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[ESP ]

En los últimos años se está produciendo un aumento en el interés sobre los nive-
les de contaminación debido a su demostrado impacto medio-ambiental y sobre la
salud. Existe una relación directa entre las concentraciones de contaminantes y las
afecciones respiratorias, circulatorias y cardiovasculares. El conocimiento anticipado
de los niveles de polución en el aire resulta de gran interés para un amplio espectro
de campos de estudio: desde ámbitos sanitarios hasta ámbitos de gestión de políticas
medio-ambientales pasando por pacientes particulares que sufren algún tipo de alergia
o problema respiratorio relacionado. Sumado a esto, las aplicaciones de estas predic-
ciones son diversas: desde aplicar medidas preventivas para paliar posibles efectos
dañinos, hasta la planificación y optimización de recursos para centros clínicos.

Tradicionalmente, el problema de predicción ha sido tratado a partir de modelos
estocásticos para determinar las relaciones entre las medidas de una o más variables,
normalmente meteorológicas, y la variable independiente a predecir. Esto conlleva el
estudio y conocimiento de diversos campos como la meteorología, ciencias ambien-
tales o biología entre otros. Dichos conocimientos no siempre están disponibles en las
distintas instituciones interesadas en el uso de las predicciones. Por este motivo, una
solución unificada capaz de extraer y filtrar automáticamente la información contenida
en los datos necesaria para establecer predicciones de manera precisa sería de gran in-
terés para la comunidad científica.

La línea argumental de esta tesis parte del estudio individual de los problemas
de predicción de contaminantes, ya sean de origen antrópico o biológico. Este es-
tudio conlleva la investigación de factores influyentes en dichos contaminantes así
como la idoneidad de los distintos modelos de aprendizaje automático disponibles.
Esta primera parte de la tesis provee el conocimiento en profundidad de los desafíos
característicos de cada problema para, posteriormente, avanzar hacia el desarrollo de
un sistema unificado basado en redes neuronales profundas. Una vez desarrollado di-
cho sistema, las predicciones resultantes son utilizadas para determinar los efectos de
los contaminantes sobre la salud. Esta última tarea no es tratada como un problema
independiente, sino como una extensión de la funcionalidad del sistema ya existente.

A pesar de que las técnicas de aprendizaje automático están ganando popularidad
en los últimos años, en los ámbitos científicos sobre los que se aplica esta tesis hay un
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predominio del uso de técnicas estadísticas clásicas. Para validar la aceptación de las
propuestas incluidas por parte de la comunidad científica la línea de investigación con-
tiene hitos basados en artículos publicados en revistas correspondientes a los campos
de estudio. Este compendio de publicaciones sirve por un lado como validación de
los resultados obtenidos y por otro como difusión de las posibilidades de las técnicas
presentadas en este estudio a los diferentes campos científcos abarcados.

[ENG]

During the last decades, air quality has been in the spotlight due to its proven direct
impact on the environment and human health. There is a direct relationship between
the quality of the air and respiratory, circulatory and cardiovascular disorders. To be
able to forecast the concentration of pollution is of great interest to a wide range of
academic and practical fields such as health institutions, environmental policies man-
agement and individuals with related respiratory diseases. Moreover, predicted pollu-
tion levels enable a wide range of applications including the management of traffic and
environmental factors in urban areas, the alerting of potential peaks in the admissions
in clinical institutions to enable resource planning and optimization or minimizing the
exposure for patients in order to prevent adverse effects.

Traditionally, the problem of predicting environmental series using observation–based
models is based on a number of different methods to relate records of pollutants to
one or more variables that can be measured or predicted, usually meteorological data.
This implies expert field knowledge in meteorology, environmental sciences or biology
among others. All this knowledge is rarely available at the same time in most research
departments, neither is it the time to deepen into each specific model driver. For this
reason, a unified solution able to filter and extract relevant information in order to es-
tablish precise predictions is of great interest for the scientific community.

The subject matter of this thesis starts with the study of the prediction of individual
pollutants, both chemical and biological. This first step implies the research of rele-
vant factors which drive pollutants air concentrations, as well as the availability and
suitability of computational intelligence methods to perform such tasks. This first part
provides a thorough knowledge of the specific challenges of each problem and builds
up the foundations for implementing the aforementioned unified solution based on
deep neural networks. Once the unified air quality prediction system is established,
its predictions can be applied to determine pollution effects on human health by ex-
tending the system functionality to predict the number of admission due to pollution
related disorders in populations.

Even though computational intelligence methods are gaining popularity, traditional
statistical techniques predominate in the application fields of this thesis. In order to val-
idate the proposals included in this thesis, the research line is compounded by a num-
ber of milestones based on published articles in journals which encompass all related
scientific areas. The objective of this collection of publications is twofold: validating
the obtained results and increasing the awareness of the scientific community about
the methods presented, which also implies the adaptation of the concepts to domain
specific language.
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Chapter 1

Introduction

1.1 Research context

The World Health Organization (WHO) estimates 7 million pollution-related deaths
every year worldwide 1. Air pollution is considered a major environmental risk to
health and it is directly related to respiratory, cardiovascular and circulatory disorders
according to the European Environmental Agency [40] and the review of evidence on
health aspects of air pollution project released by the WHO [41].

The WHO Environment and Health Information System (ENHIS) shows that 83%
of the population in European cities are exposed to particulate matter (PM) increas-
ing the risk of cardiovascular and respiratory diseases. Similarly, exposure to nitrous
oxides NOx and sulfur oxides SOx have both short-term and chronic health conse-
quences for people with respiratory diseases and are considered hazardous substances
by the United States Center for Disease Control and Prevention (CDC) 2. Furthermore,
climate change is becoming more evident as an indirect effect of air pollution, being
carbon dioxide (CO2) and NOx two of the main greenhouse gases which are produced
by human activity and target for reduction in the United Nations Kyoto protocol [136].
Breathing difficulties and asthma symptoms are triggered by high concentrations of
ozone pollution [41]. Moreover, this situation is aggravated by the presence of atmo-
spheric pollen concentrations, with some genus as Plantain and Grasses being two of
the most common and aggressive in terms of allergic and respiratory disorders [133].

Air Quality Guidelines published by the WHO [102] establish the recommended air
pollutant exposure limits to preserve public health and encourage air quality. Avoiding
exposure to air pollutant levels is important for the health of individuals, especially for
those who are susceptible because of their preexisting cardiovascular and respiratory
diseases. Even though air quality has improved significantly since the Clean Air Act
in 1970 [116], air quality is still problematic in many cities, which requires local author-
ities to implement environmental measures to reduce pollution and educate people
about its health effects, according to the US Environmental Protection Agency (EPA).
Furthermore, the Organization for Economic Cooperation and Development (OECD)
estimates that the economic impact of pollution-related health effects is estimated to be
3 trillion USD in 2015 [100].

Forecasting air pollution has been of paramount importance as the basis for im-
plementing effective pollution control measures. Air quality forecasting is an effective
way to provide an early warning of pollutants in order to protect public health [135].

1https://www.who.int/health-topics/air-pollution
2https://www.cdc.gov/
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This can be achieved through implementing emission control mechanisms like traffic
restrictions [21, 45], and apply tighter emission controls in areas where vulnerable pop-
ulations are affected. These are the reasons why extensive literature can be found about
methods of air pollution forecasting which can be broadly divided into three categories:
numerical forecasting methods, statistical methods and artificial intelligence.

Numerical models are based in the idea of determining pollutant dispersion pro-
cesses in the atmosphere [63]. Generally, these processes are driven by convection or
advection which are numerically simulated according to the conditions surrounding
the pollution source which can be physical, chemical or biological. On the contrary,
statistical methods are not dependent on the mechanism of the change of the process
(source) in order to analyse the events [144]. However, the main limitation of statisti-
cal methods is that the characteristics of the pollutant must be specified according to
its type, emission sources, series patterns, and influencing factors. Moreover, spatial
variability of pollutant concentrations must be assessed in comparison of the same pol-
lutant recorded in various locations. Former statistical methods provide scientifically
sound information, statistical assessment and uncertainty of estimations. However, ar-
tificial intelligence generally performs better in terms of accuracy in most applications
[59, 86, 90, 126]. Artificial intelligence methods focus on the relationships between in-
put and output signals without the need of any prior information such as the type of
pollutant or the dynamics of the inputs.

1.2 Research problem gap and hypothesis

In the framework of air quality forecasting, time series analysis is tailored to the diag-
nosis and prediction of the concentration of pollutants in the air, taking into account
its precursors and influential meteorological variables. Despite the extensive literature
and resources available, air quality forecasting methods are not always successful due
to the specific characteristics of each pollutant, area of interest and the pollutants rela-
tionship to the meteorology and topography. These innate conditions of the air quality
forecasting problem lead to a limitation of the methods applied and a higher uncer-
tainty of forecasts when compared, for instance, to the problem of weather prediction
[120].

Governmental agencies such as the Environmental Protection Agency (EPA) in the
US and European Environment Agency (EEA) report the Air Quality Index daily (AQI)
to communicate how polluted the air in certain regions is. The AQI is a scale which
ranges from Good to Hazardous based on the main chemical pollutants measured by
the air quality monitors. It is noticeable that this index excludes airborne pollen in its
computation. However, the interaction between chemical pollutants and pollen has
been demonstrated [146]. Furthermore, there is evidence [99] that shows that pollen
grains found in polluted areas are not only found in greater concentrations but also
have higher allergenicity.

Air quality is directly linked to air pollution which encompasses measured con-
centrations of several pollutants that are hazardous to health and it occurs when the
natural characteristics of the atmosphere are modified by chemical, physical or biolog-
ical agents. Consequently, the air quality forecasting problem requires the analysis and
diagnosis of several types of pollutants, each of them with different relations to their
influential factors. Therefore, the aforementioned limitations increase proportionately
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to the number of pollutant types taken into account. As an example, predicting chem-
ical pollutants and airborne pollen concentrations based on meteorological conditions
are inherently two different mathematical problems: atmospheric pollen concentra-
tions depend on plant development during previous seasons which, at the same time,
depend on the climatological conditions during plant evolution [17, 129]. This implies
that there is both a long and mid-term relationship between past atmospheric condi-
tions and current plant status. Contrarily, chemical air pollutant levels are related to
recent past atmospheric conditions, emission sources and meteorological conditions
[93].

In addition to temporal dependencies, air pollution levels demonstrate a high de-
gree of spatial dynamics which are closely linked to the spatial distribution of economic
activities such as areas with intense traffic, as well as topography which, for instance,
defines air currents. Consequently, a single monitoring station measurement can only
be considered representative of a limited surrounding area. This is an important topic
which is linked to the assessment of risk exposure, monitoring networks and data eval-
uation. Moreover, European regulations lack a clear definition about the spatial rep-
resentativeness of air quality [42]. In the literature, there is no unified agreement to
address this complex problem. As a consequence, cost-effective fixed monitors are not
available for all pollutants and, as a result, samples of the same pollutant depend on
location and show different probability distributions as they are affected by proximity
to the source.

The intricacies of this problem as described lead to the vast majority of scientific
studies to focus either on one type of pollutant or one specific location or, sometimes,
both. In addition to these spatio-temporal dynamics, the study of air quality involves
several scientific disciplines depending on the source of the pollutant, these include
meteorology, environmental sciences or biology which means studies require differ-
ent resources and expertise. As a result of this focused approach and lack of available
resources, current solutions generate many model and pollutant-specific systems that
need to be combined in order to obtain the full representation of future environmental
conditions. Therefore, initiatives are being launched globally to facilitate the under-
standing of the multiple relationships between the physical and natural environments
such as the European Commission Digital Earth 3. This initiative not only includes
conventional environmental data sources, it also contains information provided by na-
tional and local authorities as well as sources from the private sector including social
networks.

In summary, apart from the temporal and spatial dimensions implicit in the prob-
lem of forecasting a single source of pollution, it is important to take into account the
relations between all factors that contribute to the quality of the air. The hypothesis of
this thesis states: a successful forecasting method in order to take effective control mea-
sures and, consequently protect public health, is achieved when all these problem char-
acteristics are considered. If mutual influential relations exist between the variables as
well as shared implicit information (either temporal or spatial), the information and
the relations can be automatically extracted in order to obtain an optimal solution of
the prediction model that can be used to forecast. If this information and the relations
can be extracted, there must be a method able to cope with the increment in complex-
ity every time a new data source, such as a new location or variable, is added to the
system.

3https://ec.europa.eu/jrc/en/research-topic/digital-earth

https://ec.europa.eu/jrc/en/research-topic/digital-earth
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1.3 Objectives

The objective of this research is to develop a comprehensive scalable system able to
efficiently predict air quality: a system based on deep neural architectures which al-
lows to automate tasks with minimal or no assumptions on the underlying data and
easily applicable to air quality related forecasting problems. The specific objectives are
detailed as follows:

1. Build computational intelligence models that succeed in capturing pollen time
series dynamics, being able to forecast future concentrations.

2. Use automatic feature selection to gain insight on the inner complexity of the
series and prove the ability of such models to capture it.

3. Build neural architectures that succeed in capturing the dynamics of atmospheric
pollutant concentrations, being able to forecast future values.

4. Create a holistic deep neural architecture to estimate future air quality based on
spatio-temporal relations.

5. Extend the deep neural architecture to forecast hospital admissions related to air
quality.

1.4 Research plan, contributions and structure of the document

Air quality forecasting challenges the expertise in several scientific fields such as envi-
ronmental sciences, aerobiology, meteorology, artificial intelligence, statistics and prob-
ability. This expertise is not always available in practical situations and, as shown
above, it is detrimental to the scalability of current solutions with the consequent mis-
representation of actual quality of the air. The postulate of this thesis is to propose,
from a purely engineering and data point of view, a system able to provide accurate fu-
ture environmental scenarios which is easily scalable when a new observation station
or a new type of pollutant is requested. In order to do so, the research plan is divided in
4 main phases as shown in Figure 1.1 representing the contributions to each individual
problem (biometeorological and chemical pollutant time series) and the proposal of the
final system and its application.

In the first research phase, we centered our attention on pollen time series dynam-
ics which are characterised by the presence of sudden high peaks during pollination
season outside of which airborne concentrations are not considered harmful for hu-
man health. The identification of these sudden peaks represents a challenge given the
limited amount of observations during the study periods. These peaks also define the
main pollination season in order to apply preventive measures. This phase examines
the application of soft computing methods to forecast such peaks.

Through turning the problem into a classification problem, we contribute to a better
definition of the pollination periods of which there is currently no consensus within
the scientific community. With a proper definition of the pollination season, different
forecast horizons were proposed to anticipate high levels of pollen concentrations in
the air and consequently prevent risky exposures. These contributions are presented in
Chapter 3 and 4 of this thesis.
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FIGURE 1.1: Research plan phases and corresponding publications with
their imparct factor and quartiles.

Biometeorological time series dynamics are mainly driven, among other factors, by
current atmospheric conditions and the weather conditions during plant development.
This implies long and short-term dependencies in order to estimate future airborne
concentrations. In the second phase of the research plan we analysed the capabilities
of soft computing methods to extract, from the data point of view, these dependencies
in order to provide accurate estimations.

This problem is approached through the examination of potential influential me-
teorological and biological conditions to forecast pollen concentrations of both of the
pollen genus considered in this thesis. The demonstration of this assumption estab-
lishes statistical inference tests to align the results with previous scientific contributions
based on biology, phenology and meteorology. Chapter 5 and 6 prove with statistical
soundness that this problem, which is commonly approached from the point of view of
the aforementioned scientific fields, can be solved through computational intelligence
methods and automatic feature selection.
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Chemical air pollutants concentrations are related to recent emission sources either
anthropogenic such as traffic or natural sources such as forest fires. This implies short-
term dependencies within time series observations as they represent emission source
status when no further information is available. In recent years, neural networks have
achieved tremendous success in diverse application domains. In this phase of the re-
search plan, we pose the suitability of several neural network models and their exten-
sion to solve, in one unified model, biometeorological time series as well.

Firstly, a comparison of the predictive power of a set of neural network models
is performed over a chemical pollutant in Chapter 7. Subsequently, we extend the
problem by including all available locations where several chemical pollutants and
pollen concentrations are observed. Chapter 8 provides a comprehensive set of deep
network configurations to identify which are able to better extract relevant information
out of the set of time series in order to predict air quality.

We introduced in Section 1.1 the risks to health associated with poor air quality.
One implication of the original hypothesis of this thesis is that an improved family of
clinical models can be applied to protect public health through a successful air quality
forecasting system. In this last phase we extend the functionality of the previously
implemented deep neural architecture to predict air quality related health disorders
represented by hospital admissions.

Chapter 9 proposes covering four model families: ensemble methods, boosting
methods, artificial neural networks and ARIMA to establish a benchmark and, to prove
that a dynamic combination of the predictions improves the performance with respect
to the individual models. This concept is used in Chapter 10 to propose the final deep
neural scalable system to extract temporal-spatial relations out of the set of time series
in order to predict hospital admissions.

As a consequence of the interest captured by the results published, two extra side
projects, corresponding to Chapters 11 and 12, derived from the core research as part
of collaboration with the scientific community.



Chapter 2

Methods

2.1 Traditional time series approach

George E. P. Box y Gwilym Jenkins proposed the autoregressive integrated moving av-
erage models (ARIMA) to predict and analyze time series related to economic variables
[12]. Since then, this sort of stochastic models has been applied to forecast the evolu-
tion of time series in different fields such as environmental atmospheric [36, 73, 101] or
biological pollution [115]. Not only are ARIMA models used in forecasting, but also in
determining through statistical significance the influence of independent variables on
the behavior of certain dependent variable.

The ARIMA forecasting equation for a stationary time series is a linear (i.e., regression-
type) equation in which the predictors consist of lags of the dependent variable and/or
lags of the forecast errors. That is:

Predicted value of Y equals a constant (µ) and/or a weighted sum of one or more
recent values of Y (Yt−1, · · · , Yt−p) and a weighted sum of recent values of the errors
(et−1, · · · , et−q). In terms of y, the general forecasting equation is:

ŷt = µ+ φ1yt−1 + ...+ φpyt−p − θ1et−1 − ...− θpet−p, (2.1)

where φi is the coefficient of the autoregressive (AR) term i and θi represents the coef-
ficient of the moving average (MA) term i.

Apart from the corresponding lags of the series p (Yt−p), the errors (e) and its lags
(et−q), exogenous variables (X, . . . , Z), which represent the environmental indepen-
dent variables, were included along with their corresponding lags up to t−s and t−m,
resulting in:

ŷt = µ+ φ1yt−1 + ...+ φpyt−p

− θ1et−1 − ...− θpet−p

+ β0Xt + β1Xt−1 + ...+ βsXt−s + . . .

+ γ0Zt + γ1Zt−1 + ...+ γmZt−m

(2.2)

The value of the estimator β0, β1 . . . γ0, γ1 . . . of the variables that are significant at
p < 0.05 indicating increased Y to increment by one unit of each independent variable
(X, . . . , Z) respectively.

7
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2.2 Computational intelligence methods

Logistic Regression. Logistic regression is part of a broader family of generalized lin-
ear models where the conditional distribution of the response falls in some parametric
family, and the parameters are set by a linear predictor. In binary logistic regression
the response represents the absence or presence of a specific event, which is in this case
whether the data point is over a predefined threshold or not.

The stability of the estimation of the parameters suffers when those covariate in a
similar fashion. As several features were derived from others, it is likely to find depen-
dencies between them, thus it is intended to avoid the misbehavior of the maximum
likelihood parameter estimation. Thus, a ridge estimator [22] was introduced to add
penalty on weights learned to avoid over-fitting.

Support Vector Machines. The current Support Vector Machines (SVM) standard al-
gorithm, proposed by [27] in 1995, is a learning method used for binary classification
which finds a hyper-plane which separates the d-dimensional data perfectly into its
two classes. However, since sample data is often not linearly separable, SVM’s in-
troduces the notion of a kernel induced feature space which casts the data into a higher
dimensional space where the data is separable. A good classifier is achieved when the
hyperplane has maximum distance to the closest point of each class.

The radial basis function kernel (RBF) was used for the experiment in order to han-
dle the nonlinear relations between the class and the features and to ease the numerical
difficulties.

Random Forest. In the last years, there has been a growing interest in ensemble learn-
ing which aggregates the results of several independent models selected to boost their
predictive performance. A well-known method is called bagging or bootstrap aggregat-
ing, proposed by [13]. Subsequently, [15] presented a model called random forests (RF)
which adds an additional layer of randomness to bagging providing robustness against
overfitting with a limited number of parameters. These two characteristics favor RF
against other computational intelligence methods such as neural networks.

The procedure combines several randomized regression trees generated over sam-
ple fractions of the data, and aggregates their prediction by averaging. This averaging
process mitigates the influence of outlier data points giving RF advantage over other
common methods as support vector regression, which are highly sensitive in presence
of outliers. As opposed to classification trees, the optimal split condition is the vari-
ance, which at the same time, is used to compute a measure of the importance of the
independent variables.

The importance of a variable is estimated by measuring the increases in prediction
error or variance when data from that variable is randomly permuted while the rest
are left unchanged. The underlying idea is that if the variable is not important, then
rearranging the values of that variable will not degrade prediction accuracy. For each
tree, the prediction error is recorded before and after the permutation, the difference
between both errors is averaged over all trees and normalized, thus providing the rela-
tive importance. The bigger the difference, the higher the importance of the permuted
variable.
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RF and Logistic Regression (LR) make different assumptions about the data and
have different rates of convergence. On the one hand, RF assumes that the decision
boundaries are parallel to the axes based on whether a feature is≥,≤, < or > to certain
value so the feature space is chopped into hyper-rectangles. On the other hand, LR
finds a linear decision boundary in any direction by making assumptions on P (C|Xn)
applied to weighted features so non-parallel to the axes decision boundaries are picked
out. This trade off motivates to take into account SVM as an alternative.

Gradient Boosting Machines. In addition to average the combination of multiple
learners, another popular ensemble technique is boosting. The principle behind is start-
ing with a weak learner and turning it into a strong learner. This process is also known
as additive training. Proposed by [46] Gradient Boosting Machines (GBM) adds sequen-
tially new models (trees) to the ensemble, which is represented by an error function of
the previous iteration fitted model. Thus, each new tree is trained with respect to the
error of the whole ensemble so far. In the regression problem the error function is the
classic square error (SE) which conforms the objective function to optimize.

An important concern in computational intelligence is the generalization capabili-
ties of the models which might suffer from a non proper learning scheme and, resulting
in overfitting. In order to mitigate the effects of overfitting, [46] proposes a technique
known as shrinkage to control the complexity of the model. Shrinkage is a common reg-
ularization approach which shrinks regression coefficients to zero and consequently,
reduces the impact of unstable coefficients. In the context of GBM, shrinkage penal-
izes (reduces) the importance of each tree at each consecutive step. Hence, the final
objective consists of two terms, a training loss function represented by SE and the reg-
ularization which measures the complexity of the model.

Artificial Neural Networks. ANNs are a tool for modelling nonlinear processes based
on the information collected by a vector named input layer, through which the infor-
mation is propagated layer by layer establishing the relations between the inputs and
the final layer called output layer. Intermediate or hidden layers consist of one or more
units called neurons which are interconnected to the neurons of the previous and sub-
sequent layers. The number of hidden layers and the number of neurons of each one
define the topology of the network.

Each neuron generates an excitatory response to signals received through an ac-
tivation function which can be selected among the different functions available but,
following recommendations from the literature the sigmoidal activation function was
chosen [10, 58].

The learning of the network is based on obtaining the relationship between the
input and the output layer by comparing, via root square mean error (RMSE), network
outputs with the actual values through the well-known backpropagation algorithm [119].

The aim is to find the network topology which minimizes the error. This procedure
is based on a trial and error approach which, starting from a simple network of one
hidden layer with few neurons, consists of increasing the capacity of the network (se-
quentially incrementing the number of neurons in a hidden layer as well as the number
of layers) to optimize the results.
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FIGURE 2.1: LSTM unit architecture.

Stacked Generalization. Proposed by [142], stacked generalization or stacking is an
ensemble technique that uses a new model to learn how best to combine the predictions
from two or more models with the aim of reducing error generalization. Opposed to
more traditional approaches of ensemble learning such as voting or averaging, as in the
case of RF, which are winner-takes-all ways of combining [142], using a meta-learner
to ensemble allows to identify the circumstances under which the pooled predictions
shall gain or lose weight in the final forecast.

The idea behind stacking is splitting the training set into two subsets traina and
trainb. A first stage trains the pool of selected models on traina to create predictions
for trainb and repeat using trainb for training to generate traina predictions. As a final
step of this first stage the pool of models are trained over the full training set to create
predictions for the test set. The second stage consists of training the meta-learner us-
ing the training set, which contains the predictions of the models from stage one, and
creating the final predictions for the test set.

2.3 Long short-term memory networks

Compared to traditional neural networks, recurrent neural networks (RNN) are im-
plemented with loops or connections between units allowing information persistence
from one step of the network to the next. The ability to map input sequences to output
sequences by incorporating past context into their internal state makes them especially
promising for tasks that require to learn how to use past information such as time series
analysis. RNNs can be thought of as multiple copies of the same neural network, each
transferring information to its successor and forming a chain-like architecture which is
naturally related to sequences.

RNNs might be able to look at recent information to perform a present task which
makes them suitable for time series predictions. However, relevant information might
appear further in the past and, as the time gap grows, RNNs are unable to connect the
information.

Long short-term memory networks (LSTM) were first introduced in 1997 by [60]
and improved in 2000 by [53]. They are a variation of RNNs capable of learning long-
term dependencies by including in the architecture special units called memory blocks.
In addition, multiplicative units called gates (Figure 2.1) control the flow of information
from a LSTM unit to another.
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The learn gate. The learn gate takes the short term memory (STM) and the input
event and combines them. Actually, after combining the event and the STM it ignores
redundant information. Mathematically, the learn gate obtains as an input the short
term memory STMt−1 and the event Et and puts them into a linear function which
consists on joining the vectors, multiplying it by the weight matrix Wn, adding a bias
bn and squeeze the result with a tanh activation function:

Nt = tanh (Wn · [STMt−1, Et] + bn) . (2.3)

The new information Nt passes through the gate but still needs to ignore the infor-
mation which is not relevant. In order to do so, Nt is multiplied by the ignore vector
it. This ignore vector is calculated via a simple small neural network whose inputs are
again the STM and the event and uses the sigmoid (σ) activation function to squeeze
the information:

it = σ (Wi · [STMt−1, Et] + bi) , (2.4)

being the learn gate represented as Nt × it.

The forget gate. Takes the long term memory (LTM) and decides which parts to keep
and to forget. The LTM at t − 1 is multiplied by a forget factor ft which is calculated
through a one layer neural network with a linear function, which uses the STM at t− 1
and the event Et, and combines it with a sigmoid activation:

ft = σ (Wf · [STMt−1, Et] + bf ) (2.5)

being bf the bias and Wf the weight matrix. The forget gate can be expressed as
LTMt−1 × ft.

The remember gate. Takes the output from the forget gate and the output from the
learn gate and adds them to obtain the new LTM:

LTMt = LTMt−1 · ft +Nt · it (2.6)

The use gate. It combines the LTM that just came out from the forget gate and the
STM that came out from the learn gate to come out with a new STM and an output.
In order to do so, it applies a small neural network on the output of the forget gate
using the tanh activation function (2.7) and another neural network on the STM and
the events using the sigmoid function (2.8):

Ut = tanh (Wu · LTMt−1 · ft + bu) (2.7)

Vt = σ (Wv[STMt−1, Et] + bv) (2.8)

As a final step, the network multiplies (2.7) and (2.8) to obtain the new output
STMt = Ut × Vt which also works as a new STM.
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FIGURE 2.2: Fully-connected MLP (left hand) vs. Locally connected
(right hand).

2.4 Convolutional neural networks

Convolutional Neural Networks (CNN) [75] have been successfully applied in several
domains such as image recognition [72] or linguistics [52]. Based on their success, re-
searches have started to use them for time series analysis [49]. CNNs differ from feed-
forwards neural networks mainly by the existence of convolutional layers, which are
hidden layers that utilise the power of mathematical convolution to transform inputs.
Convolution allows for the encoding of the local properties of the input in such a way
that propagates the information in a more efficient manner since fewer paramenters
are needed (Figure 2.2).

CNN filters or kernels, obtained by the convolution of inputs and weights, are local
in input space and are thus to exploit the strong, spatially local correlation present in
the time series. That means they work well for identifying simple patterns within local
regions of the data (subset of features) which then will be used by subsequent layers
to form more complex patterns. One-dimensional CNNs share the same characteristics
with the most commonly used 2-dimensional ones differing only in the dimensionality
of the input and how the filter slides across the data. However, they overcome the
limitation of being computationally expensive when compared to the 2-dimensional
analogues.

A traditional convolution layer has too many parameters, for instance, a 3x3 convo-
lution filter has 9 parameters which at the same time, increases by a power of 2 when
filter size increases. Too many parameters not only does it take a long time to learn, but
it also takes equally long to make predictions while performing inference. Since con-
volution consists of vector (matrix) multiplication, factorization can be used to reduce
the number of parameters [25]. Thus, the 3x3 convolution kernel can be factorized to
a 1x3 and 3x1 vectors which multiplied achieve the same effect and, at the same time,
reduces the number of parameters to 6.

Another technique to decrease the computational power required to process the
data through dimensionality reduction consists of including pooling layers to reduce
the spatial size of the convolved feature. However, the pooling layer loses positional
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information about the different objects [122]. This is why many new architectures have
stopped using the pooling layer altogether.

2.5 Non-parametric Friedman test

The Friedman test [47] is a non-parametric analogue of the parametric two-way ANOVA.
The objective of the application of the test is to determine if there is a difference among
model performances over different data sets and consequently, whether one (or more)
is consistently better than the others.

Parametric tests have been commonly used in the analysis of experiments. When
comparing the differences between more than two related sample means, the common
statistical method is the repeated-measures ANOVA. However, parametric tests require
some conditions, such as normality and symmetry in data distributions, which are not
fulfilled in this case study.

Given that non-parametric hypothesis tests are applied to nominal or ordinal data,
the original computed root mean squared error (RMSE) of each model over each data
set is converted to its correspondent rank within the set and combined by averaging:
Rj = 1

n

∑
i r

j
i (where j denotes the model, i refers to each data set and n is the total

number of pairs {model,dataset}). Since the error is being used to compare the models,
the highest rank 1 will be assigned to the highest error, thus the worst performer. The
null hypothesis of equality of medians is tested by the F-statistic

F =
12n

k(k + 1)


∑

j

R2
j −

k(k + 1)2

4


 (2.9)

where k is the number of algorithms and F ∼ χ2
k−1. Still, this test is not sufficient as

it only indicates the presence of significant differences in the whole model performance
space. A ranking conversion is computed to obtain the p-value of each pair [26]. The
former is a valid procedure to compare two models but is not suitable for multiple
comparison as there is no control of error propagation (Type I errors) when making
more than one comparison.

Thus, once the existence of significant differences in the group of models is evi-
denced, a post-hoc test adjusts the value of the significance level α at each pairwise
comparison to allow multiple comparisons. [62] proposed the adjustment by selecting
the p-values of each test, starting with the most significant pi, and test the hypothesis of
Hi : pi > α/(k− i), being k the total number of models in our proposal. If Hi is rejected
then allows to test Hi+1, being pi+1 the next most significant p-value and so on. An ex-
tension of this step-down method was proposed by [125], which uses a logical relation
between the combination of the hypotheses of all pairwise comparisons. For instance,
if a model a1 is better/worse than a2, it is not possible that a1 is as good/bad as a3
and a2 has the same performance as a3. Based on this argument and following Holm’s
method, instead of rejecting Hi : pi ≤ α/(k − i), rejects Hi ≤ α/ti, being ti the maxi-
mum number of hypotheses which can be true given the number of false hypotheses
in j ∈ {1, ..., i}.
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Forecasting the Start and End of Pollen
Season in Madrid

Ricardo Navares and José Luis Aznarte

Abstract In this paper we approach the problem of predicting the start and the end

dates for the pollen season of grasses (family Poaceae) and plantains (family Plan-

tago) in the city of Madrid. A classification-based approach is introduced to fore-

cast the main pollination season, and the proposed method is applied to a range of

parameters such as the threshold level, which defines the pollen season, and sev-

eral forecasting horizons. Different computational intelligence approaches are tested

including Random Forests, Logistic Regression and Support Vector Machines. The

model allows to predict risk exposures for patients and thus anticipate the activation

of preventive measures for clinical institutions.

Keywords Forecasting ⋅Time series ⋅ Pollen ⋅ Poaceae ⋅ Plantago ⋅ Support vector

machines ⋅ Logistic regression ⋅ Random forests

1 Introduction

Airborne pollen levels have been associated to allergic rhinoconjunctivitis, asthma

and the oral allergy-symptom in about 15 million people in Europe. Allergies have

been continuously increasing in developed countries, not only in the number of

affected patients but also in the severity of allergic reactions [20]. The establish-

ment and the prediction of a pollen calendar is essential to reduce the exposure of

allergic patients to pollen during the days of higher pollen concentration. It is also

important to enable the development of other preventive measures.

There is no consensus on how to define the pollination season [9] which is the

period where airborne concentrations of pollen are measured. Some authors define

it based on the cumulative daily pollen counts [1, 7, 13] and other authors define it

based on predefined threshold levels over which the season is considered to be started
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and ended [18]. This study visits both approaches in order to define the season which

is going to be forecast.

Climate directly or indirectly defines the vegetation and acts on two levels: (1)

during the stages prior to flowering [4, 14], and (2) during the pollen season [12,

17]. In this study, we characterize different features of the pollen season in order to

determine the effect of meteorological parameters on the incidence of Poaceae and

Plantago pollen in Madrid, Spain. Once the features are defined, several computa-

tional intelligence techniques are applied and compared according to their perfor-

mance on this problem. We cast the season predicting problem into a binary classifi-

cation one, in order to obtain the most accurate estimates for the start and end of the

pollination season with special attention to the threshold at which allergy reactions

might appear.

The rest of this paper is as follows. Section 2 deals with data preprocessing,

including its cleansing, formatting and set up. Then in Sect. 3, we summarize the

different approaches of what is considered a peak season and present its definition in

order to identify the data points which belong to it. The computational intelligence

models considered are described in Sect. 4, which walks through the system design

and the definition of the features which will be tested according to its forecasting

relevance. Section 5 contains the results and analysis of the different experiments.

Finally, Sect. 6 draws the conclusions and the future lines of work in this line.

2 Data Description

The study uses observations of Poaceae and Plantago pollen from the Faculty of

Pharmacy of Complutense University of Madrid, Spain (40◦26′52.1′′ N, 3◦43′41.1′′
W) from 1994 to 2013, provided by Red Palinológica de la Comunidad de Madrid.

Meteorological data is provided by weather stations located in Barajas, Cuatro Vien-

tos, Getafe and Colmenar and consists of hours of sunlight per day, the speed of wind

in km/h, rainfall in mm/h and daily maximum, minimum and average temperature in

degrees Celsius.

A first look at the pollen observations reveals the presence of missing data points.

Bearing in mind the season start problem and the minimization of the loss of infor-

mation, it is clear that those missing data points which appear around the months

of February, March and April have a more severe impact, as they are the months in

which usually the pollen season start is usually recorded. Thus, a long sequence of

consecutive missing data points might multiply the forecasting errors as it may arti-

ficially delay the predicted season start. If we find a sequence of missing data around

the season start date, the use of the traditional ’last observation carried forward’

(LOCF) method may lead to an incorrect prediction of the season start. These rea-

sons support the initial hypothesis that interpolation within each year is not enough.

Consequently, we propose to redistribute the data into a matrix of dimensions

N × 365, where N denotes the year. As there are leap years in the data sample, a

first check has been done to verify whether there is any data point on the 29th of

February which is missing. As it is not the case, each data point which lays on that



Forecasting the Start and End of Pollen Season in Madrid 389

date is not taken into account to interpolate. Later on, the data point will be plugged

into the correspondent year. With this format, missing data points can be regressed

using data within the year and between years.

From this matrix, two new matrices are generated, one with the missing data esti-

mated using regression by rows (within the year) and another with the data regressed

by columns (by years). Given the different years’ conditions due to factors which

directly influence pollen concentrations, it is important to avoid over-influence of

data from previous or subsequent years when estimating a data point. High concen-

tration of grains the same day in other years as the one to be estimated does not imply

high concentration on day that day. In order to give more importance to most recent

data, it is within the year, the final estimation is weighted.

Meteorological data, on the other hand, presented very few missing data points,

so they were directly linearly interpolated.

3 Definition of Season Start and End

There is no consensus on the definition of the main pollination season, but the dif-

ferent proposals lie in two main categories: those based on cumulative daily pollen

counts, which define the period with respect to a percentage of yearly total sum of

daily concentrations, and those which rely upon a consistent pollen threshold breach

[9].

Table 1 shows how different the effective computed dates are for our data depend-

ing on the season definition. It is noticeable that the definitions which use thresholds,

such as [6, 18], instead of cumulative concentrations, such as [1, 7, 13], tend to limit

the season to the period where the peak concentrations appear. They are also sensi-

tive to out of period isolated peak concentrations.

Fig. 1 shows the pollen concentrations, both for Plantago and for Poaceae, for the

same years considered in Table 1, as well as the limits of the season defined according

to [13, 18]. In the case of Poaceae (bottom row), it is interesting to see how the latter

approach (based on a threshold of 30 grains/m
3
) restricts the pollination season to

a few days around the main peak in 2006. The same applies to Plantago pollen (top

row). It is noticeable how concentrations differ for each species, being Plantago less

prolific compared to Poaceae, which motivates a threshold level adjustment based

on the pollen class as proposed by [21].

In general, the proposal of [18] seems much more restrictive than [13]. This can

be mitigated by relaxing the threshold condition by reducing the threshold to 15

grains/m
3
, which produces a more realistic result in the cases studied (shown in the

graph as a shaded rectangle).

Cumulative approaches imply forecasting, before the season start, the expected

total yearly accumulation, which is an entirely different problem. Henceforth, we

will limit this work to threshold-based definitions. In order to establish a systematic

approach which allows for a more informed decision about the threshold, we will

study a set of thresholds allowing the experts to choose the most influential defini-
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Table 1 Considered definitions for the start and end of the Poaceae pollination season, with exam-

ples for some years

Approach Definition Year Start End

Nilsson et al. [13] The day in which the sum of daily

pollen concentration reaches a

value over 5% (start) and 95%

(end) of the total yearly sum

1999 26 Feb 06 Aug

2001 17 Mar 09 Jul

2006 16 Feb 05 Jul

2010 12 Apr 27 Jul

Galán et al. [7] The day in which the sum of daily

pollen concentration reaches a

value over 1% (start) and 99%

(end) of the total yearly sum

1999 24 Jan 19 Oct

2001 13 Feb 24 Sep

2006 02 Feb 02 Sep

2010 18 Feb 16 Sep

Andersen et al. [1] The day in which the sum of daily

pollen concentration reaches a

value over 2.5% (start) and 97.5%

(end) of the total yearly sum

1999 08 Feb 13 Sep

2001 22 Feb 08 Aug

2006 09 Feb 29 Jul

2010 20 Mar 17 Aug

Sánchez-Mesa et al. [18] The first day in which the daily

pollen concentration reaches

values over (start) and below (end)

30 grains/m
3

1999 16 May 20 Jun

2001 17 May 03 Jun

2006 01 May 02 Jun

2010 23 May 24 Jun

Feher et al. [6] The first day in which the daily

pollen concentration reaches

values over (start) and below (end)

3 grains/m
3

for 4 consecutive days

1999 09 Feb 11 Jul

2001 02 Feb 05 Sep

2006 03 Feb 17 Jul

2010 29 Mar 08 Sep
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Fig. 1 Plantago (top row) and Poaceae (bottom row) pollen concentrations for years 1999, 2001,

2006 and 2010 and definition of the season according to [13] (vertical red line) and [18] (verti-
cal green line). The shaded rectangle represents the latter approach relaxing the threshold to 15

grains/m
3
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tion according to the relevance on their field. In what follows, let u be a fixed daily

pollen concentration threshold, then the pollen season start as the first (last) day that

surpasses u.

4 Methods

The final aim of this work is to help allergy patients in knowing in advance between

which dates the pollen concentrations will be at risk levels. Given the above def-

initions of pollination season start and end, we aim at developing a model which

forecasts these dates.

As seen in Sect. 3, there is no consensus as to which are the pollen concentrations

considered as risk levels. Hence, several thresholds, ranging from 5 to 50 grains/m
3

for Poaceae and 5–15 grains/m
3

for Plantago [21], will be used in this work in order

to provide a variety of options and to compare them.

Another important element that needs to be fixed is the forecasting horizon, which

corresponds to the number of days in advance pollen concentrations will be forecast.

There is always a trade off between precision and anticipation, and in the literature we

can find predictions of the pollen season which range from 1 to 10 days in advance.

In order to test its predictive capacities, the model will produce forecasts for several

forecasting horizons ranging from 1 to 15 days.

Finally, for each combination of thresholds and horizons, different derived meteo-

rological and pollen features are computed to set up the instances on which different

machine learning algorithms will be trained.

Our approach is based on the idea that one can cast the forecasting problem into a

binary classification problem where the featured instances represent influential fac-

tors for the predictions. Hence, daily pollen concentrations are mapped to {0, 1}
depending on whether they are above the threshold (1) or not (0). Given the defin-

ition of season start, the first data point classified as 1 will indicate the start of the

season.

4.1 Feature Generation

In order to build such a classification system, the instances of each class should

contain the most relevant data for that class. This relevant data can be meteorological

conditions or pollen levels themselves, either for the day in which the prediction is

to be made or for previous days, weeks or months, as it is generally assumed that

those are the values that play a role in the development of the pollination process. At

the same time, we need to avoid data which might not be related with the problem,

for example we can assume that the average maximum temperatures of 5 years ago

might not carry much information for the pollination period of the actual year.
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According to previous works [16, 19], it is important to include the influence of

most recent data, and hence cumulative pollen observations until the forecast day is

defined as a synthetic variable. A 10 and 30 days cumulative sums of pollen daily

concentrations prior to the forecast date are defined as features along with the prior

7 daily concentrations and the total sum of the pollen concentrations within the year.

Some authors assume that there is a linear relationship between the energy a plant

receives and the growth state of buds [4]. This energy is represented in several ways,

for example it is usual to consider that the sum of temperatures up to some point can

be of help to forecast the state of the flowers [1, 4, 17].

On the other hand, some authors use the concepts of chilling temperatures and

forcing temperatures, which are the weighted sum of the temperatures below and

above certain thresholds given a period. Instead of using a predefined period, our

approach is intended to capture all possible relevant periods which might influence

the state of buds. In [14] the start of the chilling period is defined as the 1st of Octo-

ber and the start of the forcing period as of the 1st of February, which consequently it

is also called the end of the chilling period. The forcing period ends when the polli-

nation season start, and according to this approach is when the pollen concentration

surpasses certain threshold. Instead, our approach calculates for each month the forc-

ing and chilling temperatures and generate for each instance features that represent

previous forcing and chilling temperatures, computed for previous months, quarters

and so on.

Given the non-fixed definition of the chilling and forcing period, we decided not

to apply any weight to the temperatures so the calculation of the forcing temperature

sum is as follows:

Fsum(d) =
d∑

i=d−n
Rforc(i), (1)

where

Rforc(i) =

{
0 if T(i) < Tforc
T(i) − Tforc if T(i) ≥ Tforc

(2)

being d the forecast date, n the number of days which define the calculation period

for the sum of forcing temperatures, T(i) the temperature for day i, and Tforc the

base temperature for forcing (all temperatures are in degrees Celsius). The same

applies for the chilling. In order to determine the base temperatures for Tforc and

Tchill the levels proposed by [14] are used as a reference. The authors proposed a

base temperature for the forcing period of 1
◦
C and 16 ◦

C for the pollen thresholds

of 10 grains∕m3
and 50 grains∕m3

, respectively, and −6 ◦
C and 8 ◦

C for the chilling

period. As this study uses different threshold, it is fair to approximate the values using

simple geometrical relations setting the new values accordingly. Given a definition

of the threshold of 30 grains/m
3

the corresponding base temperatures are 8 ◦
C for the

forcing and 6 ◦
C for the chilling. Cumulative temperature parameterization is widely

used to capture the energy induced to the plant during the early stage of bud states.
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Table 2 Number of features generated by variable

i 10 y m q Q std MA5 MA10

Pollen 7 1 1 1 1 1 – – –

T
a

21 – – – – – – 3 3

Tforc – – – 1 1 1 – – –

Tchill – – – 1 1 1 – – –

Wind 7 1 1 1 1 1 1 1 1

Rain 7 1 1 1 1 1 1 1 1

Sun 7 1 1 1 1 1 1 1 1

i previous i ∈ [1, 7] day observation; 10 previous 10 day cummulative sum; y year to date cummu-

lative sum; m previous month cummulative sum; q previous 90 day cummulative sum; Q previous

180 day cummulative sum; std previous 15 days standard deviation; MA5: previous 5 days moving

average; MA10: previous 10 days moving average
a
accounts for 3 variables (Tmin,max,avg)

Finally, it is known that pollen release is more prolific during dry weather rather

than in rainy periods, even during cooler weather. Thus, it makes sense to take the

cumulative approach introduced for temperatures in order to capture the prolonged

rain periods. We need to capture heavy rains as well so the approach is based on

the standard deviation of the last 15 days rainfall before the forecasting day. On the

other hand, there are long term issues with heavy rains which need to be captured.

For example, heavy spring rains are known to cause grass species to become more

abundant as they grow more rapidly. Heavy rains during fall and winter cause pollen

level increases in spring. Having said that, it is logical to include the accumulation

of previous meteorological seasons. The same applies to the daily sun hours which is

used as a proxy for dryness. For all climate data, similar as for the pollen counts, the

prior 7 daily data observations are included. All variables are summarized in Table 2.

4.2 Setting up the Data

The aforementioned feature generation process leaves us with a total of 90 features.

Depending on the desired threshold and forecast horizon, the data is set up according

to the parameters in order to transform it into a classification problem. The first step

consists on discretising the class and then assigning the class to the correspondent

instance based on the forecast horizon defined.

⎡
⎢
⎢⎣

x1,1 x1,2 … x1,90 p1
⋮ ⋮ ⋱ ⋮ ⋮

xn,1 xn,2 … xn,90 pn

⎤
⎥
⎥⎦
→

⎡
⎢
⎢⎣

x1,1 x1,2 … x1,90 c1+t
⋮ ⋮ ⋱ ⋮ ⋮

xn−t,1 xn−t,2 … xn−t,90 cn

⎤
⎥
⎥⎦

(3)
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ci =

{
0 if pi < u
1 if pi ≥ u

, (4)

where pi is the daily pollen observation at time i, t the forecast horizon in number of

days and u is the threshold as defined in Sect. 3. The observations are split into two

subsets which will be used to train the correspondent algorithm and test its prediction

accuracy. The test set consist on the observations which belong to the years 2011,

2012 and 2013 and the rest of the available years belong to the training set. As well,

to avoid the over-fitting phenomenon, common to many machine learning models, a

cross-validation procedure is performed on each year of the training set using as an

error measure the absolute value of number of days between the estimated and the

observed season start and end.

4.3 Feature Selection

Some models are highly sensitive to collinearity in the variables. In order to provide

equal competitiveness to the algorithms, we need to reduce the number of features

to those which are relevant for the class.

Hence, a filter algorithm based on [8] and on the definition of feature relevance by

[10] is applied to rank subsets of features according to a correlation based evaluation

function. This algorithm will select subsets that contain features highly correlated

with the class and uncorrelated with each other. A feature is accepted when it predicts

the class in areas of the instance space not already predicted by other features. The

features are treated uniformly by discretisation in a pre-processing step, and then a

correlation based heuristic is repeatedly applied to test the merit of a subset, defined

as

Ms =
krcf

√
k + k(k − 1)rff

, (5)

where Ms the merit of a subset S containing k features and rcf is the mean feature-

class correlation and rff the average feature-feature correlation.

4.4 Computational Intelligence Models

Different classification approaches are trained using the training set in order to

forecast the start and end of the season for test set. Concretely we compare Ran-

dom Forests (RF) [3], Logistic Regression (LR) [11] and Support Vector Machines

(SVM) [15].
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Proposed in 2001 by Leo Breiman [3], a Random Forest is the name for an ensem-

ble approach which leverages the performance of many decision trees to produce

predictive models. It is a supervised learning procedure which combines several ran-

domized decision trees and aggregates their predictions by averaging. The procedure

operates over sample fractions of the data, grows a randomized tree predictor on each

one and aggregate these predictors together.

With respect to logistic regression, is a widely used regression model used in

Statistics where the dependent variable is categorical. The model predicts the prob-

ability that a given example belongs to one class via the sigmoid function. A ridge

estimator [11] was introduced to add penalty on weights learned to avoid over-fitting.

RF and LR make different assumptions about the data and has different rates of

convergence. On the one hand, RF assumes that the decision boundaries are parallel

to the axes based on whether a feature is ≥,≤, < or > to certain value so the feature

space is chopped into hyper-rectangles. On the other hand, LR finds a linear decision

boundary in any direction by making assumptions on P(C|Xn) applied to weighted

features so non-parallel to the axes decision boundaries are picked out. This trade off

motivates to take into account SVM as an alternative.

The current SVM standard algorithm, proposed by Cortes and Vapnik [5] in 1995,

is a learning method used for binary classification which finds a hyper-plane which

separates the d-dimensional data perfectly into its two classes. However, since sam-

ple data is often not linearly separable, SVM’s introduces the notion of a kernel
induced feature space which casts the data into a higher dimensional space where

the data is separable.

In sum, the experiments are tailored to compare the models and compute their

forecasts for each threshold and time horizon previously defined. Both parameters,

threshold and horizon, define a set up of the data presented to the models according

to Eqs. (3) and (4). Then a three step process applies consisting on feature selection

and evaluation of the learning algorithm over the training set and prediction on the

test set.

5 Results

One of the objectives of the experiments was to evaluate, in terms of their predictive

ability in the framework of forecasting the pollen season in Madrid, different general

purpose machine learning or statistic methods based on different paradigms. Hence,

in order to select the best suited model of those described in Sect. 4.4, we tried them

against the data described in Sect. 2.

For a set of thresholds and for a set of forecast horizons h = {1, 2, 5, 7, 10, 15},

we trained the three methods using the training set and checked their performance

against the test data set.

Fig. 2a shows the start and end of the season for Poaceae pollen along with the

predicted values for each combination of algorithm, threshold and forecast horizon.
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Fig. 2 Predicted (coloured rectangles) and observed (black vertical lines) season start and end

dates for 2011, 2012 and 2013, by algorithm and threshold
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Table 3 Test data set average errors for u = 30 and u = 15 for Poaceae and Plantago respectively,

in number of days, of the predictions for the start of the season

Poaceae Horizon

Algorithm 1 2 5 7 10 15

LR 1.00 8.00 8.67 9.00 9.00 19.33

RF 0.33 1.00 10.67 12.33 15.67 23.50

SVM 1.33 1.67 1.33 1.67 1.33 3.33

Plantago Horizon

Algorithm 1 2 5 7 10 15

LR 1.00 1.67 0.67 0.78 5.18 12.47

RF 12.22 12.72 15.50 15.83 12.50 16.06

SVM 10.39 9.61 10.17 11.89 12.28 18.53

It can be clearly seen the highly dependence between the season duration and the

definition of the threshold.

The results with the test data set might derive from the fact that the models do not

have enough data to properly generalize, as we only have 20 years, which means only

20 season starts and ends. However, it is clear that high threshold levels lead to more

satisfactory results, enabling the classifier to identify the patterns which influences

the season start and end even for long forecasting periods.

On the other hand, Fig. 2b shows comparatively very short pollination seasons

for Plantago pollen. This is due to the fact that this species is not as common in

metropolitan areas as in rural regions [21]. For this reason, the threshold levels were

relaxed according to the findings in [21]. However, the proposed models are in this

case tested with a small set of data that are effectively classified as main pollination

season, and this plays against the computational intelligence models as they need a

high number of training observations. For instance, RF strives to identify the main

pollination season in 2012 for thresholds over 5 grains/m
3
.

From a clinical point of view, predicting the moment in which most of the patients

will start having symptoms is of a greater interest than predicting the moment when

they will experience relief. Hence, Table 3 shows the error obtained by each model

for all the horizons considered at predicting the start of the season. Only the threshold

u = 30 is considered for Poaceae, following [2] (all patients experience moderate or

severe symptoms) and u = 15 for Plantago [21]. It is clear that SVM outperforms the

other algorithms for horizons over 5 days, while RF is the best for 1 or 2 days ahead

forecasts of Poaceae pollen season. Conversely, LR is shown as the best performer

for Plantago given the limited amount of training samples in this case. This situation

leads to an increase in robustness for LR compared to the other proposals, which

need a higher number of observations over the threshold in order to obtain the inner

information from the data.
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6 Conclusions and Future Works

This study introduces a new approach to foresee the start and end of the pollination

season, which might help allergic patients as well as public health institutions. It is

shown that tackling the problem from a purely data-driven point of view produces

good results and gets accurate forecasts of the pollination season even in years with

particularly odd characteristics as it is 2012, which shows a specially short main

pollination period with a sudden start.

We have seen SVM as the most general model for prediction on this problem

having accurate results for horizons within a week. The definition of the threshold,

which dictates the start and end of the pollination season, takes an important role

on the performance of the models. This study shows that levels above 20 grains/m
3

allow an accurate prediction in the case of Poaceae. It is to note that previous works

set the threshold at 30 grains/m
3

or above [9].

Regarding Plantago pollen, the season definition produced a limited number of

observations over the threshold above 15 grains/m
3
, and LR was the most robust

approach.

The proposed approach provide forecasts based on the data and making no

assumptions on the phenology of the plant. Thus, it can be applied to any kind of

pollen regardless its origin. The results are presented in a way to be easily interpreted

either by experts from other fields or patients.

The results are promising but some ideas are worth deeper exploration. For

example, the generation and selection of features could be improved by using bio-

inspired algorithms. As well, the introduction of numerical weather predictions

should enhance the prediction results. As well, predictions which account for uncer-

tainty for the start date, like probabilistic predictions, could also be of interest.
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Abstract In this paper, we approach the problem of pre-
dicting the concentrations of Poaceae pollen which define
the main pollination season in the city of Madrid. A
classification-based approach, based on a computational
intelligence model (random forests), is applied to fore-
cast the dates in which risk concentration levels are to be
observed. Unlike previous works, the proposal extends the
range of forecasting horizons up to 6 months ahead. Fur-
thermore, the proposed model allows to determine the most
influential factors for each horizon, making no assumptions
about the significance of the weather features. The perfor-
mace of the proposed model proves it as a successful tool for
allergy patients in preventing and minimizing the exposure
to risky pollen concentrations and for researchers to gain a
deeper insight on the factors driving the pollination season.

Keywords Poaceae · Pollen · Random forest ·
Forecasting · Time series

Introduction

Continuously increasing allergy symptoms in developed
countries, and the clinic and socioeconomic relevance of
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1 Superior Technical School of Computer Engineering, UNED,
Juan del Rosal, 16, 28040, Madrid, Spain

2 Department of Artificial Intelligence, UNED, Juan del Rosal,
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this problem, have boosted recent research around some of
the issues dealt with by aerobiology, especially concerning
predictive models. The fact is that not only has the number
of cases increased, but also the severity and the prevalence
of the reactions (de Weger et al. 2013). In order to enable
preventive measures and reduce the exposure for patients,
this study focuses on the prediction of pollen concentration
levels which imply high risk for allergic population.

The main pollination season is defined as the period
where high pollen concentrations are measured. In the lit-
erature, several definitions of what it is considered a pollen
season have been established (Jato et al. 2006). It is pos-
sible to classify them into two main approaches, those
based on the cumulative daily atmospheric concentrations
(Andersen 1991; Galán et al. 1995; Nilsson and Persson
1981) and those based on a predefined threshold level over
which the season is defined to start and end Sánchez-Mesa
et al. (2003).

Weather plays a major role in the severity and length
of the pollination season, as it is the cause for increases
and decreases of the pollen concentration levels through
its effect on the plants. For example, a mild winter usu-
ally implies an early pollen season, as it influences the
plant development stages prior to the flowering (Cannell
and Smith 1983; Pauling et al. 2014). On the other hand, a
dry and windy weather spreads the airborne quickly, leading
to higher distributions (Myszkowska 2014; Rodrı́guez-Rajo
et al. 1983). In this study, we investigate the meteorolog-
ical effects which determine the season of Poaceae pollen
in Madrid, Spain. In our approach, the forecasting problem
is cast to a binary classification problem with attention to
the thresholds considered risk levels for the appearance of
allergy reactions.

Several research teams have established models to pre-
dict the pollination season based on assumptions about
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the influence of meteorological conditions (Andersen 1991;
Myszkowska 2014; Pauling et al. 2014; Rodrı́guez-Rajo
et al. 1983) or previous pollen concentrations (Castellano-
Méndez et al. 2005). The aim of this research is to provide
an assumption-free predictive model using a computa-
tional intelligence technique known as random forests (RF)
(Breiman 2001). The study lets the RF select the most influ-
ential features from a purely data point of view according to
their predictive significance and provides this information
allowing for interpretability of the results. Earlier applica-
tions of computational intelligence methods can be found,
for example, in Aznarte et al. (2007).

Very few of the previous predictive studies for pollen
were able to provide this type of information about the
relevance of the variables. And most of them dealt with fore-
casts horizons ranging from 1 to 10 days (Andersen 1991;
Castellano-Méndez et al. 2005; Myszkowska 2014). The
procedure presented in this work provides long-term predic-
tions, up to 180 days, expanding their usefulness to prevent
allergy symptoms.

The aim of this study is to provide a framework to fore-
cast and identify the main factors which influence high
pollen concentrations, and do this from a purely data-
driven point of view. These long-term predictions could
help research centers and clinical institutions to plan in
advance the implications of high airborne concentrations
and their duration, as well as allergy patients to be able to
limit their exposure to risky pollen levels. Furthermore, this
study is also aimed to provide support to phenological stud-
ies by identifying the relevant pollination factors from the
information obtained from the data.

Materials and methods

Data description

Weather data Meteorological data are provided by Ayun-
tamiento de Madrid for the weather stations located in Casa
de Campo, Plaza de España and Cuatro Caminos. Weather
observations consist of average daily temperature in Celsius
degrees, hours of sunlight per day, wind speed measured
in m/s, daily rainfall in mm/h, pressure in mbar, degree of
humidity in percentage, and ultraviolet radiation in mW/m2.
Very few missing observations appear in the meteorological
series, and these were linearly interpolated.

Pollen data Pollen observations correspond to daily Poaceae
concentrations registered at the Faculty of Pharmacy of
Complutense University of Madrid, Spain (located at
40◦26′52.1′′ N, 3◦43′41.1′′ W) from 2000 to 2013. These
data have been kindly provided by Red Palinológica de
la Comunidad de Madrid and were obtained following the
standard methodology of the Spanish Aerobiological Net-
work. They are measured in grains per cubic meter of air.

Missing values in the pollen time series may lead to an
artificial delay of the season start, especially when those
appear in the critical months of February, March, and April,
as it is when the daily concentrations are expected to
increase. Table 1 shows, for instance, high presence of con-
secutive missing values on March 2001 and August 2009
compared to other months. These are a priori critical months
as the season might start and end on those periods. Using the
standard ’last observation carried forward’ (LOCF) method

Table 1 Maximum number of consecutive days of missing data per month and year

Month

Year 1 2 3 4 5 6 7 8 9 10 11 12

2000 – 1 2 – – – – – – – 4 -

2001 – – 8 – 2 – – – – – – -

2002 – – – – – – – 3 – – – -

2003 – – – – – – – – – – – -

2004 – – – – – – – – – – – -

2005 2 1 3 1 – – – – – 3 – -

2006 – – – – – – – – – – – -

2007 – – – – – – – – – – – -

2008 – – – – – – – – – – – -

2009 – – – – 1 – – 18 2 1 – 11

2010 7 – – – – – 1 – – – – -

2011 – – – – – – – – – – – -

2012 4 – – – – 2 – – – – – -
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to estimate the missing observations does not fully solve this
problem. Thus, we applied a redistribution of the data into a
matrix of dimensions N ×365, being N the number of avail-
able years. (No data were missing for the 29th of February
in any year, so that day was removed from all the years to
make the matrix dimensions match).

Out of this set up, two new matrices are generated to
regress the missing data points by rows (within each year)
and by columns (by years). Data suggests that concentration
levels for the same day in different years do not imply sim-
ilar levels in another,and hence, the resulting matrices are
weighted to give more relevance to most recent data (within
each year), as in:

pt = β · rrow + (1 − β) · rcol, (1)

where rrow is a linear regression within the year, rcol is a
linear regression across years, and β = 0.6833 is estimated
from the data.

Season definition

In literature, the main pollination season is defined accord-
ing to two different approaches (Jato et al. 2006). The first
one is based on daily cumulative airborne concentrations

and the second considers the season started when a pollen
concentration threshold is consistently surpassed.

There is no general consensus about the definition of
the pollination season, and hence, season dates might differ
according to their definition. Table 2 shows the differences
between approaches on selected years and authors with
their corresponding definition of the main pollination sea-
son. Threshold-based approaches such as Feher and Jarai-
Komlodi (1997) and Sánchez-Mesa et al. (2003) tend to
limit the season where peak concentrations appear, and this
implies a high sensitivity to isolated peak concentrations.
In contrast, cumulative approaches widen the pollination
period being sensitive to early moderate concentrations, as
is the case for 2002 in the table. Figure 1 shows how restric-
tive the proposal of Sánchez-Mesa et al. (2003) is compared
to Nilsson and Persson (1981) and how the season period
varies by reducing the threshold to 15 grains/m3.

However, in order to forecast the season start as defined
by the cumulative approaches, it would first be necessary
to forecast the expected total yearly accumulation, which
determines the percentages to define the pollination season.
Of course, this is unfeasible as it implies forecasting one
quantity (the yearly sum) in order to forecast the other (a
quantile). Hence, this study will be restricted to threshold
-based season definitions. In what follows, if u is a fixed

Table 2 Sample start and end of the pollination season according to different definitions

Approach Definition Year Start End

Nilsson and Persson 1981 The day in which the sum of daily 2002 09 Feb 03 Nov

pollen concentration reaches a 2004 26 Feb 11 Jul

value over 5 % (start) and 95 % 2009 04 Apr 09 Sep

(end) of the total yearly sum. 2012 17 May 31 Aug

(Galán et al. 1995) The day in which the sum of daily 2002 20 Jan 27 Dec

pollen concentration reaches a 2004 11 Jan 15 Sep

value over 1 % (start) and 99 % 2009 08 Mar 30 Oct

(end) of the total yearly sum. 2012 7 Feb 30 Nov

(Andersen 1991) The day in which the sum of daily 2002 26 Jan 01 Dec

pollen concentration reaches a 2004 21 Jan 03 Aug

value over 2.5 % (start) and 97.5 % 2009 14 Mar 29 Sep

(end) of the total yearly sum. 2012 03 Mar 21 Sep

(Sánchez-Mesa et al. 2003) The first day in which the daily 2002 17 May 03 Jun

pollen concentration reaches 2004 11 Jan 15 Sep

values over (start) and below 2009 07 May 30 Oct

(end) 30 grains/m3 2012 25 May 18 Jun

(Feher and Jarai-Komlodi 1997) The first day in which the (start) 2002 05 Feb 19 Jun

threshold reaches values over 2004 11 Apr 03 Jul

and below (end) 3 2009 26 Sep 30 Oct

grains/m3 for 4 consecutive days 2012 22 Aug 12 Oct
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Fig. 1 Pollen concentrations for years 2002, 2004, 2009 and 2012
and definition of the season according to Nilsson and Persson (1981)
(vertical dashed line) and Sánchez-Mesa et al. (2003) (vertical solid
line). The shaded rectangle represents the latter approach relaxing the
threshold to 15 grains/m3

daily pollen concentration threshold, then the pollen season
starts (ends) at the first (last) day that surpasses u.

In literature, pollen concentration levels show regional
variations on pollen reactivity. For instance, according to
Peternel et al. (2005) and Rantio-Lehtimäki et al. (1991),
symptoms appear over 30 grains/m3 in Finland and Croatia,
while in Spain the first symptoms are observed between 25
grains/m3 (Rodrı́guez-Rajo et al. 1983) and studies such as
Sánchez-Mesa et al. (2003) use 30 grains/m3. By far, the
most common threshold level found in the literature is
30 grains/m3 (Castellano-Méndez et al. 2005; Green et al.
2004; Sánchez-Mesa et al. 2003) which corresponds to the
concentration at which the first allergy symptoms appear.
Therefore, this level is selected as a representative in this
study.

Features

In the pollen forecasting framework, the set of indepen-
dent variables should contain relevant meteorological data
as well as past pollen levels, as all of them are known to
play a crucial role in predicting pollen concentrations. At
the same time, due to the “curse of dimensionality” and
to ease the computational burden, it is important to avoid
including features which might not influence the pollen pro-
duction at a certain time frame as it is. An example would

be the rainfall registered 3 years before the forecast date: it
will hardly be of interest to forecast the pollen season for
that date. In our approach, feature relevance will be con-
sidered under different forecast horizons, thus enabling the
proposed model to tell which set of independent variables
are more influential for each horizon.

Cumulative pollen observations prior to the forecast date
have been proved to serve as an indicator of the development
stage of a plant (Ribeiro et al. 2007; Smith and Emberlin
2006). Correspondingly, 10- and 30-day cumulative sums
of daily atmospheric concentrations prior to the forecast
date are included as independent variables, along with the
prior week daily concentrations for each date. Additionally,
pollen accumulation within the year is also used as a proxy
of the state of the plant.

The growth state of the buds is assumed to be lin-
early related to the amount of energy a plant has received
(Cannell and Smith 1983). Sum of temperatures up to some
point are usually considered as a good representation of this
absorbed energy (Cannell and Smith 1983; Andersen 1991;
Rodrı́guez-Rajo et al. 1983). Other authors (Pauling et al.
2014) however, use the concept of chilling temperatures and
forcing temperatures, which are defined as the weighted
sum of temperatures below or above certain levels for a
fixed period. To allow for more flexibility, our study does
not predefine the chilling and forcing periods, but chilling
and forcing temperatures are calculated by accumulation of
30 and 60 days prior the forecast date:

Fsum(d) =
d∑

i=d−n

Rforc(i), (2)

where

Rforc(i) =
{

0 if T(i) < Tforc

T (i) − Tforc if T(i) ≥ Tforc
, (3)

being d is the forecast date, n is the number of days which
define the calculation period for the sum of forcing tem-
peratures, T (i) is the temperature for day i, and Tforc is
the base temperature for forcing (all temperatures are in
degrees Celsius). The same applies for chilling. Base forc-
ing and chilling temperatures for a determined threshold are
derived using geometrical relations from the reference of
{1◦C, 16◦C} for the forcing period and {−6◦C, 8◦C} for
the chilling period at thresholds of 10 grains/m3 and 50
grains/m3 respectively, as in Pauling et al. (2014).

The cumulative approach introduced for temperatures
is also used to capture rainy and humid periods. Humid-
ity and rain prevent pollen spread during pollination, and
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humid and rainy weather causes grass species to become
more abundant during the growing period of the plant urg-
ing to include short and long term periods prior the forecast
date.

Pollen dispersion being a fundamental aspect of the prob-
lem, wind speed is recognized as an important influential
factor (Palacios et al. 2000). Hence a 30-days cumulative
sum of wind speed features is generated. For all climate
data, similar as for the pollen concentrations, the prior 7
daily raw data observations are also included.

This leads to the availability of 70 features as detailed in
Table 3, to which we added a dummy variable which repre-
sents the day of the year. This makes 71 features which are
distributed in a matrix corresponding to the desired forecast
horizon and the discretized class:

ci =
{

0 if pi < u

1 if pi ≥ u
, (5)

where pi is the daily pollen observation at time i, t is the
forecast horizon in number of days, and u is the threshold.

Table 3 Number of features generated by variable

i 10 30 y m q std

Pollen 7 1 1 1 − − −
Temperature 7 − − − − − −
Tforc − − − − 1 1 −
Tchill − − − − 1 1 −
Humidity 7 − − − 1 − −
Wind 7 − − − 1 − −
Rain 7 − − − 1 − 1

Pressure 7 − − − 1 − −
UV 7 − − − 1 − −
Sun 7 − − − 1 − −

i: previous i ∈ [1, 7] day observation

10: previous 10-day cummulative sum

30: previous 30-day cummulative sum

y: year to date cummulative sum

m: previous month cummulative sum

q: previous 90-day cummulative sum

std: previous 15 days standard deviation

Random forest

Proposed for the first time in Breiman (2001), a random
forest is an ensemble approach which leverages the perfor-
mance of many simple decision trees that can be used to
produce predictive models. It is a supervised learning pro-
cedure which combines several randomized decision trees
and aggregates their predictions by averaging. The proce-
dure operates over sample fractions of the data, grows a
randomized tree predictor on each one and aggregate these
predictors together.

The motivation to favor RF against other methods, like
logistic regression (LR) is to avoid a correlation-based fea-
ture selection. It is known that LR is highly sensitive to
variable collinearity and, as some features were generated
from others , the parameterization of LR could be expen-
sive in order to avoid overfitting. In this point we believe RF
is a more robust approach. Given the relatively high num-
ber of instances and the presence of sudden high peaks in
pollen concentrations as seen in Fig. 1, RF provides stabil-
ity and accuracy in presence of outliers due to the bagging
(Breiman 2001) technique.

Several decisions need to be made in order to build a RF
model and to test its predictability. In order to optimize the
execution, an analysis of the parameter search space needs
to be done to precisely choose the parameter set up for each
predictor.

To compare the performance of the different models
resulting from the parameter set up, the area under the ROC
curve generated by each model (AUC) is used. An ROC
curve is a two-dimensional depiction of classifier perfor-
mance (Fawcett 2003). The AUC of a classifier express the
probability that the classifier will rank a randomly chosen
instance which is correctly classified.

To test the optimal parameter set up the system performs
a grid search to identify the best set of hyperparameters for
the model based on the selected metric.

One of the strengths of random forests is that they are
able to provide a measure of variable importance as a by-
product of the model training. Breiman (2001) and Breiman
(2002) proposed the evaluation of the importance of a vari-
able xi by adding up the weighted Gini impurity decreases
for all nodes where xi appears, and averaging over all the
trees in the forest. Every node in a decision tree is designed
to split the data set into two as a condition on a single vari-
able. The measure on which the optimal split condition is
chosen is called the Gini impurity. Thus when training a
tree, it can be computed how much each feature decreases
the weighted impurity in a tree being the average of these
decreases the rank of the feature in the forest. This gives
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a view on how important each variable is, and allows for
further interpretability of the results.

Experimental design

The aim of this work is to help allergy patients and
researchers in knowing in advance the period in which
pollen concentrations will reach risk levels, and to identify
the most influential factors for its prediction.

Given the very different shape of pollen concentrations
and of the main pollination season across the observed
years, as shown in Fig. 1, the experiments were tailored
to find the best model available. From sudden high peak
concentration levels in short periods to prolonged moder-
ate atmospheric concentrations, the setup of the model has
to be able to capture the inner available information to
successfully predict the season.

Our approach is based on the idea that the pollen con-
centrations can be transformed into a binary classification
problem where the featured instances represent influential
factors. Daily pollen concentrations are mapped to {0, 1}
depending on whether they are above the threshold (1) or
not (0).

In order to avoid overfitting and to provide a more
generalized overview of the performance of the model, a
leave-one-out (LOO) cross validation approach was taken to
split the data into train and test set. For each year, the obser-
vations of that year were taken out as a test set, leaving the
remaining years to train the model so the final metrics con-
sist of the average error for each iteration. By averaging the
metrics from the LOO technique, the results provided are
more representative than selecting, for instance, the last two

years of the period as test set which would produce results
very dependent on the characteristics of the selected years
for testing.

As well, to provide a wider spectrum in order to give
further information both for patients and researchers, the
system provides forecasts for a wide set of time horizons,
ranging from 1 day to 6 months. A forecast horizon of 15
days means that with the information available up to time t ,
the pollen concentration at day t + 15 is forecast.

Given the forecast horizons, vectors are build as in Eq. 4.
The LOO approach is then applied by years. At each iter-
ation, a random search is performed on the parameters
taking into account the search boundaries and comparing
the results for each set up. Finally, the best candidate is val-
idated and its forecast metrics are provided. This process is
summarized in Algorithm 1.

Results

In our setup, a set of forecast horizons were tested along
with a threshold of 30 grains/m3. An optimal parameteriza-
tion of the RF model was done using the LOO technique
for the years between 2000 and 2013, leaving the remaining
year of each iteration as test set. At each iteration, several
metrics are generated as an estimator of system performance
for each horizon. Given the different characteristics of each
year studied, this method provides generalization letting the
model learn the particular characteristics of each pollination
season.

The second aim of this study is to identify the best predic-
tors of the main pollination season. It is intended to provide
a robust and flexible framework to obtain a good estimation
of the predictors according to different forecast horizons.

The performance of the model is tested by checking the
error rate of the class when it is classified as positive, this
is the daily pollen concentrations which surpass the thresh-
old. This measure is known as sensitivity or recall, and it
measures the proportion of atmospheric concentrations over
the defined threshold of 30 grains/m3 that were correctly
classified as such. This measure is completed by the speci-
ficity which, on the contrary, measures the proportion of
pollen concentrations below the threshold correctly classi-
fied. The global precision for both classes, above and below
the threshold, is measured by the accuracy.

Forecast horizon

Table 4 shows the predictive metrics for each forecast hori-
zon. Specificities and accuracies of over 90 % are achieved
across the different horizons. The high values for speci-
ficity (true negative rate) indicate that the proposed model
succeeds in identifying the periods of the main pollination
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Table 4 Predictive Metrics. Totals based on LOO method for the
study period between 2000 and 2013

Horizon TP FP TN FN Sensitivity Specificity Accuracy AUC

1 295 159 4198 36 0.891 0.964 0.958 0.972

5 282 244 4109 49 0.852 0.944 0.938 0.956

7 281 270 4081 50 0.849 0.939 0.932 0.939

15 302 333 4010 29 0.912 0.923 0.922 0.935

30 304 344 3984 27 0.918 0.921 0.918 0.935

60 308 326 3972 23 0.931 0.924 0.923 0.923

90 269 310 3972 48 0.849 0.928 0.924 0.922

120 264 318 3954 33 0.889 0.926 0.924 0.930

150 274 401 3686 22 0.926 0.902 0.904 0.924

180 262 320 3767 34 0.885 0.922 0.919 0.928

season with an acceptable rate of false negatives (predicting
concentrations below the threshold inside the observed sea-
son). Figure 2 shows the prediction for 2001 with a forecast
horizon of 1, 7, 15, and 90 days. Given the 30 grains/m3

threshold-based definition of the pollination season, the
model manages to identify season start and end dates hav-
ing a maximal error of 17 days for season start with the
90 days horizon. On the other hand, sensitivities are some-
how lower, but attaining percentages over 84 % in all cases.
This means that the model struggles to predict concentra-
tions below the threshold when they appear during the main
pollination season, showing a high number of false positives
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Fig. 2 Pollen observed over the threshold 30 grains/m3 (shaded) for
Apr-Jul 2001 with forecast with horizon 1, 7, 15 and 90 days (solid
lines)

(FP). Weather conditions during the pollination season such
as heavy sudden rainfall might directly affect airborne con-
centrations resulting in rapid drops of pollen concentrations
below the threshold. As this information is not available in
the predictors, the proposal does not identify this specific
conditions. We also believe this is due to the fact that the
classes are unbalanced, as the pollen concentrations over the
selected threshold represent only around 7 % of the total
observations. Even though at each iteration of the RF dou-
ble trees were built, which means bootstrap sampling from
the minority class and drawing the same number of cases
from the majority class to finally aggregate the predictions,
there might be an improvement in this metric by penaliz-
ing misclassification of the minority class or limiting the
period studied to the potential dates where high concen-
trations appear. This however would imply making some
assumptions over the period studied which could increase
the presence of missing data. For instance, missing early
season start dates, i.e., end of February, if the assumption
limits the study period from March to August.

It is interesting to see how the model performs for
the longer forecast horizons, which in general show lower
specificity and higher sensibility and, consequently, lower
accuracy. This means a higher number of false positives, as
illustrated in Fig 2 for the 90-days threshold. In this case,
the model incorrectly predicts an early start of the season.
In general, for longer horizons, there is a clear tendency
of expanding the main pollination season showing a more
loose decision when defining the boundary dates, and con-
sequently increasing the number of false positives as the
horizon increases.

The model, on the other hand, manages to maintain a low
and stable number of false negatives (FN) through the dif-
ferent horizons, which means that it succeeds in capturing
the main periods where high concentrations appear.

It is noticeable that the decreasing accuracy pattern as the
horizon increases is broken for the horizons of 60, 90, and
120 days, showing a small increase. This leads to think that
the influential factors related to the previous winter period
do play a key role in forecasting the start of the season.

Forecast horizon vs feature importance

In Fig. 3, the relative importance of the variables for a
selected group of horizons is depicted. Each climate and
pollen feature are labeled according to the method used to
obtain it, as explained in Section 2. Hence, ’m’ in the name
of a variable denotes the accumulation of the daily featured
data 30 days prior to the forecast date, ’q’ represents the
accumulation of daily data 90 days prior to the forecast date
and ’y’ the cumulative daily data from 1st January of the
year in which the forecast lies. The data point of a variable
x corresponding to the date d − i, being d the forecast date,



Int J Biometeorol

Fig. 3 Selection of the 15 most
important variables by forecast
horizon
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is represented by xi . Table 5 shows a detailed description of
the most relevant features.

Clearly, for the 90 days horizon (rightmost graph), the
influence of the forcing temperature is important for the pre-
diction accounting a 6 % of the total importance compared

to the 2 % and the 2.6 % for the 7 and 15 days horizons,
respectively. On the other hand, the results for short-term
horizons (leftmost graph) show that the most recent pollen
concentrations are the most influential factors. Previous
day (p 1) and the day before the previous (p 2) pollen

Table 5 Variable Description
Variable Description

w m wind speed accumulation one month prior the forecast day

UV m ultraviolet radiation accumulation one month prior the forecast day

t forc q accummulated forcing temperature 90 days prior the forecast day

t forc m accummulated forcing temperature 30 days prior the forecast day

s m sun hours accumulation one month prior the forecast day

r std standard deviation of rainfall one month prior the forecast day

r m rainfall accumulation one month prior the forecast day

p y accummulated pollen daily concentration from the first of January

until the forecast date

pr m pressure accumulation one month prior the forecast day

p 30 daily pollen accumulation one month prior the forecast day

p 2 pollen daily concentration 2 days prior the forecast date

p 10 pollen daily concentration 10 days prior the forecast date

p 1 pollen daily concentration 1 days prior the forecast date

h m humidity accumulation one month prior the forecast day

day day of the year
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observations add up around 17 % of importance for the 5
days horizon while the contribution for the same features
decreases to a 8.5 % and barely 1 % as the horizon increases
to 15 and 90 days, respectively.

For short and medium horizons, the most influential fea-
tures among the meteorological variables are the monthly
cumulative humidity (h m) and rainfall (r m) and the 15
days standard deviation of rainfall (r std). It is known that
rainy and humid conditions wash away airborne concen-
trations during the pollination of the flower. Cumulative
temperature features (t forc q) and the monthly accumu-
lation of sun hours (s m) are believed to boost the plant
formation during the pre-flowering, thus the model weights
a total of around 11 % of importance for the 90 days horizon
in contrast to the 4 % achieved for 7 days. It can be clearly
seen in Fig. 3 how these two variables gain importance as
the horizon increases.

Discussion

As seen in Table 4, our proposal achieves accuracies which
compare favorably to other studies, for example, (Brighetti
et al. 2013), who obtained a value of 89.1 % for sensitivity
and a value of 30.4 % for specificity for the 5 days horizon
and the same threshold, whereas our model achieves a 94.4 %
for sensitivity and a 85.2 % for specificity. This boost in
specificity of course means that our model success in captur-
ing the precise period when the main concentrations appear,
achieving a much lower error rate outside the main polli-
nation period which leads to an accuracy of 93.8 %. For a
1-day horizon, our model achieves an accuracy of 95.8 %
compared to an average of 94.5 % of the two validation sets
in Castellano-Méndez et al. (2005), being able to provide
a more general approach when forecasting regardless the
nature of the pollen series. Compared to the findings from
Nowosad (2016), which also uses RF, our model achieves
96.4 % specificity compared to an average of 97 % for the
1 day horizon which implies a slightly lower performance
when identifying low pollen concentration levels. On the
other hand, our proposal achieves a 89.1 % sensitivity com-
pared to 61, 70, and 88 % in Nowosad (2016), providing a
higher hit rate when identifying high levels. This is the cause
for the higher global accuracy compared to the reference
techniques.

Regarding variable importance, our proposal suggests
that, for horizons over 90 days, the importance of the forc-
ing temperatures is higher compared to its role in shorter
horizons, supporting the proposal of the optimal parameters
in Pauling et al. (2014). Additionally, chilling tempera-
tures are not ranked within the most influential features,
confirming conclusions from Pauling et al. (2014) which
hinted that chilling temperatures might lead to smaller error

reductions when forecasting. In addition, long-term hori-
zons tend to weight more sunlight hours and rain features,
which promote the formation of flowers during the pre-
flowering months. Rainfall and humidity accumulations
are positively related and influence the pollen release dur-
ing the flowering period, in accordance to the findings of
Aguilera et al. (2014). Hence, the model ranks these two
features importances in accordance for short-term horizons.

Once the model is trained, producing forecasts takes less
than a second on a 64-bit desktop Ubuntu machine with
6 cores and 32 GB of RAM. This of course allows the
operational use of the approach.

Conclusions

The present paper introduces a new approach to fore-
cast Poaceae pollen concentrations over different horizons
making no assumptions on the phenology of the plant. It
achieves consistent results in selecting the most influential
factors given the forecast horizons. The selection of fea-
tures from a purely data point of view is also consistent with
different phenological studies while letting the model auto-
matically select their relevance depending on the phases of
the flower formation.

This study is tailored to help not only allergy patients but
also research centers to prevent exposures to risk concen-
tration levels for long-term horizons providing consistency
up to 120 days prior the forecast data point. The model
was tested on data from years 2000 to 2013, showing its
adaptation and generalization regardless the specific char-
acteristics of each pollen season.

The model proposed extends and supports the knowledge
about the influence of meteorological factors on Poaceae
pollen seasons. Although the results are promising, further
efforts are required concerning the selection and genera-
tion of different features. Also, a wider experiment, using
data from different sites, could shed more light into this
interesting subject.
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A B S T R A C T

In this paper, the problem of predicting future concentrations of airborne pollen is solved through a com-
putational intelligence data-driven approach. The proposed method is able to identify the most important
variables among those considered by other authors (mainly recent pollen concentrations and weather
parameters), without any prior assumptions about the phenological relevance of the variables. Furthermore,
an inferential procedure based on non-parametric hypothesis testing is presented to provide statistical
evidence of the results, which are coherent to the literature and outperform previous proposals in terms
of accuracy. The study is built upon Poaceae airborne pollen concentrations recorded in seven different
locations across the Spanish province of Madrid.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The ability to anticipate future values of pollen concentrations in
the air is crucial both for the allergic population, which can use pre-
dictions to foresee and adapt their needs concerning their outdoor
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presence, and for clinical institutions and public health organisms,
which can prearrange resources before a predicted future outburst
of pollen-related affections occurs. Many authors have faced the
pollen forecasting problem in the last decades, with approaches that
range from numerical models as SILAM (Sofiev et al., 2013), clas-
sic statistical time series analysis such as multivariate regression
and nonlinear models (Cotos-Yáñez et al., 2004; Rodríguez-Rajo et
al., 2004; Tassan-Mazzocco et al., 2015), to machine learning and
computational intelligence, for example artificial neural networks
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(Astray et al., 2016; Aznarte et al., 2007; Iglesias-Otero et
al., 2015). Other approaches use numerical method to forecast
pollen dispersions based on operational weather forecasts such as
COSMO-ART (Vogel et al., 2008) or HYSPLIT (de Water et al., 2003).

However, there is a common underlying question which is
independent of the chosen approach: which past information should
be used when forecasting future values of pollen concentrations?
For example, in univariate time series analysis, the models try
to extract information from the past behaviour of just the pollen
concentrations data (Aznarte et al., 2007). Of course, botany tells
us that meteorology plays a crucial role in the development of the
plants and hence in the pollen emission, and thus many authors
have included meteorological variables in their models. In fact, there
are studies about the influential factors in the growth state of plant
buds (and, consequently, airborne pollen atmospheric concentra-
tions) based on a phenological point of view (Cannell and Smith,
1983; Kmenta et al., 2016; Ribeiro et al., 2007; Smith and Emberlin,
2006), or based on the relation with climate conditions (Andersen,
1991; Pauling et al., 2014; Rodríguez-Rajo et al., 1983), or both. How-
ever, there is no consensus over which meteorological variables are
more relevant.

For example, some studies employ meteorological daily data in
order to forecast pollen concentrations, such as previous daily pre-
cipitation (Castellano-Méndez et al., 2005; Iglesias-Otero et al., 2015)
or the relative humidity, wind speed and radiation upon the surface
(Jones and Harrison, 2004). Others prefer the use of autoregressive
indices, as, for example, thermal indices during plant formation sea-
son, in order to capture climatological information prior to pollen
emission (Andersen, 1991; Myszkowska, 2014; Otero et al., 2013;
Pauling et al., 2014). Some studies combine both approaches by using
daily data and cumulative meteorological indices (Matyasovszky et
al., 2015) researching the relationships between past and current
weather conditions and current pollen levels (Deák et al., 2013),
assuming that the timing of flowering is mostly driven by the accu-
mulated temperature during a certain time period as the pollen
release model in SILAM (Sofiev et al., 2013).

On the other hand, automatic feature selection is an impor-
tant research field in computational intelligence. Feature selection
techniques are used, among other reasons, to simplify the mod-
els in order to make them more interpretable and to shorten the
training times. The idea behind automatic feature selection is that
usually the data contains many features that are either redundant or
irrelevant, and can thus be removed without incurring much loss of
information.

An alternative to feature selection for pollen forecasting is factor
analysis (Deák et al., 2013; Matyasovszky et al., 2015), which tries
to find a latent representation of the observed variables that is
good at explaining it. This technique can be used, for example, to
avoid collinearity among the variables which might influence the
predictive capability of the model. Given RF is robust enough against
multicollinearity, its application would be sufficient to approach the
problem.

The objective of this paper is to apply an automatic feature
selection procedure to pollen forecasting, and validate it through
statistical inference. By avoiding any a priori assumptions about the
importance of the variables, neither based on the phenology of the
plant nor on meteorological considerations nor on derived indices,
we expect to question other author’s assumptions and to provide
new insight on the predictive power of the different available vari-
ables. Statistical inference through a nonparametric ranking-based
statistical test (Friedman, 1937), along with a pairwise variable
comparison in a post-hoc procedure, will allow to soundly establish
the validity of the results.

As a case study, we chose to work on Poaceae airborne pollen
concentrations in the Madrid region. Poaceae is the largest fam-
ily of monocotyledonous flowering plants known as grasses and is

considered to be one of the most important aeroallergens in Europe
(Sánchez-Mesa et al., 2003). Poaceae pollen not only is one of the
most prolific in Madrid but also is known to be one of the most
aggressive, accounting 94% of positive reaction in patients (Subiza
et al., 1995). The increase of allergy cases and the severity of the
reactions (de Weger et al., 2013) motivates the need for prediction of
Poaceae concentrations.

2. Materials and methods

2.1. Data description

Daily Poaceae airborne concentrations were provided by Red
Palinológica de la Comunidad de Madrid and were obtained follow-
ing the standard methodology of the Spanish Aerobiological Network
(Galán Soldevilla et al., 2007). They are measured in grains per cubic
meter of air. The observations come from 7 locations around the
region of Madrid (Alcalá de Henares, Alcobendas, Aranjuez, Faculty of
Pharmacy of Complutense University of Madrid, Getafe, Leganés and
Villalba) and span periods that go from 2000 to 2013. Fig. 1 shows
the location of the measuring stations.

On the other hand, we used weather observations consisting
of average daily temperature in Celsius degrees, solar radiation in
W/m2, wind speed measured in m/s, daily rainfall in mm/h, pressure
in mbar and degree of humidity in percentage. Data sets for loca-
tions Alcalá de Henares, Alcobendas, Aranjuez, Getafe and Leganés
consist of 5 years of observations from 2005 to 2009. At the Faculty of
Pharmacy data is available from 2001 to 2013 while in Villalba only
three years are available starting 2007 to 2009 as shown in Fig. 2.

The geography of the Autonomous Community of Madrid pro-
vides several peculiarities given the locations studied. Villalba, which
is located at 903 m above the sea level, has a mountain climate
with a yearly average temperature of 10–11◦C and a yearly average
rainfall of 1250–1500 mm. As opposed to Villalba, Aranjuez has
an elevation of 495 m above the sea level with an average yearly
temperature above 13◦C and a yearly average rainfall below than
400 mm. The remaining locations consist of metropolitan areas
located between 594 and 668 m above the sea level.

Alcala

Alcobendas

Aranjuez

Farmacia

Getafe
Leganes

Villalba

40.00

40.25

40.50

40.75

41.00

−4.5 −4.0 −3.5 −3.0
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t

Fig. 1. Location of weather and pollen stations.
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Fig. 2. Years available per observation station.

Very few missing data points were observed in the meteorologi-
cal series so these were directly linearly interpolated to fill the gaps.
On the other hand, pollen series contain missing observations in a
priori critical months as February, March and April. In general, during
these months pollen concentrations are meant to increase, thus the
missing data is regressed within each year and across the years.

2.2. Features

In the pollen forecasting literature, the common approach is
to include a set of independent variables which contain as much
relevant information as possible. However, the core idea presented
in this paper is to consider all the variables used by previous studies
and compute a measure of variable importance to establish which
set of independent variables are the most influential.

It is assumed that previous cumulative pollen observations serve
as a proxy of the state of the plant (Ribeiro et al., 2007; Smith
and Emberlin, 2006) and are considered as an indicator of plant
development. Accordingly, cumulative sum of pollen concentra-
tions within the year is included as an independent variable, along
with the 10 and 30-day cumulative sums. As well, the presence
of an autocorrelative pattern in the pollen time series suggests
that previous daily concentrations have an influence in present
values (Aznarte et al., 2007). In order to capture this inner relation
between lagged airborne daily concentrations, previous single daily
observations up to a week are also considered.

Weather conditions play a major role in determining the severity
and length of the pollination season, as they are directly responsible
for increases and decreases of the airborne pollen concentrations
through its effect on the plants. The growth state of the buds is
assumed to be linearly related to the amount of energy a plant
has received (Cannell and Smith, 1983). This energy is usually
represented by the sum of temperatures up to some point (Andersen,
1991; Cannell and Smith, 1983; Rodríguez-Rajo et al., 1983). Other
recent studies (Pauling et al., 2014) introduce the concept of chilling
temperatures and forcing temperatures instead, as they constitute a
more optimal parameterization to represent the energy absorbed by
the plants. Forcing temperatures are defined as the weighted sum of
temperatures above a certain level for a fixed period:

Fsum(d) =
d∑

i=d−n

Rforc(i), (1)

where

Rforc(i) =

{
0 ifT(i) < Tforc

T(i) − Tforc ifT(i) ≥ Tforc
, (2)

being d the forecast date, n the number of days which define the
calculation period for the sum of forcing temperatures, T(i) the
temperature for day i, and Tforc the base temperature for forcing fixed
at 8 ◦C. The same applies for chilling temperatures, but computing
the temperatures below the threshold of 6 ◦C. To allow for more
flexibility, our study does not predefine the chilling and forcing

periods, but chilling and forcing temperatures are calculated by
accumulation of 30, 90 and 180 days prior to the forecast date.

Sudden rainfall during the pollination cleans the air, washing
pollen concentrations away, whereas wind speed contributes to
pollen dispersion (Palacios et al., 2000), motivating the selection
of the prior 7 daily raw data observations for these two variables.
Conversely, rainy and humid periods prior to bloom is known to
boost plant development when combined with sunny days. Thus, as
was the case for chilling/forcing temperatures, the cumulative sums
of 30, 90 and 180 days prior to the forecasting date are considered
for rainfall and wind.

This leads to the availability of a total of 79 features as detailed
in Table 1, to which we added a dummy variable which represents
the day of the year. This makes 144 features which are distributed
in a matrix corresponding to the desired forecast horizon. In order
to train the model for a forecast horizon of t = 1 (one day-ahead
forecast), vectors of the form (x1,t , . . . , x144,t|yt+1) where t is the time
in which the forecast is done.

2.3. Random forests for regression

In the last years, there has been a growing interest in ensemble
learning which aggregates the results of several independent models
selected to boost their predictive performance. A well-known
method is called bagging or bootstrap aggregating, proposed by
Breiman (1996). Subsequently, Breiman (2001) presented a model
called random forests (RF) which adds an additional layer of
randomness to bagging providing robustness against overfitting with
a limited number of parameters. These two characteristics favor RF
against other computational intelligence methods such as neural
networks.

The procedure combines several randomized regression trees
generated over sample fractions of the data, and aggregates their
prediction by averaging. This averaging process mitigates the influ-
ence of outlier data points giving RF advantage over other common

Table 1
Summary of features generated by variable.

i S10 MAi S360 S30 S90 S180 Std

Pollen 7 1 4 1 1 1 1 –
Temperature 7 1 4 1 1 1 1 1
Tforc – – – 1 1 1 1 –
Tchill – – – 1 1 1 1 –
Humidity 7 1 4 1 1 1 1 1
Wind 7 1 4 1 1 1 1 1
Rain 7 1 4 1 1 1 1 1
Pressure 7 1 4 1 1 1 1 1
UV 7 1 4 1 1 1 1 1
Sun 7 1 4 1 1 1 1 1

i: previous i ∈ [1, 7] day observation.
S10: previous 10-day cumulative sum.
MAi: max and min i-days moving average i ∈ {5, 15}.
S360: year to date cumulative sum.
S30: previous month cumulative sum.
S90: previous 90-day cumulative sum.
S180: previous 180-day cumulative sum.
Std: previous 15days standard deviation.
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methods as support vector regression, which are highly sensitive in
presence of outliers. As opposed to classification trees, the optimal
split condition is the variance, which at the same time, is used to
compute a measure of the importance of the independent variables.

The importance of a variable is estimated by measuring the
increases in prediction error or variance when data from that
variable is randomly permuted while the rest are left unchanged.
The underlying idea is that if the variable is not important, then
rearranging the values of that variable will not degrade predic-
tion accuracy. For each tree, the prediction error is recorded before
and after the permutation, the difference between both errors is
averaged over all trees and normalized, thus providing the relative
importances. The bigger the difference, the higher the importance of
the permuted variable.

In order to check the performance of the forecasts, a general
purpose error metric for numerical predictions as root mean squared
error (RMSE), defined by Eq. (3), was used along with the coefficient
of determination R2, which indicates the proportion of variance of
the observed data was predicted.

RMSE =

√√√√ 1
n

n∑

i=1

(yi − ŷi)2, (3)

where yi is the observed ith data point, ŷi the predicted and n the
total number of data points in the test set.

2.4. Non-parametric hypothesis testing

Deciding if a variable is a better predictor than other is not a trivial
task. Even if a measure of variable importance can be computed,
it is not sufficient to evaluate it in a single case. In this work, we
use statistical inference to investigate, in proper significance terms,
which variables can be considered better than others.

When comparing a set of variables, the common statistical
method for testing the differences between more than two related
sample means is the repeated-measures ANOVA. Unfortunately,
parametric hypothesis tests are based on assumptions such as
normality or symmetry of the data distribution (Demšar, 2006).
These assumptions are likely to be violated unless the data are well
conditioned. On the other hand, nonparametric tests, whose main
characteristic is that they are applied over nominal or ordinal data,
are usually less restrictive (albeit also less robust). However, through
a ranking-based transformation, they can be applied to continuous
data.

The Friedman test (Friedman, 1937) is a multiple comparisons
test to detect significant differences between a set of at least two
samples. In our approach, the idea is to prove the existence of
features which are more important than others across the years
and the locations. The first step of the procedure is converting the
original computed variable importance for each year and location
to its correspondent rank within the set to obtain the average rank
Rj = 1

n

∑
ir

j
i (where j denotes the feature, i refers to each year and

location and n is the total number of pairs {location, year}). Then the
null hypothesis of equality of medians is tested through the statistic

F =
12n

k(k + 1)

⎡
⎣∑

j

R2
j − k(k + 1)2

4

⎤
⎦ , (4)

where k is the number of variables and F ∼ w2
k−1. This test only

allows to detect significant differences in the whole variable space
without comparing each one against each other. A conversion of
the rankings can be computed to obtain the p-value of each pair
(Conover, 1999). The main drawback is that these p-values are not
suitable for multiple comparison as the probability error of a certain

comparison, does not take into account the remaining comparisons
belonging to the family.

To overcome this limitation, it is needed to take into account
that multiple tests are conducted via adjusted p-values which can be
directly compared with a significance level a. A post-hoc test adjusts
the value of a when dealing with multiple comparisons. One of the
most commonly used of these adjustments is the Holm procedure
(Holm, 1979) which adjusts the value of a by ordering, from small-
est to largest, the p-values of each test. Then starting with the most
significant pi tests the hypothesis of Hi : pi > a/(k − i), being k he
total number of variables in our proposal. If Hi is rejected then allows
to test Hi+1 and so on.

An extension of Holm’s step-down method was proposed by
Shaffer (1986), which uses a logical relation between the combina-
tion of the hypotheses of all pairwise comparisons. For instance, if a
variable v1 is more/less important than v2, it is not possible that v1

is as important as v3 and v2 has the same importance as v3. Based
on this argument and following Holm’s method, instead of rejecting
Hi : pi ≤ a/(k− i), rejects Hi ≤ a/ti, being ti the maximum number of
hypotheses which can be true given the number of false hypotheses
in j ∈ {1, . . . , i}

In order to contrast the difference between the importance of two
variables we can use as an estimator the medians of the differences
of each computed variable importance across locations and years
(García et al., 2010). Being i the number of sets composed by each pair
{location, year}, the median of the difference of each pair of variables
Zvi ,vj is computed, then for each variable the average of the medians
where the variable is involved is calculated as follows:

mvi =

k∑
j=1

Zvi ,vj

k
, (5)

where k is the total number of variables. The estimator of each pair
of variables is defined as mvi − mvj , which provides how far a pair
variables are in terms of importance.

2.5. Experimental design

Algorithm 1. Prediction.

Algorithm 2. Nonparametric test.
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In order to study the importance of the different available
variables for pollen forecasting, the experiment is divided in three
parts. Firstly, we use the full set of variables to build models designed
to predict one day-ahead pollen concentrations for each location.
From these models, we obtain a first insight of the most important
variables in the different locations. Subsequently, in order to gener-
alize and verify if the average rankings of variables per location are
statistically significant, we apply statistical inference through non-
parametric tests applied to the importance obtained per location
and per year. Finally, we use the results of the hypothesis testing
process to compare the models, in terms of forecasting precision
and computational cost, with different subsets of the most important
variables.

The first part of the experiment faces the one day-ahead pollen
concentration forecasting problem in a standard fashion. By using
a leave-one-out setup, we split the series into training and testing
set at each location, saving one of the available years in each iter-
ation and training the models with the rest. Given that one year
can be seen in this case as one observation, and given the limited
amount of observations, the differences from other cross validation
techniques, such as 10-fold cross validation, are not expected to
be substantial. The process is summarized in Algorithm 1. Through
this cross validation approach, we obtain results which are more
independent of the particular characteristics of each year, in the form
of point-forecasts and estimates of the relative variable importances
for each location. From these estimates we expect to see already

some common patterns in the set of variables which are important
across the different locations.

However, in order to produce a more rigorous and general result,
independent from the location and the particular shape of the pollen
curve of each year, the second part of the experiment employs a
different partition of the data. The idea is distributing the impor-
tances resulting from the RF in a matrix of dimension N × M where
N represents each pair {location, year} present in the dataset and M
the available variables. Given the stochastic nature of RF, an iterative
approach was designed to avoid the likelihood of overfitting, the final
result consisting of the average of 50 instances of each model. Over
the resulting matrix a Friedman test is conducted to give evidence
on whether to proceed with the post-hoc analysis. This procedure is
outlined in Algorithm 2.

Finally, with the results of the statistical inference process, we
want to compare the forecasts obtained using the full set of variables
in the first part of the experiment with those obtained by using
reduced sets of only the most important ones. Precisely we chose to
select the 5 and the 15 most important variables.

3. Results

3.1. Predicting with all the variables

Firstly, we applied RF using a leave-one-out setup, building the
models with the full set of variables at our disposal. The models
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Fig. 3. Relative importance of the most important variables by location (variables are ordered by the sum of their importance across locations).
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Table 2
Average ranking of the 16 most important features.

i Variable Ranking i Variable Ranking

1 S
p
10 4.121 9 p5 8.682

2 p1 4.463 10 doy 8.682
3 p2 6.902 11 Sw

90 8.853
4 p3 6.829 12 p7 10.365
5 Sh

180 7.756 13 St
90 10.878

6 S
p
30 8.121 14 s3 11.048

7 p4 8.512 15 Ss
30 11.097

8 p6 8.658 16 MAt
5 12.195

were trained independently for all the years available at each
location, leaving one different year on each iteration as a test set. At
each location, the relative importance of the variables, averaged by
iteration and test sets, is obtained and shown in Fig. 3.

From this figure, it seems clear that the relation among the four
most important variables p1, Sp

10, p2 and p3 is maintained across
locations . In fact, the ordering of relative importances remains very
similar for all of them except for Villalba, where wind plays a much
more crucial role. At this location, the importance of daily wind speed
accumulated during 90 days prior the forecast date (Sw

90) accounts
for more than 3% of importance, which is much higher than in the
rest of locations. However, as we can see in Fig. 1, Villalba is the most
northern and western site. Furthermore, it is located in the Guadar-
rama mountains at 903 m above the sea level while for example
Aranjuez and Getafe have an elevation of 495 m and 622 m respec-
tively. The particular meteorological conditions of Villalba, related to
mountain climate, produce a higher correlation of wind with pollen
concentrations during the period of study. For instance, during those
years Sw

90 is correlated at 32.69% with the daily pollen concentration
in Villalba, while in the same period at Alcalá is 12.74% and a 8.64%
when the full study period (2005–2009) is considered. This explains
the increase in its importance at this location with respect to the
rest. Similar applies to S

pr
180, which also gains importance due to the

elevation, dropping average daily pressure and influencing flower
formation and consequently pollen release.

Notwithstanding, the rest of the patterns of variable importance
are quite stable across locations. Variable S

p
10 keeps the best rank

among them except for Farmacia, Villalba and Leganés, where its
position is exchanged with the second most important variable from
the test (p1). On the other hand, ranks for p2 and p3 are perfectly
maintained accross all locations as well as their relation to the top 2
ranked features.

3.2. Nonparametric tests to compare variable importance

As stated above, the relative importance of the variables
computed by location seems quite stable. However, in order to give
statistical evidence of the existence of features which are more
influential than others, a non-parametric test was used. To do so,
a RF model was trained, in this case for each location and for each
available year, and the relative importance for each variable was thus
computed. Given the large number of variables, the pairwise compu-
tation is expensive, hence in this case the hypothesis test is applied
on a reduced set of variables including those which represent more
than 1% of the total variance, which leaves us with 16 variables.

Out of this setup the Friedman statistic obtained is F = 148.09
which is distributed according to chi-square with 15 degrees of
freedom with a critical values of w2

15 = 24.99 at a = 0.05, lead-
ing to a computed p-value of 1.11e − 10, which strongly suggests
the existence of significant differences among the variables. Table 2
shows the average Friedman ranking of the variables.

Due to the fact that the null hypothesis for Friedman’s test is
rejected, a post-hoc test can be applied to detect the pairs which
produce the differences. Table 3 shows the contrast estimation of
medians of the importance in percentage, and it is noticeable how
p1 and S

p
10 obtain, respectively, an average of around 6% and 5.5%

more importance than other variables, supporting the conclusions
from Friedman’s test. These two variables are followed by p2 and p3

which outperform around 3% and 2.2%, respectively, the remaining
variables. On the other hand, MAt

5 achieves the lowest relative
importance across all stations and years.

Carrying out a post-hoc pairwise test will tell the evidence in the
differences among pairs of variables. Table 4 and Fig. 4 show the
rejected hypothesis (p-value ≤a) with a significance level of a =
0.05 for each compared pair. It can be seen how there is evidence
that Sp

10 and p1 significantly differ from most of the other variables,
although there is no evidence that they differ from each other. As
shown above, the contrast estimation and the ranks from Fried-
man indicate that these two variables retain the highest importance
among the whole set. Hence, there is statistical evidence that S

p
10

and p1 can be considered, in general, the most influential variables
regardless the year and location.

There also exists evidence of differences between p2 and p3 and
the group composed by {MAt

5, Ss
30, s3, St

90, p7} whose higher rank
is 10.36, separating the importance of these two variables from the
lowest ranked group in this study.

Table 4 does not show clear distinction between {Sp
10, p1} and

{p2, p3} but, referring to the logical relation between the combina-
tion of the pairwise hypotheses proposed by Shaffer (1986), there is

Table 3
Contrast estimation in %.

St
90 S

p
10 p6 doy Ss

30 p1 Sw
90 s3 p2 Sh

180 p4 p3 p5 MAt
5 p7 S

p
30

St
90 0.00 −5.45 −0.95 −0.64 −0.03 −5.98 −0.72 −0.09 −3.06 −1.51 −1.26 −2.21 −1.30 0.12 −0.71 −1.19

S
p
10 5.45 0.00 4.50 4.81 5.43 −0.52 4.73 5.36 2.39 3.94 4.20 3.24 4.15 5.57 4.74 4.26

p6 0.95 −4.50 0.00 0.31 0.92 −5.03 0.23 0.86 −2.11 −0.56 −0.31 −1.26 −0.35 1.07 0.24 −0.24
doy 0.64 −4.81 −0.31 0.00 0.62 −5.33 −0.07 0.55 −2.42 −0.87 −0.61 −1.57 −0.66 0.77 −0.07 −0.54
Ss

30 0.03 −5.43 −0.92 −0.62 0.00 −5.95 −0.69 −0.07 −3.04 −1.48 −1.23 −2.18 −1.28 0.15 −0.68 −1.16
p1 5.98 0.52 5.03 5.33 5.95 0.00 5.26 5.88 2.91 4.47 4.72 3.77 4.67 6.10 5.27 4.79
Sw

90 0.72 −4.73 −0.23 0.07 0.69 −5.26 0.00 0.62 −2.34 −0.79 −0.54 −1.49 −0.58 0.84 0.01 −0.47
s3 0.09 −5.36 −0.86 −0.55 0.07 −5.88 −0.62 0.00 −2.97 −1.42 −1.16 −2.12 −1.21 0.22 −0.62 −1.09
p2 3.06 −2.39 2.11 2.42 3.04 −2.91 2.34 2.97 0.00 1.55 1.81 0.85 1.76 3.19 2.35 1.87
Sh

180 1.51 −3.94 0.56 0.87 1.48 −4.47 0.79 1.42 −1.55 0.00 0.25 −0.70 0.21 1.63 0.80 0.32
p4 1.26 −4.20 0.31 0.61 1.23 −4.72 0.54 1.16 −1.81 −0.25 0.00 −0.95 −0.05 1.38 0.55 0.07
p3 2.21 −3.24 1.26 1.57 2.18 −3.77 1.49 2.12 −0.85 0.70 0.95 0.00 0.91 2.33 1.50 1.02
p5 1.30 −4.15 0.35 0.66 1.28 −4.67 0.58 1.21 −1.76 −0.21 0.05 −0.91 0.00 1.42 0.59 0.11
MAt

5 −0.12 −5.57 −1.07 −0.77 −0.15 −6.10 −0.84 −0.22 −3.19 −1.63 −1.38 −2.33 −1.42 0.00 −0.83 −1.31
p7 0.71 −4.74 −0.24 0.07 0.68 −5.27 −0.01 0.62 −2.35 −0.80 −0.55 −1.50 −0.59 0.83 0.00 −0.48
S

p
30 1.19 −4.26 0.24 0.54 1.16 −4.79 0.47 1.09 −1.87 −0.32 −0.07 −1.02 −0.11 1.31 0.48 0.00
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evidence of difference between S
p
10 and p1 and p4, something which

does not exist for p2 and p3. This leads to conclude that S
p
10 and p1

are more important than p4, but there is no evidence that p2 and p3

are more important than p4 so the conclusion is that Sp
10 and p1 are

more influential than p2 and p3.
In summary, the non-parametric tests prove the existence of

features which are more relevant than others. Among them, there
are groups of features which significantly differ from other groups,
while there is no statistical evidence of differences between group
members. This means that, within a group, it is expected that their
members maintain or alternate their ranks within the bounds of the
rank of the group. For instance, we have seen that S

p
10 and p1 dif-

fer from the rest of the variables but do not differ from one another,
constituting the top ranked group. As shown in Table 2, these vari-
ables have a Friedman’s rank of 4.121 and 4.463 respectively, which
is translated to position 1 and 2 in importance. It is expected that
S

p
10 and p1 maintain their correspondent position or that p1 takes

position 1, dragging S
p
10 to position 2 as they do not differ from each

other.

3.3. Predicting with reduced sets of variables

Once we investigated the relative importance of the variables
through statistical inference, we moved on to empirically verify how
does selecting a subset of the most important variables affect the
precision of the models and their computational efficiency.

In order to do so, we repeated the experiment in Section 3.1
for two reduced set of variables. First we selected the 15 variables
which were proven to be the most important according to the tests
of Section 3.2, and secondly we repeated the experiment reducing

Table 4
Pairwise rejected hypothesis at a = 0.05 with unadjusted p-value and adjusted Holm
and Shaffer p-values.

i Hypothesis p pholm pshaff

1 S
p
10 vs MAt

5 1.62e−14 1.94e−12 1.94e−12
2 p1 vs MAt

5 1.94e−13 2.31e−11 2.04e−11
3 S

p
10 vs Ss

30 3.27e−11 3.86e−09 3.43e−09
4 S

p
10 vs s3 4.47e−11 5.23e−09 4.70e−09

5 St
90 vs S

p
10 1.32e−10 1.53e−08 1.38e−08

6 Ss
30 vs p1 2.81e−10 3.23e−08 2.95e−08

7 p1 vs s3 3.78e−10 4.31e−08 3.97e−08
8 p2 vs MAt

5 5.09e−10 5.75e−08 5.34e−08
9 St

90 vs p1 1.06e−09 1.19e−07 1.11e−07
10 S

p
10 vs p7 2.89e−09 3.20e−07 3.03e−07

11 p1 vs p7 1.99e−08 2.18e−06 2.08e−06
12 Ss

30 vs p2 2.31e−07 2.52e−05 2.42e−05
13 s3 vs p2 2.96e−07 3.19e−05 3.11e−05
14 p3 vs MAt

5 4.82e−07 5.16e−05 5.06e−05
15 St

90 vs p2 6.91e−07 7.33e−05 7.26e−05
16 S

p
10 vs Sw

90 6.80e−06 0.00 0.00
17 p2 vs p7 7.58e−06 0.00 0.00
18 S

p
10 vs doy 1.44e−05 0.00 0.00

19 S
p
10 vs p5 1.44e−05 0.00 0.00

20 S
p
10 vs p6 1.60e−05 0.00 0.00

21 Sh
180 vs MAt

5 2.43e−05 0.00 0.00
22 S

p
10 vs p4 2.98e−05 0.00 0.00

23 p1 vs Sw
90 2.98e−05 0.00 0.00

24 doy vs p1 6.00e−05 0.01 0.01
25 p1 vs p5 6.00e−05 0.01 0.01
26 p6 vs p1 6.62e−05 0.01 0.01
27 Ss

30 vs p3 6.62e−05 0.01 0.01
28 s3 vs p3 8.04e−05 0.01 0.01
29 MAt

5 vs S
p
30 0.00 0.01 0.01

30 p1 vs p4 0.00 0.01 0.01
31 S

p
10 vs S

p
30 0.00 0.01 0.01

32 St
90 vs p3 0.00 0.01 0.01

33 p4 vs MAt
5 0.00 0.04 0.04

34 p1 vs S
p
30 0.00 0.04 0.04

35 S
p
10 vs Sh

180 0.00 0.05 0.04
36 p6 vs MAt

5 0.00 0.07 0.06

Fig. 4. Pairwise rejected hypothesis at a = 0.05 with adjusted Shaffer p-values. The
dots indicate pairs of variables which are not equally important.

the set to just the 5 most important variables. Then, for both reduced
sets and for each location, 50 instances of a RF model were trained
to produce one day-ahead forecasts. Again, the models were trained
through the LOO cross-validation approach by entire years.

The predictive performance of the models in terms of RMSE and
R2, for the setup using all variables (setup A), the reduced sets of
15 (setup B) and 5 (setup C) most important variables is shown in
Table 5. Their respective execution times (for a single instance) are
shown in Table 6.

From the study of both tables, we see that the reduction from
the setup A using 144 variables to just the 15 most important of
them (setup B) implies a reduction of almost a third of the execu-
tion time. Most importantly, models built with the reduced set of 15
variables yield better RMSE results in average (only in Alcobendas
there is a slightly worse error result). In terms of R2, both setups are
approximately equal. Therefore, a first conclusion is that removing
redundant non-important variables helps the models to converge to
better results.

Regarding setup C, which uses just the 5 most important vari-
ables, the execution time is cut to one half with respect to setup
A. However, the RMSE and R2 values are worst in average, which
indicates that such a reduced set is not enough to capture the inner
characteristics of the pollen time series. In other words, the reduction
leaves some important variables out, resulting in worse models.

By closely studying the results, we have identified a pattern which
could explain some of the difficulties of the model in capturing the

Table 5
Average RMSE and R2 of the test years studied at each location.

Station RMSEA RMSEB RMSEC R2
A R2

B R2
C

Alcalá 19.05 18.06 18.64 0.62 0.57 0.50
Alcobendas 15.42 15.57 14.99 0.70 0.68 0.59
Aranjuez 16.64 16.41 18.05 0.64 0.58 0.48
Farmacia 18.66 17.64 18.16 0.63 0.59 0.50
Getafe 16.34 16.11 21.87 0.69 0.70 0.49
Leganés 18.43 16.41 20.22 0.71 0.71 0.54
Villalba 17.46 16.43 20.61 0.58 0.69 0.55
Average 17.43 16.66 18.90 0.65 0.64 0.52
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Table 6
Average execution time (in seconds) for the models built using different subsets of
variables.

Setup # variables Time

A 144 29.00
B 15 20.29
C 5 14.75

inner behaviour of the data series. Precisely, the best performing
test year across locations (2007) obtain an average RMSE equal to
3.84 grains/m3, while the average RMSE in the worst performing
year (2010) goes up to 28.16 grains/m3. Concretely, this situation is
related to the usual appearance of sudden extreme pollen concentra-
tion peaks during the pollination season.

These findings indicate that the models consistently fail to forecast
the whole height of the peaks, producing an increase of the error:
the higher the peak, the bigger the error. Another example can be
seen in Fig. 5, where it is shown how, for the Alcobendas site in 2008,
there are a number of sudden peaks, which result in a high average
RMSE of 31.02 grains/m3, while, in 2007 for the same location, the
RMSE obtained was of 6.89 grains/m3. This is most probably related
to the lack of concentration peaks over 100 grains/m3 for that year.

Finally, further evidence of this can be obtained from Table 5,
were we can see that the model obtains low precision when
forecasting concentrations exceeding 150 grains/m3, as is the case
for the Faculty of Pharmacy (Farmacia) and Alcalá where peak
concentrations up to 400 grains/m3 were observed.

4. Discussion

As we have seen, there is statistical evidence of the existence
of relevant groups of variables when forecasting one day-ahead
airborne pollen concentrations. The proposed approach succeeds
in ranking and identifying these influential features, finding that
previous pollen daily observations and 10-day cumulative airborne
concentrations (which have both been proved to serve as indica-
tors of the state of development of the plant (Ribeiro et al., 2007;
Smith and Emberlin, 2006)) are the two top ranked features. These
results, entirely based on the data and free from a priori assump-
tions are supported by nonparametric hypothesis tests and post-hoc
procedures, and are coherent with previous phenological studies.
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Fig. 5. Forecast (solid line) and observed (dashed) pollen concentration values for two
years in the site of Alcobendas.

They have immediate practical application, as proven by the fact
that subsets of top-ranked variables produce better results while
reducing computational complexity.

However, the appearance of sudden high airborne concentrations
increases the error on the performance of the model, as it is not
able to capture extreme pollen levels given the limited amount of
observations of this class. This phenomenon is common to other
approaches, and could be investigated in the framework of the
extreme value theory. However, it does not seem to be a particu-
larly worrying issue, as the metric could be improved by limiting the
observed concentrations to avoid the high peaks without hampering
the usefulness of the proposal. For example, it could make sense to
impose an upper limit to the values of the series as in Navares and
Aznarte (2016). This limit should be related to the concentration lev-
els which are considered to be risky for human health, for instance,
symptoms are reported to appear over 30 grains/m3 in Finland
and Croatia (Peternel et al., 2005; Rantio-Lehtimäki et al., 1991),
while in Spain the first symptoms are reported at 25 grains/m3

(Rodríguez-Rajo et al., 1983). Another option is to transform the data
into a logarithmic scale (or similar) as in Aznarte et al. (2007).

However, the results presented in this work are comparable in
terms of accuracy to other studies such as Iglesias-Otero et al. (2015),
which reports an average R2 of 0.66 compared to an average 0.65 in
our setup B with 15 variables. Furthermore, the approach proposed
by Iglesias-Otero et al. (2015) uses artificial neural networks (ANN)
which, as shown in the research, is strongly dependent on the config-
uration of the network. RF is considered as a more robust approach
to mitigate overfitting, limiting the assumptions to be taken by
the practitioner, avoiding decisions such as network structures and
requiring minimal preprocessing of the data. The same applies to
Astray et al. (2016) who achieves a RMSE of 22.56 on the best topol-
ogy of the ANN. In average, our models achieve an RMSE of 17.43
across all configurations, being the setup B with 15 variables the best
configuration: it obtains an RMSE of 16.66. These values clearly out-
perform the best regression models proposed by Csépe et al. (2014)
which achieves a RMSE of 28.26 on its best performing algorithm
(M5P), which is an implementation for regression trees. The bagging
technique used in RF gives an edge over M5P algorithm reducing esti-
mation variance and consequently prediction error. RF are relatively
complex in computational terms, hence the focus on variable selec-
tion, which has shown that setup B (15 variables) as the most optimal
among the configurations tested.

Additionally, the use of the LOO approach across multiple loca-
tions produces more generalized results as opposed to a predefined
test set, on which the results heavily rely on the specific characteris-
tics of the years selected to define the test set.

5. Conclusions

This paper presents a new approach to forecast airborne Poaceae
pollen concentrations in the region of Madrid by identifying the most
influential among the set of available variables. It provides statistical
evidence, through non-parametric hypothesis tests, of the benefits of
selecting the most influential variables for a one day-ahead forecast
horizon.

Concretely, from all the considered pollen and meteorological
variables, the data indicate that previous days pollen concentrations
and cumulative sums of recent pollen concentrations are among the
most important. They are followed by cumulative sums of humid-
ity and solar radiation. These findings support, from a pure data-
based point of view, the conclusions of previous phenology-based
studies.

However, the statistical significance of the results from a single
experiment are always to be questioned, and for this reason, in this
paper, a sound statistical procedure based on Friedman tests and
post-hoc analysis is used to support and validate the conclusions.
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Finally, the usefulness of the proposal is shown by training the
model with a reduced set of the most important variables, eliminat-
ing redundancies. This reduced model has been proven to increase
the accuracy while limiting the computational burden.

The results clearly outperform those obtained by other authors,
although there is still room for improvement and further research.
For example, the models have difficulties in predicting extremely
high concentrations, something that could be addressed by imposing
upper limits according to risk levels for allergy patients. Also, a sys-
tematic exploration of the different combinations that can be drawn
from the set of important variables should be studied, together with
the optimization of the trade-off between the number of variables
and the accuracy.
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Abstract
Predicting concentrations of pollen is of great importance both for patients and for public health institutions. In this paper,
we present a forecasting approach which relies on data and makes no assumptions on the underlying phenomena affecting
the plants and the pollination process. Machine learning is used to build a model and to select the most important variables
for prediction. Through nonparametric hypothesis testing, we show how some variables are indeed more important than
others and how the careful combination of these variables can lead to more accurate and parsimonious models which avoid
the huge computational times of more complex models while outperforming them in terms of the precision of the forecasts.
By increasing the richness of the selected variables based on the clustered Friedman importance ranks, prediction error is
reduced from 4.57 to 4.40 grains/m3 as an average, which accounts for a 3.5% average improvement across locations studied
with a 50% reduction of execution times.

1 Introduction

Allergy symptoms and their severity have been increasing
in Western Europe during the last decades (de Weger et al.
2013), a fact which clearly implies the usefulness of the
prediction of pollen concentrations, which are used not only
to limit the exposure of patients to allergens but also to
prearrange resources for clinical institutions. Plantago is
one of the most common species among the herbaceous
plants. Even though its airborne atmospheric concentrations
are low, positive reactions appear nearly in 50% of the
sensitive patients (Subiza et al. 1995).

Up to date, several studies have been proposed to
approach the pollen forecasting problem based on tech-
niques that range from classic multivariate regression to
nonlinear models (Cotos-Yáñez et al. 2004; Rodrı́guez-Rajo
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et al. 2004; Tassan-Mazzocco et al. 2015; Tseng et al. 2018),
to artificial neural networks (Astray et al. 2016; Aznarte
et al. 2007; Iglesias-Otero et al. 2015). Due to the curse of
dimensionality, in every approach, variable selection plays
a crucial role. For example, complex multivariate models
require a precise parameterization in order to avoid over-
fitting or, in the case of neural networks, the number of
instances needed to train them increase with the topology of
the network (which in turn makes overfitting likely).

Regardless of the chosen approach, the first aim of
the practitioner is to select a set of variables which are
relevant when forecasting airborne pollen concentrations.
In general, it is assumed that weather conditions directly
influence these concentrations. For example, heavy sudden
rains during pollination wash away pollen grains from the
atmosphere. Consequently, studies include meteorological
variables such as previous daily precipitation (Castellano-
Méndez et al. 2005; Iglesias-Otero et al. 2015) or wind
speed, relative humidity, and solar radiation as a proxy
of dryness, which in turn creates optimal conditions for
pollen proliferation (Jones and Harrison 2004; Myszkowska
2014; Rodrı́guez-Rajo et al. 1983). Alternatively, other
studies prefer the use of climatological indices to capture
meteorological information prior the pollen release. Some
such indices are cumulative weather variables (Andersen
1991; Matyasovszky et al. 2015; Myszkowska 2014; Otero
et al. 2013; Pauling et al. 2014), which capture the influence
of past and current weather conditions in current airborne
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concentrations (Deák et al. 2013). On the other hand, in the
literature, there are also models which take a phenological
point of view (Cannell and Smith 1983; Kmenta et al. 2016;
Ribeiro et al. 2007; Smith and Emberlin 2006; Garcı́a-Mozo
et al. 2008), assuming that future airborne pollen release
depends on the current and past growth state of plant buds.
Finally others considered the problem as a univariate time
series problem, developing predictors based exclusively on
past pollen concentrations (Aznarte et al. 2007).

In any case, there is a shared necessity to reduce model
complexity in order to ease its interpretability and shorten
calculation times. Feature selection constitutes an important
research field in Computational Intelligence and Statistics.
Automatic feature selection is aimed at obtaining a subset
of variables which are relevant for model construction,
removing those which are redundant or irrelevant thus
minimizing the loss of information.

As an alternative of automatic feature selection, some
authors used statistical and probabilistic methods to
reduce the dimensionality of the variables in time series
forecasting. Among these techniques, factor analysis (Deák
et al. 2013; Matyasovszky et al. 2015) and partial mutual
information (Li et al. 2015; Tran et al. 2015) are widely
used. The underlying idea is to find a new representation
of the observed variables that is good at explaining
the phenomenon under study at the same time avoiding
collinearity among them.

The objective of this paper is to provide a framework to
select the optimal combination of features to achieve a more
precise forecast of airborne Plantago pollen concentrations
while avoiding a priori assumptions about the influence
of the variables, either meteorological or phenological, on
future pollen releases. Through the use of random forests
(RF), we perform an automatic feature selection which lets
the model capture the inner information from the observed
data and decide the importance of each one of the available
features. Once a parsimonious model is built with the
more relevant variables, it is used to forecast the series
under study with good results compared with the literature.
These results are in turn validated through a nonparametric
ranking-based statistical test (Friedman 1937), showing
the applicability of the proposal to the Plantago pollen
concentration forecast problem in the region of Madrid.

2Material andmethods

2.1 Data description

Pollen observations correspond to daily Plantago concen-
trations registered at 7 locations distributed around the
region of Madrid: Alcalá de Henares, Alcobendas, Aran-
juez, Faculty of Pharmacy of Complutense University

of Madrid, Getafe, Leganés and Villalba ,as shown in
Fig. 1 . Pollen counts were conducted following the stan-
dard methodology of the Spanish Aerobiological Network
(Galán Soldevilla et al. 2007) and were provided by Red
Palinológica de la Comunidad de Madrid.

Meteorological observations were obtained from sensors
placed in the close surroundings of the pollen stations
(each pair of stations in the same municipality separated
less than 2 km), consisting of daily average temperature
in Celsius degrees, solar radiation in W/m2, wind speed
measured in m/s, daily rainfall in mm/h, pressure in
hPa, and degree of humidity in percentage. The data
was provided by the Autonomous Region of Madrid1 and
was measured following the criteria from the Spanish
government meteorological agency (AEMET).

Both pollen and meteorological datasets span from
year 2005 to 2009 at Alcalá de Henares, Alcobendas,
Aranjuez, Getafe, and Leganés. Observations at the Faculty
of Pharmacy are available from 2001 to 2013 while in
Villalba, only 3 years are available starting 2007 to 2009.

Even though the climate in the region of Madrid is
continental (with a strong Mediterranean influence), its
geographical characteristics provide several peculiarities at
each location. Situated at Guadarrama mountains, Villalba
is 903 m above the sea level with a yearly average
temperature of 10–11 ◦C and a yearly average precipitation
of 1250–1500 mm. These characteristics are related to
mountain climate. Conversely, Aranjuez, which is located
495 m above the sea level, has milder yearly average
temperatures (above 14 ◦C) with a yearly average rainfall
below 400 mm. The remaining locations are metropolitan
areas between 594 and 668 m above the sea level with yearly
average temperatures above 15.2 ◦C and precipitations
around 440 mm.

2.2 Features

Previous studies (Navares and Aznarte 2016b) propose a
set of features based on the influence that meteorological
conditions have in the development of the plant, together
with several variables inspired by phenological studies
along with purely analytical approaches, which extract
information directly from the time series. In order to
perform a deeper analysis of the optimal selection of
important features for forecasting airborne concentration,
this study increases the number of features from which the
models are constructed.

A total of 143 features were generated as shown in
Table 1. In addition, an extra variable is included which

1https://gestiona.madrid.org/azul internet/html/web/AvisosAccion.
icm?ESTADO MENU=1
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Fig. 1 Location of weather and
pollen stations in the region of
Madrid
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Table 1 Summary of number of features generated by variable

i Σ10 MAi Σytd Σ30 Σ90 Σ180 std

Pollen 7 1 4 1 1 1 1 –

Temperature 7 1 4 1 1 1 1 1

Tforc – – – 1 1 1 1 –

Tchill – - - – 1 1 1 1 –

Humidity 7 1 4 1 1 1 1 1

Wind 7 1 4 1 1 1 1 1

Rain 7 1 4 1 1 1 1 1

Pressure 7 1 4 1 1 1 1 1

UV 7 1 4 1 1 1 1 1

Sun 7 1 4 1 1 1 1 1

Features include i-lagged variables, previous t days cumulative sums
represented by Σt , moving averages (MA), and previous 15 days
standard deviation (std)

i: previous i ∈ [1, 7] day observation

Σ10: previous 10-day cumulative sum

MAi : max and min i-days moving average i ∈ {5, 15}
Σytd : year to date cumulative sum

Σ30: previous month cumulative sum

Σ90: previous 90-day cumulative sum

Σ180: previous 180-days cumulative sum

std: previous 15 days standard deviation

represents the Julian day of the correspondent year. Thus,
the model is trained using a matrix of vectors of the
form (x1,t , . . . , x144,t |yt+1), where t is the time in which
the forecast is done, yt+1 represents next day pollen
concentration (day-ahead forecast), and xi,t represents the
value at time t of the variable i.

2.3 Random forests for regression

Proposed for the first time in Breiman (2001), a random
forest (RF) is an ensemble approach which leverages the
performance of many weak learners (trees) by combining
them to form a strong learner. RF is a supervised learning
procedure which generates several randomized regression
trees over sample fractions of data, and combines them by
averaging. Different random selections are computed by
each tree improving stability and accuracy; this technique is
known as bootstrap aggregating or bagging (Breiman 1996).

Bagging intervenes at two levels, first in data selection
and second in variable selection, ensuring that each tree
uses a different set of data and a different set of variables.
Then, by averaging, the likelihood of overfitting diminishes
providing a clear advantage over other computational
intelligence methods such as neural networks. Also, this
procedure gives robustness against the presence of outliers
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which favors the selection of RF when compared with
support vector regressions.

Several measures have been proposed to estimate
variable importance in RF. The most advanced is the
permutation accuracy importance measure. Its rationale is
based on randomly permuting each predictor variable so
the original association with the response is broken. Thus,
when a variable is permuted, the accuracy is recorded
and averaged over all trees providing the relative variable
importance, which increases as the difference in accuracy
becomes bigger before and after the permutation. As
opposed to classification trees, the accuracy (or prediction
error) in the regression problem is measured by the variance.

In our case, model performance is checked using the root
mean squared error (RMSE) defined by Eq. 1, along with
the coefficient of determination R2:

RMSE =
√
√
√
√

1

n

n
∑

i=1

(yi − ŷi )2, (1)

where yi is the observed ith data point, ŷi the predicted, and
n the total number of data points in the test set.

2.4 Nonparametric hypothesis testing

In order to evaluate the variable relevance obtained by
the RF algorithm, we use the nonparametric Friedman test
(Friedman 1937) over variable importances with a post hoc
procedure as described in Navares and Aznarte (2016b). The
aim is to investigate, in significance terms, which variables
are considered better predictors.

2.5 Experimental design

A first experiment (which will be considered as a
benchmark for the subsequent) consists in building, for
each location in which we have data, a model designed to
predict one day-ahead pollen concentrations using the full
set of 144 variables. As a result, we obtain the model’s
performance along with the identification of the most
important variables. Secondly, a verification step is done
through the application of statistical inference. The purpose
is to generalize and corroborate if the average rankings
of variables per location are statistically significant. This
is done through the non-parametric tests applied to the
importance of variables obtained per location and per year.
Lastly, we compare the results obtained from the benchmark
with different models created using subsets of the most
important variables ranked in the hypothesis tests.

The benchmark model approaches the one day-ahead
airborne concentration forecast problem by building a RF
model per location. Given the number of years available, as

a cross-validation technique, we use a leave-one-out (LOO)
setup by years. Hence, the series are split into training and
test set at each location, leaving one of the available years
in each iteration as a test set and training the model with the
remaining years. Through this validation technique, we aim
to increase the generalization power of the test set, providing
it with data points across all seasonal characteristics. Also,
by averaging the outcome of the LOO, the results obtained
are more independent of peculiar characteristics of each
year.

The second experiment uses a different subdivision of the
data to add an extra layer of generalization, which is location
independent and it is not subordinated to the shape of the
pollen curve of each year. For each combination of year and
location, the variable importances resulting from building
a RF model are distributed in a N × M matrix where N

represents each pair {location, year} present in the dataset
and M the available variables. The random nature of RF
justifies the averaging of 50 instances of each model in order
to obtain the expected variable importances as they might
slightly change from one RF execution to other. A Friedman
hypothesis test is then conducted to prove the existence of
significant differences within the full set of variables and, if
applicable, a post hoc analysis is performed.

Once the test is applied, we compare the models in terms
of accuracy and time complexity with the benchmark from
the first experiment, which uses the full set of variables.
Thus, the results of this full-sized model are compared with
those obtained by using a reduced set of the 5 and 15 most
important variables out of the statistical inference process.

Considering the trade-off between accuracy and compu-
tational complexity, the last experiment is tailored to find the
combinations of variables that improve current accuracies
subject to minimizing the complexity of the model. As the
number of combinations is large, and consequently the num-
ber of models, a restricted set of combinations is defined
based on clustering the ranked importances obtained from
the nonparametric Friedman test.

3 Results

3.1 Predicting with all the variables

In our first setup, RF is applied using the LOO technique
across all locations with the full set of variables. The relative
importance of the variables is calculated and then averaged,
resulting in Fig. 2.

It can be seen that the variables Σ
p

10, p1, and Σh
180

stay ranked as the top 3 most important variables across
the locations except for Villalba. At this location, 90 days
cumulative pressure (Σpr

90 ) and wind speed (Σw
90) increase

up to 6% and 4% of the total importance, respectively.
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Fig. 2 Relative importance of the most important variables by location using the permutation accuracy importance measure (variables are ordered
by the sum of their importance across locations)

Due to the fact that this station is located at 903 m above
the sea level, its particular climate conditions, related to
mountain climate, produce higher correlation between the
wind variable and airborne concentrations. Also, lower
atmospheric pressure due to the elevation eases plant
formation and consequently pollen releases, which explains
higher importance for Σ

pr

180, compared for example with
Aranjuez which is located 495 m above the sea level.

Furthermore, the different urban configuration, for example,
with no high buildings, as compared with urban areas such
as Getafe, Leganés, Farmacia, Alcobendas, and Alcalá,
causes pollen concentrations to differ considerably.

However, excluding the particularity of Villalba, Σ
p

10
stays as the most important variable across locations,
followed by p1 and Σh

180 which alternate positions
depending on the location.
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3.2 Nonparametric tests to compare variable
importance

As we have seen in Section 3.1, there is some stability in
the top-ranked variables. However, there is no clear pattern
on the grouping of the variables and their interrelations. In
order to investigate this, and to provide statistical evidence
of the existence of variables (or groups of variables), which
are more important than others, a nonparametric test was
performed.

For each location and year available, a RF model was
trained using each combination {location, year} in isolation
and the relative importance of each variable is computed.
Out of this setup, the Friedman rank test was performed
over 16 variables, which represent more than 1% of the
total variance. This reduced set is considered as the pairwise
computation with the full set is expensive. A Friedman
statistic of F = 165.84, which is distributed according
to chi-square with 15 degrees of freedom, obtains a p

value of 1.04e−10 with α = 0.05, which provides strong
evidence of the existence of significant differences between
the variables, which are ranked as shown in Table 2.

Figure 3a shows the dendrogram based on the rankings
from Friedman. It can be clearly seen that there are two
main groups which consist of the top four ranked variables
by importance and the remaining ones. As Friedman’s null
hypothesis was rejected, a post hoc procedure can be carried
out in order to check the differences between pairs of
variables.

The rejected hypotheses with α = 0.05 from the pairwise
comparison is shown in Table 3. As stated above, there is
no significant difference between the four most important
variables Σ

p

10, p1, Σh
180, and Σ

p

30, suggesting the first
cluster of variables shown in the dendrogram from Fig. 3a.
This means it is likely these variables alternate ranking
positions depending on the location as seen in Fig. 2. It
is noticeable that there is no evidence of the difference
between the group variables

{

p1, Σ
h
180, Σ

p

30

}

and {p2, p3}

Table 2 Rank of the 16 most important features computed by
averaging the rank of each variable importance for each year and
location

i Variable Ranking i Variable Ranking

1 Σ
p

10 3.219 9 p5 9.073

2 p1 5.073 10 Σ
p

90 10.024

3 Σ
p

30 5.591 11 p6 10.097

4 Σh
180 5.975 12 doy 10.170

5 p2 6.975 13 Σ
p
ytd 10.268

6 p3 7.878 14 Σw
90 10.804

7 Σs
180 8.487 15 Σs

30 11.487

8 p4 8.682 16 Σr
180 11.829

although there is significant evidence that Σ
p

10 is different
from p2 and p3 implying that

{

p1, Σ
h
180, Σ

p

30

}

has to be
different from {p2, p3}, according to the logical relation
between the combination of the hypotheses proposed by
Shaffer (1986).

Regarding other groups of variables, there is a statistical
evidence that p2 is different from Σs

30 and Σw
90 which

constitute the third cluster (Fig. 3a, top), and between p3 and
Σs

180, which also belongs to the third group. In summary, the
tests prove the existence of features which are more relevant
than others which are grouped according the three top levels
of the dendrogram in Fig. 3a. There is no evidence that
members of the same group differ from each other, which
means that variables from the same cluster might alternate
rank positions within the array of its constituent variables.

3.3 Predicting with a reduced set of variables

After verifying the statistical evidence of the relative
importance of the variables, we repeated the experiment in
Section 3.1 for two reduced set of variables selected from
the findings in Section 3.2. The two sets consist of the
15 (setup B) and the 5 (setup C) most important variables
from Friedman test, which are tested against the full set of
144 variables (setup A) from Section 3.1, in order to check
how the setup influences model performance in terms of
predictability and computational efficiency.

For each reduced set, 50 instances of a RF model were
trained to forecast one day-ahead Plantago concentrations
via the LOO cross-validation by years and observation
station . Execution times for a single instance of each
setup are 22.66, 17.08, and 11.86 s for setup A (144
variables), setup B (15 variables), and setup C (5 variables),
respectively.

By using the setup B of 15 variables, execution time
reduces by 25% per iteration while setup C (5 variables)
produces a substantial reduction of almost 50%. However,
the aim is to find a balanced setup which provides the
shortest execution times without an excessive impact in the
predictive performance of the models in terms of RMSE and
R2. Table 4 shows the performance metrics per location and
setup; it can be seen that setup A produces in average the
least accurate results with an RMSE equal to 4.80 compared
with 4.64 for both setups B and C, which clearly indicates
the benefits of reducing the number of variables both in
terms of accuracy and computational performance. Having a
close look at the locations, reducing the number of variables
to 5 (C) produces mixed results when compared with setup B
being the performance dependent on the location and, in any
case, the error increases or decreases in a relatively small
amount when both setups are compared.

It is clear that there is a consistent improvement on
the errors across locations when a reduced set of variables
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Fig. 3 a Dendrogram based on
Friedman’s ranks. b
Combinations of 5 variables
tested by clusters and groups
used in Section 3.4. nCk

represents the combination of a
subset of length k selected from
a set of n variables being k ≤ n
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Table 3 Pairwise rejected hypothesis at α = 0.05 with unadjusted p

value and adjusted Holm and Shaffer p values

i Hypothesis p pholm pshaff

1 Σ
p

10 vs Σr
180 2.66e-16 3.19e-14 3.19e-14

2 Σ
p

10 vs Σs
30 3.74e-15 4.46e-13 3.93e-13

3 Σw
90 vs Σ

p

10 5.44e-13 6.42e-11 5.72e-11

4 Σ
p

10 vs Σ
p
ytd 2.04e-11 2.38e-09 2.14e-09

5 doy vs Σ
p

10 3.83e-11 4.44e-09 4.02e-09

6 Σ
p

10 vs p6 6.11e-11 7.02e-09 6.41e-09

7 Σ
p

90 vs Σ
p

10 9.70e-11 1.11e-08 1.02e-08

8 p1 vs Σr
180 1.32e-10 1.49e-08 1.38e-08

9 Σs
30 vs p1 1.06e-09 1.19e-07 1.11e-07

10 Σ
p

30 vs Σr
180 2.27e-08 2.52e-06 2.38e-06

11 Σ
p

10 vs p5 2.59e-08 2.85e-06 2.72e-06

12 Σh
180 vs Σr

180 2.59e-08 2.85e-06 2.72e-06

13 Σw
90 vs p1 5.01e-08 5.41e-06 5.26e-06

14 Σ
p

30 vs Σs
30 1.40e-07 1.50e-05 1.47e-05

15 Σs
30 vs Σh

180 1.59e-07 1.68e-05 1.67e-05

16 Σ
p

10 vs p4 2.04e-07 2.14e-05 2.14e-05

17 Σ
p

10 vs Σs
180 5.44e-07 5.66e-05 5.00e-05

18 p1 vs Σ
p
ytd 7.79e-07 8.02e-05 7.17e-05

19 doy vs p1 1.25e-06 1.27e-04 1.15e-04

20 p6 vs p1 1.77e-06 1.79e-04 1.63e-04

21 Σ
p

90 vs p1 2.49e-06 2.49e-04 2.29e-04

22 p2 vs Σr
180 3.91e-06 3.88e-04 3.60e-04

23 Σw
90 vs Σ

p

30 3.91e-06 3.88e-04 3.60e-04

24 Σw
90 vs Σh

180 4.38e-06 4.24e-04 4.03e-04

25 Σ
p

10 vs p 3 9.41e-06 9.03e-04 8.66e-04

26 p2 vs Σs
30 1.78e-05 0.00 0.00

27 Σ
p

30 vs Σ
p
ytd 4.03e-05 0.00 0.00

28 Σh
180 vs Σ

p
ytd 4.46e-05 0.00 0.00

29 doy vs Σ
p

30 6.00e-05 0.01 0.01

30 doy vs Σh
180 6.62e-05 0.01 0.01

31 Σ
p

30 vs p6 8.04e-05 0.01 0.01

32 p6 vs Σh
180 8.85e-05 0.01 0.01

33 Σ
p

90 vs Σ
p

30 1.07e-04 0.01 0.01

34 Σ
p

90 vs Σh
180 1.18e-04 0.01 0.01

35 p1 vs p5 1.42e-04 0.01 0.01

36 Σr
180 vs p 3 1.72e-04 0.01 0.01

37 p2 vs Σw
90 2.71e-04 0.02 0.02

38 p2 vs Σ
p

10 3.54e-04 0.03 0.03

39 p4 vs p1 5.97e-04 0.05 0.05

(setups B and C) are used, compared with the full set.
This provides evidence about the convenience of ignoring
redundant or noisy variables, which eases the predictive
capability of the model. However, this gain is not shown in
the R2 measure, which obtains as an average of 60% in setup
A compared with 60% in setup B and 55% in setup C. Given
the similarity of results between choosing 5 or 15 variables,

Table 4 Average RMSE in grains/m3 and R2 of the forecasted test
years studied at each location

Station RMSEA RMSEB RMSEC R2
A R2

B R2
C

Alcalá 5.75 5.69 5.80 0.58 0.54 0.51

Alcobendas 6.64 6.39 6.10 0.66 0.62 0.58

Aranjuez 3.83 3.76 3.81 0.54 0.51 0.49

Farmacia 3.71 3.63 3.63 0.67 0.65 0.59

Getafe 5.58 5.50 5.68 0.65 0.62 0.59

Leganés 5.48 5.15 5.11 0.59 0.64 0.52

Villalba 2.79 2.36 2.20 0.52 0.59 0.55

Average 4.82 4.64 4.64 0.60 0.60 0.55

there is still an open question on how to improve setup C,
which is objectively more convenient in terms of execution,
on those locations where it is less accurate than setup B.

On the other hand, through a close examination of the
results, we have identified some difficulties of the model
in capturing sudden peak pollen concentrations over 100
grains/m3 as can be seen in Fig. 4. Concretely, this sudden
extreme peaks increase RMSE to 10.06 grains/m3 at the
Faculty of Pharmacy (Farmacia) in 2013, while year 2009
produces a RMSE = 2.27 grains/m3. The reduced amount
of observed data with these characteristics explains the
difficulties of the model to identify the inner behavior
of the data when forecasting. However, this situation can
be mitigated by limiting airborne concentration levels,
imposing a threshold which substitutes the data points above
it (Navares and Aznarte 2016a). This limit should be related
to the concentration levels which are considered to be risky
for human health; for instance, symptoms appear over 30
grains/m3 in Finland and Croatia (Peternel et al. 2005;
Rantio-Lehtimäki et al. 1991), while in Spain, the first
symptoms are observed at 25 grains/m3 (Rodrı́guez-Rajo
et al. 1983).
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Fig. 4 Forecast (solid line) and observed (dashed) pollen concentra-
tion values for two years in the Faculty of Pharmacy (Farmacia)
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3.4 Optimizing predictions with reduced sets
of variables

In Section 3.3 we left an open question about how the setup
C, consisting of 5 variables, can be improved, knowing it is
the optimal configuration in terms of execution time and that
it does not significantly differ in accuracy from setup B (15
variables). Concretely, the following question is relevant: is
there a subset of 5 variables out of the 15 most important
variables which outperform setup B accuracies?

Although random forests are known to be in general
robust against overfitting, in the presence of correlated
features, strong features can obtain low scores and the
method can be indeed biased towards certain variables. For
this reason, the experiment in Section 3.1 was repeated
with a reduced set of 5 variables selected from the
results obtained in the nonparametric test from Section 3.2.
However, Fig. 3a showed that the 15 most important
variables showed a cluster structure based on the results of
Friedman test, which leads to the aforementioned question.
The idea here is to use the cluster structure to find
combinations of the 15 variables of setup B taken in groups
of 5 which minimize the model’s RMSE.

Of course, there are 3003 possible combinations of 15
variables taken in groups of 5, and this represents a high
burden of executions of the experiment if one wants to
explore them all. Thus, we propose to limit the number of
combinations in such a way that the cluster structure, and
the possible interactions between variables from different
clusters, is taken into account. Taking as a reference setup
C which includes the 5 most important variables, the idea
is to step by step increase the presence of variables with
lower importance by replacement in the original setup C.
Hence, a first group includes the 4 most important variables
from setup C while the fifth variable is replaced by one
from cluster #2. This is done a number of times equal
to the number of variables in cluster #2, resulting in the
execution of 7 models as the second cluster contains 7
variables. The second group reduces the representation of
the first cluster to 3 variables and increments the number
of variables selected from cluster #2 to 2. The number of
models executed is equal to the number of combinations

resulting from taking 3 variables from cluster #1 and 2
variables from cluster #2 (always keeping 5 as the total
number of variables). This logic is followed for subsequent
groups selecting the correspondent number of combined
variables per cluster as summarized in Fig. 3b.

As shown above, based on the pairwise comparison
test, 3 clusters were obtained as in Fig. 3a. Cluster #1
contains the 4 most important variables, cluster #2 the next 7
variables in importance, and cluster #3 the last 4. Notice we
excluded the least important variable from cluster #3 (Σs

180)
for direct comparison with setup B of 15 variables. Given the
restrictions mentioned, the groups of combinations explored
are those shown in Fig. 3b.

In that figure, nCk = (
n
k

) = n!
k!(n−k)! , being n the total

number of variables belonging to a cluster and k the number
of selected variables of the same cluster. The best results
obtained are shown in Table 5 along with the reference
benchmark, that is, represented by the best performing setup
from Section 3.3 in terms of accuracy (RMSE).

The results obtained support the initial statement of this
section about producing biased models when variables are
selected regarding only importance, as this rules out the
consideration that they might be related to each other.
Increasing the richness of the variable selection space, in
terms of including candidates from less important clusters
according to Friedman test, and consequently with statistical
evidence of differences, produces an increase of accuracy
across all locations. Table 5 shows that including at least
2 variables from cluster #2 or cluster #3 or both increases
accuracy by an average of 4%, with the largest increase of
7% in Getafe. Most of the improved results were obtained
from groups 3 and 4, which include combinations of
variables extracted from all the clusters considered, thus
diversifying the distribution of importances and avoiding
redundancies among the top-ranked variables.

4 Discussion

Automatic feature selection has been gaining relevance
in computer sciences and statistics since the end of last
century, when specific issues were published in specialized

Table 5 Comparison of the
benchmark RMSE in grains/m3

obtained from the best setup in
Section 3.3 with the best
performing combination along
with its constituent variables
and the test group they belong

Station Benchmark RMSEbest Group # Cluster #1 Cluster #2 Cluster #3

Alcalá 5.69 (B) 5.67 4 {p1, Σh
180} {p2, p5} Σr

180

Alcobendas 6.10 (C) 5.73 4 {Σp

10,p1} {p3, p4} p6

Aranjuez 3.76 (B) 3.65 4 {Σp

10,p1} {p2, p4} Σs
30

Farmacia 3.63 (C) 3.49 3 {Σp

10,p1, Σ
h
180} {p5} Σr

180

Getafe 5.50 (B) 5.11 4 {Σp

10,p1} {p4, p5} Σr
180

Leganés 5.11 (C) 4.95 3 {Σp

10,p1, Σ
h
180} {p4} Σs

30

Villalba 2.20 (C) 2.20 4 {Σp

10,p1} {p2, p5} p6
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journals, including many related papers (Blum and Langley
1997; Kohavi and John 1997). Numerous approaches and
extended literature exist on the topic (Bolón-Canedo et al.
2013), and there is no widespread agreement on a so-
called ”best method” as the solution is always domain
and problem specific. In this paper, we used the Friedman
nonparametric hypothesis test to support the conclusions
about our proposal selected as well as to provide statistical
evidence of the results.

As seen in Section 3, using the proposed approach makes
it possible to identify the most important variables for
one day-ahead airborne pollen concentrations forecasting.
Variable ranks obtained from the model (shown in Fig. 2)
are consistent with the rank-based nonparametric hypothesis
test, which provides statistical evidence of the findings
without any a priori assumption about the influence of each
climate or phenological feature.

The different geographical locations considered in the
study, which do not share the same climatic conditions,
prove the generalization abilites of the proposed approach,
which obtain stable variable ranks across the observation
stations. The dendrogram in Fig. 3a shows the expected
rank interchangeability among variables which belong to the
same cluster, being these clusters corroborated by a pairwise
comparison post hoc procedure, which provides statistical
evidence of the difference between pairs of variables.

Our approach identifies the previous day pollen observa-
tion and 10- and 30-day cumulative daily concentrations as
the most important features in one day-ahead pollen forecast.
In phenological studies, these features have been previ-
ously proved to serve as an indicator of the state of the
plant (Ribeiro et al. 2007; Smith and Emberlin 2006). From
the point of view of time series analysis, previous day
pollen observation is generally found to be a relevant vari-
able (Astray et al. 2016; Iglesias-Otero et al. 2015; Levetin
2014). Notwithstanding, there is weak evidence that 10-day
cumulative sum has a tendency to be the most influential
as it is the only variable in the top-ranked cluster which is
clearly set aside from the variables of next group (composed
by two- and three-day past pollen observations).

Along with these three variables, the model identifies
previous 180-day relative humidity accumulation as one of
the most influential features which is also in accordance
with the findings in Jones and Harrison (2004), Levetin
(2014), and Rodrı́guez-Rajo et al. (2004), as it promotes
plant growth during the development state and mitigates
pollen spread during release phase of the plant. Further-
more, relative humidity has more effect on airborne pollen
concentrations compared with 180-day rainfall accumula-
tion which is shown in cluster # 3 (Fig. 3a). This result
is inline with previous studies which show non signifi-
cant correlation between pollen concentrations and rain-
fall (Bartková-Scevková 2003) while humidity shows a

significant effect. Pollen grains release allergen due to
hydration which it becomes more intense before rainfalls
(Grote et al. 2001).

Even though Barnes et al. (2001) show a higher influence
of heavy rains on pollen concentrations when intradaily
measured only daily pollen counts were available for this
study, consequently, it was not possible to detemine intraday
strong weather conditions changes which have effects on
pollen concentrations (Barnes et al. 2001). For instance,
sporadic short heavy rains followed by long dry periods
within the day does not considerably change daily pollen
counts (Bartková-Scevková 2003).

The sensitivity analysis presented by Puc (2012) indi-
cates that the most influential variables to predict airborne
pollen concentrations are maximum daily temperature and
humidity, being minimum daily temperature ranked the least
influential. Since only daily average temperatures were used
in this proposal, there is a mitigation effect in terms of
maximun daily temperature influence. However, cumula-
tive solar radiation appears among the top most important
features computed (Table 2). A positive radiative forcing
involves climate warming and, as a result, an increase of
temperatures (Leanh and Rind 1998).

In Section 3.3, we applied three configurations based
on three sets of variables selected by importance from the
rankings. The results from setups B and C outperform the
initial model with 144 variables. This implies that removing
redundant or irrelevant features tend to improve model
performance both in accuracy and execution time. Given
the parity of results of these setups and to reduce model
complexity, in Section 3.4, we tested different combinations
of 5 variables selected among the 15 most important (setup
B). This mitigates redundancies among variables which do
not significantly differ according to Friedman test and, as
a result, improves both model accuracy and performance
(measured in execution time).

The accuracy of the results are comparable with other
studies such as Iglesias-Otero et al. (2015), who reports a
R2 of 0.66 compared to 0.60 in setup B and an average
of 0.55 from the experiments in Section 3.4. We believe
that optimizing the number of variables to select, instead
the arbitrary 5 or 15, would improve this metric. However,
Iglesias-Otero et al. (2015) used artificial neural networks,
which require substantial data preprocessing as the inputs
shall be limited when the number of training instances is not
large enough, increasing the number of assumptions to be
taken a priori. Not only does RF mitigate these drawbacks,
but also is considered more robust against overfitting.

When compared to similar algorithms, our proposal
outperforms the most accurate regression model among
those proposed by Csépe et al. (2014) which achieves a
RMSE of 28.26 using an implementation of regression trees.
With a RMSE of 4.17, RF reduces the estimation variance
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(and consequently the prediction error) due to the bagging
technique. Also, averaging the results through the LOO
approach provides more sound and general results compared
with predefined test sets, whose results rely on the specific
characteristics of the years selected.

The proposal presented in this paper has immediate
practical application as it is able to identify the top-ranked
variables producing satisfactory results. However, there are
some drawbacks which deserve further investigation: (1)
model error increases with the appearance of sudden high
concentrations levels, concretely those over 100 grains/m3,
given the reduced number of observations of this type.
However, this situation is persistent in most approaches
found in the literature. This circumstance can be addressed
by limiting the observations without altering the practicality
of the model by setting meaningful thresholds (Navares and
Aznarte 2016a, 2017). For instance, Rodrı́guez-Rajo et al.
(1983) conclude that first allergy symptoms in Spain are
reported over the risk threshold of 25 grains/m3, which
could be used as threshold. (2) There is an open question
about the number of variables which guarantee optimal
results.

In summary, we have presented statistical evidence that
the approach proposed in this paper identifies the most
important variables without any a priori assumptions over
their influence. Removing redundant and irrelevant features
improve model accuracy, being setup C with 5 variables
the best performer among the subset tested and producing
satisfactory results. Including a diverse subset of variables
avoid biased results due to the mitigation of redundancies,
thus improving the accuracy of the model.

5 Conclusions

The present study introduces a feature selection approach
for forecasting airborne pollen concentrations. Statistical
evidence of the consistency in identifying the most
important features is provided through nonparametric
hypothesis testing, using as a case study a one day-ahead
forecast of Plantago airborne concentrations in the region
of Madrid.

The results indicate that the proposed approach is a
valid and efficient way to rank independent variables in
the task of airborne pollen time series prediction. Precisely,
we have determinated that the cumulative sums of recent
pollen concentrations along with previous days pollen
observations are among the most important features. This
represents a data-driven confirmation of main findings from
phenological studies. Also, the influence of cumulative
daily relative humidity was shown as an important factor
during plant formation and pollen release state, which

coincides with the conclusions of previous researches based
on the influence of meteorological variables.

Furthermore, from this ranking of variables, it has been
shown how it is possible to build new, more parsimonious
models which produce better results than benchmark
approaches: by selecting the best set of independent
variables, we achieved a 3.5% average improvement across
locations with an average 50% reduction in execution times.
This effect, due to the elimination of redundancies and
irrelevant features, is to be expected in any regression
technique using the same set of variables, and, as shown, is
the main strength of our proposal when compared with other
techniques.
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Garcı́a-Mozo H, Chuine I, Aira M, Belmonte J, Bermejo D, de la
Guardia CD, Elvira B, Gutiérrez M, Rodrı́guez-Rajo J, Ruiz
L, Trigo M, Tormo R, Valencia R, Galán C (2008) Regional
phenological models for forecasting the start and peak of the
quercus pollen season in Spain. Agr Forest Meteorol 148:372–
380

Grote M, Vrtala S, Niederberger V, Wiermann R, Valenta R, Reichelt
R (2001) Release of allergen-bearing cytoplasm from hydrated
pollen: a mechanism common to a variety of grass (poaceae)
species revealed by electron microscopy. J Allergy Clin Immunol
108(1):109–115

Iglesias-Otero MA, Fernández-González M, Rodrı́guez-Caride D,
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Abstract
In the framework of extreme pollution concentrations being more and more frequent in many cities nowadays, air quality

forecasting is crucial to protect public health through the anticipation of unpopular measures like traffic restrictions. In this

work, we develop the core of a 48 h ahead forecasting system which is being deployed for the city of Madrid. To this end,

we investigate the predictive power of a set of neural network models, including several families of deep networks, applied

to the task of predicting nitrogen dioxide concentrations in an urban environment. Careful feature engineering on a set of

related magnitudes as meteorology and traffic has proven useful, and we have coupled these neural models with mesoscale

numerical pollution forecasts, which improve precision by up to 10%. The experiments show that some neural networks

and ensembles consistently outperform the reference models, particularly improving the Naive model’s results from around

(20%) up to (57%) for longer forecasting horizons. However, results also reveal that deeper networks are not particularly

better than shallow ones in this setting.

Keywords Neural networks � Deep learning � Air quality � Nitrogen dioxide � Forecasting � Madrid

1 Introduction

Air pollution is an increasingly worrying health problem in

many urban regions of the world. Various studies have

linked the exposure to high air pollution levels with a

number of short-term and long-term dangerous effects [1].

One of the pollutants that is causing a greater deal of

concern is nitrogen dioxide (NO2). It is a pollutant linked

mostly to traffic emissions and industrial activities [2–4]. In

many cities, including Madrid, governments are imple-

menting alert systems that enforce traffic restrictions when

NO2 levels are high [5]. In this context, NO2 concentra-

tions forecasting and early warnings about upcoming

restrictions are of high importance, making it possible to

timely alert the general public, which can in turn adapt its

mobility plans accordingly.

Machine learning, and especially artificial neural net-

works (ANN), is increasingly popular alternatives to clas-

sic statistical methods for time-series forecasting.

Additionally, with the availability of more powerful com-

puter processing units, deep architectures of ANN are

becoming more appealing [6]. The literature on this issue is

vast, being the applications to the particular field of air

quality forecasting less common, albeit the interest is

growing at a fast pace. The previous approaches range from

simple multi-layer perceptrons to stacking of complex

networks, and most of them deal with the prediction of

particulate matter or ozone, while NO2 is less frequently

considered [7–15]. Applications of deep neural networks to

this particular problem are starting to bloom, but the lit-

erature is still scarce [16].

In order to predict air quality, meteorologists and

physicists rely on numerical weather predictions coupled

with a chemical layer which takes into account the emis-

sions of pollutants and their interactions within the atmo-

sphere. This approach uses complex models of the

atmosphere, and it produces numerical pollution forecasts

[17] in a regional or continental scale (thus the term

‘‘mesoscale’’ models, as opposed to global models). An
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example of such models is the regional air quality predic-

tions of the Copernicus Atmosphere Monitoring Service

(CAMS) from the European Centre for Medium-Range

Weather Forecasts (ECMWF) [18, 19]. These predictions

are based on seven regional numerical air quality models,

which consider meteorological parameters settings,

boundary conditions for chemical species and emissions

inventories. Given that they are designed to model rela-

tively large parts of the atmosphere, the spatial resolution

of these models is too low as to properly infer the local

conditions in the streets of a given city, but it remains to be

seen if this data source can be used as a predictor for local

models (in the spirit of the downscaling models routinely

applied in meteorology).

However, in order to downscale regional numerical

pollution predictions into local forecasts, a clear picture of

the local conditions is needed. In this case, it is known that

NO2 concentrations are closely related to several other time

series which correlate with it. Locally recorded features

including meteorology (temperature, humidity and simi-

lar), traffic (traffic intensity, speed, etc.) and the concen-

trations for other pollutants (CO, SO2, NO) should then be

incorporated to the forecasting system.

Our general objective is to design an operational fore-

casting system for the city of Madrid which predicts hourly

values of NO2 concentrations up to 48 h ahead. This sys-

tem must provide efficient and sound forecasts able to raise

early warnings regarding air quality. Through the experi-

ments presented in this paper, we intend to investigate the

predictive performance of several types of neural networks

and ensembles, comparing them with the ECMWF regional

model and other statistical learning models. We also

intended to identify which predictors are the most relevant

and, particularly, if the use of numerical pollution predic-

tions might improve the performance of local models.

To the best of our knowledge, there are no previous

thorough comparisons of neural network-based models to

predict NO2 concentrations. Furthermore, the usefulness of

the numerical pollution predictions produced by the

ECMWF as a predictor in this framework has not been

studied. Finally, another minor contribution of our work is

the modified version of a sequential backward feature

selection algorithm which has proven useful to reduce the

dimensionality while increasing the performance of the

models.

The rest of the paper is organised as follows. After this

introduction, we present the available data set in Sect. 2. In

Sect. 3, we move on to describe how the features have been

engineered, and how we ranked and selected the available

features by their relative importance. After that, in Sect. 4,

we introduce the chosen models and compare them with

other forecasting approaches. The paper ends with con-

clusions on the achievements, the insights gained from the

work done so far and the plans for the future development

of the forecasting system.

2 Data description

The available data consist of the following sets:

2.1 Pollution data

The city of Madrid has an atmospheric pollution monitor-

ing system which consists of 24 measuring stations around

the city. The data collected through this monitoring system

are made publicly available on the open data website of the

Municipality of Madrid [20]. From there, we obtained the

average hourly values of NO2 concentrations (in l gm�3)

at the measuring station of Plaza de España. The selected

data set consists of the data collected in the period from 1

January 2013 until 25 December 2015, both days included.

2.2 Meteorological data

The second relevant data set available consists of meteo-

rological variables. Some of the 24 measuring stations in

the aforementioned atmospheric pollution monitoring sys-

tem record values of certain meteorological variables as

well. For the selected station, we have the hourly values of

average temperature, wind speed, accumulated precipita-

tion and relative humidity. Related studies show that

meteorological variables correlate with NO2 concentrations

and can therefore improve the accuracy of forecasting

models [7, 8, 15, 21]. Thus, we decided to include them in

our data set and study their relative importance.

2.3 Other pollutants

In addition to recording levels of NO2 in the air, the

measuring station at Plaza de España also monitors the

levels of carbon monoxide (CO), sulphur dioxide (SO2)

and nitrogen monoxide (NO). Even though these pollutants

are not the primary object of interest in this study, there is

evidence that their concentrations correlate with the con-

centration of NO2 [21, 22]. Hence, we decided that they

could also be useful predictors for NO2 concentration.

2.4 Traffic data

Traffic data are also available in the open data website of

the Municipality of Madrid [20]. The city has a network of

3613 measuring points around the city which register a

number of traffic variables: intensity, road occupation and

average velocity of the vehicles, among other. The data are
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recorded and integrated over periods of 15 min. We

aggregated it into hourly time stamps to adjust it with the

rest of the available series. Among the different recorded

variables, we selected traffic intensity, which is expressed

as the number of vehicles over the observed time period. It

would be interesting to include the average velocity as

well; however, this data are not available for the observed

location. We deem this data to be potentially useful for the

prediction of NO2 concentrations because of the fact that

traffic emissions highly influence the NO2 levels [15, 21].

Since the series in this data set are quite scarce and

present many missing data points, and since the traffic

monitoring network is very dense (having ten times more

measuring points than the pollution monitoring network),

we took into account six monitoring stations in the prox-

imity of the air quality measuring station (the busy streets

surrounding it). The measurements from those six stations

have been united into a new traffic indicator by averaging

the data points from the observed stations. This way we

obtained a new time series which serves as a representation

of the traffic situation around the NO2 measuring station.

2.5 Numerical pollution predictions

As mentioned above, one of our goals is to explore the

usefulness of regional numerical pollution predictions in

designing local forecasting systems. We considered fore-

casts from the ensemble model of the Copernicus Atmo-

sphere Monitoring Service, which are produced up to 96 h

ahead by the European Centre for Medium-Range Weather

Forecasts (ECMWF) [18, 19].

We used these forecasts for the period 1 January

2013–25 November 2015. These forecasts are produced in

a continental scale and are based on seven state-of-the-art

numerical air quality models developed in seven European

countries. The ensemble model takes forecasts of the seven

air quality models and combines them by calculating their

median value. This results, on average, in better air pol-

lutant concentration forecasts than each individual model.

The time resolution of the ensemble model is 1 h, and

the spatial resolution is 0.1�. New forecasts are published

every 24 h, and the data are forecast for the surface level

and up to 5000 m above it, although we used only the

surface forecasts.

2.6 Missing data

The quality of the available data is deteriorated by missing

data points and invalid measurements. For the latter, in the

data set of the historical NO2 values, the data provider

specifically flagged some data points as invalid. In addi-

tion, certain data samples are missing from the hourly time

series (which sometimes turn out to be even whole days).

The reason for missing and invalid data samples is usually

faults or malfunctions in the sensors or in the telecom-

munications system.

We decided to exclude from the final data set the days

when two data points are not valid. If there were up to two

missing/invalid data points in a day, we performed linear

interpolation to recover them. The reason we chose this

approach is the shape of NO2 hourly concentrations signal:

it changes fairly slowly throughout the day, and, observed

locally, it can be approximated well with linear

interpolation.

The final data set comprises of the data points from 902

days, out of a total of 1059 day in the observed period. That

means that around 15% of data is missing due to invalid or

unrecorded measurements.

2.7 Exploratory data analysis

As stated above, the series under study consist of hourly

data samples. Let us first introduce the notation we are

going to use throughout this text. We say that for some

time series yt of observed values at the time t; ŷðtþhÞ is the

forecast of the value of y at the time t þ h. We call the

natural number h the forecasting horizon, measured in

hours in our case.

In Fig. 1, we can observe the characteristics of hourly,

daily and monthly variations in concentrations of our NO2

measures. These observations are helpful in creating the

initial set of input features. Looking at hourly averages, we

can observe two peaks in NO2 concentrations that happen

on an average day: one around 9 a.m. and other around

9 p.m. Intuitively, these peaks correspond to the traffic rush

hours that happen around that time. The lowest NO2 con-

centrations are recorded in the night time from 1 a.m. until

5 a.m. when the traffic intensity is at its lowest.

Looking at the distribution of hourly NO2 concentra-

tions shown by months, we note that winter months have,

on average, slightly higher hourly concentrations of NO2

than summer months. This is in accordance with some

previous studies [10] that have shown that warm, dry

weather decreases the concentration of NO2. In the case of

Madrid, a key issue is the stability of the atmosphere when

winter anticyclones are over the Spanish peninsula.

Observing the hourly NO2 levels by days of the week,

we can see that they decrease during weekends, and that in

general, Fridays have the highest average NO2 concentra-

tions. Again, it is possible to draw a parallel between these

observations and the traffic activities around our air quality

measuring station.

Upon this analysis, we decided to introduce additional

dummy variables of hour of the day (‘‘hod’’), day of the

week (‘‘dow’’), day of the year (‘‘doy’’) and type of day
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(‘‘tod’’), a categorical variable distinguishing between

workdays, Saturdays and Sundays or public holidays.

These variables encode time-related parameters of the

observed series, and they are explicitly fed as additional

features into the models in order to help them learn time

dependencies.

Next, we studied the correlation dependency between

the time series of NO2 concentrations and meteorological

variables, other observed pollutants, CAMS ensemble

forecasts and traffic intensity. We calculated the Pearson

correlation coefficient to examine the linear correlation

between the hourly NO2 levels and Spearman correlation

coefficient to measure the monotonic relationship between

two time series.

From Table 1, we can observe that NO2 levels correlate

the strongest with wind speed (negative correlation), other

pollutants, CAMS forecasts and traffic intensity (positive

correlation, as one might expect). It is weakly and nega-

tively correlated with the hourly average temperature, with

rainfall and relative humidity being the weakest correlated

variables with NO2 levels.

Below, we show how a feature ranking process is cap-

able of giving us a more detailed insight on the importance

of each feature.

2.8 Evaluation criteria

In order to asses the accuracy of our forecasting models, we

used the root-mean-squared error (RMSE) and mean bias

as defined in [15]. These measures have been estimated

using a tenfold cross-validation method.

3 Feature engineering

This section describes how the features were extracted

from the data set, and it presents the analysis of the feature

importance and the algorithm for the elimination of fea-

tures that reduces the forecasting error. All models are

trained for six forecasting horizons: h 2 f1; 2; 6; 12;
24; 48g.

3.1 Feature extraction

While constructing the initial set of input features, we

relied on the observations from the exploratory analysis of

the data, on findings in related works and on knowledge of

urban emissions of NO2 [1, 15, 21, 22].

For each available time series in our data set, the rele-

vant past samples for each forecasting horizon h were

selected. For instance, if we were to build a forecasting

model that will be run at the time t with h ¼ 12, one of the

relevant NO2 concentrations for this task is the one at

t � 12. This follows from observing that the hourly NO2

concentrations series can be seen as a quasi-periodical

signal with a period of 24 h, as well as from looking into

the correlation between the NO2 levels at the times t and

t � 12.

When it comes to forecast from the CAMS ensemble

model, considering that their data points belong to a spatial

grid with a resolution of 0.1�, we took nine points that form

the neighbourhood of our observing site. We tried experi-

menting with bigger and smaller neighbourhoods,

Fig. 1 Distribution of NO2 concentrations considering the hour, the month and the day of the week (week starts on Monday)

Table 1 Correlation between NO2 (with no lag) and other variables

Coefficient Temperature Wind Rainfall Humidity CO NO SO2 CAMS Traffic intensity

Pearson - 0.107 - 0.346 - 0.009 - 0.022 0.708 0.634 0.352 0.576 0.287

Spearman - 0.115 - 0.421 - 0.010 0.010 0.787 0.753 0.567 0.575 0.316
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including solely one point on the grid (the one closest to the

coordinates of the air quality station), but the model with

the neighbourhood produced the smallest errors. The

ECMWF publishes new forecasts every 24 h ahead, and we

included only the freshest forecasts as features.

All features have been re-scaled into the range ½0; 1� to
allow for faster convergence.

3.2 Feature ranking and selection

In addition to forecasting the levels of NO2 concentrations,

we are interested in gaining insight into the importance of

the selected features. In order to rank them according to

their relative importance, we used a random forest of 100

decision trees. Decision trees are a natural model for this

task since they inherently rank the features by their

importance every time a split is performed according to the

function that measures the quality of splits [23, 24]. As the

splitting criterion, we took the mean squared error. The

feature rankings can then be easily obtained by weighing

the improvements in the criterion in all the nodes where the

feature appears as a splitter. At the end of this process, each

feature ends up with a score determining its relative rank.

Furthermore, we used the ranked features to determine

whether there exists a subset of initially engineered fea-

tures that yields better accuracy (lower generalisation

error). For this purpose, we implemented a slightly modi-

fied version of a sequential backward feature selection

algorithm [24]. The algorithm relies on a so-called wrapper

method in which different subsets of features are tried out

on a machine learning model (neural networks in our case),

and the accuracy is measured, while the algorithm searches

for the combination of features that gives the lowest gen-

eralisation error. The search is performed by finding the

threshold score such that all the eliminated features (the

ones with a lower score than the threshold) give a higher

RMSE on the validation data set when being used to train

the neural network. In our experiments, it turned out that

eliminating all the rain variables yields better generalisa-

tion error.

Known benefits of feature selection are reducing com-

putation time, improving prediction performance by

removing irrelevant and redundant features, improving the

generalisation capability of the model and facilitating

understanding of the data [24]. In comparison with prin-

cipal component analysis (PCA) [25], which reduces the

initial dimensionality of the set of features by exploiting

their linear dependencies and creating a new set of

uncorrelated features, feature selection simply filters out

redundant features from the original set. The benefits of a

wrapper method of feature selection over PCA are: greater

transparency by keeping original features intact, further

insights about the importance of each of the engineered

features, taking into account the target value when esti-

mating predictive power of features and not relying only on

a linear relationship between the features. Moreover, our

hand-engineered set of features does not suffer from high

dimensionality problem, and thus, in our application, we

benefit more from feature selection and ranking than PCA

method.

However, one of the disadvantages of ranking features

with random forests is that, when it comes to correlated

features, after choosing one of them, the importance of the

other ones is significantly reduced. Furthermore, the algo-

rithm of backward feature selection is computationally

very expensive, and for that reason, we applied it only

using one model of shallow FNN. The selected features

were then used for all other models for a fair comparison

between them.

In Table 2, we present the 12 most important features as

ranked by this method, for three forecasting horizons:

h 2 f1; 12; 48g. The algorithm was run several times, and it

proved to give consistent results throughout the runs. We

note how the importance of predictors changes when we

compare shorter-term (1 h) to longer-term (48 h) forecast.

For h ¼ 1; the current value of NO2, as well as other

pollutants (CO, NO), seems to play an important role,

whereas when h ¼ 48 the different neighbouring CAMS

points and the features encoding the time parameters (such

as hour of the day, type of the day and day of the year)

seem to gain on importance. Intuitively, as we predict

further into the future, the current conditions are less

important and the general common characteristics of the

Table 2 Ranking of the most important features according to their

relative importance, for horizons 1, 12 and 48

Rank 1 12 48

Forecasting horizon

1 no2(0) cams7 hod

2 no2(1) cams4 no2(0)

3 co(0) cams3 cams4

4 cams1 no2(12) cams7

5 cams7 cams1 tod

6 no(0) cams6 cams3

7 cams4 hod cams6

8 cams3 no2(13) no2(96)

9 hod cams9 no2(1)

10 cams6 tod cams1

11 cams9 traffic(13) no2(24)

12 no2(2) traffic(12) doy

The number in parenthesis is the number of lag hours from the run-

time of the forecast
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forecast moment convey more information useful for the

prediction.

4 Results and discussion

As discussed in [26], and mentioned above, the training

examples were shuffled following a uniform distribution

and divided into tenfold in order to apply cross-validation.

Considering the stochastic nature of some models, we ran

the training algorithm five times for each fold and averaged

the results from the runs.

4.1 Reference models

In order to compare the results of the neural networks, we

selected other benchmarking models:

• Naive predictor Also known as random walk is a family

of predictors that simply take a past value and assign it

to a forecast. They are a good ground estimate for

benchmarking the performance of other algorithms. In

our case, the Naive predictor forecasts the NO2 level at

the time t þ h by taking the value at the current time t:

ŷtþh ¼ yt, for y being the NO2 concentration.

• CAMS This model takes the predictions from the

CAMS ensemble model, selects the eight-neighbour-

hood of the observed site and produces a forecast as the

average of the eight CAMS neighbours. It is important

to note that it is not possible to estimate the k-hours

ahead forecast for every k 2 ½1; 48� due to the fact that

the new forecasts in CAMS are not published on hourly

basis, but every 24 h. The consequence is that our

estimate is equal for every k 2 f1; 2; 6; 12; 24g, and it

differs only for k ¼ 48 where we used 2 day old

forecasts from the CAMS ensemble model.

• Linear regression (LinReg) with l2 penalty function has

been used to compare linear with nonlinear forecasting

methods [27].

4.2 Shallow feed-forward artificial neural
networks

The shallow ANN we are using is a fully connected multi-

layer perceptron that has an input layer, an output layer and

one hidden layer. In the process of tuning the ANN, the

oldest sample has been chosen experimentally, from the set

of f24; 48; 72; 96; 120g h before the time of forecast. The

data samples older than three days did not improve the

forecasting accuracy of the ANN.

The optimisation algorithm we used for training the

network is adaptive moment estimation (ADAM) [28],

with a learning rate experimentally set to 10�4 and mean

squared error as loss function. Over time, ADAM has

become a widespread optimiser in ML application as it has

been empirically shown to outperform other available

optimisers when training neural nets, as it combines two

great ideas of deep learning: RMSprop and momentum

[29]. We have chosen it here due to its demonstrated

efficiency. Furthermore, early stopping method and l2-

regularisation, which adds a squared magnitude of coeffi-

cients as a penalty term to loss function, were also applied.

Since the l2-regularisation is very sensitive to the used

regularisation parameter, we tuned the model with respect

to that hyper-parameter as well.

Early stopping was implemented by monitoring the

value of the loss function on the validation data set and

stopping the training if the monitored value did not change

for at least 1�6 after 20 iterations in one run of the opti-

misation algorithm.

In Fig. 2, we show the performance of three common

optimisers: ADAM, RMSprop [29] and stochastic gradient

descent (SGD) [29], on the training data set, across a range

of learning rates: f0:005; 0:0001; 0:000005g. As early

stopping has been used, training has either been performed

for 500 epochs (maximum number of epochs set in this

example) or interrupted according to the stopping criterion.

As can be seen, RMSprop and ADAM have similar per-

formances, with ADAM performing visibly better at lower

values of learning rate, while SGD exhibits an inferior

performance. We have chosen the learning rate of 10�4 as

it gave us the most satisfying ratio between accuracy and

speed of convergence: higher values do not achieve the

desired accuracy, while further lowering of the learning

rate slows down the training without tangibly improving

the performance.

In Fig. 3, we show the convergence of the loss function

on both training and validation data sets, for onefold and

the chosen learning rate 10�4. SGD (Fig. 3c) has the

smoothest cost function, but the longest computation time,

and it achieves far inferior error rate. ADAM (Fig. 3a)

takes a bit longer to train the network than RMSprop

(Fig. 3b), but provides a smoother loss function on the test

data. The difference in their error rates across all the

experiments we performed is almost negligible. After

performing this analysis, we decided to continue our

experiments using ADAM optimiser.

To speed up the convergence of the optimisation algo-

rithm, mini-batch training was used with the size of the

batch set to 100. The number of training epochs was lim-

ited to 500, but in most cases, the network training came to

halt before that number was reached due to early stopping.

The activation function chosen in the hidden layer was

the rectifier linear unit (ReLu), and in the output layer, the
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hyperbolic tangent function. Substituting ReLu with a

hyperbolic tangent function in the last layer has given as a

much smoother convergence of cost function and an

overall better performance.

Finally, the number of neurons in the hidden layer has

been chosen experimentally so that the neural network does

not over-fit. In every case, we tried a range of values,

capped at the number of input dimensions and settled at the

one that gave the lowest error (RMSE), which was

achieved with 85 neurons in the hidden layer. The ANN

was implemented using the Keras library for Python [30].

4.3 Deep feed-forward neural networks

With the intention to check if they improved on the results

obtained by the shallow feed-forward network, we decided

to test out deeper configurations. We experimented with

gradually increasing the depth of the network. The deep

networks inherited the characteristics of the aforemen-

tioned shallow network: early stopping, l2-regularisation,

adaptive moment estimation with the same learning rate

and mini-batch training. All hidden layers use rectifier

linear units, and the output layer uses the hyperbolic tan-

gent activation function.

Experiments with deeper networks have shown that the

gradual increase in depth can provide us a better fore-

casting accuracy . We succeeded in developing deeper

models that reduced the generalisation error while keeping

the number of neurons in each hidden layer relatively

small. (The results shown were achieved with 45–60 neu-

rons per hidden layer.) The improvement over the shallow

neural network’s error is not overwhelming, but it is

noticeable. Furthermore, the shallow neural network per-

forms comparably to the deep ones for smaller values of

forecasting horizons, but the benefit of the deeper ANN is

more significant at higher forecasting horizons (concretely,

from 1:7% smaller RMSE for h ¼ 12 up to 2:1% for h ¼
48 ). The reason for this is that, given the persistence of the

series, the 1-h ahead forecast of NO2 concentrations is not

a very difficult problem and all models, including the

Naive model, perform comparably.

Deeper architectures, using more than three layers, did

not improve the generalisation error. We experimented

with architectures of up to 20 hidden layers. In the process,

we experimented with various network topologies and

observed that, in terms of the number of neurons in each

hidden layer, the hourglass topology (decreasing and then

again increasing number of neurons per layers) performs

slightly better than other ones we tried (although all were

giving comparable results).

This can be seen in Fig. 4 where we show the RMSE on

the validation test for 1, 2, 3, 5, 10, 15 and 20 hidden layers

used. The error (RMSE) on the validation data set even

increases slightly when more than three hidden layers are

(a) (b) (c)

Fig. 2 Comparison of optimisers: ADAM, RMSprop and SGD, across varying learning rates, training data

(a) (b) (c)

Fig. 3 Loss function on training and validation data set, for ADAM, RMSprop and SGD and learning rate = 0.0001

Neural Computing and Applications

123



used. Figure 4 shows the error for forecasting horizons of 1

and 12 h only since the behaviour similar across all fore-

casting horizons.

4.4 Long short-term memory neural networks

We also tested a recurrent neural network-based model

known as long short-term memory (LSTM) [31]. An LSTM

unit possesses self-loops which enable the flow of the

gradient for long durations, enabling it to deal with the

vanishing gradient problem. Together with an input gate,

an output gate and a forget gate, this architecture models

the short-term memory that allows the network to learn

over many time steps. Thanks to that, they are suitable for

forecasting time series.

Since the sequences that we are using for training have

different lengths (for example, the NO2 sequence is longer

than the other ones), we used zero-padding on shorter

sequences. The time delay was determined by the length of

the NO2 sequence. During the building phase, one or more

feed-forward layers were added after the LSTM layer.

However, the best accuracy was obtained with only one

layer after the LSTM. The results obtained compare

favourably to the ones obtained with deep feed-forward

networks.

Furthermore, we experimented with deeper architectures

of LSTM and a bidirectional LSTM. The deeper architec-

ture of LSTM consisted of three layers, with the number of

neurons in each layer being 60–20–10. A bidirectional

LSTM was applied so that the input can be run in two

directions: one from past samples towards the future ones

and the other one that goes in the opposite direction, from

the future samples to the past ones. Running the input in

two ways gives us the ability to have two hidden states, in

no way communicating with each other, combining the

information from the past and the future in any point in

time.

4.5 Convolutional neural network

Convolutional neural networks (CNN) [32] differ from

feed-forwards neural networks mainly by the existence of

convolutional layers, which are hidden layers that utilise

the power of mathematical convolution to transform inputs.

Convolution allows for the encoding of the local properties

of the input in such a way that propagates the information

in a more efficient manner.

In the case of high-dimensional inputs, it can be

impractical to fully connect all hidden layers and in such

cases, CNN can be used to connect to reduce the size of the

inputs. Reducing the size of the input is done by applying

filters of reasonable size to perform convolution in con-

volutional layers.

In the selected one-dimensional CNN, a filter is com-

posed of a subset of input features. The convolutional

layers are then down-sampled by the pooling layers, which

further alleviates the computational burden. Finally, the

pooling layer is fully connected to ten ReLU neurons

which are then passed to the output layer. The proposed

one-dimensional CNN uses 32 filters of size 5 which are

connected to a max pool layer of size 2.

4.6 Ensemble models

Lastly, we turned to the meta-learning approach of

ensembling single learners’ forecasts to improve the

accuracy of our forecasting system [33]. We fed the fore-

casts obtained from all single learners but Naive and

CAMS models into a meta-learner. From our experiments,

the averaging model and weighted average model (‘Me-

taAvg’ and ‘MetaWAvg’, respectively) employed as meta-

learners clearly improve the generalisation error. We tried

also ensembling through decision trees, linear regression

and FNN as meta-learners, but we did not find an archi-

tecture that would outperform the best single model out of

the developed ones. The weights of the weighted average

were calculated using RMSE of the single learners in such

a way they are inversely proportional to the RMSE of a

learner.

4.7 Discussion of the experimental results

Figure 5 and Table 3 show the root-mean-squared error and

mean bias obtained with all the developed models for

several forecasting horizons. Naive and CAMS models,

shown in the table, were excluded from the figure so to

place the focus on the advanced models.

Fig. 4 RMSE on the validation data set versus number of hidden

layers used in FNN
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At the lower forecasting horizons such as h ¼ 1, the

performance of the models is comparable. As mentioned

above, when the forecasting horizon grows, deep neural

networks slightly outperform shallow ones. Looking at

RMSE, we can see that our deep learning system managed

to improve the baseline prediction given by the Naive

model for around 20% for the 1-h ahead prediction, 23%
for the 48-h ahead prediction, while the biggest improve-

ment of approximately 56% was achieved for the 6-h ahead

prediction. The explanation lies in the fact that the fore-

casting horizon of 6 h (and similar ones) is specifically

difficult for models such as the Naive predictor and linear

regression because of the 24 h quasi-period of the NO2

signal. Using the weighted average learner as a meta-

learner, the performance was boosted up for additional 1.5–

2.5%, depending on h.

In terms of bias, the less biased model is the Naive, as

expected. This fact is related to the bias–variance trade-off

[34], which explains that optimising variance-based error

measures (as RMSE) is incompatible with optimising bias-

based measures (as MB). However, it is remarkable that the

neural network models, shallow and deep, obtain small

absolute values for MB as well as for RMSE, whereas the

LSTM gets bigger values for MB. It is also interesting to

note how the ensembling methods get higher values of MB

than some of its constituents.

Interestingly, bidirectionality in the LSTM model does

not introduce any benefit in the forecasting performance.

Due to the nature of this problem, LSTM in this context

does not seem to learn any information by passing the input

in two different directions. Moreover, other more complex

models such as deeper LSTM and CNN did not manage to

outperform simpler or shallower models. Likewise, deeper

neural networks (with up to 20 hidden layers) do not

introduce any benefit either. As a matter of fact, the error

seems to slightly increase already after using more than

three hidden layers in an ANN. It is an effect that has been

noticed before in practical machine learning [6]. We sus-

pect reasons for not being able to get better performance

with more complex machine learning algorithms to lie in

the fact that we have at our disposal a fairly small number

of training examples. Indeed, we experimented with only

3 years of data, which in the era of deep learning does not

represent a very large data set. To confirm our hypothesis,

we would need to repeat the experiments on a larger data

set, which we hope obtain.

Ensembles of models do outperform any single ML

model, with no big differences between the simple average

and weighted average model. However, even when taking

out results of more complex models (such as BiLSTM or

CNN), the performance of the ensemble model does not

change much.

Comparing algorithm performances is not a trivial task

even if error metrics can be computed. In order to provide

statistical evidence to the evaluation of the results, a non-

parametric Friedman rank test [35] is applied over the

RMSE of each algorithm at each forecast horizon with a

post hoc procedure as described in [36]. Since Friedman’s

null hypothesis of equality of medians is rejected (Table 4),

the post hoc pairwise comparison was carried out to

compare the algorithms. Table 5 shows there is strong

evidence of differences in the performance of the group of

algorithms composed by the ensemble (MetaWAvg and

MetaAvg), the neural networks (Deep2L and Deep3L) and

BiLSTM represented in the hypotheses 1–10 and the group

composed by the Naive approach, Linear Regression and

CAMS. Since the first group of algorithms outperforms the

second, we can state that there is strong evidence of better

forecasting capabilities when those models are applied to

this problem. With regard to the remaining group, and

applying the logical relation between the combination of

the pairwise comparison proposed by [37], we can say that

if the aforementioned outperforming group predicts better

than the Naive group, it is not possible that the outper-

forming algorithms perform as good as the remaining and

the remaining algorithms do not differ, in terms of RMSE,

from the Naive algorithms. Consequently, it can be stated

that MetaWAvg, MetaAvg, Deep2L, Deep3L and BiLSTM

perform better than the other proposals.

Ultimately, we can conclude that, when taking into

account computational resources and forecasting power of

our model, the most satisfying algorithms for practical

matters are ANN with up to three hidden layers.

Fig. 5 Root-mean-squared error and mean bias versus forecasting

horizon for the implemented models
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4.8 Reproducibility

The source code implementing the models described and

the data frames used in experiments are available in [38].

5 Summary and conclusion

In this paper, we presented the core of a NO2 forecasting

system currently being developed for the Municipality of

Madrid. Its main purpose is to assist in the decision-making

process about the introduction of traffic restrictions in order

to fight the air pollution problem. We presented results

from a set of predictive models on a selected subset of

forecasting horizons from 1 to 48 h. We also studied the

relative importance of the predictors to determine those

that contribute the most in reducing the generalisation

error.

Our experiments show that, for 1 h ahead forecasting,

linear models are comparable to more advanced nonlinear

ones. However, as h grows and the forecasting problem

becomes more difficult, neural networks outperform the

other considered learners. Furthermore, our experiments

show that increasing the depth of neural networks above

three hidden layers does not seem to help in a decisive

manner. The computation takes much longer, and it does

not provide a consistently better generalisation error.

Neural networks with LSTM layers gave us results com-

parable to feed-forward ANN, while providing a more

elegant way to deal with time series albeit suffering from

higher bias. The meta-learning approach of ensembling

single learners proved to be another promising approach,

Table 3 Test set evaluation

results of the considered models

for different forecasting

horizons

Model Forecasting horizon

1 2 6 12 24 48

RMSE

Naive 13.01 20.64 33.91 29.69 25.53 29.18

CAMS 25.39 – – – – 28.95

LinReg 10.79 15.37 18.44 17.79 17.95 21.42

ANN 10.39 13.41 15.23 15.54 15.90 19.22

Deep2L 10.41 13.48 14.94 15.27 15.56 19.06

Deep3L 10.41 13.47 14.86 15.10 15.51 18.84

Deep10L 10.48 13.57 15.23 15.48 15.84 19.69

Deep20L 10.48 13.79 15.21 16.69 15.75 19.56

LSTM 10.24 13.46 14.97 15.31 15.95 19.75

DeepLSTM 10.22 13.36 15.05 15.27 15.70 19.15

BiLSTM 10.43 13.44 14.97 15.27 15.94 19.94

CNN 10.36 13.40 15.29 15.65 15.96 19.83

MetaAvg 10.07 13.03 14.53 14.75 15.09 18.51

MetaWAvg 10.07 13.01 14.52 14.74 15.08 18.50

Mean bias

Naive - 0.01 - 0.01 - 0.01 - 0.02 - 0.01 - 0.02

CAMS - 13.88 – – – – - 13.94

LinReg - 0.29 - 0.52 - 0.41 - 0.27 - 0.34 - 0.40

ANN - 0.13 - 0.05 - 0.09 - 0.01 0.04 0.15

Deep2L 0.05 0.03 - 0.14 - 0.03 - 0.27 - 0.19

Deep3L 0.01 0.08 - 0.01 0.06 - 0.36 - 0.06

Deep10L - 0.34 - 0.48 0.69 - 0.41 - 0.62 0.15

Deep20L 0.05 0.12 0.15 - 0.03 0.34 0.19

LSTM - 0.21 0.15 - 0.79 - 0.73 - 2.75 - 1.06

DeepLSTM 0.08 0.42 0.52 - 0.32 - 2.54 - 0.001

BiLSTM - 1.36 - 0.97 - 1.52 0.09 0.05 0.58

CNN 0.08 - 0.36 0.02 0.71 0.52 - 0.26

MetaAvg 0.35 0.44 0.32 0.38 - 0.23 0.001

MetaWAvg 0.34 0.44 0.31 0.37 - 0.24 - 0.005

In boldface, best results for each horizon
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boosting the performance of our system up to an overall

2% in RMSE.

We also showed how the relative importance of the

predictors differs for three selected forecasting horizons: 1,

12 and 48 h and implemented an algorithm for backward

feature removal. For all the forecasting horizons we stud-

ied, the CAMS numerical pollution predictions tend to be

one of the most important features included. Indeed,

removing these inputs from the feature set of a neural

network resulted in an increase in the RMSE of about

5–10% on average. The comparison of the neural network

models with the raw CAMS predictions shows how cou-

pling global forecasts with the parameters describing the

local meteorological and traffic conditions can definitely

improve forecasting accuracy.

Finally, our results indicate the importance of data

engineering, especially in projects where a very large set of

data is not available. In other words, when there is a very

large training data set, focus can be placed on developing

complex deep learning systems. However, when the data

are limited, it is data curation and preprocessing rather than

increasing the complexity and depth what can lead to

improvements in the results.
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A B S T R A C T

In this paper we approach the problem of predicting air quality in the region of Madrid using long short term
memory recurrent artificial neural networks. Air quality, in this study, is represented by the concentrations of a
series of air pollutants which are proved as risky for human health such as CO, NO2, O3, PM10, SO2 and airborne
pollen concentrations of two genus (Plantago and Poaceae). These concentrations are sampled in a set of lo-
cations in the city of Madrid. Instead of training an array of models, one per location and pollutant, several
comprehensive deep network configurations are compared to identify those which are able to better extract
relevant information out of the set of time series in order to predict one day-ahead air quality. The results,
supported by statistical evidence, indicate that a single comprehensive model might be a better option than
multiple individual models. Such comprehensive models represent a successful tool which can provide useful
forecasts that can be thus applied, for example, in managerial environments by clinical institutions to optimize
resources in expectation of an increment of the number of patients due to the exposure to low air quality levels.

1. Introduction

In the last decades, air quality has been gaining attention due to the
health threats produced by high levels of environmental pollution
(Ozkaynak et al., 2009). Within the context of this study, air quality is
related to both chemical pollutants and biotic factors present in the
environment. Concretely, chemical pollutants are considered as the
agents released in the environment which disrupt ecosystems such as
CO, O3, NO2, SO2 and PM10 which are also considered as the main air
chemical pollutants in the studied region (Querol et al., 2012). On the
other hand, biotic factors refer to airborne pollen concentrations of the
Plantago and Poaceae genus which are the most common and ag-
gressive in terms of allergic and respiratory disorders (Subiza et al.,
1995).

Air quality information systems are increasingly used to predict
future air pollution levels, which allows for alerting about peaks in
admissions in clinical institutions, traffic and environmental manage-
ment in urban areas or minimizing the exposure for patients in order to
prevent adverse effects (Abraham et al., 2009; González et al., 2001;
Linares and Díaz, 2008; Ozkaynak et al., 2009).

Field experts have been employing observation-based models to
relate records of pollutants to one or more variables which can be
measured of predicted, usually meteorological data (Navares and

Aznarte, 2016; Sabariego et al., 2012; Schaber and Badeck, 2003; Silva-
Palacios et al., 2016; Smith and Emberlin, 2006). Despite the extensive
literature, few consider the problem of taking into account both types of
pollutants altogether as they are inherently different problems: atmo-
spheric pollen concentrations depend on plant development during
previous seasons which, at the same time, depends on the climatolo-
gical conditions during plant evolution (Cannell and Smith, 1983;
Smith and Emberlin, 2006). This implies long and mid-term relations
between past atmospheric conditions and current plant status. Contra-
rily, chemical air pollutant levels are related to recent past atmospheric
conditions (Navares et al., 2018). Both pollutants show influence on the
development and attack of, for instance, allergic respiratory diseases
(D'Amato et al., 2011).

Neural network models have been successfully applied to environ-
mental modeling (Gardner and Dorling, 1998) and air quality problems
(Castellano-Méndez et al., 2005; Chaloulakou et al., 1998; Chelani
et al., 2002; Grivas and Chaloulakou, 2006; Iglesias-Otero et al., 2015).
However, given the nature of the problem (short term influential
variables for chemical pollutants and mid-long term influential vari-
ables for pollen) this approach requires a thorough research and se-
lection of relevant variables based on expert knowledge (Andersen,
1991; Catalano et al., 2016; Navares and Aznarte, 2016). In addition to
the temporal dimension, it is important to take into account the spatial
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interactions between observation stations as they might be implicitly
related. These approaches imply a new research process which might
add a new set of influential variables every time a new kind of pollutant
or a new genus of pollen is taken into consideration by the system.

In this paper we propose several long short term memory (LSTM)
network setups (Hochreiter and Schmidhuber, 1997) to gain insights on
how influential is network design when dealing with interrelated time
series of different nature. The study compares network topologies in
order to find the most suitable configuration to solve the problem, ex-
posing the advantages and disadvantages of each one. The objective is
twofold: on the one hand, we show how to avoid thorough preproces-
sing steps to find influential features (both long and short term, and
with differences at each location as a result of particular environmental
conditions of the areas where the observation stations are located) by
letting the network extract them regardless of the pollutant type. Such a
unified approach avoids manually fitting one specific model per pair of
location and pollutant, saving human resources and increasing the
scalability of the system. On the other hand, we provide a convenient
network topology for accurate forecasts at each location which is able
to obtain relevant information from data both temporal and spatial. The
problem chosen to prove the validity of the proposal is the prediction of
air quality over a dataset which consist of a dozen of time series with
different characteristics and regimes, sampled over 13 adjacent loca-
tions.

2. Materials and methods

2.1. Data description

Chemical air pollutants were measured using the gravimetric
method or an equivalent method (β-attenuation) and were provided by
the Madrid Municipal Air Quality Monitoring Grid (http://www.
mambiente.munimadrid.es/). The grid consists of a network of 24
urban background stations spread across the city, which capture che-
mical air pollutants in real time. Hourly data was aggregated to obtain
daily mean levels of chemical air pollutants for the study period from
01 to 01-2001 to 31-12-2013. Daily mean concentrations (μg/m3) of
particulate matter 10 μm in diameter (PM10), carbon monoxide, sur-
face ozone (O3) and nitrogen dioxide (NO2) in μg/m3.

Pollen observations correspond to daily grains per cubic meter of
Poaceae and Plantago pollen registered at Complutense University of
Madrid (Pharmacy Faculty). Pollen counts followed the standard
methodology of the Spanish Aerobiological Network (Galán Soldevilla
et al., 2007) and were provided by Red Palinológica de la Comunidad
de Madrid.

Weather observations consist of average daily temperature in
Celsius degrees, wind speed measured in m/s, daily rainfall in mm/h,
pressure in hPa and degree of humidity in percentage. Data sets for
locations (Table 1) consist of observations from 01 to 01-2001 to 31-12-
2013. In the presence of missing hourly data, when these observations
are less 20% within a day, averages and aggregations were calculated
ignoring missing values, otherwise, the daily data is considered as
missing. This approach led to complete time series during the study
period.

Different pollutants have different nature of the time series having
significant seasonal patterns. Some of them show higher variability
around the seasonal component as in the case of O3 and PM10, while
others present highers peaks and less variability during the rest of the
year as in the pollen counts. It is noticeable that SO2 and CO con-
centrations dramatically decreased when compared to early observa-
tions due to the progressive transition from coal-powered heating sys-
tems to natural gas and the progressive upgrade of the urban car fleet
(Díaz et al., 2007).

2.2. Methodology

Compared to traditional neural networks, recurrent neural networks
(RNN) are implemented with loops or connections between units al-
lowing information persistence from one step of the network to the
next. The ability to map input sequences to output sequences by in-
corporating past context into their internal state makes them especially
promising for tasks that require to learn how to use past information
such as time series analysis. RNNs can be thought of as multiple copies
of the same neural network, each transferring information to its suc-
cessor and forming a chain-like architecture which is naturally related
to sequences.

RNNs might be able to look at recent information to perform a
present task which makes them suitable for time series predictions.
However, relevant information might appear further in the past and, as
the time gap grows, RNNs are unable to connect the information.

Long short-term memory networks (LSTM) were first introduced in
1997 by (Hochreiter and Schmidhuber, 1997) and improved in 2000 by
(Gers et al., 2000). They are a variation of RNNs capable of learning
long-term dependencies by including in the architecture special units
called memory blocks. In addition, multiplicative units called gates
control the flow of information from a LSTM unit to another.

An LSTM unit performs self-loops which enable the flow of the
gradient for long durations, enabling it to deal with the vanishing
gradient problem. Together with an input gate, an output gate and a
forget gate, this architecture models the short-term memory that allows
the network to learn over many time steps. For this reason, LSTM had
been shown to outperform more traditional recurrent networks on
several temporal processing tasks (Gers et al., 2000).

The common scoring rule root mean squared error (RMSE) will be
used to measure the average magnitude of the error of several network
configurations:

∑= −
=n

y yRMSE 1 ( ) ,
i

n

i i
1

2
(1)

where yi is the observed ith data point, yi the predicted and n the total
number of data points in the test set. As benchmark models the LSTMs
are compared to the traditional linear regression (LinReg) and com-
putational intelligence technique Random Forest (RF) proposed by
(Breiman, 2001). In order to evaluate the results obtained by the al-
gorithms, we use a nonparametric Friedman test (Friedman, 1937) test
with a post-hoc procedure as described in (Navares and Aznarte, 2016)
to determine, in significance terms, which algorithms are considered
the best performers based on their RMSE.

The Friedman test (Friedman, 1937) is a non-parametric analogue
of the parametric two-way ANOVA. The objective of the application of
the test is to determine if there is a difference among model perfor-
mances and consequently, whether one (or more) is consistently better
than the others. Given that non-parametric hypothesis tests are applied
to nominal or ordinal data, the original computed RMSE for each lo-
cation is converted to its correspondent rank within the set and com-
bined by averaging: = ∑R rj n i i

j1 (where j denotes the model, i refers to
each location and n is the total number of pairs {model, location}).
Since the error is being used to compare the models, the highest rank 1
will be assigned to the highest error, thus the worst performer. The null
hypothesis of equality of medians is tested by the F-statistic
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where k is the number of algorithms and F~ χk−1
2. Still, this test is not

sufficient as it only indicates the presence of significant differences in
the whole variable space. A ranking conversion is computed to obtain
the p-value of each pair (Conover, 1999). The former is a valid proce-
dure to compare two models but is not suitable for multiple comparison
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as there is no control of error propagation (Type I errors) when making
more than one comparison.

Thus, once the existence of significant differences in the group of
models is evidenced, a post-hoc test adjusts the value of the significance
level α at each pairwise comparison to allow multiple comparisons.
(Holm, 1979) proposed the adjustment by selecting the p-values of each
test, starting with the most significant pi, and test the hypothesis of
Hi : pi > α/(k− i), being k the total number of models in our proposal.
If Hi is rejected then allows to test Hi+1, being pi+1 the next most sig-
nificant p-value and so on. An extension of this step-down method was
proposed by (Shaffer, 1986), which uses a logical relation between the
combination of the hypotheses of all pairwise comparisons. For in-
stance, if a model a1 is better/worse than a2, it is not possible that a1 is
as good/bad as a3 and a2 has the same performance as a3. Based on this
argument and following Holm's method, instead of rejecting Hi : pi≤ α/
(k− i), rejects Hi≤ α/ti, being ti the maximum number of hypotheses
which can be true given the number of false hypotheses in j∈ {1,…, i}.

2.3. Experimental design

The aim is to provide the best one day-ahead forecast in terms of
accuracy, and consequently to see if LSTMs are able to efficiently store
relevant information over time to position themselves as a strong can-
didate when deciding which technique to use in such problems. In order
to do so, the full historic data set was split into a training set consisting
of the period between 01 and 01-2001 and 31-12-2012, leaving the last
period (01-01-2013 to 31-12-2013) as a test set.

Selecting the topology of LSTM networks depends on the application
domain and there is no general rule of thumb for the amount of hidden
nodes that should be used. It has to be figured out case-specifically by
trial and error. Thus, starting with the simplest network of one memory
cell, the architecture is extended by including units in the layer. The
stop condition is given by the validation error from the random selected
10-fold cross-validation on the training set. Even though time series
show inherent serial correlation and potential non-stationarity of the
data, (Bergmeir et al., 2018) proves that cross-validation empirically
compares to out-of-sample or other time-series-specific valuation
techniques.

Different architectures are proposed to check the convenience of
each one to solve the problem. The first one consists on a fully con-
nected LSTM (FC-LSTM), which is the first and most common approach,
where all the input variables are parsed through a 500 LSTM hidden
units layer to test the capability of the LSTM to obtain and discriminate
relevant information. This layer is connected to a layer of 100 sigmoid

units to obtain higher order relations among the locations and pollu-
tants (Fig. 1(a)). The idea is to see if the first layer captures the tem-
poral dependencies while the subsequent dense layer deals with loca-
tion dimensions which will be then transferred to the output layer.

The second configuration is tailored to ease the discrimination of
information by forcing the LSTM units to target different groups of
pollutants (GP-LSTM). The core idea is to force each LSTM group to
focus on its correspondent pollutant outputs assuming that the same
pollutants behave similarly across locations and that the LSTM units
discriminate input information to subsequently obtain the relations of
the locations only per pollutant group. Thus, the LSTM layer consists of
100 units per group which receive the full set of 1-day lagged input
variables and it is connected only to a number of outputs equal to the
number of observation stations of that group (Fig. 1(b)). The intention
is to facilitate that LSTM units extract the information of each in-
dividual group of pollutants and then obtain the relations among
groups in the output layer. For instance, in the case of carbon mon-
oxide, the 57 input variables (Table 1) feed 100 LSTM units which are
fully connected to 7 outputs, one per station where CO is available. This
configuration totals 700 LSTM units, 100 per pollutant.

An alternative setup with a similar configuration and the same aim
of easing the discrimination process is also proposed. In this case, the
network is assisted by only using as input for each group of LSTM units
individual groups of pollutants (IGP-LSTM) and the meteorological
variables as seen in Fig. 1(c). Each group consists of 100 LSTM units
with a total of 700 LSTM units in the layer, one per group of pollutants,
which are fully connected to the output layer. Since the inputs are split
by pollutant, the reason behind including a fully connected output layer
is to include the interactions among pollutants.

Finally, a more simple version was taken into consideration by
training the network using the full set of inputs to feed 7 groups of 66
LSTM units (462 in total), one group per single combination pollutant-
station (SP-LSTM, Fig. 1(d)) which outputs one single target variable.
This is equivalent to training 31 individual networks (one per target
pollutant and station) with a set up 57–66-1 where 57 is the number of
1-day lagged input variables (Table 1), 66 LSTM units and 1 is the
output. Fig. 1 summarizes the four different network topologies which
were tested against the benchmark algorithms.

In order to obtain the relationship between the inputs and outputs,
the well-known backpropagation algorithm (Rumelhart et al., 1986) was
proposed, employing as loss function the mean squared error since it is
a regression problem. As an alternative of the classic Stochastic Gra-
dient Descent (SGD) optimization model to fit network weights, the
Adam algorithm proposed by (Kingma and Ba, 2019) was used with a

Table 1
Availability of variables and locations.

Long. Lat. CO NO2 O3 Plantago Poaceae PM10 SO2 Pr R Hum T W

ArturoSoria 3∘ 38′ W 40∘ 26′ N * * * *
BarrioPilar 3∘ 42′ W 40∘ 28′ N * * * *
CasaCampo 3∘ 44′ W 40∘ 25′ N * * * * * * * * * *
CuatroCaminos 3∘ 42′ W 40∘ 26′ N * * * *
Farmacia 3∘ 45′ W 40∘ 27′ N * *
Farolillo 3∘ 43′ W 40∘ 23′ N * * * * * *
Moratalaz 3∘ 38′ W 40∘ 24′ N * * * *
PlazaEspana 3∘ 42′ W 40∘ 25′ N * * * * * * * *
PzadelCarmen 3∘ 42′ W 40∘ 25′ N * * * *
PzaLadreda 3∘ 43′ W 40∘ 23′ N * * * * *
RamonyCajal 3∘ 40′ W 40∘ 27′ N * *
StaEugenia 3∘ 36′ W 40∘ 22′ N * * *
Vallecas 3∘ 39′ W 40∘ 23′ N * * * *

Pr: Pressure.
R: Rain.
Hum: Hummidity.
W: Wind speed.
T: Average Temperature.
* represent the presence of data in the corresponding location and for the corresponding pollutant
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learning rate α=0.001, an exponential decays of β1= 0.9 and
β2= 0.999 were used as suggested by (Ruder, 2016). As opposed to
SGD which maintains a single learning rate α for all weight updates, the
method computes individual adaptive learning rates from the estimates
of first and second moments of the gradients (Kingma and Ba, 2019).
Specifically, the algorithm uses an exponential moving average of the
gradient and its square using the parameters β1 and β2 to control the
decay rates of these moving averages. Performances are compared to
the traditional and commonly used linear regression enabling the
identification and the characterization of relationships among each
pollutant and meteorological variables and its 1-day lagged observa-
tion. Therefore, one linear model is fitted per pollutant. As an exten-
sion, an identical setup is used to train random forests to compare with
another family of computational intelligence models.

3. Results

Table 2 shows prediction errors for each pollutant at each location,
while Table 2 shows the average prediction errors for each pollutant.

Linear regression obtains an average RMSE of 0.107 across all location
for carbon monoxide (CO) while Random Forest manages to diminish
this error to 0.086. All LSTM configurations outperform Random Forest
results except SP-LSTM which results in an average RMSE of 0.093
mainly due to the error at Farolillo where it underperforms with an
RMSE of 0.127. GP-LSTM is the most accurate in forecasting CO levels
with an average RMSE of 0.083. In Fig. 3 can be seen the percentage
improvement of each algorithm with respect to LinReg. There is an
average improvement around 20% with all computational intelligence
based algorithms for this pollutant, except for the aforementioned SP-
LSTM, which performs poorly (−20.27%) at the observation station of
Farolillo.

With regard to Nitrogen dioxide, an average RMSE of 12.07 is
shown for LinReg followed by RF and SP-LSTM with an error of 10.60
and 11.00 respectively. The remaining LSTM configurations reduce this
error to RMSE levels lower than 9.70 implying an increase in accuracy
of around 20% when compared to LinReg as shown in Fig. 3.

Results for ozone are paired and oscillate around an error of 11 μg/
m3 being RF and FC-LSTM the worst and best performer in average

Fig. 1. LSTM architectures: (a) Fully connected LSTM (FC-LSTM), (b) LSTM grouped by pollutant class (GP-LSTM), (c) LSTM fed by pollutant variable (IGP-LSTM),
(d) One variable LSTM (SP-LSTM).
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respectively. It can be seen in Fig. 3 that RF and SP-LSTM underperform
LinReg while the other networks show mixed results depending on the
location.

On the other hand, computational intelligence models clearly
overcome, in terms of accuracy, linear regression when predicting
particulate matter (PM10), having an average improvement between
25% and 30% except for RF and SP-LSTM which perform 23.16% and
6.18% better respectively. Similar situation occurs when using GP-
LSTM and FC-LSTM to predict SO2 averaging a RMSE of 1.624 and 1.68
respectively. Although the best average performer for this pollutant is
IGP-LSTM, it fails to improve LinReg results at Moratalaz where the
error is 0.16% higher. For the pollen series, IGP-LSTM is the only model
which improves LinReg results in both series by 0.15% and 2.70% in
Plantago and Poaceae respectively.

In general, both LSTM and RF perform better than linear regression
(as seen in the left part of Fig. 2). Table 2 shows that LSTM architectures
achieved lower errors. Figs. 2 and 3 clearly show these improvements
are higher for IGP-LSTM, GP-LSTM and FC-LSTMS than the other
models. Regarding bias, shown in the right part of Fig. 2, we can see
how GP.LSTM and IGP.LSTM show zero bias in median while the
former produces predictions with very low bias also in mean.

In light of the combined error/bias results, we would be tempted to
choose GP.LSTM as the best overall model. In order to investigate this
and provide statistical evidence, a Friedman rank test was performed
over the errors shown in Table 2. A Friedman statistic of F = 72.96,
distributed according a χ2 with 5 degrees of freedom obtains a p-value
of 4.34e-11 with α = 0.05, which provides strong evidence of the

existence of significant difference between the algorithms ranked GP-
LSTM as the best performer (as expected), followed by FC-LSTM and
IGP-LSTM and RF, SP-LSTM and linear regression with ranks 4, 5 and 6
respectively.

Since Friedman's null hypothesis was rejected, a post-hoc pairwise
comparison was carried out to check the differences between the pro-
posed algorithms. Table 3 shows there is strong evidence of differences
between GP-LSTM, IGP-LSTM, FC-LSTM and linear regression (hy-
potheses 1, 2 and 3) and SP-LSTM (hypotheses 4, 5 and 6) which im-
plies, given Friedman ranks, that GP-LSTM, IGP-LSTM and FC-LSTM
perform better than the benchmark LinReg and the SP-LSTM config-
uration. Hypotheses 7, 8 and 9 provide statistical evidence of GP-LSTM,
IGP-LSTM and FC-LSTM performing better than RF. Lastly, there is no
difference in terms of error between SP-LSTM and the benchmark al-
gorithms.

4. Discussion

As we have seen in Section 3 there is statistical evidence of the
outperformance of GP-LSTM, IGP-LSTM and FC-LSTM with respect to
the other proposed methods. This situation is clear for CO, NO2 and
PM10 where there is an error reduction higher than 10% at all locations
except for Arturo Soria when forecasting CO. With a close look at this
location, we have seen a yearly average concentrations of 0.40 μg/m3

with a standard deviation of 0.24 μg/m3 while this average goes over
0.47 μg/m3 with a standard deviation of at least 0.32 μg/m3 for the
remaining locations, suggesting a lower improvement when the

Table 2
RMSE per location and variable. Highlighted in bold best average performer for each pollutant.

Pollutant Station LinReg RF SP-LSTM IGP-LSTM GP-LSTM FC-LSTM

CO (μg/m3) ArturoSoria 0.087 0.072 0.086 0.080 0.080 0.087
BarrioPilar 0.137 0.106 0.120 0.119 0.111 0.114
CasaCampo 0.072 0.055 0.055 0.054 0.059 0.057
Farolillo 0.106 0.100 0.127 0.083 0.082 0.077
Moratalaz 0.110 0.087 0.079 0.081 0.075 0.078
PzaCarmen 0.124 0.087 0.089 0.080 0.082 0.083
PzaEspana 0.116 0.093 0.096 0.097 0.091 0.091

Average 0.107 0.086 0.093 0.085 0.083 0.084
NO2 (μg/m3) ArturoSoria 12.310 11.817 13.052 10.103 10.312 10.514

BarrioPilar 13.685 11.623 11.933 10.560 10.427 10.479
CuatroCaminos 11.885 10.290 10.422 10.442 9.471 9.474
CasaCampo 10.047 8.232 7.826 7.515 7.439 7.632
Farolillo 10.667 8.551 8.966 8.114 8.020 7.862
Moratalaz 13.163 12.325 12.312 10.607 9.799 9.932
PzaCarmen 11.002 9.710 9.448 8.300 8.004 8.288
PzaEspana 12.041 11.454 11.561 10.339 10.005 10.875
RamonyCajal 13.629 12.515 13.248 11.588 11.197 10.731
Vallecas 12.327 9.550 11.273 8.983 9.739 8.592

Average 12.076 10.607 11.004 9.655 9.442 9.438
O3 (μg/m3) ArturoSoria 10.501 10.945 10.957 10.836 11.795 10.139

BarrioPilar 11.442 11.471 11.484 10.796 11.343 10.506
CasaCampo 12.392 13.809 13.866 12.042 14.108 12.526
Farolillo 11.471 12.268 12.039 11.550 11.981 10.872
PzaCarmen 10.063 11.507 9.730 9.742 9.536 9.840

Average 11.174 12.000 11.615 10.993 11.753 10.777
PM10 (μg/m3) CasaCampo 8.094 6.314 6.784 5.323 5.350 5.700

Moratalaz 8.244 6.458 5.969 6.147 5.965 6.382
Vallecas. 9.005 6.672 6.102 5.856 5.847 5.548

Average 8.447 6.481 6.285 5.776 5.721 5.877
SO2 (μg/m3) CuatroCaminos 2.213 1.815 1.787 1.571 1.695 1.727

CasaCampo 0.831 1.033 1.188 0.613 0.665 0.742
Farolillo 1.253 1.149 1.366 0.832 0.809 0.855
Moratalaz 4.186 4.965 4.396 4.192 4.165 4.065
PzaCarmen 1.869 1.709 1.779 1.730 1.605 1.748
PzaEspana 1.336 1.218 1.631 1.122 1.159 1.202
Vallecas 1.455 1.342 1.206 1.272 1.268 1.422

Average 1.877 1.890 1.908 1.619 1.624 1.680
Plantago (grains/m3) Farmacia 6.948 9.927 7.927 6.938 6.875 7.296
Poaceae (grains/m3) Farmacia 24.344 24.220 25.738 23.686 25.268 24.933
Average 15.646 17.074 16.833 15.312 16.072 16.114
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variability reduces. Nevertheless, most of the improvements are over
20%.

It is to note the low performance of SP-LSTM when forecasting CO at
Farolillo (−20.27%). A simple analysis of the series shows that the

standard deviation taken by years goes from 0.73 μg/m3 in 2001 to 0.12
μg/m3 in 2012 while this change in the behavior of the series is more
constant and smoother at other locations. Not including a fully con-
nected layer, either a dense sigmoid or output, weights more past in-
formation from the only target series (CO at Farolillo) incurring in
overfitting.

The best performing configurations, GP-LSTM, IGP-LSTM and FC-
LSTM, manage to obtain good improvements in the case of SO2 even
though, there are dramatic changes on series patterns with respect to
past years due to the progressive transition from coal-powered heating
to natural gas. An exception is the results at Moratalaz where the error
improvement decreases for all models with respect to their perfor-
mances at other locations. The particular location of this station makes
the observed levels of SO2 behave differently when compared to other
areas. It is located between the A3 and R3 highways, which are the two
main access to Madrid from the East, and M30 and M40 which are city
main beltways. Consequently, SO2 levels remain high due to the dense
traffic. While SO2 mean values for the most recent years of this study
stay around 3.15 μg/m3 with average maximums of 18.90 μg/m3, at
Moratalaz these means double up to 6.43 μg/m3 with maximums of
34.66 μg/m3.

Random Forest does not improve LinReg when predicting O3 at all
studied locations. A similar situation occurs with SP-LSTM with the
exception of Plaza del Carmen, suggesting these two proposals are not
able to capture the strong seasonal pattern of this pollutant. These
patters are captured by FC-LSTM improving LinReg average perfor-
mance by 3.5% although this does not apply for the observations at
Casa de Campo. The reason is because tropospheric ozone behaves
opposite to other pollutants as its concentration levels are higher out-
side urban centers where the air quality is assumed as clean in general.
Not only is it formed due to directly traffic or industrial emissions but
also when combined these with airborne pollutants and solar radiation
(Sharma et al., 2016), having Casa de Campo all the conditions to
concentrate high levels compared to other locations as it is the largest
public park in Madrid.

With respect to airborne pollen concentrations, IGP-LSTM is the
only model which managed to improve LinReg results for both pollen

Fig. 2. Relative improvement with respect to LinReg of each of the methods applied (left) and bias (right). Dashed vertical line represents the mean, dotted vertical
line represents median.

Fig. 3. Average improvement over LinReg per pollutant.

Table 3
Adjusted Holm and Schaffer p-values with pairwise rejected hypothesis at α =
0.05.

i Hypothesis punadj. pHolm pShaf

1 Linear vs GP-LSTM 5.171E-10 7.756E-9 7.756E-9
2 Linear vs IGP-LSTM 9.131E-9 1.369E-7 9.131E-8
3 Linear vs FC-LSTM 9.131E-9 1.369E-7 9.131E-8
4 SP-LSTM vs GP-LSTM 3.815E-7 5.722E-6 3.815E-6
5 SP-LSTM vs IGP-LSTM 4.021E-6 4.021E-5 4.0215E-5
6 SP-LSTM vs FC-LSTM 4.021E-6 4.423E-5 4.021E-5
7 RF vs GP-LSTM 1.398E-4 0.001 9.787E-4
8 RF vs IGP-LSTM 8.354E-4 0.006 0.005
9 RF vs FC-LSTM 8.354E-4 0.006 0.005
10 Linear vs RF 0.016 0.096 0.096
11 RF vs SP-LSTM 0.204 1.021 0.817
12 Linear vs SP-LSTM 0.256 1.024 1.024
13 IGP-LSTM vs GP-LSTM 0.639 1.919 1.919
14 GP-LSTM vs FC-LSTM 0.639 1.919 1.919
15 IGP-LSTM vs FC-LSTM 1.0 1.919 1.919
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genus. Pollen series are particularly characteristic since they show very
low concentrations (or almost none) during the calendar year until the
main pollination season where the high peaks appear. Nevertheless,
IGP-LSTM is able to identify those peaks, specially in the case of
Plantago where the test set includes the highest peak (around 120
grains/m3) among all observed train data.

Fig. 2 (left hand side) shows that IGP-LSTM presents a higher con-
sistency of results as the median improvement with respect to LinReg
does not differ much from the average. On top of that, IGP-LSTM pre-
sents the shorter negative tail among all the models, while GP-LSTM
and FC-LSTM show a heavy-tailed distribution of improvements sug-
gesting these configurations are not as good as IGP-LSTM when ob-
taining the characteristics of some time series. In fact, Fig. 3 shows that,
on average, they do not manage to improve LinReg results for O3 and
Pollen respectively. However, when considering the bias of the pre-
dictions (right hand side of Fig. 2) we see how the predictions of GP-
LSTM are, in general, slightly better than the rest.

5. Conclusions

This paper presents a comparison study of different LSTM config-
urations in order to obtain the most suitable to forecast air quality in
the region of Madrid. Several pollutants showing very different beha-
viors were taken into consideration. In addition to the intrinsic differ-
ences in the behavior among pollutant types, each pollutant behaves
differently at each location given the conditions of the zones studied
due to several factors such as traffic congestion or green areas. This
adds an extra dimension to the complexity problem which let test the
capability of the proposed models to obtain relevant information for
forecasting.

We have seen that there is statistical evidence that the LSTM
grouped by pollutant class (GP-LSTM) and the LSTM with individual
groups of pollutants as inputs (IGP-LSTM) outperform benchmark al-
gorithms and the other two proposals. Furthermore, the GP-LSTM
shows smaller bias, but evidence also shows that performing a dis-
criminative input of the groups of pollutants as in IGP-LSTM eases the
network to focus on the relevant information and provides more stable
results across locations.

By including in the configuration fully connected layers, either as an
output or hidden layer, the networks are able to better identify the
relations among pollutants with no data preprocessing. However, we
have seen that there is still room for improvement as the LSTMs
struggle to identify the presence of sudden high peaks as past in-
formation weights on the predictions. This situation can be mitigated by
capping pollutant observation levels to thresholds over which it implies
risk for human health.
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ORIGINAL PAPER

Comparing ARIMA and computational intelligence methods to forecast
daily hospital admissions due to circulatory and respiratory causes
in Madrid

Ricardo Navares1 • Julio Dı́az2,3 • Cristina Linares2,3 • José L. Aznarte1,3

� Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Anticipating future workloads in a hospital may be of capital importance in order to distribute resources and improve

patient attention. In this paper, we tackle the problem of predicting daily hospital admissions in Madrid due to circulatory

and respiratory cases based on biometeorological indicators. A range of forecasting algorithms were proposed covering

four model families: ensemble methods, boosting methods, artificial neural networks and ARIMA. Experiments show how

the last two obtain better results in average, demonstrating that the problem can be properly solved with both approaches.

Furthermore, a recently proposed technique known as stacked generalization was also used to dynamically combine the

predictions from the four models, finally improving the performance with respect to the individual models.

Keywords Forecasting � Emergency hospital admissions � ARIMA � Neural networks � Random forests � Gradient boosting
machines � Stacked generalization

1 Introduction

During the Seventies George E. P. Box y Gwilym Jenkins

proposed the autoregressive integrated moving average

models (ARIMA) to predict and analize time series related

to economic variables (Box and Jenkins 1976). Since then,

this sort of stochastic models has been applied to forecast

the evolution of time series in different fields such as

environmental atmospheric (Dı́az et al. 1999; Kumar and

Goyal 2011; Olsen et al. 2016) or biological pollution

(Rodrı́guez-Rajo et al. 2006). Not only are ARIMA models

used in forecasting, but also in determining through sta-

tistical significance the influence of independent variables

on the behavior of certain dependent variable. Given the

epidemiological meaning of the value of the estimators,

those which are statistically significant for the ARIMA

model, they are used to quantify the impact of independent

environmental variables on health indicators. Thus,

ARIMA models have been used to evaluate the influence of

atmospheric pollution on patients morbility (Dı́az et al.

1999), the relation between biotic factors and hospital

admissions (Dı́az et al. 2007), meteorological event such as

heat and cold waves and daily mortality (Alberdi et al.

1998; Dı́az et al. 2002, 2005; Montero et al. 2012; Linares

et al. 2016; Roldán et al. 2016) or daily emergency

admissions (Linares and Dı́az 2008).

One of the biggest contributions of ARIMA models to the

clinical field is the forecast of the behavior of different

pathologies, concretely those of infectious nature, in places

where it is critical to know in advance the development of

certain diseases in order to apply preventive measures and

plan medical resources (Anwar et al. 2016; Kumar et al.

2014;Nsoesie et al. 2014; Luque et al. 2009).Also, economic

implications motivated the use of ARIMA models to predict

sudden emergency admission and consequently optimize

resources, easing clinical institutions management (Zhu et al.
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2015; Dominak et al. 2015; McWilliams et al. 2014; Abra-

ham et al. 2009; Earnest et al. 2005; Dı́az et al. 2001).

Compared to traditional time series analysis techniques,

computational intelligence techniques have been gaining

popularity as effective approaches for predicting environ-

mental and biometeorological conditions (Castellano-Mén-

dez et al. 2005; Aznarte et al. 2007; Navares and Aznarte

2016a, b, 2017). Among these techniques we propose to use

Random Forests, Gradient Boosting Machines and Artificial

Neural Networks trying to cover threemain techniques in the

computational intelligence field such as ensemble learning,

boosting algorithms and bio-inspired learning. Thus, the

scope of this study is double: on the one hand forecasting the

daily number of emergency hospital admissions due to cir-

culatory and respiratory causes for the target group of

patients older than 65 years. On the other, compare different

approaches and try to establish a framework in order to

exploit the advantages of each one.

2 Materials and methods

2.1 Data description

2.1.1 Target variables

Target variables consist on daily hospital admissions to

emergency services due to either circulatory or respiratory

cases. The target group is patients older than 65 years

recorded in hospitals across the region of Madrid from the

first of January 2005 to the eleventh of June 2010 (Fig. 1).

In order to preserve the confidentiality of the data, daily

hospital admissions were provided as the total aggregated

emergency cases (circulatory and respiratory) in Madrid.

Figure 1 shows that both time series have a significant

seasonality. Although it can be clearly seen that winter

months concentrate the larger number of admission, res-

piratory cases present bigger peaks and less variablity

during the rest of the year. Conversly, circulatory-related

admissions show more variablility around the seasonal

component. Several factors can explain this seasonal

behavior. Some of them relate to the intrinsic evolution of

the diseases and the also seasonal behavior of the atmo-

spheric conditions (cold waves, pollution, pollen...) which

will be analysed.

2.1.2 Independent variables

Chemical air pollutants Daily mean concentrations (lg/m3)

of particulate matter less than 2.5 and 10 lm in diameter

(PM2.5 and PM10), surface ozone (O3) and nitrogen

dioxide (NO2). All measurements were made using the

gravimetric method or an equivalent method (b-attenua-
tion). Hourly data was aggregated to obtain daily mean

levels of chemical air pollutants. We used the data supplied

by the Madrid Municipal Air Quality Monitoring Grid

(http://www.mambiente.munimadrid.es/), a network that

consists of 27 urban background stations spread across the

city, which capture chemical air pollutants in real time

(Fig. 2). No specific validation was performed within the

project to assess the representativeness of spatial variability
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in air pollutants; an ecological exposure was used, as is

common in most time-series studies. Since the number of

hospital admissions were provided at a city aggregated

level, the average of the concentrations for all locations

was used per chemical pollutant. In case of missing data at

one location, that location was removed in the averaging

process.

Studies prior to 2000 show a relevant relationship

between Sulfur dioxide (SO2) and mortality and morbidity

in Madrid (Dı́az et al. 1999). However, from year 2000,

SO2 concentrations have damatically decreased due to the

progressive transition from coal-powered heating to natural

gas. As a result, this pollutant has lost influence in hospital

admissions due to respiratory and circulatory cases (Dı́az

et al. 2007). Consequently, SO2 was not taken into con-

sideration in this study.

With respect to Carbon monoxide (CO), it has little

impact on health in Madrid. In fact, it is not contemplated

among the pollutants considered to measure air quality in

Spain (Quero et al. 2012). Thus, CO was also discarded for

this study.

Biotic factors Pollen observations correspond to daily

grains per cubic meter of Poaceae and Plantago pollen

registered across the region of Madrid: Alcalá de Henares,

Alcobendas, Aranjuez, Complutense University of Madrid

(Farmacia), Getafe, Leganés and Villalba (Fig. 2). Pollen

counts followed the standard methodology of the Spanish

Aerobiological Network (Galán Soldevilla et al. 2007) and

were provided by Red Palinológica de la Comunidad de

Madrid. The nature of pollen time series (very low con-

centrations across the year with sudden high peaks during

the pollination season) demands special attention to the

missing data during the critical months of February, March

and April. The weighted interpolation proposed by Navares

and Aznarte (2016a) was used in order to deal with the

missing data points, which account for less than 3% of the

total.

2.1.3 Control variables

Meteorological variables Meteorological observations

were obtained from sensors placed in the close surround-

ings of the pollen stations, consisting of daily maximum

(Tmax)and minimum (Tmin) temperature in Celsius degrees,

pressure in mbar and degree of humidity in percentage.

Other studies in the region of Madrid show that wind speed

and direction are not significant in this setup (Alberdi et al.

1998; Dı́az et al. 2001, 2007). Consequently, they were not

taken into consideration for the model. Very few missing

data points appear in meteorological time series (less than

1% of the total). Given the sparsity of the presence of these

missing data points, they were estimated through linear

interpolation using the precedent and subsequent

observation.

The relationship establish between maximum tempera-

ture and morbility in Madrid was known that has an ‘‘V’’

shape (Alberdi et al. 1998). To control for the possible

effect of temperature on the dependent variable considered,

we defined the variable: Theat as follows, considering the

threshold of 34 �C above which a heat wave is defined in

Madrid (Dı́az et al. 2015):

TheatðiÞ ¼
0 if TmaxðiÞ� 34 �C

TmaxðiÞ � 34 if TmaxðiÞ[ 34 �C

�
; ð1Þ

where Tmax is the daily maximum temperature. Similarly, a

cold wave is defined in Madrid when daily minimum

temperature is below – 2 �C (Carmona et al. 2016). In

order to take into account the effect of low temperatures

Tcold is defined as follows:

TcoldðiÞ ¼
0 if TminðiÞ� � 2 �C

�TminðiÞ � 2 if TminðiÞ\� 2 �C

�
; ð2Þ

Additionally, in order to consider a synoptic scale of

meteorological situations changes a variable diff ðPÞ ¼
Pt � Pt�1 is defined. Being Pt the daily average pressure at

time t and Pt�1 previous day daily pressure.

According to previous studies on the effect of atmo-

spheric pollution on morbility in Madrid (Dı́az et al. 1999),

there is a lineal relation between hospital admissions and

the primary pollutants NO2, PM10 y PM 2.5 and quadratic

in the case of ozone, with a concentration of 45 lg/m3 as

the minimum value of this parabola (Dı́az et al. 2001).

Thus, an additional variable O3a was defined to establish

this relation as follows:

O3aðiÞ ¼
0 ifO3ðiÞ� 45 lg=m3

O3 � 45 lg=m3 ifO3ðiÞ[ 45 lg=m3

�
; ð3Þ

The effects of meteorological and atmospheric conditions

on hospital admissions can be either immediate or might

take one or several days. Hence, including lagged variables

derived from all the set of independent variables (chemical

air pollutants, biotic factors and meteorological variables)

is interesting to model these situations.

In the related literature there are several studies for the

region of Madrid that suggest the use of a 5-days lag for the

pollutants NO2, PM10, PM2.5 (Jiménez et al. 2010); 8

days for O3 (Dı́az et al. 1999); 4 days for heat temperatures

(Dı́az et al. 2015); 14 for cold waves temperatures (Car-

mona et al. 2016); 14 days for relative humidity (Carmona

et al. 2016; Dı́az et al. 2015) and 5 for diff(P) (González

et al. 2001).
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2.2 Methodologies

Arima The ARIMA forecasting equation for a stationary

time series is a linear (i.e., regression-type) equation in

which the predictors consist of lags of the dependent

variable and/or lags of the forecast errors. That is:

Predicted value of Y equals a constant ðlÞ and/or a

weighted sum of one or more recent values of Y

ðYt�1; . . .; Yt�pÞ and a weighted sum of recent values of the

errors ðet�1; . . .; et�qÞ. In terms of y, the general forecasting

equation is:

ŷt ¼ lþ /1yt�1 þ � � � þ /pyt�p � h1et�1 � � � � � hpet�p;

ð4Þ

where /i is the coefficient of the autoregressive (AR) term

i and hi represents the coefficient of the moving average

(MA) term i.

Apart from the corresponding lags of the series p ðYt�pÞ,
the errors (e) and its lags (et�q), exogenous variables

ðX; . . .; ZÞ, which represent the environmental independent

variables, were include along with their corresponding lags

up to t � s and t � m, resulting in:

ŷt ¼ lþ /1yt�1 þ � � � þ /pyt�p

� h1et�1 � � � � � hpet�p

þ b0Xt þ b1Xt�1 þ � � � þ bsXt�s þ � � �

þ c0Zt þ c1Zt�1 þ � � � þ cmZt�m

ð5Þ

The value of the estimator b0; b1. . .c0; c1. . . of the

variables that are significant at p\0:05 (p value propor-

tionated by SPSS v15) indicating increased Y to an

increment by one unit of the each independent variable

ðX; . . .; ZÞ respectively.
The model’s goodness-of-fit was obtained by analysis of

residuals (AIC, BIC, ACF, Box-Ljung).

Random forest Ensemble learning has been gaining

attention during the last decade and it consists in leveraging

the performance of many weak learners by combining them

to form a strong learner. Breiman (1996a) proposed a

method called bagging also known as bootstrap aggregat-

ing. The procedure fits one model using each bootstrap

sample and combines them by averaging. Breiman (2001)

adds an extra layer of randomness to bagging by using

decision trees in order to construct a collection of trees

(forest) with controlled variance which improves stability

and accuracy. Thus, bagging intervenes at two levels, in

data selection and subsequently in variable selection. The

combination of random trees by averaging provides

robustness against overfitting as well as against the pres-

ence of outliers.

Gradient boosting machines In addition to average the

combination of multiple learners, another popular

ensemble technique is boosting. The principle behind is

starting with a weak learner and turn it into a strong lear-

ner. This process is also known as additive training. Pro-

posed by Friedman (2001) GBM adds sequentially new

models (trees) to the ensemble, which is represented by an

error function of the previous iteration fitted model. Thus,

each new tree is trained with respect to the error of the

whole ensemble so far. In the regression problem the error

function is the classic square error (SE) which conforms

the objective function to optimize.

An important concern in computational intelligence is

the generalization capabilities of the models which might

suffer from a non proper learning scheme and, resulting in

overfitting. In order to mitigate the effects of overfitting,

Friedman (2001) proposes a technique known as shrinkage

to control the complexity of the model. Shrinkage is a

common regularization approach which shrinks regression

coefficients to zero and consequently, reduces the impact of

unstable coefficients. In the context of GBM, shrinkage

penalizes (reduces) the importance of each tree at each

consecutive step. Hence, the final objective consists of two

terms, a training loss function represented by SE and the

regularization which measures the complexity of the

model.

Artificial neural networks ANNs are a tool for modelling

nonlinear processes based on the information collected by a

vector named input layer, through which the information is

propagated layer by layer establishing the relations

between the inputs and the final layer called output layer.

Intermediate or hidden layers consist of one or more units

called neurons which are interconnected to the neurons of

the previous and subsequent layers. The number of hidden

layers and the number of neurons of each one define the

topology of the network.

Each neuron generates an excitatory answer to signals

received through an activation function which can be

selected among the different functions available but, fol-

lowing recommendations from the literature the sigmoidal

activation function was chosen (Bishop 1995; Haykin

1999).

The learning of the network is based on obtaining the

relationship between the input and the output layer by

comparing, via root square mean error (RMSE), network

outputs with the actual values through the well-known

backpropagation algorithm (Rumelhart et al. 1986)

The aim is to find the network topology which mini-

mizes the error. This procedure is based on a trial and error

approach which, starting from a simple network of one

hidden layer with few neurons, consists on increasing the

capacity of the network (sequentially incrementing the

number of neurons in a hidden layer as well as the number

of layers) to optimize the results.
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Stacked generalization Proposed by Wolpert (1992),

stacked generalization or stacking is an ensemble technique

that uses a new model to learn how best combine the

predictions from two or more models with the aim of

reducing error generalization. Opposed to more traditional

approaches of ensemble learning such as voting or aver-

aging, as in the case of RF, which are winner-takes-all

ways of combining (Wolpert 1992), using a meta-learner to

ensemble allows to identify the circumstances under which

the pooled predictions shall gain or lose weight in the final

forecast.

The idea behind of stacking is splitting the training set in

two subsets traina and trainb. A first stage trains the pool of

selected models on traina to create predictions for trainb
and repeat using trainb for training to generate traina pre-

dictions. As a final step of this first stage the pool of models

are trained over the full training set to create predictions for

the test set. The second stage consists of training the meta-

learner using the training set, which contains the predic-

tions of the models from stage one, and create the final

predictions for the test set.

In order to check the performance of the forecasts the

common quadratic scoring rule root mean squared error

(RMSE), defined in (6), was used to measure the average

magnitude of the error. The goodness of fit of the set of

predictions to the observed values is represented by R2

along with RMSE.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
ðyi � ŷiÞ2

r
; ð6Þ

where yi is the observed ith data point, ŷi the predicted and

n the total number of data points in the test set. Also, as it is

intended to compare the models given two time series of

different nature (Fig. 1), we propose to use a normalized

error measure know as mean absolute percentage error

defined as:

MAPE ¼ 1

n

Xn
i¼1

���yi � ŷi
yi

��� ð7Þ

where yi is the observed ith data point, ŷi the predicted and

n the total number of data points in the test set.

It is important to note that our objective is to compare

how different forecasting approaches (not models) perform

when applied to the same problem. Therefore, although

they all start with the same dataset, the data selection

process is not necessarily the same in all cases.

2.3 Experimental design

The aim is to provide the most suitable technique, in terms

of accuracy, to forecast the one day-ahead cases of

admissions due to circulatory and respiratory diseases. A

first approach is to test the accuracy of each proposed

model when applied in isolation to check which one is

more suitable for each serie. In order to do so, the full set is

split in a training set, which covers from 16-01-2005 to

11-06-2009, and leaving the last year as a test set for

prediction. The best performer among the models will be

used as a benchmark for the subsequent experiments.

Secondly, this study focuses in researching different

stacking configurations and models to minimize the gen-

eralization error (also known as out-of-sample error) of the

previous models tested.

With regards to the computational intelligence models, a

common problem is the parameterization, as the perfor-

mance of each model heavily relies on this step. For the

tree-based algorithms a grid search procedure was per-

formed using a 10-fold cross validation on the training set.

Given a set of values for each parameter, grid search

explores each combination and selects the one which

minimizes the prediction error on the validation. The same

set of input variables was used for all the computational

intelligence models. This set tries to represent the short-

term interactions by including lags up to seven days of the

variables, as well as the long-term influence by including

the cumulative sum of the fortnight before the forecast time

(Table 1). Additionally, in order to capture seasonality, the

variables Julian day number (doy), the month of the year

(fMon; . . .; Sung ! f1; . . .; 7g) and the season

(fWinter; Summer; Spring;Autumng ! f1; 2; 3; 4g) were

also included.

Artificial neural networks add an additional research

step which involves finding the right architecture or

topology of the network for the study problem. Using the

same validation scheme as before, the capacity of the

network was incrementally increased until the validation

error increases with respect to the previous configuration

tested. It is reasonable to start with the simplest network of

one hidden layer with one hidden unit and increment the

number of units in the layer, up to the boundary

Nh ¼ 0:5 � Ni. where the number of hidden units Nh is the

half of the number of inputs Ni. Once the convenient

number of units for the first layer is selected, an extra layer

is included and the process is repeated.

To train the network the backpropagation algorithm

(Rumelhart et al. 1986) was used on the sigmoid activation

function. As backpropagation algorithm applies the gradi-

ent descent optimization, it might get stuck in local minima

leading to sub-optimal solutions. To avoid this situation a

momentum term was used in the objective function which

increases step size towards the minimum by trying to jump

from local minima leading the weight updates as,

Dxiðt þ 1Þ ¼ �g
oE

oxi

þ aDxiðtÞ; ð8Þ
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where E is the error function represented in this study by

RMSE, g the learning rate and a the momentum. After the

preliminary research, we found that a network with 1

hidden layer of 5 units and a g ¼ 0:005 and a ¼ 0:6 shows

as the best candidate configuration, in terms of accuracy,

for this problem.

As mentioned before, once the models are set up, we test

their forecast accuracy by training them on the full training

set which consists on observations from the 16th of January

2005 to the 11th of June 2009, leaving the last 365

observations for testing. Once performances are compared,

the principal idea behind stacking is to find a model and

setup which minimizes the generalization error assuming

the meta-learner (or algorithm used to combine previous

models) might be able to select and apply the most con-

venient of the previous base models to each present situ-

ation in the series, in terms of environmental conditions.

A simple approach for stacking was taken in order to

reduce full system complexity. The original training set

(16-01-2005 to 11-06-2009) is split in two subsets con-

sisting on leaving out the last 365 observations. Thus, the

base models (ARIMA, RF, GBM and ANN) are trained on

the new training set (16-01-2005 to 11-06-2008) to create

predictions for the left out period (12-06-2008 to 11-06-

2009), henceforth stack set. On the stack set, base models

predictions are combined though a meta-learner which is

trained using a 10-fold cross-validation for parametriza-

tion. Several candidates selected from the base models

were tested as meta-learners, being GBM the one with

better results in the cross-validation.

As a final step, the base models are trained using the full

training set to create predictions for the test set. These

predictions are used by the meta-learner (GBM) to generate

the final forecast for the test set. In order to help the model

to decide under which circumstances which model to

apply, three dummy variables were included to represent

the day of the year, the day of the week and the season.

This process is summarize in Fig. 3.

3 Results

The study is based on daily morbility cases, due to respi-

ratory and circulatory diseases, recorded from 01-01-2005

to 11-06-2010 in Madrid. As shown in Fig. 1, the charac-

teristics of the time series differ, having the number of

respiratory cases a more volatile behavior than the circu-

latory, which shows a more constant pattern. Although,

both show a strong seasonal pattern.

The first experiment consists on testing each of the

proposed models (ARIMA, RF, GBM and ANN) in isola-

tion by training them on the full training set (01-01-2005 to

11-06-2009) and leaving the last 365 observations for

testing. The explanatory variables found for the ARIMA

model in the circulatory and respiratory time series are

shown in Tables 2 and 3, respectively. In Table 4 the

results for each model for the respiratory cases are shown.

Tree-based models perform poorly when compared to

ARIMA and the neural network, obtaining higher RMSE,

being the Random Forest the worst performer. In this case,

ARIMA overperforms the other models managing to

explain the 91% of the variance of the respiratory cases.

Table 5 shows that the artificial neural network obtains

the best results for circulatory cases. ANN obtains a RMSE

Table 1 Input variables for the

computational intelligence

models

t - 1 t - 2 t - 3 t - 4 t - 5 t - 6 t - 7
Pt�16

t�1

Circulatory cases U U U U U U U U

Respiratory cases U U U U U U U U

Air pollutants

NO U U U U U U U U

NO2 U U U U U U U U

O3 U U U U U U U U

PM10 U U U U U U U U

PM2.5 U U U U U U U U

Biotic factors

Poaceae U U U U U U U U

Plantago U U U U U U U U

Meteorological

Pressure U U U U U U U U

Rainfall U U U U U U U U

Relative Humidity U U U U U U U U

Temperature U U U U U U U U
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of 13.69 compared to the 17.11 of the ARIMA with a mean

absolute percentage error of 8.39 and 10.66% respectively.

Again, the ensemble tree-based models poorly perform

compared to the other two approaches.

As a second part, we split the full set in three subsets, a

new training set consisting on the period from 01-01-2005

to 11-06-2008 to train the models, the subsequent 365

observations to stack the predictions of the base models

through GBM and again, the last 365 observations to test.

Tables 4 and 5 show the benefit of stacking, which reduces

previous best performer error and consequently, increases

R2 for respiratory cases.

4 Discussion

We have seen in Sect. 3 the benefits, in terms of error

reduction, of using the stack prediction technique.

Figure 4 shows a comparison of the best performer

(ARIMA) versus the stacked predictor on the respiratory

test set and the monthly distribution of errors. In general,

the distribution of the errors is similar for both approaches,

being the stacked errors slightly more concentrated around

the median error value as the boxes are slightly shorter. It is

noticeable the special characteristics of this series in the

months of December and January where the stack predictor

has slightly more difficulties in capturing the sudden peaks

compared to the ARIMA. Since the stacking is based on

assigning weights to each algorithm, in this case it might be

lowering the influence of the ARIMA model during those

sudden peak periods because this improves the prediction

of the entire test period.

On the other hand, when predicting the time series of

circulatory cases, the stack technique manages to reduce

the RMSE with respect to the ANN which was the best

non-aggregated performer. Figure 5 shows the comparison

of the monthly distribution of error for both algorithms.

This time, it can be clearly seen that in general the distri-

bution of errors for the stacked predictor show higher

concentrations around the median since the boxes are

shorter.

Fig. 3 Diagram of the architecture of the stack. Shapes shaded in gray represent forecast for the correspondent period, non-shaded shapes

represent training processes

Table 2 Explanatory variables obtained by the ARIMA model for the

circulatory-related admissions

Estimations SE

Non seasonal

AR1 - 0.55 0.15

AR2 0.18 0.03

MA1 - 0.70 0.15

Seasonal*

Seasonal AR1 0.12 0.03

Reg. coefficients

N1(trend) 0.01 0.00

Sine 365 days 11.01 0.89

Cosine 365 days 10.24 1.30

Sine 180 days - 2.95 0.91

Monday 39.54 1.75

Tuesday 42.91 1.86

Wednesday 43.89 1.93

Thursday 40.06 1.94

Friday 46.94 1.88

Saturday 8.50 1.73

NO2 0.18 0.04

Rel. Humidity 0.09 0.04

LAGS (diff(P), 1) - 0.37 0.14

Constant 74.09 3.03

* Season = 7 days
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If we compare the results on both series, we can see how

ARIMA obtains a mean absolute percentage error (MAPE)

of 12.65% for the respiratory time series and a 10.66% for

the circulatory, while the ANN achieves a 13.44 and a

8.39% respectively. A similar pattern is found in the

stacked predictor. This difference in error can be explained

by the nature of the respiratory time series, which shows

higher changes in standard deviation between the spring-

summer season and the autumn-winter. Admissions due to

circulatory cases show an average deviation of 27 patients

regardless the seasonality while the deviation of the res-

piratory cases increases to an average of 29 patients during

winter season from 15 patients during the summer. Addi-

tionally, ARIMA models with exogenous variables (5)

require the prediction of these independent variables at

time t in order to estimate the dependent variable at the

same time. This situation leads to an error propagation

from the models used to predict the exogenous variables

and consequently, the prediction error of the target variable

increases.

Table 3 Explanatory variables obtained by the ARIMA model for the

respiratory-related admissions

Estimations SE

Non seasonal

AR1 - 0.03 0.04

AR2 0.92 0.03

MA1 - 0.24 0.04

MA2 0.73 0.03

Seasonal*

Seasonal AR1 - 0.06 0.09

Seasonal AR2 0.85 0.09

Seasonal MA1 - 0.15 0.11

Seasonal MA2 0.75 0.10

Reg. coefficients

N1 (trend) 0.02 0.01

Sine 365 days 16.27 3.28

Cosine 365 days 24.62 3.29

Cosine 90 days 4.41 1.55

Monday 18.58 2.32

Tuesday 16.74 2.35

Wednesday 14.93 2.37

Thursday 14.84 2.37

Friday 21.99 2.36

Saturday 5.35 2.32

LAGS (PM2.5,5) 0.15 0.07

LAGS (PM10,1) 0.10 0.03

LAGS (NO2,4) 0.43 0.17

LAGS (Tcold ,4) 5.97 2.99

LAGS (Tcold ,14) 7.04 2.98

LAGS (Rel. Hum., 11) - 0.09 0.03

diff(P) - 0.27 0.11

LAGS (diff(P), 2) - 0.22 0.11

Constant 48.06 6.62

* Season = 7 days

Table 4 Forecast results for respiratory-related admissions

Model RMSE (%) MAPE R2

RF 22.64 18.61 0.74

GBM 16.87 14.45 0.85

ANN 15.06 13.44 0.89

ARIMA 13.15 12.65 0.91

STACK 13.04 12.32 0.92

Bold values indicate the best result for every error measure

Table 5 Forecast results for circulatory-related admissions

Model RMSE (%) MAPE R2

RF 22.96 14.17 0.77

GBM 18.62 10.81 0.83

ANN 13.69 8.39 0.90

ARIMA 17.11 10.66 0.84

STACK 13.24 8.09 0.90

Bold values indicate the best result for every error measure
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However, in both cases, the ARIMA model and a simple

ANN with one hidden layer clearly obtain better results

when compared to more complex approaches. This sug-

gests that the problem might be mostly linear in nature.

Notice that a single-layer ANN captures linear relations

among the inputs, its output being the sum of the weighted

inputs. Furthermore, this possible linearity of the series

does not seem to be parallel to the axes since both, RF and

GBM, divide the feature space into hyper-rectangles. Thus,

both algorithms decision boundaries are parallel to the axes

requiring a higher number of trees to adapt the diagonal

shape. As a consequence, this situation requires more

complex tree-based algorithms which not always obtain a

solution as optimal as models of other nature such as the

ARIMA and the ANN. Among computational intelligence

models, tree-based approaches provide an advantage with

respect to ANNs which is that importance for the different

variables can be easily obtained. GBM and RF were

selected to test the bias-variance trade off. Bias-variance

decomposition is a way to analyse algorithm performance

error which is explained by the difference of the observed

value and the predicted (bias) and the variability of the

prediction given a data point (variance). GBM reduces

error by reducing the bias (also to some extent variance by

aggregating the output of many models) while RF reduces

variance as trees are made uncorrelated to maximize the

decrease in variance. RF is practically tuning-free, saving

research time while GBM have few hyper-parameters to

tune making this algorithm performance highly dependent

on tuning (Caruana and Niculescu-Mizil 2006).

As opposed to ARIMA models, ANNs are not con-

strained by any predefined mathematical relationship

between the dependent and independent variables as they

have the ability to capture these relationships during the

training phase (White 1989). ANNs are known as a black-

box approach meaning that, although they might provide

good results, they are not readily interpretable and thus it is

harder to use them for diagnose as opposed to ARIMA

models.

To sum up, we have seen the benefits of stacking, which

performs as expected by minimizing the generalization

error (or out-of-sample error). Stacking increases the per-

centage of variance explained by the forecast in both series

capturing and combining the best predictive capabilities of

each model to configure a better solution. Although this

improvement is marginal in the problems presented

(around 1% in the respiratory cases and 3% in the circu-

latory cases with respect to performance of the best model),

this technique is a useful tool for automatic model selection

under different circumstances when accuracy is the priority

in detriment of model complexity. This marginal

improvement suggests there are strong similarities between

the performance of the best algorithms (ANN and ARIMA)

since the biggest improvement occurs when stacking

together more dissimilar predictors (Breiman 1996b).

Providing additional variables, such as seasonal ones,

might help the stacking method (which is a tree-based

algorithm) to adapt the importance of each underlying

algorithm according to different situations. For instance,

during the summer, one of the algorithms participating in

the stacking might gain importance with respect to another,

while the situation might reverse the rest of the year.

Table 6 shows the relative importance given to each of the

proposed models along with the dummy variables which

represent the day of the year (doy), the day of the week

(dow) and the season (sea).
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the stack for respiratory cases. Bottom chart shows the monthly
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Table 6 Relative importance of each variable in the Stack

Model Respiratory model (%) Circulatory model (%)

RF 13.29 12.44

GBM 15.88 17.44

ANN 17.86 24.47

ARIMA 21.51 20.72

doy 23.88 14.26

dow 5.13 9.53

sea 2.45 1.14

doy : Julian Day Number, dow : fMon; . . .; Sung ! f1; . . .; 7g,
sea : fWinter; Summer; Spring;Autumng ! f1; 2; 3; 4g
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In that table, it can be seen how the stacked methods

favor the models with lower error in the corresponding

case, having ARIMA a relative importance of 21.51% for

the respiratory time series and the ANN 24.47% for the

circulatory time series. The day of the year (doy) obtains

high relevance when deciding which model should be

applied under which situation. This is specially true in the

case of the respiratory series, which is coherent with the

fact that it has a marked seasonal pattern. Knowing the day

of the year might allow the stacked predictor to choose

which model to use, especially in the peak winter season.

5 Conclusions

In this study we tackled the problem of forecasting the

number of daily hospital admissions to emergency services

due to circulatory and respiratory cases, based on air

quality indicators. We conducted a comparison of the

forecast accuracy of four predictive models of different

nature on these two problems. Among these models, we

tested two tree-based approaches which represent ensemble

(random forests) and boosting methods (generalized

boosted models). In addition to the tree-based models, we

also tested artificial neural networks and, in order to allow

for a comparison with a classic approach, the well-known

traditional ARIMA model.

Amongst all the considered models, we found that the

ARIMA and the ANN overperform, in terms of accuracy,

random forests and gradient boosting machines on both

time series.

In addition, we also proposed an aggregative technique

which recently has become popular known as stacked

generalization. We found that this technique, which is

based on dynamically combining the prediction of other

models, performs better when used to combine the fore-

casts of the four aforementioned models.

The results show that it is possible to forecast the res-

piratory and circulatory emergency hospital admissions by

using air quality indicators, and that computational intel-

ligence methods are suited for the task. However, there is

still room for improvement by, for example testing other

different models, different cross-validation techniques

(randomly dividing the dataset in chunks, instead of vali-

dating against a single year) or including other exogenous

variables into the stack, which might help the algorithm to

better decide when to use one of the models or other.
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Abstract
Air pollution and airborne pollen play a key role in respiratory and circulatory disorders and thus have a direct relation to

hospital admissions for these causes. Knowing in advance the influx of patients to emergency services allows clinical

institutions to optimize resources and to improve their service. Since the variables influencing respiratory and circulatory-

related hospital admissions belong to fields such aerobiology or meteorology, we aim for a data-based system which is able

to predict admissions without a priori assumptions. Given the number and distribution of observation stations (meteoro-

logical, pollen and chemical pollution stations and hospital), previous approaches generate many model-dependent systems

that need to be combined in order to obtain the full representation of future environmental conditions. A unified approach

able to extract all temporal dynamics as well as all spatial relations would allow a better representation of the afore-

mentioned conditions and consequently a more precise hospital admissions forecast. The proposed system is based on a

specific neural network topology of long short-term memories and convolutional neural networks to obtain the spatio-

temporal relations between all independent and target variables. It was applied to forecast daily hospital admissions due to

respiratory- and circulatory-related disorders. The proposal outperforms the benchmark approaches by reducing as an

average the prediction error by 28% and 20% for the circulatory and respiratory cases, respectively. Consequently, the

system extracts all relevant information without specific field knowledge and provides accurate hospital admissions

forecasts.

Keywords Convolution � Neural networks � Forecasting � Hospital admissions

1 Introduction

During the last few decades, air pollution and allergens have

been consistently linked with mortality [3, 10, 13, 37, 41, 47]

due to its known effects on patients with respiratory and

circulatory disorders [11, 12]. Forecasting these pathologies

is a critical issue in order to apply preventivemeasures and to

plan medical resources [4, 34] in order to avoid congestions

and overcrowding emergency departments in hospitals [59].

Knowing in advance the influx of patients emergency

admissions eases clinical institutions management in opti-

mizing resources with the consequent economic implication

[2, 8, 14, 16–19, 25, 39, 60]. Furthermore, improving the

efficiency of resources is directly related to the improvement

in patient care [46].

Air pollution and allergens are one of many environ-

mental factors which play a causative role in the incidence

of respiratory and circulatory diseases [30]. With this in

mind, within the context of this study the term air pollution

is used in a wide sense, referring to both chemical air

pollutants and airborne pollen concentrations of Plantago

and Poaceae, which are considered two of the most

aggressive genus in relation to respiratory disorder [55].

Traditional observation-based models employ a number of

different methods to relate records of air concentrations

(either chemical or biological) to one or more variables that

can be measured or predicted, usually meteorological data.

Examples include regression models [50, 54], time-series

models [53], computational intelligence techniques

[5, 20, 21, 40, 43, 52] and, in the case of pollen concen-

trations, process-based phenological models [51] or source-

based (such as traffic, heating systems) models for the

chemical pollutants [29]. Given the rich availability of
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techniques and methods, clinical research directly includes

current variables levels to predict current cases of diseases

related to air quality conditions [8, 9, 12, 45]. One of the

main drawbacks of such models is that they are generally

specific to a particular site or a particular pollutant or

pollen genus.

Additionally, the nature of the independent variables

implies several fields of expertise such as meteorology,

biology and environmental sciences among others. Pre-

dicting chemical pollutants and airborne pollen concen-

trations based on meteorological conditions is inherently

different problems: Atmospheric pollen concentrations

depend on plant development during previous seasons

which, in turn, depends on the climatological conditions

during plant evolution [7, 54]. This implies long and mid-

term relations between past atmospheric conditions and

current plant status. Contrarily, chemical air pollutant

levels are related to recent past atmospheric conditions

[45]. These differences suggest different approaches when

predicting each problem if more traditional methods are

used. In addition to the temporal dimension, it is important

to take into account the spatial interactions between

observation stations as they are implicitly related. The

access to these expertise fields resources is not always

available in research departments; neither is it the time to

deepen into each specific model driver. Therefore, a system

which can tackle the problem from a pure data-based point

of view would be of high interest when this lack of

resources occurs. Furthermore, due to data protection laws,

patient information is usually available at aggregated levels

to avoid determining their precedence and consequently it

is not possible to assign them to their exposure area.

Soft computing techniques have been gaining impor-

tance due to satisfactory results when applied to real-world

problems [20, 52]. Specifically, long short-term networks

are applied to identify temporal structures in time series

[20, 57] and convolutional neural networks to extract local

spatial patterns [52]. Given the different behaviors of the

variables involved (Fig. 1), this research combines both

methods to pose that if there exists mutual influential

relations between the variables as well as shared implicit

information (both temporal and spatial), the information

and the relations can be automatically extracted in order to

obtain an optimal solution of the prediction model that can

be used to forecast its impact on hospital admissions.

The objective of this research is to develop a method

able to deal with the previously introduced problems and

limitations of current approaches. A system able to effi-

ciently predict air quality allows to establish future envi-

ronmental scenarios out of which an improved and realistic

family of clinical models, among other applications, can be

derived to forecast urgency admissions due to respiratory

and circulatory causes. The proposed system based on long

short-term memory networks [24, 28] and convolutional

neural networks [35] automatically extracts the relevant

information and their interactions given all data available,

managing to filter and transform the information based on

its forecasting capability on hospital admissions. The pro-

posal will be compared with already published related

studies showing its benefits in terms of accuracy and cost

and research time saving as no feature engineering and

biometeorological background is needed.

2 Materials and methods

2.1 Data description

Target Variables consist of daily hospital admissions of

patients older than 65 years who were recorded by the

medical system between January 1, 2001, and December

31, 2013, as emergency cases due to either circulatory or

respiratory cases. This demographic range represents as an

average around 90% of the mortality cases for each dis-

order according to the World Health Organization.1 Due to

data protection and confidentiality policies, the data were

provided at an aggregated level across the region of Madrid

preventing any kind of spatial analysis.

Chemical air pollutants consist of daily mean concentra-

tions (in lg/m3) of particulate matter of 10 lm in diameter

(PM10), carbon monoxide (CO), sulfur dioxide (SO2),
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en/index1.html.
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ozone (O3) and nitrogen dioxide (NO2) measured by

Madrid’s Municipal Air Quality Monitoring Network

(http://www.mambiente.munimadrid.es/). This network

records hourly values for these air pollutants, which are

then aggregated to daily mean levels, at 24 urban stations

(Table 1). Given maintenance issues and network updates,

not all data points are available at all locations so only

those with a limited amount of missing data points were

taken into consideration (Table 1). Sparse missing data

were linearly interpolated using the precedent and the

subsequent available data points.

These pollutants are the most problematic in terms of air

quality (with European regulations fixing yearly thresholds

for each of them) and are considered the major primary

pollutants in Madrid, including ozone which shows its

influence in respiratory cases [8].

Weather observations are daily temperature in Celsius

degrees, wind speed measured in m/s, daily rainfall in

mm/h, pressure in mbar and degree of humidity in per-

centage. Data sets for locations (Table 1) consist of

observations from January 1, 2001, to December 31, 2013,

and located as shown in Table 1.

Pollen observations correspond to daily grains per cubic

meter of Poaceae and Plantago pollen registered at Com-

plutense University of Madrid (Pharmacy Faculty). Pollen

counts followed the standard methodology of the Spanish

Aerobiological Network [56] and were provided by Red

Palinológica de la Comunidad de Madrid. The nature of

pollen time series (very low concentrations across the year

with sudden high peaks during the pollination season)

demands special attention to the missing data during the

critical months of February, March and April. The

weighted interpolation proposed by [42] was used in order

to deal with the missing data points, which account for less

than 3% of the total. These pollen genus are considered

among the most aggressive in relation to health disorder in

Madrid [55].

Figure 1 shows the target time series (in the first two

rows) along with a sample of the pollutants considered in

this study. In the case of respiratory admissions, it can be

seen that most of the cases were recorded during winter

months while circulatory admissions show a larger number

of records across the year around the seasonal component.

With respect to chemical and biotic pollutants, we can find

a similar mixed behavior with higher variability around the

seasonal component as in the case of O3 or the presence of

higher peaks with very low levels out of the pollination

season for the pollen airborne concentrations.

2.2 Methodology

Long short-term memory networks (LSTM) were first

proposed by [28] and improved in 2000 by [24]. They are a

variation of recurrent neural networks (RNNs) capable of

learning long-term dependencies by including in the

architecture special units called memory blocks which aim

to overcome the issue of the vanishing gradient [27].

An LSTM unit performs self-loops which enable the

flow of the gradient for long durations, enabling it to deal

with the vanishing gradient problem. Together with an

input gate, an output gate and a forget gate, this architec-

ture models the short-term memory that allows the network

to learn over many time steps. For this reason, LSTM had

been shown to outperform more traditional recurrent net-

works on several temporal processing tasks [24].

Table 1 Availability of variables and locations

Long. Lat. CO NO2 O3 Plantago Poaceae PM10 SO2 Pr R Hum T W

ArturoSoria 3� 380 W 40� 260 N * * * *

BarrioPilar 3� 420 W 40� 280 N * * * *

CasaCampo 3� 440 W 40� 250 N * * * * * * * * * *

CuatroCaminos 3� 420 W 40� 260 N * * * *

Farmacia 3� 450 W 40� 270 N * *

Farolillo 3� 430 W 40� 230 N * * * * * *

Moratalaz 3� 380 W 40� 240 N * * * *

PlazaEspana 3� 420 W 40� 250 N * * * * * * * *

PzadelCarmen 3� 420 W 40� 250 N * * * *

PzaLadreda 3� 430 W 40� 230 N * * * * *

RamonyCajal 3� 400 W 40� 270 N * *

StaEugenia 3� 360 W 40� 220 N * * *

Vallecas 3� 390 W 40� 230 N * * * *

* represents data availability

Pr pressure, R rain, Hum humidity, W wind speed, T average temperature
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The learn gate. The learn gate takes the short-term memory

(STM) and the input event and combines them. Actually,

after combining the event and the STM, it ignores redun-

dant information. Mathematically, the learn gate obtains as

an input the short-term memory STMt�1 and the event Et

and puts them into a linear function which consists of

joining the vectors, multiplying it by the weight matrix Wn,

adding a bias bn and squeeze the result with a tanh acti-

vation function:

Nt ¼ tanh Wn � ½STMt�1;Et� þ bnð Þ: ð1Þ

The new information Nt passes through the gate but still

needs to ignore the information which is not relevant. In

order to do so, Nt is multiplied by the ignore vector it. This

ignore vector is calculated via a simple small neural net-

work whose inputs are again the STM and the event and

uses the sigmoid (r) activation function to squeeze the

information:

it ¼ r Wi � ½STMt�1;Et� þ bið Þ; ð2Þ

being the learn gate represented as Nt � it.

The forget gate. Takes the long-term memory (LTM) and

decides which parts to keep and to forget. The LTM at

t � 1 is multiplied by a forget factor ft which is calculated

through a one-layer neural network with a linear function,

which uses the STM at t � 1 and the event Et, and com-

bines it with a sigmoid activation:

ft ¼ r Wf � ½STMt�1;Et� þ bf
� �

ð3Þ

being bf the bias and Wf the weight matrix. The forget gate

can be expressed as LTMt�1 � ft.

The remember gate. Takes the output from the forget gate

and the output from the learn gate and adds them to obtain

the new LTM:

LTMt ¼ LTMt�1 � ft þ Nt � it ð4Þ

The use gate. It combines the LTM that just came out from

the forget gate and the STM that came out from the learn

gate to come out with a new STM and an output. In order to

do so, it applies a small neural network on the output of the

forget gate using the tanh activation function (5) and

another neural network on the STM and the events using

the sigmoid function (6):

Ut ¼ tanh Wu � LTMt�1 � ft þ buð Þ ð5Þ

Vt ¼ r Wv½STMt�1;Et� þ bvð Þ ð6Þ

As a final step, the network multiplies (5) and (6) to obtain

the new output STMt ¼ Ut � Vt which also works as a new

STM.

Convolutional Neural Networks (CNN) [35] have been

successfully applied in several domains such as image

recognition [33] or linguistics [23]. Based on their success,

researchers have started to use them for time-series anal-

ysis [22]. CNNs differ from feed-forward neural networks

mainly by the existence of convolutional layers, which are

hidden layers that utilize the power of mathematical con-

volution to transform inputs. Convolution allows for the

encoding of the local properties of the input in such a way

that propagates the information in a more efficient manner.

CNN filters, obtained by the convolution of inputs and

weights, are local in input space and are thus to exploit the

strong, spatially local correlation present in the time series.

That means that they work well for identifying simple

patterns within local regions of the data (subset of features)

which then will be used by subsequent layers to form more

complex patterns. One-dimensional CNNs share the same

characteristics with the most commonly used two-dimen-

sional ones differing only in the dimensionality of the input

and how the filter slides across the data.

Several studies have proved the advantages of one-di-

mensional CNN [1, 32] for certain applications when

compared to more complex, deeper and higher-dimensional

CNNs. Instead of matrix or tensor operations, the convo-

lution operation requires only array operations (Eq. 7) to

define the feature map s[n]

s½n� ¼ ðf � gÞ½n� ¼
Xinf

m¼�inf

f ½m�g½n� m� ð7Þ

where g is the convolutional filter, f the input space and

m is the size of the filter. This low computational provides

a major advantage in forward and backpropagation opera-

tions as they can effectively be executed in parallel.

The main difference between LSTM units and CNNs is

that the latest only considers current inputs, exploiting

input local correlations and properties present. This means

that CNNs are able to identify patterns within local regions

of the data (features). On the other hand, LSTMs also

consider previously input signals taking advantage of the

seasonal information present in the time series (Fig. 1).

The majority of the studies found in the literature

combine, in this precise order, CNNs and LSTMs for

sequence prediction problems with spatial inputs as can be

the case of images or videos [15, 58]. Placing CNN before

allows to capture the spatial structure of one variable. An

alternative is to transform the one-dimensional time series

into two-dimensional matrix as an input of the CNN to

capture temporal patterns. In this problem, we have tem-

poral and spatial dimensions for 60 variables (Table 1). In

order to deal with this multivariate problem, the novelty

presented in this study is to reverse the order in order to

achieve patient influx forecasts via LSTMs which then are
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parsed to the CNN which acts as an error-corrector model.

Furthermore, the characteristic topology of the LSTM

module (grouped by pollutant type) eases the discrimina-

tion of non-relevant information for predicting.

In order to compare the results with similar research

studies, the widely used [16–18, 25] scoring rule root mean

squared error (RMSE) will be used to measure the average

magnitude of the error along with the coefficient of

determination R2:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðyi � ŷiÞ2
s

; ð8Þ

where yi is the observed ith data point, ŷi the predicted and

n the total number of data points in the test set. RMSE

provides error magnitudes directly comparable to the target

time series which eases its interpretability. The results will

be directly compared with traditional time-series tech-

niques and computational intelligence models proposed by

[45].

2.3 Experimental design

The aim is to provide the most accurate forecast of one-

day-ahead cases of hospital admissions due to circulatory

and respiratory cases through algorithm selection, config-

uration and parametrization. Thus, avoiding any kind of

dimensionality reduction, either through variable selection

or feature engineering. Consequently, this approach saves

human resources in terms of expertise in the different fields

the variables involved such as meteorology, botany or

medical fields.

In order to do so, a k-fold cross-validation (CV) is

performed over the full historical data set (January 1, 2001,

to December 31, 2013) using the LSTM neural network to

generate forecasts. These forecasts are then parsed through

a three-layer one-dimensional CNN, along with previous-

day observation of circulatory and respiratory cases, to

perform the final prediction (Fig. 2). The technique con-

sists of leaving one year out for testing and using the

remaining for training. This is repeated per year (13-fold

CV) in the study period resulting in a full new set of one-

day-ahead forecasts between January 1, 2001, and

December 31, 2013. Given the serial correlation and the

non stationarity of the involved time series, this application

is usually avoided by practitioners, but it was favorably

compared to traditional out-of-sample evaluation by [6].

Furthermore, CV method includes each data point as test

set once so no decision needs to be made by an expert in

order to define out-of-sample periods. The underlying idea

is letting the first block of the network to obtain and store

the relevant spatial and temporal relations to forecast the

target variables to subsequently allow the CNN block to

serve as a error correction model.

As mentioned in Sect. 2.1, hospital admissions were

provided at aggregated level due to confidentiality issues.

As a result, it is not known beforehand which local pol-

lutants and observation stations are the best candidates to

directly influence patient admissions. LSTM network

topology is aimed to ease the discrimination process by

using separated groups of LSTM units based on the type of

pollutant plus two extra unit groups to extract the temporal

relations from the circulatory and respiratory observations,

respectively. Each group consists of 100 LSTM units,

yielding a total of 900 units in the layer (five chemical

pollutants, two air allergens and two target variables),

which are fully connected to a hidden layer of 100 rectified

linear units (ReLU) in order to obtain the spatial relations

as well as the interactions among pollutants and hospital

admissions. For instance, in the case of carbon monoxide, 7

one-day-lagged input variables, one per observation station

(Table 1), are input to one group of 100 LSTM units which

are then fully connected to the subsequent hidden linear

layer. The hidden ReLU layer is connected to 2 ReLU

neurons which generate the one-day-ahead estimations for

hospital admissions due to circulatory and respiratory

cases. The results from these 2 output neurons will be used

to feed the one-dimensional convolutional neural network.

Then, the CNN receives as an input the estimated values

of the LSTM module along with previous-day circulatory

and respiratory observations, and thus the input space

width of the CNN is of size 4. The input is parsed to a

three-layer of 16 convolutional filters of size 2 each.

Usually, in order to reduce the dimensionality of parame-

ters of a CNN, a summarization is performed through a

pooling layer which was not found, during the study,

beneficial for this problem when accuracy is taken into

account. Finally, the CNN block is fully connected to 50

ReLU neurons that transfer the information to a 2-neurons

output layer which generates the final predictions, one per

target variable in order to form the full system LSTM-

CNN.

The relationships between the inputs and the outputs are

obtained through the well-known backpropagation algo-

rithm proposed by [49], employing the mean squared error

as the loss function, which heavily penalizes large errors

when compared to RMSE used as a report metric in this

study. In order to avoid the vanishing gradient problem in

recurrent neural networks, the Adam algorithm proposed by

[31] was used as optimization model to fit network weights.

Compared to the classic stochastic gradient descent (SGD)

which maintains a single learning rate a for all weight

updates, the method computes individual adaptive learning

rates from the estimates of first and second moments of the

gradients [31]. Specifically, the algorithm uses an

Neural Computing and Applications

123



exponential moving average of the gradient and its square

using the parameters b1 and b2 to control the decay rates of

these moving averages. This bias-correction helps Adam

slightly outperform the alternative RMSprop toward the

end of optimization as gradients become sparser. In order

to obtain the optimal set of values, a grid search was per-

formed over all possible combinations of parameter values

based on the cross-validation results. A learning rate

a ¼ 0:001, and exponential decays of b1 ¼ 0:9 and b2 ¼
0:999 were used as suggested by [48]. The full network is

trained using batches of 50 observations over 1000 epochs.

3 Results

As stated above, the study period consists of daily mor-

bility cases due to circulatory and respiratory cases from

January 1, 2001, to December 31, 2013. As a first step of

the experiment, only the LSTM module was iteratively

evaluated leaving one full year out and using the remaining

years as a train set as suggested by [6]. After 13 rounds

(one per year), we obtain one-day-ahead forecasts for the

full study period with RMSEs detailed in Table 2.

On average, an RMSE of 13.98 is achieved for circu-

latory cases and an RMSE of 15.06 in the case of the

admissions due to respiratory disorders. The error is con-

sistently lower across most years for the circulatory cases

as the time series show less variance around the seasonal

pattern when compared to the respiratory cases which are

characterized by the presence of higher spikes during

winters, as shown in Figs. 3 and 4. A R2 of 0.88 and 0.84

was obtained for circulatory and respiratory cases,

respectively (Table 2).

The second part of the experiment intends to improve

over the errors produced by the LSTM module. In order to

do so, its outputs are used to feed the CNN module along

with the previous-day circulatory and respiratory cases

observations to compile the full system shown in Fig. 2.

Figure 3 shows the comparison between the predicted

values of the LSTM and the full setup for circulatory cases.

It can be clearly seen that including the CNN module helps

to better extract the variance of the observations driving the

average RMSE down from 13.98 to 11.21 (Table 2) and

increasing the coefficient of determination R2 from 0.88 to

0.93. Figure 4 shows a similar behavior of the CNN for

respiratory cases achieving an RMSE of 11.76 with a R2of
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0.90 compared to the RMSE of 15.06 obtained in the first

experiment.

Table 2 shows how consistently LSTM-CNN improves

the metrics for the circulatory and the respiratory cases

across all years. Not only the error is consistently lower for

this model on every year and both series, but also the

variance of the error is reduced in most of the cases. As we

can see in the circulatory cases (Fig. 3), the LSTM con-

figuration underestimates higher and lower observed values

around the seasonal component. This problem is overcome

by the CNN correcting this situation and showing more

variance. Similarly, the respiratory cases show heavy-tailed

distributions due to high peaks during winter periods. The

LSTM configuration tends to underestimate winters with

the presence of high peaks such as 2004, with a maximum

of 242 patients with a yearly average of 63, and 2008 with

218 maximum admissions with a yearly average of 79,

obtaining an RMSE of 14.90 and 14.94, respectively. Also

it overestimates years which have low influx of winter

admissions when compared to other years such as 2003,

with a maximum of 140 and a yearly average of 64, and

2010 with a maximum of 173 with a yearly average of 81

patients, obtaining above the average errors in both cases.

Table 2 Results for the evaluation set

Year Circulatory Respiratory

LSTM-CNN LSTM LSTM-CNN LSTM

RMSE 2001 11.57 12.37 10.46 11.51

2002 11.84 15.19 11.24 15.56

2003 11.16 13.97 12.56 16.20

2004 12.24 14.90 9.96 16.78

2005 9.64 11.94 12.15 15.23

2006 12.03 13.24 10.93 11.48

2007 9.47 14.49 11.84 16.35

2008 12.00 14.94 13.82 16.32

2009 12.43 15.15 13.44 15.86

2010 9.93 14.59 10.86 15.49

2011 9.72 13.77 11.68 15.88

2012 11.69 13.97 11.23 15.28

2013 11.99 13.16 12.69 13.84

Average 11.21 13.98 11.76 15.06

R2 2001 0.91 0.88 0.84 0.81

2002 0.91 0.86 0.89 0.79

2003 0.89 0.83 0.82 0.73

2004 0.88 0.80 0.95 0.85

2005 0.93 0.90 0.94 0.92

2006 0.92 0.87 0.86 0.85

2007 0.94 0.86 0.91 0.83

2008 0.93 0.88 0.86 0.85

2009 0.91 0.87 0.87 0.81

2010 0.95 0.90 0.89 0.81

2011 0.95 0.91 0.94 0.88

2012 0.95 0.91 0.96 0.93

2013 0.97 0.96 0.92 0.91

Average 0.93 0.88 0.90 0.84
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On the other hand, LSTM-CNN setup describes better

these situations and consequently drives the errors on these

years closer or below its average.

4 Discussion

As we have seen, the proposed approach of stacking the

LSTM results through a convolutional neural network

outperforms the first experiment based only in LSTMs. The

full system manages to obtain relevant information free

from any feature engineering or synthetic input variable

formation. Consequently, it has immediate practical

application since no field specific research is needed.

Nevertheless, the forecasting capabilities of the proposal

are expected to improve if input variables are derived based

on field knowledge such as biology or environmental sci-

ences. Variable selection and feature engineering improve

model performance [44] as they ease the model in

extracting relevant information since it was preprocessed

by a human expert. Still, the initial assumption of this study

was the lack of these resources.

The study was limited by the amount of data available.

Deep architectures generally require amounts of data in

order to be trained, an improvement in the results is

expected by increasing the study period. Furthermore, this

limitation in the availability of the variables made PM2.5

pollutant to be excluded from this study which shows direct

influence in respiratory cases [8]. Also, Olea pollen con-

centrations would contribute to draw a better picture in

terms of air quality representations as it has more effects on

health than Plantago [55].

Even though the results are satisfactory, the appearance

of high peaks during winter in the case of respiratory dis-

orders increases the error as these high accumulations of

admissions occur during a short period and, therefore, the

number of observations is limited in order to learn the

pattern. However, this circumstance is also common in

other approaches.

The results presented in this study are directly compa-

rable in terms of accuracy to previous studies such as [45]

(Table 3), which test a traditional time-series approach

(ARIMA) and several computational intelligence models.

The aforementioned study reports an RMSE of 13.04 in the

case of respiratory-related admissions. For this variable,

the pure LSTM approach does not manage to outperform

the ARIMA model, but it does when compared to the

artificial neural network and the tree-based algorithms.

However, LSTM-CNN reduces the error to 11.75. On the

other hand, [45] shows an RMSE of 13.24 for the circu-

latory admission, which means a close performance when

compared to the LSTM approach while LSTM-CNN out-

performs with an RMSE ¼ 11:20: Besides the

improvement in accuracy, the proposal saves the research

step of finding relevant independent variables for the model

as LSTM-CNN manages to extract this information from

the algorithmic point of view. As a consequence, no expert

human input and specific research is needed when com-

pared to the referred research.

In terms of execution time, long short-term memory

networks require high computational cost, especially when

the number of dimensions of memory cell is high [38]

given the direct relation between the number of weights

and the dimensions of the memory cells. Several proposals

tackled this increase in complexity using lighter architec-

tures [36]; however, [26] shows that default topologies do

not suffer from major loss in accuracy. Nevertheless, this

situation is overcome by the initial hypothesis of this

research as the proposal can be input with any other vari-

able the researcher might consider influential such as a

different location, another pollen genus or additional pol-

lutants regardless of the intrinsic nature of the time series

as, for example, seasonal patterns, spikes or trends.

Finally, the usefulness of the proposal is shown by its

performance when compared to the benchmark research

[45] and its flexibility to add or remove input variables

without the need of doing extra research or having field

expert input as it was tested without any feature generation.

Consequently, it shows a potential save of costs when

resources are not available.

5 Conclusions

The present study proposes an algorithmic approach for

forecasting daily hospital admissions due to respiratory and

circulatory disorders based on environmental indicators.

The initial hypothesis was to apply artificial intelligence

methodologies to avoid feature engineering as not always

Table 3 Global results (the first five rows are taken from [45])

Model Circulatory Respiratory

RMSE R2 RMSE R2

RF 22.96 0.77 22.64 0.74

GBM 18.62 0.83 16.87 0.85

ANN 13.69 0.90 15.06 0.89

ARIMA 17.11 0.84 13.15 0.91

STACK 13.24 0.90 13.04 0.92

LSTMavg 13.98 0.88 15.06 0.84

LSTM-CNNworst 12.43 0.88 12.56 0.84

LSTM-CNNbest 9.47 0.97 9.96 0.96

LSTM-CNNavg 11.21 0.93 11.76 0.90
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the resources and research time of the independent input

variables are available. Therefore, the algorithm architec-

ture needs to be able to automatically extract and filter

relevant information for prediction. We have seen that

CNN-LSTM allows not only to solve the problem but also

to obtain better results, in terms of accuracy, when com-

pared to already published approaches which include the

mentioned independent variable preprocess and research.

However, we believe that including feature engineering

and selection preprocess will improve even further the

results.

One of the major limitations of deep architectures is the

interpretability of the results and the identification of the

contribution of each variable to the prediction. This situa-

tion makes deep architectures weak in terms of diagnosis as

their explainability is limited. Notwithstanding, several

techniques are proposed such as Shapley additive expla-

nations in order to cope with these limitations.

Even though LSTMs have been proved successful in

time-series applications, we showed the benefits of stack-

ing their predictions through one-dimensional convolu-

tional neural networks. CNNs are being widely used in

several study fields, but still the number of applications in

time-series forecasting problems is fairly limited when

compared to other areas. Despite the fact the results are

promising and outperform previous studies, there is still a

need for further research in network topologies in order to

improve performance and reduce model complexity.

Complexity would be definitely reduced by using Gated

Recurrent Units as they use two gates instead of the three

used in the LSTMs. However, there is a potential loss of

long-term information which might influence forecast

accuracy.

Acknowledgements This work was only possible thanks to the

ongoing fruitful collaboration with Julio Dı́az and Cristina Linares,

from the Carlos III National Institute of Health, Madrid, Spain.

References [16–18, 25] were added upon request by Reviewer 3.

Compliance with ethical standards

Conflict of interest The authors declare no conflict of interests.

References

1. Abdeljaber O, Avci O, Kiranyaz S, Boashash B, Sodano H,

Inman D (2017) 1-D CNNs for structural damage detection:

verification on a structural health monitoring benchmark data.

Neurocomputing 275:1308–1317

2. Abraham G, Byrnes GB, Bain CA (2009) Short-term forecasting

of emergency inpatient flow. Inf Technol Biomed 13:380–388

3. Alberdi JC, Dı́az J, Montero JC, Mirón IJ (1998) Daily mortality

in madrid community (Spain) 1986–1991: relationship with

atmospheric variables. Eur J Epidemiol 14:571–578

4. Anwar MY, Lewnard JA, Parikh S, Pitzer VE (2016) Time series

analysis of malaria in Afghanistan: using arima models to predict

future trends in incidence. Malar J 15:566

5. Baghban A, Jalali A, Shafiee M, Ahmadi M (2018) Developing

an anfis based swarm concept model for estimating relative vis-

cosity of nanofluids. Eng Appl Comput Fluid Mech 13:08

6. Bergmeir C, Hyndman RJ, Koo B (2018) A note on the validity

of cross-validation for evaluating autoregressive time series

prediction. Comput Stat Data Anal 120:70–83

7. Cannell MGR, Smith RI (1983) Thermal time, chill days and

prediction of budburst in Picea sitchensis. J Appl Ecol

20:269–275

8. Dı́az J, Alberdi JC, Pajares MS, López R, López C, Otero A
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A B S T R A C T

In this paper we establish the attributable risk on respiratory and cardiovascular disorders related to traffic
intensity in Madrid. In contrast to previous related studies, the proposed approach directly associates road traffic
counts to patient emergency admission rates instead of using primary air pollutants. By applying Shapley values
over gradient boosting machines, a first selection step is performed among all traffic observation points based on
their influence on patient emergency admissions at Gregorio Marañon hospital. A subsequent quantification of
the relative risk associated to traffic intensity of the selected point is calculated via ARIMA and log-linear Poisson
regression models. The results obtained show that 13% of respiratory cases are related to traffic intensity while,
in the case of cardiovascular disorders, the percentage increases to 39%.

1. Introduction

The impact of atmospheric pollution on hospital admissions in
Madrid has been extensively researched over the last decade, both re-
lated to chemical air pollutants (Linares and Díaz, 2010a,b; de Miguel-
Díez et al., 2019; Marques-Mejías et al., 2018) and to environmental
noise levels (Tobías et al., 2001; Linares and Díaz, 2010a; Díaz et al.,
2020; Carmona et al., 2018). All these research studies establish the
relations between levels of pollutants measured at different observation
stations in Madrid, mainly NO2, PM10, PM2.5 and noise levels, and the
correspondent health indicators.

In urban areas, over 55% of particulate matter (PM) is directly re-
lated to road traffic as well as about 70% of NO2 emissions (Quero
et al., 2012). With respect to environmental noise levels, the percentage
associated with road traffic surpasses 70% (Recio et al., 2016). Even
though road traffic is the major source of pollution in big cities, there
are no previous studies which relate the main cause (road traffic) with
the effect (health indicators).

The main objective of this paper is to analyze the association be-
tween traffic intensity and hospital admissions. This differs from pre-
vious research proposals since it directly analyses the impact of the
daily number of vehicles on hospital admissions due to respiratory and
cardiovascular disorders. As a consequence of the results obtained, it is
also intended to increase the comprehension of the effects of intense
road traffic in major cities.

Exposure to transport-related air pollution increases the risk of
premature death due to respiratory and cardiovascular causes
(Krzyzanowski et al., 2005; WHO Regional Office for Europe, 2013;
Burns et al., 2020; EEA, 2020; Mannucci et al., 2019). Knowing the
attributable risk associated with road traffic not only enables traffic
control policies to local authorities, but also increases the awareness of
the aftereffect to its exposure.

Among all traffic observation points surrounding hospital Gregorio
Marañon in Madrid (Fig. 2), the proposal selects the one which has the
most impact on the number of emergency admissions due to respiratory
and cardiovascular cases recorded. Gradient boosting machines
(Friedman, 2001) were used to perform variable selection. Tree-based
models are a popular and effective method for feature selection (Xu
et al., 2019), however its interpretation might vary depending on the
assumptions taken over the metric used to calculate variable relative
importance. Therefore the approach proposed by Lundberg and Lee
(2017), which is based on Shapley values (Shapley, 1953) was used to
provide a more comprehensive analysis.

In order to estimate the impact of road traffic on hospital admissions
two approaches were taken: autoregressive integrated moving average
models (ARIMA) and log-linear Poisson regression models. Both models
have been extensively used not only for forecasting the evolution of
time series in a wide range of fields such as environmental atmospheric
(Díaz, García, Ribera, Alberdi, Hernández and Pajares, 1999; Navares
et al., 2018) but also in studying the eventuality of epidemiological
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diseases (Tobías et al., 2001; Linares and Díaz, 2010a, b).

2. Materials and methods

2.1. Data description

2.1.1. Target variables
Target variables consist of daily hospital admissions recorded at

hospital Gregorio Marañon in Madrid due to respiratory (ICD-10: J00-
J99) and cardiovascular diseases (ICD-10: I00–I99). Gregorio Marañon
hospital covers the assistance of a population of 320.000 individuals
which correspond to 12 primary care centers.

The study period lays between 01 and 01-2010 and 31-12-2012
(Fig. 1) and, due to data confidentiality laws, the exact origin of the
patients is not provided. Consequently, independent variables source
data is collected from surrounding areas assuming emergency cases
reported far away are diverted to other hospitals.

2.1.2. Independent variables
Atmospheric conditions play an important role in the convection-

diffusion process of pollutants (Li et al., 2017). Consequently, pressure
and wind were included to represent the convection and advection
processes respectively.

Wind data. Observations consist of hourly wind speed measures in
m/s and wind direction in degrees. The data is provided by the
Autonomous Community of Madrid at Plaza de España which is the

Fig. 1. Hospital admissions time series along with a sample of independent variables in this study.

Fig. 2. Locations of the Hospital, the traffic stations and the weather station.

R. Navares, et al. Environmental Research 184 (2020) 109254
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closest observation station to Gregorio Marañon hospital separated by
3 km.

Levels of immission are determined by pollutant dispersion pro-
cesses in the atmosphere. Generally, these processes are driven by
convection, which is pollutant dispersion to higher layers of the at-
mosphere, or advection which is the horizontal movement of the pol-
lutants. Advection processes are mainly driven by wind while convec-
tion processes are driven by cyclonic (low pressure) or anticyclonic
structures. Cyclonic structures are distinguished by the presence of
upward currents which ease pollutant dispersion. Conversely, down-
ward currents are characteristic of anticyclonic structures which hinder
pollutant dispersion.

Pressure. Daily average pressure was provided by the Agencia Estatal
de Meteorología (AEMET) at the observation station located in Retiro
which is 700 m from Gregorio Maranõn Hospital. In order to consider a
synoptic scale of meteorological changes, a variable

=deltaPress P Pt t 1is defined being Ptthe average daily pressure at
time t. This variable serves to represent the trends which are related to
more or less intense wind presence in the case of cyclonic
( <deltaPress 0) or anticyclonic ( >deltaPress 0) atmosphere respec-
tively.

2.2. Methodology

The proposal consists in a first part to discriminate those variables
which are not relevant, in terms of predictive capabilities, for both
dependent variables estimation. With this first selection we simplify
subsequent models and with their consequent gain in interpretability.
As a second part, once the variables are filtered by importance, linear
models are applied to analyze the independent selected variables at-
tributable risk to the number of admissions. Firstly, a data preproces-
sing (Appendix A) was performed to eliminate collinearity and ex-
cessive correlations to prevent complications when applying variable
selection and attribution models.

2.2.1. Variable selection
Linear models describe the relation between variables and the

predictions since they have a single vector of coefficients. This inter-
pretability eases diagnosis and it is clearly and advantage when com-
pared to more complex computational intelligence models even though
these last ones might better extract relevant information for prediction.

Nonetheless, tree-based computational intelligence models success
in providing good predictive performance and interpretability. Among
them, gradient boosting machines (GBM) Friedman (2001) is an en-
semble technique which combines multiple weak learners to form a
strong learner by additive training. At each iteration, a new weak
learner (tree) is added to optimize the error function obtained by pre-
vious iteration fitted model. Even though tree based algorithms easily
provide a way to extract variable importances, it is not always
straightforward which assumption needs to be taken in order to obtain
the importances. In tree-based models, variable importance can be in-
terpreted as either the number of times a variable is used to split data
across trees (weight) or the reduction gained in the loss function when
that variable is used for splitting (gain). This decision might lead to
different interpretations.

Lundberg and Lee (2017) introduce a unified approach based on
Shapley values (Shapley, 1953) which describes the effect of each
variable on the prediction of each data point by approximating the
effect of eliminating a variable from the model. The Shapley (φ) value
of a feature xiis defined by

= ( )S F S
F

f f!( 1)!
!

,i
S F i

S i S
\ { }

{ }
(1)

where F denotes the set of all feature space, S a subset of F and fSis the
evaluation of the algorithm given a subset S of input variables (Ichiishi,

1983). Shapley values compare a prediction to a subset, which can be
also composed by a single variable, instead of comparing it with the
average prediction for the whole dataset allowing more contrastive
explanation when compared to local surrogate models such as the local
interpretable model-agnostic explanations LIME Ribeiro et al. (2016).
Lundberg and Lee (2017) provides proof of the consistency and accu-
racy of using Shapley values in contrast to gain and weight approaches
mentioned before.

2.3. Linear models

In order to estimate the impact of the total number of vehicles per
day on hospital admissions due to respiratory and cardiovascular
causes, both ARIMA models (Appendix B.1) and Log-linear Poisson
regression models were used in this study. These two methodologies are
comparable from the point of view of the quantification of the impact
on health in normal distributions (Tobías et al., 2001).

2.3.1. Poisson regression models
Poisson distributions are a particularly useful theoretical model to

study the contingency of epidemiological diseases. A random variable X
representing the number of occurrences of an event happens in a period
of time t, follows a probability Poisson distribution if complies with the
following hypothesis with respect to the cumulative incidence of the
disease: proportionality, stationarity and independence. Under these
assumptions, the probability of an event k during a time period t for a
random variable Y that follows a Poisson distribution is defined by

= =P Y k µ
k

( ) e
!

,µ
k

(2)

where μ represents the expected number of events during a period t
(Pastor-Barriuso, 2012). One of the advantages of this type of models is
that they allow to determine an estimation of the effect of certain event
on health, taking into account ecological studies which use aggregated
data of the population. This effect is known as relative risk (RR) which
is represented in this study as the number of emergency admissions due
to respiratory and cardiovascular disorders.

RR represents the difference in the risk of suffering the health event
between exposed and unexposed individuals due to an increase in the
unit of the corresponding independent variable. The linear regression
model is constructed in which the probability of a count is determined
by a Poisson distribution, where the average of the distribution is a
function of the external independent variables (explanatory) as follows:

= +µ xln( ˆ) ,0 1 (3)

where x is the explanatory variable, 0is the intersection and 1the
trend. Taking exponentials of both sides, it can be derived:

= =+µ̂ e e e ,x x0 1 0 1 (4)

where e represents the RR for each correspondent variable.
The following covariables were included in the analysis, in order to

control for the trend and seasonalities of the series, as well as the lags in
the Theta mentioned before:

• Sine and Cosine functions of 365, 180, 120, 90 and 60 days to ac-
count for annual, six, four, three and two month periodicities.

• The trend of the series, using a counter (n1), which is 1 for the first
day of the series, 2 for the second day, and so on, successively.

• Days of the week, using dummy variable.

The p-value was determined using the step-back procedure, in
which the complete model that included all the analyzed explanatory
variables, those concluded relevant out of the computational in-
telligence method applied in the first step of the analysis, was initially
implemented, with those variables that individually showed less sta-
tistical significance gradually eliminated until concluding with a model
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that included just the statistically significant variables (p <0.05). The
percentage of population attributable risk (PAR) is calculated, based on
RR, as follows =PAR RR RR% 100 [( 1)/ ](Coste and Spira, 1991): re-
presenting the percentage of increment in emergency hospital admis-
sions associated under the hypothesis of full population exposure. We
have also to assume that all the other factors that might potentially
influence should remain stable. All analyses were performed using the
software IBM SPSS Statistics 22 and STATA v14.1.

3. Results

3.1. Variable selection

As we have seen in Appendix A the data obtained at ES03 was
highly correlated (>70%) with the majority of the other observation
points. A further collinearity analysis shows that removing ES03 drives
not only the VIF with respect other observation points below the
threshold of 5 as suggested by O' Brien (2007) (Table A2), but also its
impact on the linear regression over the target variables is residual.
Consequently, ES03 was removed from the study.

Fig. 3 (a) shows the Shapley values for respiratory cases. Among all
traffic observation points, ES45 shows the higher overall influence
where positive Shapley values (~ 2) correspond to high influx of pa-
tients due to this disorder. Conversely, Shpley values around −2 are
related to low levels of admissions. Consequently, Table A1 shows the

highest correlation for ES45. Anticyclonic atmosphere conditions (in-
crease in pressure) show as an important factor clearly influencing high
number of patient admissions due to respiratory cases.

On the other hand, atmospheric conditions seem to have less impact
on the cardiovascular cases (Fig. 3 (b)), staying ES45 as the most in-
fluential among traffic observation points while being also the most
correlated as low/high Shapley values correspond to low/high patient
influx respectively.

3.2. Impact on hospital admissions

The results obtained for emergency hospital admissions due to re-
spiratory causes through ARIMA and the calculation of risk using linear
Poisson regression models are shown in Tables 1 and 2 respectively.
Both models are consistent with respect to the resulting independent
and control variables. Also, variables that control the annual and
semiannual seasonality of the series, as well as the days of the week
from Monday to Friday appear as significant. Regarding the in-
dependent variables, wind speed in two-days lag and the difference in
atmospheric pressure in lagged three days are significant and with a
negative coefficient, that is, at lower wind speed (less dispersion) and
anticyclonic situations (greater atmospheric stability) they are related
to an increase in the number of hospital admissions due to respiratory
causes in the analyzed period.

Fig. 3 (a) shows that ES45 station was the most influential among all
traffic observation points for respiratory cases. As can be seen in
Table 1, ARIMA modeling for respiratory causes shows ES45 is sig-
nificant with a positive coefficient of 0.056, meaning that for each
thousand vehicles per day registered at this observation point, there is
an absolute increment of 0.056 in admissions. Being the average daily
number of admissions of 17.30 patients, the percentage of admissions
would be 0.33% over 100 patients. Since the average daily traffic in-
tensity at ES45 is 36.3 thousand vehicles, 12% of daily admissions due
to respiratory cases are associated to the number of vehicles registered
at this observation point.

Regarding the results of the Poisson modeling for the calculation of
the risk, it is obtained that the ES45 station presents an increase in the
relative risk, IRR = 1.004 [1.003, 1.006]; If we apply the equation to
calculate the population attributable risk (PAR), we obtain that
PAR = 0.40%. This result represents and increase of 0.40% patients per
thousand vehicles per day. With the average of 36.3 thousand vehicles
per day, it can be said that 14.5% of emergency cases due to respiratory
cases are attributable to traffic intensity at ES45.

Tables 3 and 4 show the results of the ARIMA and the poisson re-
gression models for cardiovascular cases respectively. Annual, semi-
annual, quarterly and bi-monthly seasonality patterns have statistical
significance as well as weekdays and Saturday. Fig. 3 (b) again shows

Fig. 3. GBM variable importance based on Shapley values for respiratory (a) and cardiovascular (b) cases.

Table 1
Explanatory variables obtained by the ARIMA model for the respiratory-related
admissions.

Estimations Std. Error t Sig.

Non Seasonal AR1 0.959 0.018 52,493 0
MA1 0.864 0.03 28,499 0

Reg. Coefficients Sine 365 days 2151 0.61 3528 0
Cosine 365 days 4420 0.597 7399 0
Sine 180 days −1057 0.525 −2014 0.044
Monday 4421 0.575 7684 0
Tuesday 2841 0.592 4802 0
Wednesday 3029 0.608 4981 0
Thursday 1503 0.606 2481 0.013
Friday −1612 0.61 −2644 0.008
Saturday −3319 0.502 −6608 0
LAGS (wspeed.2) −0.428 0.228 −1875 0.061
LAGS
(deltaPress.3)

−0.007 0.004 −1854 0.064

ES45 (a) 0.056 0.022 2474 0.014

Constant 14,566 0.818 17,806 0

a In thousands.
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ES45 as the most influential traffic intensity observation point among
all considered. ES45 station is also positive associated with cardiovas-
cular cases according to the ARIMA (Table 3), although the coefficient
is higher (0.17) when compared to the number of respiratory cases. This
coefficient of 0.17 corresponds to 39.3% of daily admissions due to
cardiovascular disorders which are attributable to the number of ve-
hicles registered in ES45.

The results of the estimation of attributable impact using log-linear
Poisson regression (Table 4) obtain an IRR = 1.012 [1.009, 1.014] with
a PAR or 1.19%. Every thousand vehicles per day registered at ES45
increases hospital admissions due to cardiovascular cases by 1.19%.
Being the daily average at ES45 of 36.3 thousand vehicles a day, the
percentage of cardiovascular causes at Gregorio Marañon hospital at-
tributable to traffic intensity is 43%.

4. Discussion

Even though the effects of pollution concentrations in the air and its
influence on human health has been thoroughly studied, the relation
between main pollution source in cities and related health disorders
was not previously established. As we have seen in Section 3 road traffic
relates to 13% of respiratory cases and 39% of cardiovascular disorders.

Variable selection through permutation over feature importance in
tree-based models creates an interpretable output without the need to
apply any transformation to the variable involved. However, it was
mentioned the instability of the results since permutation adds ran-
domness to the measurement, especially in the presence of highly

Table 2
Poisson regression for respiratory admissions.

Poisson regression Num. Obs.: 1088

LR 13
2 : 1511.27

Prob. > 2: 0

Log. Lik. −3173.861 Pseudo R2: 0.1923

IRR Std. Error z P> z [95% Conf. Interval]

LAGS (resp, 1) 1.0088 0.00141 6.25 0 1.0060 1.0116
N1 (trend) 0.9999 0.00002 −3.72 0 0.9999 1.0000
Sine 365 days 1.1174 0.01265 9.81 0 1.0929 1.1425
Sine 180 days 0.9331 0.01015 −6.36 0 0.9134 0.9532
Cosine 365 days 1.2633 0.01581 18.68 0 1.2327 1.2947
ES45 (a) 1.0045 0.00096 4.66 0 1.0026 1.0064
LAGS (wspeed.2) 0.9673 0.01153 −2.79 0.005 0.9449 0.9901
LAGS (deltaPress.3) 0.9996 0.00020 −2.05 0.041 0.9992 1.0000
Monday 1.2135 0.02779 8.45 0 1.1602 1.2692
Tuesday 1.0661 0.02570 2.65 0.008 1.0169 1.1177
Wednesday 1.0885 0.02605 3.54 0 1.0386 1.1408
Friday 0.8426 0.02186 −6.6 0 0.8008 0.8865
Saturday 0.7685 0.02063 −9.81 0 0.7291 0.8100
Constant 13.2985 0.53997 63.73 0 12.2812 14.4001

a In thousands.

Table 3
Explanatory variables obtained by the ARIMA model for the cardiovascular
admissions.

Estimations Std. Error t Sig.

Non Seasonal AR1 0.09 0.292 0.307 0.759
MA1 −0.015 0.293 −0.052 0.958

Reg. Coefficients N1 (trend) −0.001 0 −2083 0.038
Sine 365 days 0.714 0.217 3293 0.001
Cosine 365 days 0.59 0.209 2814 0.005
Cosine 180 days −0.469 0.207 −2265 0.024
Sine 120 days 0.792 0.216 3663 0
Cosine 120 days −0.584 0.21 −2778 0.006
Sine 60 days 0.441 0.209 2107 0.035
Monday 6714 0.536 12,519 0
Tuesday 4397 0.571 7703 0
Wednesday 3705 0.586 6322 0
Thursday 2208 0.584 3780 0
Friday −1451 0.586 −2475 0.013
Saturday −5245 0.472 −11102 0
ES45 (a) 0.17 0.02 8390 0

Constante 8561 0.644 13,299 0

a In thousands.

Table 4
Poisson regression for cardiovascular admissions.

Poisson regression Num. Obs.: 1090

LR 15
2 : 1746.19

Prob. > 2: 0

Log. Lik.-
3083.0027

Pseudo R2: 0.2207

IRR Std. Error z P> z [95% Conf. Interval]

LAGS (cardio, 1) 1.0052 0.00173 3.02 0.003 1.0018 1.0086
N1 (trend) 0.9999 0.00003 −2.50 0.012 0.9999 1.0000
Sine 365 days 1.0420 0.01187 3.61 0.000 1.0190 1.0655
Cosine 365 days 1.0388 0.01149 3.45 0.001 1.0166 1.0616
Cosine 180 days 0.9721 0.01054 −2.61 0.009 0.9516 0.9930
Sine 120 days 1.0466 0.01198 3.98 0.000 1.0234 1.0704
Cosine 120 days 0.9677 0.01077 −2.95 0.003 0.9468 0.9890
Sine 60 days 1.0282 0.01125 2.54 0.011 1.0064 1.0505
Monday 1.4432 0.04798 11.03 0.000 1.3521 1.5403
Tuesday 1.2204 0.04843 5.02 0.000 1.1291 1.3191
Wednesday 1.1873 0.04573 4.46 0.000 1.1010 1.2804
Thursday 1.0921 0.04226 2.28 0.023 1.0123 1.1782
Friday 0.8662 0.03404 −3.66 0.000 0.8020 0.9355
Saturday 0.5787 0.02217 −14.27 0.000 0.5369 0.6239
ES45 (a) 1.0118 0.00128 9.27 0.000 1.0093 1.0143
Constant 9.0576 0.36176 55.17 0.000 8.3757 9.7952

a In thousands.
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correlated variables. In order to control these situations, a previous
collinearity analysis was included along with tree-based variant of
Shapley values computation proposed by Lundberg et al. (2018).

Among the limitations of this proposal, there are those inherent in
every longitudinal ecological study that prevent extrapolating the re-
sults at individual levels. On the other hand, averaged data from several
vehicle counting points have been used, therefore, these measures do
not represent an individual exposure. However, the methodology ap-
plied is common to studies in which the impact on health is analyzed
through data from air pollution measurement stations (Samet et al.,
2000). These biases are minimized by including in the control variable
models such as trend, seasonality and autoregressive factor of the
series. Finally, as in all studies that analyze the effect of pollution on
health variables there is a misalignment problem (Ingebrigtsen, 2015).

Even though previously cited studies show a clear relation between
primary pollutant levels immission and road traffic in large cities, at-
mosphere also plays an important role. In this study, the role of at-
mosphere was included through convection-diffusion process, via the
variable deltaPress, and advection via wind speed (wspeed).

The results obtained in this study are inline with respect to the role
atmospheric conditions play in pollutant diffusion (Li et al., 2017).
Specifically, negative trends in pressure, as those obtained in the pro-
posed models, represent a cyclonic tendency which is distinguished by
the altitude of the mixing layer and, consequently, with a better dis-
persion of pollutants and lower levels of immission (Li et al., 2017). As
a result, there is a decrease in hospital admissions (Díaz et al., 1999;
Linares and Díaz, 2010a, b).

On the other hand, the negative sign obtained in wind influence on
hospital admissions, represents lower levels of immission, therefore,
lower number of hospital admissions (Díaz et al., 1999; Linares and
Díaz, 2010a, b).

From a quantitative point of view, the influence of traffic is 13% per
thousand vehicles in the case of respiratory disorders, and 39.3% in the
case of circulatory. These results are inline when compared to the in-
fluence of chemical air pollutants and noise levels on hospital admis-
sions where, the impact is higher on circulatory cases than in re-
spiratory cases (Díaz et al., 1999; Díaz et al., 2001; Tobías et al., 2001;
Linares and Díaz, 2010a,b; Recio et al., 2016). It should also be em-
phasized that the percentages obtained in this study refer to traffic

intensity in contrast to pollution levels, either chemical or noise.
Therefore, the results are not directly comparable to the aforemen-
tioned researches or other study focused on pollution levels. Notwith-
standing, the World Health Organization (WHO Regional Office for
Europe, 2013) 1 establishes that air pollution-causes deaths are 40%
due to ischaemic heart disease, 40% due to stroke and 11% due to
chronic obstructive pulmonary disease (COPD). Similar proportions
were found in this study.

5. Conclusions

In this paper, a novel approach to quantify the effect of urban traffic
on respiratory and cardiovascular diseases is presented. Although pol-
lution-related effects on health have been extensively studied, the direct
influence of what is considered a main driver of pollution (traffic) was
not previously established.

Indeed, our results show that traffic is responsible for emergency
hospital admissions: 13% of respiratory cases are related to traffic in-
tensity while, in the case of cardiovascular disorders, the percentage
increases to 39%.

These results represent a step forward in the understanding of how
human health in contemporary cities is threatened by the way in which
they are organized: concretely, it becomes clear that traffic is a major
cause of respiratory and cardiovascular diseases. As a consequence,
raising awareness about the risks of high traffic levels should arguably
be a priority for urban institutions, which should put public health in
the center of how the cities are understood and managed.

Traffic intensity. Hourly traffic intensity was provided by the Madrid
Municipal Traffic Grid which consists of 4079 electromagnetic sensors
placed under the pavement to detect vehicles mass that pass over the
system. Instead of using the full grid, the 10 observations composing a
20 km radius which surround the hospital were selected. Records are
provided as the number of cars per hour which are aggregated at each
location (Fig. 2) to obtain the total number of cars per day.
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Appendix A. Data preprocessing

Table A.1
Correlation matrix of model variables

correlations

Variable 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.

1. ES03 1
2. ES18 0.85 1
3. ES20 0.65 0.64 1
4. ES23 0.38 0.18 0.27 1
5. ES27 0.04 −0.02 0.12 0.53 1
6. ES28 0.76 0.84 0.59 0.12 −0.03 1
7. ES29 0.71 0.72 0.6 0.44 0.25 0.68 1
8. ES44 0.38 0.28 0.35 0.4 0.41 0.25 0.38 1
9. ES45 0.52 0.48 0.42 0.33 0.31 0.42 0.49 0.72 1
10. ES60 0.84 0.76 0.64 0.38 0.11 0.74 0.72 0.43 0.52 1
11. Wspeed −0.02 −0.02 −0.01 0.04 −0.04 0 0.01 −0.05 0 −0.02 1
12. Wdir −0.02 0 −0.05 0 −0.05 −0.01 −0.03 −0.03 −0.07 −0.02 0.07 1
13. pressAvg −0.05 −0.08 0.01 0.15 0.24 −0.06 0.05 0.15 0.09 0.01 −0.24 −0.26 1
14. Resp 0.25 0.22 0.16 0.08 −0.07 0.22 0.16 0.2 0.3 0.25 −0.05 −0.09 0.07 1
15. cardio 0.34 0.33 0.26 0.14 0.12 0.35 0.28 0.34 0.5 0.33 0.03 −0.03 0.03 0.42 1

1 https://www.who.int/mediacentre/news/releases/2014/air-pollution/en/
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Table A.2
Stepwise VIF values at each iteration and impact on linear regression statistics.

VIF

Variable Step 1 Step 2
ES03 6.22 –
ES18 6.09 4.79
ES20 1.98 1.96
ES23 2.10 1.86
ES27 1.74 1.66
ES28 3.98 3.96
ES29 3.10 3.10
ES44 2.42 2.41
ES45 2.56 2.55
ES60 4.18 3.53
wspeed 1.10 1.09
wdir 1.09 1.08
pressAvg 1.37 1.36
deltaPress 1.12 1.12
Reg. cardiovascular
Residual SE 5.527 5.526
R2 0.27 0.27

Reg. respiratory
Residual SE 6.254 6.254
R2 0.13 0.14

Wind is usually reported as two quantities, speed in m/s and direction in degrees 0–359 where 0 represents wind blowing from the North. Since
data is provided at hourly level, in order to aggregate (via average) at daily granularity its vector components u and v which represent the east-west
and the north-south components respectively (Glickman, 2000) and are defined by

= =u u v usin 2
360

, cos 2
360

,i i
i

i i
i

(A.1)

where uiis the wind speed at time i and ithe angle in degrees. These components can be averaged to obtain their daily levels: = =u ut i i
1

24 0
23 and

= =v vt i i
1

24 0
23 . Daily vector average wind speed at time t becomes = +u vwspeed ( )t t t

2 2 1
2 and average wind direction is defined by

= +u
v

Cwdir arctan ,t
t

t (A.2)

where =C 180if <( ) 180u
v

t
t

and =C 180otherwise.
Collinearity or excessive correlation among variables is required to be checked to prevent complications when identifying and optimal subset of

explanatory variables. High correlation and severe multicollinearity among predictors might result in instability of the coefficient estimates since
confidence intervals for coefficients tend to be very wide and, as a consequence, makes models difficult to interpret as they lose statistical sig-
nificance. Table A1 shows the correlation among variables. It can be clearly seen some pairs of highly correlated variables such as ES03 and ES18
which are correlated at 85% or ES03 and ES60 with a correlation of 84% which, on the other hand it might be caused by the imputation method.

In order to examine for multicollinearity, a widely-used diagnostic called variance inflation factor (VIF) (Graham, 2003) is calculated for each
predictor by performing a linear regression of the predictor on the remaining other to obtain the R2, being the VIF defined by =VIFi R

1
1 i

2 , where Ri
2is

the R2-value obtained by regressing the ithpredictor on the remaining predictors. As a rule of thumb, VIF values in excess of 5 or 10 are used as an
indicator of multicollinearity (Mason and Gunst, 2003) although some studies warn about using a cutoff value of 10 (O' Brien, 2007). Consequently,
in this study the threshold to consider severe multicollinearity will be set at 5.

The stepwise procedure consists of calculating the VIF values iteratively, at each step the predictor variable with highest VIF is removed to
subsequently recalculate the VIF until all predictors show a value lower than 5. Table A2 shows the VIF at each step along with the linear regression
statistics on each target variable. It can be clearly seen a very limited impact in the residual standard error and the R2 for each respiratory and
cardiovascular regressions with a reduced set of 13 variables (Table A2) compared to the initial set of 14. this is an appendix.

Appendix B. Linear models

B.1. Arima

The acronym ARIMA stands for Auto-Regressive Integrated Moving Average. The ARIMA forecasting equation for a stationary time series is a
linear (i.e., regression-type) equation in which the predictors consist of lags of the dependent variable and/or lags of the forecast errors. That is,
predicted value of Y equals a constant µ( )and/or a weighted sum of one or more recent values of Y Y Y( , , )t t p1 and a weighted sum of recent values
of the errors e e( , , )t t q1 .

Lags of the stationary series in the forecasting equation are called “autoregressive” terms, lags of the forecast errors are called “moving average”
terms, and a time series which needs to be differenced to be made stationary is said to be an “integrated” version of a stationary series. A nonseasonal
ARIMA model is noted as an “ARIMA (p,d,q)” model, where.

• p is the number of autoregressive terms,
• d is the number of nonseasonal differences needed for stationarity, and
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• q is the number of lagged forecast errors in the prediction equation.

In terms of y, the general forecasting equation is:

= + + …+ …y µ y y e eˆ ,t t p t p t p t p1 1 1 1 (B.1)

where iis the coefficient of the autoregressive (AR) term i and irepresents the coefficient of the moving average (MA) term i. ARIMA models with
exogenous variables (Makridakis et al., 1983) include the values of these variables …X Z( )with their correspondent lag …s m( )along with the de-
pendent variable Y, its lags Y( )t p , the errors (e) and its lags (et q) resulting in the following equation:

= + +…+
…

+ + +…+ +…
+ + +…+

y µ y y
e e

X X X
Z Z Z

ˆ

.

t t p t p

t p t p

t t s t s

t t m t m

1 1

1 1

0 1 1

0 1 1 (B.2)

The value of the estimators …, , s0 and …, , m0 of the variables that are significant at <p 0.05(p-value provided by SPSS v15) indicating
increased Y to increment by one unit of each independent variable …X Z( , , )respectively. The model's goodness-of-fit was obtained by analysis of
residuals (AIC, BIC, ACF, Box-Ljung).
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Abstract: Airborne pollen monitoring datasets sometimes exhibit gaps, even very long, either because
of maintenance or because of a lack of expert personnel. Despite the numerous imputation techniques
available, not all of them effectively include the spatial relations of the data since the assumption of
missing-at-random is made. However, there are several techniques in geostatistics that overcome
this limitation such as the inverse distance weighting and Gaussian processes or kriging. In this
paper, a new method is proposed that utilizes convolutional neural networks. This method not
only shows a competitive advantage in terms of accuracy when compared to the aforementioned
techniques by improving the error by 5% on average, but also reduces execution training times by
90% when compared to a Gaussian process. To show the advantages of the proposal, 10%, 20%,
and 30% of the data points are removed in the time series of a Poaceae pollen observation station in
the region of Madrid, and the airborne concentrations from the remaining available stations in the
network are used to impute the data removed. Even though the improvements in terms of accuracy
are not significantly large, even if consistent, the gain in computational time and the flexibility of
the proposed convolutional neural network allow field experts to adapt and extend the solution, for
instance including meteorological variables, with the potential decrease of the errors reported in
this paper.

Keywords: Poaceae pollen; spatial imputation; convolutional neural networks

1. Introduction

The clinical relevance of Poaceae pollen has been increasing as the number of allergy cases
continues to grow [1], which is expected to double in the next 40 years [2]. Limiting exposure to
airborne pollen plays a key role in the prevention of symptoms. The prediction of future pollen
concentrations is thus crucial, not only for patients, but also for clinical institutions, in order to arrange
resources before the influx of pollen related allergy cases.

Observation based models employ different methods to relate records of air concentrations to one
or more variables that can be measured or predicted. Examples include regression models [3,4], time
series models [5], and process based phenological models [6]. In the last decade, machine learning
techniques have been gaining importance due to the success of their applications [4,7–12]. However,
these techniques require a significant amount of data, and when dealing with pollen time series,
where high concentrations are especially harmful when they are over 25 grains/m3 [1], the data
are incomplete during the full year (Figure 1). Even though there have been advances in automatic
pollen monitoring [13], the European volumetric spore trap network is mostly operated manually.
Furthermore, defects and maintenance imply that pollen observation networks are highly sensitive to
missing data points.

Atmosphere 2019, 10, 717; doi:10.3390/atmos10110717 www.mdpi.com/journal/atmosphere
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Despite the numerous techniques available for missing data imputation, most of the literature
focuses on the conditions under which they lead to unbiased estimates, conditions that do not
often hold. There is no consensus about the exact proportion of missing data for which it is
considered unacceptable to use such techniques. For instance, Schafer [14] asserted that less than 5%
is inconsequential, while Bennett [15] claimed that statistical analysis is likely to be biased over 10%.
In this proposal, we use 10%, 20%, and 30% of missing data, which are greater amounts than asserted
by previous literature. Moreover, many techniques do not take into consideration the spatial relations
of the data. Geographical imputation overcomes this problem by estimating missing data points with
approximate locations derived from associated data. Among the techniques available, inverse distance
weighting [16] and kriging or Gaussian process regression [17] are two of the most popular among
field experts.

However, in the last few decades, artificial intelligence methods have been gaining attention due
to their competitive advantage in solving real-world problems [18]. In particular, convolutional neural
networks (CNNs) [19] have been proven very effective in areas such as computer vision [20] and
natural language processing [21]. The main difference from traditional neural networks lies in using
the convolution operation [22] applied to filters, which allows exploiting the strong, spatial correlation
present in the data.

Even though there is extensive literature about computational intelligence techniques applied
to pollen time series, such as random forests [7,12,23,24], artificial neural networks [9,10], and deep
neural architectures [25], very few works have applied convolutional neural networks to time series.
Nonetheless, CNNs have been extensively used in identifying and classifying pollen grains [26,27].

The objective of this paper is to extend the application of CNNs and increase the awareness
of their advantage and potential. In order to do so, we propose a network architecture that will be
compared to the aforementioned traditional spatial imputation techniques. By artificially producing
missing data points in the time series of one of the observation stations in the region of Madrid, the
study estimates such points from the available observations from the surrounding stations.

2. Materials and Methods

2.1. Data Description

Poaceae pollen observations were provided daily in grains per cubic meter registered at eight
locations in or around the city of Madrid: Alcalá de Henares, Alcobendas, Aranjuez, Complutense
University of Madrid (Pharmacy Faculty), Coslada, Getafe, Leganés, and Villalba. Series for these
locations are shown in Figure 1. Pollen counts followed the standard methodology of the Spanish
Aerobiological Network [28] and were provided by Red Palinológica de la Comunidad de Madrid.
Observations were available for 14 years starting from 1 January 2000 to 31 December 2013.

The region of Madrid has particular geographical characteristics (Figure 1). The observation
station in Aranjuez is at the lowest elevation (495 m above sea level) and has a yearly average
temperature above 14 ◦C with a yearly average rainfall below 400 mm. On the other hand, Villalba is
located 903 m above sea level with a yearly average temperature of 10–11 ◦C and a yearly average
precipitation of 1250–1500 mm. The remaining locations are in metropolitan areas between 594 and 668
m above sea level with yearly average temperatures above 15.2 ◦C and precipitation around 440 mm.
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Figure 1. Selected stations with Poaceae pollen concentrations capped at 100 grains/m3 (left).
Distribution of the locations in the region of Madrid (right).

2.2. Methodology

Inverse distance weighted (IDW) interpolation is based on the principle that nearer observations
are more related than distant ones [29]. Consequently, pollen counts measured closer to the location
of the station for which we want to estimate the pollen counts will have more influence than those
that are distant. This influence is represented by the distance, and the estimation ŷj is calculated as the
weighted sum of the measured pollen counts at the observation stations xi:

ŷj =
∑n

i=1

(
xi
dp

ij

)

∑n
i=1

(
1

dp
ij

) , (1)

where n is the number of observation stations, dij is the distance between the observation station i and
the observation station j where we want to estimate the pollen count, and p is the power function,
which is set to 2 as the default value.

While in IDW, the power function defines how fast the influence (weight) of an observed pollen
count measure decreases based on distance, a Gaussian process or kriging [17] creates a model of
spatial correlation that provides the proper weights by relying on the covariance matrix to control the
values that are close together in the input space to generate values that are similar. A Gaussian process
(GP) assumes that the probability p( f (x1), . . . , f (xn)) is jointly Gaussian, xi being the set of observed
points, with mean µ and covariance given by ∑ij = k(xi, xj), where k is the kernel function [30]. The
underlying idea is that having the joint probability of the variables, it is possible to get the conditional
probability of one of the variables given the others [31].

Based on their success in other fields, experts have started to use convolutional neural networks
for time series analysis [32]. CNNs differ from feedforward neural networks mainly by the existence of
convolutional layers, which are hidden layers that utilize the power of the mathematical operation of
convolution to transform the inputs. Convolution allows for the encoding of the local properties of the
input in such a way that the information propagates in a more efficient manner. CNN filters, obtained
by the convolution of inputs and weights, are local in input space and are thus able to exploit the strong,
spatial correlation present in the time series. That means that they work well in identifying simple
patterns within local regions of the data (subset of features), which then will be used by subsequent
layers to form more complex patterns.
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In order to compare the results with similar research studies, the common scoring rule of the root
mean squared error (RMSE) will be used to measure the average magnitude of the error.

2.3. Experimental Design

The aim was to compare the aforementioned methods in order to see their ability to impute data
properly for the observation station in Farmacia (most central location available), by inferring airborne
pollen counts at one station based on the levels measured in its surroundings. In order to do so, series
with 10%, 20%, and 30% of missing data points were generated and then used as a test set to check the
estimations. However, as we can see in Figure 1, airborne pollen time series are a particular kind of
series where during most of the year, pollen counts are either nonexistent or very low. For this reason,
a stratified random sample was drawn based on the criteria of an observation belonging to a peak or
off-peak pollen season.

There is no general consensus about the definition of the pollen season, and hence, season dates
might differ according to their definition [11]. This notwithstanding, in Spain, the first symptoms are
observed over 25 grains/m3 [33]. Accordingly, this level is selected to define the boundary dates of the
main pollen season as the first and the last day that 25 grains/m3 are observed, corresponding to the
start and the end of the peak season, respectively. Thus, every random sample drawn would include
X% of observations from the peak season and X% from the off-peaks season, X ∈ {10, 20, 30}.

For each percentage of missing data points, a 10-fold cross-validation was run to cover the full
dataset. Subsequently, the GP and CNN algorithms were trained and tested against the corresponding
test set. Since IDW is an unsupervised method, meaning that there is no need to train the algorithm in
order to extract the relations between pollen counts at different locations and the control station of
Farmacia, it was used as a benchmark to evaluate the Gaussian process and the neural network. For
the Gaussian process regression, a dot product covariance function k(xi, xj) = σ2

0 + xi · xj was used
along with a noise level estimation σ2δ(xi, xj) [31] where δ(xi, xj) is the Kronecker delta function.

In order to parse the pollen counts through the CNN as the input, at each time t, the seven
locations surrounding location i and the pollen observations pi were transformed into a 3 × 3 matrix,
as seen in Equation (2), which in turn was transformed into a 5 × 5 matrix (Equation (2)) by adding
zeros in order to capture the contributions of the individual locations and enrich the information flow
through the network. Thus, by using a 2 × 2 filter with a stride equal to one, we ensured the parsing
of an individual location, as seen in Figure 2 with element X11 of the input matrix:

[p1, p2, p3, p4, p5, p6, p7]t →




0 0 0 0 0
0 p1 p2 p3 0
0 p4 p5 p6 0
0 p7 0 0 0
0 0 0 0 0




t

(2)

Given the aforementioned setup, with 14 filters, it would be sufficient to cover the full feature
map without taking into account the last two filters, which would result in 0 (Figure 2). However,
the generalization ability of CNNs is not based on limiting the number of parameters [34], and with
an incremental experiment, 32 filters are adequate to solve this problem. As a final step, the filters
were fully connected to a 5 neuron layer, which at the same time was connected to the output. CNNs
usually suffer from an abrupt increment of the number of parameters as their complexity, in terms of
topology, increases. Thus, it is common to include a pooling layer in order to reduce the number of
parameters. Since the architecture proposed was fairly simple, adding this kind of layer was avoided,
as the number of parameters was already small.

Figure 1 shows the particular nature of airborne pollen time series, with a high presence of
observations equal or close to 0, especially outside the main pollen season. This may lead to what it is
know as dead neurons, which results in the weights being equal to 0, since the amount of information
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from the inputs is limited. To avoid this situation, the network was trained using a “LeakyReLu”
activation function (α = 0.1) along with the Adam optimization algorithm [35] instead of the traditional
stochastic gradient descent. A learning rate α = 0.001, an exponential decay of β1 = 0.9, and β2 = 0.999
were used to train the network over 60 epochs.

...

X_11 X_12 X_13

X_22 X_23

5x5 Input Convolutional layer Full Connected layer

X_21

X_31

0 0 0 0 0

0 0 0 0 0

0 0 0

0

00

0

0

Figure 2. Convolutional neural network.

3. Results

The study was based on removing data points from the pollen observation station located at the
Faculty of Pharmacy (Farmacia). Table 1 shows the average 10-fold RMSE and standard deviation
for each percentage of observations subtracted from the time series. As mentioned in Section 2.3,
the proportions of missing data were equally selected within and outside the main pollen season.

When removing 10% of the data points, the CNN provided a more accurate estimation, both
during the peak and off-peak season, with an RMSE equal to 39.89 and 4.53 grains per square meter,
respectively. These quantities were compared to an RMSE of 42.44 using Gaussian process regression
and 43.97 obtained by IDW. The differences were closer during the off-peak season with 5.07 and 5.36
for GP and IDW, respectively. This situation was expected since, on the one hand, there were more
observations outside the main pollen season and, on the other, airborne pollen concentrations were
close to zero. Additionally, the stability of the estimations seemed higher for the CNN given the lowest
standard deviation of the results.

Table 1. Average and standard deviation (in parenthesis) of the RMSE per percentage of missing data and
methodology.

% of Missing Peak Season Off-Peak Season All

IDW GP CNN IDW GP CNN IDW GP CNN

10% 43.97 42.44 39.89 5.36 5.07 4.53 18.02 17.41 16.46
(5.84) (8.56) (5.25) (0.91) (1.09) (0.98) (2.05) (3.02) (2.02)

20% 41.55 39.69 37.35 5.76 5.24 4.80 17.26 16.43 15.42
(3.95) (4.72) (4.21) (1.50) (1.55) (1.20) (1.57) (1.80) (1.48)

30% 42.79 41.50 40.14 6.45 5.92 5.40 17.87 17.24 16.60
(3.77) (4.20) (4.05) (0.68) (0.79) (1.15) (1.52) (1.66) (1.60)

CNN also improved the accuracy of other methods, both during the peak and off-peak season,
when 20% of the observations were removed. With respect to the peak season, the CNN performed
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10% better than IDW. This accuracy went to 5% better when compared to GP. In this case, as happened
when removing 30% of the observations, the standard deviation was higher than that obtained by IDW.
This behavior was expected since in computational intelligence models, the principle of the more data,
the better applies in general. Still, the differences were residual.

Figure 3 shows the estimation of all three methods for the peak season during sample years
2008 to 2011. It can be clearly seen that the CNN (red circle) tended to adjust better to sudden peaks
in concentrations. Furthermore, it managed to mitigate the influence of extreme observations from
other locations, as it did not overestimate as much as the other two methodologies. This situation
was demonstrated both in 2009 and 2011, where all models estimated an airborne concentration over
100 grains/m3, while the true observation was closer to 50 grains/m3.
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Figure 3. Sample estimation points during peak seasons (grey area) in 2008 to 2011 representing
CNN (red circle), GPR(blue triangle), and IDW (green square). The missing observed data points are
represented by a black diamond.
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One of the well known disadvantages of neural networks is the training execution times. For this
reason, the training times were tracked (Table 2) to have a fair comparison in every aspect. For this
analysis, IDW was discarded since it is a deterministic method, which was not comparable, in terms
of time performance, to the other two. Intuitively, the more data removed, the shorter the execution
times, as the training set decreased in size. We can see a certain stability in CNN time performance
when compared to the Gaussian process consuming on average about 10% of the time of the GP in the
training process.

Table 2. Average and standard deviation (in parenthesis) of the 10-fold execution time in seconds per
percentage of missing data.

GP CNN

10% missing 243.38 17.47
(10.56) (0.66)

20% missing 171.22 15.91
(18.00) (0.64)

30% missing 148.12 15.55
(24.19) (1.65)

4. Discussion

As we saw in Section 3, the competitive advantage of using CNNs to impute airborne pollen
concentrations was clear. In terms of accuracy, both the Gaussian process and the CNN performed
better than the inverse distance weighting method (Table 1). At the same time, both models could be
extended by including a temporal dimension.

In order to provide insightful results, these were reported based on whether the observations
belonged to the main pollen season or not. The main pollen season, or peak season, was defined using
a threshold approach [36] of 25 grains/m3. This threshold differed from the literature based on the
study region and pollen genus. However, the work in [37] concluded that Poaceae is ranked highest in
terms of allergic significance, and the work in [10] established a threshold of 25 grains/m3 for Plantago
pollen. Furthermore, high pollen concentration thresholds might lead to very short peak seasons and
consequently few test points.

During the main peak pollen season, all models suffered from the influence of extreme values in
other locations (Figure 3), resulting in an overestimation of the concentrations at the target location.
However, this influence was mitigated by the CNN due to the increase in the number of filters,
which increased the model’s generalization.

During off-peak periods, the differences between the techniques proposed were marginal,
but regarding their practical application, these observations were not as important, since they did
not imply a high risk for the allergic population. There is no consensus about how much missing
data is allowed in order to have unbiased statistical analyses when using inference models [14,15],
the cutoff values being around 10% depending on the dataset. This was the reason why 10%, 20%, and
30% of missing data were selected. As a consequence, an increase of the number of filters used in the
CNN topology was necessary to provide the generalization of the estimations as proven by the results.
However, the larger the amount of missing data, the smaller the number of training observations,
which negatively influences the learning process of the CNN. This explains why a decrease in the
accuracy was obtained as a result.

Even though only pollen observations were used in this study, mainly to compare the proposed
solution with the benchmark IDW, the CNN provided the flexibility to include meteorological measures
or predictions as input variables. There is evidence that including such variables [12,24] improves the
estimations of airborne pollen concentrations. Moreover, these variables serve as a differential factor to
mitigate under- and over-estimation of sudden high peaks during the main pollen season. On the other
hand, the simplicity of the topology of the proposed solution was lost. As a consequence, execution
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training periods increased as the number of hyper-parameters increased. This is a well known
drawback of machine learning models; however, the applied method performed better compared
to the others tested, mainly by computation time (Table 2), and is expected to outperform them
significantly when additional co-factors are used, such as meteorological variables.

5. Conclusions

In this study, we tackled the problem of the spatial imputation of missing values for pollen
time series in Madrid. We proposed the use of convolutional neural networks and conducted a
comparison with two traditional geoimputation techniques, inverse distance weighting and Gaussian
process regression. The CNN’s competitive advantage was shown both in terms of accuracy and
execution times.

The results show that it is possible to apply this technique to fields outside computer vision
and linguistics. Field experts can take advantages of the potential of CNNs and their application to
spatial imputation. Even though the results were promising, they could be improved by including
meteorological measures or predictions in the model, yet increasing the computational cost and
complexity. This notwithstanding, it was also intended to increase the awareness of the advantages
and disadvantages of such a technique.
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Chapter 13

Conclusions

This doctoral thesis is focused on the research of computational intelligence techniques
and its applications in the context of air quality forecasting. The exposure to poor air
quality is an outstandingly important topic for governmental and independent agen-
cies due to its health and economic implications. Air quality forecasting is a pillar for
taking effective control measures both at a large scale, for instance setting global air
quality guidelines, and regional and private scale such as city traffic control measures
or emergency admissions operational planning for clinical institutions.

Air quality, together with meteorology, is bound to produce large volumes of data.
Moreover, given the distribution of the observation stations, the dimensionality expo-
nentially increases both temporal and spatially. All this data is interrelated and shows
influence among each other. Due to this reason along with the different nature of the
sources of the pollutants, current approaches to the problem require specific expert
knowledge. The main purpose of this work, as defined in Section 1.3, was to come out
with a methodology able to automatically filter and extract relevant information, from
an engineering point of view, which allows accurate air quality predictions indepen-
dent from the number and nature of its inputs. In order to achieve this objective, the
research plan was split in incremental phases, outlined in Section 1.4, towards the final
system which correspond to each specific objective. In light of the results presented in
Chapters 3-10, we can draw the following principal conclusions:

1. By surveying several machine learning we have demonstrated that tree-based
models were appropriate to both forecast concentrations during the main pol-
lination season, which is the period with higher risk for allergic patients, and
extract the influential variables. These models managed to outperform other pro-
posals found in the literature aimed at easing the prevention of exposures to risk
concentration levels.

2. Through automatic feature selection it was shown the strong links between phe-
nological and meteorological studies performed and the automatic way taken
with the pure data point of view. Results were inline with the aforementioned
studies and the methods enable a new family of models saving time-consuming
research of individual problems which, at the same time, requires resources in
research centers and medical institutions that are not always available.

3. Even though previous results supported the approach, the process required to ac-
quire specific knowledge for each pollutant and, the generation of input features
that are selected in an automatic manner, plays against one of the major hypothe-
ses of this thesis. We have shown how long short-term memory units are able
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to properly extract the information required to predict chemical pollutants (influ-
enced by current environmental conditions), and pollen concentrations (driven
also by meteorology conditions during plant formation) in a unified approach.

4. We also demonstrated that the topology of the network is determinant in order
to isolate the potential relations among the same type of pollutant as a first step
and to avoid noisy interactions. Results showed that network topologies play
an essential role in model performance. Research outcome proved that group-
ing pollutant types first in order to obtain temporal relations and then combine
the results to represent spatial relations, eases the network to focus on the rel-
evant information and provides a more stable results across locations. It was
demonstrated that including in the configuration fully connected layers, either as
an output or hidden layer, the networks are able to better identify the relations
among pollutants with no data preprocessing. However, we have seen that there
is still room for improvement as the LSTMs struggle to identify the presence of
sudden high peaks as past information weights on the predictions. This situa-
tion can be mitigated by capping pollutant observation levels to thresholds over
which it implies risk for human health.

5. All previous findings were wrapped in the final contribution with a direct appli-
cation of the forecasts provided by the deep learning architecture. Additionally, it
was found the benefits of stacking methodologies as it eases forecasting general-
ization. Among the stacking techniques, the application of convolutional neural
networks for this task was extended from their traditional computer vision and
speech recognition fields.

One of the main challenges during the thesis was to present the proposals to jour-
nals (Appendix A) and reviewers belonging to non-engineering fields. Communicating
our ideas required a special effort to adapt the concepts to domain-specific language
even though these proposals were backed up by results. The experience over these
years has led not only to acknowledge and welcome the workload required to con-
tribute to science, but also to understand the full research process and the importance
of contributions to scientific communication. The outcome of this research has opened
new perspectives to the scientific community based on the number of reads and cita-
tions the different contributions have generated so far and the collaboration proposals
received. This has encouraged to continue researching on the new perspectives this
work opened to improve the understanding about the quality of the air and its impacts
on society.
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