Sebastián Marichal Baráibar
In the last decades new interaction paradigms have emerged: Tangible User Interfaces, ubiquitous computing, wearable devices, mixed- reality among others. Such paradigms extended the user interface beyond the keyboard and mouse, and physical interaction has gained importance. This transformation represents a challenge-opportunity for interaction and experience designers. As a consequence, design frameworks are incorporating embodied cognition theories, getting inspiration from phenomenology and aiming to integrate body, mind and technology. This interaction design perspective is known as embodied interaction. This dissertation aims to understand how to design and implement embodied interactive systems for mathematics learning for children, including sighted children and children with visual impairments (VIs). Thus, we might capitalize technological progress into actual opportunities to better support learning. In this context, the thesis explores the development of three interactive systems for mathematics learning and the evaluation of two of them. Through this prototyping approach we discuss design implications for embodied interaction systems in learning contexts, contributing with the generation of intermediate-level knowledge. Finally, we also confirm and extend previous research in this field.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados