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Some people want it to happen,
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Chapter 1

Introduction

1.1 Motivation: Transportation and Routing

Problems

Transportation sector has historically represented a key driver for the economic and
social development of society, being transport infrastructures the connection between
citizens, employment, education, and services. For instance, rural roads enabled the
access to health care and the schooling of children living in rural areas, as well as the
increase and diversification of farmers’ incomes by better connecting them to markets.
Altogether, it has resulted in a global network that facilitates the provision of goods
and services around the world, and makes people interaction easier. Far from being
a finished project, the world is continuously urbanizing and provides the opportunity
to create safer, cleaner and more efficient transportation systems.

Although there is no specific data, it is estimated that transport accounts for about
64% of global fuel consumption, 27% of total energy consumption and 23% of global
energy-related carbon dioxide (CO2) emissions. Moreover, globalization has removed
barriers by making accessibility possible to all places, products and services around
the world, so the environmental impact of the transport sector is expected to increase
dramatically. This is why transportation is at the center of key development challenges
to boost prosperity and thus achieve sustainable development that reduces energy
consumption. To this end, the technology developed for the analysis and exploitation
of the huge amount of data being generated by sources such as sensing data, Internet
data or user behavior, are helping to define travel patterns and needs, improving the
quality and efficiency of transport solutions.
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At the same time, consumer behaviors and expectations are evolving because access
to new technologies has caused, among many other things, a growing trend towards
immediacy in society. The transport system has always been a crucial factor for com-
panies that transport goods or provide services, and has now become a differentiating
element in their efforts to maximise customer satisfaction. For this reason, trans-
portation is not just about moving goods from one place to another or providing a
specific service, but is a strategic process that seeks to reduce logistics costs and im-
prove the customer experience. It is now a priority for companies to adopt an optimal
quality of service that provides greater efficiency in timing and adaptability, safety,
and resilience.

Figure 1.1: Transport infrastructure.

Transportation logistics can be optimized through proper route planning to maxi-
mize productivity, save on transportation costs, and boost profitability. Exorbitant
amount of money is being spent on fuel, vehicle operation, maintenance and labor.
Therefore, after years of learning about the role and importance of logistics, it is in-
creasingly considered key to optimize it and turn it into a competitive advantage. A
small improvement in routing problems can lead to huge logistics savings in absolute
terms. It is estimated that the use of computerized procedures for the distribution
process planning produces substantial savings (generally from 5% to 20%) in the
global transportation costs. Indeed, the transportation process involves all stages of
the production and distribution systems and represents generally from 10% to 20% of
the goods final cost.

In the academic world, route optimization is referred as the determination of the
most cost-efficient route taking into account relevant factors involved such as vehicle
limitations, cost controls, time windows, resource limitations concerning the loading
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process at the depot, etc. Routing problems are then defined as the design of optimal
routes from a depot to a set of destinations with specific constraints. These problems
have attracted the attention of many researchers and practitioners during the last 60
years because of the mathematical challenges involved in their study and solution, and
the motivation in the big economic impact that has the improvements found. Many
types of routing problems are differentiated according to the type of goods or service
to be performed, the characteristics of the vehicle fleet (size, capacity, autonomy), the
distance and level of service of the customers, whether route readjustment is allowed
on the fly, etc.

Most routing problems are NP-hard and, as they are extremely difficult to solve op-
timally in practice, they are classified according to the specifications of the real-life
situations to be modeled. In Chapter 3, it will be shown the classification of those
routing problems in which customers can be represented by nodes on a graph (node
routing problems, NRPs), and those ones in which the service is performed on the arcs
or edges (arc routing problems, ARPs). Although the research on routing problems
has traditionally been focused more on NRPs, the literature on ARPs is growing every
day, and the number and efficiency of algorithms designed for these problems have
increased considerably in recent years. This thesis is focused in the framework of the
ARPs.

The origin of the arc routing problems lies in the famous problem of the Seven Bridges
of Königsberg. The city of Königsberg (Russia), crossed by the river Pregel, was made
up of two large islands connected to each other and to the two banks of the river by
seven bridges (Figure 1.2). It seems that the citizens of Königsberg wondered if it
was possible to find a tour that visited all parts of the city and crossed each bridge
exactly once. It was in 1736 that Euler proved that no such route existed.

However, it was not until many years later, in the 1960s, when the first proper arc
routing problem was introduced. It was a problem that modeled a situation in which
the service was carried out along the streets of a city and tried to optimize the length
of the route. This ARP proposed by Guan (1962), the Chinese Postman Problem
(CPP), was defined as the design of a route traversing all the arcs and/or edges
requiring service of a given graph. It seems that the name of the problem is due to
the fact that the author was Chinese and it addressed the situation encountered by a
postman to find a path with minimum length for the mail delivery. Given a graph, the
CPP aims to find a closed minimum-cost path that traverses all the arcs and/or edges
at least once. Subsequently, it was proposed the Rural Postman Problem (RPP),
a generalization of the CPP in which services did not have to be performed on all
streets. The RPP objective is also to find a closed path with minimum cost that
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Figure 1.2: The Seven Bridges of Königsberg.

traverses at least once not all the arcs and/or edges, but only those requiring to be
serviced. From this point on, a large number of variants of these problems have been
studied in detail in the literature.

In addition to mail delivery, arc routing problems have many applications in orga-
nizing tasks such as garbage collection, snow ploughing, milk delivery, inspection of
distribution systems (electricity, telephone or railroad networks), street cleaning and
watering, etc. Millions of euros are spent each year on these operations and the savings
achieved by optimizing them is enormous. The main challenge with these problems is
that they cannot be modeled as simple arc routing problems, but each problem has its
own characteristics. Therefore, the methodology used to solve them must be specific
and must consider the context of each problem.

1.2 Scope of this thesis: CEARP

Relevant technological innovations, such as new types of devices, radio frequency
identification technology (RFID), and the availability of real-time data through ge-
olocation, traffic flows or communication between customers and drivers, have led
to numerous changes in the business of transportation logistics. At the same time,
Operations Research has continued to evolve and this has required the definition and
study of new problems, as well as the incorporation of new features to existing ones.

In particular, the development of new technologies has given rise to scenarios in which
the vehicle is not required to arrive at the customer’s location in order to perform
the service, but rather that it is sufficient to approach it. In routing problems this
feature is called "close enough", since the vehicle only needs to pass close enough
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to the customer’s position to perform the service. If, in the problem under study,
customer service is modeled or performed on the arcs of a graph, we obtain what is
known as the Close Enough Arc Routing Problem (CEARP). This problem consists
of finding a minimum cost route that starts and ends at a depot and traverses some
of the streets of a road network in such a way that all customers are serviced.

Figure 1.3: Automatic Meter Reading.

One of the most direct applications of CEARP is in the automatic meter reading,
since nowadays the operators of gas, water and electricity companies do not need to
traverse all the streets of their customers to read the consumption of their meters.
Other relevant applications of CEARP are, for example, inventory management in
department stores, where drones are being used that only need to pass close enough
to the products to inventory them, in network surveillance and maintenance tasks, as
well as in robotic monitoring of wireless sensor networks. All these applications are
explained in detail in 3.

This thesis focuses on three extensions of the CEARP: the Profitable CEARP, for
a single vehicle, and the Distance-Constrained CEARP and the Min-Max CEARP,
for multiple vehicles. In the first problem, the Profitable CEARP, each customer has
associated a profit that is collected if the customer is serviced. In this problem not all
customers have to be serviced, but only those more interesting from the point of view
of the profit provided. In the second problem, the Distance-Constrained CEARP, the
service is done by a fleet of vehicles with a the maximum length or time for their
routes, and the objective is to minimize the total traversed length. Finally, the Min-
Max CEARP also considers a fleet of vehicles to service all the customers but in this
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case the length of the longest route is minimized in order to balance the length of the
planned routes.

1.3 Outline

This thesis is divided into nine chapters as follows:

Chapter 1. Introduction. This chapter gives the reader a brief overview of trans-
port logistics, contextualizing and motivating the development of the thesis. We
present the importance of route optimization, in particular arc routing problems, in
logistic procedures. We refer to the origin of arc routing problems, showing how they
have evolved along with new technologies, list the specific problems that have been
studied, and finally provide an outline of the thesis.

Chapter 2. Preliminaries. In this chapter, some concepts of Mathematical Pro-
gramming are described in order to provide the readers with a summarized conceptual
review and to introduce the topics, the terminology, and the mathematical notation
used throughout the thesis. Several basic principles of graph theory, linear and in-
teger programming, and polyhedral theory and polyhedral combinatorics are here
presented.

Chapter 3. Routing Problems. This chapter provides an overview of some classic
routing problems. In addition, it presents the basic characteristics of many other
related problems that have arisen over the years to study specific situations.

Chapter 4. Close-Enough Routing Problems. We present in this chapter the
class of routing problems on which this thesis is focused and some real-world appli-
cations. We first summarize the state of the art of the close-enough problem in a
node routing context, the Close Enough Traveling Salesman Problem. Then, in more
detail, we provide a literature review of the problem for the arc routing context, the
CEARP, as well as the formal definition of the problem, a formulation and a set of
valid inequalities. Finally, we comment some variants of CEARP.

Chapter 5. The Profitable CEARP. This chapter starts formally defining the
Profitable CEARP, proposing two different formulations and some valid inequalities,
and studying its polyhedron of solutions. To solve this problem, we present a heuristic
algorithm and a branch-and-cut algorithm that includes the separation procedures
for the identification of violated inequalities. Extensive computational experiments
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on four randomly generated sets of instances are provided to show the performance
of the proposed algorithms. The chapter is the outcome of a collaboration with
Prof. Bianchessi, from the Università degli Studi di Milano, the destination of my
research visit. The following paper has been submitted to an international journal for
publication:

N. Bianchessi, Á. Corberán, I. Plana, M. Reula, J.M. Sanchis. 2021.
The Profitable Close Enough Arc Routing Problem. Under revision.

Chapter 6. A Matheuristic for the Distance-Constrained CEARP. In
this chapter the Distance-Constrained CEARP is studied, for which a multi-start
matheuristic is proposed that incorporates an effective branch-and-cut method for
the CEARP in order to optimize the routes obtained. First, the DC-CEARP is for-
mally defined and the most promising formulation is given. Then, a matheuristic to
solve this problem is presented together with the computational results obtained. The
chapter is based on the following published paper:

Á. Corberán, I. Plana, M. Reula, J.M. Sanchis. 2019. A matheuris-
tic for the Distance-Constrained Close Enough Arc Routing Problem.
TOP. 27, 312–326.

Chapter 7. On the Distance-Constrained CEARP. This chapter contains a
deepen study of the DC-CEARP. A new formulation for the DC-CEARP is proposed
that combines the best features of the previously existing ones, its associated poly-
hedron is studied, and several families of valid inequalities are presented. Moreover,
we present an efficient branch-and-cut algorithm based on the separation of the new
inequalities. An extended computational analysis has been carried out in which the
efficiency of the proposed algorithm is proved. The chapter is based on the following
published paper:

Á. Corberán, I. Plana, M. Reula, J.M. Sanchis. 2021. On the Distance-
Constrained Close Enough Arc Routing Problem. European Jour-
nal of Operational Research. 291(1), 32-51.

Chapter 8. The Min-Max CEARP. In this chapter we introduce the MM-
CEARP, focusing on its modeling and exact solution. Two different models for the
problem are presented: an arc-based formulation making use of arc and servicing vari-
ables, and a route-based set covering formulation. Solution algorithms to solve the
problem are then presented: a B&C algorithm addressing the arc-based formulation
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and a B&P algorithm based on the set covering one. A heuristic used to compute so-
lutions with which initializing the exact algorithms is described. The exact algorithms
are compared in benchmark instances through extensive computational experiments.
The chapter is also the outcome of a collaboration with Prof. Bianchessi, from the
Università degli Studi di Milano, the destination of my research visit. The following
paper has been submitted to an international journal for publication:

N. Bianchessi, Á. Corberán, I. Plana, M. Reula, J.M. Sanchis. 2021.
The Min-Max Distance-Constrained Close Enough Arc Routing Problem.
Under revision.

Chapter 9. Conclusions and future work. This chapter presents the contribu-
tions of the thesis and outlines the lines of research and future work that could be
derived from it.
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Chapter 2

Preliminaries

In this chapter, we describe some essential concepts of Mathematical Programming
to provide non-expert readers with a detailed conceptual review and to introduce
the topics, the terminology, and the mathematical notation used in the following
chapters. We will present several basic principles of graph theory, linear and integer
programming, and polyhedral theory and polyhedral combinatorics.

2.1 Graph Theory

In this section, we introduce some definitions and results of graph theory that we have
used in the present work. Graphs are often used to model many real-life problems,
such as arc routing problems. Using a graph, these problems can be represented
clearly and precisely, although a priori the problem may seem complex and imprecise.
Some classical references in this area are Harary (1969), Berge (1973), Bondy and
Murty (1976) and Christofides (1975).

A graph G is defined as a pair (V,E) in which the elements of V are known as
vertices or nodes and the elements of E are pairs of vertices that are called edges or
arcs. Depending on whether the pairs of vertices are sorted or not, the graphs can be
classified as follows:

• Undirected: E is a set of non sorted pairs, i.e., it only contains edges. It is
denoted as G = (V,E).

• Directed: E is a set of sorted pairs, i.e., it is formed only by arcs. In this case
G is denoted as G = (V,A).
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• Mixed: E consists of sorted and non sorted pairs. In this case, the set of non
sorted pairs (edges) is denoted by E and A represents the set of ordered pairs
(arcs). We therefore denote G = (V,E,A).

In general, we will represent the edges and the arcs as pairs of vertices (i, j), and will
denote by n = |V | the number of vertices, by mE = |E| the number of edges, and by
mA = |A| the number of arcs. If the graph only contains arcs or edges, its number will
be simply denoted by m. The edges and arcs that start and end at the same vertex
i ∈ V , (i, i), are called loops.Two edges are parallel if they join the same vertices. In a
directed graph, two arcs are said to be parallel if they have the same initial and final
vertex.

Graphs without loops nor edges or arcs in parallel are called simple graphs. An
undirected simple graph in which there is an edge between each pair of vertices is
called a complete graph. A directed simple graph is complete if there are two arcs
(i, j) and (j, i) between any pair of vertices i, j ∈ V . Complete graphs are commonly
designated Kn, where n is the number of vertices. A graph G is bipartite if there is
a partition of V = X ∪Y , with X, Y non empty, so that each edge or arc of the graph
has a vertex in X and another in Y .

The degree of a vertex v ∈ V is the number of edges and arcs incident with it, and
is represented by d(v). We say that a vertex is even when its degree is even and odd
otherwise. In a directed graph, the number of arcs with v as the final vertex is its
indegree and is represented by d−(v). Similarly, the outdegree of a vertex v, d+(v),
is the number of arcs with v as the initial vertex.

Theorem 1. Let G be an undirected graph. The number of vertices with odd degree
is always an even number.

If S1 and S2 are two disjoint subsets of V , we denote by (S1 : S2) to the set of edges
and arcs with a vertex in S1 and the other in S2. In particular, the set (S : S), where
S = V \ S, is usually represented by δ(S) and is called the cutset associated with S.
A cutset δ(S) is even (resp. odd) if the number of edges and arcs it contains is even
(resp. odd). In particular, δ({i}) (abbreviately δ(i)), i ∈ V , is a cutset of G.

Theorem 2. δ(S) = (S : S) is an odd cutset of G if and only if S and S contains an
odd number of odd vertices.

If G = (V,E,A) and G′ = (V ′, E ′, A′) are two graphs such that V ′ ⊆ V,E ′ ⊆
E, and A′ ⊆ A, we say that G′ is a subgraph of G. Given a subset V ′ ⊆ V ,
E(V ′) and A(V ′) denote the set of edges and arcs of G with both ends in V ′, and
G(V ′) = (V ′, E(V ′), A(V ′)) is the subgraph of G induced by V ′. Similarly,
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G(A′) = (V (A′), A′) is the subgraph of G induced by A′ ⊆ A and G(E ′) = (V (E ′), E ′)

the subgraph induced by the set of edges E ′ ⊆ E.

A path of length k is a sequence w = (i0, e1, i1, e2, . . . , ek, ik) in which the vertices and
edges (or arcs) appear alternately in such a way that the initial and the final vertex
of any edge (or arc) er are ir−1 and ir, respectively. If we deal with simple graphs, a
path can be represented only by the sequence of vertices w = (i0, i1, . . . , ik) or by the
sequence of edges w = (e1, e2, . . . , ek). A path where all the vertices are different is
called a simple path. If a path starts and ends at the same vertex is called a tour
(or closed path).

In many problems defined on graphs, it is convenient to define a function that assigns
a non-negative value to each edge or arc depending on its length or in the cost of
traversing it. Therefore, given a graph G = (V,E,A), we define a cost function:

C : E ∪ A −→ R

(i, j) −→ cij ≥ 0.

The total cost or length of a path is the sum of the costs associated with the edges
and arcs that defining it.

Theorem 3. If w is a tour in G, then w traverses an even number (or zero) the edges
and/or arcs of any cutset in G.

Given an undirected graph G, we say that two vertices are connected if and only if
there is a path between them. In the case of a directed graph, it is required that, in
addition to the existence of a path from i to j, there is another path from j to i. A
graph G is connected if, given any pair of vertices, there is at least one path between
them. A mixed or directed graph is strongly connected if, for any pair of vertices i
and j, there is a path from i to j and another from j to i. A connected component
of G is a maximal connected subgraph of G. The connected components of G define
a partition of V .

Focusing on the traversals of the edges and arcs of a graph, a Eulerian tour in G is
a tour that traverses each edge and arc exactly once. A graph containing a Eulerian
tour is called a Eulerian graph. A Hamiltonian tour is a tour that visits all the
vertices of the graph exactly once and a graph that contains a Hamiltonian tour is
called a Hamiltonian graph.

Theorem 4. A connected and undirected graph G is Eulerian if, and only if, the
degree of all the vertices is even.
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Theorem 5. A strongly connected directed graph G is Eulerian if, and only if, the
indegree and outdegree of each vertex are equal.

2.2 Linear and Integer Programming

Linear Programming was first conceived by George B. Dantzig around 1947, while
he was working as a mathematical advisor to the Comptroller of the United States
Air Force on developing a mechanized planning tool for a time-staged deployment,
training, and logistical supply program. Linear problems (LPs) deal with a set of
decision variables x ∈ Rn satisfying a finite set of constraints, which are used to
minimize/maximize a linear cost function f(x) = cTx, c ∈ Rn, known as objective
function. The set of constraints, given as linear inequalities ax ≤ α with a ∈ Rn and
α ∈ R, generates the feasible region P = {x ∈ Rn : Ax ≤ b} containing all feasible
solutions. An optimal solution x∗ ∈ P satisfies:

cTx∗ = min{cTx : x ∈ P}.

In the early 50’s, Dantzig proposed an algorithm called the simplex method to solve
LPs. It has been widely accepted because of its ability to model complex management
decision problems and its capability for producing solutions in a reasonable amount of
time. This algorithm is non-polynomial because it may require a number of operations
that depends exponentially on the size of the instance. Since the simplex method was
introduced, there have been many contributions in the area of linear programming
such as theoretical developments, computational aspects and exploration of new ap-
plications of the subject. Among them, the most important contribution in Linear
Programming was made by Khachian (1979). In that paper, a polynomial algorithm
(the ellipsoid method) to solve LPs in polynomial time was proposed. Therefore,
it was proved that LPs are problems in the class P .

Dealing with large-scale LPs, Dantzig and Wolfe (1960) developed a decomposition
principle which is a procedure for solving linear programs with a large number of
variables or linear programs that contain specially structured constraints. The origi-
nal linear problem is reformulated and the new constraints are divided into general or
linking constraints, and special or independent constraints. The strategy of the decom-
position procedure is to operate on two separate linear problems: the master problem,
over the set of general constraints; and the subproblem or pricing problem, over the set
of special constraints. First, the master problem is solved using an iterative column
generation algorithm that solves at each iteration a restricted master problem, that
is, the master problem restricted to a subset of the variables that varies from one
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iteration to another. Then, the subproblem, which does not necessarily have to be
the same every time, is solved with a different objective function at each iteration.
The iterative procedure is finite and finishes when the optimal solution of the master
problem is found.

In many applications of optimization, one would really like the decision variables to
be restricted to integer values. When it occurs, the feasible region becomes a discrete
set of points in Rn. This fact may suggest that integer programs are a simple subject,
but they can turn certifiably hard. Integer Linear Problems (ILPs) consist of
minimizing (or maximizing) a linear function with integer decision variables x ∈ Zn

on the feasible region P = {x ∈ Zn : Ax ≤ b}. The ILPs are frequently identified
with Combinatorial Optimization, which concerns the study of optimization problems
of combinatorial nature. In fact, ILPs are considered NP-hard problems, since the
difficulty of optimizing on integer variables requires a methodology according to their
complexity. If the integrity constraint of an ILP is omitted, it results in an LP known
as linear relaxation of the ILP.

Whenever we have an optimization problem, it is solved when we have reached the
optimal solution. However, in practice it is not always necessary to reach the optimal
solution of the problem. Since the problems are sometimes very difficult to solve, a
non-optimal solution in a shorter time may be preferred. We distinguish between two
types of solution algorithms. Those in which we look for the optimal solution, the
exact algorithms, and those in which we cannot guarantee to find the optimal solu-
tion, but we can achieve a high-quality one in a reasonable time, the approximation
orheuristic algorithms.

Among the exact algorithms, Branch and bound is a smart and systematic search for
the optimal integer solution. In a branch-and-bound scheme, the linear relaxation
of the original problem is solved at the root node. Then, by branching on the inte-
ger values of the variables, problems are hierarchically generated on a tree. Optimal
values of the linear relaxations at the nodes are used as bounds to prune the tree,
until the optimal integer solution is reached. A generalization of this procedure is
the Branch and cut. In the nodes of the tree, a standard but not trivial procedure
improves the bounds by adding general or problem specific inequalities. At each node,
the new inequalities are introduced into a pool of constraints that will be managed
by the solver. The number of inequalities to add can be exponential and not care-
fully designed cutting schemes can easily get out of hand. As we describe in Section
2.3, the separation algorithms used to solve the separation problems associated with
each family of valid inequalities allow us to find inequalities not satisfied by the LPs
solutions that may improve the search for the optimal solution.
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Dealing with integer programming problems that allow the application of the principle
of decomposition for the LPs, it is possible to solve them by means of a branch-and-
price algorithm. It is more sophisticated and generally shows a good performance in
large-scale problems. The algorithm begins by using a reformulation to define the
master problem. Then, it solves the linear relaxation of a restricted master problem
in which only a subset of the columns is considered. To check for optimality, a pricing
problem is solved to find columns that can improve the objective function. Each time
a column is found with negative reduced cost, it is added to the restricted master
problem and the relaxation is reoptimized. If no columns can enter the basis and the
solution to the relaxation is not integer, then branching occurs until the solution is
integer.

Alternatively to the exact methods we have the heuristics algorithms. A large number
and variety of difficult problems which appear in practice and need to be solved
consciously, encourage the development of efficient procedures to find good solutions
even if they are not optimal. In these methods, the speed of the process is considered
as important as the quality of the solution obtained. Heuristics containing high-level
procedures are referred in the literature as metaheuristic. Finally, the maturation
of the subject has evolved into matheuristics which, as its name suggests, are the
hybridization of exact methods with heuristics. Both types of algorithms interoperate
until some stop criterion is reached. In spite of using exact methods, the solution
reached does not have to be optimal.

The following references are some excellent texts of Linear and Integer Programming:
Dantzig (1963), Garfinkel and Nemhausser (1972), Bazaraa and Jarvis (1977), Chvátal
(1983), Schrijver (1986) and Nemhausser and Wolsey (1988).

2.3 Polyhedral theory and polyhedral combinatorics

In this section we summarize the basic ideas of the polyhedral approach to solve com-
binatorial optimization problems (COPs), especially those that are NP-hard. First,
we review some theoretical concepts and establish the terminology we use.

Let us denote by Rn all the column vectors with n real components and let xi ∈
Rn, i = 1, . . . ,m. A vector y ∈ Rn is a linear combination of xi if, and only if, y
can be written as y =

∑m
i=1 λixi, with λi ∈ R. In addition, if y is a linear combination

in which λi ≥ 0, then y is a conic combination of the vectors xi. A vector y is an
affine combination if it is a linear combination that satisfies

∑m
i=1 λi = 1. Finally,

if y is an affine and conic combination, then it is a convex combination.
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The linear (resp. conic, affine, convex) hull of a set X ⊆ Rn is the set of all
points that are linear (resp. conic, affine, convex) combinations of a finite number of
points of X. It is denoted by lin(X) (con(X), aff(X), conv(X), respectively). X is
a linear (resp. conic, affine, convex) subspace in Rn if X is equal to its linear
(resp. conic, affine, convex) hull.

Vectors xi ∈ Rn, 1 ≤ i ≤ m, are linearly independent if none of them is a linear
combination of the others, or equivalently if

∑m
i=1 λixi = 0 implies that λi = 0 for all

i. Otherwise, we say that they are linearly dependent. In the same way, we say
that the vectors xi ∈ Rn, 1 ≤ i ≤ m are affinely independent if none of them is an
affine combination of the others, or equivalently if

∑m
i=1 λixi = 0 with

∑m
i=1 λi = 0,

implies λi = 0 for all i. Otherwise, we say that the vectors are affinely dependents.

Theorem 6. For a set X ⊆ Rn the following are equivalent:

• X is affinely independent.

• Given y ∈ X, {x− y : x ∈ X, x 6= y} is linearly independent.

• Given y ∈ Rn, {x− y : x ∈ X} is affinely independent.

Given X ⊆ Rn the range of X is the maximum number of linearly independent
vectors in X and is denoted by rg(X). In the same way, the affine range of X is
the maximum number of affinely independent vectors of X and is denoted by rga(X).
The range of a matrix A, rg(A), is the range of its column vectors, which is the same
as the range of its row vectors.

Theorem 7. Given X ⊆ Rn

• If 0 ∈ aff(X), then rga(X) = rg(X) + 1.

• If 0 /∈ aff(X), then rga(X) = rg(X).

If X is a linear subspace of Rn, a base B of X is any finite subset of linearly inde-
pendent vectors in X such that lin(B) = X. The bases of the same linear subspace
have the same number of vectors, and its number is the dimension of X. If X
is an affinely subspace in Rn, there is a unique linear subspace X ′ ⊆ Rn such that
X ′ = {x − x∗ : x ∈ X}, for any x∗ ∈ X. The dimension of X is the dimension of
X ′. Finally, if X is an arbitrary subset in Rn, the dimension of X is the dimension of
aff(X) and is denoted by dim(X).

A hyperplane of Rn is a set {x ∈ Rn : aTx = α} and a half-space of Rn is a
set {x ∈ Rn : aTx ≤ α}, where a ∈ Rn and α ∈ R. A polyhedron of Rn is the
intersection of a finite number of half-spaces in Rn or, equivalently, the solution set



16 Chapter 2. Preliminaries

of an inequalities system Ax ≤ b, where A is an m x n array and b ∈ Rm. A bounded
polyhedron is called a polytope. A polyhedron P ⊆ Rn is full-dimensional if
dim(P ) = n.

We say that aTx ≤ α is a valid inequality for a polyhedron P if P ⊆ {x ∈ Rn :

aTx ≤ α}. If F ⊆ Rn, besides being a valid inequality aTx ≤ α, satisfies that
F = P ∩ {x ∈ Rn : aTx = α}, F is a face of the polyhedron P . Here we say that the
face F is induced by the inequality aTx ≤ α. Several inequalities can induce the same
face of a polyhedron P . In this case, these inequalities are equivalent with respect
to P . Obviously, a polyhedron P is a face of itself. Proper faces are the other
non-empty faces of a polyhedron. Likewise, a facet of a polyhedron is any non-empty
proper face of P that is maximal with respect to the inclusion of sets. In this way,
the concept of facet corresponds to the common idea of a polyhedron’s face. Facets
are then the best valid inequalities that can be added to a formulation. In an ideal
theoretical scenario, all the constraints in the formulation would be facets.

Theorem 8. Let P ⊆ Rn be a polyhedron and let F be a non-empty proper face of P
induced by a valid inequality aTx ≤ α. So, the following are equivalent:

• F is a facet of P .

• dim(F ) = dim(P )− 1.

• If bTx ≤ β is valid for P , F ⊆ P ∩ {x ∈ Rn : bTx ≤ β} and aff(P ) = {x ∈
Rn : Ax = d}, where A is a matrix mxn and d ∈ Rm, then there are λ ∈ Rn and
µ ≥ 0 such that bT = µaT + λTA.

A vertex of a polyhedron P is any non-empty proper face of P that is minimal with
respect to the inclusion of sets, that is, any face of P that is constituted by a single
point F = {v}. We call integer polyhedron to any polyhedron whose vertices have
all its components integer.

Theorem 9. v ∈ P is a vertex if, and only if, v cannot been expressed as a convex
combination of other points in P .

Theorem 10. If a polyhedron P has at least one vertex and min{cTx : x ∈ P} is
finite, then there is at least one vertex in P which is an optimal solution.

Theorem 11. For each vertex x∗ ∈ P , there is a vector c ∈ Rn such that cTx∗ < cTx

for each x∗ ∈ P \ {x}.

Given a finite set E, called ground set, with a cost function c, and a finite (or infi-
nite numerable) family F of subsets of E, called feasible solutions, a combinatorial
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optimization problem (COP) with linear objective function consists of finding an
F ∗ ∈ F such that c(F ∗) =

∑
e∈F ∗ cexe is minimum (or maximum), where xe denotes

the number of times that e ∈ E is in F ∗.

The polyhedral approach to the solution of combinatorial optimization problems be-
gins with the creation of a polyhedron PF , whose vertices, possibly together with other
points in PF , follow a one-to-one correspondence with the feasible solutions in F . We
define the incidence vector xF of a feasible solution F in F as xF = (xFe )e∈E ∈ Z|E|,
where xFe denotes the number of times that e is in F , and then we define PF as
PF = conv{xF : F ∈ F}.

Although PF is not a polyhedron in general, it can be proved that for most COPs
it actually is. Thus, we will assume that PF is a polyhedron. It can be seen that
each possible solution F in F corresponds to a point in PF and each vertex in PF is
a solution in F . Therefore, for any cost function c for which the COP has a finite
optimum value, we can find an optimal solution for the COP by optimally solving the
LP:

min
x∈PF

cx (2.1)

What we have done is to transform in a natural way the COP into the LP (2.1).
However, without any knowledge of the linear system that PF describes, this trans-
formation is useless from the algorithmic point of view. In order to tackle the problem
(2.1) by using linear programming algorithms, it is necessary to know all (or a signif-
icant part of) the linear system described by PF .

An ideal theoretical situation would be to know a complete linear description of the
polyhedron, even though we would not be able to generate and keep all the data of the
associated LP. Even if the linear system is finite, it can be expected to be extremely
large because, in many problems, the number of rows grows exponentially with the
number of variables in the problem. Bringing polyhedral theory from principles to
practice requires additional specific strategies and methods. An alternative to listing
all the known rows of the linear system is to periodically solve a separation problem.

The Facet Identification Problem, also known as Separation Problem, consists
of, given x ∈ R|E| and a polyhedron PF , finding a linear inequality fx ≤ f0 defining a
facet of PF that is violated by x (i.e., fx > f0), or demonstrate that such inequality
does not exist (x ∈ PF).

Note that a subroutine to exactly solve the facet identification problem embedded in a
branch-and-cut code will generate violated inequalities (maybe defining facets of PF)
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cutting-off fractional optimal solutions of the LPs. In Grötschel and Padberg (1985)
is described the Relaxation Method, an iterative procedure for solving combinatorial
optimization problems which uses this technique to solve them. The problem is that
this method requires the complete description of the linear system associated with the
polyhedron PF .

The problem with the above technique is that, as we have mentioned, these com-
plete descriptions are known only for a very few number of COPs. However, research
in Polyhedral Combinatorics has demonstrated that even a partial knowledge of the
linear system describing PF generally improves results both theoretically and compu-
tationally. Thus, one of the fundamental challenges in Polyhedral Combinatorics is
to find a large enough linear system describing the polyhedron PF to provide enough
information for solving the problem.

Therefore, the description of the polyhedron PF can be used to improve the linear
relaxation by adding a subset of valid inequalities. By using the separation algo-
rithms, we generate inequalities of the LP from the partial description of the poly-
hedron. A separation algorithm is successful if it returns a valid inequality that cuts
off any infeasible solution. An exact separation algorithm is guaranteed to solve the
separation problem while a heuristic does not. Despite this, heuristics are frequently
used in practice because they are generally faster or because the separation problem
is itself a NP-hard problem. If applying a heuristic for solving the separation problem
we do not find any violated inequality and we have not reached the optimum, we can
then use a branch-and-bound or branch-and-cut scheme with a higher probability of
reaching the optimal solution, since we have a much tighter linear relaxation.

Bachem and Grötschel (1982), Pulleyblank (1983), Hoffman and Padberg (1985),
Schrijver (1986) and Nemhausser and Wolsey (1988) provide a wealth of information
on the concepts and results of polyhedral theory and polyhedral combinatorics.
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Chapter 3

Routing Problems

In this chapter, we provide an overview of some classic routing problems that have
been studied in depth in the literature. Due to the wide variety of routing problems,
we want to point out that those presented here are the basis of many other related
problems that have arisen over the years to adapt them to specific situations. The
knowledge of these original problems contributes to a better and faster understanding
of the more complex ones. Routing problems are combinatorial optimization problems,
which consist of finding the best (optimal) solution among a finite (but huge) or infinite
number of numerable solutions. Usually, a problem of size n may have nor kn feasible
solutions, where k is an integer greater than or equal to 2. Therefore, to solve this
type of problem it is necessary to study its properties and characteristics, which are
essential to develop a tailored solution method.

Routing problems have attracted the attention of many researchers and practitioners
during many years because of their big economic impact and the mathematical chal-
lenges involved in their study and solution. These problems are related to a wide range
of variables, including vehicles, drivers, warehouses, roads, and customers, resulting
in a large number of problem variants. In the real world, there is a large number of
situations that can be modeled as routing problems. In fact, most public organiza-
tions or private companies have been dealing with problems related to mail delivery,
garbage collection, street cleaning, inspection or maintenance of streets, highways or
electrical networks, distribution of all kinds of products, visits to customers, trans-
portation of people, etc. In the last years, important research has been carried out in
this field, achieving significant progress in the formulation of problems as well as in
the design, analysis, and implementation of algorithms for their solution. As a result
of this research, it has been possible to achieve an efficient planning of the routes that
helps to minimize the costs when performing these tasks.
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Figure 3.1: Applications of routing problems

Usually, routing problems are modeled on a graph that represents a road network,
where a non-negative cost is associated with each arc/edge of the graph (the streets or
roads of the network) representing the cost/distance of traversing it. These problems
can be classified according to whether the service must be performed at the vertices or
the arcs of the graph. The former are called Node Routing Problems, while the latter
are called Arc Routing Problems. Combining these two classes of problems, more
general problems arise that consider that the service must be performed by traversing
a set of edges and/or arcs and visiting a set of vertices in the graph. The “combined”
problems are called General Routing Problems. Typically, in all cases, the objective is
to find one or more tours with total minimum cost, visiting the vertices and traversing
the arcs and/or edges of the graph that require service.

Very often, the demand from customers (nodes and/or arcs) is so great that it can-
not be serviced with a single vehicle. Thus, routing problems can also be classified
according to whether a single vehicle is sufficient to do the service or whether a fleet
of vehicles must be considered. If there is more than one vehicle, we must take into
account whether all the vehicles are identical or not. The objective of the problem is
to define a route for each vehicle in such a way that the global demand is satisfied.
Also, many times the routes must be balanced according to certain criteria. There
are several possibilities to achieve this: to limit the capacity/distance/time of each
vehicle and minimize the total distance; use a min-max objective in which the length
of the longest path is minimized. If the problem requires it, a combination of both
criteria can also be used.
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In some situations, there is a (measurable) profit associated with customer service.
Routing problems with profits refer to situations in which a profit is associated with
each customer and, unlike what happens in “classic” routing problems, it is not nec-
essary to service all customers but only a subset of them. The customers to service
must be selected from a set of “potential” customers with an associated profit that
is collected when the customer is serviced. They basically consist of designing one
or more routes servicing the chosen customers and such that an objective defined as
a function of the cost or/and the profit is optimized. Depending on the objective
function, several variants can be considered. A routing problem is called profitable if
the objective is to maximize the difference between the total collected profit and the
traveling cost; orienteering, when the aim is to maximize the profit but the length
(duration) of the route is restricted by a given distance (time); and prize collecting if
the goal is to minimize the cost/length of the route taking into account a limitation
on the profit.

Note that we have mentioned only some of the particularities that can be considered
in the study of a specific problem. Any routing problem may be complemented with
some additional real-life complexities, such as time windows for pickup and delivery,
time-dependent travel times, precedence relations, forbidden turns, etc.

Finally, arc routing problems can be classified into undirected, directed, mixed, and
“windy”, depending on the characteristics of the network studied. To represent a
network in which all streets or roads can be traversed in both directions at the same
cost, we will use an undirected graph. However, the graph will be directed to represent
a network in which streets can only be traversed in one direction, or it will be mixed in
the case where some streets can only be traversed in one direction and others in both
directions. The graph will be “windy” if we want to model a routing problem in which
the streets are two-way but the cost of traversing them depends on the direction in
which they are traversed (Minieka (1979)). Arc routing problems defined in a windy
graph generalize those defined in undirected, directed, or mixed graphs.

The following three sections provide a brief description of some routing problems
depending on whether the demand is on the links (arcs or edges), on the vertices, or
even simultaneously on some vertices and some links of the graph.

3.1 Node Routing Problems

As mentioned above, the main characteristic of node routing problems is that the
customers requiring service are represented as vertices of the graph. These problems
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are among the most studied in Combinatorial Optimization and arise in many prac-
tical contexts such as freight distribution and collection, transportation, newspaper
delivery, etc. Although there are many variants of these problems, they basically con-
sist of minimizing the total distance traveled by one or more routes that visit all or
some of the vertices of the graph. The following three problems are among the most
important node routing problems and are considered the basis for studying related
problems.

The Traveling Salesman Problem (TSP) was first mentioned in 1930 and it is
one of the most studied optimization problems. TSP is an easy problem to explain
but very difficult to solve. Given a road network, the problem consists of finding a
minimum cost tour visiting all the cities exactly once. Usually, the TSP is defined
in a complete graph and Karp (1972) proved that it is NP-hard. In-depth research
has been carried out on TSP and many exact heuristics and algorithms have been
developed, so that some instances with tens of thousands of cities can be solved to
optimality and even problems with millions of cities can be approximated within a
small fraction (1%).

The Graphical Traveling Salesman Problem (GTSP) is a variant of the TSP,
introduced by Fleischmann (1985, 1988) and Cornuèjols et al. (1985), in which the
graph does not necessarily to be complete and the vehicle is allowed to visit each
vertex of the graph more than once.

TheVehicle Routing Problem (VRP) was first introduced by Dantzig and Ramser
(1959) to model the problem in which a fleet of homogeneous trucks has to meet the
oil demand of several gas stations from a central hub and with a minimum distance
traveled. Five years later, Clarke and Wright (1964) generalized this problem to
a linear optimization problem commonly found in the logistics and transportation
domain. The VRP, as it is currently known, consists of, given a set of customers and
a fleet of vehicles located in a central depot, finding a set of routes with minimum
cost that, starting and ending in the depot, service the customers. The VRP is more
difficult than TSP since it involves partitioning the set of customers so that they can
be serviced by the vehicles and then defining the service order for each customer.
Obviously, this problem is also NP-hard

3.2 Arc Routing Problems

The problems we deal with in this thesis are included in the class of Arc Routing Prob-
lems (ARPs). Unlike in Node Routing Problems, where the customers are represented
by vertices in a graph, in ARPs the customers are represented by the arcs/edges of the
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graph. ARPs consist of finding one or several routes, jointly traversing the arcs/edges
requiring service and such that the total traveling cost is minimized. Within route
planning, there are many traditional arc routing applications, such as garbage collec-
tion, road cleaning, mail delivery, electrical or rail networks inspection, snow removal,
etc.

Although ARPs have been much less studied than node routing problems, the liter-
ature on arc routing problems is very extensive and impressive developments in the
area have been achieved in the last 40 years. Around the 1980s, the articles by Assad
et al. (1983), and Benavent et al. (1983) were among the first works to provide a
general overview of the field. Bodin and Golden (1981) provide a detailed classifica-
tion of these problems and Lenstra and Rinnooy-Kan (1981) discuss their complexity.
Subsequently, and including new contributions, the works by Eiselt et al. (1995a,b),
Assad and Golden (2000), and the book edited by Dror (2000) update much of the
work done up to the year 2000 on arc routing problems. Corberán and Prins (2010)
is an annotated bibliography of more recent results. More lately, a comprehensive
and up-to-date discussion of arc routing problems by renowned researchers is carried
out in the book edited by Corberán and Laporte (2014). The article by Mourão and
Pinto (2017) is a recent and exhaustive annotated bibliography. Finally, the article
by Corberán et al. (2021) gives an updated vision of the current state of the art of
ARPs and tries to foresee what will be the most relevant topics and research lines in
this area in the next years.

Let’s talk about the origin of ARPs. It was not until the 1960s that a Chinese
mathematician, Meigu Guan (Mei-Ko Kwan) proposed in Guan (1962) what is known
as the Chinese Postman Problem (CPP). A postman is assigned a neighborhood
in whose streets he must deliver the mail and his/her problem is to find the shortest
route that, starting from the post office, traverses all the streets and returns to the
office (see Figure 3.2).

Given an undirected connected graph G = (V,E), The CPP can be posed as the
problem of finding a tour traversing each edge of E at least once with minimum
total distance. In Edmonds (1965), it is proved that (the undirected version of) this
problem is polynomially solvable by providing a polynomial algorithm which solves it
to optimality. As the the full description of the associated polyhedron is also known,
the CPP is considered a “solved” problem and belongs to the complexity class P .

Afterwards, Edmonds and Johnson (1973) demonstrate that the directed version of the
Chinese postman problem (DCPP) can also be solved in polynomial time. The authors
showed that it is possible to solve efficiently the problem by solving a transportation
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problem1 to decide which arcs must be added to obtain a closed tour of minimum
distance that traverses at least once each arc in the graph. Therefore, the DCPP is also
considered a “solved” problem, and the full description of its associated polyhedron
is known. The DCPP was introduced in a similar way in Orloff (1974) and Beltrami
and Bodin (1974).

Figure 3.2: Chinese Postman Problem (CPP)

The CPP defined on a mixed graph (MCPP) is a much more difficult problem. Pa-
padimitriou (1976) showed that, unlike the directed and undirected versions of the
CPP, the MCPP is an NP-hard problem. Anyway, the study of the problem has pro-
vided a great deal of knowledge. For example, an optimal algorithm for the mixed
CPP, which includes a polynomial-time procedure to identify a violated balanced-set
inequality in a mixed graph if one exists, is presented in Nobert and Picard (1996).
In Edmonds and Johnson (1973), it is proved that if G is an even graph, the MCPP
can be solved in polynomial time.

If we assume that the edges of the graph can be traversed in either direction but
with different costs, depending on the direction of the traversal, we have the Windy
Chinese Postman Problem (WPP). This problem, proposed by Guan (1984), contains
as special cases the three previous ones and, therefore, is NP-hard. A solid study
on the WPP can be found in the thesis of Win (1987), where it is shown that the
WPP can be solved in polynomial time under some assumptions, among them if G is
Eulerian.

A generalization of the CPP is the Rural Postman Problem (RPP), which also
has its origin in the delivery of mail, but, in this case, in rural areas. Consider a
postman delivering the mail at several villages. The postman has to traverse some
roads or streets (without delivering mail) to travel among the villages or neighbors.

1For each vertex i ∈ V , let di be the number of arcs entering i minus the number of arcs leaving i.
Let S (T ) be the set of vertices i with di > 0 (di < 0). The DCPP can be formulated as the problem
of finding the minimum cost transportation plan between the plants S and the destinations T .
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These “links”, traversed (without being serviced) to move from one service area to
another, are called deadheading links. The main difference between the CPP and the
RPP is that in the former the set of links to be serviced is the set of links of the graph,
while in the RPP there are links that are not necessary to service (see Figure 3.3).

Figure 3.3: Rural Postman Problem (RPP)

Consider an undirected connected graph G = (V,E) and let ER ⊆ E be a non-empty
set whose edges are called required edges. The RPP is the problem of finding a tour
in G traversing each edge in ER at least once with minimum total cost. This problem
was first proposed by Orloff (1974), and Lenstra and Rinnooy-Kan (1976) proved that
it is NP-hard. Orloff pointed out that the complexity of RPP seems to increase with
the number of connected components of the subgraph induced by the required edges.
This was consistent with the result published in Frederickson (1979), where an exact
recursive algorithm for the RPP, exponential in the number of such components, is
proposed.

The versions of the RPP defined on directed (DRPP), mixed (MRPP), and windy
graphs (WRPP), have also been studied. As with the undirected RPP, these three
versions are NP-hard. For the DRPP, MRPP, and WRPP, an extensive polyhedral
study has been done. Moreover, exact and approximate algorithms have been designed
and implemented for the solution of these three problems.

Another ARP that has been widely studied is the well known Capacitated Arc
Routing Problem (CARP). The CARP was introduced in Golden and Wong
(1981). It is a generalization of the RPP in which a demand is associated with each
required edge or arc. In the CARP, the goal is to find a set of routes for a fleet of
vehicles with limited capacities based at a depot, so that the total demand serviced
on each route does not exceed the vehicle’s capacity and the total cost is minimized
(see Figure 3.4). The CARP has been extensively studied and many exact and heuris-
tic algorithms have been proposed to solve it. The recent work by Pecin and Uchoa
(2019) analyzes the best known exact algorithms for the CARP and proposes a new
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branch-and-cut-and-price algorithm that solves almost all instances from the classical
benchmark CARP sets.

Figure 3.4: Capacitated Arc Routing Problem (CAPP)

During the last 40 years, several research groups around the world have been studying
many arc routing problems, new ones and generalizations of others already studied,
that allow modeling the new situations that real life presents. In parallel, there have
been important developments in the design and implementation of exact algorithms,
based on branch-and-cut, column generation and their hybridization, and sophisti-
cated metaheuristic algorithms.

3.3 General Routing Problems

In arc routing problems the service demand is located on the arcs or/and edges of a
network. However, there are real-life situations where the demand is also located at
some vertices of the graph. The General Routing Problem (GRP) was first introduced
by Orloff (1974). The GRP in an undirected graph G = (V,E) consists of, given a
subset of required edges ER ⊆ E and a subset of required vertices VR ⊆ V , to find a
tour with minimum total cost in G that traverses each required edge and visits each
required vertex at least once. Since the GRP contains the RPP as a special case, it
is also an NP-hard problem (Lenstra and Rinnooy-Kan (1976)).

One of the reasons for studying the GRP lies in the number of problems that it
contains as special cases. For example, if all edges in the graph are required, ER = E,
we have the CPP. If there are no required vertices VR = ∅, the RRP results, and, if
there are no required edges and all vertices in the graph are required, ER = ∅ and
VR = V , the GRP reduces to a pure node routing problem, the GTSP. Hence, an ILP
formulation for the GRP is also an RPP formulation. Thus, all inequalities valid for
the RPP are valid for the GRP, and vice versa. Note that the algorithms developed for
solving the RPP are also applicable for solving the GRP (see Corberán et al. (2001)).
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The GRP versions defined for directed (DGRP), mixed (MGRP), and windy graphs
(WGRP), have also been studied. In all of them it has been proved that they are
NP-hard. In fact, as we will see in this thesis, we use the polyhedral study for the
DGRP to support the polyhedral study for other more complex ARPs.
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Chapter 4

Close-Enough Routing Problems

4.1 Introduction

In all the mentioned routing problems, the service is performed while the vehicle tra-
verses a vertex or an arc/edge of the graph. These problems are found in many real-
world applications such as meter reading, postal delivery or waste collection, where
customers are located in streets or roads and service is performed while traversing
them. In recent years, the development of new technologies have resulted in situations
where it is not necessary for the vehicle to reach the exact position of the customer
in order to perform its service, but simply to get close to the customer. This scenario
is referred to as “close-enough” in routing problems, since the vehicle only has to pass
close enough to the customer location. In Close-Enough Routing Problems (CERPs)
we can distinguish between Close-Enough Traveling Salesman Problems (CETSPs),
where customers are represented as nodes (they do not necessarily match the vertices
of the graph), and Close-Enough Arc Routing Problems (CEARPs), where customers
are represented as arcs or edges. Several variants of these problems have been exten-
sively studied in the literature.

One of the most direct applications of the CERPs can be found in meter reading (see
Figure 4.1). Technological innovations such as radio frequency identification (RFID)
makes it possible to remotely collect consumption data from gas, electricity, or water
meters, instead of having to do it door-to-door as was customary years ago (Uribe-
Pérez et al. (2016)). The meter sends a signal that describes the consumption of
gas, electricity, or water, which is captured by the receiver if it is less than a certain
distance. Thus, given a road or street network where the meters are located, there are
vehicles with a radio frequency receiver that can read the consumption just getting
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close to each meter. In this case, the vehicle/operator only has to enter the meter’s
coverage area to perform the service, without the need to physically visit all the
customers, which saves time and money. The work by Eglese et al. (2014) provides
an interesting summary of the models and methods proposed since the late 1970s in
meter reading.

Figure 4.1: CERP application in meter reading

Another application of CERPs can be found in inventory management in large com-
panies, especially those where there are many products and therefore checking them
one by one is very time-consuming. RFID tags have revolutionized supply chain man-
agement by enabling warehouse managers to record inventory much more efficiently
than they could by reading box numbers and manually recording them. But the
scale of modern retail operations makes RFID scanning inefficient. Even with RFID
technology, it can take a single large retail store a long time to perform a complete
inventory review, which means that mismatches often go undiscovered until exposed
by a customer request. MIT researchers have developed a system that enables aerial
drones to read RFID tags from tens of meters away and identify the location of the
tags with an average error of about 19 centimeters (see Figure 4.2). Therefore, to
perform the inventory the drone does not need to traverse all the aisles of the ware-
house for data collection. The researchers anticipate that the system could be used in
large warehouses both for continuous monitoring to avoid inventory mismatches and
for locating individual items so that employees can quickly and reliably respond to
customer requests.

Drones with RFID receivers or built-in cameras (Figure 4.3) are identified by Aráoz
et al. (2017) as the most suitable devices to perform certain tasks such as maintenance
or surveillance quality control for networks maintenance and surveillance tasks. The
drones do not have to fly over the nodes or lines to be monitored, but only to approach
the target at a certain distance. Aráoz et al. indicated that in quality control for
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Figure 4.2: Application CERP in Inventory Review

networks maintenance only a small subset of the edges of a network has to be traversed.
They also argued that the CEARP is the most appropriate problem for modeling
location/arc routing problems in which facilities have to be located at some given
areas and connected among them by means of a route.

Figure 4.3: Application CERP in surveillance tasks

Yuan et al. (2007) and Behdani and Smith (2014) introduced another application in
the robot monitoring of wireless sensor networks. As Yuan et al. (2007) point out, in
a wireless sensor network, where sensors are geographically distant from each other,
it may not be practical to require sensors to directly coordinate with each other to
form a communication network due to the energy restriction. One possible solution is
to employ a mobile robot, which can travel to all sensors, to download the data and
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finally return to its base station (starting position). Like in meter reading, the robot
must be physically within its effective range.

This chapter addresses the CETSP and the CEARP as well as other variants studied in
this thesis. Section 4.2 describes the nature of the CETSP and provides the literature
review. The CEARP is described in more detail, as it is the main base of the problems
we deal with in the thesis. Section 4.3 provides the literature review and the formal
problem definition for the CEARP. Section 4.3.3 presents some of the variants of the
original CEARP, focusing on the three problems studied in this thesis: the Profitable
CEARP for a single vehicle, the Distance-Constrained CEARP, and the Min-Max
CEARP.

4.2 Close-Enough Traveling Salesman Problems

Gulczynski et al. (2006) appear to be the first researchers to study the CETSP (with
a single vehicle). In the CETSP, customers are located at points in the plane and the
vehicle must travel within a required radius r of each point to service the customer.
In that paper, it is assumed that the vehicle is not restricted to a road network,
that is, it can move between any pair of points in the plane following a straight line
whose cost is the Euclidean distance. This situation would occur if, for example, the
salesman is a drone and the service is performed by flying through a free flight zone
in a neighborhood of each target point. The objective of the problem is to minimize
the total distance traveled. The authors propose six heuristics to solve this problem
under the assumption that all neighborhoods are discs of the same radius.

Since then, the CETSP and some variants in which the radius associated with each
customer may vary, or the shape of the area around the customer is not a circle, have
been studied by several authors. Dong et al. (2007) called this problem the automatic
meter reading shortest tour problem (AMRSTP) and designed and implemented two
heuristic approaches, a clustering-based algorithm and a convex hull-based algorithm.
They also introduced a mixed integer non-linear programming formulation of the
problem, but it was not specifically used in the design of the algorithm. In Yuan et al.
(2007) an effective evolutionary approach was developed. It is able to find the shortest
tour on all the benchmark instances, although with large computation time. Mennell
(2009) proposed the Steiner-Zone Heuristic, an approximation algorithm based on the
intersection of the neighborhoods. In the paper by Behdani and Smith (2014) was
formulated a mixed-integer programming model based on a discretization scheme they
used to define tighter lower and upper bounds. Coutinho et al. (2016) proposed an
exact algorithm, based on branch-and-bound and second order cone programming. In
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Carrabs et al. (2017) a discretization scheme to compute both a lower and an upper
bound was introduced, and a graph reduction algorithm to decrease the problem size
was applied.

It was in Shuttleworth et al. (2008) where the CETSP was addressed over a realistic
street network and modeled as a node routing problem on a directed graph. The
authors proposed four heuristics to solve eight real-life instances with an average of
900 customers and 9000 streets each. These heuristics have essentially two phases: first
a subset of streets to be traversed is selected, and then a route starting and ending at
the depot and traversing all these streets is found. The first phase is obviously related
to the resolution of a set covering problem, while the second consists of solving a
directed rural postman problem (or a directed general routing problem if the depot
is not incident with a selected street).

A closely related problem is the Covering Tour Problem (CTP) studied by Gendreau
et al. (1997). The CTP is defined on an undirected graph G = (V ∪ W,E) where
W is a set of vertices that must be covered. The problem consists of determining
a minimum length Hamiltonian cycle on a subset of V such that every vertex of
W is within a prespecified distance from the cycle. For this problem, the authors
presented an ILP formulation and several valid inequalities and propose a heuristic
and a branch-and-cut algorithm. Baldacci et al. (2005) provided three scatter search
methods for this problem. The multi-vehicle CTP has been studied in Hà et al.
(2013) and Jozefowiez (2014). Finally, some special cases of CETSP were solved by
polynomial-time approximation algorithms: the geometric covering salesman problem
(GCSP) in Arkin and Hassin (1994), and the TSP with neighborhoods (TSPN) in
Mata and Mitchell (1995) and in Dumitrescu and Mitchell (2003).

4.3 Close-Enough Arc Routing Problems

The Close-Enough Arc Routing Problem consists of finding a minimum cost route
that starts and ends at the depot and traverses some of the streets of a network in
such a way that all customers are serviced. A customer is serviced when the vehicle
gets closer than a certain given distance. Therefore, it is assumed that we know which
streets the vehicle can traverse to service each customer. The main characteristic of
this problem is that the set of streets to be traversed is not known in advance, but
rather is a decision variable.
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4.3.1 Literature review

Drexl (2007) studied the problem without considering the presence of a depot. Instead
of referring to the problem as CEARP, he referred to it as the Generalized Directed
Rural Postman Problem. He noted that when each customer is serviced from a single
arc, the problem reduces to the well known Directed Rural Postman Problem (DRPP)
and, therefore, the CEARP is NP -hard. He proposed a formulation and a branch-
and-cut algorithm producing good computational results. A more recent version of
his work was published in Drexl (2014). Hà et al. (2014) introduced the name Close-
Enough Arc Routing Problem and proposed a new formulation, which they compared
with that in Hà et al. (2012) and the one by Drexl (2007, 2014). Moreover, they
presented a branch-and-cut algorithm that provided very good computational results
on large-size instances.

More recently, Ávila et al. (2016b) presented two new mathematical formulations for
the problem and studied the polyhedron of solutions associated with one of them.
The authors also describe several new families of valid inequalities that they use to
implement a new branch-and-cut algorithm. As a peculiarity, in that paper it is shown
that the CEARP can be considered as a combination of two optimization problems,
the Set Covering Problem (SCP) and the Directed General Routing Problem (DGRP).
The authors compared the performance of their branch-and-cut algorithm with that
published in Hà et al. (2014). In Cerrone et al. (2017) a new flow-based formulation
was proposed, as well as some techniques to reduce the size of the graph. Using this
new formulation, the results obtained in one of the sets of instances proposed in Hà
et al. (2012) improved those of Hà et al., but were slightly worse than those of Ávila
et al. (2016b). Therefore, as far as we known, the algorithm by Ávila et al. (2016b)
is the best exact method to solve CEARP.

4.3.2 CEARP definition and formulation

We here present the definition of CEARP, together with a formulation and a set
of valid inequalities to strengthen it, which are based on those proposed by Ávila
et al. (2016b). Consider a strongly connected and directed graph G = (V,A), with
set of vertices V and set of arcs A, and let dij ≥ 0 be the distance/cost associated
with the traversal of arc (i, j) ∈ A. Each costumer can be serviced whenever the
vehicle traverses any arc among those located at a distance less than or equal to r
from the customer. Thus, a customer can also be defined/represented by that set of
arcs. Hence, given a set of customers H = {1, . . . , L}, each customer c ∈ H has an
associated set of arcs Hc ⊆ A from which it can be serviced. These subsets Hc do not
need to be disjoint nor induce connected subgraphs. See Figure 4.4.
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Figure 4.4: Close-Enough Arc Routing Problem (CEARP)

The notation we use for this problem is basically the same that we will use to formulate
the other problems throughout this thesis. We define the set of required arcs, AR =

H1 ∪H2 . . . . . .∪HL, as the one formed by those arcs from whose traversal customers
are serviced. Given a subset of vertices S ⊂ V , we define

• δ+(S) = {(i, j) ∈ A : i ∈ S, j ∈ V \ S},

• δ−(S) = {(i, j) ∈ A : i ∈ V \ S, j ∈ S},

• δ(S) = δ+(S) ∪ δ−(S),

• A(S) = {(i, j) ∈ A : i, j ∈ S},

• AR(S) = {(i, j) ∈ AR : i, j ∈ S}.

As usual, we will use δ+(i) instead of δ+({i}).

The Close-Enough Arc Routing Problem can be formally defined as the problem of
finding a minimum cost tour, starting and ending at the depot (vertex 1), that services
all the customers. Note that the tour must traverse at least one arc from each subset
Hc, c = 1, . . . , L to service all the customers. In order to formulate the problem, we
represent a CEARP solution using two sets of variables:

xij = number of times arc (i, j) ∈ A is traversed

yij =

{
1, if at least one customer is serviced from the arc (i, j) ∈ AR,
0, Otherwise.
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The CEARP can then be formulated as follows:

Minimize
∑

(i,j)∈A

dijxij

s.t.:

x(δ+(i)) = x(δ−(i)) ∀ i ∈ V (4.1)

x(δ+(S)) ≥ 1, ∀S ⊆ V \ {1} : ∃ Hc ⊆ A(S) ∪ δ(S) (4.2)

x(δ+(S)) ≥ yij, ∀S ⊂ V \ {1} :

@ Hc ⊆ A(S) ∪ δ(S), ∀(i, j) ∈ AR(S) (4.3)∑
(i,j)∈Hc

yij ≥ 1, ∀c ∈ H (4.4)

xij ≥ yij, ∀(i, j) ∈ AR (4.5)

xij ≥ 0 and integer ∀(i, j) ∈ A (4.6)

1 ≥ yij ≥ 0 and integer ∀(i, j) ∈ AR, (4.7)

Equations (4.1) ensure the symmetry on the vertices. The connectivity of the route is
guaranteed by constraints (4.2) and (4.3). Inequalities (4.4) imply that, if a customer
c is serviced, at least an arc in Hc is traversed. Constraints (4.6) and (4.7) are the
nonnegativity and integrality inequalities.

In Ávila et al. (2016b), a CEARP tour is defined as any vector (x, y) ∈ RA|+|AR|

satisfying constraints (4.1) to (4.7). The authors realized that any CEARP solution
is a CEARP tour, but not vice versa. It should be noted that the above formulation
allows subtours that are disconnected from the depot and do not service any customer,
so that not all CEARP tours are CEARP solutions. However, since all distances dij
are nonnegative, there will always be an optimal CEARP tour that does not contain
such subtours.

In addition to the formulation, the authors also carried out a polyhedral study of
the problem and obtained several valid inequalities and facets that helped to better
understand the problem and its solution. Here we present them briefly and refer the
reader to Ávila et al. (2016b) for a more detailed description.

Connectivity inequalities. Valid inequalities (4.8) are a generalization of the con-
straints (4.2). These new valid inequalities induce facets of the CEARP polyhedron
if some conditions are satisfied.
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x(δ+(S)) ≥ 1− y
(
Hc ∩ AR(V \ S)

)
, ∀S ⊂ V \ {1} ∀ c ∈ H (4.8)

Parity inequalities. Let S ⊂ V , F ⊆ δR(S), and a set of customers {c1, c2, ..., cq},
with |F | + q odd and q > 0, such that Hci ∩ δ(S) 6= ∅, Hci ∩ Hcj ∩ δ(S) = ∅, and
Hci ∩ F = ∅ for all ci, cj, i, j = 1, . . . , q. Inequalities (4.9) are valid for CEARP.

x(δ(S)) ≥ 2y(F )− |F |+
q∑
i=1

(
1− 2y(Hni

\δ(S))
)

+ 1 (4.9)

K-C inequalities. Consider a partition of the vertex set V into K+1 subsets {M0∪
MK ,M1, . . . ,MK−1} with K ≥ 3. Let {I1, I2} be a partition of the set {1, 2, . . . , K−1}
such that for each j ∈ I1, either 1 ∈Mj or there is a cj such that Hcj ∩ AR(Mj) 6= ∅,
for each j ∈ I2, there is a required arc aj ∈ AR(Mj), and the induced subgraphs
G(Mi), ∀i = 0, . . . , K are strongly connected. For simplicity, we denote AOKR = (M0 :

MK)R ∪ (MK : M0)R. Let F ⊆ AOKR be a set of arcs and let {c1, c2, . . . , cq} a set of
customers satisfying:

• |F |+ q is even,

• Hci ∩ AOKR 6= ∅ ∀i,

• Hci ∩Hcj ∩ AOKR = ∅ ∀i, ∀j, and

• Hci ∩ F = ∅ ∀i.

If we assume that 1 ∈M0, the following inequality is valid for CEARP:

(K−2)
(
x(M0 : MK) + x(MK : M0)

)
+

∑
0≤i,j≤K
(i,j) 6=(0,K)

|i− j|x(Mi : Mj)

≥ (K − 2)
(
2y(F )− |F |

)
+ (K − 2)

q∑
i=1

(
1− 2y(Hci \ AOKR )

)
+2
∑
j∈I1

(
1− y(Hcj \ A(Mj))

)
+ 2

∑
j∈I2

yaj (4.10)

Dominance inequalities. This last class of inequalities was previously introduced
by Hà et al. (2014). Given two arcs (i1, j1), (i2, j2) ∈ AR, the first dominates the
second if for any customer c ∈ H such that (i2, j2) ∈ Hc then (i1, j1) ∈ Hc. For
any pair of arcs such that (i1, j1) dominates (i2, j2), or vice versa, the inequalities are
defined as

yi1j1 + yi2j2 ≤ 1. (4.11)
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Ávila et al. (2016b) also implemented a branch-and-cut algorithm based on this for-
mulation, which incorporates separation algorithms for the valid inequalities they
proposed. They carried out an extensive computational analysis over various sets of
CEARP instances and the results show that this algorithm outperforms the other
existing exact methods.

4.3.3 CEARP variants

Many papers can be found in the literature that address variants of the original
CEARP. Three of these variants are the problems studied in this thesis and described
below: the Profitable CEARP for a single vehicle, and the Distance-Constrained
CEARP and the Min-Max CEARP for multiple vehicles.

Profitable CEARP

The Profitable Close Enough Arc Routing Problem (PCEARP) is a new variant of
the CEARP in which not all customers have to be serviced, but only those more
interesting from the point of view of the profit provided. In this problem, a profit is
associated with each customer and it is collected (only once) when the customer is
serviced. The goal is to find a tour maximizing the difference between the total profit
collected and the travel distance.

This problem is addressed in Chapter 5, where we present two different formula-
tions and, for one of them, we carry out a study of its associated polyhedron and
introduce several families of valid inequalities. We propose a heuristic that provides
good feasible solutions in short times and whose lower bounds are very useful in a
sophisticated branch-and-cut method that we have also implemented. An extensive
computational analysis is performed on several sets of instances generated specifically
for this problem.

Distance-Constrained CEARP

The CEARP is defined for a single vehicle but, in practical applications where the
number of customers is very high and a single vehicle cannot perform all services, the
service must be performed by a fleet of vehicles (or one vehicle performing several
routes). In this case, the aim is to balance the routes. Even though there are many
possibilities to do this, we focus on those that are related to real-world applications
of the problem. In CEARP applications, such as meter reading, inventory taking,
or wireless sensor network monitoring, it would make sense to consider a maximum
capacity for the devices performing the task. In all these cases, due to the autonomy of
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vehicles (or drones or mobile robots), what must be considered is a time, or maximum
length, that each vehicle can use.

In the distance-constrained CEARP (DC-CEARP) a CEARP is studied in which the
length or maximum time of each route is limited and the objective is to minimize
the total length. Given a homogeneous fleet of vehicles, the DC-CEARP consists of
finding a set of routes with total minimum cost, that start and end at a depot, service
all the customers, and such that the length of each route does not exceed a certain
limit. In Ávila et al. (2017), the authors described the problem, proposed four different
formulations using different types of variables, and presented some valid inequalities.
To compare on them, they designed and implemented four branch-and-cut algorithms
for its solution, and extensive computational experiments over various sets of instances
comparing the performance of the different algorithms were provided. The results
show that two of the proposed algorithms have a significantly better performance
than the others and are therefore the most promising. They noted that the problem
is NP-hard, since it generalizes the CEARP.

Two chapters of this thesis are dedicated to this variant of CEARP. In Chapter 6,
we describe an approximate algorithm for the DC-CEARP. We propose a multi-start
matheuristic that incorporates an effective branch-and-cut method for the CEARP in
order to optimize the routes obtained. The results achieved with two versions of the
matheuristic are compared to those obtained with the branch-and-cut in Ávila et al.
(2017). In Chapter 7, we show a new formulation for the DC-CEARP that combines
the best features of the previously existing ones. Moreover, an exhaustive study of
its associated polyhedron is presented, as well as several families of valid inequalities.
Based on this new formulation, we have also designed and implemented a new branch-
and-cut algorithm that uses an upper bound obtained by the matheuristic algorithm.
An extended computational analysis has been performed in which the efficiency of the
branch-and-cut algorithm is tested.

Min-Max CEARP

Min-max objectives are quite common in multi-vehicle routing problems because mini-
mizing the length of the longest route tends to balance the length or cost of the planned
routes. Moreover, if the travel times are proportional to the travel distance, the last
customer serviced is serviced as early as possible. The Min-Max Close-Enough Arc
Routing Problem (MM-CEARP) is another variant of CEARP in which a fleet of
homogeneous vehicles must service a set of customers in such a way that the lengths
of the routes are balanced. The MM-CEARP consists of finding a set of routes for
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the vehicles, all of them starting and ending at the depot, jointly servicing all the
customers, and such that the length of the longest route is minimized.

In chapter 8, we define this variant of CEARP and focus on its formulation and
solution. We propose two different formulations for the MM-CEARP, one based on
routing and servicing variables, and other based on a set covering formulation. We
devise and implement two exact methods for solving the problem optimally, a branch
and cut and a branch-and-price algorithm. To provide exact algorithms with an
upper bound, we have implemented a two-step heuristic algorithm that includes a
constructive phase and a local search. All the algorithms are compared in benchmark
instances through extensive computational experiments.

Other related problems

A further variant of CEARP arises when there is uncertainty in the service provided
to customers. For example, in meter reading, the stochasticity lies in the uncertainty
of collecting data due to failed transmissions. For this reason, the Stochastic CEARP
(SCEARP) was studied in Renaud et al. (2017). Authors assume that it is possible
that the remote reading of the meter fails. Then, they introduce the probability of
reading a meter as a function of the distance of the customer from the route taken
by the operator. For this problem, authors propose a mathematical formulation, give
some preprocessing properties, and propose a cutting-plane algorithm and several
heuristics for its solution.

Aráoz et al. (2017) studied the Generalized Arc Routing Problem (GARP) on an
undirected graph. This problem is a special case of the CEARP in which the customers
are associated with clusters of edges that are pairwise-disjoint connected subgraphs.
The authors present some facets and valid inequalities for the GARP and propose a
branch-and-cut algorithm to solve it. Note that GARP can be seen as the arc routing
counterpart of the Generalized Travelling Salesman Problem (GTSP) in the NRPs,
in which the set of vertices of a given graph is partitioned into clusters and a route is
sought that visits at least one vertex of each cluster.

A combination of a NRP and an ARP is provided in Russo et al. (2019). Both the
CEARP and the CETSP are used to model routing of drones since in many real-life
applications the drones are restricted to fly along the streets or moving corridors, and
in certain areas they are free to move. In this work, the Mixed-Constrained Routing
Problem (MCRP) is proposed, which distinguishes between zones where the flight is
free (CETSP), where drones can fly freely between any two points in the plane, and
zones where drones movement is restricted to certain flight corridors (CEARP). The
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authors proposed two possible approaches to face this scenario, a heuristic algorithm,
based on a local search procedure, and a genetic algorithm.
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Chapter 5

The Profitable Close-Enough Arc
Routing Problem

Routing problems with profits deal with situations where the customers to be serviced
must be chosen from a set of potential customers that have an associated profit that
is collected when they are serviced. They basically consist of designing one or more
routes that service the chosen customers and in such a way as to optimize an objective
defined as a function of the cost or/and the profit. A routing problem with profits is
called profitable when its objective is to maximize the difference between the profit
collected and the cost of the routes (Feillet et al. (2005)).

Node routing problems with profits (NRPPs) have been addressed in many articles
lately. We refer the reader to the surveys by Vansteenwegen et al. (2011) and Archetti
et al. (2014b). Similarly to NRPPs, arc routing problems with profits (ARPPs) are a
growing area in which a large number of papers have been devoted to studying many
of these problems. Malandraki and Daskin (1993) is the first paper dealing with an
ARPP. In that paper, the authors introduce the Maximum Benefit Chinese Postman
Problem on a directed graph, where a profit, which can be different in each traversal,
is collected each time an arc is traversed with service, and the goal is to obtain a tour
that maximizes the profit. A more appropriate name for this problem, the Profitable
Rural Postman Problem with Multiple Visits (PRPPMV), was suggested by Archetti
and Speranza (2014). Other papers on the undirected or directed PRPPMV are Pearn
and Wang (2003) and Pearn and Chiu (2005), where several heuristics are proposed,
and Corberán et al. (2013), where the polyhedron associated with the problem is
studied and an exact algorithm is proposed.
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The Profitable Rural Postman Problem (PRPP), in which there is a profit, that can
be collected only once, associated just to the edges of a given subset, was proposed in
Aráoz et al. (2006), and an exact method for its solution is described in Aráoz et al.
(2009). Note that the PRPP, also called Prize-Collecting Arc Routing Problem and
Privatized Rural Postman Problem, is a special case of the PRPPMV where there is a
profit associated with some edges, while the remaining ones have 0 profit. In Archetti
et al. (2014a) and Colombi and Mansini (2014), the PRPP defined on a directed graph
is considered, while the version defined on a windy graph has been studied in Ávila
et al. (2016a). The Profitable Capacitated Arc Routing and other related problems
are addressed in Benavent et al. (2015).

In all the problems mentioned above, the service is assumed to be performed while
the vehicle traverses an arc or edge of the graph. In this thesis, we introduce a new
variant of a CEARP in which not all customers have to be serviced, but only those
more interesting from the point of view of the profit provided. This problem, which
we call the Profitable Close Enough Arc Routing Problem (PCEARP), can also be
seen as a Profitable Rural Postman Problem in which the required arcs are grouped
into families associated with customers, and to service them it is enough to traverse
one of their associated arcs. As the PCEARP generalizes both the CEARP (when the
profits associated with all the customers are very large) and the PRPP (when each
required arc defines a customer), it is an NP-hard problem covering different practical
applications.

The contribution of this work is fourfold. First, we introduce a new problem that
combines the most interesting features of two existing NP-hard routing problems: the
possibility to select the customers to service on the basis of the net profit associated
with them, and the possibility to provide the service by traversing one of the streets
that are close enough to them. Second, we present a formulation for the PCEARP
for which a study of its associated polyhedron is performed, and introduce several
families of valid inequalities. Third, we propose a simple but fast heuristic providing
good feasible solutions in short times and, fourth, we present a sophisticated branch-
and-cut method that is able to optimally solve instances up to 600 customers, 300
vertices, and 1500 arcs within the time limit of one hour.

The chapter is organized as follows. In Section 5.1 we define the problem and present
the proposed formulation. The PCEARP polyhedron is studied in Section 5.2. Section
5.3 is devoted to the description of the proposed heuristic algorithm. The separation
procedures for the identification of violated inequalities of the types described, as well
as the branch-and-cut algorithm, are presented in Section 5.4. Section 5.5 describes
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the generated instances and the computational results obtained with the heuristic and
the branch-and-cut algorithm. Finally, some conclusions are given in Section 5.6.

5.1 Problem definition and formulation

Let G = (V,A) be a directed and strongly connected graph with set of vertices V
(vertex 1 denotes the depot) and set of arcs A. For each arc (i, j) ∈ A, let dij ≥ 0

be its associated length/distance. Then, let H represents a set of customers. Each
customer c ∈ H is associated with a set of arcs Hc ⊆ A and is serviced when at least
one of the arcs in Hc is traversed. Associated with each customer c ∈ H there is a
profit pc ≥ 0 that is collected (only once) if the customer is serviced. Note that the
subsetsHc do not need to be disjoint nor the corresponding induced subgraphs must be
connected. The Profitable Close-Enough Arc Routing Problem (PCEARP) consists
of finding a tour (closed walk) on G, which starts and ends at the depot, maximizing
the difference between the sum of the profits collected and the total length of the tour.

In this chapter, we use a similar notation to that presented for the CEARP in the
previous one. The arcs in the set AR = H1 ∪H2 ∪ . . . ∪HL are called required arcs,
while non-required arcs are those in the set ANR = A \AR. Given two sets S, T ⊂ V ,
we define (S : T ) = {(i, j) ∈ A : i ∈ S, j ∈ T} and (S, T ) = (S : T ) ∪ (T : S).
In particular, δ+(S) = (S : V \S), δ−(S) = (V \S : S) and δ(S) = (S, V \S), and
A(S) = (S : S). If, for any of the previous subsets, we want to refer only to its
required arcs, we will use the notation (S, T )R, δ+

R(S), δ−R(S), and AR(S). Finally,
given a vector x indexed on the set of arcs and given a set F ⊆ A, x(F ) =

∑
(i,j)∈F xij.

A tour for the PCEARP is a closed walk on G, starting and ending at the depot.
Each tour on G can be represented by an integer vector x = (xij) ∈ Z|A| where, for
each arc (i, j) ∈ A, xij is the number of times the vehicle traverses (i, j). Although
vector x is enough to know which customers are serviced (those c such that xij > 0

for any (i, j) ∈ Hc), we consider additional variables in order to take into account,
only once, the profit pc collected when a customer c is serviced. For each customer
c ∈ H, a binary variable zc is defined taking value 1 if the customer c is serviced and
0 otherwise. We want to point out that, since we have assumed that profits pc are not
negative, all customers c for which an arc in Hc is traversed are worth being serviced
and the optimal solutions of the problem will always satisfy this. However, we will
also consider as feasible those solutions where a customer c is not serviced even if some
of the arcs in Hc are traversed. This makes the polyhedral study in Section 5.2 easier.
Thus, a tour for the PCEARP is represented by an integer vector (x, z) ∈ Z|A|+|H|,
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with variables defined as:

xij = number of times arc (i, j) ∈ A is traversed, and

zc =

{
1, if the customer c is serviced,
0, otherwise.

The PCEARP can be formulated as

Maximize
∑
c∈H

pczc −
∑

(i,j)∈A

dijxij

s.t.:

x(δ+(i)) = x(δ−(i)) ∀ i ∈ V (5.1)

x(δ+(S)) ≥ zc − x(Hc ∩ A(V \ S)) ∀S ⊂ V \ {1}, ∀c ∈ H (5.2)

x(Hc) ≥ zc ∀c ∈ H (5.3)

xij ≥ 0 and integer ∀(i, j) ∈ A (5.4)

1 ≥ zc ≥ 0 and integer ∀c ∈ H, (5.5)

Equations (5.1) are the symmetry conditions on the vertices. The connectivity of the
routes is guaranteed by constraints (5.2). Note that, either if the vehicle does not
service customer c, zc = 0, or if it services c and traverses an arc in Hc ∩ A(V \ S),
zc−x(Hc∩A(V \S)) ≤ 0, and hence the inequality is satisfied. If the vehicle services
customer c without traversing any arc in Hc ∩A(V \S), it must cross the cutset δ(S)

in order to traverse an arc in Hc ∩ A(S). Inequalities (5.3) imply that, if a customer
c is serviced, at least an arc in Hc is traversed. Finally, (5.4)–(5.5) define the domain
of the variables.

Note that this is not a complete formulation for the PCEARP. Although each tour for
the PCEARP (x, z) ∈ Z|A|+|H| satisfies (5.1)–(5.5), there are vectors (x, z) ∈ Z|A|+|H|

satisfying (5.1)–(5.5) that are not tours for the PCEARP because they can contain
subtours disconnected from the depot. Nevertheless, since all the arc lengths dij are
nonnegative, there will always be an optimal PCEARP solution that does not contain
any of these subtours.
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5.2 The PCEARP polyhedron

Let us call PCEARP tour to any tour on G starting and ending at the depot, and also
to its corresponding integer vector (x, z) ∈ Z|A|+|H|. Let PCEARP(G) be the convex
hull of all the PCEARP tours,

PCEARP(G) = conv
{

(x, z) ∈ Z|A|+|H| : (x, z) is a PCEARP tour
}
.

It can be seen that PCEARP(G) is an unbounded polyhedron. Furthermore, con-
straints (5.1) to (5.5) from the formulation are valid for PCEARP(G). We are going
to study conditions under which the inequalities deduced from the formulation in-
duce facets of PCEARP(G). For this purpose, we need to know the dimension of
PCEARP(G).

Theorem 12. If G is a strongly connected graph, then dim(PCEARP(G))= |A| +
|H| − |V |+ 1.

Proof. Since |V |−1 of the |V | symmetry equations (5.1) are linearly independent, we
have that dim(PCEARP(G))≤ |A|+ |H| − |V |+ 1.

Consider now the Directed General Routing Problem (DGRP) on G with all the arcs
in AR as required arcs and the depot as a required vertex. The DGRP is the problem
that consists of finding a tour in G with minimum cost traversing each required
arc and visiting each required vertex at least once. Since G is strongly connected,
dim(DGRP(G))=|A| − |V | + 1 (see Ávila et al. (2015)), and there are m + 1 affinely
independent DGRP tours x1, x2, . . . , xm+1, where m = |A| − |V |+ 1. Note that these
tours traverse all the arcs in AR and visit the depot and, if we complete them with
vectors z ∈ Z|H|, we will obtain PCEARP tours (x, z).

Let z0 ∈ Z|H| the null vector, and zc, 1 ≤ c ≤ |H|, the vector with all its entries equal
to 0 except an 1 in position c, which represents the service of customer Hc. Obviously,
z1, z2, . . . , z|H| are linearly independent vectors. Then (x1, z0), . . . , (xm+1, z0), (x1, z1)

, . . . , (x1, z|H|) arem+1+|H| affinely independent PCEARP tours and dim(PCEARP(G))
≥ m+ |H| = |A|+ |H| − |V |+ 1.

In the following, we will assume that G is a strongly connected graph.
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5.2.1 Facet-inducing inequalities obtained from the

formulation

In this section we study conditions under which the inequalities in the formulation
induce facets of PCEARP(G).

Theorem 13. Let (i, j) ∈ A such that G \ {(i, j)} is strongly connected. Inequality
xij ≥ 0 induces a facet of PCEARP(G) if, and only if, Hc 6= {(i, j)}, for all c ∈ H.

Proof. If there is a customer c such that Hc = {(i, j)} then its associated inequality
(5.3) is xij ≥ zc and, therefore, xij ≥ 0 cannot induce a facet. Otherwise, the PCEARP
instance defined on graph G \ {(i, j)} has |A| − 1 arcs and |H| customers. If graph
G\{(i, j)} is strongly connected, from Theorem 12 we obtain that dim(PCEARP(G\
{(i, j)}))= |A| − 1 + |H| − |V | + 1 = m − 1, where m =dim(PCEARP(G)), and we
can find (x, z)1, . . . , (x, z)m affinely independent PCEARP tours on G\{(i, j)}. After
completing these tours with a zero component corresponding to the arc (i, j), we
obtain m PCEARP tours on G that are also affinely independent and satisfy xij = 0.
Therefore xij ≥ 0 induces a facet of PCEARP(G).

Theorem 14. The inequality zc ≥ 0, for all c ∈ H, induces a facet of PCEARP(G).

Proof. W.l.o.g. we will prove it for customer 1, i.e., for inequality z1 ≥ 0. Consider
the Directed General Routing Problem (DGRP) on G with all the arcs in AR as
required arcs and the depot as a required vertex. Since G is strongly connected,
dim(DGRP(G))=|A| − |V |+ 1 = m (Ávila et al. (2015)), and there are m+ 1 affinely
independent DGRP tours x1, x2, . . . , xm+1. Note that these tours traverse all the
arcs in AR and visit the depot. We complete them with vectors z ∈ Z|H| to obtain
PCEARP tours (x, z).

Let z[c] be the vector indexed in H with all its entries equal to zero except for
zc = 1, and let z[0] be the vector with all its entries equal to zero. The vectors
(x1, z[0]), . . . , (xm+1, z[0]), (x1, z[2]), , . . . , (x1, z[|H|]) are m+ |H| = |A|+ |H| − |V |+ 1 =

dim(PCEARP(G)) PCEARP tours satisfying z1 = 0. They are affinely indepen-
dent because, after subtracting the first one from all the other vectors we obtain
(x2 − x1, 0), . . . , (xm+1 − x1, 0), (0, z[2]), . . . , (0, z[|H|]), which are linearly independent.
Therefore, the inequality z1 ≥ 0 is facet-inducing for the PCEARP(G).

Theorem 15. The inequality zc ≤ 1, for all c ∈ H, induces a facet of PCEARP(G).

Proof. Again we will prove it for inequality z1 ≤ 1. Consider the DGRP on G with
all the arcs in AR as required arcs and the depot as a required vertex. Since G is
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strongly connected, dim(DGRP(G))=|A| − |V |+ 1 = m, and there are m+ 1 affinely
independent DGRP tours x1, x2, . . . , xm+1 traversing all the arcs in AR and visiting
the depot. We complete them to obtain PCEARP tours (x, z).

Let z[∗] ∈ Z|H| be the vector with all its entries equal to 1, and z[c̄], 2 ≤ c ≤ |H|,
the vector with all its entries equal to 1 except a 0 in position c. The vectors
(x1, z[∗]), . . . , (xm+1, z[∗]), , (x1, z[2̄]), . . . , (x1, z[ ¯|H|]) are PCEARP tours satisfying z1 =

1. They are affinely independent vectors (note that z[2̄], . . . , z[ ¯|H|] are linearly indepen-
dent vectors) and its number is m+ |H| = |A|+ |H| − |V |+ 1 = dim(PCEARP(G)).
Hence, the inequality z1 ≤ 1 is facet-inducing.

Theorem 16. Inequalities (5.3), x(Hc) ≥ zc for all c ∈ H, induce a facet of PCEARP(G)
if the following conditions hold:

(a) Graph G \Hc is strongly connected.

(b) For each arc a ∈ Hc, there is a tour on G that traverses arc a but does not
traverses any other arc in Hc \ {a}.

Proof. We will do the proof also for customer 1, i.e., for inequality z1 ≤ x(H1). Let us
consider the DGRP defined on graph G\H1 where all the arcs in AR \H1 are taken as
required and the depot is a required vertex. Given that G\H1 is a strongly connected
graph (condition a), dim(DGRP(G \H1)) = |A| − |H1| − |V | + 1 = m− |H1|, where
m = |A| − |V | + 1, and there are m − |H1| + 1 affinely independent DGRP tours in
G \ H1. We complete these tours with a zero component for each arc in H1 and we
obtain , x1, x2, . . . , xm−|H1|+1 affinely independent DGRP tours in G traversing all the
arcs in AR \H1 and not traversing the arcs in H1.

Let us suppose first that there is no other customer set Hc such that Hc ⊆ H1. In this
case, all the above DGRP tours traverse at least an arc in eachHc, for c 6= 1. Let z[c] be
the vector indexed in H with all its entries equal to zero except for zc = 1, and let z[0]

be the vector with all its entries equal to zero. The following are m−|H1|+1+ |H|−1

PCEARP tours satisfying z1 = 0 = x(H1):

(x1, z[0]), . . . , (xm−|H1|+1, z[0]), (x1, z[2]), . . . , (x1, z[|H|]).

Furthermore, from condition (b), for each arc a ∈ H1, there is a tour on G traversing
a but not traversing any other arc in H1 \ {a}. Let x[1], . . . , x[|H1|] be such tours on
G. The following |H1| PCEARP tours satisfy z1 = 1 = x(H1) (recall that z[1] is the
vector with all its entries equal to zero except for z1 = 1):

(x[1], z[1]), . . . , (x[|H1|], z[1]).
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Hence, we have m−|H1|+1+ |H|−1+ |H1| = m+ |H| = |A|+ |H|− |V |+1 PCEARP
tours satisfying z1 = x(H1). If we arrange them as the rows of a matrix we obtain the
block matrix in Figure 5.1.a. After subtracting the first row from all the other rows
and rearranging the blocks we obtain the block matrix in Figure 5.1.b, which has all its
|H|+|A|−|V | rows linearly independent. Hence, the |A|+|H|−|V |+1 PCEARP tours
satisfying z1 = x(H1) are affinely independent and, therefore, inequality z1 ≤ x(H1)

induces a facet of PCEARP(G).

Suppose now that there are other customer arc sets inside H1. For the sake of simplic-
ity, let us suppose that H2 ⊆ H1 and H3 ⊆ H1. We select two arcs a1 ∈ H2 ∩H1 and
a2 ∈ H3 ∩ H1. In this case, the above vectors (x1, z[2]) and (x1, z[3]) are not feasible
PCEARP tours because, x1 does not traverse any arc in H2 or in H3, while customers
2 and 3 are serviced (z2 = 1 and z3 = 1, respectively). We now replace these two
PCEARP tours by the following ones. Let x[1] be the above tour on G traversing a1

but not traversing any other arc in H1 \ {a1}. Then, (x[1], z[2]) is a feasible PCEARP
tour. In the same way we can build (x[2], z[3]) associated with arc a2. If we arrange
these PCEARP tours as the rows of a matrix, we obtain the block matrix shown in
Figure 5.1c and, after subtracting the first row from the remaining ones, and rear-
ranging the blocks, we obtain the full rank block matrix in Figure 5.1d. Hence, these
PCEARP tours are affinely independent and, therefore, inequality z1 ≤ x(H1) induces
a facet of PCEARP(G).

Note that, if condition (b) in Theorem 16 is not satisfied, then there is an arc a ∈ Hc

such that all the tours on G traversing a traverse other arcs in Hc \{a} and x(Hc) ≥ 2

holds for all these tours. Therefore, (5.3) cannot induce a facet.

Theorem 17. Connectivity inequalities (5.2), x(δ+(S)) ≥ zc− x(Hc ∩A(V \S)), for
all S ⊂ V \ {1} and for all c ∈ H, induce a facet of PCEARP(G) if the following
conditions are satisfied:

(a) graphs G(S) and G(V \ S) \Hc are strongly connected,

(b) Hc ∩ AR(S) 6= ∅, and

(c) @ q ∈ H, q 6= c, such that Hq ⊆ δ(S)

(d) For each arc a ∈ Hc ∩AR(V \S), there is a tour on G(V \S) that traverses arc
a but does not traverse any other arc in Hc ∩ AR(V \ S) \ {a}.

Proof. We will do the proof for customer 1, i.e., for inequality x(δ+(S)) ≥ z1−x(H1∩
A(V \ S)). Consider the DGRP defined on graph G \ (H1 ∩ A(V \ S)), where all
the arcs in AR \ ((H1 ∩ A(V \ S)) ∪ δ(S)) are considered as required arcs and the
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A \H1 H1 z1 z2 . . . z|H|
x1

... 0 0 0
xm−|H|+1

x1

... 0 0 I
x1

x[1]

... I 1 0
x[|H1|]

(a)

z2 . . . z|H| H1 z1 A \H1

I 0 0 0

x[1] − x1

0 I 1
...

x[|H1|] − x1

x2 − x1

0 0 0
...

xm−|H|+1 − x1

(b)

A \H1 a1 a2 a3 · · · a|H1| z1 z2 z3 z4 · · · z|H|
x1

... 0 0 0
xm−|H|+1

x1

... 0 0 I
x1

x[2] 1 0 0 · · · 0 0 1 0 0 · · · 0
x[3] 0 1 0 · · · 0 0 0 1 0 · · · 0
x[1] 1 0 0
... I

...
...

... 0
x[|H|] 1 0 0

(c)

z4 · · · z|H| a1 a2 a3 · · · a|H1| z1 z2 z3 A \H1

I 0 0 0

1 0 0 x[1] − x1

0 I
...

...
...

...
1 0 0 x[|H|] − x1

0 · · · 0 1 0 0 · · · 0 0 1 0 x[2] − x1

0 · · · 0 0 1 0 · · · 0 0 0 1 x[3] − x1

x2 − x1

0 0 0
...

xm−|H|+1 − x1

(d)

Figure 5.1: Matrices appearing in the proof of Theorem 16
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depot as required vertex. If conditions (a) and (b) hold, then inequality x(δ+(S)) ≥ 1

is facet inducing of DGRP(G \ H1 ∩ A(V \ S)) (see Ávila et al. (2015)) and there
are dim(DGRP(G \ H1 ∩ A(V \ S))) = |A| − |H1 ∩ A(V \ S)| − |V | + 1 + 1 = p

affinely independent DGRP tours in G \ (H1 ∩ A(V \ S)) satisfying x(δ+(S)) = 1.
We complete these tours with a zero component for each arc in H1 ∩ A(V \ S) to
obtain x1, x2, . . . , xp affinely independent DGRP tours in G traversing all the arcs in
AR \ ((H1 ∩ A(V \ S)) ∪ δ(S)) but not traversing the arcs in H1 ∩ A(V \ S).

If condition (b) holds, all the previous DGRP tours in G traverse some arc in H1 and
the following are p PCEARP tours satisfying x(δ+(S)) = 1 = z1 − x(H1 ∩A(V \ S)):

(x1, z[1]), (x2, z[1]), . . . , (xp, z[1]),

where, again, z[c] denotes the vector with all its entries equal to zero except for zc = 1.

If condition (c) holds, the DGRP tour x1 (for example) can be completed with z-
vectors as follows to obtain the following |H|−1 PCEARP tours satisfying x(δ+(S)) =

1 = z1 − x(H1 ∩ A(V \ S)):

(x1, z[1] + z[2]), . . . , (x1, z[1] + z[|H|]).

Furthermore, from condition (d), for each arc a ∈ H1 ∩ A(V \ S), there is a tour
on G(V \ S) traversing a but not traversing any other arc in H1 ∩ A(V \ S). Let
x̄1, . . . , x̄|H1∩A(V \S)| be such tours considered on G (with zeros in the components
corresponding to δ(S) and G(S)). The following |H1 ∩ A(V \ S)| PCEARP tours
satisfy x(δ+(S)) = 0 = z1 − x(H1 ∩ A(V \ S)):

(x̄1, z[1]), . . . , (x̄|H1∩A(V \S)|, z[1]).

Hence, we have p + |H| − 1 + |H1 ∩ A(V \ S)| = |A| + |H| − |V | + 1 PCEARP tours
satisfying x(δ+(S)) = z1 − x(H1 ∩ A(V \ S)). If we arrange them as the rows of a
matrix, we obtain the block matrix shown in Figure 5.2a. After subtracting the first
row from the remaining ones, and rearranging the blocks, we obtain the block matrix
in Figure 5.2b, which has all its |H| + |A| − |V | rows linearly independent. Hence,
the |A|+ |H| − |V |+ 1 PCEARP tours satisfying x(δ+(S)) = z1 − x(H1 ∩ A(V \ S))

are affinely independent and, therefore, inequality x(δ+(S)) ≥ z1 − x(H1 ∩A(V \ S))

induces a facet of PCEARP(G).



5.2. The PCEARP polyhedron 53

A \H1 ∩A(V \ S) H1 ∩A(V \ S) z1 z2 . . . z|H|
x1

... 0 1 0
xp

x1

... 0 1 I
x1

x̄1

... I 1 0
x̄[|H1∩A(V \S)|]

(a)

z2 . . . z|H| H1 ∩A(V \ S) z1 A \H1 ∩A(V \ S)

I 0 0 0

x̄1 − x1

0 I 1
...

x̄[|H1∩A(V \S)|] − x1

x2 − x1

0 0 1
...

xp − x1

(b)

Figure 5.2: Matrix appearing in the proof of Theorem 17

5.2.2 Additional valid inequalities

In this section we present some inequalities that are not obtained directly from the for-
mulation but from the properties of the PCEARP tours. These inequalities strengthen
the description of the polyhedron and, therefore, contribute to improving the bounds
provided by the LP relaxation of (5.1)-(5.5).

Parity inequalities

Parity inequalities are based on the fact that any tour crosses any cutset δ(S), S ⊆
V \{1}, an even (or zero) number of times. In most of the arc routing problems defined
in directed graphs, the parity inequalities are implied by the symmetry equations.
However, this is not the case for the parity inequalities that we present here because
they are related to some customers with arcs in the cutset and not to sets of vertices.
These inequalities are the disaggregate version of those presented in Ávila et al. (2017)
for the DC-CEARP.
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Let S ⊆ V \ {1} and a set of customers FH = {c1, c2, ..., cq}, where q ≥ 3 is odd and
satisfying

• Hci ∩Hcj ∩ δ(S) = ∅, 1 ≤ i, j ≤ q, i 6= j, and

• Hci ∩ δ(S) 6= ∅, 1 ≤ i ≤ q.

Then, the following inequality, called parity inequality,

x(δ(S)) ≥
q∑
i=1

(
2zci − 1− 2x (Hci \ δ(S))

)
+ 1. (5.6)

is valid for the PCEARP:

Figure 5.3: Parity inequalities (5.6)

Theorem 18. Parity inequalities (5.6) are valid for the PCEARP.

Proof. The tours servicing all the customers ci in FH, and not traversing arcs in
Hci \ δ(S), have to traverse the cutset at least q times and, since q is an odd number,
these tours satisfy x(δ(S)) ≥ q + 1, which is the inequality (5.6) with zci = 1 and
x (Hci \ δ(S)) = 0.

Now consider a tour that services all customers of FH except one, cj, traversing only
arcs in δ(S), and it services cj using at least one arc in Hcj \ δ(S). This tour has
to traverse the cutset at least q − 1 times (an even number), while the RHS of (5.6)
in this case is at most (q − 1) + (−1) + 1 = q − 1, so it satisfies the inequality.
Consider again the previous situation, but now there are two customers of FH which
are serviced by traversing arcs that are not in δ(S). This tour has to cross the
cutset at least q − 2 times and, since q − 2 is an odd number, the tour satisfies
x(δ(S)) ≥ q − 2 + 1 and, therefore, it satisfies the inequality (5.6) because, in this
case, RHS ≤ (q − 2) + 2(2− 1− 2) + 1 = q − 3.

The tours servicing all the customers ci in FH but one, cj, and not traversing arcs in
Hci\δ(S), have to traverse the cutset at least q−1 times andRHS = (q−1)+(−1)+1 =
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q − 1, so these tours satisfy the parity inequalities. Consider now a tour servicing all
the customers in FH but one, cj, and not traversing the arcs in Hci \ δ(S), except
for customer cp ∈ FH, for which x

(
Hcp \ δ(S)

)
≥ 1. This tour crosses δ(S) at least

(q−2)+1 times. Since the RHS of (5.6) is at most (q−2)+(−1)+(−1)+1 = (q−3),
the inequality is satisfied.

All the remaining cases can be proved in a similar way and are omitted here for the
sake of brevity.

Note 1. We do not know if the inequalities (5.6) define facets of PCEARP(G) or
under what conditions they do so. Our guess is that those conditions, if they exist,
would be very restrictive. For example, if an arc (i, j) ∈ ∪Hci \ δ(S) belongs to 2

customers in FH, its variable xij appears twice in (5.6) and therefore the coefficient
of xij is −2 − 2 = −4, but it can be shown that this coefficient can be improved to
-2. In general, the inequality (5.6) can be improved as follows:

x(δ(S)) ≥
q∑
i=1

(
2zci − 1

)
−

∑
(i,j)∈∪Hci\δ(S)

αijxij + 1. (5.7)

where, for each arc (i, j) ∈ ∪Hci \ δ(S) appearing in r ≥ 1 customers, αij = r if r is
even, and αij = r + 1 if r is odd.

K-C inequalities

K-C inequalities were introduced in Corberán and Sanchis (1994) for the Undirected
Rural Postman Problem. Beyond the connectivity and parity inequalities described
before, the K-C inequalities try to make connectivity and parity conditions satisfied
simultaneously on a partition of the vertex set that is more complex than the two
shores of the cutsets (S, V \ S) used in connectivity and parity inequalities. The
name of this family of inequalities is motivated by the number of sets into which V is
partitioned, which is usually denoted by K.

Consider a partition of the set of vertices V intoK subsets {M0∪MK ,M1, . . . ,MK−1},
with K ≥ 3, and the following set of coefficients αij. For each (i, j) ∈ A, we define

αij =


K − 2, if (i, j) ∈ (M0,MK)

|r − s|, if (i, j) ∈ (Mr,Ms), {r, s} 6= {0, K}
0, otherwise.

(5.8)

Let FH = {c1, c2, ..., cq} be a set of q customers, where q ≥ 2 is even, satisfying
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• Hci ∩Hcj ∩ (M0,MK) = ∅, 1 ≤ i, j,≤ q, i 6= j, and

• Hci ∩ (M0,MK) 6= ∅, 1 ≤ i ≤ q.

Furthermore, assume that for each Mi, i = 1, . . . , K − 1, either 1 ∈ Mi or there is a
customer ni, ni /∈ FH, such that the set of arcs Hni

∩ (A(Mi) ∪ δ(Mi)) 6= ∅. Note that
δ(Mi1) and δ(Mi2) are not necessarily disjoint sets. Figure 5.4 depicts the structure
of this inequality. We define the K-C inequality as:∑
(i,j)∈A

αij xij ≥

≥ (K−2)

q∑
i=1

(
2zci−1−2x(Hci\(M0,MK))

)
+2

K−1∑
i=1

(
zni
−x(Hni

\(A(Mi) ∪ δ(Mi))
)
,

(5.9)
if the depot is in M0 ∪MK , and∑
(i,j)∈A

αij xij ≥

≥ (K−2)

q∑
i=1

(
2zci−1−2x(Hci\(M0,MK))

)
+2

K−1∑
i=1
i 6=l.

(
zni
−x(Hni

\(A(Mi) ∪ δ(Mi))
)

+2,

(5.10)
if 1 ∈Ml with l /∈ {0, K}.

K − 2. . .K − 2

M0

MK

M1

Mi

MK−1

1
1 1

1

1
1 1

1

K−2

K−2K−i

K−i

Figure 5.4: A K-C structure.

Note 2. If K = 2, then inequality (5.9) divided by two is exactly the connectivity
constraint (5.2) associated with set S = M1, since x(δ(S)) = x(δ+(S))+x(δ−(S)) and
x(δ+(S)) = x(δ−(S)) hold.

The idea behind the above K-C inequalities can be understood with the following
example. Consider a K-C structure with K = 3, q = 2, and the depot in M0 (see
Figure 5.5). Let us assume that the arcs Hc1 , Hc2 ⊂ (M0,MK) and Hn1 ⊂ A(M1),
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Hn2 ⊂ A(M2). The K-C inequality (5.9) becomes

x(M0,M3) + x(M0,M1) + x(M1,M2) + x(M2,M3) + 2x(M0,M2) + 2x(M1,M3) ≥

≥ (2zc1 − 1) + (2zc2 − 1) + 2zn1 + 2zn2 .

1. . .1

M0

M3

M1

M2

1 1

1

1

11

2

2

2

2

Figure 5.5: Structure of a 3-C inequality

All the PCEARP tours servicing customers c1, c2, n1, and n2 have to traverse the
cutset (M0,MK) at least twice and visit the sets M1 and M2. It is easy to see that all
these tours have a value of the LHS of the inequality of at least 6, which is exactly
the value of the RHS because all the z variables take value 1. Similarly, it can be seen
that all the tours servicing any subset of these customers satisfy the inequality.

Theorem 19. K-C inequalities (5.9) and (5.10) are valid for the PCEARP.

Proof. Let us suppose that 1 ∈ M0 ∪MK (the proof for the case 1 /∈ M0 ∪MK is
similar). We have to prove that all the PCEARP solutions (x, z) satisfy inequality
(5.9). We consider the following cases:

(a) Solutions (x, z) servicing each customer ci from a required arc in Hci ∩ (M0,MK),
i = 1, . . . , q, and servicing each customer ni from a required arc in A(Mi) ∪ δ(Mi),
i = 1, . . . , K − 1. On the one hand, these tours x traverse at least q times the arcs
in (M0,MK), and visit at least once each node set M0 ∪MK , M1, . . . , MK−1, and,
hence, it can be seen that their LHS satisfy:∑

(i,j)∈A

αijxij ≥ (K − 2)q + 2(K − 1).
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Additionally, variables z satisfy zci = 1, for each i = 1, . . . , q, and zni
= 1, for each

i = 1, . . . , K − 1. Substituting them in the RHS of (5.9), the RHS becomes

(K−2)

q∑
i=1

(
1−2x(Hci \ (M0,MK))

)
+2

K−1∑
i=1

(
1−x(Hni

\ (A(Mi) ∪ δ(Mi))
)
≤ (K−2)q+2(K−1).

Hence, these PCEARP solutions satisfy inequality (5.9).

(b) Solutions (x, z) servicing each customer ci from a required arc in Hci ∩ (M0,MK),
i = 1, . . . , q, and servicing each customer ni from a required arc in A(Mi) ∪ δ(Mi),
i = 1, . . . , K − 1, except one of them, say nl. These tours x traverse at least q arcs in
(M0,MK) and visit all but one node sets M1, . . . , MK−1. Note that, regarding a K-C
structure (see Figure 5.4), this cannot be done at an α-cost lower than (K − 2)q +

2(K − 1)− 2 and, hence, these tours satisfy∑
(i,j)∈A

αijxij ≥ (K − 2)q + 2(K − 1)− 2.

On the other hand, variables z satisfy one of the two following situations

• zci = 1, for each i = 1, . . . , q, and zni
= 1, for each i = 1, . . . , K − 1, except one

of them, for which znl
= 0. Thus, if we substitute these values in the RHS of

(5.9),

(K − 2)

q∑
i=1

(
1− 2x(Hci \ (M0,MK))

)
+ 2

K−1∑
i=1
i 6=l.

(
1− x(Hni

\ (A(Mi) ∪ δ(Mi))
)
−

−2x(Hnl
\ (A(Ml) ∪ δ(Ml)) ≤ (K − 2)q + 2(K − 2).

• zci = 1, for each i = 1, . . . , q, and zni
= 1, for each i = 1, . . . , K − 1, but

customer nl is serviced by traversing an arc in Hnl
\ (A(Ml) ∪ δ(Ml)). In this

case, x(Hnl
\ (A(Ml) ∪ δ(Ml))) ≥ 1 and the RHS of (5.9) is

(K − 2)

q∑
i=1

(
1− 2x(Hci \ (M0,MK))

)
+ 2

K−1∑
i=1
i 6=l.

(
1− x(Hni

\ (A(Mi) ∪ δ(Mi))
)

+

+2(1− x(Hnl
\ (A(Ml) ∪ δ(Ml)))) ≤ (K − 2)q + 2(K − 2).

Hence, these PCEARP solutions satisfy inequality (5.9).

(c) Solutions (x, z) servicing each customer ci from a required arc in Hci ∩ (M0,MK),
i = 1, . . . , q, except one of them, say cl, and servicing each customer ni from a required
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arc in A(Mi)∪ δ(Mi), i = 1, . . . , K− 1. These tours x traverse q− 1 (an odd number)
required arcs between M0 and MK and visit all the node sets M1, . . . , MK−1. Again,
this cannot be done at an α-cost lower than (K−2)(q−1)+K = (K−2)(q−2)+2(K−1)

and, hence, these tours satisfy∑
(i,j)∈A

αijxij ≥ (K − 2)(q − 2) + 2(K − 1).

Moreover, variables z satisfy one of the two following situations

• zci = 1, for each i = 1, . . . , q except one of them, for which zcl = 0, and zni
= 1,

for all i = 1, . . . , K − 1. Thus, the RHS of (5.9) becomes

(K − 2)

q∑
i=1
i 6=l.

(
1− 2x(Hci \ (M0,MK))

)
+ (K − 2)(−1− 2x(Hcl \ (M0,MK))

+2
K−1∑
i=1

(
1− x(Hni \ (A(Mi) ∪ δ(Mi))

)
≤ (K − 2)(q − 1)− (K − 2) + 2(K − 1)

≤ (K − 2)(q − 2) + 2(K − 1).

• zci = 1, for each i = 1, . . . , q, but customer cl is serviced by traversing an
arc in Hcl \ (M0,MK), and zni

= 1, for all i = 1, . . . , K − 1. Thus, since
1− 2x(Hcl \ (M0,MK) ≤ −1, the RHS of (5.9) becomes

(K − 2)

q∑
i=1
i 6=l.

(
1− 2x(Hci \ (M0,MK))

)
+ (K − 2)(1− 2x(Hcl \ (M0,MK))+

+2
K−1∑
i=1

(
1− x(Hni

\ (A(Mi) ∪ δ(Mi))
)
≤ (K − 2)(q − 2) + 2(K − 1)

and (x, z) satisfies (5.9).

(d) All the remaining cases can be proved in a similar way and are omitted here for
the sake of brevity.

5.3 A heuristic for the PCEARP

In this section we present an iterative algorithm we implemented to provide the exact
algorithm with initial lower bounds. It combines a constructive and a local search
heuristic. At each iteration, the constructive algorithm is first applied to build a set
of solutions. Then, each solution (route) is possibly improved by applying the local
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search heuristic. The algorithm stops when a certain number of iterations without
improvement is reached or a maximum computing time is exceeded. The final solution
is the route associated with the best net profit among those computed. In what follows,
a route r is defined by a list of required arcs ArR, in the order they are traversed, and a
set of serviced customers Cr. We will assume that the route travels from one required
arc to the next (or to the depot) following the shortest path. Given a ∈ AR, let Ca
be the set of customers serviced if a is traversed.

At each global iteration, we first define a list of required arcs Aini as follows: for
each customer c ∈ H, the arc closest to the depot among those in Hc is selected and
added to Aini. Then, for each arc ai ∈ Aini, a route r is initialized, ai is added to
ArR, and all the customers in Cai are included in Cr. Next, we check if the required
arcs traversed from the depot to ai and from ai to the depot (if any) can service
other unassigned customers. If so, the arcs and the corresponding customers are
inserted in ArR and Cr, respectively. Then, for each route r we look for a subset
of customers/arcs with high profits to add to r. In order to iteratively select the
elements to be added, b(|H| − |Cr|)/4c customers not included in Cr are randomly
selected. For each selected customer c, we calculate the change in the objective
function when any arc a ∈ Hc is inserted in the route. The customer c and the
arc a that produce the best change in the objective value are selected and ArR and
Cr are updated accordingly, also taking into account the customers (if any) serviced
by the arcs in the added paths when a is incorporated into r. For each route r,
the selection of a new a subset of customers/arcs to insert in r is repeated until a
maximum number of insertions, m_iter_C, is performed without any increase in the
value of the objective function. For each initial arc ai, the route r with the best net
profit found during these m_iter_C iterations will be kept and used in the following
steps.

Each constructed solution is improved through a local search heuristic based on a
destroy-and-repair mechanism. At each local search iteration, the solution r is de-
stroyed by randomly removing a subset of m consecutive required arcs AD ⊂ ArR and
the customers serviced by them (if they cannot be serviced by the remaining arcs in
the route). Then, a repairing phase is applied. For each customer in Cr, we calculate
the change in the objective value if the closest unassigned customer is inserted in r.
The customer that produces the best improvement (if any) is then inserted in Cr. In
case no new customer is inserted in Cr, the repairing phase stops. Otherwise, the
repairing phase is reapplied with respect to the new set of customers Cr. The local
search heuristic is repeated until m_iter_LS iterations are performed without any
improvement.
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Once all the routes associated with the arcs in Aini have been studied, if the stopping
criteria have not been met, a new global iteration is performed by applying a different
arc selection rule to initialize routes. For each arc a ∈ Aini, a customer c is randomly
selected from the max{10, |H|/50} customers closest to a in H \ Ca. The arc a ∈ Hc,
which produces the best value of the objective function when added to the route
initialized with a, is selected to define, together with a, the new initial route r. In
this way, we have built a new list Aini2, where each component is a pair of required
arcs, to initialize the routes.

The iterative algorithm (Algorithm 1) is executed for a maximum number of iter_max =

100 · |H| iterations and time_limit = 60 seconds. The maximum number of iterations
without improvement has been set to m_iter_C = min{|H|/4, 25} for the construc-
tive heuristic and to m_iter_LS = min{|H|/2, 50} for the local search heuristic. The
number of consecutive arcs removed while applying the destroy-and-repair mechanism
has been set to m = min{|ArR|, 5}.

Input: G, H, iter_max, time_limit, m_iter_C, m, m_iter_LS
Output: Sbest

1 iter ← 0;
2 Sbest ← ∅;
3 Create Aini;
4 A ← Aini;
5 while time_limit is not reached AND iter ≤ iter_max do
6 for each a in A do
7 Siter ← Constructive algorithm (a,m_iter_C);
8 Siter ← Local-Search(m,m_iter_LS);
9 if Siter is feasible and better than Sbest then

10 Sbest ← Siter;
11 iter ← 0;
12 else
13 iter ← iter + 1;
14 Create Aini2;
15 A ← Aini2;

Algorithm 1: Heuristic algorithm for the PCEARP

5.4 A branch-and-cut algorithm for the PCEARP

We have implemented a branch-and-cut algorithm (B&C) for the PCEARP based on
the formulation presented in Section 5.1 and in the separation of the connectivity
(5.2), parity (5.6), and K-C inequalities (5.9) and (5.10), which are exponential in
number.
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5.4.1 Separation algorithms

The initial LP is defined by inequalities (5.3), equations (5.1), and the linear relaxation
of the non-negativity and integrality conditions (5.4) and (5.5). Inequalities (5.2),
(5.6), (5.9), and (5.10) are separated at each iteration of the cutting-plane algorithm
and added to the LP. Let x̄, z̄ be the fractional solution obtained at an iteration of
the cutting-plane algorithm. We use the following separation algorithms that have
been specifically designed for this problem.

Connectivity inequalities

Two heuristic algorithms have been used to separate connectivity inequalities. The
first heuristic is based on the computation of the connected components of the graph
induced by the arcs a such that x̄a ≥ ε, where ε is a given parameter. For each
weakly connected component with node set S not including the depot, the value
δ+(S) is computed. Moreover, we compute x̄(Hc \ A(S)) for each customer c, and
select the customer c′ with maximum z̄c′ − x̄(Hc′ \A(S)). If this value is greater than
δ+(S), the inequality (5.2) associated with S and c′ is violated. We start with ε = 0

and, while the algorithm fails in finding a violated inequality, we successively try ε =

0.25, 0.5, and 0.75.

The second heuristic is based on max-flow computations. For each customer c with
z̄c ≥ 0.75, and such that Hc does not contain any arc adjacent to the depot, we build
a network containing the arcs for which x̄a > 0 (with capacity x̄a) and some artificial
arcs (with infinity capacity) from the head vertices of the arcs in Hc to an artificial
sink. Then, a maximum flow from the depot to the sink is computed. This maxflow
defines a minimum cut (V \S, S), with 1 ∈ V \S. Now, z̄c− x̄(Hc \A(S)) is computed
for each customer and its associated inequality (5.2) is checked for violation. Since
the number of violated inequalities of this type can be large and the inequalities are
usually very similar, we only add those with maximum violation. If, for a given
cutset, the number of such violated inequalities is greater than 30, only 30 of them
are randomly selected and added.

Given a cutset (V \S, S) found by any of the two previous methods, if a lower bound
L is known, we calculate the profit P associated with all the customers c such that
Hc ⊆ A(V \ S). Obviously, a solution servicing only these customers would have
a value of the objective function less than or equal to P . Therefore, if P < L, an
optimal solution should service some other customer in A(S)∪ δ(S), so the inequality
x(δ+(S)) ≥ 1 has to be satisfied. Note that this inequality is stronger than the
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connectivity inequality (5.2) associated with a specific customer c, so we add the
inequality in this stronger version.

Parity inequalities

The heuristic to separate parity inequalities (5.6) has been implemented as follows.
First, we compute the weakly connected components of the graph induced by the arcs
satisfying x̄a ≥ 1 + ε, if a is required, and x̄a ≥ ε, otherwise. Then, for the cutset
(V \ S, S), 1 ∈ V \ S, associated with each connected component (each connected
component is associated with node set S), we compute x̄(δR(S)) and check if this
value is “close” to an odd number r (x̄(δR(S)) ∈ [r − 0.25, r + 0.25]). If so, the
heuristic tries to select that number r of “good” customers among those having arcs
in the cutset. To do this, we build the set of customers F with arcs in δ(S) and,
for each of them, x̄(Hc \ δ(S)) − z̄c is computed. Starting with the customer c ∈ F
with smallest x̄(Hc \ δ(S)) − z̄c value, we iteratively select customers c′ from F (in
increasing order of the x̄(Hc \ δ(S)) − z̄c values) such that the sets Hc′ ∩ δ(S) are
disjoint with those associated with the previously selected customers, until we reach
the desired number r of customers. If not enough customers can be selected, we try
with another component. Otherwise, the inequality (5.6) is checked for violation.

K-C inequalities

The main task accomplished by the heuristic for the separation of the K-C inequalities
consist of finding a graph structure as the one depicted in Figure 5.4.

Consider the customers c such that x̄(Hc) < zc + ε, where ε ≥ 0 is a given parameter,
and the graph induced by the arcs of these customers and the depot, if it is not
already incident with one of these arcs. Let Ci = (Vi, Ai) denote the connected
components of this graph. For each set Vi, let the exterior vertices of Vi be those
vertices in Vi for which there is an incident arc a ∈ δ(Vi) with x̄a > 0. Moreover,
define znetc = z̄c − x̄(Hc) ≤ 0 for every customer c and let V (Hc) denote the set of
vertices incidents with the arcs in Hc.

We select the customer c1 with greatest value of znetc such that, for some i, Hc1 ∩Ai 6=
∅ and V (Hc1) contains at least one exterior vertex u1 of Vi. Let M0 = {u1} and
MK = Vi \ {u1}. For each vertex v ∈ MK adjacent to a vertex in M0 (initially only
u1), we calculate x̄((M0∪{v},MK \{v})∩Hc1) and add toM0 (and remove fromMK)
the vertex that maximizes this value. We repeat this process while there are vertices
in MK adjacent to some vertices in M0 and there is at least one exterior vertex of
Vi in MK . Of all the studied M0 (and MK) sets, we keep the one that maximizes
x((M0 ∪ {v},MK \ {v}) ∩Hc1).
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Given the cutset (M0,MK), we now try to find another customer c2, such that Hc2 ∩
(M0,MK) 6= ∅ and Hc2 ∩Hc1 ∩ (M0,MK) = ∅. Of all the customers ci satisfying these
two conditions, we select the one that minimizes x(Hci)− x(Hci ∩ (M0,MK)).

Now we shrink setsM0 andMK and the remaining components Cj, j 6= i, into a single
vertex each and compute a spanning tree by iteratively adding the arc of maximum
weight not forming a cycle. This tree is transformed into a path linking M0 and MK

by (iteratively) shrinking each vertex with degree one, and not corresponding to M0

and MK , with its (unique) adjacent vertex. If the length of the path is at least 3, the
vertices of the path define the sets M0,M1, . . . ,MK . All the vertices of G that do not
belong to a set Mi yet are iteratively assigned to a set Mi to which they are adjacent.

For each set Mj, j = 1, . . . , K − 1, non containing the depot, we select the customer
cj that minimizes x(Hcj)− x(Hcj ∩ (A(Mj) ∪ δ(Mj))).

At this point, a K-C structure has been found, and its corresponding K-C inequality
is checked for violation.

5.4.2 Cutting-plane algorithm

At the root node, at each iteration of the cutting-plane algorithm, the separation
heuristics described above are applied in the following order:

1- The heuristic separation algorithms for connectivity inequalities. In particular,
the heuristic based on flow computations is used only if the other fails to find
violated inequalities.

2- The heuristic for the separation of the parity inequalities.

3- The algorithm for separating K-C inequalities. In particular this heuristic is
applied only if no violated connectivity inequalities have been found by the
heuristic based on the computation of connected components.

All the violated inequalities found are added to the LP relaxation.

On the remaining nodes of the branch-and-cut tree, is applied only the separation
algorithm for connectivity inequalities based on the computation of connected com-
ponents.

The above cutting-plane procedure is run until no new violated inequalities are found.
When this happens, we branch using the Strong Branching strategy implemented in
CPLEX with higher priority given to the zc variables.

In order to reduce the size of the search tree, we have used an initial upper bound
obtained with the heuristic algorithm described in Section 5.3. Furthermore, we
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have implemented another heuristic procedure, described in the following section that
provides upper bounds from the solutions of the linear relaxations.

5.4.3 Lower bound heuristic

Besides the heuristic algorithm described in Section 5.3, which provides an initial
lower bound to the B&C, we have implemented an additional lower bound heuristic
to exploit the fractional solutions of the LPs at some nodes of the branch-and-cut
tree.

Let (x̄, z̄) a fractional solution. All the customers c with z̄c ≥ 0.75 such that there is
at least one arc a ∈ Hc with x̄a > 0.6 are selected and their arcs with x̄a > 0.33 are
declared as required. All the remaining arcs of G are considered non-required arcs.
This defines a CEARP instance that is solved with the branch-and-cut algorithm
proposed in Ávila et al. (2016b) with a maximum time of 10 seconds. The best feasible
solution found by this procedure is checked to see if it traverses another customer not
included in the CEARP instance. If so, its variable zc is also set to 1 in the solution.
We calculate the difference between the profit associated with the serviced customers
and the cost of the CEARP solution, which represents a lower bound for the PCEARP
optimal solution.

A the root node of the tree, this heuristic is executed every 300 iterations of the
cutting-plane algorithm. After the root node has been explored, the heuristic is
executed every 100 nodes up to node number 500, and every 200 nodes beyond that.

5.5 Computational experiments

In this section, we present the instances used to analyze the behavior of the proposed
branch-and-cut algorithm, as well as the computational study performed. The algo-
rithm has been implemented in C++ and all the tests have been run on an Intel Core
i7 at 3.4 GHz with 32 GB RAM. The B&C uses CPLEX 12.10.0 with a single thread
and with Concert Technology 2.9. CPLEX heuristic algorithms were turned off, and
CPLEX own cuts were activated in automatic mode. The optimality gap tolerance
was set to zero and best bound strategy was selected.

5.5.1 Instances

The performance of our algorithms has been tested on several sets of instances derived
from those described in Ávila et al. (2017) for the CEARP. They are divided into
two groups: Albaida and Madrigueras, whose graphs represent the street networks of
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two Spanish towns, and Random, which correspond to randomly generated instances.
Note that only instances with 50 and 75 vertices of the “random” type were generated
in Ávila et al. (2017). Using the same methodology, we have generated new CEARP
“random” instances with up to 400 vertices. These new instances and the best solutions
found for all the sets can be found at http://www.uv.es/corberan/instancias.htm in
the classes CEARP and PCEARP. Table 5.1 shows the main characteristics of the
sets of instances.

#Inst |V |
|A| |AR| |ANR| |H|

Min Max Min Max Min Max Min Max
Albaida 24 116 259 305 124 172 109 162 18 33
Madrigueras 24 196 453 544 224 305 197 281 22 47
Random50 12 50 296 300 105 292 7 193 10 100
Random75 12 75 448 450 143 438 10 305 15 150
Random100 12 100 498 500 134 490 10 366 20 200
Random150 12 150 749 750 256 731 19 493 30 300
Random200 12 200 997 1000 321 972 27 679 40 400
Random300 12 300 1498 1500 502 1457 43 998 60 600
Random400 12 400 1999 2000 675 1936 63 1324 80 800

Table 5.1: Characteristics of the sets of instances

Given that PCEARP consists of finding a tour that, servicing a subset of customers,
maximizes the net profit, we have generated three different scenarios for each CEARP
instance. In each scenario, the percentage of customers serviced by the optimal so-
lution is, on average, around 60%, 80% and 90% of the total number of customers.
To achieve this, we have constructed three intervals for the profits, whose means and
ranges have been defined, after an extensive computational study, as follows. Given
a CEARP instance I, let CEARP (I) denote the length of the minimum cost tour
servicing all customers or an upper bound for that value. CEARP (I) is calculated
using the exact method described in Ávila et al. (2016b). From this value, we get
µ(I) = CEARP (I)/|H|, the average traveled distance per customer. Then, we have
constructed three intervals with midpoint µα(I) = µ(I)α, where α = 0.85, 1, and 1.15,
respectively. Their amplitude was set at 40% of µ(I). For example, for an instance I
and α = 0.85, the customers are randomly generated in the interval [0.65 µ(I), 1.05
µ(I)]. Table 5.2 shows the minimum and maximum profit per customer (on average)
for each instance set and profit interval.

For each one of the 132 CEARP instances, we have generated three PCEARP instances
for a total of 396 instances. They are grouped by set and interval profit.
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[0.65µ, 1.05µ] [0.80µ, 1.20µ] [0.95µ, 1.35µ]

Min Max Min Max Min Max
Albaida 181.8 293.8 223.8 335.9 265.8 378.0
Madrigueras 167.4 271.0 206.4 309.7 245.1 348.6
Random50 93.5 151.3 115.2 173.1 136.8 194.5
Random75 80.7 130.5 99.3 149.3 118.0 168.0
Random100 70.2 113.9 86.7 130.1 102.8 146.3
Random150 61.3 99.2 75.3 113.2 89.7 127.6
Random200 49.2 79.5 60.5 91.2 72.0 102.5
Random300 38.9 63.2 48.0 72.3 57.1 81.3
Random400 36.1 58.8 44.6 67.3 53.1 75.8

Table 5.2: Average min/max profit per instance set and profit interval

5.5.2 Computational results

In this section we present and analyze the results obtained for the 396 PCEARP
instances with the heuristic presented in Section 5.3 and the branch-and-cut algorithm.
Table 5.3 summarizes the computational results obtained with the heuristic and the
B&C with a time limit of 60 and 3600 seconds, respectively. For each set of instances,
the table reports the number of instances in the set, the number of optima found by
the heuristic, the average percentage gap between the values of the solutions provided
by the heuristic and the optimal solutions (or the best lower bounds found), and the
average time in seconds. Moreover, for the B&C, besides the number of optima found,
the table shows the average percentage gap between the upper bounds at the end of
the root node (Gap0) or the final upper bounds (Gap) and the optimal solutions (or
the best lower bounds found). The average number of nodes explored by the algorithm
and the average computing time, in seconds, are reported in the last two columns.

Heuristic B&C

#Inst # opt Gap Time # opt Gap0 Gap # nodes Time

Alb 72 59 0.44 0.9 72 0.09 0.00 1.2 1.0
Mad 72 39 3.03 4.0 72 1.87 0.00 10.5 12.3
R50 36 23 0.77 17.8 36 0.90 0.00 5.6 0.5
R75 36 13 2.38 29.6 36 0.32 0.00 11.1 1.2
R100 36 13 2.69 33.0 36 1.19 0.00 1454.4 51.2
R150 36 6 7.00 44.5 34 1.15 0.19 2620.4 269.5
R200 36 6 10.84 46.4 31 1.87 0.21 4994.8 763.3
R300 36 2 18.54 53.4 19 3.79 2.13 6064.1 2023.1
R400 36 0 21.67 60.0 16 3.09 2.23 4181.9 2190.8

396 161 6.44 26.8 352 1.48 0.43 1759.6 484.2

Table 5.3: Heuristic and B&C results in all instances
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From Table 5.3 we observe that the behavior of the heuristic is very good for small and
medium instances, where it obtains a large number of optimal solutions and where
it shows small gaps in short computing times. The quality of the solutions provided
makes it possible for the B&C to prove their optimality or close the gap quickly. For
the larger instances, the results are not so good, perhaps indicating that 60 seconds
is not enough for the algorithm to find good solutions for these instances, which have
up to 400 vertices, 2000 arcs, and 800 customers. On the other hand, the performance
of the B&C is very good, as it is able to solve to optimality 352 instances out of 396
in less than one hour of computing time. Almost all instances with up to 200 vertices
and 1000 arcs have been solved to optimality, as well as nearly half of the largest
ones (subsets Random300 and Random400). The small values reported in the Gap0
column indicate that the inequalities in the formulation, together with the proposed
valid inequalities, give strong linear relaxations whose optimal values are close to the
values of the optimal integer solutions.

Heuristic B&C

#Inst # opt Gap Time # opt Gap0 Gap # nodes Time

Alb 24 22 0.18 0.8 24 0.02 0.00 0.0 0.5
Mad 24 18 3.38 3.5 24 4.74 0.00 2.0 3.2
R50 12 8 1.04 17.7 12 1.70 0.00 4.5 0.5
R75 12 7 1.58 29.7 12 0.00 0.00 0.3 0.7
R100 12 5 3.57 32.4 12 0.92 0.00 117.3 7.2
R150 12 3 8.00 44.3 11 1.66 0.45 2653.3 313.5
R200 12 3 13.79 46.2 11 1.91 0.25 1677.2 346.2
R300 12 2 23.61 51.0 7 4.39 2.30 5264.6 1804.1
R400 12 0 27.58 60.0 6 3.65 2.58 3566.3 1941.9

132 68 7.84 26.4 119 2.16 0.51 1208.0 401.9

Table 5.4: Heuristic and B&C results for the instances with profits in the interval [0.65µ, 1.05µ]

In order to study the influence of the profits in the behavior of the algorithms, we
detail the computational results for each interval of profits in Tables 5.4-5.6. As can
be seen, the heuristic behaves worse when the profit intervals are large, since in these
cases (as we will see later) the average number of customers serviced increases, and
with it the difficulty of the instance. Unlike the heuristic, it is not so clear that
the behavior of the B&C varies with the profit intervals. The number of optima
found decreases slightly while the number of explored nodes and the computing time
increase. However, there is no clear pattern in the Gap and Gap0 values.

To study in more depth if the difficulty of the problem varies with the percentage
of customers serviced by the solution (due to the different profit intervals), we have
summarized in Table 5.7 the results obtained by the branch-and-cut algorithm on the



5.5. Computational experiments 69

Heuristic B&C

#Inst # opt Gap Time # opt Gap0 Gap # nodes Time

Alb 24 20 0.48 0.9 24 0.02 0.00 0.1 1.2
Mad 24 12 3.36 4.3 24 0.43 0.00 8.1 11.8
R50 12 7 1.00 18.0 12 0.63 0.00 3.8 0.5
R75 12 4 3.14 29.7 12 0.54 0.00 7.2 1.2
R100 12 5 1.98 33.2 12 1.69 0.00 4059.6 137.1
R150 12 2 7.41 44.8 11 0.92 0.11 2973.3 311.2
R200 12 2 10.75 46.5 11 1.81 0.11 3308.3 540.8
R300 12 0 17.30 54.4 7 3.30 1.82 6073.0 1968.7
R400 12 0 20.70 60.0 5 2.69 1.99 4333.3 2199.5

132 52 6.36 27.0 118 1.13 0.37 1888.6 471.4

Table 5.5: Heuristic and B&C results for the instances with profits in the interval [0.80µ, 1.20µ]

Heuristic B&C

#Inst # opt Gap Time # opt Gap0 Gap # nodes Time

Alb 24 17 0.65 0.9 24 0.24 0.00 3.4 1.3
Mad 24 9 2.36 4.3 24 0.44 0.00 21.5 21.9
R50 12 8 0.27 17.7 12 0.37 0.00 8.5 0.5
R75 12 2 2.41 29.3 12 0.43 0.00 25.8 1.8
R100 12 3 2.53 33.4 12 0.96 0.00 186.3 9.2
R150 12 1 5.59 44.3 12 0.87 0.00 2234.6 184.0
R200 12 1 7.98 46.5 9 1.89 0.29 9998.8 1402.8
R300 12 0 14.73 54.7 5 3.68 2.28 6854.8 2296.6
R400 12 0 16.73 60.0 5 2.94 2.13 4646.3 2430.9

132 41 5.11 26.9 115 1.14 0.43 2182.3 579.3

Table 5.6: Heuristic and B&C results for the instances with profits in the interval [0.95µ, 1.35µ]

largest instances, grouped by number of customers and profit interval. We want to
point out that, although the table reports some of the same measures in the previous
tables, the gap values have been calculated here only for the instances not solved to
optimality in the corresponding set, while the computing times are calculated only for
those optimally solved (in less than 3600 seconds). The table also shows the average
percentage of customers serviced by the optimal solution or by the best solution found
(%c).

From Table 5.7 we observe that the computing time needed to solve the instances to
optimality grows with the profit interval, which is a clear indication of an increase in
the difficulty of the instances at the increase of the percentage of customers serviced.
The number of optima found also decreases as this percentage increases, although
it is only a slight decrease. The behavior of the gaps is not uniform. While we
could expect the largest gaps for the unsolved instances with the highest number
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of customers serviced, their values do not seem to follow this trend. On the other
hand, we can see that the total number of customers (|H|) significantly influences the
difficulty of the instance.

[0.65µ, 1.05µ] [0.80µ, 1.20µ] [0.95µ, 1.35µ]

|H| opt/inst Gap Time %c opt/inst Gap Time %c opt/inst Gap Time %c

R150

30 3/3 - 1.7 51.3 3/3 - 2.1 77.7 3/3 - 2.5 81.0
75 3/3 - 4.4 65.0 3/3 - 5.8 73.3 3/3 - 9.5 81.7
150 3/3 - 13.7 70.7 3/3 - 22.9 78.7 3/3 - 44.4 84.7
300 2/3 5.45 51.1 80.7 2/3 1.33 20.95 87.0 3/3 - 679.5 87.0

R200

40 3/3 - 2.9 36.7 3/3 - 9.4 66.7 3/3 - 13.9 83.3
100 3/3 - 32.5 65.3 3/3 - 93.4 77.3 3/3 - 155.3 79.0
200 3/3 - 78.3 70.7 3/3 - 309.6 81.3 3/3 - 1842.0 84.0
400 2/3 2.96 106.7 80.7 2/3 1.27 826.4 83.3 0/3 1.15 - 88.7

R300

60 3/3 - 14.6 40.7 3/3 - 59.5 70.7 3/3 - 162.2 76.7
150 3/3 - 230.7 57.3 3/3 - 628.2 74.7 2/3 1.77 936.0 82.0
300 1/3 8.55 2912.9 69.3 0/3 5.58 - 81.3 0/3 3.48 - 83.0
600 0/3 3.51 - 78.0 1/3 2.54 3555.6 85.7 0/3 5.05 - 87.0

R400

80 3/3 - 103.1 56.0 3/3 - 189.6 69.7 3/3 - 487.0 81.3
200 2/3 3.19 156.7 61.3 2/3 0.98 303.6 76.7 2/3 1.77 1244.8 85.0
400 1/3 3.51 1060.2 75.0 0/3 2.88 - 83.3 0/3 2.87 - 85.7
800 0/3 6.91 - 28.3 0/3 4.74 - 58.3 0/3 5.06 - 89.3

35/36 - - 61.7 34/36 - - 76.6 31/36 - - 83.7

Table 5.7: B&C results, grouped by interval profits, for the largest sets of instances

5.6 Conclusions

In this chapter, we have addressed a new arc routing problem, the Profitable Close-
Enough Arc Routing Problem (PCEARP). In the PCEARP, customers are not nec-
essarily nodes of a network, but can be serviced by traversing an edge that is close
enough. A profit is associated with each customer and it is collected only once when
the customer is serviced. The objective is to find a tour maximizing the net profit,
that is, the difference between the total profit collected and the distance traveled.

In this work, we have presented a formulation for the PCEARP, as well as some valid
inequalities, and studied the polyhedron associated with its solutions. To solve the
PCEARP, we have proposed a heuristic algorithm that provides good quality lower
bounds in short computing times. A branch-and-cut using the knowledge obtained
from the polyhedral study and the lower bounds calculated by the heuristic algorithm
have also been presented. This exact algorithm is able to optimally solve large in-
stances with up to 600 customers, 300 vertices, and 1500 arcs in one hour of computing
time.



71

Chapter 6

A Matheuristic for the
Distance-Constrained Close-Enough
Arc Routing Problem

6.1 Introduction

In this chapter we study the Distance-Constrained Close-Enough Arc Routing Prob-
lem (DC-CEARP) introduced in Ávila et al. (2017), a generalization of the CEARP
in which a fleet of vehicles, or a vehicle multiple times, performs the service of the cus-
tomers. This problem consists of finding a set of K routes leaving from and entering
at the depot and serving all the customers, such that the length (in distance or time)
of each route does not exceed a certain value Dmax. The objective is to minimize the
total length traversed. Ávila et al. noted that the DC-CEARP is NP-hard, since it
generalizes the CEARP. For this problem, several formulations and exact algorithms
were proposed and compared on a set of instances with up to five vehicles, 196 vertices,
450 arcs, and 150 customers.

For this problem we propose a multi-start matheuristic that incorporates an effective
branch-and-cut method for the CEARP in order to optimize the routes obtained.
In Section 6.2 we define formally the DC-CEARP and introduce the notation used.
Moreover, the most promising formulation of the problem, according to Ávila et al.
(2017), is given. The matheuristic is presented in Section 6.3 and the computational
experiments are described in Section 6.4. Finally, some conclusions are given in Section
6.5.
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6.2 Problem definition and notation

The DC-CEARP is defined on a strongly connected directed graph G = (V,A), where
V denotes the set of vertices and A the set of arcs. Vertex 1 is the depot, and, for
each arc (i, j) ∈ A, there is a distance or length dij associated with its traversal. Let
us call H = {1, . . . , L} the set of customers and Hc ⊆ A the associated set of arcs
from which each customer c can be serviced. We assume there is a homogeneous
fleet of K identical vehicles based at the depot. The duration of the routes of these
vehicles must not exceed a maximum travel distance denoted by Dmax. The objective
of the DC-CEARP is to find a set of K routes, starting and ending at the depot, with
minimum total cost and such that at least one arc form each Hc, c ∈ H, is traversed
by the routes.

In what follows, K = {1, . . . , K} will represent the set of vehicles and AR = H1∪H2∪
. . . ∪HL the set of required arcs. The arcs in the set ANR = A \ AR are called non-
required arcs. Given a set S ⊂ V , we define δ+(S) = {(i, j) ∈ A : i ∈ S, j ∈ V \ S},
δ−(S) = {(i, j) ∈ A : i ∈ V \ S, j ∈ S} and A(S) = {(i, j) ∈ A : i, j ∈ S}. Finally,
given a set F of arcs, xk(F ) =

∑
(i,j)∈F x

k
ij.

In the paper by Ávila et al. (2017) four different formulations for the DC-CEARP
were presented. The formulation that provided the best computational results was
called Fxz and is presented in what follows. Let us define the variables:

xkij = number of times that the vehicle k traverses arc (i, j) ∈ A,

zkc =

{
1, if the customer c is serviced by vehicle k
0, otherwise.

The problem can be formulated as

Minimize
∑
k∈K

∑
(i,j)∈A

dij x
k
ij

s.t.:

xk(δ+(i)) = xk(δ−(i)) ∀ i ∈ V, ∀k ∈ K (6.1)

xk(δ+(S)) ≥ zkc − xk(Hc ∩ A(V \ S)) ∀S ⊂ V \ {1}, ∀c ∈ H, ∀k ∈ K (6.2)∑
k∈K

zkc = 1 ∀c ∈ H (6.3)∑
(i,j)∈Hc

xkij ≥ zkc ∀c ∈ H, ∀k ∈ K (6.4)
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∑
(i,j)∈A

dij x
k
ij ≤ Dmax ∀k ∈ K (6.5)

xkij ≥ 0 and integer ∀(i, j) ∈ A, ∀k ∈ K (6.6)

zkc ∈ {0, 1} ∀c ∈ H, ∀k ∈ K (6.7)

Inequalities (6.1) are the symmetry conditions on the vertices. Constraints (6.2)
ensure the connectivity of the routes. Note that, if vehicle k does not service customer
c, zkc = 0, or it services customer c by traversing an arc in Hc ∩ A(V \ S), then the
inequality is trivially satisfied. On the other hand, if vehicle k services customer c
by traversing an arc not in Hc ∩ A(V \ S), it has to traverse the cutset δ(S). The
mandatory service of the customers is established in inequalities (6.3), and inequalities
(6.4) link the two sets of variables. Finally, constraints (6.5) limit the duration of the
routes and (6.6) and (6.7) are the non-negativity and integrality constraints.

Using this formulation, Ávila et al. (2017) implemented a branch-and-cut algorithm
capable of solving instances with up to five vehicles, 196 vertices, 450 arcs, and 150
customers. Nevertheless, the algorithm could not find the optimal solution in 30
out of the 251 instances and in seven of these 30 was not even able to produce a
feasible solution after one hour of computing time. This, and the need of solving
larger instances, as well as to provide good upper bounds that can help the exact
algorithm, motivated us to develop a heuristic algorithm for the DC-CEARP.

6.3 Matheuristic

The proposed algorithm is a multi-start matheuristic. In each iteration of the algo-
rithm, the routes are first generated using a heuristic construction algorithm and they
are then improved by two local search procedures. Finally, each route is optimized by
means of an exact procedure. The algorithm stops when a certain number of iterations
with no improvement is reached or a maximum computation time is exceeded.

Before applying this algorithm, we first remove those customers c1 such that there is
another customer c2 for which Hc2 ⊆ Hc1 .

6.3.1 Constructive algorithm

In this section we describe how to construct feasible solutions for the DC-CEARP by
iteratively assigning each customer to a route. Since the total duration of the routes
could be improved in later phases of the algorithm, we allow the duration of the
constructed routes to exceed the time limit by a certain amount given by a parameter
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Marg varying between 0 and 0.2. Let DL = (1+Marg) × Dmax be the maximum
duration allowed for the routes in this phase of the algorithm.

A route for vehicle i will be represented as the sequence Ri of required arcs traversed
by vehicle i. We assume that, in order to travel from the end of a required arc to the
beginning of the following one, the vehicle uses the shortest path. Associated with
each route i, we have a vector Ci containing the customers which are serviced from
the required arcs in Ri.

The constructive algorithm consists of two phases: the first one initializes the routes,
and the second one completes them by iteratively allocating the customers not yet
assigned to any route. We have implemented six variants of the constructive method,
resulting from the combination of three different initialization procedures with two
completion methods that are described in what follows.

Initialization procedures

We define the service time of a customer c, and denote it stc, as the shortest time
needed for traveling from the depot to an arc in Hc, traversing it, and returning to the
depot. Based on this service time, we have considered different ways of introducing
the first arc in each route.

• Random Initialization
To initialize a route i, we randomly select a customer c among those that have
not been assigned to any route yet. Among all the arcs in Hc, we select the arc
ac associated with the minimum service time stc. Likewise, ac is introduced in
Ri, and both c and the rest of unassigned customers that can be serviced by ac
are included in Ci.

• Random Selection among the Best Applicants
We define BA (Best Applicants) as the set formed by the min{10, |H|

2
} unas-

signed customers with the highest stc values.

To initialize the route i, we randomly select a customer c ∈ BA and its corre-
sponding arc ac ∈ Hc with minimum service time stc is inserted in Ri. Customer
c, together with all the other unassigned customers that can be serviced by arc
ac, is added to Ci.

• Weighted Selection among the Best Applicants
A customer c is randomly chosen from the set BA defined above using proba-
bilities

pc =
stc∑
i∈BA sti

.
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Customer c ∈ BA is introduced in Ci and the arc ac ∈ Hc associated with stc is
included in Ri. Again, all the unassigned customers that can be serviced by ac
are included in Ci.

Note that inserting an arc in an empty route implies traveling from the depot to this
arc and returning back using shortest paths. These shortest paths are studied to
check if they traverse any arcs from which unassigned customers could be serviced.
If this is the case, these customers are added to the corresponding route and marked
as assigned, and the arcs from which they are serviced are marked as required and
added to the route in the corresponding position.

Route completion procedures

Once the routes have been initialized using one of the variants explained above, a
deterministic completion procedure is used to introduce the remaining customers in
the routes by iteratively adding arcs to the partial routes. Note that an arc that is
inserted in a route i may also service other unassigned customers. These customers
are also added to Ci. Likewise, inserting an arc in a route may result in changing the
shortest paths traversed between required arcs. If these new shortest paths traverse
any required arc that can service unassigned customers, these customers are also
added to Ci, and the corresponding required arc is included in Ri.

Two different completion methods are used: one completing all the routes simulta-
neously and another one working in a sequential way, completing each route before
moving to the next one.

• Parallel Completion
Once all the routes have been initialized, we start by allocating the unassigned
customers c with |Hc| = 1, since these are the customers with less flexibility to
be inserted in the routes. For each of these customers we check all the possible
positions and routes in which its corresponding arc can be inserted, and choose
the one that produces a minimum increase of the route duration.

For each arc a of the remaining unassigned customers, we calculate how much
the duration of the route increases for all the possible positions and all the
possible routes in which we can insert a. The minimum of these values is called
the insertion cost of a. Note that an insertion in a route is considered possible
if the resulting route time does not exceed DL. For each unassigned customer
c, let a∗c be the arc in Hc with minimum insertion cost. Then, we choose the
customer c∗ with the maximum insertion cost a∗c∗ . Arc a∗c∗ is inserted in the best
possible position and route, say Ri, and c∗ is added to Ci.
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• Sequential Completion
In this case, after a route i is initialized, it is completed until no more customers
can be allocated to it without exceeding DL.

For each unassigned customer, we obtain the arc and the position in which
it should be introduced so that the increase of the duration of the route is
minimum. This process is repeated until no customer can be inserted in the
route without exceeding DL, i.e, the current route has been completed. If there
are some customers that are not allocated yet to any route and there is an empty
route, a new route is initialized.

6.3.2 Local search

The solutions obtained in the construction phase are improved using two local search
procedures. The methods 2-Exchange, based on the exchange of two arcs from differ-
ent routes, and destroy and repair, where some arcs and their corresponding customers
are removed from the solution and then reintroduced, are described.

2-Exchange

The 2-Exchange procedure consists of swapping two arcs of different routes. Note
that when two arcs of different routes are exchanged, the customers associated with
each arc must be exchanged too. As it is explained below, this exchange is applied
following the first improvement strategy.

The routes are sorted randomly and the first two routes i and j are selected. Then,
an arc a∗i from Ri and an arc a∗j from Rj are deleted and the customers serviced from
a∗i and a∗j are removed from Ci and Cj, respectively. Arc a∗j is placed in the best
possible position of the route i, and arc a∗i in the best possible position of the route
j. The customers serviced from the arc a∗j are included now in Ci, and those serviced
from a∗i are included in Cj. If the obtained solution improves the current one and
DL is not exceeded, the movement is accepted and another pair of routes is selected.
Otherwise, the movement is discarded and another pair of arcs of Ri and Rj is chosen
until an improving movement is found or all the possible exchanges for this pair of
routes have been tried.

Destroy and repair

This method consists of two phases: in the first one, some arcs are removed from the
current solution, while in the second one of the customers that cannot be serviced due
to the removed arcs are reallocated.
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In the destruction phase of the algorithm, m arcs are removed from the solution but
always keeping at least one arc in any route. Specifically, an arc is randomly selected
and, if it is not the only arc in its route, it is removed. Let ai be an arc removed from
Ri and c a customer serviced from this arc. If there is another arc in Ri from which
customer c can be serviced, c does not need to be reallocated. If this is not the case
but there is an arc in another route Rj from which c can be serviced, c is reassigned
to route Rj without modifying the routes. Otherwise, customer c will be marked as
unassigned in order to be reallocated by the repair phase.

Once the destruction phase is finished, all the unassigned customers must be reallo-
cated. This is done using the parallel completion procedure described in Section 6.3.1.
If the resulting solution does not improve the original one, all the changes made in
this phase are discarded. This procedure is repeated for each value of m ∈ {1, 2, 5}
until min{50, |H|

2
} iterations without an improvement are performed.

6.3.3 Route optimization

Finally, we optimize each single route by solving a single-vehicle CEARP problem
using the exact branch-and-cut algorithm developed in Ávila et al. (2016b).

Given a route i, we define a CEARP instance on graph G with the set of customers
Ci. Each customer c ∈ Ci has the same associated set of required arcs Hc as in the
original DC-CEARP instance. This CEARP instance is then solved optimally. If the
duration of the optimal route is greater than Dmax, the route is not feasible and the
current solution is discarded.

If the obtained route is feasible, it may now traverse some required arcs that service
customers which are currently assigned to other routes. If we can now service a new
customer c that belongs to another route j that has not been optimized yet, we add c
to Ci and remove it from Cj. Since the order of selecting the routes to be optimized
can have an effect in the optimization of the remaining routes, the selection is made
at random.

6.3.4 Overall algorithm

The multi-start matheuristic consists basically of generating solutions using the differ-
ent constructive algorithms presented above and applying the local-search procedures
and the exact optimization to the individual routes. This procedure is repeated un-
til a certain stopping criterium is met. Specifically, the matheuristic (Algorithm 2)
is initialized by creating a solution with one of the six constructive algorithms pro-
posed. Note that, since this solution is built using a time or distance limit for the
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routes DL = (1+Marg)×Dmax, if Marg > 0, the duration of some routes may exceed
Dmax and thus the solution may not be feasible. The obtained solution is improved
by means of the local-search algorithm and then each route is optimized using the
procedure described in Section 6.3.3. This construction and improvement phase is
repeated for all the different constructive algorithms. If the best feasible solution
(if any) obtained in this way is better than the current best solution, it is stored as
the new best solution. This procedure is repeated until a maximum computing time
time_limit is exceeded or a certain number of iterations iter_max without updating
the best known solution is reached.

The overall algorithm (Algorithm 3) applies the multi-start procedure with values
Marg = 0, 0.05, 0.1 and a maximum number of iterations without improvement of
iter_max1. If no feasible solution has been found, the multi-start procedure is used
again with maximum number of iterations iter_max2 and increasing the value of
Marg by 0.02 iteratively. The procedure stops when a feasible solution is found,
Marg > 0.2, or the computing time time_limit is exceeded, whatever happens first.

Input: G, H, Dmax, Marg, iter_max, time_limit
Output: Sbest

1 DL ← (1+Marg)×Dmax;
2 iter ← 0;
3 Sbest ← ∅;
4 while time_limit is not reached AND iter ≤ iter_max do
5 Siter ← ∅;
6 for each Constructive algorithm do
7 Sc ← Constructive algorithm(DL);
8 Si ← Local-Search(Sc, DL);
9 So ← Routes optimization(Si, Dmax);

10 if So is feasible and better than Siter then
11 Siter ← So;
12 if Siter is feasible and better than Sbest then
13 Sbest ← Siter;
14 iter ← 0;
15 else
16 iter ← iter + 1;

Algorithm 2: Multi-start

6.4 Computational experiments

In this section we study the performance of the proposed algorithm. The instances
tried and the computational results obtained are described in the following sections.
The procedures have been coded in C++ and all the computational experiments have
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Input: G, H, Dmax, iter_max1, iter_max2, time_limit
Output: Sbest

1 Marg ← 0;
2 Sbest ← ∅;
3 while time_limit is not reached AND Marg ≤ 0.1 do
4 Sbest ← Multi-start(G, H, Dmax, Marg, iter_max1, time_limit);
5 Marg ←Marg +0.05;
6 if Sbest = ∅ then
7 while Sbest = ∅ AND time_limit is not reached AND Marg ≤ 0.2 do
8 Sbest ← Multi-start(G, H, Dmax, Marg, iter_max2, time_limit);
9 Marg ←Marg+0.02;

Algorithm 3: Overall

been executed on a single thread of an Intel Core i7 at 3.4GHz with 32GB RAM
running Windows 10 Enterprise 64 bits. The branch-and-cut algorithm for the single-
vehicle CEARP used for optimizing the routes (see Section 6.3.3), developed in Ávila
et al. (2016b), was also implemented in C++ using CPLEX 12.4 MIP Solver with
Concert Technology 2.9. Although this exact procedure is able to solve large-sized
CEARP instances, it can be quite time consuming. Therefore, we have limited its
execution time to 10 seconds.

6.4.1 Instances

The algorithm has been tested on the four sets of instances proposed in Ávila et al.
(2017). The instances of the two first sets, called Random50 and Random75, were
generated randomly in a 1000 x 1000 square, with |V | ∈ {50, 75}. The other two
sets of instances, called Albaida and Madrigueras are based on the street networks
of these two Spanish towns. There is a total of 251 instances whose characteristics
are shown in Table 6.1. All the data, including the values of Dmax and the number
of vehicles, as well as the detailed results described in Section 6.4.2, can be found in
http://www.uv.es/corberan/instancias.htm.

#Inst |V |
|A| |AR| |ANR| |H|

Min Max Min Max Min Max Min Max
Albaida 24 116 259 305 124 172 109 162 18 33
Madrigueras 24 196 453 544 224 305 197 281 22 47
Random50 12 50 296 300 105 292 7 193 10 100
Random75 12 75 448 450 143 438 10 305 15 150

Table 6.1: Characteristics of the instances
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6.4.2 Computational results

The results obtained with two versions of the matheuristic are compared to those
obtained with the branch-and-cut in Ávila et al. (2017). Table 6.2 summarizes the
results obtained with a version of the algorithm with iter_max1 = 5, iter_max2 =

20, and time_limit = 100 (seconds), which will be called Matheuristic 1 (MH1). The
goal of Matheuristic 1 is to obtain good solutions in low computing times. Table
6.2 shows the results obtained only for the instances for which the branch-and-cut
obtained an optimal solution. Columns 1 and 2 contain the name of the instance set
and the number of vehicles. Column 3 reports the number of instances with known
optimal solution. Column 4 shows the number of instances for which Matheuristic 1
reached the known optimal solution, while Column 5 shows the number of instances
for which the algorithm found feasible but not optimal solutions. For the instances
reported in Column 5, we have computed the gap between the cost of the solution
provided by Matheuristic 1 and the optimal value. The average gap values are shown
in Column 6. The number of instances for which the algorithm was not even capable
of finding a feasible solution is given in Column 7. The last two columns report the
average time in seconds taken by Matheuristic 1 and the branch-and-cut, respectively,
for all the instances. Note that the times reported for Matheuristic 1 are lower than
time_limit = 100. This is due to the values used for parameters iter_max1 and
iter_max2 limiting the running time of the algorithm.

Globally, the algorithm Matheuristic 1 has been capable of reaching the optimal so-
lution on 115 out of 221 instances, in 22.9 seconds on average. The average gap from
the optimal value in the 101 instances for which a feasible solution was found is 3.93%.
However, there are 5 instances for which Matheuristic 1 has not been able to find a
feasible solution with the given number of vehicles. This may be explained by the fact
that the values of Dmax limiting the length of the routes are very tight. As expected,
the Random75 instances are more difficult to solve to optimality than the Random50
ones because of their larger sizes. Something similar happens with the Madrigueras
instances with respect to the Albaida ones, although, perhaps due to the structure of
their underlying graphs, the number of instances for which no feasible solution has
been found is greater in the Albaida set than in the Madrigueras set.

In order to obtain better solutions, we have tried another version of the algorithm,
called Matheuristic 2, with the following values of the parameters: iter_max1 =

iter_max2 = 200 and time_limit = 600 (seconds). The obtained results are shown
in Table 6.3. The reader can observe the different behavior of Matheuristic 2 against
Matheuristic 1. Now, the number of optimal solutions found is 161 out of 221 versus
115 of the faster version. Also, the average gap for the instances that were not solved
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Time (s)
#Veh #Inst #Opt #No Opt Gap(%) #No Sol MH1 B&C

Random50

2 12 8 4 3.76 0 1.9 45.9
3 11 6 5 4.67 0 3.1 83.0
4 9 4 5 4.76 0 4.3 179.3
5 2 0 2 4.01 0 12.3 456.4

34 18 16 4.39 0 3.6 117.4

Random75

2 12 6 6 4.30 0 2.6 388.5
3 12 5 7 4.40 0 6.6 603.1
4 10 3 7 3.94 0 13.3 771.1
5 4 2 2 3.82 0 5.6 1301.1

38 16 22 4.17 0 7.0 654.3

Albaida

2 24 21 3 0.76 0 14.9 34
3 24 18 6 5.90 0 21.0 89.9
4 21 9 12 3.17 0 22.9 338.7
5 17 10 3 3.43 4 40.1 316.1

86 59 25 3.59 4 23.5 182.1

Madrigueras

2 24 11 13 2.82 0 39.0 224.1
3 21 6 15 3.96 0 43.1 894.1
4 13 4 9 5.20 0 39.8 1625.2
5 5 2 2 3.08 1 58.6 2447.2

63 23 39 3.82 1 42.1 912.9
Total 221 115 101 3.93 5 22.9 462.9

Table 6.2: Results of Matheuristic 1 for the instances with known optimal solution

optimally is 2.41% against 3.93% of Matheuristic 1. Finally, only in 2 out of the
221 instances was Matheuristic 2 not capable of finding a feasible solution with the
specified number of vehicles. Of course, all these better results have been obtained
at the expense of a greater computational effort (151 seconds on average versus 22
seconds of Matheuristic 1).

Table 6.4 shows the computational results obtained on the instances of the Random50,
Random75, and Madrigueras sets with unknown (or unproven) optimal solutions. In
fact, for some of these instances, the branch-and-cut algorithm described in Ávila et al.
(2017) was not capable of finding even a feasible solution in one hour of computing
time, which gives an idea of the difficulty of these instances. Columns 1 and 2 of
Table 6.4 report the instance name and the number of vehicles. Column 3 shows
the value of the best solution found (if any) by the exact algorithm, while column
4 reports the corresponding optimality gap. The values of the solutions provided
by Matheuristic 1 and Matheuristic 2 and the computing times in seconds can be
seen in the following four columns of the table. The last three columns present the
gap obtained by the three algorithms with respect to the best solution found. Note
that our algorithm Matheuristic 2, not only improves the solutions provided by the
branch-and-cut method in many instances, but also finds a feasible solution in all of
them.
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Time (s)
#Veh #Inst #Opt #No Opt Gap(%) #No Sol MH2 B&C

Random50

2 12 9 3 4.48 0 13.5 45.9
3 11 9 2 0.42 0 26.9 83.0
4 9 5 4 2.08 0 21.1 179.3
5 2 1 1 0.57 0 35.2 456.4

34 24 10 2.32 0 21.1 117.4

Random75

2 12 8 4 2.67 0 22.1 388.5
3 12 6 6 3.20 0 26.2 603.1
4 10 5 5 3.41 0 36.1 771.1
5 4 2 2 2.57 0 34.8 1301.1

38 21 17 3.06 0 28.4 654.3

Albaida

2 24 21 3 0.32 0 117.2 34
3 24 22 2 1.15 0 152.3 89.9
4 21 18 3 1.23 0 159.4 338.7
5 17 11 4 0.96 2 187.9 316.1

86 72 12 0.96 2 151.3 182.1

Madrigueras

2 24 18 6 1.20 0 323.2 224.1
3 21 13 8 3.23 0 327.8 894.1
4 13 9 4 4.19 0 251.7 1625.2
5 5 4 1 3.47 0 172.0 2447.2

63 44 19 2.80 0 298.0 912.9
Total 221 161 58 2.41 2 151.0 462.9

Table 6.3: Results of Matheuristic 2 for the instances with known optimal solution

Table 6.5 summarizes the results shown in Table 6.4 obtained by the branch-and-cut
and Matheuristic 2 algorithms for the 30 instances not solved to optimality. It can
be seen in the first row that Matheuristic 2 was able to find a feasible solution for all
the 30 instances while the branch-and-cut algorithm was only able to find it for 23 of
them. The average UB and the average time (second and fourth rows, respectively)
refer only to these 23 instances. The number of instances for which Matheuristic 2
obtained a better solution, 17, includes the 7 instances where the branch-and-bound
did not obtain a feasible solution. As can be seen, in these 30 instances, Matheuristic
2 clearly outperforms the branch-and-cut algorithm.

In order to assess the contribution of the different constructive algorithms, we have
studied the number of times each algorithm has been able to produce the best solution.
Table 6.6 reports this information for all the six variants of the constructive algorithms
in all the 251 instances used. It presents the percentage of best solutions found both
when the route optimization is used and when it is deactivated. It can be seen that
heuristics working in a parallel way perform better than those that use sequential
completion. Moreover, this behavior remains true whether the optimization phase is
executed or not.

Finally, in order to study the impact of the exact route optimization phase on the
performance of the matheuristic, we have run a variant of MH1 and MH2 in which we
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Instances # Veh B&C MH 1 MH 2 Gap Best Sol (%)

UB Gap UB Time UB Time B&C MH1 MH2
M3103_gdrpp 3 9052 0.05 9348 100 9237 600 0 0.03 0.02
M3105_gdrpp 3 9454 0.12 9086 100 9086 600 0.04 0 0
M3201_gdrpp 3 9795 0.04 10612 56.8 10131 600 0 0.08 0.03
LCGDRPP_75_3_20_1 4 9952 0.07 - 100 9910 11.2 0.01 - 0
LCGDRPP_75_3_20_2 4 10684 0.09 11119 4.1 10976 21.3 0 0.04 0.03
M3101_gdrpp 4 - - 9369 78.0 9307 600 - 0.01 0
M3103_gdrpp 4 9628 0.11 9954 100 9709 600 0 0.03 0.01
M3105_gdrpp 4 - - 9211 100 9211 600 - 0 0
M3111_gdrpp 4 30660 0.12 29639 9.9 29637 600 0.03 0 0
M3201_gdrpp 4 10451 0.08 11386 100 10829 600 0 0.09 0.04
M3203_gdrpp 4 10145 0.07 10959 100 10344 600 0 0.08 0.02
M3205_gdrpp 4 11526 0.19 10824 100 10768 600 0.07 0.01 0
M3211_gdrpp 4 38869 0.11 - 100 38992 600 0 - 0.01
M5209_gdrpp 4 8834 0.01 8943 38.8 8834 297 0 0.01 0
LCGDRPP_50_3_20_3 5 9648 0.08 9903 2.1 9807 51.3 0 0.03 0.02
LCGDRPP_75_3_10_3 5 9858 0.14 10094 4.7 9978 31.5 0 0.02 0.01
LCGDRPP_75_3_20_1 5 10615 0.15 10640 2.5 10826 17.9 0 0 0.02
LCGDRPP_75_3_20_2 5 11728 0.17 12001 15.3 11871 7.4 0 0.02 0.01
LCGDRPP_75_3_20_3 5 - - 8847 61.4 8916 61.9 - 0 0
M3101_gdrpp 5 - - 10374 100 10374 600 - 0 0
M3103_gdrpp 5 - - 11477 100 11139 600 - 0.03 0
M3105_gdrpp 5 - - 9461 65.2 9343 436 - 0.01 0
M3107_gdrpp 5 5368 0.10 5604 14 5234 214 0.03 0.07 0
M3109_gdrpp 5 10794 0.09 11272 21.6 10973 465 0 0.04 0.02
M3111_gdrpp 5 29686 0.09 30044 41.7 29686 600 0 0.01 0
M3201_gdrpp 5 12224 0.26 11947 100 11394 600 0.07 0.05 0
M3203_gdrpp 5 13536 0.42 11566 100 11041 600 0.23 0.05 0
M3205_gdrpp 5 - - 11220 100 10638 600 - 0.05 0
M3209_gdrpp 5 11933 0.03 - 100 12453 75.5 0 - 0.04
M3211_gdrpp 5 40744 0.26 41837 65.5 39787 600 0.02 0.05 0

Table 6.4: Results for the 30 instances with unknown optimal solution

B&C Matheuristic 2
# of feasible solutions 23/30 30/30
Average UB 14573.22 14413.17
# of best solutions 15/30 17/30
Average time 3600 405.3

Table 6.5: Overall results for the unsolved instances

Parallel completion Sequential completion
RI RSBA WSBA RI RSBA WSBA

Without optimization 20.92 39.04 33.07 13.94 10.56 13.55
With optimization 23.51 38.25 31.08 16.14 13.35 12.75

Table 6.6: Percentage of best solutions found with each constructive algorithm
with and without the exact route optimization phase

have deactivated the optimization phase. These variants have been executed during
the same running time used by the original versions of MH1 and MH2. Table 6.7
shows the obtained results. Last column reports the percentage of time used by the



84 Chapter 6. A Matheuristic for the DC-CEARP

#Opt #No Opt Gap(%) #No Sol Time (s) TOpt

With optimization MH1 115 101 3.93 5 22.9 95.97%
MH2 161 58 2.41 2 151.0 91.74%

Without optimization MH1 72 138 3.05 11 22.9 –
MH2 89 128 2.29 4 151.5 –

Table 6.7: Impact of the exact route optimization phase on the instances with known optimal solution

exact optimization procedure with respect to the total computing time. Although the
time used in the optimization phase may seem high, if we compare, for example, the
number of instances in which the optimum has been obtained or the number of those
in which no solution has been found, we can conclude that the optimization of the
routes plays an important role in the performance of the matheuristic.

6.5 Conclusions

In this chapter we have addressed the generalization of the Close-Enough Arc Routing
Problem to the case with several vehicles and maximum distance (or time) constraints.
For this problem, we have proposed a matheuristic. This procedure incorporates
the exact algorithm for the single vehicle case presented in Ávila et al. (2016b) in
order to optimize the routes obtained. We have performed extensive computational
experiments on a set of benchmark instances and the results have been compared
with those obtained with the exact procedure proposed by Ávila et al. (2017). The
proposed algorithm has been able to solve to optimality 117 out of 221 instances in
short computing times.
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Chapter 7

On the Distance-Constrained Close
Enough Arc Routing Problem

7.1 Introduction

In this chapter we deepen the study of the DC-CEARP. We propose a new formu-
lation for the DC-CEARP that combines the best features of the previously existing
ones presented in Ávila et al. (2017). For this new formulation, an exhaustive study
of its associated polyhedron is performed, and several different families of valid in-
equalities are proposed. We would like to emphasize that this contribution is not only
for this problem, since many of the new inequalities presented here can be used, di-
rectly or easily adapted, in other arc routing problems. It is implemented an efficient
branch-and-cut algorithm that includes the separation procedures devised for these
inequalities. As before, the ideas on which some of the algorithms designed for the
separation of these inequalities are based (or the algorithms themselves), can be used
for similar inequalities in other problems. Extensive computational experiments are
carried out to measure the contribution of each of these separation procedures. The
combination with the best results is selected and compared with the results obtained
by using the algorithms presented in Ávila et al. (2017). As it is shown, the designed
branch-and-cut algorithm is able to solve instances with up to 140 customers, 196
vertices, 544 arcs, and 5 vehicles to optimality within two hours computing time.

This work is organized as follows. In Section 7.2 we describe the problem formally and
present the new formulation. Several families of valid inequalities are shown in Section
7.3, while the corresponding separation methods and the branch-and-cut algorithm
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are presented in Section 7.4. Computational experiments are reported in Section 7.5,
and some conclusions are given in Section 7.6.

7.2 Problem definition and formulation

The Distance-Constrained Close Enough Arc Routing Problem, DC-CEARP, is de-
fined as follows. Consider a strongly connected and directed graph G = (V,A), where
V is the set of vertices, A is the set of arcs, and, for each arc (i, j) ∈ A, there is a dis-
tance dij associated with its traversal. Vertex 1 represents the depot. There is a fleet
of K identical vehicles based at the depot and a set of L customers. Each customer
c ∈ {1, . . . , L} has an associated set of arcs Hc ⊆ A from which it can be serviced.
We consider that a customer c is serviced if there is a vehicle k that traverses at least
one arc in Hc. The length of the routes of the vehicles must not exceed a maximum
travel distance denoted by Dmax. The aim of the DC-CEARP is to find a set of K
routes, starting and ending at the depot, with minimum total distance and such that
each customer c = 1, . . . , L, is serviced and the length of each route does not exceed
Dmax.

In what follows, K = {1, . . . , K} will represent the set of vehicles, H = {1, . . . , L} the
set of customers, and AR = H1 ∪ H2 ∪ . . . ∪ HL the set of required arcs. The arcs
in the set ANR = A \ AR are called non-required arcs. Given two sets S, T ⊂ V , we
define (S : T ) = {(i, j) ∈ A : i ∈ S, j ∈ T} and (S, T ) = (S : T ) ∪ (T : S). In
particular, δ+(S) = (S : V \S), δ−(S) = (V \S : S) and δ(S) = (S, V \S). Finally,
A(S) = {(i, j) ∈ A : i, j ∈ S} and, given a set of variables xij indexed on the arcs,
and given a set F of arcs, x(F ) =

∑
(i,j)∈F xij.

In Ávila et al. (2017) four formulations for the DC-CEARP using different types of
variables are presented. In these formulations, there are two types of variables. Some
variables are associated with the number of times a vehicle traverses an arc, while
other variables indicate if the vehicle traversing a required arc services an associated
customer or not.

The formulation we propose here, Fxyz, is based on the Fxy+ and Fxz formulations
presented in Ávila et al. (2017). This new formulation has more variables than Fxy+

and Fxz but, as it will be seen in Section 7.5, they are useful in the exact solution of
the DC-CEARP. The formulation Fxyz uses the following variables:

xkij = number of times that the vehicle k traverses arc (i, j) ∈ A,
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ykcij =

{
1, if the customer c is serviced by vehicle k while traversing arc (i, j) ∈ AR
0, otherwise.

zkc =

{
1, if the customer c is serviced by vehicle k
0, otherwise.

The DC-CEARP can be formulated as

Minimize
∑
k∈K

∑
(i,j)∈A

dij x
k
ij

s.t.: ∑
(i,j)∈A

dij x
k
ij ≤ Dmax ∀k ∈ K (7.1)

xk(δ+(i)) = xk(δ−(i)) ∀ i ∈ V, ∀k ∈ K (7.2)∑
k∈K

∑
(i,j)∈Hc

ykcij = 1 ∀c ∈ H (7.3)

xkij ≥ ykcij ∀(i, j) ∈ AR, ∀c ∈ H, ∀k ∈ K (7.4)∑
(i,j)∈Hc

ykcij = zkc ∀c ∈ H, ∀k ∈ K (7.5)

xk(δ+(S)) ≥ zkc − xk(Hc ∩ A(V \ S)) ∀S ⊂ V \{1}, ∀c ∈ H, ∀k ∈ K (7.6)

xkij ≥ 0 and integer ∀(i, j) ∈ A, ∀k ∈ K (7.7)

zkc ∈ {0, 1} ∀c ∈ H, ∀k ∈ K (7.8)

ykcij ∈ {0, 1} ∀(i, j) ∈ AR, ∀c ∈ H, ∀k ∈ K (7.9)

Inequalities (7.1) limit the maximum length of each vehicle route. Constraints (7.2)
are the well known symmetry equations. Inequalities (7.3) force each customer to be
serviced exactly from one arc and with one vehicle, and inequalities (7.4) say that if
a vehicle services a required arc then it has to traverse it. The relation between the
ykcij and zkc variables is given by equations (7.5). The connectivity of each route is
guaranteed by inequalities (7.6). They are valid because, if vehicle k does not service
customer c, zkc = 0 and the inequality is trivially satisfied. Otherwise, if vehicle k
services customer c by traversing an arc in Hc ∩ A(V \ S), then it does not need to
traverse the cutset δ(S) and the inequality is also trivially satisfied. Only if vehicle k
services customer c by traversing an arc not in Hc ∩ A(V \ S) (hence, traversing an
arc in δ(S) or in A(S)), the vehicle has to traverse δ(S) and, therefore, the inequality
is satisfied. Note that there is an exponential number of such inequalities. Finally,
(7.7), (7.8) and (7.9) are the non-negativity and integrality constraints.
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Note that the coefficients in the objective function and those in inequalities (7.1) do
not necessarily have to be the same. We have set the same coefficients for the sake
of simplicity and because we think of them as distances associated with a time that
the routes should not exceed because they may correspond, for example, to drivers’
working hours.

7.3 Valid inequalities

In this section we introduce some inequalities that are valid for the DC-CEARP and
that will strengthen the linear relaxation of the formulation.

7.3.1 More connectivity inequalities

Besides the connectivity inequalities (7.6) in the formulation, involving variables x
and z, other connectivity inequalities are presented in what follows.

In Ávila et al. (2017), the following connectivity inequalities were introduced:

xk(δ+(S)) ≥ 1− xk(Hc ∩ A(V \ S))−
∑
k′ 6=k

xk
′
(Hc), ∀S ⊂ V \ {1}, ∀c ∈ H, ∀k ∈ K.

(7.10)
These inequalities ensure that, if no vehicle other than k traverses the arcs in Hc

(thus it cannot service customer c), and vehicle k does not traverse any arcs in Hc ∩
A(V \S), then vehicle k has to traverse the cutset (V \S, S) in order to service this
customer. They are called disaggregate connectivity inequalities because they refer to
a single vehicle. For each subset Ω ⊂ K of |Ω| ≥ 2 vehicles, the following Ω-aggregate
connectivity inequalities are valid∑
k∈Ω

xk(δ+(S)) ≥ 1−
∑
k∈Ω

xk(Hc∩A(V\S))−
∑
k′ /∈Ω

xk
′
(Hc), ∀S ⊂ V \{1}, ∀c ∈ H. (7.11)

In the case Ω = K the aggregate connectivity inequalities are:∑
k∈K

xk(δ+(S)) ≥ 1−
∑
k∈K

xk(Hc ∩ A(V \S)), (7.12)

for any subset S ⊆ V \{1} and any customer c ∈ H.
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If we consider also ykcij variables, we have a different family of connectivity inequalities
(see Ávila et al. (2017)):

xk(δ+(S)) ≥
∑

(i,j)∈Hc\A(V \S)

ykcij , ∀S ⊂ V \{1}, ∀c ∈ H, ∀k ∈ K (7.13)

Note that, if vehicle k services customer c using an arc in Hc\A(V\S), then the vehicle
has to traverse δ(S).

Unlike for inequalities (7.10), the Ω-aggregate and aggregate versions of connectiv-
ity inequalities (7.6) and (7.13) are just the sum of the corresponding disaggregate
inequalities and, therefore, they are dominated.

7.3.2 Parity inequalities

Parity inequalities are based on the fact that a vehicle crosses any cutset an even (or
zero) number of times. The parity inequalities for the DC-CEARP described in what
follows are different from those in other arc routing problems because they are related
not only to the arcs in the cutset but also to the sets Hc. Four different families of
parity inequalities were presented in Ávila et al. (2017). From them, the two stronger
ones are presented in what follows.

V \ S S

Hc1

Hc2

...
Hcq

(a) Parity Inequalities (7.14).

V \ S SHc1

Hc2...

Hcq

Fc1

Fc2

Fcq

(b) Parity Inequalities (7.15).

Figure 7.1: Structure of the parity inequalities for the DC-CEARP

The first family uses only x variables. Given a vehicle k, let S ⊂ V and consider a
subset of customers FH = {c1, c2, ..., cq}, with q ≥ 3 and odd, such that Hci ∩Hcj ∩
δ(S) = ∅ and Hci ∩ δ(S) 6= ∅, ∀ci ∈ FH (see Figure 7.1a). In Ávila et al. (2017), it is
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proved that the following parity inequalities are valid for the DC-CEARP:

xk(δ(S)) ≥
q∑
i=1

(
1− 2

∑
k′ 6=k

xk
′
(Hci)− 2xk(Hci \ δ(S))

)
+ 1. (7.14)

Note that, if no other vehicle k′ 6= k services customer ci (i.e.,
∑
k′ 6=k

xk
′
(Hci) = 0) and

vehicle k does not traverse any edge of customer ci that is not in the cutset (i.e.,
xk(Hci \ δ(S)) = 0), then k traverses at least an arc in Hci ∩ δ(S). Extending the
previous argument to the q customers in δ(S), vehicle k has to traverse at least q
times δ(S) and, since q is an odd number, it has to go through the cutset one more
time.

The second set of inequalities use the xkij and the ykcij variables. Consider now the set
of arc subsets F = {Fc1 , Fc2 , ..., Fcq}, with q ≥ 3 and odd, satisfying Fci ⊆ Hci ∩ δ(S)

and Fci ∩Fcj = ∅,∀ci, cj (see Figure 7.1b). Then, the following parity inequalities are
valid for the DC-CEARP:

xk(δ(S)) ≥
q∑
i=1

(
2ykci(Fci)− 1

)
+ 1. (7.15)

In this case, note that if vehicle k services each customer ci from an arc in Fci , then
it has to traverse δ(S) at least q times. Again, since q is an odd number, the number
of traversals should be at least q + 1.

Besides the right-hand side of the inequalities, there is a difference between the con-
ditions satisfied by the customers in the parity inequalities above. As it is depicted
in Figure 7.1, two customers c1 and c2 satisfying Hc1 ∩ Hc2 ∩ δ(S) 6= ∅ cannot be
considered for inequality (7.14), but they can for inequality (7.15) if Fc1 and Fc2 are
chosen such that Fc1 ∩ Fc2 = ∅. Nevertheless, we want to point out that the greater
the sets Fci , the stronger inequalities (7.15). In particular, if Fci = Hci ∩ δ(S), for
all ci ∈ FH, and Fci ∩ Fcj = ∅ for all i 6= j; i, j = 1, . . . q, we obtain the strongest
inequality.

By comparing both kind of inequalities, it can be seen that none of them dominates
the other in all the cases. Hence, in the branch-and-cut algorithm we will use both
families of parity inequalities (7.14) and (7.15).
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Finally, given a set of vehicles Ω = {k1, .., kP}, 2 ≤ P ≤ K, we have the following
Ω-aggregate parity inequalities:

∑
k∈Ω

xk(δ+(S)) ≥ q + 1− 2

q∑
i=1

(∑
k′ /∈Ω

xk
′
(Hci) +

∑
k∈Ω

xk(Hci \ δ(S))
)
. (7.16)

∑
k∈Ω

xk(δ+(S)) ≥
q∑
i=1

(∑
k∈Ω

2ykci(Fci)− 1
)

+ 1. (7.17)

It can be seen that if Ω = K and Fci = Hci , ∀ ci (hence Hci \ δ(S) = ∅ holds),
inequalities (7.16) and (7.17) reduce to the following aggregate parity inequality:

∑
k∈K

xk(δ+(S)) ≥ q + 1.

7.3.3 K-C inequalities

K-C inequalities were introduced in Corberán and Sanchis (1994) for the undirected
Rural Postman Problem. Beyond the connectivity and parity inequalities described
before, the K-C inequalities try to make connectivity and parity conditions satisfied
simultaneously on a partition of the vertex set that is more complex than the two
shores of the cutsets (S, V \ S) used in connectivity and parity inequalities.

The name of this family of inequalities is motivated by the number of sets into which
V is partitioned, which is usually denoted by K. To avoid confusion with the number
of vehicles, in what follows we use the letter Q instead.

All the versions of the K-C inequalities are based on a structure (see Figure 7.2) defined
by a partition of the set of vertices V into Q+ 1 subsets, M0,M1, . . . ,MQ−1,MQ, and
a set of coefficients for the arcs or edges of the graph. For each (i, j) ∈ A, we define

αij =


Q− 2, if (i, j) ∈ (M0,MQ)

|r − s|, if (i, j) ∈ (Mr,Ms), {r, s} 6= {0, Q}
0, otherwise.

(7.18)

Let us call external arcs those joining two consecutive setsMr andMr+1, and internal
arcs to those joining two sets Mr and Ms with |r − s| > 1 and {r, s} 6= {0, Q}. Note
that all the external arcs have coefficient 1, while the coefficient of an internal arc from
Mr to Ms (not shown in Figure 7.2) is equal to the cost of the shortest path using
the coefficients of the external arcs. Finally, the coefficient of the arcs in (M0,MQ) is
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Q− 2 Q− 2

M0

MQ

M1

Mi

MQ−1

1
1 1

1

1
1 1

1

Figure 7.2: Standard K-C basic structure.

Q − 2. It is known (see Corberán and Sanchis (1994) and Ávila et al. (2017)) that
any vector x ∈ Z|A| representing a tour traversing at least an even number q ≥ 2 of
times the arcs in (M0,MQ), and visiting at least once each node set M0 ∪MQ, M1,
. . . , MQ−1, satisfies the following K-C inequality:∑

(i,j)∈A

αij xij ≥ (Q− 2)q + 2(Q− 1). (7.19)

Inequality (7.19) is valid for any ARP in which all the tours x must traverse q times
the arcs in (M0,MQ) and visit all the node sets M0 ∪MQ, M1, . . . , MQ−1. As an
example, this is the case of the ARPs with one single vehicle when there are q required
arcs in (M0,MQ) and some required arcs in all the sets M1, . . . ,MQ−1. In an ARP
with several vehicles, such as the DC-CEARP studied here, it is usual that single
vehicles are not obliged to traverse all the required arcs (or, therefore, to visit all the
nodes), but only those arcs that are serviced by it. Thus, the K-C inequalities for the
DC-CEARP presented in this section have the same left-hand side (LHS) as inequality
(7.19), but the right-hand side (RHS) must include variables ykcij that define the service
of a customer by a vehicle from an arc, in such a way that, when the vehicle k satisfies
the above conditions, the RHS of the inequality takes value (Q− 2)q + 2(Q− 1).

Disaggregate K-C inequalities

Consider a partition of the set of vertices V into Q subsets {M0∪MQ,M1, . . . ,MQ−1},
with Q ≥ 3, and the set of coefficients αij given in (7.18) (see Figure 7.3).

Let us consider a family of arc subsets F = {F1, F2, . . . , Fq}, with q ≥ 2 and even,
satisfying (see Figure 7.3):

• Fi 6= ∅ ∀i ∈ {1, . . . , q},
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• ∃ ci ∈ H such that Fi ⊆ Hci ∩ (M0,MQ), ∀i ∈ {1, . . . , q},

• Fi ∩ Fj = ∅, ∀i, j ∈ {1, . . . , q}, i 6= j.

Q− 2. . .
F1 Fq

Q− 2

M0

MQ

G1

M1

GiMi

GQ−1

MQ−1

1
1 1

1

1
1 1

1

Figure 7.3: Standard disaggregate K-C inequality for the DC-CEARP. Depot is represented by a
triangle.

Furthermore, assume that for each Mj, j = 1, . . . , Q − 1, either 1 ∈ Mj or the set of
arcs Gj = Hcj ∩ (A(Mj) ∪ δ(Mj)) is nonempty, for some cj ∈ H. Note that we cannot
assume Gj1 ∩Gj2 = ∅ because δ(Mj1) and δ(Mj2) are not necessarily disjoint sets. We
define the disaggregate K-C inequality associated with a vehicle k as:

∑
(i,j)∈A

αij x
k
ij ≥ (Q− 2)

q∑
i=1

(
2ykci(Fi)− 1

)
+

Q−1∑
j=1

2ykcj(Gj), (7.20)

if the depot is in M0 ∪MQ, and

∑
(i,j)∈A

αij x
k
ij ≥ (Q− 2)

q∑
i=1

(
2ykci(Fi)− 1

)
+

Q−1∑
j=1
j 6=l.

2ykcj(Gj) + 2, (7.21)

if 1 ∈Ml with l /∈ {0, Q}.

Note 3. If Q = 2, then inequality (7.20) is exactly the connectivity constraint (7.6)
associated with set S = M1.

Theorem 20. For each vehicle k, disaggregate K-C inequalities (7.20) and (7.21) are
valid for the DC-CEARP.
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Proof. Let us suppose that 1 ∈ M0 ∪MQ (the proof for the case 1 /∈ M0 ∪MQ is
similar). We have to prove that all the routes (xk, yk) for vehicle k corresponding to
DC-CEARP solutions satisfy inequality (7.20). We consider the following cases:

(a) Routes (xk, yk) servicing each customer ci from a required arc in Fi, i = 1, . . . , q,
and servicing each customer cj from a required arc in Gj, j = 1, . . . , Q − 1. On the
one hand, these tours xk traverse at least q times the arcs in (M0,MQ), and visit at
least once each node set M0 ∪MQ, M1, . . . , MQ−1, and, hence, they satisfy (7.19):∑

(i,j)∈A

αijxij ≥ (Q− 2)q + 2(Q− 1).

Additionally, variables yk satisfy ykci(Fi) = 1, for each i = 1, . . . , q, and ykcj(Gj) = 1,
for each j = 1, . . . , Q− 1. Substituting them in the RHS of (7.20), we obtain

(Q− 2)

q∑
i=1

(2ykci(Fi)− 1) +

Q−1∑
j=1

2 ykcj(Gj) = (Q− 2)q + 2(Q− 1).

Hence,
∑

(i,j)∈A

αijxij ≥ (Q−2)

q∑
i=1

(2ykci(Fi)−1)+

Q−1∑
j=1

2 ykcj(Gj) holds and routes (xk, yk)

satisfy inequality (7.20).

(b) Routes (xk, yk) servicing each customer ci from a required arc in Fi, i = 1, . . . , q,
and each customer cj from a required arc in Gj, j = 1, . . . , Q− 1, except one of them,
say cl. These tours xk traverse q required arcs between M0 and MQ and visit all but
one the subgraphs G(M1), . . . , G(MQ−1). Note that, regarding a K-C structure (see
Figure 7.2), this cannot be done at an α-cost lower than (Q − 2)q + 2(Q − 1) − 2

(otherwise, by adding two arcs connecting Ml with Ml−1 we would obtain a tour
satisfying (a) and (b) with α-cost less than (Q− 2)q+ 2(Q− 1), which is impossible)
and, hence, these tours satisfy∑

(i,j)∈A

αijxij ≥ (Q− 2)q + 2(Q− 1)− 2.

On the other hand, variables yk satisfy ykci(Fi) = 1, for each i = 1, . . . , q, and
ykcj(Gj) = 1, for all j = 1, . . . , Q − 1, except one of them, for which ykcl(Gl) = 0.
Thus, if we substitute these values in the RHS of (7.20),

(Q−2)

q∑
i=1

(2ykci(Fi)−1)+

Q−1∑
j=1

2 ykcj(Gj) = (Q−2)q+2(Q−2) = (Q−2)q+2(Q−1)−2,
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is obtained and, thus, (xk, yk) satisfies (7.20).

(c) Routes (xk, yk) servicing each customer ci from a required arc in Fi, i = 1, . . . , q,
and each customer cj from a required arc in Gj, j = 1, . . . , Q− 1, except a number b
of them (b = 2, 3, . . . ). As before, it can be seen that these tours xk satisfy∑

(i,j)∈A

αijxij ≥ (Q− 2)q + 2(Q− 1)− 2b,

and the RHS of inequality (7.20) takes the value

(Q−2)

q∑
i=1

(2ykci(Fi)−1)+

Q−1∑
j=1

2 ykcj(Gj) = (Q−2)q+2(Q−1−b) = (Q−2)q+2(Q−1)−2b.

(d) Routes (xk, yk) servicing each customer ci from a required arc in Fi, for all i =

1, . . . , q except one of them, say cl, and each customer cj from a required arc in
Gj, j = 1, . . . , Q − 1. These tours xk traverse q − 1 (an odd number) required arcs
between M0 and MQ and visit all the subgraphs G(M1), . . . , G(MQ−1). Regarding a
K-C structure, this cannot be done at an α-cost lower than (Q− 2)(q− 2) + 2(Q− 1)

(otherwise, by adding two arcs connecting M0 with MQ, with α-cost Q − 2 each, we
would obtain a tour satisfying (a) and (b) with α-cost less than (Q− 2)q + 2(Q− 1),
which is impossible) and, hence, these tours satisfy∑

(i,j)∈A

αijxij ≥ (Q− 2)(q − 2) + 2(Q− 1).

Moreover, variables yk satisfy ykci(Fi) = 1, for each i = 1, . . . , q except one of them, for
which ykcl(Fl) = 0, and ykcj(Gj) = 1, for all j = 1, . . . , Q−1. Thus, after substituting
these values in the RHS of (7.20) we obtain

(Q− 2)

q∑
i=1

(2ykci(Fi)− 1) +

Q−1∑
j=1

2 ykcj(Gj) = (Q− 2)(q − 1− 1) + 2(Q− 1),

and (xk, yk) satisfies (7.20).

(e) Routes (xk, yk) servicing each customer ci from a required arc in Fi, for all i =

1, . . . , q except two of them, and each customer cj from a required arc in Gj, j =

1, . . . , Q − 1. These tours xk traverse q − 2 (an even number) required arcs between
M0 and MQ and visit all the subgraphs G(M1), . . . , G(MQ−1), so they satisfy∑

(i,j)∈A

αijxij ≥ (Q− 2)(q − 2) + 2(Q− 1).
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Variables yk satisfy ykci(Fi) = 1, for each i = 1, . . . , q except two of them, for which
ykcl(Fl) = 0, and ykcj(Gj) = 1, for all j = 1, . . . , Q − 1, and the RHS of inequalities
(7.20) takes the value

(Q− 2)

q∑
i=1

(2ykci(Fi)− 1) +

Q−1∑
j=1

2 ykcj(Gj) = (Q− 2)(q − 2− 1− 1) + 2(Q− 1)

< (Q− 2)(q − 2) + 2(Q− 1),

and (xk, yk) satisfies (7.20).

(f) Routes (xk, yk) servicing each customer ci from a required arc in Fi, for all i =

1, . . . , q except three, four, . . . of them, and each customer cj from a required arc in
Gj, j = 1, . . . , Q− 1. By using a similar reasoning, it can be proved that they satisfy
inequality (7.20).

(g) Routes (xk, yk) similar to those in the cases (d), (e) and (f) but where each
customer cj is serviced from a required arc in Gj, j = 1, . . . , Q− 1, except a number
b of them (b = 1, 2, . . . ). It can be seen that both the term

∑
αijxij and the RHS of

inequality (7.20) decrease in 2b units, thus satisfying inequality (7.20).

Ω-aggregate K-C inequalities

Here we present the K-C inequalities associated with any subset of vehicles Ω ⊆ K.
Note that, inequality (7.20) can be written as

∑
(i,j)∈A

αij x
k
ij − (Q− 2)

q∑
i=1

(
2ykci(Fi)

)
−

Q−1∑
j=1

2ykcj(Gj) ≥ −(Q− 2)q, (7.22)

where the values for coefficients αij are given in (7.18).

If we consider a subset of vehicles Ω ⊆ K and we add the |Ω| corresponding dis-
aggregate K-C inequalities we obtain an inequality that is obviously valid for the
DC-CEARP, but it is not interesting for the problem, since it is dominated:

∑
k∈Ω

∑
(i,j)∈A

αij x
k
ij − (Q− 2)

∑
k∈Ω

q∑
i=1

(
2ykci(Fi)

)
−
∑
k∈Ω

Q−1∑
j=1

2ykcj(Gj) ≥ −|Ω|(Q− 2)q

However, by changing the RHS from −|Ω|(Q− 2)q to −(Q− 2)q, we obtain new and
stronger inequalities (except when RHS=0, i.e., when Q = 3, q = 2 and the depot is
not in M0 ∪MQ). Specifically, given a partition {M0 ∪MQ,M1, . . . ,MQ−1}, Q ≥ 3,
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with the corresponding set of coefficients α, a set F = {F1, F2, . . . , Fq} (q ≥ 2 and
even) and some sets Gj as above, and given a subset of vehicles Ω, we define the
Ω-aggregate K-C inequality as

∑
k∈Ω

∑
(i,j)∈A

αij x
k
ij ≥ (Q− 2)

q∑
i=1

(∑
k∈Ω

2ykci(Fi)− 1
)

+

Q−1∑
j=1

∑
k∈Ω

2ykcj(Gj) (7.23)

if the depot 1 ∈M0 ∪MQ, and

∑
k∈Ω

∑
(i,j)∈A

αij x
k
ij ≥ (Q− 2)

q∑
i=1

(∑
k∈Ω

2ykci(Fi)− 1
)

+

Q−1∑
j=1
j 6=l.

∑
k∈Ω

2ykcj(Gj) + 2 (7.24)

if 1 ∈Ml, with l /∈ {0, Q}.

Theorem 21. Given a set of vehicles Ω ⊆ K, the Ω-aggregate K-C inequalities (7.23)
and (7.24) are valid for the DC-CEARP.

Proof. Again, let us suppose that 1 ∈M0∪MQ (the proof for the case 1 /∈M0∪MQ is
similar). We have to prove that every DC-CEARP solution satisfies inequality (7.23).
Let (x1, y1, . . . , xK , yK) be a DC-CEARP solution. Then,

∑
k∈Ω x

k is a tour on the
arcs of G since it represents a connected and even graph. On the other hand, for
each i = 1, . . . , q, the sum

∑
k∈Ω y

kci(Fi), is a binary value indicating if any of the
vehicles in Ω services the customer ci from an arc in Fi (see inequalities (7.3)). In
the same way, for each j = 1, . . . , Q − 1, the sum

∑
k∈Ω y

kcj(Gj) is a binary value
indicating if any of the vehicles in Ω services the customer cj from an arc in Gj.
Hence, a similar reasoning to that of the proof of Theorem 20, but replacing (xk, yk)

by (
∑

k∈Ω x
k,
∑

k∈Ω y
k), concludes that the following inequality, which can be rewritten

as inequality (7.23), is satisfied:

∑
(i,j)∈A

αij
∑
k∈Ω

xkij ≥ (Q− 2)

q∑
i=1

(
2
∑
k∈Ω

ykci(Fi)− 1
)

+

Q−1∑
j=1

2
∑
k∈Ω

ykcj(Gj).

7.3.4 K-C02 inequalities

K-C02 inequalities are a variant of the K-C inequalities that take into account the
asymmetry of the costs associated with the direction of traversal. In some ARPs the K-
C02 inequalities are dominated by the standard K-C inequalities. This is not the case
for the DC-CEARP. For example, consider the fractional DC-CEARP solution (xk, yk)
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depicted in Figure 7.4. It can be seen that this solution satisfies all the connectivity

F1 F2

yk = 0.5 yk = 0.5 yk = 1
xk = 0.5 xk = 0.5 xk = 1.25

M0

M3

G1
yk = 1

M1

G2yk = 1

M2

xk = 1.25

xk = 1.25

xk = 1.25

Figure 7.4: A fractional solution for vehicle k not cut off by a disaggregate K-C inequality

inequalities (7.6) and it also satisfies the K-C inequality (7.20) corresponding to this
structure:∑

(i,j)∈A

αij x
k
ij = (0.5 + 0.5 + 1.25) + (1.25 + 1.25 + 1.25) = 6, and

(Q−2)

q∑
i=1

(
2ykci(Fi)−1

)
+

q∑
i=1

2ykcj(Gj) =
(

2(0.5+0.5)−1
)

+
(

2×1−1
)

+2×1+2×1 = 6.

We will see that the disaggregate K-C02 inequalities that we describe in what follows
do cut off this solution.

Disaggregate K-C02 inequalities

Consider a partition of the set of vertices V into Q subsets {M0∪MQ,M1, . . . ,MQ−1},
with Q ≥ 2, and the following set of coefficients (see Figure 7.5). For each (i, j) ∈ A,

βij =



Q− 1, if (i, j) ∈ (M0,MQ)

s− 1, if (i, j) ∈ (M0 : Ms), 1 ≤ s ≤ Q− 1

s+ 1, if (i, j) ∈ (Ms : M0), 1 ≤ s ≤ Q− 1

|r − s|, if (i, j) ∈ (Mr,Ms), 1 ≤ r, s ≤ Q

0, otherwise.

Let us also consider a family of arc subsets F = {F1, F2, . . . , Fq}, and the arc sets Gj

satisfying the same conditions as for the K-C inequalities. Note that now we have
Q ≥ 2 (see Note 4 below). We define the disaggregate K-C02 inequalities associated
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with a vehicle k as:

∑
(i,j)∈A

βij x
k
ij ≥ (Q− 1)

q∑
i=1

(
2ykci(Fi)− 1

)
+

Q−1∑
j=1

2ykcj(Gj), (7.25)

if the depot is in M0 ∪MQ, and

∑
(i,j)∈A

βij x
k
ij ≥ (Q− 1)

q∑
i=1

(
2ykci(Fi)− 1

)
+

Q−1∑
j=1
j 6=l.

2ykcj(Gj) + 2, (7.26)

if 1 ∈Ml with l /∈ {0, Q}.

. . .
F1 Fq

Q− 1 Q− 1

M0

MQ

G1

M1

GiMi

GQ−1

MQ−1

2

0 1
1

1
1 1

1

Figure 7.5: Disaggregate K-C02 inequalities for the DC-CEARP

Theorem 22. For each vehicle k, K-C02 inequalities (7.25) and (7.26) are valid for
the DC-CEARP.

Proof. The proof is similar to that of Theorem 20 and is omitted here for the sake of
brevity.

Let us now check that the K-C02 inequality cuts off the fractional solution (xk, yk)

depicted in Figure 7.4:∑
(i,j)∈A

βij x
k
ij = 2(0.5 + 0.5 + 1.25) + 0× 1.25 + 1× 1.25 + 1× 1.25 = 7, while

(Q−1)

q∑
i=1

(
2ykci(Fi)−1

)
+

q∑
i=1

2ykcj(Gj) = 2
(

2(0.5+0.5)−1+2×1−1)
)

+2×1+2×1 = 8.

Note 4. Unlike the standard K-C inequalities, the K-C02 inequalities with Q = 2 are
not equivalent to any other known inequality.
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Ω-aggregate K-C02 inequalities

Given a partition {M0 ∪MQ,M1, . . . ,MQ−1}, Q ≥ 2, with the corresponding set of
coefficients β, a set F = {F1, F2, . . . , Fq} (q ≥ 2 and even), some sets Gj as above,
and given a subset of vehicles Ω ⊆ K, we define the Ω-aggregate K-C02 inequality as

∑
k∈Ω

∑
(i,j)∈A

βij x
k
ij ≥ (Q− 1)

q∑
i=1

(∑
k∈Ω

2ykci(Fi)− 1
)

+

Q−1∑
j=1

∑
k∈Ω

2ykcj(Gj), (7.27)

if the depot 1 ∈M0 ∪MQ, and

∑
k∈Ω

∑
(i,j)∈A

βij x
k
ij ≥ (Q− 1)

q∑
i=1

(∑
k∈Ω

2ykci(Fi)− 1
)

+

Q−1∑
j=1
j 6=l.

∑
k∈Ω

2ykcj(Gj) + 2, (7.28)

if 1 ∈Ml, with l /∈ {0, Q}.

Theorem 23. Given a set of vehicles Ω ⊆ K, the Ω-aggregate K-C inequalities (7.27)
and (7.28) are valid for the DC-CEARP.

Proof. The proof is similar to that of Theorem 21 and is omitted here for the sake of
brevity.

7.3.5 Path-Bridge inequalities

Path-Bridge inequalities are a generalization of the K-C inequalities introduced in
Letchford (1997) for the undirected General Routing Problem and are inspired by the
path inequalities introduced in Cornuèjols et al. (1985) for the Graphical Traveling
Salesman Problem.

As K-C, Path-Bridge inequalities try that connectivity and parity conditions are sat-
isfied simultaneously on a given partition of the vertex set V . They are based on a
structure (see Figure 7.6) with two sets M0,MZ , a number P ≥ 1 of ‘paths’ between
M0 and MZ , and a number B ≥ 0 of required arcs in (M0,MZ) forming the ‘bridge’,
with P +B ≥ 3 being an odd number. It can be noted that K-C inequalities described
in Section 7.3.3 are a particular case of the Path-Bridge inequalities when P = 1 and
B ≥ 2 and even.

Disaggregate path-bridge inequalities

Given two integers P ≥ 1, B ≥ 0 such that P + B ≥ 3 is an odd number, consider
the partition of V into the subsets {M0,MZ , {M t

r}
t=1,...,P
r=1,...,nt

}, where n1, n2, . . . , nt are
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integer numbers, ni ≥ 2, and consider the following coefficients (see Figure 7.6). For
each (i, j) ∈ A,

αi,j =



1, if (i, j) ∈ (M0,MZ)

|r−s|
nt−1

, if (i, j) ∈ (M t
r ,M

t
s),

{
t ∈ {1, . . . , P},
r, s ∈ {0, 1, . . . , nt + 1}

1
nt−1

+ 1
nu−1

+
∣∣∣ r−1
nt−1
− s−1

nu−1

∣∣∣, if (i, j) ∈ (M t
r ,M

u
s ),


t 6= u,

r ∈ {1, . . . , nt},
s ∈ {1, . . . , nu}

0, otherwise.

M0

MZ

F1

1

1

FB. . .

G1
1

G1
2

G1
n1

M1
1

M1
2

M1
n1

1
n1−1

1
n1−1

1
n1−1

1
n1−1

1
n1−1

G2
1

G2
2

G2
n2

M2
1

M2
2

M2
n2

1
n2−1

1
n2−1

1
n2−1

1
n2−1

1
n2−1

. . .

GP
1

GP
2

GP
nP

MP
1

MP
2

MP
nP

1
nP−1

1
nP−1

1
nP−1

1
nP−1

1
nP−1

Figure 7.6: Standard Path-Bridge for the DC-CEARP

Let us consider a family of arc subsets F = {F1, F2, . . . , FB} satisfying:

• Fi 6= ∅ ∀i ∈ {1, . . . , B},

• ∃ ci ∈ H such that Fi ⊆ Hci ∩ (M0,MZ) ∀i ∈ {1, . . . , B},

• Fi ∩ Fj = ∅, ∀i 6= j ∈ {1, . . . , B}.
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Furthermore, assume that for each M t
r , t = 1, . . . , P, r = 1, . . . , nt, either 1 ∈ M t

r or
it exists a set of arcs Gt

r such that ∅ 6= Gt
r ⊆ Hcj ∩AR(M t

r ∪ δ(M t
r)) for a cj ∈ H. We

define the disaggregate Path-Bridge inequality associated with vehicle k as:

∑
(i,j)∈A

αij x
k
ij ≥

B∑
i=1

(
2ykci(Fi)− 1

)
+

P∑
t=1

nt∑
r=1

2ykcj(Gt
r)

nt − 1
− P + 1, (7.29)

if the depot 1 ∈M0 ∪MZ , and

∑
(i,j)∈A

αij x
k
ij ≥

B∑
i=1

(
2ykci(Fi)−1

)
+

P∑
t=1
t6=t0

nt∑
r=1

2ykcj(Gt
r)

nt − 1
+

nt0∑
r=1
r 6=r0

2ykcj(Gt0
r )

nt0 − 1
+

2

(nt0 − 1)
−P+1,

(7.30)
if the depot 1 ∈M t0

r0
(different from M0 and MZ).

Theorem 24. For each vehicle k, disaggregate Path-Bridge inequalities (7.29) and
(7.30) are valid for the DC-CEARP.

Proof. Let us suppose that 1 ∈M0∪MZ (the proof for the case 1 /∈M0∪MZ is similar).
We have to prove that all the single routes (xk, yk) for vehicle k ∈ K corresponding
to DC-CEARP solutions satisfy inequality (7.29). We consider the following cases:

(a) Routes (xk, yk) servicing each customer ci from an arc in Fi, i = 1, . . . , B, and
servicing each customer cj from an arc in Gt

r, t = 1, . . . , P and r = 1, . . . , nt. On the
one hand, these tours xk traverse at least B times the arcs in (M0,MZ), and visit at
least once all the node sets M0 ∪MZ and M t

r . It can be seen (see Corberán et al.
(2001)) that these tours satisfy:

∑
(i,j)∈A

αijx
k
ij ≥ B +

P∑
t=1

2nt
nt − 1

− P + 1.

On the other hand, variables yk satisfy ykci(Fi) = 1, for each i = 1, . . . , B, and
ykcj(Gt

r) = 1, for each t = 1, . . . , P and r = 1, . . . , nt. Substituting these values in the
RHS of (7.29) we obtain

B∑
i=1

(
2ykci(Fi)− 1

)
+

P∑
t=1

nt∑
j=1

2ykcj(Gt
j)

nt − 1
− P + 1 = B +

P∑
t=1

2nt
nt − 1

− P + 1.
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Hence,
∑

(i,j)∈A

αijx
k
ij ≥

B∑
i=1

(
2ykci(Fi)−1

)
+

P∑
t=1

nt∑
j=1

2ykcj(Gt
j)

nt − 1
−P+1 holds, and routes

(xk, yk) satisfy inequality (7.29).

(b) Routes (xk, yk) servicing each customer ci from a required arc in Fi, i = 1, . . . , B,
and servicing each customer cj, except one of them (Hcl ∈ Gt0

r0
), from a required arc

in Gt
r, t = 1, . . . , P, r = 1, . . . , nt. These tours xk traverse B times some required

arcs between M0 and MZ and visit all the sets M t
r except the set M t0

r0
. Note that this

cannot be done with an α-cost lower than B+
∑P

t=1
2nt

nt−1
−P + 1− 2

nt0−1
. Otherwise,

by adding two arcs connecting M t0
r0

with M t0
r0−1, with α−cost 2

nt0−1
, we would obtain

a tour, traversing at least B times the arcs in (M0,MZ) and visiting all the node sets
M0 ∪MZ and M t

r , with α-cost less than B +
∑P

t=1
2nt

nt−1
− P + 1, which is impossible.

Hence, these tours xk satisfy

∑
(i,j)∈A

αijx
k
ij ≥ B +

P∑
t=1

2nt
nt − 1

− P + 1− 2

nt0 − 1
.

Moreover, variables yk satisfy ykci(Fi) = 1, for each i = 1, . . . , B, and ykcj(Gt
r) = 1,

for all t = 1, . . . , P and r = 1, . . . , nt, except one of them, for which ykcl(Gt0
r0

) = 0.
Thus, the RHS of inequalities (7.29) takes the value

(2B −B) +
P∑
t=1
t6=t0

2nt
nt − 1

+
2(nt0 − 1)

nt0 − 1
− P + 1 = B +

P∑
t=1

2nt
nt − 1

− P + 1− 2

nt0 − 1

and, hence, the routes (xk, yk) satisfy (7.29).

(c) Routes (xk, yk) servicing each customer ci from a required arc in Fi, for all i =

1, . . . , B except one of them, say cl, and each customer cj from a required arc in Gt
r,

t = 1, . . . , P , r = 1, . . . , nt.

Tours xk traverse B − 1 required arcs between M0 and MZ and visit all the sets M t
r .

Considering that P + B − 1 is an even number, this cannot be done with a α-cost
lower than B +

∑P
t=1

2nt

nt−1
− P + 1 − 2. Otherwise, by adding two arcs connecting

M0 with MZ , with α-cost 1 each, we would obtain a tour, traversing at least B times
the arcs in (M0,MZ) and visiting all the node sets M0 ∪MZ and M t

r , with α-cost less
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than B +
∑P

t=1
2nt

nt−1
− P + 1, which is impossible. Hence, these tours xk satisfy

∑
(i,j)∈A

αijxij ≥= B +
P∑
t=1

2nt
nt − 1

− P + 1− 2.

Additionally, variables yk satisfy ykci(Fi) = 1, for each i = 1, . . . , B except one of
them, for which ykcl(Fl) = 0, and ykcj(Gt

r) = 1, for all t = 1, . . . , P , r = 1, . . . , nt.
Thus, after substituting them in the RHS of (7.29), we obtain

2(B − 1)−B +
P∑
t=1

2nt
nt − 1

− P + 1 = B +
P∑
t=1

2nt
nt − 1

− P + 1− 2,

and the routes (xk, yk) satisfy (7.29).

(d) In a similar way, it can be seen that inequalities (7.29) are satisfied by all the
routes (xk, yk) servicing any other number of customers ci and cj.

If we multiply the Path-Bridge inequalities (7.29) and (7.30) by
∏P

t=1(nt − 1), all the
coefficients become integer. When P = 2 (and, hence, B is an odd number), the
inequality is called 2-Path-Bridge inequality and can be written as:

∑
(i,j)∈A

(n1 − 1)(n2 − 1)αij x
k
ij ≥

B∑
i=1

2(n1 − 1)(n2 − 1)ykci(Fi)+

+

n1∑
j=1

2(n2 − 1)ykcj(G1
j) +

n2∑
j=1

2(n1 − 1)ykcj(G2
j)− (B + 1)(n1 − 1)(n2 − 1), (7.31)

when the depot 1 ∈ M0 ∪MZ . If the depot is, for example, in a node j0 of the path
t = 1 (1 ∈M1

j0
), the resulting inequality is

∑
(i,j)∈A

(n1 − 1)(n2 − 1)αij x
k
ij ≥

B∑
i=1

2(n1 − 1)(n2 − 1)ykci(Fi) + 2(n2 − 1)

+

n1∑
j=1
j 6=j0

2(n2 − 1)ykcj(G1
j) +

n2∑
j=1

2(n1 − 1)ykcj(G2
j)− (B + 1)(n1 − 1)(n2 − 1). (7.32)

Ω-aggregate Path-Bridge inequalities

Given P,B, a partition {M0,MZ , {M t
r}
t=1,...,P
r=1,...,nt

}, its corresponding set of coefficients
αi,j, and the families of arcs Fi and Gt

r, as in the previous section, we define the
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Ω-aggregate Path-Bridge inequality associated with a subset Ω ⊆ K of vehicles as:

∑
k∈Ω

∑
(i,j)∈A

αij x
k
ij ≥

B∑
i=1

(∑
k∈Ω

2ykci(Fi)−1
)

+
∑
k∈Ω

P∑
s=1

( nt∑
q=1

2ykcj(Gt
r)

nt − 1

)
−P +1, (7.33)

if the depot 1 ∈M0 ∪MZ , and ∑
k∈Ω

∑
(i,j)∈A

αij x
k
ij ≥

≥
B∑
i=1

(∑
k∈Ω

2ykci(Fi)−1
)

+
∑
k∈Ω

P∑
t=1
t6=t0

nt∑
r=1

2ykcj(Gt
r)

nt − 1
+
∑
k∈Ω

nt0∑
r=1
r 6=r0

2ykcj(Gt0
r )

nt0 − 1
+

2

(nt0 − 1)
−P+1,

(7.34)
if the depot 1 ∈M t0

r0
(different from M0 and MZ).

Theorem 25. Given a set of vehicles Ω ⊆ K, the Ω-aggregate Path-Bridge inequalities
(7.33) and (7.34) are valid for the DC-CEARP.

Proof. The proof is similar to that of Theorem 21 and is omitted here for the sake of
brevity.

Note 5 (Path-Bridge02 inequalities). An asymmetric version of Path-Bridge inequal-
ities, called Path-Bridge02 inequalities, is proposed in Corberán et al. (2003) for the
Mixed General Routing Problem. Inequalities based on the same idea can also be
proposed for the DC-CEARP. However, not all their coefficients can be easily deter-
mined, since the coefficients of the variables associated with arcs between nodes of
different paths must be computed by sequential lifting for each particular Path-Bridge
structure. This process is involved and, in addition, the obtained coefficients depend
on the ordering in which arcs are considered. For this reason, its separation has never
been implemented and, therefore, these inequalities are not studied here.

7.3.6 Max-distance constraints

In the DC-CEARP, the length of each route cannot exceed the maximum distance
Dmax. Based on this constraint, in this section we present several sets of inequalities
that we call max-distance inequalities.

Let FH ⊆ H be a subset of customers. Consider the Close-Enough Arc Routing
Problem (which considers only one vehicle), defined on graph G and with set of
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customers FH. Let cearp(FH) be its optimal value (or a lower bound of it). If
cearp(FH)> Dmax, then the inequalities

zkc (FH) ≤ |FH| − 1, ∀k ∈ K (7.35)

are valid for the DC-CEARP, because a single vehicle cannot service all the customers
in FH.

On the other hand, if S is the set of vertices incident with the arcs in ∪c∈FHHc and
1 /∈ S, then at least two different vehicles have to enter S, and the following inequality
is also valid for the DC-CEARP ∑

k∈K

xk(δ−(S)) ≥ 2. (7.36)

However, a DC-CEARP solution in which a vehicle enters S twice, but no other vehicle
does, satisfies (7.36). In order to force two different vehicles to enter S, the following
valid inequalities can be used∑

k 6=k′
xk(δ−(S)) ≥ 1, ∀k′ ∈ K. (7.37)

The above inequalities, which were proposed in Ávila et al. (2017), can be generalized
as follows. For a given set of customers FH, let v(FH) be a lower bound on the
minimum number of vehicles needed to service FH. Then, a number of vehicles less
than v(FH) cannot service all the customers in FH. Hence, if v(FH) ≥ 2, the following
inequalities are satisfied by each feasible solution of the DC-CEARP:

∑
k∈Ω

zkc (FH) ≤ |FH| − (v(FH)− |Ω|), ∀ Ω ⊆ K, 1 ≤ |Ω| ≤ v(FH)− 1, (7.38)

∑
k∈K\Ω

xk(δ−(S)) ≥ v(FH)− |Ω|, ∀ Ω ⊆ K, 0 ≤ |Ω| ≤ v(FH)− 1. (7.39)

Note that, for v(FH) = 2, inequalities (7.38) and (7.39) are exactly (7.35) and
(7.36)+(7.37) above, respectively. For v(FH) = 3, we have two sets of inequalities
(7.38):

zkc (FH) ≤ |FH| − 2, ∀k ∈ K, and (7.40)

zkc (FH) + zk
′

c (FH) ≤ |FH| − 1, ∀k, k′ ∈ K. (7.41)
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7.3.7 Symmetry breaking inequalities

Let {c1, ..., cL} be any ordering of the set of customers (for example, according to the
distances between them and the depot). The following symmetry breaking inequalities
(see Fischetti et al. (1995)) are introduced to avoid equivalent solutions:

z1
c1

= 1 (7.42)

zkci ≤
i−1∑
j=1

zk−1
cj

k=3, . . . , K, i ≥ 2 (7.43)

zkci = 0 k= i+ 1, . . . , K, i=1, . . . , L− 1 (7.44)

Inequality (7.42) forces vehicle 1 to service customer c1. Then, vehicle 2 services
the first customer in the ordering not serviced by vehicle 1, and so on. Inequalities
(7.43) state that if a customer ci is serviced by vehicle k, then at least one ‘previous’
customer cj, j = 1, . . . , i− 1, has to be serviced by the vehicle k− 1. Equations (7.44)
prevents customers ci, i = 1, . . . , L − 1 from being serviced by vehicles with indices
larger than i.

7.4 The Branch-and-Cut Algorithm

In this section, we present a branch-and-cut algorithm for the DC-CEARP. This new
algorithm uses some separation procedures from the methods described in Ávila et al.
(2017) and incorporates new ones for some of the inequalities described in Ávila et al.
(2017) and for the new inequalities presented in this article. Moreover, an upper
bound obtained by the matheuristic algorithm proposed in Corberán et al. (2019) is
used.

7.4.1 Separation algorithms

In what follows we describe the separation algorithms that have been used to identify
the following types of inequalities that are violated by the current LP solution at
any iteration of the cutting plane algorithm: connectivity and parity inequalities,
disaggregate and Ω−aggregate K-C and K-C02, Path-Bridge inequalities, and max-
distance constraints. Section 7.4.1 provides a synopsis of the cutting planes and
characteristics of their separation procedures.
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Connectivity inequalities

Several separation procedures have been used to separate connectivity inequalities.
The first algorithm, A1, separates aggregate connectivity inequalities (7.12). It is
based on computing the connected components of the graph induced by the arcs a
such that

∑
k∈K x

k
a ≥ ε, where ε is a given parameter. For each weakly connected

component, its corresponding aggregate connectivity inequality is checked for viola-
tion. We try ε = 0, 0.25, 0.5, 0.75, but a given value is tried only when the previous
one did not succeed in finding a violated inequality.

The second heuristic, A2, is based on the Gomory-Hu algorithm. It also works on the
aggregate graph induced by the sum of the variables corresponding to all the vehicles.
If there is a violated (aggregate) connectivity inequality in this graph, it means that
there will be a violated (disaggregate) connectivity inequality (7.6) for at least one
vehicle.

Two more separation procedures for connectivity inequalities (7.13) have been imple-
mented. The first one, A3, works like the first algorithm described in this section, but
using the graph induced by the arcs of each single vehicle.

The last algorithm, A4, is based on the computation, for each vehicle k and each
customer c, of the maximum flow on a network containing the arcs for which xkij > 0

plus an artificial sink and some artificial arcs from the end vertices of the arcs in Hc

serviced by vehicle k (i.e. those arcs a such that ykca > 0) to the sink. The capacity
of the arcs is defined as xkij for the arcs in the original graph, and as infinity for the
artificial ones. The maximum flow from the depot to the sink defines a minimum
cutset (S, V \ S), with 1 ∈ V \ S, and the associated connectivity inequality (7.13) is
checked for violation.

Parity inequalities

We have developed several heuristic algorithms to identify violated parity inequalities.
They work as follows.

Given a fractional solution, let (xk, yk, zk) be its part corresponding to vehicle k. We
build the graph induced by the arcs satisfying xka − ȳka ≥ ε, if a is required, and
xka ≥ ε otherwise, where ȳka = max

c∈H
{ykca : a ∈ Hc}, i.e. the maximum value of ykca

among the customers serviced by arc a. Let S1, . . . , Sr be the sets of vertices of the
weakly connected components of the induced graph. For each cutset δ(Si), we now
try to select the set of customers FH = {c1, . . . , cq} and the corresponding sets of arcs
F = {Fc1 , . . . , Fcq}. Two different strategies have been implemented in order to find
these sets.
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In strategy 1 (algorithm A5), we create a list of pairs of required arcs and customers
(a, c) such that a ∈ δ(Si) ∩ Hc. We order this list according to the value of ykca in
a decreasing order. Starting from the first pair (a, c) of the list, we iteratively add
c to FH and a to Fc if neither arc a nor customer c have been previously selected.
Once the set of customers has been built, we try to enlarge sets Fc by including each
unselected arc a of the list in the set Fc with maximum ykca .

Now, for each vehicle k, we calculate xk(δ(S)) −
∑q

i=1 2ykci(Fci). If this value is less
than 0, we add k to the set of chosen vehicles Ω.

If
∑

k∈Ω

∑
e∈Fc

ykce < 0.5 for some customer c ∈ FH, this customer is removed from
FH. If |FH| is even, we add or remove one more customer according to the value of∑

k∈Ω

∑
e∈Fc

ykce in order to make |FH| odd. For each removed customer c, the arcs
that belonged to Fc are studied to see if they can be included in another arc subset
of F .

Finally, we check if the corresponding Ω-aggregate parity inequality (7.17) is violated.

Strategy 2 (algorithm A6) considers only the cutsets δ(Si) for which xk(δ(Si)∩AR)

is close to an odd number, i.e. 2n + 0.75 ≤ xk(δ(Si) ∩ AR) ≤ 2n + 1.25 for some
n ∈ {1, 2, . . . }. Let us call ASi

= {a ∈ δ(Si) ∩ AR :
∑

c:a∈Hc

ykca > 0} and HSi
= {c ∈

H :
∑

a∈δ(Si)∩AR

ykca > 0}, which denote the set of required arcs in cutset δ(Si) servicing

some customer and the set of customers that are serviced by some arc in the cutset,
respectively.

We calculate
∑

a∈ASi
ykca for all the customers in HSi

and select the customer c that
maximizes this value. This customer is added to FH and Fc = Hc ∩ ASi

. Now we
update ASi

by ASi
\ Fc and HSi

by HSi
\ {c} and repeat the procedure for choosing

the following customers until |FH| = 2n+ 1.

As in strategy 1, we include in Ω all the vehicles k for which xk(δ(S))−
∑q

i=1 2ykci(Fci) <

0 and check if the corresponding Ω-aggregate parity inequality (7.17) is violated.

In order to separate parity inequalities (7.16) when |Ω| = K, algorithm A7 uses a
similar procedure with strategy 2 adapted to the graph induced by the arcs satisfying∑

k∈K x
k
a − 1 ≥ ε, if a is required, and

∑
k∈K x

k
a ≥ ε otherwise.

We have also tried an alternative method for selecting the set of customers FH based
on the solution of the following integer program. As before, we define HSi

as the set
of customers that are serviced by some arc in the cutset δ(Si). For each customer
c ∈ HSi

, we define a binary variable µc that takes value 1 if c is included in FH and
0 otherwise. Let us define wc =

∑
a∈δ(Si)

ykca for each customer c ∈ HSi
and consider
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two customers cr, cs as incompatible if there is an arc a ∈ δR(Si) such that ykcra > 0

and ykcsa > 0. Then, we solve the following IP:

Maximize
∑
c∈HSi

wc µc

s.t.: ∑
c∈HSi

µc ≡ odd (7.45)

µcr + µcs ≤ 1 ∀ cr, cs incompatible (7.46)

µc ∈ {0, 1} ∀c ∈ HSi
(7.47)

In order to study the performance of the above method, we have compared it with the
heuristic procedure for selecting FH. On a sample of 27 randomly selected instances,
the IP-based method used, on average, 123.53 seconds per instance to find, on average,
0.22 violated parity inequalities per call, while the heuristic method found, on average,
0.13 parity cuts in 0.46 seconds of computing time. Based on these results, we have
decided not to use the IP-based method.

K-C, K-C02 and Path-Bridge inequalities

Algorithm A8 looks first for the graph structure associated with the disaggregate K-C
inequalities (7.20) and (7.21). Again, let (xk, yk, zk) be the part corresponding to
vehicle k of a given fractional solution. Let Gk be the graph induced by the arcs a
with xka > 0 and label the depot and the arcs a ∈ AR such that xka ≥ ε and yka ≥ xka/2

as ‘required’, where ε is a given parameter. We compute the connected components
induced by these arcs and the depot. Let us call Ci to these components. We then
apply a procedure based on that described in Corberán et al. (2001) for the undirected
GRP to obtain the sets M0,M1,M2, . . . ,MQ, which consists of, given a component
Ci, checking if it is connected to two different components by arcs with xka > 0. For
such a component, we try to split it in two parts such that each part is connected to
a different component. These two parts will be the “seeds” for defining sets M0 and
MQ. Now we shrink these seeds and the remaining components into a single vertex
each and compute a spanning tree by iteratively adding the arc of maximum weight
not forming a cycle (and not connecting the seeds). This tree is transformed into a
path linking the seeds by (iteratively) shrinking each non-seed vertex with degree one
into its (unique) adjacent vertex. If the length of the path is at least 3, the vertices of
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the path define the seeds for sets M0,M1, . . . ,MQ. All the vertices of G that do not
belong to a set Mi yet are iteratively assigned to a set Mi to which they are adjacent.

Set F is formed by some sets of ‘required’ arcs in M0 ∪MQ associated with different
customers. For each set Mj, j = 1, . . . , Q− 1, non containing the depot, we define Gj

as the set of arcs Gj = Hcj ∩ (A(Mj) ∪ δ(Mj)). If the corresponding K-C inequality
for vehicle k is not violated, we try to improve the inequality by shrinking some con-
secutive sets Mj. Several values for ε have been tried and, after some computational
testing, we finally decided to set ε = 0.2.

At this point, a K-C structure has been found, and its corresponding disaggregate
K-C inequality for vehicle k can, or not, be violated. Since inequality (7.20) (if the
depot belongs to M0 ∪MQ, otherwise it would be similar) can be written as (7.22),
we evaluate its left hand side for each vehicle k′ = 1, . . . , K. Then we include in Ω

all the vehicles k′ for which this expression is less than 0 and check if the resulting
Ω-aggregate K-C inequality (7.23) or (7.24) is violated.

Any K-C structure found by algorithm A8 is used to look for violated K-C02 inequal-
ities (algorithm A9). As before, the inequality for each single vehicle k′ is checked
and those vehicles for which the left hand side is negative are included into Ω. The
separation of 2 Path-Bridge inequalities is done with a similar procedure, algorithm
A10, that is not described here for the sake of brevity.

Max-distance inequalities

Two heuristic algorithms are used to separate max-distance inequalities. The first
heuristic, A11, is the one described in Ávila et al. (2017) for separating inequalities
(7.36). If a violated max-distance constraint (7.36) is found, at least one of the
inequalities (7.37) is also violated and it is added. Furthermore, the corresponding
inequality (7.38) is also added.

The second heuristic, A12, looks for violated inequalities (7.38). It is designed to cut
fractional solutions in which, for a vehicle k, several zkc variables take values close to
1 and another one takes a value close to 0.5. It works as follows.

Given a fractional solution associated with vehicle k, (xk, yk, zk), let {c1, c2, . . . , cq}
be the set of customers such that zkc1 ≥ zkc2 ≥ . . . ≥ zkcq ≥ 0.5. We define FH =

{c1, c2, . . . , cf}, where f is the maximal number such that zkc (FH) > |FH| − 1 +

ε (initially we set ε = 0.5), and we call ‘potential customers’ to the remaining
{cf+1, cf+2, . . . , cq}. We check if v(FH) is greater than one and, therefore, the cor-
responding inequality (7.38) is violated. Otherwise, for each potential customer
c ∈ {cf+1, cf+2, . . . , cq}, we iteratively consider the set FH

= FH ∪ {c} and check
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if v(F
H

) is greater than one. Finally, if no violated inequality has been found for
any set FH, we set ε = 0 and define the set FH as above (f is now the maximal
number such that zkc (FH) > |FH| − 1) and check if v(FH) is greater than one. If a
subset FH (or FH) for which the corresponding inequality (7.38) is violated is found,
this inequality is added. Then, we look for the cutset of minimum weight between
the depot and the arcs of the customer in FH and the corresponding max-distance
inequalities (7.36) and (7.37) are checked for violation.

Given a set of customers FH, the value of v(FH) (either the number of vehicles needed
to service FH or a lower bound) is computed by solving the corresponding CEARP
using the branch-and-cut algorithm in Ávila et al. (2016b). Since solving the CEARP
instances to optimality can be time consuming, we have limited the execution time of
the CEARP solver to 10 seconds.

Inequalities and separation procedures: a summary

Table 7.1 summarizes the separation procedures described before and provides in-
formation on their computational complexity and the references where they were
proposed or used. In particular, the first column shows the inequalities class, while
column two gives the exact family of inequalities being separated. Column “Separ.
Proc.” provides the name of the separation procedure used and column “Type” indi-
cates if the procedure is heuristic (“H”) or almost exact (“AE”). This last type means
that the algorithm is an adaptation of an exact procedure for identifying a violated
inequality with similar characteristics. For example, algorithm A4 is based on the
exact separation of inequalities

xk(δ+(S)) ≥
∑

(i,j)∈Hc

ykcij , ∀S ⊂ V \{1}, ∀c ∈ H, ∀k ∈ K

However, note that the sum in this inequality is done for all the arcs (i, j) ∈ Hc, while
in inequalities (7.13) the sum is for all (i, j) ∈ Hc \ A(V \ S). The computational
complexity of the algorithms is given in Column 5. An asterisk (*) means that the
reported value is the computational complexity of the corresponding separation algo-
rithm if no call to the B&C algorithm described in Ávila et al. (2016b) is done. If
the B&C is executed to compute the minimum number of vehicles needed to service a
given subset of customers, the resulting computational effort is non-polynomial (but
each call is limited to 10 seconds). The last two columns indicate if the procedure
has already been used in other works and report the corresponding references. A
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“No/Yes” entry indicates that some new parts have been added in this work to the
existing procedures and “[TP]” is used to refer to this work.
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Table 7.1: Inequalities and separation procedures
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7.4.2 Comparison of separation strategies and cutting-plane

algorithms

To analyze the contribution of the valid inequalities and the separation algorithms
presented in the previous sections, we compare the gaps in the root node and the
performance profiles (Dolan and More (2002)) of the different versions of our branch-
and-cut procedure using different combinations of separation algorithms.

Let S be the set of versions of our algorithm and P the set of instances selected for this
comparison. Then, for each version s ∈ S, we calculate GAP0s = 1

|P|
∑

p∈P(BKSp −
LB0p,s)/LB0p,s∗100, where BKSp denotes the value of the optimal or best known so-
lution obtained by any version for instance p and LB0p,s the lower bound obtained by s
at the root node. We also compute the performance ratio rp,s = tp,s/min{tp,s : s ∈ S},
where tp,s is the computing time required by algorithm s to solve instance p. If al-
gorithm s is not able to solve the instance p within the time limit, we set rp,s = ∞.
Thus, the performance profile of each version s,

ρs(τ) =
|{p ∈ P : rp,s ≤ τ}|

|P|
,

describes the percentage of instances that can be solved by s within a factor τ ≥ 1

compared to the fastest algorithm. Note, for example, that ρs(1) is the percentage
of instances for which algorithm s is the fastest and that ρs(∞) is the percentage of
instances that are solved by algorithm s within the time limit.

We started with a “full version” of the branch and cut, denoted by V 1234, with the
following characteristics. The initial LP relaxation contains all the inequalities in
the formulation, except for the connectivity inequalities (7.6) that are exponential in
number and, hence, only the following subset of them are included:

xk(δ−(Sc)) ≥ zkc , ∀k ∈ K, ∀c ∈ H,

where Sc is the set of vertices incident with the arcs in Hc.

Furthermore, the symmetry breaking inequalities (7.42)-(7.44), some max-distance
inequalities (7.38) and (7.39) associated with some subsets of customers that cannot
be serviced with a single vehicle, and inequalities xk(δ+(1)) ≥ 1, ∀k ∈ K, which force
each vehicle to leave the depot, are included. At each iteration of the cutting-plane
algorithm in the root node, the separation procedures described above are applied
using the following general scheme and the violated inequalities found are added to
the LP relaxation:
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1 All the heuristic separation algorithms for connectivity inequalities (A1-A4) are
applied. The algorithm based on flow computations (A4) is used only if the
other ones fail to find violated inequalities.

2 Heuristic parity separation algorithms (A5-A7).

3 Algorithms for separating K-C, K-C02, and Path-Bridge inequalities (A8-A10)
are applied for each vehicle k only if no violated connectivity inequalities have
been found for this vehicle.

4 Heuristic algorithms A11 and A12 for separating max-distance inequalities.

Only the fastest separation algorithm for disaggregate connectivity inequalities (A3)
is applied in the nodes of the branch-and-cut tree.

The above cutting-plane procedure is applied until no new violated inequalities are
found. When this happens, we branch using the Strong Branching strategy imple-
mented in CPLEX with higher priority given to the zkc and ykcij variables.

All other B&C versions are based on different cutting-plane algorithms associated
with different separation strategies. The B&C algorithms were tested on a subset of
48 instances taken from the four sets of DC-CEARP instances proposed in Ávila et al.
(2017) and whose characteristics are described in Section 7.5.1. Twelve instances,
three for each value of k ∈ {2, 3, 4, 5}, were chosen at random from each subset.
The experiments were performed on a desktop PC with an Intel(R) Core(TM) i7 at
3.4GHz CPU with 32GB RAM running Windows 10 Enterprise 64 bits using a single
thread. The algorithms were coded in C++ combined with CPLEX 12.10 and all the
experiments were carried out with a time limit of 7200 seconds.

We first studied the impact of connectivity inequalities and their separation proce-
dures. To do this, we compared the V1234 B&C with three new versions. In the
first version, called V234, we remove all the separation algorithms for connectivity
inequalities (A1-A4), except for algorithm A1 when the obtained solution is integer.
The second version, V1(a)+234, uses all the separation algorithms except for A2,
while the last one, V1(b)+234, uses all the separation algorithms except for A4. Note
that A2 and A4 are the most time-consuming procedures.
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Figure 7.7: Impact of the connectivity inequalities: Performance profile

Figure 7.7 shows the performance profile of the four compared versions and Table
7.2 reports for each version the number of optima obtained (out of 48 instances), the
average gap in the root node, and the average computing time spent at the root node
and the average total computing time in seconds. V1234, as expected, and surprisingly
V1(a)+234, are the best versions in terms of gap, although this last version shows
a worse performance profile and worse behavior in terms of averages and number
of optima. The other two versions, V234 and V1(b)+234, are clearly dominated by
V 1234. Therefore, we decided to include all separation procedures for connectivity in
the final version of the B&C.

# opt Gap0 (%) Time0 (scs) Time (scs)
V 1234 46 5.874 252.38 1031.19
V 234 41 11.560 198.83 1654.31
V 1(a) + 234 44 5.824 265.86 1209.48
V 1(b) + 234 41 8.693 192.62 1491.66

Table 7.2: Results on the subset of 48 instances - connectivity

Then, we studied the effect of parity inequalities and their separation by comparing the
full version V1234 with two versions obtained from it by removing all the separation
algorithms for parity inequalities (A5-A7), version V134, and removing algorithms A5
and A7 (V1+2(a)+34). The results obtained are summarized in Figure 7.8 and Table
7.3.
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Figure 7.8: Impact of the parity inequalities: Performance profile.

# opt Gap0 (%) Time0 (scs) Time (scs)

V 1234 46 5.874 252.38 1031.19
V 134 44 6.065 258.00 1069.87
V 1 + 2(a) + 34 45 6.034 268.13 1165.09

Table 7.3: Results on the subset of 48 instances - parity

As Figure 7.8 shows, all three versions compared have similar performance profiles.
However, the gaps in the root node and other measures reported in Table 7.3 for V134
and V1+2(a)+34 are worse than those of the full version, and therefore none of the
latter versions is considered interesting.

We also considered different options regarding the max-distance inequalities. Here,
three new versions were implemented. In the first one, V123+4(a), we removed
the separation algorithm A11, while algorithm A12 was removed in the second one
V123+4(b). The third version, V123, did not include any separation algorithm for
max-distance inequalities. These three versions are compared again with version
V1234. Performance profiles, average gaps in the root node, and other measures
are presented in Figure 7.9 and Table 7.4.
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Figure 7.9: Impact of the max-distance inequalities: Performance profile.

# opt Gap0 (%) Time0 (scs) Time (scs)

V 1234 46 5.874 252.38 1031.19
V 123 46 9.835 114.34 902.39
V 123 + 4(a) 46 7.738 136.99 1036.11
V 123 + 4(b) 46 6.655 241.18 1054.21

Table 7.4: Results on the subset of 48 instances - max-distance

From Figure 7.9 we can see that V123 is the fastest version in 60% of the instances,
followed by V123+4(a), although they are the two versions with the worst gaps.
V123+4(b) is not an interesting option because its performance profile is similar
to that of V1234 but it shows worse gaps. The V123+4(a) version has a better
performance profile than the full version but a worse average gap, and it is clearly
dominated in terms of computing time and performance profile by V123. Therefore,
we selected V123 as the most interesting option among the three tested versions.

Finally, we compared a new version V124 resulting from removing the separation algo-
rithms A8-A10 for K-C, K-C02, and Path-Bridge inequalities, with the most promising
versions obtained from the previous experiments, V1234 and V123. Note that separa-
tion algorithms A8, A9, and A10 have many parts in common, and thus removing only
some of them would produce no benefit in terms of the overall algorithm efficiency.

Figure 7.10 shows the performance profiles for the three versions. Version V123 is the
fastest one to reach the optimal solution in more than 80% of the instances and can
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optimally solve all 46 instances in less that 2 times the time of the fastest version.
The performance profile of the other two versions is similar and it can be seen that
they reach the 46 optimal solutions only with factors τ = 20 and τ = 21. As for
the average gaps in the root node, V124 does not improve the results obtained by
V1234 either. Looking at the Table 7.5, we can see that V124 has no advantage
over V1234 and is therefore not considered an interesting alternative. Overall, version
V123, although produces greater gaps at the root node, is considerably faster and has
a better performance profile than V1234. Therefore, we decided to use version V123
for our final computational experiments.
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Figure 7.10: Impact of the K-C, K-C02 and Path-Bridge inequalities: Performance profile.

# opt Gap0 (%) Time0 (scs) Time (scs)

V 1234 46 5.874 252.38 1031.19
V 123 46 9.835 114.34 902.39
V 124 46 6.064 228.98 1127.72

Table 7.5: Results on the subset of 48 instances - K-C, K-C02 and Path-Bridge

7.5 Computational experiments

In this section we study the performance of the final version (V123) of the branch-and-
cut algorithm, Algorithm 1 in what follows. As in the previous analysis, the experi-
ments were performed on a desktop PC with an Intel(R) Core(TM) i7 at 3.4GHz CPU
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with 32GB RAM running Windows 10 Enterprise 64 bits. Again, we used CPLEX
12.10 with a single thread. The performance of Algorithm 1 has been compared with
that of the best of four branch-and-cut procedures described in Ávila et al. (2017),
Algorithm 2 in what follows, and, for illustrative purposes, with the full version V1234,
denoted as Algorithm 0. Algorithm 2 has been executed on the same machine and
using the same version of CPLEX.

All the experiments were carried out with a time limit of two hours. CPLEX heuristic
algorithms were turned off, and CPLEX own cuts, including zero-half cuts, were
activated in automatic mode. The optimality gap tolerance was set to zero, best
bound strategy was selected and CPLEX presolve phase was reapplied at the end
of the root node. The instances used and the computational results obtained are
described in what follows.

7.5.1 Instances

We have tested our branch-and-cut algorithm on the four sets of DC-CEARP instances
proposed in Ávila et al. (2017). The graphs of the two first sets of instances, Random50
and Random75, were generated randomly and have 50 and 75 vertices respectively.
Sets Albaida and Madrigueras are based on the street networks of these two Spanish
towns. As pointed out in Ávila et al. (2017), generating the value of Dmax for each
instance is a hard task, because depending on this value, the instance can be infeasible
or trivial (some of the vehicles are not needed). A detailed description of how these
values have been generated can be found in that paper. The characteristics of these
251 instances are summarized in Table 7.6. The complete data, including the values
of Dmax and the number of vehicles with the corresponding best solutions found, can
be downloaded from http://www.uv.es/corberan/instancias.htm in the class “Distance-
Constrained CEARP”.

|A| |AR| |ANR| |H|

|V | Min Max Min Max Min Max Min Max

Random50 50 296 300 105 292 7 193 10 97
Random75 75 448 450 143 438 10 305 15 140
Albaida 116 259 305 124 172 109 162 18 33
Madrigueras 196 453 544 224 305 197 281 22 47

Table 7.6: Characteristics of the instances
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7.5.2 Computational Results

The computational results obtained with Algorithm 0, Algorithm 1, and Algorithm 2,
are shown in Table 7.7, where instances have been grouped by number of vehicles and
number of customers, which are shown in columns 1 and 2. Column 3 reports the
number of instances of each subset. For both algorithms, the columns labeled ‘# opt’,
‘Gap0 (%)’, and ‘Time’ report the number of optimal solutions found, the average gap
in the root node, and the average computing time in seconds, respectively. The bold
rows at each group of instances with the same number of vehicles show the total
number of instances, in the case of the ‘inst’ and ‘# opt’ columns, and the average
values for the remaining columns. The last row of the table summarizes the results
for all the instances.

As can be seen in Table 7.7, the number of optima obtained with Algorithm 1 is
very good (234 out of 251 instances) and is a bit better than those obtained with
Algorithm 0 (231 optima) and Algorithm 2 (229 optima), although the average gap in
the root node is slightly higher than that of Algorithm 2 (8.94% versus 8.42%), and, as
expected, higher than the one obtained using all the separation procedures described
in Section 7.4.1 (6.5%). However, it is in the computing times where we can appreciate
the main differences. The average computing time is 976.3 seconds with Algorithm 1
versus 1080.1 seconds obtained with Algorithm 2 and 1300.9 of Algorithm 0. Although
for 2 and 3 vehicles the times for Algorithm 2 are better on average, when the number
of vehicles increases, the times of Algorithm 1 are significantly lower. Tables 7.10,
7.11, 7.12, and 7.13 report the same computational results disaggregated for the sets
Random50, Random75, Albaida, and Madrigueras, respectively.

To study the running times in more detail, we compare the performance profiles of
the three branch-and-cut algorithms (see Figure 7.11). Comparing the performance
ratios of the three methods at τ = 1, we observe that Algorithm 1 is the fastest one in
almost 80% of the instances, while Algorithm 0 is the slowest one. As τ increases, the
difference between Algorithm 1 and Algorithm 2 decreases, but note that five more
instances can be solved using Algorithm 1.
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Algorithm 2 (Ávila et al. (2017)) Algorithm 1 Algorithm 0
Veh |H| inst # opt Gap0(%) Time # opt Gap0(%)Time # opt Gap0(%)Time

2

[10,21] 18 18 1.80 19.2 18 2.4 8.8 18 0.74 36.5
[12,30] 21 21 1.62 111.6 21 2.6 75.2 21 1.19 240.5
[31,46] 16 16 1.19 109.3 16 1.9 86.9 16 1.12 256.5
[47,140] 17 17 1.64 365.1 16 1.6 712.5 16 1.74 1030.8

72 72 1.57 147.8 71 2.14 211.7 71 1.19 379.7

3

[10,21] 17 17 7.75 40.4 17 8.5 21.0 17 4.67 55.5
[12,30] 21 21 7.07 238.7 21 7.7 140.4 21 5.70 324.9
[31,46] 16 16 4.74 696.8 16 5.3 578.7 16 4.32 775.0
[47,140] 17 16 5.23 1218.9 16 4.6 1477.1 16 5.17 1718.2

71 70 6.27 529.2 70 6.61 530.7 70 5.02 695.5

4

[10,21] 12 12 14.53 49.6 12 15.8 27.3 12 6.88 71.9
[12,30] 19 19 14.33 766.9 19 15.6 344.2 19 11.20 1236.5
[31,46] 16 13 11.65 2253.8 16 11.0 908.1 14 10.05 1790.2
[47,140] 17 11 9.45 3178.5 13 8.6 3454.6 13 9.02 3862.8

64 55 12.40 1644.7 60 12.66 1251.9 58 9.52 1854.2

5

[10,21] 9 9 19.35 73.9 9 24.0 60.6 9 6.39 100.7
[12,30] 10 10 19.63 956.8 10 22.5 589.0 10 17.04 983.1
[31,46] 10 5 15.64 3963.6 8 15.2 2858.8 7 14.01 3684.5
[47,140] 15 8 15.61 4516.9 6 14.5 5132.1 6 14.13 5571.8

44 32 17.29 2673.3 33 18.45 2545.6 32 13.18 2980.9
TOTAL 251 229 8.42 1080.1 234 8.94 976.3 231 6.50 1300.9

Table 7.7: Computational results for all the instances grouped by number of vehicles and customers

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

τ

ρ s
(τ

)

Algorithm 0
Algorithm 1
Algorithm 2

Figure 7.11: Performance profile

Table 7.7 does not report the average final gaps since most instances are optimally
solved by all algorithms. Instead, Table 7.8 compares the average gaps in the root node
and the average final gaps obtained by the three procedures in the 11 instances that
are not solved by any of the algorithms, while Table 7.9 provides the same information
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but in the 27 instances that have not been optimally solved by at least one of the
algorithms. Note that in these harder instances, Algorithm 1 obtains better gaps at
the root node, as well as final gaps. Table 7.9 also reports the number of instances
solved optimally by each algorithm.

Gap0(%) Final Gap(%)
Algorithm 0 14.20 8.98
Algorithm 1 14.36 7.80
Algorithm 2 15.35 9.23

Table 7.8: Results on the 11 instances not solved by any algorithm

# opt Gap(%) Final Gap(%)
Algorithm 0 7 12.07 4.98
Algorithm 1 10 11.86 3.68
Algorithm 2 5 12.94 5.27

Table 7.9: Results on the 27 instances not solved by at least one algorithm

Looking at the computational results disaggregated by sets of instances, Tables 7.10
to 7.13, we note that the performance of Algorithm 1 is better than that of Algo-
rithm 2 in those instances that are based on real street networks like the Albaida and
Madrigueras sets. Another particularity of these two sets of instances is that their
number of customers is not too large, from 19 to 34 and from 23 to 48 in the Albaida
and Madrigueras instances, respectively, because they are defined following “geograph-
ical” criteria, as it was assumed that it can occur in real-life problems. Algorithm 2, on
the other hand, performs better on the Random 50 and 75 sets, which were randomly
generated and have a larger number of customers (many of them defined by larger
subsets of arcs).

7.6 Conclusions

In this chapter we study the Distance-Constrained Close Enough Arc Routing Prob-
lem, which generalizes the Close Enough Arc Routing Problem to the case in which
there is a fleet of vehicles based on a depot that jointly service a set of customers.
Each customer is associated with a set of arcs which are close enough to it, such
that the customer can be serviced by traversing any of these arcs. The length of the
routes is limited by a given value and the objective is to minimize the sum of the
route distances. The DC-CEARP is inspired by and has application to meter reading
problems.

The contribution of this work is threefold. First, we propose a new formulation for
the DC-CEARP that combines the best features of the previously existing ones. For
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Algorithm 2 (Ávila et al. (2017)) Algorithm 1 Algorithm 0
Veh |H| inst # opt Gap0(%) Time # opt Gap0(%) Time # opt Gap0(%) Time

2

10 3 3 1.28 4.1 3 1.65 2.4 3 0.00 4.0
[24,25] 3 3 0.48 12.9 3 0.06 8.8 3 0.20 23.3
[45,50] 3 3 0.64 42.4 3 1.72 33.8 3 0.87 90.8
[92,97] 3 3 2.31 124.0 3 2.24 282.2 3 2.38 333.5

12 12 1.18 45.9 12 1.42 81.8 12 0.86 112.9

3

10 2 2 4.89 4.6 2 4.95 3.5 2 0.83 5.4
[24,25] 3 3 2.94 17.1 3 7.10 14.3 3 2.57 25.2
[45,50] 3 3 4.13 41.8 3 4.17 47.3 3 3.96 102.0
[92,97] 3 3 7.36 204.2 3 6.63 546.3 3 7.45 665.9

11 11 4.83 72.5 11 5.78 166.4 11 3.96 217.3

4

[24,25] 3 3 10.13 21.0 3 11.28 19.1 3 8.87 43.1
[45,50] 3 3 11.70 61.3 3 10.74 91.3 3 9.59 225.5
[92,97] 3 3 9.46 296.3 3 8.82 897.8 3 9.40 1286.2

9 9 10.43 126.2 9 10.28 336.0 9 9.29 518.3

5
[45,50] 1 1 23.56 177.3 1 23.71 362.5 1 16.78 247.6
[92,97] 2 2 15.06 1257.2 1 14.39 3838.7 2 12.21 3652.9

3 3 17.89 897.2 2 17.49 2680.0 3 13.74 2517.9
TOTAL 35 35 6.14 147.9 34 6.45 396.4 35 5.11 456.1

Table 7.10: Results for the Random50 instances

Algorithm 2 (Ávila et al. (2017)) Algorithm 1 Algorithm 0
Veh |H| inst # opt Gap0(%) Time # opt Gap0(%)Time # opt Gap0(%)Time

2

15 3 3 0.00 8.6 3 0.43 5.9 3 0.00 15.2
[36,37] 3 3 1.34 38.5 3 1.66 25.7 3 1.02 74.4
[70,75] 3 3 1.75 117.1 3 1.40 165.3 3 1.79 568.2
[138,140] 3 3 2.42 1301.6 2 1.93 3224.6 2 2.48 3727.9

12 12 1.38 366.5 11 1.35 855.4 11 1.32 1096.4

3

15 3 3 9.06 17.4 3 10.80 11.7 3 3.48 29.0
[36,37] 3 3 4.84 46.3 3 6.29 56.6 3 3.97 97.4
[70,75] 3 3 6.12 251.2 3 5.84 331.0 3 6.23 1057.6
[138,140] 3 3 4.52 1469.6 2 3.34 3927.21 2 4.21 4156.8

12 12 6.14 446.1 11 6.57 1081.6 11 4.47 1335.2

4

15 3 3 11.78 31.8 3 16.83 24.4 3 4.45 68.4
[36,37] 3 3 15.31 158.0 3 16.32 205.9 3 12.86 371.2
[70,75] 3 3 10.05 1392.7 3 9.67 2157.8 3 9.15 3341.0
[138,140] 3 1 6.74 5481.5 1 6.27 6669.7 2 6.64 5945.3

12 10 10.97 1766.0 10 12.27 2264.5 11 8.27 2431.5

5

15 1 1 13.34 66.7 1 26.37 56.0 1 7.50 102.2
[36,37] 1 1 32.74 542.6 1 30.94 427.7 1 23.32 855.1
[70,75] 3 3 14.65 2265.3 2 13.82 4881.7 1 13.08 5785.8
[138,140] 3 0 16.21 7200.0 0 15.36 7200.0 0 15.96 7200.0

8 5 17.33 3625.7 4 18.11 4591.1 3 14.74 4989.3
TOTAL 44 39 8.19 1362.5 36 8.80 1980.6 36 6.52 2233.5

Table 7.11: Results for the Random75 instances

this formulation, an exhaustive study of its associated polyhedron is performed, and
several different families of valid inequalities are proposed. Secondly, many of the new
inequalities presented here can be used, directly or easily adapted, in other arc routing
problems, and the ideas in which some of the algorithms designed for the separation
of these inequalities are based (or the algorithms themselves), can be used for similar
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Algorithm 2 (Ávila et al. (2017)) Algorithm 1 Algorithm 0
Veh |H| inst # opt Gap0(%) Time # opt Gap0(%)Time # opt Gap0(%)Time

2

18 6 6 3.54 34.2 6 4.03 15.2 6 1.76 58.0
21 6 6 1.22 16.8 6 2.01 7.1 6 0.46 41.9
28 6 6 1.97 32.2 6 2.64 18.8 6 1.38 152.7
33 6 6 1.15 36.1 6 2.57 47.9 6 1.24 114.1

24 24 1.97 29.8 24 2.82 22.2 24 1.21 91.7

3

18 6 6 8.45 61.7 6 8.94 25.1 6 5.49 73.8
21 6 6 7.35 42.6 6 8.02 27.4 6 5.73 67.1
28 6 6 2.99 90.5 6 2.51 44.0 6 2.46 145.3
33 6 6 4.75 170.1 6 4.61 78.6 6 4.13 270.4

24 24 5.89 91.2 24 6.02 43.8 24 4.45 139.2

4

18 4 4 12.81 73.0 4 13.20 30.9 4 9.79 78.1
21 5 5 17.54 41.5 5 17.17 26.1 5 5.99 68.9
28 6 6 12.62 336.7 6 13.28 177.5 6 12.90 1790.2
33 6 6 11.33 307.2 6 10.68 135.0 6 10.54 861.1

21 21 13.46 207.8 21 13.45 101.4 21 9.99 788.8

5

18 3 3 12.67 85.2 3 18.84 47.5 3 4.14 123.2
21 5 5 24.55 68.6 5 26.65 69.4 5 7.52 86.8
28 6 6 18.30 557.8 6 23.03 357.1 6 16.52 647.2
33 3 3 15.24 411.9 3 14.83 404.2 3 13.23 398.9

17 17 18.61 304.8 17 21.91 226.2 17 11.11 346.1
TOTAL 86 86 9.16 144.8 86 10.08 87.9 86 6.22 325.4

Table 7.12: Results for the Albaida instances

Algorithm 2 (Ávila et al. (2017)) Algorithm 1 Algorithm 0
Veh |H| inst # opt Gap0(%) Time # opt Gap0(%) Time # opt Gap0(%) Time

2

22 6 6 1.55 130.3 6 2.93 93.8 6 0.68 253.7
28 6 6 1.90 221.5 6 3.51 146.3 6 2.01 423.5
42 6 6 1.23 229.4 6 1.29 166.1 6 1.10 519.5
47 6 6 1.20 248.5 6 1.16 170.6 6 1.28 573.6

24 24 1.47 207.4 24 2.22 144.2 24 1.27 442.6

3

22 6 6 10.61 337.9 6 11.96 182.7 6 8.10 421.2
28 6 6 9.67 398.3 6 8.92 257.5 6 8.10 558.1
42 6 6 4.61 1659.2 6 5.42 1429.0 6 4.55 1736.8
47 6 5 4.60 2476.0 6 4.04 1766.5 6 4.59 1887.9

24 23 7.37 1217.9 24 7.59 908.9 24 6.34 1151.0

4

22 5 5 22.93 1389.9 5 26.80 492.6 5 13.24 1467.6
28 5 5 10.31 1107.5 5 9.98 590.9 5 8.52 1057.1
42 6 3 9.99 5616.0 6 8.65 2167.2 4 8.50 3709.0
47 6 2 9.89 5397.7 4 8.65 4896.8 3 9.49 5563.5

22 15 12.98 3571.3 20 13.08 2172.6 17 9.85 3102.7

5

22 2 2 21.67 1216.5 2 22.99 1139.8 2 20.62 1974.8
28 2 2 21.56 1894.2 2 20.55 733.9 2 15.02 998.9
42 6 1 12.98 6309.6 4 12.80 4491.2 3 12.84 5798.9
47 6 2 14.65 6110.9 2 12.98 5449.3 2 13.93 6177.7

16 7 15.77 5046.5 10 15.11 3961.9 9 14.49 4862.9
TOTAL 86 69 8.72 2250.3 78 8.89 1586.8 74 7.34 2143.2

Table 7.13: Results for the Madrigueras instances

inequalities in other problems. Finally, the designed branch-and-cut algorithm is an
efficient exact method that is able to solve instances with up to 140 customers, 196
vertices, 544 arcs, and 5 vehicles to optimality within two hours computing time.
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Chapter 8

On the Min-Max Close Enough Arc
Routing Problem

8.1 Introduction

We introduce a Close Enough Arc Routing Problem where a fleet of homogeneous
vehicles has to service a set of customers in such a way that the lengths of the routes
are balanced. Each customer is associated with a subset of “close-enough” arcs and
by traversing any of these arcs the vehicle services the customer. The problem, called
the Min-Max Close Enough Arc Routing Problem (MM-CEARP), consists of finding
a set of routes for the vehicles, all of them starting and ending at the depot, jointly
servicing all the customers, and such that the length of the longest route is minimized.
The MM-CEARP is NP-hard as it generalizes the CEARP

Min-max objectives are quite common in routing problems because minimizing the
length of the longest route tends to balance the length or cost of the planned routes.
Moreover, if the travel times are proportional to the travel distance, the last customer
serviced is serviced as early as possible. The min-max objective for several arc rout-
ing problems was first proposed in Frederickson et al. (1978). About 20 years later,
Applegate et al. (2002) considered a min-max problem in a newspaper delivery con-
text. Since then, some other articles on arc routing problems have considered such
an objective. The chapter by Benavent et al. (2014) summarizes the results obtained
for some important min-max arc routing problems.

The main contribution of the work at hand is to introduce in the literature the MM-
CEARP, focusing on its modeling and its exact solution. More precisely, we propose
two different models for the problem: an arc-based formulation making use of arc and
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servicing variables, and a route-based set covering formulation. Then, on the basis of
the proposed models, we present a branch-and-cut (BC) algorithm as well as a branch-
and-price (BP) algorithm. As for the BP algorithm, an additional contribution comes
from the definition of the first-level rule used in the branching scheme. In the route-
based formulation, the min-max objective function characterizing the MM-CEARP
forces to distinguish among the sets of feasible routes associated with the vehicles.
This happens even if the sets are identical. The proposed branching scheme allows
to recover integer solutions at the expenses of a diversification of the sets of feasible
routes. Nevertheless, the first-level rule does not introduce symmetries in the solution
space, does not alter the structure of the pricing problems, and, finally, allows the
pricing problems to continue sharing the same feasible region. In turn, as long as only
this rule is applied, this allows to design the sequential solution of the pricing problems
(at each the column generation iteration) to potentially avoid solving some of them.
Furthermore, the first-level rule consists of an application of the Ryan and Foster’s
branching rule (see Ryan and Foster (1981)), which is itself something not typical
when (i) columns of the master program refer to elements of distinct sets and/or
(ii) the BP algorithm is addressing a routing problem. In particular, as for (ii), we
have been able to efficiently handle the implications arising from the application of
such a kind of rule thanks to the BC algorithm used to solve the pricing problems
to optimality. Again something not typical for BP algorithms addressing routing
problems, where the leading technique used to solve the pricing problems consists of
dynamic programming algorithms.

The rest of the chapter is organized as follows. In Section 8.2, we formally define the
MM-CEARP and present for the problem an arc-based and a route-based formulation.
Solution algorithms to address the problem are then presented. In Section 8.3 we
present a BC algorithm addressing the arc-based formulation, whereas in Section 8.4
we describe a BP algorithm based on the set covering formulation. A heuristic used to
compute solutions with which initializing the exact algorithms is described in Section
8.5. The exact algorithms are compared in benchmark instances through extensive
computational experiments in Section 8.6. Finally, conclusions are drawn in Section
8.7.

8.2 Problem definition and formulation

Let G = (V,A) be a strongly connected directed graph with set of vertices V , where
vertex 1 denotes the depot, and set of arcs A, and let dij ≥ 0 be the an integer value
representing the length/distance associated with the traversal of arc (i, j) ∈ A. There
is a fleet of K identical vehicles based at the depot and a set of L customers. Each
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customer c ∈ {1, . . . , L} has associated a set of arcs Hc ⊆ A from which it can be
served. We consider that a customer c is served if there is a vehicle k that traverses
at least one arc in Hc. Note that the subsets Hc do not need to be disjoint nor induce
connected subgraphs. The Min-Max Close-Enough Arc Routing Problem consists of
finding a set of K routes, starting and ending at the depot, servicing all the customers
and minimizing the length of the largest route.

In what follows, K = {1, . . . , K} will represent the set of vehicles and H = {1, . . . , L}
the set of customers. Given sets S, S1, S2 ⊂ V , we define (S1, S2) = {(i, j) ∈ A :

i ∈ S1 j ∈ S2}, δ+(S) = (S, V \ S), δ−(S) = (V \ S, S), δ(S) = δ+(S) ∪ δ−(S), and
A(S) = {(i, j) ∈ A : i, j ∈ S}. Finally, given a vector x indexed on the arcs, and
given a set F of arcs, x(F ) =

∑
(i,j)∈F xij.

8.2.1 Arc-based formulation

In this section we present an ILP formulation for the MM-CEARP, very similar to
one of the four proposed by Ávila et al. (2017) for the DC-CEARP, which uses an
artificial variable w to model the minimization of the maximum length route and the
following two sets of variables:

xkij = number of times that the vehicle k traverses arc (i, j) ∈ A,

zkc =

{
1, if customer c is served by vehicle k
0, otherwise.

The first MM-CEARP formulation is:

Minimize w

s.t.: ∑
k∈K

zkc = 1 ∀c ∈ H (8.1a)∑
(i,j)∈A

dijx
k
ij ≤ w ∀k ∈ K (8.1b)

xk(δ+(i)) = xk(δ−(i)) ∀ i ∈ V, ∀k ∈ K (8.1c)∑
(i,j)∈Hc

xkij ≥ zkc ∀c ∈ H, ∀k ∈ K (8.1d)

xk(δ+(S)) ≥ zkc − xk(Hc ∩ A(V \ S)) ∀S ⊂ V \ {1}, ∀c ∈ H, ∀k ∈ K (8.1e)

xkij ≥ 0 and integer ∀(i, j) ∈ A, ∀k ∈ K (8.1f)

zkc ∈ {0, 1} ∀c ∈ H, ∀k ∈ K (8.1g)
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Equations (8.1a) forces the service of all customers while inequalities (8.1b) imply
that the length of any route is less than or equal to w, and, together to the objective
function, that the length of the longest route is minimized. Constraints (8.1c) are
the well known symmetry equations for each vertex in V . Inequalities (8.1d) ensure
that if a vehicle serves a customer c, at least one arc in Hc must be traversed. The
connectivity of each route is guaranteed by inequalities (8.1e). If vehicle k does not
serve customer c, zkc = 0 and the inequality is trivially satisfied. Otherwise, if vehicle
k serves customer c by traversing an arc in Hc ∩ A(V \ S), then it does not need to
traverse the cut-set δ(S) and the inequality is also trivially satisfied. Only when vehicle
k serves customer c by traversing an arc not in Hc ∩ A(V \ S) (hence, traversing an
arc in δ(S) or in A(S)), the vehicle has to traverse δ(S) and, therefore, the inequality
is satisfied. Note that there is an exponential number of such inequalities. Finally,
(8.1f)–(8.1g) define the domain of the variables.

In what follows we present some inequalities proposed in Ávila et al. (2017) and
Corberán et al. (2021) for the DC-CEARP. They are also valid for our problem and
will be used to strengthen the linear relaxation of the above formulation.

Parity inequalities

Parity inequalities are implied by the fact that any cutset has to be traversed by
each vehicle an even, or zero, number of times. Note that symmetry equations (8.1c)
guarantee that every node has even degree in the graph induced by any integer solution
x ∈ Z|A|. However, if x is fractional, this is not necessarily true and, therefore, parity
inequalities can help to cut this kind of “solutions”.

Let S ⊆ V \ {1} and FH = {c1, c2, ..., cq}, where q ≥ 3 and odd, satisfying

• Hci ∩Hcj ∩ δ(S) = ∅ and

• Hci ∩ δ(S) 6= ∅ ∀i ∈ {1, . . . , q}

The following inequality is called disaggregate z-parity inequality, because is associated
with a single vehicle k, and is valid for the MM-CEARP

xk(δ(S)) ≥
q∑
i=1

(
2zkci − 1− 2xk (Hci \ δ(S))

)
+ 1. (8.2a)

Basically, the inequality establish that if vehicle k serves customer ci and does not
traverse any edge in Hci \ δ(S), then k serves ci by traversing at least an arc in
Hci ∩ δ(S). If this is true for the q customers in FH, vehicle k has to traverse δ(S) at
least q times, and, since q is odd, k has to traverse the cutset at least one more time.
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Parity inequalities can be generalized to any subset of vehicles as follows. Given a
subset of vehicles Ω = {k1, .., kp}, the associated Ω-aggregate z-parity inequality is

∑
k∈Ω

xk(δ(S)) ≥
q∑
i=1

(∑
k∈Ω

2zkci − 1− 2
∑
k∈Ω

xk (Hci \ δ(S))
)

+ 1. (8.2b)

If Ω = K, we have the aggregate parity inequality

∑
k∈K

xk(δ(S)) ≥
q∑
i=1

(
1− 2

∑
k∈K

xk (Hci \ δ(S))
)

+ 1. (8.2c)

Max-distance constraints

Let w∗ an upper bound to the length of the longest route. Let FH ⊆ H be a subset
of customers such that the value of the tour of minimal length servicing FH (or a
lower bound of it) is greater than w∗. In this case, that tour cannot be optimal for
the MM-CEARP and therefore all the customers in FH cannot be served by a single
vehicle in an optimal solution. Let S be the set of vertices incident with the arcs in
∪c∈FHHc and suppose 1 /∈ S. By the previous reasoning we have that at least two
different vehicles must enter S and the following inequality must be satisfied by any
optimal MM-CEARP solution. ∑

k∈K

xk(δ−(S)) ≥ 2. (8.3a)

Note, however, that inequality (8.3a) allows the same vehicle to enter S twice, while
there must be two different vehicles entering S. Hence, we can add the inequalities:∑

k 6=k′
xk(δ−(S)) ≥ 1, ∀k′ ∈ K. (8.3b)

Inequalities (8.3a) and (8.3b) can be extended in the following way. Let v(FH) ≥ 2

be the minimum number of vehicles needed to serve the customers in FH (or a lower
bound). For any subset of vehicles Ω ⊆ K, with 0 ≤ |Ω| ≤ v(FH) − 1 we have the
following inequality:

∑
k∈K\Ω

xk(δ−(S)) ≥ v(FH)− |Ω|. (8.3c)
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Furthermore, if a single vehicle cannot serve all the customers in FH in an optimal
solution, we can add the following inequality for any vehicle k ∈ K:

zkc (FH) ≤ |FH| − 1, (8.3d)

which, as above, can be generalized if v(FH) ≥ 2. For any subset of vehicles Ω ⊆ K,
with 1 ≤ |Ω| ≤ v(FH)− 1 we have the following inequality:∑

k∈Ω

zkc (FH) ≤ |FH| − (v(FH)− |Ω|). (8.3e)

The value for w∗ can be obtained by using the heuristic described in Section 8.5, while
v(FH) can be computed with the exact algorithm proposed in Corberán et al. (2021).

8.2.2 Route-based formulation

As illustrated in Barnhart et al. (1998), most routing problems can be formulated
in a natural way as set partitioning problems where the columns (of the coefficient
matrix) correspond to feasible routes for the vehicles and each row (of the coefficient
matrix) corresponds to the requirement that a customer must be served exactly once.
Alternatively, the problem can be formulated as a set covering problem in which it is
required that each customer is served at least once. Note that, if a subcolumn of a
feasible column defines another feasible column with lower cost, an optimal solution to
the set covering problem will define an optimal set partitioning solution and, hence,
it is possible to work with any of the two formulations. However the set covering
formulation has the following advantages:

• its linear programming relaxation is numerically more stable and thus easier to
solve, and

• it is trivial to construct a feasible integer solution from a solution to the linear
programming relaxation.

According to these insights, we modeled the MM-CEARP by means of a route-based
set covering formulation that leads the bases for the B&P algorithm discussed in
Section 8.4.

Let Rk be the set of feasible routes for vehicle k ∈ K. Feasibility takes into account
constraints (8.1b)-(8.1g) for each vehicle k ∈ K. For each r ∈ Rk, let dkr be the
length of the route. Moreover, for each customer c ∈ H and each r ∈ Rk, let skrc
be a binary parameter equal to 1 if the route r serves customer c and 0 otherwise.
Then, let’s consider a set of variables associated with the use of the routes:
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λkr =

{
1, if the route r ∈ Rk is assigned to the vehicle k ∈ K,
0, otherwise,

and another set of variables modeling the length of the route assigned to each vehicle:

wk = length of route assigned to vehicle k ∈ K.

Using this notation, the MM-CEARP can be formulated as follows:

Minimize w1

s.t.:∑
k∈K

∑
r∈Rk

skrc λ
kr ≥ 1 ∀c ∈ H (8.4a)∑

r∈Rk

λkr = 1 ∀k ∈ K (8.4b)∑
r∈Rk

dkrλkr − wk ≤ 0 ∀k ∈ K (8.4c)

wk − wk+1 ≥ 0 ∀k = 1, . . . , K − 1 (8.4d)

λkr ∈ {0, 1} ∀k ∈ K, ∀r ∈ Rk (8.4e)

The objective function minimizes the length of the longest route. This is ensured by
constraints (8.4c) together with (8.4d). Actually, constraints (8.4c) define the lengths
of the routes assigned to the vehicles. Then, constraints (8.4d) impose the lengths
of the routes associated with vehicles from 1 to K to be sorted in non-increasing
order. The mandatory service of the customers is established in inequalities (8.4a).
The convexity constraints (8.4b) imply that a single route r ∈ Rk is assigned to each
vehicle k ∈ K. Finally, constraints (8.4e) define the domain for the λkr variables.
Constraints wk ≥ 0 are implied by inequalities (8.4c).

Note that sets Rk, k ∈ K, are all identical. Nevertheless, we decided to index them
(by vehicle index) to have a notation allowing us to better explain the B&P algorithm
(see Section 8.4). In particular, the reason for using such a notation will be clarified
in Section 8.4.2.
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8.3 Branch-and-cut algorithm

In this section, we describe the branch-and-cut algorithm for solving the MM-CEARP,
which relies on the arc-based formulation presented in Section 8.2.1 and the use of
mixed-integer programming (MIP) solver.

8.3.1 Separation algorithms

Here we describe the separation algorithms that have been used to identify inequali-
ties that are violated by the current LP solution at any iteration of the cutting-plane
phase of the branch-and-cut algorithm, which includes separation methods for iden-
tifying connectivity (8.1e), aggregated parity (8.2c), and max-distance((8.3a), (8.3b),
and (8.3d)) violated inequalities.

Connectivity inequalities

To identify violated connectivity inequalities (8.1e) we have used a heuristic procedure
proposed in Ávila et al. (2017) for the DC-CEARP. Given a solution (xk∗, zk∗) of the
linear relaxation corresponding to a vehicle k, we first build the graph induced by the
arcs a ∈ A such that xk∗a ≥ ε, where ε is a given parameter. If the support graph is
not weakly connected, let C1, . . . , Cq be its weakly connected components. For each
Ci, let S be its associated set of vertices. We look for the customer c ∈ H such that
zk∗c − xk∗(Hc ∩ A(V \ S) is maximized. If xk∗(δ+(S)) < zk∗c − xk∗(Hc ∩ A(V \ S) the
corresponding connectivity constraint (8.1e) is violated.

A second heuristic (described in Corberán et al. (2021)) based on the Gomory-Hu
algorithm is also applied.

Parity inequalities

To separate parity inequalities (8.2c) we have implemented the following heuristic
algorithm. Note that these inequalities can be written as

∑
k∈K

xk(δ(S)) ≥
∑
k∈K

q∑
i=1

(
zkci − 2xk

(
Hci \ δ(S)

))
+ 1.

If (xk∗, zk∗) are the values of the variables associated with vehicle k in the solution of
the linear relaxation, let (x̄∗, z̄∗) be the aggregated solution, that is, x̄∗a =

∑
k∈K x

k∗
a

and z̄∗c =
∑

k∈K z
k∗
c = 1. First, we create the graph induced by the arcs a ∈ AR =

H1 ∪ · · · ∪ HL with x̄∗a ≥ 1 + ε and by the arcs a /∈ AR with x̄∗a > ε, where ε
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is a given parameter. Let C1, . . . , Ck be the weakly connected components of this
graph. Then, given a connected component Ci and its associated set of vertices S,
we compute x̄∗(δ(S) ∩AR) and check if this value is close to an odd number, that is,
2n+ 0.75 ≤ x̄∗(δ(S) ∩ AR) ≤ 2n+ 1.25. If so, the heuristic tries to select q = 2n+ 1

customers among those having arcs in the cutset in order to form set FH as described
in Section 8.2.1. To do so, we iteratively add customers to FH in decreasing order of
the z̄∗c − 2x̄∗(Hc \ δ(S)) values, such that the sets Hc ∩ δ(S) are disjoint with those
associated with the previously selected customers, until we reach the desired number
q of customers. If there are not enough customers that can be selected, we choose
another component. Otherwise, we check if the inequality (8.2c) is violated.

Max-distance inequalities

In order to find violated max-distance inequalities (8.3a) and (8.3b), we use the heuris-
tic separation algorithm described in Corberán et al. (2021) and denoted as A11.
Inequalities (8.3d) are also separated heuristically using the algorithm proposed in
Corberán et al. (2021) and denoted as A12.

8.3.2 Initial relaxation and cutting-plane algorithm

The initial LP relaxation contains all the inequalities in the formulation except for
the connectivity inequalities, which are exponential in number. At each cutting plane
iteration, the separation algorithms are applied in the following order:

1. Connectivity inequalities separation algorithm based on connected components
with ε = 0, 0.25, 0.5, 0.75.

2. Connectivity inequalities separation algorithm based on Gomory-Hu.

3. Only at the root node, parity inequalities separation algorithm with
ε = 0, 0.25, 0.5, 0.75.

4. Only at the root node, max-distance inequalities separation algorithms.

This cutting-plane algorithm is applied at each node of the tree until no new violated
inequalities are found. When this happens, we branch using the strong branching
strategy provided by the MIP solver. This strategy branches on variables and allows
to assign different priorities to them. Variables with higher priority are the first ones
used for branching. We have assigned a higher priority to the zkc variables.
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8.4 Branch-and-price algorithm

When a set covering problem is addressed by means of a B&P algorithm, its formu-
lation, in our case formulation (8.4), is usually referred as master program (MP). In
the B&P algorithm, at each node of the branch-and-bound tree, the linear relaxation
of the MP (LMP), eventually augmented by branching constraints, is solved itera-
tively by means of column generation. The starting point is to define the LMP over
a subset R̃ ⊆

⋃
k∈KR

k of the feasible routes for the vehicles. This restricted version
of LMP is usually called reduced linear master program (RLMP). At each iteration,
column generation alternates between the optimization of the RLMP and the solution
of pricing problems (PPs). The former allows to retrieve optimal dual variable values
with respect to set R̃. The latter, on the bases of the dual variable values, generates
negative reduced cost route variables λkr to be included in the RLMP, if any. When no
negative reduced cost variable is found, the optimal solution of the RLMP is also the
optimal solution of the LMP Desaulniers et al. (2005). Branching is finally required
to ensure the integrality of the solution.

8.4.1 Column generation

Let us consider the linear relaxation of (8.4) at the root node of the branch-and-
bound tree. The dual variables associated with the constraints (8.4a), (8.4b), (8.4c),
and (8.4d) are respectively:

• µc ∈ R+, for each customer c ∈ H,

• θk ∈ R, for each vehicle k ∈ K,

• ρk ∈ R−, for each vehicle k ∈ K,

• σk ∈ R+, for each k = 1, . . . , K − 1.

Using these dual variables in their respective domain, we are able to express the
formulation of the dual of LMP as follows:

max
∑
c∈H

1 · µc +
∑
k∈K

1 · θk +
∑
k∈K

0 · ρk +
K−1∑
k=1

0 · σk (8.5a)

s.t.
∑
c∈H

skrc µc + θk + dkrρk ≤ 0 ∀k ∈ K, ∀r ∈ Rk (8.5b)

− ρ1 + σ1 ≤ 1 (8.5c)

− ρk + σk − σk−1 ≤ 0 ∀k = 2, . . . K − 2 (8.5d)

− ρK − σK−1 ≤ 0 (8.5e)
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where there is a constraint (8.5b) for each variable λkr of the primal formulation, and
constraints (8.5c)– (8.5e) are related with each wk variable, k ∈ K.

Thus, based on the dual formulation (8.5), we can see that there is one distinct PP
for each vehicle k ∈ K. In particular, given the duals (µ,θ,ρ,σ), the PP for vehicle
k ∈ K consists of finding a minimum reduced cost route to be assigned to the vehicle,
where the reduced cost c̄kr(µ,θ,ρ) of route r ∈ Rk to be assigned to the vehicle is
defined as:

ckr(µ,θ,ρ) = −
∑
c∈H

skrc µc − θk − dkrρk (8.6)

A solution (a route) corresponds to a negative reduced cost λkr variable if its value
(reduced cost) is less than 0.

Pricing problem modeling

In order to define the pricing problem, we consider the same variables (with the same
meaning) as those used in formulation (8.1). The PP associated with vehicle k ∈ K
can then be formulated as follows:

Minimize −
∑
c∈H

µcz
k
c −

∑
(i,j)∈A

dijx
k
ijρk.

s.t.:

xk(δ+(i)) = xk(δ−(i)) ∀ i ∈ V (8.7a)

xk(δ+(S)) ≥ zkc − xk(Hc ∩ A(V \ S)) ∀S ⊂ V \ {1}, ∀c ∈ H (8.7b)∑
(i,j)∈Hc

xkij ≥ zkc ∀c ∈ H (8.7c)

xkij ≥ 0 and integer ∀(i, j) ∈ A (8.7d)

zkc ∈ {0, 1} c ∈ H, (8.7e)

where µc ≥ 0, θk ∈ R, ρk ≤ 0 and, hence, −dijρk ≥ 0 for each (i, j) ∈ A. The objective
function aims at minimizing the reduced cost of the route. Constraints (8.7a) are the
symmetry equations for each vertex, while constraints (8.7b) are used to ensure the
connectivity of the optimal solution. Consistency between the xkij and zkc variables is
imposed through constraints (8.7c).

An optimal solution to (8.7) corresponds to a negative reduced cost variable if its
value is less than θk.
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Moreover, when an upper boundW is available for w1, Rk can be restricted to include
feasible routes such that dkr ≤ W − 1 (dij is an integer value for each (i, j) ∈ A), and
we can include in formulation (8.7) the following constraint:∑

(i,j)∈A

dijx
k
ij ≤ W − 1 (8.7f)

Note that the valid inequalities (8.7a) - (8.7e), which defines the feasible region of
the PP associated with vehicle k ∈ K, are the same as the inequalities (8.1c) - (8.1g)
appearing in formulation (8.1) for each vehicle k ∈ K. Thus, the disaggregate z-parity
inequalities (8.2a) are also valid for model (8.7).

A branch-and-cut algorithm for the pricing problem

In Bianchessi et al. (2021), the authors introduce the Profitable Close Enough Arc
Routing Problem (PCEARP). Let G = (V,A) be a directed and strongly connected
graph with a cost cij ≥ 0 associated with each arc (i, j) ∈ A and a distinguished
vertex 1 as the depot. Let H be the set of customers, each of them has an associated
set of arcs Hc ⊆ A in such a way a customer c is served when at least one of the
arcs in Hc is traversed. Associated with each customer c there is a profit pc ≥ 0 that
is collected (only once) if the customer is served. The PCEARP consists of finding
a tour starting and ending at the depot and maximizing the difference between the
total profit collected and the cost of the route. Therefore, for each vehicle k ∈ K, the
pricing problem can be seen as a PCEARP with the additional constraint (8.7f). In
fact, it is possible to rewrite the objective function as a maximization problem with

· pc = µc ≥ 0 ,

· cij = −dijρk ≥ 0.

Finally, it is worth observing that all the PPs share the same feasible region at the
root node of the branch-and-bound tree. However, as will be explained in Section
8.4.2, branching rules may differentiate the pricing problem feasible regions in the
subtree arising from their application.

We solve the pricing problem by using a branch-and-cut algorithm similar to the one
described in Bianchessi et al. (2021) for solving the PCEARP.

When solving the pricing problem, it may be advantageous to save as many routes
(columns) as we can find. Therefore, every time that the branch-and-cut algorithm
finds an integer solution with negative reduced cost, we store it in order to add it
to the restricted master problem. Furthermore, for each stored route, we study if it
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traverses any arc a ∈ Hc associated with a customer c having µc = 0. If this happens,
we mark this customer as served by the route.

Initial relaxation

The initial relaxation considered in order to apply the includes constraints (8.7a)-
(8.7f). In particular, let Sc be the set of vertices incident with the arcs in Hc, c ∈ H.
In the initial relaxation are included only connectivity constraints (8.7b) associated
with sets Sc such that 1 /∈ Sc.

Moreover, in order to obtain routes useful for the LMP, inequalities (8.7g) and (8.7g)
are also included in the initial relaxation. Inequality (8.7g) forces the vehicle to leave
the depot, while inequality (8.7h) ensures that at least one customer will be served
by the vehicle.

xk(δ+(1)) ≥ 1 (8.7g)∑
c=1,...,L

zkc ≥ 1. (8.7h)

In order to strengthen this linear relaxation, we also add some max-distance con-
straints (8.3d) associated with sets of two and three customers. To identify these
sets for each pair of customers ci and cj, we calculate a lower bound on the cost of
servicing them with the same vehicle as the sum of the following costs: the cost of
the shortest path from the depot to any arc in Hci , the cost of the shortest arc in Hci ,
the minimum cost to go from any arc in Hci to any arc in Hcj , the cost of the the
shortest arc in Hcj , and, finally, the cost of the shortest path between any arc in Hcj

and the depot. In addition, as we are in a directed graph, we also have to consider
the case in which cj is served before than ci. If the cost of both routes exceeds W ,
the two customers cannot be served by the same route and we add the corresponding
max-distance constraint (8.3d) to the initial relaxation. A similar bound can be com-
puted for sets of three customers.

Separation algorithms

In the branch-and-cut algorithm for the pricing problem we separate connectivity
(8.7b) and parity (8.2a) inequalities. The separation algorithm used for parity in-
equalities is similar as the one described in Section 8.3.1 but without aggregating the
solution.
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For the connectivity inequalities we apply the first separation heuristic described in
Section 8.3.1 with a modification that will be described in what follows.

Note that constraints (8.7b) do not guarantee that all solutions of the formulation
will be connected, since there are still two situations in which disconnected subtours
may appear. The first one is if ρk = 0. In this case, a solution can contain cycles with
arcs that do not belong to any served customer (see Figure 8.1a, where the triangle
represents the depot and the solid lines represent arcs of a served customer), but these
cycles can be removed without affecting the reduced cost of the solution. The other
situation may occur when there is a cycle disconnected from the depot, but for any
customer with zkc = 1 there is at least one arc in Hc traversed and connected to the
depot (see Figure 8.1b). But this solution will not be optimal, since this cycle can be
removed from the solution while still servicing the same customers, thus decreasing
the reduced cost of the route.

V \ S S

(a) subtour not traversing any served customer

V \ S S

(b) subtour traversing a served customer

Figure 8.1: Solutions of the PP with subtours that satisfy connectivity inequalities (8.7b)

However, as will be explained in Section 8.4.2, the branching rules of the branch-and-
price procedure may introduce some lower bound on the use of some arcs, that is, on
some xkij variables. If there is a disconnected subtour containing one of these arcs with
a lower bound greater than 0, it is not possible to remove this cycle from the solution.
For this reason, for each connected component Ci, if it does not contain the depot,
we check if there is an arc incident with vertices in Ci having a lower bound greater
than 0. If such an arc is found, the inequality xk(δ(Ci)) ≥ 1 is a valid inequality that
is violated by this solution.

Cutting-plane algorithm

The cutting-plane algorithm applies the following separation algorithms in the order
in which are listed:
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1. Heuristic separation algorithm for connectivity inequalities with
ε = 0, 0.25, 0.5, 0.75.

2. Heuristic separation algorithm for parity inequalities with ε = 0, 0.25, 0.5 (only
at the root node).

The cutting-plane algorithm is applied at each node of the tree until no new violated
inequalities are found. Again, we branch using the MIP-solver implementation of the
strong branching strategy by giving higher priority to the zkc variables.

Primal heuristic

To obtain a higher number of columns and good lower bounds that can help reducing
the size of the branch-and-cut search tree, we have implemented a heuristic algorithm
using the fractional solutions of the LPs at the nodes of the tree.

Let (x∗, z∗) be a fractional solution. The subset of arcs AR = H1 ∪ · · · ∪ HL is split
into four different subsets according to their x∗ value. The first subset includes arcs
a with x∗a ≥ 0.9. The second, those with x∗a ∈ [0.7, 0.9), the third the arcs with
x∗a ∈ [0.5, 0.7), and the last subset includes the arcs a ∈ AR with x∗a < 0.5, which will
not be considered in the procedure.

We start by building a solution by iteratively selecting arcs from the first subset. For
each arc a of this subset, we calculate the profit obtained from traversing it, given by
the sum of the profit µc of the customers c not yet served such that a ∈ Hc. Then,
the arc with the maximum profit is added to A and removed from its corresponding
subset. Moreover, the customers served by traversing this arc are labeled as served.
This procedure is repeated until the first subset is empty or there are no new customers
that can be served traversing the remaining arcs. Then, we repeat the procedure with
the second subset and, if necessary, with the third one.

Once the set A has been obtained, a route traversing this subset of arcs is built. The
route is initialized by randomly selecting an arc in A. Then, all the remaining arcs are
allocated using a deterministic completion procedure. For each unassigned arc a ∈ A,
we compute the cost of inserting the arc in the route in the best possible position
and add the one with the minimum insertion cost. We proceed until all the arcs in
A are allocated. Once the route is complete, we check which customers are served.
If the resulting solution improves the current lower bound, we stop. Otherwise, we
solve a Directed General Routing Problem (DGRP) in which all the arcs in A are
marked as “required” and the depot is a “required vertex”, using the exact procedure
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described in Ávila et al. (2015). The DGRP consists of finding a minimum cost route
that traverses all the required arcs and visits all the required nodes at least once. As
before, we study the customers served by the obtained route and check if it improves
the current lower bound.

This algorithm is executed at every 100 iterations of the cutting-plane procedure at
the root node. Once the root node has been studied, it is executed once every 20
nodes up to node number 200, once every 50 nodes between nodes 201 and 501, and
once every 200 nodes beyond that number.

Solution of the PPs

Let K = {v1, . . . , vK} be the set of vehicles sorted in non-ascending order with respect
to their corresponding ρvk values. At each column generation iteration, the PPs are
considered sequentially starting from the problem associated with vehicle v1. Let Rvk

be the set of routes found by solving the PP for vehicle vk ∈ K. For each route
r ∈ Rvk , we check if it corresponds to a negative reduced cost λvkr variable (column),
meaning that we check if its cost is less than θvk .

Additionally, we check if the route r corresponds to a negative reduced cost column
for any of the other vehicles. In this way, as long as all the PPs share the same feasible
region, we avoid to solve subsequent PPs corresponding to vehicles vt, t > k, such
that |ρvk − ρvt | < ε, with ε→ 0+. This does not hold anymore once a branching rule
which diversifies the pricing problem feasible regions is applied (see Section 8.4.2).
When this happens, in each node of the subtree arising from the application of such
a branching rule, all the PPs have to be eventually solved at each column generation
iteration. The sequential solution of the PPs terminates as soon as negative reduced
cost columns are found after solving one of them, or when all the PPs have been
solved and no negative reduced cost column has been generated.

Heuristic column generation

In many iterations of the column generation algorithm (especially in the initial ones),
there are many routes with negative reduced cost that can be efficiently found by
means of an heuristic algorithm. Hence, at each column generation iteration, the
solution mechanism outlined in Section 8.4.1 is first applied considering a Greedy
Randomized Adaptive Search Procedure (GRASP) as solver for the PPs. In case no
negative reduced cost column is generated by means of the heuristic, the mechanism
is reapplied by solving the PPs to optimality through the B&C algorithm described
in Section 8.7.
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The heuristic is initialized by computing an initial profit for each arc in AR =

H1 ∪ · · · ∪ HL as the cost of going from the depot to the arc and back minus the
profit of serving all possible customers. Out of all these arcs, we define a subset
ĀR of min{50, |AR|

2
} arcs including those associated with the minimum profit. At

each iteration of the GRASP, a route is initialized by randomly selecting an arc in
ĀR and then, completed and improved, respectively, by using the Construction and
IteratedLocalSearch subroutines described in the following.

Construction. Initial solutions are built using an adaptation of the path-scanning
procedure, which selects the subset of customers associated with the smallest profits.
For each customer not yet assigned, the corresponding profit ψc is computed as the
difference in the reduced cost of the route if c is served through the route. A restricted
candidate list (RCL) is built including the customers candidates associated with the
smallest profits and taking into account a threshold parameter α. Given ψmin and
ψmax, a customer is included in the RCL if

ψc ≥ α(ψmax − ψmin) + ψmin.

As usual, parameter α controls the greediness of the selection (α = 0 pure greedy;
α = 1 pure random). Looking for a tiny randomization component within a greedy
procedure, in our algorithm has been implemented with a fixed α = 0.1. Construction
runs until it is verified that, with the remaining unassigned customers, it is not possible
to achieve a route with negative reduced cost. Note also that all the negative reduced
cost routes generated during the construction phase are kept as solutions of the current
PP.

IteratedLocalSearch. Once an initial solution (a route) has been built, a local
search phase tries to improve it by exploring neighbor solutions. It consists of a De-
stroy and Repair method based on the one described in Corberán et al. (2019). Here,
in the destruction phase of the algorithm, d (d ∈ {1, 3}) arcs are removed from the
route but always keeping at least one arc in it. Then, in the repair phase, a best
improvement strategy was adopted, according to which the customer associated with
the minimum profit µc is inserted in the route. The reconstruction phase uses the
same stopping criteria as Construction. Let φa be the set of arcs in AR in the current
route. IteratedLocalSearch stops when min{L

2
, |φa|

2
} iterations without improving the

solution are performed.
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GRASP is repeated until a maximum computing time (2 seconds) is exceeded or a
route including all the arcs in ĀR has been built. All the negative reduced cost routes
generated are kept as solutions of the current PP.

Restricted master heuristic

In order to speed up the B&P algorithm, and also improve the convergence speed
of the column generation, we implemented a restricted master heuristic as defined in
Joncour et al. (2010). The basic idea behind restricted master heuristics is to solve,
by means of a general mixed integer linear programming (MILP) solver, the MP (in
our case model (8.4)) defined over a subset of the available columns. We run the
restricted master heuristic every ∆ column generation iterations and whenever an
optimal solution for the RLMP has been computed.

The heuristic is immediately terminated when it is triggered and the current (optimal)
solution is not feasible. Otherwise, let R̄ be the set of the routes associated with the
λ̄kr variables defining the current (optimal) feasible solution to the RLMP. The routes
in R̄ are used to initialize an integer program similar to (8.4) to be solved by means of
a general MILP solver. In the new integer program, λ variables are no more indexed
by vehicle. The program considers binary variables λr assuming value 1 if route r is
selected to be assigned to one of the vehicles. According to the new definition of the
λ variables, coefficients src and dr play respectively the role of coefficients skrc and dkr

in (8.4). The program reads as follows:

W̄ = min w (8.8a)

s.t.
∑
r∈R̄

srcλ
r ≥ 1 ∀c ∈ H (8.8b)∑

r∈R̄

λr ≤ K (8.8c)

drλr − w ≤ 0 ∀r ∈ R̄ (8.8d)

λr ∈ {0, 1} ∀r ∈ R̄ (8.8e)

w ≥ 0 (8.8f)

The new λ variables allow to aggregate constraints (8.4b) in (8.4) and formulate them
as (8.8c), to disregard constraints (8.4d), and, in general, to avoid symmetries in the
solution space. This comes at the expense of an increase in the number of constraints
(8.8d) required to define the maximum length.

Whenever an optimal solution to (8.8) is found, a new upper bound W̄ (for w1)
becomes available. Hence, column generation is restarted to solve the RLMP by
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considering only vehicle routes with length smaller than, or equal to, W̄ − 1.

Overall algorithm overview

The RLMP is initialized by means of set of columns C ∪ C. Set C includes a high
cost dummy column for each customer c ∈ H, by means of which constraints (8.4a)
are satisfied. In particular, the column for a given customer c ∈ H has a coefficient
1 on the row corresponding to the constraint associated with the customer, whereas
all the other coefficients of the column are 0. Similarly, a high cost dummy column is
further included in C for each vehicle k ∈ K to satisfy constraints (8.4b). All dummy
columns have null length. At the root node of the branch-and-bound tree, C is empty.
In any other node of the tree, C includes the columns that were in the optimal basis
of the RLMP at the father node, and that correspond to routes that are feasible with
respect to the active branching constraints and the current value of W. Finally, when
an heuristic solution of value W is available from scratch, at the root node of the
tree is inserted a column for each route (defining the solution) whose length is strictly
lesser than W .

Then, iteratively, the RLMP is solved to optimality or proved to be infeasible. First,
at each iteration, the RLMP is solved and the dual variable values retrieved. If no
dummy column appears in the current basis, all columns in C are extracted from (the
constraint matrix of) the RLMP.

Let PC be the set of columns generated so far during the execution of the whole B&P
algorithm (the so called pool of columns). Columns in PC correspond to routes that
are feasible with respect to the current value of W. Before solving the PPs, negative
reduced cost columns are searched for among those included in PC. PC is scanned
sequentially and at most K negative reduced cost columns are selected to be inserted
into the RLMP. A column in PC is eligible for selection if (i) the corresponding
route is feasible with respect to the active branching constraints, (ii) none of the
previous selected columns is associated with the same PP associated with it, and (iii)
the corresponding route serves at least one customer not served by any of the routes
corresponding to previous selected columns. Let PC be the subset of columns selected
and extracted from PC. If |PC| > 0, columns in PC are inserted into the RLMP and
a new iteration is started, otherwise the PPs are solved in order to eventually find
new negative reduced cost columns.

An attempt is made to solve the PPs, as described in Section 8.4.1, by means of
the GRASP heuristic (Section 8.4.1). In case no negative reduced cost column is
generated, the solution mechanism described in Section 8.4.1 is reapplied by solving
the PPs to optimality through the B&C algorithm (Section 8.7). If, again, no negative
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reduced cost column is found, it means that either the optimal solution of the current
RLMP is also optimal for the LMP, or the LMP is infeasible (some dummy columns
are in the basis corresponding to the dual variable values for the current iteration).
In both cases the column generation algorithm terminates. Otherwise, the negative
reduced cost columns generated are inserted into the RLMP and a new iteration is
started. When the column generation algorithm ends, all the non-dummy columns
defining RLMP are (re)inserted in PC.

Finally, as mentioned in Section 8.4.1, the column generation algorithm takes advan-
tage of a restricted master heuristic. This helps in speeding up its convergence as
well as the convergence of the whole B&P algorithm. Actually, the cardinality of the
set
⋃
k∈KR

k depends on the value of W . The lesser the value of W , the smaller the
cardinality of the set, and this eventually allows to solve faster the PPs with both
the GRASP heuristic and the B&C algorithm. In turn, the smaller the cardinality
of the set

⋃
k∈KR

k, the greater the dual bound generated by solving to optimality
the RLMP, and, in general, tighter dual bounds associated with the nodes of the tree
imply a faster convergence of the B&P algorithm. The restricted master heuristic is
run every ∆ column generation iterations, before solving the RLMP and retrieving the
dual variable values, and whenever an optimal solution for the RLMP has been com-
puted. Each time a new improving feasible solution is found, a new upper bound W
(for w1) becomes available. The value of W is updated accordingly. All the columns
in the RLMP corresponding to routes that do not satisfy constraint (8.7f) with the
updated value ofW are removed from its constraint matrix. Similarly, columns in PC
corresponding to routes which are no more feasible with respect to the updated value
of W are deleted from the set. Columns in PC are reinserted into the RLMP. The
solution process of the RLMP is then restarted. In particular, when the improving
feasible solution is found after having computed the optimal solution for the current
RLMP, the whole column generation algorithm is restarted.

8.4.2 Branching rules

Let (λ,w) be the optimal solution of the current RMP. When (λ,w) is fractional, we
apply a two-level hierarchical branching scheme. Branching rules are presented in the
following in order of priority.

First, we consider an application of the Ryan and Foster’s branching rule (see Ryan
and Foster (1981)). For each pair of customers c′ and c′′, we define
αc′c′′ =

∑
k∈K

∑
r∈Rk skrc′ s

kr
c′′λ

kr as the sum of the λkr variable values associated with
routes that serve both customers c′ and c′′. We select the fractional value α∗c′c′′ clos-
est to 0.5 such that 0 < α∗c′c′′ < 1. On one branch, we set α∗c′c′′ = 0, meaning that
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the customers c′ and c′′ must be served in different routes (and hence by different
vehicles). Whereas, on the other branch, we set α∗c′c′′ = 1, meaning that the two
customers have to be served in the same route by the same vehicle. When α∗c′c′′ is set
to 0, the constraint zkc′ + zkc′′ ≤ 1 is inserted in the formulation (8.7) associated with
each vehicle k ∈ K. For the case α∗c′c′′ = 1, the formulation (8.7) associated with each
vehicle k ∈ K is modified by inserting constraint zkc′ − zkc′′ = 0. This rule does not
introduce symmetries in the solution space, does not alter the structure of the PPs,
and, finally, allows the PPs to continue sharing the same feasible region. Thus, as
long as only this rule is applied, at each column generation iteration it is possible to
design the sequential solution of the PPs to potentially avoid solving some of them
(see Section 8.4.1).

When the solution is fractional and no pair of customers c′ and c′′ exists such that
0 < α∗c′c′′ < 1, we branch on the fractional use of an arc by vehicle k ∈ K. For each r ∈
Rk, let bkrij be an integer parameter equal to the number of times the vehicle k traverses
arc (i, j) while traveling along route r. We consider values βkij =

∑
r∈Rk bkrij λ

kr and
select βk∗ij such that βk∗ij − bβk

∗
ij c is the closest to 0.5. On one branch, the formulation

(8.7) associated with vehicle k is modified by considering an upper bound bβk∗ij c on the
use of arc (i, j) and constraint

∑
r∈Rk bkrij λ

kr ≤ bβk∗ij c is inserted in the LMP. Then, on
the other branch, a lower bound bβk∗ij c+ 1 on the use of arc (i, j) is considered in the
formulation (8.7) for vehicle k, and the additional constraint

∑
r∈Rk bkrij λ

kr ≥ bβk∗ij c+1

is inserted in the LMP. The new constraints inserted in the LMPs of the two branches
give rise to additional dual variables, γUBk

ij ≤ 0 and γLBk

ij ≥ 0, respectively, that have
to be considered in the definition of the reduced cost of the routes in Rk. Let AUBk

(ALBk) be the subset of arcs for which dual variables γUBk

ij (γLBk

ij ) exist. The objective
function of the PP associated with vehicle k becomes:

min −
∑
c∈H

µcz
k
c −

∑
(i,j)∈A

dijx
k
ijρk − θk −

∑
(i,j)∈AUBk

γUB
k

ij xkij −
∑

(i,j)∈ALBk

γLB
k

ij xkij

This branching rule is sufficient to guarantee the integrality of the solutions. In fact,
integer flows on arcs for each vehicle guarantee that the λ variables are integer (see
Barnhart et al. (1998)). However, the application of this type of rule differentiates
the pricing problem feasible regions. Thus, in each node of the subtree arising from
their applications, all the PPs have to be eventually solved at each column generation
iteration (see Section 8.4.1). This is also the reason why we decided from the beginning
to index sets Rk by vehicle index (see Section 8.2.2).

The search tree is explored according to a best-first search strategy.

It is worth mentioning that, even if the optimal solution (λ,w) is fractional, it may



148 Chapter 8. On the Min-Max CEARP

happen that at most K distinct routes are selected and fractionally assigned to the
different vehicles. Since every λkr variable in the current RMP represents a route
r ∈ Rk which has to be feasible w.r.t. the current upper bound W for w1 (i.e.,
dkr < W ), the optimal solution (λ,w) can be converted into an integer feasible
solution to (8.4) whose value improves the current upper bound W . Whenever this
happens, we convert the optimal fractional solution into the corresponding integer
solution and update W accordingly.

8.5 Primal bound heuristic

In the branch-and-cut and branch-and-price algorithms described in the previous sec-
tions, we use the upper bounds provided by the following heuristic, which is based
on the multi-start iterated local search matheuristic for the DC-CEARP described in
Corberán et al. (2019).

In Corberán et al. (2019), three different criteria for initializing the routes are pro-
posed: random initialization, random selection among the best applicants, and weighted
selection among the best applicants. The random initialization criterion chooses the
first customer of each route completely at random, weighted selection among the best
applicants chooses the first customer randomly among a set of customers closest to
the depot, and weighted selection among the best applicants assigns weights to the cus-
tomers according to their distance to the depot and chooses the initial customer for
each route with probability proportional to these weights. We generate one solution
with each different initialization criterion.

Since the goal in the MM-CEARP is to minimize the length of the largest route, and
there is no maximum length for the routes, we complete the routes by following the
parallel completion strategy described in Corberán et al. (2019) with some modifica-
tions. Let k0 be the longest route among those partially constructed. For all the arcs
serving customers that have not been assigned yet, we calculate their insertion cost
in all the possible positions of all the routes except k0, and insert the arc according to
the cheapest insertion. The customers served by this arc are marked as served. These
steps are repeated until all the customers have been assigned to a route.

The constructed solutions are used as initial solutions of an Iterated Local Search
(ILS) heuristic. The local search operators used are the exchange of pairs of arcs
belonging to two different routes the routes (2-Exchange), and the reconstruction of
partial solutions, Destroy-Repair. Both are well-known perturbation operators, and
their implementation details can be found in Corberán et al. (2019).
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New solutions are iteratively generated and improved using the above operators until
a time limit tl is reached or a certain number of iterations imax are performed without
improving the best solution. After some a preliminary tests, we decided to set the
maximum number of iterations (imax = 10) and the time limit (tl = 100) in order to
balance the amount of time and the quality of the solution. Algorithm 4 shows the
structure of the proposed heuristic.

Input: G, H, imax, tl
Output: Sbest

1 i← 0;
2 Sbest ← ∅;
3 while tl is not reached AND i ≤ imax do
4 for each Constructive algorithm do
5 Sc ← Constructive algorithm();
6 Sl ← Iterated Local-Search(Sc);
7 if Sl is better than Sbest then
8 Sbest ← Sl;
9 i← 0;

10 i← i+ 1;
Algorithm 4: Overall heuristic algorithm for the MM-CEARP

8.6 Computational experiments

In this section we test the performance of the two exact algorithms proposed in this
work. We have conducted all the computational experiments on a desktop PC with
an Intel(R) Core(TM) i7 clocked at 3.4GHz CPU, with 32 GBytes of RAM and
running Windows 10 Enterprise 64 bits. The branch-and-cut algorithms described
in Sections 8.3 and 8.7 have been implemented in C++ using IBM ILOG CPLEX
12.10 with Concert Technology, and compiled in release mode with MS Visual Studio
Community 2015. Also the B&P algorithm have been implemented in C++ and
compiled in release mode with MS Visual Studio Community 2015. In particular, the
callable library of CPLEX 12.10 was used for (re-)optimizing the RLMPs. Finally, all
the algorithms have been compiled by allowing a single thread of execution.

The experiments were carried out with a CPU time limit of two hours. For the B&C
algorithm described in Section 8.3, we turned off CPLEX heuristic algorithms and
activated CPLEX own cuts (including zero-half cuts) in automatic mode. We fixed
to zero the tolerance of the optimality gap and selected the best bound branching
strategy.

The instances used and the computational results obtained are described in what
follows.
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8.6.1 Instances

In Ávila et al. (2017), four different data sets for the Distance-Constrained CEARP
(DC-CEARP) were proposed. Two of them were based on the street networks of two
Spanish towns, Albaida and Madrigueras, and the other were based random graphs
with 50 and 75 vertices, Random50 and Random75 respectively. In total, 72 instances
were defined. Moreover, by considering the number of vehicles allowed to serve the
customers, ranging between 2 and 5, the total number of instances addressed was 251.

Contrary to what happens in the DC-CEARP, where there is a maximum distance for
each route that determines the minimum number of vehicles needed, in the Min-Max
CEARP there is no such limitation. Thus, the 72 DC-CEARP instances can be solved
for any number of vehicles. However, depending on the characteristics of the instance,
it may not make sense to use a very high number of vehicles. It may happen that
a customer (or a set of customers) is very far from the depot, so the length of the
longest route can be determined by the trip to serve this customer and in this case
the optimal objective value will not decrease if we increase the number of vehicles. To
address this issue, given an instance, we compute for each customer the length of the
shortest route traveling from the depot to an arc of the customer, serving it and going
back to the depot. Then, the longest of these routes provides a trivial lower bound
for the MM-CEARP associated with the instance. Each instance is solved iteratively
with k = 2, 3, ... vehicles. If for a given value of k, the optimal solution cost is equal
to the trivial lower bound, we set k − 1 as the maximum number of vehicles for this
instance. A total of 258 instances have been defined with a minimum of 2 vehicles
and a maximum of 11.

The characteristics of these instances, grouped by sets, are shown in Table 8.1. The
number of instances per set is given in column #Inst, and the maximum number
of vehicles for which the instances in this set have been solved in column Max K.
The remaining columns report the minimum and maximum number of arcs, arcs in
AR = H1 ∪ · · · ∪ HL, arcs in ANR = A \ AR, and customers, respectively, for the
instances in each set.

Table 8.2 summarizes the distribution of the instances according to the number of
vehicles. Since the number of instances with more than 5 vehicles is very limited, in
the analysis of the computational results outlined in the next section we grouped the
44 instances with 6 or more vehicles and denoted the group as M6.

All these instances, as well as their best known solutions, can be downloaded from
http://www.uv.es/corberan/instancias.htm.
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|A| |AR| |ANR| |H|

#Inst Max K |V | Min Max Min Max Min Max Min Max

Albaida 81 8 116 259 305 124 172 109 162 18 33
Madrigueras 105 11 196 453 544 224 305 197 281 22 47
Random50 24 5 50 296 300 105 292 7 193 10 100
Random75 48 8 75 448 450 143 438 10 305 15 150

Table 8.1: Characteristics of the MM-CEARP instances

#Veh Albaida Madrigueras Random50 Random75 TOTAL

2 24 24 11 12 71
3 21 22 9 12 64
4 17 17 3 9 46
5 9 16 1 7 33
6 6 12 - 4 22
7 3 7 - 3 13
8 1 4 - 1 6
9 - 1 - - 1
10 - 1 - - 1
11 - 1 - - 1

81 105 24 48 258

Table 8.2: Number of instances grouped by dataset and number of vehicles

8.6.2 Computational Results

This section presents the results of our computational experiments to compare the
performance of the B&C and B&P algorithms. Table 8.3 reports the results on the 258
test instances grouped by dataset. The first column indicates the group of instances,
while the second column shows the number of instances in each group. The remaining
columns report, for each algorithm, the number of optimal solutions found (# opt)
and the average CPU time in seconds (Time). The last row summarizes the results
for all the instances.

B&C B&P

# Inst # opt Time (sec) # opt Time (sec)

Albaida 81 61 2025.3 74 750.1
Madrigueras 105 27 5643.4 39 4806.7
Random50 24 18 1911.9 21 1394.7
Random75 48 19 4513.8 23 4085.9

258 125 3950.2 157 3081.6

Table 8.3: Summary of the results on the 258 instances.
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It can be seen in Table 8.3 that the B&C algorithm reaches the optimal solution
in 48.45% of the instances with 3950.2 seconds on average. Meanwhile, the B&P
algorithm is able to solve 60.85% of the instances to optimality in 3081.6 seconds on
average. Looking at the Albaida set, the B&P algorithm reaches the optimal solution
in over 91% of the instances, while less than 40% of the instances have been solved
optimally in the Madrigueras set. As for the randomly generated instances, the B&P
algorithm solves 21 out of 24 of the Random50 instances, and 23 out of 48 of the
Random75 ones. Although the number of optimal solutions obtained is lower in the
case of the B&C algorithm (between 14% and 30% lower, depending on the set), the
conclusions are similar when comparing its behavior for the different sets.

B&C B&P

# Inst # opt Time # opt Time

2 71 66 839.8 53 2115.7
3 64 35 3487.9 43 2625.8
4 46 16 4993.7 25 3453.5
5 33 5 6335.1 15 3977.8

M6 44 3 6762.3 21 4242.4

258 125 3950.2 157 3081.6

Table 8.4: Computational results for all the instances grouped by number of vehicles

In Table 8.4 we can see the results for the instances grouped according to the number of
vehicles. The B&C algorithm achieves the best results for the instances with 2 vehicles,
being able to solve 66 out of 71 instances in short computing times. However, the
performance of this algorithm degrades when the number of vehicles increases. This
does not happen for the B&P algorithm, which shows a more robust behaviour and
outperforms the B&C algorithm for the instances with 3 or more vehicles. This can
be clearly seen in the Figure 8.2, which shows for the B&C and B&P algorithms the
variation of the number and percentage of optima as a function of the number of
vehicles.

In order to study the behavior of the algorithms w.r.t. computing time, we use
the performance profiles described by Dolan and More (2002). Let S be the set of
algorithms and P the set of instances. Let tp,s be the computing time required by
algorithm s ∈ S to solve instance p ∈ P . The performance ratio is then defined as
rp,s = tp,s/min{tp,s : s ∈ S}. If algorithm s is not able to solve the instance p within
the time limit, we set rp,s = ∞. Then, the performance profile of each algorithm is
defined as
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Figure 8.2: Instances per vehicle solved optimally.

ρs(τ) =
|{p ∈ P : rp,s ≤ τ}|

|P|
,

and represents the percentage of instances that can be solved by s within a factor τ
of time with respect to the fastest algorithm. Note that, since the computing times
are very different, we plot the results on a logarithmic scale. Note that ρs(0) is the
percentage of optimally solved instances for which algorithm s is the fastest. Figure
8.3 depicts the performance profiles of the B&C (red dotted line) and the B&P (solid
black line) algorithms overall and for the instances grouped by number of vehicles.

Comparing the performance profile for all the instances (Figure 8.3a) in τ = 0, we
can see that the B&P algorithm is the fastest in 42.6% of the instances, while the
B&C algorithm only in 24.41%. It is interesting how the curve for the B&P algorithm
increases rapidly in the interval [2, 4], reaching almost its maximum around 60%. This
means that the B&P algorithm solves another 15% of instances using between 4 and
16 times the computing time used by the B&C algorithm. Conversely, the curve of
the B&C algorithm shows that this last is slower at reaching optimal solutions. At
log2(τ) = 11 we have already reached the maximum number of optimal solutions for
both algorithms.

Figure 8.3b shows the performance profile of both algorithms for the instances with 2
vehicles. The B&C algorithm, as expected, is faster on this subset of instances, getting
the shortest time in 77.46% of the cases, against a corresponding percentage of only
15.49% associated with the B&P algorithm. However, the results are completely
different at the increase of the number of vehicles. From Figure 8.3c we can see that
B&P algorithm becomes the fastest in almost 60% of the instances while the B&C
algorithm only in just over 10%. Note that in this case, despite taking more time, the
B&C algorithm is able to find almost 55% of the optima. Figures 8.3d, 8.3e and 8.3f
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Branch & Price Branch & Cut

Figure 8.3: Performance profiles for different number of vehicles.

show the performance profiles for 4, 5, and 6 or more vehicles, respectively. It can
be seen that the B&P algorithm completely dominates the comparison since, despite
being below 60% in number of optima, it is the fastest algorithm in practically all
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the instances where the optimum is found, while the B&C algorithm needs a lot more
time to be able to obtain fewer optimal solutions (at most 3 optima for instances with
6 or more vehicles).

Instances with LB Instances without LB

B&C B&P B&C

# Inst # opt Time Gap(%) # opt Time Gap(%) # Inst # opt Time Gap(%)

2 59 59 245.0 0.00 53 1081.6 0.38 12 7 3764.1 4.09
3 57 35 3032.0 1.47 43 2064.0 1.19 7 0 7200.0 11.67
4 41 16 4724.6 5.43 25 2996.6 1.93 5 0 7200.0 22.54
5 31 5 6279.3 8.32 15 3770.0 3.80 2 0 7200.0 25.31

M6 42 3 6741.5 7.68 21 4101.6 2.78 2 0 7200.0 19.72

230 118 3733.9 3.86 157 2580.2 1.76 28 7 5727.5 10.89

Table 8.5: Gap comparison on the instances with and without LB computed by the B&P algorithm

It is interesting to point out that, for some instances, the B&P algorithm was not
able to terminate solving the linear master problem at the root node, so no lower
bound has been computed by the algorithm for these instances. In Table 8.5, we first
study the gaps between the lower and upper bounds computed by each algorithm
for those instances for which the B&P algorithm was able to find a lower bound. If
LB and UB denote the lower and upper bounds found by a given algorithm in an
instance, the gap is computed as UB−LB

UB
∗ 100. The instances are grouped according

to the number of vehicles. For each group, the second column gives the number of
instances with a lower bound provided by both algorithms, columns three to five, and
six to eight, report the number of optima found, the average computing time, and the
average gap obtained by the B&C and B&P algorithm, respectively. Furthermore, the
last four columns in Table 8.5 provide the results obtained with the B&C algorithm
for the instances where no lower bound was computed by the B&P algorithm in two
hours of computing time. In particular, for each number of vehicles, columns 9-12
give the number of such instances, the number of those optimally solved, the average
computing time, and the average gap obtained with the B&C algorithm.

Again, we can see that the B&C algorithm is effective on the instances with 2 vehicles,
where all the 59 instances with LB in B&P, and 7 out of 12 more instances, are
optimally solved. Furthermore, the average gap for the 5 unsolved instances, 4.09%,
is quite small. The effectiveness of the B&C algorithm decreases for the instances
with 3 vehicles, and it is inferior to that of the B&P algorithm. Nevertheless, the
B&C algorithm is able to compute lower bounds, associated with an average gap of
11.67%, for 7 instances for which the B&P algorithm can not. For the instances with
more vehicles, the performance of the B&P algorithm is clearly superior to that of
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the B&C algorithm. Note that with respect to the B&C algorithm, both the number
of unsolved instances and the average gap increase steadily as the number of vehicles
increases, while this behaviour is not so pronounced for the B&P algorithm, whose
reported average gaps do never exceed 3.80%. Moreover, the number of instances in
which no lower bound is computed by the B&P algorithm decreases as the number of
vehicles grows. It is also worth noting that the gaps reported for the B&C algorithm
with respect to these instances are very high, which seems to indicate that they are
particularly difficult.

8.7 Conclusions

This chapter addresses the Min-Max Close-Enough Arc Routing Problem, where a
fleet of homogeneous vehicles has to serve a set of customers in such a way that the
lengths of their routes are balanced. For this problem we have proposed two different
models. The first one is an arc-based formulation, with arc and servicing variables,
that has been used to develop a branch-and-cut algorithm, while the second one is
a route-based set-covering formulation used to design a branch-and-price algorithm
in which the pricing problems are solved by means of a branch-and-cut algorithm.
Moreover, a heuristic to provide the exact algorithms with initial feasible solutions
has been implemented. An extended computational analysis has been carried out,
where we have studied the performance of the algorithms on 258 instances with up
to 196 vertices, 544 arcs, 150 customers, and 11 vehicles. The results show that the
branch-and-cut algorithm achieves the best results for the instances with 2 vehicles,
while the performance of the branch-and-price algorithm is better for the instances
with 3 or more vehicles. Overall, we have been able to optimally solve 173 out of
these instances in two hours of computing time.
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Chapter 9

Conclusions and future work

In this thesis we have studied three NP-hard combinatorial optimization problems that
arise in the context of close-enough arc routing problems. The first is the Profitable
CEARP for a single vehicle, and the second and third are the Distance-Constrained
CEARP and the Min-Max CEARP, respectively, both for multiple vehicles. The aim
of these problems is to model specific situations in which customer service does not
necessarily have to be done on the site, but it is sufficient to get close enough to it. An
in-depth study of the problems has been carried out by addressing specific objectives
and/or constraints and we have developed exact and heuristic methods to solve them.
This chapter summarizes the main contributions of the thesis in Section 9.1 and the
future lines of research in Section 9.2.

9.1 Contributions

First of all, Chapters 2, 3, and 4 present the context in which the problems studied in
this thesis arise. Basic concepts of Mathematical Programming to non-expert readers
are provided in Chapter 2, where several definitions and results of graph theory,
linear and integer programming, and polyhedral theory and combinatorics are given.
Chapter 3 provides an overview of some classic routing problems that have been
studied in depth in the literature. To conclude the introductory section, Chapter 4
presents the state of the art and some real-world applications of close-enough routing
problems. This chapter includes an overview of the CETSP along with a more detailed
study of all the existing research carried out so far for CEARP, the original ARP to
which the problems studied in this thesis generalize. The CEARP has been described
in the literature as an innovative arc routing problem in which the customers are not
necessarily arcs or edges of a network, but the associated service can be performed
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from any arc or edge traversed that is close enough to the customer. It consists of
finding a minimum cost tour servicing all the customers.

Subsequently, in Chapter 5 we study in depth the Profitable CEARP, in which a profit
is associated with each customer and is collected (only once) when the customer is
serviced. The goal is to find a tour that maximizes the difference between the total
profit collected and the travel distance. The chapter begins by formally defining the
problem, proposing a formulation, and conducting the polyhedral study. We have
shown that some inequalities of the formulation always define facet and others do so
under specific conditions. In addition, from the properties of the PCEARP tours,
other valid inequalities not obtained directly from the formulation are presented here,
which strengthen the description of the polyhedron. To solve the Profitable CEARP,
a heuristic and a branch-and-cut algorithm have been designed and implemented.
The heuristic combines a constructive procedure and a local search, and it provides
the exact algorithm with initial lower bounds. In the branch-and-cut algorithm, all
separation procedures for the identification of violated inequalities and the order in
which they are applied have been studied. Both algorithms have been adjusted and
evaluated through extensive experiments and statistical analysis, and to test them,
four different sets of instances specific to this problem were generated with up to 800
customers, 400 vertices and 2000 arcs. According to the results of the computational
experiments, this exact procedure has been able to optimally solve large instances
with up to 600 customers, 300 vertices, and 1500 arcs, in less than one hour.

Chapters 6 and 7 deal with the Distance-Constrained CEARP. It consists of finding
a set of routes leaving from and entering at the depot and serving all the customers,
such that the length (in distance or time) of each route does not exceed a certain
value. The objective is to minimize the total length traversed.

Chapter 6 addresses the Distance-Constrained CEARP, formally defining the prob-
lem, introducing the notation used, and presenting the most promising formulation
proposed in Ávila et al. (2017). Given that the values of the maximum distances per
route are very tight and make it difficult to solve the Distance-Constrained CEARP,
there are a good number of unsolved instances in the previous work of Ávila et al.
Therefore we have proposed a multi-start matheuristic that incorporates an effective
branch-and-cut method for the CEARP in order to optimize the routes obtained. In
the computational experiments, we present the results obtained with two versions of
the algorithm, considering a maximum number of iterations and a time limit, respec-
tively. In general, the proposed approach finds feasible solutions for almost all the
instances and optimal solutions for more than 70% of them.



9.1. Contributions 159

Chapter 7 also covers the Distance-Constrained CEARP, but in this case a more in-
depth study is carried out. We start by proposing a new formulation that combines
the best features of the previously existing ones since, despite having more variables,
we want to strengthen its linear relaxation. For this formulation we have carried out
an exhaustive study of its associated polyhedron and we have proposed several fam-
ilies of valid inequalities. Furthermore, based on the separation algorithms for the
new inequalities, we have proposed a branch-and-cut algorithm that provides very
good results. Extensive computational experiments have been performed on a set of
benchmark instances to analyze the contribution of the valid inequalities and the sep-
aration algorithms presented. The gaps in the root node and the performance profiles
of the different versions of our branch-and-cut procedure (using different combinations
of separation algorithms) are compared. The results of the two best versions of our
branch-and-cut algorithm are compared with those obtained with the matheuristic
and the exact methods presented in Corberán et al. (2019) and Ávila et al. (2017),
respectively. The best version of our branch-and-cut algorithm is capable of optimally
solving instances with up to 140 customers, 196 vertices, 544 arcs, and 5 vehicles to
in two hours of computing time.

Chapter 8 deals with the Min-Max CEARP for a fleet of homogeneous vehicles. Tak-
ing into account the type of applications of the CEARP, we have studied here the
version that tries to balance the length of the routes by minimizing the duration of
the longest route. The problem consists of finding a set of routes, all of them starting
and ending at the depot, jointly servicing all customers, and with a minmax objec-
tive. We begin by presenting and providing two different models for the problem: an
arc-based formulation, with arc and service variables, that has been used to develop
a branch-and-cut algorithm, and a route-based set-covering formulation, which has
been used for the development of a branch-and-price algorithm. We also describe
a heuristic algorithm used to provide initial feasible solutions to exact algorithms.
The branch and cut is based on the method presented in Ávila et al. (2017). In the
branch and price we have implemented two atypical techniques of these algorithms
when addressing routing problems, the first-level rule applied in the branching scheme
(based on Ryan and Foster’s branching rule) and a branch-and-cut algorithm to solve
the pricing problems to optimality instead of using dynamic programming. The first
one allows to recover integer solutions at the expense of a diversification of the sets
of feasible routes, does not introduce symmetries in the solution space, does not alter
the structure of the pricing problems, and, finally, allows pricing problems to continue
sharing the same feasible region. We have performed an extended computational anal-
ysis in which we have compared the performance of the exact algorithms in four sets of
instances tested with a minimum of two vehicles and a maximum of 11. The results
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show that the branch-and-cut algorithm achieves the best results for the instances
with two vehicles, while the branch and price performs best for instances with three
or more vehicles.

9.2 Future lines of research

Although the thesis concludes here, research is an endless field. The research carried
out in this work can continue to address other constraints and variants of the problems.
In fact, many of the ideas on which some of the algorithms designed are based could
be directly or easily adapted in other related arc routing problems, as well as many
of the ideas presented in the theoretical parts could also be used in other related
problems.

Given the excellent results of the branch-and-price algorithm in solving Min-Max
CEARP instances with a large number of vehicles, it would be worth developing an
algorithm of the same type for the Distance-Constrained CEARP. It has been studied
in the literature that branch-and-cut algorithms are very efficient in the solution of
CEARP, and here we show that they are very efficient in solving the multi-vehicle
variant when the size of the fleet is small but, when the number of vehicles increases,
a branch-and-price algorithm is much more appropriate.

With respect to the Profitable Close-Enough Arc Routing Problem considered in
Chapter 5, it could be extended in several ways by progressively adding characteristics
of related real problems. For example, the profit per customer could be defined by
the time it takes to perform the service. Also, if a single vehicle is not capable of
performing all the services, a fleet of vehicles (or multiple routes for a single vehicle)
is required. It could be considered that all vehicles have the same characteristics or
that we have a heterogeneous fleet. We could also set a maximum distance/time for
each route, or minimize the cost of the longest route.

Except for the matheuristic proposed for the DC-CEARP, throughout this thesis we
have approached the problems from a theoretical point of view, the results of which
have been used to develop exact algorithms for the optimal solution of the problems.
All the problems studied here are combinatorial problems that are NP-hard, so there
are no algorithms that find the optimal solutions in polynomial time. Thus, it may
happen that in certain circumstances it is necessary to have good quality solutions for
real problems in short computing times. In this sense, we think that, as a result of the
knowledge acquired during the study of the problems dealt with in this thesis, heuristic
algorithms could be designed and implemented for the three problems studied that
improve the quality and time of the existing ones.
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Appendix A

Resumen Extendido

A pesar de carecer de datos específicos, se estima que el sector del transporte rep-
resenta aproximadamente el 64% del consumo mundial de combustible, el 27% del
consumo total de energía y el 23% de las emisiones mundiales de dióxido de carbono
(CO2) relacionadas con la energía. Además, se prevé que el impacto medioambiental
del sector del transporte aumente de forma drástica en los próximos años debido al
efecto de la globalización, que ha eliminado barreras haciendo posible la accesibilidad
a todos los lugares, productos y servicios del mundo. Por ello, el transporte se sitúa
como uno de los principales retos en materia de desarrollo, para impulsar la prosperi-
dad y lograr así un entorno sostenible que reduzca el consumo energético. Con este
fin, la tecnología desarrollada para el análisis y la explotación de la enorme cantidad
de datos -que están generando fuentes como la sensorización, los contenidos de Inter-
net o el comportamiento de los usuarios- está ayudando a definir los patrones y las
necesidades de circulación, mejorando de este modo la calidad y la eficiencia de las
soluciones de transporte. Al mismo tiempo, el acceso a las nuevas tecnologías está al-
terando el comportamiento y las expectativas de los consumidores, promoviendo una
creciente tendencia a la inmediatez en nuestra sociedad.

El sistema de transporte siempre ha sido un factor crucial para las empresas que
transportan mercancías o prestan servicios y hoy en día se ha convertido en un ele-
mento diferencial en sus esfuerzos por maximizar la satisfacción del cliente. Por ello,
el transporte no se limita a trasladar mercancías de un lugar a otro o a prestar un
servicio concreto, sino que es un proceso estratégico que busca reducir los costes logís-
ticos y mejorar la experiencia del cliente/consumidor. En la actualidad, es prioritario
que las empresas adopten una calidad de servicio óptima que proporcione una mayor
eficiencia en los tiempos y una mayor adaptabilidad, seguridad y resiliencia.
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La logística del transporte puede optimizarse mediante una planificación adecuada de
las rutas con el fin de maximizar la productividad, ahorrar en costes de transporte y
aumentar la rentabilidad. Se gastan cantidades exorbitantes de dinero en combustible,
funcionamiento y mantenimiento de vehículos, así como en mano de obra. Por ello,
después de años de conocer su función e importancia, cada vez somos más conscientes
de la importancia de optimizar la logística y convertirla en una ventaja competitiva
y de que esta optimización de la logística es una cuestión clave a la hora de reducir
gastos. Se estima que el uso de procedimientos informatizados para la planificación
del proceso de distribución produce ahorros sustanciales (generalmente de entre el 5%

y el 20%) en los costes globales de transporte. De hecho, el proceso de transporte
implica a todas las etapas de los sistemas de producción y distribución y representa
generalmente del 10% al 20% del coste final de las mercancías. En este sentido, una
pequeña mejora en los problemas de rutas puede suponer un enorme ahorro logístico
en términos absolutos.

En el mundo académico, la optimización de rutas consiste en determinar la ruta más
rentable teniendo en cuenta diversos factores, como las limitaciones de los vehículos,
los controles de costes, las ventanas de tiempo para el servicio, las limitaciones de
recursos en el proceso de carga en el depósito, etc. Así, los problemas de rutas han
sido definidos como el diseño de rutas óptimas desde un depósito hasta un conjunto de
destinos para las cuales existen restricciones específicas. Estos problemas han atraído
la atención de muchos investigadores y profesionales durante los últimos 60 años de-
bido a los retos matemáticos que conlleva su estudio y resolución, y también debido a
la motivación que supone el gran impacto económico de las mejoras encontradas. Se
diferencian muchos tipos de problemas de rutas según el tipo de mercancía o servicio
a realizar, las características de la flota de vehículos (tamaño, capacidad, autonomía),
la distancia y el nivel de servicio de los clientes, si se permite el reajuste de la ruta
sobre la marcha, etc.

La mayoría de los problemas de rutas son extremadamente difíciles de resolver de
forma óptima en la práctica, por lo que se clasifican en función de las especificaciones
de las situaciones reales a modelar. Una clasificación general de estos problemas de
rutas se hace dependiendo de si los clientes se representan mediante nodos en un grafo
(problemas de rutas de nodos, NRP), y aquellos en los que el servicio se realiza en
los arcos o aristas (problemas de rutas de arcos, ARP). Aunque tradicionalmente la
investigación en problemas de rutas se ha centrado más en los problemas de rutas
de nodos, la literatura sobre problemas de rutas por arcos está creciendo cada día,
y el número y la eficiencia de los algoritmos diseñados para estos problemas han
aumentado considerablemente en los últimos años. En esta tesis, nos centraremos en
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el marco de los problemas de rutas por arcos o ARPs.

El ARP se define como el diseño de una ruta (o varias rutas) de tal manera que todos
los arcos y/o aristas de un grafo que requieren ser servidos deben ser recorridos. Si nos
remitimos al origen, el primer problema de rutas por arcos fue el Problema del Cartero
Chino (CPP), introducido por el matemático chino Guan en el año 1962. El nombre
del problema se debe a que el autor planteó la situación en la que se encontraba un
cartero que quería encontrar un camino de longitud mínima que le permitiera repartir
todo el correo. Dado un grafo, el CPP pretende encontrar un camino cerrado de coste
mínimo que atraviese todos los arcos y/o aristas al menos una vez. Posteriormente,
se propuso el Problema del Cartero Rural (RPP), una generalización del CPP, en la
que los servicios no tenían que realizarse en todas las calles, sino en un subconjunto
de ellas. El objetivo de éste es también encontrar un camino cerrado de mínimo coste
que recorra al menos una vez todos los arcos y/o aristas que requieren ser atendidos,
pudiendo pasar por el resto para cerrar el camino. Desde entonces, en la literatura se
han estudiado de forma detallada un gran número de variantes de estos problemas.
Además del reparto de correo, los problemas de rutas por arcos han sido estudiados en
la literatura gracias a las muchas aplicaciones que tienen en la organización de tareas,
como la recogida de basuras, el servicio de limpieza de nieve, el reparto de leche,
la inspección de sistemas de distribución (redes eléctricas, telefónicas o ferroviarias),
la limpieza y el riego de calles, etc. Cada año se gastan millones de euros en estas
operaciones y el ahorro que se puede conseguir optimizándolas es enorme. El principal
reto de estos problemas es que no pueden modelizarse como simples ARPs, sino que
cada problema tiene sus propias características. Por lo tanto, la metodología utilizada
para resolverlos debe ser específica y debe considerar el contexto específico de cada
problema.

Al igual que en otros sectores, las innovaciones tecnológicas relevantes, como los nuevos
tipos de dispositivos, la tecnología de identificación por radiofrecuencia (RFID) y
la disponibilidad de datos en tiempo real a través de la geolocalización, los flujos
de tráfico o la comunicación entre clientes y conductores, han provocado numerosos
cambios en el negocio de la logística del transporte. Simultáneamente, la investigación
operativa sigue evolucionando y plantea la necesidad de definir y estudiar nuevos
problemas, así como la incorporación de nuevas características a los ya existentes. En
los últimos años, el desarrollo de las nuevas tecnologías trajo consigo escenarios que
no requieren que el vehículo alcance la ubicación del cliente, sino sólo que se acerque
a éste para realizar el servicio. Esta situación es conocida como "close-enough" en
los problemas de rutas, ya que el vehículo sólo necesita pasar lo suficientemente cerca
de la posición del cliente (Close-Enough Routing Problems - CERPs). Es decir, cada
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cliente tiene un conjunto de calles. Si además para cada cliente el servicio se lleva
a cabo cuando el vehículo atraviesa los arcos de un grafo, resulta el Close-Enough
Arc Routing Problem (CEARP). El CEARP consiste en encontrar una ruta de coste
mínimo que empiece y termine en el depósito y que atraviese algunas de las calles
de una red de carreteras de manera que se preste servicio a todos los clientes. Notar
que, como un cliente es atendido cuando el vehículo se acerca a una determinada
distancia, se conocen qué calles debe recorrer el vehículo para atender a cada cliente.
La principal característica de este problema es que, a diferencia de los Problemas de
Rutas por Arcos tradicionales, el conjunto de calles que hay que recorrer no se conoce
de antemano, sino que es una variable de decisión.

Una de las aplicaciones más directas del CEARP se encuentra en la lectura automática
de contadores, ya que la identificación por radiofrecuencia (RFID) permite recoger a
distancia los datos de consumo de los contadores de gas, electricidad o agua, en lugar
de tener que hacerlo puerta a puerta como era habitual hace años. El contador envía
una señal que describe el consumo y que es captada por el receptor si se encuentra a
una distancia determinada. Así, dada una red de carreteras en la que se encuentran
los contadores, existen vehículos con un receptor de radiofrecuencia que pueden leer
el consumo con sólo acercarse a cada contador. En este caso, el vehículo/operador
sólo tiene que entrar en la zona de cobertura del contador para realizar el servicio,
sin necesidad de visitar físicamente a todos los clientes, lo que supone un ahorro de
tiempo y dinero.

Otra aplicación de estos problemas se encuentra en la gestión de inventarios en las
grandes empresas, especialmente en aquellas en las que hay muchos productos y,
por tanto, comprobarlos uno a uno requiere mucho tiempo. Las etiquetas RFID han
revolucionado la gestión de la cadena de suministro al permitir a los responsables de los
almacenes registrar el inventario de forma mucho más eficiente de lo que podían hacerlo
leyendo los números de las cajas y registrándolos manualmente. Los investigadores
del MIT han desarrollado un sistema que permite a los drones aéreos leer las etiquetas
RFID desde decenas de metros de distancia e identificar la ubicación de las etiquetas
con un error medio de unos 19 centímetros. Por lo tanto, para realizar el inventario,
el dron no necesita atravesar todos los pasillos del almacén para la recogida de datos.
Los investigadores prevén que el sistema podría utilizarse en grandes almacenes tanto
para la supervisión continua, con el fin de evitar desajustes en el inventario, como
para localizar artículos individuales, de forma que los empleados puedan responder
de forma rápida y fiable a las peticiones de los clientes.
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Por otra parte, el CEARP también ha sido utilizado para modelizar el recorrido a
realizar por los drones con receptores RFID o cámaras incorporadas que realizan
determinadas tareas como el control de calidad de mantenimiento o la vigilancia de
las redes. En esta última tarea, los drones no tienen que sobrevolar los puntos o líneas
a vigilar, sino sólo acercarse al objetivo a una determinada distancia. Finalmente, en
una red de sensores inalámbricos, donde los sensores están geográficamente distantes
entre sí, puede no ser práctico requerir que los sensores se coordinen directamente
entre sí para formar una red de comunicación, debido a la restricción de energía. Una
posible solución es emplear un robot móvil, que pueda desplazarse a todos los sensores
para descargar los datos y finalmente regresar a su estación base (posición de partida).

En esta tesis estudiamos tres problemas de optimización combinatoria NP-hard que
surgen en el contexto de los Close-Enough ARPs. El primero es el Profitable CEARP
para un solo vehículo, y el segundo y el tercero son el Distance-Constrained CEARP y
el Min-Max CEARP, respectivamente, ambos para múltiples vehículos. Para resolver
estos tres problemas, se han desarrollado métodos exactos y heurísticos que no sólo
abordan los problemas previamente definidos en la literatura científica, sino también
nuevas generalizaciones que acercan los resultados teóricos a las necesidades reales que
pueden surgir. De hecho, la finalidad de la tesis es doble. Por un lado, contribuir a un
estudio en profundidad de las variantes definidas del CEARP. Por otro lado, aportar
nuevas ideas y conocimientos al campo de la Investigación Operativa que puedan ser
útiles para abordar otros problemas combinatorios de naturaleza similar.

En los primeros capítulos se presenta el contexto en el que surgen los problemas
estudiados en esta tesis. Empezamos describiendo algunos conceptos esenciales de
la Programación Matemática para proporcionar a los lectores no expertos una re-
visión conceptual detallada y para introducir los temas, la terminología y la notación
matemática que se utiliza en los capítulos siguientes. Presentamos varios principios
básicos de la teoría de grafos, la programación lineal y entera, y la teoría poliédrica y
la combinatoria poliédrica. Posteriormente, ofrecemos una visión general de algunos
problemas de rutas clásicos que han sido ampliamente estudiados en la literatura cien-
tífica. Debido a la gran variedad de problemas de rutas, nos centramos únicamente
en aquellos considerados como la base de muchos otros problemas relacionados que
han surgido a lo largo de los años debido a la necesidad de adaptarlos a situaciones
específicas. El conocimiento de estos problemas originales contribuye a una mejor y
más rápida comprensión de los problemas más complejos, ya que para resolver este
tipo de problemas es necesario estudiar sus propiedades y características, que son es-
enciales para desarrollar un método de solución a medida. Para concluir la sección
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introductoria, se presenta el estado del arte y las aplicaciones del mundo real de los
CERP. Con la intención de introducir estos problemas, se incluye una visión general
del CETSP, el problema homólogo para problemas de rutas por nodos, junto con un
estudio más detallado de toda la investigación existente hasta el momento para el
CEARP, el ARP que sirve de base de los problemas estudiados en esta tesis.

A continuación nos centramos en el estudio de la primera generalización del CEARP,
el Profitable CEARP (PCEARP). Los problemas de rutas con beneficios tratan situa-
ciones en las que los clientes a los que hay que dar servicio deben ser elegidos entre
un conjunto de clientes potenciales que tienen un beneficio asociado, beneficio que se
se recoge cuando se les da servicio. Consisten básicamente en diseñar una o varias
rutas que den servicio a los clientes elegidos y de forma que se optimice un objetivo
definido en función del coste o/y del beneficio. Un problema de rutas con beneficios
se denomina profitable cuando su objetivo es maximizar la diferencia entre el ben-
eficio recaudado y el coste de las rutas. En el capítulo 5 se estudia en profundidad
el PCEARP, en el que se asocia un beneficio a cada cliente y se recolecta (sólo una
vez) cuando se sirve al cliente. El objetivo es encontrar un recorrido que maximice
la diferencia entre el beneficio total recaudado de servir a los clientes y la distancia
de recorrida. El capítulo comienza definiendo formalmente el problema, proponiendo
una formulación y realizando un estudio poliédrico en profundidad. Se demuestra
que algunas desigualdades de la formulación siempre definen la faceta y que otras lo
hacen bajo condiciones específicas. Además, a partir de las propiedades de los recorri-
dos del PCEARP, se presentan otras desigualdades válidas no obtenidas directamente
de la formulación, que refuerzan la descripción del poliedro. Para resolver el Prof-
itable CEARP se ha diseñado e implementado una heurística y un algoritmo Branch
and Cut. La heurística combina un procedimiento constructivo y una búsqueda local
de manera que somos capaces de proporcionar al algoritmo exacto cotas inferiores
iniciales. En el algoritmo Branch and Cut se estudian todos los procedimientos de
separación para la identificación de las desigualdades violadas y el orden en que se
aplican. Ambos algoritmos han requerido de un ajuste y evaluación mediante diver-
sos experimentos y un amplio análisis estadístico. Para probarlos se han generado
cuatro conjuntos diferentes de instancias específicas de este problema con hasta 800
clientes, 400 vértices y 2000 arcos. Según los resultados de los experimentos computa-
cionales, el procedimiento exacto es capaz de resolver óptimamente instancias grandes
con hasta 600 clientes, 300 vértices y 1500 arcos, en menos de una hora. El capítulo
es el resultado de una colaboración con el profesor Bianchessi, de la Università degli
Studi di Milano, destino de mi estancia de investigación. El siguiente trabajo ha sido
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enviado a una revista internacional para su publicación:

N. Bianchessi, Á. Corberán, I. Plana, M. Reula, J.M. Sanchis. 2021.
The Profitable Close Enough Arc Routing Problem. Under revision.

Los capítulos 6 y 7 tratan el Distance-Constrained CEARP (DC-CEARP). Se trata
de un CEARP en el que una flota de vehículos, o bien un vehículo varias veces, realiza
el servicio a los clientes. Esta generalización del problema consiste en encontrar un
conjunto de rutas que salgan y entren en el depósito y sirvan a todos los clientes, de
forma que la longitud (en distancia o tiempo) de cada ruta no supere un determinado
valor. El objetivo es minimizar la longitud total recorrida.

El Capítulo 6 aborda el CEARP con distancias restringidas, definiendo formalmente
el problema, introduciendo la notación utilizada y presentando la formulación más
prometedora propuesta en la literatura. Dado que en la batería de instancias que
existen del problema los valores de las distancias máximas por ruta son muy ajustados
y dificultan su resolución, hay un buen número de instancias sin resolver. Por ello,
nos centramos en el diseño e implementación de una matheurística multi-arranque
que incorpora un método efectivo de Branch and Cut para el CEARP con el fin de
optimizar las rutas obtenidas. En los experimentos computacionales, presentamos
los resultados obtenidos con dos versiones del algoritmo, considerando un número
máximo de iteraciones y un límite de tiempo, respectivamente. En general, el enfoque
propuesto encuentra soluciones factibles para casi todas las instancias y soluciones
óptimas para más del 70% de ellas. El capítulo se basa en el siguiente documento
publicado:

Á. Corberán, I. Plana, M. Reula, J.M. Sanchis. 2019. A matheuris-
tic for the Distance-Constrained Close Enough Arc Routing Problem.
TOP. 27, 312–326.

El Capítulo 7 también aborda el Distance Constrained Close Enough Arc Routing
Problem, pero en este caso se realiza un estudio más detallado del problema. Comen-
zamos proponiendo una nueva formulación que combina las mejores características
de las formulaciones ya existentes en la literatura ya que, a pesar de tener más vari-
ables, se pretende reforzar su relajación lineal. Para esta formulación hemos realizado
un estudio exhaustivo de su poliedro asociado y hemos propuesto varias familias de
desigualdades válidas. Además, basándonos en los algoritmos de separación para las
nuevas desigualdades, hemos propuesto un algoritmo de Branch and Cut que pro-
porciona muy buenos resultados. Se han realizado amplios experimentos computa-
cionales sobre un conjunto de instancias de referencia para analizar la contribución
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de las desigualdades válidas y los algoritmos de separación presentados. Se comparan
los huecos en el nodo raíz y los perfiles de rendimiento de las distintas versiones de
nuestro procedimiento de ramificación y corte (utilizando distintas combinaciones de
algoritmos de separación). Los resultados de las dos mejores versiones de nuestro
algoritmo Branch and Cut se comparan con los obtenidos con los métodos matheuris-
ticos y exactos de la literatura. La mejor versión de nuestro algoritmo Branch and
Cut es capaz de resolver óptimamente instancias con hasta 140 clientes, 196 vértices,
544 arcos y 5 vehículos tomando un tiempo máximo de computación de dos horas. El
capítulo se basa en el siguiente documento publicado:

Á. Corberán, I. Plana, M. Reula, J.M. Sanchis. 2021. On the Distance-
Constrained Close Enough Arc Routing Problem. European Jour-
nal of Operational Research. 291(1), 32-51.

En el Capítulo 8 estudiamos el CEARP Min-Max (MM-CEARP) para una flota de
vehículos homogéneos. Teniendo en cuenta el tipo de aplicaciones del CEARP, esta
variante trata de equilibrar la longitud de las rutas minimizando la duración de la
ruta más larga. El problema consiste en encontrar un conjunto de rutas, todas ellas
con inicio y fin en el depósito, que sirvan conjuntamente a todos los clientes, y con un
objetivo minmax, es decir de minimizar la máxima ruta. Basándonos en la experiencia
previa en el DC-CEARP, los algoritmos Branch and Cut eran muy complicados de
resolver cuando intentábamos resolver instancias con muchos vehículos. Por lo tanto,
nos planteamos el reto de diseñar e implementar un algoritmo Branch and Price capaz
de resolver instancias con un gran número de vehículos. Comenzamos presentando
y proporcionando dos modelos diferentes para el problema: una formulación basada
en arcos, con variables de flujo y servicio, que se ha utilizado para desarrollar un
algoritmo Branch and Cut, y una formulación basada en variables por ruta, que se
ha utilizado para el desarrollo de un algoritmo de Branch and Price. También desar-
rollamos un algoritmo heurístico que utilizamos para proporcionar soluciones iniciales
factibles a los algoritmos exactos. El Branch and Cut se basa en en el algoritmo exacto
desarrollado en la literatura para el DC-CEARP. En el Branch and Price hemos im-
plementado dos técnicas atípicas de estos algoritmos a la hora de abordar problemas
de rutas: la regla de primer nivel aplicada en el esquema de ramificación (basada en
la regla de ramificación de Ryan y Foster) y un algoritmo de Branch and Cut para re-
solver óptimamente los Pricing Prlblems en lugar de utilizar programación dinámica.
El primero permite recuperar soluciones enteras a costa de una diversificación de los
conjuntos de rutas factibles, no introduce simetrías en el espacio de soluciones, no
altera la estructura de los problemas de precios y, por último, permite que los pricing
problems sigan compartiendo la misma región factible. Hemos realizado un amplio
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análisis computacional en el que hemos comparado el rendimiento de los algoritmos
exactos en cuatro conjuntos de instancias probadas con un mínimo de 2 vehículos y
un máximo de 11 vehículos. Los resultados muestran que el algoritmo de Branch and
Cut consigue los mejores resultados para las instancias con dos vehículos, mientras
que el algoritmo Branch and Price se comporta mejor para las instancias con tres o
más vehículos. Este capítulo también es resultado de la colaboración con el profesor
Bianchessi, de la Università degli Studi di Milano, durante mi estancia de investi-
gación. El trabajo ha sido enviado a una revista internacional para su publicación:

N. Bianchessi, Á. Corberán, I. Plana, M. Reula, J.M. Sanchis. 2021.
The Min-Max Distance-Constrained Close Enough Arc Routing Problem.
Under revision.

Aunque la tesis concluye aquí, la investigación es un campo interminable por lo que el
estudio llevado a cabo en este trabajo puede continuar abordando otras restricciones y
variantes de los problemas descritos. Además, muchas de las ideas en las que se basan
algunos de los algoritmos diseñados podrían ser adaptados directa o fácilmente para
abordar otros problemas de enrutamiento de arcos relacionados, así como muchas de
las ideas presentadas en las partes teóricas también podrían ser utilizadas en otros
problemas relacionados.

Dados los excelentes resultados del algoritmo Branch and Price en la resolución de
instancias de Min-Max CEARP con un número de vehículos grande, valdría la pena
desarrollar un algoritmo del mismo tipo para el Distance-Constrained CEARP. Se
ha estudiado en la literatura que los algoritmos Branch and Cut son muy eficientes
en la solución del CEARP, y aquí mostramos que son muy eficientes en la solución
de la variante multi-vehículo cuando el tamaño de la flota es pequeño pero, cuando
el número de vehículos aumenta, un algoritmo de Branch and Price es mucho más
apropiado.

Con respecto al Profitable CEARP considerado en el Capítulo 5, podría ampliarse de
varias maneras añadiendo progresivamente características de problemas reales rela-
cionados. Por ejemplo, el beneficio por cliente podría definirse por el tiempo que
se tarda en realizar el servicio. Además, si un solo vehículo no es capaz de realizar
todos los servicios, se requiere una flota de vehículos (o múltiples rutas para un solo
vehículo). Se podría considerar que todos los vehículos tienen las mismas carac-
terísticas o que tenemos una flota heterogénea. También podríamos establecer una
distancia/tiempo máximo para cada ruta o minimizar el coste de la ruta más larga.
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A excepción de la matheurística propuesta para el DC-CEARP, a lo largo de esta
tesis hemos abordado los problemas desde un punto de vista teórico, cuyos resultados
se han utilizado para desarrollar algoritmos exactos para la solución óptima de los
problemas. Todos los problemas aquí estudiados son problemas combinatorios que
son NP-hard, por lo que no existen algoritmos que encuentren las soluciones óptimas
en tiempo polinómico. Así, puede ocurrir que en determinadas circunstancias sea
necesario disponer de soluciones de buena calidad para problemas reales en tiempos de
computación cortos. En este sentido, pensamos que, como resultado del conocimiento
adquirido durante el estudio de los problemas tratados en esta tesis, se podrían diseñar
e implementar algoritmos heurísticos y/o metaheurísticos para los tres problemas
estudiados que mejoren la calidad de las soluciones.
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