Regularization for sparsity in statistical analysis and machine learning

Vidaurre Henche, Diego (2012). Regularization for sparsity in statistical analysis and machine learning. Tesis (Doctoral), Facultad de Informática (UPM) [antigua denominación]. https://doi.org/10.20868/UPM.thesis.14780.

Descripción

Título: Regularization for sparsity in statistical analysis and machine learning
Autor/es:
  • Vidaurre Henche, Diego
Director/es:
Tipo de Documento: Tesis (Doctoral)
Fecha de lectura: 2012
Materias:
Escuela: Facultad de Informática (UPM) [antigua denominación]
Departamento: Inteligencia Artificial
Licencias Creative Commons: Reconocimiento - Sin obra derivada - No comercial

Texto completo

[thumbnail of DIEGO_VIDAURRE_HENCHE_2.pdf]
Vista Previa
PDF (Portable Document Format) - Se necesita un visor de ficheros PDF, como GSview, Xpdf o Adobe Acrobat Reader
Descargar (2MB) | Vista Previa

Resumen

Pragmatism is the leading motivation of regularization. We can understand regularization as a modification of the maximum-likelihood estimator so that a reasonable answer could be given in an unstable or ill-posed situation. To mention some typical examples, this happens when fitting parametric or non-parametric models with more parameters than data or when estimating large covariance matrices. Regularization is usually used, in addition, to improve the bias-variance tradeoff of an estimation. Then, the definition of regularization is quite general, and, although the introduction of a penalty is probably the most popular type, it is just one out of multiple forms of regularization. In this dissertation, we focus on the applications of regularization for obtaining sparse or parsimonious representations, where only a subset of the inputs is used. A particular form of regularization, L1-regularization, plays a key role for reaching sparsity. Most of the contributions presented here revolve around L1-regularization, although other forms of regularization are explored (also pursuing sparsity in some sense). In addition to present a compact review of L1-regularization and its applications in statistical and machine learning, we devise methodology for regression, supervised classification and structure induction of graphical models. Within the regression paradigm, we focus on kernel smoothing learning, proposing techniques for kernel design that are suitable for high dimensional settings and sparse regression functions. We also present an application of regularized regression techniques for modeling the response of biological neurons. Supervised classification advances deal, on the one hand, with the application of regularization for obtaining a na¨ıve Bayes classifier and, on the other hand, with a novel algorithm for brain-computer interface design that uses group regularization in an efficient manner. Finally, we present a heuristic for inducing structures of Gaussian Bayesian networks using L1-regularization as a filter. El pragmatismo es la principal motivación de la regularización. Podemos entender la regularización como una modificación del estimador de máxima verosimilitud, de tal manera que se pueda dar una respuesta cuando la configuración del problema es inestable. A modo de ejemplo, podemos mencionar el ajuste de modelos paramétricos o no paramétricos cuando hay más parámetros que casos en el conjunto de datos, o la estimación de grandes matrices de covarianzas. Se suele recurrir a la regularización, además, para mejorar el compromiso sesgo-varianza en una estimación. Por tanto, la definición de regularización es muy general y, aunque la introducción de una función de penalización es probablemente el método más popular, éste es sólo uno de entre varias posibilidades. En esta tesis se ha trabajado en aplicaciones de regularización para obtener representaciones dispersas, donde sólo se usa un subconjunto de las entradas. En particular, la regularización L1 juega un papel clave en la búsqueda de dicha dispersión. La mayor parte de las contribuciones presentadas en la tesis giran alrededor de la regularización L1, aunque también se exploran otras formas de regularización (que igualmente persiguen un modelo disperso). Además de presentar una revisión de la regularización L1 y sus aplicaciones en estadística y aprendizaje de máquina, se ha desarrollado metodología para regresión, clasificación supervisada y aprendizaje de estructura en modelos gráficos. Dentro de la regresión, se ha trabajado principalmente en métodos de regresión local, proponiendo técnicas de diseño del kernel que sean adecuadas a configuraciones de alta dimensionalidad y funciones de regresión dispersas. También se presenta una aplicación de las técnicas de regresión regularizada para modelar la respuesta de neuronas reales. Los avances en clasificación supervisada tratan, por una parte, con el uso de regularización para obtener un clasificador naive Bayes y, por otra parte, con el desarrollo de un algoritmo que usa regularización por grupos de una manera eficiente y que se ha aplicado al diseño de interfaces cerebromáquina. Finalmente, se presenta una heurística para inducir la estructura de redes Bayesianas Gaussianas usando regularización L1 a modo de filtro.

Más información

ID de Registro: 14780
Identificador DC: https://oa.upm.es/14780/
Identificador OAI: oai:oa.upm.es:14780
Identificador DOI: 10.20868/UPM.thesis.14780
Depositado por: Archivo Digital UPM
Depositado el: 08 Abr 2013 07:30
Ultima Modificación: 10 Oct 2022 09:21
  • Logo InvestigaM (UPM)
  • Logo Sherpa/Romeo
    Compruebe si la revista anglosajona en la que ha publicado un artículo permite también su publicación en abierto.
  • Logo Dulcinea
    Compruebe si la revista española en la que ha publicado un artículo permite también su publicación en abierto.
  • Logo del Portal Científico UPM
  • Logo de REBIUN Sexenios Logo de la ANECA
  • Logo GEOUP4
  • Logo Open Access
  • Open Access
  • Logo de Recolecta
  • Logo de OpenCourseWare UPM