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CHAPTER

1
Abstract

First thing, a summary of this dissertation in both English and Spanish will be presented.

1.1 Abstract

The geometry of the unit ball of Banach spaces is defined as the central object of study in

this dissertation. In particular, we will deeply study the geometry of the inner structure and

the extremal structure of this unit ball. First, we establish some conditions for a convex set

to hold the equality between its inner points and non-support points, and we present a non-

trivial weakly compact and convex subset of an infinite-dimensional Banach space lacking

inner points. Then we focus on extremal structure by means of a deep study of facets and

frames of the unit ball: we present novel definitions, such as the P-property, flat set, starlike

envelope or the pre-maximal face definition. Also, we relate the different types of points
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1. ABSTRACT

and well-known subsets in a unit ball. A new reformulation of the frame of the unit ball is

presented by using the relative interior of its facets. In the same chapter, several new terms

concerning flatness are defined, for instance, the mentioned starlike envelope, almost flat

or flat subsets, and we go over their relations and behaviour as convex components in the

unit sphere. The last part of this thesis is devoted to determine how the structure of the unit

ball is affected under different operators. In the first place, the mappings considered are

surjective isometries defined between unit spheres and new (and shorter) proofs for known

results are presented. In addition, we prove the invariance of flatness, faces, and segments

under particular circumstances, where the original new properties will be employed. Also,

we show the invariance of antipodal rotund points and antipodal maximal faces. Here, the

inner structure will play a fundamental role. The second part, related to Operator Theory,

concludes this dissertation with the analysis of the geometry of the unit ball under projec-

tions. A new type of projection is introduced, named as S-projection. This kind of projections

will help us to extend the extremal subsets of the projected space into the large one. Finally,

we define the term of strongly maximal face and we show its preservation under a particular

type of 1-projections, namely, L2-projections.

1.2 Resumen

El principal objeto de estudio dentro de esta tesis es la geometría de la bola unidad de

un espacio de Banach. En particular, estudiaremos en profundidad la estructura interna y

extremal de dicha bola. Para empezar, establecemos algunas condiciones para las cuales

se tiene la igualdad entre los puntos internos y los puntos de no-soporte de subconjuntos

convexo y presentamos un subconjunto no trivial débilmente compacto y convexo sin puntos

interiores en un espacio de Banach de dimensión infinita. Después, nos centramos en la

xii



1.2 Resumen

estructura extremal con el estudio en profundidad de las “facetas” y los “marcos” de la bola

unidad: presentamos nuevas definiciones, como la Propiedad P, los conjuntos planos, la

“envolvente estrellada” o una cara pre-maximal. Asimismo, relacionamos los diferentes tipos

de puntos y subconjuntos conocidos de la bola unidad. Presentamos una reformulación

nueva del “marco” de la bola unidad usando el interior relativo de sus “facetas”. En el

mismo capítulo, se definen varios términos nuevos relacionados con la planitud, como la

envoltura estrellada, los subconjuntos planos y casi planos, y haremos un estudio sobre sus

relaciones e interacciones como componentes convexas de la esfera unidad. La última parte

de la tesis está destinada al estudio del comportamiento de la estructura de la bola unidad

bajo distintos tipos de operadores. En primer lugar, las aplicaciones consideradas serán las

isometrías sobreyectivas definidas entre las esferas unidad y presentaremos nuevas pruebas

para resultados ya conocidos. Además, probaremos la invarianza de la planitud, caras y

segmentos bajo ciertas hipótesis, donde serán de ayuda las nuevas propiedades definidas en

la tesis. También mostraremos la invarianza de los puntos antípodas cuando sean redondos y

de las caras maximales antípodas. Aquí, la estructura interna jugará un papel fundamental.

La segunda parte relacionada con teoría de operadores concluye la tesis con el análisis de la

geometría de la bola unidad bajo proyecciones. Presentaremos las S-proyecciones como una

nueva aplicación de este tipo. Estas proyecciones nos serán de gran ayuda para extender

subconjuntos extremales del espacio projectado al espacio grande. Finalmente, definiremos

el nuevo término de caras fuertemente maximales y veremos cómo se mantienen bajo un

tipo particular de 1-proyecciones, a saber, las L2-proyecciones.
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CHAPTER

2
Introduction

Contents

2.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

2.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

2.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xx

2.4 Feasibility and broader impact . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

2.1 State of the art

This work is entirely framed in the General Theory of real Topological Vector Spaces. We

consider important to make the reader beware that the category of real Topological Vector

Spaces naturally includes the category of real vector spaces by simply endowing the vector

space with the locally convex vector topology.
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2. INTRODUCTION

There are many different versions of geometry, depending on the category we are working

on. For example, the relevant category in Differential Geometry is constituted by differential

manifolds. The category of algebraic manifolds is crucial in Algebraic Geometry. In Metric

Geometry, the main category is the one of metric spaces. A particular version of geometry,

Analytical Geometry, makes the category of real normed spaces come into play as one of its

typical and characteristic categories.

Then Analytical Geometry is the field of geometry taking care of the geometrical aspects

of real topological vector spaces. One of the most important and impacting branches of

Analytical Geometry is the Extremal Theory, where some known subjects of this study are

faces, extremal subsets, facets, rotund points or exposed faces, among others.

Extremal Theory encompasses a large research and a huge amount of results. On of these

results is the invariance under surjective isometries between unit spheres of Banach spaces

for maximal faces, proved by Tanaka in (1, Lemma 3.5). Geometrically speaking, maximal

faces are just convex components of the unit sphere. Tanaka used this invariance together

with the invariance of proper exposed points to fully determine the surjective isometries for

the operator norm unit sphere of n × n matrices (2, Theorem 6.1), where proper exposed

points are those elements of the unit sphere formed by the intersection of all the maximal

faces containing it. This idea motivates our original definition of premaximal faces and

Property P (3). The latter condition allows us to show the invariance of faces (3, Theorem

13), which is not proved in the general case . Another subject of study in Extremal Theory

is the behaviour between the objects mentioned before. For example, rotund points (which

are singleton maximal faces of the unit ball) are proper exposed points, which are in fact

exposed points, and they also satisfy the extremal condition. We want to highlight the notion

of exposed face between all the mentioned objects: informally speaking, exposed faces are
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2.1 State of the art

those subsets of the unit ball shared with a particular hyperplane, and if we consider the

boundary respect to that hyperplane, we have what we called an edge (4). The union of all

the edges is called the frame of the unit ball. In (1, Theorem 3.7) the invariance of the frame

under surjective isometries was also proved. Nevertheless, we present a new reformulation

of the frame by using the relative interior of facets respect to the unit sphere in (3, Theorem

7), what makes simpler to prove the invariance of the frame (3, Theorem 11). As well as

all the terms cited above, facets (understood as faces with no empty interior relative to the

unit sphere) are into the research of Extremal Theory and its invariance under surjective

isometries is a direct consequence of the fact that this types of operators are in particular

homeomorphisms.

Our background about Extremal Theory comes to an end with the study of the starlike struc-

tures. The term of starlike set was originally introduced, just for finite dimensional vector

spaces, by Tingley in (5), where the concept was characterized in Lemma 4 and Corollary 5.

This kind of subsets where defined in general normed spaces (1; 6; 7) as those elements of

the unit sphere which are at distance 2 from the opposite of the center of the starlike set, and

this set is characterized as the set of points in the unit sphere whose segment, with the center

as the other extreme, is contained in the sphere, and also as the union of all the maximal

faces containing the center of the starlike set. Even more, for separable Banach spaces, in

(1, Lemma 3.3) it was demonstrated that every maximal convex subset of the unit sphere is

a starlike set. Compared to this result, in (3, Theorem 9) we have shown that, for a general

normed space, a convex starlike set is the only maximal face containing any of its elements.

This Tingley’s paper is the birth of what is known as Tingley’s problem, which asks when it

is possible to extend a surjective isometry defined between the unit spheres of two Banach

spaces to a linear surjective one defined in the whole space. The amount of literature gener-

ated around this question in the last thirty years (1; 2; 4; 7; 8; 9; 10; 11; 12; 13; 14; 15) has
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2. INTRODUCTION

made this topic considered as a long-lasting opened problem (the two-dimensional case has

been already proved barely last year (16; 17; 18; 19) and the proof is made up by partial

solutions due to Banakh and Cabello-Sánchez), and it has conceived even new generalized

questions, such as the Mazur-Ulam property or the Strong Mankiewicz property, which are

Tingley’s problem for every surjective isometry and for arbitrary convex subsets instead of

the unit spheres, respectively.

The main result in the quoted Tingley’s paper (5) shows that surjective isometries between

the unit spheres of finite dimensional Banach spaces preserves antipodal points. A version

of this result is established in the case of two compact C∗-algebras by Tanaka and Peralta in

(14, Theorem 3.7), and as far as we know, there is no generalization of this Tingley’s result

for arbitrary dimensional spaces. An extension of it was provided in (3, Theorems 14 and

15), where this antipodal preservation is proved for rotund points and for maximal faces

with inner points respectively.

As it turns, inner and extremal structure are notably related, but the latter is greatly more

developed than the first one. By this inner structure we mean the existence of inner points,

internal points or even interior points. The inner structure of a (not necessarily convex) set

was formally introduced in (20). The interest in those inner points is that they are independ-

ent of the ambient space, for example, it is possible to provide an intrinsic characterization

of linear manifolds through inner points, which was not possible by using internal points

(20). Regarding the existence, in (20; 21; 22), non-trivial convex sets with no inner points

are presented. One of those papers shows that it is not an easy task to find non-trivial con-

vex sets lacking inner points, example found in (20, Theorem 5.4). These facts brings the

question if it is possible to find a non-singleton compact and convex subset free of inner

points in an arbitrary Hausdorff locally convex topological vector space. An approach to its

answer is exposed in (23, Theorem 4.8), where we provide a full solution to this question in
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2.2 Objectives

the normed space setting endowed with the weak topology. In order to prove this theorem,

all the background about inner points will be used, such as the fact that inner and internal

points coincide for convex sets. In fact, a new characterization of the set of inner points for

convex sets is presented in (23, Theorem 3.3) by using the set of non-supporting vectors.

Supporting vectors, as well as all the applications they had not only in Functional Analysis

but also in Optimization Theory applied to Engineering, simply because many optimization

problems in Physics and Engineering can be reformulated as the problem of finding the unit

vectors at which a certain matrix attains its Euclidean norm (24; 25), are extremely related

with the Geometry of the unit ball: exposed faces are convex sets of 1-supporting vectors (a

special subset of supporting vectors considered when the linear operator is a functional) or

the fact that a norm-1 operator is an isometry if and only if the unit sphere coincides with

the set of supporting vectors of that isometry. Respect to this research, in (26) there are

plenty of characterizations for supporting vectors, but what is more appealing in this paper

is that L∞-projections are characterized in terms of supporting vectors (26, Proposition 3.1)

or the characterization of 1-projections in strictly convex Banach spaces through supporting

vectors (26, Corollary 3.4). This is why we decided to entail an study of the geometry of the

unit ball under projections.

2.2 Objectives

The main objectives pursued by this work are the following:

1. To revisit the geometric properties of 2-dimensional real Banach spaces, mostly those

properties directly involved with the Mazur-Ulam property and Tingley’s problem.

2. To study the relation between the Strong Mankiewicz Property and the strict convexity
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2. INTRODUCTION

in arbitrary Banach spaces with special attention for the 2-dimensional ones.

3. To study whether the facial structure of the unit ball is a geometric invariant under

surjective isometries defined between unit spheres of Banach spaces.

4. To determine the behaviour of facets under surjective isometries.

5. To analyse the behaviour of surjective isometries after equivalent renormings.

6. To provide a partial or total solution to Tingley’s problem.

Keeping in mind all the research and articles generated around Tingley’s problem, Extremal

Theory and Inner Structure, the achievement of any of these specifics objectives is a huge

advance in this line of research and produces enough material for a dissertation.

2.3 Methodology

The methodology employed in taking this research work into a successful project is mainly

described in the fourth, fifth and sixth chapters, where the reader can realize that the object-

ives proposed previously have been successfully achieved, and all the necessary background

and results are gathered in Chapter 3.

There is a general methodology employed that we can describe here though. This meth-

odology is simply the Purely Mathematical Method, which consists in axiomatic-deductive

method of the first-order language Zermelo-Fraenkel with the Axiom of Choice (ZFC).

We have also employed a hybrid submethodology consisting in following the Bourbaki School

for results more oriented to the inner and extremal structure, and the Category Theory for

results more oriented to the relations, via morphisms, of different mathematical objects. All

xx



2.4 Feasibility and broader impact

our results as well as all the background employed in this dissertation is framed within the

Category of real Topological Vector Spaces. The subcategory of real normed spaces will be

mostly used.

2.4 Feasibility and broader impact

The feasibility of this research work is primarily supported by the contingency plan con-

sisting of dividing the objectives into sub-objectives in case the main objectives could not

be accomplished. However, as the reader may check in the Conclusions chapter, the main

objectives have been accomplished and then the feasibility is proved.

Respect to the broader impact, every purely mathematical work always finds some trouble to

have a broader impact than the simply direct one on its field. However, this purely mathem-

atical research work differentiates from others in the fact that some of the obtained results

can be directly applied to other areas of Mathematics, such as Operator Theory, see (27; 28),

and to solve optimization problems in Physics and Engineering (24; 25; 29; 30).
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As we have mentioned in the Methodology of the previous chapter, we start by gathering the

necessary background concerning Banach Space Theory and well-known terms for Banach

Space Geometers. This chapters is split into two branches: Extremal Theory and Operator
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3. MATERIALS AND METHODS

Theory. The first one is aimed to make a survey about the geometrical terms that we will

work with in the following chapters, such as extremal subsets, faces, exposed faces, facets,

rotund points, among others, and well-known results about them, for example, the equival-

ence between convex components and maximal faces of the unit ball (Proposition 3.2.7),

the invariance of maximal faces under surjective isometries (Theorem 3.2.9), or the char-

acterizations of those geometrical terms (Theorem 3.2.13, Equation 3.2.6, Theorem 3.2.32,

etc.), whereas the second one is focused in operators defined between normed spaces, such

as projections. We want the reader to notice that all the Geometrical Inner Structure is sum-

marized in the Extremal Theory section, as it is expected after the motivation given in the

state of the art, but we introduce this kind of structure with more detail in its corresponding

subsection. In addition, we will briefly talk about supporting vectors and for what they are

useful in the last section of this chapter.

3.1 Topological vector spaces

All vector spaces considered throughout this manuscript will be over the reals. If X is a

normed space, then BX , UX , SX will stand for its (closed) unit ball, its open unit ball, and its

unit sphere, respectively. If x ∈ X and r > 0, then BX (x , r), UX (x , r), SX (x , r) will denote, as

expected, the (closed) ball of center x and radius r > 0, the open ball of center x and radius

r > 0, and the sphere of center x and radius r > 0. For metric spaces, we will keep using

the same notation for the closed balls, the open balls and the spheres.

If X is a vector space, and A ⊆ X , int(A), cl(A), bd(A) will denote the interior, the closure

and the boundary of A respectively, and if B ⊆ A, the relative interior of B respect to A, the

relative closure of B respect to A and the relative boundary of B respect to A will be denoted

by intA(B), clA(B), bdA(B).
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3.2 Extremal Theory

A topological vector space (TVS) just means that the vector addition and the scalar multiplic-

ation are continuous with respect to the given topology. Important examples of topological

vector spaces are the Hausdorff locally convex topological vector spaces (there exists a local

basis of zero-neighborhoods which are balanced, convex, and absorbing). Besides, if we

consider the topology induced by the family of all seminorms on X we have what we call the

finest locally convex vector topology, which is locally convex and Hausdorff.

Notice that every vector space can be endowed with the finest locally convex vector topo-

logy by taking the collection of all absorbing and absolutely convex as local basis of zero-

neighborhoods. In other words, every vector space can be turned into a Hausdorff locally

convex topological vector space (independently of the linear dimension). Even more, any

vector space can actually be endowed with a norm the following way: fix a Hamel basis and

take the norm of a vector as the summation of the absolute values of the coordinates of the

vector with respect to such basis. Note that the previous constructed norm is not complete

in general.

3.2 Extremal Theory

The concepts from this section are well known among the Banach Space Geometers and

belong to the folklore of classic literature of Banach Space Theory. For further reading on

these topics, we refer the reader to the classical texts (31; 32; 33).
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3.2.1 Extremal structure

Definition 3.2.1 (Extremal subset). Let X be a normed space, and E ⊆ F ⊆ X . We say that E

satisfies the extremal condition with respect to F provided the following condition holds:

∀x , y ∈ F,∀t ∈ (0, 1) such that t x + (1− t)y ∈ E =⇒ x , y ∈ E. (3.2.1)

In this case, we call E extremal in F. In the particular case that E = {e} is a singleton, e is

called an extremal point in F. The set of all the extremal points of F is denoted by ext(F).

The non-empty intersection of extremal subsets is extremal as well. Besides, if E is extremal

in F and D is extremal in E, then D is extremal in F , and ext(D) ⊆ ext(E) ⊆ ext(F).

An important example of extremal subsets is the supporting hyperplane.

Definition 3.2.2 (Supporting hyperplane). Let A be a non-empty subset of a vector space X

and f ∈ X ∗. The supporting hyperplane relative to f in A is defined as

F( f , A) := {x ∈ X : f (x) =max f (A)}.

A supporting hyperplane is an example of an extremal subset, provided that F( f , A) ̸= ∅. If X

is also a normed space and A is the closed unit ball BX , we will simply write F( f ).

The extremal condition allows to define other geometrical concepts, as face, exposed faces,

etc. The notions of face and facet defined in (5) are what we call in this work exposed face

and maximal face, respectively.

Definition 3.2.3 (Face, extreme point). Let X be a normed space, and A⊆ BX . We say that A

is a face of BX if it is convex and extremal. The extremal points of a convex subset A ⊆ BX are
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3.2 Extremal Theory

called extreme points.

It is easy to check that every extremal subset E of BX satisfies that either E = BX or E ⊆ SX

(it is sufficient to consider e ∈ E and x ∈ BX \ SX , the segment [t x + (1− t)e, x] with t < 0

and close enough to 0 and apply the extremal condition of E). As a consequence, proper

faces of the unit ball are always contained in the unit sphere. Also, a point x is an extreme

point of a convex set A if and only if A\{x} is also convex.

Definition 3.2.4 (Exposed face, exposed point, Edge). Let X be a normed space. An exposed

face of BX is a set of the form F( f ) = {x ∈ BX : f (x) = max f (BX )}, for some f ∈ SX ∗ . An

equivalent form of an exposed face that will be used along this work is F( f ) = f −1({1})∩ BX ,

for some f ∈ SX ∗ . In case that an exposed face F( f ) = {x} is a singleton, {x} is called an

exposed point of BX , and we will denote the set of all exposed points of BX as exp(BX ). Besides,

we define an edge E( f ) of the unit ball with respect to f ∈ SX ∗ as E( f ) = bd f −1({1})(F( f )).

Note that exposed faces are examples of proper faces, and the inclusion exp(BX ) ⊆ ext(BX )

is straightforward from their definitions (relaying on the fact that 1 is an extreme point to

prove it). We also want to remark to the reader that the definition of edge give above is the

same as the one seen in (4, Theorem 1.1) and (1, Section 2), and it differs from the one

provided in (34, Definition 1.2.).

Remark 3.2.5. If (Cn)n∈N is a family of exposed faces in BX with ∩n∈NCn ̸= ∅, then the in-

tersection ∩n∈NCn is also an exposed face of BX . Indeed, for each Cn, take fn ∈ SX ∗ such that

Cn = F( fn), for all n ∈ N. Then ∩n∈N Cn = F( f ), with f :=
∑∞

n=1
1
2n

fn.

Definition 3.2.6 (Maximal face, rotund point). Let X be a normed space. A proper face C is

called a maximal face if it is a maximal element respect to the set of proper faces of BX endowed

with the inclusion. In case that C = {x} is a singleton, we called {x} a rotund point, and the
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set of all rotund points of BX is denoted by rot(BX ).

Notice that every maximal face of the unit ball is an exposed face: let C be a maximal face and

consider the open unit ball, UX . Since C is a proper (maximal) face, C ⊆ SX , therefore C and

UX are convex subsets, disjoint and UX is open, then, relaying on Hahn-Banach Separation

Theorem (see Theorem 4i), there exists a functional f ∈ X ∗ such that inf f (C)≥ sup f (UX ).

On the other side, c ⊆ BX , then sup f (BX ) ≥ inf f (C), and sup f (BX ) = ∥ f ∥ = sup f (UX ),

then f (C) = ∥ f ∥, which is the definition of an exposed face. At that point, if C is a maximal

face of BX , then C is a convex component of SX , and a maximal exposed face of BX . Since

being a maximal exposed face of BX trivially implies that it is a maximal face of BX , we have

proved the next equivalences:

Proposition 3.2.7. For a subset C ⊆ SX , where X is a normed space, the following are equival-

ent:

i) C is a convex component of BX ,

ii) C is a maximal face of BX ,

iii) C is a maximal exposed face of BX .

Therefore, we will indistinctly talk about maximal convex subsets of the unit sphere and

maximal faces of the unit ball. In addition, notice that

rot(BX ) ⊆ exp(BX ) ⊆ ext(BX ). (3.2.2)

The following examples show that the contentions in Equation (3.2.2) are strict for some

kind of Banach spaces.
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Example 3.2.8. In ℓ2∞ = (R
2,∥ · ∥∞), each corner of the unit ball is an exposed point which

is not rotund. If we renormed the space so that we smoothen the corners of Bℓ2∞ , then each

extreme of any edge is an extreme point which is not an exposed point.

One of the invariants studied along this memory are maximal convex sets of the unit sphere,

which trivially implies the invariance of maximal faces and maximal exposed faces of the

unit ball. This invariability is proved on detail in (1, Lemma 3.5) and (2, Lemma 6.3).

Theorem 3.2.9. Let X and Y be Banach spaces, and T : SX → SY a surjective isometry. Then,

C is a maximal convex subset of SX if and only if T (C) is a maximal face of SY .

The term of proper exposed point was coined by Tanaka in (2, Definition 3.2), and it is given

below. This definition will inspire an original one of this work, and it will be introduced in

the following chapter as pre-maximal face (see Definition 4.3.1).

Definition 3.2.10 (Proper exposed point). Let X be a normed space and A⊆ BX , a proper face

of the unit ball which is the intersection of all maximal faces containing A, that is,

A=
⋂

{C ⊆ BX : C is a maximal face such that A⊆ C}. (3.2.3)

If A = {x} is a singleton, x is called a proper exposed point, and the set of all proper exposed

points of BX is denoted by pexp(BX ).

The following chain of inclusions is trivially verified

rot(BX ) ⊆ pexp(BX ) ⊆ ext(BX ),

and, by relaying on Remark 3.2.5 or on (2, Proposition 3.4), one can see that pexp(BX ) ⊆
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ext(BX ), and the above equation is generalized as

rot(BX ) ⊆ pexp(BX ) ⊆ exp(BX ) ⊆ ext(BX ). (3.2.4)

As we mentioned before, in (5), the term of facet used by Tingley is what we call maximal

faces of the unit ball. Next, we give the notion of facet that is the same as the one given in

(34, Definiton 1.2)

Definition 3.2.11 (Facet). If X is a normed space, a proper face A of BX is called a facet if

intSX
(A) ̸=∅, and we will the denote the set of all facets of the unit ball as

CX = {C ⊂ SX : C is a facet}.

Remark 3.2.12. It is clear that surjective isometries T : SX → SY which we work with along

this work are homeomorphisms. As a consequence, if X , Y are Banach spaces, T : SX → SY

is an onto isometry, and C ⊂ SX is a facet, then so it is its image. Indeed, since C is a facet,

intSX
(C) ̸= ∅, and, since T is an homeomorphism, we claim that intSY

(T (C)) ̸= ∅, which is

the condition for T (C) to be a facet.

We recover some geometric properties of facets (we refer the reader to (34, Theorem 2.8)

for more detailed proofs).

Theorem 3.2.13. Let X be a Banach space and C a convex subset of SX . The following condi-

tions are equivalent:

(1) C is a facet of BX .

(2) C is a face of BX satisfying intSX
(C) ̸=∅.
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(3) C is a convex component satisfying intSX
(C) ̸=∅.

The third statement of theorem above makes clear that facets of the unit ball are maximal

faces. Using Theorem 3.2.9 and Remark 3.2.12, its image will be also a facet. We put the

invariance of facets under onto isometries of the unit sphere in the following result.

Corollary 3.2.14. Let X , Y be Banach spaces and T : SX → SY a surjective isometry. If C ⊆ SX

is a facet of BX , then T (C) is a facet of SY , meaning that T (CX ) =CY .

3.2.2 Starlike structure

Starlike sets were originally introduced (for finite dimensional vector spaces) in (5), and

they were characterized by Tingley in the same paper, see (5, Lemma 4 and Corollary 5). In

this subsection, we recall some known terms and properties about starlike sets.

Definition 3.2.15 (Starlike set). Let X be a normed space and x ∈ SX . The starlike set of x is

defined as

st(x , BX ) = {y ∈ BX : ∥x + y∥= 2}. (3.2.5)

We have to do some observations about starlike sets. The first one is that st(x , BX ) ⊆ SX

for an arbitrary x ∈ SX , and st(−x , Bx) = − st(x , BX ). The other one is starlike sets are

easier to work with when we use metric space notation, more precisely, the starlike set of

x is the sphere of center −x and radius 2 in the metric space given by the unit sphere,

that is, SSX
(−x , 2). Finally, it is easy to check using Proposition 3.2.7 that the following
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characterization of starlike sets holds:

st(x , BX ) = {y ∈ SX : [y, x] ⊆ SX }=
⋃

{C ⊆ SX : C is a maximal face containing x}.

(3.2.6)

Remark 3.2.16. It is clear that if T : X → Y is an isometry between metric spaces, for all

x ∈ X and r > 0, the following contentions hold: T (BX (x , r)) ⊆ BY (T (x), r), T (UX (x , r)) ⊆

UY (T (x), r), and T (SX (x , r)) ⊆ XY (T (x), r). Furthermore, if T is an onto isometry, the equal-

ities hold in every previous contentions, that is, T (BX (x , r)) = BY (T (x), r), T (UX (x , r)) =

UY (T (x), r), and T (SX (x , r)) = SY (T (x), r).

In view of previous remark, we have the following infinite dimensional version of (5, Lemma

10 and Corollary 11).

Remark 3.2.17. Let T : SX → SY be a surjective isometry between metric spaces X , Y . Then,

for every x ∈ SX

T (st(x , BX )) = T (SSX
(−x , 2)) = SSY

(T (−x), 2) = SSY
(−(−T (−x)), 2) = st(−T (−x), BY ).

3.2.3 Smoothness

In this section, we give a few strokes about smoothness and we recommend (32; 33; 35) for

a deeper understanding. Firstly, we recall the definition of smoothness.

Definition 3.2.18 (Smooth point, smooth space). Let X be a normed space. We say that

x ∈ SX is a smooth point of BX if there exists a unique functional f ∈ SX ∗ attaining its norm at

x, that means, f (x) = 1. We will denote the set of all smooth points of BX as smo(BX ). In case
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that smo(BX ) = SX , we will call X a smooth space.

A smooth point x ∈ SX is, geometrically speaking, an element of the unit ball which has a

unique hyperplane at x . This fact allows us to notice that in smooth spaces, the exposed

faces are pairwise disjoint.

We recall some terms related to smoothness that will be useful along this memory.

Definition 3.2.19 (Duality mapping, spherical image map). Let X be a normed space. The

duality mapping of X is defined as follows

J : X →P (X ∗)

x 7→ J(x) := {x∗ ∈ X ∗ : x∗(x) = ∥x∗∥∥x∥}.

This mapping induces the definition of spherical image map:

ν : SX →P (SX ∗)

x 7→ ν(x) := {x∗ ∈ SX ∗ : x∗(x) = 1}.

For each x ∈ SX , the reader have to notice that ν(x) = J(x) ∩ SX ∗ , in other words, ν(x) is

the subset of the unit sphere SX ∗ whose members are the supporting functionals of the unit

ball BX at x . More than that, ν(x) = F(x) when x is seen as an element of X ∗∗.

Remark 3.2.20. If a point is smooth, x ∈ smo(BX ), then ν(x) is a singleton, and we will

identify ν(x) with its only element. Under this statements, F(ν(x)) is the only exposed face of

BX containing x, thus F(ν(x)) is the only maximal face of BX containing x.

By using the spherical image map, we provide a novel reformulation of the frame of the

unit ball of a Banach space X . The known formulation for the frame could be found in (4,
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Equation before Theorem 1.1) and (1, Section 2).

Definition 3.2.21 (Frame). Let X be a normed space. The frame of the unit ball BX is defined

as follows

frm(BX ) :=
⋃
�

E( f ) : f ∈ ∪x∈SX
ν(x)
	

.

With this definition, it is easy to see that the frame of the unit ball is formed, geometrically

speaking, by all the edges related to a supporting functional. The invariance of the frame of

Banach spaces was proved in (1, Theorem 3.7):

Theorem 3.2.22. Let T : SX → SY be a surjective isometry between the unit spheres of Banach

spaces X , Y . Then T (frm(BX )) = frm(BY ).

3.2.4 Inner structure

Even if inner structure appears implicitly for convex sets in (36; 37), it was not introduced

until (20, Definition 1.2) for non-convex sets. For a wider perspective on inner structure, we

refer the reader to (20; 21; 38). Concerning this manuscript, we will only make use of inner

structure for convex sets. Below, in this subsection we will make a brief review about inner

points and some results about them.

In vector spaces, we will write a closed segment as

[x , y] := {t x + (1− t)y : t ∈ [0,1]},

an open segment as

(x , y) := {t x + (1− t)y : t ∈ (0,1)},
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and a half-open segment (or half-closed) segment as

[x , y) := {t x + (1− t)y : t ∈ (0,1]}.

The following definition can be also given for non-necessary convex sets, as it could be seen

in (20, Definition 1.2). However, as far as what is concerned, we will focus in the study of

inner points for convex sets.

Definition 3.2.23 (Inner points). Let X be a vector space and M ⊆ X a convex subset with at

least two points. We define the set of inner points of M as follows:

inn(M) := {x ∈ X : ∀m ∈ M \ {x},∃n ∈ M \ {m, x} such that x ∈ (m, n)}.

The particularity of those inner points is that they are independent of the ambient space.

The set of inner points of a convex subset in a finite dimensional vector space is what Tingley

called “relative interior” of convex sets in Rn in (5). In this article, Tingley pointed out that

“the relative interior of convex sets may be empty” for infinite dimensional Banach spaces.

In fact, in (20, Theorem 5.1) it is proved that every non-singleton convex subset of a finite

dimensional vector space has inner points:

Theorem 3.2.24. If X is a finite dimensional vector space and M a convex subset which is not

a singleton, then inn(M) ̸=∅.

For infinite dimensional vector spaces (20, Corollary 5.3), it is always possible to find a non-

singleton convex subset free of inner points. For sake of showing with detail the convex set

free of inner points, we have to make a digression to introduce some concepts.
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A sequence (xn)n∈N of a Banach space X is a basic sequence if it is a Schauder basis of

cl(span(xn : n ∈ N)), where the latter is the closure of the vector subspace generated by

(xn)n∈N. There exists separable Banach spaces with no basis, as it is shown in (39), whereas

the existence of basic sequences will be always guaranteed in our framework, as it is shown in

the following result, which is originally proved in the literature for complete normed spaces,

and here we provided an original proof for general normed spaces:

Theorem 3.2.25. Every infinite dimensional normed space has a basic sequence.

Proof. Let Y be an infinite dimensional normed space and let X denote the completion of

Y . Since X is Banach, by the Basic Sequence Existence Theorem (40, Corollary 1.5.3), there

exists a basic sequence (xn)n∈N ⊆ X . Denote by (x∗n)n∈N ⊆ X ∗ the sequence of coordinate

functionals associated to (xn)n∈N. Fix an arbitrary 0 < ρ < 1. Since Y is dense in X , for

every n ∈ N, there exists yn ∈ Y with ∥xn − yn∥<
ρ

2n∥x∗n∥
. Then

∞
∑

n=1

∥xn − yn∥∥x∗n∥ ≤
∞
∑

n=1

ρ

2n
= ρ < 1.

By the Basic Sequence Perturbation Theorem (41, Theorem 12.2.6), (yn)n∈N is a basic se-

quence in X equivalent to (xn)n∈N. Finally, (yn)n∈N is a basic sequence in Y because spanY {yn :

n ∈ N}= Y ∩ spanX {yn : n ∈ N}.

Finally, we can properly shows the example of a convex subset with no inner points, borrowed

from (20, Theorem 5.2):

Example 3.2.26. if X is an infinite dimensional normed space, the convex subset of the unit

ball free of inner points C ⊆ BX is given by
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C =

¨∞
∑

n=1

tnen : tn ≥ 0,
∞
∑

n=1

tn = 1, tn ∈ c00

«

,

where (en)n∈N ⊆ SX is a basic sequence and c00 is the vector space of eventually zero sequences.

Remark 3.2.27. We convey that inn(M) = ∅ when M is a singleton in Definition 3.2.23.

Also, it is trivial that inn(M) ⊆ M. In (21, Remark 1.1) is claimed that if x ∈ inn(M) then

[x , m) ⊆ inn(M) for all m ∈ M, concluding another direct property for the set of inner points,

which is that inn(M) is also convex, and cl(inn(M)) = cl(M). In the same article, in particular,

in (21, Lemma 2.1), it is proved that if F is an extremal subset of M, then F ∩ inn(M) = ∅.

More precisely, what the lemma sais is that for a convex subset M ⊆ X of a vector space, C ⊆ M

a convex subset, and D a face of M satisfying that inn(C) ∩ D ̸= ∅, then C ⊆ D. Besides, in

this reference it is also proved that for a topological vector space X and E a extremal subset of

a convex set C ⊆ X satisfying E ∩ int(C) ̸=∅, then E = C.

The following remark we will be made use of later on and it will turn out tu be crucial.

Remark 3.2.28. Let X be a vector space and x , y, z ∈ X three different points not aligned. Then

inn(co({x , y, x})) = co({x , y, z}) \ ([x , y]∪ [y, z]∪ [x , z])

= {r x + s y + tz : r, s, t ∈ (0,1), r + s+ t = 1}.

Let us show a few results about inner points that, besides giving us a wider perspective about

inner structure, will be used along the proofs of the following chapter.

We recall that an element x ∈ X of a vector space X is called an internal point of a non-empty

subset M ⊆ X if every line of X passing through x contains a segment entirely contained in

M , with x laying on its interior (we suggest (42, TVS II.26) for a wider perspective about
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internal points). The set of all the internal points of M will be denote by inter(M). We refer

the reader to (43; 44) for an example of an internal point which is not in the topological

interior. Next result is borrowed from Lemma 5 (22) and it shows the relations between

internal, interior and inner points.

Lemma 3.2.29. Let X be a topological vector space and M a non-empty subset of X . Then:

1. int(M) ⊆ inter(M) ⊆ inn(M) ⊆ M.

2. If M is open, then int(M) = inter(M) = inn(M) = M.

3. If M is convex and inter(M) ̸=∅ then inter(M) = inn(M).

4. If M is convex and int(M) ̸=∅, then int(M) = inn(M).

5. If M is convex, int(M) ̸=∅ and M = inter(M), then M is open.

The following theorem, whose proof can be found in Theorem 6 (22), will be necessary to

prove Theorem 4.2.2 in next chapter.

Theorem 3.2.30. Let M ⊆ X be a non-empty convex and absorbing subset of a vector space X .

Then M is a neighborhood of 0 in the finest locally convex vector topology of X . More generally,

if M is convex satisfying that inter(M) ̸= ∅, then inter(M) is the interior of M in the finest

locally convex vector topology of X .

We also want the reader to notice that isomorphisms preserves inner points, as it is pointed

out in (20, Proposition 1.3).

Proposition 3.2.31. Isomorphisms of vector spaces map inner points to inner points.

Next result gives a relation between the set of internal and inner points for an arbitrary set.
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For the details about its proof, we refer the reader to (20, Theorem 4.1).

Theorem 3.2.32. Let M be a non-empty subset of a vector space X . Then, inter(M) ⊆ inn(M).

Moreover, if M is also convex and inter(M) ̸=∅, then inter(M) = inn(M).

Theorem 3.2.32 is very accurate as we can see in the following examples original from (20):

consider M := ((−1, 1) × (−1,1)) ∪ ((2,3) × {0}) in R2 (see Figure 3.1). Note that M =

inn(M) ⊋ inter(M) = ((−1, 1)×(−1,1)). On the other side, consider now M := (−1, 1)×{0}

in R2 (see Figure 3.2), then M = inn(M) but inter(M) ̸=∅.

Figure 3.1: Example of inner points which are not internal
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Figure 3.2: Example of the need to the condition inter(M) ̸=∅

For next two theorems, originally from (20, Theorem 2.3) and (20, Theorem 4.2), it is ne-

cessary the definition of strongly adjacent point: for a non-empty subset M of a vector space

X we say that an element x ∈ X is adjacent to M if there exists m ∈ inn(M) \ {x} such that

(x , m] ⊂ inn(M). Under the same hypotheses, we say that x ∈ X is strongly adjacent to M if

the same condition holds for all m ∈ inn(M) \ {x}. We denote them by adj(M) and sadj(M)

respectively.

Theorem 3.2.33. Let∅ ̸= M ⊆ X be a non-empty subset of a vector space X such that inn(M) ̸=

∅.

1. If M ⊆ sadj(M), then inn(inn(M)) = inn(M).

2. If M is convex, then inn(M) is convex and M ⊆ sadj(M) = adj(M).

3. If inn(M) is convex and M = adj(M), then M is convex.

Theorem 3.2.34. Let M be a non-empty subset of a vector space X . The following conditions

hold:
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3.2 Extremal Theory

• If M is absorbing, then 0 ∈ inn(M) and span(M) = X .

• If 0 ∈ inn(M), span(M) = X and M ⊆ sadj(M), then inn(M) is absorbing.

We recall the notion of non-support point:

Definition 3.2.35 (Non-support point). Let A be a non-empty subset of a vector space X , and

let h(A) := { f ∈ X ∗ : f attains its sup at A and it is not constant on A}. The set of non-support

points of A is defined as nsupp(A) := A\
⋃

f ∈h(A) F( f , A).

We have to make the reader note that h(A) could be empty. For example, if A is the open unit

ball of a normed space, then h(A) =∅.

3.2.5 Minkowski functional

We give a briefly survey about some parts of the folklore of the literature of Geometry in

Topological Vector Spaces. For a deeper perspective, we refer the reader to (42; 45; 46).

Definition 3.2.36 (Balanced, absorbing, absolutely convex, linearly bounded). For a subset

A⊆ X on a vector spaces, A is said to be:

• Balanced if [−1,1]A⊆ A.

• Absorbing if for all x ∈ X , there exists δ > 0 such that [−δ,δ]x ⊆ A.

• Absolutely convex if A is balanced and convex.

• Linearly bounded if A does not contain straight lines or rays.

We recall the definition of the Minkowski functional, also called gauge function. For a wider

perspective on this functional see (41, Chapter 10.4)
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Definition 3.2.37 (Minkowski functional). Let A be a non-empty subset of a vector space X .

Suppose that A is absorbent, balanced and convex. The Minkowski functional of A is the mapping

µA : X → R given by

µA(x) = inf {λ > 0 : x ∈ λA}= inf
n

λ > 0 :
x
λ
∈ A
o

, x ∈ X .

The Minkowski functional assures that every absorbing absolutely convex subset A ⊆ X

defines a seminorm on X :

∥x∥A := inf{λ > 0 : x ∈ λA}, x ∈ X .

If UX ,A, BX ,A are the open and closed unit balls of (X ,∥·∥A), it is easy to check that UX ,A = int(A)

and BX ,A = cl(A). Another fact about this seminorm is that ∥ · ∥A is a norm on X if and only

if A is linearly bounded.

Let X be a Banach space and A a bounded, closed, absolutely convex subset of X with non-

empty interior. The Minkowski functional of A defines an equivalent norm in X since every

absolutely convex subset with non-empty interior in a topological vector space is a neigh-

borhood of 0.

In view of the Krein-Milman Theorem (see C.3.1), for a Hausdorff locally convex topological

vector space X and a non-empty compact subset K ⊆ X , then ext(K) ̸= ∅. Moreover, if K is

also closed and convex, then K = co(ext(K)). As a consequence, we notice the following:

Remark 3.2.38. If X is a reflexive Banach space, and C ⊆ X is a closed, convex and bounded

subset, then ext(C) ̸=∅, since C is weakly closed and bounded, thus it is weakly compact.
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3.3 Operator Theory

3.3 Operator Theory

This section is devoted to summarize the necessary background about projections and sup-

porting vectors that will be used in Chapter 6.

It is well known that if X is a vector space and M , N are subspaces of X such that X = M +N

and M ∩ N = {0}, then X is said to be the direct sum of M and N , and we use the notation

X = M ⊕ N . In this case, it is possible to write every vector x ∈ X as x = m + n with

m ∈ M , n ∈ N , and this form is unique. We say that M and N are complementary subspaces

and both are the algebraic complement to each other. Since every Hamel basis of a particular

subspace can be extended to a Hamel basis of the whole space, the existence of the algebraic

complement is always guaranteed for any subspace M , but, it has not to be unique, for

example, in R3, the algebraic complement of every plane is any line not contained in the

plane.

Let us make a brief introduction about projections on vector spaces and Banach spaces in

order to use it in Chapter 6. We recommend (47, Chapter 4) for a wider perspective about

projections.

First of all, we recall the definition. Some texts establish the definition for vector spaces

and non-continuous projections, for instance, Proposition 3.3.3 remains true if the space

considered is a vector space and P is just linear and idempotent. For what it may concern to

us, X will be, at least, a normed space and our projections will be continuous.

Definition 3.3.1 (Projection). For a normed space X , a linear operator P : X → X is called

a projection if it is continuous and idempotent, that is, P(P(x)) = P(x) for all x ∈ X , or

equivalently, P2 = P.
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Examples of famous projections are the orthogonal projections in Hilbert spaces or the Lp-

projections, with 1≤ p ≤∞. We recall their definitions in sake of completeness.

Definition 3.3.2 (Lp-projection). Let P : X → X be a projection in a normed space X . Then,

P is called an Lp-projection if it satisfies

∥x∥X = ∥(∥P(x)∥X ,∥(I − P)(x)∥X )∥p , ∀x ∈ X , 1≤ p ≤∞.

Particular studied examples of Lp-projections are M -projections and L2-projection (also called

orthogonal projections), whose conditions to verify are ∥x∥ = max {∥P(x)∥,∥(I − P)(x)∥},

∥x∥2 = ∥P(x)∥2 + ∥(I − P)(x)∥2, for all x ∈ X , respectively.

The proof of the following result can be found in (47, Proposition 4.8) and it shows how to

split a vector space into a direct sum by using projections.

Proposition 3.3.3. Let X be a normed space and P : X → X a linear mapping. Let M , N be

closed subspaces of X .

i) P is a projection if and only if I − P is a projection. In such case, it holds that

P(X ) = ker(I − P), ker(P) = (I − P)(X ), and X = ker(P)⊕ P(X ).

ii) If X = M ⊕ N, then, there exists a projection P : X → X such that P(X ) = M and

ker(P) = N. In this case, P is called the projection of X onto M with kernel N.

In the above proposition, the projection I − P is named as the complementary projection of

P. Another important projection related to P is its dual operator P∗ : X ∗→ X ∗, which is also

a projection, where P∗ : X ∗ → X ∗ is defined as f 7−→ P∗( f ) := ( f ◦ P)(x) = f (P(x)) with
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x ∈ X and for each f ∈ X ∗.

We also refer the reader to (33, Chapter 3) to delve into the study of projections. For example,

next results are borrowed from this reference, where the proofs are detailed.

Theorem 3.3.4. Let X be a normed space and M ⊆ X a subspace. Then, M is topologically

complemented in X if either of the following statements holds:

1. M is closed and finite-codimensional.

2. M is finite-dimensional.

Remark 3.3.5. If P : X → X is a projection in a normed space X , then P(X ) = {x ∈ X : P(x) =

x}.

Let us see an interesting property about projections, but first, we need to recall a few notions

about supporting vectors. As we have mentioned in the state of the art, supporting vectors are

connected with the Extremal Theory when the operators considered are functionals, besides

the fact that they are very useful not just in optimization problems, but also if we work with

projections, as it can be seen in (26). Next, let us recall the definition of supporting vectors

for a continuous linear operator. The geometrical nature and topological structure of the

set of supporting vectors is discussed in (26; 48) and we recommend these references for a

wider perspective on this topic.

Definition 3.3.6 (Supporting vector). Let T : X → Y be a linear operator between normed

spaces. The set of supporting vectors of T is defined as

suppv(T ) := {x ∈ SX : ∥T (x)∥= ∥T∥} .
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The reader has to pay special attention to the closed convex set suppv1(x
∗) := {x ∈ SX :

x∗(x) = ∥x∗∥}, with x∗ ∈ X ∗ \ {0}, which is also known by the Banach space geometers as

exposed faces of BX (see Definition 3.2.4 with x∗ ∈ SX ∗).

Supporting vectors have plenty of applications, not just in functional analysis but also in

engineering problems (24; 25). Besides, supporting vectors serve to characterize certain

types of operator, such as isometries: a norm-one operator T is an isometry if and only if

SX = suppv(T ). In our case, they will be a useful tool in Chapter 6 to study the extremal

structure under 1-complementation. And now, let us make the following note about the

norm of a projection.

Remark 3.3.7. Notice that the idempotence of P gives an inequality about the norm of the

operator, that is, every non-zero projection has norm greater than or equal to 1. Indeed, if

P : X → X is a projection, in particular, it is linear an idempotent, then

∥P∥= ∥P ◦ P∥ ≤ ∥P∥∥P∥.

Looking at this equality, if P ̸= 0, then ∥P∥ ≠ 0, hence

1=��∥P∥ ≤��∥P∥∥P∥ ⇐⇒ 1≤ ∥P∥.

Related to this comment, we have the following definition.

Definition 3.3.8 (1-Projection). A projection with norm equal to 1 it is called a 1-projection,

norm-one projection or contractive projection, and if its complementary projection is also a

1-projection, then it is called a (1, 1)-projection or bicontractive.

Well-known examples of norm-one projections are the orthogonal projections in the setting
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of Hilbert spaces (49, Theorem 3.1). We recommend (49) for a deep perspective about the

study of 1-projections.

Example 3.3.9. Notice that for M-projections the condition ∥x∥=max{∥P(x)∥,∥(I − P)(x)}

and ∥P∥ ≥ 1, ∥(I − P)∥ ≥ 1, implies that M-projections have norm one. Even more, in (26,

Proposition 3.1), M-projections are characterized as those (1,1)-projections for which SX =

suppv(P)∪ suppv(I − P).

We end this summary about projections by talking about complemented subspaces. Again,

we refer the reader to (47, Chapter 4) for more details about this topic, such that the motiv-

ation of the following definition.

Definition 3.3.10 (Complemented subspace). Let X be a normed space and M, a closed sub-

space of X . We said that M is complemented in X if there exists a projection (that is, linear,

continuous and idempotent) P : X → X such that P(X ) = M.

In definition above, if we call N := ker(P) = (I − P)(X ), it holds that X = M ⊕ N , and it is

said that X is the topological direct sum of M and N . Besides, M and N are known as the

topological complement of each other.

Next result is borrowed from (47, Corollary 4.7), where the proof can be found on detail.

As a consequence of the following result, Proposition 3.3.12 holds.

Proposition 3.3.11. Let T : X → Y be a linear operator between normed spaces.

a) If X is finite dimensional, then T is continuous.

b) If T (X ) has finite dimension, then T is continuous if and only if ker(T ) is closed.

c) If Y has finite dimension, then T is an open mapping if and only if T is surjective.
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We include the proof of the following proposition in order to know how to split a normed

space in a direct sum, but the proof is original from (47, Proof of Proposition 4.10)

Proposition 3.3.12. Let X be a normed space and M ⊆ X a closed subspace with finite codi-

mension. Then every algebraic complement of M is a topological complement.

Proof. Let N be an algebraic complement of M , that is, X = M ⊕ N . Let us show that

the projection P : X → X verifying P(X ) = N is continuous. Indeed, just observe that

ker(P) = M , which is closed by hypothesis, and P(X ) = N , which has finite dimension,

hence, by Proposition 3.3.11, P is continuous.

Let us finally mention that finite codimensionality does not imply closedness. Indeed, if X is

any infinite-dimensional normed space, then there exists a non-continuous linear functional

whose kernel is obviously not closed but of codimension 1.
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4
Geometric structure of the unit ball
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The aim of this chapter is to study the behaviour of the geometrical notions we have intro-

duced; by this behaviour we mean how they interact between them or original characteriz-

ations of those concepts that we will present. First section is a compilation of some original

technical tools that we have needed during the develop of the dissertation. We have leaved

these results aside just in order to facilitate the reading. We carry the chapter on with a wide

study on Inner Structure: we underline Theorem 4.2.2, where we prove the equivalence

between the set of inner points and non-support points for convex sets with inner points,
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and Theorem 4.2.5, which gives an approach in the affirmative to the question about the

existence of non-trivial compact and convex subsets lacking inner points, result borrowed

from the submitted paper (23). The section about facets and frames starts with some ori-

ginal definitions: what a pre-maximal face is (Definition 4.3.1) and what we understand

by Property P (Definition 4.3.2), proving in Corollary 4.3.7 that there are several examples

of Banach spaces failing this P-property. Noteworthy results in this section are Proposition

4.3.10, which shows one of the cases when faces and facets coincide, and Theorem 4.3.12.

This last result presents a new reformulation of the frame of the unit ball that will be crucial

to prove the invariance of this geometrical concept in Chapter 5. The last section of the cur-

rent chapter is devoted to the study of a “new” part of the unit ball: the flat section. Again,

we present new original definitions, in this case, motivated by the concept of starlike set,

which are the starlike envelope, almost flat/flat set or the starlike-compatible/generated set

(see Definition 4.4.1). As we will see in the following chapter, these geometrical subsets of

the unit sphere will be invariants under surjective isometries. We highlight Example 4.4.3

as an example of an almost flat set which is not flat and a non-convex-starlike generated

set. This example motivates the Flat Property (Definition 4.4.5), which states a conveni-

ent environment considering the hypotheses of Lemmas 4.4.8 and 4.4.9. This last result

establishes a generalization of Tingley’s results (5, Lemma 2 and Corollary 3), as well as it

gives a deeper perspective about starlike sets. In particular, it will be used in order to prove

Theorems 4.4.10 and 4.4.13. These theorems show that starlike sets are the only maximal

faces containing its center when the starlike is convex and it shows conditions for which the

convexity holds for starlike sets.
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4.1 Some technical tools

4.1 Some technical tools

This section is a compilation of technical lemmas, theorem and results about the behaviour

of the unit ball and its elements. We will also include some statements which works in the

unit ball but are related to general cases in normed spaces.

The following remark will be crucial towards finding geometric invariants under surjective

isometries, which is the main purpose of the following chapter.

Remark 4.1.1. Let X be a normed space. For every non-zero x , y ∈ X , ∥x + y∥ = ∥x∥+ ∥y∥

if and only if the closed segment
�

x
∥x∥ ,

y
∥y∥

�

⊆ SX . Indeed,

⇒) if ∥x + y∥= ∥x∥+ ∥y∥, then

∥x∥
∥x + y∥

x
∥x∥

+
∥y∥
∥x + y∥

y
∥y∥

=
x + y
∥x + y∥

is a strict convex combination which is in the unit sphere SX , therefore it should be con-

tained in a face of the sphere, which means that the whole closed segment
�

x
∥x∥ ,

y
∥y∥

�

⊆ SX .

⇐) Conversely, if
�

x
∥x∥ ,

y
∥y∥

�

⊆ SX , then using a similar reasoning as above

x + y
∥x + y∥

=
∥x∥
∥x + y∥

x
∥x∥

+
∥y∥
∥x + y∥

y
∥y∥
∈
�

x
∥x∥

,
y
∥y∥

�

⊆ SX ,

then ∥
x + y
∥x + y∥

∥= 1, which means than ∥x + y∥= ∥x∥+ ∥y∥.

We recall to the reader that a normed space X is said to be rotund (or strictly convex) if its

unit sphere has no non-trivial segments, which is equivalent to ext(BX ) = SX . We suggest
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(33, Chapter 5) for a deeper study about rotundity.

Remark 4.1.2. If C ⊆ X is a convex set of a normed spaces containing at least three points

which are not aligned, then C \ {c} is connected for all c ∈ C.

The following remark will be useful to construct a new unit ball in R3, that will serve as a

counterexample.

Remark 4.1.3. Let K be a compact convex subset of a finite dimensional Banach space X ,

satisfying that K has non-empty interior. Suppose that there exists a functional x∗ ∈ SX ∗ such

that x∗(x)> 0 for all x ∈ K. Take A := co(K ∪−K). Then A is compact, absolutely convex and

a neighborhood of 0. Therefore, A defines an equivalent norm in X .

Lemma 4.1.4. Under the settings of Remark 4.1.3, ext(A) ⊆ ext(K)∪ ext(−K).

Proof. Let a ∈ ext(A) = ext(co(K ∪ −K)) be an arbitrary extreme point of A. Notice that

there exist t ∈ [0,1], k1, k2 ∈ K such that a = tk1 + (1 − t)(−k2). Since a is an extreme

point, it holds that a = k1 or a = −k2. Suppose with no loss of generality that a = k1. Then,

a ∈ ext(A)∩ K ⊆ ext(K).

Now, we go through several technical remarks and lemmas that are going to made use of

with the goal of finding an example of a non-trivial convex and compact set free of inner

points in Section 4.2 of this chapter.

Remark 4.1.5. Let X be an infinite-dimensional Banach space and (en)n∈N ⊆ X a bounded
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basic sequence. Let us consider the following operator:

T : ℓ1 −→ X

(tn)n∈N 7−→ T ((tn)n∈N) :=
∞
∑

n=1

tnen

The previous operator verifies some properties: T is well-defined. Also, ker(T ) = 0 since (en)n∈N

is a basic sequence, thus, T is one-to-one or injective. Besides, the operator is linear by its

definition. Let us show that T is also bounded. Indeed, (en)n∈N is bounded, which means that




(∥en∥X )n∈N






∞ <∞. Then

∥T∥∞ = sup {∥T ((tn)n∈N)∥X : ∥(tn)n∈N∥1 = 1}

≤ sup

¨∞
∑

n=1

|tn|∥en∥X : ∥(tn)n∈N∥1 = 1

«

≤ sup {∥en∥X : n ∈ N}=




(∥en∥X )n∈N






∞ .

The above inequalities show that T is bounded. Even more, we can prove that ∥T∥=




(∥en∥X )n∈N






∞.

Let (un)n∈N ⊆ ℓ1 be the canonical basis, then ∥un∥1 = 1 and T (un) = en for each n ∈ N,

hence, ∥T (un)∥X = ∥en∥X for all n ∈ N. Now, consider a subsequence (enk
)k∈N satisfying

∥enk
∥X →




(∥en∥X )n∈N






∞ as k→∞. This is equivalent to ∥T (unk
)∥X →




(∥en∥X )n∈N






∞ as

k→∞, meaning that




(∥en∥X )n∈N






∞ ≤ supx∈Bℓ1
∥T (x)∥X = ∥T∥.

Observe that this supremum is attained: let ϵ > 0, then, there exists k ∈ N such that

M − ϵ < ∥ek∥ ≤ M , (4.1.1)

where M = supn∈N{∥en∥}. Now, let (un)n∈N ⊆ ℓ1 be the canonical basis. Notice that (un)n∈N ⊆

Bℓ1 and the image of this basis is precisely our bounded sequence, that is, T (un) = en for each
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n ∈ N, hence, ∥T (un)∥X = ∥en∥X for all n ∈ N. Putting this together with Equation 4.1.1, it

holds that

M − ϵ < ∥T (uk)∥ ≤ ∥T∥= sup{∥T (tn)∥ : (tn)n∈N ⊆ Bℓ1}.

If we make ϵ→ 0, the next inequality holds M ≤ ∥T∥ ≤ M, meaning that ∥T∥= supn∈N{∥en∥}.

As a consequence, T is continuous. In particular, T is w−w continuous, so T maps w-compact

subsets of ℓ1 to w-compact subsets of X . Also, T is an isomorphism of vector spaces over its

image, which means that T maps convex sets free of inner points of ℓ1 to convex sets of X free

of inner point, in view of (20, Section 1).

We refer the reader to (41, Chapter 6, Section 4) for more details about weak-∗ and weak

convergence. We recover the following observation.

Remark 4.1.6. Let X be a normed space. If (xn)n∈N is a bounded sequence of X ∗ such that

there exists x∗0 ∈ X ∗ verifying that (x∗n(y))n∈N is convergent to x∗0(y) for all y ∈ Y , where Y is

a dense subspace of X , then (x∗n)n∈N is w∗-convergent to x∗0.

Lemma 4.1.7. Consider (xk)k∈N a bounded sequence of ℓ1 such that (xk(n))k∈N is convergent

for all n ∈ N. Then, there exists x0 ∈ ℓ1 such that (xk)k∈N is w∗-convergent to x0.

Proof. We pick x0 defined as the sequence whose nth-term is given by x0(n) := limk→∞ xk(n),

and let M > 0 such that ∥xk∥1 ≤ M for all k ∈ N. We will follow some steps through this

proof:

1) Let us see that x0 ∈ ℓ1. For this, we will show that for every p ∈ N,
∑p

n=1 |x0(n)| ≤ M .

Indeed, fir an arbitrary p ∈ N and ϵ > 0. By hypothesis, we know that (xk)k∈N is
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coordinate-convergent, thus, for every n ∈ {1, . . . , p} there exists kn ∈ N such that

|xk(n)− x0(n)|<
ϵ

p
, ∀k ≥ kn.

Take k0 :=max{k1, . . . , kp}, then

p
∑

n=1

|x0(n)| ≥
p
∑

n=1

|x0(n)− xk0
(n)|+

p
∑

n=1

|xk0
(n)| ≤

p
∑

n=1

ϵ

p
+ ∥xk0

∥1 ≥ ϵ +M .

The arbitrariness of ϵ > 0 leads to
∑p

n=1 |x0(n)| ≤ M , and the arbitrariness of p ∈ N

gives us that x0 ∈ ℓ1.

2) Let us show that (xk)k∈N w∗-converges to x0 using the previous remark. Notice that c00

is dense in c0, and (xk)k∈N is coordinate-convergent to x0. In particular, (xk(y))k∈N→

x0(y), for all y ∈ c00, where xk(y) means xk acting on y in the dual ℓ1 = (c0)∗, that

is xk(y) :=
∑∞

n=1 xk(n)y(n). Then, by Remark 4.1.6, (xk)k∈N is w∗-convergent to x0.

The lemma above can also be tackled in other way a bit different from the one used in (50,

Lemma 2.3). For a wider perspective about nets and subnets, we refer the reader to (33).

In particular, following Remark is proved in (e) of (33, Proposition 2.1.31).

Remark 4.1.8. Let X be a topological space, γ : D → X a net in X , where D is a directed set

and x ∈ X . If every subnet λ of γ has a further subnet δ with x ∈ lim(δ), then x ∈ lim(γ).

Next lemma generalizes Remark 4.1.6 and Lemma 4.1.7 at once.

Lemma 4.1.9. Let (x∗n)n∈N ⊆ X ∗ be a bounded and pointwise convergent sequence of a normed

space. Then, there exists x∗0 ∈ X ∗ such that (x∗n)n∈N is w∗-convergent to x∗0.

33



4. GEOMETRIC STRUCTURE OF THE UNIT BALL

Proof. By the Banach-Alaoglu Theorem C.2.3, (x∗n)n∈N has a w∗-convergent subnet to some

x∗0 in X ∗. The pointwise converges assures that x∗0(x) = limn→∞ x∗n(x) for all x ∈ X . We will

prove that (x∗n)n∈N is w∗-convergent to x∗0 using Remark 4.1.8. Indeed, let
�

x∗nα

�

α∈A
be any

subnet of (x∗n)n∈N. Since
�

x∗nα

�

α∈A
is bounded, the Banach-Alaoglu Theorem assures again

that it is possible to extract a further subnet
�

x∗nαβ

�

β∈B
which is w∗-convergent to some

x∗1 ∈ X . For every x ∈ X ,
�

x∗nαβ
(x)
�

β∈B
is a subnet of (x∗n(x))n∈N, then

x∗1(x) = lim
β∈B

�

x∗nαβ
(x)
�

β∈B
= lim

n→∞
x∗n(x) = x∗0(x).

This equality implies that x∗1 = x∗0 and
�

x∗nαβ

�

β∈B
is w∗-convergent to x∗0. By using Remark

4.1.8, (x∗n)n∈N is w∗-convergent to x∗0.

The next result is a refinement of (50, Lemma 2.3) with a simpler proof. This lemma will be

crucial to show the example of a weakly compact convex subset with no inner points (the

example will be studied in Theorem 4.2.5).

Lemma 4.1.10. Let (en)n∈N be a basic sequence of an infinite-dimensional Banach space X ,

and let T the operator given in Remark 4.1.5. Then, if A is a w∗-closed bounded subset of ℓ1,

then T (A) is w-sequentially closed in X . If A is also convex, then T (A) is w-closed.

Proof. Let
�

(tk
n)n∈N
�

k∈N be a sequence of A satisfying that its image via T is weakly-convergent,

that is,
�

T
�

(tk
n)n∈N
��

k∈N is w-convergent to some x ∈ X . For every n ∈ N, we will denote by

e∗n ∈ X ∗ the Hahn-Banach extension of the coordinate functional respect to en. We notice that
�

e∗n
�

T
�

(tk
n)n∈N
���

k∈N converges to (e∗n(x)) for each n ∈ N. Besides,
�

e∗n
�

T
�

(tk
n)n∈N
���

k∈N =

tk
n, for all n, k ∈ N. This means that

�

(tk
n)n∈N
�

k∈N is a bounded sequence of ℓ1 which

is pointwise convergent to (e∗n(x))n∈N, therefore, we are under the hypotheses of Lemma

4.1.7 or Lemma 4.1.9, concluding that (e∗n(x))n∈N ∈ ℓ1 and
�

(tk
n)n∈N
�

k∈N is w∗-convergent
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to (e∗n(x))n∈N. We recall that
�

(tk
n)n∈N
�

k∈N is a sequence of A, which is w∗-closed, then,

(e∗n(x))n∈N ∈ A. We conclude that x ∈ T (A) noticing that

x =
∞
∑

n=1

e∗n(x)en = T
�

(e∗n(x))n∈N
�

∈ T (A).

To conclude the proof, assume A is convex. Then, T (A) is convex. Besides, T (A) is w-

sequentially closed, so, T (A) is closed (respect to the norm) and convex, then, by the Hahn-

Banach Separation Theorem, T (A) is w-closed.

We conclude this section about technical necessary remarks in order to give an example of

a non-trivial weakly compact convex set free of inner points with the following remark.

Remark 4.1.11. The set {(tn)n∈N) ∈ ℓ1 : tn ≥ 0} is w∗-closed in ℓ1. This assertion is clear just

considering that w∗-convergence implies pointwise convergence in ℓ1, since ℓ1 is a dual space,

ℓ1 = c∗0, and in a dual space the pointwise convergence is equivalent to weak∗-convergence (see

Proposition C.2.16.1).

4.2 Inner Structure

Along this section, we will profoundly develop the inner structure introduced in the previous

chapter and give new results about concepts related to this study. Notice that for a general-

ized view of the inner structure, some parts of the work are not into the unit ball, but it still

suits our purpose in the next results.

We start this study giving the relation between the set of inner points and non-support points

of a convex subset under particular conditions. This relation belongs to (3, Theorem 5).
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4. GEOMETRIC STRUCTURE OF THE UNIT BALL

Theorem 4.2.1. Let C be a convex subset of a vector space X , satisfying that h(C) ̸=∅. Then,

inn(C) ⊆ nsupp(C).

Proof. Fix an arbitrary f ∈ h(C), where

h(C) = { f ∈ X ∗ : f attains it sup at C and it is not constant on C}.

We know that F( f , C) is extremal in C in view of Definition 3.2.2. Next, we call Remark

3.2.27 to conclude that F( f , C)∩ inn(C) =∅, which means that inn(C) ⊆ C \ F( f , C). Keep

in mind that nsupp(C) = C \ ∪ f ∈h(C)F( f , C) and the arbitrariness of f ∈ h(C), it holds

inn(C) ⊆
⋂

f ∈h(C)

C \ F( f , C) = C \
⋃

f ∈h(C)

F( f , C) = nsupp(C).

We complete result above in (23, Theorem 3.3), which is exposed in next theorem.

Theorem 4.2.2. Let X be a vector space and C ⊆ X a convex subset of X . If h(C) ̸= ∅ and

inn(C) ̸=∅, then inn(C) = nsupp(C).

Proof. ⊆ This inclusion has been already proved in Theorem 4.2.1.

⊇ First, we assume that 0 ∈ inn(C) and consider Y := span(C). We claim that C is

absorbing in Y by Theorem 3.2.34, see (2) of (20, Theorem 4.2). Indeed, by hy-

potheses, 0 ∈ inn(C) and span(C) = Y . The condition C ⊆ sadj(C) is due to the

convexity of C and Theorem 3.2.33(2), see also (20, Theorem 2.3), then inn(C) is ab-

sorbing, implying that C is also absorbing, since inn(C) ⊆ C . By Theorem 3.2.4 (with

(22, Theorem 6) as the original reference), it holds that C is a neighborhood of 0 in
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4.2 Inner Structure

Y endowed with the finest locally convex vector topology. Keeping in mind Lemma

3.2.29(6), we have that inn(C) = intY (C). Now, we are in the right position to prove

the other inclusion. Assume on the contrary that there exists x ∈ nsupp(C) \ inn(C).

Thus, x /∈ intY (C). Since the finest locally convex vector topology is Hausdorff and

locally convex, the Hahn-Banach Theorem guarantees the existence of a functional

f ∈ X ∗ such that f (c) < f (x) for all c ∈ intY (C), therefore, sup f (intY (C)) = f (x)

and f is not constant in C . If we denote the linearly extension of f to the whole

space X by f , we have that f ∈ h(C) and x ∈ F( f , C), which contradicts the fact that

x ∈ nsupp(C). Now, consider that 0 /∈ inn(C) and let c ∈ inn(C). Now we follow

the same reasoning for the translation D := C − c. Notice that inn(D) = inn(C)− c,

nsupp(D) = nsupp(C) − c, and 0 = c − c ∈ inn(D). We finish the proof using that

nsupp(C) = c + nsupp(D) ⊆ c + inn(D) = inn(C).

We recall that ℓ1 is the notation for the Banach space of all sequences (xn)n∈N such that its

series is absolutely convergent, that is, ℓ1 =
�

(xn)n∈N :
∑∞

n=1 |xn|<∞
	

.

In (20), it was showed that it is not an easy task to find non-trivial convex sets lacking inner

points (see Example 3.2.26) when we work with infinite dimensional vector spaces, and it is

even harder to find closed convex sets which are non-trivial and satisfying the same property,

as we can see in next result taken from (20, Theorem 5.4).

Theorem 4.2.3. There exists a closed convex subset D of Sℓ1 free of inner points. In particular,

D =
�

(tn)n∈N ∈ Sℓ1 : tn ≥ 0 for all n ∈ N
	

.
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4. GEOMETRIC STRUCTURE OF THE UNIT BALL

Therefore, the next natural step is to find a non-singleton compact and convex subset K ⊆ X

free of inner points, with X a Hausdorff locally convex topological vector space. Let us see

that the example given above does not fit our purpose.

Proposition 4.2.4. The closed convex subset D :=
�

(tn)n∈N ∈ Sℓ1 : tn ≥ 0 for all n ∈ N
	

is not

weakly compact in ℓ1.

Proof. Suppose on the contrary that D is weakly compact. Then, by the Eberlein-Smulian

Theorem C.3.2, D is weakly sequentially compact. As D is in ℓ1, sequential weak conver-

gence and norm convergence are equivalent by Schur Theorem C.3. Thus, D is sequentially

compact, which implies that D is compact, as ℓ1 is a metric space. Finally, consider the se-

quence of canonical vectors (en)n∈N of ℓ1. This sequence is contained in D. However, notice

that (en)n∈N satisfies that ∥ei − e j∥1 = 2 whenever i ̸= j, which means that (en)n∈N does not

have convergent subsequences, reaching the contradiction.

Taking into consideration all these previous results and technical remarks and lemmas given

in Section 4.1, we are in the right position to provide a compact and convex subset free of

inner points in an infinite-dimensional Banach space endowed with the weak topology, as

we have done in the pre-printed article (23, Theorem 4.8).

Theorem 4.2.5. Let X be an infinite-dimensional Banach space. Then, there exists a non-trivial

weakly compact and convex subset K ⊆ X lacking inner points.

Proof. Let us construct K ⊆ X and prove the assertions given in the theorem in a few steps.

Consider (un)n∈N ⊆ SX a normalized basic sequence, and let (en)n∈N be the scaled basic

sequence based on (un)n∈N, that is en :=
un

n
for each n ∈ N. The reader has to notice that
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4.2 Inner Structure

since (en)n∈N converges to 0, {0} ∪ {en : n ∈ N} is compact. Now, let us define K ,

K :=

¨∞
∑

n=1

tnen : tn ≥ 0,
∞
∑

n=1

tn ≤ 1

«

,

and we will follow three steps:

• K is closed and convex. The convexity of K is clear by how it is defined. Notice that

K = T (A), where T is the operator given in Remark 4.1.5, where A is the w∗-closed

and bounded subset of ℓ1 defined by A := Bℓ1 ∩ {(tn)n∈N ∈ ℓ1 : tn ≥ 0} (see Remark

4.1.11). Then, we only need to take into consideration Lemma 4.1.10 to conclude that

K is closed.

• K is weakly compact. Indeed, by bearing in mind the Krein-Smulian Theorem (see

Theorem C.3.3), it will be sufficient to show that K = co({0}∪{en : n ∈ N}). Let us see

it by double inclusion. On the one hand, {0} ∪ {en ∈ N} ⊆ K , then co({0} ∪ {en : n ∈

N}) ⊆ K , since K is closed and convex, as it is shown in the previous item. Besides,

observe that every element with the form
∑∞

n=1 tnen ∈ K is the limit of a sequence

of convex combinations
�∑p

n=1 tnen

�

p∈N ⊆ co({0} ∪ {en : n ∈ N}), which means that

K ⊆ co({0} ∪ {en : n ∈ N}).

• inn(K) = ∅. To prove it, we will follow a similar idea as in (20, Theorem 5.4). Let

us suppose on the contrary that there exists (tn)n∈N ∈ Bℓ1 , tn ≥ 0 for all n ∈ N,

such that
∑∞

n=1 tnen ∈ inn(K). Let us see first that tn > 0 for all n ∈ N. Suppose

again on the contrary that tn = 0 for some k ∈ N. Then, since
∑∞

n=1 tnen ∈ inn(K),

there must exist sk < 0 such that skek + (1 − sk)
∑∞

n=1 tnen ∈ K , that is, skek + (1 −

sk)
∑∞

n=1 tnen =
∑∞

n=1αnen with αn ≥ 0 for all n ∈ N and
∑∞

n=1αn ≤ 1. By taking this

into consideration, it is possible to reach to the following contradiction:
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4. GEOMETRIC STRUCTURE OF THE UNIT BALL

sk = e∗k

�

skek + (1− sk)
∞
∑

n=1

tnen

�

= e∗k

�∞
∑

n=1

αnen

�

= αn ≥ 0.

Consequently, tn > 0 for all n ∈ N. Next, since (tn)n∈N converges to 0, it is possible to

inductively construct a strict increasing sequence (nk)k≥0 verifying that n0 = 0, and,

for every k ∈ N,

tnk

tnk−1+1
<

1
k

.

So, for every n ∈ N, let us define

sn :=







0, n ̸= nk for all k ≥ 1,

tnk−1+1 + tnk−1+2 + · · ·+ tnk−1 + tnk
, n= nk for some k ≥ 1.

Notice that sn ≥ 0 for all n ∈ N and

∞
∑

n=1

sn =
∞
∑

k=1

snk
=
∞
∑

n=1

tn ≥ 1,

meaning that
∑∞

n=1 snen ∈ K . Since
∑∞

n=1 tnen ∈ inn(K), then there exists λ > 1 such

that

(1−λ)
∞
∑

n=1

snen +λ
∞
∑

n=1

tnen ∈ K .

Besides, by construction of K , (1 − λ)sn + λtn ≥ 0, for all n ∈ N. In particular, for

k ∈ N, (1−λ)snk
+λtnk

≥ 0, which means

40



4.3 Structure of Facets and Frames

λ≥
snk

snk
− tnk

=
tnk−1+1 + tnk−1+2 + · · · tnk−1 + tnk

tnk−1+1 + tnk−1+2 + · · · tnk−1

= 1+
tnk

tnk−1+1 + tnk−1+2 + · · · tnk−1
< 1+

tnk

tnk−1+1

< 1+
1
k

,

which gives us the contradiction λ≥ 1.

Finally, a slight modification to the set D given in Proposition 4.2.4 gives an example of a

w∗-compact convex subset in ℓ1 with no inner points.

Proposition 4.2.6. The closed convex subset L := {(tn)n∈N ∈ Sℓ1 : tn ≥ 0,∀n ∈ N} is w∗-

compact in ℓ1 lacking inner points, inn(L) =∅.

Proof. We claim that L is w∗-closed in Bℓ1 by using pointwise convergence. This makes L

w∗-compact. A similar proof as in Theorem 4.2.5 applies to assure that inn(L) =∅.

4.3 Structure of Facets and Frames

Some results of this section appear in a light version and in a spread manner throughout the

literature of the Geometry of Banach spaces. We generalize some of them and provide all

the proofs in sake of completeness. Likewise, we refer the reader to (32; 33; 34; 51; 52) for

more information about facets and frames.

We start this section presenting a new property related to the extremal structure of the unit

ball which will be a useful tool in order to prove the preservation of particular subsets of

the unit ball under surjective isometries (see Theorem 5.2.4). This interesting property is
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4. GEOMETRIC STRUCTURE OF THE UNIT BALL

strongly motivated by (2, Definition 3.2). This reference also inspires the next definition,

which is original from this work:

Definition 4.3.1 (Pre-maximal face). For a normed space X , we will called a proper face A a

pre-maximal face if it is the intersection of all the maximal faces containing A.

Definition 4.3.2 (Property P). We say that a normed space X has Property P or the P-property

(Pp) if every proper face of BX is a pre-maximal face.

The following result provides an example of sufficient condition for Banach spaces lacking

Pp.

Lemma 4.3.3. If X is a smooth Banach space with extreme points which are not rotund, that

is ext(BX ) \ rot(BX ) ̸=∅, then X fails Pp.

Proof. Let e ∈ ext(BX ) \ rot(BX ). We will prove that such point is a face of BX which is not

the intersection of all maximal faces containing it, then X fails Property P. Indeed, there is a

maximal face C ⊆ SX which contains e. If there exists another maximal face D containing e,

then there exists x∗ ∈ SX ∗ such that D = {x ∈ SX : x∗(x) = 1}. The same reasoning shows

us that there exists y∗ ∈ SX ∗ such that C = {x ∈ SX : y∗(x) = 1}. Therefore, since e ∈ D

and e ∈ C , x∗(e) = 1 = y∗(e), concluding that x∗ = y∗ because of the smoothness of X .

As a consequence, C = D is the only maximal face of SX containing e, but C ̸= {e}, since

e /∈ rot(BX ).

It is easy to check that if Y is a subspace of a normed subspace X , then rot(BX )∩BY ⊆ rot(BY )

and ext(BX )∩BY ⊆ ext(BY ). Following results shows the behaviour of extremal points under

direct sums.
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Lemma 4.3.4. Let X := Y ⊕2 Z, where Y and Z are Banach spaces. Then, ext(BY ) ⊆ ext(BX ).

Proof. Fix an arbitrary y ∈ ext(BY ). Let us show that y satisfies the extremal condition in BX .

Consider x1, x2 ∈ BX , thus ∥x1∥ ≤ 1, ∥x2∥ ≤ 1. Let t ∈ (0,1) such that y = t x1+(1− t)x2 ∈

BY . Since X = Y ⊕2 Z , x1 = y1 + z1 and x2 = y2 + z2 where y1, y2 ∈ Y and z1, z2 ∈ Z with

Y ∩ Z = {0}. Then, 1≥ ∥x1∥2 = ∥y1∥2 + ∥z1∥2, where we have used again that X = Y ⊕2 Z .

Notice that ∥z1∥2 ≥ 0, so ∥y1∥2 ≤ 1. A similar reasoning shows that ∥y2∥2 ≤ 1. On the other

hand,

Y ∋ y = t x1 + (1− t)x2

= t(y1 + z1) + (1− t)(y2 + z2)

= t y1 + (1− t)y2
︸ ︷︷ ︸

∈Y

+ tz1 + (1− t)z2
︸ ︷︷ ︸

∈Z

,

so, the only possibility is that tz1+(1− t)z2 = 0. We conclude that y = t y1+(1− t)y2, but

y, y1, y2 ∈ BY and y ∈ ext(BY ), therefore, y = y1 = y2. Besides, y ∈ ext(BY ) ⊆ SX , then

∥y∥ = 1 concluding that ∥y1∥ = ∥y2∥ = 1. This last equality forces ∥z1∥ = 0 = ∥z2∥, which

is equivalent to z1 = z2 = 0. This means that x1 = y1 = y2 = x2 = y .

Lemma 4.3.5. If Y is a 2-dimensional Banach space, then it is isomorphic to a smooth space

Y ′ satisfying the condition ext(By ′) \ rot(BY ′) ̸= ∅. Moreover, if Z is another Banach space,

then ext(BY ′) \ rot(BY ′) ⊆ ext(BX ′) \ rot(BX ′), where X ′ := Y ′ ⊕2 Z.

Proof. It is enough to smoothen the corners of Bℓ2∞ and take Y ′ asR2 endowed with the norm

defined by this unit ball. Therefore, Y ′ is not strictly convex and its unit ball is compact, so

any non-singleton maximal face of BY ′ contains extreme points by the Krein-Milman The-

orem C.3.1, and these extreme points are not rotund. Let us see the last part of the lemma.

Consider x ∈ ext(BY ′) \ rot(BY ′). Notice that if x /∈ rot(BY ′) then x /∈ rot(BX ′). Indeed, if

x /∈ rot(BY ′) there exists a non-singleton maximal face of BY ′ , C , such that x ∈ C . If C is a
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maximal face of BX ′ , then x /∈ rot(BX ′). If C is not a maximal face of BX ′ , since X ′ := Y ′⊕2 Z ,

there exists a maximal face D of BX ′ such that {x} ⊊ C ⊆ D, thus, x /∈ rot(BX ′). Finally, by

using Lemma 4.3.4 we end the proof.

We can now state and prove an important result about Banach spaces lacking Property P.

Theorem 4.3.6. Any Banach space X with dimension greater than or equal to 2 which admits

a smooth equivalent norm can be equivalently renormed to be smooth and to satisfy

ext(BX )\rot(BX ) ̸=∅. As a consequence, X fails Pp with this equivalent norm by Lemma 4.3.3.

Proof. Let X be a Banach space with dimension greater than or equal to 2 endowed with

a smooth norm, and fix a 2-dimensional subspace Y ⊆ X . According to Lemma 4.3.5, Y

is isomorphic to a smooth non-strictly convex Banach space Y with dimension 2. Let Z be

a closed subspace of X such that X = Y ⊕ Z (the existence of such space is guaranteed by

Theorem 3.3.4). Then, X is isomorphic to X ′ := Y ′ ⊕2 Z , and notice that Y ′ ⊕ Z is smooth.

Thanks to Lemma 4.3.5, it is possible to find e ∈ ext(BY ′)\rot(BY ′). Lemma 4.3.5 also assures

that e ∈ ext(BX ′) \ rot(BX ′)

As a consequence, we present a sufficient condition for a Banach space to fail Property P.

Corollary 4.3.7. Every reflexive or separable Banach space whose dimension is greater than or

equal to 2 can be equivalently renormed to fail Property P.

Proof. It is a direct consequence of the fact the reflexive Banach spaces and separable Banach

spaces admit an equivalent smooth renorming, see (53, Corollary 4) and (35, Corollary 4.3)

respectively.
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Now, we will go through the study of faces, facets and frames. But first, let us see the

following useful note about maximal segments containing a certain segment.

Remark 4.3.8. Let X be a normed space, and consider the unit ball centered in x ∈ X with

radius r < 0, BX (x , r), and x ̸= y ∈ BX (x , r). Let us compute the maximal segment of BX (x , r)

containing [x , y].

Figure 4.1: BX (x , r)

Let [z1, z2] be the maximal segment of BX (x , r) containing [x , y]. It is clear that

z1, z2 ∈ SX (x , r), then ∥z1 − x∥ = ∥z2 − x∥ = r. On the other hand, it is known that z1 =

(1− s)x + s y, z2 = (1+ s)x − s y, with s > 1 (see Figure 4.1). Let us see the reasoning for z1

and for z2 is analogous:

∥z1 − x∥= r ⇐⇒ ∥(1− s)x + s y − x∥= r ⇐⇒ ∥− sx + s y∥= r ⇐⇒ s =
r

∥y − x∥
.

Then, we conclude that the extremes of the maximal segment in BX (x , r) are given by
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�

1+
r

∥x − y∥

�

x −
r

∥x − y∥
y and
�

1−
r

∥x − y∥

�

x +
r

∥x − y∥
.

Notice that these two points are the only ones of the segment

��

1+
r

∥x − y∥

�

x −
r

∥x − y∥
y,
�

1−
r

∥x − y∥

�

x +
r

∥x − y∥

�

lying on the sphere SX (x , r).

Lemma 4.3.9. Let X be a normed space with dim(X )≥ 2, x ∈ SX , f ∈ SX ∗ such that f (x) = 1,

and r > 0. Then:

1. If BX (x , r)∩ SX ⊆ f −1({1}), then BX (x , r
2)∩ f −1({1}) ⊆ SX .

2. If y ∈ SX \ {x} satisfies [x , y] ⊆ SX ∩ f −1({1}), and [u, v] is the maximal segment of SX

containing [x , y], then u, v ∈ cl(SX \ f −1({1})).

3. If BX (x , r)∩ SX ⊆ f −1({1}), then BX (x , r)∩ SX is convex and r < 1. Even more, if

y ∈ (Bx(x , r)∩ SX ) \ {x}, then

��

1+
r

∥x − y∥

�

x −
r

∥x − y∥
y,
�

1−
r

∥x − y∥

�

x +
r

∥x − y∥

�

⊆ SX .

4. If BX (x , r)∩ f −1({1}) ⊆ SX , then r ≤ 1 and there exists 0< s < r such that

BX (x , s)∩ SX ⊆ f −1({1}).

Proof. 1. Let y ∈ BX (x , r
2) ∩ f −1({1}) be an arbitrary point, and let us see that y ∈ SX .
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Notice that 1= f (y)≤ ∥y∥. Next,













x −
y
∥y∥













≤ ∥x − y∥+












y −
y
∥y∥













= ∥x − y∥+
∥∥y∥y − y∥
∥y∥

= ∥x − y∥+
∥y∥ − 1 | ∥y∥
∥y∥

= ∥x − y∥+ |∥y∥ − 1|

= ∥x − y∥+ |∥y∥ − ∥x∥|

≤ 2∥y − x∥

≤ r.

Then, y
∥y∥ ∈ BX (x , r)∩ SX ⊆ f −1({1}). That means that f

�

y
∥y∥

�

= 1= f (y),

concluding that ∥y∥= 1.

2. It suffices to show that u, v /∈ intSX

�

SX ∩ f −1({1})
�

. Suppose to the contrary that, for

example, u ∈ int
�

SX ∩ f −1({1})
�

. Then, there exists α > 0 such that

u ∈ BX (u,α)∩ SX ⊆ SX ∩ f −1({1}). In virtue of the previous item,

BX (u, α2 )∩ f −1({1}) ⊆ SX , then, we can find s < 0 sufficiently small such that

(1 − s)u + sv ∈ BX (u, α2 ). Notice that [x , y] ⊆ [u, v] and [x , y] ⊆ f −1({1}), then

[u, v] ⊆ f −1({1}), which clearly implies that (1−s)u+sv ∈ f −1({1}). As a consequence,

(1− s)u+ sv ∈ BX (u, α2 )∩ f −1({1}) ⊆ SX . In particular,

[(1−s)u+sv, v] ⊆ BX ∩ f −1({1}) ⊆ SX . We conclude the proof by noticing that [u, v] ⊊
[(1− s)u+ sv, v] ⊆ SX , which contradicts the maximality of [u, v].

3. First, let us see that BX (x , r) ∩ SX is convex. Let y, z ∈ BX (x , r) ∩ SX , and t ∈ [0,1].

Notice that t y + (1 − t)z ∈ BX (x , r) ∩ BX , then ∥t y + (1 − t)z∥ ≤ 1. On the other

hand, since y, z ∈ BX (x , r)∩ SX ⊆ f −1({1}), then t y + (1− t)z ∈ f −1({1}), therefore,
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1 = | f (t y + (1− t)z)| ≤ ∥t y + (1− t)z∥. So, we conclude that ∥t y + (1− t)z∥ = 1,

which shows that BX (x , r) ∩ SX is convex under our hypotheses. Now, let us prove

that r ≤ 1 by contradiction. Assume that r > 1. Notice that x ∈ SX = cl(SX \ {x}),

because dim(X )≥ 2. Then, there exists y ∈ (BX (x , r)∩ SX ) \ {x}. By the convexity of

BX (x , r)∩ SX , [x , y] ⊆ BX (x , r)∩ SX . By using Remark 4.3.8, the maximal segment of

BX (x , r) containing [x , y] is

��

1+
r

∥x − y∥

�

x −
r

∥x − y∥
y,
�

1−
r

∥x − y∥

�

x +
r

∥x − y∥

�

=: [z1, z2].

We denote by [u, v] the maximal segment of SX containing [x , y]. Let us distinguish

between two options:

• [z1, z2] ⊆ [u, v]. Since [u, v] ⊆ SX , then z1, z2 ∈ SX , which take us to the contra-

diction

2= diam(BX )≥ ∥z2 − z1∥=

=













��

1−
r

∥x − y∥

�

x +
r

∥x − y∥
y
�

−
��

1+
r

∥x − y∥

�

x −
r

∥x − y
y
�













=













�x −
r

∥x − y∥
x +

r
∥x − y∥

y��−x −
r

∥x − y∥
x +

r
∥x − y∥

y













=













2
r

∥x − y∥
(y − x)













= 2r > 2.

• [z1, z2] ⊈ [u, v]. In this case, either u or v are in the interior of the segment,

u ∈ (z1, z2) or v ∈ (z1, z2). Keeping in mind Remark 4.3.8, z1, z2 are the only ones

laying in SX (x , r), which means that (z1, z2) ⊆ UX (x , r). We suppose with no loss

of generality that u ∈ UX (x , r). Let δ > 0 such that BX (u,δ) ⊆ UX (x , r). Besides,
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since [x , y] ⊆ [u, v] and [x , y] ⊆ BX (x , r)∩ SX ⊆ f −1({1}), then

[u, v] ⊆ f −1({1}). By the second item of this lemma, u ∈ cl
�

SX \ f −1({1})
�

,

which allows us to find u′ ∈
�

SX \ f −1({1})
�

∩ BX (u,δ) ⊆ UX (x , r) ⊆ BX (x , r).

Then, u′ ∈ (BX (x , r)∩ SX ) \ f −1({1}), which contradicts the hypothesis of

BX (x , r)∩ SX \ f −1({1}).

Therefore, r ≤ 1. As a consequence, the case [z1, z2] ⊆ [u, v] is possible, but not the

second one, which implies that [z1, z2] ⊆ SX , completing this proof.

4. Suppose to the contrary that r > 1. Since dim(X )≥ 2, there exists

y ∈
�

BX (x , r)∩ f −1({1})
�

\ {x}. Let us distinguish two cases:

• Suppose that ∥y − x∥ > 1. Notice that 2x − y ∈ BX (x , r)∩ f −1({1}). Therefore,

we reach to the contradiction

2= diam (BX )≥ ∥(2x − y)− y∥= 2∥x − y∥> 2.

• Suppose now that ∥y − x∥ ≤ 1. We denote by z2 := r
∥y−x∥ y +
�

1− r
∥y−x∥

�

x ∈

BX (x , r)∩ f −1({1}), then ∥z2 − x∥ = r > 1. Using the same reasoning as above,

we reach to the contradiction that diam(BX )> 2.

Therefore, r ≤ 1. To conclude the proof, let us show that there exists s with 0< s < r

such that BX (x , s) ∩ SX ⊆ f −1({1}). Take s ∈ (0, r) satisfying that s + s
1−s ≤ r, and

y ∈ BX (x , s) ∩ SX . On the one side, f (y) = f (x) − f (x − y) = 1 − f (x − y) ≥
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1− ∥x − y∥ ≥ 1− s. On the other side,













x −
y

f (y)













≤ ∥x − y∥+












y −
y

f (y)













= ∥x − y∥+
∥ f (y)y − y∥
| f (y)|

= ∥x − y∥+
| f (y)− 1|∥y∥
| f (y)|

= ∥x − y∥+
| f (y)− f (x)|
| f (y)|

≤ ∥x − y∥+
∥y − x∥
| f (y)|

≤ s+
s

1− s

≤ r.

Therefore, y
f (y) ∈ BX (x , r)∩ f −1({1}) ⊆ SX . As a consequence, ∥ y

f (y)∥= 1, concluding

that f (y) = 1.

The next proposition is an extension of (34, Lemma 2.1). Also, it will show us one of the

cases when faces and facets coincide.

Proposition 4.3.10. Let X be a normed space and C ⊆ SX a convex subset of the unit sphere.

If f ∈ SX ∗ satisfies that C ⊆ F( f ), then intSX
(C) = int f −1({1})(C) and bdSX

(C) = bd f −1({1})(C).

In particular, E( f ) = bdSX
(F( f )).

Proof. ⊆) Let x ∈ intSX
(C) ̸=∅, then, there exists r > 0 such that

BX (x , r)∩ SX ⊆ C ⊆ F( f ) ⊆ f −1({1}). (4.3.1)
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4.3 Structure of Facets and Frames

We will show that BX (x , r
2) ∩ f −1({1}) ⊆ C , which implies that x ∈ int f −1({1})(C).

Notice that, by Lemma (4.3.9)(1) and the previous contention (4.3.1), we have that

BX (x , r
2)∩ f −1({1}) ⊆ SX . Taking into consideration this with (4.3.1) again, we have

that BX (x , r
2)∩ f −1({1}) ⊆ C , which was our target.

⊇) Conversely, fix x ∈ int f −1({1})(C) ̸=∅. Then,

∃r > 0 : BX (x , r)∩ f −1({1}) ⊆ C ⊆ SX . (4.3.2)

This allows us to use Lemma 4.3.9(4), which asserts that r ≤ 1 and there exists s such

that 0< s < r and BX (x , s)∩ SX ⊆ f −1({1}). In view of the contention (4.3.2), it only

suffices to show that BX (x , s) ∩ SX ⊆ f −1({1}) to reach to BX (x , s) ∩ SX ⊆ C , which

means that x ∈ intSX
(C).

Finally, notice that either SX and f −1({1}) are closed in X , so we have

cl(C) = clSX
(C) = cl f −1({1})(C), then

bdSX
(C) = clSX

(C) \ intSX
(C) = cl f −1({1})(C) \ int f −1({1})(C) = bd f −1({1})(C).

The next lemma shows some properties and notions about the behaviour of facets. Notice

that the first item is known thanks to (34, Theorem 2.8) as we have mentioned in the previous

chapter, but we give here its proof in sake of completeness. Besides, the last point gives an

equality about the inner points of a facet.

Lemma 4.3.11. For a normed space X and a facet C ⊂ SX , we have the following assertions:
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4. GEOMETRIC STRUCTURE OF THE UNIT BALL

1. C is a convex component of SX .

2. There exists a unique functional f ∈ SX ∗ such that C ⊆ F( f ). In fact, C = F( f ).

3. If c ∈ intSX
(C) and f ∈ ν(c), then C = F( f ). This is equivalent to say that if f (c) = 1

for some c ∈ intSX
(C) and f ∈ SX ∗ , then f (c) = 1 for all point c ∈ C in the facet.

4. intSX
(C) ⊆ smo(BX ).

5. If c ∈ intSX
(C) and f ∈ ν(c), then C − c is a closed convex neighborhood of 0 in ker( f ).

Moreover, intSX
(C) is dense in C and inn(C) = intSX

(C).

Proof. 1. Let us see the maximality of C by contradiction. Let D ⊆ SX be a convex subset

strictly containing C . By Hahn-Banach Theorem, there exists f ∈ SX ∗ such that C ⊆

D ⊆ F( f ). Let d ∈ D \ C ̸=∅ and c ∈ intSX
(C). By relying on Proposition 4.3.10,

c ∈ intSX
(C) = int f −1({1})(C), then, there exists r > 0 such that BX (c, r)∩ f −1({1}) ⊆ C .

We have to notice that it is possible to find t > 1 sufficient closed to 1 such that

tc + (1− t)d ∈ BX (c, r). On the other hand, f (tc + (1− t)d) = 1, so

tc+(1− t)d ∈ BX (c, r)∩ f −1({1}). Since C is a facet, in particular, is a face, concluding

that d ∈ C , which is a contradiction.

2. The maximality of C implies the existence of f ∈ SX ∗ such that C = F( f ). Suppose

on the contrary that there exists g ∈ SX ∗ verifying C = F(g). By Proposition 4.3.10,

intSX
(C) = int f −1(1)(C) = intg−1({1})(C). Fix an arbitrary c ∈ intSX

(C). Notice that

intker( f ))(C − c) = intker(g)(C − c). Besides, observe that C ⊆ f −1({1}) ∩ g−1({1}),

therefore C − c ⊆ ker( f )∩ ker(g). Thus, ker( f )∩ ker(g) is a subspace of ker( f ) with

non-empty interior, so ker( f )∩ker(g) = ker( f ). The same reasoning serves to see that

ker( f )∩ ker(g) = ker( f ), implying that ker( f ) = ker(g), then they are proportionals.
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4.3 Structure of Facets and Frames

Since the functionals coincide in every element of C , we have that f = g.

3. Let us find a contradiction. Let y ∈ C \ F( f ), then f (y) < 1. Take g ∈ SX ∗ such

that C = F(g). By Proposition 4.3.10, c ∈ intSX
(C) = intg−1({1}), thus there exists

r > 0 such that BX (c, r)∩ g−1({1}) ⊆ C . This means that we can find t < 0 sufficient

closed to 0 such that t y + (1 − t)c ∈ BX (c, r). We notice that since y, c ∈ g−1({1}),

then s y + (1− s)c ∈ g−1({1}), for all s ∈ R, in particular, it is true for s = t, that is,

t y +(1− t)c ∈ BX (c, r)∩ g−1({1}) ⊆ C ⊆ SX . Therefore, we reach to the contradiction

1≥ f (t y + (1− t)c) = t f (y) + (1− t) f (c) = 1− t(1− f (y))> 1.

4. If c ∈ intSX
(C), and f , g ∈ ν(c) then, by previous item C = F( f ) = F(g). By (2), it

holds that f = g, which is the definition of smooth point.

5. First of all, notice that, c ∈ intSX
(C) = int f −1({1}), so C is a closed

(C = F( f ) = f −1({1})∩BX ) convex neighborhood of c in f −1({1}). Now, consider the

translation

X → X

x 7→ x − c

which is an homeomorphism mapping f −1({1}) to ker( f ), C to C − c, int f −1({1}) to

intker( f )(C − c) and c to 0. Then, C − c is a closed convex neighborhood of 0 in ker( f ).

To see the density of intSX
(C) in C , it is well-known that a convex subset C with non

empty interior in a normed space X satisfies cl(C) = cl(int(C)), in our case, C − c is a

convex subset of ker( f ) with non-empty interior, then

clker( f )(intker( f )(C − c)) = clker( f )(C − c).

If we undo the translation and take into consideration that C and f −1(C) are closed,
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we obtain

cl
�

intSX
(C)
�

= cl
�

int f −1({1})(C)
�

= cl f −1({1})
�

int f −1({1})(C)
�

= cl f −1(C) = cl(C) = C ,

so intSX
(C) is dense in C . Finally, to see that inn(C) = intSX

(C), we use again the fact

that C − c is a convex set with non-empty interior in ker( f ), then intker( f )(C − c) =

inn(C) by Lemma 3.2.29(3). To conclude that inn(C) = int f −1({1})(C) = intSX
(C) it is

enough to take into consideration that translations preserve inner points by Proposition

3.2.31.

The next result present a new reformulation of the frame of the unit ball. This character-

ization will be very useful to provide an immediate proof of its invariance in the following

chapter (see Theorem 5.2.1). This invariance was already proved by Tanaka in (1, Theorem

3.7).

Theorem 4.3.12. Let X be a normed space. Then

frm(BX ) = SX \
⋃

C∈CX

intSX
(C),

where CX is the notation given in Definition 3.2.1 for the set of all the facets in the unit ball.

Proof. ⊇) Let x ∈ SX \∪C∈CX intSX
C . By Hahn-Banach Theorem, there exists f ∈ SX ∗ such

that x ∈ F( f ). Let us distinguish cases:

• If intSX
(F( f )) =∅, by Proposition 4.3.10, F( f ) = E( f ), then x ∈ E( f ) ⊆ frm(BX ),

because of the definition of the frame.
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• If intSX
(F( f )) ̸= ∅, then F( f ) is a facet, F( f ) ∈ CX , since x /∈ intSX

(F( f )),

therefore x ∈ F( f ) \ intSX
(F( f )) = bdSX

(F( f )) = E( f ) ⊆ frm(BX ).

⊆) Conversely, let x ∈ frm(BX ) =
⋃�

E( f ) : f ∈ ∪x∈SX
ν(x)
	

. Suppose to the contrary

that ∃C ∈ CX such that x ∈ intSX
(C). By Lemma 4.3.11(4), x ∈ intSX

(C) ⊆ smo(BX ),

then, there exists a unique functional f ∈ SX ∗ such that x ∈ C = F( f ). By hypotheses

and the definition of the frame, there exists g ∈ SX ∗ such that x ∈ E(g) ⊆ F( f ),

but f was unique, so g = f . Thus, on one hand, x ∈ intSX
(C) = intSX

(F( f )) and

x ∈ E( f ) = bdSX
(F( f )), which is a contradiction.

We obtain the following result as a direct consequence of Theorem 4.3.12.

Corollary 4.3.13. Let X be a normed space, the following assertions are equivalent:

• intSX
(frm(BX )) =∅.

• ∪C∈CX
(C) is dense in SX .

4.4 Flatness

The concept of starlike hull was introduced for the first time in (6, Definition 11) and it was

studied for general starlike sets. In this section, we present new and original terms related to

starlike sets which fits our purposes much better. Also, we will widely develop these notions

and study their invariance in the following chapter.

Definition 4.4.1 (Starlike envelope, almost flat, flat, starlike compatible, starlike generated

55



4. GEOMETRIC STRUCTURE OF THE UNIT BALL

sets). Let X be a normed space and E ⊆ SX . The starlike envelope of E is defined as follows

st(E) :=
⋂

e∈E
st(e, BX ).

Furthermore, we will say that

• E is almost flat if [e, f ] ⊆ SX for every e, f ∈ E.

• E is flat if co(E) ⊆ SX .

• E is starlike compatible if E ⊆ st(E).

• E is starlike generated if E = st(E).

It is clear that every flat set is almost flat and it is easy to check that every subset of the unit

sphere verifies that is almost flat if and only if is starlike compatible. Notice also that every

convex subset of the unit sphere is trivially flat. In general, this assertion holds for every

subset of the unit sphere contained in a convex subset of SX . As a consequence of that and

the Hahn-Banach Separation Theorem, a subset of the unit sphere is flat if and only if it is

contained in an exposed face of the unit ball. Let us study the relations between the concepts

provided in Definition 4.4.1 in the next lemma.

Lemma 4.4.2. Let X be a normed space and E ⊆ SX , then:

1. If E is convex, then E is flat and starlike compatible.

2. E is almost flat if and only if E is starlike compatible.

3. If E is flat, then it is almost flat.

4. E is flat if and only if co(E) ⊆ st(E).
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5. If E is flat and D is a convex component of the unit sphere containing E, then D ⊆ st(E).

6. If E is a convex component of SX , then E is starlike generated.

7. If E is convex and starlike generated, then E is a convex component.

Proof. 1. If E is convex, then E trivially satisfies the condition of flatness. Now, no-

tice that since E is convex, for every e, f ∈ E ⊆ SX , then [e, f ] ⊆ SX , which means

that f ∈ st(e, BX ). This implies that E ⊆ st(e, BX ) for all e. As a consequence, E ⊆

∩e∈E st(e, BX ) = st(E), meaning that E is starlike compatible.

2. It is direct by taking into consideration the Equality 3.2.6.

3. It is also trivial just by bearing in mind the definitions given in 4.4.1.

4. ⇒) Suppose that E is flat, then co(E) ⊆ SX . Thus, [x , e] ⊆ co(E) ⊆ SX for all x ∈ co(E),

which means that x ∈ st(e, BX ) for all x ∈ co(E) and e ∈ E arbitrary. This implies that

co(E) ⊆ ∩e∈E st(e, BX ) = st(E).

⇐) Conversely, if co(E) ⊆ st(E) ⊆ SX , we have that E is flat.

5. Let d ∈ D. Since E is flat and D is a maximal convex subset of SX , it holds that for

every e ∈ E, [e, d] ⊆ D ⊆ SX , then d ∈ st(E). Since d is arbitrary, D ⊆ st(E).

6. By 1. of this lemma, we know that E ⊆ st(E) since E is convex. Let us see the other

contention. Fix an arbitrary x ∈ st(E) and notice that

E ⊆ co(E ∪ {x}) =
⋃

e∈E
[x , e] ⊆ SX ,

where the last contention is given by x ∈ st(E), then [x , e] ⊆ SX for all e ∈ E. The
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maximality of E implies that E = co(E ∪ {x}), thus x ∈ E. Therefore, we have proved

that E = st(E), which is the definition of starlike generated.

7. suppose that D is a convex subset of SX containing C . Let d ∈ D and e ∈ E. The

convexity of D shows that [e, d] ⊆ D ⊆ SX , then d ∈ st(e, BX ). The arbitrariness of

e ∈ E gives as the next

d ∈
⋂

e∈E
st(e, BX ) = st(E) = E,

then D ⊆ C because d ∈ D was arbitrary. This proves the maximality of C , concluding

that C is a maximal component of SX .

Now we present a pair of examples of almost flat sets which are not flat.

Example 4.4.3. The construction of this example is strongly based on Remark 4.1.3 and Lemma

4.1.4. The convex polyhedron displayed in Figure 4.2 is a unit ball whose facets equilateral

triangles and diamonds; an easy way to construct it is by taking a regular octahedron and

placing a regular tetrahedron (with the same faces or triangles) on the top and the opposite one

on the bottom. If E is formed by the four vertices of the top tetrahedron, then E is almost flat

but it is clearly not flat, since co(E) is the whole regular tetrahedron which is not contained in

the boundary of this unit ball. We also want to notice that this unit ball is a convex polyhedron,

then, R3 endowed with this unit ball satisfies the MUp by (11, Theorem 4.5). Also, any of the

diamonds that compose the boundary of this unit ball is a maximal convex component, then,

starlike generated by Lemma 4.4.2(6).
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Figure 4.2: Pacheco-Campos unit ball

The key of failing the flat condition is to consider a set formed by the four vertices: three of

them of the same face and the other one in an adjacent face. Keeping that in mind, it is easy

to give a simpler example of an almost flat set which is not flat, specifically, it is enough to

consider the set E = {A, B, C , D} in the Figure 4.3. As we can see, all the possible segments

whose extremes bellowing to E lay in the unit sphere, but the convex hull of E has points of

the unit ball which are not in the sphere, implying that E is not flat.

Figure 4.3: Another example of an almost flat set which is not flat

We will make use of the original Example 4.4.3 to construct a non-convex starlike generated

set (see the green set in Figure 4.4).

Theorem 4.4.4. Let us consider the upper regular tetrahedron of the unit ball given in Example
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4.4.3. If we denote by a the upper vertex and by b, c, d the ones forming the base of that regular

upper tetrahedron, then E := [a, b]∪ [a, c]∪ [a, d] is a non-convex starlike generated set.

Figure 4.4: An example of a non-convex starlike generated set

Proof. It is clear that E is not convex. Notice that E is almost flat by definition, then, by

Lemma 4.4.2(2), E is starlike compatible, meaning that E ⊆ st(E). It only remains to show

that st(E) ⊆ E. Suppose to the contrary that there exists x ∈ st(E) \ E. First, observe that

st(E) = ∩e∈E st(e, BX ) ⊆ st(a, BX ) = co({a, b, c}) ∪ co({a, c, d}) ∪ co({a, b, d}). Then, x is in

the interior of one of these three faces co({a, b, c}), co({a, c, d}), co({a, b, d}). Suppose, for

example and without any loss of generality, that x ∈ co({a, b, c}). Then, (x , d) ⊂ UX , which

contradicts the fact that x ∈ st(E) ⊆ st(d, BX ).

The examples given in Figures 4.2 and 4.3 motivate the following property.

Definition 4.4.5 (Flat property). We will say that a normed space has the flat property or the

F-property (Fp) if every almost flat of its unit ball is flat.

Remark 4.4.6. Note that R3 endowed with the unit ball constructed in Example 4.4.3 satisfied

the MUp. However, it does not satisfied the Flat property, as we have shown in Theorem 4.4.4.
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Examples above shows the existence of Banach spaces lacking the F-property. In fact, let us

show that it is possible to equivalently renormed a Banach space (with dimension greater or

equal to 3) to fail Fp.

Theorem 4.4.7. Let X be a Banach space with dimension dim(X ) ≥ 3. Then, there exists an

equivalent norm on X for which X fails Fp.

Proof. Let us consider a 3-dimensional Banach space Y ⊂ X . Then, there exists a closed

subspace Z ⊆ X satisfying X = Y ⊕ Z . It holds that Y is isomorphic to the 3-dimensional

Banach space given in Example 4.4.3, so it is possible to endow Y with the equivalent norm

given by the unit ball of Example 4.4.3, and we call the space with this norm by Y ′. If we

keep the norm considered in Z , then X is isomorphic to X ′ := Y ′ ⊕2 Z . Finally, notice that

X ′ fails Pp since so does Y ′.

The following lemma gives a sufficient condition for an almost flat set to be flat. It also

provides conditions for a convex subset of the unit ball to be contained in the unit sphere, in

particular, it will be enough the convex subset to contain inner points which are also in the

unit sphere.

Lemma 4.4.8. Let D ⊆ BX be a convex subset of the unit ball of a normed space X . Then:

1. If inn(D)∩ SX ̸=∅, then D ⊆ SX .

2. If D ⊆ SX is an almost flat subset satisfying that ∃d ∈ D such that d ∈ inn(co(D)), then

D is flat.

Proof. 1. Fix an arbitrary d0 ∈ inn(D) ∩ SX and take d ∈ D \ {d0}. Since d is an inner

points, by definition, there exists e ∈ D \ {d, d0} such that d0 ∈ (d, e). As d0 ∈ SX and
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d, e ∈ D ⊆ BX , the only possibility is that [d, e] ⊆ SX .

2. We strongly based in the assertion previously proved: because d ∈ inn(co(D)) ∩ SX ,

then, co(D) ⊆ SX , which is the definition of flatness for D.

Next lemma presents some generalization of the results belonging to (5). In particular,

Lemma 4.4.9(1) is a generalization to infinite dimensional normed spaces of (5, Lemma

2), and Lemma 4.4.9(2,5) constitutes the infinite dimensional version of (5, Corollary 3).

This result was firstly proved in (3, Lemma 8) and it gives a deeper perspective about starlike

sets.

Lemma 4.4.9. For a normed space X and E ⊆ SX , the following holds:

1. Let E be a face, e ∈ inn(E) and y ∈ SX satisfying that [e, y] ⊆ SX , then co(E∪{y}) ⊆ SX

and E ⊆ st(y, BX ).

2. If E is a convex component of the unit sphere SX and ∃e ∈ E for which E is the only convex

component of SX containing e, then it has to be its starlike set, E = st(e, BX ).

3. If E is a facet, then for every e ∈ intSX
(E), E in the only convex component of SX containing

e.

4. If E is a maximal convex subset of SX such that there exists a dense sequence (en)n∈N in

E satisfying that
∑∞

n=1
en
2n is convergent, then E is the only convex component containing

e :=
∑∞

n=1
en
2n .

5. If E is a maximal face of BX with inner points, inn(E) ̸= ∅, then E is the only convex

component of SX containing its inner points e ∈ inn(E).
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Proof. 1. Notice that co(E ∪ {y}) = ∪d∈E[d, y]. Fix d ∈ E \ {e} and [e, y] ⊆ SX by

hypothesis. Since e ∈ inn(E), there exists c ∈ E \ {e, d} such that e ∈ (d, c).

• If c, d, y are aligned, then, the extremal condition of E guarantees that y ∈ E.

Besides, the convexity of E implies that co(E∪{y}) = E ⊆ SX . Finally, keeping in

mind the definition of starlike set given in Equation 3.2.6, E ⊆ st(y, BX ).

• If c, d, y are not aligned, by Remark 3.2.28, (e, y) ⊆ inn(co({d, c, y})) = {rd+sc+

t y : r, s, t ∈ (0, 1), r+s+t = 1}, and (e, y) ⊆ [e, y] ⊆ SX , thus, by Lemma 4.4.8(1)

co({d, c, y}) ⊆ SX . In particular, [d, y] ⊆ SX . The arbitrariness of d ∈ E \ {e}

implies that co(e ∪ {y}) = ∪d∈E[d, y] ⊆ SX . This reasoning together Equation

3.2.6 implies that E ⊆ st(y, BX ) = {x ∈ SX : [x , y] ⊆ SX }.

2. ⊆) Since E is convex, by Lemma 4.4.2(1), E is starlike compatible, which means that

E ⊆ st(E) = ∪d∈E st(d, BX ) ⊆ st(e, BX ).

⊇) Let x ∈ st(e, BX ). By Equation 3.2.6, [x , e] ⊆ SX . Let D be the convex component

of SX containing [x , e], in particular e ∈ [x , e] ⊆ D. But, by hypothesis, D = E,

concluding that x ∈ E.

3. It is sufficient to take into consideration Lemma 4.3.11(4) to claim that e ∈ intSX
(E) is

a smooth point of BX , then E is the only maximal convex subset of SX satisfying e ∈ E.

4. Id D ⊆ SX is the maximal convex subset of SX containing e, we know that there exists

g ∈ SX ∗ such that D = F(g). Notice that g(e) = 1 since e ∈ D. Therefore, g(en) = 1

for all n ∈ N, and the density of (en)n∈N implies that g(E) = {1}, implying that E ⊆

F(g) = D, which contradicts the maximality of E.

5. We will follow a similar reasoning to the first item proved in this lemma. Suppose on

63



4. GEOMETRIC STRUCTURE OF THE UNIT BALL

the contrary that there exists D another convex component of SX containing e ∈ inn(E),

and fix d ∈ E \ {e}. It holds that there exists c ∈ E \ {e, d} such that e ∈ (d, c).

The extremal condition satisfied by D implies that d, c ∈ D, but the arbitrariness of

d ∈ E \ {e} concludes that E ⊆ D. Finally, the maximality of E forces that E = D.

Next result is borrowed from (3, Theorem 9). This theorem gives us two important properties

about starlike sets: the first one is that every starlike set satisfies the extremal condition. The

second one is about the uniqueness respect to the maximal faces containing the centre of the

starlike set when we asked for convexity.

Theorem 4.4.10. For every point x ∈ SX of the unit sphere of a normed space X , its related

starlike set st(x , BX ) satisfies the extremal condition respect to BX . Moreover, if st(x , BX ) is

convex, then st(x , BX ) is the only maximal face of BX containing x.

Proof. Let us check the extremal condition for st(x , BX ): let y, z ∈ BX and t ∈ (0,1) such

that t y + (1− t)z ∈ st(x , BX ). By the equality given in 3.2.6,

st(x , BX ) =
⋃

{C ⊆ SX : C is a maximal face of containing x},

we know that there exists a maximal face C such that t y+(1− t)z ∈ C . Since C satisfies the

extremal condition, y, z ∈ C ⊆ st(x , BX ).Now suppose that st(x , BX ) is also convex. Then,

st(x , BX ) verifies the definition of face, and let D be a maximal face of BX containing x .

Again, by Equation 3.2.6, D ⊆ st(x , BX ), concluding the uniqueness of st(x , BX ).

The set of rotund points of the unit ball can be described in terms of the starlike sets as

follows.
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Remark 4.4.11. For a normed space X ,

rot(BX ) = {x ∈ SX : st(x , BX ) = {x}}.

This characterization of rotund points through singleton starlike sets allows us to express

rotund points in another form.

Remark 4.4.12. A rotund point x ∈ rot(BX ), where X is a normed space, is a singleton maximal

face {x} of SX . This is equivalent to next condition: for all y ∈ BX such that






x+y
2





 = 1, then

y = x. Indeed, suppose on the first place that x ∈ rot(BX ), and let y ∈ BY such that






x+y
2





= 1,

equivalently, ∥x + y∥ = 2. By Equation 3.2.6 and Remark 4.4.11, y ∈ st(x , BX ) = {x}, then

x = y. Conversely, assume that for all y ∈ BX satisfying ∥y + x∥ = 2, then y = x. This

fact forces that st(x , BX ) = {y ∈ BX : ∥x + y∥ = 2} = {x}. Again, in view of Remark 4.4.11,

x ∈ rot(BX ).

Next result combined with Theorem 4.4.10 constituted a generalization of (54, Lemma 2.7).

It also gives a sufficient condition for a starlike set to be convex.

Theorem 4.4.13. Let x ∈ smo(BX ) be a smooth point of the unit ball of a normed space X .

Then, st(x , BX ) = F(ν(x)). In particular, st(x , BX ) is convex.

Proof. The smoothness of x means that there exists a unique functional, let us denote it by

ν(x), attaining its norm at x . This implies that there is only one exposed face of BX containing

x , which is F(ν(x)). This exposed face is also the only maximal face of BX containing x . By

Equation 3.2.6, st(x , BX ) is forced to be that maximal face, implying the convexity of the

starlike set.

65





CHAPTER

5
Geometry of the unit ball under

surjective isometries of the unit

sphere
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The main topic of this chapter is the study of the invariants of the unit sphere under surjective

isometries. During the investigation of the unit ball, we have realized that the proofs of

some already known invariants could be simplified by using the our own investigation. This

is the goal of the first section, where we present different proofs for the invariance of the

67



5. GEOMETRY OF THE UNIT BALL UNDER SURJECTIVE ISOMETRIES OF THE
UNIT SPHERE

starlike sets (see Theorem 5.1.1) or the equation T (− st(x , BX )) = −T (st(x , BX )), with T our

surjective isometry (see Corollary 5.1.2). The second section of this chapter shows, on the

one hand, that the new geometrical terms defined in the flatness study are also invariants

under surjective isometries (see Theorem 5.2.3) and, on the other hand, the invariance of

faces in arbitrary Banach spaces by relying on the P-Property (Theorem 5.2.4). As far as we

know, faces have not been proved as invariants under surjective isometries. In this section,

we also proved in a simpler way the invariance of the frame by using the reformulation

given in Theorem 4.3.12 and the invariance of the set of rotund points (Theorem 5.2.8). As

a consequence of this result, we conclude the preservation of antipodal rotund points, that

is, T (−x) = −T (x) for all rotund point x and T , the surjective isometry under the same

hypotheses as always, and we also deduce the invariance of the strict convexity of the large

Banach space X . The latter invariance motivates to define the Inner Property (see Definition

5.2.10). Spaces with this property are under the hypotheses of Theorem 5.2.15 (as we have

gathered in Corollary 5.2.16), which is a generalization of Tingley’s results (5, Lemma 12

and 13) to infinite dimensions. We end this chapter by proving the invariance of segments

under certain circumstances in Theorem 5.3.1.

5.1 New simpler proofs for already proved invariants

Along the study of the invariants under surjective isometries and the geometry of the unit

ball, we have given new (simpler) proofs for already known results. The first we present

here is the invariance of the starlike sets under surjective isometries defined between unit

spheres. This invariance for the starlike sets was stated and proved in (9, Corollary 2.2), and

so it does (7, Corollary 5.2), where the proof was omitted. Our different and more direct

proof is based on Theorem 3.2.9.
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Theorem 5.1.1. Let T : SX → SY be a surjective isometry defined between the unit spheres of

two Banach spaces X , Y . Then, T (st(x , BX )) = st(T (x), BY ), for every x ∈ SX .

Proof. Relying on Theorem 3.2.9 and taking into consideration Definition 3.2.5, we have the

following chain of equalities:

T (st(x , BX )) = T
�
⋃

{C ⊆ SX : C is a maximal face containing x}
�

=
⋃

{T (C) : T (C) is a maximal face of BX containing x}

=
⋃

{D ⊆ SY : D is a maximal face of BY containing T (x)}

= st(T (x), BY ).

In Corollary 5.2.16(2), we provide a different proof of Theorem 5.1.1 for a wide class of

Banach spaces containing the finite-dimensional Banach spaces. Besides, Theorem 5.1.1

together with Remark 3.2.17 lead us to the following original result.

Corollary 5.1.2. Let X , Y be Banach spaces and T : SX → SY be a surjective isometry between

the unit spheres of those Banach spaces. Then, T (− st(x , BX )) = −T (st(x , BX )) for all x ∈ SX .

Proof. In virtue of Theorem 5.1.1 and Remark 3.2.17 the next holds:

T (− st(x , BX )) = T (st(−x , BX )) = st(T (−x), BY ) = − st(−T (−x), BY ) = −T (st(x , BX )).
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5.2 Preservation of Flatness and Faces under surjective isometries

We will begin this section by giving a simpler proof of (1, Theorem 3.7) using some results

given in the previous study, in detail, Theorem 3.2.9, Remark 3.2.12, and Theorem 4.3.12.

The following result can be found for the first time in (3, Theorem 11), and shows that the

frame is an invariant under surjective isometries defined between unit spheres.

Theorem 5.2.1. Let T : SX → SY be a surjective isometry defined between the unit spheres of

Banach spaces X , Y . Then, T (frm(BX )) = frm(BY ).

Proof. Notice that T (CX ) =CY (see Theorem 3.2.9 together with Remark 3.2.12). By bear-

ing in mind that T is an homeomorphism (see Remark 3.2.12), and the reformulation given

in Theorem 4.3.12, we have that

T (frm(BX )) = T

�

SX \
⋃

C∈CX

intSX
(C)

�

= T (SX ) \
⋃

C∈CX

T (intSX
(C))

= T (SX ) \
⋃

C∈CX

intSY
(T (C)) = SY \

⋃

D∈CY

intSY
(D)

= frm(BY ).

The following example shows that the interior of the frame is a topological invariant under

surjective isometries.

Example 5.2.2. Let X be a Banach space such that intSX
(frm(BX )) = ∅, and let Y be another

Banach space satisfying that there exists a surjective isometry T : SX → SY . According to

the previous Theorem 5.2.1, we have that T (frm(BX )) = frm(BY ). Even more, since T is an
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homeomorphism, it holds

intSY
(frm(BY )) = intSY

(T (frm(BX ))) = T (intSX
(frm(BX )) = T (∅) =∅.

We would like to make the reader notice that some items of the following result, Theorem

5.2.3(2) and Theorem 5.2.3(5), state the same assertion according to Lemma 4.4.2(2). We

have made the differentiation because Theorem 5.2.3(2) relies on Theorem 5.1.1, whereas

Theorem 5.2.3(5) does not. The following result shows the invariance of other terms of

the unit ball under surjective isometries, for instance, the starlike envelope, and the original

proof can be found in (3, Theorem 12).

Theorem 5.2.3. Let T : SX → SY be a surjective isometry between the unit spheres of Banach

spaces X , Y , and let E ⊆ SX . Then:

1. T (st(E)) = st(T (E)).

2. If E is starlike compatible, so it is T (E).

3. If E is starlike generated, then T (E) is starlike generated too.

4. If E is flat, then, T (E) is flat.

5. If E is almost flat, then T (E) is almost flat.

Proof. 1. By bearing in mind the invariance for starlike sets given in Theorem 5.1.1, it is
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easy to observe that

T (st(E)) = T

�

⋂

e∈E
st(e, BX )

�

=
⋂

e∈E
T (st(e, BX ))

=
⋂

e∈E
st(T (e), BY ) =

⋂

d∈T (E)

st(d, BY ) = st(T (E)).

2. By hypothesis, E is starlike compatible, so E ⊆ st(E), then T (E) ⊆ T (st(E)) = st(T (E)),

which means that T (E) is starlike compatible.

3. The proof is very similar to the previous one.

4. By hypothesis, co(E) ⊆ SX , and let D be a convex maximal subset of SX , D is a convex

component, containing co(E) ⊆ D. The invariance of maximal convex subsets of SX

(Theorem 3.2.9) assures that T (D) is a convex component of SY . Besides, since E ⊆

co(E) ⊆ D, then T (E) ⊆ T (co(E)) ⊆ T (D). The convexity of T (D) gives us co(T (E)) ⊆

T (D) ⊆ SY , which is the condition for T (E) of being flat.

5. We start by fixing two arbitrary elements of E, e, f ∈ E, and we want to prove that

[T (e), T ( f )] ⊆ SY for T (E) to satisfy the almost flat condition. Since E is almost flat by

hypothesis, then [e, f ] ⊆ SX . Also, there exists a convex component F ⊆ SX such that

[e, f ] ⊆ F . Again, by Theorem 3.2.9, T (F) is a maximal face of BY . Notice also that,

since [e, f ] ⊆ F , then T ([e, f ]) ∈⊆ T (F). This means that T (e), T ( f ) ∈ T (F), and the

convexity of T (F) assures that the whole segment is contained, this is [T (e), T ( f )] ⊆

T (F) ⊆ SY .

Let C be a flat subset of SX , where X is a normed space. We will denote
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MC := {D ⊆ SX : D is a maximal face of BX containing C}.

When C = {c} is a singleton, we will simply write Mc . Observe that MC = Mco(C).

Next result presents the invariance of faces under particular circumstances: the hypothesis

for the Banach space X of having the Property P. This theorem is originally presented in

(3, Theorem 13), and it serves as an example of the interest in Pp. The proof of this res-

ult strongly relies on the invariance of maximal faces under surjective isometries (Theorem

3.2.9).

Theorem 5.2.4. Let X , Y be two Banach spaces, T : SX → SY , a surjective isometry, and E ⊆ SX ,

a flat subset. Then:

1. T (ME) = MT (E).

2. If X has also Pp and E is a face of BX , then T (E) is a face of BY .

Proof. 1. Let us fix an arbitrary D ∈ ME . By Theorem 3.2.9, we know that T (D) is also

a maximal face of BY which contains T (E), that is T (D) ∈ MT (E). This shows that

T (ME) ⊆ MT (E). The other inclusion is analogous by using T−1.

2. Since X satisfies property P, every (proper) face is the intersection of all maximal faces

containing it, that is E = ∩D∈ME
D by hypothesis. Besides, by Theorem 5.2.3(4), T (E)

is flat, and T (ME) = MT (E) by previous item on this result. Then, keeping in mind that

T is an homeomorphism,

T (E) = T

�

⋂

D∈ME

D

�

=
⋂

D∈ME

T (D) =
⋂

C∈MT (E)

C .
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Observe that the equality above shows that T (E) is the intersection of (maximal) faces

of BY , therefore, T (E) is a face of BY .

In order to prove Corollary 5.2.7, the following lemma will be necessary.

Lemma 5.2.5. Let X be a normed space and x , y ∈ SX . Then:

1. If ν(x) ⊆ ν(y), then Mx ⊆ My , where ν(x) := {x∗ ∈ SX ∗ : x∗(x) = 1}.

2. If x , y ∈ smo(BX ), and Mx ⊆ My , then Mx = My and ν(x) = ν(y).

3. st(x , BX ) ⊆ st(y, BX ) if and only if Mx ⊆ My .

4. The equality st(x , BX ) = st(y, BX ) holds if and only if Mx = My .

Proof. 1. Let D ∈ Mx be an arbitrary maximal face containing x ∈ SX . Since maximal

faces are exposed faces, there exists f ∈ SX ∗ such that x ∈ D = F( f ), which implies

f ∈ ν(x). by hypothesis, ν(x) ⊆ ν(y), then f (y) = 1, thus y ∈ F( f ) = D, concluding

that D ∈ My .

2. Since x , y ∈ smo(BX ), we call on Theorem 4.4.13 to assert that st(x , BX ) and st(y, BX )

are both convex. Also, Theorem 4.4.10 states that those starlike sets are the only max-

imal faces containing each center, that means, Mx = {st(x , BX } and My = {st(y, BX )}.

Thus, Mx and My are both singleton satisfying Mx ⊆ My , the only possibility is that

Mx = My . Finally, by using again Theorem 4.4.13, F(ν(x)) = st(x , BX ) = st(y, BX ) =

F(ν(y)). The smoothness of x and y forces ν(x) = ν(y).

3. ⇒ Suppose on the first place that st(x , BX ) ⊆ st(y, BX ) and let D ∈ Mx be an arbitrary
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maximal face containing x . Observe that D ⊆ st(x , BX ) by using Equation 3.2.6.

If we show that co(D ∪ {y}) ⊆ SX , then the maximality of D implies that co(D ∪

{y}) ⊆ D, thus y ∈ D, which means that D ∈ My . The arbitrariness of D shows

the contention Mx ⊆ My . Let us proof that co(D ∪ {y}) ⊆ SX . Indeed, since

co(D ∪ {y}) = ∪d∈D[d, y] and, by hypothesis, D ⊆ st(x , BX ) ⊆ st(y, BX ), thus,

keeping in mind again Equation 3.2.6, we claim that [d, y] ⊆ SX for all d ∈ D,

hence co(D ∪ {y}) = ∪d∈D[d, y] ⊆ SX , concluding this part of the proof.

⇐ Conversely, suppose that Mx ⊆ My , therefore, by using again the Equality 3.2.6,

st(x , BX ) =
⋃

D∈Mx

D ⊆
⋃

D∈My

D = st(y, BX ).

• This fourth statement is a direct consequence of the item proved above.

Next example shows that the converse of Lemma 5.2.5(1) does not hold in general.

Example 5.2.6. Let us consider R2 endowed with the norm given by the unit ball resulting

from the intersection of the Euclidean ball Bℓ22 with the band
�

(x1, x2) ∈ R2 : −1
2 ≤ x2 ≤

1
2

	

,

denoted by X , and take x :=
�p

3
2 , 1

2

�

, y :=
�

0, 1
2

�

(see Figure 5.1). In this case, note that

Mx = My =
¦��

−
p

3
2 , 1

2

�

,
�p

3
2 , 1

2

��©

, but ν(x) ⊈ ν(y) since y ∈ smo(BX ), then ν(y) is a

singleton, while ν(x) does not, since x /∈ smo(BX ).
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Figure 5.1: A counter-example of Lemma 5.2.5(1)

A direct consequence of Lemma 5.2.5 is the following.

Corollary 5.2.7. Let X and Y be two Banach spaces, T : SX → SY , a surjective isometry and

Y , smooth. Then, ν(T (−x)) = −ν(T (x)).

Proof. First, Remark 3.2.17 and Theorem 5.1.1 establish that T (st(x , BX )) = st(−T (−x), BY )

and T (st(x , BX )) = st(T (x), BY ) respectively. Then, the next equality for starlike sets holds

T (st(x , BX )) = st(−T (−x), By) = st(T (x), BY ).

The equality above allows us to use Lemma 5.2.5(4) and claim that M−T (−x) = MT (x). Finally,

since Y is smooth, Lemma 5.2.5(2) assures that −ν(T (−x)) = ν(−T (−x)) = ν(T (x)).

We recall that singleton maximal faces of the unit ball are precisely the rotund points. Keep-

ing this in mind, the following result is a particular case of Theorem 3.2.9 for singleton

maximal faces, which allows us to provide a very simple proof of this invariance (the ori-

ginal proof was shown in (3, Theorem 14), and it is not the same as the one presented here,
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which is even simpler).

Theorem 5.2.8. Let X and Y be Banach spaces and T : SX → SY , a surjective isometry. Then,

T (rot(BX )) = rot(BY ). Moreover, T (−x) = −T (x) for all rotund point x ∈ rot(BX ).

Proof. Let x ∈ rot(BX ), in particular, {x} is a maximal face. Keeping in mind Equation 3.2.6,

{x}= st(x , BX ). Besides, Remark 3.2.17 gives the next equality

T ({x}) = T (st(x , BX )) = st(−T (−x), BY ).

Notice that T ({x}) = {T (x)} is convex, hence st(−T (−x), BY ) is convex. In view of The-

orem 4.4.10, st(−T (−x), BY ) = {T (x)} is the only maximal face containing {−T (−x)}, in

particular, {T (x)} is a maximal face, hence, T (x) ∈ rot(BY ).

As a direct consequence of the previous theorem, we have the following result, which shows

that the strict convexity is invariant under surjective isometries defined between the unit

spheres.

Corollary 5.2.9. Let X and Y be Banach spaces and T : SX → SY a surjective isometry. Then,

if X is strictly convex, Y is also strictly convex.

Last result motivates the following definition. This property will be a useful tool when we

prove the invariance of some kind of sets and properties, as well as a generalization of

Lemmas 12 and 13 in (5) to the infinite dimensional case for maximal faces of the unit

sphere with inner points.

Definition 5.2.10. A Banach space X is said to satisfy the inner property or the I-property (Ip)

77



5. GEOMETRY OF THE UNIT BALL UNDER SURJECTIVE ISOMETRIES OF THE
UNIT SPHERE

if it is strictly convex or every non-singleton maximal face of BX has inner points.

In (20, Theorem 5.1) it was proved that every finite dimensional Banach space has the Ip.

The following examples show the existence of Banach spaces lacking the Ip for the infinite

dimensional case.

Example 5.2.11. We call a Banach space X transitive if for every x , y ∈ SX , there exists a

surjective linear isometry T : X → X such that T (x) = y. Keeping in mind (55, Corollary

2.21), where it was proved that every Banach space can be isometrically regarded as a subspace

of a transitive Banach space, we can take a non-strictly convex Banach space Y and consider a

transitive Banach space X such that it contains a subspace isometrically isomorphic to Y . As

X contains a non-strictly convex subspace, X is not strictly convex. Besides, in (56, Theorem

3.2) it was proved that every non-singleton maximal face of a non-strictly convex and transitive

space is free of inner points, then X has not the Ip.

Example 5.2.12. Let us consider ℓ1, the space of all absolute summable sequences

ℓ1 =

¨

(xn)n∈N ∈ RN :
∞
∑

n=1

|xn|<∞

«

,

where the norm is given by

∥(xn)n∈N∥1 :=
∞
∑

n=1

|xn|.

In (20, Theorem 5.4) it was presented an example of a maximal face free of inner points. In

particular,

D :=
�

(xn)n∈N ∈ Sℓ1 : xn ≥ 0 for all n ∈ N
	

is a maximal face of Bℓ1 satisfying inn(D) =∅. As a consequence, ℓ1 does not satisfy Ip.

Example 5.2.13. In Example 5.2.11, we have presented a non-strictly convex and transitive
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Banach space X lacking the Ip. Notice that BX is also free of rotund points, otherwise, the

transitivity forces that rot(BX ) = SX , contradicting the non-strict convexity. Now, if we consider

another Banach space Y and a surjective isometry T : SX → SY , and a maximal face C ⊆ SX

with inn(C) = ∅ (the existence of such maximal face is guaranteed by the condition of lacking

the Ip), then T (C) is also a maximal face in view of Theorem 3.2.9 and rot(BY ) = ∅ by using

Theorem 5.2.8, then, Y also fails Ip.

We recall that a topological space is said to be homogeneous if for any two points x , y in

the topological space, there exists an homeomorphism (on the whole space) mapping one

to another.

Theorem 5.2.14. Let X and Y be Banach spaces and T : SX → SY , a surjective isometry. If X

is transitive, then SY is homogeneous. If X is also separable, then Y is strictly convex.

Proof. Let y1, y2 ∈ SY . The transitivity of X guarantees the existence of a surjective linear

isometry S : X → X such that S(T−1(y1)) = T−1(y2). Now, the wanted homeomorphism

is given by the surjective isometry T ◦ S ◦ T−1 : SY → SY , which clearly maps y1 to y2. To

conclude the proof, if we ask X to be separable, then it is also rotund by (57, Theorem 28).

Finally, by Corollary 5.2.9, Y is also strictly convex.

Next theorem constitutes a generalization of Lemmas 12 and 13 proved by Tingley in (5).

The result we are going to present was originally proved in (3, Theorem 15).

Theorem 5.2.15. Let X and Y be Banach spaces and T : SX → SY a surjective isometry.

Consider a maximal face F ⊆ SX such that inn(F) ̸=∅. Then,

1. T (−F) = −T (F).

2. If there exists x ∈ inn(F) for which there exists E ∈ MT (x) satisfying inn(E) ̸= ∅, then
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T (F) ⊆ E.

Proof. 1. Firstly, let us see that T (−F) ⊆ −T (F). Let x ∈ inn(F). Then, by Lemma

4.4.9(2,5), we know that F = st(x , BX ). Additionally, T (F) = T (st(x , BX )) = st(−T (−x), BY )

by Lemma 4.4.2. Then, −T (−x) ∈ T (F), so T (−x) ∈ −T (F). Since x ∈ inn(F)

is arbitrary, the contention T (−inn(F)) ⊆ −T (F) holds. Keeping in mind Remark

3.2.27, inn(F) is dense in F (since F is also closed). On the other hand, T is con-

tinuous, so T (F) is closed in SY . Putting both consequences together, we conclude

that T (−F) ⊆ −T (F). For the other inclusion, notice that −F is also a maximal face

with inn(−F) ̸= ∅, since inn(−F) ̸= ∅ if and only if inn(F) ̸= ∅. Then, making the

same reasoning, we reach to T (F) ⊆ −T (−F).

2. Let us consider e ∈ inn(E). Hence, by Lemma 4.4.9(2,5), E = st(e, BY ). By applying

Remark 3.2.17 to T−1 : SY → SX , we have that T−1(st(e, BY )) = st(−T−1(e), BX ),

thus T−1(E) = st(−T−1(−e, BX ). By hypotheses, E ∈ MT (x), then x ∈ T−1(E), so

x ∈ st(−T−1(−e), BX ). This last equality guarantees that [x ,−T−1(−e)] ⊆ SX . So, F

is under the conditions of Lemma 4.4.9(1), concluding that F ⊆ st(−T−1(−e), BX ) =

T−1(E), which is equivalent to T (F) ⊆ E.

We recall to the reader that (5, Lemma 13) has already been generalize to infinite dimensions

in (7, Lemma 5.1) and in (1, Lemma 3.5) (see Theorem 3.2.9). The purpose of the Corollary

5.2.16(1) is to provide a simpler proof when the Banach space has the Ip. Also, in Corollary

5.2.16(2), we prove the invariance of the starlike sets showed in Theorem 5.1.1 without

relying on Theorem 3.2.9.

Corollary 5.2.16. Let X and Y be Banach spaces and consider T : SX → SY . Suppose that X
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and Y satisfy the Ip. Then,

1. If F is a maximal face of BX , T (F) is a maximal face of BY .

2. T (st(x , BX )) = st(T (x), BY ) for all x ∈ SX .

Proof. 1. Let us assume that F is not a singleton (if F = {x}, then x ∈ rot(BX ) and the

proof is a particular case of Theorem 5.2.15). By hypothesis, inn(F) ̸= ∅, so we can

fix x ∈ inn(F). The same reasoning allows us to consider e ∈ inn(E) ̸= ∅, where

E ∈ MT (x). Then, by Theorem 5.2.15(2), it holds that T (F) ⊆ E. Now, consider any

D ∈ MT−1(e), since inn(D) ̸=∅, by Theorem 5.2.15(2) again, we have that T−1(E) ⊆ D,

hence F ⊆ T−1(E) ⊆ D. The maximality of F forces that T (F) = E, which was already

maximal.

2. By Remark 3.2.17, we have the equality T (st(x , BX )) = st(−T (−x), BY ), so it only

suffices to prove that st(−T (−x), BY ) = st(T (x), BY ), which is equivalent to prove

that MT (x) = M−T (−x) by Lemma 5.2.5(4). Let us see that MT (x) ⊆ M−T (−x): fix an

arbitrary C ∈ MT (x), then x ∈ T−1(C), thus −x ∈ −T−1(C) = T−1(−C), where the

latter equality is given by Theorem 5.2.15(1). So, we have that T (−x) ∈ −C , hence

−T (−x) ∈ C . This shows that C ∈ M−T (−x). The arbitrariness of C guarantees that

MT (x) ⊆ M−T (−x). The other inclusion follows a similar reasoning: Let D ∈ M−T (−x),

this means that −T (−x) ∈ D, so T (−x) ∈ −D, then −x ∈ T−1(−D) = −T−1(D),

where the latter equality is due to Theorem 5.2.15(1). Hence, x ∈ T−1(D), meaning

that T (x) ∈ D, thus D ∈ MT (x) concluding the proof.
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5.3 Invariance of Segments

The aim of this section is the study of the invariance of segments under surjective isomet-

ries and it is motivated as a refinement of Tanaka’s result about the invariance of maximal

faces proved in (1, Lemma 3.5). Meanwhile, affine properties of surjectives isometries on

maximal-face segments is accomplished, reaching one step further in the achievement of

linearity for surjective isometries.

The following result was proved in (3, Theorem 17) and it presents the invariance of seg-

ments under certain hypotheses.

Theorem 5.3.1. Let X and Y be Banach spaces and T : SX → SY a surjective isometry. Let

x , y ∈ SX be two different points such that [x , y] ⊆ SX . If we ask T ([x , y]) to be convex, then

T ([x , y]) = [T (x), T (y)] and T is affine in the whole segment [x , y], that is, T (t x+(1−t)y) =

tT (x) + (1− t)T (y) for all t ∈ [0,1].

Proof. The proof uses strongly the fact that T : SX → SY is an homeomorphism. Keeping this

in hand, it is clear that T ([x , y]) is compact and convex (by hypothesis). Moreover, T ([x , y])

is homeomorphic to [x , y]. Let us prove in the first place that T ([x , y]) is a segment. If

we suppose on the contrary that T ([x , y]) is not a segment, since T ([x , y]) is convex, it

has to contain at least three points not aligned. Besides, notice that [x , y] \
� x+y

2

	

is not

connected, then T
�

[x , y] \
� x+y

2

	�

= T ([x , y]) \
�

T
� x+y

2

�	

is not connected either. But

Remark 4.1.2 claims that
�

T
� x+y

2

�	

has to be connected. Then, T ([x , y]) is a segment, that

is T ([x , y]) = [a, b] with a, b ∈ SY .

Now, consider t, s ∈ [0,1] such that T (t x +(1− t)y) = a and T (sx +(1− s)y) = b. Keeping
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in mind that isometries preserves diameters, the following holds

∥x − y∥= diam([x , y])

= diam(T ([x , y]))

= ∥a− b∥

= ∥T (t x + (1− t)y)− T (sx + (1− s)y)∥

= ∥t x + (1− t)y − (sx + (1− s)y)∥

= |t − s|∥x − y∥,

therefore, the only possibility is that t = 0 and s = 1 or t = 1 and s = 0. In any case,

T ([x , y]) = [T (x), T (y)]. Finally, let see that T is affine on the whole segment [x , y].

Indeed, fix an arbitrary t ∈ (0,1). Then, there exists s ∈ (0,1) such that T (t x + (1− t)y) =

sT (x) + (1− s)T (y). Following a similar reasoning as before,

(1− s)∥x − y∥= (1− s)∥T (x)− T (y)∥

= ∥(sT (x) + (1− s)T (y))− T (x)∥

= ∥T (t x + (1− t)y)− T (x)∥

= ∥t x + (1− t)y − x∥

= (1− t)∥x − y∥,

thus, t = s, concluding the proof.

Theorem 3.2.9 together with the previous result give us the next direct consequence.

Corollary 5.3.2. Let X and Y be Banach spaces and T : SX → SY , a surjective isometry.

Consider two different points x , y ∈ SX , x ̸= y such that [x , y] ⊆ SX . If [x , y] is a maximal

face of BX , then T is affine on [x , y], that is T (t x + (1− t)y) = tT (x) + (1− t)T (y) for all
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t ∈ [0,1].

Proof. Theorem 3.2.9 guarantees that T ([x , y]) is also a maximal face of BY , in particular,

it is convex. Then, we are under the hypotheses of Theorem 5.3.1.

Example 5.3.3. An interesting example was presented in (57, Example 3.8). Here, a 3-

dimensional Banach space was constructed whose unit ball is formed by rotund points except

for two maximal segments which are maximal faces, so its unit ball satisfies the conditions of

Corollary 5.3.2.
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CHAPTER

6
Geometry of the unit ball under

projections

Contents

6.1 A new class of norm-one projections: S-projections . . . . . . . . . . . . . 86

6.2 Extremal Structure under 1-Complementation . . . . . . . . . . . . . . . . 90

In Section 3.3 we have recalled the concepts of projections and supporting vectors in order to

use them in the study of the extremal structure in this section. This chapter features the res-

ults presented in (23, Section 5) and it could be seen as a continuation of the research done

in (26). In particular, we present a new type of norm-one projections called S-projections

(Definition 6.1.2) motivated by the characterization given in (26, Proposition 3.1). This pro-

jections P : X → X are just those 1-projections satisfying that SP(X ) = suppv(P). As well,

we characterize the supporting vector of an L∞-projection (also called M -projections) and
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the S-projections (Lemma 6.1.6). Notice that M -projections are not S-projection in general

(see Proposition 6.1.4). This section ends with Theorem 6.1.7 by showing that the extremal

condition in the projected unit ball BP(X ) is kept if we consider the extremal subset respect

to the whole unit ball BX . In the last section of this chapter we introduce the concept of

strongly maximal face. As the reader expects, every strongly maximal face is a maximal face

(see Lemma 6.2.2) and they are invariants under L2-projections, that is, if F is a strongly

maximal face of the projected unit ball BP(X ), the same condition holds in BX (see Theorem

6.2.4). As a consequence, the same statement holds for (non-necessary strongly) maximal

faces and the contention rot(BP(X )) ⊆ rot(BX ).

6.1 A new class of norm-one projections: S-projections

First of all, we want the reader to notice the following relation.

Remark 6.1.1. Notice that if P : X → X is a 1-projection, then SP(X ) ⊆ suppv(P). Indeed, let

P(x) ∈ SP(X ) = SX ∩ P(X ), that is, ∥P(x)∥= 1. In this case, suppv(P) = {x ∈ SX : ∥P(x)∥ =

1}. Then, P(x) ∈ suppv(P) if ∥P(P(x))∥= 1. But this equality holds by using the idempotence

of P

∥P(P(x))∥= ∥P(x)∥= 1= ∥P∥.

Next original definition is motivated by this previous observation.

Definition 6.1.2. For a Banach space X , a 1-projection P : X → X is called and S-projection

provided that SP(X ) = suppv(P).

Let us show some examples of S-projections.
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Proposition 6.1.3. Every Lp-projection is an S-projection, with 1≤ p <∞.

Proof. Indeed, since every projection satisfies ∥P∥ ≥ 1, let us show that ∥P∥ ≤ 1. The next

holds for every Lp-projection

∥x∥p = ∥P(x)∥p + ∥(I − P)(x)∥p
︸ ︷︷ ︸

≥0

≥ ∥P(x)∥p,

then, ∥x∥p ≤ ∥P(x)∥p for every x ∈ X . Take the p-th root, which is strictly increasing, and

the supremum in SX , hence,

1= sup
x∈SX

∥x∥ ≤ sup
x∈SX

∥P(x)∥= ∥P∥.

A similar reasoning for I−P reach us to the fact that every Lp-projections is a (1,1)-projection.

Finally, let us see that SP(X ) = suppv(P). The contention SP(X ) ⊆ suppv(P) remains true for

every norm-one projection. Since suppv(P) ⊆ SX , it only suffices to prove that suppv(P) ⊆

P(X ). Let x ∈ suppv(P), then ∥x∥= 1= ∥P(x)∥, besides, using that P is an Lp-projection,

1= ∥x∥p = ∥P(x)∥p
︸ ︷︷ ︸

=1

+ ∥(I − P)(x)∥p,

which forces that (I − P)(x) = 0, meaning that x ∈ P(X ).

Next result proves the existence of projections which are not S-projections.

Proposition 6.1.4. Let P : X → X be a non-trivial M-projection defined in a Banach space X .

Then, P does not satisfy the condition of being an S-projection.

Proof. Let M := P(X ) and N := ker(P), then X = M ⊕∞ N , that is, every element x ∈ X has

an expression x = m+ n, with m ∈ M and n ∈ N . In order to see that SP(X ) ̸= suppv(P), it
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suffices to show that A := {m + n ∈ SX : ∥m∥ = 1,∥n∥ = 1} ⊆ suppv(P), since {m + n ∈

X : ∥m∥ = 1,∥n∥ = 1} ⊈ SP(X ). Since every M -projections is a norm-one projection,

suppv(P) = {x ∈ SX : ∥P(x)∥ = 1 = ∥P∥}. Fix an arbitrary x ∈ A, then, since P is an M -

projection, ∥x∥ =max{∥m∥,∥n∥} = 1, then x ∈ SX . Notice that ∥P(x)∥ = ∥P(m) + P(n)∥ =

∥P(m)∥= ∥m∥= 1, because m ∈ P(X ), then P(m) = m. This proves that x ∈ suppv(P).

The reader have to notice that this proof motivates the following characterization of the set

of supporting vectors for an arbitrary M -projection.

Theorem 6.1.5. Let P : X → X be an M-projection. Then,

suppv(P) = {m+ n ∈ SX : ∥m∥= 1,∥n∥ ≤ 1},

and

suppv(I − P) = {m+ n ∈ SX : ∥n∥= 1,∥m∥ ≤ 1}.

Proof. As in the proof of Proposition 6.1.4, X = M ⊕∞ N . Let x ∈ {m + n ∈ SX : ∥m∥ =

1,∥n∥ ≤ 1}, then ∥x∥=max{∥m∥,∥n∥}= 1 and P(x) = P(m)+P(n) = P(m), then ∥P(x)∥=

1, implying that x ∈ suppv(P). Conversely, consider x ∈ suppv(P) ⊆ X , thus x = m+ n, and

∥x∥ = 1 = ∥P(x)∥ = ∥P(m) +���P(n)∥ = ∥m∥, since m ∈ P(X ) = M . By using again that

P is an M -projection, then ∥x∥ = max{∥m∥,∥n∥}, which forces that ∥n∥ ≤ 1. Finally, (26,

Proposition 3.1) claims that M -projections are (1,1)-projections, then ∥I − P∥ = 1, and the

same reasoning as before shows that

suppv(I − P) = {m+ n ∈ SX : ∥n∥= 1,∥m∥ ≤ 1}.
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Next lemma characterizes the those norm-one projections which are S-projections.

Lemma 6.1.6. Let X be a Banach space. A 1-projection P : X → X is an S-projection if and

only if for every x ∈ X the condition ∥x∥= ∥P(x)∥ implies x = P(x).

Proof. ⇒) On the first place, suppose that P : X → X is an S-projection, that is SP(X ) =

suppv(P). Let x ∈ X be an arbitrary element such that ∥x∥ = ∥P(x)∥. Let us assume

that x ̸= 0, otherwise, P(0) = 0 by linearity and there is nothing to prove. Now define

y := x
∥x∥ . Notice that y ∈ suppv(P). Indeed,

∥P(y)∥=












P
�

x
∥x∥

�













=
1
∥x∥
∥P(x)∥= 1= ∥P∥.

By hypothesis, P is an S-projection, thus, y ∈ suppv(P) = SP(X ) = SX ∩ P(X ), meaning

that there exists z ∈ X such that z = P(y). Using the idempotence of P, it holds that

P(y) = P(P(z)) = P(z) = y , then

x = ∥x∥y = ∥x∥P(y) = P (∥x∥y) = P
�

∥x∥
x
∥x∥

�

= P(x).

⇐) Conversely, suppose that for every x ∈ X , the equality ∥x∥ = ∥P(x)∥ implies that

x = P(x). We already know that SP(X ) ⊆ suppv(P) for an arbitrary norm-one projection

P. Let us see the other inclusion. Take y ∈ suppv(P) = {x ∈ SX : ∥P(x)| = ∥P∥ = 1}.

Notice that ∥y∥ = 1 = ∥P(y)∥. By hypothesis, y = P(y) ∈ P(X ). Then, y ∈ SP(X ) =

SX ∩ P(X ), concluding the proof.

Lemma 6.1.6 shows that orthogonal projections (Lp-projections for p = 2) are trivial ex-
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amples of S-projections.

Next result generalizes Lemma 4.3.5 to the extent of extremal subsets. This theorem was

originally proved in (23, Theorem 5.3).

Theorem 6.1.7. For a Banach space X and an S-projection P : X → X , if F ⊆ SP(X ) is extremal

in BP(X ), then F is extremal in BX . In particular, ext(BP(X )) ⊆ ext(BX ).

Proof. Let y ∈ F ⊆ SP(X ) = SX ∩ P(X ). Take u, v ∈ SX such that y ∈ (u, v) and let us

prove that u, v ∈ F . Since y ∈ P(X ), by Remark 3.3.5, P(y) = y and y ∈ (u, v), then

y = P(y) ∈ (P(u), P(v)). Using that P is a norm-one projection, ∥P(u)∥ ≤ ∥P∥∥u∥ = 1,

then P(u) ∈ BP(X ). The same reasoning gives P(v) ∈ BP(X ). But F is extremal in BP(X ), then

P(u), P(v) ∈ F ⊆ SP(X ), so ∥P(u)∥= 1= ∥u∥ and ∥P(v)∥= 1= ∥v∥. In view of Lemma 6.1.6,

we have that u = P(u) ∈ F and v = P(v) ∈ F , that is u, v ∈ F , which proves the extremal

condition for F in BX .

Since M -projections are not S-projections, the previous theorem does not remain true for

M -projections, as it is shown in the following example.

Example 6.1.8. In ℓ∞2 :=
�

R2,∥ · ∥∞
�

, the point (1, 0) is extreme in the unit ball BP(X ) =

{(x , 0) : x ∈ R}, but is not an extreme point in Bℓ2∞ .

6.2 Extremal Structure under 1-Complementation

Before proving Theorem 6.2.4, we will introduce a novel definition in Extremal Theory. We

want the reader to notice that this definition has some similarities with the one given in (6,

Definition 11), but the one we present here is a generalization whose name is linked to the
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term of maximal face. As a matter of fact, this relation will be proved in Lemma 6.2.2.

Definition 6.2.1 (Strongly maximal face). For a convex subset in the unit sphere F ⊆ SX of a

normed space, we say that F is a strongly maximal face of BX if F = ∪e∈F st(e, BX ).

As it is expected, every strongly maximal face is, in fact, a maximal face of BX . We feature

this fact in next result.

Lemma 6.2.2. If F ⊆ SX is a strongly maximal face of BX , in a real vector space X , then, F is

a maximal face of BX .

Proof. Let D ⊆ SX be a convex component containing F = ∪e∈F st(e, BX ), and take d ∈ D,

f ∈ F . Observe that f ∈ F ⊆ D, which is convex, then [d, f ] ⊆ D ⊆ SX . By using Equation

3.2.6, d ∈ st( f , BX ) ⊆ F , hence D = F .

However, there exist examples of maximal faces which are not strongly maximal faces.

Example 6.2.3. Any of the maximal faces of the unit ball Bℓ2∞ is not a strongly maximal face,

where ℓ2∞ := (R2,∥ · ∥∞).

An easy example of strongly maximal faces are rotund points of the unit ball.

Theorem 6.2.4. Let P : X → X be an L2-projection defined in a Banach space. If F is a

(strongly) maximal face of BP(X ), then F is a (strongly) maximal face of BX . In particular,

rot(BP(X )) ⊆ rot(BX ).

Proof. We will only prove when F is a strongly maximal face of BX . The other case follows a

similar proof. This inclusion F ⊆ ∪ f ∈F st( f , BX ) holds by bearing in mind Equation 3.2.6. Let

us see the other one. Fix an arbitrary x ∈ ∪ f ∈F st( f , BX ), in particular, there exists f ∈ F such

that x ∈ st( f , BX ). Then, by using again Equation 3.2.6, ∥x + f ∥ = 2, that is, ∥x + f ∥2 = 4.
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Besides, notice that the linearity of P gives P(x+ f )+(I− P)(x) = P(x)+ P( f )+ x− P(x) =

f + x , where we have also used the fact that P( f ) = f since f ∈ F ⊆ P(X ). Putting this

together with ∥x + f ∥2 = 4, the following chain of equalities holds

4= ∥x + f ∥2

= ∥P(x + f ) + (I − P)(x)∥2

= ∥P(x + f )∥2 + ∥(I − P)(x)∥2

≤ (∥P(x)∥+ ∥ f ∥)2 + ∥(I − P)(x)∥2

= ∥P(x)∥2 + ∥ f ∥1 + 2∥P(x)∥∥ f ∥+ ∥(I − P)(x)∥2

= ∥x∥2 + ∥ f ∥2 + 2∥P(x)∥∥ f ∥

= 1+ 1+ 2∥P(x)∥

≤ 2+ 2∥P∥∥x∥= 4.

The chain above forces that ∥P(x)∥ = 1. Notice that ∥x∥2 = ∥P(x)∥2 + ∥(I − P)(x)∥2 and

∥x∥ = 1, implying that ∥x − P(x)∥ = 0, hence x = P(x) ∈ SP(X ). This means that x ∈=

st( f , BX )∩ SP(X ) = st( f , BP(X )) ⊆ F . This proves that st( f , BX ) ⊆ F , concluding the proof.

Theorem above does not remains true for general S-projections.

Example 6.2.5. In ℓ21 := (R2,∥ · ∥1), the point (1,0) is a rotund point of the unit ball {(x , 0) :

x ∈ R} which is not a rotund point in Bℓ21 .
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A
Conclusions

We have revisited the geometric aspects of real Banach spaces related to the Mazur-Ulam

property and Tingley’s problem providing new original results, which, in some cases, indic-

ate that Tingley’s problem might be solved in the affirmative. For instance, one of our most

remarkable result assures that if a maximal face of the unit ball of a Banach space has in-

ner points, then any surjective isometry preserves opposite (or antipodal) faces (Theorem

5.2.15). Another strong result that we have obtained is the fact that if a unit sphere con-

tains a maximal face consisting of a segment, then any surjective isometry is affine on such

segment (Theorem 5.3.1). This result has strong consequences on the behavior of surjective

isometries after equivalent renormings since every strictly convex Banach space can be equi-

valently renormed so that the new unit sphere contains only extreme points and maximal

faces consisting of segments (Objective 5). All of these results are strong generalizations of

classical results of Tingley and are aimed towards a positive solution of Tingley’s problem,
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namely, Theorems 5.2.4, 5.2.15 and Lemma 4.4.9.

Also, these results, among others in the same chapter, indicate that we have accomplished

the first five objectives of this dissertation. For instance, Objective 3 is studied throughout

Chapter 5, where Theorems 5.2.8, 5.2.1, 5.1.1, and 5.2.3 show the invariance of some parts

of the facial structure (which also serves to achieve Objective 6). Besides, one of the con-

sequences of determining the invariance of facets under surjective isometries (Objective 4)

is Theorem 4.3.12. As well, we want to underline that strict convexity is an invariant under

surjective isometries as a consequence of the invariance of rotund points as it is shown in

Corollary 5.2.9. Another important achievement we want to highlight in the study of the

geometric structure is the equivalence between starlike sets and maximal faces when the

starlike set is convex (Theorem 4.4.10) in contrast with Tanaka’s result, who asked for the

Banach space to be separable (1, Lemma 3.3).

On the other hand, with respect to the final objective of this dissertation, we have introduced

a new definition in the literature of the Mazur-Ulam property and Tingley’s problem. This

definition drove us to provide a positive partial solution to Tingley’s problem, accomplishing

also the sixth objective of this dissertation.

We will denote by B to the class of all real Banach spaces. A subclass C ⊆B is said to be

isometric (isomorphic) if C is invariant under surjective linear isometries (isomorphisms),

that is, if X ∈ C , Y ∈B, and T : X → Y is a surjective linear isometry (isomorphism), then

Y ∈ C .

Definition A.0.1 (MUp class). A subclass C ⊆B is said to be an MUp class if C is invariant

under surjective isometries between unit spheres, that is, if X ∈ C , Y ∈B, and T : SX → SY is

a surjective isometry, then Y ∈ C .
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Notice that every MUp class is an isometric class. According to classical results in the liter-

ature, the class of strictly convex Banach spaces is an MUp class (Objective 2). In view of

our Theorem 5.2.8, the class of all Banach spaces whose unit sphere has a dense amount

of rotund points is also an MUp class. Finally, the subclass of all Banach spaces whose unit

sphere is made of extreme points except for two maximal segments (opposite to each other)

is also an MUp class.
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B
Notation

Next, we will proceed to explain the main notation followed in this dissertation:

BX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the closed unit ball in X

UX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the open unit ball in X

SX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the unit sphere in X

BX (x , r) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the closed ball of center x and radius r in X

UX (x , r) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the open ball of center x and radius r in X

SX (x , r) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the sphere of center x and radius r in X

int(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the topological interior of M

intA(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the topological interior of M relative to A

cl(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the topological closure of M

clA(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the topological closure of M relative to A

bd(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the topological boundary of M
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bdA(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the topological boundary of M relative to A

ext(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of extreme points F

X ∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the topological dual of X

X ∗∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the topological bidual of X

F( f , A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the supporting hyperplane relative to f ∈ X ∗ in A

F( f ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the supporting hyperplane relative to f in BX

exp(BX ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of exposed points of BX

E( f ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . is the edge of the unit ball with respect to f ∈ SX ∗

rot(BX ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of rotund points of BX

pexp(BX ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of proper exposed points of BX

CX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of facets of BX

st(x , BX ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the starlike set of center x

smo(BX ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of the smooth points of BX

P (X ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the power set of X

ν . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the spherical image map from SX to SX ∗

frm(BX ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the frame of the unit ball

inn(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of inner points of M

span(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the linear span of M

span(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the closed linear span of M

co(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the convex hull of M

co(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the closed convex hull of M

inter(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of the internal points of M

adj(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of the adjacent elements of M

sadj(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of the strongly adjacent elements of M

suppv(T ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of supporting vectors of the operator T

suppv1(x
∗) . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of 1-supporting vectors of the functional x∗
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nsupp(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the set of non-support points of M

µA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the Minkowski functional of A

MU p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the Mazur-Ulman property

Pp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the P-property or property P

I p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the I -property or inner property

F p . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . the F -property or flat property
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APPENDIX

C
Pillars of Functional Analysis

Along the development of the papers backing up the dissertation, it was necessary the usage

of some well-known results, most of them in Functional Analysis, which are mentioned below

in pursuit to establish a shared framed between the reader and the author. We suggest (47)

and (41) to the reader as a complete bibliography on this area.

C.1 Basic background

Next, we list several versions about one of the greater results in Mathematical Analysis.

Theorem C.1.1 (Hahn-Banach Theorems). 1) Analytic Version. Let X be a vector space and

p a sublinear functional in X . If M is a proper subspace of X and g is a linear functional

in M such that Re g(m) ≤ p(m), ∀m ∈ M, then there exists a linear functional f in X

whose restriction to M is g and verifying Re f (x) ≤ p(x), for all x ∈ X . In other words,
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every linear functional dominated by p could be extended to a linear functional in the whole

space such that it continues being dominated by p. Even more, if p is a seminorm, it holds

| f (x)| ≤ p(x), for all x ∈ X .

2) Geometric Versions.

Let A and B be non empty convex disjoint subsets of a vector space X and suppose that there

exists a0 ∈ A such that A− a0 is absorbent. Then, there exists a non zero linear functional,

and α ∈ R such that Re f (a)≤ α≤ Re f (b), for each a ∈ A, b ∈ B.

3) Extension Hahn-Banach Theorem for normed spaces.

Let X be a normed space, Y a subspace of X , and g ∈ Y ∗. Then, there exists f ∈ X ∗ such

that ∥ f ∥ = ∥g∥ and f (y) = g(y) for all y ∈ Y . As a consequence, if X is a normed space,

for each 0 ̸= x ∈ X there exists f ∈ X ∗ with ∥ f ∥ = 1 and f (x) = ∥x∥, therefore, we have

the following expression for the norm in X

∥x∥=max{| f (x)| : f ∈ SX ∗}, for each x ∈ X .

4) Separation Theorems for normed spaces.

i) Let X be a real normed space, A and B non empty convex and disjoint subsets, such

that B is open. Then, there exists a continuous linear functional f ∈ X ∗ such that

f (a)> f (b), if a ∈ A, b ∈ B.

ii) Let X be a normed space, A, B non empty convex subsets such that int(A) ̸= ∅ and

B∩ int(A) =∅. Then, there exists a continuous linear functional f ∈ X ∗ (even, we can
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take f with ∥ f ∥= 1), and α ∈ R satisfying

Re f (a)≤ α≤ Re f (b), with a ∈ A, b ∈ B.

In fact, it holds that Re f (a)< α for all a ∈ int(A).

In the particular case that A is closed with non empty interior, and B = {x0}, where

x0 ∈ bd(A), we obtain a continuous linear functional f ∈ X ∗ verifying Re( f )(x) ≤

Re f (x0), for all x ∈ A, which is equivalent to max Re f (A) = Re f (x0). In that case,

the real affine hyperplane H = {x ∈ X : Re f (x) = Re f (x0)} touches A in x0, leaving

A on one side of the hyperplane. This is used to say that f is a supporting hyperplane

of A at x0, or H is a supporting hyperplane for A at x0. To sum up, if X is a normed

space and A is a non empty convex closed subset with non empty interior, for each point

x0 ∈ bd(A) there exists f ∈ SX ∗ such that max{Re f (x) : x ∈ A}= Re f (x0).

iii) For a normed space X and A ⊂ X a non empty convex open subset, let V be an affine

variety such that V ∩A=∅. Then, there exists an affine closed hyperplane H such that

V ⊂ H and H ∩ A=∅.

iv) Strong separation for normed spaces. Let A and B be non empty convex subsets of a

normed space X , and suppose that dist(A, B) = d > 0. Then, there exists a continuous

linear functional f ∈ SX ∗ such that sup Re f (A) + d ≤ inf Re f (B), in which case it is

said that f strongly separate the sets A and B.

As a consequence, we have the following expression for the closed convex hull in a

normed space. Let A⊂ X be a non empty subset of a normed space X . Then,

co(A) =
⋂

f ∈X ∗
{x ∈ X : Re f (x)≤ supRe f (A)}.
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Theorem C.1.2 (Riesz Theorem). a) Let X be an infinite dimensional normed space, then,

there exists a sequence {xn}n∈N in the unit sphere such that ∥xn− xm∥ ≥ 1 for every n ̸= m.

As a consequence, both the unit sphere, SX , and the unit ball, BX , are not compact subsets.

Even more, none ball with positive radius is compact, though, every compact set has empty

interior.

b) For each normed space X the following sentences are equivalent

i) The norm topology on X is locally compact.

ii) Every closed-bounded subset is compact.

iii) The unit ball, BX , is compact.

iv) The unit sphere, SX , is compact.

v) X is infinite dimensional.

The following result is used to give a natural (isometric) identification between a Hilbert

space and its dual.

Theorem C.1.3 (Riesz-Frèchet Theorem). Let H be a Hilbert space and φ : H → H∗ the map

given by y 7→ φ(y), where φ(y) : H → K is the functional defined by φ(y)(x) := 〈x , y〉, for

each x ∈ X , and 〈·, ·〉 denotes the scalar product. Then, phi is an isometric conjugated-linear

bijection from H onto H∗.

We recall to the reader that if A ⊂ E, where E is a topological space, A is said to be first

category in E if A is contained in a countable union of closed subsets in E, each of them with

non-empty interior. Otherwise, we said A is second category in E.

Theorem C.1.4 (Banach-Steinhaus Theorem). Let X be a Banach space, Y a normed space
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and A ⊂ L(X , Y ), where L(X , Y ) is the set of all linear and continuous operators from X onto

Y . Consider B = {x ∈ X : sup{∥T x∥ : T ∈ A}<∞}. The following assertions are equivalent:

a) B is second category in X ,

b) B = X , which means A in punctually bounded.

c) A is uniformly bounded, that means, there exists M > 0 such that ∥T∥ ≤ M for all T ∈ A.

C.2 Weak and Weak∗ Topologies

We recall the reader that if X is a normed space and x ∈ X , then

∥x∥=max{|x∗(x)| : ∥x∗∥ ≤ 1}=max{| x̂(x∗)| : ∥x∗∥ ≤ 1}.

This equality shows that the functional x̂ ∈ X ∗∗ attains its norm in BX ∗ , where X ∗ and X ∗∗ are

the dual and bidual of X , and x̂ : X ∗→ R is the evaluate functional x̂(x∗) := x∗(x). On the

other side, if x∗ ∈ X ∗, then there exists x∗∗ ∈ X ∗∗ such that ∥x∗∗∥ = 1 and x∗∗(x∗) = ∥x∗∥.

Moreover, if X is reflexive, the functional is actually of the form x∗∗ = x̂ for some x ∈ X ,

with ∥x∥= 1, therefore

∥x∗∥=max{|x∗(x)| : ∥x∥ ≤ 1}, with x∗ ∈ X ∗, X reflexive.

In other words, x∗ attains its norm in BX . These equalities shows that the supremums are

attained, and it has to be proved as consequences of the Hahn-Banach Theorem, and not
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through the compacity, since even the unit ball of an infinite dimensional normed space is

not compact, neither its dual’s unit ball. As a matter of fact, this lacking of compact subsets

in the infinite dimensional case is a direct consequence of the Riesz Theorem, because every

compact subset has empty interior for those cases.

Since the compacity is a very useful property, in stead of the norm topology, mathematicians

are pointed to consider smaller topologies, which make continuous the elements of the dual

space and provide compact subsets, solving the lacking of compact sets for the case of infinite

dimensional Banach spaces with the norm topology. These are the weak and weak* topolo-

gies, the first one considered for every normed space, and the latter, for its duals. These two

topologies are essential to proof important results in functional analysis.

C.2.1 Initial topology

We refer the reader to (47) for all the missed proofs and details about this section.

Let X be a non-empty set, (Y,τ) a topological space and F a family of maps from X onto Y .

We can consider the smallest topology in X for which every element of F is continuous (by

smallest topology we mean that the topology is minimal respect to the number of open sets).

This is called the initial topology in X for the family F , and we shall denote it by τF . A

basis of open sets for this topology is formed by

q
⋂

i=1

f −1
i (Oi) : fi ∈ F , Oi ∈ τ, 1≤ i ≤ 1,

and, for each x ∈ X , if we take Oi as a neighborhood of fi(x) in Y , we have a basis of

neighborhoods for x ∈ X . Next, we recall some basic properties of this topology (check (47,
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chapter 9) for detailed proofs):

Proposition C.2.1. 1. The convergence {xn} ⊂ X verifies that {xn} → x in (X ,τF ) if, and

only if, { f (xn)} → f (x) for every f ∈ F ,

2. If Z is a topological space, a map T : Z → X is continuous if, and only if, f ◦ T : Z → Y

is continuous for every f ∈ F .

C.2.2 Weak topology for a normed space

We keep following the lecture notes (47) in this section, where the reader could check the

proofs and details missed.

Let X be a normed space and X ∗ is dual, that is, the set of continuous and linear functionals.

If we consider the particular case of the initial topology in X for the family X ∗, we have

what is called the weak topology. The usual notations for this topology is σ(X , X ∗), w(X ),

τw or simply w, and every concept in this topology shall usually be preceded by w or weak

(weak-compactness, w-convergence, etc.). In case it is possible to confuse the topologies,

the terms for the norm topology shall be ahead of ∥ · ∥. For a point x0 ∈ X , a neighborhood

basis in the weak topology is formed by

V (x0, f1, . . . , fn,ϵ) = {x ∈ X : | fi(x)− fi(x0)|< ϵ, i = 1, . . . , n}

=
n
⋂

i=1

{x ∈ X : | fi(x)− fi(x0)|< ϵ}= x0 +
n
⋂

i=1

{x ∈ X : | fi(x)|< ϵ}

= x0 + V (0, f1, . . . , fn,ϵ), with ϵ > 0, n ∈ N, f1, . . . , fn ∈ X ∗.

Some properties for the weak topology are
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1. The weak topology is Hausdorff, and (X ,τw) is a topological vector space, which

means that the addition and the scalar multiplication are continuous. Therefore, the

translations and homotecies are homeomorphism in X respect to the weak topology.

2. The weak closure of a subspace or a convex set is also a subspace or convex.

Let us see some examples for specific normed spaces with the weak topology.

Example C.2.2. • If H is a Hilbert space, as a consequence of Riesz-Frèchet Theorem, see

Theorem (C.1.3), the basic weak-neighborhoods for zero are

V (0, x1, x2, . . . , xm,ϵ) =
m
⋂

i=1

{x ∈ H : |〈x , x i〉|< ϵ}, with ϵ > 0, x i ∈ H,∀i = 1, . . . , m.

• Let p, q ∈ N such that 1/p+1/q = 1, or p = 1, q =∞ (conjugated indices). We consider

the sequence space ℓp, and its dual ℓ∗p
∼= ℓq (see (47, Chapter 2) for a wider study of

sequence spaces), then, in ℓp with the weak topology, the basic w-neighborhoods of zero

have the form

V (0, y1, y2, . . . , ym,ϵ) =
m
⋂

i=1

¨

x ∈ ℓp :

�

�

�

�

�

∞
∑

k=1

yi(k)x(k)

�

�

�

�

�

< ϵ

«

,

with ϵ > 0, yi ∈ ℓq, i = 1, . . . , m.

• If Ω is a set with positive Lebesgue measure, for the quotient functions space Lp(Ω) with

the weak topology, we know that Lq(Ω) ∼= Lp(Ω)∗ and p, q are under the hypotheses of

the above example, the w-neighborhoods of zero are

V (0, g1, g2, . . . , gm,ϵ) =
m
⋂

i=1

�

f ∈ Lp(Ω) :

�

�

�

�

∫

Ω

f (x)gi(x)d x

�

�

�

�

< ϵ

�

,
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with ϵ > 0, gi ∈ Lq(Ω), i = 1, . . . , m.

The next result will be a useful tool in proofs along this memoire.

Proposition C.2.3. Let { f1, f2, . . . , fn} be a family of linear functionals on a vector space X .

The following assertions are equivalent

1. f ∈ span{ f1, f2, . . . , fn} := Lin({ f1, . . . , fn}).

2. There exist C ≥ 0 such that | f (x)| ≤ C max{| fi(x)| : 1≤ i ≤ n} for all x ∈ X .

3. f is bounded, (majorated or minorated) in
n
⋂

i=1

ker( fi).

4.
n
⋂

i=1

ker( fi) ⊂ ker( f ).

Remark C.2.4. Since f ∈ X ∗ is continuous respect to the norm topology, it verifies τw ⊆ τ∥·∥.

Even more, the topological dual characterizes the weak continuity, that is, if f : X → K is a

linear form, f is w-continuous, if and only if, f ∈ X ∗.

As a consequence of the proposition above, if { f1, . . . , fn} are linear forms in X such that
n
⋃

i=1

ker( fi) = {0}, then
n
⋃

i=1

ker( fi) ⊂ ker( f ), and f ∈ 〈{ f1, . . . , fn}〉. We conclude that X # is

finite dimensional, where X # denotes the algebraic dual of X , that is, the set of linear forms in

X . Therefore, X is also finite dimensional. On the other hand, if X has infinite dimension, the

vector subspace
⋂n

i=1 ker( fi) ̸= {0}. Then, a w-neighborhood of zero
n
⋂

i=1

{x ∈ X : | fi(x)|< ϵ}

contains a non-zero vector subspace
n
⋂

i=1

ker( fi). Thus, if X is an infinite dimensional normed

space, every w-neighborhood of zero is not bounded respect to the norm, in particular, the

unit ball is not a weak neighborhood of zero, concluding that when the environment is the

infinite dimensional case, the contention seen in C .2.4 is strict. In turn, through translations,

we gather that every weak neighborhood contains, at least, an affine line, and so these w-
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neighborhood are not norm-bounded.

Proposition C.2.5. The weak and the norm topologies coincide if and only if the normed space

is finite dimensional.

The following result establishes the behaviour of convergence respect to the weak topology.

Proposition C.2.6. Let {xn} be a sequence of a normed space X and x ∈ X . It holds

1. {xn} → x if and only if { f (xn)} → f (x), for all f ∈ X ∗.

2. Norm convergence implies weak convergence.

3. If {xn}
w
→ x, then, the sequence {xn} is bounded and ∥x∥ ≤ lim inf{∥xn∥}.

4. If {xn}
w
→ x and { fn}

∥·∥
→ f in X ∗, then { fn(xn)} → f (x).

Corollary C.2.7. The weak topology is not metrizable for infinite dimensional normed spaces.

As a consequence of this result, some terms and properties used in metric space are not true

in the weak topology environment. This assertion is a direct consequence of (41, Theorem

6.1.6)

The weak and norm topologies are pretty different for infinite dimensional spaces, as we

show in the following result.

Proposition C.2.8. If X is an infinite dimensional normed space, the SX
w
= BX . As a con-

sequence, the mapping x → ∥x∥ is w-lower semicontinuous but not weak-continuous.

The following well-known result is a consequence of the Separation Theorems previously

recalled for convex sets, and it will be useful in the study of the convex and inner structure

of the unit ball in this dissertation.
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Theorem C.2.9 (Mazur’s Theorem). The norm-closure and the weak-closure are the same for

a convex set C of a normed space X .

The next result gives a sufficient condition for the weak convergence.

Proposition C.2.10. Let X be a normed space and F ⊂ X ∗ such that 〈F〉 = X ∗. If a sequence

{xn} ⊂ X is norm-bounded and there exists x ∈ X such that lim{ f (xn)} = f (x) for all f ∈ F,

then {xn}
w
→ x.

The following example holds as a particular case for this proposition.

Example C.2.11. • If {xn} is a bounded sequence in c0, the space of sequences convergent

to 0, and there exists x ∈ c0 such that lim
n→∞

xn(k) = x(k) for all k ∈ N, then {xn} is

weakly convergent to x.

• A bounded sequence {xn} in ℓp, with p < 1, satisfying that there exists x ∈ ℓp such that

lim
n→∞

xn(k) = x(k) for all k ∈ N, satisfies that {xn}
w
→ x.

In these cases, the hypotheses are sufficient but also necessary, that is, the weak convergence in

the spaces ℓp and c0 is equivalent to require both pointwise convergence and norm-bounded.

• Another consequence is when H is a Hilbert space: let {ei : i ∈ I} be an orthonormal

basis of H, then, the weak convergence {xn}
w
→ x is equivalent to ask {xn} to be bounded

and {〈xn, ei〉} → 〈x , ei〉 for all i ∈ I .

C.2.3 Weak* topology for the dual of a normed space

This section is borrowed from (47), and we omit the proofs for a simpler reading.

Let X be a normed space and X ∗, its dual. As we have seen, we can consider the weak
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topology in every normed space, in particular, in X ∗. This topology is the initial topology for

the linear forms of X ∗∗. Besides, we can take the family formed by the evaluation mappings,

x̂ : X ∗ → K, x̂(x∗) = x∗(x), for all x∗ ∈ X ∗, in other words, the linear forms defined by the

elements of X in X ∗, which are continuous. What is known as the weak* topology of X ∗ is

precisely this initial topology, which is denoted by σ(X ∗, X ). All the topological notions will

be preceded by the prefix w∗ when the topology involved is the weak* topology. Note that

this topology is coarser that the weak topology σ(X ∗, X ∗∗).

For an element x∗0 ∈ X ∗, a neighborhood basis in the weak∗ topology has the following form

V (x∗0, x1, x2, . . . , xn,ϵ) = {x∗ ∈ X ∗ : |x∗(x i)− x∗0(x i)|< ϵ, 1≤ i ≤ n}

=
n
⋂

i=1

{x∗ ∈ X ∗ : |(x∗ − x∗0)(x i)|< ϵ}= x∗0 +
n
⋂

i=1

{x∗ ∈ X ∗ : |x∗(x i)|< ϵ},

with ϵ > 0, n ∈ N, x1, x2, . . . , xn ∈ X .

The following result is a consequence of (C.2.1).

Proposition C.2.12. Let (Y,τ) be a topological space. A mapping T : (Y,τ) → (X ∗, w∗) is

continuous if, and only if, for all x ∈ X the mapping x̂ ◦ T : (Y,τ)→K is continuous, where

( x̂ ◦ T )(y) = (T (y))(x), ∀y ∈ Y.

Some properties for the weak∗ topology are gathered in the next result.

Proposition C.2.13. 1. (X ∗, w∗) is Hausdorff and a topological vector space. As a con-

sequence, translations and homotecies are homeomorphisms of that topological space.
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2. The weak∗ closure of a subspace or a convex subset are also a subspace or a convex subset,

respectively.

Remark C.2.14. Following a similar reasoning as in the weak topology, every w∗-open subset

contains an affine subspace which is not a singleton and, therefore, it is not norm-bounded.

Then, in the infinite dimensional case, the open balls are not bounded for the weak∗ topology.

In summery, in a dual space, we could consider three topologies: the topology of the norm,

the weak topology and the weak∗ topology, each one contained in the previous one.

Proposition C.2.15. Let X be a normed space. A linear functional f : X ∗→K is w∗-continuous

if, and only if, there exists x ∈ X such that f = x̂ , a evaluation functional. That means, the

weak and the weak∗ topologies for X ∗ are the same when X is reflexive.

As a consequence, the norm, the weak and the weak∗ topologies coincide if, and only if, X is

finite dimensional.

Proposition C.2.16. Let {x∗n} be a sequence in X ∗, the dual space of a normed space X , and

x∗ ∈ X ∗, then:

1. {x∗n}
w∗
→ x∗ if, and only if, {x∗n(x)} → x∗(x) for all x ∈ X .

2. If X is a Banach space, and {x∗n}
w∗
→x∗, then {x∗n} is norm-bounded and ∥x∗∥ ≤ lim inf{∥x∗n∥}.

The following example displays a w∗-convergent sequence which is not bounded.

Example C.2.17. Let X := (c00,∥ · ∥∞). Notice that X ∗ is linearly isometric to (ℓ1,∥ · ∥1). For

every n ∈ N, let

x∗n :=
1
n

n
∑

k=1

1
2k

ek +
n
∑∞

k=n+1
1
2k

∞
∑

k=n+1

1
2k

ek.
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For each k ∈ N,
�

x∗n(ek)
�

n∈N converges to 0 because if n > k, then x∗n(ek) =
1/n
2k

. As a con-

sequence,
�

x∗n(x)
�

n∈N converges to 0 for all x ∈ c00 due to the fact that c00 = span{en : n ∈ N}.

In other words, {x∗n}
w∗
→ 0. However, notice that





x∗n






1 =
1
n

n
∑

k=1

1
2k
+

n
∑∞

k=n+1
1
2k

∞
∑

k=n+1

1
2k

=
1
n

n
∑

k=1

1
2k
+ n

≥ n

→ ∞ as n→∞.

Under the settings of Example C.2.17, notice that, if now X := (c0,∥ · ∥∞), then {x∗n}�
�w
∗

→0.

Indeed, if {x∗n}
w∗
→ 0, the completeness of c0 forces that {x∗n} is norm-bounded in view of

Proposition C.2.16(2), contradicting that




x∗n






1→∞ as n→∞.

For a dual normed space, it is interesting how to split w∗-closed convex subsets via w∗-

continuous functionals.

Theorem C.2.18 (Separation Theorem for convex subsets with the w∗ topology). If X is a

normed space, A ⊂ X ∗ a non-empty subset, w∗-closed and convex, and x∗0 ∈ X \ A, then, there

exists x ∈ X such that

sup{Re a∗(x) : a∗ ∈ A}< Re x∗0(x).

Note that under the hypotheses of theorem above, if α ∈ R is an arbitrary number satisfying

that

sup{Re a∗(x) : a∗ ∈ A}< α < Re x∗0(x),

then, the w∗-closed hyperplane H = {x∗ ∈ X : Re x∗(x) = α} strictly splits A and x∗0, since
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A⊂ {x∗ ∈ X ∗ : Re x∗(x)< α} and x∗0 ∈ {x
∗ ∈ X ∗ : Re x∗(x)> α}.

The Mazur Theorem is not true in the weak∗ environment (it is sufficient to consider a non

reflexive normed space X , and the hyperplane H = {x∗ ∈ X ∗ : f (x∗) = 0} with f ∈ X ∗∗ \X ).

Proposition C.2.19. If X is an infinite dimensional normed space, then SX ∗
w∗
= BX ∗ . As a

consequence, the mapping x∗ 7→ ∥x∗∥ is w∗-lower semicontinuous but not w∗-continuous.

Proposition C.2.20. Let X be a normed space and F ⊂ X such that span{F}= X . If {x∗n} ⊂ X ∗

is a norm-bounded sequence, and there exists x∗ ∈ X ∗ such that lim{x∗n(y)} = x∗(y), for each

y ∈ F, then {x∗n}
w∗

→ x∗.

One of the main advantages of building up the weak∗ topology is appearance of a somehow

“large amount” of compact subset For this, we present an important theorem. Firstly, let

us consider a non-empty set X and a family of non-empty sets {Yx : x ∈ X }. The cartesian

product of such family is denoted by
∏

x∈X Yx , and it is the family of all the mappings f :

X → ∪x∈X Yx satisfying f (x) ∈ Yx , for all x ∈ X . For each x ∈ X , it is also considered

the projection mappings πx :
∏

Yx → Yx , defined by πx( f ) = f (x), for all f ∈
∏

x∈X Yx ,

and suppose that each (Yx ,τx) is a topological space. In this case, the product topology in
∏

x∈X Yx is the initial topology for the family {πx : x ∈ X }, that is, it is the smaller topology

in
∏

x∈X Yx which make the projections continuous. The sets which form the basis of this

topology are

⋂

x∈J
π−1

x (Ux) =
⋂

x∈J

¨

f ∈
∏

x∈X

Yx : f (x) ∈ Ux

«

, Ux ∈ Bx , J ⊂ X , J finite, Bx basis of τx .

Theorem C.2.21 (Tychonoff Theorem). The product of compacts topological spaces, with the
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product topology, is a compact topological space.

In the particular case Yx =K for all x ∈ X , the product
∏

x∈X Yx =KX are all the mappings

from X to K. This reasoning is key for the proof of the following well-known result (it is

detailed in the reference given at the beginning of this section).

Theorem C.2.22 (Banach-Alaoglu Theorem). The closed unit ball of a dual space is w∗-

compact. As a consequence, every subset of the dual of a normed space verifying that is w∗-closed

and norm-bounded, is w∗-compact.

The following results shows the behaviour of a normed space seen into its bidual.

Theorem C.2.23 (Goldstein Theorem). Let X be a normed space, and X ∗∗ its bidual. Then,

the unit ball BX seen into X ∗∗ is dense in BX ∗∗ respect to the weak∗ topology in X ∗∗. As a

consequence, X ⊂ X ∗∗ is dense in X ∗∗ respect to its w∗-topology.

Corollary C.2.24. If X is an infinite dimensional normed space, then SX ⊂ X ∗∗ is w∗-dense in

BX ∗∗ .

Nest results solves the lacking of compact sets for the weak topology when the environment

normed space is reflexive.

Theorem C.2.25 (Dieudonné Theorem). A normed space is reflexive if, and only if, its unit

ball is weakly compact. Therefore, every w-closed subset which is norm-bounded is w-compact

for a reflexive normed space.

The following consequence shows how assorted are the C(K) type spaces.

Corollary C.2.26. Let X be a normed space. Then, there exists a Hausdorff compact topological

space, K, such that X is isometrically isomorphic to a subspace of C(K).
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C.3 Another important results in Functional Analysis

The purpose of this section is to give a compilation of some important results in functional

analysis that will be used along this memory. For details about the proofs or a wider per-

spective on this topics, we refer the reader to (41).

We start by recalling a so-called result related to the Extreme Theory in topological vector

spaces:

Theorem C.3.1 (Krein-Milman Theorem). For a Hausdorff locally convex topological vector

space X and a non-empty compact subset K ⊆ X , it holds that K ⊆ co(ext(K)). In particular, if

K is closed and convex, then it is the closed convex hull of its extreme points.

Another important results in the study of weakly compacity.

Theorem C.3.2 (Eberlein-Smulian Theorem). Let X be a normed space. A subset K ⊆ X is re-

latively weakly compact if and only if every sequence of K has a weakly convergent subsequence.

Theorem C.3.3 (Krein-Smulian Theorem). If K is a weakly compact subset of a Banach space

X , then, the closed convex hull of K, denoted by co(K), is weakly compact.

Following result established an equivalence between w-convergence and ∥ · ∥-convergence

in ℓ1.

Theorem C.3.4 (Schur Theorem). Let (xn)n∈N be a sequence of ℓ1. Then, (xn) is weakly

convergent if and only if (xn)n∈N is convergent respect to the norm. In this case,

w limn→∞(xn)n∈N = limn→∞(xn)n∈N.
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