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Introduction

Broadly speaking, Rational Homotopy Theory deals with the homotopical behavior of the
non-torsion part of topological spaces. For it, and in general terms, one first associates to
any reasonable space, say a CW-complex, another space (call it rational) which keeps just
the rational information of the homotopy invariants of the original space. Then, one finds
algebraic models which faithfully determines the homotopy type of any rational space.
This last task can be accomplished in two different way. One is the Sullivan approach [50]
by which the homotopy type of any rational (nilpotent) complex of finite type can be
functorially encoded by a commutative differential graded algebra (cdga henceforth).
The other one is the Quillen approach [42] based on that any simply connected rational
complex can be uniquely determined up to homotopy, and also in a functorial manner, by
a differential graded Lie algebra (dgl from now on). More precisely, Quillen constructed a
pair of functors between the categories of positively graded dgl’s and 1-reduced simplicial
sets which induce equivalences when passing to the respective homotopy categories.

The main disadvantage of this approach lies in the restriction, imposed somehow ad
hoc by the construction of these functors, of considering “simply connected” simplicial
sets on one side and dgl’s graded over the positive integers on the other. However, this
drawback has been recently overcome by U. Buijs, Y. Félix, A. Murillo and D. Tanré
in [14]. In very brief terms, they construct a pair of adjoint functors, “model” and
“realization”,

sset cdglL

〈−〉
(1)

between the categories of simplicial sets (under no connectivity assumptions) and that of
complete differential graded Lie algebras (cdgl henceforward). These are dgl’s endowed
with a filtration of differential Lie ideals which determines a complete topology. In other
terms, the inverse limit of the quotients by these ideals recovers the original dgl. There
is a model category structure on cdgl which extends the traditional one on positively
graded dgl’s for which these functors become a Quillen pair. Moreover, they both extend,
up to homotopy, the original Quillen functors [11].

At this point there are many interesting classes of topological objects, whose useful-
ness has been proved in many instances, which are now susceptible of being studied from

11
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the rational point of view within this new general framework.
One of these classes, preeminent in this thesis, consists on the so called universal

fibrations. These are fibration sequences which classify, by means of homotopy classes of
maps into their base spaces, certain types of fibrations with prescribed fiber.

The first, original, and more general result in this direction was proved by J. Stasheff
in [48] where homotopy types of fibrations sequences X → E → B, with fixed fibre X,
were classified by homotopy classes of maps JB,B aut(X)K, where B aut(X) denotes the
classifying space, i.e., the geometrical bar construction of the topological monoid aut(X)
of “homotopy automorphism”, that is, self homotopy equivalences of X. Explicitly,
this bijection assigns to each homotopy class of a map f : B → B aut(X) the pullback
fibration over f of the universal fibration sequence

X −→ B aut∗(X) −→ B aut(X) (2)

resulting of applying the geometrical bar construction to the inclusion aut∗(X) ↪→
aut(X), being aut∗(X) the submonoid of aut(X) consisting of pointed self homotopy
equivalences.

One readily observes that, even if X is simply connected, B aut∗(X) and B aut(X)
are not. Far from that, their fundamental groups π1B aut∗(X) = π0 aut∗(X) and
π1B aut(X) = π0 aut(X) are, respectively, the groups E∗(X) and E(X) of pointed and
free homotopy classes of pointed and free self homotopy equivalences. As the reader
is aware (see the general reference [43]) these groups, and the monoids of self equiva-
lences from which they emerge, are shown to be of vital importance in many topological
contexts.

Nevertheless, and as long as we start with a simply connected complexX, the classical
Quillen approach let us describe in algebraic terms the simply connected cover

X −→ ˜B aut∗(X) −→ ˜B aut(X) (3)

of the universal fibration (2). Indeed, let L be the minimal Quillen model of the simply
connected complex X of finite type and consider the dgl DerL of derivations of L with
the usual Lie bracket and differential. We then truncate this dgl to obtain its simply
connected cover D̃erL consisting of all derivations of degree bigger than or equal to 2
and the kernel of the differential in degree 1. Finally consider the dgl sequence

L
ad−→ D̃erL −→ D̃erL×̃sL, (4)

where ad is the usual adjoint operator and, in the “twisted product” D̃erL×̃sL:

• sL denotes the suspension of L, it is a sub abelian Lie algebra and Dsx = −sdx+
adx for any x ∈ L.

• D̃erL is a sub dgl and [θ, sx] = (−1)|θ|sθ(x) for any θ ∈ D̃erL and any x ∈ L.

Then, the following was proved in [51, Corollary VII.4.(4)] (cf. [45]):

Theorem A. This dgl sequence is a Quillen model of the fibration sequence (3).
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The situation drastically changes in the general scenario. Indeed, B aut(X) is a
complicated space and, even if X is simply connected and rational, its rational behaviour
may not be easily described. In fact, we show in Example 7.1 that, for any n ≥ 1, the
classifying space B aut(SnQ) does not lie within the image of the realization functor 〈−〉
in (1).

Nevertheless, we find in this work a large class of universal fibrations whose rational
homotopy type can be determined by Lie models, always involving particular cdgl’s of
derivations.

Let X be a CW-complex and let H be a subgroup of E(X) = π0 aut(X). We denote
by autH(X) the topological monoid of those self homotopy equivalences of X such that
their homotopy classes lie in H ⊂ E(X). Similarly we can define aut∗H(X) as those
pointed self homotopy equivalences of X whose free homotopy classes lie in H.

Applying the geometric-bar construction, we obtain new spaces B autH(X) and
B aut∗H(X) which can be shown to be covering spaces (up to homotopy) of the classifying
spaces B aut(X) and B aut∗(X) respectively. In particular, their higher homotopy groups
agree while π1B autH(X) = π0 autH(X) = H. The inclusion aut∗H(X) ↪→ autH(X) in-
duces a fibration sequence

X → B aut∗H(X)→ B autH(X) (5)

which classifies a certain type of fibrations: recall that an arbitrary fibration sequence
X → E → B determines an action of π1(B) on the fiber X, the holonomy action, which
in turn defines a group homomorphism

π1(B) −→ E(X). (6)

Then, fibration sequences with fiber X can be cataloged depending on the image of this
homomorphism. If its image lies in H ⊂ E(X), we say that it is an H-fibration sequence.
Then, in Theorem 2.17 we prove

Theorem B. Given a subgroup H ⊂ E(X), for any CW-complex B, the set of equiv-
alence classes of H-fibrations over B with fiber X is naturally isomorphic to the set
JB,B autH(X)K of homotopy classes of maps from B to B autH(X). This bijection as-
signs to each homotopy class of a given map B → B autH(X) the pullback over this map
of the universal H-fibration sequence

X → B aut∗H(X)→ B autH(X).

We plan to find cdgl models of certain classes of these universal fibrations. For it
we fix X a nilpotent finite complex and H ⊂ E(X) a group of homotopy classes of
self homotopy equivalences which acts nilpotently on the homology of X. Then, [9,
Theorem D] affirms that both B autH(X) and B aut∗H(X) are nilpotent spaces and a
straightforward argument shows that the rationalization of (5) has the homotopy type
of the universal rational fibration sequence

XQ → B aut∗HQ(XQ)→ B autHQ(XQ).
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Let L be a cdgl model of X and denote by E∗(L) the group of homotopy classes of cdgl
automorphism of L. The group H0(L) endowed with the Baker-Campbell-Hausdorff
product acts on E∗(L) via the exponential map. Explicitly, the map

H0(L) −→ E∗(L), [x] 7→ eadx ,

is a well defined group morphism. We then define E(L) = E∗(L)/H0(L) so that there is
an exact sequence of group morphisms

H0(L) −→ E∗(L) −→ E(L)→ 0.

This mimics at the cdgl level the topological context: recall the surjective map E∗(X) ζ−→
E(X) which just forgets about the basepoint and the action of π1(X) on E∗(X) whose
orbit set is precisely E(X). This translates to an exact sequence of group morphisms

π1(X) −→ E∗(X) ζ−→ E(X)→ 0

which turns out to be equivalent to the above one in the rational setting. Indeed, there
is a commutative diagram (Remark 4.11)

π1(XQ) E∗(XQ) E(XQ) 0

H0(L) E∗(L) E(L) 0.

∼=

ζ

∼= ∼= (7)

Therefore, for the fixed subgroup H ⊂ E(X) acting nilpotently on the homology, we
can consider its rationalization HQ ⊂ E(XQ), take its preimage ζ−1(HQ) ⊂ E∗(XQ) and
identify it with a subgroup h ⊂ E∗(L). We then define Derh L ⊂ DerL as

Derh
≥1 L = Der≥1 L, Derh

0 L = {θ ∈ Der0 L such that Dθ = 0 and [eθ] ∈ h}.

This means that we consider all the derivations in positive degree and those derivations
whose exponentials are cdgl automorphisms whose homotopy classes lie in h . Then, the
following, which is Theorem 7.13, constitutes one of the main results of this text.

Theorem C. Let L be a Lie model of a nilpotent space X and H ⊂ E(X) a subgroup
acting nilpotently on the homology of X. Then, the analogue of (4)

L
ad−→ Derh L→ Derh L×̃sL (8)

is a cdgl sequence whose realization is homotopy equivalent to the universal HQ-fibration
sequence

XQ → B aut∗HQ(XQ)→ B autHQ(XQ).

The proof of this result have, roughly speaking, two cornerstones.
The first one, although it may seem technical at first sight, lies at the very foundation

of the general theory: only dgl’s which are complete are susceptible of being geometrically
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realized. However, connected sub dgl’s of DerL are not complete in general, even if L is
simply connected. The same applies to twisted product of dgl’s. Hence we first need to
check the highly non trivial fact that (8) is a cdgl sequence. In fact, showing simply that
Derh L is closed by the operations of sum and the Lie bracket requires a deep study of
the Malcev equivalence between Malcev Q-complete groups and complete (ungraded) Lie
algebras. On the other hand, the completeness of the Derh L relies in a specific filtration
of L depending on the lower central series of the action of H ⊂ E(X) on H∗(X). The
same applies to the twisted product Derh L×̃sL.

Once this has been sorted out, the fact that the geometrical realization of (8) has
the asserted homotopy type is deduced from a more ambitious statement. Indeed, the
sequence (8) of connected cdgl’s fits in a larger one

Hom(C (L), L)→ Hom(C (L), L)→ L
ad→ Derh L→ Derh L×̃sL, (9)

where C (L) is the cocommutative differential graded coalgebra provided by the clas-
sical Quillen chain functor, C (L) denotes the augmentation ideal of C (L) and both,
Hom(C (L), L) and Hom(C (L), L), are considered as cdgl’s with the usual differential
and the convolution Lie bracket. These two highly non connected cdgl’s are, respec-
tively, Lie models of the pointed and free mapping spaces

map∗(X,X) and map(X,X).

Then, by restricting these models to the algebraic components representing pointed and
free automorphisms of XQ, and leaving untouched the last part of (9), we find a cdgl
sequence whose geometrical realization is the fibration sequence

aut∗HQ(XQ) ↪→ autHQ(XQ) ev−→ XQ → B aut∗HQ(XQ)→ B autHQ(XQ)

where ev denotes the evaluation at the base point.
Theorems B and C have a “homotopical version” which we now describe. For a fixed

pointed CW-complex X we may consider fibration sequence of pointed spaces X → E →
B endowed with a homotopy section (pointed fibrations from now on). Then, given
Π ⊂ E∗(X) a subgroup of pointed homotopy classes of pointed self equivalences, we
may consider the class of Π-fibrations consisting of pointed fibrations as above where the
image of the holonomy action, this time understood as π1(X)→ E∗(X), lies in Π. Then,
Theorem 2.39 for A a point, reads

Theorem D. Given a subgroup Π ⊂ E∗(X), for any CW-complex B, the set of equiv-
alence classes of Π-fibrations over B with fiber X is naturally isomorphic to the set of
homotopy classes JB,B aut∗Π(X)K. This bijection assigns to each homotopy classes of a
given map B → B aut∗Π(X) the pullback over this map of a universal fibration of the
form

X −→ Z −→ B aut∗Π(X). (10)

Here, Z is the general geometrical bar construction applied to the triple
(∗, aut∗Π(X), X).
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Now, let X be a nilpotent finite complex with Lie model L and let Π ⊂ E∗(X) a
subgroup which acts nilpotently on π∗(X). Then, Π is a nilpotent group and B aut∗Π(X)
is a nilpotent space so that (10) is a nilpotent fibration whose rationalization is the
universal fibration

XQ −→ ZQ −→ B aut∗ΠQ(XQ).
As in the “homological setting”, ΠQ is isomorphic to a subgroup π ⊂ E∗(L) of homotopy
classes of automorphisms of L and again we can consider Derπ L ⊂ DerL with

Derπ≥1 L = Der≥1 L, Derπ0 L = {θ ∈ Der0 L | Dθ = 0, [eθ] ∈ π}.

Then, Theorem 7.18 reads:

Theorem E. Let X be a finite nilpotent complex with Lie model L. Let Π ⊂ E∗(X)
a subgroup which acts nilpotently on π∗(X) and which is invariant under the action of
π1(X). Then, the universal fibration

XQ −→ ZQ −→ B aut∗ΠQ(XQ)

has the homotopy type of the realization of the cdgl sequence

L→ L×̃Derπ L→ Derπ L.

Theorems C and E, together with the auxiliary results leading to them, have interest-
ing applications. The first immediate consequence, for a given finite nilpotent complex
X, is the algebraic description of the rationalization of given subgroups H ⊂ E(X) and
Π ⊂ E∗(X) which act nilpotently on the homology and homotopy groups of X respec-
tively. Their classifying spaces can also be formulated in terms of derivations. Indeed,
with the notation used above:

Corollary A. ΠQ ∼= H0(Derπ L) and HQ ∼= H0(Derh L)/ ImH0(ad).

Corollary B. BH and BΠ have the rational homotopy type of the realization of the
cdgl’s Derh

0 L ⊕ R and Derπ0 L ⊕ S where R and S denote a complement of the 1-cycles
of Derh L×̃sL and Derπ L respectively.

With the same notation and within the same context, we may also compute the
homotopy nilpotency index of aut∗ΠQ

(XQ) and autHQ(XQ) in a purely algebraic way.
Recall that given an H-group Y , its homotopy nilpotency index nilY , is the least integer
n ≤ ∞ for which the (n+ 1)th homotopy commutator of Y is homotopically trivial. On
the other hand, for any dgl L we denote by nilL the usual nilpotency index. Then:

Corollary C. nil aut∗ΠQ
(XQ) = nilH(Derπ L) and nil autHQ(XQ) = nilH(Derh L×̃sL).

We also show in Proposition 8.6 that any finitely generated nilpotent rational group
is isomorphic to a subgroup H ⊂ E(X) which acts nilpotently on the homology of X for
some space X. In the same way, in Proposition 8.7 we prove that such a group is also
isomorphic to a subgroup Π ⊂ E∗(Y ) which acts nilpotently on the homotopy groups of
Y for some space Y .

Finally, we use Theorems C and E to obtain models of others interesting fibration se-
quences involving classifying spaces of topological monoids of self homotopy equivalences,
(see Theorem 8.8).
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Structure of the thesis
All the material sketched above is presented throughout 8 chapters, dealing with different
topics.

Chapter 1 is primarily devoted to an introduction and presentation of the foundations
of the homotopy theory of complete differential graded Lie algebras, the main algebraic
object of this thesis, whose main reference is [14], where this theory is exhaustively de-
veloped. Other preliminary material, as the basics of simplicial sets, the model structure
of some model categories and some topics about nilpotency and rationalization, are also
outlined in this section.

The reader is supposed to be familiar with the main aspects of classical rational
homotopy theory (see for example [12] or [51]). Nevertheless, some of its basics facts are
introduced in this first section and some properties can be deduced by applying the new
homotopy theory of cdgl’s to simply connected spaces.

In §2 we study the classification of fibrations and pointed fibrations with prescribed
holonomy actions. In particular, we state and prove Theorem B, which is Theorem 2.17
in the text, and Theorem D, which is Theorem 2.39 whenever A is a point. This chapter
is, somehow, independent to the rest of the text, in the sense that the results presented
are not bounded to the rational context: they are valid for arbitrary CW-complexes and
arbitrary subgroups of E(X) or E∗(X). The main reference for this chapter is [32].

Chapter 3 starts with the statement of the Malcev equivalence on its more general
form, a equivalence between the categories of complete Lie algebras and Malcev complete
groups (see [16, §8]). We include here Theorem 3.5, a useful characterization of a Malcev
complete group as pronilpotent and 0-local.

Then we focus on subgroups of aut(L) and their corresponding subgroups of E∗(L) by
choosing homotopy classes. We show in Theorem 3.9 that, for a given connected minimal
cdgl L, if K ⊂ E∗(L) is a nilpotent 0-local group, then autK(L) is Malcev complete, and
therefore equivalent to a complete Lie algebra. We also prove in this chapter that the
subgroup aut1(L) of automorphisms of L homotopic to the identity are precisely the
inner automorphisms, i.e., the exponential eD(Der1 L) of the boundary of derivations of
degree 0 (see Theorem 3.7).

The presence of non trivial fundamental groups makes it necessary to translate el-
ementary topological facts to the new homotopy theory of cdgl’s. We do that in §4
where we present a detailed description of the “pointed” JL,L′K∗ = Homcdgl(L,L′)/ ∼
and “free” JL,L′K = JL,L′K∗/H0(L′) homotopy classes of cdgl’s morphisms. We also
exhibit how this mimics perfectly the topological context. In particular the commutative
diagram (7) is readily obtained.

We also introduced in this chapter the algebraic holonomy action for a given cdgl
fibration sequence,

0→ L −→M −→ N → 0,

which is given by the cdgl morphism

H0(N) −→ E(L), [x] 7→ [eadx ],

and also mimics the topological counterpart (see Remark 4.11).
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In chapter 5 we make a very detailed study of Lie models of the evaluation fibration
sequence

map∗(X,Y )→ map(X,Y ) ev−→ Y

and its restriction to some connected components by means of convolutions cdgl’s and
cdgl’s of derivations. These Lie models will prove to be essential for the proof of our
main results.

As we stressed above, DerL may not be complete even if L is. In the same way,
the twisted product of two cdgl’s may also fail to be complete. In §6, which the reader
may consider technical, we present some connected sub dgl of derivations of a given cdgl
which can be endowed with particular filtrations so that they become complete. This is
a highly non-trivial problem, since the natural attempts may fail. Explicitly, we will see
how a filtration on the homology of a finite complex induces a filtration on its Lie model
L and, in turn, it determines a filtration in a specific connected sub dgl of DerL which
makes it complete while keeping all positive derivations. Analogous result are proved for
some twisted products of certain cdgl’s. As a result, we get the desired ‘closeness’ of the
category of cdgl’s under these operations.

Chapter 7 contains Theorems C and E, and their detailed proofs.
Finally, in §8 we include all the consequence of Theorems C and E sketched above.

Here, we also see how Theorem C effectively generalizes the classical Theorem A .
We finally remark that the content of this thesis is an expanded and detailed version

of the results presented in the references [10] and [18].



Resumen en Español

La Teoría de Homotopía Racional trata el comportamiento homotópico de la parte sin
torsión de los espacios topológicos. Para ello, y en términos generales, primero se asocia
a un espacio razonable, digamos un CW-complejo, otro espacio (llamado racional) que
mantiene solo la información racional de los invariantes homotópicos del espacio original.
Entonces, se pueden encontrar modelos algebraicos que determinan de forma fiel el tipo
de homotopía de cualquier espacio racional. Esta última tarea puede lograrse de dos
maneras diferentes. Una es el método de Sullivan [50] por el cual el tipo de homotopía de
cualquier complejo (nilpotente) racional de tipo finito puede ser funtorialmente codificado
por una algebra graduada diferencial conmutativa (o cdga por sus siglas en inglés). El
otro enfoque es el método de Quillen [42] basado en que cualquier complejo racional
simplemente conexo puede ser únicamente determinado (salvo homotopía), y de forma
funtorial también, por un álgebra de Lie graduada diferencial (o dgl por sus siglas en
inglés). Más precisamente, Quillen construyó un par de funtores entre la categoría de
dgls positivamente graduadas y la de conjuntos simpliciales 1-reducidos, que inducen una
equivalencia en las respectivas categorías homotópicas.

La principal desventaja de esta aproximación recae en la restricción, impuesta por la
construcción ad hoc de estos funtores, de considerar conjuntos simpliciales “simplemente
conexos” en un lado y dgls positivamente graduadas en el otro.

Sin embargo, este inconveniente ha sido recientemente resuelto por U. Buijs, Y. Félix,
A. Murillo and D. Tanré en [14]. En términos breves, en este libro, construyen un par
de funtores adjuntos, denominados “modelo” y “realización”.

sset cdglL

〈−〉
(1)

entre las categorías de conjuntos simpliciales (sin restricciones de conexión) y la de ál-
gebras de Lie graduadas diferenciales completas (o cdgl). Estas son dgls junto a una
filtración de ideales diferenciales y de Lie que determina una topología completa. Dicho
de otra manera, el límite inverso de los cocientes por dichos ideales recupera la dgl orig-
inal. Existe una estructura de categoría de modelo en cdgl que extiende a la tradicional
en la categoría de dgls positivamente graduadas, de forma que estos funtores resultan

19
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ser un par de Quillen. Además, ambos funtores extienden, salvo homotopía, los funtores
originales de Quillen [11].

En este punto, hay muchas clases interesantes de objetos topológicos cuya utilidad ha
sido probada en diversas ocasiones, que ahora son susceptibles de ser estudiados desde
el punto de vista racional con esta nueva maquinaria.

Una de estas clases, preeminente en esta tesis, consiste en las llamadas fibraciones
universales. Estas son sucesiones fibrantes que clasifican, mediante clases de homotopía
de aplicaciones hacia los espacios base, ciertos tipos de fibraciones con una fibra dada.

El primer resultado original en esta dirección fue probado por J. Stasheff en [48],
donde los tipos de homotopía de las sucesiones fibrantes X → E → B, con fibra X fi-
jada, fueron clasificados por las clases de homotopía de aplicaciones JB,B aut(X)K donde
B aut(X) denota el espacio clasificante, es decir, la construcción barra geométrica del
monoide topológico aut(X) de “automorfismos homotópicos”, esto es, las autoequivalen-
cias homotópicas de X. Explícitamente, esta biyección asigna a cada clase de homotopía
de una aplicación f : B → B aut(X) la fibración pullback sobre f de la sucesión fibrante
universal

X −→ B aut∗(X) −→ B aut(X) (2)

que es el resultado de aplicar la construcción barra geométrica a la inclusión aut∗(X) ↪→
aut(X), siendo aut∗(X) el submonoide de aut(X) consistiendo en autoequivalencias ho-
motópicas punteadas.

De forma directa se observa que, incluso si X es simplemente conexo B aut∗(X)
y B aut(X) pueden no serlo. De hecho, sus grupos fundamentales π1B aut∗(X) =
π0 aut∗(X) y π1B aut(X) = π0 aut(X) son, respectivamente, los grupos E∗(X) y E(X)
de clases de homotopía, libre y punteada, de autoequivalencias, libres y punteadas, ho-
motópicas de X. Estos grupos, y los monoides de autoequivalencias de los que surgen,
han probado ser de vital importancia en muchos contextos topológicos (véase la referencia
general [43]).

No obstante, siempre que partamos de un complejo simplemente conexo X, el método
de Quillen clásico nos permite describir en términos algebraicos el recubridor universal

X −→ ˜B aut∗(X) −→ ˜B aut(X) (3)

de la fibración universal (2). Ciertamente, sea L el modelo de Quillen minimal de un
complejo simplemente conexo X de tipo finito y considera la dgl DerL de derivaciones
de L con el corchete de Lie y la diferencial usuales.

A continuación, truncamos esta dgl para obtener su recubrimiento simplemente
conexo D̃erL consistiendo en aquellas derivaciones de grado mayor o igual que 2 y el
kernel de la diferencial en grado 1. Finalmente, considera la sucesión de dgls

L
ad−→ D̃erL −→ D̃erL×̃sL, (4)

donde ad es el operador adjunto usual y, en el “producto torcido” D̃erL×̃sL:

• sL denota la suspensión de L, es una sub algebra de Lie abeliana y Dsx = −sdx+
adx para todo x ∈ L.
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• D̃erL es una sub dgl y [θ, sx] = (−1)|θ|sθ(x) para cualquier θ ∈ D̃erL y cualquier
x ∈ L.

Entonces, el siguiente teorema fue probado en [51, Corollary VII.4.(4)] (cf. [45]):

Teorema A. Esta sucesión de dgls es un modelo de Quillen de la sucesión fibrante (3).

La situación cambia dramáticamente en el caso general. Ciertamente B aut(X) es un
espacio complicado e incluso si X es simplemente conexo y racional, su comportamiento
homotópico puede no ser fácilmente descrito. De hecho, mostraremos en el ejemplo 7.1
que, para cada n ≥ 1, el espacio clasificante B aut(SnQ) no pertenece a la imagen del
funtor realización 〈−〉 en (1).

No obstante, encontramos en este trabajo una amplia clase de fibraciones universales
cuyos tipos de homotopía racional pueden ser determinados por modelos de Lie, siempre
utilizando ciertos tipos de cdgls de derivaciones.

Sea X un CW-complejo y H un subgrupo de E(X) = π0 aut(X). Denotamos por
autH(X) el monoide topológico conformado por aquellas autoequivalencias homotópicas
de X tales que sus clases de homotopía pertenecen a H ⊂ E(X). Similarmente, podemos
definir aut∗H(X) como aquellas autoequivalencias homotópicas punteadas de X cuya clase
de homotopía libre pertenece a H.

Aplicando la construcción barra geométrica obtenemos nuevos espacios B autH(X)
y B aut∗H(X) y se puede probar que son recubridores (salvo homotopía) de los espacios
clasificantes B aut(X) y B aut∗(X) respectivamente. En particular, sus grupos de homo-
topía superiores coinciden mientras que π1B autH(X) = π0 autH(X) = H. La inclusión
aut∗H(X) ↪→ autH(X) induce una sucesión fibrante

X → B aut∗H(X)→ B autH(X) (5)

la cual clasifica ciertos tipos de fibraciones: obsérvese que una fibración arbitraria X →
E → B determina una acción de π1(B) en la fibra X, llamada la acción de holonomía,
la cual a su vez define un homomorfismo de grupos

π1(B) −→ E(X). (6)

Entonces, una sucesión fibrante con fibra X puede ser catalogada dependiendo de la
imagen de este homomorfismo. Si su imagen está contenida en H ⊂ E(X) diremos que
es una sucesión H-fibrante. Entonces, en el Teorema 2.17 probamos que

Teorema B. Dado un subgrupo H ⊂ E(X), para cualquier CW-complejo B, el conjunto
de clases de equivalencia de H-fibraciones sobre B con fibra X es naturalmente isomorfo
a el conjunto JB,B autH(X)K de clases de homotopía de aplicaciones de B a B autH(X).
Esta biyección asigna a cada clase de homotopía de una aplicación B → B autH(X) el
pullback a lo largo de dicha aplicación de la sucesión H-fibrante universal

X → B aut∗H(X)→ B autH(X).
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Pretendemos encontrar cdgls como modelos de ciertas clases de estas fibraciones
universales. Para ello, fijamos X un complejo finito nilpotente y H ⊂ E(X) un grupo
de clases de homotopía de autoequivalencias homotópicas que actúa nilpotentemente en
la homología de X. Entonces [9, Theorem D] afirma que B autH(X) y B aut∗H(X) son
ambos espacios nilpotentes y una argumentación directa muestra que la racionalización
de (5) tiene el tipo de homotopía de la sucesión fibrante universal racional

XQ → B aut∗HQ(XQ)→ B autHQ(XQ).

Sea L una cdgl modelo de X y denota por E∗(L) el grupo de clases de homotopía de
automorfismos de cdgls de L. El grupoH0(L) con el producto Baker-Campbell-Hausdorff
actúa en E∗(L) vía la aplicación exponencial. Explícitamente, la aplicación

H0(L) −→ E∗(L), [x] 7→ eadx ,

es un morfismo de grupos bien definido. A continuación, definimos E(L) = E∗(L)/H0(L),
de forma que hay una sucesión exacta de morfismos de grupos

H0(L)→ E∗(L)→ E(L)→ 0.

Esto es el análogo a nivel de cdgls de la situación en el contexto topológico: considera
la aplicación sobreyectiva E∗(X) ζ−→ E(X) que consiste simplemente en olvidar el punto
base y la acción de π1(X) en E∗(X) cuyo espacio de órbitas es precisamente E(X). Esto
se traduce en una sucesión exacta de morfismos de grupos

π1(X) −→ E∗(X) ζ−→ E(X)→ 0

que resulta ser equivalente a la anterior sucesión en el mundo racional. Efectivamente,
hay un diagrama conmutativo (observación 4.11)

π1(XQ) E∗(XQ) E(XQ) 0

H0(L) E∗(L) E(L) 0.

∼=

ζ

∼= ∼= (7)

Por tanto, una vez fijado el subgrupo H ⊂ E(X) actuando nilpotentemente en la
homología, podemos considerar su racionalización HQ ⊂ E(XQ), tomar su preimagen
ζ−1(HQ) ⊂ E∗(XQ) e identificarlo con un subgrupo h ⊂ E∗(L). Entonces, definimos
Derh L ⊂ DerL como

Derh
≥1 L = Der≥1 L, Derh

0 L = {θ ∈ Der0 L tales que Dθ = 0 y [eθ] ∈ h}.

Esto significa que consideramos todas las derivaciones en grados positivos y aquellas, en
grado 0, tales que sus exponenciales son automorfismos de cdgls cuya clase de homotopía
está en h . El Teorema 7.13, constituye uno de los resultados principales de este texto.
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Teorema C. Sea L un modelo de Lie de un espacio nilpotente X y H ⊂ E(X) un
subgrupo actuando nilpotentemente en la homología de X. Entonces, el análogo de (4)

L
ad−→ Derh L→ Derh L×̃sL (8)

es una sucesión de cdgls cuya realización es del tipo de homotopía de la sucesión HQ-
fibrante universal

XQ → B aut∗HQ(XQ)→ B autHQ(XQ).

La demostración de este resultado tiene, de forma general, dos puntos claves.
El primero, de carácter aparentemente técnico a primera vista, recae en principios

fundamentales de la teoría general: solo aquellas dgls que son completas son susceptibles
de ser realizadas geométricamente. Sin embargo, sub dgls conexas de DerL no son nece-
sariamente completas en general, incluso si L es simplemente conexa. Y lo mismo ocurre
para los productos torcidos de dgls. Por tanto, inicialmente debemos comprobar el hecho
altamente no trivial de que (8) es una sucesión de cdgls. De hecho, demostrar simple-
mente que Derh L es cerrado bajo las operaciones de suma y el corchete de Lie, requiere
un profundo estudio de la equivalencia de Malcev entre grupos Malcev Q-completos y
algebras de Lie (no graduadas) completas. Por otro lado, la completitud de Derh L se
basa en una filtración específica de L que depende de la serie central descendente de la
acción de H ⊂ E(X) en H∗(X). Lo mismo ocurre para el producto torcido Derh L×̃sL.

Una vez resulta esta cuestión, el hecho de que la realización geométrica de (8) tiene
el tipo de homotopía deseado se deduce de un resultado más ambicioso. Ciertamente, la
sucesión (8) de cdgls conexas encaja en una sucesión más larga

Hom(C (L), L)→ Hom(C (L), L)→ L
ad→ Derh L→ Derh L×̃sL, (9)

donde C (L) es la coálgebra graduada diferencial coconmutativa proporcionada por el
clásico funtor de cadenas de Quillen, C (L) denota el ideal de los elementos de C (L) de
longitud no cero y consideramos a Hom(C (L), L) y Hom(C (L), L) como cdgls con la
diferencial usual y el corchete de Lie convolución. Estas dos cdgls, altamente no conexas,
son modelos de Lie de los espacios de aplicaciones punteadas y libres

map∗(X,X) y map(X,X)

respectivamente.
Entonces, si restringimos estos modelos a las componentes algebraicas que representan

automorfismos punteados y libres de XQ, y dejando inalterada la parte final de (9),
encontramos una sucesión de cdgls cuya realización geométrica es la sucesión fibrante

aut∗HQ(XQ) ↪→ autHQ(XQ) ev−→ XQ → B aut∗HQ(XQ)→ B autHQ(XQ)

donde ev denota la evaluación en el punto base.
Los teoremas B y C tienen una “versión homotópica” que procedemos a describir.

Para un CW-complejo punteado fijo, podemos considerar aquellas sucesiones fibrantes de
espacios punteados X → E → B junto con una sección homotópica (que denominaremos
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fibraciones punteadas a partir de ahora). Entonces, dado Π ⊂ E∗(X) un subgrupo de las
clases de homotopía punteada de autoequivalencias punteadas, consideramos la clase de
Π-fibraciones, que consiste en aquellas fibraciones punteadas tales que la imagen de la
acción de holonomía está contenida en Π. En esta ocasión entendemos que la acción de
holonomía está definida como π1(X)→ E∗(X). Entonces el Teorema 2.39, especializado
para A un punto, pasa a ser

Teorema D. Dado un subgrupo Π ⊂ E∗(X), para cualquier CW-complejo B, el conjunto
de clases de equivalencias de Π-fibraciones sobre B con fibra X es naturalmente isomorfo
al conjunto de clases de homotopía JB,B aut∗Π(X)K. Esta biyección asigna a cada clase
de homotopía de una aplicación dada B → B aut Π∗(X) el pullback sobre esta aplicación
de una fibración universal de la forma

X −→ Z −→ B aut∗Π(X). (10)

Aquí, Z denota la construcción barra geométrica general aplicada a la tupla
(∗, aut∗Π(X), X).

Ahora, sea X un complejo nilpotente finito con modelo de Lie L y sea Π ⊂ E∗(X) un
subgrupo que actúa nilpotentemente en π∗(X). Entonces, Π es un grupo nilpotente y
B aut∗Π(X) es un espacio nilpotente tal que (10) es una fibración de espacios nilpotentes
cuya racionalización es la fibración universal

XQ −→ ZQ −→ B aut∗ΠQ(XQ).

Al igual que en la “versión homológica”, ΠQ es isomorfo a un subgrupo π ⊂ E∗(L)
de clases de homotopía de automorfismos de L y de nuevo podemos considerar Derπ L ⊂
DerL con

Derπ≥1 L = Der≥1 L, Derπ0 L = {θ ∈ Der0 L | Dθ = 0, [eθ] ∈ π}.

Entonces, el teorema 7.18 dice:

Teorema E. Sea X un complejo nilpotente finito con modelo de Lie L. Sea Π ⊂ E∗(X)
un subgrupo que actúa nilpotentemente en π∗(X) y que es invariante bajo la acción de
π1(X). Entonces, la fibración universal

XQ −→ ZQ −→ B aut∗ΠQ(XQ)

tiene el tipo de homotopía de la realización de la sucesión de cdgls

L→ L×̃Derπ L→ Derπ L.

Los teoremas C y D, junto los resultados auxiliares que nos han llevado a su de-
mostración, tienen aplicaciones interesantes. La primera consecuencia inmediata es, para
un complejo finito nilpotente X dado, la descripción de la racionalización de ciertos sub-
gruposH ⊂ E(X) y Π ⊂ E∗(X) actuando nilpotentemente en la homología y los grupos de
homotopía de X respectivamente. Sus espacios clasificantes también pueden ser formu-
lados en términos de derivaciones. Efectivamente, con la notación usada anteriormente,
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Corolario A. ΠQ ∼= H0(Derπ L) y HQ ∼= H0(Derh L)/ ImH0(ad).

Corolario B. BH y BΠ tienen el tipo de homotopía racional de la realización de
cdgls Derh

0 L ⊕ R y Derπ0 L ⊕ S donde R y S denotan un complemento de los 1-ciclos
de Derh L×̃sL y Derπ L respectivamente.

Con la misma notación y en el mismo contexto, podemos también calcular el índice de
nilpotencia homotópica de aut∗ΠQ

(XQ) y autHQ(XQ) de una forma puramente algebraica.
Dado un H-grupo Y su índice de nilpotencia homotópica nilY , es el menor entero n ≤ ∞
para el cual el (n+1)-enésimo conmutador homotópico de Y is homotópicamente trivial.
Por otro lado, para una dgl L denotamos por nilL su índice de nilpotencia habitual.
Entonces:

Corolario C. nil aut∗ΠQ
(XQ) = nilH(Derπ L) y nil autHQ(XQ) = nilH(Derh L×̃sL).

También demostramos en la proposición 8.6 que cualquier grupo racional nilpotente
finitamente generado es isomorfo a un subgrupo H ⊂ E(X) que actúa nilpotentemente
en la homología de X para algún espacio X. De la misma manera, en la proposición
8.7 se prueba que tal grupo es siempre isomorfo a un subgrupo Π ⊂ E∗(Y ) que actúa
nilpotentemente en los grupos de homotopía de Y para algún espacio Y .

Finalmente utilizamos los teoremas C y E para obtener modelos de otras sucesiones
fibrantes interesantes que involucran a los espacios clasificantes de monoides topológicos
de autoequivalencias homotópicas (véase el teorema 8.8).

Estructura de la tesis

Todo el material resumido previamente se presenta a lo largo de 8 capítulos, que versan
sobre distintos temas.

El capítulo 1 está principalmente dedicado a introducir y presentar los fundamentos
de la teoría de homotopía de las álgebras de Lie graduadas diferenciales y completas, el
objeto algebraico principal de esta tesis. La principal referencia al respecto es [14], donde
esta teoría es desarrollada de forma exhaustiva. También se expone otro material pre-
liminar como propiedades básicas de los conjuntos simpliciales, la estructura de modelos
de ciertas categorías y aspectos de la nilpotencia y la racionalización.

Se asume que el lector está familiarizado con aspectos principales de la teoría de
homotopía racional clásica (véase, por ejemplo, [12] o [51]). No obstante, algunos datos
básicos son introducidos en esta primera sección y algunas propiedades pueden ser de-
ducidas al aplicar la nueva teoría homotópica de cdgls a espacios simplemente conexos.

En §2 estudiamos la clasificación de las fibraciones y fibraciones punteadas con una
acción de holonomía prescrita. En particular, establecemos y probamos el teorema B,
el cual es el teorema 2.17 en el texto, así como el teorema D que es el teorema 2.39,
especializado para A un punto, en el texto. Este capítulo, de alguna manera, es inde-
pendiente del resto del texto, en el sentido de que los resultados presentados no están
acotados al mundo racional: son válidos para CW-complejos y subgrupos de E∗(X) y
E(X) arbitrarios. La principal referencia para este capítulo es [32].
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El capítulo 3 comienza con el enunciado de la equivalencia de Malcev en su forma
más general: como una equivalencia de categorías entre álgebras de Lie completas y
grupos Malcev completos (véase [16, §8]). Se incluye también aquí el teorema 3.5, una
caracterización útil de un grupo Malcev completo como aquellos que son pronilpotentes
y 0-locales.

A continuación, nos centramos en los subgrupos de aut(L) y sus correspondientes
subgrupos de E∗(L) seleccionando clases de homotopía. Se prueba en el teorema 3.9,
que, para una cdgl minimal conexa L, si K ⊂ E∗(L) es nilpotente y 0-local, entonces
autK(L) es Malcev completo y, por tanto, equivalente a un álgebra de Lie completa.
También demostramos en este capítulo que el subgrupo aut1(L) de automorfismos de
L homotópicos a la identidad son precisamente los automorfismos internos, es decir, la
exponencial eD(Der1 L) de las fronteras de derivaciones de grado 0 (véase el teorema 3.7).

La presencia de grupos fundamentales no triviales hace necesario traducir ciertos
hechos topológicos elementales a la nueva teoría homotópica de cdgls. Esto se realiza
en §4, donde presentamos una descripción detallada de las clases de homotopía “pun-
teadas” JL,L′K∗ = Homcdgl(L,L′)/ ∼ y “libres” JL,L′K = JL,L′K∗/H0(L′) de morfismos
de cdgls. También exponemos como esto replica perfectamente la situación en el contexto
topológico. En particular, obtenemos el diagrama conmutativo (7).

También introducimos en este capítulo la acción de holonomía algebraica para una
sucesión de cdgls

0→ L −→M −→ N → 0,

que viene dada por el morfismo de cdgls

H0(N) −→ E(L), [x] 7→ [eadx ],

que, de nuevo, replica a la versión topológica (véase la observación 4.11).
En el capítulo 5 se realiza un estudio detallado de los modelos de Lie de la sucesión

fibrante de evaluación
map∗(X,Y )→ map(X,Y ) ev−→ Y

y su restricción a ciertas componentes conexas, por medio de cdgls de convolución y cdgls
de derivaciones. Estos modelos de Lie resultarán ser esenciales para la demostración de
los resultados principales.

Como hemos remarcado anteriormente, DerL puede no ser completo incluso cuando
L lo es. De la misma manera, el producto torcido de dos cdgls pudiera igualmente ser
no completo. En el capítulo técnico §6, se presentan ciertas sub dgl’s de derivaciones
de una cdgl dada, las cuales pueden ser dotadas de filtraciones particulares que las
hagan completas. Este hecho es altamente no trivial ya que los intentos naturales de
filtraciones no funcionan. Explícitamente, veremos como una filtración en la homología
de un complejo finito, induce una filtración en su modelo de Lie L y, consecuentemente,
determina una filtración de una sub dgl conexa de DerL que la hace completa mientras
mantiene todas las derivaciones de grado positivo. Una situación análoga se da para
ciertos productos torcidos de algunas cdgls. Como resultado, en la categoría de cdgls,
conseguimos la deseada propiedad de clausura bajo estas operaciones.

El capítulo 7 contiene los teoremas C y E así como sus demostraciones detallas.
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Finalmente, en §8 incluimos todas las consecuencias de los teoremas C y E que hemos
presentado previamente. También se prueba que el teorema C efectivamente generaliza
el teorema clásico A.

El contenido de esta tesis es una versión extendida y detallada de los resultados
presentados en los artículos [10] y [18].
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Notations and conventions

The following general notation will be used throughout the text.

• The underlying field is Q, the field of rational numbers. For example, a vector
space is understood to be a Q-vector space, or the homology of a space H∗(X)
with no explicit coefficient is understood to be H∗(X;Q).

• In this text by a topological space we mean a weak Hausdorff compactly generated
space, and we denote by top the category whose objects are topological spaces and
the morphisms are continuous maps. Working with this category instead of a more
general category has several advantages: for example, it is closed under pushouts
and their mapping spaces have a good behavior.

• Categories are denoted by bold letters: for example set is the category of sets, top
is defined above, CW is the full subcategory of topological spaces of the homotopy
type of a CW-complex and sset is the category of simplicial sets.

• The adorned categories set∗, top∗, CW∗ and sset∗ denote the pointed versions of
the categories above.

• By abuse of language, we say that an element belongs to a category if it is an object
of such category.

• Unless otherwise specified, maps and arrows are morphisms in the underlying cat-
egory. For example, a map X → Y between topological spaces is understood to be
continuous.

• The standard notation to denote the homotopy classes of maps between two spaces
X, Y (or more generally, in the context of model categories) is [X,Y ]. However, in
this text, Lie algebras play a central role, and there could be confusion with the Lie
bracket denoted by [−,−]. Therefore, the set of equivalence classes of homotopy
classes of morphisms will be denoted by

JX,Y K.

29
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• Given X,Y spaces or simplicial sets, the unadorned JX,Y K denote (free) homotopy
classes of (free) maps, as stated above. To indicate pointed homotopy classes of
pointed maps, we use JX,Y K∗.

• The class of a map f , in the set JX,Y K is denoted by [f ]; however, by abuse of
notation, we often do not distinguish between the map and its homotopy class.

• When an index appears with no explicit domain, for example
∑
n xn, the index is

understood to run in Z.

• If a pair of functors F,G are adjoint we write

C D
F

G
,

where the upper functor is left adjoint to the bottom functor.

• Through this text, several differential objects will appear (for example, differential
Lie algebras) and we will use the following symbols to denote the differentials:
∂, d,D. The specific symbol used will be indicated at the moment, however the
following general rules will be applied. ∂ will denote the differential of a Lie algebra
or a vector space, d the differential of commutative algebra and D the inherited
differential in derivations or homomorphisms.

• In the categories top or sset, we use the following symbols: ∼= to denote homeo-
morphisms, ' homotopy equivalences and 'w weak homotopy equivalences.

• In this text we use different but similar “triangular” symbols to denote simplices in
different contexts: 4 will denote the simplex category, 4n the simplicial set, ∆n

the chain complex and ∆∆n the topological n-simplex. See §1.4 for more details.

• In a simplicial set X we do not distinguish between an n-simplex x ∈ Xn and the
subsimplicial set generated by that element.

• For X,Y topological spaces and y ∈ Y , the map cy : X → Y denotes the constant
map cy(x) = y for all x ∈ X. Similarly for X,Y in sset.

• The Koszul convention is applied throughout the text: whenever the position of
two elements of degrees n and m is permuted in a expression, the sign (−1)nm
appears.

• To make a coherent choice of signs, we fix that ss−1 = id and s−1s = − id (this is
the choice done in [51, §0.1]), where s is the suspension (see §1.1).

• Between two linear graded objects (for example Lie algebras, algebras or coalge-
bras), not necessarily in the same category, the unadorned Hom(−,−) will denote
the graded vector space of linear maps between them. As usual, the adorned
HomC(−,−) denotes the set of morphism in the category C. See §1.4.1 for more
details.



CHAPTER 1

Homotopy theory of complete differential graded Lie
algebras

The goal of this section is to introduce the definitions and basic facts about the theory of
Lie models in topology. The main reference for this chapter is the book [14]: this chapter
tries to be a brief summary of some results of this book and we refer to it as a general
reference for a more complete and detailed explanation of the concepts presented below.

1.1 Lie algebras
A graded vector space is a direct sum

V = ⊕nVn

of vector spaces Vn. An element v ∈ V is homogeneous if v ∈ Vn for some n and we say
that n is the degree of v or |v| = n. Whenever |−| is applied to some element of V , this
element is assumed to be homogeneous. A linear map f : V → V ′ between two graded
vector spaces is said to have degree k if

f(Vn) ⊂ V ′n+k

for all n. The category of graded vector spaces and 0-degree linear maps is denoted by
gvect.

The kth suspension of V is the graded vector space skV where (skV )n = Vn−k.
A differential is a linear map ∂ of degree -1 such that ∂2 = 0. Given a differential

graded vector space (V, ∂), we denote by H∗(V ) its homology, which is a graded vector
space. A morphism of differential graded vector spaces is a linear map of degree 0
which commutes with the differential. Note that such morphism induces a map in the
homology of the vector spaces. A morphism f : (V, ∂)→ (V ′, ∂′) is a quasi-isomorphism
if H∗(f) : H(V ) → H∗(W ) is an isomorphism. We write V = (V, ∂) whenever there is
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not ambiguity about which the differential is. We denote by dgvect the category of
differential graded vector spaces (recall that a differential graded vector space is equal
to a chain complex).

Given an object (V, ∂) in dgvect, we define the kth suspension as (skV, ∂) where

∂(skv) = (−1)|v|sk(∂v).

A graded Lie algebra is a graded vector space L with a Lie bracket, this is, a linear
map

[−,−] : L⊗ L→ L

of degree 0 which satisfies antisymmetry

[x, y] = −(−1)|x||y|[y, x]

and the Jacobi identity

(−1)|x||z|[x, [y, z]] + (−1)|y||x|[y, [z, x]] + (−1)|z||y|[z, [x, y]] = 0

for any x, y, z ∈ L.
A differential graded Lie algebra, or dgl, is a graded Lie algebra with a differential ∂

in the underlying vector space and such that

∂[x, y] = [∂x, y] + (−1)|x|[x, ∂y]

for all x, y ∈ L.
We denote by dgl the category whose objects are dgl’s and the morphisms are linear

maps of degree 0
f : (L, ∂)→ (L′, ∂′)

such that
f [x, y] = [f(x), f(y)], f(∂x) = ∂(f(x))

for all x, y ∈ L.
We say that a dgl L = (L, ∂) is k-connected if L = L≥k. By connected we means 0-

connected and the k-connected cover of L is the k-connected dgl L(k) which is degreewise
defined by

L(k)
n =

{
ker(∂ : Lk → Lk−1), if n = k

Ln, if n > k
.

Similarly to the case of a topological space, we write L̃ = L(1) for the 1-connected
cover.

A derivation of degree k is a linear map θ : L→ L of degree k such that:

θ[x, y] = [θ(x), y] + (−1)k|x|[x, θ(y)]

for all x, y ∈ L. We denote by Derk L the space of derivations of degree k.
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Note that the space of derivations DerL = ⊕k Derk L is a dgl with the following Lie
bracket and differential:

[θ, η] = θ ◦ η − (−1)|θ||η|η ◦ θ, Dθ = [∂, θ] = ∂ ◦ θ − (−1)|θ|θ ◦ ∂.

More generally, if f : L→ L′ is a dgl morphism, we denote by Derf (L,L′) the differ-
ential graded vector space of linear maps θ : L→ L′ such that

θ[x, y] = [θ(x), f(y)] + (−1)|θ||x|[f(x), θ(y)]

and with the differential given as above.
The following lemma [7, Lemma 6] will be used in the text.

Lemma 1.1. A dgl quasi-isomorphism g : L′′ → L induces a quasi-isomorphism of dif-
ferential graded vector spaces

g∗ : Derf (L,L′)→ Derf◦g(L′′, L′), θ 7→ θ ◦ g

if both L and L′′ are free.

Given a commutative differential graded algebra (A, d) with d a differential of degree
-1 (see §1.9), the tensor product A⊗ L inherits a dgl structure given by

[a⊗ x, b⊗ y] = (−1)|b||x|ab⊗ [x, y], ∂(a⊗ x) = da⊗ x+ (−1)|a|a⊗ ∂x

for a, b ∈ A and x, y ∈ L.

1.2 Complete Lie algebras
A filtration of a dgl L is a sequence of vector subspaces {Fn}n≥0 of L such that

L = F 1 ⊃ · · · ⊃ Fn ⊃ Fn+1 ⊃ · · ·

[Fn, Fm] ⊂ Fn+m, ∂Fn ⊂ Fn

for all n,m ≥ 1. Given a subspace Fn we write

Fnk = Fn ∩ Lk

for any k.
For any dgl L, the lower central series of L, {Ln}n≥1, where L1 = L and Ln =

[L,Ln−1] for n > 1, is a filtration of L.
A filtered dgl (L, {Fn}n≥1) is a complete differential graded Lie algebra, cdgl hence-

forth, if the natural dgl map
L
∼=−→ lim←−

n

L/Fn

is an isomorphism. An element in L can be written as a formal series∑
n≥1

xn, xn ∈ Fn
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where two such series
∑
n≥1 xn and

∑
n≥1 yn represent the same element in the limit if

and only if
q∑

n=1
(xn − yn) ∈ F q+1

for all q ≥ 1.
Let cdgl be the category whose objects are cdgl’s and the morphisms are dgl maps

which preserve the filtrations. This category is complete and cocomplete [14, Proposition
3.5].

Given a filtered dgl (L, {Fn}n≥1), its completion is

L̂ = lim←−
n

L/Fn,

which is complete with respect to the filtration

F̂n = ker(L̂→ L/Fn).

If (A, d) is a commutative differential graded algebra and L is a cdgl with filtration
{Fn}n≥1, we define the complete tensor product as the cdgl

A ⊗̂L = lim←−
n

A⊗ (L/Fn).

1.2.1 Free Lie algebras

The free Lie algebras and their completion play a central role in the theory of Lie models.
Given a graded vector space V , we denote by L(V ) the free Lie algebra generated by V .
The functor

L : vect→ dgl
sending a vector space to its associated free Lie algebra is left adjoint to the forgetful
functor.

An element x ∈ L(V ) is said to have bracket length n if it can be written as a sum of
elements of the form

[v1, [v2, [. . . , [vn−1, vn], . . . ]]
with v1, . . . , vn ∈ V . Let Ln(V ) be the subspace of elements whose bracket length is n.
Then

(L(V ))n = L≥n(V ) = ⊕m≥nLm(V ).
Note that the dgl L(V ) is not complete in general, so we define L̂(V ) as the completion
of L(V ) with respect to its lower central series,

L̂(V ) = lim←−
n

L(V )/L≥n(V ),

which is complete with respect to the filtration

L̂≥n(V ) =
∏
m≥n

Lm(V ).

A free cdgl (L̂(V ), ∂) is said to be minimal if ∂V ⊂ L̂≥2(V ).
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1.2.2 Maurer-Cartan elements

A Maurer-Cartan element or MC element, in a dgl L, is an element a ∈ L−1 satisfying

∂a+ 1
2[a, a] = 0.

We denote by MC(L) the set of MC elements of L, which always contains 0.
For a ∈ MC(L) the perturbed differential by a, ∂a = ∂ + ada is again a differential on

L, where
ada(x) = [a, x]

is the adjoint operator.
For a ∈ MC(L), the component of L at a or (La, ∂a) is the connected dgl defined

degreewise as

Lan =
{

ker ∂a, if n = 0,
Ln, if n > 0.

In particular, La = (L, ∂a)0.

1.2.3 Baker-Campbell-Hausdorff product

We describe in this subsection the construction of the Baker-Campbell-Hausdorff product
on a cdgl L; more details can be found in [14, §4.2]. See also [16, §7 and §8] for a detailed
treatment using Hopf algebras. This section can be thought of as an introduction of the
more general Malcev equivalence which will be studied at §3.

Given a complete graded Lie algebra, denote by TL the tensor algebra on the graded
vector space L. Then, the universal enveloping algebra of L, UL, is the quotient of TL
by the ideal generated by the elements of the form

x⊗ y − (−1)|x||y|y ⊗ x− [x, y]

for x, y ∈ L.
UL0 has a filtration given by {In}n≥0 where I0 = UL0, I1 = I is the ideal generated

by L0 and In = In−1I for n > 1. Completing UL0 and I we get

ÛL0 = lim←−
n≥0

UL0/I
n, Î = lim←−

n≥1
I/In.

Then, we have the bijections

Î 1 + Î
exp
∼=
log

given by

exp(x) = ex =
∑
n≥0

xn

n! , log(1 + x) =
∑
n≥1

(−1)n+1x
n

n
.
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In a general setting, given two filtered graded vector spaces (V, {Fn}n≥0) and (W, {Gn}n≥0)
we define the complete tensor product of V and W as

V ⊗̂W = lim←−
n

(V ⊗W )/(⊕i+j=nF i ⊗Gj).

Denote by v ⊗̂w the image of v ⊗ w under the natural map V ⊗W → V ⊗̂W , for any
v ∈ V , w ∈W .

We can extend the diagonal map

∆: L0 → L0 × L0, x 7→ (x, x),

to ∆: UL0 → U(L0×L0) = UL0⊗UL0, and, using the definition above and noting that
∆ is filtration-preserving, we extend it again to

∆: ÛL0 → ÛL0 ⊗̂ ÛL0.

We consider the group of grouplike elements

G = {x ∈ ÛL0 | ∆(x) = x ⊗̂x}

and the set of primitive elements

P = {x ∈ Î | ∆(x) = x⊗ 1 + 1⊗ x}

Whenever L0 is complete with respect to its lower central series (in particular, when-
ever L itself is complete), the injection L0 → P is an isomorphism and the bijections
above restrict to

L0 G
exp
∼=
log

. (1.1)

Therefore, the group structure on G induces a multiplication in L0 which is called
the Baker-Campbell-Hausdorff product or BCH product, defined by

x ∗ y = log(exp(x) · exp(y)) = x+ y + 1
2[x, y] + 1

12[x− y, [x, y]] + · · · .

In the group (L0, ∗), 0 is the identity element of this product and x−1 = −x is the
inverse of x. Furthermore, given n ∈ Z, xn = x ∗ x ∗ · · · ∗ x = nx. The group structure
of L0 is deeply studied in Chapter 3.

This group acts on the set of MC elements via the gauge action defined as

xG a =
∑
n≥0

adnx(a)
n! −

∑
n≥0

adnx(∂x)
(n+ 1)! .

This action generates an equivalence relation in MC(L) and we denote by M̃C(L) =
MC(L)/G the orbit set. Furthermore, M̃C is a functor from cdgl to the category of
pointed sets.
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1.2.4 Exponential of derivations

In this subsection we recall some facts about the exponentiation of a derivation; the
main reference is [14, §4.2]. The main purpose is to construct properly the concept of
exponential of a derivation. Of course this can be done directly by the usual formula of
the exponential series; however, from such formula deducing some general properties can
be difficult. Instead, we use the bijection between Î and 1 + Î to give a more general
approach to the exponential of a derivation.

Let L be a cdgl with respect to the filtration {Fn}n≥1. Consider the following sub
Lie algebra of Der0 L ⊂ DerL:

Der0L = {θ ∈ Der0 L | Dθ = 0, θ(Fn) ⊂ Fn+1, n ≥ 1}.

This (ungraded) Lie algebra is complete with respect to the filtration

Fn = {θ ∈ Der0L | θ(F i) ⊂ F i+n, i ≥ 1}

for n ≥ 1. Note that, in particular, for any x ∈ L0, adx ∈ Der0L.
Let M ⊂ Der0L be a sub Lie algebra; in particular, it is complete. In Example 6.1

we will show that, taking sub Lie algebras of Der0 L is necessary if we expect getting a
complete Lie algebra.

We apply the result of §1.2.3 to the complete Lie algebra M . Note that there is an
injection

M ↪→ Hom(L,L)

where Hom(L,L) denotes graded linear maps (not necessarily commuting with the Lie
bracket or the differential). We can consider Hom(L,L) as an algebra with the compo-
sition as operation. Thus, the universal property of UM implies that there is an algebra
morphism

UM → Hom(L,L).

Moreover, since the derivations in M increases the filtration degree, we have morphisms
of the form

In → Hom(L,Fn)

for any n ≥ 1. These expressions induce the following morphism

Î → lim←−
n≥1

Hom(L,L)/Hom(L,Fn) ∼= lim←−
n≥1

Hom(L,L/Fn) ∼= Hom(L, lim←−
n≥1

L/Fn) ∼= Hom(L,L)

which can be extended to
ξ : 1 + Î → Hom(L,L)

by sending 1 to idL. Note that ξ sends grouplike elements of 1 + Î to invertible elements
in Hom(L,L) i.e. automorphisms (again, as graded vector spaces). Now, given θ ∈ M
we can compose the bijection exp : M → G of (1.1) with ξ, to obtain a (graded vector
space) automorphism ξ(exp(θ)) ∈ Hom(L,L). This linear map acts on each element of
L as ∑

n≥0

θn

n!
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so we abuse of notation and simply write this map as eθ.
By the definition of the BCH product and the fact that ξ is a algebra morphism we

deduce that
eθ∗η = eθ ◦ eη (1.2)

for any θ, η ∈M .
Finally, a direct computation [14, Proposition 4.10] using the formula above shows

that eθ commutes with the Lie bracket, and, if Dθ = 0, then eθ commutes with the
differential, thus it is a cdgl morphism. We conclude that there is a morphism of groups

exp : M ∩ kerD → aut(L)

with the BCH product and the composition as the respective products.

1.3 Twisted products of Lie algebras

Let (L, [−,−], ∂) and (L′, [−,−]′, ∂′) be two dgl’s. A twisted product of L and L′ is a dgl
structure on the graded vector space L× L′, that we denote by (L×̃L′, [−,−]∼, ∂̃) such
that

a) L is a sub dgl of L×̃L′, i.e. [x, y]∼ = [x, y] and ∂̃x = ∂x for x, y ∈ L.

b) Given x′ ∈ L′, then ∂̃x′ − ∂′x′ ∈ L.

c) Given x ∈ L and x′ ∈ L′, then [x, x′]∼ ∈ L.

d) [x′, y′]∼ = [x′, y′]′ for x′, y′ ∈ L′, this means that L′ is a (non-differential) sub Lie
algebra of L×̃L′.

The previous conditions can be summarized by saying that there is a dgl exact se-
quence

L→ L×̃L′ → L′

which splits as graded Lie algebra (forgetting about the differential).
Remark 1.2. We could have defined a twisted product just as a dgl exact sequence which
splits as graded vector spaces (i.e. removing condition d)). This could be a natural
choice, since any surjective map of dgl’s would induce a (non-canonical) twisted product.
However we follow [51, Definition VII.2. (9)] and include the requirement d) to define
a twisted product. At all the twisted products in the text, condition d) will hold, so it
does not matter which definition we choose.

However, in the category cdgl we do not have such a good behavior. The twisted
product of two cdgl’s is not necessarily a cdgl as the following example shows.

Example 1.3. Consider the two abelian Lie algebras L = L(x) and L′ = L(y) with
|x| = 0 and |y| is a positive even number. The differentials are mandatorily zero. Since
these Lie algebras are abelian, they are clearly complete.
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Now consider the twisted product L×̃L′ = 〈x, y〉 where L and L′ are sub dgl’s and
[x, y]∼ = y. This can be checked to be a Lie algebra. However, it is clear that 〈y〉 belongs
to any term of the lower central series (L×̃L′)n so, in particular, it is not complete with
respect to any possible filtration. Then we have a exact sequence

L→ L×̃L′ → L′,

where the first and last objects are cdgl’s but the middle one is not.

Remark 1.4. Suppose that L×̃L′ is a cdgl. In this case, any Maurer-Cartan element of L
will also be a Maurer-Cartan element in L×̃L′. Furthermore, if a ∈ MC(L) and x ∈ L0,
then the restult of the gauge action xG a is the same element if it is performed in L or
in L×̃L′.

1.4 Simplicial sets and simplicial objects
Denote by 4 the simplicial category, whose objects are the sets [n] = {0, . . . , n} and the
morphism are non-decreasing maps between these sets. The morphisms in this category
are generated by two classes: the cofaces δi : [n− 1]→ [n] for i = 0, . . . n and n ≥ 1, and
the codegeneracies σi : [n+ 1]→ [n], for i = 0, . . . , n and n ≥ 0, defined as follows:

δi =


0 1 . . . i− 1 i . . . n− 1

0 1 . . . i− 1 i i+ 1 . . . n


and

σi =


0 1 . . . i i+ 1 i+ 2 . . . n+ 1

0 1 . . . i i+ 1 . . . n


A simplicial object in a category C is a contravariant functor

X : 4op → C,

while a cosimplicial object is a covariant functor

X : 4→ C.

The image of the cofaces and codegeneracies under a simplicial object are called the
face and degeneracy operators respectively:

di = X(δi) : Xn → Xn−1, si = X(σi) : Xn → Xn+1,

where Xn = X([n]).
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The morphisms between simplicial objects are natural transformation between two
functors X,Y : 4op → C. Equivalently, such a natural transformation is a sequence of
morphisms {fn : Xn → Yn}n≥0 in C compatible with the face and degeneracy operators.
We denote the category of simplicial objects as sC for a given category C.

Of special importance is the case C = set. In that case sset denotes the category of
simplicial sets. If X is a simplicial set, we call the elements x of Xn simplices of degree
n. We say that a simplex x ∈ Xn of a simplicial set X is degenerated if x = si(y) for
some y ∈ Xn−1 and some i. In other case, we say that x is non-degenerated. A simplicial
set is finite if it has finitely many non-degenerated simplices, and it is of finite type if,
for each n ≥ 0, it has finitely many non-degenerated n-simplices.

For n ≥ 0 we denote by 4n the simplicial set defined as

4n = Hom4(−, [n]) : 4op → set .

An arbitrary element in 4n
m is a map sending j ∈ [m] to ij ∈ [n], with 0 ≤ i1 ≤ i2 ≤

· · · ≤ im ≤ n and it is denoted by
(i1, . . . im).

In particular, the 0-simplices of 4n are (0), (1), . . . , (n).
Note that we can think of 4• as a cosimplicial simplicial set. For 0 ≤ i ≤ n, the ith

horn is the subsimplicial set ∧ni ⊂ 4n generated by all non-degenerate simplices except
(0, . . . n) and (0, . . . , î, . . . , n).

1.4.1 Mapping spaces and closed categories

A category C with a terminal object and finite products is said to be (cartesian) closed
(see [39] and [16, §0.13 and §0.14] as general references) if there is functor

map: Cop × C→ C

such that for all Y ∈ C the following functors are adjoint

C C
−×Y

map(Y,−)
. (1.3)

The bijection
HomC(X × Y,Z) ∼= HomC(X,map(Y,Z)),

which is natural in X and Z is called the exponential law.
We easily deduce some properties from the exponential law. The counit of this

adjunction is called the evaluation morphism

ev : map(X,Y )×X → Y.

If ∗ is the terminal object in C, then − × ∗ : C → C is a full and faithful functor, so the
unit is a natural isomorphism

X ∼= (∗, X).



Simplicial sets and simplicial objects 41

Applying the Yoneda lemma, it can be easily deduced that the bijection (1.3) extends
to an isomorphism in C:

map(X × Y,Z) ∼= map(X,map(Y,Z)).

Both categories top and sset are cartesian closed with the following functors as
mapping spaces. In the category top, the (topological) mapping space is

map(X,Y ) = Homtop(X,Y )

where the set of continuous map is topologized with the compact-open topology. Working
in the category of weak Hausdorff compactly generated spaces, instead of with arbitrary
topological spaces, ensures that the exponential law holds.

In the category sset, the (simplicial) mapping space is given by the simplicial set

map(X,Y )• = Homsset(X ×4•, Y )

where the face and degeneracy operators of the simplicial set map(X,Y ) are induced by
those of 4•.

If (X,x0) and (Y, y0) are pointed topological spaces or pointed simplicial sets, then
write

map∗(X,Y ) = (evx0)−1(y0) ⊂ map(X,Y )

for the pointed mapping space, which is a subspace or sub simplicial set of the mapping
space.

A final example of closed categories is given by the category dgvect of differential
graded vector spaces. If V,W are elements in dgvect we construct its mapping space as

Hom(V,W ) =
⊕
k

Homk(V,W )

where Homk(V,W ) is the vector space of degree k-linear maps from V to W . The
differential is given by the formula

Df = ∂ ◦ f − (−1)|f |f ◦ ∂

for f ∈ Hom(V,W ). Note that Homdgvect(V,W ) = Hom0(V,W ).
In this case instead of taking the monoidal operation of the product we use the tensor

product of vector space. With this operation, we have an exponential law

Hom(U ⊗ V,W ) ∼= Hom(U,Hom(V,W ))

for U, V and W in dgvect which is natural in U and V . See [38, §2] for more details.
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1.4.2 Chain complexes and simplicial sets

Recall that a chain complex is the same that an object in dgvect. Given a simplicial set
X , we can construct an associated chain complex in the following way:

C∗(X) =
⊕
n≥0

Cn(X)

where Cn(X) is the vector space generated by the elements of Xn. The differential is
defined as

∂ : Cq(X)→ Cq−1(X), ∂x =
q∑
i=0

(−1)idix.

Similarly, let D∗(X) be the chain complex generated by degenerated simplices. Then
(D∗(X), ∂) is a sub chain complex of (C∗(X), ∂), and we define the non-degenerate chain
complex associated to X as

(N∗(X), ∂) =
(
C∗(X)
D∗(X) , ∂̄

)
,

whose homology is equal to the homology of C∗(X).
For n ≥ 0, denote by ∆n the non-degenerate chain complex associated to 4n, this is

(∆n, ∂) = (N∗(4n), ∂)

and an explicit description of this chain complex is given as follows: for each q ≥ 1
the generators of ∆n

q are the elements ai0,...,iq with 0 ≤ i0 < i1 < . . . iq ≤ n and ∂ the
boundary operator is

∂ai0,...,iq =
q∑
j=0

(−1)ja
i0,...,îj ,...,iq

.

We can think of ∆• as a cosimplicial chain complex.

1.5 Model category structures
We will use the definitions and conventions of [14, §1.3] about model categories. In this
section we will briefly describe the model structures that we will use on top, sset and
cdgl.

1.5.1 Model structure on topological spaces

The (standard) model category of top is defined as follows: a continuous map f : X → Y
is

• a fibration if it is a Serre fibration.

• a weak equivalence if it is a weak homotopy equivalence.

• a cofibration if it has the left lifting property with respect to trivial Serre fibrations.

In this model category all objects are fibrant and the CW-complexes are cofibrant.
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1.5.2 Model structure on simplicial sets

The (standard) model category of sset is defined as follows: a simplicial map f : X → Y
is

• a cofibration if fn : Xn → Yn is injective for all n ≥ 0.

• a weak equivalence if its geometric realization is a weak equivalence.

• a fibration if f is a Kan fibration.

Recall that a Kan fibration is a map f : X → Y with the lifting property for all horn
inclusions, i.e. for all 0 ≤ n, 0 ≤ i ≤ n and a commutative diagram

∧ni X

4n Y

f

there is a lifting making the diagram commutative.
In this model category each object is cofibrant and the fibrant objects are called Kan

complexes; in other words X is a Kan complex if X → ∗ = 40 is a Kan fibration.
There is an adjunction between sset and top, which turns out to be a Quillen equiv-

alence with these model structures:

sset top .
|−|

Sing
(1.4)

This pair of functors are defined using the topological simplices. For n ≥ 0, define the
topological space

∆∆n = {(x0, . . . , xn) ∈ Rn+1 |
n∑
i=0

xi = 1 and ti ≥ 0}.

By the usual formulas, ∆∆• can be thought of as a cosimplicial topological space. Then
for X ∈ top, define the simplicial set SingX as

(SingX)• = Homtop(∆∆n, X)

where the faces and degeneracies are induced by those of ∆∆•. On the other hand, given
X ∈ sset the topological space |X| is called the geometric realization of X and it is the
quotient

|X| =
⊔
n≥0

(Xn ×∆∆n)/ ∼,

where each Xn is discrete and the equivalence relation is defined by

(dix, u) ∼ (x, δiu), for x ∈ Xn+1, u ∈ ∆∆n,

(sjx, u) ∼ (x, σju), for x ∈ Xn−1, u ∈ ∆∆n,
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for 0 ≤ i ≤ n+ 1, 0 ≤ j ≤ n− 1 and n ≥ 0.
From this equivalence we deduce some important facts that will be used along the

text. The realization of a simplicial set |X| is a CW-complex with one n-cell for each
non-degenerate n-simplex. And by [17, Proposition 4.3.3 (i)] any point in |X| has a
unique representation by a pair (x, u) with x a non-degenerate simplex and u an interior
point of ∆∆|x|.

The unit of the adjunction X 'w−−→ Sing |X| is a natural weak homotopy equivalence.
Since each object in top is fibrant, Sing |X| is a Kan complex. We can use the unit as
functorial fibrant replacement.

If x0 ∈ X0 is a basepoint in a simplicial set, the point (x0, 0) ∈ X0×∆∆0 ⊂ |X| can be
taken as the basepoint in the geometric realization. Conversely, if y0 ∈ Y is a basepoint
in a topological space Y , then the constant map cy0 : ∗ = ∆∆0 → Y is a 0-simplex in
Sing Y , and it can be taken as the basepoint in the simplicial set. Unless otherwise
specified we take these points as canonical basepoints along the adjoint functors and by
abuse of notation we write |x0| and Sing(y0) to denote them.

1.5.3 Model category on cdgl’s

On the other hand, the category cdgl admits a model category (see [14, Theorem 8.1])
given in the following way: a morphism f : L→M is

• a fibration if it is surjective in non-negative degrees.

• a weak equivalence if
M̃C(f) : M̃C(L)

∼=−→ M̃C(M)

is a bijection and for all a ∈ M̃C(L),

fa : La '−→Mf(a)

is a quasi-isomorphism.

• a cofibration if it has the left lifting property with respect to trivial fibrations.

In this model category we can find a path object, which allows us to describe (right)
homotopies between cdgl morphisms. For a given cdgl L, filtered by {Fn}n≥1, its path
object is the cdgl

LI = ∧(t, dt) ⊗̂L = lim←−
n

(∧(t, dt)⊗ L/Fn)

where ∧(t, dt) is the tensor algebra generated by an element of degree 0 and its differential.
For i = 0, 1, define the cdgl morphism

εi : LI = ∧(t, dt) ⊗̂L→ L, 1⊗ x 7→ x, tn ⊗ x 7→ ix, tmdt⊗ x 7→ 0,

for x ∈ L, n ≥ 1 and m ≥ 0. In other words, εi sends t to i and dt to zero.
Then, a (right) homotopy in the category cdgl between f, g : M → L is a morphism

Φ: M → LI
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such that ε0 ◦ Φ = f and ε1 ◦ Φ = g, and we write f ∼ g. We denote by

JM,LK

the set of equivalences classes of cdgl morphisms from M to L.

1.6 Nilpotent groups and spaces
Given a group G we denote its commutator by curved brackets (in order to differentiate
it from the Lie bracket):

(x, y) = xyx−1y−1, for x, y ∈ G.

We denote by {Gn}n≥1 its lower central series, this is

G = G1 ⊃ G2 ⊃ · · · ⊃ Gi ⊃ Gi+1 ⊃ . . .

where G1 = G and Gi = (Gi−1, G) for i ≥ 2.
A group is nilpotent if Gq = {1} for some q ≥ 1. For example, abelian groups are

nilpotent groups with q = 2.
A group G acts nilpotently on an abelian group Γ if the lower central series of the

action
Γ = Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ . . .

is finite, i.e. Γq = 0 for some q, where Γi is the subgroup generated by {gγ − γ, g ∈
G, γ ∈ Γi−1} for i ≥ 1 and Γ0 = Γ.

Let X be a pointed connected CW-complex or simplicial set. Then the fundamental
group π1(X) acts on the higher homotopy groups πi(X) for i ≥ 2. We call this action
the fundamental action. An space X is nilpotent if its fundamental group is nilpotent
and it acts nilpotently on πi(X) for i ≥ 2. For example, simply connected spaces and
the circle S1 are nilpotent spaces.

1.7 Rationalization of spaces
For this section, we use [12, §9 (c)] and [23] as general references.

The rationalization of an abelian group G is just its tensor product by Q

G⊗Q.

An abelian group G is rational if, for all k ≥ 1, the map

G→ G, g 7→ gk

is an isomorphism. Clearly, the rationalization of any abelian group is a rational group.
Let X be a CW-complex or a simplicial set, which is simply connected. Its homotopy

groups are abelian group, so we say that it is a rational space if its homotopy groups
are rational. There exists a functor, called the rationalization and a natural morphism
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µX : X → XQ from a space to its rationalization, such that XQ is a rational space, and
the induced morphisms

πi(X)⊗Q→ πi(XQ)
are isomorphisms for all i ≥ 2. The rationalizations of a space are characterized by the
following universal property: given a map f : X → Y from a simply connected space X
to a rational space Y there exits a (unique up to homotopy) map XQ → Y making the
following homotopy diagram commutative

X Y

XQ

f

.

In particular
JX,Y K ∼= JXQ, Y K.

These construction and statements can be generalized to nilpotent spaces rather than
simply connected spaces (see §3 for a precise definition of nilpotent spaces).

In [5] a more general construction is given. The Q-completion functor

Q∞ : sset→ sset

is characterized by the following property: a map f : X → Y induces an isomorphism in
the rational reduced homology

H̃(f ;Q) : H̃(X;Q)
∼=−→ H̃(Y ;Q)

if and only if the induced map

Q∞f : Q∞X
'−→ Q∞Y

is a homotopy equivalence. For each simplicial set X there is also a natural map X →
Q∞X.

For X a simply connected simplicial set, both construction agree: XQ and Q∞X are
homotopy equivalent (see [5, Chapter V]).

1.8 Model and realization functors
In [14, §6] it is defined a cosimplicial cdgl

L• = {Ln}n≥0

where,
Ln = (L̂(s−1∆n), ∂)

and the cofaces and codegeneracies in L• are induced by those of the cosimplicial chain
complex s−1∆•. The differential ∂ in Ln is the only one (up to cdgl isomorphism)
satisfying:
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i) The elements ai for 0 ≤ i ≤ n of degree -1 are MC elements.

ii) The linear part of ∂ is equal to the differential of the chain complex s−1∆n.

iii) The cofaces and codegeneracies are cdgl morphism.

In particular, following these rules, we have that L0 is the free Lie algebra L(a) with
∂a = −1

2 [a, a], i.e. a is a MC-element. L1 is the Lawrence-Sullivan interval described
in [14, §5] but originally constructed in [25].

This cosimplicial cdgl plays a central role in the pair of adjoint functors

sset cdglL

〈−〉

constructed and studied in [14, §7].
The realization of a cdgl L is the simplicial set

〈L〉 = Homcdgl(L•, L).

In particular, the set of 0-simplices 〈L〉0 is equal to the set of MC elements MC(L),
so given a 0-simplex a ∈ 〈L〉0, we denote by the same symbol a ∈ L−1 the associated
MC element, and vice versa. By [14, §7.2], there are homotopy equivalences

〈L〉a ' 〈La〉, 〈L〉 '
∐

a∈M̃C(L)

〈La〉

where 〈L〉a is the path connected component of 〈L〉 containing the 0-simplex a. A direct
consequence of this fact is that for any MC element a,

〈(L, ∂)〉 ' 〈(L, ∂a)〉

since the sets M̃C(L, ∂) and M̃C(L, ∂a) are bijective (see [14, Proposition 4.28]).
If L is connected, then for any n ≥ 1, the map

ρn : πn〈L〉
∼=−→ Hn−1(L), ρn[ϕ] = [ϕ(a0,...,n)]

is a group isomorphism [14, Theorem 7.18]. For n ≥ 1, the (abelian) group structure in
Hn(L) is the inherited by the vector space L; however, in H0(L) the group structure is
the inherited by the BCH product.

On the other hand, the global model of a simplicial set has the following properties [14,
Proposition 7.8]: LX = L̂(s−1N∗(X)) and its differential ∂ is uniquely determined by

i) The 0-simplices of X are MC elements.

ii) The linear part of ∂ is equal to the differential of the chain complex s−1N∗(X).

iii) If j : X → Y is a subsimplicial set inclusion, then Lj = L̂(s−1N∗(j)).
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If X is a connected simplicial set, a is a 0-simplex of X, and there is a quasi-
isomorphism of connected cdgl’s (L(V ), ∂) '−→ LaX with (L̂(V ), ∂) a (minimal) free cdgl,
then (L̂(V ), ∂) is called the (minimal) model of X. A minimal model of X is unique up
to cdgl isomorphism and by [14, Proposition 8.35] there are isomorphisms

sV ∼= H̃∗(X;Q), sH∗(L̂(V ), ∂) ∼= π∗〈LaX〉.

To sum up, we have Quillen pairs relating the model categories of top, sset and cdgl

top sset cdgl
Sing

L|−|

〈−〉
, (1.5)

where the upper functors are left adjoint to the bottom functors, and the first pair is a
Quillen equivalence.

1.9 Algebras and coalgebras
As explained before, the cdgl’s are the central algebraic objects of this text. However,
we also need other algebraic structures as auxiliary objects.

We denote by cdga the category of commutative differential graded algebras, these
are graded vector spaces with an associative linear product of degree 0 (that we denote
just by juxtaposition), with a unit and a differential d (of degree +1), such that

xy = (−yx)|x||y|, d(xy) = (dx)y + (−1)|x|xdy.

We assume that our cdga’s are augmented, i.e. there exists a cdga morphism ε : A→ Q
and cdga morphisms respect the augmentations.

The free commutative graded algebra on a vector space V is the following quotient

∧V = T (V )/I

where T (V ) is the (non-commutative) tensor algebra on V and I is the ideal generated
by the elements of the form x⊗ y − (−1)|x||y|y ⊗ x.

There is a rational homotopy theory that models spaces on the category cdga. This
is a well-known field (see [12], [13], [51], for some standard references), so we do not
introduce here its basic aspects.

For example, the simplicial set 41 has as cdga model, the free cdga

∧(t, dt)

where |t| = 0, |dt| = 1 and d(t) = dt. This particular example is useful to construct
homotopies.

The dual concept of a cdga is that of cocommutative differential graded coalgebra,
whose category we denote by cdgc. A cdgc C is a graded vector space with: a degree
zero map ∆: C → C ⊗ C which is coassociative

(∆⊗ idC) ◦∆ = (idC ⊗∆) ◦∆
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and cocommutative
τ ◦∆ = ∆

where τ is the graded permutation of the factors; a differential such that

∆ ◦ d = (d⊗ idC +τ ◦ (d⊗ idC) ◦ τ) ◦∆;

and a counit ε : C → Q and a coaugmentation η : Q→ C such that

d ◦ η = 0, ε ◦ η = idQ, ∆η(1) = η(1)⊗ η(1).

See [51, §0.3] for more details. We define C̄ = ker(ε) and the reduced comultiplication by

∆̄: C̄ → C̄ ⊗ C̄, ∆̄c = ∆c− (c⊗ η(1) + η(1)⊗ c).

The cofree cocommutative graded coalgebra on V is the graded vector space ∧V with the
comultiplication defined by

∆(v) = v ⊗ 1 + 1⊗ v,
on the generators and extended to ∧V declaring ∆ : ∧V → ∧V ⊗ ∧V an algebra mor-
phism.

The dual C] = Hom(C,Q) of a cdgc C is a cdga with the product

(αβ)(c) = (α⊗ β)(∆c)

for α, β ∈ C], c ∈ C.
Finally recall that there are a pair of adjoint functors

cdgc dglL

C

given as follows: if C is a cdgc, then L (C) is (L(s−1C̄), d) where d = d1 + d2 and

d1(s−1dc) = −s−1dc, d2(s−1c) = 1
2[−,−] ◦ (s−1 ⊗ s−1) ◦ ∆̄(c)

for c ∈ C, and C (L) is ∧(sL), d) where d = d1 + d2 and

d1(sv1 ∧ · · · ∧ svn) = −
n∑
i=1

(−1)nisvi ∧ · · · ∧ s(dvi) ∧ · · · ∧ svn

d2(sv1 ∧ · · · ∧ svn) =
∑

1≤i<j≤n
(−1)|svi|ρijs[vi, vj ] ∧ sv1 ∧ · · · ∧ ŝvi ∧ · · · ∧ ŝvj ∧ · · · ∧ svn

where ni =
∑
j<i |svj | and ρij is the Koszul sign of the permutation

sv1 ∧ · · · ∧ svn 7→ svi ∧ svj ∧ svi ∧ · · · ∧ ŝvi ∧ · · · ∧ ŝvj ∧ · · · ∧ svn.

In particular, we have the expressions

d1(sv) = −sdv, d2(sv ∧ sw) = −(−1)|v|s[v, w].

For a dgl L, the counit of the adjunction is the dgl morphism

αL : L C (L) = (L(s−1 ∧+ sL), d)→ L

defined by
αL(s−1sx) = −x, αL(s−1 ∧≥2 sL) = 0.

For any dgl L, αL is a quasi-isomorphism (see [14, Proposition 2.3]).
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CHAPTER 2

H-fibration sequences and classifying spaces

Fibrations with a given fiber were initially classified in the paper of Stasheff [48]. There
are several references about this topic, extending the initial theorem (see [4, 20, 32]) or
the notion of classifying fibrations of a certain type (see [19, 53]). Through these texts
we find a classifying space, namely B aut(F ), such that the set of homotopy classes of
maps JB,B aut(F )K is in bijective correspondence with the set of equivalence classes of
fibrations over B with fiber F , where both B and F are of the homotopy type of a CW-
complex. Here aut(F ) is the monoid of self-homotopy equivalences of F and B aut(F )
the geometric-bar construction associated to this monoid.

Here, and broadly speaking, we classify fibrations with a prescribed holonomy action:
more concretely, given a subgroup H of the group E(F ) = π0(aut(F )) we are interested
in the monoid autH(F ) ⊂ aut(F ) consisting on the connected components of maps whose
homotopy classes live in H. From this monoid, we get a new space B autH(F ). The main
purpose of this chapter is to show that this is, again, a classifying space: concretely, it
classifies fibrations with fiber F such that the action fundamental group of the base on
the fiber is contained in H 6 E(F ).

Though this fact may be known (see [9, §4]), there is no formal treatment of this
topic in the literature. In the first section of this chapter, the concepts introduced
above will be rigorously presented along with some necessary properties. In section 2,
the classification theorem will be proved. Finally, in section 3 the relative case will be
treated by considering homotopy automorphisms which keep unaltered a given subspace
of the fiber.

Throughout this chapter we are going to use the results and notation of [32].

2.1 Definition and properties

In this section we recall some known facts about fibrations and the geometric-bar con-
struction, and we introduce the new concept of H-fibration sequences.

51
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2.1.1 Fibrations

A (Hurewicz) fibration is a continuous map π : E → B such that it satisfies the homotopy
lifting property with respect to any space X.

The following conventions are going to be used: we assume that B is an object
in CW and is connected with basepoint b0. In particular, π−1(b) ' π−1(b0) for all
b ∈ B. Whenever we have a path β : [0, 1]→ B, the map β : X × [0, 1]→ B will denote
β(x, t) = β(t) and a map between a subspace and the total space without any label will
denote the inclusion. Similarly X → X × [0, 1] will denote the inclusion at 0.

For F an object in CW, we say that a fibration π : E → B has fiber weakly equivalent
to F if π−1(b) is weakly equivalent to F for some (every) point b ∈ B.

A fibration sequence is a sequence

F
ω−→ E

π−→ B

where π is a fibration and ω : F → π−1(b0) is a weak homotopy equivalence. A map
between two fibration sequences F ω1−→ E1

π1−→ B and F ω2−→ E2
π2−→ B is a homotopy

commutative diagram of the form,

E1

F B

E2

π1

f

ω1

ω2 π2

(2.1)

In particular, f is a weak homotopy equivalence and there is no loss of generality
if the right triangle is imposed to be strictly commutative, due to the lifting properties
of π1 and π2. The maps of fibration sequences generate (by imposing symmetry and
transitivity) an equivalence relation and we denote by Fib(B,F ) the quotient set.
Remark 2.1. There is an important clarification that has to be made: this definition of
Fib(B,F ), which is the one considered in [20], differs with the one considered in [48] or
[32]. There, they consider fibrations π : E → B whose fiber is weakly equivalent to F , but
no explicit weak equivalence is given. Both approaches give rise to different equivalence
classes and, therefore, to different classifying spaces. However, in [33, Explanation below
Theorem 1.2] it is proved that both classifying spaces are weakly equivalent. Since the
base spaces are always considered to be in CW, both approaches coincide in our setting.

For a given fibration π : E → B, let us recall the action of the fundamental group of
the base on the homotopy automorphisms of the fiber.

Given a path β : [0, 1] → B with β(0) = b0 and β(1) = b1, let F0 = π−1(b0) and
F1 = π−1(b1) be the fibers at those points. Apply the homotopy lifting property to the
following diagram

F0 E

F0 × [0, 1] B

π
h

β
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to obtain a map h : F0 × [0, 1]→ E. Then, define

β̄ = h(−, 1) : F0 → F1

Since the choice of the lifting is not unique, different choices would give different but
homotopic maps. In other words, β̄ is unique up to homotopy. This is proved more
generally in the following proposition.

Proposition 2.2. Given a fibration π : E → B, a path β : [0, 1] → B, a space X and
a map f : X → π−1(β(0)) ⊂ E. Then, two maps h0, h1 making the following diagram
commutative,

X E

X × [0, 1] B

f

π
h0,h1

β

are fiberwise homotopic. This means that there exists a homotopy between h0 and h1

h′ : X × [0, 1]× [0, 1]→ E

such that h′(x, t, s) ∈ π−1(β(s)) for all s ∈ [0, 1].

Proof. Consider
C = [0, 1]× {0} ∪ {0, 1} × [0, 1] ⊂ [0, 1]2

f ′ : X × C → E, f ′(x, t, 0) = f(x, t), f ′(x, 0, t) = h0(x, t), f ′(x, 1, t) = h1(x, t)

which make the following diagram commutative

X × C E

X × [0, 1]× [0, 1] B

f ′

π
h′

β
.

Since the pair ([0, 1]× [0, 1], C) is homeomorphic to ([0, 1]× [0, 1], [0, 1]×{0}) we can
apply the homotopy lifting property to obtain a map h′ = X × [0, 1]× [0, 1]→ E. Since
h′(x, 0, t) = h0(x, t) and h′(x, 1, t) = h1(x, t), this implies that h0 and h1 are fiberwise
homotopic.

Similarly, using the homotopy lifting property, and the uniqueness (up to homotopy)
of the lifting described in the Proposition 2.2, other properties of the map β̄ can be
deduced:

• If β1 '{0,1} β2 are homotopic paths (with respect to their endpoints) then β̄1 ' β̄2.

• The map β̄ : π−1(β(0))→ π−1(β(1)) is a homotopy equivalence.

• The composition of paths β1β2 gives a map β1β2 ' β̄2 ◦ β̄1.
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When β(0) = β(1) = b0, we get a homotopy equivalence β̄ : F0 → F0 = π−1(b0) for
each element [β] ∈ π1(B, b0). In what follows we refer to β̄ as the lifting of β in the given
fibration sequence.

Definition 2.3. For a map π : E → B, we define

ΓE = {(x, β) ∈ E ×BI | β(0) = π(x)}

Γπ : ΓE → B, (x, β) 7→ β(1).

For an arbitrary map π : E → B, Γπ : ΓE → B is a fibration, whose fiber is

F = (Γπ)−1(b0) = {(x, β) ∈ E ×BI | β(0) = π(x), β(1) = b0}.

The space F is called the homotopy fiber of π.
There is a natural homotopy equivalence given by the inclusion

i : E → ΓE, x 7→ (x, cπ(x))

where cπ(x) is the constant path at π(x).
A map π : E → B is called a quasi-fibration if the inclusion i : E → ΓE induces a

weak homotopy equivalence

i : π−1(b) 'w−→ (Γπ)−1(b)

for all b ∈ B.

Definition 2.4. A quasi-fibration sequence is a sequence F ω−→ E
π−→ B with ω(E) ⊂

π−1(b0), where π is a quasi-fibration and the map

i ◦ ω : F → F,

given by the composition of ω and the inclusion E → ΓE, is a weak homotopy equiva-
lence.

By the associated fibration sequence of a quasi-fibration sequence, we mean the fiber
sequence

F
i◦ω−→ ΓE Γπ−→ B,

We say that two quasi-fibration sequences are equivalent if their associated fibration
sequences are equivalent.

2.1.2 H-fibration sequences

Consider the topological monoid:

G = aut(F ) = {ϕ : F → F | ϕ homotopy equivalence}

with the compact-open topology; it is clearly grouplike as π0(G) is the group of homotopy
classes of self homotopy equivalences of F , with the operation given by the composition.
Henceforth, we denote π0(G) by E(F ).
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Definition 2.5. Let H be a subgroup of E(F ), then, define

H = autH(F ) = {ϕ : F → F | ϕ ∈ aut(F ), ϕ ∈ H},

Note that H is a topological submonoid of G, consisting of the union of some of its
connected components.

Example 2.6. One way of constructing subgroups of E(F ) is via a functor H : Ho top→
C from the homotopy category of the category of topological spaces to an arbitrary cat-
egory C. Consider

H = {ϕ ∈ aut(F ) |H (ϕ) = id: H (F )→H (F )}

and H = π0(H). In other words,

H = ker(aut(F ) H−→ aut(H (F ))).

Thus H = π0(H) is the subgroup of E(F ) obtained as the kernel of the natural morphism

E(F )→ aut(H (F )).

These subgroups have proved to be important in many situations and have been
deeply studied (see for example [52], [29] or [1]). Just to name a few notable instances,
observe that choosing H to be the homotopy or homology groups of a given space, H
became the well known subgroups Eπ(F ) or EH(F ) of E(F ). These consist of homotopy
classes of homotopy automorphisms of F inducing the identity on homotopy or homology
groups. Note that, for Eπ(F ), one has to think of H as defined on the pointed homotopy
category Ho top∗.

Also, choosing H to be the loop or suspension function (again, in the first case, this
is defined on Ho top∗), one finds H to be the subgroups EΩ(F ) and EΣ(F ) of Eπ(F )
and EH(F ) respectively, consisting of homotopy classes of homotopy automorphism that
become the identity once you loop or suspend them respectively (see [15] or [40] ).

Recall from the “notation and conventions” section that JX,Y K stands for (free)
homotopy classes of maps from X to Y . By a classical result [36, Theorem 3] given
the weak homotopy equivalence ω : F → F0, with F a CW-complex, the map ω∗ is a
bijection:,

JF, F K JF, F0K
ω∗

Ψω
.

We denote by Ψω the inverse function.

Definition 2.7. Given a fibration sequence F ω−→ E
π−→ B, define the holonomy action

of π1(B, b0) on the fiber as the map

π1(B, b0) → E(F )
β 7→ β̂ = Ψω[β̄ ◦ ω].

Note that this map is well defined as any representative of β̂ is a weak equivalence
and F is a CW-complex. Note also that a map g is in the class of β̂ if and only if
ω ◦ g ' β̄ ◦ ω.
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Now, we introduce the main concept of this section.

Definition 2.8. Given a subgroup H of E(F ), we say that F ω−→ E
π−→ B is an H-

fibration sequence if the image of the holonomy action is contained in H. In other words,
if for all β ∈ π1(B, b0), β̂ ∈ H.

Proposition 2.9. Given a map of fibration sequences over B with fiber F , if one of the
fibration sequence is an H-fibration sequence, the other one also is.

Proof. As warned, we do not distinguish here a map from its homotopy class. Consider
a diagram as (2.1), and let β̄i be the corresponding lifting of a path β for i = 1, 2. Then,
by Proposition 2.2,

f ◦ β̄1 ' β̄2 ◦ f.

Composing with ω1, and using that f ◦ ω1 = ω2, we obtain

ω2 ◦ β̂1 ' ω2 ◦ β̂2.

Hence β̂1 ' β̂2 and we get the result.

Recall that, given a fiber sequence F ω−→ E
π−→ B and a based map f : (A, a0) →

(B, b0), the pullback fibration sequence is defined as

F
f∗ω−→ f∗E = {(x, a) ∈ E ×A | f(a) = π(x)} f∗π−→ A

where f∗ω(x) = (ω(x), a0) and f∗π(x, a) = a.

Definition 2.10. Given H a subgroup of E(F ), we denote by FibH(B,F ) ⊂ Fib(B,F )
the set of equivalence classes of H-fibration sequences over B with fiber F .

By Proposition 2.9, this is a well defined set.
It is immediate to check that the pullback fibration sequence of an H-fibration se-

quence is an H-fibration sequence , hence we can define a contravariant functor

FibH(−, F ) : CW→ set

in the obvious way.
Furthermore, by [34, Chapter 7, Section 5] and [32, Proposition 2.5], homotopic maps

induce equivalent pullback fibration sequences. Therefore, FibH(−, F ) defines in fact a
contravariant functor from the homotopy category of CW:

FibH(−, F ) : Ho CW→ set .

The goal of the rest of the chapter is constructing a classifying object for this functor,
that is, an object B∞ such that FibH(−, F ) is naturally isomorphic to J−, B∞K.

Definition 2.11. An H-quasi-fibration sequence is a quasi-fibration sequence F ω−→
E

π−→ B whose associated fibration sequence is an H-fibration sequence, given H a
subgroup of E(F ).
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2.1.3 Geometric bar construction

In this section, let G be an arbitrary topological monoid such that its identity element
e is a strongly nondegenerate basepoint and let X and Y be left and right G-spaces
respectively. The geometric bar construction is defined as follows.

Definition 2.12. The simplicial topological space B∗(Y,G,X) has as j-simplices the
space Y ×Gj ×X. The face and degeneracy maps are defined by:

di(y, g1, . . . , gj , x) =


(y · g1, g2, . . . , gj , x) if i = 0

(y, g1, . . . , gi−1, gigi+1, gi+2, . . . , gj , x) if 1 ≤ i < j
(y, g1, . . . , gj−1, gj · x) if i = j

si(y, g1, . . . , gj , x) = (y, g1, . . . , gi, e, gi+1, . . . , gj , x)

Define B(Y,G,X) as the geometric realization of B∗(Y,G,X). A triple consisting of
a morphism f : G → G′ of topological monoids and f -equivariant maps g : Y → Y ′ and
h : X → X ′ induces a map

B(g, f, h) : B(Y,G,X)→ B(Y ′, G′, X ′).

Hence B can be thought of as a functor on any of the variables. We define

BG = B(∗, G, ∗), EG = B(∗, G,G),

and choose the basepoint of BG as the only 0-simplex.

In particular, the trivial map X → ∗ is a G-map and it induces the map

pG,X : B(∗, G,X)→ B(∗, G, ∗) = BG.

We write p = pG,X if there is no possible confusion. If G is a grouplike topological
monoid, i.e. π0(G) is a group, then [32, Theorem 7.6] asserts that p is a quasi-fibration
with fiber X. Note that X ↪→ B(∗, G,X) is the inclusion of the 0-simplices of B(∗, G,X).
In particular, this implies that the inclusion

i : X → F = (Γp)−1(∗) = {(z, β) | z ∈ B(∗, G,X), β : [0, 1]→ BG, p(z) = β(0), β(1) = ∗}

given by i(x) = (x, c∗) is a weak homotopy equivalence, where ∗ ∈ BG, as chosen above,
is the unique 0-simplex and x ∈ B(∗, G,X) lies in the 0-simplices of B(∗, G,X).

Consider now, the 1-skeleton of these spaces. From the definition of B∗(∗, G, ∗), the
1-skeleton B̂G of BG is

B̂G = sk1(BG) = G× [0, 1]
(g, 0) ∼ (g′, 1) ∼ (e, t) ∼ ∗ ,

where g, g′ ∈ G, e is the identity element in G and t ∈ [0, 1]. Similarly,

B̂(∗, G,X) = sk1(B(∗, G,X)) = G×X × [0, 1]
(g, x, 0) ∼ (g′, x′, 1) ∼ (e, x, t), for g′ · x′ = x

.
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When G is grouplike, by [32, Proposition 8.7], there is a weak homotopy equivalence

ξ : G 'w−−→ ΩBG

given by g 7→ ξg where

ξg : [0, 1]→ B̂G ⊂ BG, ξg(t) = (g, t).

Some lemmas are necessary for proving the main theorem. The first one allows us to
get information about the quasi-fibration p.

Lemma 2.13. Let G be a grouplike topological monoid with e a strongly nondegenerate
basepoint and X a left G-space. Given a loop γ : [0, 1]→ BG, γ(0) = γ(1) = ∗, the lifting
γ̄ in the fibration Γp : ΓB(∗, G,X)→ BG, is given by the juxtaposition

γ̄ : F → F, (z, β) 7→ (z, βγ)

where F = (Γp)−1(∗) is the fiber described above.
Furthermore, for each g ∈ G, the following diagram, where the upper map is the

multiplication by g, commutes up to homotopy:

X X

F F

g

i'w i'w
ξ̄g

.

Proof. The map γ̄ is well-defined since p(z) = β(0), β(1) = γ(0) = γ(1) = ∗. Recall from
Section 2.1 that we need to find a map h making this diagram commutative:

F ΓB(∗, G,X)

F × [0, 1] BG

Γph

γ
.

Here the upper horizontal arrow is the inclusion of the fiber F. Defining h as h(z, β, t) =
(z, βγ |[0,t]), the previous diagram clearly commutes and, since h(z, β, 1) = (z, βγ) =
γ̄(z, β), we have proved the first claim.

For the second claim, fix g ∈ G. We need to see that the two maps i ◦ g and
ξ̄g ◦ i : X → F are homotopic. These maps are,

i ◦ g : X → F, x 7→ ((e, g · x, 0), c∗) ∈ F̂,

ξ̄g ◦ i : X → F, x 7→ ((e, x, 0), c∗ξg) ∈ F̂,

where F̂ ⊂ F is the following subset of F:

F̂ = {(z, β) | z ∈ B̂(∗, G,X), β : [0, 1]→ BG, p(z) = β(0), β(1) = ∗}.
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Consider the following map

φ : X × [0, 1]→ F̂ ⊂ F, φ(x, s) = ((g, x, s), ξg |[s,1]).

This map is well-defined as for given x ∈ X and s ∈ [0, 1], ξg |[s,1] (0) = ξg(s) =
(g, s) = p(g, x, s) and ξg |[s,1] (1) = ξg(1) = (g, 1) ∼ ∗. Evaluating at s = 0 and s = 1, we
get:

φ(x, 0) = ((g, x, 0), ξg) = ((e, x, 0), c∗ξg)

φ(x, 1) = ((g, x, 1), ξg |[1,1]) = ((e, g · x, 0), c∗)

since c∗ξg = ξg, ξg |[1,1]= c∗, (g, x, 0) ∼ (e, x, 0) and (g, x, 1) ∼ (e, g · x, 0). Therefore, φ is
a homotopy between i ◦ g and ξ̄g ◦ i, which completes the proof.

The following is proved by a straightforward verification.

Lemma 2.14. Let H and G be grouplike topological monoids where identity elements
are strongly nondegenerate basepoints in both cases. Let X be a left H-space and a left
G-space and let f : H → G be a map of grouplike topological monoid such that

g · x = f(g) · x

for any g ∈ H and x ∈ X. Write µ = Bf : BH → BG, µ′ = B(∗, f, id) : B(∗, H,X) →
B(∗, G,X) and

µ̃ : ΓB(∗, H,X)→ ΓB(∗, G,X), µ̂(z, β) = (µ′(z), µ ◦ β).

Then, µ̂ is well-defined, and the following diagram is commutative.

B(∗, H,X) B(∗, G,X)

ΓB(∗, H,X) ΓB(∗, G,X)

BH BG

i

µ′

p

i

p

µ̃

Γp Γp
µ

.

Proof.

By [32, Proposition 7.8] the map µ′ is a weak homotopy equivalence when is restricted
to the fibers and so are the maps i, since the maps p are quasi-fibrations. We deduce
that µ̃ is a weak homotopy equivalence when restricted to the fibers.

Finally, we need the following result about fibrations with a ‘weakly discrete’ fiber.
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Lemma 2.15. Let ρ′ : X ′ → Y ′ be a quasi-fibration between connected spaces, with fiber
weakly equivalent to a discrete set. Then, there is a homotopy commutative diagram

X X ′

Y Y ′

κ
'w

ρ ρ′

λ
'w

where X and Y are CW-complexes, κ and λ are weak homotopy equivalences, and ρ is
the covering map corresponding to the subgroup π1(X ′) of π1(Y ′).

Proof. It is a just a straightforward application of the CW approximation theorem and
the properties of covering maps.

2.2 Classifying theorem

From now on, let F be an object in CW and G = aut(F ). Fix H a subgroup of E(F ),
write H = autH(F ) and denote by j : H → G the inclusion of the monoids. Note that
F can be considered as a left G- and H-space with the obvious action ϕ · x = ϕ(x) for
x ∈ F .

Remark 2.16. The condition of the unity e being a strongly nondegenerate basepoint
could not be satisfied. In that case we will use the ‘whiskering construction’ (see [35,
A.8]): let G̃ = G ∨ [0, 1] be the topological space obtained by growing a whisker from e.
It can be made a topological monoid by the formula

g · t = g = t · g

for g ∈ G and t ∈ [0, 1], the usual multiplication in [0, 1] and the given product in G. Note
that 1 is the new identity element in G̃. The deformation retract G̃→ G is a morphism
of monoids, which, in particular, implies that π0(G̃) = π0(G). Define H̃ analogously and
H̃. Let j̃ : H̃ → G̃ be the inclusion of topological monoids.

Note that in both cases, j and j̃ are inclusion of connected components, which implies
that:

πn(j) : πn(H)→ πn(G), πn(j̃) : πn(H̃)→ πn(G̃)

are isomorphisms for n ≥ 1. Note also that both G̃ and H̃ act on F , defining t · x = x
for t ∈ [0, 1].

Whenever e ∈ G = aut(F ) is not a strongly nondegenerate basepoint, replace G by
G̃ and H by H̃. This change does not affect the results to follow (see [32, §9.3] for more
details).

We present now the main theorem of this chapter.



Classifying theorem 61

Theorem 2.17. For any CW-complex B, the set of equivalence classes of H-fibrations
over B with fiber F is naturally isomorphic to JB,BHK. The bijection is given explicitly
by

ΛH : JB,BHK→ FibH(B,F )

which sends a map f : B → BH to the H-fibration sequence

F
f∗i−→ f∗ΓB(∗, H, F ) f

∗Γp−→ B.

We say that
F −→ B(∗, H, F ) p−→ BH

is the universal H-quasi-fibration sequence.
The the rest of the section is devoted to prove this theorem.

Proposition 2.18. The sequence F −→ B(∗, H, F ) p−→ BH is an H-quasi-fibration
sequence.

Proof. Fix ∗ ∈ BH, the unique 0-simplex as the basepoint. We need to check that
for any γ ∈ π1(BH, ∗), the class γ̂ ∈ E(F ), produced by the holonomy action of the
quasi-fibration p (see Definition 2.7), actually lives in H.

Since H ξ−→ ΩBH is a weak homotopy equivalence, π1(BH) ∼= π0(H) and we only
need to check that ξ̂g ∈ H for g ∈ H. By the Lemma 2.13, the following diagram
commutes up to homotopy:

F F

F F

g

i'w i'w
ξ̄g

.

Here F = (Γp)−1(∗) and i : F → F is a weak homotopy equivalence. Then, by definition,

ξ̄g ◦ i ' i ◦ g,

which implies that g = ξ̂g in E(F ). In particular ξ̂g ∈ H, which concludes the proof.

As a consequence of this proposition and [32, Proposition 2.5], given an object B ∈
CW, we get a map

ΛH : JB,BHK→ FibH(B,F )

which sends the homotopy class of a map f : B → BH to the fiber sequence

F
f∗i−→ f∗ΓB(∗, H, F ) f

∗Γp−→ B.

Remark 2.19. Without loss of generality we can assume f to be basepoint preserving,
for a given non degenerate basepoint of B. This means that the set of (free) homotopy
classes of maps and the set of (free) homotopy classes of based maps are equal. Do not
confuse with the, generally different, set of based homotopy classes of based maps.
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Our next goal is to ‘transform’ the map Bj : BH → BG into a covering map ρ : X →
Y .

Proposition 2.20. There exists a homotopy commutative diagram

X BH

Y BG

κ
'w

ρ Bj

λ
'w

where X and Y are CW-complexes, λ and κ are weak equivalences and ρ is the covering
map given by the subgroup H ⊂ E(F ).

Proof. Our goal is to check that Bj : BH → BG is a quasi-fibration with a weakly
discrete fiber, in order to apply lemma 2.15.

Write H\G = B(∗, H,G). Then, by [32, Remark 8.9] there is a commutative diagram

BH B(H\G,G, ∗) B(H\G,G, ∗)

BG B(G\G,G, ∗) BG

Bj q

where all the horizontal maps are weak homotopy equivalences and q : B(H\G,G, ∗)→
B(∗, G, ∗) is induced by H\G → ∗, which is a quasi-fibration with fiber H\G by [32,
Theorem 7.6]. In particular, this exhibits Bj as a quasi-fibration.

With this information, we get a long exact sequence of homotopy groups:

· · · πn(H\G) πn(BH) πn(BG) πn−1(H\G) · · ·πn(Bj)

Since H = autH(F ) ⊂ G = aut(F ) is defined as a union of connected components,
we have that

πn(j) : πn(H)→ πn(G)

is an isomorphism for n ≥ 1 and π0(j) is the inclusion of H in E(F ). Then, by the natural
weak homotopy equivalence G 'w ΩBG, we have that

πn(Bj) : πn(BH)→ πn(BG)

is a isomorphism for n ≥ 2. In addition note that H\G, BH and BG are connected.
Hence, we deduce that,

πn(H\G) = 0, for n ≥ 1 and π0(H\G) = E(F )/H.

In other words, H\G is weakly homotopic to a discrete space and applying Lemma
2.15 we get the desired result.
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In particular, for B ∈ CW, we get a commutative diagram

JB,XK JB,BHK

JB, Y K JB,BGK.

κ◦−
∼=

ρ◦− Bj◦−

λ◦−
∼=

By the lifting properties of the covering maps, the map

ρ ◦ − : JB,XK→ JB, Y K

is injective, so we conclude that Bj ◦ − is also injective.
The situation can be summarized in the diagram of sets

JB, Y K JB,BGK Fib(B,F )

JB,XK JB,BHK FibH(B,F )

λ◦−
∼= ∼=

Λ

κ◦−
∼=

ρ◦− Bj◦−
ΛH ,

where the vertical arrows are inclusions of subsets, the map Λ is the bijection given
by [32, Theorem 7.5] and ΛH is the map described above.

Lemma 2.21. The diagram above is commutative.

Proof. We have seen that the left square is commutative. We see now that the right
square also is.

Since the pullbacks of equivalent fibration sequence are equivalent, note that it is
enough to prove that

ΓpH,F : ΓB(∗, H, F )→ BH

and
(Bj)∗ΓpG,F : (Bj)∗ΓB(∗, G, F )→ BH

are equivalent fibrations.
By the properties of the pullback we have a map τ fitting in this commutative diagram

ΓB(∗, H, F )

(Bj)∗ΓB(∗, G, F ) ΓB(∗, G, F )

BH BG

µ̃

ΓpH,F

τ

(Bj)∗ΓpG,F ΓpG,F
Bj

where µ̃ is defined and studied in Lemma 2.14. In that lemma, we saw that, when
restricted to fibers, µ̃ is a weak homotopy equivalence, so we deduce that τ also is.
Therefore, we conclude that both fibrations are equivalent.
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Recall that we have proved that the diagram

JB,BGK Fib(B,F )

JB,BHK FibH(B,F )

∼=
Λ

ΛH

is commutative. In particular, the map ΛH is injective. We will prove that ΛH is also
surjective. We first need the following.

Lemma 2.22. Let F ω−→ E
π−→ B be an H-fibration sequence which , via Λ−1, it

corresponds with a map f : B → BG. Then, the image of

π1(f) : π1(B)→ π1(BG) ∼= E(F )

is contained in H.

Proof. Recall from [32, Theorem 7.5] how the bijection Λ: JB,BGK → Fib(B,F ) is
constructed. Given a fibration π : E → B with fiber weakly equivalent to F , consider
the commutative diagram

PE B(PE,G,G) EG

B B(PE,G, ∗) BG

Pπ

q

p p

ϕ

q
.

Then, the inverse of Λ is given by:

Λ−1 : Fib(B,F )→ JB,BGK, (π : E → B) 7→ (f = q ◦ ϕ : B → BG).

In the diagram above, the arrows pointing left are weak homotopy equivalences, so
we can find the map ϕ, a right homotopy inverse.

The space PE is the subspace of homtop(F,E) of maps ψ : F → E such that ψ(F ) ⊂
π−1(b) for some b ∈ B and ψ : F → π−1(b) is a weak homotopy equivalence. See [32,
Definition 4.3] for more details. The map Pπ : PE → B, which sends ψ to ψ(F ), is a
fibration with fiber weakly equivalent to G.

To choose basepoints in the spaces of the diagram it is enough to take a basepoint
in B(PE,G,G) and declare all maps to be pointed. The 0-simplices of B(PE,G,G)
is PE × G and we choose as basepoint (ω, e) with e the identity element of G and
ω : F → F0 = π−1(b0) ⊂ E the weak homotopy equivalence given in the input.

We now recall some facts about the fibration Pπ : PE → B whose fiber is

F = (Pπ)−1(b0) = {ψ : F → F0 | ψ is a weak homotopy equivalence}.
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Given a loop β at b0, we first compute β̇ : F → F , the lifting of β in Pπ : PE → B. By
the homotopy lifting property we have a commutative diagram

F0 E

F0 × [0, 1] B

π

β

h

where β̄ = h(−, 1) is the lifting of β in the fibration. Consider the map

ḣ : F × [0, 1]→ F , (ψ, t) 7→ h(−, t) ◦ ψ : F → π−1(β(t)).

It is immediate to check that this map fits in the following diagram:

F PE

F × [0, 1] B

Pπ

β

ḣ

.

Therefore

β̇ = ḣ(−, 1) : F → F , ψ 7→ β̄ ◦ ψ : F → F0.

By [32, Propositions 7.5 and 7.8] the first diagram in the proof represents maps of
quasi-fibrations with fiber weakly equivalent to G. Hence, we have the following diagram,
where the columns are quasi-fibration sequences,

F G G

PE B(PE,G,G) EG

B B(PE,G, ∗) BG

ω◦− id

Pπ

q

p p

ϕ

'w q
.

Consider the basepoints previously described and e ∈ G,ω ∈ F as basepoints in the
fibers. Then, we have the following commutative diagram, where the columns are exact
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sequences:
...

...
...

π1(PE) π1(B(PE,G,G)) 0

π1(B) π1(B(PE,G, ∗)) π1(BG)

π0(F) π0(G) π0(G)

...
...

...

π1(Pπ) π1(p)

π1(q)

δ

∼= π1(q)

∼=
ω◦− id

Recall that ω ◦− : π0(F)→ π0(G) is a bijection, whose inverse map is Ψω. Therefore,
we can compute π1(f) using the commutativity of the diagram above.

π1(f) = Ψω ◦ δ : π1(B)→ π0(G) ∼= π1(BG).

In particular, given a loop β : [0, 1]→ B with β(0) = β(1) = b0,

π1(f)([β]) ∈ π0(H)

if and only if there exists g ∈ H such that ω ◦ g ' δ(β).
On the other hand, observe that δ : π1(B)→ π0(F) is given by evaluating β̂ : F → F

at the basepoint. That is,

δ(β) = ω ◦ β̂ = β̄ ◦ ω : F → F0.

Therefore, if we suppose that F ω−→ E
π−→ B is an H-fibration sequence, that is,

β̂ ∈ H, we conclude that the image of π1(f) : π1(B)→ π1(BG) ∼= π0(G) is also contained
in π0(H) = H.

Proposition 2.23. The map ΛH : JB,BHK→ FibH(B,F ) is surjective.

Proof. Along this section we have constructed a commutative diagram:

JB, Y K JB,BGK Fib(B,F )

JB,XK JB,BHK FibH(B,F )

λ◦−
∼= ∼=

Λ

κ◦−
∼=

ρ◦− Bj◦−
ΛH .

Suppose that we start with an H-fibration sequence F ω−→ E
π−→ B. Via Λ−1 we get

a map f : B → BG. Using the upper left bijection, we get a map f ′ : B → Y such that
λ ◦ f ′ ' f . Consider now the morphism

π1(f ′) = π1(λ)−1 ◦ π1(f) : π1(B)→ π1(Y ).
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By Lemma 2.22 the image of π1(f) is contained in H, so we conclude that

π1(f ′)(π1(B)) ⊂ π1(ρ)(π1(X)).

This is the condition needed to lift the function f ′ to a map f̃ : B → X such that
ρ ◦ f̃ = f ′. Then, by the commutativity of the first square, we have

Bj ◦ κ ◦ f̃ ' f

and by the commutativity of the second one

ΛH(κ ◦ f̃) = Λ(Bj ◦ κ ◦ f̃) = Λ(f)

which is equivalent to the initial fibration sequence. Therefore ΛH is surjective.

With this, we have finished the proof of Theorem 2.17 which classifies H-fibration
sequences.

2.2.1 Reformulation and extension of the universal fibration

We give here a more convenient expression of the universal H-quasi-fibration sequence.
For it, fix a basepoint x0 ∈ F and consider the grouplike monoid

G∗ = aut∗(F ) = {ϕ : F → F | ϕ homotopy equivalence and ϕ(x0) = x0}.

Similarly, define
H∗ = aut∗H(F ) = G∗ ∩H.

The evaluation map
ev: G→ F, ev(g) = g(x0)

is a fibration with fiber G∗ (see [47, §II.8, Theorem 2]). When we restrict the space G∗
to H∗, which is a collection of connected components of G∗, we get a fibration sequence

H∗ → H → F.

Recall that there is a natural homeomorphism B(X, ∗, ∗) ∼= X. The following propo-
sition and its proof are analogous to the ones presented in [3, Lemma 2.2].

Proposition 2.24. The map B(H,H∗, ∗) → B(F, ∗, ∗) ∼= F induced by (ev, ∗, id), is a
weak homotopy equivalence.

Proof. By [32, Proposition 7.9],

H∗ → H = B(H, ∗, ∗)→ B(H,H∗, ∗)

is a quasi-fibration sequence, where the second map is induced by (id, cid, id), in which
cid : ∗ → H∗ sends a point to the identity in H∗. In addition, we have the fibration
sequence

H∗ → H → F
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and we can consider the following diagram

H∗ H ∼= B(H, ∗, ∗) B(H,H∗, ∗)

H∗ H ∼= B(H, ∗, ∗) B(F, ∗, ∗)

id

i

id

B(id,cid,id)

B(ev,∗,id)

i B(ev,id,id)

which is clearly commutative. Applying the five lemma we get that

B(ev, ∗, id) : B(H,H∗, ∗)→ B(F, ∗, ∗) ∼= F

is a weak homotopy equivalence.

Theorem 2.25. The inclusion i : H∗ → H induces a quasi-fibration sequence

F → BH∗ → BH

which is equivalent to the universal H-quasi-fibration sequence

F → B(∗, H, F )→ BH.

Proof. By [32, Remark 8.9], the maps Bi : BH∗ → BH and p : B(∗, H,H/H∗)→ BH are
equivalent. Furthermore, by the previous proposition, the weak homotopy equivalence
B(H,H∗, ∗) 'w F gives us as an equivalence of maps p : B(∗, H,H/H∗) → BH and
p : B(∗, H, F0)→ BH.

As in the ordinary case, we can extend the universal quasi-fibration sequence by using
the Puppe Sequence. Given a quasi-fibration sequence F → E → B, then the Puppe
sequence

ΩB → F → ΓE

has an associated long exact sequence of homotopy groups (as if it were a fibration
sequence, but it is not in general). The map ΩB → F sends a loop β in B to (y0, β) in
F, where y0 is the basepoint of E. In our specific setting the translation of this result is
the following proposition.

Proposition 2.26. The sequence

autH(F )
evx0−−−→ F → B aut∗H(F )

has an associated long exact sequence of homotopy groups, where evx0 is the evaluation
at a fixed point and the second map is the one given in Theorem 2.25.
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Proof. Apply the Puppe sequence to the sequence given in Theorem 2.25 to get the
sequence

ΩB autH(F )→ F → B aut∗H(F )

where the first map is given by β 7→ (idF , β). Consider the following diagram, where the
vertical arrows are weak homotopy equivalences:

autH(F ) F

ΩB autH(F ) F

ev

ξ'w i'w

.

Using Lemma 2.13 it can be checked that this diagram commutes up to homotopy, which
concludes the proof.

2.3 The relative case
Consider A an arbitrary space.

Definition 2.27. Given a map π : E → B, an A-section is a map σ : A × B → E such
that:

i)
π ◦ σ = projB : A×B → B.

ii) For all b ∈ B, the following map is a homeomorphism,

σb = σ |A×{b} : A
∼=−→ σb(A) ⊂ π−1(b) ⊂ E.

Note that if we take A = ∗, the condition ii) trivially holds and we recover the usual
notion of a section.

Given a pair A ⊂ F , using CW approximation, we can assume that they are both
CW complexes and the inclusion is a cofibration.

Definition 2.28. An (F,A)-fibration sequence is a fibration-sequence

F
ω−→ E

π−→ B

with an A-section σ : A×B → E such that ω(A) ⊂ σb0(A) and

ω |A= σb0 : A→ σb0(A).

We write A0 = σb0(A) ⊂ F0 = π−1(b0).
Again, if we take A = ∗, we recover the usual notion of based fibration (see [32, §5]).

Remark 2.29. In [32, Definition 5.2], the map σ is required to be a fiberwise cofibration.
However in [32, Addenda] a way to avoid this requirement is explained, via growing
whiskers on fibers. We are going to use this construction, so the condition of being a
fiberwise cofibration is omitted.
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Definition 2.30. A map of (F,A)-fibration sequences over B is a map of fibration
sequences f , such that the A-sections make the following diagram commutative:

E1

A×B

E2

f

σ1

σ2

The maps of (F,A)-fibration sequences generate a equivalence relation, and we denote
by Fib(B, (F,A)) the set of equivalence classes.
Remark 2.31. In [32] only the case A = ∗ is considered and classified. However, in [22,
Appendix B] the results of [32] are extended and generally in order to cover this case.

In particular, [32, Theorem 9.2] generalizes to the following statement:

Theorem 2.32. There is a bijection of sets

Λ: JB,B autA(F )K→ FibA(B, (F,A))

given by taking the pullback with respect to the universal (F,A)-quasi-fibration sequence

F −→ B(∗, autA(F ), F ) p−→ B autA(F ).

Here autA(F ) is the following topological monoid

autA(F ) = {ϕ : F → F | ϕ homotopy equivalence and ϕ |A= idA}.

Note that, sinceA is a trivial autA(F )-space, the map p : B(∗, autA(F ), F )→ B autA(F )
has an A-section given by

σ : B autA(F )×A = B(∗, autA(F ), A)→ B(∗, autA(F ), F ).

We consider now the whisker construction, which has been mentioned above.

Definition 2.33. Given a (F,A)-fibration sequence F ω−→ E
π−→ B, with A-section σ,

define F̃ ω̃−→ Ẽ
π̃−→ B, where

Ẽ = A×B × [0, 1] t E
(a, b, 0) ∼ σ(a, b),∀a ∈ A, b ∈ B , F̃ = A× [0, 1] t F

(a, 0) ∼ a,∀a ∈ A,

ω̃(x) = ω(x), ω̃(a, t) = (a, b0, t), π̃(y) = π(y), π̃(a, b, t) = b,

for any x ∈ F, y ∈ E, a ∈ A, b ∈ B and t ∈ [0, 1].

Note that F̃ ω̃−→ Ẽ
π̃−→ B is a fibration sequence and ω̃ : F̃ → F̃0 = π̃−1(b0) is a weak

homotopy equivalence.
We next construct a holonomy action which respects the subspace A.
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Proposition 2.34. Given an (F,A)-fibration sequence F
ω−→ E

π−→ B and a path
β : [0, 1]→ B, β(0) = b0, there is a lifting h in the following diagram

F̃0 Ẽ

F̃0 × [0, 1] B

π̃
h

β

such that h((a, b0, 1), s) = (a, β(s), 1), for any a ∈ A and s ∈ [0, 1].

Proof. Consider the maps

i′ : F̃0 → E, β′ : F̃0 × [0, 1]→ B,
x 7→ x, (x, s) 7→ β(s),
(a, b0, t) 7→ σ(a, β(t)), ((a, b0, t), s) 7→ β(t+ s),

where x ∈ F0, a ∈ A, t ∈ [0, 1] ⊂ F̃0 and s ∈ [0, 1]. Here, we are using the convention
β(t) = β(1) if t > 1. Then, the following diagram commutes

F̃0 E

F̃0 × [0, 1] B

i′

π

β′

φ

,

and, therefore, there is a lifting φ : F̃0 × [0, 1] → E. Define the following map h : F̃0 ×
[0, 1]→ Ẽ:

(x, s) 7→ φ(x, s), ((a, b0, t), s) 7→


(a, β(s), 2t−s

2−s ), if s ≤ 2t

φ(a, 2t, s− 2t), if s ≥ 2t

where x ∈ F0, a ∈ A and t ∈ [0, 1] ⊂ F̃ . Note that h(1, s) = (β(s), 1). It easy to check
that this map is continuous, well defined and that it fits in the diagram,

F̃ Ẽ

F̃ × [0, 1] B

π̃
h

β
,

where the upper map is the inclusion and, as usual, β(−, s) = β(s). Then h is the
required map.

Observe that h plays the role of the usual lifting of a given path β of B. In this
context define β̃ = h(−, 1) : F̃0 → π̃−1(β(1)). In particular, if [β] ∈ π1(B, b0), then

β̃ : F̃0 → F̃0
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is a homotopy equivalence such that β̃(a, b0, 1) = (a, b0, 1) for any a ∈ A. Remark that
β̃ is the analog of β̄ in the usual context.

In the current setting, we write

JF̃ , F̃0K∗ = {ϕ : F̃ → F̃0 such that ϕ |A×{1}= ω̃ |A×{1}}/ ∼A×{1}

JF̃ , F̃ K∗ = {ϕ : F̃ → F̃ such that ϕ |A×{1}= id}/ ∼A×{1}

JF, F K∗ = {ϕ : F → F such that ϕ |A= id}/ ∼A .

Note that when A is a point, we recover the usual notions of classes of equivalences
of basepoint-preserving maps.

Note that F̃ is of the homotopy type of a CW-complex and ω̃ is a weak homotopy
equivalence. By an analogous result to [21, Proposition 4.22] we can see that

JF̃ , F̃0K∗ JF̃ , F̃ K∗ω̃∗
∼=

is a bijection.
On the other hand, between the spaces F and F̃ there is a map χ : F̃ → F given by

the projection, which sends A × {1} to A. However, the inclusion map i : F → F̃ does
not send A to A× {1}, so we need a different map. Since A→ F is a cofibration, there
is a lifting in the following diagram

A F̃ [0,1]

F F̃

α

ev0

i

h

where α(a, t) = (a, t). Then define ι = h(−, 1) : F → F̃ , and note that ι(a) = (a, 1) for
a ∈ A. These two maps define the following bijection

JF̃ , F̃ K∗ JF, F K∗.ι◦−◦χ
∼=

Definition 2.35. Define the relative holonomy action with respect to A of π1(B, b0) on
the fibre as the map

π1(B, b0) → JF, F K∗

β 7→ β̌

in which β̌ is the preimage of β̃ ◦ ω̃ in the bijection

JF, F K∗ JF̃ , F̃ K∗ JF̃ , F̃0K∗
ι◦−◦χ
∼=

ω̃∗
∼= .

That is, β̌ is the only element in JF, F K∗ for which

ω̃ ◦ ι ◦ β̌ ◦ χ 'A×{1} β̃ ◦ ω̃
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We have previously introduced the topological monoid

GA = autA(F ) = {ϕ : F → F such that ϕ |A= idA}.

Since A→ F is a cofibration, it is easy to check that π0(GA), which will be denoted
by EA(F ) henceforth, is a group. Given a subgroup H of GA, define

HA = autAH(F ) = {ϕ : F → F such that ϕ ∈ autA(F ), [ϕ] ∈ H}.

Definition 2.36. Given H a subgroup of EA(F ), an (F,A)-fibration sequence F ω−→
E

π−→ B is an H-(F,A)-fibration sequence if Θ̃(β) ∈ H for all β ∈ π1(B, b0).

The good behaviour of the H-(F,A)-fibration sequences with respect to maps of
(F,A)-fibrations sequences and pullbacks can be proved in analogous way that in the
ordinary case.

Definition 2.37. Denote by FibAH(B,F ) the set of equivalence classes of H-(F,A)-
fibration sequences over B under the equivalence relation generated by maps of (F,A)-
fibrations sequences.

Remark 2.38. Similarly, we can talk about (F,A)-quasi-fibration sequences or H-(F,A)-
quasi-fibration sequences: if F ω−→ E

π−→ B is a quasi-fibration sequence and σ : A×B →
E is an A-section, then

Γσ = i ◦ σ : A×B → E → ΓE

is an A-section for the fibration sequence F i◦ω−→ ΓE Γπ−→ B.
As in the non-relative case, we have a universal H-(F,A)-quasi-fibration sequence

F −→ B(∗, HA, F ) p−→ BHA

with the A-section

σ : BHA ×A = B(∗, HA, A)→ B(∗, HA, F )

induced by the inclusion of A in F , where the first equality comes from the fact that A
is a trivial HA-space, as it was explained above.

A meticulous revision of Theorem 2.17, by requiring that all the maps in the proof
preserve the subspace A, gives rise to a relative version of that Theorem:

Theorem 2.39. Let F and B be objects in CW, let A be a subcomplex of F and let H
be a subgroup of EA(F ). Then the set of equivalence classes of H-(F,A)-fibrations over
B is naturally isomorphic to JB,BHAK. The bijection is given explicitly by

ΛH : JB,BHAK→ FibAH(B,F )

which sends a map f : B → BH to the H-(F,A)-fibration sequence

F
f∗i−→ f∗ΓB(∗, HA, F ) f

∗Γp−→ BHA.
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CHAPTER 3

Malcev complete groups

The relationship between rational nilpotent groups and nilpotent Lie algebras is well
known from the original work [28]. Several reformulations and generalizations of the
Malcev equivalence can be found in the literature [13, 16, 26, 42, 49]. The purpose of
the first section of this chapter is to formulate the ‘generalized’ Malcev equivalence in a
suitable form for our goals and to compile useful facts from the references above.

In the second section, we prove that a certain class of subgroups of the automorphisms
of a cdgl are Malcev complete.

3.1 Malcev equivalence
Recall from §1.6 that a group G is nilpotent if its lower central series {Gn}n≥1 terminates.
Let us introduce some related concepts.

Definition 3.1. A group is pronilpotent if the natural map G
∼=−→ lim←−nG/G

n is an
isomorphism. A group is 0-local if, for all n ≥ 1, the map

G→ G, g 7→ gn

is a bijection.

Remark 3.2. In a 0-local group G, the expression gλ for any g ∈ G, λ ∈ Q makes sense:
if λ = m/n, gλ is the unique element in G such that

(gλ)n = gm.

This is why these groups are also known as uniquely divisible groups.

Definition 3.3. A group G is Malcev Q-complete (or simply Malcev complete in our
setting) if it is pronilpotent and for each n ≥ 1 the abelian group Gn/Gn+1 is a Q-vector
space.

75
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Remark 3.4. In the references cited in the introduction of this chapter, the definitions of
Malcev complete groups may differ. For example, Quillen asks an extra condition ( [41,
A.3, Definition 3.1]) for a group being Malcev complete: in addition to the conditions in
definition 3.3, the associated graded Lie algebra is required to be generated by G/G2.

On the other hand in [16, §8.2] a Malcev complete group is defined as the grouplike
elements of a complete Hopf algebra. This approach, using Hopf algebras and their
grouplike and primitive elements is extremely useful (in fact the whole section §1.2.3 can
be formulated in such terms). However, we are not interested on a deep study of these
objects, but only on some properties. Thus, we present a direct approach, which relies
in [16, §7 and §8].

These definitions of a Malcev Q-complete group (the one given in definition 3.3, that
of [41, A.3, Definition 3.1] and that of [16, §8.2]) are equivalent by [16, Proposition 8.2.3].
Note that in our case the ground field is Q, and that we are using the lower central series
as filtration.

We denote by groups the category of groups and cgroups the full subcategory of
Malcev complete groups. There is a functor

groups→ cgroups

called the Malcev completion functor, which is left adjoint to the forgetful functor (see [16,
§I.8.3]). We denote by Ĝ the image of this functor, for a given group G. Furthermore,
there is a natural transformation µ, from the identity functor to the Malcev completion
functor. This means, that there is a natural morphism

µG : G→ Ĝ

for all G in groups. It is easy to check that if G is in cgroups, µG : G
∼=−→ Ĝ is an

isomorphism.
On the other hand, denote by cl the category of complete ungraded Lie algebras (or

equivalently, concentrated in degree 0). Clearly if L is a cdgl, then L0 is in cl.
The Malcev equivalence [42, A.3] or [16, §8.2.8] can be formulated as the existence

of an isomorphism of categories

cl cgroups
$

ϑ

with the following properties:

• The underlying set is not altered by any of the functors.

• Given L a complete Lie algebra, $(L) is the group (L, ∗) where ∗ is the BCH
product. There are also explicit formulas for the Lie algebra structure of ϑ(G) for
any Malcev complete group G (see [49, §2.3]).

• If G = $(L), then for each n ≥ 1, there is an equality of sets Ln = Gn (see [13,
Theorem 2.2]).
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• When restricted to nilpotent Lie algebras and 0-local nilpotent groups, this is the
original equivalence given in [28] and [26].

For a given complete Lie algebra L, Ln and L/Ln are also complete Lie algebras for
any n ≥ 1. Thus we deduce that Gn and G/Gn are Malcev complete groups if G is a
Malcev complete group. The following result is due to Y. Félix.

Theorem 3.5. A group G is Malcev complete if and only if it is pronilpotent and 0-local.

Proof. The Malcev equivalence implies that a Malcev complete group is equivalent to a
Lie algebra: in particular, the multiplication by scalars in the Lie algebra implies that
the group is 0-local.

For the other implication, note that an abelian group is a Q-vector space if and only
if it is 0-local. So we only have to prove that Gn/Gn+1 is 0-local for all n ≥ 1.

Firstly, we see that the group G/Gn is torsion free for n ≥ 1. Suppose that there is
x ∈ G such that

xk ≡ 0 (mod Gn).

This means that xk ∈ Gn, so it can be written as

xk =
m∏
i=1

(ai, bi)

where ai ∈ G and bi ∈ Gn−1. Since G is 0-local, for each i = 1, . . .m we can find ci ∈ G
such that cki = ai. Note that in G/Gn+1 the elements of Gn = (G,Gn−1) commute with
any other element, so we can check that

(ai, bi) ≡ (cki , bi) ≡ (ci, bi)k (mod Gn+1).

Then write
y =

m∏
i=1

(ci, bi)

and note that it is a product of elements of Gn so that, in G/Gn+1, we have the following
equation

yk =
(
m∏
i=1

(ci, bi)
)k
≡

m∏
i=1

(ci, bi)k ≡
m∏
i=1

(ai, bi) = xk (mod Gn+1).

In particular, since y ∈ Gn,

(xy−1)k ≡ 0 (mod Gn+1).

Then write xn = x, xn+1 = xy−1 and repeat this process to obtain a sequence of elements
(xj)j≥n in G such that

xj+1 ≡ xj (mod Gj)

and xkj ∈ Gj for all j ≥ n. Since G is a pronilpotent group, we can find an element
x0 = lim xj , such that

x0 ≡ xi (mod Gj)



78 Chapter 3. Malcev complete groups

for all i ≥ j. In particular, xk0 ∈ Gj for all j ≥ n, which implies that xk0 = 0. Since G is
0-local, we deduce that x0 = 0. Therefore, the sequence

(xj) ∈ lim←−
j

G/Gj

is identically zero, so, in particular, x ∈ Gn, and therefore G/Gn is torsion-free.
Since G/Gn is nilpotent and torsion free, by [23, Theorem 2.2] the map x 7→ xk is

injective. On the other hand, it is clear that the map x 7→ xk is surjective in G/Gn, so
we conclude that G/Gn is 0-local, for any n ≥ 1.

To finish, consider the short exact sequence

Gn/Gn+1 → G/Gn+1 → G/Gn

where the two right groups are 0-local and all of them are nilpotent. Then [23, Corollary
2.5] implies that Gn/Gn+1 is 0-local for any n ≥ 1.

3.2 Nilpotent groups of E∗(L)

Let L = (L̂(V ), ∂) be a minimal free cdgl with V = V≥0. Denote by aut(L) the groups
of automorphism of L (or equivalently, by [14, Proposition 3.20], the group of self-quasi-
isomorphisms of L).

Recall from [14, Definition 8.18] that a (right) homotopy in the category cdgl between
f, g : L′ → L is a morphism

Φ: L′ → ∧(t, dt) ⊗̂L = lim←−
n

(∧(t, dt))⊗ L/Fn)

such that ε0◦Φ = f and ε1◦Φ = g, where {Fn}n≥1 is the filtration of L, ∧(t, dt) is the free
algebra generated by an element of degree 0 and its differential and εi : ∧ (t, dt) ⊗̂L→ L
is the cdgl morphism which sends t to i for i = 0, 1.

If we denote by ∼ the equivalence relation given by homotopic maps, then we can
define a new group

E∗(L) = aut(L)/ ∼ .

Remark 3.6. The notation E∗(L) instead of E(L) may appear redundant, since each
automorphism sends 0 to 0, so it is automatically ‘pointed’. However this notation will
reveal to be meaningful, when we compare with the topological case (see §4.1).

Given a subgroup K ⊂ E∗(L), we write

autK(L) = {ϕ ∈ aut(L) | [ϕ] ∈ K},

which is a subgroup of aut(L). Analyzing these subgroups will be the goal of the rest
of this chapter. The following is the “Eckmann-Hilton” dual of [50, Proposition 6.3 and
6.5]



Nilpotent groups of E∗(L) 79

Theorem 3.7. Given L = (L̂(V ), ∂) a free minimal cdgl, we have the following equality
of groups

eD(Der1 L) = aut1(L).

Proof. Since L is minimal, Dη increases the filtration and D2η = 0, so eDη is a well-
defined automorphism of L. Furthermore by (1.2), eDη1 ◦ eDη2 = eDη1∗Dη2 , so the group
structure is identical in both sets. We only have to prove that both sets are equal.

Firstly, we prove that
eD(Der1 L) ⊂ aut1(L).

Given η ∈ Der1 L, define a new derivation η̃ in ∧(t, dt) ⊗̂L by the formula

η̃(tn ⊗ x) = tn+1 ⊗ η(x), η̃(tndt⊗ x) = −tn+1dt⊗ η(x), for n ≥ 0, x ∈ L.

From this we construct the homotopy

Φ = eDη̃ ◦ ι : L→ ∧(t, dt) ⊗̂L

where ι : L → ∧(t, dt) ⊗̂L is the inclusion x 7→ 1 ⊗ x. This is a cdgl morphism and a
straightforward computation shows that

ε0 ◦ Φ = idL, ε1 ◦ Φ = eDη.

Therefore, eDη ∼ idL, and eD(Der1 L) ⊂ aut1(L).
We see now that aut1(L) ⊂ eD(Der1 L). Consider a homotopy

Φ: L→ ∧(t, dt) ⊗̂L

between idL = ε0 ◦Φ and ϕ = ε1 ◦Φ, being ϕ an arbitrary cdgl automorphism homotopic
to the identity.

Recall that a generic element in ∧(t, dt) ⊗̂L = lim←−n ∧(t, dt) ⊗ L/Fn can be written
as a formal series ∑

n≥0
tn ⊗ xn +

∑
n≥0

tndt⊗ yn

for some xn, yn ∈ L with the following “convergence criterion”: for each n ≥ 1 only
finitely many elements xi, yi do not belong to Fn.

Extend the previous homotopy to Φ̃ : ∧ (t, dt) ⊗̂L→ ∧(t, dt) ⊗̂L by

Φ̃(tn ⊗ x) = tnΦ(x), Φ̃(tndt⊗ x) = tndtΦ(x), for n ≥ 0, x ∈ L,

which can be checked to be a cdgl morphism. Now construct a new map θ : ∧(t, dt) ⊗̂L→
∧(t, dt) ⊗̂L using the following formulas:

θ(1⊗ x) = log Φ̃(1⊗ x) =
∞∑
n=1

(−1)n+1

n
(Φ̃− id)n(1⊗ x), θ(tidtj ⊗ x) = tidtjθ(1⊗ x),

for x ∈ L, i ≥ 0 and j = 0, 1. Note that, since ε0◦Φ = id, the formal series above satisfies
the convergence criterion, so it is a well-defined element in ∧(t, dt) ⊗̂L. Furthermore,
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by the properties of the logarithm, θ is an element in Der0(∧(t, dt) ⊗̂L) and, since Φ
commutes with the differential, Dθ = 0.

Given x ∈ L, the image of 1⊗x by the derivation θ constructed above, will be of the
form

θ(1⊗ x) =
∞∑
n=0

tn ⊗ αn(x) +
∞∑
n=0

tndt⊗ βn(x)

for some maps αn, βn : L→ L of degrees 0 and 1 respectively. Each one of these maps is
necessarily a derivation since θ is a derivation. Then the map

η : L→ L, η(x) =
∞∑
n=0

1
n+ 1βn(x),

is a derivation at L of degree 1. This specific choice of coefficients in the series above
makes Dη(x) equals to α(x) =

∑
n≥0 αn(x). Finally, a careful inspection shows that

α ◦ ε1 = ε1 ◦ θ : ∧ (t, dt) ⊗̂L→ L. In particular ε1 ◦ eθ = eα ◦ ε1. By the way that θ was
constructed, eθ(1⊗ x) = Φ̃(1⊗ x) = Φ(x) for any x ∈ L. Hence, we deduce that

ϕ(x) = ε1(Φ(x)) = ε1(eθ(1⊗ x)) = eα(x) = eDη(x),

for any x ∈ L, which implies aut1(L) ⊂ eD(Der1 L).

As an immediate consequence we get the following.

Corollary 3.8. The group aut1(L) is Malcev Q-complete.

Proof. If M is a cdgl with respect to the filtration {Fn}n≥1, then ∂M1 is a complete Lie
algebra concentrated at degree 0, with the filtration {∂Fn1 }n≥1. In particular, D(Der1 L)
is complete since Der≥1 L is. Finally, apply the Malcev equivalence (see §3.1) to deduce
that D(Der1 L) is a Malcev complete group with the BCH product.

Theorem 3.9. Given a subgroup K ⊂ E∗(L), which is nilpotent and 0-local, then
autK(L) is a Malcev complete group.

This theorem is obtained by applying the lemma below to the short exact sequence

aut1(L)→ autK(L)→ K.

Lemma 3.10. Let
H ↪→ G

p
� K

be a short exact sequence of groups. If H is Malcev complete and K is nilpotent and
0-local, then G is Malcev complete.

Proof. There exists c ≥ 1 such that Kc = 1. Then, p(Gc) ⊂ Kc = 1. This implies that
Gc ⊂ H. In particular, for any n ≥ 1, Hnc ⊂ Gnc ⊂ Hn. Then,⋂

n≥1
Gn ⊂

⋂
n≥1

Hn = 1
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since H is pronilpotent. This implies that the map G → lim←−nG/G
n is injective. To

see that it is surjective, we choose a sequence (gn)n≥1 with gn ∈ Gn and check that the
formal product ∏

n≥1
gn

converges in G. Note that for each n ≥ 1, gncgnc+1 . . . gnc+c−1 ∈ Gnc ⊂ Hn, so the
product ∏

n≥c
gn = h ∈ H

converges in H, since H is pronilpotent. Then

g1g2 . . . gc−1h ∈ G

is an element such that is sent to (gn)n≥1 under the map G → lim←−nG/G
n. This proves

that G is pronilpotent.
By Theorem 3.5, since K is 0-local and pronilpotent, it is Malcev complete.
Applying the Malcev completion functor to the short exact sequence we obtain a

commutative diagram
H G K

Ĥ Ĝ K̂

µH∼=

p

µG µK∼=

p̂

where the upper row is exact. We show that the bottom row is also exact: this would
imply that, since µH and µK are isomorphisms, µG is also an isomorphism.

Since the Malcev completion functor is left adjoint to the forgetful functor, as re-
marked at the beginning of the chapter, it preserves cokernels, so the right side of the
bottom sequence is exact. Thus, we only have to prove that Ĥ → Ĝ is an injective
morphism.

Consider an element h ∈ H ⊂ G. Since G is pronilpotent, we can write h as
(πn(h))n≥1 ∈ lim←−nG/G

n where πn : G→ G/Gn is the projection.
Suppose that µG((πn(h))n≥1) = 0. This implies by [23, Corollary 2.3] that πn(h) is

a torsion element in G/Gn. This means that there exists kn ≥ 1 such that hkn ∈ Gn.
In particular, hknc ∈ Gnc ⊂ Hn for all n ≥ 1. Since each Hn is 0-local, we deduce that
h ∈ Hn for all n ≥ 1, so h = 1, which concludes the proof.

We state a final corollary of general nature which allows to identify homotopic auto-
morphisms.

Corollary 3.11. Let G ⊂ aut(L) be a complete subgroup. Then, two automorphisms
f, g ∈ G are homotopic if and only if log(f) ∗ (− log(g)) = Dη for some derivation
η ∈ Der1 L.

Proof. Firstly note that log(f) ∗ (− log(g)) is a well-defined element in Der0 L since G is
complete. Then we have that f ∼ g if and only if f ◦ g−1 ∼ idL. By Theorem 3.7 this is
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equivalent to the existence of η ∈ D(Der1 L) such that eDη = f ◦ g−1 which amounts to
say that

log
(
f ◦ g−1

)
= log f ∗ (− log(g)) = Dη.



CHAPTER 4

Homotopy classes of maps and actions of the
fundamental group

Given two pointed simplicial sets X and Y , consider the sets

JX,Y K, and JX,Y K∗

of free and pointed homotopy classes of maps from X to Y . Our first goal in this chapter
is to model these sets in cdgl. Afterwards, we model the action of the fundamental group
of an space on itself and the holonomy action of a fibration sequence.

4.1 Free and pointed homotopy classes of maps

Let X be a connected simplicial set whose basepoint is the 0-simplex b ∈ X0 and let L′
be a connected cdgl. In particular MC(L′) = {0} and 〈L′〉 is connected.

Proposition 4.1. Denote by (b) the Lie ideal generated by b ∈ X0. Then there are
bijections of sets:

JX, 〈L′〉K ∼= JLX , L′K, JX, 〈L′〉K∗ ∼= JLX/(b), L′K.

Proof. The first identity comes from the fact that adjoint functors L and 〈−〉 constitute
a Quillen pair.

Recall from [14, §7.1] that the bijection

Homsset(X, 〈L′〉) ∼= Homcdgl(LX , L′)

associates to a simplicial map f : X → 〈L′〉, the cdgl morphism ϕf : LX → L′ defined in
the following way: given σ ∈ Xq a non-degenerate simplex, it corresponds to a generator

83
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of degree q − 1 in LX . Then ϕf (σ) = f(σ)(a0,...q) where a0,...q ∈ s−1∆q is the top
generator. In particular, since L is connected, ϕf (b) = 0 so there is an induced map

ϕ̄f : LX/(b)→ L′.

We check that two homotopic maps f ∼ g : X → 〈L′〉 give rise to two homotopic
maps ϕf ∼ ϕg : LX → L′. Let h : X × 41 → 〈L′〉 be the homotopy between f and g,
then

h |X×(0)= f, h |X×(1)= g

where (0) and (1) are the subsimplicial sets of 41 generated by the two 0-simplices.
Equivalently, by the exponential law (1.3), we can think of h as a simplicial map

h : X → map(41, 〈L′〉)

where map(−,−) is the mapping space defined in §1.4.1. By [14, Theorem 12.18], since
∧(t, dt) is a cdga model of 41,

〈∧(t, dt) ⊗̂L′〉 ' map(41, 〈L′〉).

Therefore h can be identified with an element in

Homsset(X, 〈∧(t, dt) ⊗̂L′〉)

which, by the adjunction of the model and realization functors, is in bijective correspon-
dence with Homcdgl(LX ,∧(t, dt) ⊗̂L′). Through this bijection, the simplicial map h is
sent to a cdgl homotopy

Φ: LX → ∧(t, dt) ⊗̂L′.
By the naturality of the adjunctions we get that ε0 ◦ Φ = ϕf and ε1 ◦ Φ = ϕg, so we
deduce that ϕf ∼ ϕg. A reverse argument using the same bijections also shows that
ϕf ∼ ϕg implies that f ∼ g, so we conclude that

JX, 〈L′〉K ∼= JLX , L′K.

In the pointed case, consider a pointed homotopy h between the pointed maps
f, g : X → 〈L′〉. Then h : X × 41 → 〈L′〉 is constant to the only 0-simplex along
the subsimplicial set (b) × 41. As above, identify h with a cdgl homotopy Φ. By
the naturality of the bijections, Φ(b) = 0 ∈ ∧(t, dt) ⊗̂L′. Thus, it induces a homotopy
Φ̄ : LX/(b) → L′ ⊗̂ ∧ (t, dt) between ϕ̄f and ϕ̄g. Reversing the argument we conclude
that

JX, 〈L′〉K∗ ∼= JLX/(b), L′K.

Corollary 4.2. Let L′ be a connected cdgl and let X be a connected simplicial set whose
minimal Lie model is L. Then

JX, 〈L′〉K∗ ∼= JL,L′K.

In particular if L′ is a Lie model of a simplicial set Y of finite type, then

JX,Q∞Y K∗ ∼= JL,L′K.
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Proof. By [14, Proposition 8.7] the following composition of quasi-isomorphisms is a weak
equivalence of cdgl’s

LbX
'−→ (LX , ∂b)

'−→ LX/(b).

Therefore
JL,L′K ∼= JLX/(b), L′K ∼= JX, 〈L′〉K∗.

If L′ is a Lie model of a finite type simplicial set Y , then 〈L′〉 ' Q∞Y (see §1.8).

Remark 4.3. Suppose that both X and Y are nilpotent simplicial sets of finite type, then
〈L〉 ' Q∞X ' XQ and analogously for Y . The bijection above becomes along with the
universal property of the rational spaces (see §1.8) gives bijections

JL,L′K ∼= JX,YQK∗ ∼= JXQ, YQK∗

Using that the unit of the adjunction between L and 〈−〉 is homotopy equivalent to
the rationalization map X → XQ (up to an extra point, see [14, Corollary 11.18]) we
conclude that the bijection JL,L′K ∼= JXQ, YQ]∗ is given by the map ϕ 7→ 〈ϕ〉
Remark 4.4. In the previous remark, if we take X = Y and L = L′, we have not only
a bijection but an isomorphism of monoids JL,LK ∼= JXQ, XQK∗. Thus, their respective
groups of invertible elements are also isomorphic. We denote the homotopy classes of
automorphisms aut(L)/ ∼ as E∗(L), so this isomorphism becomes

E∗(L) ∼= E∗(XQ). (4.1)

Of course, any cdgl morphism is pointed (since it sends 0 to 0), but this notation
makes the comparison between cdgl’s and simplicial sets simpler.

4.2 Fundamental action at the cdgl level
Let L′ be a connected cdgl. For any other cdgl L, the group (L′0, ∗) acts on Homcdgl(L,L′)
by

x • ϕ = eadx ◦ ϕ.

This is a well defined action as ead0 = id′L and taking into account (1.2),

x • (x′ • ϕ) = eadx ◦ eadx′ ◦ ϕ = eadx∗x′ ◦ ϕ = (x ∗ x′) • ϕ.

Proposition 4.5. This action induces an action of (H0(L′), ∗) on JL,L′K in the obvious
way

[x] • [ϕ] = [x • ϕ] = [eadx ◦ ϕ]

Proof. First, notice that the BCH product ∗ on L0 induces also a group structure on
H0(L′). Now, if x, y ∈ L′0 with [x] = [y] and ϕ,ψ ∈ Homcdgl(L,L′) with [ϕ] = [ψ], write
x ∗ (−y) = ∂z so that

eD adz = ead∂z = eadx∗(−y) = eadx ◦ ead−y
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By Theorem 3.7 we deduce that eadx ◦ ead−y ∼ idL and therefore, eadx ∼ eady by
composing with eady on both sides. Hence

eadx ◦ ϕ ∼ eady ◦ ψ

which translates to
[x] • [ϕ] = [y] • [ψ]

and the proposition follows.

Definition 4.6. We call this action of (H0(L′), ∗) on JL,L′K the fundamental action and
denote by JL,L′K/H0(L′) the orbit set.

Remark 4.7. Observe that, choosing L′ = L, [ϕ] ∈ E∗(L) and [x] ∈ H0(L), [x] • [ϕ] ∈
E∗(L), so the fundamental action restricts to an action of (H0(L), ∗) on the group E∗(L).
We denote by E(L) = E∗(L)/H0(L) the orbit group which is a quotient group, as H0(L)
maps into E∗(L) via

H0(L) → E∗(L)
[x] 7→ [x]• idL = [eadx ].

Again, this notation for the groups

E∗(L) = aut(L)/ ∼, and , E(L) = E∗(L)/H0(L)

will become clear when we compare with their analogous version for simplicial sets (see
remark 4.11).

Let’s see the topological counterpart of this action. Let (X,x0) and (Y, y0) be two
pointed CW-complexes, and β ∈ π1(Y, y0) a loop. Since the inclusion of the basepoint is
a cofibration, we have a lift in the following diagram

{x0} Y [0,1]

X Y

β

ev0h

f
. (4.2)

Thus h(−, 1) : X → Y is a map sending x0 to β(1) = y0 and which is (free) homotopic
to f . However, they are not necessarily pointed homotopic. Using similar arguments to
those of §2.1.1 we can check that the pointed homotopic class of h(−, 1) depends only
on the pointed homotopy class of f and β. Therefore, we have a map

π1(Y, y0)× JX,Y K∗ → JX,Y K∗, ([β], [f ]∗) 7→ [β] • [f ]∗ = [h(−, 1)]∗

Furthermore, the composition of paths βγ can be checked to act on [f ] as [β] • ([γ] •
[f ]∗). Therefore, we have a group action of the fundamental group.

Definition 4.8. We call the action of the group π1(Y, y0) on JX,Y K∗ the (topological)
fundamental action.
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Using the Quillen equivalence between the categories top and sset we can extend this
action to simplicial sets. Let X and Y be pointed simplicial sets. Using the adjunction,
we have the bijection

JX,Y K ∼= JX,Sing |Y |K ∼= J|X|, |Y |K, f 7→ |f |

which, using the canonical basepoints (see §1.5.2), induces a bijection

JX,Y K∗ ∼= J|X|, |Y |K∗

of the pointed homotopy classes of maps.
Then the group π1(Y ) ∼= π1(|Y |) acts on JX,Y K∗ as

π1(Y )× JX,Y K∗ ∼= π1(|Y |)× J|X|, |Y |K∗ •−→ J|X|, |Y |K∗ ∼= JX,Y K∗.

The theorem below proves that both fundamental actions are compatible via the
bijection of Corollary 4.2.

Theorem 4.9. Let L′ be a connected cdgl and let X be a connected simplicial set whose
minimal Lie model is L, which is free. Then, the following diagram commutes

H0(L′)× JL,L′K JL,L′K

π1(〈L′〉)× JX, 〈L′〉K∗ JX, 〈L′〉K∗
∼= ∼=

where the horizontal arrows are the fundamental actions and the vertical arrows are
induced by the bijection JL,L′K ∼= JX, 〈L′〉K∗ of Corollary 4.2 and the group isomorphism
ρ1 : π1(〈L′〉)→ H0(L′) (see §1.8).

Proof. Let ϕ : L → L′ be a cdgl morphism and let x be an element in L′0. Recall that
ρ1 : π1(〈L′〉) → H0(L′) sends a cdgl morphism β : L1 → L′ to β(a01). Consider the
1-simplex β ∈ 〈L′〉1 defined as

β : L1 → L′, a01 7→ x, a0 7→ 0, a1 7→ 0

which can be identified with a loop β : 41 → 〈L′〉 of π1(〈L′〉). Then, clearly ρ1(β) = [x].
Furthermore |β| :

∣∣41∣∣ = [0, 1] → |〈L′〉| can be thought as a loop with |β|(0) = |β|(1) =
y0, where y0 is the canonical basepoint of |〈L′〉|.

On the other hand, the cdgl morphism ϕ corresponds to a pointed map f : X → 〈L′〉.
We need to construct a lift in the following diagram

{x0} |〈L′〉|[0,1]

|X| |〈L′〉|

|β|

ev0

|f |
.

Our goal is to construct a cdgl diagram such that, when realized, we obtain the
diagram above.
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Recall (see §1.5.3) that a path object for L′ is given by

∧(t, dt) ⊗̂L′.

By [14, Theorem 12.18], there is a homotopy equivalence

〈∧(t, dt) ⊗̂L′〉 ' map(41, 〈L′〉).

Furthermore, checking carefully this homotopy equivalence (see [14, Proposition 11.1]),
the path β : 41 → 〈L′〉, which is a 0-simplex in map(41, 〈L′〉), is sent to the realization
of the Maurer-Cartan element −dt⊗ x ∈ ∧(t, dt) ⊗̂L′.

We need to find a cdgl morphism, such that, when realized, we obtain β : ∗ →
map(41, 〈L′〉). The problem is that any cdgl sends 0 to 0, so we cannot expect to send
the basepoint to a non-trivial point, as it happens with β : ∗ → map(41, 〈L′〉). We do
the following technical modification: we are going to add a basepoint to ∗ and 〈L〉. This
is analogous to add a Maurer-Cartan element (see [14, Corollary 7.17]); therefore, for
L = (L̂(V ), ∂), consider the new cdgl

L̃ = (L̂(V ⊕ 〈a〉), ∂̃ = ∂a)

where ∂a = −1
2 [a, a]. In this cdgl there are two MC elements 0 and −a (note that

the differential has been perturbed). Then we have that L̃0 is homologically trivial and
L̃−a ∼= L. Similarly, we consider the cdgl (L(a), ∂a) whose MC elements are 0 and −a.
Then, the cdgl morphism

ψ : (L(a), ∂a) 7→ ∧(t, dt) ⊗̂L′, −a 7→ −dt⊗ x

has as realization the simplicial map

〈ψ〉 = c t β : ∗ t∗ → map(41, 〈L′〉)

sending the first point to the constant map c : 41 → 〈L′〉 and the second point to β.
Similarly, if we realize it as a topological map we get the disjoint union of the constant
map and the loop |β|.

Consider the diagram

(L(a), ∂a) ∧(t, dt) ⊗̂L′

(L(V ⊕ 〈a〉), ∂a) L′

ψ

ε0

ϕ◦proj

where proj : L(V ⊕ 〈a〉) → L(V ) = L is the projection. This diagram is clearly commu-
tative.

We construct a lift as

h : (L̂(V ⊕〈a〉), ∂a)→ ∧(t, dt) ⊗̂L′, a 7→ dt⊗x, y 7→ eadt⊗x(ϕ(y)) =
∑
n≥0

tn

n!⊗adnx(ϕ(y))
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for y ∈ L̂(V ) = L.
By the properties of the exponential of derivations, it is well-defined and it is com-

patible with the Lie brackets. Fix y ∈ L̂(V ), then

h(∂ay) =
∑
n≥0

tn

n! ⊗ adnx(∂ϕ(y)) + [dt⊗ x, h(y)]

and
∂h(y) =

∑
n≥1

tn−1dt

(n− 1)! ⊗ adnx(ϕ(y)) +
∑
n≥0

tn

n! ⊗ adnx(∂ϕ(y)).

Both expressions coincide since

[dt⊗x, h(y)] = [dt⊗x,
∑
n≥0

tn

n!⊗adnx(ϕ(y))] =
∑
n≥0

tndt

n! ⊗[x, adnx(ϕ(y))] =
∑
n≥1

tn−1dt

(n− 1)!⊗adnx(ϕ(y)).

Therefore h is a cdgl morphism and it is clear that it fits in the diagram above. Now,
apply the adjunction between L• and 〈−〉 and realize the diagram in top to obtain the
commutative diagram

∗ t ∗ |〈L′〉|[0,1]

∗ t |X| |〈L′〉|

ctβ

ev0

|f |

h̃

where h̃ = |〈h〉|. Ignoring the extra points we added, we get that |β| • |f | = h̃(−, 1). In
particular, by the lower path of the diagram of the statement, (x, ϕ) is sent to

〈h(−, 1)〉 = 〈ε1 ◦ h〉.

By the formula of h, ε1 ◦ h = eadx ◦ ϕ.
On the other hand, the upper path of the diagram, sends (x, ϕ) to the realization of

the fundamental action. This is 〈eadx◦ϕ〉. We conclude that the diagram is commutative.

Corollary 4.10. In the same situation than in the theorem, we have a bijection

JX, 〈L′〉K ∼= JL,L′K/H0(L′)

Proof. In the topological setting it is easy to check that two pointed homotopy classes
[f ]∗ and [g]∗ in JX,Y K∗ are freely homotopic if and only if there is a loop β ∈ π1(Y ) such
that [β] • [f ]∗ = [g]∗. Thus we conclude that the orbit space JX,Y K∗/π1(Y ) is bijective
with JX,Y K.

By the compatibility of the fundamental actions we have the bijections of sets

JX, 〈L′〉K ∼= JX, 〈L′〉K∗/π1(〈L′〉) ∼= JL,L′K/H0(L′).
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Remark 4.11. Let L be the minimal Lie model of a nilpotent simplicial set of finite type
X and take L = L′. Then the fundamental action restricts to E∗(L) and to E∗(XQ)
respectively. Theorem 4.9 then gives a commutative diagram of the form

H0(L) E∗(L)

π1(XQ) E∗(XQ)

∼= ∼=

where the horizontal arrows are the group action on the identity and the vertical right
arrow is given by Remark (4.1). Furthermore, Corollary 4.10 becomes

E(XQ) ∼= E∗(XQ)/π1(XQ) ∼= E∗(L)/H0(L) ∼= E(L).

4.3 Fibration sequences in sset and cdgl
In Chapter 2, we describe the (topological) fibration sequences as Hurewicz fibrations
and a weak equivalence to the fiber of the fibration. We describe now analogous versions
of this construction in the model categories sset and cdgl. Furthermore, we study the
behavior of these fibration sequences under the Quillen pair given in (1.5).

Definition 4.12. A Kan fibration sequence is a sequence in sset

F
ω−→ E

π−→ B

where π is a Kan fibration and ω : F → π−1(b0) is a weak equivalence, with b0 a 0-simplex
in B.

Proposition 4.13. The Quillen equivalence

sset top
|−|

Sing

sends Kan fibration sequences to (topological) fibration sequences and vice versa.

Proof. Consider a fibration sequence in top

F
ω−→ E

π−→ B.

Then, since Sing(−) is a right adjoint functor in a Quillen pair and π is a Hurewicz fibra-
tion (in particular, a Serre fibration), Sing(π) : Sing(E) → Sing(B) is a Kan fibration.
Furthermore, the fiber π−1(b0) can be considered as the equalizer Eq(π, cb0) of the maps
π and cb0 : E → B. As the right adjoint functor Sing(−) preserves limits, we have

Sing(π−1(b0)) ∼= Eq(Sing(π),Sing(cb0)).

Noting that cb0 factors through the terminal topological space ∗ = ∆∆0, we deduce that
Sing(cb0) = cSing(b0) where we are identifying the basepoints of B and Sing(B) in the way
described in §1.5.1. Therefore,

Sing(π−1(b0)) ∼= (Sing(π))−1(Sing(b0)).
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Finally, since the functor Sing(−) preserves weak equivalences, we conclude that

Sing(F ) Sing(ω)−−−−→ Sing(E) Sing(π)−−−−→ Sing(B)

is a Kan fibration sequence.
The converse is also true but can not be deduced from the general properties of a

Quillen equivalence. However, this particular Quillen equivalence has some very good
properties that we will exploit.

Consider a Kan fibration sequence in sset

F
ω−→ E

π−→ B.

By a result of Quillen [41] the geometric realization of a Kan fibration is a Serre
fibration. Furthermore, in the category top of weak Hausdorff compactly generated
spaces we also have that the geometric realization of a Kan fibration is a Hurewicz
fibration [17, Theorem 4.5.25].

Therefore |π| : |E| → |B| is a Hurewicz fibration. As in the previous case, we can
compute π−1(b0) as the equalizer of π and cb0 . By [17, Proposition 4.3.13] the geometric
realization preserves equalizers and the constant map is sent by |−| to a constant map.
Thus, we deduce that

|π|−1(|b0|) ∼=
∣∣∣π−1(b0)

∣∣∣.
Finally, since |ω| : |F | →

∣∣π−1(b0)
∣∣ is a weak equivalence, we conclude that

|F | |ω|−→ |E| |π|−→ |B|

is a fibration sequence.

Finally, we introduce fibration sequences in cdgl.

Definition 4.14. A cdgl fibration sequence is a short exact sequence in cdgl

0→ L
i−→M

p−→ N → 0.

When L,M and N are connected we say that this is a connected cdgl sequence.
In particular, the twisted products defined at §1.3 are examples of cdgl fibration

sequences.
Since the realization functor 〈−〉 : cdgl→ sset is right adjoint to the model functor

and 〈p〉−1(0) = 〈i〉〈L〉, we conclude that the realization of a cdgl fibration sequence is a
Kan fibration sequence.

4.4 Holonomy action of cdgl fibration sequences
Consider a connected cdgl sequence

L→M
p−→ N
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in which L is free.
Given x ∈ N0 choose y ∈ p−1(x) and observe that the automorphism eady of M

restricts to an automorphism of L which we denote in the same way

eady : L
∼=−→ L.

Take its homotopy class [eady ] ∈ E∗(L) and its class [eady ] in the quotient E(L) =
E∗(L)/H0(L).

Definition 4.15. The cdgl holonomy action of the given cdgl fibration sequence is the
map

H0(N) → E(L)
[x] 7→ [eady ]

Proposition 4.16. This is a well defined morphism

Proof. To avoid excessive notation, we identify L with ker(p).
Let x, x′ ∈ N0 be two elements with [x] = [x′] and choose y ∈ p−1(x) and y′ ∈ p−1(x′).

As [x] = [x′] write x ∗ (−x′) = ∂b and choose a ∈ p−1(b). Then

p(∂a) = x ∗ (−x′) = p(y ∗ (−y′)).

Hence ∂a ∗ (y ∗ (−y′)) = ∂a ∗ y′ ∗ (−y) ∈ L0. We then have the following identities, in
which we use Theorem 3.7:

[eady′ ][eady ]−1 = [eady′ ◦ead−y ] = [idL ◦eady′ ◦ead−y ] = [eD ada ◦eady′ ◦ead−y ] = [ead∂a∗y′∗(−y) ]

which lives in the image of H0(L) inside E∗(L).
In other words

[eady ] = [eady′ ].
This shows that the holonomy action does not depend on any possible choices and, thus,
it is a well defined map.

We next see that Definition 4.15 provides the cdgl analogue of the topological holon-
omy action.

Theorem 4.17. Let L → M
p−→ N be a connected cdgl fibration sequence with L free.

Apply |〈−〉| to obtain the topological fibration sequence (see §4.3)

F = |〈L〉| ω−→ E = |〈M〉| π=|〈p〉|−−−−→ B = |〈N〉|

Then the following diagram commutes

H0(N) E(L)

π1(B) E(F )

∼= |〈−〉|

where the horizontal arrows are the holonomy actions and the left vertical arrows are the
canonical isomorphisms of groups.
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Proof. By the results of §4.3 the sequence

F = |〈L〉| ω−→ E = |〈M〉| π=|〈p〉|−−−−→ B = |〈N〉|

is a topological fibration sequence, so its holonomy action is well-defined. Without loss
of generality we can assume that F is strictly the fiber and ω is the inclusion.

On the other hand, given ϕ ∈ E(L), |〈ϕ〉| is an automorphism of F . By Theorem 4.9,
the image of the fundamental action is sent to a map (freely) homotopic to the identity,
so the map |〈−〉| : E(L)/H0(L)→ E(F ) is well-defined.

Fix β ∈ π1(〈N〉), which is associated to an element x ∈ N0, and take y ∈ M0 such
that p(y) = x.

We proceed as in the proof of Theorem 4.9: in L = (L̂(V ), ∂), we add extra points
(adding the a MC element and perturbing the differential), in order to get flexibility in
the choice of where the basepoint is sent, and we construct the following commutative
diagram in cdgl:

(L(a), ∂a) ∧(t, dt) ⊗̂M

(L̂(V ⊕ 〈a〉), ∂a) ∧(t, dt) ⊗̂N

ϕ

id ⊗̂ p

ψ

h

where ϕ(a) = dt ⊗ y, h(a) = dt ⊗ y, h(z) = eadt⊗y(z) for z ∈ L̂(V ) and ψ(a) = dt ⊗ x,
ψ(z) = 0 for z ∈ L̂(V ). This diagram is clearly commutative, and checking that h is a
cdgl morphism is analogous to the proof of Theorem 4.9.

Realizing the diagram above (and removing the extra points) we get:

∗ E[0,1]

F B[0,1]

β′

π◦−

β

h̃

where the map β : F → B[0,1] sends any point to the path β, the map β′ : [0, 1] → E is
the path associated to y ∈M0 and it is such that π ◦β′ = β and h̃ = |〈h〉|. Furthermore,
by the definition of the cdgl morphism h, we have that ε0 ◦ h : L → M is the inclusion,
so h̃(−, 1) : F → E is the inclusion of the fiber. Then the following diagram commutes:

F E

F × [0, 1] B

π
h̃

β

By definition, h̃(−, 1) ∈ E(F ) is the holonomy action of the topological fibration sequence,
which concludes the proof.
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CHAPTER 5

Evaluation fibration sequences

In this chapter we study the evaluation fibration associated to the evaluation of a mapping
space at some point, and model it in cdgl.

We two connected simplicial sets X and Y . Recall from §1.4.1 the properties of the
simplicial mapping space map(X,Y ). Without loss of generality we can assume that X
and Y are Kan complexes taking their fibrant replacement if necessary. Then map(X,Y )
is a Kan complex by [31, Theorem 6.9]. Note that π0(map(X,Y )) = JX,Y K.

By [31, Theorem 7.13] if x0 is a vertex of X, then

evx0 : map(X,Y )→ map(∗, Y ) ∼= Y

is a Kan fibration whose fiber is map∗(X,Y ). Then, the evaluation fibration sequence is
the Kan fibration sequence

map∗(X,Y )→ map(X,Y )
evx0−−−→ Y (5.1)

and the goal of this chapter is to model it.
Denote by ζ : map∗(X,Y ) → map(X,Y ) the inclusion of the fiber. In particular if

f : X → Y is A based simplicial map, then ζ(f) is the simplicial map f forgetting about
the basepoints. Remark that

π0(ζ) : JX,Y K∗ � JX,Y K

is the natural map which assigns to each pointed homotopy class of a pointed map its
free homotopy class.

If we have a subset S ⊂ JX,Y K we write

mapS(X,Y ) =
⊔

[f ]∈S
mapf (X,Y )

95
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where mapf (X,Y ) is the connected component of map(X,Y ) containing f . Analogously
if S ⊂ JX,Y K∗, then we write

mapS(X,Y ) =
⊔

[f ]∈S
map∗f (X,Y ).

In particular, if f : X → Y is a pointed map, then the fiber of

evx0 : mapf (X,Y )→ Y

is the non-connected simplicial set

map∗ζ−1(f)(X,Y ) =
⊔

[g]∗∈JX,Y K∗
g freely homotopic to f

map∗g(X,Y ) =
⊔

[g]∗∈π0(ζ)−1[f ]
map∗g(X,Y ).

As recall in section 4.1 note that the number of components equals the cardinal of
π1(Y ) • [f ]∗.

5.1 Modeling the fibration sequence

Before proceeding with the main subject of this section we need some preliminary results
of purely algebraic nature.

For any cdgc C and any dgl L there is a well known dgl structure on the graded
vector space Hom(C,L) (see §1.4.1) given by the usual differential and the convolution
Lie bracket:

Df = d ◦ f − (−1)|f |f ◦ d, [f, g] = [−,−] ◦ (f ⊗ g) ◦∆

for f, g ∈ Hom(C,L).

Proposition 5.1. If L is a cdgl, then Hom(C,L) is also complete.

Proof. Let {Fn}n≥1 be the filtration of L. Then, for n ≥ 1, the projection L → L/Fn

induces a map
Hom(C,L)→ Hom(C,L/Fn)

which can be checked to be a dgl morphism. Thus, we have a dgl morphism

Hom(C,L)→ lim←−
n

Hom(C,L/Fn)

which, omitting the Lie bracket and regarding them as graded vector spaces, is a bijection,
since Hom(V,−) is right adjoint to − ⊗ V , for any vector space V , and therefore it
commutes with limits (see §1.4.1). Hence, the natural map above is a bijective dgl
morphism, so it is an isomorphism in dgl:

Hom(C,L) ∼= lim←−
n

Hom(C,L/Fn).
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On the other hand, for n ≥ 1, the map Hom(C,L) → Hom(C,L/Fn) is clearly
surjective and has Jn = Hom(C,Ln) as kernel, therefore, we conclude that, as cdgl’s

Hom(C,L) ∼= lim←−
n

Hom(C,L/Fn) ∼= lim←−
n

Hom(C,L)/Jn

which proves that Hom(C,L) is complete with respect to {Jn}n≥1.

Proposition 5.2. Hom(C,L) is a complete sub dgl of Hom(C,L). Furthermore there is
an isomorphism

Hom(C,L) ∼= Hom(C,L)×̃L
where both L and Hom(C,L) are sub cdgl’s of the twisted product and [x, ϕ] = adx ◦ϕ for
x ∈ L and ϕ ∈ Hom(C,L).

Proof. Checking that Hom(C,L) is complete is analogous to the proof of the previous
proposition.

For the second part, construct a map

Hom(C,L)→ Hom(C,L)×̃L, ϕ 7→ (ϕ |C , ϕ(1))

which can be checked to be bijective and a dgl morphism with the dgl structure in the
twisted product defined in the proposition.

It is important to notice that, via this result and unlike in the general case, the
twisted product Hom(C,L)×̃L is a complete dgl.

Let L′ be a complete connected cdgl and X a connected simplicial set of finite type.
We plan to a give a particular cdgl model of the evaluation fibration

map∗(X, 〈L′〉)→ map(X, 〈L′〉) ev−→ 〈L′〉

specially adapted to our purposes.
For it let L be the usual model of X. The projection L/Ln → L/Ln−1 induces a cdgl

morphism Hom(C (L/Ln−1), L′) → Hom(C (L/Ln), L′), where C is the functor defined
in §1.9. Therefore, we can consider the colimit in cdgl:

lim−→
n

Hom(C (L/Ln), L′),

and similarly for lim−→n
Hom(C (L/Ln), L′). The projection ∧V → ∧V/ ∧0 V = ∧+V for

V = sL/Ln, induces a morphism C (L/Ln)→ C (L/Ln) for all n, which in turn induces
a morphism

lim−→
n

Hom(C (L/Ln), L′)→ lim−→
n

Hom(C (L/Ln), L′).

On the other hand, evaluating at 1 ∈ Q gives a map ev1 : Hom(C (L/Ln), L′) → L′

which can be checked to be a cdgl morphism. Then we have a cdgl sequence

lim−→
n

Hom(C (L/Ln), L′)→ lim−→
n

Hom(C (L/Ln), L′)→ L′

which, after a direct inspection, is a short exact sequence. The following theorem exhibits
its geometrical realization.
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Theorem 5.3. There is commutative diagram

map∗(X, 〈L′〉) map(X, 〈L′〉) 〈L′〉

〈lim−→n
Hom(C (L/Ln), L′)〉 〈lim−→n

Hom(C (L/Ln), L′)〉 〈L′〉

ev

' ' '

where the vertical maps are homotopy equivalences.

Proof. Let A be a cdga model of the simplicial set X, then by [14, Proposition 12.25]
there is a commutative diagram

map∗(X, 〈L′〉) map(X, 〈L′〉) 〈L′〉

〈A+ ⊗̂L′〉 〈A ⊗̂L′〉 〈L′〉

ev

'' ' '

where the evaluation is at the basepoint of X and the bottom row is the realization of
the short exact sequence A+ ⊗̂L′ → A ⊗̂L′ → L′.

Let A be a a connected cdga of finite type. Then A] is a cdgc and we have the
following isomorphisms of cdgl’s:

A ⊗̂L′ = lim←−
n

(A⊗ L′/Fn) ∼= lim←−
n

Hom(A], L′/Fn) ∼= Hom(A], lim←−
n

L′/Fn) ∼= Hom(A], L′)

By [14, Theorem 10.8] the following cdga is a cdga model of X:

A = lim−→
n

C (L/Ln)].

Since, for each n, C (L,Ln)] is a connected cdga of finite type, we use all of the above
to rewrite the objects in the first diagram of the proof, using that the complete tensor
product commutes with direct limits:

A ⊗̂L′ ∼= lim−→
n

C (L/Ln)] ⊗̂L′ ∼= lim−→
n

Hom(C (L/Ln), L′)

and, similarly, if we consider the augmentation ideal A+:

A+ ⊗̂L′ ∼= lim−→
n

(C (L/Ln)])+ ⊗̂L′ ∼= lim−→
n

Hom(C (L/Ln), L′).

The following remark allows us to remove the direct limits in the theorem above in
a special case.
Remark 5.4. Neisendorfer defined in [37, §7], a model for a nilpotent complex X of finite
type, as any dgl quasi-isomorphic to L (A]) where A is a finite type Sullivan model of
X. We call such model a Neisendorfer model. Any other minimal cdgl model of X will
be quasi-isomorphic to L (A]) [14, Theorem 10.2]. Moreover, the cdga realization of
C (L (A]))] is of the homotopy type of XQ.
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Corollary 5.5. Let L be a Lie model of a nilpotent complex X of finite type, and L′ a
cdgl. Then there is a commutative diagram

map∗(X, 〈L′〉) map(X, 〈L′〉) 〈L′〉

〈Hom(C (L), L′)〉 〈Hom(C (L), L′)×̃L′〉 〈L′〉

ev

' ' '

where the twisted product is the one given in Proposition 5.2.

Proof. Let A be a Sullivan minimal model of X. By [14, Proposition 12.25] A+ ⊗̂L′ →
A ⊗̂L′ → L′ is a short exact sequence whose realization is the upper row. Since A is of
finite type, this short exact sequence becomes

Hom(A]+, L′)→ Hom(A]+, L′)×̃L′ → L′.

As previously remarked
L (A]) ' L,

and, since C preserves quasi-isomorphisms,

C L (A]) ' C (L).

Moreover, as C L (A]) is quasi-isomorphic to A] we deduce that

A] ' C L (A]) ' C (L).

Therefore A]+ ' C (L) and the corollary follows.

5.2 Components of the mapping space
Here we keep the same notation and assumptions that in the previous section, where L′
is assumed to be a connected cdgl and X is a nilpotent simplicial set of finite type with
Lie model L.

Note that restricting the evaluation fibration

map(X, 〈L′〉) ev−→ 〈L′〉

to the path component of map(X, 〈L′〉) containing a given map f : X → 〈L′〉 produces a
new fibration sequence

map∗ζ−1(f)(X, 〈L
′〉)→ mapf (X, 〈L′〉) ev−→ 〈L′〉, (5.2)

where, as remarked in the introduction of this chapter, map∗ζ−1(f)(X, 〈L〉) is the non-
connected simplicial set of pointed homotopy classes of pointed maps which are freely
homotopic to f .
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Combining the results of corollaries 4.2, 4.10 and 5.5 and recalling that the path
components of the geometric realization of a cdgl are bijective with the set of classes of
MC elements (see §1.8), we get a commutative diagram of sets

JL,L′K JL,L′K/H0(L′)

π0 map∗(X, 〈L′〉) π0 map(X, 〈L′〉)

M̃C(Hom(C (L), L′)) M̃C(Hom(C (L), L′)).

∼= ∼=

∼= ∼=

(5.3)

Let’s give a explicit expression of the vertical bijections. Define a degree -1 linear
map

q : C (L)→ L, q(sx) = −x, q(∧≥2sL) = 0

where x ∈ L. The sign comes from the fact s−1s = − id.

Proposition 5.6. In the diagram (5.3), the bijection JL,L′K→ M̃C(Hom(C (L), L′)) is
given by

ϕ 7→ ϕ̄ = ϕ ◦ q.

As a consequence, the bijection JL,L′K/H0(L′)→ M̃C(Hom(C (L), L′)) is given by

ϕ 7→ ϕ̄ = ϕ ◦ q

where q : C (L)→ L is extended by defining q(1) = 0.

Proof. We first check that it is well defined, this is, that ϕ̄ is a MC-element. The
differential is Dϕ̄ = ∂′ ◦ ϕ̄+ ϕ̄ ◦ (d1 + d2). For x, y ∈ L we have:

(Dϕ̄)(sx) = ∂′(ϕ̄(sx)) + ϕ̄(d1sx) = −∂′ϕ(x) + ϕ(∂x) = 0

(Dϕ̄)(sx ∧ sy) = ϕ̄(d2(sx ∧ sy)) = (−1)|x|ϕ[x, y]

where the first expression is zero because ϕ is a cdgl morphism. The terms of length 3
or larger are sent to zero.

On the other hand, [ϕ̄, ϕ̄] sends any element to zero except elements of the form
sx ∧ sy, which are sent to

[−,−]◦(ϕ̄⊗ϕ̄)◦∆̄(sx∧sy) = (−1)|x|+1[ϕ(x), ϕ(y)]+(−1)|x||y|+|x|[ϕ(y), ϕ(x)] = −2(−1)|x|ϕ[x, y].

Therefore we deduce that Dϕ̄ = −1/2[ϕ̄, ϕ̄] so it is a Maurer-Cartan element.
Finally from the bijection given in [14, Proposition 11.1] and checking carefully the

bijections involved in our construction, we deduce that ϕ is sent to ϕ̄.

Recall from §1.2.2 that Hom(C (L), L′)ϕ̄ is a connected sub cdgl of Hom(C (L), L′)
with the perturbed differential Dϕ̄. The following proposition gives us a model of the
fibration in (5.2).
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Proposition 5.7. If f : X → 〈L〉 corresponds with ϕ̄ ∈ M̃C(Hom(C (L), L′)) through the
bijection of (5.3), then there is a commutative diagram

mapf (X, 〈L′〉) 〈L′〉

〈Hom(C (L), L′)ϕ̄〉 〈L′〉.

ev

〈ev1〉

' '

Proof. Recall from §1.8 that 〈Hom(C (L), L′)ϕ̄〉 ' 〈Hom(C (L), L′)〉ϕ̄. Then, restricting
the diagram in Corollary 5.5 to the connected component mapf (X, 〈L′〉) gives the result.

Example 5.8. The cdgl morphism ev1 : Hom(C (L), L′)ϕ̄ → L′ of the proposition above
is not, in general, a cdgl fibration. However, when it is realized, it is equivalent to a
fibration of simplicial sets.

Consider the cdgl’s L = L(x), L′ = L̂(y, z) with |x| = |y| = |z| = 0 and no differential
and the cdgl morphism ϕ : L→ L′, ϕ(x) = y. Suppose that ψ ∈ Hom0(C (L), L′) is such
that ψ(1) = z. By degree reasons, since C (L) = ∧(sx), then ψ(sx) = 0. This implies
that ψ is the only preimage of z under the morphism

ev1 : Hom(C (L), L′)→ L′.

However, it can be checked that

Dϕ̄(ψ) = Dψ + [ϕ ◦ q, ψ] = [ϕ ◦ q, ψ]

is not zero, since it sends the element sx ∈ C (L) to [z, y] ∈ L′. Therefore ψ is not
an element of Hom(C (L), L′)ϕ̄ and we deduce that ev1 : Hom(C (L), L′)ϕ̄ → L′ is not
surjective.

Remark 5.9. Recall that the fiber of ev : mapf (X, 〈L′〉) → 〈L′〉 is map∗ζ−1(f)(X, 〈L
′〉)

which consists of those pointed maps which are freely homotopic to f . Then, in view of
(5.3), we deduce that the fiber of

〈ev1〉 : 〈Hom(C (L), L′)〉ϕ̄ → 〈L′〉

is the non-connected simplicial set

⊔
[ψ]
〈Hom(C (L′), L)〉ψ̄

where the index [ψ] runs through the homotopy classes of morphisms [ψ] ∈ JL,L′K such
that [ψ] = [ϕ] in JL,L′K/H0(L′).
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5.3 Modeling evaluation fibration sequences with deriva-
tions

Fix X a nilpotent complex with L its Lie model, L′ a connected cdgl, and ϕ : L→ L′ a
cdgl morphism. The goal of this section is to rewrite the model given in Proposition 5.7
in terms of derivations.

Recall from §1.9 that there is a quasi-isomorphism of dgl’s αL : L C (L) → L. Then
we denote by ϕ̃ the dgl morphism

ϕ̃ = ϕ ◦ αL : L C (L)→ L′.

Recall from §1.1 that Derϕ̃(L C (L), L′) is a differential graded vector space. Then
its desuspension s−1 Derϕ̃(L C (L), L′) has differential D(s−1θ) = −s−1Dθ.

Consider the map

Γ: (s−1 Derϕ̃(L C (L), L′), D)→ (Hom(C (L), L′), Dϕ̄)

defined as
Γ(s−1θ)(c) = (−1)|θ|θ(sc)

for θ ∈ Derϕ̃(L C (L), L′) and c ∈ C (L).

Proposition 5.10. Γ is a isomorphism between differential graded vector spaces.

Proof. Since L C (L) = L(s−1C (L)), then a ϕ̃-derivation is uniquely determined by its
values at s−1C (L). From this observation it is clear that Γ is bijective. Furthermore it
is a graded linear map. Let’s check that it commutes with the differentials.

Let c be an element in C (L) and let θ be a ϕ̃-derivation. For

∆̄(c) =
∑
i

ci ⊗ c′i,

the formula of the differential in L C (L) = (L(s−1C (L)), d1 + d2) gives

(d1 + d2)s−1c = −s−1dc+ 1
2
∑
i

(−1)|ci|[s−1ci, s
−1c′i].

Let’s check that Γ(Ds−1θ)(c) = Dϕ̄Γ(s−1)(c) in L′:

Γ(Ds−1θ) = −Γ(s−1Dθ)(c) = (−1)|θ|(Dθ)(s−1c) =
= (−1)|θ|∂′θ(s−1c)− θ(d1s

−1c)− θ(d2s
−1c) =

= (−1)|θ|∂′θ(s−1c) + θ(s−1dc)− 1
2
∑
i

(−1)|ci|θ[s−1ci, s
−1c′i].

Dϕ̄Γ(s−1θ)(c) = ∂′Γ(s−1θ)(c) + (−1)|θ|Γ(s−1θ)(dc) + [ϕ̄,Γ(s−1θ)](c) =
= (−1)|θ|∂′θ(s−1c) + θ(s−1dc) + (−1)|θ|[ϕ̄, θs−1](c).

These two expressions agree since ϕ̃(s−1c) = ϕ̄(c) and because of the commutativity
of ∆̄.
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As a consequence of this proposition s−1 Derϕ̃(L C (L), L′) inherits a Lie bracket

[s−1θ, s−1η] = Γ−1[Γ(s−1θ),Γ(s−1η)]

which makes s−1 Derϕ̃(L C (L), L′) isomorphic to Hom(C (L), L′) as cdgl’s. A more ex-
plicit expression of this Lie bracket is given by

[s−1θ, s−1η] = −s−1[−,−] ◦ (θs−1 ⊗ ηs−1) ◦ ∆̄ ◦ s.

Recall that in Proposition 5.2 is constructed a twisted product Hom(C,L′)×̃L′. Using
the isomorphism Γ, we can substitute Hom(C (L), L′) by s−1 Derϕ̃(L C (L), L′) in the
twisted product to obtain:

(s−1 Derϕ̃(L C (L), L′)×̃L′, D)

where
[x, s−1θ] = (−1)|x|s−1(adx ◦θ), Dx = ∂′x− s−1(adx ◦ϕ̄ ◦ s)

for any x ∈ L′ and θ ∈ Derϕ̃(L C (L), L′). By adx ◦θ and adx ◦ϕ̄ ◦ s we mean the ϕ̃-
derivations that act on s−1C (L) in this way. With these definitions is direct to check
that

Γ× idL′ : (s−1 Derϕ̃(L C (L), L′)×̃L′, D)→ (Hom(C (L), L′)×̃L′, Dϕ̄)

is a cdgl isomorphism. As a consequence we get the following proposition.

Proposition 5.11. The realization of the short exact cdgl sequence

0→ s−1 Derϕ̃(L C (L), L′)→ s−1 Derϕ̃(L C (L), L′)×̃L′ → L′ → 0

has the homotopy type of the fibration sequence

map∗(X, 〈L′〉)→ map(X, 〈L′〉) ev−→ 〈L′〉.

Proof. We have the following diagram of isomorphic cdgl sequences

s−1 Derϕ̃(L C (L), L′) s−1 Derϕ̃(L C (L), L′)×̃L′ L′

Hom(C (L), L′) Hom(C (L), L′)×̃L′ L′

Γ∼= Γ×idL′∼= idL′∼=

where in the bottom sequence the differential is the perturbed differential Dϕ̄. However
perturbing the differential does not affect the realization of a cdgl (see §1.8), so using
Corollary 5.5, we deduce the result.

Similarly we can rewrite Proposition 5.7 in terms of derivations. From the cdgl
isomorphisms

(s−1 Derϕ̃(L C (L), L′)×̃L′, D)0 ∼= (Hom(C (L), L′)×̃L′, Dϕ̄)0 ∼= (Hom(C (L), L′)×̃L′, D)ϕ̄

we deduce the following corollary.
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Corollary 5.12. The realization of the cdgl morphism

(s−1 Derϕ̃(L C (L), L′)×̃L′, D)0 → L′

has the homotopy type of the fibration

mapf (X, 〈L〉) ev−→ 〈L′〉.

5.3.1 Chain complexes of derivations

In order to obtain more comfortable expressions of these results, we would want to rewrite
the cdgl s−1 Derϕ̃(L C (L), L′) as s−1 Derϕ(L,L′) and removing the functors L and C .
However, these two differential graded vector spaces are not isomorphic and we can not
endow s−1 Derϕ(L,L′) with a Lie bracket. Nevertheless, they are quasi-isomorphic as
differential graded vector spaces, so we can recover information about the homotopy
groups of map∗(X, 〈L′〉) and map(X, 〈L′〉).

Consider the map

α∗L : Derϕ(L,L′)→ Derϕ̃(L C (L), L′), θ 7→ θ ◦ αL.

Since L C (L) and L are both cofibrant (because L C (L) is free and L is a Lie model)
and αL is a quasi-isomorphism, Lemma 1.1 implies that it is a quasi-isomorphism of
differential graded vector spaces.

Consider the twisted chain complex

Derϕ(L,L′)×̃sL′

where Derϕ(L,L′) is a sub chain complex and the differential at sL′ is

D(sx) = −s∂′x+ adx ◦ϕ, x ∈ L′.

A short computation shows that the map α∗L × idsL′

α∗L × idsL′ : Derϕ(L,L′)×̃sL′ → Derϕ̃(L C (L), L′)×̃sL′ = s(s−1 Derϕ̃(L C (L), L′)×̃L′)

is a morphism of differential graded vector spaces, i.e. it commutes with the differentials.
The differential at Derϕ̃(L C (L), L′)×̃sL′ is the suspension of the differential of the
twisted product given before Proposition 5.11.

We finally get that the homology of these chain complexes gives the homotopy long
exact sequence of the evaluation fibration.

Theorem 5.13. The homology long exact sequence of the differential graded vector space
sequence

0→ Derϕ(L,L′)(1) → (Derϕ(L,L′)×̃sL′)(1) → sL′ → 0
is isomorphic to the homotopy long exact sequence of the fibration sequence

map∗f (X, 〈L′〉)→ mapf (X, 〈L′〉) ev−→ 〈L′〉

In particular, for n ≥ 1 we have the group isomorphisms

πn(map∗f (X, 〈L′〉)) ∼= Hn(Derϕ(L,L′)), πn(mapf (X, 〈L′〉) ∼= Hn(Derϕ(L,L′)×̃sL′).
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This theorem generalizes the original result of G. Lupton and S.B. Smith [27, Theorem
4.1].
Remark 5.14. In the homotopy groups of the theorem, the basepoint is f ∈
map∗f (X, 〈L′〉) ⊂ mapf (X, 〈L′〉). Note that for n = 1, the group structure in
H1(Derϕ(L,L′)) and H1(Derϕ(L,L′)×̃sL′) is the one induced for the BCH product of
H0(s−1 Derϕ̃(L C (L), L′)) and H0(s−1 Derϕ̃(L C (L), L′)×̃L′) respectively.

Proof. Consider the following diagram of chain complexes:

0 Derϕ(L,L′) Derϕ(L,L′)×̃sL′ sL′ 0

0 Derϕ̃(L C (L), L′) Derϕ̃(L C (L), L′)×̃sL′ sL′ 0

α∗L α∗L×idsL′ idsL′

where both rows are short exact sequences and the bottom one is the suspension of the
cdgl sequence of Proposition 5.11. Clearly this diagram is commutative, and since α∗L and
idsL′ are quasi-isomorphisms, then applying the five lemma to the long exact sequence
of homology groups, we deduce that α∗L × idsL′ is also a quasi-isomorphism.

Then take the 1-connected covers of the differential graded vector spaces of the dia-
gram above. At the top row we get the sequence of the statement, while at the bottom
row we get the suspension of the 0-connected cover of the sequence of Proposition 5.11.
Because of Corollary 5.12, the realization of

(s−1 Derϕ̃(L C (L), L′)×̃L′, D)0 → L′

is the fibration
mapf (X, 〈L′〉) ev−→ 〈L′〉.

So we deduce from Remark 5.9 that the realization of the connected cdgl
s−1 Derϕ̃(L C (L), L′)0 is of the homotopy type of map∗f (X, 〈L′〉), which is one of the
connected components of map∗ζ−1(f)(X, 〈L

′〉)).

Finally, recall from §1.8 that, for any connected cdgl M , there is a natural isomor-
phism

πn〈M〉 ∼= Hn−1(M) ∼= Hn(sM)

for any n ≥ 1, so we deduce that both long exact sequences of the statement agree.



106 Chapter 5. Evaluation fibration sequences



CHAPTER 6

Filtrations of derivations and twisted products

Our main goal in the rest of the text is to obtain homotopical information about B aut(X)
and B aut∗(X). In order to do that, we are interested on finding cdgl’s M and M ′,
depending on a Lie model L of X, such that

〈M〉 ' B aut(X), 〈M ′〉 ' B aut∗(X).

Note that because of Theorem 5.13, for 〈L〉 = X we have the group isomorphisms

Hn(Derid(L,L)) ∼= πn(map∗id(X,X)) ∼= πn+1(B aut∗(X)),

Hn(Derid(L,L)×̃sL) ∼= πn(mapid(X,X)) ∼= πn+1(B aut(X)).

In this particular case Derid(L,L) = DerL is not only a chain complex but a dgl,
so it is a promising candidate to be a model for B aut∗(X). However, we will see that
even when L is a cdgl, DerL is not necessarily complete. A similar unpleasant situation
happens with the twisted product of cdgl’s: it may fail to be complete.

Furthermore, we will prove that, in general, there are no cdgl’s M and M ′ such that
when realized gives B aut(X) and B aut∗(X). However, an slight modification of the dgl
Der(L) will give a complete dgl, which allows us to obtain information about the spaces
above.

The purpose of this technical chapter is to provide examples of these affirmations
and to study the filtrations of the derivations and twisted products in order to produce
useful cdgl’s.

6.1 Complete Lie algebras of derivations

We start with an example that DerL is not complete even for L complete.
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Example 6.1. Consider the cdgl L = (L̂(x, y), ∂ = 0) with |x| = |y| = 2, which is
immediately complete since it is positive graded. Then consider the following elements
η, θ1 and θ2 in Der0 L:

η(x) = x, η(y) = −y, θ1(x) = y, θ1(y) = 0, θ2(x) = 0, θ2(y) = x.

The Lie brackets are

[η, θ1] = −2θ1, [η, θ2] = 2θ2, [θ1, θ2] = −η,

so we deduce that for any possible filtration {Fn}n≥1 of DerL these three derivations
belong to Fn for any n. Therefore ∩n≥1F

n 6= 0 and

L→ lim←−
n≥1

DerL/Fn

is not an isomorphism.

Through this section fix L = (L̂(V ), ∂) a connected minimal free cdgl and consider
that the graded vector space V is finite dimensional and filtered by a finite sequence of
graded vector subspaces:

V = V 0 ⊃ V 1 ⊃ · · · ⊃ V q−1 ⊃ V q = 0.

We refine the usual filtration in the free algebra L by considering, for n ≥ 1 and
p ≥ 0,

L̂n,p(V ) = Span{[v1, [v2, [. . . , [vn−1, vn] . . . ]]] ∈ L̂n(V ), vi ∈ V αi and
n∑
i=1

αi = p}.

Obverse that L̂n,p(V ) = 0 for p ≥ nq. For n ≥ 1 and 0 ≤ p ≤ nq − 1, define

Fn,p = L̂n,p(V )⊕ L̂≥n+1(V )

and we have the following sequence

L̂(V ) = F 1,0 ⊃ F 1,1 ⊃ · · · ⊃ F 1,q−1

⊃ F 2,0 ⊃ F 2,1 ⊃ · · · ⊃ F 2,2q−1

. . .

⊃ Fn,0 ⊃ Fn,1 ⊃ · · · ⊃ Fn,nq−1

. . . .

Note that Fn,p ranks

t = q + · · ·+ (n− 1)q + p+ 1 = (n− 1)nq
2 + p+ 1 (6.1)

in the order given by this chain of inclusions. If n, p and t are as in the formula (6.1),
then we write (n, p) ≡ t. Note also that Fn,0 = L̂≥n(V ).
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Definition 6.2. For (n, p) ≡ t, we write

F t = Fn,p.

Proposition 6.3. For (n1, p1) ≡ t1 and (n2, p2) ≡ t2, then

[F t1 , F t2 ] ⊂ F t1+t2 .

Proof. An easy inspection shows that [Fn1,p1 , Fn2,p2 ] ⊂ Fn1+n2,p1+p2 . Then note that

(n1 + n2, p1 + p2) ≡ (n1 + n2 − 1)(n1 + n2)q
2 + p1 + p2 + 1 =

= (n1 − 1)n1q

2 + (n2 − 1)n2q

2 + n1n2q + p1 + p2 + 1 ≥

≥ (n1 − 1)n1q

2 + (n2 − 1)n2q

2 + p1 + p2 + 2 = t1 + t2.

Since {F t}t≥1 is a decreasing sequence, we have Fn1+n2,p1+p2 ⊂ F t1+t2 .

Proposition 6.4. The sequence {F t}t≥1 is a filtration of L and L is complete with
respect to this filtration.

Proof. Note that, since L is minimal, ∂F t ⊂ F t+1 for t ≥ 1. This fact along with
Proposition 6.3 imply that {F t}t≥1 is a filtration.

Furthermore, since ∩tF t = ∩n,pFn,p = 0, the natural map

L→ lim←−
t

L/F t = lim←−
n,p

L/Fn,p

is injective. To see that it is surjective, consider an element in x ∈ lim←−n,p L/F
n,p which

can be written as a formal series ∑
n,p

xn,p

where xn,p ∈ Fn,p. Note that for each m ≥ 1, this series restricted to L̂m(V ) contains
only a finite sum. Therefore

∑
n,p xn,p is a well-defined element in L, which proves the

surjectivity of the natural map.

Furthermore, since for each t ≥ 1, L̂t(V ) = F t,0 ⊂ F t, the identity

id : (L, {L̂≥t(V )}t≥1)→ (L, {F t}t≥1)

is a cdgl isomorphism. So we can replace the usual filtration with the new filtration
{F t}t≥1.

Definition 6.5. For t ≥ 1 define the following subspaces of Der≥0 L

Ft = {θ ∈ Der≥0 L, θ(F r) ⊂ F t+r, for all r ≥ 1}.
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The following lemma gives a characterization of the derivations belonging to Ft.

Lemma 6.6. A derivation θ ∈ Der≥0 L is such that θ(V i) ⊂ F i+t+1 for all 0 ≤ i < q if
and only if θ ∈ Ft.

Proof. Since V i ⊂ F i+1, it is clear that, if θ ∈ Ft, then θ(V i) ⊂ F i+t+1. The converse
implication can be proved inductively.

Suppose that θ(F r′) ⊂ F t+r
′ for any r′ ≡ (n′, p) with n′ ≤ n. Then an element in

Fn+1,p = F r can be written as a sum of elements of the form x = [a, b] with a ∈ F 1,α

and b ∈ Fn,β, where α+ β = p, (1, α) ≡ r1 = α+ 1 and (n, β) ≡ r2.
Then θ(a) ∈ F 1+α+t = Fn1,p1 , where (n1, p1) ≡ 1 + α+ t. So

[θ(a), b] ∈ [Fn1,p1 , Fn,β] ⊂ Fn1+n,p1+β.

Then the following computations are straightforward:

(n1 + n, p1 + β) ≡ (n1 + n− 1)(n1 + n)q
2 + p1 + β + 1 =

= (n1 − 1)n1q

2 + (n1 − 1)nq
2 + n(n+ n1)q

2 + p1 + β + 1 ≥

≥ 1 + α+ β + t+ n(n+ 1)
2 q = 1 + p+ t+ n(n+ 1)q

2 = t+ r.

Therefore [θ(a), b] ∈ F t+r. On the other hand, by the induction hypothesis θ(b) ∈
F r2+t, where r2 + t ≡ (n2, p2) with n2 ≥ n, thus

[a, θ(b)] ∈ [F 1,α, Fn2,p2 ] ⊂ [F 1+n2,α+p2 ]

and

(1 + n2, α+ p2) ≡ n2(n2 + 1)q
2 + α+ p2 + 1 = n2(n2 − 1)q

2 + n2q + α+ p2 + 1 =

= r2 + t+n2q+α = n(n− 1)
2 q+β+ 1 + t+n2q+α ≥ n(n− 1)

2 q+p+ 1 + t+nq = r+ t.

Finally we deduce that θ[a, b] ∈ F r+t, which concludes the proof.

Definition 6.7. For L = (L̂(V ), ∂) a free minimal cdgl and a fixed finite filtration of V ,
we define DerL as the connected sub dgl of DerL defined as

DerkL =
{
{θ ∈ Der0 L | θ(V i) ⊂ V i+1 ⊕ L̂≥2(V ), for all i}, if k = 0

Derk L, if k > 0

In particular, Lemma 6.6 implies that Der0L = F1
0.
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Remark 6.8. Given a finite filtration of V as before, we can make a new filtration from
the former one:

V 0 ⊃ V 1
0 ⊕ V≥1 ⊃ V 2

0 ⊕ V≥1 ⊃ · · · ⊃ V q−1
0 ⊕ V≥1 ⊃ V≥1 ⊃

⊃ V 1
1 ⊕ V≥2 ⊃ V 2

1 ⊕ V≥2 ⊃ · · · ⊃ V q−1
1 ⊕ V≥2 ⊃ V≥2 ⊃

. . .

⊃ V 1
m ⊃ V 2

m ⊃ . . . V q−1
m ⊃ 0

where m is such that V>m = 0. Note that a linear map of degree 0 preserves the former
filtration if and only if it preserves the new one. Therefore, the dgl Der0L is not altered
if we replace the former filtration by the new one presented above.

Then, without loss of generality, we can assume that our given filtration has the
following property: if 0 6= v ∈ V i

k , then V>k ⊂ V i+1. We say that a filtration with such
property is degree-respectful.

If our filtration is as in Remark 6.8, then any derivation θ of positive degree is such
that θ(V i) ⊂ V i+1 ⊕ L̂≥2(V ). So we conclude that

DerkL = Derk L = F1
k, for k ≥ 1.

Proposition 6.9. The sequence {Ft}t≥1 is a filtration of DerL and DerL is complete
with respect to this filtration.

Proof. If θ1 ∈ Ft1 and θ2 ∈ Ft2 then

[θ1, θ2](F r) ⊂ F t1+t2+r

so [θ1, θ2] ∈ Ft1+t2 which implies that [Ft1 ,Ft2 ] ⊂ Ft1+t2 . Furthermore, since L is mini-
mal, then

DFt ⊂ Ft+1.

We conclude that {Ft} is a filtration of DerL. The proof that

DerL→ lim←−
t

DerL/Ft

is an isomorphism is analogous to that of Proposition 6.4: if there is a derivation θ in
the intersection ∩tFt then, θ(V ) ⊂ F t for all t ≥ 1, which implies that θ(V ) = 0. Thus,
the natural map to the inverse limit is injective. Finally, take a formal series

∑
t θt with

θt ∈ Ft. Note that for each v ∈ V and for each number m, the series∑
t

θt(v)

restricted to L̂m(V ) contains only a finite sum. Therefore, the formal series constitutes a
well-defined derivation in DerL, which proves that the natural map above is surjective.
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We finalize this section by computing the exponential of Der0L. Recall from §1.2.4
that if a derivation θ ∈ Der0 L is such that it increases the filtration degree, then eθ is
a well defined cdgl automorphism. In particular eDer0L is a subset of aut(L) which is
explicitly described in the following proposition.

Proposition 6.10.

eDer0L = {ϕ ∈ aut(L) | (ϕ∗ − idV )(V i) ⊂ V i+1 for all i}.

The notation ϕ∗ : V → V means the linear part of the cdgl morphism.

Proof. By the exponential formula,

(eθ)∗ = eθ∗ =⇒ (eθ)∗ − idV =
∑
n≥1

θn∗
n!

where θ∗ : V → V is the linear part of the derivation. Thus if θ ∈ Der0L, then

θ(V i) ⊂ V i+1 ⊕ L̂≥2(V ) =⇒ θ∗(V i) ⊂ V i+1 =⇒ θn∗ (V i) ⊂ V i+1

for all i and n ≥ 1, so ϕ = eθ belongs to the right hand side.
Conversely, if ϕ ∈ aut(L) belongs to the right hand side, define a linear morphism

θ : V → L, θ(v) =
∑
n≥1

(−1)n (ϕ− idL)n(v)
n

for v ∈ V . For a fixed v ∈ V and m ≥ 1, since (ϕ∗ − idV )(V i) ⊂ V i+1, we can check
that the component of (ϕ− idL)n(v) in L̂m(V ) is zero for n large enough. Then θ is well
defined and it can be extended to a derivation θ ∈ Der0 L which, furthermore, belongs
to Der0L. Finally, since the formula that defines θ is that of log(ϕ), we have that

eθ = ϕ

and we have checked that both sets are equal.

6.2 Complete twisted products
As we have seen, twisted products play a central role in the modelization of fibration
sequences. However, recall from Example 1.3 that the twisted product of cdgl’s is not
necessarily a cdgl. In this section we will prove that, using the new cdgl DerL, the
twisted products that will appear in the following chapters are complete.

Fix L = (L̂(V ), ∂) a connected minimal free cdgl with V finite and filtered by a degree-
respectful filtration (see Remark 6.8) and C a cdgc. Recall from Proposition 5.1 that
Hom(C,L) and Hom(C,L) are cdgl’s. We can replace the usual filtration {L̂≥n(V )}n≥1
by the new one {Fn}n≥1 in the filtration of Hom(C,L) and Hom(C,L).

Consider the twisted product
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Hom(C,L)×̃DerL (6.2)

where Hom(C,L) and DerL are sub dgl’s and for θ ∈ DerL and ϕ ∈ Hom(C,L)

[θ, ϕ] = θ ◦ ϕ : C → L.

Proposition 6.11. The twisted product Hom(C,L)×̃DerL is a dgl. Furthermore it is
complete with respect to the filtration

Jn = Hom(C,Fn)× Fn

for n ≥ 1.

Proof. A direct calculation shows that this definition of Lie bracket makes Hom(C,L)×̃DerL
a dgl. Note that if ϕ ∈ Hom(C,Fn) and θ ∈ Fm then

[θ, ϕ] = θ ◦ ϕ ∈ Hom(C,Fn+m).

Then, since both {Hom(C,Fn)}n≥1 and {Fn}n≥1 are filtrations, we deduce that [Jn, Jm] ⊂
Jn+m for all n,m ≥ 1. In addition, since the differential does not mix terms in the prod-
uct, DJn ⊂ Jn for all n ≥ 1, so it is a filtration.

Finally, the natural map

Hom(C,L)×̃DerL→ lim←−
n

(Hom(C,L)×̃DerL)/Jn

is bijective, since, as vector spaces, we have isomorphisms

(Hom(C,L)×DerL)/Jn ∼= Hom(C,L)/Hom(C,Fn)×DerL/Fn

for each n ≥ 1. Therefore, the natural map is a cdgl isomorphism and we conclude that
the twisted product is complete.

An analogous procedure shows that the twisted product

DerL×̃sL (6.3)

with
Dsx = −s∂x+ adx, [θ, sx] = (−1)|θ|sθ(x)

for any x ∈ L and θ ∈ DerL is a cdgl with respect to the filtration {Fn × sFn}n≥1.
And similarly

L×̃DerL (6.4)

with L and DerL sub dgl’s and
[θ, x] = θ(x)

for any x ∈ L and θ ∈ DerL is a cdgl with respect to the filtration {Fn × Fn}n≥1.
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CHAPTER 7

Models for classifying fibrations

Recall from §2 that for each CW-complex X there is a universal quasi-fibration sequence

X → B aut∗(X)→ B aut(X).

The goal of this chapter is to obtain rational homotopical information from this se-
quence. In the classical setting (this means, working only with simply-connected spaces),
this is a well-known object in the rational homotopy theory (see for example [51, VII.4.
(4)] or [45, §9]). If L is the minimal model of a finite simply connected space then

L
ad−→ D̃erL→ D̃erL×̃sL

is a dgl fibration sequence which models the simply-connected cover of the universal
quasi-fibration sequence above: this is

X → B aut∗id(X)→ B autid(X)

using the notation of §5. Here D̃erL×̃sL is the restriction of the twisted product (6.3),
to its 1-connected cover.

This result has been extended and generalized, for example, to the relative case [3]
or to the fiberwise context [2].

However this result has two restrictions: 1) It can be applied only to simply-connected
spaces X. 2) It models the 1-connected cover of the universal quasi-fibration sequence,
but no information is obtained about the fundamental groups of B aut∗(X) or B aut(X).
We will try to partly solve these issues with a new approach. The results given so far,
have been applied to nilpotent spaces rather than simply-connected ones, so we can
weaken restriction 1).

Restriction 2) can also be weakened, but only partially. We will see that there is no
cdgl such that when realized is of the type of homotopy of B aut(XQ) or B aut∗(XQ).
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Nevertheless given some class of groupsH ⊂ E(XQ) we will be able to model the universal
H-quasi-fibration sequence (see §2):

XQ → B aut∗H(XQ)→ B autH(XQ).

Through this chapter, and in order to simplify the notation, the term fibration se-
quence will mean quasi-fibration sequence. Since we are working in the homotopy cate-
gory, this change does not affect the results.

7.1 Classifying fibrations
We start with an example that shows that, in general, B aut∗(XQ) and B aut(XQ) does
not lie in the image of the realization functor, even for X simply connected.

Example 7.1. Consider the space SnQ for n ≥ 2. Since it is simply connected we have
that

π1(B aut(SnQ)) ∼= π1(B aut∗(SnQ)) ∼= π0 aut∗(SnQ) = E∗(SnQ).

Suppose that there exits a connected cdgl L such that |〈L〉| ' B aut∗(SnQ). In partic-
ular, we have a group isomorphism

H0(L) ∼= E∗(SnQ).

Since L(x) with |x| = n− 1 is a minimal Lie model for Sn, we can apply Remark 4.4
to deduce that

E∗(SnQ) ∼= E∗(L(x)) ∼= Q \ {0} = Q∗.

Therefore, we have a group isomorphism Q∗ ∼= H0(L) where the group structure
H0(L) is the one given by the BCH product. In particular, for any a ∈ H0(L) and
λ, µ ∈ Q, we have that

λa ∗ νa = (λ+ ν)a

because [a, a] = 0. It is a divisible group: given a ∈ H0(L) there exists b = a/2 ∈ H0(L)
such that b ∗ b = a. However, there is no element x ∈ Q∗ such that x2 = 2 so there is a
contradiction. We conclude that there was no cdgl L such that 〈L〉 ' B aut∗(SnQ). An
analogous procedure shows that there is no cdgl L such that 〈L〉 ' B aut(SnQ).

Remark 7.2. Before stating which classifying spaces can be realized, we make the fol-
lowing general observation. The geometric-bar construction (see §2.1.3) is only defined
for topological spaces, and gives a topological space as result. However, the Lie Models
theory and results obtained so far, work in the category sset. We will use the Quillen
equivalence given by the singular and geometric realization functors to deal with this
issue. If X is a connected Kan complex, we write B aut(X) and B aut∗(X) to denote

Sing(B aut(|X|)), Sing(B aut∗(|X|))

respectively. And similarly, if H is a subgroup of E(X) or E∗(X) we use the isomorphisms
E(X) ∼= E(|X|) to define

B autH(X), B aut∗H(X).
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These definitions allow a simplification of the notation, and these new Kan complexes
have all the desired properties of their topological versions. They classify fibration se-
quences in sset (see in §4.3 that the Quillen equivalence is well-behaved with respect to
fibration sequences) and their homotopy groups are given in the following proposition.

Proposition 7.3. Let H be a subgroup of E(X) for X a connected Kan complex. Then

π1(B autH(X)) ∼= H, πn(B autH(X)) ∼= πn−1(mapid(X,X)), for n ≥ 2

and

π1(B aut∗H(X)) ∼= ζ−1(H), πn(B aut∗H(X)) ∼= πn−1(map∗id(X,X)), for n ≥ 2.

Proof. Since the homotopy groups of Y and Sing(Y ) are isomorphic we have that

πn(Sing(B autH(|X|))) ∼= πn(B autH(|X|)) ∼= πn−1(autH(|X|))

from where we deduce that π1(B autH(X)) ∼= H and that

πn(B autH(X)) ∼= πn−1 mapid(|X|, |X|).

We finalize the proof invoking the weak homotopy equivalence (see [6, Theorem 2.1]
and [8, §1] )

|map(X,Y )| 'w map(|X|, |Y |) (7.1)

whenever Y is a Kan complex (this an immediate consequence of the Quillen equivalence
between top and sset and the fact that the geometric realization commutes with prod-
ucts). Then, the homotopy groups of mapid(|X|, |X|) and |mapid(X,X)| are isomorphic.
The pointed version is analogous.

Let X be a connected Kan complex and H a subgroup of E(X). From the previous
remark, we deduce that

X → B aut∗H(X)→ B autH(X)

is a simplicial fibration sequence, which is universal with respect to simplicial fibration
sequences with fiber X and such that, when realized, they are H-fibration sequences in
the sense of §2.

From now, we fix X a nilpotent Kan complex, and H a subgroup of E(X) acting
nilpotently on H∗(X) (recall from §1.6 the definition of nilpotent action). Then, [9,
Theorem D] affirms that both B autH(X) and B aut∗H(X) are nilpotent spaces and, in
particular, the groups H ∼= π1B autH(X) and ζ−1(H) ∼= π1B aut∗H(X) are nilpotent.
Denote by

H∗(X) = Γ0 ⊃ Γ1 ⊃ · · · ⊃ Γq = 0

the finite lower central series of the action of H on H∗(X).

Definition 7.4. Given a series as above, we define K as the subgroup of E(X) which
‘stabilizes’ the series. This mean:

K = {[f ] ∈ E(X) | H∗(f) : Γi/Γi+1 → Γi/Γi+1 is the identity for all i}.
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In particular, H ⊂ K ⊂ E(X) and ζ−1(H) ⊂ ζ−1(K) ⊂ E∗(X). Note that K acts
nilpotently on H∗(X) so [9, Theorem D] claims that K is a nilpotent group.

We can compute the rationalization of this nilpotent group. By an analogous result
of [30, Theorem 3.3] but using homology instead of homotopy groups, we deduce the
following characterization of the rationalization of K.

Theorem 7.5. The rationalization KQ of K is the subgroup of E(XQ) which stabilizes
the series

H∗(XQ) = H∗(X)Q = Γ0
Q ⊃ Γ1

Q ⊃ · · · ⊃ ΓqQ = 0.

Then a map [f ] ∈ E(XQ) belongs to KQ if and only if H∗(f)(ΓiQ) ⊂ ΓiQ for all i. Moreover,
the map

K → KQ, [f ] 7→ [fQ]

is the rationalization.

In particular, since H is a subgroup of K, the naturality and exactness of the rational-
ization morphism implies that HQ is a subgroup of KQ and the rationalization morphism
is given by

H → HQ, [f ] 7→ [fQ].

Example 7.6. Consider H = {id} ⊂ E(X) the trivial subgroup for a nilpotent Kan
complex X. It acts trivially (in particular, nilpotently) on H∗(X), so the lower central
series of the action is

H∗(X) = Γ0 ⊃ Γ1 = 0.

Thus, K ⊂ E(X) is given by

K = {[f ] ∈ E(X) | H∗(f) = id: H∗(X)→ H∗(X)}.

Their rationalizations are given by

HQ = {id} ⊂ E(XQ), KQ = {[f ] ∈ E(XQ) | H∗(f) = id: H∗(XQ)→ H∗(XQ)}.

Remark 7.7. We recall some useful facts about the rationalization of the mapping spaces.
Firstly, by the weak homotopy equivalence (7.1), the following results are valid for sim-
plicial sets and for CW-complexes. Let X be a finite CW-complex and Y a nilpotent
space, then [23, Theorem 2.5] affirms that mapf (X,Y ) and map∗f (X,Y ) are nilpotent
spaces, where f is an arbitrary map from X to Y (pointed in the second case).

If µY : Y → YQ is the rationalization, then [23, Theorem 3.11] establishes that

(µY )∗ : mapf (X,Y )→ mapµY ◦f (X,YQ), (µY )∗ : map∗f (X,Y )→ map∗µY ◦f (X,YQ)

are rationalizations. Next, [33, Prop 4.2] for the pointed case, and the nilpotent general-
ization of [46, Theorem 2.3] for the non-pointed case, claim that there are weak homotopy
equivalences

(µX)∗ : map(XQ, YQ)→ map(X,YQ), (µX)∗ : map∗(XQ, YQ)→ map∗(X,YQ).
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Finally, using that µY ◦ f = fQ ◦ µX , we conclude that

(−)Q : mapf (X,Y )→ mapfQ(XQ, YQ)

given by g 7→ gQ is, up to weak homotopy equivalence, a rationalization. And similarly
for the pointed case.

Applying the previous remark, we get that the maps of monoids,

autH(X)→ autH(XQ), aut∗H(X)→ aut∗HQ(XQ),

where g 7→ gQ are, up to weak equivalence, the componentwise rationalizations. Con-
sequently, applying the functor B(−), these maps induce the following commutative
diagram

aut∗H(X) autH(X) X B aut∗H(X) B autH(X)

aut∗HQ
(XQ) aut∗HQ

(XQ) XQ B autHQ(XQ) B aut∗HQ
(XQ)

(7.2)
where the first three vertical maps are rationalizations and on the right hand side there are
the universal H− and HQ−fibrations respectively (see §2.2.1). By Proposition 7.3, both
spaces B autHQ(XQ) and B aut∗HQ

(XQ) are rational spaces, and applying the five lemma
to the diagram, we conclude that the right vertical maps are weak rational equivalences.
Therefore, we have proved the following proposition.

Proposition 7.8. The vertical maps in (7.2) are rationalizations. In other words, the
rationalization of the universal H-fibration sequence

X → B aut∗H(X)→ B autH(X)

is given by
XQ → B aut∗HQ(XQ)→ B autHQ(XQ).

As being formed by rational spaces, this fibration sequence can be realized by a cdgl
fibration sequence. Finding these cdgl’s is the goal of the rest of the chapter.

7.2 Modeling the universal H-fibration sequence
Fix X a nilpotent finite complex, L = (L̂(V ), ∂) its minimal Lie model and H ⊂ E(X) a
subgroup acting nilpotently on H∗(X). Then HQ ⊂ E(XQ) and ζ−1(HQ) ⊂ E∗(X).

Recall from Remark 4.4 that there is a isomorphism of groups

E∗(XQ) ∼= E∗(L).

Under this isomorphism, the subgroup ζ−1(HQ) becomes h , a subgroup of E(L). By
Remark 4.11 H0(L) acts on h by the fundamental action and

h/H0(L) ∼= ζ−1(HQ)/π1(XQ) ∼= HQ.
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Recall that in a connected cdgl the quasi-isomorphisms are isomorphisms [14, Propo-
sition 3.20], so aut(L) is not only a monoid but a group. Define

auth(L) = {ϕ ∈ aut(L) | [ϕ] ∈ h}

which is clearly a subgroup of aut(L).
Analogously, consider K ⊂ E(X) the subgroup that stabilizes the lower central series

of the action of H on H∗(X). Then, ζ−1(KQ) corresponds with a subgroup k ⊂ E(L) via
the isomorphism above. And similarly define

autk (L) = {ϕ ∈ aut(L) | [ϕ] ∈ k }.

We now construct derivation Lie algebras Derh L and Derk L associated to these
subgroups of E(L). First, note that via the isomorphism sV ∼= H̃∗(XQ) (see §1.8), the
lower central series of the action of HQ on H∗(XQ)

H∗(XQ) = Γ0
Q ⊃ Γ1

Q ⊃ . . .Γ
q
Q = 0

corresponds to a finite filtration of V

V = V 0 ⊃ V 1 ⊃ · · · ⊃ V q = 0.

We define Derk L as DerL (see Definition 6.7) for this filtration of V . Use Proposition
6.10 to compute the exponential of Derk

0 L:

eDerk
0 L = {ϕ ∈ aut(L) | (ϕ∗ − idV )(V i) ⊂ V i+1 for all i}.

The natural isomorphism sV ∼= H̃∗(XQ) implies that for ϕ ∈ aut(L),

(ϕ∗ − idV )(V i) ⊂ V i+1 ⇔ (H∗〈ϕ〉 − id)(Γi) ⊂ Γi+1

and this last condition for all i is equivalent to say that

H∗〈ϕ〉 : Γi/Γi+1 → Γi/Γi+1

is the identity for all i. Therefore, we have proved that

eDerk
0 L = autk (L).

Using this expression we can now define Derh L as the subset of Derk L defined by

Derh
≥1 L = Der≥1 L, Derh

0 L = {θ ∈ Der0L such that Dθ = 0 and eθ ∈ auth(L)}.

Proposition 7.9. Derh L is a sub cdgl of Derk L.

Proof. We first prove that this construction is a dgl. This amounts to prove that the
sum, the scalar multiplication, the differential and the Lie bracket of elements of Derh L
lie in Derh L. By Theorem 3.7 the exponential of the differential of a degree 1 derivation
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lies in aut1(L), which is a subgroup of auth(L). We conclude that in positive degree, all
the operations are well-defined.

We have to see that Derh
0 L is a sub dgl of Derk

0 L. We have seen that exp: Derk
0 L→

autk (L) is a bijection. So restricting it to the preimage of auth(L) we get that exp: Derh
0 L→

auth(L) is a bijection. Furthermore equation (1.2) affirms that it is a group isomorphism,
where the product in Derh

0 L is given by the BCH product and in auth(L) by the com-
position.

The group h is isomorphic to ζ−1(HQ) = (ζ−1(H))Q so it is 0-local and we have
seen in §7.1 that ζ−1(H) is nilpotent so, we can apply Theorem 3.9 to conclude that
auth(L) is a Malcev complete group, and so is Derh

0(L) with the BCH product. Using
the isomorphism between Malcev complete groups and complete ungraded Lie algebras
(see §3.1) we conclude that the sum, multiplication and Lie brackets of elements in Derh

0 L

are well defined and they agree with that operations in Derk
0 L.

Therefore Derh L is a sub dgl of the complete dgl Derk L, so we conclude that Derh L
is complete with respect to the induced filtration.

Given x ∈ L0, adx is an element of Der0L since it increases the filtration length. The
proposition below shows that it also lies in Derh

0 L.

Proposition 7.10. The image of the map

ad: L→ DerL

lies in the sub cdgl Derh L.

Proof. At positive degree, the statement is trivial. For x ∈ L0, let’s see that [eadx ] is
an element in h . Recall from §4.2 that this automorphism is the image of x under the
holonomy action

H0(L)→ E(L).

But, by the definition of h , it is closed under the action of H0(L). So we conclude that
[eadx ] is an element in h , which implies that adx ∈ Derh

0 L.

Consider the twisted product DerL×̃sL defined at (6.3), then Derh L×̃sL is a sub
cdgl of DerL×̃sL. Thus, we have a well defined cdgl sequence

L
ad−→ Derh L→ Derh L×̃sL, (7.3)

where the right map is the inclusion in the twisted product.
This is the central object of this section since, as we will see, its realization is going

to be the universal fibration sequence of Proposition 7.8. Let’s prove some results about
this cdgl sequence.

Proposition 7.11. The realization of (7.3) is a fibration sequence.
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Proof. The proof is analogous to the one given in [51, §VII.4(1)] for the simply connected
case. We construct an auxiliary cdgl fibration sequence

L→ L×̃(Derh L×̃sL)→ Derh L×̃sL, (7.4)

where the Lie bracket in the middle twisted product is given by

[θ, x] = θ(x), [sy, x] = 0, [θ, sy] = (−1)|θ|sθ(y),

and the differential D̃ is given by

D̃x = ∂x, D̃θ = θ, D̃sy = −y − s∂y + ady

for any x ∈ L, sy ∈ sL, θ ∈ Derh L. It can be checked that these operations define a dgl
and by the techniques of §6.2 we can make it a cdgl.

Consider the maps
ι : Derh L→ L×̃(Derh L×̃sL)

given by the inclusion and

ρ : L×̃(Derh L×̃sL)→ Derh L, x 7→ adx, sy 7→ 0, θ 7→ θ

for x ∈ L, sy ∈ sL, θ ∈ Derh L.
They can be checked to be cdgl morphisms and ρ ◦ ι is the identity on Derh L. Fur-

thermore, ι◦ρ is homotopic to the identity (see [51, VII.4.(7)] for an explicit homotopy).
Consider the following diagram

L Derh L Derh L×̃sL

L L×̃(Derh L×̃sL) Derh L×̃sL

ad

ιρ

,

where the two squares are commutative and the central double arrow gives the retraction
defined above. Therefore if we remove the map ρ, we get a homotopy commutative
diagram (which is not strictly commutative in general), so realizing it we get

〈L〉 〈Derh L〉 〈Derh L×̃sL〉

〈L〉 〈L×̃(Derh L×̃sL)〉 〈Derh L×̃sL〉

〈ad〉

〈ι〉

,

which is commutative up to homotopy. Since the bottom row is the realization of a cdgl
fibration sequence, it is a fibration sequence, which exhibits the realization of (7.3) as
equivalent to a fibration sequence.
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We can use the auxiliary cdgl fibration sequence (7.4) of the previous proof to compute
the holonomy action of the realization of (7.3). Recall from §4.4 that the holonomy action
is constructed by the exponential of degree 0 elements of the base. In (7.4), if x ∈ L and
sy ∈ (sL)0, then [sy, x] = 0, so

eadsy = idL : L→ L.

On the other hand, if we take θ ∈ Derh
0 L, then [θ, x] = θ(x), thus

eadθ = eθ : L→ L.

By definition of Derh
0 L, this is an automorphism in auth(L). Finally use the following

results:

- the realization of cdgl sequences (7.3) and (7.4) are equivalent (Proposition 7.12),

- the realization of the holonomy action is the holonomy action of the realization (The-
orem 4.17),

- beingH-fibration sequence is invariant under equivalence of fibrations sequences (Propo-
sition 2.9)

to conclude the following proposition.

Proposition 7.12. The realization of the cdgl sequence (7.3) is an HQ-fibration se-
quence.

Proof.

We can now present the central theorem.

Theorem 7.13. Let L be the minimal Lie model of a nilpotent complex X and H ⊂ E(X)
a subgroup acting nilpotently on the homology of X. Then the realization of the cdgl
sequence (7.3)

L
ad−→ Derh L→ Derh L×̃sL

is homotopy equivalent to the universal HQ-fibration sequence

XQ → B aut∗HQ(XQ)→ B autHQ(XQ).

The strategy of the proof is to extend both sequences, attach them via homotopy
equivalences and apply the five lemma recursively to obtain weak homotopy equivalences.
So the first step is to study an extension on the left of the cdgl sequence (7.3).

For C a cdgc, the twisted product the twisted product

Hom(C,L)×̃DerL

is a cdgl (see §6.2). Then, we can consider its sub cdgl

Hom(C,L)×̃Derh L.
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where both terms are sub dgl and the twisted Lie bracket is given by

[θ, ϕ] = θ ◦ ϕ : C → L.

Take C = C (L) and consider the cdgl fibration sequence

Hom(C (L), L)→ Hom(C (L), L)×̃Derh L→ Derh L. (7.5)

Note that the first and second cdgl’s in this sequence are not connected in general, so
they may have several connected components. We want to fix a Maurer-Cartan element
in Hom(C (L), L)×̃Derh L. For it, recall from §5.2 that there is a Maurer-Cartan element
in Hom(C (L), L) (and, therefore, a Maurer-Cartan element in the twisted product by
Remark 1.4) given by

q : C (L)→ L, q(sx) = −x, q(1) = 0, q(∧≥2sL) = 0.

Lemma 7.14. There is a quasi-isomorphism of connected cdgl’s

L ' (Hom(C (L), L)×̃Derh L)q.

Proof. We check that the map

γ : L→ (Hom(C (L), L)×̃Derh L,Dq), x 7→ −ϕx + adx,

is a cdgl morphism, where ϕx : C (L)→ L is the map sending 1 to x and the elements in
∧≥1sL to zero. Commuting with the differential means that:

ϕ∂x + ad∂x = −Dϕx +D adx−[q, ϕx] + [q, adx].

This equality is true since ad∂x = D adx and the elements in Hom(C (L), L) act as

ϕ∂x(1) = ∂x, Dϕx(1) = ∂x, [q, ϕx](sy) = (−1)|x|[x, y], [q, adx](sy) = (−1)|x|[x, y]

and zero on any other element. On the other hand, commuting with the Lie bracket
means that

− adx ◦ϕy + [ϕx, ϕy] + (−1)|x||y| ady ◦ϕx + [adx, ady] = −ϕ[x,y] + ad[x,y]

which is true, since [adx, ady] = ad[x,y] and the rest of the elements act trivially on any
element different of 1 and 1 is sent to −[x, y].

In particular, we can restrict γ to the connected component

γ : L→ (Hom(C (L), L)×̃Derh L,Dq)0.

This cdgl morphism will turn out to be a quasi-isomorphism. Recall from Proposition
5.2 that we can write Hom(C (L), L) as Hom(C (L), L)×̃L with [x, ϕ] = adx ◦ϕ. Under
this isomorphism, the differential on (Hom(C (L), L)×̃L)×̃Derh L becomes:

Dqϕ = Dϕ+ [q, ϕ], Dqx = ∂x− (−1)|x| adx ◦q, Dqθ = Dθ − (−1)|θ|θ ◦ q
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for ϕ ∈ Hom(C (L), L)), x ∈ L and θ ∈ Derh L.
Forget about the Lie brackets in the following spaces, and just consider them as

differential graded vector spaces. Recall from §5.3 that

Γ: (s−1 DerαL(L C (L), L′), D)→ (Hom(C (L), L), Dq)

is an isomorphism (the chosen morphism L→ L is the identity). And from §5.3.1 that

α∗L : DerL→ DerαL(L C (L), L)

is a quasi-isomorphism and so is the desuspension s−1α∗L. Composing both maps we get
a map

Γ ◦ s−1α∗L : s−1 Der(L)→ (Hom(C (L), L), Dq)

which is a quasi-isomorphism and which maps a derivation s−1η to (−1)|η|η ◦q. Consider
the map

φ : ((s−1 DerL×̃L)×̃Derh L, D̃)→ ((Hom(C (L), L)×̃L)×̃Derh L,Dq)

defined as Γ ◦ s−1α∗L on s−1 DerL and as the identity on L and on Derh L. On the right
hand side, we have the twisted product of cdgl’s constructed above. On the left hand
side, we have a graded vector space and we can define a differential as

D̃s−1η = −s−1Dη, D̃x = ∂x− s−1 adx, D̃θ = Dθ − s−1θ

for s−1η ∈ s−1 DerL, x ∈ L and θ ∈ Derh L. It is a straightforward calculation to show
that D̃2 = 0 and that φ commutes with the differentials. Furthermore, since φ consists
of a quasi-isomorphism extended by the identity along the twisted products, φ is also a
quasi-isomorphism of differential graded vector spaces.

Therefore, our initial map γ factors through φ:

L

((s−1 DerL×̃L)×̃Derh L, D̃) ((Hom(C (L), L)×̃L)×̃Derh L,Dq)

γ′
γ

φ

where we define γ′(x) = −x+ adx. It is easy to check that it is a commutative diagram
of differential graded vector spaces. We want to prove that γ′ induces an isomorphism
on the homology at non-negative degrees.

Suppose that a cycle x ∈ L is such that H∗(γ′)[x] = 0. Then there is an element

s−1η + y + θ ∈ (s−1 DerL×̃L)×̃Derh L such that D̃(η + y + θ) = γ′(x) = −x+ adx .

Comparing both sides of the equation we deduce that ∂y = x, so [x] = 0 ∈ H∗(L)
and we conclude that H∗(γ′) is injective. Conversely, we check that it is surjective at
non-negative degrees. Take an arbitrary cycle

s−1η + y + θ ∈ ((s−1 DerL×̃L)×̃Derh L)n
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for n ≥ 0. From the condition D̃(s−1η + y + θ) = 0 we deduce the following identities

∂y = 0, Dθ = 0, Dη + ady + θ = 0.

Since η is a derivation of degree n+ 1 > 0 it belongs to Derh L. Its differential is

D̃η = Dη − s−1η = − ady −θ − s−1η,

thus in the homology s−1η + y + θ is equivalent to

s−1η + y + θ + D̃η = y − ady = γ′(−y).

We conclude that γ′ is a quasi-isomorphism when restricted to the connected com-
ponent at zero. The same applies to φ, so we have that the cdgl morphism

γ : L→ ((Hom(C (L), L)×̃L)×̃Derh L,Dq)0

induces an isomorphism on the homology; this means that γ is a cdgl quasi-isomorphism.

Remark 7.15. Though is not necessary for the previous proof, we can find a retraction
of γ. Consider the projection

τ : (Hom(C (L), L)×̃Derh L)q ∼= ((Hom(C (L), L)×̃L)×̃Derh L)q → L.

Then τ ◦ γ = idL and, therefore, τ is also a quasi-isomorphism.
In the cdgl fibration sequence (7.5) we have identified one of the component of the

central cdgl. If we realize this cdgl fibration and focus on this component we will obtain
a new fibration sequence

F → 〈(Hom(C (L), L)×̃Derh L)q〉 → 〈Derh L〉 (7.6)

where the fiber F consists of some connected components of the former fiber 〈Hom(C (L), L)〉.
The lemma below identifies these connected components.

Lemma 7.16. The connected components of F are in bijection with h/H0(L), this means

F =
⊔

[ϕ]∈h/H0(L)
〈Hom(C (L), L)ϕ̄〉.

Proof. We have to identify which Maurer-Cartan elements of Hom(C (L), L) are gauge
related with q, when considered in Hom(C (L), L)×̃Derh L. Recall from Proposition 5.6
that there is a bijection

JL,LK/H0(L)→ M̃C(Hom(C (L), L)), ϕ 7→ ϕ̄ = ϕ ◦ q.

We need to compute the gauge action in Hom(C (L), L)×̃Derh L. If θ ∈ Derh
0 L, then

Dθ = 0 and
θGψ = eadθ(ψ) = eθ ◦ ψ
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for any ψ ∈ MC(Hom(C (L), L)). Since eθ ∈ auth(L) it is clear that θG− sends elements
in h/H0(L) to elements in h/H0(L).

On the other hand, the gauge action by an element of Hom0(C (L), L) is the same
that when is performed in the twisted product or in Hom(C (L), L) (see Remark 1.4).
This means that the gauge action by Hom0(C (L), L) relates elements which were already
the same in M̃C(Hom(C (L), L)). In particular, by the bijection above, it sends a class
in h/H0(L) to the same class.

Therefore the gauge action of any BCH product of elements of Hom0(C (L), L) and
Derh

0 L will preserve the subset h/H0(L). By the Malcev equivalence (see §3), a generic
element in (Hom(C (L), L)×̃Derh L)0 could be written as such product. So we have
proved that, for any gauge related element with q in Hom(C (L), L)×̃Derh L, its class is
in h/H0(L).

Conversely, if ϕ ∈ auth(L), then just take θ = logϕ ∈ Derh
0 L and one gets θG q = ϕ̄.

Therefore we have proved that ϕ̄ is gauge related with q if and only if [ϕ] ∈ h/H0(L).

The next step, before proving the theorem is to reformulate the fibration sequence
(7.6) using the quasi-isomorphisms γ and τ. Consider the diagram

F 〈(Hom(C (L), L)×̃Derh L)q〉 〈Derh L〉

〈L〉

〈τ〉 〈γ〉

where the vertical arrows are homotopy equivalences and we want to identify the curved
arrows, given by the compositions. Clearly the map γ composed with the projection
gives ad: L → Derh L, whose realization gives the right curved arrow. On the other
hand, for each ϕ ∈ h/H0(L), we have a commutative diagram of cdgl’s:

(Hom(C (L), L))ϕ̄ (Hom(C (L), L)×̃Derh L)q

L
ev1

τ

so the left curved arrows is given by 〈ev1〉. Therefore the fibration sequence (7.6) is
equivalent to

F
〈ev1〉−−−→ 〈L〉 〈ad〉−−→ 〈Derh L〉. (7.7)

Finally, apply Proposition 5.7 to each component of F . Since 〈L〉 ' XQ and
h/H0(L) ∼= HQ, we get a commutative diagram

F 〈L〉

autHQ(XQ) XQ

〈ev1〉

' '

ev . (7.8)
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We have all the ingredients for proving the main theorem.

Proof of Theorem 7.13. From Proposition 7.12 the realization of the cdgl sequence (7.3)
is an HQ-fibration sequence. By Theorem 2.17 it can be obtained from the universal
HQ-fibration sequence, which was reformulated in Theorem 2.25. Therefore there is a
homotopy commutative diagram

〈L〉 〈Derh L〉 〈Derh L×̃sL〉

XQ B aut∗HQ
(XQ) B autHQ(XQ)

'

〈ad〉

.

Now attach the diagram (7.8) to obtain

F 〈L〉 〈Derh L〉 〈Derh L×̃sL〉

autHQ(XQ) XQ B aut∗HQ
(XQ) B autHQ(XQ).

〈ev1〉

' '

〈ad〉

ev

We focus on the left side of the diagram. The first triple in the upper row is (7.7),
which is a fibration sequence. On the other hand the bottom row is the result of applying
the Puppe sequence at the universal fibration as it was proved in Proposition 2.26.

In the left part of the diagram, we construct the long exact sequences of homotopy
groups associated to those sequences and we apply the five lemma. Since the first two
vertical maps are homotopy equivalences, we deduce that the third one is a weak homo-
topy equivalence. Now we focus on the right part of the diagram and apply the same
argument to conclude that the last vertical arrow is also a weak homotopy equivalence.

Finally, since the complex X is finite, the involved mapping spaces are of the homo-
topy type of a CW-complex. So the weak homotopy equivalences are homotopy equiva-
lences.

Before studying some consequences and generalizations of this result, we see that
we can not weaken the hypothesis of our theorem. Suppose that we take a subgroup
H ⊂ E(XQ) acting nilpotently on H∗(XQ), instead of rationalizing a subgroup of E(X).
Then B autH(XQ) is not, in general, of the homotopy type of the realization of a cdgl.

Example 7.17. Consider X = Sn ∨ Sn with n ≥ 2, a simply connected space whose
minimal model is L = (L(x, y), 0) with |x| = |y| = n− 1. Let h ⊂ E(L) be the subgroup
generated by the automorphism

ϕ : L '−→ L, x 7→ x+ y, y 7→ y.

This subgroup corresponds with a subgroup H ⊂ E(XQ) = E∗(XQ) which acts
nilpotently on the homology. Suppose that there exists a cdgl M such that 〈M〉 '
B aut∗H(XQ). Then H0(M) with the BCH group structure has to be isomorphic to
π1(B autH(XQ)) ∼= H ∼= h which is isomorphic to Z. However, this is not a 0-local group,
while, H0(M) is 0-local (using the multiplication by scalar), so we get a contradiction.
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7.3 The pointed case
In this section we extend the results of the previous section to the pointed case. Again
consider X a finite nilpotent space with L = (L̂(V ), ∂) its minimal Lie model. Now we
fix Π ⊂ E∗(X) a subgroup which acts nilpotently on π∗(X). Then [9, Theorem C] affirms
that B aut∗Π(X) is a nilpotent complex and, in consequence, Π is a nilpotent group.

Using §4.1, we can associate the subgroup Π ⊂ E∗(X) with a subgroup π ⊂ E(L)
isomorphic to Π. Note that, in the non-pointed case, we worked with the preimage via ζ
of a subgroup of (free) classes of automorphisms, so the associated group was invariant
under the action of π1(XQ) or equivalently of H0(L). In this case, the group π ⊂ E(L)
is not necessarily invariant under the action of H0(L), so this is an extra requirement
which should be included in the hypothesis.

By [24, Theorem 2.1] if ΠQ acts nilpotently on π∗(XQ) it also does on H∗(XQ).
Thus, as in the non-pointed case, we construct the lower central series of the action on
the homology, define KQ as the group which stabilizes such series and we construct an
associated filtration {V n} of the graded vector space V .

Analogously, define

autΠ(L) = {ϕ ∈ aut(L) | [ϕ] ∈ π}

and Derπ L ⊂ DerL as

Derπ≥1 L = Der≥1 L, Derπ0 L = {θ ∈ Der0L | Dθ = 0, eθ ∈ autΠ(L)}.

Note that Derπ0 L with the BCH product is a subgroup of DerL, so similarly to
Proposition 7.9 we deduce Derπ L is a sub cdgl of DerL = Derk L. The map ad: L →
Derπ L is well defined since we have imposed Π to be invariant under the action of H0(L),
so an analogous version of Proposition 7.10 applies.

Recall from Theorem 2.39 that

X → B(∗, aut∗Π(X), X) p−→ B aut∗Π(X)

is the universal Π-pointed fibration sequence. Unfortunately, we can not reformulate
the middle term, as we did in the non-pointed case: for simplicity let’s write Z =
B(∗, aut∗Π(X), X). Using that the rationalization of B aut∗Π(X) is of the homotopy type
of B aut∗ΠQ

(XQ) (see Proposition 7.8) a five lemma argument shows that ZQ is of the
homotopy type of B(∗, aut∗ΠQ

(XQ), XQ). In particular, the sequence

XQ → ZQ → B aut∗ΠQ(XQ)

is universal, since it classifies pointed fibration sequences, with fiber of the homotopy
type of XQ and whose pointed holonomy action lies in ΠQ.

The following theorem allows to model such universal fibration sequence.

Theorem 7.18. For X a finite nilpotent complex with L = (L̂(V ), ∂) its minimal Lie
model, and Π ⊂ E∗(X) a subgroup which acts nilpotently on π∗(X) and which is invariant
under the action of π1(X), the realization of the cdgl sequence

L→ L×̃Derπ L→ Derπ L



130 Chapter 7. Models for classifying fibrations

is homotopy equivalent to the universal ΠQ-pointed fibration sequence

XQ → ZQ → B aut∗ΠQ(XQ).

The twisted product of L×̃Derπ L is the one inherited from (6.4).

Proof. Apply Theorem 7.13 withHQ = ζ(ΠQ) ⊂ E(XQ) to obtain the following homotopy
commutative diagram (where we use that ζ−1ζ(ΠQ) = ΠQ because of being invariant
under the action of π1(XQ)):

〈L〉 〈Derπ L〉 〈Derπ L×̃sL〉

XQ B aut∗ΠQ
(XQ) B autζ(ΠQ)(XQ)

'

〈ad〉

' '

.

Write G = autζ(ΠQ)(XQ) and G∗ = aut∗ΠQ
(XQ). Then the inclusion G∗ → G induces

a diagram
B(∗, G∗, XQ) B(∗, G,XQ)

BG∗ BG

p

.

By [32, Proposition 7.8], it is a pullback diagram. Recall from §2.2.1 that p : B(∗, G,XQ)→
BG is homotopy equivalent to the map BG∗ → BG induced by the inclusion. On the
other hand we have ZQ ' B(∗, G∗, XQ), so there is a homotopy pullback

ZQ BG∗

BG∗ BG

where both maps BG∗ → BG are induced by the inclusion G∗ → G. The realization
functor preserves homotopy limits (since it is part of Quillen pair see §1.3), so we can
compute ZQ as the realization of the cdgl homotopy pullback of

Derπ L

Derπ L Derπ L×̃sL

where both maps are inclusions. Consider the diagram

L×̃Derπ L (L×̃(Derπ L×̃sL), D̃) Derπ L

Derπ L Derπ L×̃sL

ι
'
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where we are using the notation of the proof of Proposition 7.9 and all the maps are
inclusions or projections. The square is clearly a pullback in the category cdgl, so when
realized we obtain the following diagram

ZQ BG∗

〈L×̃Derπ L〉 〈Derπ L〉

BG∗ BG

〈Derπ L〉 〈Derπ L×̃sL〉

We want to study the properties of this diagram: in what follows, all such properties
are considered up to homotopy. It is commutative and the front and the back faces are
pullbacks by the arguments above. The diagonal maps arriving to BG∗ or to BG are
homotopy equivalences because of Theorem 7.13, and the other diagonal map is also
a homotopy equivalence for the uniqueness of the pullback in the homotopy category.
In addition the bottom side is also a pullback by the proof of Theorem 7.13. Then, a
diagram chasing argument shows that the upper side is also a pullback. Then we can
extend the upper face homotopy equivalences to theirs fibers, giving the desired result.
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CHAPTER 8

Examples and applications

We finally study some consequences of the central theorems 7.13 and 7.18. Through this
chapter the notations and hypothesis of §7 are assumed.

8.1 Covering of the universal fibration sequence
TakeX a simply-connected finite complex, and L = L>0 its Lie model, which is positively
graded. As it was explained at the introduction of §7, the realization of the dgl fibration
sequence

L
ad−→ D̃erL→ D̃erL×̃sL

is homotopy equivalent to

X → ˜B aut∗(X)→ ˜B aut(X).

This result can be obtained as a particular case of Theorem 7.13. Let X be a finite
nilpotent complex with L = (L̂(V ), ∂) its minimal model. We take H = {[id]} ⊂ E(X)
the trivial subgroup, which clearly acts nilpotently onH∗(X). Note that ζ−1(H) ⊂ E∗(X)
consists of those homotopy classes of pointed maps which are freely homotopic to the
identity. If X is simply connected then ζ−1(H) is the trivial subgroup, but is not trivial
in general.

Then, the isomorphism E∗(XQ) ∼= E∗(L) gives a subgroup h ⊂ E∗(L) isomorphic to
ζ−1(HQ). Since h/H0(L) ∼= HQ = {[id]}, we conclude that h is equal to the action of
H0(L), this means:

h = {[eadx ] | x ∈ L0} ∼= H0(L).
The following proposition allows to compute the cdgl Derh L.

Proposition 8.1. We have the following equality of subsets of Der0 L:

Derh
0 L = ad(L0)⊕DDer1 L

133
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Note that [Dη, adx] = D[η, adx], for x ∈ L0, η ∈ Der1 L, so the right hand side is a
sub dgl.

Proof. By the definition of h , adx belongs to Derh
0 L for any x ∈ L0. Recall from Theorem

3.7 that for any η ∈ Der1 L, eDη ∼ idL so Dη ∈ Derh
0 L and we have one of the inclusions.

Conversely suppose that θ ∈ Derh
0 L, then [eθ] = [eadx ] so idL ∼ eθ ◦ e− adx which

implies that
eθ = eDη ◦ eadx = eDη∗adx

for some η ∈ Der1 L. This shows that θ is an element of ad(L0) ⊕ DDer1 L (which is
closed under BCH products, since it closed under Lie brackets).

Recall from §1.1 the concept of 1-connected cover of a dgl M , that we denote by M̃ .

Proposition 8.2. The inclusion induces quasi-isomorphisms

D̃erL⊕ ad(L0) ' Derh L, ˜DerL×̃sL ' Derh L×̃sL

The twisted product DerL×̃sL is the usual one given by (6.3).

Proof. The first quasi-isomorphism comes from the previous proposition. We focus on
the second one.

We only need to check that H0(−) applied to the inclusion is an isomorphism, since
in positive degrees the cycles and boundaries of the cdgl’s agree.

A degree 0 element in Derh L×̃sL has to be an element Derh
0 L which is of the form

Dη + adx by the proposition above. Then η + sx belongs to (Derh L×̃sL)1 and its
differential is

Dη − s∂x+ adx = Dη + adx

which is the desired element of degree 0. This shows that H0(Derh L×̃sL) = 0.

Then Theorem 7.13 affirms that the realization of

L
ad−→ Derh L→ ˜DerL×̃sL

is homotopy equivalent to

XQ → B aut∗ζ−1{id}(XQ)→ B aut{id}(XQ)

Note that B autid(XQ) is homotopy equivalent to the universal cover of B aut(XQ)
by Proposition 2.20. In order to recover the classical case, take XQ simply connected.
In that case ζ−1(id) is the trivial group and B aut∗id(XQ) is also homotopy equivalent
to the universal cover of B aut∗(XQ). Finally, from Proposition 8.1 we deduce that the
inclusion induces a quasi-isomorphism D̃erL ' Derh L. So the classical result is obtained
as particular example.
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8.2 Description of the rationalizations H and Π
Giving an explicit expression of the rationalization of a nilpotent group can be a difficult
issue in some cases. The theorems give such explicit description for Π ⊂ E∗(X) and
H ⊂ E(X) acting nilpotently on the homotopy groups and on the homology groups
respectively, forX a finite nilpotent complex (and Π invariant under the action of π1(X)).

Theorem 8.3. There are isomorphisms of groups

ΠQ ∼= H0(Derπ L), HQ ∼=
H0(Derh L)
H0(ad(L0)) .

As usual, we are considering the BCH product on H0 and Π and h are constructed
as in §7.

Proof. The first isomorphism follows immediately from Theorem 7.18:

ΠQ ∼= π1(B aut∗ΠQ(XQ)) ∼= π1〈Derπ L〉 ∼= H0(Derπ L).

And by a similar argument now using Theorem 7.13 and the results about the holon-
omy action (see §4.4) we get the second isomorphism:

HQ ∼= π1(B autHQ XQ) ∼=
π1(B aut∗ζ−1(HQ)(XQ))

π1(XQ)
∼=
H0(Derh L)
H0(ad(L0)) .

Example 8.4. Consider the following subgroups:

H = EH(XQ) = {[f ] | H∗(f) = id} ⊂ E(XQ)

and
Π = E∗π(XQ) = {[f ] | π∗(f) = id} ⊂ E∗(XQ).

Then the corresponding derivation algebras are defined by

Derh
0 L = {θ ∈ Der0 L | Dθ = 0 and θ(V ) ⊂ L̂≥2(V )}

and
Derπ0 L = {θ ∈ Der0 L | Dθ = 0 and eθ induces the identity on H∗(L)}.

Theorem 8.3 in these particular cases recovers the result [44, Proposition 12].

Another direct consequence of the theorem above concerns the homotopy nilpotency
of aut∗ΠQ

(XQ) and autHQ(XQ). The homotopy nilpotency of an H-group is the least
integer n for which the (n+1)th homotopy commutator is homotopically trivial. Similarly
is defined the nilpotency index of a dgl. In both cases we write nil(−) to indicate this
number.

Proposition 8.5. nil aut∗ΠQ
(XQ) = nilH(Derπ L) and nil autHQ(XQ) = nilH(Derh L×̃sL).
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Proof. The numbers nil aut∗ΠQ
(XQ) and nil autHQ(XQ) coincide by [44, Theorem 3] with

the iterated Whitehead product length of B aut∗ΠQ
(XQ) and B autHQ(XQ) respectively.

For any connected cdgl M there is an isomorphism of Lie algebras π∗+1〈M〉 ∼= H∗(M)
by [14, §12.5.2], so we can compute these iterated Whitehead product length using the
models given by Theorems 7.13 and 7.18.

8.3 Nilpotent rational group as self homotopy equivalences
We will see through this section that any finitely generated nilpotent rational group can
be realized as a subgroup of self homotopy equivalences of a finite complex; furthermore,
the subgroup will act nilpotently on the homology (or the homotopy groups) of the
complex with the same nilpotency index.

We use [49, §2] as general reference. The Malcev equivalence (see §3.1) can be
described in simple terms, in the case of finitely generated rational groups of nilpotency
index n. Such groups can be embedded in T (n) the group of n×n unitriangular matrices
over Q, this means, the group of upper triangular matrices with 1 in the diagonal entries.
On the other hand, any finitely generated nilpotent Lie algebra of nilpotency index n
can be embedded in U(n). This is the group of n × n strictly triangular matrices over
Q, this means upper triangular matrices 0 in the diagonal entries. We equip this group
with the usual commutator bracket, which makes it a Lie algebra.

Then the logarithm and exponential series give a bijection

U(n) T (n)
exp
∼=
log

.

Proposition 8.6. Let H be a finitely generated nilpotent rational group with nilpotency
index n. Then H is isomorphic to a subgroup of self homotopy equivalences of a ratio-
nalization of a finite nilpotent complex, which acts nilpotently on the homology.

Proof. Let H be a finitely generated rational group of nilpotency index n. Without loss
of generality we can consider that H ⊂ T (n). Then M = log(H) ⊂ U(n) is a Lie algebra
concentrated in degree 0 with nilpotency index n. Take X =

∨n
j=1 S

m withm > 1, whose
minimal Lie model is given by L = (L(x1, . . . , xn), 0) with |x1| = · · · = |xn| = m− 1.

A derivation θ ∈ Der0 L sends a generator to a linear combination of generators, by
degree reasons. So we can identify θ with a n×n-matrix acting on V = Span{x1, . . . , xn}
and we identify U(n) as a subspace of Der0(L). With this identification M is seen as a
subspace of Der0(L) and it determines a finite filtration of V ∼= s−1H̃∗(XQ)

V = V 0 ⊃ V 1 ⊃ · · · ⊃ V n = 0,

with V i = MV i−1 for i ≥ 1.
On the other hand, an automorphism of L, ϕ ∈ aut(L) sends a generator to a linear

combination of generators, also by degree reason. Furthermore, since the differential is
zero, then aut(L) = aut(L)/ ∼. So we can identify aut(L) with invertible matrices n×n
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and the group H can be identified with a subgroup h = auth(L) of aut(L) = E(L). Then
we deduce that

Derh
0(L) = {θ ∈ Der0 L | eθ ∈ h} = M.

We finally use the isomorphism E(L) ∼= E∗(XQ) = E(XQ) to identify h with a sub-
group H of E(XQ). Then H acts nilpotently on H∗(XQ) giving as central series the
suspension of the filtration {V i} via the isomorphism V ∼= s−1H̃∗(XQ). Therefore we
can see H ∼= H as a subgroup of E(XQ) acting nilpotently on the homology of XQ.
Furthermore the realization of

L
ad−→ Derh L→ Derh L×̃sL

is homotopy equivalent to

XQ → B aut∗H(XQ)→ B autH(XQ).

A similar procedure can be performed in the dual setting: let π be a finitely generated
nilpotent rational group, with nilpotency index n. We identify π with a subgroup of
T (n). Take Y =

∏n
j=1 S

m for odd m ≥ 1. Its Sullivan model is A = (∧V, 0) with
V = Span{x1, . . . , xn} with |x1| = · · · = |xn| = m. A map YQ → YQ is modeled by an
cdga morphism ψ : A→ A which can be identified with a n× n-matrix as above.

The differential being zero implies that aut(A) = aut(A)/ ∼, so we identify π with a
subgroup of aut(A) and with a subgroup Π ⊂ E(YQ) acting nilpotently on π∗(YQ) ∼= V
and thus acting nilpotently on H∗(YQ) ∼= A]. The action of π1(YQ) on JYQ, YQ]∗ is trivial
in both cases m = 1 or m > 1, so E∗(YQ) = E(YQ).

Then a minimal Lie model of Y can be constructed from A (see [14, §10]) and Theorem
7.18 gives the model for the universal fibration associated to such group. We conclude
the proposition below.

Proposition 8.7. Let π be a finitely generated nilpotent rational group with nilpotency
index n. Then π is isomorphic to a subgroup of self pointed homotopy equivalences of a
rationalization of a finite nilpotent complex, which acts nilpotently on the homotopy.

8.4 Other fibration sequences
For X a finite nilpotent complex, and H ⊂ E(X) and Π ⊂ E∗(X), there a fibration
sequences

autid(X)→ autH(X)→ H, aut∗id(X)→ aut∗Π(X)→ Π.

Applying the functor B(−) we obtain fibration sequences

B autid(X)→ B autH(X)→ BH, B aut∗id(X)→ B aut∗Π(X)→ BΠ. (8.1)

The rationalization of such fibration sequences can be modeled using derivation Lie
algebras. As usual, let L = (L̂(V ), ∂) be the minimal Lie model of X.



138 Chapter 8. Examples and applications

Theorem 8.8. The realization of the cdgl fibration sequences

˜DerL×̃sL→ Derh L×̃sL→ (Derh L×̃sL)/( ˜DerL×̃sL)

and
D̃erL→ Derπ L→ Derπ L/D̃erL

are homotopy equivalent to

B autid(XQ)→ B autHQ(XQ)→ BHQ, and B aut∗id(XQ)→ B aut∗ΠQ(XQ)→ BΠQ

respectively.

Proof. Note that the fibration sequences of the theorem can be obtained as the fibration
of B autHQ(XQ) and B aut∗ΠQ

(XQ) over their first Postnikov stage.
Given a connected cdgl M , denote by Zn ⊂ Mn the subspace of cycles. Then [14,

Proposition 12.43] affirms that the realization of the cdgl fibration sequence

M>n ⊕ Zn →M →M/(M>n ⊕ Zn)

is homotopy equivalent to the fibration of 〈M〉 over its nth Postnikov stage. Then, take
n = 1 and M = Derh L×̃sL or M = Derπ L.

Remark 8.9. A short computation let us observe that

(Derh L×̃sL)/( ˜DerL×̃sL) = Derh
0 L⊕R1, and Derπ L/D̃erL = Derπ0 L⊕ S1,

where R1 and S1 denote a complement of the cycles of degree 1 of Derh L×̃sL and Derπ L
respectively. In particular, we deduce

〈Derh
0 L⊕R1〉 ' BHQ, and 〈Derπ0 L⊕ S1〉 ' BΠQ.
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