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per compartir amb mi la seva saviesa.

To Ciprian Tudor, Eulalia Nualart and Llúıs Quer-Sardanyons for reading this
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Introduction

This work is a contribution to the study of hitting probabilities for Gaussian random
fields. The motivation arises from applications to systems of linear stochastic partial
differential equations.

Let X = {X(x), x ∈ Rd} be a RD-valued Gaussian process with independent
and identically distributed components. The study of hitting probabilities for X
consists mainly in obtaining upper and lower bounds on the probabilities of the
random sets

FI,A := {X−1(A) ∩ I 6= ∅} = {X(I) ∩ A 6= ∅}, I ⊂ Rd, A ⊂ RD.

In this thesis, a real valued Gaussian process X is termed anisotropic on I a
compact subset of Rd if up to non null multiplicative constants its canonical metric

d(x, y) = ‖X(x)−X(y)‖L2(Ω), x, y ∈ I,

is bounded below and above, up to a multiplicative constant, by the function

G(x− y) =
d∑
j=1

|xj − yj|Hj , x, y ∈ I,Hj ∈ (0, 1].

If H1 = .... = Hd, X is termed isotropic.
Hitting probabilities estimates for the following examples of Gaussian anisotropic

processes are find in: Fractional Brownian motion [Xia99], Brownian sheet [KS99],
Funaki’s random string [MT02], Stochastic heat equation driven by white noise
[DKN07], Fractional stochastic heat equation on the circle [NV09], Stochastic wave
equation driven by fractional colored noise [dlCT14], Stochastic Poisson equation
driven by white noise [SSV18].

Additionally for centered Gaussian anisotropic processes abstract results on hit-
ting probabilities have been proved in [Xia09, Thm. 7.6], [BLX09, Thm. 2.1]. Such
results establish conditions which imply the existence of positive constants c, C such
that for any Borel set A ∈ Bb(RD),

cCapD−D0
(A) ≤ P (X(I) ∩ A 6= ∅) ≤ CHD−D0(A),

for D0 =
∑

j=1H
−1
j . Capγ and Hβ denotes the γ-Bessel-Riesz capacity and the

β-dimensional Hausdorff measure, respectively.
Although this topic will not be covered in this work, hitting probabilities for

solution of systems of non linear stochastic differential equations have been subject
of study in [DN04], [DKN09], [DKN13] and [DSS15]. Such solutions are non Gaus-
sian stochastic processes with continuous trajectories. General criteria for hitting
probabilities to non Gaussian processes are proved in [DSS10, Thms. 2.1 & 2.4].
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Consider the solution of the linear stochastic heat equation with null conditions,
introduced in [BT08],

∂v

∂t
−∆v = ẆH,α, (t, x) ∈ (0, T ]× Rd,

where ẆH,α is a noise fractional in time and colored in space. In [TX17, Thm. 4]
Tudor and Xiao prove that under the constraint 4H − (d − α) = 2, for any fixed
t ∈ (0, T ], and M > 0,

c| log |x− y||1/2|x− y| ≤ ‖v(t, x)− v(t, y)‖L2(Ω) ≤ C| log |x− y||1/2|x− y|,

x, y ∈ [−M,M ]D. This result suggests the use of more general notions of Hausdorff
measures and capacities than the classical γ-dimensional Hausdorff measure and the
β-Bessel-Riesz capacity.

Building on this fundamental idea, we develop the main ideas of this work in
two parts. The first part is devoted to the study of hitting probabilities for a class
of Gaussian random fields with canonical metric such that

d(x, y) � g(|x− y|), x, y ∈ I,

with g a gauge function (See Definition 1.1 for the definition). We term such gener-
alization as g-Gaussian processes.

In Chapter 1, we prove two main results of hitting probabilities for g-Gaussian
processes:

� Theorem 1.2 which establishes a criteria for upper bounds of hitting probabil-
ities. In this case the qg-Hausdorff measure Hqg with

qg(τ) = τD/(g−1(τ))d

is the suitable choice for upper bounds of the hitting probabilities. We follow
an approach close to the proof of [DSS10, Thm. 2.1].

� Theorem 1.3 which establishes a criteria for lower bounds of hitting probabili-
ties, in terms of the (qg)

−1 capacity denoted by Cap(qg)−1 . The proof combines
the approach of [BLX09, Thm.2.1],[Xia09, Thm. 7.6] based on weak approxi-
mations of measures, and the results of [DSS10, Sec. 3].

We note that our results hold for processes with continuous mean function, removing
the constraint of being centered from prior research.

As an example of application of the results obtained in the previous chapter,
Chapter 2 is about the study of hitting probabilities for the solution of the linear
system of stochastic Poisson equations with boundary conditions given by{

−∆vj(x) = Ẇj(x), x ∈ B1,

vj(x) = v0(x), x ∈ Sd−1,

j = 1, ..., D where (Wj, j = 1, ..., D) are independent white noises.
A version of this problem with null initial conditions v0 ≡ 0 is studied in

[SSV18][Sec. 5]. Such system has a random field solution for d = 1, 2, 3. If d = 1, 3,
in [SSV18, Lem. 5.4 & Lem. 5.7] is proved that the solution is isotropic. In contrast,
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if d = 2 in [SSV18, Lem. 5.5] upper and lower estimates for the canonical metric
which suggest that the solution may be a g-Gaussian process are find, but they are
not sharp.

In Lemma 2.1 we prove that v is a g-Gaussian process in Bρ0 , ρ0 ∈ (0, 1) with

g(τ) = [log (2ρ0/τ)]1/2 τ for d = 2. This lead us to Theorem 2.3 which establishes
lower and upper bounds for hitting probabilities for d = 1, 2, 3. This improves the
estimations in [SSV18, Thm. 5.10 & Thm. 5.11] for d = 2.

In the second part of this work, we study hitting probabilities for g-Gaussian
processes. Let I ⊂ Rd1 , J ⊂ Rd2 if the canonical metric of a real valued Gaussian
process Y is g Gaussian on I × J with g = (g1, g2), g1, g2 gauge functions, if its
canonical metric satisfies

d((t, x), (s, y)) � g1(|t− s|) + g2(|x− y|), (s, t), (x, y) ∈ I × J.

In Chapter 3, we generalize the results of Chapter 1 for g-Gaussian processes:

� Theorem 3.1 which establishes a criteria for upper bounds of hitting probabil-
ities in terms of the qg-Hausdorff measure Hqg with

qg(τ) = τD/[(g−1(τ))d1(g−1(τ))d1 ].

� Theorem 3.2 which establishes a criteria for lower bounds of hitting probabil-
ities, in terms of the (qg)−1 capacity Cap(qg)−1 .

Finally, as an application of the criteria obtained in Chapter 3, we analyze two
examples of g-Gaussian processes. Chapter 4 is about the study of hitting probabili-
ties for the solution of the system of stochastic heat equations with initial conditions
given by {

∂vj
∂t
−∆vj = ẆH,α

j , (t, x) ∈ (0, T ]× Rd,

vj(0, x) = v0(x), x ∈ Rd,

j = 1, ..., D with (WH,α
j , j = 1, ..., D) independent copies of a fractional-colored

noise with Hurst parameter H ∈ (1
2
, 1) and α ∈ [0, d).

By following a similar approach that in [TX17], where the case α ∈ (0, d) is
investigated, in Theorem 4.2 we prove that the canonical metric of the coordinates
of the solution of such system satisfies that for any t, s ∈ [t0, T ] and x, y ∈ [−M,M ]d,

d((t, x), (s, y)) � |t− s|H−
d−α

4 +

(
log

2e
√
dM

|x− y|

)β
2

|x− y|1∧(2H− d−α
2

),

where β = 1, if 4H − (d− α) = 2, and β = 0, otherwise.
In Chapter 5, we make a similar analysis for the solution for the solution of the

system of stochastic biharmonic heat equations with initial conditions given by{
( ∂
∂t

+ (−∆)2)vj = Ẇj, (t, x) ∈ (0, T ]× Td,
vj(0, x) = v0(x), x ∈ Td,

j = 1, ..., D with (Wj, j = 1, ..., D) independent copies of a white noise. According
to Theorem 5.2 each coordinate entry of such system turns out to be a g-Gaussian
process with

g1(τ) = τ
4−d

8 , g2(τ) =

(
log

C(d)

τ

)β
2

τ 1∧ 4−d
2 , β = 1{d=2}, d = 1, 2, 3.
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Most of the research carried out in this work has been recently published in two
articles: [HCSS21] which contains the main results obtained in Chapters 1, 3 and 4,
[HCSS22] which is based in Chapter 5. Some of the proofs are given in more detail
in the thesis.
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Chapter 1

g-Gaussian random fields

This chapter is devoted to find hitting probabilities criteria for g-Gaussian processes.
We prove two main results relative to g-Gaussian processes: Theorem 1.2 which
gives upper bounds of hitting probabilities in terms of the q-Hausdorff measure
and Theorem 1.3 which gives lower bounds of hitting probabilities in terms of the
g-capacity.

Finally, as an example of g-Gaussian processes we introduce the class of isotropic
Gaussian processes. We discuss the obtained results in the context of such processes.

We will use the following notations. Let K be a set in a metric space (S, d).
For ρ > 0, K(ρ) denotes the set of points such that d(x,K) ≤ ρ, and �K =
supx,x̄∈K d(x, x̄) is the diameter of K. For x ∈ Rd and r ≥ 0, Br(x) denotes the
closed Euclidean ball centered at x with radius r, if x = 0 we abbreviate Br(0) by Br.
Positive real constants are generically denoted by the letter C, or variants, like C̄, C̃,
c, etc. If we want to make explicit the dependence on some parameters a1, a2, . . ., we
write C(a1, a2, . . .) or Ca1,a2,.... The symbol � between two mathematical expressions
means equivalence up to positive multiplicative constants.

1.1 Definition

A real valued Gaussian random field or Gaussian process is a real valued random
field X on a parameter set X for which the distributions of

(X(x1), ..., X(xn)), n ∈ N∗, (x1, ..., xn) ∈ X n,

are multivariate Gaussian. The functions

mx := E(X(x)), σ2
x := E[(X(x)−mx)

2], x ∈ X ,

are called the mean and variance functions of X. The functions

σx,x̄ := E[(X(x)−mx)(X(x̄)−mx̄)], ρx,x̄ :=
σx,x̄
σxσx̄

;x, x̄ ∈ X ,

are called the covariance and correlation functions of X.
Define a pseudometric d on X by

d(x, x̄) ≡ dx,x̄ := ‖X(x)−X(x̄)‖L2(Ω), x, x̄ ∈ X .
d is not a metric, since although it satisfies all the other demands of a metric,
d(x, x̄) = 0 does not necessarily imply that x = x̄. Nevertheless, we shall abuse
terminology by calling d the canonical metric of X.
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Definition 1.1. A gauge function is a strictly increasing continuous function g :
[0, τ0]→ R+, τ0 > 0 satisfying g(0) = 0.

Example 1.1. The following are examples of gauge functions:

1. g(τ) = τ ν , τ, ν > 0.

2. g(τ) = | log τ |γτ ν , τ ∈ [0, e−
γ
ν ], γ, ν > 0.

Definition 1.2. Fix K a compact set of Rd and assume that

X = {X(x) : x ∈ K}

is a Gaussian process. We say that X is g-Gaussian on K if there exists a gauge
function g such that

d(x, x̄) � g(|x− x̄|), x, x̄ ∈ K. (1.1)

If X only satisfies the upper bound in (1.1) we say that it is ĝ-Gaussian on K.

Remark 1.1. The class of g-Gaussian processes where g is a gauge function as in Ex-
ample 1.1 (1.) corresponds to isotropic Gaussian processes (see Section 1.3 bellow).
Chapter 2 is devoted to study a g-Gaussian process with a g as in Example 1.1(2.)
(see Theorem 2.2).

Write
Bd,ε(x) := {x̄ ∈ K : d(x, x̄) ≤ ε}

for the d ball centered at x ∈ K and radius ε. We denote by Nd(K, ε) ≡ N(ε) the
minimum number of such balls needed to cover K.

If X is a ĝ-Gaussian process on K, it is not hard to prove that

N(ε) ≤ C

(
�K

g−1(ε)

)d
, ε ∈ (0, g(�K)]. (1.2)

[AT07, Thm. 1.3.5] and (1.2) implies that there exists a universal constant C and
positive random variable η such that

sup
x,x̄∈K,
d(x,x̄)≤δ

|X(x)−X(x̄)| ≤ C(K)

∫ δ

0

dε

√
d log

(
�K

g−1(ε)

)
, δ ∈ (0, η). (1.3)

This estimate gives a criterion for sample path continuity of ĝ-Gaussian processes:

Example 1.2. Let X be a centered ĝ-Gaussian process on K a compact subset of
Rd such that

g(τ) ≤ h(τ) :=

[
log

(
2�K

τ

)]−ν
(1.4)

for some ν > 1/2. We note that h−1(τ) = 2�K exp(−τ− 1
ν ), thus we can assert that

for any ε > 0 small enough

log

(
�K

h−1(ε)

)
≤ ε−

1
ν .

This implies that∫ δ

0

dε

√
log

(
�K

h(ε)

)
≤
∫ δ

0

dε−
1
2ν =

(
1− 1

2ν

)−1

δ1− 1
2ν <∞.

Then (1.3) implies that X has a modification with a.s. continuous sample paths.
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Remark 1.2. The continuity criterion in Example 1.2 is sharp. According to Corol-
lary 1.5.5 in [AT07], if X is a centered, stationary ĝ-Gaussian process with

g(τ) =

[
log

(
2�K

τ

)]−ν
,

for some ν ∈ (0, 1/2), then X has discontinuous sample paths.

1.2 Criteria for hitting probabilities

Let K be a compact subset of Rd and

X = {X(x) = (X1(x), . . . , XD(x)), x ∈ K},

be a D-dimensional process with i.i.d coordinates. The probability that the process
X hits A a Borel subset of RD is

P (X(K) ∩ A 6= ∅). (1.5)

We devote this section to estimate (1.5) when X1 is a g-Gaussian process. The
main results are Theorems 1.2 and 1.3 which yield to upper and lower bounds in
terms of the notions of q-Hausdorff measure and g-capacity, respectively.

1.2.1 Upper bounds for hitting probabilities

The aim of this subsection is to prove extensions of Theorem 2.6 in [DSS10] on
sufficient conditions for upper bound estimates of hitting probabilities of Gaussian
processes.

We start with a technical lemma which is a generalized version of [DSS10, Lem.
2.5].

Lemma 1.1. [HCSS21, Lem. 3.1] Let g be a differentiable gauge function. Fix
x0 ∈ Rd and let

M = {M (x) = (M1(x), . . . ,MD(x)), x ∈ B1(x0)},

be a D-dimensional stochastic process with a.s. continuous sample paths. Suppose
that for all ε > 0 small enough,

E

(∫
Bε(x0)

dy

∫
Bε(x0)

dȳ exp

(
|M (y)−M (ȳ)|

g(|y − ȳ|)

))
≤ c1,1ε

2d, (1.6)

for some constant c1,1. Set Sε(x0) = B g−1(ε)
2

(x0). Then, the following statements

hold.

1. For all p ≥ 1, there exist a constant c1,2 depending on d and c1,1 such that for
ε > 0 small enough,

E

(
sup

y∈Sε(x0)

|M (y)−M (x0)|p
)

≤ 10p εp−1g−1(ε)

∫ 1

0

logp
(

1 +
c1,2

τ 2d

)
ġ
(
g−1(ε)τ

)
dτ, (1.7)

where ġ denotes the derivative of g.

3



2. Assume that g is such that, for any ρ, τ ∈ [0, τ0], with τ0 > 0 sufficiently small,

g(ρτ) ≤ ϕ(τ)g(ρ), ġ(ρτ) ≤ 1

ρ
ψ(τ)g(ρτ), (1.8)

where ϕ and ψ are Borel functions such that, denoting Φ(τ) = ϕ(τ)ψ(τ), we
have ∫ 1

0

logp
(

1 +
c1,2

τ 2d

)
Φ(τ) dτ <∞. (1.9)

Then, for all p ≥ 1, there exists a constant c1,3(c1,1, p, d,Φ) such that for all
ε > 0 small enough,

E

(
sup

y∈Sε(x0)

|M(y)−M (x0)|p
)
≤ c1,3ε

p. (1.10)

Proof. 1. Let

Cε(ω) =

∫
Sε(x0)

dy

∫
Sε(x0)

dȳ exp

(
|M (y, ω)−M (ȳ, ω)|

g(|y − ȳ|)

)
. (1.11)

From (1.6), we deduce Cε(ω) <∞, a.s. Notice that for almost all ω,

Cε(ω) ≥ |Sε(x0)|2 ≥ C2

(
g−1(ε)

)2d
, (1.12)

for some constant C2 > 0 depending on d.
Applying [DKN07, Prop. A.1, (A.3)] to S := Sε(x0) endowed with the Euclidean

distance ρ, µ the Lebesgue measure, Ψ(τ) := eτ − 1 and p(τ) := g(τ), implies that
for any δ > 0

sup
y,ȳ∈Sε(x0),|y−ȳ|≤δ

|M(y)−M(ȳ)| ≤ 10

∫ 2δ

0

Ψ−1

(
C1Cε(ω)

τ 2d

)
ġ(τ) dτ,

with C1 depending on d. Here, we have used that the volume of the d-dimensional
Euclidean ball of radius r equals a multiple constant times rd. By writing ȳ = x0

and δ = g−1(ε)
2

on the last inequality, we deduce

sup
y∈Sε(x0)

|M(y)−M (x0)| ≤ 10

∫ g−1(ε)

0

Ψ−1

(
C1Cε(ω)

τ 2d

)
ġ(τ) dτ,

Therefore, for any p ≥ 1,

E

(
sup

y∈Sε(x0)

|M(y)−M (x0)|p
)
≤ 10pE

(∣∣∣∣∣
∫ g−1(ε)

0

Ψ−1

(
C1Cε(ω)

τ 2d

)
ġ(τ) dτ

∣∣∣∣∣
p)

≤ 10p
(
g
(
g−1(ε)

))p−1
E

(∫ g−1(ε)

0

logp
(

1 +
C1Cε(ω)

τ 2d

)
ġ(τ) dτ

)

= 10pεp−1

∫ g−1(ε)

0

E

[
logp

(
1 +

C1Cε(ω)

τ 2d

)]
ġ(τ) dτ, (1.13)

where in the second inequality, we have applied Hölder’s inequality with respect to
the measure ġ(τ)dτ . Observe that we may take C1 as large as we want.
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The function x 7→ logp(1 + x) is concave on [ep−1 − 1,∞). By (1.12) Cε(ω) ≥
C2τ

2d, τ ∈ [0, g−1(ε)] a.s. Hence, by taking C1 ≥ (ep−1 − 1)C−1
2 , we can apply

Jensen’s inequality and (1.6) to estimate

E

[
logp

(
1 +

C1Cε(ω)

τ 2d

)]
≤ logp

(
1 + c1,2

(
g−1(ε)

τ

)2d
)
,

with some constant c1,2(c1,1, d). Use the last inequality on the right-hand side of

(1.13), and write the change of variables τ 7→ (g−1(ε))
−1
τ , to obtain,

E

(
sup

y∈Sε(x0)

|M(y)−M(x0)|p
)

≤ 10p εp−1g−1(ε)

∫ 1

0

logp
(

1 +
c1,2

τ 2d

)
ġ
(
g−1(ε)τ

)
dτ. (1.14)

This ends the proof of (1.7).

2. The conditions (1.8) imply ρġ(ρτ) ≤ Φ(τ)g(ρ). For ρ := g−1(ε) this yields

g−1(ε)ġ(g−1(ε)τ) ≤ Φ(τ)ε.

Thus, the right-hand side of (1.7) is less or equal to (10ε)p
∫ 1

0
logp

(
1 + c1,2

τ2d

)
Φ(τ) dτ

and therefore, assuming (1.9), we obtain (1.10).

Remark 1.3. Fix x0 in Rd and assume that X is a ĝ-Gaussian centered process on
B1(x0). Then X satisfies the condition (1.6). Indeed, the upper bound in (1.1)
implies that for x, y ∈ Bε(x0)

exp

(
|X(x)−X(y)|
g(|x− y|)

)
≤ exp

(
|X(x)−X(y)|

Cd(x, y)

)
= exp(c|Z|),

where c = 1/C and Z is a standard Gaussian random variable. Since, E([exp(c|Z|)])
is finite, by Fubini’s theorem (1.6) holds.

Example 1.3. We verify conditions (1.8) and (1.9) of Lemma 1.1 for the gauge
functions in Example 1.1.

1. g(τ) = τ ν , τ > 0, ν > 0. (1.8) hold for any ρ, τ > 0, with ϕ(τ) = τ ν , ψ(τ) = ν
τ
.

Since
∫ 1

0
logp

(
1 + C

τ2d

)
τ ν−1dτ <∞, for any C > 0 and p ≥ 1, (1.9) holds.

2. g(τ) = | log τ |γτ ν , τ ∈ [0, e−
γ
ν ], ν, γ > 0. Then,

g(ρτ) = ρντ ν | log ρτ |γ ≤ (| log ρ|+ | log τ |)γ ρντ ν

≤ C(γ, ν)| log ρ|γ (1 + | log τ |)γ ρντ ν , ρ, τ ∈ [0, e−
γ
ν ].

Hence,

g(ρτ) ≤ ϕ(τ)g(ρ), with ϕ(τ) = C(γ, ν) (1 + | log τ |)γ τ ν .

The derivative of g is ġ(τ) = | log τ |γ−1(ν| log τ |−γ)τ ν−1, and it follows that g is
increasing on [0, e−

γ
ν ]. Therefore ġ(τ) ≤ ν| log τ |γτ ν−1 ≤ ν

τ
g(τ). Consequently,

ġ(ρτ) ≤ 1

ρ
ψ(τ)g(ρτ), with ψ(τ) =

ν

τ
.

Since Φ(τ) = C(γ, ν)(1 + | log τ |)γτ ν−1, we see that condition (1.9) holds.
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For any ε ∈ (0, 1), j ∈ Zd, j = (j1, . . . , jd), set

Rε
j =

d∏
i=1

[
g−1(ε)√

d
ji,
g−1(ε)√

d
(ji + 1)

]
, (1.15)

and for x ∈ Rε
j , define xεj :=

(
g−1(ε)√

d
ji

)
i=1,...,d

. Observe that diam(Rε
j) = g−1(ε)

and Rε
j ⊂ B g−1(ε)

2

(x̄εj), where x̄εj =
(
g−1(ε)√

d
(ji + 1

2
)
)
i=1,...,d

. Moreover, by the triangle

inequality,

sup
x∈Rεj

(∣∣M(x)−M (xεj)
∣∣) ≤ 2 sup

x∈B g−1(ε)
2

(x̄εj)

(∣∣M (x)−M (x̄εj)
∣∣) . (1.16)

The next statement provides an extension of [DSS10, Thm. 2.6, (26)] to non
necessarily centered Gaussian processes.

Theorem 1.1. [HCSS21, Thm. 3.1] Fix K a compact set of Rd and η > 0. Let

X = {X(x) = (X1(x), ..., XD(x)), x ∈ K(η)} (1.17)

be a D-dimensional stochastic process with a.s. continuous sample paths and i.i.d.
coordinates that are distributed as Gaussian random fields. Fix ε > 0 small enough,
j ∈ Zd, and let Rε

j be as in (1.15). Assume that Rε
j ⊂ K(η) and let σ2

K(η) :=
infx∈K(η) σ2

x > 0.
1. Let mx = E(X(x)) and X̃(x) = X(x) −mx. We assume that for some

constant C(d,D),

E

(
sup
x∈Rεj

∣∣∣X̃(x)− X̃(xεj)
∣∣∣2) ≤ C(d,D)ε2. (1.18)

Then there exists a constant C(σ2
K(η) , d,D) such that, for every z ∈ RD,

P
(
X(Rε

j) ∩Bε(z) 6= ∅
)
≤ C(σ2

K(η) , d,D)εD. (1.19)

2. Suppose that for some constant C̄(d,D)

E

(
sup
x∈Rεj

∣∣X(x)−X(xεj)
∣∣2) ≤ C̄(d,D)ε2. (1.20)

Then there exists a constant C̄(σ2
K(η) , d,D) such that, for every z ∈ RD,

P
(
X(Rε

j) ∩Bε(z) 6= ∅
)
≤ C̄(σ2

K(η) , d,D)εD. (1.21)

Proof. 1. We follow the approach of [DSS10, Thm. 2.6] with some modifications
due to the fact that the process X is not centered.

Because X is continuous, for any z ∈ RD

P
(
X(Rε

j) ∩Bε(z) 6= ∅
)

= P

(
inf
x∈Rεj
|X(x)− z| ≤ ε

)
.
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Assume we can prove that there exists a constant c(σ2
K(η) , d,D) such that for any

z1 ∈ R,

P

(
inf
x∈Rεj
|X1(x)− z1| ≤ ε

)
≤ c(σ2

K(η) , d,D) ε. (1.22)

Observe that {
inf
x∈Rεj
|X(x)− z| ≤ ε

}
⊂

D⋂
i=1

{
inf
x∈Rεj
|Xi(x)− z| ≤ ε

}
.

Then, because the components of X(x) are i.i.d, (1.22) yields (1.19) with C =
[c(σ2

K(η) , d,D)]D.
For the proof of (1.22), we fix x ∈ Rε

j and since X1 is a Gaussian processes, its
conditional expectation es given by

E
(
X1(x)|X̃1(xεj)

)
= mx + E

(
X̃1(x)|X̃1(xεj)

)
= mx + cεj(x)X̃1(xεj), (1.23)

where

mx = E(X1(x)), cεj(x) =
Cov

(
X̃1(x), X̃1(xεj)

)
Var

(
X̃1(xεj)

) .

Define

Y ε
j = inf

x∈Rεj

∣∣∣E (X1(x)|X̃1(xεj)
)
− z1

∣∣∣ , Zε
j = sup

x∈Rεj

∣∣∣X1(x)− E
(
X1(x)|X̃1(xεj)

)∣∣∣ .
We claim that these are independent random variables satisfying

P

(
inf
x∈Rεj
|X1(x)− z1| ≤ ε

)
≤ P

(
Y ε
j ≤ ε+ Zε

j

)
. (1.24)

Indeed, let

Ỹ ε
j :=

{
Ỹ ε
j (x) = E

(
X1(x)|X̃1(xεj)

)
− z1, x ∈ Rε

j

}
,

Z̃ε
j :=

{
Z̃ε
j (x) = X1(x)− E

(
X1(x)|X̃1(xεj)

)
, x ∈ Rε

j

}
.

By (1.23), Ỹ ε
j and Z̃ε

j are Gaussian processes that for any x, x̄ ∈ Rε
j ,

E(Z̃ε
j (x)) = 0,

E(Ỹ ε
j (x)Z̃ε

j (x̄)) = E
([
cεj(x)X̃1(xεj) +mx − z1

] [
X̃1(x̄)− cεj(x̄)X̃1(xεj)

])
= cεj(x)E

(
X̃1(xεj)

[
X̃1(x̄)− cεj(x̄)X̃1(xεj)

])
= 0.

Thus Y ε
j and Zε

j are independent. Notice that Ỹ ε
j − Z̃ε

j = X1 − z1 implying (1.24)
and finishing the proof of the claim

We next prove that, for any r ≥ 0,

P (Y ε
j ≤ r) ≤ C(σ2

K(η) , d,D)r. (1.25)
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As an auxiliary result, we first check that for all ε > 0 and x ∈ Rε
j ,

|cεj(x)− 1| ≤ C(σ2
K(η) , d,D)ε, (1.26)

implying that, for all ε > 0 small enough, say ε ≤ [2C(σ2
K(η) , d,D)]−1, and for all

x ∈ Rε
j , we have

cεj(x) ≥ 1

2
. (1.27)

Indeed, because Var(X̃1(xεj)) ≥ σ2
K(η) > 0, using Cauchy-Schwartz inequality and

(1.18), we deduce

∣∣cεj(x)− 1
∣∣ ≤

E
[
X̃1(xεj)− X̃1(x)

]2

Var(X̃1(xεj))


1
2

≤ C(σ2
K(η) , d,D)ε.

We continue with the proof of (1.25). By (1.23),

{Y ε
j ≤ r} =

{
inf
x∈Rεj
|mx + E(X̃1(x)|X̃1(xεj))− z1| ≤ r

}
and the inequality

∣∣∣mx + E
(
X̃1(x)|X̃1(xεj)

)
− z1

∣∣∣ ≤ r is equivalent to

z1 −mx

cεj(x)
− r

cεj(x)
≤ X̃1(xεj) ≤

z1 −mx

cεj(x)
+

r

cεj(x)
.

Since by (1.27), infx∈Rεj c
ε
j(x) ≥ 1

2
, the above remarks yield

P (Y ε
j ≤ r) ≤ sup

s∈R
P
(
s− 2r ≤ X̃1(xεj) ≤ s+ 2r

)
= sup

s∈R
P
(
X̃1(xεj) ∈ B2r(s)

)
.

(1.28)

Because the density of X̃1(xεj) is bounded by (Var(X1(xεj))2π)−1/2 ≤ C(σ2
K(η) , d,D),

we have
P (Y ε

j ≤ r) ≤ sup
s∈R

P
(
X̃1(xεj) ∈ B2r(s)

)
≤ C(σ2

K(η) , d,D) r.

This proves (1.25).
We now address the last step in the proof of (1.22). Let µZεj be the distribution

function of Zε
j , because Y ε

j and Zε
j are independent, by (1.25) we obtain,

P
(
Y ε
j ≤ ε+ Zε

j

)
=

∫
R
µZεj (dz)P

(
Y ε
j ≤ ε+ z

)
≤ C(σ2

K(η) , d,D)

∫
R
µZεj (dz)(ε+ z)

= C(σ2
K(η) , d,D)

[
ε+ E

(
Zε
j

)]
.

(1.24) together with the last inequality, implies that

P

(
inf
x∈Rεj
|X1(x)− z| ≤ ε

)
≤ c(σ2

K(η) , d,D)
[
ε+ E

(
Zε
j

)]
. (1.29)
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Since X1(x)−E
(
X1(x)|X̃1(xεj)

)
= X̃1(x)−cεj(x)X̃1(xεj) (see (1.23)), by the triangle

inequality Zε
j ≤ Zε

j,1 + Zε
j,2, with

Zε
j,1 = sup

x∈Rεj

∣∣∣X̃1(x)− X̃1(xεj)
∣∣∣ , Zε

j,2 = sup
x∈Rεj

∣∣1− cεj(x)
∣∣ ∣∣∣X̃1(xεj)

∣∣∣ .
Apply (1.18) and Jensen’s inequality to obtain E(Zε

j,1) ≤ C(d,D)ε. Also, as a

consequence of (1.26), we have that E(Zε
j,2) ≤ C(σ2

K(η) , d,D)ε. This yields E
(
Zε
j

)
≤

C(σ2
K(η) , d,D)ε. Along with (1.29), this implies (1.22) and, as was argued above,

the proof of claim 1 is complete.
2. By going trough the proof of (1.19) one can check that hypothesis (1.18) was

only used for proving the inequalities

E
[
X̃1(xεj)− X̃1(x)

]2

≤ C(d,D)ε2,

and E(Zε
j,1) ≤ C(d,D)ε. We claim that those inequalities are valid if we assume

(1.20) instead of (1.18). This implies (1.21).
Indeed, the first inequality is a direct consequence of (1.20), since

E
[
X̃1(xεj)− X̃1(x)

]2

= E
[
X1(xεj)−mxεj

− (X1(x)−mx)
]2

= E
[
X1(xεj)−X1(x)

]2 − (mxεj
−mx)

2

≤ E
[
X1(xεj)−X1(x)

]2
,

where mx denotes the first coordinate of the vector mx. A similar argument together
with Jensen’s inequality implies that E(Zε

j,1) ≤ C(d,D)ε.

Definition 1.3. Let q : R+ → R+ be monotone increasing and right-continuous.
Assume that on a small non empty interval [0, ε0], q is strictly increasing. The
q-Hausdorff measure of a Borel set A ⊂ RD is defined by

Hq(A) = lim inf
ε↓0

{
∞∑
i=1

q(2ri) : A ⊂
∞⋃
i=1

Bri(xi), sup
i≥1

ri ≤ ε

}
(1.30)

(see e.g. [Rog98]). In the particular case q(τ) = τ γ, with γ > 0, Hq(A) is the
γ-dimensional Hausdorff measure, usually denoted by Hγ(A).

For a gauge function g define

qg(τ) =
τD

(g−1(τ))d
, τ ∈ R+. (1.31)

Fix ρ0 > 0, and assume that g is differentiable in (0, ρ0). It is not hard to proof that
qg is strictly increasing on (0, ρ0) if and only if

D > d
τ

g−1(τ)ġ(g−1(τ))
, τ ∈ (0, ρ0) (1.32)

or equivalently

D > d
g(τ)

τ ġ(τ)
, τ ∈ (0, g−1(ρ0)), (1.33)
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this means that if (1.32) is satisfied, Hqg is a well defined Hausdorff measure. The
qg-Haussdorf measure will naturally arise in the study of upper bounds for hitting
probabilities for g-Gaussian random fields.

Example 1.4. We study the map qg in the case of the gauge functions in Example
1.1.

1. g(τ) = τ ν , τ, ν > 0. We have that qg(τ) = τD−d/ν . Thus qg is strictly increasing
on R+ if and only if D > d/ν. In this case we recover the γ-dimensional
Hausdorff measure Hγ with γ = D − d/ν.

2. g(τ) = | log τ |γτ ν , τ ∈ [0, e−
γ
ν ], γ, ν > 0. The inverse function of g satisfies

τ = [g−1(τ)]ν | log g−1(τ)|γ, τ ∈
[
0,
( γ
eν

)γ]
,

or equivalently

−ν
γ
τ−1/γ = −ν

γ

τ 1/γ

[g−1(τ)]
ν
γ

exp

[
−ν
γ

τ 1/γ

[g−1(τ)]
ν
γ

]
, τ ∈

[
0,

(
ν

eγ

)γ]
. (1.34)

Let W−1, be the lower real valued branch of the Lambert W function, defined
as the only solution of the following inequalities system

W−1(τ)eW−1(τ) = τ, W−1(τ) ≤ −1, τ ∈ [−e−1, 0]. (1.35)

(See [Cha13] for example). The last equality implies that

W−1(τeτ ) = τ, τ ≤ 1. (1.36)

By (1.35), (1.34) and (1.36),

−ν
γ
τ 1/γ exp

[
−W−1

(
−ν
γ
τ

1
γ

)]
= W−1

(
−ν
γ
τ

1
γ

)
= −ν

γ

τ 1/γ

[g−1(τ)]
ν
γ

.

Clear away g−1 in the last equation to deduce that the inverse function g−1 is

g−1(τ) = exp

[
γ

ν
W−1

(
−ν
γ
τ

1
γ

)]
, τ ∈

[
0, e−γ

(γ
ν

)γ]
. (1.37)

According to [Cha13, Thm. 1],

−1−
√

2τ − τ < W−1(−e−τ−1) < −1−
√

2τ − 2

3
τ, τ ∈ [−e−1, 0].

Applying this result, we see that

g−1(τ) � τ
1
ν exp

(
−γ
ν

∣∣∣2 log
(
cτ

1
γ

)∣∣∣ 1
2

)
, (1.38)

where c is a constant depending on γ, ν. Consequently,

qg(τ) � τD−
d
ν exp

(
dγ

ν

∣∣∣2 log
(
c1τ

1
γ

)∣∣∣ 1
2

)
. (1.39)

Thus qg is strictly increasing on an interval around zero if and only if D > d/ν.
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Theorem 1.2. [HCSS21, Thm. 3.2] Consider a Gaussian process with continuous
sample paths X as in (1.17) and such that σ2

K(η) := infx∈K(η) σ2
x > 0. Let g be a

gauge function and assume that the process X satisfies the condition (1.6) for any
x ∈ K(η). Suppose also that g fulfills the hypothesis of Lemma 1.1(2.) and that the
function qg given in (1.31) is strictly increasing on a small interval (0, ρ0). Then
there exists a constant C(K, σ2

K(η) , d,D) such that for any Borel set A ⊂ RD,

P (X(K) ∩ A 6= ∅) ≤ C(K, σ2
K(η) , d,D) Hqg(A). (1.40)

Proof. Let qg be the function defined in (1.31) and assume that on a sufficiently
small interval (0, ρ0), qg is strictly increasing. Fix ε small enough. By the definition
of the Hausdorff qg-measure Hqg(A), there exists a sequence of balls (Bi, i ≥ 1) with
radii ri ∈ (0, ε), such that Bi ∩A 6= ∅, A ⊂ ∪i≥1Bi, and

∑
i≥1 qg(2ri) ≤ Hqg(A) + ε.

Then from (1.43) in Lemma 1.2 bellow, we deduce that for any Borel set A ⊂ RD,

P (X(K) ∩ A 6= ∅) ≤
∑
i≥1

P (X(K) ∩Bi 6= ∅)

≤ C(K, σ2
K(η) , d,D)

∑
i≥1

qg(2ri) ≤ Hqg(A) + ε. (1.41)

Letting ε tend to zero, we obtain

P (X(K) ∩ A 6= ∅) ≤ C(K, σ2
K(η) , d,D) Hqg(A).

Remark 1.3 implies the following Corollary relative for upper bounds of hitting
probabilities for ĝ-Gaussian processes.

Corollary 1.1. Consider a Gaussian process with continuous sample paths X as in
(1.17), and such that σ2

K(η) := infx∈K(η) σ2
x > 0. Assume that X1 is ĝ-Gaussian on

K(η) with g a gauge function satisfying the hypothesis of Lemma 1.1(2.) and such
that the function qg given in (1.31) is strictly increasing on a small interval (0, ρ0).
Then there exists a constant C(K, σ2

K(η) , d,D) such that for any Borel set A ⊂ RD,

P (X(K) ∩ A 6= ∅) ≤ C(K, σ2
K(η) , d,D) Hqg(A). (1.42)

The following Lemma which derive upper bounds for hitting probabilities of
small balls in terms of the function qg, was used in the proof of Theorem 1.2.

Lemma 1.2. [HCSS21, Lem. 3.2] Fix z ∈ RD and ε > 0. Consider a Gaus-
sian process with continuous sample paths X as in (1.17) and such that σ2

K(η)
:=

infx∈K(η) σ2
x > 0. Let g be a gauge function and assume that the process X satisfies

the condition (1.6) for any x ∈ K(η). Suppose also that g fulfills the hypothesis of
Lemma 1.1(2.).

Then, there exists a constant C(K, σ2
K(η) , d,D) such that,

P (X(K) ∩Bε(z) 6= ∅) ≤ C(K, σ2
K(η) , d,D)qg(ε). (1.43)

Proof. Since K is compact, there is a finite number of sets Rε
j (defined in (1.15))

satisfying K ∩ Rε
j 6= ∅; this number is a constant (depending on the dimension d
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and K) multiple of
(
g−1(ε)√

d

)−d
. Moreover, by Lemma 1.1 and the inequality (1.16),

we see that the condition (1.20) holds for any Rε
j such that K ∩ Rε

j 6= ∅ and this
implies (1.21). Thus,

P (X(K) ∩Bε(z) 6= ∅) ≤
∑

j∈Zd:K∩Rεj 6=∅

P
(
X(Rε

j) ∩Bε(z) 6= ∅
)

≤ C(K, σ2
K(η) , d,D) εD

(
g−1(ε)√

d

)−d
= C(K, σ2

K(η) , d,D) qg(ε), (1.44)

where the last inequality is valid due to (1.21).
From Lemma 1.2 we deduce conditions for points to be polar, as follows.

Corollary 1.2. [HCSS21, Cor. 3.1] The hypotheses are as in Lemma 1.2. Assume
further that

lim
τ↓0

qg(τ) := qg(0) = 0. (1.45)

Then, for any z ∈ RD, P (X(K) ∩ {z} 6= ∅) = 0, that is {z} is polar for the process
X restricted to K.

Proof. For any ε > 0, we have P (X(K) ∩ {z} 6= ∅) ≤ P (X(K) ∩Bε(z) 6= ∅). Ap-
plying (1.44) and using (1.45) yields the result.

Example 1.5. We analyze condition (1.45) for the maps qg in Example 1.4.

1. g(τ) = τ ν , qg(τ) = τD−d/ν , τ, ν > 0. In this case

qg(0) =


0 if D > d/ν,

1 if D = d/ν,

∞ if D < d/ν.

(1.46)

And (1.45) is satisfied if and only D > d/ν.

2. g(τ) = | log τ |γτ ν , τ ∈ [0, e−
γ
ν ], γ, ν > 0, qg(τ) = τD exp

[
−dν

γ
W−1

(
− ν
γ
τ

1
γ

)]
.

(1.39) implies that

qg(0) =

{
0 if D > d/ν,

∞ if D ≤ d/ν.
(1.47)

And (1.45) is satisfied if and only if D > d/ν.

1.2.2 Lower bounds for hitting probabilities

The goal of this subsection is to prove Theorem 1.3, which gives lower bounds for
hitting probabilities for a ĝ-Gaussian process.

Let X = {X(x) : x ∈ K} be a Gaussian process in K, a compact subset of
Rd, and g : [0,�K ] → R+ be a gauge function. We will make use of the following
conditions on X:

(CX1) σ2
x � 1 for x ∈ K.
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(CX2) There exist a positive constant C such that for all x, x̄ ∈ K

|mx −mx̄| ≤ Cg(|x− x̄|).

(CX3) There exists a positive constant c such that for all x, x̄ ∈ K

E(Var(X(x)|X(x̄))) ≥ cg2(|x− x̄|).

Var(X(x)|X(x̄)) is the conditional variance of X(x) given X(x̄) this means

Var(X(x)|X(x̄)) = E
(
[X(x)− E(X(x)|X(x̄))]2|X(x̄)

)
.

Remark 1.4. It is a well known property of Gaussian processes that (see [Xia09,
(41)] for example):

E(Var (X(x)|X(x̄))) =

(
d2
x,x̄ − (σx − σx̄)2

) (
(σx + σx̄)

2 − d2
x,x̄

)
4σ2

x̄

(1.48)

= σ2
x(1− ρ2

x,x̄) (1.49)

=
det Γx,x̄
σ2
x̄

=
(σxσx̄)

2 − σ2
x,x̄

σ2
x̄

, (1.50)

where Γx,x̄ is the covariance matrix of the vector (X(x), X(x̄)).

Proposition 1.1 relates the canonical metric and the conditional variance of a ĝ-
Gaussian process. It will be useful in the following chapters for checking that some
examples of ĝ-Gaussian process satisfy (CX3). We follow a similar procedure than
the proof of [DSS10, Lem. 3.2, (1)].

Proposition 1.1. Let X be a Gaussian process on K a compact subset of Rd sat-
isfying (CX1). Then

E(Var(X(x)|X(x̄))) ≤ Cd2
x,x̄, x, x̄ ∈ K. (1.51)

Additionally assume that

1. X is a ĝ-Gaussian process in K.

2. limε↓0 sup x,x̄∈K
|x−x̄|≤ε

|σx−σx̄|
dx,x̄

= 0.

3. ρx,x̄ < 1 for all x, x̄ ∈ K, x 6= x̄.

Then
E(Var(X(x)|X(x̄))) � d2

x,x̄, x, x̄ ∈ K. (1.52)

Proof. We have that(
d2
x,x̄ − (σx − σx̄)2

) (
(σx + σx̄)

2 − d2
x,x̄

)
= d2

x,x̄

[
(σx + σx̄)

2 + (σx − σx̄)2
]
− (d4

x,x̄ + [(σx + σx̄)(σx − σx̄)]2)

≤ d2
x,x̄

[
(σx + σx̄)

2 + (σx − σx̄)2
]
.

This, together with (CX1) and (1.48) implies (1.51).
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Now we prove the lower bound in (1.52). (CX1) and 1. implies that for x, near
x̄, (σx + σx̄)

2 − d2
x,x̄ is bounded by bellow by a positive constant. Furthermore, by

2.,

d2
x,x̄ − (σx − σx̄)2 = d2

x,x̄

(
1−

[
σ2
x − σ2

x̄

dx,x̄

]2
)
≥ cd2

x,x̄,

for x near x̄. This proves that there exists a δ > 0 such that for any x, x̂ ∈ K with
|x− x̄| < δ the lower bound in (1.52) is valid.

(1.49), (CX1) and 3. implies that E(Var(X(x)|X(x̄))) > 0 for |x− x̄| ≥ δ, x, x̄ ∈
K. Since X is ĝ-Gaussian process on K, by (1.51) it follows that the map x, x̄ 7→
E(Var(X(x)|X(x̄))) is continuous. Thus

E(Var(X(x)|X(x̄))) ≥ c ≥ c̄g2(|x− x̄|) ≥ c̃d2
x,x̄,

for any x, x̂ ∈ K that |x− x̄| ≥ δ finishing the proof of (1.52).

Definition 1.4. A function g : RD −→ R+ ∪ {∞} is a symmetric potential kernel
if:

(a) g is symmetric.

(b) g(z) > 0, for all z 6= 0.

(c) g(0) =∞.

(d) g is continuous on RD \ {0}.

The energy of a measure µ on RD relative to g is given by the expression

Eg(µ) =

∫
RD×RD

g(y − ȳ) µ(dy)µ(dȳ).

The g-capacity of a Borel set A ⊂ RD is defined by

Capg(A) =

[
inf

µ∈P(A)
Eg(µ)

]−1

, (1.53)

where P(A) denotes the set of probability measures on A. Since g is symmetric, this
defines a Choquet capacity (see e.g. [Kho02, Thm. 2.1.1, p. 533]).

When g(z) = |z|−γ, γ > 0, the g-capacity is the Bessel-Riesz capacity usually
denoted by Capγ(A) (see e.g. [Kho02, p. 376]).

Associated with a gauge function g we define

vg(τ) =

∫ �K

g−1(τ)

[g(ρ)]−Dρd−1 dρ, τ ∈ R+. (1.54)

We are ready to state and prove the main result of this subsection.

Theorem 1.3. Fix a compact set K of Rd with positive Lebesgue measure. Let

X = {X(x) = (X1(x), ..., XD(x)), x ∈ K}

be a D-dimensional stochastic process with i.i.d. coordinates. Fix N > 0 and let
A ⊂ BN ⊂ RD be a Borel set. Assume that X1 is a ĝ-Gaussian process on K
satisfying conditions (CX1)-(CX3).
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1. [HCSS21, Thm. 3.4] Suppose that

lim
τ↓0

vg(τ)qg(τ) ∈ (0,∞), (1.55)

where qg is defined in (1.31). Then there exists a positive constant C depending
on m,K,N ,d,D, such that

P (X(K) ∩ A 6= ∅) ≥ C Cap(qg)−1(A). (1.56)

2. Instead of (1.55), assume that

vg(0) <∞. (1.57)

Then there exists a constant C := C(m,K,N, d,D) > 0 such that

P (X(K) ∩ A 6= ∅) ≥ C[vg(0)]−1. (1.58)

Remark 1.5. (1.55) and (1.57) are excluding conditions: Assume that there exists
a gauge function g satisfying (1.55) and (1.57). This implies limτ↓0 qg(τ) ∈ (0,∞),
and thus

qg(g(τ)) ≤ C, τ ∈ (0,�K ].

By the last inequality

vg(0) =

∫ �K

0

[qg(g(ρ))]ρ−1dρ ≥ c

∫ �K

0

ρ−1dρ =∞.

Implying a contradiction to (1.57).

Definition 1.5. For reasons explained bellow (see Remark 1.6) if neither (1.55) nor
(1.57) are satisfied, we say that we are on a critical dimension type case.

Proof. We adapt the method used for example in [BLX09, Thm 2.1] inspired in
[KK93, pp. 204-206].

Proof of 1. For any x ∈ K and a probability measure µ on A, define

ν̄n(x, ω) =

∫
A

(2πn)D/2 exp

(
−n|X(x)− z|2

2

)
µ(dz)

=

∫
A

µ(dz)

∫
RD
dξ exp

(
−|ξ|

2

2n
+ i〈ξ,X(x)− z〉

)
. (1.59)

Consider the sequence of random measures on K, (νn, n ≥ 1), with corresponding
densities (ν̄n(x, ω), n ≥ 1). Set νn(K)(ω) =

∫
K
ν̄n(x, ω) dx. We aim to prove:

(i) There exists C1 > 0 such that for any n ≥ 1, E (νn(K)) ≥ C1.

(ii) There exists C2 > 0 such that for any n ≥ 1, E
[
(νn(K))2] ≤ C2 E(qg)−1(µ).

We claim that (i) and (ii) implies (1.56). Indeed, Markov’s and Cauchy-Schwartz
inequalities together with (ii), leads to

P

(
νn(K) ≥

√
C2E(qg)−1(µ)

ε

)
≤ ε, ε > 0, n ≥ 1.
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Thus, (µn(K))n≥1 is a uniformly tight sequence of r.v. and by Prohorov’s theorem
there exists a subsequence nj, j ≥ 1 and a nonnegative r.v. ν such that νnj(K)
converges in law to ν.

By using the first equality in (1.59) we deduce that the event {X(K) ∩A = ∅},
implies that νnj converges to zero in law ,and in consequence

P (X(K) ∩ A 6= ∅) ≥ P (ν > 0).

Additionally, by the Paley Zygmund inequality, (i) and (ii),

P (νnj(K) > 0) ≥
[
E
(
νnj(K)

)]2
E
[(
νnj(K)

)2
] ≥ C1

C2E(qg)−1(µ)
.

We deduce (1.56), by letting j → ∞ in the last inequality and then using the
definition of qg-capacity.

Proof of (i). Since X(x) is a random vector with i.i.d. normally distributed
coordinates, its characteristic function is given by,

E (exp(i〈ξ,X(x)〉)) = exp

(
i〈ξ,mx〉 −

σ2
x|ξ|2

2

)
.

Thus Fubini’s theorem yields to

E (νn(K)) =

∫
K

dx

∫
A

µ(dz)

∫
RD
dξ exp

(
−i〈ξ, z −mx〉 −

|ξ|2

2

(
1

n
+ σ2

x

)2
)

=

∫
K

dx

∫
A

µ(dz)

(
2π

1/n+ σ2
x

)D/2
exp

(
− |z −mx|2

2[1/n+ σ2
x]

)
.

Let N0 = N +supx∈K |mx|. Applying (CX1), and since on the set A, |z−mx| ≤
N0, the above computations yield

E (νn(K)) ≥
∫
K

dx

∫
A

µ(dz)

(
2π

1 + σ2
x

)D/2
exp

(
−N

2
0

2σ2
x

)
≥ |K|

(
2π

1 + c2

)D/2
exp

(
−N

2
0

2c1

)
:= C1.

This ends the proof of (i). Notice that C1 := C1(m,K,N,D).
Proof of (ii). For any x, x̄ ∈ K, z, z̄ ∈ A, set

I(x, x̄, z, z̄)

=

∫
RD×RD

e−i〈(ξ,ξ̄),(z,z̄)〉 exp

(
−|(ξ, ξ̄)|

2

2n

)
exp

(
i〈(ξ, ξ̄), (X(x),X(x̄))〉

)
dξ dξ̄.

Using (1.59), the definition of νn(K) and Fubini’s theorem, we see that

E
[
(νn(K))2] =

∫
K×K

dx dx̄

∫
A×A

µ(dy) µ(dȳ)E (I(x, x̄, z, z̄)) . (1.60)

Observe that I(x, x̄, z, z̄) =
∏D

j=1 Ij(x, x̄, z, z̄), with

Ij(x, x̄, z, z̄)
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=

∫
R2

dξj dξ̄j e
−i〈(ξj ,ξ̄j),(zj ,z̄j)〉 exp

(
−|(ξj, ξ̄j)|

2

2n

)
exp

(
i〈(ξj, ξ̄j), (Xj(x), Xj(x̄))〉

)
Since the factors in the product above are i.i.d. random variables, from (1.60) we
obtain

E
[
(νn(K))2] =

∫
K×K

dx dx̄

∫
A×A

µ(dz) µ(dz̄)
D∏
j=1

[E (Ij(x, x̄, z, z̄))] . (1.61)

Let Γx,x̄ denote the covariance matrix of the 2-dimensional Gaussian random vector
(Xj(x), Xj(x̄)),

Γx,x̄ =

(
σ2
x σx,x̄

σx,x̄ σ2
x̄

)
,

and set Γnx,x̄ = 1
n
Id2 + Γx,x̄. The characteristic function of such random vector is

given by

E
(
exp

(
i〈(ξj, ξ̄j), (Xj(x), Xj(x̄))〉

))
= exp

(
i〈(ξj, ξ̄j), (mx,mx)〉 −

1

2
(ξj, ξ̄j)Γx,x̄(ξj, ξ̄j)

ᵀ)

)
,

and we deduce,

E (Ij(x, x̄, z, z̄))

=

∫
R2

dξj dξ̄j e
−i〈(ξj ,ξ̄j),(zj−mx,z̄j−mx̄)〉 exp

(
−1

2
(ξj, ξ̄j)Γ

n
x,x̄(ξj, ξ̄j)

ᵀ

)
. (1.62)

(1.50), (CX1) and (CX3) implies that

det Γnx,x̄ ≥ det Γx,x̄ = σ2
x̄E(Var(X(x)|X(x̄))) ≥ c1c4g

2(|x− x̄|). (1.63)

Thus det Γnx,x̄ > 0 (the case x = x̄ can be proved by direct computations) and Γnx,x̄
is invertible.

The function inside the integrals in (1.62) is the characteristic function of a
2-dimensional Gaussian random vector with covariance matrix Γnx,x̄ and mean vec-

tor (mx,mx̄) times the complex exponential function e−i〈(ξj ,ξ̄j),(zj ,z̄j)〉. Then, by the
Fourier inversion formula

E (Ij(x, x̄, z, z̄))

=
2π(

det Γnx,x̄
)1/2

exp

(
−1

2
(zj −mx, z̄j −mx̄)

(
Γnx,x̄

)−1
(zj −mx, z̄j −mx̄)

ᵀ

)
,

(1.64)

where

(Γnx,x̄)
−1 =

1

det Γnx,x̄

(
1
n

+ σ2
x̄ −σx,x̄

−σx,x̄ 1
n

+ σ2
x

)
,

We find upper estimates for (1.64). Let X̃j(x) = Xj(x)−mx, then

(a, b)
(
Γnx,x̄

)−1
(a, b)ᵀ =

1

det Γnx,x̄

[
(a2

(
1

n
+ σ2

x̄

)
+ b2

(
1

n
+ σ2

x

)
− 2abσx,x̄

]
17



≥ 1

det Γnx,x̄

(
a2σ2

x̄ + b2σ2
x − 2abσx,x̄

)

=

E

[(
aX̃j(x)− bX̃j(x̄)

)2
]

det Γnx,x̄
,

for any a, b ∈ R. Due to (CX2), X̃j is also a ĝ-Gaussian process on K, and it also
satisfies (CX1) and (CX3) on K. Hence, applying Lemma 1.3 we deduce

E (Ij(x, x̄, z, z̄)) ≤ C
1(

det Γnx,x̄
)1/2

exp

(
−c|(zj − z̄j)− (mx −mx̄)|2

det Γnx,x̄

)
. (1.65)

Using this estimate in (1.61), we obtain

E
[
(νn(K))2] ≤ C

∫
K×K

dx dx̄

∫
A×A

µ(dy) µ(dz̄)
1(

det Γnx,x̄
)D/2

× exp

(
−c|(z − z̄)− (mx −mx̄)|2

det Γnx,x̄

)
. (1.66)

(1.63) along with (CX2) implies

sup
x,x̄∈K

|mx −mx̄|2

det Γnx,x̄
≤ C <∞. (1.67)

Apply the inequality |(z − z̄)− (mx −mx̄)|2 ≥ 1
2
|z − z̄|2 − |mx −mx̄|2 and (1.67)

on the right-hand side of (1.66) to deduce,

E
[
(νn(K))2] ≤ C

∫
K×K

dx dx̄

∫
A×A

µ(dy) µ(dz̄)
1(

det Γnx,x̄
)D/2 exp

(
−c|z − z̄|

2

det Γnx,x̄

)
.

(1.68)

If det Γnx,x̄ ≥ |z − z̄|2, the integrand is bounded from above by
(
det Γnx,x̄

)−D/2
. If

on the contrary, det Γnx,x̄ < |z− z̄|2, the integrand is bounded (up to a multiplicative

constant) by |z − z̄|−D, because the function τ 7→ τD/2e−cτ is bounded over R+. In
this way,

E
[
(νn(K))2] ≤ C

∫
K×K

dx dx̄

∫
A×A

µ(dz) µ(dz̄)
1

max
((

det Γnx,x̄
)D/2

, |z − z̄|D
)

≤ C

∫
K×K

dx dx̄

∫
A×A

µ(dz) µ(dz̄)
1

max (gD(|x− x̄|), |z − z̄|D)
,

(1.69)

where in the second inequality we have applied (1.63).
Our next goal is to prove∫

K×K

dx dx̄

max (gD(|x− x̄|), |z − z̄|D)
≤ C(K, d)[qg(|z − z̄|)]−1. (1.70)

Indeed,∫
(K×K)∩{g(|x−x̄|)≤|z−z̄|}

dx dx̄

max (gD(|x− x̄|), |z − z̄|D)

18



≤ C(K, d)|z − z̄|−D
∫ g−1(|z−z̄|)

0

ρd−1dρ = C(K, d) [qg(|z − z̄|)]−1,

and ∫
(K×K)∩{g(|x−x̄|)>|z−z̄|}

dx dx̄

max (gD(|x− x̄|), |z − z̄|D)

≤ C(K, d)

∫ �K

g−1(|z−z̄|)
[g(ρ)]−Dρd−1dρ

= C(K, d)vg(|z − z̄|) ≤ C̃(K, d)[qg(|z − z̄|)]−1,

where the last equality holds because (1.55) is equivalent to supτ∈[0,�K ] vg(τ)qg(τ) ∈
(0,∞).

Hence,

E
[
(νn(K))2] ≤ C(K, d)E(qg)−1(µ),

and the right-hand side does not depend of n. Finishing the proof of (1.56).
Proof of 2. The procedure is the same that in 1. But now instead of (ii) we

claim that there exists C2 > 0 such that for any n ≥ 1, E
[
(νn(K))2] ≤ C2. Indeed,

all the arguments given in the proof of 1. are also valid in this case until (1.69).
Hence, by (1.57) and (1.69)

E
[
(νn(K))2] ≤ C

∫
K×K

dx dx̄

∫
A×A

µ(dz)µ(dz̄)g−D(|x− x̄|)

≤ C(d,K)vg(0) <∞.

From the last inequality we conclude the validity of (1.58) instead of (1.56).
The proof of the theorem is complete.

Theorem 1.3 gives us a condition for non polarity of points:

Corollary 1.3. Let X be as in Theorem 1.3 and assume (1.57). Then, for any
z ∈ RD, P (X(K) ∩ {z} 6= ∅) > 0, that is {z} is non polar for the process restricted
to K.

Example 1.6. We compute vg and analyze conditions (1.55) and (1.57) for the
gauge functions in Example 1.4.

1. g(τ) = τ ν ,τ, ν > 0. We have that

vg(τ) =

∫ �K

τν
ρd−νD−1dρ

=

(νD − d)−1
[
τ−(D−d/ν) −�−(D−d/ν)

K

]
, if d/ν 6= D,

ν−1 log
(
�
ν
K

τ

)
, otherwise.

Since qg(τ) = τD−d/v, we deduce that

lim
τ↓0

vg(τ)qg(τ) =

{
(νD − d)−1, if D > d/ν,

∞, otherwise,
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and

vg(0) =

{
(d− νD)−1

�
d/ν−D
K , if d/ν > D,

∞, otherwise.

Thus (1.55), (1.57) is satisfied if and only if D > d/ν, d/ν > D, respectively.

2. g(τ) = τ ν | log τ |γ,τ ∈ [0, e−
γ
ν ], γ, ν > 0. Due to (1.39)

lim
τ↓0

qg(τ) =

{
∞, if D ≤ d/ν

0, if , D > d/ν
(1.71)

We have that

vg(τ) =

∫ �K

g−1(τ)

| log ρ|−γDρ−νD+d−1dρ.

We claim that

vg(0) =

{
C(ν, γ, d,D), if either D < d/ν, or D = d/ν, γD > 1

∞, if either D > d/ν, or D = d/ν, γD ≤ 1.
(1.72)

Indeed, since g(0) = 0 it is clear that the claim is valid when D 6= d/ν. Now
assume that D = d/ν. By the change of coordinates ρ 7→ − log ρ,

vg(0) �
∫ 1

0

| log ρ|−γDρ−1dρ =

∫ ∞
1

ρ−γDdρ

=

{
C(ν, γ, d,D), if γD > 1

∞, if γD ≤ 1.

Finishing the proof the claim.

Now, suppose that D > d/ν. By the definitions of vg and qg,

vg(g(τ))qg(g(τ)) =

[∫ g(�K)

τ

| log ρ|−γDρ−νD+d−1dρ

] [
τ d

(g(τ))D

]−1

.

Then, since g(0) = 0, and by applying the L’Hôpital’s rule which is valid in
this case because of (1.71) and (1.72), we obtain that

lim
τ↓0

vg(τ)qg(τ) = lim
τ↓0

vg(g(τ))qg(g(τ))

= lim
τ↓0

−| log τ |−γDτ−νD+d−1

τ−νD+d−1[(d− νD)| log ρ|−γD − γD| log τ |−γD−1]

= (Dν − d)−1.

Summarizing the discussion above, (1.55) holds if and only if D > d/ν. And
(1.57) is valid if and only if either D < d/ν or D = d/ν, γD > 1.

We end this section with a technical lemma which proof is similar to Lemma 3.4
in [HCSS21].
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Lemma 1.3. Let X = {X(x) : x ∈ K} be a ĝ-Gaussian process in K a compact
subset of Rd satisfying (CX3) and σ2

K := infx∈K σ
2
x > 0. Then, there exists a positive

constant c such that for any a, b ∈ R and x, x̄ ∈ K,

E[(aX(x)− bX(x̄))2] ≥ c(a− b)2. (1.73)

Proof. (1.73) is equivalent to say that the quadratic form

Q(a, b) = a2(σ2
x − c)− 2ab(σx,x̄ − c) + b2(σ2

x̄ − c), a, b ∈ R,

is positive semi-definite for any x, x̄ in K. Hence, it is enough to proof that there
exist c > 0 that for any x, x̄ ∈ K,

(i) σ2
x − c ≥ 0,

(ii) (σ2
x − c)(σ2

x̄ − c)− (σx,x̄ − c)2 ≥ 0.

(i) is valid for any c ∈ (0, σ2
K ]. (ii) is equivalent to

det Γx,x̄ ≥ cd(x, x̄), x, x̄ ∈ K, (1.74)

where Γx,x̄ is the covariance matrix of the random vector (X(x), X(x̄)) and d the
canonical metric of X. By (1.50) and (CX3)

det Γx,x̄ ≥ c (σK) g2(|x− x̄|), x, x̄ ∈ K.

Since X is a ĝ-Gaussian process in K, the last inequality implies that there exists c̃
a positive constant satisfying (1.74). We conclude that c = σ2

K ∧ c̃ fulfills (1.73).

1.3 Isotropic Gaussian processes

Definition 1.6. Fix η > 0 and let X be a D-dimensional Gaussian process with
i.i.d coordinates,

X = {X(x) = (X1(x), . . . , XD(x)), x ∈ K(η)},

where K is a compact subset of Rd, such that X1 is g-Gaussian with g(τ) = τ ν , ν ∈
(0, 1], i.e,

dX1(x, x̄) � |x− x̄|ν , x, x̄ ∈ K(η). (1.75)

A process satisfying such kind of condition is called isotropic Gaussian process. By
Example 1.2 the sample paths of X are continuous a.s.

In Example 1.3(1.) we proved that g satisfies the hypothesis of Lemma 1.1(ii).

Additionally, from Example 1.4 (1.), qg(τ) = τD−
d
ν and qg is increasing if and only

if D > d/ν. From Corollary 1.1, we deduce that if σ2
K(η) > 0 and D > d/ν, for any

Borel set A ⊂ RD,
P (X(K) ∩ A 6= ∅) ≤ CHD− d

ν
(A), (1.76)

with C := C(K, σ2
K(η) , d,D).

Now, suppose that X1 satisfies (CX1)-(CX3). Fix a bounded Borel set A ⊂
BN ⊂ RD. According to Example 1.6 (1.55), (1.57) are satisfied if and only if
D > d/ν, d/ν > D respectively. Then, applying Theorem 1.3 we obtain,
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1. If D > d/ν,
P (X(K) ∩ A 6= ∅) ≥ cCapD− d

ν
(A), (1.77)

with c := c(K,N, d,D).

2. If d/ν > D,
P (X(K) ∩ A 6= ∅) ≥ c > 0 (1.78)

with c := c(K,N, d,D).

Remark 1.6. Fix z ∈ RD and assume that (1.76), (1.77) and (1.78) are valid. Hence

P (X(K) ∩ {z} 6= ∅) =

{
HD− d

ν
({z}) = 0, if D > d/ν,

P (X(K) ∩ {z} 6= ∅) ≥ c > 0, if D > d/ν.

Thus, singletons {z} are polar if D > d/ν and non polar if D < d/ν.
We identify the value D0 = d/ν as critical, usually called the critical dimension

for polarity of points. Observe that if D = d/ν (1.55) and (1.57) are both false.
Thus it makes sense in the general context of g-Gaussian process to say that under
the same conditions we are on a critical dimension type case. (See Remark 1.5).

An open problem is to find a criteria to determine whether a g-Gaussian process
hits or not points in the critical dimension. Dalang, Mueller and Xiao studied this
problem in the case of Gaussian isotropic random fields in [DMX17]. We believe
its procedure could be adapted to a more general context. It is expected that a
g-Gaussian random field does not hit points in the critical dimension.

The following examples provide illustrations of the preceding results:

Example 1.7. Fractional Brownian motion. Let

BH = {BH(x) = (BH
1 (x), ..., BH

D (x)), x ∈ RD
+}

a (d,D)- fractional Brownian motion of Hurst parameter H ∈ (0, 1), i.e. a centered
Gaussian random field with i.i.d. coordinates that

E(BH
j (x)BH

j (y)) =
1

2

(
|x|2H + |y|2H − |x− y|2H

)
, x, y ∈ RD

+ .

If d = 1, H = 1/2, BH is the D-dimensional Brownian motion.
Let BH = {BH

1 (x), x ∈ Rd
+}, then

d2
BH (x, y) = |x− y|2H

so BH is g-Gaussian on any compact subset of Rd
+, with g(τ) = τH .

Fix K = [a, b] ⊂ Rd
+, 0 < a < b <∞ a compact box. BH satisfies that

� σ2
x � 1 for x ∈ K.

� [Pit78, Lem. 7.1] For all x, x̄ ∈ Rd
+,

E(Var(BH(x) | BH(x̄))) ≥ |x− x̄|2H .

Let D0 = dH−1. By (1.76), (1.77) and (1.78) we deduce the following hitting
probabilities results relative to the fractional Brownian motion.

22



1. Let D > D0.

(a) There exists a constant C := C(d, σ2
K(η) , D,K) such that for any Borel

set A ∈ B(RD),

P (BH(K) ∩ A 6= ∅) ≤ CHD−D0(A).

(b) Fix N > 0. Let A ∈ B(RD) be such that A ⊂ BN . There exists a
constant c := c(d,D,K,N) such that

P (BH(K) ∩ A 6= ∅) ≥ cCapD−D0
(A).

2. Assume that D < D0. Let A ∈ B(RD) be such that A ⊂ BN . There exists a
constant c := c(d,D,K,N) > 0 such that

P (BH(K) ∩ A 6= ∅) ≥ c > 0.

And D0 is the critical dimension.

As stated in [DMX17, Thm. 6.1] points are polar for fractional Brownian motion
in the critical dimension, that is, if D = d/H for all z ∈ RD

P (BH(K) ∩ {z} 6= ∅) = 0.

Example 1.8. Fractional Brownian sheet. Let

BH = {BH(x) = (BH
1 (x), ..., BH

D (x)), x ∈ Rd
+}

a (d,D)- fractional Brownian sheet of Hurst parameter H ∈ (0, 1), i.e a centered
Gaussian random field with i.i.d. coordinates that

E(BH
j (x)BH

j (y)) =
d∏
i=1

1

2

(
|xi|2H + |yi|2H − |xi − yi|2H

)
, x, y ∈ Rd

+.

If d = 1, the fractional Brownian sheet and the fractional Brownian motion are the
same process. If H = 1/2, BH is the Brownian sheet.

Let BH = {BH
1 (x), x ∈ Rd

+} and K = [a, b] ⊂ Rd
+, 0 < a < b <∞ be a compact

box. According to [AX05, Lem. 8],

d2
BH (x, y) � |x− y|2H , x, y,∈ K,

so BH is g-Gaussian on any compact subset of Rd
+, with g(τ) = τH . Additionally,

BH satisfies that

� σ2
x � 1 for x ∈ K.

� [WX07, Lem. 7.1] For all x, x̄ ∈ K,

E(Var(BH(x) | BH(x̄)) ≥ c(K)|x− x̄|2H .
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If we compare with the fractional Brownian motion of parameter H, the bounds
of the canonical metric and the conditional variance are in terms of the same expo-
nents. This leads to similar hitting probabilities results in both cases. For avoiding
repetitions we don’t explicitly state them for the fractional Brownian sheet.

Fix N > 0 and K = [a, b] ⊂ Rd
+, 0 < a < b < ∞, a compact box. In [KS99,

Thm. 1.1] is proved that there exists constants depending on N and K, such that

P (B1/2(K) ∩ A 6= ∅) � CapD−2d(A), A ∈ B(RD) ∩BN ,

identifying the capacity as an optimal estimation for hitting probabilities. The
method used for proving the result is based in the Markovian properties of the
Brownian sheet, and it cannot be applied in the context of more general Gaussian
processes as the fractional Brownian sheet when H 6= 1

2
.
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Chapter 2

The linear stochastic Poisson
equation

We apply the results of Chapter 1 to the linear stochastic Poisson equation with
boundary conditions {

−∆vj(x) = Ẇj(x), x ∈ B1,

vj(x) = v0(x), x ∈ Sd−1,

j = 1, ..., D, with (Wj, j = 1, ..., D) independent copies of a white noise, B1 the d-
dimensional unit ball centered at the origin, and Sd−1 the d− 1-dimensional sphere.

We first prove that such equation has a random field solution if and only if
d ∈ {1, 2, 3}. By Theorem 2.2 the solution turns out to be a g-Gaussian process.
Section 2.3 is devoted to analyze additional second order properties required for
apply the hitting probabilities criteria of Chapter 1. Finally, in Theorem 2.3 we find
upper and lower bounds for hitting probabilities.

2.1 The solution

Definition 2.1. Let W = {W (A), A ∈ Bb(Rd)} be a centered Gaussian random
field with covariance

E(W (A)W (B)) = |A ∩B|,
where | · | denotes the Lebesgue measure, we say that W is a white noise.

Remark 2.1. The process B = {B(x) := W ([0, x]), x ∈ Rd
+}, is the Brownian sheet

from Example 1.8 in Chapter 1.

The solution to the linear stochastic Poisson equation investigated in this Chap-
ter, is given in terms of the Wiener stochastic integral with respect to white noise.
We recall how to construct this integral.

We consider the case of deterministic integrands. For ϕ = 1A, A ∈ Bb(Rd), an
indicator function, we define ∫

Rd
1AW (dx) := W (A),

which yields to

E

(∫
Rd

1AW (dx)

∫
Rd

1BW (dx)

)
= |A ∩B| = 〈1A, 1B〉L2(Rd), A,B ∈ Bb(Rd). (2.1)
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Let

E =

{
ϕ : ϕ =

n∑
i=1

ai1Ai , ai ∈ R, Ai ∈ Bb(Rd),

}
be the vector space of step functions in Rd. We extend the definition of the integral
as ∫

Rd
ϕ(x)W (dx) :=

d∑
i=1

aiW (Ai), ϕ ∈ E .

It can be proved that this extension is well defined, and as in (2.1)

E

(∫
Rd
ϕ(x)W (dx)

∫
Rd
ψ(x)W (dx)

)
= 〈ϕ, ψ〉L2(Rd), ϕ, ψ ∈ E .

Thus, the map ϕ 7→
∫
ϕ(x)W (dx) is an isometry between E and a linear subspace

of L2(Ω). Such isometry can be extended to L2(Rd) in a unique way, since step
functions are dense in this space. We denote this extension by∫

Rd
ϕ(x)W (dx), ϕ ∈ L2(Rd).

And we define the stochastic integral with respect to white noise of a function
ϕ ∈ L2(Rd), which is a centered normal random variable with variance |ϕ|2

L2(Rd)
.

The following property, consequence of the construction, is called the (Itô) isom-
etry of the stochastic integral:

E

(∫
Rd
ϕ(x)W (dx)

∫
Rd
ψ(x)W (dx)

)
= 〈ψ, ϕ〉L2(Rd), ψ, ϕ ∈ L2(Rd). (2.2)

The Green’s function of the Laplace operator L = −∆ on B1 the d-dimensional
unit ball centered at zero, is given by

G(x, y) =

{
Γ(|x− y|)− Γ

(
|y|
∣∣∣x− y

|y|2

∣∣∣) , y 6= 0,

Γ(|x− y|)− Γ(1), y = 0,
(2.3)

with

Γ(|z|) =

{
|z|2−d

d(d−2)ωd
, d 6= 2,

− 1
2π

log(|z|), d = 2,

where ωd is the d-volume of B1. (see for example [Eva98, p. 40]).

Remark 2.2. According to [BP90, p. 221], for d = 2, 3, the Green function in (2.3)
has the following alternative expression

G(x, y) = Γ(|x− y|)− Ex(Γ(|Bτ − y|)), x, y ∈ B1,

where B is a d-dimensional Brownian motion that starts from x at time zero and τ
denotes the first time it hits Sd−1.

Remark 2.3. We have that(
|y|
∣∣∣∣x− y

|y|2

∣∣∣∣)2

= |x|2|y|2 − 2x · y + 1 =

(
|x|
∣∣∣∣y − x

|x|2

∣∣∣∣)2

,

implying the symmetry of the Green function G(x, y) = G(y, x), and that

1− |x||y| ≤ |y|
∣∣∣∣x− y

|y|2

∣∣∣∣ ≤ 1 + |x||y|, x, y ∈ B1 \ Sd−1. (2.4)
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Consider the linear stochastic Poisson equation{
−∆v(x) = Ẇ (x), x ∈ B1

v(x) = v0(x), x ∈ Sd−1.
(2.5)

where W is a space white noise on B1 and v0 : B1 → R a measurable function.

Definition 2.2. Assume that for any x ∈ B1, 1B1G(x, ∗) ∈ L2(Rd). The random
field solution to (2.5) is the Gaussian stochastic process

v(x) = I0(x) + u(x), x ∈ B1, (2.6)

where

I0(x) =
1− |x|2

dωd

∫
Sd−1

v0(y)

|x− y|d
dS(y), u(x) =

∫
B1

G(x, y)W (dy). (2.7)

(See for example [MBS10, Thm. 3.3] for the definition of the hypersurface integral
in the left of (2.7)).

Remark 2.4. Assume that v0 ∈ C(Sd−1). Then the function I0 is in C∞(B1) and it
is a solution to the classical Poisson equation{

−∆v(x) = 0, x ∈ B1,

v(x) = v0(x), x ∈ Sd−1.

(see [Eva98, Thm. 15, p.41]).

It turns the linear stochastic Poisson equation has a random field solution if and
only if d ∈ {1, 2, 3}.

Theorem 2.1. The stochastic process (u(x), x ∈ B1) in (2.7) is well defined if and
only if d ∈ {1, 2, 3}. In this case,

sup
x∈B1

E(|u(x)|2) <∞. (2.8)

Proof. By the stochastic integral isometry (2.2), and (2.7)

σ2
x = E(|u(x)|2) =

∫
B1

dy

(
Γ(|x− y|)− Γ

(
|y|
∣∣∣∣x− y

|y|2

∣∣∣∣))2

, x ∈ B1. (2.9)

We first claim that the integral on the right side of (2.9) is not finite when d > 3.

Indeed, we have that Brx(x) ⊂ B1 for rx := 1−|x|
2

. Then, for d > 3

σ2
x ≥ c(d)

∫
Brx (x)

dy

[
|x− y|2(2−d) − 1

2

(
|y|
∣∣∣∣x− y

|y|2

∣∣∣∣)2(2−d)
]

(2.10)

By the lower bound in (2.4), for x ∈ B1 \ Sd−1

∫
Brx (x)

dy

(
|y|
∣∣∣∣x− y

|y|2

∣∣∣∣)2(2−d)

≤ (1− |x|)2(2−d)

∫
Brx (x)

dy <∞. (2.11)
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Additionally, since d > 3,∫
Brx (x)

dy|x− y|2(2−d) =

∫
Brx

dy|y|2(2−d) = cd

∫ rx

0

dρρ3−d =∞. (2.12)

The claim follows by (2.10)-(2.12).
Now assume that d = 1, 2, 3. We prove (2.8) by distinguishing cases:
Case 1. d = 1. We have that

σ2
x =

1

4

∫ 1

−1

dy (|x− y| − |1− xy|)2 =
1

6
(1− x2)2 ≤ 1

6
, (2.13)

implying (2.8).
Case 2. d = 2. Since for any x ∈ B1, B1(x) ⊂ B2,∫

B1

dyΓ(|x− y|)2 =

∫
B1(x)

dyΓ(|y|)2

≤
∫
B2

dyΓ(|y|)2 = cd

∫ 2

0

dρρ(log ρ)2 <∞. (2.14)

Additionally, by (2.4)∫
B1

dyΓ

(
|y|
∣∣∣∣x− y

|y|2

∣∣∣∣)2

≤
∫
B1

dy
(
log (1− |y|)2 + log [1 + |y|)2]

= cd

∫ 1

0

dρρ
[
log (1− ρ)2 + log (1 + ρ)2] <∞. (2.15)

The identities (2.9), together with (2.14) and (2.15) implies (2.8).
Case 3. d = 3 The arguments for proving (2.8) are similar to those given in the

proof of the Case d = 2. We omit the details.

In the rest of this chapter we will assume that d ∈ {1, 2, 3}.

2.2 Equivalence for the canonical metric

For the process u of Theorem 2.1, we denote by

du(x, y) = ‖u(x)− u(y)‖L2(Ω). (2.16)

the canonical metric associated with u. This section is devoted to prove Theorem
2.2 where we establish an equivalent pseudo-distance for du. This result implies that
u is a g-Gaussian process. The cases d = 1, 3, are studied in Lemmas 5.4 and 5.7 of
[SSV18]. In Lemma 2.1 we find sharp bounds for d = 2 this is an improvement of
Lemma 5.5 in [SSV18].

Theorem 2.2. Let (u(x), x ∈ B1) be the stochastic process defined in (2.7). Fix
ρ0 ∈ (0, 1). There exists positive constants c, C depending on ρ0, d such that for any
x, y ∈ Bρ0,

d2
u(x, y) �

[
log

(
2ρ0

|x− y|

)]β
|x− y|2∧(4−d), (2.17)

where β = 1 if d = 2, and β = 0 otherwise.
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Proof. The cases d = 1, 3 are Lemmas 5.4 and 5.7 in [SSV18]. The case d = 2 is
Proposition 2.1 bellow.

Proposition 2.1. Assume that d = 2 and fix ρ0 ∈ (0, 1). Let (u(x), x ∈ B1) the
stochastic process defined in (2.7). There exists positive constants c, C depending on
ρ0 such that for any x, y ∈ Bρ0,

d2
u(x, y) � log

(
2ρ0

|x− y|

)
|x− y|2. (2.18)

Proof. Fix x, y ∈ Bρ0 . From (2.7), (2.3) and the isometry property (2.2) we deduce

d2
u(x, y) =

∫
B1

dz

[
log

(
|x− z|
|y − z|

||z|2y − z|
||z|2x− z|

)]2

. (2.19)

Thus, since |x− y| ≤ 2ρ0,

1

2
I − J ≤ d2

u(x, y) ≤ 2(I + J ), (2.20)

for

I :=

∫
B1

dz

[
log

(
|x− z|
|y − z|

)]2

,J :=

∫
B1

dz

[
log

(
||z|2x− z|
||z|2y − z|

)]2

.

Let θ0 be the angle of the vector x− y in polar coordinates. Writing the change
of variables z 7→ y − z and then switching to polar coordinates,

I =

∫
B1(y)

dz

[
log

(
|x− y + z|
|z|

)]2

=
1

4

∫
A

d(θ, ρ)ρ

[
log

(
1 + 2

|x− y|
ρ

cos(θ − θ0) +
|x− y|2

ρ2

)]2

, (2.21)

with A = {(θ, ρ) ∈ [0, 2π)× R+ : |ρ(cos θ, sin θ)− y| ≤ 1}.
[SSV18, (55)-(56), p.1877] implies that

J ≤ |x− y|2

8π(1− ρ0)4
. (2.22)

Upper bound. We have that A ⊂ [0, 2π)× [0, 1 + ρ0]. Thus,

I ≤ 1

4
(I1 + I2) (2.23)

where

I1 :=

∫ 2π

0

dθ

∫ 1+ρ0
2ρ0
|x−y|

0

dρρ

[
log

(
1 + 2

|x− y|
ρ

cos θ +
|x− y|2

ρ2

)]2

,

= |x− y|2
∫ 2π

0

dθ

∫ 1+ρ0
2ρ0

0

dρρ[log(1 + 2ρ−1 cos θ + ρ−2)]2

= c(ρ0)|x− y|2, (2.24)
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I2 :=

∫ 2π

0

dθ

∫ 1+ρ0

1+ρ0
2ρ0
|x−y|

dρρ

[
log

(
1 + 2

|x− y|
ρ

cos θ +
|x− y|2

ρ2

)]2

= |x− y|2
∫ 2π

0

dθ

∫ 1+ρ0
|x−y|

1+ρ0
2ρ0

dρρ[log(1 + 2ρ−1 cos θ + ρ−2)]2. (2.25)

We bound the integral on the r.h.s of (2.25). We distinguish two cases according
to the inequalities

| log(τ1)| ≤ | log(τ2)| if 1 ≤ τ1 ≤ τ2, | log(τ2)| ≤ | log(τ1)| if 0 < τ2 ≤ τ1 ≤ 1.

Case 1. 2ρ−1 cos θ + ρ−2 ≥ 0. Thus,∫ 1+ρ0
|x−y|

1+ρ0
2ρ0

dρρ[log(1 + 2ρ−1 cos θ + ρ−2)]2

≤
∫ 1+ρ0
|x−y|

1+ρ0
2ρ0

dρρ[log(1 + 2ρ−1 + ρ−2)]2 = 4

∫ 1+ρ0
|x−y|

1+ρ0
2ρ0

dρρ[log(1 + ρ−1)]2

≤ 4

∫ 1+ρ0
|x−y|

1+ρ0
2ρ0

dρρ−1 = 4 log

(
2ρ0

|x− y|

)
, (2.26)

the last inequality is valid since 0 ≤ log(1 + τ) ≤ τ, τ ≥ 0.
Case 2. 2ρ−1 cos θ + ρ−2 ≤ 0. Thus,∫ 1+ρ0

|x−y|

1+ρ0
2ρ0

dρρ[log(1 + 2ρ−1 cos θ + ρ−2)]2

≤ 4

∫ 1+ρ0
|x−y|

1+ρ0
2ρ0

dρρ[log(1− ρ−1)]2 = 4

∫ 2ρ0
1+ρ0

|x−y|
1+ρ0

dρρ−1

[
log(1− ρ)

ρ

]2

≤ 2

[
(1 + ρ0)

ρ0

log

(
1 + ρ0

1− ρ0

)]2 ∫ 2ρ0
1+ρ0

|x−y|
1+ρ0

dρρ−1

= 2

[
(1 + ρ0)

ρ0

log

(
1 + ρ0

1− ρ0

)]2

| log

(
2ρ0

|x− y|

)
, (2.27)

where in the second line we wrote the change of coordinates ρ 7→ ρ−1, and the third
line follows from the fact that the function ρ 7→ (ρ−1 log(1 − ρ))2 is increasing in
[0, 1).

By following (2.23)-(2.27) we deduce

I ≤ c(ρ0) log

(
2ρ0

|x− y|

)
|x− y|2. (2.28)

The r.h.s in (2.20), together with (2.22) and (2.28) implies the upper bound in (2.17).
Lower bound. We have that [0, 2π)× [0, 1−ρ0] ⊂ A. Thus, since cos(θ−θ0) ≥ 1

2
,

for θ − θ0 ∈ [−π
3
, π

3
] mod 2π

I ≥ 1

4

∫ 2π
3

0

dθ

∫ 1−ρ0

1−ρ0
2ρ0
|x−y|

dρρ[log(1 + |x− y|ρ−1)]2
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≥ π

6
|x− y|2

∫ 1−ρ0

1−ρ0
2ρ0
|x−y|

dρρ−1

(
1 +
|x− y|
ρ

)−2

≥ π

6
|x− y|2

∫ 1−ρ0

1−ρ0
2ρ0
|x−y|

ρ−1

=
π

6
log

(
2ρ0

|x− y|

)
|x− y|2, (2.29)

where the second inequality is valid since log(1 + τ) ≥ τ/(τ + 1), τ ≥ 0.
The lower bound in (2.20),together with (2.22) and (2.29) implies that there

exist small positive constants c̃2,1(ρ0), c̃2,2(ρ0) such that if |x− y| ≤ c̃1 then

d2
u(x, y) ≥ c̃2,2 log

(
2ρ0

|x− y|

)
|x− y|2.

By (49) in Lemma 5.5 of [SSV18],

inf
x,y∈Bρ0 ,|x−y|≥c̃2,1

d2
u(x, y) = c̃2,3(ρ0) > 0.

Since 1 ≥ maxx,y∈Bρ0 ,|x−y|≥c̃1 log (2ρ0/|x− y|) |x − y|2, we deduce that the lower
bound in (2.17) is valid for c = c̃2,2 ∧ c̃2,3.

2.3 Further second order properties

In this section we prove further second order properties of the solution of the stochas-
tic Poisson equation. Theorem 2.2 together with Proposition 2.2 will be used in the
next section for proving the hitting probabilities result stated in Theorem 2.3.

Proposition 2.2. Fix ρ0 ∈ (0, 1) and let (u(x), x ∈ B1) be the stochastic process
defined in (2.7).

1. For all x, y ∈ Bρ0,

|σ2
x − σ2

y| ≤ c(η, ρ0, d)|x− y|η, (2.30)

with η = 1, for d = 1, 2, and η ∈ (0, 1) for d = 3.

2. There exist constants 0 < c(d, ρ0) < C(d, ρ0) such that for any x ∈ Bρ0,

c ≤ σ2
x ≤ C. (2.31)

3. For any x, y ∈ Bρ0 such that x 6= y, ρx,y < 1.

4.

E(Var (u(x)|u(y))) �
[
log

(
2ρ0

|x− y|

)]β
|x− y|2∧(4−d), x, y ∈ Bρ0 , (2.32)

where β = 1, if d = 2, and β = 0 if d = 1, 2.
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Proof. 1. Case 1. d=1. By (2.13),

|σ2
x − σ2

y| =
1

6
|x− y||x+ y|

(
2− (x2 + y2)

)
≤ 2

3
ρ0|x− y|, x, y ∈ Bρ0 .

Case 2. d=2. By (2.3) and (2.9),

σ2
x =

∫
B1

dz

[
log

(
|x− z||z|
||z|2x− z|

)]2

We claim that the map x 7→ σ2
x has bounded partial derivatives in Bρ0 . The mean

value theorem will imply (2.30). Indeed, by the rule of the derivation under the
integral sign,

∂xjσ
2
x =

∫
B1

dz log

(
|x− z||z|
||z|2x− z|

)[
xj − zj
|x− z|2

− (|z|2xj − zj)|z|2

||z|2x− z|2

]
, j = 1, 2.

By the lower bound in (2.4)

||z|2xj − zj||z|2

||z|2x− z|2
≤ ||z|

2xj − zj|
(1− |x||z|)2

≤ 1 + ρ0

(1− ρ0)2
,

implying that

|∂xjσ2
x| ≤ (I + J ),

I :=

∫
B1

dz |log (|x− z|)|
[
|xj − zj|
|x− z|2

+
1 + ρ0

(1− ρ0)2

]
,

J :=

∫
B1

dz

∣∣∣∣log

(
||z|2x− z|
|z|

)∣∣∣∣ [ |xj − zj||x− z|2
+

1 + ρ0

(1− ρ0)2

]
.

Using the change of coordinates z 7→ x− z

I =

∫
B1(x)

dz |log (|z|)|
[
|zj|
|z|2

+
1 + ρ0

(1− ρ0)2

]
≤
∫
B2

dz |log (|z|)|
[
|z|−1 +

1 + ρ0

(1− ρ0)2

]
= c(d)

∫ 2

0

dρ| log ρ|
[
1 +

1 + ρ0

(1− ρ0)2
ρ

]
= c(d, ρ0) <∞.

Following a similar procedure, but now applying (2.4), we deduce

J ≤
∫
B2

dz log

(
1 + ρ0

1− ρ0

)[
|z|−1 +

1 + ρ0

(1− ρ0)2

]
= c(d, ρ0)

∫ 2

0

dρ

[
1 +

1 + ρ0

(1− ρ0)2
ρ

]
= c(d, ρ0) <∞.

Case 3. d=3. This is Lemma 5.13 in [SSV18].
2. Due to (2.30) the map x 7→ σ2

x is continuous in Bρ0 , additionally by (2.9) is
not hard to proof that σ2

x > 0, x ∈ Bρ0 , implying (2.31).
3. This is Lemma 5.1 in [SSV18].

32



4. Due to (2.17), and 1. 2. 3. in this Proposition, the hypothesis of Proposition
1.1, are valid for d = 2, 3 implying (2.32).

If d = 1, condition 3. of Proposition 1.1 is not satisfied, hence we just deduce
(1.51) i.e. the the upper bound in (2.32). In this case, by the isometry (2.2),

σx,y =
1

4

∫ 1

−1

dz(|x− z| − |1− xz|)(|y − z| − |1− yz|)

=
1

12
(1− xy − |x− y|)

(
2(|x− y|+ 1)−

(
x2 + y2

))
≥ 0.

This and (2.12) implies that,

σxσy − σx,y =
1

12
|x− y|2 (1− xy − |x− y|)

≥ 1− ρ2
0

12
|x− y|2,

σxσy + σx,y ≥ σxσy ≥
1

6
(1− ρ2

0)2, σ2
y ≤

1

6
.

Thus, by (1.50)

E(Var (u(x)|u(y)) =
(σxσy − σx,y)(σxσy + σx,y)

σ2
y

)

≥ (1− ρ2
0)3

12
|x− y|2,

implying the lower bound in (2.32).

2.4 Hitting probabilities

Consider the Gaussian random field

v = (v(x) = (v1(x), . . . , vD(x)), x ∈ B1) ,

where (vj(x)), j = 1, . . . , D, are independent copies of the process (v(x)) defined in
(2.6). The process v is the random field solution to the system of SPDEs{

−∆vj(x) = Ẇj(x), x ∈ B1,

vj(x) = v0(x), x ∈ Sd−1,
(2.33)

j = 1, ..., D, where (Wj, j = 1, ..., D) are independent copies of a white noise intro-
duced at the beginning of section 2.1 and v0 is such that the function x 7→ I0(x) is
continuous (see Remark 2.4 for sufficient conditions).

For τ ∈ R+, let

g(τ) =

[
log

(
2ρ0

τ

)]β
2

τ 1∧(2−d/2), qg(τ) = τD
(
g−1(τ)

)−d
, (2.34)

where d = 1, 2, 3 and β = 1d=2.
Let D0 = d[1∧ (2−d)]−1. According to Example 1.4 the function qg satisfies the

conditions required by the definition of the qg-Hausdorff measure if and only if D >
D0. We are now able to prove the following result relative to hitting probabilities
bounds for the D-dimensional random field v.
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Theorem 2.3. Fix ρ0 ∈ (0, 1), N > 0 and let K = Bρ0. Suppose that the function
K 3 x 7→ I0(x) satisfies condition (CX2). The D-dimensional random field v satisfy
the following bounds:

1. Let D > D0.

(a) There exists a constant C := C(d,D,K) such that for any Borel set
A ∈ B(RD),

P (v(K) ∩ A 6= ∅) ≤ CHqg(A). (2.35)

(b) Let A ∈ B(RD) be such that A ⊂ BN . There exists a constant c :=
c(d,D,K,N) such that

P (v(K) ∩ A 6= ∅) ≥ cCap(qg)−1(A). (2.36)

2. Assume that D < D0. Let A ∈ B(RD) be such that A ⊂ BN . There exists a
constant c := c(d,D,K,N) > 0 such that

P (v(K) ∩ A 6= ∅) ≥ c[vg(0)]−1 > 0, (2.37)

with vg as defined in (1.54).

Proof. Theorem 2.2, Example 1.2 and the hypothesis on the (CX2) condition implies
that v has a modification with a.s continuous paths on K.

We distinguish two cases:
Case 1. D > D0. By Theorem 2.2 and hypothesis (CX2) v1 is ĝ-Gaussian

on K(η) (for η > 0 small enough). In Example 1.3 we proved that g satisfies the
hypotheses of Lemma 1.1(2.). This facts together with 2. in Proposition 2.2 implies
the validity of the hypotheses of Corollary 1.1 and then (2.35).

In Example 1.6, we verified (1.55). Additionally (CX1) and (CX3) are valid due
to Proposition 2.2. (1.56) in Theorem 1.3 implies (2.36).

Case 2. D < D0. According to Example 1.6 in this case (1.57) is valid instead
of (1.55). Since the rest of the hypotheses of Theorem 1.3 remains valid, by (1.58)
we deduce (2.37).

Theorem 2.3 implies the following Corollary which identifies D0 as the critical
dimension for polarity of points.

Corollary 2.1. If D > D0, points are polar for v and are non polar if D < D0.

Proof. Assume firstD > D0. By the definition of the qg measure we haveHqg({z}) =
0. Hence the polarity of {z} follows by (2.35).

If D < D0, we apply (2.37) to A = {z}. In fact, if D < D0 any bounded set A
is non polar for v.
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Chapter 3

g-Gaussian random fields

This chapter addresses questions similar to those of Chapter 1 for a wider class of
g-Gaussian processes: g-Gaussian processes. By following the steps of the proofs
of Theorems 1.2 and 1.3, together with some additional technical tools, we find
upper and lower bounds for hitting probabilities in terms of the q-Hausdorff measure
and g-capacity, respectively. These results can be found in Theorems 3.1 and 3.2,
respectively.

g-Gaussian processes are a generalization of anisotropic Gaussian processes. We
finish this chapter by mentioning some examples of anisotropic Gaussian processes
that are solutions of Stochastic Partial Differential Equations and whose hitting
probabilities have been a subject of study in the past.

3.1 Definition

Fix I, J compact sets of Rd1 and Rd2 , respectively. Assume that

Y = {Y (t, x) : (t, x) ∈ I × J}

is a Gaussian process with canonical metric

d((t, x), (t̄, x̄)) = ‖Y (t, x)− Y (t̄, x̄)‖L2(Ω), (t, x), (t̄, x̄) ∈ I × J.

The functions mt,x, σ
2
t,x, (t, x) ∈ I × J denote the mean and the variance of Y ; and

the functions σ(t,x),(t̄,x̄), ρ(t,x),(t̄,x̄), (t, x), (t̄, x̄) ∈ I × J denote the covariance and the
correlation of Y .

Definition 3.1. Let g = (g1, g2), with g1, g2 gauge functions. We say Y is g-
Gaussian on I × J if

d((t, x), (t̄, x̄)) � g1(|t− t̄|) + g2(|x− x̄|), (t, x), (t̄, x̄) ∈ I × J, (3.1)

where d is the canonical metric of Y . If Y only satisfies the upper bound in (3.1)
we say that it is ĝ-Gaussian on I × J .

Remark 3.1. The definition above can be extended to the case where we consider
gauge functions g1, ..., gn and compact sets I1, ..., In. The results that we obtain in
this chapter are easily generalized to this case. We avoid to write them in such a
generality, since the applications we have in mind are solutions to Stochastic Partial
Differential Equations which canonical metric satisfies (3.1).
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Write

Bd,ε(t, x) := {(t̄, x̄) ∈ I × J : d(t,x),(t̄,x̄) ≤ ε}

for the d ball centered on (t, x) ∈ I × J and radius ε. We denote by Nd(I × J, ε) ≡
N(ε) the minimum number of such balls needed to cover I × J .

If Y is a ĝ-Gaussian process on I × J , it is not hard to prove that

N(ε) ≤ C

(
�I

g−1
1 (ε)

)d1
(
�J

g−1
2 (ε)

)d2

, ε ∈ (0, g1(�I) ∧ g2(�J)]. (3.2)

[AT07, Thm. 1.3.5] and (3.2) implies that there exists a positive random variable
η such that

sup
(t,x),(t̄,x̄)∈I×J,
d(t,x),(t̄,x̄)≤δ

|Y (t, x)− Y (t̄, x̄)| ≤ (3.3)

C

(∫ δ

0

dε

√
d1 log

(
�I

g−1
1 (ε)

)
+

∫ δ

0

dε

√
log

(
d2

�J

g−1
2 (ε)

))
, δ ∈ (0, η).

Similarly to Example 1.2, (3.3) implies the following criteria of sample path conti-
nuity for ĝ-Gaussian processes.

Example 3.1. Let Y be a ĝ-Gaussian process on I×J , with I, J compact subsets of
Rd1 ,Rd2 respectively. If [g1(τ)∨g2(τ)] ≤ | log(τ)|−ν , ν > 1

2
, then Y has a modification

with a.s. continuous sample paths.

Remark 3.2. By Example 3.1, we deduce that every ĝ-Gaussian process with g
having entries as the gauge functions in Example 3.2, has a modification with a.s.
continuous sample paths.

3.2 Criteria for hitting probabilities

Let I, J be compact subsets of Rd1 ,Rd2 , respectively, and

Y = {Y (t, x) = (Y1(t, x), . . . , YD(t, x)), (t, x) ∈ I × J},

be a D-dimensional process with i.i.d. coordinates. The probability that the process
Y hits A a Borel subset of RD is

P (Y (I × J) ∩ A 6= ∅). (3.4)

We devote this section to estimate (3.4) when Y1 is a g-Gaussian process. The
main results are Theorems 3.1 and 3.2 which yield upper and lower bounds in terms
of the notions of q-Hausdorff measure and g-capacity, respectively.

3.2.1 Upper bounds for hitting probabilities

The following result is an extension of Lemma 3.1. We will apply it in the proof
Theorem 3.1.
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Lemma 3.1. [HCSS21, Lem. 3.3] Let g1, g2 be differentiable gauge functions satis-
fying (1.6), (1.8) and (1.9) in Lemma 1.1. Let I and J be compact sets of Rd1 and
Rd2 respectively. Fix η > 0 and let

U = {U(t, x) = (U1(t, x), . . . , UD(t, x)), (t, x) ∈ I(η) × J (η)},

be a D-dimensional stochastic process with a.s. continuous sample paths. Assume
that there exists a positive constant c3,1 that for any ε small enough,

E

(
sup
x∈J(η)

∫
Bε(t)

ds

∫
Bε(t)

ds̄ exp

(
|U (s, x)−U(s̄, x)|

g1(|s− s̄|)

))
≤ c3,1ε

2d1 , t ∈ I,

E

(
sup
t∈I(η)

∫
Bε(x)

dy

∫
Bε(x)

dȳ exp

(
|U(t, y)−U(t, ȳ)|

g2(|y − ȳ|)

))
≤ c3,1ε

2d2 , x ∈ J. (3.5)

Let S1
ε (t) = B g−1

1 (ε)

2

(t), S2
ε (x) = B g−1

2 (ε)

2

(x) and S̃ε(t, x) = S1
ε (t) × S2

ε (x). Then,

for all p ≥ 1, there exists a constant c3,2(c3,1, p, d1, d2, g) such that, for all ε small
enough and (t, x) ∈ I × J ,

E

(
sup

(s,y)∈S̃ε(t,x)

|U(s, y)−U(t, x)|p
)
≤ c3,2 ε

p. (3.6)

Proof. Consider the process U (t) = {U(t, x), t ∈ I}. If in the proof of (1.10) in
Lemma 1.1, we replace Cε(ω) by

sup
t∈I(η)

∫
S2
ε (x)

dy

∫
S2
ε (x)

dȳ exp

(
|U (t)(y, ω)−U (t)(ȳ, ω)|

g2(|y − ȳ|)

)
,

supy∈Sε(x) |M(y) −M (x)| by supt∈I(η) supy∈S2
ε (x) |U (t)(y) − U (t)(x)|, and (1.6) by

(3.5), we deduce that

E

(
sup
t∈I(η)

sup
y∈S2

ε (x)

|U(t, y)− U(t, x)|p
)
≤ C(c3,1, p, d2, g2)εp.

The same procedure, now with the process U (x) = {U(t, x), x ∈ J}, leads to

E

(
sup
x∈J(η)

sup
s∈S1

ε (t)

|U(s, x)− U(t, x)|p
)
≤ C(c3,1, p, d1, g1)εp.

(3.6) follows by the triangle inequality.

Remark 3.3. Let I(η), J (η) be sets as in Lemma 3.1. Assume that U is a ĝ-Gaussian
process on I(η)× J (η) with continuous sample paths, we prove that it satisfies (3.5).
By the continuity of the trajectories of U ,

E

(
sup
x∈J(η)

∫
Bε(t)

ds

∫
Bε(t)

ds̄ exp

(
|U(s, x)− U(s̄, x)|

[g1(|s− s̄|)]

))
=

∫
Bε(t)

ds

∫
Bε(t)

ds̄ expE sup
x∈J(η)

|U(s, x)− U(s̄, x)|
g1(|s− s̄|)

.
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Since U is ĝ-Gaussian, there exists a positive constant such that for all x in I(η),

E

(
|U(s, x)− U(s̄, x)|2

[g1(|s− s̄|)]2

)
≤ C(g1)E(Z2),

where Z is a standard centered Gaussian random variable. Then by the Sudakov-
Fernique inequality (see [Adl90, Thm. 2.9], for example),

E

(
sup
x∈J(η)

|U(s, x)− U(s̄, x)|
g1(|s− s̄|)

)
≤ C(g1),

and we deduce the validity of the first inequality in (3.5). We prove the second
inequality in (3.5) by similar arguments.

For ε ∈ (0, 1), j = (j1, . . . , jd1 , jd1+1, . . . , jd1+d2) ∈ Zd1+d2 , define

Rε,1
j =

d1∏
i=1

[
g−1

1 (ε)√
d1

ji,
g−1

1 (ε)√
d1

(ji + 1)

]
, Rε,2

j =

d1+d2∏
i=d1+1

[
g−1

2 (ε)√
d2

ji,
g−1

2 (ε)√
d2

(ji + 1)

]
,

R̃ε
j = Rε,1

j ×R
ε,2
j . (3.7)

For t ∈ Rε,1
j , and for x ∈ Rε,2

j , let

tεj =

(
g−1

1 (ε)√
d1

ji

)
i=1,...,d1

, xεj =

(
g−1

2 (ε)√
d2

ji

)
i=d1+1,...,d1+d2

.

Fix d1, d2 ∈ N+, for g = (g1, g2) with g1, g2 gauge functions we define

qg(τ) =
τD(

g−1
1 (τ)

)d1
(
g−1

2 (τ)
)d2

, τ ∈ R+. (3.8)

Observe that if g1 = g2 := g then qg = qg1 with d = d1 + d2 and qg1 as defined in
(1.31).

If we assume that g1, g2 are differentiable in (0, τ0), then qg is strictly increasing
on (0, τ0) if and only if

D > τ

(
d1

q−1
1 (τ)ġ1(g−1

1 (τ))
+

d2

g−1
2 (τ)ġ2(g−1

2 (τ))

)
, τ ∈ (0, ρ0), (3.9)

or equivalently,

D > g2(τ)

(
d1

g−1
1 (g2(τ))ġ1(g−1

1 (g2(τ)))
+

g2

τ ġ2(τ)

)
, τ ∈ (0, g−1

2 (ρ0)). (3.10)

i.e. that if (3.9) is satisfied then Hqg is a well defined Hausdorff measure. (See
Definition 1.3 in Chapter 1 for the definition of q-Hausdorff measure).

Example 3.2. We study the map qg in the case of the gauge functions in Example
1.1.

1. gi(τ) = τ νi , τ ≥ 0, νi > 0, i = 1, 2. We have that qg(τ) = τD−χ, χ =
d1/ν1 + d2/ν2. Thus qg is strictly increasing on R+ if and only if D > χ. In
this case we recover the γ-dimensional Hausdorff measure Hγ, for γ = D − χ.
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2. g1(τ) = τ ν1 , g2(τ) = |log τ |γ τ ν2 , τ ∈ [0, e−
γ

ν2 ], γ, ν1, ν2 > 0. In (1.37) from
Example (3.2) we computed the inverse function of g2 (with ν instead of ν2),
by writing this function in (3.8) we deduce,

qg(τ) = τ
D− d1

ν1 exp

[
−d2ν2

γ
W−1

(
−ν2

γ
τ

1
γ

)]
,

with W−1 the lower real valued branch of the Lambert W function. Similarly
to (1.39),

qg(τ) � τD−χ exp

(
γ
d2

ν2

∣∣∣2 log
(
cτ

1
γ

)∣∣∣ 1
2

)
, χ =

d1

ν1

+
d2

ν2

, (3.11)

with c depending on ν2, γ. Thus qg is strictly increasing on an interval around
zero if and only if D > χ.

Theorem 3.1. [HCSS21, Thm. 3.3] Fix I, J compact sets of Rd1 and Rd,2 and
η > 0. Let

Y = {Y (t, x) = (Y1(t, x), ..., YD(x)), (t, x) ∈ I(η) × J (η)}, (3.12)

be a D-dimensional stochastic process with a.s. continuous sample paths and i.i.d.
coordinates that are distributed as Gaussian random fields. Assume that σ2

I(η),J(η) :=

inf(t,x)∈I(η)×J(η) σ2
t,x > 0, and that the process Y satisfies (3.5) for some gauge func-

tions g1, g2. Suppose also that g1, g2 fulfills the hypothesis of Lemma 3.1(2.) and
that the function qg defined in (3.8) is strictly increasing on a small interval (0, ρ0).

Then there exists a constant C(I, J, σ2
I(η),J(η) , d1, d2, D) such that for any Borel

set A ⊂ RD,

P (Y (I × J) ∩ A 6= ∅) ≤ C(I × J, σ2
I(η),J(η) , D, d1, d2)Hqg(A). (3.13)

Proof. Let z ∈ RD and ε > 0 small enough. Since Y satisfies the conditions of
Lemma 3.1, and R̃ε

j ⊂ S̃ε(t
ε
j , x

ε
j), for all p ≥ 1, there exists a constant C(p, d1, d2)

such that for all ε > 0 small enough and (t, x) ∈ I × J ,

E
(

sup
(s,y)∈R̃εj

∣∣Y (s, y)− Y (tεj , x
ε
j)
∣∣p ) ≤ C(p, d1, d2)εp. (3.14)

The proof of Theorem 1.1 is also valid with X there replaced by Y , Rε
j by R̃ε

j , and

I(η) by I(η) × J (η) . Thus, by (3.14) we deduce

P
(
Y (R̃ε

j) ∩Bε(z) 6= ∅
)
≤ C(σ2

I(η),J(η) , d1, d2, D)εD,

for some constant C(σ2
I(η),J(η) , d1, d2, D). Similarly as in the proof of Lemma 1.2, an

argument based on total probabilities (see (1.44)) implies that,

P (Y (I × J) ∩Bε(z) 6= ∅) ≤ C(σ2
I(η),J(η) , d1, d2, D) qg(ε). (3.15)

We finish the proof of (3.13), using the same covering argument as in (1.41).

Remark 3.3 implies the following Corollary relative for upper bounds of hitting
probabilities for ĝ-Gaussian processes.
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Corollary 3.1. [HCSS21, Cor. 3.2] Consider a Gaussian process with continuous
sample paths Y in (3.12), and such that σ2

I(η),J(η) := inf(t,x)∈I(η)×J(η) σ2
t,x > 0. As-

sume that process Y1 is ĝ- Gaussian (3.5) on I(η) × J (η) ,with g1,g2 gauge functions
satisfying the hypothesis of Lemma 3.1(2.) and such that the function qg defined in
(3.8) is strictly increasing on a small interval (0, ρ0). Then there exists a constant
C(I, J, σ2

I(η),J(η) , d1, d2, D) such that for any Borel set A ⊂ RD,

P (Y (I × J) ∩ A 6= ∅) ≤ C(I × J, σ2
I(η),J(η) , D, d1, d2)Hqg(A). (3.16)

Similarly as we did in Corollary 1.2 and with the same arguments, from (3.15)
we derive the following result on polarity of singletons.

Corollary 3.2. The hypotheses are those of Theorem 3.1. In addition assume that

lim
τ↓0

qg(τ) := qg(0) = 0. (3.17)

Then P (Y (I×J)∩{z} 6= ∅) = 0, that is, for the random field Y restricted to I×J ,
any set {z} ⊂ RD is polar.

Example 3.3. We analyze condition (3.17) for the maps qg in Example 3.2.

1. gi(τ) = τ νi , τ ≥ 0, νi > 0, i = 1, 2. qg(τ) = τD−χ, χ = d1/ν1 + d2/ν2. In this
case

qg(0) =


0 if D > χ,

1 if D = χ,

∞ if D < χ.

(3.18)

And (3.17) is satisfied if and only if D > χ.

2. g1(τ) = τ ν1 , g2(τ) = |log τ |γ τ ν2 , τ ≥ 0, γ, ν1, ν2 > 0.

qg(τ) = τ
D− d1

ν1 exp
[
−d2ν2

γ
W−1

(
−ν2

γ
τ

1
γ

)]
. Let χ = d1/ν1 +d2/ν2, (3.9) implies

that

qg(0) =

{
0 if D > χ,

∞ if D ≤ χ.
(3.19)

And (3.17) is satisfied if and only if D > χ.

3.2.2 Lower bounds for hitting probabilities

The goal of this subsection is to extend Theorem 1.3 to ĝ-Gaussian processes.
Let Y = {Y (t, x) : (t, x) ∈ I × J} be a Gaussian process in I × J , with I,J

compact subsets of Rd1 ,Rd2 , respectively. Let g1 : [0,�I ] → R+, g2 : [0,�J ] → R+

be gauge functions. We will make use of the following conditions on Y :

(CY1) σ2
t,x � 1 for (t, x) ∈ I × J .

(CY2) There exist a positive constant C such that for all (t, x), (t̄, x̄) ∈ I × J

|mt,x −mt̄,x̄| ≤ C (g1(|t− t̄|) + g2(|x− x̄|)) .

(CY3) There exists a positive constant c such that for all (t, x), (t̄, x̄) ∈ I × J

E(Var(Y (t, x)|Y (t̄, x̄))) ≥ c
(
g1(|t− t̄|)2 + g2(|x− x̄|)

)2
.
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The proof of the following Proposition which relates the canonical pseudomet-
ric and the conditional variance of a ĝ-Gaussian process is analogous to that of
Proposition 1.1.

Proposition 3.1. Let Y be a Gaussian on process on I × J with I, J compact
subsets of Rd1, Rd2 respectively, satisfying (CY1). Then

E (Var (Y (t, x)|Y (t̄, x̄))) ≤ Cd2
(t,x),(t̄,x̄), (t, x), (t̄, x̄) ∈ I × J. (3.20)

Additionally assume that

1. Y is a ĝ-Gaussian process in I × J .

2. limε↓0 sup (t,x),(t̄,x̄)∈I×J
|(t−t̄,x−x̄)|≤ε

|σt,x−σt̄,x̄|
d(t,x),(t̄,x̄)

= 0.

3. ρ(t,x),(t̄,x̄) < 1 for all (t, x), (t̄, x̄) ∈ I × J , (t, x) 6= (t̄, x̄).

Then
E (Var (Y (t, x)|Y (t̄, x̄))) � d2

(t,x),(t̄,x̄), (t, x), (t̄, x̄) ∈ I × J. (3.21)

Set κI,J = g1(�I)∨ g2(�J). Assume that g1 and g2 are differentiable, and define

vg(τ) =

∫ κI,J

τ

ρ−D+1
[
g−1

1 (ρ)
]d1−1 [

g−1
2 (ρ)

]d2−1 [
ġ1(g−1

1 (ρ))ġ2(g−1
2 (ρ))

]−1
dρ, (3.22)

for τ ∈ [0, κI,J ].
To highlight the analogy between vg and the function vg defined in (1.54), we

observe that if g in (1.54) is differentiable, by writing the change of variable ρ 7→ g(ρ),

vg(τ) =

∫ g(�K)

q−1(τ)

ρ−D
[
g−1(ρ)

]d−1 [
ġ(g−1(ρ))

]−1
dρ.

Our purpose is to prove the following result which gives lower bounds for hitting
probabilities in terms of the (qg)−1-capacity. (See Definition 1.4 in Chapter 1 for
the definition).

Theorem 3.2. Fix I ⊂ Rd1 and J ⊂ Rd2 compact sets of positive Lebesgue measure.
Let

Y = {Y (t, x) = (Y1(t, x), ..., YD(t, x)), (t, x) ∈ I × J}

be a D-dimensional stochastic process with i.i.d. coordinates. Fix N > 0 and let
A ⊂ BN ⊂ RD be a Borel set. Assume that Y1 is a ĝ-Gaussian process on I × J
satisfying conditions (CY1)-(CY3) and that on (0, κI,J), the gauge functions gi,
i = 1, 2, are differentiable.

1. [HCSS21, Thm. 3.5] Suppose that the derivatives ġi, i = 1, 2 are non increasing
on (0, κI,J) and

lim
τ↓0

vg(τ/2)qg(τ) ∈ (0,∞), (3.23)

where qg is the function defined in (3.8). Then there exists a constant C :=
C(m, I, J,N, d1, d2, D) > 0 such that

P (Y (I × J) ∩ A 6= ∅) ≥ C Cap(qg)−1(A). (3.24)
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2. Instead of (3.23), assume that

vg(0) <∞. (3.25)

Then there exists a constant C := C(m, I, J,N, d1, d2, D) > 0 such that

P (Y (I × J) ∩ A 6= ∅) ≥ C[vg(0)]−1. (3.26)

Remark 3.4. Similarly to Theorem 1.3, (3.23) and (3.25) are excluding conditions:
Assume that there exists gauge functions g1, g2 with non increasing derivatives on
(0, κI,J) satisfying (3.23) and (3.25) for g = (g1, g2). This implies that limτ↓0 qg(τ) ∈
(0,∞) and in consequence

vg(0) =

∫ κI,J

0

ρ
[
qg(ρ)g−1

1 (ρ)ġ1(g−1
1 (ρ))g−1

2 (ρ)ġ2(g−1
2 (ρ))

]−1
dρ

≥ c

∫ κI,J

0

ρ
[
g−1

1 (ρ)ġ1(g−1
1 (ρ))g−1

2 (ρ)ġ2(g−1
2 (ρ))

]−1
dρ

= c

∫ g1(κI,J )

0

ρ−1g1(ρ)
[
g−1

2 (g1(ρ))ġ2(g−1
2 (g1(ρ))

]−1
dρ, (3.27)

where in the last line we apply the change of coordinates ρ 7→ g−1
1 (ρ). Since g1, g2

are continuous functions with g1(0) = g2(0) = 0,

lim inf
ρ↓0

g1(ρ)

g−1
2 (g1(ρ))ġ2(g−1

2 (g1(ρ))
= lim inf

ρ↓0

g2(ρ)

ρġ2(ρ)
. (3.28)

By the fundamental theorem of calculus and since ġ2 is not increasing

g2(ρ)

ρġ2(ρ)
=

∫ ρ
ρ
n
ġ2(τ)dτ

ρġ2(ρ)
≥
ġ2(ρ)

(
ρ− ρ

n

)
ġ2(ρ)ρ

= 1− 1

n
, ρ ∈ (0, κI,J), n ≥ 1. (3.29)

By (3.27)-(3.29), it follows that

vg(0) ≥ c

∫ g1(κI,J )

0

ρ−1dρ =∞,

which is a contradiction to (3.25).

Definition 3.2. Similar to the g-Gaussian case, when neither(1.55) nor (1.57) are
satisfied, we say that we are on a critical dimension type case.

Proof. The approach to the proof is the similar as that of Theorem 1.3.
Proof of 1. For any (t, x) ∈ I × J and a probability measure µ on A, define

ν̄n((t, x), ω) =

∫
A

(2πn)D/2 exp

(
−n|Y (t, x)− y|2

2

)
µ(dy)

=

∫
A

µ(dy)

∫
RD
dξ exp

(
−|ξ|

2

2n
+ i〈ξ,Y (t, x)− y〉

)
, n ≥ 1, (3.30)

and let νn(I × J)(ω) =
∫
I×J ν̄n((t, x), ω) dt dx. We aim to prove:

(i) There exists C1 > 0 such that for any n ≥ 1, E (νn(I × J)) ≥ C̄1.
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(ii) There exists C2 > 0 such that for any n ≥ 1, E
[
(νn(I × J))2] ≤ C2E(qg)−1(µ).

This implies (3.24) using the same argument based in the Paley-Zygmund inequality
and the convergence of finite measures, which was explained at the beginning of the
proof of 1. in Theorem 1.3.

Proof of (i). We deduce the validity of (i) by following the lines of the proof of
1.(i) in Theorem 1.3 and applying (CY1) instead of (CX1).

Proof of (ii). By following the computations used to derive (1.69) in Theorem
1.3, and using hypothesis (CY1)-(CY3) instead of (CX1)-(CX3), we can prove that

E
[
(νn(I × J))2] ≤ (3.31)

C

∫
(I×J)2

dt dx dt̄ dx̄

∫
A×A

µ(dy) µ(dȳ)
1

max ([g1(|t− t̄|) + g2(|x− x̄|)]D, |y − ȳ|D)
.

For h ≥ 0, set

I :=

∫
(I×J)2

dt dx dt̄ dx̄
[
max

(
[g1(|t− t̄|) + g2(|x− x̄|)]D, hD

)]−1
. (3.32)

Apply the change of variables (t, t̄) 7→ (t, t− t̄), (x, x̄) 7→ (x, x− x̄), to deduce

I ≤ |I × J |
∫
B
�I

dt

∫
B
�J

dx
[
max

(
[g1(|t|) + g2(|x|)]D, hD

)]−1
, (3.33)

where |I × J | denotes the Lebesgue measure of I × J .
Let I1 denote the integral in (3.33) over the set of points (t, x) satisfying g1(|t|)+

g2(|x|) ≤ h. Changing to polar coordinates, we see that

I1 = h−D
∫
B
�I

dt

∫
B
�J

dx 1{g1(|t|)+g2(|x|)≤h}

≤ h−D

∫
B
�I

dt 1{g1(|t|)≤h}

∫
B
�J

dx 1{g2(|x|)≤h}


≤ C(d1, d2)h−D

(∫ g−1
1 (h)

0

ρd1−1dρ

)(∫ g−1
2 (h)

0

ρd2−1dρ

)
= C(d1, d2) [qg(h)]−1 .

(3.34)

Next, we denote by I2 the integral in (3.33) over the set of points (r, z) such
that g1(|t|)+g2(|x|) > h. Applying two changes of variables: first polar coordinates,
t 7→ (ρ1, θ1), x 7→ (ρ2, θ2), and then ρi 7→ gi(ρi), i = 1, 2, we obtain

I2 = C(d1, d2)

∫ �I

0

dρ1

∫ �J

0

dρ2 1{g1(ρ1)+g2(ρ2)>h} [g1(ρ1) + g2(ρ2)]−D ρd1−1
1 ρd2−1

2

= C(d1, d2)

∫ g1(�I)

0

dτ1

∫ g2(�J )

0

dτ2 1{τ1+τ2>h}(τ1 + τ2)−D

×
(
g−1

1 (τ1)
)d1−1 (

g−1
2 (τ2)

)d2−1 [
ġ1(g−1

1 (τ1))
]−1 [

ġ2(g−1
2 (τ2))

]−1

≤ C(d1, d2, D)

∫ g1(�I)

0

dτ1

∫ g2(�J )

0

dτ2 1{|(τ1,τ2)|>h/2}[|(τ1, τ2)|]−D
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×
(
g−1

1 (τ1)
)d1−1 (

g−1
2 (τ2)

)d2−1 [
ġ1(g−1

1 (τ1))
]−1 [

ġ2(g−1
2 (τ2))

]−1
, (3.35)

where in the last inequality we have used |(τ1, τ2)| ≤ τ1 + τ2 ≤ 2|(τ1, τ2)|. Because
for i = 1, 2, gi are increasing and ġi non increasing, we deduce

I2 ≤
∫ g1(�I)

0

dτ1

∫ g2(�J )

0

dτ2 1{|(τ1,τ2)|>h/2}[|(τ1, τ2)|]−D

×
(
g−1

1 (|(τ1, τ2)|)
)d1−1 (

g−1
2 (|(τ1, τ2)|)

)d2−1

×
[
ġ1(g−1

1 (|(τ1, τ2)|))
]−1 [

ġ2(g−1
2 (|(τ1, τ2)|))

]−1

= C(d1, d2, D)

∫ κI,J

h/2

ρ−D+1
[
g−1

1 (ρ)
]d1−1 [

g−1
2 (ρ)

]d2−1

×
[
ġ1(g−1

1 (ρ))
]−1 [

ġ2(g−1
2 (ρ))

]−1
dρ

= C(d1, d2, D)vg(h/2) ≤ C(I, J) [qg(h)]−1 , (3.36)

where the last inequality holds because (3.23) is equivalent to

sup
τ∈[0,κI,J ]

vg(τ/2)qg(τ) ∈ (0,∞).

Thus, from (3.31) by applying (3.34) and (3.36) with h := |y − ȳ|, we obtain

E
[
(νn(I ×K))2] ≤ C(I, J, d1, d2, D) E(qg)−1(µ). (3.37)

Finising the proof of (ii).
Proof of 2. The proof of (i) is still valid in this case. The proof of (ii) is valid

until (3.31), which together with (3.25) implies that

E
[
(νn(I × J))2] ≤ C

∫
(I×J)2

dtdxdt̄dx̄([g1(|t− t̄|) + g2(|x− x̄|)]−D

≤ C(d1, d2, I, J)vg(0) <∞.

Thus following the same arguments used in 1. we deduce (3.24) with Cap(qg)−1(A)

replaced by [vg(0)]−1.

Theorem 1.3 gives us a condition for non polarity of points:

Corollary 3.3. Let Y be as in Theorem 1.2 and assume (3.26). Then, for any
z ∈ RD, P (Y (I × J) ∩ {z} 6= ∅) > 0, that is {z} is non polar for the process
restricted to I × J .

Example 3.4. We compute vg and analyze conditions (3.23) and (3.25) for the
gauge functions in Example 3.2.

1. gi(τ) = τ νi , τ > 0, νi > 0, i = 1, 2.

vg(τ) = (ν1ν2)−1

∫ κI,J

τ

ρ−D+1ρ(d1−1)/ν1+(d2−1)/ν2

[
ρ2−(ν−1

1 +ν−1
2 )
]−1

dρ

=

{
(ν1ν2(D − χ))−1

[
τ−(D−χ) − κ−(D−χ)

I,J

]
, if D 6= χ,

(ν1ν2)−1 log
(κI,J

τ

)
, if D = χ,
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for χ = d1/ν1 + d2/ν2.

Since qg(τ) = τD−χ, we deduce

lim
τ↓0

vg(τ/2)qg(τ) =

{
(2D−χν1ν2(D − χ))−1, if D > χ,

∞, if D ≤ χ.

Additionally,

vg(0) =

{
(ν1ν2(χ−D))−1κχ−DI,J , if D < χ,

∞, if D ≥ χ.

Thus (3.23), (3.25) is satisfied if and only if D > χ, D < χ respectively.

2. g1(τ) = τ ν1 , g2(τ) = | log τ |γτ ν2 , τ > 0, with γ, ν1, ν2 > 0. Due to (3.11)

lim
τ↓0

qg(τ) =

{
∞, if D ≤ χ

0, if D > χ,
(3.38)

for χ = d1/ν1 + d2/ν2.

We have that

vg(τ) = ν−1
1

∫ κI,J

τ

ρ
d1

ν1
−D (

g−1
2 (ρ)

)d2−1 [
ġ2(g−1

2 (ρ))
]−1

dρ.

We claim that

vg(0) =

{
C(ν1, ν2, γ, d1, d2D), if either D < χ, or D = χ, γ(D − d1

ν1
) > 1

∞, if either D > χ, or D = χ, γ(D − d1

ν1
) ≤ 1.

(3.39)

Indeed, since g2(0) = 0, and by the change of coordinates ρ 7→ g−1
2 (ρ)

vg(0) = ν−1
1

∫ g−1
2 (κI,J )

0

[g2(ρ)]
d1

ν1
−D
ρd2−1 dρ

= ν−1
1

∫ g−1
2 (κI,J )

0

| log ρ|
γ

(
d1

ν1
−D

)
ρν2(χ−D)−1 dρ.

The rest of the proof of the claim is the same that (1.72) taking into consid-
eration the values of the exponents.

Now assume that D > χ. Computing the derivative of the reciproque of qg,
we see that

d

dτ

(
(qg(τ))−1) = τ

d1

ν1
−D−1 (

g−1
2 (τ)

)d2−1
[(

d1

ν1
−D

)
g−1

2 (τ)

+d2τ
(
g−1

2 (τ)
)1−ν2 | log g−1

2 (τ)|1−γ
(
ν2| log g−1

2 (τ)| − γ
)−1
]
.

(3.40)
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Apply the L’Hôpital’s rule, which is valid in this case due to (3.38) and (3.39),
to obtain

lim
τ↓0

[vg(τ)qg(τ)]−1 = lim
τ↓0

d
dτ

(
(qg(τ))−1)
dvg
dτ

(τ)
= lim

τ↓0
(L1(τ) + L2(τ)) ,

where using (3.40), we have

L1(τ) =
τ
d1

ν1
−D−1 (

g−1
2 (τ)

)d2
(
d1

ν1
−D

)
dvg
dτ

(τ)
,

L2(τ) =
d2τ

d1

ν1
−D (

g−1
2 (τ)

)d2−ν2 | log g−1
2 (τ)|1−γ

(
ν2| log g−1

2 (τ)| − γ
)−1

dvg
dτ

(τ)
.

Since 1
2
ν2| log g−1

2 (τ)| ≤ ν2| log g−1
2 (τ)| − γ ≤ ν2| log g−1

2 (τ)|, as τ ↓ 0, we find:

lim
τ↓0

L1(τ) = Dν1ν2 − d1ν2, lim
τ↓0

L2(τ) = −d2ν1.

Consequently,

lim
τ↓0

vg(τ)qg(τ) = (Dν1ν2 − (d1ν2 + d2ν1))−1.

The last limit implies (3.23), since using (3.11) one can proof that qg(τ) � qg(2τ).
Resuming the discussion above, (3.23) holds if and only if D > χ. And (3.25) is

valid if and only if D < χ or D = χ, γ(D − d1/ν1) = γd2/ν2 > 1.

3.3 Anisotropic Gaussian processes

Definition 3.3. Fix η > 0 and let Y be a D-dimensional Gaussian process with
i.i.d coordinates,

Y = {Y (t, x) = (Y1(t, x), . . . , YD(t, x)), (t, x) ∈ I(η) × J (η)},

where I,J are compact subsets of Rd1 , Rd2 , respectively. Assume that X1 is g-
Gaussian with gi(τ) = τ νi , νi > 0, i = 1, 2, this means,

dY1((t, x), (t̄, x̄)) � |t− t̄|ν1 + |x− x̄|ν2 , (t, x), (t̄, x̄) ∈ I(η) ×K(η). (3.41)

A process satisfying such kind of condition is called anisotropic Gaussian process.
By Remark 3.2 the sample paths of Y are continuous a.s.

Let χ = d1/ν1 +d2/ν2. In Example 1.3(1.) we proved that g1 and g2 satisfies the
hypothesis of Lemma 1.1(2.). Additionally, from Example 3.2 (1.), qg(τ) = τD−χ and
qg is increasing if and only if D > χ. Thus Corollary 3.1, implies that if σ2

I(η),J(η) > 0

and D > χ, for any Borel set A ⊂ RD,

P (Y (I × J) ∩ A 6= ∅) ≤ CHD−χ(A), (3.42)

with C := C(I × J, σ2
I(η),J(η) , d1, d2, D).

Now, suppose that Y1 satisfies (CY1)-(CY3). Fix a bounded Borel set A ⊂ BN ⊂
RD. According to Example 3.4, (3.23), (3.25) are satisfied if and only if D > χ,
χ > D respectively. Then, applying Theorem 3.2 we obtain,
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1. If D > χ,
P (Y (I × J) ∩ A 6= ∅) ≥ cCapD−χ(A), (3.43)

with c := c(I × J,N, d1, d2, D).

2. If χ > D,
P (Y (I × J) ∩ A 6= ∅) ≥ c > 0, (3.44)

with c := c(I × J,N, d1, d2, D).

Remark 3.5. Fix z ∈ RD and assume that (3.42), (3.43) and (3.44) are valid. Hence

P (Y (I × J) ∩ {z} 6= ∅) =

{
HD−χ({z}) = 0, if D > χ,

P (Y (I × J) ∩ {z} 6= ∅) ≥ c > 0, if D < χ.
(3.45)

Thus, singletons {z} are polar if D > χ and non polar if D < χ.
Similarly to the case of isotropic Gaussian random fields we identify the value

D0 = χ as the critical dimension for polarity of points.

We present a selection of known results on hitting probabilities from examples of
anisotropic Gaussian processes that are solutions of Stochastic Partial Differential
Equations.

Example 3.5. Stochastic heat equation. Consider the linear stochastic heat equa-
tion

∂vi
∂t
−∆vi = Ẇi, (t, x) ∈ (0, T ]× R, i = 1, ..., D,

with null initial conditions. The processes (Wi) are independent space-time white
noises. The random field solution to this equation is the Gaussian stochastic process

ui(t, x) =

∫ t

0

∫
Rd
G(t− s, x− y)Wi(ds, dy), (3.46)

with G(t, x) = 1
(4πt)d/2

exp
(
− |x|

2

4t

)
1{t≥0}, this means that

u = {u(t, x) = (u1(t, x), ..., uD(t, x)), (t, x) ∈ (0, T ]× Rd}

is a centered D-dimensional Gaussian process with i.i.d. coordinates and covariance

E(ui(t, x)ui(s, y)) =

∫ t∧s

0

dr

∫
Rd
dzG(t− r, x− z)G(s− r, y − z).

This process was first introduced in [Fun83] on a more general context and it is
known as Funaki’s random string.

Let u = {u1(t, x), (t, x) ∈ [0, T ]×R}, it is a consequence of [MT02, Prop. 1] that

du(t, x) � |t− s|
1
4 + |x− y|

1
2 , (t, x), (s, y) ∈ R+ × R.

so u is g-Gaussian on any compact subset of R+ × R, with g = (g1, g2), g1(τ) =

τ
1
4 , g2(τ) = τ

1
2 .

Fix I × J = [a1, b1] × [a2, b2], 0 < a1 < b1 < ∞,−∞ < a2 < b2 < ∞ a compact
box. u satisfies that
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� σt,x � 1 for (t, x) ∈ I × J .

� [MT02, (4.5), p.15] There exists a positive constant c such that

E(Var(u(t, x)|u(t̄, x̄))) ≥ c
(
|t− t̄|1/4 + |x− x̄|1/2

)2
, (t, x), (t̄, x̄) ∈ I × J.

By (3.42), (3.43) and (3.44) we deduce the following hitting probabilities result
relative to the solution to the stochastic heat equation in (3.46).

1. Let D > 6.

(a) There exists a constant C := C(I × J, σ2
I(η),J(η) , d1, d2, D) such that for

any Borel set A ∈ B(RD),

P (u(I × J) ∩ A 6= ∅) ≤ CHD−6(A).

(b) Fix N > 0. Let A ∈ B(RD) be such that A ⊂ BN . There exists a
constant c := c(I × J, d1, d2, D) such that

P (u(I × J) ∩ A 6= ∅) ≥ cCapD−6(A).

2. Assume that D < 6. Let A ∈ B(RD) be such that A ⊂ BN . There exists a
constant c := c(I × J, d1, d2, D)) > 0 such that

P (u(K) ∩ A 6= ∅) ≥ c > 0.

And D0 = 6 is the critical dimension.
Mueller and Tribe proved in [MT02, Thm. 1] that points are polar for u in the

critical dimension, that is, if D = 6 for all z ∈ RD

P (u(I × J) ∩ {z} 6= ∅) = 0.

Example 3.6. Stochastic wave equation. Consider the linear stochastic wave equa-
tion

∂2vi
∂t2
−∆vi = Ẇ β

i , (t, x) ∈ (0, T ]× R, i = 1, ..., D,

with null initial conditions. Here (W β
i ) are independent space-time white-colored

noises with covariance given by

E(Ẇ β
i (t, x)Ẇ β

i (s, y)) = δ(t− s)|x− y|−β, β ∈ (0, d ∧ 2).

The random field solution to this equation is the Gaussian stochastic process

ui(t, x) =

∫ t

0

∫
Rd
G(t− s, x− y)W β

i (ds, dy), (3.47)

with G the fundamental solution of the wave equation, characterized by the property
FG(t, ∗)(ξ) = sin(t|ξ|)

|ξ| , this means that

u = {u(t, x) = (u1(t, x), ..., uD(t, x)), (t, x) ∈ (0, T ]× Rd}
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is a centered D-dimensional Gaussian process with i.i.d. coordinates and covariance

E(ui(t, x)ui(s, y)) =

∫ t∧s

0

dr

∫
Rd
dz

∫
Rd
dwG(t− r, x− z)G(s− r, y − w)|x− y|−β.

This process was first introduced in [Dal99].
Let u = {u1(t, x), (t, x) ∈ [0, T ] × R}, and I = [t0, T ], J = [−M,M ]d, for

t0 ∈ (0, T ], M > 0. [DSS10, Prop. 4.1] implies that

du(t, x) � |t− s|1−β/2 + |x− y|1−β/2, (t, x), (s, y) ∈ R+ × R.

so u is g-Gaussian in I × J , with g = (g1, g2), g1(τ) = τ 1−β/2, g2(τ) = τ 1−β/2.
Additionally,

� σt,x � 1 for (t, x) ∈ I × J .

� By [DSS10, Prop. 4.1] the hypotheses of Proposition 3.1 are valid and in
consequence there exists a positive constant c such that for all (t, x), (t̄, x̄) ∈
I × J

E(Var(u(t, x)|u(t̄, x̄))) ≥ c
(
|t− t̄|1−β/2 + |x− x̄|1−β/2

)2
.

By (3.42), (3.43) and (3.44) we deduce similar hitting probabilites results that
in Example 3.5 with the main difference that in the case of the stochastic wave
equation the critical dimension is D0 = χ = 2(d+ 1)/(2− d).

Dalang, Mueller and Xiao proved in [DMX17, Thm. 9.1] that points are polar
for u in the critical dimension.
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Chapter 4

The linear stochastic heat
equation

We apply the results of Chapter 3 to the system of linear stochastic heat equations{
∂vj
∂t
−∆vj = ẆH,α

j , (t, x) ∈ (0, T ]× Rd,

vj(0, x) = v0(x), x ∈ Rd.

j = 1, ..., D, with (WH,α
j , j = 1, ..., D) independent copies of a fractional-colored

noise with Hurst parameter H ∈ (1
2
, 1) and α ∈ [0, d).

In Theorem 4.1 we find conditions in terms of the parameters of the noise im-
plying that such equation has a solution. By Theorem 4.2 the the solution is a
g-Gaussian process. Section 4.3 is devoted to analyze additional second order prop-
erties related with the conditional variance of the solution.

In section 4.4, we prove the main result of this Chapter: Theorem 4.3 where we
find upper and lower bounds for hitting probabilities.

4.1 The solution

Given ϕ ∈ S(Rd) the Schwartz space of rapidly decreasing functions, its Fourier
transform is given by the formula

Fϕ(ξ) =

∫
Rd
e−ix·ξϕ(x)dx.

Let f be the Fourier transform of a tempered non-negative measure µ on Rd, i.e. a
non-negative measure which satisfies:∫

Rd

1

(1 + |ξ|2)l
µ(dξ) <∞,

for some l > 0. Parseval’s identity implies the following relation:∫
Rd

∫
Rd
ϕ(x)f(x− y)ψ(y)dxdy = (2π)−d

∫
Rd
Fϕ(ξ)Fψ(ξ)µ(dξ), (4.1)

for any ϕ, ψ ∈ S(Rd). We assume that for any non-negative measurable function h,∫
Rd
h(ξ)µ(dξ) �

∫
Rd
h(ξ)|ξ|−αdξ, for some α ∈ [0, d). (4.2)

In an abridged form, we will write this property as µ(dξ) � |ξ|−αdξ.
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Definition 4.1. Fix α ∈ [0, d), H ∈ (1/2, 1) and let {WH,α(t, A), t ∈ [0, T ] , A ∈
B(Rd)} be a centered Gaussian field with covariance

E(WH,α(t, A)WH,α(s, B)) = RH(t, s)

∫
A

∫
B

f(z − w)dzdw (4.3)

= αH

∫ t

0

∫ s

0

∫
A

∫
B

|τ − σ|2H−2f(z − w)dzdwdτdσ,

where RH(t, s) := 1
2
(t2H + s2H −|t− s|2H) is the covariance of a fractional Brownian

motion with Hurst index H and αH = H(2H − 1).
If α > 0, WH,α is called a fractional-colored noise because it is a fractional

Brownian motion in time and has a non trivial spatial covariance. Consider the
particular case f(x) = δ{0}(x). Then, µ(dξ) = dξ and (4.2) trivially holds with
α = 0. This corresponds to the fractional-white noise, whose covariance according
to (4.3) is

E(WH,0(t, A)WH,0(s, B)) = RH(t, s)|A ∩B|,

where | · | denotes the Lebesgue measure.

Example 4.1. The Riesz and the Bessel kernels are examples of functions f that
satisfy the above assumptions

1. Riesz kernels. f(x) = cα,d|x|α−d, 0 < α < d, where cα,d = 2d/2−αΓ((d −
α)/2)/Γ(α/2). The spectral measure is µ(dξ) = |ξ|−αdξ.

2. Bessel kernels. f(x) = c̃α
∫∞

0
w(α−d)/2−1e−we−|x|

2/(4w)dw, α > 0, where γ̃α =

(Γ(α/2). The spectral measure is µ(dξ) = (1 + |ξ|2)−α/2dξ.

Now we construct the stochastic integral with respect to fractional colored noise.
This integral was introduced in [BT08, Sec. 3] and it is inspired in the Dalang
integral from the seminal paper [Dal99]. Let

E =

{
ϕ : ϕ =

n∑
i=1

ai1[0,ti)×Ai , ai ∈ R, Ai ∈ Bb(Rd), 0 ≤ ti ≤ T

}

be the vector space of step functions in Rd × [0, T ]. For ϕ ∈ E , we define the
stochastic integral with respect to WH,α as∫

ϕ(s, y)WH,α(ds, dy) =
n∑
i=1

aiW (ti, Ai).

(4.3) implies that

E

(∫
ϕ(s, y)WH,α(ds, dy)

∫
ψ(s, y)WH,α(ds, dy)

)
= 〈ϕ, ψ〉HP , ϕ, ψ ∈ E , (4.4)

where 〈·, ·〉HP is the inner product

〈ϕ, ψ〉HP = αH

∫ T

0

dτ

∫ T

0

dσ

∫
Rd
dz

∫
Rd
dwϕ(τ, z)ψ(σ,w)|τ − σ|2H−2f(z − w).
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Due to Parseval’s theorem and the convolution property of the Fourier transform

〈ϕ, ψ〉HP =
αH

(2π)d

∫ T

0

dτ

∫ T

0

dσ

∫
Rd
µ(dξ)Fϕ(τ, ∗)(ξ)Fψ(σ, ∗)(ξ)|τ − σ|2H−2, (4.5)

for any ϕ, ψ ∈ E .
We define the Hilbert space HP as the closure of E with respect to the inner

product 〈·, ·〉HP . Since the map ϕ 7→
∫
ϕ(t, x)WH,α(dt, dx) is an isometry between

E and the Gaussian space of WH,α, it can be uniquely extended to HP . We denote
this extension by ∫ T

0

∫
Rd
ϕ(t, x)WH,α(dt, dx), ϕ ∈ HP .

The space HP may contain distributions, and it contains |HP| the space of mea-
surable functions ϕ : [0, T ]× Rd → R such that

|ϕ|2|HP| = αH

∫ T

0

dτ

∫ T

0

dσ

∫
Rd
dz

∫
Rd
dw|ϕ(τ, z)ϕ(σ,w)||τ − σ|2H−2f(z − w) <∞.

The fundamental solution of the heat operator L = ∂v
∂t
−∆v on R+×Rd is given

by

G(t, x) =
1

(4πt)d/2
exp

(
−|x|

2

4t

)
1{t≥0}.

Consider the linear stochastic heat equation{
∂v
∂t
−∆vj = ẆH,α

j , (t, x) ∈ (0, T ]× Rd,

v(0, x) = v0(x), x ∈ Rd.
(4.6)

where WH,α is a fractional-colored noise and v0 is a measurable function.

Definition 4.2. Assume that for any (t, x) ∈ (0, T ]×Rd, G(t−·, x−∗) ∈ HP . The
random field solution to (4.6) is the Gaussian stochastic process

v(t, x) = I0(t, x) + u(t, x), (t, x) ∈ (0, T ]× Rd, (4.7)

where

I0(t, x) =

∫
Rd
G(t, x− y)v0(y)dy, u(t, x) =

∫ t

0

∫
Rd
G(t− s, x− y)WH,α(ds, dy).

(4.8)

Remark 4.1. Since v0 ∈ C(Rd) ∩ L∞(Rd), the function I0 is in C∞([0, T ]× Rd) and
it is a solution to the heat equation{

∂v
∂t
−∆v = 0, (t, x) ∈ (0, T ]× Rd,

v(0, x) = v0(x), x ∈ Rd.

(see [Eva98, Thm. 1, p.47]).
More generally, assume that v0 ∈ Cζ(Rd), for some ζ ∈ (0, 1]. Then the function

[0, T ]× Rd 3 (t, x) −→ I0(t, x) =

∫
Rd
G(t, x− y)v0(y)dy,

is globally Hölder continuous, jointly in (t, x), with exponents (ζ/2, ζ) (see e.g.
[DSS]).
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Throughout this chapter, we will make use the following expression for the vari-
ance of u(t, x), (t, x) ∈ (0,∞)× Rd

σ2
t,x := E

(
|u(t, x)|2

)
= αH

∫ t

0

dτ

∫ t

0

dσ|τ − σ|2H−2

×
∫
Rd
dz

∫
Rd
dwf(z − w)G(t− τ, x− z)G(t− σ, x− w)

=
αH

(2π)d

∫ t

0

dτ

∫ t

0

dσ |τ − σ|2H−2

∫
Rd
µ(dξ)e−2(τ+σ)|ξ|2 , (4.9)

which follows from the isometry (4.4) and (4.5) since F(G(t, ∗))(ξ) = e−t|ξ|
2
. From

the second equality in (4.9), we see that u is stationary in x, i.e. that σ2
tx does not

depend on x.
The next theorem establishes a necessary and sufficient condition for the integral

in the r.h.s. of (4.8) to be well defined.

Theorem 4.1. [Tud13, Thm. 2.5] (u(t, x), (t, x) ∈ [0, T ]×Rd) given in (4.8) exists
and satisfies

sup
(t,x)∈[0,T ]×Rd

E(u(t, x)2) <∞

if and only if ∫
Rd

µ(dξ)

(1 + |ξ|2)2H
<∞. (4.10)

Due to (4.2), (4.10) holds if and only if 0 < d− α < 4H.

Proof. Let

Kt(ξ) :=

∫ t

0

dτ

∫ t

0

dσ |τ − σ|2H−2e−2(τ+σ)|ξ|2 .

We claim that for any t > 0, ξ ∈ Rd,

c(H)(t2H ∧ 1)

(
1

1 + |ξ|2

)2H

≤ Kt(ξ) ≤ C(H)

(
t

1 + |ξ|2

)2H

. (4.11)

The r.h.s of (4.9) together with (4.11) implies the theorem.
Upper bound. By the change of coordinates (σ, τ) 7→ t−1(τ, σ),

Kt(ξ) = t2H
∫ 1

0

dτ

∫ 1

0

dσ|τ − σ|2H−2e−2t(τ+σ)|ξ|2 . (4.12)

Suppose that |ξ| ≤ 1, then by (4.12)

Kt(ξ) ≤ t2H
∫ 1

0

dτ

∫ 1

0

dσ|τ − σ|2H−2 = c(H)t2H

≤ C(H)

(
t

1 + |ξ|2)

)2H

,

where in the last inequality we used that 1
2
≤ 1

1+|ξ|2 if |ξ| ≤ 1.
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Now assume that |ξ| ≥ 1. Apply Hölder’s inequality in (4.12), to get that

Kt(ξ) ≤ t2H
(∫ 1

0

dτe−
2τ |ξ|2

2H

)2H
(∫ 1

0

dτ

(∫ 1

0

dσ |τ − σ|2H−2e−2σ|ξ|2
) 1

1−2H

)1−2H

= C(H)t2H
(∫ 1

0

dτe−
2τ |ξ|2

2H

)2H

Since in this case 1
|ξ|2 ≤

2
1+|ξ|2 ,

(∫ 1

0

dτe−
2τ |ξ|2

2H

)2H

=

(
2H

|ξ|2

)2H (
1− e−

2|ξ|2
2H

)2H

≤
(

4H

1 + |ξ|2

)2H

,

which finishes the proof of the upper bound.
Lower bound. Suppose that t|ξ|2 ≤ 1

4
. Using the fact that e−τ ≥ 1 − τ for all

τ > 0, we conclude that

e−2τ |ξ|2 ≥ 1− 2τ |ξ|2 ≥ 1

2
, for all τ ∈ [0, t].

Hence

Kt(ξ) ≥
(

1

2

)2 ∫ t

0

dτ

∫ t

0

dσ|τ − σ|2H−2dτdσ = c(H)t2H ≥ c(H)

(
t

1 + |ξ|2

)2H

.

Now assume that t|ξ|2 ≥ 1
4
. Using the change of coordinates (τ, σ) 7→ (2τ |ξ|2, 2σ|ξ|2)

we obtain

Kt(ξ) =
c(H)

|ξ|4H

∫ 2t|ξ|2

0

∫ 2t|ξ|2

0

e−(τ+σ)|τ − σ|2H−2

Since the integrand is non negative,

Kt(ξ) ≥
c(H)

|ξ|4H

∫ 1
2

0

∫ 1
2

0

e−(τ+σ)|τ − σ|2H−2 =
c(H)

|ξ|4H
≥ c(H)

(1 + |ξ|2)2H
.

Finishing the proof of the lower bound.

In the remaining of the chapter we will assume the constraint 0 < d− α < 4H.

4.2 Equivalence for the canonical metric

The canonical metric associated with the process u in (4.8) is defined by

du((t, x), (s, y)) = ‖u(t, x)− u(s, y)‖L2(Ω) . (4.13)

This section is devoted to prove Theorem 4.2, which gives an equivalent pseudo-
distance for du. This result implies that u is a g-Gaussian process.

Let Wα be a centered Gaussian process with covariance

E(Wα(t, A)Wα(s, B)) = (t ∧ s)
∫
A

∫
B

f(z − w) dzdw
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=

∫
R+

∫
A

∫
B

1[0,t](r)1[0,s](r)f(z − w) dzdwdr.

This noise is called white-colored noise. Similarly to the fractional-colored noise, we
can construct the stochastic integral with respect to this noise. In this case, the
Hilbert space of integrands WP is given by the closure of E with respect to the
inner product

〈ϕ, ψ〉WP =

∫ T

0

dr

∫
Rd
dz

∫
Rd
dwϕ(r, z)ψ(r, w)f(z − w). (4.14)

The stochastic integral in (4.8) can be written as an integral with respect to
Wα(see e.g. [Tud13, (2.31)]):∫ t

0

∫
Rd
G(t− r, x− z) Wα,H(dr, dz)

=

∫
R+

∫
Rd

(∫
R
dτ G(t− τ, x− z)(τ − r)H−

3
2

+

)
Wα(dr, dz). (4.15)

Using this property, we prove the first of the following proposition.

Proposition 4.1. 1. [HCSS21, Prop. 4.1] There exist a positive constant c4,1,
which depend on α, d,H, and T , such that for any t, s ∈ [0, T ] and x, y ∈ Rd

d2
u((t, x), (s, y)) ≥ c4,1|t− s|2H−

d−α
2 . (4.16)

2. [Tud13, Thm. 2.6] There exist a positive constant c4,2, which depend on α, d,H,
and T , such that for any t, s ∈ [0, T ] and x ∈ Rd

d2
u((t, x), (s, x)) ≤ c4,2|t− s|2H−

d−α
2 . (4.17)

Proof. Assume, without loss of generality, that 0 ≤ s < t ≤ T.
1. From (4.15), the isometry with respect to inner product in (4.14), and Parse-

val’s identity, we obtain,

d2
u((t, x), (s, y))

= E
(∣∣∣ ∫

R+

∫
Rd

×
(∫

R
dτ
[
G(t− τ, x− z)1(τ≤t) −G(s− τ, y − z)1(τ≤s)

]
(τ − r)H−

3
2

+

)
×Wα(dr, dz)

∣∣∣2)
=

∫
R+

dr

∫
Rd
dz

∫
Rd
dwf(z − w)

×
(∫

R
dτ
[
G(t− τ, x− z)1(τ≤t) −G(s− τ, y − z)1(τ≤s)

]
(τ − r)H−

3
2

+

)
×
(∫

R
dτ
[
G(t− τ, x− w)1(τ≤t) −G(s− τ, y − w)1(τ≤s)

]
(τ − r)H−

3
2

+

)
= (2π)−d

∫
R+

dr

∫
Rd
µ(dξ)
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×
∣∣∣∣F (∫

R
dτ
[
G(t− τ, x− ·)1(τ≤t) −G(s− τ, y − ·)1(τ≤s)

]
(τ − r)H−

3
2

+

)
(ξ)

∣∣∣∣2
= (2π)−d

∫
R+

dr

∫
Rd
µ(dξ)

∣∣∣∣∫
R
dτ
[
e−2(t−τ)|ξ|21(τ≤t) − e−2(s−τ)|ξ|21(τ≤s)

]
×(τ − r)H−

3
2

+

∣∣∣2 . (4.18)

Split the domain of integration of the variable r into the subdomains [s, t] and [s, t]c,
and observe that on [s, t], the term e−2(s−τ)|ξ|21(τ≤s)(τ − r)+ equals zero. Since the
integrand is non negative, we have

d2
u((t, x), (s, y)) ≥ (2π)−d

∫ t

s

dr

∫
Rd
µ(dξ)

(∫
R
dτ e−2(t−τ)|ξ|21(τ≤t)(τ − r)

H− 3
2

+

)2

= (2π)−d
∫ t

s

dr

∫
Rd
µ(dξ)

(∫ t

r

dτ e−2(t−τ)|ξ|21(τ≤t)(τ − r)H−
3
2

)2

≥ c(α, d,H)|t− s|2H−
d−α

2 , (4.19)

where the last equality follows by explicit computations on the integral.
2. Similarly to (4.9)

d2
u((t, x), (s, x))

=
αH

(2π)d

∫ t

0

dτ

∫ t

0

dσ |τ − σ|2H−2

∫
Rd
µ(dξ)e−2(2t−(τ+σ))|ξ|2

− 2αH
(2π)d

∫ t

0

dτ

∫ s

0

dσ |τ − σ|2H−2

∫
Rd
µ(dξ)e−2(t+s−(τ+σ))|ξ|2

+
αH

(2π)d

∫ s

0

dτ

∫ s

0

dσ |τ − σ|2H−2

∫
Rd
µ(dξ)e−2(2s−(τ+σ))|ξ|2

=
αH

(2π)d

∫ t

s

dτ

∫ t

s

dσ |τ − σ|2H−2

∫
Rd
µ(dξ)e−2(2t−(τ+σ))|ξ|2

+
αH

(2π)d

∫ s

0

dτ

∫ s

0

dσ |τ − σ|2H−2

×
∫
Rd
µ(dξ)

(
e−2(2t−(τ+σ))|ξ|2 − 2e−2(t+s−(τ+σ))|ξ|2 + e−2(2t−(τ+σ))|ξ|2

)
+

2αH
(2π)d

∫ s

t

dτ

∫ s

0

dσ |τ − σ|2H−2

×
∫
Rd
µ(dξ)

(
e−2(2t−(τ+σ))|ξ|2 − 2e−2(t+s−(τ+σ))|ξ|2

)
:= I1 + I2 + I3.

Let us first note that

I3 ≤
2αH
(2π)d

∫ s

t

dτ

∫ s

0

dσ |τ − σ|2H−2

×
∫
Rd
µ(dξ)e−2(t−τ)|ξ|2

(
e−2(t−σ)|ξ|2 − e−2(s−σ))|ξ|2

)
≤ 0,

and therefore this term can be neglected.
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Concerning the first term above we can write, by the change of variables (τ, σ) 7→
( τ−s
t−s ,

σ−s
t−s ) and using (4.9)

I1 ≤ σ2
1,0C(d,H)|t− s|2H .

It remains to analyze the term I2. Use the change of variables (τ, σ) 7→ ( τ−s
t−s ,

σ−s
t−s )

and then, the change of variables ξ 7→ (t− s) 1
2 ξ along with (4.2) to obtain

I2 ≤ C(d,H)|t− s|2H−
d−α

2

∫ s
t−s

0

dτ

∫ s
t−s

0

dσ |τ − σ|2H−2

×
∫
Rd
dξ|ξ|−α

(
e−2(2+τ+σ)|ξ|2 − 2e−2(1+τ+σ))|ξ|2 + e−2(τ+σ)|ξ|2

)
≤ C(d,H)|t− s|2H−

d−α
2

∫ ∞
0

dτ

∫ ∞
0

dσ |τ − σ|2H−2

×
∫
Rd
dξ|ξ|−α

(
e−2(2+τ+σ)|ξ|2 − 2e−2(1+τ+σ))|ξ|2 + e−2(τ+σ)|ξ|2

)
.

Now, using the change of variables ξ 7→ (2+ τ +σ)ξ, ξ 7→ (1+ τ +σ)ξ ,ξ 7→ (τ +σ)ξ,
we can write

I2 ≤ C(d,H)|t− s|2H−
d−α

2

∫
Rd
dξ|ξ|−αe−2|ξ|2

∫ ∞
0

dτ

∫ ∞
0

dσ |τ − σ|2H−2

×
[
(2 + u+ v)−

(d−α)
2 − (1 + u+ v)−

(d−α)
2 + (u+ v)−

(d−α)
2

]
:= C(d,H)|t− s|2H−

d−α
2 × I2,1 × I2,2.

I2,1 is finite since d−α > 0. We note that for u, v close to zero the integrand of I2,2

near zero is finite since 2H − 2 > 0 and that for u, v big enough

(2 + u+ v)−
(d−α)

2 − (1 + u+ v)−
(d−α)

2 + (u+ v)−
(d−α)

2 ≤ C(d)(u+ v)−
d−α

2 ,

this together with the condition 4H − (d− α) > 0 implies that I2 is finite.

The proof of the next proposition is the same as that of [TX17, Thm. 4], where
α ∈ (0, d). For the sake of completeness, we provide the details and see that the
arguments can be adapted to cover the case α = 0.

Proposition 4.2. [HCSS21, Prop. 4.2] Let M > 0. There exists positive constants
c4,3, c4,4, that depend on α, d,H,M , such that for any t > 0, x, y ∈ [−M,M ]d,

c4,3(t2H ∧ 1)

(
log

2e
√
dM

|x− y|

)β

|x− y|2∧(4H−(d−α))

≤ d2
u((t, x), (t, y)) ≤ c4,4(t2H + 1)

(
log

2e
√
dM

|x− y|

)β

|x− y|2∧(4H−(d−α)), (4.20)

where β = 1, if 4H − (d− α) = 2, and β = 0, otherwise.

Proof. Similarly as in (4.9), using (4.5), we have

d2
u((t, x), (t, y))
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=
αH

(2π)d

∫ t

0

dτ

∫ t

0

dσ |τ − σ|2H−2

∫
Rd
µ(dξ) e−2(τ+σ)|ξ|2 (1− cos[(x− y) · ξ]) .

(4.21)

Recall (4.2). After having applied the change of variables ξ 7→ η
|x−y| , from (4.2),

(4.21) and (4.11) we deduce

c1,d,H(t2H ∧ 1)|x− y|4H−d−α
∫
Rd
dη

(
1− cos

[(
x−y
|x−y|

)
· η
])

|η|α(|x− y|2 + |η|2)2H
≤ d2

u((t, x), (t, y))

≤ c2,d,H(t2H + 1)|x− y|4H−d−α
∫
Rd
dη

(
1− cos

[(
x−y
|x−y|

)
· η
])

|η|α(|x− y|2 + |η|2)2H
, (4.22)

for all t > 0 and x, y ∈ Rd, with some positive and finite constants c1,d,H , c2,d,H .
Next we give lower and upper bounds for the terms on the left hand side and

the right hand side of (4.22), respectively.

Lower bounds. By Schwartz’s inequality, B1(0) ⊂
{
η ∈ Rd :

∣∣∣ (x−y)
|x−y| · η

∣∣∣ ≤ 1
}

. More-

over, for |θ| ≤ 1, 1− cos θ ≥ θ2

4
. Consequently,

I :=

∫
Rd
dη

(
1− cos

[(
x−y
|x−y|

)
· η
])

|η|α(|x− y|2 + |η|2)2H
≥ 1

4

∫
B1(0)

dη

(
x−y
|x−y| · η

)2

|η|α(|x− y|2 + |η|2)2H
. (4.23)

Shrink the ball B1(0) to the spherical sector defined by the constraint ϕ ∈ [0, π/4]
on the angle. Then, pass to spherical coordinates and, without loss of generality,
suppose that (x − y)/|x − y| is the unit vector (1, 0, . . . , 0) in Rd. Since x−y

|x−y| · η =

|η| cosϕ, where ϕ ∈ [0, π/4] is the angle between (x− y)/|x− y| and η, we obtain,

I ≥ C

∫ 1

0

dρ
ρd−α+1

(|x− y|2 + ρ2)2H
.

We estimate this integral by distinguishing three cases.

Case 1. 0 < 4H − (d− α) < 2. Since |x− y|2 + ρ2 ≤ 4dM2 + 1,∫ 1

0

dρ
ρd−α+1

(|x− y|2 + ρ2)2H
≥
∫ 1

0

dρ
ρd−α+1

(4dM2 + 1)2H
=

1

(d− α + 2)(4dM2 + 1)2H
.

Case 2. 4H − (d− α) = 2. Because |x− y| ≤ 2
√
dM , we clearly have∫ 1

0

dρ
ρd−α+1

(|x− y|2 + ρ2)2H
≥ cα,d,H,M

∫ 1

|x−y|
2e
√
dM

dρ ρd−α−4H+1

= cα,d,H,M log

(
2e
√
dM

|x− y|

)
.

Case 3. 4H − (d− α) > 2. Using a similar argument as for case 2,∫ 1

0

dρ
ρd−α+1

(|x− y|2 + ρ2)2H
≥ cα,d,H,M

∫ 1

|x−y|
2e
√
dM

dρρd−α+1−4H
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= cα,d,H,M |x− y|d−α−4H+2.

Upper bounds. Apply the inequality 1 − cos(θ) ≤ 2 ∧ θ2 and then, use spherical
coordinates to see that the integral I defined in (4.23) satisfies

I ≤
∫
Rd
dη

(2 ∧ |η|)2)

|η|α(|x− y|2 + |η|2)2H
= cd

∫ ∞
0

dρ
(1 ∧ ρ2)ρd−α−1

(|x− y|2 + ρ2)2H
:= cd J . (4.24)

We estimate J by considering three cases, as we did for the lower bounds.

Case 1. 0 < 4H − (d− α) < 2. Since |x− y|2 + ρ2 ≥ ρ2, we have

J ≤
∫ 1

0

dρ ρd−α−4H+1 +

∫ ∞
1

dρ ρd−α−4H−1 = cα,d,H .

Case 2. 4H − (d− α) = 2. Splitting the domain of integration of J , we obtain

J ≤
∫ |x−y|

0

dρ
ρd−α+1

|x− y|4H
+

∫ 2e
√
dM

|x−y|
dρ ρd−α−4H+1 +

∫ ∞
2e
√
dM

dρ ρd−α−4H−1

=
1

(d− α + 2)
+ log

(
2e
√
dM

|x− y|

)
+

(2e
√
dM)2

2
≤ cα,d,H,M log

(
2e
√
dM

|x− y|

)
.

Case 3. 4H− (d−α) > 2. Using the inequalities 1/(|x−y|2 +ρ2) ≤ 1/(|x−y|2) and
1/(|x− y|2 + ρ2) ≤ 1/ρ2, on {0 ≤ ρ ≤ |x− y|} and {|x− y| < ρ <∞}, respectively,
we have

J ≤ |x− y|−4H

∫ |x−y|
0

dρ ρd−α+1 +

∫ ∞
|x−y|

dρ ρd−α−4H+1 = cα,d,H |x− y|d−α−4H+2.

From (4.23), and using the lower and upper bounds obtained before, we deduce
(4.20).

We end this section by proving the equivalence for the canonical metric (4.13).
It is a consequence of Propositions 4.1 and 4.2.

Theorem 4.2. [HCSS21, Thm. 4.1] Fix M > 0 and t0 ∈ (0, T ]. There exists
positive constants c4,5, c4,6 depending on α, d, t0, H,M, T such that for any t, s ∈
[t0, T ] and x, y ∈ [−M,M ]d,

d2
u((t, x), (s, y)) � |t− s|2H−

d−α
2 +

(
log

2e
√
dM

|x− y|

)β

|x− y|2∧(4H−(d−α)), (4.25)

where β = 1, if 4H − (d− α) = 2, and β = 0, otherwise.
The upper bound holds for any t, s ∈ [0, T ].

Proof. The estimate from above is a consequence of the upper bounds in (4.17) and
(4.20), which hold for any t, s ∈ [0, T ].

We prove the estimates from below by distinguishing two cases.

Case 1. |t − s|2H− d−α2 < c4,3(t2Ho ∧1)

4c4,2

(
log 2e

√
dM

|x−y|

)β
|x − y|2∧(4H−(d+α)). Applying the

triangle inequality and then, using the lower bound in (4.20) and the upper bound
in (4.17), we obtain

d2
u((t, x), (s, y)) ≥ 1

2
d2
u((t, x), (t, y))− d2

u((t, y), (s, y))
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≥ c4,3(t2H0 ∧ 1)

2

(
log

2e
√
dM

|x− y|

)β

|x− y|2∧(4H−(d−α)) − c4,2|t− s|2H−
d−α

2

≥ c4,3(t2H0 ∧ 1)

8

(
log

2e
√
dM

|x− y|

)β

|x− y|2∧(4H−(d−α)) +
c4,2

2
|t− s|2H−

d−α
2 .

Case 2. |t− s|2H− d−α2 ≥ c4,3(t2H0 ∧1)

4c4,2

(
log 2e

√
dM

|x−y|

)β
|x− y|2∧(4H−(d−α)). By (4.16),

d2
u((t, x), (s, y)) ≥ c4,1|t− s|2H−

d−α
2

≥ c4,1

2
|t− s|2H−

d−α
2 +

c4,3(t2H0 ∧ 1)

8c4,2

(
log

2e
√
dM

|x− y|

)β

|x− y|2∧(4H−(d−α)).

The proof is complete.

4.3 Further second order properties

We prove Proposition 4.3 which together with Theorem 4.2, will be used in Section
4.4 to find hitting probabilities estimates for the solution of the stochastic heat
equation.

Proposition 4.3. [HCSS21, Lem. 4.1 & Lem.4.2] Fix M > 0 and t0 ∈ (0, T ].

1. σ2
t,x � 1 for (t, x) ∈ [t0, T ]× Rd,

2. For any (t, x) ∈ (0,∞)× Rd, the mapping t 7→ σ2
t,x is differentiable.

3. There exists η > 0 and C > 0, depending on α, d, t0, H,M, T , such that, for
all s, t ∈ [t0, T ] and x, y ∈ [−M,M ]d,

|σ2
t,x − σ2

s,y| ≤ Cd1+η
u ((t, x), (s, y)). (4.26)

4. For any (t, x), (s, y) ∈ [t0, T ]× Rd such that (t, x) 6= (s, y), ρ(t,x),(s,y) < 1.

5. For any (t, x), (s, y) ∈ [t0, T ]× [−M,M ]d,

E(V ar(u(t, x) | u(s, y))) � |t− s|2H−
d−α

2 +

(
log

2e
√
dM

|x− y|

)β

|x−y|2∧(4H−(d−α)),

(4.27)
where β = 1, if 4H − (d− α) = 2, and β = 0, otherwise.

Proof. 1. Use the change of variable ξ 7→ (τ + σ)
1
2 ξ, in the last expression of the

array (4.9) to get

σ2
t,x =

αH
(2π)d

∫ t

0

dτ

∫ t

0

dσ
|τ − σ|2H−2

(τ + σ)(d−α)/2

∫
Rd
µ(dξ)e−|ξ|

2

. (4.28)

By (4.2) ∫
Rd
µ(dξ)e−|ξ|

2 �
∫
R
ρd−α−1e−ρ

2

<∞. (4.29)
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Apply the change of variables , τ 7→ τ
t
, σ 7→ σ

t
, in (4.28) together with (4.29) to see

that σ2
t,x is bounded from below (respectively, from above) by

t2H−(d−α)/2cα,d,H

∫ 1

0

dτ

∫ 1

0

dσ
|τ − σ|2H−2

(τ + σ)(d−α)/2
. (4.30)

Let Cα,d,H =
∫ 1

0
dτ
∫ 1

0
dσ |τ−σ|

2H−2

(τ+σ)
d−α

2
and observe that, since 4H − (d − α) > 0,

Cα,d,H < ∞. From the above computations, we deduce that the lower inequality

(respectively, the upper inequality) in the first claim holds with c ≤ t
2H− (d−α)

2
0 Cα,d,H

(respectively, with C ≥ T 2H− (d−α)
2 Cα,d,H).

2. Using the same arguments that those in the proof of 1. we deduce that
σt,x = cα,d,Ht

H−(d−α)/4 which clearly implies 2.
3. Assume, without loss of generality, that 0 < s ≤ t. For all x, y ∈ Rd, from

(4.9) and similarly as in (4.30), it follows that(
αH

(2π)d

)−1

|σ2
t,x − σ2

s,y| =
(

αH
(2π)d

)−1 (
σ2
t,x − σ2

s,y

)
=

∫
Rd
µ(dξ)e−2(τ+σ)|ξ|2

(∫ t

0

dτ

∫ t

0

dσ |τ − σ|2H−2 −
∫ s

0

dτ

∫ s

0

dσ |τ − σ|2H−2

)
≤ cα,d,H

(∫ t

s

dτ

∫ t

s

dσ
|τ − σ|2H−2

(τ + σ)
d−α

2

+ 2

∫ s

0

dτ

∫ t

s

dσ
|τ − σ|2H−2

(τ + σ)
d−α

2

)
. (4.31)

Apply polar coordinates (τ, σ) 7→ (ρ cos θ, ρ sin θ) and then, the mean value the-
orem, to see that∫ t

s

dτ

∫ t

s

dσ
|τ − σ|2H−2

(τ + σ)
d−α

2

≤
∫ √2t

√
2s

dρ ρ2H− d−α
2
−1

(∫ π
2

0

dθ
| cos θ − sin θ|2H−2

(cos θ + sin θ)
d−α

2

)

≤ 2H−
(d−α)

4 T 2H− (d−α)
2
−1(t− s)(

2H − (d−α)
2

)2

∫ π
2

0

dθ
| cos θ − sin θ|2H−2

(cos θ + sin θ)
d−α

2

≤ C(α, d,H, T )(t− s).

Since 0 < 2H − (d−α)
2

< 2, we have η1 :=
(
H − (d−α)

4

)−1

− 1 > 0, and we deduce,∫ t

s

dτ

∫ t

s

dσ
|τ − σ|2H−2

(τ + σ)
d−α

2

≤ C(H, d, T )(t− s)
4H−(d−α)

4
(1+η1). (4.32)

As for the second integral on the last line of (4.31), we have∫ s

0

dτ

∫ t

s

dσ
|τ − σ|2H−2

(τ + σ)
d−α

2

≤
∫ s

0

dτ

∫ t

s

dσ (σ − τ)2H− (d−α)
2
−2, (4.33)

because τ ≤ σ implies τ + σ ≥ σ − τ .
Our next goal is to obtain estimates from above on the right-hand side of (4.33)

in terms of powers of (t− s). For this, we consider three cases.
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Case 1. 0 < 4H − (d− α) < 2.∫ s

0

dτ

∫ t

s

dσ (σ − τ)2H− (d−α)
2
−2 =

s2H− (d−α)
2 + (t− s)2H− (d−α)

2 − t2H−
(d−α)

2

(2H − (d−α)
2

)(1 + (d−α)
2
− 2H)

≤ (t− s)2H− (d−α)
2

(2H − (d−α)
2

)(1 + (d−α)
2
− 2H)

= C(α, d,H)(t− s)2H− d−α
2

= C(α, d,H)(t− s)
4H−(d−α)

4
(1+η2), (4.34)

with η2 = 1.
Case 2. 0 < 4H − (d− α) = 2.∫ s

0

dτ

∫ t

s

dσ (σ − τ)−1 = t log(t)− s log(s) + (t− s) log
(
(t− s)−1

)
≤ 2[(t log t− s log s) ∨ ((t− s) log((t− s)−1))]

≤ 2(t− s)[(log T + 1) ∨ log((t− s)−1)],

where in the last inequality we have applied the mean value theorem. This yields,
for any γ ∈ (0, 1),∫ s

0

dτ

∫ t

s

dσ (σ − τ)−1 ≤ 2(| log T |+ 2)([(t− s)γ ∨ (t− s)] ≤ C(T ) (t− s)γ

= C(T )(t− s)
4H−(d−α)

4
(1+η3), (4.35)

with η3 = 2γ − 1
Case 3. 2 < 4H − (d− α) < 4.∫ s

0

dτ

∫ t

s

dσ (σ − τ)2H−2− (d−α)
2 =

t2H−
(d−α)

2 − s2H− (d−α)
2 − (t− s)2H− (d−α)

2(
2H − (d−α)

2

)(
2H − 1− (d−α)

2

)
≤ t2H−

(d−α)
2 − s2H− (d−α)

2(
2H − (d−α)

2

)(
2H − 1− (d−α)

2

) ≤ T 2H−1− (d−α)
2

2H − 1− (d−α)
2

(t− s)

≤ C(α, d,H, T )(t− s)
4H−(d−α)

4
(1+η4), (4.36)

with η4 = η1 =
(
H − (d−α)

4

)−1

− 1.

Set η = min(ηi, i = 1, 2, 3). Appealing to Theorem 4.2, and using (4.31), (4.32),
(4.34), (4.35) and (4.36), we obtain

|σ2
t,x − σ2

s,y| ≤ C(α, d,H, T )(t− s)(H−
d−α

4 )(1+η)

≤ c−1
4,5C(α, d,H, T ) d1+η

u ((t, x), (s, y)),

with c4,5 as in (4.25).

4. Assume that ρ(t,x),(s,y) = 1 and hence, that there exists λ ∈ R such that

‖u(t, x)− λu(s, y)‖L2(Ω) = 0. (4.37)

We will see that this assumption leads to a contradiction.
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Case 1. s < t. Apply (4.18) with u(s, y) replaced by λu(s, y) to obtain

‖u(t, x)− λu(s, y)‖2
L2(Ω) = (2π)−d

∫
R+

dr

∫
Rd
µ(dξ)

×
∣∣∣∣∫

R
dτ
[
e−2(t−τ)|ξ|21(τ≤t) − λe−2(s−τ)|ξ|21(τ≤s)

]
(τ − r)H−

3
2

+

∣∣∣∣2 .
As in (4.19), this is bounded from below by a constant multiple of

∫
Rd
µ(dξ)

∫ t

s

dr

(∫ t

r

dτ e−2(t−τ)|ξ|2(τ − r)H−
3
2

)2

.

A direct computation shows that
∫ t
s
dr
(∫ t

r
dτ e−2(t−τ)|ξ|2(τ − r)H− 3

2

)2

6= 0. Since

we are assuming (4.37), we reach a contradiction.

We notice that, in the case under consideration, the arguments hold for any
(t, x), (s, y) ∈ [0,∞)× Rd.

Case 2. s = t ∈ [t0, T ], x 6= y. Apply (4.21) with u(t, y) replaced by λu(t, y) to see
that

‖u(t, x)− λu(s, y)‖2
L2(Ω) =

αH
(2π)d

∫ t

0

dτ

∫ t

0

dσ |τ − σ|2H−2

×
∫
Rd
µ(dξ) e−2(τ+σ)|ξ|2 (1 + λ2 − 2λ cos[(x− y) · ξ]

)
.

Using the lower bound estimates in (4.2) and (4.11), we deduce

‖u(t, x)− λu(s, y)‖2
L2(Ω) ≥ C(α, d, t0, H)

∫
Rd

(
1 + λ2 − 2λ cos[(x− y) · ξ]

)
× |ξ|−α

(1 + |ξ|2)2H
dξ.

By assumption, the integral on the right-hand side must be zero. However, this
integral is bounded from below by the integral on the spherical sector of the ball B1

where 2 cos[(x− y) · ξ] ≤ 1+λ2

2
. Consequently,

0 = ‖u(t, x)− λu(t, y)‖2
L2(Ω) ≥ C(α, d, t0, H)

1 + λ2

2

∫ 1

0

rd−α−1

(1 + r2)2H
dr,

which is a contradiction.

5. 1. and 3. implies that

lim
ε↓0

sup
(t,x),(t̄,x̄)∈I×J
|(t−t̄,x−x̄)|≤ε

|σt,x − σt̄,x̄|
d(t,x),(t̄,x̄)

= 0.

By Theorem 4.2, 1. and 4., the rest of the hypothesis of Proposition 3.1 are also
valid. Thus we deduce (3.21) which by (4.25) implies (4.27).
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4.4 Hitting probabilities

Consider the Gaussian random field

v = {v(t, x) = (v1(t, x), ..., vD(t, x)), (t, x) ∈ [0, T ]× Rd},

where the components are independent copies of the process v(t, x) defined in (4.7).
The process v is the random field solution to the system of SPDEs{

∂vj
∂t

(t, x) = ∆vj(t, x) + ẆH,α
j , (t, x) ∈ (0, T ]× Rd,

vj(0, x) = v0(x), x ∈ Rd,

j = 1, . . . , D, where (WH,α
j , j = 1, . . . , D) are independent copies of the fractional-

colored noise WH,α introduced at the beginning of Section 4.1 and v0 is such that
the function (t, x) 7→ I0(t, x) is continuous (see Remark 4.1 for sufficient conditions).

Throughout this section, we will consider the compact sets I = [t0, T ] and J =
[−M,M ]d, with t0 ∈ (0, T ], M > 0, and the gauge functions defined in R+,

g1(τ) = τH−
d−α

4 , g2(τ) =

(
log

2e
√
dM

τ

)β
2

τ 1∧(2H− d−α
2 ), β = 14H−(d−α)=2.

We remind the related function to g = (g1, g2) introduced in Chapter 3,

qg(τ) = τD(g−1
1 (τ))−1(g−1

2 (τ))−d.

Let D0 = [H − (d − α)/4]−1 + d[1 ∧ (2H − (d − α)/2]−1. According to Ex-
ample 3.2 the function qg satisfy the conditions required by the definition of the
qg-Hausdorff measure if and only if D > D0. We now give the main theorem on
hitting probabilities for the process v.

Theorem 4.3. Suppose that the function I × J 3 (t, x) 7→ I0(t, x) satisfies the
condition (CY2)

1. [HCSS21, Thm. 4.2] Let D > D0 .

(a) There exists a constant C := C(I, J,D, d) such that for any Borel set
A ⊂ RD,

P (v(I × J) ∩ A 6= ∅) ≤ C Hqg(A). (4.38)

(b) Fix N > 0 and let A ⊂ BN(0) ⊂ RD be a Borel set. There exists a
constant c := c(I, J,N,D, d) such that

P (v(I × J) ∩ A 6= ∅) ≥ c Cap(qg)−1(A). (4.39)

2. Assume that D0 < D or D = D0, β
2
d[1 ∧ (2H − (d − α)/2)]−1 > 1. Fix

N > 0 and let A ⊂ BN(0) ⊂ RD be a Borel set. There exists a constant
c := c(I, J,N,D, d) such that

P (v(I × J) ∩ A 6= ∅) ≥ c[vg(0)]−1 > 0. (4.40)
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Proof. Theorem 4.2, Example 3.1 and the hypothesis on the (CY2) condition implies
that v has an a.s. continuous modification on I × J .

Case 1.D > D0. Proposition 4.3(1.) implies that σI(η),J(η) > 0 and by Theorem

4.2 u1 is g-Gaussian in I(η)×J (η) for η > 0 small enough. In Example 1.3 we proved
that g1 and g2 satisfies the hypothesis of Lemma 1.1, and according to Example 3.2
qg is strictly increasing on a small interval around zero. Thus the assumptions of
Corollary 3.1 are valid and (3.16) is (4.38).

Additionally to the paragraph above, we observe that by Proposition 4.3, u1

satisfies conditions (CY1)-(CY3) on I × J . Since in Example 3.4, we verified the
validity of (3.23), (3.24) in Theorem 1.2 implies (4.39).

Case 2. D < D0 or D = D0 and β
2
d[1∧ (2H − (d−α)/2)]−1 > 1. (4.40) follows

by (3.26) in Theorem 3.2, since according to Example 3.4, in this case (3.25) is valid
instead of (3.23).

Remark 4.2. Assume that D = D0, β
2
d[1 ∧ (2H − (d − α)/2)]−1 > 1. This implies

that β = 1 and forces to 4H − (d − α) = 2. Thus, we deduce that D = 2 + d
and d

2
> 1. The assumptions are equivalent to the conditions 4H − (d − α) = 2,

D = d+ 2 and d > 2.

Theorem 4.3 implies the next corollary which identifies conditions D = D0 and
β
2
d[1 ∧ (2H − (d− α)/2)]−1 ≤ 1 with the critical dimension for polarity of points of

v.

Corollary 4.1. If D > D0, points are polar for v. If D < D0 or D = D0,
β
2
d[1 ∧ (2H − (d− α)/2)]−1 > 1, points are non polar.

Proof. Assume firstD > D0. By the definition of the qg measure we haveHqg({z}) =
0. Hence the polarity of {z} follows by (4.38). The rest of the Corollary follows by
(4.40).
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Chapter 5

The linear stochastic biharmonic
heat equation

We apply the results of Chapter 3 to the linear stochastic biharmonic heat equation{
( ∂
∂t

+ (−∆)2)vj = Ẇj, (t, x) ∈ (0, T ]× Td,
vj(0, x) = v0(x), x ∈ Td.

j = 1, ..., D, with (Wj, j = 1, ..., D) independent copies of a white noise.
We introduce some notation used throughout this chapter. As usually, N denotes

the set of natural numbers {0, 1, 2, ...}; we set Z2 = {0, 1}, and for any integer
d ≥ 1, Nd,∗ = (N \ {0})d. For any multiindex k = (k1, . . . , kd) ∈ Nd, we set
|k| = (

∑d
j=1 k

2
j )

1/2, and denote by n(k) the number of null components of k. The
results of this chapter are published in [HCSS22].

5.1 The solution

The d-dimensional torus Td is the box [0, 2π]d with the identification x ∼ y if and
only if xi ≡ yi mod 2π. We denote by B(Td) = {A ⊂ [0, 2π)d : A ∈ B(Rd)} the
Borelians in the Td-torus and L2(Td) the set of square integrable functions in Td.

For x ∈ [0, 2π), let ε0,k(x) = π−1/2 sin(kx), ε1,k(x) = π−1/2 cos(kx), k ∈ N∗, and
ε1,0(x) = (2π)−1/2. The set of functions B defined on Td consisting of

εi,k := εi1,k1 ⊗ · · · ⊗ εid,kd , i = (i1, . . . , id) ∈ Zd2,

with kj ∈ N∗ if ij = 0, and kj ∈ N if ij = 1, is an orthonormal basis for L2(Td) (See
[Gra14, Prop. 3.1.15 & Prop. 3.1.16], for example).

Define

(Z2 × N)d+ = {(i, k) ∈ (Z2 × N)d : (ij, kj) 6= (0, 0), ∀j = 1, . . . , d}.

Notice that B = {εi,k = εi1,k1 ⊗ · · · ⊗ εid,kd , (i, k) ∈ (Z2 × N)d+}.
Assume that kj > 0, then∑

i∈Z2

εi,kj(xj)εi,kj(y) =
1

π
(sin(kjxj) sin(kjyj) + cos(kjx2) sin(kjyj)))

=
1

π
cos(kj(xj − yj)).
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The last equality together with the fact that ε0,1(xj) = (2π)−1/2 implies that for any
x, y ∈ Td,

∑
i∈Zd2

εi,k(x)εi,k(y) =
1

2n(k)πd

d∏
j=1

cos(kj(xj − yj)), k ∈ Nd with (i, k) ∈ (Z2 × N)d+.

(5.1)
Let (−∆)2 be the biharmonic operator (also called the bilaplacian) on L2(Td).

The basis B is a set of eigenfunctions of (−∆)2 with associated eigenvalues λk =∑d
j=1 k

4
j , k ∈ Nd. Observe that d−1|k|4 ≤ λk ≤ |k|4, and infk∈Nd,∗ λk = d.

The semi-group Gt generated by −∆2 is denoted by Gt = e−t∆
2
, that is for

f ∈ L2(Td),
Gt(f) =

∑
(i,k)∈(Z2×N)d+

e−λ
2
kt〈f, εi,k〉L2(Td)εi,k. (5.2)

This is a convolution semi-group with the Green function G defined by

G(t;x, y) =
∑

(i,k)∈(Z2×N)d+

e−λktεi,k(x)εi,k(y) =
∑
k∈Nd

e−λkt

2n(k)πd

d∏
j=1

cos(kj(xj − yj)), (5.3)

the last equality being a consequence of (5.1).
Let f ∈ L1([0, T ]) × L2(TD) and v0 ∈ L2(Td), according to [DPZ14, Prop. A.6]

there exist a unique weak solution(see [DPZ14, Def. A.5] for a definition) to the
Cauchy problem {

( ∂
∂t

+ (−∆)2)v = f, (t, x) ∈ (0, T ]× Td,
v(0, x) = v(x), x ∈ Td,

given by

v(t, x) = Gt(v0(x)) +

∫ t

0

Gt−s(f(r, x))dr

=

∫
Td
G(t;x, z)v0(z)dz +

∫ t

0

dr

∫
Td
dzG(t− r;x, z)f(r, x).

Definition 5.1. A centered Gaussian field {W (t, A), t ∈ (0, T ], A ∈ B(Td)} with
covariance

E(W (t, A)W (s, B)) = (t ∧ s)|A ∩B|
is called space-time white noise.

The construction of the stochastic integral with respect to white noise in [0, T ]×
Td is very similar to the case of white noise in Rd explained in section 2.1 of Chapter
2. As in (2.2) ∫ T

0

∫
Td
ϕ(r, z)W (dr, dz), ϕ ∈ L2([0, T ]× Td),

turns out to be a centered Gaussian random field with covariance

E

(∫ T

0

∫
Td
ϕ(r, z)W (dr, dz)

∫ T

0

∫
Td
ψ(r, z)W (dr, dz)

)
= 〈ϕ, ψ〉L2([0,T ]×Td). (5.4)
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Consider the linear stochastic biharmonic heat equation{(
∂
∂t

+ (−∆)2
)
v(t, x) = Ẇ (t, x), (t, x) ∈ (0, T ]× Td,
v(0, x) = v(x), x ∈ Td,

(5.5)

where W is a space-time white noise on [0, T ]×Td and v0 : Td −→ R is a measurable
function.

Definition 5.2. Assume that for any (t, x) ∈ (0, T ]×Td, G(t−·;x, ∗) ∈ L2([0, T ]×
Td). The random field solution to (5.3), is the Gaussian stochastic process

v(t, x) = I0(t, x) + u(t, x), (t, x) ∈ [0, T ]× Td,

where

I0(t, x) =

∫
Td
G(t;x, z)v0(z)dz, u(t, x) =

∫ t

0

∫
Td
G(t− r;x, z)W (dr, dz), (5.6)

where G given in (5.3), and the stochastic integral is a Wiener integral with respect
to space-time white noise.

Remark 5.1. (5.6) is a linear version of the solution to the Cahn-Hilliard stochastic
equation studied in [DPD96] and [CW01] but in a different spatial domain. Da
Prato and Debussche originally considered a solution with boundary conditions in
the spatial domain [0, π]d.

We first find sufficient conditions on the initial condition v0 implying the conti-
nuity of the map I0.

Proposition 5.1. [HCSS22, Prop. 5.1] Let v0 ∈ L1(Td), d = 1, 2, 3. Then, the
function (t, x) 7→ I0(t, x) is jointly Lipschitz continuous.

Proof. Increments in time. Fix 0 < s ≤ t ≤ T , Using the definition of G(t;x, z)
given in (5.3), we see that for any x ∈ Td,

|I0(t, x)− I0(s, x)|

=

∣∣∣∣∣∣∣∣∣
∫
Td
dz v0(z)

∑
k∈Nd,∗

(
e−λkt − e−λks

) ∑
i∈Zd2

(i,k)∈(Z2×N)d+

εi,k(x)εi,k(z)

∣∣∣∣∣∣∣∣∣
≤
∫
Td
dz|v0(z)|

∑
k∈Nd,∗

t− s
λk

1

2n(k)πd

∣∣∣∣∣
d∏
j=1

cos(kj(xj − zj))

∣∣∣∣∣
≤ Cd(t− s)‖v0‖L1(Td)

∑
k∈Nd,∗

1

λk

∫ t

s

dρe−λkρ

≤ Cd(t− s)‖v0‖L1(Td)

∑
k∈Nd,∗

1

λk
=
[
C̄d‖v0‖L1(Td)

]
(t− s),

where the convergence of the series in the last equality is equivalent to to a harmonic
series

∑
k∈Nd

0≤n(k)≤d−1

|k|−4, which converges if and only if d ≤ 3.
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Increments in space. Let x, y ∈ Td. Then, for any t ∈ [0, T ],

|I0(t, x)− I0(t, y)| =

∣∣∣∣∣∣
∫
Td
dz v0(z)

∑
(i,k)∈(Z2×N)d+

e−λkt(εi,k(x)− εi,k(y))εi,k(z)

∣∣∣∣∣∣
≤ |x− y|

∑
k∈Nd,∗

|k|e−λkt
∫
Td
dz|v0(z)|

Up to a multiplicative constant depending on d, the series in the above expression

is bounded by
∫∞

0
ρde−

ρ4

2d−1 = CdΓE
(
d+1

4

)
, where ΓE denotes the Euler Gamma

function.
The proof of the proposition is complete.

The following theorem gives necessary and sufficient conditions for the stochastic
integral in (5.6) to be well defined.

Theorem 5.1. [HCSS22, Thm. 2.1] The stochastic process (u(t, x), (t, x) ∈ [0, T ]×
Td) given in (5.6) is well-defined if and only if d = 1, 2, 3. In this case,

sup
(t,x)∈[0,T ]×Td

E(|u(t, x)|2) <∞. (5.7)

Proof. Fix (t, x) ∈ (0, T ]× Td. By (5.3) and applying Fubini’s theorem, we have∫ t

0

dr

∫
Td
dz G2(t− r;x, z) =

∑
(i,k)∈(Z2×N)d+

ε2
i,k(x)

(∫ t

0

dr e−2λkr

)

=
∑
k∈Nd

1

2n(k)πd

∫ t

0

dr e−2λkr

=
t

(2π)d
+

∑
k∈Nd

0≤n(k)≤d−1

1− e−2λkt

2n(k)+1πdλk
. (5.8)

Apply the inequalities u
1+u
≤ 1− e−u ≤ 1, valid for all u ≥ 0, to see that the series

in (5.8) is equivalent to a harmonic series
∑

k∈Nd
0≤n(k)≤d−1

|k|−4, which converges if and

only if d ≤ 3. Equivalently, the Wiener integral defining u(t, x) is well-defined if and
only if d ≤ 3. This finishes the proof of the first statement.

By the isometry property of the Wiener integral (5.4), E((u(t, x))2) is equal to
the right-hand side of (5.8). Taking the supremum in (5.8), we have

sup
(t,x)∈[0,T ]×Td

E((u(t, x))2) ≤ T

(2π)d
+ sup

t∈[0,T ]

∑
k∈Nd

1− e−2λkt

2n(k)+1πdλk

≤ T

(2π)d
+
∑
k∈Nd

1

2n(k)+1πdλk
≤ C(T, d). (5.9)

In the rest of the chapter we will take d ∈ {1, 2, 3}.
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5.2 Equivalence for the canonical metric

For the process u of Theorem 5.1, we define

du((t, x), (s, y)) = ‖u(t, x)− u(s, y)‖L2(Ω).

This is the canonical metric associated with u. This section is devoted to establish
an equivalent pseudo-distance for du.

Throughout the proofs, we will make frequent use of the identity

du((t, x), (s, y))2 =
1

2n(k)+1πd

×
∑
k∈Nd,∗

1− e−2λks

λk

(
e−2λk(t−s) + 1− 2e−λk(t−s)

d∏
j=1

cos(kj(xj − yj))

)

+
1

2n(k)+1πd

∑
k∈Nd,∗

1− e−2λk(t−s)

λk
+
t− s
(2π)d

, (5.10)

0 ≤ s ≤ t. This formula is proved using the Wiener isometry (5.4)

du((t, x), (s, y))2 =

∫ t

0

dr

∫
Td
dz (G(t− r;x, z)−G(s− r; y, z))2

=

∫ s

0

dr

∫
Td
dz (G(t− r;x, z)−G(s− r; y, z))2 +

∫ t

s

dr

∫
Td
dz G2(t− r;x, z),

(5.11)

(the last equality holds because the Green’s function G(r; y, z) vanishes if r < 0)
and using the definition (5.3). The first (respectively, second) series term in (5.10)
equals the first (respectively second) integral on the rignt-hand side of (5.11).

We start by analyzing the L2(Ω)-increments in the time variable of the process
u.

Proposition 5.2. [HCSS22, Prop. 3.1] 1. There exist constants c5,1(d, T ) and
c5,2(d) such that, for all s, t ∈ [0, T ], x ∈ Td,

c5,1(d, T )|t− s|1−d/4 ≤ du((t, x), (s, x))2 ≤ c5,2(d)|t− s|1−d/4. (5.12)

2. For any (t, x), (s, y) ∈ [0, T ]× Td,

du((t, x), (s, y))2 ≥ c5,1(d, T )|t− s|1−d/4, (5.13)

where c5,1(d, T ) is the same constant as in (5.12).

Proof. Without loss of generality, we suppose 0 ≤ s < t ≤ T . Use the first equality
in (5.11) and then apply Lemma 5.1 bellow with h := t− s. This yields the second
inequality in (5.12).

From (5.10), we have

du((t, x), (s, x))2 ≥ 1

2n(k)+1πd

∑
k∈Nd,∗

1− e−2λk(t−s)

λk
. (5.14)
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Let r ≥ d. Applying the inequality 1− e−u ≥ u
1+u

, u ≥ 0, we obtain

∑
k∈Nd,∗

1− e−2λk(t−s)

λk
≥ 2(t− s)

∑
k∈Nd,∗
|k|>r

1

1 + 2λk(t− s)

≥ 2(t− s)
r−4 + 2(t− s)

∑
k∈Nd,∗
|k|>r

1

|k|4

≥ 2(t− s)
r−4 + 2(t− s)

d,∗ ∫
|z|>r

dz|z|−4

= cd
2(t− s)

r−4 + 2(t− s)
rd−4,

since λk ≤ |k|4. Choosing r =
(
d4T
t−s

)1/4

, the inequality above yields

du((t, x), (s, x))2 ≥ c5,1(d, T )(t− s)1−d/4,

with c5,1(d, T ) = cd
2ddT d/4

1+2d4T
. This is the lower bound in (5.12).

Notice that from (5.10) we deduce

du((t, x), (s, y))2 ≥ 1

2n(k)+1πd

∑
k∈Nd,∗

1− e−2λk(t−s)

λk
.

Hence the proof above yields (5.13).

For any j = 1, . . . , d, fix real numbers 0 < c0,j < 2π and define Jj = [c0,j, 2π−c0,j]
and J = J1 × . . .× Jd ( Td. The next statement deals with increments in space.

Proposition 5.3. [HCSS22, Prop. 3.2] Let (u(t, x), (t, x) ∈ [0, T ] × Td) be the
stochastic process defined in Theorem 5.1 and let J be a compact set as described
before. There exist positive constants c(d), C(d), c5,3(d) and c5,4(d) such that, for
any t > 0, x, y ∈ J ,

c5,3(d)Ct

(
log

c(d)

|x− y|

)β
|x− y|2∧(4−d)

≤ du((t, x), (t, y))2 ≤ c5,4(d)

(
log

C(d)

|x− y|

)β
|x− y|2∧(4−d), (5.15)

where Ct = (1− e−2dt), and β = 1{d=2}.
The upper bound holds for any (t, x) ∈ [0, T ]×Td. The lower bound holds for any

x, y ∈ Td if |x− y| is small enough. For t = 0, the lower bound is non informative.

Proof. From (5.10) we deduce

du((t, x), (t, y))2 =
1

2n(k)πd

∑
k∈Nd,∗

1− e−2λkt

λk

(
1−

d∏
j=1

cos(kj(xj − yj))

)
. (5.16)

72



Upper bound. Because of (5.1) and the mean value theorem,

1−
d∏
j=1

cos(kj(xj − yj)) = 2n(k)−1πd
∑
i∈Zd2

(εi,k(x)− εi,k(y))2 ≤ C̄(d)(1 ∧ (|k| |x− y|)2).

(5.17)
for any (i, k) ∈ (Z2 × N)d.
Case d = 1. Since

∑
k≥1

1
k2 <∞, from (5.16) and (5.17) we have

du((t, x), (t, y))2 =
1

π

∑
k≥1

1− e−2λkt

λk
(1− cos(k(x− y))) ≤ Cd|x− y|2. (5.18)

Case d = 2, 3. For any k ∈ Nd, let Ik = [k1, k1 + 1)× · · · × [kd, kd + 1). Observe that
for any d-dimensional vector z ∈ Ik, we have |z| ≤ |k| +

√
d. Fix ρ0 ≥ b3

√
dc + 1

and let α > 0. Then,

T1(α, ρ0) :=
∑
k∈Nd
|k|≥ρ0

1

|k|α
≤
∑
k∈Nd
|k|≥ρ0

∫
Ik

dz

(|z| −
√
d)α

≤ Cd

∫ ∞
ρ0

dz

(|z| −
√
d)α

= Cd

∫ ∞
ρ0

ρd−1 dρ

(ρ−
√
d)α

≤ Cd,α

∫ ∞
ρ0

ρd−1−α dρ, (5.19)

where the last inequality holds because on [ρ0,∞), ρ−
√
d ≥ 1/2ρ.

Let ρ0 be as above, ρ1 =
⌊
(3/2)

√
d
⌋

+ 1, and β > 0. By arguments similar to

those used to obtain (5.19), we deduce

T2(β, ρ0) =
∑
k∈Nd

ρ1≤|k|<ρ0

1

|k|β
≤

∑
k∈Nd

ρ1≤|k|<ρ0

∫
Ik

dz

(|z| −
√
d)β
≤ Cd

∫ ρ0

ρ1

ρd−1 dρ

(ρ−
√
d)β

≤ Cd,β

∫ ρ0

ρ1

ρd−1−β dρ, (5.20)

where in the last inequality, we have used that on [ρ1, ρ0], ρ−
√
d ≥ (1/5)ρ.

Set h = |x−y| and ρ0 =
⌊
cdh
− 2∧(4−d)

4−d

⌋
+1, where cd = 3

√
d(2π
√
d)

2∧(4−d)
4−d . Notice

that ρ0 ≥ b3
√
dc+ 1. Then, from (5.16), (5.17) and since x, y in Td,

du((t, x), (t, y))2 ≤ C(d)

T1(4, ρ0) + h2

T2(2, ρ0) +
∑
k∈Nd

1≤|k|<ρ1

1

|k|2


 . (5.21)

Using (5.19), with the choice of ρ0 specified above, we see that T1(4, ρ0) ≤ Cdh
2∧(4−d)

and

T2(2, ρ0) ≤ Cd ×

{
log
(
C
h

)
, d = 2,

h−1, d = 3.
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Since
∑

k∈Nd, 1≤|k|<ρ1

1
|k|2 = c̃d < ∞, substituting the above estimates in the right-

hand side of (5.21) we obtain the upper bound in (5.15).

Lower bound. Case |x− y| small. We start from (5.16) to obtain

du((t, x), (t, y))2 ≥ 1− e−2t

2n(k)πd

∑
k∈Nd,∗

1−
∏d

j=1 cos(kj(xj − yj))
|k|4

. (5.22)

Let T (x, y) denote the series on the right-hand side of (5.22). Because for any
z ∈ [−π/2, π/2], we have cos z ≤ 1− ( 2

π
z)2, we deduce

T (x, y) ≥
∑
k∈Nd,∗

kj |xj−yj |≤π/2

1−
∏d

j=1(1− [(2/π)kj|xj − yj|]2)

|k|4
. (5.23)

Case d = 1. Using (5.23), we obtain

T (x, y) ≥ ( 2
π
)2|x− y|2

∑
k∈N\{0}

k|x−y|≤π/2

1

k2
≥ ( 2

π
)2|x− y|2

∫ π
2
|x−y|−1

1

ρ−2 dρ

= ( 2
π
)2|x− y|2

(
1− 2

π
|x− y|

)
.

Assume |x−y| ≤ c0π
2

, with 0 < c0 < 1 arbitrarily close to 1. Then 1− 2
π
|x−y| ≥ 1−c0

and, in this case,

du((t, x), (t, y))2 ≥ 4(1− c0)
1− e−2t

π3
|x− y|2. (5.24)

Case d = 2, 3. Consider the series on the right-hand side of (5.23) and apply the
formula (5.31) of Lemma 5.2 below with m := d and pj = [(2/π)kj|xj − yj|]2, to see
that

T (x, y) ≥ (2/π)2
[
S1(x, y)− (2/π)2S2(x, y)

]
, (5.25)

where

S1(x, y) =
∑
k∈Nd,∗

kj |xj−yj |≤π/4

d∑
j=1

(kj|xj − yj|)2

|k|4
,

S2(x, y) =
∑
k∈Nd,∗

kj |xj−yj |≤π/4

∑
j1,j2∈{1,...,d},

j1<j2

(kj1|xj1 − yj1|kj2|xj2 − yj2 |)2

|k|4
.

Note that the condition kj|xj − yj| ≤ π/4 implies 1 − (2/π)2(kj|xj − yj|)2 ≥ 3/4.
Hence, for d = 2 we see that

2∑
j=1

(kj|xj − yj|)2 − (2/π)2(k1|x1 − y1|)2(k2|x2 − y2|)2

= (k1|x1 − y1|)2
(
1− (2/π)2(k2|x2 − y2|)2

)
+ (k2|x2 − y2|)2
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≥ 3

4

2∑
j=1

(kj|xj − yj|)2.

Similarly, for d = 3 we have

3∑
j=1

(kj|xj − yj|)2
(
1− (2/π)2(kj+1|xj+1 − yj+1|)2

)
≥ 3

4

3∑
j=1

(kj|xj − yj|)2,

where in the sum above, we set j + 1 = 1 if j = 3.
Thus, in both dimensions d = 2, 3,

S1(x, y)− (2/π)2S2(x, y) ≥ (3/4)S1(x, y).

The next goal is to find a lower bound for S1(x, y). Without loss of generality
we may and will assume |x1 − y1| ≤ |x2 − x2| ≤ ... ≤ |xd − yd|. Set

Nd,∗
≤ := {k ∈ Nd,∗ : k1 ≤ k2 ≤ ... ≤ kd}.

We claim that,

S1(x, y) ≥
∑
k∈Nd,∗≤

kj |xj−yj |≤π/4

d∑
j=1

(kj|xj − yj|)2

|k|4
≥ 1√

2d
|x− y|2

∑
k∈Nd,∗≤

kj |xj−yj |≤π/4

1

|k|2
. (5.26)

Indeed, set K = (k2
j )j, Z = (|xj − yj|2)j and let θ be the angle between the vectors

K and Z. Because
∑d

j=1(kj|xj − yj|)2 is the Euclidean scalar product between K
and Z and θ ∈ [0, π/4],

d∑
j=1

(kj|xj − yj|)2 ≥ cos(π/4)

(
d∑
j=1

k4
j

)1/2( d∑
j=1

|xj − yj|4
)1/2

≥ 1√
2

|k|2|x− y|2

d
.

Assume that |x− y| ≤ π
5
√
d
. The set {k ∈ Nd,∗ : |k| ≤ π

4
|x− y|−1} is non empty and

is included in {k ∈ Nd,∗ : kj ≤ π
4
|xj − yj|−1, j = 1, . . . , d}. Hence,

∑
k∈Nd,∗≤

kj |xj−yj |≤π/4

1

|k|2
≥ 1

d!

∑
k∈Nd,∗

|k|≤π
4
|x−y|−1

1

|k|2
≥ Cd

∫ π
4
|x−y|−1

√
d

ρd−3 dρ.

For d = 2, the last integral equals log
(

π
4
√
d|x−y|

)
, while for d = 3, it is equal to

(π/4)|x− y|−1−
√
d. Observe that if |x− y| ≤ π

5
√
d

this expression is bounded below

by (π/20)|x− y|−1.
Summarizing, from (5.26) and assuming |x − y| ≤ π

5
√
d
, the discussion above

proves

S1(x, y) ≥ Cd ×

{
log
(

π
4
√
d|x−y|

)
|x− y|2, d = 2,

|x− y|, d = 3.
(5.27)
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Therefore, for any x, y ∈ Td such that 0 ≤ |x − y| ≤ π
5
√
d
, we have proved that

the lower bound of (5.15) holds with the constant c3(d) depending only on d and
Ct = 1− e−2t.

Lower bound. Case |x − y| large. We recall a standard “continuity-compactness”
argument that we will use to extend the validity of the lower bound established in
the previous step, to every x, y ∈ J satisfying π

5
√
d
< |x− y| < 2π.

Consider the function

J2 3 (x, y) 7→ ϕt(x, y) = du((t, x), (t, y))2,

where t > 0 is fixed. Because of the upper bound in (5.15), this is a continuous
function. Furthermore, from (5.16), we see that it is strictly positive. Thus, for any
c0 > 0, the minimun value m of ϕt over the compact set

{ϕt(x, y); (x, y) ∈ J2 : |x− y| ≥ c0}

is achieved, and m > 0. Referring to the left hand-side of (5.15), let M be the
maximum of the function

J2 3 (x, y) 7→
(

log
c(d)

|x− y|

)β
|x− y|2∧(4−d), β = 1{d=2}.

Taking c0 = π
5
√
d
, we deduce,

du((t, x), (t, y))2 ≥ m

M

(
log

c(d)

|x− y|

)β
|x− y|2∧(4−d), β = 1{d=2},

for any x, y ∈ J such that π
5
√
d
< |x− y| < 2π.

This ends the proof of the lower bound and of the Proposition.

With Propositions 5.2 and 5.3 we obtain an equivalent expression of the canonical
pseudo-distance (2.16), as stated in the next theorem.

Theorem 5.2. [HCSS22, Thm. 3.1] Let (u(t, x), (t, x) ∈ [0, T ]×Td) be the stochas-
tic process defined in Theorem 5.1.
1. There exist constants c5,4(d), C(d) such that for any (t, x), (s, y) ∈ [0, T ]× Td,

du((t, x), (s, y))2 ≤ c5,4(d)

(
|t− s|1−d/4 +

(
log

C(d)

|x− y|

)β
|x− y|2∧(4−d)

)
, (5.28)

with β = 1{d=2}.
2. Fix t0 ∈ (0, T ] and let J be a compact subset of Td as in Proposition 5.3. There
exist constants c5,6(d, t0, T ) and c(d) such that, for any (t, x), (s, y) ∈ [t0, T ]× J,

du((t, x), (s, y))5,2 ≥ c5,6(d, t0, T )

×

(
|t− s|1−d/4 +

(
log

c(d)

|x− y|

)β
|x− y|2∧(4−d)

)
, (5.29)

with β = 1{d=2}.

76



Proof. The estimate from above follows by applying the triangle inequality and the
upper bounds in (5.12) and (5.15), which hold for any (t, x), (s, y) ∈ [0, T ]×Td. The
value of the multiplicative constant in the upper bound is c5,5(d) = 2[c5,2(d)+c5,4(d)],
where c5,2(d), c5,4(d) are given in (5.12), (5.15), respectively.

To prove the lower bound, we consider two cases (see Propositions 5.2 and 5.3
for the notations of the constants).

Case 1: c5,2(d)|t−s|1−d/4 ≤ c5,3(d)Ct0
4

(
log c(d)

|x−y|

)β
|x−y|2∧(4−d), where Ct0 = 1−e−2t0 .

Applying the triangle inequality and then, using the lower bound in (5.15) and
the upper bound in (5.12) we obtain,

du((t, x), (s, y))2 ≥ 1

2
du((t, x), (t, y))2 − du((t, y), (s, y))2

≥ c5,3(d)Ct0
2

(
log

c(d)

|x− y|

)β
|x− y|2∧(4−d) − c5,2(d)|t− s|1−d/4

≥ c5,3(d)Ct0
8

(
log

c(d)

|x− y|

)β
|x− y|2∧(4−d) +

c5,2(d)

2
|t− s|1−

d
4 .

Case 2: c5,2(d)|t− s|1−d/4 > c5,3(d)Ct0
4

(
log c(d)

|x−y|

)β
|x− y|2∧(4−d).

By (5.13), we have

du((t, x), (s, y))2 ≥ c5,1(d, T )|t− s|1−d/4 =
c1(d, T )

c5,2(d)

[
c5,2(d)|t− s|1−d/4

]
≥ c5,1(d, T )

c5,2(d)

(
c5,2(d)

2
|t− s|1−d/4 +

c3(d)Ct0
8

(
log

c(d)

|x− y|

)β
|x− y|2∧(4−d)

)
.

The proof of the theorem is complete.

We finish this section by proving the auxiliary lemmas used in the proofs of
Propositions 5.2 and 5.3.

Lemma 5.1. [HCSS22, Lem. 7.1] Let d ∈ {1, 2, 3}. There exists a constant Cd
such that for any h ≥ 0 and x ∈ Td,∫ ∞

0

dr

∫
Td
dz (G(r + h;x, z)−G(r;x, z))2 ≤ Cdh

1−d/4. (5.30)

Proof. Using the expression (5.3),and the inequality 1− e−τ ≤ 1 ∧ τ , τ ≥ 0, we see
that ∫ ∞

0

dr

∫
Td
dz (G(r + h;x, z)−G(r;x, z))2

=
∑
k∈Nd

1

2n(k)πd

∫ ∞
0

dr
(
e−λk(r+h) − e−λkr

)2

=
∑
k∈Nd

0≤n(k)≤d−1

1

2n(k)+1πd

(
1− e−λkh

)2

λk
≤ Cd

∑
k∈Nd

0≤n(k)≤d−1

min(1, |k|8h2)

|k|4

= Cd
∑
k∈Nd

0≤n(k)≤d−1

min
(
|k|−4, |k|4h2

)
:= Cd T (h).
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where we make use of the convergence of the series
∑

k∈Nd,∗ |k|−4.
Case 1. h ≥ 1. We have that min (|k|−4, |k|4h2) = |k|−4. Thus, T (h) = C <∞,

which implies T (h) ≤ Ch.
Case 2. 0 < h < 1. Let T (h) ≤ T1(h) + T2(h), where

T1(h) =
∑

k∈Nd, 0≤n(k)≤d−1

|k|≤bh−1/4c

min
(
|k|−4, |k|4h2

)
,

T2(h) =
∑

k∈Nd 0≤n(k)≤d−1

|k|>bh−1/4c

min
(
|k|−4, |k|4h2

)
.

For the first term, we have

T1(h) ≤
∑

k∈Nd 0≤n(k)≤d−1

|k|≤bh−1/4c

|k|4h2 ≤ h
∑

k∈Nd 0≤n(k)≤d−1

|k|≤bh−1/4c

1 ≤ Cd h
1−d/4.

For the second term, we have

T2(h) ≤
∑

k∈Nd 0≤n(k)≤d−1

|k|>bh−1/4c

|k|−4 ≤ Cd h
1−d/4.

Since 1−d/4 < 1, the estimates obtained in the two instances of h imply (5.30).

Lemma 5.2. [HCSS22, Lem. 7.2] For pj ∈ [0, 1], j = 1, . . . ,m, the following
formula holds:

1−
m∏
j=1

(1− pj) =
m∑
j=1

pj −
∑
i<j

1≤i,j≤m

pipj +
∑
i<j<k

1≤i,j,k≤m

pipjpk

− · · ·+ (−1)m−1p1p2 · · · pm. (5.31)

Proof. On a probability space, consider independent events (Aj)1≤j≤m such that
pj = P (Aj). Then,

1−
m∏
j=1

(1− pj) = 1− P (Ac1 ∩ . . . ∩ Acm)) = 1− P (∪mj=1Aj)
c = P (∪mj=1Aj),

and (5.31) follows from the well-known inclusion-exclusion formula in probability
theory.

5.3 Further second order properties

We prove Proposition 5.4 which together with Theorem 5.2, will be used in Section
4.4 to find hitting probabilities estimates to the solution of the biharmonic heat
equation.

Proposition 5.4. [HCSS22, Lem. 4.1] Fix t0 ∈ (0, T ] and let J be a compact subset
of Td as in Proposition 5.3.
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1. σ2
t,x � 1 for (t, x) ∈ [t0, T ]× Td.

2. There exists a constant Cd,T such that for all s, t ∈ (0, T ] and x, y ∈ Td,

|σ2
t,x − σ2

s,y| ≤ Cd,Tdu((t, x), (s, y))2. (5.32)

3. For any (t, x), (s, y) ∈ [t0, T ]× Td such that (t, x) 6= (s, y), ρ(t,x),(s,y) < 1.

4. For any (t, x), (s, y) ∈ [t0, T ]× J ,

E(V ar(u(t, x) | u(s, y))) � |t− s|1−
d
4 +

(
log

C(d)

|x− y|

)β
|x− y|2∧(4−d), (5.33)

with β = 1d=2.

Proof. 1. The upper bound is proved in (5.9). (5.8) implies that for any t, x ∈
[t0, T ]× Td

σ2
t,x ≥

t

(2π)d
≥ t0

(2π)d
.

2. Without loss of generality we may assume that 0 < s ≤ t. Applying (5.8)
yields

|σ2
t,x − σ2

s,y| =
t− s
(2π)d

+
1

2n(k)+1πd

∑
k∈Nd

0≤n(k)≤d−1

e−2λks
(
1− e−2λk(t−s))
λk

.

Use the inequality (5.13) to get t−s
(2π)d

≤ c̄d,Tdu((t, x), (s, y))2. Since e−2λks ≤ 1 and

because of (5.10), we see that the second term on the right-hand side of this equality
is bounded above by du((t, x), (s, y))2. This ends the proof of (5.32).

3. Assume that ρ(t,x),(s,y) = 1. Then, there exist λ ∈ R \ {0} such that ‖u(t, x)−
λu(s, y)‖L2(Ω) = 0. This leads to a contradiction. Indeed, consider first the case
0 < s < t. By the isometry property of the Wiener integral,

‖u(t, x)− λu(s, y)‖2
L2(Ω) =

∫ s

0

dr

∫
Td
dz(G(t− r;x, z)− λG(s− r; y, z))2

+

∫ t

s

dr

∫
Td
dz G2(t− r;x, z)

≥
∫ t−s

0

dr

∫
Td
dz G2(r;x, z) > 0, (5.34)

by the properties of G.
Next, we assume t = s and x 6= y. In this case by the first line in (5.34)∫ t

0

dr

∫
Td
dz(G(t− r;x, z)− λG(t− r; y, z))2 = 0.

This implies that for a.e. z ∈ Td, G(t−r;x, z) = λG(t−r; y, z), and that λ > 0. Since
the expression of an element of L2(Td), in terms of the basis B is unique, by replacing
the terms in the last equality with (5.3) we deduce that εi,k(x) = λεi,k(z), for every
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(i, k) ∈ (Z2 × N)d+. Thus in particular cos(x) = λ cos(y) and sin(x) = λ sin(y).
Hence λ = 1 and as a consequence

‖u(t, x)− λu(t, y)‖L2(Ω) = ‖u(t, x)− u(t, y)‖L2(Ω) = 0

which is in contradiction with the lower bound in (5.15).
4. This fact follows by Proposition 3.1, which hypothesis are valid due to The-

orem 5.2 together with the previous statements of this proposition. We skip the
proof since it is analogous to 5. in Proposition 4.3.

5.4 Hitting probabilities

Consider the Gaussian random field

v = (v(t, x) =
(
v1(t, x), . . . ,vD(t, x)), (t, x) ∈ [0, T ]× Td

)
,

where (vj(t, x)), j = 1, . . . , D, are independent copies of the process (v(t, x)) defined
in (5.9).

For τ ∈ R+, let

g1(τ) = τ (4−d)/8, g2(τ) =

(
log

C(d)

τ

)β
2

τ 1∧((4−d)/2), β = 1{d=2},

qg(τ) = τD
(
g−1

1 (τ)
)−1 (

g−1
2 (τ)

)−d
.

Let D0 = [(4 − d)/8]−1 + d[1 ∧ ((4 − d)/2)]−1. According to Example 3.2 the
functions qg satisfy the conditions required by the definitions of the qg-Hausdorff
measure if and only if D > D0.

In the next theorem, I = [t0, T ] and J = [0,M ]d, where 0 < t0 ≤ T and
M ∈ (0, 2π).

Theorem 5.3. [HCSS22, Thm. 6.1] Suppose that the function I × J 3 (t, x) 7→
I0(t, x) satisfies the condition (CY2). The hitting probabilities relative to the D-
dimensional random field v satisfy the following bounds.

1. Let D > D0.

(a) There exists a constant C := C(I, J,D, d) such that for any Borel set
A ∈ B(RD),

P (v(I × J) ∩ A 6= ∅)) ≤ CHqg(A).

(b) Let N > 0 and A ∈ B(RD) be such that A ⊂ BN(0). There exists a
constant c := c(I, J,N,D, d) such that

P (v(I × J) ∩ A 6= ∅)) ≥ cCap(ḡq)−1(A).

2. Assume that D < D0 or D = D0. Fix N > 0 and let A ⊂ BN ⊂ RD be a
Borel set. There exists a constant c := c(I, J,N,D, d) > 0 such that

P (v(I × J) ∩ A 6= ∅)) ≥ c[vg(0)]−1 > 0.
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Proof. As in Theorem 4.3, the proof of this Theorem is an application of Corollary
3.1 and Theorem 3.2, but now considering Theorem 5.2 and Proposition 5.4. We
skip the details for avoiding repetitions.

Theorem 5.3 implies the following Corollary which identifies D = D0 with the
critical dimension for polarity of points of v.

Corollary 5.1. If D > D0, points are polar for v. If D < D0 points are non polar.
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Chapter 6

Future research

By a way of conclusion, we propose some open problems that arose during the
development of this work and could be subject of future research.

Modulus of continuity

It follows from (1.3) in Chapter 1 that for any ĝ-Gaussian process on a compact
subset K of Rd, there exists a positive constant C depending on K that

lim
δ↓0

sup
x,x̄∈K,
d(x,x̄)≤δ

|X(x)−X(x̄)|

(∫ δ

0

dε

√
d log

(
�K

g−1(ε)

))−1

≤ C.

If the limit in the last line equals to a positive constant thus we would have computed
the exact global modulus of continuity of X. General criteria for computing the
exact global exact modulus of continuity of anisotropic Gaussian random fields can
be found in [MWX13, Thm.4.1] and [LX21, Thm. 6.1].

An open problem is to find criteria for computing the exact global modulus of
continuity of a g-Gaussian processes. Due to the simplicity of its covariance function
a first step would be to compute it in the case of the family of γ-Gaussian processes,
introduced in [MV05], defined by the Volterra representation

Bγ(t) :=

∫ t

0

√(
dγ2

dt

)
(t− s)dW (s),

where W is a Brownian motion.

Polarity of points at the critical dimension

As we mentioned in Remark 1.6, it is an open problem to determine whether a
g-Gaussian process hits or not points in the critical dimension.

Hausdorff dimension of level sets

Let K be a compact subset of Rd, and

X = {X(x) = (X1(x), ..., XD(x))), x ∈ K}
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a (d,D)-dimensional real valued stochastic process. For z ∈ Rd we denote the level
set {x ∈ K : X(x) = x} by Lz. In [Xia09, Thm. 7.1] the Hausdorff dimension of a
level set is computed when X is an anisotropic Gaussian process.

We believe that the Hausdorff dimension of the level sets for g-Gaussian process is
determined by the upper index of g (see [Xia07, (3.14) & Thm. 3.2.0]). Additionally,
it is a question of interest if the dimension of the level sets can be given in terms of
more general notions as the critical parameter of a scale, as defined in [Klo12].

Hitting probabilities for non-linear SPDEs

By following the line of [DKN13],we propose the study of hitting probabilities for
the solution of the non linear system of stochastic partial differential equations given
by {

∂vj
∂t

(t, x)−∆vj(t, x) =
∑d

i=1 σi,j(vj(t, x))ẆH,α
i (t, x) + bi(v(t, x)),

vj(0, x) = v0(x),

(t, x) ∈ (0, T ]×Rd with WH,α
j , j = 1, ..., D independent copies of a fractional-colored

noise with Hurst parameter H ∈ (1
2
, 1) and α ∈ [0, d). When b, σ ≡ 0, we recover

the linear stochastic heat equation studied in Chapter 4.
Since this solution is not a Gaussian process mainly two new technical difficulties

arise:

� The necessity of extending the criteria for lower bounds for hitting probabilities
in Theorem 3.2 to more general process. A good start point is to follow the
density based hypothesis approach from Theorem 2.1 in [DSS10].

� The usual Malliavin calculus tools used for estimate the density of the solution
in the case of [DKN13] does not immediately work in this new case since the
driving noise is not white anymore. To develop a new technique for solutions
driven by more general noises is an open problem.
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[BLX09] H. Biermé, C. Lacaux, and Y. Xiao. Hitting probabilities and the Haus-
dorff dimension of the inverse images of anisotropic Gaussian random
fields. B. Lon. Math. Soc., 41(2):253–273, 2009.

[BP90] R. Buckdahn and E. Pardoux. Monotonicity methods for white noise
driven quasilinear SPDEs. In Diffusion processes and related problems in
analysis, volume 1, pages 219–233. Birkhäuser, 1990.
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