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Introduction

In this thesis we are interested in realisability problems, which are very natural and quite
easy to state and generally hard to solve. One such problem is the so-called inverse Galois
problem, that asks whether any finite group may appear as the Galois group of a finite Galois
extension of Q or not. The first to study this problem in depth was Hilbert in the late 19th
century, [52], and to this day it remains open.

In Algebraic Topology, where algebraic structures play a key role, realisability questions
have been raised and deeply studied in many settings. A classical example is the problem of
realisability of cohomological algebras, raised by Steenrod in 1961, [73]. This problem asks for
a characterisation of the algebras that arise as the cohomology algebra of a space, and it has
been treated in different surveys, [1, 3]. One more example is the G-Moore space problem,
also raised by Steenrod, [59, Problem 51]. For a given group G, it asks if any ZG-module
appears as the homology of a simply connected G-Moore space. It was solved in the negative
in 1981, [21], and a characterization of the groups G for which every ZG-module is realisable
appeared in 1987, [78].

In this thesis we focus on the so-called group realisability problem, which on its most
general setting may be stated as follows: given a category C, does every group arise as the
group of automorphisms of an object in C? This problem has been studied in different areas of
combinatorics, appearing in different surveys, [7, 8, 54], and we make use of their terminology.
Namely, if a group G happens to be the automorphism group of an object X ∈ Ob(C), i.e.,
if G ∼= AutC(X), we say that X realises G, and we say that G is realisable in C. A category
C where every finite group is realisable is said to be finitely universal, and if every group is
realisable in C we say that it is universal.

Our interest in combinatorics goes beyond terminology, since the solution to the histori-
cally important group realisability problem in the category of graphs is a key element in many
of our constructions. König raised this problem as early as 1936, [58], and barely three years
later Frucht proved that the category of (finite) graphs is finitely universal, [43]. However,
a solution to the general case had to wait for more than twenty additional years, until de
Groot, in 1959, [32], and Sabidussi, in 1960, [72], independently proved that the category of
graphs is indeed universal.

Nonetheless, the main problem motivating this thesis is the group realisability problem in
the category HoTop, the homotopy category of pointed topological spaces. It was proposed
by Kahn in the sixties and asks if every group appears as the group of automorphisms
of an object in HoTop. It has received significant attention, having appeared in different
surveys and lists of open problems, [4, 5, 37, 55, 56, 71]. Recall that, given a space X, the
group AutHoTop(X) is usually denoted E(X) and receives the name of group of self-homotopy
equivalences of X. Its elements are the homotopy classes of continuous self-maps of X that
have a homotopy inverse.

Immediate examples that come to mind when trying to realise groups as self-homotopy
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equivalences of spaces can be found in Eilenberg-MacLane spaces. Indeed, if H is an abelian
group and n ≥ 2, E

(
K(H,n)

) ∼= Aut(H). However, this procedure does not give a full
positive answer to the realisability in the category HoTop, given that not every group G
is isomorphic to Aut(H) for some other group H (for example, Zp is not realisable as the
automorphism group of any other group, when p is odd).

The difficulty of this problem arises precisely from the fact that, other than making use
of Eilenberg-MacLane spaces as described above, there is no obvious procedure to obtain
spaces realising a certain given group. Consequently, the tools for seriously digging into
Kahn’s question were at the beginning insufficient, and for over decades this problem had
only been studied using ad-hoc procedures for certain families of groups, [15, 16, 36, 62, 65].

This impasse ended with a general method obtained by Costoya and Viruel, [27], that
gives a positive answer to Kahn’s realisability problem in the case of finite groups. Namely, for
every finite group G, there exists a topological space X (in fact, an infinite number of them)
such that G ∼= E(X) ([27, Theorem 1.1]). They provide such a method by combining Frucht’s
solution for the group realisability problem in the category of graphs with the remarkable
computational power of Rational Homotopy Theory.

Our main goal in this thesis is to expand on that sort of techniques to study further
realisability problems. On the one hand, we refine the results in [27] (see Chapter 4) and, on
the other hand, we extend these techniques to realisability problems in categories other than
HoTop (see Chapter 3). Notice that Rational Homotopy Theory deals with spaces which are
not of finite type over Z (see Definition 1.36), and thus they are not geometrically simple.
This fact led us to consider an alternative approach (A2

n-polyhedra) in order to provide a
solution to Kahn’s problem in terms of integral spaces (see Chapter 6).

Let us start by introducing two generalisations of the group realisability problem which
from now on we will refer to as the classical group realisability problem. The first gen-
eralisation we consider deals with the so-called arrow categories. Recall that the arrow
category of a category C, denoted Arr(C), is the category whose objects are morphisms
f ∈ HomC(A1, A2) between any two objects A1, A2 ∈ Ob(C); and where a morphism between
f ∈ HomC(A1, A2) and g ∈ HomC(B1, B2) is a pair (f1, f2) ∈ HomC(A1, B1)×HomC(A2, B2)
such that g ◦ f1 = f2 ◦ f . Then, given f ∈ HomC(A1, A2), we see that AutArr(C)(f), which by
abuse of notation we denote AutC(f), is a subgroup of AutC(A1)×AutC(A2). The following
problem arises naturally:

Problem 1 (Realisability problem in arrow categories). Let C be a category. Can we find, for
any groups G1, G2 and H ≤ G1×G2, an object f : A1 → A2 in Arr(C) such that AutC(A1) ∼=
G1, AutC(A2) ∼= G2 and AutC(f) ∼= H?

The second generalisation of the classical group realisability problem deals with permu-
tation representations, that is, actions of a group on a set by permutations. If C is a category
whose objects are sets, we can think of realising a given permutation representation in C as
follows:

Problem 2 (Realisability of permutation representations). Let ρ : G→ Sym(V ) be a permu-
tation representation and let C be a category whose objects are sets. Is there a (fully) faithful
G-object A ∈ Ob(C) such that V can be regarded as an AutC(A)-invariant subset of A in such
a way that the restriction of the G-action to V is ρ?

We tackle these problems following the techniques of Costoya-Viruel, by first solving
them in the category of graphs, C = Graphs. Then, we will transfer our solution to suitable
algebraic frameworks (coalgebras and commutative differential graded algebras). Let us start
by discussing our solution to Problem 1 and Problem 2 in Graphs.
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We follow Frucht’s approach for the classical realisability problem for graphs, [43]. That
is, we work in a more general setting: the category of binary relational systems over a set
I, see Definition 1.1. Binary relational systems have additional structure since their edges
are labelled and directed, so they model in a better way to our purposes the structure of the
groups involved. In that context of binary relational systems, we are able to solve Problem
1 (see Theorem 2.16) and also Problem 2 (see Theorem 2.26).

Then, in order to transfer both solutions of Problem 1 and Problem 2 from binary re-
lational systems to Graphs, we use the arrow replacement procedure; we replace labelled
directed edges by a construction that may be part of a simple graph. Although results in
the literature provide an arrow replacement procedure powerful enough to solve the classical
group realisability problem, they are not adequate for our purposes. We provide a result
tailored to our needs in Theorem 2.33. Combining this result and our solution to Problem
1 in binary relational systems, Theorem 2.16, we are able to positively solve Problem 1 in
C = Graphs:

Theorem 3 (Theorem 2.37). Let G1, G2 and H be groups such that H ≤ G1 × G2. Then,
there exist graphs G1, G2 and a morphism of graphs ϕ : G1 → G2 such that AutGraphs(G1) ∼= G1,
AutGraphs(G2) ∼= G2 and AutGraphs(ϕ) ∼= H.

Similarly, Theorem 2.33 can be used to transfer the solution to Problem 2 from binary
relational systems, Theorem 2.26, to graphs, providing a generalisation of [19, Theorem 1.1]:

Theorem 4 (Theorem 2.41). Let G be a group, V be a set and ρ : G → Sym(V ) be a
permutation representation of G on V . There is a graph G such that

(1) V ⊂ V (G) and each ψ ∈ AutGraphs(G) is invariant on V ;

(2) AutGraphs(G) ∼= G;

(3) the restriction G ∼= AutGraphs(G)→ Sym(V ) is precisely ρ;

(4) there is a faithful action ρ̄ : G ∼= AutGraphs(G)→ Sym
(
V (G)\V

)
such that the restric-

tion map G ∼= AutGraphs(G)→ Sym
(
V (G)

)
is ρ⊕ ρ̄.

We highlight the fact that, when the groups and sets involved are finite, Problem 1 and
Problem 2 admit a solution where the graphs involved are also finite, see Corollary 2.38
and Corollary 2.42 respectively. This fact will be crucial to us later on, when working with
C = HoTop.

Now that a solution to both problems has been obtained in Graphs, we can move on to
algebraic structures. We begin with coalgebras, see Definition 1.22. A lot is known about au-
tomorphism groups of rings and algebras (see for example [25, 28, 57] for the associative case,
and [44] for the non-associative one), but very little is known about the case of coalgebras,
their Eckmann-Hilton dual structure. Moreover, since the dual of an infinite-dimensional
algebra may not be a coalgebra, general results on automorphisms of coalgebras cannot be
deduced from the pre-existing literature on automorphism groups of rings.

Our aim is then to provide some initial results regarding the classical group realisability
problem in the category of coalgebras, C = Coalgk, while also considering Problem 1 and
Problem 2. We point out that in this thesis we have not been able to realise an arbitrary
given group G as the automorphism group of a coalgebra. However, we are able to provide
coalgebras such that G arises as the image of the restriction of the automorphisms of the
coalgebra to its set of grouplike elements, see Definition 1.26. We do so by introducing a
faithful functor C : Digraphs→ Coalgk, Definition 3.4, for which we prove the following:
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Theorem 5 (Theorem 3.9). Let k be a field and G be a digraph. There is a k-coalgebra C(G)
such that G

(
C(G)

)
= V (G) and the restriction map AutCoalgk

(
C(G)

)
→ Sym

(
V (G)

)
induces

a split short exact sequence of groups

1 −→
∏

e∈E(G)

(
k o k×

)
−→ AutCoalgk

(
C(G)

)
−→ AutDigraphs(G) −→ 1.

In particular, since every group is the automorphism group of a (directed) graph, [32, 72],
we immediately deduce the following:

Corollary 6 (Corollary 3.11). Let k be a field and G be a group. There is a k-coalgebra C
such that AutCoalgk(C) ∼= K o G, where K is a direct product of semidirect products of the
form k o k×. Furthermore, G is the image of the restriction of the automorphisms of C to
Sym

(
G(C)

)
.

Then, using the functor C previously introduced and its properties, the following result
regarding Problem 1 follows from Theorem 3:

Theorem 7 (Theorem 3.12). Let G1, G2 and H ≤ G1 × G2 be groups. Let k be a field.
There exist two k-coalgebras C1 and C2 and a morphism ϕ ∈ HomCoalgk(C1, C2) such that

(1) AutCoalgk(Ck) ∼= Kk o Gk, where Gk is the image of the restriction AutCoalgk(Ck) →
Sym

(
G(Ck)

)
and Kk is a direct product of factors of the form k o k×, k = 1, 2;

(2) AutCoalgk(ϕ) ∼= K oH, where H is the image of the restriction map AutCoalgk(ϕ) →
Sym

(
G(C1)

)
× Sym

(
G(C2)

)
and K ≤ K1 ×K2.

Similarly, regarding Problem 2, the following can be deduced from Theorem 4:

Theorem 8 (Theorem 3.13). Let G be a group, k be a field and ρ : G → Sym(V ) be a
permutation representation of G on a set V . There exists a G-coalgebra C such that:

(1) G acts faithfully on C, that is, there is a group monomorphism G ↪→ AutCoalgk(C);

(2) the image of the restriction map AutCoalgk(C)→ Sym
(
G(C)

)
is G;

(3) there is a subset V ⊂ G(C) that is invariant through the AutCoalgk(C)-action on C and
such that ρ is the composition of the inclusion G ↪→ AutCoalgk(C) with the restriction
AutCoalgk(C)→ Sym(V );

(4) there is a faithful action ρ̄ : G → Sym
(
G(C) \ V

)
such that the composition of the

inclusion G ↪→ AutCoalgk(C) with the restriction AutCoalgk(C)→ Sym
(
G(C)

)
is ρ⊕ ρ̄.

As a further application of the functor C, Theorem 5 and Corollary 6, we study the
isomorphism problem for groups using coalgebra representations. Namely, we want to see if
we can distinguish isomorphism classes of groups by looking at their actions on coalgebras.

We are able to provide two results. The first result holds for a large family of groups, co-
Hopfian ones, but it requires that we focus on how the action looks like on grouplike elements.
Recall that a group is co-Hopfian if it is not isomorphic to any of its proper subgroups. It
is a large family of groups, as shown in Example 3.15. In particular, it includes all finite
groups. We prove the following result:

Theorem 9 (Theorem 3.16). Let k be a field and let G and H be two co-Hopfian groups.
The following statements are equivalent:

(1) G and H are isomorphic.
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(2) For any k-coalgebra C, there is an action of G on C that restricts to a faithful action
on G(C) if and only if there is an action of H on C that restricts to a faithful action
on G(C).

For our second result we do not focus on grouplike elements, but we need to further
restrict our family of groups. In Definition 3.17 we introduce a family of groups Gp,n for
which we prove:

Theorem 10 (Theorem 3.18). Let n ≥ 1 be an integer, p be a prime and k be a finite field
of order pn. Let G and H be groups in Gp,n. The following are equivalent:

(1) G and H are isomorphic.

(2) For every k-coalgebra C, G acts faithfully on C if and only if H acts faithfully on C.

We remark that, although the family Gp,n is smaller than the class of co-Hopfian groups,
G2,1 still contains all 2-reduced groups, that is, all groups with no normal 2-subgroups.

We now continue with the study of realisability problems in the category of commutative
differential graded algebras, and with the subsequent results in the homotopy category of
topological spaces. The works of Costoya and Viruel, [27, 28, 29], constitute our starting
point in this framework. The base of their constructions is a non-trivial rational space with
trivial group of self-homotopy equivalences, [6, Example 5.1], which they use as a building
block for their algebraic models.

Spaces with trivial group of self-homotopy equivalences are called homotopically rigid
spaces. The first elaborated example of a homotopically rigid space with non-trivial rational
homology was constructed by Kahn in 1976, [55]. He expressed the belief that homotopically
rigid spaces might play a role in some way of decomposing a space, [56]. Thus, obtaining
examples of homotopically rigid spaces becomes of interest, although few examples are known
in literature. In Definition 4.1 we build an infinite family of commutative differential graded
R-algebras (or CDGAR for short, see Definition 1.37) Mk, k ≥ 1 that not only are they
homotopically rigid (thus modelling homotopically rigid spaces) but they are rigid as algebras
as well. Namely, we prove:

Theorem 11 (Theorem 4.3). Let R be an integral domain and k ≥ 1 be an integer. There
exists a (k-connected) commutative differential graded R-algebra Mk that is rigid, that is,
such that HomCDGAR(Mk,Mk) = {0, id}.

Following the path laid out by [27], we can use these rigid algebras as building blocks for
Sullivan models of spaces that codify the combinatorial data of a graph. Indeed, given an
integer n ≥ 1, to a directed graph G (without loops and with at least one edge starting at every
vertex) we associate an algebraMn(G) (see Definition 4.6), and to a morphism between two
such digraphs σ : G1 → G2 we associate a morphism of algebrasMn(σ) : Mn(G1)→Mn(G2)
(see Lemma 4.10).

This association is, in fact, functorial. Indeed, in Definition 4.11 we introduce, for each
n ≥ 1, a functorMn from Digraphs+, the full subcategory of these directed graphs without
loops and with at least one edge starting at every vertex (see Definition 4.4), to CDGAR.
Furthermore, if R is an integral domain of characteristic zero or greater than three,Mn is al-
most fully faithful: for any two digraphs G1 and G2 in Digraphs+, the set HomDigraphs(G1,G2)
is in bijection with HomCDGAR

(
Mn(G1),Mn(G2)

)
\ {0}. In particular,Mn preserves auto-

morphism groups. Since we know that Graphs is universal, [32, 72], we are able to enlarge
the family of categories that are known to be universal by proving the following result for
CDGAR:
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Theorem 12 (Theorem 4.16). Let R be an integral domain with char(R) = 0 or char(R) > 3,
and n ≥ 1 be an integer. For every group G, there exists a (n-connected) commutative
differential graded R-algebra M such that AutCDGAR(M) ∼= G.

From Theorem 3 and by the properties of the family of functors Mn, Problem 1 is
positively solved in C = CDGAR:

Theorem 13 (Theorem 4.17). Let G1, G2 and H be groups such that H ≤ G1 × G2. Let
R be an integral domain with char(R) = 0 or char(R) > 3. For any n ≥ 1, there are n-
connected objects M1,M2 ∈ Ob(CDGAR) and a morphism ϕ ∈ HomCDGAR(M1,M2) such
that AutCDGAR(M1) ∼= G1, AutCDGAR(M2) ∼= G2 and AutCDGAR(ϕ) ∼= H.

We are now interested in transferring Theorem 13 to HoTop using tools from Rational
Homotopy Theory. To do so, we restrict ourselves to the cases where the algebras from
Theorem 13 are of finite type. This will be the case if graphs from Theorem 3 are finite.
But, as we previously mentioned, by Corollary 2.38 such graphs can be chosen to be finite if
the groups involved are finite. Hence, if we denote AutHoTop(f) as E(f), we can prove the
following:

Theorem 14 (Theorem 4.19). Let G1, G2 be finite groups and H be a subgroup of G1×G2.
For any n ≥ 1, there exist n-connected spaces X1, X2 and a continuous map f : X1 → X2
such that E(X1) ∼= G1, E(X2) ∼= G2 and E(f) ∼= H.

We now turn to Problem 2 in this framework. We point out that the results that we
obtained for CDGAR are a particular case of those in [29]. We include them here for the sake
of completion and because they follow easily from our results in Graphs. Using Theorem 4
and the properties of the family of functorsMn, the following result can be proven:

Theorem 15 (Theorem 4.20). Let G be a group, n ≥ 1 be an integer, R be an integral domain
with char(R) = 0 or char(R) > 3 and ρ : G→ Sym(V ) be a permutation representation of G
on a set V . There is an n-connected object A ∈ Ob(CDGAR) such that

(1) V ⊂ A, and V is invariant through the automorphisms of A;

(2) AutCDGAR(A) ∼= G (and if R = Q, E(A) ∼= G as well);

(3) The restriction map G ∼= AutCDGAR(A)→ Sym(V ) is precisely ρ.

Again, we can transfer this result to HoTop by restricting ourselves to finite graphs.
Using Corollary 2.42 we prove:

Theorem 16 (Theorem 4.22). Let G be a finite group, V be a finite set, n be a positive integer
and ρ : G → Sym(V ) be a permutation representation of G on V . There is an n-connected
space X such that

(1) V ⊂ H180n2−142n+28(X), and V is invariant through the maps induced in cohomology
by the self-homotopy equivalences of X;

(2) E(X) ∼= G;

(3) the map G ∼= E(X) → Sym(V ) taking [f ] ∈ E(X) to H180n2−142n+28(f)|V ∈ Sym(V )
is ρ.

Apart from answering positively Problem 1 and Problem 2 in different settings, as we
have just explained, other results can be obtained by making use of the properties of our
family of functorsMn. For instance, the bijection between sets of morphisms induced byMn
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allows us to interpret Digraphs+ as a subcategory of CDGAR. In a sense, we are representing
Digraphs+ inside of CDGAR.

Along this line, we say that a category C is representable in another category D if there
is a fully faithful functor F : C → D, that is, if C can be regarded as a full subcategory of
D. Recall that a category C is concrete if there is a faithful functor F : C → Set. Roughly
speaking, this means that the objects of C can be thought of as sets, and morphisms can be
regarded as actual maps of sets. In [68, Chapter 4, 1.11], the authors prove that if C is a
concrete small category, it is representable in a certain full subcategory of Digraphs+ (see
Theorem 1.20). If we denote the category of n-connected CDGAs over R by CDGAn

R, we
obtain the following result:

Theorem 17 (Theorem 5.1). Let R be an integral domain with char(R) = 0 or char(R) >
3. Let C be a concrete small category. For every n ≥ 1, there exists a functor Gn : C →
CDGAn

R such that HomCDGAR
(
Gn(A), Gn(B)

)
\ {0} ∼= HomC(A,B), for any A,B ∈ Ob(C).

Furthermore, if R = Q, then [Gn(A), Gn(B)] \ {[0]} ∼= HomC(A,B).

If we take Q as the base ring, the functorsMn arrive at CDGAn
Q. Furthermore, if G is a

finite graph,Mn(G) is a commutative graded Q-algebra of finite type, which happens to be a
Sullivan model of the rational homotopy type of an n-connected space. This means that the
result above can be transferred to spaces, but certain restrictions have to be made first. In
[49, Theorem 4.24], the authors prove that if C is a category with countable objects such that
the set of morphisms between any two objects is finite, then C is representable in Graphsf
the category of finite graphs (see Theorem 1.21). Thus, we can obtain a similar although
less general result for topological spaces. Denote the category of n-connected (pointed)
topological spaces by Topn.

Theorem 18 (Theorem 5.2). Let C be a concrete category such that Ob(C) is countable
and HomC(A,B) is finite for any pair of objects A,B ∈ Ob(C). For every n ≥ 1, there
exist a functor Fn : C → HoTopn such that [Fn(A), Fn(B)] \ {[0]} = HomC(A,B), for any
A,B ∈ Ob(C).

Our almost fully faithful functors also allow us to study the problem of realising monoids
as monoids of endomorphisms of objects. Recall that a monoid M can be regarded as a
one object category. When doing so, M is the monoid of endomorphisms of the unique
object in the category. Such a category is clearly concrete, and it is finite whenever M
is so. Furthermore, adding a zero endomorphism to the unique object in such a category is
equivalent to adding a zero element to the monoidM . Thus, if we denote the monoid obtained
from M by adding a zero element by M0, Theorem 17 and Theorem 18 immediately imply
the following result:

Corollary 19 (Corollary 5.3). Let M be a monoid. For every n ≥ 1, there exists a (n-
connected) commutative differential graded R-algebra An such that HomCDGAR(An, An) ∼=
M0. If moreover M is finite, there exists a (n-connected) space Xn such that [Xn, Xn] ∼= M0.

In particular, if M is a monoid such that M ∼= N0 for some other monoid N , that is, if
M has a zero element and no non-trivial zero divisors, we can realise it directly.

Going further in the applications of our algebras, we now consider the isomorphism prob-
lem for groups using actions on CDGAs. In [28, Theorem 1.1], the authors prove that isomor-
phism classes within a certain family of co-Hopfian groups can be distinguished through their
faithful representations on CDGAs. It turns out that we can use our algebras from Definition
4.6 to generalise their main result to the entire class of co-Hopfian groups. Namely, we prove:

Theorem 20 (Theorem 5.4). Let R be an integral domain with char(R) = 0 or char(R) > 3,
n ≥ 1 be an integer and G and H be co-Hopfian groups. The following are equivalent:
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(1) G and H are isomorphic.

(2) For any n-connected commutative differential graded R-algebra (A, d), G acts faithfully
on (A, d) if and only if H acts faithfully on (A, d).

We remark that this result actually holds in the broader class of co-Hopfian monoids
without zero (see Proposition 5.7), which in particular includes all finite monoids without
zero.

Let us now consider some applications to differential geometry. Recall that a manifoldM
whose cohomology verifies Poincaré duality is said to be inflexible if the set of all the possible
degrees of its self-maps is finite, that is, if |{deg(f) | f : M → M}| < ∞. Given that degree
is multiplicative, this implies that {deg(f) | f : M →M} ⊂ {−1, 0, 1}.

Obvious examples of inflexible manifolds include hyperbolic manifolds. However, exam-
ples of simply connected inflexible manifolds appear more sparsely in the literature, [2, 27, 31],
and they all show low levels of connectivity when observing their minimal Sullivan models.
Since the existence of such examples has become important in the theory of functorial semi-
norms on homology [31, 48], it would be interesting to know if our algebras can produce
examples of inflexible manifolds as highly connected as we desire.

It turns out that the cohomologies of our algebras verify Poincaré duality, and they also
happen to be inflexible (see Lemma 5.9). Thus, if they were the rational model of a manifold,
that manifold would be inflexible. Sullivan, [75], and Barge, [9], studied obstructions for
rational homotopy types whose cohomology verifies Poincaré duality to be the rationalisation
of a closed, orientable manifolds. By means of that, we prove:

Theorem 21 (Theorem 5.12). For any finite group G and any integer n ≥ 1, G is the
group of self-homotopy equivalences of the rationalization of an inflexible manifold which is
(30n− 13)-connected.

Even more, using a construction in [27], we are also able to provide examples of the
so-called strongly chiral manifolds, that is, manifolds that do not admit orientation-reversing
self-maps. Namely, we prove the following:

Proposition 22 (Proposition 5.14). For any finite group G and any integer n ≥ 1, G is the
group of self-homotopy equivalences of the rationalization of a strongly chiral manifold which
is (30n− 13)-connected.

So far, our realisability problems have been solved by means of Rational Homotopy Theory
techniques. As a consequence, the objects that we obtain as an answer to the classical
realisability problem in HoTop (or Kahn’s realisability problem) are rational spaces, which
are not of finite type over Z. Our purpose now is to find an alternative way of solving this
question by means integral spaces, that is, spaces of finite type over Z.

One framework where a mostly group-theoretical classification of homotopy types exist
is that of A2

n-polyhedra: (n − 1)-connected, (n + 2)-dimensional CW-complexes. In [80],
J.H.C. Whitehead classified homotopy types of A2

2-polyhedra (that is, simply connected 4-
dimensional CW-complexes) by means of a certain exact sequence of groups, and Baues later
provided a generalisation of such classification to include A2

n-polyhedra, for all n ≥ 2, [12,
Ch. I, Section 8].

Following the ideas of [17] we introduce a group Bn+2(X) (Definition 1.69) associated to
the exact sequence that classifies an A2

n-polyhedron X, and prove that it is isomorphic to
E(X)/E∗(X) (Proposition 1.70). Here, the group E∗(X) is a very well known normal subgroup
of E(X) consisting on those self-homotopy equivalences of X that induce the identity map
on homology groups. Of course, the study of E(X)/E∗(X) provides us with information
regarding which groups may appear as E(X) for X an A2

n-polyhedron, but it also makes
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sense to consider a realisability question directly on the quotient, and it has been raised in
[37, Problem 19]. So let us discuss this problem now.

Using Proposition 1.70, we study how the cell structure of an A2
n-polyhedron X affects

its group of self-homotopy equivalences. For instance, we show that under some restrictions
on the homology groups of X, Bn+2(X) is infinite, which in particular implies that E(X) is
infinite (see Proposition 6.6 and Proposition 6.9). Or for example, in many situations the
existence of cycles of odd order in the homology groups of an A2

n-polyhedron implies the
existence of self-homotopy equivalences of even order (see Lemma 6.4 and Lemma 6.5).

Although we easily obtain that automorphism groups of abelian groups are realisable in
our context (see Example 6.2), we also prove the following result:

Theorem 23 (Theorem 6.16). Let X be a finite type A2
n-polyhedron, n ≥ 3. Then either

Bn+2(X) is the trivial group or it has elements of even order.

As an immediate corollary, we obtain the following:

Corollary 24 (Corollary 6.17). Let G be a non nilpotent finite group of odd order. Then,
for any n ≥ 3 and for any finite type A2

n-polyhedron X, G 6∼= E(X).

The case of A2
2-polyhedra is more complicated. A detailed group-theoretical analysis

shows that finite groups of odd order might only be realisable through a finite type A2
2-

polyhedron under very restrictive conditions. Recall that for a group G, rankG is the smallest
cardinal of a set of generators for G, [61, p. 91]. We have the following result:

Theorem 25 (Theorem 6.18). Suppose that X is a finite type A2
2-polyhedron with a non-

trivial and finite B4(X) of odd order. Then the following must hold:

(1) rankH4(X) ≤ 1;

(2) π3(X) and H3(X) are 2-groups, and H2(X) is an elementary abelian 2-group;

(3) rankH3(X) ≤ 1
2 rankH2(X)

(
rankH2(X) + 1

)
− rankH4(X) ≤ rank π3(X);

(4) the natural action of B4(X) on H2(X) induces a faithful representation B4(X) ≤
Aut

(
H2(X)

)
.

Nonetheless, our attempts to find a space satisfying the hypothesis of Theorem 25 were
unsuccessful, so we raise the following conjecture:

Conjecture 26 (Conjecture 6.19). Let X be an A2
2-polyhedron. If B4(X) is a non-trivial

finite group, then it necessarily has an element of order 2.

Consequently, this leaves room for further research, both because a negative answer to
Kahn’s group realisability problem has not yet been obtained and because we are still inter-
ested in finding a solution to this problem in terms of integral spaces.

Outline of the thesis. Chapter 1 contains the necessary preliminaries for the remainder of
the manuscript. Namely, Section 1.2 introduces basic concepts and results that we need from
Graph Theory; Section 1.3 introduces the basics on coalgebras; Section 1.4 is devoted to the
basics of CDGAs and Rational Homotopy Theory, and Section 1.5 explains the classification
of homotopy types of A2

n-polyhedra.
In Chapter 2 we solve realisability problems in Graphs. Namely, in Section 2.1 we build

binary relational systems solving Problem 1. We do the same for Problem 2 in Section 2.2.
Then, in Section 2.3 the arrow replacement procedure is studied, and our solutions from
binary relational systems to graphs are transferred, thus proving Theorem 3 and Theorem 4.
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Chapter 3 is dedicated to the study of realisability problems in the framework of coal-
gebras. We introduce the functor C in Section 3.1. We also study its properties, Theorem
5 and Corollary 6. In Section 3.2 we apply the results from the previous section to solve
Problem 1 and Problem 2, Theorem 7 and Theorem 8. Finally, in Section 3.3 we deal with
the group isomorphism problem through coalgebra representations, Theorem 9 and Theorem
10.

Chapter 4 is devoted to the solution of realisability problems in commutative differential
graded algebras. Namely, in Section 4.1 we introduce a family of CDGAs which are proven
to be rigid in Theorem 11. Then, in Section 4.2 we construct CDGAs associated to digraphs
in Digraphs+, Definition 4.6, to solve the group realisability problem in CDGAR, Theorem
12. We also show that the association is functorial, thus obtaining for every integer n ≥ 1
a functor Mn : Digraphs+ → CDGAR, Definition 4.11. Finally, in Section 4.3 we consider
Problem 1 and Problem 2 in both CDGAs and HoTop, Theorem 13, Theorem 14, Theorem
15 and Theorem 16.

Chapter 5 studies further applications of the family of functors Mn introduced in the
previous chapter. It includes both new results and improvements of results in the literature.
Namely, Section 5.1 is devoted to the representability of categories, and we prove Theorem
17, Theorem 18 and Corollary 19. Section 5.2 is dedicated to the isomorphism problem for
groups and monoids through their actions on CDGAs, Theorem 20. Section 5.3 is devoted
to applications to differential geometry, Theorem 21 and Proposition 22. Lastly, in Section
5.4 we use the spaces modelled by our functors to show that two numerical homotopy type
invariants (of Lusternik Schnirelmann type) of a finite space can be arbitrarily different.

Finally, Chapter 6 is devoted to the study of self-homotopy equivalences of A2
n-polyhedra.

Namely, Section 6.1 deals with some general results on the group Bn+2(X). Results regarding
the finiteness, the realisability of groups that are automorphisms of another group, and the
existence of elements of even order in Bn+2(X) are obtained. Then, in Section 6.2 we apply
those results to study obstructions to the existence of elements of even order in Bn+2(X).
Namely, we prove Theorem 23, Corollary 24 and Theorem 25. We also raise Conjecture 26.

We remark that many of the results included in this thesis can be found in [23, 24, 25, 26].



CHAPTER 1

Preliminaries

In this chapter we summarize all the notation and pre-existing results on which this thesis
stands. Namely, Section 1.2 is dedicated to some basics on Graph Theory, along with some
statements on the classical group realisability problem in this context, [32, 43, 72]. Section
1.3 introduces coalgebras and some of their properties, following [22]. Then, Section 1.4
deals with the introduction of the basics on CDGAs and Rational Homotopy Theory. We
mostly follow [39], our main reference for this subject. Finally, Section 1.5 is dedicated to
the classification of the homotopy types of A2

n-polyhedra due to J.H.C. Whitehead [80] and
Baues [11, 12, 13].

1.1 Notation and conventions

If C is a (locally small) category, we denote its class of objects by Ob(C), and the set of
morphisms between two objects A,B ∈ Ob(C) is denoted by HomC(A,B). Similarly, the
group of automorphisms of an object A ∈ Ob(C) is denoted by AutC(A). If C admits a model
structure, we denote the automorphisms of an object A ∈ Ob

(
Ho(C)

)
by E(A), the group of

self-homotopy equivalences of A.
A category C is universal if for any group G, there is an object X ∈ Ob(C) such that

AutC(X) ∼= G, and it is finitely universal if every finite group G is realised as AutC(X) for
some X ∈ Ob(C).

A space will mean a pointed topological space with the homotopy type of a CW-complex,
and a continuous map between spaces will always preserve the basepoint. We denote the
category of such spaces and continuous maps by Top. Following this criteria, given X and Y
spaces, [X,Y ] denotes the set of homotopy classes of pointed continuous maps from X to Y .
We also make use of the following full subcategories of Top: Topc, Toppc and Topn, n ≥ 0,
respectively denote the categories of connected, path connected and n-connected spaces, and
Topf denotes the category of spaces of finite type. We will combine the notations above; for
instance, Topnf denotes the category of n-connected spaces of finite type.

Finally, given a set A, Sym(A) denotes the group of permutations of the elements of A,
and if A has an element denoted 0, we denote A∗ = A \ {0}.

21
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1.2 The classical group realisability problem in Graph Theory
Some of the first solutions to the classical group realisability problem appeared in the context
of Graph Theory, and these solutions were consequently transferred to other frameworks. The
aim of this section is to set the basic notation and terminology for graphs that we will use.
We also introduce some pre-existing results regarding the realisability problem for graphs,
along with some key ingredients of their proofs that we need in our constructions.

Our main references for Graph Theory are [79] and [49]. We consider [79] as a more
classical reference, whereas [49] is more modern and uses categorical language in its notations.
Consequently, we will mostly use the notation from [49].

We start by introducing the categories of combinatorial objects that we use: Graphs,
Digraphs and IRel.

Definition 1.1 (categories of combinatorial objects).

• A graph is a pair G =
(
V (G), E(G)

)
where V (G) is a non-empty set, the set of vertices,

and E(G) is a set consisting of sets of two vertices, called edges.
A morphism of graphs f : G1 → G2 is a map f : V (G1) → V (G2) such that if {v, w} ∈
E(G1), then {f(v), f(w)} ∈ E(G2). Graphs, together with this concept of morphism,
form a category which we denote by Graphs.

• A digraph is a pair G =
(
V (G), E(G)

)
where V (G) is a non-empty set, the set of vertices,

and E(G) is a binary relation on V (G). If (v, w) ∈ E(G) we also say that (v, w) is an
edge of G. More precisely, we say that (v, w) is an edge from v to w.
A digraph is symmetric (respectively reflexive, irreflexive...) if E(G) is a symmetric
binary relation (respectively reflexive, irreflexive...).
A morphism of digraphs f : G1 → G2 is a map f : V (G1) → V (G2) verifying that(
f(v), f(w)

)
∈ E(G2), whenever (v, w) ∈ E(G1). Digraphs denotes the category whose

objects are digraphs and whose arrows are morphisms of digraphs.

• A binary relational system over a set of indices I, also called binary I-system, is a pair
G =

(
V (G), {Ri(G)}i∈I

)
where V (G) is a non-empty set, the set of vertices, and where

Ri(G) is a binary relation on V (G), for every i ∈ I. Elements (v, w) in Ri(G) receive
the name of edges of colour or label i.
A binary I-system is symmetric (respectively reflexive, irreflexive...) if Ri(G) is a
symmetric binary relation (respectively reflexive, irreflexive...) for all i ∈ I.
A morphism of binary I-systems f : G1 → G2 is a map f : V (G1) → V (G2) such that
for every i ∈ I and (v, w) ∈ Ri(G2),

(
f(v), f(w)

)
∈ Ri(G2). Binary I-systems, together

with this concept of morphism, form a category which we denote IRel.

• We say that a graph, digraph or binary I-system G is finite if V (G) is finite. We denote
the full subcategories of finite graphs, digraphs and binary relational systems over I by
Graphsf , Digraphsf and IRelf respectively.

A binary relational system is classically called a labelled pseudograph, [79, Def. 2-4].
Remark 1.2. There are some clear relations between the three categories introduced in Def-
inition 1.1. For instance, when |I| = 1, the category IRel is the category Digraphs.
On the other hand, there is a graph underlying any irreflexive binary relational system.
Namely, given G an object in IRel, we can consider a graph G′ such that V (G) = V (G′) and
{v, w} ∈ E(G) if and only if there exists i ∈ I such that (v, w) ∈ Ri(G) or (w, v) ∈ Ri(G).
Then G′ is the graph obtained from G by forgetting labels and directions of edges. On the
other hand, a graph can be regarded as a symmetric, irreflexive digraph.
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In many cases, our results will require for graphs, digraphs or binary I-relational systems
to not have isolated vertices.

Definition 1.3 (isolated vertices).

• Let G be a graph and let v ∈ V (G) be a vertex in the graph. We say that v is isolated
if for every other vertex w ∈ V (G), {v, w} 6∈ E(G).

• Let I be a set and let G be a binary I-system. Let v ∈ V (G) be a vertex. We say that
v is isolated if for every other vertex w ∈ V (G) and for every i ∈ I, (v, w) 6∈ Ri(G) and
(w, v) 6∈ Ri(G).

Clearly, if a vertex is isolated in a digraph or binary I-relational system, it is also isolated
in the underlying graph. Similarly, if a vertex is isolated in a graph it is also isolated when
regarding it as a symmetric digraph. The notions of connectivity and strong connectivity are
also required. In order to introduce them, we first need to define the concept of path.

Definition 1.4 (paths in graphs and digraphs).

• Let G be a graph. A path between two vertices v ∈ V (G) and w ∈ V (G) is a finite set
of vertices p = {v = v0, v1, . . . , vn = w} such that {vi−1, vi} ∈ E(G), i = 1, 2, . . . , n.

• Let G be a digraph. An undirected path between two vertices v ∈ V (G) and w ∈ V (G)
is a finite set of vertices p = {v = v0, v1, . . . , vn = w} such that (vi−1, vi) ∈ E(G) or
(vi, vi−1) ∈ E(G), for each i = 1, 2, . . . , n. A path between the same two vertices is a
finite set of vertices p = {v = v0, v1, . . . , vn = w} such that (vi−1, vi) ∈ E(G), for each
i = 1, 2, . . . , n.

We say that a (undirected) path p = {v0, v1, . . . , vn} in a (di)graph G has length n, and we
denote len(p) = n. We may regard vertices and edges as paths of length 0 and 1 respectively.

Definition 1.5 (connectivity of graphs and digraphs).

• A graph G is connected if there is a path between any two vertices v, w ∈ V (G).

• A digraph G is weakly connected or just connected if for any two vertices v, w ∈ V (G)
there is an undirected path p between them. On the other hand, we say that G is
strongly connected if for any two vertices v, w ∈ V (G) there is a path p between them.

It is immediate that a strongly connected digraph is (weakly) connected. Furthermore,
a graph is connected if and only if it is strongly connected when regarded as a symmetric
digraph. We introduce one last definition before discussing automorphisms.

Definition 1.6 (full subgraphs and relational subsystems).

• Let G be a graph. The full subgraph of G with vertices V ′ ⊂ V (G) is a graph G′ whose
set of vertices is V (G′) = V ′ and where two vertices define an edge in G′ if they do
so in G. Therefore, if v, w ∈ V ′ and {v, w} ∈ E(G), then {v, w} ∈ E(G′). A full
monomorphism of Graphs is an inclusion i : G′ ↪→ G of a full subgraph G′ of G in G.

• Let G be a binary I-system. The full binary I-subsystem of G with vertices V ′ ⊂ V (G)
is a binary I-system G′ whose set of vertices is V (G′) = V ′ and where two vertices define
an edge of label i in G′ if they do so in G. Namely, if v, w ∈ V ′ and (v, w) ∈ Ri(G)
for some i ∈ I, then (v, w) ∈ Ri(G′). A full monomorphism of IRel is an inclusion
i : G′ ↪→ G of a full binary I-subsystem G′ of G in G.
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Since we are interested in the group realisability problem in the categories we introduced,
we need to understand their automorphisms.

Definition 1.7 (automorphisms of graphs and binary I-systems).

• Let G be a graph. An automorphism of G, f : G → G, is a bijective map f : V (G)→ V (G)
such that {v, w} ∈ E(G) if and only if {f(v), f(w)} ∈ E(G).

• Let G be a binary I-system. An automorphism of G, f : G → G, is a bijective map
f : V (G) → V (G) such that for every i ∈ I, (v, w) ∈ Ri(G) if and only if

(
f(v), f(w)

)
∈

Ri(G).

One fact that will prove key in many of our graph-theoretical constructions is that au-
tomorphisms of graphs and binary I-systems respect vertex degrees. Let us introduce that
concept now.

Definition 1.8 (vertex degree).

• Let G be a graph. The degree of a vertex v ∈ V (G), denoted deg(v), is the cardinal of
the set of vertices that are connected with v through an edge, that is, deg(v) = |{w ∈
V (G) | {v, w} ∈ E(G)}|.

• Let G be a relational system. The indegree of a vertex v ∈ V (G), denoted deg−(v), is
the cardinal of the set of edges that arrive at v, that is, deg−(v) = | ti∈I {w ∈ V (G) |
(w, v) ∈ Ri(G)}|. The outdegree of v, deg+(v), is the cardinal of the set of edges that
start at v, thus deg+(v) = | ti∈I {w ∈ V (G) | (v, w) ∈ Ri(G)}|. The degree of v is then
defined as deg(v) = deg+(v) + deg−(v).

Notice that in a binary I-system G, an edge (v, v) ∈ Ri(G) contributes both to the indegree
and the outdegree of v.

We now introduce the solution to the group realisability problem in IRel and review how
it was transferred to simple graphs by Frucht, [43], and de Groot, [32]. The starting point is
Cayley diagrams:

Definition 1.9. Let G be a group and S = {si | i ∈ I} be a generating set for G. The Cayley
diagram of G associated to S is a binary I-system Cay(G,S) with vertices V

(
Cay(G,S)

)
= G

and edges (g, sig) ∈ Ri(G), for g ∈ G and i ∈ I.

Remark 1.10. Cayley diagrams are clearly dependent on the considered set of generators
for the group. However, it is immediate to see that every element g̃ ∈ G gives raise to an
automorphism φg̃ : Cay(G,S)→ Cay(G,S), which is a transitive action on vertices induced
by right multiplication by g̃−1, namely φg̃(g) = gg̃−1. In particular, if φg fixes any vertex
then it must be the identity map.

We derive the following, classical result:

Theorem 1.11 ([32, Section 6], [30, Section 3.3]). Let G be a group and let S = {si | i ∈ I}
be a generating set of G. Then, AutIRel

(
Cay(G,S)

) ∼= G.

Therefore, a solution to the group realisability problem can be achieved in graphs if we
obtain a procedure to build a graph from a given binary relational system while keeping the
same group of automorphisms. This is precisely what Frucht and de Groot did in [43] and
[32] respectively.

The key idea for their solution is to associate to each label in a binary I-system an
asymmetric graph (that is, a graph whose only automorphism is the identity) so that these
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graphs are pairwise non-isomorphic. Then, each directed edge with a certain label is replaced
by the corresponding asymmetric graph. Should the asymmetric graphs be chosen carefully,
we can make sure that the automorphisms of the graph obtained after the replacement
operation map each of the asymmetric graphs to copies of themselves. Thus, the asymmetric
graphs play the role of the labelled directed edges.

The asymmetric graphs are chosen by ensuring that degrees of their vertices are different
to the degrees of vertices in the binary I-system. For that reason, we need to compute the
degrees of the vertices in a Cayley diagram.
Remark 1.12. For each label i ∈ I and vertex g ∈ G, there is exactly one edge arriving
at g and another starting at g, (s−1

i g, g) ∈ Ri
(

Cay(G,S)
)
and (g, sig) ∈ Ri

(
Cay(G,S)

)
respectively. Thus, deg−(g) = deg+(g) = |I|, for every g ∈ G. Consequently, every vertex in
Cay(G,S) has degree 2|I|. Moreover, it also becomes clear that if G is a non-trivial group,
Cay(G,S) does not have isolated vertices, for any generating set S.

We now proceed to reviewing the classical results on the group realisability problem in
the category of simple graphs. The construction of Frucht, [43], uses the following result:

Proposition 1.13 ([43]). For any positive integer n, there exist n pairwise non-isomorphic
finite, connected, asymmetric graphs. Moreover, the highest of the degrees of their vertices is
three.

Proof. This can be deduced from [43, Section 1]. Indeed, one can choose any starlike tree T
whose root v ∈ V (T ) has degree 3 and such that the length of the three paths of T − v differ,
see [43, Fig. 1].

Notice that, when performing a replacement operation on a binary I-system, if neither
the binary I-system nor the asymmetric graphs have isolated vertices, the resulting graph
does not have isolated vertices either. Moreover, if the starting binary I-system and the
asymmetric graphs are connected, the graph obtained after the replacement operation is also
connected. Since Cayley diagrams associated to finite groups are always connected, the next
result follows from Proposition 1.13:

Theorem 1.14 ([43]). Let G be a finite group. There exists a finite, connected graph G such
that AutGraphs(G) ∼= G.

This proves that Graphs (in fact Graphsf ) is finitely universal. However, we need a
solution that includes infinite groups as well. For that reason, we also work with the solution
given by de Groot, [32]. The base of his construction is the following result:

Proposition 1.15 ([32, Section 6]). Let m and n be two cardinals. There exist n pairwise
non-isomorphic asymmetric graphs in which, aside from a vertex of degree one, every vertex
has degree greater than m.

It is worth mentioning that, due to how they are constructed, the graphs obtained in
Proposition 1.15 do not have isolated vertices. Using this result, the author is able to prove
that Graphs is universal:

Theorem 1.16 ([32, Theorem 6]). Every group G is isomorphic to the automorphism group
of some graph G. Moreover, the graph G can be built so that it does not have isolated vertices.

However, these graphs have an important disadvantage that forces us to use the less
general result of Frucht, Theorem 1.14, when working with finite groups:
Remark 1.17. The graphs in Proposition 1.15 (and hence the graphs in Theorem 1.16) are
always infinite.



26 Chapter 1. Preliminaries

We finish this section by introducing some results in [49, 68] regarding the representability
of categories in the category of Graphs.

Definition 1.18. We say that a category C is representable in another category D if there
exists a fully faithful functor F : C → D.

In particular, this means that C can be regarded as a full subcategory of D with objects
F
(

Ob(C)
)
. It turns out that many categories are representable in a certain subcategory of

Digraphs which we introduce now.

Definition 1.19. We denote by Digraphs0 the full subcategory of Digraphs whose objects
are irreflexive strongly connected digraphs with more than one vertex.

Recall that a category C is called concrete when it admits a faithful functor to Set the
category of sets.

Theorem 1.20 ([68, Chapter 4, 1.11]). If C is a concrete small category, it is representable
in Digraphs0.

We will use this result to obtain some consequences on the representability of categories
in CDGA. We would also like to obtain results in the same direction in HoTop. However,
this will require for the starting graphs to be finite. Thus, we also make use of the following,
less general result:

Theorem 1.21 ([49, Theorem 4.24, Proposition 4.25]). Let C be a concrete category such
that Ob(C) is countable and, for any pair of objects A,B ∈ Ob(C), HomC(A,B) is finite.
Then, there is a fully faithful functor F : C → Graphsf such that F (A) does not have isolated
vertices, for any A ∈ Ob(C).

1.3 Coalgebras
Coalgebras are one of the two kinds of algebraic structures for which we study realisability
problems in this thesis. This section is mostly based on [22], since our constructions are built
upon path coalgebras. Some standard references on the subject would be [63, 76].

Coalgebras are dual of algebras in an Eckmann-Hilton sense. Namely, an algebra over a
field k can be pictured as a k-vector space A together with a multiplication µ : A⊗A→ A and
a unit ε : k → A, verifying associativity and unit axioms. These axioms can be interpreted
through the commutativity of certain diagrams. Coalgebras are then defined by inverting
the arrows on those diagrams. Let us formalise that concept.

Definition 1.22. A coalgebra over a field k, or k-coalgebra, is a k-vector space C together
with two linear maps, the comultiplication ∆: C → C⊗C and the counit ε : C → k, verifying
the following two properties:

• Coassociativity: (∆⊗ idC) ◦∆ = (idC ⊗∆) ◦∆.

• Counitary property: (idC ⊗ε) ◦∆ = idC = (ε⊗ idC) ◦∆.

Such a coalgebra is usually denoted (C,∆, ε), but in most instances we will just denote it by
C. Furthermore, we usually do not notationally distinguish the comultiplication and counit
associated to different coalgebras.

A morphism of coalgebras f : C1 → C2 is a linear map verifying that:

• (f ⊗ f) ◦∆ = ∆ ◦ f .
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• ε ◦ f = ε.

Coalgebras over a field k together with this notion of morphism form a category which we
denote Coalgk.

Remark 1.23. Every coalgebra can be dualised to obtain an algebra. However, the dual of
an infinite-dimensional algebra may not be a coalgebra. Indeed, if µ : A ⊗ A → A is the
multiplication, there may exist elements a ∈ A such that µ−1(A) is infinite. Consequently,
when dualising µ to a comultiplication, the comultiplication of the dual of a would contain
an infinite sum, which is not possible in a coalgebra.

As a consequence, developing a theory of coalgebras is not recursive to the theory of
algebras. In fact, the next result, usually referred to as the Fundamental Theorem of Coal-
gebras, shows that the structure of infinite-dimensional coalgebras is very different to that
of algebras.

Theorem 1.24 ([76, Theorem 2.2.1], [63, Section 5.1]). Every coalgebra is the sum of its
finite-dimensional subcoalgebras. Equivalently, if C is a coalgebra, every element c ∈ C is
contained in a finite-dimensional subcoalgebra of C.

We now introduce some distinguished subcoalgebras and elements of a given coalgebra,
which will play a key role in our results.

Definition 1.25. A coalgebra C is simple if it has no proper non-trivial subcoalgebras.

Notice that, as a consequence of Theorem 1.24, simple coalgebras are always finite-
dimensional. And among all of them, it can be expected that simple subcoalgebras of dimen-
sion one may play an important role in the structure of a coalgebra. Thus, it is natural to seek
conditions in order for an element of a coalgebra to generate a one-dimensional subcoalgebra.
The following definition arises naturally:

Definition 1.26. Let C be a coalgebra. An element c ∈ C is said to be grouplike if ∆(c) =
c⊗ c. The set of grouplike elements of C is then defined as

G(C) = {c ∈ C | ∆(c) = c⊗ c}.

Remark 1.27. In some texts, an element c ∈ C must also verify that ε(c) = 1 in order for it
to be considered grouplike. However, this condition is redundant. Indeed, if ∆(c) = c ⊗ c,
the counitary property implies that c = ε(c)c, thus ε(c) = 1.
Remark 1.28. Coalgebra morphisms must take grouplike elements to grouplike elements.
Indeed, if f is a coalgebra morphism and x ∈ G(C1), given that (f ⊗ f) ◦ ∆ = ∆ ◦ f , it is
immediate that f(x) ∈ G(C2).

We then have the following result relating one-dimensional subcoalgebras and grouplike
elements:

Proposition 1.29. Let C be a k-coalgebra. There is a bijective correspondence between
one-dimensional simple subcoalgebras of C and grouplike elements of C.

Proof. Clearly, if c ∈ G(C), k{c} is a one-dimensional subcoalgebra of C. Reciprocally,
suppose that k{c} is a simple subcoalgebra of C of dimension one. Then, ∆(c) ∈ k{c}⊗k{c},
that is, ∆(c) = λ(c⊗ c). Furthermore, λ 6= 0, for otherwise the counitary property could not
be fulfilled for c. But then, ∆(λc) = (λc)⊗ (λc), thus λc ∈ G(C) and k{c} = k{λc}.

We now introduce the coradical filtration of a coalgebra.
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Definition 1.30. Let C be a coalgebra. The coradical of C, corad(C), is the sum of the
simple subcoalgebras of C. Now take C0 = corad(C). Define Cn inductively as

Cn = ∆−1(Cn−1 ⊗ C + C ⊗ C0).

It is easy to see that this yields an increasing sequence of vector subspaces of C,

corad(C) = C0 ⊂ C1 ⊂ · · · ⊂ Cn ⊂ · · · ⊂ C,

which is referred to as the coradical filtration of C.

Another concept which is of interest to us is that of a pointed coalgebra.

Definition 1.31. A coalgebra C is pointed if every simple subcoalgebra of C is of dimension
one.

Then, as an immediate consequence of Proposition 1.29, a coalgebra is pointed if and
only if its simple subcoalgebras are all generated by a grouplike element, or equivalently, if
C0 is the vector space generated by G(C). In order to study C1, we need to introduce the
skew-primitive elements of a coalgebra.

Definition 1.32. Let C be a coalgebra and take g, h ∈ G(C). Define

Pg,h(C) = {c ∈ C | ∆(c) = g ⊗ c+ c⊗ h}.

The elements of Pg,h(C) are called (g, h)-skew primitives of C.

Now for g, h ∈ G(C) it is clear that g − h ∈ Pg,h(C), which are the trivial elements
of Pg,h(C). Define P ′g,h(C) as a complement of k{g − h} in Pg,h(C), namely, Pg,h(C) =
k{g−h}⊕P ′g,h(C). We then have the following result, usually referred to as the Taft-Wilson
theorem:

Theorem 1.33 ([63, Theorem 5.4.1]). Let C be a pointed coalgebra. Then,

C1 = kG(C)⊕

 ⊕
g,h∈G(C)

P ′g,h(C)

 .
Finally, let us introduce the path coalgebra associated to a digraph and use the results

above to obtain some of its properties. Coalgebras associated to combinatorial objects are
usually defined over quivers. However, as our constructions in this thesis are mostly graph-
theoretical, we will define them over digraphs. Recall the concept of path in a digraph that
was introduced in Definition 1.4.

Definition 1.34. Let G be a digraph. The path coalgebra of G, kG, is the linear span over
k of all paths of G with the following coalgebra structure:

∆(p) =
∑

p=p1p2

p1 ⊗ p2; and ε(p) =
{

0, if len(p) > 0,
1, if len(p) = 0.

Here, p1p2 denotes the concatenation of the paths p1 and p2, that is, if p1 = {v0, v1, . . . , vn}
and p2 = {vn, vn+1, . . . , vm}, then p1p2 = {v0, v1, . . . , vm}.



CDGAs and Rational Homotopy Theory 29

Remark 1.35. Notice that vertices, which as generators in this coalgebra are paths of length
0, are the grouplike elements of kG. In fact, G(kG) = V (G). On the other hand, if e =
(v, w) ∈ E(G), then e is (v, w)-skew primitive.

Furthermore, if C is a subcoalgebra of kG and p ∈ C is a path, for any vertex v in the
path p, v ∈ C. Indeed, we may write p as a concatenation of two paths p = q1q2 such that
v is respectively the last and first vertex of q1 and q2. Then q1 ⊗ q2 is a summand in ∆(p),
and v appears in a summand in both ∆(q1) and ∆(q2).

Consequently, k{v} is a subcoalgebra of C. Namely, simple subcoalgebras of kG are one-
dimensional, thus kG is pointed. Then, since G(kG) = V (G), we deduce that kG0 = k{V (G)}.
For the n-th stage of the coradical filtration we immediately see that

(kG)n = k{p ∈ kG | |p| ≤ n}.

1.4 CDGAs and Rational Homotopy Theory
The second kind of algebraic structures for which we aim to solve realisability problems are
commutative differential graded algebras, or CDGAs for short. Moreover, since they are used
as algebraic models of homotopy types of spaces in Rational Homotopy Theory, they also
provide us with a bridge to transfer our results to topology.

Roughly speaking, Rational Homotopy Theory is the study of homotopy types of spaces
modulo torsion. It has its roots in a seminal paper of Quillen, [70], who obtained one of the
two classical approaches to the subject. However, we use the other classical approach, which
was introduced by Sullivan in [75] and later completed by Bousfield and Guggenheim, [18].
A nice introductory reference is [51], whereas [40, 42, 77] and the one we will mostly follow,
[39], are great in-depth references.

We start by introducing rational spaces and rational homotopy types of spaces. In this
thesis we will only work with simply connected rational spaces, so most definitions and results
in this section will be stated in that framework.

Definition 1.36. A simply connected space X is rational if the following equivalent condi-
tions are satisfied.

(1) π∗(X) is a Q-vector space.

(2) H̃∗(X;Z) is a Q-vector space.

A continuous map ψ : X → Y between simply connected spaces is a rational homotopy
equivalence if the following equivalent conditions are satisfied.

(1) π∗(ψ)⊗Q is an isomorphism.

(2) H̃∗(ψ;Q) is an isomorphism.

(3) H̃∗(ψ;Q) is an isomorphism.

Then, given a simply connected space X, there exists a rational space X0 such that
there is a rational homotopy equivalence ψ : X → X0. We say that X0 is a rationalisation
of X, and the rational homotopy type of X is the homotopy type of X0. Also, for simply
connected spaces X and Y , we denote [X,Y ]0 = [X0, Y0] the set of rational homotopy classes
of maps from X to Y . Now, we can formally say that Rational Homotopy Theory is the study
of rational homotopy types of spaces and of the properties of spaces and maps that remain
invariant under rational homotopy equivalences.

We now proceed to summarising the classification of rational homotopy types of simply
connected spaces provided by Sullivan. We begin by introducing the algebraic structures
that participate in such classification. Let R be a commutative ring.
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Definition 1.37 (commutative differential graded algebras).

• A graded R-algebra is a graded R-module A = {An}n≥0 together with a multiplication,
that is, an associative linear map of degree 0, A⊗RA→ A, that has an identity element
1 ∈ A0. The multiplication of two elements a, b ∈ A is denoted ab. If R is a field, we
say that a graded R-algebra A is of finite type if dimAn <∞, for all n ≥ 0.

• A differential graded R-algebra is a pair (A, d) where A is a graded R-algebra and d
is a linear map of degree 1, d : A → A, that is also a derivation, that is, d(ab) =
d(a)b+ (−1)|a|d(b). A morphism of differential graded algebras f : (A, d)→ (B, d) is a
linear map of degree zero f : A→ B such that df = fd and f(ab) = f(a)f(b).

• A commutative differential graded R-algebra, R-CDGA or just CDGA for short, is a
differential graded R-algebra (A, d) whose multiplication is commutative in a graded
sense. Namely, if a, b ∈ A are homogeneous elements, ab = (−1)|a||b|ba. We denote
the category whose objects are R-CDGAs and whose morphisms are morphisms of
differential graded algebras by CDGAR.

The following subclasses of CDGAs will be important in the sequel:

Definition 1.38 (subcategories of CDGAR).

• An R-CDGA (A, d) is connected if A0 = R. The full subcategory of CDGAR whose
objects are connected R-CDGAs is denoted by CDGAc

R.

• An R-CDGA (A, d) is n-connected, n ≥ 1, if it is connected and Ak = 0, for 1 ≤ k ≤ n.
In particular, we say that (A, d) is simply connected if it is 1-connected. We denote the
full subcategory of CDGAR whose objects are n-connected R-CDGAs by CDGAn

R.

• An R-CDGA (A, d) is homologically connected if its cohomology algebra H∗(A, d) is
connected, and homologically n-connected, n ≥ 1, if its cohomology algebra H∗(A, d) is
n-connected. We denote the full subcategory of CDGAR whose objects are homologi-
cally connected and n-connected R-CDGAs by CDGAhc

R and CDGAhn
R respectively.

• If R is a field, the full subcategory of CDGAR whose objects are R-CDGAs of finite
type is denoted by CDGAR,f .

The notations introduced above will be used simultaneously. Thus, if R is a field,
CDGAc

R,f , CDGAn
R,f , CDGAhc

R,f and CDGAhn
R,f respectively denote the categories of con-

nected, n-connected, homologically connected and homologically n-connected R-CDGAs of
finite type. Finally, when R = Q we omit the ring from the notation, thus CDGA denotes
CDGAQ, CDGAc denotes CDGAc

Q, and so on.
Let us now introduce the equivalence relation that will determine when two CDGAs are

associated to the same rational homotopy type. If (A, d) is a differential graded algebra, we
can consider its cohomology H∗(A, d) = ker d/ Im d, which is a graded algebra. Furthermore,
a morphism of differential graded algebras f : (A, d)→ (B, d) induces a morphism of algebras
H∗(f) : H∗(A, d)→ H∗(B, d) in an obvious way.

Definition 1.39. A morphism of differential graded algebras f : (A, d) → (B, d) is a quasi-
isomorphism if the morphism it induces on cohomology H∗(f) : H∗(A, d) → H∗(B, d) is an
isomorphism. We denote f : (A, d) '−→ (B, d). Two differential graded algebras (A, d) and
(B, d) are weakly equivalent if there is a zig-zag of quasi-isomorphisms

(A, d) '←−− · · · '−−→ (B, d).

In particular, if (A, d) and (B, d) are weakly equivalent, they have isomorphic cohomology
algebras.
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The classification of rational homotopy types introduced by Sullivan is provided by a pair
of adjoint contravariant functors

APL : Topc � CDGAhc : | |

such that two simply connected spaces X and Y are rationally homotopic if and only if the
CDGAs APL(X) and APL(Y ) are weakly equivalent. We will not review how these functors
are built, since knowing some of their properties will be enough for our purposes. The
construction of the functors APL and | | can be found in [39, Chapter 10] and [39, Chapter
17] respectively.

Let us begin by considering the functor APL : Topc → CDGAhc. There are many ways in
which the algebraic invariants of a spaceX are encoded inAPL(X). For example,H∗(X;Q) ∼=
H∗
(
APL(X)

)
. However, APL(X) is usually a complicated object, thus instead of working

directly with it we seek to find a simpler CDGA weakly equivalent to APL(X).

Definition 1.40. Let V be a graded R-module.

• The tensor algebra on V , TV , is the graded R-algebra

TV = ⊕∞q=0T
qV, T qV = V ⊗R

q
· · · ⊗R V,

where by convention, we assume that T 0V = R.

• Assume furthermore that char(R) 6= 2. The free commutative graded R-algebra on V ,
ΛV , is the quotient of TV by the bilateral ideal generated by the elements a ⊗ b −
(−1)|a||b|b⊗ a, where a and b are homogeneous elements of TV .

As an algebra, ΛV ∼= SV even⊗REV odd, where SV even is the symmetric algebra on V even

and EV odd is the exterior algebra on V odd. If {vi | i ∈ I} is a basis of V , we denote
ΛV = Λ({vi | i ∈ I}). We also denote the vector subspace of ΛV generated by the products
v1v2 . . . vn, vi ∈ V , by ΛnV . Elements in this space are said to be elements of wordlength n.
Similarly, we denote Λ≥nV = ⊕r≥nΛrV .
Remark 1.41. Let V be a graded R-module, char(R) 6= 2, generated by {vi | i ∈ I}. As a
consequence of the properties of the free commutative graded R-algebras (cf. [39, Chapter
3(b)]), to have a differential graded algebra (ΛV, d) completely determined it is enough to
define d(vi), for every i ∈ I. Similarly, if (A, d) is a differential graded R-algebra, to provide
a morphism f : (ΛV, d)→ (A, d) it is enough to define f(vi), i ∈ I, as long as df(vi) = fd(vi).

From this point on, we assume that R = Q and omit the base ring from all notations.

Definition 1.42. A Sullivan algebra is a CDGA of the form (ΛV, d), such that

• V is concentrated in positive degrees, that is, V = V ≥1;

• V admits a decomposition V = ∪∞k=0V (k), where V (0) ⊂ V (1) ⊂ · · · is an increasing
sequence of graded subspaces, d|V (0) = 0 and d

(
V (k)

)
⊂ ΛV (k − 1), for all k ≥ 1.

A Sullivan algebra (ΛV, d) is minimal if Im d ⊂ Λ≥2V .

Notice that Sullivan algebras are always connected CDGAs, and they are n-connected if
and only if V k = 0, for 1 ≤ k ≤ n.

Definition 1.43. Let (A, d) be a CDGA and X be a connected space.

• A Sullivan model for (A, d) is a pair
(
(ΛV, d), ϕ

)
, where (ΛV, d) is a Sullivan algebra

and ϕ : (ΛV, d)→ (A, d) is a quasi-isomorphism of differential graded algebras.
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• A Sullivan model for X is a Sullivan model
(
(ΛV, d), ϕ

)
for the CDGA APL(X).

• A Sullivan model for an algebra or a space is minimal if the corresponding Sullivan
algebra is minimal.

By abuse of notation, we usually omit the algebra morphism and say that (ΛV, d) is a
Sullivan model for (A, d) or for X. Sullivan algebras are precisely the simpler CDGAs that we
seek to classify rational homotopy types. And luckily for us, every homologically connected
CDGA admits a Sullivan model (cf. [39, Proposition 12.1]). This holds in particular for
APL(X) for X a path connected space. However, if X is simply connected, we have a more
powerful result:

Proposition 1.44 ([39, Proposition 12.2]). Let X be a simply connected space. Then, X
admits a simply connected minimal Sullivan model (ΛV, d). Furthermore, if X is n-connected
(resp. of finite type), (ΛV, d) is n-connected (resp. of finite type).

Since (ΛV, d) is quasi-isomorphic to APL(X), we know that H∗(ΛV, d) ∼= H∗
(
APL(X)

) ∼=
H∗
(
X;Q). But furthermore, the generators of the minimal Sullivan model of X are also

related to its algebraic invariants:

Proposition 1.45. Let X be a simply connected space of finite type with minimal Sullivan
model (ΛV, d). There is a natural isomorphism V ∼= HomZ

(
π∗(X)⊗Q,Q

)
.

Regarding the functor | | : CDGAhc → Topc, which receives the name of Sullivan’s spatial
realisation functor, we have the following result:

Proposition 1.46 ([39, Theorem 17.10]). Let (ΛV, d) be a simply connected Sullivan algebra
of finite type. Then, there is a quasi-isomorphism ϕ : (ΛV, d)→ APL(|ΛV, d|).

Consequently, if X is a simply connected space of finite type with minimal Sullivan model
(ΛV, d), and since APL(|ΛV, d|) is quasi-isomorphic to (ΛV, d), we deduce that X and |ΛV, d|
are of the same rational homotopy type. In fact, |ΛV, d| is a rationalisation of X.

So far, we have seen how minimal Sullivan algebras classify rational homotopy types of
simply connected spaces. However, we are interested in self-homotopy equivalences, thus we
need a classification of homotopy classes of maps as well. Such classification is provided by
a concept of homotopy between morphisms of CDGAs of the form (ΛV, d) → (A, d), where
(ΛV, d) is a Sullivan algebra and (A, d) is a CDGA. We introduce it now.

Consider Λ(t, dt) the free commutative graded algebra on the basis {t, dt} with |t| = 0,
|dt| = 1 and differential t 7→ dt. Define augmentations ε0, ε1 : Λ(t, dt)→ Q by ε0(t) = 0 and
ε1(t) = 1.

Definition 1.47. Two morphisms ϕ0, ϕ1 : (ΛV, d) → (A, d) from a Sullivan algebra to a
CDGA are homotopic if there is a morphism of differential graded algebras

Φ: (ΛV, d) −→ (A, d)⊗
(
Λ(t, dt), d

)
such that (idA⊗εi)◦Φ = ϕi, i = 0, 1. We say that Φ is a homotopy from ϕ0 to ϕ1, and denote
ϕ0 ' ϕ1. We denote the set of homotopy classes of morphisms from (ΛV, d) to (ΛW,d) by
[(ΛV, d), (ΛW,d)].

Let us now review some important properties of homotopic morphisms. If ϕ : (ΛV, d)→
(ΛW,d) is a morphism between Sullivan algebras, the linear part of ϕ, denoted Q(ϕ), is a
linear map Q(ϕ) : V → W defined by ϕ(v) − Q(ϕ)(v) ∈ Λ≥2W , for all v ∈ V . We have the
following result:
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Proposition 1.48 ([39, Proposition 12.8]). Let (ΛV, d) and (ΛW,d) be Sullivan algebras,
and let (A, d) be a CDGA.

(1) If ϕ0 ' ϕ1 : (ΛV, d)→ (A, d), then H(ϕ0) = H(ϕ1).

(2) Suppose furthermore that (ΛV, d) and (ΛW,d) are minimal, simply connected Sullivan
algebras. If ϕ0 ' ϕ1 : (ΛV, d)→ (ΛW,d), then Q(ϕ0) = Q(ϕ1).

However, the key result regarding homotopy classes of morphisms is the lifting lemma:

Lemma 1.49 (lifting lemma, [39, Proposition 12.9]). Let (ΛV, d) be a Sullivan algebra and
let (A, d) and (C, d) be CDGAs. Let ψ : (ΛV, d)→ (C, d) be a morphism of differential graded
algebras and η : (A, d) → (C, d) be a quasi-isomorphism. There exists a unique homotopy
class of morphisms ϕ : (ΛV, d)→ (A, d) such that η ◦ ϕ ' ψ.

(ΛV, d) (C, d)

(A, d)

ψ

η'
ϕ

This lemma has a clear immediate consequence. Namely, if (A, d) and (C, d) are weakly
equivalent homologically connected CDGAs, they have the same Sullivan models. Thus, two
homologically connected CDGAs (A, d) and (C, d) are weakly equivalent if and only if there
is a zig-zag of quasi-isomorphisms

(A, d) '←−− (ΛV, d) '−−→ (C, d),

where (ΛV, d) is a Sullivan algebra.
Now that the homotopy relation has been established, we can introduce the models of

(rational) homotopy classes of maps between simply connected spaces. In order to do so, from
now on we restrict ourselves to simply connected spaces of finite type, which by Proposition
1.44 admit simply connected minimal Sullivan models of finite type.

Definition 1.50. Let f : X → Y be a continuous map between simply connected spaces
of finite type, with respective minimal Sullivan models

(
(ΛV, d), ϕX

)
and

(
(ΛW,d), ϕY

)
. A

Sullivan representative or minimal Sullivan model of f is a morphism ϕ : (ΛW,d)→ (ΛV, d)
such that ϕ ◦ ψY ' ψX ◦APL(f).

We then have the following result:

Proposition 1.51 ([39, Proposition 12.6]). Any continuous map f : X → Y between simply
connected spaces of finite type admits a Sullivan representative, unique up to homotopy.

We also have the following:

Proposition 1.52 ([39, Proposition 17.13, Theorem 17.15]). Let X and Y be two simply
connected spaces with respective minimal Sullivan models (ΛV, d) and (ΛW,d).

(1) If ϕ0 ' ϕ1 : (ΛV, d)→ (ΛW,d) are homotopic, then |ϕ0| ' |ϕ1| : |ΛW,d| → |ΛV, d|.

(2) If f : X → Y is a continuous map with Sullivan representative ϕ : (ΛW,d)→ (ΛV, d),
there is a homotopy-commutative diagram
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X Y

|ΛV, d| |ΛW,d|.

f

hX '

|ϕ|

hY'

Therefore, homotopic maps have homotopic Sullivan representatives, and homotopic mor-
phisms between Sullivan algebras have (rationally) homotopic spatial realisations. We deduce
that the functors APL and | | induce an equivalence of categories

APL : HoTop1
f,Q � HoCDGAh1

f : | |

where Top1
f,Q denotes the category of simply connected rational spaces of finite type. Conse-

quently, if X and Y are spaces in Top1
f,Q with respective minimal Sullivan models (ΛV, d) and

(ΛW,d), then [X,Y ] ∼= [(ΛW,d), (ΛV, d)] ∼= [|ΛV, d|, |ΛW,d|]. In particular, E(X) ∼= E(ΛV, d).
This concludes our basic introduction to Rational Homotopy Theory. The remainder of

this section is devoted to several miscellaneous results that we need in Chapter 4 and Chapter
5. First, we need to know how Sullivan models of Serre fibrations look like.

Proposition 1.53 ([39, Chapter 15(a)]). Let X, Y and F be simply connected spaces of
finite type and suppose that p : X → Y is a Serre fibration with fibre F . Then, if (ΛW,d) and
(ΛV, d̄) are minimal Sullivan models for Y and F respectively, X admits a Sullivan model
(ΛW ⊗ ΛV, d) such that:

• A Sullivan representative of p is the map i : (ΛW,d) ↪→ (ΛV ⊗ ΛW,d);

• dv − d̄v ∈ Λ+W ⊗ ΛV , for all v ∈ V .

We also need several facts regarding rationally elliptic spaces. Recall that a graded vector
space A = {An}n≥0 is finite-dimensional, denoted dimA <∞, if An = {0} for all but a finite
amount of degrees and dimAn <∞, for all n ≥ 0.

Definition 1.54. A simply connected space X is rationally elliptic if dimH∗(X;Q) < ∞
and dim π∗(X) ⊗ Q < ∞. A minimal Sullivan algebra is elliptic if dimV < ∞ and
dimH∗(ΛV, d) <∞.

It is clear that X is rationally elliptic if and only if its minimal Sullivan model is elliptic.
To determine if a Sullivan algebra is elliptic we use pure Sullivan algebras:

Definition 1.55. A Sullivan algebra (ΛV, d) is pure if d|V even = 0 and d(V odd) ⊂ ΛV even.

Then, to a Sullivan algebra (ΛV, d) with V finite-dimensional, we associate another Sul-
livan algebra (ΛV, dσ) where dσ is characterised by dσ(V even) = 0 and d − dσ(V odd) ⊂
ΛV even ⊗ Λ≥2V odd. It turns out that (ΛV, dσ) is a pure Sullivan algebra which we call the
pure Sullivan algebra associated to (ΛV, d). Moreover, we have the following result:

Proposition 1.56 ([39, Proposition 32.4]). Let (ΛV, d) be a simply connected Sullivan algebra
with V finite-dimensional. Then, (ΛV, d) is elliptic if and only if its associated pure Sullivan
algebra (ΛV, dσ) is elliptic.

We are also interested in rational homotopy types of closed, oriented and connected
manifolds. The cohomology algebra of such manifolds verifies Poincaré duality, thus the
cohomology algebra of their Sullivan models will verify an analogous property. First, we
recall what it means for a commutative differential graded algebra to verify Poincaré duality.
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Definition 1.57. Let A be a finite-dimensional commutative differential graded algebra such
that A = {Ai}0≤i≤n and A0 = Q. The algebra A is a Poincaré duality algebra if there is an
element ωA ∈ An such that, for any k, 0 ≤ k ≤ n, the pairing

〈 , 〉 : Ak ⊗An−k −→ Q,

a⊗ a′ 7−→ 〈a, a′〉 = ω#
A (a⊗ a′),

where ω#
A : Hn(A) → Q is the dual of ωA, is non-degenerate. We say that n is the formal

dimension of A, and ωA receives the name of fundamental class of A.

Notice that since A0 = Q, the fact that the pairing corresponding to k = 0 is non-
degenerate implies that ω#

A (λz) 6= 0, for any 0 6= λ ∈ Q and any 0 6= z ∈ An. Thus ω#
A is an

isomorphism, and consequently, dim(An) = 1. Then, for 0 ≤ k ≤ n, the pairing being non-
degenerate means that for any non-trivial element x ∈ Ak, there exists an element y ∈ An−k
such that xy = ωA.

We will also make use of the following result:

Proposition 1.58 ([39, Theorem 32.15]). If (ΛV, d) is an elliptic Sullivan algebra, then its
cohomology algebra verifies Poincaré duality with formal dimension

p∑
i=1
|yi| −

q∑
j=1

(|xj | − 1), (1.1)

where {y1, y2, . . . , yp} is a basis of V odd and {x1, x2, . . . , xq} is a basis of V even.

1.5 A classification of the homotopy types of A2
n-polyhedra

In this section we review an algebraic classification of the homotopy types of A2
n-polyhedra

(that is, (n− 1)-connected, (n+ 2) dimensional spaces). Namely, we introduce Whitehead’s
universal quadratic functor and Whitehead’s exact sequence and review how these tools can
be used to classify the homotopy types of these spaces. Then, we show how this classification
leads to an algebraic description of a distinguished quotient of the group of self-homotopy
equivalences of an A2

n-polyhedron. In Chapter 6, we use this algebraic description to study the
possibility of providing a solution to Kanh’s group realisability problem in terms of integral
spaces.

The results in this section are mostly due to J.H.C. Whitehead, who introduced the
classification of A2

2-polyhedra in his celebrated article [80], and to Baues, who later used the
basis laid by Whitehead to provide a classification of the homotopy types of A2

n-polyhedra
for every n ≥ 2, [11, 12, 13].

Let Ab denote the category of abelian groups. In [80], the author introduces a functor
Γ: Ab→ Ab which plays a role in a certain exact sequence that he uses to classify homotopy
types of A2

2-polyhedra. The Γ functor, also called Whitehead’s universal quadratic functor,
satisfies a universal property in relation with the so-called quadratic maps. Thus, in order
to introduce the Γ functor, we first need to review the definition of quadratic maps.

Definition 1.59. Consider A,B ∈ Ob(Ab) two abelian groups. A map (of sets) η : A → B
is quadratic if:

(1) η(a) = η(−a), for all a ∈ A, and;

(2) the map A×A→ B taking (a, a′) to η(a+ a′)− η(a)− η(a′) is bilinear.
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Notice that for any a ∈ A, the bilinear map in (2) takes (a,−a) to 2η(a), whereas for
n ∈ Z, (na,−na) is taken to 2η(na). By bilinearity, this implies that η(na) = n2η(a). Thus,
condition (1) could be changed for the following, more restrictive condition.

(1’) η(na) = n2η(a), for all a ∈ A and n ∈ Z.

We can now introduce Whitehead’s universal quadratic functor.

Definition 1.60. Let A be an abelian group. Then, Γ(A) is the only abelian group such that
there exists a quadratic map γ : A→ Γ(A) verifying that every other quadratic map η : A→
B factors uniquely through γ. This means that there is a unique group homomorphism
η� : Γ(A)→ B such that η = η�γ, thus making the following diagram commute.

A B

Γ(A)

η

γ
η�

The map γ : A→ Γ(A) is unique and receives the name of universal quadratic map of A.
Now we describe how Γ acts on morphisms. Let A and B be two abelian groups and

f : A→ B be a group homomorphism, and consider the respective universal quadratic maps
γ : A → Γ(A) and γ : B → Γ(B). Then, γf : A → Γ(B) is a quadratic map, so there
exists a unique group homomorphism (γf)� : Γ(A) → Γ(B) such that (γf)�γ = γf . Define
Γ(f) = (γf)�, so Γ(f) is the only group homomorphism that makes the following diagram
commute:

A B

Γ(A) Γ(B).

f

γ γ

Γ(f)

Example 1.61. The squaring map (−)2 : Z → Z is a quadratic map. Moreover, Γ(Z) = Z,
and the corresponding universal quadratic map is γ = (−)2. Indeed, given η : Z → B a
quadratic map, the homomorphism defined as η�(n) = nη(1) verifies that η�γ = η as a
consequence of Definition 1.59.(1’).

We now list some properties of the Γ functor that we need in the sequel:

Proposition 1.62 ([13, p. 16–17]). The functor Γ has the following properties:

(1) Γ(Z) = Z, as seen in Example 1.61.

(2) Γ(Zn) is Z2n if n is even or Zn if n is odd.

(3) Let I be an ordered set and Ai be an abelian group, for each i ∈ I. Then,

Γ
(⊕

I

Ai

)
=
(⊕

I

Γ(Ai)
)
⊕
(⊕
i<j

Ai ⊗Aj

)
.

The groups Γ(Ai) and Ai⊗Aj are respectively generated by elements γ(ai) and ai⊗aj,
with ai ∈ Ai, aj ∈ Aj, i < j. Elements aj ⊗ ai are identified with ai ⊗ aj, and
ai ⊗ ai is identified with 2γ(ai). Moreover, for all i, j ∈ I, ai ∈ Ai and aj ∈ Aj,
γ(ai + aj) = γ(ai) + γ(aj) + ai ⊗ aj, [80, Sections 5 and 7].
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We now introduce Whitehead’s exact sequence. Let X be a 1-connected space. For n ≥ 1,
the n-th Whitehead Γ-group of X is defined as

Γn(X) = Im
(
i∗ : πn(Xn−1)→ πn(Xn)

)
.

Here, i : Xn−1 → Xn is the inclusion of the (n− 1)-skeleton of X into its n-skeleton. Then,
Γn(X) is an abelian group for every n ≥ 1. This group can be embedded in an exact sequence
of abelian groups:

Theorem 1.63 ([80, Chapter III]). Let X be a 1-connected space. There is an exact sequence
of abelian groups

· · · −→ Hn+1(X) bn+1−−−→ Γn(X) in−1−−−→ πn(X) hn−−−→ Hn(X) −→ · · · (1.2)

where hn is the usual Hurewicz homomorphism and bn+1 is a boundary representing the
attaching maps.

The final part of Whitehead’s exact sequence plays a key role in the classification of the
homotopy types of A2

n-polyhedra attained by Whitehead and Baues. As we want to use
that classification to study self-homotopy equivalences of A2

n-polyhedra, it would be useful to
understand the group Γn(X) for the first index n for which it is non-trivial. For this reason,
for each n ≥ 2 we define a functor Γ1

n : Ab → Ab as follows. Define Γ1
2 = Γ the universal

quadratic functor of Whitehead, and for n ≥ 3, define Γ1
n = −⊗ Z2. Then:

Theorem 1.64 ([13, Theorem 2.1.22]). Let n ≥ 2 and let X be a (n − 1)-connected space.
There is an isomorphism Γ1

n

(
Hn(X)

) ∼= Γn+1(X).

Consequently, the final part of (1.2) can be written as

Hn+2(X) bn+2−−−→ Γ1
n

(
Hn(X)

) in−−→ πn+1(X) hn+1−−−→ Hn+1(X) −→ 0. (1.3)

We now move on to introducing the classification of the homotopy types of A2
n-polyhedra

mentioned above. This classification is provided by a detecting functor. Let us introduce this
concept.

Definition 1.65 ([80, Section 14]). Let A and B be two categories. A functor λ : A → B is
said to verify

(1) the sufficiency condition if whenever λ(f) is an isomorphism, so is f , for f any mor-
phism in A;

(2) the realisability condition if λ is full and for each object B ∈ Ob(B) there is an object
A ∈ Ob(A) such that λ(A) is isomorphic to B.

We say that λ is a detecting functor if it verifies the sufficiency and realisability conditions.

Clearly, a detecting functor λ : A → B induces a one to one correspondence between
isomorphism classes of objects in A and B. The detecting functors of Whitehead and Baues
have the homotopy category of A2

n-polyhedra as their source category. We now introduce
their target categories, that is, the categories whose isomorphism classes classify homotopy
types of A2

n-polyhedra.

Definition 1.66 ([11, Chapter IX, Section 4]). Let n ≥ 2 be an integer. We define the
category of Γ-sequencesn+2 as follows. Objects are exact sequences of abelian groups

Hn+2 −→ Γ1
n(Hn) −→ πn+1 −→ Hn+1 −→ 0

where Hn+2 is free abelian. Morphisms are triples f = (fn+2, fn+1, fn) of group homomor-
phisms, fi : Hi → H ′i, such that there exists a group homomorphism Ω: πn+1 → π′n+1 making
the following diagram
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Hn+2 Γ1
n(Hn) πn+1 Hn+1 0

H ′n+2 Γ1
n(H ′n) π′n+1 H ′n+1 0

fn+2 Γ1
n(fn) Ω fn+1

commutative. We say that objects in Γ-sequencesn+2 are Γ-sequences, and morphisms in the
category are called Γ-morphisms.

Notice that given X an A2
n-polyhedron, the final part of its Whitehead’s exact sequence,

(1.3), is a Γ-sequence. The next definition follows naturally.

Definition 1.67. Let n ≥ 2 be an integer. We define a functor Fn : HoA2
n-polyhedra →

Γ-sequencesn+2 as follows. For an A2
n-polyhedron X, we define Fn(X) as the final part of

the corresponding Whitehead’s exact sequence, (1.3). We say that Fn(X) is the Γ-sequence
of X. On the other hand, given a continuous map α : X → X ′ of A2

n-polyhedra, the maps
induced by α on homotopy and homology groups provide us with a commutative diagram of
group homomorphisms

Hn+2(X) Γ1
n

(
Hn(X)

)
πn+1(X) Hn+1(X) 0

Hn+2(X ′) Γ1
n

(
Hn(X ′)

)
πn+1(X ′) Hn+1(X ′) 0,

Hn+2(α) Γ1
n

(
Hn(α)

)
πn+1(α) Hn+1(α)

thus providing a Γ-morphism between the Γ-sequences of X and X ′. We can thus define
Fn(α) =

(
Hn+2(α), Hn+1(α), Hn(α)

)
.

Finally, we have the following result:

Theorem 1.68 ([12, Chapter I, Section 8]). Let n ≥ 2 be an integer. Then, the functor
Fn : HoA2

n-polyhedra→ Γ-sequencesn+2 introduced in Definition 1.67 is a detecting functor.

Hence, for any object in Γ-sequencesn+2 there exists an A2
n-polyhedron whose Γ-sequence

is the given object in Γ-sequencesn+2. In fact, there is a one to one correspondence between
homotopy types of A2

n-polyhedra and isomorphism classes of Γ-sequences. Then, following
the ideas of [17], we introduce the following:

Definition 1.69. For X an A2
n-polyhedron, we denote the group of Γ-automorphisms of the

Γ-sequence of X by Bn+2(X).

Now let Ψ: E(X)→ Bn+2(X) be the map that associates to α ∈ E(X) the Γ-isomorphism
Ψ(α) = Fn(α) =

(
Hn+2(α), Hn+1(α), Hn(α)

)
. Then Ψ is a group homomorphism, which is

onto as a consequence of Theorem 1.68. Furthermore, its kernel is the subgroup of those self-
homotopy equivalences of X that induce the identity map on homology groups, a subgroup
of E(X) usually denoted E∗(X). The following results follows immediately.

Proposition 1.70. Let X be an A2
n-polyhedron, n ≥ 2. Then Bn+2(X) ∼= E(X)/E∗(X).



CHAPTER 2

Realisability problems in Graph Theory

As we discussed in the Introduction, to solve Problems 1 and 2 in different categories, we
first tackle them in the category Graphs.

A convenient way to construct objects in Graphs that serve us to answer in the positive
our realisability problems is to first work in the categorical framework of binary relational
systems, since we take advantage of the structure given by the labels of the edges. In Section
2.1 we build binary relational systems giving a positive answer to Problem 1, see Theorem
2.16. Similarly, in Section 2.2 we give a solution to Problem 2, see Theorem 2.26.

Then, in Section 2.3 and following ideas from the classical arrow replacement operation
[49, Section 4.4], we encode the information contained in the labels and edge directions into
simple graphs, see Theorem 2.33. We show that the binary relational systems built in Section
2.1 and Section 2.2 fit the hypothesis of Theorem 2.33, so we can finally transfer the solutions
to Problem 1 and Problem 2 from IRel to Graphs, see Theorem 2.37 and Theorem 2.41.

2.1 Realisability in the arrow category of binary relational
systems

In this section, we build two relational systems G1 and G2, Definition 2.7, and a morphism
between them ϕ : G1 → G2, Definition 2.10. These constructions allow us to positively answer
Problem 1 in the arrow category of IRel, as we prove in our main result in this section,
Theorem 2.16.

The construction of the binary relational systems involved in Theorem 2.16 is carried
out in Section 2.1.1; properties of their automorphism groups are given in Section 2.1.2; and
everything is put together to prove Theorem 2.16 in Section 2.1.3. It is worth remarking that
the constructions contained in this section are quite technical, so we recommend the reader
to work out an example along the way to get a better grasp of the ideas involved. A simple
example such as taking G1 = Z8, G2 = Z4 and H = 〈(2, 2)〉 ≤ Z8 × Z4 is enough to picture
every ingredient involved in our construction. We illustrate this example in Section 2.1.4.

2.1.1 Construction of the relational systems involved in Theorem 2.16

GivenH ≤ G1×G2 groups, we want to build two binary relational systems over a set I, G1 and
G2, and a morphism ϕ : G1 → G2 between them, so that AutIRel(G1) ∼= G1, AutIRel(G2) ∼= G2
and AutIRel(ϕ) ∼= H. In order to construct them, we first need a characterisation of the

39



40 Chapter 2. Realisability problems in Graph Theory

subgroups of a product of two groups. An elementary result, known as Goursat’s lemma, is
used to that purpose. The basic idea of the lemma’s proof can be found in [10, Theorem 2.1
and p. 3].

Lemma 2.1 ([46, Sections 11–12]). Let G1 and G2 be arbitrary groups and H ≤ G1×G2 be
a subgroup. Consider ιj : Gj → G1×G2 and πj : G1×G2 → Gj the respective inclusions and
projections, j = 1, 2. There exists a group isomorphism

θ : π1(H)
ι−1
1 (H)

−→ π2(H)
ι−1
2 (H)

,

taking a class [g1] to θ([g1]) = [g2], the class of any element g2 ∈ π2(H) such that (g1, g2) ∈ H.
Moreover,

H =
{
(g1, g2) ∈ π1(H)× π2(H) | θ([g1]) = [g2]

}
.

Taking into account the previous lemma, we now proceed with the construction of the
binary relational systems in Theorem 2.16. Let G1 and G2 be arbitrary groups and H ≤
G1 ×G2.

Definition 2.2 (Generating sets R and S for, respectively, G1 and G2).

• Let J1 be an indexing set for the right cosets of ι−1
1 (H) in G1. We choose a represen-

tative of each right coset, {rj , j ∈ J1}, assuming that 0 ∈ J1 and r0 = eG1 represents
ι−1
1 (H). We fix a generating set {ri | i ∈ Iι1} for ι−1

1 (H) and we let I1 = Iι1 tJ∗1 . Then
R = {ri | i ∈ I1} is a generating set for G1.

• Let J2 be an indexing set for the right cosets of π2(H) in G2. Analogously, we choose
a representative of right cosets {sj | j ∈ J2}, assuming that 0 ∈ J2 and s0 = eG2

represents π2(H). We fix a generating set {si | i ∈ Iπ2} for π2(H) and we let I2 =
Iπ2 t J∗2 . Then S = {si | i ∈ I2} is a generating set for G2.

Remark 2.3. By decomposing G1 = tj∈J1ι
−1
1 (H)rj , there exist maps k1 : G1 → ι−1

1 (H) and
j1 : G1 → J1 such that any g ∈ G1 can be uniquely expressed as a product g = k1(g)rj1(g).
By setting Jπ1 = {j ∈ J1 | rj ∈ π1(H)}, if g ∈ π1(H) we have that j1(g) ∈ Jπ1 . Analogously,
G2 = tj∈J2π2(H)sj and there exist maps k2 : G2 → π2(H) and j2 : G2 → J2 such that any
g ∈ G2 is uniquely expressed as the product g = k2(g)sj2(g).

The maps k1, j1, k2 and j2 satisfy certain compatibility conditions with the group opera-
tion:

Lemma 2.4. Let g, g′ ∈ G1 (resp. g, g′ ∈ G2). Then,

(1) j1(gg′) = j1(rj1(g)g
′) (resp. j2(gg′) = j2(sj2(g)g

′)).

(2) k1(gg′) = k1(g)k1(rj1(g)g
′) (resp. k2(gg′) = k2(g)k2(sj2(g)g

′)).

Proof. We only check Lemma 2.4.(1) since the proof of Lemma 2.4.(2) is analogous. By
Remark 2.3, gg′ = k1(gg′)rj1(gg′) and also gg′ = k1(g)rj1(g)g

′ = k1(g)k1(rj1(g)g
′)rj1(rj1(g)g′).

Since this decomposition is unique, the result follows immediately.

The following is an auxiliary binary system that will be used in Definition 2.7.

Definition 2.5 (Auxiliary binary system). Let I = I1 t I2 t {θ} and V1 = π1(H)/ι−1
1 (H).

We define Gι1 to be the binary I-system having as vertices

V (Gι1) =
{
V1, if G1 = π1(H),
V1 t {s}, otherwise,

and as edges of label i, with [g] ∈ V1:
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• for i ∈ Iι1 , ([g], [g]) ∈ Ri(Gι1);

• for i ∈ J∗π1 , ([g], [rig]) ∈ Ri(Gι1).

If G1 6= π1(H), Gι1 also has the edges of label i:

• for i ∈ I1, (s, s) ∈ Ri(Gι1);

• for i ∈ J1 \ Jπ1 ,
(
[g], s

)
,
(
s, [g]

)
∈ Ri(Gι1).

Observe that the set of edges of Gι1 corresponding to labels in I2 t {θ} is empty.

Remark 2.6. The Cayley diagram Cay
(
V1, {[ri] | i ∈ Iι1 tJ∗π1}

)
is equal to Gι1 if G1 = π1(H)

and is a proper full binary relational subsystem of Gι1 otherwise.
We are now ready to define the binary I-systems G1 and G2 in Theorem 2.16. Recall from

Lemma 2.1 that there exists an isomorphism θ : π1(H)/ι−1
1 (H)→ π2(H)/ι−1

2 (H). Also recall
that in Definition 2.2 we described two generating sets R and S for, respectively, G1 and G2.

Definition 2.7 (Binary relational systems G1 and G2 in Theorem 2.16). We define the
following binary I-systems:

• G1 = Cay(G1, R).

• G2 has vertex set V (G2) = G2 t
(
tj∈J2 V

j
2
)
where V j

2 = {j} × V (Gι1), and edge set:

– for i ∈ I2 and g ∈ G2, (g, sig) ∈ Ri(G2);
– for θ ∈ I and g ∈ G2,

(
g,
(
j2(g), θ−1[k2(g)]

))
∈ Rθ(G2);

– for i ∈ I1, j ∈ J2, if (v1, v2) ∈ Ri(Gι1), then
(
(j, v1), (j, v2)

)
∈ Ri(G2).

Remark 2.8. Cases of interest for are the following full binary relational subsystems of G2:

• G2(G2), with vertex set G2, which is isomorphic to Cay(G2, S).

• G2(G1, j), with vertex set V j
2 , which is isomorphic to Gι1 for each j ∈ J2.

The following is an auxiliary construction that will be used in Definition 2.10:

Lemma 2.9 (Auxiliary morphism of binary systems). The map ϕ0 : G1 → Gι1 defined by

ϕ0(g) =
{

[g], if g ∈ π1(H),
s, otherwise,

is a morphism of binary I-systems.

Proof. We need to check that for i ∈ I1, if (g, rig) ∈ Ri(G1) then
(
ϕ0(g), ϕ0(rig)

)
∈ Ri(Gι1).

We decompose I1 = Iι1 t J∗π1 t (J1 \ Jπ1) and prove it by cases.
For i ∈ Iι1 , ri ∈ ι−1

1 (H). Hence, if g ∈ π1(H), also rig ∈ π1(H) and
(
ϕ0(g), ϕ0(rig)

)
=(

[g], [rig]
)

=
(
[g], [g]

)
∈ Ri(Gι1). On the other side, if g 6∈ π1(H), then rig 6∈ π1(H) and by

definition,
(
ϕ0(g), ϕ0(rig)

)
= (s, s) ∈ Ri(Gi1).

For i ∈ J∗π1 , ri ∈ π1(H) and the argument goes as previously.
Finally, for i ∈ J1 \ Jπ1 , ri 6∈ π1(H). On the one hand, if g ∈ π1(H) necessarily rig 6∈

π1(H), therefore
(
ϕ0(g), ϕ0(rig)

)
=
(
[g], s

)
∈ Ri(Gi1). On the other hand, if g 6∈ π1(H),

we can have either rig ∈ π1(H), in which case
(
ϕ0(g), ϕ0(rig)

)
= (s, [rig]) ∈ Ri(Gi1), or

rig 6∈ π1(H), in which case
(
ϕ0(g), ϕ0(rig)

)
= (s, s) ∈ Ri(Gi1).
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Definition 2.10 (Arrow ϕ : G1 → G2 in Theorem 2.16). Let ϕ : G1 → G2 be the composite
of the morphism ϕ0 from the previous lemma, followed by the inclusion of Gι1 ∼= G2(G1, 0)
(see Remark 2.8) into G2:

G1 ϕ0
// Gι1 ∼= G2(G1, 0) �

�

i0
// G2.

That is, ϕ(g) =
(
0, ϕ0(g)

)
∈ V 0

2 for g ∈ V (G1) = G1.

For the sake of clarity, we split the proof of Theorem 2.16 into various intermediate results
that we include in the following section.

2.1.2 Properties of the binary relational systems from Definition 2.7

Since G1 is a Cayley diagram for G1, we have that AutIRel(G1) ∼= G1 (see Remark 1.10).
Proving that AutIRel(G2) ∼= G2 needs further elaboration. The first step is to prove that Gι1 ,
the auxiliary binary I-system introduced in Definition 2.5, is sufficiently rigid:

Lemma 2.11. For a fixed g ∈ π1(H), there exists a unique ψg ∈ AutIRel(Gι1) such that
ψg([eG1 ]) = [g].

Proof. We claim that any automorphism ψ of Gι1 maps V1 to itself. This is clear when
π1(H) = G1. Thus we assume that π1(H) 6= G1 (which in particular implies that |J∗1 | ≥ 1).
Notice that then, s is the only vertex connected to itself through an edge (s, s) ∈ Ri(Gι1) of
label i ∈ J∗1 . But ψ being a morphism of I-binary systems implies that

(
ψ(s), ψ(s)

)
∈ Ri(Gι1)

for i ∈ J∗1 , which leads to ψ(s) = s and our claim holds.
Now, on the one hand, given g ∈ π1(H) it is immediate to check that we obtain an au-

tomorphism ψg ∈ AutIRel(Gι1) of binary I-systems by declaring ψg([h]) = [h][g] = φ[g]−1([h])
for [h] ∈ V1, and ψg(s) = s.

On the other hand, given ψ ∈ AutIRel(Gι1) such that ψ([eG1 ]) = [g], and bearing in
mind Remark 2.6, we can now affirm that ψ|V1 is an automorphism of the full relational
subsystem Cay

(
V1, {[ri] | i ∈ Iι1 t J∗π1}

)
. Hence, ψ|V1 = φ[g]−1 (see Remark 1.10), the only

automorphism sending [eG1 ] to [g], and since ψ(s) = s, then ψ = ψg.

To prove that G2 ∼= AutIRel(G2), we first show that any element g̃ ∈ G2 induces an
automorphism Φg̃ on G2. We now give the construction of Φg̃ and then we prove that it is
indeed an automorphism of relational systems.

Definition 2.12. Given g̃ ∈ G2, we define Φg̃ : V (G2) = G2 t
(
tj∈J2 V

j
2
)
→ V (G2) as

follows. First, given that Cay(G2, S) is a full relational subsystem of G2 (see Remark 2.8) we
define Φg̃|G2 as φg̃, the automorphism induced by right multiplication by g̃−1 in Cay(G2, S)
introduced in Remark 1.10. Thus for g ∈ G2

Φg̃(g) = gg̃−1 ∈ G2.

Secondly, for (j, [g]) ∈ V j
2 , we define

Φg̃(j, [g]) =
(
j2(sj g̃−1), [g]θ−1[k2(sj g̃−1)]

)
∈ V j2(sj g̃−1)

2 .

If moreover π1(H) 6= G1, for (j, s) ∈ V j
2 , we finally define

Φg̃(j, s) =
(
j2(sj g̃−1), s

)
∈ V j2(sj g̃−1)

2 .

The previous self-map of V (G2) is indeed a morphism of binary relational systems:
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Lemma 2.13. Given g̃ ∈ G2, Φg̃ ∈ HomIRel(G2,G2).

Proof. We check that Φg̃ is a morphism of binary I-systems, that is, Φg̃ respects relations
Ri(G2), i ∈ I. We prove it by cases:

First take g ∈ G2. Then if i ∈ I2, we have that (g, sig) ∈ Ri(G2) and(
Φg̃(g),Φg̃(sig)

)
= (gg̃−1, sigg̃

−1) ∈ Ri(G2).

On the other hand, if θ ∈ I, we have that
(
g, (j2(g), θ−1[k2(g)])

)
∈ Rθ(G2) and(

Φg̃(g),Φg̃(j2(g), θ−1[k2(g)])
)

=
(
gg̃−1, (j2(sj2(g)g̃

−1), θ−1[k2(g)]θ−1[k2(sj2(g)g̃
−1)])

)
=
(
gg̃−1, (j2(gg̃−1), θ−1[k2(gg̃−1)])

)
∈ Rθ(G2),

where the last equality follows from Lemma 2.4.(1) and Lemma 2.4.(2), and the fact that
θ−1 is a group homomorphism.

Now take g ∈ π1(H). Then if i ∈ Ii1 , we have
(
(j, [g]), (j, [g])

)
∈ Ri(G2), j ∈ J2, and(

Φg̃(j, [g]),Φg̃(j, [g])
)

=
(
(j2(sj g̃−1), [g]θ−1[k2(sj g̃−1)]), (j2(sj g̃−1), [g]θ−1[k2(sj g̃−1)])

)
,

which is an edge in Ri(G2). On the other hand, if i ∈ J∗π1 , we have
(
(j, [g]), (j, [rig])

)
∈ Ri(G2),

for j ∈ J2, and(
Φg̃(j, [g]),Φg̃(j, [rig])

)
=
(
(j2(sj g̃−1), [g]θ−1[k2(sj g̃−1)]), (j2(sj g̃−1), [rig]θ−1[k2(sj g̃−1)])

)
,

which is an edge in Ri(G2).
If moreover π1(H) 6= G1, then for i ∈ J1 \ Jπ1 , we have

(
(j, s), (j, [g])

)
and

(
(j, [g]), (j, s)

)
in Ri(G2), j ∈ J2. As both are analogous, we only check the first:(

Φg̃(j, s),Φg̃(j, [g])
)

=
(
(j2(sj g̃−1), s), (j2(sj g̃−1), [g]θ−1[k2(sj g̃−1)])

)
∈ Ri(G2).

For i ∈ I2 then
(
(j, s), (j, s)

)
∈ Ri(G2), j ∈ J2, and(

Φg̃(j, s),Φg̃(j, s)
)

=
(
(j2(sj g̃−1), s), (j2(sj g̃−1), s)

)
∈ Ri(G2).

The result is thus proven.

Indeed, the construction from Definition 2.12 is an automorphism of the relational system
and defines a group homomorphism Φ as follows:

Proposition 2.14. The following hold:

(1) Given g̃ ∈ G2, Φg̃ ∈ AutIRel(G2).

(2) The following map is a group homomorphism:

Φ: G2 −→ AutIRel(G2)
g̃ 7−→ Φg̃.

Proof. We are going to prove that for g̃, h̃ ∈ G2, we have that Φg̃ ◦ Φh̃ = Φg̃h̃. Indeed

Φg̃
(
Φh̃(j, [g])

)
= Φg̃

(
j2(sj h̃−1), [g]θ−1[k2(sj h̃−1)]

)
=
(
j2(sj2(sj h̃−1)g̃

−1), [g]θ−1[k2(sj h̃−1)]θ−1[k2(sj2(sj h̃−1)g̃
−1)]

)
,

and,

Φg̃h̃(j, [g])
)

=
(
j2(sj(g̃h̃)−1), [g]θ−1[k2(sj(g̃h̃)−1)]

)
=
(
j2(sj h̃−1g̃−1), [g]θ−1[k2(sj h̃−1g̃−1)]

)
.
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By Lemma 2.4.(1), j2(sj2(sj h̃−1)g̃
−1) = j2(sj h̃−1g̃−1), and by Lemma 2.4.(2),

k2(sj h̃−1)k2(sj2(sj h̃−1)g̃
−1) = k2(sj h̃−1g̃−1).

As θ−1 is a group isomorphism, it follows that Φg̃
(
Φh̃(j, [g])

)
= Φg̃h̃(j, [g]) for (j, [g]) ∈ V j

2 .
Finally, if π1(H) 6= G1, for (j, s) ∈ V j

2 we have

Φg̃
(
Φh̃(j, s)

)
= Φg̃

(
j2(sj h̃−1), s

)
=
(
j2(sj2(sj h̃−1)g̃

−1), s
)

=
(
j2(sj h̃−1g̃−1), s

)
= Φg̃h̃(j, s),

as a consequence of Lemma 2.4.(1). Now, from Definition 2.12 it is clear that ΦeG2
is the

identity map of G2, and since Φg̃−1 ◦ Φg̃ = Φg̃−1g̃ = ΦeG2
, we obtain that Φg̃ and Φg̃−1 are

inverse maps. Then, by Lemma 2.13, Proposition 2.14.(1) is proved.
Now Proposition 2.14.(2) follows directly from the fact that Φ is then well-defined, and

that we have just proved that Φg̃ ◦ Φh̃ = Φg̃h̃ for g̃, h̃ ∈ G2.

We have all the ingredients to show that G2 ∼= AutIRel(G2).

Lemma 2.15. The morphism Φ : G2 → AutIRel(G2) from Proposition 2.14 is an isomor-
phism.

Proof. It is straightforward to show that Φ is a monomorphism since for any g̃ ∈ G2,
Φg̃(eG2) = g̃−1. To prove that it is an epimorphism, we need to show that every auto-
morphism of G2 is of the form Φg̃ for some g̃ ∈ G2.

Let ψ be an automorphism of G2. Then ψ must respect the edges Ri(G2), i ∈ I, which
in particular implies that ψ(G2) is contained in G2. Moreover, ψ|G2(G2) is an automorphism
of the full relational subsystem G2(G2) = Cay(G2, S) that must be induced by an element
g̃ ∈ G2. That is, the map ψ|G2(G2) is φg̃ introduced in Remark 1.10. We claim that ψ = Φg̃.

By construction, we have that ψ|G2(G2) = Φg̃|G2(G2) ∈ AutIRel(Cay(G2, S)). Now, the
only edge in Rθ(G2) starting at g ∈ G2 is

(
g, (j2(g), θ−1[k2(g)])

)
and, since ψ(g) = Φg̃(g), we

have that ψ
(
j2(g), θ−1[k2(g)]

)
= Φg̃

(
j2(g), θ−1[k2(g)]

)
. In particular for g = sj , j ∈ J2 we

get that ψ(j, [eG1 ]) = Φg̃(j, [eG1 ]) and therefore for j ∈ J2, (ψ−1 ◦ Φg̃)(j, [eG1 ]) = (j, [eG1 ]).
Using that composition must also preserve edges in Ri(G2), for all i ∈ I1, we obtain that
(ψ−1 ◦ Φg̃)(V j

2 ) ⊂ V j
2 , for all j ∈ J2. In fact, ψ−1 ◦ Φg̃ induces an automorphism of the

corresponding copy of Gι1 . Then, by Lemma 2.11, ψ−1 ◦ Φg̃ restricted to V j
2 must be the

identity, j ∈ J2, so we conclude that ψ = Φg̃.

2.1.3 Main theorem in Section 2.1

We now have the necessary ingredients to prove our main theorem in Section 2.1:

Theorem 2.16. Let G1 and G2 be arbitrary groups and H ≤ G1 ×G2. There exists a mor-
phism of binary relational systems over a certain set I, ϕ : G1 → G2, such that AutIRel(G1),
AutIRel(G2) and AutIRel(ϕ) are respectively isomorphic to G1, G2 and H.

Proof. Consider the morphism ϕ : G1 → G2 from Definition 2.10. As we have mentioned at the
beginning of Section 2.1.2, since G1 is a Cayley diagram for G1, we have that AutIRel(G1) ∼=
G1. Also, from Lemma 2.15, we have that AutIRel(G2) ∼= G2. It only remains to show that
AutIRel(ϕ) ∼= H.

First consider (φg̃1 ,Φg̃2) ∈ AutIRel(ϕ), where φg̃1 is the automorphism of G1 = Cay(G1, S)
from Remark 1.10, and Φg̃2 the automorphism of G2 constructed in Definition 2.12 for g̃2 ∈ G2.
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We are going to show that (g̃1, g̃2) ∈ H. Indeed, since (φg̃1 ,Φg̃2) ∈ AutIRel(ϕ), we have that
Φg̃2 ◦ ϕ = ϕ ◦ φg̃1 . Now, by construction

Φg̃2 ◦ ϕ(eG1) = Φg̃2(0, [eG1 ]) =
(
j2(g̃−1

2 ), θ−1[k2(g̃−1
2 )]

)
,

ϕ ◦ φg̃1(eG1) = ϕ(g̃−1
1 ) =

(
0, ϕ0(g̃−1

1 )
)
,

and therefore j2(g̃−1
2 ) = 0. So g̃−1

2 ∈ π2(H) and k2(g̃−1
2 ) = g̃−1

2 , which from the previous
equations, leads us to ϕ0(g̃−1

1 ) = θ−1[g̃−1
2 ]. This implies that g̃−1

1 ∈ π1(H) and moreover,
θ([g̃−1

1 ]) = [g̃−1
2 ]. Hence, by Lemma 2.1, we obtain that (g̃−1

1 , g̃−1
2 ) ∈ H, and therefore

(g̃1, g̃2) ∈ H.
Now we prove that for (g̃1, g̃2) ∈ H, the couple (φg̃1 ,Φg̃2) ∈ AutIRel(G1)×AutIRel(G2) is

indeed an element in AutIRel(ϕ). For that, we need to show that (ϕ ◦φg̃1)(g) = (Φg̃2 ◦ϕ)(g),
for every g ∈ G1. First observe that since (g̃1, g̃2) ∈ H, we have that (g̃−1

1 , g̃−1
2 ) ∈ H and

therefore θ−1[g̃−1
2 ] = [g̃−1

1 ]. Now, on the one hand,

ϕ ◦ φg̃1(g) = ϕ(gg̃−1
1 ) =

(
0, ϕ0(gg̃−1

1 )
)

=
{

(0, [gg̃−1
1 ]), if g ∈ π1(H),

(0, s), otherwise.

On the other hand, if g ∈ π1(H),

Φg̃2 ◦ ϕ(g) = Φg̃2(0, [g]) = (0, [g]θ−1[g̃−1
2 ]) = (0, [gg̃−1

1 ]),

and, if g 6∈ π1(H), then Φg̃2 ◦ ϕ(g) = Φg̃2(0, s) = (0, s). The result thus follows.

2.1.4 An illustrative example

Let us illustrate the constructions involved in the proof of Theorem 2.16 with the example
mentioned at the beginning of Section 2.1. Let G1 = Z8, G2 = Z4 and let H ≤ G1×G2 be the
subgroup generated by the element (2, 2) ∈ G1×G2, namely, H = {(0, 0), (2, 2), (4, 0), (6, 2)}.
We are now going to describe the isomorphism θ from Lemma 2.1.

First, π1(H) = 〈2〉 ≤ Z8, and ι−1
1 (H) = 〈4〉 ≤ Z8. The quotient π1(H)/ι−1

1 (H) is
isomorphic to Z2, containing the classes [0] = {0, 4} and [2] = {2, 6}. In a similar way,
π2(H) = 〈2〉 ≤ Z4, and ι−1

2 (H) is the trivial group, so the quotient π2(H)/ι−1
2 (H) ∼= π2(H)

contains the classes [0] = {0} and [2] = {2}. Hence, we have:

θ : π1(H)
ι−1
1 (H)

−→ π2(H)
ι−1
2 (H)

,

[0] = {0, 4} 7−→ [0] = {0},
[2] = {2, 6} 7−→ [2] = {2}.

We now describe the generating sets R and S for G1 and G2 respectively (see Definition 2.2):

(1) There are four right cosets of ι−1
1 (H) in G1. Let J1 = {0, 1, 2, 3} and denote rj = j ∈

G1, j ∈ J1. Then the set {rj | j ∈ J1} contains a representative of each right coset
of ι−1

1 (H) in G1. Moreover, if we denote Iι1 = {4} and r4 = 4 ∈ G1, {ri | i ∈ Iι1}
is a generating set for ι−1

1 (H). Taking I1 = Iι1 t J∗1 = {1, 2, 3, 4}, the set R = {ri |
i ∈ I1} = {1, 2, 3, 4} is our generating set for G1. We also need to consider the set
Jπ1 = {j ∈ J1 | rj ∈ π1(H)} = {0, 2} introduced in Remark 2.3.

(2) There are two right cosets of π2(H) in G2, so take J2 = {0, 1}. If we denote sj =
j ∈ G2, {sj | j ∈ J2} contains a representative of each of the two right cosets. Set
Iπ2 = {2} and s2 = 2 ∈ G2, so {si | i ∈ Iπ2} is a generating set for π2(H). Taking
I2 = Iπ2 t J∗2 = {1, 2}, the set S = {si | i ∈ I2} = {1, 2} is our generating set for G2.
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Let I = I1 t I2 t {θ}. We first build the auxiliary I-system Gι1 introduced in Definition
2.5. Since π1(H) 6= G1, the set of vertices is V (Gι1) = V1 t{s}, where V1 = π1(H)/ι−1

1 (H) =
{[0], [2]}, and the labelled edges are shown in Figure 2.1. Note that in the following diagrams,
a two-headed arrow means that there is an edge of the corresponding label in each direction.

[2]

[0]

s

Figure 2.1: Gι1

According to Definition 2.7, G1 = Cay(G1, R). Using the same colours as in Figure 2.1 to
represent labels, we get:

0 1

2

3

45

6

7

Figure 2.2: G1 = Cay(G1, R)

Finally, G2 has Cay(G2, S) as a full binary I-subsystem and two copies of Gι1 (as many as
elements in J2). Moreover, it has edges labelled by θ starting at each vertex in Cay(G2, S).
The binary relational system G2 is then as follows:

(0, [2])

(0, [0])

(0, s)

3

0 1

2 (1, [2])

(1, [0])

(1, s)

Figure 2.3: G2
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The morphism of binary I-systems ϕ : G1 → G2 is easily obtained from Definition 2.10.

2.2 Realisability of permutation representations in binary re-
lational systems

In [43], Frucht proved that every group is the automorphism group of a graph, but he also
proved that the problem of realising permutation groups in the context of graphs has a
negative answer. Namely, there are permutation groups G ↪→ Sym(V ) such that a graph G
with V (G) = V and AutGraphs(G) ∼= G does not exist, see [20, Section 4].

However, if we allow the set of vertices to be enlarged, the next result can be proven:

Theorem 2.17 ([19, Theorem 1.1]). Let ρ : G ↪→ Sym(V ) be a finite permutation group.
There is a graph G such that

(1) V ⊂ V (G) and V is invariant through the automorphisms of G;

(2) AutGraphs(G) ∼= G;

(3) the obvious restriction map G ∼= AutGraphs(G) −→ Sym(V ) is ρ.

Having in mind the generalisation of Theorem 2.17 to any permutation representation of
a group G on a set V , in this section we prove that for any permutation group (and, in fact,
for any permutation representation) there is a binary relational system verifying properties
akin to the ones listed above, see Theorem 2.26. Then, we will transfer the solution from
IRel to Graphs, providing a generalisation of Theorem 2.17 in Section 2.3.3, see Theorem
2.41.

Throughout this section, we consider ρ : G → Sym(V ) a permutation representation of
an arbitrary group G on a set V and S = {sj | j ∈ J} a generating set for G. Let us begin
by introducing the binary I-system G that allows us to generalise Theorem 2.17.

Definition 2.18. Take I = JtV and define a binary I-system G with vertex set V (G) = GtV
and edges:

• for each j ∈ J and for g ∈ G, (g, sjg) ∈ Rj(G).

• for each v ∈ V and for g ∈ G,
(
g, ρ(g−1)(v)

)
∈ Rv(G).

Remark 2.19. Notice that the full binary I-subsystem of G with vertex set G is precisely
Cay(G,S), see Definition 1.9. We denote such subsystem by G(G). Also, notice that the full
binary I-subsystem of G with vertex set V has no edges.

We now proceed to prove that AutIRel(G) ∼= G. In order to do so, we show that any
element g̃ ∈ G induces an automorphism Φg̃ on G. We begin by constructing Φg̃.

Definition 2.20. Given g̃ ∈ G, we define Φg̃ : V (G) = GtV → V (G) as follows. First, given
that Cay(G,S) is a full relational subsystem of G (see Remark 2.19), we define Φg̃|G as φg̃
the automorphism induced by right multiplication by g̃−1 introduced in Remark 1.10. Thus
for g ∈ G,

Φg̃(g) = gg̃−1.

On the other hand, for v ∈ V , we define

Φg̃(v) = ρ(g̃)(v).

The previous self-map of V (G) is then a morphism of binary relational systems:
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Lemma 2.21. For any g ∈ G, Φg̃ ∈ HomIRel(G,G).

Proof. We need to prove that Φg̃ respects relations Ri(G), i ∈ I = J t V . First, for j ∈ J ,
(g, sjg) ∈ Rj(G). And

(
Φg̃(g),Φg̃(sjg)

)
= (gg̃−1, sjgg̃

−1) ∈ Rj(G). On the other hand, for
v ∈ V ,

(
g, ρ(g−1)(v)

)
∈ Rv(G). And since ρ is a group homomorphism,(

Φg̃(g),Φg̃(ρ(g−1)(v))
)

=
(
gg̃−1, ρ(g̃)(ρ(g−1)(v))

)
=
(
gg̃−1, ρ(gg̃−1)−1(v)

)
∈ Rv(G).

Thus Φg̃ is indeed a morphism of binary relational systems.

We can now prove that the construction from Definition 2.20 is an automorphism of the
relational system G and defines a group homomorphism Φ as follows:

Proposition 2.22. The following hold:

(1) Given g̃ ∈ G, Φg̃ ∈ AutIRel(G).

(2) The following map is a group homomorphism:

Φ: G −→ AutIRel(G)
g̃ 7−→ Φg̃.

Proof. Let us begin by proving that for g̃, h̃ ∈ G, Φg̃ ◦ Φh̃ = Φg̃h̃. Indeed, if g ∈ G,(
Φg̃ ◦ Φh̃

)
(g) = Φg̃

(
Φh̃(g)

)
= Φg̃(gh̃−1) = gh̃−1g̃−1 = g(g̃h̃)−1 = Φg̃h̃(g).

And on the other hand, if v ∈ V and since ρ is a group homomorphism,(
Φg̃ ◦ Φh̃

)
(v) = Φg̃

(
Φh̃(v)

)
= Φg̃

(
ρ(h̃)(v)

)
= ρ(g̃)

(
ρ(h̃)(v)

)
= ρ(g̃h̃)(v) = Φg̃h̃(v).

Then Φg̃ is bijective, as Φg̃ ◦ Φg̃−1 = ΦeG is clearly the identity, thus Proposition 2.22.(1)
follows. And, since Φ is well-defined and we have proven that g̃, h̃ ∈ G, Φg̃ ◦ Φh̃ = Φg̃h̃, Φ is
a group homomorphism, proving Proposition 2.22.(2).

To show that AutIRel(G) ∼= G, it remains to prove that Φ is bijective:

Lemma 2.23. The morphism Φ: G→ AutIRel(G) from Proposition 2.22 is an isomorphism.

Proof. It is straightforward to show that Φ is a monomorphism since for any g̃ ∈ G, Φg̃(eG) =
g̃−1. To prove that it is an epimorphism, we need to show that every automorphism of G is
of the form Φg̃ for some g̃ ∈ G.

Take ψ ∈ AutIRel(G). Notice that the only vertices of G that are starting vertices of
edges labelled v for some v ∈ V are those in G. Thus, ψ must be invariant on G, so it
must induce an automorphism on the full binary I-subsystem with vertex set G, that is,
ψ|G ∈ AutIRel

(
G(G)

)
. But recall from Remark 2.19 that G(G) ∼= Cay(G,S). Consequently,

by Remark 1.10, there must exist g̃ ∈ G such that ψ|G = φg̃. We shall prove that, in fact,
ψ = Φg̃.

We already know that ψ|G = Φg̃|G. It remains to prove the equality for vertices in V .
Thus take v ∈ V . We know that

(
eG, ρ(eG)(v)

)
= (eG, v) ∈ Rv(G). Then,

(
ψ(eG), ψ(v)

)
=(

φg̃(eG), ψ(v)
)

=
(
g̃−1, ψ(v)

)
∈ Rv(G). But the only edge in Rv(G) starting at g̃−1 is(

g̃−1, ρ(g̃)(v)
)
. Thus ψ(v) = ρ(g̃)(v) = Φg̃(v), for all v ∈ V . Then ψ = Φṽ.

As a consequence of Proposition 2.22 and Lemma 2.23 we immediately obtain the follow-
ing:
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Corollary 2.24. AutIRel(G) ∼= G, and every ψ ∈ AutIRel(G) is invariant on V ⊂ V (G).

We finally need to consider what happens with the restriction of AutIRel(G) to V .

Lemma 2.25. The restriction map G ∼= AutIRel(G) → Sym(V ) is ρ. Moreover, there
is a faithful action ρ̄ : G ∼= AutIRel(G) → Sym

(
V (G) \ V

)
such that the restriction map

G ∼= AutIRel(G)→ Sym
(
V (G)

)
is ρ⊕ ρ̄.

Proof. Let g̃ ∈ G. Then g̃ is represented in AutIRel(G) by Φg̃, see Proposition 2.22. We
first need to consider Φg̃|V . For each v ∈ V , by definition, Φg̃(v) = ρ(g̃)(v). Consequently,
Φg̃|V = ρ(g̃), for all g̃ ∈ G. Thus the restriction map G ∼= AutIRel(G)→ Sym(V ) is ρ.

On the other hand, consider Φg̃|V (G)\V . Since V (G) \ V = G, we have eG ∈ V (G) \ V .
Moreover, Φg̃(eG) = g̃−1, for all g̃ ∈ G. Consequently, the action ρ̄ : G → Sym

(
V (G) \ V

)
taking g̃ ∈ G to Φg̃|V (G)\V is faithful. Moreover, the restriction map G ∼= AutIRel(G) →
Sym(V ) is ρ⊕ ρ̄, as claimed.

Finally, summing up Corollary 2.24 and Lemma 2.25, we deduce our main result for this
section:

Theorem 2.26. Let G be a group, V be a set and take ρ : G → Sym(V ) a permutation
representation of G on V . There is a binary relational system G over a set I such that

(1) V ⊂ V (G) and each ψ ∈ AutIRel(G) is invariant on V ;

(2) AutIRel(G) ∼= G;

(3) the restriction G ∼= AutIRel(G)→ Sym(V ) is precisely ρ;

(4) there is a faithful action ρ̄ : G ∼= AutIRel(G)→ Sym
(
V (G)\V

)
such that the restriction

map G ∼= AutIRel(G)→ Sym
(
V (G)

)
is ρ⊕ ρ̄.

2.3 Arrow replacement: from binary relational systems to
simple graphs

In this section, we use classical ideas of Frucht [43] and de Groot [32] to transfer the solutions
to Problem 1 and Problem 2 from binary relational I-systems to simple graphs.

The idea is to perform a replacement operation [49, Section 4.4] which roughly speaking,
consists on assigning an asymmetric graph to each label of the binary I-system in such
a way that these asymmetric graphs are pairwise non-isomorphic. Then, every labelled
edge is substituted by its corresponding asymmetric graph, thus obtaining simple undirected
graphs. If the vertex degrees in the asymmetric graphs are chosen carefully, we can ensure
that automorphisms of the resulting graph map each asymmetric graph to a copy of itself,
thus the asymmetric graphs play the role of the labelled directed edges.

We want to use this sort of techniques to transfer Theorem 2.16 and Theorem 2.26 from
IRel to Graphs. With that objective in mind, in Section 2.3.1 we give a general arrow
replacement result, Theorem 2.33, that allows us to transfer many constructions from IRel
to Graphs. In particular, in Section 2.3.2 we answer positively Problem 1 in Graphs, by
transferring Theorem 2.16 into Theorem 2.37. And similarly, in Section 2.3.3, we transfer
Theorem 2.26 into Theorem 2.41, obtaining thus a generalisation of Theorem 2.17.
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2.3.1 A general arrow replacement result

Recall the definition of degrees of vertices in a graph and in a binary relational system,
Definition 1.8. The purpose of this section is to prove an arrow replacement result that is
powerful enough to allow us to transfer the solutions to Problems 1 and 2 from IRel to
Graphs.

Thus, assume that G′1 and G′2 are two binary I-systems and that ϕ′ ∈ HomIRel(G′1,G′2).
We want to build two graphs G1 and G2 such that AutGraphs(Gk) ∼= AutIRel(G′k), k = 1, 2,
and a morphism between them ϕ ∈ HomGraphs(G1,G2) such that AutGraphs(ϕ) ∼= AutIRel(ϕ′).
Not only that, but we also want that V (G′k) ⊂ V (Gk), in such a way that automorphisms of
Gk are automorphisms of G′k when restricted to V (G′k). Furthermore, this restriction should
be enough to completely determine the considered automorphism.
Remark 2.27. Throughout this section, we assume that every vertex in both G′1 and G′2 has
degree greater than three. This can be done with all generality, for otherwise we can add
additional labels to I and connect every vertex in G′1 and G′2 with each other in both directions
by edges of the new labels. This increases the degree of every vertex by twice the number
of added labels, and it does not modify neither the automorphisms of G′1 and G′2 nor the
morphisms between them.

Let us begin by building the graphs G1 and G2 from the binary relational I-systems G′1
and G′2.

Definition 2.28. Let G′1 and G′2 be two binary I-systems for which there is a cardinal α
such that deg(v) ≤ α, for every v ∈ V (G′1)∪V (G′2). For every i ∈ I, let Ri be an asymmetric
simple graph such that, aside for a vertex of degree one, every vertex has degree greater than
α; and such that Ri 6∼= Rj if i 6= j. Such graphs exist as a consequence of Proposition 1.15.
Finally, for k ∈ {1, 2}, i ∈ I and (v, w) ∈ Ri(G′k), consider R

(v,w)
i a graph isomorphic to Ri,

and denote its vertex of degree one by p(v,w)
i . We define Gk a simple graph with vertices and

edges:

V (Gk) = V (G′k) t
(
ti∈I

(
t(v,w)∈Ri(G′k) (V (R(v,w)

i ) t {r(v,w)
i })

))
,

E(Gk) = ti∈I
(
t(v,w)∈Ri(G′k)

(
E(R(v,w)

i ) t {(v, r(v,w)
i ), (r(v,w)

i , p
(v,w)
i ), (p(v,w)

i , w)}
))
.

Notice that V (G′k) ⊂ V (Gk), for k ∈ {1, 2}. We begin by proving that V (G′k) is invariant
through the automorphisms of Gk. Not only that, but we also prove that the restriction of
the automorphisms of Gk to V (G′k) yields an automorphism of G′k.

Lemma 2.29. Fix k ∈ {1, 2}. For any ψ ∈ AutGraphs(Gk), ψ|V (G′
k

) ∈ AutIRel(G′k).

Proof. Let us first prove that V (G′k) is invariant through the automorphisms of Gk. We do
so by computing the degrees of the vertices in V (Gk). Notice that the degree of v ∈ V (G′k) ⊂
V (Gk) is the same in both G′k and Gk. Indeed, for each (v, w) ∈ Ri(G′k), there is an edge
(v, r(v,w)

i ) ∈ E(Gk), and for each (w, v) ∈ Ri(G′k), there is another edge (p(w,v)
i , v) ∈ E(Gk).

Given that these are the only edges in Gk incident to v, our claim holds. The vertices r(v,w)
i

and p(v,w)
i have degree two and three respectively, while the remaining vertices in each of the

R
(v,w)
i , (v, w) ∈ Ri(G′2), have the same degree as in Ri, thus greater than α. Consequently,

the set V (G′k) must remain invariant through the automorphisms of Gk.
Now take ψ ∈ AutGraphs(Gk) and let us check that ψ′ = ψ|V (G′

k
) ∈ AutIRel(G′k). Since

automorphisms of graphs respect the degrees of vertices, previous considerations on vertex
degrees imply that ψ restricts to a bijective map ψ|V (G′

k
) : V (G′k)→ V (G′k). Now, for (v, w) ∈

Ri(G′k), we have that (v, r(v,w)
i ) ∈ E(Gk), thus

(
ψ(v), ψ(r(v,w)

i )
)
∈ E(Gk). Given that ψ
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respects the degree of vertices, ψ(r(v,w)
i ) = r

(ψ(v),u)
j , for some vertex u ∈ V (G′k) and j ∈ I.

For the same reason, ψ restricts to an isomorphism R
(v,w)
i → R

(ψ(v),w)
j . But this implies that

i = j, so u = ψ(w) and
(
ψ(v), ψ(w)

)
∈ Ri(G′k). Therefore, ψ|V (G′

k
) ∈ AutIRel(G′k).

We now prove that, in fact, the restriction map induces an isomorphism between the
automorphism groups of Gk and G′k.

Lemma 2.30. Fix k ∈ {1, 2}. The restriction map Ψk : AutGraphs(Gk)
∼=−→ AutIRel(G′k)

taking ψ ∈ AutGraphs(Gk) to Ψk(ψ) = ψ|V (G′
k

) is a group isomorphism.

Proof. First, Ψk is clearly a group homomorphism, since the composition of the restriction
maps is the restriction of their composition. Let us prove that Ψk is bijective by constructing
its inverse map Φk : AutIRel(G′k)→ AutGraphs(Gk).

Take ψ′ ∈ AutIRel(G′k). We can naturally define a map Φk(ψ′) = ψ : V (Gk) → V (Gk)
as follows. A vertex v ∈ V (G′k) is taken to ψ(v) = ψ′(v) and, for (v, w) ∈ Ri(Gk), i ∈ I,
define ψ(r(v,w)

i ) = r
(ψ′(v),ψ′(w))
i . Finally, define ψ|

R
(v,w)
i

: R(v,w)
i → R

(ψ′(v),ψ′(w))
i as the identity

map between the two copies of Ri. Then it is clear that ψ ∈ AutGraphs(Gk). Moreover,
ψ′ = ψ|V (G′j), exhibiting that Φk is inverse to Ψk. Thus Ψk is a group isomorphism.

We now move on to building ϕ ∈ HomGraphs(G1,G2) from ϕ′ ∈ HomIRel(G′1,G′2). The
construction is quite natural and follows the same ideas we used in the proof of Lemma 2.30
to build an automorphism of Gk from an automorphism of G′k, k = 1, 2.

Definition 2.31. Let ϕ′ ∈ HomIRel(G′1,G′2), where G′1 and G′2 are two binary I-systems for
which there is a cardinal α such that deg(v) ≤ α, for every v ∈ V (G′1)∪V (G′2). Let G1 and G2
be the graphs introduced in Definition 2.28. We define a map ϕ : V (G1)→ V (G2) as follows.
For v ∈ V (G′1), define ϕ(v) = ϕ′(v) ∈ V (G′2) ⊂ V (G2); and for i ∈ I and (v, w) ∈ Ri(G′1),
define ϕ(r(v,w)

i ) = r
(ϕ′(v),ϕ′(w))
i and define ϕ|

R
(v,w)
i

: R(v,w)
i → R

(ϕ′(v),ϕ′(w))
i as the identity map

between the two copies of Ri.

As we defined it, it is clear that ϕ ∈ HomGraphs(G1,G2) and that ϕ|V (G′1) = ϕ′. It only
remains to prove the following:

Lemma 2.32. If ϕ′ ∈ HomIRel(G′1,G′2) and ϕ ∈ HomGraphs(G1,G2) are as introduced in
Definition 2.31, then AutIRel(ϕ′) ∼= AutGraphs(ϕ).

Proof. Recall from Lemma 2.30 the isomorphisms Ψk : AutGraphs(Gk)→ AutIRel(G′k) induced
by the restriction maps, k = 1, 2. We shall prove that (φ1, φ2) ∈ AutGraphs(ϕ) if and only if(
Ψ1(φ1),Ψ2(φ2)

)
∈ AutIRel(ϕ′).

Take (φ1, φ2) ∈ AutGraphs(ϕ). Then, ϕ ◦ φ1 = φ2 ◦ ϕ. But notice that since ϕ|V (G′1) = ϕ′

and given that Ψ1(φ1) = φ1|V (G′1), ϕ ◦ φ1|V (G′1) = ϕ′ ◦Ψ1(φ1). For similar reasons, we deduce
that φ2 ◦ ϕ|V (G′1) = Ψ2(φ2) ◦ ϕ′. Therefore ϕ′ ◦Ψ1(φ1) = Ψ2(φ2) ◦ ϕ′, so

(
Ψ1(φ1),Ψ2(φ2)

)
∈

AutIRel(ϕ′).
Reciprocally, take (φ′1, φ′2) ∈ AutIRel(ϕ′), so ϕ′ ◦ φ′1 = φ′2 ◦ ϕ′. Consider φk = Ψ−1

k (φ′k),
so that φ′k = Ψk(φk) = φk|V (G′

k
), k = 1, 2. As above, we have that ϕ ◦ φ1|V (G′1) = ϕ′ ◦ φ′1

and that φ2 ◦ ϕ|V (G′1) = φ′2 ◦ ϕ′, which by hypothesis are equal. Thus, for v ∈ V (G′1),
(ϕ ◦ φ1)(v) = (φ2 ◦ϕ)(v). We need to prove that this also holds for the remaining vertices of
G1.

Take r(v,w)
i ∈ V (G1), for i ∈ I and for (v, w) ∈ Ri(G′1). On the one hand,

(ϕ ◦ φ1)(r(v,w)
i ) = ϕ

(
r

(φ′1(v),φ′1(w))
i

)
= r

((ϕ′◦φ′1)(v),(ϕ′◦φ′1)(w))
i .
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On the other hand,

(φ2 ◦ ϕ)(r(v,w)
i ) = φ2

(
r

(ϕ′(v),ϕ′(w))
i

)
= r

((φ′2◦ϕ′)(v),(φ′2◦ϕ′)(w))
i .

Then, since ϕ′ ◦ φ′1 = φ′2 ◦ ϕ′, we deduce that (ϕ ◦ φ1)(r(v,w)
i ) = (φ2 ◦ ϕ)(r(v,w)

i ).
Only the vertices in the graphs R(v,w)

i remain. But notice that for ψ ∈ {φ1, φ2, ϕ}, ψ|R(v,w)
i

is the identity map ψ|
R

(v,w)
i

: R(v,w)
i → R

(ψ′(v),ψ′(w))
i , where ψ′ is the restriction of ψ to V (G′1),

for ψ ∈ {φ1, ϕ}, or to V (G′2), for ψ = φ2. By using that ϕ′ ◦ φ′1 = φ′2 ◦ ϕ′ we deduce that
φ2 ◦ ϕ and ϕ ◦ φ1 are equal for all vertices in R(v,w)

i .
Summing up, φ2 ◦ ϕ = ϕ ◦ φ1 thus (φ1, φ2) ∈ AutGraphs(ϕ). We have thus proven that

AutGraphs(ϕ) ∼= AutIRel(ϕ′).

Finally, by combining Lemma 2.29, Lemma 2.30 and Lemma 2.32, we deduce our main
theorem for this section.

Theorem 2.33. Let G′1 and G′2 be binary relational systems over a set I such that there is
a cardinal α for which deg(v) ≤ α, for every v ∈ V (G′1) ∪ V (G′2). Let ϕ′ ∈ HomIRel(G′1,G′2).
There are graphs G1,G2 and a morphism of graphs ϕ : G1 → G2 such that:

(1) there is a subset V (G′k) ⊂ V (Gk) invariant through the automorphisms of Gk, k = 1, 2;

(2) if ψ ∈ AutGraphs(Gk), the restriction ψ′ = ψ|V (G′
k

) is in AutIRel(G′k), for k = 1, 2;

(3) the restriction map Ψk : AutGraphs(Gk)
∼=−→ AutIRel(G′k) taking ψ ∈ AutGraphs(Gk) to

Ψk(ψ) = ψ|V (G′
k

) is a group isomorphism, for k = 1, 2;

(4) ϕ|V (G′1) = ϕ′ : V (G′1)→ V (G′2) and AutIRel(ϕ′) ∼= AutGraphs(ϕ).

Note that the asymmetric graphs Ri constructed in Theorem 1.16 are infinite, as men-
tioned in Remark 1.17. Since we use them to build G1 and G2 in Definition 2.28, these graphs
will also be infinite, even if G′1 and G′2 are finite. However, as we will see, we can only transfer
the solutions to the realisability problems from graphs to topological spaces if the graphs in-
volved in the solutions are finite. Thus, we are interested in a result similar to Theorem 2.33
building finite graphs from finite binary relational systems. We do so by a proof analogous
to that of Theorem 2.33, but using the finite asymmetric graphs from Proposition 1.13, thus
obtaining the following result:

Corollary 2.34. Let G′1, G′2 be two finite binary I-systems. Let ϕ′ : G′1 → G′2 be a morphism
of binary I-systems. There are finite graphs G1,G2 and a morphism of graphs ϕ : G1 → G2
such that:

(1) there is a subset V (G′k) ⊂ V (Gk) invariant through the automorphisms of Gk, k = 1, 2;

(2) if ψ ∈ AutGraphs(Gk), the restriction ψ′ = ψ|V (G′
k

) is in AutIRel(G′k), for k = 1, 2;

(3) the restriction map Ψk : AutGraphs(Gk)
∼=−→ AutIRel(G′k) taking ψ ∈ AutGraphs(Gk) to

Ψk(ψ) = ψ|V (G′
k

) is a group isomorphism, for k = 1, 2;

(4) ϕ|V (G′1) = ϕ′ : V (G′1)→ V (G′2), and AutIRel(ϕ′) ∼= AutGraphs(ϕ).

Proof. First, recall that by Remark 2.27 we can assume that vertices in G′1 and G′2 have
degree greater than three. By Proposition 1.13, for any positive integer n there exist n
finite asymmetric graphs that can be used in an arrow replacement operation. Moreover, the
highest of the degrees of their vertices is three. Since the degrees of the vertices in both G′1
and G′2 is at least four, this result follows from a proof analogous to that of Theorem 2.33.
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Remark 2.35. If the binary relational systems G′1 and G′2 involved in Theorem 2.33 do not
have isolated vertices, the simple graphs G1 and G2 introduced in Definition 2.28 do not have
isolated vertices either. This is clear from their construction and from the fact that the
asymmetric graphs from Proposition 1.15 do not have isolated vertices.

For similar reasons, if the binary I-systems G′1 and G′2 from Corollary 2.34 are connected
(respectively if they do not have isolated vertices), the obtained graphs G1 and G2 are also
connected (respectively they do not have isolated vertices).

2.3.2 Realisability in the arrow category of simple graphs

In this section we make use of Theorem 2.33 to transfer the solution to the realisability
problem from the arrow category of IRel, Theorem 2.16, to the arrow category of simple
graphs, thus proving Theorem 2.37. We also show that if the starting groups are finite, the
graphs can also be chosen so that they are finite, Corollary 2.38.

Since Theorem 2.33 requires for the degrees of the vertices in the graphs involved to
be bounded, our first step should be to compute the degrees of the vertices in the binary
relational systems G1 and G2 that we built in Section 2.1.

Lemma 2.36. Let G1 and G2 be the binary I-systems from Definition 2.7. Then:

(1) Vertices in G1 have degree 2|I1|;

(2) Vertices in G2 have the following degree:

(a) for g2 ∈ G2, deg(g2) = 2|I2|+ 1;
(b) for (j, [g1]) ∈ V j

2 , g1 ∈ π1(H), deg
(
(j, [g1])

)
= 2|I1|+ |ι−1

2 (H)|;

(c) if a vertex (j, s) ∈ V j
2 exists, then deg(j, s) = deg(s) ≥ 2|I1|, where s ∈ V (Gι1).

Proof. As G1 = Cay(G1, R), Lemma 2.36.(1) is straightforward from Remark 1.12. To prove
Lemma 2.36.(2)(a) recall that G2(G2) is a full binary relational subsystem of G2 isomorphic
to Cay(G2, S) (see Remark 2.8) and that there exists a unique edge in Rθ(G2) starting at g2.
Therefore deg+(g2) = |I2|+ 1, deg−(g2) = |I2| and deg(g2) = 2|I2|+ 1.

To prove Lemma 2.36.(2)(b), let (j, [g1]) ∈ V j
2 , for some g1 ∈ π1(H). Recall that the full

binary relational subsystem of G2 with vertices V j
2 and edges with labels in I1 is isomorphic

to Gι1 . If G1 = π1(H), Gι1 is isomorphic to Cay
(
V1, {[ri] | i ∈ Iι1 t J∗π1}

)
. Hence, as in

this case Jπ1 = J1, there are |Iι1 t J∗π1 | = |I1| edges with labels in I1 both starting and
arriving at (j, [g1]). If G1 6= π1(H), we also have to consider the edges

(
(j, [g1]), (j, s)

)
and(

(j, s), (j, [g1])
)
for every label in J1\Jπ1 . Thus, there are a total of |Iι1tJ∗π1 |+|J1\Jπ1 | = |I1|

edges with labels in I1 both arriving and ending at (j, [g1]). Since no other edges start at
(j, [g1]), we obtain that deg+ ((j, [g1])

)
= |I1|. To compute the indegree of (j, [g1]) we still

have to check how many edges labelled θ arrive at (j, [g1]). Recall that edges in Rθ(G2) are
of the form

(
g, (j2(g), θ−1[k2(g)])

)
, g ∈ G2. Notice that the uniqueness of the decomposition

g2 = sj2(g2)k2(g2) (see Remark 2.3), implies that any pair (j, g), j ∈ J2, g ∈ π2(H), appears
exactly once as

(
j2(g2), k2(g2)

)
for some g2 ∈ G2. Then, there are as many such edges arriving

at (j, [g1]) as elements g2 ∈ π2(H) verifying that θ−1[g2] = [g1]. Equivalently, there are as
many edges labelled θ arriving at (j, [g1]) as elements in the class of θ([g1]), hence there
are |ι−1

2 (H)| such edges. Therefore, deg−
(
(j, [g1])

)
= |I1| + |ι−1

2 (H)| and deg
(
(j, [g1])

)
=

2|I1|+ |ι−1
2 (H)|, proving Lemma 2.36.(2)(b).

Finally, the degrees of vertices (j, s) ∈ V j
2 are not entirely determined. However, these

vertices only take part in Ri(G2), i ∈ I1, and as we mentioned above, for every j ∈ J2,
the binary relational subsystem with vertices V j

2 and edges with labels in I1, is isomorphic
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to Gi1 . Hence deg(j, s) = deg(s), for s ∈ V (Gi1) and, as (s, s) ∈ Ri(Gi1) for every i ∈ I1,
deg(s) ≥ 2|I1| and Lemma 2.36.(2)(c) follows.

We can now give a positive answer to the realisability problem in the arrow category of
simple graphs as mentioned at the beginning of this section.

Theorem 2.37. Let G1, G2 and H be groups such that H ≤ G1 × G2. Then, there exist
graphs G1 and G2 and a morphism of graphs ϕ : G1 → G2 such that AutGraphs(G1) ∼= G1,
AutGraphs(G2) ∼= G2 and AutGraphs(ϕ) ∼= H.

Proof. By Theorem 2.16, there are two binary I-systems G′1 and G′2, introduced in Definition
2.7, and a morphism ϕ′ : G′1 → G′2, introduced in Definition 2.10, such that AutIRel(G′1) ∼= G1,
AutIRel(G′2) ∼= G2 and AutIRel(ϕ′) ∼= H. Let α = max{2|I1|, 2|I2| + |i−1

2 (H)|, deg(s)},
s ∈ V (Gi1). Then every vertex in both G′1 and G′2 has degree at most α, as a consequence
of Lemma 2.36. Consequently, Theorem 2.33 applies, and there are simple graphs G1 and
G2 and a morphism of graphs between them ϕ : G1 → G2 verifying Theorem 2.33.(1)–(4). In
particular, by Theorem 2.33.(3), AutGraphs(Gk) ∼= AutIRel(G′k) ∼= Gk, for k = 1, 2, and by
Theorem 2.33.(4), AutGraphs(ϕ) ∼= AutIRel(ϕ′) ∼= H. The result follows.

As mentioned, we will only be able to transfer solutions to realisability problems from
IRel to HoTop if the graphs involved in the solutions are finite. However, the graphs arising
from Theorem 2.33 are never finite, so the graphs obtained in Theorem 2.37 cannot be finite
either. Nonetheless, we know from Theorem 1.14 that all finite groups can be realised as the
automorphism group of a finite graph. Using this fact, the next result follows from Corollary
2.34 by a proof analogous to that of Theorem 2.37:

Corollary 2.38. Let G1 and G2 be finite groups and H ≤ G1 ×G2. There exist G1 and G2
finite objects in Graphs and ϕ : G1 → G2 an object in Arr(Graphs) such that AutGraphs(G1) ∼=
G1, AutGraphs(G2) ∼= G2 and AutGraphs(ϕ) ∼= H.

Remark 2.39. As a consequence of Remark 2.35, the graphs in both Theorem 2.37 and
Corollary 2.38 do not have isolated vertices.

2.3.3 Realisability of permutation groups in the category of simple graphs

The objective of this section is analogous to that of Section 2.3.2, although in this case we
want to transfer the solution to Problem 2 from binary relational systems, Theorem 2.26, to
simple graphs, Theorem 2.41.

Again, Theorem 2.33 provides us with the machinery necessary to accomplish the objec-
tive of this section. Thus we need to check that the binary relational system G introduced
in Definition 2.18 verifies the requirements for the theorem, that is, we need to compute the
degrees of its vertices.

Lemma 2.40. Let G be the binary I-system introduced in Definition 2.18.

(1) Vertices in G have degree 2|S|+ |V |.

(2) Vertices in V have degree |G|.

Proof. We begin by proving Lemma 2.40.(1). Fix g ∈ G. First, recall from Remark 2.19
that the full binary subsystem of G with vertex set G is G(G) = Cay(G,S). Thus g is the
starting (respectively ending) vertex of exactly |S| edges with labels in S. Furthermore, for
each v ∈ V there is precisely one edge labelled v starting at g, and no more edges start or
end in vertices in G. Therefore, deg(g) = 2|S|+ |V |.
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Now take v ∈ V . Then, for each g ∈ G, ρ(g−1) ∈ Sym(V ). This implies that each vertex
v ∈ V is connected with g by exactly one edge. As this holds for every g ∈ G, and since there
are no other edges starting or ending at v ∈ V , deg(v) = |G|, for all v ∈ V . Thus Lemma
2.40.(2) follows.

We can finally build a simple graph fulfilling the conditions introduced at the beginning
of this section.

Theorem 2.41. Let G be a group, V be a set and ρ : G → Sym(V ) be a permutation
representation of G on V . There is a graph G such that

(1) V ⊂ V (G) and each ψ ∈ AutGraphs(G) is invariant on V ;

(2) AutGraphs(G) ∼= G;

(3) the restriction G ∼= AutGraphs(G)→ Sym(V ) is precisely ρ;

(4) there is a faithful action ρ̄ : G ∼= AutGraphs(G)→ Sym
(
V (G)\V

)
such that the restric-

tion map G ∼= AutGraphs(G)→ Sym
(
V (G)

)
is ρ⊕ ρ̄.

Proof. Let G′ be the binary I-system introduced in Definition 2.18. As a consequence of
Theorem 2.26, G′ verifies properties analogous to Theorem 2.41.(1)–(4) in the category IRel.
By Lemma 2.40, the degrees of vertices in G′ are bounded. Then, Theorem 2.33 applies, and
we can obtain a graph G verifying Theorem 2.33.(1)–(3). Let us prove that it verifies the
required conditions.

First, by Theorem 2.33.(1), V (G′) ⊂ V (G). In particular, we have V ⊂ V (G′) ⊂ V (G).
Then, by Theorem 2.33.(2), if ψ ∈ AutGraphs(G), then ψ|V (G′) ∈ AutIRel(G′), thus ψ is
invariant on V ⊂ V (G′) by Theorem 2.26.(1). Then Theorem 2.41.(1) holds.

Moving on, by Theorem 2.33.(3), the restriction map AutGraphs(G) → AutIRel(G′) tak-
ing ψ ∈ AutGraphs(G) to ψ|V (G′) ∈ AutIRel(G′) is an isomorphism. Thus AutGraphs(G) ∼=
AutIRel(G′), which by Theorem 2.26.(2) is isomorphic to G. Consequently, Theorem 2.41.(2)
holds.

We can now consider the identification G ∼= AutGraphs(G) ∼= AutIRel(G′). Notice that by
Theorem 2.33.(3), the isomorphism AutGraphs(G) ∼= AutIRel(G′) is just the restriction map.
Then, since V ⊂ V (G′), the restriction map G ∼= AutGraphs(G) → Sym(V ) is equivalent to
the restriction map G ∼= AutIRel(G′) → Sym(V ), which by Theorem 2.26.(3) is precisely ρ.
We obtain Theorem 2.41.(3).

Finally, by a similar argument, the restriction map G ∼= AutGraphs(G)→ Sym
(
V (G′)\V

)
is equivalent to the restriction map G ∼= AutIRel(G′)→ Sym

(
V (G′) \ V

)
, which by Theorem

2.26.(4) is injective. Since V (G′)\V ⊂ V (G)\V , the restriction map ρ̄ : G ∼= AutGraphs(G)→
Sym

(
V (G)\V

)
must also be injective, or equivalently, ρ̄ is a faithful action of G on V (G)\V .

And clearly, the restriction map G ∼= AutGraphs(G)→ Sym
(
V (G)

)
is ρ⊕ ρ̄, proving Theorem

2.41.(4).

As with the previous section, we are also interested in obtaining finite graphs in certain
situations. Clearly, the binary I-system G introduced in Definition 2.18 is finite if G and V
are both finite. The next result follows from Corollary 2.34 by a proof analogous to that of
Theorem 2.41.

Corollary 2.42. Let G be a finite group, V be a finite set and ρ : G→ Sym(V ) be a permu-
tation representation of G on V . There is a finite graph G such that

(1) V ⊂ V (G) and each ψ ∈ AutGraphs(G) is invariant on V ;

(2) AutGraphs(G) ∼= G;
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(3) the restriction G ∼= AutGraphs(G)→ Sym(V ) is precisely ρ;

(4) there is a faithful action ρ̄ : G ∼= AutGraphs(G)→ Sym
(
V (G)\V

)
such that the restric-

tion map G ∼= AutGraphs(G)→ Sym
(
V (G)

)
is ρ⊕ ρ̄.

Remark 2.43. As a consequence of Remark 2.35, the graphs in both Theorem 2.41 and
Corollary 2.42 do not have isolated vertices.



CHAPTER 3

Realisability problems in coalgebras

Although coalgebras associated to combinatorial objects have been introduced and studied
in the past, group realisability problems were not considered in this framework. Thus, our
aim here is to provide the first results in the subject. To do so, we define a faithful functor
C : Digraphs → Coalgk, Definition 3.4, and use it to prove that every group shows up
naturally as a subgroup of the automorphism group of a coalgebra, Corollary 3.11. Moreover,
every permutation group arises as the image of the automorphism group of a coalgebra on
the permutations of a subset of its group-like elements, Theorem 3.13.

Indeed, the functor C mentioned above is introduced and studied in Section 3.1. We show
that if G is a digraph, G

(
C(G)

)
= V (G). In fact, any morphism σ ∈ HomDigraphs(G1,G2)

induces a morphism C(σ) ∈ HomCoalgk

(
C(G1), C(G2)

)
such that σ = C(σ)|G(C(G1)), see

Lemma 3.3. Moreover, automorphisms of C(G) yield automorphisms of G when restricted
to the set of grouplike elements, Theorem 3.9. This is the key argument to show that the
automorphism group of C(G) has AutDigraphs(G) as a split quotient, see Corollary 3.10.
Then, as a consequence of Theorem 1.16, every group G arises as a split quotient of the
automorphism group of a faithful G-coalgebra C, Corollary 3.11. In fact, G arises as the
image of the restriction of AutCoalgk(C) to its set of grouplike elements, G(C).

Then, in Section 3.2 we use these coalgebras to study the generalised realisability problems
in this context. Namely, in Theorem 3.12 we show that Problem 1 admits a partial positive
solution in Coalgk that follows the same spirit as Corollary 3.11. Then, in Theorem 3.13 we
show that permutation representations are realisable as the restriction of the automorphism
group of a coalgebra to a certain invariant subset of its set of grouplike elements, providing
a partial positive answer to Problem 2.

Finally, in Section 3.3 we gather the results above to study the isomorphism problem for
groups through the existence of faithful actions on coalgebras. We prove two results. The
first one, Theorem 3.16, shows that the isomorphism type of groups within a large family is
determined by the existence of faithful group actions on the group-like elements of coalgebras.
We later consider a smaller family of groups to be able to prove Theorem 3.18, a result that
does not focus on the restriction of the actions to grouplike elements.

3.1 A faithful functor from digraphs to coalgebras
Let k be any field. In this section we build a faithful functor C : Digraphs → Coalgk such
that for any digraph G, G

(
C(G)

)
= V (G), and in such a way that the automorphisms of C(G)
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induce, when restricted to its set of grouplike elements, an automorphism of G. We do so
in Theorem 3.9, the main result in this section. This result allows us to obtain conclusions
regarding the classical group realisability problem in the context of coalgebras, see Corollary
3.11.

Let G =
(
V (G), E(G)

)
be a digraph. Recall the path coalgebra of G, kG, was introduced

in Definition 1.34. The coalgebra C(G) is just the first stage of the coradical filtration of kG,
that is, C(G) is generated by the paths of length 0 (vertices) and 1 (edges). More precisely:

Definition 3.1. Let k be a field and G be a digraph. We define a coalgebra C(G) = (C,∆, ε)
where C = k{v | v ∈ V (G)} ⊕ k{e | e ∈ E(G)} and where

• for each v ∈ V (G), ∆(v) = v ⊗ v and ε(v) = 1;

• for each e = (v, w) ∈ E(G), ∆(e) = v ⊗ e+ e⊗ w and ε(e) = 0.

Remark 3.2. Since C(G) is just the first stage of the coradical filtration of kG, the grouplike
elements of C(G) are precisely those of kG, that is, the vertices of the graph. Namely,
G
(
C(G)

)
= V (G).

We can now easily see that every morphism of digraphs induces a coalgebra morphism
between the respective coalgebras associated to the digraphs.

Lemma 3.3. Let G1 and G2 be two digraphs. Every σ ∈ HomDigraphs(G1,G2) induces a
morphism of coalgebras C(σ) : C(G1)→ C(G2).

Proof. Let σ ∈ HomDigraphs(G1,G2). Define C(σ) : C(G1)→ C(G2) as follows.

C(σ)(v) = σ(v), for v ∈ V (G1),
C(σ)

(
(v, w)

)
=
(
σ(v), σ(w)

)
, for (v, w) ∈ E(G1).

Then simple computations show that C(σ) is a coalgebra morphism.

Clearly, when looking at the restriction of C(σ) to the set of grouplike elements of C(G1),
we obtain a map C(σ)|V (G1) : V (G1) → V (G2) which happens to be precisely σ. In particu-
lar, different morphisms of digraphs induce different morphisms of coalgebra between their
images. Not only that, but the association made in Lemma 3.3 is clearly functorial, allowing
us to define the following functor:

Definition 3.4. Let k be a field. We define a faithful functor C : Digraphs → Coalgk as
follows. To a digraph G we associate C(G) the digraph introduced in Definition 3.1, and to
a morphism σ ∈ HomDigraphs(G1,G2) we associate the coalgebra morphism C(σ) : C(G1) →
C(G2) introduced in Lemma 3.3.

We now move on to the computation of the automorphism group of C(G), for G a digraph.
In order to do so, we first introduce a family of linear self-maps of C(G), Definition 3.5, and
show that they are in fact automorphisms of C(G), Lemmas 3.6 and 3.7. Then, we show
that no other automorphism of C(G) exist, Lemma 3.8. By abuse of notation, given σ ∈
AutDigraphs(G), we write σ also to denote the self-map of E(G) that takes e = (v, w) ∈ E(G)
to
(
σ(v), σ(w)

)
∈ E(G), thus σ(e) =

(
σ(v), σ(w)

)
.

Definition 3.5. Let G be a digraph, k be a field and consider C(G) the coalgebra introduced
in Definition 3.1. Given σ ∈ AutDigraphs(G) and two maps λ : E(G)→ k and µ : E(G)→ k×,
we introduce a linear map fσλ,µ : C(G)→ C(G) defined as follows:{

fσλ,µ(v) = σ(v), for all v ∈ V (G),
fσλ,µ(e) = λ(e)

(
σ(w)− σ(v)

)
+ µ(e)σ(e), for all e = (v, w) ∈ E(G).
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We begin by proving that the linear maps introduced in Definition 3.5 are morphisms of
coalgebras.

Lemma 3.6. Let G be a digraph, k be a field and consider C(G) the coalgebra introduced
in Definition 3.1. The linear self-maps fσλ,µ : C(G) → C(G) introduced in Definition 3.5 are
morphisms of coalgebras.

Proof. We need to check that ε ◦ fσλ,µ = ε and that ∆ ◦ fσλ,µ = (fσλ,µ ⊗ fσλ,µ) ◦∆. We do the
computations on the generators of C(G) associated to vertices and edges of G separately.

Let v ∈ V (G). Regarding the counit, on the one hand we have that ε(v) = 1, and on the
other hand,

(ε ◦ fσλ,µ)(v) = ε
(
σ(v)

)
= 1.

Thus they are equal. Similarly, regarding the comultiplication, on the one hand

(∆ ◦ fσλ,µ)(v) = ∆
(
σ(v)

)
= σ(v)⊗ σ(v),

and on the other hand,(
(fσλ,µ ⊗ fσλ,µ) ◦∆

)
(v) = (fσλ,µ ⊗ fσλ,µ)(v ⊗ v) = fσλ,µ(v)⊗ fσλ,µ(v) = σ(v)⊗ σ(v).

Again they are equal.
Now let us take e = (v, w) ∈ E(G). First, regarding the counit, we know that ε(e) = 0,

and on the other hand,

(ε ◦ fσλ,µ)(e) = ε
(
λ(e)(σ(w)− σ(v)) + µ(e)σ(e)

)
= λ(e)

(
ε(σ(w))− ε(σ(v))

)
+ µ(e)ε

(
σ(e)

)
= 0.

Finally, regarding the comultiplication, on the one hand,

(∆ ◦ fσλ,µ)(e) = ∆
(
λ(e)(σ(w)− σ(v)) + µ(e)σ(e)

)
= λ(e)

(
∆(σ(w))−∆(σ(v))

)
+ µ(e)∆

(
σ(e)

)
= λ(e)

(
σ(w)⊗ σ(w)− σ(v)⊗ σ(v)

)
+ µ(e)

(
σ(v)⊗ σ(e) + σ(e)⊗ σ(w)

)
,

and on the other hand,

(fσλ,µ⊗fσλ,µ)
(
∆(e)

)
= (fσλ,µ ⊗ fσλ,µ)(v ⊗ e+ e⊗ w) = fσλ,µ(v)⊗ fσλ,µ(e) + fσλ,µ(e)⊗ fσλ,µ(w)

= σ(v)⊗
[
λ(e)

(
σ(w)− σ(v)

)
+ µ(e)

(
σ(e)

)]
+
[
λ(e)

(
σ(w)− σ(v)

)
+ µ(e)

(
σ(e)

)]
⊗ σ(w)

= λ(e)
(
σ(w)⊗ σ(w)− σ(v)⊗ σ(v)

)
+ µ(e)

(
σ(v)⊗ σ(e) + σ(e)⊗ σ(w)

)
.

Consequently, fσλ,µ is a morphism of coalgebras.

We now prove that the maps introduced in Definition 3.5 are, in fact, automorphisms of
coalgebras.

Lemma 3.7. Let G be a digraph, k be a field and consider C(G) the coalgebra introduced in
Definition 3.1. Then fσλ,µ ∈ AutCoalgk

(
C(G)

)
.

Proof. We proved in Lemma 3.6 that maps fσλ,µ are morphisms of coalgebras. It remains to
prove that they are automorphisms. We do so by proving that fσ−1

−λ
µ
σ−1, 1

µ
σ−1 is inverse to fσλ,µ.

We first consider the composition fσ−1

−λ
µ
σ−1, 1

µ
σ−1 ◦ fσλ,µ. For v ∈ V (G),

(fσ−1

−λ
µ
σ−1, 1

µ
σ−1 ◦ fσλ,µ)(v) = (fσ−1

−λ
µ
, 1
µ

)
(
σ(v)

)
= σ−1(σ(v)

)
= v.
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And, for e = (v, w) ∈ E(G),

(fσ−1

−λ
µ
σ−1, 1

µ
σ−1 ◦ fσλ,µ)(e) = (fσ−1

−λ
µ
, 1
µ

)
(
λ(e)(σ(w)− σ(v)) + µ(e)σ(e)

)
= λ(e)

(
fσ
−1

−λ
µ
σ−1, 1

µ
σ−1(σ(w))− fσ−1

−λ
µ
σ−1, 1

µ
σ−1(σ(v))

)
+ µ(e)fσ−1

−λ
µ
σ−1, 1

µ
σ−1σ(e)

= λ(e)(w − v) + µ(e)
(
−λ(e)
µ(e)(w − v) + 1

µ(e)(e)
)

= e.

We also have to consider the composition fσλ,µ ◦ fσ
−1

−λ
µ
σ−1, 1

µ
σ−1 . However, notice that fσλ,µ

is recovered from fσ
−1

−λ
µ
σ−1, 1

µ
σ−1 by performing on the indexes the same operations that we

perform to fσλ,µ to obtain fσ
−1

−λ
µ
σ−1, 1

µ
σ−1 . Consequently, the proof above already shows that

fσλ,µ ◦ fσ
−1

−λ
µ
σ−1, 1

µ
σ−1 is the identity map. Then, fσλ,µ ∈ AutCoalgk

(
C(G)

)
.

We now prove that every coalgebra automorphism of C(G) is of this form.

Lemma 3.8. Let G be a digraph, k be a field and let C(G) be the coalgebra from Definition 3.1.
If f ∈ AutCoalgk

(
C(G)

)
, there exist σ ∈ AutDigraphs(G), λ : E(G) → k and µ : E(G) → k×

such that f is the coalgebra automorphism fσλ,µ introduced in Definition 3.5.

Proof. Let f ∈ AutCoalgk

(
C(G)

)
be a coalgebra automorphism. First notice that any auto-

morphism of coalgebras must permute grouplike elements. By Remark 3.2, G
(
C(G)

)
= V (G),

thus there is a bijective map σ : V (G)→ V (G) such that f(v) = σ(v), for all v ∈ V (G).
Now take e ∈ E(G). Then there are, for every x ∈ V (G) ∪ E(G), elements γ(e, x) ∈ k

such that
f(e) =

∑
x∈V (G)∪E(G)

γ(e, x)x. (3.1)

In order for f to be a coalgebra morphism, it needs to verify that ε ◦ f = ε and that
(f⊗f)◦∆ = ∆◦f . We first consider the equality involving the counit. Recall from Definition
3.1 that ε(e) = 0, for e ∈ E(G). Thus,

0 = ε
(
f(e)

)
= ε

 ∑
x∈V (G)∪E(G)

γ(e, x)x

 =
∑

x∈V (G)∪E(G)
γ(e, x)ε(x) =

∑
v∈V (G)

γ(e, v). (3.2)

Now consider the equality regarding the comultiplication. Take e = (v, w) ∈ E(G). Then,
on the one hand,

(∆ ◦ f)(e) = ∆

 ∑
y∈V (G)∪E(G)

γ(e, y)y

 =
∑

y∈V (G)∪E(G)
γ(e, y)∆(y)

=
∑

u∈V (G)
γ(e, u)u⊗ u+

∑
h=(r,s)∈E(G)

γ(e, h)[r ⊗ h+ h⊗ s].
(3.3)

On the other hand,(
(f ⊗ f) ◦∆

)
(e) = (f ⊗ f)(v ⊗ e+ e⊗ w) = f(v)⊗ f(e) + f(e)⊗ f(w)

= σ(v)⊗

 ∑
y∈V (G)∪E(G)

γ(e, y)y

+

 ∑
z∈V (G)∪E(G)

γ(e, z)z

⊗ σ(w).
(3.4)

Equations (3.3) and (3.4) must be equal. First, notice that σ(v)⊗ σ(v) and σ(w)⊗ σ(w) are
the only summands of the form u⊗u with u ∈ V (G) that may arise in Equation (3.4). Thus,
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γ(e, u) = 0 if u 6= σ(v), σ(w). Regarding the coefficients γ
(
e, σ(v)

)
and γ

(
e, σ(w)

)
, notice

that in Equation (3.4) we have the summand[
γ
(
e, σ(v)

)
+ γ

(
e, σ(w)

)]
σ(v)⊗ σ(w),

whereas σ(v) ⊗ σ(w) does not appear in Equation (3.3). Thus, γ
(
e, σ(v)

)
= −γ

(
e, σ(w)

)
.

Moreover, and since no further restrictions exist regarding these coefficients, γ
(
e, σ(w)

)
∈ k.

Finally, regarding the summands r⊗(r, s)+(r, s)⊗s arising in Equation (3.3), the only pos-
sible non-trivial such summand in Equation (3.4) is σ(v)⊗

(
σ(v), σ(w)

)
+
(
σ(v), σ(w)

)
⊗σ(w).

Moreover, the corresponding coefficient γ
(
e, (σ(v), σ(w))

)
must be non-trivial, since other-

wise f would not be injective. We deduce that
(
σ(v), σ(w)

)
∈ E(G), and as a consequence, σ

is in fact a morphism of graphs. An analogous reasoning for f−1 ∈ AutCoalgk

(
C(G)

)
lets us

deduce that σ−1 is a morphism of graphs as well, so in fact σ ∈ AutDigraphs(G). Regarding
the coefficient, no further restrictions exist, so γ

(
e, (σ(v), σ(w))

)
∈ k×.

We have thus obtained that there is a graph automorphism σ ∈ AutDigraphs(G) such that{
f(v) = σ(v), for all v ∈ V (G),
f(e) = γ

(
e, σ(w)

)(
σ(w)− σ(v)

)
+ γ

(
e, σ(e)

)
σ(e), for all e = (v, w) ∈ E(G),

where γ
(
e, σ(w)

)
∈ k and γ

(
e, σ(e)

)
∈ k×. Consequently, if for every e = (v, w) ∈ E(G) we

define λ(e) = γ
(
e, σ(w)

)
and µ(e) = γ

(
e, σ(e)

)
, we obtain that f = fσλ,µ as introduced in

Lemma 3.7. The result follows.

Now that we have computed the automorphism group of the coalgebras C(G) introduced
in Definition 3.1, we can prove the main result in this section.

Theorem 3.9. Let k be a field and G be a digraph. There is a k-coalgebra C(G) such that
G
(
C(G)

)
= V (G) and the restriction map AutCoalgk

(
C(G)

)
→ Sym

(
G(C(G))

)
= Sym

(
V (G)

)
induces a split short exact sequence of groups

1 −→
∏

e∈E(G)

(
k o k×

)
−→ AutCoalgk

(
C(G)

)
−→ AutDigraphs(G) −→ 1.

Proof. Let C(G) be the coalgebra introduced in Definition 3.1. We shall prove that this is
the desired coalgebra. As an immediate consequence of Lemma 3.7 and Lemma 3.8,

AutCoalgk

(
C(G)

)
= {fσλ,µ | σ ∈ AutDigraphs(G), λ : E(G)→ k, µ : E(G)→ k×}.

In particular, the map AutCoalgk

(
C(G)

)
→ Sym

(
G(C(G))

)
= Sym

(
V (G)

)
takes the automor-

phism fσλ,µ ∈ AutCoalgk

(
C(G)

)
to σ ∈ Sym

(
V (G)

)
. Indeed, for all v ∈ V (G), fσλ,µ(v) = σ(v).

Therefore, the image of the map AutCoalgk

(
C(G)

)
→ Sym

(
V (G)

)
is AutDigraphs(G), whereas

the kernel is
K = {f idG

λ,µ | λ : E(G)→ k, µ : E(G)→ k×}.

Let us define fλ,µ = f
idG
λ,µ . We now proceed to prove that K ∼=

∏
e∈E(G) (k o k×).

First, let us see how the group operation works in K. Take fλ,µ, fλ′,µ′ ∈ K. Then, for
v ∈ V (G),

(fλ′,µ′ ◦ fλ,µ)(v) = fλ′,µ′(v) = v,

and for e = (v, w) ∈ E(G),

(fλ′,µ′ ◦ fλ,µ)(e) = fλ′,µ′
(
λ(e)(w − v) + µ(e)e

)
= λ(e)(w − v) + µ(e)

(
λ′(e)(w − v) + µ′(e)e

)
=
(
λ(e) + µ(e)λ′(e)

)
(w − v) + µ(e)µ′(e)e.
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Consequently, fλ′,µ′ ◦ fλ,µ = fλ+µλ′,µµ′ . Thus, the group operation of K acts independently
on each of the elements of E(G). This implies that K can be decomposed as a direct product
of groups over E(G). Let us focus on one of the factors, thus pick an edge e ∈ E(G) and take

Ke =
{
fλ,µ

∣∣∣∣∣ λ : E(G)→ k with λ(e′) = 0 for all e′ 6= e,
µ : E(G)→ k× with µ(e′) = 1 for e′ 6= e

}
.

Let us prove that Ke is a semidirect product of the form k o k×.
First, let us denote the maps taking every e ∈ E(G) to 0k and 1k by 0: E(G) → k and

1: E(G)→ k× respectively. Now consider the subsets of Ke given by He = {fλ,µ ∈ Ke | λ =
0} and Ne = {fλ,µ ∈ Ke | µ = 1}. Then, for f0,µ, f0,µ′ ∈ He, f0,µ′ ◦ f0,µ = f0,µµ′ , so He is a
subgroup of K isomorphic to k×. Similarly, for fλ,1, fλ′,1 ∈ Ne, fλ′,1 ◦ fλ,1 = fλ+λ′,1, thus Ne

is a subgroup of K isomorphic to k. Let us now check that Ne E Ke and that Ke
∼= NeoHe.

Consider the map

ge : Ke −→ He

fλ,µ 7−→ f0,µ.

Then simple computations show that ge is a group homomorphism. Moreover, it is clear that
Ne = ker ge, which exhibits that Ne E Ke and that Ke

∼= Ne oHe. We deduce that

K =
∏

e∈E(G)
Ke =

∏
e∈E(G)

(Ne oHe) ∼=
∏

e∈E(G)
(k o k×).

To finish, let us see that the sequence is split. Consider the map AutDigraphs(G) →
AutCoalgk

(
C(G)

)
taking σ ∈ AutDigraphs(G) to fσ0,1. Then, for σ, τ ∈ AutDigraphs(G), a simple

computation shows that f τ0,1 ◦ fσ0,1 = f τ◦σ0,1 , thus it is a group homomorphism. Moreover, it
is clearly a section of the restriction map AutCoalgk

(
C(G)

)
→ AutDigraphs(G). The result

follows.

Since we know that the short exact sequence in Theorem 3.9 is split, the next result
follows:

Corollary 3.10. Let k be a field and let G be a digraph. If C(G) is the coalgebra introduced
in Definition 3.1, then

AutCoalgk

(
C(G)

) ∼=
 ∏
e∈E(G)

(
k o k×

)oAutDigraphs(G).

In particular, since by Theorem 1.16 every group G arises as the automorphism group of a
graph (which can be regarded as a symmetric digraph), we immediately obtain the following:

Corollary 3.11. Let k be a field and let G be a group. There is a k-coalgebra C such that
AutCoalgk(C) ∼= KoG, where K is a direct product of semidirect products of the form kok×.
Furthermore, G is the image of the restriction of the automorphisms of C to Sym

(
G(C)

)
.

Namely, we have proven that every group G arises as the permutation group induced by
the restriction of the automorphism group of a coalgebra C to its set of grouplike elements
G(C). Furthermore, G is a subgroup of AutCoalgk(C), so C is a faithful G-coalgebra. This is
as close as we get to a solution to the group realisability problem in the category of coalgebras
in this thesis and, in fact, the remaining results regarding the realisability problems in the
category of coalgebras will follow the same spirit.
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3.2 Generalised realisability problems in coalgebras
In this section, we apply the results proved earlier in this chapter to obtain conclusions
regarding the two generalised realisability problems. Let us begin with Problem 1. Using
Theorem 3.9 we can prove a result on the realisability problem in the arrow category of
coalgebras that follows the spirit of Corollary 3.11.

Theorem 3.12. Let G1 and G2 be groups and take H ≤ G1 × G2. Let k be a field. There
exist two k-coalgebras C1 and C2, and a morphism ϕ ∈ HomCoalgk(C1, C2) such that

(1) AutCoalgk(Ck) ∼= Kk o Gk, where Gk is the image of the restriction AutCoalgk(Ck) →
Sym

(
G(Ci)

)
and Kk is a direct product of factors of the form k o k×, k = 1, 2;

(2) AutCoalgk(ϕ) ∼= K oH, where H is the image of the restriction map AutCoalgk(ϕ) →
Sym

(
G(C1)

)
× Sym

(
G(C2)

)
and K ≤ K1 ×K2.

Proof. As a consequence of Theorem 2.37, there are graphs G1 and G2, and a morphism of
graphs ψ : G1 → G2 such that AutGraphs(Gk) ∼= Gk, k = 1, 2, and AutGraphs(ψ) ∼= H. Take
Ck = C(Gk), k = 1, 2, and ϕ = C(ψ). We now prove that these are the desired coalgebras
and morphism.

By Corollary 3.11, there are groups K1 and K2 isomorphic to a direct product of semidi-
rect products of the form k o k× such that AutCoalgk(Ck) ∼= Kk o Gk, k = 1, 2. Moreover,
Gk is the image of the restriction map AutCoalgk(Ck) → Sym

(
G(Ck)

)
, for k = 1, 2, proving

Theorem 3.12.(1).
To prove Theorem 3.12.(2), let us compute AutCoalgk(ϕ). Recall from Lemma 3.7 and

Lemma 3.8 that the automorphisms of Ck are the maps fσkλk,µk introduced in Definition 3.5,
where σk ∈ AutGraphs(Gk), λk : E(Gk) → k and µk : E(Gk) → k×, k = 1, 2. Let us then take
(fσ1
λ1,µ1

, fσ2
λ2,µ2

) ∈ AutCoalgk(C1)×AutCoalgk(C2) and check when (fσ1
λ1,µ1

, fσ2
λ2,µ2

) ∈ AutCoalgk(ϕ),
that is, when ϕ ◦ fσ1

λ1,µ1
= fσ2

λ2,µ2
◦ ϕ.

First take v ∈ V (G1). On the one hand, (ϕ ◦ fσ1
λ1,µ1

)(v) = ϕ
(
σ1(v)

)
. On the other

hand, (fσ2
λ2,µ2

◦ ϕ)(v) = fσ2
λ2,µ2

(
ϕ(v)

)
= σ2

(
ϕ(v)

)
. Thus, we need that ϕ ◦ σ1 = σ2 ◦ ϕ

for all v ∈ V (G1), that is, we need that (σ1, σ2) ∈ AutGraphs(ψ) ∼= H. Consequently, we
can consider the restriction of the automorphisms of ϕ to Sym

(
G(C1)

)
× Sym

(
G(C2)

)
and

obtain a map AutCoalgk(ϕ) → AutGraphs(ψ) ∼= H. Furthermore, this map is surjective, since
for (σ1, σ2) ∈ AutGraphs(ψ), it is immediate that (fσ1

0,1, f
σ2
0,1) ∈ AutCoalgk(ϕ) and that its

restriction to the sets of grouplike elements is (σ1, σ2). It remains to prove that the kernel of
the restriction map K is a subgroup of K1 ×K2.

Let us now consider the images of the edges, thus take e = (v, w) ∈ E(G1). On the one
hand,

(ϕ ◦ fσ1
λ1,µ1

)(e) = ϕ
(
λ1(e)(σ1(w)− σ1(v)) + µ1(e)σ1(e)

)
= λ1(e)

(
(ϕ ◦ σ1)(w)− (ϕ ◦ σ1)(v)

)
+ µ1(e)(ϕ ◦ σ1)(e).

On the other hand,

(fσ2
λ2,µ2

◦ ϕ)(e) = fσ2
λ2,µ2

(
ϕ(e)

)
= λ2

(
ϕ(e)

)(
(σ2 ◦ ϕ)(w)− (σ2 ◦ ϕ)(v)

)
+ µ2

(
ϕ(e)

)
(σ2 ◦ ϕ)(e).

These two expressions should be equal, and since ϕ ◦σ1 = σ2 ◦ϕ, we deduce that λ2
(
ϕ(e)

)
=

λ1(e) and that µ2
(
ϕ(e)

)
= µ1(e), for every e ∈ E(G1). Nonetheless, no further restrictions

exist on the automorphisms. In particular, we can compute the kernel of the restriction map
and obtain that

K =
{(
f

idG1
λ1,µ1

, f
idG2
λ2,µ2

)
∈ K1 ×K2

∣∣∣∣∣ λ2
(
ϕ(e)

)
= λ1(e),

µ2
(
ϕ(e)

)
= µ1(e), for all e ∈ E(G1)

}
≤ K1 ×K2.
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Then, since the exact sequence induced by the restriction map is split by a proof analogous
to that of Theorem 3.9, AutCoalgk(ϕ) ∼= K oH. Thus Theorem 3.12.(2) follows.

We now consider the realisability of permutation representations, Problem 2, on the
category of coalgebras. As a consequence of Theorem 3.9, if G is any digraph, the permutation
group induced by the restriction of the automorphisms of C(G) to its set of grouplike elements
is AutDigraphs(G). We now transfer Theorem 2.41 to coalgebras.

Theorem 3.13. Let G be a group, k be a field and ρ : G → Sym(V ) be a permutation
representation of G on a set V . There exists a G-coalgebra C such that:

(1) G acts faithfully on C, that is, there is a group monomorphism G ↪→ AutCoalgk(C);

(2) the image of the restriction map AutCoalgk(C)→ Sym
(
G(C)

)
is G;

(3) there is a subset V ⊂ G(C) that is invariant through the AutCoalgk(C)-action on C and
such that ρ is the composition of the inclusion G ↪→ AutCoalgk(C) with the restriction
map AutCoalgk(C)→ Sym(V );

(4) there is a faithful action ρ̄ : G → Sym
(
G(C) \ V

)
such that the composition of the

inclusion G ↪→ AutCoalgk(C) with the restriction AutCoalgk(C)→ Sym
(
G(C)

)
is ρ⊕ ρ̄.

Proof. By Theorem 2.41, there is a simple graph G such that V ⊂ V (G), AutGraphs(G) ∼= G,
the restriction G ∼= AutGraphs(G) → Sym(V ) is ρ and there is a faithful action ρ̄ : G ∼=
AutGraphs(G) → Sym

(
V (G) \ V

)
such that the restriction map AutGraphs(G) → Sym(V ) is

ρ⊕ ρ̄. Since any simple graph can be regarded as a digraph where every edge is bidirected,
we can consider C = C(G) the coalgebra introduced in Definition 3.1. Then, G(C) = V (G).
Let us prove that this is the desired coalgebra.

Recall from Lemma 3.7 and Lemma 3.8 that the automorphisms of C are the maps fσλ,µ
introduced in Definition 3.5, with σ ∈ AutGraphs(G), λ : E(G) → k and µ : E(G) → k×.
Then since G ∼= AutGraphs(G), G acts on C by taking an element σ ∈ AutGraphs(G) to
fσ0,1 ∈ AutCoalgk(C), thus C is a G-coalgebra.

On the other hand, for v ∈ V (G) = G(C), fσλ,µ(v) = σ(v). Namely, the composition
of the inclusion G ∼= AutGraphs(G) ↪→ AutCoalgk(C) with the restriction AutCoalgk(C) →
Sym

(
G(C)

)
= Sym

(
V (G)

)
is precisely the action of G on G by automorphisms. The result

then follows immediately from Theorem 2.41.

3.3 The isomorphism problem for groups through coalgebra
representations

In the last section of this chapter, we review how we can use the results from Section 3.1 to
distinguish isomorphism classes of groups through their faithful representations on coalgebras
and their restrictions to grouplike elements. All the groups we consider are in the class of
co-Hopfian groups, which we introduce now.

Definition 3.14. A group G is said to be co-Hopfian if it does not contain proper subgroups
isomorphic to itself. Equivalently, every monomorphism G ↪→ G must be an automorphism.

Clearly, every finite group is co-Hopfian. Several important families of groups are also
co-Hopfian, as shown by the following examples.

Example 3.15. The following groups are co-Hopfian.
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• Artinian groups. Recall that a group G is Artinian if it satisfies the minimal condition,
meaning that any strictly descending chain of subgroups of G, G1 > G2 > G3 > · · · >
Gk > Gk+1 > · · · , is finite. The fact that G is co-Hopfian follows immediately from the
minimal condition.

• Any subgroup of finite index of Out(Fn) the group of outer automorphisms of the free
group on n words, for n ≥ 4, [35].

• The braid group on n strands Bn modulo its centre, for n ≥ 4, [14, Main Theorem 3].

• Tarski groups. An infinite group G is a Tarski group for the prime q if all of its proper
subgroups are finite and of order q. These groups exist for large enough primes, [66, 67],
and are clearly co-Hopfian.

• The special linear group SL(n,Z), for n ≥ 3, as can be deduced from [74, Theorem 6].

• Fundamental groups of closed surfaces of genus at least two, [33, p. 58].

• Mapping class groups of compact, connected orientable surfaces of positive genus that
are not a torus with at most two holes, [53, Theorem 1].

This exhibits that we are indeed working with a large class of groups. We can now prove
our first result regarding the isomorphism problem for groups in this context.

Theorem 3.16. Let k be a field and G and H be two co-Hopfian groups. The following
statements are equivalent:

(1) G and H are isomorphic.

(2) For any k-coalgebra C, there is an action of G on C that restricts to a faithful action
on G(C) if and only if there is an action of H on C that restricts to a faithful action
on G(C).

Proof. One implication is obvious. Let us prove the remaining one. Suppose then that G
and H are two groups verifying Theorem 3.16.(2). Let us prove that G ∼= H.

Let G and H be graphs such that AutGraphs(G) ∼= G and AutGraphs(H) ∼= H, which
exist as a consequence of Theorem 1.16. Consider the coalgebras C(G) and C(H) introduced
in Definition 3.1. As a consequence of Theorem 3.9, G acts faithfully on C(G), and the
image of the composition of the inclusion map G → AutCoalgk

(
C(G)

)
with the restriction

AutCoalgk

(
C(G)

)
→ Sym

(
G(C(G))

)
is G. Therefore, there is an action of G on C(G) that

restricts to a faithful action on G
(
C(G)

)
. By Theorem 3.16.(2), this implies that there

is an action of H on C(G) that induces a faithful action on G
(
C(G)

)
, so we deduce that

H ≤ AutGraphs(G) ∼= G. Similarly, if there is an action of G on C(H) inducing a faithful
action on G

(
C(H)

)
, then G ≤ AutGraphs(H) ∼= H. Thus G ≤ H ≤ G and, since G is

co-Hopfian, G ∼= H.

We now consider the entire action on the coalgebra instead of focusing on its restriction to
grouplike elements. To ensure that groups are still distinguished, and since AutCoalgk

(
C(G)

)
has subgroups of the form k o k×, we have to further restrict the class of groups we are
working with. With such objective in mind, we introduce the following class of groups:

Definition 3.17. Let k be a finite field of order pn, p prime. A group G is in the class Gp,n

if it verifies the following properties:

(1) G is co-Hopfian;
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(2) G does not have finite non-trivial normal subgroups whose exponent divides pn(pn−1).

Notice that although this class is quite restrictive, it still contains many interesting groups.
For example, G2,1 still contains all 2-reduced groups, that is, all groups with no normal 2-
subgroups. We can now prove our last result for this chapter.

Theorem 3.18. Let k be a finite field of order pn, p prime. Let G and H be groups in Gp,n.
The following are equivalent:

(1) G and H are isomorphic.

(2) For every k-coalgebra C, G acts faithfully on C if and only if H acts faithfully on C.

Proof. One implication is obvious. Let us prove the remaining one. Thus let G and H be
two groups in Gp,n verifying Theorem 3.18.(2) and let us prove that G ∼= H.

Again, let G and H be graphs such that AutGraphs(G) ∼= G and AutGraphs(H) ∼= H, which
exist by Theorem 1.16, and consider C(G) and C(H) the respective coalgebras from Definition
3.1. ThenG ∼= AutGraphs(G) acts faithfully on C(G) as an immediate consequence of Corollary
3.10. By the same result, if H acts faithfully on C(G), there is a group monomorphism

H ↪→ AutCoalgk

(
C(G)

) ∼=
 ∏
e∈E(G)

(k o k×)

oG.
Thus H is isomorphic to a subgroup of AutCoalgk

(
C(G)

)
, which we also denote by H. We

shall see that H ∩
(∏

e∈E(G)(k o k×)
)

= {1}.
First notice that

∏
e∈E(G)(k o k×) is normal in AutCoalgk

(
C(G)

)
, thus H ∩

(∏
e∈E(G)(k o

k×)
)
is normal in H. On the other hand, k o k× is a group of order pn(pn − 1), thus the

exponent of
∏
e∈E(G)(kok×) divides pn(pn−1). Therefore H∩

(∏
e∈E(G)(kok×)

)
is a normal

subgroup of H whose exponent divides pn(pn−1). Hence, since H is in Gp,n, the intersection
must be the trivial group. Consequently, the image of H falls in G, so H ≤ G.

By a similar argument, we deduce that if G acts faithfully on C(H), then G ≤ H. We
then have G ≤ H ≤ G and, since G is co-Hopfian, G ∼= H.



CHAPTER 4

Realisability problems in CDGAs and spaces

In [27], Costoya-Viruel gave the first general solution to the classical group realisability
problem in HoTop, also known as Kahn’s realisability problem, by proving that every finite
group G is the group of self-homotopy equivalences of a rational space X, that is, G ∼=
E(X). Their idea is to first go through an intermediate category, Graphs, where as we have
explained in Section 1.2, the classical group realisability problem admits a positive answer,
i.e., G ∼= AutGraphs(G), for a finite graph G, [43]. Then, by using the computational power
of Rational Homotopy Theory, they construct minimal Sullivan algebras MG encoding the
combinatorial data of G, in such a way that E(MG) ∼= AutGraphs(G).

Their construction was based on a homotopically rigid Sullivan algebra, that is, a Sullivan
algebra whose only self-homotopy equivalence is the class of the identity map. Therefore, the
rational space of whom this homotopically rigid algebra is a model inherits the same property,
and it is then a homotopically rigid space. Homotopically rigid spaces where supposed to
be quite rare, and Kahn expected that they could play a role in some way of decomposing a
space. Thus, obtaining examples of homotopically rigid spaces becomes of interest.

In this chapter we construct a uniparametric family of homotopically rigid commutative
differential graded algebras with further interesting properties. On the one hand, the con-
nectivity of the algebras increases with the parameter, thus we are able to provide examples
of homotopically rigid CDGAs as highly connected as we desire. On the other hand, these
CDGAs are, not only homotopically rigid, but (strictly) rigid, which means that their unique
endomorphisms are the identity and the trivial one.

The fact that our algebras are (strictly) rigid, which is the main difference between our
work and [27], is fundamental to us. We are able to prove that if R is an integral domain of
characteristic zero or greater than three, CDGAR is universal, which means that any group
is realisable in C = CDGAR. Hence we solve positively the classical realisability problem in
the category C = CDGAR. Our strategy to prove this result is the same as ever, we construct
a functor from a certain subcategory of Digraphs to CDGAR that improves the one that
Costoya-Viruel introduced in [27].

In first place, Costoya-Viruel’s functor can only be defined on a subcategory of Graphs
whose morphisms are full monomorphisms of graphs, whereas our functor will be defined in a
full subcategory of graphs. In second place, our functor not only preserves automorphisms, it
is almost fully faithful. Indeed, the set of morphisms between any two graphs is in bijection
with the set of non-trivial morphisms between their associated CDGAs.

This chapter is organised as follows. Section 4.1 is devoted to construct the uniparametric

67
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family of rigid algebras, Definition 4.1, and to prove rigidity, Theorem 4.3. Then, in Section
4.2 we obtain a family of functors from a full subcategory of digraphs to CDGAR, Definition
4.11, we prove that they are almost fully faithful, Theorem 4.14, and we deduce that CDGAR

is universal, Theorem 4.16. Finally, in Section 4.3 we transfer the solutions to Problem 1
and Problem 2 from graphs to CDGAs and spaces by means of that family of functors. We
give a complete positive answer to the realisability problem for arrow categories in CDGAR,
Theorem 4.17, and in HoTop under certain finiteness conditions, Theorem 4.19. We also
provide a partial positive answer to the problem of realising permutation representations in
CDGAR, Theorem 4.20, and in HoTop, Theorem 4.22.

Henceforward, R will denote an integral domain.

4.1 Highly connected rigid CDGAs

In this section we introduce a family of highly connected, rigid differential graded R-algebras.
We introduced this family (over Q) in [23, Definition 1.1]. In [23, Theorem 1.6] we proved
that the monoid of homotopy classes of self-maps of these algebras only contains the classes
of the trivial map and the identity map. Here, we go further and prove that, in fact, the
identity map and the trivial map are the only endomorphisms of these R-algebras. Hence,
not only are they homotopically rigid, they are rigid as R-algebras as well. In particular,
their group of automorphisms is trivial.

The starting point for our family of rigid algebras is an example of Arkowitz and Lupton,
[6, Example 5.1], which they obtained by modifying an example of Halperin-Oprea. They
defined a minimal Sullivan algebra

M =
(
Λ(x1, x2, y1, y2, y3, z), d

)
with generators and differentials verifying

|x1| = 8, dx1 = 0,
|x2| = 10, dx2 = 0,
|y1| = 33, dy1 = x3

1x2,
|y2| = 35, dy2 = x2

1x
2
2,

|y3| = 37, dy3 = x1x
3
2,

|z| = 119, dz = x4
1(x2

2y1y2 − x1x2y1y3 + x2
1y2y3) + x15

1 + x12
2 .

This structure of generators and differentials proves to consistently produce examples of
homotopically rigid algebras, as can be deduced from [6, Example 5.2] and [31, Examples 8.1
& 8.2]. However, trying to obtain highly connected rigid algebras by re-scaling the degrees
of the generators in M is useless; the differential in M leads to a system of linear equations
whose only solution is the one given by M .

We now introduce our family of highly connected rigid R-algebras. These algebras are
obtained from the example above by scaling not only the degrees of the generators, but also
some of the exponents that appear in the differential of z.

Definition 4.1. Let k ≥ 1 be an integer. We define the commutative differential graded
R-algebra

Mk =
(
Λ(x1, x2, y1, y2, y3, z), d

)
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where

|x1| = 10k + 8, dx1 = 0,
|x2| = 12k + 10, dx2 = 0,
|y1| = 42k + 33, dy1 = x3

1x2,
|y2| = 44k + 35, dy2 = x2

1x
2
2,

|y3| = 46k + 37, dy3 = x1x
3
2,

|z| = 60k2 + 98k + 39, dz = x6k−6
1 (x2

2y1y2 − x1x2y1y3 + x2
1y2y3) + x6k+5

1 + x5k+4
2 .

We remark that these algebras are, indeed, the ones introduced in [23, Definition 1.1].
However, they have been reparametrised so that they are indexed over all positive integers.
Thus, the algebra we denote byMk in Definition 4.1 is the algebra M2k+2 in [23, Definition
1.1]. Also, notice that for R = Q,Mk is a minimal Sullivan algebra.

We start by introducing a technical lemma we need towards the proof of the rigidity
of these algebras. The idea behind the lemma is to show that the generators of Mk are
isolated in their respective degrees, thus greatly limiting their possible images through an
endomorphism.

Lemma 4.2. Let k ≥ 1. For each u ∈ {x1, x2, y1, y2, y3, z}, {u} is a basis ofM|w|k .

Proof. The following inequalities

|x1| < |x2| < |y1| < |y2| < |y3| < |x1y1| < |x2y3| < |z|.

are straightforward except perhaps for |x2y3| < |z|. However, this follows from the fact
that x2y3 divides a term in dz, and Mk has no generators in degree one. In view of these
inequalities and considering the parity of the degrees of the generators, it becomes clear that
the result holds for u ∈ {x1, x2, y1, y2, y3}.

It remains to prove that a basis of M|z|k is {z}. Since |z| is odd, any monomial in M|z|k
must be divided by a generator of odd order. Therefore, aside from multiples of z, elements in
M|z|k must be of the form P1y1, P2y2, P3y3 or P123y1y2y3, where P1, P2, P3, P123 ∈ R[x1, x2].
Consequently, in order to prove the lemma we prove that there is no pair (α, β) of non-
negative integers such that m = |xα1x

β
2 | = α|x1| + β|x2|, for m ∈ {|z| − |y1|, |z| − |y2|, |z| −

|y3|, |z| − |y1y2y3|}.
The linear diophantine equation m = α|x1| + β|x2| has a solution if and only if m is a

multiple of r = gcd
(
|x1|, |x2|

)
. In such case, if (α, β) is a particular solution to the equation,

the general solution is of the form(
α+ s

|x2|
r
, β − s |x1|

r

)
, s ∈ Z.

Considering that −6|x1| + 5|x2| = 2 and that both |x1| and |x2| are even, we deduce that
gcd

(
|x1|, |x2|

)
= 2. All of the four possible values we are considering for m are even, thus

the four linear diophantine equations have solutions. The general solution to the diophantine
equation m = α|x1|+ β|x2| is as follows:

m general solution
|z| − |y1|

(
− 3 + s(6k + 5), 5k + 3− s(5k + 4)

)
|z| − |y2|

(
− 2 + s(6k + 5), 5k + 2− s(5k + 4)

)
|z| − |y3|

(
− 1 + s(6k + 5), 5k + 1− s(5k + 4)

)
|z| − |y1y2y3|

(
− 12 + s(6k + 5), 5k + 3− s(5k + 4)

)
.

In the solutions above, in order for α to be non-negative it is necessary that s > 0, in which
case β is negative. The result follows.
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Using this lemma we can prove the main result for this section.

Theorem 4.3. Let k ≥ 1 be an integer. The R-algebra Mk is rigid, that is, its only endo-
morphisms are the trivial map and the identity map.

Proof. Let f ∈ HomCDGAR(Mk,Mk). As a consequence of Lemma 4.2, there exist a1, a2, b1,
b2, b3, c ∈ R such that f(x1) = a1x1, f(x2) = a2x2, f(y1) = b1y1, f(y2) = b2y2, f(y3) = b3y3
and f(z) = cz. And, as df = fd, we immediately obtain that

b1 = a3
1a2, b2 = a2

1a
2
2, b3 = a1a

3
2. (4.1)

Now df(z) = fd(z). On the one hand,

df(z) = c
[
x6k−6

1 (x2
2y1y2 − x1x2y1y3 + x2

1y2y3) + x6k+5
1 + x5k+4

2
]
, (4.2)

and on the other hand,

f(dz) = a6k−6
1 x6k−6

1 (a2
2b1b2x

2
2y1y2 − a1a2b1b3x1x2y1y3 + a2

1b2b3x
2
1y2y3)

+a6k+5
1 x6k+5

1 + a5k+4
2 x5k+4

2
]
.

(4.3)

Comparing Equations (4.2) and (4.3), we obtain the following equalities:

c = a6k−6
1 a2

2b1b2 = a6k−5
1 a2b1b3 = a6k−4

1 b2b3 = a6k+5
1 = a5k+4

2 . (4.4)

By replacing b1, b2 and b3 by their values in Equation (4.1), from Equation (4.4) we deduce
that

c = a6k+5
1 = a5k+4

2 = a6k−1
1 a5

2.

Since R is an integral domain, it has the cancellation property. Thus, from the equality
a6k+5

1 = a6k−1
1 a5

2 we obtain that a6
1 = a5

2, which implies that a6k
1 = a5k

2 . On the other
hand, from the equality a5k+4

2 = a6k−1
1 a5

2 we deduce that a6k−1
1 = a5k−1

2 . Multiplying by
a1 and using the identity above, a1a

5k−1
2 = a6k

1 = a5k
2 , thus we deduce that a1 = a2. This,

together with the equations above implies that a1 = a2 = s, s ∈ {0, 1}. It now follows that
a1 = a2 = b1 = b2 = b3 = c = s, s ∈ {0, 1}. Therefore, f is either the identity map, if s = 1,
or the trivial map, if s = 0.

4.2 A family of almost fully faithful functors from digraphs
to CDGAs

In this section we introduce a family of commutative differential graded R-algebras associated
to a given digraph, Definition 4.6. We then use these algebras to define a family of func-
tors between Digraphs+, a full subcategory of Digraphs (see Definition 4.4), and CDGAR.
Furthermore, these functors are almost fully faithful. Namely, we prove that the set of mor-
phisms between any two digraphs in Digraphs+ is in bijection with the set of non-trivial
morphisms between their images through our functors, Theorem 4.14. Using these results,
we obtain a complete solution to the group realisability problem in the category of CDGAR,
Theorem 4.16.

We begin by introducing the category of graphs to which we associate the algebras.

Definition 4.4. We denote by Digraphs+ the full subcategory of those digraphs G such that

(1) G is irreflexive,

(2) deg+(v) > 0, for all v ∈ V (G),
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which in particular implies that |V (G)| > 1.

Remark 4.5. It becomes immediate that Digraphs0 (see Definition 1.19) is a full subcategory
of Digraphs+. Indeed, in order for an irreflexive digraph with more than one vertex to be
strongly connected it is necessary that each vertex is the starting point of at least one edge. It
is also clear that when regarding a graph without isolated vertices as an asymmetric digraph,
it falls in Digraphs+.

We now introduce the algebras modelling the behaviour of the digraphs.

Definition 4.6. Let G be an object in Digraphs+. For each n ≥ 1, we associate to G the
commutative differential graded R-algebra

Mn(G) =
(
Λ(x1, x2, y1, y2, y3, z)⊗R Λ(xv | v ∈ V (G))⊗R Λ(z(v,w) | (v, w) ∈ E(G)), d

)
where

|x1| = 30n− 12, dx1 = 0,
|x2| = 36n− 14, dx2 = 0,
|y1| = 126n− 51, dy1 = x3

1x2,
|y2| = 132n− 53, dy2 = x2

1x
2
2,

|y3| = 138n− 55, dy3 = x1x
3
2,

|xv| = 180n2 − 142n+ 28, dxv = 0,
|z| = 540n2 − 426n+ 83, dz = x18n−18

1 (x2
2y1y2 − x1x2y1y3 + x2

1y2y3)
+x18n−7

1 + x15n−6
2 ,

|z(v,w)| = 540n2 − 426n+ 83, dz(v,w) = x3
v + xvxwx

5n−2
2 + x18n−7

1 .

Notice that, for any digraph G in the hypothesis of the definition above, the R-algebra
Mn(G) is (30n−13)-connected, thus it is in particular n-connected. We now proceed to give
some remarks on these algebras.
Remark 4.7. Note that for any n ≥ 1, the subalgebra Λ(x1, x2, y1, y2, y3, z) ↪→ Mn(G) is
precisely the rigid algebra M3n−2 from Definition 4.1. This choice of parameters is made
so that |z(v,w)| + 1 = |z| + 1 is divisible by three, thus x3

v can be a summand of dz(v,w), for
(v, w) ∈ E(G).

In the particular case of G being a finite digraph and the base ring R being Q, the algebra
Mn(G) is the rational model of a space. Then, as a consequence of Proposition 1.53, it
can easily be seen that the inclusion M3n−2 ↪→ Mn(G) is the Sullivan model of a rational
Serre fibration with base the homotopically rigid space modelled by M3n−2. The fibre is
modelled by the minimal Sullivan algebra Λ

(
xv | v ∈ V (G), z(v,w) | (v, w) ∈ E(G), d̄

)
with

d̄xv = 0, for all v ∈ V (G), and d̄(z(v,w)) = x3
v, for all (v, w) ∈ E(G). Thus, what we do when

defining Mn(G) is “gluing together” several copies of a homotopically rigid space following
the combinatorial structure of the digraph. Therefore, since the homotopically rigid space
does not have any non-trivial self-homotopy equivalence, the self-homotopy equivalences of
the total space can be interpreted as permutations of the different copies of the rigid building
block that are allowed at the level of the digraph over which we are gluing them.
Remark 4.8. It is worth noting that, although these algebras are introduced using the same
ideas as the ones in [23, Definition 2.1], several improvements have been made.

(1) We can use the algebraM1 as the rigid base for our construction, whereas in [23] we
were not able to prove the rigidity of M4 =M1. Consequently, the algebraM1(G) in
Definition 4.6 has both a lower level of connectivity and a lower dimension than the
algebra M1(G) introduced in [23, Definition 2.1].
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(2) A monomial in R[x1] has been added to the differential of the generators in degree
|z| associated to the digraph, that is, the generators z(v,w) for (v, w) ∈ E(G). This
subtle difference forces that any morphism that is trivial on the generators related to
the digraph must also be trivial on the generators of the rigid algebra, as we see in
Theorem 4.14. This fact, together with the rigidity of the algebrasMk introduced in
Definition 4.1 allows us to give a positive answer to the group realisability question in
CDGAR, Theorem 4.16.

(3) Furthermore, notice that the added generators in degree |z|, the z(v,w), are associated
to edges, whereas in [23, Definition 2.1] the added generators in degree |z|, zv, are
associated to vertices of the digraph. Indeed, in the models of [23], the information of
the edges is codified in the differentials. This has two important implications.
First, in the differential of zv in [23, Definition 2.1] there is a summand for each edge
in which the vertex v participates. This means that these algebras can only be defined
associated to locally finite graphs, that is, graphs in which each vertex participates
in a finite number of edges. Otherwise there would be an infinite sum in dzv. Our
algebras do not have such restriction.
Second, in order for a morphism of graphs to induce a morphism of algebras in the
models of [23, Definition 2.1], it has to be a full monomorphism, [27, Remark 2.8].
However, any morphism of digraphs induces a morphism between the corresponding
algebras in Definition 4.6.
These two facts combined allow us to define a family of functors from the entire cate-
gory Digraphs+ to CDGAn

R, Definition 4.11, that allows us to obtain some interesting
applications in the remainder of this thesis.

We will show that, for any n ≥ 1, if G1 and G2 are digraphs in Digraphs+, there is a
bijective correspondence between HomDigraphs(G1,G2) and HomCDGAR

(
Mn(G1),Mn(G2)

)∗.
In order to do so, we need to prove some lemmas first. We start with a technical lemma in
the same spirit as Lemma 4.2. This result extends [23, Lemma 2.5].

Lemma 4.9. Let G be a digraph in Digraphs+ and let n ≥ 1 be an integer. Then,

(1) For each u ∈ {x1, x2, y1, y2, y3}, a basis ofMn(G)|u| is {u}.

(2) A basis ofMn(G)|xv | is {x5n−2
2 } t {xv | v ∈ V (G)}.

(3) A basis ofMn(G)|z| is {z} t {z(v,w) | (v, w) ∈ E(G)}.

Proof. Recall that the R-subalgebra Λ(x1, x2, y1, y2, y3, z) ↪→Mn(G) is the R-algebraM3n−2
from Definition 4.1. Therefore, the inequalities

|x1| < |x2| < |y1| < |y2| < |y3| < |x1y1| < |x2y3| < |z|

from Lemma 4.2 still apply. It is also easy to check that |x1| < |x2| < |xv| and |y3| < |y1xv|,
for every n ≥ 1. Then Lemma 4.9.(1) follows from these inequalities.

We prove the rest of the lemma by using ideas akin to those in the proof of Lemma 4.2.
We now consider Lemma 4.9.(2). Elements of degree |xv|, other than xv, v ∈ V (G), are of
the form P , P12y1y2, P13y1y3 and P23y2y3, where P, P12, P13, P23 ∈ R[x1, x2]. We have to
prove that P can only be a multiple of x5n−2

2 and that P12, P13 and P23 are trivial. Let
m ∈ {|xv|, |xv| − |y1y2|, |xv| − |y1y3|, |xv| − |y2y3|}. As in Lemma 4.2, by choosing suitable
particular solutions for the diophantine equation m = α|x1| + β|x2| we obtain its general
solution:
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m general solution
|xv|

(
s(18n− 7), 5n− 2− s(15n− 6)

)
|xv| − |y1y2|

(
− 11 + s(18n− 7), 5n− s(15n− 6)

)
|xv| − |y1y3|

(
− 10 + s(18n− 7), 5n− 1− s(15n− 6)

)
|xv| − |y2y3|

(
− 9 + s(18n− 7), 5n− 2− s(15n− 6)

)
In the case m = |xv|, a valid solution (0, 5n−2) exists, thus x5n−2

2 ∈Mn(G)|xv |. However,
if s > 0, β < 0, whereas if s < 0, α < 0, for every n ≥ 1. In the remaining three cases and
for every n ≥ 1, α is negative unless s > 0, in which case β is negative. Thus there is no
solution where both integers are non-negative, and Lemma 4.9.(2) follows.

To prove Lemma 4.9.(3) we follow the same approach. We have to consider the product
of y1, y2, y3 and y1y2y3 with polynomials on the generators of even order. Since 3|xv| >
|z| = |z(v,w)|, (v, w) ∈ E(G), such polynomials can only be of the form Qjyj , Qj(v)yjxv,
Qj(v, w)yjxvxw, Q123y1y2y3, Q123(v)y1y2y3xv and Q123(v, w)y1y2y3xvxw, where Qj , Qj(v),
Qj(v, w), Q123, Q123(v), Q123(v, w) ∈ R[x1, x2] for each j ∈ {1, 2, 3}, v, w ∈ V (G).

First, observe that since Λ(x1, x2, y1, y2, y3, z) ≤Mn(G) is the algebraM3n−2 from Defi-
nition 4.1, we deduce from Lemma 4.2 that admissible polynomials Qj , j ∈ {1, 2, 3} and Q123
do not exist. For the remaining polynomials, we have to prove that there is no pair of non-
negative integers (α, β) such thatm = α|x1|+β|x2|, form ∈ {|z|−|yj |−|xv|, |z|−|yj |−2|xv|},
j = 1, 2, 3 and for m ∈ {|z| − |y1y2y3| − |xv|, |z| − |y1y2y3| − 2|xv|}. As previously, we obtain
the following general solution:

m general solution
|z| − |y1| − |xv|

(
− 3 + s(18n− 7), 10n− 5− s(15n− 6)

)
|z| − |y2| − |xv|

(
− 2 + s(18n− 7), 10n− 6− s(15n− 6)

)
|z| − |y3| − |xv|

(
− 1 + s(18n− 7), 10n− 7− s(15n− 6)

)
|z| − |y1| − 2|xv|

(
− 3 + s(18n− 7), 5n− 3− s(15n− 6)

)
|z| − |y2| − 2|xv|

(
− 2 + s(18n− 7), 5n− 4− s(15n− 6)

)
|z| − |y3| − 2|xv|

(
− 1 + s(18n− 7), 5n− 5− s(15n− 6)

)
|z| − |y1y2y3| − |xv|

(
− 12 + s(18n− 7), 10n− 5− s(15n− 6)

)
|z| − |y1y2y3| − 2|xv|

(
− 12 + s(18n− 7), 5n− 3− s(15n− 6)

)
Again, it is clear that the first coordinate is non-negative if and only if s > 0, in which case
the second coordinate is negative. Thus Lemma 4.9.(3) follows.

Henceforward, by abuse of notation, we will use the same letters x1, x2, y1, y2, y3 and z,
as it will be clear from the context whether we work inMn(G1) orMn(G2).

Lemma 4.10. Let G1 and G2 be objects in Digraphs+ and let n ≥ 1 be an integer. Every
σ ∈ HomDigraphs(G1,G2) induces a morphism of commutative differential graded R-algebras
Mn(σ) : Mn(G1)→Mn(G2).

Proof. Since σ ∈ HomDigraphs(G1,G2), given (v, w) ∈ E(G1),
(
σ(v), σ(w)

)
∈ E(G2). We can

thus defineMn(σ) : Mn(G1)→Mn(G2) as follows:

Mn(σ)(u) = u, for u ∈ {x1, x2, y1, y2, y3, z},
Mn(σ)(xv) = xσ(v), for all v ∈ V (G1),
Mn(σ)(z(v,w)) = z(σ(v),σ(w)), for all (v, w) ∈ E(G1).

Simple computations show that dMn(σ) =Mn(σ)d.

It is clear from the definition that this association takes the identity map to the identity
map and behaves well with respect to the composition. Thus, we can introduce the following
family of functors.
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Definition 4.11. For every n ≥ 1, we construct a functor Mn : Digraphs+ → CDGAn
R

as follows. To an object G, the commutative differential graded R-algebra Mn(G) from
Definition 4.6 is associated, and to a morphism σ ∈ HomDigraphs(G1,G2), the morphism
Mn(σ) ∈ HomCDGA

(
Mn(G1),Mn(G2)

)
from Lemma 4.10 is associated.

We now begin computing the set of morphisms between Mn(G1) and Mn(G2), for G1
and G2 any two objects in Digraphs+, which in particular will allow us to prove thatMn is
indeed almost fully faithful. We begin with the following lemma, which is similar to Theorem
4.3.

Lemma 4.12. Let G1 and G2 be two objects in Digraphs+ and let f : Mn(G1) → Mn(G2)
be a morphism of CDGAs. There exists s ∈ {0, 1} such that f(x1) = sx1, f(x2) = sx2,
f(y1) = sy1, f(y2) = sy2, f(y3) = sy3 and f(z) = sz.

Proof. By Lemma 4.9.(1), there exist a1, a2, b1, b2, b3 ∈ R such that f(x1) = a1x1, f(x2) =
a2x2, f(y1) = b1y1, f(y2) = b2y2 and f(y3) = b3y3. Since df = fd, we immediately obtain

b1 = a3
1a2, b2 = a2

1a
2
2, b3 = a1a

3
2. (4.5)

Now, by Lemma 4.9.(3),
f(z) = cz +

∑
(r,s)∈E(G2)

c(r, s)z(r,s), (4.6)

where c(r, s) = 0 for all but a finite amount of edges (r, s) ∈ E(G2). Then, since df(z) = f(dz),
on the one hand,

df(z) = c
[
x18n−18

1 (x2
2y1y2 − x1x2y1y3 + x2

1y2y3) + x18n−7
1 + x15n−6

2
]

+
∑

(r,s)∈E(G2)
c(r, s)

[
x3
r + xrxsx

5n−2
2 + x18n−7

1
]
, (4.7)

and on the other hand,

f(dz) = a18n−18
1 x18n−18

1 [a2
2b1b2x

2
2y1y2 − a1a2b1b3x1x2y1y3 + a2

1b2b3x
2
1y2y3]

+ a18n−7
1 x18n−7

1 + a15n−6
2 x15n−6

2 .
(4.8)

Comparing Equations (4.7) and (4.8), we immediately see that c(r, s) = 0, for all (r, s) ∈
E(G2). We also obtain the following identities.

c = a18n−7
1 = a15n−6

2 = b1b2a
18n−18
1 a2

2 = b1b3a
18n−17
1 a2 = b2b3a

18n−16
1 . (4.9)

Equations (4.5) and (4.9) are the same as Equations (4.1) and (4.4) with k = 3n− 2. Since
n ≥ 1, k ≥ 1 and we deduce from the proof of Theorem 4.3 that there exists s ∈ {0, 1} such
that s = a1 = a2 = b1 = b2 = b3 = c. The result follows.

Now we prove that, in fact, if s = 0 then f must be the identity map.

Lemma 4.13. Under the assumptions of Lemma 4.12, f is the trivial morphism if and only
if s = 0.

Proof. One of the implications is trivial. Let us prove the remaining one, thus assume that
f(x1) = f(x2) = f(y1) = f(y2) = f(y3) = f(z) = 0. We still need to compute f(xv), for
v ∈ V (G1), and f(z(v,w)), for (v, w) ∈ E(G1). As a consequence of Lemma 4.9.(2),

f(xv) =
∑

r∈V (G2)
a(v, r)xr + a(v)x5n−2

2 , v ∈ V (G1), (4.10)
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with a(v, r) = 0 for all but a finite amount of r ∈ V (G). Furthermore, by Lemma 4.9.(3),

f(z(v,w)) = e(v, w)z +
∑

(r,s)∈E(G2)
c
(
(v, w), (r, s)

)
z(r,s), (v, w) ∈ E(G1), (4.11)

where c
(
(v, w), (r, s)

)
= 0 for all but a finite amount of (r, s) ∈ E(G2). Now we know that

f(dz(v,w)) = df(z(v,w)). By Equation (4.11),

df(z(v,w)) = e(v, w)
[
x18n−18

1 (x2
2y1y2 − x1x2y1y3 + x2

1y2y3) + x18n−7
1 + x15n−6

2
]

+
∑

(r,s)∈E(G2)
c
(
(v, w), (r, s)

)[
x3
r + xrxsx

5n−2
2 + x18n−7

1
]
. (4.12)

On the other hand, since s = 0 and using Equation (4.10), we have

f(dz(v,w)) = f(x3
v + xvxwx

5n−2
2 + x18n−7

1 )

= f(x3
v) =

 ∑
r∈V (G2)

a(v, r)xr + a(v)x5n−2
2

3

.
(4.13)

Comparing Equations (4.12) and (4.13), we immediately obtain that e(v, w) = 0. Then, a
summand containing x15n−6

2 does not appear in Equation (4.12), which implies that a(v) = 0.
But this implies that summands containing xrxsx

5n−2
2 do not appear in Equation (4.13).

Comparing with Equation (4.12), we see that c
(
(v, w), (r, s)

)
= 0, for all (r, s) ∈ E(G2),

which implies that df(z(v,w)) = 0. Consequently, a(v, r) = 0, for all r ∈ V (G2). Thus
f(xv) = 0, for all v ∈ V (G1), and f(z(v,w)) = 0, for all (v, w) ∈ E(G1). In other words f is
the trivial morphism and we conclude the proof.

We can finally prove that the functor Mn introduced in Definition 4.11 is almost fully
faithful.

Theorem 4.14. Let R be an integral domain with char(R) > 3 or char(R) = 0. For any
n ≥ 1, the functorMn : Digraphs+ → CDGA induces a bijective correspondence:

HomDigraphs(G1,G2) ∼= HomCDGA
(
Mn(G1),Mn(G2)

)∗
.

Proof. Let f ∈ HomCDGAR
(
Mn(G1),Mn(G2)

)∗. By Lemma 4.12, there exists s ∈ {0, 1}
such that f(x1) = sx1, f(x2) = sx2, f(y1) = sy1, f(y2) = sy2, f(y3) = sy3 and f(z) = sz.
Moreover, since f is not the trivial morphism, by Lemma 4.13, s = 1.

Now notice that the strong connectivity of G1 implies that for every v ∈ V (G1), v is
the starting vertex of an edge (v, w) ∈ E(G1). Therefore the coefficients a(v, r) and a(v)
involved in f(xv) (see Equation (4.10)) can be entirely determined by using that f(dz(v,w)) =
df(z(v,w)). So, on the one hand, df(z(v,w)) is as in Equation (4.12), whereas

fd(z(v,w)) =
[ ∑
r∈V (G2)

a(v, r)xr + a(v)x5n−2
2

]3

+ x18n−7
1

+
( ∑
r∈V (G2)

a(v, r)xr + a(v)x5n−2
2

)( ∑
s∈V (G2)

a(w, s)xs + a(w)x5n−2
2

)
x5n−2

2 .

(4.14)

We now compare Equations (4.12) and (4.14). First, no coefficient x18n−16
1 y2y3 exists in

Equation (4.14). Thus, e(v, w) = 0. Now, no summand containing xuxvxw exists in Equation
(4.12), if u 6= v 6= w 6= u. However, since char(R) is either zero or greater than three, such a
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summand would appear in Equation (4.14) if there were three or more non-trivial coefficients
a(v, r). We can then assume that there are at most two non-trivial a(v, r). But if there were
two non-trivial coefficients, summands containing xrx

2
s would appear in Equation (4.14).

Since they do not appear in Equation (4.12), for each v ∈ V (G1), there is at most one non-
trivial coefficient a(v, r). Consequently, for every (v, w) ∈ E(G1), there is also at most one
non-trivial coefficient c

(
(v, w), (r, s)

)
.

Suppose that c
(
(v, w), (r, s)

)
= 0, for every (r, s) ∈ E(G2). Then, in Equation (4.12) there

are no summands containing x18n−7
1 . But a summand x18n−7

1 appears in Equation (4.14).
Consequently, it is not possible that c

(
(v, w), (r, s)

)
= 0 for every (r, s) ∈ E(G2). Since

we obtained earlier that for each (v, w) ∈ E(G1) there is at most one non-trivial coefficient
c
(
(v, w), (r, s)

)
, there exists a unique edge (r, s) ∈ E(G2) such that c

(
(v, w), (r, s)

)
6= 0.

We then have that a(v, r) 6= 0, that is, there is exactly one non-trivial coefficient a(v, r).
Therefore, we can define a map σ : V (G1) → V (G2) that takes v ∈ V (G1) to σ(v) the only
vertex in V (G2) such that a

(
v, σ(v)

)
6= 0. Moreover, if (v, w) ∈ E(G1), the only non-trivial

coefficient c
(
(v, w), (r, s)

)
verifies, by comparing Equations (4.12) and (4.14), that r = σ(v)

and s = σ(w). This exhibits that
(
σ(v), σ(w)

)
∈ E(G2), so σ ∈ HomDigraphs(G1,G2).

Furthermore, comparing the coefficient of x18n−7
1 in Equations (4.12) and (4.14), we ob-

tain that c
(
(v, w), (σ(v), σ(w)

)
= 1. Then, comparing the coefficients of x3

σ(v), we see that
a
(
v, σ(v)

)
= 1, for all v ∈ V (G1). Finally, notice that there are no summands x2

σ(v)x
5n−2
2 in

Equation (4.12). They would appear in Equation (4.14) if a(v) 6= 0, thus we deduce that
a(v) = 0, for all v ∈ V (G1).

Then, we have proven that there exists σ ∈ HomDigraphs(G1,G2) such that for every
v ∈ V (G1), f(xv) = xσ(v), and for every (v, w) ∈ E(G1), f(z(v,w)) = z(σ(v),σ(w)). This implies
that f =Mn(σ), as we claimed.

The following result is an immediate consequence of Theorem 4.14 by taking R = Q:

Corollary 4.15. Let G1 and G2 be objects in Digraphs+. Then, for n ≥ 1,

HomCDGA
(
Mn(G1),Mn(G2)

)
= [Mn(G1),Mn(G2)].

Proof. From our previous result, we deduce that the homotopy equivalence relation is trivial
in HomCDGA

(
Mn(G1),Mn(G2)

)
. Indeed, for different elements σ, τ ∈ HomDigraphs(G1,G2),

the induced morphisms Mn(σ),Mn(τ) have different linear parts. Hence, by Proposition
1.48, they are not homotopic. Notice also that, by the same argument, the trivial morphism
in HomCDGA

(
Mn(G1),Mn(G2)

)
is not homotopic toMn(σ) for any σ ∈ HomDigraphs(G1,G2)

since the linear part of the former one is never trivial.

Recall now that any group can be represented as the automorphism group of a graph
without isolated vertices, Theorem 1.16. When regarded as a symmetric digraph, this yields
an object in Digraphs+. We deduce our main result for this chapter:

Theorem 4.16. Let R be an integral domain with char(R) > 3 or char(R) = 0. For every
integer n ≥ 1, we have the following:

(1) For G an object in Digraphs+, AutCDGAR
(
Mn(G)

) ∼= AutDigraphs(G). Furthermore,
if R = Q, then E

(
Mn(G)

) ∼= AutDigraphs(G).

(2) CDGAn
R is universal, that is, for G a group, there exists Mn ∈ Ob(CDGAn

R) such that

G ∼= AutCDGAR(Mn).



Generalised realisability problems in CDGAR and HoTop 77

4.3 Generalised realisability problems in CDGAR and HoTop

In this section, we use the results obtained so far in this chapter together with the results
regarding graphs in Chapter 2 to give a positive answer to the considered generalised realis-
ability problems.

We begin by solving Problem 1, the realisability problem in arrow categories, in both
CDGAR and HoTop. Let us begin with CDGAR.

Theorem 4.17. Let G1, G2 and H be groups such that H ≤ G1 ×G2. Let R be an integral
domain with char(R) = 0 or char(R) > 3. For any n ≥ 1, there exist M1,M2 ∈ Ob(CDGAn

R)
and a morphism ϕ ∈ HomCDGAR(M1,M2) such that AutCDGAR(Mk) ∼= Gk, k = 1, 2, and
AutCDGAR(ϕ) ∼= H.

Proof. By Theorem 2.37, there exist objects G1, G2 in Graphs and ψ : G1 → G2 an ob-
ject in Arr(Graphs), such that AutGraphs(Gk) ∼= Gk, for k = 1, 2, and AutGraphs(ψ) ∼= H.
Now we consider Mn : Graphs → CDGAn

R the restriction to simple graphs of the func-
tor from Definition 4.11, and define Mk = Mn(Gk), k = 1, 2, objects in CDGAn

R and
ϕ = Mn(ψ) : M1 → M2 an object in Arr(CDGAn

R). By Theorem 4.16, we obtain that
AutCDGAR(Mk) ∼= AutGraphs(Gk) ∼= Gk, k = 1, 2.

We now prove that AutGraphs(ψ) ∼= AutCDGAR(ϕ). First, take (σ1, σ2) ∈ AutGraphs(ψ).
Then, as ψ ◦σ1 = σ2 ◦ψ, by functoriality we also have that ϕ◦Mn(σ1) =Mn(σ2)◦ϕ. More-
over, asMn(σk) ∈ AutCDGAR(Mk), we deduce that

(
Mn(σ1),Mn(σ2)

)
∈ AutCDGAR(ϕ).

Reciprocally, consider (f1, f2) ∈ AutCDGAR(ϕ). Then, as fk is an automorphism of Mk,
k = 1, 2, by Theorem 4.14 and Corollary 4.15, there exist σk ∈ AutGraphs(Gk) such that
fk =Mn(σk), k = 1, 2. Now, as

(
Mn(σ1),Mn(σ2)

)
∈ AutCDGAR(ϕ), we have thatMn(σ2)◦

ϕ = ϕ ◦Mn(σ1). That is, for every v ∈ V (G1),(
Mn(σ2) ◦ ϕ

)
(xv) = x(σ2◦ψ)(v) = x(ψ◦σ1)(v) =

(
ϕ ◦Mn(σ1)

)
(xv).

Hence, (σ2 ◦ ψ)(v) = (ψ ◦ σ1)(v) for every v ∈ V (G1), so (σ1, σ2) ∈ AutGraphs(ψ). Then,
AutCDGAR(ϕ) =

{(
Mn(σ1),Mn(σ2)

)
| (σ1, σ2) ∈ AutGraphs(ψ)

} ∼= H.

Then, as a consequence of Corollary 4.15, this result can immediately be transferred to
homotopy classes of CDGA morphisms by taking R = Q.

Corollary 4.18. Let G1, G2 and H be groups such that H ≤ G1×G2. For any n ≥ 1, there
exist M1,M2 ∈ Ob(CDGAn) and a morphism ϕ ∈ HomCDGA(M1,M2) such that E(Mk) ∼=
Gk, k = 1, 2, and E(ϕ) ∼= H.

Proof. By Theorem 2.37, there exist objects G1, G2 in Graphs and ψ : G1 → G2 object in
Arr(Graphs), such that AutGraphs(Gk) ∼= Gk, for k = 1, 2, and AutGraphs(ψ) ∼= H. By
Theorem 4.17, if we define Mk = Mn(Gk) and ϕ = Mn(ψ) we know that AutCDGA(Mk) =
AutGraphs(Gk) ∼= Gk and AutCDGA(ϕ) = AutGraphs(ψ) ∼= H. We shall see that E(Mk) ∼= Gk,
k = 1, 2, and that E(ψ) ∼= H.

First, Theorem 4.16 immediately implies that E(Mk) = AutCDGA(Mk) ∼= Gk, k = 1, 2.
On the other hand, it is clear that if (σ1, σ2) ∈ AutCDGA(ϕ), then

(
[σ1], [σ2]

)
∈ E(ϕ).

Reciprocally, if
(
[σ1], [σ2]

)
∈ E(ϕ), then σ2 ◦ ϕ ' ϕ ◦ σ1. However, by Corollary 4.15,

[M1,M2] ∼= HomCDGA(M1,M2), thus σk is the only possible representative of [σk], k = 1, 2,
and σ2 ◦ ϕ = ϕ ◦ σ1, that is, (σ1, σ2) ∈ AutCDGA(ϕ). Consequently, E(ϕ) ∼= AutCDGA(ϕ) ∼=
H.

Furthermore, if G1 and G2 are finite groups, by Corollary 2.38, the objects G1, G2 in
Graphs and ψ : G1 → G2 in Arr(Graphs) solving Problem 1 can be chosen finite. In such
case, the CDGAs Mk =Mn(Gk) in Corollary 4.18 are of finite type, allowing us to transfer
our solution of Problem 1 to HoTop.
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Theorem 4.19. Let G1, G2 be finite groups and let H be a subgroup of G1 × G2. For any
n ≥ 1, there exist n-connected spaces X1, X2 and a continuous map f : X1 → X2 such that
E(Xk) ∼= Gk, k = 1, 2, and E(f) ∼= H.

Proof. By Corollary 4.18, there exist n-connected minimal Sullivan algebras M1 and M2 and
a morphism of algebras ϕ : M2 →M1 such that E(Mk) ∼= Gk, k = 1, 2, and E(ϕ) ∼= H. Con-
sider | | the spatial realisation functor. We have seen in Section 1.4 that this contravariant
functor induces a bijective correspondence between homotopy classes of morphisms between
two Sullivan algebras and homotopy classes of maps between their spatial realisations. Fur-
thermore, two morphisms between Sullivan algebras are homotopic if and only if their spatial
realisations are homotopic.

Define Xk = |Mk|, k = 1, 2, and f = |ϕ| : X1 → X2. Considering the bijection mentioned
above, it is immediate that E(Xk) = E(Mk) ∼= Gk, k = 1, 2. It remains to see that E(f) ∼=
E
(
ϕ
) ∼= H.
Assume first that (f2, f1) ∈ E

(
ϕ), thus f1 ◦ ϕ ' ϕ ◦ f2. Then, by the functoriality of

| | and Proposition 1.52, f ◦ |f1| ' |f2| ◦ f . Thus
(
|f1|, |f2|

)
∈ E(f). On the other hand,

consider (f1, f2) ∈ E(f). Then, take ϕk a representative of the only homotopy class such that
|ϕk| ' fk, k = 1, 2. Since f ◦ f1 ' f2 ◦ f with f = |ϕ|, we obtain that ϕ1 ◦ ϕ ' ϕ ◦ ϕ2, thus
(ϕ2, ϕ1) ∈ E(ϕ). Consequently, E(f) ∼= E

(
ϕ
) ∼= H.

We finish this chapter by transferring the solution to the realisability problem for per-
mutation representations, Problem 2, from graphs to CDGAs and HoTop. We remark that
the results proved in the remainder of this section are a particular case of those in [29].
Nonetheless, we include them here for the sake of completion and since they can be easily
deduced from the results obtained so far. Let us begin with the category of CDGAs.

Theorem 4.20. Let G be a group, n ≥ 1 be an integer, R be an integral domain with
char(R) = 0 or char(R) > 3 and ρ : G→ Sym(V ) be a permutation representation of G on a
set V . There is an object A ∈ Ob(CDGAn

R) such that

(1) V ⊂ A, and V is invariant through the automorphisms of A;

(2) AutCDGAR(A) ∼= G;

(3) the restriction map G ∼= AutCDGAR(A)→ Sym(V ) is precisely ρ.

Proof. By Theorem 2.41, there is a graph G verifying properties akin to Theorem 4.20.(1)–
(3) in the category of Graphs. Consider Mn the functor from Definition 4.6 and define
A =Mn(G). We shall prove that this CDGA verifies the desired properties.

First, by Theorem 4.16, AutCDGAR(A) ∼= AutGraphs(G) ∼= G, so Theorem 4.20.(2) holds.
Now, as a consequence of Theorem 2.41.(1), there is a subset V ⊂ V (G) invariant through
the automorphisms of G. Let us identify V with the subset {xv | v ∈ V ⊂ V (G)} ⊂ A. Since
the automorphism of A associated to σ ∈ AutGraphs(G) is the map Mn(σ) introduced in
Lemma 4.10, and given thatMn(σ)(xv) = xσ(v), V is invariant through the automorphisms
of A, so Theorem 4.20.(1) follows. Not only that, but the restriction of G ∼= AutCDGAR(A) to
Sym(V ) is equivalent to the restriction of G ∼= AutGraphs(G) → Sym(V ), thus it is precisely
ρ, proving Theorem 4.20.(3).

Then, as a consequence of Theorem 4.16, the result above can immediately be transferred
to homotopy classes of morphisms of CDGA by taking R = Q.

Corollary 4.21. Let G be a group, n ≥ 1 be an integer and ρ : G→ Sym(V ) be a permutation
representation of G on a set V . There is an object A ∈ Ob(CDGAn) such that
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(1) V ⊂ A, and V is invariant through the automorphisms of A;

(2) E(A) ∼= G;

(3) the restriction map G ∼= E(A)→ Sym(V ) is precisely ρ.

Furthermore, if G and V are finite, by Corollary 2.42 the graph G solving Problem 2
can be built so that it is finite, in which case the CDGA A = Mn(G) solving Problem 2 in
Corollary 4.21 is of finite type. We are then able to obtain the following consequence in the
homotopy category of spaces:

Theorem 4.22. Let G be a finite group, V be a finite set, n be a positive integer and
ρ : G→ Sym(V ) be a permutation representation of G on V . There is an n-connected space
X such that

(1) V ⊂ H180n2−142n+28(X), and V is invariant through the maps induced in cohomology
by the self-homotopy equivalences of X;

(2) E(X) ∼= G;

(3) the map G ∼= E(X) → Sym(V ) taking [f ] ∈ E(X) to H180n2−142n+28(f)|V ∈ Sym(V )
is ρ.

Proof. Take R = Q. By Corollary 2.42, there is a finite graph G verifying properties akin to
Theorem 4.22.(1)–(3) in the category of Graphs. ConsiderMn the functor from Definition
4.6. Since G is finite,Mn(G) is a CDGA of finite type, so we can define X = |Mn(G)|. We
shall prove that this is the desired space.

First, as a consequence of Corollary 2.42.(1), V can be identified with a subset V ⊂ V (G)
invariant through the automorphisms of G. Recall that in Theorem 4.20 we identified V ⊂
V (G) with {xv | v ∈ V ⊂ V (G)} ⊂ Mn(G). Elements xv, v ∈ V (G) are clearly independent
cocycles. Then, since H∗

(
Mn(G)

) ∼= H∗(X), we may identify V ≡ {[xv] | v ∈ V ⊂ V (G)} ⊂
H180n2−142n+28(X).

Now recall that, as a consequence of the properties of the spatial realisation functor and
of Theorem 4.16, E(X) ∼= E

(
Mn(G)

) ∼= G, proving Theorem 4.22.(2). Not only that, but self-
homotopy equivalences corresponding through the isomorphism E(X) ∼= E

(
Mn(G)

)
induced

by the spatial realisation functor must induce the same map on cohomology. Then, since all
maps Mn(σ) ∈ E

(
Mn(G)

)
are invariant on V , so are the maps in E(X), proving Theorem

4.22.(1).
For the same reason, the map taking [f ] = [|Mn(σ)|] ∈ E(X) to H180n2−142n+28(f)|V ∈

Sym(V ) is equivalent to the map taking [Mn(σ)] ∈ E(A) to H180n2−142n+28(Mn(σ)
)
|V ∈

Sym(V ). Furthermore, Mn(σ)(xv) = xσ(v). Then Theorem 4.22.(3) follows from Corollary
2.42.(3).



80 Chapter 4. Realisability problems in CDGAs and spaces



CHAPTER 5

Further applications to the family of functors from
digraphs to CDGAs

In the previous chapter, we constructed a family of almost fully faithful functors Mn from
a full subcategory of digraphs denoted Digraphs+ (see Definition 4.4) to CDGAR. The aim
of this chapter is to provide further applications to our functors.

In Section 5.1 we make use of our functors Mn in combination with Theorem 1.20 and
Theorem 1.21 to prove results regarding the representability of concrete categories in CDGAn

R,
Theorem 5.1, and in HoTopnf , Theorem 5.2. We also obtain results on the realisability of
monoids as monoids of endomorphisms of commutative differential graded R-algebras, and
as monoids of homotopy classes of self-maps of spaces, Corollary 5.3.

Then, in Section 5.2 we use the minimal Sullivan models introduced in Definition 4.6
to show that, under certain conditions, we can distinguish isomorphism classes of groups
by means of the differential graded R-algebras on which they act faithfully, Theorem 5.4.
This theorem provides a generalisation of the main result in [28]. Moreover, we are able to
extend this result to a certain family of monoids that includes all finite monoids without
zero, Proposition 5.7, using our results from Section 5.1.

In Section 5.3 we show that our minimal Sullivan algebras introduced in Section 4.2
provide an infinite amount of examples of highly connected inflexible manifolds, Theorem
5.12. We are also able to produce examples of strongly chiral manifolds, that is, manifolds
that do not admit orientation reversing self-maps of degree −1, Proposition 5.14.

Finally, in Section 5.4 we use our minimal Sullivan models models to show that the numer-
ical homotopy invariants involved in a certain lower bound for the Lusternik-Schnirelmann
category of a finite dimensional space can be arbitrarily different, Theorem 5.17.

5.1 Representation of categories in CDGAR and HoTop

In this section, we use the functorsMn : Digraphs+ → CDGAn
R introduced in Definition 4.11

to obtain results on the representability of categories in both CDGAR and HoTop. Recall
from Definition 1.18 that a category C is said to be representable in another category D if
there is a fully faithful functor from C to D. Thus, by Theorem 4.14 Mn almost induces a
representation of Digraphs+ in CDGAn

R, but we are quite not there, as the homotopy class
of the trivial map is never reached byMn.

Nonetheless, we can still regard Digraphs+ as a subcategory of CDGAR where the objects
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are all the possible images of digraphs through Mn, and the morphisms between two such
objects are the non-trivial morphisms of CDGAR between them. Therefore, we are still
representing Digraphs+ as an almost full subcategory of CDGAR. And it is as close as
we can get to a representation of Digraphs+ in CDGAR, since CDGAR is pointed whereas
Digraphs+ is not. In a similar way, we can also use the family of functors Mn together
with Theorem 1.20 to represent a large family of categories in both CDGAR and HoTop, as
follows:

Theorem 5.1. Let C be a concrete small category and R be an integral domain such that
char(R) > 3 or char(R) = 0. For every n ≥ 1, there is a functor Gn : C → CDGAn

R verifying
that HomCDGAR

(
Gn(A), Gn(B)

)∗ ∼= HomC(A,B), for any A,B ∈ Ob(C). Furthermore, if
R = Q, then [Gn(A), Gn(B)]∗ ∼= HomC(A,B), for all A,B ∈ Ob(C).

Proof. As a consequence of Theorem 1.20, for any concrete small category C there exists a
fully faithful functor G : C → Digraphs+. Thus, if we define Gn = Mn ◦ G : C → CDGAR,
by Theorem 4.14 we obtain that

HomCDGAR
(
Gn(A), Gn(B)

)∗ = HomDigraphs
(
G(A), G(B)

)
= HomC(A,B).

Furthermore, if R = Q, by Corollary 4.15,

[Gn(A), Gn(B)]∗ = HomCDGA
(
Gn(A), Gn(B)

)∗ = HomC(A,B).

A similar result can be achieved inHoTop. In order to have a bijection between homotopy
classes of morphisms of CDGA and homotopy classes of continuous maps between their
Sullivan spatial realisations, we have to restrict ourselves to CDGAs of finite type. This
forces, by the way we have constructedMn, our graphs to be finite, so we can apply Theorem
1.21.

Theorem 5.2. Let C be a concrete category such that Ob(C) is countable and HomC(A,B)
is finite for any pair of objects A,B ∈ Ob(C). For every n ≥ 1, there exist a functor
Fn : C → HoTopn such that [Fn(A), Fn(B)]∗ = HomC(A,B), for any A,B ∈ Ob(C).

Proof. First, notice that the category Setop is concrete, since the functor Hom(−,2) : Setop →
Set, where 2 denotes a set of two elements, is clearly faithful. Given that the composition
of faithful functors and the dual of a faithful functor are both faithful, we deduce that if
C is concrete, so is Cop. Then, as a consequence of Theorem 1.21 there is a fully faithful
functor F : Cop → Graphsf such that F (A) does not have isolated vertices, for any A ∈
Ob(C). By regarding F as a contravariant functor, we can define a functor Fn = | | ◦Mn ◦
F : C → HoTop∗ which takes any object of C into a Sullivan algebra of finite type. Using the
properties of the spatial realisation functor and applying Theorem 4.14 and Corollary 4.15,[
Fn(A), Fn(B)

]∗ = [Mn(F (B)),Mn(F (A))]∗ = HomGraphs
(
F (B), F (A)

)
= HomC(A,B) for

any A,B ∈ C.

Recall now that a monoid M can be regarded as a one object category. When doing so,
M is the monoid of endomorphisms of the single object of the category. Such a category
is clearly small and concrete, and it is finite whenever M is so, in which case it fits in the
hypothesis of Theorem 5.2. Also notice that if M has a zero element, it becomes a zero
endomorphism of the only object in the category associated to M . If we denote the monoid
obtained from M by adjoining a zero element by M0, the following result is an immediate
consequence of Theorem 5.1 and Theorem 5.2:

Corollary 5.3. Let M be a monoid. For every n ≥ 1, there exists an n-connected commu-
tative differential graded R-algebra An such that HomCDGAR(An, An) ∼= M0. If moreover M
is finite, there exists an n-connected space Xn such that [Xn, Xn] ∼= M0.
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In particular, if M ∼= N0 for some other monoid N , that is, if M has a zero element and
no non-trivial zero divisors, we can realise it directly.

5.2 The isomorphism problem for groups through CDGA rep-
resentations

In this section we study the isomorphism problem for groups using group representations on
CDGAs. We generalise the main result in [28], proving that co-Hopfian groups (see Definition
3.14) can be distinguished by the commutative differential graded R-algebras on which they
act faithfully, Theorem 5.4. We are also able to extend this result to an analogous class of
monoids without zero, Proposition 5.7. Let us begin by proving Theorem 5.4.

Theorem 5.4. Let R be an integral domain with char(R) > 3 or char(R) = 0. Let n ≥ 1 be
an integer and let G and H be co-Hopfian groups. The following are equivalent:

(1) G and H are isomorphic.

(2) For any n-connected commutative differential graded R-algebra (A, d), G acts faithfully
on (A, d) if and only if H acts faithfully on (A, d).

Proof. One of the two implications is immediate. We prove the remaining one. Thus, as-
sume that Theorem 5.4.(2) holds. As a consequence of Theorem 1.16, there exist graphs
without isolated vertices G and H such that AutGraphs(G) ∼= G and AutGraphs(H) ∼= H.
Consider the n-connected commutative differential graded R-algebras Mn(G) and Mn(H)
introduced in Definition 4.6. As a consequence of Theorem 4.16, AutCDGAR

(
Mn(G)

) ∼= G
and AutCDGAR

(
Mn(H)

) ∼= H.
Clearly, G acts faithfully on Mn(G). Then by Theorem 5.4.(2), H acts faithfully on

Mn(G), which implies that there is a group monomorphism H ↪→ AutCDGAR
(
Mn(G)

) ∼= G,
thusH ≤ G. Similarly, H acts faithfully onMn(H), which by Theorem 5.4.(2) implies that G
acts faithfully onMn(H), thus there is a group monomorphism G ↪→ AutCDGAR

(
Mn(H)

) ∼=
H. Therefore, G ≤ H. We then have thatG ≤ H ≤ G and, sinceG is co-Hopfian, G ∼= H.

In comparison to [28, Theorem 1.1], Theorem 5.4 requires less restrictions on both the
ring R and the groups G and H. Indeed, [28, Theorem 1.1] requires for R to not to have
primitive third roots of the unity, whereas in Theorem 5.4 the base ring R does not have
such a requirement. Furthermore, we only require for G and H to be co-Hopfian, whereas
[28, Theorem 1.1] requires that both groups are isomorphic to the automorphism group of
a locally finite graph and that all of their abelian normal subgroups have p-torsion with
p 6= char(R).

This result can also be extended to actions of co-Hopfian monoids, that we now introduce.

Definition 5.5. A monoidM is co-Hopfian if any monomorphism G ↪→ G is an isomorphism.

Although the literature on co-Hopfian monoids is sparse, this class contains all finite
monoids. Moreover, co-Hopfian groups are, in particular, co-Hopfian monoids.

We can then think about proving an analogous to Theorem 5.4. However, there is a
slight difference. Indeed, we have not proven that every monoid is realisable as the monoid
of endomorphisms of a commutative differential graded R-algebra, since the monoids we are
realising have an added zero element. Thus, we need the following result:

Lemma 5.6. Let M and N be monoids and suppose that N has a zero element, 0N . Then,
if there exists a monomorphism of monoids f : M ↪→ N such that 0N ∈ Im(f), M has a zero
element.
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Proof. Assume that f : M → N is a monomorphism of monoids. In the category of monoids,
monomorphisms are precisely the injective maps, thus we can assume that f is injective.
Suppose that there exists m ∈ M such that f(m) = 0N . Then, for every m′ ∈ M , 0N =
f(m′)f(m) = f(m′m). Since f is injective, this means that m′m = m. Similarly, we obtain
that mm′ = m, for all m′ ∈M . But by definition this means that m is a zero element in M .
The result follows.

We can now prove the following result:

Proposition 5.7. Let R be an integral domain with char(R) > 3 or char(R) = 0. Let
n ≥ 1 be an integer and let M and N be co-Hopfian monoids without zero. The following are
equivalent.

(1) M and N are isomorphic.

(2) For any n-connected commutative differential graded R-algebra (A, d), M acts faith-
fully on (A, d) if and only if N acts faithfully on (A, d).

Proof. One of the two implications is immediate. We prove the remaining one. Thus, assume
that Proposition 5.7.(2) holds. As a consequence of Corollary 5.3, there exist n-connected
commutative differential graded R-algebras (A, d) and (B, d) such that HomCDGAR(A,A) ∼=
M0 and HomCDGAR(B,B) ∼= N0.

Clearly, M acts faithfully on (A, d). Then by Proposition 5.7.(2), N acts faithfully
on (A, d) as well. Thus, there is a monomorphism N ↪→ HomCDGAR(A,A) ∼= M0. As a
consequence of Lemma 5.6 and since N does not have a zero element, the zero of M0 is not
in the image of the injection. We deduce that N ≤M .

Similarly, N acts faithfully on (B, d), which by Proposition 5.7.(2) implies that M acts
faithfully on (B, d). Thus, there is a monomorphism M ↪→ HomCDGAR(B,B) ∼= N0. There-
fore, M ≤ N0, which in a similar manner implies that M ≤ N . We then have that
M ≤ N ≤M and, since M is co-Hopfian, M ∼= N .

5.3 Highly connected inflexible and strongly chiral manifolds
A closed, oriented and connected manifold M is said to be inflexible if the set of all the
possible degrees of its continuous self-maps is finite. As the degree is multiplicative, this
condition is equivalent to asking for the set of all the possible degrees to be a subset of
{−1, 0, 1}. On the other hand, a strongly chiral manifold is a manifold that does not admit
orientation-reversing self-maps, that is, self-maps of degree −1. In this section we show how
we can produce examples of both inflexible and strongly chiral manifolds from the algebras
introduced in Section 4.2.

Inflexible manifolds naturally appear within the framework of functorial seminorms on
singular homology developed by Gromov [47, 48] and derived degree theorems (e.g. [31, Re-
mark 2.6]): let M be a closed, oriented and connected manifold with fundamental class cM .
If there exists a functorial seminorm on singular homology | · | such that |cM | 6= 0, then M
is inflexible. In this way, oriented closed connected hyperbolic manifolds are shown to be
inflexible; they do have non-trivial simplicial volume, the value of the `1-seminorm applied to
the fundamental class [47, Section 0.3]. But the `1-seminorm is trivial on simply connected
manifolds [47, Section 3.1], which led Gromov to raise the question of whether every func-
torial seminorm on singular homology is trivial on all simply connected spaces [48, Remark
(b) in 5.35]. This question is solved in the negative in [31] by constructing functorial semi-
norms associated to simply connected inflexible manifolds. Therefore, inflexible manifolds
are extraordinary objects and still not many examples are known. Indeed, all the examples
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found in the literature show low levels of connectivity when observing their minimal Sullivan
models [2, 6, 27, 31].

In this section we work with rational models of spaces, thus we assume that R = Q.
We closely follow the lines of [27] and provide new examples of inflexible manifolds whose
Sullivan models are as highly connected as desired (see Corollary 5.13). For such reason, we
need to define inflexible CDGAs, in such a way that when there is a manifold whose rational
homotopy type is represented by an inflexible CDGA, then the manifold is also inflexible.

Definition 5.8. LetM be a CDGA whose cohomology is a Poincaré duality algebra of formal
dimension m (see Definition 1.57). Take ωM ∈ Hm(M) the fundamental class of H∗(M).
Given f ∈ HomCDGA(M,M), we say that the degree of f is k ∈ Q, denoted deg(f) = k,
if H∗(f)(cM ) = kcM . We say that M is inflexible if the set of all possible degrees of its
self-maps is finite.

Since the degree of a morphism is clearly multiplicative, M is inflexible if and only if
{deg(f) | f ∈ HomCDGA(M,M)} ⊂ {−1, 0, 1}. Our first step will be to prove that our
algebras are inflexible.

Lemma 5.9. Let G be a finite object in Digraphs+ and let n, k ≥ 1 be integers.

(1) The minimal Sullivan algebraMk from Definition 4.1 is an inflexible elliptic Sullivan
algebra of formal dimension (6k + 16)|x1|.

(2) The minimal Sullivan algebra Mn(G) from Definition 4.6 is an inflexible elliptic Sul-
livan algebra of formal dimension (18n+ 4)|x1|+ |E(G)||z| − |V (G)| |z|−2

3 .

Proof. In both cases, we use Proposition 1.56 to prove the ellipticity of the algebras by
proving the ellipticity of their associated pure Sullivan algebras. Then, by Proposition 1.58,
their cohomologies are Poincaré duality algebras and their formal dimensions follow from a
straight computation.

(1) DenoteMk = (ΛV, d) and consider (ΛV, dσ) its associated pure Sullivan algebra. The
differential dσ is defined as

dσ(x1) = 0, dσ(x2) = 0, dσ(z) = x6k+5
1 + x5k+4

2 ,
dσ(y1) = x3

1x2, dσ(y2) = x2
1x

2
2, dσ(y3) = x1x

3
2.

The cohomology of (ΛV, dσ) is finite-dimensional since

dσ(zx1 + y3x
5k+1
2 ) = x6k+6

1 , dσ(zx2 − y1x
6k+2
1 ) = x5k+5

2 .

ThusMk is elliptic. Moreover, by Theorem 4.3, HomCDGA(Mk,Mk) = {id, 0}. These
two maps have respective degrees 1 and 0. Therefore,Mk is inflexible.

(2) Since G is finite, Mn(G) is of finite type, so we can apply Proposition 1.56. Denote
Mn(G) = (ΛV, d) and consider (ΛV, dσ) the associated pure Sullivan algebra. The
differential dσ is then defined as

dσ(x1) = 0, dσ(y1) = x3
1x2, dσ(z) = x18n−7

1 + x15n−6
2 ,

dσ(x2) = 0, dσ(y2) = x2
1x

2
2, dσ(z(v,w)) = x3

v + xvxwx
5n−2
2 + x18n−7

1 ,

dσ(xv) = 0, dσ(y3) = x1x
3
2.

Then, on the one hand,

dσ(zx1 − y3x
15n−9
2 ) = x18n−6

1 , dσ(zx2 − y1x
18n−10
1 ) = x15n−5

2 .
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On the other hand, given v ∈ V (G), the strong connectivity of G implies that v is the
starting vertex of at least one edge (v, w) ∈ E(G), and from dz(v,w) we obtain that

[x3
v]4 = [−xvxwx5n−2

2 − x18n−7
1 ]4 = 0.

This proves the ellipticity of the algebra. To prove that it is inflexible notice that, as
a consequence of Theorem 4.14, HomCDGA

(
Mn(G),Mn(G)

)∗ = HomDigraphs(G,G) is
finite, thus the set of possible degrees of self-maps must be finite.

We have thus proven the result.

Remark 5.10. Note that when applying Mn to a graph G without isolated vertices, we are
regarding it as a symmetric digraph. Therefore, every edge in the graph gives raise to two
directed edges between the same pair of vertices. Then, as a consequence of Lemma 5.9, the
formal dimension ofMn(G) is (18n+ 4)|x1|+ 2|E(G)||z| − |V (G)| |z|−2

3 .

Now, we recall that for elliptic Sullivan algebras, the Barge and Sullivan obstruction
theory ([9, 75]) decides if there exists a manifold (over Z) of the same rational homotopy
type of that algebra. Roughly speaking, the obstruction theory is trivial when the formal
dimension of the algebra is not divisible by four. We shall avoid this situation with our
examples.

Take G a finite group and consider G a finite graph such that AutGraphs(G) ∼= G, see
Theorem 1.16. It follows from Lemma 5.9.(2) that the formal dimension ofMn(G) is odd if
and only if G has an odd number of vertices. We shall prove that we can choose G so that it
verifies this property.

Lemma 5.11. Let G be a finite group. There exists a finite graph G without isolated vertices
and with an odd (respectively even) number of vertices such that AutGraphs(G) ∼= G.

Proof. As a consequence of Theorem 1.16, there exists a finite graph without isolated vertices
G̃ with AutGraphs(G̃) ∼= G. If |V (G̃)| is odd (respectively even), define G = G̃. Otherwise,
consider G a graph with vertices V (G̃) t {v} and edges E(G) = E(G̃) t

{
{v, w} | w ∈

V (G̃)
}
. Clearly, G has an odd (respectively even) number of vertices. We shall prove that

AutGraphs(G) ∼= AutGraphs(G̃).
First, suppose that ϕ̃ ∈ AutGraphs(G̃). We define a map ϕ : V (G) → V (G) as follows.

Define ϕ(v) = v, and for w ∈ V (G̃), define ϕ(w) = ϕ̃(w). It is then immediate that ϕ is a
morphism of graphs and, moreover, it is an automorphism; its inverse is the map ϕ−1 arising
from ϕ̃−1 using the same construction.

Then, to prove our lemma it is enough to show that every automorphism of G arises this
way. Take ϕ ∈ AutGraphs(G). Notice that the graph G̃ is obtained from a Cayley colour
diagram of G by replacing each directed edge by a certain construction containing several
vertices and edges. This implies that no vertex in the graph G̃ may be connected to every
other vertex of G̃. Thus, for each w ∈ V (G̃), the degree of w in G is strictly lower than that
of v. We deduce that ϕ(v) = v. Then, ϕ restricts to a map ϕ|V (G̃) : V (G̃) → V (G̃). Since
the full subgraph of G with vertices V (G̃) is precisely G̃, ϕ|V (G̃) ∈ AutGraphs

(
V (G̃)

)
. We now

deduce that AutGraphs(G) ∼= AutGraphs(G̃).

We can now prove the main theorem in this section:

Theorem 5.12. For any finite group G and any integer n ≥ 1, G is the group of self-
homotopy equivalences of the rationalization of an inflexible manifold which is (30n − 13)-
connected.
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Proof. As a consequence of Lemma 5.11, there exists a finite graph G without isolated vertices
and with an odd number of vertices such that AutGraphs(G) ∼= G. Then, from Lemma 5.9.(2),
we deduce that the formal dimension ofMn(G) is odd. Thus, the obstruction theory of Barge,
[9], and Sullivan, [75], is trivial, so there exists a (30n−13)-connected manifoldMn(G) whose
rationalisation is of the homotopy type ofMn(G).

Now consider f : Mn(G) → Mn(G) and take ϕ : Mn(G) →Mn(G) a Sullivan representa-
tive of f . Then H∗(ϕ) = H∗(f) : H∗

(
Mn(G),Q

)
→ H∗

(
Mn(G),Q

)
. Thus, deg(f) = deg(ϕ).

In particular, sinceMn(G) is inflexible, so is Mn(G). Furthermore,

G ∼= AutGraphs(G) ∼= E
(
Mn(G)

) ∼= E(Mn(G)0
)
,

thus Mn(G) is the desired manifold.

In particular, we immediately obtain the following:

Corollary 5.13. There exist infinitely many non-homotopically equivalent inflexible mani-
folds as highly connected as desired.

We now turn to the existence of strongly chiral manifolds, that is, manifolds that do not
admit orientation-reversing self-maps of degree −1 (see [2], [27] or [69]). We know that our
algebras are inflexible. However, seeing that they do not admit self-maps of degree −1 is
more involved. Instead, we will use a construction in [27] to obtain strongly chiral algebras
from our algebras. This construction requires for the formal dimension of the algebra to be
even. Otherwise, we could end up with a Sullivan algebra whose formal dimension is divisible
by four, and the obstruction theory of Sullivan and Barge would not be trivial. However, we
can make use of Lemma 5.11 to ensure that the graphs we work with have an even number
of vertices, thusMn(G) has even formal dimension as a consequence of Lemma 5.9.(2).

We begin by recalling the construction from [27, Proposition 3.1, Lemma 3.2]. Let A
be a 1-connected elliptic Sullivan algebra of formal dimension 2m. Then, we can construct
a 1-connected elliptic Sullivan algebra of formal dimension 4m − 1 as follows: we choose
a representative of the fundamental class of A, let us say x with |x| = 2m and we define
Ã = (A ⊗ Λ(z), dz = x). The algebra Ã inherits some of the properties of A: it is elliptic,
the monoid of self-maps of Ã coincides with the monoid of self-maps of A, and finally, the
connectivity is preserved. Moreover, by choosing an element y ∈ Ã4m−1 such that dy = x2,
xz− y is a representative of the fundamental class in H4m−1(A). Using this construction, we
are able to prove the following:

Proposition 5.14. For any finite group G and any integer n ≥ 1, G is the group of self-
homotopy equivalences of the rationalization of a strongly chiral manifold which is (30n−13)-
connected.

Proof. As a consequence of Lemma 5.11, there exists a finite graph G without isolated vertices
and with an even number of vertices such that AutGraphs(G) ∼= G. Consider Mn(G) the
(30n− 13)-connected algebra from Definition 4.6. We proved in Lemma 5.9.(2) thatMn(G)
is inflexible. Moreover, since |V (G)| is even, we deduce from the same result thatMn(G) has
even formal dimension.

Consider M̃n(G) the algebra obtained from Mn(G) by the process explained above. It
is still a (30n − 13)-connected algebra whose cohomology is a Poincaré duality algebra. Its
formal dimension is odd, thus the obstruction theory of Barge, [9], and Sullivan, [75], is
trivial. Thus, there exists a (30n − 13)-connected manifold Mn(G) whose Sullivan model is
M̃n(G).

The algebra M̃n(G) is inflexible as a consequence ofMn(G) being inflexible. Moreover,
any self-map f̃ of M̃n(G) is shown in [27, Lemma 3.2] to verify that deg(f̃) = deg(f̃ |Mn(G))2,
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thus deg(f̃) ∈ {0, 1}. By an argument analogous to that of Theorem 5.12, degrees of self-
maps of Mn(G) are equal to those of their respective Sullivan representatives, thus Mn(G) is
an strongly chiral manifold. Furthermore,

G ∼= AutGraphs(G) ∼= E
(
Mn(G)

) ∼= E(Mn(G)0
)
,

thus Mn(G) is the desired manifold.

Remark 5.15. For each k ≥ 1, the rigid Sullivan algebraMk introduced in Definition 4.1 is
inflexible and has even formal dimension, as proven in Lemma 5.9.(1). Thus, these algebras
can also be used in the construction of Proposition 5.14 to obtain, for each k ≥ 1, a (10k+7)-
connected strongly chiral manifold whose rationalisation has a trivial group of self-homotopy
equivalences.

Manifolds provided by Proposition 5.14 can be used to construct inflexible and strongly
chiral product manifolds by exploiting techniques from [64]. In [64, Example 3.7], the author
shows that if N is a simply connected inflexible manifold andM is a closed oriented inflexible
manifold of dimension dimN < dimM that is not simply connected and such that it does
not admit maps of non-zero degree from direct products, then M ×N is inflexible. Here we
prove an “inverse”:

Corollary 5.16. LetM be a non necessarily simply connected closed oriented inflexible (resp.
strongly chiral) manifold that does not admit maps of non-zero degree from direct products.
Then, there exists a simply connected strongly chiral manifold N such that dimN > dimM
and M ×N is inflexible (resp. strongly chiral).

Proof. Let m = dimM , and n ≥ 1 be an integer such that m < 30n−13. Let N be any of the
(30n− 13)-connected strongly chiral manifolds from Proposition 5.14. Since Hm(N ;Q) = 0,
any continuous map f : N → M maps Hm(M ;Q) to 0. Thus the pair (M,N) is under the
assumptions of [64, Theorem 1.4], and the result follows from [64, Corollary 1.5(c)] (resp.
[64, Corollary 1.5(a)]).

We finish this section by remarking that as a consequence of a result of Lambrechts and
Stanley, [23, Proposition A.1], the manifolds obtained in Theorem 5.12, Proposition 5.14 and
Corollary 5.16 can actually be chosen so that they are smooth.

5.4 On a lower bound for the LS-category

Let X be a finite dimensional space. The Lusternik-Schnirelmann category or LS-category of
X, denoted cat(X), is the least integer n such that X admits a covering by n+1 contractible
open subspaces of X. It was first introduced in [60], where the authors show that if X is a
smooth manifold, cat(X) + 1 is a lower bound for the number of critical points of a smooth
function on X. It is a homotopy invariant of X that has been extensively studied.

Then, the rational LS-category of a space X, denoted cat0(X), is defined as the LS-
category of its rationalisation, cat0(X) = cat(X0). The computational power of the algebraic
tools used in Rational Homotopy Theory allows for the proof of different characterizations
and bounds for the rational LS-category of a space, as can be seen in the results by different
authors gathered in [39, Part V]. Furthermore, the study of the rational LS-category is also
useful towards the study of LS-category itself, since cat(X) ≥ cat0(X), [39, Lemma 28.2].
Here, we briefly consider a lower bound of the category of a space, and using the functor
Mn introduced in Definition 4.11 we show that the two numerical invariants involved can be
arbitrarily different.
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Let X be a finite dimensional space. Let Em] (X) be the subgroup of E(X) consisting of
homotopy classes of self-homotopy equivalences of X that induce the identity on the homo-
topy groups πi(X) for i ≤ m. Let E](X) be the subgroup of E(X) of those homotopy classes
of self-homotopy equivalences that induce the identity map on all homotopy groups. The
very well-known result of Dror-Zabrodsky [34] shows that E](X) and Em] (X), m ≥ dim(X),
are nilpotent groups. Thus, the nilpotency class of these groups, denoted by nil

(
Em] (X)

)
and

nil
(
E](X)

)
respectively, are numerical homotopy invariants of X that one can compare to

other classical invariants [5, Problem (9)]: Félix and Murillo proved that ifX is a finite dimen-
sional space, then nil

(
Em] (X0)

)
≤ cat(X)−1 for m ≥ dim(X) and nil

(
E](X0)

)
≤ cat(X)−1,

[41, Theorem 1]. Therefore, it is natural to ask how different these invariants can be.
It turns out that we can use the algebras associated to graphs we introduced in Definition

4.6 to prove that these invariants are arbitrarily different. We do so now.

Theorem 5.17. Given any integer k > 1 there exists a finite dimensional space X such that
cat(X)− nil

(
Em] (X0)

)
≥ k, for m ≥ dim(X). In particular, cat(X)− nil(E](X0)) ≥ k.

Proof. Take G = Ck the directed cycle of k vertices, that is, a digraph with V (G) =
{v1, v2, . . . , vk} and E(G) =

{
(v1, v2), (v2, v3), . . . , (vk−1, vk), (vk, v1)

}
. It is a strongly con-

nected digraph with |V (G)| = |E(G)| = k. Thus, it is in Digraphs+ (see Definition 4.4)
whenever k ≥ 1. Consider any integer n ≥ 1. By Lemma 5.9.(2), the Sullivan modelMn(G)
is elliptic of formal dimension δ = (18n+4)|x1|+k|z|−k |z|−2

3 = k(900n2−710n+139)+540n2−
96n − 48. Thus, there exists X a δ-dimensional space whose minimal model isMn(G), [38,
Theorem A]. Then, Em] (X0) = Em]

(
Mn(G)

)
for anym, and cat(X) ≥ cat(X0) = cat

(
Mn(G)

)
.

Now note that sinceMn(G) is a minimal Sullivan algebra of a finite dimensional space,
its generators are dual to π∗(X) ⊗ Q, Proposition 1.45. Consequently, Em]

(
Mn(G)

)
is the

group of those self-homotopy equivalences of Mn(G) whose linear part is the identity on
indecomposables of Mn(G) up to degree m. Similarly, E]

(
Mn(G)

)
is the subgroup of those

self-homotopy equivalences ofMn(G) whose linear part is the identity map.
According to Theorem 4.14, every automorphism of Mn(G) is completely determined

by the image of the generators xv, that is, by the morphism induced on the module of
indecomposables in degree 180n2−142n+28. Hence, form > 180n2−142n+28, every element
in Em]

(
Mn(G)

)
induces the identity on the indecomposables in degree 180n2−142n+28, thus

it must be the identity. In other words, if m > 180n2 − 142n+ 28, then Em]
(
Mn(G)

)
= {1},

whose nilpotency class is 0. For the same reason, E]
(
Mn(G)

)
= {1}.

Now, sinceMn(G) is elliptic, cat
(
Mn(G)

)
is bounded below by the number of generators

in odd degree [39, Theorem 32.6(iv)], so cat
(
Mn(G)

)
≥ k + 4. Hence, we conclude that

cat(X)− nil
(
Em] (X0)

)
≥ k + 4− 0 ≥ k,

for m ≥ dim(X). Similarly, cat(X)− nil
(
E](X0)

)
≥ k.
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CHAPTER 6

A non rational approach

So far, our realisability problems have been solved by using Rational Homotopy Theory
techniques. As a consequence, the objects that we obtain as an answer to the classical
realisability problem in HoTop (or Kahn’s realisability problem) are rational spaces, which
are not of finite type over Z. Our purpose in this chapter is to find an alternative way of
solving this question by means of integral spaces, that is, spaces of finite type over Z.

With that objective in mind, in Section 1.5 we introduced a framework where the ho-
motopy types of a family of integral spaces are classified using group-theoretical tools: the
A2
n-polyhedra classified by Whitehead and Baues. This chapter is devoted to the study of

self-homotopy equivalences of A2
n-polyhedra, as a way of exploring the classical realisability

problem for groups via spaces of finite type.
We focus on the group Bn+2(X) introduced in Definition 1.69, which by Proposition 1.70

is isomorphic to the group E(X)/E∗(X), one of the distinguished quotients of E(X) for which
a group realisability question has been raised in [37, Problem 19].

In Section 6.1, we study how the cell structure of X is carried onto the group Bn+2(X).
Mainly, we obtain results regarding the finiteness, the realisability of groups that are auto-
morphisms of another group, and the existence of elements of even order in Bn+2(X). We
observe that, unless strong restrictions are imposed on an A2

n-polyhedron X, it must have
self-equivalences of even order.

Along those lines, in Section 6.2 we study obstructions to the existence of elements of
even order in Bn+2(X). Here we prove our two main results for this chapter. Namely, in
Theorem 6.16 we show that if X is a finite type A2

n-polyhedron, n ≥ 3, then either Bn+2(X)
is trivial or it has elements of even order. This allows us to deduce in Corollary 6.17 that
not every group can appear as E(X) for X a finite type A2

n-polyhedron with n ≥ 3.
Then, in Theorem 6.18 we show that if X is a finite type A2

2-polyhedron for which B4(X)
is non-trivial and finite, very strong restrictions have to be imposed on X for it not to have
self-homotopy equivalences of even order. However, at the present we do not know if there
exists an A2

2-polyhedra satisfying these restrictions, and since all our attempts to provide an
example were unsuccessful, we raise Conjecture 6.19.

All things considered, the results from this chapter make us think that A2
n-polyhedra

might not be the best context for our purposes.

91



92 Chapter 6. A non rational approach

6.1 Some general results on self-homotopy equivalences of A2
n-

polyhedra

The Γ-sequence tool introduced in Section 1.5 will help us to illustrate, from an algebraic
point of view, how different restrictions on an A2

n-polyhedron X affect the quotient group
E(X)/E∗(X). We devote this section to that matter. We also obtain several results that
will be needed in the proof of Theorem 6.16 and Theorem 6.18. The following result is a
generalisation of [17, Theorem 4.5].

Proposition 6.1. Let X be an A2
n-polyhedron and suppose that the Hurewicz homomorphism

hn+2 : πn+2(X)→ Hn+2(X) is onto. Then, every automorphism of Hn+2(X) is realised by a
self-homotopy equivalence of X.

Proof. As part of the exact sequence (1.2) for X we have:

· · · −→ πn+2(X) hn+2−−−→ Hn+2(X) bn+2−−−→ Γ1
n

(
Hn(X)

)
−→ πn+1(X) −→ · · ·

Then, since hn+2 is onto by hypothesis, bn+2 is the trivial homomorphism. Thus, for every
fn+2 ∈ Aut

(
Hn+2(X)

)
, bn+2◦fn+2 = bn+2 = 0, so if we take Ω = id, (fn+2, id, id) ∈ Bn+2(X).

Then there exists f ∈ E(X) such that Hn+2(f) = fn+2, Hn+1(f) = id and Hn(f) = id.

We can easily prove that automorphism groups can be realised, a result that can also be
obtained as a consequence of [71, Theorem 2.1]:

Example 6.2. Let G be a group isomorphic to Aut(H) for some abelian group H. Then,
for any integer n ≥ 2, there exists an A2

n-polyhedron X such that G ∼= Bn+2(X): take the
Moore space X = M(H,n+ 1), which in particular is an A2

n-polyhedron. The Γ-sequence of
X, (1.3), is

Hn+2(X) = 0 −→ Γ1
n

(
Hn(X)

)
= 0 −→ H

=−−→ H −→ 0.

Then, for every f ∈ Aut(H), by taking Ω = f we see that (id, f, id) ∈ Bn+2(X), and those
are the only possible Γ-isomorphisms of the Γ-sequence of X. Thus Bn+2(X) ∼= Aut(H) ∼= G.

The use of Moore spaces is not required in the n = 2 case:

Example 6.3. Let G be a group isomorphic to Aut(H) for some abelian group H. Consider
the following object in Γ-sequences4:

Z b4−−→→ Γ(Z2) = Z4 −→ H
=−−→ H −→ 0. (6.1)

By Theorem 1.68, there exists an A2
2-polyhedron X realising this object. In particular,

H4(X) = Z, H3(X) = π3(X) = H and H2(X) = Z2. It is clear from (6.1) that (id, f, id) is
a Γ-isomorphism for every f ∈ Aut(H). Now Aut(Z2) is the trivial group while Aut(Z) =
{− id, id}. It is immediate to check that (− id, f, id) is not a Γ-isomorphism of (6.1) since
id ◦b4 6= b4 ◦ (− id). Then, we obtain that B4(X) ∼= Aut(H).

As not every group G is isomorphic to the automorphism group of an abelian group,
the examples above only provide a partial positive answer to the realisability problem for
Bn+2(X). Indeed, the automorphism group of an abelian group (other than Z2) has elements
of even order. The following results go in that direction:

Lemma 6.4. Let X be an A2
n-polyhedron, n ≥ 2. If Hn(X) is not an elementary abelian

2-group, then Bn+2(X) has an element of order 2.
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Proof. Since Hn(X) is not an elementary abelian 2-group, it admits a non-trivial involution
− id : Hn(X) → Hn(X). But Γ1

n(− id) = id for every n ≥ 2, so (id, id,− id) ∈ Bn+2(X) and
the result follows.

We point out a key difference between the n = 2 and the n ≥ 3 cases: Γ1
2(A) = Γ(A)

is never an elementary abelian 2-group when A is a finitely generated abelian group, as it
can be deduced from Proposition 1.62. However, for n ≥ 3, Γ1

n(A) = A ⊗ Z2 is always an
elementary abelian 2-group. Taking advantage of this fact we can prove the following result:

Lemma 6.5. Let X be an A2
n-polyhedron, n ≥ 3. If any of the homology groups of X is

not an elementary abelian 2-group (in particular, if Hn+2(X) 6= 0), then Bn+2(X) contains
a non-trivial element of order 2.

Proof. Under our assumptions, Γ1
n

(
Hn(X)

)
is an elementary abelian 2-group. For Ω = − id,

the triple (− id,− id,− id) is a Γ-isomorphism of order 2 unless it is trivial, that is, unless
Hn+2(X), Hn+1(X) and Hn(X) are all elementary abelian 2-groups.

We remark that this result does not hold for A2
2-polyhedra. Indeed, if we consider the

construction in Example 6.3 for H = Z2, then B4(X) ∼= Aut(Z2) = {∗} does not contain a
non-trivial element of order 2 although H4(X) = Z is not an elementary abelian 2-group.

We now prove some results regarding the finiteness of Bn+2(X). Recall that if X is a
simply connected finite type space, the homotopy and homology groups Hn(X) and πn(X)
are finitely generated and abelian for n ≥ 1.

Proposition 6.6. Let X be a finite type A2
n-polyhedron, n ≥ 2, with rankHn+2(X) ≥ 2 and

every element of Γ1
n

(
Hn(X)

)
of finite order. Then Bn+2(X) is an infinite group.

Proof. Since rankHn+2(X) ≥ 2, we may write Hn+2(X) = Z2⊕G, G a (possibly trivial) free
abelian group. Consider the Γ-sequence of X:

Z2 ⊕G bn+2−−−→ Γ1
n

(
Hn(X)

) in−−→ πn+1(X) hn+1−−−→ Hn+1(X) −→ 0.

Since bn+2(Z2) ≤ Γ1
n

(
Hn(X)

)
is a finitely generated Z-module with finite order generators,

it is a finite group. Define k = exp
(
bn+2(Z2)

)
and consider the automorphism of Z2 given

by the matrix (
1 k
0 1

)
∈ GL2(Z),

which is of infinite order. If we take f ⊕ idG ∈ Aut(Z2⊕G), then bn+2 ◦ (f ⊕ id) = bn+2, thus
(f ⊕ idG, id, id) ∈ Bn+2(X), which is an element of infinite order.

As we have previously mentioned, Γ1
n

(
Hn(X)

)
is an elementary abelian 2-group, for n ≥ 3.

Hence, from Proposition 6.6 we get:

Corollary 6.7. Let X be a finite type A2
n-polyhedron, n ≥ 3, with rankHn+2(X) ≥ 2. Then

Bn+2(X) is an infinite group.

This result does not hold, in general, for n = 2. However, if A is a finite group, Proposition
1.62 implies that Γ(A) is finite as well so from Proposition 6.6 we get:

Corollary 6.8. Let X be a finite type A2
2-polyhedron with rankH4(X) ≥ 2 and H2(X) finite.

Then B4(X) is an infinite group.

We end this section with one more result on the finiteness of Bn+2(X):
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Proposition 6.9. Let X be an A2
n-polyhedron, n ≥ 3. If Hn(X) = Z2 ⊕ G for a certain

abelian group G, then Bn+2(X) is an infinite group.

Proof. If Hn(X) = Z2 ⊕ G, then Γ1
n

(
Hn(X)

)
= Hn(X) ⊗ Z2 = Z2

2 ⊕ (G ⊗ Z2). Hence
GL2(Z) ≤ Aut

(
Hn(X)

)
and GL2(Z2) ≤ Aut

(
Hn(X)⊗Z2

)
. Moreover, for every f ∈ GL2(Z)

we have f ⊕ idG ∈ Aut
(
Hn(X)

)
which yields, through Γ1

n, an automorphism (f ⊕ idG) ⊗
Z2 = (f ⊗ Z2) ⊕ idG⊗Z2 ∈ Aut

(
Hn(X) ⊗ Z2

)
. This means that the functor Γ1

n restricts to
GL2(Z)→ GL2(Z2), giving us the following commutative diagram:

Aut
(
Hn(X)

)
Aut

(
Hn(X)⊗ Z2

)

GL2(Z) GL2(Z2).

−⊗ Z2

−⊗ Z2

Moreover, − ⊗ Z2 : GL2(Z) → GL2(Z2) has an infinite kernel. Hence, there are infinitely
many morphisms f ∈ Aut

(
Hn(X)

)
such that f ⊗ Z2 = id. For any such a morphism f ,

(id, id, f) is an element of Bn+2(X). Therefore Bn+2(X) is infinite.

6.2 Obstructions to the realisability of groups

We have seen in Section 6.1 that Bn+2(X) contains elements of even order unless strong
restrictions are imposed on the homology groups of the A2

n-polyhedron X. Since we are
interested in realising an arbitrary group G as Bn+2(X) for X a finite type A2

n-polyhedron,
in this section we focus our attention in the remaining situations and prove Theorem 6.16
and Theorem 6.18.

As we shown in Lemma 6.4, if we do not want Bn+2(X) to have elements of order 2 we
have to assume that Hn(X) is an elementary abelian 2-group. To get a better grasp of the
situation, we begin with some previous results regarding the Γ functor in this particular case.

Lemma 6.10. For G an elementary abelian 2-group, Γ(−) : Aut(G)→ Aut
(
Γ(G)

)
is injec-

tive.

Proof. Let us show that the kernel of Γ(−) is trivial. Assume that G is generated by {ej |
j ∈ J}, J an ordered set. If f ∈ Aut(G) is in the kernel of Γ(−), then for each j ∈ J , there
exists a finite subset Ij ⊂ J such that f(ej) =

∑
i∈Ij ei, and

γ(ej) = Γ(f)γ(ej) = γf(ej) = γ

∑
i∈Ij

ei

 =
∑
i∈Ij

γ(ei) +
∑
i<k

ei ⊗ ek,

as a consequence of Proposition 1.62.(3), so Ij = {j} and f(ej) = ej for every j ∈ J .

Definition 6.11. Let G be a p-group. The subgroup of G generated by the elements whose
order divide pi is denoted by Ωi(G).

Lemma 6.12. Let H2 = ⊕ni=1Z2 and χ ∈ Γ(H2) be an element of order 4. If there exists a
non-trivial automorphism of odd order f ∈ Aut(H2) such that Γ(f)(χ) = χ, then there exists
g ∈ Aut(H2) of order 2 such that Γ(g)(χ) = χ.
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Proof. Recall from Proposition 1.62.(3) that we can write h ⊗ h = 2γ(h), for any element
h ∈ H2. Therefore, given a basis {h1, h2, . . . , hn} of H2, and replacing 3γ(hi) by γ(hi)+hi⊗hi
if needed, we can write

χ =
n∑
i=1

a(i)γ(hi) +
n∑

i,j=1
a(i, j)hi ⊗ hj ,

where every coefficient a(i), a(i, j) is either 0 or 1. We now construct inductively a basis
{e1, e2, . . . , en} of H2 as follows. Without loss of generality, assume a(1) = 1 and define
e1 =

∑n
i=1 a(i)hi. Then {e1, h2, . . . , hn} is again a basis of H2 and

χ = γ(e1) + α1e1 ⊗ e1 + β1e1 ⊗
(

n∑
s=2

b(1, s)hs

)
+

n∑
i,j>1

a1(i, j)hi ⊗ hj ,

where every coefficient in the equation is either 0 or 1. Assume that we have constructed a
basis {e1, . . . , er, hr+1, . . . , hn} such that

χ = γ(e1) +
r∑
j=1

αjej ⊗ ej +
r−1∑
j=1

βjej ⊗ ej+1

+ βrer ⊗
(

n∑
s=r+1

b(r, s)hs

)
+

n∑
i,j>r

ar(i, j)hi ⊗ hj ,

where every coefficient in the equation is either 0 or 1. We may assume b(r, r + 1) = 1 and
define er+1 =

∑n
s=r+1 b(r, s)hs. Thus {e1, . . . , er+1, hr+2, . . . , hn} is again a basis of H2 and

χ = γ(e1) +
r+1∑
j=1

αjej ⊗ ej +
r∑
j=1

βjej ⊗ ej+1

+ βr+1er+1 ⊗
(

n∑
s=r+2

b(r + 1, s)hs

)
+

n∑
i,j>r+1

ar+1(i, j)hi ⊗ hj .

Finally, we obtain a basis {e1, e2, . . . , en} of H2 such that

χ = γ(e1) +
n∑
j=1

αjej ⊗ ej +
n−1∑
j=1

βjej ⊗ ej+1, (6.2)

for some coefficients αj ∈ {0, 1}, j = 1, 2, . . . , n, and βj ∈ {0, 1}, j = 1, 2, . . . , n− 1.
Now, for n = 1, H2 = Z2 has a trivial group of automorphisms, so the result holds. For

n = 2, assume that there exists f ∈ Aut(H2) such that Γ(f)(χ) = χ. From Equation (6.2),
χ = Γ(f)

(
γ(e1)

)
+ Γ(f)(P ), where P ∈ Ω1

(
Γ(H2)

)
. Then Γ(f)

(
γ(e1)

)
has a multiple of γ(e1)

as its only summand of order 4, which implies that f(e1) = e1. Then either f(e2) = e2, so f
is trivial, or f(e2) = e1 + e2, so f has order 2.

Henceforth, assume that n ≥ 3. We shall prove that there always exists an automorphism
g ∈ Aut(H2) of order 2 such that Γ(g)(χ) = χ. In order to do so, we discuss the existence
of g in terms of the possible values of the coefficients αn−j and βn−j−1, for j = 0, 1. We
will only define g(en−1) and g(en), since in all cases g(ej) = ej , for j ∈ {1, 2, . . . , n− 2}. To
perform the necessary computations, observe that as a consequence of Proposition 1.62.(3),

Γ(g)(ei ⊗ ej) = Γ(g)
(
γ(ei + ej)− γ(ei)− γ(ej)

)
= γ

(
g(ei) + g(ej)

)
− γ

(
g(ei)

)
− γ

(
g(ej)

)
= g(ei)⊗ g(ej).
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Furthermore, if g(e1) = e1, then Γ(g)(e1) = γ
(
g(e1)

)
= γ(e1).

First notice that if βn−1 = αn = 0, en does not appear in any of the summands of χ.
Then, if we define g(en−1) = en−1 and g(en) = en−1 + en, it is clear that Γ(g)(χ) = χ.
Furthermore, g is clearly of order 2. On the other hand, if βn−1 = αn = 1, this same g
verifies that

g(en−1 ⊗ en + en ⊗ en) = g(en−1)⊗ g(en) + g(en)⊗ g(en)
= en−1 ⊗ (en−1 + en) + (en−1 + en)⊗ (en−1 + en) = en−1 ⊗ en + en ⊗ en.

Since en does not appear in any of the remaining summands of χ, we have that Γ(g)(χ) = χ.
We move on to the case βn−1 6= αn. Assume first that αn = 1 and βn−1 = 0. Then for

βn−2 = αn−1, by defining g(en−1) = en−2 + en−1 and g(en) = en we have an automorphism
of order 2, and computations analogous to the ones above show that Γ(g)(χ) = χ.

On the other hand, if βn−2 = 0 and αn−1 = 1, en−1 only appears in the summand
en−1⊗en−1, and en only appears in en⊗en. Thus, if we define g(en−1) = en and g(en) = en−1,
g is an automorphism of order 2 such that Γ(g)(χ) = χ. Finally, if βn−2 = 1 and αn−1 = 0,
define g(en−1) = en−2 + en−1 and g(en) = en−2 + en. Then g has order 2, and the only
summands of χ not fixed by g are en−2 ⊗ en−1 and en ⊗ en. Nonetheless,

g(en−2 ⊗ en−1 + en ⊗ en) = g(en−2)⊗ g(en−1) + g(en)⊗ g(en)
= en−2 ⊗ (en−2 + en−1) + (en−2 + en)⊗ (en−2 + en) = en−2 ⊗ en−1 + en ⊗ en,

so Γ(g)(χ) = χ.
It remains to consider the cases where αn = 0 and βn−1 = 1. We consider all of the

possible values for αn−1 and βn−2 separately. First, if αn−1 = βn−2 = 0, en−1 and en only
appear in the summand en−1 ⊗ en. Then, if we define g(en−1) = en and g(en) = en−1, it is
clear that g has order 2 and Γ(g)(χ) = χ.

If αn−1 = 1 and βn−2 = 0, define g(en−1) = en−1 +en and g(en) = en. Then g has order 2
and it fixes all summands except those involving en−1, which are en−1⊗ en−1 and en−1⊗ en.
Nonetheless, Γ(g)(χ) = χ since

g(en−1 ⊗ en−1 + en−1 ⊗ en) = g(en−1)⊗ g(en−1) + g(en−1)⊗ g(en)
= (en−1 + en)⊗ (en−1 + en) + (en−1 + en)⊗ en = en−1 ⊗ en−1 + en−1 ⊗ en.

Moving on, if αn−1 = 0 and βn−2 = 1, define g(en−1) = en−2+en and g(en) = en−2+en−1.
Then g has order 2. Moreover, all summands of χ but those involving en−1 and en, which
are en−2 ⊗ en−1 and en−1 ⊗ en, are fixed by g. But Γ(g)(χ) = χ since

g(en−2 ⊗ en−1 + en−1 ⊗ en) = g(en−2)⊗ g(en−1) + g(en−1)⊗ g(en)
= en−2 ⊗ (en−2 + en) + (en−2 + en)⊗ (en−2 + en−1) = en−2 ⊗ en−1 + en−1 ⊗ en.

Finally, we have the case where αn−1 = βn−2 = 1. Define g(en−1) = en−2 + en−1 + en,
and g(en) = en, so g is an automorphism of order 2. The only summands not fixed by g are
those involving en−1, which are en−2 ⊗ en−1, en−1 ⊗ en−1 and en−1 ⊗ en. Nonetheless,

g(en−2 ⊗ en−1 + en−1 ⊗ en−1 + en−1 ⊗ en) = g
(
en−1 ⊗ (en−2 + en−1 + en)

)
= (en−2 + en−1 + en)⊗ en−1 = en−2 ⊗ en−1 + en−1 ⊗ en−1 + en−1 ⊗ en,

so again Γ(g)(χ) = χ. The result follows.

Definition 6.13. Let f : H −→ K be a morphism of abelian groups. We say that a non-trivial
subgroup A ≤ K is f -split if there exist groups B ≤ H and C ≤ K such that H ∼= A ⊕ B,
K = A⊕ C and f can be written as idA⊕g : A⊕B → A⊕ C for some g : B → C.
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Henceforward we will make extensive use of this notation applied to the Hurewicz mor-
phism

hn+1 : πn+1(X) −→ Hn+1(X).

We prove the following:

Lemma 6.14. Let X be an A2
n-polyhedron, n ≥ 2. Let A ≤ Hn+1(X) be an hn+1-split

subgroup, thus Hn+1(X) = A ⊕ C for some abelian group C. Then, for every fA ∈ Aut(A)
there exists f ∈ E(X) inducing (id, fA ⊕ idC , id) ∈ Bn+2(X).

Proof. By hypothesis Hn+1(X) = A⊕ C, πn+1(X) ∼= A⊕B, for some abelian group B, and
hn+1 can be written as idA⊕g for some morphism g : B → C. Thus, for every fA ∈ Aut(A)
we have a commutative diagram

Hn+2(X) Γ1
n

(
Hn(X)

)
A⊕B A⊕ C 0

Hn+2(X) Γ1
n

(
Hn(X)

)
A⊕B A⊕ C 0.

bn+2 hn+1

bn+2 hn+1

id id fA ⊕ idB fA ⊕ idC

Hence (id, fA ⊕ idC , id) ∈ Bn+2(X), and by Theorem 1.68 there exists f ∈ E(X) such that
Hn+1(f) = fA ⊕ idC , Hn+2(f) = id and Hn(f) = id.

The following lemma is crucial in the proof of Theorem 6.16 and Theorem 6.18:

Lemma 6.15. Let X be a finite type A2
n-polyhedron, n ≥ 2. Suppose that there exist hn+1-

split subgroups of Hn+1(X). Then:

(1) If n ≥ 3, Bn+2(X) is either trivial or it has elements of even order.

(2) If B4(X) is finite and non-trivial, then it has elements of even order.

Proof. First of all, observe that we just need to consider when Hn(X) is an elementary
abelian 2-group. In other case, the result is a consequence of Lemma 6.4.

Let A be an arbitrary hn+1-split subgroup of Hn+1(X). If A 6= Z2, there is an involution
ι ∈ Aut(A) that induces, by Lemma 6.14, an element (id, ι ⊕ id, id) ∈ Bn+2(X) of order 2,
and the result follows. Hence we can assume that every hn+1-split subgroup of Hn+1(X) is
Z2.

Both assumptions, Hn(X) being an elementary abelian 2-group and every hn+1-split
subgroup of Hn+1(X) being Z2, imply that Hn+1(X) is a finite 2-group. Indeed, since Hn(X)
is finitely generated, Γ1

n

(
Hn(X)

)
is a finite 2-group and so is coker bn+2. Then, since Hn+1(X)

is also finitely generated, any direct summand of Hn+1(X) which is not a 2-group would be
hn+1-split, contradicting our assumption that every hn+1-split subgroup of Hn+1(X) is Z2.

To prove our lemma, we start with the case A = Hn+1(X) is hn+1-split.
When Hn+2(X) = 0, the Γ-sequence of X becomes then the short exact sequence

0→ Γ1
n

(
Hn(X)

)
→ Γ1

n

(
Hn(X)

)
⊕ Z2 → Z2 → 0.

Notice that any automorphism of order 2 in Hn(X) yields an automorphism of order 2 in
Γ1
n

(
Hn(X)

)
since Γ1

n is injective on morphisms: it is immediate for n ≥ 3, and for n = 2 we
apply Lemma 6.10. As our sequence is split, any f ∈ Aut

(
Hn(X)

)
induces the Γ-isomorphism

(id, id, f) of the same order. Hence, for Hn(X) 6= Z2 it suffices to consider an involution. For
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Hn(X) = Z2, since by hypothesis Hn+1(X) = Z2 and Hn+2(X) = 0, the only Γ-isomorphism
is (id, id, id) and therefore Bn+2(X) is trivial as claimed.

When Hn+2(X) 6= 0, for n ≥ 3 the result follows directly from Lemma 6.5. For n = 2
we also assume that B4(X) is finite and non-trivial. Hence, since H2(X) is an elementary
abelian 2-group, Proposition 6.6 implies that H4(X) = Z. Then, if a Γ-isomorphism of the
form (− id, f, id) exists, it is of even order. In particular, if Im b4 is a subgroup of Γ

(
H2(X)

)
of order 2, (− id, id, id) is a Γ-isomorphism of even order.

Assume otherwise that Im b4 is a group of order 4. If a Γ-isomorphism (id, f, id) of odd
order exists, then Γ(f) ◦ b4 = b4. In this situation, by Lemma 6.12 for χ = b4(1), there exists
g ∈ Aut

(
H2(X)

)
an automorphism of order 2 such that Γ(g)b4(1) = b4(1). Moreover, as we

are in the case A = H3(X) being h3-split, (id, g, id) ∈ B4(X) is a Γ-isomorphism of order 2.
We deal now with the case A � Hn+1(X). Since A = Z2 is a proper hn+1-split subgroup

of Hn+1(X), there exist non-trivial groups B and C such that

πn+1(X) = Z2 ⊕B
hn+1−−−→ Z2 ⊕ C = Hn+1(X)

(t, b) 7−−−→ (t, g(b))

for some group morphism g : B → C. Moreover, Hn+1(X) is a finite 2-group, thus C is a
(non-trivial) finite 2-group and there exists an epimorphism τ : C → Z2.

Define f ∈ Aut(Z2 ⊕ C) = Aut
(
Hn+1(X)

)
, and Ω ∈ Aut

(
Z2 ⊕ B

)
= Aut

(
πn+1(X)

)
to

be the non-trivial involutions given by f(t, c) =
(
t + τ(c), c

)
and Ω(t, b) =

(
t + τ(g(b)), b

)
.

By construction, hn+1Ω = fhn+1, and if (t, b) ∈ coker bn+2 = kerhn+1 (thus g(b) = 0), then
Ω(t, b) = (t, b). In other words, (id, f, id) ∈ Bn+2(X) and it has order 2.

We now prove our main results.

Theorem 6.16. Let X be a finite type A2
n-polyhedron, n ≥ 3. Then Bn+2(X) is either the

trivial group or it has elements of even order.

Proof. Assume that Hn(X) and Hn+1(X) are elementary abelian 2-groups, and Hn+2(X) =
0. Otherwise, there would already be elements of order 2 in Bn+2(X) as a consequence of
Lemma 6.5.

Write Hn(X) = ⊕IZ2, I an ordered set. Since n ≥ 3, Γ1
n = − ⊗ Z2, so Γ1

n

(
Hn(X)

)
=

Hn(X). We can also assume that there are no subgroups in Hn+1(X) that are hn+1-split. In
other case, we would deduce from Lemma 6.15 that there are elements of order 2 in Bn+2(X).
Thus Hn+1(X) = ⊕JZ2 with J ⊂ I, and the Γ-sequence corresponding to X is

0 −→
⊕
I

Z2
b−−→

⊕
I−J

Z2

⊕ (⊕
J

Z4

)
h−−→
⊕
J

Z2 −→ 0.

We may rewrite the sequence as

0 −→

⊕
I−J

Z2

⊕ (⊕
J

Z2

)
b−−→

⊕
I−J

Z2

⊕ (⊕
J

Z4

)
h−−→
⊕
J

Z2 −→ 0

and assume that b(x, y) = (x, 2y) and h(x, y) = y mod 2. Clearly any f ∈ Aut
(⊕

I−J Z2
)

induces a Γ-isomorphism (0, id, f ⊕ id) of the same order.
On the one hand, for |I − J | ≥ 2,

⊕
I−J Z2 has an involution and therefore Bn+2(X)

has elements of even order. On the other hand, for |I − J | < 2, we consider the remaining
possibilities.

Suppose that |I − J | = 1. Then, πn+1(X) = Z2 ⊕ (⊕JZ4). If J is trivial, Bn+2(X) is
clearly trivial as well. Otherwise, suppose that I − J = {i} and choose j ∈ J . Define f ∈
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Aut
(
Z2⊕Z2⊕ (⊕I−{i,j}Z2)

)
by f(x, y, z) = (x, x+y, z) and g ∈ Aut

(
Z2⊕Z4⊕ (⊕I−{i,j}Z4)

)
by g(x, y, z) = (x, 2x + y, z). Then (id, id, f) is a Γ-isomorphism of order 2 since we have a
commutative diagram

0 Z2 ⊕ Z2 ⊕ (⊕I−{i,j}Z2) Z2 ⊕ Z4 ⊕ (⊕I−{i,j}Z4) Z2 ⊕ (⊕J−{j}Z2) 0

0 Z2 ⊕ Z2 ⊕ (⊕I−{i,j}Z2) Z2 ⊕ Z4 ⊕ (⊕I−{i,j}Z4) Z2 ⊕ (⊕J−{j}Z2) 0.

f g id

Suppose that I = J . If Hn(X) = Hn+1(X) = Z2, Bn+2(X) is trivial. If not, choose
i, j ∈ I and define maps f ∈ Aut

(
Z2 ⊕ Z2 ⊕ (⊕I−{i,j}Z2)

)
by f(x, y, z) = (y, x, z), and

g ∈ Aut
(
Z4⊕Z4⊕ (⊕I−{i,j}Z4)

)
by g(x, y, z) = (y, x, z). We have the following commutative

diagram

0 Z2 ⊕ Z2 ⊕ (⊕I−{i,j}Z2) Z4 ⊕ Z4 ⊕ (⊕I−{i,j}Z4) Z2 ⊕ Z2 ⊕ (⊕I−{i,j}Z2) 0

0 Z2 ⊕ Z2 ⊕ (⊕I−{i,j}Z2) Z4 ⊕ Z4 ⊕ (⊕I−{i,j}Z4) Z2 ⊕ Z2 ⊕ (⊕I−{i,j}Z2) 0.

f g f

Then, (0, f, f) is a Γ-isomorphism of order 2.

As a consequence, we obtain a negative answer to the problem of realising groups as
self-homotopy equivalences of finite type A2

n-polyhedra:

Corollary 6.17. Let G be a non nilpotent finite group of odd order. Then, for any n ≥ 3
and for any finite type A2

n-polyhedron X, G 6∼= E(X).

Proof. Assume that there exists a finite type A2
n-polyhedron X such that E(X) ∼= G. Then,

if E(X) 6= E∗(X), the quotient E(X)/E∗(X) is a finite group of odd order, which contradicts
Theorem 6.16. Thus G ∼= E(X) = E∗(X). However, since X is a 1-connected and finite-
dimensional space, E∗(X) is a nilpotent group, [34, Theorem D], which contradicts the fact
that G is non nilpotent.

We now prove our second main result for this chapter. Recall that for a group G, rankG
is the smallest cardinal of a set of generators for G, [61, p. 91]. Then:

Theorem 6.18. Suppose that X is a finite type A2
2-polyhedron with a non-trivial and finite

B4(X) of odd order. Then the following must hold:

(1) rankH4(X) ≤ 1;

(2) π3(X) and H3(X) are 2-groups, and H2(X) is an elementary abelian 2-group;

(3) rankH3(X) ≤ 1
2 rankH2(X)

(
rankH2(X) + 1

)
− rankH4(X) ≤ rank π3(X);

(4) the natural action of B4(X) on H2(X) induces a faithful representation B4(X) ≤
Aut

(
H2(X)

)
.
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Proof. By hypothesis B4(X) is a finite group of odd order. From Lemma 6.4 we deduce
that H2(X) is an elementary abelian 2-group and from Proposition 1.62 that Γ

(
H2(X)

)
is a 2-group. In particular, every element of Γ

(
H2(X)

)
is of finite order, and therefore,

by Proposition 6.6, rankH4(X) ≤ 1 so we have Theorem 6.18.(1). Now, any element in
B4(X) is of the form (0, f2, f3) if H4(X) = 0 or (id, f2, f3) if H4(X) = Z. Notice that a Γ-
morphism of the form (− id, f2, f3) has even order thus it cannot be a Γ-isomorphism under
our hypothesis. Therefore, if H4(X) = Z, then b4(1) generates a Z4 factor in Γ

(
H2(X)

)
, and

under our hypothesis the equation

rank Γ
(
H2(X)

)
= rankH4(X) + rank(coker b4)

holds for rankH4(X) ≤ 1.
Observe that any Γ-isomorphism of X induces a chain morphism of the short exact

sequence
0→ coker b4 → π3(X) h3−→ H3(X)→ 0.

We will draw our conclusions from this induced morphism, which can be seen as an automor-
phism of π3(X) that maps the subgroup i2(coker b4) to itself, thus inducing an isomorphism
on the quotient, H3(X).

As we mentioned above, Γ
(
H2(X)

)
is a 2-group. Then coker b4 is a quotient of a 2-group

so a 2-group itself. We claim that H3(X) is also a 2-group: otherwise, H3(X) has a summand
whose order is either infinite or odd and therefore this summand would be h3-split, which
from Lemma 6.15 implies that B4(X) has elements of even order, leading to a contradiction.
Since coker b4 and H3(X) are 2-groups, so is π3(X), proving thus Theorem 6.18.(2).

Moreover, no subgroup of H3(X) can be h3-split as a consequence of Lemma 6.15,
and thus, rankH3(X) ≤ rank(coker b4) = rank Γ

(
H2(X)

)
− rankH4(X). We can compute

rank Γ
(
H2(X)

)
using Proposition 1.62 and immediately obtain Theorem 6.18.(3).

Now one can easily check that Ω1
(
π3(X)

)
≤ i2(coker b4) and, from [45, Ch. 5, Theorem

2.4], we obtain that any automorphism of odd order of π3(X) acting as the identity on
i2(coker b4) must be the identity.

Then, if (id, f3, f2) ∈ B4(X) is a Γ-morphism with f3 non-trivial, f3 has odd order, so
we may assume that Ω: π3(X) → π3(X) (see Definition 1.66) has odd order too. By the
argument above, it must induce a non-trivial homomorphism on i2(coker b4) and therefore
f2 is non-trivial as well. Thus, the natural action of B4(X) on H2(X) must be faithful, since
any Γ-automorphism (id, f3, f2) ∈ B4(X) induces a non-trivial f2 ∈ Aut

(
H2(X)

)
. Then,

Theorem 6.18.(4) follows.

However, it is worth mentioning that our attempts to find a space satisfying the hypothesis
of Theorem 6.18 have been unsuccessful. We therefore raise the following conjecture:

Conjecture 6.19. Let X be an A2
2-polyhedron. If B4(X) is a non-trivial finite group, then

it necessarily has an element of order 2.
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En esta tesis nos interesamos por los problemas de realizabilidad, que si bien surgen de forma
natural y tienen un planteamiento muy sencillo, no son por lo general fáciles de resolver. Un
ejemplo de un problema de este tipo es el denominado problema de Galois inverso, que
pregunta si todo grupo aparece como grupo de Galois de una extensión finita de Q. Hilbert
fue el primero en estudiar este problema en profundidad a finales del siglo XIX, [52], y a día
de hoy continúa abierto.

En la Topología Algebraica, donde las estructuras algebraicas juegan un papel fundamen-
tal, distintos problemas de realizabilidad han sido planteados y estudiados. Un problema de
realizabilidad clásico es el problema de realizabilidad para álgebras de cohomología, propuesto
por Steenrod en 1961, [73]. Este problema consiste en determinar qué álgebras aparecen como
álgebra de cohomología de un espacio topológico, y ha sido bastante estudiado, [1, 3]. Otro
problema propuesto por Steenrod es el problema de los G-espacios de Moore, [59, Problem
51]. Consiste en determinar si, dado un grupo G, todo ZG-módulo aparece como homolo-
gía de algún G-espacio de Moore simplemente conexo. Una respuesta negativa fue obtenida
en 1981, [21], y una caracterización de aquellos grupos G para los que todo ZG-módulo es
realizable apareció en 1987, [78].

Sin embargo, nuestra atención se centra en el llamado problema de realizabilidad de gru-
pos, que pregunta lo siguiente: dada una categoría C, ¿aparece todo grupo como grupo de
automorfismos de un objeto de C? Este problema ha sido estudiado en distintas áreas de la
combinatoria, como se deduce de [7, 8], de donde obtenemos la siguiente terminología: si un
grupo G es el grupo de automorfismos de un objeto X ∈ Ob(C), es decir, si G ∼= AutC(X),
diremos que X realiza a G, y que G es realizable en C. Una categoría C en la que todo grupo
finito es realizable se dice finitamente universal, mientras que una categoría en la que todo
grupo es realizable se dice universal.

Pero nuestro interés en la combinatoria transciende a la terminología, ya que la solución
del históricamente importante problema de realizabilidad de grupos en la categoría de grafos
supone un elemento clave en buena parte de nuestras construcciones. Este problema fue
propuesto por König ya en 1936, [58], y apenas tres años después Frucht demostró que la
categoría de grafos (finitos) es finitamente universal, [43]. Sin embargo, el problema general
permaneció abierto durante más de 20 años, hasta que de Groot, en 1959, [32], y Sabidussi,
en 1960, [72], demostraron de manera independiente que la categoría de grafos es universal.

No obstante, el problema que motiva esta tesis es el denominado problema de realizabi-
lidad de grupos en la categoría HoTop, la categoría de homotopía de espacios topológicos
punteados. Fue propuesto por Kahn en los años 60 y pregunta si todo grupo aparece como
grupo de automorfismos de un espacio en HoTop. Es un problema que ha recibido una aten-
ción considerable; prueba de ello es su aparición en distintos sondeos y listas de problemas
abiertos, [4, 5, 37, 55, 56, 71]. Recuérdese que, dado un espacio X, el grupo AutHoTop(X)
suele denotarse por E(X), y es el denominado grupo de auto-equivalencias de homotopía de
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X; sus elementos son aquellas clases de homotopía de auto-aplicaciones continuas de X que
tienen inversa homotópica.

Un primer ejemplo que se nos viene a la cabeza a la hora de realizar grupos como auto-
equivalencias de homotopía de espacios son los espacios de Eilenberg-MacLane. En efecto,
si H es un grupo abeliano y n ≥ 2 es un entero, E

(
K(H,n)

) ∼= Aut(H). Sin embargo, esto
no proporciona una solución completa a este problema, pues no todo grupo G es isomorfo a
Aut(H) para algún H (así sucede, por ejemplo, con Zp para p impar).

El mayor escollo a la resolución de este problema radica precisamente en que, a excepción
del uso de espacios de Eilenberg-MacLane, no existe una forma obvia de obtener espacios que
realicen a un grupo dado. En consecuencia, las herramientas con las que se contaba en aquel
momento para tratar seriamente el problema de Kahn eran insuficientes, y durante décadas
este problema solo fue estudiado utilizando técnicas ad-hoc para ciertas familias de grupos,
[15, 16, 36, 62, 65].

Este escollo fue superado gracias a un método general obtenido por Costoya y Viruel,
[27], que proporciona una solución positiva al problema de realizabilidad de Kahn en el caso
de grupos finitos: para todo grupo finito G, existe un espacio topológico X (de hecho, una
cantidad infinita de ellos) de modo que G ∼= E(X) ([27, Theorem 1.1]). Son capaces de
proporcionar este método combinando la solución de Frucht al problema de realizabilidad
de grupos en la categoría de grafos con las notables características computacionales de las
herramientas algebraicas involucradas en la Teoría de Homotopía Racional.

Nuestro objetivo principal en esta tesis es el de extender este tipo de técnicas al estudio de
otros problemas de realizabilidad. Por un lado, mejoramos algunos de los resultados en [27],
y por otro, estudiamos problemas de realizabilidad en otras categorías además de HoTop.
Nótese que la Teoría de Homotopía Racional estudia espacios que no son de tipo finito sobre
Z (véase la Definición 1.36) y que por tanto no son geométricamente sencillos. Esto nos lleva
a considerar también un marco alternativo (A2

n-poliedros) con el objetivo de proporcionar
una solución al problema de Kahn en términos de espacios enteros.

Comenzamos introduciendo dos generalizaciones del problema de realizabilidad de grupos,
al que nos referiremos a partir de ahora como problema de realizabilidad de grupos clásico. La
primera generalización que vamos a considerar se desarrolla en el ámbito de las categorías de
flechas. Recuérdese que dada una categoría C, su categoría de flechas Arr(C) es una categoría
cuyos objetos son los morfismos f ∈ HomC(A1, A2), y donde un morfismo entre dos objetos
f ∈ HomC(A1, A2) y g ∈ HomC(B1, B2) es un par de morfismos (f1, f2) ∈ HomC(A1, B1) ×
HomC(A2, B2) tales que g ◦ f1 = f2 ◦ f . Entonces, cuando consideramos f ∈ HomC(A1, A2)
vemos que AutArr(C)(f), que por abuso de notación denotamos simplemente por AutC(f),
es un subgrupo de AutC(A1) × AutC(A2). Por consiguiente, surge naturalmente el siguiente
problema.

Problema 1. Sea C una categoría. Dados grupos G1, G2 y H ≤ G1×G2, ¿existe f : A1 → A2
un objeto en Arr(C) tal que AutC(A1) ∼= G1, AutC(A2) ∼= G2, y AutC(f) ∼= H?

La segunda generalización del problema de realizabilidad de grupos clásico trata de rea-
lizar representaciones por permutaciones, es decir, acciones por permutaciones de un grupo
en un conjunto. Si C es una categoría cuyos objetos pueden verse como conjuntos, podemos
pensar en realizar en C una representación por permutaciones de la siguiente manera:

Problema 2. Sea ρ : G → Sym(V ) una representación por permutaciones y sea C una
categoría cuyos objetos son conjuntos. ¿Existe un G-objeto (fiel) A ∈ Ob(C) de modo que
V puede verse como un subconjunto AutC(A)-invariante de A y tal que la restricción de la
G-acción a V sea ρ?

Pretendemos resolver estos problemas siguiendo las técnicas de Costoya-Viruel, es decir,
resolviéndolos en primer lugar en la categoría C = Graphs para posteriormente trasladar esa
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solución a un marco algebraico apropiado (coálgebras y álgebras graduadas conmutativas
diferenciales). Empecemos introduciendo nuestra solución a los Problemas 1 y 2 en Graphs.

Siguiendo el esquema de la solución al problema clásico proporcionada por Frucht, [43],
empezamos trabajando en un marco más general que el de grafos: la categoría de sistemas
relacionales binarios sobre un conjunto I, véase la Definición 1.1. La ventaja que proporcio-
nan estos objetos combinatorios más generales es la posibilidad de utilizar etiquetas en las
aristas para codificar información que proviene del grupo. Así pues, partimos de la solución
al problema de realizabilidad clásico en IRel, los diagramas de Cayley, y la modificamos para
codificar la información adicional necesaria para dar solución a los problemas planteados.

La base de nuestra solución al Problema 1 en IRel es un resultado clásico y elemental de
teoría de grupos que caracteriza a los subgrupos de un producto directo de dos grupos, el Lema
de Goursat (véase el Lema 2.1). Utilizando esta caracterización somos capaces de construir,
asociados a dos grupos cualesquiera G1, G2 y a un subgrupo H ≤ G1 × G2, dos sistemas
relacionales binarios G1 y G2 sobre un cierto conjunto I (Definición 2.7) y un morfismo entre
ellos ϕ : G1 → G2 (Definición 2.10) que nos permiten deducir el siguiente resultado.

Teorema 2.16. Sean G1 y G2 dos grupos y sea H ≤ G1 × G2. Existe un morfismo de
sistemas binarios relacionales sobre un cierto conjunto I, ϕ : G1 → G2, tal que AutIRel(G1),
AutIRel(G2) y AutIRel(ϕ) son respectivamente isomorfos a G1, G2 y H.

Respecto al Problema 2, en la Definición 2.18 introducimos, asociado a una representación
por permutaciones ρ : G→ Sym(V ), un sistema relacional binario G sobre un cierto conjunto
I para el que demostramos el siguiente resultado.

Teorema 2.26. Sea G un grupo y V un conjunto. Sea ρ : G→ Sym(V ) una representación
por permutaciones de G en V . Existe un sistema relacional binario G sobre un cierto conjunto
I tal que

(1) V ⊂ V (G) y cada ψ ∈ AutIRel(G) deja V invariante;

(2) AutIRel(G) ∼= G;

(3) la aplicación restricción G ∼= AutIRel(G)→ Sym(V ) es ρ;

(4) existe una acción fiel ρ̄ : G ∼= AutIRel(G) → Sym
(
V (G) \ V

)
tal que la aplicación

restricción G ∼= AutIRel(G)→ Sym
(
V (G)

)
es ρ⊕ ρ̄.

Una vez resueltos ambos problemas en IRel, el siguiente objetivo es trasladar estas so-
luciones a Graphs. Para ello utilizamos el reemplazamiento de flechas, es decir, asociamos a
cada etiqueta de nuestros sistemas I-relacionales un cierto grafo asimétrico (un grafo cuyo
único automorfismo es la identidad) de modo que grafos asociados a etiquetas distintas no
sean isomorfos, y sustituimos las aristas etiquetadas del sistema relacional por estos grafos.
Si elegimos los grafos asimétricos con cuidado, podemos asegurar que a través de un au-
tomorfismo del grafo resultante tras el reemplazamiento de flechas solo pueden ir a copias
de sí mismos, es decir, juegan el mismo papel que la arista dirigida y etiquetada a la que
sustituyen.

Si bien se pueden encontrar resultados de esta índole en la literatura, estos se centran
exclusivamente en preservar los grupos de automorfismos, por lo que no son suficientes para
nuestros propósitos. No obstante, utilizando este tipo de técnicas, somos capaces de obte-
ner un resultado lo bastante potente como para permitirnos traducir las soluciones de los
Problemas 1 y 2 a la categoría de grafos:

Teorema 2.33. Sean G′1, G′2 dos sistemas relacionales binarios sobre un cierto conjunto I
para los que existe un cardinal α de modo que deg(v) ≤ α (véase la Definición 1.8), para
todo v ∈ V (G′1) ∪ V (G′2). Sea ϕ′ : G′1 → G′2 un morfismo de sistemas I-relacionales binarios.
Existen grafos G1,G2 y un morfismo entre ellos ϕ : G1 → G2 de manera que:



104 Realisability problems in Algebraic Topology

(1) existe un subconjunto V (G′k) ⊂ V (Gk) que queda invariante a través de los automor-
fismos de Gk, k = 1, 2;

(2) si ψ ∈ AutGraphs(Gk), la restricción ψ′ = ψ|V (G′
k

) está en AutIRel(G′k), para k = 1, 2;

(3) la aplicación Ψk : AutGraphs(Gk)
∼=−→ AutIRel(G′k) que lleva ψ ∈ AutGraphs(Gk) a la

restricción Ψk(ψ) = ψ|V (G′
k

) es un isomorfismo de grupos, para k = 1, 2;

(4) ϕ|V (G′1) = ϕ′ : V (G′1)→ V (G′2) y AutIRel(ϕ′) ∼= AutGraphs(ϕ).

Una vez probado este resultado, resulta sencillo trasladar el Teorema 2.16 a la categoría
C = Graphs, proporcionando una solución afirmativa al Problema 1 en este ámbito:

Teorema 2.37. Sean G1, G2 y H ≤ G1 ×G2 grupos. Existen grafos G1, G2 y un morfismo
entre ellos ϕ : G1 → G2 de modo que AutGraphs(Gk) ∼= Gk, k = 1, 2, y AutGraphs(ϕ) ∼= H.

De manera análoga, observamos que el Teorema 2.33 puede utilizarse para trasladar la
solución del Problema 2 en IRel, Teorema 2.26, a Graphs. Obtenemos así una generalización
de [19, Theorem 1.1]:

Teorema 2.41. Sea G un grupo, V un conjunto y ρ : G→ Sym(V ) una representación por
permutaciones de G en V . Existe un grafo G tal que

(1) V ⊂ V (G) y todo ψ ∈ AutGraphs(G) deja invariante a V ;

(2) AutGraphs(G) ∼= G;

(3) la restricción G ∼= AutGraphs(G)→ Sym(V ) es precisamente ρ;

(4) existe una acción fiel ρ̄ : G ∼= AutGraphs(G) → Sym
(
V (G) \ V

)
tal que la aplicación

restricción G ∼= AutGraphs(G)→ Sym
(
V (G)

)
es ρ⊕ ρ̄.

Además, observamos que si los grupos y conjuntos involucrados son finitos, los Problemas
1 y 2 admiten una solución en términos de grafos finitos, véase el Corolario 2.38 y el Corolario
2.42. Este hecho resulta de suma importancia a la hora de resolver estos problemas enHoTop.

Ahora que hemos obtenido una solución a los problemas de realizabilidad generalizados en
la categoría de grafos, podemos proceder a tratar estos problemas en estructuras algebraicas.
Empezamos con las coálgebras, véase la Definición 1.22. Nos interesa este marco pues si bien
se sabe mucho acerca de los grupos de automorfismos de álgebras (véanse, por ejemplo, las
referencias [25, 28, 57] para el caso asociativo y [44] para el caso no asociativo), en el caso de
sus estructuras duales, las coálgebras, se sabe muy poco. Además, y dado que el dual de un
álgebra infinito-dimensional no es en general una coálgebra, no se pueden deducir resultados
en este sentido por dualización de la literatura existente en el caso de las álgebras.

En consecuencia, nuestro objetivo en este ámbito es proporcionar los primeros resulta-
dos respecto al problema de realizabilidad de grupos clásico en la categoría de coálgebras,
C = Coalgk, además de considerar los Problemas 1 y 2. En esta tesis no somos capaces de
obtener coálgebras cuyo grupo de automorfismos es un grupo dado G; en su lugar, obtenemos
coálgebras para las que G aparece como la imagen de la restricción de sus automorfismos a
su conjunto de elementos de grupo, véase la Definición 1.26.

Nuestro punto de partida es kG la k-coálgebra de caminos asociada al grafo dirigido
G, Definición 1.34. Es sencillo comprobar que el conjunto de elementos de grupo de kG es
precisamente V (G). Es más, todo morfismo de digrafos σ : G1 → G2 induce un morfismo de
coálgebras kG1 → kG2 cuya restricción a los elementos grupo de kG1 es precisamente σ.
En consecuencia, no es difícil observar que AutDigraphs(G) ≤ AutCoalgk(kG). Sin embargo, el
grupo AutCoalgk(kG) resulta ser demasiado grande.
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Así pues, nuestra manera de enfrentarnos a este problema es quedarnos exclusivamente
con la información mínima estrictamente necesaria en la coálgebra de caminos para que esta
siga modelando al grafo. Es decir, nos quedamos únicamente con los generadores asociados
a caminos de longitud 0 (vértices) y de longitud 1 (aristas):

Definición 3.1. Sea k un cuerpo y G un digrafo. Definimos una coálgebra C(G) = (C,∆, ε)
con C = k{v | v ∈ V (G)} ⊕ k{e | e ∈ E(G)} y donde

• para cada v ∈ V (G), ∆(v) = v ⊗ v y ε(v) = 1;

• para cada e = (v1, v2) ∈ E(G), ∆(e) = v1 ⊗ e+ e⊗ v2 y ε(e) = 0.

No es difícil ver que la coálgebra C(G) verifica las propiedades que nos interesaban de kG, y
en consecuencia tenemos un funtor fiel C : Digraphs→ Coalgk, Definición 3.4. Si calculamos
los automorfismos de C(G) para un digrafo G fijado podemos observar lo siguiente:

Teorema 3.9. Sea k un cuerpo y G un digrafo. La k-coálgebra C(G) introducida en la De-
finición 2.18 es tal que G

(
C(G)

)
= V (G) y la aplicación restricción AutCoalgk

(
C(G)

)
→

Sym
(
G(C(G))

)
= Sym

(
V (G)

)
induce una sucesión exacta corta escindida

1 −→
∏

e∈E(G)

(
k o k×

)
−→ AutCoalgk

(
C(G)

)
−→ AutDigraphs(G) −→ 1.

Como consecuencia inmediata, y dado que todo grupo es realizable como grupo de auto-
morfismos de un grafo, [32, 72], obtenemos el siguiente resultado:

Corolario 3.11. Sea k un cuerpo y G un grupo. Existe una k-coálgebra C verificando que
AutCoalgk(C) ∼= K o G, donde K es un producto directo de grupos de la forma k o k×. Es
más, G es la imagen de la restricción de los automorfismos de C a Sym

(
G(C)

)
.

Así, utilizando el funtor C y sus propiedades, del Teorema 3.9 se deduce el siguiente
resultado respecto al Problema 1:

Teorema 3.12. Sean G1, G2 y H ≤ G1×G2 grupos. Sea k un cuerpo. Existen k-coálgebras
C1 y C2 y un morfismo entre ellas ϕ ∈ HomCoalgk(C1, C2) de modo que

(1) AutCoalgk(Ck) ∼= Kk o Gk, donde Gk es la imagen de la restricción AutCoalgk(Ck) →
Sym

(
G(Ck)

)
y Kk es producto directo de factores isomorfos a k o k×, k = 1, 2;

(2) AutCoalgk(ϕ) ∼= KoH, donde H es imagen de la aplicación restricción AutCoalgk(ϕ)→
Sym

(
G(C1)

)
× Sym

(
G(C2)

)
y K ≤ K1 ×K2.

Del mismo modo, respecto al Problema 2 probamos lo siguiente:

Teorema 3.13. Sea G un grupo, k un cuerpo y ρ : G → Sym(V ) una representación por
permutaciones de G en un conjunto V . Existe una G-coálgebra C tal que:

(1) G actúa fielmente en C, es decir, la G-acción induce un monomorfismo de grupos
G ↪→ AutCoalgk(C);

(2) la imagen de la aplicación restricción AutCoalgk(C)→ Sym
(
G(C)

)
es G;

(3) existe un subconjunto V ⊂ G(C) invariante a través de la AutCoalgk(C)-acción en C
verificando que ρ es la composición de la inclusión G ↪→ AutCoalgk(C) con la restricción
AutCoalgk(C)→ Sym(V );
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(4) existe una acción fiel ρ̄ : G → Sym
(
G(C) \ V

)
tal que la composición de la inclusión

G ↪→ AutCoalgk(C) con la restricción AutCoalgk(C)→ Sym
(
G(C)

)
es ρ⊕ ρ̄.

Como aplicación adicional del funtor C, del Teorema 3.9 y del Corolario 3.11, estudiamos
el problema de isomorfía de grupos utilizando representaciones en coálgebras. El problema
de isomorfía de grupos consiste en estudiar si una determinada teoría o contexto permite
discernir los tipos de isomorfía de grupos. Por ejemplo, se ha estudiado en multitud de
contextos si las representaciones de grupos se pueden utilizar para distinguir sus clases de
isomorfía, interesando particularmente el caso de los grupos finitos. En este ámbito, Hertweck
obtuvo una respuesta negativa, demostrando que existen dos grupos finitos no isomorfos G y
H, ambos de orden 2219728, con anillos grupo integrales isomorfos, [50], lo que en particular
implica que G y H tienen la misma teoría de representaciones lineales.

Nuestros resultados de realizabilidad nos permiten estudiar el problema de isomorfía de
grupos utilizando representaciones de grupos co-Hopfianos en coálgebras. Recuérdese que un
grupo G es co-Hopfiano si no es isomorfo a ninguno de sus subgrupos propios o, dicho de otro
modo, si todo monomorfismo G ↪→ G es un isomorfismo. La clase de grupos co-Hopfianos
incluye de manera obvia a los grupos finitos, pero también a los grupos artinianos, grupos
de Tarski, grupos lineales especiales de Z, grupos fundamentales de superficies cerradas de
género mayor que dos... Se trata, por tanto, de una clase de grupos significativa, véase el
Ejemplo 3.15.

En este ámbito obtenemos dos resultados. El primero es cierto para toda la clase de
grupos co-Hopfianos, pero requiere que nos centremos en la restricción de las acciones a los
conjuntos de elementos grupo:

Teorema 3.16. Sea k un cuerpo y sean G y H dos grupos co-Hopfianos. Son equivalentes:

(1) G y H son isomorfos.

(2) Para toda k-coálgebra C, existe una G-acción en C que restringe a una acción por
permutaciones fiel en G(C) si y solo si existe una H-acción en C que restringe a una
acción por permutaciones fiel en G(C).

El segundo resultado se formula directamente en base a la acción sobre toda la coálgebra,
pero como contrapartida debemos restringir la clase de grupos a estudiar:

Definición 3.17. Sea k un cuerpo finito de orden pn, p primo. Un grupo G está en la clase
Gp,n si verifica las siguientes propiedades:

(1) G es co-Hopfiano.

(2) G no admite subgrupos normales finitos no triviales cuyo exponente divide a pn(pn−1).

Esta clase todavía incluye grupos interesantes. Por ejemplo G2,1 incluye a los grupos
2-reducidos, es decir, grupos que no contienen 2-subgrupos normales. Para esta familia, de-
mostramos:

Teorema 3.18. Sea k un cuerpo finito de orden pn, p primo. Sean G y H dos grupos en
Gp,n. Son equivalentes:

(1) G y H son isomorfos.

(2) Para toda k-coálgebra C, G actúa fielmente en C si y solo si H actúa fielmente en C.
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Continuamos ahora con el estudio de los problemas de realizabilidad en la categoría de
álgebras graduadas conmutativas diferenciales o CDGAs (véase la Definición 1.37) y con
los resultados que se pueden deducir en la categoría de homotopía de espacios topológicos
utilizando las técnicas de homotopía racional. Los trabajos de Costoya-Viruel, [27, 28, 29],
son nuestro punto de partida en este marco. La base de sus construcciones es un espacio
racional no trivial cuyo grupo de autoequivalencias de homotopía es trivial, [6, Example 5.1].

Los espacios cuyo grupo de auto-equivalencias de homotopía es trivial reciben el nombre
de espacios homotópicamente rígidos. El primer ejemplo no trivial de un espacio homotópica-
mente rígido con cohomología racional no trivial fue obtenido por Kahn, [55], quien creía que
este tipo de espacios podrían jugar un papel fundamental en alguna forma de descomponer
espacios, [56]. En consecuencia, la obtención de nuevos ejemplos de espacios homotópicamen-
te rígidos resulta de interés. Y es de destacar que los ejemplos de tales espacios que se pueden
encontrar en la literatura, [6, Example 5.2], [31, Examples 8.1 & 8.2], tienen su nivel de co-
nectividad acotado superiormente. No obstante, todos estos ejemplos tienen una estructura
de generadores y diferenciales muy determinada, y su estudio nos permite introducir una
familia monoparamétrica de CDGAs candidatas a ser homotópicamente rígidas.

Definición 4.1. Sea R un dominio de integridad y k ≥ 1 un entero. Definimos la R-CDGA

Mk =
(
Λ(x1, x2, y1, y2, y3, z), d

)
donde

|x1| = 10k + 8, dx1 = 0,
|x2| = 12k + 10, dx2 = 0,
|y1| = 42k + 33, dy1 = x3

1x2,
|y2| = 44k + 35, dy2 = x2

1x
2
2,

|y3| = 46k + 37, dy3 = x1x
3
2,

|z| = 60k2 + 98k + 39, dz = x6k−6
1 (x2

2y1y2 − x1x2y1y3 + x2
1y2y3) + x6k+5

1 + x5k+4
2 .

Un análisis en profundidad de la estructura de los generadores de estas álgebras (véase el
Lema 4.2) permite concluir que cada uno de ellos se encuentra aislado en su grado, por lo que
los endomorfismos de estas álgebras deben llevar cada generador a un múltiplo de sí mismo.
Utilizando este hecho podemos comprobar que estas álgebras no solo son homotópicamente
rígidas, sino que también son rígidas como álgebras. Es decir, probamos el siguiente resultado:

Teorema 4.3. Sea k ≥ 1 un entero. La R-CDGA Mk es rígida, es decir, sus únicos endo-
morfismos son la aplicación trivial y la identidad.

Ahora que ya tenemos las álgebras rígidas, deberemos estudiar cómo utilizarlas para
resolver los problemas de realizabilidad. Utilizaremos estas álgebras para construir espacios
asociados a digrafos. Así pues, sea Digraphs+ la subcategoría plena de la categoría de digrafos
cuyos objetos son los grafos dirigidos sin bucles tales que todo vértice es el vértice de inicio
de al menos una arista (véase la Definición 4.4). Entonces, a cada objeto de Digraphs+ le
asociamos una R-CDGA como sigue:

Definición 4.6. Sea G un objeto en Digraphs+ y sea n ≥ 1 un entero. Considérese la
R-CDGA

Mn(G) =
(
Λ(x1, x2, y1, y2, y3, z)⊗R Λ(xv | v ∈ V (G))⊗R (z(v,w) | (v, w) ∈ E(G)), d

)
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donde

|x1| = 30n− 12, dx1 = 0,
|x2| = 36n− 14, dx2 = 0,
|y1| = 126n− 51, dy1 = x3

1x2,
|y2| = 132n− 53, dy2 = x2

1x
2
2,

|y3| = 138n− 55, dy3 = x1x
3
2,

|xv| = 180n2 − 142n+ 28, dxv = 0,
|z| = 540n2 − 426n+ 83, dz = x18n−18

1 (x2
2y1y2 − x1x2y1y3 + x2

1y2y3)
+x18n−7

1 + x15n−6
2 ,

|z(v,w)| = 540n2 − 426n+ 83, dz(v,w) = x3
v + xvxwx

5n−2
2 + x18n−7

1 .

Si G1 y G2 son objetos de Digraphs+, existe una forma obvia de asociar a un morfismo de
grafos σ : G1 → G2 un morfismo de R-CDGAs Mn(σ) : Mn(G1) → Mn(G2). Efectivamente,
en el Lema 4.10 se demuestra que la aplicaciónMn(σ) : Mn(G1)→Mn(G2) definida como

Mn(σ)(w) = w, si w ∈ {x1, x2, y1, y2, y3, z},
Mn(σ)(xv) = xσ(v), si v ∈ V (G1),
Mn(σ)(z(v,w)) = z(σ(v),σ(w)), si (v, w) ∈ E(G1),

es un morfismo de R-CDGA (nótese que por abuso de notación estamos denotando de la
misma manera a los generadores de la parte rígida en CDGAs asociadas a grafos distintos).
Además, es evidente que Mn lleva la identidad de un grafo a la identidad de su álgebra
asociada y que respeta la composición. Es decir, si denotamos a la categoría de CDGA
sobre el anillo R como CDGAR y consideramos un entero cualquiera n ≥ 1, Mn es un
funtor Mn : Digraphs+ → CDGAR (véase la Definición 4.11). Es más, si n ≥ 1 es un
entero y R es un dominio de integridad tal que char(R) no es 2 ni 3, el funtor Mn es
casi plenamente fiel: dados G1,G2 ∈ Ob(Digraphs+), los conjuntos HomDigraphs(G1,G2) y
HomCDGAR

(
Mn(G1),Mn(G2)

)
\ {0} son biyectivos. En particular, y dado que sabemos que

la categoría de grafos es universal, obtenemos nuestro primer resultado de realizabilidad.

Teorema 4.16. Sea G un grupo. Para cada n ≥ 1, existe una R-CDGA n-conexa Mn tal
que AutCDGAR(Mn) ∼= G.

En consecuencia, hemos probado que la categoría CDGAR es universal. Además, podemos
utilizar el Teorema 2.37 junto con las propiedades de la familia de funtoresMn para resolver
el Problema 1 en la categoría C = CDGAR:

Teorema 4.17. Sean G1, G2 grupos y sea H ≤ G1 × G2. Sea n ≥ 1 un entero. Existen
álgebras M1,M2 ∈ Ob(CDGAn

R) y un morfismo entre ellas ϕ ∈ HomCDGAR(M1,M2) de
modo que AutCDGAR(M1) ∼= G1, AutCDGAR(M2) ∼= G2 y AutCDGAR(ϕ) ∼= H.

Para traducir este resultado a HoTop, observamos en el Corolario 2.38 que si G1 y G2
son grupos finitos, los grafos G1 y G2 que proporcionan una solución al Problema 1 también
pueden ser construidos finitos. En consecuencia, si R = Q, las CDGAMn(G1) yMn(G2) son
Q-álgebras simplemente conexas de tipo finito y por tanto modelos de espacios racionales.
Así, si por abuso de notación denotamos E(f) = AutHoTop(f), somos capaces de demostrar
lo siguiente:

Teorema 4.19. Sean G1, G2 grupos finitos y sea H ≤ G1 × G2. Para todo n ≥ 1, existen
espacios n-conexos X1, X2 y una aplicación continua entre ellos f : X1 → X2 de forma que
E(X1) ∼= G1, E(X2) ∼= G2 y E(f) ∼= H.
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Con el Problema 2 podemos realizar un procedimiento análogo para obtener resultados
que, si bien son casos particulares de los probados en [29], se incluyen al ser consecuencias
sencillas de las propiedades de nuestros funtores. Así, del Teorema 2.41 y de las propiedades
de la familia de funtoresMn deducimos lo siguiente:

Teorema 4.20. Sea G un grupo, n ≥ 1 un entero, R un dominio de integridad tal que
char(R) = 0 o char(R) > 3 y ρ : G → Sym(V ) una representación por permutaciones de G
en un conjunto V . Existe un objeto A ∈ Ob(CDGAn

R) tal que

(1) V ⊂ A, y V permanece invariante a través de los automorfismos de A;

(2) AutCDGAR(A) ∼= G (y si R = Q, E(A) ∼= G);

(3) la aplicación de restricción G ∼= AutCDGAR(A)→ Sym(V ) es ρ.

Y de nuevo, podemos traducir este resultado a HoTop restringiéndonos a los casos en
los que el grafo que resuelve el problema es finito. Así, como consecuencia del Corolario 2.42
obtenemos el siguiente resultado:

Teorema 4.22. Sea G un grupo finito, V un conjunto finito, n ≥ 1 un entero y ρ : G →
Sym(V ) una representación por permutaciones. Existe un espacio n-conexo X tal que

(1) V se puede identificar como subconjunto V ⊂ H180n2−142n+28(X) que permanece inva-
riante a través de las aplicaciones inducidas en cohomología por las auto-equivalencias
de homotopía de X;

(2) E(X) ∼= G;

(3) la aplicación G ∼= E(X) → Sym(V ) que lleva [f ] ∈ E(X) a H180n2−142n+28(f)|V ∈
Sym(V ) es ρ.

Además de para resolver los Problemas 1 y 2, podemos utilizar la familia de funtoresMn

para deducir más resultados. Por ejemplo, como consecuencia de la biyección entre morfismos
inducida por Mn, podemos interpretar Digraphs+ como una subcategoría de CDGAR. En
cierto sentido, estamos representando la categoría de Digraphs+ dentro de CDGAR.

En general, se dice que un funtor F : C → D induce una representación de C en D si F
es plenamente fiel, es decir, se puede ver C como una subcategoría plena de D. Recordemos
que una categoría C se dice concreta si existe un funtor fiel F : C → Set. Intuitivamente, esto
significa que podemos interpretar los objetos de C como conjuntos, y los morfismos de C como
aplicaciones de conjuntos. En [68, Chapter 4, 1.11] los autores prueban que toda categoría
pequeña y concreta es representable en una subcategoría plena de Digraphs+ (véase el Teo-
rema 1.20). Si denotamos a la categoría de R-CDGAs n-conexas por CDGAn

R, obtenemos el
siguiente resultado:

Teorema 5.1. Sea C una categoría pequeña concreta. Para todo n ≥ 1, existe un funtor
Gn : C → CDGAn

R tal que HomCDGAR
(
Gn(A), Gn(B)

)
\{0} = HomC(A,B), para todo A,B ∈

Ob(C). Además, si R = Q, [Gn(A), Gn(B)] \ {[0]} = HomC(A,B), para todo A,B ∈ Ob(C).

Si tomamos Q como anillo base, los funtores Mn tienen como rango a la categoría
CDGAn

Q. Si además G es un grafo finito, Mn(G) es una Q-CDGA n-conexa, y por tanto
es modelo de Sullivan del tipo de homotopía racional de un espacio n-conexo. En conse-
cuencia, se puede trasladar el resultado anterior a HoTop, siempre y cuando impongamos
restricciones adicionales sobre las categorías que queremos representar. En [49, Theorem 4.24,
Proposition 4.25] los autores prueban que si C es una categoría concreta con objetos nume-
rables y de forma que el conjunto de morfismos entre dos objetos cualesquiera es finito, C
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es representable en una subcategoría de Digraphs+ donde todos los grafos son finitos. Así,
si denotamos a la categoría de homotopía de espacios topológicos n-conexos por HoTopn,
obtenemos el siguiente resultado:

Teorema 5.2. Sea C una categoría concreta tal que Ob(C) es numerable y HomC(A,B)
es finito para cualesquiera dos objetos A,B ∈ Ob(C). Para todo n ≥ 1, existe un funtor
Fn : C → HoTopn tal que [Fn(A), Fn(B)] \ {[0]} = HomC(A,B), para todo A,B ∈ Ob(C).

Nuestros funtores casi plenamente fieles también nos permiten estudiar el problema de
realizabilidad de monoides como monoides de endomorfismos de objetos en una categoría.
Recuérdese que todo monoide M puede ser interpretado como una categoría con un único
objeto cuyo monoide de endomorfismos es M . Una sencilla comprobación muestra que esta
categoría es concreta, y es finita si M es finito. Además, añadir un endomorfismo cero al
único objeto de esta categoría es equivalente a añadir un elemento 0 al monoide M . Así,
si denotamos al monoide resultante de añadir a M un elemento 0 como M0, el siguiente
resultado se deduce inmediatamente de los Teoremas 5.1 y 5.2:

Corolario 5.3. Sea M un monoide. Para todo n ≥ 1, existe una R-CDGA n-conexa An tal
que HomCDGAR(An, An) ∼= M0. Si además M es finito, existe un espacio n-conexo Xn tal
que [Xn, Xn] ∼= M0.

Nótese que si M es un monoide para el que existe otro monoide N verificando que N0 ∼=
M , es decir, si M es un monoide con cero y sin divisores de cero propios, entonces M es
realizable.

Continuando con las aplicaciones de nuestras álgebras, consideramos ahora el problema
de isomorfía de grupos utilizando acciones sobre CDGAs. En [28, Theorem 1.1], los autores
demuestran que se pueden utilizar las acciones fieles sobre CDGAs para distinguir las clases
de isomorfía de grupos de una familia estrictamente más pequeña que la de los grupos co-
Hopfianos. Y resulta que podemos utilizar nuestros funtores para extender este resultado a
toda la clase de grupos co-Hopfianos, demostrando lo siguiente:

Teorema 5.4. Sea n ≥ 1 un entero y sean G y H grupos co-Hopfianos. Son equivalentes:

(1) G y H son isomorfos.

(2) Para toda R-CDGA n-conexa (A, d), G actúa fielmente en (A, d) si y solo si H actúa
fielmente en (A, d).

Cabe destacar que el resultado es también cierto si consideramos acciones de monoides y
nos restringimos a monoides co-Hopfianos sin cero, como vemos en la Proposición 5.7. Esta
clase de monoides incluye a todos los monoides finitos sin cero.

Nuestros modelos encuentran también aplicaciones a la geometría diferencial. En parti-
cular, permiten proporcionar ejemplos nuevos de las denominadas variedades inflexibles y
variedades fuertemente quirales. Una variedad cerrada, orientada y conexa M se dice infle-
xible si el conjunto de los posibles grados de sus auto-aplicaciones continuas es finito, es
decir, si |{deg(f) | f : M →M}| <∞. Dado que el grado es multiplicativo, esto implica que
{deg(f) | f : M →M} ⊂ {−1, 0, 1}. Por otro lado,M se dice fuertemente quiral si no admite
auto-aplicaciones de grado −1.

La importancia de las variedades inflexibles radica en el papel que estas juegan en el
marco de las seminormas funtoriales en homología singular introducidas por Gromov, [47, 48],
y en los teoremas en cuanto a grados de aplicaciones que se derivan de esta teoría (véase,
por ejemplo, [31, Remark 2.6]): sea M una variedad cerrada, orientada y conexa con clase
fundamental cM . Si existe una seminorma funtorial en homología singular |·| tal que |cM | 6= 0,
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entonces M es inflexible. En particular, las variedades hiperbólicas cerradas, orientadas y
conexas son inflexibles; su volumen simplicial, que no es más que la `1-seminorma aplicada a
la clase fundamental, es no trivial, [47, Section 0.3]. No obstante, la `1-seminorma es trivial
en variedades simplemente conexas, [47, Section 3.1], lo que llevó a Gromov a preguntarse si
toda seminorma funtorial en homología singular se anula en espacios simplemente conexos,
[48, Remark (b) en 5.35]. A esta cuestión se le dio una respuesta negativa en [31] construyendo
seminormas funtoriales asociadas a variedades inflexibles simplemente conexas. Así, este tipo
de variedades son objetos extraordinarios de los que se conocen pocos ejemplos y que además
presentan niveles de conectividad acotados, [2, 6, 27, 31].

Ahora bien, si la cohomología de una CDGA (A, d) verifica dualidad de Poincaré, puede
definirse el grado de un endomorfismo de manera análoga a como se define el grado de
una aplicación entre variedades cerradas, orientadas y conexas. Entonces, (A, d) será una
CDGA inflexible si el conjunto de los grados de todos sus posibles endomorfismos es finito.
Y resulta que una variedad cerrada, orientada y conexa es inflexible si y solo si su modelo
racional lo es. Nuestras álgebras tienen muy pocos endomorfismos, así que son candidatas
a ser inflexibles. Por tanto, si podemos comprobar que son inflexibles y que son modelos
racionales de variedades, las variedades que modelan serán inflexibles. Además, como el nivel
de conectividad de nuestros modelos aumenta con el parámetro asociado, esto permitiría
obtener ejemplos de variedades inflexibles cuyo nivel de conectividad es arbitrariamente alto.

Resulta que tanto las álgebras rígidasMk, Definición 4.1, como las asociadas a digrafos
finitos Mn(G), Definición 4.6, tienen cohomologías verificando dualidad de Poincaré y son
inflexibles, tal y como se demuestra en el Lema 5.9. Entonces, utilizando la teoría de obs-
trucciones a la existencia de variedades con el tipo de homotopía racional de una CDGA
dada desarrollada por Sullivan, [75], y Barge, [9], somos capaces de demostrar el siguiente
resultado:

Teorema 5.12. Dado G un grupo finito y n ≥ 1 un entero, existe una variedad inflexi-
ble (30n − 13)-conexa cuya racionalización tiene a G como grupo de autoequivalencias de
homotopía.

Y en particular, obtenemos inmediatamente el siguiente corolario:

Corolario 5.13. Existe una cantidad infinita de variedades inflexibles no homótopas entre
sí y con un nivel de conexidad tan alto como se desee.

Pasamos ahora a las variedades fuertemente quirales (véase [2], [27] y [69]). Ya hemos
comprobado que nuestras CDGAs son inflexibles. Sin embargo, comprobar que no admiten
endomorfismos de grado −1 conlleva un mayor nivel de dificultad. Así pues, en lugar de
demostrar esto directamente, utilizamos una construcción de [27] para construir álgebras
fuertemente quirales a partir de nuestras álgebras inflexibles y obtener el siguiente resultado:

Proposición 5.14. Dado un grupo finito G y un entero n ≥ 1, existe una variedad fuerte-
mente quiral (30n− 13)-conexa cuya racionalización tiene a G como grupo de autoequivalen-
cias de homotopía.

Cabe destacar que las variedades obtenidas en la Proposición 5.14 pueden ser utilizadas
para construir nuevas variedades inflexibles y fuertemente quirales mediante el producto de
variedades, utilizando técnicas de [64]. En particular, en [64, Example 3.7] se demuestra que
si M es una variedad cerrada, orientada, inflexible, no simplemente conexa y que no admite
aplicaciones de grado no trivial desde productos directos y N es otra variedad inflexible
simplemente conexa tal que dimN < dimM , entonces M × N es inflexible. Somos capaces
de demostrar un resultado «inverso».
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Corolario 5.16. Sea M una variedad cerrada, orientada, conexa e inflexible (respectiva-
mente fuertemente quiral) que no admite aplicaciones de grado no trivial desde productos
directos. Entonces existe una variedad simplemente conexa y fuertemente quiral N tal que
dimN > dimM y M ×N es inflexible (respectivamente fuertemente quiral).

Para finalizar con las aplicaciones a la geometría diferencial, cabe mencionar que todas las
variedades construidas en el Teorema 5.13, la Proposición 5.14 y el Corolario 5.16 pueden ser
elegidas de forma que sean diferenciables, como consecuencia de un resultado de Lambrechts
y Stanley, [23, Proposition A.1].

Continuamos con una última aplicación de nuestros funtoresMn. Recuérdese que dado un
espacio X, la categoría de Lusternik-Schnirelmann o categoría LS de X, denotada cat(X), es
el menor entero n tal que X admite un recubrimiento por n+1 abiertos contráctiles. Se trata
de un invariante homotópico de X que ha sido ampliamente estudiado y cuya importancia
ya fue constatada cuando se introdujo en [60]. Efectivamente, Lusternik y Schinerlmann
muestran que si X es una variedad diferenciable, cat(X) + 1 es una cota inferior del número
de puntos críticos de una función diferenciable en X.

Para la categoría LS se conocen multitud de cotas en relación con otros invariantes ho-
motópicos, y nuestra contribución aquí es mostrar que nuestras álgebras proporcionan un
ejemplo de que la diferencia entre los dos términos involucrados en una cierta cota es arbitra-
riamente grande. Así, dado un espacio X, denótese por Em# (X) al subgrupo de E(X) formado
por aquellas autoequivalencias de homotopía que inducen la identidad en los grupos de ho-
motopía πi(X), para i ≤ m. Análogamente, sea E#(X) el grupo de aquellas autoequivalencias
de homotopía de X que inducen la identidad en πi(X), para todo i.

Dror y Zabrodsky demostraron que tanto E#(X) como Em# (X) para m ≥ dim(X) son
grupos nilpotentes, [34]. Sus clases de nilpotencia, denotadas nil

(
E#(X)

)
y nil

(
Em# (X)

)
res-

pectivamente, son entonces invariantes homotópicos de X que pueden ser comparados con
los invariantes clásicos. Así, Félix y Murillo prueban en [41] que nil

(
Em# (X0)

)
≤ cat(X)−1, si

m ≥ dim(X), y también que nil
(
E#(X0)

)
≤ cat(X)− 1. Recuérdese que X0 denota al racio-

nalizado de X, es decir, a un espacio racional que es racionalmente homótopo a X. Resulta
natural preguntarse hasta qué punto pueden diferir los términos de estas desigualdades. Así
pues, probamos el siguiente resultado:

Teorema 5.17. Dado un entero k > 1 cualquiera, existe un espacio finito-dimensional X tal
que cat(X)− nil

(
Em] (X0)

)
≥ k, para m ≥ dim(X). En particular, cat(X)− nil(E](X0)) ≥ k.

Las soluciones a los problemas de realizabilidad que hemos obtenido hasta el momento
utilizan herramientas de la Teoría de Homotopía Racional. En consecuencia, los objetos que
construimos respondiendo al problema de realizabilidad clásico en HoTop (o problema de
realizabilidad de Kahn) son espacios racionales, y por tanto no son de tipo finito sobre Z.
Nos proponemos ahora encontrar una forma alternativa de resolver este problema utilizando
espacios enteros, es decir, espacios de tipo finito sobre Z.

Un contexto en el que existe una clasificación de tipos de homotopía basada fundamental-
mente en herramientas de teoría de grupos es el de los A2

n-poliedros: CW-complejos (n− 1)-
conexos (n+ 2)-dimensionales. En [80], J.H.C. Whitehead clasificó los tipos de homotopía de
A2

2-poliedros (Es decir, CW-complejos 4-dimensionales simplemente conexos) utilizando una
cierta sucesión exacta de grupos, y posteriormente Baues obtuvo una generalización de esta
clasificación a A2

n-poliedros para cualquier n ≥ 2, [12, Ch. I, Section 8].
Siguiendo ideas de [17] definimos, asociado a la sucesión exacta de grupos utilizada para

clasificar el tipo de homotopía de un A2
n-poliedro X, un grupo Bn+2(X) (véase la Definición

1.69) que probamos isomorfo a E(X)/E∗(X) en la Proposición 1.70. Aquí, E∗(X) es un sub-
grupo normal de E(X) cuyos elementos son aquellas autoequivalencias de homotopía de X
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que inducen la identidad en grupos de homología. Por supuesto, el estudio de este cociente
proporciona información sobre los grupos que pueden aparecer como E(X) siendo X un A2

n-
poliedro, pero también tiene sentido plantearse un problema de realizabilidad directamente
sobre el cociente, y es uno de los cocientes distinguidos de E(X) para los que se propuso un
problema de realizabilidad de grupos en [37, Problem 19]. Así pues, veamos qué resultados
hemos sido capaces de obtener en ese ámbito.

Utilizando la Proposición 1.70 somos capaces de estudiar cómo la estructura celular de
un A2

n-poliedro se manifiesta en su grupo de autoequivalencias de homotopía. Por ejemplo,
demostramos que si se imponen ciertas restricciones sobre los grupos de homología de X,
Bn+2(X) es infinito, de lo que se deduce que E(X) también lo es (véanse las Proposiciones
6.6 y 6.9). También podemos demostrar que en muchas ocasiones la existencia de ciclos
de orden impar en los grupos de homología de un A2

n-poliedro X fuerzan la existencia de
elementos de orden par en E(X) (véanse los Lemas 6.4 y 6.5).

Sin embargo, estos dos últimos resultados nos llevan a pensar que quizá este contexto no
sea adecuado para resolver los problemas de realizabilidad planteados. Y en efecto, aunque
comprobamos fácilmente que todo grupo de automorfismos de un grupo abeliano es realizable
en este ámbito (véase el Ejemplo 6.2), también obtenemos el siguiente resultado:

Teorema 6.16. Sea X un A2
n-poliedro de tipo finito, n ≥ 3. Entonces, si Bn+2(X) no es

trivial, tiene elementos de orden par.

Y como corolario inmediato, obtenemos lo siguiente:

Corolario 6.17. Sea G un grupo finito no nilpotente de orden impar. Entonces, para todo
n ≥ 3, si X es un A2

n-poliedro, G 6∼= E(X).

Tratar el caso de los A2
2-poliedros es más complejo. No obstante, un análisis detallado nos

permite deducir que los grupos finitos de orden impar solo pueden ser realizados a través de
un A2

2-poliedro de tipo finito bajo condiciones muy restrictivas. Recuérdese que dado un grupo
G, rankG es el menor cardinal de un conjunto de generadores de G, [61, p. 91]. Entonces:

Teorema 6.18. Supóngase que X es un A2
2-poliedro de tipo finito tal que B4(X) es un grupo

no trivial de orden impar. Entonces:

(1) rankH4(X) ≤ 1;

(2) π3(X) y H3(X) son 2-grupos, y H2(X) es un 2-grupo abeliano elemental;

(3) rankH3(X) ≤ 1
2 rankH2(X)

(
rankH2(X) + 1

)
− rankH4(X) ≤ rank π3(X);

(4) la representación B4(X) ≤ Aut
(
H2(X)

)
inducida por la acción natural de B4(X) en

H2(X) es fiel.

Sin embargo, ninguno de nuestros intentos de proporcionar un espacio satisfaciendo las
hipótesis del Teorema 6.18 ha tenido éxito, lo que nos lleva a proponer la siguiente conjetura:

Conjetura 6.19. Sea X un A2
2-poliedro. Si B4(X) es un grupo finito no trivial, entonces

tiene elementos de orden par.

Así pues, todavía queda investigación por hacer en el futuro, pues por un lado todavía
no se ha obtenido una solución negativa al problema de realizabilidad de grupos de Kahn,
y por otro lado, todavía estamos interesados en encontrar un marco en el que se pueda dar
una solución afirmativa a este problema en términos de espacios enteros.
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