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TESIS DOCTORAL

Procesos de Ramificación
Bisexuales en un Contexto

Genético
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Directores: Dr. D. Miguel González Velasco
Dr. D. Rodrigo Mart́ınez Quintana

Badajoz, 2012





UNIVERSITY OF EXTREMADURA

DEPARTMENT OF MATHEMATICS

Two-Sex Branching Processes in
a Genetic Context

This dissertation is submitted by Cristina Gutiérrez Pérez for
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Summary

Motivated by certain biological problems related with genes linked to the sexual

chromosomes, in recent years the research group on Branching Processes and their

Applications of the University of Extremadura has been especially interested in the

development of new models capable of describing the evolution of the number of

carriers of a Y-linked gene over the course of successive generations in a certain

population. Concretely, the group has introduced two new bisexual (two-sex) mul-

titype branching processes (see González et al. (2006) and González et al. (2009)).

The cited models focus on the study of a gene which presents two allelic forms and,

moreover, they consider a population where females and males coexist and mate with

perfect fidelity mating (each individual mates, if it is possible, with only one indivi-

dual of the opposite sex) in order to give birth to offspring. The difference between

these models resides in the assumed mating structures. The first model, named mo-

del with preference, assumes that the males’ genotype is expressed in the phenotype

and therefore males with different genotype are distinguishable at a glance. In this

context, it is considered that females prefer to mate with males who have a specific

phenotype, being the other phenotype consigned to be the second alternative when

there are no males of the favourite type in the population. However, the second

model, named model with blind choice, assumes that the males’ genotype is not

expressed in the phenotype or if it is, it does not play any role at mating. Hence, a

female makes a blind choice of the genotype of her partner.

In the previously cited papers, there has been studied, for both models, conditions

for the coexistence or fixation of the genotypes having a positive probability of

occurring, as well as conditions for the extinction of the population. Moreover,

for the model with preference, the growth rates of each genotype in the sets of

non-extinction have been studied (see González et al. (2008)).
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In this dissertation, I present a series of contributions with the objective of com-

pleting the study of these models as well as introducing a new branching process

capable of analyzing genetic situations for which the previous models are not appro-

priate.

In a first place, I study the growth rates of each genotype assuming that they

have survived in a population where the model with blind choice is applicable. Also,

I study the classical problem in population genetics of determining the limiting

genotype frequencies and the limiting sex ratio.

In a second place, I develop the estimation theory of the main parameters of

both models. In particular, for the model with preference, I focus on the parame-

tric and non-parametric estimation from a frequentist viewpoint. First, I obtain the

maximum likelihood estimators (MLEs) of the parameters assuming that one can

observe the complete family tree up to some generation; after that, I assume as sam-

ple scheme that the only observable data are the total number of females and the

total number of males of each genotype in each generation. In this case, I set out an

incomplete data problem which one solves applying the expectation-maximization

(EM) algorithm in order to obtain a sequence which converges to the MLEs. Furt-

hermore, for the model with blind choice, I set out the parametric estimation from

a Bayesian perspective. In this case, one approximates the posterior distributions of

the main parameters of the model applying the Markov-Chain Monte Carlo (MCMC)

techniques, concretely, using the Gibbs sampler, and on the basis of different sample

schemes standing out among them the more realistic in which only the total numbers

of females and males (without differentiating between their types) in each generation

are observed. In outline, both the frequentist and the Bayesian methodologies used

in these studies are valid for both models, with preference and with blind choice,

with some suitable adaptations.

Finally, I introduce a new branching model capable of analyzing a genetic situa-

tion which commonly happens in nature: the mutation of an allele of a gene. With

this idea in mind, I define a new multitype two-sex branching process which allows

one to model the evolution of an allele of a Y-linked gene and its mutations. For this

model, I study conditions which guarantee the survival or extinction of the original

allele as well as of its mutations in the population. Other events, such as the fixation

of the original and the mutant allele, are also studied.
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Resumen

Motivados por ciertos problemas biológicos relacionados con genes ligados a los cro-

mosomas sexuales, en los últimos años el grupo de investigación en Procesos de

Ramificación y sus Aplicaciones de la Universidad de Extremadura ha mostrado un

especial interés en el desarrollo de nuevos modelos capaces de describir la evolución

del número de portadores de un gen ligado al cromosoma Y a lo largo de sucesi-

vas generaciones en cierta población. En concreto, ellos han introducido dos nuevos

procesos de ramificación bisexuales (dos-sexos) multitipo (ver González et al. (2006)

and González et al. (2009)). Los citados modelos se centran en el estudio de un gen

que presenta dos posibles formas alélicas y, además, consideran una población donde

hembras y machos coexisten y se aparean con fidelidad perfecta (cada individuo se

aparea, si es posible, con un único individuo del sexo opuesto) para tener descen-

dencia. La diferencia entre esos modelos radica en las estructuras de apareamiento

asumidas. El primer modelo, denominado modelo con preferencia, asume que el

genotipo de los machos se expresa en el fenotipo, siendo por tanto los machos con

diferente genotipo distinguibles a simple vista. En este contexto, se considera que

las hembras prefieren aparearse con machos que presenten un determinado fenotipo,

relegando al otro a ser la opción alternativa cuando no hay machos del tipo preferido

en la población. Sin embargo, el segundo modelo, denominado modelo de elección

ciega, asume que el genotipo de los machos no se expresa en el fenotipo o si se ex-

presa, no interviene en el apareamiento. Por tanto, la hembra realiza una elección

“ciega” del genotipo de su compañero.

En los art́ıculos citados anteriormente, se han estudiado, para ambos modelos,

condiciones para que la coexistencia o fijación de los genotipos tengan una pro-

babilidad positiva de ocurrir, aśı como condiciones que llevan a la extinción de la

población. Además, para el modelo con preferencia, se han estudiado los ratios de
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crecimiento de cada genotipo en los conjuntos de no extinción de la población (ver

González et al. (2008)).

En esta Tesis se presentan una serie de aportaciones que tienen como objetivo

completar el estudio de estos modelos aśı como introducir un nuevo proceso de rami-

ficación capaz de analizar situaciones genéticas para las cuales los anteriores modelos

no son apropiados.

En primer lugar, se estudia el tipo y la velocidad de crecimiento de cada genotipo

supuesto que han sobrevivido, en una población donde el modelo de elección ciega

es aplicable. También se estudia el problema clásico en poblaciones genéticas de

determinar las frecuencias ĺımite de los genotipos y la proporción ĺımite de los sexos.

En segundo lugar, se desarrolla la teoŕıa de la estimación de los principales

parámetros de ambos modelos. En particular, para el modelo con preferencia se

plantea la estimación tanto paramétrica como no paramétrica desde un punto de

vista frecuentista. Primero, se obtienen los estimadores máximo verośımiles (EMVs)

de los parámetros asumiendo que se puede observar todo el árbol familiar hasta

cierta generación; después, se asume como esquema muestral que los únicos valores

observables son el número total de hembras y el número total de machos de cada

genotipo en cada generación. En este caso, planteamos un problema de datos in-

completos que resolvemos aplicando el algoritmo de esperanza-maximización (EM)

para obtener una sucesión que converge a los EMVs. Además, para el modelo de

elección ciega, se plantea la estimación paramétrica desde un punto de vista Baye-

siano. En este caso, se aproximan las distribuciones a posteriori de los principales

parámetros del modelo mediante la aplicación de técnicas de “Markov-Chain Monte

Carlo” (MCMC), concretamente utilizando el muestreador de Gibbs y basándonos en

diferentes esquemas de muestreo entre los cuales cabe destacar el más realista posible

donde únicamente el número de hembras y de machos (sin distinguir sus tipos) en

cada generación son observados. En ĺıneas generales, ambas metodoloǵıas, frecuen-

tista y Bayesiana, usadas en este estudio son válidas, con una adecuada adaptación,

para ambos modelos.

Finalmente, se introduce un nuevo modelo capaz de analizar una situación genéti-

ca que ocurre habitualmente en la naturaleza: la mutación de un alelo de un gen.

Con esta idea en mente, se define un proceso de ramificación de dos sexos multitipo

que permite modelizar la evolución de un alelo y sus mutaciones de un gen ligado

al cromosoma Y. Se estudian para este modelo condiciones que garanticen la super-

vivencia o extinción del alelo original aśı como de sus mutaciones en la población.

También se estudian otros sucesos, como la fijación del alelo original y el mutado.
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estas ĺıneas hoy, porque precisamente hoy (7/2/12), es un d́ıa muy especial para mi

hermano. Enhorabuena Sebas, te deseo toda la suerte del mundo en esta nueva etapa

que hoy comienza para ti.

A Inés, Manolo, Manolo y Jacinto, os dedico estas palabras de agradecimiento,

por ayudarme, animarme y ponerme una sonrisa en la cara aunque el d́ıa esté nu-
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por vuestra amistad y por haber sabido escucharme en todo momento y sobre todo en

los malos. El camino siempre se hace más ameno con gente como vosotros. Gracias
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General Introduction

Branching Processes

The probabilistic theory of branching models began in the second part of the 19th

century, with the objective of giving a complete answer, from a scientific viewpoint,

to the problem of determining the extinction of family lines of the European bour-

geoisie and aristocracy, according to forerunners I.J. Bienaymé, F. Galton and H.

Watson. Their outstanding study actually formed part of the development of the

Theory of Probability and Mathematical Statistics according to numerous mono-

graphs published on this theory and its applications. One might cite among them

those of Mode (1971), Athreya and Ney (1972), Jagers (1975), Asmussen and Hering

(1983), Harris (1989), Guttorp (1991), Heyde (1995), Athreya and Jagers (1997),

Kimmel and Axelrod (2002), Pakes (2003), Haccou et al. (2005), Ahsanullah and

Yanev (2008) or González et al. (2010).

I.J. Bienaymé introduced in 1845 the first model of branching processes, and

years later, in 1874, independently of him and without knowing his work, Galton

and Watson published their first work on this kind of model, although the termi-

nology “Branching Process” was introduced by A.N. Kolmogorov in the first half

of the 20th century. This branching model, commonly called the Bienaymé-Galton-

Watson process, has been extensively studied and used to describe the behaviour

of systems whose components (cells, particles, individuals in general) reproduce,

transform, and die, in fields as diverse as Biology, Epidemiology, Genetics, Medi-

cine, Nuclear Physics, Demography, Financial Mathematics, Algorithms, etc. (see,

for example, Pérez-Abreu (1987), Devroye (1998), Bruss and Slavtchova-Bojkova

(1999), Farrington and Grant (1999) or Epps (2009)).
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To describe practical and complex situations in a more precise manner, because

the basic model of Bienaymé-Galton-Watson did not provide an acceptable expla-

nation, in the second half of the 20th century, new models of branching processes

were developed both in discrete and continuous time. For discrete time, one can cite,

among others, the Controlled Branching Process, the Multitype Branching Process,

the Branching Process with Immigration, the Population Size Dependent Branching

Process, the Branching Process in a Varying Environment, or the Branching Process

in Random Environments.

Two-Sex Branching Processes in Genetics

The above models are characterized by following an asexual reproduction scheme in

which every individual begets a certain number of offspring. Daley (1968) introduced

the Bisexual (two-sex) Branching Process (BBP) in which females and males coexist

in a population and mate under a sexual reproduction scheme. For this model, the

extinction problem as well as its limiting behaviour and its inferential theory have

been studied in depth (I refer the reader to the works of Alsmeyer and Rösler (1996,

2002), Daley et al. (1986), Hull (1984), González and Molina (1996, 1997a,b, 1998),

González et al. (2001a), Molina et al. (1998) or to the surveys given by Hull (2003)

and Alsmeyer in Haccou et al. (2005)).

In recent years, the research group on Branching Processes and Their Appli-

cations of the University of Extremadura, which I belong to, has shown a special

interest in modeling new more complex situations for which the BBP is not appro-

priate, introducing some modifications to the classical process. Of particular note

here are the BBP with immigration (see González et al. (1999, 2000, 2001b,c, 2002,

2011a,b)), the BBP in a varying environment (see Molina et al. (2003a,b, 2004b)),

the BBP in random environments (see Ma and Molina (2009)), or the BBP with

population-size dependent mating (see Molina et al. (2002, 2004a, 2006, 2007, 2008),

González et al. (2007), Mota et al. (2007), or Ma et al. (2011)). More detailed

information can be found in the review Molina (2010).

Among those modifications, I would highlight here the application of the mul-

titype BBP in a genetic context, in particular to the study of the evolution of cha-

racters linked to the Y-chromosome (Y-linked characters). The study of sex-linked

genes is a special interest topic for its direct relation with diseases such as haemophi-

lia or Daltonism (genes in the X-chromosome) and with masculine fertility problems

such as azoospermia or aspermia (genes in the Y-chromosome). Moreover, the study
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of how Y-linked genes evolve in a population allows one to reconstruct the history

of paternal lineages.

These were some of the reasons for which our research group has developed new

bidimensional BBPs in order to study the evolution of the number of carriers of Y-

linked genes. González et al. (2006) introduced a first model to analyze the evolution

of a Y-linked gene with two alleles (called R and r), in a population formed by females

and males which mate (forming a couple) under a sexual reproduction scheme with

perfect fidelity mating, that is, one individual can mate with no more than one

individual of the opposite sex. Males and, consequently, couples carry the R- or

r-allele, while females do not have the gene. It is assumed in the model that females

prefer to mate with males carrying the R-allele although if this kind of male is not

available, then females mate with males carrying the r-allele.

The cited paper studies the two possible behaviours of the two alleles in the

population – extinction or infinite growth – giving conditions which guarantee the

extinction of the population as well as the destiny of the gene in the population –

fixation of one allele or survival of both. All those results depend on the magnitudes

of the mean numbers of individual per couple with R- and r-alleles, respectively, and

of the probability of an offspring being female.

The following step considered to be interesting was the study of the rates of

growth of each genotype in its set of non-extinction. It was in González et al. (2008)

in which the geometric growth of both alleles, given non-extinction, was obtained.

Analyzing with rigour the characteristics linked to the Y-chromosome, one reali-

zes that the majority of them are not expressed in the male’s phenotype. This led to

the development of a new model, in the same context as the previous one, in which

this new assumption was included. In González et al. (2009), a bidimensional BBP

is presented in which it is considered that all males have the same phenotype, and

therefore a female chooses her mate blindly without caring about which genotype

he has (obviously, this model also covers the case in which the males have different

phenotypes but they do not influence the mating process). In the cited paper, it is

shown that the extinction or survival of each allele depends also on the magnitude of

the mean numbers of individuals per couple with R- and r-alleles, respectively, and

of the probability of an offspring being female, without the influence of one allele on

the other.
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Justification and Objectives of the Thesis

As I have indicated in the previous Section, the models introduced in González et al.

(2006) and González et al. (2009) have been studied in depth, although such study

has not finished. One of the first purposes of this work was to complete it. In

particular, for the model with blind choice, the study of the rates of growth of both

genotypes on their sets of non-extinction has not been developed yet.

Moreover, we have seen that the conditions which guarantee the extinction of the

population, the fixation of one genotype or the coexistence of both, depend on the

probability for an offspring to be female and on the mean numbers of individuals per

couple of each genotype. Therefore, the development of the theory of the estimation

of those parameters is also an interesting problem which still remains unresolved for

both models. In this Thesis, I give an answer to this problem considering estimation

theory from both a frequentist and a Bayesian point of view and considering different

sample schemes.

Finally, I give continuity to these models by considering a particular situation

which often happens in nature. Based on the model with blind choice, I assume that

in paternal-filial transmission, one allele of a Y-linked gene can mutate and transmit

a characteristic different from that transmitted originally. In this framework, I define

and study an appropriate bidimensional BBP to model this situation.

In a more precise manner, the objectives of this Thesis are the followings:

1. To determine the limiting genotype frequencies and the limiting growth rates

on the sets of fixation of one genotype and coexistence of both genotypes for

the BBPs with blind choice.

2. To develop the estimation theory, from a frequentist viewpoint, of the main

parameters of the BBPs with preference and with blind choice considering

different sample schemes.

3. To develop the inferential theory, from a Bayesian point of view, of the main

parameters of the BBPs with preference and with blind choice varying the

sample scheme.

4. To introduce and study the extinction problem of a new bidimensional BBP

in which, in the paternal inheritance, the mutation of one allele is allowed.
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General Introduction

Structure of the Thesis

The Thesis is structured into five parts, plus a final discussion and conclusions, and

questions for further research, and an Appendix with the computer programs for

simulations. In the first part, I make a brief summary of the results obtained up to

now for the BBPs in a genetic context, while in the four following parts I present

different papers which give an answer to each one of the considered objectives.

Part I deals with a background on bidimensional BBPs in a genetic context.

First of all, I provide an in-depth introduction to the biological reasons for the

development of the models I have been citing so far. In the second place, those

models are mathematically defined and some essential results are shown.

In Part II, I present Paper A, entitled Limiting genotype frequencies of Y-linked

genes through bisexual branching processes with blind choice (Alsmeyer, G., Gutiérrez,

C. and Mart́ınez, R. (2011). Journal of Theoretical Biology) which deals with giving

an answer to Objective 1. The main results of this paper are concerned with the

asymptotic growth of the process with blind choice. The genotype frequencies and

the limiting sex ratio are described under regimes in which the genotypes coexist

with positive probability.

In Part III, I present two papers in order to address Objective 2. The first

one, Paper B, is entitled Parametric inference for Y-linked gene branching models:

expectation-maximization method (González, M., Gutiérrez, C. and Mart́ınez, R.

(2010). Workshop on Branching Processes and their Applications. Lecture Notes

in Statistics) and the second one, Paper C, is entitled Expectation-maximization

algorithm for determining natural selection of Y-linked genes through two-sex bran-

ching processes (González, M., Gutiérrez, C. and Mart́ınez, R. (2010). Preprint 137.

Department of Mathematics. University of Extremadura). Each one deals with,

respectively, the frequentist estimation on a parametric and non-parametric frame-

work of the main parameters of the BBP with preference although the results could

be extended to the model with blind choice. In both papers, I present the MLEs

of such parameters when one can observe the complete family tree and study their

asymptotic properties. As this sample is not always possible to observe in nature,

I restrict it to the observation of the total number of females and the total number

of males of each genotype in each generation up to some given one. In this case, I

consider the problem as an incomplete data problem, and apply the EM algorithm

to obtain the MLEs based on the given sample.
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In part IV, I present Paper D entitled Parametric Bayesian inference for Y-linked

two-sex branching models (González, M., Gutiérrez, C. and Mart́ınez, R. (2011). Pre-

print 144. Department of Mathematics. University of Extremadura) which gives an

answer to Objective 3. Here the focus is on a parametric Bayesian framework to ap-

proximate the posterior distributions of the main parameters of the BBP with blind

choice by applying an MCMC method. Based on the sample scheme in which only

the total number of females and the total number of males (without distinguishing

their genotypes) in each generation are observed, I implement a Gibbs sampler which

is modified in a series of steps until obtaining accurate estimators. These procedures

are also easily extended to the BBP with preference, although the sample scheme

could be slightly changed.

Finally, to address Objective 4, I present in Part V Paper E entitled Extinction

conditions for Y-linked mutant-allele through two-sex branching processes with blind

mating structure (González, M., Gutiérrez, C. and Mart́ınez, R. (2012). Preprint

145. Department of Mathematics. University of Extremadura). Here, I define a

bidimensional BBP to model the evolution of the number of carriers of an allele

of a Y-linked gene and of its mutations. I also study conditions to determine the

extinction or survival of the original allele and analyze the destiny of the mutations

in the population depending on the survival or extinction of the original allele.

To complete these 5 parts, they are followed by a final discussion of these five

papers and a list with the main conclusions extracted from this Thesis. Also some

open questions for future research are presented. I conclude with an Appendix which

includes the simulation programs and a complete list of the references cited in these

last three sections together with Part I (each paper has its own reference list).
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Part I

Background on two-sex branching

processes in a genetic context





1 Introduction

In this part we define mathematically the Y-linked two-sex branching processes in-

troduced until now in the literature, but firstly we give a biological introduction

where we see some motivating examples of real situations in which the models can

be applied. That idea is developed in Section 2. In Section 3 we define both, the

Y-linked two-sex branching process with preference and with blind choice. Section

4 is split in 3 subsections. The first one is devoted to summarize the main results

obtained for both models related to basic properties. In the second one conditions

for the extinction or survival of the genotypes are established, comparing the results

for both models; whereas in the last subsection, the asymptotic growth rates for the

model with preference in the sets of survival are provided.

2 Sex-linked genes and branching processes

The X and Y chromosomes or sex-chromosomes are directly implicated in the de-

termination of the gender of humans and lots of animals (mammals, echinoderms,

molluscs, some insects,...). In the most of the cases, females have two X chro-

mosomes, while males have one X and another Y chromosome. Nevertheless, some

organisms (birds, snakes, butterflies or some fishes, for example) have a mirror image

of the XX/XY determination system, with males being homogametic and females

heterogametic. To avoid confusion, these sex chromosomes are denominated Z and

W. Thus, in these cases, females have ZW sex chromosomes, and males have ZZ sex

chromosomes (see, for example, Abe et al. (2008) or Ogawa et al. (1998)). For sim-

plicity in notation, throughout this work only the XX/XY sex determination system

will be referred to, although the development and the results are equally valid for

the ZZ/ZW system.

The inheritance of traits may or may not be sex related. This work focuses

on the sex linkage, that means, the phenotypic expression of an allele related to

the sex chromosomes of the individual. In particular, we study genes linked to the

Y-chromosome (Y-linked) which present two allelic forms (one can represent the

absence of the other). Although the number of Y-linked genes is relatively small

(compared to the X chromosome), recent researches have shown their significance,

playing a central role not only in the human biology (see for example Quintana-Murci

and Fellous (2001) or the web page www.nature.com/nature/focus/ychromosome/)

but also in other animal species (see for example Yamada et al. (2004)).
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The Y-chromosome has unique properties which give rise to important conse-

quences for its population genetics. In particular, this chromosome is specific of

male and haploid, and have a non-recombining region (called NRY and correspon-

ding to the 95% of the chromosome in humans – see, for example, Krausz et al.

(2004) or Graves (2006)) which passes down from father to son largely unchanged,

and is therefore very useful for studying how populations have evolved. Moreover,

examining the differences between modern Y-chromosomes (such as DNA polymorp-

hisms), one can attempt to reconstruct a history of paternal lineages. There have

been many studies in this sense in the context of populations of humans (see, for

example, Hurles et al. (1998), Quintana-Murci et al. (2001), Hurles et al. (2002) or

Rosa et al. (2007)) and other species (for example, Tosi et al. (2002), Hellborg et al.

(2005) or Geraldes et al. (2005)).

On the other hand, in the long arm of the human Y-chromosome, there exist three

genetic domains where genes required for spermatogenesis are placed. An alteration

in these regions, as for example the Yq delections, could end in fertility problems

(for a review, see Krausz et al. (2003)). Many cases have been reported in which the

natural transmission of this genetic defect from fathers to sons has occurred (see,

for example, Kuhnert et al. (2004)). Obviously, determining the evolution of the

number of males with this genetic defect in a human population is an important

medical problem.

The surname is another characteristic which can be seen as Y-linked in humans.

There have been some recent studies aimed at determining the relationship between

surnames and Y-chromosome lineages (for example, Bowden et al. (2008)).

Suitable mathematical models are needed to analyze the evolution of Y-linkage.

Branching processes naturally come to mind in this context. The simplest branching

models, the Bienaymé-Galton-Watson process and the Markov branching process,

have been used to model Y-chromosome lineages (see Neves and Moreira (2006))

and their female analogues (mitochondrial DNA lineages (see O’Conell (1995))).

However, those models consider an asexual reproduction scheme. The BBP introdu-

ced by Daley (1968) modified such reproduction scheme considering the coexistence

of females and males in the population which form couples (female-male) to give rise

to new offspring by mean of sexual interaction. Nevertheless, this model does not

seem to be appropriate either, because only a single type of couple is used and, as

we have seen previously, we want to model situations where there exist, at least, two

types of alleles and therefore also, at least, two types of couples.
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Some multitype BBP have been introduced for particular problems (see Mode

(1972), Karlin and Kaplan (1973) or Mart́ınez (2004)) but they are not applicable

to this new scenario. González et al. (2006) and González et al. (2009) introduced

new models which adapt perfectly well to the genetic context described previously

and model the number of carriers of a Y-linked gene with two alleles generation to

generation.

Those models are bidimensional BBP in discrete time with non-overlapping gene-

rations. Females and males in a given generation form couples (under perfect fidelity

mating) in order to produce offspring. The couples will be classified in different ty-

pes depending on the genotype of the male which forms the couple. Following the

inheritance rules, every couple can generate females and males who have the same

allele of their progenitor.

It is distinguished two different situations which give rise to two different models.

In the first situation, it is assumed that the males’ phenotype is different and males

with a determined allele are preferred by females as mates, for example, because the

other allele is considered pernicious or a negative character (an example of this type

of situation is the spread of melanistic pigmentations, see Angus (1989) or Bisazza

and Pilastro (2000)). This mating mechanism with preference was used by Hull

(1998) to describe the evolution of the surnames of European aristocracy. However,

most Y-linked characters do not appear in the males’ phenotype or, even if they do,

are not decisive at mating time, for example, in the case of the Yq deletions. In

these situations it seems more realistic to consider a model where each female picks

a male at random without regard for its genotype from the given pool of males.

3 Definition of the models

In this section we present a mathematical definition of two BBPs capable to model

the previous situations, mating with preference and with blind choice.

3.1 Y-linked two-sex branching process with preference

First of all, we present the Y-linked two-sex branching process with preference in-

troduced in González et al. (2006). Focus on a Y-linked gene with two allelic forms,

labeled by R and r, the main assumption for this model is that males have different

phenotypes, so that, if the r-allele is considered pernicious or of a negative character,

males carrying the R-allele are preferred by females as mates.
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Definition 1 Let {(FRni,MRni) : i = 1, 2, ...;n = 0, 1, ...} and {(Frnj ,Mrnj) :

j = 1, 2, ...; n = 0, 1, ...} be two independent sequences of independent, identically

distributed (i.i.d.), non-negative and integer-valued bivariate random vectors on the

same probability triple (Ω,F , P ). The sequences of random vectors {(ZRn, Zrn)}n≥0,

{(FRn+1,MRn+1)}n≥0 and {(Frn+1,Mrn+1)}n≥0 are defined recursively as follows:

Let (ZR0, Zr0) = (a, b) be with a, b ∈ N, (a, b) 6= (0, 0) and assume
∑0

1 = 0, then,

for n ≥ 0

(FRn+1,MRn+1) =
ZRn∑

i=1

(FRni,MRni) and (Frn+1,Mrn+1) =
Zrn∑

j=1

(Frnj ,Mrnj),

(1)

Fn+1 = FRn+1 + Frn+1, (2)

ZRn+1 = min{Fn+1,MRn+1}, (3)

Zrn+1 = min{max{0, Fn+1 −MRn+1},Mrn+1}. (4)

The bidimensional process {(ZRn, Zrn)}n≥0 is called Y-linked two-sex branching pro-

cess with preference (Y-BBP with preference).

Intuitive Interpretation

Intuitively, for n fixed, the random vector (ZRn, Zrn) represents the total number

of couples formed by a male of type R and r, respectively, at generation n. Those

couples will be named as R- and r-couples, respectively. To describe the evolution

of the population from this generation on, two phases are considered: reproduction

and mating.

In the reproduction phase, each couple, independently of the others, generates

females and males according to some probability distribution depending on its type.

So, (FRni,MRni) denotes the total number of females and males generated by the

ith R-couple at the generation n and analogously for (Frnj ,Mrnj).

According to equations in (1), we obtain the total number of females and males

generated by all couples of type R of generation n: (FRn+1,MRn+1), and the total

number of females and males generated by all couples of type r of generation n:

(Frn+1,Mrn+1). Males with R (resp. r) genotype are named by R-males (resp.

r-males). Moreover, Fn+1 denotes the total number of females at the (n + 1)th

generation (see equation (2)). Notice that the notation R (resp. r) in females is only

for indicating the kind of couple they come from because Y-linked genes are specific

of males.
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In the mating phase where the total number of individuals in generation n + 1

is known, (Fn+1,MRn+1,Mrn+1), the number of couples of each genotype formed

in generation n + 1 is calculated, taking into account the vector above and that

generations do not overlap. The point here is the assumption of preference of females

by R-males and the perfect fidelity mating. According to these assumptions, we

define the model as it is given in equations (3) and (4). Since R-males are preferred

as mates the number of R-couples is the minimum between the total number of

females and the total number of males with R-genotype. The number of females

which do not mate with R-males (if any) will be Fn+1 − MRn+1. These females

mate with r-males but the assumption of perfect fidelity implies that the number

of r-couples is the minimum between these remain females and the total number of

males of r-genotype. Note that, while the reproduction phase is random, the mating

phase is deterministic.

In the reproduction phase, we assume the Daley’s scheme (see Daley (1968)) in or-

der to determine the distribution of the vectors (FRni,MRni) (resp. (Frnj ,Mrnj)).

So it is considered the following two sequences of i.i.d., non-negative and integer-

valued random variables {TRni = FRni + MRni : i = 1, 2...;n = 0, 1, ...} and

{Trnj = Frnj + Mrnj : j = 1, 2...;n = 0, 1, ...} representing the total number of

individuals generated by the ith R-couple and jth r-couple, respectively, at gene-

ration n, for n ≥ 0. Taking into account that the probability distribution will

be the same for all the couples with a given genotype, irrespective of the genera-

tion they belong to, we will denote the reproduction law associated to R genotype

as pR = {pR
k }k∈SR , with pR

k = P (TR01 = k), k ∈ SR, being SR ⊆ Z+ its sup-

port. Analogously, the reproduction law associated to r genotype will be denoted

by pr = {pr
l }l∈Sr with pr

l = P (Tr01 = l), l ∈ Sr, being Sr ⊆ Z+ its support.

Moreover, mR and mr will be the average number of individuals generated by a

couple of type R and r, respectively. We consider that both means are finite.

Now, let α (0 < α < 1) be the probability for an offspring of any genotype to be

female, and consequently (1− α) will be the probability for an offspring to be male,

being α the same for both genotypes. These sex designations are made independently

among the offspring of any couple. Then FRni|TRni = k and Frnj |Trnj = l follow

a Binomial distribution of parameters (k, α) and (l, α) respectively, therefore

E[FRni] = αmR and E[MRni] = (1− α)mR,

E[Frnj ] = αmr and E[Mrnj ] = (1− α)mr.
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3.2 Y-linked two-sex branching process with blind choice

Now, we present the Y-linked two-sex branching process with blind choice introduced

in González et al. (2009). In this case, it is also considered a gene with a pair of alleles

linked to the Y-chromosome. The difference resides in that the character associated

to that gene does not play any role at mating time and then females choose the

genotype of their mates blindly.

Definition 2 Let {(FRni, MRni) : i = 1, 2, ...;n = 0, 1, ...} and {(Frnj , Mrnj) : j =

1, 2, ...; n = 0, 1, ...} be two independent sequences of i.i.d., non-negative and integer-

valued bivariate random vectors on the same probability triple (Ω,F , P ). The fo-

llowing sequences of random vectors {(ZRn+1, Zrn+1)}n≥0, {(FRn+1,MRn+1)}n≥0

and {(Frn+1,Mrn+1)}n≥0 are defined recursively as follows: Let (ZR0, Zr0) = (a, b)

be, with a, b ∈ N, (a, b) 6= (0, 0) and assume
∑0

1 = 0, then, for n ≥ 0

(FRn+1,MRn+1) =
ZRn∑

i=1

(FRni,MRni), (Frn+1,Mrn+1) =
Zrn∑

j=1

(Frnj ,Mrnj),

Fn+1 = FRn+1 + Frn+1, Mn+1 = MRn+1 + Mrn+1 and

if Fn+1 ≥ Mn+1, then ZRn+1 = MRn+1 and Zrn+1 = Mrn+1.

If Fn+1 < Mn+1, then ZRn+1 ∼ H(Fn+1, Mn+1, MRn+1), 1

Zrn+1 = Fn+1 − ZRn+1.

The bidimensional process {(ZRn, Zrn)}n≥0 is called Y-linked two-sex branching

process with blind choice (Y-BBP with blind choice).

Intuitive interpretation

As in the model with preference, the vector (ZRn, Zrn) represents the total number

of couples of type R and r, respectively, at generation n. In the same way, two

phases are considered: reproduction and mating.

The reproduction phase follows the same steps exposed in the model with pre-

ference. However, the mating phase is different, because this phase involves the

random choice of females. Actually, if the total number of females is greater than or

equal to the total number of males, all males mate so the total number of couples of
1H(n, N, k) denotes the hypergeometric distribution with parameters n, N, k ∈ N, n ≤ N , which

is the law of the number of red balls when drawing n balls at random without replacement from an
urn containing a total number of N balls of which k are red and N − k are black.

14



Y-linked two-sex branching processes

each type is equal to the total number of males of that type. On the other hand, if

the total number of females is less than the total number of males, all females mate.

Since females make a blind choice among males, the total number a R-couples is

given by a hypergeometric distribution with parameters (Fn+1,Mn+1,MRn+1), i.e.

Fn+1 males are selected from all males of generation n+1, where MRn+1 males have

the R-genotype. The rest of the couples will have r-genotype.

Note that, both reproduction and mating phases are now random. This is an

important difference with respect to the Y-BBP with preference.

For this model, the distributions of the vectors (FRni,MRni) and (Frnj ,Mrnj)

are the same that in the model with preference.

Remark 1 Obviously, there is a symmetry in the mating process, that is, it is equi-

valent to consider Zrn+1 ∼ H(Fn+1,Mn+1,Mrn+1) and ZRn+1 = Fn+1 − Zrn+1.

This symmetry is another important difference between the present model and that

with preference introduced in the previous subsection.

4 Main results of Y-linked two-sex branching models

In this section we summarize the main results obtained for both models related to

basic properties, conditions for the extinction and their asymptotic growth rates.

4.1 Basic properties

These models share some basic properties because they do not depend on the way

that females choose their mates. From now on, in order to simplify the notation,

we denote P (·|(ZR0, Zr0) = (i, j)) by P(i,j)(·). Even, (i, j) will be dropped in this

notation if there is not ambiguity.

From the definition of the models and the properties of the reproduction vectors

we observe that the number of couples of each genotype in a generation depends only

on the number of couples of both genotypes in the previous generation and therefore,

we establish the following result valid for both Y-BBPs.

Proposition 1 The process {(ZRn, Zrn)}n≥0 is a homogeneous multitype Markov

chain.
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Since the empty sum is assumed to be zero, if in some generation there are no

couples of a particular type then, from this generation on, couples and males of

that type no longer exist, then (0, 0) is an absorbing state. Moreover, if there are

couples of both types in a generation, there exists a positive probability of having

any number of couples of both types in some future generation. With this in mind,

we establish the following result

Proposition 2 The state (0, 0) is absorbing. Every non-null state (i, j) 6= (0, 0)

of the process {(ZRn, Zrn)}n≥0 is transient. Moreover, if pR
0 + pR

1 + pR
2 + pR

3 < 1

and pr
0 + pr

1 + pr
2 + pr

3 < 1, then the sets {(i, j) : i, j > 0}, {(i, 0), i > 0} and

{(0, j), j > 0} are classes of communicating states and each state leads to the state

(0, 0). Furthermore, the states belonging to the first set may move to states in the

other two sets in one step.

Although neither {ZRn}n≥0 nor {Zrn}n≥0 are homogeneous Markov chains, they

have the dual asymptotic behaviour extinction-explosion, typical in many homoge-

neous branching processes: either the total number of mating units of each genotype

goes to zero or has an unlimited growth.

Theorem 1 It is verified that

P (ZRn → 0) + P (ZRn →∞) = 1 and P (Zrn → 0) + P (Zrn →∞) = 1.

To conclude, notice that the number of couples in generation n is given by Zn =

ZRn + Zrn and, by perfect fidelity mating, it follows that Zn = min{Fn,Mn}, with

Mn the total number of males in generation n. In general, we assume that couples of

different types may not have the same reproduction distribution, then, the process

{Zn}n≥0 is not a Markov chain. However, it could happen that pR
k = pr

k = pk for all

k ≥ 0, i.e. both types of couples have the same reproductive behaviour, and therefore

the process {Zn}n≥0 is a BBP with perfect fidelity mating and reproduction law

{pk}k≥0. Notice that, as a particular case, if there is only one surviving genotype from

some generation on, then this one evolves like a BBP with its associated reproduction

law.

16



Y-linked two-sex branching processes

4.2 Conditions for the extinction

Let introduce the notation A0,0 = {ZRn → 0, Zrn → 0} the extinction of the popu-

lation, A∞,0 = {ZRn → ∞, Zrn → 0} the fixation of R genotype, A0,∞ = {ZRn →
0, Zrn →∞} the fixation of r genotype and A∞,∞ = {ZRn →∞, Zrn →∞} the si-

multaneous survival of both genotypes or coexistence. For each model, this subsection

is devoted to establishing conditions for the almost sure extinction of the population,

for the fixation of each genotype and for the coexistence of both genotypes.

First, we consider the extinction of the population. A necessary and sufficient

condition for the population to become extinct almost surely (a.s.) is given in the

following result, valid for both models, Y-BBP with preference and with blind choice:

Theorem 2 Let i, j > 0, then P(i,j)(A0,0) = 1 if and only if min{αmr, (1−α)mr} ≤
1 and min{αmR, (1− α)mR} ≤ 1.

This theorem establishes that if the mean number of females or males of both

genotypes is less than or equal to one then, the population becomes extinct a.s.

Respect to the survival of only one genotype both models also show the same

behaviour:

Theorem 3 Let i, j > 0.

(i) P(i,j)(A∞,0) > 0 if and only if min{αmR, (1− α)mR} > 1.

(ii) P(i,j)(A0,∞) > 0 if and only if min{αmr, (1− α)mr} > 1.

This theorem establishes that if the mean number of females and males of a

given genotype is greater than one, then such genotype has a positive probability of

survival.

The proofs of Theorems 2 and 3 for each model can be seen in González et al.

(2006) and González et al. (2009), respectively.

The behaviour of the models are not so similar when we study conditions for the

possibility or impossibility of coexistence of both genotypes. The following results

provide the key of this behaviour.

Theorem 4 Let i, j > 0. It is verified that P(i,j)(A∞,∞) = 0

1. for a Y-BBP with preference in each of the following cases:

(i) min{(1− α)mR, (1− α)mr, αmr} ≤ 1,
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(ii) α < 0.5 and 1 < αmr < (1− α)mR;

2. for a Y-BBP with blind choice in each of the following cases:

(i) min{(1− α)mR, (1− α)mr} ≤ 1,

(ii) min{αmr, αmR} < 1.

This theorem establishes that, for the model with preference, if the mean number

of males of both genotypes and the mean number of females stemming from a r-couple

are less than or equal to one or when α < 0.5, the mean number of R-males is higher

than the mean number of females stemming from a r-couple, then, both genotypes

cannot coexist. For the model with blind choice, the theorem assures than if, at

least, the mean number of males of one genotype is less than or equal to one or if,

at least, the mean number of females stemming from one type of couple is less than

one, then the probability of coexistence is null.

Theorem 5 Let i, j > 0. It is verified that P(i,j)(A∞,∞) > 0

1. for a Y-BBP with preference in each of the following cases:

(i) α < 0.5 and 1 < (1− α)mR < αmr,

(ii) α > 0.5 and min{(1− α)mR, (1− α)mr} > 1;

2. for a Y-BBP with blind choice in the following case:

(i) α < 0.5 and min{αmR, αmr} > 1,

(ii) α > 0.5 and min{(1− α)mR, (1− α)mr} > 1;

This theorem establishes that, for the model with preference, if α < 0.5 and the

mean number of females stemming from r-couples is higher than the mean number

of R-males (and both are greater than one) or if α > 0.5 and the mean numbers of

males of both genotypes are greater than one then, there exists a positive probability

of coexistence. For the model with blind choice, the theorem assures than if, for

α < 0.5, the mean numbers of females stemming from couples of both genotype are

greater than one or if, for α > 0.5, the mean numbers of males of both genotype are

greater than one, then there exists a positive probability of coexistence. The case

α = 0.5 is still an open case in these studies.

The details of the proofs of these results can be seen in the papers González et al.

(2006) and González et al. (2008) for the Y-BBP with preference and in González

et al. (2009) for the Y-BBP with blind choice.
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Notice that for α > 0.5 both models show the same behaviour, while for α < 0.5

we can find some interesting differences:

(i) If α < 0.5, 1 < αmr < (1 − α)mR and αmR > 1, then P (A∞,∞) = 0 for the

Y-BBP with preference and P (A∞,∞) > 0 for the Y-BBP with blind choice.

(ii) If α < 0.5, 1 < (1 − α)mR < αmr and αmR < 1, then P (A∞,∞) > 0 for the

Y- BBP with preference and P (A∞,∞) = 0 for the Y-BBP with blind choice.

4.3 Asymptotic growth rates

Now we deal with the rates of growth of the Y-BBP with preference on the sets A∞,0,

A0,∞ and A∞,∞. All the results that we shall show next, as well as their proofs, can

be seen in González et al. (2008). This problem has not been studied for the model

with blind choice.

As we have explained previously, the long term evolution of a genotype when the

other has become extinct is similar to that of a BBP with perfect fidelity mating and

the reproduction law of the surviving genotype. Hence, the asymptotic properties

of that BBP, studied by Bagley (1986), can be applied here in order to obtain the

following result:

Theorem 6 Let τR = min{αmR, (1− α)mR} and τr = min{αmr, (1− α)mr}.

(i) If τR > 1, then there exists a random variable WR, which is positive and finite

on A∞,0, such that a.s. on A∞,0

lim
n→∞

ZRn

τn
R

= WR, lim
n→∞

MRn

τn
R

=
(1− α)mR

τR
WR and lim

n→∞
Fn

τn
R

=
αmR

τR
WR.

(ii) If τr > 1, then there exists a random variable Wr, which is positive and finite

on A0,∞, such that a.s. on A0,∞

lim
n→∞

Zrn

τn
r

= Wr, lim
n→∞

Mrn

τn
r

=
(1− α)mr

τr
Wr and lim

n→∞
Fn

τn
r

=
αmr

τr
Wr.

(iii) If max{τR, τr} > 1, then

lim
n→∞

Fn

Fn + Mn
= α a.s. on A∞,0 ∪A0,∞.

19



Part I: Background

This theorem establishes that the rate of growth of one genotype, in its set of

survival, is given by the minimum between the mean number of males and females

stemming from a couple of that genotype. Moreover, the limiting sex-ratio only

depends on α.

We now investigate the rate of growth of both, the R and r genotypes on A∞,∞,

provided this set has positive probability.

Theorem 7

(i) If α > 0.5 and min{(1 − α)mR, (1 − α)mr} > 1, then there exist nonnegative

and finite random variables WR and Wr, which are positive on A∞,∞, such

that a.s. on this event

lim
n→∞

ZRn

((1− α)mR)n
= WR, lim

n→∞
Zrn

((1− α)mr)n
= Wr,

lim
n→∞

MRn

((1− α)mR)n
= WR and lim

n→∞
Mrn

((1− α)mr)n
= Wr.

(ii) If α < 0.5 and αmr > (1 − α)mR > 1, and the initial states (i, j) satisfy

j > i(αmr− (1−α)mR)−1αmr, then there exist nonnegative and finite random

variables WR and W ∗
r , such that WR is positive on A∞,∞, W ∗

r is positive on

A ⊆ A∞,∞ with P(i,j)(A) > 0, and

lim
n→∞

ZRn

((1− α)mR)n
= WR a.s. on A∞,∞ and lim

n→∞
Zrn

(αmr)n
= W ∗

r a.s. on A,

lim
n→∞

MRn

((1− α)mR)n
= WR a.s. on A∞,∞ and lim

n→∞
Frn

(αmr)n
= W ∗

r a.s. on A.

To conclude, this theorem assures that, in the set of coexistence, the rate of

growth of the R genotype is given by the mean number of R-males while the rate of

growth of the r genotype is given by the mean number of females or males stemming

from r-couples depending on the value of α. Then, the long term behaviour of the

r-allele is the same on A0,∞ and A∞,∞. On the other hand, this behaviour is not

the same for the R-allele due to the preference for this allele.
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Abstract

The limiting genotype growth rates and the limiting genotype frequencies of Y-
linked genes are studied in a two-sex monogamous population. To this end, the
evolution of the numbers of females, males, and mating units of each genotype
is modeled by a multitype bisexual branching process in which it assumed that
the gene has no influence on the mating process. It is deduced from this model
that the average numbers of female and male descendants per mating unit of a
genotype determine its growth rate, which does not depend on the behaviour
of the other genotypes. Hence, the dominant genotype is found. Conditions
for the simultaneous survival of genotypes to have positive probability are also
investigated. Finally, the main results are illustrated by means of examples.

Keywords: Sex-linked inheritance. Bidimensional two-sex stochastic model. Per-

fect fidelity mating. Rates of growth.

1 Introduction

In human and many animal populations the sex of an individual is determi-

ned by a pair of chromosomes X and Y. The females are homozygous and carry

XX chromosomes, whereas the males are heterozygous and carry XY chromoso-

mes. The inheritance of traits may or may not be sex related. For traits on

autosomal chromosomes, both sexes have the same probability of expressing the

trait. There is also the possibility of sex linkage – phenotypic expression of an

allele related to the chromosomal sex of the individual. The present work focuses

on Y-linkage. For humans, there are many more X-linked than Y-linked traits be-

cause there are far more genes on the X- than on the Y-chromosome. Nevertheless,

recent research has shown the significance of Y-linked genes in the biology of hu-

mans and other animals, see, for instance, Quintana-Murci and Fellous (2001) or

www.nature.com/nature/focus/ychromosome/.
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Bisexual branching processes provide a natural class of candidates when looking

for an appropriate mathematical model for the propagation of Y-linked genes in

two-sex populations. Roughly speaking, these processes form an extension of classi-

cal two-type Galton-Watson branching processes by additionally imposing a mating

structure. González et al. (2009) have recently introduced a model of this kind for

the evolution of Y-linked genes which occur in two allelic forms, called R and r.

They assume monogamous mating (mating with perfect fidelity) with blind choice,

which means that females choose their mate without recognizing or caring about his

genotype. The latter condition may be justified by the fact that Y-linked genes are

typically not expressed in males, or, if they are, do not have any preferential impact

on the mating process. Using this model, we shall focus on the evolution of the

numbers of R-couples between a female and a type R male and of r-couples between

a female and a type r male over successive generations. Our goal is to describe the

growth behaviour of this bivariate process and related genotype frequencies under

regimes in which at least one of the allele types survives. Of particular interest are

situations where this holds true for both types simultaneously (coexistence) with

positive probability. Conditions to guarantee this have been identified in the afore-

mentioned work which may also be consulted for further background information

and motivation.

This article contains six further sections. Section 2 is devoted to a description of

the model including a definition of the Y-linked bisexual Galton-Watson branching

process with blind choice (the basic mathematical object we shall be studying). The

limiting growth rate of each genotype given the ultimate extinction of the other is

derived in Section 3 together with the limiting sex ratio. Section 4 provides sufficient

conditions under which indefinite growth of both genotypes has either positive or zero

probability. The limiting growth rate of each genotype in the event that both types

survive is studied in Section 6, once again together with the limiting sex ratio. All

proofs of the results presented are provided in the final Section 7.

2 Description of the model

The following model, introduced by González et al. (2009), describes the evolution

of the number of carriers of a Y-linked gene in a two-sex monogamous population.

The gene occurs in two allelic forms, denoted R and r. Since the Y-chromosome is

haploid and specific to males, the population is formed by females and by two types
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of male, denoted R- and r-males, depending on which allele they carry. There are

thus two types of couple, denoted R- and r-couples, depending on whether the male

is of type R or type r. By the rules of genetic inheritance, an x-couple can only give

birth to females or x-males (x ∈ {r,R}).

Assuming non-overlapping generations, labeled by integers n = 0, 1, 2, ..., and

given the number of couples of each type in generation n, the stochastic mechanism

that determines the number of females, males, and couples of each genotype in the

(n + 1)-th generation may be divided into two stages, reproduction and mating.

In the reproduction phase, the R- and r-couples of the n-th generation, their num-

bers being denoted by ZRn and Zrn, respectively, produce offspring independently

of each other and according to a certain reproduction law which is the same for a

given genotype and independent of the generation they belong to. We allow for dif-

ferent reproduction laws for each genotype and also assume that these reproduction

laws have finite means and variances. Let mR and mr denote the average number

of offspring produced by an R- and r-couple, respectively. An individual offspring

is female with probability α and male with probability 1− α, independently of the

sex designation of any other offspring. In particular, α is the same for both genoty-

pes. As a consequence, the average numbers of females and males generated by an

R-couple are αmR and (1 − α)mR, respectively, while the respective values for an

r-couple are αmr and (1 − α)mr. At the end of the reproduction phase, one has

the total numbers Fn+1, MRn+1, and Mrn+1 of females, R-males stemming from

R-couples, and of r-males stemming from r-couples, respectively, which together

constitute the (n + 1)-th generation.

In the mating phase, the number of couples of each genotype in the (n + 1)-th

generation is determined, given the total numbers of females, R-males, and r-males

in this generation (Fn+1, MRn+1, and Mrn+1). We assume monogamous (perfect

fidelity) mating, i.e., each individual mates with only one individual of the opposite

sex if available. We further assume that the genotype has no impact on the mating

mechanism. This is clearly so if the total number of females is greater than or equal

to the total number of males because then every male finds a mate in the female

population resulting in ZRn+1 = MRn+1 couples of type R and Zrn+1 = Mrn+1

couples of type r. However, if the total number of males exceeds the total number

of females, then each female picks a male at random without regard for its genotype
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(blind choice) from the given pool of MRn+1 + Mrn+1 males. As a consequence,

the total number of R-couples in the (n + 1)-th generation has a hypergeometric

distribution with parameters Fn+1,MRn+1 + Mrn+1, and MRn+1, while the total

number of r-couples in this generation equals the number of remaining females, i.e.,

Zrn+1 = Fn+1 − ZRn+1. Notice that, by symmetry of the model, the law of Zrn+1

is also hypergeometric, the parameters being Fn+1,MRn+1 + Mrn+1, and Mrn+1.

The bivariate sequence (ZRn, Zrn)n≥0 describing the evolution of the number of

mating units of each genotype over generations is called a Y-linked bisexual bran-

ching process with blind choice. It is shown in González et al. (2009) that each

genotype shows the dual behaviour typical for branching processes and known as

the extinction-explosion dichotomy. This means that the number of couples of

any type is bound to undergo either extinction or indefinite growth. The survi-

val of the population over generations is therefore determined by the three events

A∞,0 = {ZRn → ∞, Zrn → 0}, termed R-fixation, A0,∞ = {ZRn → 0, Zrn → ∞},
termed r-fixation, and A∞,∞ = {ZRn →∞, Zrn →∞}, termed simultaneous survi-

val of both genotypes or coexistence. The following sections are devoted to the study

of the asymptotic growth of surviving genotypes in each of these three events.

3 Survival of only one genotype: Limiting growth rate

A necessary and sufficient condition for a genotype to have positive probability

of fixation is that both the female and the male mean offspring per couple of that

genotype are greater than unity (see Result 2 in González et al. (2009)). This is

due to the fact that, if fixation of a particular allele has occurred, the corresponding

genotype evolves essentially as a bisexual branching process with perfect fidelity ma-

ting and the reproduction law of the surviving genotype. The asymptotic properties

of this latter process were studied by Bagley (1986), and the following result may be

directly deduced from his work.

Result A.1 Let τR = min{αmR, (1− α)mR} and τr = min{αmr, (1− α)mr}.

(i) If τR > 1, then P (A∞,0) > 0 and there exists a random variable WR, which is

positive and finite on A∞,0, such that almost surely (a.s.) on A∞,0

lim
n→∞

ZRn

τn
R

= WR, lim
n→∞

MRn

τn
R

=
(1− α)mR

τR
WR and lim

n→∞
Fn

τn
R

=
αmR

τR
WR.
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(ii) If τr > 1, then P (A0,∞) > 0 and there exists a random variable Wr, which is

positive and finite on A0,∞, such that a.s. on A0,∞

lim
n→∞

Zrn

τn
r

= Wr, lim
n→∞

Mrn

τn
r

=
(1− α)mr

τr
Wr and lim

n→∞
Fn

τn
r

=
αmr

τr
Wr.

(iii) If max{τR, τr} > 1, then P (A∞,0 ∪A0,∞) > 0 and

lim
n→∞

Fn

Fn + Mn
= α, a.s. on A∞,0 ∪A0,∞,

where Mn = MRn + Mrn denotes the total number of males in generation n.

Intuitively speaking, assertion (i) states that, if the r-couples have disappeared

while the R-couples have not, the numbers of R-couples, R-males, and females grow

geometrically at rate τR. This rate depends on the probability α of an offspring being

a female and on the mean total number of offspring per R-couple, viz. mR. Indeed, it

equals the mean number of females per R-couple if α ≤ 0.5, and the mean number of

males per R-couple otherwise. A similar intuitive meaning can be given for assertion

(ii). Finally, assertion (iii) states that the limiting sex ratio of the population in the

events of fixation only depends on the probability of an offspring being female.

4 Conditions for survival of both genotypes(coexistence)

It should be no surprise that the event of the simultaneous survival of both alleles

has positive probability if the mean numbers of females and of males per couple

of both genotypes are all greater than unity (i.e., min{αmR, αmr, (1 − α)mR, (1 −
α)mr} > 1). This statement was proved in González et al. (2009) (see Result 6

therein) if the probability α for an offspring to be female is different from 0.5. The

case α = 0.5 is included in the following result.

Result A.2 Let ZR0 and Zr0 both be positive.

(i) If α > 0.5 and min{(1− α)mR, (1− α)mr} > 1, then P (A∞,∞) > 0.

(ii) If α ≤ 0.5 and min{αmR, αmr} > 1, then P (A∞,∞) > 0.

However, if the mean number of male offspring per couple of either genotype

is less than or equal to unity (i.e., min{(1 − α)mR, (1 − α)mr} ≤ 1), or if the

mean number of female offspring per couple of either genotype is strictly less than

unity (i.e., min{αmr, αmr} < 1), then simultaneous survival of both genotypes has

probability zero (see Result 4 in González et al. (2009)). This leaves one open case,
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namely when the mean number of female descendants equals unity for couples of

one genotype, while being greater than unity for couples of the other genotype. The

following result takes care of this case for which one should notice that the probability

for a descendant to be female is necessarily less than 0.5.

Result A.3 Suppose that α < 0.5 and either αmR = 1 < αmr or αmr = 1 < αmR

holds true. Put τ = max{αmR, αmr}. Then either P (A∞,∞) = 0 or

lim
n→∞

Zn

τn
= 0 and lim inf

n→∞
Zn

ρn
= 0 a.s. on A∞,∞,

for any ρ ∈ (1, τ), where Zn = ZRn + Zrn.

For an intuitive interpretation, let us consider the situation when α < 0.5 and

αmR = 1 < αmr. Then τ equals αmr, which means that the r-genotype dominates

the R-genotype, and τ constitutes the exact geometric growth rate of the number

of r-couples in the event of fixation of the r-genotype (see Result A.1). However,

we infer from the above result that simultaneous survival of both genotypes entails

that the number of couples, and in particular of r-couples, grows at a rate less than

τ . Indeed, the growth rate drops infinitely often below any ρ ∈ (1, τ). Hence, the

competition of r- and R-males for females has a considerable effect as opposed to

the situation of fixation where one type eventually disappears. Even so, the result

raises the question as to whether P (A∞,∞) > 0 does occur at all under the stated

conditions. We believe that an answer not only would require much deeper and more

sophisticated mathematical tools, but would lead us beyond the scope and purpose

of the present communication.

Let is now proceed with an illustration of the above result. Assume that α <

0.5 and αmR = 1 < αmr. Based on the behaviour of R-couples, González et al.

(2009) conjectured that simultaneous survival of both genotypes has probability

zero. Further evidence for this conjecture is provided by the following argument

regarding the behaviour of r-couples. As in the aforementioned article, we consider

the situation where α = 0.4 and reproduction laws are Poisson with means mR = 2.5

and mr = 2.52, which implies αmR = 1 and αmr = 1.008 > 1, and hence τ = αmr.

By Monte-Carlo simulation, we generated realizations of (ZRn, Zrn)n≥0 with ZR0 =

Zr0 = 3 that survived 1000 generations. Typical outcomes are displayed in Figure

A.1. For these, Figure A.2 shows the behaviour of (ZRn + Zrn)/τn (left plot) and

log(ZRn + Zrn) (right plot) over generations. These indicate that the total number
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Figure A.1: Realizations of ZRn (left plot) and Zrn (right plot) in a process where
both genotypes have survived until generation 1000.

of couples normalized by the growth rate of the dominant genotype approaches a

positive limit. For the sample (n, log(ZRn + Zrn))n=700,...,1000, we also calculated

the sample linear correlation coefficient to be 0.999369 and the slope of the regression

line to be 0.007913, which is very close to the theoretical value log τ = 0.007968. In

view of Result A.3 and coherent with the above conjecture, we conclude that in this

realization the R-genotype is likely to disappear so that fixation of the r-genotype

occurs.

5 Coexistence: Limiting growth rates and frequencies

In this section, we return to the situation of Result A.2 and assume that the mean

numbers of females and males per couple of both genotypes are greater than unity,

i.e., min{αmR, (1−α)mR, αmr, (1−α)mr} > 1 (which conforms to the condition in

Result A.2(i) or (ii) depending on whether α > 0.5 or α ≤ 0.5). Then simultaneous

survival of both genotypes occurs with positive probability, so that it makes sense to

determine the limiting growth rates for the numbers of females, R-males, R-couples,

and their r-counterparts. Answers are provided by the following two results that

deal with the two cases α > 0.5 and α ≤ 0.5 separately. We note and will prove in

Lemma A.6 that in the first case the number of females always exceeds the number

of males from some generation onwards, whereas the number of males is eventually

always greater than the number of females if α < 0.5. The boundary case α = 0.5 is
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Figure A.2: Realizations of (ZRn + Zrn)/τn (left plot) and log(ZRn + Zrn) (right
plot) in a process where both genotypes have survived until generation 1000.

more delicate because neither of the previous two statements holds true (oscillating

situation). We therefore expect results that depend on the value of α.

Result A.4 If α > 0.5 and min{(1 − α)mR, (1 − α)mr} > 1, then there exist non-

negative and finite random variables WR and Wr, which are positive on A∞,∞, such

that a.s. on this event

lim
n→∞

ZRn

((1− α)mR)n
= WR and lim

n→∞
Zrn

((1− α)mr)n
= Wr,

lim
n→∞

MRn

((1− α)mR)n
= WR and lim

n→∞
Mrn

((1− α)mr)n
= Wr,

and

lim
n→∞

Fn

τn
=

α

1− α

(
WRI{mR≥mr} + WrI{mR≤mr}

)
,

where τ = max{(1 − α)mR, (1 − α)mr} and I{a≥b} is equal to 1 if a ≥ b, and 0

otherwise.

Intuitively speaking, the total numbers of couples and males of each genotype

grow geometrically at the same rate, defined by the mean number of males generated

by a couple of this genotype. This follows from the fact that, from some generation

onwards, the total number of couples of each genotype is determined by the total

number of males of this type. Moreover, the total number of females in the population

grows geometrically as well, but at a rate defined by the mean number of males

generated by the dominant genotype. We note that this also is the case for the total

number of couples and the total number of males.

The remaining cases α < 0.5 and α = 0.5, though qualitatively different as

explained above, can be dealt with together in the following result.
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Figure A.3: Logarithm of the total number of R-couples (left plot), the total number
of r-couples (middle plot), and the total number of couples (right plot) from a path
of a process in which both genotypes have survived until generation 200.

Result A.5 If α ≤ 0.5 and min{αmR, αmr} > 1, then there exist nonnegative and

finite random variables W ?
R and W ?

r , which are positive on A∞,∞, such that a.s. on

this event

lim
n→∞

ZRn

(αmR)n
= W ?

R and lim
n→∞

Zrn

(αmr)n
= W ?

r ,

lim
n→∞

MRn

(αmR)n
=

1− α

α
W ?

R and lim
n→∞

Mrn

(αmr)n
=

1− α

α
W ?

r ,

and

lim
n→∞

Fn

τn
=

(
W ?

RI{mR≥mr} + W ?
r I{mR≤mr}

)
, where τ = max{αmR, αmr}.

Notice that, upon setting WR = 1−α
α W ?

R and Wr = 1−α
α W ?

r , the assertions of

Result A.4 and Result A.5 actually coincide in the case α = 0.5, as one would

expect.

We shall illustrate the above results by another Monte-Carlo simulation for which

we assumed α = 0.5 and reproduction laws to be Poisson with means mR = 2.10

and mr = 2.15. Figure A.3 shows semi-logarithmic plots of the total number of R-

couples (left plot), the total number of r-couples (middle plot), and the total number

of couples (right plot) from a realization of (ZRn, Zrn)n≥0 with ZR0 = Zr0 = 50

in which both genotypes have survived until generation 200. One observes that the

dominant r-genotype has the greater growth rate, which is the same for the total

number of couples.

It is now immediate to deduce from Results A.4 and A.5 the limiting genotype

frequencies and the limiting sex ratio.
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Result A.6 If min{αmR, (1 − α)mR, αmr, (1 − α)mr} > 1 and WR, Wr, W ?
R, W ?

r

are as in Results A.4 and A.5, then a.s. on A∞,∞

lim
n→∞

ZRn

Zn
= W, lim

n→∞
MRn

Mn
= W and lim

n→∞
Fn

Fn + Mn
= α,

where

W =





1, if mR > mr

WR/(WR + Wr), if mR = mr and α > 0.5
W ?

R/(W ?
R + W ?

r ), if mR = mr and α ≤ 0.5
0, if mR < mr,

recalling that Zn = ZRn + Zrn and Mn = MRn + Mrn.

One thus sees that the limiting sex ratio in the population does not depend on

the Y-linked gene but only on the probability of an offspring being female. Moreo-

ver, neither does the limiting R-genotype frequency among mating units and males

depend on α, but equals unity if mR is greater than mr, i.e., if the R-genotype

is dominant. Equality of mR and mr implies 0 < W < 1 a.s. on A∞,∞, since

WR, Wr, W ?
R, W ?

r are all a.s. positive and finite on this event. The limiting ge-

notype frequencies thus being strictly between zero and unity, we conclude that

there is no dominant genotype in this case. Naturally, the results for the r-genotype

are analogous, replacing W with 1−W .

To illustrate the statistical properties of the random variable W in the case

mR = mr, we consider the situation where α = 0.4 and reproduction laws are

Poisson and geometric with common mean 2.55 for the R- and r-genotypes. We

put τ = αmR = 1.02. Based on the simulation of 10 000 simulations over 100

generations with both genotypes surviving this time span, Figure A.4 shows the

empirical distributions (displayed as histograms) of the total numbers of R-couples

(left plot) and r-couples (middle plot) in generation 100, normalized by τ100, i.e.,

ZR100/τ100 and Zr100/τ100, respectively. The behaviour of the proportion of R-

couples in generation 100, i.e., ZR100/(ZR100 + Zr100), is shown in the right plot.

The largest observed values appear for Zr100/τ100 ≈ W ?
r which may be attributed

to the fact that the Poisson reproduction law for R-couples has a smaller dispersion

than the geometric reproduction law of r-couples. As a consequence, the limiting

R-genotype frequency is more likely to be less than one-half, i.e. P (W < 0.5) > 0.5.
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Figure A.4: Histogram of ZR100/τ100 (left plot), Zr100/τ100 (middle plot) and
ZR100/(ZR100 + Zr100) (right plot).

6 Concluding remarks

With a focus on Y-linked genes that occur in two allelic forms R and r, this work

has dealt with the classical problem in population genetics of determining genotype

frequencies. Adopting a generation point of view, we studied the evolution of the

number of carriers of the two alleles in a two-sex monogamous population under

the assumption that the gene considered has no effect on the mating process. This

means that a female chooses her mate without regard to, or even knowledge of, his

genotype (blind choice). An appropriate model leading to so-called Y-linked bisexual

branching processes with blind choice was provided by González et al. (2009). Their

work should also be consulted for good background information about the biological

relevance of studying Y-linkage. By applying advanced mathematical tools from the

theory of branching processes, see Asmussen and Hering (1983) (Chapter XI), we

derived the limiting growth rates of surviving genotypes as functions of the mean

numbers of females and males generated by a mating unit (couple).

In particular, a genotype x ∈ {R, r} has positive probability of survival if the

mean numbers of female and male descendants per x-couple are both greater than

unity. Our results then show that the growth rates for the numbers of x-couples and

x-males coincide in the event of survival. In particular, both quantities grow geome-

trically, and the limiting growth rate equals the mean number of female offspring per

x-couple if the probability α for a descendant to be female is less than 0.5, whereas

it equals the mean number of male offspring per x-couple if α ≥ 0.5. Furthermore,

this behaviour does not depend on the extinction or survival of the other genotype.

However, if both genotypes survive, it is impossible for the limiting growth rate of
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one type to be determined by the mean number of female offspring per couple of this

type while for the other genotype this asymptotic rate equals the number of male

offspring per couple of the respective type. More precisely, these rates turn out to be

either αmR and αmr, or (1− α)mR and (1− α)mr, respectively. As a consequence,

there exists a dominant genotype with limiting frequency unity on the event of joint

survival if mR 6= mr, while mR = mr entails balanced coexistence of the two types

in the sense that their limiting frequencies are a.s. positive and random. Finally, we

found that the limiting sex ratio equals the probability of being female, and thus

does not depend on the Y-linked gene.

In conclusion, the limiting behaviour of Y-linked genes in a bisexual branching

model with blind choice may be different from those obtained in classical genetic

models, for example, in models for which the Hardy-Weinberg law holds true and

thus no dominant genotype exists in the population. This may be due to the fact

that the population size is considered constant in these models which constrains the

modes of long-term behaviour. However, even with varying population size a different

limiting behaviour is possible and indeed observed, for example, for Y-linked genes

modeled by bisexual branching processes with preferential mating (see González et al.

(2006) and González et al. (2008)), where the behaviour of one genotype depends on

the survival of the other.
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7 Proofs

7.1 Setup and basic notation

We shall first provide a formal definition of the model. Consider two independent

sequences

{(FRn,l, MRn,l) : n = 0, 1, ...; l = 1, 2...} and {(Frn,l,Mrn,l) : n = 0, 1, ...; l = 1, 2...}

of independent, identically distributed, nonnegative, and integer-valued bivariate

random vectors such that, for x ∈ {R, r}, (Fxn,l,Mxn,l) represents the total number

of females and males, respectively, stemming from the l-th x-couple in the n-th

generation. We assume that the distribution of Fxn,l + Mxn,l has mean mx and

finite variance. Moreover, the conditional distribution of (Fxn,l,Mxn,l) given Fxn,l+

Mxn,l = k is multinomial with parameters k, α, and (1−α), for k ≥ 0 and 0 < α < 1,

where α represents the probability for an offspring to be female. It follows that

E[Fxn,l] = αmx and E[Mxn,l] = (1− α)mx for each x ∈ {R, r}.

Given the total number of R-couples and r-couples in generation n, denoted by

ZRn and Zrn, respectively, the total number of female and male offspring generated

by each genotype is given by

(FRn+1,MRn+1) =
ZRn∑

l=1

(FRn,l,MRn,l) and (Frn+1,Mrn+1) =
Zrn∑

l=1

(Frn,l,Mrn,l),

with the usual convention that the empty sum is defined as zero. Here, Fxn+1

represents the number of females and Mxn+1 the number of males in the (n + 1)-th

generation stemming from x-couples for x ∈ {R, r}. Consequently, the total number

of female and male offspring comprising this generation is given by

Fn+1 = FRn+1 + Frn+1 and Mn+1 = MRn+1 + Mrn+1,

respectively.

Given (Fn+1,MRn+1,Mrn+1), and taking into account that monogamous mating

is assumed, one obtains

Zn+1 = Fn+1 ∧Mn+1

as the total number of couples in the (n+1)-th generation. Here a∧b := min{a, b} for

real numbers a, b. Moreover, Zn+1 = Mn+1 entails ZRn+1 = MRn+1 and Zrn+1 =

Mrn+1, whereas Zn+1 = Fn+1 entails that the conditional distribution of ZRn+1 is
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hypergeometric with parameters (Fn+1, Mn+1, MRn+1) (see Hush and Scovel (2005)

for details about the hypergeometric distribution) and Zrn+1 = Fn+1 −ZRn+1. We

note that the process (ZRn, Zrn)n≥0 forms a homogeneous Markov chain and that

all states (i, j) with i, j ≥ 1 are communicating (see property P2 in González et al.

(2009)).

Finally, we introduce the filtrations Gn =σ(ZR0, Zr0, FRk,MRk, F rk,Mrk, ZRk,

Zrk, k = 1, . . . , n), n ≥ 1 (G0 = σ(ZR0, Zr0)) and Fn = σ(Gn−1, FRn,MRn, F rn,

Mrn), n ≥ 1. For any i, j ≥ 0, we write P(i,j)(·) for P (·|ZR0 = i, Zr0 = j) and

E(i,j)[·] for E[·|ZR0 = i, Zr0 = j].

7.2 Proof of Result A.2

We have only to consider the case α = 0.5 and min{αmR, αmr} > 1, referring to

the work by González et al. (2009) for all other cases.

One can fix ε > 0 so small that η1 = α(mR−ε)(1−3ε/ min{mR +ε,mr +ε}) > 1

and η2 = α(mr − ε)(1 − 3ε/ min{mR + ε,mr + ε}) > 1. Let An = {ZRn+1 >

η1ZRn, Zrn+1 > η2Zrn}, for all n ≥ 0. One then has that

P(i,j)(A∞,∞) ≥ P(i,j)

( ∞⋂

n=0

{ZRn+1 > η1ZRn, Zrn+1 > η2Zrn}
)

= lim
n→∞P(i,j)

(
n⋂

l=0

Al

)

= lim
n→∞P(i,j) (A0)

n∏

l=1

P(i,j)

(
Al

∣∣∣∣
l−1⋂

k=0

Ak

)
. (A.1)

Since (ZRn, Zrn)n≥0 satisfies the Markov property, one further infers for any

n ≥ 1

P(i,j)

(
An

∣∣∣∣
n−1⋂

k=0

Ak

)
= P(i,j)


An

∣∣∣∣
⋃

i′,j′>0

{(ZRn, Zrn) = (i′, j′)} ∩
n−1⋂

k=0

Ak




≥ inf
i′>ηn

1 i, j′>ηn
2 j

P(i,j)

(
An

∣∣∣∣{(ZRn, Zrn) = (i′, j′)} ∩
n−1⋂

k=0

Ak

)

= inf
i′>ηn

1 i, j′>ηn
2 j

P(i′,j′) (A0) . (A.2)

Therefore, a suitable lower positive bound for the last infimum (as a function of n)

needs to be found in order to conclude that P(i,j)(A∞,∞) > 0. Towards this end, one
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first notes that

Ac
0 = {ZR1 ≤ η1ZR0} ∪ {Zr1 ≤ η2Zr0}
⊆ {ZR1 ≤ η1ZR0, MR1 > η1ZR0, F1 > M1} ∪ {MR1 ≤ η1ZR0}

∪
(
D ∩ {ZR1 ≤ η1ZR0, F1 ≤ M1}

)
∪Dc

∪ {Zr1 ≤ η2Zr0,Mr1 > η2Zr0, F1 > M1} ∪ {Mr1 ≤ η2Zr0}
∪

(
D ∩ {Zr1 ≤ η2Zr0, F1 ≤ M1}

)
, (A.3)

where D = AFR ∩AMR ∩AFr ∩AMr, with

AFR = {|FR1 − αmRZR0| ≤ αεZR0},
AMR = {|MR1 − (1− α)mRZR0| ≤ (1− α)εZR0}
AFr = {|Fr1 − αmrZr0| ≤ αεZr0} and

AMr = {|Mr1 − (1− α)mrZr0| ≤ (1− α)εZr0}.

Since (ZR1, Zr1) = (MR1, Mr1) if F1 > M1, one infers that

P(i′,j′)(ZR1 ≤ η1ZR0, MR1 > η1ZR0, F1 > M1) = 0 (A.4)

and P(i′,j′)(Zr1 ≤ η2Zr0, Mr1 > η2Zr0, F1 > M1) = 0 (A.5)

for all i′, j′ ≥ 1. Moreover, as η1 < α(mR − ε), η2 < α(mr − ε), α = 1 − α = 0.5,

and reproduction laws are assumed to have finite variances, it follows with the help

of Chebyshev’s inequality that

P(i′,j′)(MR1 ≤ η1ZR0) ≤ P(i′,j′)(MR1 ≤ α(mR − ε)ZR0)

= P(i′,j′)

(
i′∑

k=1

(MRk0 − (1− α)mR) ≤ −εi′
)

≤ C1

i′
, (A.6)

for some positive constant C1. Similar arguments give

P(i′,j′)
(
Mr1 ≤ η2Zr0

) ≤ C2

j′
and P(i′,j′)(D

c) ≤ C3

i′
+

C4

j′
, (A.7)

for suitable positive constants C2, C3, and C4. Furthermore, on {F1 ≤ M1} ∈ F1,

the conditional distribution of ZR1 given F1 is hypergeometric. Hence, by following
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the same steps as given in the proof of Result 6 in González et al. (2009), one obtains

for sufficiently large i′ that

P(i′,j′)(D ∩ {ZR1 ≤ η1ZR0, F1 ≤ M1})
= E(i′,j′)[P(i′,j′)(ZR1 ≤ η1ZR0|F1)ID∩{F1≤M1}]

= E(i′,j′)

[
P(i′,j′)

(
ZR1 −E(i′,j′)[ZR1|F1] ≤ η1i

′ − MR1F1

MR1 + Mr1

∣∣∣∣F1

)
ID∩{F1≤M1}

]

≤ E(i′,j′)
[
P(i′,j′)

(
ZR1 −E(i′,j′)[ZR1|F1] ≤ −δi′

∣∣F1

)
ID∩{F1≤M1}

]

≤ E(i′,j′)

[
exp

(
−2

δ2i′2 − 1
MRn + 1

)
ID∩{F1≤M1}

]

≤ exp
(
−2

δ2i′2 − 1
γ4i′ + 1

)
≤ K1e

−B1i′ , (A.8)

where δ = α(mR − ε)ε/min{mR + ε,mr + ε} and K1, B1 are suitable positive cons-

tants. A similar estimation yields

P(i′,j′)
(
D ∩ {Zr1 ≤ η2Zr0, F1 ≤ M1}

) ≤ K2e
−B2j′ , (A.9)

for all sufficiently large j′ and some positive constants K2 and B2. By combining

(A.3)–(A.9), one finds that

P(i′,j′)(A0) = 1− P(i′,j′)(A
c
0) ≥ 1− C5

i′
− C6

j′
−K1e

−B1i′ −K2e
−B2j′ , (A.10)

for some positive constants C5, C6 and sufficiently large i′, j′. Since η1, η2 > 1, it

finally follows from (A.1) and (A.2) that

P(i,j)(A∞,∞) ≥ P(i,j) (A0) lim
n→∞

n∏

l=1

inf
i′>ηl

1i, j′>ηl
2j

P(i′,j′) (A0)

≥ P(i,j) (A0) lim
n→∞

n∏

l=1

(
1− C5

ηl
1i
− C6

ηl
2j
−K1e

−B1ηl
1i −K2e

−B2ηl
2j

)
> 0

for all sufficiently large i, j. But since all states with non-zero coordinates are com-

municating, one has in fact that P(i,j)(A∞,∞) > 0 for all i, j ≥ 1. This completes

the proof.

7.3 Proof of Result A.3

The proof is furnished by the following three lemmata. The first two provide us

with some useful martingales and supermartingales. We make the usual assumption

that empty sums are defined as 0.
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Lemma A.1 If mr ≥ mR, then the sequence (Xn)n≥0, defined by

Xn =
Zn

(αmr)n
+

mr −mR

mr

n−1∑

k=0

ZRk

(αmr)k
+ Un, n ≥ 0,

with

Un =
n∑

k=1

E[(Fk −Mk)I{Fk>Mk}|Gk−1]
(αmr)k

, n ≥ 0,

constitutes a nonnegative martingale with respect to (Gn)n≥0 and converges a.s. to a

finite random variable. Furthermore, there exists a nonnegative and finite random

variable W such that

lim
n→∞

Zn

(αmr)n
= lim

n→∞
ZRn + Zrn

(αmr)n
= W a.s.

If mr > mR, then limn→∞(αmr)−nZRn = 0 a.s. and limn→∞(αmr)−nZrn = W a.s.

Proof. A.s. convergence of (Xn)n≥0 follows from the Martingale Convergence

Theorem once we have proved that this sequence is indeed a nonnegative martingale.

To this end, let Bn = {Fn < Mn} for n ≥ 0. For each n ≥ 0, one has

E[Xn+1|Gn] =
E[Zn+1|Gn]
(αmr)n+1

+
mr −mR

mr

n∑

k=0

ZRk

(αmr)k
+ Un+1

=
E[Fn+1IBn+1 + Mn+1IBc

n+1
|Gn]

(αmr)n+1
+

mr −mR

mr

n∑

k=0

ZRk

(αmr)k
+ Un+1

=
E[Fn+1|Gn]
(αmr)n+1

+
mr −mR

mr

n∑

k=0

ZRk

(αmr)k
+ Un

=
α(mRZRn + mrZrn)

(αmr)n+1
+

mr −mR

mr

n∑

k=0

ZRk

(αmr)k
+ Un

=
Zn

(αmr)n
− (mr −mR)ZRn

αnmn+1
r

+
mr −mR

mr

n∑

k=0

ZRk

(αmr)k
+ Un a.s.

and the last line clearly equals Xn which is obviously nonnegative.

The a.s. convergence of (αmr)−nZn follows directly from the a.s. convergence of

Xn and the fact that Xn − (αmr)−nZn equals the sum of two non-decreasing and

thus convergent terms, the first of which even vanishes if mR = mr. If mr > mR,

then
∑

k≥0(αmr)−kZRk < ∞ a.s. and thus (αmr)−nZRn → 0 a.s.
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Lemma A.2 The sequences (Y R
n )n≥1 and (Y r

n )n≥1, defined by

Y x
n = I{Fn>0}

[
n∏

k=1

(
Mk

Fk
∨ 1

)]
Zxn

((1− α)mx)n
, n ≥ 1,

for x ∈ {R, r}, where a∨ b := max{a, b}, are both nonnegative supermartingales with

respect to (Gn)n≥0 and thus a.s. convergent to nonnegative random variables.

Proof. It suffices to verify the supermartingale property. Let Bn be defined as

in the previous proof and put

Rn =
[
Mn

Fn
∨ 1

]
I{Fn>0} for n ≥ 1.

Since {Fn+1 > 0} ⊆ {Fn > 0} for all n ≥ 1, it follows for any x ∈ {R, r} and n ≥ 1

that

E[Y x
n+1|Gn]

=
1

((1− α)mx)n+1

[
n∏

k=1

Rk

]
E[Rn+1E[ZRn+1|Fn+1]|Gn]

=
1

((1− α)mx)n+1

[
n∏

k=1

Rk

]
E

[
Rn+1

(
Fn+1MRn+1

Mn+1
IBn+1 + MRn+1IBc

n+1

) ∣∣∣∣Gn

]

=
1

((1− α)mx)n+1

[
n∏

k=1

Rk

](
E[MRn+1|Gn]− E[MRn+1I{Fn+1=0}|Gn]

)

≤ 1
((1− α)mx)n+1

[
n∏

k=1

Rk

]
E[MRn+1|Gn]

=
1

((1− α)mx)n

[
n∏

k=1

Rk

]
ZRn a.s.,

which proves the asserted supermartingale property.

The last lemma shows that the ratio of the total number of females to the total

number of males in each generation equals α/(1− α) if both genotypes survive and

the growth rate of the total number of couples over one generation is ultimately

greater than unity. It holds under no further assumptions on α, αmR or αmr. In its

proof, we will make use of the following simple analytic fact.

Fact. If (an)n≥0 and (bn)n≥0 are two sequences of positive numbers such that

bn → 0 and an = a + O(bn) for some a > 0 and n →∞, then a−1
n = a−1 + O(bn).

40



Paper A: Asymptotic behaviour of Y-BBP with blind choice

Lemma A.3 If A := {lim infn→∞ Z−1
n Zn+1 > 1} ∩ A∞,∞ has positive probability,

then for each 0 < ρ < 1/2

Fn+1

Mn+1
=

α

1− α
+ O(Z−ρ

n ) a.s. on A, as n →∞.

Proof. On A∞,∞, one can write

Fn+1

Mn+1
=

Fn+1

mRZRn + mrZrn

mRZRn + mrZrn

Mn+1
.

Then, by the above fact, it is enough to prove that, as n →∞,

Mn+1

mRZRn + mrZrn
= 1− α + O(Z−ρ

n ) and
Fn+1

mRZRn + mrZrn
= α + O(Z−ρ

n )

a.s. on A∞,∞. We shall only prove the first asymptotic relation because the second

one follows analogously. Fix any 0 < ρ < 1/2 and define

An = {|Mn+1 − ((1− α)mRZRn + (1− α)mrZrn)| ≥ Z−ρ
n (mRZRn + mrZrn)}

for n ≥ 0. Applying Chebyshev’s inequality, it follows that, for some positive cons-

tant C, a.s. on A∞,∞,

∞∑

n=0

P (An|Gn) ≤
∞∑

n=0

V ar(Mn+1|Gn)
Z−2ρ

n (mRZRn + mrZrn)2
≤ C

∞∑

n=0

1
Z1−2ρ

n

< ∞,

where we have also used that V ar(Mn+1|Gn) ≤ C(mRZRn + mrZrn) a.s. for all

n ≥ 0. Therefore, the conditional Borel-Cantelli lemma yields

A∞,∞ ⊆
{ ∞∑

n=0

P (An|Gn) < ∞
}

= lim inf
n→∞

{∣∣∣∣
Mn+1

mRZRn + mrZrn
− (1− α)

∣∣∣∣ < Z−ρ
n

}

almost surely and this gives the desired result.

Proof of Result A.3

It suffices to consider the case α < 0.5, αmR = 1 < αmr (thus τ = αmr)

because the other case follows in the same way. Further, let P (A∞,∞) be positive,

for otherwise there is nothing to verify. Lemma A.1 ensures the existence of a

nonnegative and finite random variable W such that

lim
n→∞

ZRn + Zrn

τn
= lim

n→∞
Zrn

τn
= W and lim

n→∞
ZRn

τn
= 0 a.s.
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Now consider Aρ := {lim infn→∞ ρ−nZn > 0} ∩A∞,∞ for ρ ∈ (1, τ ] and observe that

lim infn→∞ Z−1
n Zn+1 > 1 a.s. on this event. If P (Aρ) > 0, then Lemma A.3 implies

that

0 <
∞∏

k=1

(
αMk

(1− α)Fk
∨ α

1− α

)
< ∞ a.s. on Aρ. (A.11)

Rewrite Y R
n from Lemma A.2 in the form

Y R
n = I{Fn>0}

[
n∏

k=1

(
αMk

(1− α)Fk
∨ α

1− α

)]
ZRn

(αmR)n
, n ≥ 0,

in order to infer from this lemma in combination with (A.11) that

lim
n→∞

ZRn

(αmR)n
= lim

n→∞ZRn < ∞ a.s. on Aρ,

which is a contradiction because ZRn must a.s. tend to infinity on A∞,∞. Conse-

quently, P (Aρ) = 0 for each ρ ∈ (1, τ ], in particular W = 0 a.s. on A∞,∞.

7.4 Proof of Result A.4

Again, we start by proving a number of preparative lemmata. The first one

shows that in the event of survival of both genotypes the growth rate of the number

of x-couples over one generation is ultimately greater than unity for each x ∈ {R, r}.
Lemma A.4 If α ≤ 0.5 and min{αmR, αmr} > 1 or α > 0.5 and min{(1 −
α)mR, (1− α)mr} > 1, then

lim inf
n→∞

ZRn+1

ZRn
> 1 and lim inf

n→∞
Zrn+1

Zrn
> 1 a.s. on A∞,∞.

Proof. Let η1, η2 > 1 and An = {ZRn+1 > η1ZRn, Zrn+1 > η2Zrn} for n ≥ 0.

It is enough to prove that, for some η1, η2,

P
(
lim inf
n→∞ An

)
≥ P (A∞,∞), (A.12)

because lim infn→∞An ⊆ A∞,∞ and the previous inequality implies that lim infn→∞
An = A∞,∞ a.s. To this end, we define for each N ≥ 1 the stopping time T (N) =

min{n : ZRn ∧ Zrn ≥ N}, where T (N) = ∞ if ZRn ∧ Zrn < N for all n ≥ 0.

Obviously

A∞,∞ ⊆ {T (N) < ∞} (A.13)

for each N , and

{T (N) = k} = {ZRk ≥ N,Zrk ≥ N,ZRn ∧ Zrn < N, n = 0, . . . , k − 1}, k ≥ 1.
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Since (ZRn, Zrn)n≥0 forms a homogeneous Markov chain, then

P

( ∞⋂

n=k

An

∣∣∣∣∣T (N) = k

)
= P

( ∞⋂

n=k

An

∣∣∣∣∣ZRk ≥ N, Zrk ≥ N

)
≥ inf

i,j≥N
P(i,j)

( ∞⋂

n=0

An

)

and therefore, by applying (A.13), one deduces that for every N

P
(
lim inf
n→∞ An

)
≥

∞∑

k=0

P

( ∞⋂

n=k

An

∣∣∣∣∣T (N) = k

)
P (T (N) = k)

≥ inf
i,j≥N

P(i,j)

( ∞⋂

n=0

An

)
P (A∞,∞).

Hence, to obtain (A.12), it suffices to prove the existence of η1, η2 > 1 such that

lim
i,j→∞

P(i,j)

( ∞⋃

n=0

Ac
n

)
= 0.

This last union of sets can be rewritten as the union of the disjoint sets Bn defined

by

B0 = Ac
0, Bn = Ac

n ∩An−1 ∩ · · · ∩A0 , n ≥ 1,

and we are thus going to prove the existence of η1, η2 > 1 such that

lim
i,j→∞

∞∑

n=0

P(i,j) (Bn) = 0.

For all n ≥ 1, the probability of Bn can be calculated as

P(i,j)(Bn) = E(i,j)[IAn−1∩···∩A0P (Ac
n|Gn)],

so that a convenient bound needs to be found for P (Ac
n|Gn). Given α = 0.5 and

min{αmR, αmr} > 1, we infer from (A.10) that there exist η1, η2 > 1 such that

P (Ac
n|Gn) ≤ C1

ZRn
+

C2

Zrn
+ C3e

−C4ZRn + C5e
−C6Zrn a.s. on {ZRn ∧ Zrn > M},

for suitable positive constants C1, C2, C3, C4, C5, C6, and M . This inequality conti-

nues to hold under α < 0.5 and min{αmR, αmr} > 1, as was shown in the proof of

Result 6 in González et al. (2009). Moreover, if α > 0.5 and min{(1 − α)mR, (1 −
α)mr} > 1, it was also shown there that there exist η1, η2 > 1 such that

P (Ac
n|Gn) ≤ C7

ZRn
+

C8

Zrn
+ fR(a)ZRn + fr(a)Zrn a.s. on {ZRn ∧ Zrn > 0},

for suitable C7, C8 > 0, and 0 < a < 1, where fx(·) denotes the probability generating

function of the x-type reproduction law for x ∈ {R, r}. Having ZRn ≥ ηn
1 ZR0 and
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Zrn ≥ ηn
2 Zr0 on An−1 ∩ · · · ∩ A0, it thus follows that, regardless of the value of α,

there exist constants K1,K2,K3,K4 > 0 and 0 < a1, a2 < 1 such that

E(i,j)[IAn−1∩···∩A0P (Ac
n|Gn)] ≤ K1

iηn
1

+
K2

jηn
2

+ K3a
iηn

1
1 + K4a

jηn
2

2 ,

whence
∞∑

n=0

P(i,j) (Bn) ≤ K1

i

∞∑

n=0

η−n
1 +

K2

j

∞∑

n=0

η−n
2 + K3

∞∑

n=0

a
iηn

1
1 + K4

∞∑

n=0

a
jηn

2
2 .

Since η1, η2 > 1, the two first series are convergent and the accompanying factors

converge to 0 as i and j tend to ∞. By the dominated convergence theorem, the two

other terms also tend to 0 as i and j tend to ∞. This completes the proof.

Our second lemma describes, for each genotype, the asymptotic behaviour of the

ratio between the number of males, respectively females, and the number of couples

in the previous generation given that simultaneous survival occurs.

Lemma A.5 If α ≤ 0.5 and min{αmR, αmr} > 1, or α > 0.5 and min{(1 −
α)mR, (1− α)mr} > 1, then for each 0 < ρ < 1/2

MRn+1

ZRn
= (1− α)mR + O(ZR−ρ

n ),
Mrn+1

Zrn
= (1− α)mr + O(Zr−ρ

n ),

FRn+1

ZRn
= αmR + O(ZR−ρ

n ) and
Frn+1

Zrn
= αmr + O(Zr−ρ

n ) a.s. on A∞,∞

as n →∞.

Proof. Since all four assertions are obtained in a similar manner, we confine

ourselves to a proof of the first. For n ≥ 0, define

An = {|MRn+1 − (1− α)mRZRn| ≥ ZR1−ρ
n }.

By an appeal to Chebyshev’s inequality and Lemma A.4, we infer

∞∑

n=0

P (An|Gn) ≤
∞∑

n=0

V ar(MRn+1|Gn)

ZR
2(1−ρ)
n

≤ C
∞∑

n=0

1
ZR1−2ρ

n

< ∞ a.s. on A∞,∞

for some positive constant C. Hence, by the conditional Borel-Cantelli lemma,

A∞,∞ ⊆
{ ∞∑

n=0

P (An|Gn) < ∞
}

= lim inf
n→∞

{∣∣∣∣
MRn+1

ZRn
− (1− α)mR

∣∣∣∣ < ZR−ρ
n

}
a.s.

which is the desired conclusion.
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Our last lemma shows that, if simultaneous survival occurs and α 6= 0.5, then for

each type, either the number of females of a generation will eventually exceed the

number of respective males, or vice versa, depending on whether α is greater or less

than 0.5.

Lemma A.6

1. If α < 0.5 and min{αmR, αmr} > 1, then

A∞,∞ = {FRn < MRn , F rn < Mrn eventually } a.s.

2. If α > 0.5 and min{(1− α)mR, (1− α)mr} > 1, then

A∞,∞ = {FRn > MRn , F rn > Mrn eventually } a.s.

Proof. We shall only prove (i) because assertion (ii) is obtained in the same

manner. But if α < 0.5 and min{αmR, αmr} > 1, then Lemma A.5 gives

lim
n→∞

FRn

MRn
= lim

n→∞
Frn

Mrn
=

α

1− α
< 1 a.s. on A∞,∞

which completes the proof.

Proof of Result A.4

Again we confine ourselves to the case of R-couples. Since α > 0.5 and min{(1−
α)mR, (1 − α)mr} > 1, we deduce with the help of Lemma A.6 and using the defi-

nition of the model that A∞,∞ = {ZRn = MRn, Zrn = Mrn eventually} a.s. As a

consequence, Lemma A.5 ensures that, as n →∞,

ZRn+1

ZRn
= (1− α)mR + O(ZR−ρ

n ) a.s. on A∞,∞ (A.14)

for each 0 < ρ < 1/2. Now observe that, for each N ≥ 1,

ZRN

((1− α)mR)N
= ZR0

N−1∏

n=0

ZRn+1

(1− α)mRZRn

to infer upon using (A.14), Lemma A.4, and Theorem 7.28 in Stromberg (1981) that

0 <
∞∏

n=0

ZRn+1

(1− α)mRZRn
< ∞ a.s. on A∞,∞
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and thus 0 < WR := limn→∞((1− α)mR)nZRn < ∞ a.s. on A∞,∞. Replacing ZRn

with MRn, the same result holds true, since

lim
n→∞

MRn

ZRn−1
= (1− α)mR a.s. on A∞,∞

by Lemma A.5. All the remaining assertions are obtained in a similar manner.

7.5 Proof of Result A.5

Here two auxiliary lemmata are needed. For positive integers iR, ir, j, k and

x ∈ {R, r}, define

µx(iR, j, ir, k) :=
E[Zxn|MRn = iR, FRn = j, Mrn = ir, F rn = k ]

ix
.

Lemma A.7 For each n ≥ 1 and x ∈ {R, r},

µx(MRn, FRn,Mrn, F rn) =

{
Fn/Mn, if Fn ≤ Mn

1, otherwise
a.s. on A∞,∞.

Proof. It suffices to note the following fact, valid for each x ∈ {R, r}. If

Fn > Mn, then Zxn = Mxn, while Fn ≤ Mn implies that the conditional law of Zxn

given MRn, FRn,Mrn, F rn is hypergeometric with parameters Fn,Mn, Mxn, thus

E[Zxn|MRn, FRn,Mrn, F rn] =
Fn

Mn
Mxn a.s.

The second lemma shows that, for each genotype, the asymptotic ratio between

the number of couples and males of a generation equals α/1 − α, when both ge-

notypes survive. The reader should notice that this result differs slightly from the

corresponding assertion in Lemma A.5 which compares the number of couples of a

generation to the number of males in the next generation.

Lemma A.8 If α ≤ 0.5 and min{αmR, αmr} > 1, then, as n →∞,

ZRn

MRn
=

α

1− α
+ O(ZR−ρ

n−1) and
Zrn

Mrn
=

α

1− α
+ O(Zr−ρ

n−1) a.s. on A∞,∞

for each 0 < ρ < 1/2.
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Proof. Again considering only the R-genotype, it is enough to prove that, as

n →∞,
ZRn

MRn
= µR(MRn, FRn,Mrn, F rn) + O(ZR−ρ

n−1) a.s. on A∞,∞ (A.15)

and

µR(MRn, FRn,Mrn, F rn) =
α

1− α
+ O(ZR−ρ

n−1) a.s. on A∞,∞ (A.16)

for each 0 < ρ < 1/2. By Lemma A.4, ZRn−1 < ZRn eventually a.s. on A∞,∞.

Since ZRn ≤ MRn for all n ≥ 0, (A.15) follows if we prove that

ZRn

MRn
= µR(MRn, FRn,Mrn, F rn) + O(MR−ρ

n ) a.s. on A∞,∞. (A.17)

To this end, we use Chebyshev’s inequality to infer

P (|ZRn −E[ZRn|Fn]| ≥ MR1−ρ
n |Fn) ≤ V ar(ZRn|Fn)

MR
2(1−ρ)
n

a.s. on A∞,∞

for each 0 < ρ < 1/2 and n ≥ 0. Next observe that, a.s. on A∞,∞

V ar(ZRn|Fn) =





0, if Fn > Mn,(
Fn

Mn
MRn

) (
Mrn

Mn

)(
Mn − Fn

Mn − 1

)
, if Fn ≤ Mn,

giving V ar(ZRn|Fn) ≤ MRn a.s. on A∞,∞, because Mn − Fn ≤ Mn − 1 on {Fn > 0}
and Mrn ≤ Mn. Hence, by invoking Lemma A.4, one obtains, a.s. on A∞,∞,
∞∑

n=0

P (|ZRn − E[ZRn|Fn]| ≥ MR1−ρ
n |Fn) ≤

∞∑

n=0

1
MR1−2ρ

n

≤
∞∑

n=0

1
ZR1−2ρ

n

< ∞.

This gives (A.17) by the conditional Borel-Cantelli lemma because the sets A∞,∞ ∩
{|ZRn −E[ZRn|Fn]| ≥ MR1−ρ

n } and

A∞,∞ ∩
{∣∣∣∣

ZRn

MRn
− µR(MRn, FRn,Mrn, F rn)

∣∣∣∣ ≥ MR−ρ
n

}

are a.s. equal.

It remains to prove (A.16). If α < 0.5 and min{αmR, αmr} > 1, then Lemmata

A.6 and A.7 ensure that a.s.

A∞,∞ = A∞,∞ ∩ {Fn < Mn eventually}
⊆

{
µR(MRn, FRn, Mrn, F rn) =

Fn

Mn
eventually

}

and this gives (A.16) by an appeal to Lemma A.3 (with A = A∞,∞, which is allowed

by Lemma A.4). If α = 0.5 and min{αmR, αmr} > 1, then α/(1−α) = 1 and (A.16)

follows even directly from Lemmata A.3 and A.7.
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Proof of Result A.5

Consider the assertion for the R-genotype. On A∞,∞, we can write

ZRn+1

ZRn
=

ZRn+1

MRn+1

MRn+1

ZRn

for all n ≥ 0 and then infer, by using Lemmata A.5 and A.8, that for each 0 < ρ < 1/2

ZRn+1

ZRn
=

(
α

1− α
+ O(ZR−ρ

n )
) (

(1− α)mR + O(ZR−ρ
n )

)

= αmR + O(ZR−ρ
n ) a.s. on A∞,∞ (A.18)

as n →∞. Since, furthermore,

ZRN

(αmR)N
= ZR0

N−1∏

n=0

ZRn+1

αmRZRn

for each N ≥ 0, a combination of (A.18), Lemma A.4, and Theorem 7.28 in Strom-

berg (1981) allows us to conclude

0 <

∞∏

n=0

ZRn+1

αmRZRn
< ∞ a.s. on A∞,∞

and hence the first assertion of Result A.5. From this and Lemma A.5, one can

deduce the same result for MRn. All other assertions follow in a similar manner.

Since Result A.6 is a direct consequence of Results A.4 and A.5, it requires no

proof.
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Abstract

Inferential problems for Y-linked bisexual branching processes are studied. A
parametric frequentist framework is considered, with the reproduction laws be-
longing to the power series family of distributions. This kind of model is appro-
priate for the analysis of the generation-by-generation evolution of the number
of carriers of two alleles of a Y-linked gene in a two-sex monogamic population,
assuming that females prefer males carrying one of the alleles. It is assumed that
the only available data are the total number of females and the total number of
males of each genotype in each generation. The estimation problem is tackled
as an incomplete data problem. Maximum likelihood estimators for the main
parameters of the model are derived using expectation-maximization method.
Predictive distributions for as yet unobserved generations are derived, and the
accuracy of the algorithm is illustrated by way of a simulated example.

Keywords: Y-linked genes, bisexual branching processes, power series family of

distributions, maximum likelihood estimators, expectation-maximization method.

1 Introduction

The XX/XY sex-determination system is one of the most familiar, and is found in

the populations of most mammals, including humans. In these populations, females

have XX chromosomes, while males have two distinct chromosomes, XY. Therefore,

the Y chromosome is exclusive of males. Recent research has shown the importance

of some Y-linked genes or markers, such as long-arm Y-chromosomal microdeletions,

certain DNA polymorphisms, transmission of surnames, or the spread of melanistic

pigmentation (see, e.g., Bisazza and Pilastro (2000), Bowden et al. (2008), Kuhnert

et al. (2004), and Rosa et al. (2007)).

Determining the evolution of these kinds of Y-linked characters in a population

plays an important role in solving certain questions with a practical importance. In

this sense, bisexual branching processes have recently been introduced in González

et al. (2006) and González et al. (2009) to model the evolution in the number of

carriers of Y-linked characters of populations.
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Both these models consider perfect fidelity mating and a Y-linked gene with a

pair of alleles. These alleles could represent the presence or absence of a character in

an individual. We here consider the model presented in González et al. (2006), which

assumes that the alleles are expressed in the male phenotype, and that females have a

preference for males carrying one of the alleles of the gene. Melanistic pigmentation in

the Eastern Mosquitofish and certain surnames in humans are two notable examples

of this kind of Y-linked character.

Using this Y-linked bisexual branching process, one deduces that the behaviour

(extinction/survival) of this kind of Y-linked gene depends on certain parameters

of the model (see González et al. (2006) and González et al. (2008)). In most real

situations, these parameters are unknown and they have to be estimated. In the

present work, we deal with the problem of making inferences about these parameters.

We take a frequentist and parametric approach, with the reproduction laws belonging

to the power series family of distributions. In relation to this, a major problem is

what information one can expect to obtain from the sample. In this sense, we

consider a realistic situation in which the only data available are the total number of

females and the total number of males of each genotype in each generation. This is a

relatively small amount of sample information, and we view the estimation problem

using such a sample as analogous to an incomplete data problem. This leads us

to use the expectation-maximization (EM) method (see Dempster et al. (1977)) in

order to obtain maximum likelihood estimators (MLEs).

The communication is organized in four sections. In Section 2, we provide the

definition of the Y-linked bisexual branching process. Then, in Section 3, we set

out the inference problem, and provide MLEs of the main parameters of the model

using the EM method. We also derive predictive distributions for as yet unobserved

generations. Finally, a simulation study is described in Section 4.

2 The probability model

The probability model we are concerned with is the Y-linked bisexual branching

process introduced in González et al. (2006). This model is a discrete-time stochastic

process which determines generation-by-generation the evolution of the number of

carries of the two alleles, R and r, of a Y-linked gene. These alleles are expressed

in the phenotype of males. Hence, the males are designated by R-type or r-type

according to allele they carry. Thus, for each n ≥ 1, Fn, MRn, and Mrn denote the

total number of females, and R-type and r-type males at generation n, respectively.
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Since females and males form mating units to produce offspring, a couple (female-

male) is classified as R-type or r-type according to the genotype of the male. The

total numbers of R-type and r-type mating units at generation n are denoted by

ZRn and Zrn, respectively. The number of mating units of each type in the initial

generation (n = 0) is fixed, and from this vector (ZR0, Zr0) the population size is

determined in each generation according to two phases: reproduction and mating.

According to the inheritance rules, in the reproduction phase, R-type mating

units can generate females and R-type males, while r-type mating units can produce

females and r-type males. Moreover, each couple is assumed to randomly produce

offspring independently of the other couples. The probability distribution of these

variables will be the same for all the couples with a given genotype, irrespective

of the generation they belong to, and will be called the reproduction law of that

genotype. Formally therefore, we consider two independent sequences

{(FRn,l, MRn,l) : n = 0, 1, ...; l = 1, 2...} and {(Frn,l,Mrn,l) : n = 0, 1, ...; l = 1, 2...}

of independent, identically distributed, non-negative, and integer-valued bivariate

random vectors, where (FRn,l,MRn,l) (resp. (Frn,l,Mrn,l)) represents the number

of females and males generated by the lth R-type (resp. r-type) mating unit in

generation n.

In general, (FR0,1,MR0,1) and (Fr0,1,Mr0,1) may have different distributions,

meaning that R-type and r-type couples may have differences in their reproductive

abilities. With respect to the distribution of these vectors, we assume the bino-

mial reproduction scheme introduced in Daley (1968). That is, the total number of

descendants generated by an R-type (resp. r-type) couple is specified by a given pro-

bability distribution, {pR
k }k≥0 (resp. {pr

l }l≥0), where pR
k = P (FR0,1 + MR0,1 = k),

with k ≥ 0 (resp. pr
l = P (Fr0,1 + Mr0,1 = l), with l ≥ 0), called the reproduction

law of the R-type (resp. r-type) mating units. We denote by mR (resp. mr) the

average number of offspring (i.e., “the reproduction mean”) generated by an R-type

(resp. r-type) couple.

Furthermore, an offspring will be female with probability α, 0 < α < 1, and male

with probability 1 − α. These sex designations are made independently among the

offspring of any couple, and it is assumed that the genotype has no influence on the

sex determination, so that α is the same for both genotypes. Then, given that an R-

type (resp. r-type) mating unit produces k (resp. l) offspring, i.e., FR0,1+MR0,1 = k

(resp. Fr0,1 + Mr0,1 = l), the number of females among these, FR0,1 (resp. Fr0,1),
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follows a binomial distribution of size k (resp. l) and probability α. Thus the

average number of females and males per R-type (resp. r-type) couple will be αmR

and (1− α)mR (resp. αmr and (1− α)mr), respectively.

As was noted in the Introduction, we consider a parametric framework. We then

assume that the reproduction laws belong to the power series family of distributions,

i.e.,

pR
k = aR,kθ

k
R(AR(θR))−1 and pr

l = ar,lθ
l
r(Ar(θr))−1, for all k, l ≥ 0, (B.1)

where {aR,k}k≥0 and {ar,l}l≥0 are known non-negative sequences of real values,

AR(θR)=
∑∞

k=0 aR,kθ
k
R and Ar(θr) =

∑∞
l=0 ar,lθ

l
r, with aR,kθ

k
R ≥ 0 and ar,lθ

l
r ≥ 0, for

all k, l ≥ 0, and θR ∈ R and θr ∈ R, such that 0 < AR(θR) < ∞ and 0 < Ar(θr) < ∞.

For these distributions, it is not hard to deduce that

mR = mR(θR) = θR
d

dθR
log AR(θR) and mr = mr(θr) = θr

d

dθr
log Ar(θr). (B.2)

The power series is an exponential family that includes most of the usual distributions

used in practice (e.g., Poisson, geometric, binomial, negative binomial,. . . ).

For a fixed generation n with known total numbers of R-type and r-type mating

units, and taking into account the basis of the genetic rules described above, the

female offspring of all the couples in generation n yield the total number of females

in generation n + 1, i.e.,

Fn+1 =
ZRn∑

i=1

FRn,i +
Zrn∑

j=1

Frn,j . (B.3)

Similarly, the male offspring of all the R-type (resp. r-type) couples in generation n

yield the total number of R-type (resp. r-type) males in generation n + 1, i.e.,

MRn+1 =
ZRn∑

i=1

MRn,i and Mrn+1 =
Zrn∑

j=1

Mrn,j . (B.4)

Now we deal with the mating phase. Since the generations do not overlap, from

Fn+1, MRn+1, and Mrn+1, the number of couples of each genotype in generation

n + 1 is obtained in the following way. We assume perfect fidelity and preference

in mating, i.e., each individual mates with only one individual of the opposite sex

provided that some of them are still available, and females prefer R-type males as

mates. Therefore, since R-type males are chosen first as mates, the number of R-type

mating units is

ZRn+1 = min{Fn+1,MRn+1}. (B.5)
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The number of females which do not mate with R-type males is

max{0, Fn+1 −MRn+1}.

These females (if any) mate with r-type males and the assumption of perfect fidelity

implies that the number of r-type mating units is

Zrn+1 = min{max{0, Fn+1 −MRn+1},Mrn+1}. (B.6)

Notice that the number of couples of each genotype in the (n + 1)st generation

depends only on the present number of mating units, and not on the number of

ancestors that belonged to past generations. Therefore, knowing the present number

of mating units of each type and the parameters of the model, i.e., the probability

that a descendant is female, α, and the reproduction laws of both types defined by

θR and θr, one obtains by recursion the number of females, males, and mating units

of each type in the following generations by Equations (B.3–B.6).

In González et al. (2006) and González et al. (2008), the extinction problem for a

Y-linked gene was considered using this model, providing conditions for the almost

sure extinction of the whole population, and also for each genotype to have a positive

probability of survival/fixation. These conditions depend on the magnitudes of α and

the means of the reproduction laws of the two types, mR and mr. In González et al.

(2008), it was shown that these parameters determine the asymptotic behaviour of

the genotypes.

In practice, the parameters α, θR, θr, mR, and mr are usually unknown. In order

to apply this model to real situations, it is therefore necessary to develop the theory

of its estimation.

3 The estimation problem: The expectation-maximiza-
tion method

Restricting ourselves to a frequentist approach in the parametric context des-

cribed in the previous section, we next attempt to find MLEs of the parameters

(α, θR, θr) and the reproduction means (mR,mr). We shall also make inferences of

the future population sizes of females and of the two types of males, i.e., of the vector

(FN+s,MRN+s,MrN+s), for any s > 0. To this end, we first assume that the entire

family tree up to generation N , denoted by ZFMN , is observed, i.e., the vectors

{(FRn,l,MRn,l), (Frn,k,Mrn,k) : l = 1, . . . , ZRn; k = 1, . . . , Zrn;n = 0, . . . , N − 1}
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are known. Given that mating units reproduce independently, that reproduction

laws belong to the power series family given by (B.1), and the binomial scheme, it is

straightforward to obtain that the likelihood function of (α, θR, θr) based on ZFMN

is given by

L((α, θR, θr)|ZFMN ) ∝
N−1∏

n=0

αFn+1(1− α)MRn+1+Mrn+1θ
FRn+1+MRn+1

R

(AR(θR))−ZRnθFrn+1+Mrn+1
r (Ar(θr))−Zrn , (B.7)

with FRn (resp. Frn) the number of females in generation n generated by all ZRn−1

(resp. Zrn−1) R-couples (resp. r-couples), i.e.,

FRn =
ZRn−1∑

i=1

FRn,i (resp. Frn =
Zrn−1∑

j=1

Frn,j).

From (B.2) and (B.7), it is easy to prove by applying a standard procedure (see

Guttorp (1991)) that MLEs of (α,mR,mr) based on ZFMN are given by

α̂ =
∑N

n=1 Fn∑N
n=1(Fn+MRn+Mrn)

, m̂R =
∑N

n=1(FRn+MRn)∑N−1
n=0 ZRn

and

m̂r =
∑N

n=1(Frn+Mrn)∑N−1
n=0 Zrn

.

We assume that mR(θR) and mr(θr) are one-to-one functions. Then, one deduces

that MLEs of θR and θr, denoted by θ̂R and θ̂r, respectively, are the unique solutions

of the equations

N∑

n=1

(FRn + MRn) = mR(θ̂R)
N−1∑

n=0

ZRn and
N∑

n=1

(Frn + Mrn) = mr(θ̂r)
N−1∑

n=0

Zrn,

respectively.

Note that the above estimators depend only on the total number of mating units

of each type and the females and individuals generated by them, that is, on the varia-

bles ZRn, Zrn, Fn+1, TRn+1 = FRn+1 + MRn+1 and Trn+1 = Frn+1 + Mrn+1, for

n = 0, . . . , N − 1. Using a standard procedure (see Keiding and Lauritzen (1978) for

details), one obtains that (α̂, θ̂R, θ̂r, m̂R, m̂r) are also the MLEs of (α, θR, θr,mR,mr)

based on the sample

{(ZRn, Zrn), (Fn+1, TRn+1, T rn+1), n = 0, . . . , N − 1}.
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However, in most real situations, it is impossible to observe the random variables

TRn+1 and Trn+1 because the females are indistinguishable. Only the two types

of males can be differentiated. This leads us to the interesting problem of how

to estimate the parameters of the model only assuming as available data the total

number of females and the total number of males of each type in each generation up

to the Nth generation, i.e., the vectors

{(Fn+1,MRn+1,Mrn+1), n = 0, . . . , N − 1}.

Moreover, we assume that the vector (ZR0, Zr0) is known, i.e., the total number

of mating units of each type at the initial generation. Since Equations (B.5) and

(B.6) give the number of mating units of each type deterministically, the above set

of vectors contains the same information as

{(ZRn, Zrn), (Fn+1,MRn+1,Mrn+1), n = 0, . . . , N − 1}.

To simplify the notation, we shall refer to this set as FMN .

The question posed above can then be studied as a problem of estimation with

incomplete data. In this sense, the expectation-maximization (EM) method (see

Dempster et al. (1977) and McLachlan and Krishnan (2008)) is appropriate to deal

with the problem, allowing one to obtain MLEs.

To apply the EM method, we write

FRrN = {(FRn+1, F rn+1), n = 0, . . . , N − 1}.

This set of unobserved vectors is taken to be a latent vector, and is required to make

inferences completing the information given by FMN .

First we shall describe the distribution of the latent vector FRrN given the

sample FMN and the parameters of the model (α, θR, θr), denoted by

FRrN |(FMN , α, θR, θr).

3.1 Determining the distribution of FRrN |(FMN , α, θR, θr)

To determine the distribution of the unobserved vector FRrN given the sample

FMN and the parameters of the model (α, θR, θr), we shall first prove that this

distribution satisfies

f(FRrN |(FMN , α, θR, θr)) =
N−1∏

n=0

f((FRn+1, F rn+1)|(ZFMn, α, θR, θr)), (B.8)
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where, for n = 0, . . . , N − 1, ZFMn is the vector (ZRn, Zrn, Fn+1,MRn+1,Mrn+1).

Computationally, this means that to generate the vector FRrN we must proceed

generation-by-generation. Specifically, once we know the total number of mating

units in generation n, (ZRn, Zrn), and the total number of females and of males of

each type in the (n+1)st generation, (Fn+1,MRn+1,Mrn+1), it is enough to sample

the vectors (FRn+1, F rn+1). In proving (B.8), we shall write P (·|·) to denote the

conditional probability with parameters (α, θR, θr). Let fRrN and fmN be vectors

of non-negative integers with

fRrN = (fRn+1, frn+1, n = 0, . . . , N − 1)

and

fmN = (zRn, zrn, fn+1,mRn+1,mrn+1, n = 0, . . . , N − 1),

where zRn+1 = min{fn+1,mRn+1} and zrn+1 = min{max{0, fn+1 − mRn+1},
mrn+1}, for n = 0, . . . , N − 1. Since mating units reproduce independently, one has

that

P (FRrN = fRrN |FMN = fmN )

=
N−1∏

n=0

P ((ZRn, Zrn) = (zRn, zrn), AmRn+1 , Amrn+1 , Afn+1 , AfRn+1 , Afrn+1)
P ((ZRn, Zrn) = (zRn, zrn), AmRn+1 , Amrn+1 , Afn+1)

=
N−1∏

n=0

P (AfRn+1 , Afrn+1 |(ZRn, Zrn) = (zRn, zrn), AmRn+1 , Amrn+1 , Afn+1),

where, for each n = 0, . . . , N − 1, we have defined the sets

AmRn+1 = {MRn+1 = mRn+1} = {
ZRn∑

i=1

MRn,i = mRn+1},

Amrn+1 = {Mrn+1 = mrn+1} = {
Zrn∑

j=1

Mrn,j = mrn+1},

Afn+1 = {Fn+1 = fn+1} = {
ZRn∑

i=1

FRn,i +
Zrn∑

j=1

Frn,j = fn+1},

AfRn+1 = {FRn+1 = fRn+1} = {
ZRn∑

i=1

FRn,i = fRn+1},

Afrn+1 = {Frn+1 = frn+1} = {
Zrn∑

j=1

Frn,j = frn+1}.
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Specifically, knowing that ZRn = zRn and Zrn = zrn, the set AmRn+1 (resp.

AfRn+1) means that mRn+1 (resp. fRn+1) R-type males (resp. females) have been

generated by all zRn R-type mating units. Analogous descriptions can be given for

the sets Amrn+1 and Afrn+1 . Finally, the set Afn+1 means that all zRn + zrn mating

units have generated fn+1 females.

Having shown that the distribution of FRrN given FMN when the underlying

parameters are (α, θR, θr) can be simulated generation-by-generation, we now deter-

mine, for a fixed generation n, the distribution of the (FRn+1, F rn+1) given ZFMn,

i.e.,

f((FRn+1, F rn+1)|(ZFMn, α, θR, θr)).

Applying the multiplication rule, one straightforwardly obtains that

P (AfRn+1 , Afrn+1 |(ZRn, Zrn) = (zRn, zrn), AmRn+1 , Amrn+1 , Afn+1)

is proportional to the product of the probabilities

P (AmRn+1 , Amrn+1 , AfRn+1 , Afrn+1 |(ZRn, Zrn) = (zRn, zrn)) (B.9)

and

P (Afn+1 |(ZRn, Zrn) = (zRn, zrn), AmRn+1 , Amrn+1 , AfRn+1 , Afrn+1). (B.10)

Given that mating units reproduce independently, (B.9) is equal to

P (AmRn+1 , AfRn+1 |ZRn = zRn)P (Amrn+1 , Afrn+1 |Zrn = zrn).

Since the total number of descendants produced by all R-type couples at generation

n is given by FRn+1 +MRn+1, and the reproduction scheme considered is binomial,

then the probability that mRn+1 R-type males and fRn+1 females are produced by

all R-type mating units, given by P (AmRn+1 , AfRn+1 |ZRn = zRn), is the product of

the probabilities

P (FRn+1 + MRn+1 = fRn+1 + mRn+1|ZRn = zRn) (B.11)

and

P (AfRn+1 |ZRn = zRn, FRn+1 + MRn+1 = fRn+1 + mRn+1). (B.12)

Considering that the reproduction law, that is the distribution of the random

variable FRn,i +MRn,i, belongs to the power series family of parameter θR and that
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the conditional distribution of FRn+1+MRn+1 is a convolution of ZRn copies of the

reproduction law, one obtains that the probability given in (B.11) is proportional to

(AR(θR))−zRnθ
fRn+1+mRn+1

R ,

and therefore, this distribution belongs also to the power series family. Special cases

in which one can easily obtain this distribution are the Poisson and the geometric dis-

tributions, because the sum of independent random variables with these distributions

follows a Poisson or a negative binomial distribution, respectively. Furthermore, ta-

king into account the binomial reproduction scheme, the probability given in (B.12)

is obtained from a binomial distribution with size fRn+1 + mRn+1 and probability

α. One can obtain P (Amrn+1 , Afrn+1 |Zrn = zrn) analogously.

Finally, the probability given in (B.10) is obviously unity if fn+1 = fRn+1 +

frn+1, and zero otherwise.

In sum, computationally, to determine the probability distribution of FRrN gi-

ven (FMN , α, θR, θr) it is sufficient to determine it generation-by-generation. Fixed

n = 0, . . . , N − 1 and given (ZRn, Zrn, Fn+1,MRn+1,Mrn+1), we have shown that

this can be done by determining the convolution of ZRn and Zrn distributions belon-

ging to the power series family defined by θR and θr, respectively, and independent

binomial distributions with size the total number of descendants generated by all ma-

ting units of each type and probability α, subject to the constraint Fn = FRn +Frn.

3.2 The expectation-maximization method

Now that we know the distribution of FRrN |(FMN , α, θR, θr), we shall describe

the EM method. This is an iterative method that runs as follows. For i ≥ 0, let

(α(i), θ
(i)
R , θ

(i)
r ) be the estimated parameters in the i-th iteration of the algorithm.

The (i + 1)st iteration starts with the expectation step (E), where the expected

value of the log-likelihood with respect to the available data (FMN , α(i), θ
(i)
R , θ

(i)
r ) is

calculated, i.e.,

EFRrN |(FMN ,α(i),θ
(i)
R ,θ

(i)
r )

[
log(L((α, θR, θr)|(FMN ,FRrN )))

]
.

The maximization step (M) consists of finding the values (α(i+1), θ
(i+1)
R , θ

(i+1)
r ) of the

parameters which maximize this expectation. Writing

E∗
i [·] = EFRrN |(FMN ,α(i),θ

(i)
R ,θ

(i)
r )

[·],
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taking into account (B.2) and (B.7), and applying a standard procedure, one obtains

that

α(i+1) =
∑N

n=1 Fn∑N
n=1(Fn + MRn + Mrn)

,

m
(i+1)
R =

∑N
n=1(E

∗
i [FRn] + MRn)∑N−1
n=0 ZRn

, and m(i+1)
r =

∑N
n=1(E

∗
i [Frn] + Mrn)∑N−1
n=0 Zrn

.

Note that the sequence {α(i)}i≥1 is constant and is equal to α̂, the MLE of α.

This is because α̂ only depends on FMN . Moreover, m
(i+1)
R and m

(i+1)
r depend

on the expectations given by
∑N

n=1 E∗
i [FRn] and

∑N
n=1 E∗

i [Frn], respectively, since
∑N

n=1 FRn and
∑N

n=1 Frn are not observed. Finally, since mR(θR) and mr(θr) are

one-to-one, then θ
(i+1)
R and θ

(i+1)
r are the unique solutions of the equations

N∑

n=1

(FRn+MRn) = mR(θ(i+1)
R )

N−1∑

n=0

ZRn and
N∑

n=1

(Frn+Mrn) = mr(θ(i+1)
r )

N−1∑

n=0

Zrn,

respectively, where mR(θ(i+1)
R ) = m

(i+1)
R and mr(θ

(i+1)
r ) = m

(i+1)
r .

Therefore, given the known sample FMN , the EM algorithm is as follows:

Fixed (α(0), θ
(0)
R , θ

(0)
r ) for some positive values

Do i = 1

E Step:

Determine FRrN |(FMN , α(i), θ
(i)
R , θ

(i)
r )

Calculate
∑N

n=1 E∗
i [FRn] and

∑N
n=1 E∗

i [Frn]

M Step:

Calculate

(α(i+1), θ
(i+1)
R , θ

(i+1)
r ) = arg max(α,θR,θr) E∗

i

[
log(L((α, θR, θr)|(FMN ,FRrN )))

]

Do i = i + 1

One hence obtains a sequence {(α(i), θ
(i)
R , θ

(i)
r , m

(i)
R ,m

(i)
r )}i>0 which converges to

(α̂EM , θ̂EM
R , θ̂EM

r , m̂EM
R , m̂EM

r ), i.e., MLEs of (α, θR, θr,mR,mr) based on the sam-

ple FMN . A discussion of the convergence of the EM method can be found in

McLachlan and Krishnan (2008). Note that, as was pointed out above, α̂EM = α̂.

We can obtain a sample of the distribution of (FN+s, MRN+s,MrN+s) knowing

FMN for any s > 0 by simulating, through the Monte-Carlo method, s generations

of a Y-linked bisexual branching process starting with (ZRN , ZrN ) and considering

(α̂EM , θ̂EM
R , θ̂EM

r ) as the parameters of the model.
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fn 30 33 39 44 46 56 57 47 39 47 48 50 39 48 52 67 69 79 56 50
MRn 5 5 4 4 3 6 6 3 2 2 3 6 9 10 11 7 3 2 1 1
Mrn 25 31 37 42 59 62 86 83 44 51 67 78 73 57 75 88 86 114 93 86

Table B.1: Simulated data.

4 Simulation study

In this section, we describe the application of the above algorithm to simulated

data. To this end, we considered a Y-linked bisexual branching process where the R-

type reproduction law follows a Poisson distribution and the r-type reproduction law

follows a geometric distribution, with unknown parameters, λR > 0 and 0 < pr < 1,

respectively, i.e.,

pR
k = e−λR

λk
R

k!
and pr

l = pr(1− pr)l, for all k, l ≥ 0.

For these reproduction laws, taking into account expressions (B.1) and (B.2),

one has that θR = λR = mR, AR(θR) = eλR , θr = 1 − pr, mr = (1 − θr)−1θr, and

Ar(θr) = p−1
r . Therefore, mR(θR) and mr(θr) are strictly increasing functions.

To determine the distribution of the latent vector FRrN , one notes that, since the

R-type reproduction law follows a Poisson distribution, then the probability given

by (B.11) is obtained from a Poisson distribution with parameters zRnλR. For the

r-type case, this probability is derived from a negative binomial distribution with size

zrn and probability pr since the r-type reproduction law is a geometric distribution.

By way of illustration, we considered a Y-linked bisexual branching process

with α = 0.4, mR = 1.7, and pr = 5/18, simulating 20 generations starting with

(ZR0, Zr0) = (3, 10). Table B.1 lists the total numbers of females and of males of

each type for each generation.

Note that it would be difficult to determine at a glance anything about the future

behaviour of a Y-linked character on the basis of these observations. To apply the EM

method, we took as starting values (α(0),m
(0)
R , p

(0)
r ) = (0.5, 1, 0.5), where m

(i)
R = θ

(i)
R

and p
(i)
r = 1−θ

(i)
r , for all i ≥ 0, and then applied the algorithm given in the previous

section. The resulting sequence {(α(i),m
(i)
R , p

(i)
r )}i≥0 converged from iteration 50

onwards –the difference between consecutive elements of the sequence was less than

10−7– (see Figure B.1). A discrete sensitivity analysis applied to study the influence

of the initial values (α(0),m
(0)
R , p

(0)
r ) on the convergence of the method showed the
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Figure B.1: Evolution of m
(i)
R (left) and p

(i)
r (right), for i = 1, . . . , 50, in generation

20.

procedure to be stable with respect to the initial values. There were no changes in

the limit.

Figure B.2 shows the expectation-maximization MLEs by generation up to ge-

neration 20 for α, mR, and pr. The estimates converge to the true values of the

parameters. Indeed, under weak general conditions, the EM method leads to con-

sistent estimates (see Dempster et al. (1977) or McLachlan and Krishnan (2008)),

as is the case of the usual MLEs. Figure B.3 shows a Monte-Carlo approximation

to the sampling distribution of α̂EM , m̂EM
R , and p̂EM

r in generation 20, when neit-

her genotype has become extinct, with p̂EM
r denoting the expectation-maximization

MLE of pr. Figure B.4 illustrates the bootstrap approximation to these sampling

distributions. One can see how the bootstrap method works quite well.

An interesting question is to predict on the basis of the observed data whether

or not the process will survive over time. From the Monte-Carlo approximation to

the sampling distribution of α̂EM , m̂EM
R and p̂EM

r , we calculated the proportion of

samples in generation 20 which satisfy α̂EM < 0.5 and (1− α̂EM )m̂EM
R < α̂EMm̂EM

r ,

finding the value 0.861. Since the condition α < 0.5 and (1− α)mR < αmr ensures

that there exists a positive probability for both genotypes to grow without limit

over time (see González et al. (2008)), the high value of the calculated proportion is

indicative that this condition might be satisfied. In fact, the true values of the para-

meters indeed satisfy this condition, and therefore there exists a positive probability

that both genotypes grow over the generations.

Finally, Figure B.5 illustrates the predictive distribution of the total numbers of

females and of each type of male in the 21st generation. The predicted behaviour in
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Figure B.2: Evolution of α̂EM (left), m̂EM
R (middle), and p̂EM

r (right) over the
generations, together with the true value of each parameter (dashed line).
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Figure B.3: Monte-Carlo approximation to the sampling distribution of α̂EM (left),
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R (middle), and p̂EM
r (right), in generation 20, together with the true value of

each parameter (dashed line).
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Figure B.5: Histogram of the estimated predictive distribution of F21 (left), MR21

(middle), and Mr21 (right), when FM20 is observed.

this generation is in keeping with the fact that there is a positive probability (which

may be small) that both genotypes grow without limit over time.

Remark B.1 To carry out the simulation study, we used the statistical computing

and graphics language and environment R (“GNU S”) (see R Development Core

Team (2009)).
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M. González, R. Mart́ınez, and M. Mota. Bisexual branching processes to model

extinction conditions for Y-linked genes. J. Theor. Biol., 258:478–488, 2009.

P. Guttorp. Statistical Inference for Branching Processes. John Wiley and Sons,

Inc, 1991.

N. Keiding and S. Lauritzen. Marginal maximum likelihood estimates and es-

timation of the offspring mean in a branching process. Scand. J. Statist., 5:

106–110, 1978.

B. Kuhnert, J. Gromoll, E. Kostova, P. Tschanter, C.M. Luetjens, M. Simoni,

and E. Nieschlag. Case report: natural transmission of an AZFc Y-chromosomal

microdeletion from father to his sons. Hum Reprod., 19:886–888, 2004.

G. J. McLachlan and T. Krishnan. The EM Algorithm and Extensions. John

Wiley and Sons, Inc, 2008.

R Development Core Team. R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria, 2009.

URL http://www.R-project.org. ISBN 3-900051-07-0.

A. Rosa, C. Ornelas, M.A. Jobling, A. Brehm, and R. Villems. Y-chromosomal

diversity in the population of Guinea-Bissau: a multiethnic perspective. BMC

Evol. Biol., 27:107–124, 2007.

68



Expectation-maximization algorithm for
determining natural selection of Y-linked

genes through two-sex branching processes
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Abstract

A two-dimensional bisexual branching process has recently been presented for
the analysis of the generation-to-generation evolution of the number of carriers
of a Y-linked gene. In this model preference of females for males with a specific
genetic characteristic is assumed to be determined by an allele of the gene. It
has been shown that the behaviour of this kind of Y-linked gene is strongly
related to the reproduction law of each genotype. In practice the corresponding
offspring distributions are usually unknown, and it is necessary to develop their
estimation theory in order to determine the natural selection of the gene. We
here deal with the estimation problem for the offspring distribution of each
genotype of a Y-linked gene when the only observable data are each generation’s
total numbers of males of each genotype and of females. We set out the problem
in a non-parametric framework and obtain the maximum likelihood estimators of
the offspring distributions using an expectation-maximization algorithm. From
these estimators, we also derive the estimators for the reproduction mean of each
genotype and forecast the distribution of the future population sizes. Finally,
we check the accuracy of the algorithm by means of a simulation study.

Keywords: Sex-linked inheritance. Two-dimensional bisexual stochastic model.

Maximum-likelihood estimation. Expectation-maximization algorithm.

1 Introduction

Recent research has shown the importance of certain genes linked to the Y chro-

mosome in populations of both humans (see, for example, Quintana-Murci and Fe-

llous (2001), Hughes et al. (2005), or the web page www.nature.com/nature/focus/

ychromosome/) and other animals (see, for example, Gutiérrez and Teem (2006) or

the review by Charlesworth et al. (2005)). This chromosome has the particularity

of being male-specific (the SRY gene is responsible for maleness) and haploid, and

of having a region which escapes recombination (the non-recombining region, NRY,

which is 95% of the chromosome in humans – see, for example, Graves (2006)).
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The unique properties of the Y chromosome have major consequences for its

population genetics: the NRY region passes down from father to son largely unchan-

ged, preserving the paternal genetic legacy, and is hence very useful for studying how

populations have evolved. A history of paternal lineages can be reproduced by exami-

ning the differences (such as DNA polymorphisms) among modern Y chromosomes.

There have been many studies in this sense in the context of populations of humans

(e.g., The Y Chromosome Consortium studies –http://ycc.biosci.arizona.edu–

, Hurles et al. (2002) or Rosa et al. (2007)) and other species (e.g., Hellborg et al.

(2005) or Geraldes et al. (2005)). In human populations, the surname can also be

regarded as a Y-linked characteristic, and there have been studies aimed at determi-

ning its relationship with Y-chromosome lineages (e.g., King et al. (2006) or Bowden

et al. (2008)).

Another singular question associated with the Y chromosome is that of the mi-

crodeletions of this chromosome’s long arm (Yq). The Yq deletion is associated with

males with fertility problems (for a review, see Krausz et al. (2003)), but many cases

have been reported in which the natural transmission of this genetic defect from fat-

hers to sons has occurred (see e.g., Calogero et al. (2002) or Kuhnert et al. (2004)).

Obviously, determining the evolution of the number of males with this genetic defect

in a human population is an important medical problem (see, for example, Fitch

et al. (2005)), but it has also been investigated in other species (e.g., Toure et al.

(2004)). Moreover there is evidence that the Y chromosome plays a role in skeletal

growth, germ-cell tumorigenesis, and graft rejection, and that its genes might also

influence gender-specific differences in disease susceptibility.

Appropriate mathematical models are needed to understand the evolution of

Y chromosome lineages (for instance, to help solve the problem of Y-chromosomal

Adam – the theoretical male who is the most recent common patrilineal ancestor of

all living humans; estimations of the date of this common ancestor is an important

problem), Yq deletions, or other Y-linked genes.

Many models used in population genetics are based on the Wright-Fisher model,

although branching processes naturally also come to mind in this context and repre-

sent a clear alternative approach. These processes are stochastic models which arise

in the description of population dynamics, being of particular use in describing the

extinction/growth of populations (see Haccou et al. (2005)). Branching models have

been applied to many biological problems in such fields as epidemiology, genetics,

and cell kinetics. Examples include the evolution of infectious diseases (e.g., Garske

and Rhodes (2008)), population genetics (e.g., Iwasa et al. (2005)), and stem cells
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(e.g., Yakovlev and Yanev (2006)). Further examples are reviewed in the recent

monographs of Kimmel and Axelrod (2002) and Pakes (2003), and in the commu-

nication of Caron-Lormier et al. (2006). A comparison between Wright-Fisher and

branching models can be found in the recent paper of Cyran and Kimmel (2010).

The simplest branching models are the Galton-Watson and the Markov branching

processes. They have been used to model Y-chromosome lineages and their female

analogues – mitochondrial DNA lineages (see Neves and Moreira (2006) and Cyran

and Kimmel (2010)). But more accurate models are needed in which all the phases

of sexual reproduction can be considered, including the interaction between females

and males in producing offspring. Recently, two models (see González et al. (2006)

and González et al. (2009b)) have been presented to describe the evolution of the

number of carriers of the two alleles of a Y-linked gene (so that there are two types of

male, each carrying one of these alleles) in a two-sex monogamic population. In the

first, it was considered that the characters controlled by such a gene can influence the

mating process of the species, with females having a preference for males carrying

one of the alleles of the gene (see Bisazza and Pilastro (2000) and Pidancier et al.

(2006) as examples of this behaviour). It was shown (see also González et al. (2008))

that this preference can sometimes be definitive in determining the survival of the

different genotypes in the population. This model was denominated a Y-linked

bisexual branching process (Y-linked BBP) with preference. And in the second,

González et al. (2009b), it was considered that females choose their mates without

caring about what their genotype is, i.e., each female makes a blind choice of the

genotype of her mate. This model was called Y-linked BBP with blind choice.

The focus of the present paper is the first model, i.e., a Y-linked BBP with

preference, to pattern the evolution of the number of carriers of each allele of a

Y-linked gene or of Y chromosome lineages in a two-sex monogamic population,

assuming that this gene influences the mating process.

In González et al. (2006) and González et al. (2008), it was shown that the beha-

viour of genes that fit the pattern of a Y-linked BBP with preference is strongly

related to the reproduction laws of each genotype, i.e., those which model natural

selection. In practice, these offspring distributions are usually unknown, and need to

be estimated to guarantee the applicability of these models. In the present commu-

nication, we deal with the problem of estimating the offspring distribution of each

genotype of a Y-linked gene (as well as some related parameters such as their mean

values, and future population sizes). We consider a frequentist and non-parametric
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framework. First, we obtain the maximum likelihood estimators (MLEs) of the pa-

rameters when the complete family tree is observed up to some fixed generation.

The limiting behaviour (consistency and asymptotic normality) of these estimators

is also studied. Since it is usually impossible in practice to observe the entire family

tree, secondly, we consider the problem of estimating the main parameters of the

model using only the sample given by the numbers of females and of the two diffe-

rent types of male in each generation, which are more easily observed. We approach

this problem as an incomplete data estimation problem. This leads us to apply an

expectation-maximization (EM) algorithm (see McLachlan and Krishnan (2008)) in

order to obtain the MLEs (for a review on the use of this kind of algorithm in genetics

see Laird (2010)).

Besides this Introduction, the paper consists of four further sections. In Section

2, we provide the definition of the Y-linked BBP with preference. In Section 3, we

obtain the MLEs assuming the complete and incomplete sampling schemes indica-

ted above, and present the development of the EM algorithm. The accuracy of this

algorithm is illustrated in Section 4 by means of a simulated example. Some con-

cluding remarks are provided in Section 5. Finally, one can see the proofs of some

theoretical results related to the asymptotic properties of the MLEs based on the

complete family tree sample, in the Supplementary Material (for all Supplementary

Material, see www.liebertonline.com).

2 The probability model

The probability model we deal with is the Y-linked BBP with preference that

was introduced in González et al. (2006). This model describes the evolution of the

number of carriers of a Y-linked gene generation-by-generation. It is assumed that

the gene has a pair of alleles, denoted by R and r, which are expressed in the male

phenotype (r can model the absence of R). We are thus assuming a population

formed by females and males, where two types of male can be observed depending

on the allele they carry. Males with R allele are denoted R males, while males with

r allele are denoted r males. Hence, two types of (male-female) couple are formed –

those consisting of one female and one R male (resp. r male) are denoted R (resp.

r) couples.

Assuming non-overlapping generations, and having fixed the number of couples

of each type at the initial (n = 0) generation, the population size is determined in

each generation according to two phases: reproduction and mating.

72



Paper C: Non-parametric inference. EM algorithm

In the reproduction phase, each couple is assumed to randomly produce offspring

independently of the other couples. The probability distributions of these variables

are the same for all the couples with a given genotype. Moreover, following the

inheritance rules, R couples can generate females and R males, while r couples can

generate females and r males (no mutation is assumed). More formally, we consider

two independent sequences

{(FRn,i,MRn,i) : n= 0, 1, ...; i = 1, 2...} and {(Frn,j ,Mrn,j) : n= 0, 1, ...; j = 1, 2...}

of independent, identically distributed, non-negative and integer-valued bivariate

random vectors, where (FRni,MRni) (resp. (Frnj ,Mrnj)) represents the number of

females and males generated by the i-th R couple (resp. j-th r couple) in generation

n.

In general, (FRni,MRni) and (Frnj ,Mrnj) may have different distributions,

modeling the natural selection between genotypes, i.e., their possibly different re-

productive abilities. In particular, the total number of offspring generated by an

R couple (resp. r couple) is specified by a probability distribution pR = {pR
k }k∈SR

(resp. pr = {pr
l }l∈Sr), where pR

k = P (FRni + MRni = k), k ∈ SR (resp. pr
l =

P (Frnj + Mrnj = l), l ∈ Sr), with SR (resp. Sr) being the support of the distribu-

tion which is considered finite. This probability distribution is called the reproduc-

tion law of the R genotype (resp. r genotype). Moreover, we denote by mR (resp.

mr) the average number of offspring per R couple (resp. r couple).

In order to model the sex designation, we consider that each offspring will be

female with probability α, 0 < α < 1, or male with probability 1−α, i.e., a binomial

reproduction scheme. These sex designations are made independently among the

offspring of any couple, and it is assumed that the genotype has no influence on sex

determination, so that α is the same for both genotypes. Then, given an R couple

(resp. r couple) which has produced k (resp. l) offspring, the number of females

among these, i.e. FRni (resp. Frnj), follows a binomial distribution of size k (resp.

l) and probability α. Hence, the average number of females and males per R couple

(resp. r couple) is, respectively, αmR and (1− α)mR (resp. αmr and (1− α)mr).

Therefore, for a generation n with total numbers of R and r couples ZRn and

Zrn, respectively, one obtain the total number of females in generation n + 1, as

Fn+1 =
ZRn∑

i=1

FRni +
Zrn∑

j=1

Frnj . (C.1)
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Similarly, the number of males stemming from R couples (resp. r couples) in gene-

ration n + 1 is

MRn+1 =
ZRn∑

i=1

MRni (resp. Mrn+1 =
Zrn∑

j=1

Mrnj). (C.2)

Once the total numbers of females and males of each type in generation (n + 1)

are known, i.e., Fn+1,MRn+1, and Mrn+1, one deals with the mating phase. To

determine the total number of couples of each type we assume perfect fidelity mating,

i.e., each individual mates with only one individual of the other sex provided that

some of them are still available, and also that females choose their partner with a

preference for R males. Hence, R males are chosen first, so the total number of R

couples is determined by the minimum of the number of females and the number of

R males:

ZRn+1 = min{Fn+1,MRn+1}. (C.3)

Therefore, the number of females which do not mate with R males is max{0, Fn+1−
MRn+1}. These females (if any) mate with r males, and the assumption of perfect

fidelity implies that the number of r couples is

Zrn+1 = min{max{0, Fn+1 −MRn+1},Mrn+1}. (C.4)

Notice that the number of couples of each type in the (n + 1)-th generation is

given deterministically once the total numbers of females and of males of each type

in this generation are known.

From the definition of the model, the number of couples of each genotype in the

next generation depends only on the present number of mating units, and not on

the number of ancestors that belonged to past generations. Furthermore, since each

reproduction law remains the same over the generations, the transitions from one

generation to another are homogeneous. The process {(ZRn, Zrn)}n≥0 is therefore

a homogeneous two-type Markov chain.

Some basic properties of this model are established in González et al. (2006).

Among them, particularly worthy of note is that each genotype presents the dual

behaviour typical of branching processes: either it becomes extinct or the number

of couples of this genotype eventually reaches arbitrarily large values. The latter

event is known as the explosion or indefinite growth of this particular genotype.

Consequently the whole population also presents this duality. Thus, the survival of

each genotype or of the whole population is equivalent to their indefinite growth as
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generations go by, with the possibility having to be discarded that, in the long run,

their size tends to be in the neighbourhood of one or more positive values. Although

this property might seem unrealistic, it merely expresses what would be the ideal

long term evolution of a population when its development is not constrained by any

external bound.

In González et al. (2009a) conditions for the survival/fixation of one genotype

and the extinction/survival of the whole population are reviewed. These conditions

depend on α and on the reproduction laws pR and pr through their mean values

mR and mr, respectively. These values also determine the asymptotic behaviour

of the genotypes (as was proved in González et al. (2008)). Since in practice these

parameters are usually unknown, in order for these models to be applicable it is

necessary to develop the estimation theory for the above parameters, including the

reproduction laws. Then, knowing these estimators, predictions about the number

of individuals and couples in future generations can also be established.

3 Maximum likelihood estimators with complete and in-
complete data

In this section, we shall study the MLEs of the parameters α, pR, and pr. We

shall also derive from them the MLEs for the reproduction means mR and mr. First

we consider that the entire family tree up to some generation N is observed. This is

the set of random vectors

{(FRni,MRni), (Frnj ,Mrnj), i = 1, ..., ZRn; j = 1, ..., Zrn;n = 0, ..., N − 1}.

From these random vectors, assuming that (ZR0, Zr0) is known and using Equations

(C.1)-(C.4), one can obtain the sets

FMN = {ZR0, Zr0, Fn,MRn,Mrn, n = 1, ..., N},

containing the initial number of couples of each type and the total number of fe-

males and the total number of males of each type until generation N ; and ZN =

{ZRn(k), k ∈ SR, Zrn(l), l ∈ Sr, n = 0, ..., N − 1}, where, with IA denoting the

indicator function of the set A, the variables

ZRn(k) =
ZRn∑

i=1

I{FRni+MRni=k} and Zrn(l) =
Zrn∑

j=1

I{Frnj+Mrnj=l}

represent the total number of couples of each type which have generated, respectively,

k and l individuals in the generation n.
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Therefore, taking into account the binomial scheme and that mating units repro-

duce independently, it is not hard to obtain that the complete likelihood function

based on the sample (ZN ,FMN ) is given by

L(pR, pr, α|ZN ,FMN ) ∝
N−1∏

n=0

αFn+1(1− α)(MRn+1+Mrn+1)
∏

k∈SR

(pR
k )ZRn(k)

∏

l∈Sr

(pr
l )

Zrn(l).(C.5)

From this expression and adapting some classical procedures of estimation theory

in branching processes (see Supplementary Material, Theorem C.1), one can obtain

that the MLEs for α, pR, and pr based on the sample (ZN ,FMN ) are given by

α̂ =
∑N−1

n=0 Fn+1∑N−1
n=0 (Fn+1 + MRn+1 + Mrn+1)

, (C.6)

p̂R
k =

∑N−1
n=0 ZRn(k)∑N−1

n=0 ZRn

, k ∈ SR, and p̂r
l =

∑N−1
n=0 Zrn(l)∑N−1

n=0 Zrn

, l ∈ Sr.

The estimator for α is intuitively very reasonable, since it is obtained by means

of the proportion of females among all observed individuals. The estimator for pR
k

with k ∈ SR (resp. pr
l with l ∈ Sr) is obtained as the total number of R couples

(resp. r couples) which have generated k (resp. l) offspring as a fraction of the total

number of R couples (resp. r couples).

From the estimators of pR and pr, one deduces that the MLEs for mR and mr

based on the sample (ZN ,FMN ) are

m̂R =
∑N

n=1(FRn + MRn)∑N−1
n=0 ZRn

and m̂r =
∑N

n=1(Frn + Mrn)∑N−1
n=0 Zrn

,

where FRn =
∑ZRn

i=1 FRn−1i and Frn =
∑Zrn

j=1 Frn−1j , for all n = 1, . . . , N , are

the total numbers of females generated by each type of couple. Notice that, for

n = 1, . . . , N , FRn and Frn are derived from (ZN ,FMN ), since

MRn + FRn =
∑

k∈SR

kZRn−1(k) and Mrn + Frn =
∑

k∈Sr

lZrn−1(l).

All of these estimators verify some properties related to their asymptotic beha-

viour. Specifically, on the non-extinction set, each estimator is strongly consistent,
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and, suitably normalized, converges in distribution to a standard normal distribution

(see Supplementary Material).

Notice that the above estimators depend on the sample ZN which, in most

real situations, is impossible to observe. Usually, only the total number of indi-

viduals of each type can be observed (recall that the Y-linked genes present dif-

ferent phenotypes). There thus arises an interesting estimation problem from as-

suming that only the sample FMN is observed. Since from the definition of the

model (Equations (C.3) and (C.4)) one obtains ZRn and Zrn deterministically kno-

wing the total number of females and the total numbers of males of each type,

one can insert the variables ZRn and Zrn into the sample FMN . Hence, writing

ZFMn = {ZRn, Zrn, Fn+1,MRn+1,Mrn+1}, n = 0, . . . , N − 1, one is considering

that the sample observed is FMN = {ZFM0, ..., ZFMN−1}.
Assuming that ZN is unknown and only the total number of individuals and of

couples are observed, one is faced with an incomplete data estimation problem. In

such a case, it seems appropriate to use an Expectation-Maximization (EM) algo-

rithm (see McLachlan and Krishnan (2008)), extensively used to deal with maximum

likelihood calculations when there are missing or incomplete data. In our case, this

algorithm is an iterative method which starts with certain initial values of the pa-

rameters (pR, pr, α) and gives rise to a sequence of vectors which, under certain

conditions, converges to the MLEs based on the sample FMN . Each iteration of

the method consists of two steps. In the first step (E step), the expectation of the

complete log-likelihood is calculated using the distribution of the unobserved data.

The second step (M step) consists of finding the values of the parameters which ma-

ximize the expectation that had been calculated in the E step. The E and M steps

are repeated until convergence is attained. In our case, starting with initial values

(pR(0), pr(0), α(0)), we shall obtain a sequence {(pR(i), pr(i), α(i))}i≥0 which is updated

in each iteration of the method, as will be described in the following.

3.1 The E step

Let (pR(i), pr(i), α(i)) be the vector obtained in iteration i (with pR(i) ={pR(i)
k }k∈SR

and pr(i) = {pr(i)
l }l∈Sr). We shall develop the E step of the EM algorithm in the

(i + 1)-th iteration. The expected value of the complete log-likelihood with respect

to the available data (pR(i), pr(i), α(i),FMN ) is given by the expression

EZN |(pR(i), pr(i), α(i),FMN )
[
log L(pR, pr, α|ZN ,FMN )

]
, (C.7)
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where ZN |(pR(i), pr(i), α(i),FMN ) denotes the distribution of the latent vector ZN

given the sample FMN and the parameters of the model (pR(i), pr(i), α(i)). For

simplicity, we shall henceforth write E∗
i [·] = EZN |(pR(i), pr(i), α(i),FMN )

[·]. Taking

into account (C.5), one has

E∗
i [log L(pR, pr, α|ZN ,FMN )] =

C +
N−1∑

n=0

(Fn+1 log α + (MRn+1 + Mrn+1) log(1− α))

+
N−1∑

n=0


 ∑

k∈SR

E∗
i [ZRn(k)] log pR

k +
∑

l∈Sr

E∗
i [Zrn(l)] log pr

l


 ,

for a certain constant C.

Therefore, in order to obtain the expected value of the complete log-likelihood,

the distribution of the unobserved data ZN with respect to (pR(i), pr(i), α(i),FMN )

needs to be calculated. To determine the distribution of ZN |(pR(i), pr(i), α(i),FMN )

we must first show the relationship between the vectors ZN and FMN . Indeed,

since the sum, for all k ∈ SR (resp. l ∈ Sr), of the total number of R couples

which have generated k (resp. l) offspring is the total number of R couples (resp. r

couples), then

∑

k∈SR

ZRn(k) = ZRn (resp.
∑

l∈Sr

Zrn(l) = Zrn), n = 0, ..., N − 1. (C.8)

The total number of individuals generated by the R couples (resp. r couples) is

greater than or equal to the total number of R males (resp. r males) generated by

these couples, i.e.,

∑

k∈SR

kZRn(k) ≥ MRn+1 (resp.
∑

l∈Sr

lZrn(l) ≥ Mrn+1), n = 0, ..., N − 1. (C.9)

Also, the total number of individuals generated by all couples in a generation is

the sum total of the number of individuals of the next generation:

∑

k∈SR

kZRn(k) +
∑

l∈Sr

lZrn(l) = MRn+1 + Mrn+1 + Fn+1, n = 0, ..., N − 1. (C.10)

Considering these relationships, we can now determine the distribution of the

unobserved vector ZN , given FMN and the vector of i-th iteration values (pR(i), pr(i),

α(i)). To this end, let us denote by fmN a vector of non-negative integers, fmN =

(zfmn, n = 0, . . . , N − 1), where, for all n = 0, . . . , N − 1, zfmn = (zRn, zrn, fn+1,
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mRn+1,mrn+1). In order for fmN to be a possible value of FMN , and according

to the definition of the model, we assume that zRn+1 = min{fn+1, mRn+1} and

zrn+1 = min{max{0, fn+1 −mRn+1},mrn+1}, for n = 0, . . . , N − 2, (see Equations

(C.3) and (C.4)). One then has that, almost surely,

PZN |FMN=fmN =
N−1∏

n=0

P (ZRn(k),k∈SR,Zrn(l),l∈Sr)|ZFMn=zfmn , (C.11)

where P ·|· denotes the conditional distribution with parameters (pR(i), pr(i), α(i)).

Indeed, denote by zN a vector of non-negative integers with zN = (zRn(k), k ∈
SR, zrn(l), l ∈ Sr, n = 0, . . . , N − 1), and, for each n = 0, . . . , N − 1, write the sets

AzRn(SR) = {ZRn(k) = zRn(k), k ∈ SR}

= {
ZRn∑

i=1

I{FRni+MRni=k} = zRn(k), k ∈ SR},

Azrn(Sr) = {Zrn(l) = zrn(l), l ∈ Sr} = {
Zrn∑

j=1

I{Frnj+Mrnj=l} = zrn(l), l ∈ Sr},

Afn+1 = {Fn+1 = fn+1} = {
ZRn∑

i=1

FRni +
Zrn∑

j=1

Frnj = fn+1},

AmRn+1 = {MRn+1 = mRn+1} = {
ZRn∑

i=1

MRni = mRn+1},

Amrn+1 = {Mrn+1 = mrn+1} = {
Zrn∑

j=1

Mrnj = mrn+1},

with zRn(SR) = (zRn(k), k ∈ SR) and zrn(Sr) = (zrn(l), l ∈ Sr). Then, since

mating units reproduce independently, one has that

P (ZN = zN |FMN = fmN )

=
N−1∏

n=0

P (ZRn = zRn, Zrn = zrn, AzRn(SR), Azrn(Sr), Afn+1 , AmRn+1 , Amrn+1)
P (ZRn = zRn, Zrn = zrn, Afn+1 , AmRn+1 , Amrn+1)

=
N−1∏

n=0

P (AzRn(SR), Azrn(Sr)|ZRn = zRn, Zrn = zrn, Afn+1 , AmRn+1 , Amrn+1).

Computationally, this means that the vector ZN can be determined generation-

by-generation. Specifically, once the total numbers are known of couples of each

type in the n-th generation, ZRn and Zrn, and of females and of males of each

type in the (n + 1)-th generation, Fn+1, MRn+1, and Mrn+1, it is enough to
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sample the vector (ZRn(k), k ∈ SR, Zrn(l), l ∈ Sr) in the following way. Ap-

plying the multiplication rule, one straightforwardly obtains that the probability

P (AzRn(SR), Azrn(Sr)|ZRn = zRn, Zrn = zrn, Afn+1 , AmRn+1 , Amrn+1) is proportio-

nal to the product of the probabilities

P (AzRn(SR), Azrn(Sr)|ZRn = zRn, Zrn = zrn) (C.12)

and

P (Afn+1 , AmRn+1 , Amrn+1 |ZRn = zRn, Zrn = zrn, AzRn(SR), Azrn(Sr)). (C.13)

Taking into account that mating units reproduce independently, the probability

given in (C.12) is obtained as P (AzRn(SR)|ZRn = zRn)P (Azrn(Sr)|Zrn = zrn).

Since p
R(i)
k (resp. p

r(i)
l ) is considered to be the probability that an R couple (resp.

r couple) generates k (resp. l) offspring and there are zRn (resp. zrn) progenitor

couples, then, taking into account (C.8), one deduces that P (AzRn(SR)|ZRn = zRn)

(resp. P (Azrn(Sr)|Zrn = zrn)) is obtained from a multinomial distribution with size

zRn (resp. zrn) and probability pR(i) (resp. pr(i)) if

∑

k∈SR

zRn(k) = zRn (resp.
∑

l∈Sr

zrn(l) = zrn),

or is equal to 0 otherwise.

The probability given in (C.13), from again applying the multiplication rule, is

proportional to the product of the probabilities

P (AmRn+1 , Amrn+1 |ZRn = zRn, Zrn = zrn, AzRn(SR), Azrn(Sr)) (C.14)

and

P (Afn+1 |ZRn = zRn, Zrn = zrn, AzRn(SR), Azrn(Sr), AmRn+1 , Amrn+1). (C.15)

Considering (C.10), the probability given in (C.15) is equal to 1 if

fn+1 =
∑

k∈SR

kzRn(k) +
∑

l∈Sr

lzrn(l)−mRn+1 −mrn+1,

or to 0 otherwise.

Finally, given that the sex designations are made independently among the offs-

pring and that mating units reproduce independently, the probability given in (C.14)

is equal to the product P (AmRn+1 |AzRn(SR), ZRn = zRn)P (Amrn+1 |Azrn(Sr), Zrn =

zrn).
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Moreover, taking into account (C.9) and the binomial scheme, the first (resp. se-

cond) probability is obtained from a binomial distribution with size
∑

k∈SR kzRn(k)

(resp.
∑

l∈Sr lzrn(l)) and probability 1− α(i) if

∑

k∈SR

kzRn(k) ≥ mRn+1 (resp.
∑

l∈Sr

lzrn(l) ≥ mrn+1),

i.e., if the total number of offspring given by all mating units of a type is greater

than the total number of males of this type; otherwise it is equal to 0.

3.2 The M Step

The M step consists of finding the values of the parameters which maximize

the expectation of the complete log-likelihood. This expectation has been calculated

previously in the E step. In our case, we must find the vector (pR(i+1), pr(i+1), α(i+1))

which maximizes the expression E∗
i [log L(pR, pr, α|ZN ,FMN )]. Following a similar

argument to that given in the calculation of the MLEs based on the observation of

the complete family tree (see Supplementary Material, Theorem C.1), one obtains

that the value for α in the (i + 1)-th iteration is

α(i+1) =
∑N−1

n=0 Fn+1∑N−1
n=0 (Fn+1 + MRn+1 + Mrn+1)

.

Notice that α(i+1) does not depend on the iteration i because it is only based on

FMN which is observed. The sequence {α(i)}i≥1 is thus constant in all iterations

of the method, and its value will be denoted α̂EM,N . This value coincides with the

MLE given in (C.6) based on observing the entire family tree.

For each pR
k with k ∈ SR and each pr

l with l ∈ Sr, the values obtained in the

(i + 1)-th iteration are, respectively,

p
R(i+1)
k =

∑N−1
n=0 E∗

i [ZRn(k)]∑N−1
n=0 ZRn

, k ∈ SR, and p
r(i+1)
l =

∑N−1
n=0 E∗

i [Zrn(l)]∑N−1
n=0 Zrn

, l ∈ Sr.

Intuitively, p
R(i+1)
k (resp. p

r(i+1)
l ) is the ratio of the average number of R couples

(resp. r couples) which have generated k (resp. l) offspring to the total number of

R couples (resp. r couples). To calculate these average numbers, one has to use the

probability distribution determined in E step.

The values obtained in this M step, (pR(i+1)
k , p

r(i+1)
l , α(i+1)), are used to be-

gin another E step, and the process is repeated until some convergence criterion

is verified, in which case the process stops and the final values are denoted by

(p̂R
EM,N , p̂r

EM,N , α̂EM,N ). For simplicity, when the meaning is clear, we shall drop
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the use of the subindex N and write simply (p̂R
EM , p̂r

EM , α̂EM ). In McLachlan and

Krishnan (2008) it is shown that, under general conditions of differentiability and

continuity of the expectation of the complete log-likelihood function, estimates ob-

tained using the EM algorithm converge to a stationary point of the incomplete data

likelihood function. The multinomial structure of our complete likelihood function

means that usually those conditions are verified, and also that the incomplete data

likelihood function is unimodal. Then, in this case, (p̂R
EM , p̂r

EM , α̂EM ) are the MLEs

of (pR, pr, α) based on FMN , which we call expectation-maximization MLEs.

Remark C.1 Another general scenario which can be considered is to observe only

the number of couples of each type up to generation N , i.e., {(ZRn, Zrn), n =

0, ..., N}. However, in this situation, the parameter α often can not be estimated

using the EM algorithm because the incomplete data likelihood function is not uni-

modal. For instance, if one has a Y-linked BBP with preference where ZR0 = 1,

Zr0 = 4, pR
4 = 1, pr

3 = 1, ZR1 = 2, and Zr1 = 3, then the total number of indivi-

duals from R couples in the 1st generation is equal to 4. Since Zr1 is not null and

ZR1 = 2, there are two R males and thus there are also two females stemming from

R couples, which form two mating couples. Moreover, since Zr0 = 4 and pr
3 = 1,

the total number of individuals from r couples in the 1st generation is 12, of which 3

are females and 9 males or vice versa, because Zr1 = 3. Thus, the incomplete data

likelihood function is proportional to α5(1 − α)11 + α11(1 − α)5 (symmetric form),

which is bimodal, so that the EM algorithm does not work correctly.

Hence, to estimate α correctly, it would be necessary to also observe Fn and Mn,

n = 1, . . . , N , with Mn = MRn + Mrn. In general these last variables, together with

ZRn and Zrn, n = 0, ..., N , uniquely determine MRn and Mrn, n = 1, ..., N . Thus

the samples FMN and {ZR0, Zr0, Fn,Mn, ZRn, Zrn, n = 1, ..., N} contain the same

information.

The following summarizes our proposed EM algorithm to estimate the parameters

of the model:

Step 0. i = 0. Set each component of (pR(0), pr(0), α(0)) to some strictly positive

values.

Step 1 (E Step). Based on (pR(i), pr(i), α(i)),

(a) determine ZN |(pR(i), pr(i), α(i),FMN ) and

(b) calculate E∗
i [log L(pR, pr, α|ZN ,FMN )].
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Step 2 (M Step). Obtain the vector

(pR(i+1), pr(i+1), α(i+1)) = arg max(pR,pr,α) E∗
i [log L(pR, pr, α|ZN ,FMN )].

Step 3. If max{|pR(i+1)
k − p

R(i)
k |, k ∈ SR, |pr(i+1)

l − p
r(i)
l |, l ∈ Sr, |α(i+1) − α(i)|}

is less than some convergence criterion, stop and denote by (p̂R
EM , p̂r

EM , α̂EM )

these final estimates. Otherwise, increment i by 1 and repeat steps 1-3.

Finally, we would point out that since mR and mr are obtained from pR and

pr, respectively then, from p̂R
EM,N and p̂r

EM,N , one can obtain the expectation-

maximization MLEs for mR and mr based on FMN , which will be denoted by

m̂EM
R,N and m̂EM

r,N , respectively. Also, one can obtain a sample of the distribution of

(FN+s,MRN+s,MrN+s) knowing FMN for any s > 0 by simulating, through the

Monte-Carlo method, s generations of a Y-linked BBP with preference starting with

(ZRN , ZrN ) and considering (p̂R
EM,N , p̂r

EM,N , α̂EM,N ) as the parameters of the mo-

del. This allows one to forecast the number of individuals and couples for unobserved

generations.

4 Simulation study

The method presented in the previous section will now be applied using the R

statistical computing language and environment (see R Development Core Team

(2011)) to estimate the parameters of a Y-linked BBP with preference using si-

mulated data. To this end, we consider a process with the following parameters:

the probability to be female is α = 0.4 and the reproduction laws of each type of

couple are pR = (pR
0 , pR

1 , pR
2 ) = (0.0225, 0.2550, 0.7225) and pr = (pr

0, p
r
1, p

r
2, p

r
3) =

(0.0025, 0.0462, 0.3004, 0.6509).

Note that we have chosen the sex-ratio to be less than a half since in most

populations the sex-ratio is different from 0.5, and the analysis of Y-linked gene

evolution turns out to be more interesting when α < 0.5 (see González et al. (2006)

and González et al. (2008)). Also, the average number of individuals generated by

each type of couple are mR = 1.7 and mr = 2.6, respectively, reflecting the possible

difference between the reproductive capacity of mating units of each type that exists

in nature.

For this model, we simulated 20 generations starting with (ZR0, Zr0) = (3, 10).

Table C.1 lists the sample fm20 formed by the total numbers of females and of males

of each type obtained in these generations. The relatively small amount of sample
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Fn 15 18 20 21 21 22 24 29 24 20 23 21 16 15 18 19 16 15 15 15

MRn 4 2 2 4 3 4 4 4 3 5 7 7 7 4 3 5 3 4 3 4
Mrn 16 16 25 27 26 25 29 27 44 34 18 27 25 15 14 16 24 16 19 17

Table C.1: Simulated data.

information that this represents would make it difficult to determine at first sight

anything about the future behaviour of the Y-linked character on the basis of these

observations.

Let us now apply the EM algorithm using the above sample, fm20. To start

the algorithm, we need the initial values (pR(0), pr(0), α(0)). Assuming the lack of

information, we choose the values pR(0) and pr(0) according to uniform distributions

of sizes 3 and 4, respectively. Thus, p
R(0)
k = 1/3, with k = 0, 1, 2 and p

r(0)
l = 1/4,

with l = 0, 1, 2, 3. The best option to initialize α(0) is the MLE of α based on the

entire family tree, α̂ (see (C.6) – recall that α̂ only depends on the values recorded

in fm20). Therefore, as was indicated in the previous section, the sequence {α(i)}i≥0

is constant, and of value α̂EM = α̂ – in the example, equal to 0.416.

We ran the EM algorithm, and observed the sequence {(pR(i), pr(i), α(i))}i≥0, with

pR(i) = {pR(i)
k }k=0,1,2, pr(i) = {pr(i)

l }l=0,1,2,3 and α(i) = α̂EM , i ≥ 0, to converge from

iteration 500 onwards (with the difference between consecutive elements of the se-

quence being less than 10−5). The values obtained in the last iteration were taken to

be the expectation-maximization ML estimates. A discrete sensitivity analysis ap-

plied to study the influence of the initial values (pR(0), pr(0), α(0)) on the convergence

of the method showed that the procedure is stable with respect to the initial values,

with there being no changes in the limit.

From {(pR(i), pr(i))}i≥0, it is direct to obtain the sequence {(m(i)
R ,m

(i)
r )}i≥0 with

the means of the distributions pR(i) and pr(i), respectively, in each iteration of the

method. This last sequence converges to the expectation-maximization MLEs for

mR and mr, denoted by m̂EM
R and m̂EM

r , respectively. From the values of the

sequence {(m(i)
R , m

(i)
r )}i=1,...,500, one obtains that they are quite stable from iteration

200 onwards, with the resulting expectation-maximization ML estimates of mR and

mr based on fm20 being m̂EM
R = 1.724 and m̂EM

r = 2.605, respectively.

In order to analyze the consistency of the expectation-maximization MLEs, we

next applied the EM algorithm by varying the number of generations observed, i.e.,

we applied the algorithm 20 times, taking the sample to be fmN , with N = 1, ..., 20.

Each of these times, we performed 500 iterations of the method, and saved the
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Figure C.1: Evolution of α̂EM (left), m̂EM
R (centre), and m̂EM

r (right) over the course
of the generations, together with the true value of each parameter (dashed line).

estimates given in the last iteration, taking them to be the expectation-maximization

ML estimates of the corresponding parameters. At the end of the process, we thus

had a sequence (α̂EM,N , m̂EM
R,N , m̂EM

r,N ) with N = 1, ..., 20. The three components

of this sequence are plotted in Figure C.1. One observe that the more generations

one has, the closer the estimate approaches the true value of the parameter (dashed

line). Actually, under weak general conditions, the EM method leads to consistent

estimates (see McLachlan and Krishnan (2008) for details), as in the case of the

usual MLEs based on complete data samples (see Supplementary Material).

To approximate the sampling distributions of p̂R
EM,20, p̂r

EM,20, and α̂EM,20, we

applied a bootstrap procedure, making use of the EM estimates obtained on the

sample fm20, i.e., the values of p̂R
EM,20, p̂r

EM,20, and α̂EM,20. These values were

used as parameters to perform a Monte-Carlo simulation of 2000 processes until

generation 20. For each of these bootstrap samples, we applied the EM method

thus obtaining bootstrap approximations to the sampling distributions of p̂R
EM,20,

p̂r
EM,20, and α̂EM,20. Obviously, from them it is straightforward to obtain a bootstrap

sample of m̂EM
R,20 and m̂EM

r,20 . Figure C.2 illustrates the bootstrap approximation to

these sampling distributions. One observes that the variability associated with the

distribution of m̂EM
R was greater than that of m̂EM

r . This may have been because

there were fewer R males recorded in each generation than r males.

An interesting applied question is to predict on the basis of the observed data

whether or not the process will survive over time. Theoretically, it is known that

the condition α < 0.5 and 1 < (1−α)mR < αmr ensures that there exists a positive

probability for both genotypes to grow without limit over time (see González et al.

(2008)). From the bootstrap approximation to the sampling distributions of m̂EM
R ,

m̂EM
r , and α̂EM , we calculated the proportion of samples in generation 20 which
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Figure C.2: Bootstrap approximation to the sampling distribution of α̂EM (left),
m̂EM

R (centre), and m̂EM
r (right), at generation 20, together with the true value of

each parameter (dashed line) and kernel density estimates (solid line).
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Figure C.3: Histogram of the estimated predictive distribution of F21 (left), MR21

(centre), and Mr21 (right), when fm20 is observed.

satisfied α̂EM < 0.5 and 1 < (1− α̂EM )m̂EM
R < α̂EMm̂EM

r , finding the approximate

value 0.886. The high value of this calculated proportion is indicative that the

theoretical condition might be satisfied. Indeed, the true values of the parameters

do satisfy this condition, and therefore there exists a positive probability that both

genotypes grow over the course of the generations.

Finally, Figure C.3 illustrates the predictive distribution of the total numbers of

females and of each type of male in the 21-st generation. The predicted behaviour is

in keeping with the fact that there exists a positive probability that both genotypes

survive over time.

5 Concluding remarks

In order to study the natural selection of Y-linked genes, the estimation of the

main parameters of the Y-linked BBP with preference has been considered in a ge-

neral non-parametric context. The model assumes males can be distinguished by
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certain genetic characteristics linked to the Y chromosome, characteristics which

they either do or do not possess. The females choose their mates preferentially ac-

cording to whether or not this characteristic is present. Firstly, we assumed that

the entire family tree can be observed up to some generation and obtained the co-

rresponding MLEs, studying their asymptotic properties – consistency and limiting

normality. The procedure applied represented a methodological adaptation to the

Y-linked models of some classical estimation theory procedures used in branching

processes. Secondly, we considered the problem of estimating the main parameters of

the model using only the sample information that is usually more plausibly observa-

ble in practice – that given simply by the number of females and of the two different

types of male in each generation. We approached this problem as an incomplete

data estimation problem, applying the expectation-maximization method which has

proven very effective in solving it. How well this estimation procedure works was

illustrated by means of a simulated example, in which we also showed the consistency

of the estimates, obtained bootstrap approximations to their sampling distributions,

and inferred the behaviour of the process for future generations. This second proce-

dure represents the principal objective of the present communication, allowing the

use of these Y-linked models in applied problems under realistic assumptions.

We also showed that, when the only observable data are the total number of

mating units of each genotype, the expectation-maximization method cannot be

relied on to operate appropriately in estimating the probability of an individual

being female, the reason being that the incomplete data likelihood function may

not be unimodal. We concluded that it is necessary to observe as a minimum the

numbers of females and of both males genotypes in each generation to guarantee the

validity of the method.

A line for future research is the question of inferences for the two-sex branching

model introduced in González et al. (2009b), in which it is considered that Y-linked

genes are not expressed in the phenotype of males, so that females mate following

a blind choice. In this framework, the total number of mating units of each type

is not determined one-to-one from the total number of females and males of each

type, and a random component underlies the mating process. Computationally

therefore, sampling the branching tree latent vector, ZN , is more difficult and needs

to be studied in some specific way. This complexity will probably lead to estimators

whose sampling distributions will have large variances.
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T.E. King, S.J. Ballereau, K.E. Schürer, and M.A. Jobling. Genetic signatures

of coancestry within surnames. Curr. Biol., 16 (4):384–388, 2006.

C. Krausz, G. Forti, and K. McElreavey. The Y chromosome and male fertility

and infertility. Int. J. Androl., 26:70–75, 2003.

C. Krausz, L. Quintana-Murci, and G. Forti. Y chromosome polymorphisms in

medicine. Ann. Med., 36 (8):573–583, 2004.

B. Kuhnert, J. Gromoll, E. Kostova, P. Tschanter, C.M. Luetjens, M. Simoni,

and E. Nieschlag. Case report: natural transmission of an AZFc Y-chromosomal

microdeletion from father to his sons. Hum Reprod., 19:886–888, 2004.

N. Laird. The EM algorithm in Genetics, Genomics and Public Health. Statis-

tical Science., page to appear, 2010.

G. J. McLachlan and T. Krishnan. The EM Algorithm and Extensions. John

Wiley and Sons, Inc, 2008.

A.G.M. Neves and C.H.C. Moreira. Applications of the Galton-Watson process

to human DNA evolution and demography. Physica A., 368:132–146, 2006.

A.G. Pakes. Biological applications of branching processes. Handbook of Sta-

tistic Vol. 21 Stochastic Processes: Modelling and Simulation (Shanbhag, D.N.

and Rao, C.R., eds.), Chapter 18:693–773, Elsevier Science B.V., 2003.

90



Paper C: Non-parametric inference. EM algorithm

N. Pidancier, S. Jordan, G. Luikart, and P. Taberlet. Evolutionary history of

the genus capra (mammalia, artiodactyla): Discordance between mitochondrial

DNA and Y-chromosome phylogenies. Molecular Phylogenetics and Evolution.,

40:739–749, 2006.

L. Quintana-Murci and M. Fellous. The human Y chromosome: the biological

role of a “functional wasteland”. J. Biomed. Biotechnol., 1:18–24, 2001.

R Development Core Team. R: A Language and Environment for Statistical

Computing. R Foundation for Statistical Computing, Vienna, Austria, 2010.

URL http://www.R-project.org. ISBN 3-900051-07-0.

A. Rosa, C. Ornelas, M.A. Jobling, A. Brehm, and R. Villems. Y-chromosomal

diversity in the population of Guinea-Bissau: a multiethnic perspective. BMC

Evol. Biol., 27:107–124, 2007.

A. Toure, M. Szot, S.K. Mahadevaiah, A. Rattigan, O.A. Ojarikre, and P.S.

Burgoyne. A new deletion of the mouse Y chromosome long arm associated

with the loss of Ssty expression, abnormal sperm development and sterility.

Genetics, 166:901–912, 2004.

A. Yakovlev and N. Yanev. Branching stochastic processes with immigration in

analysis of renewing cell populations. Math. Biosci., 203:37–63, 2006.

Supplementary Material

Here, we shall present the results on the consistency and normal limiting distributions

of the maximum likelihood estimators of the main parameters of the Y-linked BBP

with preference, when the entire family tree up to some generation is observed. First,

we shall derive these estimators.

Theorem C.1 The maximum likelihood estimators of α, pR, and pr based on the

sample (ZN ,FMN ) are, respectively,

α̂ =
∑N−1

n=0 Fn+1∑N−1
n=0 (Fn+1 + MRn+1 + Mrn+1)

,

p̂R
k =

∑N−1
n=0 ZRn(k)∑N−1

n=0 ZRn

, k ∈ SR, and p̂r
l =

∑N−1
n=0 Zrn(l)∑N−1

n=0 Zrn

, l ∈ Sr.
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Proof. It is immediate to verify from Equation (C.5) in the paper, that the expres-

sion for the complete log-likelihood function based on such sample is

l(pR, pr, α|ZN ,FMN ) = C∗ +
N−1∑

n=0

(Fn+1 log α + (MRn+1 + Mrn+1) log(1− α))

+
N−1∑

n=0


 ∑

k∈SR

ZRn(k) log pR
k +

∑

l∈Sr

Zrn(l) log pr
l


 ,

with C∗ some constant.

Given the structure of that function, to maximize this expression subject to the

constraints 0 ≤ α ≤ 1,
∑

k∈SR pR
k = 1 and

∑
l∈Sr pr

l = 1, with pR
k , pr

l ≥ 0, k ∈ SR

and l ∈ Sr, it is enough to maximize each corresponding addend. Using the non-

negativity of the Kullback-Leibler divergence, it is straightforward to verify that the

log-likelihood is maximized by the choice of α̂, p̂R
k , and p̂r

l , and therefore they are

the MLEs for α, pR, and pr.

Corollary C.1 The maximum likelihood estimators of mR and mr based on the

sample (ZN ,FMN ) are, respectively,

m̂R =
∑N

n=1(FRn + MRn)∑N−1
n=0 ZRn

and m̂r =
∑N

n=1(Frn + Mrn)∑N−1
n=0 Zrn

.

In the following results some asymptotic properties of the estimators α̂, p̂R
k with

k ∈ SR, p̂r
l with l ∈ Sr, m̂R, and m̂r are studied. First, we shall deal with the results

about their consistency, establishing previously some properties we shall need in the

development of those results.

P1. lim infn→∞
ZRn+1

ZRn
> 1 a.s. on A∞,∞ ∪A∞,0

P2. lim infn→∞
Zrn+1

Zrn
> 1 a.s. on A∞,∞ ∪A0,∞

P3. limn→∞
FRn+1

ZRn
= αmR and limn→∞

MRn+1

ZRn
= (1−α)mR a.s. on A∞,∞∪A∞,0

P4. limn→∞
Frn+1

Zrn
= αmr and limn→∞

Mrn+1

Zrn
= (1−α)mr a.s. on A∞,∞∪A0,∞

where A∞,0 = {ZRn → ∞, Zrn → 0}, A0,∞ = {ZRn → 0, Zrn → ∞} and A∞,∞ =

{ZRn →∞, Zrn →∞}.
Intuitively, A∞,0 (resp. A0,∞) means the fixation of the R allele (resp. r allele)

and A∞,∞ the survival or coexistence of both genotypes. Moreover, notice that
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A∞,0 ∪ A∞,∞ = {ZRn → ∞}, which corresponds to the survival of the R allele

independently of the behaviour of the r allele, and that A0,∞∪A∞,∞ = {Zrn →∞}
with analogous meaning.

Remark C.2 Sufficient conditions for the sets A∞,0, A0,∞, and A∞,∞ to have po-

sitive probability are given in González et al. (2006) and González et al. (2008),

and conditions which guarantee P1-P2 have been studied in González et al. (2008).

Notice that, from P1-P2 and using the conditioned Borel-Cantelli lemma, one can

obtain P3-P4.

Theorem C.2 The maximum likelihood estimators of pR, pr, and α based on (ZN ,

FMN ) verify:

i) If P1 holds, then for each k ∈ SR, p̂R
k is strongly consistent for pR

k on A∞,∞ ∪
A∞,0.

ii) If P2 holds, then for each l ∈ Sr, p̂r
l is strongly consistent for pr

l on A∞,∞ ∪
A0,∞.

iii) If P3 and P4 hold and limn→∞ ZRn
Zrn

exists a.s. on A∞,∞ (it could be ∞), then

α̂ is strongly consistent for α on A∞,0 ∪A0,∞ ∪A∞,∞.

Proof. We start by proving i). The proof of ii) is analogous using the property P2.

Firstly, we define the filtration Fn = σ(ZR0, Zr0, Fk,MRk, Mrk, k = 1, 2, ..., n), n ≥
1. Let ε > 0, k ∈ SR and define An = {|ZRn(k)− pR

k ZRn| ≥ εZRn}, n ≥ 0. Taking

into account that the conditional distribution of (ZRn(k), k ∈ SR) given ZRn is a

multinomial distribution with size ZRn and probability pR, then E[ZRn(k)|ZRn] =

ZRnpR
k a.s. and V ar[ZRn(k)|ZRn] = ZRnpR

k (1 − pR
k ) a.s. Applying Chebyshev’s

inequality, from P1 one obtains

∞∑

n=1

P (An|Fn) ≤
∞∑

n=1

V ar[ZRn(k)|ZRn]
ε2ZR2

n

=
pR

k (1− pR
k )

ε2

∞∑

n=1

1
ZRn

< ∞

a.s. on {ZRn →∞}.
Then, using the conditioned Borel-Cantelli lemma,

{ZRn →∞} ⊆
{ ∞∑

n=1

P (An|Fn) < ∞
}

= lim inf
n→∞ Ac

n a.s.
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So, taking into account that An is equal to {|ZRn(k)ZR−1
n −pR

k | ≥ ε} on {ZRn →
∞}, one has that limn→∞ ZRn(k)ZR−1

n = pR
k a.s. on {ZRn → ∞}. The proof is

completed by applying the Toeplitz lemma.

To finish, we prove iii). This will be done by proving that

lim
n→∞

Fn+1

Fn+1 + MRn+1 + Mrn+1
= α a.s. (C.16)

on each of the sets A∞,0, A0,∞, and A∞,∞. Again, the Toeplitz lemma is used to

conclude the proof.

We shall prove (C.16) on A∞,0. The proof on A0,∞ is analagous. Taking into

account P3, and from one generation onwards (which depends on the realization of

the process), the offspring given by r couples is null on A∞,0. Then, recalling that

Fn = FRn + Frn, for n = 1, 2, . . .,

lim
n→∞

Fn+1

Fn+1 + MRn+1 + Mrn+1
= lim

n→∞

FRn+1

ZRn

FRn+1

ZRn
+ MRn+1

ZRn

=
αmR

αmR + (1− α)mR

= α a.s. on A∞,0.

To prove the result on A∞,∞, the relation between ZRn and Zrn must be taken

into account because, a.s. on A∞,∞,

lim
n→∞

Fn+1

Fn+1 + MRn+1 + Mrn+1
= lim

n→∞

FRn+1

ZRn

ZRn
Zrn

+ Frn+1

Zrn

FRn+1

ZRn

ZRn
Zrn

+ Frn+1

Zrn
+ MRn+1

ZRn

ZRn
Zrn

+ Mrn+1

Zrn

.

(C.17)

Then, as by hypothesis there exists limn→∞ ZRnZr−1
n a.s. on A∞,∞ (it could be

∞), one has:

a) If limn→∞ ZRnZr−1
n = 0 a.s. on A∞,∞, i.e., if {Zrn}n≥0 has a faster growth

than {ZRn}n≥0, taking into account P3 and P4, the right-hand side of (C.17)

is a.s. on A∞,∞ equal to

αmr

αmr + (1− α)mr
= α.

b) If limn→∞ ZrnZR−1
n = 0 a.s. on A∞,∞, i.e., if {ZRn}n≥0 has a faster growth

than {Zrn}n≥0, from P3 and P4 one obtains an analogous result to a).
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c) If limn→∞ ZRnZr−1
n = X a.s. on A∞,∞ with X a random variable, 0 < X <

∞, i.e., if both have a similar growth, from P3 and P4, the right hand of

(C.17) is a.s. on A∞,∞ equal to

αmRX + αmr

αmRX + αmr + (1− α)mRX + (1− α)mr
=

α(mRX + mr)
mRX + mr

= α.

Corollary C.2 The maximum likelihood estimators of mR and mr based on (ZN ,

FMN ) verify: asymptotic properties,

i) If P3 holds, then m̂R is strongly consistent for mR on A∞,∞ ∪A∞,0.

ii) If P4 holds, then m̂r is strongly consistent for mr on A∞,∞ ∪A0,∞.

Finally, we shall obtain some results on the asymptotic distribution of the derived

maximum likelihood estimators. Previously, we shall need to assume some working

hypotheses in order to develop these results.

H1. P (A∞,0) > 0, and there exist ρR > 1 and a random variable WR such that

{ρ−n
R ZRn}n≥0 converges to WR a.s. on A∞,0 and A∞,0 ⊆ {0 < WR < ∞} a.s.

H2. P (A0,∞) > 0 and there exists ρr > 1 and a r.v. Wr such that {ρ−n
r Zrn}n≥0

converges to Wr a.s. on A0,∞ and A0,∞ ⊆ {0 < Wr < ∞} a.s.

H2. P (A∞,∞) > 0, and there exist ρ∗R > 1 and a random variable W ∗
R such that

{ρ∗R−nZRn}n≥0 converges to W ∗
R a.s. on A∞,∞ and A∞,∞ ⊆ {0 < W ∗

R <

∞} a.s.

H4. P (A∞,∞) > 0 and there exist ρ∗r > 1 and a r.v. W ∗
r such that {ρ∗r−nZrn}n≥0

converges to W ∗
r a.s. on A∞,∞ and A∞,∞ ⊆ {0 < W ∗

r < ∞} a.s.

Remark C.3 Conditions which guarantee H1 and H2 have been studied in González

et al. (2008).

We shall denote PB(·) = P (·|B) for any set B, and write [x] to indicate the

greatest integer number less than or equal to x.

The maximum likelihood estimator of pR based on (ZN ,FMN ) verifies the fo-

llowing asymptotic properties.
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Theorem C.3 If P ′ is an absolutely continuous probability with respect to PD (P ′ ¿
PD) then, for any x ∈ R, the maximum likelihood estimator of pR

k , with k ∈ SR,

verifies that

lim
N→∞

P ′


(pR

k (1− pR
k ))−1/2

(
N∑

n=1

ZRn−1

)1/2

(p̂R
k − pR

k ) ≤ x


 = φ(x),

with φ(x) being the standard normal distribution function, and where

i) if H1 holds, D = A∞,0;

ii) if H2 holds D = A∞,∞.

Proof. Defining TR01 = FR01 + MR01, the following equality is verified in distri-

bution

p̂R
k =

∑N
n=1 ZRn−1(k)∑N

n=1 ZRn−1

=d
∑∑N

n=1 ZRn−1

i=1 I{TR0i=k}∑N
n=1 ZRn−1

,

(recall that IA is the indicator function of a set A). From this, one has, for all x ∈ R,

that

P ′


(pR

k (1− pR
k ))−1/2

(
N∑

n=1

ZRn−1

)1/2

(p̂R
k − pR

k ) ≤ x




= P ′


(pR

k (1− pR
k ))−1/2

(
N∑

n=1

ZRn−1

)−1/2
∑N

n=1 ZRn−1∑

i=1

(I{TR0i=k} − pR
k ) ≤ x


 .

First we shall deal with the proof of the result in the case i). Taking into account

that H1 holds and Cesaro’s lemma, one has that, as N →∞,

(ρR)−N
N∑

n=1

ZRn−1 → (ρR − 1)−1WR a.s. on A∞,0.

Thus to conclude it is sufficient to apply Theorem I in Dion (1974), with

aN = ρN
R , νN =

N∑

n=1

ZRn−1, Θ = (ρR − 1)−1WR

and, for 0 ≤ t ≤ 1,

YN (t, ω) =

(
pR

k (1− pR
k )

N∑

n=1

ZRn−1(ω)

)−1/2 [
∑N

n=1 ZRn−1(ω)t]∑

i=1

(I{TR0i=k}(ω)− pR
k ).

The proof in case ii) is analogous.
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Corollary C.3 If H1 and H2 hold, then, for any x ∈ R, the maximum likelihood

estimator of pR
k , with k ∈ SR, verifies that

lim
N→∞

P{ZRn→∞}


(pR

k (1− pR
k ))−1/2

(
N∑

n=1

ZRn−1

)1/2

(p̂R
k − pR

k ) ≤ x


 = φ(x),

with φ(x) being the standard normal distribution function.

Remark C.4 By Lemma 2.3 in Guttorp (1991), the probability P{ZRn→∞} in Co-

rollary C.3 can be replaced by P{ZRN−1>0}. Hence, taking into account i) in Propo-

sition C.2 and applying the Slutsky theorem, one obtains that if ZRN−1 > 0 then the

(1− γ)-level asymptotic confidence interval for pR
k is

p̂R
k ± zγ

√√√√p̂R
k (1− p̂R

k )

(
N∑

n=1

ZRn−1

)−1

,

where zγ satisfies φ(zγ) = 1− γ/2 with γ ∈ (0, 1), and φ(x) is the standard normal

distribution function.

Remark C.5 Analogous asymptotic distribution results to those related to p̂R
k , with

k ∈ SR, can be obtained for p̂r
l , with l ∈ Sr, using similar working hypotheses

to H1 and H2. Moreover, the asymptotic normality of the (suitably normalized)

estimators m̂R and m̂r can be established by following a similar reasoning to that

given in González et al. (2007). Also, asymptotic normality can be derived for α̂.
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Abstract

A Y-linked two-sex branching process with blind choice is a suitable model to
analyze the evolution of the number of carriers of two alleles of a Y-linked gene
in a two-sex monogamous population where each female chooses her partner
from among the male population without caring about his type (i.e., the allele
he carries). This work focuses on the development of Bayesian inference for
this model, considering a parametric framework with the reproduction laws
belonging to the power series family of distributions. A sample is considered
given by the observation of the total number of females and males (regardless
of their types) up to some generation as well as the number of each type of
male in the initial generation. Using a simulation method based on the Gibbs
sampler, we approximate the posterior distributions of the main parameters of
this model. Moreover, inference is also developed based on a second sample in
which, in addition to the information of the previous sample, the total number
of different types of males in the last generation is considered observable. The
accuracy of the procedures based on each of these samples is illustrated and
compared by way of a simulated example.

Keywords: Y-linked genes, two-sex branching processes, parametric Bayesian infe-

rence, power series family distributions, Gibbs sampler.

1 Introduction

The sex of humans and of the individuals of many other animal species is de-

termined by a pair of chromosomes, denominated X and Y, so that females carry

XX chromosomes and males XY chromosomes. There exist genes linked to the

X chromosome and others to the Y chromosome, the more numerous being the

X-linked. It has recently been discovered (see Wilson and Makova (2009)) that

the fast evolution of the Y-chromosome with respect to that of the X-chromosome

in Eutherian mammals (humans among them) has given rise to the loss of Y-

linked genes. Nevertheless, the latest Y-chromosome research are demonstrating

the usefulness of this chromosome for evolutionary studies (see for example the Web

page www.nature.com/nature/focus/ychromosome/#evolution and that of the Y-

Chromosome Consortium, http://ycc.biosci.arizona.edu/).
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Indeed, this chromosome has two unique properties, of being male-specific and

of having a non-recombining part which passes down largely unchanged from fathers

to sons, which make the study of paternal lineages possible (see for example Hurles

et al. (1998), Quintana-Murci et al. (2001), or Rosa et al. (2007)). Some other genes

and characteristics linked to the Y chromosome are given in González et al. (2009).

In recent years, two models have been presented which describe the evolution of

the number of carriers of a Y-linked gene in a two-sex monogamous population (see

González et al. (2006) and González et al. (2009)). These models provide the theo-

retical framework for describing the behaviour of a Y-linked gene which occurs in

the population in two allelic forms (one of them representing a certain characteristic

and the other representing its absence), giving rise to two types of males depending

on which allele they carry. Sexual reproduction is considered in these models inclu-

ding the interaction between females and males in producing offspring, and covering

different mating schemes in which females and males form couples under realistic

assumptions. Both models assume perfect fidelity mating (females choose only one

partner among males, if any), but in the one in González et al. (2006) the characters

controlled by the Y-linked gene can influence the mating process, with females pre-

ferring males carrying one of the alleles of the gene. This model is called Y-linked

two-sex branching process with preference. On the contrary, the model introduced

in González et al. (2009) assumes that the allelic form of the gene has no influence on

the mating process, i.e., females choose their mate without recognizing his genotype.

This is indeed normally the case in nature where most characters linked to the Y-

chromosome are not expressed in the male’s phenotype (see González et al. (2009)

for examples). This second model is called Y-linked two-sex branching process with

blind choice.

For both models, the fate of the gene in the population has been studied in depth,

and it has been proved that the extinction, coexistence, or fixation of such genotypes

depends on certain parameters of the models (see González et al. (2006), González

et al. (2009), González et al. (2008b) and Alsmeyer et al. (2011)). Those parameters

are usually unknown in real situations, so that they need to be estimated. Until now,

only two papers have been published on this topic, both of them for the model with

preference and with a frequentist outlook (see González et al. (2010a) and González

et al. (2010b)).

The focus of the present work is on the Y-linked two-sex branching process with

blind choice. For that model we consider Bayesian inference for its main parameters,
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in a parametric framework with reproduction laws belonging to the power series

family of distributions.

The first important question to deal with in approaching this problem is to deter-

mine the sample to be considered. Traditionally, Bayesian estimation in branching

process theory has been based on the observation of the complete family tree (see

Guttorp (1991)). Nevertheless, it is almost impossible to observe this sample scheme

in practice for the present model. Another possibility is that described in González

et al. (2010a) and González et al. (2010b) for the model with preference, in which a

sample scheme based on the observation of the total number of females and the total

number of males of each genotype in each generation was considered. Again howe-

ver, for the model with blind choice it is difficult to observe this sample because the

males’ phenotypes are indistinguishable. Therefore the most realistic sample scheme

we can consider is that given by the observation of the total number of females and

males in each generation without distinction of their genotype. It is also necessary,

however, to introduce sample information on the existence of the two types of allele

in the population. For this, we consider that the total number of each type of male in

the initial generation is also observable. Notice that the sample’s assumed observable

information is considerably less than the previous two sample schemes.

Based on this sample we approach the problem of developing the Bayesian infe-

rence for the main parameters of the model as an incomplete data estimation problem

and apply a Markov chain Monte-Carlo (MCMC) method in order to obtain the pos-

terior distributions of the parameters as well as predictive posterior distributions for

unobserved generations. Although this methodological approach has already been

used in the branching process context (see González et al. (2008a)), it has not be-

fore been applied to two-sex models (which are not particular cases of the multitype

Galton-Watson processes considered in González et al. (2008a)). Moreover, it is

more difficult to obtain the posterior distribution of the model parameters than was

the case in González et al. (2008a) because of the present sample’s relative paucity

of information and its non-Markovian structure.

To develop the method, we first apply the Gibbs sampler to the sample described

above, and evaluate the accuracy of the method by a simulated example. This initial

procedure is then improved in various steps, resulting in a method which allows one

to estimate the parameters with greater precision. Finally, we consider an alternative

(feasible) sample in which it is assumed that, as well as the information given by the

initial sample, the total number of the different types of males in the last generation
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is also observed. This sample leads to results that are as accurate as or even better

than those obtained in the final step of the previous method.

The procedures based on these two samples are illustrated by means of a si-

mulated example which is used as the leitmotiv in describing the evolution of the

proposed methods.

The rest of this communication is structured as follows. Section 2 provides a mat-

hematical description of the Y-linked two-sex branching process with blind choice.

Section 3 describes the parametric Bayesian context and the initial sample consi-

dered. Section 4 is devoted to the development of the method based on the initial

sample described above, using the Gibbs sampler to approximate the posterior distri-

butions of the main parameters of the model. In Section 5, we propose the alternative

sample with which we shall show that the introduction of just a little more informa-

tion improves or at least equals the inference that can be made based on the initial

sample. Finally, in Section 6, we provide some concluding remarks.

2 Description of the Model

The model considered here was introduced in González et al. (2009) to describe

the evolution of the number of carriers of a Y-linked gene in a two-sex monogamous

population. It is assumed that the gene occurs in two allelic forms, denoted as R

and r, where each of these forms means the absence of the other. Since the Y-

chromosome is haploid and specific to males, the population is formed by females

and two types of male denoted R- and r-males, depending on which allele they carry.

The other assumptions are sexual reproduction and monogamous (perfect fidelity)

mating, meaning that each individual mates with only one individual of the opposite

sex if available, forming a couple. There are thus two types of couples, denoted R-

and r-couples depending on whether the male is of type R or of type r. Following

the rules of genetic inheritance, an R-couple (r-couple) can only give birth to females

or R-males (r-males).

Assuming non-overlapping generations and given the number of R- and r-couples

in generation n, denoted by ZRn and Zrn, respectively, the number of females, males,

and couples of each genotype in the (n + 1)th generation is determined considering

two phases: reproduction and mating.

In the reproduction phase, couples of the nth generation produce offspring in-

dependently of each other and according to a certain reproduction law which is

the same for a given genotype although it may be different for different genotypes.

104



Paper D: Parametric inference. MCMC method

Moreover, these reproduction laws are independent of the generation the couples

belong to. Mathematically, the number of females and males stemming from each

type of couple is identified with the following independent sequences of independent,

identically distributed, non-negative and integer-valued bivariate random vectors

{(FRni,MRni), i = 1, 2, ...;n = 0, 1, ...} and {(Frnj , Mrnj), j = 1, 2, ...; n = 0, 1, ...},

where (FRni,MRni) and (Frnj , Mrnj) are, respectively, the number of females and

males stemming from the ith R-couple and the jth r-couple of generation n. The

probability distributions of these random vectors are given by the following scheme:

An R-couple (r-couple) generates k ≥ 0 (l ≥ 0) individuals with probability pR
k

(pr
l ). Now, each of these individuals could be female with probability α or male

with probability (1 − α), independently of the sex of any other offspring. The pro-

bability distributions {pR
k }k≥0 and {pr

l }l≥0 are called reproduction laws or offspring

distributions. It is assumed that these reproduction laws have finite means (denoted

by mR and mr, respectively) and variances. Furthermore, it is considered that α

is the same for both genotypes, i.e., the gene has no influence on sex designation.

As a consequence of this reproduction scheme, it is easy to obtain that the average

numbers of females and males generated by an R-couple are αmR and (1 − α)mR,

respectively, while the respective values for an r-couple are αmr and (1− α)mr.

At the end of the reproduction phase, one has the total numbers of females, and

R- and r-males denoted by Fn+1, MRn+1, and Mrn+1 respectively, which together

constitute the (n + 1)th generation. Specifically, we obtain such variables by means

of

Fn+1 =
ZRn∑

i=1

FRni +
Zrn∑

j=1

Frnj , MRn+1 =
ZRn∑

i=1

MRni and Mrn+1 =
Zrn∑

j=1

Mrnj ,

with the empty sum defined as 0.

In the mating phase, the number of couples of each genotype in the (n + 1)th

generation is determined, given the total numbers of females, R-males, and r-males

in this generation, Fn+1, MRn+1, and Mrn+1. As perfect fidelity mating is assumed,

if the total number of females is greater than or equal to the total number of males

then every male finds a mate in the female population resulting in ZRn+1 = MRn+1

couples of type R and Zrn+1 = Mrn+1 couples of type r. However, as it is assumed

that the genotype has no impact on the mating mechanism, if the total number

of males exceeds the total number of females, then each female picks a male at

random without regard for his genotype (blind choice) from the total number of
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Mn+1 = MRn+1 + Mrn+1 males. As a consequence, the total number of R-couples

in the (n + 1)th generation follows a hypergeometric distribution with parameters

Fn+1, Mn+1, and MRn+1, while the total number of r-couples in this generation

equals the number of remaining females, i.e., Zrn+1 = Fn+1 − ZRn+1. Notice that,

by symmetry of the model, the law of Zrn+1 is also hypergeometric, the parameters

being Fn+1, Mn+1, and Mrn+1.

The bivariate sequence {(ZRn, Zrn)}n≥0 describing the evolution of the number

of couples of each genotype over generations is called a Y-linked two-sex branching

process with blind choice. From the definition of the model, the number of couples

of each genotype in the next generation depends only on the current number of

couples, and not on the number of ancestors that belonged to past generations.

Moreover, since each reproduction law remains the same over the generations, the

transitions from one generation to another are homogeneous, i.e., they do not depend

on the generation. The process {(ZRn, Zrn)}n≥0 is therefore a homogeneous two-

type Markov chain.

3 Parametric Bayesian Inference

In Alsmeyer et al. (2011) and González et al. (2009), it was proved that the

parameters (α, mR,mr) are the key to determining the fixation of one genotype

or the coexistence of both, the limiting growth rates in the survival set, and the

limiting sex ratios of the model. For that reason, it is of interest to estimate these

parameters. To this end, we focus on a parametric context. Specifically, we consider

that the reproduction laws belong to the power series family of distributions, i.e.,

pR
k = aR

k θk
R(AR(θR))−1 and pr

l = ar
l θ

l
r(Ar(θr))−1, for all k, l ≥ 0, (D.1)

where {aR
k }k≥0 and {ar

l }l≥0 are known non-negative sequences, AR(θR)=
∑∞

k=0 aR
k θk

R

and Ar(θr) =
∑∞

l=0 ar
l θ

l
r, with aR

k θk
R ≥ 0 and ar

l θ
l
r ≥ 0, for all k, l ≥ 0 and θR

and θr belong, respectively, to the sets ΘR = {θR ∈ R : 0 < AR(θR) < ∞} and

Θr = {θr ∈ R : 0 < Ar(θr) < ∞}.
Hence, in this framework, the reproduction laws pR = {pR

k }k≥0 and pr = {pr
l }l≥0

are determined by the parameters θR and θr, respectively. For the power series

family of distributions, it is well known that the reproduction means depend on the

parameters θR and θr in accordance with the expressions

mR = θR
d

dθR
log AR(θR) and mr = θr

d

dθr
log Ar(θr). (D.2)
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The power series is an exponential family that includes most of the usual distri-

butions used in practice in the branching context (e.g., Poisson, geometric, binomial,

negative binomial,...).

Moreover, since we deal with this inference problem from a Bayesian perspective,

our goal is mainly to determine the posterior distribution of the parameters given

the observation of certain information about the population.

Traditionally, Bayesian estimation in the branching processes field has conside-

red the observation of the complete family tree or, at least, of the total number of

each type of individual of the population up to some generation (see e.g., Guttorp

(1991), Molina et al. (2008) and Molina et al. (2012)). Nevertheless, in the present

model this would be difficult to put into practice since the two genotypes have the

same phenotype, so that males would only be distinguishable by means of laboratory

genetic techniques. In this sense, we consider the problem of determining the mini-

mum quantity of information which is feasibly observable over time (or generation

by generation) in order to make inferences about the parameters of the model which

would allows them to be estimated with precision.

Initially, in the population one can observe individuals (distinguishing between

females and males) or couples. Given the perfect fidelity mating, the total number

of couples is determined unequivocally by the total number of females and males in

each generation. It is thus sufficient to observe these last two numbers.

However, only observing the total number of couples in each generation would

not determine the total number of females and males in the population, and would

therefore not provide sufficient information about the sex ratio.

In conclusion, the initial sample that we consider reasonable to observe is that

determined by the total number of females and males in each generation until some

generation N . Moreover, in order to obtain information about the presence of the

two alleles in the population, we assume that the initial number of R- and r-males

is observed (this information could be obtained by laboratory genetic techniques).

Therefore, we consider the sample (for N > 0)

FMN = {F0,MR0,Mr0, FM1, ..., FMN},

where FMn = (Fn,Mn), n = 1, ..., N , is the vector given by the total number of

females and males in generation n.

As noted above, we deal with this inference problem from a Bayesian perspective,

i.e., writing Θ = (α, θR, θr), we mainly want to determine the posterior distribution

of Θ given the sample FMN , denoted by Θ|FMN .
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4 Gibbs Sampler to Approximate the Posterior Distri-
butions

It is not possible to determine the posterior distribution Θ|FMN in a closed

form since the branching structure is not observed. Nevertheless, this distribution

could be determined if one knew the total number of the different types of couple in

each generation and the total number of offspring (females and males) generated by

each type of couple, i.e., respectively,

ZRrN = {ZRr0, ..., ZRrN} and FMRrN = {FMRr1, ..., FMRrN},

with ZRrk = (ZRk, Zrk), k = 0, ..., N , and FMRrn = (FRn,MRn, F rn,Mrn), FRn

and Frn being the total number of females in generation n stemming, respectively,

from R- and r-couples, i.e.

FRn =
ZRn−1∑

i=1

FRn−1i and Frn =
Zrn−1∑

j=1

Frn−1j .

Although we are assuming that this information is unknown, it can be simulated

so that the vector (FMRrN ,ZRrN ) can be considered to be a latent vector, and

the posterior distribution

(Θ,FMRrN ,ZRrN )|FMN

can then be determined by applying an MCMC method such as the Gibbs sampler.

To this end, it is necessary to determine the conditional posterior distributions

Θ|(FMN ,FMRrN ,ZRrN ),

ZRr0|(FMN ,FMRrN ,ZRrN(−0), Θ),

and, for n = 1, ..., N ,

(FMRrn, ZRrn)|(FMN ,FMRrN(−n),ZRrN(−n), Θ),

where FMRrN(−n), for n = 1, ..., N , denotes the number of females and males given

by each type of couple in every generation except those belonging to generation n,

and ZRrN(−k), for k = 0, ..., N , denotes the total number of each type of couple in

each generation except those belonging to generation k, i.e.,

FMRrN(−1) ={FMRr2, ..., FMRrN},
FMRrN(−n) ={FMRr1, ..., FMRrn−1, FMRrn+1, ..., FMRrN}, n = 2, ..., N − 1,

FMRrN(−N) ={FMRr1, ..., FMRrN−1},
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and

ZRrN(−0) ={ZRr1, ..., ZRrN},
ZRrN(−k) ={ZRr0, ..., ZRrk−1, ZRrk+1, ..., ZRrN}, k = 1, ..., N − 1,

ZRrN(−N) ={ZRr0, ..., ZRrN−1}.

Once one has obtained (Θ,FMRrN ,ZRrN )|FMN , its marginal distribution

Θ|FMN can be derived. Moreover, from that distribution and using (D.2), one may

make inferences on the reproduction means (mR, mr), obtaining (mR,mr)|FMN .

Also, the predictive posterior distributions (FN+s,MRN+s,MrN+s)|FMN and

(ZRN+s, ZrN+s)|FMN can be approximated for any s > 0.

4.1 Posterior distribution of the parameters conditioned on the
sample and the latent vectors

We begin determining the posterior distribution of Θ given FMN , FMRrN ,

and ZRrN . First, it is not hard to obtain that the likelihood function verifies

f((FMN ,FMRrN ,ZRrN )|Θ)

∝
N−1∏

n=0

αFn+1(1− α)Mn+1θ
FRn+1+MRn+1

R (AR(θR))−ZRnθFrn+1+Mrn+1
r (Ar(θr))−Zrn

(D.3)

Notice that the information on the initial generation, i.e., (F0,MR0,Mr0), takes

no part in the expression (D.3). This is because we have initially considered that

(F0, MR0,Mr0) is fixed, not random. However, if these initial values were random

then they would have to appear in the likelihood function.

A conjugate class of prior distributions flexible enough to describe different prior

beliefs for α, θR, and θr are, respectively,

f(α) ∝ αβ1(1−α)β2 , f(θR) ∝ θ
βR
1

R (AR(θR))−βR
2 and f(θr) ∝ θ

βr
1

r (Ar(θr))−βr
2 , (D.4)

with βi, β
R
i , βr

i > 0, i = 1, 2. Thus, α has a beta distribution with parameters

(β1 +1, β2 +1), and the distributions of θR and θr depend on the power series family

of the reproduction laws. Since couples reproduce independently, and the assignment

of sex is also independent, one may consider that

f(Θ) ∝ αβ1(1− α)β2θ
βR
1

R (AR(θR))−βR
2 θ

βr
1

r (Ar(θr))−βr
2 . (D.5)
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From (D.3) and (D.5), it follows that the posterior distribution of Θ given (FMN ,

FMRrN , ZRrN ) is

f(Θ|(FMN ,FMRrN ,ZRrN )) = f(α|(FMN ,FMRrN ,ZRrN ))

f(θR|(FMN ,FMRrN ,ZRrN ))

f(θr|(FMN ,FMRrN ,ZRrN )),

with

f(α|(FMN ,FMRrN ,ZRrN )) ∝ αβ1+
∑N

n=1 Fn(1− α)β2+
∑N

n=1 Mn , (D.6)

i.e., the beta distribution with parameters (β1 + 1 +
∑N

n=1 Fn, β2 + 1 +
∑N

n=1 Mn),

f(θR|(FMN ,FMRrN ,ZRrN )) ∝ θ
βR
1 +

∑N
n=1(FRn+MRn)

R (AR(θR))−βR
2 −

∑N−1
n=0 ZRn

(D.7)

and

f(θr|(FMN ,FMRrN ,ZRrN )) ∝ θ
βr
1+

∑N
n=1(Frn+Mrn)

r (Ar(θr))−βr
2−

∑N−1
n=0 Zrn .

(D.8)

Computationally therefore, to sample from Θ|(FMN ,FMRrN ,ZRrN ), it is

enough to sample independently from α|(FMN ,FMRrN , ZRrN ), θR|(FMN ,

FMRrN , ZRrN ), and θr|(FMN ,FMRrN ,ZRrN ).

Notice that α|(FMN ,FMRrN ,ZRrN ) only depends on FMN through the

total number of females and males given in all generations, whereas θR|(FMN ,

FMRrN ,ZRrN ) and θr|(FMN ,FMRrN ,ZRrN ) depend on both FMN and

(FMRrN , ZRrN ) through the total number of progenitors of each type and the

total number of their descendants in all generations.

Notice also that, although for the last generation we take ZRrN to be a latent

vector, this vector is not needed to determine the above posterior distributions.

However, this vector is included because knowledge of how it is distributed will be

useful to predict the total number of individuals in future generations.

4.2 Posterior distribution of the latent vectors of each generation
conditioned on the sample, the parameters, and the rest of the
generations of latent vectors

In this section we deal with the posterior distributions

ZRr0|(FMN ,FMRrN ,ZRrN(−0),Θ) (D.9)
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and

(FMRrn, ZRrn)|(FMN ,FMRrN(−n),ZRrN(−n), Θ), n = 1, ..., N. (D.10)

We consider first the distribution of ZRr0, assuming that we know the initial

sample FMN and the future generations, i.e., (FMRrn, ZRrn), n = 1, ..., N .

Let fmRr0 = (f0,mR0,mr0) and fmn = (fn,mn), for n = 1, ..., N , be non-

negative integer vectors, and then define the sets

AfmRr0 = {F0 = f0,MR0 = mR0,Mr0 = mr0},
Afmn = {FMn = fmn} = {Fn = fn,Mn = mn}, n = 1, ..., N,

AfmN
= AfmRr0 ∩

N⋂

n=1

Afmn .

Consider also the sequences of non-negative integer vectors for n = 1, ..., N and

k = 0, ..., N

fmRrn = (fRn,mRn, frn,mrn) and zRrk = (zRk, zrk), (D.11)

and the sets

AfmRrn = {FMRrn = fmRrn}
= {FRn = fRn, MRn = mRn, F rn = frn,Mrn = mrn},

AzRrk
= {ZRrk = zRrk} = {ZRk = zRk, Zrk = zrk},

AfmRrN
=

N⋂

n=1

AfmRrn .

Moreover, for n = 1, ..., N , and for k = 0, ..., N , define the sets

AfmRrN(−n)
= {FMRrN(−n) = (fmRr1, ..., fmRrn−1, fmRrn+1, ..., fmRrN )},

AzRrN(−k)
= {ZRrN(−k) = (zRr1, ..., zRrk−1, zRrk+1, ..., zRrN )}.

Then to obtain (D.9) one has to determine the following probability, for certain θ in

[0, 1]×ΘR ×Θr,

P (AzRr0 |AfmN
, AfmRrN

, AzRrN(−0)
, Θ = θ).

For simplicity, henceforward we shall write P (·|Θ = θ) = P (·). Applying the multi-

plication rule and the Markov property recursively, the above probability is propor-

tional to

P (AzRr0 |AfmRr0)P (AfmRr1 |AzRr0). (D.12)
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To calculate the probability

P (AzRr0 |AfmRr0), (D.13)

one has to take into account the definition of the model. In particular, if mR0+mr0 ≤
f0 then that probability is equal to 1 if zR0 = mR0 and zr0 = mr0, and to 0

otherwise. If, however, f0 < mR0 + mr0 then (D.13) is the probability that the

hypergeometric distribution with parameters (f0,mR0 + mr0,mR0) takes the value

zR0 if zR0 is between max{0, f0 −mr0} and min{f0, mR0}; or 0 otherwise.

Taking into account the binomial scheme in the sex designation, the definition

of the probability laws (see (D.1)), and that couples reproduce independently, one

obtains that the second probability in (D.12) is

P (AfmRr1 |AzRr0) = P (FR1 + MR1 = fR1 + mR1|ZR0 = zR0)

P (FR1 = fR1|FR1 + MR1 = fR1 + mR1)

P (Fr1 + Mr1 = fr1 + mr1|Zr0 = zr0)

P (Fr1 = fr1|Fr1 + Mr1 = fr1 + mr1)

∝ αfR1+fr1(1− α)mR1+mr1θfR1+mR1

R

A(θR)−zR0θfr1+mr1
r A(θr)−zr0 . (D.14)

Now, for each n = 1, ..., N−1, we shall deal with the calculation of the distribution

(FMRrn, ZRrn)|(FMN ,FMRrN(−n),ZRrN(−n), Θ),

i.e., we shall find the distribution of (FMRrn, ZRrn) assuming that the initial sam-

ple, FMN , the past generations, ZRr0 and (FMRri, ZRri), i = 1, ..., n− 1, and the

future generations, (FMRrj , ZRrj), j = n+1, ..., N −1, are known. Notice that the

case n = N is special. We shall deal with it after this one. We now have to obtain

the probability

P (AfmRrn , AzRrn |AfmN
, AfmRrN(−n)

, AzRrN(−n)
).

Applying again the multiplication rule and the Markov property recursively, the

above probability is proportional to

P (AfmRrn |AzRrn−1)P (Afmn |AfmRrn)P (AzRrn |AfmRrn)P (AfmRrn+1 |AzRrn).

The probabilities P (AfmRrn |AzRrn−1) and P (AfmRrn+1 |AzRrn) are calculated in

the same manner as (D.14) by considering the vectors (fRn,mRn, zRn−1, frn,mrn,

zrn−1) and (fRn+1,mRn+1, zRn, frn+1, mrn+1, zrn), respectively.
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Obviously,

P (Afmn |AfmRrn) =
{

1, if fn = fRn + frn and mn = mRn + mrn

0, otherwise.
(D.15)

One can calculate

P (AzRrn |AfmRrn) (D.16)

analogously to (D.13) taking into account that the probability depends on (fRn, frn)

through fRn + frn.

Finally, for n = N , one has to obtain the distribution

(FMRrN , ZRrN )|(FMN ,FMRrN(−N),ZRrN(−N), Θ),

i.e., the distribution of (FMRrN , ZRrN ) knowing the initial sample, FMN , and the

past generations, FMRrn, n = 1, ..., N − 1, and ZRrk, k = 0, ..., N − 1. For that,

one needs to determine P (AfmRrN
, AzRrN

|AfmN
, AfmRrN(−N)

, AzRrN(−N)
). Applying

again the multiplication rule and the Markov property recursively, the above proba-

bility is proportional to P (AfmRrN
|AzRrN−1

)P (AfmN
|AfmRrN

)P (AzRrN
|AfmRrN

).

Each of these probabilities can be calculated analogously to (D.14), (D.15), and

(D.16), respectively.

Remark D.1

i) Other approaches to the problem of estimating parameters based on incom-

plete sample data have been made in the context of branching processes (see

e.g., González et al. (2008a) from a Bayesian perspective, and González et al.

(2010a) and González et al. (2010b) based on the EM algorithm). An essen-

tial difference with the present case is that in those works it was possible to

construct the latent vectors generation by generation in an independent way.

This is impossible in the present case since the distributions depend on past and

future observations (see, for example, the probability given by (D.12)). This is

due to the fact that the sample, FMN , is not Markovian.

ii) Notice that in each step we have grouped, for n = 1, ..., N , the variables

(FMRrn, ZRrn) instead of (ZRrn−1, FMRrn). This is for computational

simplicity. The other approach is also possible.
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4.3 The development of the method

With knowledge of the posterior distributions

Θ|(FMN ,FMRrN ,ZRrN ),

ZRr0|(FMN ,FMRrN ,ZRrN(−0), Θ),

and

(FMRrn, ZRrn)|(FMN ,FMRrN(−n),ZRrN(−n), Θ), n = 1, ...N,

the next step is to develop the algorithm based on the Gibbs sampler to generate a

sample from

(Θ,FMRrN ,ZRrN )|FMN .

Given the sample FMN and the parameters of the prior distribution, βi, β
R
i , βr

i , i =

1, 2, the Gibbs sampler algorithm works as follows:

Fixed (Θ(0),FMRr
(0)
N ,ZRr

(0)
N )

Do t = 1

Generate ZRr
(t)
0 from ZRr0|(FMN ,FMRr

(t−1)
N ,ZRr

(t−1)
N(−0), Θ

(t−1))

with ZRr
(t−1)
N(−0) = (ZRr

(t−1)
1 , ..., ZRr

(t−1)
N )

For n = 1, ..., N , generate (FMRr
(t)
n , ZRr

(t)
n ) from

(FMRrn, ZRrn)|(FMN ,FMRr
(t)
N(−n),ZRr

(t)
N(−n), Θ

(t−1)),

with FMRr
(t)
N(−n) = (FMRr

(t)
1 , ..., FMRr

(t)
n−1, FMRr

(t−1)
n+1 , ..., FMRr

(t−1)
N )

and ZRr
(t)
N(−n) = (ZRr

(t)
0 , ..., ZRr

(t)
n−1, ZRr

(t−1)
n+1 , ..., ZRr

(t−1)
N )

Generate Θ(t) from Θ|(FMN ,FMRr
(t)
N ,ZRr

(t)
N )

Do t = t + 1

The algorithm starts by simulating (FMRr
(0)
N ,ZRr

(0)
N ) subject to the constraints

given by the observed sample, FMN , and by sampling Θ(0) from the independent

prior distributions given in (D.4) with parameters βi, β
R
i , βr

i , i = 1, 2. Since none of

these parameters are null, from the properties of the power series family of distribu-

tions one deduces that the sequence

{Θ(t),FMRr
(t)
N ,ZRr

(t)
N }t≥0 (D.17)

comprises an ergodic Markov chain, and the stationary distribution of that Markov

chain is just the sought-after joint distribution (Θ,FMRrN ,ZRrN )|FMN . Various

practical implementation issues must be taken into account for there to be success
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with the sample obtained by the above method. Common approaches to reaching

the equilibrium distribution and to reducing autocorrelation in the sample are to

choose a sufficient burn-in period, L, and to thin the output by storing every Gth

value after the burn-in period (G is known as the batch size). Thus, for a run of the

sequence in (D.17), we choose Q + 1 vectors in the form

{(Θ(L+kG),FMRr
(L+kG)
N ,ZRr

(L+kG)
N ), k = 0, ..., Q}. (D.18)

The vectors Θ(L+kG), k = 0, ..., Q, are approximately independent sampled vectors

of the distribution Θ|FMN if G and L are large enough (see Tierney (1994)). Since

these vectors could be affected by the initial state (Θ(0),FMRr
(0)
N ,ZRr

(0)
N ), the

algorithm is applied T times, yielding a final sample of length T (Q + 1).

To determine L,G, and T in practice, we make use of the Gelman-Rubin-Brooks

methodological approach and autocorrelation diagnostics (see Brooks and Gelman

(1998) and Gelman and Rubin (1992)). We calculate the potential scale reduction

factor (Rc) for each parameter and obtain the Gelman plots. To be able to conclude

that our chain converges, Rc should be close to 1. The plots show whether the Rc is

fluctuating around 1 or from which iteration onwards it has converged to 1. If it has

converged, this iteration indicates the value of the burn-in L that will be sufficient

to consider. We also calculate all the parameters’ autocorrelation coefficients which

show that we are able to thin the output by taking every Gth value in order to obtain

independent observations.

Finally, sampling from the distribution Θ|FMN and taking into account the re-

lationship between (θR, θr) and (mR, mr) given in (D.2), we can also sample from

the posterior distribution (mR,mr)|FMN . Then, using the model parameters and

the number of couples in generation N given in the resulting final sample, we can

apply the definition of the model and approximate the predictive posterior distri-

butions (FN+s,MRN+s,MrN+s)|FMN and (ZRN+s, ZrN+s)|FMN for any s > 0,

thus simulating s generations of a Y-linked two-sex branching process with blind

choice.

4.4 Simulation study

We shall now describe the application of the above algorithm to simulated data.

We consider a process with an R-type reproduction law following a Poisson distri-

bution of parameter λR > 0 and an r-type reproduction law following a geometric
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distribution of parameter pr ∈ (0, 1):

pR
k = e−λR

λk
R

k!
and pr

l = pr(1− pr)l, for all k, l ≥ 0.

These distributions belong to the power series family of distributions, and are com-

monly used to model offspring distribution in a branching framework (see, for exam-

ple, Farrington et al. (2003) and Guttorp (1991)). Therefore, according to the ex-

pressions (D.1) and (D.2), one has

θR = λR = mR; A(θR) = eλR ; θr = 1− pr; mr = (1− θr)−1θr and A(θr) = p−1
r .

Then, from Equation (D.4), the prior distributions of θR and θr are

f(θR) ∝ θ
βR
1

R e−θRβR
2 and f(θr) ∝ θ

βr
1

r (1− θr)βr
2 ,

i.e., a gamma distribution with parameters (βR
1 + 1, βR

2 ) and a beta distribution

with parameters (βr
1 + 1, βr

2 + 1), respectively. Taking into account Equations (D.7)

and (D.8), the posterior distributions of θR and θr given (FMN ,FMRrN ,ZRrN )

follow, respectively, a gamma distribution with parameters (βR
1 + 1 +

∑N
n=1(FRn +

MRn), βR
2 +

∑N−1
n=0 ZRn) and a beta distribution with parameters (βr

1+1+
∑N

n=1(Frn

+Mrn), βr
2 + 1 +

∑N−1
n=0 Zrn).

Now, dealing with the latent vectors ZRr0 and (FMRrn, ZRrn), n = 1, ..., N ,

one needs to determine the distributions in (D.9) and (D.10). In our parametric

framework, it is enough to determine the probabilities in (D.13)-(D.16). As (D.13),

(D.15), and (D.16) do not depend on Θ, and are clearly determined, we shall focus

on the probability given by (D.14):

P (AfmRr1 |AzRr0) ∝ αfR1+fr1(1−α)mR1+mr1λfR1+mR1

R e−zR0λR(1− pr)fr1+mr1p−zr0
r ,

i.e., P (AfmRr1 |AzRr0) is proportional to the product of the probability that the

binomial distribution with parameters (fR1 + fr1 + mR1 + mr1, α) takes the value

fR1 +fr1, the Poisson distribution of parameter zR0λR takes the value fR1 +mR1,

and the negative binomial distribution with parameters (zr0, pr) takes the value

fr1 + mr1.

As illustration, we fix α = 0.48 since in the majority of populations the sex-ratio

is different from 0.5 (although it is close to it), and the analysis of the evolution of Y-

linked genes turns out to be more interesting when α < 0.5 (see Alsmeyer et al. (2011)

and González et al. (2009)). Moreover, in order to illustrate the possible difference

between the reproductive capacities of couples of each type that might exist in nature,
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n 1 2 3 4 5 6
F 13 20 16 34 35 67
M 15 15 17 27 47 82

Table D.1: Simulated data.

we took λR = 4.1 and pr = 0.3125, and therefore mR = 4.1 > mr = 2.2. Notice

that we chose very different values of the parameters to reflect a clear difference in

the reproductive capacity of each genotype. Due to the relationship between pr and

mr, henceforward we shall focus on the parameters (α,mR,mr). Since α < 0.5 and

min{αmR, αmr} > 1, there is a positive probability of simultaneous survival of both

alleles over the course of the generations, as can be seen in Alsmeyer et al. (2011)

and González et al. (2009). We also took as initial information

(F0,MR0,Mr0) = (8, 2, 3). (D.19)

With all these values, we simulated 6 generations of a Y-linked two-sex branching

process with blind choice. The total numbers of females and males obtained are given

in Table D.1. We would emphasize here how small is the amount of information that

this sample represents in order to make inferences about the parameters.

We implemented the method given in the previous section considering that FM6

is formed by (D.19) and by the information given in Table D.1. Assuming that

there is no prior information available about the parameters, we took (β1, β2) =

(βr
1, β

r
2) = (−0.5,−0.5) and (βR

1 , βR
2 ) = (−0.5, 0.01), as suggested in Berger and

Bernardo (1992).

To avoid the initial state affecting the method, we simulated T = 50 chains

formed by 40 000 iterations of the method, and applied the Gelman-Rubin-Brooks

method in order to assess convergence. Table D.2 contains the value of Rc for each

parameter as well as a 97.5% upper confidence bound. As Rc is close to unity,

and the Gelman plots are stable from iteration 20 000 onwards (see Figure D.1), we

decided to set a burn-in of L = 20 000. The convergence for the parameter α is

faster than for the other parameters. Indeed, a burn-in of only 5 000 would have

been enough. Nevertheless, we decided to take the same sample for all parameters

instead of calculating the effective size for each one separately. Table D.2 also lists the

autocorrelation coefficients for α, mR, and mr for iterations 20 000−40 000 and shows

that the output could be thinned by taking every 500th value (G = 500), obtaining

a final sample of size 2 000. To evaluate the algorithm’s efficiency, Table D.3 gives
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Rc Autocorrelations
Est. 97.5% lag 100 lag 300 lag 500

α 1 1 -0.00185 0.00063 -0.00162
mR 1.01 1.02 0.58258 0.34231 0.19562
mr 1 1.01 0.25636 0.12849 0.06613

Table D.2: Rc and autocorrelations for α, mR, and mr.

MEAN SD CV MCSE TSSE
α 0.47733 0.02512 0.05263 0.00056 0.00053

mR 2.60810 1.47396 0.56515 0.03296 0.03836
mr 3.31185 0.72738 0.21963 0.01626 0.01568

Table D.3: Summary statistics for the posterior distributions of α, mR, and mr given
FM6.

some summary statistics for the posterior distribution of α, mR, and mr. Note that,

due to the batch procedure, the time-series standard errors (TSSE) are very close to

the Monte Carlo standard errors (MCSE). Also, in all cases, the standard errors are

less than 5% of the posterior standard deviation (SD), indicative that the number

of observations considered seems to be a reasonable choice.

Figure D.2 shows the posterior distribution α|FM6, together with the 95% high

posterior density (HPD) credible set and the true value of the parameter. Figure D.3

shows the joint posterior distribution (mR,mr)|FM6 (contour plot) and its marginal

distributions, together with the 95% HPD sets and the true values of mR (solid

line) and mr (dash-dotted line). We would emphasize here that, to approximate the

posterior distribution α|FM6, one only needs to observe the total number of females
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Figure D.1: Gelman-Rubin-Brooks diagnostic plots for α (left), mR (centre), and
mr (right).
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Figure D.2: Approximate posterior distribution α|FM6.
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Figure D.3: Contour plot of (mR,mr)|FM6 (left), together with the approximate
marginal posterior distributions mR|FM6 (centre) and mr|FM6 (right).

and males over the course of the generations. The information about the parameter

α provided by its posterior distribution is very accurate. However, to approximate

the posterior distribution (mR,mr)|FM6, the latent vectors (FMRr6,ZRr6) play

an essential role. Focusing on Figure D.3, one observes that the posterior distribution

(mR,mr)|FM6 does not seem to provide sufficiently good information about those

parameters.

4.5 Modifications to the method

From the above example, one deduces that the posterior distributions given

FMN provide very good information about α, but are unable to provide accurate

enough information in order to estimate the parameters (mR,mr). For this reason,

we shall study (mR,mr)|FMN in greater depth, and make some modifications to

the foregoing method in order to improve it.

119



Part IV: Bayesian estimation

mR

m
r

 50 

 100 

 150 

 200 

 250 

 300 
 350 

 400  450  500 

 550 

 600 

 650  650 
 700 

 700 

 750 

 7
50

 

 8
00

 

 8
50

 

0 1 2 3 4 5 6

1
2

3
4

5
6

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

mRhpd 95% hpd 95%mr

0 1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

mr hpd 95% hpd 95%mR

Figure D.4: Contour plot of (mR, mr)|(FM6,MR6 = 0,Mr6 > 0) (left), together
with the approximate marginal posterior distributions mR|(FM6,MR6 = 0,Mr6 >
0) (centre) and mr|(FM6, MR6 = 0,Mr6 > 0) (right).

First, we decompose that posterior distribution into the following convex linear

combination:

(mR,mr)|(FMN ,MRN > 0,MrN > 0)P (MRN > 0,MrN > 0|FMN )

+ (mR,mr)|(FMN ,MRN > 0,MrN = 0)P (MRN > 0,MrN = 0|FMN )

+ (mR,mr)|(FMN ,MRN = 0,MrN > 0)P (MRN = 0,MrN > 0|FMN )

+ (mR,mr)|(FMN ,MRN = 0,MrN = 0)P (MRN = 0,MrN = 0|FMN ).

In our example, we obtained

P (MR6 > 0, Mr6 = 0|FM6) ≈ 0.04744,

P (MR6 = 0, Mr6 > 0|FM6) ≈ 0.42028,

P (MR6 > 0, Mr6 > 0|FM6) ≈ 0.53228.

Obviously P (MR6 = 0,Mr6 = 0|FM6) = 0 because M6 > 0.

Given the above probabilities, we shall focus on the posterior distributions

(mR,mr)|(FM6,MR6 = 0,Mr6 > 0) and (mR, mr)|(FM6,MR6 > 0,Mr6 > 0).

Figure D.4 shows the joint posterior distribution (mR,mr)|(FM6, MR6 = 0,Mr6

> 0) (contour plot), its marginal distributions, the 95% HPD sets, and the true values

of mR (solid line) and mr (dash-dotted line). One observes that neither histogram

provides accurate information about the parameters. Indeed, the true value of each

parameter lies outside the HPD credible set in the corresponding histogram. In the

contour plot, one observes also that the true value of the parameter vector is in a

region of almost null estimated probability. This could be because we are considering
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Figure D.5: Contour plot of (mR,mr)|(FM6,MR6 > 0,Mr6 > 0) (left), together
with the approximate marginal posterior distributions mR|(FM6,MR6 > 0,Mr6 >
0) (centre) and mr|(FM6,MR6 > 0,Mr6 > 0) (right).

the event {MR6 = 0,Mr6 > 0} in which the R genotype has become extinct. In

general in branching process theory, estimation with an extinction event is very poor

in the sense that insufficient information is provided about the parameters (see, for

example, Farrington et al. (2003), Guttorp (1991), and Mendoza and Gutiérrez-Peña

(2000)). Therefore, we consider that it is better to focus on the posterior distribution

(mR,mr)|(FMN , MRN > 0,MrN > 0) because events in which both genotypes

survive provide information about both parameters. Moreover, computationally, the

method in this case is faster than the general method based only on the observation

of FMN since the number of feasible states for the latent vectors is reduced.

Figure D.5 shows the approximate posterior distributions mR|(FM6,MR6 >

0,Mr6 > 0) and mr|(FM6,MR6 > 0,Mr6 > 0) together with the corresponding

contour plot. In this case, the HPD sets of both histograms contain the true value

of the respective parameter. However, they also contain the true value of the other

parameter and the histogram corresponding to mr does not estimate the parameter

with sufficient precision. As one observes in the right half of Table D.4, the estimated

mean values of mR and mr are very close to each other, reflecting the lack of precision

of the method. This lack of precision can also be appreciated in the kernel estimates

(mR,mr)|(FM6,MR6 = 0,Mr6 > 0) (mR,mr)|(FM6,MR6 > 0,Mr6 > 0)
SIZE MEAN SD CV SIZE MEAN SD CV

mR 811 1.18237 0.94060 0.79552 1091 3.54471 0.87169 0.24591
mr 811 3.61377 0.38850 0.10751 1091 3.20177 0.77666 0.24257

Table D.4: Summary statistics for the posterior distributions of mR and mr given
(FM6,MR6 = 0,Mr6 > 0) (left) and (FM6,MR6 > 0,Mr6 > 0) (right).

121



Part IV: Bayesian estimation

1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

D
en

si
ty

mRmr

Figure D.6: Kernel estimates of the posterior densities of mR|(FM6,MR6 >
0,Mr6 > 0) (solid line) and mr|(FM6,MR6 > 0,Mr6 > 0) (dash-dotted line).

of the posterior densities of Figure D.6. We conclude therefore that the method,

even though it is better than the one presented in the previous subsections, does

not discriminate the two parameters well despite their values being quite different.

The problem could be that the method is unable to correctly reallocate a group of

observations (number of males) in two different groups (R- and r-type males). A

possible solution would be to indicate to the method that there exist two different

groups of data which should be allocated according to some particular assumption.

To this end, as suggested in Richardson and Green (1997), one might assume that the

parameters mR and mr are ordered, i.e., that one of them is greater than the other.

If there exists prior knowledge about the order of mR and mr (i.e., one genotype has

a greater reproduction capacity), this condition will be imposed directly. Otherwise,

we will use the calculation of P (mR > mr|FMN ,MRN > 0,MrN > 0) in order

to decide the correct order of the means. In our example, since there is no prior

information available about the parameters we calculated

P (mR > mr|FM6,MR6 > 0,Mr6 > 0) ≈ 0.5958.

This means that it is more probable that the average number of individuals of type R

exceeds the average number of individuals of type r. It thus makes sense to consider

that mR > mr. Hence, we shall now focus on the posterior distribution

(mR,mr)|(FM6,MR6 > 0,Mr6 > 0,mR > mr).

Introducing the obvious modifications to the previous computational method, we

simulated T = 25 chains formed by 10 000 iterations of the method, and then applied

the Gelman-Rubin-Brooks method considering that FM6 has been observed, that

both genotypes have survived in generation 6, and that mR > mr. From the Gelman
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Rc Autocorrelations
Est. 97.5% lag 10 lag 50

mR 1 1 0.15430 -0.00488
mr 1 1 0.25748 0.06478

Table D.5: Rc and autocorrelations for mR and mr.

plots (omitted here for simplicity), we concluded that it is sufficient to consider a

burn-in period of L = 4 000. Table D.5 lists the values of Rc and the autocorrelations

for each parameter. With this information, we took G = 50 obtaining a final sample

of size 3 000. From the summary statistics given in Table D.6, one can also conclude

that the number of observations considered is reasonable.

Figure D.7 shows the contour plot of the posterior distribution (mR,mr)| (FM6,

MR6 > 0,Mr6 > 0,mR > mr) and its marginal distributions with their respective

95% HPD credible sets. The solid lines correspond to the true value of mR and the

dash-dotted line to the true value of mr. One observes now that the HPD sets contain

the true value of the corresponding parameter but not that of the other parameter,

so that with this new proviso it seems that the method can distinguish the two

parameters quite well, even though the sample is small and provides little information

(see (D.19) and Table D.1). One also observes that the standard deviations and

coefficients of variation (CV) for each parameter have been considerably reduced

relative to the previous cases (see Tables D.3, D.4, and D.6).

As one can now clearly distinguish the two parameters, it should be possible to

predict with precision the total number of females and males of each type in the

following generations by approximating the predictive posterior distribution of those

variables, i.e., F6+s|(FM6,MR6 > 0, Mr6 > 0,mR > mr), MR6+s|(FM6,MR6 >

0,Mr6 > 0,mR > mr), and Mr6+s|(FM6, MR6 > 0, Mr6 > 0,mR > mr), s > 0, as

well as to predict the total number of couples in future generations by means of the

predictive posterior distribution (ZR6+s, Zr6+s)|(FM6,MR6 > 0,Mr6 > 0,mR >

MEAN SD CV MCSE TSSE
mR 4.13065 0.49669 0.12025 0.00906 0.00920
mr 2.71539 0.56071 0.20649 0.01024 0.03836

Table D.6: Summary statistics for the posterior distributions of mR and mr given
(FM6,MR6 > 0,Mr6 > 0,mR > mr).
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Figure D.7: Contour plot of (mR, mr)|(FM6,MR6 > 0,Mr6 > 0,mR > mr) (left),
together with the approximate marginal posterior distributions mR|(FM6,MR6 >
0,Mr6 > 0,mR > mr) (centre) and mr|(FM6,MR6 > 0,Mr6 > 0,mR > mr)
(right).

mr), s ≥ 0. We shall not consider these predictions further at this point, since it

will be more appropriate to do so in the next section with a similar sample scheme.

5 An Alternative Initial Sample

In the previous section, we showed that, knowing only the total number of fe-

males and males in each generation and the initial number of each type of male,

the approximations obtained for the posterior distributions of the parameters could

not provide enough information about those parameters (obviously this would also

depend on the sample size). To obtain more accurate information about the para-

meters, we introduced restrictions on the paths we use in the Gibbs sampler (only

those belonging to {MRN > 0, MrN > 0}) and on the model parameters (establis-

hing an order relationship on them which is derived from the observed data or from

prior information). This yielded satisfactory results even with only a small amount

of sample information. However, in general, imposing these kinds of constraints on

the model parameters does not always provide a satisfactory solution to the type

of problem being considered (see, for example, Celeux et al. (2000) and Stephens

(2000)). Indeed, it can sometimes lead to bias in some parameters. In the present

case, this can be observed in the plots of mr|(FM6,MR6 > 0,Mr6 > 0,mR > mr)

in Figure D.7, which, while providing a good estimate for mr, still show an upward

bias.

For this reason, we shall consider another sample scheme with just a little more

information than our initial sample FMN which provides some additional knowledge

about the behaviour of the different genotypes in the population. Since we already

124



Paper D: Parametric inference. MCMC method

assume that the number of each type of males in the initial generation can be dis-

tinguished, it is reasonable to also introduce the same information for some other

generation, in particular, we take the last generation as being the most reasonable

choice because it provides information on whether or not the two genotypes sur-

vive at the end of the observation period. We thus assume that we can observe the

following sample

FM∗
N = {F0,MR0,Mr0, FM1, ..., FMN−1, FN ,MRN , MrN}

(recall that FMn = (FnMn), n = 1, ..., N).

Notice that the above information is, in this case too, different from the sample

scheme considered in González et al. (2010a) and González et al. (2010b) in which our

inferential study was carried out in a frequentist framework, observing the number

of R- and r-males in every generation for the model introduced in González et al.

(2006). In that model, it was considered that females can distinguish the males’

phenotype and prefer to mate with R-males, so that observation of the different

types of male in each generation made sense. In the present case, this information

can only be found for a small number of generations since it must be obtained by

means of ad hoc genetic tests.

We implement the new method using the Gibbs sampler as in Section 4, with the

difference being that the initial sample FM∗
N now introduces new information for

the last generation in the form of knowledge of (MRN ,MrN ). The vector FMRrN

therefore has an observable part, (MRN ,MrN ), and another which belongs to the la-

tent vector, denoted as FRrN = (FRN , F rN ). This introduces a slight modification

in obtaining

(FRrN , ZRrN )|(FM∗
N ,FMRrN(−N),ZRrN(−N), Θ).

To this end, we determine the following probability

P (AfRrN
, AzRrN

|Afm
∗
N

, AfmRrN(−N)
, AzRrN(−N)

),

where AfRrN
= {FRN = fRN , F rN = frN} and Afm

∗
N

= AfmRr0 ∩
⋂N−1

n=1 Afmn ∩
AfmRrN

, with AfmRrN
= {FN = fN ,MRN = mRN ,MrN = mrN}.

Applying the multiplication rule and the Markov property recursively, the above

probability is proportional to,

P (AfmRrN
|AzRrN−1

)P (AfN
|AfRrN

)P (AzRrN
|AfmRrN

),
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where AfN
= {FN = fN}. The first and the last probabilities of the above expression

can be calculated in the same manner as (D.14) and (D.16), respectively. The

probability P (AfN
|AfRrN

) equals 1 if fN = fRN + frN or 0 otherwise. Moreover,

one can obtain expressions analogous to (D.9) and (D.10) for n = 1, ..., N − 1 in the

same way as in Section 4, conditioning on FM∗
N instead of on FMN , due to the

Markovian property.

5.1 Simulated study

We shall now show how to approximate the posterior distribution Θ|FM∗
N . To

this end, we consider the same sample as that given in the example of Subsection 4.4,

(see (D.19) and Table D.1), with the added information that the split of M6 = 82

males is (MR6,Mr6) = (76, 6). We denote this sample FM∗
6. Notice that we know

the information in the last generation since, this being a simulated study, we really

know the complete family tree.

Again we consider that there is no prior information available about the parame-

ters, so that we take (β1, β2) = (βr
1, β

r
2) = (−0.5,−0.5), and (βR

1 , βR
2 ) = (−0.5, 0.01).

We simulated T = 15 chains with 10 000 iterations of the method, and applied the

Gelman-Rubin-Brooks approach in order to evaluate its convergence. Table D.7 lists

the values of Rc and the autocorrelations for each parameter. We conclude that it is

enough to consider L = 2 000 and G = 15, obtaining a final sample of Θ|FM∗
6 of size

7 995. From the values listed in Table D.8, we can also conclude that the number of

observations considered is reasonable.

Rc Autocorrelations
Est. 97.5% lag 5 lag 15

mR 1 1 0.30025 0.08157
mr 1 1 0.00967 0.00335

Table D.7: Rc and autocorrelations for α, mR, and pr.

MEAN SD CV MCSE TSSE
mR 4.21037 0.39596 0.09404 0.00443 0.00421
mr 2.37093 0.51558 0.21746 0.00577 0.00513

Table D.8: Summary statistics for the posterior distributions of mR and mr given
FM∗

6.
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(FM6,MR6 > 0,Mr6 > 0,mR > mr) FM∗
6

mR 0.276 0.199
mr 0.188 0.001

Table D.9: ISE for the posterior distributions of mR and mr given (FM6,MR6 >
0,Mr6 > 0, mR > mr) and FM∗

6 vs the observation of the complete family tree.

At this point, we would like to make the following two comments. First, the

posterior distribution α|FM∗
6 coincides with α|FM6 because to calculate the pos-

terior distribution of α one only needs to observe the total number of females and

males in each generation (see Equation (D.6)), and in such a case the two samples,

FM6 and FM∗
6, provide the same information. For this reason, we do not show

the histogram corresponding to α|FM∗
6. And second, because of the added infor-

mation in FM∗
6, we obtained posterior distributions mR|FM∗

6 and mr|FM∗
6 which

are far more informative than mR|FM6 and mr|FM6, now distinguishing the two

parameters more clearly (see Figure D.8). As can be seen in the right-hand plot

of Figure D.8, the HPD set not only contains just the true value of mr, but also

there is no longer any upward bias for this parameter as had been the case with

mr|(FM6,MR6 > 0, Mr6 > 0,mR > mr). Notice also in Table D.8 that the stan-

dard deviations and the coefficients of variation of the parameters remain stable or

have even been reduced with respect to those in Table D.6. This is important since

it shows that these last two modifications have improved the method.

As a further remark, we would like to highlight how satisfactory the results are

when one compares the density estimated for (mR,mr) when one observes (FM6,

MR6 > 0, Mr6 > 0,mR > mr) or FM∗
6 with the observation of the complete

mR

m
r

 2000 

 4000 

 6000 

 8000 

 10000 

 12000 

 14000 

0 1 2 3 4 5 6

1
2

3
4

5
6

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

mRhpd 95% hpd 95%mr

1 2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

mrhpd 95% hpd 95% mR

Figure D.8: Contour plot of (mR,mr)|FM∗
6 (left), together with the approximate

marginal posterior distributions mR|FM∗
6 (centre) and mr|FM∗

6 (right).
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Figure D.9: Kernel density estimates of mR (left) and mr (right) observing the
complete family tree (solid lines), (FM6,MR6 > 0,Mr6 > 0,mR > mr) (dotted
lines), and FM∗

6 (dashed lines).

family tree. This latter represents the ideal situation one can aspire to, which can

be obtained in this case because it is a simulated example. To this end, we plot

the kernel density estimates of (mR,mr) in each case in Figure D.9, and calculate

the integrated squared errors (ISE) of these estimated densities (based on (FM6,

MR6 > 0, Mr6 > 0, mR > mr) and FM∗
6) with respect to the estimated density

based on the entire family tree (Table D.9).

Finally, on the basis of the posterior distribution Θ|FM∗
6, one can predict the

total number of R- and r-couples in future generations as well as the total number

of females and the total number of R- and r-males. Figures D.10 and D.11 illustrate

the predictive posterior distributions of these variables for couples in Generation 6

and females and R- and r-males in Generation 7.

Another interesting practical question is to predict the long-term behaviour of

the process. One can check the conditions given in González et al. (2009) which

guarantee that there exists a positive probability of both genotypes growing in an

unlimited way over time. To this end, we approximate

P (α > 0.5, min{(1− α)mR, (1− α)mr} > 1|FM∗
6) ≈ 0.1285

and

P (α < 0.5, min{αmR, αmr} > 1|FM∗
6) ≈ 0.5325.

Since the probability of the set {α > 0.5, min{(1− α)mR, (1− α)mr} > 1} ∪ {α <

0.5,min{αmR, αmr} > 1} given FM∗
6 is 0.6610, one can deduce that one of the

conditions can be satisfied, and therefore that there exists a positive probability that

both genotypes grow over the course of the generations. Notice that the condition
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Figure D.10: Estimated distributions ZR6|FM∗
6 (left) and Zr6|FM∗

6 (right).

α < 0.5 and min{αmR, αmr} > 1 is the more probable. Indeed, the true value of

the parameters satisfies this condition.

Remark D.2 To assess the robustness of the method, we ran a random general

experiment in which we simulated 20 examples. In each example, we took three

random values for (α,mR,mr) and simulated six generations of a Y-linked two-sex

branching process with blind choice covering all the possible forms of behaviour of

these processes as described in Alsmeyer et al. (2011) and González et al. (2009).

We then located in the examples some samples for which, in Generation 6, both

genotypes had survived and others in which one of the alleles had become extinct.

We applied the different methods studied in this communication to those samples,

and observed that the conclusions drawn for the simulated example described above

can also be applied to these 20 examples, with in all cases the most satisfactory

estimates being those when one observes (FMN ,MRN > 0,MrN > 0,mR > mr) or

FM∗
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Figure D.11: Estimated predictive posterior distributions F7|FM∗
6 (left), MR7|FM∗

6

(centre), and Mr7|FM∗
6 (right).
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Remark D.3 To perform the simulations of the examples, we used parallel compu-

ting employing the statistical computing and graphics language and environment R

(“GNU S”, see R Development Core Team (2009)), for the convergence diagnostic

we used the CODA package (see Plummer et al. (2010)), and for the two-dimensional

kernel density estimation the GenKern package (see Lucy and Aykroyd (2010)).

6 Concluding Remarks

The aim of this work has been to develop parametric Bayesian inference for a

Y-linked two-sex branching process with blind choice, focusing mainly on appro-

ximating the posterior distributions of its main parameters. In this model, it is

assumed that the Y-linked genes are not expressed in the males’ phenotype, which is

typically the case in nature with genes of this kind (e.g., the microdeletions of the Y

chromosome’s long arm or DNA polymorphisms). Under this assumption, a realistic

sample scheme is given by the observation of the total number of females and males

(without knowing their genotypes) in each generation as well as the number of each

type of male in the initial generation.

We described the development of a method based on the Gibbs sampler to ap-

proximate the posterior distributions of the model parameters when such a sample

scheme is observed. We presented a simulated example based on a small and realis-

tic sample for which the posterior distributions did not provide accurate information

about the parameters. To improve the accuracy of this initial method, we modified

it in a number of steps until finding the posterior distributions of the parameters to

be sufficiently informative.

Our first conclusion is that, to estimate the parameter which represents the pro-

bability of an individual being female (α), it is sufficient to observe the total number

of females and males over the course of the generations. This sample scheme is insuf-

ficient, however, if one wants to estimate the mean number of individuals generated

by each type of couple (mR and mr) approximating their respective posterior dis-

tributions and with the objective of differentiating them. We therefore introduced

more specific information about these parameters in the form of imposing the con-

dition that one of the means is greater than the other, and that neither type of male

has become extinct. With this added information, we obtained very satisfactory

results, with it being possible to clearly differentiate the two parameters even when

the samples observed are small.
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We also considered it interesting to introduce another sample scheme which pro-

vides slightly more information about the two genotypes. In particular, to the initial

sample we added information about the last generation consisting of knowledge of

the total number of each type of male in this last generation. With this small amount

of additional information, we also obtained satisfactory results that were even found

to be similar to those obtained from observing the complete family tree.

Therefore, the main conclusion to be drawn is that it is not necessary to know the

total number of males of each type in each generation (which in practice is at least

hard, and may be impossible) to obtain informative posterior distributions of the

parameters. Knowledge of such information in the initial and the last generations,

or only in the initial generation and introducing some constraint on the parameters,

will be sufficiently informative. By means of a random simulated study, we concluded

that both procedures behave adequately with different samples (see Remark D.2).

Note that, in any case, it is not necessary to observe the total number of couples of

each type in any generation.

Computationally, another important conclusion that can be drawn from the study

is that the more prior information one includes, the shorter will be the chains that one

needs to generate, and hence the greater the speed of the computational calculations.

Finally, we would like to point out that non-parametric Bayesian estimation is

also possible, but that there would be more difficulties involved in implementing the

method because the problem would then be of a greater dimension with more latent

variables.
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M. González, C. Gutiérrez, and R. Mart́ınez. Expectation-maximization al-

gorithm for determining natural selection of Y-linked genes through two-sex

branching processes. Preprint 137. Department of Mathematics. University of

Extremadura, 2010b.
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Abstract

A new two-sex bidimensional branching process is introduced to model the evo-
lution of the number of carriers of an allele and its mutations of a Y-linked
gene. A population is assumed in which females and males coexist and mate
without the gene influencing the mating process. It is deduced from the model
that the key determining conditions for the extinction or survival of the allele
are given by the probability that an offspring is female, the rate of mutation,
and the mean number of offspring per mating unit. It is also proved that the
destiny of the allele’s mutations in the population also depends on the survival
or extinction of the original allele.

Keywords: Y-linked genes, sex-linked inheritance, two-sex branching processes,

allelic mutation, extinction vs survival.

1 Introduction

Male infertility is a serious dysfunction of current major concern to the scientific

community. Much effort has been devoted in recent years to seeking the genetic

causes of the problem. An interesting review of this topic in humans can be found in

Visser and Repping (2010), in which it is noted that these causes have been sought

in mutations of specific Y-linked genes. There exist three genetic domains in the

long arm of the human Y-chromosome (called azoospermia factors) which are home

to genes required for spermatogenesis. Any alteration in these regions could end in

fertility problems such as pre-testicular or testicular azoospermia, oligospermia, or

aspermia. Until now, only a handful of genetic alterations has been shown to cause

spermatogenic failure (see, for example Sun et al. (1999) or Westerveld et al. (2006)),

despite the increasingly long list of candidate genes which could cause this problem

(see for example Nuti and Krausz (2008) for further specific information).
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The Y-chromosome has a non-recombining region (corresponding to 95% of the

chromosome in humans; see for example Graves (2006) or Krausz et al. (2004))

which passes down intact from father to son down the generations. However, some

mutations occur randomly and are transmitted to males in subsequent generations.

These mutations can be used to identify shared patrilineal relationships because

males who share a specific mutation also share a common patrilineal ancestor who

was the first to carry the mutation. The history of paternal lineages can then be

reconstructed from the mutations.

Hence, an interesting and important problem is to determine how mutations of

Y-linked genes evolve in a population. To this end, suitable mathematical models are

needed. In recent years, new stochastic models ranging over the field of branching

processes have been developed to analyze the evolution of a Y-linked gene (see for

example González et al. (2006), González et al. (2009) or González et al. (2010a,b,

2012)). Those models describe the evolution of the number of carriers of two alleles

(one implying the absence of the other) of a Y-linked gene in a two-sex monogamic

population. In González et al. (2006), it was considered that the characters controlled

by such a gene may have some influence on the mating process of the species, with

females having preference for males carrying one of the alleles of the gene. Then,

in González et al. (2009), females were considered to choose their mates without

caring about their genotypes since most Y-linked characters are not decisive at the

time of mating. However, neither of these branching models covers the possibility

of mutation in the gene. In the present work, we introduce a stochastic process in

which that possibility is considered.

We focus on a certain allele of a Y-linked gene which transmits a trait that is not

expressed in the phenotype of the male, and assume a two-sex monogamic population

in which females and males mate in order to produce offspring. Applying the genetic

inheritance rules, every couple gives birth to females and males, with every male

progeny inheriting the genetic material corresponding to the Y-chromosome from

his father. During reproduction, there could occur a permanent change or mutation

in the transmitted allele, altering the characteristic of the individual who carries it

with respect to his progenitor. Hence, under these assumptions, a male could have

either an offspring who is a clone of his genetic material (the same allele) or a mutant

with a new type of allele. As an example of such mutations, one could suppose that

an alteration in the allele might impair the individual’s reproductive capacity. In

this way, the process could be applied to modeling the problems described at the

beginning of this section relating to different levels of infertility. In particular, it
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would allow one to study the case of mutations which end in total infertility (such as

aspermia). We thus consider that the mutations could be lethal in the sense that the

individual who carries it cannot produce offspring. An example of this situation is

presented in Sun et al. (1999), in which it is suggested that a mutation in the USP9Y

Y-chromosomal gene causes the absence of sperm in semen. Another possibility is

that the mutation may represent the beginning of a new paternal lineage.

In nature, mutations of several kinds can occur (insertion, deletion, duplication,

etc.). We shall use the term mutation for any change of the original genetic material

which gives rise to the transmission of an allele different from the original, regardless

of its type. In particular, we consider that there are only two types of allele in

the population: the original and the mutant-allele. This latter includes all alleles

different from the original that come from its mutations. Obviously, we assume

that a mutant-allele never can return to the original form (i.e., backmutation is not

allowed). Hence, a couple formed by a male with a mutant-allele (mutant-male) can

only give rise to male offspring with this type of allele. We also assume that neither

the original characteristic nor its mutations are expressed in the male phenotype, so

that mating of females and males is blind.

The main aim of this work is to study how, over successive generations, the

number of males carrying an allele and its mutations (in the aforementioned sense)

evolves. We shall study conditions for the original allele to disappear from the

population or for which it has a positive probability of survival. Moreover, we are

interested in studying under which conditions the mutant-allele will become extinct

or not, and how these conditions depend on the behaviour of the original allele.

The rest of this communication is structured as follows. Section 2 provides a

mathematical description of the model. In Sections 3 and 4, we study the fate of

the allele and its mutations in the population, respectively. In these sections, we

provide conditions for the extinction of the population and for the fixation/survival

of both the original and the mutant-allele. We also study the dependence of the

mutant-allele on the original one. Some boundary situations in the evolution of the

population are studied by simulation, conjecturing the long-term behaviour of the

number of carriers of the alleles. In Section 5, we provide some concluding remarks.

Finally, Section 6 presents the proofs of the results.
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2 Description of the Model

The model considers a Y-linked gene which presents an allelic form denoted as

R. This allele can mutate giving rise to new (different) alleles, all denoted as r

and termed mutant-alleles, representing the transmission of any trait different from

the characteristic transmitted by the R-allele. An r-allele may be harmful or lethal,

such as the examples in nature of azoospermia or aspermia, or they may represent

a paternal family line different from the original.

Since the Y-chromosome is specific to males, we deal with a two-sex population

formed by females, by males which carry the R-allele (called R-males or non-mutant

males), and by mutant-males which carry the r-allele (called r-males). It is furt-

her assumed that mating is monogamous (perfect fidelity) with sexual reproduction

where each individual mates with only one individual of the opposite sex if available,

forming a couple. There are thus two types of couples, denoted by R- and r-couples,

depending on whether the male is of type R or of type r, respectively.

According to the rules of genetic inheritance, and taking into account the pos-

sibility of mutation, an R-couple can give birth to females, R-males, and r-males,

whereas, given the assumption of no backmutation (a mutant-allele can never recover

the form of the original allele), an r-couple gives birth to females and r-males.

Assuming non-overlapping generations and given the number of R- and r-couples

in generation n, denoted by ZRn and Zrn, respectively, the number of females,

males, and couples of each genotype in the (n + 1)th generation is determined by

considering a two-stage structure, reproduction and mating, as in González et al.

(2006) and González et al. (2009).

In the reproduction phase, couples of the nth generation produce offspring in-

dependently of each other and according to a certain reproduction law which is the

same for a given genotype but may be different for different genotypes since the mu-

tation could affect the reproductive capacity. Moreover, these reproduction laws are

independent of the generation the couples belong to. Mathematically, the number

of females and males stemming from each type of couple is identified with the fo-

llowing independent sequences of independent, identically distributed, non-negative,

and integer-valued random vectors:

{(FRni,MRni, Mr
(R)
ni ), i = 1, 2, ...; n = 0, 1, ...}

and

{(Frnj ,Mr
(r)
nj ), j = 1, 2, ...; n = 0, 1, ...}.
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Here, FRni and Frnj are, respectively, the number of females stemming from the

ith R-couple and the jth r-couple of generation n; MRni is the number of males

stemming from the ith R-couple of the nth generation which have preserved the

original R-allele, and Mr
(R)
ni is the number of males stemming from the ith R-couple

of the nth generation, whose alleles have mutated and now are of type r; and finally,

Mr
(r)
nj is the number of males stemming from the jth r-couple of the nth generation,

and which therefore carry also the r-allele.

The probability distributions of these random vectors are obtained as follows.

An R-couple can generate k ≥ 0 individuals with probability pR
k . This probability

distribution, {pR
k }k≥0, is called the R-genotype reproduction law or offspring distri-

bution. Each of these individuals could be female with probability α or male with

probability 1 − α, (0 < α < 1), independently of the sex of any other offspring.

Each of the males produced by an R-couple could present, again independently of

the others, a mutation in the corresponding allele with probability β or preserve the

original allele with probability 1− β, (0 < β < 1). It is assumed that the reproduc-

tion law has finite mean (denoted by mR) and variance. Then, in accordance with

this multinomial scheme, the average numbers of females, non-mutant males, and

mutant-males generated by an R-couple are, respectively, αmR, (1 − α)(1 − β)mR

and (1− α)βmR.

With respect to the mutant-allele, its offspring distribution is denoted by {pr
l }l≥0,

with pr
l being the probability of an r-couple generating l ≥ 0 individuals. It is also

assumed that α is the same for the different genotypes, i.e., the gene has no influence

on sex designation. As a consequence, each of these individuals could be female with

probability α or r-male with probability 1−α, independently of the sex of any other

offspring. Then, assuming also that the reproduction law has finite mean (denoted

by mr) and variance, the average numbers of females and males generated by an

r-couple are, respectively, αmr and (1− α)mr.

At the end of the reproduction phase, one has the total number of females,

R-males, and r-males, denoted by Fn+1, MRn+1, and Mrn+1, respectively, which

together constitute the (n + 1)th generation. Specifically, one obtains such variables

by means of the following expressions:

Fn+1 =
ZRn∑

i=1

FRni+
Zrn∑

j=1

Frnj , MRn+1 =
ZRn∑

i=1

MRni and Mrn+1 = Mr
(R)
n+1+Mr

(r)
n+1,
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being

Mr
(R)
n+1 =

ZRn∑

i=1

Mr
(R)
ni and Mr

(r)
n+1 =

Zrn∑

j=1

Mr
(r)
nj ,

with the empty sum defined as 0, and Mr
(R)
n+1 and Mr

(r)
n+1 denoting the total number

of males with r-genotype stemming from R- and r-couples, respectively, in generation

n + 1.

We assume the mating phase considered in González et al. (2009) where given

the total numbers of females, R-males, and r-males in the (n + 1)th generation, the

number of couples of each genotype in this generation is determined as follows: per-

fect fidelity mating is assumed, hence if the total number of females is greater than

or equal to the total number of males then every male finds a mate in the female

population resulting in ZRn+1 = MRn+1 couples of type R and Zrn+1 = Mrn+1

couples of type r. However, since it is assumed that the genotype has no impact

on the mating mechanism, if the total number of males exceeds the total number of

females, the total number of R-couples in the (n+1)th generation follows a hypergeo-

metric distribution with parameters Fn+1, Mn+1 = MRn+1 + Mrn+1, and MRn+1,

while the total number of r-couples in this generation equals the number of remai-

ning females, i.e., Zrn+1 = Fn+1−ZRn+1, whose distribution is also hypergeometric

with parameters Fn+1, Mn+1, and Mrn+1.

Remark E.1

i) Note that we do not consider the extreme values for β, because they would give

rise to known models. I.e., if β = 0 no mutations occur, and one has the Y-

linked bisexual branching process described in González et al. (2009). Also, if

β = 1, one has the classical bisexual branching process (BBP) defined in Daley

(1968) describing the evolution of the r-allele.

ii) As was indicated in the Introduction, it is possible that the mutation would give

rise to a lethal allele. This case represents complete reproductive incapacity

of the r-couples, and therefore the mean number of individuals generated by

this type of couples is 0, i.e. mr = 0. We will see below that this does not

necessarily mean the extinction of the mutant-allele in the long term.
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We are interested in studying the evolution of the number of carriers in the po-

pulation of a certain allele and its mutations of a Y-linked gene. Taking into account

that females do not carry the gene, it is sufficient to analyze the behaviour of either

the males or the couples of each type. From now on, we shall focus our attention

on the evolution of the number of couples of each type in successive generations,

i.e., on the process {(ZRn, Zrn)}n≥0. Notice that the total number of couples in

the nth generation is given by Zn = ZRn + Zrn, and, from the perfect fidelity ma-

ting, it follows that Zn = min{Fn, Mn}. From the definition of the model and the

properties of the reproduction vectors, one observes that the number of couples of

each genotype in a generation depends only on the number of couples of the two

genotypes in the previous generation, and therefore one concludes that the process

{(ZRn, Zrn)}n≥0 is a homogeneous multitype Markov chain. Since the empty sum is

assumed to be zero, if in some generation there are no mating units of type R then,

from this generation on, the couples and males of that type as well as mutant-males

coming from them no longer exist. I.e., if ZRn = 0 for some n > 0 then ZRk = 0,

MRk = 0, and Mr
(R)
k = 0 for all k > n. Also, if Zrn = 0 and ZRn = 0 for some

n > 0 then Zrk = 0 and Mrk = 0 for all k > n. However, this behaviour is diffe-

rent for the r-allele when ZRn 6= 0. Indeed, even though Zrn = 0, it could occur

that some R-couple gives birth to males whose corresponding allele has undergone

a mutation, and some of these males could mate forming couples of type r. Hence,

if ZRn 6= 0, one may find that Mrk > 0 and Zrk > 0 for some k > n, even though

Zrn = 0. With this in mind, we establish the following result related to the states

of the Markov chain, and whose proof (which is omitted) is obtained by taking into

account the multinomial scheme of the reproduction laws and applying a standard

procedure.

Proposition E.1

(i) (0, 0) is an absorbing state.

(ii) Every non-null state (i, j) 6= (0, 0) is transient.

(iii) If pR
0 + pR

1 + pR
2 + pR

3 < 1 and pr
0 + pr

1 + pr
2 + pr

3 < 1, then the sets {(i, j), i >

0, j ≥ 0} and {(0, j), j > 0} are classes of communicating states and each state

leads to the state (0, 0). Furthermore, the states belonging to the first set may

move to the other in one step.
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From this result, it seems clear that, due to mutations, the behaviour of the

r-allele in the population is not the same as the behaviour of the R-allele.

Henceforth, to simplify the notation, we shall denote P (·|ZR0 = i, Zr0 = j) by

P(i,j)(·). Even (i, j) will be dropped in this notation if there is no ambiguity.

3 The Fate of the Original Allele in the Population

We focus first on studying the process corresponding to the R-allele, i.e., the

process {ZRn}n≥0. Although that process is not a homogeneous Markov chain,

we establish in the following result that it shows the following dual asymptotic

extinction-explosion behaviour, typical of many homogeneous branching processes:

the total number of couples of that genotype either goes to zero or undergoes unli-

mited growth. In the context of the study of paternal lineages, this means studying

whether the original family line will become extinct or will survive over the course

of successive generations.

We define the following relevant events: {ZRn → 0} is called the extinction of

the R-allele, and {ZRn →∞} is called the survival of the R-allele.

Theorem E.1 It is true that P (ZRn → 0) + P (ZRn →∞) = 1.

3.1 Extinction of the original allele

In the following result, we show conditions for the event extinction of the R-allele

to occur with probability one.

Theorem E.2 Let i > 0, j ≥ 0. Then P(i,j)(ZRn → 0) = 1 if one of the following

conditions is verified:

(i) (1− α)(1− β)mR ≤ 1,

(ii) α(1− β)mR < 1.

This last result depends on the parameters (1− α)(1 − β)mR and α(1 − β)mR.

Intuitively, (1−α)(1− β)mR corresponds to the mean number of non-mutant males

generated by an R-couple. However, α(1−β)mR is not so easily interpreted. It could

be seen as representing the mean number of females stemming from an R-couple

who mate with non-mutant males. This corresponds to the ratio of the number of

R-couples between successive generations when the number of females is less than

the number of males.
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Therefore, this result establishes that, if the mean number of males who preserve

the original allele is less than or equal to unity, or if the mean number of females

stemming from an R-couple who mate with R-males is less than unity, then the

R-allele becomes extinct with probability one.

Remark E.2 Notice that there could occur the amazing and counter-intuitive event

that, though the mean numbers of female and of R-male offspring per R-couple are

greater than one, i.e., αmR > 1 and (1−α)(1−β)mR > 1, the R-allele still becomes

extinct because α(1− β)mR < 1. Recall that, in the case β = 0 (no mutations), the

condition αmR > 1 and (1 − α)mR > 1 implies the survival of the R-genotype (see

González et al. (2009)).

The case α(1− β)mR = 1 is not considered explicitly in Theorem E.2. However,

if α ≥ 0.5 and α(1 − β)mR = 1 then (1 − α)(1 − β)mR ≤ 1, and Theorem E.2

(i) guarantees the extinction of the R-allele. Therefore, it is the case α < 0.5 and

α(1 − β)mR = 1 which is not covered by the result. In this case, to conjecture

whether the probability of extinction is one or less than one, we performed a Monte

Carlo simulation of ten batches of 10 000 processes until generation 2000, with an R-

genotype reproduction law following a Poisson distribution with mean mR = 2.1265,

probability for an offspring to be female α = 0.475 since in most populations the sex-

ratio is different from 0.5 (even though it is close to that value), and β = 0.01 since

the majority of mutation rate estimates in Y-linked genes are small (see, for exam-

ple, in the case of the human Y-chromosome, the Web site http://www.yhrd.org/).

Under these conditions α(1− β)mR = 1 and (1− α)(1− β)mR = 1.1052 > 1. In all

the simulated processes, we took (ZR0, Zr0) = (100, 0). (We took the r-genotype re-

production law to also follow a Poisson distribution with mean mr = 2, and therefore

αmr = 0.95 and (1− α)mr = 1.05).

batch 1 2 3 4 5 6 7 8 9 10
generation 60 4157 4270 4176 4169 4144 4247 4194 4127 4218 4159
generation 100 961 977 914 956 923 922 948 954 948 893
generation 300 23 28 25 32 21 30 23 28 24 21
generation 500 5 8 6 9 7 11 5 9 6 3
generation 1000 2 2 1 4 1 2 1 4 2 2
generation 1500 1 1 0 3 1 1 1 3 1 2
generation 2000 1 0 0 2 0 1 0 2 1 1

Table E.1: Records of the number of processes in each batch where the R-allele has
survived over the course of succeeding generations.
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Figure E.1: Proportion over the course of succeeding generations of simulated pro-
cesses in which the R-allele has survived.
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Figure E.2: Path of the process {ZRn}n≥0 where the R-genotype has survived until
generation 2000.

Table E.1 lists the results for the number of processes in each batch where the

R-allele has survived by a given generation. One observes how the number of such

processes decreases to zero over the course of succeeding generations, with similar

records for all ten batches.

Figure E.1 shows the proportion of processes among the 100 000 simulated in

which the R-allele has survived by a given generation. This plot thus provides

an estimate of the probability that the R-allele survives until generation n, with

n = 1, 2, ..., 500.

Figure E.2 shows the path of one process where the R-allele has survived until

generation 2 000. Note that the evolution of the number of R-couples does not present

any clear pattern, but shows many fluctuations. Since, according to Theorem E.1,

it must converge either to 0 or ∞, one would guess that, eventually this path will

become extinct, although this will take a large number of generations as can be
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observed in the figure. One can observe the same behaviour when the parameters of

the r-genotype (αmr and (1− α)mr) are both greater or less than unity. We could

therefore conjecture that if α < 0.5 and α(1− β)mR = 1 then P(i,j)(ZRn → 0) = 1.

3.2 Survival of the original allele

We now consider the event survival of the R-allele, i.e., {ZRn → ∞}. Our

interest is to find conditions guaranteeing a positive probability of survival of the

R-allele. Such conditions are established in the following result:

Theorem E.3 Let i > 0, j ≥ 0. If min{(1 − α)(1 − β)mR, α(1 − β)mR} > 1 then

P(i,j)(ZRn →∞) > 0.

Intuitively, this result states that, for the survival of the R-allele, if α ≥ 0.5 then

the average number of non-mutant males per R-couple must be greater than one, and

if α < 0.5 then the mean number of females stemming from an R-couple who mate

with non-mutant males must also be greater than one. Notice that these conditions

are “almost” the complement of those given in Theorem E.2.

Remark E.3 Notice that the event {ZRn → ∞} cannot occur with probability one

because the event {ZRn → 0} always has positive probability under the condition

given in Proposition E.1.

4 The Fate of the Mutant-Allele in the Population

In this section, we shall study the behaviour of the r-allele, and show that it

depends on the fate of the R-allele in the population. In the context of infertility

problems, it would be interesting to study how the mutant-allele responsible for

those problems evolves in the population depending on whether the normal allele

survives or not. So first we shall focus on the event {ZRn → 0}. In this event, the

process {Zrn}n≥0 evolves as a BBP with perfect fidelity mating and reproduction law

{pr
l }l≥0, at least from one generation on (possibly different for each path), because

the original allele disappears and the mutant-allele always gives rise to mutant alleles.

Therefore, this process also presents the dual extinction-explosion behaviour in the

event extinction of the R-allele, and the following result is established:

Theorem E.4 It is verified that, almost surely (a.s.),

{ZRn → 0} = {ZRn → 0, Zrn →∞} ∪ {ZRn → 0, Zrn → 0}.
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We shall next focus on each one of the events presented in the above result. To

this end, we shall use the term fixation of r-allele for the set {ZRn → 0, Zrn →∞},
and extinction of the population for the set {ZRn → 0, Zrn → 0}. We shall study

conditions for the first set to occur with positive probability and for the second to

have a probability of one or less than one.

4.1 Fixation of the mutant-allele

Under which conditions does the r-allele have a positive probability of surviving

when the R-allele has become extinct? As was noted above, in this case the r-allele

behaves, from some generation on, as a BBP with perfect fidelity mating. Hence,

the theory developed in Daley (1968) can be applied here, and one then immediately

deduces the following result:

Theorem E.5 Let i > 0, j ≥ 0. Then P(i,j)(ZRn → 0, Zrn → ∞) > 0 if and only

if min{αmr, (1− α)mr} > 1.

Intuitively, this result states that a necessary and sufficient condition for the r-

allele to have a positive probability of fixation is that both the female and the male

offspring per r-couple are on average greater than one. This result does not depend

on the parameters of the R-genotype reproduction law due to the fact that the event

{ZRn → 0} always has positive probability. Notice that, as the R-allele has become

extinct, there is no contribution of mutant-males to the population from R-couples,

and therefore whether or not the r-allele survives depends on its own reproductive

capacity.

4.2 Extinction of the population

The event we have termed extinction of the population, {ZRn → 0, Zrn → 0},
means that we consider the population to become extinct if from some generation

on there are no couples of either type. Under which conditions does this event occur

with probability one or less than one? From Theorem E.2, if the average number

of R-males is less than or equal to one or the mean number of females stemming

from an R-couple who mate with R-males is less than one then the R-allele becomes

extinct. Moreover, if the mean number of females and males stemming from an r-

couple is less than or equal to one, Theorem E.5 ensures that fixation of the r-allele

is impossible, so that one deduces that the population becomes extinct a.s. on the

basis of Theorem E.4. There exists, however, a positive probability of survival of

the population when both (1− α)(1 − β)mR and α(1 − β)mR are greater than one
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(see Theorem E.3), or when the mean numbers of females and males generated by

an r-couple are greater than one (see Theorem E.5). Summarizing, we establish the

following result:

Corollary E.1 Let i > 0, j ≥ 0. It is verified that

(i) If (1−α)(1−β)mR ≤ 1 or α(1−β)mR < 1 and min{αmr, (1−α)mr} ≤ 1

then P(i,j)(ZRn → 0, Zrn → 0) = 1.

(ii) If min{(1 − α)(1 − β)mR, α(1 − β)mR} > 1 or min{αmr, (1 − α)mr} > 1

then P(i,j)(ZRn → 0, Zrn → 0) < 1.

4.3 Survival of the mutant-allele

We have seen that, in the event {ZRn → 0}, the paths of the process {Zrn}n≥0

behave as those of a BBP at least from some generation onwards. Next, we shall prove

that this behaviour does not hold in the event {ZRn → ∞}. In fact, the following

result establishes that, due to mutations, when the R-allele grows to infinity, then

the r-allele also grows to infinity independently of the values of the parameters of

its offspring distribution.

Theorem E.6 If min{(1−α)(1−β)mR, α(1−β)mR} > 1 then {ZRn →∞, Zrn →
∞} = {ZRn →∞} a.s.

When i > 0, j ≥ 0, the conditions given in the above theorem guarantee a positive

probability of survival of both alleles (see Theorem E.3). Note that this result covers

the particular case of the lethal allele. This means that, even when mr = 0, if the

original allele explodes, the mutant-allele explodes too. This might a priori appear

surprising because, although it seems clear that while the R-allele survives, the r-

allele survives too due to the mutations, one might think that, when mr = 0, the

mutant-allele could fluctuate or go to zero reiteratively. However, this only occurs in

the initial generations, because eventually the r-allele will grow to infinity due to the

geometric growth (see Lemma E.5 in the Proofs section, Section 6) of the R-allele,

and the consequent increasing number of mutant-alleles. To illustrate this scenario,

we simulated 120 generations of the process {(ZRn, Zrn)}n≥0 with (ZR0, Zr0) =

(100, 0). We again set α to be less than 0.5, α = 0.45, and chose a very small mutation

rate, β = 0.0007. We took as the R-genotype reproduction law a Poisson distribution

with mR = 2.446, and the r-genotype to have no reproductive capacity, i.e., mr = 0.

With these parameters, α(1 − β)mR = 1.1 > 1 and (1 − α)(1 − β)mR = 1.34 > 1.
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Figure E.3: Path of the process {(ZRn, Zrn)}n≥0 (R-allele left plot, and r-allele
right plot) where α(1− β)mR > 1, (1− α)(1− β)mR > 1, and mr = 0.
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Figure E.4: Behaviour of the r-allele (couples left plot, and males right plot) in the
first 50 generations of a path of a process where α(1−β)mR > 1, (1−α)(1−β)mR > 1,
and mr = 0.

Therefore, by Theorem E.3, there exists a positive probability of survival of the R-

allele, and hence also of the r-allele. Figure E.3 shows a path of this process in which

one observes that both genotypes survive until generation 120, and that they even

grow geometrically from a certain generation onwards.

Figure E.4 shows in more detail the initial behaviour of the r-allele (the first 50

generations). In the earliest generations, there are no couples of this type (left plot),

although one does find a few males (right plot). When the R-allele starts to grow,

some r-couples appear, and may become extinct in the following few generations.

However, when the R-allele explodes, the r-allele explodes too (this is so even when

the mutation rate is very small, although a large number of generations may be

needed for this to occur).
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5 Concluding Remarks

The genetic causes of infertility in males and the history of paternal lineages are

two major issues directly related to mutations in Y-linked genes. The interest in

how these genes and their mutations evolve in a population led us to introduce a

two-sex bidimensional branching process to model the evolution of the number of

carriers of a Y-linked gene. We assume that the gene presents two allelic forms,

labeled R and r, in a population formed by females and males which mate under a

sexual reproduction scheme with a blind-mating structure. Moreover, it is considered

that during the reproduction stage, the R-allele can either be transmitted intact from

father to son or present a mutation (r-allele) which changes the originally transmitted

characteristic. As we assume that the r-allele cannot return to the original form, it

is then transmitted intact from father to son, i.e., the r-allele embraces all mutations

which give rise to an allele different from the R-allele. Thus, a father with the R-

allele can beget sons with either the R- or the r-allele, while a father with the r-allele

can only beget sons with r-allele.

We have shown that the R-allele has two possible behaviours (extinction or ex-

plosion) and that the behaviour of the r-allele depends on them. On the one hand,

if the R-allele becomes extinct, the r-allele behaves in the long term as a BBP with

perfect fidelity mating, and its extinction or survival depends on its own reproduc-

tive capacity. On the other hand, if the R-allele explodes, there occurs the a priori

amazing fact that not only does the r-allele survive but it also explodes. This hap-

pens even in the case in which the mutant-allele is lethal in the sense that it does

not allow the reproduction of the individual who carries it (as is the case, for exam-

ple, in aspermia). This means that, when the original allele grows geometrically to

infinity and the mutation probability β is greater than 0 (even though it might be

very small), the R-allele will coexist with its mutations (and these mutations will

also grow, possibly geometrically, to infinity) in all generations eventually.

Therefore, the destiny of both types of allele depends on the destiny of the R-

allele which, as we have proved, depends on the magnitude of the probability α for

an offspring to be female, of the mutation probability β and of the mean number

of individuals stemming from an R-couple, mR, through (1 − α)(1 − β)mR and

α(1− β)mR. The expression (1− α)(1− β)mR corresponds to the mean number of

non-mutant males per R-couple, and the expression α(1−β)mR could be interpreted

as the mean number of females stemming from R-couples who mate with males who

carry the R-allele. We conclude that, if both expressions are greater than one, then
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the R-allele, and therefore also the r-allele, has a positive probability of infinite

growth. However, if (1− α)(1− β)mR is less than or equal to one or α(1− β)mR is

less than one, then the R-allele will become extinct. In this event, the behaviour of

the r-allele will depend on its own parameters (αmr and (1− α)mr, with mr being

the mean number of individuals generated by an r-couple) for its survival.

The case α(1 − β)mR = 1 is open when α < 0.5. We have conjectured that it

ends in the extinction of the R-allele.

To conclude, we shall point out some relevant differences of our model with res-

pect to others. In González et al. (2009), where β = 0, it is proved that the extinction

or survival of each genotype depends on its own reproductive capacity without one

genotype influencing the other. This behaviour is thus completely different from that

of the genotypes in the present model in which there exists a clear dependence of the

mutant genotype on the original one. This is because mutations are not permitted

in the model of González et al. (2009).

With respect to other classical genetic models, there is the Wright-Fisher model

for the evolution of a harmful or neutral gene which presents two alleles with muta-

tion from the normal allele to the harmful allele occurring but not backmutation (see

(Lange, 2002, pp. 314-316) for further information). This model considers a finite

population size, while the present model allows the population size to grow, as is

more realistic in, for instance, studies of human genetics.

Finally, it is worth noting some classical mutation models such as, for example,

the infinite alleles model in Kimura and Crow (1964), or, in the context of the clas-

sical Galton-Watson branching process, the models presented in Griffiths and Pakes

(1988) or Bertoin (2009). Those models consider asexual reproduction, with every

mutation giving rise to a new allele never seen before in the population. Moreo-

ver, the same reproduction law is considered for all types of allele. In contrast, the

present model considers the more realistic case of sexual reproduction with different

reproduction laws for different allele types, but with the simplification that the r-

allele encompasses all possible mutations different from the R-allele. For example,

in a study of paternal lineages, one would focus on the R-allele and study conditions

for the extinction/survival of the original family line, grouping together the rest of

the family lines which might appear in the population in the other type, r.
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6 Proofs

We shall first provide a necessary basic notation to prove the results. We start by

denoting as TRn+1 and Trn+1 the total number of individuals in generation n + 1

generated, respectively, by the R- and r-couples, n ≥ 0:

TRn+1 =
ZRn∑

i=1

(FRni + MRni + Mr
(R)
ni ) and Trn+1 =

Zrn∑

i=1

(Frni + Mr
(r)
ni ).

We can deduce from the expressions above that the total number of individuals in

the (n + 1)th generation is

Tn+1 = TRn+1 + Trn+1 = Fn+1 + Mn+1, n ≥ 0.

It is easy to prove that the distributions of Fn+1 and Mn+1 given Tn+1 are binomials

with parameters (Tn+1, α) and (Tn+1, 1− α), respectively.

We denote by fR(·) and fr(·) the probability generating functions of the R- and

r-genotype reproduction laws, respectively. Recall that those reproduction laws have

finite means and variances.

Finally, we introduce the σ-algebras G0 = σ(ZR0, Zr0), Gn = σ(ZR0, Zr0, FRk,

MRk, F rk, Mrk, ZRk, Zrk, k = 1, ..., n), n ≥ 1, and Fn = σ(Gn−1, FRn,MRn, F rn,

Mrn), n ≥ 1. For any i, j ≥ 0, recall that we write P(i,j)(·) for P (·|ZR0 = i, Zr0 = j),

and now we introduce the notation E(i,j)[·] = E[·|ZR0 = i, Zr0 = j].

Proof of Theorem E.1

In order to prove that P (ZRn → 0) + P (ZRn → ∞) = 1, we shall prove that the

probability of the complementary set is equal to 0. For that, it is enough to prove

that for all i′ ≥ 1 and i, j ≥ 0

P(i,j)(ZRn = i′, i.o.) = 0,
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where i.o.̃stands for infinitely often. Taking a = P (MR01 = 0), since 0 < α, β < 1,

and taking into account the multinomial scheme assumed in the reproduction of the

R-genotype, then a = fR(1− (1− α)(1− β)) is positive and constant. We conclude

analogously to the proof of Theorem 3.1 in González et al. (2006) that

P(i,j)(ZRn = i′, i.o.) = lim
m→∞P(i,j)(ZRn = i′ for at least m values of n > 0)

≤ lim
m→∞(1− ai)(1− ai′)m−1 = 0.

Proof of Theorem E.2

By Theorem E.1, it is enough to prove that P(i,j)(ZRn →∞) = 0.

(i) Assume (1−α)(1−β)mR ≤ 1. From the definition of the model, ZRn ≤ MRn

for all n ≥ 1, then

E[ZRn|Gn−1] ≤ E[MRn|Gn−1] = (1− α)(1− β)mRZRn−1 ≤ ZRn−1 a.s.,

and one concludes that {ZRn}n≥0 is a non-negative supermartingale, and so conver-

ges to a finite limit. Hence P(i,j)(ZRn →∞) = 0.

(ii) Assume α(1 − β)mR < 1 and α < 0.5 (otherwise the result is deduced from

(i)). We apply Lemma 3 in González et al. (2008), considering the sequence of σ-

algebras {Gk}k≥0 as was defined at the beginning of the section. For each N > 0 and

for some positive constant A, we define the sequences of sets Bk = {ZRN+k ≤ A},
k ≥ 0, and the stopping time

TN =

{
∞ if infk≥N ZRk > A

min{k ≥ N : ZRk ≤ A} otherwise

such that Bk ⊆ {TN ≤ N + k}.
If we prove that, for all k ≥ 1,

E[ZRN+k|GN+k−1] ≤ ZRN+k−1 a.s. on {ZRN+k−1 > A}, (E.1)

applying the Lemma we obtain that {ZRTN∧(N+k)}k≥0 is a non-negative super-

martingale, with TN ∧ (N + k) = min{TN , N + k}, and consequently converges

to a non-negative and finite limit. But, for every N , on the set { inf
k≥N

ZRk > A},
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ZRTN∧(N+k) = ZRN+k a.s. for all k ≥ 0, so the sequence on right-hand side also

converges to a non-negative and finite limit, hence

P(i,j)({ZRN+k →∞} ∩ { inf
k≥N

ZRk > A}) = 0,

and this would conclude the proof.

In order to prove (E.1), we simplify the notation and write n = N + k. From the

definition of the process, and since Gn−1 ⊆ Fn, n ≥ 1, then

E[ZRn|Gn−1] = E[E[ZRn|Fn]|Gn−1]

= E[MRnI{Fn≥Mn}|Gn−1] + E

[
Fn

Mn
MRnI{Fn<Mn}|Gn−1

]
a.s.

(E.2)

Let us bound properly each of these summands.

For the first summand of (E.2), since we are assuming that Fn given Tn is distri-

buted according to a binomial scheme, we can apply a Chernoff type of inequality,

and have, for all n and l > 0,

P (Fn ≥ Mn|Tn = l) = P (Fn ≥ l/2|Tn = l) ≤ (2
√

α(1− α))l = al,

with a = 2
√

α(1− α) < 1 as α < 0.5. Then, due to the mutual independence of the

R- and r- reproduction laws,

P (Fn ≥ Mn|Gn−1) = E[P (Fn ≥ Mn|Tn)|Gn−1]

≤ E[aTn |Gn−1] = E[aTRn |Gn−1]E[aTrn |Gn−1]

= fR(a)ZRn−1fr(a)Zrn−1 ≤ fR(a)ZRn−1 a.s. (E.3)

Therefore, applying (E.3), the Cauchy-Schwartz inequality, and taking into account

that the variances are assumed finite,

E[MRnI{Fn≥Mn}|Gn−1] ≤E[MR2
n|Gn−1]1/2P (Fn ≥ Mn|Gn−1)1/2

≤K1ZRn−1fR(a)ZRn−1/2 a.s., (E.4)

for some positive constant K1.

To bound the second summand of (E.2), given ε > 0, define γ1 = α(1− β)(mR + ε),

and Bε = 1 + 2ε/m, where m = min{mR,mr} − ε if mr 6= 0 or m = mR − ε

otherwise. We take ε small enough such that 0 < γ1Bε < 1, m > 0, α(mR − ε) > 0,

α(mr − ε) > 0 (if mr 6= 0) and (1− α)(1− β)(mR − ε) > 0.

155



Part V: Model with mutations

For each n ≥ 1, define also

AF,n = {|Fn − (αmRZRn−1 + αmrZrn−1)| ≤ αεZn−1},
AM,n = {|Mn − ((1− α)mRZRn−1 + (1− α)mrZrn−1)| ≤ (1− α)εZn−1},
AMR,n = {|MRn − (1− α)(1− β)mRZRn−1| ≤ (1− α)(1− β)εZRn−1}.

From now on, n will be dropped in the notation if there is no ambiguity. With the

notation D = AF ∩AM ∩AMR, we write

E

[
Fn

Mn
MRnI{Fn<Mn}|Gn−1

]
= E

[
Fn

Mn
MRnI{Fn<Mn}IDc |Gn−1

]

+E

[
Fn

Mn
MRnI{Fn<Mn}ID|Gn−1

]
a.s. (E.5)

Since the reproduction laws are assumed to have finite variances, an immediate

application of Chebyshev’s inequality gives

P (Ac
F |Gn−1) ≤ C1

Zn−1
≤ C1

ZRn−1
a.s., P (Ac

M |Gn−1) ≤ C2

Zn−1
≤ C2

ZRn−1
a.s.

and

P (Ac
MR|Gn−1) ≤ C3

ZRn−1
a.s.,

for certain positive constants C1, C2, and C3. Therefore, for some positive constant

C4,

P (Dc|Gn−1) ≤ C4

ZRn−1
a.s. (E.6)

Now, applying (E.6) and the Cauchy-Schwartz inequality,

E

[
Fn

Mn
MRnI{Fn<Mn}IDc |Gn−1

]
≤ E[MRnIDc |Gn−1]

≤ E[MR2
n|Gn−1]1/2P (Dc|Gn−1)1/2

≤ K2ZRn−1(C4ZRn−1)−1/2 = K3ZR
1/2
n−1 a.s.,

(E.7)

for some positive constants K2, C4, and K3. Finally, on D, if mr 6= 0,

E

[
Fn

Mn
MRnI{Fn<Mn}ID|Gn−1

]

≤(1− α)(1− β)(mR + ε)ZRn−1
α((mR + ε)ZRn−1 + (mr + ε)Zrn−1)

(1− α)((mR − ε)ZRn−1 + (mr − ε)Zrn−1)

=α(1− β)(mR + ε)ZRn−1
(mR − ε)ZRn−1 + 2εZRn−1 + (mr − ε)Zrn−1 + 2εZrn−1

(mR − ε)ZRn−1 + (mr − ε)Zrn−1

≤γ1ZRn−1

(
1 +

2ε

m

)
= γ1BεZRn−1 a.s.,
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with m = min{mR,mr} − ε. And, if mr = 0,

E

[
Fn

Mn
MRnI{Fn<Mn}ID|Gn−1

]

≤ (1− α)(1− β)(mR + ε)ZRn−1
α(mR + ε)ZRn−1

(1− α)(mR − ε)ZRn−1

≤ γ1ZRn−1

(
1 +

2ε

m

)
= γ1BεZRn−1 a.s.,

with m = mR − ε. In any case, for the corresponding m, we have that

E

[
Fn

Mn
MRnI{Fn<Mn}ID|Gn−1

]
≤ γ1BεZRn−1 a.s. (E.8)

Summarizing, from (E.4), (E.5), (E.7), and (E.8), we deduce that

E[ZRn|Gn−1] ≤ (K1fR(a)ZRn−1/2 + K3ZR
−1/2
n−1 + γ1Bε)ZRn−1 a.s.

Since a < 1 and γ1Bε < 1, we can take A > 0 such that, for ZRn−1 > A, the term

in parentheses is less than 1, so that (E.1) holds, and therefore the result is proved.

Proof of Theorem E.3

For each η1 > 1, let An = {ZRn+1 > η1ZRn}, n ≥ 0. Then we have that

P(i,j)(ZRn →∞) ≥ P(i,j)

( ∞⋂

n=0

{ZRn+1 > η1ZRn}
)

= lim
n→∞P(i,j)

(
n⋂

l=0

Al

)

= lim
n→∞P(i,j) (A0)

n∏

l=1

P(i,j)

(
Al

∣∣∣∣
l−1⋂

k=0

Ak

)
. (E.9)

Since {(ZRn, Zrn)}n≥0 satisfies the Markov property, we further infer for any

n ≥ 1

P(i,j)

(
An

∣∣∣∣
n−1⋂

k=0

Ak

)
= P(i,j)


An

∣∣∣∣
⋃

i′>0,j′≥0

{(ZRn, Zrn) = (i′, j′)} ∩
n−1⋂

k=0

Ak




≥ inf
i′>ηn

1 i, j′≥0
P(i,j)

(
An

∣∣∣∣{(ZRn, Zrn) = (i′, j′)} ∩
n−1⋂

k=0

Ak

)

= inf
i′>ηn

1 i, j′≥0
P(i′,j′) (A0) . (E.10)

This calls for a suitable lower positive bound for the last infimum (as a function of

n) in order to conclude that P(i,j)(ZRn →∞) > 0. To this end, we first assume that
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α > 0.5 and therefore α(1 − β)mR > (1 − α)(1 − β)mR > 1. Take ε > 0 such that

η1 = (1− α)(1− β)mR − ε > 1. Then

Ac
0 = {ZR1 ≤ η1ZR0} ⊆ {ZR1 ≤ η1ZR0,MR1 > η1ZR0,M1 < F1}

∪ {MR1 ≤ η1ZR0} ∪ {M1 ≥ F1}.

Since ZR1 = MR1 if M1 < F1, we infer that

P(i′,j′)(ZR1 ≤ η1ZR0,MR1 > η1ZR0, M1 < F1) = 0. (E.11)

Moreover, as the reproduction laws are assumed to have finite variances, it follows

with the aid of Chebyshev’s inequality that

P(i′,j′)(MR1 ≤ η1ZR0) = P
(
MR1 − (1− α)(1− β)mRi′ ≤ −εi′

) ≤ C1

i′
, (E.12)

for some positive constant C1. Following a similar argument to that applied in (E.3),

we obtain that, for some a < 1,

P(i′,j′)(M1 ≥ F1) ≤ fR(a)i′ . (E.13)

From (E.11)–(E.13), we obtain that

P(i′,j′)(A0) = 1− P(i′,j′)(A
c
0) ≥ 1− C1

i′
− fR(a)i′ . (E.14)

Since η1 > 1 and fR(a) < 1, from (E.9) and (E.10) it follows that

P(i,j)(ZRn →∞) ≥ P(i,j) (A0) lim
n→∞

n∏

l=1

inf
i′>ηl

1i, j′≥0
P(i′,j′) (A0)

≥ P(i,j) (A0) lim
n→∞

n∏

l=1

(
1− C1

ηl
1i
− fR(a)ηl

1i

)
> 0,

and the proof is complete for α > 0.5.

Assume now that α < 0.5 and therefore (1 − α)(1 − β)mR > α(1 − β)mR > 1.

Take ε > 0 so small that γ1 = α(1−β)(mR− ε) > 1, α(mr− ε) > 0 (if mr 6= 0), and

η1 = γ1(1− 3ε
m ) > 1, with m = min{mR,mr}+ε if mr 6= 0 or m = mR +ε otherwise.

Moreover, we can take ε such that α(mR + ε) < (1−α)(mR− ε) and, when mr 6= 0,

α(mr + ε) < (1− α)(mr − ε).

Considering the set D as in the proof of Theorem E.2 with n = 1, we write

Ac
0 = {ZR1 ≤ η1ZR0} ⊆ Dc ∪ {ZR1 ≤ η1ZR0, D}. (E.15)
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Analogously to (E.6), we conclude that P(i′,j′)(D
c) ≤ C2

i′
for some suitable posi-

tive constant C2.

We focus now on bounding the second set on (E.15). On D, we have that

F1 ≤ α(mR+ε)ZR0+α(mr+ε)Zr0 < (1−α)(mR−ε)ZR0+α(mr−ε)Zr0 ≤ M1, a.s.

and by the definition of the model, the conditional distribution of ZR1 given F1 is

hypergeometric. Hence

P(i′,j′)(ZR1 ≤ η1ZR0, D) = E(i′,j′)[P(i′,j′)(ZR1 ≤ η1ZR0|F1)ID]

= E(i′,j′)

[
P(i′,j′)

(
ZR1 −E(i′,j′)[ZR1|F1] ≤ η1ZR0 − F1

M1
MR1|F1

)
ID

]
.

(E.16)

But on D, if mr 6= 0, one has that

η1ZR0 − F1

M1
MR1

≤η1ZR0 − (1− α)(1− β)(mR − ε)ZR0
α((mR − ε)ZR0 + (mr − ε)Zr0)

(1− α)((mR + ε)ZR0 + (mr + ε)Zr0)

≤η1ZR0 − γ1ZR0
(mR + ε)ZR0 + (mr + ε)Zr0 − 2εZR0 − 2εZr0

(mR + ε)ZR0 + (mr + ε)Zr0

≤η1ZR0 − γ1ZR0

(
1− 2ε

m

)
=
−ε

m
γ1ZR0, a.s.,

with m = min{mR,mr}+ ε. And, if mr = 0,

η1ZR0 − F1

M1
MR1 ≤ η1ZR0 − (1− α)(1− β)(mR − ε)ZR0

α(mR − ε)ZR0

(1− α)(mR + ε)ZR0

≤ η1ZR0 − γ1ZR0

(
1− 2ε

m

)
=
−ε

m
γ1ZR0 a.s.,

with m = mR + ε. Let us write δ = γ1ε/m, with m taking the value corresponding

to each case. Applying the previous inequalities and the bounds for the tails of a

hypergeometric distribution provided in Hush and Scovel (2005), for i′ large enough,

we deduce from (E.16)

P(i′,j′)(ZR1 ≤ η1ZR0, D) ≤ E(i′,j′)
[
P(i′,j′)

(
ZR1 −E(i′,j′)[ZR1|F1] ≤ −δi′|F1

)
ID

]

≤ E(i′,j′)

[
exp

{
−2

δ2i′2 − 1
MR1 + 1

}
ID

]

≤ exp
{
−2

δ2i′2 − 1
(1− α)(1− β)(mR + ε)i′ + 1

}
≤ K1e

−B1i′ ,

(E.17)
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for some positive constants K1 and B1. Then, taking into account the decomposition

in (E.15), from (E.6) and (E.17) one obtains that

P(i′,j′)(A0) = 1− P(i′,j′)(A
c
0) ≥ 1− C2

i′
−K1e

−B1i′ , (E.18)

and therefore, since η1 > 1 and B1 > 0, from (E.9) and (E.10) it follows that

P(i,j)(ZRn →∞) ≥ P(i,j)(A0) lim
n→∞

n∏

l=1

(
1− C2

ηl
1i
−K1e

−B1ηl
1i

)
> 0,

for every i large enough. But since all states of the chain {(ZRn, Zrn)}n≥0 with

non-zero first coordinate are communicating, we have in fact that, for α > 0.5,

P(i,j)(ZRn →∞) > 0 for all i ≥ 1, j ≥ 0.

Finally, we deal with the case α = 0.5. Take ε > 0 small enough so that 1 <

η1 < γ1 and m > 0 with η1, γ1, and m as in the previous case, α < 0.5. Considering

the set D also as in the case α < 0.5, we write

Ac
0 = {ZR1 ≤ η1ZR0} ⊆ {ZR1 ≤ η1ZR0,MR1 > η1ZR0,M1 < F1}

∪ {MR1 ≤ η1ZR0} ∪Dc ∪ {ZR1 ≤ η1ZR0,M1 ≥ F1, D}. (E.19)

As we proved in (E.11),

P(i′,j′)(ZR1 ≤ η1ZR0,MR1 > η1ZR0, M1 < F1) = 0. (E.20)

As η1 < γ1 and α = 1− α, using the Chebyshev inequality as in (E.12),

P(i′,j′)(MR1 ≤ η1ZR0) ≤ P(i′,j′)(MR1 ≤ γ1ZR0) ≤ C3

i′
, (E.21)

for some positive constant C3. Finally, analogously to (E.6) and (E.17), we have,

respectively, that P(i′,j′)(D
c) ≤ C4

i′
and

P(i′,j′)(ZR1 ≤ η1ZR0,M1 ≥ F1, D) ≤ K2e
−B2i′ , (E.22)

for some suitable positive constants C4, K2, and B2. Then, taking into account the

decomposition in (E.19), from (E.6), (E.20)–(E.22), one obtains that

P(i′,j′)(A0) = 1− P(i′,j′)(A
c
0) ≥ 1− C5

i′
−K2e

−B2i′ , (E.23)

for some positive constant C5 and therefore, since η1 > 1 and B2 > 0, from (E.9)

and (E.10) it follows that

P(i,j)(ZRn →∞) ≥ P(i,j) (A0) lim
n→∞

n∏

l=1

(
1− C3

ηl
1i
−K2e

−B2ηl
1i

)
> 0,
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for i large enough. But since all states with non-zero first coordinate are commu-

nicating, we conclude that, for α = 0.5, P(i,j)(ZRn → ∞) > 0 for all i ≥ 1, j ≥ 0

which completes the proof.

Proof of Theorem E.6

To prove the result, we begin by proving a number of preparative lemmas. The first

one shows that in the event of survival of the R-genotype the growth rate of the

number of R-couples over one generation is ultimately greater than unity.

Lemma E.1 If min{α(1− β)mR, (1− α)(1− β)mR} > 1 then

lim inf
n→∞

ZRn+1

ZRn
> 1 a.s. on {ZRn →∞}.

Proof Let η1 > 1 and An = {ZRn+1 > η1ZRn} for n ≥ 0. It is enough to prove

that, for some η1,

P
(
lim inf
n→∞ An

)
≥ P (ZRn →∞), (E.24)

because lim infn→∞An ⊆ {ZRn →∞} a.s. and the previous inequality implies that

lim inf
n→∞ An = {ZRn →∞} a.s.

To this end, we define for each N ≥ 1 the stopping time T (N) = min{n : ZRn ≥ N},
where T (N) = ∞ if ZRn < N for all n ≥ 0. Obviously

{ZRn →∞} ⊆ {T (N) < ∞} (E.25)

for each N , and {T (N) = k} = {ZRk ≥ N, ZRn < N, n = 0, . . . , k − 1}, k ≥ 1.

Since {(ZRn, Zrn)}n≥0 is a homogeneous Markov chain, one has that

P

( ∞⋂

n=k

An

∣∣∣∣∣T (N) = k

)
= P

( ∞⋂

n=k

An

∣∣∣∣∣ZRk ≥ N

)
≥ inf

i≥N,j≥0
P(i,j)

( ∞⋂

n=0

An

)

and therefore, by applying (E.25), one deduces for every N that

P
(
lim inf
n→∞ An

)
≥

∞∑

k=0

P

( ∞⋂

n=k

An

∣∣∣∣∣T (N) = k

)
P (T (N) = k)

≥ inf
i≥N,j≥0

P(i,j)

( ∞⋂

n=0

An

)
P (ZRn →∞).
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Hence, to obtain (E.24), it suffices to prove the existence of η1 > 1 such that

lim
i→∞

P(i,j)

( ∞⋃

n=0

Ac
n

)
= 0.

This last union of sets can be rewritten as the union of the disjoint sets Bn defined

by

B0 = Ac
0, Bn = Ac

n ∩An−1 ∩ · · · ∩A0 , n ≥ 1,

and we are thus going to prove the existence of η1 >1 such that lim
i→∞

∞∑

n=0

P(i,j)(Bn)= 0.

For every n ≥ 1, the probability of Bn can be calculated as

P(i,j)(Bn) = E(i,j)[IAn−1∩···∩A0P (Ac
n|Gn)],

so that a convenient bound needs to be found for P (Ac
n|Gn).

As was shown in the proof of Theorem E.3, if α > 0.5 then one can take ε > 0

such that η1 = (1− α)(1− β)mR − ε > 1 and from (E.14) one infers that

P (Ac
n|Gn) ≤ D1

ZRn
+ fR(a)ZRn a.s. on {ZRn > 0},

for a suitable constant D1 > 0 and 0 < a < 1. And if α ≤ 0.5, there exists ε > 0

such that η1 = α(1− β)(mR− ε)(1− 3ε
m ) > 1, and from (E.18) and (E.23) one infers

that

P (Ac
n|Gn) ≤ D2

ZRn
+ D3e

−D4ZRn a.s. on {ZRn > M},
for some suitable positive constants D2, D3, D4, and M . Since ZRn ≥ ηn

1 ZR0 on

An−1∩· · ·∩A0, it thus follows that, regardless of the value of α, there exist constants

K1,K2 > 0, and 0 < a1 < 1 such that

E(i,j)[IAn−1∩···∩A0P (Ac
n|Gn)] ≤ K1

iηn
1

+ K2a
iηn

1
1 ,

whence ∞∑

n=0

P(i,j) (Bn) ≤ K1

i

∞∑

n=0

η−n
1 + K2

∞∑

n=0

a
iηn

1
1 .

Since η1 > 1, the first series is convergent and the accompanying factors converge to

0 as i tends to ∞. By the dominated convergence theorem, the other term tends to

0 as i tends to ∞. This completes the proof.

The second lemma shows that the ratio of the total number of females to the

total number of males in each generation equals α/(1 − α) when the R-genotype

survives.
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Lemma E.2 If min{α(1−β)mR, (1−α)(1−β)mR} > 1 then, for each 0 < ρ < 1/2,

Fn+1

Mn+1
=

α

1− α
+ O(ZR−ρ

n ) a.s. on {ZRn →∞}, as n →∞.

Proof. On {ZRn →∞}, one can write

Fn+1

Mn+1
=

Fn+1

mRZRn + mrZrn

mRZRn + mrZrn

Mn+1
.

Then, by the fact that if {an}n≥0 and {bn}n≥0 are two sequences of positive numbers

such that bn → 0 and an = a + O(bn) for some a > 0 as n → ∞ then a−1
n =

a−1 + O(bn), it is enough to prove that, as n →∞, a.s. on {ZRn →∞},
Mn+1

mRZRn + mrZrn
= 1− α + O(ZR−ρ

n ) and
Fn+1

mRZRn + mrZrn
= α + O(ZR−ρ

n ).

We only prove the first asymptotic relation because the second one follows analo-

gously. Fix any 0 < ρ < 1/2 and define, for n ≥ 0,

An = {|Mn+1 − ((1− α)mRZRn + (1− α)mrZrn)| ≥ ZR−ρ
n (mRZRn + mrZrn)}.

Applying Chebyshev’s inequality, it follows that
∞∑

n=0

P (An|Gn) ≤
∞∑

n=0

V ar(Mn+1|Gn)
ZR−2ρ

n (mRZRn + mrZrn)2
. (E.26)

If mr 6= 0, and taking m = min{mR,mr}, then for some positive constants B1

and C1, (E.26) is upper bounded by

∞∑

n=0

B1Zn

ZR−2ρ
n m2Z2

n

≤ C1

∞∑

n=0

1
ZR1−2ρ

n

a.s. on {ZRn →∞}.

If mr = 0 then, for some positive constants B2 and C2, (E.26) is upper bounded

by
∞∑

n=0

B2ZRn

m2
RZR

2(1−ρ)
n

≤ C2

∞∑

n=0

1
ZR1−2ρ

n

a.s. on {ZRn →∞}.

Whichever the case, from Lemma E.1 one concludes that
∞∑

n=0

P (An|Gn) < ∞ a.s. on {ZRn →∞}.

Therefore, the conditional Borel-Cantelli lemma yields

{ZRn →∞} ⊆
{ ∞∑

n=0

P (An|Gn) < ∞
}

= lim inf
n→∞

{∣∣∣∣
Mn+1

mRZRn + mrZrn
− (1− α)

∣∣∣∣ < ZR−ρ
n

}
a.s.
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and this gives the desired result.

As a direct consequence of the second lemma, it is proved that if the R-genotype

survives and α 6= 0.5 then the number of females of a generation will eventually

exceed the number of respective males, or vice versa, depending on whether α is

greater or less than 0.5, as one can see in the following corollary.

Corollary E.2

(i) If α < 0.5 and α(1− β)mR > 1, then {ZRn →∞} ⊆ {Fn < Mn ev.} a.s.

(ii) If α > 0.5 and (1−α)(1−β)mR > 1, then {ZRn →∞} ⊆ {Mn < Fn ev.} a.s.

The following lemma describes the asymptotic behaviour of the ratio between the

number of non-mutant and mutant males and females stemming from R-couples, and

the number of this type of couple in the previous generation, respectively, given that

the R-genotype survives. Taking into account Lemma E.1, the proof of this result

follows the same ideas as Lemma A.5 in Alsmeyer et al. (2011), and is therefore

omitted.

Lemma E.3 If min{α(1−β)mR, (1−α)(1−β)mR} > 1 then, for each 0 < ρ < 1/2,

a.s. on {ZRn →∞} as n →∞,

MRn+1

ZRn
= (1− α)(1− β)mR + O(ZR−ρ

n ),
Mr

(R)
n+1

ZRn
= (1− α)βmR + O(ZR−ρ

n ),

and
FRn+1

ZRn
= αmR + O(ZR−ρ

n ).

As a corollary one has that, since the ratio between mutant-males and couples

tends to a positive constant in the event {ZRn →∞}, the number of mutant-males

grows to infinity a.s. in that event as n →∞.

Corollary E.3 If min{α(1 − β)mR, (1 − α)(1 − β)mR} > 1, then {ZRn → ∞} ⊆
{Mr

(R)
n →∞} a.s.

The following lemma shows that, for the R-genotype, the asymptotic ratio bet-

ween the number of couples and non-mutant males of a generation equals α/(1−α),

when that genotype survives. One notes the difference between this result and

Lemma E.3 which compares the number of non-mutant males of a generation with

the number of couples which they stem from.
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Lemma E.4 If α ≤ 0.5 and α(1−β)mR > 1 then, for each 0 < ρ < 1/2, as n →∞,

ZRn

MRn
=

α

1− α
+ O(ZR−ρ

n−1) a.s. on {ZRn →∞}.

Proof. We define

µR(Fn,Mn,MRn) :=





E[ZRn|Fn,Mn, MRn]
MRn

, if MRn > 0,

0, otherwise.

By the definition of the model, it is verified that, a.s. on {ZRn →∞},

µR(Fn,Mn,MRn) =





1, if Fn ≥ Mn,
Fn

Mn
, if Fn < Mn,

If α < 0.5, by Lemma E.2 and Corollary E.2, one has

{ZRn →∞} ⊆ {Fn < Mn eventually} ⊆
{
µR(Fn,Mn,MRn) =

Fn

Mn
eventually

}

⊆
{

µR(Fn,Mn,MRn) =
α

1− α
+ O(ZR−ρ

n−1)
}

a.s.

If α = 0.5, by Lemma E.2, almost surely,

{ZRn →∞} ⊆
{

Fn

Mn
= 1 + O(ZR−ρ

n−1)
}
⊆ {µR(Fn,Mn,MRn) = 1 + O(ZR−ρ

n−1)}.

In both cases, one has that, for 0 < ρ < 1/2, as n →∞,

µR(Fn,Mn,MRn) =
α

1− α
+ O(ZR−ρ

n−1) a.s. on {ZRn →∞}.

Then, it is enough to prove that, as n →∞,

ZRn

MRn
= µR(Fn,Mn,MRn) + O(ZR−ρ

n−1) a.s. on {ZRn →∞}. (E.27)

Since, a.s. on {ZRn →∞},

V ar(ZRn|Fn) =





0, if Fn ≥ Mn,(
Fn

Mn
MRn

) (
Mrn

Mn

)(
Mn − Fn

Mn − 1

)
, if Fn < Mn,

(E.28)

one obtains that V ar(ZRn|Fn) ≤ MRn a.s. on {ZRn → ∞}, because Mn − Fn ≤
Mn − 1 on {Fn > 0} and Mrn ≤ Mn. Hence, by invoking Lemma E.1, a.s. on

{ZRn →∞},
∞∑

n=0

P (|ZRn −E[ZRn|Fn]| ≥ MR1−ρ
n |Fn)≤K

∞∑

n=0

1
MR1−2ρ

n

≤K
∞∑

n=0

1
ZR1−2ρ

n

<∞,
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for some positive constant K. This gives (E.27) by the conditional Borel-Cantelli

lemma because

{ZRn →∞} ⊆
{ ∞∑

n=0

P (|ZRn −E[ZRn|Fn]| ≥ MR1−ρ
n |Fn) < ∞

}

= lim inf
n→∞

{|ZRn −E[ZRn|Fn]| < MR1−ρ
n

}

= lim inf
n→∞

{∣∣∣∣
ZRn

MRn
− µR(Fn, Mn,MRn)

∣∣∣∣ < MR−ρ
n

}
a.s.

In Lemma E.1 we showed that, in the event survival of the R-genotype, the growth

rate of the number of R-couples over one generation is ultimately greater than unity.

In the next lemma, we provide the exact value of that ratio.

Lemma E.5

(i) If α ≤ 0.5 and α(1− β)mR > 1 then, for 0 < ρ < 1/2,

ZRn+1

ZRn
= α(1− β)mR + O(ZR−ρ

n ) a.s. on {ZRn →∞}, as n →∞.

(ii) If α > 0.5 and (1− α)(1− β)mR > 1 then, for 0 < ρ < 1/2,

ZRn+1

ZRn
= (1− α)(1− β)mR + O(ZR−ρ

n ) a.s. on {ZRn →∞}, as n →∞.

Proof. We start by proving (i). On {ZRn →∞}, one can write,

ZRn+1

ZRn
=

ZRn+1

MRn+1

MRn+1

ZRn
,

and the proof finishes by Lemmas E.3 and E.4.

The proof of (ii) is directly obtained from Lemma E.3, taking into account that,

when α > 0.5, {ZRn →∞}⊆{ZRn =MRn eventually} a.s., by Corollary E.2 and

the definition of the model.

The following lemma shows that, for the R-genotype, when this genotype sur-

vives, the asymptotic ratio between the number of mutant-males stemming from

R-couples and the number of couples of this type in a generation is equal to β(1 −
α)/α(1− β) or to β/(1− β) depending on whether α < 0.5 or α ≥ 0.5, respectively.
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Lemma E.6 If min{α(1− β)mR, (1− α)(1− β)mR} > 1 then, for 0 < ρ < 1/2,

(i) If α < 0.5,
Mr

(R)
n

ZRn
=

β(1− α)
α(1− β)

+ O(ZR−ρ
n−1) a.s. on {ZRn →∞}, as n →∞.

(ii) If α ≥ 0.5,
Mr

(R)
n

ZRn
=

β

(1− β)
+ O(ZR−ρ

n−1) a.s. on {ZRn →∞}, as n →∞.

Proof. On {ZRn → ∞}, we can write
Mr

(R)
n

ZRn
=

Mr
(R)
n

ZRn−1

ZRn−1

ZRn
, and the proof

finishes by using Lemmas E.3 and E.5.

The next lemma shows that, in the event of survival of the R-genotype, the

growth rate of the number of mutant-males stemming from R-couples is ultimately

greater than one, and moreover gives the exact value of this ratio.

Lemma E.7 If min{α(1− β)mR, (1− α)(1− β)mR} > 1 then, for 0 < ρ < 1/2,

(i) If α ≤ 0.5, lim
n→∞

Mr
(R)
n+1

Mr
(R)
n

= α(1− β)mR > 1 a.s. on {ZRn →∞}.

(ii) If α > 0.5, lim
n→∞

Mr
(R)
n+1

Mr
(R)
n

= (1− α)(1− β)mR > 1 a.s. on {ZRn →∞}.

Proof. On {ZRn → ∞}, we can write
Mr

(R)
n+1

Mr
(R)
n

=
Mr

(R)
n+1

ZRn+1

ZRn+1

ZRn

ZRn

Mr
(R)
n

, and the

proof finishes by using Lemmas E.5 and E.6.

We deal now with the proof of Theorem E.6. For that, it is enough to prove that

{ZRn →∞} ⊆ {Zrn →∞} a.s.

Analogously to (E.28), one can obtain the variance of Zrn given Fn which satisfies

that V ar(Zrn|Fn) ≤ Mrn a.s. on {ZRn → ∞}. Then, for a certain 0 < ρ < 1/2,

taking into account that Mrn ≥ Mr
(R)
n and applying Chebyshev’s inequality and

Lemma E.7, one infers that, for some positive constant K, a.s. on {ZRn →∞},
∞∑

n=1

P (|Zrn − E[Zrn|Fn]| ≥ Mr1−ρ
n |Fn) ≤

∞∑

n=1

V ar(Zrn|Fn)

Mr
2(1−ρ)
n

≤ K
∞∑

n=1

1
Mr1−2ρ

n

≤ K
∞∑

n=1

1

(Mr
(R)
n )1−2ρ

< ∞.
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Hence,

{ZRn →∞} ⊆
{ ∞∑

n=1

P (|Zrn − E[Zrn|Fn]| ≥ Mr1−ρ
n |Fn) < ∞

}

= lim inf
n→∞

{|Zrn − E[Zrn|Fn]| < Mr1−ρ
n

}
a.s.

Then, as n →∞,

Zrn = E[Zrn|Fn] + O(Mr1−ρ
n )

= MrnI{Mn≤Fn} +
Fn

Mn
MrnI{Fn<Mn} + O(Mr1−ρ

n )

= Mrn

(
I{Mn≤Fn} +

Fn

Mn
I{Fn<Mn}

)
+ O(Mr1−ρ

n )

≥ Mrn min
{

1,
Fn

Mn

}
+ O(Mr1−ρ

n ) a.s. on {ZRn →∞}.

To conclude, it is enough to consider that, by Corollary E.3,

lim
n→∞Mrn = lim

n→∞(Mr(R)
n + Mr(r)

n ) = ∞ a.s. on {ZRn →∞},

and that

lim
n→∞min

{
1,

Fn

Mn

}
= min

{
1,

α

1− α

}
a.s. on {ZRn →∞}.

Therefore,

lim
n→∞Zrn = ∞ a.s. on {ZRn →∞},

which concludes the proof.
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Discussion and Conclusions

Final discussion

The first aim of this work has been to complete the study of the asymptotic behaviour

and develop the inferential theory of both bidimensional two-sex branching processes

introduced in González et al. (2006) –with preference– and in González et al. (2009)

–with blind choice– in the context of Y-linked genes. Likewise, I have introduced and

studied a new model capable of modeling the very interesting genetic situation, not

covered by the previous ones, in which mutations of the alleles are allowed. In order to

carry out all the proposed tasks, I have applied advanced mathematical tools from the

theory of branching processes. In particular, I have used the techniques in Asmussen

and Hering (1983, Ch. XI) to derive the limiting growth rates of surviving genotypes

in the model with blind choice and also to study the dependence relation between an

allele of a Y-linked gene and its mutations. Then, to develop the estimation theory,

I have applied a classical procedure to obtain the MLEs and also an EM method

and MCMC techniques to give an answer to incomplete data problems. The results

were split into five papers.

First, in Paper A, we developed the study of the asymptotic rates of growth of

a Y-BBP with blind choice on the sets of fixation of one genotype and of coexistence

of both genotypes. The results depend on α, that is, the probability of an offspring

being female and on the mean number of offspring per R- or r-couple, i.e. mR and

mr, respectively. The most relevant conclusions of this paper are that the numbers of

couples and males (of any genotype) grow geometrically at the same rate in the event

of survival of the genotype. In particular, this growth rate is defined by the mean

number of males or females (depending on whether α > 0.5 or α ≤ 0.5, respectively)

generated by a couple of the given genotype. Furthermore, this behaviour does not

171



Discussion and Conclusions

depend on the extinction or survival of the other genotype. This represents a first

important difference with respect to the Y-BBP with preference because, although

for the case α > 0.5 both models behave in the same manner, when α < 0.5 the

R genotype grows, on the set of survival of both genotypes, at the rate defined

by (1 − α)mR in the model with preference and at the rate given by αmR in the

model with blind choice. The r genotypes behave in the same manner growing at

the rate given by αmr in both models. With respect to the number of females, we

also obtained a geometric growth. However, in this case the asymptotic growth rate

is defined by the mean number of males or females (again depending on whether

α > 0.5 or α ≤ 0.5, respectively) generated by a couple of the dominant genotype,

that is, that which has more capacity of reproduction. Finally, we also studied the

classical problems in population genetics of determining the limiting sex ratio and

the limiting genotype frequencies. We have concluded that, on the set of coexistence,

the limiting sex ratio does not depend on the allele but only on α. The limiting R

genotype frequencies of couples and males do not depend on α, and are equal to

unity if the R genotype is dominant (mR > mr). Equality of mR and mr implies

that the limiting genotype frequencies are random and strictly between zero and

unity on the set of coexistence. Thus, there is no dominant genotype in this case.

Naturally, the results for the r genotype are analogous.

Once it had been proved that the behaviour of these models strongly depends

on the values of several parameters, we developed the estimation theory for both

models. We set out the work from two viewpoints: frequentist and Bayesian.

In Papers B and C, we have studied the parametric and the non-parametric

estimation, respectively, from a frequentist viewpoint. Although, both papers focus

on the Y-BBP with preference, the results are also valid, in general, for the Y-BBP

with blind choice. First we considered that the complete family tree is observed

up to some generation, as usual in the classical theory of branching processes. In

this case, we obtained the corresponding MLEs for the parameters of the model,

that is, α, mR, and mr, applying a standard procedure. In particular, the estimator

for α was obtained by means of the proportion of females between the observed

individuals in all generations. The estimator for mR (mr) was obtained as the total

number of individuals generated by R-couples (r-couples) as a fraction of the total

number of R-couples (r-couples). For those estimators, their asymptotic properties

–consistency and limiting normality– were studied explicitly for the non-parametric

case.
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In the second place, we considered of interest the problem of estimating such

parameters using only the sample information that is usually more plausibly to be

observed in practice. Given that the allele is expressed in the male’s phenotype, we

considered a realistic situation where the only available data are the total number

of females and the total number of males of each genotype up to some generation

instead of the complete family tree. Since, in the Y-BBP with preference, the number

of each type of couple is given in a deterministic way, once given the total number of

females and the total number of each type of male, then the initial sample contains

the same information as including the observation of the couples of each genotype.

Notice that this is not true for the model with blind choice because in this model the

mating phase is random. Therefore, the results can be applied to this model only if

one can observe the total number of females and males and couples of each type in

each generation, which is difficult in practice.

Under this sample scheme, the estimation problem can be considered as an in-

complete data problem, so that we applied the EM method in order to obtain MLEs.

In Papers B and C, we implemented such a procedure, differentiating between pa-

rametric and non-parametric frameworks, respectively, and illustrated how it works

by means of simulated examples. Also the asymptotic properties (consistency and

limiting distribution) were studied via simulations. In both cases, the results were

very accurate, allowing the application of the Y-BBP with preference under realistic

assumptions.

When the Y-linked genes are not expressed in the phenotype of males (or if

they are, they do not play any role in the mating process), as is assumed in the

Y-BBP with blind choice, the more realistic observation, in practice, is that formed

by the total number of females and males in each generation. Also in this case, the

problem can be considered to be an incomplete data problem and a first approach

to solve it is to try to apply the EM algorithm. However, in this case, due to the

fact that the sample has not a Markovian structure because the different genotypes

are indistinguishable, it is not possible to reconstruct the latent vectors generation

by generation in an independent way. Then, in order to implement the method, one

would have to generate the complete latent vector in one step. This is very hard to

generate from a computational viewpoint, due to the high dimension of the latent

vector when N is large enough. For this reason, we decided to deal with the problem

from a parametric Bayesian point of view, making use of the MCMC methodological

approach because it allows us to generate the latent vector sequentially.
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Taking this into account, in Paper D, we developed a method based on the Gibbs

sampler to approximate the posterior distributions of the model parameters when

one observes the total number of females and males in each generation. Moreover, we

assumed that one can observe the total number of the two types of males in the initial

generation in order to give some information to the procedure about the different

genotypes which exist in the population. We presented in the paper a simulated

example based on a small and realistic sample in which one can observe that the

method works quite well if one wants to estimate the probability of an offspring being

female, α. However, the posterior distributions of the mean number of individuals

generated by each type of couple, mR and mr, obtained by the implementation of

this method, do not provide accurate information about the parameters, and we

concluded that the sample scheme is insufficient.

In order to improve the accuracy of the method, we modified it until finding

sufficiently informative posterior distributions. The first modification of the method

consisted of introducing more specific information about mR and mr with the ob-

jective of differentiating them. For that, we imposed the condition that one of the

means is greater than the other and that neither type of male has become extinct.

With this added information, we obtained very satisfactory results, differentiating

clearly the two parameters even when the observed sample is small.

We also considered it of interest to introduce another sample scheme which provi-

des slightly more information about the two genotypes. In particular, we introduced

into the initial sample scheme the knowledge of the total number of each type of

male in the last generation. In this case, we also obtained very satisfactory results.

Note that non-parametric Bayesian estimation is also possible, but there would be

more difficulties involved in implementing the method because the problem would

then be of a greater dimension with more latent variables.

To conclude, I would note that, based on Monte-Carlo estimation, we obtained

in the last three papers the estimated predictive distribution of future population

sizes.

Once we had achieved the objective of completing the study of the already known

Y-BBPs, we proposed carrying out a natural extension of such models by considering

a new branching process in which the appearance of mutations in an allele of a Y-

linked gene is allowed. Some important and interesting examples of this situation

are various masculine fertility problems and the issue of reconstructing the history

of paternal lineages.
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Hence, in Paper E, we introduced a bidimensional BBP to model the evolution

of the number of carriers of an original allele of a Y-linked gene and its mutations,

labeled by R and r, respectively. (We use in this model the same notation regarding

couples and males as in the previous models.) We assumed that, during the repro-

duction phase, the R-allele can be transmitted without change from father to son

or can present a mutation with probability β, turning into the r-allele. This r-allele

passes onto its descendants a different characteristic from that transmitted by the

R-allele. Moreover, we assumed that the r-allele is passed unchanged from father to

son given that all different mutations are labeled by r-allele and that back-mutation

is not allowed.

We analyzed in the paper the fate of both types of alleles in the population.

This depends on the magnitude of α (also in this case representing the probability

for an offspring to be female), on the mutation probability, β, and on the mean

number of individuals per R- or r-couple, that is mR or mr, respectively. For the

R-allele, we distinguished two possible behaviours in the long term: extinction and

explosion. The R-allele becomes extinct almost surely if the mean number of males

who carry the R-allele, that is (1 − α)(1 − β)mR, is less than or equal to one and

the mean number of females stemming from R-couples who mate with R-males, that

is α(1 − β)mR, is less than one. The R-allele has a positive probability of survival

if both expressions are greater than one. Moreover, the destiny of the mutations in

the population depends on the survival or not of the R-allele. So, we have proved

that if the R-allele has become extinct, then the r-allele behaves as a BBP and its

extinction or survival depends on, respectively, whether one of the mean numbers

of females or males per r-couple, that is αmr or (1 − α)mr, is less than or equal

to unity or they are both greater than unity. Finally, while the R-allele survives,

the r-allele survives too due to the mutations, even the r-allele also has an infinite

growth independently of its own parameters. This is an amazing fact in comparison

with the behaviour of the r-allele in the other models in which it becomes extinct

almost surely if αmr or (1−α)mr is less than or equal to unity, or even in the model

with preference if α < 0.5 and 1 < αmr < (1− α)mR.
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Final conclusions

The following is a summary of the main contributions made in this dissertation.

1. I have obtained the geometric asymptotic growth rate of a Y-BBP with blind

choice on the sets of fixation of one genotype and of coexistence of both by

means of the mean number of females (if α ≤ 0.5) or males (if α > 0.5)

generated by a couple of the given genotype. Also, I have obtained the limiting

sex ratio (which only depends on α) and the limiting genotype frequencies

(which depend on the relation between mR and mr) on the set of coexistence.

2. I have developed the parametric and non-parametric estimation theory from

a frequentist point of view for the main parameters of the models. First, I

considered the observation of the complete family tree, a typical assumption

in branching process theory, in order to obtain the MLEs of those parameters.

After that, I restricted the sample to the observation of females and males of

each type in each generation. In this case, I applied the EM algorithm also

to obtain the MLEs of the model parameters. In both cases, I studied the

asymptotic properties (consistency and limiting distribution) and predicted

future population sizes.

3. I have developed the parametric estimation theory from a Bayesian point of

view for the main parameters of the models. Assuming that the only observable

data are the total number of females and males in each generation, I applied

the MCMC methodological approach, developing a method based on the Gibbs

sampler to approximate the posterior distributions of the model parameters.

Future population sizes were also predicted.

4. I have introduced a new bidimensional two-sex branching process which allows

the mutations of an allele of a Y-linked gene. For this model, I established

conditions for the survival/extinction of the original allele and its mutations.
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The following are some of the open questions that have arisen as consequence of the

development of this dissertation, and whose study we shall consider in the short and

medium term.

1) The study of the rates of growth for the model with
mutations

As a possible continuation of Paper E, it would be interesting to study the rates of

growth of the R-allele and its mutations on their sets of non-extinction.

Rate of growth of the original allele on the set {ZRn →∞}

A first result on this topic refers to the rate of growth of the R-allele when it has a

positive probability of survival.

Theorem 1 Let τR = min{α(1 − β)mR, (1 − α)(1 − β)mR}. If τR > 1, then

P (ZRn → ∞) > 0 and there exists a random variable WR which is positive and

finite on {ZRn →∞}, such that

lim
n→∞

ZRn

τn
R

= WR a.s. on {ZRn →∞}

and

lim
n→∞

MRn

τn
R

=





WR if α ≥ 0.5
1− α

α
WR if α < 0.5

a.s. on {ZRn →∞}

Proof By Lemma E.5 in Paper E, as n →∞,

ZRn+1

ZRn
= τR + O(ZR−ρ

n ) a.s. on {ZRn →∞}, (1)
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for each 0 < ρ < 1/2. Since furthermore,

ZRN

τN
R

= ZR0

N−1∏

n=0

ZRn+1

τRZRn

for each N ≥ 1, one infers from (1) and Theorem 7.28 in Stromberg (1981) that

0 <
∞∏

n=0

ZRn+1

τRZRn
< ∞ a.s. on {ZRn →∞},

and thus 0 < WR = limn→∞ τ−n
R ZRn < ∞ a.s. on {ZRn →∞}.

The result holds true for MRn taking into account that, by Lemma E.3 in Paper

E,

lim
n→∞

MRn

ZRn−1
= (1− α)(1− β)mR + O(ZR−ρ

n ) a.s. on {ZRn →∞},

which concludes the proof.

Intuitively, this theorem establishes that the numbers of R-couples and R-males

grow geometrically at the rate given by the mean number of non-mutant males

generated by an R-couple or by the mean number of females stemming from an R-

couple who mate with non-mutant males, respectively, depending on whether α is

greater than 0.5 or not.

Rate of growth of the mutant-allele on the set {ZRn → 0, Zrn →∞}

We have shown in Paper E that the process {Zrn}n≥0 evolves as a BBP on the

event {ZRn → 0} (at least from one n on for each path), therefore the asymptotic

properties established by Bagley (1986) can be applied here and we deduce the

following result:

Theorem 2 Let τr = min{αmr, (1 − α)mr}. If τr > 1, then P (ZRn → 0, Zrn →
∞) > 0 and there exists a random variable Wr which is positive and finite on

{ZRn → 0, Zrn →∞}, such that

lim
n→∞

Zrn

τn
r

= Wr a.s. on {ZRn → 0, Zrn →∞}.

Intuitively, this theorem states that, if the R-couples have disappeared when the

number of r-couples explodes to infinity, then this number grows geometrically at the

rate given by the minimum between the mean number of males or females stemming

from those r-couples.
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Figure 1: Plot of Zrn/ZRn for several paths of a process when mr > (1−β)mR (left
plot), mr = (1− β)mR (middle plot), and mr < (1− β)mR (right plot).

Rate of growth of the mutant-allele on the set {ZRn →∞}

The study of the rate of growth of the process {Zrn}n≥0 on the event {ZRn →
∞, Zrn →∞} = {ZRn →∞} (see Paper E) turns out to be quite a bit more difficult

than the previous cases because of the dependency of the survival of the r-allele on

the behaviour of the R-allele. So, one needs to study the relation between, for

example, ZRn and Zrn, Zrn+1 and Zrn, and Mrn+1 and Zrn in long term. In order

to conjecture some possible results for those cases and establish a final conjecture

for the rate of growth of Zrn, we shall make a series of simulations of Y-BBP with

mutation taking α = 0.47, β = 0.007, initial number of couples (ZRn, Zrn) = (10, 0),

and R- and r-allele probability laws following Poisson distributions of parameters mR

and mr, respectively.

First of all, we deal with the limiting behaviour of Zrn/ZRn. For that, we

simulate, for different values of mR and mr, a series of paths of a Y-linked BBP with

mutations.

One can appreciate in Figure 1 that the limiting behaviour of Zrn/ZRn changes

depending on the relation between mr and (1 − β)mR. So, when mr > (1 − β)mR

(see the left plot where mr = 2.4 and mR = 2.3), one can observe that Zrn/ZRn

grows to infinity geometrically. When mr = (1 − β)mR (see middle plot where

mr = 2.1846 and mR = 2.2), Zrn/ZRn also grows to infinity, however now it does

so linearly. Finally, when mr < (1− β)mR, it converges to a constant that we have

determined empirically to correspond to the expression βmR/((1−β)mR−mr) (see

right plot where mr = 1.7, mR = 2.2 and the red line represents exactly the previous

expression). This limiting behaviour is, a priori, surprising because in the other Y-

BBP models (see González et al. (2008) and Alsmeyer et al. (2011)) the asymptotic
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growth has always been geometric, so that the ratio Zrn/ZRn always tends to 0 or

to infinity exponentially, or to a random variable.

Based on this simulated study, we give the following conjecture for the limiting

behaviour of the quotient between the total number of r-couples and R-couples.

Conjecture 1 If min{α(1− β)mR, (1− α)(1− β)mR} > 1, then, a.s. on {ZRn →
∞},

lim
n→∞

Zrn

ZRn
=

{
∞ if mr ≥ (1− β)mR

βmR

(1−β)mR−mr
if mr < (1− β)mR.

With this conjecture, one aims to establish that, on the set of survival of the

R-genotype, the r-genotype is the dominant one if the mean number of offspring

per r-couple is greater than or equal to the mean number of offspring per R-couple

multiplied by the probability of no mutation. Moreover, the asymptotic growth is

geometric when mr > (1− β)mR and linear when mr = (1− β)mR. Actually, for n

large enough,
Zrn

ZRn
' τ̃nW for some τ̃ > 1 and a r.v. W when mr > (1− β)mR and

Zrn

ZRn
' nγ + W ∗ for some positive constant γ (because these are parallel lines, see

middle plot in Figure 1) and some r.v. W ∗ when mr = (1− β)mR. Otherwise, there

is no dominant genotype because the asymptotic ratio between the number of r-

and R-couples of a generation converges to the positive and finite value: βmR/((1−
β)mR −mr).

From these results, Theorem 1 could help us to form a conjecture on the behaviour

of Zrn. When mr > (1−β)mR, it is clear that Zrn grows in the long term geometri-

cally with a rate greater than τR. To determine this rate, we could study Zrn+1/Zrn

(when this quotient is well-defined, i.e., from some n on for each path). Nevertheless,

in the case mr = (1−β)mR, one has that, for n large enough,
Zrn

τn
R

' (nγ + W )WR,

from where
Zrn

nτn
R

' (γ +
1
n

W )WR ' γWR. (2)

Hence, one has that the sequence that normalizes {Zrn}n>0 is {nτn
R}n>0, and that

the limit is proportional to the limit of ZRn/τn
R. Notice that, in this case, the

study of Zrn+1/Zrn is not useful to determine γ, because, taking into account (2),

Zrn+1/Zrn must converge to τR. For that, one has to study Zrn/nZRn which must

converge to γ.

Finally, the case mr < (1− β)mR is the easiest, because in this case, for n large

enough,
Zrn

ZRn
' δ =

βmR

((1− β)mR −mr)
, and then

Zrn

τn
R

' δWR.
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Figure 2: Plot of Zrn+1/Zrn for several paths of a process when mr > (1−β)mR (left
plot), mr = (1− β)mR (middle plot), and mr < (1− β)mR (right plot). Horizontal
line: max{αmr, α(1− β)mR}.

Now we deal with the asymptotic ratio of the quotient between the total number

of r-couples in consecutive generations. In order to establish a possible result, for the

case α < 0.5 we have simulated a series of paths of the process and, for different values

of mR and mr (which are the same as in the examples in Figure 1), one observes that

Zrn+1/Zrn converges to max{αmr, α(1−β)mR} (see Figure 2). Then, we make the

following conjecture,

Conjecture 2 Let τ1 = max{αmr, α(1 − β)mR} and τ2 = max{(1 − α)mr, (1 −
α)(1− β)mR}. If min{α(1− β)mR, (1− α)(1− β)mR} > 1, then

lim
n→∞

Zrn+1

Zrn
= τ a.s. on {ZRn →∞},

where τ = τ1 if α ≤ 0.5 or τ = τ2 if α > 0.5.

Notice that in the case mr > (1 − β)mR, this conjecture leads us to conclude

that the asymptotic growth rate of Zrn is given by τ1 or τ2 depending on whether

α ≤ 0.5 or not. Also the conjecture is in accordance with our comments above.

Now, it only remains to determine γ. To this end, we simulate, for mr = (1 −
β)mR, a series of paths of a Y-BBP with mutations (with the same parameters as

in the middle plot in Figure 1), and it can be observed in Figure 3 that Zrn/nZRn

converges to a constant that we have determined empirically to correspond to β.

Therefore, we conjecture that γ = β, and then can make the following conjecture.

Conjecture 3 Let τ1 = max{αmr, α(1 − β)mR} and τ2 = max{(1 − α)mr, (1 −
α)(1− β)mR}. If min{α(1− β)mR, (1−α)(1− β)mR} > 1, then P (ZRn →∞) > 0

and there exists a random variable W̃ which is positive and finite on {ZRn → ∞},
such that, a.s. on {ZRn →∞},
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Figure 3: Plot of Zrn/nZRn for several paths of a process when mr = (1 − β)mR.
Horizontal line: β.
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Figure 4: Plot of Zrn/τn for several paths of a process when mr > (1− β)mR (left
plot), mr = (1− β)mR (middle plot), and mr < (1− β)mR (right plot).

(i) If mr > (1− β)mR, then lim
n→∞

Zrn

τn
= W̃ ,

(ii) If mr < (1− β)mR, then lim
n→∞

Zrn

τn
=

(
βmR

(1− β)mR −mr

)
WR,

(iii) If mr = (1− β)mR, then lim
n→∞

Zrn

nτn
= βWR,

where τ = τ1 if α ≤ 0.5 or τ = τ2 if α > 0.5 and where WR is given by Theorem 1.

We have made some simulations in order to support this conjecture. One ob-

serves in Figure 4 that, for different values of mr and mR (which are the same

as in the examples in Figure 1) and for α < 0.5, this rate of growth equals τ1 =

max{αmr, α(1−β)mR} when mr 6= (1−β)mR, and that the normalized sequence is

{nτn
1 }n>0 when mr = (1− β)mR (one can observe different slopes of the paths due

to the random limit βWR). The analogous behaviour is observed when α ≥ 0.5.

182



Questions for further research

0 20 40 60 80 100 120

0
50

0
10

00
15

00
20

00
25

00
30

00

0 100 200 300 400 500

0
10

0
20

0
30

0
40

0
50

0

0 100 200 300 400

0
5

10
15

20

Figure 5: Plot of Zrn/Mr
(R)
n+1 for several paths of a process when mr > (1 − β)mR

(left plot), mr = (1− β)mR (middle plot), and mr < (1− β)mR (right plot).

We can also deal with the limiting behaviour of the total number of mutant males

between the total number of r-couples, distinguishing whether the males stem from

r- or R-couples. Following the same ideas as in Lemma E.3 in Paper E, it is easy

to prove that the asymptotic ratio between the number of r-males stemming from

r-couples and the number of this type of couples in the previous generation equals

(1− α)mr.

Taking into account that Mr
(R)
n+1/ZRn converges almost surely to the constant

(1− α)βmR on {ZRn → ∞} (see Lemma E.3 in Paper E), then Zrn/Mr
(R)
n+1 (well-

defined for each path from some n on) should have the same type of growth as

Zrn/ZRn shown in Conjecture 1. To support this idea, we simulate a series of paths

of a Y-BBP with mutations (the values of mR and mr are the same as in Figure 1)

and, in Figure 5, one can appreciate that Zrn/Mr
(R)
n+1 grows geometrically to infinity

when mr > (1 − β)mR (left plot) and linearly to infinity when mr = (1 − β)mR

(middle plot).

Moreover, Zrn/Mr
(R)
n+1 converges to a finite and positive constant when mr <

(1−β)mR. In this case, this constant is given by the expression ((1−α)((1−β)mR−
mr))−1 which is the inverse of the difference between the mean number of non-mutant

males stemming from R-couples and the mean number of males stemming from r-

couples (see Figure 5, right plot).

Based on this simulated study, we conjecture the following result.

Conjecture 4 If min{α(1− β)mR, (1− α)(1− β)mR} > 1, then, a.s. on {ZRn →
∞},
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i) lim
n→∞

Mr
(r)
n+1

Zrn
= (1− α)mr.

ii) lim
n→∞

Mr
(R)
n+1

Zrn
=

{
0 if mr ≥ (1− β)mR

(1− α)((1− β)mR −mr) if mr < (1− β)mR.

As a direct consequence of the previous conjectures, we obtain that:

Conjecture 5 If min{α(1− β)mR, (1− α)(1− β)mR} > 1, then, a.s. on {ZRn →
∞},

(i) If mr > (1− β)mR, then lim
n→∞

Mrn

τn
= ηW̃ ,

(ii) If mr < (1− β)mR, then lim
n→∞

Mrn

τn
= η

(
βmR

(1− β)mR −mr

)
WR,

(iii) If mr = (1− β)mR, then lim
n→∞

Mrn

nτn
= ηβWR,

with τ , W̃ , and WR being as in Conjecture 3, and η = (1 − α)α−1 if α ≤ 0.5 or

η = 1 if α > 0.5.

2) The inferential study of the parameters of the model
with mutations

In Papers B, C, and D, we developed the inferential theory, from a frequentist and

a Bayesian point of view, for the Y-BBP with preference and with blind choice,

respectively. We could also develop a study of this type for the Y-BBP with mutation

introduced in Paper E. In particular, in the context of fertility problems, it would

be interesting, for example, to estimate the mutation rate (β) which would allow

us to know the proportion of normal alleles which mutate and turn into a harmful

allele responsible for those problems. Moreover, it is also of interest to estimate

the reproductive capacity of the males who carry this kind of harmful allele, i.e., to

estimate the mean number of individuals given by a couple where the male presents

a fertility problem (mr). In the context of paternal lineages, the interest would lie

in estimating the mean number of offspring given by a couple whose male presents

the original allele (mR). In this way, together with the estimation of α and β, one

could determine whether the original family line will become extinct or survive (see

Theorems E.2 and E.3 in Paper E).
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3) The development of a model with infinite alleles

In Paper E, we assumed that the R-allele can mutate giving rise to another allele

called r. We assumed in the model that any change from the original one is represen-

ted by the r-allele, i.e., this latter allele includes all alleles different from the original

one coming from its mutations. Naturally, a new model can be defined where every

new mutation is represented by a new allele. This would be a Y-linked BBP with

infinite alleles based on the ideas of Kimura and Crow (1964). These same ideas

have already been applied to the classical Bienaymé-Galton-Watson process (see, for

example, Griffiths and Pakes (1988) or Bertoin (2009)).

Based on a BBP, we could focus on an allele of a Y-linked gene which can mutate

giving rise to characteristics different from the one transmitted originally. One of the

aims of this work would be, for example, to obtain a limit theorem for the number

of alleles present at any generation. The difference of this model with respect to the

one defined in Paper E is that now one must consider that every new mutation is

unique and gives rise to a new allele. However, in the model introduced in Paper E,

we grouped all mutations from the original allele into a single group denoted r-allele.

Therefore, now with every new mutation or allele, if the male who carries such an

allele mates, a new process arises.

At a glance, this model could present more difficulties than the extension of Grif-

fiths and Pakes (1988) of the classical Bienaymé-Galton-Watson branching process

to an infinite-allele model because in the BBP the additive property is not verified

on which such an extension of the classical model is based.

4) The development of new genetic branching models lin-
ked to the X-chromosome

Throughout this dissertation, I have considered genes linked to the Y-chromosome.

However, models related to genes linked to the X-chromosome (X-linked) can be

also developed. Many diseases are related to the X-chromosome, for example in

humans, Klinefelter’s syndrome, Turner’s syndrome, haemophilia, Daltonism, and

some kinds of muscular dystrophy. Some of the alleles in X-linked genes which cause

some of these problems are lethal for the organisms that carry them (as could be

that responsible for haemophilia). If these alleles are dominant, all the carriers die,

so that they are rarely detected due to their rapid elimination from populations.
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However, recessive lethal alleles only cause the death of carrier males and homozy-

gous carrier females, though the latter must be daughters of a carrier male, so they

rarely exist. Heterozygous carrier females are able to live and reproduce. They do

not phenotypically express the genetic condition but can pass the lethal allele onto

offspring.

An interesting work would be to introduce a multitype BBP to describe the

evolution of the number of individuals carrying the alleles, R and r, of a gene linked

to the X-chromosome. As a first step, one could consider that the R-allele is dominant

and the r-allele is assumed to be recessive and lethal. Females can have two genotypes

–homozygous, RR, and heterozygous, Rr– whereas only R-males are able to live.

Homozygous and heterozygous females have identical phenotypes so that males do

not know the genotype of their mates – it can be said that they make a blind choice

among the two genotypes.

A first work in this respect entitled “Conditions for extinction of some lethal

alleles of X-linked genes” (González, M., Gutiérrez, C., Mart́ınez, R. and Mota,

M.) was presented to the 8th European Conference on Mathematical and Theoretical

Biology and Annual Meeting of the Society for Mathematical Biology held in Krakow

in June-July, 2011. In that work, it was assumed that the offspring of a couple with

a homozygous female do not carry the lethal allele, but couples with heterozygous

females can engender RR- and Rr-females and R- and r-males. Since r-males die,

the Mendelian inheritance ratios of these couples are altered. The total offspring of

each couple is modeled through a random variable whose probability distribution is

taken to be different for homozygous and heterozygous females.

We used this model to study the extinction probability of one of these lethal

alleles, i.e., under which conditions it eventually disappears, and when it survives

over the course of the generations. Such conditions are expressed in terms of the

parameters of the model. In the case of non-extinction, we investigated the evolution

of the number of carriers of these alleles by way of simulation. The mathematical

development of this theory, beyond the basic properties, remains untreated, and

constitutes an important research line for further investigation.
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Appendix: Simulation Programs

The programs for the simulations given in the papers of this Thesis have been done

through the statistical software and programming environment R (see R Develop-

ment Core Team (2011)). We shall give the programs of the Papers D and C. The

programs of the other papers are omitted by similarity with this last ones being

those more complex.

Simulation in Paper C

Simulation of Y-BBP with preference

The function ybbp.p.sim() generates, starting with (zR0,zr0) initial mating units,

N generations of a Y-BBP with preference, with probability law of genotypes R and

r following Poisson distribution of parameters lamR and lamr, respectively. We also

consider alfa the probability for a descendant to be female.

ybbp.p.sim=function(zR0,zr0,N,lamR,lamr,alfa){
res=rbind(c(0,0,0,0,zR0,zr0))
for(i in 1:N){

TR=rpois(1,lamR*res[i,5])
FR=rbinom(1,TR,alfa)
MR=TR-FR
Tr=rpois(1,lamr*res[i,6])
Fr=rbinom(1,Tr,alfa)
Mr=Tr-Fr
ZR=min(FR+Fr,MR)
Zr=min(max(0,FR+Fr-MR),Mr)
res=rbind(res,c(FR,MR,Fr,Mr,ZR,Zr))
}

res[-1,]
}
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Determination of the sample space

Firstly, we fix z0, the number of couples in a given generation and fix z1 the number

of individuals generated by those couples. Let k be the maximum number of indi-

viduals that a couple of a determined type can generate. The function fk() give a

matrix with all possible ways in which z0 couples can give rise z1 individuals if each

of these couples can only give rise at most k individuals. So, those matrices have k+1

columns, whose rows (y = (y0, .., yk)) represent the number of couples of a specific

type which have generated s individuals, with s = 0, ..., k. Note that the sum of the

values which compose each row gives exactly z0 generators, i.e.
∑k

s=0 ys = z0, and

it is also verified that
∑k

s=0 sys = z1 the number of generated individuals.

fk=function(k,z0,z1){
if(z1>k*z0)stop("No Solution")
if(k==1){res=cbind(z0-z1,z1)}else{

res=numeric()
for(i in max(0,z1-(k-1)*z0):min(z0,floor(z1/k)))

{res=rbind(res,cbind(fk(k-1,z0-i,z1-k*i),i))
}

}
res

}

The function feasible() has as arguments, the total number of couples of each

type in a determined generation, that is, zR,zr, and the total number of females

and males of each type in the next generation, that is F,MR,Mr. Moreover, kR and

kr are the maximum number of individual that an R couple and an r couple can

generate, respectively. The output of this function is a list where each component

is a matrix given by the function fk(). Each one of these matrices is calculated

varying the parameter z1 in the function fk(). The way in which that parameter

varies, depends on the number of females which each type of couples has generated.

feasible=function(zR,zr,F,MR,Mr,kR,kr) {
facR=list()
facr=list()
for(j in max(0,Mr+F-kr*zr):min(F,kR*zR-MR)){

facR=append(facR,list(cbind(j,fk(kR,zR,MR+j))))
facr=append(facr,list(cbind(F-j,fk(kr,zr,Mr+F-j))))

}
list(facR,facr)

}
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EM algorithm program

The function em() simulates iter iterations of the EM Algorithm, applied over

the sample muestra obtained from the function ybbp.p.sim and with initial values

pR0 and pr0. Firstly, the function calculates all possible ways in which the total

number of couples of each generation of the sample can give rise to the total number

of offspring (for that it uses the function feasible()) and with what probability

happens. After that, the expectation of the total number of R-couples (resp. r-

couples) which have generated kR (resp. kr) individuals, is obtained. With that

expectation, the MLEs applying the EM algorithm are calculated. The output of

this function is exactly iter values of the probability distribution of each genotype

after applying the EM algorithm iter iterations.

em=function(muestra,pR0,pr0,iter) {
kR=length(pR0)-1
kr=length(pr0)-1
N=nrow(muestra)-1
repartos=list()
for(j in 1:N){

repartos=append(repartos,list(feasible(muestra[j,4],
muestra[j,5],muestra[j+1,1],muestra[j+1,2],muestra[j+1,3],
kR,kr)))

}
pR=pR0
pr=pr0
alpha=sum(muestra[,1])/sum(muestra[,1:3])
res=numeric()
for(i in 1:iter){

sumaR=rep(0,kR+1)
sumar=rep(0,kr+1)
for(j in 1:N){

listpR=list()
listpr=list()
AR=repartos[[j]][[1]]
Ar=repartos[[j]][[2]]
spR=0
spr=0
for(k in 1:length(AR)){

ppR=apply(rbind(AR[[k]][,-1]),1,dmultinom,
muestra[j,4],pR)*dbinom(AR[[k]][1,1],
muestra[j+1,2]+AR[[k]][1,1],alpha)
ppr=apply(rbind(Ar[[k]][,-1]),1,dmultinom,
muestra[j,5],pr)*dbinom(Ar[[k]][1,1],
muestra[j+1,3]+muestra[j+1,1]-AR[[k]][1,1],
alpha)
ppRp=ppR*sum(ppr)
pprp=ppr*sum(ppR)
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spR=spR+sum(ppRp)
spr=spr+sum(pprp)
listpR=append(listpR,list(ppRp))
listpr=append(listpr,list(pprp))

}
for(k in 1:length(AR)){

sumaR=sumaR+rbind(listpR[[k]]/spR)%*%AR[[k]][,-1]
sumar=sumar+rbind(listpr[[k]]/spr)%*%Ar[[k]][,-1]

}
}
pR=sumaR/sum(sumaR)
pr=sumar/sum(sumar)
res=rbind(res,c(pR,pr))

}
res

}

Simulation in Paper D

Simulation of the Y-BBP with blind choice

The function ybbp.bc.sim() generates, starting with the vector (ZR0,Zr0) of initial

mating units, N generations of a Y-BBP with blind choice, with probability law of R

genotype following a Poisson distribution of parameter mR and probability law of r

genotype following a geometric distribution of parameter pr and mean mr. We also

consider alfa the probability for a descendant to be female.

ybbp.bc.sim=function(ZR0, Zr0, N, mR, pr, alfa){
res=cbind(0,0,0,0,0,0,ZR0,Zr0)
for(i in 1:N){

TR=sum(rpois(res[i,7],mR))
FR=rbinom(1,TR,alfa)
MR=TR-FR
Tr=sum(rgeom(res[i,8],pr))
Fr=rbinom(1,Tr,alfa)
F=FR+Fr
Mr=Tr-Fr
M=MR+Mr
if(F>=M){ZR=MR; Zr=Mr}
if(F<M){ZR=rhyper(1,MR,Mr,F);Zr=F-ZR}
res=rbind(res,c(F,M,FR,MR,Fr,Mr,ZR,Zr))
}

res[-1,]
}
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Case 1: Observing the sample FMN = {F0,MR0,Mr0, FM1, ..., FMN}
We start assuming in the paper that we can observe the total number of females and

males from generation 1 to generation N as well as the total number of females and

the total number of each type of males in the initial generation, that is the sample

FMN . When it comes to calculating the latent vectors ZRrN = {ZRr0, ..., ZRrN}
and FMRrN = {FMRr1, ..., FMRrN}, we simulate all possible feasible vectors

generation by generation.

Determination of the latent vectors ZRrN and FMRrN

As it was indicated in the paper, to determine these latent vectors, we must to

distinguish three steps. In the first one, we calculate all possible values of the latent

vector ZRr0. As in the initial generation, we observe the total number of females

(F0) and the total number of each type of males (MR0, Mr0), the following function

gives all possible couples of each type which have been able to be formed with F0

females, MR0 males of type R and Mr0 males of type r.

c1factgenpg=function(F0,MR0,Mr0){
res=numeric()
if(F0>=MR0+Mr0){res=rbind(res,c(F0,MR0,0,Mr0,MR0,Mr0))}
else{

a=c(F0,MR0,0,Mr0)
b=numeric()
for(k in max(0,F0-Mr0):min(F0,MR0)){b=rbind(b,c(a,k,F0-k))}
res=rbind(res,b)
}

res
}

Next, we calculate all possible values of the latent vectors (FMRrn, ZRrn) for

any n = 1, ..., N − 1. For that, we fix F females and M males in a given generation.

The next function calculates all possible combinations of females and males given by

R- and r-couples in that generation so that together sum F females and M males, as

well as, the number of all possible couples of each type in each case.

c1factgen=function(F,M){
res=numeric()
for(i in 0:F){

for(j in 0:M){
if(F>=M){res=rbind(res,c(i,j,F-i,M-j,j,M-j))}
else{

a=c(i,j,F-i,M-j)
b=numeric()
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for(k in max(0,F-M+j):min(F,j)){b=rbind(b,c(a,k,F-k))}
res=rbind(res,b)

}
}

}
res
}

Finally, we use the previous functions to generate all possible values of the latent

vectors ZRrN and FMRrN for a given sample (F0,MR0,Mr0,FM) with FM a matrix

containing the total number of females and males from generation 1 to generation

N .

c1facttotal=function(F0,MR0,Mr0,FM){
res=list(c1factgenpg(F0,MR0,Mr0))
for(i in 1:nrow(FM)){

F=FM[i,1]
M=FM[i,2]
res=append(res,list(c1factgen(F,M)))

}
res
}

Calculation of the probabilities

Once we know all possible values of the latent vectors, we calculate the probability

of taking each value. For that, we define three functions. The first one gives the

probability of each value of the vector: (F0,MR0,Mr0, ZRr0) (present) taking into

account the number of females and males stemming from each type of couples in the

first generation: FMRr1 (future).

c1probpg=function(present,future,mR,pr,alfa){
FR=present[1]
MR=present[2]
Fr=present[3]
Mr=present[4]
ZR=present[5]
Zr=present[6]
FRfu=future[1]
MRfu=future[2]
Frfu=future[3]
Mrfu=future[4]
if(FR+Fr>=MR+Mr){p2=1}
else{p2=dhyper(ZR,MR,Mr,FR+Fr)}
if(Frfu+Mrfu==0 & Zr==0){y=1}
else{y=dnbinom(Frfu+Mrfu,Zr,pr)}
p3=dbinom(FRfu,FRfu+MRfu,alfa)*dpois(FRfu+MRfu,ZR*mR)
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*dbinom(Frfu,Frfu+Mrfu,alfa)*y
p2*p3
}

The second function calculates the probability of each value of the vector (FMRrn,

ZRrn) (present) for any generation n = 1, ..., N − 1. For that calculation, we make

use of the total number of each type of couple in the previous generation: ZRrn−1

through the vector (ZRan,Zran) and of the total number of females and males given

by R- and r-couples in the next generation: FMRrn+1 through the vector future.

c1prob=function(present,ZRan,Zran,future,mR,pr,alfa){
FR=present[1]
MR=present[2]
Fr=present[3]
Mr=present[4]
ZR=present[5]
Zr=present[6]
FRfu=future[1]
MRfu=future[2]
Frfu=future[3]
Mrfu=future[4]
if(Fr+Mr==0 & Zran==0){x=1}
else{x=dnbinom(Fr+Mr,Zran,pr)}
p1=dbinom(FR,FR+MR,alfa)*dpois(FR+MR,ZRan*mR)*dbinom(Fr,Fr+Mr,alfa)*x
if(FR+Fr>=MR+Mr){p2=1}
else{p2=dhyper(ZR,MR,Mr,FR+Fr)}
if(Frfu+Mrfu==0 & Zr==0){y=1}
else{y=dnbinom(Frfu+Mrfu,Zr,pr)}
p3=dbinom(FRfu,FRfu+MRfu,alfa)*dpois(FRfu+MRfu,ZR*mR)

*dbinom(Frfu,Frfu+Mrfu,alfa)*y
p1*p2*p3
}

The last function calculates the probability of each value of the vector (FMRrN ,

ZRrn) (present) taking into account that in the last generation N there is not

available information about the future, and therefore we can only make use of the

information of the previous generation: ZRrN−1 through the vector (ZRan,Zran).

c1probug=function(present,ZRan,Zran,mR,pr,alfa){
FR=present[1]
MR=present[2]
Fr=present[3]
Mr=present[4]
ZR=present[5]
if(Fr+Mr==0 & Zran==0){x=1}
else{x=dnbinom(Fr+Mr,Zran,pr)}
p1=dbinom(FR,FR+MR,alfa)*dpois(FR+MR,ZRan*mR)*dbinom(Fr,Fr+Mr,alfa)*x
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if(FR+Fr>=MR+Mr){p2=1}
else{p2=dhyper(ZR,MR,Mr,FR+Fr)}
p1*p2
}

Finally, to generate the initial vector at each iteration, we implement an auxiliary

function which calculates the probability of any vector of type (FMRrn, ZRrn)

(present) without taking into account neither the past nor future.

c1probaux=function(present,mR,pr,alfa){
FR=present[1]
MR=present[2]
Fr=present[3]
Mr=present[4]
ZR=present[5]
if(FR+Fr>=MR+Mr){p2=1}
else{p2=dhyper(ZR,MR,Mr,FR+Fr)}
p2
}

Simulation of a feasible sample of (FMRrN ,ZRrN)

The following function allows us to obtain a feasible sample of (FMRrN ,ZRrN ) con-

sidering the output of the function c1facttotal contained in a list called feasible

and applying the three functions seen previously which calculate the probabilities:

c1probpg, c1prob, c1probug. We also consider an auxiliary matrix mt which con-

tains the latent vector generated by the previous iteration of the method.

c1gibbfact=function(feasible,mt,mR,pr,alfa,N){
b=feasible[[1]]
ppg=apply(b,1,c1probpg,mt[2,1:4],mR,pr,alfa)
na=sample(c(1:nrow(b)),1,prob=ppg)
FMZRr=b[na,]
res=FMZRr
for(i in 2:(N-1)){

a=feasible[[i]]
p=apply(a,1,c1prob,FMZRr[5],FMZRr[6],mt[i+1,1:4],mR,pr,alfa)
na=sample(c(1:nrow(a)),1,prob=p)
FMZRr=a[na,]
res=rbind(res,FMZRr)

}
b=factibles[[N]]
pug=apply(b,1,c1probug,FMZRr[5],FMZRr[6],mR,pr,alfa)
na=sample(c(1:nrow(b)),1,prob=pug)
res=rbind(res,b[na,])
res
}
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Gibbs algorithm program: Case 1

The last function of this case simulates path of the Markov chain given by the

Gibbs algorithm of length iter which contains, in each iteration, a value of the

parameters α, mR and mr as well as of the latent vectors (FMRrN , ZRrN ) that

is, the total number of females and males stemming from R- and r-couples and

the total number of R- and r-couples in generation N . To implement this function

we use the vector feasible (previously obtained in order to simplify the time of

computation because this matrix is shared by all the iteration of the algorithm) and

the sample FM (obtained from the output of the function ybbp.bc.sim and explained

previously) and the initial values betaalfa= (−0.5,−0.5), betaR= (−0.5, 0.01) and

betar= (−0.5,−0.5).

c1sim.gibb=function(iter,feasible,betaalfa=(-0.5,-0.5),betaR=(-0.5,0.01),
betar=(-0.5,-0.5),FM){

nf=nrow(FM) indice=c(2,4,5,6) FMZRr=cbind(0,0,0,0,0,0)
while(sum(FMZRr[indice]==0)>0){

mR=rgamma(1,betaR[1]+1,scale=1/betaR[2])
pr=rbeta(1,betar[2]+1,betar[1]+1)
alfa=rbeta(1,betaalfa[1]+1,betaalfa[2]+1)
b=feasible[[1]]
ppg=apply(b,1,c1probaux,mR,pr,alfa)
na=sample(c(1:nrow(b)),1,prob=ppg)
ZRan=b[na,5]
Zran=b[na,6]
res1=b[na,]
i=0
pug=1
while((sum(pug)>0)&(i<nf) ){

i=i+1
fi=feasible[[i]]
pug=apply(fi,1,c1probug,ZRan,Zran,mR,pr,alfa)
if(sum(pug)==0){FMZRr=c(0,0,0,0,0,0)}
else{

na=sample(c(1:nrow(fi)),1,prob=pug)
FMZRr=fi[na,]
ZRan=FMZRr[5]
Zran=FMZRr[6]
res1=rbind(res1,FMZRr)

}
}

}
MZNt=res1
res=numeric()
F=sum(FM[-1,1])
M=sum(FM[-1,2])
for(t in 1:iter){
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FMZNt=c1gibbfact(feasible,FMZNt,mR,pr,alfa,nf)
alfa=rbeta(1,F+betaalfa[1]+1,M+betaalfa[2]+1)
mR=rgamma(1,sum(FMZNt[-1,1]+FMZNt[-1,2])+betaR[1]+1,

scale=1/(sum(FMZNt[-nf,5])+ ZR0+betaR[2]))
pr=rbeta(1,sum(FMZNt[-nf,6])+Zr0+betar[2]+1,sum(FMZNt[-1,3]+FMZNt[-1,4])

+betar[1]+1)
mr=(1-pr)/pr
res=rbind(res,c(alfa,mR,pr,mr,FMZNt[nf,]))

}
res
}

Case 2: Observing the sample FMN and assuming that MRN > 0
and MrN > 0

In this case, the difference with respect to the previous case is that we consider

that both genotypes have survived until generation N . Therefore, we only need

to modify the functions which calculate the feasible values for the latent vectors

(FMRrN ,ZRrN ).

Determination of the latent vectors ZRrN and FMRrN

In this case, we define three functions in order to distinguish the first and the last

generation from the rest. The first function calculate all possible values of the latent

vector ZRr0 and it is very similar to the function c1factgenpg seen in the previous

case with the different being that, in this case, the number of couples of each type

must be different to 0.

c2factgenpg=function(F0,MR0,Mr0){
res=numeric()
if(F0>=MR0+Mr0){res=rbind(res,c(F0,MR0,0,Mr0,MR0,Mr0))}
else{

a=c(F0,MR0,0,Mr0)
b=numeric()
for(k in max(1,F0-Mr0):min((F0-1),MR0)){b=rbind(b,c(a,k,F0-k))}
res=rbind(res,b)

}
res
}

The second function calculate all possible values of the latent vectors (FMRrn,

ZRrn) for any n = 1, ..., N − 1 and it is very similar to the function c2factgen seen

in the previous case with the different being that, in this case, the number of couples

of each type must be different to 0.
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c2factgen=function(F,M){
res=numeric()
for(i in 0:F){

for(j in 1:(M-1)){
if(F>=M){res=rbind(res,c(i,j,F-i,M-j,j,M-j))}
else{

a=c(i,j,F-i,M-j)
b=numeric()
for(k in max(1,F-M+j):min((F-1),j)){b=rbind(b,c(a,k,F-k))}
res=rbind(res,b)

}
}

}
res
}

Finally, we implement the function c2factgenug which calculates all possible

values of the latent vectors (FMRrN , ZRrN ). This generation is different because

in this case, one of the component of the vector ZRrN could be 0, i.e. it could happen

that there would not be couple of any type in this generation, although MRN > 0

and MrN > 0.

c2factgenug=function(F,M){
res=numeric()
for(i in 0:F){

for(j in 1:(M-1)){
if(F>=M){res=rbind(res,c(i,j,F-i,M-j,j,M-j))}
else{

a=c(i,j,F-i,M-j)
b=numeric()
for(k in max(0,F-M+j):min(F,j)){b=rbind(b,c(a,k,F-k))}
res=rbind(res,b)

}
}

}
res
}

As previously, we use the above functions to generate all possible values of the

latent vectors ZRrN and FMRrN for a given sample (F0,MR0,Mr0,FM) with FM

a matrix containing the total number of females and males from generation 1 to

generation N .

c2facttotal=function(F0,MR0,Mr0,FM){
res=list(c2factgenpg(F0,MR0,Mr0))
N=nrow(FM)
for(i in 1:(N-1)){
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F=FM[i,1]
M=FM[i,2]
res=append(res,list(c2factgen(F,M)))

}
res=append(res,list(c2factgenug(FM[N,1],FM[N,2])))
res
}

In order to calculate the probabilities of the values of the latent vectors we can

make use of the functions seen in the previous case: c1probpg, c1prob and c1probug.

We can also obtain a feasible sample of (FMRrN ,ZRrN ) considering the out-put of

the function c2facttotal and applying the function c1gibbfact. Finally, we can

apply the method using the function c1sim.gibb

Case 3: Observing the sample FMN and assuming that MRN > 0,
MrN > 0 and mR > mr

In this case, the difference with respect to the previous cases is that we consider that

both genotypes have survived until generation N and one of the means is greater

than the other one. To do the simulations we have considered that the mean number

of offspring per R-couple is greater than the mean number of offspring per r-couple

(mR > mr).

As we are assuming, as in the Case 2, that both genotypes have survived until

generation N , we can calculate a feasible sample of (FMRrN ,ZRrN ) as well as the

probabilities in the same manner than in Case 2. Nevertheless, the application of the

method is different from that of the previous case as it is indicated in the following

section.

Gibbs algorithm program: Case 3

The function c3sim.gibb simulates paths of the Markov chain given by the Gibbs

algorithm of length iter which contains, in each iteration, a possible value of the

parameters α,mR and mr as well as the total number of females and males stemming

from R- and r-couples and the total number of R- and r-couples in generation N .

The difference with respect to the the function c1sim.gibb is that we consider an

order in the possible values of the means.

c3sim.gibb=function(iter,feasible,betaalfa,betaR,betar,FM){
nf=nrow(FM)
indice=c(2,4,5,6)
FMZRr=cbind(0,0,0,0,0,0)
while(sum(FMZRr[indice]==0)>0){
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mR=rgamma(1,betaR[1]+1,scale=1/betaR[2])
pr=rbeta(1,betar[2]+1,betar[1]+1)
mr=(1-pr)/pr
while(mr>=mR){

mR=rgamma(1,betaR[1]+1,scale=1/betaR[2])
pr=rbeta(1,betar[2]+1,betar[1]+1)
mr=(1-pr)/pr

}
alfa=rbeta(1,betaalfa[1]+1,betaalfa[2]+1)
b=feasible[[1]]
ppg=apply(b,1,c1probaux,mR,pr,alfa)
na=sample(c(1:nrow(b)),1,prob=ppg)
ZRan=b[na,5]
Zran=b[na,6]
res1=b[na,]
i=0
pug=1
while((sum(pug)>0)&(i<nf) ){

i=i+1
fi=feasible[[i]]
pug=apply(fi,1,c1probug,ZRan,Zran,mR,pr,alfa)
if(sum(pug)==0){FMZRr=c(0,0,0,0,0,0)}
else{

na=sample(c(1:nrow(fi)),1,prob=pug)
FMZRr=fi[na,]
ZRan=FMZRr[5]
Zran=FMZRr[6]
res1=rbind(res1,FMZRr)

}
}

}
MZNt=res1
res=numeric()
F=sum(FM[-1,1])
M=sum(FM[-1,2])
for(t in 1:iter){

FMZNt=c1gibbfact(feasible,FMZNt,mR,pr,alfa,nf)
alfa=rbeta(1,F+betaalfa[1]+1,M+betaalfa[2]+1)
mR=rgamma(1,sum(FMZNt[-1,1]+FMZNt[-1,2])+betaR[1]+1,

scale=1/(sum(FMZNt[-nf,5])+ ZR0+betaR[2]))
pr=rbeta(1,sum(FMZNt[-nf,6])+Zr0+betar[2]+1,sum(FMZNt[-1,3]+FMZNt[-1,4])

+betar[1]+1)
mr=(1-pr)/pr
while(mr>mR){
FMZNt=c1gibbfact(factibles,FMZNt,mR,pr,alfa,nf)
alfa=rbeta(1,F+betaalfa[1]+1,M+betaalfa[2]+1)
mR=rgamma(1,sum(FMZNt[-1,1]+FMZNt[-1,2])+betaR[1]+1,

scale=1/(sum(FMZNt[-nf,5])+ ZR0+betaR[2]))
pr=rbeta(1,sum(FMZNt[-nf,6])+Zr0+betar[2]+1,sum(FMZNt[-1,3]+FMZNt[-1,4])

+betar[1]+1)
mr=(1-pr)/pr
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}
res=rbind(res,c(alfa,mR,pr,mr,FMZNt[nf,]))

}
res
}

Case 4: Observing the sample FM∗
N = {F0, MR0,Mr0, FM1, ..., FMN−1,

FN , MRN ,MrN}
In this case, the sample scheme considered initially is difference from the previous

cases. Now, we assume known the total number of each type of males in the last

generation.

Determination of the latent vectors ZRrN and FMRrN

As the difference is only in the last generation we can calculate all possible values of

the vectors ZRr0 and (FMRrn, ZRrn), for any n = 1, ..., N − 1, making use of the

function c2factgenpg and c2factgen, respectively.

To calculate all possible values of the vector (FMRrN , ZRrN ), we need to im-

plement a function where the values MRN and MrN are fixed.

c4factgenug=function(F,MR,Mr){
res=numeric()
for(i in 0:F){

if(F>=MR+Mr){res=rbind(res,c(i,MR,F-i,Mr,MR,Mr))}
else{

a=c(i,MR,F-i,Mr)
b=numeric()
for(k in max(0,F-Mr):min(F,MR)){b=rbind(b,c(a,k,F-k))}
res=rbind(res,b)

}
}
res
}

Finally, we calculate all possible values of the latent vectors ZRrN and FMRrN

for a given sample (F0,MR0,Mr0,FM,MRN,MrN) with FM containing the total number

of females and males from generation 1 to N and (MRN,MrN) containing the total

number of R- and r-males respectively in generation N .

c4facttotal=function(F0,MR0,Mr0,FM,MRN,MrN){
res=list(c2factgenpg(F0,MR0,Mr0))
N=nrow(FM)
for(i in 2:(N-1)){

F=FM[i,1]
M=FM[i,2]
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res=append(res,list(c2factgen(F,M)))
}
res=append(res,list(c4factgenug(FM[N,1],MRN,MrN)))
res
}

In order to calculate the probabilities of the values of the latent vectors we

can make use of the functions seen in the previous cases: c1probpg, c1prob and

c1probug. We can also obtain a feasible sample of (FMRrN ,ZRrN ) considering

the out-put of the function c4facttotal and applying the function c1gibbfact.

Finally, we can apply the method using the function c1sim.gibb.
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M. González, M. Molina, and M. Mota. Bisexual Galton-Watson branching

process with immigration of females and males. asymtotic behaviour. Markov

Processes and Realted Fields, 8:651–663, 2002.
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M. González, M. Mota, and I. del Puerto. Weighted conditional least square

estimators for bisexual branching processes with immigration. Test, 20:607–629,

2011b.

J.A.M. Graves. Sex chromosome specialization and degeneration in mammals.

Cell, 124(5):901–914, 2006.

R. Griffiths and A. Pakes. An infinite-alleles version of the simples branching

process. Adv. Appl. Probab., 20(3):489–524, 1988.

P. Guttorp. Statistical Inference for Branching Processes. John Wiley and Sons,

Inc, 1991.

P. Haccou, P. Jagers, and V. Vatutin. Branching processes: variation, growth

and extinction of populations. Cambridge University Press, 2005.

T.E. Harris. The Theory of Branching Processes. Dover, 1989.
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