will be adopted to reduce

the energy footprints of the industry up to a 90% and help stop, and even reverse,

the causes and effects of climate change.

6.2 Future Work

As immediate improvements of our approaches and tools, we look forward to inte-

grating machine and transfer learning techniques into our QVM framework. Addi-

tionally, in the SAVRUS sequence, we expect to a) introduce a self-trained neural

network, b) replace in the second step the kNN with the Approximate Nearest

Neighbours (ANN) technique like Locality-Sensitive Hashing [134], and c) extend

the pairwise to a T-wise analysis with the minimum computational overhead. For

future research, we plan to explore 4 new directions:

• Continue increasing the number of modelling tools and solvers. Concretely,

non-relational databases, algebraic tools like CoQ and Agda, and pure math-

ematical suites like Matlab and Octave.

• Explore other algebraic theories like Geometry, Topology and Calculus.

• Formalise exotic operations for newer quality-aware reasoning. For instance,

Horner schemes to check satisfiability, Newton method for approximate count-

ing, and even Non-Linear Programming.

• Uncover new (useful) properties of QVMs by defining a pure mathematical

meta-model. This will allow us to perform (partial) derivations and integrals

of the measured solution space or calculate their limits and determinants.

This information can potentially improve and reduce the time of reasoning

operations.

Finally, we expect to apply the acquired knowledge to other software engineering

fields and reasoning theories like blockchain, artificial intelligence and algebraic

topology.
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Chapter 7

Uniform Random Sampling of

Numerical Feature Models

Title: Uniform Random Sampling Product Configurations of

Feature Models That Have Numerical Features

Authors: Daniel-Jesus Munoz, Jeho Oh, Mónica Pinto, Lidia

Fuentes and Don Batory

Conference: 23th ACM International Systems and Software Product

Line Conference (SPLC 2019)

Conference Rating: GGS Class: 2 / GGS Rating: A- / CORE: B /

LiveSHINE: A / MA: A-

Publication Date: September 2019

DOI: https://doi.org/10.1145/3336294.3336297

Abstract. Analyses of Software Product Lines(SPLs) rely on automated solvers

to navigate complex dependencies among features and find legal configurations.

Often these analyses do not support numerical features with constraints because

propositional formulas use only Boolean variables. Some automated solvers can

represent numerical features natively, but are limited in their ability to count and

Uniform Random Sample(URS) configurations, which are key operations to derive

unbiased statistics on configuration spaces.

Bit-blasting is a technique to encode numerical constraints as propositional
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7. UNIFORM RANDOM SAMPLING OF NUMERICAL FEATURE
MODELS

formulas. We use bit-blasting to encode Boolean and numerical constraints so that

we can exploit existing #SAT solvers to count and URS configurations. Compared

to state-of-art Satisfiability Modulo Theory and Constraint Programming solvers,

our approach has two advantages: 1) faster and more scalable configuration count-

ing and 2) reliable URS of SPL configurations. We also show that our work can be

used to extend prior SAT-based SPL analyses to support numerical features and

constraints.

56



Chapter 8

Transforming NFMs into PFs and

the UVL

Title: Transforming Numerical Feature Models into Proposi-

tional Formulas and the Universal Variability Language

Authors: Daniel-Jesus Munoz, Mónica Pinto, Lidia Fuentes and

Don Batory

Journal: Journal of Systems and Software (JSS)

JCR Impact Factor: 3.514 (Q2)

Publication Date: June 2023

DOI: https://doi.org/10.1016/j.jss.2023.

111770

Abstract. Real-world Software Product Lines(SPLs) need Numerical Feature

Models(NFMs) whose features have not only boolean values that satisfy boolean

constraints but also have numeric attributes that satisfy arithmetic constraints.

An essential operation on NFMs finds near-optimal performing products, which

requires counting the number of SPL products. Typical constraint satisfaction

solvers perform poorly on counting and sampling.

Nemo (Numbers, features, models) is a tool that supports NFMs by bit-blasting,

the technique that encodes arithmetic expressions as boolean clauses. The newest

version, Nemo2, translates NFMs to propositional formulas and the Universal
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Variability Language(UVL). By doing so, products can be counted efficiently by

#SAT and Binary Decision Tree solvers, enabling finding near-optimal products.

This article evaluates Nemo2 with a large set of synthetic and colossal real-world

NFMs, including complex arithmetic constraints and counting and sampling ex-

periments. We empirically demonstrate the viability of Nemo2 when counting and

sampling large and complex SPLs.
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Chapter 9

Finding Features Correlations

with Energy and Performance

Title: Finding Correlations of Features Affecting Energy Con-

sumption and Performance of Web Servers Using the

HADAS Eco-Assistant

Authors: Daniel-Jesus Munoz, Mónica Pinto and Lidia Fuentes

Journal: Computing

JCR Impact Factor: 2.063 (Q2)

Publication Date: June 2018

DOI: https://doi.org/10.1007/

s00607-018-0632-7

Abstract. The impact of energy consumption on the environment and the

economy is raising awareness of ”green” software engineering. HADAS is an eco-

assistant that makes developers aware of the influence of their designs and im-

plementations on the energy consumption and performance of the final product.

In this paper, we extend HADAS to better support the requirements of users:

researchers, automatically dumping the energy-consumption of different software

solutions; and developers, who want to perform a sustainability analysis of dif-

ferent software solutions. This analysis has been extended by adding Pearson’s

chi-squared differentials and Bootstrapping statistics, to automatically check the
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9. FINDING FEATURES CORRELATIONS WITH ENERGY AND
PERFORMANCE

significance of correlations of the energy consumption, or the execution time, with

any other variable (e.g., the number of users) that can influence the selection of a

particular eco-efficient configuration. We have evaluated our approach by perform-

ing a sustainability analysis of the most common web servers (i.e. PHP servers)

using the time and energy data measured with the Watts Up? Pro tool previously

dumped in HADAS. We show how HADAS helps web server providers to make a

trade-off between energy consumption and execution time, allowing them to sell

different server configurations with different costs without modifying the hardware.
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Chapter 10

Energy-Aware Environments for

Greener Cyber-Physical Systems

Title: Energy-Aware Environments for the Development of

Green Applications for Cyber-Physical Systems

Authors: Daniel-Jesus Munoz, José A. Montenegro, Mónica Pinto

and Lidia Fuentes

Journal: Future Generation Computing Systems

JCR Impact Factor: 6.125 (Q1)

Publication Date: September 2018

DOI: https://doi.org/10.1016/j.future.2018.

09.006

Abstract. Cyber-Physical Systems are usually composed by a myriad of battery-

powered devices. Therefore, developers should pay attention to the energy con-

sumption of the global system so as not to compromise the system lifetime. There

are plenty of experimental studies that give hints about how to reduce the energy

consumption. However, this knowledge is not readily available for the software

developers of cyber-physical systems. They normally use software development

environments that do not provide useful advice about the energy consumption of

the software solutions being implemented. In this paper, we propose a Developer

Eco-Assistant to integrate the experimental results obtained by researchers into
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10. ENERGY-AWARE ENVIRONMENTS FOR GREENER
CYBER-PHYSICAL SYSTEMS

the software development environments, so as to increase the energy-awareness

of cyber-physical systems developers. In our solution, the energy information is

obtained in real-time from a repository of energy consuming concerns, where re-

searchers store their experimental measurements. Developers use the repository

to perform sustainability analyses, which, in turn, will lead to greener design/im-

plementation decisions. In this paper, we illustrate the use of our approach in

the context of cyber-physical systems development using both open source envi-

ronments (e.g. JetBrains IDEs) and proprietary environments (e.g. Waspmote

development environment). We experimentally demonstrate that cyber-physical

systems can reduce more than 40% of its energy consumption depending on the

scenario, reaching approximately 90% in some certain cases.
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Chapter 11

Learning Feature Influences to

Quality Attributes in Incomplete

Spaces

Title: Detecting Feature Influences to Quality Attributes in

Large and Partially Measured Spaces Using Smart Sam-

pling and Dynamic Learning

Authors: Daniel-Jesus Munoz, Mónica Pinto and Lidia Fuentes

Journal: Knowledge-Based Systems

JCR Impact Factor: 8.139 (Q1)

Publication Date: April 2023

DOI: https://doi.org/10.1016/j.knosys.2023.

110558

Abstract. Emergent application domains (e.g., Edge Computing/Cloud/B5G

systems) are complex to be built manually. They are characterised by high vari-

ability and are modelled by large Variability Models (VMs), leading to large con-

figuration spaces. Due to the high number of variants present in such systems,

it is challenging to find the best-ranked product regarding particular Quality At-

tributes (QAs) in a short time. Moreover, measuring QAs sometimes is not trivial,

requiring a lot of time and resources, as is the case of the energy footprint of soft-
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11. LEARNING FEATURE INFLUENCES TO QUALITY
ATTRIBUTES IN INCOMPLETE SPACES

ware systems – the focus of this paper. Hence, we need a mechanism to analyse

how features and their interactions influence energy footprint, but without mea-

suring all configurations. While practical, sampling and predictive techniques base

their accuracy on uniform spaces or some initial domain knowledge, which are not

always possible to achieve. Indeed, analysing the energy footprint of products in

large configuration spaces raises specific requirements that we explore in this work.

This paper presents SAVRUS (Smart Analyser of Variability Requirements in

Unknown Spaces), an approach for sampling and dynamic statistical learning

without relying on initial domain knowledge of large and partially QA-measured

spaces. SAVRUS reports the degree to which features and pairwise interactions in-

fluence a particular QA, like energy efficiency. We validate and evaluate SAVRUS

with a selection of likewise systems, which define large searching spaces containing

scattered measurements.
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Chapter 12

Category Theory Framework for

VMs with Non-functional

Requirements

Title: Category Theory Framework for Variability Models with

Non-functional Requirements

Authors: Daniel-Jesus Munoz, Dilian Gurov, Mónica Pinto and

Lidia Fuentes

Conference: 33rd International Conference on Advanced Information

Systems Engineering (CAiSE 2021)

Conference Rating: GGS Class: 2 / GGS Rating: A / CORE: A / LiveSHINE:

A / MA: A-

Publication Date: June 2021

DOI: https://doi.org/10.1007/

978-3-030-79382-1_24

Abstract. In Software Product Line (SPL) engineering one uses Variability

Models (VMs) as input to automated reasoners to generate optimal products ac-

cording to certain Quality Attributes (QAs). Variability models, however, and

more specifically those including numerical features (i.e., NVMs), do not natively

support QAs, and consequently, neither do automated reasoners commonly used
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12. CATEGORY THEORY FRAMEWORK FOR VMS WITH
NON-FUNCTIONAL REQUIREMENTS

for variability resolution. However, those satisfiability and optimisation problems

have been covered and refined in other relational models such as databases.

Category Theory (CT) is an abstract mathematical theory typically used to

capture the common aspects of seemingly dissimilar algebraic structures. We pro-

pose a unified relational modelling framework subsuming the structured objects of

VMs and QAs and their relationships into algebraic categories. This abstraction al-

lows a combination of automated reasoners over different domains to analyse SPLs.

The solutions’ optimisation can now be natively performed by a combination of

automated theorem proving, hashing, balanced-trees and chasing algorithms. We

validate this approach by means of the edge computing SPL tool HADAS.
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Chapter 13

Analysis and Optimisation of

Virtual Network Functions

Title: Quality-aware Analysis and Optimisation of Virtual Net-

work Functions

Authors: Daniel-Jesus Munoz, Mónica Pinto and Lidia Fuentes

Conference: 26th ACM International Systems and Software Product

Line Conference (SPLC 2022)

Conference Rating: GGS Class: 2 / GGS Rating: A- / CORE: B /

LiveSHINE: A / MA: A-

Publication Date: September 2022

DOI: https://doi.org/10.1145/3546932.3547007

Abstract. The softwarisation and virtualisation of network functionality is the

last milestone in the networking industry. Software-Defined Networks (SDN) and

Network Function Virtualization (NFV) offer the possibility of using software to

manage computer and mobile networks and build novel Virtual Network Functions

(VNFs) deployed in heterogeneous devices. To reason about the variability of

network functions and especially about the quality of a software product defined

as a set of VNFs instantiated as part of a service (i.e., Service Function Chaining),

a variability model along with a quality model is required.

However, this domain imposes certain challenges to quality-aware reasoning of

service function chains, such as numerical features or configuration-level Quality
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13. ANALYSIS AND OPTIMISATION OF VIRTUAL NETWORK
FUNCTIONS

Attributes (QAs) (e.g., energy consumption). Incorporating numerical reasoning

with quality data into SPL analyses is challenging and tool support is rare. In

this work, we present 3 groups of operations: model report, aggregate functions

to dynamically convert QAs at the feature-level into the configuration-level, and

quality-aware optimisation. Our objective is to test the most complete reasoning

tools to exploit the extended variability with quality attributes needed for VNFs.
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Appendix A

Publications

This chapter presents all the publications done in the context of the thesis, and that

naturally support its results and conclusions. They account for 18 publications in

total along the 7 years of the PhD program (2016-2023) divided as follows: 4 JCR-

indexed journals, 5 GGS-indexed international conferences, 1 tool demonstration

papers in GGS-indexed international conferences, 2 workshops in GGS-indexed

international conferences, 1 doctoral symposium in a GGS-indexed international

conference, 1 international conference and 4 national conferences. Table A.1 lists

the publications in journals, Table A.2 list the publications in any international

conference, Table A.3 lists the rest of the publications except the national confer-

ences ones that are listed in Table A.4. It is worth to highlight the award-winning

best paper in an international conferences corresponding to the HADAS path of

our approach. Additionally, 4 of the indexed publications are the result of two

different research stays finishing in fruitful collaborations. Finally, this thesis has

received two awards:

• Top 22 thesis of Universidad de Málaga in 2022 1.

• Top 2 Excellence Young Scientist 2018 award of the Universidad de Sevilla

and Universidad de Málaga by the Fundación IMFAHE (International Men-

toring Foundation for the Advancement of Higher Education) 2.

1Thesis Talk UMA 2022: https://www.uma.es/media/tinyimages/file/
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A. PUBLICATIONS

Table A.1: Journal Publications

JOURNALS

Title: Transforming Numerical Feature Models into Proposi-
tional Formulas and the Universal Variability Language
(Post Research Stay at the University of Texas in Austin, USA)

Authors: Daniel-Jesus Munoz*, Mónica Pinto, Lidia Fuentes and Don Batory
Journal: Journal of Systems and Software (JSS)
JCR Impact Factor: 3.514 (Q2)
Publication Date: June 2023
DOI: https://doi.org/10.1016/j.jss.2023.111770

Title: Detecting Feature Influences to Quality Attributes in Large and Partially Measured Spaces
Using Smart Sampling and Dynamic Learning

Authors: Daniel-Jesus Munoz*, Mónica Pinto and Lidia Fuentes
Journal: Knowledge-Based Systems
JCR Impact Factor: 8.139 (Q1)
Publication Date: April 2023
DOI: https://doi.org/10.1016/j.knosys.2023.110558

Title: Energy-Aware Environments for the Development of Green Applications for Cyber-Physical
Systems

Authors: Daniel-Jesus Munoz*, José A. Montenegro, Mónica Pinto and Lidia Fuentes
Journal: Future Generation Computing Systems
JCR Impact Factor: 6.125 (Q1)
Publication Date: September 2018
DOI: https://doi.org/10.1016/j.future.2018.09.006

Title: Finding Correlations of Features Affecting Energy Consumption and Performance of Web
Servers Using the HADAS Eco-Assistant

Authors: Daniel-Jesus Munoz*, Mónica Pinto and Lidia Fuentes
Journal: Computing
JCR Impact Factor: 2.063 (Q2)
Publication Date: June 2018
DOI: https://doi.org/10.1007/s00607-018-0632-7

* Corresponding author.

ThesisTalk_ParticipantesSeleccionados.pdf
2IMFAHE AWARD 2018: https://www.imfahe.org/wp-content/uploads/2022/

08/IMFAHE-Fellowship-Winners-.pdf
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Table A.2: International Conference Publications

INTERNATIONAL CONFERENCE

Title: Quality-aware Analysis and Optimisation of Virtual Network Functions

Authors: Daniel-Jesus Munoz*, Mónica Pinto and Lidia Fuentes
Conference: 26th ACM International Systems and Software Product Line Conference (SPLC 2022)
Conference Rating: GGS Class: 2 / GGS Rating: A- / CORE: B / LiveSHINE: A / MA: A-
Publication Date: September 2022
DOI: https://doi.org/10.1145/3546932.3547007

Title: Nemo: A Tool to Transform Feature Models with Numerical Features and Arithmetic Con-
straints
(Post Research Stay at the University of Texas in Austin, USA)

Authors: Daniel-Jesus Munoz*, Jeho Oh, Mónica Pinto, Lidia Fuentes and Don Batory
Conference: 20th International Conference on Software and Systems Reuse (ICSR 2022)
Conference Rating: GGS: 3 / CORE: B / LiveSHINE: B / MA: B
Publication Date: June 2022
DOI: https://doi.org/10.1007/978-3-031-08129-3_4

Title: Category Theory Framework for Variability Models with Non-functional Requirements

Authors: Daniel-Jesus Munoz*, Dilian Gurov, Mónica Pinto and Lidia Fuentes
(Post Research Stay at the KTH Royal Institute of Technology in Stockholm, Swe-
den)

Conference: 33rd International Conference on Advanced Information Systems Engineering (CAiSE
2021)

Conference Rating: GGS Class: 2 / GGS Rating: A / CORE: A / LiveSHINE: A / MA: A-
Publication Date: June 2021
DOI: https://doi.org/10.1007/978-3-030-79382-1_24

Title: Uniform Random Sampling Product Configurations of Feature Models That Have Numeri-
cal Features
(Post Research Stay at the University of Texas in Austin, USA)

Authors: Daniel-Jesus Munoz*, Jeho Oh, Mónica Pinto, Lidia Fuentes and Don Batory
Conference: 23th ACM International Systems and Software Product Line Conference (SPLC 2019)
Conference Rating: GGS Class: 2 / GGS Rating: A- / CORE: B / LiveSHINE: A / MA: A-
Publication Date: September 2019
DOI: https://doi.org/10.1145/3336294.3336297

Title: Green Security Plugin for Pervasive Computing Using the HADAS Toolkit

Authors: Daniel-Jesus Munoz*, José A. Montenegro, Mónica Pinto and Lidia Fuentes
Conference: IEEE International Symposium on Dependable, Autonomic and Secure Computing (DASC

2018)
Conference Rating: GGS Class: W / GGS Rating: Work in Progress / CORE: C / LiveSHINE: B / MA: -
Publication Date: April 2018
DOI: https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.136

Title: HADAS and Web Services: Eco-Efficiency Assistant and Repository Use Case Evaluation
(Best Student Paper Award)

Authors: Daniel-Jesus Munoz*, Mónica Pinto and Lidia Fuentes
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Appendix B

Resumen en Español

B.1 Introducción

La OCDE afirma que el consumo de enerǵıa es un combustible para el crecimiento

económico, pero está estrechamente relacionado con el cambio climático global a

través de las emisiones de gases de efecto invernadero [1]. Los sistemas de software

no consumen enerǵıa por śı mismos, pero afectan a la utilización del hardware, lo

que conlleva un consumo indirecto de enerǵıa. Reducir el consumo energético de

los SPI exige un estudio exhaustivo de los distintos agentes, componentes y entorno

implicados. Según la AIE, sólo los centros de datos y las redes en funcionamiento

consumen el 1% de la electricidad mundial [3]. El diseño de software con conciencia

energética puede reducir el consumo total de enerǵıa entre un 30% y un 90% [6].

No obstante, las distintas formas de medir el consumo de enerǵıa en tiempo real

son muy complejas. Los medidores de enerǵıa son dispositivos que se conectan a

la toma de corriente y miden la cantidad de electricidad que circula por ella, mien-

tras que los modelos energéticos de hardware con herramientas de software de

predicción pueden mostrar cuánta enerǵıa utiliza cualquier componente para un

proceso espećıfico. Las lecturas de enerǵıa se proporcionan como el consumo total

de enerǵıa en julios o la tasa de consumo de enerǵıa en vatios. Para los disposi-

tivos alimentados por bateŕıa, los julios por tarea son una métrica más interesante,

mientras que los vatios por tarea se usan más en dispositivos conectados directa-

mente a corriente [6]. El enfoque habitual para modelar y almacenar las lecturas
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de consumo energético es describirlas como una caracteŕıstica de componentes in-

dividuales, como el coste monetario de un componente hardware.

Sin embargo, los valores de consumo energético presentan muchas interacciones

entre componentes, lo que dificulta su descripción mediante valores energéticos

individuales y estáticos. En su lugar, podemos almacenar y completar con in-

formación energética bases de datos de forma colaborativa. La AIE y Datarade

ofrecen bases de datos gratuitas con datos de consumo energético para el análisis

de la eficiencia energética y la sostenibilidad. Sin embargo, las bases de datos

no son escalables para sistemas altamente configurables debido a la maldición de

la dimensión. Nuestro trabajo se centra en la Industria 4.0, concretamente en los

Sistemas Ciberf́ısicos (acrónimo inglés CPS), los cuales se caracterizan por su alta

configurabilidad y adaptabilidad, presentando un gran número de alternativas y

un número colosal de sistemas diferentes en funcionamiento. Esto se conoce como

el espacio de búsqueda/solución, y cuyo tamaño es el conjunto de todos los puntos

posibles que satisfacen un problema de optimización.

Los espacios de solución parcialmente conocidos son un problema habitual en

muchos campos, como la ingenieŕıa informática, el aprendizaje automático, la in-

teligencia artificial y la optimización orientada a objetivos. Los Problemas de

Satisfacción de Restricciones (acrónimo inglés CSP) son problemas matemáticos

definidos como un conjunto de objetos cuyo estado debe satisfacer una serie de

restricciones [11]. Los Modelos de Variabilidad (acrónimo inglés VMs) son es-

tructuras arborescentes que se utilizan para representar los elementos comunes y

las diferencias de un CPS. Las Caracteŕısticas Numéricas (acrónimo inglés NFs)

pueden utilizarse en los VMs para representar propiedades cuantitativas del sis-

tema, pero la mayoŕıa de las herramientas no admiten NFs. Además, las NFs

aumentan el tamaño del espacio de soluciones multiplicándolo por su tamaño de

dominio, lo que convierte los espacios de soluciones grandes en colosales.

Los Modelos de Calidad (acrónimo inglés QMs) son estructuras en forma de

árbol que se utilizan para determinar qué Atributos de Calidad (acrónimo inglés

QAs) como la eficiencia energética se tendrán en cuenta al evaluar un sistema.

ISO/IEC 25010 es la formalización de QM más popular, que agrupa las QAs en

ocho tipos distintos. El razonamiento automatizado es la automatización del razon-

amiento lógico formal para calcular distintos tipos de información sobre modelos
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de sistemas. Algunos ejemplos son proporcionar un VM o QM a una herramienta

de razonamiento, y calcular el tamaño del espacio de soluciones, comprobar la sat-

isfabilidad del modelo o generar únicamente sistemas óptimos basados en funciones

objetivo basadas en uno o varios QAs.

Esta tesis pretende encontrar un enfoque nativo de modelado y razonamiento

para un Modelo unificado de Variabilidad y Calidad (acrónimo inglés QVM). Se

trata de desarrollar un enfoque que apoye el modelado y el razonamiento ori-

entado a la optimización de caracteŕısticas numéricas, un marco algebraico para

QVMs unificados, un ecoasistente en ĺınea para optimizar un espacio de soluciones

restringido por el usuario y medido para la calidad, y un algoritmo y una her-

ramienta web para aprender las influencias de la enerǵıa y las caracteŕısticas de

espacios de soluciones restringidos por el usuario, desconocidos por el dominio y

parcialmente medidos.

B.2 Antecedentes

Esta tesis presenta los antecedentes de las Ĺıneas de Productos de Software ((acró-

nimo inglés SPLs)), la Teoŕıa de Categoŕıas (acrónimo inglés CT) y los análisis

estad́ısticos. Las SPL son métodos, herramientas y técnicas de ingenieŕıa de soft-

ware para crear una colección de sistemas de software similares a partir de un

conjunto compartido de activos de software utilizando un medio de producción

común. Este enfoque concilia la producción y personalización masiva, y ayuda

a reducir los costes de desarrollo y el tiempo de comercialización, al tiempo que

mejora la calidad del producto y la satisfacción del cliente. Los VMs son un medio

común para la representación de aspectos comunes y espećıficos de los artefactos

de software, y pueden utilizarse para generar otros activos como estad́ısticas, doc-

umentos, definición de arquitectura e incluso trozos de código. La comunidad SPL

considera los Modelos de Caracteŕısticas (acrónimo inglés FMs) como el estándar

de VMs.

FODA fue la primera formalización del modelado y razonamiento de la vari-

abilidad [28]. Las Fórmulas Proposicionales (acrónimo inglés PFs) define la vari-

abilidad SPL mediante caracteŕısticas con valores y restricciones Booleanos [34].

Un Modelo con Caracteŕısticas Numéricas (acrónimo inglés NFM) admite car-
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acteŕısticas numéricas y mezclas de restricciones aritméticas y de lógica proposi-

cional. Los QAs son caracteŕısticas de un sistema para evaluar su rendimiento

desde la perspectiva del usuario final. La norma ISO/IEC 25010 es la más popu-

lar, y comprende ocho supertipos de calidad: funcionalidad, fiabilidad, usabilidad,

eficiencia, mantenibilidad, portabilidad, compatibilidad y seguridad. Existen dos

tipos de relaciones entre los valores de calidad y la variabilidad de un sistema: a

nivel de caracteŕıstica y a nivel de variante [33].

Por caracteŕısticas se entienden los valores respectivos de calidad de las carac-

teŕısticas individuales junto a una fórmula de agregación, mientras que por vari-

antes se entiende el valor absoluto para un sistema concreto, denominado config-

uración o producto final. El consumo de enerǵıa es una QA de variantes.

Los CSPs son cuestiones matemáticas definidas como un conjunto de objetos

cuyo estado debe satisfacer una serie de restricciones. Los tipos de solucionadores

más populares son SAT, SMT y CP. SAT resuelve el problema de la satisfacción

Booleana, SMT generaliza el problema de la satisfacción Booleana a fórmulas

más complejas y CP resuelve problemas Booleanos, numéricos y lineales mediante

retroceso y propagación de restricciones.

Por otro lado, la CT es una teoŕıa algebraica de estructuras matemáticas que

permite captar y relacionar aspectos similares de las estructuras abstrayéndose

al mismo tiempo de las particularidades individuales de sus disimilitudes [37].

Los principales componentes son la categoŕıa (i.e., meta-modelo), los objetos (i.e.,

componentes), las flechas (i.e., relaciones), las funciones (i.e., operaciones), las

rutas (i.e., composición de flechas o funciones), los elemento (i.e., variables de un

objeto) y las instancia (i.e., modelos).

Finalmente, formas avanzadas de razonamiento incluyen análisis estad́ısticos

y aprendizaje máquina. Éstos pueden utilizarse para predecir el resultado de un

modelo o el comportamiento de algunas de sus caracteŕısticas. Los más impor-

tantes en la literatura son el muestreo en la selección y medición de un subcon-

junto del espacio de búsqueda formado por pares de configuración/valor de QA.

También se utilizan pruebas no paramétricas para determinar si dos conjuntos son

significativamente diferentes entre śı. También se utilizan técnicas de aprendizaje

automático para mejorar la escalabilidad reduciendo el número de muestras so-

licitadas. Uno de los usados en este trabajo es el Aprendizaje por Transferencia
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(acrónimo inglés TL).

B.3 Motivación

Esta tesis propone un enfoque SPL para automatizar diferentes análisis de la

eficiencia energética de dominios emergentes como los CPSs y las redes B5G.

El recuento de configuraciones de modelos permite un rápido muestreo aleato-

rio insesgado de grandes espacios de productos, pero los solucionadores #SAT

no soportan NFMs [50], los CP y SMT enumeran en lugar de realizar un re-

cuento de configuraciones, y todav́ıa no existen herramientas #CP o #SMT. La

primera pregunta clave (acrónimo inglés RQ1) es ¿Cómo podemos ampliar

los solucionadores (booleanos) más avanzados para que admitan au-

tomáticamente los NFMs sin degradar el rendimiento?.

Hay tres componentes necesarios para automatizar la construcción de un sis-

tema y la medición de un QA: la generación de determinadas configuraciones de un

espacio de soluciones espećıfico con un solucionador compatible con los NFMs, el

modelado de los QA de un QM, y los datos de mediciones de configuraciones alma-

cenados en centros de datos. La falta de consenso en la comunidad ha dado lugar

a diferentes ideas que finalmente no se materializan en una herramienta de análisis

sólida para QAs de variantes. Falta la interconexión entre configuraciones de un

espacio de soluciones espećıfico y un espacio de soluciones medidas incompleto

dado por un QM y un repositorio de datos. Se necesitan enfoques agnósticos del

dominio para identificar y analizar caracteŕısticas significativas y caracteŕısticas

interactivas para los QAs de variantes cuando muchas mediciones de configuración

no están disponibles y no pueden solicitarse sobre la marcha. La RQ2 es ¿Cómo

podemos proporcionar automáticamente información sobre la eficiencia

energética cuando nos enfrentamos a espacios de soluciones colosales,

parcialmente desconocidos y parcialmente medidos basados en NFMs y

QAs por variantes?

Responder a RQ1 y RQ2 permitiŕıa obtener información sobre la eficiencia

energética, pero son menos escalable que una solución nativa y presentaŕıa proble-

mas de mantenimiento. El proceso de interconexión está limitado por las escasas

operaciones de razonamiento que admiten los razonadores NFM y QM, que no
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tienen en cuenta los QAs. Una solución completa permitirá modelar y razonar

cualquier tipo de NFM ampliado junto con QA variables. Esto es factible de im-

plementar en un IDE que soporte un NFM y un QM extendidos unificados, y es

más escalable e intuitivo que interconectar dos razonadores distantes. La RQ3

es ¿Cómo podemos unificar adecuadamente los NFMS extendidos y los

QM al tiempo que contamos con el soporte nativo de las herramientas

de razonamiento automatizado?

B.4 Propuesta

Esta sección presenta la visión general de los 3 enfoques incrementales seguidos

para responder a las RQs[1-3].

La primera ĺınea se centra en la transformación de dominios numéricos en

dominios booleanos mediante vectores de bits y operaciones aritméticas. La prin-

cipal propiedad de los vectores de bits es su anchura, que define los ĺımites de

valor mı́nimo y máximo de las variables numéricas, y si el vector es sin signo o

con signo. También utiliza la representación Big-Endian, en la que el primer bit

codifica el signo como positivo (0) o negativo (1). Hemos desarrollado Nemo2, una

herramienta que automatiza el proceso de aplicación de Bit-Blasting a aritmética

con grandes vectores de bits.

Para Nemo2 hemos definido un lenguaje de NFMs completo, aunque también

admite estándares de entrada y salida compatibles con distintos solucionadores

estado-del-arte. También presenta optimizaciones del modelo para generarlos

pequeños y rápidos de razonar en cualquiera de los formatos admitidos. Los de-

talles más importantes es que podemos usar los modelos resultantes en las mejores

estrategias de muestreo como las que se basan en técnicas insesgadas y aleatorias:

Muestreo Aleatorio Uniforme (acrónimo inglés URS) y la Búsqueda Estad́ıstica

Recursiva (acrónimo inglés SRS) [111]. Luego podemos encontrar las configu-

raciones más eficientes realizando un análisis de prueba T-Student frente a otro

conjunto de muestras, calculando aśı la confianza. La distancia media entre la

configuración calculada y la configuración con mejores resultados es tiende a ser

1%± 1% de media.

La segunda ĺınea presenta dos enfoques complementarios en forma de eco-
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asistentes que ayuden a responder la RQ2. El primer enfoque consiste en inter-

conectar un solucionador NFM con un gestor de bases de datos integrando los

datos reales de QAs de tipo variante obtenidos de diferentes bases de datos. Esto

implica tener en cuenta todas las métricas y valores en los razonamientos, aśı como

informar de metadatos interesantes. Nuestro enfoque propone un proceso que vin-

cula externamente las configuraciones y sus valores de QAS de tipo variante para

proporcionar información valiosa sobre la calidad de cada configuración real.

Para ellos, creamos enlaces simbólicos basados en ı́ndices entre configuraciones

válidas y sus valores de QA de tipo variante. El método es asignar identificadores

estáticos a las caracteŕısticas de las hojas. Esto nos permite realizar análisis es-

tad́ısticos del espacio de soluciones medido. Hemos implementamos este enfoque en

nuestra segunda herramienta denominada HADAS, la cual brinda razonamientos

de NFMs basados en solucionadores, una base de datos colaborativa, un proceso en

modo servidor, una interfaz gráfica e interactiva para los usuarios, un análisis es-

tad́ıstico sobre la influencia de caracteŕısticas, un microservicio para la interacción

con aplicaciones de terceros y un plugin para IntelliJ IDEA. La arquitectura y

funcionalidad de este sistema se basa en Clafer Modelling Language, Clafer-solver,

MariaDB, análisis de diferenciales de Pearson chi-cuadrado, remuestreo aleatorio,

resultados gráficos y estad́ısticos. En el caso del plugin para IntelliJ IDEA, la

interfaz se sustituye por la del IDE, mientras que los datos se intercambian con

HADAS en formato JSON.

El segundo enfoque de la segunda ĺınea viene representado por SAVRUS, una

estrategia modular que navega a través de espacios grandes y dif́ıciles de medir

con valores QA parcialmente desconocidos, trabaja con los datos disponibles y

proporciona una rápida identificación y clasificación por importancia de las carac-

teŕısticas y sus interacciones por pares. Comprende cinco pasos secuenciales, los

cuales se integran en un prototipo de aplicación web con las siguientes opciones

de técnicas para cada paso.

Para el primer paso de muestreo hemos implementado URS yMuestreo Diversi-

ficado Basado en la Distancia (acrónimo inglés DDbS). El segundo paso es apren-

dizaje perezoso, para el que hemos implementado los k Vecinos Cercanos (acrónimo

inglés kNN) como técnica de regresión. El tercer paso es el test estad́ıstico y para

lo cual hemos seleccionado la prueba de la U de Mann-Whitney (acrónimo inglés
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MWU). El cuarto paso es la detección de anomaĺıas con selección de instancias

no supervisada para lo que implementos el método de TL Local Outlier Factor

(LOF) midiendo la desviación local de una muestra desconocida. Finalmente, se

realiza una actualización de pesos para clasificar las caracteŕısticas y sus combina-

ciones en pares. Los desarrolladores pueden optimizar los sistemas sustituyendo

las caracteŕısticas notables y blindando las más energéticamente eficientes.

La tercera ĺınea es en la que unificamos los NFMs extendidos con cualquier

tipo de QAs relacionados en una categoŕıa de SPLs. La categoŕıa unificadora

QVM comprende tres objetos categóricos de tipo datos y cinco objetos categóricos

estructurados. Se definen operaciones de razonamiento de calidad sobre config-

uraciones SPL, que permiten a los desarrolladores realizar directamente análisis

conscientes de la calidad de los ahora unidos espacios de caracteŕısticas, soluciones

y mediciones de QAs. Adicionalmente, hemos formalizado el razonamiento nativo

basado en calidad y agrupado en 8 operaciones sobre QVM: generar un informe,

satisfacibilidad, recontar, filtrar, limitar, aleatorizar, agregar y optimizar. Estas

operaciones son functores categóricos entre QVM y una categoŕıa resultante.

CQL IDE es el estado del arte de las herramientas categóricas, ya que ad-

mite la definición de categoŕıas y el razonamiento basado en functores. Procesa

operaciones con su conjunto de razonadores, y la composición de operaciones es

una operación natural en álgebras y teoŕıas formales. CQL IDE está desarrollado

para soportar futuras extensiones de SPL, proporcionando una solución unificada

y escalable para modelar NFMs extendidos con relaciones y razonamientos QAs.

B.5 Discusión de Resultados

Nemo2 es una herramienta para modelar, ampliar, optimizar y transformar NFMs

a los formatos más comunes de FM clásicos. Puede representar fórmulas com-

plejas de hasta 12 bits de ancho. También permite transformar NFMs reales de

tamaños colosales sin sobrecarga para casi todas las combinaciones de operaciones

booleanas y aritméticas en menos de 15 minutos. Los modelos resultantes son

idóneos para buscar configuraciones (casi) óptimas en espacios de soluciones de

tamaño 1045 con URS o SRS en menos de 10 segundos con un solucionador BDD.

También podemos realizar un reconteo colosal de tamaño 10248 en menos de 5

84



horas con un solucionador #SAT. Por tanto, nuestra respuesta a RQ1 es que

podemos codificar NFs y restricciones aritméticas en vectores de bits

y PFs. En consecuencia, con Nemo2 extendemos automáticamente los

FM con ramas NFMs, ejecutamos NFMs en solucionadores (booleanos)

clásicos y realizamos búsquedas de configuraciones (casi) óptimas con

una degradación mı́nima del rendimiento (i.e., segundos).

La herramienta web HADAS y sus plugins para JetBrains IDE proporcionan

ricos análisis de razonamiento en forma de percepciones gráficas de eficiencia en-

ergética, correlaciones estad́ısticas y consejos contextuales de código de CPSs. El

enfoque SAVRUS permite crear una clasificación de caracteŕısticas e interacciones

influyentes (es decir, preocupaciones) navegando rápidamente por grandes espacios

medidos que contienen muchas configuraciones desconocidas aleatoriamente. Con

SAVRUS hemos conseguido analizar un espacio de ∼ 5.3 ∗ 108 configuraciones en

donde tan solo hab́ıan 132.500 medidas aleatorias, y todo ello en menos de un 1

minuto con cobertura y exactitud de aproximadamente el 80%. Por tanto, nuestra

respuesta a RQ2 es que podemos ofrecer una visión completa de QAs

de tipo variante con un proceso basado en ı́ndices como HADAS, in-

terconectando un razonamiento del solucionador NFM con gestores de

bases de datos que albergan mediciones como los valores de eficiencia

energética. Para los casos en los que el espacio medido es grande, ses-

gado e incompleto, podemos proporcionar una clasificación de las pre-

ocupaciones que consumen enerǵıa siguiendo la secuencia de técnicas

SAVRUS : muestreo basado en solucionadores, aprendizaje perezoso,

pruebas estad́ısticas, aprendizaje de transferencia y clasificación pon-

derada.

Por último, hemos evaluado emṕıricamente este enfoque en CQL IDE trans-

formando en un único QVM el NFM y el modelo de base de datos ya existente

en HADAS. También los hemos comprobado emṕıricamente con 5 NFMs reales

y comparando su ejecución con el estado-del-arte para hasta 20 operaciones de

razonamiento basadas en calidad. Nuestra implementación en CQL IDE due el

único solucionador compatible con los modelos completos y las 20 operaciones, y

en promedio también fue la solución más rápida. Por tanto, nuestra respuesta a

RQ3 es que con un enfoque CT, podemos unificar el NFM extendido y
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QM como la categoŕıa QVM, aśı como definir cualquier operación basada

en calidad para un solucionador categórico como CQL IDE permitiendo

razonar nativamente sobre espacios de solución medidos por la calidad.

B.6 Conclusiones y Trabajo Futuro

Nuestra investigación se ha centrado en cubrir todas las propiedades de modelado

y técnicas de razonamiento que requiere el desarrollo de CPSs y dispositivos IoT

energéticamente eficientes. Esto incluye el modelado y el razonamiento óptimo

de NFs y restricciones aritméticas, la medición, el modelado y el razonamiento

de QA complejos en función de las variantes, el análisis rápido de espacios de

soluciones colosales, la consideración de espacios de soluciones parcialmente no

medidos, las restricciones aritméticas entre QA en función de las variantes y agre-

gadas en función de las caracteŕısticas, las operaciones de razonamiento complejas

conscientes de la calidad y las funciones de optimización multiobjetivo de espacios

de soluciones medidos definidos por un modelo unificado de variabilidad y calidad.

Desarrollamos 3 herramientas y 1 framework para modelar NFMs: el trans-

formador de NFMs a FMs Nemo2, los servicios web HADAS, la clasificación de

SAVRUS y el framework unificador QVM para CQL IDE. Estas herramientas pro-

porcionan a los desarrolladores de CPS e IoT servicios y métodos para descubrir las

alternativas más eficientes, a los desarrolladores de herramientas micro-servicios

para incluir el razonamiento en aplicaciones de terceros, y a la comunidad SPL un

estándar ampliado de modelado de variabilidad y calidad.

Como trabajo futuro, planeamos integrar técnicas de aprendizaje automático

y de transferencia en el framework QVM, introducir redes neuronales autofor-

madas, sustituir kNN por Approximate Nearest Neighbours (ANN) [134] y ampliar

el análisis por pares a T-wise. También tenemos previsto explorar 5 nuevas direc-

ciones: aumentar las herramientas de modelado y los solucionadores, explorar

otras teoŕıas algebraicas, formalizar operaciones exóticas, descubrir propiedades

útiles de los QVMs y aplicar los conocimientos a otros campos de la ingenieŕıa de

software.
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