UNIVERSIDAD DE MALAGA

DOCTORAL THESIS

Ubiquitous Distributed Intelligence

at the Edge
Inteligencia Distribuida Ubicua
en el Borde
Author: Supervisor:
M.Sc. José Angel MORELL Prof. Dr. Enrique ALBA

A thesis submitted in fulfillment of the requirements
for the degree of Doctor of Philosophy

in the

PhD degree in Computer Technologies
Programa de Doctorado en Tecnologias Informaticas
Departamento de Lenguajes y Ciencias de la Computaciéon
E.T.S.I. Informética

October 2022


https://www.uma.es/
https://www.linkedin.com/in/jose-angel-morell-martinez/
http://www.lcc.uma.es/~eat/
https://www.uma.es/doctorado-informatica/
https://www.uma.es/doctorado-informatica/
http://lcc.uma.es/
https://www.uma.es/etsi-informatica/

UNIVERSIDAD
DE MALAGA

AUTOR: José Angel Morell Martinez
https://orcid.org/0000-0002-6654-1171

EDITA: Publicaciones y Divulgacion Cientifica. Universidad de Malaga

D0

Esta obra estd bajo una licencia de Creative Commons Reconocimiento-NoComercial-
SinObraDerivada 4.0 Internacional:

http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

Cualquier parte de esta obra se puede reproducir sin autorizacion

pero con el reconocimiento y atribucién de los autores.

No se puede hacer uso comercial de la obra y no se puede alterar, transformar o hacer obras
derivadas.

Esta Tesis Doctoral esta depositada en el Repositorio Institucional de la Universidad de Malaga
(RIUMA): riuma.uma.es


https://orcid.org/0000-0002-6654-1171
http://creativecommons.org/licenses/by-nc-nd/4.0/legalcode

iii

Declaracion de Autoria y Originalidad

(,

UNIVERSIDAD DE MALAGA

M.Sc. José Angel Morell Martinez, estudiante del programa de doctorado Tec-
nologfas Informaticas de la Universidad de Mélaga, autor de la tesis, presentada
para la obtencién del titulo de doctor por la Universidad de Malaga, titulada:

“Ubiquitous Distributed Intelligence at the Edge”

Realizada bajo la tutorizacién y direcciéon del Prof. Dr. Enrique ALBA

DECLARO QUE:

La tesis presentada es una obra original que no infringe los derechos de propiedad
intelectual ni los derechos de propiedad industrial u otros, conforme al ordenamiento
juridico vigente (Real Decreto Legislativo 1/1996, de 12 de abril, por el que se aprueba
el texto refundido de la Ley de Propiedad Intelectual, regularizando, aclarando y ar-
monizando las disposiciones legales vigentes sobre la materia), modificado por la
Ley 2/2019, de 1 de marzo.

Igualmente asumo, ante a la Universidad de Mélaga y ante cualquier otra instan-
cia, la responsabilidad que pudiera derivarse en caso de plagio de contenidos en la
tesis presentada, conforme al ordenamiento juridico vigente.

Fecha y firma:




iv

This page is intentionally left blank.



Declaracion de Supervision

=~
UNIVERSIDAD DE MALAGA

El Prof. Dr. Enrique Alba Torres, perteneciente al Departamento de Lenguajes
y Ciencias de la Computacién de la Universidad de Mélaga,

Certifica

que, M.Sc. José Angel Morell Martinez, Magister en Ingenieria del Software e In-
teligencia Artificial por la Universidad de Mdlaga, ha realizado en el Departamento
de Lenguajes y Ciencias de la Computaciéon de la Universidad de Mélaga, bajo su
direccion, el trabajo de investigacion correspondiente a su Tesis Doctoral (por com-
pendio de articulos) titulada:

“Ubiquitous Distributed Intelligence at the Edge”

“Inteligencia Distribuida Ubicua en el Borde”

Revisado el presente trabajo, estimo que puede ser presentado al tribunal que ha
de juzgarlo. Y para que conste a efectos de lo establecido en la legislacion vigente,
autorizo la presentacién de esta Tesis Doctoral en la Universidad de Malaga.

Fecha y firma:




Vi

This page is intentionally left blank.



vii

“It is not because things are difficult that we do not dare, it is because we do not dare that
things are difficult.”

Lucius Annaeus Seneca, 4 BC — 65 AD



viii

This page is intentionally left blank.



iX

UNIVERSIDAD DE MALAGA

Preface

E.T.S.I. Informaética
Departamento de Lenguajes y Ciencias de la Computacién

Doctor of Philosophy

Ubiquitous Distributed Intelligence
at the Edge

by M.Sc. José Angel MORELL

So far, most distributed computing models have considered processing information
in a powerful central cloud. At the same time, the edge devices (nearer the users)
such as smartphones, tablets, and laptops have been used to gather or deliver infor-
mation. However, the edge is changing, becoming more extensive and more sophis-
ticated, causing the amount of data produced on edge devices to grow exponentially,
outstripping the network’s capabilities and making it impossible to send it all to the
cloud for processing and analysis. Moreover, much of this data that remains on
edge is private and would not be allowed to be transferred to external central pro-
cessing centres, questioning the way to process the information, e.g. traditional big
data processing. Still, learning from these data would be very useful for science and
society. Other devices need to make decisions in real-time and cannot wait for the
cloud to give them an answer before taking action, or even they can be temporary
uncommunicated. All the mentioned scenarios advocate fault-tolerant distributed
computing at the edge, running the Al algorithms on light devices, and learning
global models using the devices’ local data, i.e. federated edge learning. In this
thesis, we propose to see federated edge learning as a type of volunteer computing
where users donate their edge devices’ computing resources to a project that trains a
shared machine learning model. We first define and then address the challenges and
desirable features to achieve volunteer computing for federated edge learning. We
seek to adapt to the volatility of dis/connections and get fault tolerance. We propose
two approaches, one synchronous and one asynchronous, to deal with this problem
using a given number of constrained, unreliable, and heterogeneous (hardware and
software) devices and then show their suitability for this purpose in dynamic envi-
ronments. We get a numerical accuracy similar to today’s configurations that use
a static platform for learning. Also, we formulate and model the problem of com-
munication overhead in federated learning, an important challenge for ubiquitously
distributed intelligence and efficiently learning from users’ data, as a multi-objective
problem. We then propose tackling it using genetic algorithms for multi-objective
function optimisation achieving higher model accuracy while reducing communica-
tions compared to the maximum communication setting. We got promising results
opening the door to new lines of research in multi-objective optimisation of feder-
ated learning challenges. Finally, the results of this thesis prove that the deployment
of ubiquitously distributed intelligence at edge devices is feasible and valuable, also
providing a better understanding of how such ubiquitous distributed intelligence
should be, its associated problems, and how these problems must be addressed.
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Chapter 1

Introduction

THIS thesis is a scientific summary of work carried out in previous years addressing
the challenge of distributed ubiquitous intelligence in edge devices. In particular, we
propose to see Federated Edge Learning (FEEL) as a type of Volunteer Computing
(VC) where users donate their edge devices” computing resources to a project that
trains a shared Machine Learning (ML) model (VC4FL). We look at what such a
platform should look like, why it is necessary to move computing from the cloud to
the edge and how we can learn from users’ local data without moving the data to
the cloud. Such a platform must be designed to learn from users” data and optimise
potential problems. As we detail in Section 3.3, that means dealing with constrained,
unreliable, and heterogeneous devices in hardware (HW) and software (SW). This
platform must adapt to the volatility of dis/connections and be fault-tolerant. Also,
we propose using metaheuristics to optimise the problems that may arise.

In this section, we first describe the introduction and motivation of our work.
Next, we explain the thesis methodology, where we define the objectives and phases
of this work and present the contributions of the thesis.

1.1 Introduction and Motivation

In this section, we first introduce the origin and meaning of ubiquitous computing.
Next, we explain why moving computation closer to the edge, i.e. nearer the user
devices, is necessary.

1.1.1 Origin and Meaning of Ubiquitous Computing

Mark Weiser is considered the father of the term “ubiquitous computing” (Ubicomp
/ UC) [117] [118] also known as “pervasive computing”, “calm computing” or “ambient
intelligence”. This term describes a reality where computers are embedded in all
objects of our environment such that they might bend to our will and support us in

our personal life and work. This idea was described in 1997 as follows [118]:

“The ubiquitous computing era will have lots of computers sharing each of us.
Some of these computers will be the hundreds we may access in the course of
a few minutes of Internet browsing. Others will be imbedded in walls, chairs,
clothing, light switches, cars - in everything. Ubiquitous computing is funda-
mentally characterized by the connection of things in the world with computa-
tion. This will take place at a many scales, including the microscopic.”

UC is considered the third era of computing (Fig. 1.1). The first era was char-
acterised by mainframe computers in which many people used one big centralised
computer. The second era was composed of personal computers, one person used
each. The third era, UC, which has just started, is the era of mobile and embedded
devices in which many computers exist for each person.
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FIGURE 1.1: From left to right, we see the three eras of computing:
the mainframe, the PC and mobile devices.

Weiser’s idea is becoming a reality. At the same time, the rise of edge devices
adds new challenges that prevent computing from being done entirely in the cloud,
as it has been done until now. We explain this in more detail in the next section.

1.1.2 Bringing Computation and AI Closer to the Edge

So far, most distributed computing models have considered processing information
in a powerful central cloud. To some extent, edge devices [102] (nearer the users)
such as smartphones, tablets, and laptops are terminals that show what is happen-
ing in the cloud. However, the edge is changing, being more extensive and more
sophisticated. There are not just mobile devices but also self-driving cars, drones,
robots, smart lights, smart refrigerators, wearable devices, and multiple sensors ev-
erywhere. Many of these devices collect a large amount of data, send it to the cloud,
and wait for a response (see Fig. 1.2).

090
N/
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—>

®
/ ~
©60°

FIGURE 1.2: New types of edge devices connected to the cloud.

Statista ! has declared that 23.8 billion interconnected computing devices are ac-
tive worldwide and will produce 149 zettabytes of usable data by 2024 2. Cisco® also
estimated that at least 85 of the 850 zettabytes created in 2021 would be usable, while
only seven zettabytes of it will be stored. Indeed, data production is far exceeding
the network’s capacity. Most of this data will not be able to be stored/processed
on the cloud due to the exponential increase in data demand and the high speed at

1
2

www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide
www.statista.com/statistics/871513/worldwide-data-created

3blogs .cisco.com/sp/five-things-that-are-bigger-than-the-internet-findings-from-
this-years-global-cloud-index
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which data is generated. For example, the data generated by a Boeing 787 or an au-
tonomous vehicle is 1 and 5 GB per second, respectively [40, 112] . That is not just a
problem of the bandwidth capacity, but we are also talking about devices that have
to make real-time decisions, which may not always be able to communicate with the
cloud. It is necessary to create new applications specialised and optimised for ana-
lytics at the edge [97]. Devices have to be smarter, safer and better-connected [53]. In
addition, real-time data processing would need to occur at the edge where the data
is being collected. Edge Computing (EC) [102] has been proposed to address the
problem of exponential growth of data generation at edge devices. It proposes to in-
crease the amount of processing on edge devices while reducing raw data exchange
with the cloud.

Moreover, today’s advances in Artificial Intelligence (AI) allow the training of
ML models by exploiting the daily-generated data that was previously considered
useless [67]. In addition, data privacy prevents sharing it with third parties (e.g.
medical images). As a promising solution to these issues, Federated Learning (FL)
appeared. FL originally comes from Distributed Deep Learning (DDL) [75]. It is a
learning paradigm that trains a shared model in a distributed manner while keeping
private the data locally on edge devices. FL is being actively investigated and widely
applied [50, 69, 93] (e.g. medicine [101]). Both FL and EC have many things in com-
mon; therefore, several authors have proposed solutions that satisfy both, calling it
Federated Edge Learning (FEEL) [109, 121].

In this thesis, we propose to see FEEL as a type of VC [6, 30, 57, 64, 86] (VC4FL)
where users donate the computing resources of their edge devices to a project in
which train a shared DL model. To this end, we must study how we should use
optimisation algorithms on edge devices. The training of a neural network (NN)
is indeed an optimisation problem. Moreover, in FL, new ones arise related to the
challenges of the volatility of edge device connections, communication overhead,
fault tolerance, device heterogeneity, and scalability, among many others. Many
of these problems are NP-hard [23, 24], so exact algorithms [23] become unusable.
Metaheuristics [3, 110], allow us to find acceptable solutions (non-optimal) to many
of these complex problems. Both the training of NN and the use of optimisation
techniques such as metaheuristics are processes that generally require a high com-
putational load, making them difficult to use on edge devices. However, recent ad-
vances in computing power, memory capacity and communications speed of these
devices [102] allow us to think that running small and medium optimisation algo-
rithms in a distributed manner on these devices is feasible and valuable.

In the following section, we detail the methodology of the thesis, where we de-
fine the objectives and phases of this work and present the contributions.

Thousands "“ —p P(;;)Io%de;llc.es
L [\

: (((D))) (((D)ﬁ :

«(D))) (((D))) : ML+DL Metaheuristics’

«D») « | s !
oA M..aam;

EDGE | Devices D 6 \; | ) \ @j l'é

1\ Maps Trends Correlatlons

CLOUD | Data Centers

FOG | Nodes

FIGURE 1.3: Ubiquitous distributed intelligence: Data from users and
cities are used to train distributed ML models while associated prob-
lems are optimised with optimisation algorithms.
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1.2 Thesis Methodology

In this section, we define the objectives and phases of this work and present the
contributions of the thesis.

1.2.1 Objectives and Phases

This thesis addresses the challenge of getting distributed ubiquitous intelligence in
edge devices (see Figure 1.3). Specifically, we propose to see FEEL as a VC type
where users donate their edge devices’ computing resources to a project that trains
a shared DL model (VC4FL). As we detail in Section 3.3, that means dealing with
constrained, unreliable, and heterogeneous (in HW and SW) devices. Such a plat-
form must adapt to the volatility of dis/connections and be fault-tolerant. We look at
what such a platform should look like, why it is necessary to move computing from
the cloud to the edge and how we can learn from users’ local data without moving
it to the cloud. In addition, we propose using metaheuristics to solve problems that
arise in this type of systems, such as optimising the right amount of communications
needed without losing quality in the learned artificial intelligence model. We have
four main objectives to achieve our purpose:

G1 Analyse heterogeneous hardware and software of edge devices.
G2 Investigate paradigms, protocols, algorithms, and challenges that may arise.

G3 Design and implement techniques that allow us to perform volunteer dis-
tributed artificial intelligence running the computing on users’ edge devices.

G4 Disseminate the results and make publicly available the designed and imple-
mented software.

Below we detail our main objectives following the phases of the scientific method [34]:

1. Observation.

(a) Analyse the heterogeneous HW we expect to use in the ubiquitous plat-
form. Research the most suitable benchmarks to compare these devices.
G1.

(b) Analyse the heterogeneous SW we can find in these devices and the pro-
gramming languages most appropriate to implement our proposal. G1.

(c) Research the most suitable algorithms to achieve our purpose. G2.

(d) Research and survey volunteer computing using edge devices with low
computing capacity and communication and power constraints. G2.

(e) Study the problems that may arise to fulfil our purpose. G2.
2. Induction.

(a) Identify paradigms and appropriate, efficient and safe network protocols
to design and build the ubiquitously distributed computing architecture.
G2.



1.2. Thesis Methodology 5

3. In the context of VC4FL, our hypothesis is:

(a) “Deploying distributed intelligence in a ubiquitous and fault-tolerant manner
using heterogeneous, unknown and unreliable edge devices is a need and can
be competitive with traditional approaches that use a homogeneous, known and
static cluster of computers.”

4. Experimentation.

(a) Design, implement, and evaluate fault tolerance techniques for unreliable
devices that can fail at any time. G3.

(b) Design, implement, and evaluate adaptive techniques for dynamic envi-
ronments where devices are connected and disconnected at will. G3.

(c) Design, implement, and evaluate the distributed computing architecture.
G3.

(d) Develop usable prototypes. G3.

(e) Perform extreme cases of dynamic experiments using unreliable devices
to test the fault-tolerant and adaptive of the distributed platform. G3.

(f) Analyse numerical results of the volunteer distributed computing archi-
tecture and validate our proposal, demonstrating our hypothesis. G3.

(g) Propose solutions to tackle the problems that arise to fulfil our purpose
and test them. G3.

5. Conclusions.

(a) Write a new body of knowledge about ubiquitous Al G4.

(b) Disseminate our results, benchmarks and software packages in confer-
ences and impact journals, Internet, videos, and user interactions. Define
future work and cross-fertilisation. G4.

1.2.2 Thesis Contributions

This doctoral thesis is presented as a compendium of four publications aligned with
the objectives defined in Section 1.2.1 and seeking the common goal of improving
state of art in distributed computing. Considering the relevance of the general objec-
tive of this thesis and its specific problems, we expect that our results will contribute
to the research community and society. Section 4 is organised into four chapters,
each referring to the work performed in one of the papers. Remarkably, two of these
papers have been published in journals indexed in the JCR (Q1). Also, another one
was published in the proceedings of a national conference, and one in the proceed-
ings of an international conference in which the PhD candidate received the “Out-
standing Student” award.

We organise the contribution of this thesis into four main contributions:

LIT. We have contributed to enlarging the literature about EC and FL (FEEL) by
reviewing the most suitable benchmarks for comparing performance on edge
devices (G1). By analysing the hardware and software of the most common
edge devices and their performance when solving complex problems (G1). By
reviewing the literature that uses the web browser as a VC platform (G2). By
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SYN.

ASYN.

MOD.

defining the challenges and desirable features of VC4FL by combining the tra-
ditionally used criteria for VC and FL (G2) and showing that the web browser
is the right platform for this purpose due to its sandboxing, ubiquity, and no
software installation required (G2). Finally, we summarised the most common
techniques used to reduce the communication overhead problem in FL (G2
and G4).

We have proposed a synchronous approach for performing distributed volun-
teer computing using the MapReduce programming paradigm and the mes-
sage queue pattern (G2) through web browsers without interrupting the site’s
user experience and installing additional software. We designed, implemented
(G3), and evaluated our proposal showing that it has good scalability despite
the constraints on the communication channel (G4).

We have proposed an asynchronous algorithm for FEEL that adapts to con-
strained, unreliable, and heterogeneous (in HW and SW) devices (G2) when
the number of workers is low and can even drop to zero during training. We
have designed, implemented (G3), and empirically evaluated our proposal in
highly dynamic and changing scenarios getting a numerical accuracy and Co-
hen’s Kappa (CK) score similar to today’s configurations that use a static dis-
tributed platform for learning (G4).

We formulated and modelled the problem of communication overhead in FL
(G2), an important challenge for ubiquitously distributed intelligence and ef-
ficiently learning from users’ data, as a multi-objective problem. We proposed
solving it using genetic algorithms for multi-objective function optimisation
(G3). Our proposal achieves higher accuracy while reducing communications
from 10 to 2000 depending on the neural network topology compared to the
maximum communication setting (G4).

We explain our contributions in more detail in the following. All our work pur-
sues the goal G4 of disseminating results. In our first work [85] (see Section 4.1), we
address the objective G1 and G2 and the sub-objectives 1-a, 1-b, 1-c, 5-a and 5-b. The
contributions of this work are LIT:

1.

2.

We studied and collected the available benchmarks for analysing the perfor-
mance of edge devices. G1.

(a) We showed that classic benchmarks are not reliable for evaluating the per-
formance of edge devices, but they are helpful to get a rough idea. They
are dependent on the hardware architecture and the operating system.
Depending on the specific problem to be solved, the results may vary. For
instance, Antutu is so common that hardware manufacturers have taken
to cheating on the benchmark, which makes it unreliable. G1.

We analysed the performance of different edge devices while solving a repre-
sentative set of optimisation problems with different features by running ge-
netic algorithms. G1.

(a) We showed that Raspberry Pi 3 (RP3) is a perfectly suitable platform for
executing algorithms on edge. RP3 is very cheap, uses less memory than
a laptop and solves problems in a reasonable time. RP3 is commonly
used in intelligent city sensors, making it suitable for performing edge
calculations. G1.
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(b) We showed that edge devices running Android have problems running
high-performance applications. This operating system seems more inter-
ested in keeping battery consumption low and using less memory (using
the garbage collector more often) than performance. G1.

(c) We showed that benchmarks like GeekBench 4 got good results on An-
droid devices. Therefore, we believe that it is necessary to execute native
code in Android devices to be able to solve the restrictions of this oper-
ating system. In appendix B, we show a subsequent unpublished study.
We analysed the performance of other programming languages such as
C++ and WASM (same devices, problems and algorithms). We showed
that our hypothesis was correct, getting a performance closer to RP3 and
the laptop on Android devices. G1 and G2.

i. We implemented the algorithms using three programming languages
(Java, C++ and WASM-JavaScript). We showed that we get good
performance in most devices by using native code and compiling it
into WebAssembly (WASM) with Emscripten. Moreover, when us-
ing WASM, the results of the best and worst devices are very similar,
obtaining an excellent homogeneity which is very important when
running algorithms in a parallel way. We proved that running these
algorithms on the web browser is efficient and has the advantages of
a lightweight virtualisation property and being multiplatform. G1.

ii. We demonstrated that devices with low processor capacity are per-
fectly appropriate for solving optimisation problems at the edge. In-
expensive devices such as RP3 and mobile devices can achieve laptop-
like performance when solving complex optimisation problems. G1.

In our second work [86] (see Section 3.2 and 4.2), we address the objectives G2
and G3, and the sub-objectives 1-a, 1-d, 1-e, 2-a, 4-a, 4-b, 4-c, 4-d, 4-e, 4-f, 4-g, 5-a and
5-b. The contributions of this work are LIT and SYN:

3. We summarised the literature that uses the web browser as a volunteer com-
puting (BBVC) platform and described recent improvements that increasingly
make this possible (see Section 3.2). G2.

4. We proposed a BBVC framework for distributed volunteer computing using
the MapReduce programming paradigm and the message queue pattern through
web browsers without interrupting the site’s user experience and installing ad-
ditional software. We showed that our proposal has good scalability despite
the constraints on the communication channel. G3.

5. We proved that web browser-based distributed neural network training is fea-
sible and efficient. We conducted a proof-of-concept to show that distributed
training of neural networks in the browser is possible. Using small and medium
NN models is perfectly suitable for solving edge devices” problems. The re-
sults show that it is feasible, scalable, and an exciting area to explore. G3.

In our third work [84] (see Section 3.3 and 4.3), we address the objectives G2, G3,
and G4 and the sub-objectives 1-a, 1-b, 1-d, 1-¢, 2-a, 4-a, 4-b, 4-c, 4-d, 4-e, 4-f, 4-g, 5-a
and 5-b. The contributions of this work are LIT and ASYN:

6. We defined the challenges and desirable features of VC4FL (see Section 3.3).
G2.



8 Chapter 1. Introduction

7. We proposed an algorithm for FEEL that adapts to asynchronous clients join-
ing and leaving the computation when the number of workers is low and can
even drop to zero during training. G3.

8. We proposed, implemented and evaluated a software platform for performing
FL that meets the defined challenges and desirable features. We evaluated our
proposal via extensive experimentation in a static configuration and highly
dynamic and changing scenarios. We then showed that the platform using a
given number of constrained, unreliable, and heterogeneous (in HW and SW)
devices adapts well to this changing environment getting a numerical accu-
racy and CK score similar to today’s configurations that use a static platform
for learning. Next, we demonstrated the fault-tolerance of the platform that
recovers from unexpected disconnections of volunteer devices. G3.

9. We released a modular open-source library covering most FEEL and VC desir-
able features. G4.

In our fourth work [87] (see Section 3.3 and 4.4), we address the objectives G2
and G3, and the sub-objectives 1-¢, 4-f, 5-a and 5-b. The contributions of this work
are LIT and MOD:

10. We summarised the most common techniques in literature for solving the com-
munication overhead problem in FL (see Section 3.3). G2.

11. We formulated and modelled Federated Learning Communication Overhead
Problem as a multi-objective Problem (FL-COP). G3.

12. We proposed solving the FL-COP by using genetic algorithms for multi-objective
function optimisation. Our proposal achieves higher accuracy while reducing
communications from 10 to 2000 depending on the neural network topology
compared to the maximum communication setting. G3.

13. The proposed algorithm provides a population of solutions that facilitates decision-
making when configuring the parameters of FL. G3.

The publications used to support this thesis are listed below in chronological
order. With the publications’ details, we present each publication’s available metrics,
i.e. the journal impact factor (JIF).

) Morell, J. A., & Alba, E. (2018). Running Genetic Algorithms in the Edge: A
First Analysis. In Conference of the Spanish Association for Artificial Intelli-
gence (pp. 251-261). Springer, Cham. 10.1007/978-3-030-00374-6_24

II) Morell, J. A., Camero, A., & Alba, E. (2019). JSDoop and TensorFlow. js: Volun-
teer Distributed Web Browser-based Neural Network Training. IEEE Access,
7,158671-158684. DOI: 10.1109/ACCESS.2019.2950287

¢ JCR COMPUTER SCIENCE, INFORMATION SYSTEMS - SCIE, Q1, rank-
ing 35/156, 2019 JIF = 3.745

IT) Morell, J. A., & Alba, E. (2022). Dynamic and Adaptive Fault-tolerant Asyn-
chronous Federated Learning Using Volunteer Edge Devices. Future Genera-
tion Computer Systems. DOI: 10.1016/j . future.2022.02.024


10.1007/978-3-030-00374-6_24
10.1109/ACCESS.2019.2950287
10.1016/j.future.2022.02.024
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¢ JCR COMPUTER SCIENCE, THEORY & METHODS - SCIE, Q1, ranking
7/110, 2020 JIF = 7.187

IV) Morell, J. A., Dahi, ZA, Chicano, F, Luque, G & Alba, E. (2022). Optimis-
ing Communication Overhead in Federated Learning Using NSGA-II. Interna-
tional Conference on the Applications of Evolutionary Computation. Springer,
Cham. 10.1007/978-3-031-02462-7_21

¢ Qutstanding Student Award.

In summary, our contributions are in line with our objectives. We have analysed
the HW and SW of a wide variety of edge devices. We have investigated the most
suitable paradigms, protocols, and algorithms. We have proposed, designed, im-
plemented, and evaluated techniques to address the more significant challenges we
have encountered to achieve our primary goal. We have disseminated the results
in high-impact journals and conferences, and the implemented SW is publicly avail-
able. Finally, the results of this thesis prove that the deployment of ubiquitously
distributed intelligence at edge devices is feasible and valuable, also providing a
better understanding of how such ubiquitous distributed intelligence should be, the
associated problems that exist, and how these problems must be addressed.

In the next section, we explain the fundamentals of this thesis, which is the back-
ground necessary to understand the techniques we use. In Section 3, we introduce
state-of-the-art. In Section 4, we present a summary of the results. Finally, in Sec-
tion 5, we outline the conclusions and future work.


10.1007/978-3-031-02462-7_21
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Chapter 2

Fundamentals

This thesis address the challenge of distributed ubiquitous intelligence in edge de-
vices. We deal with constrained, unreliable, and heterogeneous (in HW and SW)
devices and seek to adapt to the volatility of dis/connections and get fault tolerance.
In line with that, we want to use users’ data to train artificial intelligence models. It
is possible to use different machine learning models to learn from users” data, but
in this thesis, we focus on distributed neural networks. Training an artificial neural
network (ANN) is indeed an optimisation problem [1]. Moreover, doing this on de-
vices with so many constraints raises a multitude of optimisation problems, many of
them NP-hard, that we need to address. Therefore, we must study how we should
use optimisation algorithms on edge devices. Metaheuristics are particularly useful
for addressing these problems [3, 110]. There are many different types, but we focus
on evolutionary algorithms due to their robustness and well-known good behaviour
in many optimisations, design, control, and machine learning applications [3, 110].
In this chapter, we present the fundamentals of this thesis. First, we introduce deci-
sion and optimisation problems. Then, we explain why metaheuristics are helpful
when the complexity of optimisation problems is high. Subsequently, we summarise
the training of artificial neural networks (ANNSs). Finally, we describe parallel and
distributed deep learning.

2.1 Decision Problems and Complexity Theory

A decision problem [110] is a yes-or-no question over an infinite set of inputs (in-
stances) with a set of solutions for every instance which can be empty. An example
is deciding whether a given natural number is prime.

It is common to define a decision problem as the possible set of inputs followed
by the set of inputs for which the answer is yes. Inputs can be natural numbers,
but they can also be values of other types. Decision problems are often defined as
formal languages, i.e. the subset of values for which the problem returns yes. Using
the Godel encoding, we can encode any string as a natural number and, therefore,
any decision problem can be defined as a subset of the natural numbers [106].

Computability theory [23] studies decision problems that can be solved with a Turing
machine. The Church-Turing thesis states that if there is an algorithm, a procedure
that terminates, then there is an equivalent Turing machine.

There are decidable and undecidable decision problems [104]. They are decidable
if the input for which the answer is yes is a recursive set, i.e. if there is an algorithm
that for any arbitrary input correctly decides whether or not it belongs to the set. A
problem is partially decidable if the set of inputs for which the answer is yes is a re-
cursively enumerable set, i.e. there is an algorithm that can answer positively when
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it is in the language but runs indefinitely otherwise. Partially decidable and unde-
cidable problems are called undecidable. Undecidable problems can never have an
algorithm to solve them, even with unlimited time and space resources [110].

Algorithm analysis studies the complexity of algorithms, and computational com-
plexity theory analyses the complexity of problems. The complexity of a problem is
equivalent to the complexity of the best-known algorithm to solve it. Complexity
is generally defined in terms of worst-case analysis. The big O notation is utilised to
classify algorithms according to how execution time or space (memory) grows when
the input size increases [104, 110].

Decision problems can be ordered according to many-one reducibility [104] and
related to feasible reductions as polynomial-time reductions. A problem A is re-
ducible to problem B if an algorithm for solving B can also be used as a subroutine
to solve A. A decision problem P is said to be complete for a set of decision problems
S if P belongs to S, and each problem in S can be reduced to P. Computational theory
classifies problems into complexity classes. We can distinguish:

¢ P class Problem (polynomial time).

— There is at least one algorithm that solves it in polynomial time.
— Example of P problems are graph connectivity, primality testing, matrix
determinant or linear programming.

¢ NP class Problem (nondeterministic polynomial).

— It is not solvable in polynomial time by a deterministic Turing machine.
— Itis solvable in polynomial time by a nondeterministic Turing machine.
— Its solution can be guessed and verified in polynomial time.

— NP class contains P class as a subset.

- Example of NP problems are factoring and graph isomorphism.
¢ NP-hard class Problem.
— Not all NP-hard problems have to be in NP.

— Itis at least as hard as any NP-complete problem.

— Example of NP-hard problems are matrix permanent and halting prob-
lem.

* NP-complete class Problem.

— Itis not solvable in polynomial time by a deterministic Turing machine.
— It is solvable in polynomial time by a nondeterministic Turing machine.
— Itis contained in both NP and NP-hard class problems.
— They are the hardest problem of the NP class problems.

— Example of NP-complete problems are hamilton cycle, steiner tree, graph
3-coloring, satisfiability and maximum clique.

A problem is NP-hard if an algorithm for solving it can be translated into one for
solving any other NP-problem [104]. An NP-hard problem does not have to be in
the NP class. It is easier to prove that a problem is NP than to demonstrate that it
is NP-hard. If a problem is both, it is called NP-complete. An example of decision
problems that is NP-hard but not NP-complete is the halting problem.
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FIGURE 2.1: NP complexity.

There is no polynomial-time algorithm for any NP-complete problem yet, nor
has it been proven that there is no polynomial-time algorithm for solving them.
Suppose, in the future, a polynomial-time algorithm is discovered to solve an NP-
complete problem. In that case, all NP-complete problems will be solved in polyno-
mial time, proving that P = NP [42] (see Figure 2.1).

Unlike decision problems, where there is only one correct answer for each input,
optimisation problems deal with finding the best answer to a particular input. Com-
plexity theory has typically focused on decision problems. Optimisation problems
remain of interest in computability theory and operations research.

It is easier to compare the complexity of decision problems than optimisation
problems, which is why NP-completeness is used for decision problems. However,
solving a decision problem in polynomial time usually allows us to solve optimisa-
tion problems in polynomial time by making several polynomial calls to the decision
problem. Therefore, it is equivalent to talking about the complexity of decision and
optimisation problems in practice.

2.2 Optimisation Problems and Classes of Algorithms

In society, individuals, companies and governments must make decisions every time
and everywhere. In science, we define a structured way for the decision-making pro-
cess consisting of the following steps [110]: (I) formulate a problem, (II) model the
problem, (III) optimise the problem, and (IV) implement a solution. Optimising a
problem is the process to find a globally optimal solution s*, or in the case that more
than one exists, to find all globally optimal solutions. However, finding optimal so-
lutions to a given problem can be intractable, so in practice, we may settle for finding
a good enough solution to that problem without it being the best possible one. We
use heuristic and metaheuristic algorithms [3] to obtain acceptable solutions. They
do not guarantee to find optimal solutions (exact algorithms), nor do we know how
close we are to the optimal solution (approximation algorithms).

Definition 2.2.1 (Optimisation problem). An optimisation problem is formalised as
a pair (S, f), where S # @ represents the set of feasible solutions of the problem,
while f : S — R is the objective function or fitness function.

The objective function assigns a real value to a solution representing how good it
is at solving the optimisation problem.
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Definition 2.2.2 (Global optimum). A solution s* € S is a global optimum if its
objective function is better than all solutions in the search space. If minimising Vs €

S, f(s%) < £(s).

Depending on the domain to which S belongs, we can define binary S C B*, in-
teger S C IN*, continuous S C R* or heterogeneous S C (B UIN UR)* optimisation
problems.

However, in many real-world problems, we must optimise several objectives that
often conflict with each other. In this type of problem, we do not have a global
optimum solution but a set of solutions that dominate the others in one or the other
objective. To achieve this, we use multi-objective optimisation [110]. A multi-objective
optimisation problem (MOP) has multiple objective functions. It can be formulated as:

Definition 2.2.3 (Multi-objective optimisation problem). A multi-objective optimisa-
tion problem is formalised as a pair (S, F), where S # @ represents the set of feasible
solutions of the problem, while F : S — R is a vector of objective functions or fitness
functionand F = f1, fo,..., fi, k >= 2.

There is usually no feasible solution in multi-objective optimisation that simul-
taneously minimises all objective functions but solutions that cannot improve any
objectives without degrading at least one of the other objectives, i.e. dominating
other solutions. They are called Pareto optimal solutions. The Pareto optimal front is the
set of solutions that dominate all other solutions [110].

Optimisation
Methods

Vs ~

Exact

Approximate
Methods

Methods

Branch and X

Approximation Heuristic
Algorithms Algorithms

Constraint Dynamic
Programming Programming

Y Y

FIGURE 2.2: Classification of optimisation methods.

We can divide optimisation algorithms into four main categories [14, 110] (see Fig-
ure 2.2): exact algorithms, approximation algorithms, problem-specific heuristics,
and metaheuristics. Exact methods achieves optimal solutions and guarantee their
optimality [110]. However, when the problem is NP-Hard, the time needed to solve
it increases exponentially concerning the dimensions of the problem. Examples of
exact methods are the Branch-and-X family (X is the name of the variant), Integer
Linear Programming (ILP), Mixed Integer Linear Programming (MILP), and dy-
namic programming. In approximation algorithms, there is a guarantee on the bound
of the solution got concerning the global optimum. These approximations are, in
many cases, too far from the optimal global solution, making them not very useful
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for many real-world problems. Problem-specific heuristics attempt to use knowledge
of the problem to obtain acceptable solutions but do not guarantee finding the op-
timal one. They tend to be too greedy and often get trapped in a local optimum.
Metaheuristics are techniques that are independent of the problem to be solved and
can be used as black boxes. They are generally not greedy and may even temporarily
accept solutions that worsen the best solution obtained to increase exploration.

2.3 Metaheuristics: Problem-Independent Strategies for Com-
plex Problems

Metaheuristics are problem-independent strategies that guide the search process.
They know nothing about the problem in which they are used and can therefore
treat functions as black boxes.There are numerous metaheuristics [13] (see Figure
2.312) such as Tabu Search, Simulated Annealing, Particle Swarm, Evolutionary Al-
gorithms, etc. Each of them can be divided into subgroups. We can use different
classification criteria depending on nature vs. non-nature inspired, memory usage
vs. memory-less usage, deterministic vs. stochastic, population-based vs. single-
solution-based search, and iterative vs. greedy, among others. In the works carried
out using metaheuristics in this thesis, we decided to use a type of evolutionary
algorithm called genetic algorithm [3, 45, 110]. We chose it due to its robustness,
well-known good behaviour in many optimisations, design, control, and machine
learning applications, and high exploratory capacity. We performed multi-objective
optimisation in one of our works using an algorithm called NSGA-II [32]. There are
other more recent algorithms for multi-objective optimisation that are giving good
results [123]. However, we chose NSGA-II as the first approach to that problem as
it is a well-known algorithm with good results in many experiments and has more
than 40 thousand citations. In the following subsections, we introduce the genetic
algorithms for single-objective function problems and the NSGA-II algorithm for
multi-objective function problems.

2.3.1 Genetic Algorithms: A Population-Based Metaheuristic

A Genetic Algorithm (GA) [3, 45, 110] is a type of evolutionary algorithm, a population-
based metaheuristic inspired by the process of natural selection. The GA works in a
stochastic and iterative way. They are used to get high-quality solutions to optimi-
sation and search problems. They are especially helpful for solving NP-hard prob-
lems. This algorithm uses a population of candidate solutions, called individuals,
to evolve iteratively over generations towards better solutions. Each individual has
a set of properties (the chromosome) which can be mutated and recombined with
other individuals, as in nature.

The GA (Fig. 2.4) uses three main types of rules at each step to create the next
generation from the current population (see Algorithm 1). First, selection rules select
the individuals, called parents, that will be recombined. Second, recombination rules
combine the parents to form offspring for the next generation. Third, mutation rules
apply random changes to the recombined individual to obtain the final offspring.
Next, we replace the individuals of the population with the offspring.

Imetah.nojhan.net/post/2007/10/12/Classification-of-metaheuristics

2en.wikipedia.org/wiki/Metaheuristic
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FIGURE 2.4: Graphical representation of our steady state GA.

Depending on the replacement strategy, we can distinguish [110]:

* Generational replacement. The offspring replace the entire population of size .

e Steady-state replacement. Only one offspring is generated in each generation,
and therefore only one individual from the population is replaced. If we re-
place the worst individual from the population, we use elitism replacement.

e Intermediate replacement. Many different strategies for replacing a given num-
ber of 1 < A < u individuals in the population can be applied. Replacements

can be stochastics or deterministic.



2.3. Metaheuristics: Problem-Independent Strategies for Complex Problems 17

Algorithm 1 Genetic Algorithm

g« 0

P, < initialisePopulation()

Py < evaluate(Py)

Py < calculateStatistics(Py)

while !terminationCriterion() do
parents < selection(Py) //Using selection criteria.
of fspring <— recombination(parents)
of fspring <— mutation(of fspring)
of fspring < evaluate(of fspring)
population < replace(of fspring, Py) //Using replacement criteria.
Py < calculateStatistics(Py)
g« g+1

end while

The process is repeated until a termination criterion is achieved, such as getting
a good enough solution, a specified number of evaluations or iterations, etc.

2.3.2 NSGA-II: A GA for Multi-Objective Function Optimisation

NSGA-II is a generational multi-objective evolutionary algorithm (MOEA) proposed
by Deb et al. [32]. Its main contributions are the non-dominated sorting and the
diversity-preservation heuristics with a computational complexity of O(MN?) and
O(MN1logN). Having a problem with M objectives, NSGA-II starts by randomly
initialising a population P of U individuals %z{xi, ..., x4}, wherei € [1,d] and d is
the size of the problem to be solved. Then it performs a loop applying binary tour-
nament selection, crossover and mutation to generate a population Q of U offspring.
Both parent and offspring populations, P U Q, are used as input for a replacement
operator to decide the solutions that will survive to the next iteration P’ (see Algo-
rithm 2). The loop ends when some termination criterion is reached.

Algorithm 2 NSGA-II

1: Set the objective functions F and x as a typical solution.
2: Set R = {ry,...,rk} the non-dominated fronts;

3: P < Random_Initialisation(H);

4: while termination criterion not reached do

5: A < Selection(P, Crowding_Comparison);
6: B < Crossover(A);

7. Q < Mutation(B);

8: R < Non_Dominated_Sorting(P U Q);

9: P« O;

10: i+ 1;

11:  while (|P’Ur;| < Hand i < K) do

12: P« P Uf;

13: i+—i+1;

14:  end while

15.  r; < Sort_Crowding_Comparison(r;);
16: P+« P'Urfl:(H-IP));

17: end while
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The replacement is performed using the non-dominated sorting heuristic and
the crowding-comparison operator to decide the composition of the population P’
that will undergo the next iteration [32]. The non-dominated sorting results in a set
R = {r,...,rk} of K non-dominated fronts of increasing rank i, where i € [1,K].
Having rq the front that is not dominated by any other one, while the remaining
fronts are dominated by all the ones with a lower rank. The algorithm selects fronts
in order of dominance, that is, favouring solutions of fronts of lower rank. Then, to
select the remaining survivors of the last front, the algorithm performs the crowding-
comparison operator, selecting solutions with a higher crowding distance.

2.4 The Process of Training an Artificial Neural Network

Artificial neural networks (ANNs) [48, 67], also known as neural networks (NNs), are
computer systems with interconnected nodes inspired by biological neural networks
that conform to the brains of animals. We use the term deep learning (DL) when
referring to a NN with multiple non-linear layers. However, in practice, we inter-
changeably use both terms. They are a subset of ML (see Figure 2.5). They are com-
posed of an input layer, one or more hidden layers and an output layer (see Figure
2.6). The connections between neurons are called weights. The output of one neuron
acts as input to other neurons. A neuron’s inputs are multiplied by their respective
weights and summed together with the used bias. Subsequently, the above result
ted an activation function [7] that calculates the final output (see Figure 2.7). The neu-
ron is said to be activated if its output is above a certain threshold. In that case, the
result pass to the next layer of the NN. Otherwise, no data is transmitted to the next
network layer. When the outputs of neurons in one layer are passed on to neurons
in the next layer in order without a cycle, we call this a Feedforward Neural Network
(FNN). Other more complex configurations are possible such as Convolutional Neu-
ral Network (CNN) or Recurrent Neural Network (RNN) [48, 67]. This thesis uses these
three types of neural networks: FNN, CNN and RNN.

Artificial Intelligence

Neural Networks

Deep Learning

FIGURE 2.5: Al overview.

The purpose of the activation function is to introduce non-linearity (see Figure 2.8)
into the output of a neuron allowing the NN to learn and perform more complex
tasks. The NN becomes a simple linear regression model if we do not use a non-
linear activation function. No matter how many hidden layers we use, the compo-
sition of two or more linear functions results in a linear function. We can visualise
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Input Layer Hidden Layer Output Layer

FIGURE 2.6: A neural network with two hidden layers.
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FIGURE 2.7: A perceptron sums inputs’” multiplication by weights
and applies an activation function to get the output.

linear non-linear

FIGURE 2.8: Decision boundary for linear and non-linear activation
functions.

each NN neuron without activation function as a linear regression model composed
of input data, weights, a bias and an output (see Algorithm 2.1). For example, if a
specific neuron has three inputs:

m
y= ij-xj+bias:w1 -X1+wy - Xp +ws3 - x3+ bias, wherem =3 (2.1)
i=1
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Training a NN model is an optimisation problem consisting in minimising the
cost/loss function by adjusting the values of the NN weights. For this, it is necessary
to move the weights in the negative direction of the derivative of the loss function.
Remember that the derivative of a function shows the direction in which the function
increases (i.e. its negative is the direction we want to move in).

Cost functions are the tool that helps us to understand the difference between the
predicted value and the actual value. Usually, it is said loss function when referring
to the error for a single training example and cost function when referring to the av-
erage over the entire training dataset. A cost function is necessary because different
models may have similar accuracy, for example, in classifying classes. Still, the line
dividing two categories may be strictly between them or closer to one. The cost
function helps to measure the performance of our model, in this case, how well it
separates classes. In addition to accuracy and loss, other metrics measure model
performance. For example, in multi-class classification, metrics such as accuracy do
not provide enough information about the performance of our classifier. In contrast,
the Cohen’s Kappa score (CK score) [103] is a valuable metric that can handle multi-
class and imbalanced class problems well. We use these metrics in this thesis.

Backpropagation is a widely used algorithm for training NNs [51, 95, 99]. In a
NN, the path from the input layer to the output layer is basically a composition of
functions. Therefore, partial derivatives and the chain rule can be used to define
the relationship between any weight and the loss function. Then, this insight can
be used to update the weights by gradient descent. The goal of backpropagation
is to minimise the difference between the actual output and the predicted output
of the NN (i.e. the error). The loss function computes this error (e.g. mean square
error) and propagates it to previous layers. The optimisation function (e.g. gradient
descent) calculates the gradients, i.e. the partial derivative of the loss function with
respect to the weights. Then, the weights are modified in the opposite direction of
the calculated gradient.

Gradient

f(X ) Initial Value

cost

Incremental

Step J

Minimum
Cost

X

FIGURE 2.9: Gradient descent.
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Gradient descent (GD) (see Figure 2.9) is the most common method to optimise
NN [51, 95, 99], i.e. adjusting the model’s parameters to go down through the loss
function. There are three variants of GD. Vanilla gradient descent (i.e. batch gradient
descent) computes the gradient using the entire training dataset. Stochastic gradient
descent (SGD) performs a parameter update for each training example. Mini-batch
gradient descent approximates the partial derivative over the loss function using a
randomly sampled subset of the data (i.e. a mini-batch). The last is the standard
for training a NN, and the term SGD is also often used when we use mini-batches.
Averaging gradients reduce the effect of noise. Otherwise, the gradient decrease
may oscillate around the optimum without converging. We can use different tech-
niques to adjust the parameters, such as subtracting their derivative multiplied by
a learning rate 7, regulating how much we want to move in the gradient direction.
However, many algorithms improve on the basic SGD algorithm, such as Adagrad,
RMSprop, Adam, and more [95].

Here we present a canonical SGD. We define D as a dataset. For each data exam-
ple j, we define the loss function [58] as f(w, x;j, y;), which we write as f;(w) in short.
For each mini-batch of data B where B C D, we define the loss function obtained
after applying the mini-batch B, in iteration ¢ as:

Fys(wr) = |Blk, Y fi(wr) 22)

jeBx

Then, we update the weights of the model using an optimisation function, e.g. if
we use canonical SGD:
Wi = wr — 1V F(wy) (2.3)

where 17 > 0 is the step size (i.e. the learning rate).

2.5 Parallel and Distributed Deep Learning

To achieve the objectives of this thesis, we need to divide the learning process among
the available edge devices. For this purpose, in this section, we summarise the main
types of distributed deep learning.

There are many ways to parallelise or distribute DL computation [10, 52, 75].
It is possible to perform single-machine parallelism, e.g. by using shared memory
and a GPU. Also, it is possible to distribute the training between multiple machines
using multi-machine parallelism. Both parallelisms can be combined. When we
cannot store the model or data on a single machine, then distributed training across
multiple machines is used. There are two main categories (see Figure 2.10):

1. Data Parallelism: Data is split between multiple machines while each worker
stores a copy of the model. When a worker performs training, loads a mini-
batch of data, applies a specific learning algorithm and computes the gradients.
Then, using a synchronisation mechanism, the parameter server aggregates all
gradients and updates the global shared model. SGD is applied in parallel
using mini-batches (see Fig. 2.11).

2. Model Parallelism: Split the model layers between multiple machines. That is
helpful only when the model does not fit on a single machine because it slows
down the training.
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FIGURE 2.10: Model and data parallelism.
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FIGURE 2.11: Parallel mini-batch gradient descent.

The parameter server architecture is a type of architecture of data parallelism which
has two types of nodes [10, 52, 75]: server and worker. The server store the glob-
ally shared model. In each training step, workers download synchronised global
weights, perform backpropagation to calculate the gradients, and send them to the
server, which aggregates the gradients calculated in client devices (workers) and
updates the globally shared model.

The size of the mini-batch of data used influences the final accuracy of the model.
Increasing the size of the minibatch makes learning less noisy. However, large mini-
batch sizes reduce the learning noise too much, not allowing it to diverge, favour
convergence to local optima. Therefore, there is an upper limit to distributed learn-
ing through data parallelism.

In this thesis, we used single-machine parallelism and multi-machine data par-
allelism. Also, we used the parameter server architecture.
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2,51 Synchronous vs. Asynchronous DDL

There are two main methods of SGD with parameter server [10, 52, 75]: synchronous
and asynchronous. Synchronous methods are easier to implement and analyse but
have bottleneck problems and are less robust to machine failures. They use all gra-
dients calculated in all machines to update the globally shared model in the param-
eter server. The limited bandwidth may force queueing of these gradients. Also,
we have to wait until the last device calculates the gradients and sends them before
performing a new iteration. Therefore, the final computation time is determined by
the slowest node, i.e. straggler effects, causing faster nodes to wait, wasting compu-
tational resources [10, 75]. When all workers must synchronise their weights before
processing the next minibatch of data we say we have a consistent model.

It is possible to relax the synchronisation constraint by allowing inconsistent mod-
els [10, 52, 75], making the learning more robust to failures and faster. (i) Asyn-
chronous training allows workers to update their model entirely independently. How-
ever, it has the drawback of lower stability, lower accuracy and convergency is not
ensured. One solution to this is to use (ii) bounded asynchronous training in which out-
of-date (stale) gradients or weights are used to update the globally shared model as
long as they are not older than a threshold [124]. Depending on how outdated they
are, we can use a different learning rate. Minor deviations and non-determinism
during the training process do not necessarily have to harm the model accuracy [75].

We used both approaches in this thesis, first synchronous [86] and later bounded
asynchronous [84] training.

In this section, we have seen the background necessary to understand the tech-
niques used in this thesis. This thesis addresses the challenge of distributed ubig-
uitous intelligence in edge devices. We perform training of distributed neural net-
works using constrained, unreliable, and heterogeneous (in HW and SW) devices
and seek to adapt to the volatility of dis/connections and get fault tolerance. We
optimise the associated complex problems using metaheuristics. In this section, we
have first explained what optimisation problems are. We have seen that training
neural networks is an optimisation problem, and as we will explain in the next sec-
tion, doing it on constrained devices [85] in a distributed manner gives rise to many
others [87]. We have seen that it is usually impossible to find the optimal solution to
complex optimisation problems but that we can be satisfied with an acceptable solu-
tion on many occasions. We have seen how metaheuristics are suitable for achieving
acceptable solutions to complex optimisation problems. We summarised the training
of neural networks and how to parallelise them on one or several machines. Finally,
we have seen that distributed neural network training can be synchronous [86] or
asynchronous [84] and the advantages and disadvantages of each approach.
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Chapter 3

State-of-the-Art

In this chapter, we briefly present the state-of-the-art of this thesis. We propose to
see FEEL as a type of VC (VC4FL) where users donate their edge devices’ computing
resources to a project that trains a shared DL model. First, we introduce federated
learning (FL). Later, we review volunteer computing (VC) and browser-based vol-
unteer computing (BBVC). Finally, we collect the challenges and desirable features
of VC4FL.

3.1 Federated Learning: Learning Across Decentralised Edge
Devices While Keeping Data Locally

FL originally comes from DDL [75]. It is a learning paradigm that trains a shared
model in a distributed manner while keeping private the data locally on edge de-
vices (see Figure 3.1). FL is being actively investigated and widely applied [50, 69,
93], e.g. in medicine [101]. Its working mechanism induces a substantial commu-
nication overload that limits its applicability. It has been proven that this overhead
is generated by several factors such as the number of devices participating in the
learning process, the complexity of the model (e.g. number of layers, neurons, etc.),
number of communication rounds, etc. [75].

b Local Data
&~ Local Model

FIGURE 3.1: Federated learning architecture.

In Algorithm 3, we see the Federated Averaging algorithm (FedAvg) [76]. The
vanilla Fed AVG is synchronous. In the beginning, the server initialises a shared ML
model, typically a NN, with random weights. There are N connected devices that
can be thousands. Each iteration round m devices are selected randomly. Therefore,
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Algorithm 3 FedAvg algorithm
1: Initialise(wy);
2: fort=1,..., T do
3 m<«max(C-N,1);

4: Sy < random_pick(S,m);
5. forall clients k € S; in parallel do
6: w’t‘O — wy
7 foreel,...,Edo
8 wf < wf  —nVF(wf );
9 end for
. k k .
10: W41y, € Whes

11:  end for

. k .k .
120wy g < Yges, Powi /m;
13: end for

not all connected devices cooperate in all communication rounds. Next, the chosen
devices S; receive the updated weights from the server and use them to replace the
local model. Then, they train for E local steps, i.e. each update of the local weights
using a mini-batch of data. Later, these selected devices send the weights back to the
server. Finally, the server aggregates all the received weights (typically averaging)
and updates the shared model. The loop is executed repeatedly for T iterations.

In Google’s original paper [76], they propose to keep data private on clients’ mo-
bile devices and learn a shared model by aggregating locally computed updates.
They suggest a central server, millions of clients (mobile devices) and private data
on clients” devices. Data is not independently or identically distributed (non-i.i.d.),
is generated locally, and each device cannot read the data of other clients. How-
ever, since then, different categories of FL have been proposed. Some of these cate-
gories [77,122] are:

* Model-centric vs. data-centric FL. The first has the goal of getting better cen-
trally shared models. Each device stores its data locally and cannot read other
clients” data. Data remains decentralised, is unbalanced and non-i.i.d. In the
second one, users (researchers and organisations) send their models to train
against a centred and private dataset.

* Cross-device vs. cross-silo FL. In the first case, there are potentially thousands
or millions of user edge devices connected, which may connect and disconnect
during the learning. The second one deals with private distributed databases
of large organisations such as hospitals or banks.

¢ Horizontal vs. vertical FL. In the first one, there are different data samples
in each node, but all of them have the same features. In the second one, data
samples are the same in the dataset of each node, but each one stores different
features for the same data sample ID.

* Federated transfer learning. This technique involves reusing the knowledge
gained from solving a problem to solve a new one. It replaces the last few
layers of the NN trained on big data on the cloud and then trains again with a
smaller dataset, in this case using FL.

This thesis focuses on the model-centric, cross-device, horizontal FL, similar to
Google’s original paper.
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3.2 Reviewing Volunteer Computing

As we explain in Section 3.3, we must deal with unreliable devices to achieve our
goal of VC4FL. These devices behave similarly to devices on a VC platform, so we
face similar challenges. In this section, we summarise the evolution of the VC and
BBVC. First, we present VC systems. Next, we introduce the first and second gener-
ations of BBVC. Finally, we describe the third generation of BBVC. Figure 3.2 sum-
marises the evolution of VC and BBVC. Also, we highlight the most important tech-
nological advances made in the last decade to web browsers and relevant works in
the field. The web browser seems to be the right platform for achieving accessibility,
which is essential in VC.

3.2.1 Volunteer Computing

The first references to the VC date back to the mid-1990s. The original idea was to
use volatile idle resources spread worldwide to solve complex problems. Notably,
in 1996, the project GIMPS (Great Internet Mersenne Prime Search'!) released the
first known VC platform. Its goal was (and is, it is running still) to find Mersenne
prime numbers, and to encourage volunteers, they proposed a $50,000 prize for the
volunteer who found a prime number having at least 100,000,000 decimal digits.

Following this, in 1997, the distributed.net project arose, intending to break the
RC5-56 part of the RSA Secret-Key Challenge. Next, in 1999, the University of Berke-
ley began the SETI@home project [64], which later evolved as a platform for general
volunteer and grid computing, BOINC (Berkeley Open Infrastructure for Network
Computing) [6]. At that time, the Folding@home project’ was launched for disease
research simulating computational drug design, protein folding, and other molecu-
lar dynamics. One year on, XtremeWeb [16, 39] emerged as an open-source software
to create lightweight desktop grids.

VC systems have shown to be particularly suitable for CPU-intensive applica-
tions, which can be divided into many independent and autonomous tasks but are
rather unsuitable for data-intensive tasks. Typically, VC requires data to be served
by a group of centralised servers. From its beginnings until now, VC has improved
by using dedicated protocols or stealing cycles during CPU idle time. However, the
lack of accessibility and usability of VC remains a major challenge [28].

There are different ways of attracting volunteers [96, 98] in VC platforms. We
can distinguish between true volunteers (i.e. altruists), paid volunteers, forced vol-
unteers, or use gamification. Anyway, VC platforms require users to run specific
software, i.e. installation is required, and it is well-known that is something many
people do not want or know how to do. They do not trust on installing unfamiliar
software on their machines [38], because they are not sure what the software can do
or what information it can access, which would compromise the user’s privacy [27].

Nevertheless, VC has matured to achieve remarkable processing capacity. For
instance, BOINC has 27 PetaFLOPS average computing power available, more than
300 thousand active users and almost 850 thousand active computers [6]. For com-
parison, Summit or OLCF-4 (one of the fastest supercomputers in the world) get
143.5 PetaFLOPS in the LINPACK benchmark®. It is stunning that a distributed plat-
form composed of devices with limited processing capacity can perform close to that
of one of the world’s fastest supercomputers.

Ihttp://www.mersenne.org
Zhttps://foldingathome.org
Shttps://www.top500.org/lists/2018/11/
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3.2.2 VC on the Web Browser: BBVC 1st and 2nd Generation

In the earliest days of VC, researchers began to explore the use of web browsers to
perform distributed computation tasks resulting in BBVC. The first attempts were
to develop Java applets that ran in the browser (e.g. Charlotte [59], Javelin [21],
Bayanihan [96], Popcorn [15], SuperWeb [4], among others). Its usage consists of
clicking a link to download an applet and allowing it to run in the background.
Based on the expectations created, several authors forecasted in 1997 that by 2007
supercomputing in the web browser would be a reality [44]. However, the need for
user interaction to start the application and installing a Java plugin (which was very
slow to start) were drawbacks in this generation of BBVC. Moreover, Java and Flash
plugins became obsolete due to serious security issues. Since 2015, many browser
vendors have removed plugin support, such as Flash, Silverlight, Java and other
plugin-based technologies.

Due to accessibility problems, BBVC was forgotten until 2007, when a second-
generation based on JavaScript appeared. However, we should note that at that
time, Javascript did not have modern features (e.g. JIT compiler, WebSocket, etc.).
Some of the most important works include, RABC, one by Konishi et al. [63], which
suggests a large scale distributed system using AJAX, and one of Merelo et al. [81],
that develops a distributed evolutionary algorithm using P2P in a volunteer com-
puting environment.

This second-generation had the advantage of not requiring user interaction. Users
started collaborating by simply opening a webpage on a browser. However, in 2007,
the major drawback they had was the performance. JavaScript was from 9.8 to 23.2
times slower than Java [63] and between 20 to 200 than C [61]. Poor performance,
the lack of support for multi-thread, and the inability for direct communications be-
tween browsers made second-generation BBVC fail.

3.2.3 VC on the Web Browser: BBVC 3rd Generation

In 2008, significant advances were made to improve the browser’s computing power [49],
including the release of Chrome V8?, a high-performance JavaScript. Though it was

not until 2010 that several developments emerged that made a difference in this
respect. Google released a new compiling infrastructure called Crankshaft. Also,
workers appeared (multi-thread Javascript®’). Thanks to this, the browser shifted
significantly towards a competitive performance.

In 2011, two relevant technologies for HPC in the browser were launched: We-
bCL® and WebGL 7. WebCL is a JavaScript link to OpenCL, a heterogeneous paral-
lel computing framework that leverages CPUs and multicore GPUs within the web
browser without plugins. There are works that used WebCL (e.g. WeevilScout [28],
CrowdCL [73]). Yet, WebCL is still under development, no browser supports it na-
tively, and the only way to use it is via browser extensions. In counterpart, We-
bGL allows GPU-accelerated usage of physics and image processing in the web
browser without plugins. Although WebGL was initially developed for graphics
rendering, it is also used for other applications like machine learning (ML) in the
browser, e.g. TensorFlow.js® (note that Google previously released deeplearn.js, but

“nttps://v8.dev/
Shttps://html.spec.whatwg.org/multipage/workers.html
https://www.khronos.org/webcl/
"https://www.khronos.org/webgl/
8https://github.com/tensorflow/tfjs
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now it is integrated into the core of TensorFlow,js). In the same year, WebSocket’
and WebRTC [11, 33], two important web-browser communication technologies,
were launched. The first provides full-duplex communication channels over a sin-
gle TCP connection which is more suitable than HTTP when low latency is required.
WebRTC is a browser-based real-time peer-to-peer communication without plugins.
WebSockets have better performance than HTTP, although HTTP is easier to scale.

In 2013, Mozilla released asm.js'’ with the goal of running native code (e.g. C,
C++) in the web browser. In 2015, WebAssembly (WASM) [49] did something simi-
lar. Both approaches use a source-to-source compiler (e.g. Emscripten'!) to translate
the original source code to the desired format, i.e. asm.js or WASM code. Thanks
to these technologies, several desktop applications have been migrated sucesfully to
the web such as SQLite'?, Unreal Engine 313, and AutoCAD™* presenting a radical
shift in the possibilities of web browsers as ubiquitous platforms.

In addition to performance, another critical issue for users is security. In this gen-
eration, several advances were made in this respect, like the introduction of the sand-
box [56] which allows web applications to run isolated on modern web browsers
accessing only a limited set of resources. As a result, users can run applications on
the web browsers, ensuring they won’t access their privacy as long as they do not
have security vulnerabilities and without needing installation.

Thanks to all these improvements, applications running in the browser have
reached a new potential. Interesting generalist BBVC platforms have been launched,
such as QMachine [119] and one proposed by Chorazyk [20]. Also others specific to
ML, such as MLitB [79] and OpenML [113].

However, frameworks that take advantage of all these improvements have not
yet been realised despite these advances. For example, since the release of Ten-
sorFlow.js [105] in 2018, the implementation of Google’s popular ML framework in
Javascript, there has been no evidence of work using it in BBVC systems. Currently,
BBVC systems stand out for their portability, extraordinary computing power po-
tential, and being more secure than typical desktop applications. Therefore, in this
thesis, we planned to explore the possibilities of distributed volunteer computing in
web browsers. In this thesis, we use Emscripten and WASM in Section B, Tensor-
Flow.js using the WASM and WebGL backend in sections 4.2 and 4.3, WebSockets in
Section 4.2, and REST API over HTTP in Section 4.3.

https://www.w3.org/TR/websockets/
WOpttp://asmjs.org
Mhttps://emscripten.org
Phttps://wuw.sqlite.org
Bhttps://www.unrealengine. com
M4https://web.autocad. com
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3.3 Challenges and Desirable Features of VC4FL

This section studies the challenges and the desirable features of VC4FL (see Ta-
ble 3.1). We seek a volunteer distributed computing platform for collaboratively
learning a shared ML model while keeping all training data locally on volunteer
edge devices. FL and VC share many similarities, such as heterogeneous hardware
and software, fault tolerance, and devices arbitrarily joining and leaving the system,
among other things. Some of the most important challenges are [36, 77, 108] :

1. Unreliable devices. Devices are highly unreliable, can connect and disconnect
at any time. We cannot be sure that volunteers will always be available for
two reasons. The first one is when they are volunteers, and therefore, they can
connect and disconnect at will. The second one is because of connections fail-
ures or errors as they are devices not thought for high-performance computing
(HPC). In this thesis, we address this problem in Sections 4.2 and 4.3

(a)

(b)

(©

(d)

Addressability. In cross-device FL, we don’t know who or when will be
connected, so clients cannot be indexed directly. In this thesis, we address
this problem in Sections 4.2 and 4.3.

Stateless. Clients may connect during learning and participate in only
one task before disconnecting again. In this thesis, we address this prob-
lem in Sections 4.2 and 4.3.

i. Minimising loss of computation. A possible solution to minimise
the loss of computation when a device disconnects before finishing a
task is to assign a customised number of local updates to each device
depending on its performance and probability of failure. We plan to
investigate this further in future work.

Unbalanced and non-i.i.d. data. In FL, the data stored on each device
is different, each device may have a different number of samples (un-
balanced), and data is not identically distributed. That is, datasets are
divided between nodes in an unbalanced and non-identically distributed
manner (non-i.i.d.) [77]. Traditional distributed NN training does not have
this problem because data is divided into i.i.d. (i.e. sufficiently randomly
disordered to make the order of the data unrelated) balanced datasets [62].
However, when performing FEEL, data is always private and stored in lo-
cal devices, so we can expect to be facing unbalanced and not identically
distributed data (e.g. non-i.i.d.) [75, 77]. In this thesis, we analyse this
problem in Section 4.3.

Data availability. The connections and disconnections of devices make
the available data for training varies during the learning process. Fluctu-
ations in connected devices during learning mean that the dataset avail-
able for training at any given time also fluctuates. Therefore, the global
dataset (the dataset of all available devices) is dynamic. That is related to
the previous point, but it is not the same. In this thesis, we analyse this
problem in Section 4.3.

2. Scalability. Scalability is critical on a platform like this that could have thou-
sands of concurrent connections at a time. In this thesis, we address this prob-
lem in sections 4.3 and 4.4
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FIGURE 3.3: Communication reduction approaches in FL.

Bottleneck accessing data. Another common problem is the bottleneck
when accessing data. In traditional distributed NN training, the data is
shuffled and divided among the participating nodes at the beginning of
each epoch. In the case of FEEL, the data remains locally and private.
We would think that there is no bottleneck to access them in this case.
However, the fact that the data remains private does not necessarily mean
that it is on a single device. Data can be stored in a shared database be-
tween several local devices keeping privacy in the local network while
collaborating with other remote devices. Furthermore, this data may be
dynamic, i.e. the content of this database may be changing during the
learning process. One way to access shared data during a learning pro-
cess by reducing the bottleneck as much as possible is through random
access to the data, which is equivalent to sampling with replacement [77,
80, 100] allowing accessing data simultaneously, without the need of dis-
tributing data or waiting for each other. We propose random access to the
data in Section 4.3.

Bottleneck in communications. Similarly to DDL, the communications
bottleneck is also a key feature in FL that can compromise both the ef-
ficacy and applicability [10, 75, 109, 120]. In FL, sending and receiving
model weights during learning through slow connections is necessary,
generating communication bottlenecks. The literature that studied the
communication reduction in DDL can be classified into three categories
according to the approach it uses: (I) data compression, (II) decreasing
communication rounds, and (II1I) reducing the number of participating devices
(sampling) (see Fig. 3.3).

i. Data Compression. Regarding the data compression approach, two
approaches can be mentioned: (I.1) quantisation [5] and (I.2) spar-
sification [115]. The first approach is related to compressing gradi-
ents/weights before, during or after the training representing the
data using small-sized low-precision data (i.e. using fewer bits to
represent a value). The second approach transmits indispensable val-
ues of each communication, i.e. not all weights are sent, but only
the most representative values of gradients/weights above a spe-
cific threshold. Quantisation tends to slow the convergence of the
model, and the maximum data compression rate is limited to 1/32,
because DDL generally uses 32-bits-coded data. Sparsification attains
a 1/100 compression rate without major changes in the model’s con-
vergence speed and accuracy. Sparsification introduces additional
steps such as sampling, (de)compression and (de)coding during the
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training process. These additional steps can affect the overall train-
ing efficiency, particularly in low-performance (e.g. netbook) and
battery-sensitive (e.g. smartphone) devices. We use quantisation and
sparsification in Section 4.4.

ii. Reducing Communication Rounds. Considering now the second re-
duction technique, decreasing communication rounds [125], the client-
server communication occurs after E local steps. Training a deep neu-
ral network requires hundreds of thousands of iterations. Thus using
sparse communication intervals allows for reducing the communi-
cation overhead. So, the FedAvg and its variants permit clients to
execute several iterations of local training before updating the global
model [125]. Research shows that communication rounds’ reduction
increases the convergence speed. Concretely, the communication in-
tervals in FedAvg are controlled by the hyperparameter E. The for-
mer affects the model’s accuracy-vs-training-efficiency tradeoff. Higher
values of E can lead to slow convergence. Therefore, fine-tuning E
require advanced knowledge (e.g. expertise) to allow the model to
provide the best accuracy. We optimise the number of local steps in
Section 4.4.

iii. Reducing the number of participating devices (sampling). Not all
devices must participate in each communication round. It is possi-
ble to use intelligent node selection algorithms [108] to deal with HW
heterogeneity and with non-i.i.d. datasets. We optimise the number
of participating devices in Section 4.4, but we plan to design more so-
phisticated optimisation algorithms for node selection based on HW
heterogeneity and non-i.i.d. datasets in future work.

3. HW and SW Heterogeneity. When using volunteer devices, it is expected to

deal

with different hardware and software, leading to various performances.

We analyse the heterogeneity of edge devices in Section 4.1 and deal with them
in sections 4.2 and 4.3. In the associated literature [122], there are several tech-
niques to address this problem:

SW Heterogeneity. In the case of volunteer distributed NN training, each
node may use different operating systems and different software (e.g. ML
library). During training, it is necessary to exchange gradients, weights
and model topologies between the edge devices and the central server.
There are currently several approaches to this problem, like the Open
Neural Network (ONNX)!'® which tries to achieve interoperability of the
various NN libraries. However, it is not yet fully compatible with all
of them. Additionally, software containers make it easier to deploy ap-
plications across different platforms. For example, using Docker'® we
can package and deploy algorithms into standardised services and ap-
plications. In Section 4.3, we interchange NN information between dif-
ferent programming languages and NN libraries, TensorFlow in Python
and TensorFlow.js in JavaScript and NodeJS. Both NN libraries have sim-
ilar names and similar APIs but have different implementations. For this
purpose, we used the HDF5 format!” for sharing the model topology, the

15
16
1

onnx.ai

www.docker.com
7www.hdfgroup.org/solutions/hdf5/


onnx.ai
www.docker.com
www.hdfgroup.org/solutions/hdf5/

34

Chapter 3. State-of-the-Art

NPY file format'® for sharing the gradients/weights, and Docker contain-
ers for easy deployment.

¢ HW Heterogeneity. When using volunteer devices, the hardware of these
devices can be very diverse, so some will be much faster than others
when computing a given task. Some researchers [71, 114] propose al-
gorithms to adapt learning to this heterogeneity. Proposals are diverse;
for instance, we can use customised local steps based on the device’s ca-
pability. There are also proposals suggesting the use of intelligent selec-
tion algorithms [108] for the selection of nodes participating in a com-
munication round instead of using random node selection as vanilla Fe-
dAVG [76] does. These algorithms could choose participants not only by
their performance but also by the distribution of their local datasets. An-
other solution is to use asynchronous strategies for learning. However,
most of the current work uses synchronous approaches because these al-
gorithms are often more accurate, simpler to apply and make the results
easier to analyse. Most existing research papers use constant and precon-
figured workers without dynamic connections and disconnections during
learning. We believe this does not fit a real scenario where all devices are
not always available but dynamic, so the algorithm must adapt to these
changes and continue learning. Therefore, we consider that the asyn-
chronous algorithms approach is more appropriate to address this prob-
lem despite the risks and difficulties of this scenario. Section 4.2 presents a
synchronous method for DDL using web browsers and NodeJS processes.
Section 4.3 proposes an asynchronous method for FL using web browsers
and python processes. Some ways to deal with HW heterogeneity are:

(a) Asynchronous Communication. Each device process and commu-
nicate with the server without waiting for the other workers. Asyn-
chronous training allows the server to aggregate the results of devices
that performed different numbers of local steps, and it can receive
the results at different times. When this happens, some researchers
suggest using a threshold Z [124] to discard too old results, which
is called bounded asynchronous training or/and using a different
learning rate. We use these techniques in Section 4.3.

i. Model heterogeneity. Bounded async training allows each de-
vice to train with a different model version for a given time.

From a system design point of view. VC4FL must meet the following desirable

features (see Table 3.1) which address the challenges of VC and FEEL:

1. Accesibility. Users need to be able to connect to the platform in a simple way

and without complex pre-configuration to achieve the best accessibility. In ad-
dition, we must be aware that users give up their resources when performing
VC. When we conduct FL, they also voluntarily give up access to their data
(always keeping it private). Therefore, to be willing to do so, we must ensure
that their effort is minimal and use reward techniques such as gamification [19]
to retain users for more extended and engage them in a global project for the
good of science and society. In this thesis, we propose and analyse the use
of web browsers for this purpose. We believe that web browser computing
is an appropriate direction for this type of volunteer computing, thanks to its
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TABLE 3.1: Desirable features of VC4FL.

Desirable feature Description

Accesibility Users must connect to the platform easily

Adapta?nll ity / The platform must adapt to an ever-changing environment
Dynamicity

Availability The platform must have minimal service interruption

Data privacy The access to customer’s data must be restricted and remain private
Fault-Tolerance The platform should be tolerant of failures and disconnections
Heterogeneity The platform must enable interoperability between heterogeneous HW and SW
Programmability =~ Developers should be able to add new features to the platform quickly
Scalability The platform must handle a growing number of connections

Security The machines of the volunteers should not be compromised

Usability The platform has to be easy to deploy and use

ubiquity, sandboxing, and no need for software installation [82]. In the works
presented in sections 4.2 and 4.3, we also use gamification techniques, such as
dynamic graphs that display information about the training (training speed,
ranking of users who have contributed the most, among others.), and a game
embedded in the web browser to keep the user engaged.

2. Adaptability/Dynamicity. The platform must tolerate device connections and
disconnections and adapt to these changes if necessary without stopping its
work. We propose using the message queue pattern in sections 4.2 and 4.3.
Also, the use of REST APIs in Section 4.3. We must design adaptive algorithms
to adjust to the different performances of devices, variability of device connec-
tions and disconnections and thus to the dynamicity of the available data for
learning. We propose an adaptive algorithm in Section 4.3.

3. Fault-Tolerance. In addition to voluntary disconnections, the platform must be
tolerant to connection failures, errors or any other unexpected situation, such
as if devices freeze, thus paralysing the training. The learning must continue
despite any obstacles. Fault-tolerant is usually tackled using techniques such
as checkpointing, redundant processing, and heartbeat monitoring [108]. Usu-
ally, checkpointing and heartbeat are more useful when the processing time
before communication is high. Concerning redundancy, some authors argued
that it has to deal with a considerable amount of redundant computing and
therefore, researchers must study new strategies to improve the efficiency of
big data processing on VC [72]. Other authors suggest using redundancy tech-
niques with minimal impact on performance [108]. Still, we must consider
that distributed training of a NN is slow, so redundancy may not be the best
way to speed up processing. Also, when performing FL, data is stored locally
on edge devices and is private. In this case, it is impossible to guarantee re-
dundancy because each device will compute using different local data. We
propose assigning a maximum time for performing a task in section 4.3 as a
possible solution. We address fault-tolerance in sections 4.2 and 4.3.

4. Availability. Getting this requires that the system is as decoupled as possible,
i.e. each system element is as independent of the others as possible. In ad-
dition, the platform should replace the system elements in case of failures or
disconnections. In short, it is necessary to follow a decentralised and decou-
pled approach. We address this problem in Section 4.3.
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5. Scalability. This thesis studies the techniques presented earlier to address this
problem in Section 4.4.

6. Heterogeneity. The platform must deal with the HW and SW heterogeneity of
edge devices. We address this problem in sections 4.1, 4.2 and 4.3.

7. Programmability. For this platform to be successful, developers need to be
able to add new features quickly and easily. Therefore, it must be modular
and easily extensible to add new techniques and algorithms incrementally. Fi-
nally, this volunteer platform must be open-source so that there is no doubt
about what it does when users use it. This thesis’s designed and implemented
software follow these guidelines and are publicly available in a GIT repository.

8. Usability. Users should be able to deploy and use the platform quickly and
easily. For this purpose, it is appropriate to use software containers such as
Docker that simplify this task by minimising compatibility problems between
different platforms. We used this in Section 4.3.

9. Data privacy. A volunteer platform for FL must take special care always to
keep users’ data private as this is one of FL's primary purposes.

10. Security. This type of volunteer platform for FL has plenty of challenges [89]
related to the security and privacy of user data, but these aspects are outside
the scope of this thesis.

Despite the increase in FEEL research in recent years and its many real-world
applications, no open-source software platform still meets all the challenges and
desirable features of VC4FL using real resource-constrained edge devices. Most
published works use preconfigured parameters in controlled laboratory environ-
ments [12, 17, 18, 76, 114, 121]. They use a fixed number of workers or always take
a constant subset of all available ones at each iteration, needing a pre-configuration
identifying the participant devices before learning starts (devices do not connect and
disconnect during learning). They assume there are always thousands or millions of
devices connected, choosing some of them in each iteration. However, they do not
consider the possibility that the number of devices may decrease to just a few (or
even zero) and how they must adapt the algorithm accordingly. They usually use
synchronous training algorithms having to wait for the slowest node to continue
learning in each iteration. Nevertheless, this may not be practical in a realistic en-
vironment where devices are unreliable (can disconnect at any time) and heteroge-
neous with diverse performances. We think, in real-world problems, we must use
asynchronous training allowing collaborator’s devices to join or leave during learn-
ing. Also, these approaches do not consider the interoperability [90] of the partici-
pating devices. Although some deal with multiple performances, none with diverse
software like various learning libraries. Furthermore, they need a centralised node
to manage the whole process and take care of the partial results mergers. Some
works address some of these points, but none cover them. Regarding BOINC, its
long computation cycle [72] and the software installation need are not the most suit-
able approaches for VC4FL. Alternatively, Ray [88] is used in a static computer clus-
ter and does not address the possibility of not knowing which nodes and when will
participate in learning. Moreover, in this thesis, we decided to design and imple-
ment the whole platform, always oriented to real resource-constrained devices to
better identify the problems and needs.
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Summary of Results

In this chapter, we review the works undertaken by the PhD student to support
this thesis. These publications result from the study carried out to achieve the the-
sis objectives. These works have been published in [85], [86], [84] and [87]. They
are four contributions, two of them published in JCR journals, one in an interna-
tional conference and one in a national conference. All our work pursues the goal
G4 of disseminating results. Our first article is focused on G1, which analyses the
heterogeneity of hardware and software in edge devices. The second work, which
focuses on the goals G2 and G3, examines the best paradigms and protocols for the
volunteer distributed platform. A synchronous but decoupled version is suggested,
enabling the connection and disengagement of volunteers. Goals G2 and G3 are
pursued in the third article as well, but this time we also address the issue of data
privacy on edge devices and an asynchronous approach is suggested. The fourth
paper pursues goals G2 and G3, tackling the FL's communication overhead issue.
They are presented in chronological order:

1. In [85], we analyse the suitability of edge devices as a platform for running
genetic algorithms (GAs). G1, G2, and G4. LIT.

2. In [86], we summarise the literature that uses the web browser as a volun-
teer computing (BBVC) platform and describes recent improvements that in-
creasingly make this possible. We propose a BBVC framework for distributed
volunteer computing using the MapReduce programming paradigm and the
message queue pattern through web browsers. G2, G3, and G4. LIT and SYN.

3. In [84], we define the challenges and desirable features of VC4FL. We propose
an algorithm, implement and evaluate a software platform, and evaluate our
proposal via extensive experimentation. G2, G3, and G4. LIT and ASYN.

4. In [87], we summarised the most common techniques in literature for solving
the communication overhead problem in FL. Next, we formulate and model
the Federated Learning Communication Overhead Problem as a multi-objective
Problem (FL-COP), and we propose to solve it using NSGA-IL. G2, G3, and G4.
LIT and MOD.

For a complete list of publications and a description of the journal or conference
concerned, see Appendix D.
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4.1 Analysing Suitability of Edge Devices

In this work [85], we address the goals G1, G2, and G4 and sub-goals 1-a, 1-b, 1-
¢, 5-a and 5-b. The contributions of this work are related to LIT (see Section 1.2.2).
To achieve the objectives of the thesis, we must analyse the most common edge de-
vices. For this purpose, we perform a set of experiments in which we measure the
speed, memory usage, and battery consumption of these devices, solving a set of
well-known optimisation problems using GAs. Specifically, we wanted to analyse if
these devices are suitable to solve complex problems and study their differences in

resource usage.

TABLE 4.1: Hardware in the edge: features.

laptop RP3 m4 tablet m10
os Ubuntu 16.04 Raspbian 9 Android 5.1.1 Android 5.0.1 Android 6.0
LTS (64-bit) (64-bit) ARMV7 (32-bit) x86 (32-bit) AArch64 (64-bit)
Java VM 1.8.0_161 1.8.0_65 - - -
Toshiba . Lenovo TAB LeMobile
Model Satellite L50-B  Raspberry Pi3 ZukZ1 S8-50F LEX653
M 7893 MB 745 MB 2871 MB 1870 MB 3759 MB
emory 1600 MHz 900 MHz 933 MHz 778 MHz 800 MHz
Fact Batt 148V 37V 37V 38V 42V
actory bBattery 2800 mAh 3800 mAh 4000 mAh 4290 mAh 4000 mAh
TABLE 4.2: Processor specifications.
laptop RP3 m4 tablet m10
Name Intel Core ARM v7 Qualcomm Intel Atom Z3745 igm gg:gz:ﬁ;g
i7-4510U (64-bit) ~ BCM2709 (64-bit)  Krait 400 (32-bit) (32-bit) MT6797D (64-bit)
Topolo 1 IZ)rCOZiZZOL 1 Processor, 1 Processor, 1 Processor, 1 Processor,
pology 4 4 Cores 4 Cores 4 Cores 10 Cores
4 Threads
23GHz x 2
Frequency 2.0-3.1GHz 1.2 GHz 2.5GHz 1.33-1.86 GHz 1.85GHz x 4
14GHz x 4
L1 Inst. Cache 32.0KB x 2 16.0KB x 1 16.0 KB x 2 32.0KB x 4 -
L1 Data Cache 32.0KB x 2 16.0KB x 1 16.0 KB x 2 240KB x 4 -
L2 Cache 256 KB x 2 512KB x 1 2.00MB x 1 1.00MB x 1 -
L3 Cache 4.00 MB x 1 - - - -

We selected a good representation of edge devices with a wide variety of per-
formances such as two different types of smartphones (m4 and m10), a tablet (tab),
a laptop (lap) and a raspberry pi 3 (RP3) which is one of the most used devices for

edge deployments [47, 83, 92] (see Table 4.1 and 4.2).

TABLE 4.3: Benchmarks.

laptop RP3 m4 tablet ml0
GeekBench 4 1 - 2.15 2.43 1.38
Antutu CPU - - 1.12 1.26 1
Antutu Maths - - 1.06 1.90 1
Antutu Mem. - - 1 1.39 1.13
Whetstone 1 1.38 1.44 1.56 3.55
Dhrystone 2 1 4.42 2.65 413 2.18
Linpack 1 9.71 395 1216  40.89
Livermore 1 13.53 6.89 17.90 5.91

We performed some well-known benchmarks (see Table 4.3) on these devices to
get a baseline idea of their performance. Most of these benchmarks are not multiplat-
form. However, we can obtain certain information using them on our edge devices.
The used benchmarks are the classical Whetstone [26], Dhrystone 2 [116], Linpack
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TABLE 4.4: Problem instances.

Probabilities

Problem  Chrom. Size  Pop. Size Recomb. Mutation  Local Search Type

OneMax 5000 100 08 T - Binary
MTTP 200 100 0.8 P - Binary
ECC 144 5000 0.8 P Tt - Binary
MMDP 240 5000 08 ke - Binary
CVRP 54 500 0.4 e 1 Integer

[35] and Livermore [78]. We also use the Antutu benchmark!, which is specific for
Android OS, and we focus on their CPU (1 single-core) and memory score. And
finally, we use one of the benchmarks most used today for multi-platform devices,
Geekbench 4 (1 single-core)?. The results of the different benchmarks have been nor-
malised, getting a score. A score of 1 represents the best result, and the rest of the
scores are proportional to this one. The results obtained in Antutu and GeekBench 4
are closer to what we expected. The problem is that Antutu is just for Android OS,
and GeekBench 4 does not have an implementation for Raspbian OS. Based on the
benchmark results and the features of the devices (Table 4.1 and 4.2) we can expect
that the order from the faster to the slower device is as follow: lap, m10, m4, tab, RP3.
These benchmarks help us have a first approach to these platforms as a first step
before our experiments begin. Although, we should know that these benchmarks
are just a number and do not have to be similar to the final results.

We chose a variety of combinatorial optimisation problems for the evaluation
(see Table 4.4 and Appendix A). We use binary and integer representation problems
of different dimensions, one NP-Hard problem, various constraints, and varied fit-
ness functions. These problems have interesting features in optimisation, such as
epistasis, multimodality, and deceptiveness. The binary representation problems
chosen are the OneMax problem [37], the Minimum Tardy Task Problem (MTTP)
[107], the Massively Multimodal Deceptive Problem (MMDP) [46], and the Error
Correcting Code Design (ECC) [74]. Also, as an integer representation problem,
we have selected the well-known Capacitated Vehicle Routing Problem (CVRP) [29]
which can scale and characterise problems in smart mobility in cities and is NP-hard.
We selected one instance of each problem (Table 4.4). We choose four binary repre-
sentation instances from JCell Library®, and one using integer representation called
CMT1, a CVRP instance proposed by Christofides [22] for this problem. These in-
stances are not so large because we want to solve them using constrained devices
with low processing capacity. We are interested in analysing the performance of
solving the instance problems using heterogeneous edge devices and different pro-
gramming languages and not solving huge problems. Therefore, we have chosen a
varied set that all the evaluated devices can solve in a reasonable time.

We use the canonical steady-state GA to solve the above problems. We use binary
tournament selection, one-point crossover, bit-flip mutation and elitism replacement
for binary representation problems. The algorithm used to solve the CVRP was im-
plemented similarly to that used by Dorronsoro, and Alba [2] (see Appendix A). In
this case, we use Edge Recombination Crossover (ERX) as recombination method,
and three mutation operators with equal probability: Insertion [41], Swap [8], and
Inversion [55]. We also use a local search operator as an extra step to the canonical

Ihttp://www.antutu.com
2https://www.geekbench. com
Shttp://neo.lcc.uma.es/software/jcell/
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TABLE 4.5: Problem results.

Fitness Evaluations Time (s)
Device Prob. avg hit avg +sd max min avg +sd max min score
laptop ~ OneMax 5x10° 100 % 18(1) x 10* 23 x10* 16 x 10* 1.95 + 0.14 2.38 1.76 1.00
RP3 OneMax 5x10° 100 % 18(1) x 10* 23 x10* 16 x 10* 21.47 + 1.46 26.28 19.43 11.01
m10 OneMax 5x10° 100 % 18(1) x 104 23x10* 16 x 10* 98.79 + 7.65 117.13 87.46 50.66
m4 OneMax 5x10° 100 % 18(1) x 104 23x10* 16 x 10* 99.91 + 6.85 119.85 90.33 51.23
tablet OneMax 5x10°  100% 18(1) x 10+ 23x10* 16 x10* 176.32 + 12.34 215.39 158.40 90.41
laptop ~ MTTP 25x107%  100% | 48(48) x10*  24x10° 39 x 10° 0.52 £ 0.53 2.80 0.05 1.00
RP3 MTTP 25%x 1074 100% | 48(48) x10*  24x10°  39x103 5.86 + 5.82 29.65 0.50 11.23
m10 MTTP 25x107%  100% | 48(48) x10*  24x10° 39 x 10° 55.67 + 54.97 278.69 442 106.67
tablet MTTP 25%x107%  100% | 48(48) x10*  24x10°  39x103 66.01 & 65.44 334.04 5.63 12649
m4 MTTP 25%x 1074  100% | 48(48) x10*  24x10°  39x103 71.75 & 71.93 369.39 648 13749
laptop ~ MMDP 40 100% | 37(46) x10*  22x10° 19 x 10* 2,12 + 0.66 4.68 1.69 1.00
RP3 MMDP 40 100% | 37(46) x10*  22x10° 19 x10* 17.94 + 5.66 40.09 14.29 8.47
m10 MMDP 40 100% | 37(46) x10*  22x10° 19 x 10* 33135+ 19525  1180.94 199.50  156.46
tablet MMDP 40 100% | 37(46) x10*  22x10°5 19 x10* 416.22 + 74.83 683.50 349.13  196.53
m4 MMDP 40 100% | 37(46) x10*  22x10° 19 x 10* 476.01 + 122.47 983.44 379.61  224.76
laptop  ECC 674x 1074 100% 33(6) x 104 45x10* 23 x10% 2.68 + 0.34 3.41 1.99 1.00
RP3 ECC 674x 1074 100 % 33(6) x 10*  45x10* 23 x 10* 25.42 + 3.45 32.85 18.94 9.48
m10 ECC 674x 1074 100% 33(6) x 104 45x10* 23 x10* 470.22 + 75.97 621.57 31018 175.30
tablet ECC 674x 1074 100% 33(6) x 104 45x10* 23 x10% 533.14 + 66.72 672.33 40331 19876
m4 ECC 674x 1074 100 % 33(6) x 104 45x10* 23 x10% 577.81 + 71.82 725.69 43877 21541
laptop  CVRP 52461  100% | 45(11) x10°  80x10° 24 x 10° 9.85 + 2.45 17.29 5.09 1.00
RP3 CVRP 52461  100% | 45(11) x10° 80 x10° 24 x 10° 76.39 + 19.54 136.23 39.89 7.76
m10 CVRP 52461  100% | 45(11)x10°  80x10°  24x10° | 1637.20 +553.04  3389.71 77145  166.28
tablet CVRP 52461  100% | 45(11) x10°  80x10°  24x10° | 2376.80 +601.78  4218.04 124725 24140
m4 CVRP 52461  100% | 45(11) x10°  80x10°  24x10° | 244079 +589.31 415062  1332.99  247.90

GA. Results have been confirmed using a Wilcoxon test with Bonferroni correction
and a significance level of 0.025.
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FIGURE 4.1: Resources usage.

Table 4.5 shows the results of the experiments. In Figure 4.1 we can see the CPU
and memory usage.
The contributions of this work are related to LIT:

1. We studied and collected the available benchmarks for analysing the perfor-
mance of edge devices. G1.

(a) We showed that classic benchmarks are not reliable for evaluating the per-
formance of edge devices, but they are helpful to get a rough idea. They
are dependent on the hardware architecture and the operating system.
Depending on the specific problem to be solved, the results may vary. For
instance, Antutu is so common that hardware manufacturers have taken
to cheating on the benchmark, which makes it unreliable. G1.
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2. We analysed the performance of different edge devices while solving a repre-
sentative set of optimisation problems with different features by running ge-
netic algorithms. G1.

(a) We showed that Raspberry Pi 3 (RP3) is a perfectly suitable platform for
executing algorithms on edge. RP3 is very cheap, uses less memory than
a laptop and solves problems in a reasonable time. RP3 is commonly
used in intelligent city sensors, making it suitable for performing edge
calculations. G1.

(b) We showed that edge devices running Android have problems running
high-performance applications. This operating system seems more inter-
ested in keeping battery consumption low and using less memory (using
the garbage collector more often) than performance. G1.

(c) We showed that benchmarks like GeekBench 4 got good results on An-
droid devices. Therefore, we believe that it is necessary to execute native
code in Android devices to be able to solve the restrictions of this oper-
ating system. In appendix B, we show a subsequent unpublished study.
We analysed the performance of other programming languages such as
C++ and WASM (same devices, problems and algorithms). We showed
that our hypothesis was correct, getting a performance closer to RP3 and
the laptop on Android devices. G1 and G2.

i. We implemented the algorithms using three programming languages
(Java, C++ and WASM-JavaScript). We showed that we get good
performance in most devices by using native code and compiling it
into WebAssembly (WASM) with Emscripten. Moreover, when us-
ing WASM,, the results of the best and worst devices are very similar,
obtaining an excellent homogeneity which is very important when
running algorithms in a parallel way. We proved that running these
algorithms on the web browser is efficient and has the advantages of
a lightweight virtualisation property and being multiplatform. G1.

ii. We demonstrated that devices with low processor capacity are per-
fectly appropriate for solving optimisation problems at the edge. In-
expensive devices such as RP3 and mobile devices can achieve laptop-
like performance when solving complex optimisation problems. G1.

4.2 Proposal for NN Training Using BBVC and the MapRe-
duce Paradigm

Our previous work showed that edge devices with low processing capacity were
perfectly suited to solve optimisation problems and that the web browser could be a
suitable platform to achieve our goal. In this paper, we propose an approach to use
the web browser to train neural networks in a distributed manner using volunteers.
We propose a decoupled design so volunteers can connect and disconnect anytime
without stopping the training.

In this work [86], we address the goals G2, G3, and G4, and sub-goals 1-a, 1-d,
1-e, 2-a, 4-a, 4-b, 4-c, 4-d, 4-¢, 5-a and 5-b. The contributions of this work are related
to LIT and SYN (see Section 1.2.2). We first summarise the literature that uses the
web browser as a volunteer computing (BBVC) platform and describes recent im-
provements that increasingly make this possible (see also Section 3.2). Next, we
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propose a BBVC framework, JSDoop*, for distributed collaborative HPC using the
MapReduce programming paradigm [65] and the message queue pattern through
web browsers. As we have seen in sections 3.2 and 3.3 (see Table 3.1), the biggest
obstacles for VC platforms are accessibility, usability and security. Installing appli-
cations is often a significant barrier for users because of difficulty, laziness or fear
of installing unfamiliar software on their devices. We propose to use web browsers
as runtime software mainly because it solves most of these problems. Moreover, as
explained in section 3.2, the improvements that have been made to web browsers
in recent years bring them closer and closer to the performance of native programs
running on the terminal. Finally, we use this framework for training an LSTM-based
RNN [54] in a distributed and collaborative manner.

An RNN is a type of NN in which the connections between nodes form a di-
rected or undirected graph over a time sequence. MapReduce [31] is a well-known
technology used in popular systems like Hadoop and Spark. It is composed of two
primary operators: map and reduce. The first one gets the data and distributes it for
parallel calculation. The second one aggregates the result of the calculation.

The design of our proposal was guided by the desirable features (see Table 3.1)
of such platforms. However, our implementation is a proof of concept and aspects
such as security should be more important in a final version. In our design, we can
distinguish the following actors: Initiator, WebServer, QueueServer, DataServer,
and Volunteers (see Fig. 4.2). The WebServer stores the web code that will run the
volunteer on the web browser. The Initiator is the person who creates the job and
divides the NN training into map and reduce tasks. The QueueSever stores the map
and reduce tasks. The DataServer stores the current saved model and the dataset.
And the Volunteers are the devices that connect and disconnect at will and process
the tasks on their web browser.

The training process is divided into map-reduce tasks. Volunteers can connect
to the platform using the web browser by clicking on a link. Then the program is
executed in the background transparently, getting tasks from a queue on a server,
solving them one by one, and accessing the DataServer when necessary to take the
data. We use the message queue pattern. Therefore, tasks are not removed from
the queue until an ACK is received. That allows volunteer devices to connect and
disconnect anytime. If they disconnect before finishing a task, that task returns to
the queue achieving fault-tolerance.

Map tasks mean computing gradients. Reduce tasks mean aggregate gradients
and update the shared model. Before calculating a map task, the program executed
in the volunteer web browser downloads the updated model and the mini-batch of
data corresponding to that task, calculates gradients and stores the result in a results
queue in the QueueServer. Before calculating a reduce task, the program executed
in the volunteer web browser downloads the gradients identified with specific IDs,
aggregates them, updates the model, and finally stores the updated model in the
database.

Our proposal was implemented using NodeJS (version 10.15)°. Therefore, we
can run a program developed using our library in a native application (e.g. in the
console) and a web browser. For communications, on the client side, we use STOMP
over WebSocket. The QueueServer is implemented using RabbitMQ (AMQP proto-
col)® for handling the queues. Also, the in-memory DataServer use Redis’ to store

4Code available in https://github.com/jsdoop/
5nodejs.org
6www.rabbitmq.com

"redis.io
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FIGURE 4.2: Our proposal for NN Training using the MapReduce
paradigm.

TABLE 4.6: Distributed and sequential training.

System Workers Runtime Loss
TFJS-Sequential-128 1 0.9 4.6
JSDoop-classroom-sync-start 32 2.5 4.6
JSDoop-classroom-async-start 32 2.7 4.6
JSDoop-classroom-sync-start 16 54 4.6
JSDoop-cluster 32 8.4 4.6
JSDoop-cluster 16 8.8 4.6
JSDoop-cluster 8 12.0 4.6
JSDoop-cluster 4 16.7 4.6
TF]S-Sequential-8 1 21.7 127
JSDoop-cluster 2 37.0 4.6
JSDoop-cluster 1 177.1 4.6

the data used in the experimentation. Finally, we use TensorFlow.js as a library for
training neural networks.

We perform three groups of experiments: JSDoop-cluster, JSDoop-classroom and
TFJS-Sequential. First, we tested six cases: 1, 2, 4, 8, 16, and 32 workers in a cluster of
computers HTCondor [111]. Later, we tested our proposal on desktop web browsers
by opening a hyperlink in a university classroom. In this case, we performed three
types of experiments. In the first one, the 32 web browsers opened the hyperlink
gradually (i.e. async-start). In the second one, we repeated the experiments using
32 web browsers with the webpage already opened (i.e. sync-start). In the third
one, we closed 16 web browsers and repeated the experiment with the other already
connected 16 web browsers (i.e. sync-start). We compare these results with TFJS-
Sequential, in which we trained the RNN using the sequential version of the training
algorithm with a batch size of 8 and a batch size of 128. In this sense, the sequential
and the distributed algorithms compute the gradient the same number of times.
Therefore, we compare both approaches under similar conditions, i.e. computing
and accumulating the same number of times the gradient. In Table 4.6 we show the
results of the experiments. The runtime is presented in minutes. The best time of
each experiment is highlighted in bold.

The results show that web browser-based distributed neural network training is
feasible. Our proposal allow volunteers to collaborate by simply accessing a URL,
and proved to be an adequate implementation of BBVC achieving high scalability
and allowing to add/delete volunteers dynamically during execution without losing
information (tasks).
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The main advantages of our proposal are:

e It is independent of the number of connected devices. The system sends tasks to
whoever requests them and only removes a task from the queue when an ACK
is received informing that the task has been completed.

e It recovers from failures easily. If a volunteer disconnects while solving a task,
the task is added back to the queue.

* The number of volunteers changes dynamically. It allows a dynamic number of
devices to join or leave the system at will.

e [t is cross-platform. Any device can collaborate by simply connecting to a URL
through a browser.

The main contributions of this work (LIT and SYN) are as follows:

1. We summarised the literature that uses the web browser as a volunteer com-
puting (BBVC) platform and described recent improvements that increasingly
make this possible (see Section 3.2). G2.

2. We proposed a BBVC framework for distributed volunteer computing using
the MapReduce programming paradigm and the message queue pattern through
web browsers without interrupting the site’s user experience and installing ad-
ditional software. We showed that our proposal has good scalability despite
the constraints on the communication channel. G3.

3. We proved that web browser-based distributed neural network training is fea-
sible and efficient. We conducted a proof-of-concept to show that distributed
training of neural networks in the browser is possible. Using small and medium
NN models is perfectly suitable for solving edge devices” problems. The re-
sults show that it is feasible, scalable, and an exciting area to explore. G3.

4.3 Proposal for Asynchronous FL using Unreliable Volun-
teer Edge Devices

In our previous work, we proposed to use the web browser to train NNs in a dis-
tributed volunteer way. However, we used a synchronous approach which has
some disadvantages, as we saw in Section 2.5.1, such as straggler effects and devices
that can freeze paralysing the training. In this paper, we propose an asynchronous
method to tackle these problems. In particular, we focus on the situation when the
number of volunteers is low and may even drop to zero during part of the training.

In this work [84] (see Section 3.3 and 4.3), we address the goals G2, G3, and G4,
and sub-goals 1-a, 1-b, 1-d, 1-e, 2-a, 4-a, 4-b, 4-c, 4-d, 4-¢, 4-f, 5-a and 5-b. The contribu-
tions of this work are related to LIT and ASYN (see Section 1.2.2). We first define the
challenges and desirable features of VC4FL (see Section 3.3). We propose an algo-
rithm for FEEL that adapts to asynchronous heterogeneous clients joining and leav-
ing the computation. The aim is to continue the learning process and avoid waiting
for slower devices. We propose, implement and evaluate a new software platform
(JSDoop version 2.0%, redesigned and reimplemented from scratch) for DDL on vol-
unteer edge devices.

8Code available in https://github.com/jsdoop/


https://github.com/jsdoop/

4.3. Proposal for Asynchronous FL using Unreliable Volunteer Edge Devices 45

In adaptive distributed mini-batch gradient descent, the number of connected
edge nodes is dynamic and varies over time. We assume that the maximun num-
ber of edge nodes is N (connected or disconnected), that each local dataset D; is
unbalanced and non-i.i.d, UlNDi = D and V;V ‘Di N Dj| > 0. We define the current
set of connected edge nodes as E where |E| < N. We dynamically adapt the global
aggregation to the current connected edge node devices using:

P
lobal 1
w(tgo a — ﬁ Z wlocaly ’ P~ |E’ (41)
y=1

Algorithm 4 Async-Adapt Distributed Gradient Descent
Input: 7,72

Output: Final model parameter wfffal

1: Initialise:
/ / Each worker loads global weights when connected.

lobal
Wit = W§ ;

// Aggregator initialise list of weights for aggregation
W<
while termination criterion is not met (each worker async) do
foru=1,2,..,7do
// Each node i compute local update (2.3)
end for
// Each node sends local weights w; ;
// Aggregator receives the local weights async
// Aggregator receives info of connected workers |E| and update P
8: P= |E|
9: // Aggregator checks if received weights are too old
10: if t;+7>= tglobal then

11: // Aggregator adds weights to list for aggregation
W.insert(w; ;)
12:  end if

13 if W.size() >= P then

14: / / Global aggregation (4.1) using W
15: W =]

16:  end if

17: end while

We define |E| as the number of connected edge node devices (workers) and P as
the number of gradients the aggregator accumulates each aggregation. The adap-
tive algorithm dynamically adjusts P ~ |E|. We refer to connected nodes |E| as the
nodes that have communicated with the logical server(s) in the last S seconds. Also,
we use asynchronous training, so devices do not have to wait for each other. There-
fore, a new threshold variable Z has been defined to accept or discard old gradients
depending on how old they are (see Algorithm 4).

We use six types of actors (see Fig. 4.3).

1. The initiator is the user that creates a job and uploads it to the platform. If the
NN topology is not yet uploaded to the platform, he/she must upload it first.

2. The workers are the volunteers, i.e. edge devices. They collaborate solving tasks
by yielding their computing resources and private data. They are unreliable
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FIGURE 4.4: Initialisation execution flow. The worker obtains all the
necessary information to start collaborating.

devices that can connect and disconnect anytime for many reasons, such as
errors, connection problems, or because the user decides to stop collaborating.

¢ When connecting they download the job information associated with a
job ID (see steps 1 and 2 in Fig. 4.4). Then, they download the NN model
topology used in that job ID (see steps 3 to 6). Next, they download the
job’s current state, i.e. the updated weights (see steps 7 to 10), and replace
the local model. The ID of the updated weights means the number of
global aggregations performed. Now they are ready to collaborate.
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FIGURE 4.5: Execution flow of the collaborative learning process.

* Then, they repeat the following loop until a termination criterion is done
or a disconnection occurs. The worker trains its local model for the local
steps indicated in the job information (see steps 1 to 5 in Fig. 4.5), next
send the local gradients/weights back to the server (see steps 6) and fi-
nally download the newly updated weights (if they exist).

3. The logical server is responsible for the orchestration and scheduling of jobs, and
although it is usually located in the cloud, it can also be at the edge.

* When receiving gradients/weights from workers (see step 6 in Fig. 4.5), it
stores these intermediate results in the DIMDB (see steps 7 and 8). It then
sends a message to the queue server to inform it that new results associated
with a job ID are now available (see step 9).

* Then, the logical server checks for updated weights with a newer weights
ID than the worker weights have in the remote DIMDB before respond-
ing to the worker. If so, the logical server sends a buffer containing those
weights to the worker. If not, it sends an empty buffer.

* When the logical server stops receiving messages from a worker for S sec-
onds, it considers that it has been disconnected and then deletes the in-
formation stored about it, i.e. its worker ID. Later, if using the adaptive
aggregation algorithm, the aggregator will adapt P according to the num-
ber of connected workers. This technique allows learning to be robust
and fault-tolerant.
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4. The distributed in-memory database (DIMDB) is used by the logical server for stor-
ing intermediate results. It is located in the cloud.

5. The aggregator can be in the cloud or at the edge. It aggregate (averaging) gra-
dients/weights calculated by the workers and updates the shared model, i.e.
weights.

¢ It is subscribed to a message queue of the queue server and waits for
results associated with a specific job ID (see step 0 in Fig. 4.5). When re-
ceiving a message informing that new results are available (see step 10),
it downloads them from the DIMDB. Then, it checks if it has the required
number of gradients to perform the aggregation. If so, it performs aggre-
gation (see step 11 and 12 in Fig. 4.5). Later, it sends the updated weights
back to the logical server who stores them in the DIMDB (see step 13).

¢ The aggregator needs to know the number of connected workers to ag-
gregate the corresponding gradients/weights when using the adaptive
aggregation algorithm (see Algorithm 4). With this goal, the logical server
sends to the aggregator together with the intermediate results the work-
ers IDs of whom have communicated with it in the last S seconds. The
aggregator uses this information to adapt the parameter P.

¢ Each worker trains asynchronously, sending processing results as soon
as they finish without waiting for the slower workers. The aggregator
discards the results that are older than a specified threshold Z.

6. The queue server is in the cloud and is used by the logical server to inform the
aggregator that new results are available.

Participants interact through the logical server using REST API protocol. Workers
can be running on web browsers (TensorFlow.js) or in a Python process (Tensor-
Flow), maximising the number of collaborators while requesting a minimum effort
(just a click). We believe that web browser computing is an appropriate direction for
this type of volunteer computing, thanks to its ubiquity, sandboxing, and no need
for software installation [82]. The aggregator runs in a Python process using the Ten-
sorFlow library. The logical server that provides access to the database run in a Java
process. The DIMDB is implemented in Redis’, the queue server uses RabbitMQ'"
(AMQP protocol). The model topology is share using the HDF5 format!!. The gradi-
ents/weights are share using the NPY file format'?. All code is available in a public
Git repository, and it is packaged in Docker containers to allow for reproducibility'®
(programmability and usability).

Finally, we conducted an exhaustive empirical analysis to evaluate the proposal.
We analysed the main features of the platform mentioned above. We performed
twenty experiments organised into four case studies and used from 1 to 64 workers.
We use two types of workers: Python processes (TensorFlow) limited to one core
and 2 GB RAM on HTCondor [111] as constrained devices and up to 24 desktops
collaborating from web browsers (TensorFlow.js). We analyse how asynchrony, dy-
namic connections, and disconnections of devices affect learning and how we can

9redis.io

10www.rabbitmq.com

Wyww . hdfgroup . org/solutions/hdf5/
12numpy . org/devdocs/reference/generated/numpy . 1ib. format . html

13github. com/jsdoop/jsdoop
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adapt learning to keep high accuracy. The devices were connected and disconnected
stochastically during learning following two exponential distributions [66]. Expo-
nential distributions describe the time between events in a Poisson process, i.e. a
process in which events occur continuously and independently at a constant aver-
age rate (lambda). We show that the proposed decentralised and adaptive system
architecture for asynchronous learning allows volunteer users to yield their device
resources and local data to train a shared ML model. Devices can join and leave the
system at any time without stopping the learning process. This architecture does not
need to know where or when the participating devices will connect. This system is
fault-tolerant, so unexpected disconnections of workers do not interrupt the learn-
ing. The open-source implementation enables collaboration between devices with
heterogeneous hardware and software. User devices can join the learning in differ-
ent ways, such as from a web browser or running a Python process on the client
device, allowing almost any device to participate. We organised the analysis into
four case studies:

e Case study 1: We analyse the robustness and interoperability of the platform
when using heterogeneous hardware and software. We demonstrate that the
platform achieves high accuracy despite heterogeneity.

¢ Case study 2: We examine the most suitable setting when using asynchronous
FEEL. We show that it is necessary to adapt the aggregation parameter when
the number of workers varies to get high accuracy.

¢ Case study 3: We test the fault-tolerance of the software platform to variations
in the number of collaborating devices. We also evaluate the self-adaptation
of the algorithm to these changes. We prove that the platform is fault-tolerant,
can continue its learning, and keep offering a high accuracy despite connec-
tions and disconnections of volunteer devices.

¢ Case study 4: We evaluate the self-adaptation and fault-tolerance of the plat-
form using a more extreme non-i.i.d data. Also, we perform an analysis of
the scalability and random drops. We confirm that when the system uses the
adaptive algorithm and random drops, we can get similar results as when the
system uses a constant number of workers during learning.

Table 4.7 and 4.8 show the results of the experiments. We show that the plat-
form can adapt to changes and continue learning in a changing environment where
volunteer devices connect and disconnect at any time. We test the system using
different data distributions. Also, the platform enables interoperability and obtains
high accuracy when using heterogeneous devices in hardware and software with
different NN training libraries collaborating (i.e. web browsers using TensorFlow.js
and Python processes using TensorFlow). Next, we release a modular open-source
library publicly available in a Git repository that enables VC4FL in a decentralised,
asynchronous, and fault-tolerant way. There is no need for the previous configura-
tion of participating workers. Instead, the platform allows workers to join and leave
at any time. That opens up an exciting avenue for research allowing researchers to
experiment with new VC4FL techniques on real edge devices and real users easily.

Experimentation results are remarkable, showing that our adaptive approach is
effective for VC4FL in very diverse scenarios, using unreliable dis/connecting vol-
unteers, extreme non-i.i.d data and the challenges mentioned in section 3.3.



Chapter 4. Summary of Results

TABLE 4.7: Comparison of experiments in case studies 1 to 3.

Job Workers P Min Loss Max Acc. CK score
W64P64 64py 64 0.0016 0.9894 0.9878
W64P32 64py 32 0.0017 0.9889 0.9867
mixW64P64  24js40py 64 0.0017 0.9887 0.9860
adaptive dynamic adaptive 0.0017 0.9884 0.9859
W32P32 32py 32 0.0018 0.9878 0.9842
W16P16 16py 16 0.0019 0.9876 0.9843
W16P32 16py 32 0.0020 0.9865 0.9846
WS8P8 8py 8 0.0025 0.9844 0.9817
W4r4 4py 4 0.0029 0.9811 0.9770
W2P2 2py 2 0.0043 0.9741 0.9724
W1P1 1py 1 0.0055 0.9663 0.9626
W8P32 8py 32 0.0722 0.6706 0.5116

TABLE 4.8: Results of case study 4. Each worker has a different num-
ber of samples of each class and a maximum of five classes. The larger
the number of workers, the better the accuracy.

Job Workers P Min Loss Max Acc. CKscore
W64P64#5 64py 64 0.0020 0.9866 0.9833
W16P16#5 16py 16 0.0022 0.9859 0.9840
W32P32#5 32py 32 0.0023 0.9856 0.9834
adaptive#5 dynamic adaptive 0.0022 0.9854 0.9822
WS8P8#5 8py 8 0.0035 0.9782 0.9728
W4P4#5 4py 4 0.0047 0.9701 0.9618
W2P2#5 2py 2 0.0088 0.9431 0.9228
WI1P1#5 1py 1 0.0758 0.4776 0.2001

In summary, the main contributions of this work (LIT and ASYN) are:

1. We defined the challenges and desirable features of VC4FL (see Section 3.3).
G2.

2. We proposed an algorithm for FEEL that adapts to asynchronous clients join-
ing and leaving the computation when the number of workers is low and can
even drop to zero during training. G3.

3. We proposed, implemented and evaluated a software platform for performing
VC4FL that meets the defined challenges and desirable features. We evaluated
our proposal via extensive experimentation in a static configuration and highly
dynamic and changing scenarios. We then showed that the platform using a
given number of constrained, unreliable, and heterogeneous (in HW and SW)
devices adapts well to this changing environment getting a numerical accu-
racy and CK score similar to today’s configurations that use a static platform
for learning. Next, we demonstrated the fault-tolerance of the platform that
recovers from unexpected disconnections of volunteer devices. G3.

4. We released a modular open-source library covering most VC4FL desirable
features. G4.
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5. Other main findings:

(a) Modifying the adaptive parameter P according to the available workers
|E| together with using a threshold Z for discarding old results is effective
for getting good learning results in highly dynamic scenarios of VC4FL
with a crowd of unreliable non-pre-configured workers. However, we
need further research to analyse the best trade-off between both parame-
ters and find the most suitable aggregation technique depending on the
distribution of the local datasets of the workers.

(b) If the noise generated by the previous techniques is not too big not only
does not worsen the learning results but can improve them. Experiments

show that the most accurate value for P lies between |2£| and E - 2. There-
fore, the adaptive algorithm must always keep P within that range to ob-
tain good learning results. G3.

(c) If the number of connected workers is too low and does not change for too
long, some classes’ little or no data available limits learning. We should
investigate new techniques to deal with this problem, such as decreasing
the learning or even temporarily stopping training if this situation is pro-
longed. That is not the case if the connected workers shift or temporarily
decrease and later increase again because, in this case, the model learns
using different data, obtaining good learning results. G3.

(d) This work is the first, to the authors” knowledge, on distributed NN train-
ing in which web browsers and python processes collaborate, then prov-
ing the interoperability [70, 82] of our proposal. We believe web browser
computing is the right path forward for FL thanks to its sandboxing, ubig-
uity, and no software installation required [86]. G2.

4.4 Proposal for Communication Overhead Reduction in FL

In the two previous sections, we have focused on the distributed learning process.
However, we have not paid attention to some of the challenges associated with FL.
In particular, one of the biggest problems of FL is a large amount of information
(weights or gradients) that needs to be communicated in each iteration. Therefore,
we focus in this work on reducing the amount of data sent during the learning pro-
cess while maintaining and even improving the accuracy level of the model.

In this work [87], we address the goals G2, G3, and G4, and sub-goals 1-e, 2-
a, 4-f, 5-a and 5-b. The contributions of this work are related to LIT and MOD
(see Section 1.2.2). Achieving high-quality results in FL (see Section 3.1) requires
a large amount of communication where information is exchanged between the
edge devices and the server [75]. Finding the minimum amount of communica-
tion that achieves the same or higher accuracy is a multi-objective problem where
we want to reduce communications and increase the model’s accuracy. For such a
problem’s class, stochastic algorithms such as metaheuristics and, in particular, the
Non-Dominated Sorting Genetic Algorithm II (NSGA-II) are a promising alternative
that provides a good trade-off between finding an optimal solution and the time
required [32]. In this research, (I) we model and formulate the Federated Learn-
ing Communication Overhead Problem as a multi-objective Problem (FL-COP), (I1)
and we apply the NSGA-II to solve it. Other authors have proposed a multi-objective
approach in which they evolve the neural network architecture [126]. We instead
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investigate the main parameters triggering communication overhead that the litera-
ture usually tackles separately within the same work. This work is our first step in
this direction. In future work, we plan to research adaptive algorithms that adjust
these parameters during learning. Our proposal has been assessed by simulating
a server/client architecture of 4 devices, tested with both convolutional and fully
connected neural networks with 12 and 3 layers, 887,530 and 33,400 weights, respec-
tively. The validation has been done on MNIST dataset containing 70,000 images of
handwritten digits.

Our formulation of the FL-COP is a bi-objective optimisation problem, where the
two conflictual objectives consist of (I) minimising the communication overhead
while (II) maximising the model’s accuracy. It also assumed that each client in the
architecture has a similar model (i.e. nodes, connections, layers, activation functions,
etc.) as the one on the server. When mentioning the local and global models, we refer
to the client’s and server’s models, respectively. Let us assume an architecture of
one server connected to N clients.

< High

E ' ” Reducing the participating clients.

g ﬂ Reducing the communication rounds.
"§ a Sparsification.

. .

Y uantisation.

& Low

FIGURE 4.6: The FL-COP modelling levels.

We refer to the model as a tuple L = (Iy, ..., l| L‘) containing vectors of weights,
where vector ; (i = 1,...,|L|) represents the weights of connections between the
layer i and i — 1 of the NN. We can find different techniques to reduce the com-
munication overhead problem in bibliographic. We have ordered some of these
techniques from a high to a low level. The FL-COP modelling is thought as a 4-
levels communication-reduction scheme (see Figure 4.6), where each layer repre-
sents when a given communication-reduction approach is applied. At the highest
level, we identify the number of clients that will participate in training the global
model. The second level reduces the number of communication rounds by incre-
menting the number of local steps performed in each device. The third and fourth
levels refer to the sparsification and quantisation performed before sending the local
weights back to the server to be aggregated.

The overall amount of communications happening during the learning process
is proportional to the number of clients m € [1, N] that participate in training the
global model. So, the first part of the FL-COP modelling stands in finding the num-
ber m of clients, selected randomly among the complete set S, and which will be the
only ones sending their local models to the server at iteration t. A second part of the
FL-COP modelling consists in finding the number of training iterations E € [1,1000]
after which all the clients send their local models to the server. This variable deter-
mines the number of training steps that the clients perform before sending their local
models (e.g. weights, gradients, etc.). It is important to note that for each client, the
maximum number of training iterations allowed on overall is (E - T), where T is the
maximum number of times the clients can send their local models to the server. The
third part of the problem modelling consists in selecting, for each layer L; having n;
weights, a percentage i € [0%,50%]| of the weights that will not be sent to the server.
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Using the classical FedAvg, the weights are encoded with full precision (i.e. all
their decimals) using 32 bits. Thus, the fourth, and final part of our FL-COP mod-
elling consists in finding the optimal number of bits b; allocated to encode the weights
of each layer L; in the model, wherei = 1,...,[. We also assume that ®; and g¢; repre-
sent, respectively, the maximum and minimum values of the weights in the i* layer.
Having b; bits means that 2% binary combinations can be created. We assign the all-
ones and all-zeros combinations to encode the @; and ¢; values, respectively. The (2%
- 2) remaining combinations will encode (2% - 2) values that are equally drawn from
the interval [®;, 0;]. Technically, the data that will be sent to the server will be the se-
ries of combinations that encodes each weight, as well as @; and ;. The server will
perform the reverse mechanism to retrieve the full-precision weights. Each client
will send to the server YI_, (n;.b;) + 64 bits instead of @ = Y'_, (1;.32) original
bits.

Our formulation of the FL-COP is described using Equations (4.2)-(4.5). The first

objective function f; (?) defined by Equation (4.2) calculates the percentage of data

reduction that the solution X achieves. Concretely, it is the sum of the percentage «
and B € [0,1] of data sent and received, respectively, by all the clients together from
and to the server. These percentages are expressed with regard to the original data
that would have been sent or received when no communication reduction is applied

(T - N -©). The second objective function fz(?) defined by Equation (4.3) evaluates
the accuracy of the global model w7} at communication T (i.e. the last iteration)

achieved via the solution X. The server’s model wh = Y0 wk /m is computed as
the mean of the m local models obtained after T communications, while the accuracy
is computed as the division of A by v, where A and v are the number of correct and
total predictions made using the model w7, respectively.

) o+
Min  fi(X)= Tﬁ (4.2)
:{xl,...,xd}
wax  H(X) =2 4.3)
:{xl,...,xd} 4
Where:
1 m
o PN (4.4)
m 1 &b 100 — Ui n;
B=—- =" _t. . (4.5)
N E 1221 2 100 2;21 n;
Subject to:

m,E, u;,b; € N,1<m < N,1<E<1000,0<pu; <50,1<b <32

(a) (b)

FIGURE 4.7: A 3-layers model: (a) abstract and (b) concrete FL-COP
solutions.
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The Fig. 4.7(a) sketches a typical solution ? of an FL-COP that trains a / = 3

layers model. On the other hand, Fig. 4.7(b) represents a concrete solution X for
the same configuration using 20 training iterations, 2 rounds of client-server com-
munications. During each round, only 90% of the weights of the 1% layer, 55% of the
2" and 98% from the 3" are sent to the server. The weights sent from the 18t, ond
and 3™ layers are encoded using 2, 20 and 15 bits, respectively. The code is publicly
available on Github'*. Results have been confirmed using a Wilcoxon test with Bon-
ferroni correction and a significance level of 0.025.

The contributions of this work are:

1. We summarised the most common techniques in literature for solving the com-
munication overhead problem in FL (see Section 3.3). G2.

2. We formulated and modelled Federated Learning Communication Overhead
Problem as a multi-objective Problem (FL-COP). G3.

3. We proposed solving the FL-COP by using genetic algorithms for multi-objective
function optimisation. Our proposal achieves higher accuracy while reducing
communications from 10 to 2000 depending on the neural network topology
compared to the maximum communication setting. G3.

4. Our proposal provides a population of solutions that facilitates decision-making
when configuring the parameters of FL. G3.

14Code available in https://github.com/NEO-Research-Group/flcop
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Chapter 5

Conclusions and Future Work

This thesis has addressed the challenge of distributed ubiquitous intelligence in edge
devices. Specifically, we proposed to see FEEL as a VC type where users donate
their edge devices” computing resources to a project that trains a shared DL model
(VC4FL). We dealt with constrained, unreliable, and heterogeneous (in HW and SW)
devices and adapted the learning to the volatility of dis/connections getting fault
tolerance. We also have formulated and modelled the problem of communication
overhead in FL, which is an important challenge for ubiquitously distributed in-
telligence and efficiently learning from users’ data, as a multi-objective problem.
And we tackled it using genetic algorithms for multi-objective function optimisa-
tion achieving higher model accuracy while reducing communications compared to
the maximum communication setting.

We have divided the contributions of this thesis into four main contributions
(LIT, SYN, ASYN and MOD) to meet the four objectives we specified (G1-G4) (see
Section 1.2.1 and 1.2.2 for more details about goals and contributions). In all our
works we pursued the goal G4 of dissemination of the results. Following this goal,
the software implemented in works 2 and 3 is publicly available on Github'. Also,
the software implemented in our fourth work?.

In our first work [85] (see Section 4.1), we pursued our first goal G1 of analysing
heterogeneous hardware and software of edge devices. The main contribution of this
work is LIT. We explained that traditional benchmarks are unreliable for assessing
edge device performance, but they help gain a general understanding. We showed
that the RP3 platform is suited for running algorithms on edge and that Android
devices (smartphones and tablets) have problems running high-performance appli-
cations. This operating system appears more concerned with memory efficiency and
low battery consumption (often running the trash collector) than performance. We
observed that using native code in Android allowed us to avoid the issue mentioned
above. Additionally, we demonstrated that using native code and compiling it into
WebAssembly (WASM) with Emscripten results in a good performance on most de-
vices. WASM is a portable binary code that can run in modern web browsers. We
confirmed the effectiveness of executing these algorithms on the web browser using
WASM, which also has the benefits of being multiplatform and having a lightweight
virtualisation property.

In our second work [86] (see Section 3.2 and 4.2), we focus on goals G2 and G3.
The main contributions of this work are LIT and SYN. We reviewed the literature on
using the web browser as a platform for volunteer computing (BBVC) and discussed
recent advancements that are making this more and more viable (see Section 3.2). We
presented a BBVC framework for distributed volunteer computing utilising the mes-
sage queue pattern and the MapReduce programming paradigm via web browsers

1Code available in https://github.com/jsdoop/
2Code available in https://github.com/NEO-Research-Group/flcop
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without interfering with the site’s user experience or adding extra software instal-
lation. The topic of data privacy at the edge is not yet covered in this study. Each
task indicates which age of the model and which portion of the data to use. It al-
lows us reproducibility of the training regardless of the number of workers. Despite
the communication channel’s constraints, we showed our approach’s viability and
scalability.

In our third work [84] (see Section 3.3 and 4.3), we focus on goals G2 and G3. The
main contributions of this work are LIT and ASYN. We outlined the challenges and
desirable features of VC4FL (see Section 3.3). We addressed the problem of data re-
maining locally on edge devices. Due to the volatile connections and disconnections
of the volunteers, the dataset available during training changes dealing with unbal-
anced and non-i.i.d. datasets. We proposed an asynchronous algorithm for FEEL,
which adapts the training to unreliable clients joining and departing the computa-
tion when there are few workers—or even drop to none—available. A software plat-
form that satisfies the specified challenges and desirable features was designed, put
into practice, and evaluated. We then showed that the platform using a given num-
ber of constrained, unreliable, and heterogeneous (in HW and SW) devices adapts
well to this changing environment getting a numerical accuracy and CK score sim-
ilar to today’s configurations that use a static platform for learning. We showed
how the platform recovers from unexpected device disconnections from volunteers.
Also, we showed some interesting findings about the parameters P and Z setting
when the number of available workers |E| varies. However, we must investigate
new techniques to deal with different casuistries in data distribution and connec-
tions and disconnections of volunteers. To the best of the authors” knowledge, this
work is the first on distributed neural network training in which web browsers and
python processes collaborate, proving the interoperability [70, 82] of our proposal.

In our fourth work [87] (see Section 3.3 and 4.4), we focus on goals G2 and
G3. The main contributions of this work are LIT and MOD. One of FL’s biggest
challenges is communications overload. That is why we tried to address this prob-
lem in this work, i.e. reducing the communication overhead without reducing or
even increasing the accuracy of the trained model. We summarised the most com-
mon techniques in literature for solving the communication overhead problem in FL
(see Section 3.3). We formulated and modelled Federated Learning Communication
Overhead Problem as a multi-objective Problem (FL-COP). We suggested employing
EAs for multi-objective function optimisation to solve the FL-COP. Our method im-
proves accuracy compared to the maximum communication setting while reducing
communications from 10 to 2000 depending on the neural network architecture. To
the authors” knowledge, this work is the first in which this problem is formulated
and modelled by combining all these approaches within the same study proposing
multi-objective genetic algorithms and probing their suitability for this purpose. It
opens the door to a wide range of future work, such as designing algorithms that
dynamically adapt these hyperparameters during training.

Finally, the results of this thesis prove that the deployment of ubiquitously dis-
tributed intelligence at edge devices is feasible and valuable, also providing a better
understanding of how such ubiquitous distributed intelligence should be, the asso-
ciated problems that exist, and how these problems must be addressed.

The work on this thesis has been arduous and laborious. During the develop-
ment of this thesis, we have used a wide variety of programming languages and
technologies that have taken time to learn. Several algorithms and problems have
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been implemented on real distributed edge devices with limited resources not de-
signed for this purpose. We have done a lot of research into the most appropriate
technologies to make these devices work together and achieve remarkable results.
In the end, this work has borne fruit with two publications in JCR-indexed journals
(Q1) with a high impact factor. Moreover, two more publications at conferences, one
at a national conference and another at an international conference in which the
PhD student also obtained the outstanding student award.

However, many challenges and questions remain for future work. Based on these
results, many research perspectives that we intend to explore in future work came
to light. Some of these research lines can be summarised as follows:

¢ Research in more depth the task assignment management based on the perfor-
mance of heterogeneous devices and the distribution of the data used by each
device.

— Design intelligent selection algorithms for selecting the devices partici-
pating in the following communication round depending on their data
distribution and performance.

- Design optimisation algorithms to set a customised number of local up-
dates to each device based on its performance and probability of failure.

— Design adaptive aggregation algorithms that aggregate models from het-
erogeneous devices depending on the number of local steps performed
and the distribution of the data used by each device.

¢ Further investigate the reduction of ML model size before, during and after
training without reducing the accuracy.

— Further investigate the real-time optimisation of federated learning pa-
rameters during the learning process.

— Optimise federated learning parameters by adding new objectives, such
as energy consumption, comparing a more significant number of multi-
objective algorithms, and proposing new operators.

- Design new adaptive algorithms that optimise communication overhead
in FL during learning, e.g. by using quantisation and sparsification tech-
niques.

¢ Design a multi-level learning platform with several learning layers, i.e. edge,
fog and cloud.

¢ Investigate new distributed optimisation techniques using users’ local and pri-
vate data for complex problems.

* Investigate new FL techniques integrated with reinforcement learning with ap-
plications [94] such as resource allocation, communication networks, control
optimisation, and attack detection, among others.
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Appendix A

Data Sets, Problems, and Solvers
Used in This Thesis

This appendix briefly introduces the problems, datasets and solvers used in this
doctoral thesis.

A.1 MNIST Dataset

The MNIST [68]' database of handwritten digits has a training set of 60,000 examples
and a test set of 10,000 examples. It is a subset of a larger set available from NIST.
The digits have been normalised in size and centred on a fixed-size image.

A.2 OneMax Problem

The OneMax problem [37], also known as BitCounting consist in maximising the
number of ones of a string of bits. It is defined formally as finding a string ¥ =
{x1,x2,...,xn}, where x; € {0,1}, that maximises the following equation:

N
fOneMax(f) = in (Al)

A.3 Minimum Tardy Task Problem (MTTP)

The MTTP [107] is an NP-hard task-scheduling problem wherein each task i from the
set of tasks T = 1,2, ..., n has a time length for execution /;, a deadline before which
has to be scheduled d;, and a penalty w;, where [;,d;, w; € IN. If the task remains
unscheduled, the penalty w; is added to the objective function. Scheduling a subset
of tasks S of T is to find the start time, ensuring that at most one of the tasks is
performed at a time and each one finishes before its deadline. The objective function
of this problem is to minimise the sum of the weights of the unscheduled tasks.

furre(X) =) w; (A2)

ieT-S

A.4 Massively Multimodal Deceptive Problem (MMDP)

In the MMDP [46], bipolar deceptive functions with two global optima and with
several deceptive optima are designed. In MMDP, each subproblem s; contributes

lyann.lecun.com/exdb/mnist
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to the total fitness value according to the number of ones it has. The local optima
number is considerable (1¥), while only 2¢ global optima solutions are available.
The k parameter regulates the degree of multimodality.

k
fMmDP(s) = Z fitnesss (A.3)
i=1

A.5 Error Correcting Code Design (ECC)

In the ECC problem [74] messages are sent over noisy channels and we have to as-
sign codewords to an alphabet that minimises the length of sent messages while
maximising correction of single uncorrelated bit errors. A code is represented using
a three-tuple (1, M, d), where n is the length of a codeword, M defines the amount of
codewords, and d represents the minimum Hamming distance between every pair
of codewords. The gotal is to construct a code of M binary codewords, each of length
n, such that d is maximised.

1

= A4
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A.6 Capacitated Vehicle Routing Problem (CVRP)
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FIGURE A.1: The Vehicle Routing Problem (VRP).

In the CVRP [29] (see Figure A.1) a constant fleet of distribution vehicles of
identical capacity serve the expected client demands for a given product from a
shared depot while minimising total transport costs. We define CVRP using an
undirected graph G = (V,E). V = {vg,vy,...,0,} is a vertex set, where vy is the
depot and vy, ..., v, is a set of destinations. The m identical vehicles of capacity Q
start their trips in the same shared depot vy and must serve all the clients vy, ..., v,,.
E = {(v;,vj)|v;,v; € V,i < j} is an edge set representing non-negative costs (i.e.
distances) between clients. We also have a matrix C = (c;;) where we store the
non-negative cost between every customer v; and v; defined on E. A solution of the
CVRP is a split Ry, Ry, ..., R;, of V that represents each route of each identical ve-
hicle. The fitness function is calculated as the sum of the costs of each route R; =
{vo,v1, ..., V41 } where vj € V,v9 = vy is the depot, and satisfying V R;, 2;‘:1 q; < Q.
We represent the cost function as:
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Cost = Z Cost(R Z Cjj+1 (A.5)
i=1

A.7 CVRP Solver

The algorithm used to solve the CVRP was implemented similarly to that used by
Dorronsoro and Alba [2].

Route Splitters

[95357534 0-2-10-9-6-4}]

Route 1 '

FIGURE A.2: A representation of a solution for 8 cities and 4 vehicles.

In the CVRP, we represent a solution as a vector that contains a permutation
of customers and route splitters (see Figure A.2). Two contiguous route splitters
represent an empty route. The vector’s beginning and end act as a virtual route
splitter.

As a selection method, we use binary tournament selection. It consists of ran-
domly selecting two individuals and choosing the best one between them. This pro-
cess is repeated once again, obtaining the second parent.

Axis List

1:2635
3,4.5.6] 2:1346

mm) 3241 =) Offspring [1,6,5,4,32]
Parent2[2,4,3,1,5,6] 4:352
5:461
6:152

FIGURE A.3: Edge Recombination Crossover (ERX).

Parent1[1,2

As a recombination method, we use the Edge Recombination Crossover (ERX)
(Fig. A.3). It is a crossover technique for permutation chromosomes. It strives to
introduce the fewest paths possible while preserving the links between customers.

As mutation method, three mutation operators are used with an equal probabil-
ity to operate on every gene (see Figure A .4): Insertion [41], Swap [8], and Inversion
[55]. All of them have proven to be useful for this problem, and the reason for using
all three is to cover more search space with different types of changes in the chromo-
some.



62 Appendix A. Data Sets, Problems, and Solvers Used in This Thesis

Insertion Swap Inversion

Parent 12345678 123435678 12345678

Son 12356748 12543678 12654378

FIGURE A.4: Mutation operators are applied with equal probability.

Finally, the local search technique consists in applying 2-Opt [25], and 1-Interchange
[91] to every individual.
Next, we show the function for fitness computation of a candidate solution S:

£(8) = Fcyrp(S) + A - overcap(S) + u - overtm(S) (A.6)

Overcap(S) means the overcapacity of the truck, and overtm(S) means the overtime
of the truck. Both are multiplied by constant values A = y = 1000. Thus, the can-
didate solutions that do not meet the restrictions are penalised. It is a minimisation
problem. Therefore, candidate solutions with lower fitness values will have a better
chance of surviving.
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Appendix B

Extending the Work of Analysing
Edge Devices

This appendix is a extension of the work [85] presented in Section 4.1. We performs
a comparative analysis of three common programming languages for edge devices:
Java, C++, and WASM running GAs on different types of edge computing devices.
The devices, problems and algorithms used are the same as the mentioned work.
We address the objective G1, G2, and G4 and the sub-objectives 1-a, 1-b, 1-c, 5-a and
5-b. The contributions of this work are LIT.

B.1 Choosing Programming Languages for Edge Computing

In addition to comparing the performance of algorithms on edge devices, we also
want to compare the programming languages best suited to implement algorithms
for these devices. Based on the 2019 IoT Developer Survey ! 2, the most widely used
programming languages for IoT constrained devices are Java, C, C++ and JavaScript.
Among these possibilities we chose Java, C++ and WebAssembly (WASM) with
JavaScript. Java because it allows us to natively implement these algorithms in
Android applications, which is the most common operating system on mobile de-
vices. We selected C++ because of its well-known outstanding good performance
and low memory consumption in computationally intensive tasks. Finally, we de-
cided WASM because it allows us to compile the algorithms implemented in C++
code to portable binary code that can be executed in web browsers and JavaScript
code to show the results and the user interface logic. Finally, despite its rising popu-
larity, we discarded Python because when these experiments were carried out (2019),
there were no stable frameworks for developing Android applications in Python, nor
were they widely used in IoT devices.

B.2 Evaluation of Edge Devices and Programming Languages
Running Genetic Algorithms

We evaluate the performance of heterogeneous edge devices by solving problem
instances using different programming languages. We compare these results with
the benchmarks we have previously performed. We do not use multithreading, all
devices use the same seeds and the same number of evaluations. Therefore, we use
runtime as a metric to compare the results. We implement all the algorithms to solve

1https://outreach.eclipse.foundation/download—the—eclipse—iot—developer—survey—
results
’https://fossbytes.com/top-programming-languages-for-iot-development-in-2019/
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the problem instances explained in Section 4.1 in Java, C++ and WASM and compare
their performance using the heterogeneous edge devices: lap, m10, m4, tab, RP3.

TABLE B.1: OneMax runtime and normalised score.

Time (s) Normalised
Device | Language avg + sd max min Score
lap C++ 0.49 & 0.05 0.62 0.40 1.00
lap Java 1.34 + 0.12 1.59 1.15 2.75
lap WASM 1.48 + 0.14 1.82 1.25 3.02
rp3 C++ 6.48 £ 0.50 7.87 5738 13.28
m4 WASM 7.87 £0.71 9.95 6.92 16.06
tab WASM 1291 +1.09 1580 11.38 26.35
m10 WASM 1539 +130 1898  13.59 31.41
rp3 WASM 16.62 =137 2053  14.59 33.92
rp3 Java 21.58 £1.70 26.09 18.84 44.19
m4 C++ 2593 £2.15 31.85 2294 53.09
tab C++ 3696 =3.12 4552  32.58 75.67
m10 C++ 89.46 = 17.58 122.09  53.20 183.16
m4 Java 106.36 £8.31 129.09  94.60 217.76
m10 Java 153.67 £30.95 203.74  91.02 314.61
tab Java 177.40 £ 14.69 217.36 156.61 363.19

TABLE B.2: MTTP runtime and normalised score.

Time (s) Normalised
Device | Language avg + sd max  min Score
lap C++ 0.42 £+ 0.45 2.02 0.04 1.00
lap Java 0.51 + 0.39 1.81 0.14 1.21
lap WASM 0.70 = 0.75 3.21 0.10 1.67
rp3 C++ 298+324 13.63 0.27 7.12
tab WASM 444 +477 1950 042 10.57
m4 WASM 470499 2071 046 11.19
m10 WASM 533+571 2326 049 12.69
m4 C++ 581 +633 2646 0.53 13.88
tab C++ 6.43+£7.00 2934 0.59 15.35
rp3 Java 6.60 £6.99 2827 0.68 15.77
rp3 WASM 8.03+871 3576 0.73 19.12
m10 C++ 18.06 £23.37 104.30 0.82 43.13
tab Java 88.50 +£95.35 389.25 8.07 211.38
m10 Java 89.38 £ 96.47 392.76 8.36 213.49
m4 Java 9431 £101.64 41238 8.67 225.25

In Tables B.1, B.2, B.3, B.4, B.5 we can see the results of the experiments per prob-
lem. The first table shows the result for the OneMax problem, the second for MTTP,
the third for MMDP, the fourth for ECC and the last one for CVRP. Each row has a
different colour to visualise the different programming languages easily. The row
with the darkest colour is C++, the medium colour is Java, and the lightest colour
is WASM. We normalised times getting a score. The device with the shorter time in
each problem gets a score of 1; the others get a score proportional to this incremen-
tally. The device that has obtained the best score in each programming language is
shown in bold. Figure B.1 shows these results using a heatmap per problem. In this
case, the darkest colour is the worst score, and the lightest colour is a score of 1 (the
less score, the better).
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TABLE B.3: MMDP runtime and normalised score.

Time (s) Normalised
Device | Language avg £ sd max min Score
lap Java 1.27 + 0.12 1.74 1.07 1.00
lap C++ 1.51 £+ 0.17 2.08 1.26 1.19
lap WASM 1.78 £ 0.22 2.61 1.52 1.40
tab WASM 827 +£1.08 12.85 6.80 6.51
rp3 C++ 921 +£094 12.69 7.67 7.24
m4 WASM 1023 £124  14.85 8.30 8.06
m10 WASM 13.79 £146 1952  11.55 10.86
rp3 Java 1636+ 174 2330 13.83 12.87
p3 WASM 19.16 £2.02  27.03  16.04 15.09
m4 C++ 27.08 £2.39 35.01 22.99 21.30
tab C++ 30.17 £2.59 38.60  25.65 23.73
m10 C++ 3317 £521 5043 26.54 26.09
tab Java 394.35 +34.97 510.81 333.09 310.25
m4 Java 437.65 £ 37.94 560.09 363.95 344.31
m10 Java 479.27 £ 56.65 639.43 400.50 377.06

TABLE B.4: ECC runtime and normalised score.

Time (s) Normalised
Device | Language avg £ sd max min Score
lap C++ 1.81 & 0.25 2.38 1.17 1.00
lap Java 1.83 &= 0.25 2.43 1.22 1.01
lap WASM 2.91 £+ 0.53 4.36 1.60 1.61
rp3 C++ 1272 £1.71  16.77 8.26 7.03
m4 WASM 1282 £1.71 16..85 8.22 7.08
tab WASM 14.03 £2.07 18.98 8.77 7.75
m10 WASM 1993 £270 2625 12.89 11.01
rp3 Java 25.61 +3.58 34.03 1645 14.17
rp3 WASM 2694 +3.69 3576 17.49 14.88
m4 C++ 33.11+4.13 4285 22.29 18.32
tab C++ 38.92+496 5053 25.92 21.53
m10 C++ 72.35+32.32 139.64 3243 40.03
m10 Java 460.69 +136.12 693.89 248.15 254.90
tab Java 536.56 &= 70.54 70296 353.10 296.88
m4 Java 57227 £73.79 746.86 379.29 316.64

We can see that the laptop gets the best score for all programming languages.
After it, RP3 using C++ gets the best score in all problems except in the MMDP
where tab using WASM gets a better result. On the one hand, Java is clearly the
language with which devices get the worst score. On the other hand, it is interesting
that the two mobiles and the tablet score better when they use WASM than when
they use C++ or Java. However, when we observe the laptop and RP3, they get a
different order of programming languages: C++, Java and WASM.

When we visualise Figure B.1, we can see something interesting. The difference
between the best and worst devices in each programming language is more homoge-
neous in WASM and C++ than in Java. Java results are very heterogeneous because
when mobile devices and tablet use Java, they get a poor score. It is clear that some-
thing is not working well in optimising the Java VM on Android. Android does not
use Oracle Java VM but uses Android Runtime (ART) (replaced by Dalvik Virtual
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TABLE B.5: CVRP runtime and normalised score.

Time (s) Normalised
Device | Language avg £ sd max min Score
lap Java 6.76 + 1.71 11.64 4.59 1.00
lap C++ 11.49 £ 3.07 19.52 7.66 1.70
lap WASM 19.56 + 4.80 32.07 12.97 2.89
rp3 C++ 77.72 £20.60 13191 52.08 11.49
rp3 Java 81.60 +£21.74  139.54 54.29 12.07
tab WASM 92.07 +£24.13  155.62 61.08 13.62
m4 WASM 109.04 £28.71  183.74 73.95 16.13
m4 C++ 111.09 £29.61  189.99 73.75 16.43
m10 WASM 14535 +38.21  245.17 98.01 21.5
m10 C++ 148.57 £40.51  251.20 84.62 21.97
tab C++ 149.05 £39.80  255.41 98.70 22.04
rp3 WASM 24427 +63.81 40958  163.26 36.13
tab Java 2532.09 & 667.46 4296.34 1681.83 374.43
m4 Java 2568.01 + 647.58 4288.11 1689.50 379.74
m10 Java 2695.03 +721.57 4080.26 1615.00 398.53

TABLE B.6: C++ normalised score.

Device
Problem | lap rp3 m4 tab m10

onemax | 1.00 13.28 53.09 75.67 183.16

mttp 1.00 712 1388 1535 43.13
mmdp | 1.00 608 17.88 19.92 2191
ecc 1.00 703 1832 2153  40.03
cvrp 1.00 676 9.67 1297 12.93

TABLE B.7: Java normalised score.

Device
Problem | lap rp3 m4 tab m10

onemax | 1.00 16.06 79.16 132.02 114.36

mttp 1.00 1298 18545 174.03 175.76
mmdp 1.00 12.87 344.31 310.25 | 377.06
ecc 1.00 14.03 31348 29392 252.36
cvIp 1.00 12.07 379.74 374.43 | 398.53

TABLE B.8: WASM normalised score.

Device
Problem | lap rp3 m4 tab ml0

onemax | 1.00 11.23 532 8.72 10.40

mttp 1.00 1147 6.71 634 7.61
mmdp 1.00 ' 10.76 5.75 4.65 7.75
ecc 1.00 926 441 482 6.85

cvrp 1.00 1249 557 471 743
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FIGURE B.2: Device/problem normalised scores per each program-
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Machine after Android KitKat). DVM was created to avoid JVM copyright and bet-
ter use memory and power in more limited devices. There are many studies [9] that
show that DVM was much slower than JVM; we have to say that some years later,
ART did not improve that results.

In Tables B.6, B.7, and B.8, we can see the experiment results per programming
language. These are the same results explained above but represented differently.
The first table shows the result for C++, the second for Java, and the third for WASM.
Each row is a different problem, and each column is a different device. Each cell has
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a different colour to easily visualise the position of a device on a problem (sorted by
score). The cell with the lightest colour is the best score in one problem, and the cell
with the darkest colour is the worst score in the same problem (the less score, the
better). Figure B.2 shows these results using a heatmap per programming language
in a similar way that explained above. We can easily visualise the homogeneity in
the results of the experiments in WASM and C++ explained above in contrast with
what we observed in the results in Java. Regarding the Tables B.6, B.7, and B.8, what
we see more highlighted is that both in C++ and Java, the order of the devices is:
laptop, RP3, and then mobile devices. While in the WASM results, we can see how
mobile devices get better scores than RP3, with RP3 occupying the last position. RP3
and the laptop get 2 to 3 times slower using web browsers (WASM) than using Java
or C++, which is an acceptable result. In contrast, mobile devices perform better
when they run algorithms using WASM, which is interesting as it makes WASM an
appropriate programming language for edge computing.

It is interesting to see that RP3, a device of 30 € cost, can obtain a result not far
off that of a laptop even when it has a much worst CPU. The RP3 takes about ten
times longer than the laptop to solve the same problem. That is not much because
of the difference in cost of the RP3 compared to the laptop. Moreover, when devices
solve algorithms using the WASM programming language, the results of the best
and worst devices are very similar, obtaining an excellent homogeneity. Another
remarkable result is that mobile devices and RP3 can solve complex problems in a
time comparable to that of a laptop. Therefore, despite their constraints, we think
these devices are suitable for solving complex optimisation problems.

In conclusion, Java performed poorly on mobile devices. We showed that we get
a performance closer to RP3 and the laptop on Android devices when using native
code probing the hypothesis we had in Section 4.1. WASM and C++ achieved very
close results on smartphones. In the case of lap and RP3, C++ and Java the results
obtained are similar. The WASM result is only 2 to 3 times slower in these two cases.
Also, WASM got the most homogeneous scores, which is very important when run-
ning algorithms in a parallel way [43, 60]. Therefore, WASM and C++ seem more
suitable for implementing parallel algorithms on edge than Java. Results have been
confirmed using a Wilcoxon test with Bonferroni correction and a significance level
of 0.025.

The contributions of this work are related to LIT:

1. We implemented the algorithms using three programming languages (Java,
C++ and WASM-JavaScript). We showed that we get good performance in
most devices by using native code and compiling it into WebAssembly (WASM)
with Emscripten. Moreover, when using WASM, the results of the best and
worst devices are very similar, obtaining an excellent homogeneity which is
very important when running algorithms in a parallel way. We proved that
running these algorithms on the web browser is efficient and has the advan-
tages of a lightweight virtualisation property and being multiplatform. G1.

2. We demonstrated that devices with low processor capacity are perfectly appro-
priate for solving optimisation problems at the edge. Inexpensive devices such
as RP3 and mobile devices can achieve laptop-like performance when solving
complex optimisation problems. G1.
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Summary in Spanish

C.1 Introducciéon

Hasta el momento presente, la mayor parte de los modelos de computacion dis-
tribuida han procesado la informacién en potentes computadores alojados en la
nube y, hasta cierto punto, los dispositivos de borde [102] como los teléfonos in-
teligentes, las tabletas y los ordenadores portétiles han actuado como terminales
que muestran lo que ocurre en la nube. Sin embargo, el borde estd cambiando,
siendo mds extenso y mads sofisticado. No solo hay dispositivos méviles, sino tam-
bién coches auténomos, drones, robots limpiadores, luces inteligentes, frigorificos
inteligentes, relojes inteligentes y una amplia variedad de sensores que estan instal-
ados por todas partes. Muchos de estos dispositivos recogen una gran cantidad de
datos, los envian a la nube y esperan una respuesta (ver Fig. C.1).

R \9\?89
. &S
/é\@e

FIGURE C.1: Nuevos tipos de dispositivos de borde conectados a la
nube.

Segtin Statista ! existen alrededor de 23.800 millones de dispositivos informaticos
interconectados que estdn activos en el mundo y que producirdn 149 zettabytes de
datos utiles en 2024 2. Cisco® estim6 que alrededor de 85 de los 850 zettabytes que
se crearian en 2021 serian ttiles mientras que solo serfan almacenados unos siete
zettabytes y el resto no serian analizados. En efecto, la produccion de datos esta

1
2

www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide
www.statista.com/statistics/871513/worldwide-data-created

3blogs.cisco.com/sp/five—things—that—are—bigger—than—the—internet—findings—from—
this-years-global-cloud-index
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superando con creces la capacidad de la red de manera que no es posible almacenar
o procesar la mayoria de estos datos en la nube debido al aumento exponencial de
la demanda de datos y la velocidad de generacién de los mismos. Por ejemplo, los
datos generados por un Boeing 787 o un vehiculo auténomo son de 1 y 5 GB por
segundo, respectivamente [40, 112] . No solo se trata de un problema de capacidad
de ancho de banda, sino que también estamos hablando de dispositivos que tienen
que tomar decisiones en tiempo real, y que ademds no siempre pueden comunicarse
con la nube. Esto hace que sea necesario disefiar nuevas aplicaciones especializadas
y optimizadas para la analitica en el borde [97]. Los dispositivos tienen que ser
mds inteligentes, mas seguros y estar mejor conectados [53]. Ademas, la toma de
decisiones en tiempo real obliga a que el procesamiento de los datos se produzca en
el borde que es donde estos se recogen. La computacién de borde (EC) [102] trata el
problema del crecimiento exponencial de la generacién de datos en los dispositivos
de borde proponiendo aumentar la cantidad de procesamiento en estos dispositivos
y reducir el intercambio de datos en bruto con la nube.

Por otro lado, los grandes avances que se han producido en los tltimos afios en la
Inteligencia Artificial (IA) nos permiten entrenar modelos de aprendizaje automético
(ML) utilizando una gran cantidad de datos que hasta ahora se habfan deshechado
por considerarlos inttiles [67]. Ademas, las leyes y normas que protegen la privaci-
dad de los ciudadanos impiden que muchos datos puedan ser compartidos con ter-
ceros (por ejemplo, las imdgenes médicas). Como una solucién prometedora a estos
problemas, se ha propuesto el aprendizaje federado (FL), el cual proviene original-
mente del aprendizaje profundo distribuido (DDL) [75]. Se trata de un paradigma
de aprendizaje que entrena un modelo compartido de forma distribuida, mientras
que los datos permanecen almacenados en los dispositivos de borde manteniendo
su privacidad. FL se esta investigando activamente y se aplica ampliamente [50, 69,
93] (por ejemplo, en medicina [101]). Tanto FL como EC tienen muchas cosas en
comun; por ello, varios autores han propuesto soluciones que satisfacen a ambos,
llamandolo aprendizaje federado en el borde (FEEL) [109, 121].

En esta tesis, proponemos ver FEEL como un tipo de computacién voluntaria
(VO) [6, 30, 57, 64, 86] donde los usuarios donan los recursos de computaciéon de
sus dispositivos de borde a un proyecto en el que se entrena un modelo de DL com-
partido (VC4FL). Para lograr este objetivo debemos estudiar primero cémo utilizar
los algoritmos de optimizacién en los dispositivos de borde. El entrenamiento de
una NN es un problema de optimizaciéon pero ademas, en FL, surgen otros nuevos
relacionados con los retos de la volatilidad de las conexiones de los dispositivos de
borde, la sobrecarga de comunicacion, la tolerancia a fallos, la heterogeneidad de los
dispositivos y la escalabilidad, entre otros muchos. La mayoria de estos problemas
son NP-hard [23, 24], por lo que los algoritmos exactos [23] no son efectivos. Por
otro lado, las metaheuristicas [3, 110] permiten encontrar soluciones aceptables (no
6ptimas) a muchos de estos problemas complejos. El entrenamiento de NN y el uso
de técnicas de optimizacién como la metaheuristica son procesos que generalmente
requieren una alta carga computacional, lo que dificulta su uso en dispositivos de
borde. Sin embargo, los recientes avances en la potencia de célculo, la capacidad de
memoria y la velocidad de las comunicaciones de estos dispositivos [102] nos ha-
cen pensar que la ejecucion de pequefios y medianos algoritmos de optimizacién de
forma distribuida en estos dispositivos es factible y til para la ciencia y la sociedad.
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FIGURE C.2: Inteligencia distribuida ubicua: Datos de usuarios y ciu-
dades se usan para entrenar modelos distribuidos de ML mientras los
problemas asociados se optimizan con algoritmos de optimizacién.
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C.2 Propuesta de trabajo

Esta tesis aborda el reto de la inteligencia distribuida ubicua en los dispositivos de
borde (ver Figura 1.3). En concreto, proponemos ver FEEL como un tipo de VC
(VC4FL) en el que los usuarios donan los recursos informaticos de sus dispositivos
de borde a un proyecto que entrena un modelo de DL compartido. Como detal-
lamos en la seccién 3.3, esto significa tratar con dispositivos con restricciones, poco
fiables y heterogéneos (en HW y SW). Esta plataforma debe adaptarse a la volatil-
idad de las desconexiones y ser tolerante a los fallos. Examinamos cémo debe ser
una plataforma de este tipo, por qué es necesario trasladar la computacién desde la
nube al borde y cémo podemos aprender de los datos locales de los usuarios sin en-
viarlos a la nube. Ademds, proponemos el uso de metaheuristicas para resolver los
problemas que surgen en este tipo de sistemas, como la optimizacién de la cantidad
adecuada de comunicacién necesaria sin perder calidad en el modelo de inteligen-
cia artificial aprendido. Tenemos cuatro objetivos principales para lograr nuestro
proposito:

G1 Analizar el hardware y el software heterogéneos de los dispositivos de borde.

G2 Investigar los paradigmas, protocolos, algoritmos y desafios que puedan sur-
gir.
G3 Disenar e implementar técnicas que nos permitan realizar un aprendizaje au-

tomaético distribuido voluntario ejecutando la computacién en los dispositivos
de borde de los usuarios.

G4 Difundir los resultados y poner a disposicién ptblica el software disefiado e
implementado.

A continuacién detallamos nuestros principales objetivos siguiendo las fases del
método cientifico [34]:

1. Observacion.

(a) Analizar el HW heterogéneo que vamos a utilizar en la plataforma ubicua
(rendimiento, baterfa y memoria de los dispositivos méds comunes que
utilizaremos). Investigar los puntos de referencia mds adecuados para
comparar estos dispositivos. G1.

(b) Analizar el SW heterogéneo que podemos encontrar en estos dispositivos
y los lenguajes de programacién mds adecuados para implementar nues-
tra propuesta. G1.
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(c) Investigar los algoritmos més adecuados para conseguir nuestro propésito.
G2.

(d) Investigar la literatura sobre la computacién voluntaria mediante dispos-
itivos de borde con baja capacidad de computacion y limitaciones de co-
municacion y energia. G2.

(e) Estudiar los problemas que puedan surgir para cumplir nuestro propésito.
G2.

2. Induccién.

(a) Identificar paradigmas y protocolos de red apropiados, eficientes y se-
guros para disefiar y construir la arquitectura de computacién distribuida
de forma ubicua. G2.

3. En el contexto de VC4FL, nuestra hipétesis es:

(a) “EI desplieque de la inteligencia distribuida de forma ubicua y tolerante a los
fallos utilizando dispositivos de borde heterogéneos, desconocidos y poco fiables
es una necesidad y puede competir con los enfoques tradicionales que utilizan un
chister homogéneo, conocido y estdtico de computadores.”

4. Experimentacion.
(a) Disefiar, implementar y evaluar técnicas de tolerancia a fallos para dis-

positivos poco fiables que pueden fallar en cualquier momento. G3.

(b) Disefiar, implementar y evaluar técnicas de adaptacion en entornos dinami-
cos en los que los dispositivos se conectan y desconectan a voluntad. G3.

(c) Disenar, implementar y evaluar la arquitectura de computacién distribuida.
G3.

(d) Desarrollar prototipos utilizables. G3.

(e) Realizar experimentos con casos extremos de dinamicidad de conexiones
y desconexiones utilizando dispositivos no fiables para probar la toleran-
cia a fallos y la adaptacién de la plataforma distribuida. G3.

(f) Analizar los resultados numéricos de la arquitectura de computacion dis-
tribuida voluntaria y validar nuestra propuesta, demostrando nuestra
hipétesis. G3.

(g) Proponer soluciones para hacer frente a los problemas que surjan para
cumplir nuestro propésito y ponerlas a prueba. G3.

5. Conclusiones.

(a) Escribir un nuevo cuerpo de conocimientos sobre la IA ubicua. G4.

(b) Difundir nuestros resultados en conferencias y revistas de impacto, Inter-
net, videos e interacciones con los usuarios. Definir el trabajo futuro y la
fertilizacién cruzada. G4.

C.3 Contribucion

Esta tesis doctoral se presenta como un compendio de cuatro publicaciones alin-
eadas con los objetivos definidos en la Seccién C.2 y que buscan el objetivo comdn
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de mejorar el estado del arte en computacion distribuida. Considerando la relevan-
cia del objetivo general de esta tesis y sus problemas especificos, esperamos que
nuestros resultados contribuyan a la comunidad investigadora y a la sociedad. Esta
seccioén estd organizada en cuatro subapartados, cada uno se refiere al trabajo re-
alizado en uno de los trabajos. Cabe destacar que dos de estos trabajos han sido
publicados en revistas indexadas por JCR (Q1). Ademads, otro fue publicado en las
actas de un congreso nacional, y otro en las actas de un congreso internacional en el
que el doctorando recibi6 el premio “Outstanding Student”.

Organizamos la aportacion de esta tesis en cuatro contribuciones principales:

LIT. Hemos contribuido a ampliar la literatura sobre EC y FL (FEEL) revisando
los puntos de referencia méds adecuados para comparar el rendimiento en dis-
positivos de borde (G1). Analizando el hardware y el software de los disposi-
tivos de borde mas comunes y su rendimiento al resolver problemas complejos
(G1). Revisando la literatura que utiliza el navegador web como plataforma
de VC (G2). Definiendo los retos y las caracteristicas deseables de VC4FL
combinando los criterios tradicionalmente utilizados para VC y FL (G2), y
mostrando que el navegador web es la plataforma adecuada para este propésito
debido al sandboxing, su ubicuidad y a que no requiere instalacién de software
(G2). Por altimo, resumimos las técnicas méds comunes utilizadas para reducir
el problema de la sobrecarga de comunicaciéon en FL (G2 y G4).

SYN. Hemos propuesto un enfoque sincrono para realizar computacién voluntaria
distribuida utilizando el paradigma de programacién MapReduce y el patréon
de cola de mensajes (G2) a través de los navegadores web sin interrumpir la
experiencia del usuario del sitio ni instalar software adicional. Disefiamos, im-
plementamos (G3), y evaluamos nuestra propuesta mostrando que tiene una
buena escalabilidad a pesar de las restricciones en el canal de comunicaciéon
(G4).

ASYN. Hemos propuesto un algoritmo asincrono para FEEL que se adapta a la en-
trada y salida de clientes en el computo (G2) cuando el nimero de trabajadores
es bajo e incluso puede llegar a cero durante el entrenamiento. Hemos dis-
efiado, implementado (G3), y evaluado empiricamente nuestra propuesta en
escenarios altamente dindmicos y cambiantes obteniendo una precisién numérica
y una puntuacién CK similares a las configuraciones actuales que utilizan una
plataforma distribuida estética para el aprendizaje (G4).

MOD. Formulamos y modelamos el problema de la sobrecarga de comunicacién en
FL (G2), uno de los retos més importantes para realizar FL de forma eficiente,
como un problema multiobjetivo. Propusimos resolverlo utilizando algorit-
mos genéticos para la optimizaciéon de funciones multiobjetivo (G3). Nuestra
propuesta consigue una mayor precision a la vez que reduce las comunica-
ciones de 10 a 2000 dependiendo de la topologia de la red neuronal en com-
paracién con la configuracién de comunicacién maxima (G4).

A continuacién explicamos con més detalle nuestras aportaciones. Todo nuestro
trabajo persigue el objetivo G4 de difundir los resultados. En nuestro primer tra-
bajo [85] (ver Seccién C.3.1), abordamos el objetivo G1 y G2 y los subobjetivos 1-a,
1-b, 1-c, 5-a y 5-b. Las aportaciones de este trabajo son LIT:

1. Seleccionamos y estudiamos los puntos de referencia més utilizados para analizar
el rendimiento de los dispositivos de borde. G1.
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(a) Demostramos que los puntos de referencia cldsicos no son fiables para
evaluar el rendimiento de los dispositivos de borde, pero son ttiles para
hacerse una idea aproximada. Dependen de la arquitectura del hardware
y del sistema operativo. Ademds, segiin el problema especifico que se
quiera resolver los resultados pueden variar. Por ejemplo, Antutu es tan
comun que los fabricantes de hardware han empezado a hacer trampas
en el punto de referencia, lo que lo hace poco fiable. G1.

2. Analizamos el rendimiento de diferentes dispositivos de borde mientras se re-
suelve un conjunto representativo de problemas de optimizacién con difer-
entes caracteristicas mediante la ejecucién de algoritmos genéticos. G1.

(a) Demostramos que la RP3 es una plataforma perfectamente adecuada para
ejecutar algoritmos en el borde. La RP3 es muy barata, utiliza menos
memoria que un portétil y resuelve los problemas en un tiempo razon-
able. La RP3 se utiliza habitualmente en los sensores de las ciudades in-
teligentes, lo que lo hace idéneo para realizar célculos en el borde. G1.

(b) Demostramos que los dispositivos de borde que ejecutan Android tienen
problemas para ejecutar aplicaciones de alto rendimiento. Este sistema
operativo parece estar mds interesado en mantener un bajo consumo de
bateria y utilizar menos memoria (usando el recolector de basura més a
menudo) que en el rendimiento. G1.

(c) Demostramos que los puntos de referencia como GeekBench 4 obtienen
buenos resultados en dispositivos Android. Por lo tanto, creemos que
es necesario ejecutar c6édigo nativo en dispositivos Android para poder
resolver las restricciones de este sistema operativo. En el Apéndice B,
mostramos un estudio posterior no publicado. Analizamos el rendimiento
de otros lenguajes de programaciéon como C++ y WASM (mismos dispos-
itivos, problemas y algoritmos). Demostramos que nuestra hipétesis era
correcta, obteniendo un rendimiento maés cercano a la RP3 y al portatil en
dispositivos Android. G1y G2.

i. Implementamos los algoritmos utilizando tres lenguajes de progra-
macién (Java, C++ y WASM-JavaScript). Demostramos que obten-
emos un buen rendimiento en la mayoria de los dispositivos uti-
lizando cédigo nativo y compilandolo en WebAssembly (WASM) con
Emscripten. Ademas, al utilizar WASM, la diferencia entre los mejores
y peores resultados en los dispositivos de borde es muy pequefia,
obteniendo una excelente homogeneidad lo que es muy importante
al ejecutar algoritmos de manera distribuida. Probamos que la ejecu-
cién de estos algoritmos en el navegador web es eficiente y tiene las
ventajas de la virtualizacion ligera y de ser multiplataforma. G1.

ii. Demostramos que los dispositivos con poca capacidad de procesamiento
son perfectamente adecuados para resolver problemas de optimizacién
en el borde. Los dispositivos econémicos, como la RP3 y los dis-
positivos méviles, pueden alcanzar un rendimiento similar al de los
ordenadores portatiles cuando resuelven problemas de optimizacién
complejos. G1.

En nuestro segundo trabajo [86] (ver Seccién 3.2 y 4.2), abordamos los objetivos
G2 y G3, y los subobjetivos 1-a, 1-d, 1-e, 2-a, 4-a, 4-b, 4-c, 4-d, 4-e, 4-f, 4-g, 5-a 'y 5-b.
Las aportaciones de este trabajo son LIT y SYN:
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3. Resumimos la literatura que utiliza el navegador web como plataforma de
computacién voluntaria (BBVC) y describimos las recientes mejoras que lo ha-
cen cada vez mds posible (ver Seccién 3.2). G2.

4. Proponemos un framework BBVC para la computacién voluntaria distribuida
utilizando el paradigma de programacién MapReduce y el patrén de cola de
mensajes a través de los navegadores web sin interrumpir la experiencia del
usuario del sitio ni instalar software adicional. Demostramos que nuestra
propuesta tiene una buena escalabilidad a pesar de las restricciones del canal
de comunicacién. G3.

5. Realizamos una prueba de concepto en la que demostramos que el entrenamiento
distribuido de redes neuronales basado en el navegador web es factible y efi-
ciente. El uso de modelos de NN pequefios y medianos es perfectamente ade-
cuado para resolver los problemas de los dispositivos de borde. Los resultados
demuestran que es factible y escalable, ademads de ser un area apasionante para
explorar. G3.

En nuestro tercer trabajo [84] (ver Seccién 3.3 y 4.3), abordamos los objetivos G2,
G3, y G4 y los subobjetivos 1-a, 1-b, 1-d, 1-e, 2-a, 4-a, 4-b, 4-c, 4-d, 4-¢, 4-f, 4-g, 5-a 'y
5-b. Las aportaciones de este trabajo son LIT y ASYN:

6. Definimos los retos y las caracteristicas deseables de VC4FL (ver Seccién 3.3).
G2.

7. Proponemos un algoritmo para FEEL que se adapta a los clientes asincronos
que se unen y abandonan el computo de manera dindmica y nos centramos en
el caso en el que el nimero de trabajadores es bajo e incluso puede llegar a cero
durante el entrenamiento. G3.

8. Proponemos, implementamos y evaluamos una plataforma de software para
realizar FL que cumple con los desafios y las caracteristicas deseables definidas.
Evaluamos nuestra propuesta mediante una amplia experimentacién en una
configuracién estdtica y en escenarios altamente dindmicos y cambiantes. A
continuacién, demostramos que la plataforma se adapta bien a este entorno
cambiante utilizando un ntiimero determinado de dispositivos poco fiables y
heterogéneos (hardware y software) obteniendo una precisiéon numérica simi-
lar a las configuraciones actuales que utilizan una plataforma estética para el
aprendizaje. A continuacién, demostramos la tolerancia a fallos de la plataforma
la cual se recupera de desconexiones inesperadas de los dispositivos voluntar-
ios. G3.

9. Hemos lanzado una biblioteca modular de c6digo abierto que cubre la mayoria
de las caracteristicas deseables de FEEL y VC. G4.

En nuestro cuarto trabajo [87] (ver secciones 3.3 y 4.4), abordamos los objetivos
G2 y G3, y los subobjetivos 1-¢, 4-f, 5-a y 5-b. Las aportaciones de este trabajo son
LIT y MOD:

10. Resumimos las técnicas méds comunes en la literatura para resolver el problema
de la sobrecarga de comunicacién en FL (ver Seccién 3.3). G2.

11. Formulamos y modelamos el problema de la sobrecarga de comunicacién en
el aprendizaje federado como un problema multiobjetivo (FL-COP). G3.
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12. Proponemos resolver el FL-COP utilizando algoritmos genéticos para la opti-
mizacién de funciones multiobjetivo. Nuestra propuesta consigue una mayor
precision a la vez que reduce las comunicaciones de 10 a 2000 veces dependi-
endo de la topologia de la red neuronal en comparacién con la configuracién
de comunicacién méxima. G3.

13. Nuestra propuesta proporciona una poblacién de soluciones que facilita la
toma de decisiones a la hora de configurar los pardmetros de FL. G3.

Los resultados de esta tesis demuestran que el despliegue de inteligencia dis-
tribuida de manera ubicua en los dispositivos de borde es factible y ttil, propor-
cionando también una mejor comprension de como debe ser dicha inteligencia dis-
tribuida, los problemas asociados y como deben abordarse estos problemas.

En resumen, nuestras contribuciones estdn en consonancia con los objetivos ini-
cialmente marcados. En las siguientes secciones se resumen los trabajos realizados
por el doctorando para apoyar esta tesis los cuales han sido publicados en [85], [86],
[84] y [87]. Estas publicaciones son el resultado del estudio realizado para alcanzar
los objetivos de la misma. Son cuatro contribuciones, dos de ellas publicadas en
revistas JCR, una en un congreso internacional y otra en un congreso nacional. To-
dos nuestros trabajos persiguen el objetivo G4 de difundir los resultados. Nuestro
primer articulo se centra en G1 y G2, que analiza la heterogeneidad del hardware
y el software de los dispositivos de borde. El segundo trabajo se centra en los obje-
tivos G2 y G3, examinando los mejores paradigmas y protocolos para la plataforma
distribuida voluntaria. Se sugiere una versién sincrénica pero desacoplada, que per-
mita la conexién y desconexién de los voluntarios. Los objetivos G2 y G3 se per-
siguen también en el tercer articulo, pero esta vez también se aborda la cuestion de
la privacidad de los datos en los dispositivos de borde y se sugiere un enfoque asin-
crono. El cuarto articulo persigue los objetivos G2 y G3, abordando el problema de
la sobrecarga de comunicacién de FL. Se presentan en orden cronolégico:

1. En [85] analizamos la idoneidad de los dispositivos de borde como plataforma
para ejecutar algoritmos genéticos (GAs). G1, G2, y G4. LIT.

2. En [86] resumimos la literatura que utiliza el navegador web como plataforma
de computacién voluntaria (BBVC) y describimos las recientes mejoras que
lo hacen cada vez mas posible. Proponemos un framework BBVC para la
computacién voluntaria distribuida utilizando el paradigma de programacion
MapReduce y el patrén de cola de mensajes a través de los navegadores web.
G2, G3,and G4. LIT y SYN.

3. En [84] definimos los retos y las caracteristicas deseables para VC4FL. Pro-
ponemos un algoritmo e implementamos y evaluamos una plataforma de soft-
ware. Evaluamos nuestra propuesta mediante una amplia experimentacion.
G2, G3,and G4. LIT y ASYN.

4. En [87], resumimos las técnicas mds comunes en la literatura para resolver
el problema de la sobrecarga de comunicacién en FL. Formulamos y mode-
lamos el problema de sobrecarga de la comunicacién en el aprendizaje feder-
ado como un problema multiobjetivo (FL-COP) y proponemos resolverlo uti-
lizando NSGA-II. G2, G3, y G4. LIT y MOD.

Para obtener una lista completa de publicaciones y una descripcién de la revista
o conferencia en cuestién, ver el Apéndice D.
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C.3.1 Analizando la idoneidad de los dispositivos de borde

En este trabajo [85], abordamos los objetivos G1, G2, y G4 y los subobjetivos 1-a, 1-b,
1-c, 5-a y 5-b. Las contribuciones de este trabajo estan relacionadas con LIT (ver Sec-
cion 1.2.2). Para alcanzar los objetivos de la tesis, debemos analizar los dispositivos
de borde més comunes. Para ello, realizamos un conjunto de experimentos en los
que medimos el rendimiento, el uso de la memoria y el consumo de bateria de estos
dispositivos, resolviendo un conjunto de problemas de optimizacién bien conocidos
mediante GAs. En concreto, queremos analizar si estos dispositivos son adecuados
para resolver problemas complejos y estudiar sus diferencias en el uso de recursos.
Para ello seleccionamos una buena representacion de dispositivos de borde con una
amplia variedad de prestaciones (ver Tabla 4.1 y 4.2). A continuacién analizamos
los resultados de un conjunto de puntos de referencia bien conocidos (ver Tabla 4.3)
para obtener un indicador de su rendimiento.

Elegimos una amplia variedad de problemas para la evaluacién (ver Tabla 4.4 y
Apéndice A). Utilizamos problemas de representacion binaria y entera de diferentes
dimensiones, un problema NP-Hard, diversas restricciones y variadas funciones de
fitness. Estos problemas tienen caracteristicas interesantes en la optimizacién, como
la epistasis, la multimodalidad y el engafio. Los problemas de representacién bina-
ria elegidos son el problema OneMax [37], el MTTP [107], el MMDP [46], y el ECC
[74]. Ademads, como problema de representacién entera, seleccionamos el problema
bien conocido CVRP [29] que puede escalar y caracterizar los problemas de movili-
dad inteligente en las ciudades y es NP-hard. Seleccionamos una instancia de cada
problema (Tabla 4.4). Elegimos cuatro instancias de representacién binaria de la bib-
lioteca JCell, y una utilizando representacién entera llamada CMT1, una instancia
CVRP propuesta por Christofides [22] para este problema. Estas instancias no son
muy grandes porque queremos resolverlas utilizando dispositivos restringidos con
baja capacidad de procesamiento. En este andlisis no tenemos el objetivo de resolver
problemas enormes si no que queremos analizar el rendimiento al resolver estos
problemas en dispositivos de borde heterogéneos con diferentes lenguajes de pro-
gramacion. Por lo tanto, hemos elegido un conjunto variado de instancias que todos
los dispositivos evaluados pueden resolver en un tiempo razonable. Utilizamos el
GA canonico de estado estacionario para resolver los problemas anteriores.

Los resultados de este trabajo muestran que los puntos de referencia cldsicos
no son fiables para evaluar el rendimiento de los dispositivos de borde, pero son
tutiles para hacerse una idea aproximada. Por otro lado, la RP3 se muestra como
una plataforma perfectamente adecuada para ejecutar algoritmos en el borde. Tam-
bién vemos que los dispositivos de borde que ejecutan Android (méviles y table-
tas) tienen problemas para ejecutar aplicaciones de alto rendimiento. Este sistema
operativo parece estar mds interesado en mantener un bajo consumo de baterfa y
utilizar menos memoria (usando el recolector de basura mas a menudo) que en el
rendimiento. Por dltimo, en un estudio posterior no publicado que extiende este
trabajo (ver Apéndice B), analizamos el rendimiento utilizando otros lenguajes de
programacion como C++y WASM-JavaScript (navegador web) observando que con
ellos podemos obtener un rendimiento mds cercano a RP3 y al portétil en disposi-
tivos Android. Por dltimo, demostramos que obtenemos un buen rendimiento en la
mayoria de los dispositivos utilizando c6digo nativo y compildndolo en WebAssem-
bly (WASM) con Emscripten. Demostramos que la ejecucién de estos algoritmos en
el navegador web es eficiente y tiene las ventajas de una virtualizacién ligera y de
ser multiplataforma.



78 Appendix C. Summary in Spanish

C.3.2 Propuesta de entrenamiento de NN en el navegador web utilizando
VCy el paradigma MapReduce

Nuestro trabajo anterior demostré que los dispositivos de borde con baja capacidad
de procesamiento eran perfectamente adecuados para resolver problemas de opti-
mizacién y que el navegador web podia ser una plataforma adecuada para lograr
nuestro objetivo. En este trabajo, proponemos un enfoque para utilizar el naveg-
ador web para entrenar redes neuronales de forma distribuida utilizando voluntar-
ios. Ademads, realizamos un disefio desacoplado para que los voluntarios puedan
conectarse y desconectarse en cualquier momento sin detener el entrenamiento.

En este trabajo [86], abordamos los objetivos G2, G3, y G4, y los subobjetivos
1-a, 1-d, 1-e, 2-a, 4-a, 4-b, 4-c, 4-d, 4-e, 5-a y 5-b. Las contribuciones de este trabajo
estdn relacionadas con LIT y SYN (ver Seccion 1.2.2). En primer lugar, resumimos
la literatura que utiliza el navegador web como plataforma de computacién volun-
taria (BBVC) y describimos las recientes mejoras que lo hacen cada vez mds posible
(véase también la Seccién 3.2). A continuacién, proponemos un framework BBVC,
JSDoop*, para la HPC colaborativa distribuida utilizando el paradigma de progra-
macién MapReduce [65] y el patrén de cola de mensajes a través de los navegadores
web. Como mostramos en las secciones 3.2 y 3.3 (ver Tabla 3.1), los mayores obstacu-
los para las plataformas de VC son la accesibilidad, la usabilidad y la seguridad. La
instalacién de aplicaciones suele ser una barrera importante para los usuarios por la
dificultad, la pereza o el miedo a instalar software desconocido en sus dispositivos.
Proponemos utilizar navegadores web como software de ejecucién principalmente
porque resuelve la mayoria de estos problemas. Ademds, como se explica en la sec-
cién 3.2, las mejoras que se han introducido en los navegadores web en los tltimos
afos los acercan cada vez més al rendimiento de los programas nativos que se eje-
cutan en una consola de comandos. Finalmente, utilizamos este framework para
entrenar una RNN basada en LSTM [54] de forma distribuida y colaborativa.

El disefio de nuestra propuesta se ha guiado por las caracteristicas deseables
(ver Tabla 3.1) de dichas plataformas. Sin embargo, nuestra implementacién es una
prueba de concepto y aspectos como la seguridad deberian ser mds importantes
en una version final. En nuestro disefio, podemos distinguir los siguientes actores:
iniciador, servidor web, servidor de cola, servidor de datos, y voluntarios (ver
Fig. C.3).
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FIGURE C.3: Propuesta para el entrenamiento de NN utilizando el
paradigma MapReduce.

4Ceédigo disponible en https://github.com/jsdoop/
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Los resultados muestran que el entrenamiento de redes neuronales distribuidas
utilizando navegadores web es factible y eficiente. Nuestra propuesta permite que
los voluntarios colaboren simplemente accediendo a una URL, y demostré ser una
implementacién adecuada de BBVC logrando una buena escalabilidad y permitiendo
afadir/eliminar voluntarios dindmicamente durante la ejecucién sin perder infor-
macion.

Nuestra propuesta es independiente del ntimero de dispositivos conectados, es
tolerante a fallos, permite que el ntimero de voluntarios cambie de manera dindmica
durante el aprendizaje, es multiplataforma y permite una sencilla conexién al sis-
tema mediante un simple click en un enlace web.

C.3.3 Propuesta de FL asincrono utilizando dispositivos de borde volun-
tarios no fiables

En nuestro trabajo anterior, propusimos utilizar el navegador web para entrenar re-
des neuronales de forma voluntaria distribuida. Sin embargo, utilizamos un enfoque
sincrono que tiene algunas desventajas, como vimos en la Seccién 2.5.1, como tener
que esperar a los dispositivos més lentos y dispositivos que pueden congelarse y
paralizar el entrenamiento. En este trabajo, proponemos un método asincrono para
resolver estos problemas. En particular, nos centramos en la situacién en la que el
ntmero de voluntarios es bajo y puede incluso llegar a cero durante parte del entre-
namiento.
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FIGURE C.4: Arquitectura del sistema de alto nivel.

En este trabajo [84] (ver secciones 3.3 y 4.3), abordamos los objetivos G2, G3, y
G4, y los subobjetivos 1-a, 1-b, 1-d, 1-e, 2-a, 4-a, 4-b, 4-c, 4-d, 4-e, 4-f, 5-a y 5-b. Las con-
tribuciones de este trabajo estdn relacionadas con LIT y ASYN (ver Seccién 1.2.2).
En primer lugar definimos los retos y las caracteristicas deseables de VC4FL (ver
Seccién 3.3). A continuacion, proponemos un algoritmo para FEEL que se adapta
a los clientes heterogéneos asincronos que se conectan y desconectan de manera
dindmica durante el aprendizaje. El objetivo es continuar el proceso de aprendizaje y
evitar la espera de los dispositivos més lentos. Proponemos, implementamos y eval-
uamos una nueva plataforma de software (JSDoop version 2.0°, redisefiada y reim-
plementada desde cero) para DDL en dispositivos de borde de manera voluntaria

5Cc’)digo disponible en https://github.com/jsdoop/
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(ver Fig. C.4). A continuacién, evaluamos sus resultados en problemas relevantes
para FEEL (ver Seccién 3.3).

Por dltimo, realizamos un exhaustivo andlisis empirico para evaluar la prop-
uesta. Estudiamos las principales caracteristicas de la plataforma mencionadas an-
teriormente. Analizamos cémo la asincronia, las conexiones dindmicas y las de-
sconexiones de los dispositivos afectan al aprendizaje y cémo podemos adaptar el
aprendizaje para mantener una alta precision. Demostramos que la arquitectura del
sistema descentralizado y adaptativo propuesto para el aprendizaje asincrono per-
mite a los usuarios voluntarios ceder los recursos de sus dispositivos y los datos
locales para entrenar un modelo ML compartido. Los dispositivos pueden unirse y
abandonar el sistema en cualquier momento sin detener el proceso de aprendizaje.
Esta arquitectura no necesita saber dénde o cudndo se conectardn los dispositivos
participantes. Este sistema es tolerante a los fallos, por lo que las desconexiones in-
esperadas de los trabajadores no interrumpen el aprendizaje. La implementacion
de codigo abierto permite la colaboracién entre dispositivos con hardware y soft-
ware heterogéneos. Los dispositivos de los usuarios pueden unirse al aprendizaje
de diferentes maneras, como desde un navegador web o ejecutando un proceso
de Python en el dispositivo cliente, permitiendo asi que unirse a la plataforma casi
cualquier dispositivo.

Los resultados demuestran que nuestra propuesta se adapta bien a este entorno
cambiante utilizando un nimero determinado de dispositivos poco fiables y het-
erogéneos (hardware y software) obteniendo una precisién numérica similar a las
configuraciones actuales que utilizan una plataforma estdtica para el aprendizaje.
También, demostramos la tolerancia a fallos de la plataforma la cual se recupera de
desconexiones inesperadas de los dispositivos voluntarios (ver Seccién C.3 para una
explicaciéon mds detallada de las contribuciones de este trabajo).

C.3.4 Propuesta para reducir la sobrecarga de comunicacion en FL

En las dos secciones anteriores nos hemos centrado en el proceso de aprendizaje dis-
tribuido. Sin embargo, no hemos prestado atencién a algunos de los retos asociados
a FL. En particular, uno de los mayores problemas de FL es la gran cantidad de infor-
macioén (pesos o gradientes) que hay que comunicar en cada iteracién. Por lo tanto,
en este trabajo nos centramos en reducir la cantidad de datos enviados durante el
proceso de aprendizaje, manteniendo e incluso mejorando el nivel de precisién del
modelo.
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FIGURE C.5: Las técnicas de reducciéon de la comunicacién en FL-
COP por niveles.

En este trabajo [87], abordamos los objetivos G2, G3, y G4, y los subobjetivos
1-e, 2-a, 4-f, 5-a y 5-b. Las contribuciones de este trabajo estdn relacionadas con LIT
y MOD (ver Seccién 1.2.2). Conseguir resultados de alta calidad en FL requiere
una gran cantidad de comunicacién en la que se intercambia informacién entre los
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dispositivos de borde y el servidor [75]. Encontrar la cantidad minima de comu-
nicacién que logre la misma o mayor precision es un problema multiobjetivo en el
que queremos reducir las comunicaciones y aumentar la precisiéon del modelo. Para
esta clase de problemas, los algoritmos estocésticos como la metaheuristica y, en par-
ticular, los algoritmos genéticos multiobjetivo como el NSGA-II son una alternativa
prometedora que proporciona un buen equilibrio entre la blisqueda de una solucién
6ptima y el tiempo requerido [32]. En esta investigacién, (I) modelamos y formu-
lamos el problema de sobrecarga de comunicacion en el aprendizaje federado como
un problema multiobjetivo (FL-COP), (II) y aplicamos el NSGA-II para resolverlo.
Asimismo, investigamos y detallamos los principales pardmetros desencadenantes
de la sobrecarga de comunicacion que la literatura suele abordar por separado den-
tro de un mismo trabajo (ver Fig. C.5).

Nuestra propuesta consigue una mayor precisién a la vez que reduce las comu-
nicaciones de 10 a 2000 veces dependiendo de la topologia de la red neuronal en
comparacion con la configuracion de comunicacién maxima. Ademds, nos aporta
una poblacién de soluciones que facilita la toma de decisiones a la hora de configu-
rar los hiperparametros.

C.4 Conclusiones y trabajo futuro

Esta tesis ha abordado el reto de la inteligencia ubicua distribuida en dispositivos
de borde. En concreto, propusimos ver FEEL como un tipo de VC (VC4FL) en el
que los usuarios donan los recursos informaticos de sus dispositivos de borde a un
proyecto que entrena un modelo de DL compartido. Hemos tratado con disposi-
tivos restringidos, poco fiables y heterogéneos (en HW y SW) y hemos adaptado el
aprendizaje a la volatilidad de las desconexiones consiguiendo tolerancia a fallos.
También hemos formulado y modelado el problema de la sobrecarga de comuni-
caciéon en FL, que es un reto importante para la inteligencia distribuida de forma
ubicua y el aprendizaje eficiente de los datos de los usuarios, como un problema
multiobjetivo. Y lo abordamos utilizando algoritmos genéticos para la optimizacion
de funciones multiobjetivo, logrando una mayor precisién del modelo y reduciendo
las comunicaciones en comparacion con la configuracién de comunicacién méaxima.

Hemos dividido las aportaciones de esta tesis en cuatro contribuciones princi-
pales (LIT, SYN, ASYN y MOD) para cumplir con los cuatro objetivos principales
que hemos especificado (G1-G4) (ver Seccién 1.2.1 y 1.2.2 para més detalles sobre los
objetivos y las contribuciones). En todos nuestros trabajos perseguimos el objetivo
G4 de la difusién de los resultados. Siguiendo este objetivo, el software implemen-
tado en los trabajos 2, 3° y 47 esté4 disponible ptiblicamente en Github.

En nuestro primer trabajo [85] (ver Seccién 4.1), perseguimos nuestro primer ob-
jetivo G1 de analizar el hardware y el software heterogéneos de los dispositivos de
borde. La principal aportacion de este trabajo es LIT. Explicamos que los puntos
de referencia tradicionales no son fiables para evaluar el rendimiento de los dispos-
itivos de borde, pero ayudan a obtener una comprensién general. Demostramos
que la plataforma RP3 es adecuada para ejecutar algoritmos en el borde y que los
dispositivos Android de borde (smartphones y tablets) tienen problemas para eje-
cutar aplicaciones de alto rendimiento. Este sistema operativo parece més preocu-
pado por la eficiencia de la memoria y el bajo consumo de baterfa (a menudo eje-
cutando el recolector de basura) que por el rendimiento. Observamos que el uso

6Codigo disponible en https://github.com/jsdoop/
7Cédigo disponible en https://github.com/NEO-Research-Group/flcop
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de cédigo nativo en Android nos permitia evitar el problema mencionado anteri-
ormente. Ademads, demostramos que utilizar c6digo nativo y compilarlo en We-
bAssembly (WASM) con Emscripten da como resultado un buen rendimiento en la
mayoria de los dispositivos. WASM es un cédigo binario portatil que puede ejecu-
tarse en los navegadores web modernos. Confirmamos la eficacia de la ejecuciéon
de estos algoritmos en el navegador web utilizando WASM, que ademds tiene las
ventajas de ser multiplataforma y tener una propiedad de virtualizacion ligera.

En nuestro segundo trabajo [86] (ver Seccién 3.2 y 4.2), nos centramos en los ob-
jetivos G2 y G3. La principal contribucién de este trabajo es LIT y SYN. Revisamos
la literatura sobre el uso del navegador web como plataforma para la computacién
voluntaria (BBVC) y discutimos los recientes avances que estdn haciendo que esto
sea cada vez mds viable (ver Seccién 3.2). Presentamos un framework BBVC para
la computacién voluntaria distribuida que utiliza el patrén de cola de mensajes y
el paradigma de programacién MapReduce a través de los navegadores web sin in-
terferir con la experiencia del usuario del sitio ni afiadir una instalacién de software
adicional. En este estudio todavia no se aborda la privacidad de los datos en el borde.
Cada tarea indica la edad del modelo y qué parte de los datos debe utilizar lo que
permite la reproducibilidad del entrenamiento independientemente del ntiimero de
trabajadores. A pesar de las limitaciones del canal de comunicacién, demostramos
la viabilidad y escalabilidad de nuestro enfoque.

En nuestro tercer trabajo [84] (ver secciones 3.3 y 4.3), nos centramos en los obje-
tivos G2 y G3. Las principales aportaciones de este trabajo son LIT y ASYN. Defin-
imos los retos y las caracteristicas deseables de VC4FL (véase la seccién 3.3). Abor-
damos el problema de los datos que permanecen localmente en los dispositivos de
borde. Debido a la volatilidad de las conexiones y desconexiones de los voluntarios,
el conjunto de datos disponible durante el entrenamiento cambia, tratdndose de con-
juntos de datos desbalanceados y non-i.i.d. Propusimos un algoritmo asincrono para
FEEL, que adapta el entrenamiento a los clientes poco fiables que se incorporan y
abandonan el computo cuando hay pocos trabajadores -o incluso pueden reducirse
a cero- disponibles. Se disefi6, puso en préctica y evalué una plataforma de software
que satisface los retos especificados y las caracteristicas deseables. A continuacion,
demostramos que la plataforma que utiliza un niimero determinado de dispositivos
poco fiables y heterogéneos (HW y SW) se adapta bien a este entorno cambiante
obteniendo una precisiéon numérica y una puntuacién CK similares a las configura-
ciones actuales que utilizan una plataforma estética para el aprendizaje. Mostramos
cémo la plataforma se recupera de las desconexiones inesperadas de los disposi-
tivos de los voluntarios. Ademds, mostramos algunos hallazgos interesantes sobre
la configuracion de los pardmetros P y Z cuando varia el nimero de trabajadores
disponibles |E|. Sin embargo, debemos investigar nuevas técnicas para hacer frente
a diferentes casuisticas en la distribucién de los datos y las conexiones y desconex-
iones de los voluntarios. Hasta donde los autores saben, este trabajo es el primero
sobre entrenamiento distribuido de NN en el que colaboran navegadores web y pro-
cesos de python, demostrando la interoperabilidad [70, 82] de nuestra propuesta.

En nuestro cuarto trabajo [87] (ver secciones 3.3 y 4.4), nos centramos en los obje-
tivos G2 y G3. Las principales contribuciones son LIT y MOD. Uno de los mayores
retos de FL es la sobrecarga de comunicaciones. Por ello, en este trabajo intenta-
mos abordar este problema, es decir, reducir la sobrecarga de comunicaciones sin
reducir o incluso aumentar la precisién del modelo entrenado. Resumimos las téc-
nicas mas comunes en la literatura para resolver el problema de la sobrecarga de co-
municaciones en FL (ver Seccién 3.3). Formulamos y modelamos el problema de la
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sobrecarga de comunicacién en el aprendizaje federado como un problema multiob-
jetivo (FL-COP). Sugerimos emplear EAs para la optimizacién de funciones multiob-
jetivo para resolver el FL-COP. Nuestro método mejora la precisién en comparacion
con la configuracién de comunicacién méxima, al tiempo que reduce las comunica-
ciones de 10 a 2000 dependiendo de la arquitectura de la red neuronal. Hasta donde
saben los autores, este es el primer trabajo en el que se formula y modela este prob-
lema combinando estas técnicas dentro del mismo estudio, proponiendo algoritmos
genéticos multiobjetivo y probando su idoneidad para este fin. Abre la puerta a
un amplio abanico de trabajos futuros, como el disefio de algoritmos que adapten
dindmicamente estos hiperpardmetros durante el entrenamiento.

Por ultimo, los resultados de esta tesis demuestran que el despliegue de la in-
teligencia ubicua distribuida en los dispositivos de borde es factible y ttil, ofreciendo
una mejor comprensién de como debe ser dicha inteligencia distribuida, los proble-
mas asociados que existen y como deben abordarse estos problemas.

El trabajo de esta tesis ha sido arduo y laborioso. Durante su desarrollo, hemos
utilizado una gran variedad de lenguajes de programacion y tecnologias que nos
ha llevado tiempo aprender. Varios algoritmos y problemas se han implementado
en dispositivos reales de borde distribuidos con recursos limitados no disefiados
para este fin. Se ha realizado una profunda investigacion sobre las tecnologifas mds
apropiadas para hacer que estos dispositivos trabajen juntos y logren resultados no-
tables. Al final, este trabajo ha dado sus frutos con dos publicaciones en revistas
indexadas en JCR (Q1) con un alto factor de impacto. Ademads, dos publicaciones
mas en congresos, uno en un congreso nacional y otro en un congreso internacional
en el que el doctorando también obtuvo el premio al estudiante destacado.

Sin embargo, atin quedan muchos retos y preguntas para el trabajo futuro. A
partir de estos resultados, salieron a la luz muchas perspectivas de investigacién que
pretendemos explorar. Algunas de estas lineas de investigacion pueden resumirse
como sigue:

* Investigar en mayor profundidad la gestiéon de la asignacién de tareas en fun-
cién del rendimiento de los dispositivos heterogéneos y la distribucion de los
datos utilizados por cada dispositivo.

— Disefiar algoritmos de seleccién inteligente para seleccionar los disposi-
tivos que participan en la siguiente ronda de comunicacién en funcién de
su distribucion de datos y rendimiento.

— Disefar algoritmos de optimizaciéon para asignar un ntimero personal-
izado de pasos locales a cada dispositivo en funcién de su rendimiento y
probabilidad de fallo.

— Disefiar algoritmos de agregacion adaptativos que agreguen modelos de
dispositivos heterogéneos en funcién del ntiimero de pasos locales real-
izados y de la distribucién de los datos utilizados por cada dispositivo.

* Investigar mas a fondo la reduccién del tamafio del modelo ML antes, durante
y después del entrenamiento sin reducir la precision.

— Investigar la optimizacién en tiempo real de los pardmetros de apren-
dizaje federado durante el proceso de aprendizaje.

— Optimizar los pardmetros de aprendizaje federado afiadiendo nuevos ob-
jetivos, como el consumo de energia, comparando un niimero mds signi-
ficativo de algoritmos multiobjetivo, y proponiendo nuevos operadores
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- Disefiar nuevos algoritmos adaptativos que optimicen la sobrecarga de
comunicacién en FL durante el aprendizaje, por ejemplo, utilizando téc-
nicas de cuantificacién y esparsificacion.

¢ Disefar una plataforma de aprendizaje multinivel con varias capas de apren-
dizaje, es decir, en el borde, niebla y nube.

¢ Investigar nuevas técnicas de optimizacién distribuida utilizando los datos lo-
cales y privados de los usuarios para problemas complejos.

¢ Investigar nuevas técnicas de FL integradas con el aprendizaje por refuerzo
con aplicaciones [94] como la asignacién de recursos, las redes de comuni-
cacion, la optimizacién y control, y la deteccion de ataques, entre otras.
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Appendix D

Publications Supporting This
Thesis

This appendix presents a list of publications that we have produced during our doc-
toral research. These publications are the result of the study carried out to achieve
the objectives of the thesis. First, we present the papers published in journals that
support this thesis. Second, we show the studies published in international and na-
tional conference proceedings. We list the publications in chronological order. With
the publication details, we present the available metrics of each publication, i.e. the
journal impact factor (JIF).

D.1 Publications in Journals

1. Morell, J. A., Camero, A., & Alba, E. (2019). JSDoop and TensorFlow. js: Volun-
teer Distributed Web Browser-based Neural Network Training. IEEE Access,
7,158671-158684. DOI: 10.1109/ACCESS.2019.2950287

¢ JCR COMPUTER SCIENCE, INFORMATION SYSTEMS - SCIE, Q1, rank-
ing 35/156, 2019 JIF = 3.745

2. Morell, J. A., & Alba, E. (2022). Dynamic and Adaptive Fault-tolerant Asyn-
chronous Federated Learning Using Volunteer Edge Devices. Future Genera-
tion Computer Systems. DOI: 10.1016/j . future.2022.02.024

¢ JCR COMPUTER SCIENCE, THEORY & METHODS - SCIE, Q1, ranking
7/110, 2020 JIF = 7.187

D.2 Publications in the Proceedings of International and Na-
tional Conferences

1. Morell, J. A, & Alba, E. (2018). Running Genetic Algorithms in the Edge: A
First Analysis. In Conference of the Spanish Association for Artificial Intelli-
gence (pp. 251-261). Springer, Cham. 10.1007/978-3-030-00374-6_24

2. Morell, J. A., Dahi, ZA, Chicano, F, Luque, G & Alba, E. (2022). Optimis-
ing Communication Overhead in Federated Learning Using NSGA-II. Interna-
tional Conference on the Applications of Evolutionary Computation. Springer,
Cham. 10.1007/978-3-031-02462-7_21

* Outstanding Student Award.


10.1109/ACCESS.2019.2950287
10.1016/j.future.2022.02.024
10.1007/978-3-030-00374-6_24
10.1007/978-3-031-02462-7_21
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D.3 Publications Indirectly Related to This Thesis

1. Morell, J. A., & Alba, E. (2017). Distributed Genetic Algorithms on Portable
Devices for Smart Cities. In International Conference on Smart Cities (pp. 51-
62). Springer, Cham. DOI: 10.1007/978-3-319-59513-9_6

2. Dahi, Z. A., Morell, J. A. (2022). Models for Coverage Optimisation in Cellular
Networks: Review, Analysis and Perspectives. IEEE 9th International Con-
ference on Sciences of Electronics, Technologies of Information and Telecom-
munications (SETIT) (pp. 312-319). IEEE. DOIL: 10.1109/SETIT54465.2022.
9875463


10.1007/978-3-319-59513-9_6
10.1109/SETIT54465.2022.9875463
10.1109/SETIT54465.2022.9875463
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