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Resumen

Las herramientas de acoplamiento molecular han llegado a ser bastante eficientes en el descubrim-
iento de fármacos y en el desarrollo de la investigación de la industria farmacéutica. Estas her-
ramientas se utilizan para elucidar la interacción de una pequeña molécula (ligando) y una macro-
molécula (diana) a un nivel atómico para determinar cómo el ligando interactúa con el sitio de
unión de la proteína diana y las implicaciones que estas interacciones tienen en un proceso bio-
químico dado. El progreso experimentado en las técnicas de acoplamiento molecular ha estado a la
par con los avances en los métodos espectroscópicos biomoleculares como la cristalografía de rayos
X y la resonancia magnética nuclear (NMR), que han sido muy importantes en el dominio de la
biología estructural. Estas técnicas han permitido determinar más de 100.000 estructuras tridi-
mensionales de proteínas que pueden tener un papel importante en las rutas de bioseñalización.
La base de datos de Protein Data Bank actualmente contiene 130.807 estructuras PDB de múlti-
ples organismos, la mayoría de ellos habiendo sido obtenidos a través de cristalografía de rayos X
(117.083), NMR (11.766) y cristalografía de electrón (1.545). En este contexto, en que el existen
miles de estructuras PDB almacenadas que pueden ser candidatas a ser analizadas como dianas
terapéuticas, las técnicas de acoplamiento molecular juegan un papel importante en el diseño de
nuevos fármacos analizando cómo estos interactúan con las dianas terapéuticas a nivel molecular.

En el desarrollo computacional de las herramientas de acoplamiento molecular los investigadores
de este área se han centrado en mejorar los componentes que determinan la calidad del software
de acoplamiento molecular: 1) la función objetivo y 2) los algoritmos de optimización. La función
objetivo de energía se encarga de proporcionar una evaluación de las conformaciones entre el ligando
y la proteína calculando la energía de unión, que se mide en kcal/mol. Según la literatura, existen
varios tipos de funciones objetivo de energía pero la mayoría de ellos están basados en campos
de fuerza que estiman la energía libre de unión de la conformación ligando-receptor, teniendo
en cuenta términos como las conformaciones del ligando interno, las conformaciones proteína-
ligando y los efectos solventes. En esta memoria, hemos usado AutoDock, ya que es una de las
herramientas de acoplamiento molecular más citada y usada, y cuyos resultados son muy precisos
en términos de energía y valor de RMSD (desviación de la media cuadrática). Además, se ha
seleccionado la función de energía de AutoDock versión 4.2, ya que permite realizar una mayor
cantidad de simulaciones realistas incluyendo flexibilidad en el ligando y en las cadenas laterales
de los aminoácidos del receptor que están en el sitio de unión.

En esta tesis se han utilizado algoritmos de optimización para mejorar los resultados de aco-
plamiento molecular de AutoDock 4.2, el cual minimiza la energía libre de unión final que es la
suma de todos los términos de energía de la función objetivo de energía. Dado que encontrar la
solución óptima en el acoplamiento molecular es un problema de gran complejidad y la mayoría
de las veces imposible, se suelen utilizar algoritmos no exactos como las metaheurísticas, para así
obtener soluciones lo suficientemente buenas en un tiempo razonable.

Por todo lo anterior, como trabajo preliminar se puede analizar el rendimiento de un conjunto
de metaheurísticas mono-objetivo de carácter general (en su diseño canónico) para determinar si
es posible obtener mejores valores de la función objetivo que con aquellas técnicas proporcionadas
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por AutoDock. Según la literatura consultada, existen pocos estudios que tengan en cuenta la
flexibilidad en sus experimentos de acoplamiento molecular. Es por ello, que se aplicó flexibilidad
tanto en los ligandos como en las cadenas laterales de las macromoléculas. De esta manera,
es posible determinar el rendimiento de los algoritmos atendiendo si el espacio de búsqueda es
diferente o no dependiendo del tamaño del ligando y su flexibilidad.

Dados los interesantes resultados obtenidos por Janson et al. (2008) en el que se minimizaron
dos objetivos, la energía intermolecular (Einter) y la intramolecular (Eintra), se puede ver que el
problema puede ser formulado usando dos objetivos contrapuestos, dando lugar a un problema
de optimización multi-objetivo. Después de revisar el resto de la literatura sobre los distintos
enfoques multi-objetivo para resolver el acoplamiento, se observó que todos los estudios estaban
basados en la función de energía de AutoDock 3.0 (una versión anterior a AutoDock 4.2), que no
aplica flexibilidad a las cadenas laterales de los aminoacidos del receptor y, por lo tanto, solamente
se hicieron simulaciones siendo rígidas la macromolécula y el ligando o con flexibilidad sólo en el
ligando. Estos estudios también habían sido realizados sobre un conjunto pequeño de problemas,
con lo que estudios con un mayor número de complejos flexibles podrían dar lugar a resultados
muy interesantes.

Los estudios multi-objetivo anteriormente propuestos no han considerado anteriormente guiar la
búsqueda usando uno de los objetivos cuando la estructura del ligando co-cristalizado es conocida,
lo que podría completar la función de energía tradicional. Podrían planificarse nuevos enfoques
utilizando este hecho como punto de partida. También se hipotetiza que este enfoque puede
ser útil en aquellos estudios in silico que tengan que ver con la selección de nuevos compuestos
anticancerígenos para dianas terapeutas que sean resistentes a múltiples fármacos.

El objetivo principal de esta tesis es explorar un enfoque al problema del acoplamiento molec-
ular que pueda dar lugar a un conjunto más amplio de soluciones dependiendo de los objetivos
seleccionados. Con esto, se intenta promover el uso de estas nuevas técnicas en lugar de depen-
der en los algoritmos más comúnmente usados. Como trabajo previo, se aplican nuevas técnicas
mono-objetivo que puedan proporcionar resultados de mayor calidad que las técnicas usualmente
aplicadas.

Las fases que se siguieron en el desarrollo de esta tesis fueron las siguientes:

1. Exploración del estado del arte actual sobre los estudios de acoplamiento molecular e inves-
tigación de las diferentes herramientas usadas y análisis del código de AutoDock 4.2, dado
que es la más citada y popular entre la comunidad científica. Se observaron las técnicas
de optimización que proporcionaba AutoDock y se estudió la posibilidad de añadir nuevos
algoritmos que mejoraran los resultados obtenidos.

2. Para conseguir este objetivo, en lugar de intentar incorporar los nuevos algoritmos directa-
mente en el código fuente de AutoDock, se utilizó un framework orientado a la resolución de
problemas de optimización con metaheurísticas. Concretamente, se usó jMetal, que es una
librería de código libre basada en Java. Ya que AutoDock está implementado en C++, se
desarrolló una versión en C++ de jMetal. De esta manera, se consiguió integrar ambas her-
ramientas (AutoDock 4.2 y jMetal) para optimizar la energía libre de unión entre compuesto
químico y receptor.

3. Después de disponer de una amplia colección de metaheurísticas implementadas en jMetal-
Cpp, se realizó un detallado estudio en el cual se aplicaron un conjunto de metaheurísticas
para optimizar un único objetivo minimizando la energía libre de unión, el cual es el re-
sultado de la suma de todos los términos de energía de la función objetivo de energía de
AutoDock 4.2. Por lo tanto, cuatro metaheurísticas tales como dos variantes de algoritmo
genético gGA (Algoritmo Genético generacional) y ssGA (Algoritmo Genético de estado
estacionario), DE (Evolución Diferencial) y PSO (Optimización de Enjambres de Partículas)
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fueron aplicadas para resolver el problema del acoplamiento molecular. Esta fase se dividió
en dos subfases en las que usamos dos conjuntos de instancias diferentes, utilizando como
receptores HIV-proteasas con cadenas laterales de aminoacidos flexibles y como ligandos in-
hibidores HIV-proteasas flexibles. El primer conjunto de instancias se usó para un estudio
de configuración de parámetros de los algoritmos y el segundo para comparar la precisión de
las conformaciones ligando-receptor obtenidas por AutoDock y AutoDock+jMetalCpp.

4. La siguiente fase implicó aplicar una formulación multi-objetivo para resolver problemas
de acoplamiento molecular dados los resultados interesantes obtenidos por Janson et al.
(2008) en que dos objetivos como la energía intermolecular (Einter) y la energía intramolec-
ular (Eintra) fueron minimizados. Por lo tanto, se comparó y analizó el rendimiento de
un conjunto de metaheurísticas multi-objetivo mediante la resolución de complejos flexi-
bles de acoplamiento molecular minimizando la Einter y la Eintra. Estos algoritmos fueron:
NSGA-II (Algoritmo Genético de Ordenación No dominada) y su versión de estado esta-
cionario (ssNSGA-II), SMPSO (Optimización Multi-objetivo de Enjambres de Partículas
con Modulación de Velocidad), GDE3 (Tercera versión de la Evolución Diferencial Gener-
alizada), MOEA/D (Algoritmo Evolutivo Multi-Objetivo basado en la Decomposición) y
SMS-EMOA (Optimización Multi-objetivo Evolutiva con Métrica S). Estos algoritmos han
obtenido rendimientos satisfactorios en una amplia variedad de problemas de optimización,
sin embargo, nunca se han usado con anterioridad para resolver problemas de acoplamiento
molecular a excepción del algoritmo NSGA-II.

5. Después de probar enfoques multi-objetivo ya existentes, se probó uno nuevo. En concreto,
el uso del RMSD como un objetivo para encontrar soluciones similares a la de la solución de
referencia. Se replicó el estudio previo usando este conjunto diferente de objetivos.

6. Por último, se analizó de forma detallada el algoritmo que obtuvo mejores resultados en los
estudios previos. En concreto, se realizó un estudio de variantes del SMPSO minimizando la
Einter y el RMSD. SMPSO aplica un mecanismo de limitación de la velocidad de las partícu-
las para impedir el movimiento de éstas en las regiones de búsqueda ajenas a los rangos
de los problemas. Este algoritmo usa un archivo externo para almacenar las soluciones no
dominadas según a su distancia de crowding. También se usa este archivo en el mecanismo
de selección del líder. Este estudio proporcionó algunas pistas sobre cómo nuevos algorit-
mos basados en SMPSO pueden ser adaptados para mejorar los resultados de acoplamiento
molecular para aquellas simulaciones que involucren ligandos y receptores flexibles.

Resumiendo, esta tesis realiza las siguientes contribuciones:

• La implementación de un framework metaheurístico en C++ (jMetalCpp), versión del am-
pliamente usado framework en Java jMetal, para resolver problemas de optimización y para
su posterior distribución pública entre la comunidad científica.

• La inclusión de técnicas metaheurísticas de jMetalCpp en la herramienta de acoplamineto
molecular AutoDock, y su distribución pública para incrementar las posibilidades a los usuar-
ios de ámbito biológico cuando resuelvan el problema del acoplamiento molecular.

• La demostración de que el uso de técnicas de optimización mono-objetivo diferentes aparte
de aquéllas ampliamente usadas en las comunidades de acoplamiento molecuolar podría dar
lugar a soluciones de mayor calidad. En nuestro caso de estudio, el algoritmo de evolución
diferencial obtuvo mejores resultados que aquellos obtenidos por AutoDock.
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• La propuesta de diferentes enfoques multi-objetivo para resolver el problema del acoplamiento
molecular, tales como la decomposición de los términos de la energía de unión o el uso del
RMSD como un objetivo.

• La demostración del SMPSO, una metaheurística de optimización multi-objetivo de enjam-
bres de partículas, como una técnica remarcable para resolver problemas de acoplamiento
molecular cuando se usa un enfoque multi-objetivo, obteniendo incluso mejores soluciones
que las técnicas mono-objetivo.

• La presentación de dos nuevas variantes de SMPSO. La primera es SMPSOD, una aproxi-
mación sin archivo, que está inspirada en el MOEA/D. La segunda es SMPSOC, que usa la
nueva similaridad del coseno para calcular el estimador de densidad.

El problema del acoplamiento molecular es una de las técnicas usadas en el proceso de diseño
de fármacos basados en estructura. Este proceso consiste en estudios in silico para determinar
compuestos químicos que puedan ser posibles candidatos para dianas terapeúticas. Son muchas
las técnicas computacionales que se utilizan adicionalmente al acomplamiento molecular, algunas
de éstas son dinámica molecular y screening virtual basado en estructuras. Aparte del proceso de
diseño de fármacos basados en estructura, existe otro basado en el diseño de estructuras basado
en ligandos que consiste en testear librerías de compuestos químicos activos para la detección de
posibles dianas terapéuticas.

Como anteriormente se ha mencionado, el principal objetivo del problema de acoplamiento
molecular es encontrar la conformación ligando-receptor cuya energía de unión sea mínima. Esta
energía se computa utilizando la función de energía del software de acoplamiento molecular. La
solución que representa la interacción ligando-receptor está codificada por un vector de números
reales de tamaño n+7 en el cual los tres primeros valores corresponden a los valores de los tres
ejes (x, y, z) en el espacio de coordenadas Cartesianas, los siguientes cuatro valores corresponden
a la orientación ligando/macromolécula, y los n valores restantes son los ángulos dihedrales de
torsión para el ligando y las cadenas laterales de los aminoácidos del receptor. En los experimen-
tos realizados para esta tesis doctoral, se aplicó una metodología basada en el tamaño de malla
implementada en AutoDock versión 4.2. La malla corresponde al espacio de búsqueda en el que se
realiza los cómputos ligando-macromolécula en las simulaciones de acoplamiento molecular. Los
parámetros utilizados fueron para (x, y, z) 120 y 0,375Å de espacio de malla. Estos parámetros
para la malla fueron suficientes para abarcar toda la superficie molecular de la macromolécula.
Sin embargo, estos parámetros pueden ser modificados por el experto en acoplamiento molecular
aumentando o disminuyendo tales parámetros en el espacio de malla.

Para el enfoque de optimización mono-objectivo, se minimizó el valor de la energía libre de
unión, que se mide en kcal/mol. Cuanto más pequeño es este valor, más estable es el complejo
ligando-receptor en términos energéticos. Atendiendo a la función de energía proporcionada por
AutoDock, este valor es el resultado de la suma de la diferencia los estados de unión y no unión del
ligando, receptor y del complejo ligando-receptor. Cada par de términos de evaluación incluyen
evaluaciones de dispersión/repulsión, enlaces de van der Waals, puentes de hidrógeno, fuerzas de
torsión e interacciones electrostáticas y de solvatación.

Para el enfoque de optimización multi-objetivo, en primer lugar, se optimizaron dos energías: la
Einter y Eintra. La primera energía representa la diferencia entre los estados de unión y desunión
del ligando-receptor o el estado energético del complejo ligando-receptor. La segunda energía
representa los estados de unión y desunión del ligando y el receptor, respectivamente. Esta energía
involucra la deformidad desde el punto de vista de energía de los elementos de interacción durante
las simulaciones de acoplamiento molecular. Esta estrategia de optimización multi-objectivo es
muy útil en aquellos casos en los que el experto tiene que elegir una solución en el conjunto de
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soluciones obtenidas en la que el ligando sea más más estable en términos de energía o bien, otra
solución en la que el complejo ligando-receptor es más estable energéticamente.

En una segunda estrategia, se optimizó la Einter y el valor de RMSD calculado a partir del
ligando co-cristalizado y el computado. Este valor mide la calidad de los resultados obtenidos en las
simulaciones del acoplamiento molecular. RMSD básicamente es una medida de la distancia media
entre las coordenadas atómicas (x, y, z) de la estructura del ligando co-cristalizado y el ligando
computado. Esta medida tiene en cuanta la simetría, la simetría parcial (por ejemplo, la simetría
de una parte rotable de la molécula) y la simetría más próxima. La comunidad científica usa el
límite de 2Å para distinguir entre resultados más o menos exactos. Esta medida es muy útil en
aquellos casos en los que la estructura de ligando es conocida, es decir, la estructura cristalográfica
del ligando con respecto al receptor está disponible en las bases de datos que almacenan estruc-
turas cristalográficas (como la base de datos PDB). Es importante mencionar, que una estructura
computada con un valor RMSD de 0Å no es la mejor solución que se podría obtener ya que el
receptor puede tener otros sitios de unión no conocidos y estos podrían ser interesantes desde un
punto de vista farmacológico.

Trabajos publicados

El trabajo realizado en esta tesis ha dado lugar a varias publicaciones y divulgaciones científicas.
Específicamente, cuatro artículos han sido publicados en revistas indexadas en el Journal of Cita-
tion Report (JCR) del Institute of Scientific Information. Además, otros cuatro artículos han sido
publicados en congresos. Dos de ellos se publicaron en congresos internacionales y los otros dos en
congresos nacionales. Para ver más detalle, véase el Capítulo 4.

A continuación se resumen los artículos que avalan esta tesis. Todos estos artículos están
relacionados con la aplicación de optimizaciones tanto mono-objetivo como multi-objetivo para
resolver el problema del acoplamiento molecular. En el primer artículo se describió la integración
de AutoDock y jMetal y su aplicación en el acoplamiento molecular. En el segundo artículo
publicado, se realiza un estudio comparando las técnicas mono-objetivo usando un conjunto de
instancias flexibles. En el tercer estudio, se aplica un conjunto de metaheurísticos multi-objetivo
para optimizar dos objetivos, guiando al algoritmo en su búsqueda de las mejores soluciones.

jMetalCpp: optimizing molecular docking problems with a C++ meta-
heuristic framework

En este artículo se presentó jMetalCpp, la version C++ de jMetal, el framework de metaheurísticas
originalmente programado en Java. También se presenta la combinación de este software con el
ampliamente usado AutoDock. Como se ha mencionado anteriormente, ambos paquetes software
fueron publicados en la web para ser libremente usados por la comunidad científica.

Solving molecular flexible docking problems with metaheuristics: a com-
parative study

En este trabajo, se demostró que DE (jMetal) obtuvo los mejores resultados en 67 de las 75 in-
stancias estudiadas, seguido por LGA (AutoDock que consiguió los mejores resultados en las ocho
instancias restantes (1B6L, 1BDL, 1HEF, 1HIV, 1HPO, 1K6C, 1Z1H and 1ZIR). Estos resultados
fueron proporcionados con confianza estadística (α = 0.05) ya que se aplicó una serie de tests
estadísticos no paramétricos. En concreto, se calcularon los ranking de Friedman y los tests mul-
ticomparativos de Holm, y mostraron que el DE consiguió un mejor rendimiento estadísticamente
que el resto de los algoritmos analizados. Este hecho es remarcable que los algoritmos de AutoDock
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están específicamente diseñados para resolver problemas de acoplamiento molecular. También se
observó que el DE mostraba un comportamiento de convergencia más lento, aunque tendiendo
a soluciones más exitosas que sus competidores. Sin embargo, gGA demostró tener una rápida
convergencia, y también consiguió soluciones de alta calidad, así que este algoritmo podría ser una
buena opción cuando se buscara una alternativa que proporcionara soluciones lo suficientemente
buenas en un tiempo de cómputo menor.

A new multi-objective approach for molecular docking based on RMSD
and binding energy
Este trabajo fue presentado en la 3a International Conference on Algorithms for Computational
Biology (AlCoB 2016), que se celebró en Trujillo (España) en junio de 2016. Dicho trabajo derivó
de la idea de aplicar un enfoque de optimización multi-objetivo para resolver problemas de acopla-
miento molecular. Al principio, la estrategia que se siguió fue la descomponer la energía final de
unión (el objetivo a minimizar en el trabajo anterior) en varias componentes, concretamente las
energías intra e intermolecular. Posteriormente, se decidió usar como objetivos la misma energía
tomada como objetivo en el estudio mono-objetivo y el RMSD. Estos conceptos están explicados
en más detalle en la Sección 3.2.2.

El IHV es la suma del volumen contribuido de cada punto de un frente con respecto a un punto
de referencia, así que cuanto más alto el grado de convergencia y diversidad de un frente, más
alto será el valor del hipervolumen. Según estos resultados, SMPSO consiguió los mejores valores
de IHV en los 11 problemas, siendo MOEA/D la segunda técnica que obtuvo mejores resultados.
Es importante destacar que muchos algoritmos obtuvieron un valor de IHV igual a cero. Esto
ocurre cuando todos los puntos de los frentes producidos están situados más allá de los límites del
punto de referencia. Este hecho se da en la mayoría de los problemas en todos los algoritmos a
excepción de SMPSO, lo que lleva a pensar que se está afrontando un problema de optimización de
gran complejidad. SMPSO también consigue el mejor rendimiento según el indicador Iε+ (en este
caso, cuanto más bajo es el valor, mejor es). SMPSO alcanza los mejores valores para todas las
instancias exceptuando el 1HTF donde consiguió el segundo mejor valor. MOEA/D (que fue el que
obtuvo el mejor resultado para la instancia 1HTF) alcanzando los segundos mejores valores para 9
instancias. GDE3 consiguió el segundo mejor valor en la instancia restante (1HPX), mientras que
NSGA-II obtuvo los peores resultados para todas las instancias.

Después de que se presentara este trabajo, se invitó a ser substancialmente extendido y enviado
al número especial de la revista IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics (TCBB, Factor de impacto JCR 2014: 1.438, Cuartil Q1). Hasta el día de hoy, aún sigue
en revisión.

A study of archiving strategies in multi-objective PSO for molecular dock-
ing
Este artículo presentó la variante denominada SMPSOC, que se caracteriza por el uso de la simi-
laridad por coseno cuando se calcula el valor de densidad de cada punto en el frente de soluciones.
La variante SMPSOD también fue presentada en este artículo por primera vez. Es un enfoque sin
archivo, que está implementado como una versión agregativa de SMPSO inspirado por MOEA/D.

Según el indicador IHV , SMPSOhv obtuvo los mejores resultados para las 11 instancias, mien-
tras que SMPSOD tuvo los segundos mejores en 6 instancias, SMPSOC en tres y el SMPSO
original en dos, respectivamente. De igual forma, SMPSOhv obtuvo de nuevo los mejores resulta-
dos en las 11 instancias según el indicador Iε+. Los segundos mejores valores fueron conseguidos
por SMPSOD en 7 instancias, por el SMPSO original en tres y por SMPSOC en una instancia,
respectivamente.
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Conclusiones y trabajos futuros

Al abordar problemas de acoplamiento molecular, las técnicas disponibles para resolverlos no han
cambiado en los últimos años. Como estos problemas pueden ser formulados como problemas
de optimización multiobjetivos, nuestra intención fue la de estudiar y proporcionar un conjunto
de técnicas metaheurísticas modernas para resolverlas. Como la herramienta de acoplamiento
molecular más utilizada (AutoDock) fue programada en C++, nos embarcamos en la tarea de crear
una versión del framework metaheurístico jMetal en este lenguaje: jMetalCpp. De esta manera,
hemos proporcionado a la comunidad de investigación una herramienta potente y de código abierto
que se puede utilizar libremente.

La implementación del framework jMetalCpp proporciona ventajas a los investigadores, tanto
en el descubrimiento de fármacos como en otros dominios de las ciencias de la vida, que están intere-
sados en disponer de técnicas más modernas que les ayudarán a resolver diferentes problemas como
el acoplamiento molecular. Ya hemos demostrado que existen diferentes técnicas aparte de las que
se utilizan comúnmente para resolver problemas de acoplamiento molecular y que pueden conducir
a resultados de mayor calidad. La inclusión de jMetalCpp en la ampliamente utilizada herramienta
AutoDock proporciona a otros investigadores una colección de metaheurísticas y herramientas adi-
cionales a las que ya están incluidas en Autodock. También proporciona una estructura fácil para
usuarios más avanzados con habilidades de programación en C++ para incorporar sus propias téc-
nicas para resolver problemas de acoplamiento molecular. Esta herramienta está disponible online
y ya ha sido descargada por investigadores de diferentes partes del mundo. El framework jMet-
alCpp independiente también está disponible para los investigadores que quieran utilizarla para
resolver problemas de optimización de otros dominios. Se ha descargado cientos de veces de todo
el mundo y hemos estado en contacto con personas que querían contribuir al código añadiendo sus
propias herramientas y algoritmos, y utilizarlo en sus propios trabajos de investigación.

Usando AutoDock+jMetal, se realizó un estudio utilizando metaheurísticas mono-objetivo
donde incluimos más algoritmos (aparte de los ya incluidos por AutoDock) para resolver un gran
benchmark de complejos proteína-ligando. El estudio se llevó a cabo teniendo los mismos parámet-
ros de configuración que comúnmente se utilizaron en las publicaciones de AutoDock. Probamos
que otras metaheurísticas mono-objetivo podrían llevar a resultados de mayor calidad. En nuestro
caso, el algoritmo de evolución diferencial demostró ser un mejor candidato a la hora de resolver
problemas de acoplamiento molecular.

Cuando se abordan problemas de acoplamiento molecular, es común resolverlos adoptando un
enfoque mono-objetivo. Sin embargo, cuando se utiliza un enfoque multi-objetivo, un conjunto de
soluciones se devuelve al final de una ejecución en lugar de una única solución. Este conjunto de
soluciones ofrece al usuario final varias posibilidades desde donde escoger dependiendo del peso que
quiere dar a cada uno de los objetivos de optimización. Por lo tanto, hemos considerado dos enfo-
ques multi-objetivos diferentes en nuestros estudios. La primera se basó en la descomposición de
la energía de unión final (la función objetivo que es minimizada por los algoritmos mono-objetivo)
en varios componentes. Se seleccionaron las energías intra e intermoleculares como objetivos de
optimización. Esto resultó en un conjunto de soluciones en las que el usuario final podría elegir
dependiendo de la importancia que le da a cada una de las energías.

La otra formulación multi-objetivo utilizó el mismo objetivo que la formulación mono-objetivo
(la energía de unión) y el RMSD. El uso del RMSD como objetivo para guiar la búsqueda es
útil en aquellos casos típicos en los que el sitio activo de una diana terapéutica dada muta y lo
hace resistente a múltiples fármacos. Utilizando este enfoque, se devuelve un amplio conjunto de
soluciones, que pueden seleccionarse de acuerdo con el peso de la RMSD y la energía de unión, en
lugar de centrarse únicamente en los valores de energía. Se realizó un primer estudio utilizando
cuatro algoritmos multi-objetivo: NSGA-II, SMPSO, GDE3 y MOEA/D. En este experimento, se
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seleccionó un conjunto de 11 complejos de proteína-ligando heterogéneos con ligandos y receptores
flexibles como instancias del problema. SMPSO proporcionó el mejor rendimiento general según
los dos indicadores de calidad utilizados (IHV y Iε+) y para las instancias moleculares estudiadas,
siendo MOEA/D el algoritmo con los segundos mejores valores. Así mismo, desde un punto de
vista mono-objetivo, las soluciones obtenidas de SMPSO fueron mejores que las obtenidas por el
algoritmo LGA de AutoDock. Esto es bastante notable ya que SMPSO es un algoritmo de opti-
mización de propósito general, mientras que LGA está específicamente adaptado para hacer frente
al problema de acoplamiento molecular. Finalmente, es interesante notar que SMPSO convergió
a la región del frente que minimiza más el objetivo RMSD, mientras que MOEA/D colocó sus
soluciones en la región opuesta de los frentes generados de soluciones no dominadas.

A partir de los resultados obtenidos en el último estudio, se llevó a cabo un nuevo experimento
en el que se probarían varias variantes SMPSO con diferentes estrategias de archivo. Las vari-
antes seleccionadas fueron: SMPSOhv, SMPSOD y SMPSOC. El SMPSO original y OMOPSO (el
algoritmo del que SMPSO se inspiró) también se incluyeron en la comparación. El estudio multi-
objetivo anterior se replicó utilizando estos seis algoritmos y las mismas configuraciones que antes.
De acuerdo con nuestros dos indicadores habituales de calidad (IHV y Iε+), SMPSOhv demostró
obtener los mejores valores, seguido de SMPSOD, SMPSOC y SMPSO. La primera variante obtuvo
el mejor IHV al realizar un método de selección de líder de aquellas soluciones no dominadas (del
archivo externo) con las mayores contribuciones de hipervolumen, las cuales parecían ser respons-
ables de los mejores valores de diversidad y convergencia en esta comparación. OMOPSO mostró
resultados moderados, aunque alcanzando superar las soluciones atípicas para algunos casos. Cabe
destacar que la variante SMPSOD fue capaz de cubrir el frente de referencia con soluciones no
dominadas en los extremos de los dos objetivos (valores bajos de energía y bajos valores de RMSD,
respectivamente).

La línea de estudio llevada a cabo en esta tesis nos ha llevado a planificar varios trabajos posibles.
Por un lado, algunas de los trabajos futuros surgen de la idea de continuar el problema abordado
(acoplamiento molecular) y todavía se centran en tratar de mejorar la calidad de los resultados
obtenidos. Por otro lado, las nuevas líneas de investigación podrían partir de los conocimientos
obtenidos en los experimentos anteriores y podrían considerarse como “ramas” de este trabajo.

El primer trabajo planeado está relacionado con nuestro primer estudio multi-objetivo, el cual
obtuvo que al unir las soluciones generadas a partir de los algoritmos SMPSO y MOEA/D se cubría
todo el frente de Pareto. Como trabajo futuro, esto nos llevó a pensar que una implementación
híbrida de SMPSO y MOEA/D nos proporcionaría un conjunto más amplio de soluciones que
cubriría el frente de referencia con soluciones no dominadas en los dos extremos de los objetivos. Los
resultados obtenidos por SMPSOD en el segundo estudio multi-objetivo nos animaron a continuar
este plan de trabajo.

En relación con el diseño del algoritmo híbrido, planeamos implementar e incluir en jMetalCpp
algunos operadores específicamente diseñados para el problema de acoplamiento molecular. Hasta
ahora, todas las técnicas metaheurísticas que hemos utilizado en nuestros estudios utilizan oper-
adores de variación de propósito general, por lo que es natural llegar a la conclusión de que si las
técnicas utilizadas para resolver el acoplamiento molecular están específicamente diseñadas para
este problema concreto, podríamos obtener una mayor calidad de soluciones.

Otra contribución a la comunidad científica que queremos explorar es la creación de un servicio
Web que proporcione las mismas herramientas que jMetalCpp integra en AutoDock. Este servicio
Web permitiría ejecuciones de acoplamiento molecular utilizando todas las metaheurísticas de
jMetalCpp en un complejo proteína-ligando (seleccionable de todos nuestros conjuntos anteriores
o cargado por el usuario). Esta idea surgió ya que algunos usuarios con un perfil más biológico
podrían tener problemas tratando de compilar y ejecutar nuestra herramienta AutoDock+jMetal.

Finalmente, como una idea más general, querríamos usar nuestro framework jMetalCpp in-
dependiente para resolver otros problemas en las ciencias de la vida, y no estar restringidos a
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acoplamiento molecular. Nuestra herramienta es lo suficientemente abstracta para incluir más al-
goritmos y ser utilizada para resolver otros problemas de optimización de diferentes dominios. En
concreto, la predicción de estructura terciaria de proteínas es un candidato muy adecuado donde
aplicar el conjunto de técnicas de optimización de jMetalCpp.
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Chapter 1

Introduction

Molecular docking tools have become a powerful tool for drug discovery and development in
research-based pharmaceutical industry [1, 2, 3]. The molecular docking approach is used to
elucidate the interaction of a small molecule (ligand) and a macromolecule (target) at the atomic
level to characterize how the ligand interacts to the protein target’s binding site and the implica-
tions that these interactions have in a given biochemical process. The progress in the molecular
docking techniques have been hand-in-hand with advances in biomolecular spectroscopic methods
such as X-ray crystallography and nuclear magnetic resonance (NMR), which are very important
in the domain of structural biology [4]. These techniques have allowed to determine more than
100,000 tridimensional structures of proteins that can have an important role in biosignaling path-
ways. The Protein Data Bank database currently contains 130,807 PDB structures from multiple
organisms [5], with most of them having been obtained through X-ray crystallography (117,083),
NMR (nuclear magnetic resonance) (11,766) and electron crystallography (1,545). In this context
in which there are thousands of PDB structures stored which can be candidates to be analyzed as
therapeutic targets, the molecular docking techniques play an important role in the design of new
drugs by analyzing how suitable drugs interact to therapeutic targets.

1.1 Motivation

In the computational development of the molecular docking tools, researchers in this area have
focused on improving the components that determine the quality of the docking software: 1)
the scoring function and 2) the optimization algorithm. The energy score function performs the
evaluation of the conformations between the ligand and the protein by calculating the binding
energy, which is measured in kcal/mol. According to the literature, there are several types of energy
score functions but most of them are physics-based molecular mechanics force fields that estimate
the final free binding energy of the ligand-receptor conformation considering terms as internal
ligand conformations, protein-ligand conformations and solvent effects. In this dissertation, we
have used AutoDock because it is one of the most popular and cited molecular docking tools whose
docking results are very accurate in terms of energy and RMSD score (Root Mean Square Distance)
[6]. Furthermore, we have selected the energy scoring function of AutoDock version 4.2 [2] as it
allows to do more realistic simulations by including flexibility in the ligand and the side-chains of
the receptor’s aminoacids involved in the binding site.

In this thesis, we have focused on the algorithm optimization to improve the molecular docking
results from AutoDock 4.2, which minimizes the final free binding energy that is the result of the
sum of all energy terms from the AutoDock 4.2 energy scoring function. As finding the optimal

11
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solution in molecular docking is a very complex problem and most of the time impossible, we use
non exact algorithms like metaheuristics, so we can obtain good enough solutions in a feasible
time. This leads us to have the following motivations for our studies:

• As preliminary work, analyzing the performance of a set of general-purpose single-objective
metaheuristics (in their canonical design) to determine if they can lead to better scoring
values compared to the techniques already provided by AutoDock 4.2.

• According to the reviewed literature, there are few studies that involve flexibility in the
molecular docking experiments. So, the instances that were used to perform the experiments
include a wide range of ligands’ size. This allows to do analyses of the algorithms’ performance
taking into account if the search space is different or not depending on the ligand’s size or/and
its flexibility.

Given the interesting results obtained by Janson et al. [7] in which two objectives like the
intermolecular (Einter) energy and the intramolecular (Eintra) energy were minimized, it could
be seen that the problem could be formulated using two contrary objectives, leading to a multi-
objective optimization problem. Therefore, some additional motivations arise:

• After reviewing the literature corresponding to the application of the multi-objective ap-
proaches to solve the molecular docking, we concluded that all the studies are based on the
AutoDock 3.0 energy function (an older version than AutoDock 4.2), which does not apply
flexibility to the receptor’s aminoacid side chains and therefore, rigid ligand-rigid macro-
molecule or flexible ligand-rigid macromolecule are the only docking simulations that can be
carried out.

• We also noticed that these multi-objective approaches have been applied to a very reduced
set of ligand-receptor problems. So, the studies performed in this thesis include a larger set
of flexible complexes with also different sizes that can lead to interesting conclusions.

• The multi-objective approaches proposed in the literature do not consider guiding the search
with a new objective when the co-crystallized ligand is known, which could complement the
traditional energy function. New multi-objective approaches could be made taking this as a
starting point.

• We also hypothesized that this approach could be useful in those studies in silico that involve
to select new anticancer compounds for therapeutic targets that are multidrug resistant.
Therefore, we have applied it to solve molecular docking problems that involve multi-drug
resistant targets that can mutate in patients with lung cancer. These mutations make these
targets resistant to drugs, which previously were used in the patients’ standard treatment.

1.2 Objectives and phases

The purpose of this thesis is to explore a multi-objective approach to the molecular docking problem
that could lead to a broader set of solutions depending on the selected objectives. We expect to
promote the use of these new techniques instead of relying on the more commonly used algorithms.
As a previous work, we also intent to apply new single-objective metaheuristic techniques that
provides higher quality results than those obtained from the usual techniques applied when solving
molecular docking problems.

The specific objectives of this work can be enumerated in the following points:
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• Apply a set of metaheuristics for optimizing a single objective by minimizing the final free
binding energy that is the result of the sum of all energy terms from the AutoDock 4.2 energy
scoring function.

• Perform an algorithm’s parameters analysis and an algorithm convergence behavior study,
which will increase the value of that study as there are no previous studies in the reviewed
literature.

• Use a set of multi-objective metaheuristics to perform a complete analysis to the molecular
docking problem. The algorithms chosen should correspond to a varied set of modern multi-
objective techniques in the state of the art, performing different learning procedures, and
therefore inducing different behaviors in terms of convergence, diversity, and scalability.

• Define a new multi-objective strategy for molecular docking by minimizing the RMSD score
in order to guide the search of results.

To carry out these objectives, the following phases have been followed:

1. We explored the current state-of-the-art of studies about molecular docking. We looked into
the different tools used and we took the decision to review the code and functionality of
AutoDock 4.2 as it was the most common used tool in molecular docking by the biological
scientific community. We studied the optimization techniques that AutoDock provided and
considered the possibility of adding new algorithms that would improve the obtained results.

2. To achieve this goal, instead of trying to incorporate the new algorithms into the source
code of AutoDock, the approach has been to use a software framework oriented to solving
optimization problems with metaheuristics. Specifically, the framework used is jMetal, which
is a Java-based object oriented software library that incorporates a number of single-objective
algorithms. As jMetal was implemented in Java and AutoDock in C++, we have developed
a jMetal version in C++. So, we have integrated both tools (AutoDock 4.2 and jMetal) to
optimize the resulting binding energy [8].

3. After having a broad collection of implemented metaheuristics thanks to jMetalCpp, a de-
tailed study has been made where we applied a set of metaheuristics for optimizing a single
objective by minimizing the final free binding energy that is the result of the sum of all energy
terms from the AutoDock 4.2 energy scoring function. Therefore, four metaheuristics such
as two variants of the GA (Genetic Algorithm) gGA (generational Genetic Algorithm) and
ssGA (steady-state Genetic Algorithm), DE (Differential Evolution) [9] and PSO (Particle
Swarm Optimization) [10] were used to solve the molecular docking problem. This phase
has been divided in two substeps in which we used two different sets of instances, which
involve as receptors HIV-proteases with flexible aminoacids’ side chains and as ligands flex-
ible HIV-proteases inhibitors [2]. The first set of instances was used to do a study about
configurations for fine-tuning algorithms and the second to compare the accuracy of the
ligand-receptor conformation obtained from AutoDock and AutoDock+jMetalCpp.

4. The next phase would be to apply a multi-objective formulation to solve the molecular
docking problem given the interesting results obtained by Janson et al. (2008), in which two
objectives like the intermolecular (Einter) energy and the intramolecular (Eintra) energy were
minimized [7]. Therefore, we compare and analyze the performance of a set of multi-objective
metaheuristics when solving flexible molecular docking complexes by minimizing the Einter
and the Eintra. These algorithms are: Nondominated Sorting Genetic Algorithm II (NSGA-
II) [11] and its steady-state version (ssNSGA-II) [12], Speed Modulation Multi-Objective
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Particle Swarm Optimization (SMPSO) [13], Third Evolution Step of Generalized Differential
Evolution (GDE3) [14], Multi-Objective Evolutionary Algorithm Based on Decomposition
(MOEA/D) [15], and S Metric Evolutionary Multiobjective Optimization (SMS-EMOA) [16].
These algorithms have been shown to obtain successful performances on a wide variety of
optimization problems [17, 11], however they have not been previously used to solve the
molecular docking problem with exception of the NSGA-II algorithm [18].

5. After testing already existing multi-objective approaches, new ones can be tested. In partic-
ular the use of RMSD as an objective could be useful in guiding algorithms to find solutions
similar to the reference solution. The previous study can be replicated using a different set
of objectives.

6. Explore more deep-fully the algorithm which obtained the best results in previous studies.
In particular, a study of variants of SMPSO by minimizing the Einter and the RMSD score
should be carried on. SMPSO performs a limitation mechanism of particle’s velocity to avoid
the movement of particles in search regions out of the problem ranges. This algorithm uses
an external archive to store non-dominated solutions according to the crowding distance [19].
This archive is also used in the leader selection mechanism. The performance of these variants
can be assessed by applying two main quality indicators intended to measure convergence
and diversity of the computed Pareto front approximations. The study can provide some
clues about how new algorithms based on SMPSO can be adapted to improve the molecular
docking results for simulations that involve flexible ligand and receptors.

1.3 Thesis contributions

To summarize, the main contributions of this thesis are as follows:

• The implementation of a C++ metaheuristic framework (jMetalCpp), port of the widely
used Java framework jMetal, to solve optimization problems and its later public distribution
between the scientific community [8].

• The inclusion of the metaheuristic techniques from jMetalCpp into the molecular docking
tool AutoDock, and its public distribution for increasing the possibilities of biological user
when tackling the molecular docking problem [8].

• The demonstration that different single-objective optimization techniques apart from those
widely used between the molecular docking communities could lead to a higher quality results.
In our case of study, DE obtained better results than those obtained by AutoDock [20].

• The proposal of different multi-objective approaches to solve the molecular docking problem,
such as the binding energy decomposition or the use of RMSD as an objective [21].

• The demonstration of SMPSO, a multi-objective particle swarm optimization metaheuristic,
as a remarkable technique to solve molecular docking problems when taking a multi-objective
approach and even achieving better solutions than the usual single-objective techniques [22].

• The introduction of two new variants of SMPSO. The first is SMPSOD, an archive-less ap-
proach, inspired by MOEA/D. The second is SMPSOC, which uses the new cosine similarity
to calculate the density estimator [22].
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1.4 Thesis organization

This thesis has been organized as follows. The current chapter contains an introduction to the
work done, presenting the motivation to carry it out, the objectives that have been sought, the
phases that have been followed to achieve those objectives and the main contributions of the
thesis. Chapter 2 focuses on describing the principles about the optimization algorithms that have
been used to tackle the molecular docking problem: definition of metaheuristic, their classification
and a description of the multi-objective metaheuristics. Chapter 3 includes a full description
about the molecular docking problem and its significance in the studios in silico to drug discovery,
the formulation of the problem and the application of the mono-objective and multi-objective
approaches. Chapter 4 contains all the published work that supports this thesis with a summary
of each one of them. Finally, Chapter 5 includes the conclusions of this dissertation and the future
research lines that can be opened by this study.
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Chapter 2

Metaheuristics

In this chapter, we focus on establishing the principles about the optimization algorithms that are
used to tackle the problems that are going to be used to solve the molecular docking problem. We
start from a classic optimization approach to define the concept of metaheuristic and to understand
its classification. Then, multi-objective optimization concepts are introduced, as we are dealing
with molecular docking problems where the components of the energy function can be optimized at
the same time. Finally, we end the chapter with the statistic procedure that has been followed to
evaluate the different metaheuristics, where the main performance measures are introduced, as well
as the quality indicators that have been used in single-objective and multi-objective optimization
problems.

2.1 Definition

Optimization in the sense of finding the best solution, or at least a good enough solution, for a
problem is a vital importance field in the real world and, particularly, in molecular docking. We
are constantly solving optimization problems, as searching the shortest path to go from some place
to another, organizing our activity schedule, etc. Generally, these problems are small enough, so
it is possible to solve them by ourselves without additional help. However, as these problems get
larger and more complex, computer assistance is inevitable to solve them.

We start giving a formal definition about the concept of optimization. Assuming, without loss
of generality, the minimization case, we can define an optimization problem as follows:

Definition 1 (Optimization problem). An optimization problem is formalized as a pair (S, f),
where S 6= ∅ represents the solution space (or search space) of the problem, while f is a function
named objective function or fitness function, that is defined as:

f : S → R . (2.1)

Therefore, solving an optimization problem consists in finding a solution, i∗ ∈ S, that satisfies the
following inequality:

f(i∗) ≤ f(i), ∀ i ∈ S . (2.2)

Assuming the case of maximization or minimization does not restrict the generality of the
results, as it is possible to establish an equality between maximization and minimization problems
as follows [23, 24]:

max{f(i)|i ∈ S} ≡ min{−f(i)|i ∈ S} . (2.3)

17



18 2.1. DEFINITION

Depending on the domain to which S belongs, we can define binary (S ⊆ B∗), integer (S ⊆ N∗),
continuous (S ⊆ R∗), or heterogeneous (S ⊆ (B ∪ N ∪ R)∗) optimization problems.

Due to the great importance of the optimization problems, throughout the history of comput-
ing, several methods have been developed to try solving them. A very simple classification of these
methods is shown in the Figure 2.1. Initially, the techniques can be classified as exact (or enumer-
ative, exhaustive, etc.) and approximate. Exact techniques guarantee to find the optimal solution
from any problem instance in a bounded time. The disadvantage of these methods is that the
time and / or memory needed, although bounded, grow exponentially with the size of the problem,
as most of them are NP-hard. This means in many cases that the use of these techniques is not
feasible, since much time (possibly thousands of years) and / or an exorbitant amount of memory
for the problem is required. For these reasons, approximate algorithms to solve these problems are
receiving increasing attention from the international community for some decades. These methods
sacrifice the guarantee of finding the optimum in exchange for finding a satisfactory solution in a
reasonable time.

Figure 2.1: Optimization techniques classification.

Among approximate algorithms, two types can be found: ad hoc heuristics and metaheuris-
tics (on which we focus on this chapter). Ad hoc heuristics, at the same time, are divided into
constructive heuristics and local search methods.

Constructive heuristics are often the fastest methods. They build a solution from scratch by
incorporating components to get a complete solution, which is the result of the algorithm. Although
in many cases finding a constructive heuristic is relatively simple, the solutions offered are usually
of very low quality. Finding methods of this kind that produce good solutions is very difficult,
since they depend a lot on the problem, and one must have a very extensive knowledge of it for
their approach. For example, when dealing with problems with many constraints, most partial
solutions can only lead to non-feasible solutions.

Local search or gradient tracking methods start from a complete solution, and using the neigh-
borhood concept, explore part of the search space until finding a local optimum. The neighborhood
of a solution s, that we define as N(s), is the set of solutions that can be built from s applying
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a specific modification operator (generally named movement). A local optimum is a solution bet-
ter or equal to any other solution from its neighborhood. These methods, starting from a initial
solution, examine its neighborhood and they keep the best neighbor, continuing the process until
finding a local optimum. In many cases, the complete exploration of the neighborhood is unfeasible
and different strategies are approached, which lead to different variations of the generic scheme.
According to the chosen movement operator, the neighborhood changes and the way of exploring
changes as well, so the search process can be simplified or complicated.

In the 1980s a new class of approximate algorithms emerged, whose basic idea was to combine
different heuristic methods at a higher level to achieve efficient and effective exploration of the
search space. These techniques have been named metaheuristics. This term was introduced for
the first time by Glover [25]. Before the term was completely accepted by the scientific community,
these techniques were called modern heuristics [26]. This algorithm class includes techniques such
as ant colonies, evolutionary algorithms, iterative local search, simulated annealing and tabu search.
Metaheuristics reviews can be found in [27, 28]. From the different descriptions that can be found
in the literature, several fundamental properties that characterize these types of methods can be
highlighted:

• Metaheuristics are general strategies or templates that guide the search process.

• The goal is an efficient exploration of the search space to find (almost) optimal solutions.

• Metaheuristics are non-accurate algorithms and are generally non-deterministic.

• They can incorporate mechanisms to avoid unpromising regions of the search space.

• The basic scheme of any metaheuristic has a predefined structure.

• Metaheuristics can make use of knowledge from the problem to be solved by using specific
heuristics that are controlled by the highest level strategy.

Summarizing these points, it can be agreed that a metaheuristic is a high level strategy that
uses different methods to explore the search space. In other words, a metaheuristic is a general
non-deterministic template that must be filled with problem-specific data (solution representation,
operators to manipulate them, etc.) and allows problems with large spaces search to be tackled.
In these type of techniques is really important the correct balance (generally dynamic) that exists
between diversification and intensification. The term diversification refers to the evaluation of
solutions that are placed in distant regions of the search space (according to a previously defined
distance between solutions). This term is also known as search space exploration. The term
intensification, however, refers to the evaluation of solutions in bounded and small regions from
the search space centered on the neighborhood of concrete solutions (search space exploitation).
The balance between these two contrary concepts is of great importance since, on the one hand
promising regions from the global search space have to be quickly identified and, on the other
hand, time shouldn’t be wasted in already explored regions or in those that do not contain high
quality solutions.

Within metaheuristics we can distinguish two types of search strategies. First, we have the
“intelligent" extensions of the local search methods (metaheuristics based on trajectory in Fig-
ure 2.1). The goal of these strategies is to avoid in some way the local minimums and to move
to other promising regions from the search space. This type of strategy is the one that is used
by the tabu search, the iterated local search, the variable neighborhood search and the simulated
annealing. These metaheuristics work with one or several neighborhood structures imposed by
the local search. Another type of strategy is the one followed by the ant colonies or the evolu-
tionary algorithms. These ones have a learning component, in the sense that, in an implicit or
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explicit way, they try to learn the correlation between the problem variables in order to iden-
tify the search space regions with high quality solutions (population-based metaheuristics in the
Figure 2.1). These methods perform, in this sense, biased sampling of the search space.

Formally, a metaheuristic is defined as a tuple of elements that, depending on how they are
defined, leads to a particular technique or another. This formal definition has been developed
in [29] and subsequently extended in [30].

Definition 2 (Metaheuristic). A metaheuristic M is a tuple composed by the following eight
components:

M = 〈T ,Ξ, µ, λ,Φ, σ,U , τ〉 , (2.4)

where:

• T is the set of elements that are handled by the metaheuristic. This set contains the search
space and in most cases it coincides with it.

• Ξ = {(ξ1, D1), (ξ2, D2), . . . , (ξv, Dv)} is a set of v pairs. Each pair is composed by a state
variable of the metaheuristic and by the domain of this variable.

• µ is the number of solutions with whichM operates in one step.

• λ is the number of new solutions that are generated in each iteration ofM.

• Φ : T µ ×
v∏
i=1

Di × T λ → [0, 1] represents the operator that creates new solutions from the

existent ones. This function must fulfill for all x ∈ T µ and for all t ∈
∏v
i=1Di,∑

y∈T λ
Φ(x, t, y) = 1 . (2.5)

• σ : T µ×T λ×
v∏
i=1

Di×T µ → [0, 1] is a function that allows to select those solutions that will

be handled in the following iteration ofM. This function must fulfill for all x ∈ T µ, z ∈ T λ
y t ∈

∏v
i=1Di,∑

y∈T µ
σ(x, z, t, y) = 1 , (2.6)

∀y ∈ T µ, σ(x, z, t, y) = 0 ∨ (2.7)
∨σ(x, z, t, y) > 0 ∧

(∀i ∈ {1, . . . , µ} • (∃j ∈ {1, . . . , µ}, yi = xj) ∨ (∃j ∈ {1, . . . , λ}, yi = zj)) .

• U : T µ × T λ ×
v∏
i=1

Di ×
v∏
i=1

Di → [0, 1] represents the update procedure of the state variable

of the metaheuristic. This function must fulfill for all x ∈ T µ, z ∈ T λ y t ∈
∏v
i=1Di,∑

u∈
∏v
i=1Di

U(x, z, t, u) = 1 . (2.8)

• τ : T µ ×
v∏
i=1

Di → {false, true} is a function that decides the termination of the algorithm.
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The above definition reflects the typical stochastic behavior of metaheuristic techniques. In
particular, the Φ, σ, and U functions must be interpreted as conditional probabilities. For example,
the value of Φ(x, t, y) is interpreted as the probability that the child vector y ∈ T λ is generated
since at the moment the set of individuals with which the metaheuristic works is x ∈ T µ and its
internal state is defined by the state variables t ∈

∏v
i=1Di. It can be seen that the constraints

imposed on the functions Φ, σ y U allow to consider them as functions that return these conditional
probabilities.

Definition 3 (Metaheuristic state). Let M = 〈T ,Ξ, µ, λ,Φ, σ,U , τ〉 be a metaheuristic and Θ =
{θ1, θ2, . . . , θµ} the set of variables that will store the solution set with which the metaheuristic
works. We will use the notation first(Ξ) to refer to the state variable set of the metaheuristic,
{ξ1, ξ2, . . . , ξv}. A state s of the metaheuristic is a pair of functions s = (s1, s2) with

s1 : Θ→ T , (2.9)

s2 : first(Ξ)→
v⋃
i=1

Di , (2.10)

where s2 satisfies
s2(ξi) ∈ Di ∀ξi ∈ first(Ξ) . (2.11)

We will denote with SM the set of all states of a metaheuristicM.

Finally, once defined the state of a metaheuristic, we can define its dynamic.

Definition 4 (Metaheuristic dynamic). Let M = 〈T ,Ξ, µ, λ,Φ, σ,U , τ〉 be a metaheuristic and
Θ = {θ1, θ2, . . . , θµ} the set of variables that will store the solution set with which the metaheuristic
works. We will use the notation Θ for the tuple (θ1, θ2, . . . , θµ) and Ξ for the tuple (ξ1, ξ2, . . . , ξv).
We will extend the state definition so that it can be applied to element tuples. Then, we define
s = (s1, s2) where

s1 : Θn → T n , (2.12)

s2 : first(Ξ)n →

(
v⋃
i=1

Di

)n
, (2.13)

and besides that

s1(θi1 , θi2 , . . . , θin) = (s1(θi1), s1(θi2), . . . , s1(θin)) , (2.14)
s2(ξj1 , ξj2 , . . . , ξjn) = (s2(ξj1), s2(ξj2), . . . , s2(ξjn)) , (2.15)

for n ≥ 2. We will say that r is a successor state of s if t ∈ T λ exists such that Φ(s1(Θ), s2(Ξ), t) >
0 and besides that

σ(s1(Θ), t, s2(Ξ), r1(Θ)) > 0 y (2.16)
U(s1(Θ), t, s2(Ξ), r2(Ξ)) > 0 . (2.17)

We will denote with FM the binary relation “being a successor of” defined in the states set of
a metaheuristicM. That is, FM ⊆ SM × SM, and FM(s, r) if r is a successor state of s.

Definition 5 (Metaheuristic execution). A metaheuristic M execution is a finite or infinite se-
quence of states, s0, s1, . . . in which FM(si, si+1) for all i ≥ 0 and besides that:
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• if the sequence is infinite τ(si(Θ), si(Ξ)) = false is satisfied for all i ≥ 0 and

• if the sequence is finite τ(sk(Θ), sk(Ξ)) = true if satisfied for the last state sk and, besides,
τ(si(Θ), si(Ξ)) = false for all i ≥ 0 such that i < k.

In the next sections we will have the opportunity to see how this general formulation can be
adapted to the specific techniques (obviating those parameters not fixed by metaheuristics or that
depend on other aspects such as the problem or the concrete implementation).

2.2 Classification

There are different ways of classifying and describing the metaheuristic techniques [27]. Depending
on the selected characteristics, it is possible to obtain different taxonomies: based on nature or non
based on nature, with or without memory, with one or several neighborhood structures, etc. One of
the most popular classifications makes the following division: trajectory-based and population-based
metaheuristics. The former manipulates a single element of the search space at each step, while the
latter work on a set of them (population). This taxonomy is shown graphically in the Figure 2.2,
which also includes the most representative techniques. These metaheuristics are described in the
two following sections.

Figure 2.2: Metaheuristics classification.

2.2.1 Trajectory-based metaheuristics
In this section, we will briefly review some metaheuristics based on trajectory. The main character-
istic of these methods is that they start from a solution and, through the neighborhood exploration,
they update the current solution, forming a trajectory. According to the notation of Definition 2,
this is formalized with µ = 1. Most of these algorithms arise as extensions of simple local search
methods to which some mechanism is added to escape local minimums. This implies the need for
a more elaborated stopping condition than finding a local minimum. Usually the search is termi-
nated when a predefined maximum number of iterations is reached, a solution with an acceptable
quality is found, or a stagnation of the process is detected.

2.2.1.1 Simulated Annealing (SA)

Simulated annealing (SA) is one of the oldest techniques between metaheuristics and is possibly the
first algorithm with an explicit strategy to escape from the local minimum. The algorithm origins
are found in an statistic mechanism named metropolis [31]. The SA idea is to simulate the cooling
process of metal and crystal. SA was initially introduced in [32]. In order to avoid being trapped in
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a local minimum, the algorithm allows to choose, with a determined probability, a solution whose
value of fitness is worse than that of the current solution. In each iteration, a solution s′ of the
neighborhood N(s) is chosen from the current solution s. If s′ is better than s (that is, it has a
better value in the fitness function), s is substituted for s′ as the current solution. If the solution
s′ is worse, then it is accepted with a certain probability that depends on the current temperature
T and the difference of fitness between both solutions, F (s′)− f(s) (case of minimization).

2.2.1.2 Tabu search (TS)

Tabu search (TS) is one of the metaheuristics that have been applied more successfully when solving
combinatorial optimization problems. These method fundamentals were introduced in [25], and
are based on the ideas formulated in [33]. A good summary of this technique and its components
can be found in [33].

The basic idea of the tabu search is the explicit use of a search record (a short-term memory),
both to escape local minima and to implement its exploration strategy, and to avoid searching
several times in the same region. This short-term memory is implemented as a tabu list, where
the more recently visited solutions are kept to exclude them from the next movements. In each
iteration the best solution is chosen among the allowed ones and is added to the tabu list.

From the point of view of implementation, maintaining a list of complete solutions is often
impractical due to its inefficiency. Therefore, generally, movements that had led the algorithm
to generate that solution or the main components that define the solution are usually stored. In
any case, the elements of this list allow filtering the neighborhood, generating a reduced set of
eligible solutions called Na(s). The store of movements instead of complete solutions is much more
efficient, but introduces a loss of information. To avoid this problem, an aspiration criterion is
defined which allows to include a solution in Na(s) even if it is prohibited due to the tabu list.
The most widely used aspiration criterion is to allow solutions whose fitness is better than the best
solution found so far.

2.2.1.3 GRASP

The Greedy Randomized Adaptive Search Procedure (GRASP) [34] is a simple metaheuristic that
combines constructive heuristics with local search. GRASP is an iterative procedure, composed of
two phases: first the construction of a solution and then an improvement process. The improved
solution is the result of the search process. The solution-building mechanism is a random con-
structive heuristic. It adds step by step different components c to the partial solution sp, which is
initially empty. The components added in each step are randomly selected from a restricted list
of candidates (RCL). This list is a subset of N(sp), the set of allowed components for the partial
solution sp. To generate this list, the components of the solution in N(sp) are ordered according
to some function dependent on the problem (η).

The RCL list is composed by the α best components of that set. In the extreme case of α = 1,
we always add the best found component deterministically, so that the construction method is
equivalent to a voracious algorithm. At the other end, with α = |N(sp)|, the component to be
added is chosen in a totally random way from all available ones. Therefore, α is a key parameter
that influences how the search space is to be sampled. The second phase of the algorithm consists
in applying a local search method to improve the generated solution. This enhancement mechanism
may be a simple enhancement technique or other more complex algorithms such as SA or TS.

2.2.1.4 Variable Neighborhood Search (VNS)

TheVariable Neighborhood Search (VNS) is a metaheuristic proposed in [35] which applies explicitly
one strategy to change between different neighborhoods during the search. This algorithm is very



24 2.2. CLASSIFICATION

general and with many degrees of freedom when designing particular variations and instantiations.
The first step is to define a set of neighborhoods. This choice can be made in many ways:

from being randomly chosen to using complex equations deduced from the problem. Each iteration
consists of three phases: the candidate’s choice, a phase of improvement and, finally, the movement.
In the first phase, a neighbor s′ of s is chosen randomly using the k-th neighborhood. This solution
s′ is used as the starting point of the local search of the second phase. When the improvement
process ends, the new s′′ solution is compared to the original s. If it is better, s′′ becomes the
current solution and the neighborhood counter is initialized (k ← 1). If it is not better, the process
is repeated but using the following neighborhood (k ← k+1). The local search is the intensification
step of the method and the neighborhood change can be considered as the diversification step.

2.2.1.5 Iterated Local Search (ILS)

The Iterated Local Search (ILS) [36, 37] is a metaheuristic based in a simple but very effective
concept. In each iteration, the current solution is disturbed, and then, a local search method is
applied to this solution to improve it. The local minimum obtained by the improvement method
can be accepted as the current new solution if it passes an acceptance test. The importance of
the disturbance process is obvious: if it is too small, the algorithm may not be able to escape the
local minimum; however, if it is too large, the disturbance can make the algorithm behaves as a
local search method with a random restart. Therefore, the perturbation method must generate a
new solution that serves as a start to the local search, but that should not be very far from the
current one so that it is not considered to be a random solution. The acceptance criterion acts as
a counterbalance, since it filters the acceptance of new solutions depending on the search history
and the characteristics of the new local minimum.

2.2.2 Population-based metaheuristics
The population-based methods are characterized by work with a solution set, usually called pop-
ulation, in each iteration (that is, generally µ > 1 and/or λ > 1), as opposed to methods based in
trajectory, that only manipulate a solution of the search space by iteration.

2.2.2.1 Evolutionary Algorithms (EA)

Evolutionary algorithms (EAs) are inspired by the natural evolution theory. This family of tech-
niques follows an iterative and stochastic process that operates on a solution population, named
in this context individuals. Initially, the population is typically generated randomly (perhaps with
the help of a construction heuristic).

The general scheme of an evolutionary algorithm comprises three main phases: selection, re-
production and replacement. The entire process is repeated until some termination criterion is met
(usually after a given number of iterations). In the selection phase, the most suitable individuals
of the present population are generally chosen to be subsequently recombined in the reproduction
phase. Individuals resulting from recombination are altered by a mutation operator. Finally, from
the current population and/or the best individuals generated (according to their value of fitness)
the new population is formed, giving way to the next generation of the algorithm.

2.2.2.2 Estimation of Distribution Algorithms (EDA)

Estimation of Distribution Algorithms (EDAs) [38] show a similar behavior to the evolutionary
algorithms presented in the previous section. In fact, many authors consider the EDAs as an-
other type of EA. The EDAs operate on a population of tentative solutions such as evolutionary
algorithms but, unlike the latter, which use recombination and mutation operators to improve the
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solutions, EDAs infer the probability distribution of the selected set and, using it, they generate
new solutions that will be part of the population.

Probabilistic graphical models are tools commonly used in the context of the EDAs to efficiently
represent the probability distribution. Some authors [39, 40, 41] have proposed the Bayesian net-
works to represent the probability distribution in discrete domains, whereas the gaussian networks
are usually used in the continuous domains [42].

2.2.2.3 Scatter Search (SS)

Scatter Search (SS) [43] is a metaheuristic whose principals were introduced in [33] and which
nowadays is receiving a great deal of attention from the scientific community [44]. The algorithm
is based on maintaining a relatively small set of tentative solutions (called reference set or RefSet)
that is characterized by containing quality and diverse solutions (distant in the search space). For
the complete definition of SS, five components must be defined: creation of the initial population,
generation of the reference set, generation of subsets of solutions, method of combining solutions
and improvement method.

2.2.2.4 Ant Colony Optimization (ACO)

The Ant Colony Optimization (ACO) [45, 46] algorithms are inspired by the behavior of real ants
when looking for food. This behavior is described as follows: initially, ants explore the area near
their nest randomly. As soon as an ant finds food, it takes it to the nest. While performing this
path, the ant is depositing a chemical called pheromone. This substance will help the rest of the
ants find the food. Indirect communication between ants through the pheromone trail enables
them to find the shortest path between the nest and the food. This behavior is the one that tries
to simulate this method to solve optimization problems. The technique is based on two main steps:
construction of a solution based on the behavior of an ant and update of the artificial pheromone
traces. The algorithm does not set any a priori planning or synchronization between phases, and
can even be performed simultaneously.

2.2.2.5 Particle Swarm Optimization (PSO)

Particle Swarm Optimization (PSO) [47] algorithms are inspired by the social behavior of the flight
of flocks of birds or the movement of fish banks. The PSO algorithm maintains a set of solutions,
also called particles, that are randomly initialized in the search space. Each particle has a position
and velocity that changes as the search progresses. The particle movement is influenced by its
velocity and by the positions where the particle itself and others in its neighborhood have found
good solutions. In the context of PSO, the neighborhood of a particle neighborhood of a particle
is defined as a set of particles in the cluster. It should not be confused with the neighborhood
concept of a solution previously used in this chapter. The neighborhood of a particle can be global ,
in which all cluster particles are considered neighbors, or local , where only the nearest particles
are considered to be neighbors.

2.3 Multi-objective optimization metaheuristics

Most real-world optimization problems are multiobjective in nature, which means that you have
to minimize or maximize several functions at the same time as they are normally in conflict with
each other (multi-objective problems or MOPs, Multi-objective Optimization Problems). Due to
the lack of adequate methodological solutions, multi-objective problems have been solved in the
past as single-objective problems. However, there are fundamental differences in the operating
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principles of algorithms for single- and multi-objective optimization. Thus, the techniques used to
solve MOPs are not usually restricted to finding a single solution, but a set of compromise solutions
between the multiple conflicting objectives, since there is usually no solution that simultaneously
optimizes all objectives. Two stages can therefore be distinguished when addressing this type of
problem: on the one hand, the optimization of several objective functions involved and, on the
other hand, the decision-making process on which compromise solution is most appropriate [48].
Given how they handle these two stages, techniques for solving MOPs can be classified in [49]:

• A priori : when decisions are taken before searching solutions.

• Progresives: when the search for solutions and decision-making are integrated.

• A posteriori : when searching is done before making decisions.

Each of them has certain advantages and disadvantages that make them more suitable for
certain concrete scenarios [48, 50]. However, in the first two classes, the search is heavily influenced
by an expert (decision maker) that determines the importance of one objective over another and
that can arbitrarily limit the search space, preventing an optimal resolution of the problem. In the
a posteriori techniques, on the contrary, an exploration is made as wide as possible to generate
as many compromise solutions as possible. It is, then, when the decision-making process by the
expert takes place. Precisely, because of this approach, these a posteriori techniques are being
used in the field of metaheuristics and, particularly, in the field of evolutionary computing [48,
50]. More specifically, the most advanced algorithms apply a posteriori techniques based on the
concept of Pareto Optimality [51] and this is the approach followed in this thesis. Thus, we have
structured this section into three sections. The first one presents formally the basic concepts related
to this Pareto optimality. The following section presents the goals that should be pursued by any
algorithm that uses these techniques when approaching a MOP. Finally, the third section discusses
some aspects of design that must be adopted in the algorithms that solve problems following the
previous approach.

2.3.1 Basic concepts

In this section, we present some basic concepts of multi-objective optimization to familiarize the
reader with this field. We will begin by giving some notions of what we mean by multi-objective
optimization problem or MOP. Informally, an MOP can be defined as the problem of finding a
vector of decision variables that satisfies a set of constraints and that optimizes a set of objective
functions. These functions form a mathematical description of performance criteria that are usually
in conflict with each other. Therefore, the term “optimization” refers to the search for a solution
such that it contains acceptable values for all objective functions [52].

Mathematically, the MOP formulation extends the classical definition of single-objective opti-
mization (Definition 1) to consider the existence of several objective functions. Therefore, there is
not a single solution to the problem, but a solution set. This set of solutions is found by using the
Pareto Optimality Theory [53]. Formally [54]:

Definition 6 (MOP). Finding a vector ~x∗ = [x∗1, x
∗
2, . . . , x

∗
n] that satisfies the m inequality con-

straints gi (~x) ≥ 0, i = 1, 2, . . . ,m, the p equality constraints hi (~x) = 0, i = 1, 2, . . . , p, and that
minimizes the vector function ~f (~x) = [f1(~x), f2(~x), . . . , fk(~x)]

T , where ~x = [x1, x2, . . . , xn]
T is the

decision variables vector.

The set of all values satisfying the constraints defines the feasible solutions region Ω and any
point in ~x ∈ Ω is a feasible solution.
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Having several objective functions, the notion of “optimum” changes, since the goal for any
MOP is to find good compromises (trade-offs) between these functions. The most used “opti-
mum” notion is the one proposed by Francis Ysidro Edgeworth [55], later generalized by Vilfredo
Pareto [51]. Although some authors call it the Edgeworth-Pareto optimum, the Pareto optimum
term is commonly accepted. Its formal definition is given as follows:

Definition 7 (Pareto optimality). A point ~x∗ ∈ Ω is a Pareto optimum if for each ~x ∈ Ω and
I = {1, 2, . . . , k}, or ∀i∈I (fi (~x) = fi(~x

∗)) or there is at least one i ∈ I | fi (~x) > fi (~x∗).

This definition says that ~x∗ is a Pareto optimum if there is not any feasible vector ~x that
improves any criterion without simultaneously causing a worsening in at least one other criterion
(assuming minimization). The Pareto optimality concept is integral to both the theory and the
resolution of MOPs. There are a few additional definitions that are also basic in multi-objective
optimization [54]:

Definition 8 (Pareto dominance). A vector ~u = (u1, . . . , uk) is said to dominate another vector
~v= (v1, . . . , vk) (represented by ~u ≺ ~v) if and only if ~u is partially less than ~v, that is, ∀i ∈
{1, . . . , k} , ui ≤ vi ∧ ∃ i ∈ {1, . . . , k} : ui < vi.

Figure 2.3: Pareto dominance example.

We are going to illustrate this concept graphically. Figure 2.3 includes two sets of solutions
for a multi-objective problem with two functions f1 and f2, which have to be minimized. Both
objectives being equally important, it is not trivial to distinguish which solution is better than
another. We can use the above definition for this. Thus, if we look at the left side of the figure, we
can say that a is better than b since f1(a) < f1(b) and f2(a) < f2(b). That is, it is better in both
objectives and, therefore, it is said that a dominates b (a ≺ b). The same happens if we compare
a and c, in both objectives f1(a) < f1(c) and f2(a) < f2(c), so a ≺ c. Let us now compare the
solutions b and c between them. It can be seen that c is better than b in f1 (f1(c) < f1(b)), but
b is better than c for f2 (f2(b) < f2(c)). According to the Definition 8, we can not say that b
dominates c nor that c dominates b. That is, we cannot conclude that one solution is better than
the other, in which case both solutions are said to be non-dominated. In the right-hand part of
the Figure 2.3, 4 solutions of this type are shown, where none is better than the others.
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Solving a MOP consists, therefore, of finding the set of solutions that dominate any other
solutions from the solution space, which means that they are the best solutions for the problem
and, therefore, make up its optimal solution. Formally:

Definition 9 (Pareto optimal set). For a given MOP ~f(~x), the Pareto optimal set is defined as
P∗ = {~x ∈ Ω|¬∃~x′ ∈ Ω, ~f(~x′) 4 ~f(~x)}.

It should not be forgotten that Pareto-optimal solutions (which are in P∗), are in the variables
space (genotype). Their vector components are in the objective space (phenotype) and they can
not be improved simultaneously. These solutions are also often called not lower, admissible or
efficient. The Pareto front is then defined as:

Definition 10 (Pareto front). For a given MOP ~f(~x) and its Pareto optimal set P∗, the Pareto
front is defined as PF∗ = {~f(~x), ~x ∈ P∗}.

Min F = (f1(~x), f2(~x))
f1(~x) = 4x2

1 + 4x2
2

f2(~x) = (x1 − 5)2 + (x2 − 5)2

Subject to:

g1(~x) = (x1 − 5)2 + x2
2 − 25 ≤ 0

g2(~x) = −(x1 − 8)2 − (x2 + 3)2 + 7.7 ≤ 0
0 ≤ x1 ≤ 5
0 ≤ x2 ≤ 3
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Figure 2.4: Formulation and Pareto front for the Bihn2 problem.
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Figure 2.5: Formulation and Pareto front for the DTLZ4 problem.

That is, the Pareto front is composed of the values in the objective space of the Pareto optimal
set. In general, it is not easy to find an analytical expression of the line or surface that contains
these points. In fact, in most cases it is impossible. As an example, Figures 2.4 and 2.5 show the
formulation and its corresponding Pareto front of problems Binh2 and DTLZ4 [48]. In the first
case, it is a bi-objective problem, f1 and f2, with two decision variables x1 and x2, which has
two constraints defined as g1 and g2. The DTLZ4 problem, however, has three objectives and no
constraint (the g() function here is only a notation used for its formulation).
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2.3.2 Objectives in MOPs resolution

When addressing the resolution of a multi-objective optimization problem, the main goal of any
optimization algorithm that uses the concepts and techniques described in the previous section is
to find its Pareto front (or, what is the same, its Pareto optimal set). However, the presence of
multiple Pareto-optimal solutions makes it difficult to choose one solution over another without
additional information on the problem, since all these solutions are equally important. Given a
MOP, therefore, we are ideally looking for a number of non-dominated solutions that pursues two
goals:

1. To find a set of solutions as close as possible to the optimal Pareto front.

2. To find a set of solutions as uniformly diverse as possible.

While the first goal, converging towards the optimal solution, is mandatory in all tasks of
single- or multi-objective optimization, the second one is completely specific for multi-objective
optimization. Besides converging towards the optimum front, the solutions must be uniformly
distributed along the whole front. Only with a diverse set of solutions can we ensure, on the
one hand, a good set of compromise solutions between the different objectives for the subsequent
decision-making by the expert and, on the other hand, that a good exploration of the search space
has been made. Figure 2.6 shows two examples of fronts each failing in one of the previous goals. In
part (a) we can see an approximation to the front in which the non-dominated solutions are perfectly
distributed. However, it is a MOP designed in a way that contains multiple misleading fronts and,
in fact, the solutions obtained are not Pareto-optimal, although their diversity is excellent. On the
contrary, in part (b) of the same figure, we have a solution set that have converged towards the
Pareto optimal front, but nevertheless some regions are left uncovered. Although neither case is
desirable, the first situation is clearly worse: none of the obtained solutions is Pareto-optimal.

(a) (b)

Figure 2.6: Pareto fronts examples with bad convergence (a) and bad diversity (b).

2.3.3 Design aspects

Adopting techniques based on Pareto optimality within metaheuristic algorithms involves, on the
one hand, working with non-dominated solutions that make it necessary to incorporate specific
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mechanisms to handle them, and on the other hand, to find not a single solution but a set of Pareto-
optimal solutions that, besides, must have enough diversity to cover the whole front. Although
there are many aspects to consider depending on each specific algorithm, the following ones can
be considered common to all of them: fitness function of the solutions, diversity maintenance, and
handling constraints. Each one of them is discussed below.

2.3.3.1 Fitness function

In the running cycle of all metaheuristics, there is always some phase in which the solution that
are being handled have to be sorted according to their fitness function in order to select any of
them. We refer, for example, to selection and replacement operators in evolutionary algorithms
or the updating method of the reference set in scattered search. In the case of single-objective
optimization, the fitness of a solution is a unique value and the ordering of solutions is trivial
according to this value. However, in our approach to solving MOPs, the fitness is a vector of
values (a value for each objective) so ordering is not so straightforward.

Figure 2.7: (Ranking) ordering example for solutions in a MOP with two objectives.

The dominance relation (Equation 8) is the key in this type of Pareto optimality-based tech-
niques, since it will allow us to establish a solution ordering. In fact, this relation is a strict partial
order relation, since it is not reflexive, neither symmetric, nor antisymmetric, but transitive. Thus,
different methods have been proposed in the literature [48, 50] that basically transform the fitness
vector into a unique value using this relation. This strategy was originally proposed by Goldberg
in [24] to guide the population of a GA to the Pareto front of a MOP. The basic idea is to find the
solutions of the population that are not dominated by any other. These solutions are assigned the
highest order (the best in the ordering established by the dominance relationship). Next, the re-
maining non-dominated solutions are considered if all previous ones are deleted, to which the next
range is assigned. The process continues until all solutions are assigned a range. Figure 2.7 shows
an example of the operation of this sorting method (f1 and f2 are functions to be minimized). This
dominance-based ordering is the most basic. Another more advanced, such as strength of SPEA2
[56] also takes into account the number of solutions dominated by each solution.

2.3.3.2 Diversity

Although the fitness function based on dominance already directs the search towards the Pareto
front giving a greater aptitude to the non-dominated solutions, this approximation alone is not
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sufficient when addressing a MOP. If we remember the Section 2.3.2, in addition to converging to
the optimal front, the solutions have to be distributed as best as possible on this front in order to
offer the expert the widest range of solutions to the multi-objective problem.

Figure 2.8: Density estimator example for non-dominated solutions in a MOP with two objectives.

Although there are different approaches in the literature [48], the most used in the state of
the art algorithms are based on complementing the dominance-based fitness function (previous
section) with an estimator that measures the density, in the objective space, of solutions around
a given solution. Thus, given two solutions with the same fitness (ranking, strength), the density
estimator discriminates between the best and worst solutions taking into account the diversity of
them. Let us consider, for example, the set of non-dominated solution in Figure 2.8. According
to their density, solution 1 can be considered as the best since it is the one that is placed in the
less “populated” area. Solution 3, on the contrary, would be the worst because it is found in a
front area where solutions already exist nearby. Some of the density estimators proposed by the
best-known multi-objective algorithms are: niching in MOGA [57] and NSGA [58], the adaptive
grid of PAES [59], crowding in NSGA-II [11] and the distance to the k-th neighbor of SPEA2 [56].

2.3.3.3 Constraint handling

The definition of multi-objective problem (Equation 6) included in Section 2.3.1 explicitly includes
constraints since, mainly, it is the typical situation when considering real-world problems, as those
considered in this thesis. Restrictions can be considered as hard or weak. A constraint is hard
when it must be satisfied for a given solution to be acceptable. On the contrary, a weak constraint
is one that can be relaxed in some way to accept a solution.

The most used approach in multi-objective metaheuristics of the state-of-the-art to deal with
constraints are based on a schema in which feasible solutions are superior to those not feasible [60,
50]. That is, given two solutions that are to be compared, three cases can occur:

1. If both solutions are feasible, the dominance-based fitness function explained in Section 2.3.3.1
is used. In the case in which both solutions are non dominated (equal fitness), a density
estimator (Section 2.3.3.2) is used to discriminate between them.

2. If one solution is feasible and the other is not, the feasible is considered as best.

3. If both solutions are not feasible, then the one that least violates the constraints is selected.
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It remains to be determined how the amount of constraint violation of a given solution is
quantified. In order to do this, the most commonly used strategy is to transform all constraints
so that they are of type greater-or-equal-than zero: gi (~x) ≥ 0, according to the definition of MOP
(Equation 6) [50]. It can be considered as a type of normalization, so that the value gi (~x) is used to
measure how much the constraint is violated. The major drawback to this strategy is given by the
equality constraints hi (~x) = 0. If it is a weak constraint, it can be relaxed directly to hi (~x) ≥ 0.
However, if hi (~x) = 0 is a hard constraint, the transformation is not direct (especially when it
is a nonlinear constraint). According to a result obtained in [61], it is possible to convert these
hard equality constraints into weak constraints with loss of precision, allowing all constraints of
the same type to be already considered. There are many other strategies to deal with constraints
in multiobjective optimization [48, 50] but we have only detailed what will be used in this thesis.

2.4 Statistical evaluation of results

As has been commented on several times throughout this document, metaheuristics are non-
deterministic techniques. This implies that different runs of the same algorithm on a given problem
do not have to find the same solution. This characteristic property of metaheuristics is an impor-
tant problem for researchers when evaluating their results and, therefore, when comparing their
algorithm with other algorithms.

There are some papers that address the theoretical analysis for a large number of heuristics
and problems [62, 63], but given the difficulty of this type of theoretical analysis, the behavior of
algorithms is traditionally analyzed by empirical comparisons. For this, it is necessary to define
indicators that allow these comparisons. We can find, in general, two different types of indicators.
On the one hand, we have those who measure the quality of the solutions obtained. Given that
throughout the development of this thesis we have addressed problems of optimization both single-
and multi-objective, it is necessary to consider different quality indicators for each type since,
although the result in the first case is a single solution (the global optimum), in the second case
we have a set of solutions, the optimal Pareto set (Equation 9). On the other hand, we have the
indicators that measure the performance of the algorithms and that refer to the execution times
or the amount of computational resources used. We have centered our discussion in the following
section in the quality indicators, as the problem executions tackled in this thesis ends at reasonable
times, both are closely linked and are often used together for the evaluation of metaheuristics, since
the goal of this type of algorithm is to find high quality solutions at a reasonable time.

Once the indicators are defined, a minimum of independent runs of the algorithm must be
performed to obtain statistically consistent results. A value of 30 is considered a minimum ac-
ceptable according to the values often chosen in the literature. The mere inclusion of means and
standard deviations may be insufficient, since erroneous conclusions can be obtained. A global sta-
tistical testing may be necessary to assess whether differences are significant and not the product
of random variations [64, 65]. This topic is discussed in more detail in the 2.4.2 section.

2.4.1 Quality indicators

These indicators are the most important when evaluating a metaheuristic. They are different
depending on whether or not the optimal solution of the problem in question is known (a common
problem for classical literature, but unusual in real world problems). As already mentioned above,
it is necessary to distinguish between indicators for single-objective and multi-objective problems.
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2.4.1.1 Single-objective optimization indicators

For instances of problems where the optimal solution is known, it is easy to define an indicator to
control the quality of the metaheuristic: the number of times it is reached (hit rate). This measure
is generally defined as the percentage of times the optimal solution is reached with respect to
the total number of executions performed. Unfortunately, knowing the optimal solution is not a
common case for realistic problems or, even if known, its computation can be so computationally
heavy that it is important to find a good approximation in a shorter time. In fact, it is common for
experiments with metaheuristics to be limited to performing at most a predefined computational
effort (visit a maximum number of points in the search space or a maximum execution time).

In these cases, when the optimum is not known, statistical measures of the corresponding
indicator are usually used. The most popular are the average and median of the best fitness value
found in each independent run. In general, it is necessary to provide other statistical data such
as variance or standard deviation, in addition to the corresponding statistical analysis, to give
statistical confidence to the results.

In problems where the optimum is known both metrics can be used, both the number of
successes and the average / median of the final (or effort) fitness. What’s more, using both gets
more information: for example, a low number of hits but a high precision indicates that rarely
meets the optimum but is a robust method.

2.4.1.2 Multi-objective optimization indicators

Although the procedure for measuring the quality of solutions in single-objective problems is clear,
within the multi-objective field this is a very active research topic [64, 66], since the result of these
algorithms is a set of non dominated solutions and not a single solution. We must therefore define
quality indicators for the Pareto front approaches. There are usually two aspects to consider when
measuring the quality of a front: convergence and diversity. The first one refers to the distance
between the approach and the optimum Pareto front, while the second measures the uniformity
of the solution distribution on the front. As for the single-objective case, there are indicators
based on whether or not the optimal front is known. The quality indicators used in this thesis are
Hypervolume (IHV ) [67] and Unary Additive Epsilon Indicator (Iε+) [66], being the two of them
Pareto-compliant [64]. Further details of these indicators are shown below (the interested reader
can see [48, 50] for other quality indicators defined in the literature):

• Hypervolume – IHV. The metric hypervolume [67] is a combined metric of convergence
and diversity that calculates the volume, in the objective space, covered by the members of a
set Q of non-dominated solutions for the discontinuous line in Figure 2.9, Q = {A,B,C}) for
problems in which all targets must be minimized. Mathematically, for each solution i ∈ Q, a
hypercube vi is constructed using a reference point W (which may be composed of the worst
solution for each objective, for example) and the solution i as the corners of the hypercube
diagonal. The reference point can be obtained simply by constructing a vector of the worst
values for the functions. Thus, HV is calculated as the volume of the union of all hypercubes:

HV = volume

 |Q|⋃
i=1

vi

 . (2.18)
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Figure 2.9: Hypervolume covered by the non-dominated solutions.

• Epsilon – Iε+. Given an computed front for a problem, A, this indicator is a measure of
the smallest distance one would need to translate every solution in A so that it dominates
the optimal Pareto front of this problem [66]. More formally, given ~z1 = (z11 , . . . , z

1
n) and

~z2 = (z21 , . . . , z
2
n), where n is the number of objectives:

I1ε+(A) = infε∈R

{
∀ ~z2 ∈ PF∗ ∃ ~z1 ∈ A : ~z1 ≺ε ~z2

}
(2.19)

where, ~z1 ≺ε ~z2 if and only if ∀1 ≤ i ≤ n : z1i < ε + z2i . In this case, solution fronts with
lower values of Iε+ are desirable.

2.4.2 Statistical performance assessment
As previously explained, metaheuristics are stochastic based algorithms with different random
components in their operations. Opposite to deterministic procedures, for which, just a single
execution is required, when working with metaheuristics, performing a series of independent runs
for each algorithm’s configuration is a mandatory task in order to obtain a distribution of results.
In this case, it is possible to compute a global indicator (median, mean, standard deviation, etc.)
from the resulted distribution to measure the performance of the studied algorithm. Nevertheless,
using one single global indicator to directly compare metaheuristics should lead empirical analyses
to biased conclusions. Therefore, the correct practice is to compare the distributions of results by
means of statistical tests, which are indispensable tools to validate and to provide confidence to
our empirical analysis.

The standard procedure, recommended by the scientific community [68, 65], for the statistical
comparison of metaheuristics lies in the use of parametric or non-parametric tests. Parametric
tests show a high precision to detect differences in comparisons, although they are restricted to
distributions fulfilling three specific conditions: independency, distributions are obtained from
independent executions; normality, they follow a Gaussian distribution; and heteroskedasticity,
indicating the existence of a violation of the hypothesis of equality of variances. Non-parametric
tests also show a successful performance, although they are less restrictive, since they can be
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applied regardless of the three previous conditions. Among all these tests, we can find procedures
to perform rankings, pair-wise comparisons, and multiple post hoc comparisons.

In this thesis, we have adopted the non-parametric procedure to validate our results and to
compare our proposals with other techniques in the current state of the art. Our null hypothesis
(equality of distributions) has been set with a confidence level of 95%, meaning that statistical
differences can be found in distributions when resulted tests are with a p − value < 0.05. First,
Friedman’s test is first performed in order to check whether statistical differences exist or not. If
so, a Wilcoxon’s (signed rank variant) or Holm’s tests are performed depending on the number
of distributions to compare: 2 or more than 2, respectively. The KEEL (Knowledge Extraction
based on Evolutionary Algorithm) [69] implementation of these tests were used in all the studies
that are presented in this thesis.
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Chapter 3

The Molecular Docking Problem

This section has been divided in three subsections. In the Section 3.1, we have defined the molecular
docking problem and described the importance of the application of molecular docking approaches
in the context of drug discovery. Section 3.2 included the molecular docking problem formulation for
the mono-objective and multi-objective optimizations. Finally, in Section 3.3, we have concluded
with a complete review of those studies in which optimization techniques are applied to solve the
molecular docking problem.

3.1 Molecular docking: Definition and biological significance

The research based-pharmaceutical industry has increasingly included computational approaches
to know the intricate aspect of intermolecular recognition. These approaches have evolved hand-
by-hand with biomolecular spectroscopic methods such as the X-ray crystallography and NMR that
have an important impact in molecular and structural biology discovery [70]. These experimental
techniques have allowed to discover the resolution of more than 100,000 tridimensional structures
as the PDB specifies. However, to analyze how the molecules with a known resolution interact, it
is necessary to integrate studios in silico and experimental techniques.

In the context of structure-based drug design (SBDD) methods, there are three computational
techniques which are widely used such as molecular docking, structure-based virtual screening
(DBVS) and also molecular dynamics (MD) in order to determine binding energies between a
ligand and a given therapeutic target, molecular interactions between atoms and also the changes
of molecules’ conformations during an interaction. A different approach to the SBDD is the
ligand-based structure design (LSBD) which consists of the use of libraries of active ligands and
computational approaches (as molecular docking) to detect possible therapeutic targets.

The molecular docking is one of the approaches used in SBDD which tries to predict the con-
formation of small molecules to a binding site of a given macromolecule that can be a therapeutic
target. In the process of SBDD, studies in silico like molecular docking are performed to identify
candidate ligands to a target. The PDB database currently contains 130,599 biological macro-
molecules structures which most of them are involved in metabolic and biosignaling and therefore,
they can be possible therapeutic targets. Once that the ligand-receptor (the ligand-receptor com-
plex) has been identified in terms of energetic affinity and molecular interactions, the ligand can
be modified to increase its efficiency to bind to the therapeutic target. The results are analyzed
using molecular docking to know how these molecular modifications alter the binding efficiency of
the ligand.

The application of the molecular docking to the SBDD is possible given the accuracy of
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the ligand-protein predictions performed by molecular docking softwares. The main objective
of the molecular docking is to determine the minimal binding energy of the predicted ligand-
macromolecule complex. The more negative the obtained binding energy score is, the more stable
the ligand-receptor interaction is and thus, the ligand is likely more efficient inhibiting the thera-
peutic target.

In the computational development of molecular docking software, researchers in this field have
traditionally focused on two of the components which determine the quality of the results obtained
from the molecular docking software: the energy scoring function and the optimization algorithm.
The energy scoring function evaluates the conformation with a given binding energy score. In
the literature, there are molecular docking software tools that use different energy scoring func-
tions such as AutoDock [2], AutoDock Vina [3], GOLD [1] etc. In fact, there have been some
studies based on replacing and comparing energy functions in terms of accuracy of ligand affinity
predictions and speeding as is reported in [71]. However, in this dissertation, we have focused
on the optimization algorithms by doing an extensive study based on the application of mono-
and multi-objective algorithms to solve the molecular docking problem. In the following section,
we have introduced the formulation of the problem, how the solutions have been encoded for the
mono- and multi-objective optimization approaches and a full description of the objectives that
were optimized.

3.2 Problem formulation

The main objective of the molecular docking problem is to find an energetically stable complex
between a ligand, which can be a small compound (e.g. metabolite, inhibitors etc.), a peptide or
a peptidomemetic inhibitor and a macromolecule. There are some computational tools to predict
ligand-receptor complexes. In this thesis, we have selected AutoDock 4.2 which is one of the most
popular and cited molecular docking software in the research community [6, 72]. AutoDock 4.2
is a C++ software package that provides an energy scoring function and several algorithms such
as an Simulated Annealing (SA) and two Genetic Algorithms (GAs), one of which, referred to as
the Lamarckian Genetic Algorithm (LGA), which incorporates a local search [73]. AutoDock 4.2
energy scoring function is a semi-empirical force field which allows to apply flexibility in ligand
and side-chains of protein’s aminoacids. The method to apply flexibility in the macromolecule is
the same as used in the conformational space of the flexible ligand. The application of flexibility
to the ligand and receptor makes the docking simulations more realistic and gives more complexity
to the problem increasing the freedom degrees. The limit of freedom degrees that can be applied
to AutoDock 4.2 function is 32 [2].

For the mono-objective and multi-objective optimization, the solution of the ligand-receptor
complex is encoded in the same way. As illustrated in Fig. 3.1, each problem solution for AutoDock
4.2 and jMetal is encoded by a real-value vector of n + 7 variables, in which the first three values
correspond to the ligand translation involving the three axis values (x, y, z) in Cartesian coordinate
space, the next four values correspond to the ligand and/or macromolecule orientation, and the
remaining n values are the ligand and macromolecule torsion dihedral angles. For the mono- and
multi-objective approaches, we have used a grid-based methodology provided by AutoDock in
which the macromolecule’s interaction site is embedded in a 3D rectangular grid. For each point
of the grid, the electrostatic interaction energy and the van der Waals terms for each ligand atom
type are pre-computed and stored, taking into account all the protein atoms. In this way, the
protein contribution at any given point is obtained by tri-linear interpolation in each grid cell.
This interpolation leads to a range of translation variables (x, y, z) of 120 grid spacing points
dimension [74]. The values of these variables are delimited between the range of the coordinates
of the grid space that has been chosen for each problem. All ranges are selected randomly, so if
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the center of the grid is for example the (10, 10, 10) point, a solution with values of ten in its x,
y and z will be in such a position. In the case of orientation (quaternion) and torsion variables,
they are measured in radians and encoded in the range of [-π, π].

Figure 3.1: Solution encoding in AutoDock 4.2 and jMetal. The first three values (translation)
are the coordinates of the center of rotation of the ligand. The next four values (quaternion) are
the unit vector describing the direction of rigid body rotation (x, y and z) and the rotation of the
angle degrees (w) that are applied. The rest of the values hold the torsion angles in degrees, being
n the number of torsions of the ligand.

3.2.1 Mono-objective optimization

In the mono-objective optimization approach, the objective to optimize is the final free binding
energy (∆G), which is measured in kcal/mol. The more negative ∆G is, the more stable the
computed ligand-receptor complex. ∆G is computed by the energy scoring function provided by
AutoDock 4.2, which is used to measure the quality of the ligand-receptor binding solutions [2].
∆G is calculated according to the following equations (each term of the equations is described
below):

∆G = (QR−Lbound −Q
R−L
unbound + ∆Sconf ) + (QL−Lbound −Q

L−L
unbound) + (QR−Rbound −Q

R−R
unbound) (3.1)
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(3.2)

∆Sconf = Wconf ·Ntors (3.3)
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As formulated in Eq. 3.1, the free binding energy function is calculated from the differences be-
tween ligand/s (L) and receptor/s (R) in bounded and unbounded states. That is, the free energy
of binding is based on the evaluation of the transition of the ligand and protein intramolecular ener-
getics from an unbounded to a bounded state, and the intermolecular energetics of ligand–protein
complex. Therefore, the force field involves six pair-wise evaluations (V) plus a term of confor-
mational entropy (Ntors), which is directly proportional to the number of rotatable bonds of the
ligand molecule ( see Eq. 3.3). Each pair of energetic evaluation terms includes the evaluations of
dispersion/repulsion (vdw), hydrogen bonds (hbond), electrostatics (elec), and desolvation (sol).
Weights Wvdw, Whbond, Wconf , Welec, and Wsol of Eqs. 3.2 and 3.3, are constants for van der
Waals, hydrogen bonds, torsional forces, electrostatic interactions, and desolvation, respectively.
In Eq. 3.2, rij represents the interatomic distance, Aij and Bij in the first term are Lennard–Jones
parameters taken from Amber force field [75]. Similarly, Cij and Dij in the second term are
Lennard-Jones parameters for maximum well depth of potential energies between two atoms, and
E(t) represents the angle-dependent directionality. The third term in Eq. 3.2 uses a Coulomb ap-
proach for electrostatics. Finally, the fourth term is calculated from the volume (V ) of the atoms
that are surrounding a given atom weighted by S, and an exponential term which involves atom
distances.

Ligand–protein docking is a highly complex optimization problem, with unknown optimum and
usually characterized by multimodal landscape energy functions [76]. In addition, the computa-
tional cost of each energy evaluation increases with the number of atoms in complex ligand-protein
(with thousands of them), hence involving millions of energy evaluations, since a minimum quality
of molecular binding is mandatory in molecular docking modeling. Therefore, the use of meta-
heuristic approaches is highly recommendable for molecular docking, since they are able to explore
a great number of combinations with a fast convergence to successful solutions [77].

3.2.2 Multi-objective optimization

A multi-objective optimization problem is characterized by two spaces: the decision space and the
objective space. The former refers to all the possible feasible solutions, and the latter includes
their corresponding objective values.

Decision Space: As mentioned in Section 3.2, the AutoDock 4.2 solution for the multi-
objective approach is encoded in the same way as the mono-objective approach. This means that
all the returned solutions are encoded in a real-value vector of 7+n variables in which the first three
values correspond to the ligand translation, the next four values correspond to the ligand and/or
macromolecule orientation, and the remaining n values are the ligand and macromolecule torsion
dihedral angles. These solutions correspond to the decision space that characterized the multi-
objective optimization. It is worth noting that we have also applied the grid-based methodology
to define the ligand-receptor binding site.

Objective Space: We have applied two bi-objective formulations. In the first formulation,
we have optimized the intermolecular energy (Einter) and the intramolecular energy (Eintra). The
values of these terms are given from the AutoDock energy function [2] (see Eq. 3.4), being opposite
between them [7], and therefore giving rise to a multi-objective approach of this problem as follows:

• Objective 1: the Einter energy (see Eq. 3.5) is estimated by the difference of the bound
and unbound states of the ligand-macromolecule complex. The Einter energy describes the
binding affinity of the conformation.

• Objective 2: The Eintra energy (see Eq. 3.6) of the ligand and receptor is estimated by
the difference between the bound and unbound states of the ligand and receptor. The Eintra
characterizes the stability of the ligand in terms of energy.
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∆G = Einter + Eintra + ∆Sconf (3.4)

Einter = (QR−Lbound −Q
R−L
unbound) (3.5)

Eintra = (QL−Lbound −Q
L−L
unbound) + (QR−Rbound −Q

R−R
unbound) (3.6)

For Eq. 3.5 and Eq. 3.6, each pair of energetic evaluations terms are described in Eq. 3.5 in
subsection 3.2.1. The ∆Sconf term is described in Eq. 3.2.

In the second multi-objective formulation, we have optimized the intermolecular energy (Einter)
and the RMSD score. These two measures are contrary and consequently a bi-objective optimiza-
tion approach is reasonable with these measures. These objectives are calculated by the following
equations:

• Objective 1: the Einter energy (see Eq. 3.5) of the ligand and receptor is estimated by the
difference between the bound and unbound states of the ligand and receptor. The Einter
energy describes the binding affinity of the conformation.

• Objective 2: The RMSD is a measure of distance between the co-crystallized ligand in the
receptor and the predicted position of the docking ligand (see Eq. 3.7). The RMSD score is
a measure to compare the accuracy of the results obtained from the computational docking
approaches. The RMSD takes into account symmetry, partial symmetry (e.g. symmetry
within a rotatable branch) and near-symmetry in a simple heuristic way [3]. The lower
the RMSD score, the better the docking solution is. The RMSD cutoff of 2Å is widely
considered as a criterion to consider the computed ligand–protein conformation as a good
prediction among the research community. This measure is very useful in those cases in
which the ligand pose to the macromolecule is known. It is worth mentioning that, from
a pharmacological point of view, a ligand conformation with an RMSD score of 0Å (the
co-crystallized and computed ligands completely overlap) is not the best solution as the
macromolecule could involve other ligand binding sites, which have not been discovered yet.

RMSDab = max(RMSD
′

ab, RMSD
′

ba), with RMSD
′

ab =

√
1

N

∑
i

min
j
rij2 (3.7)

The sum is over all N heavy atoms in structure a, the minimum is over all atoms in structure
a with the same element type as atom i in structure b.

3.3 Review of the State-of-the-Art

Over the last two decades, different metaheuristics have been applied as search methods to solve the
docking problem [78]. One example is the docking software AutoDock, which incorporates three
metaheuristic techniques. AutoDock is considered to be the most cited and one of the most used
software packages in molecular modeling studies to discovery new compounds [6] as is reported in
[72].



42 3.3. REVIEW OF THE STATE-OF-THE-ART

AutoDock was released in 1990, and it included a rapid search method using Monte Carlo
simulated annealing [79]. However, this method proved to be inadequate for ligands with more than
eight rotatable bonds [73]. Eight years later, in an attempt to improve the software, AutoDock
3.0 was released, adding the Genetic Algorithm (GA) and the Lamarckian Genetic Algorithm
(LGA), which incorporates a local search, and an empirical binding free energy force that enables
the prediction of the free binding energies. Docking analyses have demonstrated that the LGA is
the most efficient search method of the three AutoDock algorithms in terms of the lowest energy
found in a number of energy function evaluations [73]. AutoDock 4 was presented in 2009 [2].
It allows conformational models of side chains of proteins, provides torsional degrees of freedom
and tries to solve the problem of flexibility in the receptor, a challenge in docking approaches
as we have mentioned in section 3.2. More recently, a new release has appeared, AutoDock 4.2,
which incorporates several enhancements over AutoDock 4. The latest version includes a default
unbounded state, different to the extended unbounded state of AutoDock 4, an improvement over
the time required to run a high-quality docking with flexible and rigid components, involving an
attempt to ensure compatibility between the different releases of AutoDock software.

In 2010, as an improvement on the previous releases, the AutoDock authors implemented a
new program for molecular docking called AutoDock Vina [3]. A study performed by Chang et
al. [80] compares the two softwares in drug virtual screening being AutoDock and AutoDock Vina
very accurate for virtual screening in cases in which ligands had fewer than eight rotatable bonds.
The results shown that AutoDock Vina was faster than other molecular docking tools. This can be
explained by the improvements implemented in AutoDock Vina such as multithreading to speed
up the execution in multicore processors, and the use of an iterated local search algorithm (ILS)
as the search engine. The stopping condition of the ILS is adaptively determined, thus making it
difficult to compare it fairly with other techniques that use a fixed number of function evaluations.

A number of approaches can be found in the current literature that have proposed metaheuris-
tic techniques designed around AutoDock versions. Atilgan et al. [81] developed a new program
named AutoDockX which incorporates a sustainable GA, namely Age-Layered Population Struc-
ture (ALPS), including the age attribute for individuals. Chen et al. [82] presented an algorithm
called SODOCK, which is an adaptation of PSO including Solis and Wets local search and uses an
older version of the AutoDock energy function (version 3.05). Two other PSO related proposals
are the varCPSO-ls algorithm, an extension of the CPSO algorithm with a local optimizer which
is embedded inside the AutoDock 3 source code and uses its energy function [83], and the FIPS-
Dock algorithm, which adopts the AutoDock 4.2 energy function [84]. DE has also been applied
in this context. A first attempt is DockDE [85], a variant of DE which uses an older version of
the AutoDock energy function. ODE is also an extension of DE enhanced by a local search algo-
rithm and a pseudo-elitism operator, and using the AutoDock scoring function [86]. A more recent
version is SADock [87], that incorporates a Hooke Jeeves local search.

Among studies on molecular docking with metaheuristics not based on AutoDock, there are
several approaches that are also worth mentioning. PARADockS is a framework implemented
to predict the ligand–protein interaction adapting PSO to several objective functions [88]. An
Ant Colony Optimization (ACO) approach is also presented in [89] using a systematic molecular
simulator. A variant of DE called MolDock was parallelized on both GPU and CPU using a fitness
function designed by the authors [90]. However, although the technique is adapted to a flexible
docking receptor, it has not been evaluated using flexible targets. Other optimization methods
such as multi-scale optimization models and information entropy-based searching techniques with
narrowing space were applied in a new docking algorithm [91]. Herberlé et al. [92] review EAs
applied to Mycobacterium tuberculosis docking targets.

In terms of analyzing the influence of algorithm operators and parameters, a study developed
by Thomsen [93] compared the performance of the LGA and DockEA algorithms by selecting
different EA operators, populations and usage of local search. However, the parameter setting study
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proposed, included very few docking problems and was only applied to the DockEA algorithm.
Another interesting study performed by Tavares et al. [94] investigated the effects of Gaussian
and Cauchy mutation operators through a locality analysis (small genotype variations imply small
variations in phenotype); the results showed that Gaussian-based operators had a stronger locality
than Cauchy-based operators. They also demonstrated that the results of runs using the Gaussian-
based operator were better than those returned by the Cauchy-based operator.

There are only a few articles which can be found in the literature concerning the multi-objective
optimization applied to the molecular docking problem. A first attempt was carried out in 2006 by
Oduguwa et al. [95], in which three evolutionary multi-objective optimization algorithms (NSGA-
II, PAES, and SPEA) were evaluated on three molecular complexes. Grosdidier et al. [96] proposed
a new hybrid evolutionary algorithm called EADock, which was interfaced with the CHARMM
package for energy calculations. In 2008, Janson et al. [7] designed a parallel multi-objective
optimization algorithm using AutoDock energy function version 3.05, called ClustMPSO, that
used K-Means to guide the migration strategy when dealing with six molecular complexes. In
this study, the two objective to optimize were the Einter and Eintra. Also, in 2008, Boisson et
al. [97] implemented a parallel evolutionary bi-objective model using ParadisEO platform and
GOLD for the docking of six instances. Sandoval-Perez et al. [18] used the implementation of
NSGA-II provided by the jMetal framework [98] to optimize bound and non-bound energy terms
as objectives applied to four docking instances.

These publications mentioned above, although proposed different approaches, they performed
only limited comparisons with other current multi/single-objective techniques. Furthermore, a low
number of molecular instances were used in these studies and were not flexible. In the area of
ligand design, there have been several studies that apply the multi-objective approach. Sanchez-
Faddeev et al. [99] proposed a bi-objective optimization approach using the SMS-EMOA to solve
the problem of finding a peptide ligand. The results obtained show the possibility to design a
peptide ligand of the Γ1 isoform of the 14-3-3 protein with predicted selectivity over the ε1 isoform.
Van der Horst et al. [100] used the multi-objective evolutionary algorithm (MOEA) for de novo
ligand design applied to the new adenosine receptor antagonists. The selection of the candidate
A1 adenosine receptor antagonists was based on multiple criteria and several objectives such as
the high predicted affinity and the selectivity of the ligands for the receptors and properties like
the ADMET score.



44 3.3. REVIEW OF THE STATE-OF-THE-ART



Chapter 4

Published Work

We have published several research studies based on the application to multi-objective metaheuris-
tics to solve the molecular docking problem. Specifically, four articles have been published in
journals indexed in the Journal of Citation Report (JCR) from the Institute of Scientific Informa-
tion. In addition to this, four articles have been published in congresses. Two of them have been
published in international congresses and the rest in national congresses.

4.1 List with Research Contributions

These four JCR articles apply metaheuristics to solve the molecular docking problem. These con-
tributions can be organized as follows:

Articles published in journal indexed in JCR:

• E. López-Camacho, M. J. García-Godoy, A. J. Nebro, and J. F. Aldana-Montes. “jMetalCpp:
optimizing molecular docking problems with a C++ metaheuristic framework”. Bioinformatics
30.3 (Feb. 2014), pp. 437–438. doi: 10.1093/bioinformatics/btt679
Impact Factor: 4,981. Q1 (3/57) in the category of mathematical and computational biology.

• E. López-Camacho, M. J. García-Godoy, J. García-Nieto, A. J. Nebro, and J. F. Aldana-
Montes. “Solving molecular flexible docking problems with metaheuristics: A comparative
study”. Applied Soft Computing 28 (2015), pp. 379–393. issn: 1568-4946. doi: 10.1016/j.
asoc.2014.10.049
Impact Factor: 2,857. Q1 (21/130) in the category of Computer Science and Artificial Intelli-
gence.

• M. J. García-Godoy, E. López-Camacho, J. García Nieto, A. J. Nebro, and J. F. Aldana-Montes.
“Solving Molecular Docking Problems with Multi-Objective Metaheuristics”. Molecules 20.6
(2015), pp. 10154–10183. doi: 10.3390/molecules200610154
Impact Factor: 2,465. Q2 (25/59) in the category of Chemistry, Organic.

• M. J. García-Godoy, E. López-Camacho, J. García-Nieto, A. J. Nebro, and J. F. Aldana-
Montes. “Molecular Docking Optimization in the Context of Multi-Drug Resistant and Sen-
sitive EGFR Mutants”. Molecules 21.11 (2016), p. 1575. issn: 1420-3049. doi: 10.3390/
molecules21111575
Impact Factor: 2,465. Q2 (25/59) in the category of Chemistry, Organic.
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Articles published in international congresses:

• E. López-Camacho, M. J. García-Godoy, J. García-Nieto, A. J. Nebro, and J. F. Aldana-
Montes. “A NewMulti-objective Approach for Molecular Docking Based on RMSD and Binding
Energy”. Algorithms for Computational Biology: Third International Conference, AlCoB 2016,
Trujillo, Spain, June 21-22, 2016, Proceedings. Ed. by M. Botón-Fernández, C. Martín-Vide,
S. Santander-Jiménez, and M. A. Vega-Rodríguez. Cham: Springer International Publishing,
2016, pp. 65–77. isbn: 978-3-319-38827-4. doi: 10.1007/978-3-319-38827-4_6

• J. García-Nieto, E. López-Camacho, M. J. García Godoy, A. J. Nebro, J. J. Durillo, and
J. F. Aldana-Montes. “A Study of Archiving Strategies in Multi-objective PSO for Molecular
Docking”. Swarm Intelligence: 10th International Conference, ANTS 2016, Brussels, Belgium,
September 7-9, 2016, Proceedings. Ed. by M. Dorigo, M. Birattari, X. Li, M. López-Ibáñez, K.
Ohkura, C. Pinciroli, and T. Stützle. Cham: Springer International Publishing, 2016, pp. 40–
52. isbn: 978-3-319-44427-7. doi: 10.1007/978-3-319-44427-7_4

Articles published in national congresses:

• E. López-Camacho, M. J. García-Godoy, J. García-Nieto, A. J. Nebro, and J. F. Aldana-
Montes. “Docking Inter/Intra-Molecular mediante metaheurísticas multi-objetivo”. X Con-
greso Español de Metaheurísticas, Algoritmos Evolutivos y Bioinspirados, MAEB 2015, Mérida,
Spain, February 4-6. 2015

• E. López-Camacho, M. J. García-Godoy, J. García-Nieto, A. J. Nebro, and J. F. Aldana-
Montes. “Estudio de Estrategias de Archivo en PSOMulti-Objetivo para el Docking Molecular”.
XI Congreso Español sobre Metaheurísticas, Algoritmos Evolutivos y Bioinspirados, MAEB
2016 (CAEPIA’16), Salamanca, Spain, September 13-15. 2016, pp. 113–122

4.2 Summary of the articles that support the thesis

This section summarizes the articles that support this thesis. All these papers are related to the
application of the single-objective and multi-objective optimizations to solve the problem of the
molecular docking. In the first article, we have described the integration of AutoDock and jMetal
and its application in the domain of molecular docking. In the second published article, we have
performed a study comparing the mono-objective techniques using a set of flexible instances. In a
third and fourth study, we have applied a set of multi-objective metaheuristics that optimize two
objectives, guiding the algorithm to search the best molecular docking solutions.

4.2.1 jMetalCpp: optimizing molecular docking problems with a C++
metaheuristic framework

Reference: [8] E. López-Camacho, M. J. García-Godoy, A. J. Nebro, and J. F. Aldana-Montes.
“jMetalCpp: optimizing molecular docking problems with a C++metaheuristic framework”. Bioin-
formatics 30.3 (Feb. 2014), pp. 437–438. doi: 10.1093/bioinformatics/btt679
Page in this thesis: 50

In [8] we introduced jMetalCpp, the C++ version of the metaheuristic framework jMetal (orig-
inally written in Java). We also presented the combination of this software with the widely used
AutoDock, which is the most used tool to solve molecular docking problems. The inclusion of
jMetalCpp inside the AutoDock provided the latter several additional metaheuristic techniques to
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solve molecular docking problems. Both new softwares (the standalone jMetalCpp and the “fu-
sion” of jMetalCpp with AutoDock) were published online1,2 to be freely used by the scientific
community.

4.2.2 Solving molecular flexible docking problems with metaheuristics:
a comparative study

Reference: [20] E. López-Camacho, M. J. García-Godoy, J. García-Nieto, A. J. Nebro, and J. F.
Aldana-Montes. “Solving molecular flexible docking problems with metaheuristics: A comparative
study”. Applied Soft Computing 28 (2015), pp. 379–393. issn: 1568-4946. doi: 10.1016/j.asoc.
2014.10.049
Page in this thesis: 51

In our first single-objective study [20], we tested the performance of new metaheuristic tech-
niques apart from those included in the AutoDock Tools for solving molecular docking problems.
This study approached the problem as a single-objective optimization problem, as AutoDock does.
AutoDock provides two different techniques to solve the problem: a Lamarckian Genetic Algo-
rithm (LGA), which includes local search, and a common Genetic Algorithm (GA). We added four
single-objective metaheuristic: generational Genetic Algorithm (gGA), steady-state Genetic Algo-
rithm (ssGA), Differential Evolution (DE) and Particle Swarm Optimization (PSO). A study with
75 protein-ligan complexes taken from PDB was carried on using the same fitness function and
configuration parameters than AutoDock to have a comparison as fair as possible. The objective
was the binding energies in kcal/mol associated with the receptor-ligand complex, as explained in
Section 3.2.1. Therefore, the lower the binding energy the better the result.

This study had two different steps. In the first one, we tuned the parameter configuration of
the four single-objective metaheuristic techniques. In order to do so, we selected 11 protein-ligand
complexes taken from the PDB database. After we obtained a set of configuration parameters for
the 4 single-objective metaheuristics, a thorough comparison was made between these four and the
algorithms provided by AutoDock. This time, a set of 75 instances also from PDB were used.

It was demonstrated that DE (jMetal) obtained the best results in 67 of the 75 instances,
followed by LGA (AutoDock) that achieved the best results in the remaining eight instances (1B6L,
1BDL, 1HEF, 1HIV, 1HPO, 1K6C, 1Z1H and 1ZIR). These results were provided with statistical
confidence (α = 0.05) as a series of non-parametric statistical tests were applied. In particular,
Friedman’s ranking and Holm’s post-hoc multicompare tests were calculated and showed that DE
achieved a statistically better performance than the rest of the other analyzed algorithms. This
fact is remarkable as the AutoDock algorithms are specifically designed to solve molecular docking
problems. It was also noted that DE showed a slower convergence behavior, though with more
successful solutions than its competitors. However, gGA demonstrated a fast convergence, and
also achieved high-quality solutions, so this algorithm could be a good choice when looking for
fast, but good enough solutions.

4.2.3 A new multi-objective approach for molecular docking based on
RMSD and binding energy

Reference: [21] E. López-Camacho, M. J. García-Godoy, J. García-Nieto, A. J. Nebro, and J. F.
Aldana-Montes. “A New Multi-objective Approach for Molecular Docking Based on RMSD and
Binding Energy”. Algorithms for Computational Biology: Third International Conference, AlCoB
2016, Trujillo, Spain, June 21-22, 2016, Proceedings. Ed. by M. Botón-Fernández, C. Martín-Vide,

1http://jmetalcpp.sourceforge.net/
2http://khaos.uma.es/autodockjmetal/
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S. Santander-Jiménez, and M. A. Vega-Rodríguez. Cham: Springer International Publishing, 2016,
pp. 65–77. isbn: 978-3-319-38827-4. doi: 10.1007/978-3-319-38827-4_6
Page in this thesis: 52

This work was presented in the 3rd International Conference on Algorithms for Computational
Biology (AlCoB 2016), celebrated in Trujillo, Spain in June of 2016. It was derived from the idea
of taking a multi-objective optimization approach to solve molecular docking problems. In the be-
ginning, the strategy we had followed was to decompose the final binding energy (the minimization
objective of the previous work) into several components, particularly the intra- and inter-molecular
energy [101]. After that, it was decided to use as objectives the same energy taken in the single-
objective study and the RMSD. These concepts were explained in more detail in Section 3.2.2.

However, in this paper [21], we selected four representative multi-objective optimization algo-
rithms such as NSGA-II, GDE3, SMPSO and MOEA/D. A benchmark composed of 11 complexes
having receptor and ligand flexibility was selected. The selection of these complexes was moti-
vated as they are docking problems containing a wide range of ligand sizes (from small to large
inhibitors). Two quality indicators were calculated to measure the performance of each algorithm:
Hypervolume (IHV ) and Unary Additive Epsilon Indicator (Iε+). The first indicator takes into
account both convergence and diversity, whereas the second one (Iε+) gives a measure of the con-
vergence degree of the obtained Pareto front approximations. It is worth noting that, as we are
dealing with real-world optimization problems, the true Pareto fronts needed to calculate these
metrics are not known, so they had to be obtained using all the approximated fronts from all the
executions of all the multi-objective algorithms for each problem.

The IHV is the sum of the contributed volume of each point of a front in respect to a reference
point, so the higher the convergence and diversity degrees of a front, the higher its IHV value.
According to these results, SMPSO achieved the best IHV values in all the eleven problems, being
MOEA/D the second best performing technique. It is important to note that many algorithms
had a IHV value equal to zero, this happens when all the points of the produced fronts are beyond
the limits of the reference point. This happened in most of the problems in all the algorithms
excepting SMPSO, what leaded us to think that we are facing a hard optimization problem. Also,
SMPSO achieved the best performance results according the Iε+ indicator (in this case, the lower
the value, the better). SMPSO achieved the best values for all 11 instances except for 1HTF, in
which it got the second best value. MOEA/D, which was the algorithm that got the best value
for 1HTF, achieved the second best values for 9 instances. GDE3 got the second best value in one
instance (1HPX) while NSGA-II got the worst results for all the instances.

After this work was presented, it was invited to be substantially extended and be submitted to a
special issue of the journal IEEE/ACM Transactions on Computational Biology and Bioinformatics
(TCBB, 2014 JCR impact factor: 1.438, quartile Q1). To this day, it is still under-review.

4.2.4 A study of archiving strategies in multi-objective PSO for molec-
ular docking

Reference: [22] J. García-Nieto, E. López-Camacho, M. J. García Godoy, A. J. Nebro, J. J.
Durillo, and J. F. Aldana-Montes. “A Study of Archiving Strategies in Multi-objective PSO for
Molecular Docking”. Swarm Intelligence: 10th International Conference, ANTS 2016, Brussels,
Belgium, September 7-9, 2016, Proceedings. Ed. by M. Dorigo, M. Birattari, X. Li, M. López-
Ibáñez, K. Ohkura, C. Pinciroli, and T. Stützle. Cham: Springer International Publishing, 2016,
pp. 40–52. isbn: 978-3-319-44427-7. doi: 10.1007/978-3-319-44427-7_4
Page in this thesis: 53

This work [22] was presented in the 10th International Conference on Swarm Intelligence (ANTS
2016), celebrated in Brussels, Belgium in September of 2016. It is the natural continuation from the



CHAPTER 4. PUBLISHED WORK 49

previous one, where we obtained that SMPSO obtained best overall results when applying a multi-
objective approach to solve molecular docking problems. The previous experiment was replicated
using several SMPSO variants based on different archiving strategies. The selected variants are:
SMPSOhv, SMPSOD and SMPSOC. The original SMPSO and OMOPSO (the algorithm which
SMPSO was inspired from) were also included in the comparison.

This paper introduced the variant named SMPSOC. It is characterized by the use of a cosine
similarity when calculating the density value of each point in the solution front. The variant
SMPSOD was also presented in this paper for the first time. It is an archive-less approach,
implemented as an aggregative version of SMPSO inspired by MOEA/D.

According to the IHV indicator, SMPSOhv obtained the best results for all the 11 instances,
whereas SMPSOD got the second best value in 6 instances, SMPSOC in three and the original
SMPSO in two, respectively. In the same manner, SMPSOhv obtained again the best values for
the 11 instances according to the Iε+ indicator. The second best values were achieved by SMPSOD
in 7 instances, the original SMPSO in three and SMPSOC in one instance, respectively.

4.3 Summary of other publications related to this thesis

This section briefly comments the other four articles that do not support this thesis but are related
to its topic. Two of them were published in the Molecules journal and the other two were published
in national congresses.

In [101], we presented our first multi-objective approach. The final binding energy (the mini-
mization objective of the mono-objective study) was decomposed into the intra- and inter-molecular
energy. These two components were used as two contrary objectives. We selected six multi-
objective optimization algorithms such as NSGA-II, ssNSGA-II, GDE3, SMPSO, MOEA/D and
SMS-EMOA. A heterogeneous set of 11 protein-ligand complexes with flexible ligands and recep-
tors was selected in order to carry out the experiments. A use case of drug discovery that involves
the aeroplysinin-1 compound and the human Epidermal Growth Factor (EGFR) was also provided.
The results demonstrated that according to the use casses presented, it can be more interesting to
select a specific docking solution with a balanced tradeoff between the Einter and Eintra values.

In [102], we presented our latest multiobjective approach. This time, we selected the final
binding energy and the RMSD as optimization objectives and NSGA-II, GDE3, SMPSO and
MOEA/D as multi-objective optimization algorithms. In this study, we performed an analysis on
binding sites in the EGFR kinase domain and molecular interactions. The use cases were based
on instances with wild-type EGFR, EGFR with mutations L858R and G719S and EGFR double
mutants (T790M/L858R and T790M/G719S). This proposed approach can be used for in silico
studies to test other analog kinase inhibitors or similar compounds for drug discovery in those
cancers in which therapeutic targets are changed by somatic mutations.

The two latter articles where published in the X and XI ‘Congreso Español de Metaheurísticas,
Algoritmos Evolutivos y Bioinspirados (MAEB)’ in 2015 and 2016. The first article [103] pre-
sented our first multi-objective approach (using the intra- and inter-molecular energy as contrary
objectives). The following year, we presented our multi-objective PSO study in this same congress
[104].

4.4 Copies of the articles that support the thesis

This section includes copies of the four articles summarized in Section 4.2
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E. López-Camacho, M. J. García-Godoy, A. J. Nebro, and J. F. Aldana-Montes. “jMetalCpp: op-
timizing molecular docking problems with a C++ metaheuristic framework”. Bioinformatics 30.3
(Feb. 2014), pp. 437–438. doi: 10.1093/bioinformatics/btt679

Motivation: Molecular docking is a method for structure-based drug design and structural
molecular biology, which attempts to predict the position and orientation of a small molecule
(ligand) in relation to a protein (receptor) to produce a stable complex with a minimum binding
energy. One of the most widely used software packages for this purpose is AutoDock, which incor-
porates three metaheuristic techniques. We propose the integration of AutoDock with jMetalCpp,
an optimization framework, thereby providing both single- and multi-objective algorithms that can
be used to effectively solve docking problems.

Results: The resulting combination of AutoDock + jMetalCpp allows users of the former to
easily use the metaheuristics provided by the latter. In this way, biologists have at their disposal a
richer set of optimization techniques than those already provided in AutoDock. Moreover, designers
of metaheuristic techniques can use molecular docking for case studies, which can lead to more
efficient algorithms oriented to solving the target problems.

Availability and implementation: jMetalCpp software adapted to AutoDock is freely avail-
able as a C++ source code at http://khaos.uma.es/AutodockjMetal/.
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E. López-Camacho, M. J. García-Godoy, J. García-Nieto, A. J. Nebro, and J. F. Aldana-Montes.
“Solving molecular flexible docking problems with metaheuristics: A comparative study”. Applied
Soft Computing 28 (2015), pp. 379–393. issn: 1568-4946. doi: 10.1016/j.asoc.2014.10.049

The main objective of the molecular docking problem is to find a conformation between a small
molecule (ligand) and a receptor molecule with minimum binding energy. The quality of the dock-
ing score depends on two factors: the scoring function and the search method being used to find the
lowest binding energy solution. In this context, AutoDock 4.2 is a popular C++ software package
in the bioinformatics community providing both elements, including two genetic algorithms, one
of them endowed with a local search strategy. This paper principally focuses on the search tech-
niques for solving the docking problem. In using the AutoDock 4.2 scoring function, the approach
in this study is twofold. On the one hand, a number of four metaheuristic techniques are analyzed
within an extensive set of docking problems, looking for the best technique according to the qual-
ity of the binding energy solutions. These techniques are thoroughly evaluated and also compared
with popular well-known docking algorithms in AutoDock 4.2. The metaheuristics selected are:
generational and a steady-state Genetic Algorithm, Differential Evolution, and Particle Swarm
Optimization. On the other hand, a C++ version of the jMetal optimization framework has been
integrated inside AutoDock 4.2, so that all the algorithms included in jMetal are readily available
to solve docking problems. The experiments reveal that Differential Evolution obtains the best
overall results, even outperforming other existing algorithms specifically designed for molecular
docking.
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E. López-Camacho, M. J. García-Godoy, J. García-Nieto, A. J. Nebro, and J. F. Aldana-Montes.
“A New Multi-objective Approach for Molecular Docking Based on RMSD and Binding Energy”.
Algorithms for Computational Biology: Third International Conference, AlCoB 2016, Trujillo,
Spain, June 21-22, 2016, Proceedings. Ed. by M. Botón-Fernández, C. Martín-Vide, S. Santander-
Jiménez, and M. A. Vega-Rodríguez. Cham: Springer International Publishing, 2016, pp. 65–77.
isbn: 978-3-319-38827-4. doi: 10.1007/978-3-319-38827-4_6

Ligand-protein docking is an optimization problem based on predicting the position of a ligand
with the lowest binding energy in the active site of the receptor. Molecular docking problems are
traditionally tackled with single-objective, as well as with multi-objective approaches, to minimize
the binding energy. In this paper, we propose a novel multi-objective formulation that considers:
the Root Mean Square Deviation (RMSD) difference in the coordinates of ligands and the binding
(intermolecular) energy, as two objectives to evaluate the quality of the ligand-protein interactions.
To determine the kind of Pareto front approximations that can be obtained, we have selected a
set of representative multi-objective algorithms such as NSGA-II, SMPSO, GDE3, and MOEA/D.
Their performances have been assessed by applying two main quality indicators intended to mea-
sure convergence and diversity of the fronts. In addition, a comparison with LGA, a reference
single-objective evolutionary algorithm for molecular docking (AutoDock) is carried out. In gen-
eral, SMPSO shows the best overall results in terms of energy and RMSD (value lower than 2Å
for successful docking results). This new multi-objective approach shows an improvement over the
ligand-protein docking predictions that could be promising in in silico docking studies to select
new anticancer compounds for therapeutic targets that are multidrug resistant.
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J. García-Nieto, E. López-Camacho, M. J. García Godoy, A. J. Nebro, J. J. Durillo, and J. F.
Aldana-Montes. “A Study of Archiving Strategies in Multi-objective PSO for Molecular Docking”.
Swarm Intelligence: 10th International Conference, ANTS 2016, Brussels, Belgium, September
7-9, 2016, Proceedings. Ed. by M. Dorigo, M. Birattari, X. Li, M. López-Ibáñez, K. Ohkura, C.
Pinciroli, and T. Stützle. Cham: Springer International Publishing, 2016, pp. 40–52. isbn: 978-3-
319-44427-7. doi: 10.1007/978-3-319-44427-7_4

Molecular docking is a complex optimization problem aimed at predicting the position of a
ligand molecule in the active site of a receptor with the lowest binding energy. This problem can
be formulated as a bi-objective optimization problem by minimizing the binding energy and the
Root Mean Square Deviation (RMSD) difference in the coordinates of ligands. In this context,
the SMPSO multi-objective swarm-intelligence algorithm has shown a remarkable performance.
SMPSO is characterized by having an external archive used to store the non-dominated solutions
and also as the basis of the leader selection strategy. In this paper, we analyze several SMPSO
variants based on different archiving strategies in the scope of a benchmark of molecular docking
instances. Our study reveals that the SMPSOhv, which uses an hypervolume contribution based
archive, shows the overall best performance.
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Chapter 5

Conclusions and Future Work

This chapter exposes the final ideas of this dissertation. Section 5.1 contains the conclusions
obtained in all the past experiments. Then, in Section 5.2 we explained the future lines of work
that we plan to explore from the latter works.

5.1 Conclusions

When tackling molecular docking problems, the available techniques to solve them have not changed
over the last years. As these problems can be formulated as multi-objective optimization problems,
our intention was to study and provide a set of modern metaheuristic techniques to solve them. As
the most used molecular docking tool (AutoDock) was coded in C++, we embarked on the task
of the creation of a port of the metaheuristic framework jMetal in this language: jMetalCpp. This
way, we have provided the research community with a powerful and open-source tool that can be
freely used.

The implementation of the jMetalCpp framework provides advantages to researchers both in
drug discovery and other life sciences domains who are interested in having more modern tech-
niques that will help them to solve different problems like molecular docking. We have already
demonstrated that different techniques exist apart than the ones that are commonly used to solve
molecular docking problems and that they can lead to higher quality results. The inclusion of
jMetalCpp into the widely used tool AutoDock provides other researchers with a collection of
metaheuristics and tools additional from those that are already included in Autodock. It also
provides an easy structure for more advanced users with C++ coding skills to incorporate their
own techniques to solve molecular docking problems. This tool is publicly online and has been
already downloaded by researchers from different parts of the world. The standalone jMetalCpp
framework is also available for researchers to be used for solving optimization problems of other
domains. It has been downloaded hundreds of times from all the world1 and we have been in
contact with people who wanted to contribute to the code adding their own tools and algorithms,
and use it in their own research work.

Using AutoDock+jMetal, a study was done using single-objective metaheuristics where we
included more algorithms (apart from those already included by AutoDock) to solve a large bench-
mark of protein-ligand complexes. The study was carried on taking the same configuration parame-
ters that commonly were used in the AutoDock publications. We proved that other single-objective
metaheuristics could lead to higher quality results. In our case, the differential evolution algorithm
proved to be a better candidate when solving molecular docking problems.

11,917 downloads from SourceForge at the present day

55



56 5.2. FUTURE WORK

When tackling molecular docking problems using a multi-objective approach, a set of solutions
is returned at the end of one execution instead of a single solution. This set of solutions provides
the end user with several possibilities from where to choose depending of the weight she/he wants
to give to each of the optimization objectives. So, we have considered two different multi-objective
approaches in our studies. The first one was based on decomposing the final binding energy (the
objective function that is minimized by the single-objective algorithms) into several components.
We selected the intra- and inter-molecular energies as optimization objectives. This resulted in a
set of solutions where the end user could select from depending on the importance that he gives
to each one of the energies.

The other multi-objective formulation used the same objective as the single-objective formu-
lation (the binding energy) and the RMSD. The use of RMSD as objective to guide the search
is useful in those typical cases in which the active site of a given therapeutic target mutates and
makes it multi-drug resistant. Using this approach, a broad set of solutions are returned, which
can be selected according to the weight of the RMSD and binding energy, instead of only focus-
ing on energy values. A first study was made using four multi-objective algorithms: NSGA-II,
SMPSO, GDE3 and MOEA/D. In this experiment, an heterogeneous set of 11 protein-ligand com-
plexes with flexible ligands and receptors were selected as problem instances. SMPSO provided
the best overall performance according to the two quality indicators used (IHV and Iε+) and for
the studied molecular instances, being MOEA/D the algorithm with second best values. Also,
from a single-objective point of view, the solutions obtained from SMPSO were better than those
obtained from the LGA algorithm form AutoDock. This was remarkable as SMPSO is a general
purpose optimization algorithm, whereas LGA is specifically adapted to deal with the molecular
docking problem. Finally, it is interesting to note that SMPSO converged to the region biased
towards the RMSD objective, whereas MOEA/D placed its solutions in the opposite region of the
generated fronts of non-dominated solutions.

From the results obtained in the last study, a new one was carried on where several SMPSO
variants with different archiving strategies would be tested. The selected variants were: SMPSOhv,
SMPSOD and SMPSOC. The original SMPSO and OMOPSO (the algorithm which SMPSO was
inspired from) were also included in the comparison. The previous multi-objective study was
replicated using these six algorithms and the same configurations than before. According to our
two usual quality indicators (IHV and Iε+), SMPSOhv was revealed to obtain the best values,
followed by SMPSOD, SMPSOC and SMPSO. The former variant obtained the best IHV as it
included a leader selection method of those non-dominated solutions (from the external archive)
having the largest hypervolume contributions, which seemed to be responsible of the best diversity
and convergence values in this comparison. OMOPSO showed moderated results, although reaching
outperforming outlier solutions for some instances. It is worth noting that SMPSOD variant was
able to cover the reference front with non-dominated solutions in the two objectives extremes (low
energy and low RMSD values respectively).

We can summarize the research work of this thesis in the fact that the use of modern multi-
objective algorithms can provide the biologists with accurate solutions for the molecular docking
problems. The use of these more modern variants of SMPSO instead of the common used tecniques
for solving the molecular docking problem have been demonstrated to achieve better results.

5.2 Future Work

The line of study carried on in this dissertation has lead us to plan several possible works. On one
hand, some of future works emerge from the idea of continuing the tackled problem (molecular
docking) and still focus on trying to improve the quality of the obtained results. On the other
hand, new research lines could be started from the knowledge obtained in the previous experiments
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and could be considered as “branches” of this work.
The first planned work is related to our first multi-objective study, which obtained that joining

the solutions generated from SMPSO and MOEA/D algorithms covered the full Pareto front. As
a future work, this leaded us to think that a hybrid implementation of SMPSO and MOEA/D
would provide us with a broader set of solutions that would cover the reference front with non-
dominated solutions in the two objective ends. The results obtained by SMPSOD in the second
multi-objective study encouraged us in continuing this plan of work.

Related to the hybrid algorithm design, we plan to implement and include into jMetalCpp
some operators that are specifically designed to the molecular docking problem. Until now, all the
metaheuristic techniques that we have used in our studies use general purpose variation operators
(crossover and mutation), so it is natural to get the conclusion that if the techniques used to solve
the molecular docking are specifically designed to this concrete problem we could obtain higher
quality solutions.

Other contribution to the scientific community that we want to explore is the creation of a Web
service that provides the same tools that jMetalCpp integrates to the AutoDock tools. This Web
service would allow molecular docking executions using all the jMetalCpp metaheuristics on one
protein-ligand complex (selectable from all our previous sets or uploaded by the user). This idea
emerged as some users with a more biological background could have problems trying to compile
and execute our AutoDock+jMetal tool.

We also plan to work in the automatic design of algorithms in order to develop ad-hoc meta-
heuristics that could lead to better solutions according to the optimization objectives. Some
preliminary work has already been tackled on the automatic design of algorithms but for general
purpose problems. It is in our interest to apply these advances for solving the molecular docking
problem.

Finally, as a more general idea, we would want to use our standalone jMetalCpp framework to
solve other problems in the life sciences, and not be restricted to only molecular docking. Our tool
is abstract enough to include more algorithms and to be used to solve other optimization problems
from different domains. In particular, the tertiary protein structure prediction is a very promising
candidate to apply the set of jMetalCpp optimization techniques.
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