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[ENG]
Although temporal and spatial series have been broadly studied on their

own, spatio-temporal systems remain still an open research field. Given that
a vast number of natural and human processes fit into a spatio-temporal do-
main, new tools and methodologies are rising. Among them, neural net-
works have shown their ability to perform very well in high dimensional and
nonlinear environments, which makes this kind of models very attractive for
spatio-temporal series forecasting.

Within this context, sustainable mobility and air quality are growing in
importance due to its high impact on public health, logistic, and economy.
Due to these facts, today and more than ever, it is desirable to develop tools
that let us optimize and predict processes along these topics. Thus, this thesis
focuses its efforts in tackling these issues. Concretely, we advanced the gen-
eral understanding of spatio-temporal convolutional networks while propos-
ing a new model for interpretable traffic forecasting and a new approach to
predict air quality (which is in use by Madrid authorities).

[ESP]
Aunque las series temporales y espaciales han sido ampliamente estu-

diadas por separado, los sistemas espacio-temporales propiamente dichos
siguen siendo un campo abierto de investigación. Dado que un gran número
de procesos naturales y humanos encajan en un dominio espacio-temporal,
el desarrollo de nuevas herramientas y metodologías destinados a caracteri-
zarlos es de vital importancia. Entre ellas, las redes neuronales tienen la ca-
pacidad de desenvolverse bien en entornos altamente dimensionales y no
lineales, lo que hace que este tipo de modelos sean muy atractivos para la
predicción de fenómenos espacio-temporales.

Por otro lado, es un hecho que hoy en día la movilidad sostenible y cal-
idad del aire son campos que están adquiriendo una importancia creciente
debido a su gran impacto en la salud pública, logística y economía. Dentro
de esta casuística es de gran interés desarrollar herramientas que nos permi-
tan optimizar y predecir procesos en tales campos. Debido a ello, esta tesis
centra todos sus esfuerzos en abordar cuestiones enmarcadas en dichas áreas
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de estudio. En concreto, se propone un nuevo modelo para la predicción del
tráfico centrado en la mejora de la interpretabilidad de sistemas neuronales,
se profundiza en el uso de redes convolucionales para resolver problemas
espacio-temporales y se propone un nuevo marco para la predicción de la
contaminación en Madrid que se encuentra actualmente operativo como la
herramienta oficial del ayuntamiento.
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Chapter 1

Introduction

Through this first chapter, a general vision of the problem will be offered
and its importance will be highlighted. Motivation for the studied topic
and general objectives are also discussed. In the end, there is a brief
overview of the thesis.

1.1 Context

The ability to predict the future behaviour of a process or phenomenon is an
idea that has constantly and universally seduced mankind throughout its his-
tory. With the development and advancement of several science disciplines
and mathematics, new tools that allow modeling future states of dynamic
systems have recently been proposed. Thus, in the last decades, time and
spatial series have been broadly studied, but spatio-temporal systems that
combine information about these two dimensions remain still an open field.
From climate science and transportation systems to finance and economics,
there are plenty of fields in which time and space might constitute two en-
tangled dimensions of data, with one affecting the other and thus both being
relevant for prediction. Given that a vast number of natural and human pro-
cesses fit into a spatio-temporal domain, new tools and methodologies are
rising in order to better analyse, model, forecast and, finally, understand our
world.

Recently, the improvement in computational capabilities, the develop-
ment of algorithms, and the tendency to record and store all the information
that is captured have allowed data science to emerge as a fruitful field which
a vast number of disciplines can take advantage of. Thus, there has been an
increasing trend to develop and improve methodologies for gathering and
using vast amounts of spatio-temporal data over the last years. Tailored to
extract usable knowledge from these big data repositories, it is an extraor-
dinary opportunity for developing proposals that aim to facilitate a shared
understanding of the multiple relationships between the physical and natu-
ral environments and society. By contributing in this direction, it is possible
to enrich plenty of services in many ways.

In the last decade, while machine learning has been widely used for, pre-
cisely, gaining insight into the aforementioned topics, there is still room for
improvement in our understanding of the models and their applications.
Among these models, neural networks have the ability to behave well in high
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FIGURE 1.1: Proportion of population affected and adverse ef-
fects of contamination in health [90].

dimensional and non-linear environments, which make this kind of models
very attractive for solving problems and modelling systems belonging to a
spatio-temporal domain.

Within this context, sustainable mobility and air quality are growing in
importance due to their high impact on public health, logistic, and the econ-
omy. Thus, it is desirable to develop tools that let us optimize and predict
spatio-temporal processes related with these fields. Concretely, this work
focus on (although it is not restricted to) two of the main issues related to
the aforementioned fields: traffic and air quality. As is commonly known,
traffic is one of the main elements that produce pollution. In turn, pollu-
tion is considered as one of the main sources of unhealthiness and mortality
nowadays (see figure 1.1), making it especially interesting to develop new
methodologies and systems that help us to alleviate the negative effects they
cause. Even outside the field of public health, these phenomena are highly
interesting because of the impact they can have on both the individual and
collective levels.

All things considered, it is not surprising that institutions from a diversity
of fields are investing a large amount of resources to increase our understand-
ing of these phenomena and to alleviate their consequences. It is precisely in
this context that the Empresa Municipal de Transportes (public municipal
mobility company) of Madrid, EMT, showing its commitment to combining
mobility and sustainability, has funded the research presented herein.
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1.2 Motivation

There are many reasons why developing an entire thesis on the use of neural
networks for spatio-temporal series related to sustainable mobility and air
quality forecasting is interesting.

On the one hand, it is crucial, and to some extent unavoidable, to talk
about the importance that most of the elements that support this thesis have
gained in recent years. Neural networks, which only 20 years ago were little
more than a laboratory amusement, have become one of the main method-
ologies that govern not only Artificial Intelligence but most modern com-
putational applications. There are plenty of examples where these models
are growing in importance: images, videos, audio, natural language process-
ing, signal processing, etc. A vast number of fields are being explored and
exploited employing this paradigm, in many cases with increasing success,
reaching milestones every few months.

Certainly, it is also well known that spatio-temporal processes are impor-
tant per se since they model or govern a great variety of processes in which the
human being is highly interested or whose dynamics deeply affect the way
we live, plan, and relate to each other as discussed in the previous section.

Lastly, up to this point it is well known that air quality and sustainable
mobility are issues with a social, economic, and sanitary repercussion of cru-
cial importance, being one of the concerns with greater representation in the
collective sensibility. Thus, and like with neural networks, a big amount of
resources are being required and used to solve the problems associated with
these fields.

We are therefore facing a perfect cocktail of elements and scientific mo-
mentum at the right time from an objective point of view, which could be a
reason of sufficient significance on its own to motivate a thesis such as the
one presented here.

However, it should be noted that the pillars of this work are not only of
practical interest or importance. From a subjective point of view, there are
several questions that this thesis addresses whose answers are of interest in
their own right. Among them, one of particular importance and significance
is that the way in which neural networks use spatio-temporal information
is not well known yet. Also, traffic/mobility forecasting is recurrent when
using spatio-temporal neural models, but new tendencies as graphs and at-
tention mechanisms are becoming popular, gaining ground to become the
pillars supporting modern intelligent transportation systems. At this point,
it is not clear how far these new neural systems can go in this field. Lastly,
pollution/air quality forecasting has been mainly tackled from a time series
perspective, allowing us to lead the new trend of scientific research that seeks
to further develop the spatial dimension in this particular field.

Thus, although the nature of this thesis is mainly engineering, the work
delves also into more purely theoretical matters.
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1.3 Objectives

Given what has been said, the objectives of this thesis could be summarised
as follow:

• To understand, develop, and use neural models for spatio-temporal se-
ries forecasting.

• To apply these models in issues related to sustainable mobility and air
quality in order to improve public health and mobility.

Specific objectives for several proposals that compose this thesis will be
presented in their correspondent chapter.

1.4 Thesis overview and contributions

Given the broad and interdisciplinary perspective of this thesis, this work
has been conceived as a compendium of projects with functional indepen-
dence but with a common unifying thread. By doing so, we have had the
opportunity to develop a varied and wide-ranging work that allows us to
approach the problem from several points of view. Thus, this thesis starts
from a pure spatio-temporal systems modeling approach, to then delve into
the intricacies of how certain neural systems which are especially interesting
for our field behave, and finally apply all the experience and material previ-
ously developed in a real application that is currently used officially by the
municipality of Madrid. Regardless of the general tone of each project, we
have always honoured, as scrupulously as possible, a methodology based on
rigorous experimentation within data science.

Hence, this document is structured as follows. Chapter 2 contains an
overview of neural methods that are commonly used throughout this thesis
in particular, and in the field of spatio-temporal regression in general. Chap-
ter 3 contains the first main project that sustains this document: the proposal
of a new traffic prediction model based on attention mechanisms that takes
special care of the ability to extract information related to the temporal part
of the series through interpretability systems inherent to the aforementioned
mechanisms.

After this, Chapter 4 focuses on the second main project. Specifically, it
delves from a theoretical point of view into how convolution-based neural
systems handle spatial information and refutes some classical ideas in their
implementation when working with real spatio-temporal problems, pointing
towards possible new proposals to be used in the future.

Chapter 5 presents a collaborative effort to build an operational air quality
prediction system for the city of Madrid. This system combines the Bayesian
statistical modelling developed by the team at Inverence with a deep neural
network which, combined, allows the tool to be adapted to the pollution
protocol of the city in such a way that it is functional and operational for
forecasting and decision making in this important field of public health.
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Chapter 6 and Appendix A work as related side projects but are slightly
different from the general line of this thesis. In particular, a new system for
estimating car accidents is proposed and an exhaustive analysis is made of
the state of the art on the use of neural networks for the prediction and opti-
mization of processes related to the COVID pandemic, respectively.

As the last part of this document, Chapter 7 is dedicated to summarize
the main contributions of this work and to gather some future research lines
that could be explored.

As can be inferred from the structure presented above, there is a clear
path whose beginnings are of a purely theoretical and laboratory nature,
but which has allowed the development of practical and complex systems
of great potential for the health and quality of life of the population. Specifi-
cally, Chapter 3 and 4 projects develop, among other things, the understand-
ing and knowledge of the use of neural networks for time and spatial series,
always approaching the problem from a controlled point of view but taking
care that it is as applicable as possible to real problems. Thus, the step taken
in Chapter 5 is natural and shows how all the knowledge accumulated dur-
ing the previous projects can be used when facing real life.

In this way, this thesis has provided the opportunity to go through a com-
plete cycle of the scientific path. This path, which sometimes forgets that
goes beyond the laboratory, does indeed start from the corroboration of hy-
potheses and the proposition of solutions. But it is when these solutions are
applied in order to improve some aspect that affects society that a cycle is
completed. Figure 1.2 summarises these ideas and puts them in context with
this thesis in particular.

As stated previously, it is worth noting that this work has been developed
under the financing and collaboration of the Empresa Municipal de Transportes
de Madrid (EMT), without which this work would not have been possible.
Also, during the process of elaboration of this document there has been the
opportunity to co-direct two Master’s theses, whose experience, besides be-
ing gratifying from a personal and laboral point of view, have resulted in
direct material and inspiration for this thesis.

Finally, it is important to mention that scientific knowledge has been built
around a temple that has falsifiability, reproducibility, and openness as its pil-
lars. Therefore, whenever possible, an extra effort has been made to facilitate
access to the computational tools developed as well as to the experiments
carried out throughout this thesis, which can be found in the following link:
https://github.com/rdemedrano. In all cases, this fact is noted in each arti-
cle with its respective code where appropriate.

https://github.com/rdemedrano
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FIGURE 1.2: Research projects and their relation when corre-
spond. Acronyms characteristic of each project are used and
will be introduced in their respective chapters. In the fig-
ure it can be seen which acronym corresponds to which chap-
ter/project. Ellipses show quartile of the journal for each

project if published.
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Chapter 2

Neural models for spatio-temporal
series regression

This second chapter intends to be an introductory view of neural meth-
ods that are commonly used for spatio-temporal regression. Although
the independent articles that form this thesis describe the methodology
necessary for their understanding, it is summarised here through a brief
explanation of those technicalities shared throughout the different pa-
pers that might be helpful for not deep learning practitioners. Sections
2.1 to 2.4 present a series of usual models, while Section 2.5 condenses
general notes on the training and parameterization of the models seen
before.

2.1 Feedforward neural networks

A feedforward neural network is a biologically inspired system that con-
sists of a number of simple neuron-like processing units, organized in layers.
They can model nonlinear processes based on the information collected by
the input layer (which corresponds to the first one), propagating this infor-
mation layer by layer establishing the relations between the inputs and the
final layer called output layer. The larger the number of layers is, the deeper
the network becomes, letting us model more complex relations and phenom-
ena (and this fact would actually name the field as deep learning). Every
unit in a layer is connected with all the units in the previous layer. These
connections are not all equal: each connection will be represented by a differ-
ent number which will be called weight. The weights encode the knowledge
and transformations that perform a specific network. Each layer output (a)
depends on the previous one (x) through a linear relation via the learned
weight (W), and modulated by a non-linear function called activation func-
tion (g). Usually, a bias term (b) is added to the linear relation, resulting in
the following expression:

a = g(Wx + b) (2.1)

The fact that the information moves along the network in one direction
only and without feedback is what gives the name feedforward to these sys-
tems (Figure 2.1).
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FIGURE 2.1: A feedforward neural network schematic.

Thus, a feedforward network has no notion of order on neither temporal
nor spatial dimension, and the only input it considers is the current example
it has been exposed to. Feedforward networks are amnesiacs regarding their
past; they do not have any type of memorization mechanism and can only
remember the specific examples of training.

2.2 Recurrent neural networks

Recurrent neural networks, also known as RNNs, are a class of neural net-
works that allow previous outputs to be used as inputs while having hidden
states contrary to what happened with feedforward networks. Concretely,
they are implemented with loops or connections between units allowing a
shared-propagation of information from one timestep of the network to the
next one, taking into account for computing a new state the previous one
(Figure 2.2). Mathematically, each new state is computed as follows:

h(t) = g(Wxt + Uht−1) (2.2)

where t represents the actual timestep, g an activation function, h the state
of the network, x the input series, and W, U are learnable weights.

RNNs present a series of advantages that have been explored for time
series. As computation takes into account historical information and weights
are shared across time, they are particularly well suited for modeling strong-
based sequentially data. Also, model size does not increase with the size of
the input, which can be a problem when handling series with a high number
of input timesteps when using feedforward networks.

However, RNNs are well known for presenting difficulties to access in-
formation from a long time, as they do not implement any kind of memory
mechanism (known as the vanishing gradient problem). Moreover, as it only
processes one timestep at a time, when the series presents a high variability
or the periodicity is not obvious, it may have adaptative problems.
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FIGURE 2.2: A recurrent neural network schematic.

As with feedforward networks, RNNs do not present any advantage for
the spatial dimension, modeling each zone independently.

2.2.1 Long-short term memory networks

Long short-term memory networks (LSTM) [119] are a variation of the pre-
viously presented RNNs which are able to model long-term relations by in-
cluding a specific memory mechanism: units called memory blocks. Further-
more, another type of unit called gates controls the flow of information from
a previous timestep to the next one.

First, the LSTM has to decide which information should be omitted from
the cell in the current timestep. To do so, a sigmoid activation function is
used. Concretely, it considers the previous state (ht−1) along with the current
input xt and computes the following function:

ft = σ(W f · [xt, ht−1] + b f ) (2.3)

ft is called the forget gate and resolve which information from previous
timesteps should not be remembered. Again, t represents the actual timestep,
h the state of the network, x the input series, W represent a learnable weight,
and b the bias term.

On the contrary, the so-called input gate (it) determines which informa-
tion to let through based on the current timestep. It writes as:

it = σ(Wi · [xt, ht−1] + bi (2.4)

From this information, a new cell state (Ct) can be computed by modulat-
ing how much from past cell state is kept via the forget gate, and how much
new input is allowed via the input gate:

Ct = ft ◦ Ct−1 + it ◦ tanh(Wc · [xt, ht−1] + bc) (2.5)

Finally, the new state is calculated:

ot = σ(Wo · [xt, ht−1] + bo) (2.6)
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FIGURE 2.3: A LSTM network schematic.

ht = ot ◦ tanh(Ct) (2.7)

As with the models seen so far, the spatial dimension is not treated in any
special way. A schematic that summarizes this type of network can be found
in Figure 2.3.

2.3 Convolutional neural networks

Convolutional Neural Networks (CNNs) [159] are based on the idea of the
convolution operation. Convolution itself (∗ operator) has the following
form for 2D images:

(x ∗ K)(i, j) =
k1

∑
m

k2

∑
n

x(m, n)K(i−m, j− n) (2.8)

where K is the so-called kernel and x the input series which, in this case, it
has the form of an image. Thus, CNNs are characterized by learning a series
of filters which values depend on how adjacent elements are related. Convo-
lution allows for the encoding of the spatial properties of the input in such
a way that propagates the information taking into account spatial relations
based on closeness (Figure 2.4). Also, this sharing of information provokes a
more efficient type of networks since fewer parameters are needed. CNN fil-
ters or kernels, obtained by the convolution of inputs and weights, are local
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FIGURE 2.4: A convolutional neural network schematic.

in input space and are able to exploit the strong, spatially local correlation
present in both dimensions for the spatio-temporal series. Thus, they work
well for identifying patterns within local regions of the data which then will
be used by subsequent layers to form more complex patterns in a similar way
as feedforward networks modeled more complex relations via deepening.

2.4 Attention mechanisms

The fundamental operation of any attention mechanism is based on the self-
attention operation [29] (Figure 2.5). It is defined as sequence-to-sequence
operation, meaning that the model will have a sequence of elements as input
to output another sequence of elements. Given an input vector x1, ..., xt, and
the corresponding output vector y1, ..., yt, both with dimension k for simplic-
ity, to comùte the output at a given timestep yi, the self-attention operation
simply takes a weighted average over all the input timesteps:

yi = ∑
j

wijxj (2.9)

Where the summation runs through the entire input sequence and the
weights sum to one over all j. The weight wij is not a learnable parameter,
as in a normal neural network, but it is derived from a function over xi and
xj. Called attention weights, wij are interpreted as how much from input
timestep j is being used to compute output timestep i. In other words, the
attention mechanism is learning which parts of the input sequence should be
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FIGURE 2.5: An attention mechanism schematic.

taken into account for predicting each output timestep. The simplest option
for this function is the dot product:

w′ij = xi
Txj (2.10)

The dot product is not truncated to any pair of values, so a softmax is
applied to map the values to [0, 1] and to ensure that they sum to 1 over the
whole sequence:

wij =
exp w′ij

∑j exp w′ij
(2.11)

Although in principle these mechanisms have been used mainly for se-
quentialized series only, we will see in Chapter 3 that it is possible to gener-
alize them to pay attention to elements with other characteristics.

2.5 Training neural networks

Training a neural network involves using some training examples that let
us update the model weights to create a good mapping of inputs to outputs.
This learning process is solved using an optimization algorithm that searches
through a space of possible values for a set of weights that results in a good
performance on the training dataset via a cost function previously defined.
Thus, the objective is to find a set of neural parameters that result in mini-
mum error with respect to this cost function.

This entire process is iterative, meaning that it progresses step by step
with small updates to the model weights each iteration and, in turn, a change
in the performance of the model each iteration.
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However, this optimization problem is considered hard: the error surface
is non-convex and contains local minima, flat spots, and is highly multidi-
mensional. In general terms, it is considered that gradient descent algorithms
are the best options to address these challenging problems in order to train
neural networks.

Concretely, this process is made via the so-called backpropagation algo-
rithm [255], which works by computing the gradient of the loss function
with respect to each weight by the chain rule, one layer at a time, iterating
backward from the last layer to avoid redundant calculations of intermedi-
ate terms in the chain rule. It is worth noting that backpropagation is only an
algorithm to compute gradients through a complex and directional structure
such as a neural network, but the optimization problem is solved by gradient
descent as discussed above.

Thus, and depending on the optimization algorithm chosen, the training
will depend on a series of external parameters that will govern the optimiza-
tion process: for neural networks, some of the most important ones are the
learning rate (which modulates the degree the weights are updated), num-
ber of epochs (number of iterations through the complete train dataset), and
regularizers (which make slight modifications to the learning algorithm such
that the model generalizes better).

While the training and optimization of neural networks is a broad and
complex field of study per se, here there will only be given a few hints of com-
mon techniques used throughout the thesis that aim to improve the efficiency
and stability of the training performed throughout the different experiments:
hyperparametrization methods, learning rate decay, and early stopping.

2.5.1 Hyperparametrization

As we have seen previously, the training of a neural network involves the
definition of a series of parameters external to the network itself, which in
part will determine the success of the training. These variables, commonly
called hyperparameters, need to be tuned externally. Therefore, several meth-
ods have been developed to automate this search in such a way that neither
a great expert knowledge in the field nor an excessive amount of resources
and time are necessary.

All these methods are based on validating the model with different con-
figurations of hyperparameters to find the permutation that minimizes a cost
function, in a similar way to the process for training. In particular, the most
important methods are the following ones:

• Grid search: is simply an exhaustive searching through a manually
specified subset of the hyperparameter space of the neural network.
Since the parameter space of the algorithm may include real-valued
or unbounded value spaces for certain hyperparameters, manually set
bounds may be necessary before applying this methodology.

• Random search: replaces the exhaustive enumeration of all combina-
tions explained above by selecting them randomly. It can outperform
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the previous method, especially when only a small number of hyperpa-
rameters affects the final performance of the neural network training.

• Bayesian hyperparametrization: is defined as building a probability
model of the objective function and using it to select the most promising
hyperparameters to evaluate in the true objective function. This proba-
bility model, which is usually called a surrogate model, is represented as
P(error|hyperparametercombination), and is repeatedly updated using
new information from previous steps. Unlike grid search and random
search, the Bayesian approach keeps track of past evaluation results
and has a less efficient computational evaluation, but as it incorporate
new knowledge over the process, less iterations are needed in compar-
ison.

2.5.2 Learning rate decay

When using stochastic gradient descend, the value for learning rate can be
left as system default or can be selected through a wide variety of techniques
(for example, those ones explained in Section 2.5.1). Among these techniques,
learning rate schedule is based on changing the learning rate during training,
usually between epochs/iterations. One of the main ways of proceeding is
the so-called decay [276].

This method consists of defining a high initial learning rate whose value
will decrease as the training progresses. This decay generally takes one of
the following forms: time-based, step-based and exponential.

Decay serves to drive the learning to a soft minimum avoiding oscilla-
tions, a situation that usually arises when a too high constant learning rate
makes the learning jump back and forth over an optimum point. This idea
is consistent with the nature of training if one considers the phase space of
the cost function, allowing to speed up the process: at the beginning, the ini-
tial weight configuration is expected to be far from the minimum, so making
more aggressive updates helps to converge faster. However, as learning pro-
gresses, it is closer to the minimum and therefore it is desirable to better refine
the subsequent steps. Also, an initially large learning rate help to avoid the
memorization of noisy data while decaying progressively the learning rate
improves the learning of complex patterns.

2.5.3 Early stopping

Early stopping [328] is a regularization technique used to avoid overfitting
when training a neural network with an iterative method such as gradient
descent. Given that those algorithms update the network’s weights so they
better fit the training data each iteration, it is possible for the network to
memorize training examples, causing a drop in performance for the test set.
Thus, in general terms, the iteration improves the learner’s performance on
data outside of the training set. However, there is a point in which improving
the network’s fit to the training data comes at the expense of increased gen-
eralization error. Early stopping prevents this effect by providing guidance
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of how many iterations can be run before the learner begins to over-fit. By
defining a number of epochs in which, if there is no improvement in the vali-
dation set, training is stopped, this loss of generalization capacity is avoided.
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how the results of our approach are stable and better than those of other state-of-the-art alternatives.
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1. Introduction

Spatio-temporal forecasting is playing a key role in our efforts
to understand and model environmental, operational, and social
processes of all kinds and their interrelations all over the globe.
From climate science and transportation systems to finances and
economic, there are plenty of fields in which time and space
might constitute two entangled dimensions of data, with one
affecting the other and thus both being relevant for prediction. In
this context, there is an increasing trend to develop and improve
methodologies for gathering and using vast amounts of spatio-
temporal data over the last years. Tailored to extract usable
knowledge from these big data repositories, there are plenty of
proposals trying to facilitate a shared understanding of the multi-
ple relationships between the physical and natural environments
and society (being the UE’s projects Digital Earth [1] or Galileo
[2] two salient examples). By contributing in this direction, it
is possible to enrich plenty of services in many ways and gain
a better understanding of our world. While machine learning
has been widely used for spatio-temporal forecasting in the last
decade, there is still room for improvement in our understanding
of the models and in their applications.

Specifically, when using neural networks (NN) for regression
tasks it is highly desirable that these intelligent systems are
capable of adapting to a wide range of circumstances within
the framework in which they have been trained. As this ability
depends on the data and problem in which the NN is being

∗ Corresponding author.
E-mail address: jlaznarte@dia.uned.es (J.L. Aznarte).

applied, every field might present different aspects in which it
could be beneficial.

In the concrete case of spatio-temporal forecasting, the predic-
tion depends fundamentally on two dimensions: the time horizon
and the spatial zone in which the NN is being trained. Thus,
traditionally NN are trained and evaluated over some fixed spatial
and temporal conditions, restricting the contexts in which they
can be applied, making them less suitable to deal with atypical
inputs and limiting the knowledge about its general behavior.
While creating a system that can infer future properties of the
series with a single training is out of the scope with actual
techniques, it is important to evaluate algorithms over different
spatio-temporal scenarios as every methodology usually presents
dissimilar behaviors in distinct situations. Thus, even if a fixed
application is intended, exploring the adaptability to different
circumstances of an algorithm might be positive.

On the contrary, we propose to characterize spatio-temporal
frameworks via a complete and comprehensive experimentation
and evaluation over both dimensions. This evaluation methodol-
ogy, which has been named for convenience as spot-forecasting
(in analogy with the economic term Spot Market), explores the
adaptability of neural systems to any spatio-temporal input for
a specific series. Its name refers to the property of these models
to predict at any moment in which the forecast is needed. Given
some forecasting conditions as number of input–output timesteps
and spatial points, the idea is to train and evaluate the net-
work with any possible temporal sequence from the series for a
wide range of spatial allocations of different nature. For example,
instead of making 24 h prediction starting at 00.00 every day
for each point, making 24 h predictions whose start can be any
possible hour of the day. Even if a system will work under a rigid

https://doi.org/10.1016/j.asoc.2020.106615
1568-4946/© 2020 Elsevier B.V. All rights reserved.
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scenario, this strategy lets us gain a wider insight of the model,
facilitates its application to other spatio-temporal conditions (di-
rectly or via transfer learning), makes a more robust model to
unusual inputs and works as a data-augmentation technique due
to the increase of training population (in the previous example,
from one training sample per day to 24 training samples per day).

Pointing in this direction, through this work we propose a
novel Neural Network framework called CRANN (from Convo-
Recurrent Attentional Neural Network) that is evaluated for sev-
eral spatio-temporal conditions and compared with some of the
state of the art methods. The model presented in this paper is
built on the idea of the classical time series decomposition, which
attempts to separately model the available knowledge about the
underlying unknown generator process. This generator process is
usually considered to be composed of several terms like season-
alities, trend, inertia, and spatial relations, plus noise. Thus, our
framework is defined like a composition of several modules that
exploit different neural architectures in order to separately model
these components and aggregate them to make predictions.

Hence, we use a temporal module with a Bahdanau attention
mechanism in charge of study seasonality and trend of the series,
a spatial module in which we propose a new spatio-temporal
attention mechanism to model short-term and spatial relations,
and a dense module for retrieving and joining both previous mod-
ules together with autoregressive terms and exogenous data in an
unique prediction. While we expect spatial and temporal modules
to use inertia information too, we reinforce this component with
autoregressive terms as deep neural models has shown lack of
ability in modeling it (see Section 3.2.3).

Thanks to their capability to provide extra information about
the network intra-operation and feature importance,
interpretability and explainability are growing in importance and
relevance. As we are especially interested in demonstrating that
CRANN modules have the behavior just discussed, interpretability
is notably useful in our case. Concretely, attention mechanisms
are gaining supporters thanks to their capability of achieving
good performance, generalizing, and introducing a natural layer
of interpretability to the network. Thus, both temporal and spatial
modules are covered. The dense module makes use of SHAP
values for estimating how important is each component for the
final prediction.

In order to showcase the proposed forecasting framework, the
problem of traffic intensity prediction is tackled in this paper. This
real world problem represents a perfect example of long, high-
frequency time series which are spatially interrelated, highly
chaotic and with a clear presence of the four aforementioned
classical time series components. Furthermore, its environmental,
economic, and social importance turns it into a very relevant
problem in need of operational and cheap solutions.

In fact, with the increase of vehicles all over the world, sev-
eral complications have appeared recently: from traffic jams and
their impact on economy and air quality, going through traffic
accidents, and health-related issues, to name a few. Owing to
the relevance of the matter, intelligent transport systems have
arised as an important field for the sake of improving traffic
management problems and establishing sustainable mobility as
a real option. As an immediate consequence, traffic prediction
can be considered as a crucial problem on its own and a perfect
candidate as a real application that could benefit from adaptable,
accurate and interpretable NNs. For example, these kind of sys-
tems might help to improve route-recommendation systems by
not only estimating but predicting, to optimize in real time buses
waiting times, and to extract better spatio-temporal informa-
tion that would be helpful for traffic planning and management.

Although traffic systems are usually focused on short-term fore-
casting,1 for academic purposes we tackle the long-term problem
by predicting 24 h in order to demonstrate that our model is
capable of learning intrinsic spatio-temporal traffic dependencies
and patterns. However, as we will show, the model is easily
adaptable to any forecast window.

The main contributions of this study are summarized as fol-
lows:

• A new deep neural network framework especially designed
for spatio-temporal prediction is proposed.

• A novel spatio-temporal attention-based approach for re-
gression is presented.

• The contribution is illustrated by tackling a traffic prediction
problem which is considered hard in both dimensions.

• Results show that our proposal beats other state-of-the-art
models in accuracy, adaptability, and interpretability.

The rest of the paper is organized as follows: related work
is discussed in Section 2, while Section 3 presents the problem
formulation and our deep learning model for spatio-temporal re-
gression. Then, in Section 4 we introduce our dataset, experimen-
tal design and its properties. Section 5 illustrates the evaluation
of the proposed architecture as derived after appropriate exper-
imentation. Finally, in Section 6 we point out future research
directions and conclusions.

2. Related work

2.1. Deep neural networks for spatio-temporal regression

Classic statistical approaches and most of the machine learn-
ing techniques that are used to deal with spatio-temporal fore-
casting sometimes perform poorly due to several reasons. Spatio-
temporal data usually presents inherent interactions between
both spatial and temporal dimensions, which makes the problem
more complex and harder to deal with by these methodologies.
Also, it is very common to assume that data samples are inde-
pendently generated but this assumption does not always hold
because spatio-temporal data tends to be highly self correlated.

On the contrary, models based on deep learning present two
fundamental properties that make them more suitable for spatio-
temporal regression: their ability to approximate arbitrarily com-
plex functions and their facility for feature representation learn-
ing, which allows for making fewer assumptions and permits the
discovery of deeper relations in data.

Within deep learning, almost all types of networks have been
tried for spatio-temporal regression. The most common ones
are recurrent neural networks (RNN), which due to its recursive
structure have a privileged nature for working with ordered se-
quences as time series. Nevertheless, it is not easy to use them
to model spatial relations, which makes them less suitable for
this kind of problems. For this reason, RNN models are usually
combined with some spatial information, as convolutions or spa-
tial matrices. Previous works within the RNN group are [3,4]
for example. While RNNs have received a lot of attention dur-
ing last years, interest in convolutional neural networks (CNN)
for spatio-temporal series is recently growing. Not only these
systems are capable of exploiting spatial relations, but they are
showing state-of-the-art performance in extracting short-term
temporal relations too. For example, [5,6] propose the use of CNN
in spatio-temporal regression.

1 Traffic forecasting is commonly classified as short-term if the prediction
horizon is less than 30 min and long-term when it is over 30 min. We adopt
that terminology throughout this paper.
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In recent years, more complex models based on both RNN
and CNN are replacing traditional neural networks in this kind
of problems. This is the case of sequence to sequence models
(seq2seq) and encoder–decoder architectures. By enlarging the
input information into a latent space and correctly decoding it,
these models have induced a boost in spatio-temporal series re-
gression. As it happened with RNN, spatial information is usually
introduced explicitly. Some examples might be found in [7,8].
Finally, attention mechanisms were introduced by [9,10] for natu-
ral language processing. However, some researches have recently
shown their ability to handle all kinds of sequenced problems, as
time and spatio-temporal series. Particularly, they have demon-
strated to be a promising approach in capturing the correlations
between inputs and outputs while including a natural layer of
interpretability to neural models. These attention mechanisms
might be introduced at any dimension: spatial [11], temporal [12]
or both of them [13].

For a survey that recapitulates the main characteristics of
deep learning methods for spatio-temporal regression and a vast
compilation of previous work, see [14].

2.2. Traffic prediction

Traffic flow prediction has been attempted for decades, and
has experienced a strong recent change after the emerging
methodologies that let us model different traffic characteristics.
With the increase of real-time traffic data collection methods,
data-based approaches that use historical data to capture spatio-
temporal traffic patterns are every day more common. We will
divide this data-driven methods into three major categories:
statistical models, general machine learning models, and deep
learning models.

Within statistical methods, the most successful approach has
been ARIMA and its derivates, which have been used for short-
term traffic flow prediction [15]. Afterwards, some expansions as
SARIMAs [16] were also proposed to improve traffic prediction
performance. Nevertheless, these models are constrained accord-
ing to several assumptions that, in real world data as our, do not
always fit properly.

Among general machine learning approaches, Bayesian meth-
ods have shown to adapt well when dealing with spatio-temporal
problems [17,18], as their graph structure fits in a road-network
visualization. However, they do not always show better per-
formance when compared to other methodologies that will be
presented next. Another usual technique in the field of fore-
casting spatio-temporal series are tree models. Within this area,
there are different approaches [19,20], each one with its own
advantages and disadvantages. Generally tree models are easily
interpretable, making them a good option if the main interest is
to better understand the phenomena. Nevertheless, tree models
tend to overfit when the amount of data and dimensions of the
problem is big, as it normally is the case in traffic prediction. As
with trees, support vector machines (SVM) and support vector
regression (SVR) have been widely used, as in [21,22]. While
SVM and SVR perform well, these methodologies must establish
a kernel as a basis for constructing the model. This means that,
for such a specific problem like the one we are working on,
the use of a predetermined kernel (usually radial) might not be
flexible enough. Bioinspired techniques, although less used, show
a promising ability to optimize traffic-related processes. Within
these processes, traffic prediction is usually one of the main
steps. For example, [23] illustrates a rerouting system through a
pheromone model capable of estimating future traffic states to
reduce traffic congestion.

In a closer line with our work, deep learning has been widely
used for traffic forecasting. The idea of stacking CNNs modules

over LSTMs (or vice versa) is usual in recent literature. Some
of the most interesting work in this category applied to traffic
prediction can be found in [24,25]. Furthermore, [26] shows that
the combination of these modules together with an attention
mechanism for both space and time dimensions, might be bene-
ficial. In this same line, [27] proposes a spatio-temporal attention
mechanism and show how through interpretability we can ex-
tract valuable information for traffic management systems. Lately,
other options have been considered as using 3 dimensional CNNs
for making the predictions [28] to effectively extract features
from both spatial and temporal dimensions or combining CNN–
LSTM modules with data reduction techniques in order to boost
performance [29]. In [30] authors present an example of how to
deal with incomplete data while still being capable of exploring
spatio-temporal traffic relations. As it was mentioned before, the
vast majority of these works have a set of fixed conditions and
mainly focus on short-term predictions. Longer-term predictions
(with horizons of more than fours hours) can also be found
in [31] in which a neural predictor is used to mine the potential
relationship between traffic flow data and a combination of key
contextual factors for daily forecasting, and [32] where ConvLSTM
units try to capture the general spatio-temporal traffic dependen-
cies and the periodic traffic pattern in order to forecast one week
ahead.

In concordance with these last works, our model is designed
to be adaptable to both long and short term forecasting. Also, it
is not limited nor evaluated over a set of fixed conditions, letting
us extract more general conclusions.

2.3. Time series decomposition in deep neural models

Time series decomposition and derived methods for regression
have been widely studied in the statistical context. Beyond stan-
dard methodologies, as ARIMA and exponential smoothing, more
elaborated proposals have been suggested. For example, in [33]
a bootstrap of the remainder for bagging several time series via
exponential smoothing is proposed. Similarly, [34] presents an
extension of an analogous methodology using SARIMA. In both
cases, it is demonstrated that proper use of time series compo-
nents for modeling can be profitable and thus this remains as a
promising research line.

In the concrete case of deep neural models, although using
time series decomposition in order to improve and boost the per-
formance of deep neural networks is not new, most of previous
research has focused on using those components externally to
the network. Several studies point out that, before feeding the
network, it might be beneficial to detrend the series to just build
a prediction model for the residual series [35,36]. Other works
show how autoregressive methods together with deep neural
models help to tackle the scale insensitive problem of artificial
neural networks [37] and allow for the implementation of several
temporal window sizes for training efficiently [38]. Deseasonali-
sation in order to minimize the complexity of the original time
series has been recommended through several works too [39,40].
For concrete spatio-temporal series, [41] shows that time series
residuals not only represent random noise, but also can capture
spatial patterns, making working with time series components
even more interesting

However, the way in which neural networks relate to time
series components remains an open issue. Although it has been
demonstrated that a correct decomposition of the series can help
the system, it is not clear how deep neural models can deal with
these components by themselves without the need of external
information as we propose.
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2.4. Interpretability

Defined as the ability to explain or to present in understand-
able terms aspects of a machine learning algorithm operation to
humans, interpretability is growing in importance, especially in
deep neural models due to its black-box nature. Until now, it has
principally been investigated and demonstrated in a wide variety
of tasks such as natural language processing, classification expla-
nation, image captioning, etc [10,42,43]. However, in regression
problems and particularly in traffic is still an open issue and there
is a long way to go. For example, [44] demonstrates that by using
a bidirectional LSTM that models paths in the road network and
analyzing features from the hidden layer outputs it is possible to
extract important information about the road network. Similarly,
[45] studied the importance of the different road segments when
forecasting traffic via a graph convolutional-LSTM network. In
general, traffic interpretability research has focused in pointing
out important road segments. On the contrary, [27] presents a
comprehensive example of spatio-temporal attention in which
both dimensions are analyzed from an interpretability point of
view, and not only from the spatial one.

Following this last idea, we propose a methodology in which
spatio-temporal interpretability is taken into account and, at the
same time, go deeper in understanding how important these two
dimensions are to model the generator process of our problem.

3. CRANN model and problem formulation

3.1. Problem formulation

Given a spatial zone S, where each traffic sensor is rep-
resented as si, and a timestep tj, we aim to learn a model
to predict the volume of traffic in each sensor si during each
time slot tj. This mean that a spatio-temporal sample writes as
xsi,tj : j = 1, . . . , T ; i = 1, . . . , S. From now on, we will distinguish
a prediction from a real sample by using x̃si,tj for the first one.

3.2. CRANN: a combination approach for spatio-temporal regression

As stated above, CRANN model is based on the idea of com-
bining neural modules with the intention to exploit the various
components that can be identified in a spatio-temporal series:
seasonality, trend, inertia, and spatial relations. By combining
different neural architectures focused on each component, we
expect to avoid redundant information flowing through the net-
work and to maximize the benefits of each approach. As a result,
several layers of interpretability will allow us to better under-
stand the problem being modeled and to verify that our model
is working the way we were expecting.

The code for the software used in this paper can be found in
https://github.com/rdemedrano/crann_traffic.

3.2.1. Temporal module
There is a consensus that dealing with long-term sequences

using ordinary encoder–decoder architecture is a promising ap-
proach. However, the fact that only the final state of the encoder
is available to the decoder limits these models when trying to
make short or long-term predictions [46]. Particularly, in traffic
we would expect an improvement in performance when taking
into account not only closer states of the desired output, but also
several days.

In order to solve this problem, several encoder–decoder archi-
tectures that use information from some or all timesteps have
been proposed. Among all these models, a particular approach
has shown good qualities by improving performance and adding
an interpretability layer to the system: attention mechanisms.

Presented in several ways [9,10], the idea behind these mech-
anisms lies in creating a unique mapping between each time
step of the decoder output to all the encoder hidden states. This
means that for each output of the decoder, it can access the entire
input sequence and can selectively pick out specific elements
from that sequence to produce the output. In other words, for
each output, the network learns to pay attention at those past
timesteps (inputs) that might have had a greater impact on the
prediction. Typically, these mechanisms are exemplified by think-
ing of manual translation: instead of translating word by word,
context matters and it is better to focus more on specific past
words or phrases to translate the next.

Following that rationale, our temporal module is formed by
two LSTMs working as encoder and decoder respectively. The
first one inputs the time series and outputs a hidden state s of
typically higher dimension than the input, while the second one
inputs a concatenation of attention mechanism output c (named
‘context vector’) and the previous decoder outputs, and uses this
information to perform its prediction.

As it can be seen, the structure is very similar to a sequence
to sequence model without bottleneck but with the introduction
of new information via the attention mechanism. The idea behind
this model is explained below. For simplicity, notation is coherent
with the one used by Bahdanau [10] through this section. For each
forecast step i, the context vector is calculated taking into account
the encoder hidden state for each input timestep j:

ci =

N∑
j=1

αi,jhj, (1)

where N is the input sequence dimension (coincident with num-
ber of encoder hidden states), αi,j is the attention weight defined
as how much from the encoder hidden state j should be payed
attention to when making the prediction at time i. It is computed
as follows:

αi,j =
f (hi, sj)∑N
j=1 f (hi, sj)

. (2)

In this last expression, h is the decoder hidden state and f refers
to an attention function that estimates attention scores between
s and h. Depending on the attention mechanism, many functions
have been suggested as attention functions (for example, dot
products, concatenation, general...). In this work, a feedforward
neural network that combines information from both the encoder
and the decoder is chosen. Specifically, it writes:

f (hi, sj) = Wc · tanh(Wd · hi + We · sj), (3)

where W s are weight matrices.
Finally, the new decoder hidden state h′

i is obtained through
concatenating ci with hi and the output can be decoded as

h′

i = [ci; hi]. (4)

The complete process is summarized in Fig. 1. The temporal
module of CRANN focuses its effort on discovering and modeling
long-term time relations of the complete system by using average
traffic for the complete zone. This means that we assume that all
spatial locations behaves similarly respect to time. In the concrete
case of traffic, this assumption usually holds as the temporal
distribution for all zones share a common pattern. From Eqs. (1)–
(4), it should be clear that no spatial relations have been explored
or introduced. Although it might seem more profitable to capture
these relations for each spatial series, we would be learning
redundant knowledge once that the spatial module comes out.
By taking into account information from several past weeks, the
model will be capable of capturing the periodicity and trend
changes in the series, which might be fundamental for more
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Fig. 1. Schematics of the attention mechanism used in our temporal module when predicting timestep i for a T horizon forecasting. In yellow, hidden states for both
encoder and decoder that are used to compute the prediction. In green, the attention function. In violet, the obtained context vector based on attention weights αi,j
and hi . In orange, the predicted value computed by concatenating ci with hi .

precise forecasting. As traffic trend is not exactly equal for a
temporal window of several hours or days, it is necessary to adapt
CRANN temporal module input to an amount of time that let us
avoid temporal information loss. In particular, we will use two
weeks as input for a 24 h output.

3.2.2. Spatial module
Even though traffic seems highly dependent on its temporal

dimension, it is also clear that spatial relations are relevant.
The premise of spatio-temporal forecasting is based on not only
taking into account that these relations exist, but effectively
using and learning them to improve performance. In this context,
convolutional neural networks (CNN) appear like a perfect choice
as they are meant to precisely exploit spatial characteristics and
interactions. Furthermore, as it was mentioned in Section 2, CNNs
are also gaining attention as a promising paradigm to study
short-term temporal associations. Hence, we propose a novel
spatio-temporal attention mechanism that tackles two major as-
pects of spatio-temporal forecasting with CNN: adds a new layer
in order to improve spatial relations and our understanding over
them in a specific problem, and lets the CNN explore further
short-term temporal information.

As in the temporal case, this mechanism can be introduced
as a new layer through the network, meaning that our system
will consist of an usual CNN followed by the spatio-temporal
attention mechanism. The CNN will enrich input information and
compute some output xconv with the same dimensions as its input.
In other words, it will be the one in charge to improve the quality
of the input while making sure to keep some aspects of the
original structure of the series. In some way, it is equivalent to
the encoder model from Section 3.2.1, except that there is not
an equivalent decoder structure as the own attention mechanism
can handle it. This mechanism works by assigning a score σi,j,k
to every pair of spatial points (j, k) for each input lag i. The score
σi,j,k represents how important is the point k in lag of the input
i in order to calculate the prediction for point j for all output
timesteps. It writes as:

σ = g(xconv,Watt), Watt ∈ RT×S×S, (5)

where T is the number of timesteps, S the number of spatial
points, g is an attention function that calculates an attention
score and Watt defines the spatio-temporal attention tensor. Watt
is a learnable tensor which can be interpreted as a means to
modulate spatio-temporal interdependencies of the system. It can
be decomposed in a three-dimensional space, meaning that W i,j,k

att
encodes how does the point j at timestep i interact with the CNN
output xconv to make the prediction.

Given that each element of Watt is expected to provide infor-
mation about the system dynamics, the attention function g is
useful to modulate concrete relations, element by element, for a
given input series. Thus, it is defined as follows:

g(xconv,Watt) = xconv ◦ Watt, (6)

where ◦ is the Hadamard product (also known as the element-
wise, entrywise, or Schur product). Although some other func-
tions as concatenation and a feedforward neural network have
been tested, no improvement was reported. Moreover, Hadamard
product stands out for its simplicity and for offering a naive
explanation about the inner functioning of the spatio-temporal
attention mechanism without need of extra learnable parameters.

Once that these attention scores have been calculated, it is
preferable to give them some properties that ease the interpre-
tation and convergence of the attention mechanism. The spatio-
temporal attention matrix a ∈ RT×S×S is defined as a three-
dimensional tensor that meets the following conditions:

• Each attention weight is constrained between zero and one:
ai,j,k ∈ [0, 1].

• As ai,j,k represents the importance of point k at timestep i to
predict j, the sum of attention weights for each timestep i
and point j must add up to one:

∑S
k=1 ai,j,k = 1.

By enforcing these conditions we can therefore infer a proba-
bilistic interpretation of the attention weights. This can be done
by applying a softmax operator over the third dimension:

a = softmax(σ ). (7)

Finally, in order to calculate the definitive prediction x̃, we
use the inner product between tensors. This way we can easily
interpret the output as a weighted sum over all spatio-temporal
input conditions through the attention weights. Depending on
how relevant each input element is for the regression, it will
contribute differently to the final output:

x̃ = a · xconv. (8)

The complete process is summarized in Fig. 2. To conclude, the
spatial module of CRANN focuses its efforts on discovering and
modeling spatial and short-term time relations of the complete
system by using real traffic data for each sensor. Given that
the spatial module focus on modeling short-term patterns, we
avoid learning the same information as the temporal module.
Furthermore, spatial relations in traffic are mainly important in
the short-term, meaning that this dimension would not especially
benefit from long-term information. For the CNN, a 2D model
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Fig. 2. Schematics of the attention mechanism used in our spatial module when predicting all timesteps for a T horizon forecasting given a batch of inputs. In
yellow, a representation of Watt for an input timestep i. In green, the attention function and dot product. In violet, the obtained score vector σ based on xconv and
Watt . In orange, the predicted value.

in which every channel corresponds to a timestep is used. The
architecture consists of a sequence of convolutions layers, batch
normalization, and ReLU activation. In particular, we will use a
24 h input for a 24 h output.

3.2.3. Dense module and training
At this point, on the one hand we have modeled the general

behavior of all the involved time series and we thus have trend
information from the temporal module, and on the other hand we
have explored spatial relations and specific predictions for each
traffic sensor through the spatial model. Hence, it is necessary to
join both modules in some way that let us exploit all the available
information for the sake of improving the final performance. At
the same time, it might be interesting to introduce available
exogenous knowledge that might affect the future of the series.
While several exogenous variables are well known as important
for traffic forecasting, we will only use meteorological features as
we reckon they might be enough to prove how our model works
when using exogenous data in a first approximation. Lastly, since
inertia has a central role in time series forecasting, we include
the timesteps t −1 to t −4 as autoregressive terms. Although we
might expect that both previous modules take into account this
inertia at some level, as Ling et al. [37] pointed out, due to the
non-linear nature of the convolutional and recurrent components,
one major drawback of the neural network model is that the scale of
outputs is not sensitive to the scale of inputs, meaning that in real
datasets with severe scale changing like ours this effect might be
problematic. Thus, making use of this information directly is also
expected to benefit the final performance.

The resulting CRANN architecture is shown in Fig. 3. It consists
of a dense module whose inputs are the exogenous data, the au-
toregressive data and the outputs of both the temporal and spatial
previously described modules. This last dense module is simply a
fully connected feedforward neural network that modulates all
previous information before making the final prediction. As all
spatial and temporal information have been already considered
and managed by the rest of the modules, a simple feedforward
network can handle this final part satisfactorily.

While all these modules could be stacked, we decided to
use a mixed parallel/series structure for the sake of improving
modularity and explainability through the network. By having
a compendium of models with a specific and clear job working
independently, it is easier to train, improve, remodel, or change
any of them if needed. Moreover, the stacked approach was tested
but no significant accuracy improvement was reported.

Regarding training, it can be done at once or in several steps
(for each module) in order to parallelize the process. Also, all
weights are randomly instantiated using ‘‘Xavier’’ initialization.

Finally, and independently on how the network is being trained,
the training can be summarized as with any other neural network
as searching some parameters θ∗ via minimization of a cost
function L. Concretely, our cost function will be the commonly
used Mean Squared Error (MSE). The process can be summarized
as:

θ∗
= argmin

θ

L(θ ),

L(·) =
1
TS

T∑
j=1

S∑
i=1

(x̃si,tj − xsi,tj )
2

(9)

3.2.4. Interpretability
The ability to interpret the trained models is nowadays a

must-have in every machine learning research check-list. For that
reason, we should value methodologies that are able to offer
explanations about their predictions. In the particular case of
CRANN, interpretability has been put into practice as follows:

• Temporal module: By using a temporal attention mecha-
nism, we have an intrinsic interpretability layer. Since we
defined attention weights as how important each lag from
the input sequence is for predicting each output timestep
(see Section 3.2.1 for a deeper insight), we can easily inter-
pret these weights to better understand how is our temporal
module making use of the inputs when forecasting.

• Spatial module: As with the temporal module, the underly-
ing attention mechanism provide an easy and natural inter-
pretation. Attention weights typify how significant is every
spatial point when predicting in the spatio-temporal do-
main. Furthermore, they might be represented by input lag
or aggregated.

• Dense module: As the information flowing through the pre-
vious modules has a clear interpretation (the temporal mod-
ule outputs the average traffic for the whole space and the
spatial module outputs actual spatio-temporal predictions),
it is straightforward to interpret the network with several
feature analysis methods (like integrated gradients [47])
or saliency methods (like SHAP values [48]). In this work,
SHAP values are chosen. It is important to remark that with a
non-parallel join of modules ( Section 3.2.4), these method-
ologies might not be as convenient due to non-explainable
inputs of the dense module, i.e., by having interpretable
middle stages through the network is easier to elucidate if
certain information is contributing to the final prediction or
not.
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Fig. 3. Schematics for the CRANN architecture. In yellow, input data sources. Time series data refers to average traffic historic data, spatial series data to the real traffic
historic, and exogenous data are in this case weather predictions. In gray, output from the different middle stages. In orange, the final spatio-temporal prediction.

4. Data and experiments

To characterize and validate our proposed model, this section
provides information related to all the decisions taken and the
experiments performed. As explained above, we focus our work
on the long-term forecasting problem, i.e., a 24 h spatio-temporal
prediction.

4.1. Data description and analysis

To validate the CRANN framework for spatio-temporal fore-
casting, we chose the problem of predicting traffic intensity in
the city of Madrid. The data available came from two different
sources:

• Traffic data: Provided by the Municipality of Madrid
through its open data portal,2 this dataset contains his-
torical data of traffic measurements in the city of Madrid.
The measurements are taken every 15 min at each point,
including traffic intensity in number of cars per hour. Spatial
information is given by traffic sensors with their coordi-
nates (longitude and latitude). While a dense and populated
network of over 4.000 sensors are available, we decided
to simplify and use only a selection of them, as explained
below.

• Weather data: Weather data was also provided by the
Municipality of Madrid.2 Weather observations consist of
hourly temperature in Celsius degrees, solar radiation in
W/m2, wind speed measured in ms−1, daily rainfall in
mm h−1, pressure in mbar, and degree of humidity in
percentage records. Weather information is reported hourly
and they are used as if they were numerical weather pre-
dictions (feeding the model at each moment with the data
corresponding to the forecasting horizon).

In this work, only data from 2018 and 2019 is used.
For a more robust evaluation of the different models, four spe-

cific zones are chosen (see Table 1), each one of them containing
30 traffic sensors (Fig. 4). All these four zones are characteristic
for being hot spots of traffic in Madrid. In addition, they all
present a wide variety of traffic conditions: one-way streets,
avenues, highways, roundabouts and, in general, ways with dif-
ferent flow conditions. Statistics presented in Table 1 for each
zone point in this direction. Although these spatial dispositions
result in a more complicated environment, makes our work more
general.

Missing values are scarce (about 1% per series). They are
replaced by sensor, hour, and day of the week aggregation as
interpolation and closeness replacement leads to greater loss of

2 Portal de datos abiertos del Ayuntamiento de Madrid: https://datos.madrid.es/
portal/site/egob/.

Table 1
Location of the center of spatial zones and name correspondence from now on.
Main data statistics.
Zone Name Longitude Latitude Mean Std

A Legazpi −3.6952 40.3911 563.6 803.2
B Atocha −3.6920 40.4087 680.9 769.7
C Avenida de América −3.6774 40.4374 459.3 476.6
D Plaza Elíptica −3.7176 40.3852 360.2 517.8

information. Outliers represent less than 0.001% of each series
and are given by public events (for example, Champions League
final or Basketball World Cup). As these kinds of events are not
representative of our problem, and thus they are excluded from
our analysis.

The data are aggregated into 1-h intervals and, due to the lack
of outliers, normalized using a min–max technique to the range
[0,1]. Normalization constants are calculated over the training
dataset. Each spatio-temporal series is normalized separately as
we are looking for an agnostic scale for each sensor.

In order to better understand our problem, we show signifi-
cant properties of the data. Due to high number of sensors and the
spatial heterogeneity commented above, instead of showing gen-
eral attributes from our series (as mean, median, or dispersion)
it is more instructive to see both spatial and temporal distribu-
tions. Thus, on one hand, Fig. 5 shows a boxplot for different
time variables. From this figure, it should be clear that traffic
is highly dependent on time and periods of human activity. On
the other hand, the spatial distribution of our series is displayed
in Fig. 6. This last figure not only let us better understand our
data, but also reinforces the idea of having very diverse spatial
zones for our study, and a great heterogeneity. This secures our
experimentation with respect to the variety of data and situations
present in this work.

4.2. Benchmark models

We compare the performance of the proposed CRANN with
a CNN, an LSTM, the usual combination CNN+LSTM, and a se-
quence to sequence model (seq2seq).

• CNN: A 2D convolutional model in which every channel
corresponds to a timestep. The architecture consists of a
sequence of convolutional layers, batch normalization, and
ReLU activation. For every layer a kernel size of 3 for each
dimension is used. It uses 24 h as input and outputs a 24 h
prediction.

• LSTM: These models have several hidden layers with a num-
ber of hidden units to determine. We used the tanh acti-
vation functions as in the original model. The number of
inputs and outputs are equivalent to the number of sensors.
Although GRUs modules have also been tested, no difference
has been reported. It uses historical data from two weeks as
input and outputs a 24-h prediction.
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Fig. 4. Location of traffic sensors for each zone.

Fig. 5. Monthly, weekly, and hourly distribution of traffic intensity series.

Fig. 6. Traffic intensity distribution by sensor (in number of vehicles per hour).

• CNN+LSTM: A stacked model consisting of a CNN module
whose output is in turn the input of a LSTM. Both modules
are defined as the two previous models. It uses 24 h as input
and outputs a 24-h prediction.

• seq2seq: These architectures are based on an encoder and
a decoder, both LSTMs, without ‘‘bottleneck’’. That is to say,
hidden variables from all timesteps are used as inputs for
the decoder. The number of inputs and outputs are equiva-
lent to the number of sensors. As with LSTMs, GRUs did not
show a better performance. It uses two weeks as input and
outputs a 24 h prediction.

With these models and their implementation particularities
(inputs and outputs) we aim to cover a wide range of neu-
ral network paradigms for our comparison. For instance, CNNs
are especially designed for learning spatial relations, LSTMs and
Seq2Seq models are designed to explore mainly time interactions
and CNN+LSTM are closer to our model being a mixture of
both previous approaches. Given that the latest evidence points
out neural networks based models as the most appropriates
techniques for spatio-temporal traffic forecasting, we have only
chosen methodologies within this category.

Concerning hyperparametrization and training, instead of us-
ing preset architectures, to be fair, the optimal configuration
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Table 2
Values used for each hyperparameter and total number of parameters.
Model Hyperparameter Value # parameters

CNN Convolutions (32,32,32,64,64,64) 132k

LSTM Number of layers 2 206kHidden units 100

CNN+LSTM
Convolutions (32,32,64,64,64)

329kNumber of layers 2
Hidden units 100

seq2seq Number of layers 2 368kHidden units 100

CRANN

Convolutions (64,64,64,64,64)

1MNumber of layers 1
Hidden units 100
Dense layers 1

for each model was obtained via Bayesian hyperparameter op-
timization which is defined as: building a probability model of
the objective function and using it to select the most promis-
ing hyperparameters to evaluate in the true objective function.
This probability model, which is usually called a surrogate model,
is represented as P(error|hyperparametercombination), and is re-
peatedly updated using new information from previous steps.
Unlike grid search and random search, the Bayesian approach
keeps track of past evaluation results and has a less efficient
computational evaluation, but as it incorporate new knowledge
over the process, less iterations are needed in comparison. Final
hyperparameters can be found in Table 2, and they purely depend
on this Bayesian optimization process. Although CRANN can train
each module separately, the hyperparametrization process must
be done jointly to obtain the best hyperparameters when the
three modules work together.

All the models are trained using the mean squared error (MSE)
as objective function with the Adam optimizer. The batch size is
64, the initial learning rate is 0.01, and both early stopping and
learning rate decay are implemented in order to avoid overfitting
and improve performance. The experiments run in an Intel Core
i7 processor, 32 GB RAM and NVIDIA RTX 2070 GPU. All the code
is built over the PyTorch package.

4.3. Experimental design

In order to guarantee that models can be compared fairly, it
is essential to fix the approach to error estimation, which must
be shared as much as possible by all models. First of all, as
stated in [49], standard k-cross-validation is the way to go when
validating neural networks for time series if several conditions
are met. Specifically, that we are modeling a stationary nonlinear
process, that we can ensure that the leave-one-out estimation is a
consistent estimator for our predictions and that we have serially
uncorrelated errors.

While the first and the third conditions are trivially fulfilled
for our problem, the second one needs to be specifically studied
for the sake of avoiding data leakage. Given that we use all the
possible series, even though the ones are unrepeated, it is possible
to introduce prior information from the training to the test via
closeness of samples (for example training a sequence whose
start is at 10:00 AM and testing in a sequence whose start is
at 11:00 AM from the same day i.e. one timestep forward). Due
to this problem, it is not possible to create random folds and it
is necessary to specify a separation border among different sets
(training, validation, and test).

In this concrete case, this separation takes as many timesteps
as every model uses for its training. A scheme of this methodology
is shown in Fig. 7. Particularly, a 10-cross-validation strategy

Table 3
Average performance for t = 1 to t = 24, calculated over all spatial zones and
average run time per fold. For a more detailed view of error metrics distribution,
see Fig. 8.
Model RMSE |bias| WMAPE Run time (s)

CNN 238.24 22.12 25.89 68
LSTM 255.76 19.58 27.46 552
CNN+LSTM 252.34 21.70 27.29 144
Seq2Seq 246.45 19.14 25.79 1098
CRANN 221.31 17.80 23.18 1083

without repetition is used for each spatial zone separately, with a
80%/10%/10% scheme for train/validation/ test sets for each fold.
Given that this approach lets all data to be tested, models are
validated over the entire spectrum of possibilities for a particular
problem and we can assure that the three datasets cover the same
space.

To evaluate the precision of each model, we computed root
mean squared error (RMSE), bias, and weighted mean absolute
percentage error (WMAPE). In a spatio-temporal context, they are
defined as:

RMSE =

√ 1
TS

T∑
j=1

S∑
i=1

(x̃si,tj − xsi,tj )2, (10)

bias =
1
TS

T∑
j=1

S∑
i=1

(x̃si,tj − xsi,tj ), (11)

WMAPE = 100 ×

∑T
j=1

∑S
i=1 | x̃si,tj − xsi,tj |∑T

j=1
∑S

i=1 | xsi,tj |
, (12)

where (as it was defined in Section 3.1) xsi,tj : j = 1, . . . , T ;

i = 1, . . . , S is a spatio-temporal sample from the real series, x̃si,tj
represents the predicted series, S is the total number of traffic
sensors and T the total number of predicted timesteps.

For all these metrics, the closer to zero they are the better
the performance is. While RMSE already provides a dispersion
measure respect to real series, bias is better to find particu-
lar predispositions when making predictions. WMAPE is scale
independent and can handle 0s in the series, which makes it
interesting for comparing different zones.

5. Results

5.1. Error estimation

A general comparison of the different error metrics can be seen
in Table 3. Bias is represented by its absolute value. These values
correspond to averaging each metric for all spatial zones. High-
lighted in bold, CRANN results show a better performance overall
for all errors. Even although run time shows to be worse, we do
not reckon this issue should be of special practical importance as
the traffic spatio-temporal distribution tends to be stable in time.
Thus, no frequent retraining is usually needed in an operational
setting.

For a better understanding of how each model is performing,
Fig. 8 present RMSE and WMAPE error metrics but with their
distribution for each zone separately. While LSTM and recurrent
models in general are a standard for time series forecasting,
our experiments demonstrate that standard CNN can perform
similar (or even better) than recurrent models and should have
a bigger space in time series. Also, vanilla LSTM might not be
the best option for a real world spatio-temporal system with
high complexity. Oddly, the CNN+LSTM model performs worse
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Fig. 7. Validation methodology example with training (green), validation (orange) and, test (red) sets for our proposed cross-validation procedure. Rows shown in
white are omitted due to dependency considerations.

Fig. 8. Distribution of RMSE and WMAPE metrics for each zone and model. Dashed vertical line represents the mean, dotted vertical line represents median.

than the traditional CNN model, which can be due to the LSTM
module negatively affecting its behavior. With p-values < 0.05
when comparing with all the baseline models, CRANN can be
considered as statistically significantly better at all error metrics
with a confidence of 95%.

From Fig. 8 we can also deduce that the deviation of the
CRANN model is generally stable and is the smallest one. In fact,

models that are highly dependent on a recurrent neural network
show a higher-deviation tendency respect to strongly CNN-based
models.

Bias exhibits a clear under zero tendency, meaning that all
models tend to underestimate their predictions. For a deeper
understanding of this phenomenon, Fig. 9 shows CRANN’s bias
spatial distribution for each studied sensor. Compared with Fig. 6,
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Fig. 9. Bias distribution for each traffic sensor. When compared with Fig. 6 it should be clear that measurement points with higher traffic intensities and more
variability are shifted to the left in bias, resulting in an underestimation of the real series.

Fig. 10. RMSE analysis for time dimension. How it varies depending on the prediction timestep for all models (left). Average error depending on the hour of the
day (right).

it is clear that traffic sensors with higher traffic intensity values,
which in turn coincide with those sensors with distributions with
greater dispersion, are mainly responsible of this behavior. While
we would expect higher errors in these kinds of sensors with such
an aggressive traffic pattern, it is not clear why the shifting occurs
in only one direction. Nevertheless, as this anomaly happens for
all CRANN and baseline models in every zone, we expect that its
nature is intrinsic for the system or the validation methodology.

Concerning temporal dimension, a simple analysis can show
some expected behavior. As shown in Fig. 10 (left), all models
experiment an increase of average RMSE when the predicted
timestep goes further, as we could expect. As spot-forecasting is
based on evaluation through all possible series, these timesteps
do not have a direct correspondence with specific hours of the

day and this figure is not contaminated by natural dynamics
of traffic. However, there are two clear patterns: LSTM-based
models (LSTM, CNN+LSTM, and seq2seq) share a higher error for
the first horizons, which are usually considered easier to predict
under the hypothesis of inertia of the series. This tells us that they
are not capturing this inertia correctly. At the same time, CNN-
based models (CNN and CRANN) manage to capture the inertia
of the series. Having introduced autoregressive terms into the
CRANN model stands as a positive alternative to alleviate and
improve this difficulty. Also, we can see a valley from timestep
t + 20 to t + 24 as due to traffic periodicity, that fraction of the
series is highly similar to the one introduced as autoregressive
terms (timesteps t − 1 to t − 4).
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Fig. 11. Example of CRANN’s predictions for all zones. Average results for predictions starting at 00:00 and ending at 23:00.

Fig. 12. Average temporal attention given by the temporal module of CRANN. Attention weights are represented as a function of input and output series. In the
x-axis, past lags from the input series. In the y-axis, forecast horizons (i.e. future lags) from the output series. A (x, y) value represents how important is timestep x
to predict timestep y.

Meanwhile, Fig. 10 (right) let us understand how the average
error of the different models are distributed as a function of
the hour of the day in which the prediction is being made. As
we would expect, these errors are bigger at rush hours, giving
us a distribution with same shape than the one presented in
Fig. 5. Nevertheless, CRANN model stands out for its ability to
outperform significantly its rivals in those exact instants, when it
is precisely more useful and challenging to get a good behavior.

Lastly, Fig. 11 displays an example forecast of CRANN. By tak-
ing all series starting at 00:00 and ending at 23:00 it is possible to
visualize average performance of the model in a specific context.
This figure clearly shows how our model is successful in learning
the spatio-temporal dynamic of traffic, even adapting its behavior
to fine details in a highly complex spatio-temporal problem.

5.2. Interpretability

In order to better understand how our model works, we might
use all the interpretability layers presented in Section 3.2.4. Thus,
we will first analyze attention in the temporal dimension, then
attention in the spatial dimension, and finally the variable im-
portance for all involved features. Also, interpretability will let us
corroborate our initial hypothesis about how each module tackles
different aspects of spatio-temporal series: trend, seasonality,
inertia, and spatial relations.

Starting by our temporal module (see Section 3.2.2), Fig. 12
shows average attention weights computed by the attention
mechanism as a function of both input and output timesteps.
From this figure, we can have a clear intuition about the 24 h
pattern that our model has learned. At the same time, time-back
steps 160 and 325, which correspond to 7 and 14 days before
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Fig. 13. Average spatial attention given by CRANN spatial module at zone D. Attention weights are averaged for all sensors and timesteps (left). Attention weights
for each pair of sensors (right).

Fig. 14. Mean SHAP values for all features in dense module computed in zone D. Temporal module output (Mean), spatial module output (Sensors), autoregressive
terms, and exogenous variables (both represented by their names).

the prediction, show to be more important as traffic presents a
seven days seasonality too. As the input series approach to the
forecasting window, the importance keeps growing proving that

the temporal module is regulating trend as we were looking for.
The fact that no shifting is happening is due to averaging over all
test samples.
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With respect to the spatial module attention (see
Section 3.2.3), it is obviously highly dependent on each specific
zone. For that reason, Fig. 13 illustrates the attention weights
for traffic sensors in Zone D. As our defined spatial attention
mechanism uses different weights for each lag of the input,
average values are shown. As it can be seen (left), sensors with es-
pecially complex conditions (high traffic intensity, big avenues...)
are usually scored as more important by the spatio-temporal
attention mechanism. This is the case of points 8, 27, and 28 for
example. On the contrary, those points that we would expect to
have less impact in global traffic show smaller values, like sensors
4, 16, and 20. Similarly (right), sensors in heavy traffic intensity
emplacements show to receive higher attention. As we tackle
the long-term forecasting problem, we do not expect our model
to pay attention by closeness, but by general importance in the
entire zone.

Finally, from average SHAP values computed for the dense
module at Zone D (see Section 3.2.4), shown in Fig. 14, we can
extract several conclusions. First of all, it supports the idea that
using average traffic intensity (‘‘Mean’’) for trend and seasonality
modeling (temporal module) might be beneficial. Secondly, the
importance given to traffic sensors follows a similar pattern to the
one seen previously by the spatio-temporal attention mechanism,
reinforcing the idea of which spatial points are more important.
Thirdly, the autoregressive term that tries to capture the inertia
of the series seems to contribute positively too. Lastly, exogenous
data importance points out that it has the ability to improve the
prediction significantly and should be chosen carefully for each
problem.

6. Conclusions and future directions

Through this paper, a new spatio-temporal framework based
on attention mechanisms whose operation rest on several spatio-
temporal series components is presented. Unlike previous
methodologies, we focus our efforts on creating a system that
can be considered robust and adaptable, evaluating it in a non-
fixed scenario. After being applied to a real traffic dataset, it
has been proved that outperforms four state of the art neural
architectures and it has been studied its behavior respect to both
time and spatial dimension through extensive experimentation.
By analyzing four different locations with 30 traffic sensors each,
we can confirm the statistical significance of our results with a
confidence of 95% for forecasting horizons of up to 24 h.

Thanks to the interpretable nature of the model, we have illus-
trated how that information might be used in order to understand
better how the framework works, how it can give us specific
information from the problem domain and why our network
architecture is well founded. Concretely, the conducted experi-
ments have shown that, as we postulated, the temporal module
regulates seasonality and trend, spatial module is capable of ex-
tracting short-term and spatial relations, and that it is necessary
to introduce explicit autoregressive terms to exploit inertia cor-
rectly. Finally, these experiments demonstrate the effectiveness
of all these terms to make the final prediction.

For future work, it might be interesting to evaluate the pro-
posed method over a wider range of series in order to generalize
the results and see its behavior over different applications. With
the actual ability from the spatial module to model attention for
both input dimensions, space and time, it could be beneficial to
extend these idea to outputs dimensions too, having different at-
tention weights for different predicted timesteps. Lastly, it should
be studied how to use exogenous spatio-dependent data in the
best possible way.
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Received: 29 October 2020 / Accepted: 5 May 2021
� The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
When confronting a spatio-temporal regression, it is sensible to feed the model with any available prior information about

the spatial dimension. For example, it is common to define the architecture of neural networks based on spatial closeness,

adjacency, or correlation. A common alternative, if spatial information is not available or is too costly to introduce it in the

model, is to learn it as an extra step of the model. While the use of prior spatial knowledge, given or learned, might be

beneficial, in this work we question this principle by comparing traditional forms of convolution-based neural networks for

regression with their respective spatial agnostic versions. Our results show that the typical inclusion of prior spatial

information is not really needed in most cases. In order to validate this counterintuitive result, we perform thorough

experiments over ten different datasets related to sustainable mobility and air quality, substantiating our conclusions on real

world problems with direct implications for public health and economy. By comparing the performance over these datasets

between traditional and their respective agnostic models, we can confirm the statistical significance of our findings with a

confidence of 95%.

Keywords Neural networks � Spatio-temporal series � Spatial dimension � Convolutional neural networks �
Regression

1 Introduction

Convolutional neural networks (CNN) are well known for

their ability to handle spatial data in several contexts, like

images or spatial phenomena. However, in the last few

years, they have demonstrated to hold a good position also

when dealing with temporal data. Thus, they are widely

used in spatio-temporal regression problems, with out-

standing behavior when coping with both spatial and

temporal dimensions.

Due to its parameter structure, CNNs are usually

employed when it is possible to order input data in a grid.

Furthermore, they treat each location equally, learning and

sharing the same weights for all spatial points. Given that it

is not rare that the phenomenon under study presents the

same nature all over the grid, in a wide range of applica-

tions this property is a clear advantage in order to minimize

the number of parameters and calculations for learning a

specific task. This leads to good performance with fewer

resources compared to feedforward neural networks (FNN)

and recurrent neural networks (RNN). For example, pol-

lution and traffic regression share an approximately

equivalent temporal behavior and distribution at each

location (at least in a close environment), meaning that it is

possible to share parameters and get a smooth approxi-

mation for these phenomena via traditional CNNs.

However, this property of CNNs (which is usually

known as equivariance), might not always be the best deal

when solving some typical problems: sometimes, although

similar, treating all locations equally does not hold as a

valid or acceptable hypothesis and so, learning a spatial

shared-based representation might not be the best option if

the system representation is not chosen carefully. In the

previous example, it is obvious that different traffic sensors

or pollution stations will have different properties, even
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though their temporal dynamic will be somehow similar.

For spatio-temporal regression specifically, several pro-

posals have been made in order to tackle this problem, but

two of them stand out for their wide acceptance:

• Order the grid by Euclidean distance (from now on, just

closeness) and use CNNs.

• Define the system in a graph structure and model it via

graph convolutional networks (GCN).

In both cases, a common assumption is made: closer

locations have similar properties and, because of that, the

shared-weights learned by the networks are more reliable.

This way, the spatial dimension in CNNs keeps a low

number of parameters. In other words, the idea is to induce

a spatial bias that will help the network to learn and make

predictions. These types of strategies, based on providing

information about the problem externally, are very com-

mon but generates a dependence on the accuracy or validity

of this information to model the reality of the problem.

However, these solutions do have some disadvantages.

First, they do not completely solve the fact that each

location, although related to the rest, has its own properties.

Even more, although the assumption that closer locations

behave similarly is usually blindly accepted, this might not

hold always for real problems: not only depends on the

phenomenon, but also on the temporal and spatial granu-

larity with which the data are taken. For example, [1]

shows how the small number of pollution stations that

monitor most cities implies a spatially sparse representa-

tion that might not be enough to obtain a reliable spa-

tiotemporal distribution based on station’s adjacency of air

pollutant concentrations. Thus, the benefits of learning a

latent representation based on sharing parameters are

conditioned by the particularities of each specific problem

and, contrary to popular belief, the spatial proximity

between locations is not necessarily the main factor. Sec-

ond, in both cases, it is necessary to introduce prior spatial

knowledge to the system, making it less ’intelligent’ and

more laborious to work with.

In this paper, we focus on whether defining adjacency-

based convolutional architectures for regression problems

is as important or positive as has traditionally been

assumed. To explore and contrast our hypothesis, we pro-

pose to compare a set of widely used traditional convolu-

tional methods with their respective spatial agnostic

versions. Here, the denotation ‘‘spatial agnostic’’ makes

reference at not including specific mechanisms that exploit

spatial information explicitly. By showing that no

improvement is reported when using prior spatial knowl-

edge, we can reject the idea that models with a spatial bias

will result systematically in better forecasters. Also, mod-

els with spatial agnostic nature can be a suitable choice

when spatial information is not easily achievable or within

reach.

What happens if we closely examine the temporal

dimension? In multiple real applications in which this

spatial agnosticism does not exactly hold, temporal

equivalence between locations is more plausible: temporal

distributions along spatial points might better fulfill the

assumption of sharing parameters compared to the spatial

dimension. This means that, while it is common to use

some sort of recurrent module to model temporal relations,

convolutions can be perfectly valid candidates for this

work, using a lower number of parameters. Thus, sharing

parameters for all locations between subsequent past

timesteps in the temporal dimension might work better than

in the spatial dimension.

To validate our hypothesis, we compare several models

and dig deeper into the real importance of closeness rela-

tions through extensive experimentation. For this purpose,

the vast field of air quality and sustainable mobility has

been chosen. With a wide number of long spatio-temporal

series with spatial particularities but approximately

equivalent temporal dynamics (due to their relation with

human behavior) and high nonlinearity, it is a perfect field

to corroborate our hypotheses. Since it is considered of

great importance for public health and also to economy, it

is potentially beneficial to have simpler and easily

deployable models in this field. Also, our work is a good

starting point to rethink the way of working with spatio-

temporal series if we want to extract and make use of the

spatial information of the problem in a more efficient and

simple way beyond classical adjacency hypothesis. Thus, it

would be plausible to improve not just performance but to

gain insight into real systems when working with spatio-

temporal neural networks.

The main contributions of this study are summarized as

follows:

• We delve into the counterintuitive idea that including

spatial relations based on closeness are not necessarily

the optimal option when working with neural networks

for regression in spatio-temporal problems. Concretely,

we compare several traditional methodologies with

their respective spatial agnostic version.

• The contribution is illustrated by tackling a variety of

prediction problems related to air quality and sustain-

able mobility. All of them are considered of great

importance and significantly complex for both spatial

and temporal dimensions.

• Results show that spatial agnostic methods equal state-

of-the-art models in accuracy without the need of prior

spatial information.

The rest of the paper is organized as follows: related work

is discussed in Sect. 2, while Sect. 3 presents the methods
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and all needed theory for this work. Then, in Sect. 4 we

introduce our datasets, experimental design, and their

properties. Section 5 illustrates the evaluation of the neural

architectures as derived after appropriate experimentation.

Finally, in Sect. 6 we point out conclusions from our work.

2 Related work

2.1 The rise of convolutions

Since CNNs were proposed as neural architectures [2], they

have shown to handle especially well spatially-ordered

data. During the last decades, these kind of neural networks

have grown in importance, becoming one of the most used

neural paradigms for a wide number of applications.

In the case of intrinsic 2D problems, like images, CNNs

have turned out to be the option per excellence. Concretely,

with [3] started a reign of CNN for computer vision

problems. Not much later, the idea that weight sharing

could lead to potentially suboptimal performance for some

images, like portraits, was studied [4]. In the present,

CNNs are widely used for this kind of problem and have

been well characterized.

However, CNNs are not constrained to natural 2D sys-

tems. For example, time series seen as a 1D sequence have

been handled by convolutional models with good results

[5, 6]. Spatio-temporal series have growth in importance,

and CNNs have been well studied and are already a stan-

dard when dealing with this kind of series [7, 8]. A similar

field to spatio-temporal series is video-sequence analysis,

where both spatial and temporal relations need to be

modeled [9]. Within this last topic, some examples in

which parameter sharing are indeed highly positive can be

found, as for example enhancing video spatial resolution

for creating smooth results [10] or action recognition [11].

2.2 Spatial dimension in spatio-temporal neural
networks

In spatio-temporal regression specifically, convolutional-

based networks are one of the leading options too. As

explained in Sect. 1, convolution shines in a wide range of

applications involving physical spatial locations. However,

how this dimension is treated by the convolution has not

received particular attention. Thus, we have several options

that are widely used but not necessarily optimal.

For example, in traffic forecasting, defining your space

as a natural grid. [12] is a good example of 2D image-to-

image prediction problem in which, by using channels as

timesteps and 3D kernels, spatio-temporal relations are

exploited. As average traffic speeds for each road segment

is used, no need for prior spatial information is needed, and

the grid arrangement is natural. However, closer areas are

not necessarily more related. In [13], it is shown that the

3D convolution might work better, but the same spatial

arrangements and assumptions are made. Another example,

but in the bike-sharing regression problem, would be [14].

In this case, the claim that the spatiotemporal distribution is

endogenously dependent on the zonal attribute of adjacent

areas makes sense as they use a grid big enough of 4 � 4

km. However, if the granularity of the spatial dimension is

thinner, adjacent bike stations are not expected to be

especially related, as very short trips (barely hundreds of

meters, which is what usually distances stations) are not

common, and by so, their argument does not necessarily

hold.

When measurement points are directly used as an

arrangement for the spatial dimension, not only it is nec-

essary to impose the same closeness supposition as before,

but a special treatment is usually needed to arrange loca-

tions correctly. Some examples are [15], where the authors

order traffic sensors in a 1D grid; or [16], where mea-

surement points are ordered as 2D images.

In recent years, graphs-based networks have received

increasing attention. GCNs not only have shown a very

competitive performance, but a graph structure is more

suitable than grids for some specific problems where

relations might be non-Euclidean and directional [17].

Among the different convolutions in graphs, all of them

depend heavily on an adjacency matrix which usually

needs to be manually defined. This adjacency matrix is of

great importance as it defines the graph relations and

structure. Depending on the proposal, this matrix might be

defined differently: it usually is defined by spatial closeness

[18, 19], but there are no restrictions. For example, in [20]

temporal trend information is integrated when forming this

matrix and, this way, it is expected to take full advantage of

both temporal and spatial dimensions. Thus, the adjacency

matrix makes the spatial dependency more localized than

the plain version. While this freedom to define the adja-

cency matrix might help to avoid the closeness assumption,

it would force you to find which prior information may be

more optimal for your particular problem. If compared to

traditional CNN, GCN presents another advantage: they

can naturally process information from a K � hop neigh-

borhood [21], not restricting themselves to uniquely adja-

cent nodes.

Temporal relations with neural networks are usually

constrained to using some kind of RNNs. Although many

proposals have been done, through this work we will not

focus on this broad topic, and we will limit its use to

standards.
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2.3 Non-locally dependent proposals

The idea that a fixed arrangement for learning spatial

relations might not be the best deal is not new in spatio-

temporal series forecasting. Lu et al [22] state that ‘‘the

existence of spatial heterogeneity imposes great influence

on modeling the extent and degree of road traffic correla-

tion, which is usually neglected by the traditional distance-

based method’’, and proposed a data-driven approach to

measure these correlations. From this starting point, we can

select several works that have contributed to refine and

depend less on prior information in the spatial dimension

using neural models.

By using a hierarchical clustering over the spatio-tem-

poral data, [23] refines spatial relations. However, it uses a

distance matrix in the process, introducing the aforemen-

tioned bias by closeness. In [24], a lasso methodology is

used to obtain a sparse model of the system dynamics,

which simultaneously identifies spatial correlation along

with model parameters.

Attention mechanisms, which appeared on the deep

learning scene a few years ago, are a natural way to learn

relations beyond the network’s original assumptions. In

this context, several works have used attention weights to

improve performance and demonstrate the correctness of

their work with both, grid structure [25] and graph structure

[26]. However, [16] shows how closer locations are not

necessarily more related, and depending on the problem

and the characteristics of the regression, other considera-

tions might be more important when learning spatial

relations.

Closer to our work, in [27] a similar issue but with

general multivariate time series forecasting is put on the

table: existing methods usually fail to fully exploit latent

spatial dependencies between pairs of variables and GCNs

require well-defined graph structures which means they

cannot be applied directly for multivariate time series

where the dependencies are not known in advance. In their

proposal, they construct a new model that tackles both

problems. [28] focus its efforts on dealing with the fact that

different spatial locations might have at some degree dif-

ferent dynamics by using traditional CNNs but with the

introduction of learnable local inputs/latent variables and

learnable local transformations of the inputs.

In the end, all these works focus their attention on

solving a specific regression problem, but not delve into

how the spatial dimension should be really treated. Fur-

thermore, all these methodologies have in common the

need to make their models considerably more complex in

order to overcome spatial agnosticism, generally starting

from usual convolution operators and refining themselves

via extra mechanisms or modules.

3 Methods

Through this section, we present all the theoretical methods

and foundations on which our study bases its ideas and

experiments on the role of spatial agnosticism in spatio-

temporal series. The code for this paper is available in

https://github.com/rdemedrano/SANN.

3.1 Preliminaries

As we intend to demonstrate how the typical intrinsic

spatial information given to different forms of convolu-

tional methods is not as important as always assumed, we

focus this paper on comparing traditional models with their

respective agnostic version. Before explaining these

methodologies, we introduce some general aspects.

Given a spatio-temporal sequence X, let us call N to the

total number of timesteps and S the total number of spatial

points. With this notation, a spatio-temporal sample from

the series writes as xti;sj : i ¼ 1; . . .; T; j ¼ 1; . . .; S, being T

the total number of timesteps conforming the sample. Xt is

the slice of series X for timestep t at all locations, and XT ;j

is the slice of series X in location j for all timesteps. The

predicted series is represented by ~xt0i ;sj : i ¼ 1; . . .;

T 0; j ¼ 1; . . .; S, where T 0 is the total number of predicted

timesteps. We assume that the number of spatial locations

is always the same for both the input and output series.

For all models, the input sequence scheme relies upon a

C � T � S format images as shown in Fig. 1, where rows

represent timesteps, columns define themselves spatial

locations, and the number of channels C represents the

number of input spatio-temporal variables. During this

paper, we will work with C ¼ 1 (the studied series by

Fig. 1 Input sequence schematic. As long as all variables are spatio-

temporal and have an equivalent structure for both dimensions, these

sequences can be easily introduced as C � T � S images, with

variable, temporal, and spatial dimensions, respectively
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itself), but is easily extensible to any value. Also, all

models will consist in one convolution layer outputting a

T � S� H tensor, where H is the dimension of the new

hidden state or number of new channels. This approach

allows us to standardize the input and output format of the

convolution layers for all methods.

3.2 Traditional convolutional networks

Now we present the traditional format of convolution-

based networks for spatio-temporal series, and we detail

how they will be used for testing our main hypothesis.

3.2.1 Convolutional neural networks (CNN)

Convolutional Neural Networks are based on the idea of

the convolution operation. Convolution itself (� operator)

has the following form for 2D images:

ðx � KÞði; jÞ ¼
Xk1

m

Xk2

n

xðm; nÞKði� m; j� nÞ ð1Þ

where K is the kernel. Thus, CNNs are characterized by

learning a series of filters which values depend on how

adjacent elements are related.

In its classical form, CNNs for spatio-temporal regres-

sion rely on ordering the input sequence by spatial adja-

cency or closeness. Thus, for each row of Fig. 1, spatial

zones are mapped into the input tensor in such a way that

closer locations are closer in the sequence. By doing so, we

make sure that the learnable kernels can take advantage of

this prior spatial information. The strategies that can be

used to adapt convolutional networks to spatio-temporal

problems by exploiting this spatial bias based on proximity

are multiple (see Sect. 2.2). In our case, the input to the

network will be defined as shown in Fig. 2, ordered by

spatial location through columns and temporal dimension

through rows. Similarly, in the temporal dimension (col-

umns) the kernel gathers adjacent timesteps.

3.2.2 ConvLSTM neural networks

Long Short-Term Memory (LSTM) is a type of recurrent

neural network architecture usually used when handling

time series data with temporal auto-correlations. An LSTM

Neural Network consists of an input gate, an output gate, a

memory cell, and a forget gate. During the training phase, a

weighted function is learned in each of the gates in order to

control how much the network ‘‘memorize’’ and ‘‘forget’’.

Based on this model, the ConvLSTM model is a varia-

tion of LSTM capable of handling spatio-temporal pro-

cesses [29]. Comparing with the original LSTM model, the

input-to-state and state-to-state transitions of the

ConvLSTM cell involves convolutional operations, making

it a well fit for spatial relations. This model is governed by

the following equations.

it ¼ rðWxi � Xt þWhi � Ht�1 þ biÞ

ft ¼ rðWxf � Xt þWhf � Ht�1 þ bf Þ

Ct ¼ ft � Ct�1 þ tanhðWxc � Xt þWhc � Ht�1 þ bcÞ

ot ¼ rðWxo � Xt þWho � Ht�1 þ boÞ

Ht ¼ ot � tanhðCtÞ

ð2Þ

As previously � denotes the convolution operation while �
denotes the Hadamard product. Furthermore, for timestep t,

we find that it, ft, ot are the outputs of input gate, forget

gate, and output gate, respectively, Ct is the cell output, and

Ht is the hidden state of a cell.

As explained with CNNs (3.2.1), ConvLSTM input

sequence is usually ordered by closeness or adjacency in

order to take advantage of the shared-weight scheme of the

convolution. Through this work, ConvLSTM will use the

same input scheme as CNNs as presented in Fig. 2. Thus,

convolution operations can make use of this type of spatial

relationship.

3.2.3 Graph convolutional neural networks (GCN-LSTM)

While several proposals have been made during the last

years to convolute over graphs, we focus on a particular

type presented in [21] called High-Order and Adaptive

Graph Convolution, as it has shown good performance in a

wide variety of problems. In words of the authors, given a

graph G, the k-hop (k-th order) neighborhood is defined as:

Nj ¼ fvi 2 Vjdðvi; vjÞ� kg for node vj . In fact, the exact k-
hop connectivity can be obtained by the multiplication of

Fig. 2 Example of input tensor definition. Given a network of traffic

sensors and its historical series, the objective is to predict future

timesteps for all locations using CNNs. The input sequence order in

the spatial dimension is usually defined by a logical arrangement of

the relative position of the sensors in the network. Traditionally, it is

expected to improve network learning through this strategy, gener-

ating softer filters by exploiting adjacency relationships
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the adjacency matrix A, giving as a result Ak. The convo-

lution is defined as:

~L
ðKÞ
gconv;t ¼ ðWk � ~AkÞXt þ Bk; ð3Þ

where � refer to element-wise matrix product, B is the bias

and W a learnable matrix of weights. ~Ak is defined as

minfAk þ I; 1g.
In order to adapt this kind of networks to spatio-tem-

poral environments, a LSTM layer is stacked with the

convolutional one as with ConvLSTM in Sect. 3.2.2.

Note that we use nodes to represent the spatial mea-

surement locations, which typically will be sensor stations

or road segments, and edges to represent the spatial seg-

ments connecting those sensing locations. The adjacency

matrix A which defines these spatial segments is usually

built based on spatial metrics. For convenience and

homogenization, we define for each dataset A as:

Ai;j ¼
1 ði; j are neighbors)

0 (otherwise)

�
ð4Þ

where two locations i and j are considered neighbors if they

are among the 4 closest areas without counting themselves.

Through this definition of A, it is trivial to see that the

convolution over each space zone makes use of informa-

tion based on proximity.

3.3 Spatial agnosticism via convolutional
networks

Now we show a series of spatial agnostic versions based on

the models presented through Sect. 3.2 for spatio-temporal

regression. These methods will help us to test the main

hypothesis of this work: whether introducing spatial-adja-

cency bias is unquestionably the best option or not. For this

purpose, each agnostic version needs to fulfill two

requirements:

• No spatial information is introduced to the network.

• Past temporal information can be handled and intro-

duced in the calculation of each new state.

By doing so, we will have several spatio-temporal

methodologies that let us contrast our main premise.

As the objective of this work is not the specific devel-

opment of models per se, in this section we propose a series

of possibilities that meet the requirements defined to be

spatially agnostic without limiting that other models of

similar nature can be defined to test the same hypothesis.

3.3.1 Agnostic convolutional neural network (A-CNN)

To define an agnostic version of CNNs, we can work from

Eq. 1. However, the kernel size is regularly used with

equivalent values for its two dimensions k1 ¼ k2 ¼ k. In

this case, not only this kernel uses different values for each

component, but kernel size for spatial dimension must be

equal to the number of spatial zones: k2 ¼ S. As a result,

the convolution operation is made over all locations at

once. The kernel size in the temporal dimension is defined

as tpast and needs to be stipulated as part of the network

architecture. An example of this kind of filter can be found

in Fig. 3. The convolution itself writes as follows:

ðx � KÞði; jÞ ¼
Xtpast

m

XS

n

xðm; nÞKði� m; j� nÞ ð5Þ

The temporal dimension is dominated by a causal con-

volution. Generally, causal convolution ensures that the

state created at time t derives only from inputs from time t

to t � tpast. In other words, it shifts the filter in the right

temporal direction. Thus tpast can be interpreted as how

many lags are been considered when processing an specific

timestep. Given that previous temporal states are taken into

account for each step and that parameters are shared all

over the convolution, this methodology might be seen as

some kind of memory mechanism by itself. Unlike mem-

ory-based RNNs (like LSTMs and GRUs) where the

memory mechanism is integrated solely by learned via the

hidden state, in this case tpast act as a variable that lets us

take some control over this property.

In order to ensure that each input timestep has a corre-

sponding new state when convolving, a padding of P ¼

Fig. 3 Example of causal convolution spatially agnostic with tpast ¼ 3

through a spatio-temporal sequence of just one variable as defined

previously
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tpast � 1 at the top of the input ‘‘image’’ is required, and to

guarantee temporal integrity, this padding must be done

only at the top. By using convolution in this form, once the

kernel has moved over the entire input image T � S, the

output image will be T � 1. This process is summarized in

Fig. 4.

Now, if we repeat this operation H times, we will create

a new hidden state with H channels and output an image

with H � T dimensions as the example in Fig. 5.

To give the network the opportunity to cover a spectrum

of possibilities in terms of expressiveness as wide as a

usual CNN for each channel, we simply use transposed

convolution with a kernel size k ¼ ð1; SÞ so the system can

learn a T � S representation from a T � 1 image. Figure 6

illustrates this idea.

Evidently, our new representation is usually composed

by H hidden states, so this transposed convolution will use

H filters. Finally, the complete procedure for an entire

agnostic convolutional block is described graphically in

Fig. 7.

Obviously, there are no restrictions with respect to the

width dimension. For simplicity, we have considered

convolutions in which only the number of channels is

changed, meaning that images keep an T � S structure

during all the computations. As we have described previ-

ously, this will help to normalize our experiments. How-

ever, as with CNNs, the dimensionality of hidden and

output states might be different. Over all this process, the

arrangement of the spatial dimension (columns) has no

effect, meaning that it is not necessary to map the study

areas in any specific way with the input of the network, as

was done with the CNNs (Fig. 2).

3.3.2 Agnostic ConvLSTM (A-ConvLSTM)

Once that the agnostic procedure for convolving has been

presented in the previous section, the A-ConvLSTM is

governed by Eq. 2 but changing the traditional convolution

for this new approach (Sect. 3.3.1). The only difference

with respect to A-CNN is that there is no need of causal

convolution over the temporal dimension, as the LSTM

module can handle it. Therefore, the input sequence lacks

any spatial ordering procedure, letting us define this

dimension arbitrarily.

3.3.3 Agnostic graph convolutional network (A-GCN-LSTM)

Following the structure of the GCN-LSTM presented in

Sect. 3.2.3, its agnostic version is simply to define the

adjacency matrix as the identity matrix: A ¼ IS. Thus, we

can make sure that no spatial relation is being introduced or

modeled explicitly. Otherwise, the network has the same

functioning and characteristics as described before. Thus,

the graph convolution takes the following form:

~L
ðKÞ
gconv;t ¼ WkXt þ Bk; ð6Þ

Fig. 4 Illustration of several step of the convolutional part of an

agnostic convolutional block. After moving all over the input

sequence, a T � 1 image is produced. This new image compress

information from all spatial locations and all input lags, keeping track

of several of these ones in each convolution

Fig. 5 By repeating operations described before, it is trivial to

assemble hidden states as new channels in the latent sequence,

meaning T � 1 images with H channels

Fig. 6 Transposed convolution to produce a T � S images from T � 1

latent sequences. Thanks to this process, we give the model same

expressiveness opportunities as traditional CNNs
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A comparison between each traditional model and its

agnostic version is shown in Table 1. There it is summa-

rized how each model formalizes prior information about

the spatial dimension and how it affects their use.

3.4 Regressor block

Through Sects. 3.2 and 3.3, we have explored how to use

convolution operations to learn a new hidden representa-

tion of the input sequence as an image with and without

using prior spatial information or closeness assumptions.

Now, in order to make a fair comparison between tradi-

tional networks and their respective agnostic versions, we

have to carefully use this latent representation with T �
S� H dimensions (common to all models presented) to get

a new T 0 � S predicted image. While this process can be

done in multiple ways, it is desirable for this regressor

block to fulfill several conditions:

(1) The same strategy has to be applicable to all models

studied in this work.

(2) It can not explicitly share information between

elements of the spatial dimension. This way, we

make sure that space is only treated in the convo-

lutional block of each model, and our results are not

contaminated from other parts of the network.

(3) The number of parameters needs to be as low as

possible and space-independent. Thus, we avoid

overfitting or overinfluence problems.

(4) Lastly, although we have not found an option that is

completely network architecture-independent (you

can get a similar size of hidden dimension or total

number of parameters, but not both), it is highly

desirable that this regressor layer does not undergo

too much variability between models.

A naive and simple approach would be using 1D convo-

lutions after reshaping the H � T � S image into a

ðH � TÞ � S, with H � T being the number of input channels.

By convolving trough the spatial dimension with a kernel

size of k ¼ 1 and an output number of channels of T 0, we
can be sure no information is shared through this dimen-

sion (2) and the number of parameters, which is H � T � T 0,
remains low compared to the complete network (3). Fur-

thermore, all models that we will compare are based on a

convolutional block which outputs an H � T � S, meaning

that this regressor scheme can be applied to all of them,

helping to standardize our experiments (1). As T is the

same for all models and H never diverges more than one

order of magnitude, we can be sure this layer has a similar

impact for all cases (4). Figure 8 summarizes this block.

Although other options have been considered, as 2D

convolutions and dense layers, they fail to meet some

Fig. 7 Representation of a complete agnostic convolutional block. By assembling operations described before, from a T � S it is trivial to create

hidden states capable of representing equivalent expressions compared to a traditional CNN, meaning T � S images with H channels

Table 1 Summary of spatial treatment of each model

Traditional Agnostic

CNN Shared kernel among locations.

Ordering of spatial dimension based on closeness

One kernel for each location. No ordering needed

ConvLSTM Shared kernel among locations.

Ordering of spatial dimension based on closeness

One kernel for each location. No ordering needed

GCN-LSTM Adjacency matrix defined by proximity Identity matrix as adjacency matrix
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conditions or need fine-tuning for each problem and model,

making them less suitable for a fair comparison.

3.5 Temporal versus spatial distribution

Our work is based on the hypothesis that real spatio-tem-

poral series might not share a similar behavior in their two

dimensions. Even the well known fact that closer, spatially

speaking, locations behaves similarly does not always suit

well, meaning that the parameter sharing scheme of tradi-

tional CNNs might not be the best option. Concretely,

when dealing with real problems, the system might have a

high dependency on non-spatial phenomena, and data

collection can have a great impact. As a result, closeness

information can be lost or modified.

On the contrary, temporal information (or distribution)

usually keeps the same structure for a wide range of

problems. As air quality and mobility are high correlated to

human being, the temporal pattern of this kind of series for

each location tends to remain alike.

In order to prove our hypotheses, we will make use of

statistical tools that characterize the aforementioned

information.

3.5.1 Spatial dimension: Moran’s I

According to [30], ‘‘Spatial autocorrelation or spatial

dependence can be defined as a particular relationship

between the spatial proximity among observational units

and the numeric similarity among their values; positive

spatial autocorrelation refers to situations in which the

nearer the observational units, the more similar their values

(and vice versa for its negative counterpart)... This feature

violates the assumption of independent observations upon

which many standard statistical treatments are predicated.’’

This property, which is precisely what we are interested in,

can be measured by the well know Moran’s I [31]. This test

will let us quantify the degree of spatial autocorrelation

existing in the different datasets that we will use between

close locations taking into account this interdependency.

As it is a test, Moran’s I comes with a p-value which

typifies statistical significance of the result. It is defined as:

I ¼ S

W

P
i

P
j wijðxi � �xÞðxj � x̂Þ
P

iðxi � �xÞ2
ð7Þ

where S is the number of spatial units indexed by i and j, x

is the variable of interest, �x is the mean of x, wij is a matrix

of spatial weights based on neighbors, and W is the sum of

all wij. As its value varies usually between �1 and þ1, it is

easily interpretable. Concretely, þ1 implies similar values

for close locations, 0 a random arrangement, and �1

opposite values.

As we also have a temporal dimension, we will average

I for all timesteps. Through this test we want to compute

solely spatial autocorrelation, without intervention of

temporal relations between locations.

3.5.2 Temporal dimension: adaptative temporal
dissimilarity measure

To compare the similarity between different time series (in

our case, different spatial points), the same problem arises

than with spatial autocorrelation: due to the interdepen-

dence relationship between measurements classical corre-

lation index can not be applied. For example, Euclidean,

Fréchet distances and Dynamic time warping are well

known and widely used techniques when measuring time

series similarity but do not handle the aforementioned issue

well. To solve this problem, [32] proposed the Adaptative

Temporal Dissimilarity Measure (ATDM) as an index that

lets us measure the similarity between time series more

robustly as it balances the proximity with respect to values

and the proximity with respect to behavior. Ir writes as:

ATDMðXT ;i;XT ;jÞ ¼ f ðcortðXt;i;Xt;jÞÞ � dðXt;i;Xt;jÞ; ð8Þ

where d references a classical distance (we will use

Euclidean) and cort is

cortðXT;i;XT;jÞ ¼
PT�1

t ðXtþ1;i � Xt;iÞðXtþ1;j � Xt;jÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT�1
t ðXtþ1;i � Xt;iÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT�1
t ðXtþ1;j � Xt;jÞ2

q :

ð9Þ

Lastly, f writes as follow:

Fig. 8 Regressor block that satisfy applicability, spatial agnosticism

and simplicity. By using a 1D convolution over the latent image

H � T � S, we can produce a T 0 � S sequence that correspond to our

forecast
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f ðxÞ ¼ 2

1þ exp ðkxÞ ; k� 0: ð10Þ

with this metric, the distance is squeezed into a coefficient

in the interval (0, 2). When the correlation coefficient is 0,

the ATDM is 1, and the correlation is not significant. When

the correlation is positive, the value of the ATDM is less

than 1; the more similar the two series are, the smaller the

value is. On the contrary, the ATDM is more than 1 if the

correlation is negative. The less similar the two series are,

the larger the value is.

Thus, we can average the ATDM between all locations

pairs for each spatio-temporal series. As this measure takes

into account both values and behavior of the series, we can

approximately get a global measure of temporal distribu-

tion similarity among points for each dataset.

When working with real data, in which depending on

time granularity local properties of time series might be

noisy, ATDM might not extract information correctly. In

order to solve this, we compute an adjusted ATDM coef-

ficient (ATDMadj) which uses a smoother version of the

input series as we are interested in global behavior of the

temporal distribution. Concretely, we use moving average

as it is simple and has shown to be a good approximator for

time series. As moving average just smooths the series, we

do not expect to corrupt the coefficient between series

which are not really temporally correlated.

4 Experimental design

4.1 Data description

The different forecasting problems and the corresponding

datasets are described below. Main dataset characteristics

and statistics are provided in Table 2.

• AcPol dataset Provided by the Municipality of Madrid

through its open data portal.1 Acoustic pollution in

Madrid in decibels, it measures equivalent continuous

level with A frequency weighting, which is the assumed

noise level constant and continuous over a period of

time, corresponding to the same amount of energy than

that actual variable level measured in the same period.

• Beijing dataset Presented by [33], it consists of traffic

speed measurements for 15000 road segments recorded

per minute. To make the traffic speed predictable for

each road segment, it is aggregated via moving average

in 15 minutes intervals. For this work, we select a

subgroup of road segments spatially close.

• BiciMad dataset Supplied by EMT (Municipal Trans-

port Company for its initials in Spanish) through its

open data portal.2 In this case, we tackle the bike

sharing demand prediction by aggregating the overall

number of bikes per station and timestep.

• LOOP dataset It contains data collected from inductive

traffic loop detectors deployed on four connected

freeways (I-5, I-405, I-90, and SR-520) in the Greater

Seattle Area. It can be found in [34].

• MATRA dataset This dataset contains historical data of

traffic measurements in the city of Madrid. The

measurements are taken every 15 minutes at each

point, including traffic intensity in number of cars per

hour. Data are aggregated for each hour. While a dense

and populated network of over 4.000 sensors is

available, we decided to simplify and use only a

selection of them. Available in the Municipality of

Madrid open data portal (footnote 1).

• METR-LA dataset This dataset contains traffic infor-

mation recapitulated from loop detectors in the highway

of Los Angeles County. We use the partition provided

by [17].

• NO2 dataset NO2 in the city of Madrid. Hourly data for

all measurement stations which include this pollutant.

Available in the Municipality of Madrid open data

portal (see footnote 1).

• NYTaxi dataset Provided by Taxi & Limousine Com-

mission,3 it consist of taxi trip location and duration in

the city of New York. We focus our work on

forecasting the number of taxi travels for each New

York neighborhood with an average minimum number

of one trip per day.

• O3 dataset O3 in the city of Madrid. Hourly data for all

measurement stations which include this pollutant.

Available in the Municipality of Madrid open data

portal (see footnote 1).

• PEMS-BAY dataset This traffic dataset is collected by

California Transportation Agencies (CalTrans) Perfor-

mance Measurement System (PeMS). We use the

partition provided by [17].

All datasets are Z-Score normalized by spatial point. We

take as reference previous work as a criterion to choose T

and T 0. Thus, we can be sure of the plausibility of the

results for all models. When no previous work is known,

we use autocorrelation as a measurement of number of

minimum lags (T) and focus only on a single timestep

prediction (T 0 ¼ 1).

1 Portal de datos abiertos del Ayuntamiento de Madrid: https://datos.
madrid.es/portal/site/egob/

2 Portal de datos abiertos EMT: https://opendata.emtmadrid.es/

Datos-estaticos/Datos-generales-(1)
3 NYCTaxi and Limousine Commission (TLC) Trip Record Data:
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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From Table 2, we can see how our chosen datasets cover

a wide range of spatio-temporal circumstances and the high

variety and variability of data. Also, our main hypotheses

are confirmed: Moran’s I show a clear no-spatial autocor-

relation pattern for our series, and although not completely

uncorrelated, most series are close to 0. All p-values are

lower than 0.05. It is worth noting as proof of plausibility

for these values that [22] computed the coefficient I for the

complete Beijing traffic dataset at some hours, reporting a

similar value to ours. ATDM values tend to be low, which

is representative of similar temporal distributions in the

datasets. As we expected, ATDMadj represents better this

idea. Datasets with a clear temporal pattern but locally

noisy, as Beijing, LOOP, and PEMS-BAY, are better

described by this coefficient.

Given that spatial locations are by default in arbitrary

order, it is necessary to sort and structure them in order to

fully exploit spatial information with traditional models.

By computing a hierarchical tree (dendrogram) using an

agglomerative hierarchical clustering algorithm and

traversing recursively the tree, it is possible to approxi-

mately sort the points by distance.

4.2 Architecture models

We compare agnostic models with widely used spatio-

temporal series regression models based on the convolution

operator. Details concerning its architectures are:

• A-CNN Through the process batch normalization and

ReLU activation function are used.

• CNN A standard CNN followed by a batch normaliza-

tion layer and ReLU activation function. It uses a 3�3

kernel.

• A-ConvLSTM ReLU activation function after convolu-

tion. No batch normalization.

• ConvLSTM A standard ConvLSTM that uses a 3�3

kernel. ReLU activation function after convolution. No

batch normalization.

• A-GCN-LSTM ReLU activation function.

• GCN-LSTM A classical approach for GCN which lets

us exploit explicitly information from the k-hop (k-th

order) neighborhood of each node in the graph. In our

experiments, we set k ¼ 3 and use ReLU activation

function.

As we are interested in deepening in how the convolution

operator and the spatial dimension are related, we do not

include any RNN or FNN-based approach.

4.3 Experimental design

In order to make a comparison as fair as possible, we

decided to proceed with all models as follows:

• They will consist uniquely in a convolutional layer and

a regressor layer. For all of them, the convolutional

layer will enrich input information by constructing a

H � T � S image from a T � S sequence as described

in Sect. 3.1.

• The regressor layer consists of a 1D convolution, as

explained in Sect. 3.4. Thus, we make sure no model is

taking advantage or exploiting further spatial

information.

• The number of parameters in the convolutional layer

need to remain similar and in the same magnitude

order. Given regressor layer’s architecture and the fact

that it is the same for all models, we expect that this is

enough to eliminate possible bias.

Table 2 Details of data through experiments.

Dataset Dates Timestep T T 0 S Mean Median Std ATDM ATDMadj Moran’s I

AcPol 2014/01/01–2019/03/31 1 day 7 1 30 56.8 60.2 15.1 0.36 0.36 0.03

Beijing 2017/01/04–2017/05/31 15 min 10 1 200 29.0 28.7 9.3 0.69 0.27 0.20

BiciMad 2019/01/01–2019/06/30 1 h 6 1 168 0 0 3.2 1.04 1.03 0.12

LOOP 2015/01/01–2015/03/31 5 min 10 1 323 57.2 60.6 11.8 0.84 0.47 0.31

MATR 2018/01/01–2019/12/31 1 h 24 6 120 445.5 254.8 539.6 5.6E-4 4.8E-4 0.09

METR-LA 2012/03/01–2012/06/30 5 min 12 3 207 53.4 62.3 20.6 0.02 0.02 0.24

NO2 2017/01/01–2019/12/31 1 h 48 48 24 37.5 29 28.9 0.04 0.0 0.13

NYTaxi 2016/01/01–2016/06/30 1 h 6 1 70 4.8 0 11.3 0.55 0.34 0.24

O3 2017/01/01–2019/12/31 1 h 48 48 14 50.6 50 34.3 0.03 0.0 0.11

PEMS-BAY 2017/01/01–2017/05/31 5 min 12 3 325 62.6 65.3 9.6 0.64 0.15 0.23

Dates reflects starting and ending points of data, Timestep corresponds to the duration of one timestep. T, T 0, and S were defined in Sect. 3.1 as

input timesteps, output timesteps, and number of spatial locations. Mean, Median, and Std condense main data statistics. ATDM, ATDMadj, and

Moran0s I summarize information about spatial and temporal distribution similarity between locations
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• A weight decay (L2 regularization) of 10�3 is used to

prevent overfitting.

Some other minor details are that all the models are trained

using the mean squared error (MSE) as objective function

with the RMSprop optimizer, as it has shown good per-

formance in non-stationary scenarios. Batch size is 256,

momentum is set to 0.9, the initial learning rate is 0.001,

and both early stopping and learning rate decay are

implemented in order to avoid overfitting and improve

performance. The experiments are run in a NVIDIA RTX

2070.

As we have standardized the experiments, no hyperpa-

rameter tuning is needed in general. Solely tpast for A-CNN

needs to be adjusted, which will be tuned via standard grid

search.

4.4 Validation scheme

As stated in [35], standard k-cross-validation is the way to

go when validating neural networks for time series if

several conditions are met. Specifically, that we are mod-

eling a stationary nonlinear process, that we can ensure that

the leave-one-out estimation is a consistent estimator for

our predictions and that we have serially uncorrelated

errors.

While the first and the third conditions are trivially

fulfilled for our problem, the second one needs to be

specifically treated. Given that some input sequences might

share elements among different sets(training, validation,

and test), prior information could be entangled leading to

data leakage. Due to this problem, it is not possible to

create random folds, and it is necessary to specify a sep-

aration border among previously defined sets. Particularly,

a 10-cross-validation scheme without repetition is used

during all experiments, with a 80/10/10% scheme for

train/validation/test sets for each fold.

4.5 Error metrics

To evaluate the precision of each model, we computed root

mean squared error (RMSE) and bias. In a spatio-temporal

context [36], they are defined as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T 0S

XT 0

i¼1

XS

i¼1

ð~xt0i ;sj � xt0i ;sjÞ
2

vuut ; ð11Þ

bias ¼ 1

T 0S

XT 0

i¼1

XS

j¼1

ð~xt0i ;sj � xt0i ;sjÞ; ð12Þ

For all these metrics, the closer to zero they are the better

the performance is. While RMSE already provides a

dispersion measure respect to real series, bias is better to

find particular predispositions when making predictions.

5 Results

A general comparison of the different error metrics for all

models can be seen in Table 3.

To better visualize the error over all datasets, Fig. 9

shows RMSE distribution. From this figure, we can deduct

that, in general terms, agnostic models show a similar

behavior than their respective main competitors.

In order to inquire into these results and provide statis-

tical evidence, a Friedman rank test was performed over

the error distribution for all datasets. A Friedman statistic

of F ¼ 21:6, distributed according to a v2 with 5 degrees of

freedom obtains a p-value of 6:2e� 4 with a ¼ 0:05,

which provides evidence of the existence of a significant

difference between the algorithm.

Given that Friedman’s null hypothesis was rejected, a

post-hoc pairwise non-parametric-based comparison was

carried out to check the differences between the proposed

algorithms with Holm and Benjamini-Hochberg adjust-

ments. As we are especially interested in testing whether

the introduction of spatial information as a prior is nec-

essary or not, Table 4 shows statistical significance in the

traditional-agnostic model comparison for all datasets.

Through these tests we compare if there are significant

differences between the means of two different algorithms

error distributions. Thus, for each hypothesis the test

accepts or rejects the idea that the two models that com-

pose the hypothesis generate, statistically speaking, the

same error distributions. By looking at this table we can

confirm our initial claim since there is not enough evidence

to support that traditional methods suppose an improve-

ment over their agnostic versions. In fact, the only com-

parison that yields a significant result (hypothesis I) show

evidence in favor of the agnostic model.

In terms of computational performance, Table 5 sum-

marizes average run times per fold, model, and dataset, and

the number of parameters per dataset for all models (recall

that, to facilitate a fairer comparison, all models have the

same number of parameters for every problem, see Sect.

4.3). Again, no differences are reported between traditional

and agnostic models neither. As we would expect, A-CNN

and CNN models show a great advantage in terms of time

consumption compared to the rest of the methodologies.

To further validate one of the most important statements

of this work, i.e., to ensure that the models we have pre-

sented as spatially agnostic really are, we propose to ran-

domly permutate the spatial dimension of data before

training. As we just want to compare the behavior of the
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different methods when input data is not sorted, we are

only interested in studying how the error distributions are

modified when this perturbation is introduced in the sys-

tem, and not in pure performance. Given that ConvLSTM

and A-ConvLSTM have shown to be a statistically sig-

nificant better option than the other models, we will use

only these two models in this experiment.

Table 3 Average performance per model and dataset. For a more detailed view of error metrics distribution, see Fig. 9

AcPol Beijing BiciMad LOOP MATR

RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias

A-CNN 7.06 0.22 2.74 0.02 2.75 - 2.0E-4 5.06 - 0.07 115.65 - 5.30

CNN 8.52 - 0.04 4.52 - 0.02 2.94 - 0.01 4.59 0.05 141.99 0.13

A-ConvLSTM 6.22 0.04 2.64 7.3E-3 2.74 - 8.3E-3 4.52 0.02 111.74 - 0.06

ConvLSTM 5.46 - 3.0E-3 2.26 - 0.15 2.89 - 0.01 3.71 0.03 115.29 - 2.85

A-GCN-LSTM 7.45 0.17 2.88 0.02 2.76 6.7E-4 5.77 - 0.53 136.48 2.97

GCN-LSTM 8.01 0.03 2.76 0.09 2.70 6.2E-3 5.02 - 0.18 132.14 0.43

METR-LA NO2 NYTaxi O3 PEMS-BAY

RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias

A-CNN 9.52 0.29 23.17 0.27 2.97 0.02 22.13 1.51 3.98 - 0.03

CNN 10.00 - 0.01 24.26 - 0.03 3.52 0.06 23.30 0.607 3.98 0.03

A-ConvLSTM 9.13 0.24 22.79 0.01 2.86 1.3E-4 21.56 1.00 3.66 - 0.03

ConvLSTM 7.86 - 0.05 24.25 0.31 3.16 - 0.01 21.56 0.71 2.42 0.04

A-GCN-LSTM 10.14 0.14 23.51 0.23 2.87 2.7E-3 22.71 0.25 4.16 0.14

GCN-LSTM 10.17 - 0.58 24.98 - 0.90 2.88 0.01 23.39 1.75 4.07 - 0.68

Table 4 Adjusted Holm and Benjamini-Hochberg p-values with pairwise rejected hypothesis at a ¼ 0:05 for all datasets

i hypotheses punajusted pholm pBH

I A-CNN versus CNN 0.014 0.048 0.023

II A-ConvLSTM versus ConvLSTM 0.77 1 0.825

III A-GCN-LSTM versus GCN-LSTM 0.736 1 0.846

A p-value lower than a suggest that both algorithms produce different error distributions

Table 5 Average run time per fold in seconds and approximate number of parameters used per dataset

AcPol Beijing BiciMad LOOP MATR METR-

LA

NO2 NYTaxi O3 PEMS-

BAY

Average

A-CNN 1.0 16.7 4.1 97.7 26.7 36.5 56.8 3.6 42.8 67.9 36.3

CNN 1.4 8.1 13.4 117.5 44.5 68.6 33.2 18.4 22.5 48.0 37.8

A-ConvLSTM 4.8 41.9 5.1 229.1 411.8 179.6 67.8 9.2 56.2 349.0 135.5

ConvLSTM 2.6 103.2 38.2 350.0 422.5 238.7 74.8 13.0 56.8 400.7 171.6

A-GCN-LSTM 18.1 72.6 15.0 168.7 146.0 83.7 449.4 24.4 221.2 172.3 137.1

GCN-LSTM 13.3 71.9 12.5 190.5 111.7 77.9 467.4 30.5 221.6 199.9 141.0

Number of

parameters

	
50K

	
200K

	
150K

	
250K

	
200K

	 150K 	
200K

	
150K

	
150K

	 250K
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In Fig. 10 we can visualize the RMSE results for both

models before and after (model name-perm) the random

permutation.

From this last figure we can clearly see that error dis-

tributions for A-ConvLSTM and A-ConvLSTM-perm are

practically identical for all the problems, while that does

not happen for ConvLSTM and ConvLSTM-perm. Thus,

we carry out a post-hoc pairwise non-parametric-based

comparison to check the differences between the models

with Holm and Benjamini-Hochberg adjustments. Table 6

shows the aforementioned p-values, marking with asterisks

(*) those that are statistically significant. In the table, ‘‘A-

ConvLSTM’’ refers to the comparison A-ConvLSTM vs

A-ConvLSTM-perm, while ‘‘ConvLSTM’’ refers to the

comparison ConvLSTM vs ConvLSTM-perm.

6 Discussion

First of all, we can verify the goodness of our experiments

presented in Table 3 by direct comparison with analogous

studies [16, 17, 33, 34, 37], showing that our results are in

line with them. Since most of the datasets have already

been used, we can extrapolate this idea to those which have

not.

The performance of the different strategies over indi-

vidual datasets is directly associated with the spatial

autocorrelation metric in Table 2. On the one hand, datasets

with a higher value of Moran’s I have a propensity to show

better performance with traditional models (Beijing, Loop,

METR-LA, and PEMS-BAY). On the other hand, datasets

with lower values of the same metric usually show better

behavior with the agnostics versions (AcPol, BiciMad,

MATR, NO2, NYTaxi, and O3).

Regarding to permuting the input tensors in their spatial

dimension in order to know the impact of this ordering on

the performance of each type of model, Table 6 lets us

Fig. 9 RMSE distribution for each model and dataset, dashed vertical line represents the mean, dotted vertical line represents median

Neural Computing and Applications

123



conclude that A-ConvLSTM shows spatial agnosticism,

and its performance is unaffected by how the spatial

dimension is treated. However, the ConvLSTM presents an

important discrepancy in terms of performance when

unsorting the grid. Although this premise holds in general

terms over all datasets, it can be seen again that the results

are directly related to correlation metrics in Table 2: those

datasets with a higher value of Moran’s I tend to suffer

more with the permutation test (Beijing, LOOP, METR-

LA, and PEMS-BAY). As in those cases the spatial auto-

correlation is higher, sharing parameters in the spatial

dimension is more beneficial, and changing the grid has a

greater effect.

As pointed out by reviewer #3, from a theoretical point

of view, spatial dimension presents a non dominant pattern

while temporal dimension generates smooth and similar

fluctuations between all locations. Given that convolution

operations have a tendency to average out the close pat-

terns, this spatial non dominant relationships might not be

evident after the convolutional operations. As a result,

neural network’s learning barely depends on the spatial

relationships of adjacency and proximity, as shown by our

results.

Finally, and given our results, we can provide some

guidelines in order to help other practitioners working with

real spatio-temporal problems:

• Assuming neighborhood-based relations as a premise

when approaching a spatio-temporal problem with

neural networks might not always be the best option.

Instead of naively assuming these spatial relations, it

might be beneficial to dig more deeply in the data

analysis or to rethink how the problem is addressed.

Concretely, real datasets do not necessarily are

similar through spatial locations, contrary to what is

usually assumed. Thus, the nature of data should be

reflected when defining the network architecture. In any

case, further considerations should be given to prelim-

inary studies of the spatial distribution of the data.

• When the distribution of the data shows a clear spatial

relationship based on neighborhood, as in the case of

large traffic sensor networks, the traditional format of

convolution-based networks might be advantageous.

However, when this is not clearly verified, as for

example with air quality, models do not show improve-

ment by sharing weights between different locations.

Fig. 10 RMSE distribution for each model and dataset before and

after training with random permutations in their spatial dimension.

Dashed vertical line represents the mean, dotted vertical line

represents median. In blue, A-ConvLSTM-based models and in green

ConvLSTM-based models (Color figure online)
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• If there is not enough available evidence about the

spatial distribution characteristics, spatially agnostic

models might be best suited as they are capable of

performing well while being less laborious to work

with.

• In any case, consider using spatial agnostic models if

your needs in terms of precision must be balanced with

the available resources.

7 Conclusions

Through this work, we have explored how classical spatial

assumptions based on closeness are not always the best

deal when working with convolutional neural networks for

spatio-temporal series regression. Due to their usual lack of

spatial autocorrelation, other alternatives might be more

suited. In order to test this idea, we have compared several

versions of convolutional-based models that make no use

of prior spatial information (neither directly nor indirectly),

namely spatial agnostic, with their respective traditional

forms. Spatial agnostic models are a perfect tool to contrast

our hypothesis as they do not use extra modules or steps as

others but tackle the problem directly purely via

convolutions.

After extensive and standardized experimentation, we

can confirm our main hypothesis: the inclusion of adja-

cency-based representations of the spatial distribution of

real data does not necessarily fit well for the classical

convolutional shared-weights scheme. Concretely, without

using any specific spatial mechanism, spatial agnostic

models have been shown to be equal in performance to

some of the most notable spatio-temporal models. Also, we

have shown how these models, unlike traditional convo-

lutional methods, are really spatially agnostic, and how this

is related to the spatial autocorrelation of the series. Fur-

thermore, beyond proving our initial hypothesis we have

shown how our methodology is simpler and less laborious

to work with, offering the possibility of obtaining good

performance without having to carry out extra research

about the application domain. Finally, by analyzing ten

different datasets with different spatio-temporal conditions

each, we can confirm the statistical significance of these

statements with a confidence of 95%.

Some directions for future work include using agnostic

versions of convolutional-based networks in those fields

where they show clear benefits (such as pollution fore-

casting). Also, our work is a good starting point to rethink

the way of working with spatio-temporal series if we want

to extract and make use of the spatial information of the

problem more efficiently and simply beyond classical

adjacency hypothesis. Finally, it would be of great interestTa
bl
e
6

A
d
ju
st
ed

H
o
lm

an
d
B
en
ja
m
in
i-
H
o
ch
b
er
g
p
-v
al
u
es

w
it
h
p
ai
rw

is
e
re
je
ct
ed

h
y
p
o
th
es
is
at

a
¼

0
:0
5
fo
r
al
l
d
at
as
et
s
af
te
r
te
st
in
g
sp
at
ia
l
ag
n
o
st
ic
is
m

v
ia

ra
n
d
o
m

p
er
m
u
ta
ti
o
n

A
cP
o
l

B
ei
ji
n
g

B
ic
iM

ad
L
O
O
P

M
A
T
R

p
u
n
aj
u
st
ed

p
h
o
lm

p
B
H

p
u
n
aj
u
st
ed

p
h
o
lm

p
B
H

p
u
n
aj
u
st
ed

p
h
o
lm

p
B
H

p
u
n
aj
u
st
ed

p
h
o
lm

p
B
H

p
u
n
aj
u
st
ed

p
h
o
lm

p
B
H

A
-C
o
n
v
L
S
T
M

0
.9
2
2

1
0
.9
2
2

0
.1
9
3

0
.1
9
3

0
.1
9
3

0
.4
9
6

0
.4
9
6

0
.4
9
6

0
.0
2
7
*

0
.0
2
7
*

0
.0
2
7
*

0
.2
3
2

1
0
.6
6
8

C
o
n
v
L
S
T
M

0
.9
2
2

1
0
.9
2
2

0
.0
1
4
*

0
.0
2
7
*

0
.0
1
6
*

0
.0
2
7
*

0
.0
2
7
*

0
.0
2
7
*

0
.0
0
2
*

0
.0
1
2
*

0
.0
0
2
*

0
.5
5
7

1
0
.6
6
8

M
E
T
R
-L
A

N
O
2

N
Y
T
ax
i

O
3

P
E
M
S
-B
A
Y

p
u
n
aj
u
st
ed

p
h
o
lm

p
B
H

p
u
n
aj
u
st
ed

p
h
o
lm

p
B
H

p
u
n
aj
u
st
ed

p
h
o
lm

p
B
H

p
u
n
aj
u
st
ed

p
h
o
lm

p
B
H

p
u
n
aj
u
st
ed

p
h
o
lm

p
B
H

A
-C
o
n
v
L
S
T
M

0
.7
7
7

0
.7
7
7

0
.7
7
7

0
.7
7
7

0
.9
8
4

0
.7
7
7

0
.3
7
5

0
.3
7
5

0
.3
7
5

0
.5
5
7

1
1

0
.8
4
6

0
.8
4
6

0
.8
4
6

C
o
n
v
L
S
T
M

0
.0
1
1
*

0
.0
2
*

0
.0
1
2
*

0
.4
9
2

0
.9
8
4

0
.5
9

0
.0
1
*

0
.0
2
2
*

0
.0
1
3
*

0
.8
4
6

1
0
.8
4
6

0
.0
0
4
*

0
.0
1
2
*

0
.0
0
5
*

R
ej
ec
te
d
h
y
p
o
th
es
is

(m
ea
n
in
g
b
o
th

al
g
o
ri
th
m
s
p
ro
d
u
ce

d
if
fe
re
n
t
er
ro
r
d
is
tr
ib
u
ti
o
n
s)

ar
e
m
ar
k
ed

w
it
h
*

Neural Computing and Applications

123



to propose and extend the same research questions to other

learning algorithms beyond neural networks.
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A B S T R A C T   

Air quality has become a central issue in public health and urban planning management, due to the proven 
adverse effects of airborne pollutants. Considering temporary mobility restriction measures used to face low air 
quality episodes, the capability of foreseeing pollutant concentrations is crucial. We thus present SOCAIRE 
(Spanish acronim for “operational forecast system for air quality”), an operational tool based on a Bayesian and 
spatiotemporal ensemble of neural and statistical nested models. SOCAIRE integrates endogenous and exogenous 
information in order to predict and monitor future distributions of the concentration for the main pollutants. It 
focuses on modeling available components which affect air quality: past concentrations of pollutants, human 
activity, and numerical pollution and weather predictions. This tool is currently in operation in Madrid, pro
ducing daily air quality predictions for the next 48 h and anticipating the probability of the activation of the 
measures included in the city’s official air quality NO2 protocols through probabilistic inferences about com
pound events.   

1. Introduction 

During the last decades, an increasing number of studies point out 
that degraded air quality is a major problem in cities around the world 
(Martuzzi et al., 2006; Héroux et al., 2015). While there is general 
consensus that it causes health problems (Kim et al., 2015a; Özkaynak 
et al., 2009), how dangerous it can be is still a matter of debate (Sellier 
et al., 2014). Even in the best case scenario, this seemingly endemic issue 
affecting the life in big cities is already considered one of the main 
causes of both direct and indirect mortality (Badyda et al., 2017). 

Of all the tools and systems that help fight pollution, the prediction of 
future pollutant concentrations or levels is of principal importance for 
air quality management and control (Bai et al., 2018). Air quality 
forecasting systems allow for sending out warnings of upcoming high 
pollution episodes to the population in the short-term, so that appro
priate measures can be taken to minimize as far as possible the damage 
caused by these episodes. As an example, the city of Madrid, in order to 
comply with European regulations European Union, 2008, devised an 
air quality protocol which includes restrictions to the use of polluting 
vehicles when the concentrations of NO2 reach certain thresholds. 
Consequently, foreseeing the activation of such restrictions is critical 
both for the decision makers (which need to announce them in advance) 
and for the vehicle owners (which need to plan their transport 

alternatives). 
The use of data-driven approaches to predict and control air quality 

is not new. Following the discussion started in Breiman (2001), when 
approaching a modeling problem two families of methodologies (or 
“cultures”, in Breiman terms) coexist: the data modeling culture, based 
on the search for a stochastic data model (for example, time difference 
equations, in the case of air quality) that capture the inner behavior of 
the intervening physical processes, and the algorithmic modeling cul
ture, based on the use of algorithms to directly learn the model from 
data. Given that pollutant concentrations can be seen as time series, the 
stochastic data modeling usually deals with using ARMA based methods 
(Kumar and Jain, 2010; Hassanzadeh et al., 2009). However, this kind of 
models have trouble handling high non-linearities and high dimensional 
environments. To solve this problem, and thanks to the big amount of 
data that is gathered nowadays, machine learning models have been 
applied to environmental modeling with some success (Grivas and 
Chaloulakou, 2006; Navares and Aznarte, 2020). In this work, however, 
we advocate for a hybrid “culture”, in which stochastic data models are 
combined with algorithmic ones in a way which permits harvesting the 
benefits of both approaches while reducing their disadvantages, as we 
will show. 

Due to the increase in the available computing power and the ad
vances in the field of neural network-based models, it is nowadays 
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common to find real applications in which algorithmic modeling is put 
into practice to predict air quality. For example, in Nebenzal and Fish
bain (2018) a system is deployed in which pollution levels based on a 
threshold are used to study transitions among states, which makes 
possible to estimate high pollution episodes in the long term. In Thatcher 
and Hurley (2010), authors have combined the TAPM and CCAM at
mospheric models to form a customizable, local-scale meteorological 
and air pollution forecasting system, showing that using macroscopic 
models in the local scale can provide positive points in the prediction. 
Macia̧;g et al. (2019) is an example of an ensemble model with a neural 
network and an ARIMA, in a similar vein to what will be our proposal, 
applied successfully to a real urban environment in the city of London. 

For this kind of real applications, it is useful to produce, instead of a 
forecast of the expected value of the magnitude under study, an esti
mation of the full future distribution, which in turn allows for decision 
making based on the probability of the surpassing of certain thresholds. 
This idea, which will ultimately be the main goal of the system described 
below, is common in other fields and was introduced to air pollution 
forecasting by Aznarte (2017). 

The integration of meteorological information and human activities 
have been addressed by multiple studies. Some relevant variables, as 
temperature, precipitation, or wind speed have shown to be good in
dicators of pollution levels (Kalisa et al., 2018; Ouyang et al., 2015; Kim 
et al., 2015b). Also, the physical-chemical mechanisms governing the 
relationship between these and air quality has been studied. In Vega 
García and Aznarte (2020), interpretability techniques for deep learning 
are used to gain insight into feature importance in a highly similar 
environment and methodology to ours, concluding that weather vari
ables, in general, have a high impact when using machine learning 
methods for predicting pollution. 

However, while these issues have been widely studied from the 
univariate time series perspective, the observed spatial interactions 
between nearby observation stations might be of importance too as air 
quality at different stations might be implicitly related. Spatial-based 
approaches usually imply assuming or learning these in
terdependencies based for example on closeness, but, as it has been 
shown (de Medrano and Aznarte, 2020), this is not necessarily the most 
natural and optimal way to go. 

In this paper, we introduce SOCAIRE (Spanish acronim for “opera
tional forecast system for air quality”), the new official air quality 
monitoring system for the city of Madrid. This tool, in operational use 
nowadays, makes use of both external and internal variables related to 
air quality in order to forecast pollutant concentrations. It is a complex 
modular mathematical system composed of an ensemble of data 
manipulation techniques and models that let us exploit different 
knowledge in each module: from data cleaning and imputation, through 
handling spatial and meteorological non-linear features, to integrating 
human behavior and its patterns. By correctly treating all this infor
mation, it is possible to avoid redundancies and to achieve very high 
performance. As one of the biggest and most populated cities in Europe, 
Madrid is a perfect setting for developing and testing these kind of 
systems. 

The rest of the paper is organized as follows: in Section 2 the problem 
is stated and Madrid’s air quality protocol for NO2 is described, while 
Section 3 presents an analysis and explanation of the different data 
sources and the data wrangling process. Section 4 presents the proposed 
approach for air quality forecasting. Then, in Section 5 we introduce the 
Bayesian probabilistic framework that let us accommodate SOCAIRE to 
the NO2 protocol. Section 6 shows the evaluation of the proposed ar
chitecture after appropriate experimentation and its comparison with 
other methodologies. Finally, in Section 7 we point out future research 
directions and conclusions. 

2. Problem statement 

2.1. Study area and general information 

Through this work, we look for a system which is able to predict up to 
48 h of four of the main existing pollutants: Nitrogen dioxide (NO2), 
ozone (O3), and particulate matter PM10 and PM2.5, where 10 and 2.5 
denote the maximum diameters (in micrometers) of the particles. This 
estimation needs to be done in the 24 stations that compose the pollution 
measurement network, each one with different pollutants. Since one of 
the main objectives of the system is to anticipate the activation of 
mobility restrictions in face of high pollution episodes, we forecast the 
main quantiles of the distribution, so it is easier to make decisions based 
on pollution level probabilities. Thanks to its Bayesian estimation of 
compound events, SOCAIRE becomes an ideal tool to foresee the sce
narios of Madrid’s NO2 protocol, which will be explained later in this 
section. 

SOCAIRE operates daily on a 48-h basis: it produces forecasts from 
10:00 of the present day to 09:00 two days later. In the spatial dimen
sion, the measurement stations of the city council are used as reference 
points. Specifically, there are 24 stations distributed throughout the city 
with sensors capable of recording different pollutants. Fig. 1a shows 
graphically the location of all the stations. At the same time, the city 
considers 5 different areas in the city that are related to the activation of 
the NO2 protocol. These areas are shown in Fig. 1b. Table 1 shows the 
correspondence between the different stations and their code, their 
location, and the pollutants measured at each one. 

2.2. The NO2 protocol of the city of Madrid 

In 2018, the city council of Madrid approved an “Action Protocol for 
NO2 Pollution Episodes” (Madrid-Protocol, 2018) (from this point, 
referred to as “the NO2 protocol”) which defines a set of increasing alert 
levels, thus classifying the situations of high concentrations of NO2 as 
follows: 

1. PREWARNING: when any two stations in the same area simulta
neously exceed 180 μgm− 3 for two consecutive hours, or any three 
stations in the surveillance network simultaneously exceed the same 
level for three consecutive hours.  

2. WARNING: when any two stations in the same area exceed 200 
μgm− 3 during two consecutive hours, or any three stations in the 
surveillance network exceed the same level simultaneously during 
three consecutive hours.  

3. ALERT: when in any three stations of the same zone (or two if it is 
zone 4) is exceeded simultaneously, 400 μgm− 3 during three 
consecutive hours. 

Depending on the level and the meteorological prospect, a set of 
increasingly restrictive mobility limitations will be imposed city-wide by 
the council with the aim of mitigating and reducing the negative effects 
of contamination on the health and integrity of the population. Thus, the 
main objective is to know when and how the conditions leading to the 
different alert levels will be met, in order to enable the anticipation of 
the measures. 

2.3. Framework overview 

Fig. 2 presents a summary of SOCAIRE’s mathematical structure. 
Created to forecast and monitor pollution levels, its operation is based 
on the compilation of several data sources which will be described in 
Section 3. After a proper analysis and cleaning process, the complete 
database will be used through an ensemble model composed of a cascade 
of nested models, each one in charge of modeling different processes 
that alter air quality dynamics (Section 4). Finally, and thanks to the 
probabilistic nature of the predictions, the system is able to estimate 
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probabilities from compound events using a Bayesian approach 
explained in Section 5 that is adapted to the aforementioned NO2 
protocol. 

3. Data analysis and wrangling 

As stated above, in order to aim for the highest performance, SOC
AIRE makes use of all the available information related to the problem. 
Thus, before introducing the actual modeling, it is important to present 
and analyze the set of available data sources. Concretely, as anticipated, 
SOCAIRE uses the data of the concentrations of the different pollutants 
in the different stations in Madrid as dependent variables (output) and, 

as independent variables (inputs), past pollutant concentrations, nu
merical pollution predictions coming from the European CAMS model, 
numerical weather predictions served by AEMet, 2021 and anthropo
genic information encoding different events such as holidays and school 
calendar. The data used along this paper corresponds to the period July 
2016–October 2020, both included. The following subsections will 
detail the origin, peculiarities, and processing of these data. 

3.1. Pollutants 

The temporal behavior of each pollutant series is shown in Fig. 3. The 
daily cycle of all pollutants is dominated in one way or another by the 

Fig. 1. Location of pollutant measurement stations and definition of the 5 different areas in which the NO2 protocol divides the city.  

Table 1 
Locations and availability of pollution variables for each station. A ✓reflects the presence of data in the corresponding location and for the corresponding pollutant.  

Station Code Long. Lat. NO2 O3 PM10 PM2.5 Type 

Pza. de España 4 − 3.712 40.423 ✓ – – – Urban 
Escuelas Aguirre 8 − 3.682 40.421 ✓ ✓ ✓ ✓ Urban 
Avda. Ramón y Cajal 11 − 3.677 40.451 ✓ – – – Urban 
Arturo Soria 16 − 3.639 40.440 ✓ ✓ – – Urban 
Villaverde 17 − 3.713 40.347 ✓ ✓ – – Urban 
Farolillo 18 − 3.731 40.395 ✓ ✓ ✓ – Urban 
Casa de Campo 24 − 3.747 40.419 ✓ ✓ ✓ ✓ Suburban 
Barajas Pueblo 27 − 3.580 40.477 ✓ ✓ – – Urban 
Pza. del Carmen 35 − 3.703 40.419 ✓ ✓ – – Urban 
Moratalaz 36 − 3.645 40.408 ✓ – ✓ – Urban 
Cuatro Caminos 38 − 3.707 40.446 ✓ – ✓ ✓ Urban 
Barrio del Pilar 39 − 3.711 40.478 ✓ ✓ – – Urban 
Vallecas 40 − 3.652 40.388 ✓ – ✓ – Urban 
Mendez Alvaro 47 − 3.687 40.398 ✓ – ✓ ✓ Urban 
Castellana 48 − 3.690 40.439 ✓ – ✓ ✓ Urban 
Parque del Retiro 49 − 3.683 40.414 ✓ ✓ – – Urban 
Plaza Castilla 50 − 3.689 40.466 ✓ – ✓ ✓ Urban 
Ensanche de Vallecas 54 − 3.612 40.373 ✓ ✓ – – Urban 
Urb. Embajada 55 − 3.581 40.462 ✓ – ✓ – Urban 
Pza. Elíptica 56 − 3.719 40.385 ✓ ✓ ✓ ✓ Urban 
Sanchinarro 57 − 3.661 40.494 ✓ – ✓ – Urban 
El Pardo 58 − 3.775 40.518 ✓ ✓ – – Suburban 
Juan Carlos I 59 − 3.616 40.461 ✓ ✓ – – Suburban 
Tres Olivos 60 − 3.689 40.501 ✓ ✓ ✓ – Urban  
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Fig. 2. The mathematical components of SOCAIRE. List of abbreviations: Numerical pollution predictions (NPP), numerical weather predictions (NWP), database 
(DB), PP-FSLR-ARFIMA-QR (Pseudo Periodic - fixed sign linear regression - ARFIMA - quantile regression). 

Fig. 3. Hourly, daily, and monthly temporal distribution of the four target pollutants.  

Fig. 4. Distribution of the series by pollutant and station.  
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peak hours of road traffic. Except for ozone, the other three pollutants to 
be analyzed have their daily peaks after peak traffic hours. The NO2 has 
the most intense traffic-sensitive cycle, followed by the 10 and 2.5 mi
croparticles, which show a delay of about an hour with respect to the 
NO2. O3 presents a daily cycle that is practically inverted with respect to 
the rest. 

Everything said for the daily cycle applies to the weekly cycle, with 
weekend being days with lower levels of traffic. It can be assumed that 
holidays and long weekends will behave as public holidays, so the 
forecast model would have to take this into account. As expected, the 
daily cycle is not independent of the weekly one, but each day of the 
week has its own cycle, especially different on weekends from working 
days. 

In the annual cycles, a greater variety of behaviors can be observed. 
All pollutants, especially ozone, rebound in summer except NO2 which 
has the opposite behavior in this case. 

Respect to the spatial dimension, Fig. 4 represents the empirical 
distributions for each pollutant. It can be seen that all stations report a 
similar behavior, without clear relation patterns between closeness and 
distribution. This fact will be of interest later when taking into account 
these spatial relationships in the modeling process. 

As the distributions show a clear asymmetry, logarithmic trans
formations are used. Pollutant data is publicly available at the Open data 
portal of Madrid Madrid-Council. 

3.2. Numerical weather predictions (NWP) 

As mentioned in Section 1, meteorology has shown to be especially 
important for air quality. Hence, having weather forecasts for the period 
in which the air quality forecasting is being made is expected to posi
tively impact the precision of the forecasts. In this work, we use NWP 
from the Integrated Forecasting System (IFS) of the ECMFW (Blan
chonnet, 2015), for the following set of variables:  

● Boundary layer height (in meters): This parameter is the depth of 
air next to the Earth’s surface which is most affected by the resistance 
to the transfer of momentum, heat or moisture across the surface. 
The boundary layer height can be as low as a few tens of meters, such 
as in cooling air at night, or as high as several kilometers over the 
desert in the middle of a hot sunny day. When the boundary layer 
height is low, higher concentrations of pollutants (emitted from the 
Earth’s surface) are found.  

● Surface pressure (in Pa): This parameter is the pressure (force per 
unit area) of the atmosphere on the surface of land, sea, and in-land 
water. It is a measure of the weight of all the air in a column verti
cally above the area of the Earth’s surface represented at a fixed 
point. Air pollution is especially prominent where high pressure 
dominates. Subsiding motions within an anticyclone suppress air 
trying to rise off the surface. Adiabatic warming of subsiding air 
creates a subsidence inversion which acts as a cap to upwardly 
moving air. Pollution problems dissipate when a low pressure system 
replaces a retreating anticyclone.  

● Temperature (in K): This parameter is the temperature of air at 2 m 
above the surface of land, sea, or in-land waters. Generally, higher 
temperatures and hotwaves are directly related to episodes of higher 
pollution levels.  

● Precipitation (in mm): This parameter is the accumulated liquid and 
frozen water, including rain and snow, that falls to the Earth’s sur
face. It is the sum of large-scale precipitation (that precipitation 
which is generated by large-scale weather patterns, such as troughs 
and cold fronts) and convective precipitation (generated by con
vection which occurs when air at lower levels in the atmosphere is 
warmer and less dense than the air above, so it rises). Precipitation 
parameters do not include fog, dew, or the precipitation that evap
orates in the atmosphere before it lands at the surface of the Earth. 

Air pollution is typically negatively correlated to the quantity of 
rainfall, existing a so called washing effect of precipitation.  

● U wind component (in ms− 1): This parameter is the eastward 
component of the 10 m wind. It is the horizontal speed of air moving 
towards the east, at a height of 10 m above the surface of the Earth. 
Pollutants tend to concentrate in calm conditions, when wind speeds 
are not more than about 3 ms− 1. Speeds of 4 ms− 1 or more favour 
dispersal of pollutants, which, literally, clears the air.  

● V wind component (in ms− 1): This parameter is the northward 
component of the 10 m wind. It is the vertical speed of air moving 
towards the north, at a height of 10 m above the surface of the Earth. 
Again, wind is highly related to pollution dissemination. 

NWP are interpolated to the location of each station of the air quality 
monitoring network. As pointed out previously, these forecasts are 
provided by AEMet in an hourly basis. The spatial resolution of these 
forecasts is 0.05 × 0.05◦ in a regular grid, while the temporal resolution 
is hourly, with up to 56 horizons. 

3.3. Numerical pollution predictions (NPP) 

CAMS, C provides a four day-horizon hourly pollution forecast which 
covers all Europe on a synoptic scale. The model takes into account 
global and regional numerical weather predictions from the ECMWF 
(Marécal et al., 2015), as well as other types of forecasts about the 
production of certain chemicals of natural and human origin from 
models such as C-IFS Forecasts or CAMS 81. 

All these models always refer to a geodesic grid of between 10 and 
20 km on each side, so it is not very sensible to use them to directly 
forecast the concentrations with the resolution required inside a city, 
which might well be below 1 km. 

3.4. Anthropogenic features 

As we saw in Fig. 3, depending on the human activity the temporal 
patterns of the series are different. Similar to weekends and months, 
public holidays and other designated days, as well as the school calen
dar, have a significant influence on road traffic, giving rise to a very 
different daily cycle. In special dates, we usually find a lower intensity in 
the center but a punctual growth in other places, particularly on the 
main access roads to the city related to holiday departures and returns. 

Also, each type of calendar effect has different effects on each hour of 
the day. In addition, some of them can fall on Saturday or even on 
Sunday, in the case of Christmas Eve and New Year’s Eve, and it is clear 
that the effect cannot be the same as when it falls during the week, so all 
these issues must be taken into consideration. 

In our particular case, we will take into account the following 
aspects:  

● Public holidays: Public holidays, long weekends, and special days, 
such as Christmas Eve and New Year’s Eve, are characterized by 
significantly less road traffic than a normal working day (apart from 
other departure and return operations that may occur on some of 
these days and which will be taken into account later). 

It has been observed that public holidays have different effects, both 
in terms of level and intraday evolution, depending on their location 
within the year, probably due to climate reasons, hours of light, and 
living patterns.  

● Holiday departures and returns: Extraordinary periods such as 
bank holidays, long weekends, or even weekends cause a temporary 
exodus of citizens with large accumulations of vehicles in the so- 
called departure and return operations. 

Departure operations can take place during the evening of the eve of 
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the first non-working day or during the morning of that day, while re
turn operations occur mostly during the evening of the last holiday, 
sometimes reaching the early morning of the next working day. 

As with other variables, the effect varies with the hours within a 
relatively soft form.  

● School Calendar: in Spain, school calendar and schedule is highly 
related to usual hourly, weekly, and monthly patterns and so, it can 
model with high precision the daily living. The school day can be 
complete or normal, average (pre- and post-holidays) or non- 
existent, either in isolation or for summer, winter nor spring holi
days. Each type of day other than the normal one is introduced as an 
effect with a different intraday cycle between 07:00 and 08:00. 

By combining all these variables, we ensure that the information 
relating to human mobility in the city is covered, both for normal situ
ations and for special events. These exogenous variables are defined for 
each station, as not all parts of the city have the same dynamics. 

3.5. Data wrangling 

When working with such diverse data sources, is usual to deal with 
very heterogeneous formats and criteria, which implies that pre- 
processing and cleaning steps are of utmost importance. Some of the 
most important ones for this project are listed in this section. 

Firstly, some sources use UTC time and others use Madrid’s local 
time. In addition, the processes that transfer data between different 
programming environments (R, TOL, and Python) also have to take into 
account that each of these systems work differently with respect to 
winter and summer daily savings time changes. 

Secondly, both NWP and NPP distribute their forecasts in a different 
geodesic grid, which in turn does not coincide with the coordinates of 
the pollution monitoring stations. At first, an attempt of interpolation 
was made by using the three closest grid points to each station as drivers, 
but it soon became apparent that this was an excessive complication 
with very little added value, as the forecasts were highly correlated. 
Therefore, in the final version, only the nearest reticular point to each 
station is used. 

Thirdly, weather predictions are not always in the most appropriate 
metric, so it is necessary to create derived variables that serve better as 
drivers of the models. To begin with, there are variables that change 
scale throughout history and it is necessary to unify the criterion for 
obtaining uniform series in time. Then, there are other variables that are 
interesting to modify conceptually, for example, instead of the east-west 
and north-south coordinates of wind speed, it is much better to use 
scalar speed, which is the fundamental factor of diffusion, and direction, 
which is less important. Finally, it is known that meteorological factors 
not only have an instantaneous effect, but also a delayed effect that can 
be exercised up to a few hours later. For this reason, some variables 
delayed up to 4 h have been created and integrated with the rest of 
features. 

Finally, since we are dealing with a cascade-like ensemble of models, 
in which the output of one is the input of another which may require a 
substantially different structure, each level of modeling requires a series 
of steps to prepare the data to be as expected in the next phase. 

Let us note that the most laborious part of the data pre-processing has 
been the imputation of missing values. However, given the importance 
of this part, it has been decided to include imputation of data as part of 
the modeling strategy and is explained later in section 4.1. 

4. Modeling strategy 

The concentration of a given pollutant in the air depends on at least 
two conceptually distinct groups of factors:  

● Emission factors: generally these are of a social order, such as road 
traffic or heating, which are predictable to some extent, although 
there are also totally unpredictable events such as fires, and others 
that could be anticipated to some extent such as strikes or sporting 
events with a multitudinous following.  

● Dispersion factors: basically these are consequences of the weather 
conditions on which there are quite precise forecasts on the horizon 
of 2 or 3 days ahead. 

Note that a certain factor, such as rain, can work in both directions at 
the same time: on the one hand it can cause an increase in traffic on a 
normal working day, which increases pollution, but on the other hand it 
disperses, especially the particles as they are carried to the ground, 
which decreases pollution. It is even possible that the effect is different 
depending on the day and time. Following the example of the rain that 
normally increases the traffic in a working day, it can on the contrary 
contract the traffic in an exit operation, when it will discourage people 
to leave the city. 

This causal complexity, added to the high degree of interaction be
tween factors, makes the phenomenon highly unstable and therefore 
very difficult to predict using any individual methodology. For this 
reason, an ensemble model composed of a cascade of nested models has 
been designed, such that the output of each is used in the next to get the 
most out of each:  

● Imputation techniques: Although this task is usually framed as part 
of the data wrangling process, in this project it involves the devel
opment of models of some complexity, due to the fact that the 
omitted elements are presented with a certain frequency and not 
always in a sporadic way, but covering periods of time that can even 
be of several weeks. These techniques are detailed in Section 4.1.  

● NNED model: a special flavor of convolutional neural networks 
called neural net encoder-decoder, which, using as inputs the outputs 
of the imputation models, allows to jointly forecast the concentra
tions of a pollutant in all the stations at the same time. It takes into 
account the NWP and NPP, as well as the recent past of all stations for 
each input variable, including the previous pollution itself, and is 
capable of automatically detecting non-linearities and interactions 
between different features. However, it does not allow for the natural 
treatment of irregularities in non-cyclical anthropogenic factors 
related with traffic. It is described in detail in Section 4.2.  

● PP-FSLR-ARFIMA-QR model: This is a chain of models by itself 
developed specifically to deal with anthropogenic factors in a 
Bayesian way. It will be explained in detail in Section 4.3. 

4.1. Imputation techniques 

In the different data sources, it is relatively frequent to find missing 
data that can cause problems in the modeling process. For this reason, it 
is necessary to devise a sensible way to fill in these missing values, 
replacing them with approximate or expected values by a series of 
auxiliary models. When there are only very sporadic omissions of short 
duration, it might be sufficient to apply some kind of approximation by 
interpolation, but there might be up to consecutive weeks of data 
omitted in several or all variables from one or more sources at the same 
time. Thus, in order to develop a robust operational system, able to 
function even in the presence of missing data, more complex and 
specialized techniques are required. 

4.1.1. Trigonometric interpolation 
First, a trigonometric interpolation is used as a univariate method to 

generate sensible values for those series with clear cyclical components, 
such as temperature. In our case, these series present very few omissions, 
so we consider this technique to be sufficient. Since the data are ar
ranged in a regular grid, this can be done by the discrete Fourier 

R. de Medrano et al.                                                                                                                                                                                                                           



Environmental Modelling and Software 143 (2021) 105084

7

transform. 

4.1.2. Multiple imputation using additive regression, bootstrapping, and 
predictive mean matching (HMISC) 

Multiple imputation using additive regression, bootstrapping, and 
predictive mean matching consists of drawing a sample with replace
ment from the real series where the target variable is observed (i.e. not 
missing); fitting a flexible additive model to predict this target variable 
while finding the optimum transformation of it; using this fitted model 
to estimate the target variable in all of the original series; and finally, 
imputing missing values of the target with the observed value whose 
predicted transformed value is closest to the predicted transformed 
value of the missing value. This methodology is implemented in the R 
package HMISC (Jr, 2020). As the meteorological variables have already 
been imputed with the previous method (which will be used as input 
here), it is only applied to the NPP and the pollutant concentrations 
themselves. This method is actually used for safety in case the next one 
(X-ARIMA) fails. As several parts of the framework can not handle 
missing data, this step is required in order to assure proper functioning. 

4.1.3. X-ARIMA 
Once the previous two standard imputation methods are applied, it is 

turn for a univariate dynamic causal imputation method. It analyses how 
both the present and the past of a group of variables, including the target 
variable itself, act on the future of this target variable. These models are 
quite complex and, to improve the imputation, they are applied in two 
successive phases: in the first one, the NPP are imputed as a function of 
the NWP; in the second one, the pollution observations are imputed as a 
function of the NWP and the NPP. 

Mathematically speaking, we have that, being Yt the time series of 
concentration of the pollutant in question and Xt,k the linearized inputs 
from the explanatory terms described above, the general formula of the 
Box-Jenkins’ X-ARIMA models (Box et al., 1976) used is as follows 
(where, as usual, B is the backward operator): 

Δ(B)φ(B)

(

Yt −
∑K

k=1
Xt,kαk

)

= θ(B)εt. (1) 

The summation 
∑K

k=1Xt,kαk will be called the filter of exogenous ef
fects while the equations in differences expressed by the delay poly
nomials will be called endogenous factors or the ARMA part of the 
model. 

The difference between the output and the linear filter is called 
ARIMA noise (zt): 

zt = Yt −
∑K

k=1
Xt,kαk (2) 

The previously defined backward operator delays the time indicator 
of some element. Mathematically speaking: 

Bkzt = zt− k (3) 

In order to illustrate the backward notation, we may show its 
behavior for some simple cases. Let us suppose that the process under 
study presents a regular difference Δ(B) = 1 − B, i.e., the difference 
between each pair of consecutive data is stationary. 

Δ(B)zt = (1 − B)zt = zt − zt− 1 (4) 

Regarding to autoregressive polynomials (AR) φ(B) and moving 
average (MA) θ(B), they behave similarly. Suppose we have an AR of 
first grade φ(B) = 1 − φ1B and a MA of second grade θ(B) = 1 − θ1B −

θ2B. Thus, equation (1) writes as follows: 

(1 − B)(1 − φ1B)zt = (1 − θ1B − θ2B)εt (5)  

(
1 − (1+φ1)B + φ1B2)zt = εt − θ1εt− 1 − θ2εt− 2 (6)  

zt − (1+φ1)zt− 1 + φ1zt− 2 = εt − θ1εt− 1 − θ2εt− 2 (7) 

Note that this model is very different from the typical ARIMA model 
with exogenous effects of the ARIMA-X class 

Δ(B)

(

φ(B)Yt −
∑K

k=1
Xt,kαk

)

= θ(B)εt, (8) 

which is easier to estimate but also is considered to be much less 
effective in explaining the phenomena that actually occur in real life (see 
Appendix A).  

● Exogenous factors: The NWP series has only very few isolated 
omitted data and in principle there is no reason to think that they will 
occur more frequently in the future. For this reason, it is more than 
sufficient to use an imputation system based on the Fourier 
transform. 

The imputation of the NPP series will take as inputs the previously 
imputed NWP that shows quantitative relevance when imputing NPP 
values. Specifically, the boundary layer height (BLH), wind speed (WS), 
and precipitation (TP) have been used, applying different Box-Jenkins 
time transfer functions (Box et al., 1976) with different damping pa
rameters in order to collect in a more synthetic way the time delayed 
transfers already discussed. 

For the series of pollution observations, both NWP and NPP will be 
used, after all of them have been already imputed.  

● Endogenous factors: The ARIMA polynomials in this case are multi- 
seasonal. Among the inertial factors of the stochastic process, and 
besides the regular time (hourly), both the daily cycle of periodicity 
24 h and the weekly cycle of periodicity 24 × 7 = 168 h are taken 
into account. 

Obviously, there is also a pseudo annual cycle and a trend but they 
will be filtered by some of the explanatory drivers or exogenous factors 
indicated in the previous section. On the one hand, the annual cycle is 
not in harmony with the weekly or daily cycle, that is, its periodicity is 
not a whole number, and on the other hand it is enormous: 365.2425 ×
24 = 8765.82, so it is practically intractable for the ARIMA approach in 
an hourly series. Even in a daily series it presents serious difficulties and 
consumes a lot of resources. 

A complete overview of the imputation process is shown in Fig. 5. 

4.2. Neural network encoder-decoder: NNED model 

Given that interactions between pollution itself and other relevant 
features, as NWP, show a complex and highly non-linear behavior in 
both time and space, deep learning arises as a suitable mathematical 
solution. No anthropogenic interactions are modeled at this point. A step 
forward with respect to the usual deep learning architectures, NNED 
model is based on the idea of spatial agnosticism for solving spatio- 
temporal regression problems presented in de Medrano and Aznarte 
(2020). It has been shown that when the spatial granularity of the series 
is low and its spatial autocorrelation is close to 0, traditional convolu
tional neural networks (CNN) fail to extract all the information from the 
series as the adjacency assumption for learning shared-weights does not 
entirely hold. That way, it is possible to obtain better prediction per
formance by avoiding traditional CNNs by using a spatially agnostic 
version of convolution. 

By spatial agnostic network, we refer to a neural network in which no 
spatial information is introduced and past temporal information can be 
handled and introduced in the calculation of each new state. In order to 
do so, the input sequence scheme relies upon a C × T × S images as 
shown in Fig. 6, where the number of channels C represents the number 
of input spatio-temporal variables. Similar to the usual input scheme 
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presented in graph neural networks, this methodology let us treat both 
spatial and temporal dimension simultaneously. For our concrete case, 
the input series will be pollution, NWP and NPP for all stations during 
the past 48 h. The model will output pollution forecasting for all stations 
for the next 48 h. 

NNED is composed of three different modules:  

● Encoder: It is in charge of coding the input information of the space- 
time series in a space of superior dimension H. That is, it increases 
the expressiveness of the input by relating all the variables to each 
other. As we expect this model to work without spatial information, 
the encoder needs some modifications in its convolution scheme. The 
convolution itself (* operator) has the usual form for 2D images given 
an input x: 

(x∗K)(i, j) =
∑k1

m

∑k2

n
x(m, n)K(i − m, j − n) (9)  

where K is the learnable kernel. However, the kernel size is regularly 

used with equivalent values for its two dimensions k1 = k2 = k. In this 
case, not only this kernel uses different values for each component, but 
kernel size for spatial dimension must be equal to the number of spatial 
zones: k2 = S. As a result, the convolution operation is made over all 
locations at once. The kernel size in the temporal dimension is defined as 
tpast and needs to be fixed as part of the network architecture. 

The temporal dimension is dominated by a causal convolution. 
Generally, causal convolution ensures that the state created at time t 
derives only from inputs from time t to t − tpast. In other words, it shifts 
the filter in the right temporal direction. Thus tpast can be interpreted as 
how many lags are been considered when processing a specific timestep. 
Given that previous temporal states are taken into account for each step 
and that parameters are shared all over the convolution, this method
ology might be seen as some kind of memory mechanism by itself. Un
like memory-based RNN (like LSTM and GRU) where the memory 
mechanism is learned via the hidden state, in this case tpast acts as a 
variable that lets us take some control over this property. 

In order to ensure that each input timestep has a corresponding new 
state when convolving, a padding of P = tpast − 1 at the top of the image 
is required. To guarantee temporal integrity, this padding must be done 
only at the top. By using convolution in this form, once the kernel has 
moved over the entire input image T × S, the output image will be T × 1. 
Now, if we repeat this operation H × S times, we will create a new 
hidden state with H channels and an output image with H × T × S 
dimensions. 

Thus, we have coded input information relating all variables among 
them without exploiting prior spatial information based on adjacency.  

● Decoder: Its function is to decode the information contained in the 
hidden space of high dimensionality. To do this, it learns how to 
merge the H hidden states present for each input and location 
timestep into a single value. Because this information is expected to 
be similar throughout the image, a kernel of size k1 = k2 = 1 is used. 
Thus, it changes from an image H × T × S to, again, a T × S.  

● Multilayer perceptron: Finally, a multilayer perceptron of input T 
× S, and output T′ × S is used, relating each element obtained by the 
processes of coding and decoding with each of the zones and times to 
be predicted. The output of this multilayer perceptron is the output 
reported by the NNED model. 

Finally, the complete procedure for this model is described graphi
cally in Fig. 7. 

Fig. 5. Imputation scheme. All data sources likely to have missing values are part of the process. Through successive refinements, the initial data are processed 
through different techniques in a way that takes into account the nature and particularity of each source when performing the task. Black-dashed arrows follow 
processes in which data has not been imputed yet, while blue-solid arrows formalize the idea that this particular set has already been imputed. 

Fig. 6. Scheme for the input sequence of the NNED model. As long as all 
variables are spatio-temporal and have an equivalent structure for both di
mensions, these sequences can be easily introduced as C × T × S images, with 
variable, temporal and spatial dimension respectively. 
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4.3. PP-FSLR-ARFIMA-QR model 

The PP-FSLR-ARFIMA-QR model is actually a chain of models itself, 
which has been developed specifically to address the anthropogenic 
factors that in this case are of the non-cyclical calendar type. It is true 
that there is an underlying weekly cycle, but due to holidays and long 
weekends, and the interaction with the annual cycle (a long weekend in 
spring is not the same as in winter), it presents strong distortions that 
have to be dealt with ad hoc. Thus, this model uses the different initial 
data sources and knowledge learned from previous modules to exploit 
all this information in order to return a probabilistic prediction for the 
next 48 h. In this case, a different model is adjusted for each station. 

4.3.1. PP: daily classification into pseudo-periodic sub-dates 
Principally, the PP (Pseudo-Periodic) module is responsible for 

dividing the time sequence according to the type of day, depending on 
its position at weekends and holidays. They are called pseudo-periodic 
because they do not form perfect cycles like the days of the week, as 
the existence of holidays and long weekends disturbs their periodicity:  

● Post: After a long weekend (usually Monday).  
● Ext: Both the day before and the day after are working days (usually 

Tuesday-Thursday).  
● Prev: Weekend or Holiday Eve (usually Friday).  
● First: First day of a long weekend or weekend (Saturday mostly).  
● Int: Internal to a long weekend, excluding the first and last day.  
● Last: Last day of a holiday or weekend (Sunday as a rule). 

For each one of these 6 possibilities, a time series is generated and a 

chain of models (described below) is developed. 

4.3.2. FSLR: fixed sign linear regression 
Once the type of day has been determined, we start with a linear 

regression whose coefficients are forced to be non-negative based on the 
work of Lawson and Hanson (1995). If a driver should have a negative 
effect, it is introduced with a change of sign. This Bayesian approach is 
not very common, but it is very appropriate in many occasions, since we 
often do not have a very detailed quantitative information about the 
form of the distribution of the typical prior conjugate (Fink, 1997), but 
we do have a very clear qualitative knowledge, for example with respect 
to the sign that it should take, which can be expressed as a uniform 
distribution in the semimark x ≥ 0 or x ≤ 0. 

The effects considered in this regression are:  

● Instantaneous NNED forecast: The main driver is the forecast made 
with the neural network model explained in Section 4.2. In the case 
of the Ext type of day it is diversified according to the day of the week 
which can be Tuesday, Wednesday or Thursday, as it has been 
observed that a certain differences exist. In the rest of sub-dating, the 
case of days of the week does not allow for such diversification.  

● Daily inertia (medium term): The average of the already known 
observations with 23, 24 and 25 h of delay on the one hand, and with 
47, 48 and 49 on the other. By forcing the positive sign, the inertia is 
maintained if it is significant and positive. In other cases, the NNED 
algorithm itself is in charge of canceling it. It works approximately as 
a kind of autoregressive seasonal model of period 24 in the natural 
time dating, as opposed to the artificial time division subdate just 
described in the previous section. Concretely tree hours have been 

Fig. 7. NNED scheme. NNED consists of an encoder with agnostic convolutions (k1 = tpast, k2 = S), a decoder with 1 × 1 convolutions, and a dense layer that relates 
all input information with all output elements. In red, forecast pollutant concentration. 
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chosen to smooth these components, considering that the daily 
periodicity is not completely precise in these series because of their 
anthropogenic component. In addition, choosing several hours 
avoids potential issues with the two seasonal time changes 
throughout the year.  

● Daily correction (medium term): The average of the errors made 
by the model itself with 23, 24, and 25 h of delay on the one hand and 
with 47, 48, and 49 on the other, which are also known. In this case 
they will be used with the opposite sign, that is, if an error is made in 
one direction it is corrected in the other, provided that such effect has 
been estimated as significant, and otherwise the NNED cancels it out. 
It works approximately like a kind of moving average seasonal model 
of period 24 in natural time dating. Concretely tree hours have been 
chosen to smooth these components, considering that the daily 
periodicity is not completely precise in these series because of their 
anthropogenic component. In addition, choosing several hours 
avoids potential issues with the two seasonal time changes 
throughout the year.  

● Inertia and time correction (short term): For the first hours of the 
morning of each forecast session, the observations and errors of the 
last hours are also available, so it is possible to build inertia and 
short-term correction inputs similar to the two previous ones. From 
midday of the same forecast day they are no longer useful. They work 
as a kind of regular ARMA in natural time dating.  

● Protocol Activation: When the mobility restrictions imposed by the 
NO2 protocol described in Section 2.2 are activated, the pollutant 
concentrations might be reduced with greater or lesser success, so 
that the NNED forecasts become obsolete and must be intervened in a 
deterministic way. They are entered with a negative sign because it 
would not make sense for the action to increase contamination 

● Workday indicator: Within a long weekend, pollution is particu
larly reduced on the public holidays themselves, so a slight upward 
correction is needed for the rest of the days of the long weekend. It 
only affects the type of day Int.  

● School Calendar: During school vacations and adaptation periods 
with reduced schedules at the beginning and end of the school year, 
there is a certain reduction in pollution that suggests a downward 
correction. 

Concretely, this regression is estimated in logarithmic terms of both 
the observations and the NNED forecasts and errors, since it has been 
experimentally observed that the multiplicative relationship pre
dominates over the additive. 

4.3.3. Dynamic regression ARFIMA 
On the errors of the previous regression, a regular dynamic model is 

developed (without a seasonal part) that is concerned with maintaining 
inertia and correcting errors produced by the anthropogenic features 
definition: ARFIMA. These type of models are considered as an extension 
of traditional ARIMA models, letting the differencing parameter to take 
non-integer values. By doing so, ARFIMA models are more appropriate 
for modeling time series with long memory (Granger and Joyeux, 1980). 
Through this work, the arfima function from the R package forecast is 
used (Hyndman and Khandakar, 2008). 

4.3.4. QR probability regression 
At this point, the forecasts generated represent the mathematical 

expectation of the output magnitudes. With this, one can aspire at most 
to asymptotically estimate a log-normal distribution under the laws of 
regression. But since the distribution will not always fit perfectly with a 
log-normal, it is preferable to use a method based solely on the data. 

To do this, a new probabilistic Quantile Regression (QR) is estimated 
in order to estimate the future concentrations, with as single input the 
forecast of the previous FSLR+ARFIMA model, in original terms 
(without applying the logarithmic transformation). Quantile regression 
(Koenker, 2005) is an extension of linear regression used when the mean 

is considered insufficient to characterise the response variable. While 
the method of least squares estimates the conditional mean of the 
response variable, QR allows for the estimation of the median (q50) or, 
in fact, any other quantile, thus allowing for the characterisation of the 
full distribution of the forecasts. In our concrete case, we obtain all 
percentiles from 1% to 99%. 

In this setting, since there is not always enough contrast surface (the 
data-variables ratio is low), it may happen that the estimated percentiles 
do not comply with the basic rules of non-negative and non-decreasing 
applicable to every probability distribution. Usually, it is in the extremes 
where there are more problems. To alleviate this inconsistency, an I- 
spline interpolation is applied to these percentiles to ensure that these 
properties are as close as possible to the estimated values. 

A general schematic of the PP-FSLR-ARFIMA-QR model is presented 
in Fig. 8, while Fig. 9 summarizes the complete model with the data 
sources that govern the system. 

4.4. Training procedure and operation details 

From a methodological point of view, the training and parameters 
setting of the complete system has to be adapted to the essence of each 
block or model separately, since SOCAIRE presents modules of very 
different nature. In general terms, the data used for the training along 
this paper correspond to July 2016–October 2020, unless otherwise 
specified. The operational behavior of each of the models in relation to 
training and parameter estimation can be summarized as follows: 

● X-ARIMA model (Section 4.1.3): The X-ARIMA parameters are esti
mated through bayesian methods with intellectual property 
reserved. These methodologies use all data available for parameter 
estimation, without need of hyperparameters search. This procedure 
is repeated each three months with all available data to that moment.  

● NNED model (Section 4.2): In this case, the training follows the usual 
pattern of neural networks. The estimation of hyperparameters is 
performed by random search with data belonging to the interval 
January 2013–July 2016 as validation set. After this process, the 
network is trained with all the remaining available data using the 
Adam algorithm for neural parameter optimization and, once oper
ative, the network is updated weekly by means of new optimizations 
that take the most recently trained network as a starting point. Every 
three months, a complete retraining of the network is allowed. 

Some other minor details are that the network is trained using the 
mean squared error (MSE) as objective function. Batch size is 256, 
learning rate decay is set to 10− 3, the initial learning rate is 0.001 and 
both early stopping and learning rate decay are implemented in order to 
avoid overfitting and improve performance.  

● PP-FSLR-ARFIMA-QR model (Section 4.3): As in the case of X- 
ARIMA, this model parameter’s are estimated through bayesian 
methods with intellectual property reserved. Again, these method
ologies can use all data available through this process. However, in 
this case this procedure is repeated each day with all available data 
as the computation require little computational power. 

5. Probabilistic prediction of the alert levels 

As described in Section 2.2, the activation of the NO2 protocol de
pends on meeting a number of requirements, defined in three alert 
levels. From a probabilistic point of view, these requirements can be 
seen as compound events, and being able to compute the future prob
ability for the activation of each level is of utmost importance for de
cision makers. 

According to the NO2 protocol, the activation of the different levels 
depends on what happens in several stations at the same time and in a 
certain number of consecutive hours. In order to compute the 
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aggregated probability, the evaluation of the probability of the inter
section of several events is thus needed, knowing only the marginal 
percentiles and the historical residues left by each of the models. 

5.1. Empirical marginal distribution of the different stations 

As we have shown above, the model for each station offers a prob
abilistic forecast condensed in a quantile vector. Specifically, the 99 
integer percentiles are taken, that is, those corresponding to the prob
abilities pk = 1%, 2%, …, 98%, 99%. 

In this section, we will look for a way to calculate the marginal 
distribution function for the forecast of each pollutant concentration 
from these quantiles calculated by each station’s model. For this, it will 
be necessary to calculate the inverse of this distribution function and 
some statistics such as the mode, which in turn requires an analytical 
representation that allows us to obtain its first and second derivatives. In 
summary, we need a pair of easily computable, continuous, and doubly 
derivable functions that allow us to evaluate very efficiently and pre
cisely approximations of the distribution function and its inverse at any 
point of their respective domains. The selected method is in fact an 
empirical change of variable that transforms the concentration into a 
standardized normal. 

We will first take into account the fact that, by definition, the esti
mated quantiles are evaluations of the change in a variable that trans
forms the forecasts into a uniform distribution. Although this is valid for 
any source distribution, for reasons of numerical stability it is preferable 
to apply the process to the logarithms of the quantiles. Thus, if we apply 
the inverse of the standard normal distribution function to these log- 

quantiles, then the values obtained will follow that distribution by 
construction. Note that the calculation of the mode and deviation be
comes trivial in this context. 

During the approximation process, we will establish the restriction 
that the probability density of the concentration forecast is always 
unimodal, which agrees perfectly with the analyzed observations and 
the type of models used. 

Let us think of the moment in which decision making takes place, t0, 
and let us call ys,t > 0 the real concentration not yet observed in station s 
at future instant t > t0. The model of the s station will give us the qs,t,k 

percentiles of the forecast such that P
[
ys,t ≤ qs,t,k

]
= pk. The transformed 

values are thus defined as zs,t = log
(

ys,t

)
and the standardized normal 

quantile is uk = Φ− 1
0,1(pk), where obviously Φ0,1 is the normal distribu

tion function with mean 0 and deviation 1. 
Now we will interpolate the pairs 

(
uk, zt,s

)
by means of a function fs,t :

R⟶R that passes through those points 

fs,t(uk) = zt,s (10)  

and, in an analogous way, the inverse function gs,t = f − 1
s,t : R⟶R will be 

constructed as the interpolating function that passes through the points 
(
zt,s, uk

)
. That is to say gs,t(zk) = ut,s. 

This allows us to construct an approximation of the concentration 
distribution function as follows: 

Φ0,1
(
gs,t(log(y) )

)
≃ P

[
ys,t ≤ y

]
= Ψs,t(y) (11) 

And similarly we will obtain the approximation of its inverse: 

Fig. 8. PP-FSLR-ARFIMA-QR scheme. First, input data is classified depending on the type of day to be predicted (yellow). For each new series, the FSLR (green) takes 
as inputs different data sources (blue). Through linear relations, FSLR models different aspect of the problem, and uses its own prediction error for autoregulation. 
This same error is fed to the ARFIMA model (sky blue). Finally, the predicted quantiles are computed by the QR (red). 

R. de Medrano et al.                                                                                                                                                                                                                           



Environmental Modelling and Software 143 (2021) 105084

12

exp
(

fs,t

(
Φ− 1

0,1(p)
))

≃ Ψ− 1
s,t (p) (12) 

Although we could have directly interpolated these functions, which 
are the true objective, numerically speaking the interpolation with these 
transformations is more stable (largely because both zs,t and uk are not 
bounded). 

To avoid problems in the tails of the distribution, and taking into 
account that both functions are monotonous, it is highly recommended 
to use an interpolation method that guarantees this monotonicity. In 
particular, a monotonic spline interpolation has been used in this work. 
The monotony of the functions fs,t and gs,t, together with the monotony of 
the logarithm and the exponential functions, guarantees that the 
maximum probable value of the concentration will be ŷs,t =

exp
(

fs,t(0)
)

. 

Let the standardized residue of the forecast be 

ϵs,t = gs,t
(
log
(
ys,t
) )

∼ N(0, 1), (13)  

and note that indeed, if the probable maximum forecast is exact, i.e. if 
ys,t = ŷs,t , then 

ϵs,t = gs,t
(
log
(
exp
(
fs,t(0)

) ) )
= gs,t

(
fs,t(0)

)
= 0 (14)  

Similarly, if the standardized residue is zero, then the forecast is exact. 

5.2. Empirical joint distribution 

Section 4 has described the models that marginally predict the con
centration of each pollutant at each station for different time horizons. 
These models, thanks to their ARIMA structure, are able to adequately 
treat the internal temporal correlation of each station, that is, the 
autocorrelation of each of the series of pollutants of the different sta
tions. In Fig. 10, it can be seen that the autocorrelation function (ACF) is 
never too big, and that when it does exceed the 2 sigma limits, so does 
the partial autocorrelation function (PACF). This fact suggests that these 
are spurious correlations or any other types of concurrent causes, not 
linked to time. 

However, in view of Fig. 11, there is nothing that indicates that re
siduals from different stations will be independent of each other. Rather, 
they appear to correlate. 

On the one hand, even if NNED models the spatio-temporal dynamics 
of the process, it is expected that closer stations will be more similar 
amongst them, giving rise to positive correlations between their resi
dues. On the other hand, as shown in Fig. 12, the errors in each forecast 
horizon for a single station will also not be independent of other sta
tions’ previous horizons. In fact, this occurs mostly mutually, present 
errors of a station correlate with the past errors of another station and 
vice versa. 

In the previous section we have seen how to obtain, by means of an 

Fig. 9. Complete schematic of the ensemble of cascade nested models in SOCAIRE. In blue circles, data sources, and in squares, the mathematical components. The 
relationships between the different elements of the diagram are reflected by arrows. 

Fig. 10. ACF and PACF of residuals in station 58.  
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interpolative variable change, standardized normal residues in a mar
ginal way for each station s and for each future instant t at current time 
t0. However, if the independence hypothesis is not plausible it is clear 
that knowing the marginal distributions does not imply knowing the 
joint distribution. 

A family of models which are naturally capable of dealing with this 
situation are the X-VecARMA, a type of multivariate models (Sims, 
1980) that include exogenous inputs, cointegration, and vector ARMA. 
They are considered very powerful for the representation of 
cross-correlated vector processes that might include exogenous factors 
eventually shared by several of them. However, they are intractable in 
computational terms for this setting. 

Thus, we propose an empirical multi-normal copula (Nelsen, 1999) 
to approximate the joint distribution for every station and horizon. The 
aim is to obtain an estimate of such joint distribution function for all the 
forecasts obtained marginally, both in time and space, using the joint 
sample correlation matrix between each pair of stations among all the 
horizons and stations. 

However, since there are 48 horizons and 24 stations, that gives us a 
square matrix of 1152 rows, and we would need at least 10 years of 
forecasts to obtain a meager 3 to 1 response surface, which is clearly 
unacceptable. For this reason, we have developed a boxed tridiagonal 
scheme, in which correlations are only taken into account one period 
ahead. With this scheme, only one year of forecasting is sufficient to 
obtain a reasonable estimate. 

We will assume that the joint distributions of these standardized 
residues only depend on the station and the forecast horizons h = t − t0 
and h − 1 = t − 1 − t0, but not on the specific moment t, since the 
forecasts will be made every day at the same time. 

Since the marginal distributions of all the ϵ1,t are normal, unbiased 
and with unit variance, the joint distribution of all stations, 

ϵh =
(
ϵ1,t0+h,…, ϵs,t0+h,…, ϵS,t0+h

)T
∈ RS, (15)  

will be an unbiased multinormal with an unknown but obligatory uni
tary covariance matrix, that is, equal to the correlation matrix. In the 
same way we will suppose that the residuals (ϵh− 1, ϵh) corresponding to 
each pair of consecutive horizons are also distributed the same way. 

By the principle of causality, for the previous horizon, ϵh− 1, an in
dependent distribution of the following ϵh− 1 will be postulated, since 
future events cannot influence the past. In this way, we can define the 
joint distribution of the different stations in each horizon in a recursive 
way: 

ϵ1 ∼ 𝒩(0,C1)

(ϵh− 1, ϵh) ∼ 𝒩 (0,Ch),∀h = 2, 3,…,H

Ch =

⎛

⎝
Ch− 1,h− 1 Ch− 1,h

CT
h− 1,h Ch,h

⎞

⎠ ∈ R2S×2S,∀h = 2, 3,…,H

C1 = C1,1,Ch− 1,h,Ch,h ∈ RS×S

Ch− 1,h− 1,s,s = Ch,h,s,s = 1
Ch,h,s,s′ = ρϵs,t0+h ,ϵs′ ,t0+h

∈ ( − 1, 1)

Ch− 1,h,s,s′ = ρϵs,t0+h− 1 ,ϵs′ ,t0+h
∈ ( − 1, 1)

(16) 

Note that the joint distribution of all horizons would have a tri
diagonal covariance matrix with partitions of order S: 

Fig. 11. Instantaneous correlations and residual histograms for stations 4, 8 and 11.  

Fig. 12. Summary of the 1 h ahead cross-correlations of the residuals series for station 8 and 11.  
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C =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

C1,1 C1,2 0
CT

1,2 ⋱ ⋱
⋱ ⋱ CH− 1,H

0 CT
H− 1,H CH,H

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(17) 

If we calculate the forecasts for enough dates t0 of the past, at the 
same time of the day and with the same horizons h = 1, 2, …, H, we can 
obtain many samples of the residues with which we can thus estimate 
the matrices Ch− 1,h and Ch,h. In this way, we would obtain the distri
butions for each horizon conditioned on the previous horizon, using the 
formula known analytically for the conditional partitioned multivariate 
normal: 

ϵh ∼ 𝒩
(
μh,C

′

h

)

μh = CT
h− 1,hC− 1

h− 1,h− 1ϵh− 1 ∈ RS

C′

h = Ch,h − CT
h− 1,hC− 1

h− 1,h− 1Ch− 1,h ∈ RS×S

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

∀h = 2, 3,…,H (18) 

These matrices can be stored for later use in future joint forecasts, 
along with their Cholesky and inverse decompositions: 

Ch,h = LhLT
h , ∀h = 1, 2, 3,…,H

C′

h = L′

hL′T
h , ∀h = 2, 3,…,H

(19) 

First we simulate N vectors of N standardized independent residuals 
for the first horizon 

η1,n ∼ 𝒩(0, I),∀n = 1, 2,…,N (20)  

and pre-multiplying them by L1 we will have the standardized residuals 
of all the stations for the first horizon: 

ϵ1,n = L1η1,n ∼ 𝒩(0,C1) (21) 

From there, also starting from independent residuals 

ηh,n ∼ 𝒩(0, I),∀n = 1, 2,…,N, (22)  

residuals of each horizon conditioned by the previous one can be 
simulated: 

ϵh = μh + L′

hηh,n. (23) 

On the one hand, this approach solves the problem of time correla
tion in consecutive hours, which is what is required, and on the other 
hand it is simple enough to be able to generate correct estimations. 

Finally, applying the transformations detailed Section 5.2 we obtain 
N realizations of the future forecasts of the concentrations of the 
different stations in each horizon: 

ys,t0+h,n = exp
(
fs,t
(
ϵs,h,n

) )
(24) 

If this simulation is repeated a sufficient number of times we can 
calculate any joint statistic from the forecasts of the concentrations in 
the different stations. In particular, for example, to calculate the prob
ability of activation of the pre-warning level of the NO2 protocol, 
defined as the probability of the concentration of NO2 exceeding a 
certain threshold Υ = 180 in at least two stations during two consecutive 
hours, it will simply be necessary to calculate what proportion of the 
simulated samples meet these criteria. 

6. Operation and performance 

6.1. Operation 

In order to be used by decision makers in the department of the city 
council in charge of air quality, SOCAIRE has been integrated with a web 
app that allows to simply and directly view the forecasts for pollutants 
and the probability of reaching the levels established within the NO2 

protocol as explained in section 2.2. This section will show the site 
structure and its basic operation principles. 

The main overview of the web tool is shown in Fig. 13. On the one 
hand, at the top you can choose the pollutant to display (blue buttons), 
the date on which you want to make a query (calendar button), and 
different submenus where you can see in more detail the probability that 
the protocol will be activated (shown tab), and both the system pre
dictions and a summary of contrast measures. On the other hand, in the 
central part the information related to the submenu in which the user is 
at that moment is shown. In this specific case, the probability of the 
levels of the NO2 protocol being activated. 

The operation of the tool for monitoring the future probability of 
reaching the different levels of the protocol are presented in Fig. 14. 
After using the ensemble of nested models described in Section 4 to 
forecast NO2 quantiles, the outer rings show the probability of each 
individual station exceeding the levels set in the NO2 protocol (180 μg/ 
m3, 200 μg/m3, and 400 μg/m3 for prewarning, warning, and alert 
respectively). Once the individual probabilities are computed, it is 
possible to use the process explained through Section 5 to estimate 
probabilities of compound events. Given that the protocol is defined 
over areas and not for individual station levels, the intermediate ring 
shows the probability of exceeding the expected pollution levels for each 
of the 5 areas in which Madrid is partitioned in the NO2 protocol (see 
Fig. 1b). Lastly, the inner ring contains the aggregated probability of the 
different levels of the protocol being activated in the entire city. It uses 
the probabilities over the five areas to estimate this final probability. 

Since the set of mobility measures defined in the NO2 protocol de
pends on reaching extreme levels in various stations and for a pre-set 
number of consecutive hours, having such an overview is especially 
important. However, it is also interesting to visualize the individual 
forecast for each station over time. The SOCAIRE website allows viewing 
the actual forecasts for each pollutant and each station, as shown in 
Fig. 15. Together with the predicted quantiles and real observed values, 
these plots also show the probability of exceeding each level and the 
levels themselves. 

6.2. Performance analysis 

Usual error metrics, as RMSE, refer to expected values, which are 
found in the central part of the distribution, but do not take into account 
any other information, and are thus particularly unfit to evaluate 
probabilistic forecasts. Since the most usual models produce point 
forecasts and not the entire distribution, these kinds of metrics are the 
only option. However, when dealing with the prediction of the complete 
distribution as in our case, other metrics have been proposed in order to 
summarise model performance information in a more comprehensive 
and realistic way. For example, CRPS is a measure of the squared dif
ference between the forecast cumulative distribution function (CDF) and 
the empirical CDF of the observation (Gneiting and Katzfuss, 2014). 

As we will show, in terms of performance SOCAIRE compares 
favorably to benchmarks. In order to get a clear and quick idea about the 
behavior of the model, Table 2 shows the RMSE and bias (averaged both 
in time and space) of the proposed methodology and compares it with 
four other models that, due to their characteristics, make it easier to 
understand the real performance of SOCAIRE: persistence, linear 
regression, NNED output without any linear correction, and the NPP 
provided by CAMS. 

The persistence model is a naive model in which the forecast value is 
taken to be the observed value at the previous timestep. It is, thus, a 
good benchmark model and one can get a rough idea of how good a new 
model is by seeing how much improvement there is with respect to 
persistence. In our specific case, for contractual reasons, we use a more 
elaborated version of persistence which includes the daily, weekly, and 
annual cyclical structure of the series, and is thus a simple although 
powerful model. 

Linear regression is a well known methodology for all kind of 
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regression problems, characterized by its simplicity but performing 
reasonably well in a multitude of scenarios. In its most basic version it is 
limited by its only linear response, so it is a good candidate to be beaten 
as a sample of having a model of minimum guarantees, as was the case 
with persistence. In our particular case, we use a multioutput scheme: 
for each station we generate a model that will have as input the past 
timesteps and will return jointly all predicted timesteps. 

Regarding the NNED model, its inclusion has a dual purpose: on the 
one hand, to have a clear and direct comparison with a neural 

architecture, on the other hand, to be able to clearly and precisely 
visualize the improvement that the complete modeling explained in 
Section 4 implies in terms of performance and the potential benefit that 
can be obtained from using both types of strategies. 

Similarly, the NPP provided by CAMS represent another good base
line to be improved upon by any new model. Since it is based on a 
synoptic scale, it is expected that any model focused on a smaller and 
concrete terrain extension will improve its results. If this is not the case, 
it would make more sense to use CAMS NPP as an approximation instead 

Fig. 13. Main page of the SOCAIRE web app for controlling and monitoring pollution in the city of Madrid.  

Fig. 14. Probability of activation for the three levels of the NO2 protocol, predicted the September 29, 2020.  
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of the proposed new methodology. 
For a more detailed view of error metrics, refer to Fig. 16. As it can be 

seen, SOCAIRE consistently outperforms all baselines in terms of RMSE 
and bias for the four pollutants. Concretely, SOCAIRE supposes an 
average RMSE improving of 37% with respect to CAMS, a 27% with 
respect to LR, a 10% with respect to NNED, and 44% with respect to 
persistence, reinforcing the idea that SOCAIRE shows good performance 
and behaves very well as a predictor. Also, SOCAIRE demonstrates to be 

in general terms an unbiased predictor of pollution, which emphasizes 
the fact that the proposed model is being able to correctly describe the 
aforementioned terms related to the system. 

Another issue that is of special importance in our problem is the 
behavior of the model depending on the prediction timestep/hour. As it 
was shown in Fig. 3, the series are highly hour-dependent. For example, 
NO2 presents peaks usually around 08:00–10:00 and 22:00–00:00. In the 
framework of air quality management and monitoring, these peaks are 

Fig. 15. Forecast quantile and probabilities of exceedance for each hour in station 56 for January 08, 2020. The real observed values are represented by the blue lines 
and dots and, thus, it is possible to have a reference about SOCAIRE performance (which will be covered in Section 6.2). 

Fig. 16. Error distribution for the four pollutants in terms of RMSE and bias. Dashed vertical line represents the mean, dotted vertical line represents the median.  
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extremely important as they represent the higher risk and, consequently, 
the moments when the maximum recommended and/or permitted levels 
are usually exceeded. Thus, and given that one of the main objectives of 
SOCAIRE framework is forecasting the probability of each level of the 
NO2 protocol, showing a good performance in peak hours is of crucial 
importance. 

Fig. 17 presents the RMSE error for each pollutant and for each 
prediction horizon averaged over all stations. From this figure, it be
comes clear that SOCAIRE is especially efficient in peak hours, where the 
gap with baseline models is even wider. 

Until now, we have covered aggregated error over all stations. As the 
activation of the NO2 protocol depends on compound events of indi
vidual stations, it is important to make sure all of them behave similarly. 
As it was explained before, the complete model has a module which is 
able to relate and exploit shared spatial information (Section 4.2), but it 
also models each station independently based on its own characteristics 
(Section 4.3). By taking into account both types of information, we 
expect to avoid possible biases of predominance by some spatial areas 
over others but still be able to make use of the relations that exist among 
them. The CRPS for the NO2 predictions at each station is shown in the 
top row of Fig. 18. It is worth noting that stations with lower CRPS errors 
correspond to green areas of the city of Madrid (Stations 24, 49, and 58). 
Scaling these CRPS values to a 𝒩(0,1) (bottom row of Fig. 18) let us see 
how all error distributions have a very similar behavior. Hence, it is 
possible to assure that our modeling strategy works as expected and 
results in an approximately unbiased prediction of the spatial 
component. 

The evaluation of these models has been done using the data from 
January 2020 to October 2020, with the system already operational and 
therefore functioning as described in Section 4.4. Thus, the estimated 

errors represent realistically the errors the model is recording in its daily 
operation. The aggregated error metrics from all predicted timesteps 
over that period generate the error distributions analyzed in this section. 

7. Conclusions and future work 

Throughout this manuscript, we have discussed the details of SOC
AIRE, the new operational system for air quality forecasting and moni
toring in the city of Madrid. Based on an ensemble of statistical and 
neural models, SOCAIRE is built under the premise that it is possible to 
integrate the diverse information that correlates with air quality in order 
to model it. This information includes historical values of the series it
self, numerical weather and pollution predictions, and anthropogenic 
features. Concretely, the proposed methodology tackles the prediction 
of the four main pollutants (NO2, O3, PM10, and PM2.5) for a 48-h 
horizon. Thanks to its probabilistic nature, the system is able to 
combine the predictions of the full probability distribution for com
pound events using a Bayesian estimation of the future distribution of 
the different stations over time. Thus, the system outputs are a valuable 
tool for managing the NO2 protocol enforced by the city council of 
Madrid. 

The tool presented in this paper is not only a theoretical proposal, but 
it has been adopted as the official application to monitor, analyze and 
make day-to-day decisions about air quality. The last part of this work 
summarizes the structure and operation of SOCAIRE’s web, as well as 
the main highlights of the good results and performance of the system. 

In the future, it would be interesting to apply a cost-effectiveness 
analysis focused on the NO2 protocol activation probability. Also, we 
are working towards the inclusion of a traffic forecasting system, which 
might improve the performance of the models by enhancing the 

Table 2 
Average error for t = 1 to t = 48, calculated over all stations. For a more detailed view of error metrics distribution, see Fig. 16.   

NO2 O3 PM10 PM2.5 

RMSE Bias RMSE Bias RMSE Bias RMSE Bias 

CAMS 23.5 ± 9.1 12.3 ± 9.8 19.1 ± 5.0 − 3.2 ± 6.2 13.9 ± 3.7 6.3 ± 3.7 6.5 ± 1.3 1.1 ± 2.1 
LR 20.7 ± 6.3 − 0.1 ± 1.8 20.5 ± 3.9 − 0.8 ± 1.1 13.4 ± 2.9 0.3 ± 0.7 7.2 ± 1.3 0.2 ± 0.5 
NNED 16.5 ± 4.5 − 9.2 ± 3.2 16.8 ± 1.4 2.4 ± 3.3 14.2 ± 1.3 2.4 ± 1.8 5.6 ± 0.8 − 1.4 ± 0.4 
Persistence 26.4 ± 9.3 − 1.4 ± 3.5 27.4 ± 4.8 0.5 ± 16.0 15.5 ± 3.1 − 0.6 ± 3.5 7.8 ± 1.4 − 0.3 ± 1.4 
SOCAIRE 14.9 ± 4.8 − 0.2 ± 0.8 15.8 ± 2.8 1.6 ± 1.0 10.6 ± 2.5 0.3 ± 0.7 5.4 ± 1.0 − 0.1 ± 0.6  

Fig. 17. RMSE error by timestep. D makes reference to the day and H to the hour (D0H10 means day 0 or present day at 10:00).  
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information that anthropogenic features provide. Finally, SOCAIRE 
could be adapted to predict any kind of combined air quality index, and 
not only those ones affecting the current protocol. 
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continuing support and enthousiasm towards this project. 

This research has been partially funded by Empresa Municipal de 
Transportes (EMT) of Madrid, Spain under the program Cátedra EMT/ 
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A X-ARIMA vs ARIMA-X 

In order to illustrate the differences between both kinds of models, let us introduce the simplest case: AR(1). Specifically, Δ(B) = 1, φ(B) = 1 −

φ1B, and θ(B) = 1. 
In this circumstances, ARIMA-X would be reduced to a linear regression: 

Yt = αXt + φ1Yt− 1 + εt (25) 

whereas the X-ARIMA model would be bilinear, which is much more complicated to estimate than a linear regression. 

Yt = αXt + φ1(Yt− 1 − αXt− 1) + εt (26) 

Note that when the absolute value of φ1 is very small there will be almost no difference between the two models but otherwise they will be very 
different. 

Let us imagine for simplicity that there is a single exogenous driver consisting of a pulse (the blue line in Fig. 19), i.e., its value is 1 at a given instant 
of time and 0 the rest of the time. We have arbitrarily set the parameters σ = 0.1, α = 2 and φ1 = 0.93 and simulated two processes, each following one 
of the models: in red with a thicker line the X-ARIMA and in orange the ARIMA-X, both generated from the same series of residuals (green line). 
Logically both series coincide perfectly until the pulse occurs, but, while in the first one the effect of the pulse vanishes instantaneously, in the second 
one it lasts quite a long time because the AR root is very close to unity. If we had set φ1 = 0.70 the effect would have lasted not 12 h but almost two 
days. 

Fig. 18. Comparison of the error distribution for all stations (top). Scaling CRPS to a 𝒩(0, 1) let us conclude that all stations have been correctly modeled in the 
spatial dimension (bottom). 
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Fig. 19. Comparison between X-ARIMA and ARIMA-X models.  

While usually instantaneous transfers are much more common than damped transfers like the one we have shown, even when they occur, they do 
not usually present exactly the same shape and damping rate as the series noise itself. Although possible, the probabilities of all transfer functions of all 
the inputs being coincident with each other and with the ARIMA model are scarce. 

Strictly speaking, using the appropriate transfer functions the two model classes are equivalent, but X-ARIMA fits in a more natural way and 
without using complicated constraints. 
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ABSTRACT
Traffic accidents forecasting represents a major priority for traf
fic governmental organisms around the world to ensure 
a decrease in life, property, and economic losses. The increasing 
amounts of traffic accident data have been used to train 
machine learning predictors, although this is a challenging 
task due to the relative rareness of accidents, inter- 
dependencies of traffic accidents both in time and space, and 
high dependency on human behavior. Recently, deep learning 
techniques have shown significant prediction improvements 
over traditional models, but some difficulties and open ques
tions remain around their applicability, accuracy, and ability to 
provide practical information. This paper proposes a new spatio- 
temporal deep learning framework based on a latent model for 
simultaneously predicting the number of traffic accidents in 
each neighborhood in Madrid, Spain, over varying training and 
prediction time horizons.
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Introduction

Nowadays, the urbanization trend around the globe has introduced new 
opportunities and issues in the cities. One of the most important aspects of 
modern society is related to the use of motorized vehicles as a method of 
transport. Although very efficient in several ways (Litman 2009), motor vehi
cles imply problems related to traffic and health care. For example, pollution 
and traffic accidents are some of the principal causes of death in cities all over 
the world (Kelly and Fussell 2015; WHO 2015).

This is the reason why the scientific interest for traffic accidents has 
increased in the past decades, and proposing solutions is a crucial issue for 
the sake of improving transportation and public safety. Being capable of 
understanding and reducing accidents has become an important commitment 
in many cities, as they not only cause significant life losses, but also property 
and economic ones (Peden et al. 2004).

In this work, an effort will be put to study the traffic accident phenomenon 
in the city of Madrid, Spain. This has been the subject of several lines of 
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research in the past, although most previous studies on traffic accident pre
diction conducted by domain researchers simply applied classical prediction 
models on limited data without addressing many challenges properly, thus 
leading to unsatisfactory performances. For instance, the imbalanced severity 
classes, nonlinear relationship between dependent and independent variables, 
or spatial heterogeneity are usual problems to deal with in order to improve 
previous results in the field. Even with an accurate and complete statement of 
the problem, human and external factors (roads, vehicles, etc.) make this field 
highly challenging (Hoel et al. 2011; Vaa, Penttinen, and Spyropoulou 2007).

Although predicting the exact space-temporal position of accidents is out of 
the scope with actual techniques due to its complexity (Mannering and Bhat 
2014; Zhang, Yau, and Chen 2013), much progress might be done by char
acterizing important parts of the problem. Trying to reduce the dimensionality 
of the space as much as possible, discovering relevant features or improving 
previous models are some examples of what can be done to provide insight in 
this particular problem.

In this context, this work presents the problem as a spatio-temporal series in 
which traffic intensity and meteorological variables play a central rol in pre
dicting values for the traffic accidents series. For this purpose, we propose 
a new model, called XSTNN (from Exogenous Spatio-Temporal Neural 
Network) that consists of a deep learning approach for traffic accident regres
sion based on spatio-temporal data. The model, which extends the Spatio- 
Temporal Neural Network (STNN) proposed by Delasalles et al. (2019) 
through the addition of external variables, is based on partitioning space 
into grid cells and taking advantage of the spatial relations existing in the 
series. A number of urban and environmental variables such as traffic inten
sity, rainfall, temperature, and wind are collected and map-matched with each 
grid cell. Given the number of accidents as well as the other urban and 
environmental features at each location, we learn a model to forecast the 
number of accidents that will occur in each grid cell in future timesteps.

By presenting the number of traffic accidents as a spatio-temporal series and 
learning how to model it, it is possible (for example) to increase emergency 
service’s response time, focus the efforts to avoid potential dangers, create real- 
time safe routes recommendation systems, and, in short, reduce the losses that 
were discussed above. To the best of our knowledge, this is the first work that 
tackles the traffic accident forecast problem in the city of Madrid, although the 
proposed framework can be easily extend to any particular zone.

The rest of the paper is organized as follows: related work is discussed in 
Section 2, while Section 3 presents our datasets and the problem formulation. 
Section 4 introduces our deep learning model for traffic accident regression 
and Section 5 illustrates the evaluation of the proposed architecture as derived 
after appropriate experimentation. Finally, in Section 6 we point out future 
research directions and conclusions.

2 R. DE MEDRANO AND J. L. AZNARTE



Related Work

Although very much studied, traffic accidents have been treated mostly in 
a “classical” context, by simply using statistical analysis in an attempt to 
understand better the phenomenon and the circumstances surrounding 
them. Examples that illustrate this situation can be found in Abdel-Aty and 
Radwan (2000), Lord (2006), and Roshandeh, Agbelie, and Lee (2016). There 
also are several works dealing with these methodologies and their typical issues 
(as for example Lord and Mannering 2010; Mannering and Bhat 2014). A long 
list of studies tackle the issue from the severity of the injuries perspective. 
Within this last group, de Oña, Mujalli, and Calvo (2011, 2013), Galatioto et al. 
(2018), Meysam et al. (2015), and Qiu et al. (2014) are some examples. 
Although instructive, most of these previous research fail to be able to apply 
all this knowledge to predict future events.

In a closer line to our work, during the last decade a considerably number of 
Artificial Intelligence-based approaches have appeared, taking advantage of 
the large datasets which are available nowadays. We can cite Chen (2017), Li 
et al. (2008), Lin, Wang, and Sadek (2015), and Zhang et al. (2018) as 
examples. As a first glance in the matter, these works provide new tools for 
solving the problem, but they lack relevant information in their analysis and 
mainly focus in showing the better performance of an specific model, without 
deepening in the behavior of their algorithms. However, there are some 
counterexamples like Tarek and Walid (1998), where a fair comparison is 
made between neural and fuzzy models in the field of traffic accident. In order 
to get more sophisticated and precise systems, last researches focus their 
efforts in new models as Variational Autoencoders, Deep Neural Networks, 
and video-based models for detecting and understanding better traffic acci
dents (Singh and Mohan 2019; Yu, Xu, and Gu 2019; Zheng et al. 2019).

Until now, the references presented here did not tackle the regression 
problem or were all lumped under the same hypothesis: ignoring the impor
tance of the spatial dimension in the traffic accidents forecasting. However, 
a number of studies have pointed out how relevant this variable is in order to 
get appropiate results (Xu and Huang 2015; Rhee et al. 2016). Since then, more 
and more researches focus their efforts in the spatio-temporal (and not just 
temporal) prediction problem. We can cite Ren et al. (2017), Yang, Wang, and 
Yu (2018), and Yuan, Zhou, and Yang (2018) as some of the most relevant 
works, some of them being classified under the label of Deep Learning. 
Specifically, some of these last references point at exogenous variables as 
helpful in the forecast process.

While traffic accident research from an Artificial Intelligence perspective 
per se is still a young field, its importance makes them be a central variable of 
a vast number of Intelligent Transport Systems studies. For example, several of 
them in which routes recommendation systems and vehicle routing problems 
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are stated, identify traffic accidents as potential variables that might have direct 
impact in the system. Is the case of Eshtehadi, Demir, and Huang (2020), the 
routing problem is tackled by an adapted adaptive large neighborhood search 
algorithm. Similarly, Du et al. (2019) focus their efforts in solving a similar 
problem but trying to minimize the total transportation risk, time and cost by 
using an improved biogeography-based optimization algorithm. As the 
authors point out, when transporting hazardous materials traffic accidents 
might suppose a great risk. In Salman and Alaswad (2018), a model based on 
Markov chain for traffic optimization to decrease congestion is presented. In 
those cases, although unpredicted traffic pattern changes are contemplated, 
a robust traffic accident forecasting system could be beneficial. In the same 
way, Sumit and Akhter (2019) show that traffic accidents might be a main 
actor for road weight calculation. By using a c-means clustering and deep- 
neurofuzzy model, they use (among other variables) real-time accident data 
for detecting traffic congestion, monitoring traffic status, and deciding opti
mum route. Another example can be found in Nasri, Bekta¸s, and Laporte 
(2018), where it is showed another field that could benefit from traffic accident 
research: autonomous vehicles and their anticipation to potentially dangerous 
situations. Cunneen et al. (2019) show how Artificial Intelligence could also 
contribute in the ethical aspects of this matter. In this same context, Liu et al. 
(2016) propose V2I communications between vehicles in order to improve 
traffic condition. Particularly, an accident prediction system could refine 
future vehicle’s decisions.

Problem Formulation and Data

Problem Formulation

Given a spatial grid S, where each grid is represented as si, and a timestep tj, we 
aim to learn a model to predict the number of accidents in each grid si during 
each time slot tj. This mean that a spatio-temporal sample writes 
as xðsi; tjÞ : j ¼ 1; . . . ;T; i ¼ 1; . . . ; S.

Although spatial zones might be defined arbitrarily, it is expected that 
using intrinsic spatial information could be helpful. More precisely, we 
propose that each grid si represents a neighborhood of Madrid as it is 
expected that each neighborhood presents different peculiarities that might 
be related to traffic accidents. Moreover, we use an hour as the length of our 
timestep tj. Without loss of generality, other values could be chosen for si 

and tj. We work with data from year 2018 for both the training and valida
tion sets. Only in-city accidents are treated, as road accidents present differ
ent peculiarities.

For the rest of the section, all the data cleaning and manipulation will take 
into consideration this proposed framework.
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Data Sources

• Traffic accident data: Provided by Portal de datos abiertos del 
Ayuntamiento de Madrid,1 it summarizes all the information related to car 
crashes in the city of Madrid. Specifically, for every accident it shows 
physical location (although not geographycal), date (year, month, and day), 
time (hour), sex and severity for each person involved and several meteor
ological conditions. The last two variables of this dataset were not taken in 
consideration, as they were not relevant or there were better sources for 
them (concretley weather data later in this same section). For example, sex 
can be relevant when making statistics of the phenomena, but irrelevant 
when trying to predict new accidents.

Spatial information is presented as city addresses (street and number or 
intersection), while temporal information is limited to the hour in which the 
accident was reported.

• Traffic data: As before, provided by Portal de datos abiertos del 
Ayuntamiento de Madrid. This dataset contains historical data of traffic 
measurement points in the city of Madrid. The measurements are taken 
every hour at each point, including traffic intensity in number of cars 
per hour and average speed in m/s. Some other traffic parameters, although 
unused in this project, are present in this set too.

Spatial information is given with the coordinates (longitude and latitude) of 
measurement points, while temporal information is taken every 15 minutes.

• Weather data: Weather data were provided by the Red Meteorológica 
Municipal.2 Weather observations consist of hourly temperature in Celsius 
degrees, solar radiation in W/m2, wind speed measured in ms-1, wind direc
tion in degrees, daily rainfall in mmh-1, pressure in mbar, degree of humidity 
in percentage, and ultraviolet radiation in mWm-2 records.

Weather information is taken along six different stations. It is reported 
hourly.

Some cleaning work was necessary to work through the data. It is worth 
noting that these decisions are fundamental as error might be introduced in 
the system during this cleaning process.

Firstly, Google Maps Api3 was used for geocoding the adresses provided in 
the dataset.

With respect to traffic intensity, it is worth pointing out that is the only set 
that does not present its information hourly, but every 15 minutes. In order to 
have a final homogeneus dataset, average over every entire hour is calculated. 
Note that typical deviation of traffic intensity over and hour represents less 
than 10% of the real values on average. In addition, the average of the traffic 
intensity is taken for each neighborhood as if every measurement point was 
a different sample from the same phenomenon for every zone. Once more, the 
standard deviation that results from this decision is less than 5% respect to the 
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mean, showing that there is a predisposition to have similar traffic conditions 
for each neighborhood.

Finally, while the actual meteorological data were taken in six substations in 
the city of Madrid, our own data consist of average hourly variables from those 
six substations. Although this decision could be seen as a loss of information, 
this approximation is enough for a first insight. Also, assigning different 
meteorological variables for each accident depending on its location supposes 
an extra difficulty when using a spatial mesh (the six substations) different 
from the one used in this work (neighborhoods of Madrid).

Data Analysis

Through this section, we will explore if our data can be modeled as a spatio- 
temporal series. This will be done by an exploratory analysis for both 
dimensions.

To explore its time dependency, it is possible to use a boxplot of different 
time windows of traffic accident count for different time periods of Madrid as 
in Figure 1. Clearly, the traffic accident patterns change drastically for different 
time periods. Specifically, traffic accidents are more frequent at traffic rush 
hours than that at off-peaks, on weekdays than on weekends, and they reflect 
a decrease in summer holiday days. This figure reveals some characteristical 
periodicities that expose a hidden time dependence in traffic accidents, letting 
us model the series as a temporal one.

To determine whether the number of traffic accidents is associated with the 
spatial location, the heatmap of number of traffic accidents is plotted for 
Madrid in 2018 (Figure 2). As it can be seen, the number of traffic accidents 
is not uniformly distributed, and it is highly related with the geographical 
position of a neighborhood. Usually, the neighborhoods with highest traffic 
accident concentrations lie in the major commercial and business areas.

From this two last figures, we can point out one of the special difficulties of 
the traffic accidents series: how infrequent accidents are. In this context, and 
from the frequentist probability point of view, the odds of an accident taking 
place anytime in an hour and at any neighborhood is about 0:8%.

Deep Model for Traffic Accident Forecasting

This paper presents a new deep learning neural model which is based on the 
work from Ziat et al. (Delasalles et al. 2019). Specifically, they introduced 
a method for spatio-temporal series forecasting problems, such as meteorology, 
oceanography, or traffic, formalized as a recurrent neural network for modeling 
time-series of spatial processes. Our model preserves this nature but it is an 
improvement from the point of view of its usability, allowing us to make use of 
external (or exogenous) variables. Concretely, the model learns these spatio- 
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temporal dependencies through a structured latent dynamical representation, 
while a decoder predicts the observations from the latent space.

Notation

Let us first introduce the notation that will be used througout this chapter. 
Denoting n as the number of series, T their length and m the dimensionality of 
them. In our specific domain, there will be as many series (n) as spatial zones. 
Moreover, m ¼ 1 as every series will be composed of only one dimension: 
traffic accidents.

If we call X as the values of all the series between instants 1 and T, then X is 
a tensor in R T�n�m. At last, Xt 2 R n�m is a tensor that denotes the values of all 
the series at time t.

Figure 1. Periodicities of the traffic accidents series. (a) Number of accidents depending on day of 
the week. Weekends present less number of accidents. (b) Number of accidents for each month. 
August seems to be safer. (c) Number of accidents depending on hour of the day. In this case we 
have the most clear difference.
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The STNN Model

Let Zt be the latent representation, or latent factors, of the series at time t. The 
model has two principal components: the dynamic function (denoted as g), 
and the decoder function (called d). The first one is in charge of controlling the 
dynamics of the system, calculating the next latent state based on the previous 
one: Ztþ1 ¼ gðZtÞ. The second one is a decoder which maps latent factors Zt 

onto a prediction of the actual series values at time t: ~Xt ¼ dðZtÞ, ~Xt being the 
prediction computed at time t.

As it should be clear, the parameters of both functions (g and d) are learned 
so that the essence of the series is captured. Unlike usual neural networks, the 
latent representation Zt is treated as a parameter too, distinguishing this model 
and making it more flexible than usual recurrent neural networks.

The idea behind the spatial component is to consider each zone as 
a different series with its own latent representation at each time step. For 
a latent space dimension of N, Zt is a n� N tensor such that Zt;i 2 R N is the 
latent factor of series i at time t. Thus, we have the following relations: 

d : R n�N ! R n�m (1a) 

g : R n�N ! R n�N (1b) 

Figure 2. Total number of accidents by neighborhoods of Madrid during 2018.
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Not only each spatial zone has a series, spatial information is integrated in the 
dynamic component of the model through a matrix W 2 R n�n

þ that shares 
information between all the zones. Although this matrix will be provided, the 
actual model is also capable of learning it.

The latent representation of each series at time t þ 1 depends on the 
previous state of all the series (included itself). Hence, we can separate the 
calculation of a new state by two different sources: intra-dependency in the 
first term of the right-hand side of (3) and inter-dependency in the second 
term. The first one aims to get the dynamic of each series as an individual 
entity, whereas the second one is devised to exploit spatial relations 
between all series. This way, the model considers a different temporal series 
in each spatial zone while keeping information about the spatial relation 
between all of them. Formally, the dynamic model gðZtÞ is designed as 
follows: 

Ztþ1 ¼ hðZtΘð0Þ þWZtΘð1ÞÞ (2) 

In this last equation, h is a nonlinear function (h ¼ tanh in this project) and Θ 
denotes a parametrized function Θ 2 R N�N . In this case, Θ will be a linear 
function or a multilayer perceptron (MLPs), although could be any parame
trized function.

Including Exogenous Variables: The XSTNN Model

The main limitation of the STNN is that it is not able to take into account 
the exogenous variables which might be related to the process being modeled 
and which could enrich the internal representation and, thus, improve the 
predictions. The XSTNN aims to resolve this.

Let us denote the exogenous variables Λ. The main idea will be to change 
equation 2 so that the latent space is modified directly by Λ. These variables are 
temporal series, so they can be treated on the same way we did previously, 
meaning that Λt denotes the slice of Λ at time t. Due to the possibility of using 
several exogenous variables, Λt is a n�m tensor.

By introducing Λ in the estimation of Zt, the model learns the dynamics 
taking into account external information too. As the premise of this work is to 
assume that exogenous variables might change the dynamic of the series, 
learning to mold the system in function of both meets our requirements the 
best.

Once the main idea has been explained, it is necessary to answer some other 
questions. Concretely, there are a few alternatives for reconstructing (2) in the 
way it was intended. Moreover, a discussion about what time step to use with 
Λ is desirable: when computing Zt, both Λt and Λtþ1 might be beneficial. The 
first one represents the idea of a previous state having an effect on the next one, 
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whereas the second option symbolizes the conception of an actual state 
modifying the series.

Let us now introduce some possibilities. First, if exogenous data does not 
present spatial dependency, it can be more efficient to avoid the use of spatial 
relations for Λ. This version writes: 

Ztþ1 ¼ hðZtΘð0Þ þWZtΘð1Þ þ ΛtΘð2ÞÞ (3) 

On the contrary, when exogenous variables may exhibit spatial dependency, 
the same treatment that Z has will be provided to Λ. This notion is captured as 
follows: 

Ztþ1 ¼ hðZtΘð0Þ þWZtΘð1Þ þ ΛtΘð2Þ þWΛtΘð3ÞÞ (4) 

A diagram that represents this last option is presented in Figure 3.
Overall, the model is similar to the STNN. Both the optimization problem 

and the training (loss function, learning algorithm, inference, etc.) are applic
able to the XSTNN model.

However, we would like to point out the two principal limitations of our 
proposal:

• Using an specific matrix W for a concrete problem means that, for 
different circumstances (for example, a different spatial grid), a retraining is 
needed.

• Both the dynamic and the decoder functions are stationary, meaning that 
it do not change over time. In Delasalles et al. (2019) a method to tackle this 
problem is proposed.

Figure 3. Architecture of the XSTNN model as described in Sect. 4.3.
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Experimental Results

Before explaining the experiments, we will establish what questions we wish to 
answer. They are stated as follow: (1) Are the results of the proposed model 
better when compared with benchmark methods, including classical predictive 
models, tree-based models and STNN? (2) Is our proposed model capable of 
managing different spatial regions or timesteps? (3) Do the forecasting results 
make sense? Does our model provide more insights on the problem? (4) Are 
the predicted accident locations correlated with the ground truth spatially?

Through these questions, we expect to evaluate if the XSTNN model 
supposes a step forward in the prediction of traffic accidents.

Baselines Models and Evaluation Metrics

Several methods have been chosen to be compared with the XSTNN. 
Concretely, the STNN itself, a XGBoost tree-based algorithm (Chen and 
Guestrin, 2016), linear regression, and a naive mean and persistence models. 
The mean model forecasts new values of the series using the mean of past 
values from the same series, while persistence model uses the last value for 
each series for making the prediction.

To evaluate the accuracy and precision of the prediction, we selected Mean 
Absolute Error (MAE) and Bias as our metrics. In a spatio-temporal context 
(Wikle, Zammit-Mangion, and Cressie 2019), they are defined as: 

MAE ¼
1

TS

XT

j¼1

XS

i¼1
jxsi;tj � ~xsi;tj j (6) 

Bias ¼
1

TS

XT

j¼1

XS

i¼1
ðxsi;tj � ~xsi;tjÞ (7) 

where, as it was defined in Section 2, xðsi; tjÞ : j ¼ 1; . . . ;T; i ¼ 1; . . . ; S is 
a spatio-temporal sample from the real series, ~xðsi; tjÞ makes reference to the 
predicted series, S is the total number of spatial grids and T the total number of 
timesteps.

Performance Evaluation

To validate the different proposed methodologies, a time series cross- 
validation scheme called rolling origin is used (Tashman 2000). Rolling origin 
is an evaluation technique according to which the forecasting origin is updated 
successively and the forecasts are produced from each origin. This technique 
allows obtaining several forecast errors for time series, which gives a better 
understanding of how the models perform.
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Let us now describe how the previous procedure is applied in our own 
experiments. Consider the following steps:

(1) The traffic accidents dataset is splitted in ten succesive sets, that is to say, 
starting all sets from January, 1st of 2018 at 00:00, each of those ten sets 
end at a different date between February, 14th at 23:00 and December, 
31st at 18:00. To consider, all datasets are equally spaced and a minimun 
of 45 days have been set for training.

(2) As a test set, we consider predictions within a 5 hour horizon. For 
a train set of T timesteps, this means that the evaluation of the quality of 
the model will be made over T þ 1 to T þ 5 timesteps.

(3) Finally, the ten splitted sets are trained and validated over T þ 1 to T þ
5 timesteps. The final error is the average of all validations. The datasets 
have been chosen with the purpose that different hours and week days 
are tested for a more complete and extensible validation.

This procedure is equivalent for all models. It was applied to both the 
parameter tuning and the final training process.

Experimental Setup and Parameter Tuning

We set up the neural networks experiments and the other two models on 
a external machine proportionated by Departamento de Inteligencia Artificial, 
UNED .4 The STNN and the XSTNN5 were built upon PyTorch. Concretely, 
an early-stopping approach using Adam optimizer with the settings: β1 ¼ 0:0, 
β2 ¼ 0:999, 2 ¼ 10� 9 and wd¼ 10� 6 was used for both methodologies. The 
mean, persistence, linear regression, and XGboost models are built on R, the 
last one made use of the package xgboost (Chen and Guestrin, 2016).

With respect to parameter and hyper-parameter tuning, we grid-searched 
hyper-parameters on each models for the sake of achieving the best possible 
results. The final hyper-parameters used for this work are gathered in Table 1.

Any other hyper-parameter not taken into account in this tuning process, 
are used with their default values. We decided to set matrix W (spatial 
relations, introduced in Section 3), as the inverse of spatial distance. Thus, 
all zones are in some way related but in a bigger degree the closer they are. 
Lastly, each series was rescaled between 0 and 1.

Results and Discussion

In order to identify quantitatively the performance of the different models and 
baselines, Table 2 provides the average prediction error for T þ 1 to T þ 5. 
From this first insight it should be clear that both XSTNN and STNN 
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outperform the other models. As Mean model and XGboost were trained 
taking into account the existence of a spatial grid but without establishing 
relations between them, these results confirm that making use of prior spatial 
information is beneficial for the regression problem. Beyond that, the XSTNN 
presents a better performance than the STNN.

For a more detailed vision, Figure 4 shows the distribution of the metrics 
and the average error by timestep. From this figure, same conclusions can be 
extracted as before: the XSTNN model presents a better general behavior 
compared to the rest of the models. Again, the fact of introducing spatial 
knowledge to the problem stands as an appropriated approach for this parti
cular series, and our results reinforce the idea that introducing exogenous 
variables is favorable for the regression problem. However, it is worth noting 
that there is not a clear relation between errors and timestep. Although an 
increment on the error by timestep in the prediction is usually expected 
(cumulative error), the randomness of traffic accidents does not let us extract 
clear conclusions from this aspect.

Table 1. Values used for each hyper-parameter. nz is the 
dimension of the latent space. The remaining variables 
were presented in Section 3 or are commonly used 
parameters.

STNN Learning rate 0.01

λ 0.01
nz 2
gðZÞ Linear
Minibatch size 512
Dropout 0.25
XSTNN Learning rate 0.01
λ 0.1
nz 2
gðZÞ Linear
Minibatch size 512
Dropout 0.35
XGBoost Number of rounds 80
Max. depth 15
η 0.1
γ 1
Min. child weight 1
Subsample 0.7

Table 2. Performance for T þ 1 to T þ 5 traffic accident regression.
Model MAE Bias

XSTNN 0:0041� 0:0006 � 0:0006� 0:0004
STNN 0:0045� 0:0006 � 0:0004� 0:0006
XGBoost 0:0052� 0:0006 0:0004� 0:0006
Linear regression 0:0050� 0:0006 0:0002� 0:0007
Mean 0:0052� 0:0007 0:0003� 0:0007
Persistence 0:0055� 0:0008 0:0006� 0:0007
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Beyond the quantitative analysis, now we show some accomplishments 
from our proposed model respect to the STNN. For that purpose, we will 
take a deeper look into a concrete example, without loss of generality.

Let us introduce the following situation: we forecast the accident regression 
series from 17 p.m. to 21 p.m. on a Wednesday. From Figure 1 we know this 
situation corresponds to a high-risk circumstance for traffic accidents to 
happen. In this context, Figure 5 illustrates a comparison of our two principal 

Figure 4. Forecasting performance (MAE and bias) of the different models by timestep together 
with the calculated distributions.

Figure 5. A practical example of the operation of both networks, XSTNN and STNN, for the same 
situation. From 17 p.m. to 21 p.m. on a Wednesday.
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models with a levelplot (time in x axis, neighborhoods in y axis and colored by 
traffic accidents). Let us expose several ideas.

First of all, and unfortunately, the regression problem is far from being 
solved. A comparison of colorbars from both, STNN and XSTNN predictions, 
with the ground truth corroborates this statement. As Chen et. al. have 
documented, after some analysis of traffic accident data, it is difficult to predict 
whether traffic accidents will happen or not directly, because complex factors 
can affect traffic accidents, and some factors, such as the distraction of drivers, 
cannot be observed and collected in advance (Chen et al. 2016). Nevertheless, 
our XSTNN model has proved to be a new step in the right direction, out
performing the rest of baselines models (Table 2).

Secondly, the next natural question that rises is about the reason of this 
improvement. Again, Figure 5 sheds light on this matter. Whereas the STNN 
quiclky truncates its values close to 0 for every neighborhood and timestep, the 
XSTNN takes some risks and it is able to differentiate between time intervals 
and spatial zones. As the most likely situation is having no accidents for 
each hour and neighborhood, both networks have values approaching to 0 
as outputs.

Certainly, taking more risks does not ensure a better performance in the 
regression problem. It is necessary that the model manages to elucidate 
which time intervals and neighborhoods are more important for the problem 
that we have in hand as a function of past events. In this concrete case, the 
model has learned to prioritize neighborhoods from 1 to 80, as they report 
a vast majority of the total number of traffic accidents in the city of Madrid. 
Besides, the XSTNN reveals a negative trend over the hours as we would 
expect.

As XSTNN learns better to distinguish between time ranges and spatial 
zones, it is possible to find other situations in which, again, this model offers 
more information and assimilates the system’s dynamics in a better way. For 
example, and to corroborate that the XSTNN behaves better in a variety of 
situations, Figure 6 gives evidence of a totally different state on a Sunday from 
6 a.m. to 10 a.m. In this context, we will expect a higher risk at last late hours 
and at past 9 a.m., the XSTNN correspondingly adapting its output to this 
situation. On the contrary, the STNN is not capable of learning the corre
sponding dynamic. Unlike previously (Figure 5), this time the XSTNN takes 
less risks and its output is closer to 0 as we would expect less accidents on 
a Sunday morning that a Wednesday on the evening as before.

Through the previous discussion we have pointed out how the XSTNN 
infers properties based on the time condition and the concrete spacial zone. 
For this last case, Figure 7 offers an analysis of spatial risk for each neighbor
hood. Both series, the real and the predicted ones, were rescaled for a direct 
comparison between them. This way, it is clear that the XSTNN is capable of 
reasoning in both dimensions, temporal and spatial.
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In summary, the XSTNN reports a better understanding and learning of the 
dynamic of the system, being more flexible and creative in its prediction. These 
features translate into a better performance than their direct rivals.

Conclusions

Through this work, a new approach for spatio-temporal series forecasting 
called XSTNN has been proposed. The problem of traffic accidents prediction 

Figure 6. A practical example of the operation of both networks, XSTNN and STNN, for a same 
situation. From 6 a.m. to 10 a.m. on a Sunday.

Figure 7. Spatial risk in the same scale for the ground truth (left) and the XSTNN (right).
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was tackled by this new neural network model, showing a better performance 
than the rest of baselines model. Also, the exposed model is easily extendable 
to any temporal or spatial configuration. Although traffic accidents regression 
is challenging due to several difficulties, the XSTNN has proved to stand out 
for its capability to provide a deeper insight in the problem series and to adapt 
its reasoning to a larger number of different situations. Thus, this paper 
demonstrates that spatio-temporal neural networks are a promising field for 
traffic accident prediction in the future.

Future work in this field can be extended to incorporate other features that 
are not necessarily series, like economics or demographics. Also, the XSTNN 
model might be extended by introducing more temporal terms from exogen
ous series for updating the latent space.

Notes

1. https://datos.madrid.es/portal/site/egob/
2. http://www.mambiente.madrid.es
3. https://cloud.google.com/maps-platform/
4. http://www.ia.uned.es/
5. Code available at https://github.com/rdemedrano/xstnn
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Chapter 7

Conclusions and future research

The objectives of this work were two: the development of neural models in
a spatio-temporal series prediction context, and the successful application of
these models in the field of sustainable mobility and air quality. In general
terms, both can be considered as successfully fulfilled. To conclude this work,
the highlights of this thesis are summarized below.

Firstly, a new spatio-temporal model based on attention mechanisms was
presented. Given that the operation of this model rests on the inclusion
of several modules which model different spatiotemporal components, this
project has proven to be a perfect opportunity to better understand how neu-
ral models manipulate these components. After extensive experimentation
over a real traffic dataset, it has been proved that it outperforms some of
the most important state-of-the-art neural architectures. Also, its behaviour
has been analyzed with respect to both time and spatial dimensions thanks
to the interpretable nature of the model. This interpretability layer also has
let us illustrate how these kinds of models might be used in order to bet-
ter understand the problem domain. Concretely, recurrent-based neural net-
works regulate seasonality and trend, while convolutional-based methods
are capable of extracting short-term and spatial relations. Thus, these ex-
periments demonstrate that by properly using each type of neural network,
performance can be improved while avoiding redundancies.

Secondly, we have explored how classical spatial assumptions based on
closeness are not always the best deal when working with convolutional
neural networks for spatio-temporal series regression. This idea has been
tested by comparing several versions of convolutional-based models that
make no use of prior spatial information with their respective traditional
forms through comprehensive experimentation, confirming our main hy-
pothesis: the inclusion of adjacency-based representations of the spatial dis-
tribution of real data is not necessarily the best option for the classical con-
volutional networks. In this work, we also analyzed from a practical point of
view how to proceed according to the nature of the data, which will have an
important repercussion for the next project.

Thirdly, we have presented SOCAIRE, the new operational system for air
quality forecasting and monitoring in the city of Madrid. Built under the
idea of combining several statistical and neural models, it shows how it is
possible to integrate the diverse information that correlates with air qual-
ity in order to model it and boost predictive performance. Specifically, all
tools developed in the previous projects converged in this work to generate
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a model that is capable of bringing together in the most optimal way possi-
ble the spatio-temporal information in a real air quality problem. Given its
probabilistic nature, the system is also able to combine the predictions of the
full probability distribution for compound events which makes SOCAIRE as
a highly valuable tool for managing the NO2 protocol enforced by the city
council of Madrid. The tool presented through this project is thus not only
a theoretical proposal but it has been adopted as the official application to
monitor, analyze and make day-to-day decisions about air quality in the city
of Madrid.

Lastly, it is worth mentioning one of the main points presented in Ap-
pendix A, which does not specifically follow the line described so far but
which, due to its scientific relevance, must be stated here: the lack of repro-
ducibility and experimental rigor in the field of machine learning is a crucial
problem, where the ability to expand the field can be undermined by not
following an appropriate methodology. This malpractice must be taken into
consideration urgently, being addressed by the community unanimously if
we intend to build artificial intelligence over a solid and objective founda-
tion.

As a final consideration, we can conclude that we have been able to tackle
the wide-ranging frame of reference presented as starting point for this thesis
not only in different contexts and problems but also from different perspec-
tives, greatly enriching the presented work. Since science in general, and the
context of this work in particular, can be understood as a multidisciplinary
prism in which each side allows access to a different interpretative canon,
this heterogeneity allows us to conclude this work as a particularly prosper-
ous and productive one.

Future lines of research

Although each project discusses its own future lines, for convenience here is
presented a summary of those lines that, once put in context the entire thesis,
gather the most important and interesting oportunities. Specifically:

• Attention mechanisms are emerging as one of the most promising me-
thodologies within deep learning due to their capability and versatility
in terms of both performance and interpretability. Thus, and although
we have demonstrated the actual ability from a spatial-based network
to model attention for both input dimensions, space and time, it could
be beneficial to extend this idea to outputs dimensions too, having dif-
ferent attention weights for different predicted timesteps.

• From a theoretical point of view, our work is a good starting point to
rethink the way of working with spatio-temporal series if we want to
extract and make use of the spatial information of the problem more
efficiently and beyond the classical adjacency hypothesis. However,
this issue requires more pronounced attention if we intend to maximize
the extraction of information and knowledge inherent in problems of
this nature.
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• To work towards the inclusion of a traffic forecasting system for SO-
CAIRE, which will surely improve the performance of the models by
enhancing the information that anthropogenic features provide. Since
traffic is known to be one of the main sources of pollution, this could be
an important advantage in terms of performance. Moreover, this pro-
posal is directly in line with the current context where the generation of
intelligent monitoring systems integrated into municipal services tends
to concentrate as many fields of study as possible, thus benefiting from
the maximum possible interaction between them.

• Finally, SOCAIRE could be adapted to predict any kind of combined
air quality index, and not only those ones affecting the current Madrid
protocol. Hence, this framework is easily generalizable in the field of
air quality.
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COVID-19 forecasting with deep learning: a
distressing survey

L. Gutiérrez, R. de Medrano and J.L. Aznarte

Abstract—Building on the success of deep learning techniques
in all sorts of classification and regression tasks, in the wake of
the COVID-19 pandemic many researchers turned their tools and
expertise to the task of predicting the evolution of the infection
worldwide. This praiseworthy effort, based on a strong will to
help, produced a panoply of models and applications aimed at
helping health institutions to plan and decide on the mitigation
measures that could control the spread of the pandemic, through
forecasting the disease main indicators for public health.

However, as we show in this paper, this emergency research
endeavour has not necessarily been in line with common quality
standards in research: it is indeed hard to find papers in which
replicability and reproducibility are enabled, lest guaranteed.

After defining a set of quality criteria related to problem
definition, dataset management and model identification and
evaluation, we studied 96 papers in detail. None of the analysed
papers scored positively in all the criteria, while only about one
third scored positively in at least half of the defined criteria.
These results show that, in the present case, emergency research
has been prone to leave behind some of the basic requirements
for quality scientific labour.

I. INTRODUCTION

Since the World Health Organisation proclaimed the
COVID-19 outbreak as a pandemic in March, 20201, the
spread of the disease has followed certain patterns based on
dynamic transmission of the epidemic over time and exhibited
a clearly non-linear behaviour. To try to foresee these patterns,
during that period, different epidemiological models have been
proposed. These models can be split into two wide categories:
data-driven statistical models and classical mechanistic models
based on epidemiological principles.

The classical epidemiological approach is based on devel-
oping compartmental or susceptible–infected–removed (SIR)-
like models, which offer a clear epidemiological interpretation.
However, predicting with them is sometimes difficult due
to strong parameter value ambiguities, mathematical analytic
complexity and the assumption that conditions for propagation
will remain unchanged [1]. On the other hand, data-driven
models use statistical regression practices and machine learn-
ing methods to predict how the disease spreads [2]. These
machine learning methods are seen as particularly appropri-
ate for predictions based on existing data, being sometimes
considered as more accurate compared to common regression
models, as they can capture complex and non-linear patterns
in the data.

jlaznarte@dia.uned.es, corresponding author
All three authors are with the Department of Artificial Intelligence, Uni-

versidad Nacional de Educación a Distancia – UNED
1https://www.euro.who.int/en/health-topics/health-

emergencies/coronavirus-covid-19/news/news/2020/3/who-announces-covid-
19-outbreak-a-pandemic

Amongst the most successful ML flavours in recent years,
deep learning (henceforth DL) has a prominent place in both
scientific and newspaper articles. Despite being sometimes
branded as a mere ‘buzzword’, DL models have been suc-
cessfully applied to many problems, and are praised frequently
amongst the most powerful AI tools. DL comprises complex
artificial neural networks with many layers, including models
such as deep belief networks, convolutional neural networks,
auto-encoders, restricted Boltzmann machines, generative ad-
versarial networks and recurrent neural networks, amongst
others.

In the relatively short period since the start of the pandemic,
many DL applications for COVID-19 forecasting have been
presented, and their performance assessed with a wide variety
of metrics. However, forecasting is a challenging and special-
ized task, especially when dealing with small datasets, and,
as in any other scientific discipline, urgencies do not usually
favour quality. Predictive models must be carefully evaluated
not only on their ability to capture historical events but on their
exactitude in forecasting future trends, fostering a stronger
appreciation of the technology’s capabilities and limitations
[3]. Furthermore, this evaluation process must be standardized
and then validated by the scientific community.

Notwithstanding, as we will show, most of the available
applications of DL to COVID-19 forecasting are affected by
common flaws. This worrisome fact raises serious concerns
about the maturity of the field, its usefulness in the wake
of emergencies and the common publish-or-perish academic
career scheme, which has indeed been linked to the so-called
replication crisis [4].

Concerning the novelty of our approach, there are indeed
previous literature reviews which offer general comparisons
of existing machine learning techniques applied to COVID-19
diagnosis and prognosis. To the best of our knowledge, none
of them covers the prediction of the spread of the pandemic in
an exhaustive manner, and none is focused on DL applications,
as shown below.

Therefore, our analysis deals specifically with DL tech-
niques applied to forecasting the number of COVID-19 in-
fected cases, focusing on methodological difficulties and typ-
ical challenges that researchers confront. A rigorous quality
screening is presented to highlight methodological concerns,
emphasizing the weaknesses that can lead to issues about
reproducibility and replicability of the results. In order to
do so in an objective manner, a set of quality criteria is
established beforehand, concerning the datasets used as well
as the problem and model definition and evaluation. A set of
96 papers has been studied under these criteria: as we will

Page 1 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



2

show, the results are all but flattering.
This document is structured as follows: in Section II the

existing literature reviews and state-of-the-art papers about
the application of DL techniques to forecasting the COVID-
19 spread are summarized. In Section III the methodology
employed in our work is explained and a set of quality
criteria covering several aspects of the scientific process is
defined. In Section IV a selection of papers on which DL
approaches are applied to COVID-19 time series forecasting
are reviewed in light of the aforementioned criteria, aiming
at evaluating the replicability and reproducibility possibilities
of each one. Additionally, in Section V, we examine the
challenges found, and we discuss the most relevant findings.
Section VI concludes with a summary of our findings.

II. RELATED WORKS

Amidst the huge number of papers published since the start
of the pandemic in the field of AI applications, a good number
of review papers were already available when we decided to
initiate our state of the art review. However, not many of
them covered forecasting with DL methods (none of them
was devoted exclusively to this issue), and thus our research
questions were not really answered in the available literature.

When our work started, up to 11 state-of-the-art review
papers concerning AI applications to the different aspects of
the COVID-19 pandemic were already published [5–16]. Other
review papers were released while we actually performed our
analysis and were also considered [17–22]. However, most
of these works had a broad-spectrum approach, making the
target very general and inconclusive, covering any application
of AI conceivable and reviewing only very few publications in
each line of work. There are also other review papers [23–33],
but their primary targets dealt with different applications (i.e.
imaging and diagnostics, management, etc.).

For example, in the early work from [5], the fields of study
were divided into i) early warnings and alerts, ii) tracking and
prediction, iii) data dashboards, iv) diagnosis and prognosis,
v) treatments and cures, and vi) social control. However, in
that paper, mostly topical and opinion articles released in blogs
and newspapers were cited, plus a pair of diagnosis papers and
a couple of articles presenting compartmental epidemiological
models used for forecasting. In any case, authors devoted little
attention to forecasting with DL techniques.

The focus of [6] was divided between blockchain and AI in
general, dividing the works into estimation of virus outbreaks
sizes, detection and treatment. Within the scope of DL in
forecasting, only one paper [34] was mentioned, emphasizing
the lack of unified datasets while highlighting the possibility
of developing adaptive AI models for predictions. However,
this work is too general to answer our questions.

The study carried out by [7] covered the following fields:
i) detection and diagnosis, ii) tracking and predicting the
outbreak, iii) ’infodemiology’ and ’infoveillance’, and iv)
biomedicine and pharmacotherapy. Authors propose some use
cases and mention challenges and solutions, especially the
lack of a standard data set, forcing each model to use its
own dataset, and making comparisons difficult. They discuss

lessons learned and give some recommendations, like the use
official datasets from health authorities, the optimizing of
algorithms or the integration with other methods. Again, the
scope of this work is too wide, since it covers AI in general and
all aspects related to the COVID-19 fight. Due to the colossal
work that would be to cover all papers in such a wide field,
the selection of papers is quite arbitrary. As a result of this,
some of them are just mentioned, but none was particularly
analysed, resulting in that only two works [34, 35] were related
to forecasting cases using DL approaches, both included here.

In [8], the considered categories were i) quick pandemic
alert, ii) tracking and diagnosing cases, iii) pharmacological
treatment, and iv) public health interventions. A short set of
papers were discussed, but only [36] dealt with forecasting
with DL, and their final conclusions were very brief and too
general.

From the various models analysed in [9], only six were
related to DL, while again barely two of them [37, 38] were
related to forecasting the spread or cases, and were just briefly
commented. Their main conclusion was indeed brief and open:
“there is a need of thorough assessment of these predictive
analytic algorithm based on type of question to be answered”
(sic).

In a more extensive work [10], data sources, classical
TS methods, epidemiological models, forecasting, impact and
decision-making tools were analysed. In the forecasting chap-
ter, authors mention machine learning, DL, ARIMA and
ensemble approaches. They highlighted [39, 40] for fully
connected neural networks and [36, 41–43] for recursive
neural networks, while approaches dealing with convolutional
networks were all devoted to imaging and signal processing.
The main conclusions on DL approaches were about the high
amount of data required, the complexity of model hyper-
parametrization, and the low interpretability of the results.
But as the authors themselves admit, their purpose is just to
“highlight effective data-driven methodologies that have been
shown to be successful in other contexts and that have potential
application in the different steps of the proposed roadmap”.

In [11], models were divided in four categories: big data,
social media/other communication media data, stochastic the-
ory/mathematical models and data science/machine learning
techniques. In the latter category, just two papers [37, 38]
were relevant to our subject but they were just concisely
mentioned. The main challenges they identified were the lack
of quality and quantity in data, over-fitted models, overly
clean data with eventual integrity loss, data abundance not
always improving accuracy, wrong algorithm and attribute
selection leading to misleading results, and model complexity
that can affect the overall performance. While these questions
are important, they are commonly inherent to every data-driven
method. Their main conclusion (“it is important to analyse
various forecasting models for COVID-19 to empower allied
organizations with more appropriate information possible”)
justifies by itself the existence of our paper. In any case,
the variety as well as the number of models that should
be analysed must be higher in order to arrive at any sound
conclusions.

In another brief paper [12], a few papers were merely enu-
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merated and categorized in i) early detection and diagnosis of
the infection ii), monitoring the treatment, iii) contact tracing
of the individuals, iv) projection of cases and mortality, v)
development of drugs and vaccines, vi) reducing the workload
of healthcare workers, and vii) prevention of the disease. From
the papers included therein, only [34] was relevant to our
subject. With no identified challenge, their conclusions were
both wide and general, so very little could be deducted from
them.

The divisions in [13] were detection and diagnosis, virology,
drug and vaccine development and epidemic. In the latter
category, authors dedicated a section to outbreak detection,
where a few papers were just described and summarized in a
table [34, 36–39, 44–47]. The identified challenges were the
lack of large-scale training data and the limited interaction
between of computer science and medicine. Still, from this
paper it cannot be elucidated which DL methods could be
more useful for prediction, or even more, whether DL is useful
at all or not.

Deep learning, edge computing and deep transfer learning
were the focus of [14]. However, only two of the considered
papers [37, 46] were related to our scope. No conclusions
could be extracted regarding DL, as its presence was merely
testimonial.

In a recent paper [15], only two new citations were added
compared to the author’s previously mentioned work [5], but
they were related to position articles on a blog and a website.

For [16] the main topics were i) screening and treatment, ii)
contact tracing, iii) prediction and forecasting, and vi) drugs
and vaccination. Only four papers were reviewed for the third
category, and only one of them was related to DL techniques.
The descriptions and analysis were extensive, including the
most important aspects and providing nice explanatory tables.
However, the conclusions were brief: “deep learning algo-
rithms [. . . ] have more potential, robust, and advance among
the other learning algorithms [while] most of the models are
not deployed enough to show their real-world operation” (sic).
Nevertheless, the only analysed paper within our scope [41]
was insufficient to discard a more exhaustive analysis.

In [17] the domains covered were i) detection and diagnosis,
ii) contact tracing, iii) forecasting, iv) vaccine development.
While this paper is quite exhaustive about the role of AI in
computerized tomography (CT) scans and X-Ray images, it
only analyses one paper [41] in the forecasting field.

The central subjects for [18] were i) diagnosis using radio-
graphy images, ii) diagnosis using respiratory and coughing
wave data, iii) severity and survival-mortality assessment, iv)
outbreak forecasting models, v) virion sequence formation and
drug discovery models. In the forecasting area they provided a
list of 27 papers, 12 of them related to DL [35–37, 42, 44, 46,
48–53]. Unfortunately, only four of those papers were actually
analysed, while the rest were just depicted in a table by their
main features. The identified challenges were: model precision
and reliability impacted by quickly constructed datasets and
their limited real-world implementations. The final conclusions
were that the utility of AI in predicting outbreak and forecast-
ing the spread of COVID-19 is patent but further research is
needed to identify real-world uses of AI for COVID-19.

The classification chosen by another exhaustive paper [19],
was i) diagnosis, ii) treatment and vaccines, iii) epidemiology,
iv) patient outcome and iv) infodemiology. Authors considered
82 studies out of the 435 retrieved, from which only a few
[34, 35, 37, 38, 44, 45, 50, 54] were related to forecasting
with DL. They analysed the most interesting aspects of the
models, like employed techniques, features of the datasets, ap-
plications, and publishing countries. Unfortunately, the models
were simply summarized in tables. Authors found that papers
reported AI features and results inconsistently: for example,
approximately one third of them did not disclose the type of
validation or the data size, and a few of them did not even
specify the type of AI used, thus hampering replicability.

In [20] the considered areas were i) clinical applications,
ii) CT and X-ray image processing, iii) epidemiology, iv)
pharmaceutical, v) text processing, vi) understanding the virus,
and vii) dataset collection. It is in the epidemiology section
where we find an exhaustive collection of papers related to
forecasting [39, 55–80]. However, those were just described
without any further analysis or criticism. Their main conclu-
sions in our field of study were regarding the size of the data,
the way they are collected and the variability of formats of
these data, while authors propose global search algorithms for
training the networks in order to avoid local optima. While
those remarks were complete and sharp, they were given from
a quite broad perspective.

In [21], the considered applications were protein and drug
development, diagnosis and outcome predictions, epidemi-
ology and ’infodemiology’. In the latter category, we can
find some modelling and forecasting papers such as [38,
44, 45, 54]. Authors found that “very few of the reviewed
systems have operational maturity” and identified three main
issues: the need of open global repositories, the creation of
multidisciplinary teams, and the need for open science so that
solutions can be shared globally and adapted to other contexts.

By the time of finishing this document, a systematic review
of the papers covering image-related DL techniques applied
to COVID-19 was released [81]. Since time series forecasting
and image recognition are entirely different fields, the purpose
of that work might be in a similar line to the conclusions
extracted here, but there is no overlap.

Summarizing, most of the analysed review papers focus
on all the fields related to the fight against COVID-19, or
on the variety of AI disciplines available, but, in particular,
none is precisely focused on forecasting with DL. As we have
seen, the main trend is to describe the methods employed
and highlight the overall challenges in a general manner. The
lower number of forecasting methods analysed, as well as the
predominance of compartmental models, traditional statistical
techniques, and conventional machine learning methods versus
DL ones, adds up enough evidence to justify the existence of
this document.

III. METHODOLOGY

A. Paper Selection

As stated above, we focus on DL forecasting approaches
related to the prediction of the COVID-19 pandemic outbreak.
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Thus, this review focus on works that are using artificial neural
networks and more precisely DL techniques to forecast the
spread of the COVID-19 pandemic.

According to the European Centre for Disease Prevention
and Control (ECDC) [82], the most accurate indicators of
epidemic intensity are the absolute number of newly confirmed
cases and their notification rate per 100,000 population. Hence
the output of the considered models must be, at least but not
limited to, the number of newly confirmed cases. This indica-
tor is usually complemented with the number of total cases,
active cases, recovered cases, deceases, and other measures.
On the other hand, the inputs will usually be the number of
total recorded (confirmed) cases, but they may be accompanied
by the recorded number of total cases, active cases, recovered
cases, deceases etc.

For the sake of simplicity and standardisation, the models
proposed in the reviewed papers were sorted amongst one of
the following categories:

• Artificial neural networks (ANN) [83, 84]: multilayer
perceptron [85] (MLP) or feed-forward multilayer neural
network (FFNN) [86], Autoregressive Networks [87],
Auto-encoders [88, 89], Adaptive Networks [90].

• Recurrent Neural Networks (RNN) [91]: Long Short-
Term Memory units (LSTM) [92], Gated Recurrent Units
(GRU) [93], Bidirectional RNNs (BRNN) [94], Multi-
head attention (ATT) [95].

• Convolutional Neural Networks (CNN) [96].
• Extreme learning machines (ELM) [97].
• Ensemble methods.
Other denominations, such as Deep Neural Networks

(DNN) [98], could have been ascertained into any of the
previous categories, being the ‘deep’ characteristic an arbitrary
boundary.

We consider studies published in English between 1 January
2020 and 10 May 2021, including conference proceedings,
dissertations, peer-reviewed articles, and preprints. Any other
publications such as blogs, topical papers, opinion essays or
commentaries, were discarded. We did not contemplate any
limitations regarding the origin of publication, study design, or
outcomes. Out of the several hundred titles retrieved through
a systematic search and independent screening by titles and
abstracts, 97 studies were retained for full text reading. The
selected ones were crosschecked with the cited bibliography
of the reviews already discussed in the previous sections,
resulting in the addition of a few more papers to our study.

The search was performed in well-known databases like
ResearchGate, SpringerLink, Elsevier, IEEE Xplore, ACM
Digital Library, arXiv, medRxiv, and Google Scholar, ex-
cluding terms like ‘sentiment’, ‘drug’, ‘X-Ray’, ‘Computer
Tomography’, ‘Imaging’, ‘RNA’ etc. or any of its variants.
For an example of the queries used, see Figure 1.

B. Assessment Criteria

In order to assess the quality of every considered paper,
following the lead of previous meta-analysis as explained in
Section II, in order to make our analysis as fair as possible,
we need to define a set of criteria. These criteria or key

quality indicators must represent concrete, measurable features
of the papers, and must be as objective as possible. In this
section, the set of key quality indicators that have been chosen
for comparison of the selected papers is described. These
indicators aim to assess the information that quality papers
must provide to the reader, in order to evidence the robustness
of the model, to elucidate the conditions of the study, to
explain how uncertainty is managed, and to guarantee future
replicability.

In relation to concerns expressed in previous works about
how AI, ML or DL are applied in the field of medicine
[99–104], our work is rooted in existing paper evaluation
frameworks [105, 106], which we have adapted to the specific
needs of the chosen field. Despite the sharp and useful
recommendations from [104], it is mainly focused on clinical
trials, and thus its main purpose is to be a guideline for
developing studies rather than a literature review. From the
list of items described in [105], while some of them are
common to any kind of AI study, and hence applicable to
our problem, the majority is exclusively applicable to medical
imaging. Therefore, while the medical imaging items were not
considered here, the general principles were assumed in order
to elaborate our list of criteria. Finally, specific criteria related
to forecasting were also added to the list.

Below we describe the set of considered criteria, which are
classified according to their focus.

1) Criteria related with the problem description: In any
case, to be considered as a quality paper, any article must
include a specific and clear description of the problem to
be solved, stating the dependent and independent variables
that are considered, the area of study, the forecasting horizon,
the period of study, and the employed techniques (i.e., type
of ANN). Authors should avoid ambiguous assertions like
‘predicting the curve’, ‘forecasting the spread’, ‘foresee the
evolution’, etc., favouring clear statements about measurable
variables.

1) Object of study. The paper must clearly indicate what is
the goal of the study, the type of predictive modelling to
be performed, the target variables to be predicted, and
the characteristics of the variables which are inherent to
the problem description and have a direct effect on the
replicability of the experiment: area of study (province,
state, region, country), variables to predict (cases, deaths,
recoveries), etc.

2) Model identification. The chosen forecasting models
must be properly identified and presented, citing pre-
vious works in case the models are not new.

3) Forecast horizon. The study must specify the time lag
into the future for which forecasts are to be prepared.
In the COVID-19 forecasting case, this will vary from
short-term forecasting horizons (weeks) to long-term
horizons (years) [107]. The chosen forecasting horizon
may have a direct impact on the prediction error [108]
as well as on the usability of the results.

2) Criteria related with the datasets: Any good paper in
this context must contain a clear description of the dataset
and the data curation procedures applied, including availability
and any transformations in the ETL process. This is especially
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Search examples:

COVID forecasting "deep learning" -images -drug -sentiment -RNA -symptoms -X-Ray -CT -Radiograph
COVID forecasting Convolutional -images -drug -sentiment -RNA -symptoms -X-Ray -CT -Radiograph
COVID forecasting LSTM -images -drug -sentiment -RNA -symptoms -X-Ray -CT -Radiograph
COVID forecasting Recurrent -images -drug -sentiment -RNA -symptoms -X-Ray -CT -Radiograph
COVID forecasting RNN -images -drug -sentiment -RNA -symptoms -X-Ray -CT -Radiograph
COVID forecasting CNN -images -drug -sentiment -RNA -symptoms -X-Ray -CT -Radiograph

Figure 1: Example of some search constraints employed.

important in the COVID-19 forecasting framework since the
data are far from consolidated.

4) Data sources. The paper must clearly state the sources of
the data, providing links to them and/or depositing the
data tables used for modelling in a publicly accessible
repository.

5) Features. Variables contained in the dataset (cases,
deaths, recoveries, etc.) and the area where the data
is circumscribed to (province, state, region, country,
hospital) must be properly described in the document.

6) Study interval. The paper must explicitly include the
initial and final date for the considered dataset, providing
a clear view of the dataset size and the period analysed.

7) Missing data handling. The paper must specify how
inconsistent, missing and/or wrong data points were
handled.

8) Data preprocessing. How raw data from various sources
was converted into a time series must be clearly spec-
ified, as well as any use of normalization, rescaling
and/or standardization.

3) Criteria related with the model description:

9) Software. The paper must specify the names, version
numbers and configuration settings used in any software,
libraries, frameworks and packages used in the experi-
ments.

10) Accessibility. The paper must state a publicly accessible
repository where the full code of the modelling process
can be found, in order to allow replication and a better
interpretation of the study.

11) Initialization. The paper must indicate how the initial
parameters of the models were fixed, specifying the
distribution from which random values were drawn for
any randomly initialized parameters, as well as any
random seeds necessary. If transfer learning is employed,
the source of the starting weights must be clarified, or
the weights provided. When there is a combination of
random initialization and transfer learning, it must be
clear which portions of the model were initialized with
which strategies.

12) Topology. The number of layers and how they are
connected must be clearly and fully specified in the
paper.

13) Activation functions. The paper must specify the number
and type of cells on every layer, and the type of
activation function selected in every one of them [109].

14) Objective function and optimizer. The paper must pre-
cisely describe the function to be optimized, also called

the cost function, loss function, or error function in
minimization problems [110], as well as the chosen
optimizer and how it has been parametrized [111].

4) Criteria related with the model evaluation: Cross-
validation and bootstrapping are validation methods that are
typically used for the evaluation of model performance or for
fine-tuning. Alternatively, hold-out validation may address the
internal validity of a model but would not accurately assess
its generalizability [99]. Moreover, using hold-out in small
datasets may lead to biased predictions, and in that case results
will be dependent on how the data is split into train and
test sets. Cross-validation can provide a better indication of
how well the model will perform on unseen data, as it gives
the opportunity to train on multiple train-test splits [112]. An
honest validation procedure should reveal the optimism that
is associated with the full modelling procedure, since model
uncertainty usually is more important for optimism in model
performance than parameter uncertainty [113].

Despite statistical testing for calibration is not without
pitfalls [114–116], when p-values are reported with sensible
precision (i.e., p = 0.023, instead of the conventional p <
0.05), together with 95% confidence intervals, the consistency
between the results obtained and pure chance can be measured,
thus providing a better understanding of the results.
15) Validation. The papers must clearly specify how the

results were validated (hold-out, cross-validation, rolling
validation, etc.) and how data were assigned into train-
ing, validation, and testing partitions.

16) Error metrics. The papers must clearly describe the error
metrics employed to assess the model’s performance
and choose appropriate and well-known metrics for
forecasting problems [117].

17) Benchmark comparison. The performance of the AI
model must be compared against state-of-the-art models
and naïve models.

18) Statistical inference. The papers must state what kind
of hypothesis tests have been applied in order to decide
whether experimental results contain enough informa-
tion to cast doubt on conventional wisdom.

5) Final score:
19) Final score. Meant as a summary of the set of criteria

described above, this score will be computed as the
sum of the number of criteria that each paper meets
completely and explitly. Only in case of a draw, we will
recourse to comparing the number of criteria that are
met in an implicit way (see † in the following section),
and then those which are just partially met (see ‡below).
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Table I: Summary of scores per field: N (no), Y†‡(implicit and partially yes), Y‡(partially
yes), Y† (implicitly yes), Y (yes).

N Y†‡ Y† Y‡ Y

Object of Study 0 1 30 5 60
Forecast horizon 23 0 0 0 73
Data Sources 5 0 0 0 91
Features 4 1 14 11 66
Dataset Interval 13 0 0 1 82
Missing data handling 80 0 2 0 14
Data Pre-Processing 45 0 0 8 43
Software 43 3 1 31 18
Accessibility 88 0 0 0 8
Initialization 76 0 4 8 8
Topology 19 0 0 1 76
Activation Functions 28 0 0 29 39
Objective Function & Optimizer 25 0 0 33 38
Validation 26 0 0 57 13
Error Metrics 14 0 0 0 82
Benchmark Comparison 18 0 0 45 33
Statistical Inference 88 0 0 0 8

IV. ANALYSED MODELS

At the time of writing, several papers about DL applications
to COVID-19 have been retracted [118], in yet another hint
to worrisome flaws in the quality of science in emergency
times. However, none of them dealt with forecasting except
one, which was indeed withdrawn on 10 Nov., 2020 [119],
leaving the total amount of considered papers in 96.

All those works were evaluated against each of the criteria
defined above. Papers were marked with an “N” when they
did not meet the criterion, and with a “Y” when it was fully
satisfied. Papers were awarded a “Y with reservations”, when
criteria were partially met, for example in cases when the re-
quired information could be only found implicitly throughout
the text (†), or only partially (‡) or both (†‡).

A. Problem Description

To stress the potential novelty of their models, certain
authors tend to give imaginative or elaborate names to them,
sometimes difficulting the identification. Nevertheless, all the
models found in the considered papers were classified accord-
ing to the model taxonomy detailed in Section III-A. Amongst
the 95 analysed papers, a total amount of 143 models were
employed. The most popular model was LSTM, followed by
FFN, while GRU and CNN ranked in 3rd and 4th position
(see Figure 2).

All the considered papers explicitly state the object of study,
albeit with different fortune. For example, 12 of them [37, 41,
47, 48, 59, 62, 69, 120–124] did this only in an implicit way,
by distributing the information throughout the text. Only [38]
and [125] did this in a partial manner, not mentioning the
variables to predict. The information provided by the former
was implicit.

Surprisingly, from all the analysed papers, 23 of them did
not explicitly state the forecast horizon employed [44, 52–56,
60, 69, 70, 73, 80, 120–122, 125–133], while the rest were
found to do so in one way or another.

B. Data

From all the reviewed papers, only 5 failed to state the
source of the datasets used [54, 77, 120, 134, 135]. The other

Figure 2: Number of times each type of models has been proposed in the set of considered
papers.

Figure 3: Number of times each source of data has been used in the considered papers.

89 mentioned up to 110 data sources in total. As can be seen
in Figure 3, 21 of those employed governmental data, while
twelve more used data from local or regional health agencies,
such as Centers for Disease Control and Prevention (CDC),
European Center for Disease Control and Prevention (ECDC),
Chinese Center for Disease Control and Prevention CCDC,
etc. The most popular data source was the repository of the
Johns Hopkins University (JHU), mentioned 37 times, whereas
The Center for Systems Science and Engineering (CSSE) at
JHU was specifically mentioned in only 24 of them. The
main international organisation mentioned was World Health
Organisation (WHO) (30 times), while publicly accessible data
repositories were relatively popular: Kaggle was mentioned 5
times, Worldometers 4 times and OurWorldInData 3 times.
Only two private repositories were found to be considered: an
API with authorised access from [79] and hospital data from
[80]

When describing the features present in the dataset, the
results are more heterogeneous: 4 papers failed to report any
detail at all [77, 133, 134, 136], while 10 of them only
described the features partially [39, 41, 50, 52, 54, 57, 126,
131, 137, 138], while [139] did it only in an implicit manner.
Other 14 provided this information implicitly and distributed
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Figure 4: Number of times each optimizer has been used in the set of considered papers.

throughout the whole document [42, 53, 59, 61, 63, 64, 75,
122, 124, 132, 140–143]. The most common reason for this
is that the variables are not specified (new cases, accumulated
deaths, etc.) or even the area where the data belongs to is not
declared.

The considered time interval (and thus the length of the
dataset) was not stated in up to 13 of the analysed papers [58,
61, 72, 77, 121, 128, 130, 132, 133, 136, 137, 139, 144]. As
can be seen in Appendix ??, this size varies from only 14
days used by [38] up to two hundred and eighty-four days
from [145]. The average size of the dataset was 100.36 days
with a standard deviation of 56.19.

With respect to missing data, only 14 studies stated how
they dealt with this problem [43, 53, 61, 68, 71, 123, 130,
140, 146–151], while 2 others did this implicitly [22, 135].
The rest of the papers did not mention anything about this
aspect, which does not mean that they failed to approach the
issue. The lack of missing data might be behind this, but
it is always a good practice to explicitly state it. Amongst
the papers which dealt with missing data, the approaches are
heterogeneous. For example, missing data was just left blank
[53], simply eliminated [71, 130, 146], or no missing data
found [150]. Others replaced the missing data by the average
of five previous and posterior data points [61], or by an average
of one week of data [140] or by reversed order values from the
sequence [123] or by using linear weighted moving average
[149].

Up to 45 of the papers did not mention anything regarding
what kind of data pre-processing was applied [35, 39, 42,
44, 46, 49–52, 54–57, 61–65, 67, 69, 71, 77, 80, 121, 124,
130, 132–135, 138, 142, 144–146, 148, 149, 152–158], while
8 only acknowledged this partially [53, 72, 75, 122, 123,
143, 159, 160]. While this does not necessarily mean that
data was not pre-processed, these kind of inscrutabilities
obviously hinder replicability. The most widespread practice
was minimax normalization.

C. Model description

Only 18 works fully documented the software packages and
libraries employed, including the versions [37–39, 46, 52, 55,

73, 74, 77, 128, 134, 142, 151, 154, 156, 159, 161, 162]. While
[80] did not make it explicit, it was possible to infer it from the
source code. Only the name of the software could be implicitly
extracted from the repository in [62, 72, 155], which is not a
recommended practice. From the rest, 31 papers only revealed
the software name [22, 40, 42, 47, 48, 58, 61, 64, 68–71, 75,
79, 122–125, 130–133, 147–149, 157, 160, 163–166], while
the others did not include any mention at all. This practice
leads to difficulties in reproducibility.

Only 8 papers decided to provide a repository where the
full experimental protocol could be accessed [48, 55, 62, 80,
120, 155, 156, 162]. This is an opaque practice that does not
favour replicability.

Concerning the initialization of the model, 8 of the articles
undisclosed the chosen way for initializing the weights in an
unambiguous manner [38, 62, 79, 123, 128, 131, 134, 151],
while 4 more mentioned this just in an implicit way [55, 80,
155, 162]. Other 8 decided to provide this information just in
a partial way, only declaring that this was done randomly, but
without specifying which distribution was used [22, 43, 51,
63, 120, 133, 150, 156]. The rest did not make any mention
at all about this aspect.

Regarding network topology, up to 19 of the works failed
to mention the number and type of layers from which the
network was made up [38, 41, 42, 56, 57, 64, 67, 121, 128,
130, 133, 138, 140, 142, 148, 152, 153, 155, 164]. Only [120]
partially did this task, while the rest clearly stated this fact.

From all of the analysed papers, up to 27 failed to explain
the number of units employed in each layer and their activation
functions [13, 38, 41, 42, 45, 54, 56, 57, 60, 61, 64, 69, 77,
121, 124, 128, 130, 133, 140, 142, 148, 152–155, 161, 164].
Other 29 did it only in a partial way [34, 36, 37, 39, 44, 46, 47,
49, 52, 53, 62, 63, 74, 76, 79, 120, 122, 125, 126, 131, 132,
136, 138, 144, 156, 157, 159, 162, 166], while the rest made
this information explicit and complete. The most popular was
ReL followed by Sigmoid + Tanh (due to the popularity of
LSTMs) and standalone Tanh.

Up to 25 of the works failed to describe the selected
objective function, and/or the optimizer applied to minimise it
[42, 44, 52–54, 57, 61, 63, 67, 70, 74, 78, 128–130, 134, 138,
140, 142–144, 154–156, 166]. Another 32 succeeded in this
task only partially [37, 38, 41, 45–49, 55, 56, 59, 62, 64, 69,
71, 73, 76, 120–125, 127, 131, 136, 139, 145, 148, 152, 153,
164]. As can be seen in Figure 4, the most frequently chosen
optimizer was Adam, followed by far by Bayesian optimizer.

D. Evaluation

Concerning evaluation, only 13 of the analized papers
informed about a full cross-validation method [37, 43, 46,
55, 63, 71, 80, 124, 125, 140, 151, 159, 166], while other
25 did not mention if any kind of validation was performed
at all [34–36, 38, 47, 53, 54, 57–59, 61, 72, 77, 121, 132,
133, 137, 138, 142, 144, 146–148, 158, 165]. This worrisome
fact undoubtedly makes the interpretation of the results an
exercise of faith. The 57 remaining papers only performed
a 1-split hold-out validation, which of course can introduce
some bias in their conclusions, especially when the size of the
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Figure 5: Number of times each error metric has been used in the set of considered
papers.

dataset is small. The most common split rate was 80/20 for
test and validation, respectively, followed by 90/10 and 75/25.
Only [153, 156] applied a 50/50 split, and [73] even went
for 40/60. This practice is not advisable, especially with such
small datasets, as models will find more difficulties to learn
the general principles and will show a poor validation and test
performance.

Unfortunately, up to 14 papers failed to provide any error
metric at all [36, 50, 56, 57, 62, 64, 67, 77, 121, 122, 126, 129,
142, 144]. Furthermore, while the problem at hand is clearly
a regression one, 8 of the studies employed only metrics
for classification, making difficult to understand how far the
predictions were from the actual values [80, 136, 139–141,
148, 154, 157]. Particularly, [136, 139] used an own formula
in an effort to ’adapt’ accuracy metric to prediction problems.
Another five articles used a mix of classification and regression
metrics, leaving some room for comparisons [41, 58, 125, 128,
145]. The rest provided only regression metrics. From Figure
5 it is clear that the most common metric was RMSE, followed
by MAPE, R2 and MAE, while up to 6% of the times, accuracy
was chosen.

As mentioned above, comparison with naive and state-of-
the-art models is key to prove the goodness of any forecast
attempt. Of all the analized papers, 18 papers did not include
any kind of benchmark comparison against any other model
[34, 41, 42, 51, 53, 55–57, 62, 66, 77, 129, 130, 134, 141, 158,
163, 164]. Another 31 only compared their proposals against
complex algorithms, assuming that all of them are thus better
than basic persistence or random approaches, which may lead
to problematic conclusions [22, 37, 38, 46, 47, 59, 61, 63, 64,
67, 70, 75, 76, 78, 126–128, 131, 132, 136, 138, 139, 142,
143, 145, 151–155, 157].

Less than 10% of the papers reported the application of
some kind of statistical inference to their results, and thus, for
the rest, it is difficult to assess that the true gain of the model
is not due to simply chance [22, 46, 65, 76, 127, 133, 140,
155].

Regarding confidence intervals, only 18 papers [22, 36, 38,
41, 42, 57, 62, 65, 67, 69, 76, 120, 123, 140, 142, 144, 145,

152] employed them to communicate their results, while [156]
mentioned this during the training phase only. From those ones
mentioned, solely a few of them [57, 65, 123, 144] employed
the intervals for accompanying the numerical results, while
the rest only applied them for the charts. As an example, [38,
42] only used them for only one out of the several curves
provided.

In particular, only 11 of those [36, 42, 62, 65, 76, 123, 140,
142, 144, 145, 152] provided a 95% confidence interval, while
[22, 57] employed a threshold of 80% for their uncertainty
intervals, but not in the article, but in a website that supports
their paper.

Some singular practices were found, for example in [148],
where predictions were made with ±50% of the predicted
value, and some of the charts depicted an interval whose
level of confidence was not defined. On the other hand, [132]
provided the metric values with their mean and their variance,
which at least provide some additional information about the
fitness of the model. In an attempt to capture uncertainty, in
[136, 139] metrics were delivered for different error margins
(from 0.05 to 0.5, in steps of 0.05).

Finally, [38, 41, 42, 67, 69, 120] did not mention any nu-
merical indication for the confidence threshold. This practice
in particular, together with the absence of any confidence
intervals at all, makes more difficult to interpret the uncertainty
in their predictions, as the estimated probability of capturing
the truth is ambiguous. The rest did not employ any kind of
confidence interval, or at least, failed to mention it.

E. Final score

After applying all the criteria, only a maigre 35 of the
96 studied papers scores in at least half of the fields. The
best score overall was 15 over 17, obtained by [151], only
failing in the statistical inference and the accessibility fields,
as can be seen in Figure 6. It is followed by [22, 43], both
with a positive score in 12 of the fields, and both failing in
accessibility. But [22] provides information about how missing
data was handled in an implicit way, while [43] totally fails
in managing statistical inference and in providing information
about the software.

On the other side of the ranking, [121] scores only in the
data source and features description, while the object of study
is only available implicitly throughout the whole document.

V. DISCUSSION AND RECOMMENDATIONS

The outstanding efforts to model and forecast the COVID-
19 pandemic using deep learning techniques are obvious
and should be praised. Nonetheless, the predominance of
methodological and reporting insufficiencies has been also
patent throughout our analysis. In fact, none of the papers
fulfills all of the proposed quality criteria. Remarkably, [22]
was the only one failing in a single criterion, followed by
[123, 151, 162] which failed in only two of them. The paper
fulfilling more of the criteria without any reservations is [151].

As can be seen in Figure 7, the most common weaknesses
are related to the lack of application of statistical inference
(in 87 articles), poor definition of the experiments (again
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Figure 6: Final scores recorded for the considered papers.

in 87 of the papers), missing data handling (in 79 of the
works), missing model initialization details (in 76 papers), no
information on data pre-processing (in 44 of them) and lack
of software information (in 43 of the articles). These issues
may lead to excessively enthusiastic performance estimations
and reduced replicability.

When dealing with criteria related to the problem def-
inition, our findings reveal that sometimes it is not clear
what the target of a paper is due to the use of ambiguous
terms or incomplete assertions, such as “predict COVID-19
infection” or “forecast COVID-19 outbreak”. The enunciation
of a forecasting problem, in opposition to other types of
AI endeavours, should not be necessarily a difficult task. It
should be enough to explicitly state the goal of the study,
the target variables (i.e., “number of COVID-19 confirmed
cases”), the region the predictions are being made for (i.e.,
“China”, “Emilia-Romagna” or “Hospital Albert Einstein”),
the forecasting horizon (i.e., “in the next ten days”) and the
model employed (i.e., “a stacked LSTM model”). So, simple
and clear statements explicitly establishing these factors should
be a requirement for any paper describing such an application.

Concerning the data-related criteria, the small volumes of
COVID-19 data, the different dataset sizes, the diverse kind of
variables collected within the datasets, and the way this data
is collected by the different organizations and governments
remains a huge challenge for an accurate model comparison.
We agree with [7] in suggesting that the use of big collab-
oratively and high-quality datasets provided by governments
and healthcare organizations (i.e., WHO, CDC, JHU, etc.) may
help to overcome this issue. The surveillance on the quality
of the aggregated data by renowned organizations can help to
avoid ‘retrodden’ datasets and may reduce over-fitting, derived
from the fact that the community is focused on outperforming
benchmarks on a single public dataset.

However, in our opinion, there are no excuses for not
explicitly stating the data sources, for example, as well as a
clear description of the variables and the intervals considered,
or the decisions taken about missing data or the pre-processing
stages.

With respect to model description, in a research environment
in which open science is becoming more and more encour-
aged, and for the sake of interpretability and replicability, it
is common sense to reveal as much details from the model as
possible, so the experiments can be reproduced, and models
can be compared to future research.

The disclosure of the software packages, frameworks, and
libraries employed, as well as its versions, can certainly
enhance the understanding of the performance and conclusions
derived from any experiment, while enabling replicability.

Similarly, when dealing with neural networks, revealing
the number of layers, number of units, and the activation
functions, together with the objective and optimizer function,
becomes essential to understand the developed model and its
eventual advantages and drawbacks.

Another potential source of obscurity is the randomization
of the weights [137], being one of the main sources of stochas-
ticity of the model. Unveiling the distribution from which the
weights are being initialized, as well as the employed seeds,
is crucial in enabling the reproducibility of any investigation
in this field.

Finally, access to the source code and the original dataset
employed enhances the comprehension of the model itself and
eases the endeavour of repeating someone else’s experiments.
In such sense, making the complete experiment framework
available in a public repository is a practice that boosts the
progress of science, especially in these challenging times.

Regarding the evaluation of the proposals, there is no
unique appropriate metric for model errors. Using RMSE leads
to large errors having a relatively greater influence on the
total compared to the smaller ones [167]. This makes MAE
better for discriminating among models. Despite its robustness
against outliers, MAE is more sensitive to variance, fluctuating
its value between several errors sets with the same RMSE
[168].

RMSE might be selected to minimize cost function because
it helps to calculate the gradient of absolute errors. It is known
that with a low number of samples (i.e. 100), giving the values
of the errors themselves is probably better than any statistics.
Otherwise, large outliers might be excluded from the RMSE
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Figure 7: Summary of scores that papers received in each criteria: the column titles corresponds to the item numbers used in Section III-B. In column 16, † refers to the miss-use
of classification metrics together with prediction metrics by the authors, and the ‡ mark highlights when only classification metrics are employed.
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calculation [168]. But when having more samples, RMSE can
reconstruct error distribution, with a standard deviation lower
than 5%. Inconsistency in comparing RMSEs from different
studies is not due to error-scale variance alone [167].

Choosing one single metric removes a lot of information,
so an error distribution should always be provided. MAE is
suitable for uniformly distributed errors, while RMSE is better
when errors follow a normal distribution, which is the most
common case. For other kinds of distributions, more statistics,
such as mean, variance, skewness, and flatness, should be
provided [168]. So to better depict the model behaviour, the
best recommendation might be to provide the full probability
distribution of the error, or at least several standard metrics
which facilitate comparisons.

When reporting results, including a statistical significance
test with the p-value obtained (rather than just simply passing
or not the famous 0.05 threshold) and/or confidence intervals
to reflect the uncertainty in the forecast is strongly recom-
mended. But also, in order to test if a proposal makes sense
or not, it is essential to use simple reference models as
baselines, such as naïve or persistence forecasting models. It
is very common to see how the interest that has been put
in developing the proposed model is inversely proportional to
the effort invested in the benchmarking models. This may lead
to overoptimistic interpretations of the results, as well as an
unrealistic idea of the real capabilities of the developed model.

MonteCarlo stochastic simulations seem to be a suit-
able practice for modeling infectious outbreaks that change
across geographical areas and through time [37]. Also, hyper-
parameter search and sensitivity tests are strongly recom-
mended.

According to the American Statistical Association
(ASA) [169], a study is reproducible if one can take the
original data and the computer code used to analyze the data
and reproduce all of the numerical findings from the study. On
the other hand, replicability is the possibility of repeating an
entire experiment, independently of the original investigator
and without the use of original data (and generally using the
same methods).

Although it might be argued that full replicability is theo-
retically not achievable, a clear description of the methods,
models, materials, procedures, metrics, and other variables
involved in the study would facilitate it. A clear description
of the dataset, data pre-processing, and missing data handling
is essential. A description of the statistical inference decisions
made and whether the study is exploratory or confirmatory, as
well as discussion of the expected constraints for generality,
uncertainty of the measurements, results, and inferences are
definitely helpful.

Furthermore, while the easiest way to replicate an exper-
iment in DL is to count with the full source code and the
original dataset employed, a potential opacity might occur
when publicly available datasets or code are being updated.
Therefore, it is also advisable to keep track of specific cached
versions of datasets and code, so those can be correctly
referenced. Many public repository sites provide tools to
make this task much easier. These practices are also enabling
scientific reproducibility, speeding up future discoveries in any

discipline.

VI. CONCLUSIONS

In this systematic review, current deep learning literature
for COVID-19 forecasting has been considered. We focused
on evaluating a set of papers, underlining the quality flaws of
the methods employed and the reproducibility and replicability
issues.

After establishing a set of minimum quality indicators, it
has been observed that no papers in the reviewed literature
currently have documented satisfactorily the methodologies
employed for the entire process, failing to follow good prac-
tices for developing a reproducible deep learning model.
A common pitfall is the lack of a robust cross-validation
methodology. There is a lot of room for improvement in model
comparison against naïve or persistence baselines, as well
as the extended use of any kind of statistical inference, to
minimally discard any possibility of changes in the results.
The different kinds of error metrics presented in the analyzed
papers, the variety of forecast periods, and the different kinds
of variables to predict, render comparisons difficult.

We agree with [19] that it is vital to develop a standardized
reporting protocol and checklists to reduce the poorly con-
ducted COVID-19 studies in favor of more properly conducted
studies, and to improve replicability. Finally, some specific rec-
ommendations to the researchers for better practices regarding
all the analyzed criteria have been provided.
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