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Resumen

Esta tesis doctoral aborda varios problemas en los campos de la Clasifi-
cación Supervisada y la Teoría de la Localización empleando herramientas y
técnicas propias de la Optimización Matemática. A continuación, se hace una
breve descripción de estos problemas y de las metodologías propuestas para su
análisis y resolución.

En el primer capítulo se discuten en detalle los fundamentos de la Clasifi-
cación Supervisada y de la Teoría de la Localización, enfatizando los aspectos
estudiados en esta tesis. En los dos capítulos siguientes se analizan problemas
de Clasificación Supervisada. En particular, el Capítulo 2 propone procedi-
mientos exactos de resolución para varios modelos de Máquinas de Vectores
de Soporte (SVM) con ramp loss, un método de clasificación conocido por li-
mitar la influencia de los valores atípicos. Los modelos resultantes se analizan
para obtener una cota inicial de los parámetros M grande incluidos en la for-
mulación. Posteriormente, se proponen enfoques de resolución basados en tres
estrategias para obtener valores más ajustados de dichos parámetros. Dos de
ellas requieren resolver una secuencia de problemas de optimización continuos,
mientras que la tercera utiliza el método de la relajación lagrangiana. Los pro-
cedimientos de resolución derivados son válidos para las formulaciones ramp
loss con norma ℓ1 y norma ℓ2. Estos algoritmos se han probado y comparado
con los procedimientos de resolución existentes, tanto en conjuntos de datos
simulados como reales, mostrando la eficacia de la metodología desarrollada.

El Capítulo 3 presenta un nuevo clasificador basado en SVM que simul-
táneamente aborda la limitación de la influencia de los valores atípicos y la
selección de características. La influencia de los valores atípicos se controla
mediante el criterio ramp loss, mientras que el proceso de selección de carac-
terísticas se lleva a cabo incluyendo una nueva familia de variables binarias
y varias restricciones. El modelo resultante se formula como un modelo de
programación entera mixta con parámetros M grande. En este capítulo, se
analizan las características del modelo y se proponen dos algoritmos de resolu-
ción diferentes (exacto y heurístico). El rendimiento del clasificador obtenido
se compara con varios clasificadores en diversos conjuntos de datos.
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Los dos capítulos siguientes abordan problemas de localización, en parti-
cular, el problema de máximo cubrimiento (MCLP) en redes. Se estudian dos
variantes de este problema que responden al modelado de dos escenarios dife-
rentes, con y sin incertidumbre en los datos de entrada. En primer lugar, en el
Capítulo 4, se presenta el MCLP en redes con mejoras permitiéndose la reduc-
ción de la longitud de las aristas. Este problema tiene como objetivo ubicar p

instalaciones en los nodos (de la red) para maximizar la cobertura, consideran-
do que la longitud de las aristas puede reducirse dentro de un presupuesto. Por
lo tanto, tenemos que decidir: la ubicación óptima de las p instalaciones y las
reducciones óptimas de la longitud de las aristas. Para resolverlo, proponemos
tres formulaciones enteras mixtas y una fase de preprocesamiento para fijar
variables y eliminar algunas de las restricciones. Además, analizamos las carac-
terísticas de estas formulaciones para fortalecerlas proponiendo desigualdades
válidas. Por último, comparamos las tres formulaciones y sus correspondientes
mejoras probando su rendimiento en diferentes conjuntos de datos.

El siguiente capítulo, Capítulo 5, también considera un MCLP, aunque
desde la perspectiva de la incertidumbre. En concreto, este capítulo aborda
una versión del MCLP de una sola instalación en una red en la que la demanda
está distribuida a lo largo de las aristas y solo se conoce una cota superior y
una cota inferior de dicha demanda. Proponemos un modelo que minimiza el
peor de los casos (minmax regret) en el que la instalación del servicio puede
situarse en cualquier punto de la red. Además, presentamos dos algoritmos
polinómicos para encontrar la ubicación que minimiza el peor de los casos
suponiendo que la realización de la demanda es una función constante desco-
nocida o una función lineal desconocida en cada arista. También incluimos dos
ejemplos ilustrativos y un estudio computacional para mostrar el potencial de
la metodología propuesta.

Esta tesis doctoral finaliza con las conclusiones de la investigación reali-
zada y la presentación de futuras líneas de trabajo.



Abstract

This PhD dissertation addresses several problems in the fields of Super-
vised Classification and Location Theory using tools and techniques coming
from Mathematical Optimization. A brief description of these problems and
the methodologies proposed for their analysis and resolution is given below.

In the first chapter, the principles of Supervised Classification and Lo-
cation Theory are discussed in detail, emphasizing the topics studied in this
thesis. The following two chapters discuss Supervised Classification problems.
In particular, Chapter 2 proposes exact solution approaches for various models
of Support Vector Machines (SVM) with ramp loss, a well known classifica-
tion method that limits the influence of outliers. The resulting models are
analyzed to obtain initial bounds of the big M parameters included in the for-
mulation. Then, solution approaches based on three strategies for obtaining
tighter values of the big M parameters are proposed. Two of them require
solving a sequence of continuous optimization problems, while the third uses
the Lagrangian relaxation. The derived resolution methods are valid for the
ℓ1-norm and ℓ2-norm ramp loss formulations. They are tested and compared
with existing solution methods in simulated and real-life datasets, showing the
efficiency of the developed methodology.

Chapter 3 presents a new SVM-based classifier that simultaneously deals
with the limitation of the influence of outliers and feature selection. The influ-
ence of outliers is taken under control using the ramp loss margin error crite-
rion, while the feature selection process is carried out including a new family
of binary variables and several constraints. The resulting model is formulated
as a mixed-integer program with big M parameters. The characteristics of the
model are analyzed and two different solution approaches (exact and heuris-
tic) are proposed. The performance of the obtained classifier is compared with
several classical ones in different datasets.

The next two chapters deal with location problems, in particular, two vari-
ants of the Maximal Covering Location Problem (MCLP) in networks. These
variants respond to the modeling of two different scenarios, with and with-
out uncertainty in the input data. First, Chapter 4 presents the upgrading
version of MCLP with edge length modifications on networks. This problem
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aims at locating p facilities on the nodes (of the network) so as to maximize
coverage, considering that the length of the edges can be reduced within a
budget. Hence, we have to decide on: the optimal location of p facilities and
the optimal edge length reductions. To solve it, we propose three different
mixed-integer formulations and a preprocessing phase for fixing variables and
removing some constraints. Moreover, we analyze the characteristics of these
formulations to strengthen them by proposing valid inequalities. Finally, we
compare the three formulations and their corresponding improvements by test-
ing their performance over different datasets.

The following chapter, Chapter 5, also considers a MCLP, albeit from the
perspective of uncertainty. In particular, this chapter addresses a version of
the single-facility MCLP on a network where the demand is distributed along
the edges and uncertain with only a known interval estimation. We propose a
minmax regret model where the service facility can be located anywhere along
the network. Furthermore, we present two polynomial algorithms for finding
the location that minimizes the maximal regret assuming that the demand
realization is an unknown constant or linear function on each edge. We also
include two illustrative examples as well as a computational study to show the
potential of the proposed methodology.

This PhD dissertation ends with the conclusions of the research carried
out and the presentation of future lines of work.
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1
Introduction

Mathematical Optimization or Mathematical Programming is a branch
of Mathematics whose objective is to provide optimal decisions for problems
usually representing real situations. This area comprises the design of mathe-
matical models, the development of theoretical results that characterize their
solution set, the use and design of mathematical tools to address the problem,
as well as the development of new methodologies to solve the studied problems.
The resulting optimization models are characterized by three main elements.

Sets of variables that represents the different decisions, which can be
binary, integer, or continuous. D denotes the domain of the variables.
The objective function to be optimized and the optimality criterion
(minimize or maximize).
A set of constraints that states the relationships between the variables
and their limitations. These constraints define the feasible region.

Therefore, a mathematical program or formulation can be expressed as:

min /max f(x),

s.t. gi(x) ≤ bi, i = 1, . . . ,m,

x ∈ D,

where gi : D −→ R and bi ∈ R, for i = 1, . . . ,m.

The origins of Mathematical Programming date back to the studies of
Pierre de Fermat and Joseph-Louis Lagrange identifying optima of functions
and the iterative methods developed by Sir Isaac Newton and Johann Carl
Friedrich Gauss for moving towards an optimum. However, it was not un-
til 1939 when Leonid Vitalyevich Kantorovich in the book Matematicheskie
metody organizatsi i planirovaniya proizvodstva (translated in Kantorovich,
1960) introduced this subject. Completely independently, George Bernard
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Chapter 1. Introduction

Dantzig and John von Neumann introduced in 1947 the Simplex algorithm
and the duality theory respectively (Dantzig, 1949; Neumann, 1947).

Since these initial studies, this discipline has not stopped growing. This
expansion has been encouraged by the development of computers, which al-
lows us to solve larger and larger problems every day. Thanks to its versatility,
Mathematical Optimization can be successfully applied to solve problems in
multiple and diverse fields, as for example, Data Analysis (Mangasarian, 1997;
Carrizosa and Romero-Morales, 2013), Environmental Sciences (Norton and
Hazell, 1986; Archibald and Marshall, 2018; Shakhsi-Niaei et al., 2013), Man-
ufacturing (Dutta and Fourer, 2001; Kallrath, 2000), Medicine (Ehrgott et al.,
2010; Rais and Viana, 2011), among others.

In this PhD dissertation, we focus our study in the application of Mathe-
matical Optimization tools in Supervised Classification and in Network Loca-
tion problems. Next, a brief overview of these two topics will be provided.

1.1 Supervised Classification
Nowadays, a massive amount of data is generated every second. However,

the large size of the datasets and their complex inherent properties make diffi-
cult to obtain valuable information from them. One of the fields that responds
to this need is Classification. The goal of this discipline is to provide a deci-
sion rule for classifying individuals of a population in different classes. These
problems can be addressed from two main approaches: Supervised and Unsu-
pervised Classification. Supervised Classification considers that the classes in
which the individuals should be classified are known in advance. Moreover,
the characteristics of some individuals and the classes where they belong to
are needed, called training sample. However, Unsupervised Classification does
not require prior knowledge of the classes.

This PhD dissertation concentrates on Supervised Classification from a
Mathematical Optimization perspective. This perspective was introduced by
Olvi Leon Mangasarian (Mangasarian, 1965, 1968), resulting a very useful
tool (Lee and Wu, 2009). In particular, we focus our attention on the study of
Support Vector Machines (SVM) models. Since their introduction by Cortes
and Vapnik (1995) and Vapnik (1998), SVM have been deeply analyzed in
the literature. In order to provide a precise description of the problem, we
consider the following notation. Given a set N of individuals partitioned into
two classes Y = {-1,1}, each individual i ∈ N = {1, . . . , n} is associated with
a pair (xi, yi) ∈ Rd × {−1, 1}, where d is the number of features analyzed in
each individual of N, xi contains the feature values, and yi provides the class
membership (1 or -1). The aim of the SVM is to build a separating hyperplane
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1.1. Supervised Classification

w ·x+b = 0 to classify new individuals. The search for this hyperplane is based
on a compromise between maximizing the distance (margin) between the two
parallel hyperplanes supporting individuals of each class and minimizing the
error caused by misclassified data.

The maximization of the margin between the parallel hyperplanes asso-
ciated with each class can equivalently be expressed as the minimization of
∥w∥◦, where ∥·∥◦ is the dual norm of the norm used to measure the distance to
the hyperplanes in Rd (Carrizosa and Romero-Morales, 2013; Gonzalez-Abril
et al., 2011; Liu et al., 2007). In Blanco et al. (2020c), the methodology ap-
plied to classical SVM (using ℓ2-norm) is extended to the general ℓp-norm with
p ≥ 1. Although we will concentrate in this PhD dissertation on cases p = 1

and p = 2, we provide the following common formulation for any value p ≥ 1,

(SVM-ℓp) min 1

p
∥w∥pp + C

n∑
i=1

ξi,

s.t. yi

(
d∑

k=1

wkxik + b

)
≥ 1− ξi, i ∈ N, (1.1)

ξi ≥ 0, i ∈ N, (1.2)

where the w- and b-variables are the separation hyperplane coefficients and the
ξ-variables represent the deviation of misclassified data. C is a non-negative
constant and ∥w∥p represents the ℓp-norm of vector w with p ≥ 1. Therefore,
the objective function given above seeks to maximize the margin (first addend
of the objective function) and minimize the sum of misclassified data deviations
(second addend). Parameter C regulates the trade-off between both goals.

Since their introduction, SVM have been applied in many fields, includ-
ing: biology (Zhang et al., 2006; Guerrero et al., 2012; Joloudari et al., 2019),
medicine (Furey et al., 2000; Ren, 2012; Wang et al., 2018), bioinformatics (By-
vatov and Schneider, 2003; Chen et al., 2017), machine vision (Barkana et al.,
2017; Decoste and Schölkopf, 2002; Rehman et al., 2019), text classification
(Zhang et al., 2008), finance (Gavrishchaka and Banerjee, 2006; Maldonado
et al., 2017; Min and Lee, 2005; Ghoddusi et al., 2019), and sustainability
(Mrówczyńska et al., 2019; Kim et al., 2019). More applications can be found
in Cervantes et al. (2020).

Although classical SVM models have high predictive power in comparison
with other state-of-the-art classifying methods, some drawbacks also arise from
their use. In the next subsections we focus our attention in two of them:
influence of outliers and feature selection. New techniques and models have
been proposed in this PhD dissertation to address these issues.
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Chapter 1. Introduction

1.1.1 Influence of outliers

As stated in Hastie et al. (2009), classical SVM is not robust against
outliers and this classification method does not perform efficiently when the
analyzed dataset contains anomalous values. One of the main reason for that
is that the classical formulation of SVM uses unbounded continuous variables
for measuring the deviations of misclassified data: ξi, for i ∈ N .

In this context, an outlier is an individual whose feature values are anoma-
lous, i.e., these values are very different from the values of most individuals in
the sample. The presence of outliers in real-life data is common and is caused
by several factors which include but are not limited to: transcription errors,
measurement errors, mislabelling, data processing errors, intentional instances
(e.g. spam). There are many papers in the literature that use a SVM based
model to address these issues, see for instance, Xu et al. (2017); Zhang et al.
(2009); Lukashevich et al. (2009); Brooks (2011); Blanco et al. (2020a).

In particular, we focus on the approach introduced by Brooks (2011):
SVM with ramp loss. In this model, the deviation of misclassified data is
truncated to avoid extreme values: i.e., for a given deviation, the penalization
is bounded. Due to its usefulness as a classifier, this model has attracted
the attention of many researchers and has been analyzed whilst considering
the ℓ1-norm and ℓ2-norm (see Brooks, 2011; Carrizosa et al., 2014; Belotti
et al., 2016; Blanco et al., 2020b). This model has also been studied under the
framework of statistical learning theory (see Huang et al., 2014).

In spite of the interest of this model for data classification avoiding the
effect of outliers, the search for exact solution approaches for large datasets is
still an ongoing problem, as stated in Duarte Silva (2017).

1.1.2 Feature Selection

In addition to the aforementioned issue of the presence of outliers in the
data, we would like to emphasize another usual difficulty in classification, the
identification of relevant features. Several real-life datasets contain a high
number of features for each individual of the sample. Many often, some of
them do not provide valuable information in the classification process. For
this reason, it is interesting to identify and remove them in a process called
feature selection. Also, another interesting aspect to carry out feature selection
is that in real life, analyzing many features could imply high costs.

For example, if we want to classify whether or not a patient has a disease,
each feature usually represents a medical analysis and each of these has a cost
in money and time. Usually, it feels that the more tests are performed, the
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1.1. Supervised Classification

better the diagnosis. However, the performance of a large number of medical
tests can lead to high costs for the health system or the patient, saturation
of the health system, inconvenience for the patient (invasive tests, numerous
visits to the clinic, etc.), and longer waiting time to obtain the diagnosis. For
example, in the United States, there is a 62% of personal bankruptcies incurred
in medical bills, and 90% of patients are in debt, as reported Lee et al. (2020);
Jacoby and Holman (2010). Many of the aforementioned drawbacks could be
avoided if only the tests that are truly meaningful were carried out. Moreover,
classifiers are easier to interpret when the number of features is small rather
than the ones that contain many features. Thus, the knowledge of the features
that have a relevant influence in a medical diagnosis is highly applicable in
real-life because it could help in opening new lines of medical research as new
treatments or earlier diagnosis. Although we have given an example of the
feature selection utility in medicine, similar situations can appear in many
other fields of knowledge.

In general, feature selection techniques have been divided into three dif-
ferent groups: filter, wrapper and embedded methods.

Filter methods are based on a preliminary study of each feature’s
relevance and only features with significant importance are considered
for the classification method, see Guyon et al. (2006).
Wrapper methods interact with the classification method to select the
set of relevant features, see Kohavi and John (1997); Alazzam et al.
(2020).
Embedded methods study the feature selection and the classification
simultaneously in the same model.

In this context, the weakness of the classical SVM model is that its mathe-
matical formulation does not limit the number of features selected by the clas-
sifier. Many recent papers in the literature propose new SVM based classifiers
to deal with feature selection. These models can be considered as embedded
methods, see for example Maldonado et al. (2014); Aytug (2015); Gaudioso
et al. (2017); Ghaddar and Naoum-Sawaya (2018); Jiménez-Cordero et al.
(2021); Kunapuli et al. (2008); Labbé et al. (2019); Maldonado et al. (2020);
Gaudioso et al. (2020); Nguyen and de la Torre (2010); Cura (2020); Lee et al.
(2020).

In view of the above discussion, we can conclude that it would be very
interesting to develop a support vector machines model that simultaneously
limits the influence of outliers in the classifier and selects the number of fea-
tures. One advantage of doing these processes simultaneously is that it pre-
vents the loss of valuable information due to the incorrect removal of elements
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of the sample. Indeed, it could happen that several of the features of an indi-
vidual in the sample may take anomalous values. However, it does not make
sense to exclude this individual if those features do not affect the classification.
The other advantage is that doing both procedures simultaneously allows us
to identify as outliers data that were not initially classified as such. In fact,
an individual might not be identified as outlier by a general outlier detection
procedure because most of its features take similar values to the ones of their
class and only some of them take very different values. However, if after the
feature selection, these features with very different values are the most relevant
in the classification process, this individual should be classified as outlier.

1.2 Location Theory
The Location Theory concerns the identification of the optimal site of one

or several facilities in a given area to cover the demand of a given set of clients,
taking into account the distances/costs between the facilities and clients, the
demand of the clients and existing constraints. For this purpose, different fields
of Mathematical Optimization are applied to address these types of problems,
such as, mathematical modeling, the design of mathematical tools to analyze
the resulting models, the characterization of solution sets, the development of
efficient solution methods, among others.

The origins of this discipline trace back to ancient Greece. However, it
was not until the middle of the twentieth century when this science was tack-
led from the perspective of Mathematical Optimization. Until that time, the
proposed solutions were mainly geometric, as for example, the solution to Fer-
mat’s problem given by Evangelista Torricelli. At the end of the 19th century
and the beginning of the 20th century, Carl Wilhelm Friedrich Launhardt and
Alfred Weber proposed the first models to optimize decision within Location
Theory. So far, the models proposed were mainly descriptive. In the 1960s,
the seminal papers by Seifollah Louis Hakimi (Hakimi, 1964, 1965) were of
particular relevance to set the foundations of this area. Furthermore, the first
Mixed Integer Programming (MIP) approaches were derived in this period,
see Manne (1964), Balinski (1965). For interested readers about history of
Location Theory see Love et al. (1988); Laporte et al. (2019) and references
therein.

Today, Location Theory is applied in a wide range of fields such as human-
itarian supply chain (Kara and Rancourt, 2019), emergency services (Silva and
Serra, 2008; Scaparra and Church, 2019), public services (Fredriksson, 2017),
logistics (Melo et al., 2006; Żak and Węgliński, 2014), telecommunications
(Gollowitzer and Ljubić, 2011), among others.
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In what follows, a brief description of the characteristics of location prob-
lems based on the objective function, the solution space, the demand, and
the facility locations is given. For a more detailed classification, the reader is
directed to Puerto and Rodríguez-Chía (2004).

1.2.1 The objective function

As stated at the beginning of the chapter, one of the main elements of an
optimization problem is its objective function. Below we present some of the
most classic ones used in location models.

Median problem or Fermat-Weber problem: the aim is to minimize the
weighted sum of the distances between the facilities and the customers
(Hakimi, 1964, 1965; ReVelle and Swain, 1970).
Center problems: the aim is to minimize the largest weighted distance
(Hakimi, 1964, 1965).
Covering problems: in these problems a client is considered to be
covered if their distance to a facility is within a given coverage radius.
Depending on whether the number of services to be located is fixed
or not, the following problems are considered:
• Set covering problems: the aim is to minimize the cost or the

number of new facilities to be located so that all customers are
covered (Toregas et al., 1971).

• Maximal covering problems: the aim is to maximize the covered
demand taking into account that the number of facilities to be
located is given (Church and ReVelle, 1974).

In some cases, it is difficult to choose a single objective. In this context,
models that consider several location criteria emerge, called multi-objective
location problems.

1.2.2 Solution space and demand

The space where the problem is stated is called solution space, i.e., the
space where the services facilities and clients are located. The most common
solution spaces discussed in the literature are:

Discrete: a finite set of potential location for the facilities is given.
Continuous: the facilities can be located at any point of a region, such
as Rn, a sphere, an ellipse, etc.
Network: the solution space of the problem is a graph. There are two
main classes of problems, either the facilities are located only at the
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nodes (discrete space) or they are located at any point in the network
(continuous space).

We would like to emphasize that SVM could also be considered as a loca-
tion problem (Plastria and Carrizosa, 2012). In fact, obtaining a SVM classifier
is equivalent to locate a hyperplane in Rm, where m is the number of features
of the sample.

In some real-world applications of location problems, the demand is some-
times not known exactly. Depending on the information we have about de-
mand, it can be categorized as deterministic and non-deterministic (uncer-
tain). More concretely, non-deterministic models are usually classified in two
different categories:

Stochastic optimization: in these models it is assumed that the de-
mand follows a known probability distribution.
Robust optimization: in these models the demand is complete uncer-
tain and no information about its probability distribution is known.
In many cases the only information available is the range of the de-
mand variation. To deal with this situation of total uncertainty, the
models usually optimize the worst-case situation. The most common
criteria are to minimize the maximal cost (the minmax cost) or to
minimize the maximal regret (the minmax regret).

Observe that this uncertainty can exist not only in the demand, but also in
the rest of the parameters of the model.

1.2.3 Facility locations

In most location problems, the main decision variables are the locations
of the facilities. Firstly, depending on the number of facilities to be located,
the problem can be single or multiple. If there is more than one facility, it is
necessary to know if all the services are identical or if, on the contrary, they
have different properties.

Secondly, the problems are also classified according to the attractiveness
of the facilities, in other words, attractive or obnoxious facilities.

Attractive facilities: clients want them to be located nearby since
these facilities have a positive effect, e.g., supermarkets, health cen-
ters, schools.
Obnoxious facilities: consumers do not want them to be located
nearby since these facilities have a negative impact, e.g., garbage bins,
landfills, nuclear power plants.
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In some cases, the decision variables of the problem are not the location
of the services, instead, the location of the facilities is given and the decision
variables are other parameters of the model. The following models are some
examples:

Inverse problems, the objective is to modify the parameters at mini-
mum cost such that a given feasible solution becomes optimal.
Reverse problems, the objective is to maximally improve a pre-specified
solution by changing the parameters within certain limits and subject
to a given budget.

There are also models that combine the identification of the optimal loca-
tion of the facilities with the modification of the model parameters. Examples
of this type of models are the up/downgrading problems, where an actor mod-
ifies the parameters of the model and then a reactor takes a decision. In
upgrading problems, actor and reactor have the same goal; in downgrading
problems, their objectives are conflicting.

1.3 Contents of the PhD dissertation
After this presentation of Supervised Classification and Location Theory,

we give a brief description of the contents of this PhD dissertation.

Chapter 2 addresses one of the drawbacks of SVM, the lack of robust-
ness against outliers. This chapter is devoted to the development of
mathematical results to improve the exact solution methods of the
ramp loss model, a SVM-based classifier that limits the influence of
outliers. In this chapter, valid inequalities are developed and several
bounds for the big M parameters of the model with ℓ1 and ℓ2 are
proven. Furthermore, three algorithms to find optimal solutions of
the models are presented and tested over synthetic and real-world
datasets.
Chapter 3 presents a new model based on SVM. This model is specif-
ically developed to avoid the issues caused by the presence of outliers
in the training data and to enable the modeler to select the number
of features to be evaluated in the classification process. The main
advantage of this model is that the limitation of the outliers influence
and the feature selection are done simultaneously. In this chapter,
an algorithm to compute the values of the big M parameters of the
model is proposed. Moreover, it is developed a heuristic algorithm
based on the Adaptive Kernel Search (Guastaroba et al., 2017) to ob-
tain the classifier. Finally, computational experiments are included
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to validate the heuristic algorithm and to show the effectiveness of
the classifier.
Chapter 4 develops a new location model in a network, the upgrading
version of the maximal covering location problem. As its name states,
the objective is to maximize the coverage. To do so, two decisions have
to be made: the location of a fixed number of facilities and the edge
length upgrades subject to a budget constraint. Three different mixed
integer formulations to solve the problem are proposed. Moreover, a
powerful preprocessing phase is developed and several families of valid
inequalities are proven. The performance of the three formulations,
the preprocessing phase, and the valid inequalities are tested over
different datasets.
Chapter 5 derives a new location model in a network, the minmax re-
gret maximal covering location problem with edge demands. Unlike
the previous chapter, we now assume that the demand is completely
uncertain and we only know its maximum and minimum values. More-
over, we assume that the demand is distributed along the edges and
it is represented as constant and linear functions. To deal with this
uncertainty, we minimize the maximal regret considering that the fa-
cility can be located anywhere in the network, i.e., it can be located
not only in the nodes, but also in any point along the edge. We
provide a subdivision of the domain of the objective function, such
that the representation of it over each cell is a quadratic function. In
addition, we derive two polynomial time algorithms to find the exact
solution for constant and linear demand functions respectively. Fur-
thermore, the chapter includes examples to illustrate the proposed
methodology and computational experiments over real and synthetic
networks.
Chapter 6 exposes the conclusions of this dissertation and future re-
search lines.
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2
Exact approaches for Support Vector Machines

with ramp-loss

This chapter considers various models of support vector machines with
ramp loss, these being an efficient and robust tool in supervised clas-
sification for the detection of outliers. The exact solution approaches
for the resulting optimization problem are of high demand for large
datasets. Hence, the goal of this chapter is to develop algorithms
that provide efficient methodologies to exactly solve these optimiza-
tion problems. These approaches are based on three strategies for
obtaining tightened values of the big M parameters included in the
formulation of the problem. Two of them require solving a sequence
of continuous optimization problems, while the third uses the La-
grangian relaxation to tighten the bounds. The proposed resolution
methods are valid for the ℓ1-norm and ℓ2-norm ramp loss formula-
tions. They were tested and compared with existing solution meth-
ods in simulated and real-life datasets, showing the efficiency of the
developed methodology.

2.1 Introduction
In this chapter, we focus our attention on the challenge of providing effi-

cient algorithms to obtain exact optimal solutions for data classification prob-
lems that avoid the effect of outliers. We first consider the ramp loss model
using the ℓ1-norm and then the presented strategies are adapted to the ℓ2-
norm. The analysis of these two norms is fully justified because the ℓ1-norm
has various interesting properties, such as its sparsity, whilst the ℓ2-norm is
the one used in classic SVMs. Indeed, using the ℓ1-norm when the dataset
contains many features is worthwhile as it results in easily interpreted classi-
fiers with a reduced number of selected features (see Gaudioso et al. (2017);
Labbé et al. (2019); Maldonado et al. (2014)).

Brooks (2011) introduces a new integer programming formulation for SVM
with ramp loss that accommodate the use of nonlinear kernel functions. How-
ever, he proved that SVM with ramp loss can produce robust classifiers when

11



Chapter 2. Exact approaches for Support Vector Machines with ramp-loss

using a linear kernel in the presence of outliers. For this reason, we concentrate
on SVM ramp loss models using a linear kernel.

The developed methodologies in this chapter are compared with the meth-
ods proposed in Belotti et al. (2016). In particular, Belotti et al. (2016) intro-
duce a non convex formulation for the SVM with ramp loss using the ℓ2-norm.
They also propose two methods based on bound tightening approaches for
efficiently solving the model. One of the methods is focused on an iterative
tightening of the bounds of variables providing locally valid bounds for the big
M parameters appearing in the model. This method is included in CPLEX ar-
senal and it is known as local implied bound cuts. The second method tightens
the bounds of the variables iteratively by solving MIPs. It should be remarked
that the model studied in Belotti et al. (2016) provide an unique initial big
M parameter which is valid for all the family of constraints in which these
parameters appear.

In contrast, this work proposes strategies that provide different tightened
bounds on each big M parameter. In addition, unlike Belotti et al. (2016), our
strategies are based on the tightening of bounds by iteratively solving linear
programming problems in the ℓ1-norm case and quadratic ones in the ℓ2-norm
case, but non integer. In the computational results section we will analyze the
positive effect of our approaches.

The remainder of the chapter is organized as follows. Section 2.2 intro-
duces the model and presents a set of valid inequalities for the formulation.
In Section 2.3, tightened values for the big M parameters in the model with
ℓ1-norm are proven and strategies for obtaining them are proposed. Some
of these strategies are based on tightening values of the w-variables and oth-
ers are based on the Lagrangian relaxation of the model. In Section 2.4, all
the previously proposed strategies are adapted to the ℓ2-norm model. Sec-
tion 2.5 contains computational experiments carried out on simulated and
real-life datasets. Our conclusions and other potential research topics are in-
cluded in Section 2.6.

2.2 The model
We will focus our research on the Support Vector Machine model with

ramp loss, as introduced by Brooks (2011). The model which uses the ℓp-
norm for any p ≥ 1 is formulated as a mixed integer program with conditional
constraints:

(RL-ℓp) min 1

p
(||w||p)p + C

(
n∑

i=1

ξi + 2

n∑
i=1

zi

)
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s.t. if zi = 0, yi

(
d∑

k=1

wkxik + b

)
≥ 1− ξi, i ∈ N, (2.1)

0 ≤ ξi ≤ 2, i ∈ N, (2.2)

zi ∈ {0, 1}, i ∈ N. (2.3)

In this model, ξi determines the penalization if the misclassified object i

is within the strip defined by the two parallel hyperplanes (wx + b = 1 and
wx+b = −1) and zi determines whether i is a misclassified object outside this
strip or not. This model can be linearized by replacing the set of conditional
constraints (2.1) with big M constraints as follows,

(RL-ℓp-M) min 1

p
(||w||p)p + C

(
n∑

i=1

ξi + 2

n∑
i=1

zi

)
s.t. (2.2), (2.3),

yi

(
d∑

k=1

wkxik + b

)
≥ 1− ξi −Mizi, i ∈ N, (2.4)

where Mi is a big enough constant, for i ∈ N . In the following, we give a result
that establishes a relationship between the ξ-variables and the z-variables.

Proposition 2.1.
i) An optimal solution of (RL-ℓp), with p ≥ 1, (w∗, b∗, ξ∗, z∗), satisfies

the following condition:

ξ∗i z
∗
i = 0, i ∈ N. (2.5)

ii) Using Mi, for i ∈ N, so that an optimal solution of (RL-ℓp-M) satisfies
(2.5) does not imply that (RL-ℓp-M) and (RL-ℓp) are equivalent.

The proof of i) can be obtained using a simple contradiction, and for this
reason it has been omitted. An example showing ii) is given in the following
for p = 1 and p = 2.

Example 2.1. Let N be a set of individuals partitioned into two classes, where
the associated pair (xi, yi) for i ∈ N is:

{((−2, 1), 1), ((−1,−1), 1), ((−5,−3),−1), ((1, 3),−1), ((1, 0),−1)}

and C = 10. The optimal solution of (RL-ℓ1-M) is 23, a valid value for M
is 41, and the optimal solution is w∗ = (−3, 0), b∗ = 2, ξ∗ = (0, 0, 0, 0, 0),

and z∗ = (0, 0, 1, 0, 0), (the valid value for the big M parameter was com-
puted following the strategies described in Section 2.3). Nevertheless, con-
sidering M = 5 in model (RL-ℓ1-M), the optimal value is 25.8333; where
w∗ = (−2.5, 0), b∗ = 1.5, ξ∗ = (0, 0.3333, 0, 0, 0), and z∗ = (0, 0, 1, 0, 0); i.e.,
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condition (2.5) is still fulfilled for i ∈ N , but its optimal objective value differs.
Similarly, the optimal solution of (RL-ℓ2-M) is 23.6, a valid value for M is
14, and the optimal solution is w∗ = (−2.4,−1.2), b∗ = 1.4, ξ = (0, 0, 0, 0, 0),

and z = (0, 0, 1, 0, 0), (the valid value for the big M parameter was com-
puted following the strategies described in Section 2.4). However, establish-
ing M = 5 in formulation (RL-ℓ2-M), the optimal value is 25.9333; where
w∗ = (−2.2,−0.6), b∗ = 1.2, ξ∗ = (0, 0.3333, 0, 0, 0), and z = (0, 0, 1, 0, 0).

As a consequence of the previous result, the linearized version of condition
(2.5) is given by

ξi ≤ 2(1− zi), i ∈ N. (2.6)

This set of constraints will be used to strengthen the (RL-ℓp-M) formulation.
Henceforth, we will refer to (RL-ℓp-M)+(2.6) as (RL-ℓp-M), unless it is stated
otherwise.

Observe that in the (RL-ℓp-M) model, the choice of an appropriate value
for Mi, for i ∈ N is essential when providing efficient solution approaches.
Note that Mi should be big enough for the equivalence between (RL-ℓp) and
(RL-ℓp-M), but it should also be as small as possible so as to improve the
linear relaxation and the computational time needed to solve it. The follow-
ing proposition provides valid values for the big M parameters considering a
general ℓp-norm, with p ≥ 1.

Proposition 2.2. For a given p ≥ 1, the problems (RL-ℓp) and (RL-ℓp-M)
are equivalent if

Mi ≥
(
max
j∈N

{∥xi − xj∥q̄ : yi = yj}
)
∥w∥p̄, for i ∈ N,

with p̄, q̄ ≥ 1 such that 1
p̄
+ 1

q̄
= 1 (i.e. ∥·∥p̄ and ∥·∥q̄ are dual norms).

Proof:
Taking into account set of constraints (2.4), it holds that:

Mizi ≥ −yi

(
d∑

k=1

wkxik + b

)
+ 1− ξi, for i ∈ N.

According to Proposition 2.1, an optimal solution of (RL-ℓp) satisfies condition
(2.5). Consequently, a valid value for Mi in the formulation (RL-ℓp-M) would
be one satisfying:

Mi ≥ −yi

(
d∑

k=1

wkxik + b

)
+ 1, for i ∈ N.

14



2.3. Strategies for the ℓ1-norm case

Hence, a value of Mi satisfying:

Mi ≥

∣∣∣∣∣−yi

(
d∑

k=1

wkxik + b

)
+ 1

∣∣∣∣∣ =
∣∣∣∣∣yi
(

d∑
k=1

wkxik + b

)
− 1

∣∣∣∣∣ , (2.7)

would also be valid. On the other hand, the distance between xi and the
hyperplane H(yiw, yib− 1) := {x : yi(w · x+ b)− 1 = 0}, for i ∈ N, using the
ℓq̄-norm for q̄ ≥ 1 is (see Plastria and Carrizosa (2001)):

dℓq̄ (xi, H(yiw, yib− 1)) =
|yi(w · xi + b)− 1|

∥w∥p̄
. (2.8)

Thus, taking into account expressions (2.7) and (2.8), the (RL-ℓp-M) and
(RL-ℓp) problems will be equivalent if the following inequality holds:

Mi ≥ dℓq̄ (xi, H(yiw, yib− 1))∥w∥p̄, for i ∈ N. (2.9)

Observe that the previous expression represents the distance using the ℓq̄-
norm from xi to H(yiw, yib − 1), i.e., the supporting hyperplane for each
class. Consequently, dℓq̄ (xi, H(yiw, yib−1)) is, at most, the maximum distance
between two individuals of the same class, i.e.,

dℓq̄ (xi, H(yiw, yib− 1)) ≤ max
j∈N

{∥xi − xj∥q̄ : yi = yj}.

Thus, if Mi satisfies

Mi ≥
(
max
j∈N

{∥xi − xj∥q̄ : yi = yj}
)
∥w∥p̄, for i ∈ N,

both problems will be equivalent. �

Strategies for obtaining tighter values than the ones provided by the pre-
vious expressions will be presented in the next sections. Particularly, in Sec-
tion 2.3 we will consider the ramp loss model with ℓ1-norm while in Section 2.4,
the attention will be focused on the ℓ2-norm.

2.3 Strategies for the ℓ1ℓ1ℓ1-norm case
The objective of this section is to present the model for the ℓ1-norm case

and to improve the values of big M parameters appearing in the model. As
a result, two algorithms are derived. They are based on tightening bounds of
w-variables in the model and using these bounds to provide tighter values of
big M parameter.

A formulation of the SVM with ramp loss using the ℓ1-norm is obtained
by decomposing the unrestricted variables wk as the difference of two non-
negative variables w+

k and w−
k for k ∈ D, where D is the set {1, . . . , d}, (see

Labbé et al. (2019)). In this reformulation, wk = w+
k −w−

k , where w+
k , w

−
k ≥ 0,
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for k ∈ D. Thusly, |wk| = w+
k + w−

k in any optimal solution, since w+
k + w−

k ,

for k ∈ D is part of the objective function to be minimized. This means that,
at most, only one of the two variables for any k ∈ D is non-zero in an optimal
solution. The result is the following formulation:

(RL-ℓ1) min
d∑

k=1

(w+
k + w−

k ) + C

(
n∑

i=1

ξi + 2

n∑
i=1

zi

)
s.t. (2.2), (2.3),

if zi = 0, yi

(
d∑

k=1

(w+
k − w−

k )xik + b

)
≥ 1− ξi, i ∈ N, (2.10)

w+
k ≥ 0, w−

k ≥ 0, k ∈ D. (2.11)

This model can be linearized by replacing set of conditional constraints (2.10)
with big M constraints, where Mi is a big enough constant, for i ∈ N .

(RL-ℓ1-M) min
d∑

k=1

(w+
k + w−

k ) + C

(
n∑

i=1

ξi + 2

n∑
i=1

zi

)
s.t. (2.2), (2.3), (2.11),

yi

(
d∑

k=1

(w+
k − w−

k )xik + b

)
≥ 1− ξi −Mizi, i ∈ N. (2.12)

2.3.1 Tightening bounds of www-variables

In the previous section, Proposition 2.2 provided valid values Mi, for
i ∈ N, depending on ∥w∥p̄. Below, we develop two strategies to obtain these
values considering p̄ = 1 and p̄ = ∞, respectively. To do so, we will obtain
bounds for the w-variables that will be included in the model to strengthen
the formulation.

2.3.1 Initial big M parameters

Note that by Proposition 2.2, using q̄ = 1 and p̄ = ∞, we can consider
Mi = dist1i · UBRL-ℓ1 as the initial value of Mi, for i ∈ N , where dist1i =

max
j∈N

{∥xi − xj∥1 : yi = yj} and UBRL-ℓ1 is an upper bound of (RL-ℓ1-M).
Since ∥w∥∞ ≤ ∥w∥1 and UBRL-ℓ1 is an upper bound of ∥w∥1, we have that
∥w∥∞ ≤ ∥w∥1 ≤ UBRL-ℓ1 . Furthermore, an upper bound of (RL-ℓ1-M) can be
easily obtained from a feasible solution (w̃+, w̃−, b̃, ξ̃, z̃), built from the optimal
solution of (SVM-ℓ1), (wSVM, bSVM, ξSVM), establishing that b = bSVM,

w̃+
k =

wSVM
k , if wSVM

k ≥ 0,

0, otherwise,
for k ∈ D,
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w̃−
k =

−wSVM
k , if wSVM

k ≤ 0,

0, otherwise,
for k ∈ D,

ξ̃i =

ξSVM
i , if ξSVM

i ≤ 2,

0, otherwise,
for i ∈ N,

z̃i =

0, if ξSVM
i ≤ 2,

1, otherwise,
for i ∈ N.

This upper bound could be improved using the information given by z̃ values
to obtain the following model:

(SVM-ℓ1)z̃ min
d∑

k=1

(w+
k + w−

k ) + C

 ∑
i∈N :z̃i=0

ξi


s.t. (2.11),

yi

(
d∑

k=1

(w+
k − w−

k )xik + b

)
≥ 1− ξi, i ∈ N : z̃i = 0,

0 ≤ ξi ≤ 2, i ∈ N : z̃i = 0.

The solution of this linear problem (w̄+, w̄−, b̄, ξ̄) together with z̃ val-
ues constitute a feasible solution for (RL-ℓ1-M) that provides a better upper
bound, UBRL-ℓ1 . With this new upper bound, the value of Mi can be updated.

In Variant 1 of Algorithm 2.1, we give a pseudocode with a strategy to
obtain a valid value of Mi, for i ∈ N . The main purpose of this algorithm is
to solve a set of linear problems in order to compute a tightened upper bound
of ∥w∥∞ (Steps 5-7). Consequentially, we obtain bounds for the w-variables
and add them to the problem improving the formulation (Step 8).

On the other hand, if we use q̄ = ∞ and p̄ = 1, the initial value of Mi for
i ∈ N would be

(
max
j∈N

{∥xi − xj∥∞ : yi = yj}
)

UBRL-ℓ1 , because UBRL-ℓ1 is an

upper bound of ∥w∥1. In order to improve this bound, we propose a strategy
which is summarized in Variant 2 of Algorithm 2.1, the first step of which is
to compute the initial values for the big M parameters. Next, we compute a
tightened bound of ∥w∥1, thus solving a linear programming problem (Step 10
of Algorithm 2.1).

Observe that in both variants of Algorithm 2.1, the initial values of the
big M parameters are computed as Mi = dist∞i · UBRL-ℓ1 , where dist∞i =

max
j∈N

{∥xi − xj∥∞ : yi = yj}, because dist∞i ≤ dist1i as well as UBRL-ℓ1 is an
upper bound of ∥w∥∞ and ∥w∥1.
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Chapter 2. Exact approaches for Support Vector Machines with ramp-loss

Algorithm 2.1: Variant 1 and 2. Computation of tightened bounds
of w-variables.

Data: Training sample composed by a set of n individuals with d
features.

Result: Update values of Mi and bounds for w+
k + w−

k .

1 Solve the problem (SVM-ℓ1). From its optimal solution, build a
feasible solution of (RL-ℓ1-M), (w̃+, w̃−, b̃, ξ̃, z̃). Solve (SVM-ℓ1)z̃
and build an improved feasible solution. Update the upper bound
UBRL-ℓ1 .

2 for i ∈ N do
3 dist∞i = max

j∈N
{∥xi − xj∥∞ : yi = yj}, Mi = dist∞i · UBRL-ℓ1 .

4 case Variant 1 do
5 for k0 ∈ D do
6 Solve the following linear programming problem:

maxw+
k0

+ w−
k0

s.t. (2.2), (2.6), (2.11), (2.12),
d∑

k=1

(w+
k + w−

k ) + C

(
n∑

i=1

ξi + 2

n∑
i=1

zi

)
≤ UBRL-ℓ1 , (2.13)

0 ≤ zi ≤ 1, i ∈ N. (2.14)

7 Let UBwk0
be the optimal objective value of the above

problem.

8 Update Mi = min

{
dist1i ·max

k∈D
{UBwk} , dist∞i · UBRL-ℓ1

}
and

add the obtained bounds to the problem (RL-ℓ1-M) including
the following set of constraints:

w+
k + w−

k ≤ UBwk , k ∈ D. (2.15)

9 case Variant 2 do
10 Solve the following linear programming problem:

max
d∑

k=1

w+
k + w−

k

s.t. (2.2), (2.6), (2.11) − (2.14).
Let UBw be the optimal objective value of the above problem.

11 Update Mi = dist∞i · UBw and add the obtained bounds to the
problem (RL-ℓ1-M) including the following set of constraints:

w+
k + w−

k ≤ UBw, k ∈ D. (2.16)

A detailed comparison between the performance of both strategies is car-
ried out in Section 2.5. In general, the resolution time of this algorithm will be
lower when using Variant 2 because it solves fewer problems in each iteration.
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2.3.2 A Lagrangian relaxation based procedure

Similarly to the previous strategy, this subsection aims to tighten the
bounds for the w-variables. Up to this point, the bounds on the w-variables
were computed by solving linear problems and expressed as valid inequalities,
i.e., constraints (2.15) and (2.16), using Variants 1 and 2 respectively. In the
following, we will refer to set of constraints (2.15), but the same theoretical
results can be obtained using Variant 2, i.e., including (2.16) instead of (2.15).
In this subsection, we propose a procedure that is based on the Lagragian
relaxation of (RL-ℓ1-M). Before going into detail about this strategy, note
that the linear relaxation of (RL-ℓ1-M) is

(LP-RL-ℓ1) min
d∑

k=1

(w+
k + w−

k ) + C

(
n∑

i=1

ξi + 2

n∑
i=1

zi

)
s.t. (2.2), (2.6), (2.11), (2.12), (2.14), (2.15).

We will build two new models based on the previous one, seeing as this
will be necessary for the next technical result that will be used in Theorem 2.1
to provide bounds on the w-variables using Lagrangian relaxations. Given a
value of w̃+

k0
> 0, for k0 ∈ D, we obtain the following equivalent model to

(LP-RL-ℓ1) by making the changes of variables: w̄+
k0

= w+
k0

− w̃+
k0
, w̄+

k = w+
k ,

for k ∈ D\{k0}, and w̄−
k = w−

k , for k ∈ D. The resulting formulation is named
(LP-RL-ℓ1)+k0

:

min
d∑

k=1

(w̄+
k + w̄−

k ) + C

(
n∑

i=1

ξ̄i + 2

n∑
i=1

z̄i

)
+ w̃+

k0

s.t. yi

(
d∑

k=1

(w̄+
k − w̄−

k )xik + b̄

)
≥1− ξ̄i − yiw̃

+
k0
xik0−Miz̄i, i ∈ N, (2.17)

ξ̄i ≤ 2(1− z̄i), i ∈ N, (2.18)

w̄+
k + w̄−

k ≤ UBwk , k ∈ D, (2.19)

0 ≤ ξ̄i ≤ 2, i ∈ N, (2.20)

0 ≤ z̄i ≤ 1, i ∈ N, (2.21)

w̄+
k ≥ 0, k ∈ D\{k0}, (2.22)

w̄+
k0

≥ −w̃+
k0
, (2.23)

w̄−
k ≥ 0, k ∈ D. (2.24)

Similarly, given a value of w̃−
k0

> 0, for k0 ∈ D, the following equivalent
model to (LP-RL-ℓ1) is obtained by changing of variables w̄−

k0
= w−

k0
− w̃−

k0
,
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w̄+
k = w+

k , for k ∈ D, and w̄−
k = w−

k , for k ∈ D \ {k0}, named (LP-RL-ℓ1)−k0
:

min
d∑

k=1

(w̄+
k + w̄−

k ) + C

(
n∑

i=1

ξ̄i + 2
n∑

i=1

z̄i

)
+ w̃−

k0

s.t. (2.18) − (2.21),

yi

(
d∑

k=1

(w̄+
k − w̄−

k )xik + b̄

)
≥1− ξ̄i + yiw̃

−
k0
xik0−Miz̄i, i ∈ N, (2.25)

w̄+
k ≥ 0, k ∈ D, (2.26)

w̄−
k ≥ 0, k∈D\{k0}, (2.27)

w̄−
k0

≥ −w̃−
k0
. (2.28)

Lemma 2.1. The following statements hold:

i) Let (w̄+∗
, w̄−∗

, b̄∗, ξ̄∗, z̄∗) be an optimal solution of (LP-RL-ℓ1)+k0
with

w̄+∗

k0
= 0 for k0 ∈ D, with Z+

k0
being its objective value, and ᾱ+ a vector

of optimal values for the dual variables associated with constraints (2.17).
If (w̄+′

, w̄−′
, b̄′, ξ̄′, z̄′) is an optimal solution of (LP-RL-ℓ1)+k0

restricting
w̄+

k0
= ŵ+

k0
, where ŵ+

k0
> −w̃+

k0
, and Z+

k̂0
its objective value, then:

Z+
k0

+ ŵ+
k0

(
1−

n∑
i=1

ᾱ+
i yixik0

)
≤ Z+

k̂0
. (2.29)

ii) Let (w̄+∗
, w̄−∗

, b̄∗, ξ̄∗, z̄∗) be an optimal solution of (LP-RL-ℓ1)−k0
with

w̄−∗

k0
= 0, for k0 ∈ D, with Z−

k0
being its objective value, and ᾱ− a vector

of optimal values for the dual variables associated with constraints (2.25).
If (w̄+′

, w̄−′
, b̄′, ξ̄′, z̄′) is an optimal solution of (LP-RL-ℓ1)−k0

restricting
w̄−

k0
= ŵ−

k0
, where ŵ−

k0
> −w̃−

k0
, and Z−

k̂0
its objective value, then:

Z−
k0

+ ŵ−
k0

(
1 +

n∑
i=1

ᾱ−
i yixik0

)
≤ Z−

k̂0
. (2.30)

Proof:
i) Let ᾱ+ be the vector of optimal values for the dual variables associated

with family of constraints (2.17) for (LP-RL-ℓ1)+k0
. By the complementary

slackness conditions, it holds that:

Z+
k0

=

d∑
k=1

(
w̄+∗

k + w̄−∗

k

)
+ C

(
n∑

i=1

ξ̄∗i + 2

n∑
i=1

z̄∗i

)
+ w̃+

k0

+

n∑
i=1

ᾱ+
i

(
1− ξ̄∗i − yiw̃

+
k0
xik0 −Miz̄

∗
i − yi

d∑
k=1

(
w̄+∗

k − w̄−∗

k

)
xik − yib̄

∗

)
.
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Since w̄+∗

k0
= 0, this variable can be removed from the summations, giving:

Z+
k0

=

d∑
k=1,k ̸=k0

w̄+∗

k +

d∑
k=1

w̄−∗

k + C

(
n∑

i=1

ξ̄∗i + 2

n∑
i=1

z̄∗i

)
+ w̃+

k0

+
n∑

i=1

ᾱ+
i

1− ξ̄∗i − yiw̃
+
k0

xik0
−Miz̄

∗
i − yi

 d∑
k=1,k ̸=k0

w̄+∗

k xik −
d∑

k=1

w̄−∗

k xik

− yib̄
∗

.
(2.31)

Alternatively, the (LP-RL-ℓ1)+k0
model with additional constraint w̄+

k0
= ŵ+

k0
,

and in which the family of constraints (2.17) has been dualized, with αi ≥ 0

for any i ∈ N , is the following:

min
d∑

k=1

(
w̄+

k + w̄−
k

)
+ C

(
n∑

i=1

ξ̄i + 2

n∑
i=1

z̄i

)
+ w̃+

k0

+

n∑
i=1

αi

(
1− ξ̄i − yiw̃

+
k0
xik0 −Miz̄i − yi

d∑
k=1

(
w̄+

k − w̄−
k

)
xik − yib̄i

)
s.t. (2.18) − (2.22), (2.24),

w̄+
k0

= ŵ+
k0
.

Thus, by extracting the coefficients of ŵ+
k0

from the summations, this problem
can be rewritten as follows, named (Lg-RL-ℓ1)+k0

:

min
d∑

k=1,k ̸=k0

w̄+
k +

d∑
k=1

w̄−
k + C

(
n∑

i=1

ξ̄i + 2

n∑
i=1

z̄i

)
+ ŵ+

k0

(
1−

n∑
i=1

αiyixik0

)
+

n∑
i=1

αi

1− ξ̄i − yiw̃
+
k0
xik0 −Miz̄i − yi

 d∑
k=1,k ̸=k0

w̄+
k xik−

d∑
k=1

w̄−
k xik

−yib̄i


+w̃+

k0

s.t. (2.18) − (2.22), (2.24).

Observe that (w̄+∗
, w̄−∗

, b̄∗, ξ̄∗, z̄∗), an optimal solution of (LP-RL-ℓ1)+k0
,

is feasible for the problem above, since all constraints of (Lg-RL-ℓ1)+k0
are

included in the former. Moreover, any feasible solution of (Lg-RL-ℓ1)+k0
, taking

w̄+
k0

= 0, is feasible for (LP-RL-ℓ1)+k0
where family of constraints (2.17) has

been dualized. Therefore, for α = ᾱ+, using (2.31), the optimal objective

value of (Lg-RL-ℓ1)+k0
is Z+

k0
+ ŵ+

k0

(
1−

n∑
i=1

ᾱ+
i yixik0

)
. Since (Lg-RL-ℓ1)+k0

is

a Lagrangian relaxation of (LP-RL-ℓ1)+k0
with the additional constraint w̄+

k0
=

ŵ+
k0

, then the optimal objective value of (Lg-RL-ℓ1)+k0
is a lower bound of Z+

k̂0
.

Result ii) is proven by following the same argument as i).
�
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By applying the lemma above, we obtain the following theorem which
provides the bounds of the w-variables.

Theorem 2.1. Under the hypothesis of Lemma 2.1 we obtain the following
bounds of the w-variables for the (RL-ℓ1-M) problem:

w+
k0

≤ UB
w+

k
:=

UBRL-ℓ1 − Z+
k0

1−
∑n

i=1 ᾱ
+
i yixik0

+ w̃+
k0
,

w−
k0

≤ UB
w−

k
:=

UBRL-ℓ1 − Z−
k0

1 +
∑n

i=1 ᾱ
−
i yixik0

+ w̃−
k0
,

where UBRL-ℓ1 is an upper bound of (RL-ℓ1-M).

Proof:
An equivalent model (LP-RL-ℓ1)+k0

(
(LP-RL-ℓ1)−k0

)
)

can be built from
an optimal solution of (LP-RL-ℓ1), i.e., (w+∗

, w−∗
, b∗, ξ∗, z∗) that satisfies

that w+
k0

∗
= w̃+

k0

(
w−

k0

∗
= w̃−

k0

)
. In this situation, both models have the same

optimal objective value. Since model (LP-RL-ℓ1) is the linear relaxation of
model (RL-ℓ1-M), an upper bound of the latter would be an upper bound of
former. Thusly, if the objective value of an optimal solution of (LP-RL-ℓ1)+k0

restricting w̄+
k0

= ŵ+
k0

(
(LP-RL-ℓ1)−k0

restricting w̄−
k0

= ŵ−
k0

)
is bigger than

UBRL-ℓ1 , the value w̄+
k0

= ŵ+
k0

(
w̄−

k0
= ŵ−

k0

)
can be discarded as an optimal

solution of (RL-ℓ1-M). This is because any solution with this value will provide
a solution with an objective value that is worse than UBRL-ℓ1 . Therefore, we
can restrict ourselves to the values of ŵ+

k0

(
ŵ−

k0

)
in such a way that Z+

k̂0
≤

UBRL-ℓ1

(
Z−

k̂0
≤ UBRL-ℓ1

)
. Thus, according to Lemma 2.1, w̄+

k0

(
w̄−

k0

)
satisfies:

w̄+
k0

≤
UBRL-ℓ1 − Z+

k0

1−
∑n

i=1 ᾱ
+
i yixik0

, w̄−
k0

≤
UBRL-ℓ1 − Z+

k0

1 +
∑n

i=1 ᾱ
+
i yixik0

.

We therefore obtain the upper bounds for the w-variables of problem (RL-ℓ1-M)
by undoing the changes of the variables are obtained. �

The resulting bounds will be included in the formulation of the problem
as the following set of constraints:

w+
k ≤ UB

w+
k
, k ∈ D, (2.32)

w−
k ≤ UB

w−
k
, k ∈ D. (2.33)

These bounds for the w-variables will be used in the next section to obtain
tightened values of big M parameters in the models.

2.3.2 Tightening values of big M parameters

The previous strategies were based on tightening the bounds for the w-
variables. In this subsection, we will take advantage of these bounds to obtain
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tightened bounds of the big M parameters by solving linear programming
problems.

First, we present a result which, for a given i ∈ N, provides a valid value
of the big M parameter when solving a linear problem. Note that in this
subsection we will refer to set of constraints (2.15), but the same theoretical
results can be obtained using Variant 2 of Algorithm 2.1, i.e., including (2.16)
instead.

Proposition 2.3. If Mi, for all i ∈ N, is greater than or equal to the optimal
objective value of the following linear problem, provided it is not unbounded:

(UBMi) max 1− ξi − yi

(
d∑

k=1

(w+
k − w−

k )xik + b

)
s.t. (2.2), (2.6), (2.11) − (2.15), (2.32), (2.33),

then problems (RL-ℓ1) and (RL-ℓ1-M) are equivalent.

Proof:
It holds directly from (2.12) taking the maximum. �

In datasets with a large number of individuals, solving a linear problem
for each i ∈ N would be an inefficient computation. Thus, we now prove a
result that allows us to obtain a valid value for the big M parameter associated
with each individual of each class, thereby solving two linear problems.

Proposition 2.4. Problems (RL-ℓ1) and (RL-ℓ1-M) are equivalent if the fol-
lowing statements hold:

i) For all i ∈ N, when yi = +1, Mi is greater than or equal to the op-
timal objective value of the following linear problem, provided it is not
unbounded:(

UBM+

)
max 1−

(
d∑

k=1

w+
k x+k −

d∑
k=1

w−
k x̄+k + b

)
s.t. (2.2), (2.6), (2.11) − (2.15), (2.32), (2.33),

where x+k = min
i∈N.

{xik : yi = +1} and x̄+k = max
i∈N.

{xik : yi = +1}, for
k ∈ D.

ii) For all i ∈ N, when yi = −1, Mi is greater than or equal to the op-
timal objective value of the following linear problem, provided it is not
unbounded:(

UBM−

)
max 1 +

(
d∑

k=1

w+
k x̄−k −

d∑
k=1

w−
k x−k + b

)
s.t. (2.2), (2.6), (2.11) − (2.15), (2.32), (2.33),
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where x̄−k = max
i∈N.

{xik : yi = −1} and x−k = min
i∈N

{xik : yi = −1}, for
k ∈ D.

Proof:
For each k ∈ D and i ∈ N, when yi = +1, the following inequalities are

satisfied: w+
k xik ≥ w+

k x+k and −w−
k xik ≥ −w−

k x̄+k. Taking the summation in
k, we have:

1−

(
d∑

k=1

(w+
k − w−

k )xik + b

)
≤ 1−

(
d∑

k=1

w+
k x+k −

d∑
k=1

w−
k x̄+k + b

)
, for i ∈ N.

(2.34)
Since 0 ≤ ξi ≤ 2, for i ∈ N when yi = +1, we can conclude that:

1−ξi−

(
d∑

k=1

(w+
k − w−

k )xik + b

)
≤1−

(
d∑

k=1

w+
k x+k −

d∑
k=1

w−
k x̄+k + b

)
, for i ∈N.

Therefore, the optimal solution of problem
(
UBM+

)
is an upper bound of

problem (UBMi) for i ∈ N when yi = +1. Similarly, it can be proven that the
optimal solution of problem

(
UBM−

)
is an upper bound of problem (UBMi)

for i ∈ N when yi = −1. Therefore, in accordance with Proposition 2.3 the
result holds. �

Proposition 2.4 provides a strategy to obtain valid values for the big M
parameters. Obviously these values will be less tightened than the ones result-
ing from the application of Proposition 2.3, but they can be obtained more
quickly. In order to find an equilibrium between computational costs and the
tightness of the big M values in a dataset that contains a large number of
individuals, we propose the strategy which follows. First, we cluster individ-
uals of the same class in such a way that individuals in the same cluster have
certain similarities. This can be done using the “k-median” or the “k-means”
algorithms in each class. Let C+, C− be the set of clusters of class 1 and class
−1 respectively. The number of clusters, i.e., the cardinality of sets C+ and
C− will be a parameter selected by the modeler and it should be adapted
to the data. Then, for each cluster, c+ ∈ C+ and c− ∈ C−, we apply the
proposition below. The proof thereof has been omitted due to its similarity to
Proposition 2.4.

Proposition 2.5. Problems (RL-ℓ1) and (RL-ℓ1-M) are equivalent if the fol-
lowing statements hold:

i) For all i ∈ c+ with c+ ∈ C+, Mi is greater than or equal to the op-
timal objective value of the following linear problem, provided it is not
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unbounded:(
UBMc+

)
max 1−

(
d∑

k=1

w+
k xc+k −

d∑
k=1

w−
k x̄c+k + b

)
s.t. (2.2), (2.6), (2.11) − (2.15), (2.32), (2.33),

where xc+k = min
i∈c+

{xik} and x̄c+k = max
i∈c+

{xik}, for k ∈ D.

ii) For all i ∈ c− with c− ∈ C−, Mi is greater than or equal to the op-
timal objective value of the following linear problem, provided it is not
unbounded:(

UBMc−

)
max 1 +

(
d∑

k=1

w+
k x̄c−k −

d∑
k=1

w−
k xc−k + b

)
s.t. (2.2), (2.6), (2.11) − (2.15), (2.32), (2.33),

where x̄c−k = max
i∈c−

{xik} and xc−k = min
i∈c−

{xik}, for k ∈ D.

Comparatively tighter values of the big M parameters will be obtained
by applying Proposition 2.5 instead of Proposition 2.4, but it solves fewer
problems than Proposition 2.3. Thus, the best strategy will vary depending
on the dataset. We will compare them in Section 2.5.

The results of previous propositions can be summarized in Algorithm 2.2
which is described as a pseudocode. In order to avoid unboundedness in the
proposed models, we put forward the strategy that follows. One of the two
variants of Algorithm 2.1 is applied in the first step, with the goal of updating
the values of the big M parameters and the bounds on the w-variables. In
the next steps, upper and lower bounds for the b-variable are obtained and
included in the model. Next, the iterative procedure starts with the solution of
problem (LP-RL-ℓ1) in Step 4. A new model is built from an optimal solution
of this problem and it is solved by applying the required transformations in
such a way that its optimal solution verifies the hypothesis of Theorem 2.1.
Hence, Theorem 2.1 is applied to obtain new bounds. After that, the bounds
are updated and Steps 2 and 3 are repeated.

The direct procedure is executed next. Said procedure leads to three vari-
ants of the algorithm: Variant I (Steps 5-7) applies Proposition 2.3, obtaining
valid values of the big M parameters and solving a linear problem for each
individual of the data set; Variant II (Steps 8-10) applies Proposition 2.4, in
which only two linear problems are solved; finally, Variant III (Steps 11-16)
applies Proposition 2.5, in which the number of linear problems solved will be
selected by the modeler, depending on the number of clusters (different strate-
gies for subdividing the data into clusters can be followed – the performance
of the “k-median” and the “k-means” algorithms are tested in Section 2.5).
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Algorithm 2.2: Variant I, II, and III. Computation of tightened
values of big M parameters in (RL-ℓ1-M).

Data: Training sample composed by a set of n individuals with d
features.

Result: Update values of Mi, UB
w+

k
,UB

w−
k
, and obtain bounds for

b: LBb and UBb.
1 Apply Variant 1 or 2 of Algorithm 2.1.
2 Obtain lower LBb and upper bounds UBb of the b-variable solving

the linear problems that follows. Note that if Variant 2 of
Algorithm 2.1 was used in Step 1, set of constraints (2.15) should be
replaced by (2.16).

max/min b

s.t. (2.2), (2.6), (2.11) − (2.15).

3 Include the following constraint in the formulation of the problem:
LBb ≤ b ≤ UBb. (2.35)

do
4 Solve the required problems to apply Theorem 2.1 and update

w-bounds (UB
w+

k
and UB

w−
k

). Repeat Steps 2 and 3 including
constraints (2.32) and (2.33).

5 case Variant I do
6 for i ∈ N do
7 Update Mi as the optimal value of the problem

(UBMi)+(2.35).

8 case Variant II do
9 For i ∈ N, when yi = 1, update Mi as the optimal value of the

problem
(
UBM+

)
+(2.35).

10 For i ∈ N, when yi = −1, update Mi as the optimal value of
the problem

(
UBM−

)
+(2.35).

11 case Variant III do
12 Cluster the individuals of each class (applying the k-median or

the k-means algorithm). Let C+, C− be the set of clusters of
class 1 and class −1 respectively.

13 for c+ ∈ C+ do
14 Update Mi, for i ∈ c+, as the optimal value of the problem(

UBMc+

)
+(2.35).

15 for c− ∈ C− do
16 Update Mi, for i ∈ c−, as the optimal value of the problem(

UBMc−

)
+(2.35).

17 while an improvement of the bounds is obtained;
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2.4 Strategies for the ℓ2ℓ2ℓ2-norm case
In this section, we analyze the ramp loss model whilst considering the

ℓ2-norm. We propose strategies to find valid values of the big M parameters,
with the objective of enhancing the formulation.

The problem is formulated as follows:

(RL-ℓ2) min 1

2

d∑
k=1

w2
k + C

(
n∑

i=1

ξi + 2

n∑
i=1

zi

)
s.t. (2.1) − (2.3).

As in the ℓ1-norm case, the constraints could be linearized by using a big
enough constant Mi in (2.1). As a result, we obtain the following quadratic
model:

(RL-ℓ2-M) min 1

2

d∑
k=1

w2
k + C

(
n∑

i=1

ξi + 2
n∑

i=1

zi

)
s.t. (2.2) − (2.4).

Proposition 2.2 is still valid for obtaining certain values of the big M
parameters for formulation (RL-ℓ2-M). We therefore present a corollary that
follows on from Proposition 2.2. It allows us to compute an initial valid value
of the big M parameters. These are based on an upper bound on the UBRL-ℓ2

model. An upper bound can be easily built from the optimal solution of
problem (SVM-ℓ2), denoted by (w̃, b̃, ξ̃, z̃), following a similar procedure to the
one described in Section 2.3.1.

Moreover, this upper bound could be improved by using the information
given by z̃ values to obtain the following model:

(SVM-ℓ2)z̃ min 1

2

d∑
k=1

w2
k + C

 ∑
i∈N :z̃i=0

ξi


s.t. yi

(
d∑

k=1

wkxik + b

)
≥ 1− ξi, i ∈ N : z̃i = 0,

0 ≤ ξi ≤ 2, i ∈ N : z̃i = 0.

The solution of this quadratic problem (w̄, b̄, ξ̄) together with z̃ values con-
stitute a feasible solution for (RL-ℓ2-M) that provides a better upper bound,
UBRL-ℓ2 .

Corollary 2.4.1. Taking the values for the big M parameters such that:

Mi ≥
(
max
j∈N

{∥xi − xj∥2 : yi = yj}
)√

2UBRL-ℓ2 , i ∈ N,
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then problems (RL-ℓ2) and (RL-ℓ2-M) are equivalent.

Similarly to the case of the ℓ1-norm, we present a procedure which is
based on the Lagragian relaxation to tighten the bounds for the w-variables.
In order to do that, we define the model where the integrality condition of the
z-variables has been relaxed, i.e.,

(Re-RL-ℓ2) min 1

2

d∑
k=1

w2
k + C

(
n∑

i=1

ξi + 2

n∑
i=1

zi

)
s.t. (2.2), (2.6), (2.12), (2.14).

Hence, we build a formulation which is based on the previous one, making
the following change of the variables: given a value of w̃k0 for some k0 ∈ D,

w̄k0 = wk0 − w̃k0 and w̄k = wk, for k ∈ D \ {k0}. We therefore obtain the
following reformulation of the problem above, named (Re-RL-ℓ2)k0 :

min 1

2

d∑
k=1

w̄2
k + C

(
n∑

i=1

ξ̄i + 2

n∑
i=1

z̄i

)
+

1

2
w̃2

k0
+ w̃k0 w̄k0

s.t. (2.18), (2.20), (2.21),

yi

(
d∑

k=1

w̄kxik + b̄

)
≥ 1− ξ̄i − yiw̃k0xik0 −Miz̄i, i ∈ N. (2.36)

Theorem 2.2. Let (w̄∗, b̄∗, ξ̄∗, z̄∗) be an optimal solution of (Re-RL-ℓ2)k0 ,

with w̄∗
k0

= 0, Zk0 being its objective value, and ᾱ a vector of the optimal
values for the dual variables associated with constraints (2.36). If (w̄′, b̄′, ξ̄′, z̄′)
is an optimal solution of (Re-RL-ℓ2)k0 restricting w̄k0 = ŵk0 , where ŵk0 is a
constant value and Zk̂0

is its objective value, then:

Zk0 + ŵk0

(
1

2
ŵk0 + w̃k0 −

n∑
i=1

ᾱiyixik0

)
≤ Zk̂0

. (2.37)

Proof:
Let ᾱ be the vector of optimal values for the dual variables associated with

family of constraints (2.36) of problem (Re-RL-ℓ2)k0 . By applying Proposition
3.4.2 of Bertsekas (1999), it holds that:

Zk0 =
1

2

d∑
k=1

w̄∗
k
2 + C

(
n∑

i=1

ξ̄i
∗
+ 2

n∑
i=1

z̄∗i

)
+

1

2
w̃2

k0
+ w̃k0 w̄

∗
k0

+

n∑
i=1

ᾱi

(
1− ξ̄i

∗ − yiw̃k0xik0 −Miz̄i
∗ − yi

d∑
k=1

w̄∗
kxik − yib̄

∗

)
.
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Additionally, since w̄∗
k0

= 0, we have:

Zk0
=
1

2

d∑
k=1,k ̸=k0

w̄∗
k
2 + C

(
n∑

i=1

ξ̄i
∗
+ 2

n∑
i=1

z̄∗i

)
+

1

2
w̃2

k0

+

n∑
i=1

ᾱi

1− ξ̄i
∗− yiw̃k0

xik0
−Miz̄i

∗ − yi

d∑
k=1,k ̸=k0

w̄∗
kxik − yib̄

∗

. (2.38)

On the other hand, formulation (Re-RL-ℓ2)k0 with the additional constraint
w̄k0 = ŵk0 and where family of constraints (2.36) has been dualized is the
following:

min 1

2

d∑
k=1

w̄2
k + C

(
n∑

i=1

ξ̄i + 2
n∑

i=1

z̄i

)
+

1

2
w̃2

k0
+ w̃k0 w̄k0

+

n∑
i=1

αi

(
1− ξ̄i − yiw̃k0xik0 −Miz̄i − yi

d∑
k=1

w̄kxik − yib̄

)
s.t. (2.18) − (2.21),

w̄k0 = ŵk0 ,

where αi ≥ 0. Therefore, this problem can be rewritten as follows, named
(Lg-RL-ℓ2)k0 :

min 1

2

d∑
k=1,k ̸=k0

w̄k
2 + C

(
n∑

i=1

ξ̄i + 2

n∑
i=1

z̄i

)
+ ŵk0

(
1

2
ŵk0 + w̃k0 −

n∑
i=1

αiyixik0

)

1

2
w̃2

k0
+

n∑
i=1

αi

1− ξ̄i − yiw̃k0xik0 −Miz̄i − yi

d∑
k=1,k ̸=k0

w̄kxik − yib̄


s.t. (2.18) − (2.21).

Note that (w̄∗, b̄∗, ξ̄∗, z̄∗), an optimal solution of (Re-RL-ℓ2)k0 , is fea-
sible for the problem above. Additionally, any feasible solution of prob-
lem (Lg-RL-ℓ2)k0 , when taking w̄k0 = 0, is feasible for (Re-RL-ℓ2)k0 where
family of constraints (2.36) has been dualized. Therefore, for α = ᾱ and
when using (2.38), the optimal objective value of the problem above is Zk0 +

ŵk0

(
1

2
ŵk0 + w̃k0 −

n∑
i=1

ᾱiyixik0

)
. This is a lower bound of the optimal value

of (Re-RL-ℓ2)k0 with the additional constraint that w̄k0 = ŵk0 .

�

Given the theorem above, we obtain Corollary 2.4.2, which provides bounds
for the w-variables.
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Corollary 2.4.2. Under the hypothesis of Theorem 2.2, we obtain the follow-
ing bounds of the w-variables for the (Re-RL-ℓ2) problem:

wk0 ≥ LBwk0
:=

n∑
i=1

ᾱiyixik0 −

√√√√(w̃k0 −
n∑

i=1

ᾱiyixik0

)2

− 2 (Zk0 − UBRL-ℓ2),

wk0 ≤ UBwk0
:=

n∑
i=1

ᾱiyixik0+

√√√√(w̃k0 −
n∑

i=1

ᾱiyixik0

)2

− 2 (Zk0 − UBRL-ℓ2),

where UBRL-ℓ2 is an upper bound of (RL-ℓ2-M).

Proof:
An equivalent model (Re-RL-ℓ2)k0 can be built from an optimal solution of

(Re-RL-ℓ2), (w∗, b∗, ξ∗, z∗), which satisfies that wk0
∗ = w̃k0 . In this situation,

both models have the same optimal objective value. Since model (Re-RL-ℓ2)
is the relaxation of model (RL-ℓ2-M), an upper bound of (RL-ℓ2-M) would
be an upper bound of (Re-RL-ℓ2). Thus, if the objective value of an optimal
solution of (Re-RL-ℓ2)k0 restricting w̄k0 = ŵk0 is bigger than UBRL-ℓ2 , the
value w̄k0 = ŵk0 can be discarded as optimal solution of (RL-ℓ2-M). This is
because any solution with this value will provide a solution whose objective
value is worse than UBRL-ℓ2 . Therefore, we can restrict ourselves to the values
of ŵk0 in such a way that Zk̂0

≤ UBRL-ℓ2 . Therefore, according to Theorem 2.2,
it holds that:

Zk0 + w̄k0

(
1

2
w̄k0 + w̃k0 −

n∑
i=1

ᾱiyixik0

)
≤ UBRL-ℓ2 .

Therefore, w̄k0 verifies:

n∑
i=1

ᾱiyixik0 − w̃k0 −

√√√√(w̃k0 −
n∑

i=1

ᾱiyixik0

)2

− 2 (Zk0 − UBRL-ℓ2) ≤ w̄k0 ,

w̄k0 ≤
n∑

i=1

ᾱiyixik0 − w̃k0 +

√√√√(w̃k0 −
n∑

i=1

ᾱiyixik0

)2

− 2 (Zk0 − UBRL-ℓ2).

Taking into account that w̄k0 = wk0 − w̃k0 , the result is obtained. �

As a consequence of the previous result and having computed the foregoing
bounds for the w-variables, we include the following set of constraints in the
formulation of problem (RL-ℓ2-M):

LBwk ≤ wk ≤ UBwk , k ∈ D. (2.39)
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In the following, we present a result that allows us to compute valid values
for the big M parameters, thus solving a problem for each instance of the
dataset.

Proposition 2.6. Problems (RL-ℓ2) and (RL-ℓ2-M) are equivalent if, for all
i ∈ N, Mi is greater than or equal to the optimal objective value of the following
problem, provided it is not unbounded:(

UB ℓ2
Mi

)
max 1− ξi − yi

(
d∑

k=1

wkxik + b

)
s.t. (2.2), (2.4), (2.14), (2.39),

1

2

d∑
k=1

w2
k + C

(
n∑

ℓ=1

ξℓ + 2

n∑
ℓ=1

zℓ

)
≤ UBRL-ℓ2 . (2.40)

Proof:
It holds directly from (2.4) taking the maximum. �

Although the previous result provides tightened values of the big M pa-
rameters, solving a problem for each individual of the dataset tends to be
inefficient. Hence, given a partition of the individuals, in the following re-
sult we present a strategy that allows us to obtain valid values of the big M
parameters for individuals in the same element of that partition.

Proposition 2.7. Problems (RL-ℓ2) and (RL-ℓ2-M) are equivalent if the fol-
lowing statements hold:

i) For all i ∈ c+, where c+ is a subset of the individuals with yi = +1, Mi

is greater than or equal to the optimal objective value of the following
problem, provided it is not unbounded:(

UB ℓ2
Mc+

)
max 1 +

d∑
k=1

vk|x̄c+k| − b

s.t. (2.2), (2.4), (2.14), (2.39), (2.40),

− wk ≤ vk, k ∈ D, (2.41)

wk ≤ vk, k ∈ D, (2.42)

vk ≤ max{|LBwk |, |UBwk |}, k ∈ D, (2.43)

where |x̄c+k| = max
i∈c+.

{|xik|}, for k ∈ D.

ii) For all i ∈ c−, where c− is a subset of the individuals with yi = −1, Mi

is greater than or equal to the optimal objective value of the following
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problem, provided it is not unbounded:(
UB ℓ2

Mc−

)
max 1 +

d∑
k=1

vk|x̄c−k|+ b

s.t. (2.2), (2.4), (2.14), (2.39) − (2.43),

where |x̄c−k| = max
i∈c−.

{|xik|}, for k ∈ D.

Proof:
For each k ∈ D and i ∈ c+ when yi = +1, the following inequalities are

satisfied: −wkxi0k ≤ |wk||x̄c+k|. Taking the summation in k, we have:

1−

(
d∑

k=1

wkxik + b

)
≤ 1 +

(
d∑

k=1

|wk||x̄c+k| − b

)
, for i ∈ c+. (2.44)

Since 0 ≤ ξi ≤ 2, for i ∈ c+ and the v-variables model the absolute value
of the w-variables, we can conclude:

1− ξi −

(
d∑

k=1

wkxi0k + b

)
≤ 1 +

(
d∑

k=1

vk|x̄c+k| − b

)
, for i ∈ c+.

Therefore, the optimal solution of problem
(

UB ℓ2
Mc+

)
is an upper bound

of problem
(

UB ℓ2
Mi0

)
, for i ∈ c+. Similarly, it can be proven that the optimal

solution of problem
(

UB ℓ2
Mc−

)
is an upper bound of problem

(
UB ℓ2

Mi0

)
, for

i ∈ c−. Therefore, according to Proposition 2.6, the result holds.
�

All the results of this section can be summarized in a strategy to solve the
(RL-ℓ2-M) model. Said strategy is described below in Algorithm 2.3. Similarly
to Algorithm 2.2, Algorithm 2.3 has three different variants, depending on the
procedure chosen to compute the big M parameters. Variant I solves a problem
for each individual of the dataset. Variant II solves two problems (one for the
individuals of class yi = +1 and another for the individuals of class yi = −1).
In Variant III, the individuals are subdivided into clusters and a problem is
solved for each cluster.

Observe that in Algorithm 2.3, unlike Algorithm 2.2, if we consider clus-
ters containing just one individual of the dataset, the values of the big M
parameters obtained in Variant III are not the same as those obtained in Vari-
ant I. This is because the w-variables are free and the bound is found on the
addend |wkxik| , for i ∈ N, k ∈ D. However, with the ℓ1-norm, the positive
and negative values of the w-variables are identified with w+

k and w−
k respec-

tively. This means that we are able to find the bound for the addend wkxik,

for i ∈ N, k ∈ D. In fact, in the tested datasets, the strategy of Proposition 2.7
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Algorithm 2.3: Variant I, II, and III. Computation of tightened values
of big M parameters in (RL-ℓ2-M).

Data: Training sample: n elements and d features.
Result: Update values of Mi, i ∈ N and obtain bounds for

wk, k ∈ D and b.
1 Solve the problem (SVM-ℓ2). From its optimal solution (w̃, b̃, ξ̃, z̃),

build a feasible solution of (RL-ℓ2-M). Solve (SVM-ℓ2)z̃ and build
an improved feasible solution. Update the upper bound UBRL-ℓ2 .

2 for i ∈ N do
3 dist2i = max

j∈N
{∥xi − xj∥2 : yi = yj}, Mi = dist2i ·

√
2UBRL-ℓ2 .

4 Set LBwk = −
√

2UBRL-ℓ2 and UBwk =
√

2UBRL-ℓ2 .
5 do
6 for k0 ∈ D do
7 Obtain tighter values of w-bounds solving the following

quadratic problems:max/min wk0

s.t. (2.2), (2.4), (2.14), (2.39), (2.40).
From the second iteration, include constraint (2.45) in the
previous problem.

8 Obtain lower and upper bounds for b-variable, i.e., UBb and LBb

solving the following problems:
max/min b

s.t. (2.2), (2.4), (2.14), (2.39), (2.40).

9 Include the following constraint in the formulation of the
problem: LBb ≤ b ≤ UBb. (2.45)
Solve the problem (Re-RL-ℓ2) +(2.45), build
(Re-RL-ℓ2)k0 + (2.45) and apply Corollary 2.4.2 to update
bounds for the w-variables: LBwk and UBwk .

10 case Variant I do
11 for i0 ∈ N do
12 Solve

(
UB ℓ2

Mi0

)
+ (2.45) and update the big M parameters.

13 case Variant II do
14 Update Mi solving

(
UB ℓ2

Mc+

)
+ (2.45) for

c+ = {i ∈ N : yi = 1} and
(

UB ℓ2
Mc−

)
+ (2.45) for

c− = {i ∈ N : yi = −1}.
15 case Variant III do
16 Subdivide the individuals of each class in clusters. Let C+, C−

be the set of clusters of class 1 and class −1 respectively.
17 for c+ ∈ C+ do
18 Update Mi, for i ∈ c+, by solving

(
UBMc+

)
+(2.45).

19 for c− ∈ C− do
20 Update Mi, for i ∈ c−, by solving

(
UBMc−

)
+(2.45).

21 while an improvement of the bounds is obtained;
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did not provide good results. Although applying the strategy only took a short
amount of time, the improvement on the big M parameters was small and in
some cases almost zero.

2.5 Computational Experiments
In this section, we present the results obtained with our computational

experiments. Specifically, we present a comparison of several solution ap-
proaches for solving the models (RL-ℓ1), (RL-ℓ1-M), (RL-ℓ2), and (RL-ℓ2-M)
using simulated and real-life datasets.

The experiments were conducted on an Intel(R) Xeon(R) W-2135 CPU
3.70 GHz 32 GB RAM computer, using CPLEX 12.7.0. in Concert Technology
C++. As done in Belotti et al. (2016), due to the presence of big M parameters,
the relative MIP tolerance and the integrality tolerance were fixed to zero. The
remaining parameters were set to their default values.

2.5.1 Data

The computational experiments were carried out on simulated and real-
life datasets. The simulated datasets used in our experiments were Type A
and Type B datasets proposed in Brooks (2011). These datasets were also
used in Carrizosa et al. (2014) and Belotti et al. (2016). The latter only
included experiments conducted on a challenging subset of instances with the
following characteristics: n=100, d=2, Type B. We used the Type A and
Type B datasets with n = 160, i.e., 160 individuals, and d = 2, 5, 10, i.e.,
2, 5, or 10 features, respectively. Furthermore, the percentage of elements
in each class of these instances is 50%. We denoted them as: n“number of
individuals”d“number of features”“Type of data”. Thusly, n160d2B signifies
that the dataset has 160 individuals, two features, and Type B data.

The real-life datasets are from the UCI repository Lichman (2013) and
from Prokhorov (2001). They are specified in Table 2.1, where n is the number
of individuals, d is the number of features and the last column states the
percentage of elements in each class. Observe that these datasets have been
used to analyze the performance of ramp loss models (see Brooks (2011);
Carrizosa et al. (2014); Huang et al. (2014)).

In the simulated and real-life datasets, the analysis uses the following
values for parameter C, as done in Brooks (2011):

C ∈ {0.01, 0.1, 1, 10, 100},

and a time limit of 7200 seconds is imposed, unless stated otherwise.
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Label Name in repository n d Class(%)
Wpbc Breast cancer Wisconsin (prognostic) 194 30 76/24
SONAR Connectionist bench (sonar, mines vs. rocks) 208 60 54/46
SPECT Cardiac Single Proton Emission Computed Tomography images 267 22 79/21
IONO Ionosphere 351 33 64/36
Wdbc Breast cancer Wisconsin (diagnostic) 569 30 63/37
WBC Breast cancer Wisconsin (original) 683 9 65/35
Ijcnn1 IJCNN 2001 Neural Network Competition 35000 22 91/9

Table 2.1. Real-life datasets.

2.5.2 Exact procedure for (RL-ℓ1ℓ1ℓ1-M)

In this section, the exact approaches proposed in Section 2.3 for solving the
(RL-ℓ1-M) formulation are tested and compared with the (RL-ℓ1) formulation.
We study the performance of different variants using several simulated and
real-life datasets. To simplify the notation, we write the name of the algorithm
followed by the chosen variant, e.g. Algorithm 2.2.1.II represents Algorithm 2.2
with Variant 1 in Step 1, i.e., we solve Algorithm 2.1 using Variant 1 and
Variant II (Steps 9 and 10). In each strategy, we also analyze the improvement
of the big M parameters. To do this, we compare the values obtained in Step
3 of Algorithm 2.1, M initial

i , with the tightened values obtained at the end
of the applied strategy, Mfinal

i , i.e., we compute the improvement of M, M’s

Impr. =
1

n

n∑
i=1

M initial
i −Mfinal

i

M initial
i

. Therefore, this measure depends on M initial
i .

As a consequence, we can only compare these values when the strategies are
applied to the same data.

We first compare two different methods for solving (RL-ℓ1-M) and one for
solving (RL-ℓ1) on simulated data: a) Algorithm 2.2.1.I, b) Algorithm 2.2.2.I,
and c) by formulating the model with indicator constraints that generate lo-
cally valid implied bound cuts. The latter method was developed by Belotti
et al. (2016) and it has been a feature of IBM-Cplex since version 12.6.1. We
used the method included in IBM-Cplex 12.7.0. This solution approach is
denoted as Ind. Const. (LIC).

The results are shown in Table 2.2, with the first column indicating the
name of the dataset and the second column the value of parameter C. The
next eight columns contain information about strategy performance and the
resolution process: the first and the fifth columns detail the improvement of
M during the procedure; the second and the sixth show the strategy time;
the third and the seventh indicate the total time, i.e., strategy time plus final
time; and the fourth and the eighth report the MIP relative GAP within the
time limit. The next groups of columns show information about the behavior
of Ind. Const. (LIC): the first column details the total time and the second is
the GAP obtained within the time limit (7200 seconds). When the problem
was solved to optimality, the strategy that took the least time is shown in bold,
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otherwise, the strategy that provided the best GAP within the time limit is
highlighted.

Data C
Algorithm 2.2.1.I Algorithm 2.2.2.I Ind. Const. (LIC)

M’s Impr. tst ttotal GAP M’s Impr. tst ttotal GAP t GAP

n1
60

d2
A

100 96.77% 1.03 2.14 0.00% 96.77% 1.19 36.19 0.00% 7207.89 52.50%
10 96.78% 1.16 2.12 0.00% 96.78% 1.17 2.17 0.00% 7215.59 57.82%
1 96.91% 1.47 1.67 0.00% 97.08% 1.44 1.64 0.00% 7207.02 70.17%

0.1 4.19% 0.63 1.35 0.00% 25.02% 1.59 5.12 0.00% 7205.92 84.81%
0.01 99.95% 0.11 0.11 0.00% 99.95% 0.11 0.11 0.00% 7208.62 82.28%

n1
60

d5
A

100 95.09% 1.20 7202.99 34.95% 95.09% 1.11 7202.82 37.04% 7233.20 58.56%
10 94.94% 1.34 7201.46 7.91% 94.94% 1.33 7206.68 5.50% 7206.77 64.85%
1 94.13% 1.58 10.02 0.00% 94.11% 1.68 9.11 0.00% 7205.77 82.05%

0.1 27.69% 1.76 3.88 0.00% 38.04% 1.91 3.59 0.00% 7214.75 73.38%
0.01 99.95% 0.11 0.11 0.00% 99.97% 0.11 0.11 0.00% 7207.12 82.05%

n1
60

d1
0A

100 93.16% 1.56 7203.39 52.42% 93.16% 1.50 7205.10 53.09% 7204.69 69.99%
10 92.89% 1.64 7216.17 44.64% 92.91% 1.42 7203.62 42.90% 7206.72 70.32%
1 91.32% 2.50 7214.95 8.78% 91.33% 2.37 7214.92 7.70% 7219.48 77.56%

0.1 9.31% 1.04 74.70 0.00% 33.01% 2.53 5.39 0.00% 7208.65 82.05%
0.01 99.80% 0.13 0.13 0.00% 100.00% 0.13 0.14 0.00% 7208.42 82.05%

n1
60

d2
B

100 55.55% 1.16 7203.32 52.15% 55.56% 1.09 7202.90 52.18% 7205.64 62.71%
10 55.56% 1.11 7203.02 5.90% 55.60% 1.03 7207.48 4.27% 7213.55 65.13%
1 55.59% 1.33 3.28 0.00% 56.00% 1.31 3.23 0.00% 7207.61 71.05%

0.1 56.57% 1.40 1.92 0.00% 60.85% 1.39 1.78 0.00% 7205.80 81.16%
0.01 96.66% 0.11 0.11 0.00% 99.93% 0.16 0.16 0.00% 7207.97 79.71%

n1
60

d5
B

100 72.92% 1.94 7203.99 58.47% 72.92% 1.72 7203.87 58.98% 7206.19 69.22%
10 72.73% 1.52 7203.48 57.97% 72.73% 1.53 7204.19 58.45% 7209.94 71.63%
1 69.07% 1.80 7204.08 19.55% 69.12% 1.77 7209.23 16.87% 7207.62 72.30%

0.1 47.41% 1.27 3.70 0.00% 51.88% 1.22 3.67 0.00% 7207.81 80.57%
0.01 99.95% 0.11 0.11 0.00% 99.95% 0.11 0.13 0.00% 7207.92 80.82%

n1
60

d1
0B

100 60.77% 2.10 7204.75 48.42% 60.77% 1.88 7203.59 47.42% 7206.53 67.00%
10 59.31% 2.17 7204.57 51.76% 59.42% 2.10 7204.57 48.42% 7208.75 58.20%
1 79.95% 1.78 7213.97 23.85% 80.12% 1.78 7213.57 20.96% 7215.72 66.13%

0.1 42.01% 1.19 173.63 0.00% 45.90% 1.19 137.97 0.00% 7207.61 80.01%
0.01 99.98% 0.13 0.14 0.00% 99.79% 0.13 0.13 0.00% 7208.92 80.82%

Table 2.2. Performance of exact approaches on simulated data for solving
(RL-ℓ1-M) and (RL-ℓ1).

Note that our strategies improve the behavior of Ind. Const. (LIC) in
all cases. In fact, in dataset n160d2A, the Ind. Const. (LIC) approach has
a GAP of between 52.50% and 84.81% in two hours and, using our strategy,
all the individuals are solved to optimality in less than 3 seconds. In the
majority of cases, the performance of Algorithm 2.2 using Variant 2 is better
than using Variant 1. Also, when Variant 1 works better than Variant 2
there are no significant differences. We can therefore conclude that, when
applied to these simulated datasets, the strategy with the best performance is
Algorithm 2.2.2.I. A preliminary test was carried out by solving the problems
with the application of Variant II, but the obtained GAPs were worse than
with Variant I. Since the time employed in the strategy is less than three
seconds in all cases, there is no need to apply Variant III, in which the values
of the resulting big M parameters would be less tightened. Note that a 100%

of improvement of M does not mean that all the big M parameters are zero,
seeing as the improvement of M is the average of the improvement of each Mi,

for i ∈ N, and several of them could be improved by over 100%.
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Next, we compare the three different methods for solving (RL-ℓ1-M)
and (RL-ℓ1) respectively on real-life datasets: a) Algorithm 2.2.1.I, b) Al-
gorithm 2.2.2.I, and c) Ind. Const. (LIC). The results are shown in Table 2.3,
which uses a similar notation to Table 2.2.

Data C
Algorithm 2.2.1.I Algorithm 2.2.2.I Ind. Const. (LIC)

M’s Impr. tst ttotal GAP M’s Impr. tst ttotal GAP t GAP

W
pb

c

100 82.88% 3.78 7206.12 63.47% 82.88% 3.75 7205.97 62.11% 7201.56 73.44%
10 81.76% 4.27 7217.15 59.72% 81.75% 4.22 7216.50 58.19% 7203.06 72.71%
1 66.11% 3.54 7216.89 35.94% 66.21% 3.41 7217.17 36.63% 7210.61 70.74%

0.1 62.62% 2.32 2.53 0.00% 69.41% 2.84 3.06 0.00% 7206.17 67.39%
0.01 99.97% 0.22 0.22 0.00% 99.94% 0.22 0.22 0.00% 7205.88 67.39%

SO
N

A
R

100 97.92% 11.83 12.38 0.00% 97.92% 11.01 11.90 0.00% 2.20 0.00%
10 90.84% 10.25 2058.46 0.00% 90.83% 8.76 2686.02 0.00% 7201.62 29.98%
1 78.13% 5.00 7217.93 46.20% 78.07% 4.59 7218.52 43.16% 7202.05 69.25%

0.1 64.74% 2.66 7215.46 9.29% 64.72% 2.42 7214.13 8.94% 7207.08 81.12%
0.01 28.91% 0.89 4.32 0.00% 73.80% 1.53 2.42 0.00% 7206.15 85.57%

SP
EC

T

100 63.26% 4.82 7206.89 51.75% 63.21% 4.83 7211.33 51.18% 7202.47 34.16%
10 64.56% 6.43 7208.20 27.37% 64.22% 4.75 7206.52 31.43% 7203.11 36.40%
1 60.43% 4.92 7209.06 16.96% 60.44% 4.95 7207.00 14.51% 7205.19 42.86%

0.1 53.06% 3.87 17.63 0.00% 53.77% 4.00 16.31 0.00% 7203.19 43.64%
0.01 74.25% 2.61 3.21 0.00% 99.55% 0.28 0.31 0.00% 7204.44 32.73%

IO
N

O

100 94.95% 29.86 153.58 0.00% 94.92% 29.38 159.09 0.00% 7201.85 34.23%
10 90.97% 26.77 7228.58 19.11% 90.97% 25.61 7227.58 18.93% 7202.60 57.00%
1 85.00% 24.11 7237.08 41.99% 85.06% 22.71 7236.20 42.66% 7201.71 65.34%

0.1 78.91% 18.68 7232.26 20.20% 78.95% 18.55 7232.33 22.22% 7204.15 81.53%
0.01 42.85% 11.57 16.17 0.00% 77.23% 16.76 19.15 0.00% 7205.09 88.89%

W
db

c

100 99.09% 41.83 42.50 0.00% 99.08% 38.97 39.74 0.00% 11.62 0.00%
10 98.18% 40.43 46.01 0.00% 98.12% 38.37 43.90 0.00% 2432.62 0.00%
1 101.34% 45.64 46.00 0.00% 101.33% 40.90 41.18 0.00% 7204.85 63.00%

0.1 102.21% 37.76 37.82 0.00% 102.22% 29.47 29.58 0.00% 7202.43 86.06%
0.01 32.13% 23.52 27.09 0.00% 38.52% 19.80 23.72 0.00% 7204.90 93.87%

W
B

C

100 95.88% 52.02 149.29 0.00% 95.88% 50.90 163.51 0.00% 7212.06 39.09%
10 95.87% 43.90 125.14 0.00% 95.78% 44.25 135.87 0.00% 7207.31 30.46%
1 95.90% 34.68 180.94 0.00% 95.89% 34.13 183.21 0.00% 7207.86 39.13%

0.1 98.11% 32.47 33.04 0.00% 97.54% 32.11 32.77 0.00% 7203.27 51.23%
0.01 97.69% 22.79 22.85 0.00% 97.69% 21.76 21.82 0.00% 7205.73 82.77%

Table 2.3. Performance of exact approaches on real data for solving (RL-ℓ1-M) and
(RL-ℓ1).

The results in Table 2.3 show that our strategies improve the behavior of
Ind. Const. (LIC) on real-life datasets in almost all the cases. In fact, when the
problem can be solved to optimality in less than two hours with the application
of the Ind. Const. (LIC) approach, it can be solved to optimality using our
approaches. Conversely, the opposite is not true. It is worth highlighting
the WBC dataset instances where the Ind. Const. (LIC) approach has a
GAP of between 30.46% and 82.77% in two hours. However, when using our
strategy, all the individuals are solved to optimality in less than three minutes.
In the majority of cases, the performance of Algorithm 2.2.2.I is better than
Algorithm 2.2.1.I. A preliminary test was carried out by applying Variant II,
but the obtained GAPs were worse than when Variant I was used. This is with
the exception of the SPECT dataset, the results of which will be analyzed later.
Since the strategy is completed in less than one minute in all cases, it is not
worth applying Variant III.

Regarding the time employed in the strategy, note that in the majority of
cases Algorithm 2.2.I requires less time than Algorithm 2.1.I. This seems logical
because Algorithm 2.2.I solves fewer problems in each iteration. However,
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Chapter 2. Exact approaches for Support Vector Machines with ramp-loss

there are some cases, e.g. in the IONO dataset in which the value of parameter
C is equal to 0.01, where the strategy completion time is longer in Algorithm
2.2.I than in Algorithm 2.1.I. This is because the number of iterations is not
the same in both procedures. In fact, in the given example (IONO C = 0.01),
the number of iterations of Algorithm 2.1.I, i.e., the number of times that
Steps 4-7 are executed, is bigger than the number of iterations of Algorithm
2.2.I.

We will now discuss the particular case of the SPECT dataset. Table 2.4
compares the performances of Algorithm 2.2.1.II and Algorithm 2.2.2.II with
the strategies analyzed previously. The first column states the name of the
dataset and the second column the value of parameter C. The table also
contains three groups of columns with information about the three different
strategies: a) the performance of the best strategy tested in Table 2.3, b) the
behavior of Algorithm 2.2.1.II, and c) the performance of Algorithm 2.2.2.II.
We can observe that the performance of the previous best strategy from Ta-
ble 2.3 is worse than using Algorithm 2.2 with Variant II for all the values
of C tested. Although the big M parameters are less tightened using Vari-
ant II, the resolution of the problem is faster. If we focus our attention on
C = 100, C = 10, and C = 1, we note that when using the previous strategies
the problems are not solved to optimality in two hours, but when Variant II
is used, they are solved to optimality in less than 29, 184, and 30 seconds re-
spectively. In view of these results, we can claim that tighter values of the big
M parameters (on average) do not always correspond to a better performance
in general, but they do in the majority of the cases.

Data C
Best method of Table 2.3 Algorithm 2.2.1.II Algorithm 2.2.2.II

M’s Impr. tst ttotal GAP M’s Impr. tst ttotal GAP M’s Impr. tst ttotal GAP

SP
EC

T

100 - - 7202.47 34.16% 41.22% 0.20 28.46 0.00% 41.22% 0.16 29.98 0.00%
10 64.56% 6.43 7208.20 27.37% 41.42% 0.14 214.82 0.00% 41.38% 0.16 183.75 0.00%
1 60.44% 4.95 7207.00 14.51% 41.72% 0.19 29.30 0.00% 41.79% 0.16 38.12 0.00%

0.1 53.77% 4.00 16.31 0.00% 42.60% 0.14 3.94 0.00% 44.98% 0.11 3.31 0.00%
0.01 99.55% 0.28 0.31 0.00% 75.08% 0.13 0.70 0.00% 97.77% 0.05 0.08 0.00%

Table 2.4. Performance of Algorithm 2.2 Variant II on SPECT for solving
(RL-ℓ1-M).

In this paragraph, we analyze the Ijcnn1 dataset which contains a large
number of individuals. In particular, we test three random subsets of 2000,
3500, and 5000 individuals respectively. These datasets maintain the same
percentage of each class as the original dataset. Additionally, Ijcnn1_2000 is
contained in Ijcnn1_3500 and this, in turn, is contained in Ijcnn1_5000. We
compare the performance of the three variants (I, II, and II) of Algorithm 2.2
using Variant 2, because after a preliminary test, Variant 2 provided better
results. For Variant III, the k-means and the k-median clusters were solved
using The C clustering library, see de Hoon et al. (2004) for further details.

38



2.5. Computational Experiments

We tested performance using the k-means and the k-median clustering algo-
rithms, establishing a different number of clusters. Specifically, we carried out
experiments by defining the subsets of each class as 5%, 10%, 20%, 30%, 40%,
and 50% of the number of individuals of each class. For example, in a dataset
with 100 individuals where the ratio of elements in each class is 60/40, the 10%
of clusters means making 6 clusters and 4 clusters for each class respectively.

Table 2.5 describes the best case performance (from among the different
sizes of clusters and the clustering algorithms), i.e., when the problem is solved
to optimality, the percentage that took the least time and the applied clus-
tering algorithm are shown, otherwise, the ones providing the best GAP are
selected. Therefore, the structure of Table 2.5 is quite similar to the previous
one: the first column states the name of the dataset and the second column
shows the value of parameter C. The following eight columns contain infor-
mation about the strategy performance and the resolution process of Variants
I and II. The following six columns show information about the strategy per-
formance of Variant III: with the first stating the cluster algorithm used; the
next showing the percentage chosen to determine the number of clusters; the
third showing the improvement of M during the procedure; the fourth showing
the strategy time plus the time spent in clustering the data; the fifth showing
the total time, i.e., the clustering time, the strategy time, and the resolution
time; and the sixth gives the MIP relative GAP within the time limit. The
next groups of columns provide information about the behavior of Ind. Const.
(LIC). Two blocks of columns provide information about this approach: in the
first, the time limit is two hours and in the second, the time limit is the maxi-
mum between two hours and total time spent on the best performing Variant
of Algorithm 2.2. When the problem is solved to optimality, the procedure
that takes the least time is highlighted, otherwise, the procedure that provides
the best GAP within the time limit is shown. Note that we did not established
a time limit for the strategies.

As shown in Table 2.5, Variant III allows us to find an equilibrium between
the time taken by the strategy and the resolution time. Variant III is especially
significant in datasets with a large number of individuals, seeing as the strategy
time of Variant I with the same set is huge. In the case of Ijcnn1_5000 when
parameter C is equal to 0.1, the time taken by Variant I strategy is around
three and a half hours, but when using Variant III, the strategy takes less
than one hour and a half. Furthermore, the problem is solved to optimality in
less than one minute after applying the strategy, while the Ind. Const. (LIC)
approach provides a GAP of 87.72% in two hours. In almost all cases, Variant
III provides the best results for these datasets and when Variant I finds the
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Data C
Algorithm 2.2.2.I Algorithm 2.2.2.II Algorithm 2.2.2.III Ind. Const. (LIC) Ind. Const. (LIC)

T.L.:7200 s T.L.: Best variant
of Alg. 2

M’s Impr. tst ttotal GAP M’s Impr. tst ttotal GAP Cluster Per M’s Impr. tst + tcl ttotal GAP t GAP t GAP

Ijc
nn

1_
20

00 100 110.76% 12.65 12.78 0.00% 75.55% 0.34 0.56 0.00% k-means 0.05 94.94% 2.56 2.76 0.00% 0.17 0.00% 0.17 0.00%
10 110.75% 70.64 70.75 0.00% 57.60% 0.48 1.33 0.00% k-means 0.05 93.52% 4.84 5.11 0.00% 0.39 0.00% 0.39 0.00%
1 106.07% 231.43 231.62 0.00% 42.04% 0.53 3.54 0.00% k-means 0.05 87.52% 7.51 8.64 0.00% 86.90 0.00% 86.90 0.00%

0.1 92.90% 246.30 618.37 0.00% 81.48% 2.02 7214.31 6.05% k-means 0.2 92.91% 48.79 7255.61 4.61% 7202.15 71.84% 7202.15 71.84%
0.01 75.08% 511.19 7714.37 12.65% 31.35% 1.33 7204.47 33.22% kkk-median 0.4 74.50% 363.30 7577.83 7.65% 7202.85 93.88% 7580.57 93.88%

Ijc
nn

1_
35

00 100 99.83% 3015.88 3017.33 0.00% 11.89% 1.03 4.41 0.00% k-means 0.05 71.46% 17.42 20.87 0.00% 0.79 0.00% 0.79 0.00%
10 100.45% 2463.74 2464.90 0.00% 17.96% 1.14 34.97 0.00% kkk-means 0.05 76.45% 21.99 32.94 0.00% 90.64 0.00% 90.64 0.00%
1 99.72% 3834.23 3863.66 0.00% 23.26% 1.33 7208.13 20.68% kkk-means 0.4 95.09% 958.97 1185.13 0.00% 7207.04 47.34% 7207.04 47.34%

0.1 105.72% 4204.94 4205.96 0.00% 35.93% 2.64 7220.43 38.41% kkk-medians 0.2 97.85% 582.63 602.70 0.00% 7202.48 83.45% 7202.48 83.45%
0.01 79.82% 2853.94 10059.62 27.80% 31.64% 6.16 7209.88 36.16% kkk-median 0.2 76.49% 678.20 7887.54 24.09% 7202.71 96.04% 7890.85 96.04%

Ijc
nn

1_
50

00 100 99.76% 9715.88 9721.47 0.00% 10.96% 1.86 198.49 0.00% kkk-means 0.05 75.10% 53.85 165.84 0.00% 406.17 0.00% 406.17 0.00%
10 99.73% 9228.51 9285.11 0.00% 13.95% 1.97 5482.24 0.00% kkk-means 0.05 77.13% 79.84 799.48 0.00% 7202.35 37.50% 7202.35 37.50%
1 99.50% 11661.60 18867.71 7.77% 19.74% 2.56 7214.08 46.08% k-means 0.5 95.97% 3547.25 10754.09 16.43% 7205.38 65.69% 18881.80 63.32%

0.1 104.69% 11977.60 11978.90 0.00% 32.72% 3.03 7216.60 46.93% kkk-medians 0.5 100.86% 4268.44 4315.35 0.00% 7202.62 87.72% 7202.62 87.72%
0.01 78.71% 9264.50 16471.30 32.38% 32.21% 10.90 7213.46 50.00% kkk-means 0.4 77.47% 3810.58 11017.05 32.17% 7203.10 96.68% 11021.00 96.68%

Table 2.5. Performance of exact approaches for solving (RL-ℓ1-M) and (RL-ℓ1) on Ijcnn.
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optimal solution within the time limit, Variant III tends to find it in less time.
On the other hand, we noted that Variant I provides better bounds on the big
M parameters than Variants II and III (the improvement of M is greater in all
cases). However, the time it takes means that it is impractical. Whatsmore,
even for a small number of clusters, i.e., 5%, Variant III provides a significant
improvement of the big M parameters compared to Variant II. In conclusion,
we have proposed several strategies that allow us to solve many more problems
to optimality within the time limit than if the indicator constraints had been
used, i.e., by applying the Ind. Const. (LIC) approach. In the large dataset in
which there is a high computational cost for the proposed resolution methods,
we compared three different variants of Algorithm 2.2. The objective of this
was to achieve an equilibrium between the time employed in the strategy
(which is directly related to the improvement of the big M parameters) and
the time spent in solving the problem.

2.5.3 Exact procedure for (RL-ℓ2ℓ2ℓ2-M)

In this section, the different variants of the exact approaches proposed in
Section 2.4 for solving the (RL-ℓ2-M) formulation are tested and compared
with the (RL-ℓ2) formulation. Specifically, we compare performance using
several simulated and real-life datasets with three different resolution methods:
a) the variants of Algorithm 2.3 – we analyze the improvement of the big M
parameters when applying the strategy, similarly to the ℓ1-norm case; b) the
resolution method proposed in Belotti et al. (2016) taking advantage of our
strategies to tighten the values of big M parameters (since this procedure needs
an unique initial big M parameter, we establish it as M = max

i∈N
{Mi}, where

Mi are the best values obtained with our strategy, Algorithm 2.3.I); c) the
resolution method proposed in Belotti et al. (2016) using Corollary 2.4.1 to
establish the initial big M parameter; d) solving the (RL-ℓ2) formulation by
applying the method developed in Belotti et al. (2016) which is included in
IBM-Cplex 12.7.0, i.e., generating locally valid implied bound cuts. This latter
solution approach is denoted as Ind. Const. (LIC).

We first compare the four different methods for solving (RL-ℓ2-M) and
(RL-ℓ2) on simulated data, using Variant I of Algorithm 2.3. The results
are shown in Table 2.6, with the first column indicating the name of the
dataset and the second column the values of parameter C. The following
groups of columns contain information about the strategy’s performance and
the resolution process: a) the improvement of M during the procedure; b) the
time taken by the strategy; c) the total time, i.e., strategy time plus resolution
time and; d) the MIP relative GAP within the time limit (7200 seconds).
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The next group of columns presents information about the resolution method
proposed in Belotti et al. (2016) but using the big M parameter obtained
after applying our strategy: a) the percentage of improvement of the big M
parameter with respect to the one obtained by applying Corollary 2.4.1, b)
the time taken by the strategies; c) the total time, i.e., strategy time plus
resolution time and; d) the MIP relative GAP within the time limit. The
third group of columns report the results of the same method of Belotti et al.
(2016) but with the initial big M parameter (Corollary 2.4.1): a) the time
taken by the strategy; b) the total time, i.e., strategy time plus resolution
time and; c) the MIP relative GAP within the time limit. The last group of
columns shows the behavior of Ind. Const. (LIC): the first column shows the
total time and the second shows the GAP obtained within the time limit. The
strategy with the best performance is highlighted.

Data C
Algorithm 2.3.I Belotti et al. (2016) Belotti et al. (2016) Ind. Const. (LIC)

Big M: Algorithm 2.3.I Big M: Corollary 2.4.1
M’s Impr. tst ttotal GAP M’s Impr. tst ttotal GAP tst ttotal GAP t GAP

n1
60

d2
A

100 95.13% 21.20 23.28 0.00% 58.31% 30.43 7230.49 52.94% 9.80 7209.83 54.38% 7204.46 57.71%
10 95.98% 20.21 20.47 0.00% 68.09% 30.21 473.61 0.00% 7.63 7207.74 58.49% 7203.04 69.05%
1 92.80% 33.82 33.86 0.00% 75.46% 46.92 7247.01 25.02% 12.34 7212.40 59.52% 7202.29 79.63%

0.1 34.31% 29.94 7232.15 35.63% 37.01% 40.88 7240.91 59.67% 9.75 7209.80 65.12% 7202.11 83.21%
0.01 37.43% 25.06 7227.78 0.87% 38.91% 36.19 7236.22 3.27% 8.84 7208.92 13.47% 7202.82 84.39%

n1
60

d5
A

100 91.82% 21.92 7231.52 19.89% 52.79% 33.76 7233.81 60.78% 10.24 7210.29 66.21% 7202.70 60.16%
10 92.63% 25.31 920.06 0.00% 60.55% 40.12 7214.93 53.72% 11.17 7240.24 68.06% 7202.57 71.49%

0.1 40.67% 34.60 7236.97 41.55% 60.46% 43.96 7209.43 46.69% 9.39 7244.03 52.77% 7201.94 84.20%
1 87.19% 38.24 7238.28 2.00% 37.42% 46.75 7208.65 29.77% 10.37 7246.89 65.56% 7202.43 79.69%

0.01 36.06% 40.81 7242.89 3.16% 51.97% 53.65 7212.95 8.28% 12.14 7253.76 52.44% 7202.49 85.67%

n1
60

d1
0A

100 88.80% 23.80 7225.69 50.92% 47.88% 31.99 7232.31 81.70% 7.51 7207.62 84.98% 7202.79 69.39%
10 88.93% 26.71 7228.74 39.06% 51.62% 37.27 7210.62 71.99% 8.27 7237.33 76.19% 7203.00 73.20%
1 80.82% 44.99 7246.83 49.48% 45.03% 54.31 7209.33 69.49% 7.67 7254.32 72.83% 7205.35 82.99%

0.1 32.85% 44.83 7246.93 55.43% 23.53% 58.27 7215.04 65.28% 9.79 7259.87 65.23% 7204.11 84.65%
0.01 22.29% 42.85 7244.36 27.69% 18.80% 53.88 7211.13 29.37% 11.69 7253.98 35.19% 7206.03 85.88%

n1
60

d2
B

100 45.72% 34.55 7234.60 14.72% 37.03% 43.94 7243.96 65.37% 8.96 7209.04 67.99% 7207.06 63.91%
10 45.71% 32.08 7232.14 7.86% 37.11% 42.43 7242.54 62.53% 9.67 7209.68 63.03% 7211.17 69.15%
1 45.83% 27.53 6342.20 0.00% 37.56% 36.90 7236.91 5.03% 7.94 7208.03 55.79% 7206.39 74.79%

0.1 49.92% 25.93 7226.06 8.71% 46.79% 34.96 7234.98 15.03% 7.65 7207.77 6.95% 7202.59 82.60%
0.01 99.95% 12.53 12.55 0.00% 99.98% 12.55 12.55 0.00% 10.83 7210.89 8.47% 7207.95 82.65%

n1
60

d5
B

100 51.88% 36.08 7236.26 63.96% 34.82% 44.90 7244.95 72.96% 7.93 7207.97 73.86% 7207.12 65.73%
10 51.50% 32.79 7232.90 50.58% 34.81% 44.22 7244.23 74.30% 11.18 7211.23 71.17% 7204.61 72.91%
1 44.65% 29.60 7229.63 36.32% 33.80% 38.59 7238.61 52.32% 10.96 7211.09 49.82% 7204.81 75.30%

0.1 31.88% 23.45 7225.80 47.80% 31.55% 31.56 7232.10 41.38% 16.17 7216.26 54.28% 7206.88 81.36%
0.01 50.31% 33.46 7236.20 6.06% 57.05% 40.83 7240.89 17.02% 7.28 7207.39 53.45% 7202.51 83.54%

n1
60

d1
0B

100 30.36% 28.84 7234.94 51.97% 32.10% 44.32 7244.52 80.00% 16.31 7216.37 82.20% 7202.03 65.16%
10 29.70% 32.81 7234.46 53.72% 31.95% 43.32 7243.42 78.16% 8.31 7208.51 79.61% 7217.02 68.35%
1 27.33% 28.70 7230.35 51.52% 31.04% 45.42 7245.52 67.32% 7.23 7207.26 72.71% 7202.42 70.35%

0.1 25.35% 29.57 7231.70 50.20% 30.23% 45.23 7245.44 60.36% 12.55 7214.25 70.18% 7202.04 77.84%
0.01 25.02% 25.67 7229.13 33.20% 32.80% 36.14 7236.21 49.54% 14.77 7214.86 60.16% 7202.42 84.91%

Table 2.6. Performance of exact approaches on simulated data for solving
(RL-ℓ2-M) and (RL-ℓ2).

Note that, in almost all the cases, the behavior of our strategy is better
than the algorithm proposed in Belotti et al. (2016), which in turn is better
than solving the problem using the Ind. Const. (LIC) approach. For instance,
in dataset n160d2A with a C parameter equal to 1, our strategy provides
the optimal solution in a total time of 34 seconds. Meanwhile, the GAP of
the algorithm from Belotti et al. (2016) using the improved big M derived
from Algorithm 2.3.I and with a time limit of two hours is 25.02%, and the
same algorithm without the improved big M is 59.02%. Finally, the GAP
of the Ind. Const. (LIC) approach is 79.63%. Observe that the strategies
take less than one minute in all cases. It should also be remarked that the
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2.5. Computational Experiments

improvement of algorithm of Belotti et al. (2016) provides better final GAPs
when Algorithm 2.3.I is used to initialize the big M parameter.

Next, we compare the performance of the three strategies using real-life
datasets. The results are reported in Table 2.7 which has the same structure
as Table 2.6.

Data C
Algorithm 2.3.I Belotti et al. (2016) Belotti et al. (2016) Ind. Const. (LIC)

Big M: Algorithm 2.3.I Big M: Corollary 2.4.1
M’s Impr. tst ttotal GAP M’s Impr. tst ttotal GAP tst ttotal GAP t GAP

W
pb

c

100 75.03% 83.20 7283.31 61.50% 57.31% 113.60 7313.72 89.49% 29.02 7229.30 91.18% 7200.30 74.89%
10 73.12% 91.57 7298.90 54.19% 53.52% 137.31 7246.03 85.81% 31.97 7232.50 88.93% 7337.60 79.39%
1 62.64% 78.19 7280.04 56.31% 35.68% 121.74 7243.93 81.73% 30.26 7231.83 84.48% 7322.12 79.00%

0.1 61.73% 64.19 7265.96 54.23% 31.12% 119.18 7255.07 71.00% 49.84 7250.18 73.79% 7319.26 78.06%
0.01 63.82% 53.60 7255.50 37.44% 30.47% 84.93 7231.53 46.73% 30.76 7230.86 55.59% 7285.13 76.30%

SO
N

A
R

100 90.09% 162.79 173.73 0.00% 79.77% 392.81 7593.58 44.02% 325.01 7525.11 55.63% 511.82 0.00%
10 78.74% 149.84 7350.08 17.15% 64.47% 286.62 7337.49 76.65% 223.61 7423.68 82.16% 7487.33 62.90%
1 73.85% 119.74 7321.56 39.72% 58.61% 319.97 7400.57 75.73% 229.65 7429.91 83.53% 7520.31 75.27%

0.1 64.39% 115.54 7317.44 50.75% 49.44% 197.02 7282.00 74.16% 70.71 7270.97 82.77% 7397.54 82.49%
0.01 50.34% 147.20 7348.83 47.62% 36.81% 206.31 7259.84 66.96% 56.31 7257.78 75.84% 7407.04 88.27%

SP
EC

T

100 70.21% 189.01 836.86 0.00% 38.47% 203.93 7404.06 24.99% 16.10 7216.29 29.13% 7200.23 76.40%
10 70.13% 158.47 7361.31 35.42% 38.50% 183.31 7383.41 33.16% 22.40 7222.62 35.03% 7200.29 78.39%
1 69.89% 150.57 7353.08 51.00% 38.56% 183.86 7383.96 33.91% 26.49 7226.53 38.57% 7200.35 79.05%

0.1 65.31% 170.15 7376.85 36.75% 34.11% 204.98 7405.02 31.65% 21.31 7221.50 42.62% 7200.19 79.81%
0.01 55.10% 95.92 7298.00 53.97% 14.43% 113.45 7313.56 41.12% 14.01 7214.08 41.58% 7209.16 80.60%

IO
N

O

100 88.33% 266.56 7467.05 22.43% 65.76% 398.20 7598.75 31.49% 118.78 7319.17 33.80% 7200.40 58.52%
10 85.44% 245.85 7446.34 35.13% 61.24% 398.64 7599.30 39.67% 209.33 7409.57 42.83% 7200.96 65.65%
1 81.51% 228.17 7429.80 42.81% 57.00% 306.68 7507.11 43.37% 92.62 7293.17 49.11% 7200.51 78.51%

0.1 78.84% 207.92 7411.75 40.79% 56.07% 255.25 7460.68 47.12% 48.75 7250.88 53.06% 7201.60 83.29%
0.01 69.17% 214.34 7430.09 48.28% 45.62% 258.26 7458.58 50.96% 40.51 7240.53 58.76% 7200.25 90.34%

W
db

c

100 97.51% 227.89 230.00 0.00% 81.18% 289.28 289.28 0.00% 112.28 112.28 0.00% 249.77 0.00%
10 98.62% 319.62 325.70 0.00% 83.09% 412.12 7612.31 27.02% 207.31 7407.50 43.83% 7200.44 34.59%
1 103.31% 398.20 398.62 0.00% 87.79% 439.49 439.49 0.00% 93.88 7296.41 58.05% 7200.28 68.70%

0.1 103.59% 410.37 410.53 0.00% 83.46% 421.18 421.18 0.00% 61.46 7262.07 56.14% 7200.49 87.19%
0.01 101.29% 403.58 403.63 0.00% 71.79% 416.01 416.01 0.00% 61.18 7261.19 57.22% 7200.27 95.10%

W
B

C

100 93.37% 244.73 313.64 0.00% 68.10% 296.78 7497.08 34.13% 46.19 7246.58 51.41% 7200.33 40.99%
10 93.65% 211.91 271.58 0.00% 68.34% 253.61 7453.80 29.22% 53.19 7253.63 43.74% 7200.50 43.27%
1 94.49% 214.41 277.75 0.00% 68.99% 249.87 7450.14 22.38% 51.34 7251.51 38.64% 7200.71 43.56%

0.1 99.24% 355.86 356.35 0.00% 72.64% 360.38 360.37 0.00% 30.73 7230.96 27.19% 7200.31 60.36%
0.01 105.06% 364.61 364.69 0.00% 70.68% 369.28 369.28 0.00% 9.47 9.47 0.00% 7200.27 80.36%

Table 2.7. Performance of exact approaches on real data for solving (RL-ℓ2-M) and
(RL-ℓ2).

Table 2.7 shows that behavior using real-life datasets is quite similar to
simulated datasets, i.e., our strategy performs better in almost all the cases.
The Wdbc and WBC datasets are of particular interest as the problem is solved
in less than 411 seconds in all the cases. However, four cases remain unsolved
after two hours when using the method proposed in Belotti et al. (2016) using
the improved big M parameters derived from Algorithm 2.3.I, providing GAPs
of between 22.38% and 34.13%. In addition, eight cases remain unsolved after
two hours when using the method in Belotti et al. (2016) using Corollary 2.4.1
and nine cases when using the Ind. Const. (LIC). These two last methods
provide GAPs of between 27.19% and 95.10%.

Lastly, we analyze three large datasets: Ijcnn1_2000, Ijcnn1_3500, and
Ijcnn1_5000. We compare the performance of Variants I and II of Algo-
rithm 2.3 with the performance of Ind. Const. (LIC) and with the resolution
method proposed in Belotti et al. (2016). The results of Variant III have been
omitted because it performed worse than Variant II in all the cases, i.e., it did
not improve the GAP or the overall time.

The results are shown in Table 2.8, which has a similar structure to Ta-
ble 2.6: the first column shows the name of the dataset and the second column
the value of parameter C. The following eleven columns contain information
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Data C
Algorithm 2.3.I Algorithm 2.3.I v2 Algorithm 2.3.II

M’s Impr. tst ttotal GAP M’s Impr. tst ttotal GAP tst ttotal GAP
Ijc

nn
1_

20
00 100 107.69% 2150.59 2150.61 0.00% 107.31% 1506.21 1506.23 0.00% 25.31 25.61 0.00%

10 106.74% 5214.58 5214.61 0.00% 103.04% 2032.12 2035.20 0.00% 19.98 21.92 0.00%
1 104.42% 4492.10 4494.41 0.00% 102.40% 2022.32 2025.60 0.00% 20.55 5431.52 0.00%

0.1 103.79% 5582.22 5583.06 0.00% 101.83% 3581.91 3584.28 0.00% 14.71 7218.11 55.74%
0.01 76.60% 2970.38 10175.25 67.46% 76.81% 3182.42 10388.21 67.11% 15.46 7220.78 73.36%

Ijc
nn

1_
35

00 100 97.04% 6990.69 6993.54 0.00% 49.26% 3617.80 3626.25 0.00% 69.50 94.29 0.00%
10 94.98% 6841.82 7210.65 0.00% 47.28% 2960.29 5446.03 0.00% 64.77 7265.28 19.99%
1 99.98% 33883.80 33989.79 0.00% 98.81% 19193.70 21152.66 0.00% 63.84 7264.28 59.93%

0.1 100.73% 45828.20 45828.87 0.00% 98.92% 28850.40 28868.85 0.00% 61.88 7262.03 72.26%
0.01 78.69% 17913.20 25116.00 70.17% 78.63% 15786.20 22988.27 70.11% 45.37 7247.83 79.03%

Ijc
nn

1_
50

00 100 97.40% 17403.40 17799.19 0.00% 50.24% 9374.54 10840.45 0.00% 117.28 7317.57 9.19%
10 99.61% 60964.80 64717.57 0.00% 99.32% 44729.00 50071.69 0.00% 111.71 7311.93 58.03%
1 100.13% 88536.30 95737.49 6.75% 100.19% 69876.50 71848.85 0.00% 136.72 7337.00 68.23%

0.1 103.16% 128749.00 128749.59 0.00% 100.85% 78689.90 78690.51 0.00% 117.02 7317.40 70.86%
0.01 81.79% 37206.80 44408.84 68.86% 81.38% 26749.60 33951.29 68.89% 67.68 7267.831 82.22%

Data C
Belotti et al. (2016) Belotti et al. (2016) Belotti et al. (2016) Ind. Const. (LIC) Ind. Const. (LIC)

Big M: Algorithm 2.3.I v2 Big M: Corollary 2.4.1 Big M: Corollary 2.4.1 T.L.: 7200 s T.L.: Best variant
T.L.: 7200 s T.L.: 7200 s T.L.: Best variant of Alg. 3 of Alg. 3

M’s Impr. tst ttotal GAP tst ttotal GAP tst ttotal GAP ttotal GAP ttotal GAP

Ijc
nn

1_
20

00 100 100.00% 1506.30 1506.30 0.00% 13.17 13.17 0.00% 13.17 13.17 0.00% 0.19 0.00% 0.19 0.00%
10 100.00% 2032.20 2032.20 0.00% 11.28 11.28 0.00% 11.28 11.28 0.00% 7.61 0.00% 7.61 0.00%
1 94.66% 2096.32 2096.32 0.00% 180.87 180.87 0.00% 180.87 180.87 0.00% 7200.91 42.98% 7200.91 42.98%

0.1 93.87% 3582.38 3585.46 0.00% 1272.02 8472.07 60.63% 1272.02 8472.07 60.63% 7202.76 85.99% 7202.76 85.99%
0.01 28.90% 4032.29 11232.78 67.84% 245.79 7446.41 79.24% 262.92 10915.31 78.73% 7202.34 95.29% 10845.10 95.26%

Ijc
nn

1_
35

00 100 23.07% 3673.52 3673.52 0.00% 74.68 74.68 0.00% 74.68 74.68 0.00% 432.85 0.00% 432.85 0.00%
10 22.92% 3998.42 11198.63 54.48% 1068.75 8268.93 62.61% 1068.75 8268.93 62.61% 7201.19 53.97% 7201.19 53.97%
1 90.09% 19649.06 26849.16 29.95% 1657.10 8860.39 69.04% 1666.30 21161.42 65.34% 7202.72 78.18% 21156.60 61.83%

0.1 93.64% 29455.93 36674.59 7.09% 1487.32 8687.86 73.70% 1395.12 28778.88 73.18% 7201.95 92.10% 28874.30 91.18%
0.01 36.54% 17059.32 24260.11 77.67% 579.66 7781.42 81.00% 589.97 23164.37 80.92% 7202.58 97.43% 22996.00 97.42%

Ijc
nn

1_
50

00 100 21.68% 11457.14 18657.74 56.98% 2438.92 9639.52 62.26% 2456.31 10858.61 60.77% 7201.14 57.52% 10842.30 53.73%
10 91.37% 45451.16 52651.21 39.32% 3052.90 10270.38 73.14% 3072.17 50094.04 66.06% 7201.44 70.90% 50077.30 65.91%
1 91.89% 70700.40 77900.52 39.83% 2682.25 9882.31 76.04% 2692.03 71880.28 69.67% 7201.63 84.37% 71856.40 81.66%

0.1 93.78% 79927.33 87129.11 11.96% 2730.07 9941.87 75.95% 2754.24 78720.34 72.61% 7202.71 94.84% 78708.30 93.17%
0.01 41.07% 28747.69 35951.31 77.42% 1045.90 8257.49 83.86% 1051.38 33959.29 82.52% 7202.60 97.96% 33958.50 97.52%

Table 2.8. Performance of exact approaches on Ijcnn for solving (RL-ℓ2-M) and
(RL-ℓ2).

about the strategy’s performance and the resolution process of Variant I, Vari-
ant I version two (v2) and Variant II. Version two of Variant I modifies steps
11-12 of Algorithm 2.3: it only solves the problems for i ∈ N such that Mi is
greater than the median of the Mi values. The next groups of columns show
information about the behavior of the Algorithm of Belotti et al. (2016) and
the Ind. Const. (LIC) approach. Three blocks of columns provide informa-
tion about Belotti et al. (2016) method: the first block reports the results
of this method using the improved initial big M parameters derived from our
strategy; the second block is the same method using Corollary 2.4.1 to ini-
tialize the big M and establishing a time limit of two hours; and the last one
reports the results of the method using Corollary 2.4.1 to initialize the big M
and establishing as time limit the total time of the best performing Variant
of Algorithm 2.3 whenever said time is greater than two hours, otherwise it is
two hours. Finally, two blocks of columns provide information about the Ind.
Const. (LIC) approach: in the first, the time limit is two hours and in the
second, it is the total time of the best performing Variant of Algorithm 2.3
if it is greater than two hours or two hours otherwise. When the problem is
solved to optimality, the strategy that takes the least time is shown in bold,
otherwise, the strategy that provides the best GAP within the time limit is
highlighted. The column for the improvement of M in Algorithm 2.3.II has
been omitted because it is almost zero in all cases.
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2.6. Concluding remarks

Note that our strategy works well even in large datasets. In fact, Algo-
rithm 2.3.I v2 outperforms Algorithm 2.3.I. For example, using Algorithm 2.3.I
v2 for the Ijcnn1_2000 dataset, with the value of parameter C being equal to
0.1 and after a preprocessing of 3581.91 seconds, we are able to solve the prob-
lem in less than three seconds. When using Belotti et al. (2016) method, this
instance can only be solved when the big M parameter is the one derived from
the Algorithm 2.3.I v2. When applying the Ind. Const. (LIC) approach, the
GAP is 85.99% after two hours. Although the time employed in the strategy
is huge in some cases, we are able to solve almost all the problems to optimal-
ity. Over the same amount of time, the GAPs provided by the Algorithm of
Belotti et al. (2016) using Corollary 2.4.1 and the Ind. Const. (LIC) approach
are considerably bigger. For example, when using Algorithm 2.3.I v2 for the
Ijcnn1_3500 dataset, with the value of parameter C being equal to 0.1 and
after a preprocessing of 28850.40 seconds, we are able to solve the problem in
less than twenty seconds. While using the Algorithm of Belotti et al. (2016)
using Corollary 2.4.1 or the Ind. Const. (LIC) approach, the GAPs are 73.18%
and 92.10%, respectively. We observed that we are able to solve many more
problems to optimality when using Algorithm 2.3.I v2 than when using Algo-
rithm 2.3.II. In almost all the cases, the performance of Algorithm 2.3.I v2 is
better than the Algorithm of Belotti et al. (2016) and the Ind. Const. (LIC)
approach.

To summarize, we tested Algorithm 2.3 in several datasets and in the
majority of the cases it performed better than the latest algorithms published
in the literature. Therefore, our strategies could be considered as useful tools
for the enhancement of the (RL-ℓ2-M) formulation.

2.6 Concluding remarks
As stated in Duarte Silva (2017), the search for exact solutions of the op-

timization problems resulting from the ramp loss models with large datasets
is an open problem. This chapter has presented various new exact approaches
which are applicable to larger datasets and they have proven to be faster
than the state-of-the-art algorithms. Unlike other resolution methods in the
literature, these exact approaches do not use any auxiliary mixed integer pro-
gramming model. In fact, the valid inequalites included in the formulation, the
theorems that tighten the big M parameters, and the techniques for obtaining
bounds on the variables only make use of auxiliary relaxed problems. Such
problems allow the improvement of the relaxation of the original model. Con-
sequentially, they enhance the behavior of the branch and bound algorithm.
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The results presented in this chapter are published in Baldomero-Naranjo et al.
(2020).

The next chapter presents a new SVM-based classifier. This model is an
extension of the one presented in this chapter since it limits the influence of
outliers and controls the number of selected feature simultaneously.
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3
A robust SVM-based approach with feature

selection and outliers detection for classification
problems

This chapter proposes a robust classification model, based on support
vector machines (SVM), which simultaneously deals with outliers de-
tection and feature selection. The classifier is built considering the
ramp loss margin error and it includes a budget constraint to limit the
number of selected features. The search of this classifier is modeled
using a mixed-integer formulation with big M parameters. Two differ-
ent approaches (exact and heuristic) are proposed to solve the model.
The heuristic approach is validated by comparing the quality of its
solutions with the ones of the exact approach. In addition, the clas-
sifiers obtained with the heuristic method are tested and compared
with existing SVM-based models to demonstrate their efficiency.

3.1 Introduction
In this chapter, we introduce a new SVM based model to deal with the

two drawbacks of SVM exposed in Chapter 1, namely: the lack of robustness
against outliers and feature selection. More concretely, we develop a SVM
classifier derived from (RL-ℓ1) (presented in the previous chapter), which in-
cludes feature selection and it is formulated as a mixed integer linear program.
In this model we use the ℓ1-norm, the norm commonly used in the literature
for feature selection in SVM based models. Adopting this norm results in clas-
sifiers where the number of selected features is lower than using ℓ2-norm due to
its sparse property. Besides, the fact that the proposed model determines the
outliers and selects the features simultaneously have some advantages in prac-
tical environments with respect to other approaches that do these processes
independently.
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Chapter 3. A SVM-based approach with FS and outliers detection

One advantage of the proposed model is that it prevents the loss of valu-
able information due to the incorrect removal of elements of the sample. In-
deed, it could happen that several of the features of an individual in the sample
may take anomalous values. However, it does not make sense to exclude this
individual if those features do not affect the classification. For example, con-
sider a dataset with three features, see Figure 3.1.

Figure 3.1. Illustrative example.

A priori, assuming that all features have influence in the classification
process, the point highlighted in green in the first picture of Figure 3.1 is a
clear candidate to become an outlier. However, if only the first and the second
feature are selected in the feature selection process; clearly, this point is not
an outlier. This is particularly striking when dealing with medical data, where
usually a large sample is not available.

48



3.2. The model

Conversely, another advantage is that the developed model allows us to
identify as outliers data that were not initially classified as such. Indeed, an
individual might not be identified as outlier for a general outlier detection
procedure because most of its features take similar values to the ones of their
class and only some of them take very different values. However, if after
the feature selection, these features with very different values are the most
relevant in the classification process, this individual should be classified as
outlier. Precisely, in the proposed model, this situation is avoided since feature
selection and outliers detection processes are carried out simultaneously.

In addition to the introduction of a new model, we develop some strategies
to improve the resolution time. Furthermore, we provide a heuristic method
that allows us to obtain good quality solutions very quickly. Concretely, we
adapt a heuristic approach that has been previously used in different mixed
integer linear models (see Guastaroba and Speranza, 2012; Angelelli et al.,
2010; Guastaroba et al., 2017). This heuristic is known as Kernel Search (KS)
and its main idea is to iteratively provide a better feasible solution to the
problem by solving a sequence of restricted MILPs obtained from the original
model.

The remainder of this chapter is structured as follows. Section 2.2 in-
troduces the model, presents a valid inequality and develops a procedure to
tighten the big M parameters of the formulation. Moreover, in this section,
valid values for the big M parameters are computed. Section 3.3 presents a
heuristic based on the Kernel Search for solving the proposed model. Sec-
tion 3.4 contains computational experiments carried out on real-life datasets.
In this section, we validate the heuristic algorithm analyzing the best solutions
reported by this algorithm and the exact approach. We also test the efficiency
of the proposed classifier on real-life datasets comparing its predictive power
with other SVM-based models existing in the literature. Our conclusions and
some future research topics are included in Section 3.5.

3.2 The model
In this section, we introduce a model based on SVM that tries to elimi-

nate the adverse effects of outliers using a small number of relevant features.
Regarding feature selection, this model includes a budget constraint in the
formulation to limit the maximum number of features required for classifica-
tion. This budget constraint has also been used in Maldonado et al. (2014)
and Labbé et al. (2019). The model could be slightly modified associating a
cost with each feature. Thus, the resulting budget constraint would restrict
the cost of classifying a new individual. With respect to the adverse effects
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of outliers, this model uses the ramp loss margin error introduced by Brooks
(2011) to avoid outliers influence. Finally, this model considers the ℓ1-norm
to measure the distances and it is formulated as a mixed integer program with
conditional constraints:

min

d∑
k=1

ηk + C

(
n∑

i=1

ξi + 2
n∑

i=1

zi

)
s.t. (2.1) − (2.3),

− lkvk ≤ wk ≤ ukvk, k ∈ D, (3.1)

− ηk ≤ wk ≤ ηk, k ∈ D, (3.2)
d∑

k=1

vk ≤ B, (3.3)

vk ∈ {0, 1}, k ∈ D, (3.4)

ηk ≥ 0, k ∈ D, (3.5)

where η-variables represent the absolute value of the hyperplane coefficients
w and v-variables are binary variables that indicate whether the associated
feature is selected or not. Observe that constraint (3.3) limits the number of
selected features.

This model can be reformulated by expressing each wk-variable for k ∈ D

as the difference between two non-negative variables w+
k and w−

k . Since w+
k +

w−
k , for k ∈ D is part of the objective function, then |wk| = w+

k + w−
k and, at

most, one of the two variables for any k ∈ D is non-zero in an optimal solution,
see Chapter 2. Hence, the model above can be equivalently reformulated as,

(RL-FS) min

d∑
k=1

(
w+

k + w−
k

)
+ C

(
n∑

i=1

ξi + 2

n∑
i=1

zi

)
s.t. (2.2), (2.3), (2.10), (2.11), (3.3), (3.4),

w+
k ≤ ukvk, k ∈ D, (3.6)

w−
k ≤ lkvk, k ∈ D. (3.7)

Moreover, (RL-FS) can be linearized substituting constraints (2.10) by
constraints (2.12). We will refer to the resulting model as (RL-FS-M). The
choice of an appropriate value for Mi, for i ∈ N is essential to provide efficient
solution approaches for the model; i.e., Mi should be big enough so that both
models are equivalent, but it should be also as small as possible to provide good
linear relaxation and to reduce the computational time for solving this model.
In the following proposition, we give a result (similar to Proposition 2.1) that
establishes a relationship between ξ-variables and z-variables.
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Proposition 3.1. An optimal solution of (RL-FS), (w+∗
, w−∗

, b∗, ξ∗, z∗, v∗), sat-
isfies condition (2.5).

The proof can be obtained by contradiction in an easy way, for this rea-
son, it has been omitted. As a consequence of the previous result, the lin-
earized version of condition (2.5) given by (2.6) will be used to strengthen the
formulations (RL-FS-M). Henceforth, we will refer to (RL-FS-M)+(2.6) as
(RL-FS-M), unless stated otherwise.

In order to solve the model, it is necessary to provide valid values of big
M parameters. Model (RL-FS-M) contains two sets of big M parameters: the
ones associated with the families of constraints (3.6) and (3.7), and also the
ones associated with the set of constraints (2.12). The following subsections
will focus on initializing and improving these big M parameters in order to
efficiently solve the model.

3.2.1 Initial bounds for the big M parameters

In Brooks (2011), a mixed integer linear model for the classical SVM with
ramp loss was introduced. In addition, in Chapter 2 and Baldomero-Naranjo
et al. (2020) a result establishing theoretical bounds for the big M parameters
appearing in the ramp loss model was proposed. In fact, this result could be
adapted for (RL-FS-M) obtaining the following proposition,

Proposition 3.2. Taking the values Mi, for i ∈ N, such that,

Mi ≥
(
max
j∈N

{∥xi − xj∥q : yi = yj}
)
∥w∥p,

where ∥·∥p represents the ℓp-norm and ∥ · ∥q its dual, the problems (RL-FS)
and (RL-FS-M) are equivalent.

This proposition can be proven analogously to Proposition 2.2 (Baldomero-
Naranjo et al., 2020). This result bounds the big M parameters by a value
composed by two terms. The first term, max

j∈N
{∥xi − xj∥q : yi = yj}, is easily

computed for any norm, but computing the second term, ∥w∥p, is not that
easy. However, note that if we establish p = 1 and we have an upper bound
(UB) on the optimal objective value of (RL-FS-M), then UB ≥ ∥w∥1. Conse-
quently, initial big M parameters for the proposed model can be calculated.

The first step is to compute an upper bound (UB) on the optimal ob-
jective value. To do so, we solve the classical SVM model using ℓ1-norm
denoted as (SVM-ℓ1) and formulated in Chapter 2. From its optimal solution,
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(wSVM, bSVM, ξSVM), we build (w̃+, w̃−, b̃, ξ̃, z̃, ṽ), as follows:

w̃+
k =

wSVM
k , if wSVM

k ≥ 0,

0, otherwise,
for k ∈ D,

w̃−
k =

−wSVM
k , if wSVM

k ≤ 0,

0, otherwise,
for k ∈ D,

ξ̃i =

ξSVM
i , if ξSVM

i ≤ 2,

0, otherwise,
for i ∈ N,

z̃i =

0, if ξSVM
i ≤ 2,

1, otherwise,
for i ∈ N,

ṽk =

0, if wSVM
k = 0,

1, otherwise,
for k ∈ D,

b̃ = bSVM.

If constraint (3.3) is fulfilled, a feasible solution of problem (RL-FS-M)
is obtained. If not, we sort the components of wSVM-vector in non-decreasing
order and we fix to zero the first n−B w-variables. Fixing these variables to
zero, we solve the model again (SVM-ℓ1). From its optimal solution, we build
a feasible solution of (RL-FS-M) following the procedure described before, i.e.,
we update (w̃+, w̃−, b̃, ξ̃, z̃, ṽ). This feasible solution could be improved using
the information given by ṽ and z̃ values to obtain the model below. Note that
constraints associated with a z̃-value equal to 1 are not considered:

(SVM-ℓ1)ṽ,z̃ min
∑

k∈D:ṽk=1

(
w+

k + w−
k

)
+ C

 ∑
i∈N :z̃i=0

ξi


s.t. yi

 ∑
k∈D:ṽk=1

(w+
k − w−

k )xik + b

 ≥ 1− ξi, i ∈ N : z̃i = 0,

w+
k ≥ 0, w−

k ≥ 0, k ∈ D : ṽk = 1,

0 ≤ ξi ≤ 2, i ∈ N : z̃i = 0.

A feasible solution of (RL-FS-M), (w̄+, w̄−, b̄, ξ̄, v̄, z̄), can be obtained con-
sidering the solution of the above linear problem (w̄+, w̄−, b̄, ξ̄) together with
z̄ = z̃ and v̄ = ṽ. From this feasible solution, we compute an upper bound
of the model, named UB. Then, we can establish initial bounds of big M
parameters as follows:

Mi = max
j∈N

{∥xi − xj∥∞ : yi = yj} · UB, for i ∈ N,
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uk = UB, for k ∈ D,

lk = UB, for k ∈ D.

3.2.2 Improving big M parameters for (RL-FS-M)

In order to tighten the big M parameters for (RL-FS-M), some strategies
have been developed. In fact, these strategies are based on solving linear
models derived from the original model. We will now detail how each of these
parameters could be improved.

3.2.1 Tightening bounds on w+
kw+
kw+
k and w−

kw−
kw−
k -variables

By solving the next linear model, we are maximizing the value that the
sum of w+

k and w−
k -variable solutions can have in the feasible region of the

original model.

(UB-w) max

d∑
k=1

(
w+

k + w−
k

)
s.t. (2.2), (2.11), (2.12), (3.3), (3.6), (3.7),

d∑
k=1

(
w+

k + w−
k

)
+ C

(
n∑

i=1

ξi + 2

n∑
i=1

zi

)
≤ UB, (3.8)

0 ≤ vk ≤ 1, k ∈ D, (3.9)

0 ≤ zi ≤ 1, i ∈ N. (3.10)

The optimal objective value of the previous model allows us to obtain an

upper bound on
d∑

k=1

(
w+

k + w−
k

)
. We denote it as UBw. Then, the following

valid inequalities are obtained and added to the formulation:

w+
k + w−

k ≤ UBw, for k ∈ K. (3.11)

Observe that this upper bound tightens the big M parameters, by establishing,

Mi = max
j∈N

{∥xi − xj∥∞ : yi = yj} · UBw, for i ∈ N,

uk = UBw, for k ∈ D,

lk = UBw, for k ∈ D.

3.2.2 Tightening bounds on bbb-variable

In a similar way, b-variable can be tightened by solving

(UB-b)/(LB-b) max /min b

s.t. (2.2), (2.11), (2.12), (3.3), (3.6) − (3.11).
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The solution of this model allows us to obtain a valid lower and upper bound
on the b-variable of the model. We include them in the formulation of the
problem as the following constraint:

LBb ≤ b ≤ UBb. (3.12)

3.2.3 Tightening bounds on MiMiMi parameters for i ∈ N

This subsection is focused on tightening the bounds of Mi for i ∈ N .
Observe that for zi = 1, i ∈ N , constraint (2.12) is equivalent to,

Mi ≥ 1− ξi − yi

(
d∑

k=1

(w+
k − w−

k )xik + b

)
. (3.13)

We introduce the following model in which the right-hand side of (3.13) is
maximized over the feasible region of the original model.

(UBMi) max 1− ξi − yi

(
d∑

k=1

(w+
k − w−

k )xik + b

)
s.t. (2.2), (2.11), (2.12), (3.3), (3.6) − (3.12).

For each i ∈ N , the objective value of this model provides a tightened upper
bound on Mi. However, in datasets that contain a huge number of individuals,
this strategy is computationally demanding. For this reason, we propose the
following variant.

i) For all i ∈ N, when yi = +1, we establish Mi as the optimal objective
value of the following linear problem:

(
UBM+

)
max 1−

(
d∑

k=1

w+
k x+k −

d∑
k=1

w−
k x̄+k + b

)
s.t. (2.2), (2.11), (2.12), (3.3), (3.6) − (3.12),

where x+k = min
i∈N.

{xik : yi = +1} and x̄+k = max
i∈N.

{xik : yi = +1}, for
k ∈ D.

ii) For all i ∈ N, when yi = −1, we establish Mi as the optimal objective
value of the following linear problem:

(
UBM−

)
max 1 +

(
d∑

k=1

w+
k x̄−k −

d∑
k=1

w−
k x−k + b

)
s.t. (2.2), (2.11), (2.12), (3.3), (3.6) − (3.12),

where x̄−k = max
i∈N.

{xik : yi = −1} and x−k = min
i∈N

{xik : yi = −1}, for
k ∈ D.
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3.2. The model

The strategy to initialize and tighten the bounds on the big M param-
eters of the model is summarized in Algorithm 3.1 which is described as a
pseudocode.

Algorithm 3.1: Variant 1 and 2. Computation of big M parame-
ters.

Data: Training sample composed by a set of n individuals with d

features.
Result: Updated values of Mi, uk, and lk, for i ∈ N and k ∈ D.

1 Solve the problem (SVM-ℓ1). From its optimal solution, build and
solve (SVM-ℓ1)ṽ,z̃. From its solution build a feasible solution of
(RL-FS-M) and obtain an upper bound (UB).

2 for i ∈ N do Mi = max
j∈N

{∥xi − xj∥∞ : yi = yj} · UB.;

3 for k ∈ D do uk = UB, lk = UB.;
4 Solve (UB-w). Let UBw be the optimal objective value of this

problem.
5 Update Mi = max

j∈N
{∥xi − xj∥∞ : yi = yj} · UBw, uk = UBw, and

lk = UBw. Add the obtained bounds to the formulation (RL-FS-M)
including the set of constraints (3.11).

6 Obtain LBb and UBb, lower and upper bounds respectively, of the
b-variable by solving (LB-b) and (UB-b).

7 Include the constraint (3.12) in the formulation (RL-FS-M).
8 do
9 Repeat Steps 6 and 7 including constraints (3.11) and (3.12) in

model (UB-w).
10 case Variant I do
11 for i ∈ N do
12 Update Mi as the optimal value of the problem (UBMi).

13 case Variant II do
14 For i ∈ N, when yi = 1, update Mi as the optimal value of the

problem
(
UBM+

)
.

15 For i ∈ N, when yi = −1, update Mi as the optimal value of
the problem

(
UBM−

)
.

16 while an improvement of the bounds is obtained;

To summarize, in this section we have introduced a model based on SVM
using the ℓ1-norm that includes feature selection and avoids the effect of out-
liers. For this model, we have developed a mixed integer linear formulation
(RL-FS-M). In addition, we have introduced a methodology for initializing
and tightening the big M parameters appearing in the model. In the next
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section, we present a heuristic approach to obtain adequate feasible solutions
for the model.

3.3 Heuristic approach
In the previous section, some strategies to tighten big M parameters of

(RL-FS-M) have been presented. Consequently, the formulation is strength-
ened by the obtained bounds easing its exact solution approach. However,
the exact solution of this model cannot be obtained in reasonable times for
large datasets. For this reason, it is necessary to develop a heuristic solution
method to deal with such datasets.

In this section, we develop a procedure for obtaining good quality solu-
tions. It is based on the Adaptive Kernel Search (AKS) proposed by Guas-
taroba et al. (2017). The idea of the AKS is to solve a sequence of mixed
integer problems derived from the original one, where the majority of the bi-
nary variables are fixed and only some of them are considered as integer – this
set of integer variables is called Kernel.

The heuristic approach that we propose for (RL-FS-M) has two main
characteristics. On the one hand, we introduce an AKS for v-variables, see
Labbé et al. (2019). On the other hand, the z-variables are dynamically fixed
using the solution of the previous sub-problems. This strategy considers sub-
problems where the number of binary variables and constraints containing
the big M parameter are reduced with respect to the original problem. As a
consequence, these sub-problems have a shorter solution time. This heuristic
method will be referred to as Dynamic Adaptive Kernel Search (DAKS). DAKS
allows us to obtain adequate feasible solutions of (RL-FS-M) in datasets of
large size, as can be appreciated in Section 3.4. The improvement is justified
by the reduction in the number of integer variables and big M constraints in
the sub-problems considered in this procedure.

3.3.1 Dynamic Adaptive Kernel Search (DAKS)

The DAKS algorithm has three phases.
The first one computes an initial feasible solution to the problem.
Using this solution, the big M parameters appearing in the model are
initialized and some z-variables are fixed.
The second one determines the initial set of integer v-variables; i.e.,
the initial kernel. Furthermore, in this step, the remaining v-variables
are ranked. Note that the most promising variables to take a value
of 1 in the optimal solution are considered first. The chosen order
has a huge influence on the solution obtained by the heuristic, so this
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order should be adapted to the dataset under study. Observe that
although in the original algorithm several sets of integer variables can
be considered, in this version, we only apply the Adaptive Kernel
Search over v-variables, i.e., z-variables are adjusted using a different
methodology during the procedure.
In the third phase, a sequence of restricted MILP derived from the
original problem are solved, including constraints that ensure that
a progressively better bound on the solution is obtained. The so-
lution and the computational effort required to solve the previously
restricted MILP guide the construction of the subsequent Kernels. In
each iteration, the Kernel is updated to test other promising variables
and to remove useless ones. Moreover, taking into account the solu-
tion of the previous sub-problem, each z-variable is fixed to zero, fixed
to one, or considered as a binary variable, i.e., this set of variables
is updated dynamically. After some iterations, the second phase is
repeated with the objective of reordering v-variables using the infor-
mation of the current z-variables values.

Given K ⊆ D, the restricted MILP derived from the original problem will
be referred to as (RL-FS-M)(K)ẑ, where if k ∈ K, vk-variable is considered a
binary variable, it is otherwise fixed to zero. Furthermore, with the objective of
simplifying the notation of these sub-problems, we include an auxiliary vector
ẑ which indicates the corresponding z-variables values. Each element of vector
ẑ can take one of the following values with the following meanings:

ẑi =


0, it indicates that zi is fixed to 0 in the sub-problem,

1, it indicates that zi is fixed to 1 in the sub-problem,

2, it indicates that zi is a binary variable in the sub-problem.

Therefore, (RL-FS-M)(K)ẑ model is formulated as described below.

min
∑
k∈K

(
w+

k + w−
k

)
+ C

 ∑
i∈N :ẑi ̸=1

ξi + 2
∑

i∈N :ẑi=2

zi + 2
∑

i∈N :ẑi=1

1


s.t. yi

(∑
k∈K

(
w+

k − w−
k

)
xik + b

)
≥ 1− ξi −Mizi, i ∈ N : ẑi = 2,

yi

(∑
k∈K

(
w+

k − w−
k

)
xik + b

)
≥ 1− ξi, i ∈ N : ẑi = 0,

ξi ≤ 2(1− zi), i ∈ N : ẑi = 2,∑
k∈K

vk ≤ B,
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0 ≤ w+
k ≤ ukvk, k ∈ K,

0 ≤ w−
k ≤ lkvk, k ∈ K,

vk ∈ {0, 1}, k ∈ K,

0 ≤ ξi ≤ 2, i ∈ N : ẑi ̸= 1,

zi ∈ {0, 1}, i ∈ N : ẑi = 2.

In the next subsections, the three main phases of DAKS procedure are de-
scribed in detail and a pseudocode of this heuristic approach is also presented
in Algorithm 3.2.

3.3.1 Initial phase

In the first phase, Algorithm 3.1 is applied with the aim of obtaining an
initial upper bound of the problem and valid values for the big M parame-
ters. We can set a time limit for the algorithm or establish a fixed number
of iterations. The modeler should decide the best strategy to follow for the
dataset under study and choose one of the variants of this algorithm, taking
into account the number of individuals and features considered in the dataset.

Furthermore, in this phase, z-variables are fixed. Let (w̄+, w̄−, b̄, ξ̄, v̄, z̄)

be the initial solution built in Algorithm 3.1. Then, vector ẑ is determined as
follows,

ẑi =


0, if z̄i = 0 and ξ̄i < 1,

1, if z̄i = 1,

2, if z̄i = 0 and ξ̄i ≥ 1,
for i ∈ N . Note that if ẑi is established as two, then zi will be a binary variable
in (RL-FS-M)(K)ẑ.

The idea of this procedure is to discard as outliers the well-classified in-
dividuals in the initial solution, i.e., ẑi is fixed to zero. Furthermore, the
individuals whose corresponding z̄i-values are one in the initial solution are
set as outliers, i.e., ẑi is fixed to one. Finally, we establish as “possible out-
liers” (considering the associated z-variable as binary) the wrong-classified
individuals corresponding to ξ̄-values in the interval [1,2].

3.3.2 Second phase

In the second phase, we will create an initial kernel on v-variables and
the remaining variables will be ordered according to how likely these variables
will take a value of one in the optimal solution. This stage is essential for the
success of the algorithm.

We propose the following strategy for ordering the variables. First, we
solve the problem (RL-FS-M)(D)ẑ considering v-variables as continuous. We
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will denote the previously described model as (Relv-RL-FS-M)(D)ẑ. Observe
that in this relaxed problem, only the z-variables whose corresponding ẑ take
value 2 are binary (recall that ẑ was computed in the initial phase). The
optimal objective value of this problem will be called LBẑ. Again, we solve
it by fixing the values of the binary variables in order to obtain the reduced
costs.

Let w̆+
k and w̆−

k be the optimal values of variables w+
k and w−

k and r+k and
r−k the corresponding reduced cost of these variables. Hence, the variables are
ordered in non-decreasing order with respect to vector r, which is computed
as:

rk =

−(w̆+
k + w̆−

k ), if w̆+
k + w̆−

k > 0,

min{r+k , r
−
k }, otherwise.

The initial kernel, K0, is composed by k ∈ D such that w+
k or w−

k variable
takes a positive value in the solution of (Relv-RL-FS-M)(D)ẑ model consider-
ing z-variables fixed to their optimal values in (Relv-RL-FS-M)(D)ẑ. More-
over, the first time that this phase is executed, K0 includes the indexes k ∈ D

such that w+
k or w−

k variables take a positive value in the initial solution built
in the first step of Algorithm 3.1.

Once this initial kernel K0 is defined, the model (RL-FS-M)(K0)ẑ is solved.
Its solution is an upper bound (UB) on (RL-FS-M). Let (w̄+, w̄−, b̄, ξ̄, v̄, z̄) be
the solution of the problem, i.e., the solution of the current upper bound.
After this step, vector ẑ is updated as follows:

If ẑi is equal to zero and ξ̄i > 1, for i ∈ N , (i.e., the individual
was discarded as outlier, but in the current solution it is wrongly
classified), ẑi will be fixed to two (i.e., it will be set as a “possible
outlier”).
If ẑi is equal to one and yi

(∑
k∈D

(
w̄+

k − w̄−
k

)
xik + b̄

)
≥ 0, for i ∈ N ,

(i.e., the individual was set as an outlier, but in the current solution it
is well classified), ẑi is updated to two (i.e., it will be set as a “possible
outlier”).

Note that the criterion of being a “possible outlier” can be adjusted to the
dataset, imposing tighter conditions, e.g. ξ̄i > 0, or relaxing them, e.g. ξ̄i >

1.5.
3.3.3 Third phase

An iterative procedure starts in this phase. In each iteration, (it), a
new set of indexes, named Bit ⊆ D is added to the kernel. These indexes
are included in the order determined by vector r, i.e., the most promising v-
variables to take value one in the optimal solution are considered first. Note
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that each index is included at most once. The initial size of Bit is the size of K0,
see Guastaroba and Speranza (2012); Labbé et al. (2019). In the subsequent
iterations, the size of Bit will be adjusted.

The model (RL-FS-M)(K ∪Bit)ẑ is solved adding the following constraints:

∑
k∈K∪Bit

(w+
k + w−

k ) + C

(
n∑

i=1

ξi + 2

n∑
i=1

zi

)
≤ UB, (3.14)

∑
k∈Bit

vk ≥ 1. (3.15)

Constraint (3.14) ensures that a better upper bound of the problem is
obtained, and constraint (3.15) ensures that at least one variable is selected
for the new Bit set. If the previous iteration found a feasible solution but the
optimality of this solution was not proved because the time limit was reached,
constraint (3.15) will be replaced by:∑

k∈Bit∪{k∈K:v̄k=0}

vk ≥ 1, (3.16)

where v̄k represents the solution associated with the current upper bound.
A feasible solution of this sub-problem, i.e., (RL-FS-M)(K ∪Bit)ẑ+(3.14)+

(3.15) if the previous solution was optimal or (RL-FS-M)(K ∪Bit)ẑ + (3.14)+
(3.16) if the previous solution was feasible, will improve the upper bound.
However, this problem may not be feasible and for this reason, a time limit
tlimit is imposed. Furthermore, we also add a time limit tfea for finding a fea-
sible solution, i.e, the sub-problem is stopped if no feasible solution is found
within tfea. In addition, as the big M parameters affect the lower bounds of
the problem, proving optimality is hard. Consequently, if the incumbent solu-
tion is not improved after a fixed time tinc, the resolution of the sub-problem
is stopped.

After this, the kernel is updated: the selected variables of the set Bit are
added, denoted as K+, and the variables of the kernel that were not selected
in the last p iterations are removed from the kernel, denoted as K−. Moreover,
vector ẑ is updated as follows:

Previous value of vector ẑ Previous and current solutions Updated value of vector ẑ

ẑi=0 Current solution ξ̄i ≥ 1 ẑi=2
ẑi=1 yi

(∑
k∈D

(
w̄+

k − w̄−
k

)
xik + b̄

)
≥ 0 ẑi=2

ẑi=2 Last q solutions z̄i = 1 ẑi=1
Last q solutions z̄i = 0 ẑi=0

Table 3.1. Procedure to update vector ẑ.
The idea of the previous procedure is: if the individual was discarded as

outlier but in the current solution it is wrongly classified, it will be set as
a “possible outlier”. If the individual was set as outlier, but in the current

60



3.3. Heuristic approach

solution it is well classified, it will be set as a “possible outlier”. Finally, if the
individual was set as “possible outlier” but it has the same value in the last q

solutions, the variable will be fixed to this value. Observe that the criterion
of being a “possible outlier” can be adjusted to the dataset, imposing tighter
conditions or relaxing them, as explained at the end of Section 3.3.2.

In the following iterations, the problem (RL-FS-M)(K ∪Bit)ẑ is solved.
The time employed in solving the previous iteration determines the size of
K ∪Bit, SK∪Bit . If the problem related to an iteration is easily solved, i.e., if
tK∪Bit ≤ tEasy, the number of v-variables that are binary in the next step is
incremented, i.e., SK∪Bit+1 = (1 + δ)SK∪Bit , where 0 ≤ δ ≤ 1.

This iterative process (phase 3) will be stopped if any of the following
situations occur:

i) If LBẑ = UB and ẑ remains unchanged, the algorithm finishes. If LBẑ =

UB, we know that the obtained solution cannot be improved having fixed
z-variables to these values. Since different ẑ-values to the current ones are
not proposed for the next iteration, the algorithm finishes. Note that LBẑ

is an upper bound of the lower bound (LB) of the problem. Hence, the
solution could be a local minimum or the optimal solution of the problem.

ii) If LBẑ = UB, the current ẑ is the same as the one used to compute LBẑ,
and different values are proposed for the next iteration to update ẑ in
the procedure described in Table 3.1; return to phase two. If this situa-
tion happens, our solution cannot be improved if z-variables are fixed to
these values. However, it may improve if z-variables are fixed to different
values. In order to recompute the initial kernel and sort the v-variables
considering the updated values of ẑ, the algorithm returns to phase two.

iii) After a criterion defined by the user (e.g. doing a fixed number of itera-
tions, establishing a time limit or fixing a percentage of v-variables that
should be analyzed), the algorithm returns to phase two. The objective
is to sort the v-variable taking into account the current ẑ.

Note that the number of iterations that the algorithm does in Phase 2 and
3 is a criterion determined by the user that should be adapted to the dataset.
Similarly, the proposed heuristic has many parameters p, q, δ, tlimit, tEasy, . . .

that the user should adapt to the dataset and their needs, finding the desired
balance between time employed and required precision. In Algorithm 3.2, this
procedure is summarized and described as a pseudocode.

In conclusion, in this section we have proposed a new algorithm to obtain
accurate feasible solutions of our model based on the kernel search algorithm.
In particular, we have developed a different strategy to seek the most promising
values of z-variables with the objective of avoiding using the reduced costs of
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these variables due to the high influence that the big M parameters have over
them.

3.4 Computational Experiments
In this section, we set out the results of several computational experi-

ments. Firstly, we analyze the performance of Algorithm 3.2 comparing the
solution provided using this algorithm to the solution obtained applying an
exact resolution method. The results demonstrate that the proposed algo-
rithm computes high-quality solutions. Secondly, we present a comparison of
the classification done by several models over real-life datasets showing the
efficiency of the proposed classifier.

The experiments were conducted on an Intel(R) Xeon(R) W-2135 CPU
3.70 GHz 32 GB RAM, using CPLEX 12.9.0. in Concert Technology C++.
As seen in Belotti et al. (2016) due to the presence of big M parameters, the
relative MIP tolerance and the integrality tolerance were fixed to zero. The
remaining parameters were left to their default values unless stated otherwise.

3.4.1 Data

The computational experiments were carried out on real-life datasets.
They are specified in Table 3.2, where n is the number of individuals, d is the
number of features, and the last column reports the percentage of elements in
each class. Leukemia dataset is from Golub et al. (1999), Colon dataset is from
Alon et al. (1999), and DLBCL dataset is from Shipp et al. (2002). All other
datasets are from the UCI repository (see Lichman, 2013). Observe that these
datasets were previously used to analyze the performance of models based on
SVM (see, for instance, Brooks, 2011; Labbé et al., 2019; Maldonado et al.,
2014) and some of these datasets were also used in Section 2.5 to compare the
performance of the exact resolution methods proposed in Chapter 2.

In these datasets, the following values for the parameter C will be ana-
lyzed, C ∈ {0.01, 0.1, 1, 10, 100}, as in Brooks (2011). We tested five different
values for the parameter B, which is different for each dataset. To choose it,
we solved (RL-FS-M) on ten randomly generated samples containing 90% of
individuals from the original dataset being B equal to the number of features.
Note that in each sample, the percentage of elements from each class is the
same as in the original dataset. We compute the average from the number
of selected features for each C. The maximum average is the greatest B ana-
lyzed, the other four are proportional to it, being 2

3
, 1
2
, 1
3
, and 1

5
of the greatest

value of B. In Table 3.3, these values are depicted. Moreover, since the two
greatest values of B for the Arrhythmia dataset (161 and 107) and Mfeat
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Algorithm 3.2: Dynamic Adaptive Kernel Search (DAKS).
Data: Training sample (n individuals with d features).
Result: Heuristic solution of (RL-FS-M).

1 Initialize big M parameters applying Algorithm 3.1. Let
(w̄+, w̄−, b̄, ξ̄, v̄, z̄) be the initial solution built in this Algorithm.

2 for i ∈ N do
3 if z̄i = 1 then ẑi=1;
4 if z̄i = 0 and ξ̄i > 1 then ẑi=2;
5 if z̄i = 0 and ξ̄i ≤ 1 then ẑi=0;
6 do
7 Solve (Relv-RL-FS-M)(D)ẑ. Solve it again fixing the values of the

binary z-variables. Sort v-variables in non-decreasing order with
respect to vector r.

8 Constitute initial K = K0. Solve (RL-FS-M)(K)ẑ. Let
(w̄+, w̄−, b̄, ξ̄, v̄, z̄) be the solution of the current UB.

9 for i ∈ N do
10 if (ẑi = 0 and ξ̄i > 1) or (ẑi=1 and

yi
(∑

k∈D

(
w̄+

k − w̄−
k

)
xik + b̄

)
≥ 0) then ẑi=2;

11 it = 0

12 do
13 if it > 0 and the solution of it− 1 was feasible but not optimal

then
14 Let Bit be the new set of promising v-variables related to

iteration it.
15 Solve (RL-FS-M)(K ∪Bit)ẑ + (3.14) + (3.16), where Bit is

the set of promising v-variables associated with iteration
(iter.) it.

16 else
17 Solve (RL-FS-M)(K ∪Bit)ẑ + (3.14) + (3.15).
18 if an optimal or feasible solution is obtained then
19 Update (w̄+, w̄−, b̄, ξ̄, v̄, z̄) and UB.
20 Let:

K+:= {k ∈ Bit : v̄k = 1}.
K−:= {k ∈ K : k has not been selected in the last p feasible iter.}.
Update K = K ∪ K+ \ K− and ẑ as described in Table 3.1.

21 if LBẑ = UB and ẑ remains unchanged then Go to Line 26.;
22 if LBẑ = UB and ẑ is updated then Go to Line 6.;
23 it = it+ 1.
24 while a criterion is fulfilled (e.g. number of iterations, time

limit);
25 while a criterion is fulfilled (e.g. number of iterations, time limit);
26 return (w̄+, w̄−, b̄, ξ̄, v̄, z̄).
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Label Name in repository n d Class(%)
Colon Analysis of tumor and normal colon tissues 62 2000 35/65
Leukemia Gene expression measurements on leukemia patients 72 5327 47/53
DLBCL Measurements from biopsies of Diffuse Large B-cell Lymphoma patients 77 7129 75/25
SONAR Connectionist bench (sonar, mines vs. rocks) 208 60 54/46
IONO Ionosphere 351 33 64/36
Arrhythmia Cardiac arrhythmia 420 258 57/43
Wdbc Breast cancer Wisconsin (diagnostic) 569 30 63/37
Mfeat Multiple Features - Handwritten numerals 2000 649 10/90
Lepiota Mushroom - Species of mushrooms in the Agaricus and Lepiota Family 8124 109 52/48

Table 3.2. Real-life datasets

dataset (404 and 269) computed by the above description are too big, we have
removed them and we have included the following values of B: 16 and 8 for
Arrhythmia dataset; 30 and 10 for Mfeat dataset.

Label B

Colon {34, 23, 17, 11, 7}
Leukemia {48, 32, 24, 16, 10}
DLBCL {44, 29, 22, 15, 9}
SONAR {57, 38, 29, 19, 11}
IONO {33, 22, 17, 11, 7}
Arrhythmia {81, 54, 32, 16, 8}
Wdbc {29, 19, 15, 10, 6}
Mfeat {202, 135, 81, 30, 10}
Lepiota {33, 22, 17, 11, 7}

Table 3.3. Values of parameter B.

3.4.2 Validation of DAKS algorithm

In this section, we validate the efficiency of Algorithm 3.2, i.e, we com-
pare the solution obtained by the exact method with the one provided by
Algorithm 3.2. The exact method consists of applying Algorithm 3.1 and
solving the resulting formulation using CPLEX. The resolution of this model
is quite hard, and for this reason, a time limit of 7200 seconds has been set.

We solved (RL-FS-M) for all datasets and the following C values:

C ∈ {0.01, 0.1, 1, 10, 100},

and the smallest value of B tested, i.e., Colon B = 7, Leukemia B = 10,
DLBCL B = 9, SONAR B = 11, IONO B = 7, Arrhythmia B = 8, Wdbc
B = 6, Mfeat B = 10, and Lepiota B = 7. For the Mfeat and Lepiota datasets,
we applied Variant 2 of Algorithm 3.1 to initialize the big M parameters, while
Variant 1 was used in the rest of the cases.

As done in Guastaroba et al. (2017) for the AKS algorithm, parameter δ

was set to 0.35 in DAKS. Moreover, we established p = 2, q = 2, tEasy = 10,

tfea = 120, and tinc = 160. Furthermore, in the restricted problems, we
limited the computational time (tlimit) to 400 seconds. In order to improve
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the behavior, as in Guastaroba et al. (2017), we used CPLEX with default
values, except for the following parameters: BndStrenInd=1, MIPEmpha-
sis=HiddenFeas, FPHeur=1. The parameters previously mentioned to avoid
the negative effect of big M values were also used.

The results are depicted in Table 3.4. The first column indicates the
name of the dataset and the second column the value of parameter C. The
next column reports the total time of the exact solution method in seconds,
i.e., the strategy time plus the solving time. The following column contains
information about the MIP relative GAP reported by CPLEX. The fifth col-
umn indicates the time in seconds that the heuristic took. Finally, the sixth
column reports the percentage difference between the best solution found by
heuristic algorithm (BSh) and the best solution found by the exact solution
method (BSe). This difference is computed as follows:

% BS =
BSh − BSe

BSe
.

Data C te GAP th %BS

C
ol

on

100 7225.01 23.59% 49.06 0.00%
10 7219.15 21.95% 34.66 2.40%
1 7218.79 5.35% 15.26 1.54%

0.1 2856.23 0.00% 6.69 0.00%
0.01 1.25 0.00% 1.24 0.00%

Le
uk

em
ia

100 7230.38 11.45% 120.14 3.23%
10 7241.98 12.77% 101.67 2.05%
1 7281.67 14.82% 92.79 -1.90%

0.1 41.10 0.00% 43.90 0.00%
0.01 4.75 0.00% 4.71 0.00%

D
LB

C
L

100 7250.71 10.42% 73.15 0.37%
10 7266.44 10.76% 82.42 0.37%
1 7326.72 10.35% 113.93 2.33%

0.1 2437.37 0.00% 58.74 0.00%
0.01 7.10 0.00% 7.36 0.00%

SO
N

A
R

100 7217.41 94.46% 302.70 4.83%
10 7211.48 90.50% 202.88 1.91%
1 7205.42 59.18% 578.35 0.56%

0.1 7207.64 55.09% 1487.38 0.00%
0.01 7207.57 1.02% 2.76 0.00%

IO
N

O

100 7222.98 84.66% 77.35 -8.55%
10 7226.58 72.06% 173.36 0.00%
1 7237.98 63.71% 117.58 -3.07%

0.1 7221.80 46.56% 305.99 -0.07%
0.01 7222.49 12.13% 378.45 0.00%

Data C te GAP th %BS

A
rr

hy
th

m
ia 100 7244.87 98.89% 1844.90 -10.00%

10 7268.66 98.38% 1860.49 -8.91%
1 7246.76 89.60% 1844.65 -1.91%

0.1 7255.37 83.78% 1832.81 0.19%
0.01 7258.67 59.64% 537.19 0.00%

W
db

c

100 1954.27 0.00% 148.65 1.92%
10 204.05 0.00% 44.96 0.00%
1 41.17 0.00% 39.31 0.00%

0.1 29.74 0.00% 29.17 0.00%
0.01 7221.52 16.27% 378.81 0.00%

M
fe

at

100 7223.05 9.31% 131.33 2.21%
10 7218.46 8.04% 96.09 2.21%
1 7228.61 7.75% 89.22 0.80%

0.1 1060.93 0.00% 70.27 0.00%
0.01 7233.85 57.84% 101.85 0.00%

Le
pi

ot
a

100 63.53 0.00% 26.52 0.00%
10 41.76 0.00% 29.15 0.00%
1 55.67 0.00% 30.75 0.00%

0.1 7249.02 11.64% 58.62 0.00%
0.01 7403.56 1.75% 276.12 0.00%

Table 3.4. Comparison between the exact resolution method and the heuristic pro-
cedure.

As can be appreciated in Table 3.4, the proposed heuristic resolution
method reported the same solution as the exact solution method in most cases,
with the advantage that the heuristic algorithm is much less time-consuming
than the exact resolution method. Note also, that in some cases, Algorithm 3.2
found a better solution than the exact solution method. For instance, in the
case of Leukemia dataset with C = 1, Algorithm 3.2 found a 1.9% better
solution in one minute and a half than the exact solution method found in over
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two hours. Besides, in the case of IONO dataset with C = 100, Algorithm 3.2
found a 8.55% better solution in less than two minutes than the exact solution
method found in over two hours. Similarly, in the case of Arrhythmia dataset
with C = 100 and C = 10, Algorithm 3.2 found 10% and 8.91% better solutions
respectively than the exact solution method found in over two hours.

In summary, we compared the performance of Algorithm 3.2 with an
exact solution approach for a challenging B parameter value. We proved that
DAKS provides quite good solutions in the 45 cases analyzed for different C

parameter values. On average, the difference between the best solution found
by the exact solution method and the heuristic is -0.17%, while the heuristic
has significantly reduced the amount of time required.

3.4.3 Model validation

The aim of this section is to compare the performance of the proposed
classifier (RL-FS-M) with other well-known methods based on SVM in the
literature. We focus our attention on efficient models that deal with out-
liers detection (RL-ℓ1-M) or feature selection: (FS-SVM), (Fisher-SVM), and
(RFE-SVM). More concretely, the purpose of (RL-ℓ1-M) is to avoid the in-
fluence of outliers, see Brooks (2011). We used the methodology proposed
in Chapter 2 (Baldomero-Naranjo et al., 2020) to solve this model, imposing
1800 seconds of time limit. On the other hand, the objective of (FS-SVM) is
to limit the number of features selected by the classifier and it was solved by
applying the heuristic algorithm proposed in Labbé et al. (2019). Similarly,
the goal of Fisher Criterion Score with SVM (Fisher-SVM) and Recursive
Feature Elimination algorithm with SVM (RFE-SVM) is also restricting the
number of features selected. They were introduced in Guyon et al. (2006,
2002), respectively. Finally, (RL-FS-M) was also compared with the classical
(SVM-ℓ1).

To compare the classifiers, we used the recognized classification perfor-
mance metrics: the accuracy (ACC) and the area under the curve (AUC).
The accuracy is computed as

ACC =
TP + TN

TP + TN + FP + FN
,

where TP are true positives, TN are true negatives, FP false positives and FN
false negatives. The area under the curve is computed as

AUC =

TP

TP + FN
+

TN

TN + FP
2

.

66



3.4. Computational Experiments

We followed the Ten Fold Cross Validation procedure (TFCV) to obtain
these metrics. It consists in randomly partitioning the dataset into 10 subsets.
In each iteration, nine of these subsets constitute the training set and the re-
maining partition is the test set. The performance of the classifier is evaluated
by the independent test set.

Although many of the tested dataset are known to contain outliers, in
order to check the robustness of the classifiers, we perturbed the original data
including label noise and SVM outliers. The label noise can come from sev-
eral real situations which produce (intentionally or unintentionally) errors in
the class of the individuals by adding outliers to the dataset, see Salgado
et al. (2016). For this purpose, we randomly changed the class of 5% of the
individuals in the training sample. On the other hand, for adding SVM out-
liers, we solved problem (SVM-ℓ1) in the training sample. We sorted the
individuals of each class in non-increasing order according to the result of
yi
(∑d

k=1 (w
∗
kxik) + b∗

)
, where i ∈ N, k ∈ D. Note that w∗ and b∗ are the

optimal solution values of (SVM-ℓ1). We changed the class of the first 5%

ranked individuals.
The tables in which this information is depicted are structured as follows:

in the first column the name of the classifier is shown and in the second column
the value of parameter B is reported. The following five columns describe
information about the best case of C when 5% of the dataset contains label
noise. The best case of C is the value of parameter C that reported the
highest accuracy. Note that in the event of a tie, the best case is the one
that provided a larger area under the curve. If this value is also the same,
the best case is the one that took the least time. More concretely, the third
column of the tables reports the above described value of parameter C, the
next one shows the average time of the ten iterations, the following column
depicts the average number of selected features for each classifier. Finally, the
penultimate and last column of this group report the average ACC and AUC
obtained for the ten iterations. The following five columns depict information
about the best case of C when 5% of the dataset are SVM outliers. These
columns are structured as the previous ones.

In Table 3.5, the computational experiments on the Colon dataset are
depicted. We can observe that the best classification performance when 5%
of the dataset contains label noise is obtained by (Fisher-SVM), with the fol-
lowing metrics: 88.75% of ACC and 88.75% of AUC. On the other hand, the
best classifier is (RL-ℓ1-M) when 5% of the dataset are SVM outliers, provid-
ing 88.75% ACC and 87.50% AUC. Slightly smaller classification metrics are

67



Chapter 3. A SVM-based approach with FS and outliers detection

COLON, n = 62, d = 2000

5% label noise 5% SVM outliers
Form. B C Time Av. F ACC AUC C Time Av. F ACC AUC

(RL-FS-M)

34 1 18.13 32.00 85.83% 83.75% 1 16.92 34.00 84.58% 83.75%
23 1 20.11 23.00 87.50% 85.00% 1 18.93 23.00 83.75% 82.50%
17 1 19.99 17.00 87.50% 86.25% 1 18.86 17.00 87.08% 86.25%
11 1 18.42 11.00 84.58% 82.50% 1 14.08 11.00 87.08% 85.00%
7 1 16.53 7.00 82.50% 81.25% 1 14.70 7.00 83.75% 81.25%

(FS-SVM)

34 1 0.80 32.60 85.83% 83.75% 10 3.33 34.00 87.08% 86.25%
23 1 3.00 23.00 87.08% 85.00% 10 184.12 23.00 85.42% 83.75%
17 1 33.63 17.00 87.50% 86.25% 100 524.55 17.00 83.75% 82.50%
11 10 249.24 11.00 80.83% 78.75% 1 180.45 11.00 85.42% 85.00%
7 1 20.11 7.00 85.83% 85.00% 10 885.16 7.00 83.75% 82.50%

(Fisher-SVM)

34 0.1 0.01 34.00 82.08% 81.25% 0.1 0.01 34.00 85.42% 86.25%
23 1 0.01 23.00 82.08% 81.25% 0.1 0.01 23.00 85.42% 86.25%
17 1 0.01 17.00 85.42% 85.00% 1 0.01 17.00 86.25% 86.25%
11 10 0.01 11.00 85.83% 86.25% 0.1 0.01 11.00 83.75% 81.25%
7 1 0.01 7.00 88.75% 88.75% 0.1 0.01 7.00 82.50% 78.75%

(RFE-SVM)

34 0.1 0.01 34.00 85.42% 84.17% 1 0.01 34.00 83.75% 83.75%
23 0.1 0.01 23.00 85.42% 82.92% 1 0.01 23.00 82.08% 82.50%
17 10 0.01 17.00 83.75% 82.92% 1 0.01 17.00 82.08% 82.50%
11 0.1 0.01 11.00 82.08% 78.75% 1 0.01 11.00 82.08% 82.50%
7 1 0.01 7.00 82.08% 80.83% 1 0.01 7.00 85.42% 85.00%

(RL-ℓ1-M) - 1 23.29 35.80 87.08% 85.00% 1 21.66 38.20 88.75% 87.50%
(SVM-ℓ1) - 1 0.67 32.70 85.83% 83.75% 1 0.68 36.70 84.17% 83.75%

Table 3.5. Best average ACC and AUC for the Colon dataset.

Leukemia, n = 72, d = 5327

5% label noise 5% SVM outliers
Form. B C Time Av. F ACC AUC C Time Av. F ACC AUC

(RL-FS-M)

48 0.1 29.26 11.70 92.86% 93.75% 0.1 33.48 13.70 94.29% 95.00%
32 0.1 29.31 11.70 92.86% 93.75% 100 120.56 32.00 94.60% 95.54%
24 0.1 29.75 11.70 92.86% 93.75% 0.1 33.45 12.60 94.29% 95.00%
16 0.1 29.50 11.80 92.86% 93.75% 0.1 33.48 12.60 94.29% 95.00%
10 0.1 38.63 9.90 92.86% 93.75% 0.1 38.16 9.90 94.29% 95.00%

(FS-SVM)

48 0.1 1.99 22.80 90.00% 90.83% 100 6.85 48.00 92.86% 93.33%
32 0.1 2.07 22.80 90.00% 90.83% 10 517.30 32.00 94.29% 94.58%
24 0.1 2.08 18.80 90.00% 90.83% 1 1402.60 24.00 93.17% 93.87%
16 100 956.59 16.00 90.32% 90.95% 1 1798.81 16.00 92.06% 93.15%
10 0.1 2.55 10.00 90.00% 90.83% 0.1 4.38 10.00 88.57% 89.17%

(Fisher-SVM)

48 1 0.02 48.00 82.06% 81.49% 0.1 0.02 48.00 90.32% 90.54%
32 0.1 0.01 32.00 79.52% 79.94% 0.01 0.02 32.00 91.43% 90.83%
24 10 0.01 24.00 79.52% 79.94% 1 0.01 24.00 92.86% 92.92%
16 0.1 0.01 16.00 74.92% 74.82% 0.1 0.01 16.00 91.75% 91.79%
10 100 0.02 10.00 78.10% 78.27% 0.1 0.01 10.00 90.95% 91.61%

(RFE-SVM)

48 0.01 0.01 48.00 87.46% 88.04% 0.01 0.01 48.00 90.00% 90.00%
32 0.01 0.01 32.00 86.03% 86.79% 0.01 0.01 32.00 92.86% 92.92%
24 0.01 0.01 24.00 87.46% 88.04% 0.01 0.01 24.00 94.29% 94.58%
16 0.01 0.01 16.00 86.03% 86.79% 0.01 0.01 16.00 92.86% 92.92%
10 0.01 0.01 10.00 87.46% 88.04% 0.01 0.01 10.00 92.86% 93.33%

(RL-ℓ1-M) - 0.1 258.50 11.80 91.75% 93.04% 0.1 632.51 12.00 94.29% 95.00%
(SVM-ℓ1) - 0.1 2.52 11.40 90.00% 90.83% 100 1.96 51.30 92.86% 93.33%

Table 3.6. Best average ACC and AUC for the Leukemia dataset.

obtained by (RL-FS-M) selecting only eleven features on average in contrast
with the 38.20 selected by (RL-ℓ1-M).

The classification performance for the different models in the Leukemia
dataset is depicted in Table 3.6. Note that the best classifier when 5% of the
dataset contains label noise is (RL-FS-M), providing 92.86% ACC and 93.75%
AUC. Moreover, observe that our model is able to classify a new individual
by analyzing only 9.9 features on average. Similarly, the largest classification

68



3.4. Computational Experiments

DLBCL, n = 77, d = 7129

5% label noise 5% SVM outliers
Form. B C Time Av. F ACC AUC C Time Av. F ACC AUC

(RL-FS-M)

44 100 20.10 43.30 88.75% 82.50% 10 42.63 43.70 92.50% 90.00%
29 100 59.70 29.00 86.25% 79.17% 100 85.01 29.00 91.25% 89.17%
22 10 74.67 22.00 88.75% 84.17% 10 96.91 22.00 90.00% 86.67%
15 10 86.92 15.00 85.50% 76.67% 10 126.05 15.00 95.00% 95.00%
9 100 159.07 9.00 85.50% 78.33% 100 425.14 9.00 92.50% 90.00%

(FS-SVM)

44 1 4.72 43.60 88.75% 82.50% 1 7.20 43.80 92.50% 90.00%
29 1 127.71 29.00 87.50% 81.67% 1 339.38 29.00 91.25% 87.50%
22 100 599.93 22.00 88.75% 85.83% 1 1137.20 22.00 92.50% 90.00%
15 1 1348.37 15.00 85.50% 83.33% 10 1708.56 15.00 93.75% 92.50%
9 10 1494.80 9.00 86.75% 79.17% 1 1678.26 9.00 91.25% 85.83%

(Fisher-SVM)

44 0.1 0.01 44.00 81.75% 64.17% 0.1 0.01 44.00 83.00% 85.42%
29 0.1 0.01 29.00 76.75% 52.50% 0.1 0.01 29.00 78.50% 75.42%
22 1 0.01 22.00 85.00% 85.00% 0.1 0.01 22.00 79.75% 74.58%
15 1 0.01 15.00 78.00% 67.08% 0.1 0.01 15.00 81.00% 70.42%
9 1 0.02 9.00 80.00% 66.67% 0.1 0.01 9.00 78.00% 58.33%

(RFE-SVM)

44 1 0.02 44.00 83.75% 81.67% 0.1 0.01 44.00 91.25% 90.83%
29 1 0.02 29.00 81.25% 81.67% 0.1 0.01 29.00 91.25% 90.83%
22 0.1 0.01 22.00 82.50% 80.67% 0.1 0.01 22.00 91.25% 89.17%
15 0.1 0.01 15.00 82.50% 77.33% 0.1 0.01 15.00 95.00% 93.33%
9 10 0.01 9.00 80.00% 80.83% 0.1 0.01 9.00 91.25% 87.50%

(RL-ℓ1-M) - 1 74.40 51.10 91.25% 85.83% 1 74.99 51.60 92.50% 91.67%
(SVM-ℓ1) - 1 3.86 43.80 88.75% 82.50% 1 3.59 47.20 92.50% 90.00%

Table 3.7. Best average ACC and AUC for the DLBCL dataset.

SONAR, n = 208, d = 60

5% label noise 5% SVM outliers
Form. B C Time Av. F ACC AUC C Time Av. F ACC AUC

(RL-FS-M)

57 1 47.40 32.70 76.42% 76.05% 1 81.06 33.10 75.94% 75.59%
38 10 12.16 38.00 77.52% 77.03% 0.1 237.67 7.50 75.51% 75.01%
29 1 63.37 28.90 76.47% 75.97% 10 33.59 29.00 75.94% 75.48%
19 10 148.01 19.00 75.94% 75.09% 10 220.12 19.00 76.94% 76.90%
11 0.1 268.60 11.00 76.89% 76.76% 0.1 402.95 8.10 75.51% 75.01%

(FS-SVM)

57 0.1 0.07 14.40 76.99% 76.73% 0.1 0.08 17.80 72.61% 72.19%
38 0.1 0.06 14.40 76.99% 76.73% 0.1 0.07 17.80 72.61% 72.19%
29 0.1 0.06 14.40 76.99% 76.73% 10 678.46 29.00 73.61% 73.81%
19 0.1 0.07 14.40 76.99% 76.73% 10 753.49 19.00 74.09% 74.08%
11 0.1 0.07 8.20 76.99% 76.73% 1 137.99 11.00 73.18% 72.95%

(Fisher-SVM)

57 1 0.03 57.00 75.94% 76.76% 0.1 0.03 57.00 73.61% 74.17%]
38 1 0.02 38.00 74.51% 75.21% 0.1 0.02 38.00 72.61% 73.26%
29 1 0.02 29.00 76.52% 77.00% 1 0.02 29.00 72.03% 72.42%
19 1 0.02 19.00 71.60% 72.00% 1 0.02 19.00 70.45% 71.12%
11 1 0.03 11.00 73.03% 73.45% 1 0.03 11.00 70.03% 70.54%

(RFE-SVM)

57 1 0.03 57.00 75.94% 76.76% 0.1 0.03 57.00 73.61% 74.26%
38 1 0.02 38.00 71.18% 71.76% 0.01 0.02 38.00 74.09% 74.49%
29 0.1 0.02 29.00 72.13% 72.66% 10 0.02 29.00 75.04% 75.44%
19 1 0.02 19.00 73.61% 73.94% 0.1 0.02 19.00 71.65% 72.26%
11 0.1 0.03 11.00 72.13% 72.44% 0.1 0.03 11.00 71.18% 71.66%

(RL-ℓ1-M) - 1 1806.60 32.90 76.94% 76.47% 1 1805.03 33.10 76.37% 75.79%
(SVM-ℓ1) - 0.1 0.02 7.20 76.99% 76.73% 0.1 0.02 8.90 72.61% 72.19%

Table 3.8. Best average ACC and AUC for the SONAR dataset.

metrics (94.60% ACC and 95.54% AUC) are obtained by (RL-FS-M) when 5%
of the dataset are SVM outliers.

The results from the DLBCL dataset are reported in Table 3.7. As can be
appreciated, when 5% of the dataset contains label noise the best classifier is
(RL-ℓ1-M), providing 91.25% ACC and 85.83% AUC. However, this classifier
used 51.1 features on average. Slightly smaller classification metrics are ob-
tained by (RL-FS-M) and (FS-SVM) selecting fewer than half of the features
on average. On the other hand, when 5% of the dataset are SVM outliers,
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(RL-FS-M) is the classifier that provides the largest ACC (95%) and AUC
(95%) with nearly a point and a half difference in percentage compared to the
rest of the models. Observe that this classifier selected only fifteen features on
average from the 7129 provided by the data.

IONO, n = 351, d = 33

5% label noise 5% SVM outliers
Form. B C Time Av. F ACC AUC C Time Av. F ACC AUC

(RL-FS-M)

33 1 75.71 25.00 88.06% 84.34% 1 108.15 25.30 86.57% 82.58%
22 1 119.80 21.90 87.96% 84.00% 1 111.09 22.00 85.19% 80.49%
17 10 34.13 17.00 87.13% 83.35% 1 134.82 17.00 86.02% 81.98%
11 10 185.26 11.00 86.02% 81.64% 1 206.58 11.00 86.57% 82.08%
7 10 197.31 7.00 86.76% 83.74% 1 367.34 7.00 85.37% 80.87%

(FS-SVM)

33 1 0.07 33.00 87.04% 82.95% 100 0.06 33.00 78.61% 71.63%
22 100 0.92 22.00 87.22% 84.13% 100 3.05 22.00 72.59% 62.55%
17 1 1.89 17.00 87.41% 83.90% 100 16.82 17.00 72.04% 62.28%
11 1 3.81 11.00 88.15% 84.66% 100 40.39 11.00 73.70% 63.58%
7 100 20.20 7.00 87.69% 84.23% 100 35.78 7.00 71.94% 61.06%

(Fisher-SVM)

33 0.1 0.04 33.00 87.96% 84.00% 0.01 0.04 33.00 86.85% 82.46%
22 0.01 0.04 22.00 85.19% 80.65% 0.1 0.04 22.00 86.94% 82.13%
17 0.01 0.04 17.00 84.35% 79.83% 1 0.04 17.00 86.11% 81.64%
11 1 0.06 11.00 84.35% 80.17% 100 0.05 11.00 87.78% 83.45%
7 0.01 0.05 7.00 81.85% 76.37% 10 0.05 7.00 87.50% 82.90%

(RFE-SVM)

33 0.1 0.05 33.00 84.17% 80.36% 0.01 0.04 33.00 86.85% 82.46%
22 0.1 0.04 22.00 84.44% 80.61% 0.01 0.03 22.00 86.85% 82.46%
17 1 0.05 17.00 84.44% 80.24% 0.01 0.04 17.00 86.94% 82.63%
11 1 0.05 11.00 83.06% 78.57% 0.01 0.05 11.00 86.57% 81.91%
7 1 0.06 7.00 82.87% 78.42% 0.01 0.04 7.00 85.37% 80.53%

(RL-ℓ1-M) - 1 1805.00 25.60 88.06% 84.34% 1 1804.40 24.60 85.74% 81.59%
(SVM-ℓ1) - 1 0.01 28.00 87.04% 82.95% 1 0.01 26.40 86.02% 81.81%

Table 3.9. Best average ACC and AUC for the IONO dataset.

Arrhythmia, n = 420, d = 258

5% label noise 5% SVM outliers
Form. B C Time Av. F ACC AUC C Time Av. F ACC AUC

(RL-FS-M)

81 1 1629.88 79.60 73.57% 72.08% 1 1866.23 77.30 73.33% 71.62%
54 1 1793.33 54.00 76.43% 75.17% 1 1860.52 54.00 70.95% 69.24%
32 10 1834.59 32.00 75.48% 74.68% 1 1830.04 32.00 72.38% 71.48%
16 1 1832.23 16.00 75.48% 74.01% 1 1827.54 16.00 74.52% 72.63%
8 1 1845.67 8.00 72.14% 70.31% 10 1846.35 8.00 70.71% 68.76%

(FS-SVM)

81 1 267.70 81.00 75.00% 73.71% 1 615.29 80.80 70.95% 69.68%
54 10 919.43 54.00 73.57% 73.18% 1 890.52 54.00 72.62% 70.49%
32 10 882.25 32.00 72.86% 72.00% 10 755.65 32.00 73.33% 72.03%
16 10 862.04 16.00 76.19% 74.55% 10 805.40 16.00 75.95% 74.13%
8 10 745.59 8.00 76.67% 74.74% 100 875.68 8.00 73.57% 71.46%

(Fisher-SVM)

81 0.1 0.05 81.00 72.38% 69.00% 10 0.06 81.00 71.67% 67.99%
54 1 0.05 54.00 70.95% 67.39% 10 0.06 54.00 70.95% 67.65%
32 10 0.02 32.00 68.81% 64.65% 10 0.04 32.00 69.29% 65.35%
16 100 0.02 16.00 66.67% 62.52% 10 0.04 16.00 67.62% 63.76%
8 100 0.02 8.00 62.38% 57.32% 10 0.08 8.00 66.90% 63.76%

(RFE-SVM)

81 0.01 0.06 81.00 70.24% 67.36% 1 0.07 81.00 70.71% 67.81%
54 0.1 0.06 54.00 69.76% 66.46% 0.01 0.05 54.00 72.38% 69.34%
32 0.1 0.04 32.00 70.71% 67.64% 1 0.04 32.00 73.33% 70.63%
16 0.1 0.03 16.00 70.48% 67.43% 0.1 0.02 16.00 69.76% 65.86%
8 0.1 0.04 8.00 68.33% 65.00% 0.1 0.03 8.00 69.52% 65.36%

(RL-ℓ1-M) - 1 1802.37 84.70 73.57% 72.07% 1 1801.78 79.30 75.95% 74.56%
(SVM-ℓ1) - 1 0.25 97.00 74.52% 73.15% 1 0.27 103.40 71.90% 69.93%

Table 3.10. Best average ACC and AUC for the Arrhythmia dataset.

The computational results for the Sonar dataset are shown in Table 3.8.
When 5% of the dataset contains label noise, the largest ACC (77.52%) and
AUC (77.03%) are obtained by (RL-FS-M). Likewise, in the case of having
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a 5% of SVM outliers, the best classification performance (76.94% ACC and
76.90% AUC) is reported by (RL-FS-M).

In Table 3.9, the classification performance of the analyzed models on the
IONO dataset is provided. Although the highest performance metrics when
5% of the dataset contains label noise are reported by (FS-SVM) whose average
ACC is 88.15% and average AUC is 84.66%, slightly smaller accuracy and area
under the curve (88.06% and 84.34% respectively) are provided by (RL-FS-M)
and (RL-ℓ1-M). On the contrary, when 5% of the dataset are SVM outliers,
the best classifier is (Fisher-SVM).

The experiments carried out on the Arrhythmia dataset are depicted
in Table 3.10. Observe that when 5% of the dataset contains label noise,
(FS-SVM) is the classifier that provides the largest ACC (76.67%) and AUC
(74.74%) on average. However, when 5% of the dataset are SVM outliers,
(RL-ℓ1-M) reported the largest classification metrics: 75.95% ACC and 74.56%
AUC. Slightly smaller classification metrics are obtained by (FS-SVM) select-
ing only 16 features on average instead of 79.30.

The classification performance comparison for the Wdbc dataset is shown
in Table 3.11. In the first case, i.e. 5% of label noise, almost all tested
formulations provided nearly the same accuracy and area under the curve with
the exception of (RL-FS-M), which reported the largest classification metrics,
selecting only 16.4 features on average. In the second case, the best classifiers
are (RL-FS-M) and (RL-ℓ1-M) reporting 97.54% ACC and 97.06% AUC.

The computational results of Mfeat dataset are depicted in Table 3.12.
As can be observed, the classification metrics are almost the same for all
tested formulations when 5% of the dataset contains label noise. The one that
provided the highest ACC (100%) and AUC (100%) is (FS-SVM). On the
other hand, when 5% of the dataset are SVM outliers, the best classifier is
(RL-FS-M) reporting 99.90% ACC and 99.50% AUC.

Finally, the computational experiments carried out on the Lepiota dataset
are reported in Table 3.13. We can appreciate that the best classification
performance is obtained by (RL-FS-M) when 5% of the dataset contains la-
bel noise, with the following metrics: 100% ACC and 100% AUC on aver-
age. Moreover, this classifier analyzed only 10.7 features on average. In the
same manner, when 5% of the dataset are SVM outliers, the best classifier is
(RL-FS-M) with more than one and a half unit difference in percentage com-
pared to the rest of the models. It reported 99.73% ACC and 99.72% AUC.
Observe that this classifier selected only 6.4 features on average.

Therefore, in this subsection we have demonstrated the efficiency of the
proposed classifier. We have observed that in the majority of cases, (RL-FS-M)
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Wdbc, n = 569, d = 30

5% label noise 5% SVM outliers
Form. B C Time Av. F ACC AUC C Time Av. F ACC AUC

(RL-FS-M)

29 10 34.93 16.40 97.54% 97.06% 1 39.05 9.90 97.54% 97.06%
19 10 35.41 16.40 97.37% 96.83% 1 39.00 9.90 97.54% 97.06%
15 10 35.15 14.90 97.19% 96.69% 1 39.17 8.80 97.54% 97.06%
10 1 50.45 9.80 96.67% 95.97% 1 39.93 8.90 97.54% 97.06%
6 1 62.25 6.00 96.49% 95.63% 1 44.39 6.00 97.19% 96.69%

(FS-SVM)

29 1 0.10 22.40 96.49% 95.56% 1 0.12 22.30 96.13% 95.00%
19 1 0.10 13.80 96.49% 95.56% 1 0.12 14.30 96.13% 95.00%
15 1 0.11 12.20 96.49% 95.56% 1 0.14 13.90 96.13% 95.00%
10 1 0.18 10.00 96.49% 95.56% 1 0.36 10.00 95.96% 94.78%
6 1 0.25 6.00 96.66% 95.79% 10 5.45 6.00 96.67% 95.97%

(Fisher-SVM)

29 0.1 0.13 29.00 94.91% 95.35% 1 0.27 29.00 95.60% 95.70%
19 1 0.19 19.00 93.14% 93.65% 0.1 0.28 19.00 95.43% 95.70%
15 10 0.20 15.00 93.50% 93.85% 0.01 0.17 15.00 93.85% 92.62%
10 10 0.20 10.00 94.19% 94.59% 1 0.26 10.00 93.50% 93.40%
6 0.1 0.17 6.00 92.09% 92.18% 0.1 0.18 6.00 92.44% 90.75%

(RFE-SVM)

29 10 0.14 29.00 90.86% 90.71% 1 0.45 29.00 95.78% 95.85%
19 10 0.18 19.00 91.22% 90.92% 1 0.39 19.00 95.78% 95.95%
15 10 0.18 15.00 91.57% 91.20% 1 0.34 15.00 95.43% 95.57%
10 10 0.19 10.00 90.69% 90.15% 1 0.23 10.00 95.61% 95.82%
6 0.1 0.14 6.00 90.34% 90.03% 0.1 0.22 6.00 95.61% 95.71%

(RL-ℓ1-M) - 1 1807.89 9.40 96.67% 95.97% 1 1111.60 8.70 97.54% 97.06%
(SVM-ℓ1) - 1 0.02 11.20 96.49% 95.56% 1 0.02 13.30 96.13% 95.00%

Table 3.11. Best average ACC and AUC for the Wdbc dataset.

Mfeat, n = 2000, d = 649

5% label noise 5% SVM outliers
Form. B C Time Av. F ACC AUC C Time Av. F ACC AUC

(RL-FS-M)

202 0.1 516.33 35.50 99.90% 99.50% 0.1 1080.72 57.80 99.85% 99.25%
135 0.1 516.10 35.50 99.90% 99.50% 0.1 1083.40 45.60 99.85% 99.25%
81 0.1 483.46 35.20 99.90% 99.50% 0.1 1092.25 45.00 99.90% 99.50%
30 0.1 381.24 29.80 99.90% 99.50% 0.1 581.82 29.90 99.90% 99.50%
10 0.1 268.69 10.00 99.95% 99.75% 1 350.67 5.10 99.85% 99.25%

(FS-SVM)

202 0.1 9.69 171.50 99.90% 99.50% 0.1 9.79 183.40 99.80% 99.22%
135 0.1 9.74 91.70 99.90% 99.50% 0.1 9.79 92.70 99.80% 99.22%
81 0.1 154.87 81.00 99.90% 99.50% 0.1 354.21 81.00 99.80% 99.22%
30 1 997.05 30.00 100.00% 100.00% 0.1 832.68 30.00 99.75% 98.97%
10 0.1 750.47 10.00 99.90% 99.72% 0.1 807.60 10.00 99.65% 98.69%

(Fisher-SVM)

202 0.1 1.58 202.00 100.00% 100.00% 0.01 1.57 202.00 99.80% 99.67%
135 0.1 1.37 135.00 99.00% 99.22% 0.01 1.78 135.00 99.80% 99.50%
81 0.01 0.90 81.00 95.75% 97.64% 0.01 1.97 81.00 99.85% 99.69%
30 0.01 0.61 30.00 94.05% 70.47% 0.1 0.72 30.00 98.60% 99.22%
10 0.1 2.59 10.00 94.70% 88.17% 0.1 2.91 10.00 95.65% 97.36%

(RFE-SVM)

202 0.1 1.08 202.00 94.90% 83.43% 0.01 2.32 202.00 97.30% 98.28%
135 0.01 0.75 135.00 94.90% 83.58% 0.01 1.23 135.00 98.05% 98.69%
81 0.01 0.47 81.00 94.85% 83.40% 0.01 0.93 81.00 98.15% 98.75%
30 0.01 0.30 30.00 94.90% 83.58% 0.01 0.32 30.00 99.40% 99.44%
10 0.01 0.81 10.00 94.20% 83.32% 0.01 1.49 10.00 98.60% 99.00%

(RL-ℓ1-M) - 0.1 1809.61 47.00 99.90% 99.50% 0.1 1809.92 70.30 99.70% 99.39%
(SVM-ℓ1) - 0.1 15.49 90.80 99.90% 99.50% 0.1 13.41 91.70 99.80% 99.22%

Table 3.12. Best average ACC and AUC for the Mfeat dataset.

provided the highest accuracy and area under the curve using less information
to classify a new individual than (RL-ℓ1-M). Note also that the performance of
(SVM-ℓ1) is significantly influenced by outliers, providing in several cases the
worst results despite selecting many features. Although (FS-SVM) reported
quite good results with label noise, its efficiency is decreased when the dataset
contains SVM outliers. (Fisher-SVM) and (RFE-SVM) presents good results
for some dataset but their behaviour is not as robust as our model.
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Lepiota, n = 8124, d = 109

5% label noise 5% SVM outliers
Form. B C Time Av. F ACC AUC C Time Av. F ACC AUC

(RL-FS-M)

33 1 496.16 12.20 100.00% 100.00% 10 1741.94 23.60 96.75% 96.64%
22 1 529.65 10.70 100.00% 100.00% 10 1759.38 21.80 96.71% 96.60%
17 1 508.80 11.70 99.99% 99.99% 10 1730.30 16.70 96.86% 96.75%
11 1 841.15 11.00 99.95% 99.95% 0.1 370.89 8.60 97.51% 97.42%
7 10 962.17 7.00 99.84% 99.83% 0.1 414.28 6.40 99.73% 99.72%

(FS-SVM)

33 10 11.21 19.20 99.95% 99.95% 0.01 9.23 7.50 88.50% 63.81%
22 10 11.10 17.60 99.95% 99.95% 0.01 9.23 7.50 88.50% 63.81%
17 10 11.81 16.30 99.95% 99.95% 0.01 9.22 7.50 88.50% 63.81%
11 10 12.84 11.00 99.91% 99.91% 100 10.77 8.90 90.98% 89.22%
7 0.1 10.69 6.00 99.70% 99.69% 100 10.87 6.40 87.27% 86.77%

(Fisher-SVM)

33 100 4.41 33.00 80.92% 81.44% 0.1 4.66 33.00 95.88% 95.72%
22 100 4.43 22.00 61.10% 59.89% 0.1 4.65 22.00 95.26% 95.08%
17 1 4.45 17.00 57.80% 56.55% 0.01 4.59 17.00 95.37% 95.20%
11 100 4.46 11.00 52.83% 51.07% 0.01 4.57 11.00 95.37% 95.20%
7 10 4.47 7.00 52.68% 50.92% 0.01 4.70 7.00 92.59% 92.31%

(RFE-SVM)

33 10 4.37 33.00 94.95% 94.94% 0.01 4.50 33.00 96.75% 96.63%
22 10 4.72 22.00 94.95% 94.94% 0.01 4.66 22.00 96.63% 96.50%
17 100 4.48 17.00 94.95% 94.94% 0.01 4.61 17.00 96.59% 96.46%
11 0.1 4.49 11.00 94.78% 94.76% 0.1 4.60 11.00 96.98% 96.87%
7 0.1 4.48 7.00 94.78% 94.76% 0.1 4.83 7.00 98.09% 98.02%

(RL-ℓ1-M) - 10.00 1806.04 15.80 99.98% 99.97% 0.1 1807.20 10.78 96.53% 96.40%
(SVM-ℓ1) - 10.00 3.80 17.30 99.95% 99.95% 0.1 3.80 11.40 96.53% 96.41%

Table 3.13. Best average ACC and AUC for the Lepiota dataset.
In summary, choosing the parameters which provide the best accuracy in

each dataset when contains 5% of label noise, the average (maximum) percent-
ages of improvement for ACC and AUC of our model with respect the others
in the studied datasets are 2.63% (24.54%) and 2.94% (22.78%), respectively.
Similarly, when the dataset contains 5% of SVM outliers, the average (max-
imum) percentages of improvement for ACC and AUC are 2.06% (14.46%)
and 2.36% (14.58%), respectively. More specifically, the average (maximum)
percentages of improvement for ACC and AUC with respect to each model is
depicted in Table 3.14.

5% Label noise 5% SVM outliers
Av. ACC impr.
(Max. ACC
impr.)

Av. AUC impr.
(Max. AUC
impr.)

Av. ACC impr.
(Max. ACC
impr.)

Av. AUC impr.
(Max. AUC
impr.)

(FS-SVM) 0.44 (2.81) 0.32 (3.08) 2.71(10.13) 3.70 (14.58)
(Fisher-SVM) 5.50 (23.58) 5.00 (22.78) 3.39 (14.46) 3.15 (11.22)
(RFE-SVM) 5.49 (8.08) 7.01 (19.35) 1.11 (2.54) 1.26 (2.82)
(RL-ℓ1-M) 0.51 (3.88) 0.75 (4.29) 0.50 (3.32) 0.64 (3.64)
(SVM-ℓ1) 1.19 (3.17) 1.66 (3.21) 2.58 (5.97) 3.06 (6.53)

Table 3.14. Improvement of (RL-FS-M) with respect to the rest of the models.
The aforementioned results show that (RL-FS-M) is a very robust classi-

fication method improving the existing ones or being among the best in terms
of ACC and AUC. Moreover model (RL-FS-M) involves a reduced number
of features in the obtained classifier in contrast to the models (RL-ℓ1) and
(SVM-ℓ1).

3.5 Concluding remarks
In this chapter, we have developed a new model based on support vector

machines especially designed for datasets with a large number of features that
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may contain outliers. We have formulated the model as a mixed-integer prob-
lem and proposed an exact strategy for computing the big M parameters of
the formulation. Moreover, we have developed a heuristic algorithm to solve
it efficiently. We have also validated the heuristic, proving that the obtained
upper bound is of high quality.

Furthermore, we have compared the performance of the proposed classifier
with other classifiers based on support vector machines that deal with feature
selection or with outlier detection. We have showed the efficiency of our model,
whose competitive advantage is that it deals simultaneously with both aspects.
Finally, we think that analyzing the proposed model using other ℓp-norms
would be interesting for future research. Note that the results presented in
this chapter are published in Baldomero-Naranjo et al. (2021d).

In the previous two chapters, we use a separator hyperplane as a method
to classify data. Actually, we decide on the location of a hyperplane in Rm.

In the following chapter we also address a location problem, although the
problem is stated in a network rather than in Rm. In particular, we present
the upgrading version of the maximal covering location problem.
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4
Upgrading edges in the Maximal Covering

Location Problem

We study the upgrading version of the maximal covering location
problem with edge length modifications on networks. This problem
aims at locating p facilities on the vertices (of the network) so as
to maximize coverage, considering that the length of the edges can
be reduced at a cost, subject to a given budget. Hence, we have to
simultaneously decide on: the optimal location of p facilities and the
optimal edge length reductions.

This problem is NP-hard on general graphs. To solve it, we
propose three different mixed-integer formulations and an effective
preprocessing phase for fixing variables and removing some of the
constraints. Moreover, we strengthen the proposed formulations in-
cluding valid inequalities. Finally, we compare the three formulations
and their corresponding improvements by testing their performance
over different datasets.

4.1 Introduction
The maximal covering location problem (MCLP) was first introduced by

Church and ReVelle (1974). Given a set of clients, each with their own de-
mand, the aim is to locate a fixed number of facilities so as to maximize the
amount of covered demand. A client is hereby considered to be covered if
their distance to a facility is smaller than or equal to a given coverage radius.
Since its origins, this model has been widely studied in the literature under
different perspectives. One of the most distinguishing aspects is the solution
domain of the problem: continuous (Church, 1984; Plastria, 2002; Bansal and
Kianfar, 2017), discrete (Church and ReVelle, 1974; Avella et al., 2009; García
and Marín, 2019; Cordeau et al., 2019), or on networks (Church and Meadows,
1979; Berman et al., 2016; Fröhlich et al., 2020). Furthermore, the maximal
covering location problem has been solved dealing with alternative coverage
assumptions, like gradual coverage (Berman and Krass, 2002) and cooperative
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coverage (Averbakh et al., 2014; Karatas and Eriskin, 2021), and with uncer-
tainty, for example uncertainty in the customer demand (Berman and Wang,
2011; Baldomero-Naranjo et al., 2021b), in the availability of facilities to pro-
vide coverage (Daskin, 1983; Marín et al., 2018; Vatsa and Jayaswal, 2021), or
in all relevant parameters together (Arana-Jiménez et al., 2020).

Common to all those problems is, however, that the parameters of the
network and the problem remain fixed. In this chapter, we propose a different
approach dealing with the maximal covering location problem on networks
assuming that edges can be upgraded and the total cost of all upgrades is
subject to a budget constraint. Upgrading an edge hereby means reducing its
length, usually within certain limits, at a given cost. There are three main
problems in the literature in which two key parameters of the network, demand
weights and edge lengths, are adjusted:

In inverse problems, the objective is to modify one of the two pa-
rameters at minimum cost such that a given feasible solution be-
comes optimal, see e.g. Heuberger (2004); Burkard et al. (2004b);
Baroughi Bonab et al. (2011); Wu et al. (2013); Alizadeh and Etemad
(2016); Yang and Zhang (2008); Nguyen and Sepasian (2016); Gassner
(2012).
In reverse problems, the objective is to maximally improve a pre-
specified solution by changing the edge lengths within certain limits
and subject to a given budget, see e.g. Burkard et al. (2006, 2008);
Wang and Bai (2010); Zhang et al. (1999).
In up/downgrading problems, an actor modifies the parameters of the
network and then a reactor takes a decision. In upgrading problems,
actor and reactor have the same goal; in downgrading problems, their
objectives are conflicting.

Summing up, the main difference between inverse (reverse) problems and
up/downgrading problems is that in the former there is a given solution to
improve, while in the latter there is not. In this chapter, we will focus on the
upgrading maximal covering location problem with variable edge lengths.

Next, we briefly review the literature. The upgrading version of many clas-
sical problems has been studied during the last decades, e.g. for the spanning
tree problem (Álvarez-Miranda and Sinnl, 2017), for the hub-location problem
(Blanco and Marín, 2019), for bottleneck problems (Burkard et al., 2004a),
for minimum flow cost problems (Demgensky et al., 2002), for the maximal
shortest path interdiction problem (Zhang et al., 2021), or for communication
and signal flow problems (Paik and Sahni, 1995). In the context of location
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problems on networks and vertex weight modifications (the weight of the ver-
tices is modified subject to a prespecified budget), the following problems have
been analyzed: the 1-median problem (Gassner, 2007), the 1-center problem
(Gassner, 2009), the Euclidean 1-median problem (Plastria, 2016), and the
p-median problem (Sepasian and Rahbarnia, 2015), among others.

In the context of upgrading location problems with variable edge lengths,
we are aware of only two publications: upgrading the 1-center problem by
Sepasian (2018) and upgrading the obnoxious p-median problem on trees by
Afrashteh et al. (2020). Therefore, the first aim of this chapter is to fill the gap
in the literature by studying the upgrading maximal covering location problem
with variable edge lengths.

This problem has several interesting applications in real-life. Note that
two decisions are made at the same time. On the one hand, decide where
to locate the p facilities, and on the other hand, determine which edges to
upgrade and by how much.

One application of this problem arises when a public administration wants
to improve the accessibility of public services for citizens, e.g. for health
centers, educational facilities or social welfare facilities. As the improvement
is closely linked with distances (Ensor and Cooper, 2004), one way to achieve
this is to invest in the infrastructure in order to reduce travel times to those
services. Such an investment is often a combination of building new facilities
and improving the means to get to them, for example by upgrading roads
(developing a road into a highway, adding new lanes, etc.) and enhancing
public transport (incorporating high-speed lines, adding dedicated bus lines,
increasing the frequency of service along links, etc.).

An interesting application in the private sector is for telecommunication
companies. To improve their transmission rates and broadband coverage, they
will have to increase the bandwidth on existing network links as well as build
new or extend existing switching centers. Similar problems are faced by gas
and electricity companies who wish to increase their coverage.

Finally, we would like to highlight another useful application in shopping
centers, airports, etc. The aim is to locate services such as defibrillators and
information posts, in combination with building additional passenger convey-
ors or escalators to make sure that as many people as possible are within a
fixed walking distance of these facilities.

In this chapter, we derive three mixed-integer linear programming formu-
lations for the maximal covering location problem with edge upgrades. Fur-
thermore, we develop an effective preprocessing phase that allows us to reduce
the dimension of the proposed formulations. Besides, we include several sets of
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valid inequalities in order to eliminate symmetries and improve the resolution
times of the formulations.

The rest of the chapter is structured as follows. In Section 4.2 the problem
is introduced. Section 4.3 presents the first formulation for the problem based
on flow variables. Moreover, a preprocessing phase and valid inequalities are
developed. Next, in Section 4.4 and Section 4.5 two new formulations are pro-
posed. In addition, several valid inequalities to enhance them are presented.
Section 4.6 contains computational experiments in which we compare the three
formulations. We also test the efficiency of the developed valid inequalities.
Finally, our conclusions and some future research topics are included in Sec-
tion 4.7.

4.2 Definitions and Problem Description
Let N = (V,E, ℓ) be an undirected network with node set V = {1, . . . , n}

and edge set E, where |E| = m. Every edge e = [k, q] = [q, k] ∈ E, k, q ∈ V,

has a positive length ℓe = ℓ[k,q] and is assumed to be rectifiable. For i, j ∈ V,

d(i, j) is the length of the shortest path connecting i with j. Furthermore, we
are given a fixed coverage radius R > 0. We say that a node i ∈ V is covered
by a facility at node j if d(i, j) ≤ R. Finally, for each node i ∈ V we are given
a non-negative amount wi that specifies the demand at the node.

The length ℓe of each edge e ∈ E can be reduced by an amount lower
than or equal to ue ∈ [0, ℓe), e ∈ E. Without loss of generality, we assume
that ℓe − ue ≤ R, for e ∈ E (if that were not the case, i.e., there were an
edge e ∈ E such that ℓe − ue > R, then e can be removed from the network
without affecting the optimal solution). Moreover, any unit of reduction of the
length of the edge e comes at a cost of ce and there is a budget constraint B

on the overall cost of reduction. Again without loss of generality, we assume
that ceue ≤ B, for e ∈ E (if that were not the case, i.e., there were a cost
ce for e ∈ E such that ceue > B, then ue can be substituted by ue = B/ce

without affecting the optimal solution). Finally, we assume that facilities can
only be located at nodes. The upgrading maximal covering location problem
(Up-MCLP) aims to locate p service facilities covering the maximum demand
taking into account that the total cost for the edge length reductions is within
the given budget.

Let δ = (δe)e∈E denote a vector of edge length reductions, 0 ≤ δe ≤ ue, for
e ∈ E. Moreover, let d(i, j, δ) be the length of a shortest path between nodes
i and j after the edge length reductions δ have been applied, i.e., a shortest
path in the network (V,E, ℓ(δ)) where ℓe(δ) = ℓe − δe, for e ∈ E. Finally,
for p ∈ N let Xp ⊆ V denote a set of p nodes and let C(Xp, δ) = {i ∈ V |
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∃j ∈ Xp : d(i, j, δ) ≤ R} denote the set of all nodes covered by a facility in
Xp after the edge upgrades. Then, Up-MCLP can be formulated as:

max

 ∑
i∈C(Xp,δ)

wi

∣∣∣ ∑
e∈E

ceδe ≤ B,Xp ⊆ V, |Xp| = p, 0 ≤ δe ≤ ue, e ∈ E

 .

Table 4.1 summarizes the notation used in this chapter.

A Set of all arcs in the induced directed network.
B Budget.
ce Unit cost of reducing the length of edge e, e ∈ E.
d(i, j) Distance between nodes i and j before upgrading, i, j ∈ V .
d(i, j, β) Distance between nodes i and j after the edge length reductions βe,

e ∈ E. In particular, d(i, j, δij) represents the distance after the
most favorable feasible edge length reductions in the path from i to
j and d(i, j, u) the distance in a network with edge lengths ℓe − ue,
e ∈ E.

Γi Set of edges incident to node i for each i ∈ V.

Γ+
i (Γ−

i ) Set of outgoing (incoming) arcs for each i ∈ V.
m Number of edges.
n Number of nodes.
N = (V,E, ℓ) Network with node set V , edge set E, where e ∈ E has length ℓe.
p Number of facilities.
R Coverage radius.
ue Maximum amount that edge e can be reduced, e ∈ E.
V̂i Set of nodes whose distance to i before upgrading is lower than or

equal to R, i.e., {j ∈ V \ {i} : d(i, j) ≤ R}.
wi Demand of node i, for i ∈ V.

Table 4.1. Notation used in the chapter.

Observe that this problem is NP-hard because the maximal covering loca-
tion problem (MCLP) is a particular case of Up-MCLP (setting ue = 0 for all
e ∈ E). The NP-hardness of the maximal covering location problem is proved
in Hochbaum (1997).

4.3 Flow coverage formulation
In this section, we propose the first of our three MIP formulations for Up-

MCLP. Using flow variables, the idea of this formulation is to model a path
between those pairs of nodes for which the distance between them is smaller
than or equal to R after the edge length reductions have been applied. That
is, if d(i, j, δ) ≤ R, then this will be reflected in the formulation by a unit flow
between nodes i and j. If, however, d(i, j, δ) > R, then the flow between i and
j will be zero. We note that in the former case, any path of length ≤ R will
do to assert coverage of i (j) by a service facility located at site j (i), so we
do not insist on finding the shortest path.
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To facilitate the use of flow variables, we consider a directed network
ND = (V,A, ℓ) with node set V = {1, . . . , n} and arc set A containing arcs
(i, j) and (j, i) for each edge [i, j] ∈ E. We denote ea ∈ E the undirected
edge corresponding to a ∈ A and we define Γ+

i (Γ−
i ) as the set of outgoing

(incoming) arcs for each i ∈ V. The set of variables used in the formulation is
summarized below.
Decision variables
xj 1, if there is a facility at node j, and 0, otherwise, for j ∈ V .
yij 1, if node i is assigned to a facility at node j, and 0, otherwise, for

i, j ∈ V, i ̸= j.
δe The amount of reduction of the length of edge e, for e ∈ E.
f ij
a 1, if a path of length ≤ R from i to j traverses arc a, and 0, otherwise,

for i, j ∈ V, i < j, a ∈ A \
(
Γ−
i ∪ Γ+

j

)
.

αij
a The length of arc a, if this arc belongs to a path of length ≤ R from node

i to node j (αij
a = 0 otherwise), for i, j ∈ V, i < j, a ∈ A \

(
Γ−
i ∪ Γ+

j

)
.

Observe that in the definition of the y-variables, we use the term “assign to”
instead of “covered by”. A node can potentially be covered by more than one
service facility and we decided to resolve this ambiguity by explicitly assigning
a node to a facility as this simplifies the explanations of the formulations. Tak-
ing into account the notation presented above, the flow coverage formulation
(Flow-Cov) for Up-MCLP is:

max
∑
i∈V

wi

 ∑
j∈V \{i}

yij + xi


s.t.

∑
j∈V

xj = p, (4.1)

∑
j∈V \{i}

yij + xi ≤ 1, i ∈ V, (4.2)

yij ≤ xj , i, j ∈ V, i ̸= j, (4.3)∑
e∈E

ceδe ≤ B, (4.4)

0 ≤ δe ≤ ue, e ∈ E, (4.5)∑
a∈A\(Γ−

i ∪Γ+
j )

αij
a ≤ R, i, j ∈ V, i < j, (4.6)

αij
a ≥ f ij

a ℓea − δea , i, j ∈ V, i < j, a ∈ A \
(
Γ−
i ∪ Γ+

j

)
, (4.7)∑

a∈Γ+
k
,a/∈Γ−

i

f ij
a −

∑
a∈Γ−

k
,a/∈Γ+

j

f ij
a = 0, i, j ∈ V, i < j, k ∈ V \ {i, j}, (4.8)
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4.3. Flow coverage formulation∑
a∈Γ+

i

f ij
a = yij + yji, i, j ∈ V, i < j, (4.9)

∑
a∈Γ−

j

f ij
a = yij + yji, i, j ∈ V, i < j, (4.10)

0 ≤ αij
a ≤ ℓea − δea , i, j ∈ V, i < j, a ∈ A\

(
Γ−
i ∪ Γ+

j

)
, (4.11)

xj ∈ {0, 1}, j ∈ V, (4.12)

yij ∈ {0, 1}, i, j ∈ V, i ̸= j, (4.13)

f ij
a ∈ {0, 1}, i, j ∈ V, i < j, a ∈ A\

(
Γ−
i ∪ Γ+

j

)
. (4.14)

The objective of the problem is to maximize the amount of covered de-
mand. Constraint (4.1) fixes the number of located facilities. The family of
constraints (4.2) guarantees that either node i is itself a service facility or is
assigned to at most one node. The family of constraints (4.3) ensures that a
node is assigned to an open facility. The families of constraints (4.4) and (4.5)
force that the reduction on the length of the edges in the network is feasible.
The families of constraints (4.6)–(4.10) ensure that if yij (yji) takes value one,
there exists a path shorter than or equal to R from i to j (from j to i). Note
that constraints (4.2) and (4.3) imply yij + yji ≤ 1, for i, j ∈ V, i ̸= j.

Lemma 4.1. An equivalent formulation of (Flow-Cov) is obtained substituting
the set of constraints (4.12) by:

0 ≤ xj ≤ 1, j ∈ V, (4.15)

and the set of constraints (4.13) by:

0 ≤ yij ≤ 1, i, j ∈ V, i ̸= j. (4.16)

Proof:
Concerning the first part of the lemma, the x-variables inherit the inte-

grality condition from y-variables due to constraints (4.2) and (4.3). Let x∗

and y∗ be optimal values for the x- and y-variables, respectively, of formula-
tion (Flow-Cov) when constraints (4.12) are substituted by (4.15). For any
i ∈ V such that

∑
j∈V \{i} y

∗
ij = 1, constraint (4.2) ensures that x∗

i = 0. On the
other hand, for any i ∈ V, such that there exists j0 ∈ V, j0 ̸= i, with y∗

j0i = 1,
constraints (4.3) guarantee that x∗

i = 1. Finally, the model will choose to
locate the remaining service facilities (up to a total of p) at the uncovered
nodes with the largest demand.

Regarding the second part of the lemma, following a similar argument
than before, we conclude that the y-variables inherit the integrality condition
from the f -variables due to constraints (4.9) and (4.10) and the condition that
yij + yji ≤ 1 (derived by constraints (4.2) and (4.3)). �
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Observe that even though the f -variables are the intuitive candidates
for relaxation (since their number is much larger than the number of x- and
y-variables), there are examples where the optimal value differs when the in-
tegrality condition of these variables is relaxed.

An alternative formulation for Up-MCLP can be derived from the formu-
lation (Flow-Cov) by replacing constraints (4.6), (4.7), and (4.11) with the
following ones:∑

a∈A\(Γ−
i ∪Γ+

j )

(
f ij
a ℓea − γij

a

)
≤ R, i, j ∈ V, i < j, (4.17)

γij
a ≤ ueaf

ij
a , i, j ∈ V, i < j, a ∈ A \

(
Γ−
i ∪ Γ+

j

)
, (4.18)

0 ≤ γij
a ≤ δea , i, j ∈ V, i < j, a ∈ A \

(
Γ−
i ∪ Γ+

j

)
, (4.19)

where γij
a represents the reduction on the length of arc a if this arc belongs to a

path of length ≤ R from node i to node j, for i, j ∈ V, i < j, a ∈ A\
(
Γ−
i ∪ Γ+

j

)
.

A preliminary computational analysis showed that the alternative formulation
(Flow-Cov) for Up-MCLP where constraints (4.6), (4.7), and (4.11) are re-
placed with (4.17), (4.18), and (4.19) is better than the original (Flow-Cov).

4.3.1 Preprocessing phase

Next, we present two results for preprocessing the model, reducing the
number of constraint and variables of the above formulation. The idea of the
first is that if the distance between node i and node j is smaller than or equal
to R even before modifying the edge lengths of the network, then node i can
always be covered by a facility located at node j (and vice versa) regardless of
the edge length reductions made in the network.

Proposition 4.1. If d(i, j) ≤ R, for i, j ∈ V, i < j then it is not necessary to
include either the f ij

a -variables or the αij
a -variables (γij

a -variables) in formu-
lation (Flow-Cov). Moreover, we can remove the constraints associated with
these variables from the family of constraints (4.6)–(4.11) and (4.14) ((4.8)–
(4.10), (4.14), (4.17)–(4.19)).

The second result analyses the opposite case, i.e., Proposition 4.2 considers
the situation in which the distance between node i and node j is greater than
R independently of the edge length reductions.

Proposition 4.2. If one of the following four conditions is fulfilled for i, j ∈ V,

i < j, the variables yij , yji, f
ij
a , αij

a (γij
a ) for a ∈ A can be removed from the

(Flow-Cov) formulation. Moreover, the constraints associated with this pair
of nodes can be deleted from (4.2), (4.3), (4.6)–(4.11), (4.13), (4.14) ((4.2),
(4.3), (4.8)–(4.10), (4.13), (4.14), (4.17)–(4.19)).

82



4.3. Flow coverage formulation

i) d(i, j) > R+
∑

e∈E ue, for i, j ∈ V, i < j.

ii) d(i, j, u) > R, for i, j ∈ V, i < j, where d(i, j, u) is the length of the shortest
path from i to j in a graph with edge lengths ℓe − ue, for e ∈ E.

iii) d(i, j) > R+

k̄∑
k=1

ueσ(k)
+

B −
k̄∑

k=1

ueσ(k)

ceσ(k̄+1)

for i, j ∈ V, i < j, where k̄ is the

largest index k that satisfies the following condition:
k∑

h=1

ueσ(h)
ceσ(h)

≤ B, (4.20)

and σ(·) is a permutation of {1, . . . ,m} that sorts the unit upgrade costs
in non-decreasing order.

iv) The optimal value of the following problem is greater than R, for i, j ∈ V,

i < j, (
Pd(i,j,δij)

)
min

∑
a∈A

(faℓea − γa)

s.t. (4.4), (4.5),∑
a∈Γ+

k

fa −
∑

a∈Γ−
k

fa = gk, k ∈ V, (4.21)

γa ≤ ueafa, a ∈ A, (4.22)

γa ≤ δea , a ∈ A, (4.23)

fa ∈ {0, 1}, a ∈ A, (4.24)

where the f-variables and γ-variables are defined as above (we dropped the
indices i and j for the ease of exposition), and

gk =


1, if k = i,

−1, if k = j,

0, otherwise.

Proof:
Each of the items of the proposition is proven below.

i) The first condition considers the case where the distance from i to j

is greater than R even when reducing the length of every edge by the
maximum amount allowed. Therefore, it is straightforward to conclude
that the distance between the two nodes cannot be less than or equal to
R.

ii) In the previous condition, the maximum amount of reduction in the whole
network was considered without taking into account the edges for which
this reduction is made. Now we compute the shortest path between two
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nodes in the network assuming an unlimited budget, i.e., the full discount
is applied to all edges. For each edge e, let ℓeu = ℓe − ue. For i, j ∈ V,

let d(i, j, u) be the length of the shortest path connecting i with j where
the length of the edges are ℓeu , for e ∈ E. Hence, even if reducing the
maximum amount allowed on all edges, the distance is greater than R,
clearly, node i cannot be assigned to node j, and vice versa. Although
condition i) is weaker than ii), i) can be checked more efficiently.

iii) This condition is similar to the first one, but takes into account the budget
constraint (4.4). In this case, we calculate the maximum reduction in the
network allowed by the budget. For this purpose, we sort the upgrade
costs ce, for e ∈ E, in non-decreasing order. Let σ be a permutation of
{1, . . . ,m} such that ceσ(1)

≤ ceσ(2)
≤ . . . ≤ ceσ(m)

. Then, we compute
the maximum total length reduction over the network, i.e., we spend the
budget on upgrading the cheapest edges. Let k̄ be the largest index k that
satisfies condition (4.20). Therefore, the right-hand side of iii) minus R

is the maximum length reduction between any two nodes of the network.
Taking into account the above arguments, we conclude that node i cannot
be assigned to a facility located at node j, and vice versa.

iv) Condition iii) provides the maximal reduction without taking into account
whether this reduction can be achieved in a path form i to j. For this
reason, that bound can be tightened, but it requires to solve a separate
problem for each pair of vertices. Formulation

(
Pd(i,j,δij)

)
computes the

shortest path between node i and node j assuming that all the budget can
be spent just for the path between those two nodes. Therefore, the optimal
value of this problem, named d(i, j, δij), is the minimal distance between
node i and node j after the most favorable edges length reductions. Hence,
if d(i, j, δij) is greater than R, node i can never be assigned to a facility
at node j, and vice versa. 2

As stated in Demgensky et al. (2002), the shortest path problem where
the length of the edges can be reduced,

(
Pd(i,j,δij)

)
, is NP-hard. However, the

optimal value of the LP relaxation of formulation
(
Pd(i,j,δij)

)
provides a valid

bound that can still be used instead, albeit yielding a weaker condition. If this
value is greater than R, then i can never cover j, and vice versa.

4.3.2 Valid inequalities

In the previous subsection, we have presented two results to preprocess
the model, reducing the number of constraints and variables. In this one,
we propose several families of valid inequalities to strengthen the (Flow-Cov)
formulation.
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Proposition 4.3. Let V̂i := {j ∈ V \{i} : d(i, j) ≤ R}. The following families
of constraints are valid inequalities for (RL-FS):

f ij
(k,q) + f ij

(q,k) ≤ 1, [k, q] ∈ E, i, j ∈ V, i < j, k, q ̸= i, j, (4.25)

ykj ≥ yij + f ij
a − 1, i, j, k ∈ V, i < j, k ̸= i, k ̸= j, a ∈ Γ−

k , (4.26)

yki ≥ yji + f ij
a − 1, i, j, k ∈ V, i < j, k ̸= i, k ̸= j, a ∈ Γ−

k , (4.27)

xj ≤
∑

k:k ̸=i,d(i,k)≤d(i,j)

yik + xi, i ∈ V, j ∈ V̂i, (4.28)

xj ≤
∑

k:k ̸=i,d(i,k,δik)≤d(i,j)

yik + xi, i ∈ V, j ∈ V̂i. (4.29)

Proof:
The proof of valid inequalities is given below:
The first family of constraints (4.25) ensure that an edge is not traversed

in both directions on a path from i to j, i < j.
The second and the third families of constraints, (4.26) and (4.27), are

based on the fact that a path between two non-adjacent nodes i and j will
traverse at least one other node. Therefore, if there exists a path whose length
is less than or equal to R that connects a facility at node i with demand point
j and traverses node k, then node k will also be assigned to facility i. More
concretely, given i, j ∈ V, i ≤ j, if f ij

a = 1 for some a ∈ A, such that a ∈ Γ−
k ,

k ̸= i, k ̸= j and yij = 1 (yji = 1), then the constraints impose that ykj = 1

(yki = 1).
Regarding (4.28), these constraints ensure that a node will be served by

the closest service facility that is within the covering distance before upgrading
the network (whenever at least one service facility is closer than the coverage
radius before upgrading the network). Observe that these constraints elimi-
nate symmetries and are valid also for formulation (Flow-Cov) because nodes
might not be assigned to the closest service facility in the upgraded network.
Nevertheless, the situation would be incompatible with constraints (4.26) and
(4.27), as explained in the following remark (Remark 4.3.1).

Finally, whenever at least one service facility j is closer to a node i than the
coverage radius before upgrading the network, constraints (4.29) ensure that
this node will either host a facility itself or be assigned to this service facility
or to a facility that can be closer after upgrading the network (it considers the
distances in the range of d(i, j) and the most favorable edge length reductions,
i.e., d(i, k, δik) for any k ̸= i.). �

Remark 4.3.1. Regarding the valid inequalities presented in the previous
result, note:
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i) Constraints (4.26) and (4.27) might be incompatible with (4.28), i.e.,
constraints (4.26)–(4.28) cannot be included in the formulation simul-
taneously.

ii) The family of valid inequalities (4.28) is tighter than (4.29), but (4.29)
are not incompatible with (4.26) and (4.27).

In the following, we present an example illustrating the first part of Re-
mark 4.3.1.

Example 4.1. Consider the network depicted in Figure 4.1. For each edge,
its length, its upper bound of reduction, and its cost per unit of reduction,
(ℓe, ue, ce), are printed next to the edge. Let R = 1, p = 2, B = 0.75, and the
demand of nodes wi = 1, wj = 1, wk = 1, wq = 1, wr = 1000, ws = 1000. It
is straightforward to conclude that the optimal location of the services are the
dark nodes, i.e., x∗

i = 1 and x∗
q = 1, and that the optimal edge length reduction

is δ∗[k,q] = 0.75.

i r

j k q

s

(1, 0, 0)

(0.5, 0, 0) (1.25, 0.75, 1)

(0.5, 0, 0)

(0.55, 0, 0)

Figure 4.1. Illustration of incompatibility.

In this case, from constraints (4.28) we obtain that xi ≤ yki + ykj + xk.

Then, y∗
ki = 1. On the other hand, facility q is the only one that covers node

j, then y∗
jq = 1. Moreover, as the path from node j to node q traverses node

k, we obtain that f jq∗
(j,k) = 1. Therefore, from constraint (4.26), we obtain that

y∗
kq = 1. Thus, we have found that these families of constraints are incompatible

(yki and ykq can not take value one simultaneously due to constraints (4.2)).

Note that the ideas behind constraints (4.28) and (4.29) are practically
identical. The reason why constraints (4.29) are not incompatible with (4.26)
and (4.27) is that the constraints (4.29) do not force that the node is assigned
to the closest service facility before upgrading, instead for given i, j such that
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i ̸= j and d(i, j) ≤ R, it enables the node to be assigned to another node
whose distance after the most favorable edge length reductions is smaller than
or equal to d(i, j). In Espejo et al. (2012) a detailed description of closest
service assignment constraints is given.

Observe that the variables dropped from the formulation in the prepro-
cessing phase (Propositions 4.1 and 4.2), can also be removed from the valid
inequalities presented in this subsection. In the next section, an alternative
formulation for this problem is developed.

4.4 Path Formulation
In this section we present our second formulation for Up-MCLP. It con-

tains fewer variables and constraints than (Flow-Cov). However, this comes
at the expense of reducing the scope of preprocessing the model.

This formulation again models paths of length at most R from a customer
node i to a service provider. However, in contrast to (Flow-Cov), the path
from i is not modeled as a flow but through the immediate successor of i on
a path of length ≤ R to a facility. For this purpose, we introduce two new
binary variables zij (zji) for [i, j] ∈ E, such that zij (zji) is equal to one if
node j (i) is the next node on a path of length at most R from i (j) to a
service facility. In Figure 4.2 we illustrate this family of variables where the
dark node represents a facility. If i is covered by a facility at q, then also j

must be covered. Note that a feasible solution resembles a forest rooted at the
facilities.

i j q k

zij = 1 zjq = 1 xq = 1 zkq = 1

≤ R ≤ R

Figure 4.2. Illustration of z-variables.

For the sake of clarity, a description of the decision variables used in the
formulation is given next.
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Decision variables
xj 1, if there is a facility at node j, and 0, otherwise, for j ∈ V .
zij 1, if node j is the next node on a path of length ≤ R from i to a

facility, and 0, otherwise, for [i, j] ∈ E.

di An upper bound of the length of the built path from node i to its
assigned service facility, for i ∈ V .

δe = δ[i,j] The amount of reduction of the length of edge e = [i, j], for e ∈ E.

The formulation for problem Up-MCLP using these variables, (Path), is
as follows:

(Path) max
∑
i∈V

wi

xi +
∑

j:[i,j]∈E

zij


s.t. (4.1), (4.4), (4.12),∑

j:[i,j]∈E

zij + xi ≤ 1, i ∈ V, (4.30)

∑
j:[i,j]∈E,j ̸=k

zij + xi ≥ zki, [k, i] ∈ E, (4.31)

0 ≤ di ≤ R
∑

j:[i,j]∈E

zij , i ∈ V, (4.32)

di ≥ dj + ℓ[i,j]zij − δ[i,j] −R(1− zij), [i, j] ∈ E, (4.33)

0 ≤ δe ≤ ue(zij + zji), e = [i, j] ∈ E, (4.34)

zij ∈ {0, 1}, [i, j] ∈ E. (4.35)

The family of constraints (4.30) states that each node is assigned to at
most one facility or this node is itself a service facility. The family of con-
straints (4.31) ensures that a node k is not assigned to its service facility
through a node i, unless node i is also covered or a facility itself. The family
of constraints (4.32) and (4.33) set the value of di, a bound on the distance
from node i to its facility, if there exists a path of length at most R. We
note that (4.33) are equivalent to the well-known Miller-Tucker-Zemlin sub-
tour elimination constraints, extended by our edge length reduction variables.
In Figure 4.3, an illustration of constraints (4.33) is depicted, in which the
dark node represents a facility. Finally, the families of constraints (4.4) and
(4.34) establish the bounds on the amount of length edge reductions.

Note that constraints (4.30) and (4.31) ensure that

zij + zji ≤ 1, [i, j] ∈ E. (4.36)

The following result provides an improvement to the previous formulation.
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i j q

ℓ[i,j]zij − δ[i,j] ≤ dj

≤ di

Figure 4.3. Illustration of constraints (4.33).

Proposition 4.4. The formulation (Path) can be enhanced as follows:

i) The binary condition for the x-variables can be relaxed.
ii) The following are valid inequalities for (Path).

di ≥
∑

j:[i,j]∈E

(
ℓ[i,j] − u[i,j]

)
zij , i ∈ V. (4.37)

iii) Constraints (4.33) can be reinforced as follows

di ≥ dj + ℓ[i,j]zij − δ[i,j] −R(1− zij) + zji(R− ℓ[i,j])
+, [i, j] ∈ E, (4.38)

where a+ := max {a, 0}.

Proof:
The proof of i) is very similar to the proof of the first part of Lemma 4.1.
Regarding statement ii), the idea behind these constraints is based on the

fact that if a non-facility node is covered, the distance from that node to its
assigned facility will be at least the length of the adjacent edge in the path to
the service provider, minus the maximally allowed edge length reduction, i.e.,

di ≥
(
ℓ[i,j] − u[i,j]

)
zij , [i, j] ∈ E. (4.39)

Moreover, each node is linked to at most one other node in the path to its
service facility because of constraint (4.30).

In order to prove result iii), we analyze the possible cases. Since the z-
variables are binary and constraints (4.36) are satisfied, we get the following
four possibilities in the optimal solution for [i, j] ∈ E: a) z∗ij = z∗ji = 0, b)
z∗ij = 1, z∗ji = 0, c.1) z∗ij = 0, z∗ji = 1, with R − ℓ[i,j] ≤ 0, and c.2) z∗ij = 0,

z∗ji = 1, with R − ℓ[i,j] > 0. In cases a), b), and c.1) constraints (4.33) are
fulfilled. Hence, (4.38) is valid. Therefore, we focus on case c.2). In this case,
since the lower bounds of di is only given by (4.33), we can assume without
loss of generality that (4.33) is satisfied with equality, i.e.:

d∗j = d∗i + ℓ[i,j] − δ∗[i,j].
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Therefore,
d∗i = d∗j − ℓ[i,j] + δ∗[i,j] ≥ d∗j − ℓ[i,j] − δ∗[i,j].

Hence, since z∗ij = 0, z∗ji = 1, we have that:

d∗i ≥ d∗j + ℓ[i,j]z
∗
ij − δ∗[i,j] −R(1− z∗ij) + z∗ji(R− ℓ[i,j]),

and consequently the family of inequalities (4.38) holds. Finally, this clearly
strengthens the family of constraints (4.33). �

In what follows, we will refer to (Path) as the formulation where the above
proposition has been applied. Next, we present some valid inequalities linking
x- and z-variables. In this formulation, it is not possible to represent which
service is assigned to a given node. Therefore, the ideas of Proposition 4.2
cannot be used. Although it is possible to obtain valid inequalities for this
formulation based on constraints (4.28).

Proposition 4.5. The following families of constraints are valid inequalities
for (Path):

xj ≤
∑

k:[i,k]∈E,ℓ[i,k]−u[i,k]≤d(i,j)

zik + xi, i ∈ V, j ∈ V̂i, (4.40)

∑
i∈W

∑
j∈W :[i,j]∈E

zij ≤ |W | − 1, W ⊂V, 3 ≤ |W | ≤ n− p, (4.41)

di ≥
∑

j:[i,j]∈S1

(dj −R(1− zij)) +
∑

j:[i,j]∈S2

(
ℓ[i,j]zij − δ[i,j]

)
, i ∈ V, S1, S2 ⊆ Γi. (4.42)

Proof:
If a facility is open at some node j whose distance to node i before upgrad-

ing the network was lower than or equal to the coverage radius (hypothesis of
Proposition 4.1), we can be sure that node i will be covered by some facility.
Therefore, in order to eliminate possible symmetries, we assume that either i

is a facility itself or the immediate successor of node i on its path to a service
facility is a node whose distance to i after upgrading can be smaller than or
equal to d(i, j). Using the above argument, the family of constraints (4.40) is
obtained.

Secondly, we can include the valid inequalities (4.41) to avoid cycles.
These inequalities are not required in (Path) because the family of constraints
(4.33) or equivalently (4.38) avoid cycles in any feasible solution. However,
they can improve the linear relaxation bounds.

Finally, we prove that constraints (4.42) are valid inequalities. Using
constraint (4.30), we know that in any feasible solution, for each i ∈ V, there
is at most one j0 ∈ V, [i, j0] ∈ E such that zij0 = 1.
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On the one hand, if
∑

j:[i,j]∈E zij = 0, we obtain that di = 0 by (4.32).
Furthermore, this latter set of constraints ensures that dj ≤ R, for j ∈ V.

Then, dj − R(1 − zij) ≤ 0, for [i, j] ∈ E. Moreover, since the δ-variables are
non-negative and zij = 0, for j ∈ V , we obtain that ℓ[i,j]zij − δ[i,j] ≤ 0, for
[i, j] ∈ E. Hence, it holds that:

0 = di ≥
∑

j:[i,j]∈S1

(dj −R(1− zij)) +
∑

j:[i,j]∈S2

(
ℓ[i,j]zij − δ[i,j]

)
, S1, S2 ⊆ Γi.

On the other hand, if exists j0 ∈ V, [i, j0] ∈ E, such that zij0 = 1, using
(4.33) we know that:

di ≥ dj0 −R(1− zij0) + ℓ[i,j0]zij0 − δ[i,j0].

Furthermore, dj −R(1−zij) ≤ 0, for [i, j] ∈ E, such that j ̸= j0, and ℓ[i,j]zij −
δ[i,j] ≤ 0, for [i, j] ∈ E, such that j ̸= j0. Therefore:

di ≥
∑

j:[i,j]∈S1

(dj −R(1− zij)) +
∑

j:[i,j]∈S2

(
ℓ[i,j]zij − δ[i,j]

)
, S1, S2 ⊆ Γi.

Thus, we conclude that constraints (4.42) are valid inequalities. �

Observe that in preliminary computational experiments the addition of
the following constraints from family (4.41) as cuts in the branching tree was
quite effective (more details are provided in Section 4.6):

zij + zji + zjk + zkj + zik + zki ≤ 2, [i, j], [j, k], [i, k] ∈ E. (4.43)

Next, we solve the separation problem in the family of constraints (4.42),
i.e., given a solution of the LP-relaxation of the formulation, find one or more
constraints in family (4.42) that are not satisfied. Hence, sets S1 and S2

that maximizes the right-hand-side of the inequality have to be identified.
Let d̄, δ̄, and z̄ be the optimal vectors of values of the d-, δ-, and z-variables,
respectively, in a node of the branching tree during the resolution of an instance
of formulation (Path). Then, it is straightforward to conclude that one of the
following constraints maximizes the right-hand-side of (4.42):

di ≥
∑

j:[i,j]∈E,d̄j>R(1−z̄ij)

(dj −R(1− zij)) +
∑

j:[i,j]∈E,ℓ[i,j]z̄ij>δ̄[i,j]

(
ℓ[i,j]zij − δ[i,j]

)
, i ∈ V, (4.44)

di ≥
∑

j:[i,j]∈E,d̄j+ℓ[i,j]z̄ij>R(1−z̄ij)+δ̄[i,j]

(
dj + ℓ[i,j]zij −R(1− zij)− δ[i,j]

)
, i ∈ V. (4.45)

In Section 4.6, the performance of this formulation and the effectiveness
of the valid inequalities will be analyzed.
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4.5 Path-Coverage Formulation
In this section, we introduce a third formulation, which merges compo-

nents from the first formulation with the second formulation. More precisely,
we add the assignment variables y of (Flow-Cov) to (Path). For the sake of
clarity, all variables of this formulation are explained below.
Decision variables
xj 1, if there is a facility at node j, and 0, otherwise, for j ∈ V .
yij 1, if node i is assigned to a facility at node j, and 0, otherwise, for

i, j ∈ V, i ̸= j.
zij 1, if node j is the next node on a path of length ≤ R from i to its

service facility, and 0, otherwise, for [i, j] ∈ E.
di An upper bound of the length of the built path from node i to its

service facility, for i ∈ V .
δe = δ[i,j] The amount of reduction of the length of edge e = [i, j], for e ∈ E.

Next, we present the formulation (Path-Cov) of problem Up-MCLP using
the variables described above:

max
∑
i∈V

wi

xi +
∑

j:[i,j]∈E

zij


s.t. (4.1), (4.3), (4.4), (4.12)–(4.13), (4.30)–(4.32), (4.34), (4.35), (4.38),∑

k∈V \{i}

yik =
∑

j:[i,j]∈E

zij , i ∈ V, (4.46)

yik ≥ zij + zji + yjk − 1, k ∈ V \ {i, j}, [i, j] ∈ E, (4.47)

yij ≥ zij + zji + xj − 1, [i, j] ∈ E. (4.48)

The family of constraints (4.46) establishes that if a node is assigned to a
service facility, then there is a path from this node to its facility and vice versa.
Constraints (4.47) ensure that if two nodes are on the same path, i.e., zij = 1,
they must be assigned to the same facility k. Constraints (4.48) represent
the particular case where node j hosts a service provider. Observe that the
objective function can also be expressed as follows:

∑
i∈V

wi

xi +
∑

j∈V \{i}
yij

 .

But in preliminary computational experiments, we have found that the ob-
jective function with the z-variables outperforms the one with the y-variables.

Lemma 4.2. The binary condition on the x-variables and the y-variables can
be relaxed.
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Proof:
The proof of the first part of this lemma is very similar to the proof of

the first part of Lemma 4.1. Regarding the integrality condition on the y-
variables, since their values are given by the values of the z-variables, it is
straightforward to conclude that given an optimal solution it is possible to
find another optimal solution in which the y-variables are integer. �

In contrast to (Path), this formulation controls the service facilities to
which the nodes are assigned with the y-variables. This information allows
us to use a more sophisticated preprocessing phase. For doing so, one of the
results presented in Subsection 4.3.1 is used. Under the hypothesis of Propo-
sition 4.2, i.e., a facility at node i will never be assigned to a facility located
at node j, for i, j ∈ V, and vice versa, variables yij and yji are removed from
all the constraints in which they are included (fixed to zero and not included
in the formulation to save memory). Furthermore, using the information ob-
tained in the preprocessing phase we can develop new valid inequalities, which
are discussed in the next subsection.

4.5.1 Valid inequalities

This subsection is devoted to presenting valid inequalities for formulation
(Path-Cov). We start by remarking that the valid inequalities (4.29) obtained
for formulation (Flow-Cov) can also be implemented in (Path-Cov). Simi-
larly, all the valid inequalities obtained for formulation (Path) are still valid
for (Path-Cov), namely, the families of constraints (4.37) and (4.39)–(4.45).
However, the additional information provided by the y-variables in formula-
tion (Path-Cov) can be used to strengthen some of them. The ones that can
be enhanced using the covering variables are described below.

First, the lower bound for the d-variables can be improved, i.e., constraint
(4.37) can be enhanced as:

di ≥
∑

j∈V \{i}

d(i, j, δij)yij , i ∈ V. (4.49)

Recall that d(i, j, δij) represents the distance between nodes i and j using the
most favorable edge length reductions satisfying the budget constraint (4.4).
In what follows, we will refer to (Path-Cov) as the formulation (Path-Cov) in
which constraints (4.49) are included.

Finally, we present a new family of valid inequalities that reinforces con-
straints (4.47). It is based on the fact that if two nodes are linked (the sum of
their z-variables is one), then both nodes will be assigned to the same service
facility.
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Lemma 4.3. The following are valid inequalities for (Path-Cov):

zij+zji ≤
∑

k∈W,k ̸=i

yik+xiIW (i)+
∑

k/∈W,k ̸=j

yjk+xj (1− IW (j)) , [i, j] ∈ E,W ⊆ V,

(4.50)
where IW (i) is the indicator function, i.e., IW (i) = 1 if i ∈ W and 0 otherwise.

Note that, for the case W = {k}, for k ∈ V, we obtain zij + zji ≤
yik +

∑
t∈V,t ̸=k,t ̸=j yjt + xj , using constraints (4.30) and (4.46), it holds that

zij+zji ≤ yik+
∑

t∈V,t ̸=k,t ̸=j yjt+xj ≤ yik+1−yjk. Hence, some constraints of
family (4.50) are tighter than (4.47). As the cardinality of (4.50) is exponen-
tial, we solve the separation problem in this family of constraints. Therefore,
the set W that minimizes the right-hand-side of constraints (4.50) has to be
identified. Let ȳ (x̄) be the optimal vector values of y-variables (x-variables)
in a node of the branching tree during the resolution of an instance of formu-
lation (Path-Cov). Then, it is straightforward to conclude that the following
constraints minimize the right-hand-side of (4.50).

zij+zji ≤
∑

k∈V :ȳik≤ȳjk,ȳik≤x̄j

yik+xiI{k:x̄k≤ȳjk}(i)+
∑

k∈V :ȳjk<ȳik,ȳjk<x̄i

yjk+xjI{k:x̄k<ȳik}(j), [i, j]∈E.

(4.51)
Note that if a pair of nodes satisfies at least one of the conditions of

Proposition 4.2, their corresponding y-variables can be removed from all the
constraints including the valid inequalities presented in this subsection.

In the following section, the performance of the three proposed formula-
tions for Up-MCLP are compared.

4.6 Computational Results
In this section, we present the results of several computational experiments

which compare the performance of the three proposed formulations and show
the improvements achieved thanks to the preprocessing phase and the inclusion
of the valid inequalities developed throughout the chapter. The experiments
were conducted on an Intel(R) Xeon(R) W-2135 CPU 3.70 GHz 32 GB RAM,
using CPLEX 20.1.0 in Concert Technology C++ with a time limit of 1800
seconds.

Regarding the preprocessing phase for (Flow-Cov) and (Path-Cov), aiming
to find a balance between preprocessing time and the quality of the d(i, j, δij)

bounds for each pair i, j ∈ V , the following strategy has been implemented.
First, we computed the matrix of pairwise shortest distances without upgrad-
ing and the matrix of pairwise shortest distances after upgrading all edges to
their full maximum (d(i, j, u)) using the Floyd-Warshall algorithm. Then, we
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checked if the hypothesis of Proposition 4.1 or if the hypotheses i)-iii) of Propo-
sition 4.2 are fulfilled. If either of these conditions is satisfied for a pair i, j ∈ V ,
we removed the corresponding variables and constraints and we used d(i, j, u)

as d(i, j, δij) in the valid inequalities that are required (as e.g. constraints
(4.29)). This could be done because d(i, j, u) is a lower bound of d(i, j, δij). If
neither of these conditions were fulfilled for a given pair i, j ∈ V , we solved the
linear relaxation of

(
Pd(i,j,δij)

)
. The minimum between its optimal solution

and d(i, j, u) is the value that we used as d(i, j, δij) in the corresponding valid
inequalities. As before, this can be done because both values are lower bounds
of d(i, j, δij).

In preliminary computational experiments, we checked the performance of
the alternative formulation (Flow-Cov) for Up-MCLP and the valid inequal-
ities to identify which ones performed best in each formulation. After this
preliminary choice, we conclude that the best formulations are:

a) Formulation (Flow-Cov) where constraints (4.6), (4.7), and (4.11) have
been replaced with (4.17), (4.18), and (4.19) and the family of constraints
(4.25) is included, named (Flow-Cov) for short.

b) Formulation (Path) where constraints (4.37) are included and constraints
(4.33) have been reinforced by constraints (4.38). In what follows, we call
it formulation (Path).

c) Formulation (Path) with constraints (4.40) as valid inequalities and (4.43)
as particular case of (4.41) in a pool of user cuts, named (Path) + VI for
short.

d) Formulation (Path-Cov) where constraints (4.49) are included, we call it
formulation (Path-Cov).

e) Formulation (Path-Cov) including constraints (4.29) and (4.43) as particu-
lar case of (4.41) in a pool of user cuts, named (Path-Cov) + VI for short.

We would like to remark that including the constraints (4.44), (4.45), and
(4.51) in the branching tree was effective, as the number of nodes in which the
instances were solved decreased. However, this procedure is time-consuming,
causing that even though the instances were solved on fewer nodes the overall
computation time increased.

The rest of the section is structured as follows. First, the data used in
the computational experiments are described. Second, the advantages of the
preprocessing phase are shown. Then, the following subsections compare the
different formulations with and without valid inequalities in complete graphs
and in sparse graphs, respectively. These subsections illustrate the great value
of the preprocessing phase and the addition of valid inequalities.
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4.6.1 Data

The computational experiments were carried out on two different types of
networks.

First, we generated instances adapting the procedure used in ReVelle et al.
(2008); Cordeau et al. (2019), among others. Nodes were given by points whose
coordinates followed a uniform distribution over [0,30]. Then, we computed
the complete graph where the length of the edges is the Euclidean distance
between the nodes. We named these instances as “graph” followed by the
number of vertices, e.g., “graph30” is a complete graph with 30 nodes and 435
edges.

Secondly, we used the uncapacitated p-median datasets from the OR-
Library, called pmed, see Beasley (1990). As said in the documentation of these
datasets, Floyd’s algorithm was applied to obtain a symmetric allocation cost
matrix that satisfied the triangle inequality. The main difference with respect
to the previous datasets is that the p-median instances are sparser graphs (the
number of edges is n2/50).

The parameters have been chosen as described below. The number of fa-
cilities, p, was proportional to the number of vertices, i.e., p ∈ {1, n/10, n/20}.
The node weights or demands, wi for i ∈ V , were integers randomly generated
between 1 and 100. We tested three different coverage radii, R, such that
we could cover approximately 50%, 60%, and 70% of the total demand when
solving the maximal covering location problem without upgrading (DTMCLP),
i.e.,

R ∈ {R(50%DTMCLP), R(60%DTMCLP), R(70%DTMCLP)}.

Upgrading costs, ce, for e ∈ E, were randomly generated between 1 and 3.
The upper bounds ue, for e ∈ E, were randomly generated from (0, 30%ℓe),

for e ∈ E. Then, the length of the edges was modified as ℓe+ue, for e ∈ E. This
implies that the instances satisfy the triangle inequality when the full discount
is applied in all edges. Finally, the budget B was computed as follows. First,
we sorted the upgrade costs ceue, for e ∈ E, in non-increasing order. Let ρ be
a permutation of set E such that

ceρ(1)ueρ(1) ≥ ceρ(2)ueρ(2) ≥ . . . ≥ ceρ(m)
ueρ(m)

.

Then, since we are constructing a forest with p components (as seen in Sec-
tion 4.4), we can assume that at most n−p edges will be upgraded. Therefore,
we computed the maximum required budget for upgrading the most expensive
edges,

Bmax =

n−p∑
t=1

ueσ(t)
ceσ(t)

,
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and selected B ∈ {0.5%Bmax, 1%Bmax, 5%Bmax}.

4.6.2 Preprocessing phase

In this subsection, we show the enhancements provided by the prepro-
cessing, i.e., Propositions 4.1 and 4.2. For doing so, we solve (Flow-Cov) and
(Path-Cov) with and without preprocessing.

As an illustrative example, we include the results for graph40 in Table 4.2.
The performance was similar in the rest of the datasets. The results are
the average over five instances generated with the same procedure, varying
only the random seed for the generator. The first column indicates the name
of the dataset, the number of nodes and the number of edges. Next, the
percentage of the maximal budget (B%), and the number of located facilities
are depicted (p), followed by the approximate percentage of covered demand
in the MCLP without upgrading using this radius (R%). The following four
columns describe information about (Flow-Cov) without preprocessing. The
first one shows the average time (in seconds) of solving the corresponding five
instances. Then, the following column of this group depicts the MIP relative
gap reported by CPLEX (G%) and in brackets the number of instances solved
to optimality within the time limit. Next, it is provided the best solution gap,
(Gt

BS%), computed as follows:

Gt
BS% =

BSt − BS
BSt · 100,

where BS is the best MIP objective value found within the time limit by the
formulation and BSt is the best MIP solution value found within the time limit
across all formulations. Finally, it is shown the linear relaxation gap, (Gt

LP %),
computed as follows:

Gt
LP% =

LP − BSt

BSt · 100,

where LP is the optimal solution value of the linear relaxation of the formu-
lation. Note that Gt

LP % enables us to compare the linear relaxation of the
formulations with each other (it could be possible that G% is greater than
Gt

LP%). The following blocks of columns depict information about the rest of
formulations, (Flow-Cov) with preprocessing and (Path-Cov) with and with-
out preprocessing. Observe that the blocks corresponding to formulations with
preprocessing include eight columns. The first column of these blocks reports
the average time of the preprocessing phase in seconds, the next one shows
the average total time (in seconds) of solving the corresponding five instances
including the preprocessing time. The third, the fourth, and the fifth columns
report the average G%, Gt

BS , and Gt
LP respectively. Then, the average per-

centage of reduction in the number of constraints (Rc%), variables (Rv%),
and binary variables (Rbv%) are depicted. The percentage of reduction in the
number of constrains is computed for formulation (Flow-Cov) as follows:

Rc% =
#const. of (Flow-Cov) without prep. − #const. of (Flow-Cov) with prep.

#const. of (Flow-Cov) without prep.
· 100.

The others are calculated analogously.
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Problem

D
at

a

B% p R%

(Flow-Cov) (Path-Cov)
Without preprocesing With preprocesing Without preprocesing With preprocesing

ttotal G% Gt
BS% Gt

LP % tst ttotal G% Gt
BS% Gt

LP % Rc% Rv% Rbv% ttotal G% Gt
BS% Gt

LP % tst ttotal G% Gt
BS% Gt

LP % Rc% Rv% Rbv%

gr
ap

h4
0
|V

|=
4
0
,|
E
|=

7
8
0

0.5

1
50 1042.5 0.0(5) 0.0 93.2 0.1 0.7 0.0(5) 0.0 2.3 97.0 97.0 96.9 1807.9 99.9(0) 5.7 93.2 0.1 2.3 0.0(5) 0.0 2.4 69.9 46.2 52.5
60 1490.0 15.4(3) 0.0 52.3 0.1 3.8 0.0(5) 0.0 0.7 95.8 95.7 95.7 1804.2 74.8(0) 12.4 52.3 0.2 8.8 0.0(5) 0.0 0.7 63.1 37.6 43.5
70 1556.8 7.3(4) 0.0 35.4 0.2 2.0 0.0(5) 0.0 1.0 96.0 96.0 95.9 1807.5 59.6(0) 13.4 35.4 0.2 724.2 1.0(3) 0.0 1.0 58.3 32.0 37.5

2
50 1578.7 74.4(1) 3.9 87.0 0.1 0.4 0.0(5) 0.0 1.2 98.4 98.4 98.4 61.3 0.0(5) 0.0 88.7 0.1 0.4 0.0(5) 0.0 3.3 80.8 68.7 74.3
60 1801.2 64.1(0) 4.2 57.0 0.1 0.4 0.0(5) 0.0 0.9 97.8 97.8 97.7 1093.2 4.3(3) 0.0 57.0 0.1 0.4 0.0(5) 0.0 0.9 77.5 60.0 66.2
70 1801.7 40.5(0) 4.4 34.1 0.1 0.7 0.0(5) 0.0 1.8 97.9 97.8 97.8 1769.3 17.5(1) 1.2 34.1 0.1 2.4 0.0(5) 0.0 1.8 74.3 53.1 59.5

4
50 2.9 0.0(5) 0.0 39.4 0.1 0.1 0.0(5) 0.0 1.0 99.1 99.1 99.0 0.3 0.0(5) 0.0 67.2 0.1 0.1 0.0(5) 0.0 2.8 86.7 83.4 87.3
60 27.5 0.0(5) 0.0 48.6 0.1 0.2 0.0(5) 0.0 0.8 99.0 98.9 98.9 8.4 0.0(5) 0.0 56.8 0.1 0.2 0.0(5) 0.0 1.7 84.9 78.5 83.1
70 1546.9 25.6(1) 0.6 34.3 0.1 1.0 0.0(5) 0.0 3.9 98.3 98.2 98.2 305.4 0.0(5) 0.0 34.3 0.1 0.6 0.0(5) 0.0 4.4 81.9 70.8 76.3

1

1
50 1384.9 18.2(4) 0.1 86.0 0.1 1.1 0.0(5) 0.0 0.4 96.0 96.0 96.0 1807.3 98.4(0) 6.6 86.0 0.1 3.6 0.0(5) 0.0 0.5 68.8 45.5 51.7
60 1611.6 17.1(3) 0.0 51.8 0.1 1.5 0.0(5) 0.0 0.4 95.2 95.2 95.1 1809.0 71.3(0) 10.7 51.8 0.1 5.4 0.0(5) 0.0 0.4 62.5 37.2 43.1
70 1801.9 27.9(0) 0.0 34.0 0.2 2.6 0.0(5) 0.0 1.5 94.7 94.7 94.7 1816.8 58.6(0) 13.8 34.0 0.2 135.3 0.0(5) 0.0 1.5 56.9 31.3 36.7

2
50 1579.3 69.8(1) 1.9 84.9 0.1 0.4 0.0(5) 0.0 0.9 98.1 98.1 98.0 95.8 0.0(5) 0.0 86.5 0.1 0.3 0.0(5) 0.0 1.4 80.4 68.4 74.1
60 1801.4 63.8(0) 6.1 53.2 0.1 0.8 0.0(5) 0.0 2.8 96.8 96.8 96.8 1609.6 12.4(1) 0.0 53.2 0.1 1.7 0.0(5) 0.0 2.8 76.5 59.3 65.4
70 1801.6 43.3(0) 7.6 31.6 0.1 1.9 0.0(5) 0.0 3.0 96.7 96.7 96.6 1804.5 23.9(0) 1.2 31.6 0.1 41.9 0.0(5) 0.0 3.1 73.1 52.3 58.6

4
50 2.9 0.0(5) 0.0 39.4 0.1 0.1 0.0(5) 0.0 1.0 99.1 99.1 99.0 0.3 0.0(5) 0.0 67.2 0.1 0.1 0.0(5) 0.0 2.8 86.7 83.4 87.3
60 27.6 0.0(5) 0.0 48.6 0.1 0.2 0.0(5) 0.0 0.8 99.0 98.9 98.9 8.4 0.0(5) 0.0 56.8 0.1 0.2 0.0(5) 0.0 1.7 84.9 78.5 83.1
70 1547.3 25.7(1) 0.6 34.3 0.1 1.0 0.0(5) 0.0 3.9 98.3 98.2 98.2 301.5 0.0(5) 0.0 34.3 0.1 0.6 0.0(5) 0.0 4.4 81.9 70.8 76.3

5

1
50 1805.7 88.6(0) 3.3 82.1 0.1 1.7 0.0(5) 0.0 0.3 95.0 95.0 95.0 1807.6 87.3(0) 3.3 82.1 0.1 0.6 0.0(5) 0.0 0.3 67.7 44.9 51.0
60 1805.2 46.(0) 0.4 45.4 0.2 2.1 0.0(5) 0.0 0.5 94.3 94.3 94.3 1807.6 68.3(0) 12.8 45.4 0.1 16.3 0.0(5) 0.0 0.5 61.6 36.7 42.5
70 1802.5 43.1(0) 7.4 31.0 0.2 1.9 0.0(5) 0.0 0.0 94.2 94.2 94.1 1811.1 44.1(0) 7.9 31.0 0.2 3.6 0.0(5) 0.0 0.0 56.3 31.0 36.3

2
50 1800.6 106.7(0) 12.8 79.8 0.1 0.4 0.0(5) 0.0 1.1 97.4 97.4 97.3 211.0 0.0(5) 0.0 81.6 0.1 0.4 0.0(5) 0.0 1.1 79.7 67.9 73.5
60 1801.3 61.7(0) 8.6 47.6 0.1 1.1 0.0(5) 0.0 0.3 96.1 96.0 96.0 1804.8 14.4(0) 0.0 47.6 0.1 0.7 0.0(5) 0.0 0.3 75.7 58.7 64.8
70 1802.0 41.7(0) 9.9 27.6 0.1 1.5 0.0(5) 0.0 0.0 95.5 95.4 95.4 1804.3 21.3(0) 1.5 27.6 0.1 2.0 0.0(5) 0.0 0.0 71.8 51.4 57.6

4
50 3.1 0.0(5) 0.0 36.1 0.1 0.1 0.0(5) 0.0 1.2 98.9 98.8 98.8 0.3 0.0(5) 0.0 63.4 0.1 0.1 0.0(5) 0.0 1.3 86.4 83.1 87.1
60 512.0 0.0(5) 0.0 45.9 0.1 0.2 0.0(5) 0.0 0.0 98.5 98.4 98.4 6.4 0.0(5) 0.0 54.1 0.1 0.2 0.0(5) 0.0 0.0 84.4 78.1 82.7
70 1801.1 35.4(0) 6.0 27.1 0.1 1.0 0.0(5) 0.0 1.5 97.4 97.3 97.3 463.7 1.4(4) 0.0 27.1 0.1 0.8 0.0(5) 0.0 1.5 80.8 70.1 75.5

Table 4.2. Performance of formulations (Flow-Cov) and (Path-Cov) with and without preprocessing.
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4.6. Computational Results

As can be appreciated in Table 4.2, the preprocessing phase yields a huge
reduction in computation time. For example, using formulation (Flow-Cov)
without preprocessing, only 53 instances are solved to optimality within the
time limit, while using formulation (Flow-Cov) with preprocessing, all in-
stances are solved (135) and the average time of solving each instance (in-
cluding the time of preprocessing) is 1.1 seconds. Furthermore, the reduction
in the number of constraints, variables and binary variables is also very large,
approximately 97% on average. In formulation (Path-Cov), the reduction of
time in the resolution process and the reduction of the size of the problem are
also very substantial.

Based on the above results, we conclude that the preprocessing phase
presented in the chapter is extremely useful and effective. Therefore, in the
subsequent computational experiments, the preprocessing phase is included.

4.6.3 Results for complete graphs

In this subsection, we compare the proposed formulations for complete
graphs highlighting the effectiveness of the valid inequalities developed.

The results of the smaller datasets (graph30 and graph40) are depicted
in Table 4.3. As before, the provided results are the average over five in-
stances generated with the same procedure, varying only the random seed
for the generator. The table describes information about (Flow-Cov), (Path),
(Path) + VI and (Path-Cov), and its structure is similar to that of Table 4.2.
Observe that the blocks corresponding to the (Path) and (Path) + VI formu-
lations have no preprocessing time, since we did not provide a preprocessing
for these formulations. Note also that the results of (Path-Cov) + VI are
not included because they are really similar to (Path-Cov). The differences
between these formulations will be shown in instances with a larger number
of nodes and edges. Moreover, since several of the valid inequalities are in-
cluded as cuts in the branching tree, the linear relaxation gap Gt

LP % of the
formulation with valid inequalities is practically the same as the one for the
formulation without valid inequalities. Therefore, they do not appear again
in the table. Finally, the formulation that provided the smallest average total
time is highlighted. If any of the five instances were not solved to optimality,
the formulation that solved more instances is shown in bold.

The results depicted in Table 4.3 show that formulations (Flow-Cov) and
(Path-Cov) outperform (Path) and (Path) + VI (the resolution times, the
number of instances solved, the MIP relative gap, the best solution gap, and
the linear relaxation gap of these formulations are worse). Moreover, it is
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Chapter 4. Upgrading edges in the Maximal Covering Location Problem

Data B% p R%
(Flow-Cov) (Path) (Path) + VI (Path-Cov)

tst ttotal G% Gt
BS% Gt

LP % ttotal G% Gt
BS% Gt

LP % ttotal G% Gt
BS% tst ttotal G% Gt

BS% Gt
LP %

gr
ap

h3
0,

|V
|=

3
0
,|
E
|=

4
3
5

0.5

1
50 0.1 0.5 0.0(5) 0.0 2.2 54.6 0.0(5) 0.0 84.8 13.2 0.0(5) 0.0 0.1 0.7 0.0(5) 0.0 2.2
60 0.1 0.4 0.0(5) 0.0 0.9 533.2 6.1(4) 0.0 50.9 144.1 0.0(5) 0.0 0.1 1.4 0.0(5) 0.0 0.9
70 0.1 0.5 0.0(5) 0.0 0.7 1162.9 14.4(2) 0.2 34.7 865.0 8.2(3) 0.0 0.1 0.8 0.0(5) 0.0 0.7

2
50 0.0 0.1 0.0(5) 0.0 0.6 0.3 0.0(5) 0.0 83.4 0.3 0.0(5) 0.0 0.0 0.1 0.0(5) 0.0 0.6
60 0.0 0.1 0.0(5) 0.0 0.0 0.7 0.0(5) 0.0 54.3 0.5 0.0(5) 0.0 0.0 0.1 0.0(5) 0.0 0.0
70 0.1 0.3 0.0(5) 0.0 1.0 5.0 0.0(5) 0.0 36.0 2.9 0.0(5) 0.0 0.0 0.3 0.0(5) 0.0 1.1

3
50 0.0 0.1 0.0(5) 0.0 0.4 0.1 0.0(5) 0.0 79.2 0.1 0.0(5) 0.0 0.0 0.1 0.0(5) 0.0 3.0
60 0.0 0.1 0.0(5) 0.0 2.6 0.3 0.0(5) 0.0 53.8 0.3 0.0(5) 0.0 0.0 0.1 0.0(5) 0.0 2.7
70 0.0 0.1 0.0(5) 0.0 0.7 0.8 0.0(5) 0.0 32.0 0.7 0.0(5) 0.0 0.0 0.1 0.0(5) 0.0 0.7

1

1
50 0.1 0.8 0.0(5) 0.0 4.1 102.7 0.0(5) 0.0 77.2 49.7 0.0(5) 0.0 0.1 1.9 0.0(5) 0.0 4.2
60 0.1 0.6 0.0(5) 0.0 0.7 620.2 2.9(4) 0.0 45.3 479.4 1.3(4) 0.0 0.1 2.2 0.0(5) 0.0 0.7
70 0.1 0.8 0.0(5) 0.0 2.0 1370.0 10.0(3) 0.0 32.4 967.0 11.9(3) 0.0 0.1 4.1 0.0(5) 0.0 2.1

2
50 0.0 0.1 0.0(5) 0.0 0.6 0.3 0.0(5) 0.0 83.4 0.3 0.0(5) 0.0 0.0 0.1 0.0(5) 0.0 0.6
60 0.0 0.1 0.0(5) 0.0 0.3 0.7 0.0(5) 0.0 52.8 0.5 0.0(5) 0.0 0.0 0.1 0.0(5) 0.0 0.3
70 0.1 0.6 0.0(5) 0.0 1.5 11.7 0.0(5) 0.0 32.5 6.1 0.0(5) 0.0 0.0 0.9 0.0(5) 0.0 1.5

3
50 0.0 0.1 0.0(5) 0.0 0.4 0.1 0.0(5) 0.0 79.2 0.1 0.0(5) 0.0 0.0 0.1 0.0(5) 0.0 3.0
60 0.0 0.1 0.0(5) 0.0 2.6 0.3 0.0(5) 0.0 53.8 0.3 0.0(5) 0.0 0.0 0.1 0.0(5) 0.0 2.7
70 0.1 0.1 0.0(5) 0.0 0.7 0.8 0.0(5) 0.0 32.0 0.7 0.0(5) 0.0 0.0 0.1 0.0(5) 0.0 0.7

5

1
50 0.1 0.6 0.0(5) 0.0 0.0 254.6 0.0(5) 0.0 66.2 98.3 0.0(5) 0.0 0.1 0.2 0.0(5) 0.0 0.0
60 0.1 0.7 0.0(5) 0.0 0.0 1097.0 5.5(3) 0.0 42.9 653.4 3.7(4) 0.0 0.1 0.2 0.0(5) 0.0 0.0
70 0.1 0.8 0.0(5) 0.0 0.0 1384.6 13.3(2) 0.0 28.8 1329.7 14.(2) 0.0 0.1 1.5 0.0(5) 0.0 0.0

2
50 0.0 0.2 0.0(5) 0.0 2.2 0.4 0.0(5) 0.0 70.6 0.4 0.0(5) 0.0 0.0 0.1 0.0(5) 0.0 3.6
60 0.0 0.2 0.0(5) 0.0 1.4 1.0 0.0(5) 0.0 49.4 0.8 0.0(5) 0.0 0.0 0.2 0.0(5) 0.0 1.4
70 0.1 0.5 0.0(5) 0.0 1.2 20.4 0.0(5) 0.0 30.7 11.1 0.0(5) 0.0 0.1 0.4 0.0(5) 0.0 1.2

3
50 0.0 0.1 0.0(5) 0.0 1.1 0.1 0.0(5) 0.0 72.1 0.1 0.0(5) 0.0 0.0 0.1 0.0(5) 0.0 1.8
60 0.1 0.2 0.0(5) 0.0 3.2 0.5 0.0(5) 0.0 47.4 0.5 0.0(5) 0.0 0.0 0.2 0.0(5) 0.0 4.6
70 0.1 0.3 0.0(5) 0.0 4.0 1.3 0.0(5) 0.0 26.2 0.9 0.0(5) 0.0 0.0 0.2 0.0(5) 0.0 4.2

gr
ap

h4
0,

|V
|=

4
0
,|
E
|=

7
8
0

0.5

1
50 0.1 0.7 0.0(5) 0.0 2.3 1395.1 31.1(2) 0.0 93.2 1089.2 39.(3) 6.1 0.1 2.3 0.0(5) 0.0 2.4
60 0.1 3.8 0.0(5) 0.0 0.7 1801.0 48.3(0) 5.1 52.3 1802.6 45.9(0) 5.8 0.2 8.8 0.0(5) 0.0 0.7
70 0.2 2.0 0.0(5) 0.0 1.0 1801.6 43.6(0) 8.2 35.4 1803.7 62.1(0) 16.9 0.2 724.2 1.0(3) 0.0 1.0

2
50 0.1 0.4 0.0(5) 0.0 1.2 6.2 0.0(5) 0.0 88.6 4.5 0.0(5) 0.0 0.1 0.4 0.0(5) 0.0 3.3
60 0.1 0.4 0.0(5) 0.0 0.9 143.6 0.0(5) 0.0 57.0 53.9 0.0(5) 0.0 0.1 0.4 0.0(5) 0.0 0.9
70 0.1 0.7 0.0(5) 0.0 1.8 878.8 2.3(3) 0.0 34.1 549.8 1.1(4) 0.0 0.1 2.4 0.0(5) 0.0 1.8

4
50 0.1 0.1 0.0(5) 0.0 1.0 0.2 0.0(5) 0.0 67.2 0.2 0.0(5) 0.0 0.1 0.1 0.0(5) 0.0 2.8
60 0.1 0.2 0.0(5) 0.0 0.8 0.8 0.0(5) 0.0 56.8 0.6 0.0(5) 0.0 0.1 0.2 0.0(5) 0.0 1.7
70 0.1 1.0 0.0(5) 0.0 3.9 6.9 0.0(5) 0.0 34.3 4.4 0.0(5) 0.0 0.1 0.6 0.0(5) 0.0 4.4

1

1
50 0.1 1.1 0.0(5) 0.0 0.4 1636.2 36.3(1) 3.0 86.0 1367.6 32.2(3) 3.2 0.1 3.6 0.0(5) 0.0 0.5
60 0.1 1.5 0.0(5) 0.0 0.4 1800.5 48.2(0) 7.1 51.8 1801.1 55.8(0) 9.7 0.1 5.4 0.0(5) 0.0 0.4
70 0.2 2.6 0.0(5) 0.0 1.5 1801.0 42.2(0) 8.1 34.0 1802.9 48.6(0) 11.9 0.2 135.3 0.0(5) 0.0 1.5

2
50 0.1 0.4 0.0(5) 0.0 0.9 10.1 0.0(5) 0.0 86.5 5.9 0.0(5) 0.0 0.1 0.3 0.0(5) 0.0 1.4
60 0.1 0.8 0.0(5) 0.0 2.8 255.7 0.0(5) 0.0 53.2 168.2 0.0(5) 0.0 0.1 1.7 0.0(5) 0.0 2.8
70 0.1 1.9 0.0(5) 0.0 3.0 1058.5 3.1(3) 0.0 31.6 817.9 1.8(3) 0.0 0.1 41.9 0.0(5) 0.0 3.1

4
50 0.1 0.1 0.0(5) 0.0 1.0 0.2 0.0(5) 0.0 67.2 0.2 0.0(5) 0.0 0.1 0.1 0.0(5) 0.0 2.8
60 0.1 0.2 0.0(5) 0.0 0.8 0.8 0.0(5) 0.0 56.8 0.6 0.0(5) 0.0 0.1 0.2 0.0(5) 0.0 1.7
70 0.1 1.0 0.0(5) 0.0 3.9 6.9 0.0(5) 0.0 34.3 4.4 0.0(5) 0.0 0.1 0.6 0.0(5) 0.0 4.4

5

1
50 0.1 1.7 0.0(5) 0.0 0.3 1549.1 37.7(1) 0.0 82.1 1488.2 36.2(1) 0.0 0.1 0.6 0.0(5) 0.0 0.3
60 0.2 2.1 0.0(5) 0.0 0.5 1800.6 50.4(0) 8.8 45.4 1806.5 44.6(0) 7.3 0.1 16.3 0.0(5) 0.0 0.5
70 0.2 1.9 0.0(5) 0.0 0.0 1802.9 38.6(0) 7.2 31.0 1803.4 41.2(0) 8.6 0.2 3.6 0.0(5) 0.0 0.0

2
50 0.1 0.4 0.0(5) 0.0 1.1 15.7 0.0(5) 0.0 81.5 10.5 0.0(5) 0.0 0.1 0.4 0.0(5) 0.0 1.1
60 0.1 1.1 0.0(5) 0.0 0.3 499.0 0.2(4) 0.0 47.6 234.3 0.0(5) 0.0 0.1 0.7 0.0(5) 0.0 0.3
70 0.1 1.5 0.0(5) 0.0 0.0 1468.1 4.6(1) 0.1 27.6 1202.5 2.9(2) 0.1 0.1 2.0 0.0(5) 0.0 0.0

4
50 0.1 0.1 0.0(5) 0.0 1.2 0.2 0.0(5) 0.0 63.4 0.2 0.0(5) 0.0 0.1 0.1 0.0(5) 0.0 1.3
60 0.1 0.2 0.0(5) 0.0 0.0 0.8 0.0(5) 0.0 54.1 0.7 0.0(5) 0.0 0.1 0.2 0.0(5) 0.0 0.0
70 0.1 1.0 0.0(5) 0.0 1.5 39.4 0.0(5) 0.0 27.1 13.5 0.0(5) 0.0 0.1 0.8 0.0(5) 0.0 1.5

Table 4.3. Performance of formulations (Flow-Cov), (Path), (Path) + VI,
(Path-Cov) on graph30 and graph40.

clear from these results that the valid inequalities improve the performance
of formulation (Path) as shown in the number of instances solved to optimal-
ity (208 instances with respect to 217 instances) and the average total time
(489 seconds with respect to 416 seconds). However, this improvement is not
large enough to make this formulation competitive with respect to formula-
tions (Flow-Cov) and (Path-Cov) on complete graphs. Nevertheless, it can
be appreciated that formulations (Path) and (Path) + VI in graph40 solve
many more instances than formulations (Flow-Cov) and (Path-Cov) without
preprocessing (85 and 91 instances with respect to 53 and 64 instances), as
can be seen in Table 4.2.

In Table 4.4, a second set of computational experiments is reported. Here,
datasets of larger size (graph100 and graph120) are solved so that formulations
(Flow-Cov), (Path-Cov) and (Path-Cov) + VI can be compared. Table 4.4 has
the same structure as Table 4.3, but now (Path-Cov) + VI is included whereas
(Path) and (Path) + VI are not. For the purpose of a clearer comparison of
these formulations, the performance profile graph of the number of solved
instances is depicted in Figure 4.4.
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4.6. Computational Results

Data B% p R%
(Flow-Cov) (Path-Cov) (Path-Cov) + VI

tst ttotal G% Gt
BS% Gt

LP % tst ttotal G% Gt
BS% Gt

LP % tst ttotal G% Gt
BS%

gr
ap

h1
00

,|
V
|=

1
0
0
,|
E
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1
50 6.8 1512.9 5.7(1) 0.0 6.9 6.8 1807.1 10.6(0) 3.2 7.0 6.8 1564.4 7.9(1) 0.8
60 7.1 1716.5 1.9(1) 0.0 2.4 7.3 1807.5 3.3(0) 0.8 2.4 7.2 1807.5 2.6(0) 0.2
70 8.1 1770.6 1649.1(1) 14.7 3.2 7.9 1808.3 4.4(0) 1.1 3.3 7.9 1808.4 4.8(0) 1.4

5
50 1.2 12.0 0.0(5) 0.0 1.6 1.2 7.5 0.0(5) 0.0 1.7 1.2 5.7 0.0(5) 0.0
60 1.3 455.3 0.3(4) 0.0 4.8 1.3 710.2 0.0(4) 0.0 5.1 1.3 654.6 0.0(4) 0.0
70 1.6 624.0 0.0(4) 0.0 2.5 1.6 1101.1 1.5(2) 0.3 2.5 1.6 1096.8 1.5(2) 0.5

10
50 1.1 2.0 0.0(5) 0.0 2.8 1.1 1.4 0.0(5) 0.0 3.8 1.1 1.4 0.0(5) 0.0
60 1.2 8.4 0.0(5) 0.0 3.5 1.2 3.0 0.0(5) 0.0 4.0 1.2 2.1 0.0(5) 0.0
70 1.2 19.7 0.0(5) 0.0 3.3 1.2 6.5 0.0(5) 0.0 3.6 1.2 6.2 0.0(5) 0.0

1

1
50 7.2 1285.7 3.3(2) 0.0 3.6 7.0 1262.4 4.1(2) 0.4 3.7 6.9 1265.4 3.7(2) 0.0
60 7.1 1383.9 0.6(3) 0.0 0.6 7.4 1557.2 1.5(2) 0.8 0.6 7.3 1378.9 0.9(2) 0.3
70 8.1 1643.4 16.3(2) 11.1 0.9 8.1 1692.6 1.6(1) 0.7 0.9 8.1 1710.9 2.0(1) 1.1

5
50 1.2 16.0 0.0(5) 0.0 1.3 1.2 6.7 0.0(5) 0.0 1.3 1.2 6.9 0.0(5) 0.0
60 1.3 413.9 0.3(4) 0.0 3.9 1.3 473.8 0.3(4) 0.0 4.1 1.3 448.4 0.3(4) 0.0
70 1.6 244.2 0.0(5) 0.0 1.8 1.7 1091.4 0.8(2) 0.1 1.9 1.6 1087.7 1.5(2) 0.4

10
50 1.1 1.9 0.0(5) 0.0 2.8 1.1 1.4 0.0(5) 0.0 3.8 1.1 1.4 0.0(5) 0.0
60 1.2 8.7 0.0(5) 0.0 3.5 1.2 2.8 0.0(5) 0.0 3.7 1.2 2.2 0.0(5) 0.0
70 1.2 22.1 0.0(5) 0.0 2.7 1.2 14.8 0.0(5) 0.0 2.8 1.2 14.1 0.0(5) 0.0

5

1
50 6.9 747.2 0.0(5) 0.0 0.0 7.1 284.7 0.0(5) 0.0 0.0 7.0 278.3 0.0(5) 0.0
60 7.3 1064.1 0.0(5) 0.0 0.0 7.3 432.2 0.0(5) 0.0 0.0 7.2 368.9 0.0(5) 0.0
70 7.9 1148.0 0.0(5) 0.0 0.0 8.1 513.4 0.0(5) 0.0 0.0 8.1 632.4 0.0(5) 0.0

5
50 1.2 4.0 0.0(5) 0.0 0.0 1.2 1.7 0.0(5) 0.0 0.0 1.2 1.7 0.0(5) 0.0
60 1.3 8.6 0.0(5) 0.0 0.0 1.3 4.9 0.0(5) 0.0 0.0 1.2 5.3 0.0(5) 0.0
70 1.7 21.1 0.0(5) 0.0 0.1 1.7 403.0 0.0(4) 0.0 0.1 1.6 22.9 0.0(5) 0.0

10
50 1.1 1.7 0.0(5) 0.0 0.9 1.2 1.4 0.0(5) 0.0 1.0 1.1 1.3 0.0(5) 0.0
60 1.2 3.3 0.0(5) 0.0 0.3 1.2 1.5 0.0(5) 0.0 0.3 1.1 1.5 0.0(5) 0.0
70 1.2 7.6 0.0(5) 0.0 0.5 1.2 4.7 0.0(5) 0.0 0.5 1.2 5.2 0.0(5) 0.0
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1
50 10.6 1718.2 6503.6(1) 16.9 3.3 10.8 1820.2 3.6(0) 0.3 3.3 10.9 1811.3 4.2(0) 0.8
60 12.2 1814.7 9004.2(0) 24.8 3.3 12.1 1812.6 4.0(0) 0.6 3.3 12.2 1812.5 7.5(0) 3.3
70 13.3 1815.4 10993.9(0) 28.8 3.4 13.4 1814.1 3.6(0) 0.1 3.4 13.1 1814.0 4.7(0) 1.2

6
50 2.1 462.0 0.7(4) 0.0 4.5 2.1 396.3 0.5(4) 0.0 4.7 2.1 405.6 1.1(4) 0.1
60 2.2 1353.5 0.1(3) 0.0 3.5 2.2 1247.1 0.8(2) 0.1 3.6 2.2 1309.7 0.8(2) 0.1
70 3.9 1248.9 0.9(2) 0.0 3.7 3.9 1592.4 5.(1) 1.7 3.8 3.9 1744.7 4.9(1) 1.7

12
50 2.0 4.2 0.0(5) 0.0 1.7 2.0 2.3 0.0(5) 0.0 2.2 2.0 2.3 0.0(5) 0.0
60 2.0 76.1 0.0(5) 0.0 5.1 2.0 6.1 0.0(5) 0.0 5.7 2.0 6.0 0.0(5) 0.0
70 2.0 355.5 0.0(5) 0.0 3.4 2.1 215.1 0.0(5) 0.0 3.8 2.0 65.4 0.0(5) 0.0

1

1
50 10.7 1798.6 2019.5(1) 18.4 0.5 11.0 1796.0 1.0(1) 0.4 0.5 10.9 1768.8 0.8(1) 0.3
60 12.3 1815.1 9023.2(0) 30.3 1.7 12.3 1719.2 2.2(1) 0.5 1.7 12.3 1728.1 2.2(2) 0.4
70 13.2 1815.4 11005.2(0) 30.0 1.8 13.7 1803.5 1.9(1) 0.1 1.8 13.7 1734.1 2.3(2) 0.6

6
50 2.1 456.6 0.5(4) 0.0 3.9 2.1 529.4 0.5(4) 0.0 4.1 2.1 412.0 0.8(4) 0.2
60 2.2 1076.9 0.1(3) 0.0 3.0 2.2 1274.0 0.9(2) 0.1 3.1 2.2 1323.6 0.8(2) 0.1
70 4.1 1480.6 1.4(2) 0.0 3.8 4.1 1806.9 5.3(0) 1.9 3.9 4.1 1655.6 5.5(1) 1.9

12
50 2.0 4.2 0.0(5) 0.0 1.7 2.0 2.3 0.0(5) 0.0 2.2 1.9 2.2 0.0(5) 0.0
60 2.0 263.1 0.0(5) 0.0 5.3 2.0 7.0 0.0(5) 0.0 5.6 2.0 6.2 0.0(5) 0.0
70 2.1 780.9 0.2(4) 0.0 3.2 2.0 380.8 0.2(4) 0.0 3.6 2.0 335.9 0.0(5) 0.0

5

1
50 10.8 1530.5 2019.3(2) 18.5 0.0 10.9 367.1 0.0(5) 0.0 0.0 11.1 506.9 0.0(5) 0.0
60 12.4 1816.0 7167.1(0) 31.3 0.0 12.5 971.9 5.8(4) 4.5 0.0 12.2 776.0 0.0(5) 0.0
70 13.2 1817.0 6993.(0) 31.4 0.0 13.6 985.4 0.0(5) 0.0 0.0 13.6 1057.8 0.0(5) 0.0

6
50 2.1 30.9 0.0(5) 0.0 0.2 2.1 5.3 0.0(5) 0.0 0.2 2.1 7.7 0.0(5) 0.0
60 2.3 102.7 0.0(5) 0.0 0.4 2.2 44.7 0.0(5) 0.0 0.4 2.2 48.6 0.0(5) 0.0
70 4.0 281.8 0.0(5) 0.0 0.4 4.1 1484.1 0.4(1) 0.1 0.4 4.1 1451.1 0.2(1) 0.0

12
50 2.0 3.6 0.0(5) 0.0 0.6 2.0 2.2 0.0(5) 0.0 0.7 2.0 2.2 0.0(5) 0.0
60 2.0 24.3 0.0(5) 0.0 1.5 2.0 4.4 0.0(5) 0.0 1.6 2.0 4.3 0.0(5) 0.0
70 2.0 52.5 0.0(5) 0.0 0.7 2.0 10.3 0.0(5) 0.0 0.7 2.0 10.0 0.0(5) 0.0

Table 4.4. Performance of formulations (Flow-Cov), (Path-Cov), and
(Path-Cov) + VI on graph100 and graph120.

Analyzing the results shown in Table 4.4, we can conclude that the dif-
ficulty of solving the instances is highly dependent on the parameters (B,R

and p). It can be observed that the instances become more difficult as B and
p decrease and R increases. As shown in Table 4.4 and Figure 4.4, the perfor-
mance of these formulations is quite similar. An interesting observation is that
they complement each other. In other words, there are instances in which for-
mulation (Flow-Cov) did not find the optimal solution within the time limit
but (Path-Cov) + VI did and vice versa. Nevertheless, (Path-Cov) + VI
found the optimal solution in more instances than (Path-Cov) and all the in-
stances solved to optimality by (Path-Cov) were also solved to optimality by
(Path-Cov) + VI. It can be appreciated that the average preprocessing time is
lower than fourteen seconds in all cases. Furthermore, the linear relaxation of
the formulations (Gt

LP %) is quite good, being on average 2.1% for (Flow-Cov)
and 2.3% for (Path-Cov) and (Path-Cov) + VI.
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Figure 4.4. Performance profile graph of #solved instances using (Flow-Cov),
(Path-Cov), and (Path-Cov) + VI formulations on graph100 and graph120.

In view of the results reported in this subsection, we conclude that the
best formulations for solving Up-MCLP on complete graphs are (Flow-Cov)
and (Path-Cov) + VI. In the next subsection, sparser graphs will be analyzed.

4.6.4 Results on sparse graphs

The aim of this subsection is to compare the proposed formulations on
sparse graphs. In particular, we used the uncapacited p-median datasets from
the OR-Library.

Table 4.5 has the same structure as Table 4.3. In this table, we reported
the results of formulations (Flow-Cov), (Path), (Path) + VI, (Path-Cov),
and (Path-Cov) + VI on the smallest pmed datasets (pmed1-pmed5), named
pmeds. These networks contain 100 nodes and 195.2 edges on average (the
smallest have 190 and the largest 198). The provided results are the average
over the five datasets where the other parameters were randomly generated
following the procedure described in Subsection 4.6.1.

Similarly to complete graphs, it can be seen in Table 4.5 that the diffi-
culty of the instances is highly parameter-dependent. In addition, it is shown
that the preprocessing time is small (less than two seconds in all instances).
Furthermore, the number of instances solved to optimality by (Flow-Cov),
(Path-Cov), and (Path-Cov) + VI is considerably higher than the ones solved
by (Path) and (Path) + VI. Observe that the average of the linear relaxation
gaps of (Flow-Cov) (3.1%), (Path-Cov) and (Path-Cov) + VI (4.0%) are better
than the linear relaxation gap of (Path) and (Path) + VI (47.5%).
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4.6.
Com

putationalResults

Data B% p R%
(Flow-Cov) (Path) (Path) + VI (Path-Cov) (Path-Cov) + VI

tst ttotal G% Gt
BS% Gt

LP % ttotal G% Gt
BS% Gt

LP % ttotal G% Gt
BS% tst ttotal G% Gt

BS% Gt
LP % tst ttotal G% Gt

BS%
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0.5

1
50 1.4 26.1 0.0(5) 0.0 4.3 918.8 17.5(4) 2.3 87.5 474.8 23.1(4) 4.5 1.4 20.5 0.0(5) 0.0 4.3 1.4 24.2 0.0(5) 0.0
60 1.5 15.5 0.0(5) 0.0 2.1 1764.7 39.5(1) 8.7 55.3 1168.2 31.9(3) 7.8 1.5 38.7 0.0(5) 0.0 2.1 1.5 25.7 0.0(5) 0.0
70 1.5 32.6 0.0(5) 0.0 4.0 1801.9 44.0(0) 8.9 35.8 1580.2 75.0(1) 16.9 1.5 991.7 1.5(3) 0.0 4.1 1.5 572.9 0.3(4) 0.0

5
50 1.2 1.4 0.0(5) 0.0 1.1 14.5 0.0(5) 0.0 75.8 13.5 0.0(5) 0.0 1.2 1.4 0.0(5) 0.0 2.7 1.2 1.4 0.0(5) 0.0
60 1.2 1.8 0.0(5) 0.0 1.3 575.0 0.0(5) 0.0 57.9 589.1 0.0(5) 0.0 1.2 2.1 0.0(5) 0.0 3.4 1.2 2.3 0.0(5) 0.0
70 1.2 3.9 0.0(5) 0.0 1.7 803.4 3.2(3) 0.0 38.8 979.5 2.5(3) 0.0 1.2 3.9 0.0(5) 0.0 2.6 1.2 3.7 0.0(5) 0.0

10
50 1.2 1.2 0.0(5) 0.0 0.1 0.8 0.0(5) 0.0 42.8 0.7 0.0(5) 0.0 1.1 1.2 0.0(5) 0.0 3.7 1.1 1.2 0.0(5) 0.0
60 1.2 1.2 0.0(5) 0.0 0.7 1.6 0.0(5) 0.0 46.9 1.8 0.0(5) 0.0 1.1 1.3 0.0(5) 0.0 2.9 1.1 1.3 0.0(5) 0.0
70 1.2 1.4 0.0(5) 0.0 1.6 9.2 0.0(5) 0.0 35.4 28.2 0.0(5) 0.0 1.2 1.5 0.0(5) 0.0 3.0 1.2 1.6 0.0(5) 0.0

1

1
50 1.7 570.6 0.0(5) 0.0 7.2 1496.5 31.6(1) 2.7 77.1 1137.1 83.1(3) 13.1 1.7 202.6 0.0(5) 0.0 7.3 1.6 68.7 0.0(5) 0.0
60 1.7 1460.1 2.4(2) 0.0 7.7 1800.6 40.7(0) 4.9 49.6 1488.5 38.2(1) 6.7 1.7 960.6 3.1(4) 1.3 7.8 1.8 850.1 3.1(4) 1.3
70 1.8 425.1 0.0(5) 0.0 4.8 1801.2 29.3(0) 5.7 30.1 1800.7 349.5(0) 51.1 1.8 1425.3 2.7(2) 0.0 4.9 1.8 1513.8 3.8(1) 0.0

5
50 1.2 1.8 0.0(5) 0.0 2.8 84.1 0.0(5) 0.0 75.7 77.7 0.0(5) 0.0 1.2 1.8 0.0(5) 0.0 4.9 1.2 1.7 0.0(5) 0.0
60 1.2 3.4 0.0(5) 0.0 5.0 918.9 0.7(4) 0.1 55.8 1116.2 3.9(2) 0.0 1.2 22.7 0.0(5) 0.0 6.6 1.3 18.2 0.0(5) 0.0
70 1.3 62.1 0.0(5) 0.0 5.2 1718.3 8.3(1) 0.2 36.3 1602.7 9.6(1) 0.3 1.3 76.6 0.0(5) 0.0 5.3 1.3 39.9 0.0(5) 0.0

10
50 1.1 1.2 0.0(5) 0.0 1.5 0.8 0.0(5) 0.0 43.1 0.7 0.0(5) 0.0 1.1 1.2 0.0(5) 0.0 4.4 1.1 1.2 0.0(5) 0.0
60 1.2 1.3 0.0(5) 0.0 1.7 2.6 0.0(5) 0.0 46.3 2.4 0.0(5) 0.0 1.2 1.9 0.0(5) 0.0 4.2 1.2 1.7 0.0(5) 0.0
70 1.2 1.7 0.0(5) 0.0 3.2 18.0 0.0(5) 0.0 34.6 25.3 0.0(5) 0.0 1.2 2.6 0.0(5) 0.0 5.6 1.2 2.5 0.0(5) 0.0

5

1
50 1.5 1015.6 0.0(5) 0.0 3.0 1288.4 24.(2) 2.7 55.1 1155.6 25.7(2) 3.2 1.5 64.8 0.0(5) 0.0 3.0 1.5 85.5 0.0(5) 0.0
60 1.6 1407.8 3.4(2) 0.5 4.5 1800.6 25.1(0) 4.8 33.7 1690.5 27.4(1) 6.2 1.6 869.4 2.5(3) 0.1 4.6 1.6 1140.9 2.5(2) 0.1
70 1.6 1205.0 1.8(2) 0.0 2.7 1801.7 22.6(0) 5.7 19.3 1758.5 268.6(1) 35.2 1.6 1077.4 1.8(3) 0.0 2.8 1.7 946.9 1.9(3) 0.0

5
50 1.2 2.3 0.0(5) 0.0 4.1 102.8 0.0(5) 0.0 66.8 132.1 0.0(5) 0.0 1.2 3.0 0.0(5) 0.0 4.2 1.2 2.9 0.0(5) 0.0
60 1.2 5.2 0.0(5) 0.0 2.7 686.2 0.3(4) 0.0 46.2 738.7 0.0(5) 0.0 1.2 21.0 0.0(5) 0.0 2.7 1.2 17.6 0.0(5) 0.0
70 1.3 207.3 0.0(5) 0.0 3.0 1418.4 2.8(3) 0.1 28.8 1458.9 4.2(2) 0.0 1.3 48.5 0.0(5) 0.0 3.0 1.3 48.1 0.0(5) 0.0

10
50 1.2 1.2 0.0(5) 0.0 0.8 1.0 0.0(5) 0.0 38.4 0.8 0.0(5) 0.0 1.1 1.3 0.0(5) 0.0 1.1 1.2 1.3 0.0(5) 0.0
60 1.2 1.5 0.0(5) 0.0 3.1 4.3 0.0(5) 0.0 40.7 4.6 0.0(5) 0.0 1.2 1.9 0.0(5) 0.0 4.0 1.2 1.8 0.0(5) 0.0
70 1.2 2.2 0.0(5) 0.0 2.9 61.8 0.0(5) 0.0 29.4 38.3 0.0(5) 0.0 1.2 4.1 0.0(5) 0.0 3.0 1.2 3.9 0.0(5) 0.0

Table 4.5. Performance of formulations (Flow-Cov), (Path), (Path) + VI, (Path-Cov), and (Path-Cov) + VI on pmeds.
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Chapter 4. Upgrading edges in the Maximal Covering Location Problem

In Table 4.6, we report the result obtained on datasets of larger size,
named pmedb. More concretely, the table shows the results of formula-
tions (Flow-Cov), (Path-Cov), and (Path-Cov) + VI on larger pmed datasets
(pmed6-pmed10). These networks contain 200 nodes and 777.8 edges on av-
erage (the smallest have 774 and the largest 785). Note that the results of
(Path), (Path) + VI are not reported because very few instances were solved
to optimality. In Figure 4.5, the performance profile of the number of solved
instances using these formulations is depicted.

Data B% p R%
(Flow-Cov) (Path-Cov) (Path-Cov) + VI

tst ttotal G% Gt
BS% Gt

LP % tst ttotal G% Gt
BS% Gt

LP % tst ttotal G% Gt
BS%
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0.5

1
50 12.5 1815.3 5881.2(0) 18.7 9.1 12.4 1812.9 9.3(0) 0.1 9.9 12.3 1812.7 8.9(0) 0.0
60 18.3 1821.2 6383.5(0) 33.1 7.4 18.5 1819.1 7.5(0) 0.0 8.0 18.4 1818.7 7.7(0) 0.1
70 36.3 1839.9 13701.3(0) 24.8 5.8 37.6 1848.8 5.8(0) 0.0 6.4 37.1 1837.5 6.1(0) 0.3

10
50 9.3 22.4 0.0(5) 0.0 2.1 9.2 14.8 0.0(5) 0.0 4.3 9.1 15.3 0.0(5) 0.0
60 9.5 1451.5 1.2(2) 0.0 4.4 9.3 1150.8 1.1(2) 0.2 6.5 9.3 975.3 1.3(3) 0.3
70 10.0 1811.3 2.8(0) 0.6 3.9 9.8 1815.2 2.7(0) 1.0 4.4 9.8 1811.3 2.6(0) 1.0

20
50 8.9 9.1 0.0(5) 0.0 1.8 8.9 9.2 0.0(5) 0.0 3.6 8.8 9.1 0.0(5) 0.0
60 9.0 45.4 0.0(5) 0.0 2.5 9.0 13.3 0.0(5) 0.0 3.8 8.9 14.4 0.0(5) 0.0
70 9.4 785.8 0.1(4) 0.1 2.7 9.2 617.7 0.4(4) 0.0 5.2 9.2 771.0 0.3(3) 0.0

1

1
50 11.2 1814.1 6101.7(0) 23.3 8.2 11.2 1811.5 8.4(0) 0.0 8.4 11.1 1811.5 8.4(0) 0.0
60 16.2 1819.9 13905.8(0) 25.2 7.4 16.3 1819.4 7.5(0) 0.0 7.6 16.1 1816.8 7.5(0) 0.0
70 33.7 1836.7 17155.8(0) 26.3 5.1 33.7 1834.1 5.4(0) 0.2 5.3 33.5 1834.1 5.5(0) 0.4

10
50 9.3 299.3 0.0(5) 0.0 3.7 9.0 57.5 0.0(5) 0.0 4.7 9.0 53.7 0.0(5) 0.0
60 9.4 1810.0 3.2(0) 0.1 5.5 9.5 1566.1 2.2(1) 0.5 5.8 9.3 1526.1 1.7(1) 0.2
70 9.5 1811.1 3.9(0) 0.7 3.8 9.6 1811.5 2.7(0) 0.4 3.8 9.5 1810.6 4.1(0) 1.9

20
50 9.2 9.5 0.0(5) 0.0 3.2 9.1 9.4 0.0(5) 0.0 4.2 8.9 9.3 0.0(5) 0.0
60 9.0 141.0 0.0(5) 0.0 3.6 9.3 23.2 0.0(5) 0.0 4.5 9.0 20.7 0.0(5) 0.0
70 9.3 1613.6 1.0(1) 0.1 3.2 9.2 1158.1 0.5(3) 0.0 4.1 9.1 959.8 0.3(4) 0.0

5

1
50 11.2 1546.2 6102.5(2) 25.3 0.0 11.2 181.1 0.0(5) 0.0 0.0 11.0 185.9 0.0(5) 0.0
60 16.6 1742.8 6551.2(1) 24.6 0.1 16.0 917.2 0.1(3) 0.0 0.1 16.0 803.1 0.1(4) 0.0
70 33.2 1837.5 11417.1(0) 29.4 0.2 32.6 853.6 0.2(4) 0.0 0.2 32.6 769.9 0.2(4) 0.0

10
50 9.1 342.8 0.0(5) 0.0 1.7 9.2 34.8 0.0(5) 0.0 1.7 9.0 30.0 0.0(5) 0.0
60 9.6 1527.2 1.1(1) 0.2 1.7 9.2 696.4 0.0(5) 0.0 1.7 9.2 434.5 0.0(5) 0.0
70 9.5 1811.4 1.2(0) 0.8 0.5 9.5 733.6 0.2(4) 0.0 0.5 9.4 687.4 0.5(4) 0.3

20
50 9.0 9.4 0.0(5) 0.0 1.2 8.9 9.6 0.0(5) 0.0 1.3 8.8 9.5 0.0(5) 0.0
60 9.2 44.5 0.0(5) 0.0 1.3 9.0 17.1 0.0(5) 0.0 1.4 8.9 15.5 0.0(5) 0.0
70 9.3 1324.6 0.4(2) 0.0 0.8 9.1 730.6 0.0(4) 0.0 0.8 9.3 493.2 0.1(4) 0.0

Table 4.6. Performance of formulations (Flow-Cov), (Path), (Path) + VI,
(Path-Cov), and (Path-Cov) + VI on pmedb.
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Figure 4.5. Performance profile graph of #solved instances using (Flow-Cov),
(Path-Cov), and (Path-Cov) + VI formulations on pmedb dataset.
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4.7. Concluding remarks

As can be appreciated in Table 4.6 and Figure 4.5, (Path-Cov) + VI
outperforms (Flow-Cov) and (Path-Cov). Observe that although the gap of the
linear relaxation of (Flow-Cov) (3.4%) is smaller than the gap of (Path-Cov)
and (Path-Cov) + VI (4%), the latter is the one that solves to optimality
within the time limit the largest number of instances.

Based on the results presented in this subsection, we conclude that the
best formulation for solving Up-MCLP on pmedian graphs was (Path-Cov) + VI.
Furthermore, the results included in this subsection show the usefulness of in-
cluding the valid inequalities discussed in the chapter.

4.7 Concluding remarks
In this chapter, we have tackled an interesting problem: the upgrading

maximal covering location problem with edge length modifications, Up-MCLP.
As far as we know, it is the first time that this problem is discussed in the
literature.

Since we were dealing with a new problem, we proposed three different
mixed-integer formulations to model the situation from various perspectives.
Moreover, we developed an effective preprocessing phase, which fixed many
variables and reduced the size of the problem considerably. Then, for each
formulation, we provided several sets of valid inequalities. These constraints
allowed us to strengthen the formulations and to reduce the symmetries con-
tained in the problem, shortening the time to solve the formulations. The
performance of the three formulations and the improvement provided by the
preprocessing phase and the valid inequalities can be appreciated in the com-
putational results included in the chapter.

We believe that this work is an encouraging starting point that opens
up many opportunities for further research. For example, interesting and
similar problems could be obtained by modifying the covering criterion, the
location criterion, and the upgrading assumptions. Observe that the results
included in this chapter are presented in Baldomero-Naranjo et al. (2021a).
In addition, we are working on theoretical results that show the complexity of
several particular cases of this problem in Baldomero-Naranjo et al. (2021c).

In the next chapter we also deal with the MCLP. However, the initial
hypotheses are very different. We assume that the facility can be located
anywhere along the network and that the demand is continuous (distributed
along the edges) and uncertain with only a known interval estimation. To face
this situation of total uncertainty, we propose a model to find the location
that minimizes the maximal regret.
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5
Minmax Regret Maximal Covering Location

Problems with Edge Demands

This chapter addresses a version of the single-facility Maximal Cov-
ering Location Problem on a network where the demand is: i) dis-
tributed along the edges and ii) uncertain with only a known in-
terval estimation. To deal with this problem, we propose a min-
max regret model where the service facility can be located anywhere
along the network. This problem is called Minmax Regret Maximal
Covering Location Problem with demand distributed along the edges
(MMR-EMCLP). Furthermore, we present two polynomial algorithms
for finding the location that minimizes the maximal regret assuming
that the demand realization is an unknown constant or linear func-
tion on each edge. We also include two illustrative examples as well
as a computational study for the unknown constant demand case to
illustrate the potential and limits of the proposed methodology.

5.1 Introduction
In this chapter, we continue our research on the maximal covering loca-

tion problem (MCLP). In particular, we focus on a version of the single-facility
MCLP on a network where the demand is distributed along the edges and un-
certain with only a known interval estimation. As see in the previous chapter,
we can find many different variants of this problem in the literature, some of
them in continuous space and others on networks or in discrete spaces (see
Plastria (2002); García and Marín (2019); Berman and Krass (2002) for a de-
tailed survey of each case). Most of the classical models discussed in the litera-
ture assume that the demand is represented by a finite set of points. However,
recently, an increasing body of literature in facility location addresses prob-
lems where the demand is continuously distributed over a region (polygon,
straight lines, edges, etc.), see Murray and Tong (2007); Murray et al. (2010).

In the case of network problems (the subject of study of this chapter),
there are several applications where the assumption that the demand only
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occurs at the nodes of the network is not realistic; e.g. for the location of
emergency facilities (see Li et al. (2011)), for the planning of garbage collec-
tion, meter reading, or mail delivery, or situations where the coverage areas
are extremely distance-dependent such as the location of Automated Exter-
nal Defibrillators (AED), bus stops, Automated Teller Machines (ATM), etc.
Similarly, assuming that the service facilities can only be located at the nodes
of the network, the so-called node-restricted version, also leads to unrealistic
models for some situations, see ReVelle et al. (1976); Church and Meadows
(1979). For example, in the case of locating bus stops, this assumption would
mean that they can only be placed at the corner of streets. Thus, assuming
that the demand is concentrated at nodes and/or service facilities can only
be located at nodes may yield models that are far from the real situation un-
der study, providing solutions that are of little use, see Current and Schilling
(1990) for further details.

In the following, we review the main models in the literature related to our
problem. The MCLP where the demand is assumed to exist only at nodes is
solved in Church and ReVelle (1974). They proposed an integer programming
formulation to solve the multi-facility node-restricted problem. García and
Marín (2019) and Marín et al. (2018) provided an overview of models for the
discrete covering location problem. Recently, Cordeau et al. (2019) proposed
an effective decomposition approach for the MCLP based on a branch-and-
Benders-cut formulation to solve realistic cases where the number of customers
is much larger than the number of potential facility locations. To solve the
continuous version of the problem, i.e., facilities can be located not only at the
nodes but also along the edges, Church and Meadows (1979) proposed a Finite
Dominating Set (FDS). An FDS for a location problem is a finite set of points
that is guaranteed to contain an optimal solution for the problem. If such a set
can be found, then the continuous optimization problem can equivalently be
formulated as a discrete optimization problem and solved applying techniques
of discrete optimization. This technique is widely applied in the literature
to solve these kinds of problems, see for example Nickel and Puerto (1999);
Kalcsics et al. (2002, 2003); Berman et al. (2009).

The MCLP where the demand is distributed along the edges (edge de-
mand) and the facilities can be located anywhere on the graph (continuous
location space) was first proposed by Berman et al. (2016). They found a
FDS for the case of known demand functions and presented an exact approach
to solve the single facility problem for constant and piecewise linear demand
functions (unlike this chapter, the actual demand functions are assumed to be
known a priori). Extensions of this model are also analyzed, as for instance the
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obnoxious version, the multi-facility case, and the conditional problem (when
all but one facility have already been located). Moreover, they proposed a
heuristic for the multi-facility case. Under the same framework (edge demand
and continuous location space), a minimum set-covering problem (locating the
minimum number of facilities to cover all the demand points) is studied by
Fröhlich et al. (2020). Furthermore, a stochastic version of the MCLP is ana-
lyzed by Blanquero et al. (2016). In this paper, the expected demand covered
is maximized and the problem is formulated as a Mixed Integer Nonlinear Pro-
gram (MINLP) that is solved using a branch-and-bound algorithm comprising
a combinatorial part (in which edges of the network are chosen to contain fa-
cilities) and a continuous global optimization part (once the edges are chosen,
the optimal locations are found on those edges).

In this chapter, we consider the MCLP under this framework on a net-
work, i.e., edge demand and continuous location space. However, unlike the
aforementioned papers, the actual intensity of the demand along each edge is
unknown. Instead, the only available knowledge is an upper and lower bound
of this intensity at each point of the network. We are not aware of any other
paper dealing simultaneously with edge demand, a continuous location space,
and uncertainty in the intensity of the demand for the MCLP on networks (or,
in fact, for any location problem on networks). From a practical point of view,
assuming that demand along an edge is known corresponds to an ideal but
usually unrealistic scenario. Since demand is uncertain in nature and varies
from one day to another, or even within a day, we will treat demand as being
unknown. Nevertheless, we usually have a good estimation of the minimal or
maximal demand along the edge, so that we can at least assume demand to
lie within a known range.

Concerning real-life applications, the MCLP has been applied in several
fields such as the location of emergency facilities, health care, natural disaster
rescue, ecology, signal-transmission facilities, bike-sharing, police resources, see
Adenso-Díaz and Rodríguez (1997); Bonn et al. (2002); Chung (1986); Daskin
and Dean (2004); Muren et al. (2020); Wright et al. (2006); Yang et al. (2020).
More concretely, our model can be used to locate AED, ATM, bus stops,
automated parcel lockers, or bicycle parking racks, among others. In these
applications the network represents a city, where the edges are the streets and
the nodes are the intersections between them. Moreover, these services can be
located anywhere along the network because they do not require sophisticated
infrastructures or spaces. We consider that the demand is the potential amount
of users for that service. Also, a client would be considered as a covered client
if the distance between him/her and the service is lower than or equal to
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a fixed radius. In these applications, the exact demand of these services is
usually unknown but we can estimate the minimal and maximal values of the
demand taking into account the distribution of clients along the streets. The
uncertainty in demand can stem from the uncertainty about the need for or
the attractiveness of the facility’s service, but can also be due to a variation
of the actually present population in the street over the course of the day. For
example, in a residential area, the number of inhabitants during the working
hours would be smaller than in the evenings.

In the face of this situation of total uncertainty in the demand, we propose
to use concepts from robust optimization to identify suitable facility locations.
More concretely, we aim at minimizing the worst-case coverage loss, i.e., mini-
mize the maximal regret. This criterion was first introduced in Savage (1951).
A review of minmax regret optimization as well as a discussion on its potential
applications is contained in the book by Kouvelis and Yu (1997b). This cri-
terion has been successfully applied to many location problems on networks,
see Assunção et al. (2017); Averbakh (2001); Averbakh and Berman (2000);
Averbakh and Lebedev (2004); Conde (2019); Conde et al. (2018); Kouvelis
et al. (1993); Puerto et al. (2009), among others. In case of the MCLP, this
criterion is used by Coco et al. (2018) for a discrete problem with a finite set
of demand points and a finite set of potential locations for facilities. Berman
and Wang (2011) consider the minmax regret objective for the gradual cov-
ering location problem on networks, also assuming that demand only occurs
at nodes, but that facilities can be located anywhere along the network. The
gradual covering location problem is a generalized version of MCLP where the
coverage area is divided in two sectors, one where the demand of nodes within
it is completely covered and the other one where the demand is partially cov-
ered. An alternative way of considering uncertainty for the discrete MCLP is
to use a fuzzy framework, as shown in Arana-Jiménez et al. (2020).

Our goal in this chapter is to solve the minmax regret single-facility MCLP
on a network with three main features: edge demand, uncertainty in the in-
tensity of the demand, and a continuous location space. We analyze two cases:
i) the realization of the demand intensity is unknown, but constant on an edge
and bounded (from above and below) by two known constant functions; and
ii) the demand intensity is given by an unknown linear function on each edge
and it is bounded by two known linear functions (see López-de-los-Mozos et al.
(2013); Averbakh et al. (2018); Kouvelis and Yu (1997a) for a different way
of using uncertain demand intensities at nodes given by linear functions for
minmax regret location problems).
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In the aforementioned examples of locating AED, ATM, bus stops, auto-
mated parcel lockers, or bicycle parking racks, the uncertainty in the demand
comes from the fact that the number of inhabitants (potential clients) during
the working day is not known. Looking at cities, the type of buildings that
one can find along a street are often similar. For example, in the suburbs it is
often all single-family homes or low-storey apartment buildings along a street;
in more central areas, high-storey apartment buildings or even high rises. If
the type of buildings is fairly uniform, we can assume that the lower and up-
per bounds on the demand are also fairly uniform, i.e., each of them can be
modeled by a constant function.

For such situations, our aim is to find a location such that the worst-case
regret for the location is minimal. This assumption makes sense for AED
locations, because the health service does not know who is going to need an
AED or where, but they are interested in providing this service for all the
inhabitants of the city as fast as possible. Similarly, for the location of ATMs,
the banks are interested in providing their services to the maximal number of
people and avoid losing potential clients.

Regarding linear demand along the edge, this could be the case in the
situation of locating bus stops, automated parcel lockers, or bicycle parking
racks, where the demand along the streets can vary since either the presence of
potential users (tourists, workers, students, etc.) increases when approaching
the city center, the business area, or the university campus, or the type of
buildings along a street changes gradually, e.g., from single-family homes on
one end to row houses on the other end. A suitable way to model such increases
could be through a linear function, since, in most cases, these increases are
gradual when approaching to those areas. Accordingly, also the lower and
upper bounds on the demand intensity could be linear. Maybe not in a strictly
linear fashion, e.g., in the case of a change of type of building, but as long as
the change is not too dramatic, this is a fair assumption. In case of a dramatic
change, e.g., from single-family homes to high rises, we would split the edge
at the point where the change occurs and treat the two sub-edges separately,
reflecting the change also in the lower and upper bound.

Alternative applications can be found if the network represents air ducts
of a building (conduits used in heating, ventilation, and air conditioning). For
example, one application is to locate an aerosol dispenser in order to disin-
fect the conduits, see Frazier (1990). This fits to a MCLP, since aerosols
are only effective within a certain distance from their source. Moreover, the
demand represents the presence of bacteria, viruses, and fungi along the con-
duits that should be killed. The actual intensity of demand along the conduits

111



Chapter 5. Minmax Regret MCLP with Edge Demands

is unknown, but can be estimated by room occupancy rates, uses and types
of buildings (healthcare facilities, offices, restaurants, care homes, etc.), and
proximity to air inlets and outlets, among others. Since the presence of germs
increases when approaching to air inlets and outlets, the demand can be ap-
proximated by linear functions.

The remainder of the chapter is organized as follows. In Section 5.2, we
describe the problem. In Section 5.3, we present a polynomial time algorithm
to solve the unknown constant demand case and we include a computational
study to illustrate the potential and limits of the proposed methodology. In
Section 5.4, we develop a polynomial time algorithm to solve the unknown lin-
ear demand case. In both cases, an example illustrating the proposed method-
ology is shown. In Section 5.5, we present our conclusions and an outlook to
future research. Finally, there are two appendices. In the first one, we in-
clude some known results about the lower envelope of Jordan arcs that will
be used to analyze the complexity of the algorithms proposed in the chapter.
In the second one, we derive the representation of some functions used in the
examples.

5.2 Definitions and Problem Description
Let G = (V,E) be an undirected graph with node set V = {1, . . . , n} and

edge set E, where |E| = m. Every edge e = [k, l] ∈ E, k, l ∈ V, has a positive
length ℓe and is assumed to be rectifiable. G will also denote the continuum
set of all points of the network. In addition, in a slight abuse of notation, we
use ex to represent an edge that contains point x. For an edge ex = [k, l] ∈ E,
a point x ∈ ex is also represented as x = (ex, tx), 0 ≤ tx ≤ 1, where tx is the
relative distance of x from k with respect to ℓex , i.e., the distance from x to
node k is txℓex and to node l is (1−tx)ℓex . Then, for a node i ∈ V , the distance
from x to i is defined as d(x, i) = min{tx · ℓex + d(k, i), (1− tx) · ℓex + d(l, i)},
where d(k, i) and d(l, i) are the lengths of the shortest paths connecting k with
i and l with i, respectively. The distance d(x, y) between two points x, y ∈ G

is defined analogously. Let (e, [t1, t2]) = [x1, x2] = {x ∈ e = [k, l] : t1ℓe ≤
d(x, k) ≤ t2ℓe, (1− t2)ℓe ≤ d(x, l) ≤ (1− t1)ℓe} be a closed subedge of e, where
x1 = (e, t1) and x2 = (e, t2). Besides, we are given a fixed coverage radius
R > 0. See Figure 5.1 for an illustration of a point x on ex (top left-hand
side), a subedge [x1, x2] (top right-hand side), and of d(x, i) (at the bottom).

Finally, for each edge e = [k, l] ∈ E we are given two non-negative con-
tinuous functions lbe : [0, 1] → R+

0 and ube : [0, 1] → R+
0 that specify the

minimal and maximal demand along the edge. A specific demand realiza-
tion or scenario on e is denoted by the continuous function we : [0, 1] → R+

0

112



5.2. Definitions and Problem Description

k l

x = (ex, tx)

tx · ℓex (1− tx) · ℓex

k l
x2x1

[x1, x2]

k l

i

x

txℓex + d(k, i) (1− tx)ℓex + d(l, i)

Figure 5.1. Illustration for a point on an edge, a subedge, and d(x, i).

where lbe(t) ≤ we(t) ≤ ube(t), t ∈ [0, 1]. For short, we sometimes write
lbe ≤ we ≤ ube for the latter condition. We define by lb = (lbe)e∈E the vector
of lower bound functions on the network; analogously, we define ub = (ube)e∈E

and w = (we)e∈E . Abusing notation, we will abbreviate the corresponding
condition for the demand realizations by lb ≤ w ≤ ub.

Let x ∈ G be a point on the network. We say that a point z ∈ G is
covered by a facility at x, if d(x, z) ≤ R. Let C(x) := {z ∈ G | d(x, z) ≤ R}
be the coverage area of x, i.e., the whole set of points of G covered by x and
let Ce(x) := {z ∈ e | d(x, z) ≤ R} be the coverage area of x on e, i.e., the set
of points of e covered by x. The total amount of covered demand on an edge
e ∈ E by a facility at x for a specific demand realization w is given by

ge(x,we) =

∫
y=(e,t)∈Ce(x)

we(t) dt, (5.1)

and the total amount of covered demand on the entire network by

g(x,w) =
∑
e∈E

ge(x,we) . (5.2)

The worst-case or maximal regret of choosing x over all possible demand real-
izations is defined as

r(x) := max
lb≤w≤ub

(
max
y∈G

g(y, w) − g(x,w)

)
. (5.3)

The realization w and the point y maximizing the right-hand side of the expres-
sion above are called the worst-case realization and the worst-case alternative,
respectively, for x. The Minmax Regret Maximal Covering Location Problem
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with Edge Demand (MMR-EMCLP) can now be formulated as follows:

r∗ := min
x∈G

max
lb≤w≤ub

(
max
y∈G

g(y, w) − g(x,w)

)
. (5.4)

Next, we will recall several definitions and results that were given in Berman
et al. (2016) for the case without uncertainty. Let x = (ex, tx) with ex =

[k, l] ∈ E and tx ∈ [0, 1]. For an arbitrary edge e = [i, j] ∈ E, e ̸= ex, let

s+e (x) = min

{
1, max

{
0,

R− d(x, i)

ℓe

}}
and

s−e (x) = max

{
0, min

{
1, 1− R− d(x, j)

ℓe

}}
.

If s+e (x) ∈ (0, 1), then (e, s+e (x)) is the point on e for which the shortest path
from this point to x via the end node i has a length of exactly R. Moreover, all
points on the subedge (e, [0, s+e (x)]) are covered by x. The same interpretation
holds for s−e (x) with respect to node j. See the picture on the left-hand side
in Figure 5.2. For e = ex we define

s+ex(x) = max

{
0,

d(x, k)−R

ℓex

}
and s−ex(x) = min

{
1, 1− d(x, l)−R

ℓex

}
.

Hence, all demand points on the subedge (ex, [s
+
ex(x), s

−
ex(x)]) of ex will be

covered by a facility at x. See the picture on the right-hand side in Figure 5.2
for an illustration. In the following we call s+e (·) and s−e (·) the edge coverage
functions.

i j

x

s+e (x) s−e (x)

R R k l
xs+ex (x)

s−ex (x)

R < R

Figure 5.2. Illustration of the edge coverage points s+e (x) and s−e (x) (Berman et al.
(2016)).

In the following lemma, we sum up the calculation of the coverage area
of x:
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Lemma 5.1 (Berman et al. (2016)). For e ∈ E \ {ex}, we have

Ce(x) =



e, if s−e (x) ≤ s+e (x),

(e, [0, s+e (x)] ∪ [s−e (x), 1]), if 0 < s+e (x) < s−e (x) < 1,

(e, [0, s+e (x)]), if 0 < s+e (x) < 1 = s−e (x),

(e, [s−e (x), 1]), if s+e (x) = 0 < s−e (x) < 1,

∅, if s+e (x) = 0, s−e (x) = 1,

and Cex(x) = (ex, [s
+
ex(x), s

−
ex(x)]).

Using this, we classify all edges E \ {ex} as covered, uncovered, and par-
tially covered as follows:

Ec(x) = {e ∈ E \ {ex} | s−e (x) ≤ s+e (x)},

Eu(x) = {e ∈ E \ {ex} | s+e (x) = 0 and s−e (x) = 1},

Ep(x) = E \ {Ec(x) ∪ Eu(x) ∪ {ex}}.

Edge ex will either be fully or partially covered. The total coverage can now
be written as

g(x,w) =

∫ s−ex (x)

s+ex (x)

wex(u) du +
∑

e∈Ec(x)

∫ 1

0

we(u) du

+
∑

e∈Ep(x)

(∫ s+e (x)

0

we(u) du+

∫ 1

s−e (x)

we(u) du

)
. (5.5)

5.2.1 Singularity points

In the current subsection, we analyze the singularity points on a network
that will be useful to analyze the behavior of the objective function for the
problem under study. A point x = (ex, tx), ex = [k, l] ∈ E is called a bottleneck
point of node i, if tx · ℓex + d(k, i) = (1 − tx) · ℓex + d(l, i) with 0 < tx < 1.
We denote by BPex and BP the set of all bottleneck points on edge ex and
all bottleneck points of the network, respectively.

In the following, we denote by NPex = {x ∈ ex | ∃ i ∈ V : d(x, i) = R}
the set of all network intersect points (NIPs) on an edge ex and by NP =∪

ex∈E NPex the set of all NIPs on the network (Church and Meadows (1979)).
The bottleneck points and network intersect points determine the break-

points of the edge coverage functions, as stated in the following result.

Lemma 5.2 (Berman et al. (2016)). The edge coverage functions s+e (x) and
s−e (x), e ∈ E, are continuous and piecewise linear functions over x ∈ ex with
a constant number of pieces. Breakpoints of these two functions are either
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bottleneck points or network intersect points (associated with some of the two
endnodes of e).

A point x ∈ G is called exact coverage point if 0 < s+e (x) = s−e (x) < 1

for some e ∈ E and there exists ϵ1, ϵ2 ≥ 0, ϵ1 + ϵ2 > 0, such that all points
x′ ∈ (x−ϵ1, x)∪(x, x+ϵ2), no longer completely cover e (Berman et al. (2016)).
We denote by EPex the set of all exact coverage points on an edge ex and by
EP =

∪
ex∈E EPex the set of all exact coverage points on the network.

Finally, for ex = [k, l] ∈ E, we define the set of partition points

PPex := {k, l} ∪NPex ∪BPex ∪ EPex and PP :=
∪

ex∈E

PPex .

For two consecutive partition points z1, z2 ∈ PPex , we call the subedge
[z1, z2] ⊆ ex a partition edge. Concerning the cardinality of PP , let e, ex ∈ E,
such that e ̸= ex. Each node of the network induces at most one bottleneck
point and at most two network intersect points on ex. Similarly, we com-
pute the number of exact coverage points. By Lemma 5.2, s+e (x) and s−e (x),
e ∈ E, are continuous and piecewise linear functions over x ∈ ex with a con-
stant number of pieces. Hence, there is a constant number of solutions on ex

of s+e (x) = s−e (x), i.e., there is a constant number of exact coverage points.
Therefore, there are at most O(m) partition points on each ex ∈ E and O(m2)

on the whole network. With the above definitions, we can formulate the fol-
lowing result:

Proposition 5.1 (Berman et al. (2016)). Let ex ∈ E and z1, z2 ∈ PPex be
two consecutive partition points on ex. Moreover, let w be a non-negative
continuous demand function.

1. The sets Ec(x), Eu(x), and Ep(x) are identical for all x ∈ [z1, z2].
2. The edge coverage functions s+e (x) and s−e (x) have a unique lin-

ear representation in x over [z1, z2] for each partially covered edge
e ∈ Ep(x).

3. All functions ge(x,we), e ∈ E, have a unique representation in x over
[z1, z2].

A summary of the notation introduced in this section can be seen in Table 5.1.

5.3 The Unknown Constant Demand Case
In this section, we solve the single facility (MMR-EMCLP) with unknown

constant demand realizations we(t), i.e., we assume that the demand realiza-
tion along the edges is an unknown but constant function bounded by known

116



5.3. The Unknown Constant Demand Case

BPe, BP the set of all bottleneck points on edge e and on G,
respectively.

ce(x) the parts per unit of coverage function of e.
Ce(x), C(x) the coverage area of x on e and on G, respectively.
d(x, y) distance between two points x, y ∈ G.
e = [k, l] edge, where k, l ∈ V.
ex edge that contains point x.
E the set of edges.
Ec(x), Eu(x), Ep(x) the set of edges that are covered, uncovered and

partially covered by x.
EPe, EP the set of all exact coverage points on edge e and

on G, respectively.
G = (V,E) network with node set V and edge set E and the

continuum set of points of it.
ICe, IC the set of all identical coverage points on edge e

and on G, respectively.
ℓe length of edge e ∈ E.
lbe, ube the functions that specify the minimal and maxi-

mal demand over edge e.
m number of edges.
n number of nodes.
NPe, NP the set of all network intersect points on edge e and

on G, respectively.
PPe, PP the set of all partition points on edge e and on G,

respectively.
r(x) the maximal regret of location x over all possible

demand realizations.
re(x, y), r(x, y) the maximal regret for x with respect to y on an

edge e and on G, respectively.
R the coverage radius.
s+e (x), s

−
e (x) the edge coverage functions of e.

x = (ex, tx) point in edge ex = [k, l] where tx is the relative
distance of x from k with respect to lex .

[x1, x2] = (e, [t1, t2]) subedge of e, where x1 = (e, t1), x2 = (e, t2), and
0 ≤ t1 < t2 ≤ 1.

V the set of nodes.
we demand realization on edge e.

Table 5.1. Notation used in the chapter.

lower and upper constant functions. We will derive theoretical properties of
the solution with the objective of providing an exact algorithm to solve the
problem in polynomial time.

We first look at the covered demand. Slightly abusing notation, we denote
by ube, lbe, and we the constant value of the lower and upper bound function
and the demand realization, respectively, on e. Let x = (ex, tx) be given with
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ex = [k, l] ∈ E and tx ∈ [0, 1]. Using (5.5), we obtain

g(x,w) = wex(s
−
ex(x)− s+ex(x)) +

∑
e∈Ec(x)

we +
∑

e∈Ep(x)

we

(
1− (s−e (x)− s+e (x))

)
.

(5.6)

By Proposition 5.1, we obtain that the function g(x,w) is linear in x over each
partition edge of ex and it allows us to get the following result.

Proposition 5.2 (Berman et al. (2016)). PP is a finite dominating set for
the single facility maximal covering location problem with constant demand on
each edge.

Remark 5.3.1. The finite dominating set does not depend on the actual
realization w.

From Proposition 5.2 and Observation 5.3.1, we immediately obtain the fol-
lowing result:

Lemma 5.3. The maximal regret of choosing x over all possible constant de-
mand realizations on each edge is r(x) = max

lb≤w≤ub

(
max
y∈PP

g(y, w) − g(x,w)

)
.

In the following, we denote

ce(x) :=



1, if e ∈ Ec(x),

1− (s−e (x)− s+e (x)), if e ∈ Ep(x),

0, if e ∈ Eu(x),

s−ex(x)− s+ex(x), if e = ex,

as the parts per unit of coverage of the respective edge. Observe that 0 ≤
ce(x) ≤ 1 and g(x,w) =

∑
e∈E we ce(x). For a given partition point y ∈ PP,

the maximal regret for x with respect to y on an edge e ∈ E can be computed
as:

re(x, y) := max
lbe≤we≤ube

ge(y, we)− ge(x,we). (5.7)

Therefore, the maximal regret for x with respect to y on the entire network is
given by:

r(x, y) := max
lb≤w≤ub

(g(y, w)− g(x,w)) = max
lb≤w≤ub

∑
e∈E

(ge(y, we)− ge(x,we))

=
∑
e∈E

max
lbe≤we≤ube

(ge(y, we)− ge(x,we)) =
∑
e∈E

re(x, y)

=
∑
e∈E

max
lbe≤we≤ube

we (ce(y)− ce(x))
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=
∑

e∈E:ce(y)≥ce(x)

ube (ce(y)− ce(x)) +
∑

e∈E:ce(y)<ce(x)

lbe (ce(y)− ce(x)).

(5.8)

Theorem 5.1. The maximal regret of x ∈ G is given by

r(x) = max
y∈PP

∑
e∈E

(ge(y, w
x,y
e )− ge(x,w

x,y
e )) , (5.9)

where

wx,y
e =

ube, if ce(y) ≥ ce(x),

lbe, otherwise,
is the worst-case demand realization with respect to x and y.

Proof:
Let y∗ and w∗ be the worst-case alternative and worst-case demand real-

ization, respectively, for x ∈ G, see expression (5.3), i.e., r(x) = g(y∗, w∗) −
g(x,w∗). From Proposition 5.2 and (5.8) we can assume without loss of gen-
erality that y∗ ∈ PP and w∗ = wx,y∗ , respectively. Thus,

r(x) = max
y∈PP

(g(y, wx,y)− g(x,wx,y)) .

�

Having established an easy way to compute the maximal regret of x, the
only open question is how to optimize x over ex. Let [z1, z2] be a partition
edge of ex and x ∈ int([z1, z2]). Moreover, let y ∈ PP be given. From
Proposition 5.1 we know that the edge coverage functions are linear over [z1, z2]
and that the sets Ep(x), Ec(x), and Eu(x) are identical for all x ∈ [z1, z2].
What, however, can change over [z1, z2] is the demand realization wx,y that
yields the maximal regret for x and y. In that case, there must exist an edge
e ∈ E and a point z ∈ [z1, z2] such that z provides the exact same coverage
for e as y, i.e., ce(z) = ce(y). To see that, we next look at the four possible
cases (in the remaining cases, i.e., e ∈ Ec(z) ∩ Ec(y) and e ∈ Eu(z) ∩ Eu(y),
re(z, y) = 0 for any z ∈ [z1, z2]):
If e ∈ Ep(z) ∩ Ep(y), or z ∈ e and y ∈ e, then:

ce(z) = ce(y) ⇔ s−e (z)− s+e (z) = s−e (y)− s+e (y).

If e ∈ Ep(z) and y ∈ e, then:

ce(z) = ce(y) ⇔ 1− (s−e (z)− s+e (z)) = s−e (y)− s+e (y).

Finally, if z ∈ e and e ∈ Ep(y), then:

ce(z) = ce(y) ⇔ s−e (z)− s+e (z) = 1− (s−e (y)− s+e (y)).
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As the edge coverage functions, s+e (z) and s−e (z), for z ∈ [z1, z2] are linear
functions, the equation ce(z) = ce(y) will have either at most one solution or
a subinterval contained in [z1, z2] as solution. In the former case, if a solution
exists it will be called identical coverage point with respect to y and e and
in the later case, without loss of generality, the extremes of this subinterval
will be called the identical coverage points of [z1, z2] with respect to y and
e. Furthermore, in both cases the solution is independent of w. We define
ICex(y) as the set of all identical coverage points of G induced by y and ex.
Moreover, we define IC =

∪
ex∈E,y∈PP ICex(y).

Theorem 5.2. Let z1, z2 be two consecutive elements of PP ∪ IC on an edge
ex ∈ E and y ∈ PP . Then

1. g(y, wx,y)− g(x,wx,y) is linear in x over [z1, z2].
2. r(x) is piecewise linear and convex in x over [z1, z2].

Proof:
Let z1, z2 be two consecutive elements of PP∪IC and let x′ ∈ int([z1, z2]).

Moreover, let y ∈ PP and wx′,y the corresponding worst-case demand realiza-
tion. By definition, we can assume without loss of generality that wx′,y = wx,y

for all x ∈ [z1, z2]. From Proposition 5.1 we know that the edge coverage func-
tions are linear over [z1, z2] and that the sets Ep(x), Ec(x), and Eu(x) are
identical for all x ∈ [z1, z2]. Hence, g(y, wx,y) − g(x,wx,y) is linear in x over
[z1, z2]. The second result then follows immediately from the previous state-
ment and Theorem 5.1. �

Remark 5.3.2. Theorem 5.2 gives us a partition in the domain of the function
r(x) where it is convex. The optimal solution of the problem is the minimum
of this function, which can be computed as the minimum of the minima in
each subedge. However, we propose an alternative strategy for computing the
optimal solution of this problem whose complexity is smaller than that of this
mentioned procedure.

Theorem 5.3. For a given e ∈ E and y ∈ PP, re(x, y) is a piecewise linear
function for x ∈ ex with a constant number of pieces and r(x, y) is a piecewise
linear function with O(m) number of pieces for x ∈ ex.

Proof:
Let ex, e ∈ E and y ∈ PP . By Lemma 5.2, we know that the edge coverage

functions s+e (x), and s−e (x) are piecewise linear functions over ex ∈ E with a
constant number of breakpoints for x ∈ ex. Hence, by definition, for each
e ∈ E, ce(x) is also a piecewise linear function with a constant number of
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breakpoints on ex. Thus using (5.8) and the fact that the number of identical
coverage points on ex for an edge e ∈ E is constant, by Theorem 5.1 there is
a constant number of possible worst-case demand realization, wx,y

e and then,
re(x, y) is a piecewise linear function with a constant number of pieces. �

Theorems 5.1 and 5.3 give rise to Algorithm 5.1 to find an optimal solution
for the (MMR-EMCLP) with unknown constant demand realizations.

Algorithm 5.1: Optimal algorithm for the single facility
(MMR-EMCLP) with unknown constant demand

Input: Network G = (V,E); lower and upper bounds lbe, ube,
respectively for e ∈ E; coverage radius R > 0.

Output: Optimal solution x∗.

22 Determine the set PP of partition points.

44 foreach ex ∈ E do
66 foreach y ∈ PP do
88 Derive the representation of re(x, y), for each e ∈ E, x ∈ ex.

1010 Obtain the representation of r(x, y), for x ∈ ex.

1212 Obtain the upper envelope of r(x, y) for y ∈ PP , i.e., obtain r(x)
for x ∈ ex.

1414 Find the minimum x′
ex of r(x) over ex.

1616 if r(x′
ex) < r(x∗) then set x∗ := x′

ex , r(x∗) = r(x′
ex).

1818 return x∗.

For computing the complexity of the Algorithm 5.1 some technical results
are needed about the complexity of computing an upper envelope of Jordan
arcs. This complexity is expressed in terms of λs(n), the maximum length of a
Davenport-Schinzel sequence of order s on n symbols, see Sharir and Agarwal
(1995). The results used in the following proof can be found in the Appendix.

Theorem 5.4. The single facility (MMR-EMCLP) with unknown constant
demand realizations on each edge can be solved exactly in O(mλ3(m

3)) time
using Algorithm 5.1.

Proof:
As the time to compute each partition point is constant, Step 1 requires

O(m2) time (Berman et al. (2016)).
Since there are m edges, r(x, y) has m addends, each one being a piece-

wise linear function with a constant number of pieces for each y ∈ PP and
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e ∈ E, (Theorem 5.3). Step 4 takes constant time for each e ∈ E and fixed
y ∈ PP . Besides Step 5 generates a function r(x, y) piecewise linear with
O(m) breakpoints.

Step 6 obtains the upper envelope of O(m3) line segments, i.e., O(m) line
segments for each y ∈ PP . Since they are line segments, we have s = 1. There-
fore, this step takes O(λ2(m

3) logm) = O(m3 logm) time (Theorem 5.9). In
addition, the complexity of computing the minimum in Step 7 is dominated
by the complexity of the upper envelope. Hence, this step takes O(λ3(m

3))

time and Step 8 takes constant time.
Step 4 is executed once for each ex ∈ E, y ∈ PP and e ∈ E, i.e., O(m4)

times. Moreover Step 5 is executed once for each ex ∈ E, y ∈ PP , i.e., O(m3).
Similarly, Step 6-8 are executed once for each ex ∈ E, i.e., O(m) times. Thus,
the overall complexity of the algorithm is O(mλ3(m

3)). �

Remark 5.3.3. Recall that λ3(m) = Θ(mα(m)) where α(m) is the functional
inverse of the Ackermann’s function. A weaker but simpler upper bound is
λ3(m) = O(m logm), see Sharir and Agarwal (1995) for further details.

Example 5.1. Consider the network depicted in Figure 5.3. For each edge
e ∈ E, its length is printed next to the edge. Let R = 1, lb[1,2] = 3, ub[1,2] = 15,

lb[2,3] = 1, ub[2,3] = 7, lb[1,3] = 2, and ub[1,3] = 8. The set of partition points is
given by PP = V ∪ {([1, 3], 1/3), ([1, 3], 2/3), ([2, 3], 1/2)}. The three partition
points not included in V , indicated as dots in the figure, are the bottleneck point
([1, 3], 2/3) and the three network intersect points (([1, 3], 1/3), ([1, 3], 2/3), and
([2, 3], 1/2).

1 2

3

1

23

Figure 5.3. Network with edge lengths.

First, we derive the representation of the edge coverage functions and the
parts per unit coverage functions. Their expressions can be found in Appen-
dix 5.6.2. Next, for each edge ex, we compute the maximal regret for x ∈ ex
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with respect to y ∈ PP :

r(x, y) =
∑

e∈E:ce(y)≥ce(x)

ube (ce(y)−ce(x)) +
∑

e∈E:ce(y)<ce(x)

lbe (ce(y)−ce(x)).

In Figure 5.4, functions r(x1, y), for (x1, y) ∈ [1, 2] × PP, are depicted. The
upper envelope, r(x), is represented as a dotted line. Note that r(x1, y3), is
equal to r(x1, y4), for y3 = ([1, 3], 1/3) and y4 = ([1, 3], 2/3). The reason of it
is that the parts per unit of coverage functions are equal. As can be observed,
the minimum is found in x′

[1,2] =
(
[1, 2], 2

3

)
and the regret is r(x′

[1,2]) =
13
9
.

0.2 0.4 0.6 0.8 1.0
tx

1

2

3

r

0

y0=([2,3],1/2)

y1=([2,3],0)

y2= ([1,3],0)

y3= ([1,3],1/3)

y4= ([1,3],2/3)

y5= ([1,3],1)

Figure 5.4. Representation of r(x1, y), (x1, y) ∈ [1, 2]× PP .

Similarly, functions r(x2, y), for (x2, y) ∈ [2, 3] × PP, are depicted in
Figure 5.5. The upper envelope, r(x), is represented as a dotted line. As
before, observe that r(x2, y3), is equal to r(x2, y4), for y3 = ([1, 3], 1/3) and
y4 = ([1, 3], 2/3). Over this edge, [2, 3], the minimum is found in x′

[2,3] =

([2, 3], 0) and the regret is r(x′
[2,3]) =

13
6
.

Finally, functions r(x3, y), for (x3, y) ∈ [1, 3]×PP, are represented in Fig-
ure 5.6. The upper envelope, r(x), is depicted as a dotted line. As before, note
that r(x3, y3), is equal to r(x3, y4), for y3 = ([1, 3], 1/3) and y4 = ([1, 3], 2/3).

Over this edge, [1, 3], the minimum is x′
[1,3] = ([1, 3], 0) and the regret is

r(x′
[1,3]) =

10
3
.

Therefore, the optimal location of the facility with the objective of mini-
mizing the maximal regret is x⋆ =

(
[1, 2], 2

3

)
and the regret is r(x⋆) = 13

9
.

To highlight the usefulness of our max-regret approach, we also compute
the optimal location for a deterministic version of the problem. To that end,
we assume that the demand is known and equal to the mean of the upper and
lower bound functions over each edge, i.e., we = 0.5(ube + lbe). Afterwards,
we determined the optimal solution x∗

D for this deterministic version using the
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y=([2,3],1/2)

y=([2,3],0)

y= ([1,3],0)

y= ([1,3],1/3)

y= ([1,3],2/3)

y= ([1,3],1)

Figure 5.5. Representation of r(x2, y), (x2, y) ∈ [2, 3]× PP .
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y0=([2,3],1/2)

y1=([2,3],0)

y2= ([1,3],0)

y3= ([1,3],1/3)

y4= ([1,3],2/3)

y5= ([1,3],1)

Figure 5.6. Representation of r(x3, y), (x3, y) ∈ [1, 3]× PP .

algorithm in Berman et al. (2016). Finally, we computed the maximal regret of
this solution, i.e., r(x∗

D). The optimal solution of the deterministic problem is
vertex 2, whose maximal regret is r(x∗

D) = 13
6

. Moreover, we also calculated the
amount of covered demand in the deterministic version of the problem for the
solution x∗

D as well as for the optimal solution x⋆ of the max-regret problem.
The covered demand (the objective value of the deterministic model) is 11 and
10.8889, respectively. Therefore, while the amount of covered demand for both
locations is almost identical, the maximal regret of the minmax-regret solution
is significantly lower than the one for the deterministic solution. The solutions
of both models, their maximal regret, and the covered demand (assuming that
the demand is deterministic) are given in Table 5.2.
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Model Optimal solution Maximal Regret Covered Demand

(MMR-EMCLP)
(
[1, 2], 2

3

) 13

9
10.8889

Berman et al. (2016) ([1, 2], 1)
13

6
11

Table 5.2. Solutions for Example 5.1.

5.3.1 Computational experiments

In this section we present computational experiments for Algorithm 5.1
for randomly generated as well as real-world data sets. Starting with the
former, for a given number of vertices n ∈ {40, 60, 80, 100} and a given edge
density p ∈ {0.1, 0.2, 0.3} (density as the percentage of the edges of a complete
graph), we randomly generated five connected graphs (in total 60 graphs). For
each graph, we first drew the edge lengths from a uniform distribution over
[1, 20]. Afterwards, we computed the distance matrix and checked that the
graph did not violate the triangle inequality (if this happened, we replaced the
corresponding edge lengths with the shortest path distances and recalculated
the distance matrix; we repeated this process until the triangle inequality was
satisfied for all edges). In the next step, we randomly generated the values lbe

and ube for each edge. To that end, we fixed a value UB ∈ {10, 50, 100} and
drew lbe and ube from a uniform distribution over [0, UB/2] and [UB/2, UB],
respectively. Finally, the coverage radius R ∈ {0.1 ·dmax, 0.2 ·dmax, 0.3 ·dmax}
is taken as a fixed percentage of the diameter dmax = maxi,j∈V d(i, j) of
the graph. As a result, for a given combination of n and p, i.e., a given
graph, we have nine different instances. The two real-world data sets are
based on different street graphs from a German city, with the edge lengths
being the length of the street in meters. As we did not have access to actual
demand data, we generated upper and lower bounds in the same way as for
the randomly generated graphs. Analogously, we chose the coverage radius
R ∈ {0.1 · dmax, 0.2 · dmax, 0.3 · dmax}.

We compare our algorithm with two alternative versions. The first al-
ternative is the node-restricted (MMR-EMCLP), i.e., we replace minx∈G by
minx∈V in (5.4). The motivation for the second alternative was to get an
idea about the value of the stochastic solution for this setting. To that end,
we first replaced the unknown constant demand on an edge e by a constant
known demand value we = (ube + lbe)/2. Afterwards, we determined the op-
timal solution for this deterministic problem using the algorithm in Berman
et al. (2016). Finally, we computed the maximal regret of this solution. In
the following, we call these two variants simply the node-restricted and the
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deterministic algorithm, and our method the max-regret algorithm. The cor-
responding problems and optimal solutions are denoted analogously. All al-
gorithms were implemented in C++ and run on a Windows 10 Laptop with a
i5-8350U CPU with 1.9 GHz and 8 GB RAM.

5.3.1 Random graphs

We start with the randomly generated graphs. We first analyse the effect
of varying the edge densities. The results are given in Table 5.3. The first
two columns specify the number of nodes and the edge density. The next
column shows the average total run time of the max-regret algorithm. The
following three columns are for the node-restricted algorithm. The first shows
the average relative percentage deviation of the maximal regret of the node-
restricted solution with respect to the maximal regret of max-regret solution.
The next two columns present the maximum relative percentage deviation
and the total run time. The following three columns show exactly the same
information, but this time for the deterministic algorithm. All averages are
taken over the 45 different instances that have the same edge density and
number of nodes (five different graphs per n and p, and nine different instances
per graph).

Max regret Node-restricted Deterministic
Nodes Density Time Avg Dev Max Dev Time Avg Dev Max Dev Time

40 0.1 2.10 0.8% 7.6% 0.05 21.8% 318.2% 0.03
40 0.2 16.77 0.6% 13.9% 0.18 6.0% 47.0% 0.09
40 0.3 45.66 4.4% 84.3% 0.35 8.3% 84.3% 0.20
60 0.1 30.62 2.3% 31.2% 0.35 11.1% 63.7% 0.18
60 0.2 160.34 0.0% 0.1% 1.15 3.8% 56.2% 0.43
60 0.3 328.37 0.0% 0.0% 2.14 0.7% 15.3% 0.83
80 0.1 244.91 0.0% 0.1% 1.90 2.0% 24.1% 0.49
80 0.2 886.53 3.8% 32.5% 4.83 9.7% 32.5% 1.33
80 0.3 2022.59 0.2% 4.2% 8.15 1.7% 25.1% 2.43
100 0.1 1694.93 0.5% 18.7% 4.12 3.7% 43.4% 1.00
100 0.2 3203.70 0.5% 6.1% 11.51 1.3% 25.1% 2.91
100 0.3 7122.23 0.4% 8.2% 21.96 0.7% 8.2% 5.58

Table 5.3. Comparison for different edge densities for the random graphs.

As expected, the run time increases with an increasing number of nodes
and edge density (the latter is due to an increase in the number of partition and
identical coverage points, see Table 5.4 for more details). While the average
percentage deviation for the node-restricted algorithm is quite small, the max-
imal percentage deviation for an instance can be very large, indicating signifi-
cantly inferior solutions; and even more so for the deterministic algorithm. In
general, the average percentage deviation for the deterministic problems seems
to be decreasing with an increase in the edge density p. This becomes more
apparent once we average for each edge density p over the number of nodes,
obtaining average deviations of 9.63%, 5.19%, and 2.84% for p = 0.1, 0.2, and
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0.3, respectively. Concerning the node-restricted problem, the opposite seems
to be the case. Averaging the average percentage deviations over the number
of nodes, we obtain percentages of 0.89%, 1.23%, and 1.23%. Finally, if we
average the average percentage deviations for each number of nodes over the
edge densities, we can observe that the averages generally decrease with an
increasing number of nodes. For the node-restricted algorithm (deterministic
algorithm), we obtain averages of 1.9%, 0.8%, 1.3%, and 0.4% (12.0%, 5.2%,
4.5%, and 1.9%).

In Table 5.4 we present the average number of partition points, #PP ,
and identical coverage points, #ICP (which are not at the same time also
partition points), as well as the average times to calculate them.

Nodes Density #PP Time #ICP Time
40 0.1 983.7 0.0 1018.1 0.6
40 0.2 2119.7 0.0 1274.4 5.3
40 0.3 2773.5 0.0 1670.9 16.3
60 0.1 2735.1 0.0 1672.5 9.8
60 0.2 4603.5 0.0 2375.3 53.6
60 0.3 5824.7 0.0 2374.3 100.9
80 0.1 4971.6 0.0 2712.2 81.6
80 0.2 8066.8 0.0 3567.7 347.4
80 0.3 10089.6 0.0 4228.7 713.8
100 0.1 7622.7 0.0 3924.7 237.6
100 0.2 11770.1 0.0 4979.5 906.8
100 0.3 14640.46 0.0 6222.7 2423.6

Table 5.4. Statistics for the number for partition and identical coverage points.

Next, we turn to analyzing the effect of varying coverage radii. The results
are given in Table 5.5, where %R denotes the percentage of the diameter of
the graph that constitutes the coverage radius R, e.g., %R = 0.1 means that
R = 0.1 · dmax. All other columns are identical to Table 5.3.

Max regret Node-restricted Deterministic
Nodes %R Time Avg Dev Max Dev Time Avg Dev Max Dev Time

40 0.1 10.06 0.7% 13.9% 0.15 23.2% 318.2% 0.08
40 0.2 18.28 0.5% 7.6% 0.18 5.9% 73.5% 0.12
40 0.3 36.18 4.6% 84.3% 0.24 6.9% 84.3% 0.13
60 0.1 90.29 0.0% 1.4% 0.99 4.3% 63.7% 0.41
60 0.2 157.42 2.2% 31.2% 1.17 5.9% 45.6% 0.49
60 0.3 271.63 0.0% 0.6% 1.49 5.4% 56.2% 0.54
80 0.1 544.87 0.2% 4.2% 4.49 5.8% 28.4% 1.23
80 0.2 940.82 2.3% 32.5% 4.80 4.6% 32.5% 1.37
80 0.3 1668.34 1.5% 19.6% 5.60 3.0% 19.6% 1.66
100 0.1 1669.05 0.2% 2.9% 11.01 3.6% 43.4% 2.79
100 0.2 4053.70 0.4% 6.1% 11.44 0.8% 6.8% 2.99
100 0.3 6298.12 0.8% 18.7% 15.15 1.3% 18.9% 3.72
Table 5.5. Comparison for different coverage radii for the random graphs.
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As expected, the run time increases with an increasing coverage radius.
While, again, the average percentage deviations for the node-restricted algo-
rithm are quite small (in contrast to the deterministic algorithm), the maximal
percentage deviations can be very large. Concerning varying coverage radii,
the individual averages do not show a consistent trend. However, if we average
the average percentage deviations for each coverage radius over the number
of nodes, we can again observe opposing trends for the deterministic and the
node-restricted algorithm. For the former, the averages strictly decrease with
an increasing coverage radius (9.22%, 4.29%, and 4.15%), while for the latter
they strictly increase (0.27%, 1.36%, and 1.72%).

Finally, we turn to the effect of varying UB for the generation of the upper
and lower bounds on the edges. The results are given in Table 5.6, where UB

denotes the value of the parameter used for generating the upper and lower
bounds on the demand on an edge. All other columns are the same as before.
We can make very similar observations as for the previous two comparisons.

Max regret Node-restricted Deterministic
Nodes UB Time Avg Dev Max Dev Time Avg Dev Max Dev Time

40 10 21.5 2.0% 53.9% 0.2 9.1% 140.2% 0.1
40 50 21.4 2.2% 84.3% 0.2 12.1% 251.1% 0.1
40 100 21.4 1.6% 50.2% 0.2 14.8% 318.2% 0.1
60 10 171.8 0.8% 26.4% 1.2 7.1% 63.7% 0.4
60 50 171.5 0.6% 28.1% 1.1 4.0% 56.2% 0.4
60 100 175.9 0.8% 31.2% 1.2 4.5% 46.4% 0.5
80 10 1045.1 1.5% 29.1% 5.0 4.4% 29.1% 1.4
80 50 1041.3 1.1% 25.8% 4.9 4.5% 28.0% 1.4
80 100 1067.4 1.3% 32.5% 4.8 4.5% 32.5% 1.4
100 10 3148.2 0.4% 8.2% 12.7 2.8% 43.4% 3.2
100 50 3255.5 0.3% 5.7% 12.5 1.0% 19.9% 3.1
100 100 3172.8 0.6% 18.7% 12.3 1.8% 30.2% 3.1
Table 5.6. Comparison for different values for UB for the random graphs.

A striking difference, however, is that the maximal percentage deviations for
the node-restricted algorithm are very high for all combinations of n and UB.
Moreover, no consistent trend in the average percentage deviations can be
observed with respect to increasing values of UB. This time, also averaging
over the number of nodes for each value of UB does not reveal anything (for
the deterministic algorithm, we obtain averages of 5.85%, 5.4%, and 6.41% for
UB = 10, 50, and 100, respectively, and for the node-restricted problem we
have 1.19%, 1.06%, and 1.1%). One might have expected that larger values of
UB would mean a larger “range of uncertainty” resulting in higher percentage
deviations. But this is only evident for the deterministic algorithm for the
40-node instances. Observe that while the range of uncertainty is much larger
in absolute values, it does not change in relative values.
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5.3.2 Real-world graphs

The two real-world data sets have 132 edges and 213 edges (with 106
nodes and 143 nodes, respectively). We carry out an analogous analysis as for
the random data sets, starting with the coverage radii. The results are shown
in Table 5.7, where the values are just averaged over UB now.

Max regret Node-restricted Deterministic
Edges %R Time Avg Dev Max Dev Time Avg Dev Max Dev Time
132 0.1 26.0 0.1% 1.2% 0.2 34.1% 72.6% 0.1
132 0.2 106.6 1.1% 3.4% 0.4 8.9% 32.7% 0.1
132 0.3 196.8 1.1% 2.9% 0.5 25.1% 45.0% 0.1
213 0.1 536.5 1.6% 7.4% 1.3 31.3% 61.2% 0.2
213 0.2 1652.2 3.6% 8.4% 2.1 12.7% 20.3% 0.4
213 0.3 2954.9 12.4% 25.3% 2.9 80.0% 108.8% 0.5

Table 5.7. Comparison for different coverage radii for the street graphs.
We can make similar observations concerning the run times. For the

node-restricted algorithm, there seems to be a trend with respect to increasing
values of R resulting in increasing average deviations, but more tests would
be required to verify this observation.

In Table 5.8 we present the number of partition points and identical cov-
erage points (which are not at the same time also partition point), as well
as the average times to calculate them. As UB does not affect the number
of points, the values are not averages but the actual numbers for both street
graphs.

Edges %R #PP Time #ICP Time
132 0.1 1451 0.0 15251 0.2
132 0.2 1975 0.0 33460 1.8
132 0.3 2481 0.0 48034 5.7
213 0.1 3936 0.0 63138 8.8
213 0.2 6035 0.0 110884 41.6
213 0.3 7008 0.0 128882 70.0

Table 5.8. Statistics for the number for partition and identical coverage points for
the street graphs.

Finally, we turn to the effect of varying UB for the generation of the upper
and lower bounds on the edges. The results are given in Table 5.9, where the
values are just averaged over %R.

Max regret Node-restricted Deterministic
Edges UB Time Avg Dev Max Dev Time Avg Dev Max Dev Time
132 10 101.3 1.0% 3.4% 0.3 30.3% 71.1% 0.1
132 50 108.7 0.7% 3.3% 0.3 23.7% 72.6% 0.1
132 100 119.3 0.7% 2.8% 0.4 14.2% 37.3% 0.1
213 10 1607.8 5.7% 25.3% 2.2 33.3% 94.1% 0.4
213 50 1941.1 5.0% 23.9% 2.1 43.4% 99.6% 0.3
213 100 1594.7 6.9% 23.9% 2.0 47.3% 108.8% 0.4

Table 5.9. Comparison for different values for UB for the street graphs.
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As for the random data sets, no clear trend in the percentage deviations
can be observed with respect to varying values of UB. The maximum devia-
tions again underline that the node-restricted and the deterministic algorithm
may produce significantly inferior solutions.

In conclusion, the obtained results show the advantages of using our model
when we want to minimize the maximal regret. These advantages have sig-
nificant consequences on the service to be located as well as on the city’s
performance. For example, if a defibrillator has to be placed in the city with
213 edges (where UB=50) the obtained results means that in the worst case
scenario for the demand (taking into account different coverage radii), the
solution of our model leaves on average 5.0% (43.4%) less of the uncovered
population by the node-restricted (deterministic) solution. These results are
even more remarkable if we consider the particular value of the radius that pro-
vided the maximum difference, where the solution of our model leaves 23.9%
(99.6%) less of the uncovered population by node-restricted (deterministic)
solution.

5.4 The Unknown Linear Demand Case
In this section, we consider the case of an unknown linear demand re-

alization bounded by known linear lower and upper bound functions. Let
lbe(t) = alb

e + blbe · t, ube(t) = aub
e + bube · t, and we(t) = aw

e + bwe · t. Unfortu-
nately, Proposition 5.2 and Observation 5.3.1 no longer hold for non-constant
demand functions, although we can still easily compute the optimal solution
of maxx∈G g(x,w) for a given w in O(m2 log m) time (Berman et al. (2016)).
What, however, still works is to discretize the domain w over which we opti-
mize to find the worst-case demand realization.

To that end, we first characterize the feasible region lb ≤ w ≤ ub in terms
of alb

e , b
lb
e , a

ub
e , and bube :

aw
e ≥ lbe(0) = alb

e ,

aw
e ≤ ube(0) = aub

e ,

lb ≤ w ≤ ub ⇔ aw
e + bwe , ≤ ube(1) = aub

e + bube , (5.10)

aw
e + bwe ≥ lbe(1) = alb

e + blbe ,

aw
e ≥ 0, bwe ∈ R.

We denote by Fe the feasible set of points (aw
e , b

w
e ) satisfying the system of

inequalities on the right hand side of (5.10). Fe is a parallelogram in the
aw
e /b

w
e −space whose left and right sides are vertical and whose upper and
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lower sides are diagonal with slope −1. See the sketch on the left-hand side in
Figure 5.7.

awe

bwe

a
w e

≥
lb

e
(0
)

a
we

≤
u
b
e
(0
)

a w
e
+
b w
e ≤

ub
e (1)

a w
e
+
b w
e ≥

lb
e (1)

(i)

(ii)

(iii)

(iv)
0 1

lbe(
·) ↔

(i)

ube
(·)

↔
(iii)

(ii)
(iv)

Figure 5.7. Sketch of the feasible region Fe (left-hand side) and the demand reali-
sations corresponding to the four corners of Fe (right-hand side).

The four corners of the parallelogram are

(i) (alb
e , b

lb
e ),

(ii) (alb
e , a

ub
e + bube − alb

e ),

(iii) (aub
e , bube ),

(iv) (aub
e , alb

e + blbe − aub
e ).

The first and third coincide with we(·) = lbe(·) and we(·) = ube(·), respectively.
For the second and fourth, we(·) crosses diagonally between the lower and
upper bound function. For example for the second point, we(·) starts at lbe(0)

and ends at ube(1). See the sketch on the right-hand side in Figure 5.7.

Proposition 5.3. The worst-case demand realization for a fixed x, y ∈ G and
e ∈ E can be obtained by solving the following linear program:

re(x, y) = max aw
e (ce(y)− ce(x)) +

1

2
bwe (c̄e(y)− c̄e(x)) , (5.11)

s.t. (5.10)
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where

c̄e(x) =



1, if e ∈ Ec(x),

1− ((s−e (x))
2 − (s+e (x))

2), if e ∈ Ep(x),

0, if e ∈ Eu(x),

(s−ex(x))
2 − (s+ex(x))

2, if e = ex.

Proof:
Let x = (ex, tx) ∈ G, y = (ey, ty) ∈ G, and e ∈ E be given. Next,

we will derive the expression of the maximal regret for the different cases.
We distinguish between the situations that define the different pieces of the
functions ce and c̄e. We first consider the case that e ∈ Ep(x) ∩ Ep(y) and
x, y ̸∈ e (Case 1.1). Then, the maximal regret with respect to x and y on e

can be computed as

re(x, y) = max
lbe≤we≤ube

(ge(y, we)− ge(x,we))

= max
lbe≤we≤ube

∫ s+e (y)

0

we(u) du+

∫ 1

s−e (y)

we(u) du

−
∫ s+e (x)

0

we(u) du−
∫ 1

s−e (x)

we(u) du

= max
lbe≤we≤ube

∫ s−e (x)

s+e (x)

we(u) du−
∫ s−e (y)

s+e (y)

we(u) du

= max
lbe≤we≤ube

[
aw
e · u+

1

2
bwe · u2

]s−e (x)

s+e (x)

−
[
aw
e · u+

1

2
bwe · u2

]s−e (y)

s+e (y)

= max
lbe≤we≤ube

aw
e

(
s−e (x)− s+e (x)− s−e (y) + s+e (y)

)
+

1

2
bwe
(
(s−e (x))

2 − (s+e (x))
2 − (s−e (y))

2 + (s+e (y))
2)

= max
lbe≤we≤ube

aw
e (ce(y)− ce(x)) +

1

2
bwe (c̄e(y)− c̄e(x)) . (5.12)

So far we assumed that x, y ̸∈ e. Now, we assume that y ̸∈ e but x ∈ e

(Case 1.2), then we obtain

re(x, y) = max
lbe≤we≤ube

∫ s+e (y)

0

we(u) du+

∫ 1

s−e (y)

we(u) du −
∫ s−e (x)

s+e (x)

we(u) du

= max
lbe≤we≤ube

[
aw
e · u+

1

2
bwe · u2

]s+e (y)

0

+

[
aw
e · u+

1

2
bwe · u2

]1
s−e (y)

−
[
aw
e · u+

1

2
bwe · u2

]s−e (x)

s+e (x)

= max
lbe≤we≤ube

aw
e

(
s+e (y) + 1− s−e (y)− s−e (x) + s+e (x)

)
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+
1

2
bwe
(
(s+e (y))

2 + 1− (s−e (y))
2 − (s−e (x))

2 + (s+e (x))
2)

= max
lbe≤we≤ube

aw
e (ce(y)− ce(x)) +

1

2
bwe (c̄e(y)− c̄e(x)) . (5.13)

Analogously, the same expression of re(x, y) can be obtained in the remaining
two subcases: x ̸∈ e, y ∈ e (Case 1.3) and x, y ∈ e (Case 1.4). Next, we
analyze the cases where e ̸∈ Ep(x) ∩ Ep(y). If e ∈ Ep(y) ∩ Ec(x) and x, y ̸∈ e
(Case 2.1), then

re(x, y) = max
lbe≤we≤ube

∫ s+e (y)

0

we(u) du +

∫ 1

s
−
e (y)

we(u) du −
∫ 1

0

we(u) du

= max
lbe≤we≤ube

[
a
w
e · u +

1

2
b
w
e · u2

]s+e (y)

0

+

[
a
w
e · u +

1

2
b
w
e · u2

]1

s
−
e (y)

−
[
a
w
e · u +

1

2
b
w
e · u2

]1

0

= max
lbe≤we≤ube

a
w
e

(
s
+
e (y) + 1 − s

−
e (y) − 1

)
+

1

2
b
w
e

(
(s

+
e (y))

2
+ 1 − (s

−
e (y))

2 − 1
)

= max
lbe≤we≤ube

a
w
e (ce(y) − 1) +

1

2
b
w
e (c̄e(y) − 1)

= max
lbe≤we≤ube

a
w
e (ce(y) − ce(x)) +

1

2
b
w
e (c̄e(y) − c̄e(x)) . (5.14)

The remaining cases can be proven analogously. Therefore, we have proven
that re(x, y) can be obtained by solving a linear program. �

Since re(x, y) can be reduced to solve a linear program with feasible region
Fe, then, at least one of the four corners of Fe is optimal. In the following, we
present the conditions to identify which corner of Fe will yield the maximal
regret.

Theorem 5.5. An optimal solution of (5.11), (aw∗
e , bw∗

e ), is given by the first
column of Table 5.10 whenever the conditions of columns 2-4 are fulfilled.

(aw∗
e , bw∗

e )
Conditions

ce(y)− ce(x) c̄e(y)− c̄e(x) (c̄e(y)− c̄e(x))− 2(ce(y)− ce(x))

(alb
e , b

lb
e ) ≤ 0 ≤ 0 ≥ 0

(alb
e , a

ub
e + bube − alb

e )
≥ 0 ≥ 0 ≥ 0
≤ 0 ≥ 0 −

(aub
e , bube ) ≥ 0 ≥ 0 ≤ 0

(aub
e , alb

e + blbe − aub
e )

≤ 0 ≤ 0 ≤ 0
≥ 0 ≤ 0 −

Table 5.10. Worst-case demand realization; optimal solution of (5.11).

Proof:
The objective function in (5.11) is linear in aw

e and bwe . Hence, at least
one of the four corners of Fe will be optimal. Thus, if ce(y) − ce(x) ≥ 0 and
c̄e(y)− c̄e(x) ≤ 0, an optimal solution is (aub

e , alb
e + blbe − aub

e ), i.e., corner (iv),
since we want to make aw

e as large as possible and bwe as small as possible to
maximize the regret. Similarly, if ce(y)− ce(x) ≤ 0 and c̄e(y)− c̄e(x) ≥ 0, an
optimal solution is (alb

e , a
ub
e + bube −alb

e ), i.e., corner (ii), since we want to make

133



Chapter 5. Minmax Regret MCLP with Edge Demands

aw
e as small as possible and bwe as large as possible to maximize the regret.

However, if ce(y)− ce(x) > 0 and c̄e(y)− c̄e(x) > 0, or ce(y)− ce(x) < 0 and
c̄e(y) − c̄e(x) < 0, obtaining an optimal solution is not straightforward. Let
us consider the case where ce(y)− ce(x) > 0 and c̄e(y)− c̄e(x) > 0, the other
case can be analyzed analogously. In this case, the two candidate points to be
an optimal solution of (5.11) will be (alb

e , a
ub
e + bube − alb

e ) and (aub
e , bube ), i.e.,

corners (ii) and (iii). Thus, (aub
e , bube ) will be an optimal solution of (5.11) if

the following inequality holds:

albe (ce(y)−ce(x))+
1

2
(aube +bube −albe )(c̄e(y)−c̄e(x))≤aube (ce(y)−ce(x))+

1

2
bube (c̄e(y)−c̄e(x)),

or equivalently:
1

2
(aub

e − alb
e )(c̄e(y)− c̄e(x)) ≤ (aub

e − alb
e )(ce(y)− ce(x)).

By hypothesis aub
e − alb

e ≥ 0. If aub
e − alb

e = 0, corners (ii) and (iii) coincide,
therefore we can assume without loss of generality that aub

e − alb
e > 0. Thus,

1

2
(c̄e(y)− c̄e(x)) ≤ ce(y)− ce(x).

It means that if ce(y) − ce(x) > 0, c̄e(y) − c̄e(x) > 0, and c̄e(y) − c̄e(x) ≤
2(ce(y) − ce(x)), then an optimal solution of (5.11) is (aub

e , bube ), otherwise
an optimal solution will be (alb

e , a
ub
e + bube − alb

e ). Therefore, we obtain the
conditions described in Table 5.10 and the result follows. �

Theorem 5.6. For a given e ∈ E, x ∈ ex ∈ E, and y ∈ ey ∈ E, the conditions
described in Theorem 5.5 generate a subdivision of ex × ey with respect to e

with a constant number of cells, such that the representation of re(x, y) over
each cell is a quadratic function.

Proof:
Let x ∈ ex ∈ E and let y ∈ ey ∈ E. From Lemma 5.2 and Proposi-

tion 5.1 we know that the edge coverage functions, s+e (x), s−e (x) (s+e (y), s−e (y))
are piecewise linear functions with a constant number of pieces over ex ∈ E

(ey ∈ E). Thus, for each e ∈ E, the expressions ce(x) and c̄e(x) (ce(y)

and c̄e(y)) have a constant number of explicit representations for any x ∈ ex

(y ∈ ey). The breakpoints of the edge coverage functions for a given edge
e ∈ E correspond to either bottleneck points or network intersect points
(Lemma 5.2). Therefore, we add the corresponding vertical and horizontal
lines induced by these constant number of partition points to the subdivi-
sion. Moreover, by Theorem 5.5 we can identify the corresponding worst-case
demand realizations, i.e., w∗

e in each cell. Therefore, a constant number of
algebraic curves are derived from the conditions defined in Table 5.10. The
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arrangement inside the square ex × ey of these constant number of planar al-
gebraic curves for a given e ∈ E, i.e., the vertical and horizontal lines induced
by the breakpoints of the edge coverage functions and the conditions of Ta-
ble 5.10, generates a subdivision with a constant number of cells because each
pair of curves intersects in a constant number of points. Furthermore, within
each cell of this subdivision there is a common worst-case demand realization,
w∗

e , i.e., within each cell of this subdivision re(x, y) has a unique representation
as a quadratic function. �

In the following, we will compute the representation of the maximal regret
in the network depicted in Figure 5.3 for a pair of edges. Moreover, we will
represent the generated subdivision over the square composed by these two
edges.

Example 5.2. Consider the network depicted in Figure 5.3. For each edge
e ∈ E, its length is printed next to the edge. Let R = 1, lb[1,2](t) = 3 − 3t,

ub[1,2](t) = 15 + 7t, lb[2,3](t) = 3t, ub[2,3](t) = 7 + 3t, lb[1,3](t) = 2 + 3t,
and ub[1,3](t) = 8 + 10t. The set of partition points is given by PP = V ∪
{([1, 3], 1/3), ([1, 3], 2/3), ([2, 3], 1/2)}. The three partition points not included
in V (indicated as dots in the figure) are the bottleneck point ([1, 3], 2/3) and
the three network intersect points (([1, 3], 1/3), ([1, 3], 2/3), ([2, 3], 1/2).

The network of this example is the one used in Example 5.1. Therefore,
the edge coverage functions are identical. As stated before, the representation
of these functions can be found in Appendix 5.6.2.

Next, we denote F[1,2], F[2,3], and F[1,3] the feasible region lb ≤ w ≤ ub in
terms of alb

e , b
lb
e , a

ub
e , and bube for e ∈ {[1, 2], [2, 3], [1, 3]} respectively, i.e., the

feasible set of points satisfying the system of inequalities of the right hand side
of (5.10).

Let x = ([1, 2], tx) ∈ [1, 2], i.e., 0 ≤ tx ≤ 1, and y = ([2, 3], ty) ∈ [2, 3], i.e.,
0 ≤ ty ≤ 1. In the following, we compute the worst-case demand realization
in (x, y) ∈ [1, 2]× [2, 3] for a fixed edge [1, 2] ∈ E applying Proposition 5.3:

r[1,2](x, y) =


max

(aw
[1,2]

, bw
[1,2]

)∈F[1,2]

−2tya
w
[1,2] − 2t2yb

w
[1,2], if 0 ≤ ty ≤ 1

2
,

max
(aw

[1,2]
, bw

[1,2]
)∈F[1,2]

−aw
[1,2] −

1

2
bw[1,2], if 1

2
≤ ty ≤ 1.

First, we analyze the sign of the coefficients of aw
[1,2] and bw[1,2] in both

pieces. We observe that there is no change of sign in them, therefore the
worst-case demand realization is constant over each piece, i.e., there are only
two cells generated by the horizontal line induced by the breakpoint of r[1,2](x, y).
From Proposition 5.5, we obtain that the optimal solution is corner (i) for both
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pieces, thus:

r[1,2](x, y) =

−6ty + 6t2y, if 0 ≤ ty ≤ 1
2
,

− 3
2
, if 1

2
≤ ty ≤ 1.

Figure 5.8 shows the subdivision generated in the square [1, 2]× [2, 3], in each
cell the expression of the maximal regret as a unique representation.

0.0 0.2 0.4 0.6 0.8 1.0
tx

0.2

0.4

0.6

0.8

1.0

ty

0.0

ty=
1

2

Figure 5.8. Cells for r[1,2](x, y), x = ([1, 2], tx) and y = ([2, 3], ty).

Hereunder, we compute the worst-case demand realization in (x, y) ∈
[1, 2]× [2, 3] for a fixed edge [2, 3] ∈ E applying Proposition 5.3:

r[2,3](x, y) =



max(
aw
[2,3]

, bw
[2,3]

)
∈F[2,3]

1

2
(1 − tx + 2ty)a

w
[2,3]

+
1

8

(
−t

2
x + (1 + 2ty)

2
)
b
w
[2,3],

if 0 ≤ ty ≤
1

2
,

max(
aw
[2,3]

, bw
[2,3]

)
∈F[2,3]

1

2
(3 − 2ty − tx)a

w
[2,3]

+
1

2

(
1 −

1

4

(
(2ty − 1)

2
+ t

2
x

))
b
w
[2,3],

if
1

2
≤ ty ≤ 1.

Since the coefficients of aw
[2,3] and bw[2,3] have a non-negative value for both

definitions, from Proposition 5.5, we obtain that the changes in r[2,3](x, y) are
determined by the sign of (c̄[2,3](y) − c̄[2,3](x)) − 2(c[2,3](y) − c[2,3](x)). For
0 ≤ ty ≤ 1

2
, this sign is also constant, so for this case new cells are not

defined. However, for 1
2

≤ ty ≤ 1, the sign is not constant, then we set(
1− 1

4

(
(2ty − 1)2 + t2x

))
− (3 − 2ty − tx) = 0 and solve for ty ∈

[
1
2
, 1
]
. We

get the parametric curve (tx,
3
2
− 1

2

√
4tx − t2x), for 2−

√
3 ≤ tx ≤ 1, this curve

determines the change of the sign of (c̄[2,3](y)− c̄[2,3](x))−2(c[2,3](y)−c[2,3](x))

and as a consequence, the change of definition of r[2,3](x, y).
Figure 5.9 shows the subdivision generated by the horizontal line induced

by the breakpoint of r[2,3](x, y) and the change of the sign of (c̄[2,3](y) −
c̄[2,3](x))− 2(c[2,3](y)− c[2,3](x)). In each cell, the representation of r[2,3](x, y)
is unique: in the green area (upper left part) it is r[2,3](x, y) = 7

2
(3 − 2ty −
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tx) +
3
2

(
1− 1

4
((2ty − 1)2 + t2x)

)
; i.e., corner (iii) is the optimal solution, in

the yellow one (upper right part) it is r[2,3](x, y) = 5
(
1− 1

4
((2ty − 1)2 + t2x)

)
;

i.e., corner (ii) is the optimal solution, and in the blue one (lower part) it is
r[2,3](x, y) = 7

2
(1 − tx + 2ty) +

3
2

(
−t2x + (1 + 2ty)

2
)
; i.e., corner (iii) is the

optimal solution.
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Figure 5.9. Cells for r[2,3](x, y), x = ([1, 2], tx) and y = ([2, 3], ty).

Next, we compute the worst-case demand realization in (x, y) ∈ [1, 2]×[2, 3]
for a fixed edge [1, 3] ∈ E applying Proposition 5.3:

r[1,3](x, y) =



max(
aw
[1,3]

, bw
[1,3]

)
∈F[1,3]

1

3
(−1 + tx)a

w
[1,3]

−
1

18
(1 − tx)

2
b
w
[1,3],

if 0 ≤ ty ≤
1

2
,

max(
aw
[1,3]

, bw
[1,3]

)
∈F[1,3]

1

3
(−2 + tx + 2ty)a

w
[1,3]

+
1

2

(
1 −

1

9

(
(4 − 2ty)

2
+(1 − tx)

2
))

b
w
[1,3],

if
1

2
≤ ty ≤ 1.

From Proposition 5.5, we obtain that the changes of definition of r[1,3](x, y)
are determined by the sign of c[1,3](y) − c[1,3](x), c̄[1,3](y) − c̄[1,3](x), and
(c̄[1,3](y) − c̄[1,3](x)) − 2(c[1,3](y) − c[1,3](x)). In the Figure 5.10, the cells
generated by the horizontal line induced by the breakpoint of r[1,3](x, y) and
the curves c[1,3](y) − c[1,3](x) = 0, c̄[1,3](y) − c̄[1,3](x) = 0, and (c̄[1,3](y) −
c̄[1,3](x))− 2(c[1,3](y)− c[1,3](x)) = 0 are depicted. In each area, the represen-
tation of r[1,3](x, y) is unique: in the pink area (lower part) it is r[1,3](x, y) =
2
3
(−1 + tx) − 1

6
(1 − tx)

2; i.e., the corner (i) is the optimal solution, in the
orange area (middle lower left part) it is r[1,3](x, y) = 2

3
(tx + 2(ty − 1)) +

3
2

(
1− 1

9
((4− 2ty)

2 + (1− tx)
2)
)
; i.e., the corner (i) is the optimal solution,

in the blue and lavender area (upper left and middle lower right part respec-
tively) it is r[1,3](x, y) =

2
3
(tx + 2(ty − 1)) + 8

(
1− 1

9
((4− 2ty)

2 + (1− tx)
2)
)
,

i.e., the corner (ii) is the optimal solution, and in the green (upper right part)
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area it is r[1,3](x, y) = 8
3
(tx + 2(ty − 1)) + 5

(
1− 1

9
((4− 2ty)

2 + (1− tx)
2)
)
;

i.e., the corner (iii) is the optimal solution. It is worth noting that although
the expression tx = 1− ty

2
implies a change in the sign of c[1,3](y)− c[1,3](x),

r[1,3](x, y) does not change, because the optimal corner is the same. For this
reason, the blue and the lavender cells would be considered as one in the fol-
lowing steps.
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Figure 5.10. Cells for r[1,3](x, y), x = ([1, 2], tx) and y = ([2, 3], ty).

Combining all the above subdivisions, we obtain a finer subdivision shown
in Figure 5.11. The function r(x, y) has a unique representation in each cell as
a quadratic function which is obtained as the sum of the corresponding re(x, y),

for each e ∈ E.
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Figure 5.11. Cells for r(x, y), x = ([1, 2], tx) and y = ([2, 3], ty).
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5.4.1 Resolution method

In the current subsection, a polynomial time algorithm is developed for
solving the single facility (MMR-EMCLP) with unknown linear demand real-
izations. We start explaining the solution methods before analyzing its com-
plexity. The idea of the procedure is to compute a subdivision over the square
ex × ey for ex, ey ∈ E where for any x ∈ ex, maxy∈ey r(x, y) is achieved at
the boundaries of the cells of this subdivision. We call Cexey the sets of arcs
defining this subdivision.

Theorem 5.7. The single facility (MMR-EMCLP) with unknown linear de-
mand realizations can be solved to optimality in polynomial time.

Proof:
Let x ∈ ex ∈ E and y ∈ ey ∈ E. For a given e ∈ E, we derive a subdivision

over the square ex×ey with a constant number of cells, such that, within each
cell of the subdivision re(x, y) has a unique representation (Theorem 5.6).
Indeed, within each cell of the arrangement generated by the vertical and
horizontal lines induced by the breakpoints of the edge coverage functions and
the algebraic curves defined on Table 5.10, re(x, y) has a unique representation
as a quadratic function for each e ∈ E. Since r(x, y) is the sum of re(x, y) for
all e ∈ E, the intersections of the cells generated for each e ∈ E provide a finer
subdivision in the square ex × ey such that, within the new cells, r(x, y) has a
unique representation as a quadratic function. Since r(x, y) is quadratic, for
a fixed x the maximum of r(x, y); i.e., maxy∈ey r(x, y) can be found on the
boundary of the cells previously defined or, if the function is concave inside a
cell, in the intersection of the curve ∂r

∂y
(x, y) = 0 (for a fixed x) with the cell.

Let Cexey be the set of the previous arcs (arcs defining the boundary of a cell
and the arc ∂r

∂y
(x, y) = 0 in the cells where r(x, y) is concave) parametrized as

(x, y(x)) in the square ex × ey. The upper envelope, hexey (x), of r(x, y(x)) for
all (x, y(x)) ∈ Cexey represents the optimal y ∈ ey for each x ∈ ex for the worst-
case demand realization (a similar idea of computing the upper envelopes over
parametrized curves was used in López-de-los-Mozos et al. (2013)); i.e.,

hexey (x) = max
lb≤w≤ub

(
max
y∈ey

g(y, w) − g(x,w)

)
, for x ∈ ex. (5.15)

Repeating this procedure for each ey ∈ E, the upper envelope, hex(x), of
r(x, y(x)) for all (x, y(x)) ∈

∪
ey∈E

Cexey determines the maximum regret of

choosing x ∈ ex over the optimal location with respect to w and y ∈ G, i.e.,

hex(x) = max
lb≤w≤ub

(
max
y∈G

g(y, w) − g(x,w)

)
, for x ∈ ex. (5.16)
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Let x′
ex ∈ ex be the minimum of hex(x) for x ∈ ex. It determines the optimal

location of the minmax regret problem in ex; i.e.,

hex(x
′
ex) = min

x∈ex
max

lb≤w≤ub

(
max
y∈G

g(y, w) − g(x,w)

)
. (5.17)

This procedure should be repeated for each ex ∈ E. The optimal solution,
x∗, is x∗ = min

ex∈E
hex(x

′
ex). Computing the upper envelope of these arcs and

finding the minimum of this upper envelope can be done in polynomial time,
therefore the result follows. The procedure presented in this proof is summed
up in Algorithm 5.2. �

Algorithm 5.2: Optimal algorithm for the single facility
(MMR-EMCLP) with unknown linear demand realizations.

Input: Network G = (V,E); lower and upper bounds
lbe(t) = alb

e + blbe · t and ube(t) = aub
e + bube · t, respectively, for

e ∈ E; coverage radius R > 0.
Output: Optimal solution x∗.

22 foreach ex ∈ E do
44 foreach ey ∈ E do
66 Compute the subdivision generated by the arcs in Cexey :

7 i) For each edge e, the vertical and horizontal lines induced by
the breakpoints of the edge coverage functions and the curves
defining the conditions in Table 5.10.

8 ii) For any cell where r(x, y) is concave in y ∈ ey for a fixed
x ∈ ex, the intersection of the curve ∂r

∂y
(x, y) = 0 with that

cell.

1010 Obtain the upper envelope, hex(x), of r(x, y(x)) of the arcs
contained in

∪
ey∈E

Cexey . ;

1212 Find the minimum x′
ex of hex(x) over ex.

1414 if hex(x
′
ex) < r(x∗) then set x∗ := x′

ex , r(x∗) = hex(x
′
ex).;

1616 return x∗.;

For computing the complexity of solving the single facility (MMR-EMCLP)
with unknown linear demand realizations on each edge by applying Algo-
rithm 5.2, the following results are needed.

Lemma 5.4. The set of arcs included in Cexey of the form ∂r
∂y

(x, y) = 0 will
be constant functions.
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Proof:
By definition, the function r(x, y) does not have an xy-term. Therefore,

∂r
∂y

(x, y) does not depend on x. Thus, ∂r
∂x∂y

(x, y) = 0. �

In Algorithm 5.2, we are computing the upper envelope of r(x, y(x)),

where (x, y(x)) is the parametrization of an algebraic arc of degree two, i.e.,
these curves may contain one square root and polynomials of degree two. Then,
the intersection of two arcs could be transformed into a polynomial equation of
degree eight, as a consequence they intersect at most eight times. Therefore,
the complexity of the upper envelope of m of these arcs is O(λ10(m)) and it
can be computed in O(λ9(m) logm), see Theorem 5.9 in the Appendix 5.6.1.

Furthermore, the arrangement of m planar algebraic curves inside a spec-
ified square should be computed during the algorithm, this can be done in
O(m2) time, see Keyser et al. (2000) for further details. Besides, this arrange-
ment has complexity O(m2) as stated in Halperin and Sharir (2017).

Theorem 5.8. The single facility (MMR-EMCLP) with unknown linear de-
mand realizations can be solved exactly in O(m λ10(m

3)) time using Algo-
rithm 5.2.

Proof:
Since r(x, y) =

∑
e∈E re(x, y) and re(x, y) has a constant number of rep-

resentations as quadratic functions over x ∈ ex and y ∈ ey, for each e ∈ E

(Theorem 5.6), therefore r(x, y) has O(m) representations as quadratic func-
tions over x ∈ ex, y ∈ ey. In the following, we will see the complexity of
computing the expression of r(x, y). The expression of re(x, y) is determined
by the vertical and horizontal lines induced by the breakpoints of the edge
coverage functions and the conditions of Table 5.10, i.e., for each e ∈ E a
constant number of algebraic curves subdivides the square ex × ey. Thus, the
square ex × ey is divided in O(m2) cells by the O(m) algebraic curves previ-
ously obtained for all e ∈ E, this arrangement can be constructed in O(m2)

time (Keyser et al. (2000)). In a cell, we evaluate an interior point in order to
apply Proposition 5.5 and identify (aw

e , b
w
e ), for each e ∈ E, it is done in O(m)

time. If we move to a neighbor cell (a cell that shares an arc boundary) only
a constant number of addends changes, then we compute r(x, y) in this new
cell in constant time, hence we obtain r(x, y) for all cells in O(m2) time just
moving by adjacent cells in the square ex × ey. Furthermore, Step 3 includes
in Cexey O(m2) arcs of cells boundaries and computes the derivative of O(m2)

functions; it takes O(m2) time. Step 4 obtain the upper envelope of O(m3)
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arcs; it takes O(λ9(m
3) logm) (Theorem 5.9). In addition, in Step 5, the min-

imum of an upper envelope is found, the complexity of it is the complexity
of the upper envelope; i.e, O(λ10(m

3)) (Theorem 5.9). Finally, Step 6 takes
constant time.

Therefore, since Step 4 and Step 5 are executed once for each ex ∈ E; i.e.,
O(m) times, the overall complexity of the algorithm is O(m λ10(m

3)). �

Remark 5.4.1. The complexity of Algorithm 5.2 is upper bounded by O(m4 log∗ m),
see Appendix 5.6.1.

For illustrating the resolution method proposed in Algorithm 5.2, we com-
pute an iteration of the mentioned algorithm to solve (MMR-EMCLP) with
unknown linear demand realizations in the network depicted in Figure 5.3.

Example 5.2 (cont.) In Example 5.2, we computed the expression of the
maximal regret of choosing x ∈ [1, 2] over y ∈ [2, 3], i.e., we computed the worst-
case demand realization. Now, the objective is to identify for each x ∈ [1, 2]

the worst-case alternative for y ∈ G.
First, we consider the case y ∈ [2, 3]. Since r(x, y) is a quadratic function

for a fixed x ∈ [1, 2], the maxy∈[2,3] r(x, y) will be found in the boundaries of
the cells depicted in Figure 5.11, or in the curve ∂r

∂y
(x, y) = 0 in the cells that

r(x, y) is concave. In Figure 5.12, these arcs are depicted.
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Figure 5.12. Cells for r(x, y), x = ([1, 2], tx) and y = ([2, 3], ty).

The following step is to obtain r(x, y(x)) of the boundaries of the cells
previously defined and the arcs ∂r

∂y
(x, y) = 0 whenever r(x, y(x)) is concave. In

Figure 5.13 is depicted r(x, y(x)) of the previous mentioned arcs and the upper
envelope is represented as a dotted function in the mentioned figure. Note that
in the general algorithm there is no need to compute the upper envelope in this
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step, but it has been computed here in order to illustrate the algorithm and
simplify the following graphic.
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Figure 5.13. r(x, y(x)), x = ([1, 2], tx) and y = ([2, 3], ty).

Observe that for identifying the worst-case alternative the previous proce-
dure should be repeated for each y ∈ ey ∈ E, i.e., obtain the representation of
r(x, y), derive the subdivision of the square ex × ey, compute r(x, y(x)) of the
boundaries of the cells, and calculate the upper envelope. The upper envelopes
obtained for each y ∈ ey ∈ E are depicted in Figure 5.14. It worth mentioning
that in the general algorithm, in this step we will compute the upper envelope of
all the arcs previously obtained for each ey ∈ E instead of computing the upper
envelope of the upper envelopes obtained for each edge, but in the example we
did that in order to simplify the graphics. As can be appreciated, the minimum
value of r is 6.4836, where x∗

[1,2] = ([1, 2], 0.1572); these values were rounded
to four decimal places.
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Figure 5.14. Upper envelope of r(x, y(x)), x = ([1, 2], tx).
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This procedure should be repeated for each x ∈ ex ∈ E. The local minima
over edge [2, 3] is vertex 2, where the value of r is 7.9023, while the local minima
over edge [1, 3] is the point ([1, 3], 0.0533), where the value of r is 6.3055; these
values were rounded to four decimal places. The optimal location is the x where
the minimum value of r(x∗) is found, i.e., the point ([1, 3], 0.0533).

To highlight the usefulness of our max-regret approach, we also calculate
the optimal location for a deterministic equivalent of the problem. We solve the
problem assuming that the demand is known and it is equal to the mean of the
upper and lower bound functions over each edge, i.e., 0.5(ube + lbe). Following
the procedure described in Berman et al. (2016), the optimal solution is vertex
2, resulting in a maximal regret of 569

72
≈ 7.9028. Therefore, the difference

between both optimal solutions concerning the max-regret value is significant.
The solutions of both models, the maximal regret of them and the covered
demand assuming that the demand is deterministic are depicted in Table 5.11.

Model Optimal solution Maximal Regret Covered Demand

(MMR-EMCLP) ([1, 3], 0.0533) 6.3055 10.6858

Berman et al. (2016) ([1, 2], 1)
569

72
12.1250

Table 5.11. Solutions for Example 5.2.

5.5 Concluding remarks
In this chapter, we studied the single-facility Minmax Regret Maximal

Covering Location Problem (MMR-EMCLP) on a network where the demand
is unknown and distributed along the edges and the facility can be located
anywhere on the network. We presented two polynomial time algorithms for
solving the cases where the realization demands are unknown constant or linear
functions.

As far as we know, this is the first study that applies the minmax regret
criterion on a maximal covering location problem on a network where the de-
mand is distributed along the edges. Our results show that the problem is
solvable in polynomial time (where the demand realization are constant or
linear functions) although the majority of polynomially solvable combinato-
rial optimization problems become NP-hard in the minmax regret version, as
stated in Kouvelis and Yu (1997b).

There are several potential avenues for future research. Firstly, solving
the single facility location problem for other kind of demand realization func-
tions. Secondly, considering the multi-facility location version of the problem.
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Finally, another interesting open question is how to formulate the problem
under a different criterion of coverage as e.g. the gradual covering, the coop-
erative covering model or the variable radius model, see Berman et al. (2010)
for more details of these criteria.

Observe that the results presented in this chapter are published in Baldomero-
Naranjo et al. (2021b).

5.6 Appendix

5.6.1 Technical Notes

In this appendix, we include some results about λs(n), the maximum
length of a Davenport-Schinzel sequence of order s on n symbols. We use
these results for computing the complexity of the algorithms proposed in the
chapter.

Theorem 5.9 (Sharir and Agarwal (1995, Theorem 6.5)). Given a set of m

(unbounded x−monotone) Jordan arcs with at most s intersections between
any pair of arcs, its lower envelope has an O(λs+2(m)) complexity, and it can
be computed in O(λs+1(m) logm) time.

Observe that λ1(m) = m, λ2(m) = 2m − 1, λ3(m) = Θ(mα(m)), and
λ4(m) = Θ(m2α(m)), where α(m) is the functional inverse of the Ackermann’s
function which grows very slowly. However, the problem of estimating λs(m)

for s > 4 is more complicated. For any constant s, it is well-known the bound
λs(m) = O(m log∗ m). Recall that log∗ m is the minimum number of times q

such that q consecutive applications of the log operator will map m to a value

smaller than 1, i.e.,
(q)︷ ︸︸ ︷

log . . . logm ≤ 1. Actually, log∗ m is the smallest height
of an exponential “tower” of 2’s, 222

...

which is ≥ m (nothing changes if 2 is
replaced by another base b > 1). Observe that, log∗ m is much smaller than
logm and it can be considered almost constant for “practical” values of m, see
Sharir and Agarwal (1995) for further improvement of these bounds.

5.6.2 Representation of the coverage functions of the examples

This appendix contains the representation of the edge coverage functions
and the parts per unit of coverage functions of the network depicted in Fig-
ure 5.3. These functions are used in Example 5.1 and 5.2.

Starting with edge [1, 2], for x1 = ([1, 2], t1) the edge coverage functions
for all e ∈ E are given by

s+[1,2](x1) = 0, s−[1,2](x1) = 1,
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s+[2,3](x1) =
t1
2
, s−[2,3](x1) = 1,

s+[1,3](x1) =
1− t1

3
, s−[1,3](x1) = 1.

Therefore, the parts per unit of coverage functions are:

c[1,2](x1) = 1,

c[2,3](x1) =
t1
2
,

c[1,3](x1) =
1− t1

3
.

Likewise, for x2 = ([2, 3], t2) the edge coverage functions for all e ∈ E are given
by

s+[1,2](x2) = 0, s−[1,2](x2) =

2t2, if t2 ≤ 1
2
,

1, otherwise,

s+[2,3](x2) =


2t2−1

2
, if t2 ≥ 1

2
,

0, otherwise,
s−[2,3](x2) =


1+2t2

2
, if t2 ≤ 1

2
,

1, otherwise,

s+[1,3](x2) = 0, s−[1,3](x2) =


4−2t2

3
, if t2 ≥ 1

2
,

1, otherwise.

Thus, the parts per unit of coverage functions are:

c[1,2](x2) =

1− 2t2, if 0 ≤ t2 ≤ 1
2
,

0, if 1
2
≤ t2 ≤ 1,

c[2,3](x2) =

 1
2
+ t2, if 0 ≤ t2 ≤ 1

2
,

3
2
− t2, if 1

2
≤ t2 ≤ 1,

c[1,3](x2) =

0, if 0 ≤ t2 ≤ 1
2
,

−1+2t2
3

, if 1
2
≤ t2 ≤ 1.

In addition, for x3 = ([1, 3], t3) the edge coverage functions for all e ∈ E are
given by

s+[1,2](x3) =

1− 3t3, if t3 ≤ 1
3
,

0, otherwise,
s−[1,2](x3) = 1,

s+[2,3](x3) = 0, s−[2,3](x3) =


4−3t3

2
, if t3 ≥ 2

3
,

1, otherwise,

s+[1,3](x2) =


3t3−1

3
if t3 ≥ 1

3
,

0 otherwise,
s−[1,3](x3) =


3t3+1

3
, if t3 ≤ 2

3
,

1, otherwise.
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5.6. Appendix

Hence, the parts per unit of coverage functions are:

c[1,2](x3) =

1− 3t3, if 0 ≤ t3 ≤ 1
3
,

0, if 1
3
≤ t3 ≤ 1,

c[2,3](x3) =

0, if 0 ≤ t3 ≤ 2
3
,

−1 + 3t3
2
, if 2

3
≤ t3 ≤ 1,

c[1,3](x3) =


1
3
+ t3, if 0 ≤ t3 ≤ 1

3
,

2
3
, if 1

3
≤ t3 ≤ 2

3
,

4
3
− t3, if 2

3
≤ t3 ≤ 1.
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6
Conclusions

This PhD dissertation has studied four different problems that can be cat-
egorized into two main areas: Classification (Chapters 2 and 3) and Location
(Chapters 4 and 5). In each chapter, different Mathematical Optimization
tools have been designed to analyze and solve the proposed problems. The
methodologies and solution approaches followed to address these problems
have been developed considering the intrinsic properties of each problem.

First, mixed integer formulations have been derived to represent each of
the problems. A deep analysis of the different proposed models has been car-
ried out to provide characterizations of the solution set and to strengthen the
initial formulations by including valid inequalities and tightening the values of
the big M parameters. The analysis has derived in the development of exact
and heuristic approaches to solve each of the formulations. Furthermore, we
have exploited the specify properties of the solution space to develop a prepro-
cessing phase to fix some variables and remove several constraints. Besides,
we have proved that some particular cases of one of the studied problem are
solvable in polynomial time. To find the exact solution of these cases, we have
developed polynomial algorithms and provided the upper bounds of their com-
plexity. Finally, all the proposed resolution procedures have been tested on
several synthetic and real-world datasets.

At the end of each chapter we have detailed the conclusions for each
problem and the lines of future work that arise from them. In the following
discussion, this question will be examined from a general perspective.

In this PhD dissertation, classification problems have been approached
using SVM. There is extensive literature showing the efficiency of this tool.
However, this technique has weaknesses too, a couple of them have been an-
alyzed in this PhD dissertation. In particular, we have addressed the exact
resolution of SVM-based models that avoid the excessive influence of outliers
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Chapter 6. Conclusions

(Chapter 2). We have provided efficient exact solution approaches that out-
performs the state-of-the-art methods. Moreover, we have developed a new
classifier based on SVM that limits the outliers influence and performs feature
selection simultaneously (Chapter 3). Besides introducing a new model, exact
and heuristic algorithms have been designed to solve them. After the analysis
of these models, there are many questions to continue working on. On the one
hand, an interesting line of research is to generalize the presented techniques
and models to any ℓp-norm and to include in these models kernel functions.
On the other hand, it would be interesting to extend our work on classification
models to SVM-based regression models, known as Support Vector Regression
(SVR). These are only a few of the many possibilities for future work that arise
directly from this PhD dissertation, since classification models are widely used
in several areas of knowledge and, therefore, the mathematical procedures to
solve them are in continuous development.

On the other hand, the maximal covering location problem in networks
has been deeply studied. This problem has been solved under different as-
sumptions to describe the reality of diverse applications. In particular, the
upgrading version of this problem has been analyzed (Chapter 4). It assumes
that the length of the edges of the network can be shorten (within a budget)
at the same time that the services are located. Therefore, the solutions ob-
tained are considerably better than those achieved if the decisions were made
independently. As far as we know, it is the first time this problem is addressed
in the literature. For this reason, several formulations have been proposed to
model the problem from various perspectives. We believe that this work could
be an encouraging starting point to address the upgrading version of other
classical location problems. This is especially interesting since the develop-
ment of the upgrading version of location problems is a growing area, in which
there are many open questions.

Finally, we have addressed an uncertain version of the MCLP where the
demand is distributed along the edges and the facilities can be located any-
where on the network (Chapter 5). From a practical point of view, assuming
that demand along an edge is known corresponds to an ideal but usually un-
realistic scenario, therefore we have treated demands as being unknown. To
the best of our knowledge, this is the first time that this version of the MCLP
is discussed in the literature. Observe that although the majority of poly-
nomial solvable combinatorial optimization problems become NP-hard in the
minmax regret version, we have proved that the problem where the demands
of the edges are represented as constant and linear functions is solvable in
polynomial time. Furthermore, we have proposed polynomial algorithms to
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solve these cases. Following this line of research, we believe that it is really
interesting to solve this problem for other demands functions as piecewise lin-
ear, polynomial, etc. Besides, the applied methodology could be used to solve
other location problems with different objective functions.

In conclusion, a wide range of mathematical optimization techniques have
been studied and implemented throughout this PhD dissertation to solve open
problems in Operations Research. The presented results not only address
open questions in the area, but also provide starting points for future lines of
research.
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3.2 Real-life datasets 64

3.3 Values of parameter B. 64

3.4 Comparison between the exact resolution method and the heuristic
procedure. 65

3.5 Best average ACC and AUC for the Colon dataset. 68

3.6 Best average ACC and AUC for the Leukemia dataset. 68

3.7 Best average ACC and AUC for the DLBCL dataset. 69

3.8 Best average ACC and AUC for the SONAR dataset. 69

3.9 Best average ACC and AUC for the IONO dataset. 70

3.10 Best average ACC and AUC for the Arrhythmia dataset. 70

3.11 Best average ACC and AUC for the Wdbc dataset. 72

3.12 Best average ACC and AUC for the Mfeat dataset. 72

3.13 Best average ACC and AUC for the Lepiota dataset. 73

3.14 Improvement of (RL-FS-M) with respect to the rest of the models. 73

4.1 Notation used in the chapter. 79

169



4.2 Performance of formulations (Flow-Cov) and (Path-Cov) with and
without preprocessing. 98

4.3 Performance of formulations (Flow-Cov), (Path), (Path) + VI,
(Path-Cov) on graph30 and graph40. 100

4.4 Performance of formulations (Flow-Cov), (Path-Cov), and
(Path-Cov) + VI on graph100 and graph120. 101

4.5 Performance of formulations (Flow-Cov), (Path), (Path) + VI,
(Path-Cov), and (Path-Cov) + VI on pmeds. 103

4.6 Performance of formulations (Flow-Cov), (Path), (Path) + VI,
(Path-Cov), and (Path-Cov) + VI on pmedb. 104

5.1 Notation used in the chapter. 117

5.2 Solutions for Example 5.1. 125

5.3 Comparison for different edge densities for the random graphs. 126

5.4 Statistics for the number for partition and identical coverage points. 127

5.5 Comparison for different coverage radii for the random graphs. 127

5.6 Comparison for different values for UB for the random graphs. 128

5.7 Comparison for different coverage radii for the street graphs. 129

5.8 Statistics for the number for partition and identical coverage points
for the street graphs. 129

5.9 Comparison for different values for UB for the street graphs. 129

5.10 Worst-case demand realization; optimal solution of (5.11). 133

5.11 Solutions for Example 5.2. 144

170


	Agradecimientos
	Resumen
	Abstract
	Chapter 1. Introduction
	Supervised Classification
	Influence of outliers
	Feature Selection

	Location Theory
	The objective function
	Solution space and demand
	Facility locations

	Contents of the PhD dissertation

	Chapter 2. Exact approaches for Support Vector Machines with ramp-loss
	Introduction
	The model
	Strategies for the 1-norm case
	Tightening bounds of w-variables
	Tightening values of big M parameters

	Strategies for the 2-norm case
	Computational Experiments
	Data
	Exact procedure for (RL-1-M)
	Exact procedure for (RL-2-M)

	Concluding remarks

	Chapter 3. A robust SVM-based approach with feature selection and outliers detection for classification problems
	Introduction
	The model
	Initial bounds for the big M parameters
	Improving big M parameters for (RL-FS-M) 

	Heuristic approach
	Dynamic Adaptive Kernel Search (DAKS)

	Computational Experiments
	Data
	Validation of DAKS algorithm
	Model validation

	Concluding remarks

	Chapter 4. Upgrading edges in the Maximal Covering Location Problem
	Introduction
	Definitions and Problem Description
	Flow coverage formulation
	Preprocessing phase
	Valid inequalities

	Path Formulation
	Path-Coverage Formulation
	Valid inequalities

	Computational Results
	Data
	Preprocessing phase
	Results for complete graphs
	Results on sparse graphs

	Concluding remarks

	Chapter 5. Minmax Regret Maximal Covering Location Problems with Edge Demands
	Introduction
	Definitions and Problem Description
	Singularity points

	The Unknown Constant Demand Case
	Computational experiments

	The Unknown Linear Demand Case
	Resolution method

	Concluding remarks
	Appendix
	Technical Notes
	 Representation of the coverage functions of the examples


	Chapter 6. Conclusions
	Bibliography
	List of Figures
	List of Figures
	List of Tables
	List of Tables

