
2011 14

Jorge Martín Morales

Embedded Q-
Resolutions and

Yomdin-Lê Surface
Singularities

Departamento

Director/es

Matemáticas

Artal Bartolo, Enrique
Cogolludo Agustín, José Ignacio

Director/es

Tesis Doctoral

Autor

Repositorio de la Universidad de Zaragoza – Zaguan   http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA



Departamento

Director/es

Jorge Martín Morales

EMBEDDED Q-RESOLUTIONS AND
YOMDIN-LÊ SURFACE SINGULARITIES

Director/es

Matemáticas

Artal Bartolo, Enrique
Cogolludo Agustín, José Ignacio

Tesis Doctoral

Autor

2011

Repositorio de la Universidad de Zaragoza – Zaguan   http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA



Departamento

Director/es

Director/es

Tesis Doctoral

Autor

Repositorio de la Universidad de Zaragoza – Zaguan   http://zaguan.unizar.es

UNIVERSIDAD DE ZARAGOZA



Embedded Q-Resolutions and
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VII.3 Weighted Yomdin-Lê Surface Singularities 152



CONTENTS v

Chapter VIII. Algorithms for Checking Rational Roots of b-Functions

and their Applications 155

VIII.1 Introduction 156

VIII.2 The checkRoot Family of Algorithms 157

VIII.2–1 Multiplicities 160

VIII.2–2 Local versus global b-functions 163

VIII.2–3 b-functions with respect to weights and checkRoot 167

VIII.3 Computing b-Functions via Upper Bounds 169

VIII.3–1 Embedded resolutions 169

VIII.3–2 Topologically equivalent singularities 172

VIII.3–3 A’Campo’s formula 173

VIII.4 Integral Roots of b-Functions 175

VIII.4–1 Upper bounds from different ideals 175

VIII.4–2 Minimal integral root of bf (s) and LCT 175

VIII.4–3 Intersection homology D-module 177

VIII.5 Stratification Associated with Local b-Functions 179

VIII.6 Other Applications 182

VIII.6–1 Bernstein-Sato polynomials for varieties 182

VIII.6–2 A remark in Narváez’s paper 183
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and José Maŕıa Ucha, all of them professors from the Department of Alge-

bra in Seville, helped me a lot with their advice and suggestions in the early

stages of my research. Apart from these, since then, many people and insti-

tutions have collaborated as well in one way or another on the development

of this study.

First, I am deeply grateful to my advisors Enrique Artal and José Ignacio
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Primera Parte (Caṕıtulos I–V)

Uno de los principales invariantes de una singularidad de hipersuperficie

es la estructura de Hodge mixta (EHM) sobre la cohomoloǵıa de la fibra

de Milnor. En el caso aislado, Steenbrink dio un método para calcular esta

estructura usando una sucesión espectral construida a partir de los divisores

asociados a la normalización semiestable de una resolución encajada [Ste77].

Sin embargo, en la práctica la combinatoria del divisor excepcional de

la resolución es tan compleja que el estudio de la sucesión espectral resulta

muy complicado, ver por ejemplo [Art94b] donde se calcula una resolución

encajada y la correspondiente normalización semiestable de singularidades

superaisladas de superficie usando explosiones de puntos y curvas racionales.

Después de la normalización semiestable el nuevo espacio ambiente con-

tiene singularidades normales que se obtienen como cociente de una bola

en Cn por la acción de un grupo finito. Los espacios que tienen sola-

mente este tipo de singularidades se llaman V -variedad. Fueron introduci-

das en [Sat56] y tienen las mismas propiedades sobre Q que las variedades

diferenciables, por ejemplo, admiten dualidad de Poincaré si son compactas

y tienen estructura de Hodge pura si son compactas y Kähler [Bai56].

Además, se puede definir la noción de divisor con cruces normales [Ste77].

Motivado por esto y para tratar de simplificar la combinatoria del divisor

excepcional, introducimos la noción de Q-resolución encajada. La idea es

la siguiente. Clásicamente una resolución encajada de {f = 0} ⊂ Cn+1 es

una aplicación propia π : X → (Cn+1, 0) de una variedad lisa X verificando,

entre otras condiciones, que π∗({f = 0}) es un divisor con cruces normales.

Para debilitar la condición sobre la preimagen de la singularidad, permitimos

que el nuevo espacio ambiente X tenga singularidades cocientes abelianas y

el divisor π∗({f = 0}) cruces normales en X.
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Más concretamente, aqúı presentamos la definición de uno de los objetos

más importantes de nuestro estudio.

Definición. Sea M un espacio cociente abeliano. Consideramos H ⊂ M

una subvariedad anaĺıtica de codimensión 1. Una Q-resolución encajada de

(H, 0) ⊂ (M, 0) es una aplicación anaĺıtica propia π : X → (M, 0) tal que:

(1) X es una V -variedad con singularidades cocientes abelianas.

(2) π es un isomorfismo sobre X \ π−1(Sing(H)).

(3) π∗(H) es una hipersuperficie con Q-cruces normales en X.

El presente trabajo está dedicado al estudio de invariantes de hipersu-

perficies singulares (H, 0) ⊂ (Cn+1, 0) a través de una Q-resolución encajada

o la normalización semiestable asociada. Nos centraremos en dos invariantes

importantes de H: el polinomio caracteŕıstico de la monodromı́a compleja

(Caṕıtulo IV) y la estructura de Hodge mixta sobre la cohomoloǵıa de la

fibra de Milnor (Caṕıtulo V).

Como hemos dicho anteriormente, la motivación de usar Q-resoluciones

encajadas en lugar de las clásicas es doble. Por un lado, son generalizaciones

de las resoluciones encajadas usuales, para las que se espera que los inva-

riantes anteriores se puedan calcular de manera efectiva. Por otro lado, la

complejidad combinatoria y computacional de las Q-resoluciones encajadas

es mucho más sencilla, pero conservan la misma información necesaria para

la comprensión de la topoloǵıa de la singularidad.

Notación. Para tratar estas resoluciones, necesitamos introducir algo de

notación. Sea G := µd0×· · ·×µdr un grupo finito abeliano arbitrario escrito

como productor de grupos finitos ćıclicos, esto es, µdi es el grupo ćıclico de

las ráıces di-ésimas de la unidad. Consideramos una matriz de pesos

A := (aij)i,j = [a0 | · · · |an] ∈Mat((r + 1)× (n+ 1),Z)

y la acción

(1)
(µd0 × · · · × µdr)× Cn+1 −→ Cn+1,

(
ξd,x

)
7→ (ξa00d0

· · · ξar0dr
x0, . . . , ξ

a0n
d0
· · · ξarndr

xn).

El conjunto de todas las órbitas Cn+1/G se llama espacio cociente (ćıclico)

de tipo (d;A) y se denota por

X(d;A) := X




d0 a00 · · · a0n
...

...
. . .

...

dr ar0 · · · arn


 .

La órbita de un elemento (x0, . . . , xn) bajo esta acción se denota por

[(x0, . . . , xn)](d;A) y el sub́ındice se omite si no hay lugar a confusión.
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Nota. La condición (3) de la definición anterior significa que si f : (M, 0)→
(C, 0) es el germen de una función anaĺıtica y (H, 0) es la hipersuperficie

definida por f , entonces la transformada total π−1(H) = (f ◦ π)−1(0) está

localmente dada por una función de la forma xm0
0 · · ·xmkk : X(d;A) → C,

donde X(d;A) := Cn+1/µd y µd actúan diagonalmente como en (1).

Los números anteriores mi no tienen ningún significado cuando µd no

induce una acción “small” sobre GL(n+ 1,C). Esto motiva lo siguiente.

Definición. El tipo (d;A) se dice normalizado si la acción es libre en (C∗)n+1

y µd se identifica con un subgrupo small de GL(n+ 1,C).

Un problema clásico en Teoŕıa de Singularidades es describir o dar un

método para calcular invariantes una vez conocida una resolución encajada.

La existencia de tal resolución está garantizada por los trabajos de Hironaka.

Con el mismo esṕıritu, uno de los propósitos de este trabajo es proporcionar

información sobre la singularidad a través de una Q-resolución encajada.

Como herramienta para encontrar Q-resoluciones encajadas, usaremos

explosiones ponderadas con centro liso. Prestaremos especial atención a los

casos de dimensión 2 y 3 y explosiones de puntos. Tales explosiones pueden

entenderse desde la geometŕıa tórica pero en este trabajo las presentamos

más geométricamente, generalizando las usuales.

Ejemplo. Supongamos (d; a, b) normalizado y gcd(ω) = 1, ω := (p, q). En-

tonces, el espacio total de la explosión ω-ponderada del origen de X(d; a, b),

(2) π(d;a,b),ω : ̂X(d; a, b)ω −→ X(d; a, b),

se puede escribir como

Û1 ∪ Û2 = X

(
pd

e
; 1,
−q + βpb

e

)
∪X

(
qd

e
;
−p+ µqa

e
, 1

)

y las cartas están dadas por

Primera carta X

(
pd

e
; 1,
−q + βpb

e

)
−→ Û1,

[
(xe, y)

]
7→
[
((xp, xqy), [1 : y]ω)

]
(d;a,b)

.

Segunda carta X

(
qd

e
;
−p+ µqa

e
, 1

)
−→ Û2,

[
(x, ye)

]
7→
[
((xyp, yq), [x : 1]ω)

]
(d;a,b)

.

En lo anterior, e = gcd(d, pb−qa) y βa ≡ µb ≡ 1 (mód d), ver I.3–1 para los

detalles. Nótese que el origen de las dos cartas son singularidades cocientes

ćıclicas. Están situadas en el divisor excepcional E que es isomorfo a P1.
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Para estudiar las Q-resoluciones encajadas necesitamos una teoŕıa de

intersección. Para ello tenemos que trabajar con divisores en V -variedades.

Dos clases de divisores aparecen en la literatura: divisores de Weil y de

Cartier. Los divisores de Weil son combinaciones lineales localmente finitas

con coeficientes enteros de subvariedades de codimensión 1 y los divisores

de Cartier son secciones globales del haz cociente de funciones meromorfas

módulo funciones holomorfas que no se anulan nunca. La relación entre

divisores de Cartier y fibrados en ĺınea proporciona una buena manera de

definir la multiplicidad de intersección de dos divisores.

En la categoŕıa lisa, ambos conceptos coinciden pero no es el caso para

variedades singulares, ni siquiera para las normales. También podemos con-

siderar Q-divisores de Weil y de Cartier (tensorizando los correspondientes

grupos por Q). El primer resultado importante de este trabajo es que estos

dos conceptos coinciden para V -variedades.

Teorema 1. Sea X una V -variedad. Entonces, la aplicación definida a

través de la noción de divisor de Weil asociado,

TX ⊗ 1 : CaDiv(X)⊗Z Q −→WeDiv(X)⊗Z Q,

es un isomorfismo de Q-espacios vectoriales. En particular, dado un divisor

de Weil D en X, siempre existe k ∈ Z tal que kD ∈ CaDiv(X).

Probablemente este resultado es conocido por los especialistas pero no

hemos encontrado una demostración en la literatura. Existen algunos re-

sultados parciales para variedades tóricas. Además, en este trabajo damos

un algoritmo para presentar expĺıcitamente un Q-divisor de Weil como un

Q-divisor de Cartier, ver (II.2.14). Ilustramos el uso de este algoritmo con

un ejemplo de un espacio obtenido después de una explosión ponderada.

Ejemplo. Sea π(d;a,b),ω el morfismo propio definido en (2). Entonces, su

divisor excepcional E es un divisor de Weil que no se corresponde con ningún

divisor de Cartier. Sin embargo, siguiendo la discusión anterior, se puede

escribir como Q-divisor de Cartier del modo e
dpq

{
(Û1, x

dq), (Û2, y
dp)
}

.

El teorema 1 anterior nos permite desarrollar una teoŕıa de intersección

racional sobre V -variedades con las propiedades usuales esperadas, que están

recogidas en la proposición (III.1.3).

Definición. Sea X una V -variedad y consideremos D1, D2 ∈ Q-Div(X). El

número de intersección está definido comoD1·D2 := 1
k1k2

(k1D1 · k2D2) ∈ Q,

donde k1, k2 ∈ Z se eligen para que k1D1 ∈WeDiv(X) y k2D2 ∈ CaDiv(X).

Análogamente, se define el número de intersección local en P ∈ D1 ∩ D2,

si D1 * D2. Idem el pull-back está definido por F ∗(D2) := 1
k2
F ∗(k2D2) si

F : Y → X es un morfismo propio entre dos V -variedades irreducibles.
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Este número de intersección racional fue primero introducido por Mum-

ford para superficies normales, ver [Mum61, Pag. 17]. Nuestra definición

coincide con la de Mumford gracias al buen comportamiento con respecto al

pull-back, ver Theorem (III.1.5). La principal ventaja es que la nuestra no

involucra una resolución del espacio ambiente y, por ejemplo, esto nos per-

mite encontrar fácilmente fórmulas para la auto-intersección de los divisores

excepcionales de explosiones ponderadas sin calcular ninguna resolución.

De hecho, esto es el segundo resultado importante de este trabajo.

Proposición 2. Sea π := π(d;a,b),ω el morfismo definido en (2). Conside-

ramos dos Q-divisores C y D en X(d; a, b). Entonces,

(1) E · π∗(C) = 0, (4) E2 = − e2

dpq
,

(2) π∗(C) = Ĉ +
ν

e
E, (5) Ĉ · D̂ = C ·D − νµ

dpq
,

(3) E · Ĉ =
eν

dpq
, (6) D̂2 = D2 − µ2

dpq
(D compacto),

donde ν y µ denotan la (p, q)-multiplicidad de C y D en P , es decir, x

(resp. y) tienen (p, q)-multiplicidad p (resp. q).

Nuestro tercer resultado importante es una versión del teorema de Bézout

para cocientes de planos proyectivos ponderados.

Proposición 3. Sean m1, m2, m3 los determinantes de los tres menores de

orden 2 de la matriz
( p q r
a b c

)
. Supongamos que gcd(p, q, r) = 1 y escribamos

e = gcd(d,m1,m2,m3). Si ω = (p, q, r), entonces el número de intersección

de dos Q-divisores en P2
ω(d; a, b, c) := P2

ω/µd es

D1 ·D2 =
e

dpqr
degω(D1) degω(D2) ∈ Q.

Nótese que el divisor excepcional de la explosión (p, q, r)-ponderada de

un punto de tipo (d; a, b, c) es isomorfo a P2
ω(d; a, b, c), ver §I.3–2. Aśı este

resultado nos ayudará a describir Q-resoluciones encajadas de superficies

en C3, ver el caṕıtulo VI donde se trata con detalle el caso superaislado.

Ahora ya tenemos todos los ingredientes necesarios para estudiar los

dos invariantes mencionados en términos de una Q-resolución encajada de

la singularidad y la normalización semiestable asociada. Ambos resultados

dependen de una estratificación de un Q-divisor con cruces normales. Aśı,

necesitamos introducir algo de notación.

Notación. Sea f : (M, 0) → (C, 0) el germen de una función anaĺıtica y

sea (H, 0) la hipersuperficie definida por f . Dada una Q-resolución enca-

jada de (H, 0), π : X → (M, 0), consideramos E1, . . . , Es las componentes

irreducibles del divisor excepcional y Ĥ la transformada estricta.
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Normalmente se escribe E0 = Ĥ y S = {0, 1, . . . , s} para que la estrati-

ficación de X asociada al Q-divisor con cruces normales π−1(H) =
⋃
i∈S Ei

esté definida por

E◦I :=
(
∩i∈I Ei

)
\
(
∪i/∈I Ei

)
,

para I ⊆ S posiblemente vaćıo.

Sea también X =
⊔
j∈J Qj una estratificación de X dada por los puntos

singulares cocientes de manera que la ecuación local de g := f ◦ π en P ∈
E◦I ∩Qj sea de la forma

xm0
0 · . . . · xmkk : X(d;A) −→ C, (0 ≤ k ≤ n)

y las multiplicidades mi y la acción µd son la misma a lo largo de cada

estrato E◦I ∩Qj . En este contexto m(E◦I ∩Qj) está definido por

m(E◦I ∩Qj) := gcd
(
m0, . . . ,mk,

∑k
j=0 a0jmj

d0
, . . . ,

∑k
j=0 arjmj

dr

)
.

A veces también lo denotamos por m(E,P ) o incluso m(P ), P ∈ E◦I ∩ Qj ,
si no hay lugar a confusión, ver (IV.3.12) y (V.1.4).

El cuarto resultado importante de este trabajo es la generalización de

la fórmula de A’Campo para Q-resoluciones encajadas, ver (IV.3.14) para

un enunciado más completo. Su demostración está basada en [Dim04,

Th. 6.1.14.] y aśı necesitamos trabajar con complejos constructibles de haces

con respecto a una estratificación y el “nearby cycles” de f .

Teorema 4. Z(f ; t) =
∏

i=1,...,s, j∈J

(
1− tm(E◦{i}∩Qj)

)χ(E◦{i}∩Qj)
.

Nótese que solo los estratos E◦{i} ∩ Qj que provienen del divisor excep-

cional contribuyen a Z(f ; t). Esto refleja el buen comportamiento de las

singularidades cocientes abelianas con respecto a los cruces normales. Por

el contrario, las no abelianas parecen funcionar de otra manera, ver §IV.5

donde se muestra que los “puntos dobles” pueden contribuir a Z(f ; t).

Nota. Si la ecuación de g en P ∈ E◦{i}∩Qj es de la forma xm : X(d; a, b)→ C
y el tipo (d; a, b) está normalizado, entonces m(P ) = m

d . Aśı esta fórmula

ya ha sido estudiada en [Vey97] para singularidades de curvas planas.

Vamos a describir la normalización semiestable de g : X → D2
η. Sea e

el mı́nimo común múltiplo de todas las multiplicidades que aparecen en el

divisor E := g−1(0) = E0 ∪ · · · ∪ Es y consideremos σ : D2
η1/e
→ D2

η la

cubierta ramificada definida por σ(t) = te. Denotamos por (X1, g1, σ1) el

pull-back de g y σ. Finalmente, sea ν : X̃ → X1 la normalización de X1 y

denotemos por g̃ := g1 ◦ ν y % := σ1 ◦ ν los morfismos naturales. También

pongamos Di = %−1(Ei) para i = 0, . . . , s y D =
⋃s
i=0Di.
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Este diagrama conmutativo representa el proceso completo de la norma-

lización semiestable.

Di
� � //

%

��

X̃
ν

//

%

��

X1
g1

//

σ1

��

D2
η1/e

σ

��

Ei
� � // X X g

// D2
η

En esta situación, m(g∗(0), P ) con P ∈ g−1(0) se puede interpretar

como el cardinal de la fibra sobre P de la cubierta % : X̃ → X. Nuestro

quinto resultado importante es una descripción detallada de esta cubierta.

Su demostración está basada en el cálculo expĺıcito de la normalización de

te−xm0
0 · · ·xmkk visto como elemento de C[x0, . . . , xn]µd ⊗CC[t], ver (V.1.7).

Proposición 5. La variedad X̃ solo tiene singularidades cocientes abelianas

situadas en g̃−1(0) = D, el cual es un divisor reducido con cruces normales

en X̃. Además, % : X̃ → X es una cubierta ćıclica de e hoja no ramificada

sobre X \ g−1(0). Para ∅ 6= I ⊆ S := {0, 1, . . . , s} y j ∈ J , se tiene:

(1) La restricción % | : %−1(E◦I ∩Qj)→ E◦I ∩Qj es una cubierta ćıclica

ramificada de m(E◦I ∩Qj) hojas no ramificada sobre E◦I ∩Qj.
(2) El espacio %−1(E◦I ∩Qj) es una V -variedad con singularidades co-

cientes abelianas con gcd({m(P ) | P ∈ E◦I ∩Qj}) componentes

conexas.

(3) Sea ϕ : X̃ → X̃ el generador canónico de la monodromı́a de la cu-

bierta %. Entonces, su restricción a %−1(E◦I ∩Qj) es un generador

de la monodromı́a de % | : %−1(E◦I ∩Qj)→ E◦I ∩Qj.

La idea principal que hay detrás de esta construcción es que en el caso

clásico después de considerar la normalización semiestable, el espacio am-

biente contiene singularidades cocientes. La proposición anterior prueba que

lo mismo es cierto para Q-resoluciones encajadas y aśı la construcción de

Steenbrink con la sucesión espectral se puede adaptar para proporcionar una

EHM sobre los grupos de cohomoloǵıa (V.3.4). El propósitos del caṕıtulo V

es la descripción expĺıcita de una sucesión espectral que converge a la coho-

moloǵıa de la fibra de Milnor a partir de una Q-resolución encajada §V.3.

Puesto que la Q-resolución encajada se puede elegir para que “casi todo”

divisor excepcional contribuya a la monodromı́a, nuestra sucesión espectral

es mejor en el sentido de que menos divisores aparecerán en la normalización

semiestable y por tanto la combinatoria será más sencilla. Vamos a ver con

un ejemplo cómo se aplican todos los resultados anteriormente presentados.
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Ejemplo. Supongamos gcd(p, q) = gcd(r, s) = 1 y p
q <

r
s . Sea f = (xp +

yq)(xr + ys) y consideremos C1 = {xp + yq = 0} y C2 = {xr + ys = 0}.
Una Q-resolución encajada de {f = 0} ⊂ C2 se puede calcular con la (q, p)-

explosión del origen de C2, seguida de la (s, qr − ps)-explosión de un punto

de tipo (q;−1, p), comparar con (2), ver figura 1.

p(q + s)E1
(p; q,−1)Q

C2

(s;−1, r)

s(p+ r)E2

C1

Q =

(
rq − ps s −q
rq − ps −r p

)

Figura 1. Q-resolución encajada de f = (xp + yq)(xr + ys).

La auto-intersecciones se calculan con la proposición 2 y la matriz de

intersección es A = 1
rq−ps

(
−r/p 1

1 −q/s

)
. Por el teorema 4, el polinomio carac-

teŕıstico es

∆(t) =

(
t− 1

)(
tp(q+s) − 1

)(
ts(p+r) − 1

)
(
tq+s − 1

)(
tp+r − 1

) .

Estudiamos la normalización semiestable con la proposición 5. Su grafo

dual ponderado se muestra en la figura 2.

g1 =
(p− 1)(q + s)− gcd(p, s) + 1

2

D1 D2

m2 = 1

g2 =
(s− 1)(p+ r)− gcd(p, s) + 1

2

C2C1

m1 = 1
...

Q′

gcd(p, s)

Figura 2. Grafo dual de la normalización semiestable de f .

La estructura de Hodge mixta de la cohomoloǵıa de la fibra de Milnor

H1(F,C) se obtiene de la sucesión espectral de Steenbrink:

H1(F,C) = H0,0
︸︷︷︸

GrW0 H1(F,C)

⊕ H0,1 ⊕H1,0
︸ ︷︷ ︸
GrW1 H1(F,C)

⊕ H1,1
︸︷︷︸

GrW2 H1(F,C)

,

donde

H0,0 = Cgcd(p,s)−1, H0,1 = Cg1 ⊕ Cg2 , H1,1 = Cgcd(p,s).

Los géneros g1 y g2 se han calculado en la figura 2. La acción de la mo-

nodromı́a sobre GrW0 H1(F,C) está dada por el polinomio tgcd(p,s)−1
t−1 . Nótese

que esto proporciona los autovalores de la monodromı́a con bloques de Jor-

dan de tamaño 2, ver (V.4.3) para más detalles.
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Segunda Parte (Caṕıtulos VI y VII)

En estos dos caṕıtulos aplicamos parcialmente las nuevas técnicas de-

sarrolladas anteriormente para el estudio de singularidades superaisladas de

hipersuperficies y singularidades de Yomdin-Lê (ponderadas) de superficies.

Estas singularidades han sido estudiadas ampliamente por muchos au-

tores, ver el “survey” [ALM06] donde se repasa parte de la teoŕıa de estas

singularidades y sus aplicaciones incluyendo algunos desarrollos recientes

y novedosos. Fueron introducidas por Luengo y también aparecen en un

art́ıculo de Stevens, donde se considera el estrado µ-constante, ver [Lue87]

y [Ste89]. Después, Artal describió en su tesis doctoral [Art94b] una re-

solución encajada de tales singularidades usando explosiones de puntos y

curvas racionales.

Aqúı, en el caṕıtulo VI, presentamos una descripción de una Q-resolución

encajada de singularidades superaisladas de superficies en términos de una

Q-resolución encajada (global) de su cono tangente. Probamos que sola-

mente se necesitan explosiones ponderadas de puntos. Por el contrario, el

espacio total que aparece tiene singularidades cocientes abelianas.

Más concretamente, sea f = fm + fm+1 + · · · la descomposición de f

en componentes homogéneas. Denotamos por C := V (fm) ⊂ P2 el cono

tangente y supongamos que V := V (f) es superaislada, es decir, Sing(C) ∩
V (fm+1) = ∅. El principal resultado de esta parte es una colección de resul-

tados que se pueden resumir como sigue, ver (VI.2.2), (VI.2.10), (VI.2.13).

Teorema 6. Sea %P : Y P → (C, P ) una Q-resolución encajada del cono

tangente para P ∈ Sing(C). Supongamos que

(%P )∗(C, P ) = Ĉ +
∑

a∈S(ΓP+)

mP
a EPa

es la transformada total de (C, P ), donde EPa es el divisor excepcional de la

(pPa , q
P
a )-explosión de un punto Pa que pertenece al lugar de no transversa-

lidad. Denotemos por νPa la (pPa , q
P
a )-multiplicidad de C en Pa.

Entonces, se puede construir una Q-resolución encajada ρ : X → (V, 0)

de la singularidad de superficie tal que la transformada total es

ρ∗(V, 0) = V̂ +mE0 +
∑

P∈Sing(C)

a∈S(ΓP+)

(m+ 1)mP
a E

P
a ,

y EPa aparece después de la (pPa , q
P
a , ν

P
a )-explosión del punto Pa (nótese que

el lugar de no transversalidad en dimensión 2 y 3 se identifican).
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La principal ventaja comparada con la de Artal [Art94b] es que en ésta

última se necesitan en cada paso νPa (en lugar de solo una) explosión de

puntos y curvas racionales para llegar a una situación parecida.

En el caṕıtulo VI, aplicamos el teorema 4 (fórmula de A’Campo’s gene-

ralizada) para calcular el polinomio caracteŕıstico y el número de Milnor, ver

teorema (VI.3.5) y corolario (VI.3.7). En particular, las fórmulas de [Sie90]

y [Ste89] se pueden obtener de esta manera. En el futuro estudiaremos

otros invariantes más sofisticados como la estructura de Hodge mixta de la

cohomoloǵıa de la fibra de Milnor.

Como consecuencia probamos que un divisor excepcional de la Q-resolu-

ción encontrada para (V, 0) contribuye a la monodromı́a compleja si y solo si

lo hace el correspondiente divisor en el cono tangente, ver (VI.3.3). Aśı los

pesos se pueden elegir para que todo divisor excepcional de la Q-resolución

encajada de (V, 0) contribuya a la monodromı́a.

Estas técnicas se pueden aplicar para estudiar singularidades superais-

ladas en dimensión superior, ver §VI.4, y lo mismo ocurre para singulari-

dades de Yomdin-Lê (ponderadas) de superficies, ver caṕıtulo VII.

Tercera Parte (Caṕıtulo VIII)

El último caṕıtulo trata sobre el algoritmo checkRoot y sus aplicaciones

para calcular el polinomio de Bernstein-Sato con bases de Gröbner. Para dar

una descripción más detallada de los problemas que estamos interesados y

los resultados que hemos obtenido, pasamos a recordar algunas definiciones

básicas en campo de los D-módulos.

Dado un polinomio f ∈ C[x] en varias variable el polinomio de Bernstein-

Sato (también llamado b-función global) de f se define como el polinomio

mónico no nulo bf (s) de menor grado que verifica

P (s)fs+1 = bf (s)fs ∈ C[x, s, 1/f ] · fs

para P (s) ∈ Dn[s] := Dn ⊗C C[s], donde Dn denota la n-ésima álgebra de

Weyl. La existencia de tal polinomio no nulo está garantizada por [Ber72].

Análogamente se define el polinomio de Bernstein-Sato local (también lla-

mado b-función local) de f en p ∈ Cn y se denota por bf,p(s).

Se conocen varios algoritmos para calcular la b-función de un polinomio,

ver por ejemplo [Oak97c], [SST00], [BM02], [Nor02], [Sch04a], [LM08].

Sin embargo, desde el punto de vista computacional, es muy complejo obte-

ner este polinomio en general. A pesar de recientes progresos, en la práctica

solo se pueden tratar un número limitado de ejemplos.



RESUMEN (Spanish) xix

Motivados por esto y para mejorar el cálculo del polinomio de Bernstein-

Sato con bases de Gröbner, estudiamos los siguientes problemas computa-

cionales:

(1) Encontrar B(s) =
∏d
i=1(s− αi)mi ∈ C[s] tal que bf (s)|B(s).

(2) Comprobar si αi es ráız de la b-función.

(3) Calcular la multiplicidad de αi como ráız de bf (s).

Existen algunos métodos conocidos para obtener una cota superior para

el polinomio de Bernstein-Sato de una hipersuperficie singular, una vez cono-

cida, por ejemplo, una resolución encajada de tal singularidad [Kas77], ver

sección VIII.3. Sin embargo, no conocemos ningún algoritmo para calcular

la b-función a partir de esta cota superior.

El resultado más importante de esta parte final es el teorema (VIII.2.1),

que tiene varias consecuencias, ver (VIII.2.6) y (VIII.5.1). En particular, se

tiene lo siguiente que resuelve los problemas (2) y (3) anteriores.

Corolario 7. Sea mα (resp. mα(p)) la multiplicidad de α como ráız de

bf (−s) (resp. bf,p(−s)). Sean los ideales I = AnnDn[s](f
s) + Dn[s]〈f〉 e

Iα,i =
(
I : (s+ α)i

)
+D[s]〈s+ α〉. Entonces,

(1) mα > i⇐⇒ Iα,i 6= Dn[s],

(2) mα(p) > i⇐⇒ p ∈ V (Iα,i ∩ C[x]).

El correspondiente algoritmo se llama checkRoot y en general es mucho

más rápido que el cálculo de todo el polinomio de Bernstein, debido a que

en (1) no hace falta usar órdenes de eliminación para calcular una base de

Gröbner de Iα,i. Además, el elemento (s + α)i, añadido como generador,

parece simplificar tremendamente los cálculos, comparar con [Nak09].

Como primera aplicación, después de calcular una resolución encajada,

hemos hallado bf (s) de la singularidad no aislada f = (xz+y)(x4 +y5 +xy4)

en unos 30 segundos, ver (VIII.3.3). Este ejemplo (que apareció primero

en [CU05]) era intratable con cualquier sistema de álgebra computacional.

Este algoritmo tiene varias aplicaciones como el cálculo de la b-función

cuando se puede encontrar una cota superior (mediante resolución encajada,

para singularidades topológicamente equivalentes o usando la fórmula de

A’Campo y los número espectrales), las ráıces enteras de bf (s) (importantes

por ejemplo en el problema de comparación logaŕıtmico) y una estratifi-

cación de Cn con la b-función local constante en cada estrato (el algoritmo

propuesto no emplea descomposición primaria, comparar con [NN10]).

Los métodos de este caṕıtulo han sido implementados en Singular en

las libreŕıas dmod.lib y bfun.lib. Todos los ejemplos que se presentan aqúı

han sido calculados con esta implementación.
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First Part (Chapters I–V)

One of the main invariant of a given hypersurface singularity is the

mixed Hodge structure (MHS) on the cohomology of the Milnor fiber. In the

isolated case, Steenbrink gave a method for computing this Hodge structure

using a spectral sequence that is constructed from the divisors associated

with the semistable reduction of an embedded resolution, see [Ste77].

However, in practice the combinatorics of the exceptional divisor of the

resolution is often so complicated that the study of the spectral sequence

becomes very hard, see e.g. [Art94b] where an embedded resolution and

its associated semistable reduction for superisolated surface singularities is

computed using blow-ups at points and rational curves.

After the semistable reduction process the new ambient space contains

normal singularities which are obtained as the quotient of a ball in Cn by

the linear action of a finite group. Spaces admitting only such singularities

are called V -manifolds. They were introduced in [Sat56] and have the

same homological properties over Q as manifolds, e.g. they admit a Poincaré

duality if they are compact and carry a pure Hodge structure if they are

compact and Kähler, see [Bai56]. Moreover, a natural notion of normal

crossing divisor can be defined on V -manifolds, see [Ste77].

Motivated by this fact and in order to try to simplify the combina-

torics of the exceptional divisor mentioned above, we introduce the notion

of embedded Q-resolution. The idea is as follows. Classically an embedded

resolution of {f = 0} ⊂ Cn+1 is a proper map π : X → (Cn+1, 0) from a

smooth variety X satisfying, among other conditions, that π∗({f = 0}) is

a normal crossing divisor. To weaken the condition on the preimage of the

singularity we allow the new ambient space X to contain abelian quotient

singularities and the divisor π∗({f = 0}) to have “normal crossings” on X.
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More precisely, here is the formal definition of one of the main objects

of our study.

Definition. Let M be an abelian quotient space. Consider H ⊂M an ana-

lytic subvariety of codimension one. An embedded Q-resolution of (H, 0) ⊂
(M, 0) is a proper analytic map π : X → (M, 0) such that:

(1) X is a V -manifold with abelian quotient singularities.

(2) π is an isomorphism over X \ π−1(Sing(H)).

(3) π∗(H) is a hypersurface with Q-normal crossings on X.

The present work is devoted to the study of invariants of a hypersurface

singularity (H, 0) ⊂ (Cn+1, 0) by looking at either an embedded Q-resolution

or its associated semistable reduction. We will focus on two important in-

variants of H, namely the characteristic polynomial of the complex mon-

odromy (Chapter IV) and the mixed Hodge structure on the cohomology of

the Milnor fiber (Chapter V).

As mentioned above, the motivation for using embedded Q-resolutions

rather than standard ones is twofold. On the one hand, they are natural gen-

eralization of the usual embedded resolutions, for which the invariant above

are expected to be calculated effectively. On the other hand, the combi-

natorial and computational complexity of embedded Q-resolutions is much

simpler, but they keep as much information as needed for the comprehension

of the topology of the singularity.

Notation. To deal with these resolutions, some notations need to be intro-

duced. Let G := µd0 × · · · ×µdr be an arbitrary finite abelian group written

as a product of finite cyclic groups, that is, µdi is the cyclic group of di-th

roots of unity. Consider a matrix of weight vectors

A := (aij)i,j = [a0 | · · · |an] ∈Mat((r + 1)× (n+ 1),Z)

and the action

(3)
(µd0 × · · · × µdr)× Cn+1 −→ Cn+1,

(
ξd,x

)
7→ (ξa00d0

· · · ξar0dr
x0, . . . , ξ

a0n
d0
· · · ξarndr

xn).

The set of all orbits Cn+1/G is called (cyclic) quotient space of type (d;A)

and it is denoted by

X(d;A) := X




d0 a00 · · · a0n
...

...
. . .

...

dr ar0 · · · arn


 .

The orbit of an element (x0, . . . , xn) under this action is denoted by

[(x0, . . . , xn)](d;A) and the subindex is omitted if no ambiguity seems likely

to arise.
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Remark. Condition (3) of the previous definition means that if f : (M, 0)→
(C, 0) is a non-constant analytic function germ and (H, 0) is the hypersurface

defined by f on (M, 0), then the total transform π−1(H) = (f ◦ π)−1(0) is

locally given by a function of the form xm0
0 · · ·xmkk : X(d;A) → C, where

X(d;A) := Cn+1/µd and µd acts diagonally as in (3).

The previous numbers mi’s have no intrinsic meaning when µd does not

induce a small action on GL(n+ 1,C). This motivates the following.

Definition. The type (d;A) is said to be normalized if the action is free on

(C∗)n+1 and µd is identified with a small subgroup of GL(n+ 1,C).

A classic problem in Singularity Theory is to describe or give a method

for calculating invariants once an embedded resolution is known. The exis-

tence of such a resolution is guaranteed by the works of Hironaka. In the

same spirit, one of the main aims of this work is to provide information

about the singularity by looking at an embedded Q-resolution of it.

As a tool for finding embedded Q-resolutions we will use weighted blow-

ups with smooth center. Special attention is paid to the case of dimension 2

and 3 and blow-ups at points. Such blow-ups can be understood from toric

geometry but in this work they are presented more geometrically, generaliz-

ing the standard ones.

Example. Assume (d; a, b) is normalized and gcd(ω) = 1, ω := (p, q). Then,

the total space of the ω-weighted blow-up at the origin of X(d; a, b),

(4) π(d;a,b),ω : ̂X(d; a, b)ω −→ X(d; a, b),

can be written as

Û1 ∪ Û2 = X

(
pd

e
; 1,
−q + βpb

e

)
∪X

(
qd

e
;
−p+ µqa

e
, 1

)

and the charts are given by

First chart X

(
pd

e
; 1,
−q + βpb

e

)
−→ Û1,

[
(xe, y)

]
7→
[
((xp, xqy), [1 : y]ω)

]
(d;a,b)

.

Second chart X

(
qd

e
;
−p+ µqa

e
, 1

)
−→ Û2,

[
(x, ye)

]
7→
[
((xyp, yq), [x : 1]ω)

]
(d;a,b)

.

Above, e = gcd(d, pb − qa) and βa ≡ µb ≡ 1 (mod d), see I.3–1 for details.

Observe that the origins of the two charts are cyclic quotient singularities;

they are located at the exceptional divisor E which is isomorphic to P1.
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To manage to study embedded Q-resolutions an intersection theory is

needed. It is also required to deal with divisors on V -manifolds. Two kinds

of divisors appear in the literature: Weil and Cartier divisors. Weil divisors

are locally finite linear combination with integral coefficients of irreducible

subvarieties of codimension 1 and Cartier divisors are global sections of the

quotient sheaf of meromorphic functions modulo non-vanishing holomorphic

functions. The relationship between Cartier divisors and line bundles pro-

vides a nice way to define the intersection multiplicity of two divisors.

In the smooth category, both notions coincide but this is not the case

for singular varieties, not even for normal ones. One can also consider Weil

and Cartier Q-divisors (tensoring the corresponding groups by Q). The first

main result of this work is that these two notions coincide for V -manifolds.

Theorem 1. Let X be a V -manifold. Then, the linear map defined using

the notion of associated Weil divisor,

TX ⊗ 1 : CaDiv(X)⊗Z Q −→WeDiv(X)⊗Z Q,

is an isomorphism of Q-vector spaces. In particular, for a given Weil divisor

D on X, there always exists k ∈ Z such that kD ∈ CaDiv(X).

This result is probably known for specialists but we have not found a

proof in the literature. There are some partial results for toric varieties

(defined with simplicial cones). Moreover, in this work we give an algorithm

to explicitly represent a Weil Q-divisor as a Cartier Q-divisor, see (II.2.14).

We illustrate the use of this algorithm with an example living in the space

obtained after a weighted blow-up.

Example. Let π(d;a,b),ω be the proper morphism defined in (4). Then, its

exceptional divisor E is a Weil divisor which does not correspond to a Cartier

divisor. However, following the preceding discussion, it can be written as

Cartier Q-divisor like e
dpq

{
(Û1, x

dq), (Û2, y
dp)
}

.

Theorem 1 above allows one to develop a rational intersection theory

on V -manifolds with the usual expected properties collected in Proposi-

tion (III.1.3).

Definition. Let X be a V -surface and consider D1, D2 ∈ Q-Div(X). The

intersection number is defined as D1 ·D2 := 1
k1k2

(k1D1 · k2D2) ∈ Q, where

k1, k2 ∈ Z are chosen so that k1D1 ∈ WeDiv(X) and k2D2 ∈ CaDiv(X).

Analogously, it is defined the local intersection number at P ∈ D1 ∩ D2,

if the condition D1 * D2 is satisfied. Idem the pull-back is defined by

F ∗(D2) := 1
k2
F ∗(k2D2) if F : Y → X is a proper morphism between two

irreducible V -surfaces.
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This rational intersection number was first introduced by Mumford for

normal surfaces, see [Mum61, Pag. 17]. Our definition coincides with Mum-

ford’s because it has good behavior with respect to the pull-back, see Theo-

rem (III.1.5). The main advantage is that ours does not involve a resolution

of the ambient space and, for instance, this allows us to easily find formu-

las for the self-intersection numbers of the exceptional divisors of weighted

blow-ups, without computing any resolution.

In fact, this is essentially the second main result of this work.

Proposition 2. Let π := π(d;a,b),ω be the morphism defined in (4). Consider

two Q-divisors C and D on X(d; a, b). Then,

(1) E · π∗(C) = 0, (4) E2 = − e2

dpq
,

(2) π∗(C) = Ĉ +
ν

e
E, (5) Ĉ · D̂ = C ·D − νµ

dpq
,

(3) E · Ĉ =
eν

dpq
, (6) D̂2 = D2 − µ2

dpq
(D compact),

where ν and µ denote the (p, q)-multiplicities of C and D at P , i.e. x

(resp. y) has (p, q)-multiplicity p (resp. q).

Our third main result is a version of Bézout’s Theorem for quotients of

weighted projective planes.

Proposition 3. Let us denote by m1, m2, m3 the determinants of the three

minors of order 2 of the matrix
( p q r
a b c

)
. Assume that gcd(p, q, r) = 1 and

write e = gcd(d,m1,m2,m3). If ω = (p, q, r), then the intersection number

of two Q-divisors on P2
ω(d; a, b, c) := P2

ω/µd is

D1 ·D2 =
e

dpqr
degω(D1) degω(D2) ∈ Q.

Note that the exceptional divisor of the (p, q, r)-weighted blow-up at a

point of type (d; a, b, c) is naturally isomorphic to P2
ω(d; a, b, c), see §I.3–2.

Hence this result will help us describe embedded Q-resolutions of surfaces

in C3, see e.g. Chapter VI where the superisolated case is treated in detail.

Now we have all the necessary ingredients to study the two commented

invariants in terms of an embedded Q-resolution of the singularity and its

associated semistable reduction. Both results depend on the stratification

of a Q-normal crossing divisor. Hence some notation need to be introduced.

Notation. Let f : (M, 0) → (C, 0) be a non-constant analytic function

germ and let (H, 0) be the hypersurface defined by f . Given an embedded

Q-resolution of (H, 0), π : X → (M, 0), consider E1, . . . , Es the irreducible

components of the exceptional divisor and Ĥ the strict transform.
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One writes E0 = Ĥ and S = {0, 1, . . . , s} so that the stratification of X

associated with the Q-normal crossing divisor π−1(H) =
⋃
i∈S Ei is defined

by setting

E◦I :=
(
∩i∈I Ei

)
\
(
∪i/∈I Ei

)
,

for a given possibly empty subset I ⊆ S.

Also, let X =
⊔
j∈J Qj be a finite stratification of X given by its quotient

singularities so that the local equation of g := f ◦ π at P ∈ E◦I ∩ Qj is of

the form

xm0
0 · . . . · xmkk : X(d;A) −→ C, (0 ≤ k ≤ n)

and the multiplicities mi’s and the action µd are the same along each stra-

tum E◦I ∩Qj . In this context m(E◦I ∩Qj) is defined as

m(E◦I ∩Qj) := gcd
(
m0, . . . ,mk,

∑k
j=0 a0jmj

d0
, . . . ,

∑k
j=0 arjmj

dr

)
.

Sometimes it is denoted by m(E,P ) or even m(P ), P ∈ E◦I ∩ Qj , if no

ambiguity seems likely to arise, cf. (IV.3.12) and (V.1.4).

The fourth main result of this work is the generalized A’Campo’s formula

for embedded Q-resolutions, see Theorem (IV.3.14) for a more complete

statement. Its proof is based on the result [Dim04, Th. 6.1.14.] and hence

one needs to deal with constructible complexes of sheaves with respect to a

stratification and the nearby cycles associated with an analytic function.

Theorem 4. Z(f ; t) =
∏

i=1,...,s, j∈J

(
1− tm(E◦{i}∩Qj)

)χ(E◦{i}∩Qj)
.

Note that only the strata E◦{i} ∩Qj coming from the exceptional divisor

contribute to Z(f ; t). This reflects the good behavior of abelian quotient

singularities with respect to normal crossing divisors. By contrast, non-

abelian groups seem to work differently, see §IV.5 where it is shown that

“double points” may contribute to Z(f ; t).

Remark. If the equation of g at P ∈ E◦{i}∩Qj is of the form xm : X(d; a, b)→
C and the latter quotient space is normalized, then m(P ) = m

d . Hence this

formula has already been studied in [Vey97] for plane curve singularities.

Let us briefly describe the semistable reduction of g : X → D2
η. Let e

be the least common multiple of all possible multiplicities appearing in the

divisor E := g−1(0) = E0 ∪ · · · ∪ Es and consider σ : D2
η1/e

→ D2
η the

branched covering defined by σ(t) = te. Denote by (X1, g1, σ1) the pull-

back of g and σ. Finally, let ν : X̃ → X1 be the normalization of X1 and

denote by g̃ := g1 ◦ ν and % := σ1 ◦ ν the natural maps. Write Di = %−1(Ei)

for i = 0, . . . , s and D =
⋃s
i=0Di.
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This commutative diagram illustrates the whole process of the semistable

reduction.

Di
� � //

%

��

X̃
ν

//

%

��

X1
g1

//

σ1

��

D2
η1/e

σ

��

Ei
� � // X X g

// D2
η

In this situation, m(g∗(0), P ) with P ∈ g−1(0) can be interpreted geo-

metrically as the cardinality of the fiber over P of the covering % : X̃ → X.

Our fifth main result is a detailed description of this covering. Its proof is

based on the explicit computation of the normalization of te − xm0
0 · · ·xmkk

regarded as an element in C[x0, . . . , xn]µd ⊗C C[t], cf. (V.1.7).

Proposition 5. The variety X̃ only has abelian quotient singularities lo-

cated at g̃−1(0) = D which is a reduced divisor with normal crossings on X̃.

Also, % : X̃ → X is a cyclic branched covering of e sheets unramified over

X \ g−1(0). Moreover, for ∅ 6= I ⊆ S := {0, 1, . . . , s} and j ∈ J , one has:

(1) The restriction % | : %−1(E◦I ∩Qj) → E◦I ∩Qj is a cyclic branched

covering of m(E◦I ∩Qj) sheets unramified over E◦I ∩Qj.
(2) The variety %−1(E◦I ∩Qj) is a V -manifold with abelian quotient

singularities with gcd({m(P ) | P ∈ E◦I ∩Qj}) connected compo-

nents.

(3) Let ϕ : X̃ → X̃ be the canonical generator of the monodromy of the

covering %. Then, its restriction to %−1(E◦I ∩Qj) is a generator of

the monodromy of % | : %−1(E◦I ∩Qj)→ E◦I ∩Qj.

The main idea behind this construction is that in the classical case af-

ter considering the semistable reduction the ambient space already contains

quotient singularities. Proposition 5 says that the same is true for embed-

ded Q-resolutions and thus the construction by Steenbrink with the spectral

sequence can be adapted to provide a mixed Hodge structure on the coho-

mology groups, see Theorem (V.3.4). In fact, one of the aims of Chapter V

is to describe explicitly a similar spectral sequence converging to the coho-

mology of the Milnor fiber starting with an embedded Q-resolution, §V.3.

Since the embedded Q-resolution can be chosen so that “almost every”

exceptional divisor contributes to the complex monodromy, our spectral

sequence is better in the sense that less divisors will appear in the semistable

reduction and thus the combinatorial of the spectral sequence will be simpler.

We illustrate the use of all the preceding results presented in this part with

an example.



xxviii INTRODUCTION

Example. Assume gcd(p, q) = gcd(r, s) = 1 and p
q <

r
s . Let f = (xp +

yq)(xr + ys) and consider C1 = {xp + yq = 0} and C2 = {xr + ys = 0}.
An embedded Q-resolution of {f = 0} ⊂ C2 can be computed with the

(q, p)-blow-up at the origin of C2, followed by the (s, qr − ps)-blow-up at a

point of type (q;−1, p), cf. (4), see Figure 3.

p(q + s)E1
(p; q,−1)Q

C2

(s;−1, r)

s(p+ r)E2

C1

Q =

(
rq − ps s −q
rq − ps −r p

)

Figure 3. Embedded Q-resolution of f = (xp + yq)(xr + ys).

The self-intersection numbers are calculated using Proposition 2 and the

intersection matrix is A = 1
rq−ps

(
−r/p 1

1 −q/s

)
. By Theorem 4, the character-

istic polynomial is

∆(t) =

(
t− 1

)(
tp(q+s) − 1

)(
ts(p+r) − 1

)
(
tq+s − 1

)(
tp+r − 1

) .

The semistable reduction is studied using Proposition 5. Its weighted

dual graph is shown in Figure 4.

g1 =
(p− 1)(q + s)− gcd(p, s) + 1

2

D1 D2

m2 = 1

g2 =
(s− 1)(p+ r)− gcd(p, s) + 1

2

C2C1

m1 = 1
...

Q′

gcd(p, s)

Figure 4. Dual graph of the semistable reduction of f .

The mixed Hodge structure (MHS) on the cohomology of the Milnor

fiber H1(F,C) is obtained from Steenbrink’s spectral sequence:

H1(F,C) = H0,0
︸︷︷︸

GrW0 H1(F,C)

⊕ H0,1 ⊕H1,0
︸ ︷︷ ︸
GrW1 H1(F,C)

⊕ H1,1
︸︷︷︸

GrW2 H1(F,C)

,

where

H0,0 = Cgcd(p,s)−1, H0,1 = Cg1 ⊕ Cg2 , H1,1 = Cgcd(p,s).

The genera g1 and g2 are calculated in Figure 4. The action of the

monodromy on GrW0 H1(F,C) is given by the polynomial tgcd(p,s)−1
t−1 . Note

that this provides the eigenvalues of the monodromy with Jordan blocks of

size 2, see Example (V.4.3) for details.
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Second Part (Chapters VI and VII)

In these two chapters the new techniques developed above are par-

tially applied to the study of superisolated hypersurface singularities and

(weighted) Yomdin-Lê surface singularities.

These singularities have been extensively studied by many authors, see

the survey [ALM06] where part of the theory of these singularities and

their applications including some new and recent developments are reviewed.

They were introduced by Luengo and also appear in a paper by Stevens,

where the µ-constant stratum is considered, see [Lue87] and [Ste89]. Af-

terward Artal described in his PhD thesis [Art94b] an embedded resolution

of such singularities using blow-ups at points and rational curves.

Here, in chapter VI, we present a detailed description of an embedded

Q-resolution for superisolated surface singularities in terms of a (global)

embedded Q-resolution of its tangent cone. It is proven that only weighted

blow-ups at points are needed. By contrast, the final total space produced

has abelian quotient singularities.

More precisely, let f = fm + fm+1 + · · · be the decomposition of f

into its homogeneous parts. Denote by C := V (fm) ⊂ P2 its tangent cone

and assume that V := V (f) is superisolated, i.e. Sing(C) ∩ V (fm+1) = ∅.
The main result of this part is a collection of several results that can be

summarized as follows, cf. (VI.2.2), (VI.2.10), (VI.2.13).

Theorem 6. Let %P : Y P → (C, P ) be an embedded Q-resolution of the

tangent cone for P ∈ Sing(C). Suppose that

(%P )∗(C, P ) = Ĉ +
∑

a∈S(ΓP+)

mP
a EPa

is the total transform of (C, P ), where EPa is the exceptional divisor of the

(pPa , q
P
a )-blow-up at a point Pa belonging to the locus of non-transversality.

Denote by νPa the (pPa , q
P
a )-multiplicity of C at Pa.

Then, one can construct an embedded Q-resolution ρ : X → (V, 0) of the

superisolated singularity such that the total transform is

ρ∗(V, 0) = V̂ +mE0 +
∑

P∈Sing(C)

a∈S(ΓP+)

(m+ 1)mP
a E

P
a ,

and EPa appears after the (pPa , q
P
a , ν

P
a )-blow-up at the point Pa (note that the

locus of non-transversality in dimension 2 and 3 are identified).
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The main advantage compared with Artal’s resolution [Art94b] is that

in the latter νPa (rather than just one) blow-ups at points and rational curves

at each step are needed to achieve a similar situation.

The generalized A’Campo’s formula, Theorem 4, is applied and the char-

acteristic polynomial and the Milnor number are calculated as an applica-

tion, see Theorem (VI.3.5) and Corollary (VI.3.7). In particular, the for-

mulas in [Sie90] and [Ste89] can be obtained in this way. Other more

sophisticated invariants, including mixed Hodge structure of the cohomol-

ogy of the Milnor fiber, are the subjects of our study for the future.

As a consequence, we prove that an exceptional divisor in the Q-resolu-

tion obtained for (V, 0) contributes to the complex monodromy if and only

if so does the corresponding divisor in the tangent cone, see (VI.3.3). Thus

the weights can be chosen so that every exceptional divisor in the embedded

Q-resolution of (V, 0) contributes to its monodromy.

This techniques can be applied to study superisolated singularities in

higher dimension, see §VI.4, and the same applies to (weighted) Yomdin-Lê

surface singularities, see Chapter VII.

Third Part (Chapter VIII)

The last chapter is about the checkRoot algorithm and its applications

for the computation of the Bernstein-Sato polynomial by means of non-

commutative Gröbner bases. In order to give a more precise description of

the problems we are interested in and the results we obtain, let us recall

some basic definitions from the realm of D-modules.

Given a polynomial f ∈ C[x] in several variables, the Bernstein-Sato

polynomial (also called global b-function) of f is defined as the (non-zero)

monic polynomial bf (s) ∈ C[s] of minimal degree satisfying

P (s)fs+1 = bf (s)fs ∈ C[x, s, 1/f ] · fs

for some P (s) ∈ Dn[s] := Dn⊗CC[s], where Dn denotes the n-th Weyl alge-

bra. The existence of such a non-zero polynomial is guaranteed by [Ber72].

Analogously, it is defined the local Bernstein-Sato polynomial (also called

local b-function) of f at p ∈ Cn, and it is denoted by bf,p(s).

Several algorithms for computing the b-function associated with a poly-

nomial are known, see for instance [Oak97c], [SST00], [BM02], [Nor02],

[Sch04a], [LM08]. However, from the computational point of view it is

very hard to obtain this polynomial in general. Despite significant recent

progress, only restricted number of examples can be actually treated.
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Motived by this fact and in order to enhance the computation of the

Bernstein-Sato polynomial via Gröbner bases, we study the following com-

putational problems:

(1) Find B(s) =
∏d
i=1(s− αi)mi ∈ C[s] such that bf (s) divides B(s).

(2) Check whether αi is a root of the b-function.

(3) Compute the multiplicity of αi as a root of bf (s).

There exist some well-known methods to obtain an upper bound for

the Bernstein-Sato polynomial of a hypersurface singularity once we know,

for instance, an embedded resolution of such singularity [Kas77], see Sec-

tion VIII.3. However, as far as we know, there is no algorithm for computing

the b-function from this upper bound.

The main result of this final part is Theorem (VIII.2.1), which has several

consequences, see e.g. (VIII.2.6) and (VIII.5.1). In particular, one obtains

the following result solving problems (2) and (3) above.

Corollary 7. Let mα (resp. mα(p)) be the multiplicity of α as a root of

bf (−s) (resp. bf,p(−s)). Consider the ideals I = AnnDn[s](f
s) + Dn[s]〈f〉

and Iα,i =
(
I : (s+ α)i

)
+D[s]〈s+ α〉. Then,

(1) mα > i⇐⇒ Iα,i 6= Dn[s],

(2) mα(p) > i⇐⇒ p ∈ V (Iα,i ∩ C[x]).

The corresponding algorithm is called checkRoot and in general is much

faster than the computation of the whole Bernstein polynomial because no

elimination ordering is needed in (1) for computing a Gröbner basis of Iα,i.

Also, the element (s+ α)i, added as a generator, seems to simplify tremen-

dously such a computation, cf. [Nak09].

As a first application, after computing an embedded resolution, we could

obtain bf (s) for the non-isolated singularities f = (xz + y)(x4 + y5 + xy4)

in about 30 seconds, see Example (VIII.3.3). This example (first appeared

in [CU05]) was intractable by any computer algebra system.

Applications of this algorithm includes the computation of the b-function

where there is a possibility to compute an upper (it can be achieved by means

of embedded resolution, for topologically equivalent singularities or using the

formula by A’Campo and spectral numbers), the integral roots of bf (s) (im-

portant e.g. for the logarithmic comparison problem), and a stratification of

Cn with the local b-function being constant on each stratum (the algorithm

we propose does not employ primary decomposition, cf. [NN10]).

The methods from this chapter have been implemented in Singular

as libraries dmod.lib and bfun.lib. All the examples presented here have

been computed with this implementation.
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Quotient Singularities and Embedded

Q-Resolutions

The purpose of this chapter is to fix the notation and provide several

tools to calculate a special kind of embedded resolutions allowing the am-

bient space to contain abelian quotient singularities. These resolutions are

called embedded Q-resolutions, see Definition (I.3.2) below. To do this, we

study weighted blow-ups with smooth center. Special attention is paid to

the case of dimension 2 and 3 and blow-ups at points.

In Chapter III, we develop an intersection theory on this natural con-

text of varieties with abelian quotient singularities. This theory was first

introduced by Mumford over normal surfaces, see [Mum61]. The tools

presented in this chapter will permit computing the self-intersection num-

bers of the exceptional divisors of weighted blow-ups in dimension two, see

Proposition (III.3.2).

All these techniques are applied in Chapters VI and VII, and they are

essential for our study of (weighted) Yomdin-Lê singularities. We do not

pretend to be exhaustive and though objects presented here have many

interesting properties, we focus on those that are used later.

As for notation through this work we often use (i1, . . . , ik) instead of

gcd(i1, . . . , ik) in case of complicated and long formulas if no ambiguity

seems likely to arise.

Section § I.1

V-manifolds and Quotient Singularities

Definition (I.1.1). A V -manifold of dimension n is a complex analytic

space which admits an open covering {Ui} such that Ui is analytically iso-

morphic to Bi/Gi where Bi ⊂ Cn is an open ball and Gi is a finite subgroup

of GL(n,C).
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V -manifolds were introduced in [Sat56] and have the same homological

properties over Q as manifolds. For instance, they admit a Poincaré duality

if they are compact and carry a pure Hodge structure if they are compact

and Kähler, see [Bai56]. They have been classified locally by Prill [Pri67].

To state this local result we need the following.

Definition (I.1.2). A finite subgroup G of GL(n,C) is called small if no

element of G has 1 as an eigenvalue of multiplicity precisely n − 1, that is,

G does not contain rotations around hyperplanes other than the identity.

(I.1.3). For every finite subgroup G of GL(n,C) denote by Gbig the normal

subgroup of G generated by all rotations around hyperplanes. Then, the

Gbig-invariant polynomials form a polynomial algebra and hence Cn/Gbig is

isomorphic to Cn.

The group G/Gbig maps isomorphically to a small subgroup of GL(n,C),

once a basis of invariant polynomials has been chosen. Hence the local

classification of V -manifolds reduces to the classification of actions of small

subgroups of GL(n,C).

Theorem (I.1.4) ([Pri67]). Let G1 and G2 be small subgroups of GL(n,C).

Then Cn/G1 is isomorphic to Cn/G2 if and only if G1 and G2 are conjugate

subgroups. �

I.1–1. The abelian case: normalized types

We are interested in V -manifolds where the quotient spaces Bi/Gi are

given by (finite) abelian groups. In this case the following notation is used.

(I.1.5). Let G := µd1×· · ·×µdr be an arbitrary finite abelian group written

as a product of finite cyclic groups, that is, µdi is the cyclic group of di-th

roots of unity. Consider a matrix of weight vectors

A := (aij)i,j = [a1 | · · · |an] ∈Mat(r × n,Z)

and the action

(5)
(µd1 × · · · × µdr)× Cn −→ Cn,

(
ξd,x

)
7→ (ξa11d1

· · · ξar1dr
x1, . . . , ξ

a1n
d1
· · · ξarndr

xn).

Note that the i-th row of the matrix A can be considered modulo di. The

set of all orbits Cn/G is called (cyclic) quotient space of type (d;A) and it

is denoted by

X(d;A) := X




d1 a11 · · · a1n
...

...
. . .

...

dr ar1 · · · arn


 .
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The orbit of an element (x1, . . . , xn) under this action is denoted by

[(x1, . . . , xn)](d;A) and the subindex is omitted if no ambiguity seems likely

to arise. Sometimes we use multi-index notation

d = (d1, . . . , dr), aj = (a1j , . . . , arj),

ξd = (ξd1 , . . . , ξdr), x = (x1, . . . , xn), µd = µd1 × · · · × µdr ,
so that the action takes the simple form

µd × Cn −→ Cn, (ξd,x) 7→ (ξa1
d x1, . . . , ξ

an
d xn).

The following result shows that the family of varieties which can locally

be written like X(d;A) is exactly the same as the family of V -manifolds

with abelian quotient singularities.

Lemma (I.1.6). Let G be a finite abelian subgroup of GL(n,C). Then,

Cn/G is isomorphic to some quotient space of type (d;A).

Proof. Let us write G = Cd1 × · · · ×Cdr as a product of cyclic groups.

Let M1, . . . ,Mr be generators of these cyclic groups so that

G = {M i1
1 · · ·M ir

r | ik = 0, . . . , dk − 1}.
Each of these matrices Mi, i = 1, . . . , r, is conjugated to a diagonal

matrix of the form

Mi ∼




ζai1di
. . .

ζaindi


 ,

where ζdi is a primitive di-th root of unity. Moreover, they are simultane-

ously diagonalizable because they commute.

This proves that Cn/G ' X((d1, . . . , dr); (aij)i,j). �

Different types (d;A) can give rise to isomorphic quotient spaces, see

Remark (I.1.7). We shall prove that they can always be represented by an

upper triangular matrix of dimension (n−1)×n, see Lemma (I.1.8). Finding

a simpler type (d;A) to represent a quotient space will lead us to the notion

of normalized type, see Definition (I.1.10).

Remark (I.1.7). Assume just for a while that n = 3. The simple group

automorphism on µd×µd given by (ξ, η) 7→ (ξη−1, η) shows that the following

two spaces are isomorphic under the identity map.

X

(
d a11 a12 a13

d a21 a22 a23

)
= X

(
d a11 a12 a13

d a21 − a11 a22 − a12 a23 − a13

)

Note that the determinants of the minors of order 2 are the same in both

side of the previous equation. Analogous considerations hold for higher

dimension.
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Lemma (I.1.8). The space X(d;A) = Cn/µd can always be represented by

an upper triangular matrix of dimension (n− 1)× n. More precisely, there

exist a vector e = (e1, . . . , en−1), a matrix B = (bi,j)i,j, and an isomorphism

[(x1, . . . , xn)] 7→ [(x1, . . . , x
k
n)] for some k ∈ N such that

X(d;A) ∼=




e1 b1,1 · · · b1,n−1 b1,n
...

...
. . .

...
...

en−1 0 · · · bn−1,n−1 bn−1,n


 = X(e;B).

Proof. To keep the proof as simple as possible, consider only the

case n = 3. The general case is analogous. Let (d1; a11, a12, a13) and

(d2; a21, a22, a23) be the first two rows of the matrix defining the quotient

space. Multiplying conveniently, one can assume d1 = d2. Choose α, β

satisfying Bézout’s identity αa11 + βa21 = gcd(a11, a21). Using repeatedly

Remark (I.1.7), one finds an isomorphism induced by the identity map be-

tween our space X
(
d; a11 a12 a13
d; a21 a22 a23

)
and

X

(
d gcd(a11, a21) αa12 + βa22 αa13 + βa23

d 0 a11a22−a21a12
gcd(a11,a21)

a11a23−a21a13
gcd(a11,a21)

)
.

This process allows one to reduce the claim to the case n = 1. The proof

is complete after Example (I.1.12). �

(I.1.9). The action shown in (5) is free on (C∗)n, that is,
[
x ∈ (C∗)n, ξd · x = x

]
=⇒ ξd = 1,

if and only if the group homomorphism µd → GL(n,C) given by

(6) ξd = (ξd1 , . . . , ξdr) 7−→




ξa1
d

. . .

ξar
d




is injective. If this is not the case, let H be the kernel of this group ho-

momorphism. Then Cn/H ≡ Cn and the group µd/H acts freely on (C∗)n
under the previous identification.

Thus one can always assume that the free (as well as the small) condition

is satisfied. This motivates the following definition.

Definition (I.1.10). The type (d;A) is said to be normalized if the follow-

ing two conditions hold.

(1) The action is free on (C∗)n.

(2) The group µd is identified with a small subgroup of GL(n,C) under

the group homomorphism given in (6).

By abuse of language we often say the space X(d;A) is written in a

normalized form when we actually mean the type (d;A) is normalized.
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Proposition (I.1.11). The space X(d;A) is written in a normalized form

if and only if the stabilizer subgroup of P is trivial for all P ∈ Cn with

exactly n− 1 coordinates different from zero.

In the cyclic case the stabilizer of a point as above (with exactly n − 1

coordinates different from zero) has order gcd(d, a1, . . . , âi, . . . , an). �

The procedures described in (I.1.9) and (I.1.3) can be used to convert

general types (d;A) into their normalized form. Theorem (I.1.4) allows one

to decide whether two quotient spaces are isomorphic. In particular, one can

use this result to compute the singular points of the space X(d;A). This

method is specially simple in the cyclic case, see (I.1.15) below.

I.1–2. Dimension 1, 2, 3 and the cyclic case

Now, in the following examples, we discuss the previous normalization

process in dimension one, two, and three separately. Also a paragraph is

devoted to the cyclic case.

Example (I.1.12). (Dimension 1). When n = 1 all spaces X(d;A) are

isomorphic to C. Note that X((d1, . . . , dr); (a11, . . . , ar1)t) is the same space

as X((d′1, . . . , d
′
r); (a′11, . . . , a

′
r1)t) where d′i = di

gcd(di,ai1) and a′i1 = ai1
gcd(di,ai1) .

Therefore we can assume that gcd(di, ai1) = 1.

The map [x] 7→ xd1 gives an isomorphism between X(d1; a11) and C.

For r = 2 one has that (we write the symbol “=” when the isomorphism is

induced by the identity map)

C
µd1 × µd2

=
C/µd1
µd2

∼=−→ C/µd2
(∗)
= X(d2; a21d1)

∼=−→ C,

[x] 7→ xd1 , [x] 7→ x
d2

gcd(d1,d2) .

To see the equality (∗) observe that

ξd2 · xd1 ≡ ξd2 · [x] = [ξa21d2
x] ≡ ξa21d1d2

xd1 .

It follows that the corresponding quotient space is isomorphic to C under

the map [x] 7→ xlcm(d1,d2).

In higher dimension (without assuming gcd(di, ai1) = 1) the isomor-

phism takes the form

X((d1, . . . , dr); (a11, . . . , ar1)t) −→ C : [x] 7→ x`,

` = lcm

(
d1

gcd(d1, a11)
, . . . ,

dr
gcd(dr, ar1)

)
.

This integer ` is closely related to our notion of multiplicity (at a point)

of a normal crossing divisor, see (IV.3.12) and (V.1.4).
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Example (I.1.13). (Dimension 2). Following Lemma (I.1.8), all quotient

spaces for n = 2 are cyclic. The space X(d; a, b) is written in a normalized

form if and only if gcd(d, a) = gcd(d, b) = 1. If this is not the case, one uses

the isomorphism1 (assuming gcd(d, a, b) = 1)

X(d; a, b) −→ X
(

d
(d,a)(d,b) ; a

(d,a) ,
b

(d,b)

)
,

[
(x, y)

]
7→

[
(x(d,b), y(d,a))

]

to convert it into a normalized one.

On the other hand, one can have spaces like X
(
d ; a b
e ; r s

)
also written in

a normalized form. In fact, the previous quotient space is written in a

normalized form if and only if so are both rows and gcd(d, e) = 1.

Example (I.1.14). (Dimension 3). The space X(d; a, b, c) is written in a

normalized form if and only if gcd(d, a, b) = gcd(d, a, c) = gcd(d, b, c) = 1.

As above, isomorphisms of the form [(x, y, z)] 7→ [(x, y, zk)] can be used to

convert types (d; a, b, c) into their normalized form.

For n = 3 there exists non-cyclic quotient spaces written in a normal-

ized form. As an example we give X
( 2 ; 1 1 0

2 ; 1 0 1

)
. In fact, the general space

X
(
d ; a b c
e ; r s t

)
is written a in normalized form if and only if so are both rows

and (d, e,m1) = (d, e,m2) = (d, e,m3) = 1, where m1, m2, m3 are the

determinants of the three minors of order 2.

(I.1.15). (Cyclic case). In the cyclic case the order of the stabilizer subgroup

is specially easy to compute and hence the normalized form can be described

explicitly. In fact, X(d; a1, . . . , an) is written in a normalized form if and

only if gcd(d, a1, . . . , âi, . . . , an) = 1, ∀i = 1, . . . , n. Here we summarize how

to convert types (d; a1, . . . , an) into their normalized form.

(1) X(d; a1, . . . , an) ' X(d; aσ(1), . . . , aσ(n)), ∀σ ∈ Σn.

(2) X(d; 0, a2, . . . , an) = C×X(d; a2, . . . , an).

(3) X(d; a1, . . . , an) = X( dk ; a1
k , . . . ,

an
k ) if k divides d and all ai’s.

(4) X(d; a1, . . . , an) = X(d; ka1, . . . , kan) if gcd(d, k) = 1.

(5) X(d; a1, . . . , an) ' X( dk ; a1,
a2
k , . . . ,

an
k ), the isomorphism is given

by [(x1, x2, . . . , xn)] 7→ [(xk1, x2, . . . , xn)].

In [Fuj75], the author computes resolutions of these cyclic quotient sin-

gularities and also studies, among others, the properties shown above.

1Recall the notation (i1, . . . , ik) = gcd(i1, . . . , ik) in case of complicated or long

formulas.
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I.1–3. Working with local equations

Let X(d;A) = Cn/µd be a quotient singularity not necessarily cyclic or

written in a normalized form. Let f : X(d;A)→ C be a global function, that

is, f is a holomorphic function preserving the action. One is interested in

finding a local equation for the divisor defined by f : (X(d;A), [P ])→ (C, 0)

as a germ of functions at P = (p1, . . . , pn) ∈ Cn \ {0}.
Note that the usual change of coordinates ϕ : Cn → Cn given by xi 7→

xi + pi induces an isomorphism on X(d;A) if and only if the condition[
pj 6= 0 =⇒ di|aij , ∀i

]
is satisfied. Equivalently, the j-th column of A is

zero (modulo d) whenever pj 6= 0.

Now the trick is to find an isomorphism induced by the identity map

(X(d;A), [P ]) ' (X(d′;A′), [P ]) such that (d′;A′) verifies the condition

above. The following result illustrates this idea.

Lemma (I.1.16). Let P = (p1, . . . , pk, 0, . . . , 0) ∈ Cn, 1 ≤ k ≤ n, pi 6= 0.

Let (µd)P be the stabilizer subgroup of P . There exist d′ and A′ such that

X(d′;A′) = Cn/(µd)P .

The natural projection X(d′;A′)→ X(d;A) defines a branched covering

unramified over a small neighborhood of [P ]. In particular, as germs, one

has
(
X(d;A), [P ]

)
=
(
X(d′;A′), [P ]

)
.

In the cyclic case the order of (µd)P is gcd(d, a1, . . . , ak).

Proof. Note that µd/(µd)P acts freely on
(
(C∗)k×Cn−k

)/
(µd)P . Thus

the natural projection

(C∗)k × Cn−k

(µd)P
−→

(
(C∗)k × Cn−k

)/
(µd)P

µd

/
(µd)P

=
(C∗)k × Cn−k

µd
3 [P ]

is an unramified covering and the claim follows. The order of the stabilizer

subgroup in the cyclic case can be computed directly. �

Observe that the new data (d′;A′) obtained in the previous lemma sat-

isfies the required condition. In fact,

X(d′;A′) = X(d′; 0, . . . , 0,a′k+1, . . . ,a
′
n) = Ck × (Cn−k/µd′).

Now the usual change of coordinates can be used to compute the local

equation of f at [P ].

(I.1.17). Let OX(d;A) be the sheaf of analytic functions on X(d;A) and let

OX(d;A),[P ] be the corresponding local ring at [P ] ∈ X(d;A). Then one has

OX(d;A),[P ] = (OCn,P )(µd)P
∼=−→ (OCn,0)(µd)P ,

xi 7→ xi + pi.
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Define the equivalence relation on X(d;A) given by [(p1, . . . , pn)] ∼
[(q1, . . . , qn)] if and only if ∀i = 1, . . . , n, [pi 6= 0 ⇔ qi 6= 0]. Then the

local ring OX(d;A),[P ] only depends on the equivalence class of [P ]. In par-

ticular, for a given λ ∈ C∗, OX(d;A),[P ]
∼= OX(d;A),[λP ] holds. This has to do

with the notion of cone in topology.

Example (I.1.18). Let us examine a special case that will be used later.

Assume that X = X(d; a, b, c) is written in a normalized form, see Exam-

ple (I.1.14). Let f : X → C be the polynomial map given by f = xd3. The

support of the divisor defined by f can be decomposed into several strata

depending of their quotient singularities, or equivalently, depending on the

order of the stabilizer subgroup, as the following picture shows. However,

the local equation of the divisor is always the same, since (d; a, b, c) is nor-

malized.

d
1

d1 d2

d1 = gcd(d, a)

d2 = gcd(d, b)

Figure I.1. Stratification of {xd3 = 0} ⊂ X(d; a, b, c).

We finish this section with a general result about quotient spaces and

V -manifolds. The proof is a consequence of all the properties that have been

studied.

Proposition (I.1.19). The spaces X(d;A) = Cn/µd are normal irreducible

algebraic varieties of dimension n. Their singular locus has codimension

greater than or equal to 2 and it is located on the coordinate axes.

The Euler characteristic is χ(X(d;A)) = 1 because in fact they are

contractible. Therefore V -manifolds are normal varieties and their singular

locus forms a subvariety of codimension at least 2. �

Section § I.2

Weighted Projective Spaces

The main reference that has been used in this section is [Dol82]. Here

we concentrate our attention on the analytic structure.

Let ω = (q0, . . . , qn) be a weight vector, i.e. a finite set of positive inte-

gers. There is a natural action of the multiplicative group C∗ on Cn+1 \ {0}
given by

(x0, . . . , xn) 7−→ (tq0x0, . . . , t
qnxn).
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The set of orbits Cn+1\{0}
C∗ under this action is denoted by Pnω (or Pn(ω) in

case of complicated weight vectors) and it is called the weighted projective

space of type ω. The class of a nonzero element (x0, . . . , xn) ∈ Cn+1 is

denoted by [x0 : . . . : xn]ω and the weight vector is omitted depending on

the context. When (q0, . . . , qn) = (1, . . . , 1) one obtains the usual projective

space and the weight vector is always omitted. For x ∈ Cn+1 \ {0}, the

closure of [x]ω in Cn+1 is obtained by adding the origin; it is an algebraic

curve.

(I.2.1). (Another way to present Pnω). Let Pn be the classical projective

space and µω = µq0 × · · · × µqn the product of cyclic groups. Consider the

group action

µω × Pn −→ Pn,
(
(ξq0 , . . . , ξqn), [x0 : . . . : xn]

)
7→ [ξq0x0 : . . . : ξqnxn].

Then the set of all orbits Pn/µω is isomorphic to the weighted projective

space of type ω and the isomorphism is induced by the branched covering

Pn 3 [x0 : . . . : xn] 7−→ [xq00 : . . . : xqnn ]ω ∈ Pnω.

Note that this branched covering is unramified over

Pnω \ {[x0, . . . , xn]ω | x0 · · ·xn = 0}

and has q0···qn
gcd(q0,...,qn) sheets. Moreover, the covering respects the coordinate

axes.

Example (I.2.2). Let P2 → P2
ω be the branched covering defined above

with weights ω = (1, 2, 3). For instance, the preimage of [1 : 1 : 1]ω consists

of 6 points, namely the set {[1 : ξ2 : ξ3] ∈ P2 | ξ2 ∈ µ2, ξ3 ∈ µ3}.
More generally, the degree (the number of sheets) of a covering of the

form P2 → P2
ω/µd, where µd defines an action of type (d; a, b, c), is calculated

in Lemma (III.4.2) and Proposition (III.4.3). This degree will be essential

to state Bézout’s Theorem on P2
ω/µd.

(I.2.3). (Analytic structure). As in the classical case, the weighted projec-

tive spaces can be endowed with an analytic structure. However, in general

they contain cyclic quotient singularities.

Consider the decomposition Pnω = U0∪ · · ·∪Un, where Ui is the open set

consisting of all elements [x0 : . . . : xn]ω with xi 6= 0. The map

ψ̃0 : Cn −→ U0, ψ̃0(x1, · · · , xn) := [1 : x1 : . . . : xn]ω

is clearly a surjective analytic map but it is not a chart since injectivity fails.
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In fact, [1 : x1 : . . . : xn]ω = [1 : x′1 : . . . , x′n]ω if and only if there exists

ξ ∈ µq0 such that x′i = ξqixi for all i = 1, . . . , n. Hence the map above

induces the isomorphism

ψ0 : X(q0; q1, . . . , qn) −→ U0,

[(x1, . . . , xn)] 7→ [1 : x1 : . . . : xn]ω.

Analogously, X(qi; q0, . . . , q̂i, . . . , qn) ∼= Ui under the obvious analytic

map. Therefore Pnω is an analytic space with cyclic quotient singularities as

claimed.

(I.2.4). (Simplifying the weights). For different weight vectors ω and ω′ the

corresponding spaces Pnω and Pnω′ can be isomorphic. Consider

d = gcd(q0, . . . , qn),

di = gcd(q0, . . . , q̂i, . . . , qn),

ei = lcm(d0, . . . , d̂i, . . . , dn).

Note that ei|qi, gcd(di, dj) = d for i 6= j, and gcd(ei, di) = d.

Proposition (I.2.5). Using the notation above, the following map is an

isomorphism:

Pn
(
q0, . . . , qn

)
−→ Pn

( q0
e0
, . . . , qnen

)
,

[x0 : . . . : xn] 7→
[
x
d0
d

0 : . . . : x
dn
d
n

]
.

Proof. Assume first that d = 1. Then gcd(qi, di) = 1 and ei =

d0 · · · d̂i · · · dn. Now from (I.1.15), one has the following sequence of iso-

morphisms of analytic spaces:

X(q0; q1, . . . , qn)
id
= X(q0; q1

d0
, q2d0 , . . . ,

qn
d0

)
1st∼= X( q0d1 ; q1

d0
, q2
d0d1

, . . . , qn
d0d1

)

2nd∼= X( q0
d1d2

; q1
d0d2

, q2
d0d1

, q3
d0d1d2

, . . . , qn
d0d1d2

)
3rd∼= · · ·

nth∼= X( q0e0 ; q1
e1
, . . . , qnen ).

Observe that in the i-th step, we divide the corresponding weight vector

by di except the i-th coordinate and hence the associated map in each step

is [(x1, . . . , xi, . . . , xn)] 7→ [(x1, . . . , x
di
i , . . . , xn)]. Therefore

[1 : x1 : . . . : xn]ω 7−→ [1 : xd11 : . . . : xdnn ]ω′

is an isomorphism by composition. Analogously one proceeds with the other

charts.

The general case gcd(q0, . . . , qn) = d can easily be deduced from the

previous one. �
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Remark (I.2.6). Note that, due to the preceding proposition, one can always

assume the weight vector satisfies gcd(q0, . . . , q̂i, . . . , qn) = 1, for i = 0, . . . , n.

In particular, P1(q0, q1) ∼= P1 and for n = 2 we can take (q0, q1, q2) pairwise

relatively prime numbers. In higher dimension the situation is a bit more

complicated.

We conclude with a general result.

Theorem (I.2.7). The space Pnω is a normal irreducible projective alge-

braic variety of dimension n. All singularities are cyclic quotient and form

a subanalytic space of codimension greater than or equal to 2. The Euler

characteristic is χ(Pnω) = χ(Pn) = n+ 1. �

Remark (I.2.8). In what follows we need to work over (Pkω×Cn−k)/µd where

the action is as in (5). These spaces are also normal irreducible algebraic

varieties of dimension n with singular locus of codimension at least 2. The

Euler characteristic is k + 1.

Section § I.3

Weighted Blow-ups and Embedded Q-Resolutions

Classically an embedded resolution of {f = 0} ⊂ Cn is a proper map

π : X → (Cn, 0) from a smooth varietyX satisfying, among other conditions,

that π−1({f = 0}) is a normal crossing divisor. To weaken the condition on

the preimage of the singularity we allow the new ambient space X to contain

abelian quotient singularities and the divisor π−1({f = 0}) to have “normal

crossings” over this kind of varieties. This notion of normal crossing divisor

on V -manifolds was first introduced by Steenbrink in [Ste77].

Definition (I.3.1). Let X be a V -manifold with abelian quotient singu-

larities. A hypersurface D on X is said to be with Q-normal crossings if

it is locally isomorphic to the quotient of a normal crossing divisor under a

group action of type (d;A).

That is, given x ∈ X, there is an isomorphism of germs (X,x) '
(X(d;A), [0]) such that (D,x) ⊂ (X,x) is identified under this morphism

with a germ of the form

({
[x] ∈ X(d;A) | xm1

1 · · ·xmkk = 0
}
, [(0, . . . , 0)]

)
.

Let M = Cn+1/µd be an abelian quotient space not necessarily cyclic

or written in normalized form. Consider H ⊂ M an analytic subvariety of

codimension one.
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Definition (I.3.2). An embedded Q-resolution of (H, 0) ⊂ (M, 0) is a

proper analytic map π : X → (M, 0) such that:

(1) X is a V -manifold with abelian quotient singularities.

(2) π is an isomorphism over X \ π−1(Sing(H)).

(3) π−1(H) is a hypersurface with Q-normal crossings on X.

Remark (I.3.3). Let f : (M, 0)→ (C, 0) be a non-constant analytic function

germ. Consider (H, 0) the hypersurface defined by f . Let π : X → (M, 0) be

an embedded Q-resolution of (H, 0) ⊂ (M, 0). Then π−1(H) = (f ◦ π)−1(0)

is locally given by a function of the form xm1
1 · · ·xmkk : X(d;A)→ C.

In what follows we will use weighted blow-ups with smooth center as a

tool for finding embedded Q-resolutions.

(I.3.4). (Classical blow-up of Cn+1 with smooth center). Assume the center

is L : {x0 = · · · = xk = 0}. Let us use multi-index notation

x = (x0, . . . , xn) ∈ Cn+1, [u] = [u0 : . . . : uk] ∈ Pk,

and consider

Ĉn+1
L :=

{
(x, [u]) ∈ Cn+1 × Pk | (x0, . . . , xk) ∈ [u0 : . . . : uk]

}
.

Then the natural projection π : Ĉn+1
L → Cn+1 is an isomorphism over

the complement Ĉn+1
L \ π−1(L). The exceptional divisor E := π−1(L) is

identified with Pk × Cn−k. The space

Ĉn+1
L = U0 ∪ · · · ∪ Uk

can be covered by k+1 charts each of them isomorphic to Cn+1. For instance,

the following map defines an isomorphism:

Cn+1 −→ U0 = {u0 6= 0} ⊂ Ĉn+1
L ,

x 7→
(
(x0, x0x1, . . . , x0xk, xk+1, . . . , xn), [1 : x1 : . . . : xk]

)
.

(I.3.5). (Weighted (p0, . . . , pk)-blow-up of Cn+1 with smooth center). As-

sume the center is L : {x0 = · · · = xk = 0}. Let ω = (p0, . . . , pk) be a weight

vector. As above, consider the space

Ĉn+1
L (ω) :=

{
(x, [u]ω) ∈ Cn+1 × Pkω | (x0, . . . , xk) ∈ [u0 : . . . : uk]ω

}
.

Here the condition about the closure means that

∃t ∈ C, xi = tpiui, i = 0, . . . , k.

Then the natural projection π : Ĉn+1
L (ω) → Cn+1 is an isomorphism

over Ĉn+1
L (ω) \π−1(L) and the exceptional divisor E := π−1(L) is identified

with the V -manifold Pkω × Cn−k.
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Again Ĉn+1
L (ω) = U0∪· · ·∪Uk can be covered by k+ 1 charts. However,

the map ϕ0 : Cn+1 → U0 given by

Cn+1 ϕ0−→ U0 = {u0 6= 0} ⊂ Ĉn+1
L (ω),

x 7→
(
(xp00 , x

p1
0 x1, . . . , x

pk
0 xk, xk+1, . . . , xn), [1 : x1 : . . . : xk]ω

)
,

is surjective but not injective. In fact, ϕ0(x) = ϕ0(y) if and only if

∃ξ ∈ µp0 :





y0 = ξ−1x0,

yi = ξpixi, i = 1, . . . , k,

yi = xi, i = k + 1, . . . , n.

Hence the previous map ϕ0 induces the isomorphism

X(p0;−1, p1, . . . , pk)× Cn−k −→ U0.

Note that these charts are compatible with the ones described in (I.2.3)

for the weighted projective space. In U0 the exceptional divisor is {x0 = 0}
and the first chart of Pkω is the quotient space X(p0; p1, . . . , pk).

(I.3.6). ((p0, . . . , pk)-blow-up of X(d;A) with smooth center). Assume the

center is L : {x0 = · · · = xk = 0}. Let ω = (p0, . . . , pk) be a weight vector.

The action µd on Cn+1 extends naturally to an action on Ĉn+1
L (ω) as follows,

ξd ·
(
x, [u]ω

) µd7−→
(
(ξa0

d x0, . . . , ξ
an
d xn), [ξa0

d u0 : . . . : ξak
d uk]ω

)
.

Let X̂(d;A)L(ω) := Ĉn+1
L (ω)

/
µd denote the quotient space under this

action. Then the induced projection

π : X̂(d;A)L(ω) −→ X(d;A),
[
(x, [u]ω)

]
(d;A)

7→ [x](d;A)

is an isomorphism over X̂(d;A)L(ω) \ π−1(L) and the exceptional divisor

E := π−1(L) is identified with the variety (Pkω × Cn−k)/µd.

The action µd above respects the charts of Ĉn+1
L (ω) so that the new

ambient space can be covered as

X̂(d;A)L(ω) = Û0 ∪ · · · ∪ Ûk,

where Ûi := Ui/µd = {ui 6= 0}.
Let us study, for instance, the first chart. By using ϕ0 one identifies U0

with

X(p0;−1, p1, . . . , pk)× Cn−k

and µd = µd1 × · · · × µdr with the group

µp0d

µp0× (r). . . ×µp0
.
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Finally, one has the following action

(
µp0d/(µp0×

(k)· · · ×µp0)
)
×
(
X(p0;−1, p1, . . . , pk)× Cn−k

)

defined by
([

(ξa0x0, ξ
p0a1−p1a0x1, . . . , ξ

p0ak−pka0xk)
]
,
(
ξp0ak+1xk+1, . . . , ξ

p0anxn
))
.

This shows that

X

(
p0 −1 p1 · · · pk 0 · · · 0

p0d a0 p0a1 − p1a0 · · · p0ak − pka0 p0ak+1 · · · p0an

)

is isomorphic to Û0 and the isomorphism is defined by

[x]
ϕ̂07−→

(
(xp00 , x

p1
0 x1, . . . , x

pk
0 xk, xk+1, . . . , xn), [1 : x1 : . . . : xk]ω

)
.

For i = 1, . . . , k, one proceeds analogously.

As for the the exceptional divisor E = π−1(L) = (Pkω × Cn−k)/µd, it is

usually written as

E = V̂0 ∪ · · · ∪ V̂k
so that these charts are compatible with the ones of X̂(d;A)L(ω) in the

sense that V̂i = Ûi|{xi=0}, i = 0, . . . , k. Hence, for example,

V̂0
∼= X

(
p0 p1 · · · pk 0 · · · 0

p0d p0a1 − p1a0 · · · p0ak − pka0 p0ak+1 · · · p0an

)
.

Remark (I.3.7). Let ω = (p0, . . . , pk) be a weight vector and write e =

gcd(p0, . . . , pk). Denote p′i = pi/e for i = 0, . . . , k and ω′ = (p′0, . . . , p
′
k).

Using the previous notation there is an isomorphism

F : X̂(d;A)L(ω) −→ X̂(d;A)L(ω′)

of blowing-ups (i.e. F ◦ πω′ = πω) induced by the identity map. Hence one

can always assume that gcd(p0, . . . , pk) = 1.

For instance, in the first chart F : Ûω,0 → Ûω′,0 takes the form

F0 : [(x0, x1, . . . , xn)] 7−→ [(xe0, x1, . . . , xn)] ,

(
p0 −1 p1 · · · pk 0 · · · 0

p0d a0 p0a1 − p1a0 · · · p0ak − pka0 p0ak+1 · · · p0an

)
#

ϕ̂ω,0
//

F0

��

Ûω,0

F

��(
p′0 −1 p′1 · · · p′k 0 · · · 0

p′0d a0 p′0a1 − p′1a0 · · · p′0ak − p′ka0 p′0ak+1 · · · p′0an

)
ϕ̂ω′,0

// Ûω′,0 .
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Definition (I.3.8). Let π : X̂(d;A)L(ω)→ X(d;A) be the ω-blow-up with

smooth center L : {x0 = · · · = xk = 0}. Then the total transform π∗(H)

decomposes as

π∗(H) = Ĥ +mE,

where E := π−1(L) is the exceptional divisor of π, Ĥ := π−1(H \ L) is the

strict transform of H, and m is the multiplicity of E at a smooth point.

I.3–1. Dimension 2

Let X be an analytic surface with abelian quotient singularities. Con-

sider π : X̂ → X the weighted blow-up at a point P ∈ X with respect to

ω = (p, q). We distinguish three different situations.

(i) The point P is smooth. Without lost of generality one can assume

that X = C2 and π = πω : Ĉ2
ω → C2 is the weighted blow-up at the origin

with respect to ω = (p, q). The new ambient space is covered as

Ĉ2
ω = U1 ∪ U2 = X(p;−1, q) ∪X(q; p,−1)

and the charts are given by

First chart X(p;−1, q) −→ U1,

[(x, y)] 7→ ((xp, xqy), [1 : y]ω).

Second chart X(q; p,−1) −→ U2,

[(x, y)] 7→ ((xyp, yq), [x : 1]ω).

The exceptional divisor E = π−1
ω (0) is isomorphic to P1

ω which is in turn

isomorphic to P1 under the map

[x : y]ω 7−→ [xq1 : yp1 ], p1 =
p

gcd(p, q)
, q1 =

q

gcd(p, q)
.

The singular points of Ĉ2
ω are cyclic quotient singularities located at the ex-

ceptional divisor. They actually coincide with the origins of the two charts;

in the case gcd(p, q) = 1 they are written in a normalized form.

Example (I.3.9). Let f : C2 → C be the function given by f = xp + yq

with gcd(p, q) = 1. Consider π(q,p) : Ĉ2
(q,p) → C2 the (p, q)-weighted blow-up

at the origin. In U1 the total transform is given by the function

xpq(1 + yq) : X(q;−1, p) −→ C.

The equation yq = −1 has just one solution in U1 and the local equation

of the total transform at this point is of the form xpqy = 0.
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Hence the proper map π(q,p) is an embedded Q-resolution of the plane

curve C = {f = 0} ⊂ C2 where all spaces are written in a normalized form.

m = pq

(p; q,−1)(q;−1, p)

U1 U2

Figure I.2. Embedded Q-resolution of {xp + yq = 0} ⊂ C2.

(ii) The point P is of type (d; p, q). Assume X = X(d; p, q) and it

is written in a normalized form, i.e. gcd(d, p) = gcd(d, q) = 1. Also assume

π = πω,d : Ĉ2
ω,d → X(d; p, q) is the weighted blow-up at the origin with

respect to ω = (p, q). The new ambient space is cover as

Ĉ2
ω,d = U1 ∪ U2 = X(p;−d, q) ∪X(q; p,−d)

and the charts are given by

First chart X(p;−d, q) −→ U1,[
(xd, y)

]
7→

(
[(xp, xqy)]d, [1 : y]ω

)
.

Second chart X(q; p,−d) −→ U2,[
(x, yd)

]
7→

(
[(xyp, yq)]d, [x : 1]ω

)
.

As above, the exceptional divisor E = π−1
ω (0) is identified with P1

ω which

is isomorphic to P1 under the map

[x : y]ω 7−→ [xq1 : yp1 ], p1 =
p

gcd(p, q)
, q1 =

q

gcd(p, q)
.

The singular points of Ĉ2
ω,d are cyclic quotient singularities and coincide

with the origins of the two charts. They are written in a normalized form if

gcd(p, q) = 1.

Example (I.3.10). Assume gcd(p, q) = 1 and p < q. Let f = (xp +

yq)(xq + yp) and consider C1 = {xp + yq = 0} and C2 = {xq + yp = 0} the

two irreducible components of {f = 0}.
Let π(q,p) : Ĉ2

(q,p) → C2 be the (q, p)-weighted blow-up at the origin. The

new space has two singular points of type (q;−1, p) and (p; q,−1) located

at the exceptional divisor E1. The local equation of the total transform in

the first chart is given by the function

xp(p+q)(1 + yq)(xq
2−p2 + yp) : X(q;−1, p) −→ C.
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Here x = 0 is the equation of the exceptional divisor and the other

factors correspond to the strict transform of C1 and C2 (denoted again by

the same symbol).

Hence E1 has multiplicity p(p + q); it intersects transversely C1 at a

smooth point while it intersects C2 at a singular point (the origin of the

first chart) without Q-normal crossings.

E1
(p; q,−1)(q;−1, p)

C2

←− E1
(p; q,−1)(q2 − p2)

C2

(p;−1, q)
C1 C1

E2

Figure I.3. Embedded Q-resolution of f = (xp + yq)(xq + yp).

Let us consider π(p,q2−p2),q the (p, q2−p2)-weighted blow-up at the origin

of X(q;−1, p),

π(p,q2−p2),q : Ĉ2
(p,q2−p2),q −→ X(q; p, q2 − p2) = X(q;−1, p).

The new space has two singular points of type (p;−q, q2−p2) = (p;−1, q)

and (q2 − p2; p,−q). In the first chart, the local equation of the total trans-

form of xp(p+q)(xq
2−p2 + yp) is given by the function

xp(p+q)(1 + yp) : X(p;−1, q) −→ C.

Thus the new exceptional divisor E2 has multiplicity p(p+ q) and inter-

sects transversely the strict transform of C2 at a smooth point. Hence the

composition π(p,q2−p2),q ◦π(q,p) is an embedded Q-resolution of {f = 0} ⊂ C2

where all quotient spaces are written in a normalized form. Figure I.3 illus-

trates the whole process.

(iii) The point P is of type (d; a, b). As above, assume that X =

X(d; a, b) and the map

π = π(d;a,b),ω : ̂X(d; a, b)ω −→ X(d; a, b)

is the weighted blow-up at the origin of X(d; a, b) with respect to ω = (p, q).

The new space is covered as

Û1 ∪ Û2 = X

(
p −1 q

pd a pb− qa

)
∪X

(
q p −1

qd qa− pb b

)
.
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The charts are given by

First chart X

(
p −1 q

pd a pb− qa

)
−→ Û1,

[
(x, y)

]
7→
[
((xp, xqy), [1 : y]ω)

]
(d;a,b)

.

Second chart X

(
q p −1

qd qa− pb b

)
−→ Û2,

[
(x, y)

]
7→
[
((xyp, yq), [x : 1]ω)

]
(d;a,b)

.

The exceptional divisor E = π−1
(d;a,b),ω(0) is identified with the quotient

space P1
ω(d; a, b) := P1

ω/µd which is isomorphic to P1 under the map

P1
ω(d; a, b) −→ P1

[x : y]ω 7→ [xdq/e : ydp/e],

where e = gcd(dp, dq, pb − qa). Again the singular points are cyclic and

correspond to the origins. They may be not written in normalized form

even if gcd(p, q) = 1 and (d; a, b) is normalized.

(I.3.11). Let us give another expression for the previous charts. We follow

the proof of Lemma (I.1.8) and Remark (I.1.7). Let α and β satisfying

αd + βa = gcd(d, a). One has the following isomorphisms induced by the

identity map2.
(

p −1 q

pd a pb− qa

)
=

(
pd d −qd
pd a pb− qa

)

=

(
pd (d, a) −q(d, a) + βpb

pd 0 dpb
(d,a)

)(7)

For the last equality note that α(−qd) + β(pb − qa) = −q gcd(d, a) + βpb

and the determinant of the minor of the matrix representing the second

quotient space is dpb. From (7), assuming gcd(d, a, b) = 1 , one also has the

isomorphism

X

(
pd (d, a) −q(d, a) + βpb

(d, a) 0 b

)
∼=−→ X

(
pd

(d, a)
; 1,−q(d, a) + βpb

)
,

[(x, y)] 7→ [(x, y(d,a))].

Analogously one can proceed with the second chart. Choose λ, µ satis-

fying Bézout’s identity λd+ µb = gcd(d, b).

2Recall once again the notation (i1, . . . , ik) = gcd(i1, . . . , ik) for long formulas.
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Then the equations of the two charts in these new coordinates are given

by the isomorphism

First chart X

(
pd

(d, a)
; 1,−q(d, a) + βpb

)
−→ Û1,

[
(x, y(d,a))

]
7→
[
((xp, xqy), [1 : y]ω)

]
.

Second chart X

(
qd

(d, b)
;−p(d, b) + µqa, 1

)
−→ Û2,

[
(x(d,b), y)

]
7→
[
((xyp, yq), [x : 1]ω)

]
.

These spaces are written in a normalized form if and only if the following
greatest common divisor equals one:

(
dp

(d, a)
,−q(d, a) + βpb

)
=
(
dp, dq, pb− qa

)
=

(
dq

(d, b)
,−p(d, b) + µqa

)
.

Although elementary, the proof of the preceding equalities are not in-

tuitive. That is why the first one is commented separately in the result

below.

Lemma (I.3.12). With the assumption above,

(
dp

(d, a)
,−q(d, a) + βpb

)
=
(
dp, dq, pb− qa

)
.

Moreover,
(

dp
(d,a) ,

dq
(d,b) , pb− qa

)
also equals the previous number.

Proof. Note that pd
gcd(d,a) = gcd

(
pd, dpb

gcd(d,a)

)
, since gcd(d, a, b) = 1,

and consequently
(

dp

(d, a)
,−q(d, a) + βpb

)
=

(
dp,

dpb

(d, a)
,−q(d, a) + βpb

)
.

The following two couples of equalities complete the first part of the

proof.

• a
(d,a) ·

[
− q(d, a) + βpb

]
+ α · dpb(d,a) = pb− qa.

• −d(d,a) ·
[
− q(d, a) + βpb

]
+ β dpb

(d,a) = dq.

• −q(d, a) + βpb = α(−qd) + β(pb− qa).

• dpb
(d,a) = d

(d,a)(pb− qa) + a
(d,a)(dq).

The second part of the statement is again rather artificial but elemen-

tary; the details are left to the reader. �
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Remark (I.3.13). Assume that gcd(d, a, b) = 1. The (p, q)-weighted blow-

up at the origin of X(d; a, b) is isomorphic to the ω′-weighted blow-up at the

origin of X
(
d′; a′, b′

)
, where the new vectors are

ω′ =
(
p · gcd(d, b), q · gcd(d, a)

)
,

(d′, a′, b′) =

(
d

gcd(d, a) gcd(d, b)
,

a

gcd(d, a)
,

b

gcd(d, b)

)
.

In fact, there is a commutative diagram of blowing-ups

̂X(d; a, b)ω

#

H
//

π(d;a,b),ω

��

̂X(d′; a′, b′)ω′

π(d′;a′,b′),ω′

��

X(d; a, b)
h

// X(d′; a′, b′)

where H and h are isomorphisms of analytic spaces defined by

[((x, y), [u : v])ω](d;a,b)
H7−→ [((x(d,b), y(d,a)), [u(d,b) : v(d,a)])ω′ ](d′;a′,b′);

[(x, y)](d;a,b)
h7−→ [(x(d,b), y(d,a))](d′;a′,b′),

and H gives rise to the identity map on each chart.

Note also that if

C = {f = 0} ⊆ X(d; a, b), C′ = {f ′ = 0} ⊆ X(d′; a′, b′)

such that h∗(C′) = C, then ordω(f) = ordω′(f
′) = ord(f(xp, yq)). Hence

the order is preserved under this construction.

Remark (I.3.14). Using the notation in (I.3.11), assume gcd(p, q) = 1 and

X(d; a, b) is written in a normalized form. To normalize the last cyclic

quotient spaces obtained in that paragraph, let

e = gcd(pd,−q + βpb) = gcd(d, pb− qa).

Then one has the isomorphism

X(pd; 1,−q + βpb)
∼=−→ X

(
pd
e ; 1, −q+βpbe

)
,

[(x, y)] 7→ [(xe, y)].
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One proceeds analogously with the second chart. Finally the equations

of the two charts in these new coordinates are given by

(8)

First chart X

(
pd

e
; 1,
−q + βpb

e

)
−→ Û1,

[
(xe, y)

]
7→
[
((xp, xqy), [1 : y]ω)

]
(d;a,b)

.

Second chart X

(
qd

e
;
−p+ µqa

e
, 1

)
−→ Û2,

[
(x, ye)

]
7→
[
((xyp, yq), [x : 1]ω)

]
(d;a,b)

.

Recall that β and µ are the inverse of a and b modulo d, respectively. Note

that both quotient spaces are now written in their normalized form.

Example (I.3.15). Assume gcd(p, q) = gcd(r, s) = 1 and p
q < r

s . Let

f = (xp + yq)(xr + ys) and consider

C1 = {xp + yq = 0}, C2 = {xr + ys = 0}

the two irreducible components of f .

Working as in Example (I.3.10), one obtains the following picture rep-

resenting an embedded Q-resolution of {f = 0} ⊂ C2.

p(q + s)E1
(p; q,−1)Q

C2

(s;−1, r)

s(p+ r)E2

C1

Q =

(
rq − ps s −q
rq − ps −r p

)

Figure I.4. Embedded Q-resolution of f = (xp + yq)(xr + ys).

After writing the quotient spaces in their normalized form one checks

that this resolution coincides with the one given in Example (I.3.10) assum-

ing r = q and s = p.

(I.3.16). (Puiseux expansion). Let us study the behavior of Puiseux pairs

under weighted blow-ups. Let C = {f = 0} ⊂ C2 be the irreducible plane

curve given by

d∏

j=1

[
− y + (a1jx

p1
q + · · ·+ akjx

pk
q ) + (b1jx

r1
s + · · ·+ bljx

rl
s ) + · · ·

]
,

where p1 < · · · < pk, r1 < · · · < rl,
p1
q < ri

s and each fraction is irreducible.
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Let π(q,p1) : Ĉ2
(q,p1) → C2 be the (q, p1)-blow-up at the origin. In the first

chart, that is, after performing the substitution

(x, y) 7−→ (xq, xp1y),

one obtains the following equation for the total transform

xp1d ·
d∏

j=1

[
− y+ (a1j + a2jx

p2−p1 + · · ·+ akjx
pk−p1)+

(b1jx
r1q−p1s

s + · · ·+ bljx
rlq−p1s

s ) + · · ·
]

= 0.

At first sight the exceptional divisor and the strict transform intersect

at d different smooth points. However, since aq1j does not depend on j

by conjugation, all of them are the same. After the following change of

coordinates

y 7−→ y + (a2jx
p2−p1 + · · ·+ akjx

pk−p1),

the local equation of the total transform π−1
(q,p1)(C) at this point is

xp1d ·
d/q∏

j=1

[
− y + (b1jx

r1q−p1s
s + · · ·+ bljx

rlq−p1s
s ) + · · ·

]
= 0.

This proves that in the irreducible case, only a weighted blow-up is

needed for each Puiseux pair in order to compute an embedded Q-resolution.

Moreover, the embedded Q-resolution obtained is as in Figure I.5.

E1

E2

E3

E4

E5

Figure I.5. Embedded Q-resolution of an irreducible plane curve.

In the non-irreducible case, the situation is a bit more complicated but

can still be described in terms of the Puiseux pairs of each irreducible com-

ponent and their intersection multiplicities.

I.3–2. Dimension 3

Let X be a 3-dimensional variety with abelian quotient singularities and

consider π : X̂ → X the weighted blow-up at a point P ∈ X with respect

to ω = (p, q, r). Two special situations are considered.
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(i) The point P is smooth. As usual one assumes that X = C2 and

the map π = πω : Ĉ3
ω → C3 is the weighted blow-up at the origin with

respect to ω = (p, q, r). Also assume gcd(p, q, r) = 1. The new space is

covered as

Ĉ3
ω = U1 ∪ U2 ∪ U3 = X(p;−1, q, r) ∪X(q; p,−1, r) ∪X(r; p, q,−1),

and the charts are given by

(9)

X(p;−1, q, r) −→ U1 : [(x, y, z)] 7→ ((xp, xqy, xrz), [1 : y : z]ω),

X(q; p,−1, r) −→ U2 : [(x, y, z)] 7→ ((xyp, yq, yrz), [x : 1 : z]ω),

X(r; p, q,−1) −→ U3 : [(x, y, z)] 7→ ((xzp, yzq, zr), [x : y : 1]ω).

In general Ĉ3
ω has three lines of (cyclic quotient) singular points located

at the exceptional divisor π−1
ω (0) ' P2

ω. They correspond to the three lines

at infinity of the previous weighted projective plane. The stratification of

the exceptional divisor is shown below in terms of its quotient singularities,

or equivalently, in terms of the order of the stabilizer subgroups. For exam-

ple, the stratum labeled as (p, q) is isomorphic to C∗ and the order of the

stabilizer subgroup is gcd(p, q).

(r)

(q) (p)
x = 0 y = 0

z = 0

[0 : 0 : 1]

(p, q)

(q, r) (p, r)
P2(p, q, r)

Figure I.6. Stratification of the exceptional divisor of the

(p, q, r)-weighted blow-up at a smooth point.

Note that although the quotient spaces are written in their normalized

form, there is an isomorphism of weighted projective spaces that simplifies

the expression of the exceptional divisor:

P2(p, q, r) −→ P2

(
p

(p, r) · (p, q) ,
q

(q, p) · (q, r) ,
r

(r, p) · (r, q)

)
,

[x : y : z] 7→ [xgcd(q,r) : ygcd(p,r) : zgcd(p,q)].

However, this simplification may be not useful when working with the

whole ambient space because its charts are not compatible with Ĉ3
ω.
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Thus the natural covering of the exceptional divisor is

P2
ω = V1 ∪ V2 ∪ V3 = X(p; q, r) ∪X(q; p, r) ∪X(r; p, q),

and the charts are given by

X(p; q, r) −→ V1 : [(y, z)] 7→ [1 : y : z]ω,

X(q; p, r) −→ V2 : [(x, z)] 7→ [x : 1 : z]ω,

X(r; p, q) −→ V3 : [(x, y)] 7→ [x : y : 1]ω.

Now one sees that

V1 = U1|{x=0}, V2 = U2|{y=0}, V3 = U3|{z=0}.

In other words, the restriction of the charts of Ĉ3
ω gives rise to the charts of

the projective plane P2
ω.

Remark (I.3.17). Using just a weighted blow-up of this kind, one can

find an embedded Q-resolution for Brieskorn-Pham surfaces singularities,

i.e. xp + yq + zr = 0, see Example (IV.2.6). This can be generalized to

higher dimension obtaining an embedded Q-resolution for xp11 + · · ·+xpnn by

blowing-up the origin with suitable weights.

(ii) The point P is of type (d; a, b, c). Assume X = X(d; a, b, c) and

the map

π = π(d;a,b,c),ω : ̂X(d; a, b, c)ω −→ X(d; a, b, c)

is the weighted blow-up at the origin of X(d; a, b, c) with respect to ω =

(p, q, r). The new space is covered as

̂X(d; a, b, c)ω =
Ĉ3
ω

µd
=
U1 ∪ U2 ∪ U3

µd
= Û1 ∪ Û2 ∪ Û3,

where

Û1 =
U1

µd
=
X(p;−1, q, r)

µd
= X

(
p −1 q r

pd a pb− qa pc− ra

)
,

Û2 =
U2

µd
=
X(q; p,−1, r)

µd
= X

(
q p −1 r

qd qa− pb b qc− rb

)
,

Û3 =
U3

µd
=
X(r; p, q,−1)

µd
= X

(
r p q −1

rd ra− pc rb− qc c

)
.



§ I.3. Weighted Blow-ups and Embedded Q-Resolutions 25

The charts are given by the induced maps on the corresponding quotient

spaces, see (9). For instance, the first map is

[(x, y, z)] 7−→ [((xp, xqy, xrz), [1 : y : z]ω)].

The exceptional divisor E = π−1
(d;a,b,c),ω(0) is identified with

P2
ω(d; a, b, c) :=

P2
ω

µd
.

There are three lines of quotient singular points in E and outside E the map

π(d;a,b,c),ω is an isomorphism.

The expression of the quotient spaces can be modified as in dimension 2,

see (I.3.11). Let α and β be such that αd + βa = gcd(d, a), then one has

that the space X
(
p; −1 q r
pd; a pb−qa pc−ar

)
equals

X

(
pd (d, a) −q(d, a) + βpb −r(d, a) + βpc

(d, a) 0 b c

)
.

Note that in general the previous space is not written in a normalized form,

even if (d; a, b, c) is already normalized and gcd(p, q, r) = 1.

To obtain the normalized one, follow the processes described in (I.1.9)

and (I.1.3). For instance, the previous space Q is cyclic if either gcd(d, a) = 1

or gcd(p, a) = 1.

• gcd(d, a) = 1 =⇒ Q = X(pd; 1,−q + βpb,−r + βpc).

• gcd(p, a) = 1 =⇒ Q = X(pd; a, pb− qa, pc− ar).
As the following example shows this is not always the case.

Example (I.3.18). Blowing-up the origin of X(2; 2, 1, 1) with respect to

(2, 1, 2), one obtains the following decomposition of the new space into nor-

malized quotient spaces,

̂X(2; 2, 1, 1)(2,1,2) = X

(
2 1 1 0

2 1 0 1

)
∪X(2; 0, 1, 1) ∪X(4; 2, 1, 1).

In particular, the origin of the first chart is a quotient singular point

which is not isomorphic to a cyclic singularity.

(I.3.19). Turning to the exceptional divisor E = P2
ω(d; a, b, c), it can be

written as

P2
ω(d; a, b, c) =

P2
ω

µd
=
V1 ∪ V2 ∪ V3

µd
= V̂1 ∪ V̂2 ∪ V̂3,

where
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V̂1 =
V1

µd
=
X(p; q, r)

µd
= X

(
p q r

pd pb− qa pc− ra

)
,

V̂2 =
V2

µd
=
X(q; p, r)

µd
= X

(
q p r

qd qa− pb qc− rb

)
,

V̂3 =
V3

µd
=
X(r; p, q)

µd
= X

(
r p q

rd ra− pc rb− qc

)
.

Hence these charts are compatible with the ones of ̂X(d; a, b, c)ω in the

sense that V̂1 = Û1|{x=0}, V̂2 = Û2|{y=0}, and V̂3 = Û3|{z=0}. Note that all

these singular quotient spaces can be rewritten as cyclic singularities.

I.3–3. Higher dimension

Here we only consider a special kind of weighted blow-ups with smooth

center where the ambient space is smooth too, as in (I.3.4) and (I.3.5).

These blow-ups will be used later to compute an embedded Q-resolution for

superisolated singularities in higher dimension, see Section VI.4.

Let πω : Ĉn+1
L (ω) → Cn+1 be the ω-weighted blow-up of Cn+1 with

smooth center L = {x0 = · · · = xk = 0} where ω = (p0, 1,
(k). . ., 1). The new

space is covered as

Ĉn+1 = U0 ∪ · · · ∪ Uk,
where

U0 = X(p0;−1, 1, (k). . ., 1)× Cn−k,

and Ui = Cn+1 for all i 6= 0.

The charts are given by

0

{
X(p0;−1, 1, (k). . ., 1)× Cn−k ϕ0−→ U0 = {u0 6= 0} ⊂ Ĉn+1

L (ω),

[x] 7→
(
(xp00 , x0x1, . . . , x0xk, xk+1, . . . , xn), [1 : x1 : . . . : xk]ω

)
;

1

{
Cn+1 ϕ1−→ U1 = {u1 6= 0} ⊂ Ĉn+1

L (ω),

x 7→
(
(x0x

p0
1 , x1, . . . , x1xk, xk+1, . . . , xn), [x0 : 1 : . . . : xk]ω

)
;

...

k

{
Cn+1 ϕk−→ Uk = {uk 6= 0} ⊂ Ĉn+1

L (ω),

x 7→
(
(x0x

p0
k , x1xk, . . . , xk, xk+1, . . . , xn), [x0 : x1 : . . . : 1]ω

)
.
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The exceptional divisor is isomorphic to Pkω ×Cn−k. The singular locus

of Ĉn+1
L (ω) is the subset [(0, . . . , 0)]×Cn−k. These quotient singular points

are all cyclic and the space

U0 = X(p0;−1, 1, (k). . ., 1)× Cn−k

is always written in a normalized form.

Remark (I.3.20). If n = k the previous singular locus is reduced to a point.

This is the case, for instance, of the blowing-up at the origin in dimension 3

(i.e. n = k = 2).





II
Cartier and Weil Divisors on V-Manifolds:

Pull-Back of a Q-Divisor

This chapter is based on [AMO11a] and its aim is to show that when X

is a V -manifold there is an isomorphism of Q-vector spaces between Cartier

and Weil divisors, see Theorem (II.2.6) below. It is explained in (II.2.14)

how to write explicitly a Q-Weil divisor as a Q-Cartier divisor. Also, the

case of the exceptional divisor of a weighted blow-up in dimension 2 (which

is in general just a Weil divisor) is treated in Example (II.2.15).

Following the theory of holomorphic line bundles, the pull-back of a Q-

divisor can be defined using this approach, see Section II.4. This provides all

the necessary ingredients to develop a rational intersection theory on variety

with quotient singularities. Although Chapter III is devoted to the details,

an illustrative example is shown at the end, see (II.4.5).

Section § II.1

Divisors on Complex Analytic Varieties

Let X be an irreducible complex analytic variety. As usual, consider OX
the structure sheaf of X and KX the sheaf of total quotient rings of OX . De-

note by K∗X the (multiplicative) sheaf of invertible elements in KX . Similarly

O∗X is the sheaf of invertible elements in OX .

Remark (II.1.1). By a complex analytic variety we mean a reduced complex

space. A subvariety V of X is a reduced closed complex subspace of X, or

equivalently, an analytic set in X, cf. [GR84]. An irreducible subvariety

V corresponds to a prime ideal in the ring of sections of any local complex

model space meeting V .
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Definition (II.1.2). A Cartier divisor on X is a global section of the sheaf

K∗X/O∗X , that is, an element in Γ(X,K∗X/O∗X) = H0(X,K∗X/O∗X). Any

Cartier divisor can be represented by giving an open covering {Ui}i∈I of X

and, for all i ∈ I, an element fi ∈ Γ(Ui,K∗X) such that

fi
fj
∈ Γ(Ui ∩ Uj ,O∗X), ∀i, j ∈ I.

Two systems {(Ui, fi)}i∈I , {(Vj , gj)}j∈J represent the same Cartier di-

visor if and only if on Ui ∩ Vj , fi and gj differ by a multiplicative factor

in OX(Ui ∩ Vj)∗. The abelian group of Cartier divisors on X is denoted

by CaDiv(X). If D := {(Ui, fi)}i∈I and E := {(Vj , gj)}j∈J , then

D + E = {(Ui ∩ Vj , figj)}i∈I,j∈J .

The functions fi above are called local equations of the divisor on Ui. A

Cartier divisor on X is effective if it can be represented by {(Ui, fi)}i with

all local equations fi ∈ Γ(Ui,OX).

Any global section f ∈ Γ(X,K∗X) determines a principal Cartier divisor

(f)X := {(X, f)} by taking all local equations equal to f . That is, a Cartier

divisor is principal if it is in the image of the natural map

Γ(X,K∗X) −→ Γ(X,K∗X/O∗X).

Two Cartier divisors D and E are linearly equivalent, denoted by D ∼ E,

if they differ by a principal divisor. The Picard group Pic(X) denotes the

group of linear equivalence classes of Cartier divisors.

The support of a Cartier divisor D, denoted by Supp(D) or |D|, is the

subset of X consisting of all points x such that a local equation for D is not

in O∗X,x. The support of D is a closed subset of X.

Definition (II.1.3). A Weil divisor on X is a locally finite linear combina-

tion with integral coefficients of irreducible subvarieties of codimension one.

The abelian group of Weil divisors on X is denoted by WeDiv(X). If all

coefficients appearing in the sum are non-negative, the Weil divisor is called

effective.

Remark (II.1.4). In the algebraic category meromorphic functions are as-

sumed to be regular functions and hence the locally finite sum of Defini-

tion (II.1.3) is automatically finite. Therefore WeDiv(X) is the free abelian

group on the codimension one irreducible algebraic subvarieties of X. Sim-

ilar considerations hold if X is a compact analytic variety.
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Given a Cartier divisor there is a Weil divisor associated with it. To

see this, the notion of order of a divisor along an irreducible subvariety of

codimension one is needed.

(II.1.5). (Order function). Let V ⊂ X be an irreducible subvariety of codi-

mension one. It corresponds to a prime ideal in the ring of sections of any

local complex model space meeting V . The local ring of X along V , denoted

by OX,V , is the localization of such ring of sections at the corresponding

prime ideal; it is a one-dimensional local domain.

For a given f ∈ OX,V define ordV (f) to be

ordV (f) := lengthOX,V

(OX,V
〈f〉

)
,

where lengthOX,V denotes the length as an OX,V -module. This determines

a well-defined group homomorphism

ordV : Γ(X,K∗X) −→ Z

that satisfies, for a given f ∈ Γ(X,K∗X), the following local finiteness prop-

erty: (Ux is assumed to be an open neighborhood of x)

∀x ∈ X, ∃Ux ⊂ X | #{ordV (f) 6= 0 | V ∩ Ux 6= ∅} < +∞.

The previous length, X being a complex analytic variety of dimension

n ≥ 2, can be computed as follows. Choose x ∈ V such that x is smooth

in X and (V, x) defines an irreducible germ. Thus, this germ is the zero set

of an irreducible g ∈ OX,x. Then

ordV (f) = ordV,x(f),

where ordV,x(f) is the classical order of a meromorphic function at a smooth

point with respect to an irreducible subvariety of codimension one; it is

known to be given by the equality

f = gord · h ∈ OX,x, h - g.

The same applies if X is 1-dimensional and smooth.

Remark (II.1.6). The order ordV,x(f) does not depend on the defining

equation g, as long as we choose g irreducible. In fact, two irreducible g, g′ ∈
OX,x with V (g) = V (g′) only differ by a unit in OX,x. Moreover, ordV,x(f)

does not depend on x, since the set of regular points Vred is connected if V

is irreducible.
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Now if D is a Cartier divisor on X, one writes ordV (D) = ordV (fi) where

fi is a local equation of D on any open set Ui with Ui ∩ V 6= ∅. This is well

defined since fi is uniquely determined up to multiplication by units and

the order function is a homomorphism. Define the associated Weil divisor

of a Cartier divisor D by setting

TX : CaDiv(X) −→ WeDiv(X)

D 7→
∑

V⊂X
ordV (D) · [V ],

where the sum is taken over all codimension one irreducible subvarieties V

of X. The previous sum is locally finite, i.e. for any x ∈ X there exists an

open neighborhood U such that the set

{ordV (D) 6= 0 | V ∩ U 6= ∅}

is finite. By the additivity of the order function, the mapping TX is a

homomorphism of abelian groups.

A Weil divisor is principal if it is the image of a principal Cartier divisor

under TX ; they form a subgroup of WeDiv(X). If Cl(X) denotes the quotient

group of their equivalence classes, then TX induces a morphism

Pic(X) −→ Cl(X).

These two homomorphisms (TX and the induced one) are in general

neither injective nor surjective. In this sense one has the following result.

Theorem (II.1.7). (cf. [GD67, 21.6]). If X is normal (resp. locally facto-

rial) then the previous maps CaDiv(X)→WeDiv(X) and Pic(X)→ Cl(X)

are injective (resp. bijective). The image of the first map is the subgroup of

locally principal1 Weil divisors. �

Remark (II.1.8). Locally factorial essentially means that every local ring

OX,x is a unique factorization domain. In particular, every smooth analytic

variety is locally factorial. In such a case, Cartier and Weil divisors are

identified and denoted by

Div(X) := CaDiv(X) = WeDiv(X).

Their equivalence classes coincide under this identification and we often

write Pic(X) = Cl(X).

1A Weil divisor D on X is said to be locally principal if X can be covered by open

sets U such that D|U is principal for each U .
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Example (II.1.9). Let X be the surface in C3 defined by the equation

z2 = xy. The line V = {x = z = 0} defines a Weil divisor which is not

a Cartier divisor. In this case Pic(X) = 0 and Cl(X) = Z/(2). Note that

X is normal but not locally factorial. However, the associated Weil divisor

of {(X,x)} is

TX
(
{(X,x)}

)
=

∑

Z⊂X, irred
codim(Z)=1

ordZ(x) · [Z] = 2[V ].

Thus [V ] is principal as an element in WeDiv(X)⊗Z Q and corresponds to

the Q-Cartier divisor 1
2{(X,x)}.

Using the notation of Chapter I, this fact can be interpreted as follows.

First note that identifying our surface X with X(2; 1, 1) under

[(x, y)] 7−→ (x2, y2, xy),

the previous Weil divisor corresponds to D = {x = 0}. Although f = x

defines a zero set on X(2; 1, 1), it does not induce a function on the abelian

quotient space. However, x2 : X(2; 1, 1)→ C is a well-defined function and

gives rise to the same zero set as f . Hence as Q-Cartier divisors

D =
1

2
{(X(2; 1, 1), x2)}.

Section § II.2

Divisors on V-Manifolds: Q-Divisor

Example (II.1.9) above illustrates the general behavior of Cartier and

Weil divisors on V -manifolds, namely Weil divisors are all locally principal

over Q. To prove it we need some preliminaries.

(II.2.1). If X is smooth, contractible, and Stein, then H i(X,O∗X) = 0,

∀i ≥ 1. Indeed, there is a short exact sequence of sheaves of abelian groups

0 −→ ZX −→ (OX ,+)
exp−→ (O∗X , · ) −→ 0

that gives rise to the following long exact sequence in cohomology

0 −→ H0(X,ZX) −→ H0(X,OX) −→ H0(X,O∗X) −→
H1(X,ZX) −→ H1(X,OX) −→ H1(X,O∗X) −→
H2(X,ZX) −→ H2(X,OX) −→ H2(X,O∗X) −→ · · ·

Let i ≥ 1. Since X is contractible, H i(X,ZX) = 0. The cohomology

H i(X,OX) vanishes too because X is Stein and OX is a coherent sheaf.

Hence H i(X,O∗X) = 0 as claimed and the previous long exact sequence is

nothing but 0 −→ ZX(X) −→ OX(X) −→ O∗X(X) −→ 0.
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(II.2.2). The short exact sequence of sheaves of multiplicative groups

0 −→ O∗X −→ K∗X −→ K∗X/O∗X −→ 0

gives the long exact sequence in cohomology

0 −→ H0(X,O∗X) −→ H0(X,K∗X) −→ H0(X,K∗X/O∗X) −→
H1(X,O∗X) −→ H1(X,K∗X) −→ H1(X,K∗X/O∗X) −→
H2(X,O∗X) −→ H2(X,K∗X) −→ H2(X,K∗X/O∗X) −→ · · ·

If, as above, H i(X,O∗X) = 0, ∀i ≥ 1, then the previous long exact

sequence gives rise to the short exact sequence

0 −→ O∗X(X) −→ K∗X(X) −→ CaDiv(X) −→ 0

together with an isomorphism H i(X,K∗X) → H i(X,K∗X/O∗X), ∀i ≥ 1. In

particular, every Cartier divisor on X is principal, that is, it is of the form

{(X, f)} where f ∈ Γ(X,K∗X).

Remark (II.2.3). As an easy consequence of (II.2.1) and (II.2.2), one has

that every effective Weil divisor on an open ball B ⊂ Cn is given by the zero

set of a holomorphic function f : B → C. The Weil divisor is irreducible on

B if and only if f defines a prime ideal in OCn(B). In the algebraic category

the corresponding holomorphic function is a polynomial.

Lemma (II.2.4). Let B ⊂ Cn be an open ball and let G be a finite group

acting on B. Then one has Cl(B/G)⊗Z Q = 0.

Proof. Let V ⊂ B/G =: U be an irreducible subvariety of codimension

one. We shall prove that there exists k ≥ 1 such that k[V ] ∈ WeDiv(U) is

principal.

Consider the natural projection π : B → U . Then W := π−1(V ) gives

rise to an effective Weil divisor on the open ball B. By Remark (II.2.3),

there exists f : B → C a holomorphic function such that W = {f = 0} ⊂ B.

Thus,

V = π(W ) = {[x] | x ∈ B, f(x) = 0} = {f = 0} ⊂ U.
Moreover, by construction the holomorphic function f satisfies the fol-

lowing property

(10) ∀P ∈ U,
[
f(P ) = 0 =⇒ f(σ · P ) = 0, ∀σ ∈ G

]
.

Note that f does not necessarily defines an analytic function on U .

This reflects the fact that, although V is given by just one equation, [V ] ∈
WeDiv(U) is not principal, see Example (II.1.9). Now the main idea is to

change f by another holomorphic function F such that V = {F = 0} but

now with F ∈ Γ(U,OU ).



§ II.2. Divisors on V-Manifolds: Q-Divisor 35

Let us consider F =
∏
σ∈G f

σ where fσ(x) = f(σ · x); clearly it verifies

the previous conditions. Then {(U,F )} is a principal Cartier divisor and its

associated Weil divisor is

TU
(
{(U,F )}

)
=

∑

Z⊂U, irred
codim(Z)=1

ordZ(F ) · [Z] = ordV (F ) · [V ].

Note that ordZ(F ) 6= 0 implies Z = V , since V is irreducible. �

Remark (II.2.5). The proof of this result is based on an idea extracted

from [Ful98, Ex. 1.7.6].

Theorem (II.2.6). Let X be a V -manifold. The notion of Cartier and

Weil divisor coincide over Q. More precisely, the linear map

TX ⊗ 1 : CaDiv(X)⊗Z Q −→WeDiv(X)⊗Z Q

is an isomorphism of Q-vector spaces. In particular, for a given Weil divisor

D on X, there always exists k ∈ Z such that kD ∈ CaDiv(X).

Proof. By Proposition (I.1.19), the variety X is normal and then The-

orem (II.1.7) applies. Therefore the linear map TX ⊗ 1 is injective and its

image is the Q-vector space generated by the locally principal Weil divisors

on X.

Let V ⊂ X be an irreducible subvariety of codimension one. Consider

{Ui}i an open covering of X such that Ui is analytically isomorphic to Bi/Gi
where Bi ⊂ Cn is an open ball and Gi is a finite subgroup of GL(n,C). By

Lemma (II.2.4), Cl(Ui)⊗Q = 0 for all i.

Thus [V |Ui ] is principal as an element in WeDiv(Ui)⊗Z Q which implies

that V is locally principal over Q; hence it belongs to the image of TX⊗1. �

Definition (II.2.7). Let X be a V -manifold. The vector space of Q-Cartier

divisors is identified under TX with the vector space of Q-Weil divisors. A

Q-divisor on X is an element in CaDiv(X) ⊗Z Q = WeDiv(X) ⊗Z Q. The

set of all Q-divisors on X is denoted by Q-Div(X).

II.2–1. Writing a Weil divisor as a Q-Cartier divisor

Following the proofs of Lemma (II.2.4) and Theorem (II.2.6), every Weil

divisor on X can locally be written as Q-Cartier divisor like

[V |U ] =
1

ordV (F )
{(U,F )}

where F =
∏
σ∈G f

σ and V ∩ U = {f = 0} with f : B → C being holomor-

phic on an open ball and satisfying (10).
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The rest of this section is devoted to explicitly calculating ordV (F ).

First, in Proposition (II.2.8), it is shown that F is essentially a power of f ,

if the latter is chosen properly. Then, ordV (F ) is computed in Proposi-

tion (II.2.12).

Proposition (II.2.8). Let f : B → C be a non-zero holomorphic function

on an open ball B ⊂ Cn such that the germ fx ∈ OB,x is reduced for all

x ∈ B. Let G be a finite subgroup of GL(n,C) acting on B. As above,

consider

F =
∏

σ∈G
fσ

where fσ(x) = f(σ · x) for σ ∈ G.

The following conditions are equivalent:

(1) ∀P ∈ B,
[
f(P ) = 0 =⇒ f(σ · P ) = 0, ∀σ ∈ G

]
.

(2) ∀σ ∈ G, ∃hσ ∈ Γ(B,O∗B) such that fσ = hσf .

(3) ∃h ∈ Γ(B,O∗B) such that F = hf |G|.

(4) ∃k ≥ 1, ∃h ∈ Γ(B,O∗B) such that hfk ∈ Γ(B/G,OB/G).

Proof. For (1) ⇒ (2), first note that fσ ∈ IV (f). Now fix x ∈ B.

Since fx is reduced, there exists a holomorphic function h on a small enough

open neighborhood of x such that as germs (fσ)x = hxfx. The order of the

converging power series (fσ)x and fx are equal because the action is linear.

Thus hx is a unit in OB,x. In particular, fσ

f is holomorphic and does not

vanish at x ∈ B.

For (2)⇒ (3), consider h =
∏
σ∈G hσ. Then one has

F =
∏

σ∈G
fσ =

∏

σ∈G
(hσf) =

( ∏

σ∈G
hσ

)
· f |G| = hf |G|.

For (3) ⇒ (4), since F : B/G → C is analytic, take k = |G|. Finally,

note that ∀P ∈ B,

f(P ) = 0⇐⇒ (hfk)(P ) = (hfk)(σ · P ) = 0⇐⇒ f(σ · P ) = 0.

Hence (4)⇒ (1) follows and the proof is complete. �

The following example shows that the reduceness condition in the state-

ment of the previous result is necessary.

Example (II.2.9). Let f = (x2 + y)(x2 − y)3 ∈ C[x, y] and consider the

cyclic quotient space M = X(2; 1, 1). Then {f = 0} ⊂M defines a zero set,

i.e. condition (1) holds, but there are no k ≥ 1 and h ∈ Γ(B,O∗B) such that

hfk is a well-defined function over M .
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Remark (II.2.10). If the holomorphic function f : B → C in Proposi-

tion (II.2.8) is given by a polynomial, then the condition [fx ∈ OB,x reduced

∀x ∈ B] holds if and only if f is reduced as a polynomial. In such a case,

the holomorphic nowhere-vanishing function hσ (and hence h) above is a

non-zero constant. Therefore f |G| itself (without multiplying by a unit) is a

well-defined analytic function on B/G, cf. (IV.4.1).

The situation of Remark (II.2.10) above is specific for polynomials and,

in general, it does not apply in the holomorphic case, as the following ex-

ample indicates.

Example (II.2.11). Let f : C2 → C be the holomorphic function given

by f = exxy and consider the quotient space M = X(2; 1, 1). Then f

defines a zero set on M and it verifies the four equivalent conditions of

Proposition (II.2.8). However, there is no k ≥ 1 such that fk induces a

function over M . As it is said, this happens because f is not a polynomial.

Proposition (II.2.12). Let B ⊂ Cn be an open ball and G a finite subgroup

of GL(n,C) acting on B. Let V ⊂ B/G =: U be an irreducible subvariety

of codimension one and consider

F =
∏

σ∈G
fσ

where f : B → C is a holomorphic function defining V .

If G is small and f is chosen so that fx ∈ OB,x is reduced ∀x ∈ B, then

ordV (F : U → C) = |G|.

Proof. Choose [P ] ∈ V such that [P ] is smooth in U and (V, [P ])

defines an irreducible germ, then ordV (F ) = ordV,[P ](F ), see (II.1.5).

By Theorem (I.1.4), since G is small and [P ] ∈ U is smooth, using the

covering π : B → U , one finds an isomorphism of germs

(U, [P ]) ∼= (B/GP , [P ]) = (B,P )

induced by the identity map2. The germ (V, [P ]) is converted under this

isomorphism into (W,P ) where W is the zero set of fP ∈ OB,P .

On the other hand, by Proposition (II.2.8), there exists h ∈ Γ(B,O∗B)

such that F = hf |G|. Putting all together the wanted order is

ordV,[P ](F : U → C) = ordV (fP ),P (hf |G| : B → C) = |G|

as claimed. �

2See also Lemma (I.1.16) where the abelian case in treated in detail.
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Remark (II.2.13). Recall that π : B → B/G =: U denotes the projection.

Without any condition on G and f (i.e. neither G small nor fx ∈ OB,x
reduced ∀x ∈ B are required), the order can still be computed as follows

ordV (F ) =
∑

i

deg(Wi/V ) · ordWi(f),

where the Wi’s are the irreducible components of π−1(V ) (assumed to be

a finite number) and deg(Wi/V ) is the degree of the restriction mapping

π|Wi : Wi → V .

Note that under the assumption of Proposition (II.2.12), ordWi(f) = 1

and
∑

i deg(Wi/V ) = |G|.

(II.2.14). Here we summarize how to write a Weil divisor as an element in

CaDiv(X)⊗Z Q where X is an algebraic V -manifold.

(1) Write D =
∑

i∈I ai[Vi] ∈ WeDiv(X), where ai ∈ Z and Vi ⊂ X

irreducible. Also choose {Uj}j∈J an open covering of X such that

Uj = Bj/Gj where Bj ⊂ Cn is an open ball and Gj is a small finite

subgroup of GL(n,C).

(2) For each (i, j) ∈ I × J choose a polynomial fi,j : Uj → C satisfying

the condition [(fi,j)x ∈ OBj ,x reduced ∀x ∈ Bj ] and such that

Vi ∩ Uj = {fi,j = 0}. Then,

[Vi|Uj ] =
1

|Gj |
{(Uj , f |Gj |i,j )}.

(3) Identifying {(Uj , f |Gj |i,j )} with its image under the natural inclusion

CaDiv(Uj) ↪→ CaDiv(X), one finally writes D as a sum of locally

principal Cartier divisors over Q,

D =
∑

(i,j)∈I×J

ai
|Gj |
{(Uj , f |Gj |i,j )}.

We finish this section with an example where the exceptional divisor

of a weighted blow-up (which is in general just a Weil divisor) is explicitly

written as a Q-Cartier divisor.

Example (II.2.15). Let X be a surface with abelian quotient singularities.

Let π : X̂ → X be the weighted blow-up at a point of type (d; a, b) with

respect to ω = (p, q). In general, the exceptional divisor E := π−1(0) ∼=
P1
ω(d; a, b) is a Weil divisor on X̂ which does not correspond to a Cartier

divisor. Let us write E as an element in CaDiv(X̂)⊗Z Q.
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As in I.3–1(iii), assume π = π(d;a,b),ω : ̂X(d; a, b)ω → X(d; a, b). Assume

also that gcd(p, q) = 1 and (d; a, b) is normalized, see Remark (I.3.14). Using

the notation in that remark, the space X̂ is covered by Û1 ∪ Û2 and the first

chart is given by

(11)
Q1 := X

(
pd
e ; 1, −q+βpbe

)
−→ Û1,

[
(xe, y)

]
7→

[
((xp, xqy), [1 : y]ω)

]
(d;a,b)

,

where e = gcd(d, pb− qa). See (8) for details.

In the first chart, E is the Weil divisor {x = 0} ⊂ Q1. Note that

the type representing the space Q1 is in a normalized form and hence the

corresponding subgroup of GL(2,C) is small.

Following the discussion (II.2.14), the divisor {x = 0} ⊂ Q1 is written

as an element in CaDiv(Q1)⊗Z Q like e
pd{(Q1, x

pd
e )}, which is mapped to

e

pd
{(Û1, x

d)} ∈ CaDiv(Û1)⊗Z Q

under the isomorphism (11).

Analogously, E in the second chart is e
qd{(Û2, y

d)}. Finally, one writes

the exceptional divisor of π as claimed,

E =
e

dp

{
(Û1, x

d), (Û2, 1)
}

+
e

dq

{
(Û1, 1), (Û2, y

d)
}

=
e

dpq

{
(Û1, x

dq), (Û2, y
dp)
}
.

Example (II.2.16). Now consider the ambient space to be the quotient

weighted projective line P1
ω(d; a, b) = V̂1 ∪ V̂2 which is isomorphic to P1

under the map

P1
ω(d; a, b) −→ P1

[x : y]ω 7→ [xdq/e : ydp/e],

where e = gcd(dp, dq, pb− qa). Here we are not assuming (d; a, b) is normal-

ized or gcd(p, q) = 1, cf. I.3–1(iii).

Then, for instance, the Weil divisor e·[{v = 0}] on P1
ω(d; a, b) corresponds

to the Cartier divisor
{(
V̂1,

vdp

udq

)
,
(
V̂2, 1

)}
.

Note that in this example Cartier and Weil divisors coincide over Z,

since the quotient weighted projective line P1
ω(d; a, b) is smooth.
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Section § II.3

Holomorphic Line Bundles and their Sections

Let F : Y → X be a morphism between two irreducible complex analytic

varieties. The pull-back of a Cartier divisor D = {(Ui, fi)}i∈I on X can be

defined by pulling back the local equations of D as

F ∗(D) =
{

(F−1(Ui), fi ◦ F |F−1(Ui)

}
i∈I

and it is a Cartier divisor on Y provided F (Y ) * Supp(D). Moreover, F ∗

respects sums of divisors and preserves linear equivalence.

The main purpose of this section is to define F ∗(D) without any restric-

tion on the support of D, so that F ∗ gives rise to a group homomorphism

between Pic(X) and Pic(Y ), cf. (II.4.1) and Definition (II.4.2). To do so,

the relationship between Cartier divisors and holomorphic line bundles is

needed, see Theorem (II.3.12) below. Recall that the pull-back of a divisor

is the main object to develop an intersection theory.

II.3–1. Line bundle associated with a Cartier divisor

Definition (II.3.1). A surjective holomorphic map π : E → X is called

complex (or holomorphic) line bundle on X if it is a complex vector bundle

of rank one, that is, there exists an open covering {Ui}i∈I of X satisfying:

• For every i ∈ I there is a biholomorphic map

Φi : π−1(Ui) −→ Ui × C

such that (pr1 ◦Φi)(e) = π(e) for e ∈ π−1(Ui), where pr1 is the

projection Ui × C→ Ui and,

• the restriction Φi| : π−1(x)→ {x} ×C is an isomorphism of vector

spaces.

The pair (Ui,Φi) is called a local trivialization. For two local trivializa-

tions (Ui,Φi) and (Uj ,Φj) the map

Φi ◦ Φ−1
j : (Ui ∩ Uj)× C −→ (Ui ∩ Uj)× C

induces a holomorphic function (called transition function)

φij : Ui ∩ Uj −→ C∗

such that (Φi ◦Φ−1
j )(x, t) = (x, φij(x)t) for x ∈ Ui∩Uj and t ∈ C. The tran-

sition functions satisfy the following compatibility conditions. Let i, j, k ∈ I
and x ∈ Ui ∩ Uj ∩ Uk 6= ∅, then one has

(12) φij(x)φjk(x) = φik(x)
[

=⇒ φii(x) = 1, φji(x)−1 = φij(x)
]
.
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(II.3.2). Conversely, suppose now that we are given an open covering

{Ui}i∈I of X and a family of holomorphic functions {φi,j : Ui∩Uj → C∗}i,j∈I
verifying the previous compatibility conditions (12). Then one can construct

a line bundle having {φij}i,j as transition functions. An outline of the con-

struction is as follows. Consider E =
∐
i∈I(Ui×C) and define an equivalence

relation by setting

(x, t)i ∼ (y, s)j ⇐⇒ x = y and t = φij(x)s.

The fact that this is a well-defined equivalence relation is a consequence

of the compatibility conditions (12). One shows that the quotient Eφ =

E/∼ under this relation is a complex analytic variety and the projection

π : Eφ → X, [(x, t)i] 7→ x is a line bundle with transition functions {φij}i,j .
In fact, the map

π−1(Ui) −→ Ui × C
[(x, t)j ] 7→ (x, φij(x)t),

defines a local trivialization on Ui; its inverse is given by the obvious map

(x, t) 7→ [(x, t)i].

Remark (II.3.3). Both constructions are inverse to each other. Let π : E →
X be a line bundle with local trivializations {(Ui,Φi)}i∈I and transition

functions {φij}i,j∈I . Then the map Eφ → E, [(x, t)i] 7→ Φ−1
i (x, t) is an

analytic isomorphism of line bundles.

Definition (II.3.4). Two families of holomorphic functions associated with

an open covering {Ui}i∈I of X,

{φij : Ui ∩ Uj → C∗}i,j∈I , {ψij : Ui ∩ Uj → C∗}i,j∈I ,
are said to satisfied the coboundary condition if there exists another family

of holomorphic functions {αi : Ui → C∗}i such that ψij = αi
αj
φij on Ui ∩ Uj ,

∀i, j ∈ I with Ui ∩ Uj 6= ∅.

(II.3.5). In the bijection (π : E → X) ←→ ({φij : Ui ∩ Uj → C∗}i,j),
the notion of isomorphic line bundles corresponds to the notion of families

satisfying the coboundary condition.

More precisely, let F : E → E′ be an isomorphism of line bundles.

Consider {(Ui,Φi)}i∈I and {φij}i,j (resp. {(Ui,Ψi)}i∈I and {ψij}i,j) a local

trivializing cover and the transition functions of E (resp. E′). Then one has

that

ψij =
αi
αj
· φij , on Ui ∩ Uj 6= ∅, ∀i, j ∈ I,

where the holomorphic nowhere-vanishing functions αi : Ui → C∗ are in-

duced by (Ψi ◦ F ◦ Φ−1
i )(x, t) = (x, αi(x)t).
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Conversely, let {φij : Ui ∩ Uj → C∗}i,j and {ψij : Ui ∩ Uj → C∗}i,j be

two families satisfying the coboundary condition, say for {αi : Ui → C∗}i.
Consider Eφ and Eψ the respective line bundles obtained as in (II.3.2). The

map F : Eφ → Eψ given by [(x, t)i] 7→ [(x, αi(x)t)i] is well defined and it

gives an isomorphism of line bundles.

Definition (II.3.6). Let D = {(Ui, fi)}i∈I be a Cartier divisor on X. The

line bundle associated with D is the bundle with transition functions

φij =
fi
fj

: Ui ∩ Uj −→ C∗, ∀i, j ∈ I.

It is denoted by OX(D) and is well defined up to isomorphisms of line

bundles by (II.3.5).

The set of line bundles (up to isomorphism) with the tensor product

forms an abelian group. The trivial line bundle3 OX is the identity element

and the inverse element is given by the dual line bundle E∗. This operation

has a good behavior with respect to the sum of Cartier divisors.

Lemma (II.3.7). Let D and E be two Cartier divisors on X and consider

h : X → C a non-zero meromorphic function. The following properties hold:

(1) OX({(X,h)}) ' OX .

(2) OX(D + E) ' OX(D)⊗OX(E).

(3) OX(−D) ' OX(D)∗.

(4) D ∼ E ⇐⇒ OX(D) ' OX(E). �

This shows that the map Pic(X)→ {line bundles}/', defined by [D] 7→
OX(D) is an injective group homomorphism. It is also surjective whenever

a non-zero global meromorphic section exists for a given line bundle, see

below (II.3.9).

II.3–2. Meromorphic sections of a line bundle

Definition (II.3.8). Given a line bundle π : E → X and an open set

U ⊂ X, a holomorphic (resp. meromorphic) map s : U → E is said to be

a holomorphic (resp. meromorphic) section if the composition π ◦ s is the

inclusion U ↪→ X. When U = X the section is called global. The sheaf of

meromorphic sections is a KX -module.

3Note the symbol OX denotes both the structure sheaf of X as a complex analytic

variety, and the trivial line bundle X × C → C. This is justified because the sheaf of

sections of the trivial line bundle is identified with the structure sheaf.
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(II.3.9). Let {φij : Ui ∩ Uj → C∗}i,j∈I be the transition functions of a line

bundle π : E → X. Consider a family of holomorphic maps fi : Ui → C,

i ∈ I, satisfying the compatibility conditions

fj(x)φij(x) = fi(x), x ∈ Ui ∩ Uj 6= ∅.

Then {fi}i∈I defines a global holomorphic section s : X → E, since

each fi gives a section of Ui × C and this pulls back by the trivialization

to a section of π−1(Ui). The compatibility conditions imposed on {fi}i∈I
ensure that these sections of π−1(Ui) agree on Ui ∩ Uj . Conversely, any

global holomorphic section gives rise to a family as above. The functions fi
on Ui are determined by the equation (Φi ◦ s)(x) = (x, fi(x)) for x ∈ Ui.

In the preceding paragraph the word “holomorphic” can be replaced by

the word “meromorphic”. In particular, any non-zero global meromorphic

section s : X → E will give an open covering {Ui}i∈I of X and a family of

non-zero meromorphic functions {fi : Ui → C}i∈I such that the quotient

φij =
fi
fj

: Ui ∩ Uj −→ C∗ (i, j ∈ I)

is holomorphic and never vanishes. Therefore s determines a Cartier divisor

on X, denoted by (s) := {(Ui, fi)}i∈I .
This implies that the map (Pic(X),+) → ({line bundles}/',⊗) above

defined by [D] 7→ OX(D) is a group isomorphism if there exist non-zero

global meromorphic sections for any given line bundle.

Lemma (II.3.10). Let s1, s2 : X → E be two non-zero global meromorphic

sections of a line bundle π : E → X.

(1) There exists h : X → C a non-zero global meromorphic function

such that s2 = hs1 and hence (s2) = (s1) + {(X,h)}.
(2) (s1) = (s2) if and only if h ∈ Γ(O∗X , X). In such a case, the sections

are called equivalent.

(3) The Cartier divisor is effective if and only if the section is holo-

morphic. �

Definition (II.3.11). Let D = {(Ui, fi)}i∈I be a Cartier divisor on X.

The canonical section associated with D is the non-zero global meromorphic

section of OX(D) defined by the collection {fi : Ui → C}i∈I . It is denoted

by sD : X → OX(D).

Consider a family of holomorphic functions {αi : Ui → C∗}i∈I . Then

{(Ui, αifi)}i∈I defines the same Cartier divisor as D above. The associated

line bundles are isomorphic by (II.3.5), and the isomorphism respects the

sections. As a consequence, one has the following result.
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Theorem (II.3.12). Given two pairs (E, s) and (E′, s′) of line bundles with

sections, let us write (E, s) ∼ (E′, s′) if there exists an isomorphism of line

bundles F : E → E′ such that s′ = F ◦ s.
Then there is a natural bijection

CaDiv(X) −→
{(

line bundle,
non-zero global

mero. section

)}/
∼

given by D 7→ [(OX(D), sD)]; its inverse is [(E, s)] 7→ (s). �

Remark (II.3.13). A couple of comments about the theorem:

• Define another equivalence relation by setting (E, s) ∼2 (E′, s′) if

there exists an isomorphism of line bundles F : E → E′ such that

the sections F ◦ s and s′ are equivalent. Then (E, s) ∼ (E′, s′) if

and only if (E, s) ∼2 (E′, s′).

• Since there is an isomorphism between Pic(X) and line bundles

modulo isomorphisms, taking classes modulo being linearly equiv-

alent on the left-hand side corresponds to forgetting the section on

the right-hand side.

Section § II.4

Pull-Back of a Q-Divisor

(II.4.1). (Pull-back of a line bundle). Let F : Y → X be a morphism

between two irreducible complex analytic varieties. Let π : E → X be a

complex line bundle with local trivialization cover {(Ui,Φi)}i∈I and transi-

tion functions {φij}i,j∈I .
Then its pull-back, denoted by F ∗π : F ∗E → Y ,

[
F ∗E := {(y, e) ∈ Y × E | F (y) = π(x)} =: Y ×X E

]

is a complex line bundle with local trivialization {(F−1(Ui),Ψi)}i∈I , where

Ψi : (F ∗π)−1(F−1(Ui)) −→ F−1(Ui)× C,
(y, e) 7→ (y, pr2Φi(e)),

and transition functions

{
φij ◦ F |F−1(Ui∩Uj) : F−1(Ui ∩ Uj)→ C∗

}
i,j
.

The inverse of Ψi is given by (y, t) 7→ (y,Φ−1
i (F (y), t)).
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As for the behavior with respect to the sections, if s : X → E is a non-

zero global meromorphic section of E defined by a collection of meromorphic

functions {fi : Ui → C}i∈I , then its pull-back, denoted by F ∗s : Y → F ∗E,

(F ∗s)(y) := ((s ◦ F )(y), y)

is the global meromorphic section of F ∗E associated with

{
fi ◦ F |F−1(Ui) : F−1(Ui)→ C

}
i∈I .

Moreover, F ∗s is the zero section of F ∗E if and only if

F (Y ) ⊆ Supp(s) := Supp((s)).

The following diagram represents the pull-back of a line bundle with a

global meromorphic section. Note that locally F̃ is F × 1C.

F ∗E

#

F̃
//

F ∗π
��

E

π

��

Y
F

//

F ∗s

66

X

s

ii

Definition (II.4.2). Let F : Y → X be a morphism between irreducible

complex analytic varieties. Let D be a Cartier divisor on X and consider

[D] its equivalence class in Pic(X). Define F ∗[D] to be the equivalence class

in Pic(Y ) of the divisor associated with any non-zero global meromorphic

section of the bundle F ∗OX(D), i.e. F ∗[D] = [(t)] where t is a non-zero

meromorphic section as above.

Remark (II.4.3). The pull-back is well defined and it has the following

properties:

(1) In our setting, there always exist non-zero global meromorphic sec-

tions of a line bundle of the form F ∗OX(D).

(2) The pull-back F ∗[D] ∈ Pic(Y ) only depends on the equivalence

class of D. Assume D ∼ D′ and consider t and t′ two non-zero

global meromorphic sections of F ∗OX(D) and F ∗OX(D′), respec-

tively. Then, using Lemma (II.3.10)(1) and the functoriality of the

pull-back, one sees that [(t)] = [(t′)] ∈ Pic(Y ).

(3) If F (Y ) * Supp(D), then F ∗[D] coincides with the one given at

the beginning of this section. This follows from (II.4.1) and the

fact that t = F ∗sD is a non-zero global meromorphic section of

F ∗OX(D). Hence Definition (II.4.2) gives rise to a group homo-

morphism F ∗ : Pic(X)→ Pic(Y ) as claimed.
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(4) The pull-back is a contravariant functor, that is, if Z is another

irreducible complex analytic variety and G : Z → Y is a morphism,

then (G ◦ F )∗ = F ∗ ◦G∗.

Although F : Y → X induces a group homomorphism between the

Picard groups of X and Y , in practice it is convenient to treat the following

two cases separately: (Here D is a Cartier divisor on X)

• If F (Y ) * Supp(D), then F ∗(D) ∈ CaDiv(Y ).

• Otherwise F ∗(D) is only defined up to linear equivalence.

This approach is essentially the one presented by Fulton in [Ful98, Ch. 2]

where the notion of pseudo-divisor is introduced. There, if F (Y ) ⊆ Supp(D),

then the pull-back F ∗[D] is defined as the equivalence class in Pic(Y ) of any

Cartier divisor E on Y whose line bundle OY (E) is isomorphic to F ∗OX(D).

Definition (II.4.4). Let F : Y → X be a morphism between two irre-

ducible V -manifolds and consider D ∈ Q-Div(X). Then D can be written

as a finite sum
∑r

i=1 αiDi where Di ∈ CaDiv(X) and αi ∈ Q. The pull-back

of D is defined as

F ∗(D) :=

r∑

i=1

αi · F ∗(Di),

where F ∗(Di) is the pull-back of a Cartier divisor as in (II.4.2).

Hence F ∗(D) is an element in CaDiv(Y ) ⊗Z Q if F (Y ) * |Di|, for all

i = 1, . . . , r, and it is only defined up to Q-linear equivalence if F (Y ) ⊆ |Di0 |
for some i0 ∈ {1, . . . , r}. In any case,

[F ∗(D)] ∈ Pic(Y )⊗Z Q.

Now we have all the necessary ingredients to develop a rational intersec-

tion theory on varieties with quotient singularities. Chapter III is devoted

to working out all the details, but first the following illustrative example

will be given.

Example (II.4.5). Let X = X(2; 1, 1) and consider the Weil divisors D1 =

{x = 0} and D2 = {y = 0}. Let us compute the Weil divisor associated

with j∗D1
D2, where jD1 : D1 ↪→ X is the inclusion. Following (II.2.14), the

divisor D2 can be written as 1
2{(X, y2)}. By definition, since D1 * D2, the

pull-back is

j∗D1
D2 =

1

2

{
(D1, y

2|D1)
}
.
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Thus its associated Weil divisor is

TD1(j∗D1
D2) =

1

2

∑

P∈D1

ordP (y2|D1) · [P ]

=
1

2
ord[(0,0)](y

2|D1) · [(0, 0)] =
1

2
· [(0, 0)].

Note that there is an isomorphism D1 = X(2; 1) ' C, [y] 7→ y2, and the

function y2 : D1 → C is converted into the identity map C → C under this

isomorphism. Hence ord[(0,0)](y
2|D1) = 1. It is natural to define the (global

and local) intersection multiplicity as

D1 ·D2 = (D1 ·D2)[(0,0)] =
1

2
.





III
Intersection Theory on Surfaces with Quotient

Singularities

Previously in Chapter I we saw how useful weighted blow-ups can be to

compute embedded Q-resolutions. In this chapter, to study this special kind

of resolutions, we develop an intersection theory on varieties with quotient

singularities.

Roughly speaking, given X a complex analytic variety, the intersection

product D ·E is well understood whenever D is a compact Weil divisor on X

and E is a Cartier divisor on X. Over varieties with quotient singularities

the notion of Cartier and Weil divisor coincide after tensoring with Q, see

Theorem (II.1.7), and hence a rational intersection theory can be defined on

this kind of varieties.

This theory was first introduced by Mumford on normal surfaces, see

[Mum61]. We give an alternative equivalent definition, without involving

an embedded resolution of the ambient space, that allows us to compute the

self-intersection numbers of the exceptional divisors of weighted blow-ups in

dimension two. Also Bézout’s theorem for quotients of weighted projective

planes is studied.

See [AMO11b] for further applications including the computation of

abstract resolutions of surfaces via Jung method. Also, see [AMO11c] for

an overview on this chapter and [Ort10] for a more direct approach.

Section § III.1

Intersection Numbers: Generalities

Base on Example (II.4.5) the intersection number of two Q-divisors is

defined in terms of the degree map as follows.
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(III.1.1). (Degree of a Q-divisor). Let C be an irreducible analytic curve.

Given a Weil divisor on C with finite support, D =
∑r

i=1 ni · [Pi], its degree

is defined as

deg(D) =
r∑

i=1

ni ∈ Z.

It is a group homomorphism. Moreover, if C is compact, the degree of

a principal divisor is zero and thus passes to the quotient yielding the

map deg : Cl(C)→ Z, cf. [Ful98, Prop. 1.4].

The degree of a Cartier divisor is the degree of its associated Weil divisor,

that is, by definition

deg(D) := deg(TCD).

Finally, extending to rational coefficients, one obtains a group homomor-

phism

(13) deg :
{
D ∈ Q-Div(C) with finite support

}
−→ Q

that passes to the quotient Pic(C)⊗Z Q when the curve is compact.

Definition (III.1.2). Let X be a V -manifold of dimension 2 and consider

D1, D2 ∈ Q-Div(X). If D1 is irreducible, then the intersection number,

denoted by D1 ·D2, is defined as

D1 ·D2 := deg
(
j∗D1

D2

)
∈ Q,

where jD1 : |D1| ↪→ X denotes the inclusion and deg is the map in (13).

The expression above extends linearly if D1 is a finite sum of irreducible

Q-divisors.

Following (III.1.1) and Definition (II.4.4), this number is only well de-

fined if either |D1| * |D2| and |D1| ∩ |D2| is finite, or the divisor D1 has a

compact support.

Let us discuss these two cases separately. To simplify assume D1 is an

irreducible Q-divisor.

• If D1 has compact support, then extending the order function to

rational coefficients ordP : CaDiv(|D1|) ⊗Z Q → Q, one writes the

intersection number D1 ·D2 as

deg(E) = deg

( ∑

P∈D1

ordP (E) · [P ]

)
=
∑

P∈D1

ordP (E),

where E is any Q-Cartier divisor on |D1| representing the rational

class [j∗D1
D2] ∈ Pic(|D1|)⊗Z Q.
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• If |D1| * |D2|, then j∗D1
D2 ∈ CaDiv(|D1|)⊗Z Q and its support is

the set |D1| ∩ |D2|. In this situation the order at P its-self

(D1 ·D2)P := ordP
(
j∗D1

D2

)
∈ Q

is well defined and it is called the local intersection number at P .

In addition, if |D1| ∩ |D2| is finite, then by definition

D1 ·D2 =
∑

P∈|D1|∩|D2|
(D1 ·D2)P .

If D1 is not irreducible, then the local intersection number (D1 ·D2)P is

extended by linearity so that the previous formula still holds.

In the following result the main usual properties of intersection numbers

are collected. Its proofs is omitted since it is well known for the classical

case (i.e. without tensoring with Q), cf. [Ful98], and our generalization is

based on extending the classical definition to rational coefficients.

Proposition (III.1.3). Let X be a V -manifold of dimension 2 and con-

sider D1, D2, D3 ∈ Q-Div(X). Then the local and the global intersection

numbers, provided the indicated operations make sense according to Defini-

tion (III.1.2), satisfy the following properties: (α ∈ Q, P ∈ X)

(1) Bilinear:

Global D1 · (D2 +D3) = D1 ·D2 +D1 ·D3

(D1 +D2) ·D3 = D1 ·D3 +D2 ·D3

(αD1) ·D2 = D1 · (αD2) = α(D1 ·D2)

Local
(
D1 · (D2 +D3)

)
P

= (D1 ·D2)P + (D1 ·D3)P(
(D1 +D2) ·D3

)
P

= (D1 ·D3)P + (D2 ·D3)P(
(αD1) ·D2

)
P

= (D1 · (αD2))P = α(D1 ·D2)P

(2) Commutative: If D1 · D2 and D2 · D1 are both defined, then

D1 · D2 = D2 · D1. Analogously (D1 · D2)P = (D2 · D1)P if both

local numbers are defined.

(3) Non-negative: Assume D1 and D2 are effective, irreducible, and

distinct. Then D1 ·D2 and (D1 ·D2)P are greater than or equal to

zero if they are defined. Moreover, (D1 · D2)P = 0 if and only if

P /∈ |D1|∩|D2|, and hence D1 ·D2 = 0 if and only if |D1|∩|D2| = ∅.

(4) Non-rational: If D2 ∈ CaDiv(X) and D1 ∈ WeDiv(X), then

D1 ·D2 and (D1 ·D2)P are integral numbers. By the commutative

property, the same holds if D1 is a Cartier divisor and D2 is a Weil

divisor.
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(5) Q-Linear equivalence: Assume D1 has compact support. If D2

and D3 are Q-linearly equivalent, i.e. [D2] = [D3] ∈ Pic(X)⊗Z Q,

then D1 · D2 = D1 · D3. Due to the commutativity, the roles of

D1 and D2 can be exchanged. In particular, D1 ·D2 = 0 for every

principal Q-divisor D2.

(6) Normalization: Let ν : |̃D1| → |D1| be the normalization of the

support of D1 and jD1 : |D1| ↪→ X the inclusion. Then D1 ·D2 =

deg
(
jD1 ◦ ν

)∗
D2. Observe that in this situation the normalization

is a smooth complex analytic curve. �

Remark (III.1.4). This rational intersection number was first introduced

by Mumford for normal surfaces, see [Mum61, Pag. 17]. Our Defini-

tion (III.1.2) coincides with Mumford’s because it has good behavior with

respect to the pull-back, see Theorem (III.1.5). The main advantage is that

ours does not involve a resolution of the ambient space and, for instance, this

allows us to easily find formulas for the self-intersection numbers of the ex-

ceptional divisors of weighted blow-ups, without computing any resolution,

see Proposition (III.3.2).

The following result (the pull-back formula) is essential for obtaining

Bézout’s Theorem on quotients of weighted projective planes as well as for

studying the local intersection number on X(d;A). Again its proofs follows

from the fact that our generalization is based on extending the classical

definition to rational coefficients.

Theorem (III.1.5). Let F : Y → X be a proper morphism between two

irreducible V -manifolds of dimension 2, and D1, D2 ∈ Q-Div(X).

(1) The cardinal of F−1(P ), P ∈ X, is finite and generically constant.

This generic number is denoted by deg(F ).

(2) If D1 ·D2 is defined, then so is F ∗(D1) · F ∗(D2). In such a case,

one has F ∗(D1) · F ∗(D2) = deg(F ) (D · E).

(3) If (D1 ·D2)P is defined for some P ∈ X, then so is the local number

(F ∗(D1) · F ∗(D2))Q, ∀Q ∈ F−1(P ). In such a case, it is verified

that
∑

Q∈F−1(P )(F
∗(D1) · F ∗(D2))Q = deg(F )(D1 ·D2)P . �

The rest of this section is devoted to reviewing some classical results

concerning the intersection multiplicity, namely the computation of the local

intersection number at a smooth point, the self-intersection numbers of the

exceptional divisors of blow-ups at a smooth point, and the classical Bézout’s

Theorem on P2. Afterward, these results are generalized in the upcoming

sections.
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(III.1.6). (Local intersection number at a smooth point). LetX be a smooth

analytic surface. Consider D1, D2 two effective (Cartier or Weil)1 divisors

on X and P ∈ X a point. From Remark (II.2.3), the divisor Di is locally

given by a holomorphic function fi, i = 1, 2, in a neighborhood of P . Then

(D1 ·D2)P equals

ordP (f2|D1) = lengthOD1,P

(OD1,P

f2|D1

)
= dimC

( OX,P
〈f1, f2〉

)
.

Moreover, X being a smooth variety, OX,P is isomorphic to C{x, y} and

hence the previous dimension can be computed, for instance, by means of

Gröbner bases with respect to local orderings.

(III.1.7). (Classical blow-up at a smooth point). Let X be an analytic

surface. Let π : X̂ → X be the classical blow-up at a smooth point P .

Consider C and D two (Cartier or Weil) divisors on X with multiplicities

mC and mD at P . Denote by E the exceptional divisor of π, and by Ĉ

(resp. D̂) the strict transform of C (resp. D). Then,

(1) E · π∗(C) = 0,

(2) π∗(C) = Ĉ +mCE,

(3) E · Ĉ = mC ,

(4) E2 = −1,

(5) Ĉ · D̂ = C ·D −mCmD.

In addition, if D has compact support, then D̂2 = D2 −m2
D. Note that

the exceptional divisor has multiplicity 1 at every point. This is why for the

self-intersection numbers of the exceptional divisors every time we blow up

a point on them, when computing an embedded resolution of a plane curve,

one only has to subtract 1.

Example (III.1.8). The fourth property can easily be deduced assuming

the first three. Let us prove it here by using directly Definition (III.1.2).

Assume X = C2 and π : Ĉ2 → C2 is the blow-up at the origin. By definition,

E2 = deg(j∗EE) = deg(t), where t : E → j∗EOX(E) is any non-zero global

meromorphic section of j∗EOX(E).

• Let us cover Ĉ2 by U1 ∪ U2 and use coordinates ((x, y), [u : v])

for C2 × P1. As a Cartier divisor, the exceptional divisor of π is

E = {(U1, x), (U2, y)}.

1Recall that on smooth analytic varieties, Cartier and Weil divisors are identified

and their equivalence classes coincide under this identification, i.e. Pic(X) = Cl(X), see

Theorem (II.1.7).
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• Then OX(E) is the line bundle on Ĉ2 with transition function

φ12 : U1∩U2 → C∗, φ12(((x, y), [u : v])) = x
y . Thus j∗EOX(E) is the

line bundle on E = V1 ∪ V2 with transition function

ψ12 : V1 ∩ V2 −→ C∗, ψ12([u : v]) =
u

v
.

• The family {(V1,
u
v ), (V2, 1)} gives rise to a non-zero global mero-

morphic section of j∗EOX(E). Its associated Weil divisor on P1 is

−{v = 0} ∈WeDiv(P1) which has degree −1.

Another way to proceed is to show directly that the dual of j∗EOX(E) is

isomorphic to the line bundle on E associated with the Weil divisor {v = 0}.

(III.1.9). (Bézout’s Theorem on P2). Every analytic (Cartier or Weil)

divisor on P2 is algebraic and thus it can be written as a difference of

two effective divisors. On the other hand, every effective divisor is de-

fined by a homogeneous polynomial. The degree of an effective divisor

on P2 is the degree, deg(F ), of the corresponding homogeneous polyno-

mial. This degree map is extended linearly yielding a group homomorphism

deg : Div(P2) → Z that characterizes the linear equivalence classes in the

following sense: ∀D1, D2 ∈ Div(P2),

(14) [D1] = [D2] ∈ Pic(P2) = Cl(P2) ⇐⇒ deg(D1) = deg(D2).

Let D1, D2 be two divisors on P2, then D1 · D2 = deg(D1) deg(D2).

In particular, the self-intersection number of a divisor D on P2 is given by

D2 = deg(D)2. In addition, if |D1| * |D2|, then |D1| ∩ |D2| is a finite set of

points and, by the discussion after Definition (III.1.2), one has

deg(D1) deg(D2) = D1 ·D2 =
∑

P∈|D1|∩|D2|
(D1 ·D2)P .

The proof of this result is an easy consequence of (III.1.3), and the

fact that Di is linearly equivalent to deg(Di)Li, where Li is a linear form,

i = 1, 2, by (14). The rest of this chapter is devoted to generalizing the

classical results of (III.1.6), (III.1.7), and (III.1.9) to V -manifolds, weighted

blow-ups, and quotients of weighted projective planes, respectively.

Section § III.2

Computing Local Intersection Numbers

Let X be an algebraic V -manifold of dimension 2. Consider D1 and D2

two effective Q-divisors on X, and P ∈ X a point. From (II.2.3), cf. proof

of Lemma (II.2.4), the divisor Di is locally given in a neighborhood of P by

a reduced polynomial fi, i = 1, 2.
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On the other hand, the point P can be assumed to be a normalized type

of the form (d; a, b). Hence the computation of (D1 ·D2)P is reduced to the

following particular case.

(III.2.1). (Local intersection number on X(d; a, b)). Denote by X the cyclic

quotient space X(d; a, b) and consider two divisors D1 = {f1 = 0} and

D2 = {f2 = 0} given by reduced polynomials. Assume that,

• (d; a, b) is normalized,

• D1 is irreducible,

• f1 induces a function on X,

• |D1| * |D2|.
Then as Q-Cartier divisors D1 = {(X, f1)}, D2 = 1

d{(X, fd2 )}, and the

pull-back is j∗D1
D2 = 1

d{(D1, f
d
2 |D1)}. Following the definition, the local

number (D1 ·D2)[P ] equals

1

d
ord[P ](f

d
2 |D1) =

1

d
lengthOD1,[P ]

(OD1,[P ]

〈fd2 |D1〉

)
=

1

d
dimC

( OX,[P ]

〈f1, fd2 〉

)
.

The local ring OX,[P ] is described in detail in (I.1.17); there is an iso-

morphism of local rings if P = (α, β) 6= (0, 0),

OX,[P ]

∼=−→ OC2,(0,0)

(x, y) 7→ (x+ α, y + β),

and for P = (0, 0) one has OX,[(0,0)]
∼= C{x, y}µd .

Also 1
d dimC(C{x, y}/〈f1, f

d
2 〉) coincides with dimCC{x, y}/〈f1, f2〉 when

f1 and f2 are converging power series. So finally,

(D1 ·D2)[P ] =





1

d
dimC

(
C{x, y}µd
〈f1, fd2 〉

)
, P = (0, 0) ;

dimC

(
C{x− α, y − β}
〈f1, f2〉

)
, P = (α, β) 6= (0, 0) .

Analogously, if f1 does not define a function on X, for computing the

intersection number at [(0, 0)], one substitutes f1 by fd1 and divides the

result by d.

Another way to calculate (D1 · D2)[(0,0)] is to consider the projection

pr : C2 → X(d; a, b) and apply the local pull-back formula, see Theo-

rem (III.1.5)(3). Indeed, let D̃i be the pull-back divisor of Di under the

projection, i = 1, 2. Then,

(D1 ·D2)[(0,0)] =
1

d
(D̃1 · D̃2)(0,0) =

1

d
dimC

(
C{x, y}
〈f1, f2〉

)
.
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In particular, combining these two expressions obtained for (D1·D2)[(0,0)],

if two polynomials f and g define functions on X, then

dimC

(
C{x, y}µd
〈f, g〉

)
=

1

d
dimC

(
C{x, y}
〈f, g〉

)
.

As in the smooth case, all the preceding dimensions can be computed

by means of Gröbner bases with respect to local orderings.

Example (III.2.2). Let X = X(2; 1, 1) and consider the Weil divisors

D1 = {x = 0} and D2 = {y = 0}. In Example (II.4.5), it is shown, by

directly using the definition of the intersection product, that

(D1 ·D2)[(0,0)] =
1

2
.

In this section two expressions have been obtained for computing this

local number:

• (D1 ·D2)[(0,0)] =
1

2
dimC

(
C{x, y}
〈x, y〉

)
=

1

2
.

• (D1 ·D2)[(0,0)] =
1

4
dimC

(
C{x, y}µ2
〈x2, y2〉

)
=

1

4
· 2 =

1

2
.

The isomorphism C{z1, z2, z3}/〈z1z2 − z2
3〉 → C{x2, y2, xy} = C{x, y}µ2 de-

fined by (z1, z2, z3) 7→ (x2, y2, xy) was used to prove that

dimC

(
C{x, y}µ2
〈x2, y2〉

)
= dimC

(
C{z1, z2, z3}
〈z1, z2, z2

3〉

)
= 2.

Remark (III.2.3). If the point P ∈ X is represented by a type of the

form (d;A), where A ∈Mat(r × 2,Z), one considers the natural projection

pr : C2 → X(d;A) and applies the pull-back formula as above. Hence in

general one has

(D1 ·D2)[(0,0)] =
1

deg[ pr : C2 → X(d;A)]
(D̃1 · D̃2)(0,0),

where D̃i is the pull-back divisor ofDi under the projection. A generalization

of Lemma (III.4.2) could be useful in this sense.

Section § III.3

Intersection Numbers and Weighted Blow-ups

In chapter I weighted blow-ups were introduced as a tool for computing

embedded Q-resolutions. To obtain information about the corresponding

embedded singularity, an intersection theory on V -manifolds has been de-

veloped.
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Here we calculate self-intersection numbers of exceptional divisors of

weighted blow-ups on analytic varieties with abelian quotient singularities,

see Proposition (III.3.2).

A preliminary lemma is presented separately so that the proof of the

main result of this section becomes simpler.

Lemma (III.3.1). Let h : Y → X be a morphism between two irreducible

V -manifolds of dimension 2.

Consider πX : X̂ → X (resp. πY : Ŷ → Y ) a weighted blow-up at a point

of X (resp. Y ) and take CX a Q-divisor on X. Denote by EX (resp. EY )

the exceptional divisor of πX (resp. πY ), and ĈX the strict transform of CX .

Let us suppose that there exist two rational numbers, e and ν, and a

finite proper morphism H : Ŷ → X̂ completing the commutative diagram

Ŷ

#

H
//

πY

��

X̂

πX

��

Y
h

// X

such that:

(a) H∗(EX) = eEY ,

(b) π∗Y (h∗(CX)) = H∗(ĈX) + νEY .

Then, the following hold:

(1) π∗X(CX) = ĈX + ν
eEX ,

(2) EX · ĈX = −e ν
deg(h)E

2
Y ,

(3) E2
X = e2

deg(h)E
2
Y .

Proof. For (1) note the total transform π∗X(CX) can always be written

as ĈX + mEX for some m ∈ Q. Considering its pull-back under H∗, one

obtains two expressions for the same Q-divisor on Ŷ ,

H∗(π∗X(CX))
diagram

= π∗Y (h∗(CX))
(b)
= H∗(ĈX) + νEY ,

H∗(ĈX +mEX) = H∗(ĈX) +mH∗(EX)
(a)
= H∗(ĈX) +meEY .

It follows that m = ν
e .

For (2) first note that deg(H) = deg(h). From (III.3.2)(1), see below,

one has that EY · π∗Y (h∗(CX)) = 0. On the other hand, H being proper,

Theorem (III.1.5)(2) can be applied thus obtaining

deg(h)(EX · ĈX) = H∗(EX) ·H∗(ĈX)
(a)-(b)

=

= eEY ·
[
π∗Y (h∗(CX))− νEY

]

= −eνE2
Y .

Analogously, deg(h)E2
X = H∗(EX)2 = e2E2

Y and (3) follows. �
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Now we are ready to present the main result of this section.

Proposition (III.3.2). Let X be an analytic surface with abelian quotient

singularities and let π : X̂ → X be the (p, q)-weighted blow-up at a point

P ∈ X of type (d; a, b). Assume gcd(p, q) = 1 and (d; a, b) is a normalized

type, i.e. gcd(d, a) = gcd(d, b) = 1. Also write e = gcd(d, pb− qa).

Consider two Q-divisors C and D on X. As usual, denote by E the ex-

ceptional divisor of π, and by Ĉ (resp. D̂) the strict transform of C (resp. D).

Let ν and µ be the (p, q)-multiplicities of C and D at P , i.e. x (resp. y) has

(p, q)-multiplicity p (resp. q).

Then, there are the following equalities:

(1) E · π∗(C) = 0.

(2) π∗(C) = Ĉ +
ν

e
E.

(3) E · Ĉ =
eν

dpq
.

(4) E2 = − e2

dpq
.

(5) Ĉ · D̂ = C ·D − νµ

dpq
.

In addition, if D has compact support then D̂2 = D2 − µ2

dpq
.

Proof. Using Proposition (III.1.3)(5), the first item can be proved as

in the smooth case since π∗(C) is locally principal as Q-divisor on X̂. The

fifth item, and final conclusion, is an easy consequence of (2)-(4) and the

fact that π∗(C) · π∗(D) = C ·D.

For the rest of the proof, one assumes that

π = πX : ̂X(d; a, b)ω −→ X(d; a, b)

is the weighted blow-up at the origin of X(d; a, b) with respect to ω = (p, q).

Now the idea is to apply Lemma (III.3.1) to the commutative diagram

Ŷ := Ĉ2

#

H
//

πY

��

̂X(d; a, b)ω =: X̂

πX

��

Y := C2
h

// X(d; a, b) =: X.
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Above, the morphisms H and h are defined by

((x, y), [u : v])
H7−→ [((xp, yq), [up : vq])ω](d;a,b);

(x, y)
h7−→ [(xp, yq)](d;a,b),

and πY is the classical blowing-up at the origin. In this situation E2
Y = −1.

The claim is reduced to the calculation of deg(h) and the verification of the

conditions (a)-(b) in Lemma (III.3.1).

The degree is deg(h) = pq · deg
[
pr : C2 → X(d; a, b)

]
= dpq. For (a),

first recall the decompositions

(15) ̂X(d; a, b)ω = Û1 ∪ Û2 and Ĉ2 = U1 ∪ U2

given by the non-cancellation of the variables u and v. By Example (II.2.15),

one writes the exceptional divisor of πX as

EX =
e

dpq

{
(Û1, x

dq), (Û2, y
dp)
}
.

Hence its pull-back under H, computed by pulling back the local equa-

tions, is

H∗(EX) =
e

dpq

{
(U1, x

dpq), (U2, y
dpq)

}
= e

{
(U1, x), (U2, y)

}
= eEY .

Finally, for (b), one uses local equations to check that π∗Y (h∗(C)) =

H∗(Ĉ) + νEY . Suppose the divisor C is locally given by a meromorphic

function f(x, y) defined on a neighborhood of the origin of X(d; a, b); note

that ν = ord(p,q)(f).

The charts associated with the decompositions (15) are described in

detail in Section I.3–1(iii). As a summary, we recall here the first chart of

each blowing-up:

πX Q1 := X

(
p −1 q

pd a pb− qa

)
−→ Û1,

[
(x, y)

]
7→

[
((xp, xqy), [1 : y]ω)

]
.

πY C2 −→ U1,

(x, y) 7→ ((x, xy), [1 : y]).

Note that H respects the decompositions and takes the form (x, y) 7→
[(x, yq)] in the first chart.
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Then, one has the following local equations for the divisors involved:

Divisor Equation Ambient space

h∗(C) f(xp, yq) = 0 C2

π∗Y (h∗(C)) f(xp, xqyq) = 0 C2 ∼= U1

Ĉ
f(xp, xqy)

xν
= 0 Q1

∼= Û1

H∗(Ĉ)
f(xp, xqyq)

xν
= 0 C2 ∼= U1

EY x = 0 C2 ∼= U1

From these local equations (b) is satisfied and the proof is complete. �

(III.3.3). Under the conditions of Proposition (III.3.2) and using the no-

tation of its proof, let us compute the self-intersection number of the ex-

ceptional divisor of π : X̂ → X, following directly Definition (III.1.2) as in

Example (III.1.8). Write E = e
dpqE1, where

E1 =
{

(Û1, x
dq), (Û2, y

dp)
}
.

By definition, E · E1 = deg(j∗EE1) = deg(t) where t : E → j∗EOX(E1) is

any non-zero global meromorphic section of j∗EOX(E1).

• The sheaf OX(E1) is the line bundle on X̂ with transition function

φ12 : Û1 ∩ Û2 → C∗, φ12(((x, y), [u : v]ω)) = xdq

ydp
. Thus j∗EOX(E1)

is the line bundle on E = V̂1 ∪ V̂2 with transition function

ψ12 : V̂1 ∩ V̂2 → C∗, ψ12([u : v]ω) =
udq

vdp
.

• The family {(V̂1,
udq

vdp
), (V̂2, 1)} gives rise to a non-zero global mero-

morphic section of j∗EOX(E1). Its associated Weil divisor on P1
ω/µd

is −e·[{v = 0}] ∈WeDiv(P1
ω(d; a, b)) which has degree −e, compare

with (II.2.16).

Consequently, E2 = e
dpq (E ·E1) = − e2

dpq as claimed. Another way to proceed

is to show directly that the dual of j∗EOX(E1) is isomorphic to the line bundle

on E associated with the Weil divisor e · [{v = 0}].
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(III.3.4). In the same spirit of the preceding example, let us calculate E · Ĉ
using directly Definition (III.1.2) and the fact that

E · Ĉ =
∑

P∈E ∩Ĉ

(E · Ĉ)P .

Suppose C is locally given by a meromorphic function f(x, y) = 0 defined

on a neighborhood of the origin of X(d; a, b). Consider

f = fν + fν+l + · · ·
the decomposition of f(x, y) into (p, q)-homogeneous parts. The global equa-

tion of E ∩ Ĉ = {fν = 0} ⊂ P1
ω(d; a, b) can be written as

fν(x, y) = xαyβ
k∏

i=1

(xq − εqi yp)mi .

Note that ν = ord(p,q)(f) = pα + qβ + pq
∑r

i=1mi. The intersection

multiplicity of E and Ĉ at the point [εi : 1]ω is mi, while it is αe
dq (resp. βe

dp ),

not necessarily an integer, at the possibly singular point [0 : 1] (resp. [1 : 0]).

All these statements follows from §III.2, since by (I.3.14) the local equations

of E and Ĉ in the second chart are

X

(
dq

e
;
−p+ δqa

e
, 1

)
⊇
{
E : y = 0;

Ĉ : xα
∏k
i=1(xq − εqi )mi = 0,

where δ is the inverse of bmodulo d. To compute the intersection multiplicity

at [1 : 0] the first chart is needed, but the details are omitted.

On the other hand, the isomorphism

P1
ω(d; a, b) −→ P1

[x : y]ω 7→ [xdq/e : ydp/e],

tells us that

[εi : 1]ω = [εj : 1]ω ∈ P1
ω(d; a, b) ⇐⇒ (εqi )

d
e = (εqj)

d
e .

Consequently, the cardinality of E ∩ Ĉ \ {[0 : 1], [1 : 0]} is k
d/e and in fact

one has
r∑

i=1

mi =
r∑

i=1

(E · Ĉ)[εi:1]ω =
d

e

∑

P 6=[0:1],[1:0]

(E · Ĉ)P .

Finally, collecting all the information above, it follows that
∑

E∩Ĉ

(E · Ĉ)P = (E · Ĉ)[0:1] + (E · Ĉ)[1:0] +
∑

P 6=[0:1],[1:0]

(E · Ĉ)P =

=
αe

dq
+

βe

dp
+

e

d

r∑

i=1

mi =
e

dpq

(
pα+ qβ + pq

r∑

i=1

mi

)
=

eν

dpq
.
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Another way to proceed in order to calculate E · Ĉ is to realize that the

required intersection product is the degree of the Weil divisor on P1
ω(d; a, b)

given by fν(x, y) = xαyβ
∏r
i=1(xq − εqi yp)mi . This expression is mapped to

x
αe
dq y

βe
dp

k∏

i=1

(x
e
d − εqi y

e
d )mi

under the isomorphism P1
ω(d; a, b) → P1. The latter is clear to have degree

eν
dpq as a Weil divisor on P1.

Remark (III.3.5). Although elementary, the computation of the self-in-

tersection numbers E2 and E · Ĉ by using directly the definition is long

and tedious. That is why Proposition (III.3.2) is proven with the pull-back

formula (III.1.5) so that the proof becomes simpler and clearer.

Let us discuss two special cases of Prop. (III.3.2) according to I.3–1,

namely the point P ∈ X is smooth and the point P is of type (d; p, q) with

gcd(d, p) = gcd(d, q) = 1. Consider the ω-blow-up π := πω : Ĉ2
ω → C2

(resp. π := πω,d : Ĉ2
ω,d → X(d; p, q)). The following properties hold:

(1) E · π∗(C) = 0 (in both cases).

(2) π∗(C) = Ĉ + νE (resp. π∗(C) = Ĉ + ν
dE).

(3) E · Ĉ = ν
pq (in both cases).

(4) E2 = − 1
pq (resp. E2 = − d

pq ).

(5) Ĉ · D̂ = C ·D − νµ
pq (resp. Ĉ · D̂ = C ·D − νµ

dpq ).

Remark (III.3.6). To state formulas when P ∈ X is a point represented by

a type of the form (d;A), where A ∈Mat(r × 2,Z), one proceeds as in the

proof of Proposition (III.3.2). In particular, one has to compute deg(h), e,

and ν.

For instance, to calculate e such that H∗(EX) = eEY , one needs to write

EX as a Q-Cartier divisor as in Example (II.2.15), or equivalently, to find

the number e such that the map

(
X(d;A), [(0, 1)]

)
−→

(
C2, (0, 1)

)

[(x, y)] 7→ (xe, y)

is an isomorphism of analytic germs. In fact, one can show that

e =
deg(pr)

deg(pr |x=0)
,

where pr : C2 → Q1 is the projection on the first chart.
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When (d;A) = (d; a, b) but the type is not necessarily normalized or

gcd(p, q) 6= 1, then

e =
gcd(dp, dq, pb− qa)

gcd(d, a, b)
.

For deg(h) a generalization of Lemma (III.4.2) is needed. The details are

left to the reader.

Example (III.3.7). Let us consider the following divisors on C2,

C1 = {((x3 − y2)2 − x4y3) = 0}, C2 = {x3 − y2 = 0},

C3 = {x3 + y2 = 0}, C4 = {x = 0}, C5 = {y = 0}.
The local intersection numbers (Ci ·Cj)0, i, j ∈ {1, . . . , 5}, i 6= j, are en-

coded in the intersection matrix associated with any embedded Q-resolution

of C =
⋃5
i=1Ci, see [AMO11b] for a proof of this result.

Let π1 : C2
(2,3) → C2 be the (2, 3)-weighted blow-up at the origin. The

new space has two cyclic quotient singular points of type (2; 1, 1) and (3; 1, 1)

located at the exceptional divisor E1. The local equation of the total trans-

form in the first chart is given by the function

x29 ((1− y2)2 − x5y3) (1− y2) (1 + y2) y : X(2; 1, 1) −→ C,

where x = 0 is the equation of the exceptional divisor and the other factors

correspond in the same order to the strict transform of C1, C2, C3, C5

(denoted again by the same symbol). To study the strict transform of C4

one needs the second chart, the details are left to the reader.

Hence E1 has multiplicity 29 and self-intersection number −1
6 ; it inter-

sects transversely C3, C4, and C5 at three different points, while it intersects

C1 and C2 at the same smooth point P , different from the other three. The

local equation of the divisor E1 ∪ C2 ∪ C1 at this point P is

x29 y (x5 − y2) = 0,

see Figure III.1 below.

E1(− 1
6 ) E1(− 17

30 )

C4

(3)

C3

C1

C2
(2)

E2(− 1
10 )

(5)(2)

C5

(2) (3)

C2 C3 C4C5

C1

P

π2←−

Figure III.1. Embedded Q-resolution of C =
⋃5
i=1Ci ⊂ C2.
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Let π2 be the (2, 5)-weighted blow-up at the point P above. The new

ambient space has two singular points of type (2; 1, 1) and (5; 1, 2). The local

equations of the total transform of E1 ∪ C2 ∪ C1 are given by the following

two functions:

1st chart

x73

︸︷︷︸
E2

· y︸︷︷︸
C2

· (1− y2)︸ ︷︷ ︸
C1

: X(2; 1, 1) −→ C

2nd chart

x29

︸︷︷︸
E1

· y73

︸︷︷︸
E2

· (x5 − 1)︸ ︷︷ ︸
C1

: X(2; 1, 1) −→ C

Thus the new exceptional divisor E2 has multiplicity 73 and intersects

transversely the strict transform of C1, C2, and E1. Hence the composition

π2 ◦ π1 is an embedded Q-resolution of C =
⋃5
i=1Ci ⊂ C2.

Figure III.1 above illustrates the whole process. As for the self-intersec-

tion numbers,

E2
2 = − 1

10
, E2

1 = −1

6
− 22

1 · 2 · 5 = −17

30
.

The intersection matrix associated with the embedded Q-resolution obtained

and its opposite inverse are

A =

(−17/30 1/5

1/5 −1/10

)
, B = −A−1 =

(
6 12

12 34

)
.

Now one observes the intersection number is encoded in B as follows.

For i = 1, . . . , 5, set ki ∈ {1, . . . , 5} such that ∅ 6= Ci ∩ Eki =: {Pi}. Denote

by O(Ci) the order of the cyclic group acting on Pi. Then,

(Ci · Cj)0 =
bki,kj

O(Ci)O(Cj)
.

Looking at the figure one sees that

(k1, . . . , k5) = (2, 2, 1, 1, 1),

(O(C1), . . . , O(C5)) = (1, 2, 1, 3, 2).

Hence, for instance,

(C1 · C2)0 =
bk1,k2

O(C1)O(C2)
=

b22

1 · 2 =
34

2
= 17,

which is indeed the intersection multiplicity at the origin of C1 and C2.

Analogously for the other indices.
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Remark (III.3.8). Consider the group action of type (5; 2, 3) on C2. The

previous plane curve C is invariant under this action and then it makes sense

to compute an embedded Q-resolution of C := C/µ5 ⊂ X(5; 2, 3). Similar

calculations, as in the previous example, lead to a figure as the one obtained

above with the following relevant differences:

• E1 ∩ E2 is a smooth point.

• E1 (resp. E2) has self-intersection number −17
6 (resp. −1

2).

• The intersection matrix is A′ =
(
−17/6 1

1 −1/2

)
and its opposite in-

verse is

B′ = −(A′)−1 =

(
6/5 12/5

12/5 34/5

)
.

Hence, for instance,

(C1 · C2)0 =
b′22

1 · 2 =
34/5

2
=

17

5
,

which is exactly the intersection number of these two curves, since that

local number can also be computed as (C1 · C2)0 = 1
5(C1 · C2)0. Analogous

considerations hold for (Ci · Cj)0, i, j = 1, . . . , 5.

Section § III.4

Bézout’s Theorem for Weighted Projective Planes

For a given weight vector ω = (p, q, r) ∈ N3 and an action on C3 of type

(d; a, b, c), consider the quotient weighted projective plane

P2
ω(d; a, b, c) := P2

ω/µd

and the corresponding morphism τ(d;a,b,c),ω : P2 → P2
ω(d; a, b, c) defined by

(16) τ(d;a,b,c),ω([x : y : z]) = [xp : yq : zr]ω.

Recall that P2
ω(d; a, b, c) is a variety with abelian quotient singularities;

its charts are described in (I.3.19). The degree of a Q-divisor on P2
ω(d; a, b, c)

is the degree of its pull-back under the map τ(d;a,b,c),ω, that is, by definition,

D ∈ Q-Div
(
P2
ω(d; a, b, c)

)
, degω(D) := deg

(
τ∗(d;a,b,c),ω(D)

)
.

Thus if D = {F = 0} is a Q-divisor on P2
ω(d; a, b, c) given by a ω-

homogeneous polynomial that indeed defines a zero set on the quotient pro-

jective space, then degω(D) is the classical degree, denoted by degω(F ), of

the quasi-homogeneous polynomial.
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(III.4.1). The degree of a Q-divisor on P2
ω(d; a, b, c) has the following behav-

ior with respect to the normalization process of weighted projective planes.

• Let ω = (p, q, r) ∈ N3 and ω′ = 1
gcd(p,q,r)ω. Consider the morphism

P2
ω → P2

ω′ induced by the identity map. Let D′ be a Q-divisor

on P2
ω′ and D its pull-back under the previous map. Then,

degω′(D
′) =

1

gcd(p, q, r)
degω(D).

• Let ω = (p, q, r) ∈ N3 and ω′ =
( p

(p,q)·(p,r) ,
q

(q,p)·(q,r) ,
r

(r,p)·(r,q)
)
. Con-

sider the morphism P2
ω → P2

ω′ defined by

[x : y : z]ω 7−→ [xgcd(q,r) : ygcd(p,r) : zgcd(p,q)]ω′ .

Let D′ be a Q-divisor on P2
ω′ and D its pull-back under the previous

map which is a Q-divisor on P2
ω. Then,

degω′(D
′) =

degω(D)

gcd(p, q) · gcd(p, r) · gcd(q, r)
.

The following result can be stated in a more general setting. However,

it is presented in this way to keep the exposition as simple as possible.

Lemma (III.4.2). The degree of the projection pr : C2 → X
(
d ; a b
e ; r s

)
is

given by the formula

d · e
gcd

[
d · gcd(e, r, s), e · gcd(d, a, b), as− br

] .

Proof. Assume gcd(d, a, b) = gcd(e, r, s) = 1; the general formula is

obtained easily from this one, since
(
d a b

e r s

)
=

(
d

gcd(d,a,b)
a

gcd(d,a,b)
b

gcd(d,a,b)
e

gcd(e,r,s)
r

gcd(e,r,s)
s

gcd(e,r,s)

)
.

The degree of the required projection C2 → X
(
d ; a b
e ; r s

)
is de

` , where ` is

the order of the abelian group

H =
{

(ξ, η) ∈ µd × µe | ξaηr = 1, ξbηs = 1
}
C (µd × µe).

To calculate `, let us consider (ξ, η) ∈ µd × µe and solve the system
{
ξaηr = 1,

ξbηs = 1.

Raising both equations to the e-th power, one obtains ξae = 1 and ξbe = 1.

Hence,

ξ ∈ µd ∩ µae ∩ µbe = µgcd(d,ae,be) = µgcd(d,e).

Note that the assumption gcd(d, a, b) = 1 was used in the last equality.

Analogously, it follows that η ∈ µgcd(d,e), provided that gcd(e, r, s) = 1.



§ III.4. Bézout’s Theorem for Weighted Projective Planes 67

Thus there exist i, j ∈ {0, 1, . . . , gcd(d, e) − 1} such that ξ = ζi and

η = ζj , where ζ is a fixed primitive (d, e)-th root of unity. Now the claim is

reduced to finding the number of solutions of the system of congruences
{
ai+ rj ≡ 0

bi+ sj ≡ 0
,

(
mod gcd(d, e)

)
.

This is known to be gcd(d, e, as− br) and now the proof is complete. �

Proposition (III.4.3). Using the notation above, let us denote by m1, m2,

m3 the determinants of the three minors of order 2 of the matrix
( p q r
a b c

)
.

Assume that gcd(p, q, r) = 1 and write e = gcd(d,m1,m2,m3).

Then, the intersection number of two Q-divisors on P2
ω(d; a, b, c) is

D1 ·D2 =
e

dpqr
degω(D1) degω(D2) ∈ Q.

In particular, the self-intersection number of a Q-divisor is given by

D2 = e
dpqr degω(D)2. Moreover, if |D1| * |D2|, then |D1| ∩ |D2| is a finite

set of points and

(17)
e

dpqr
degω(D1) degω(D2) =

∑

P∈|D1|∩|D2|
(D1 ·D2)P .

Proof. For simplicity, let us write just τ for the map in (16), omitting

the subindex. Note that τ is a proper morphism between two irreducible

V -manifolds of dimension 2. Thus by Theorem (III.1.5)(2) and the classical

Bézout’s theorem on P2 (III.1.9), one has the following sequence of equalities,

deg(τ) (D1 ·D2) = τ∗(D1) · τ∗(D2)

= deg (τ∗(D1)) deg (τ∗(D2))

= degω(D1) degω(D2).

The rest of the proof is the computation of deg(τ); the final part is a conse-

quence of discussion after Definition (III.1.2).

In the first chart τ takes the form C2 → X
( p ; q r
pd ; m1 m2

)
, (y, z) 7→ [(yq, zr)],

see (I.3.19) for details. By decomposing this morphism into C2 → C2,

(y, z) 7→ (yq, zr) and the projection C2 → X
( p ; q r
pd ; m1 m2

)
, (y, z) 7→ [(y, z)],

one obtains

deg(τ) = qr · deg
[
C2 pr−→ X

( p ; q r
pd ; m1 m2

)]
.

The determinant of the corresponding matrix is qm2 − rm1 = pm3. From

Lemma (III.4.2), the latter degree is

p · pd
gcd

(
p · gcd(pd,m1,m2), pd, pm3

) =
dp

gcd
(
d,m1,m2,m3

) ,

and hence the proof is complete. �
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Corollary (III.4.4). Let X, Y , Z be the Weil divisors on the quotient

space P2
ω(d; a, b, c) given by {x = 0}, {y = 0}, and {z = 0}, respectively.

Using the notation of Proposition (III.4.3), one has:

(1) X2 =
ep

dqr
, Y 2 =

eq

dpr
, Z =

er

dpq
.

(2) X · Y =
e

dr
, X · Z =

e

dq
, Y · Z =

e

dp
. �

Remark (III.4.5). Some comments about the previous results.

(1) The local intersection numbers (D1 · D2)P in (17) are computed

in (III.2.1) in terms of the dimension of a C-vector space. This

dimension can in turn be computed by means of Gröbner bases

with respect to local orderings as usual.

(2) If d = 1, then e = 1 too and the formulas above become a bit

simpler. In particular, one obtains Bézout’s theorem on weighted

projective planes, (the last equality if |D1| * |D2| only)

D1 ·D2 =
1

pqr
degω(D1) degω(D2) =

∑

P∈|D1|∩|D2|
(D1 ·D2)P .

(3) To state Bézout’s theorem on P2
ω(d;A), where A ∈ Mat(r × 3,Z),

one proceeds in the same way. First consider the natural morphism

τ : P2 → P2
ω(d;A) defined by [x : y : z] 7→ [xp : yq : zr]ω, then apply

the pull-back formula, and finally compute the degree of τ . That

is, ∀D1, D2 ∈ Q- Div
(
P2
ω(d;A)

)
, one has

D1 ·D2 =
1

deg(τ)
degω(D1) degω(D2).

The latter degree is reduced, as in the proof of Prop. (III.4.3),

to the calculation of the degree of the projection C2 → X(e;B),

(y, z) 7→ [(y, z)], where the type (e;B) is obtained after taking

charts on the corresponding projective planes. In this sense a gen-

eralization of Lemma (III.4.2) is welcome.

Example (III.4.6). Without assuming gcd(p, q, r) = 1 in (III.4.3), the

degree of τ is dpqr
e where e = gcd

[
d · gcd(p, q, r),m1,m2,m3)

]
. The general

formula for the degree of τ : P2 → P2
ω(d;A) is left to the reader.



IV
Monodromy Zeta Function and Lefschetz Numbers

In this chapter the behavior of the Lefschetz numbers and the zeta func-

tion of the monodromy with respect to an embedded Q-resolution is inves-

tigated, cf. [Mar11c]. These two invariants have already been studied in

different contexts by several authors. Hence before going into details, let us

recall some of those approaches.

Let f : (Cn+1, 0)→ (C, 0) be a germ of a non-constant analytic function

and let (H, 0) be the hypersurface singularity defined by f . Consider the

Milnor fiber F = {x ∈ Cn+1 : ||x|| ≤ ε, f(x) = η} (0 < η << ε, where

ε small enough) and h : F → F the corresponding geometric monodromy.

The induced automorphisms on the complex cohomology groups are often

denoted by h := Hq(h) : Hq(F,C)→ Hq(F,C).

In [A’C75], A’Campo gives a method for computing the Lefschetz num-

ber of the iterates hk := h ◦ · · · ◦ h of the geometric monodromy, defined

by

Λ(hk) :=
∑

q≥0

(−1)q trHq(hk),

in terms of an embedded resolution of the singularity (H, 0) ⊂ (Cn+1, 0).

These Lefschetz numbers are related to the monodromy zeta function

Z(f) :=
∏

q≥0

det(Id∗−tHq(h))(−1)q

by the following well-known formula

(18) Z(f) = exp

(
−
∑

k≥1

Λ(hk)
tk

k

)
.
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Using this relationship he derives a new expression for Z(f). More pre-

cisely, let π : X → (Cn+1, 0) be an embedded resolution of (H, 0). Consider

the total transform of H written as

π∗(H) = Ĥ +
r∑

i=1

miEi,

where Ĥ is the strict transform of H, and E1, . . . , Er are the irreducible

components of the exceptional divisor π∗(0). Now, define

Ěi := Ei \
(
Ei ∩

(⋃

j 6=i
Ej ∪ Ĥ

))
.

Then, the Lefschetz numbers and the complex monodromy zeta function

are given by

Λ(hk) =
r∑

i=1, mi|k
miχ(Ěi), Z(f) =

r∏

i=1

(1− tmi)χ(Ěi).

The Euler characteristic of the Milnor fiber is therefore

(19) χ(F ) = Λ(h0) =
r∑

i=1

miχ(Ěi).

When (H, 0) defines an isolated singularity, both the characteristic poly-

nomial of the monodromy ∆(t) and the Milnor number

µ = dimHn(F,C) = deg ∆(t)

can be obtained from the zeta function as follows,

∆(t) =

[
1

t− 1

r∏

i=1

(tmi − 1)χ(Ěi)

](−1)n

;

µ = (−1)n
[
− 1 +

r∑

i=1

miχ(Ěi)
]
,

and in particular by (19), µ = (−1)n[−1 + χ(F )] holds.

Another contribution in the same direction is found in [GLM97], where

the authors give a generalization of A’Campo’s formula for the zeta function

via partial resolutions, that is, the map π : X → (Cn+1, 0) is assumed to

be just a modification (i.e. the condition about normal crossing divisor in

the embedded resolution is removed). Also Dimca, using the machinery of

constructible sheaves, proved the same result allowing X to be an arbitrary

analytic space, see [Dim04, Th. 6.1.14.].



§ IV.1. Toward A’Campo’s Formula 71

The aim of this chapter is to generalize all the previous results, giving

the corresponding A’Campo’s formula and the Lefschetz numbers in terms

of an embedded Q-resolution, see Theorem (IV.3.14) below. Note that Veys

has already considered this problem for plane curve singularities [Vey97].

From now on, and depending on the context, we shall denote the mon-

odromy zeta function by Z(f), Z(f)(t), Z(f ; t), Zf (t) or Z(t), interchange-

ably. The same applies for the Lefschetz numbers and the characteristic

polynomial.

Section § IV.1

Toward A’Campo’s Formula

Before giving the precise statement, let us see some examples to motivate

A’Campo’s formula in this setting. First, note that the zeta function and

the Lefschetz numbers also exist in case of singular underlying spaces, such

as X(d;A). Moreover, if the function f is defined by a quasi-homogeneous

polynomial, then f : X(d;A) \ f−1(0)→ C∗ is a locally trivial fibration and

the global Minor fibration is equivalent to the local one.

(IV.1.1). Let X(d;A) = Cn/µd be a cyclic quotient singularity, not nec-

essarily written in a normalized form, i.e (d;A) = (d; a1, . . . , an). Consider

f : X(d;A) → C a global algebraic function of the form f = xm1 (analo-

gously one could proceed with xmi ). Since it is a well-defined function, d

must divide a1m. Let us write

e = gcd(d, a1), d = d′e, a1 = a′1e.

Then d′|m and the equation xm1 = 1 has m/d′ different solutions over the

space X(d;A), as one can easily check by direct computations.

Consider ζ = exp(2πi/m) a primitive m-th root of unity, it follows that

the corresponding Milnor fiber F = f−1(1) = {x ∈ X(d;A) | xm1 = 1} is

homeomorphic to the affine variety

m/d′−1⊔

i=0

{
[(ζi, x2, . . . , xn)] ∈ X(d;A) | x2, . . . , xn ∈ C

}
,

which has the same homotopy type as m/d′ different points.

Let α : [0, 1] → C∗ be a generator of the fundamental group of C∗,
for instance α(t) = exp(2πit), and take [(x1, . . . , xn)] ∈ F . Then the path

α̃ : [0, 1]→ X(d;A) \ f−1(0) given by

α̃(t) = [(e
2πi
m
tx1, x2, . . . , xn)]

defines a lifting of α with initial point [(x1, . . . , xn)].
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Thus the geometric monodromy h : F → F corresponds to the map

α̃(0) = [(x1, . . . , xn)]
h7−→ [(e

2πi
m x1, . . . , xn)] = α̃(1).

From this expression, one deduces that the monodromy at the level zero

H0(h) : H0(F,C) → H0(F,C) is the linear map Cm/d′ → Cm/d′ associated

with the matrix A = [e2| . . . |em/d′ |e1], where {e1, . . . , em/d′} is the canonical

basis of Cm/d′ . Finally, one has that

Λ(hk) =

{
m
d gcd(d, a1) if m

d′ |k,
0 otherwise;

Zxm1 (t) = 1− tmd gcd(d,a1).

(IV.1.2). The next step would be to consider a global function defining

a normal crossing divisor with more that one irreducible component, i.e.

f = xm1
1 · · ·xmkk : X(d;A) → C, k ≥ 2. To simplify the main ideas, assume

also that gcd(m1, . . . ,mk) = 1. Let us use the notation,

e = gcd(d, a1, . . . , ak), d = d′e, ai = a′ie, (i = 1, . . . , k).

The Milnor fiber F = f−1(1) is homotopic to
{

[(x1, . . . , xk)] ∈ X(d; a1, . . . , ak) | xm1
1 · · ·xmkk = 1

}
,

which can be identified with

F ′ :=
{

[(x1, . . . , xk)] ∈ X(d′; a′1, . . . , a
′
k) | xm1

1 · · ·xmkk = 1
}
.

As above, the path α̃ : [0, 1]→ X(d;A) \ f−1(0) given by

α̃(t) = [(e
2πi
m1

t
x1, x2, . . . , xn)]

defines a lifting of α : [0, 1] → C∗, α(t) = exp(2πit), with initial point

[(x1, . . . , xn)] ∈ F . Thus the geometric monodromy h : F → F corresponds

to the map

α̃(0) = [(x1, . . . , xn)]
h7−→ [(e

2πi
m1 x1, . . . , xn)] = α̃(1).

Hence Hq(h)m1 = IdHq(F,C), ∀q = 0, . . . , n. Since Hq(h) is a topological

invariant of f , one can also prove that

Hq(h)m2 = Id∗, . . . ,Hq(h)mk = Id∗ .

Consequently, all the induced automorphisms on the cohomology groups

Hq(h) are indeed the identity maps.

One finally has that

Λ(hk) = χ(F ) = 0, Z(xm1
1 · · ·xmkk ; t) = (1− t)χ(F ) = 1.

Note that (C∗)k ⊃ F̃ ′ := {xm1
1 · · ·xmkk = 1} → F ′ is an unramified

covering of d′ sheets and F̃ ′ is homotopic to the (k − 1)-dimensional real

torus Tk−1 := (S1)k−1. This can be used to show that χ(F ) = χ(F ′) = 0.
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The general case gcd(m1, . . . ,mk) 6= 1 is discussed later where the Lef-

schetz fixed point theorem is used to prove that all Lefschetz numbers are

zero too, see Lemma (IV.3.11).

Section § IV.2

Partial Statement and Examples

Now, from the discussion above, the following result becomes very natu-

ral. See Theorem (IV.3.14) for a more general and complete result allowing

abelian quotient singularities in the ambient spaces.

Theorem (IV.2.1). Let f : (Cn+1, 0) → (C, 0) be a non-constant analytic

germ defining an isolated singularity and let H = {f = 0}. Assume that

π : X → (Cn+1, 0) is an embedded Q-resolution of (H, 0) having X cyclic

quotient singularities. Let X0 = π−1(H) be the total transform and denote

by S = π−1(0) the exceptional divisor. Consider Sm,d′ to be the set



 s ∈ S

the equation of X0 in s is given by the function

xmi : X(d;A)→ C, where xi is a local coordinate

of X in s and d/ gcd(d, ai) = d′.



 .

Then, the characteristic polynomial of the complex monodromy of the

germ (H, 0) is

(20) ∆(t) =

[
1

t− 1

∏

m,d′

(tm/d
′ − 1)χ(Sm,d′ )

](−1)n

.

Remark (IV.2.2). If all cyclic quotient singularities appearing in X are

written in their normalized form and gcd(d, ai) 6= 1, then X \ X0 must

contain singular points. This, however, contradicts that π is an embedded

Q-resolution. Therefore, after normalizing, one can always assume d = d′.

This theorem has already been proven by Veys in [Vey97] for plane

curve singularities, that is, for n = 1. If all d’s are equal to one, then

π : X → (Cn+1, 0) is an embedded resolution of (H, 0) in the classical sense

and one obtains exactly the formula by A’Campo [A’C75]. We postpone the

complete proof of the theorem, devoting the rest of this section to showing

several examples.

The tools developed in Chapters I are used without explicit mention.

The rational self-intersection numbers of the exceptional divisors, when com-

puting an embedded Q-resolution of the singularity, see Chapter III, are

omitted because they are not needed in Theorem (IV.2.1).
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Example (IV.2.3). Let f : C2 → C be the polynomial function given by

f = xp + yq. Let us write

e = gcd(p, q), p = p1e, q = q1e.

Consider π : Ĉ2(q1, p1) → C2 the (q1, p1)-weighted blow-up at the origin.

Recall that Ĉ2(q1, p1) = U0 ∪ U1 has two singular points corresponding to

the origin of each chart.

In U0 = X(q1;−1, p1), the total transform of f is given by the function

xp1q1e(1 + yq). The equation yq = −1 only has q/q1 = e different solutions

in U0 and the local equation of the total transform at each of these points

is of the form xp1q1e y.

Hence π is an embedded Q-resolution of C = {f = 0} where all spaces

are written in their normalized form.

m = p1q1e

(p1; q1,−1)(q1;−1, p1)

(e)· · ·
U0 U1

Figure IV.1. Embedded Q-resolution of f = xp + yq.

The set Sm,d is not empty for the pairs (m, d) = (p1q1e, 1), (p1q1e, q1),

and (p1q1e, p1). Their Euler characteristics are

χ(Sp1q1e,1) = 2− (e+ 2) = −e,
χ(Sp1q1e,q1) = χ(Sp1q1e,p1) = 1.

Now, we apply Theorem (IV.2.1) and obtain

∆(t) =
(t− 1)(t

pq
e − 1)e

(tp − 1)(tq − 1)
.

Another interesting way to calculate the characteristic polynomial could

be the following. Consider π : Ĉ2(q, p) → C the (q, p)-weighted blow-up at

the origin. Now U0 = X(q;−1, p) and the equation of the total transform in

this chart is xpq(1 + yq). As above, the map π is an embedded Q-resolution

of C and our formula can be applied. However, the exceptional divisor,

outside the two singular points, is not given by xpq as one can expect at first

sight. The reason is that X(q;−1, p) is not written in its normalized form.

xpq

(q;−1, p)

pq
e

Figure IV.2. Non-normalized cyclic quotient singularity.
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The isomorphism X(q;−1, p) ∼= X(q1;−1, p1) sends the well-defined

function xpq : X(q;−1, p) → C to x
pq
e : X(q1;−1, p1) → C, and thus the

required equation is x
pq
e : C2 → C. After applying the formula, one obtains

the same characteristic polynomial.

This example shows that although one can blow up using non coprime

weights, if possible, it is better to do it with the corresponding coprime

weights to simplify calculations. However, the normalized condition is not

necessary in the hypothesis of the statement.

Example (IV.2.4). Assume p1/q1 < p2/q2 are two irreducible fractions and

gcd(q1, q2) = 1. Let C be the complex plane curve with Puiseux expansion

y = x
p1
q1 + x

p2
q2 .

Consider π1 : Ĉ2(q1, p1) → C2 the (q1, p1)-weighted blow-up at the ori-

gin. The exceptional divisor E0 has multiplicity p1q1q2 and it contains two

singular points of type (q1;−1, p1) and (p1; q1,−1). The strict transform

Ĉ of the curve and E0 intersect at one smooth point, say P . The Puiseux

expansion of Ĉ in a small neighborhood of this point is

y = x
p2q1−p1q2

q2 ,

and thus π1 is not a embedded Q-resolution.

E0
(p1)(q1)

Ĉ

π2←− E0
(p1)(q1)

Ĉ
(q2)

E1P

Figure IV.3. Embedded Q-resolution of C =
{
y = x

p1
q1 + x

p2
q2

}
.

Now let π2 be the (q2, p2q1 − p1q2)-blow-up at P . The multiplicity of

the new exceptional divisor E1 is q2(p1q1q2 + p2q1 − p1q2). It intersects

transversely E0 at a singular point of type

(p2q1 − p1q2; q2,−1)

and also contains another singular point of type (q2;−1, p2q1). The strict

transform of the curve is a smooth variety and it cuts transversely E1 at a

smooth point.

Hence the composition π1 ◦ π2 defines an embedded Q-resolution of the

curve C ⊂ C2 where all cyclic quotient spaces are written in their normalized

form. Figure IV.3 illustrates the whole process.
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The corresponding Euler characteristics are χ = 1, for the three singular

points, and

χ(E0 \ {3 points}) = χ(E1 \ {3 points}) = −1.

Note that the singular point of type (p2q1 − p1q2) does not contribute

to the monodromy zeta function, since it belongs to more than one divisor.

After applying formula (20), one obtains

∆(t) =

(
t− 1

)(
tp1q1q2 − 1

)(
tq2(p1q1q2+p2q1−p1q2) − 1

)
(
tp1q2 − 1

)(
tq1q2 − 1

)(
tp1q1q2+p2q1−p1q2 − 1

) , µ = deg ∆(t).

In case q1 and q2 are not coprime, the same arguments apply and one

can find a formula for the characteristic polynomial of an irreducible plane

curve with two (and then with arbitrary) Puiseux pairs. These formulas are

quite involved and we omit them.

Example (IV.2.5). Let e1, e2, e3 be three positive integers and denote by

e = gcd(e1, e2, e3). Assume that ω = ( e1e ,
e2
e ,

e3
e ) is a weight vector of pair-

wise relatively prime numbers. Let C be the projective curve in P2
ω defined

by the polynomial

F = x
e2e3
e + y

e1e3
e + z

e1e2
e .

Note that this polynomial is quasi-homogeneous of degree e1e2e3/e
2. One

is interested in computing the Euler characteristic of C.

Consider π : Ĉ3
ω → C3 the weighted blow-up at the origin with respect

to ω and take the affine variety H = {F = 0} ⊂ C3. The space Ĉ3
ω =

U0 ∪ U1 ∪ U2 has just three singular points, corresponding to the origin of

each chart and located at the exceptional divisor E = π∗(0) ∼= P2
ω. The

order of the cyclic groups are e3
e , e2

e , and e1
e , respectively.

P2( e1e ,
e2
e ,

e3
e )

(
e1
e

)

(
e2
e

)

(
e3
e

)

e1e2e3
e2

Ĥ

Figure IV.4. Embedded Q-resolution of x
e2e3
e + y

e1e3
e + z

e1e2
e .

In the third chart U2 = X( e3e ; e1e ,
e2
e ,−1), an equation of the total trans-

form is

z
e1e2e3
e2 (x

e2e3
e + y

e1e3
e + 1).

Using Lemma (I.1.16), one sees that the exceptional divisor and the strict

transform are smooth varieties intersecting transversely. Thus π is an em-

bedded Q-resolution of H where all the quotient spaces are written in their

normalized form.
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The set Sm,d is not empty for m = e1e2e3/e
2 and d ∈ {1, e1e , e2e , e3e }.

Since the intersection E ∩ Ĥ can be identified with C, the Euler character-

istics are

χ(Sm,1) = −χ(C),

χ(Sm, e1
e

) = χ(Sm, e2
e

) = χ(Sm, e3
e

) = 1.

From Theorem (IV.2.1), the characteristic polynomial of H is

∆(t) =

(
t
e1e2
e − 1

)(
t
e1e3
e − 1

)(
t
e2e3
e − 1

)
(
t− 1

)(
t
e1e2e3
e2 − 1

)χ(C)
.

On the other hand, the Milnor number is known to be

µ =
(e1e2

e
− 1
)(e1e3

e
− 1
)(e2e3

e
− 1
)
.

Using that µ = deg ∆(t), one finally obtains

χ(C) = e1 + e2 + e3 −
e1e2e3

e
.

Example (IV.2.6). Let p, q, r be three positive integers and consider the

polynomial function f : C3 → C given by

f = xp + yq + zr.

To simplify notation, we set e1 = gcd(q, r), e2 = gcd(p, r), e3 = gcd(p, q),

e = gcd(p, q, r), and k = e1e2e3. The following information will be useful

later:

gcd(qr, pr, pq) =
e1e2e3

e
=
k

e
,

d1 := gcd
(epr
k
,
epq

k

)
=

ep

e2e3
; a1 := lcm(d2, d3) =

e2qr

e1k
= d2d3 ,

d2 := gcd
(eqr
k
,
epq

k

)
=

eq

e1e3
; a2 := lcm(d1, d3) =

e2pr

e2k
,

d3 := gcd
(eqr
k
,
epr

k

)
=

er

e1e2
; a3 := lcm(d1, d2) =

e2pq

e3k
.

Take the weight vector ω = e
k (qr, pr, pq) and let π : Ĉ3

ω → C3 be the

weighted blow-up at the origin with respect to ω. The new space

Ĉ3
ω = U0 ∪ U1 ∪ U2

has three lines (each of them isomorphic to P1) of singular points located

at the exceptional divisor E = π∗(0) ∼= P2
ω. They actually coincide with the

three lines L0, L1, L2 at infinity of P2
ω.
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In the third chart U2 = X( epqk ; eqrk ,
epr
k ,−1), an equation of the total

transform is

z
epqr
k (xp + yq + 1),

where z = 0 is the exceptional divisor and the other equation corresponds

to the strict transform.

L0

L1

L2

(
epr
k

)

(
epq
k

) (
eqr
k

)

(
er

e1e2

)(
ep

e2e3

)

(
eq

e1e3

)

Ĥ ∩ E E ∼= P2
ω

epqr

k
e2 points

e1 pts e3 pts

Figure IV.5. Embedded Q-resolution of f = xp + yq + zr.

Working in this coordinate system, one sees that the line L0 (resp. L1)

and Ĥ intersect at exactly e1 (resp. e2) points. Analogously, L2∩Ĥ consists

of e3 points. Moreover, using Lemma (I.1.16), we have that Ĥ and E are

smooth varieties that intersect transversely. Hence the map π is an embed-

ded Q-resolution of {f = 0} ⊂ C3 where all the cyclic quotient spaces are

presented in their normalized form.

The Euler characteristics as well as the fractions m/d for the non-empty

sets Sm,d are calculated in the two tables below.

S epqr
k
,1 S epqr

k
, ep
e2e3

S epqr
k
, eq
e1e3

S epqr
k
, er
e1e2

m

d

epqr

k

qr

e1

pr

e2

pq

e3

χ
e1 + e2 + e3

−χ(C)
−e1 −e2 −e3

S epqr
k
, eqr
k

S epqr
k
, epr
k

S epqr
k
, epq
k

m/d p q r

χ 1 1 1
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Here we denote by C the variety in P2
ω defined by the quasi-homogeneous

polynomial xp + yq + zr. Recall that from Proposition (I.2.5), the map

P2
ω → P2( e1e ,

e2
e ,

e3
e ) given by

[x : y : z]ω 7−→ [x
ep
e2e3 : y

eq
e1e3 : z

er
e1e2 ]( e1

e
,
e2
e
,
e3
e

)

is an isomorphism and it maps the hypersurface C to
{
x
e2e3
e + y

e1e3
e + z

e1e2
e = 0

}
.

By Example (IV.2.5), its Euler characteristic is

χ(C) = e1 + e2 + e3 −
e1e2e3

e
,

and finally, from Theorem (IV.2.1), one obtains the characteristic polyno-

mial of f ,

∆(t) =

(
t
epqr
e1e2e3 − 1

) e1e2e3
e
(
tp − 1

)(
tq − 1

)(
tr − 1

)
(
t− 1

)(
t
qr
e1 − 1

)e1(t
pr
e2 − 1

)e2(t
pq
e3 − 1

)e3 .

Note that the Euler characteristic of C could also be obtained using

that the Milnor number is µ = (p − 1)(q − 1)(r − 1) = deg ∆(t), as in the

preceding example.

Example (IV.2.7). Let f : C3 → C be the polynomial function defined

by f = zm+k + hm(x, y, z). Assume that C = {hm = 0} ⊆ P2 has only one

singular point P = [0 : 0 : 1], which is locally isomorphic to the cusp xq+yp,

gcd(p, q) = 1. Denote k1 = gcd(k, p) and k2 = gcd(k, q).

Consider the classical blow-up at the origin π1 : Ĉ3 → C3. In the third

chart, the local equation of the total transform is

zm(zk + xq + yp) = 0.

The strict transform Ĥ and the exceptional divisor E0 intersect transversely

at every point but in P ∈ C ≡ E0 ∩ Ĥ. Also Ĥ \ P is smooth.

E1 ∩ E0

mE0
(

kp
k1k2

)

(
kq

k1k2

)

(
k

k1k2

)

P2

Ĥ ∩ E0

(
k

k1k2

)

(
pq

k1k2

)

(
kp

k1k2

)
Ĥ ∩ E1

(
q
k2

) (
p
k1

)

(
kq

k1k2

) E0 ∩ E1

x = 0y = 0

z = 0

k1 pts k2 pts

P2
ωpq

k1k2
(m+ k)E1

Figure IV.6. Intersection of E0 (resp. E1) with the rest

of components.
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One is therefore interested in the blowing-up at the point P with respect

to (kp, kq, pq). However, in order to obtain cyclic quotient spaces in their

normalized form, it is more suitable to choose ω = ( kp
k1k2

, kq
k1k2

, pq
k1k2

) instead.

Let π2 be the weighted blow-up at P with respect to the vector ω. The

local equation of the total transform in the second chart is given by the

polynomial function

{
y

pq
k1k2

(m+k)
zm(zk + xq + 1) = 0

}
⊂ X

(
kq

k1k2
;
kp

k1k2
,−1,

pq

k1k2

)
,

where y = 0 represents the new exceptional divisor E1.

The composition π = π1 ◦ π2 is an embedded Q-resolution. The final

situation is illustrated in Figure IV.6, see Chapter VII for details.

The sets for which the Euler characteristic has to be computed are

Sm,1, S`,1, S`, p
k1
, S`, q

k2
, S`, pq

k1k2
; ` =

pq

k1k2
(m+ k).

Clearly χ(S`, pq/k1k2) = 1, χ(S`, p/k1) = −k2, and χ(S`, q/k2) = −k1, since

they are homeomorphic to a point, P1\{k2+2 points} and P1\{k1+2 points}
respectively. The set Sm,1 is P2 \ C. Finally, we use the additivity of the

Euler characteristic to compute χ(S`,1).

Indeed, let D ⊂ P2(k1, k2, 1) be the variety defined by the equation

zk1k2 + xk2 + yk1 = 0. Note that, by Proposition (I.2.5), D is isomorphism

to the surface

Ĥ ∩ E1 = {zk + xq + yp = 0} ⊂ P2
ω

and, by Example (IV.2.5) (using e1 = k1, e2 = k2, e3 = 1), its Euler

characteristic is k1 + k2 + 1− k1k2. Then,

χ(S`,1) = 3− (2 + 2 + 2 + χ(D)) + k1 + k2 + 4 = k1k2.

Every cyclic quotient singularity is written in their normalized form and

thus the generalized A’Campo’s formula can be applied with d′ = d,

∆(t) =

(
tm − 1

)χ(P2\C)

t− 1
·
(
tm+k − 1

)(
t
pq
k1k2

(m+k) − 1
)k1k2

(
t
p
k1

(m+k) − 1
)k1(t

q
k2

(m+k) − 1
)k2

=

(
tm − 1

)χ(P2\C)

t− 1
·∆k

P (tm+k).

Let us explain the notation. The symbol ∆P (t) denotes the characteristic

polynomial of C at P = [0 : 0 : 1], where the curve is locally isomorphic to

xq + yp, and if ∆(t) =
∏
i(t

mi − 1)ai , then ∆k(t) denotes

∆k(t) =
∏

i

(
t

mi
gcd(mi,k) − 1

)gcd(mi,k)ai
.
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The family of examples zm+k + hm(x, y, z), where hm defines a reduced

projective plane curve such that Sing(hm) ∩ {z = 0} = ∅ as a subset in P2,

i.e. Yomdin-Lê surface singularities, is studied in Chapter VII.

We conclude by emphasizing that in the classical A’Campo’s formula

one has to pay attention to compute the Euler characteristic while the mul-

tiplicities remain trivial. Using our formula we also have to take care of com-

puting the multiplicities and the order of the corresponding cyclic groups,

especially when the quotient singularity is not in its normalized form. Dis-

cussion (I.1.15) and Lemma (I.1.16) are very useful in this sense.

Section § IV.3

Proof of the Theorem

One way to proceed is to rebuild A’Campo’s paper [A’C75], thus giving

a model of the Milnor fibration in our setting. This method is very natural

but perhaps a bit long and tedious. In [GLM97], the authors give a gener-

alization of A’Campo’s formula for the monodromy zeta function via partial

resolution but the ambient space considered there is still smooth and the

proof can not be generalized to an arbitrary analytic variety.

That is why a very general result by Dimca is used instead, see Theo-

rem (IV.3.6) below. This leads us to talk about constructible complexes of

sheaves with respect to a stratification and also about the nearby cycles as-

sociated with an analytic function. Using this theorem, only the monodromy

zeta function of a monomial defining a function over a quotient space of type

X(d;A) is needed.

IV.3–1. A result by Dimca

To state the result we need some notions about sheaves and constructibil-

ity. We refer, for instance, to [Dim04] and the references listed there for

further details.

(IV.3.1). Consider Sh(X,VectC) the abelian category of sheaves of C-vector

spaces on a topological space X. To simplify notation its derived category is

often denoted by D∗(X). The constant sheaf corresponding to C is denoted

by CX ; it is by definition the sheaf associated with the constant presheaf

which sends every open subset of X to C. If U ⊂ X is connected open,

then CX(U) = C.
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Let f : X → Y be a continuous mapping between two topological spaces.

The direct image functor f∗ : Sh(X,VectC) → Sh(Y,VectC) is defined on

objects by (f∗F)(V ) = F(f−1(V )), for any sheaf F on X and any open

set V ⊂ Y . This functor is additive and left exact; its derived functor is

denoted by Rf∗ : D∗(X)→ D∗(Y ).

The inverse image functor f−1 : Sh(Y,VectC)→ Sh(X,VectC) is defined

as f−1G being the sheaf associated with the presheaf

U 7−→ lim−→
f(U)⊂V

G(V ).

Here G is a sheaf on Y and U ⊂ X is open. This functor is exact and

hence the corresponding derived functor Rf−1 : D∗(Y )→ D∗(X) is usually

denoted again by f−1.

If f(U) ⊂ Y is open, then (f−1G)(U) = G(f(U)). In particular, if the

map iU : U ↪→ X denotes the inclusion of an open set, then i−1
U F = F|U .

The restriction to an arbitrary subspace Z ⊂ X is defined by

F|Z := i−1
Z F ,

where iZ : Z ↪→ X is the inclusion.

Using this notation one has CX |Z := i−1
Z CX = CZ .

(IV.3.2). Let X be a complex analytic space and S = {Xj}j∈J a locally

finite partition of X into non-empty, connected, locally closed subsets called

strata of S. The partition S is called a stratification if it satisfies the following

conditions:

(1) The boundary condition, i.e. each boundary ∂Xj = Xj \ Xj is a

union of strata in S.

(2) Constructibility, i.e. for all j ∈ J the spaces Xj and ∂Xj are closed

complex analytic subspaces in X.

(3) Stratification, i.e. all the strata are smooth constructible subvari-

eties of X.

Definition (IV.3.3). Let S = {Xj}j∈J be a stratification on X.

(i) A sheaf complex F• ∈ D∗(X) is called S-constructible if the restric-

tion of each cohomology sheafHq(F•)|Xj is a CXj -local system of finite rank,

that is, one has the isomorphisms of CXj -vector spaces

Hq(F•)|Xj ' Crj,qXj
.

(ii) Given u : F• → F• an automorphisms of CX -vector spaces, the

complex F• is called equivariantly S-constructible with respect to u, if it is

S-constructible and the induced automorphisms on the cohomology groups

Hq(u)x : Hm(F•)x → Hm(F•)x are all conjugate.
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(IV.3.4). Let X be a complex analytic variety and g : X → C a non-

constant analytic function. Consider the diagram,

g−1(0)
� � i

// X X \ g−1(0)

#f

��

? _
j

oo E

f̂
��

π̂
oo

C∗ C̃∗exp
oo

where i : g−1(0) ↪→ X and j : X \ g−1(0) ↪→ X are inclusions, C̃∗ is the

universal cover of C∗, and E denotes the pull-back.

Definition (IV.3.5). Let F• ∈ D∗(X) be a complex. The nearby cycles

of F• with respect to the function g : X → C is defined to be the sheaf

complex given by

ψgF• := i−1R(j ◦ π̂)∗(j ◦ π̂)−1F• ∈ D∗(g−1(0)).

The nearby cycles is a local operation in the sense that if U ⊂ X is

an open set, then (ψgF•)|W = ψg|WF•|W holds. Also note that ψgF• only

depends on g and F•|X\g−1(0).

There is an associated monodromy deck transformation h : E → E

coming from the action of the natural generator of π1(C∗) which satisfies

π̂ ◦ h = π̂. This homeomorphism induces an isomorphism of complexes

Mg : ψgF• −→ ψgF•.

For every point x ∈ g−1(0) there is a natural isomorphism from the stalk

cohomology of ψgF• at x to the cohomology of the Milnor fiber at x with

coefficients in F•, that is, for all ε > 0 small enough and all t ∈ C∗ with

|t| << ε, one has

Hq(ψgF•)x ' Hq(g−1(t) ∩Bε(x),F•| )(21)

' Hq(g−1(t) ∩Bε(x),F•| ),

where the open ball Bε(x) is taken inside any local embedding of (X,x) in

an affine space.

The monodromy morphism Mg,x on the left-hand side corresponds to

the morphism on the right-hand side induced by the monodromy homeo-

morphism of the local Milnor fibration associated with g : (X,x)→ (C, 0).

Now we are ready to state Dimca’s theorem. To be precise, he only

considered the case when the ambient space is smooth M = Cn+1, see

below. Repeating exactly the same arguments, one obtains the result for

any analytic variety.
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Theorem (IV.3.6) ([Dim04], Th. 6.1.14). Let f : (M,p) → (C, 0) be

the germ of a non-constant analytic function which is defined on a small

neighborhood U of p. Let H be the hypersurface {x ∈ U | f(x) = 0}. Assume

π : X → U is a proper analytic map such that π induces an isomorphism

between X \ π−1(H) and U \H.

Let g = f ◦ π denote the composition and j : X \ π−1(H) ↪→ X the

inclusion. Let S be a finite stratification of the exceptional divisor π−1(0)

such that ψg
(
Rj∗CX\π−1(H)

)
is equivariantly S-constructible with respect to

the semisimple part of Mg. Then,

Λ(h) =
∑

S∈S
χ(S)Λ(g, xS) ; Z(f) =

∏

S∈S
Z(g, xS)χ(S),

where xS is an arbitrary point in the stratum S and Z(g, xS), Λ(g, xs) are

the zeta function and the Lefschetz number of the germ g at xS.

Remark (IV.3.7). Let F• = Rj∗CX\π−1(H). Using the notation of the

previous theorem, the isomorphism of (21) tells us that

Hq(ψgF•)x = Hq(Fx,C)

where Fx is the Milnor fiber at x.

This clarifies when the complex of sheaves ψgF• is equivariantly S-

constructible with respect to the semisimple part of Mg. In particular, this

condition is satisfied, for instance, when the local equation of g along each

stratum is the same.

IV.3–2. Zeta function of a normal crossing divisor

Let M = Cn/µd be a quotient space of type X(d;A), not necessarily

cyclic or written in a normalized form. Recall the multi-index notation:

X(d;A) = X




d1 a11 . . . a1n
...

...
. . .

...

dr ar1 . . . arn


 ,

d = (d1, . . . , dr),

aj = (a1j , . . . , arj).

In Section III, we have seen that for each j = 1, . . . , n there is an iso-

morphism

(22)
X(d; aj) −→ C

[xj ] 7→ x
`j
j ,

where

`j = lcm

(
d1

gcd(d1, a1j)
, . . . ,

dr
gcd(dr, arj)

)
.
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Given a homogeneous polynomial defined over M , the classical formula

for the monodromy zeta function depending on the degree of the polynomial

and the Euler characteristic of the Milnor fiber seems to be more compli-

cated in this setting. Using the techniques developed in Chapter VI, one

can provide formulas at least for plane curves and surfaces but the trick of

applying the fixed point theorem does not work anymore. However, for our

purpose, only the normal crossing case is needed.

(IV.3.8). We first proceed to compute the geometric monodromy of a homo-

geneous polynomial f : M → C of degree N := deg(f). Let α : [0, 1] → C∗
be a generator of the fundamental group of C∗, for example, α(t) = exp(2πit)

and consider [x] ∈ F = f−1(1). The path

α̃ : [0, 1] −→ M \ f−1(0),

t 7→
[
(e

2πi
N
tx1, . . . , e

2πi
N
txn)

]

defines a lifting of α with initial point [(x1, . . . , xn)]. Thus the geometric

monodromy h : F → F corresponds to the map

α̃(0) =
[
(x1, . . . , xn)

] h7−→
[
(e

2πi
N x1, . . . , e

2πi
N xn)

]
= α̃(1).

As in the case M = Cn, this also works for quasi-homogeneous poly-

nomials, replacing the exponentials for suitable numbers according to the

weights.

(IV.3.9). Let us study the monodromy zeta function in the simplest normal

crossing case, i.e. f = xm1
1 : M → C. The Milnor fiber

F := f−1(1) = {[x] ∈M | xm1
1 = 1}

has the same homotopy type as F ′ := {[(x1, 0, . . . , 0)] ∈M | xm1
1 = 1} which

can be identified with

{
[x1] ∈ X(d; a1) | xm1

1 = 1
}
.

In fact, r : F → F ′ : [x] 7→ [x1] is a strong deformation retraction.

Since h(F ′) ⊂ F ′, the geometric monodromy h : F → F is homotopic to its

restriction h′ := h|F ′ : F ′ → F ′. Using the isomorphism (22),

X(d; a1) ' C : [x] 7→ x`1 ,

the claim is reduced to the calculation of the zeta function of the polynomial

x
m1/`1
1 : C→ C. But this is known to be 1− tm1/`1 .
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(IV.3.10). Assume now that f = xm1
1 · · ·xmkk : M → C, k ≥ 2. The Milnor

fiber F := f−1(1) has the same homotopic type as

F ′ :=
{[

(x1, . . . xk)
]
∈ S

1× (k)· · · ×S1

µd

∣∣ xm1
1 · · ·xmkk = 1

}
,

where µd defines an action of type (d; a1, . . . ,ak) on the space (S1)k. As

above, there is a strong deformation retraction

r : F −→ F ′,

[x] 7→
[( x1

|x1|
, . . . ,

xk
|xk|

, 0, . . . , 0
)]

satisfying that h(F ′) ⊂ F ′.
We shall see that the Lefschetz numbers Λ((h′)j) = Λ(hj) equal zero for

all j ≥ 1. This would imply Zf (t) = 1 by virtue of (18). Two cases arise:

• If (h′)j does not have fixed points, then by the classical fixed point

theorem Λ((h′)j) = 0.

• Otherwise, (h′)j is the identity map and Λ((h′)j) = χ(F ′) = 0.

Note that there is an unramified covering

(S1)k ⊃ F̃ ′ := {xm1
1 · · ·xmkk = 1} π−→ F ′

with a finite number of sheets. The first of the preceding spaces F̃ ′ has e =

gcd(m1, . . . ,mk) disjoint components, each of them homotopically equiva-

lent to a real (k − 1)-dimensional torus Tk−1 = (S1)k−1. It follows that

χ(F ′) =
1

deg π
eχ(Tk−1) = 0.

Note that the condition k ≥ 2 has only been used at the end. In the

case k = 1, one has

deg π = `1, e = m1, χ(T0) = 1, χ(F ′) = m1/`1.

We summarize the previous discussion in the following lemma.

Lemma (IV.3.11). The monodromy zeta function of a normal crossing

divisor given by xm1
1 · · ·xmkk : X(d;A)→ C, k ≥ 1, is

Z
(
xm1

1 · · ·xmkk : X(d;A)→ C; t
)

=

{
1− t

m1
`1 k = 1;

1 k ≥ 2,

where `1 = lcm

(
d1

gcd(d1, a11)
, . . . ,

dr
gcd(dr, ar1)

)
.
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As we see, the strata belonging to more than one irreducible components

do not contribute to the monodromy zeta function. This reflects the good

behavior of abelian quotient singularities with respect to normal crossing

divisors. By contrast, non-abelian groups seem to work differently, see §IV.5

where it is shown that “double points” may contribute to Z(f ; t).

IV.3–3. A’Campo’s formula for embedded Q-resolutions

Let f : (M, 0) → (C, 0) be a non-constant analytic function germ and

let (H, 0) ⊂ (M, 0) be the hypersurface defined by f . Given an embedded

Q-resolution of (H, 0), π : X → (M, 0), consider as in the classical case,

Ěi := Ei \
(
Ei ∩

( ⋃

k=1,...,s
k 6=i

Ek ∪ Ĥ
))

,

where E1, . . . , Es are the irreducible components of the exceptional divisor

of π, and Ĥ is the strict transform of H.

Definition (IV.3.12). Let X be a complex analytic space having only

abelian quotient singularities and consider D a Q-divisor with normal cross-

ings on X. Let q ∈ D be a point living in exactly one irreducible component

of D. Then, the equation of D at q is given by a function of the form

xmj : X(d;A)→ C, where xj is a local coordinate of X in q.

The multiplicity of D at q, denoted by m(D, q), is defined by

m(D, q) :=
m

`j
, `j = lcm

(
d1

gcd(d1, a1j)
, . . . ,

dr
gcd(dr, arj)

)
.

If there exists T contained in exactly one irreducible component of D

and the function q ∈ T 7→ m(D, q) is constant, then we use the notation

m(T ) := m(D, q0), where q0 is an arbitrary point in T .

Remark (IV.3.13). The integer m(D, q) does not depend on the type (d;A)

representing the quotient space. A more general definition, including the

case when q ∈ D belongs to more than one irreducible component, will be

given in (V.1.4).

To simplify the notation one writes E0 = Ĥ and S = {0, 1, . . . , s} so

that the stratification of X associated with the Q-normal crossing divisor

π−1(H) =
⋃
i∈S Ei is defined by setting

(23) E◦I :=
(
∩i∈I Ei

)
\
(
∪i/∈I Ei

)
,

for a given possibly empty set I ⊆ S. Note that, for i = 1, . . . , s, one has

that E◦{i} = Ěi.
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Let X =
⊔
j∈J Qj be a finite stratification on X given by its quotient

singularities so that the local equation of g = f ◦ π at q ∈ E◦I ∩Qj is of the

form

xm1
1 · · ·xmkk : B/G −→ C,

whereB is an open ball around q, andG is an abelian group acting diagonally

as in (d;A). The multiplicities mi’s and the action G are the same along each

stratum E◦I ∩Qj , i.e. they do not depend on the chosen point q ∈ E◦I ∩Qj .
Let us denote

Ěi,j := Ěi ∩Qj , mi,j := m(Ěi,j).

The following result is nothing but a generalization of (IV.2.1) written

in the language of divisors. To use the classical convection on indices, M =

Cn+1/µd (instead of Cn/µd) in the theorem below.

Theorem (IV.3.14). Let f : (M, 0) → (C, 0) be a non-constant analytic

function germ and let H = {f = 0}. Consider F the Milnor fiber and

h : F → F the geometric monodromy. Assume π : X → (M, 0) is an

embedded Q-resolution of (H, 0). Then, using the notation above, one has:

(i = 1, . . . , s, j ∈ J)

(1) The Lefschetz number of hk = h ◦ (k)· · · ◦h : F → F , k ≥ 0, and the

Euler characteristic of F are

Λ(hk) =
∑

i,j, k|mi,j
mi,j · χ(Ěi,j),

χ(F ) =
∑

i,j

mi,j · χ(Ěi,j) = Λ(h0).

(2) The local monodromy zeta function of f at 0 is

Z(t) =
∏

i,j

(1− tmi,j )χ(Ěi,j) .

(3) In the isolated case, the characteristic polynomial of the complex

monodromy of (H, 0) ⊂ (M, 0) is

∆(t) =


 1

t− 1

∏

i,j

(tmi,j − 1)χ(Ěi,j)




(−1)n

,

and the Milnor number is

µ = (−1)n
[
− 1 +

∑

i,j

mi,j · χ(Ěi,j)
]

= deg ∆(t).
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Proof. Only the proof of (2) is given; the other items follow from this

one. Using that E0 = Ĥ and S = {0, 1, . . . , s}, the support of the total

transform can be written as

π−1(H) = Ĥ ∪ π−1(0) =
⋃

i∈S
Ei.

Let X =
⊔
I⊆S E

◦
I be the stratification of X given in (23) associated with

this Q-normal crossing divisor. This partition gives rise to a stratification

on π−1(0) =
⊔
E◦I , where the intersection is taken over

I ∈ P(S) \ {∅, {0}}.

However, the equivariant property is not satisfied in general, since the

strata may contain singular points of X. Instead, let S be the following finer

stratification

S =
{
E◦I ∩Qj

}
I⊂S, j∈J
I 6= ∅, {0}

.

Now the family S is a finite stratification of the exceptional divisor of π

such that the complex ψf◦π(Rj∗CX\π−1(H)) is equivariantly S-constructible,

where

j : X \ π−1(H) ↪−→ X

is the inclusion. Hence Theorem (IV.3.6) applies. Moreover, given q ∈
π−1(0), there exist I = {i1, . . . , ik} ⊂ S, k ≥ 1 (k = 1⇒ i1 6= 0), and j ∈ J
such that the local equation of g := f ◦ π at q is given by the function

x
mi1
i1
· · ·xmikik

: Bj/Gj −→ C.

The numbers mij ’s and the action Gj are the same along each stratum

of S. By Lemma (IV.3.11), the strata with k ≥ 2 do not contribute to the

monodromy zeta function.

Take xT = xI,j an arbitrary point in E◦I ∩ Qj , then from the previous

discussion one has

Z(f) =
∏

T∈S
Z(g, xT ) =

∏

I⊂S, j∈J
I 6= ∅, {0}

Z(g, xI,j)
χ(E◦I∩Qj)

=
∏

i=1,...,s
j∈J

Z(g, x{i},j)
χ(E◦{i}∩Qj) =

∏

i=1,...,s
j∈J

(1− tmi,j )χ(Ěi,j).

Above, Lemma (IV.3.11) is used for the computation of the monodromy

zeta function at x{i},j . Observe also that E◦{i} ∩ Qj = Ěi,j . Now the proof

is complete. �
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Remark (IV.3.15). Let X =
⊔
j∈J Q

′
j be another finite stratification of X

such that the function

q ∈ Ěi ∩Q′j 7−→ m(Ei, q)

is constant. Then the previous theorem still holds replacing Ěi,j = Ěi ∩Qj
by Ěi ∩Q′j .

Remark (IV.3.16). When Sing(M) ⊂ H, then M \H is smooth and thus

so is X \ π−1(H). Consequently, all singularities of X are contained in the

total transform π−1(H), and the numbers mi,j ’s take the simple form

mi,j =
m

lcm(d1, . . . , dr)
,

after having normalized the types involved in the corresponding embedded

Q-resolution of the singularity, cf. (IV.2.2).

Section § IV.4

Zeta Function of Not-Well-Defined Functions

In what follows, the monodromy zeta function associated with not well-

defined functions over M = X(d;A) is needed. Assume f ∈ C[x1, . . . , xn] is

a polynomial such that the following condition holds for all P ∈ Cn,

f(P ) = 0 =⇒ f(ξd · P ) = 0, ∀ξd ∈ µd.

Then the zero set {[x] ∈ M | f(x) = 0} =: {f = 0} ⊂ M is well defined,

although f may not induce a function over M .

Proposition (IV.4.1). Let f ∈ C[x1, . . . , xn] be a reduced polynomial. The

following conditions are equivalent:

(1) ∀P ∈ Cn,
[
f(P ) = 0 =⇒ f(ξd · P ) = 0, ∀ξd ∈ µd

]
.

(2) ∃v ∈ Nr such that f(ξd · x) = ξv
df(x), ∀ξd ∈ µd.

(3) ∃k ≥ 1 such that fk := f · (k). . . ·f : M → C is a function.

Proof. The only non-trivial part is perhaps (1)⇒ (2). Define gi(x) for

each i = 1, . . . , r to be the polynomial

gi(x) := f((1, . . . , ζi, . . . , 1) · x) = f(ζi · x),

where ζi is a fixed primitive di-th root of unity. By (1), since f is reduced,

one has

gi ∈ IV (f) =
√
f = 〈f〉.
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There exists hi ∈ C[x] such that gi = hif . Taking degrees the polyno-

mials hi’s must be constants. But,

f(x) = f(ζdii · x) = gi(ζ
di−1
i · x)

= hi · f(ζdi−1
i · x) = · · · = hdii · f(x).

Hence hi = ζvii for some vi ∈ N. Now the vector v = (v1, . . . , vr) ∈ Nr
satisfies (2) and the claim follows. �

The following example shows that the reduceness condition in the state-

ment of the previous result is necessary.

Example (IV.4.2). Let f = (x2 + y)(x2 − y)3 ∈ C[x, y] and consider the

cyclic quotient space M = X(2; 1, 1). Then {f = 0} ⊂ M defines a zero

set but there is no k such that fk is a function over M . This is basically

Example (II.2.9).

(IV.4.3). If f : X(d;A) → C is a well-defined function, using A’Campo’s

formula, one easily sees that Z(fk; t) = Z(f ; tk). Therefore, when f is not

a function but is fk is, it is natural to define the monodromy zeta function

of f as follows

Z(f ; t) := Z(fk; t
1
k ).

One can prove that it is well defined, that is, it does not depend on k.

Indeed, assume that f l also induces a function over M , for some l ≥ 1.

Using Bézout’s identity for k, l we have that fgcd(k,l) : M → C is a function

too. Denote e := gcd(k, l), k = k1e, and l = l1e. Then,

Z(fk; t
1
k ) = Z(fk1e; t

1
k1e ) = Z(fe; t

1
e ) = Z(f l1e; t

1
l1e ) = Z(f l; t

1
l ).

The zeta function defined is a rational function on C[t
1
k ], where k is

the minimum l ≥ 1 such that f l is a function over M . When f itself is a

function, that is k = 1, then it is a rational function on C[t] as usual.

The Euler characteristic of the Milnor fiber and the Milnor number are

taken by definition as

χf := degZ(f ; t) ;

µf := (−1)n(−1 + χf ) ,

where the degree of ti/k is i/k. They are, in general, rational numbers and

they verify

χf =
χfk

k
,

µf =
(−1)n(1− k) + µfk

k
.
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In this situation, our generalized A’Campo’s formula can be applied

directly to f , that is, without going through fk. See Section III for the

notion of embedded Q-resolution in this setting. Note that in this case, the

numbers mi,j ’s of Theorem (IV.3.14) are rational numbers.

Let us see an example.

Example (IV.4.4). Let f = xayb(x2 +y3) ∈ C[x, y] and consider the space

M = X(d; p, q) not necessarily written in a normalized form but assume

gcd(d, p, q) = 1 and d|(2p− 3q) hold. Then f defines a zero set but does not

induce a function over M .

Figure IV.7 represents an embedded Q-resolution of {f = 0} ⊂ M

which has been obtained with the
(

3
gcd(d,p) ,

2
gcd(d,q)

)
-weighted blowing-up at

the origin. The numbers in brackets are the order of the cyclic groups

after normalizing and the others are the multiplicities of the corresponding

divisors.

m = 3a+2b+6
gcd(d,p) gcd(d,q)(

3
gcd(d,p)

)(
2

gcd(d,q)

)

a
gcd(d,q)

b
gcd(d,p)1

Figure IV.7. Q-resolution of
{
xayb(x2 + y3) = 0

}
⊂ X(d; p, q).

Hence the monodromy zeta function, the Euler characteristic of the Mil-

nor fiber, and the Milnor number are:

Z(t) = (1− tm)−1,

χf = −m,
µf = m+ 1.

Here a, b are assumed to be non-zero, since otherwise the singular points

of the final total space would also contribute to Z(f ; t). We show some

special values for µf .

(d, p, q) (6, 3, 2) (1,−,−) (6, 3, 2)

(a, b) (2, 3) (1, 1) (1, 1)

µf 4 12 17/6

Observe that the first two values correspond to the polynomial functions

xy(x+ y) and xy(x2 + y3) defining over C2, respectively.
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(IV.4.5). In the previous example, X(d; p, q) can be normalized to

X

(
d

(d, p)(d, q)
;

p

(d, p)
,

q

(d, q)

)
.

Under this isomorphism the polynomial f = xayb(x2 + y3) is sent to

x
a

(d,q) · y
b

(d,p)
(
x

2
(d,q) + y

3
(d,p)

)
,

which is not a polynomial in general. This seems to force one to work with

non-normalized spaces.

However, since d|(2p − 3q) and gcd(d, p, q) = 1, then gcd(d, q)|2 and

gcd(d, p)|3. Thus the preceding expression is a polynomial times a monomial

with rational exponents.

This fact is not a coincidence as the following result clarifies, see also

Remark (VI.2.7). Although it can be stated in a more general setting, to

simplify the ideas, we only consider polynomials in two variables over cyclic

quotient singularities.

Proposition (IV.4.6). Let d, p, q be three numbers, gcd(d, p, q) = 1. Let

f(x, y) ∈ C[x, y] be a polynomial such that

f(ξpdx, ξ
q
dy) = ξvdf(x, y).

If x - f(x, y) and y - f(x, y), then f(x1/ gcd(d,q), y1/ gcd(d,p)) is again a

polynomial.

As a consequence, an arbitrary polynomial g(x, y) satisfying

g(ξpdx, ξ
q
dy) = ξvdg(x, y),

is converted after normalizing X(d; p, q) into a polynomial times a monomial

with rational exponents, that is, it can be written in the form,

g
(
x

1
gcd(d,q) , y

1
gcd(d,p)

)
= xaybh(x, y),

where h(x, y) ∈ C[x, y] and a, b ∈ Q≥0.

Proof. Since y - f(x, y), there exists k′ ≥ 0 such that xk
′

is a monomial

of f . The action is diagonal and does not change the form of the monomials.

Hence xk
′

has the same behavior with respect to the action as f , that is,

ξk
′p
d xk

′
= ξvdx

k′ . This implies that d|(k′p−v). Take k ≥ 0 such that k ≡ −k′
modulo d.

Now xkf(x, y) : X(d; p, q) → C is a function with x - f(x, y). Then

gcd(d, q)|k and f(x1/ gcd(d,q), y) is a polynomial, see Remark (VI.2.7). Anal-

ogously the expression f(x, y1/ gcd(d,p)) is a polynomial too and the proof is

complete. �
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(IV.4.7). As for weighted projective planes, let F ∈ C[x, y, z] be a (p, q, r)-

homogeneous polynomial with gcd(p, q, r) = 1. The monodromy zeta func-

tion of F (x, y, z) at a point of the form [a : b : 1] is defined by

Z
(
F (x, y, z), [a : b : 1]; t

)
:= Z

(
f(x, y, 1), (a, b); t

)
.

Note that f(ξprx, ξ
q
r , 1) = ξ

deg(f)
r f(x, y, 1) and thus f(x, y, 1) satisfies the

conditions of Proposition (IV.4.1)(2), where the quotient space is simply

M = X(r; p, q). Therefore the expression above equals

Z(f(x, y, 1)r, (a, b); t1/r).

Analogously, the zeta function at every point of P2(p, q, r) is defined and one

sees that it is independent of the chosen chart.

This can be generalized to spaces like Pnω/µd, where µd is an abelian

finite group acting diagonally as usual.

Remark (IV.4.8). To define the monodromy zeta function for polynomials

defining a zero set but there is no k such that fk is a function over the

quotient space, one could use A’Campo’s formula and try to prove that

the rational function obtained is independent of the chosen embedded Q-

resolution. We do not insist on the veracity of this fact because it is not the

purpose of this work.

Example (IV.4.9). We continue here with Example (IV.4.2). Blowing up

the origin of X(2; 1, 1) with respect to the weights (1, 2), an embedded Q-

resolution of {f = 0} ⊂ X(2; 1, 1) is computed and thus it makes sense to

define the zeta function using this resolution.

8

(4; 1, 1)(2; 1, 1)
Z(t) =

(1− t4)(1− t2)
(1− t8)

Figure IV.8. Embedded Q-resolution of {(x2 + y)(x2 −
y)3 = 0} ⊂ X(2; 1, 1) and its monodromy zeta function.

Section § IV.5

Why Abelian? D4 as a Quotient Singularity

All over the chapter, the ambient space X is assumed to be Cn/G, where

G is an abelian finite subgroup of GL(n,C). In this final part, using D4 as

a quotient singularity, it is exemplified the behavior for non-abelian groups.



§ IV.5. Why Abelian? D4 as a Quotient Singularity 95

As we shall see, double points in an embedded Q-resolution of a well-

defined function f : X → C contributes, in general, to its monodromy

zeta function. In this sense abelian groups are the largest family for which

Theorem (IV.2.1) applies.

Let C2 with coordinate (x, y) and consider the subgroup of GL(2,C)

generated by the matrices

A =

(
i 0

0 −i

)
, B =

(
0 −1

1 0

)
.

Thus A2 = B2 = (AB)2 = −Id2. This group of order 8, often denoted by

BD8, is called the binary dihedral group. The quotient singularity C2/BD8

is denoted by D4.

Let us compute the zeta function of f := (xy)m : D4 → C, where m is an

even positive integer so that the map is well defined. Consider π : Ĉ2 → C2

the usual blow-up at the origin. The action BD8 on C2 extends naturally to

an action on Ĉ2 such that the induced map π̄ : Ĉ2/BD8 → C2/BD8 =: D4

defines an embedded Q-resolution of {f = 0} ⊂ D4.

More precisely, there are three quotient singular points all of them of

type (2; 1, 1) located at the exceptional divisor. They correspond to the

points [0 : 1], [1 : 1], [i : 1] ∈ P1/BD8. The strict transform intersects

transversely the exceptional divisor at P := ((0, 0), [0 : 1]) and the equation

of the total transform at this point is given by xmym : X(2; 1, 1) → C, see

Figure IV.9.

(2; 1, 1)

m

m
(2; 1, 1)

(2; 1, 1)

P

Figure IV.9. Embedded Q-resolution of {(xy)m = 0} ⊂ D4.

From Theorem (IV.2.1), the monodromy zeta function of f and the Euler

characteristic of the Milnor fiber are

Z(t) =
(1− tm/2)2

1− tm =
1− tm/2
1 + tm/2

, χ(F ) = degZ(t) = 0.

In particular, Z(t) is not trivial although f defines a “double point” on D4,

as claimed.





V
Mixed Hodge Structure on the Cohomology of the

Milnor Fiber

Steenbrink in [Ste77] gave a mixed Hodge structure (MHS) on the co-

homology of the Milnor fiber using a spectral sequence that is constructed

from the divisors associated with the semistable reduction of an embedded

resolution. The aim of this chapter is to describe explicitly a similar spectral

sequence converging to the cohomology of the Milnor fiber starting with an

embedded Q-resolution.

The main idea behind this construction is that in the classical case af-

ter considering the semistable reduction the ambient space already contains

quotient singularities. We prove that the same is true for embedded Q-

resolutions and thus the construction by Steenbrink with the spectral se-

quence can be adapted to provide a MHS on the cohomology Hq(F,C).

Since the embedded Q-resolution can be chosen so that every excep-

tional divisor contributes to the complex monodromy, our spectral sequence

is better in the sense that less divisors will appear in the semistable reduc-

tion and thus the combinatorial complexity of the spectral sequence will be

simpler, cf. [Mar11b].

Section §V.1

The Semistable Reduction

This tool was introduced by Mumford in [KKMS73, pp. 53-108] and

roughly speaking the mission of the semistable reduction is to get a reduced

divisor that provides a model of the Milnor fibration. The spectral sequence

converging to the cohomology of the Milnor fiber will be defined in terms

of this reduced divisor, see Section V.3. Here we present a more general

approach than the needed for the Milnor fibration.
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(V.1.1). Let X be a complex analytic variety and let g : X → D2
η be a non-

constant analytic function. AssumeX only has abelian quotient singularities

and g−1(0) is a Q-normal crossing divisor, that is, g is locally given by a

function of the form xm0
0 · · ·xmkk : X(d;A)→ C. Let e be the least common

multiple of all possible multiplicities appearing in the divisor g−1(0) and

consider σ : D2
η1/e
→ D2

η the branched covering defined by σ(t) = te.

Denote by (X1, g1, σ1) the pull-back of g and σ.

X1
g1

//

σ1

��

D2
η1/e

σ

��

X g
// D2

η

The map σ1 is a cyclic covering of e sheets ramified over g−1(0). If

F denotes the Milnor fiber of g : X → C, then σ−1
1 (F ) has e connected

components which are projected diffeomorphically onto F .

We have not yet completed the construction of the semistable reduction

because X1 is not normal. Indeed, given P ∈ g−1(0) there exist integers

k ≥ 0 and m0, . . . ,mk ≥ 1 such that

g(x0, . . . , xn) = xm0
0 · · ·xmkk : B2n+2/µd −→ C,

where B2n+2 is an open ball of Cn+1 and the group µd acts diagonally

as in (d;A). Denote by P1 the unique point in σ−1
1 (P ). Then, X1 in a

neighborhood of P1 is of the form

(24)
{([

(x0, . . . , xn)
]
, t
)
∈ X(d;A)× C

∣∣ te = xm0
0 · · ·xmkk

}
,

and hence the space X1 is not necessarily normal.

Let ν : X̃ → X1 be the normalization and denote by g̃ := g1 ◦ ν and

% := σ1 ◦ ν the natural maps. The normalization process has essentially two

steps when the corresponding ring is a unique factorization domain (UFD).

First, separate the irreducible components, and then find the normalization

of each component. In the latter case, the ring in question is a domain and

the following result applies.

Lemma (V.1.2). Let A ⊂ B be an integral extension of commutative rings.

Suppose that B is an integrally closed domain such that Q(B)|Q(A) is a Ga-

lois extension. Then, the normalization of the ring A is A = BGal(Q(B)|Q(A)).

Proof. Since B is normal and the extension A ⊂ B is integral, then

A = B ∩Q(A). Now the statement follows from the Galois condition. �
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Example (V.1.3). The ring of functions of X(2; 1, 1) is isomorphic to

C[x2, xy, y2] as an algebraic variety. In this ring the polynomial xy is ir-

reducible but not prime. To compute the normalization of the quotient

ring C[x2, xy, y2]/〈xy〉, one can not proceed in the same way as in a UFD.

This happens because µ2 does not define an action on the factors of the

polynomial xy.

Although the ring of functions of the previous space (24) is not a UFD,

see Example (V.1.3) above, to compute the normalization of X1 one can

proceed in the same spirit because of the special form of the polynomial

te − xm0
0 · · ·xmkk , see proof of Proposition (V.1.7). Before that we need to

introduce some notations.

Definition (V.1.4). Let X be a complex analytic space having only abelian

quotient singularities and consider E a Q-normal crossing divisor on X.

Assume P ∈ |E| is a point such that the local equation of E at P is given

by the function

xm0
0 · · ·xmkk : X(d;A) := Cn+1/µd −→ C, (0 ≤ k ≤ n)

where x0, . . . , xn are local coordinates of X at P , d = (d0, . . . , dr), and

A = (aij)i,j ∈ Mat((r + 1)× (n+ 1),Z).

The multiplicity of E at P , denoted by m(E,P ) or simply m(P ) if the

divisor is clear from de context, is defined by

m(E,P ) := gcd

(
m0, . . . ,mk,

∑k
j=0 a0jmj

d0
, . . . ,

∑k
j=0 arjmj

dr

)
.

If there exists T ⊂ |E| such that the function P ∈ T 7→ m(E,P ) is con-

stant, then we use the notation m(T ) := m(E,P0), where P0 is an arbitrary

point in T .

Remark (V.1.5). Using the general fact lcm(mb0 , . . . ,
m
br

) = m
gcd(b0,...,br)

, one

easily checks that this definition coincides with the one of (IV.3.12) for k = 0,

cf. (25), that is,

m(E,P ) :=
m

L
, L = lcm

(
d0

gcd(d0, a00)
, . . . ,

dr
gcd(dr, ar0)

)
,

where E is a Q-divisor on X locally given at the point P by the well-defined

function xm0 : X(d;A)→ C.

In the situation of (V.1.1), the multiplicity m(g∗(0), P ) with P ∈ g−1(0)

can be interpreted geometrically as follows.
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Lemma (V.1.6). The number of prime (or irreducible) factors of the poly-

nomial te − xm0
0 · · ·xmkk regarded as an element in C[x0, . . . , xn]µd ⊗C C[t]

is m(g∗(0), P ). Hence this number also coincides with the cardinality of the

fiber over P of the covering % : X̃ → X.

Proof. Let us denote ` = gcd(m0, . . . ,mk) and Ci =
∑k

j=0 aijmj for

i = 0, . . . , r. The polynomial te − xm0
0 · · ·xmkk ∈ C[x0, . . . , xn, t] factorizes

into ` different components as

te − xm0
0 · · ·xmkk =

`−1∏

i=0

(
t
e
` − ζi` x

m0
`

0 · · ·x
mk
`
k

)
,

where ζ` is a primitive `-th root of unity. However, this factors are not

invariant under the group µd, since they are mapped to

t
e
` − ζi` x

m0
`

0 · · ·x
mk
`
k 7−→ t

e
` − ξ

C0
`
d0
· · · ξ

Cr
`
dr
· ζi` x

m0
`

0 · · ·x
mk
`
k ,

by the action of (ξd0 , . . . , ξdr) ∈ µd. Recall that Cn+1/µd = X(d;A).

Let Hi be the cyclic group defined by Hi := {ξCi/`di
| ξdi ∈ µdi}, for

i = 0, . . . , r, and consider H = H0 · · ·Hr. Since te − xm0
0 · · ·xmkk defines a

function over X(d;A) × C, then di must divide Ci and, consequently, all

the previous groups are (normal) subgroups of µ`. The order of µ`/H is

exactly the number of prime (or irreducible) components of the preceding

polynomial regarded as an element in C[x0, . . . , xn]µd ⊗C C[t].

The order of Hi is |Hi| = di
gcd(di, Ci/`)

= `
gcd(`, Ci/di)

. Then, one has

|H| = |H0 · · ·Hr| = lcm
(
|H0|, . . . , |Hr|

)

=
`

gcd
(
`, C0

d0
, . . . , Crdr

) =
`

m(P )
.(25)

In the expression above, a general property about greatest common divisor

and least common multiple already mentioned in (V.1.5) was used. �

Assume that g−1(0) = E0 ∪ · · · ∪Es and let us denote Di = %−1(Ei) for

i = 0, . . . , s and D =
⋃s
i=0Di. This commutative diagram illustrates the

whole process of the semistable reduction.

(26) Di
� � //

%

��

X̃
ν

//

%

��

g̃

''

X1
g1

//

σ1

��

D2
η1/e

σ

��

Ei
� � // X X g

// D2
η
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Consider the stratification of X associated with the normal crossing

divisor g−1(0) ⊂ X. That is, given a possibly empty set I ⊆ {0, 1, . . . , s},
consider

E◦I :=
(
∩i∈I Ei

)
\
(
∪i/∈I Ei

)
.

Also, let X =
⊔
j∈J Qj be a finite stratification of X given by its quotient

singularities so that the local equation of g at P ∈ E◦I ∩Qj is of the form

xm1
1 · · ·xmkk : B/G −→ C,

where B is an open ball around P , and G is an abelian group acting diag-

onally as in (d;A). The multiplicities mi’s and the action G are the same

along each stratum E◦I ∩ Qj , i.e. they do not depend on the chosen point

P ∈ E◦I ∩Qj . Denote mI,j := m(E◦I ∩Qj). Finally, assume that E◦I ∩Qj is

connected.

Proposition (V.1.7). The variety X̃ only has abelian quotient singularities

located at g̃−1(0) = D which is a reduced divisor with normal crossings

on X̃. Also, % : X̃ → X is a cyclic branched covering of e sheets unramified

over X \ g−1(0). Moreover, for ∅ 6= I ⊆ S := {0, 1, . . . , s} and j ∈ J , the

following properties hold.

(1) The restriction % | : %−1(E◦I ∩Qj) → E◦I ∩Qj is a cyclic branched

covering of mI,j sheets unramified over E◦I ∩Qj.
(2) The variety %−1(E◦I ∩Qj) is a V -manifold with abelian quotient

singularities with gcd({m(P ) | P ∈ E◦I ∩Qj}) connected compo-

nents.

(3) Let ϕ : X̃ → X̃ be the canonical generator of the monodromy of the

covering %. Then, its restriction to %−1(E◦I ∩Qj) is a generator of

the monodromy of % | : %−1(E◦I ∩Qj)→ E◦I ∩Qj.
(4) The Euler characteristic of each connected component of Di is

∑

{i}⊂I⊂{0,1,...,s}
j ∈ J

mI,j · χ(E◦I ∩Qj)
/

gcd({m(P ) | P ∈ Ei}).

Proof. First note that the morphism % : X̃ → X is a cyclic branched

covering unramified over X \ g−1(0), since so is σ1 : X1 → X and the

normalization ν : X̃ → X1 does not change the normal points.

Let P ∈ g−1(0) and choose coordinates x0, . . . , xn as in (V.1.1) so that

X1 ⊂ X(d;A) × C is locally given by the polynomial te − xm0
0 · · ·xmkk . Let

us denote for i = 0, . . . , k,

m(P ) = m(g∗(0), P ), e′ = e/m(P ), m′i = mi/m(P ).
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Consider the ring

A =
C[x0, . . . , xn, t]

〈te − xm0
0 · · ·xmkk 〉

.

The action given by X(d;A) is extended to A so that the variable t is

invariant. Then, by Lemma (V.1.6), the normalization Aµd of the ring Aµd

is isomorphic to the direct sum of m(P ) isomorphic copies of the normaliza-

tion of

C[x0, . . . , xn]µd ⊗C C[t]
〈
te′ − xm

′
0

0 · · ·x
m′k
k

〉 =

(
C[x0, . . . , xn, t]〈
te′ − xm

′
0

0 · · ·x
m′k
k

〉

)µd
.

Therefore to compute it we only need to consider the case m(P ) = 1,

for which the ring Aµd is an integral domain. Now we plan to apply

Lemma (V.1.2) to a ring extension Aµd ⊂ B, where B is a polynomial

algebra.

Let ci = e/mi for i = 0, . . . , k. Denote B = C[y0, . . . , yn] and con-

sider Aµd as subring of B by putting




xi = ycii if 0 ≤ i ≤ k,
xi = yi for i > k,

t = y0 · · · yk

Note that A can not be embedded in B because it is not even a domain.

Since µd acts diagonally on Cn+2, there exists N � 0 such that

yc0N0 , . . . , yckNk , yNk+1, . . . , y
N
n ∈ Aµd .

This implies that the extension Aµd ⊂ B is integral. Also, B is a normal

domain. It remains to prove that Q(B)|Q(Aµd) is a Galois field extension.

One has

C(yc0N0 , . . . , yckNk , yNk+1, . . . , y
N
n ) ⊂ Q(Aµd) ⊂ Q(B) = C(y0, . . . , yn).

Note that the largest extension is clearly Galois. Its Galois group is abelian

and it is isomorphic to

µc0N × · · · × µckN × µN× n−k. . . ×µN .

Thus Aµd = BGal(Q(B)|Q(Aµd )).

This shows that Spec(Aµd) and hence X̃ are V -manifolds. Locally D

is the quotient under the group Gal(Q(B)|Q(Aµd)) of the reduced divisor

y0 · · · yk = 0. The rest of the statement follows from the fact that the

branched coverings involved are cyclic. For the last part, use the classical

Riemann-Hurwitz formula. �
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Remark (V.1.8). Assume C[x0, . . . , xn]µd = C[{xα0
0 · · ·xαnn }α∈Λ]. Then Aµd

is identified with the subring

C[{yα0c0
0 · · · yαkckk · yαk+1

k+1 · · · yαnn }α∈Λ, y0 · · · yk] ⊂ C[y0, . . . , yn].

Hence the Galois extension

Gal(Q(B)|Q(Aµd)) ⊂ µc0N × · · · × µckN × µN× (n−k). . . ×µN
is given by the elements (ξ0, . . . , ξk, ηk+1, . . . , ηn) such that

∀α ∈ Λ,

{
ξα0c0

0 · · · ξαkckk · ηαk+1

k+1 · · · ηαnn = 1,

ξ0 · · · ξk = 1.

In general, this group is not a small subgroup of GL(n + 1,C), that is,

there may exist elements of the group having 1 as an eigenvalue of multi-

plicity precisely n.

Remark (V.1.9). Note that % | : %−1(E◦i ∩Qj) → E◦i ∩Qj is an isomor-

phism when I = {i} and the multiplicity of Ei (at the smooth points) is

equal to one.

In what follows this construction is applied to g = f ◦ π, where the

map f : (M,p) → (C, 0) is the germ of a non-constant analytic function

and π : X → (M,p) is an embedded Q-resolution of {f = 0} ⊂ (M,p),

cf. Section V.3. Let us see an example.

Example (V.1.10). We continue here with Example (IV.2.3) where the

plane curve f = xp+yq is considered. Recall that after the (q1, p1)-weighted

blow-up at the origin, one obtains an embedded Q-resolution with only one

exceptional divisor E of multiplicity lcm(p, q), where p = p1 gcd(p, q) and

q = q1 gcd(p, q).

(p1; q1,−1)(q1;−1, p1)

gcd(p,q)· · · gcd(p,q)· · · (q)· · ·(p)· · ·
ĈĈ

DE %←−−

Figure V.1. Semistable reduction of xp + yq.

Following Proposition (V.1.7), D = %−1(E) is irreducible and the restric-

tion % : D → E is a branched covering of lcm(p, q) sheets. Also, the singular

point of type (q1;−1, p1) (resp. (p1; q1,−1)) is converted into p (resp. q)

smooth points in the semistable reduction. Finally, % | : %−1(Ĉ) → Ĉ is an

isomorphism. This implies that the Euler characteristic of D is

χ(D) = p+ q + gcd(p, q)− pq = gcd(p, q) + 1− µ.
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The p points in D which are lift over the point of type (q1;−1, p1) are

smooth. Of course, the same happens for the point of type (p1; q1,−1). Also,

the intersection of the strict transform with D gives rise to gcd(p, q) smooth

points. As we shall see the smoothness is not relevant for providing a mixed

Hodge structure on the cohomology of the Milnor fiber.

Section §V.2

Monodromy Filtration

This exposition is extracted from [Art94b], which is in turn based on

the book [AGV88].

Let H be a C-vector space of finite dimension. Consider a nilpotent

endomorphism N : H → H, i.e. there exists k ∈ N such that Nk = 0. Its

Jordan canonical form is determined by the sequence of integers formed by

the size of the Jordan blocks.

There is an alternative way to encode the Jordan form giving instead

an increasing filtration on H. Let us fix k ∈ Z; it will be called the central

index of the filtration. Consider a basis of H such that the matrix of N in

this basis is the Jordan matrix. It is a direct sum of Jordan blocks of the

following form: 


0 1 0 · · · 0

0 0 1 · · · 0
...

...
. . .

. . .
...

0 0 0
. . . 1

0 0 0 · · · 0




Each Jordan block determines a subfamily {v1, . . . , vr} of the basis such

that N(vi) = vi−1 for i = 2, . . . , r and N(v1) = 0. Let us denote by l(vi) the

unique integer determined by the following two conditions:

(1) l(vi) = l(vi−1) + 2, ∀i = 2, . . . , r.

(2) {l(v1), . . . , l(vr)} is symmetric with respect to k.

In fact, this integer is l(vi) = k − r + 2i− 1, ∀i = 1, . . . , r, as one can check

directly.

Applying this construction to all the Jordan blocks, one defines Wl as the

vector subspace of H generated by {v | v in the basis, l(v) ≤ l}. This gives

rise to an increasing filtration {Wl}l∈Z on H. Its graded part is denoted by

GrWl (H) := Wl/Wl−1 for l ∈ Z.

Also, denote by Jl(N) the number of Jordan blocks in N of size l. Then,

it is satisfied that

Jl(N) = dim(GrWk−l+1(H))− dim(GrWk−l−1(H)).
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Proposition (V.2.1) ([Sch73]). There exists a unique increasing filtration

{Wl}l∈Z such that:

(1) N(Wl) ⊂Wl−2.

(2) N l : GrWk+l(H)→ GrWk−l(H) is an isomorphism. �

This filtration is called the weight filtration of N with central index k.

One checks that the filtration {Wl}l∈Z defined above satisfies these two prop-

erties. In particular, the description of {Wl}l∈Z does not depend on the

chosen basis.

(V.2.2). Using this construction, the Jordan form of an arbitrary automor-

phism M : H → H can be described too. Let M = MuMs be the decompo-

sition of M into its unipotent and semisimple components. It is known that

MuMs = MsMu and that the decomposition is unique, see [Ser66]. Recall

that the semisimple part contains the information about the eigenvalues and

the unipotent one, the information about the size of the Jordan blocks.

Note that the endomorphism N := log(Mu) is nilpotent and the number

of Jordan blocks of size l is Jl(N) = Jl(Mu) = Jl(M).

For a given k ∈ Z, consider the weight filtration associated with N with

central index k. Due to the properties of the decomposition, the subspaces

Wl are invariant by the action of Ms, and thus by the action of M .

The endomorphism induced by Mu on each graded part GrWl (H) is

semisimple and, since Mu is unipotent, it is indeed the identity. Hence

the actions of M and Ms on GrWl (H) coincide.

The conclusion is that the Jordan form of M is determined by the fil-

tration {Wl}l∈Z and the action of M over GrWl (H) for l ∈ Z.

Example (V.2.3). The decomposition above for a Jordan block of size 3

is given by


λ 1 0

0 λ 1

0 0 λ




︸ ︷︷ ︸
M

=



λ 0 0

0 λ 0

0 0 λ




︸ ︷︷ ︸
Ms




1 λ−1 0

0 1 λ−1

0 0 1




︸ ︷︷ ︸
Mu

.

Let us denote K =
(

0 λ−1 0
0 0 λ−1

0 0 0

)
. Then, since K3 = 0, the nilpotent endo-

morphism N is

N = log(Mu) = K − K2

2
=




0 1
λ

−1
2λ2

0 0 1
λ

0 0 0


 .

One clearly sees that the Jordan normal forms of the matrices N , Mu, and

M are all the same type but with different eigenvalues.
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(V.2.4). Let (V, 0) ⊂ (Cn+1, 0) be a germ of an isolated hypersurface sin-

gularity at the origin. Denote by ϕ : Hn(F,C) → Hn(F,C) its complex

monodromy.

Consider the decomposition of Hn(F,C) as a direct sum of two subspaces

invariant under ϕ, H 6=1 and H1, such that Id−ϕ is invertible over H 6=1 and

nilpotent over H1.

Let W 6=1 be the weight filtration of ϕ|H 6=1 with central index n. Analo-

gously, denote by W 1 the weight filtration of ϕ|H1 with central index n+ 1.

These filtrations satisfy W 6=1
−1 = W 1

1 = 0, W 1
2n = H1, and W 6=1

2n = H 6=1.

Definition (V.2.5). The monodromy filtration of the cohomology of the

Milnor fiber is W := W 1 ⊕W 6=1.

Note that the Jordan form of the complex monodromy is completely

determined by the action of ϕ over the graded parts of the monodromy

filtration W . Let us fix the notation for the characteristic polynomials of ϕ

acting on the following vector spaces:

Vector space Characteristic polynomial

H := Hn(F,C) ∆(t)

GrW
6=1

n−l (H) ∆ 6=1
l (t)

GrW
1

n−l+1(H) ∆1
l (t)

GrW
6=1

n−l (H)⊕GrW
1

n−l+1(H) ∆l(t)

Observe that the Jordan blocks of size l are given by the polynomial
∆l−1(t)
∆l+1(t) . More precisely, the multiplicity of ζ ∈ C as root is this polynomial

equals the number of Jordan blocks of size l for the eigenvalue ζ.

Section §V.3

The Spectral Sequence by Steenbrink

The Jordan form of the complex monodromy is closely related to the the-

ory of mixed Hodge structures (MHS), first introduced in [Del71a, Del71b,

Del74]. By different methods, Steenbrink and Varčenko proved that the

cohomology of the Milnor fiber admits a MHS compatible with the mon-

odromy, see [Ste77] and [Var80, Var81].

Definition (V.3.1). A Hodge structure of weight n is a pair (HZ, F ) con-

sisting of a finitely generated abelian group HZ and a decreasing filtration

F = {F p}p∈Z on HC := HZ⊗ZC satisfying HC = F p⊕Fn−p+1 for all p ∈ Z.

One calls F the Hodge filtration.
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An equivalent definition is obtained replacing the Hodge filtration by a

decomposition of HC into a direct sum of complex subspaces Hp,q, where

p+ q = n, with the property that Hp,q = Hq,p. The relation between these

two descriptions is given by

HC =
⊕

p+q=n

Hp,q, F p =
⊕

i≥p
H i,n−i, Hp,q = F p ∩ F q.

The typical example of a pure Hodge structure of weight n is the coho-

mology Hn(X,Z) where X is a compact Kähler manifold. In the sequel, we

will use the fact that, for compact Kähler V -manifold, Hn(X,Z) can also

be endowed with a pure Hodge structure of weight n. Deligne proved that

the same is true for smooth compact algebraic varieties, see [Del71b].

Above, one may replace Z by any ring A contained in R such that A⊗ZQ
is a field and obtain A-Hodge structures. In particular, one uses A = Q or R.

In this way the primitive cohomology groups of a compact Kähler manifold

are R-Hodge structures.

Definition (V.3.2). A mixed Hodge structure is a triple (HZ,W, F ) where

HZ is a finitely generated abelian group, W = {Wn}n∈Z is an increasing

filtration on HQ := HZ ⊗Z Q, and F = {F p}p∈Z is a decreasing filtration on

HC := HZ ⊗Z C, such that F induces a Q-Hodge structure of weight n on

each graded part GrWn (HQ), ∀n ∈ Z. One calls F the Hodge filtration and

W the weight filtration.

Let us denote again by the same letter the filtration induced by W on the

complexification HC, i.e. Wn(HC) = Wn ⊗ C. Then, the filtration induced

by F on GrWn (HC) is defined by

F p
(
GrWn (HC)

)
=
F p ∩ (Wn ⊗ C) +Wn−1 ⊗ C

Wn−1 ⊗ C
.

Thus the condition above on the weight and Hodge filtrations can be stated

as, ∀n, p ∈ Z,

F p
(
GrWn (HC)

)
⊕ Fn−p+1

(
GrWn (HC)

)
= GrWn (HC).

Example (V.3.3). Let D be a divisor with normal crossings whose ir-

reducible components are smooth and Kähler. Then, H∗(D,Z) admits a

functorial MHS, see [GS75]. This results is extended to V -manifolds with

Q-normal crossings whose irreducible components are Kähler.

In [Del71b], it is proven that if X is the complement in a compact

Kähler manifold of a normal crossing divisor, then H∗(X,Z) has a functorial

MHS which does not depend on the ambient variety.
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From now on, let us fix π an embedded Q-resolution of the singular-

ity. The following result can be proven as in [Ste77] repeating exactly the

same arguments. The main reason is that, starting with an embedded Q-

resolution, the total space produced after the semistable reduction is again

a V -manifold with abelian quotient singularities, see Proposition (V.1.7).

Theorem (V.3.4). There exists a spectral sequence {Ep,qn } constructed from

the embedded Q-resolution π that verifies:

(1) It converges to the cohomology of the Milnor fiber and degenerates

at E2.

(2) The spaces Ep,q1 has a pure Hodge structure of weight p respected by

the differentials. In particular, Ep,q2 = Ep,q∞ also has a pure Hodge

structure of weight p.

(3) There exists a Hodge filtration on the cohomology of the Milnor

fiber which induces a Hodge filtration on Ep,q∞ . One constructs a

weight filtration using the filtration with respect to the first index:

GrWl (Hk(F,C)) ∼= El,k−l∞ ∼= El,k−l2 .

Therefore, these two filtrations provide a MHS on the cohomology of the

Milnor fibration. This structure is an invariant of the singularity which only

depends on the resolution π. �

In [Var81], there is another construction of the MHS on the cohomology

of the Milnor fiber, using asymptotic integration. The weight filtration of

both MHS coincide. Varčenko’s definition does not depend on the resolution.

Although both Hodge filtrations do not coincide, they induce the same pure

Hodge structure on the graded part of the weight filtration.

Theorem (V.3.5). The complexification of the weight filtration of the MHS

of the cohomology of the Milnor fiber is exactly the monodromy filtration.

Moreover, the complex monodromy ϕ acts over the first term E1 of the

spectral sequence and commutes with the differentials. The action induced

on the complexification of E2 = E∞ coincides with the action induced on

the graded parts of the monodromy filtration. �

We finish this section with the explicit description of Steenbrink’s spec-

tral sequence. As we shall see, it is constructed from the divisors associated

with the semistable reduction of g := f ◦ π : X → C.

(V.3.6). Consider the divisor D associated with the semistable reduction

of the embedded Q-resolution π. Let us decompose D = D0 ∪D1 ∪ · · · ∪Ds

so that D0 corresponds to the strict transform of the singularity and the

divisor D+ := D1 ∪ · · · ∪Ds corresponds to the exceptional components.
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Let us introduce some notation.

• Let I = (i0, . . . , ik) with 0 ≤ i0 < · · · < ik ≤ s.

DI = Di0,...,ik := Di0 ∩ · · · ∩Dik ,

ĎI = Ďi0,...,ik := DI \
⋃

j 6=i0,...,ik
(Dj ∩DI).

The first one is a projective V -manifold of dimension1 n− k. The

second one is a smooth complex variety of the same dimension.

• Let 0 ≤ i0 < · · · < ik ≤ s and ij < i′j < ij+1 with −1 ≤ j ≤ k.

Denote by

κ
i′j
i0,...,ij ,ij+1,...,ik

: Di0,...,ij ,i′j ,ij+1,...,ik ↪−→ Di0,...,ij ,ij+1,...,ik ,

the natural inclusion.

• Let D[k] :=
⊔

0≤i0<···<ik≤s
Di0,...,ik .

• Let D
[k]
+ :=

⊔

1≤i0<···<ik≤s
Di0,...,ik .

Definition (V.3.7). Let k ∈ Z with 0 ≤ k ≤ n and let i, j ∈ Z with i, j ≥ 0.

Define kEi,k−j1 as

kEi,k−j1 :=




H i(D

[k]
+ ,Q) if j = 0,

H i−2j(D[k+j],Q) if j > 0.

Note that for j = 0 the divisor D+ is used, while for j > 0 it is taken

the divisor D. All the spaces whose cohomology is considered are compact.

(V.3.8). These spaces give rise to the first term E1 of our spectral se-

quence E = {Ep,qn }:

Ep,q1 :=
n⊕

k=0

kEp,q1 ,

where kEp,q1 = 0 if it is not defined previously.

Note that the space pEi,k−j1 possesses a natural pure Hodge structure

of weight i − 2j, since it is defined as the cohomology of degree i − 2j of a

compact Kähler V -manifold. Performing an index shifting H̃p+j,q+j := Hp,q,
pEi,k−j1 also has a pure Hodge structure of weight i, cf. Theorem (V.3.4).

1Recall the convection on indices, e.g. for plane curve n = 1.
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It still remains to define the differentials. In the first term E1 the differ-

entials are of type (0, 1), i.e. upward vertical arrows.

(V.3.9). Let us resume the notation of (V.3.6). Let
(
κ
i′j
i0,...,ik

)
∗

: H∗
(
Di0,...,ij ,i′j ,ij+1,...,ik ,Q

)
−→ H∗

(
Di0,...,ij ,ij+1,...,ik ,Q

)

be the homomorphism induced by the inclusion on the homology groups. Us-

ing Poincaré duality for compact V -manifolds, one has the following Gysin-

type maps:

H∗
(
Di0,...,ij ,i′j ,ij+1,...,ik ,Q

)

#

(
κ
i′j
i0,...,ik

)
∗

//

DP ∼=
��

H∗
(
Di0,...,ij ,ij+1,...,ik ,Q

)

DP∼=
��

H2(n−k−1)−∗
(
Di0,...,ij ,i′j ,ij+1,...,ik ,Q

)
//___ H2(n−k)−∗

(
Di0,...,ij ,ij+1,...,ik ,Q

)

These arrows are only possible if the spaces are compact. It is always the

case except for k = 0 and i0 = 0, where the corresponding map is defined

as zero.

By abuse of notation, the morphism associated with the dashed arrow

that completes the previous diagram is again denoted by (κ
i′j
i0,...,ik

)∗.

Definition (V.3.10). The differentials on kE1, kδ : kEi,k−j−1
1 → kEi,k−j1

are defined by

kδ |Hi−2(j+1)(Di0,...,ik+j+1
,Q) :=

k+j+1∑

l=0

(−1)l
(
κil
i0,...,îl,...,ik+j+1

)
∗
.

Remark (V.3.11). The pair (kE1,
kδ) is the term E1 of the spectral sequence

that provides the MHS of
⊔

0≤i0<···<ik≤s
Ďi0,...,ik ,

which is the complement of a divisor with normal crossings on a projective

variety.

To finish with the description of the differentials, the interactions be-

tween different kE1 have to be taken into account. These differentials are of

Mayer-Viétoris type. Denote by
(
κili0,...,ik+j

)∗

the corresponding homomorphism on the cohomology groups.



§V.3. The Spectral Sequence by Steenbrink 111

Definition (V.3.12). The morphisms k,k+1δ : kEi,k−j1 → k+1Ei,k−k+1
1 are

defined as

k,k+1δ |Hi−2j(Di0,...,ik+j ,Q) :=
∑

`6=i0,...,ik+j
(−1)e(l; i0,...,ik+j)

(
κili0,...,ik+j

)∗
,

where e(l; i0, . . . , ik+j) is the number of coefficients i0, . . . , ik+j less than l.

Remark (V.3.13). The pair (kEi,k1 , k,k+1δ) is exactly the term E1 of the

spectral sequence providing the MHS of the divisor with normal crossingsD+

which appears in [Del71b]. Observe that the first two columns of this

spectral sequence for k = 0 coincides with the first two columns of the term

E1 of {Ep,qn }.

Definition (V.3.14). The direct sum of the differentials kδ and k,k+1δ is

the differential δ of the term E1.

n = 1
n = 2

1E1

0E1

2E1

1E1

0E1

(0, 0) (1, 0)

(0, 2)

(0, 1)

(0, 0)
(1, 0)

(2,−1)

(2, 1)

Figure V.2. Decomposition of E = {Ep,qn } for n = 1, 2.

This section ends with the explicit description of the spectral sequence

{Ep,qn } ⊗Q C for the cases n = 1, 2. For n = 1, let us denote with a triangle

the terms belonging to 1E1 and with a circle the ones belonging to 0E1.

NH0(D
[1]
+ ,C) (k = 1)

•H0(D
[0]
+ ,C)

0,1δ

OO

•H1(D
[0]
+ ,C) •H2(D

[0]
+ ,C)

(k = 0) •H0(D[1],C)

0δ

OO

Figure V.3. Steenbrink’s spectral sequence for plane

curves, i.e. n = 1, with its decomposition E1 = 0E1 ⊕ 1E1.
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For surfaces, that is n = 2, denote with a square the terms belonging

to 2E1, with a triangle the ones belonging to 1E1, and finally with a circle

those coming from 0E1.

�H0(D
[2]
+ ) (k = 2)

NH0(D
[1]
+ )

1,2δ

OO

NH1(D
[1]
+ ) NH2(D

[1]
+ ) (k = 1)

•H0(D
[0]
+ )

0,1δ

OO

•H1(D
[0]
+ )

0,1δ

OO

NH0(D[2])

⊕
•H2(D

[0]
+ )

1δ⊕ 0,1δ

OO

•H3(D
[0]
+ ) •H4(D

[0]
+ )

(k = 0) •H0(D[1])

0δ

OO

•H1(D[1])

0δ

OO

•H2(D[1])

0δ

OO

•H0(D[2])

0δ

OO

Figure V.4. Steenbrink’s spectral sequence for surfaces,

i.e. n = 2, with its decomposition E1 = 0E1 ⊕ 1E1 ⊕ 2E1.

Section §V.4

Example of a Plane Curve

Assume gcd(p, q) = gcd(r, s) = 1 and p
q <

r
s . Let f = (xp + yq)(xr + ys)

and consider C1 = {xp + yq = 0} and C2 = {xr + ys = 0}. In Exam-

ple (I.3.15), an embedded Q-resolution of {f = 0} ⊂ C2 is computed, see

Figure V.5 below.

p(q + s)E1
(p; q,−1)Q

C2

(s;−1, r)

s(p+ r)E2

C1

Q =

(
rq − ps s −q
rq − ps −r p

)

P1

P2P3

R1

R2

R3

Figure V.5. Embedded Q-resolution of f = (xp + yq)(xr + ys).
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Let us calculate here the MHS associated with the Milnor fiber of f and

its complex monodromy. Before that, the notion of (weighted) dual graph

in this setting is introduced.

Usually one encodes a normal crossing divisor with its dual complex : one

vertex for each irreducible component, one edge for the intersection of two

irreducible components, one triangle for the intersection of three irreducible

components, etc. This is particularly useful for normal crossing divisors on

surfaces where the dual complex is converted into a (weighted) graph.

(V.4.1). Let us explain in detail how to encode a Q-divisor with Q-normal

crossings on a V -manifold using its weighted dual graph. We are interested

in the following cases: the divisor π∗(C) = (f ◦ π)∗(0) ⊂ X̂ in an embedded

Q-resolution π of a plane curve C = f∗(0), and also in its corresponding

semistable reduction. Their weighted dual graph Γ is defined as follows:

• The set VΓ of vertices of Γ is the ordered set of irreducible com-

ponents of π∗(C) (for some arbitrary order). It is decomposed in

two subsets VΓ = V 0
Γ

∐
V C

Γ ; the first one corresponds to the ex-

ceptional components and the second one to the strict transforms,

using arrow-ends.

• The set EΓ of edges of Γ is in bijection with the double points

of π∗(C).

• Each E ∈ V 0
Γ is weighted by its genus gE (omitted if gE = 0). It

is also weighted by its self-intersection number eE ∈ Q, see Defini-

tion (III.1.2).

• Each E ∈ VΓ is weighted by mE defined as follows: given a generic

point in E, one can choose local analytic coordinates (xE , yE) cen-

tered at this point such that yE = 0 is a local equation of E and

(f ◦ π)(xE , yE) = ymEE .

• For E ∈ VΓ, let Sing0(E) be the set of singular points of X̂ in E

which are not double points. Then, together with E, the sequence

of normalized types {(dP ; aP , bP )}P∈Sing0(E), where E is the image

of y = 0, is given. Note that dP divides mE .

• If the double point Pγ = E1∩E2, E1 < E2, associated with γ ∈ EΓ

is singular, we provide a normalized type (d; a, b), where E1 is the

image of x = 0 and E2 is the image of y = 0. Note that d divides

amE1 + bmE2 .

Remark (V.4.2). The weighted dual graph can also be considered associated

with an abstract good Q-resolution. This is especially useful for describing

a Q-resolution via Jung method, see [AMO11b] for details.
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Example (V.4.3). The embedded Q-resolution of the preceding example,

see Figure V.5 above, is computed with the (q, p)-blow-up at the origin of C2

followed by the (s, qr−ps)-blow-up at a point of type (q;−1, p). Its weighted

dual graph is shown in Figure V.6.

e1 = − r
p(rq−ps)

(p; q,−1)

E1 E2
m1 = p(s+ q) m2 = s(p+ r)

e2 = − q
s(rq−ps)

(s; r,−1)(rq − ps; ar + bs,−1)
C2C1

Figure V.6. Dual graph of the embedded Q-resolution of

{(xp + yq)(xr + ys) = 0} ⊂ C2, where ap+ bq = 1.

The self-intersection numbers are calculated using (III.3.2). The point Q

is also of type (rq−ps; ar+bs,−1) where ap+bq = 1. In fact, it is normalized

since gcd(rq − ps, ar + bs) = 1.

Now is the time to study the semistable reduction of the embedded Q-

resolution obtained in Example (V.4.3). Denote by P1 the point in E1 of

type (p; q,−1), P2 the intersection of C1 with E1, and P3 a generic point

in E1. Analogously, denote by R1 the point in E2 of type (s;−1, r), R2 the

intersection of C2 with E2, and R3 a generic point in E2, cf. Figure V.5.

Let E = C1 ∪ C2 ∪ E1 ∪ E2 ⊂ X be the total transform of the plane

curve {f = 0} ⊂ C2 for the embedded Q-resolution π : X → C2. Also,

write g := f ◦ π and use the notation in (V.1.1) and (26) so that E = g∗(0).

Following Definition (V.1.4), the numbers m(E,P ), where P ∈ E is one of

the previous points, are calculated below:

m(E,P1) = q + s, m(E,R1) = p+ r,

m(E,P2) = 1, m(E,R2) = 1,

m(E,P3) = p(q + s), m(E,R3) = s(p+ r).

On the other hand, by Lemma (V.1.6), the cardinality of the fiber

over Q ∈ E1 ∩ E2 of the covering % : X̃ → X (i.e. the semistable reduc-

tion) is

m(E,Q) = gcd
(
p(q + s), s(p+ r), A,B

)
,

where

A =
p(q + s) · s+ s(p+ r) · (−q)

rq − ps = −s,

B =
p(q + s) · (−r) + s(p+ r) · p

rq − ps = −p.

Consequently, m(E,Q) = gcd(p, s).
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From Proposition (V.1.7), one deduces the following statements. The

divisors D1 := %−1(E1) and D2 := %−1(E2) have just one connected compo-

nent. Their Euler characteristics are

χ(D1) = q + s+ gcd(p, s) + 1− p(q + s),

χ(D2) = p+ r + gcd(p, s) + 1− s(p+ r).

The preimage of the strict transforms, %−1(C1) and %−1(C2), are isomorphic

to C1 and C2 respectively, and thus denoted again by the same letter.

g1 =
(p− 1)(q + s)− gcd(p, s) + 1

2

D1 D2

m2 = 1

g2 =
(s− 1)(p+ r)− gcd(p, s) + 1

2

C2C1

m1 = 1
...

Q′

gcd(p, s)

Figure V.7. Dual graph of the semistable reduction of f .

Since the singularity defined by f is isolated, the generalized Steenbrink’s

spectral sequence gives rise the exact sequences

0 −→ Ker
(

0,1δ
)

︸ ︷︷ ︸
C

−→ H0(D
[0]
+ )

0,1δ−−→ H0(D
[1]
+ ) −→ Coker

(
0,1δ
)

︸ ︷︷ ︸
GrW0 H1(F,C)

−→ 0,

and

0 −→ Ker
(

0δ
)

︸ ︷︷ ︸
GrW2 H1(F,C)

−→ H0(D[1])
0δ−→ H2(D

[0]
+ ) −→ Coker

(
0δ
)

︸ ︷︷ ︸
0

−→ 0.

Moreover, GrW1 H1(F,C) = H1(D
[0]
+ ).

The divisor D
[0]
+ is the disjoint union of D1 and D2, and D[1] (resp. D

[1]
+ )

consists of gcd(p, s) + 2 (resp. gcd(p, s)) points. Hence,

H0(D
[0]
+ ) = 2

H0(D
[1]
+ ) = gcd(p, s)

}
=⇒ H0,0 = GrW0 H1(F,C) = Cgcd(p,s)−1.

Analogously, H0(D[1]) = gcd(p, s) + 2 and H2(D
[0]
+ ) = 2, which implies that

H1,1 = GrW2 H1(F,C) = Cgcd(p,s).

As for the (pure) Hodge structure of weight 1 associated with the co-

homology H1(D
[0]
+ ) = H0,1 ⊕ H1,0, it is known to be determined by the

genus of the corresponding real surface. In this case, H0,1 = Cg1 ⊕ Cg2
and H1,0 = Cg1 ⊕ Cg2 .
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Remark (V.4.4). It must be satisfied that
∑

p,q dimCH
p,q = µ. In fact, the

Milnor number is the degree of the characteristic polynomial, which is by

Theorem (IV.3.14) equal to

∆(t) =

(
t− 1

)(
tp(q+s) − 1

)(
ts(p+r) − 1

)
(
tq+s − 1

)(
tp+r − 1

) .

Summarizing, the mixed Hodge structure of the cohomology of the Mil-

nor fiber H1(F,C) obtained is

H1(F,C) = H0,0
︸︷︷︸

GrW0 H1(F,C)

⊕ H0,1 ⊕H1,0
︸ ︷︷ ︸
GrW1 H1(F,C)

⊕ H1,1
︸︷︷︸

GrW2 H1(F,C)

,

where

H0,0 = Cgcd(p,s)−1,

H0,1 = Cg1 ⊕ Cg2 ,

H1,0 = Cg1 ⊕ Cg2 = H0,1,

H1,1 = Cgcd(p,s).

The genera g1 and g2 are calculated in Figure V.7. The action of the

monodromy on GrW0 H1(F,C) is given by the polynomial

tgcd(p,s) − 1

t− 1
.

Note that this provides the eigenvalues of the monodromy with Jordan

blocks of size 2.



VI
An Embedded Q-Resolution for Superisolated

Singularities

Let (V, 0) ⊂ (C3, 0) be a germ of surface singularity in C3. By definition,

V is the zero set of a holomorphic function f : U → C, where U ⊂ C3 is a

small neighborhood of the origin and f(0) = 0. Denote also by f the germ

at the origin of this function; it is an element of the local ring C{x, y, z}.
Consider the decomposition of f into homogeneous parts,

f(x, y, z) = fm(x, y, z) + fm+1(x, y, z) + · · · ,

where fi is homogeneous of degree i and fm 6= 0. The integer m is the

multiplicity of the singularity and the order of the series f . Denote by

C := V (fm) ⊂ P2 the projective plane curve defined by the tangent cone of

the singularity. The following families are considered in this work:

(1) Superisolated singularity (or, shortly, SIS): the local equation f

satisfies P2 ⊃ Sing(C) ∩ V (fm+1) = ∅.
(2) Yomdin-Lê singularity (YS): the decomposition of f into homoge-

neous polynomials is of the form f = fm + fm+k + · · · and the

condition Sing(C) ∩ V (fm+k) = ∅ holds.

(3) Weighted Yomdin-Lê singularity (WYS): let ω := (a, b, c) ∈ N3

be three positive numbers such that gcd(a, b, c) = 1. The sum f =

fm+fm+k+· · · is the decomposition of f into (a, b, c)-homogeneous

parts and Sing(C) ∩ V (fm+k) = ∅ in P2
ω.

Remark (VI.0.5). Recall that when fi is a quasi-homogeneous polynomial

with respect to ω, it defines a curve in the weighted projective plane P2
ω.

The notion of singular point in this setting is given in Chapter III. Now, the

third definition above makes sense.
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These singularities have been studied by many authors. We are content

to cite merely the survey [ALM06], where part of the theory of these singu-

larities and their applications including some new and recent developments

are reviewed.

Although these three families can be studied simultaneously, for better

exposition they are presented and treated separately. In this chapter, a

detailed description of an embedded Q-resolution of superisolated surface

singularities in terms of an embedded Q-resolution of its tangent cone is

given. In particular, it is proven that only weighted blow-ups at points are

needed.

Also, we shall see that an exceptional divisor in the resolution of (V, 0)

contributes to the complex monodromy if and only if so does the corre-

sponding divisor in the tangent cone. Thus the weights can be chosen so

that every exceptional divisor in the Q-resolution of (V, 0) contributes to

the monodromy.

The generalized A’Campo’s formula applies and the characteristic poly-

nomial and the Milnor number are calculated as an application. Other more

sophisticated invariants, including mixed Hodge structure of the cohomology

of the Milnor fiber, are the subject of our study for the future.

As we will see, the previous chapters are essential for describing the

embedded Q-resolution. More precisely, the following sections and results

will be very useful: §I.3–1, §I.3–2, (III.2.1), (III.3.2), (III.4.3).

Section §VI.1

Preparations for the Q-Resolution

These singularities have been introduced by Luengo and also appear in a

paper by Stevens, where the µ-constant stratum is studied, see [Lue87] and

[Ste89] respectively. Afterward Artal described in his PhD thesis [Art94b]

an embedded resolution of such singularities using blow-ups at points and

rational curves.

Here an embedded Q-resolution is given and particularly it is proven

that only weighted blow-ups at points are needed. By contrast, the final

ambient space obtained has abelian quotient singularities.

(VI.1.1). Let (V, 0) be a SIS in (C3, 0) defined by a holomorphic function

f : U → C. As above, denote by m the multiplicity of V , and C the tangent

cone. Let π0 : Û → U be the blow-up at the origin. Recall that the total

transform is the divisor π∗0(V ) = V̂ +mE0, where V̂ is the strict transform

of V , and E0 is the exceptional divisor of π0. The intersection V̂ ∩ E0 is

identified with the tangent cone of the singularity.



§VI.1. Preparations for the Q-Resolution 119

Let us consider P ∈ V̂ ∩E0 = C. After linear change of coordinates we

can assume that P = ((0, 0, 0), [0 : 0 : 1]) ≡ [0 : 0 : 1] ∈ C. Take a chart of

Û around P where z = 0 is the equation of E0 and the blowing-up takes the

form

(x, y, z)
π07−→ (xz, yz, z).

Then the equation of V̂ is

V̂ : fm(x, y, 1) + z
[
fm+1(x, y, 1) + zfm+2(x, y, 1) + · · ·

]
= 0.

Two cases arise: if P is smooth in the tangent cone, then V̂ is also smooth

at P and the intersection with E0 at that point is transverse; otherwise, i.e

P ∈ Sing(C), the SIS condition Sing(C) ∩ V (fm+1) = ∅ implies that the

previous expression in brackets is a unit in the local ring C{x, y, z} and, in

particular, V̂ is still smooth. Now the order of fm(x, y, 1) is greater than or

equal to 2 and the intersection V̂ ∩ E0 is not transverse at P .

E0

V̂

C

π∗
0(V ) = V̂ +mE0

V̂ ∩ E0 = C
NT (π∗

0(V )) = Sing(C)

Figure VI.1. Step 0 in the embedded Q-resolution of (V, 0).

We summarize the previous discussion in the following result, which is

actually the step zero in the resolution of [Art94b].

Lemma (VI.1.2) (Step 0). Let P ∈ C be a point in the tangent cone. Then

V̂ is smooth in a neighborhood of P .

Moreover, the surfaces V̂ and E0 intersect transversely at P if and only

if P is a smooth point in C. Otherwise, i.e. P ∈ Sing(C), there exist local

analytic coordinates around P such that the equations of the exceptional

divisor and the strict transform are of the form

E0 : z = 0 ;

V̂ : z + h(x, y) = 0 ,

where h(x, y) = 0 is an equation of C and its order is at least 2.
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Note that in the (weighted) Yomdin-Lê surface singularity case the step

zero is very similar, cf. Lemma (VII.0.2) and (VII.3.1).

Section §VI.2

Construction of the Embedded Q-Resolution

We now proceed to construct the full Q-resolution of (V, 0). By the

preceding lemma, the set of points where π∗0(V ) is not a normal crossing

divisor is finite, namely Sing(C). Therefore the next step in the resolution

of (V, 0) is to blow up those points. Let us fix P ∈ Sing(C) and consider

local coordinates as in Lemma (VI.1.2). Even though many objects that

appear in this section depend on P , to simplify notation, it is omitted if no

confusion seems likely to arise.

Definition (VI.2.1). Given a divisor D, the set of points where D is not a

normal crossing divisor is called the locus of non-transversality of D and it

is denote by NT (D). In our case, the locus of non-transversality after the

blowing-up at the origin of (V, 0) is NT (π∗0(V )) = Sing(C).

The following result is the first step in a sequence of blow-ups. We adopt

the convention of writing the exceptional divisors appearing in the tangent

cone in calligraphy letter, while normal letter is used for the divisors in the

resolution of (V, 0).

Also, the objects coming from the blowing-up at Pa 6= P (resp. P ) are

indexed by the corresponding subindex a (resp. the number 1). Finally,

recall that the strict transform of a divisor is denoted again by the same

letter as the own divisor.

Lemma (VI.2.2) (Step 1). Let (p1, q1) ∈ N2 be two positive coprime num-

bers. Let $1 be the weighted blow-up at P ∈ C with respect to (p1, q1).

Denote by E1 its exceptional divisor and by ν1 the (p1, q1)-multiplicity of C

at P .

Consider π1 the (p1, q1, ν1)-weighted blow-up at P in dimension 3 and E1

the corresponding exceptional divisor. Then, the total transform of π∗0(V )

verifies:

(1) π∗1π
∗
0(V ) = V̂ +mE0 + (m+ 1)ν1E1,

(2) NT (π∗1π
∗
0(V )) = NT ($∗1(C)).

Proof. Let us start by blowing up the point P ∈ C with respect to the

weight vector (p1, q1), gcd(p1, q1) = 1, in the tangent cone. Consider the

local coordinates of Lemma (VI.1.2) around P so that the equation of C

is h(x, y) = 0; thus ν1 = ord(p1,q1) h(x, y).
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Recall that the ambient space obtained has two cyclic quotient singular

points corresponding to the origin of each chart and located at the excep-

tional divisor E1. The latter can be identified with the usual projective

line P1(p1, q1) ' P1 under the map [x : y] 7→ [xq1 : xp1 ], and it has self-

intersection −1
p1q1

by (III.3.2). Using the charts described in Section I.3–1,

1st chart X(p1;−1, q1) −→ Ĉ2(p1, q1),

[(x, y)] 7→
(
(xp1 , xq1y), [1 : y](p1,q1)

)
;

2nd chart X(q1; p1,−1) −→ Ĉ2(p1, q1),

[(x, y)] 7→
(
(xyp1 , yq1), [x : 1](p1,q1)

)
;

one obtains the following equations for the divisor $∗1(C) = C + ν1E1.

X(p1;−1, q1) ⊇
{
E1 : x = 0;

C : h1(x, y) = 0,

X(q1; p1,−1) ⊇
{
E1 : y = 0;

C : h2(x, y) = 0.

Note that h1(x, y) and h2(x, y) are not functions on the previous quotient

spaces but they define a zero set, since they satisfy

(27)
h1(ξ−1

p1 x, ξ
q1
p1y) = ξν1p1h1(x, y),

h2(ξp1q1 x, ξ
−1
q1 y) = ξν1q1h2(x, y).

Also, if the sum h = hν1 + hν1+l + · · · is the decomposition of h(x, y) into

(p1, q1)-homogeneous parts, then h1(0, y) = hν1(1, y), h2(x, 0) = hν1(x, 1),

and the (global) equation of C ∩ E1 ⊂ P1(p1, q1) is of the form

hν1(x, y) = xayb
∏

i

(xq1 − γq1i yp1)ei = 0.

Thus the intersection multiplicity of E1 and C at the point [γi : 1] is ei,

while it is a
q1

(resp. b
p1

), not necessarily an integer, at the singular point

[0 : 1] (resp. [1 : 0]), see (III.3.4) and Remark (VI.2.3) below.

(q1) (p1)

[0 : 1] [1 : 0][γi : 1]

E1
a = 0

b 6= 0

Figure VI.2. Step 1 in the embedded Q-resolution of (C, P ).
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Now describe the weighted blow-up at P with respect to (p1, q1, ν1) in

dimension 3. The new space has in general two (not three because p1 and q1

are coprime) cyclic quotient singular lines, each of them isomorphic to P1,

and located at the new exceptional divisor E1. They correspond to the lines

at infinity x = 0 and y = 0 of E1 = P2(p1, q1, ν1).

As an abstract space, E1 contains two singular points and it is isomorphic

to another weighted projective plane as the following expression shows, see

Proposition (I.2.5),

P2(p1, q1, ν1) −→ P2
(

p1
(p1,ν1) ,

q1
(q1,ν1) ,

ν1
(p1,ν1)(q1,ν1)

)
,

[x : y : z] 7→ [x(q1,ν1) : y(p1,ν1) : z].

The multiplicity of E1 is the sum of the (p1, q1, ν1)-multiplicities, in

our local coordinates, of the components of the divisor π∗0(V ) that pass

through P , that is ν1m+ ν1 = (m+ 1)ν1. Hence the total transform is the

divisor

π∗1π
∗
0(V ) = V̂ +mE0 + (m+ 1)ν1E1.

The equations in the three charts are given in the table below. Note

that the cyclic quotient spaces are written in their normalized form, since

gcd(p1, q1, ν1) = 1, see Section I.3–2 for details.

X(p1;−1, q1, ν1) X(q1; p1,−1, ν1)

(x, y, z)
π17−→ (xp1 , xq1y, xν1z) (xyp1 , yq1 , yν1z)

E0 z = 0 z = 0

E1 x = 0 y = 0

V̂ z + h1(x, y) = 0 z + h2(x, y) = 0

X(ν1; p1, q1,−1)

(x, y, z)
π17−→ (xzp1 , yzq1 , zν1)

E0 −
E1 z = 0

V̂ 1 + hν1(x, y) + zlhν1+l(x, y) + · · · = 0

Using the automorphism on X(p1;−1, q1, ν1) defined by [(x, y, z)] 7→
[(x, y, z+h1(x, y))], which is well defined due to (27), one sees that both E0

and V̂ intersect transversely E1. The equations of these intersections are

given by

E0 ∩ E1 = {z = 0},
V̂ ∩ E1 = {z + hν1(x, y) = 0},

as projective subvarieties in E1 = P2(p1, q1, ν1).
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By (III.4.3), these smooth projective curves are two sections of E1 with

self-intersection ν1
p1q1

. They meet at #(C∩E1) points with exactly the same

intersection number as in C∩E1, that is, for P ∈ C∩E1 ≡ V̂ ∩E0 ∩E1, one

has

(28)
(
E0 ∩ E1, V̂ ∩ E1; E1

)
P

=
(
C, E1; Ĉ2

(p1,q1)

)
P
.

On the other hand, the intersection of the total transform with E0 pro-

duces an identical situation to the tangent cone. All these statements follow

from the equations above. In Figure VI.3, we see the intersection of the

divisor π∗1π
∗
0(V ) with E0 and E1, respectively.

(ν1)

(q1) (p1)

x = 0 y = 0

E1

E0 ∩ E1

V̂ ∩ E1

[γi : 1 : 0]

[0 : 0 : 1]

(p1)

(q1)

E0

E1 ∩ E0

V̂ ∩ E0

[γi : 1]

Figure VI.3. Step 1 in the Q-resolution of (V, 0).

Finally, the triple points of the total transform in dimension 3 are iden-

tified with the points of C∩E1 and, by (28), the intersection at one of those

points is transverse if and only if so is it in dimension 2. This concludes the

proof. �

Remark (VI.2.3). To study the curves {z = 0} and {z + hν1(x, y) = 0}
in P2(p1, q1, ν1) at the point [0 : 1 : 0], one chooses the second chart of

the weighted projective plane and obtains the local equations z = 0 and

z + xa = 0 around the origin of X(q1; p1, ν1).

The intersection multiplicity at that point is a/q1, although the quotient

space is not written in its normalized form, see (III.2.1). Analogous consid-

erations follow for the points [γi : 1 : 0] and [1 : 0 : 0]. This fact was used to

prove (28).

Remark (VI.2.4). The curve V̂ ∩ E1 meets the line x = 0 (resp. y = 0)

in the projective plane P2(p1, q1, ν1) at exactly one point and the intersec-

tion is always transverse. If a = 0 (resp. b = 0), then gcd(q1, ν1) = q1

(resp. gcd(p1, ν1) = p1) and that point is different from the origins, see table

with the equations. This is important to obtain transversality in the next

steps of the resolution of (V, 0).
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After the first blow-up a very similar situation to Lemma (VI.1.2) is

produced, except that there is a new divisor to be considered and the points

where the total transform does not have normal crossings could be singular

in the ambient space. The main advantage compared with Artal’s resolu-

tion [Art94b] is that in the latter ν1 blow-ups at points and rational curves

were needed to achieve a similar situation.

(VI.2.5). Before going on with the second step let us give the natural strati-

fication of each exceptional divisor associated with its quotient singularities.

In the tangent cone, the only exceptional divisor is decomposed as

E1 = E1,1 ∪ E1,q1 ∪ E1,p1 ,

where E1,1 is isomorphic to P1 \ {[0 : 1], [1 : 0]} and E1,q1 , E1,p1 are the two

origins of the projective line.

In dimension 3, we have two exceptional divisors. The first one is de-

composed as

E0 = E0,1 ∪ E0,q1 ∪ E0,p1 ,

where the smooth part E0,1 is a weighted projective plane with a weighted

blow-up (at a point) minus two points, and E0,q1 , E0,p1 are those two points.

The stratification of the second one is

E1 = E1,1 ∪ E1,gcd(q1,ν1) ∪ E1,gcd(p1,ν1) ∪ E1,ν1 ∪ E1,q1 ∪ E1,p1 .

To describe it, denote L1 := {x = 0}, L2 := {y = 0} ⊂ P2(p, q, ν). The

smooth part is the previous projective plane minus L1 ∪ L2. The strata of

dimension 1 are

E1,gcd(q1,ν1) = L1 \ {[0 : 0 : 1], [0 : 1 : 0]},
E1,gcd(p1,ν1) = L2 \ {[0 : 0 : 1], [1 : 0 : 0]}.

Finally, the zero-dimensional strata E1,ν1 , E1,q1 , E1,p1 are the three origins.

See proof of Lemma (VI.2.2) and its figures.

The next result is the second step in the resolution of (V, 0) and it

corresponds to the second step in the resolution of (C, P ). Fix a point

Pa ∈ NT ($∗1(C)) and, to cover all cases, assume Pa is possibly not smooth

in the ambient space.

Lemma (VI.2.6) (Step 2). Let (pa, qa) ∈ N2 be two positive coprime num-

bers. Let $a be the weighted blow-up at Pa with respect to (pa, qa). Denote

by Ea its exceptional divisor, νa the (pa, qa)-multiplicity of C at Pa, and ma

the multiplicity of Ea.
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Consider πa the (pa, qa, νa)-weighted blow-up at Pa in dimension 3 and let

Ea be the corresponding exceptional divisor. Then, the new total transforms

satisfy:

(1) ma =
νa + paν1

gcd(p1, qa + paq1)
,

(2) $∗a$
∗
1(C) = C + ν1E1 +maEa,

(3) π∗aπ
∗
1π
∗
0(V ) = V̂ +mE0 + (m+ 1)ν1E1 + (m+ 1)maEa,

(4) NT (π∗aπ
∗
1π
∗
0(V )) = NT ($∗a$

∗
1(C)).

Proof. To fix ideas assume that Pa = [1 : 0] ∈ C∩ E1. The other cases

follow analogously. Let us first describe the (pa, qa)-weighted blow-up at the

point Pa in the tangent cone. Consider local coordinates around Pa so that

the equation of $1(C) = C + ν1E1 is given by the well-defined function

xν1h1(x, y) : X(p1;−1, q1) −→ C,

where x = 0 is the exceptional divisor E1 and h1(x, y) = 0 is the strict

transform of the curve as in the proof of Lemma (VI.1.2). Hence the order

at Pa is νa = ord(pa,qa) h1(x, y).

Also, take α1, β1 satisfying the Bézout’s identity α1p1 +β1q1 = 1 so that

X(p1;−1, q1) = X(p1;β1,−1) and thus xν1h1(x, y) also defines a function

on the latter quotient space.

Denote d := gcd(p1, qa + paq1). Two new cyclic quotient singularities of

orders p1pa
d and p1qa

d appear in the ambient space. They correspond to the

origin of each chart and thus located at the new exceptional divisor

Ea =
P1

(pa,qa)

µp1
= P1

(pa,qa)(p1;−1, q1),

which has self-intersection −d2
p1paqa

, see (III.3.2).

Let h1 = hνa +hνa+l + · · · be the decomposition of h1(x, y) into (pa, qa)-

homogeneous parts. Denote by g1(x, y) and g2(x, y) the unique polynomials

such that

h1(xpa , xqay) = xνag1(x, y),

h1(xypa , yqa) = yνag2(x, y).

Then,

g1(x
1
d , y)|x=0 = g1(0, y) = hνa(1, y),

g2(x, y
1
d )|y=0 = g2(x, 0) = hνa(x, 1).

Hence the set of points C ∩ Ea is given by the (global) equation

{hνa(x, y) = 0} ⊂ P1
(pa,qa)(p1;−1, q1).
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Note that hνa(x, y) is not a function on the previous quotient space but

it defines a zero set, since

(29)
hνa(ξ−1

p1 x, ξ
q1
p1y) = ξν1p1hνa(x, y),

hνa(ξβ1p1 x, ξ
−1
p1 y) = ξ−β1ν1p1 h1(x, y).

The multiplicity of the new exceptional divisor Ea is ma = νa+paν1
d . The

equations of the total transform $∗a$
∗
1(C) in the two charts are given in the

table below, see Section I.3–1 and (I.3.14).

Equations of $∗a$
∗
1(C) Chart

Ea : x = 0
X
(
p1pa
d ;−1, qa+paq1

d

)
−→ Ĉ2(pa, qa)

/
µp1E1 : −

C : g1(x
1
d , y) = 0

[
(xd, y)

]
7→

[(
(xpa , xqay), [1 : y](pa,qa)

)]

Ea : y = 0
X
(
p1qa
d ; pa+β1qa

d ,−1
)
−→ Ĉ2(pa, qa)

/
µp1E1 : x = 0

C : g2(x, y
1
d ) = 0

[
(x, yd)

]
7→

[(
(xypa , yqa), [x : 1](pa,qa)

)]

Now let us see the behavior of the (pa, qa, νa)-weighted blow-up at the

point Pa in dimension 3. In our local coordinates around

Pa = [1 : 0 : 0] ∈ (V̂ ∩ E0) ∩ E1,

the equation of the divisor π∗1π
∗
0(V ) = V̂ +mE0 + (m+ 1)ν1E1 is given by

the function

zmx(m+1)ν1(z + h1(x, y)) : X(p1;−1, q1, ν1) −→ C.

Note that X(p1;−1, q1, ν1) = X(p1;β1,−1,−β1ν1). Now we use the charts

described in Section I.3–2.

The ambient space has two new lines of singular points corresponding

to the lines at infinity {x = 0} and {y = 0} of the exceptional divisor

Ea =
P2

(pa,qa,νa)

µp1
= P2

(pa,qa,νa)(p1;−1, q1, ν1).

Recall that [0 : 0 : 1] ∈ Ea is a quotient singular point not necessarily cyclic.

The multiplicity of Ea is the sum of the (pa, qa, νa)-multiplicities of the

components of the divisor π∗1π
∗
0(V ) that pass through Pa divided by d =

gcd(p1, qa + paq1), that is,

νam+ pa(m+ 1)ν1 + νa
d

=
(m+ 1)(νa + paν1)

d
= (m+ 1)ma.
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To study the locus of non-transversality in a neighborhood of Ea, the

equations of the total transform are calculated in the following table. Note

that the third chart is not given in a normalized form but, as we shall see,

it is not needed for our purpose.

1st chart

Ea : x = 0

X

(
p1pa
d

;−1,
qa + paq1

d
,ma

)
E1 : −
E0 : z = 0

V̂ : z + g1(x
1
d , y) = 0

[
(xd, y, z)

]
7→

[(
(xpa , xqay, xνaz), [1 : y : z]

)]

2nd chart

Ea : y = 0

X

(
p1qa
d

;
pa + β1qa

d
,−1,

νa − β1ν1qa
d

)
E1 : x = 0

E0 : z = 0

V̂ : z + g2(x, y
1
d ) = 0

[
(x, yd, z)

]
7→

[(
(xypa , yqa , yνaz), [x : 1 : z]

)]

3rd chart

Ea : z = 0

X

(
νa pa qa −1

p1νa paν1 + νa qaν1 − q1νa −ν1

)
E1 : x = 0

E0 : −
V̂ : 1 + h1(xzpa ,yzqa )

zpa = 0
[
(x, y, z)

]
7→

[(
(xzpa , yzqa , zνa), [x : y : 1]

)]

The divisor mE0 + (m + 1)ν1E1 + (m + 1)maEa has clearly normal

crossings. Since the polynomial xν1ymag2(x, y
1
d ) defines a function on the

quotient space X(p1qad ; pa+β1qa
d ,−1), the following map is a well-defined au-

tomorphism on the corresponding cyclic quotient space

X
(p1qa

d
;
pa + β1qa

d
,−1,

νa − β1ν1qa
d

)

[(x, y, z)] 7−→ [(x, y, z + g2(x, y
1
d )]

and hence the divisor V̂ + (m + 1)ν1E1 + (m + 1)maEa has also normal

crossings.

Only the intersection V̂ ∩ E0 ∩ Ea has to be studied. To do so, we

consider the curves E0 ∩ Ea = {z = 0} and V̂ ∩ Ea = {z + hνa(x, y) = 0}
as subvarieties in Ea = P2

(pa,qa,νa)(p1;−1, q1, ν1). The first two charts of the

latter space are respectively isomorphic to

X
(p1pa

d
;
qa + paq1

d
,ma

)
, X

(p1qa
d

;
pa + β1qa

d
,
νa − β1ν1qa

d

)
.
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By Proposition (III.4.3), these smooth projective curves are two sections

of Ea with self-intersection number νad
p1paqa

; note that

gcd
(
p1, qa + paq1, νa + paν1, q1νa − ν1qa

)
= d,

which is the greatest common divisor needed in the proposition mentioned

above.

Now working as in Remark (VI.2.3), see also (III.2.1) and (III.3.4), one

sees that they meet at #(C ∩ Ea) points with exactly the same intersection

multiplicity as in the latter, that is, for P ∈ C ∩ Ea ≡ V̂ ∩E0 ∩Ea, one has

(30)
(
E0 ∩ Ea, V̂ ∩ Ea; Ea

)
P

=
(
C, Ea; Ĉ2

(pa,qa)

/
µp1

)
P
.

As in the first step, the intersection of the total transform with E0

produces an identical situation to the tangent cone. Also, note that Figures

VI.2 and VI.3 can also be used to illustrate the general situation here. The

main difference is that the line at infinity {x = 0} ⊂ Ea coincides with

E1 ∩ Ea and thus the point [0 : 0 : 1] ∈ Ea belongs to two divisors.

Now, to finish, observe that the triple points V̂ ∩ E0 ∩ Ea of the total

transform in dimension 3 are identified with the points of C∩Ea and, by (30),

the intersection at one of those points is transverse if and only if so is it in

dimension 2. �

Remark (VI.2.7). Note that if xkg1(x, y) : X(e;−1, r)→ C defines a func-

tion and x - g1(x, y), then d := gcd(e, r) divides k and g1(x
1
d , y) is a polyno-

mial. This implies, in particular, that ma is an integer since the polynomial

xνa+paν1g1(x, y) defines a function on X(p1pa;−1, qa + paq1).

Remark (VI.2.8). If y - hνa(x, y), or equivalently Ea 3 [1 : 0] /∈ C, then

pa|νa and p1|(ν1 + νa
pa

); consequently, gcd(p1pad ,ma) = p1pa
d .

Indeed, assume that hνa(x, y) = xe0ye∞
∏
i≥1(xqa − γiypa)ei . Then, its

order is νa = e0pa+e∞qa+paqa
∑

i ei. By (29), the following two expressions

are equal:

hνa(ξ−1
p1 x, ξ

q1
p1y) = ξ−e0+e∞q1

p1 xe0ye∞
∏

(ξ−qap1 xqa − ξq1pap1 γiy
pa)ei =

= ξ
−e0+e∞q1−qa

∑
i ei

p1 xe0ye∞
∏

(xqa − ξq1pa+qa
p1 γiy

pa)ei ,

ξν1p1hνa(x, y) = ξν1p1x
e0ye∞

∏
(xqa − γiypa)ei .

Hence p1 divides ν1 + e0 − e∞q1 + qa
∑

i ei. In the case e∞ = 0, the latter

number is ν1 + νa
pa

and the claim follows.

Anologously, if x - hνa(x, y) (⇔ Ea 3 [0 : 1] /∈ C⇔ e0 = 0), then one has

that qa|νa and p1|(νaqa − β1ν1); consequently, gcd(p1qad , pa+β1qa
d ) = p1qa

d .
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Remark (VI.2.9). Although the third chart, say X3, is not in general a

cyclic quotient space, there are a couple of situations where it is.

• If gcd(ν1, νa) = 1, then the action given by the second row includes

the first one and thus X3 is just C3 under the second row action.

• Also if gcd(p1, ν1) = 1 and λ is the inverse of ν1 modulo p1, then

X(p1;−1, q1, ν1) can be written in the form X(p1;λ,−λq1,−1) and

thus X3 = X(p1νa; pa + λνa, qa − λq1νa,−1).

Let Γ and Γ+ be the dual graphs associated with the total transform and

the exceptional divisor, after having computed an embedded Q-resolution

of (C, P ), respectively. Denote by S(Γ) and S(Γ+) the sets of their vertices.

The classical partial order on S(Γ+) is denoted by 4.

The locus of non-transversality after the last blow-up in dimension 3 is

identified with the locus of non-transversality in the resolution of (C, P ).

Each of these points corresponds to a weighted blow-up in the resolution

of the tangent cone, that is, to a vertex of Γ+. Thus in the next step we

need to blow-up those points to produce a similar situation. Again the same

operation will be applied to the points where the total transform is not a

normal crossing divisor. These points will also be associated with vertices

of Γ+.

The following result is proven by induction on S(Γ+) using the rela-

tion 4. Lemma (VI.2.2) is the first step in the induction. The proof of

Lemma (VI.2.6) tells us the way to show the general case. Let b ∈ S(Γ+) be

a vertex such that Pb belongs to the locus of non-transversality of the total

transform. As usual, denote by Eb the exceptional divisor appearing after

blowing up the point Pb.

Proposition (VI.2.10) (Step b). Let $b be the (pb, qb)-weighted blow-up

at Pb with b ∈ S(Γ+). Denote by Eb its exceptional divisor, νb the (pb, qb)-

multiplicity of C ⊂ C2, and mb the multiplicity of Eb.
Consider πb the (pb, qb, νb)-weighted blow-up at Pb in dimension 3 and Eb

the corresponding exceptional divisor. Then, after blowing up the point Pb,

the new total transform verifies:

(1) The exceptional divisor Eb is isomorphic to P2(pb, qb, νb)/µe and

its multiplicity equals (m + 1)mb. In general, the lines at infinity

{x = 0} and {y = 0} are quotient singular in the ambient space

and the point [0 : 0 : 1] is the only one which may be non-cyclic.

By contrast, the stratum {z = 0} \ {[0 : 1 : 0], [1 : 0 : 0]} ⊂ Eb is

always smooth.
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(2) Let a be a vertex such that a ≺ b. Then, Ea ∩Eb 6= ∅ if and only if

Pb ∈ Ea. In such a case, the curve Ea ∩ Eb is one of the two lines

at infinity of Eb different from {z = 0}. If Pb ∈ Ea ∩ Ea′, a 6= a′,
then the corresponding lines are different and hence they meet at

the point [0 : 0 : 1].

(3) The intersection of the rest of components with E0 produces an

identical situation to the resolution of (C, P ), after blowing up the

point Pb. More precisely,

V̂ ∩ E0 = C,

Eb ∩ E0 = Eb,
Ea ∩ E0 = Ea, ∀a 4 b.

(4) The curves E0 ∩ Eb = {z = 0} and V̂ ∩ Eb = {z + Hνb(x, y) = 0}
are two

(−E2b νb
d

)
-sections of Eb and the intersecting points can be

identified with C ∩ Eb. Moreover, the intersection multiplicity of

these two sections at one of those points is the same as in the

latter, that is, for P ∈ C ∩ Eb ≡ V̂ ∩ E0 ∩ Eb, one has
(
E0 ∩ Eb, V̂ ∩ Eb; Eb

)
P

=
(
C, Eb; Ĉ2

(pb,qb)

/
µe

)
P
.

If Pb ∈ Ea, then Ea ∩Eb and V̂ ∩Eb always meet at exactly one

point. This point passes through E0∩Eb if and only if C∩Ea∩Eb 6= ∅.
This is the case when there exist quadruple points.

(5) The locus of non-transversality of the total transform in dimension

3 is identified with the one in the resolution of (C, P ). These points

belong to V̂ ∩ E0 ∩ Eb = C ∩ Eb and they correspond to the ones

where the curves E0 ∩Eb and V̂ ∩Eb, or equivalently Eb and C, do

not meet transversely.

(6) The strict transform V̂ never passes through [0 : 0 : 1] ∈ Eb. In

particular, V̂ only contains cyclic quotient singularities.

Proof. By induction on S(Γ+) with respect to 4. The base case is

Lemma (VI.2.2). As for the inductive step, one proceeds as in the proof

of (VI.2.6). Assume, by induction, that the local equation of the total

transform in the resolution of the tangent cone around Pb is given by the

function (gcd(e, r) = gcd(e, s) = 1)

(31) xmayma′H(x, y) : X(e; r, s) −→ C,

where C = {H(x, y) = 0} is the equation of the strict transform and the

others correspond to the divisors Ea and Ea′ (they may not appear if ma or

ma′ equals zero).
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Also, the equation of the total transform around Pb in dimension 3 is

given by the function

(32) x(m+1)ma · y(m+1)ma′ · zm
[
z +H(x, y)

]
: X(e; r, s, t) −→ C,

where V̂ = {z+H(x, y) = 0} is the strict transform, E0 = {z = 0}, and the

others are the divisors Ea and Ea′ (if they exist). Using that both (31) and

(32) are well-defined functions, one has

t+ma · r +ma′ · s ∈ (e).

The verification of the statement is very simple once the local equations

of the divisors appearing in the total transform are calculated. The main

ideas behind are contained in the proof of Lemmas (VI.2.2) and (VI.2.6).

The details are omitted to avoid repeating the same arguments; only the

local equations are given, see below.

To do so, consider the following data and use the charts described in

Sections I.3–1 and I.3–2. As auxiliary results (III.2.1), (III.3.2), and (III.4.3)

are also needed.

νb = ord(pb,qb)H(x, y) mb =
pb ·ma + qb ·ma′ + νb

d
d = gcd(e, pb · s− qb · r)

s′r + s ≡ 0 mod (e) r′s+ r ≡ 0 mod (e)

H1(x, y) =
H(xpb , xqby)

xνb
H2(x, y) =

H(xypb , yqb)

yνb

These are the equations in the resolution of the tangent cone C pre-

sented as zero sets in the corresponding (abelian) quotient space, cf. proof

of Lemma (VI.2.6).

Equations Chart

Eb : x = 0

X

(
epb
d

;−1,
qb + s′pb

d

)
−→ Ĉ2(pb, qb)

/
µeEa : −

Ea′ y = 0

C : H1(x
1
d , y) = 0

[
(xd, y)

]
7→

[(
(xpb , xqby), [1 : y](pb,qb)

)]

Eb : y = 0

X

(
eqb
d

;
pb + r′qb

d
,−1

)
−→ Ĉ2(pb, qb)

/
µeEa : x = 0

Ea′ : −
C : H2(x, y

1
d ) = 0

[
(x, yd)

]
7→

[(
(xypb , yqb), [x : 1](pb,qb)

)]
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In dimension 3, the local equations of the total transform are presented as

well-defined functions over the corresponding quotient spaces. The notation

is self-explanatory to recognize the equation of each divisor.

1st chart X

(
epb
d

;−1,
qb + s′pb

d
,
νb + t′pb

d

)
−→ C

x(m+1)mb · y(m+1)ma′ · zm
[
z +H1(x

1
d , y)

]

2nd chart X

(
eqb
d

;
pb + r′qb

d
,−1,

νb + t′′qb
d

)
−→ C

x(m+1)ma · y(m+1)mb · zm
[
z +H2(x, y

1
d )
]

3rd chart X

(
νb pb qb −1

eνb rνb − tpb sνb − tqb t

)
−→ C

x(m+1)ma · y(m+1)ma′ · z(m+1)mb·d
[
1 + H(xzpb ,yzqb )

zνb

]

Here t′ and t′′ are taken so that t′r + t ≡ 0 and t′′s + t ≡ 0 mod-

ulo (e). The exceptional divisor Eb is identified with P2(pb, qb, νb)/µe where

the action is of type (e; r, s, t), i.e. Eb = P2
(pb,qb,νb)

(e; r, s, t). �

Remark (VI.2.11). Note that the equations after the blowing-up at Pb
around the points where the total transform is not a normal crossing divisor

are of the same form as in (31) and (32). Hence, by induction, this fact

holds for every stage of the resolution.

Remark (VI.2.12). Let us write Hνb(x, y) = xe0ye∞
∏
i≥1(xqb−γiypb)ei . As

in Remark (VI.2.8), if

y - Hνb(x, y)
(
⇐⇒ Eb 3 [1 : 0] /∈ C⇐⇒ e∞ = 0

)
,

then pb|νb and e|(νbpb +t′); consequently, gcd( epbd ,
νb+t

′pb
d ) = epb

d . Analogously,

e0 = 0 implies gcd( eqbd ,
vb+t

′′qb
d ) = eqb

d .

Theorem (VI.2.13). Given an embedded Q-resolution of (C, P ) for all

P ∈ Sing(C), one can construct an embedded Q-resolution of (V, 0), con-

sisting of weighted blow-ups at points. Each of these blow-ups corresponds to

a weighted blow-up in the resolution of (C, P ) for some P ∈ Sing(C), that

is, it corresponds to a vertex of ΓP+. �

We shall see later that an exceptional divisor in the resolution of (V, 0)

obtained contributes to the monodromy if and only if so does the corre-

sponding divisor in the tangent cone, see (VI.3.3) and (VI.3.5).
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In particular, the weights can be chosen so that every exceptional divisor

in the embedded Q-resolution of (V, 0) contributes to the monodromy.

Section §VI.3

The Characteristic Polynomial of the Monodromy

Here we plan to apply Theorem (IV.3.14) to compute the characteristic

polynomial of the monodromy and the Milnor number of (V, 0) in terms of

its tangent cone (C, P ). Some notation need to be introduced, concerning

the stratification of each irreducible component of the exceptional divisor in

terms of its quotient singularities.

(VI.3.1). Given a point P ∈ Sing(C), denote by %P : Y p → (C, P ) an em-

bedded Q-resolution of the tangent cone. Assume that the total transform

is given by

(%P )∗(C, P ) = C +
∑

a∈S(ΓP+)

mP
a EPa ,

where EPa is the exceptional divisor of the (pPa , q
P
a )-blow-up at a point Pa

belonging to the locus of non-transversality. Denote by νPa the (pPa , q
P
a )-

multiplicity of C at Pa.

Recall that EPa is naturally isomorphic to P1
(pPa ,q

P
a )
/µe. Using this iden-

tification, define

EPa,1 = EPa \ {[0 : 1], [1 : 0]}, EPa,x = {[0 : 1]}, EPa,y = {[1 : 0]}.

The strata ĚPa,j := EPa,j \
(
EPa,j ∩

(⋃
b 6=a EPb ∪C

))
for j = 1, x, y (see notation

just above Theorem (IV.3.14)) will be considered in Lemma (VI.3.3).

(VI.3.2). Let us see the situation in the superisolated singularity (V, 0).

Denote by ρ : X → (V, 0) the embedded Q-resolution obtained following

Proposition (VI.2.10). Then, the total transform is

ρ∗(V, 0) = V̂ +mE0 +
∑

P∈Sing(C)

a∈S(ΓP+)

(m+ 1)mP
a E

P
a ,

and EPa appears after the (pPa , q
P
a , ν

P
a )-blow-up at the point Pa (recall that

the locus of non-transversality in dimension 2 and 3 are identified).

The divisor EPa is naturally isomorphic to P2
(pPa ,q

P
a ,ν

P
a )
/µe. Using this

identification, define

EPa,1 = EPa \ {xy = 0}, EPa,x = {x = 0} \ {[0 : 1 : 0], [0 : 0 : 1]},
EPa,y = {y = 0} \ {[1 : 0 : 0], [0 : 0 : 1]}, EPa,xy = {[0 : 0 : 1}.
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Analogously, one considers EPa,xz and EPa,yz so that EPa =
⊔
j E

P
a,j really

defines a stratification. However, these two strata belong to more than one

irreducible divisor in the total transform and hence they do not contribute

to the characteristic polynomial.

As for E0, according to its quotient singularities, no stratification need

to be considered (it is smooth).

The Euler characteristic of Ě0 and ĚPa,j := EPa,j \
(
EPa,j ∩

(⋃
b6=aE

P
b ∪ V̂

))

for j = 1, x, y, xy (see notation just above Theorem (IV.3.14)) as well as its

multiplicity are calculated in Lemma (VI.3.3).

x = 0 y = 0

EP
a

E0 ∩ EP
a

V̂ ∩ EP
a

[γi : 1 : 0]

[0 : 0 : 1]

[0 : 1] [1 : 0][γi : 1]

EPa
C

Figure VI.4. Stratification of EPa and EPa needed for the

generalized A’Campo’s formula.

Lemma (VI.3.3). Using the previous notation, the Euler characteristic

and the multiplicity of Ě0 are

χ(Ě0) = χ(P2 \C), m(Ě0) = m.

For the rest of strata of ĚPa , let us fix a point P ∈ Sing(C). Then, one

has that

χ(ĚPa,j) =





1 a = 1, j = xy

0 a 6= 1, j = xy

−χ(ĚPa,j) ∀a, j = 1, x, y ;

χ(ĚPa,j) 6= 0 =⇒ m(ĚPa,j) =

{
m+ 1 a = 1, j = xy

m(ĚPa,j) · (m+ 1) ∀a, j = 1, x, y.

In fact, ∀a ∈ S(ΓP+), a 6= 1, the stratum ĚPa,xy is empty and, in particular,

its Euler characteristic is zero.

Proof. Let E be an irreducible component of the exceptional divisor

of ρ. Let us travel back in the history of the resolution until the time when

E first appears. Consider the space defined at that moment by E minus the

intersections with the other components.
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Since all the weighted blow-ups have center in that intersections, this

space is naturally isomorphic to Ě. Using these arguments, we will per-

form the calculations of the Euler characteristics at the moment when the

component appears in the history of the resolution.

For E0, the space Ě0 is isomorphic to E0 \ (V̂ ∩ E0) which is identified

with P2 \C; its multiplicity is m, see discussion before Lemma (VI.1.2) and

Figure VI.1.

For the rest of the proof the cases j = 1, x, y, xy are treated separately.

Let us fix a point P ∈ Sing(C) and omit the index “P” to simplify the

notation.

Recall that Ea = P2
(pa,qa,νa)/µe, see Lemma (VI.2.10)(1). Also Fig-

ure VI.4 will be useful.

• j = xy :

The stratum Ea,xy is the point [0 : 0 : 1] ∈ Ea. By (VI.2.10), it belongs

to just one divisor if and only if a 6= 1, see Lemma (VI.2.2) and its proof.

This implies that χ(Ě1,xy) = 1 and that

χ(Ěa,xy) = 0, ∀a ∈ S(Γ+) \ {1}.

Following Definition (IV.3.12), the multiplicity of Ě1,xy is (m+1)ν1
ν1

, since the

origin [0 : 0 : 1] ∈ E1 is a cyclic quotient singular point of order ν1, see

Lemma (VI.2.2).

• j = x :

The stratum Ea,x is the line {x = 0} ⊂ Ea. If there is another component

of the divisor that passes through Ea,x = [0 : 1] ∈ Ea, then one has Ěa,x = ∅,
and either Ěa,x = Ea,x \ {2 points} or Ěa,x = ∅. Otherwise, Ěa,x = [0 : 1]

and Ěa,x = Ea,x \ {3 points}, see second part of (VI.2.10)(4). In the case

when the Euler characteristic is different from zero, by Remark (VI.2.12),

the multiplicity is

m(Ěb,x) =
(m+ 1)mb

gcd( eqbd ,
νb+t′′qb

d )
=

(m+ 1)mb
eqb
d

= (m+ 1)m(Ěb,x).

The case j = y is exactly the same as j = x.

• j = 1 :

Consider the projection of Ea \ Ea,xy onto the line {z = 0} ≡ Ea. This

map is identify with the morphism

τ : P2
(pa,qa,νa)(e; r, s, t) \ {[0 : 0 : 1]} −→ P1

(pa,qa)(e; r, s),

[x : y : z] 7→ [x : y].

Note that the restriction τ | : Ěa,1 → Ěa,1 is a fibration with fiber isomorphic

to C \ {2 points} and hence χ(fiber) = −1.
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The multiplicity of the smooth part is (m + 1)ma in the superisolated

singularity while it is ma in the tangent cone.

To finish observe that in any case, one has that χ(Ěa,j) = −χ(Ěa,j) and,

if they are different from zero, m(Ěa,j) = (m+ 1)m(Ěa,j). Now the proof is

complete. �

Remark (VI.3.4). The Euler characteristic of the complement of a projec-

tive plane curve in P2 is known to be

χ(P2 \C) = (m2 − 3m+ 3)−
∑

P∈Sing(C)

µP ,

see [Esn82], or [Art94a] for an elementary proof based on the additivity of

the Euler characteristic.

Theorem (VI.3.5). The characteristic polynomial of the complex mon-

odromy of (V, 0) is

∆(V,0)(t) =
(tm − 1)χ(P2\C)

t− 1

∏

P∈Sing(C)

∆(C,P )(t
m+1),

where ∆(C,P )(t) denotes the characteristic polynomial of the local complex

monodromy of (C, P ).

Proof. Given a point P ∈ Sing(C), let us compute the characteristic

polynomial of (C, P ). Its total transform is

(%P )∗(C, P ) = Ĉ +
∑

a∈S(ΓP+)

mP
a EPa ,

and the stratification associated with each exceptional divisor needed for

applying A’Campo’s formula is Ěa = Ěa,1 t Ěa,x t Ěa,y. Then, by Theo-

rem (IV.3.14),

(33) ∆(C,P )(t) = (t− 1)
∏

a∈S(ΓP+)
j=1, x, y

(tm(ĚPa,j) − 1)−χ(ĚPa,j).

Let us see the situation in the superisolated singularity (V, 0). The total

transform is

ρ∗(V, 0) = V̂ +mE0 +
∑

P∈Sing(C)

a∈S(ΓP+)

(m+ 1)mP
a E

P
a ,

and the corresponding stratification is ĚPa = ĚPa,1 t ĚPa,x t ĚPa,y t ĚPa,xy.
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By Theorem (IV.3.14), the characteristic polynomial of (V, 0) is

(34) ∆(V,0)(t) =
1

t− 1
(tm(Ě0) − 1)χ(Ě0)

∏

P∈Sing(C)

a∈S(ΓP+)
j=1, x, y, xy

(tm(ĚPa,j) − 1)χ(ĚPa,j).

From Lemma (VI.3.3), m(Ě0) = m and χ(Ě0) = χ(P2 \ C), and the

latter can be computed combinatorially as indicated in the statement. Let

us calculate the contribution of the preceding product for a given point

P ∈ Sing(C).

Again using Lemma (VI.3.3) and, in particular, the fact that a 6= 1

implies χ(ĚPa,xy) = 0, one has that

∏

a∈S(ΓP+)
j=1, x, y, xy

(
tm(ĚPa,j) − 1

)χ(ĚPa,j)
=

=
(
tm(ĚP1,xy) − 1

)χ(ĚP1,xy)

︸ ︷︷ ︸
a=1, j=xy

∏

a∈S(ΓP+)
j=1, x, y

(
tm(ĚPa,j) − 1

)χ(ĚPa,j)

=
(
tm+1 − 1

)1 ∏

a∈S(ΓP+)
j=1, x, y

(
t(m+1)m(ĚPa,j) − 1

)−χ(ĚPa,j)
.

By (33), the last expression is equal to ∆(C,P )(t
m+1) and hence (34) is

exactly the formula of the statement. �

Remark (VI.3.6). Note that the first part of ∆(t) is closely related to the

zeta function of the tangent cone fm(x, y, z) regarded as an function on C3.

In fact, Z(fm : C3 → C; t) = (1− tm)χ(P2\C).

This is a consequence of the fact that the monodromy zeta function of

a homogeneous polynomial of degree d is Z(t) = (1 − td)χ(F )/d, where F is

the corresponding Milnor fiber.

Corollary (VI.3.7). The Milnor number of a superisolated surface singu-

larity can be expressed in terms of the Milnor numbers of the singular points

of the tangent cone, namely

µ(V, 0) = (m− 1)3 +
∑

P∈Sing(C)

µ(C, P ).
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Proof. The Milnor number coincides with the degree of the character-

istic polynomial. Then,

deg ∆(t) = m
(
m2 − 3m+ 3−

∑

P

µP
)
− 1 +

∑

P

deg ∆P (t)︸ ︷︷ ︸
µP

(m+ 1)

= m3 − 3m2 + 3m−m
∑

P

µP − 1 + (m+ 1)
∑

P

µP

= (m− 1)3 +
∑

P

µP .

Above, the sums are taken over P ∈ Sing(C). �

Section §VI.4

Higher Dimension

The family of singularities studied in this chapter can be easily general-

ized to higher dimension. In such a case, a (classical) embedded resolution of

the tangent cone, consisting of blow-ups with smooth center, is used instead

to describe the embedded Q-resolution of the singularity. In order not to

repeat the same arguments of the preceding sections, only a sketch of the

embedded Q-resolution is presented.

Let f = fm+fm+1 + · · · ∈ C{x0, . . . , xn} be the decomposition of f into

its homogeneous parts. Assume f defines a superisolated singularity (V, 0),

i.e. Sing(C) ∩ V (fm+1) = ∅. This implies that C := V (fm) ⊂ Pn only has a

finite number of singular points, say {P1, . . . , Pr}.

One starts the resolution of (V, 0) with the usual blow-up at the origin

of Cn+1, producing an identical situation to Lemma (VI.1.2), but in higher

dimension. That is, the exceptional divisor E0 and the strict transform

intersect transversely at P if and only if P is smooth in C.

As for the singular points, there exist local coordinates around Pi such

that the equations of the exceptional divisor and the strict transform are

Step 0

{
E0 : x0 = 0 ;

V̂ : x0 + h(x1, . . . , xn) = 0 ,

where h(x1, . . . , xn) = 0 is an equation of the germ (C, Pi) and its order is at

least 2. In this coordinates Pi = [1 : 0 : . . . : 0]. Moreover, χ(Ě0) = χ(Pn\C)

and m(Ě0) = m.
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Let P be one of the singular points of C. Now one proceeds with the

(usual) blow-up at P in the tangent cone and with the (ν1, 1,
(n). . ., 1)-blow-up

at P in (V, 0), where ν1 = ordh(x), see §I.3–3. Here are the equations of

the total transforms:

Step 1

{
Cone : xν11 h1(x) = 0 ;

SIS : xm0 x
(m+1)ν1
1 (x0 + h1(x)) = 0 .

From these equations, the locus of non-transversality in dimension 2

and 3 are identified. Note that the new ambient space has just one singular

point Q of type (ν1;−1, 1, . . . , 1) located at the exceptional divisor E1. The

strict transform V̂ and the divisor E0 do not pass through Q. Hence the

corresponding stratification is Ě1 = Ě1,1 t Ě1,Q, where the latter represents

the singular point Q and the other one the smooth part of the divisor.

Moreover, χ(Ě1,1) = −χ(Ě1), m(Ě1,1) = (m + 1)ν1 and χ(Ě1,Q) = 1,

m(Ě1,Q) = m + 1. We use the following argument to compute the Euler

characteristic of the smooth part. Denote by hν1(x) the ν1-homogeneous

part of h(x), F1 = {x0 = 0}, and F2 = {x0 + hν1(x) = 0} ⊂ E1. Then,

(35)
Ě1 = Pn−1 \ {hν1(x) = 0} ∼= (F1 \ (F1 ∩ F2)),

Ě1,1 = Pn(ν1,1,...,1) \
[
(F1 \ (F1 ∩ F2)) t F2 tQ

]
.

Consequently, χ(Ě1,1) = n+ 1− χ(Ě1)− n− 1 = −χ(Ě1) as claimed.

Finally, to give the embedded Q-resolution of (V, 0), every time there is

a (usual) blow-up in the tangent cone with center Z = {x1 = · · · = xk = 0},
one considers the (ν, 1, (k). . ., 1)-blow-up with center {x0 = · · · = xk = 0},
where ν is the order of C with respect to Z.

The new ambient space is covered by k + 1 charts, namely Ui = Cn+1

for i = 1, . . . , k and U0 = X(ν;−1, 1, (k). . ., 1) × Cn−k. Hence the exceptional

divisor Ei = Pk(ν,1,...,1) × Cn−k contains the subset [(0, . . . , 0)] × Cn−k as

quotient singularities, see §I.3–3. The equations of the total transform are:

Step i

{
Cone : xm1

1 · · ·xmll · hi(x) = 0 ;

SIS : xm0 · x
(m+1)m1

1 · · ·x(m+1)ml
l · (x0 + hi(x)) = 0 .

The main difference in the i-th step (i 6= 0, 1) is that the singular points

of Ei always belong to more than one exceptional divisor and thus they

do not contribute to the characteristic polynomial. The stratification is

therefore the usual one. Moreover, using the same arguments as in (35), one

has that χ(Ěi) = −χ(Ěi) and m(Ěi) = (m+ 1)m(Ěi).
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Now we have all the ingredients to apply Theorem (IV.3.14). The de-

tails are left to the reader because they do not provide any new idea. The

characteristic polynomial of the monodromy of (V, 0) ⊂ (Cn+1, 0) is

∆(V,0)(t) =

[
(tm − 1)χ(Pn\C)

t− 1

](−1)n

·
∏

P∈Sing(C)

∆(C,P )(t
m+1),

where ∆(C,P )(t) denotes the characteristic polynomial of the local complex

monodromy of (C, P ).

The Euler characteristic of Pn \C is calculated combinatorially from the

expression m · χ(Pn \C) = 1 + (−1)n
[
(m − 1)n+1 −m∑P∈Sing(P ) µP

]
and

thus the Milnor number is

µ(V, 0) = (m− 1)n+1 +
∑

P∈Sing(C)

µ(C, P ).
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Yomdin-Lê Surface Singularities

The family of singularities studied in Chapter VI can be generalized

as follows. Let f = fm + fm+k + · · · ∈ C{x, y, z} be the decomposition

of f into its homogeneous parts, k ≥ 1. Denote V := V (f) ⊂ C3 and

C := V (fm) ⊂ P2. Then, the germ (V, 0) is said to be a Yomdin-Lê surface

singularity (YS) if the condition Sing(C) ∩ V (fm+k) = ∅ holds in P2.

The main difficulty in finding a (usual) embedded resolution of this kind

of singularities is that after several blow-ups at points and rational curves,

following the ideas of [Art94b], one eventually obtains a branch of resolu-

tions depending on k. Thus the study of this singularities by using these

tools seem to be very long and tedious.

However, an embedded Q-resolution of (V, 0) can be computed exactly as

in Chapter VI, i.e. by means of weighted blow-ups at points, see Ex. (IV.2.7).

In fact, this is the main purpose of this chapter. Again, the weights at each

step can be chosen so that every exceptional divisor in the Q-resolution con-

tributes to the monodromy. As an application, the characteristic polynomial

and the Milnor number are calculated using Theorem (IV.3.14).

In order not to repeat the same arguments, the proofs of this chapter

are sketched, commented, or simply omitted. Moreover, they are presented

following the same structure as in Chapter VI so that one can easily com-

pares the corresponding results with the SIS. In the discussion, one usual

thinks that k 6= 1, since otherwise (V, 0) is a SIS, cf. [Mar11a].

As for notations and conventions, we use the same as in the previous

chapter. It is extremely recommended to take a look at it before continuing

because, in this sense, this chapter is not self-contained. In particular, see

proof of Lemma (VI.2.2).
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(VII.0.1). We start the Q-resolution of (V, 0) with the usual blow-up at the

origin π0 : Ĉ3 → C3. The total transform is the divisor π∗0(V ) = V̂ +mE0,

where V̂ is the strict transform and E0 is the exceptional divisor. The

intersection V̂ ∩ E0 is identified with the tangent cone of the singularity.

Let us consider P ∈ V̂ ∩E0 = C. After linear change of coordinates we

can assume that P = ((0, 0, 0), [0 : 0 : 1]) ≡ [0 : 0 : 1] ∈ C. Take a chart of

Ĉ3 around P where z = 0 is the equation of E0 and the blowing-up takes

the form

(x, y, z)
π07−→ (xz, yz, z).

Then, the equation of V̂ is

V̂ : fm(x, y, 1) + zk
[
fm+k(x, y, 1) + zfm+k+1(x, y, 1) + · · ·

]
= 0.

Two cases arise: if P is smooth in the tangent cone, then V̂ is also smooth

at P and the intersection with E0 at that point is transverse; otherwise,

i.e. P ∈ Sing(C), the YS condition Sing(C)∩ V (fm+k) = ∅ implies that the

previous expression in brackets is a unit in the local ring C{x, y, z} and V̂

is not smooth at P (unless k = 1). Now the order of fm(x, y, 1) is greater

than or equal to 2 and the intersection V̂ ∩ E0 is not transverse at P .

E0

V̂

C

π∗
0(V ) = V̂ +mE0

V̂ ∩ E0 = C
NT (π∗

0(V )) = Sing(C)

Figure VII.1. Step 0 in the embedded Q-resolution of (V, 0).

We summarize the previous discussion in the following result, which is

the step zero in our Q-resolution of (V, 0).

Lemma (VII.0.2) (Step 0). Let P ∈ C. The surfaces V̂ and E0 inter-

sect transversely at P if and only if P is a smooth point in C. Otherwise,

i.e. P ∈ Sing(C), there exist local analytic coordinates around P such that

the equations of the exceptional divisor and the strict transform are

E0 : z = 0 ;

V̂ : zk + h(x, y) = 0 ,

where h(x, y) = 0 is an equation of C and its order is at least 2.
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Remark (VII.0.3). Observe that the main difference at this stage is that

V̂ is not smooth at the singular points of the tangent cone and its equation

at those points has zk as one of its terms.

Section §VII.1

An Embedded Q-Resolution for YS

After the step zero NT (π∗0(V )) is identified with Sing(C). The next

step in the Q-resolution of (V, 0) is to blow up those points. Let us fix

P ∈ Sing(C) and consider local coordinates as in Lemma (VII.0.2). The

idea is to choose suitable weights so that the strict transform of V̂ has again

an equation of the same form, namely zk +H(x, y) = 0.

Given an exceptional divisor in the tangent cone Ea, a ∈ S(Γ+), and ma

its multiplicity, denote ka := gcd(k,ma). When a = 1, then m1 = ν1 and

thus k1 = gcd(k, ν1).

Lemma (VII.1.1) (Step 1). Let (p1, q1) ∈ N2 be two positive coprime num-

bers. Let $1 be the (p1, q1)-weighted blow-up at P ∈ C. Denote by E1 its

exceptional divisor and by ν1 the (p1, q1)-multiplicity of C at P .

Consider π1 the
(kp1
k1
, kq1k1 ,

ν1
k1

)
-weighted blow-up at P in dimension 3

and E1 the corresponding exceptional divisor. Then, the total transforms

verify:

(1) $∗1(C) = C + ν1E1,

(2) π∗1π
∗
0(V ) = V̂ +mE0 + (m+ k)

ν1

k1
E1,

(3) NT (π∗1π
∗
0(V )) = NT ($∗1(C)).

Proof. The weighted blow-up at P in the tangent cone is described

in detail in the first part of the proof of Lemma (VI.2.2). Thus we only

consider here the weighted blow-up at P with respect to
(kp1
k1
, kq1k1 ,

ν1
k1

)
in

dimension 3.

The new space has in general three cyclic quotient singular lines, see

Remark (VII.1.2)(1) below, each of them isomorphic to P1, and located at

the new exceptional divisor E1. They correspond to the three lines at infinity

of E1 = P2
(kp1
k1
, kq1k1 ,

ν1
k1

)
.

The multiplicity of E1 is the sum of the multiplicities, in our local coor-

dinates, of the components of the divisor π∗0(V ) that pass through P , that

is, m ν1
k1

+ k ν1k1 = (m+ k) ν1k1 .

Hence the total transform is the divisor

π∗1π
∗
0(V ) = V̂ +mE0 + (m+ k)

ν1

k1
E1.
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To study the locus of non-transversality, the equations in the three charts

are calculated in the table below. Note that the cyclic quotient spaces

are represented by their normalized types, since gcd
(kp1
k1
, kq1k1 ,

ν1
k1

)
= 1, see

Section I.3–2 for details.

X

(
kp1

k1
;−1,

kq1

k1
,
ν1

k1

)
X

(
kq1

k1
;
kp1

k1
,−1,

ν1

k1

)

(x, y, z)
π17−→ (x

kp1
k1 , x

kq1
k1 y, x

ν1
k1 z) (xy

kp1
k1 , y

kq1
k1 , y

ν1
k1 z)

E0 z = 0 z = 0

E1 x = 0 y = 0

V̂ zk + h1(x
k
k1 , y) = 0 zk + h2(x, y

k
k1 ) = 0

X

(
ν1

k1
;
kp1

k1
,
kq1

k1
,−1

)

(x, y, z)
π17−→ (xz

kp1
k1 , yz

kq1
k1 , z

ν1
k1 )

E0 −
E1 z = 0

V̂ 1 + hν1(x, y) + z
kl
k1 hν1+l(x, y) + · · · = 0

Clearly E1 and E0 intersect transversely. The strict transform V̂ also

cuts E1 transversely except perhaps at {z = 0} ⊂ E1. The equations of

these intersections are given by

E0 ∩ E1 = {z = 0},
V̂ ∩ E1 = {zk + hν1(x, y) = 0},

as projective subvarieties in E1 = P2
(kp1
k1
, kq1k1 ,

ν1
k1

)
.

(
ν1
k1

)

(kq1k1 )

(kp1k1 )

x = 0

y = 0

E1

E0 ∩ E1

V̂ ∩ E1

(
k
k1

)

[0 : 0 : 1]

(
kp1
k1

)

(
kq1
k1

)

E0

E1 ∩ E0

V̂ ∩ E0

[γi : 1] gcd(k, ν1q1 )

Figure VII.2. Step 1 in the embedded Q-resolution of (V, 0).
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By (III.4.3), these smooth projective curves have self-intersection num-

bers k1ν1
k2p1q1

and k1ν1
p1q1

respectively. They meet at #(C ∩ E1) points with

intersection number k1/k times the intersection number in C ∩ E1, that is,

for P ∈ C ∩ E1 ≡ V̂ ∩ E0 ∩ E1, one has

(36)
(
V̂ ∩ E1, E0 ∩ E1; E1

)
P

=
k1

k
·
(
C, E1; Ĉ2

(p1,q1)

)
P
.

On the other hand, the intersection of the total transform with E0 pro-

duces an identical situation to the tangent cone, see Remark (VII.1.2)(2) for

a more detailed explanation.

All these statements follow from the equations above. In Figure VII.2,

we see the intersection of the divisor π∗1π
∗
0(V ) with E0 and E1, respectively.

See also Figure VI.2 for the situation in C.

Finally, the triple points of the total transform in dimension 3 are iden-

tified with the points of C∩E1 and, by (36), the intersection at one of those

points is transverse if and only if so is it in dimension 2. This concludes the

proof. �

Remark (VII.1.2). Just to emphasize, we collect below the main differences

with the embedded Q-resolution of a superisolated surface singularity at this

stage, cf. Lemma (VI.2.2) and its proof.

(1) The stratum {z = 0} \ {[0 : 1 : 0], [1 : 0 : 0]} ⊂ E1 is not smooth.

In fact, the group acting on these points is of type
(
k
k1

;−1, 0, ν1k1

)
,

see Figure VII.2.

(2) In principle, the intersection of E0 with the rest of components seem

to be different from the situation in the tangent cone, because in

the first chart E1 ∩E0 = {x = 0} and V̂ ∩E0 = {h1(xk/k1 , y) = 0}
on X

(kp1
k1

;−1, kq1k1

)
. After normalizing the latter type, one finds the

equation of E1 and C on X(p1;−1, q1), cf. (VII.1.3).

(3) Write hν1(x, y) = xayb
∏
i(x

q1 − γq1i yp1)ei = 0. If a = 0, or equiv-

alently E1 3 [0 : 1] /∈ C, then {x = 0} ⊂ E1 cuts V̂ ∩ E1 =

{zk + hν1(x, y) = 0} in exactly gcd(k, ν1q1 ) points different from the

origins of E1. Analogously, {y = 0} ⊂ E1 intersects in gcd(k, ν1p1 )

points if b = 0. This can be checked directly or applying Bézout’s

Theorem on E1, see Proposition (III.4.3).

Let Γ and Γ+ be the dual graphs associated with the total transform and

the exceptional divisor, after having computed an embedded Q-resolution

of (C, P ), respectively. Denote by S(Γ) and S(Γ+) the sets of their vertices.

The classical partial order on S(Γ+) is denoted by 4.
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The locus of non-transversality after the last blow-up in dimension 3 is

identified with the locus of non-transversality in the resolution of (C, P ).

Each of these points corresponds to a weighted blow-up in the resolution

of the tangent cone, that is, to a vertex of Γ+. Thus in the next step we

need to blow-up those points to produce a similar situation. Again the same

operation will be applied to the points where the total transform is not a

normal crossing divisor. These points will be associated with vertices of Γ+

as well.

Before describing a generic step, blowing up the point Pb as in Proposi-

tion (VI.2.10), let us clarify the justification for working with non-normalized

spaces.

(VII.1.3). After the first blow-up the local equation of the total trans-

form of (C, P ) is given by xν1h1(x, y) : X(p1;−1, q1) → C, see proof of

Lemma (VI.2.2). The situation in dimension 3 is provided by

x
(m+k)

ν1
k1︸ ︷︷ ︸

E1

· zm︸︷︷︸
E0

·
[
zk + h1(x

k
k1 , y)

]
︸ ︷︷ ︸

V̂

: X

(
kp1

k1
;−1,

kq1

k1
,
ν1

k1

)
−→ C,

as we have just seen in the proof of Lemma (VII.1.1). The divisors E1 and

E1 are both represented by x = 0.

However, the equation of the strict transform of C and V̂ do not corre-

spond to each other directly. This obstruction can be solved working with

non-normalized types, since the function

x
kν1
k1 h1(x

k
k1 , y) : X

(
kp1

k1
;−1,

kq1

k1

)
−→ C

also gives rise to the total transform of C on a space represented by a non-

normalized type.

On the other hand, the embedded Q-resolution of a Yomdin-Lê surface

singularity will contain in general non-cyclic quotient singularities. Hence

providing normalized types is long and tedious. Motivated by this fact and

for better understanding of the relationship between C and (V, 0), we present

the embedded Q-resolution without explicitly giving the normalized type of

each quotient space.

The following result is proven by induction on S(Γ+) using the rela-

tion 4. Lemma (VII.1.1) and (VII.1.3) just above is the first step in the

induction. Let b ∈ S(Γ+) be a vertex such that Pb belongs to the locus

of non-transversality of the total transform. As usual, denote by Eb the

exceptional divisor appearing after blowing up the point Pb.
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Proposition (VII.1.4) (Step b). Let $b be the (pb, qb)-weighted blow-up

at Pb with b ∈ S(Γ+). Denote by Eb its exceptional divisor, νb the (pb, qb)-

multiplicity of C ⊂ C2, and mb the multiplicity of Eb. Assume, if necessary,

that k|pb and k|qb so that k|νb too.

Consider πb the (pb, qb,
νb
k )-weighted blow-up at Pb in dimension 3 and Eb

the corresponding exceptional divisor. Then, after blowing up the point Pb,

the new total transform verifies:

(1) The exceptional divisor Eb is isomorphic to P2(pb, qb,
νb
k )/µe and

its multiplicity equals (m + k)mbkb . In general, their three lines at

infinity are quotient singular in the ambient space.

(2) Let a be a vertex such that a ≺ b. Then, Ea ∩Eb 6= ∅ if and only if

Pb ∈ Ea. In such a case, the curve Ea ∩ Eb is one of the two lines

at infinity of Eb different from {z = 0}. If Pb ∈ Ea ∩ Ea′, a 6= a′,
then the corresponding lines are different and hence they meet at

the point [0 : 0 : 1].

(3) The intersection of the rest of components with E0 produces an

identical situation to the resolution of (C, P ), after blowing up the

point Pb. More precisely,

V̂ ∩ E0 = C,

Eb ∩ E0 = Eb,
Ea ∩ E0 = Ea, ∀a 4 b.

(4) The curves E0 ∩ Eb = {z = 0} and V̂ ∩ Eb = {zk +Hνb(x, y) = 0}
have self-intersection numbers

−E2b νbkb
k2`

and
−E2b νbkb

` respectively, and

the intersecting points can be identified with C ∩ Eb.
Moreover, the intersection multiplicity of these two curve at

those points can be computed as follows. Let P ∈ V̂ ∩ E0 ∩ Eb ≡
C ∩ Eb, then one has

(
V̂ ∩ Eb, E0 ∩ Eb; Eb

)
P

=
1

O(Eb,z)
·
(
C, Eb; Ĉ2

(pb,qb)

/
µe

)
P
,

where O(Eb,z) denotes the order of the group acting on the natural

stratum Eb,z := {z = 0} \ {[0 : 1 : 0], [1 : 0 : 0]} ⊂ Eb.
Let Pb ∈ Ea (a ≺ b) and assume e.g. Ea ∩ Eb = {x = 0} ⊂ Eb.

If C ∩ Ea ∩ Eb = ∅, then Ea ∩ Eb and V̂ ∩ Eb meet transversely

at exactly gcd(k,m(Ěb,x)) points different from the origins of Eb.

Otherwise, i.e. C ∩ Ea ∩Eb 6= ∅, the letter curves only meet at one

point, which besides passes through E0 ∩Eb. This is the case when

there exist quadruple points.
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(5) The locus of non-transversality of the total transform in dimen-

sion 3 is identified with the one in the resolution of (C, P ). These

points belong to V̂ ∩ E0 ∩ Eb ≡ C ∩ Eb and they correspond to the

ones where the curves E0∩Eb and V̂ ∩Eb, or equivalently Eb and C,

do not meet transversely.

(6) The strict transform V̂ never passes through [0 : 0 : 1] ∈ Eb.

Proof. By induction on S(Γ+) with respect to the order 4. The base

case is Lemma (VII.1.1) together with its modification explained in (VII.1.3).

As for the inductive step, one proceeds as in the proof of (VI.2.6). Assume,

by induction, that the local equation of the total transform in the resolution

of the tangent cone around Pb is given by the function

(37) xnayna′H(x, y) : X(e; r, s) −→ C,

where C = {H(x, y) = 0} is the equation of the strict transform and the

others correspond to the divisors Ea and Ea′ (they may not appear if na or na′

equals zero). In principle, the type (e; r, s) is not assumed to be normalized.

Hence na and na′ are not the multiplicities of Ea and Ea′ .
Also, the equation of the total transform around Pb in dimension 3 is

given by the function

(38) x
(m+k)na

k · y
(m+k)na′

k · zm ·
[
zk +H(x, y)

]
: X(e; r, s, t) −→ C,

where V̂ = {zk+H(x, y) = 0} is the strict transform, E0 = {z = 0}, and the

others are the divisors Ea and Ea′ (if they exist). Using that both equations

are well-defined functions on the corresponding quotient spaces, one has

(39)
na
k
· r +

na′

k
· s + t ≡ 0 (mod e).

The verification of the statement is very simple once the local equations

of the divisors appearing in the total transform are calculated. The main

ideas behind are contained in the proof of Lemma (VII.1.1) and (VII.1.3).

The details are omitted to avoid repeating the same arguments; only the

local equations are given, see below. To do so, consider the following data

and use the charts described in Sections I.3–1 and I.3–2. As auxiliary results

(III.2.1), (III.3.2), and (III.4.3) are also needed.

νb := ord(pb,qb)H(x, y) nb := pb · na + qb · na′ + νb

H1(x, y) := H(xpb ,xqby)
xνb H2(x, y) := H(xypb ,yqb )

yνb

Note that if QC
1 denotes the quotient space of the first chart in the

tangent cone (see below) and (QC
1 , [(0, 1)]) ∼= (C2, (0, 1)), [(x, y)] 7→ (x`, y)

defines an isomorphism of germs, then the multiplicity of the new exceptional

divisor Eb is mb = nb
` .



§VII.1. An Embedded Q-Resolution for YS 149

These are the equations in the resolution of the tangent cone. They are

presented as zero sets omitting their multiplicities.

Equations Chart

Eb : x = 0

X

(
pb −1 qb
pbe r pbs− qbr

)
−→ Ĉ2(pb, qb)

/
µeEa : −

Ea′ y = 0

C : H1(x, y) = 0
[
(x, y)

]
7→

[(
(xpb , xqby), [1 : y](pb,qb)

)]

Eb : y = 0

X

(
qb pb −1

qbe qbr− pbs s

)
−→ Ĉ2(pb, qb)

/
µeEa : x = 0

Ea′ : −
C : H2(x, y) = 0

[
(x, y)

]
7→

[(
(xypb , yqb), [x : 1](pb,qb)

)]

In dimension 3, the local equations of the total transform are presented as

well-defined functions over the corresponding quotient spaces. The notation

is self-explanatory to recognize the equation of each divisor. In the first

chart, however, it is indicated the divisor corresponding to each equation.

Note that, for instance, the polynomial of the first chart has been obtained

after performing the substitution (x, y, z) 7→ (xpb , xqby, x
νb
k z).

1st chart X

(
pb −1 qb

νb
k

pbe r pbs− qbr pbt− νb
k r

)
−→ C

x
(m+k)nb

k︸ ︷︷ ︸
Eb

· y
(m+k)na′

k︸ ︷︷ ︸
Ea′

· zm︸︷︷︸
E0

·
[
zk +H1(x, y)

]
︸ ︷︷ ︸

V̂

2nd chart X

(
qb pb −1 νb

k

qbe qbr− pbs s qbt− νb
k s

)
−→ C

x
(m+k)na

k · y
(m+k)nb

k · zm ·
[
zk +H2(x, y)

]

3rd chart X

( νb
k pb qb −1
νb
k e νb

k r− pbt νb
k s− qbt t

)
−→ C

x
(m+k)na

k · y
(m+k)na′

k · z
(m+k)nb

k ·
[
1 + H(xzpb ,yzqb )

zνb

]

Note that if QV
1 denotes the quotient space of the first chart in dimen-

sion 3 (see above) and (QV
1 , [(0, 1, 1)]) ∼= (C3, (0, 1, 1)), [(x, y, z)] 7→ (xL, y, z)

defines an isomorphism of germs, then the multiplicity of the new exceptional

divisor Eb is (m+k)nb
kL . �
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Remark (VII.1.5). Observe that the columns of the new spaces satisfy a

condition analogous to (39). For example, using (39), it can be checked that

nb
k
·
(−1

r

)
+
na′

k
·
(

qb
pbs− qbr

)
+

( νb
k

pbt− νb
k r

)
≡
(

0

0

)
, mod

(
pb
pbe

)
.

In other words, the third column is a linear combination of the first two ones,

modulo the order of the corresponding group. This can be used to prove

that L = gcd(`, nbk ) and hence the multiplicity of Eb is (m+k)·mb
gcd(k,mb)

indeed.

Theorem (VII.1.6). Given an embedded Q-resolution of (C, P ) for all

P ∈ Sing(C), one can construct an embedded Q-resolution of (V, 0), con-

sisting of weighted blow-ups at points. Each of these blow-ups corresponds to

a weighted blow-up in the resolution of (C, P ) for some P ∈ Sing(C), that

is, it corresponds to a vertex of ΓP+. �

By (VII.2.3) and (VII.2.4), an exceptional divisor in the Q-resolution

of (V, 0) contributes to the monodromy if and only if so does the corre-

sponding divisor in (C, P ). Hence the weights can be chosen so that every

exceptional divisor contributes to the monodromy.

Section §VII.2

The Characteristic Polynomial of the Monodromy

Here we plan to apply Theorem (IV.3.14) to compute the characteristic

polynomial of the monodromy and the Milnor number of (V, 0) in terms of

its tangent cone (C, P ). Some notation need to be introduced, concerning

the stratification of each irreducible component of the exceptional divisor in

terms of its quotient singularities.

(VII.2.1). Given a point P ∈ Sing(C), denote by %P : Y p → (C, P ) an em-

bedded Q-resolution of the tangent cone. Assume that the total transform

is given by

(%P )∗(C, P ) = C +
∑

a∈S(ΓP+)

mP
a EPa ,

where EPa is the exceptional divisor of the (pPa , q
P
a )-blow-up at a point Pa

belonging to the locus of non-transversality. Denote by νPa the (pPa , q
P
a )-

multiplicity of C at Pa.

Recall that EPa is naturally isomorphic to P1
(pPa ,q

P
a )
/µe. Using this iden-

tification, define

EPa,1 = EPa \ {[0 : 1], [1 : 0]}, EPa,x = {[0 : 1]}, EPa,y = {[1 : 0]}.
The strata ĚPa,j := EPa,j \

(
EPa,j ∩

(⋃
b 6=a EPb ∪C

))
for j = 1, x, y (see notation

just above Theorem (IV.3.14)) will be considered in Lemma (VII.2.3).
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(VII.2.2). Let us see the situation in the Yomdin-Lê singularity (V, 0).

Denote by ρ : X → (V, 0) the embedded Q-resolution obtained following

Proposition (VII.1.4). Then, the total transform is (recall kPa := gcd(k,mP
a ))

ρ∗(V, 0) = V̂ +mE0 +
∑

P∈Sing(C)

a∈S(ΓP+)

(m+ k)
mP
a

kPa
EPa ,

and EPa appears after the blow-up at the point Pa with suitable weights (re-

call that the locus of non-transversality in dimension 2 and 3 are identified).

The divisor EPa is naturally isomorphic to P2
ω/µe. Using this identifica-

tion, define

EPa,1 = EPa \ {xyz = 0}, EPa,x = {x = 0} \ {[0 : 1 : 0], [0 : 0 : 1]},
EPa,y = {y = 0} \ {[1 : 0 : 0], [0 : 0 : 1]}, EPa,xy = {[0 : 0 : 1}.

Analogously, one considers EPa,z, E
P
a,xz, and EPa,yz so that EPa =

⊔
j E

P
a,j

really defines a stratification. However, these three strata belong to more

than one irreducible divisor in the total transform and hence they do not

contribute to the characteristic polynomial.

As for E0, according to its quotient singularities, no stratification need

to be considered (it is smooth).

The Euler characteristic of Ě0 and ĚPa,j := EPa,j \
(
EPa,j ∩

(⋃
b6=aE

P
b ∪ V̂

))

for j = 1, x, y, xy (see notation just above Theorem (IV.3.14)) as well as its

multiplicity are calculated in Lemma (VII.2.3).

E0 ∩ EP
a

[0 : 1] [1 : 0][γi : 1]

EPa
C

x = 0

y = 0

EP
a

V̂ ∩ EP
a

[0 : 0 : 1]

[γi : 1 : 0]

Figure VII.3. Stratification of EPa and EPa needed for ap-

plying the generalized A’Campo’s formula.

The following three results are presented without their proofs because

they do not provide any new idea. They are the analogous of Lemma (VI.3.3),

Theorem (VI.3.5), and Corollary (VI.3.7), respectively. Anyway, recall that

the Euler characteristic of P2 \C is m2 − 3m+ 3−∑P∈Sing(P ) µP .
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Lemma (VII.2.3). Using the previous notation, the Euler characteristic

and the multiplicity of Ě0 are

χ(Ě0) = χ(P2 \C), m(Ě0) = m.

For the rest of strata of ĚPa , let us fix a point P ∈ Sing(C). Then, one

has that

χ(ĚPa,j) =





1 a = 1, j = xy

0 a 6= 1, j = xy

− gcd
(
k,m(ĚPa,j)

)
· χ(ĚPa,j) ∀a, j = 1, x, y ;

χ(ĚPa,j) 6= 0 =⇒ m(ĚPa,j) =





m+ k a = 1, j = xy

(m+ k) ·m(ĚPa,j)
gcd

(
k,m(ĚPa,j)

) ∀a, j = 1, x, y.

In fact, ∀a ∈ S(ΓP+), a 6= 1, the stratum ĚPa,xy is empty and, in particular,

its Euler characteristic is zero. �

Theorem (VII.2.4). The characteristic polynomial of the complex mon-

odromy of (V, 0) is

∆(V,0)(t) =
(tm − 1)χ(P2\C)

t− 1

∏

P∈Sing(C)

∆k
(C,P )(t

m+k),

where ∆(C,P )(t) denotes the characteristic polynomial of the local complex

monodromy of (C, P ) and if ∆(t) =
∏
i(t

mi − 1)ai, then ∆k(t) denotes

∆k(t) =
∏

i

(
t

mi
gcd(mi,k) − 1

)gcd(mi,k)ai
. �

Corollary (VII.2.5). The Milnor number of a Yomdin-Lê surface singu-

larity can be expressed in terms of the Milnor numbers of the singular points

of the tangent cone, namely

µ(V, 0) = (m− 1)3 + k
∑

P∈Sing(C)

µ(C, P ). �

Section §VII.3

Weighted Yomdin-Lê Surface Singularities

There is still another generalization of a SIS. Let ω := (a, b, c) ∈ N3 with

gcd(a, b, c) = 1. Let f = fm + fm+k + · · · ∈ C{x, y, z} be the decomposition

of f into its ω-homogeneous parts, k ≥ 1. Denote V := V (f) ⊂ C3 and

C := V (fm) ⊂ P2
ω. Then, (V, 0) is said to be a weighted Yomdin-Lê surface

singularity (WYS) if the condition Sing(C) ∩ V (fm+k) = ∅ holds in P2
ω.
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This family can be treated the same way. However, it is not the purpose

of this work to describe in detail an embedded Q-resolution of a WYS.

Instead, only the step zero is presented. As we shall see, one can continue

the process, following in a natural way the ideas explained in this chapter,

to find an embedded Q-resolution of (V, 0).

(VII.3.1). We start the Q-resolution of (V, 0) with the ω-blow-up at the

origin π0 : Ĉ3
ω → C3, see §I.3–2. The total transform is the divisor π∗0(V ) =

V̂ +mE0, where V̂ is the strict transform and E0 is the exceptional divisor.

The intersection V̂ ∩E0 is identified with the tangent cone of the singularity.

Let us consider P ∈ V̂ ∩E0 = C. To simplify the exposition one assumes

that P = ((0, 0, 0), [0 : 0 : 1]) ≡ [0 : 0 : 1] ∈ C. Take a chart of Ĉ3
ω around P

where z = 0 is the equation of E0 and the blowing-up takes the form

(x, y, z)
π07−→ (xza, yzb, zc).

Then, the equation of V̂ on X(c; a, b,−1) is

V̂ : fm(x, y, 1) + zk
[
fm+k(x, y, 1) + zlfm+k+l(x, y, 1) + · · ·

]
= 0.

Two cases arise: if P is smooth in the tangent cone, then V̂ is also smooth

at P and the intersection with E0 at that point is transverse; otherwise,

i.e. P ∈ Sing(C), the WYS condition Sing(C) ∩ V (fm+k) = ∅ implies that

the previous expression in brackets is a unit in the corresponding local ring

and V̂ is not smooth at P . Now the order of fm(x, y, 1) is greater than or

equal to 2 and the intersection V̂ ∩ E0 is not transverse at P .

E0

V̂

C
π∗
0(V ) = V̂ +mE0

V̂ ∩ E0 = C
NT (π∗

0(V )) = Sing(C)

P

Figure VII.4. Step 0 in the embedded Q-resolution of (V, 0).

To achieve a similar situation after the step zero, one proceeds with the

(p1, q1)-weighted blow-up at a point of type (c; a, b) in the tangent cone and

with the
(kp1
k1
, kq1k1 ,

ν1
k1

)
-weighted blow-up at a point of type (c; a, b,−1) in

dimension 3, cf. Lemma (VII.1.1). As it is said, an embedded Q-resolution

of (V, 0) can be computed in this way.





VIII
Algorithms for Checking Rational Roots of

b-Functions and their Applications

The content of this chapter has already been submitted for publication

in a joint work with Viktor Levandovskyy. There is a preliminary version

available at [LM10], see also [LM08, ALM09, ABL+10].

Bernstein-Sato polynomial of a hypersurface is an important object with

numerous applications. However, its computation is hard, as a number

of open questions and challenges indicate. In this chapter we propose a

family of algorithms called checkRoot for optimized checking whether a

given rational number is a root of Bernstein-Sato polynomial and in the

affirmative case, computing its multiplicity.

This algorithms are used in the new approach to compute the whole

global or local Bernstein-Sato polynomial and b-function of a holonomic

ideal with respect to a weight vector. They can be applied in numerous

situations, where an upper bound for the Bernstein-Sato polynomial can be

established. Namely, it can be achieved by means of embedded resolution,

for topologically equivalent singularities or using the formula of A’Campo

and spectral numbers. We also present approaches to the logarithmic com-

parison problem and the intersection homology D-module.

Several applications are presented as well as solutions to some challenges

which were intractable with the classical methods. One of the main applica-

tions consists of computing of a stratification of affine space with the local

b-function being constant on each stratum. Notably, the algorithm we pro-

pose does not employ primary decomposition. Also we apply our results for

the computation of Bernstein-Sato polynomials for varieties.
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The methods from this chapter have been implemented in Singular as

libraries dmod.lib and bfun.lib, see [LM06] and other related packages.

All the examples have been computed with this implementation.

Section §VIII.1

Introduction

Through the chapter we assume K to be a field of characteristic 0. By

Rn we denote the ring of polynomials K[x1, . . . , xn] in n variables over K
and by Dn we denote the ring of K-linear partial differential operators with

coefficients in Rn, that is the n-th Weyl algebra. The ring Dn is the asso-

ciative K-algebra generated by the partial differential operators ∂i and the

multiplication operators xi subject to relations

{∂ixj = xj∂i + δij , xjxi = xixj , ∂j∂i = ∂i∂j | 1 ≤ i, j ≤ n}.

That is, the only non-commuting pairs of variables are (xi, ∂i); they satisfy

the relation ∂ixi = xi∂i+1. We use the Lie bracket notation [a, b] := ab−ba
for operators a, b, then e.g. the latter relation can be written as [∂i, xi] = 1.

Finally, we denote by Dn[s] the ring of polynomials in one variable s with

coefficients in the n-th Weyl algebra, i.e. Dn[s] = Dn ⊗K K[s].

Let us recall Bernstein’s construction. Given a non-constant polynomial

f ∈ Rn in n variables, consider M = Rn[s, 1
f ] · f s which is by definition

the free Rn[s, 1
f ]-module of rank one generated by the formal symbol fs.

Then M has a natural structure of left Dn[s]-module. Here the differential

operators act in a natural way,

∂i
(
g(s, x) · f s

)
=

(
∂g

∂xi
+ sg(s, x)

∂f

∂xi

1

f

)
· fs ∈ M.

Theorem (VIII.1.1) ([Ber72]). Given a non-constant polynomial f ∈ Rn,

there exists a non-zero polynomial b(s) ∈ K[s] and a differential operator

P (s) ∈ Dn[s] such that

(40) P (s)f · fs = b(s) · fs ∈ Rn
[
s,

1

f

]
· fs = M.

The monic polynomial b(s) of minimal degree satisfying (40) is called

the Bernstein-Sato polynomial or the global b-function of f .

This chapter is organized as follows. In Section VIII.2, the checkRoot

family of algorithms for checking rational roots of the global and local

Bernstein-Sato polynomial is developed. We also show how to compute

the b-function of a holonomic ideal with respect to a certain weight vector.
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In Section VIII.3, we show how to obtain an upper bound in various

situations: by using an embedded resolution, for topologically equivalent

singularities, by using A’Campo’s formula and spectral numbers. In partic-

ular, we demonstrate a complicated example of (non-isolated) quasi-ordinary

singularity.

In Section VIII.4, we discuss the possibilities to obtain integral roots

of the b-function and apply it to the computation of the minimal integral

root in the context of Intersection Homology D-module and Logarithmic

Comparison Theorem. In Section VIII.5, we present a new method for

computing the stratification of the affine space according to local Bernstein-

Sato polynomials.

We want to stress, that Bernstein-Sato polynomials for most of the ex-

amples, presented in this chapter, cannot be computed by direct methods

with any computer algebra system including Singular:Plural [GLS06].

Indeed, these examples were known as open challenges in the community

and here we present their solutions for the first time.

The examples of this chapter have been performed on a PC with Intel

Core i3–540 Processor (4M Cache, 3.06 GHz) equipped with 4 GB RAM

running Ubuntu 10.04 LTS Linux.

Section §VIII.2

The checkRoot Family of Algorithms

For the sake of completeness, some of the ideas coming from [LM08],

as well as some results and their proofs have been included here. Several

algorithms for computing the b-function associated with a polynomial are

known, see e.g. [Oak97a, Oak97b, Oak97c], [SST00], [BM02], [Nor02],

[Sch04a], [LM08]. However, from the computational point of view, it is

very hard to obtain this polynomial in general. Despite significant recent

progress, only restricted number of examples can actually be treated. In

order to enhance the computation of the Bernstein-Sato polynomial via

Gröbner bases, we study the following computational problems.

(1) Obtain an upper bound for bf (s), that is, find a nonzero polynomial

B(s) ∈ K[s] such that bf (s) divides B(s). Write

B(s) =
d∏

i=1

(s− αi)mi .

(2) Check whether αi is a root of the b-function.

(3) Compute the multiplicity of αi as a root of bf (s).
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There exist some well-known methods to obtain an upper bound for

the Bernstein-Sato polynomial of a hypersurface singularity once we know,

for instance, an embedded resolution of such singularity [Kas77], see Sec-

tion VIII.3. However, as far as we know, there is no algorithm for computing

the b-function from this upper bound. In this section we present algorithms

for checking whether a given rational number is a root of the b-function and

for computing its multiplicity. As a first application, using this idea, we

could obtain bf (s) for some interesting non-isolated singularities, see Exam-

ple (VIII.3.3) below.

From the definition of the b-function it is clear that

(41) 〈bf (s)〉 = (AnnDn[s](f
s) + 〈f〉) ∩K[s].

In fact, this is another way to define the Bernstein-Sato polynomial. This

equation was used to prove the main result of this section, namely Theo-

rem (VIII.2.1).

Theorem (VIII.2.1). Let R be a K-algebra, whose center contains K[s].

Let q(s) ∈ K[s] be a polynomial in one variable and I a left ideal in R

satisfying I ∩K[s] 6= 0. The following equalities hold:

(1)
(
I +R〈q(s)〉

)
∩K[s] = I ∩K[s] + K[s]〈q(s)〉,

(2)
(
I : q(s)

)
∩K[s] =

(
I ∩K[s]

)
: q(s),

(3)
(
I : q(s)∞

)
∩K[s] =

(
I ∩K[s]

)
: q(s)∞.

In particular, using the ideal I = AnnDn[s](f
s)+ 〈f〉 ⊆ Dn[s] in the previous

equation (41), one has

•
[

AnnDn[s](f
s) +Dn[s]〈f, q(s)〉

]
∩K[s] =

〈
gcd(bf (s), q(s))

〉
,

•
[
(AnnDn[s](f

s) +Dn[s]〈f〉) : q(s)
]
∩K[s] =

〈 bf (s)
gcd(bf (s),q(s))

〉
,

•
[
(AnnDn[s](f

s) +Dn[s]〈f〉) : q(s)∞
]
∩K[s] = 〈bf (s)〉 : q(s)∞.

Proof. Let b(s) 6= 0 be a generator of I ∩ K[s]. At first, suppose that

h(s) ∈ (I +R〈q(s)〉) ∩K[s]. Then one can write

(42) h(s) = P (s) +Q(s)q(s),

where P (s) ∈ I and Q(s) ∈ R. Let d(s) be the greatest common divisor of

b(s) and q(s). There exist b1(s) and q1(s) such that d(s)b1(s) = b(s) and

d(s)q1(s) = q(s), and hence b1(s)q(s) = q1(s)b(s). Since s commutes with

all elements in R, multiplying in (42) by b1(s), one obtains

b1(s)h(s) = b1(s)P (s) +Q(s)q1(s)b(s) ∈ I.

Thus b1(s)h(s) ∈ I ∩ K[s] = 〈b(s)〉 and therefore h(s) ∈ 〈b(s)〉 : 〈b1(s)〉 =

〈d(s)〉 = I ∩K[s]+ 〈q(s)〉. The other inclusion follows obviously. The second

and the third parts can be shown directly and now the proof is complete. �
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Note that the second (resp. third) part of the previous theorem can

be used to heuristically find an upper bound for bf (s) (resp. the roots of

bf (s)). Since q(s) is in the center of Dn[s], the quotient and saturation ideals

can be computed effectively e.g. via the kernel of a module homomorphism

procedures, cf. [Lev05]. More classical but less effective approach is to use

the extra commutative variable, say T , and the formula

I : q(s)∞ = Dn[s, T ]〈I, 1− Tq(s)〉 ∩Dn[s].

Let us see an example to illustrate how useful could be Th. (VIII.2.1).

Example (VIII.2.2). Let f ∈ C[x, y] be the polynomial x(x2 + y3). The

annihilator of fs in D[s] can be generated by the operators P1(s) = 3xy2∂x−
y3∂y − 3x2∂y and P2(s) = 3x∂x + 2y∂y − 9s. Consider the univariate poly-

nomial

q(s) = (s+ 1)(s+ 5/9)(s+ 8/9)(s+ 10/9)(s+ 7/9)(s+ 11/9)(s+ 13/9).

Computing a Gröbner basis, one can see that the ideal in D[s, T ] generated

by {P1(s), P2(s), f, 1−Tq(s)} is the whole ring. From Theorem (VIII.2.1)(3),

one deduces that q(s) contains all the roots of bf (s).

Using this approach we only have to check whether an ideal is the whole

ring or not. Therefore any admissible monomial ordering can be chosen,

hence the one, which is generically fast.

Given an arbitrary rational number α, consider the ideal Iα ⊆ Dn[s]

generated by the annihilator of f s, the polynomial f , and s + α. Theo-

rem (VIII.2.1)(1) says that the equality Iα = Dn[s] holds generically (this

is clarified in Corollary (VIII.2.3) below). Hence the roots of the Bernstein-

Sato polynomial are the rational numbers for which the condition Iα 6= Dn[s]

is satisfied.

This allows one to work out with parameters, that is over K(α)〈x, ∂x〉[s],
and find the corresponding complete set of special parameters. The latter

procedure is algorithmic [LZ07] and implemented in Singular. Note, that

the set of candidates to obstructions, returned by the latter algorithm is in

general bigger, than the set of real obstructions.

Corollary (VIII.2.3). Let {P1(s), . . . , Pk(s)} be a system of generators of

the annihilator of fs in Dn[s]. The following conditions are equivalent:

(1) α ∈ Q>0 is a root of bf (−s).
(2) Dn[s]〈P1(s), . . . , Pk(s), f, s+ α〉 6= Dn[s].

(3) Dn〈P1(−α), . . . , Pk(−α), f〉 6= Dn.

Moreover, in such a case Dn[s]〈P1(s), . . . , Pk(s), f, s+α〉∩K[s] = K[s]〈s+α〉.
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Proof. Let J = Dn[s]〈P1(s), . . . , Pk(s), f, s + α〉 and denote by K the

ideal J ∩Dn. Then, one clearly has K = Dn〈P1(−α), . . . Pk(−α), f〉. Now

since

J = D[s] ⇐⇒ J ∩K[s] = K[s] ⇐⇒ K = Dn,

and gcd(bf (s), s+ α) = 1 if and only if bf (−α) 6= 0, the result follows from

applying Theorem (VIII.2.1) using q(s) = s+ α. �

Once we know a system of generators of the annihilator of fs in Dn[s],

the last corollary provides an algorithm for checking whether a given rational

number is a root of the b-function of f , using Gröbner bases in the Weyl

algebra.

Algorithm 1 checkRoot1 (checks whether α ∈ Q>0 is a root of bf (−s))
Input 1: {P1(s), . . . , Pk(s)} ⊆ Dn[s], generators of AnnDn[s](f

s);

Input 2: f , a polynomial in Rn; α, a number in Q>0;

Output: true, if α is a root of bf (−s); false, otherwise;

K := 〈P1(−α), . . . , Pk(−α), f〉; . K = J ∩Dn ⊆ Dn

G := reduced Gröbner basis of K w.r.t. ANY term ordering;

return (G 6= {1});

VIII.2–1. Multiplicities

Two approaches to deal with multiplicities are presented. We start with

a natural generalization of Corollary (VIII.2.3).

Corollary (VIII.2.4). Let mα be the multiplicity of α as a root of bf (−s)
and let us consider the ideals Ji = AnnDn[s](f

s) + 〈f, (s + α)i+1〉 ⊆ Dn[s],

for i = 0, . . . , n. Then, the following conditions are equivalent:

(1) mα > i.

(2) Ji ∩K[s] = 〈(s+ α)i+1〉.
(3) (s+ α)i /∈ Ji.

Moreover, if Dn[s] ) J0 ) J1 ) · · · ) Jm−1 = Jm, then mα = m. In

particular, m ≤ n and Jm−1 = Jm = · · · = Jn.

Proof. Let us first see 1 ⇐⇒ 2. Since the multiplicity mα > i if and

only if gcd(bf (s), (s + α)i+1) = (s + α)i+1, the equivalence follows from

applying Theorem (VIII.2.1)(1) using q(s) = (s+ α)i+1.
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Note that if (s + α)i ∈ Ji ∩ K[s], then clearly Ji ∩ K[s] ) 〈(s + α)i+1〉,
that is, the implication 2 =⇒ 3 holds.

For 3 =⇒ 2, let h(s) ∈ K[s] be the monic generator of the ideal Ji∩K[s].

Since (s + α)i+1 ∈ Ji ∩ K[s] = 〈h(s)〉, there exists j ≤ i + 1 such that

h(s) = (s+ α)j . Suppose that j ≤ i. Then one has

(s+ α)i = (s+ α)i−j(s+ α)j = (s+ α)i−jh(s) ∈ Ji.

That, however, contradicts 3 and thus j = i+ 1.

The rest of the assertion follows by applying the previous result using

i = m and i = m− 1, since (s+α)m ∈ Jm and (s+α)m−1 /∈ Jm−1 from the

hypothesis. �

Again once we know a system of generators of the annihilator of fs

in Dn[s], the last corollary provides an algorithm for checking whether a

given rational number is a root of the b-function of f and for computing its

multiplicity, using Gröbner bases for differential operators.

Algorithm 2 checkRoot2 (computes the multiplicity of α ∈ Q>0 as a

root of bf (−s))
Input 1: {P1(s), . . . , Pk(s)} ⊆ Dn[s], generators of AnnDn[s](f

s);

Input 2: f , a polynomial in Rn; α, a number in Q>0;

Output: mα, the multiplicity of α as a root of bf (−s);

for i = 0 to n do

J := Dn[s]〈P1(s), . . . , Pk(s), f, (s+ α)i+1〉; . Ji
G := Gröbner basis of J w.r.t. ANY term ordering;

r := normal form of (s+ α)i with respect to G;

if r = 0 then

mα := i; . r = 0 =⇒ (s+ α)i ∈ Ji
break . leave the for block

end if

end for

return mα;

Proof. (of Algorithm 2).

Termination: The algorithm checkRoot2 clearly terminates and one only

has to consider the loop from 0 to n because the multiplicity of a root of

bf (s) is at most n, see [Sai94].

Correctness: Corollary (VIII.2.4) implies the correctness of the method. �
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Remark (VIII.2.5). There exists another version of checkRoot2 with just

one step, due to the formula, see Corollary (VIII.2.4) above,
(

AnnDn[s](f
s) +Dn[s]〈f, (s+ α)n〉

)
∩K[s] = 〈(s+ α)mα〉.

However, this method only seems to be useful when the multiplicity is close

to n, otherwise checkRoot2 is more effective. The reason is that in general,

the multiplicity is far lower than the number of variables.

This algorithm is much faster, than the computation of the whole Bern-

stein polynomial via Gröbner bases, because no elimination ordering is

needed for computing a Gröbner basis of J . Also, the element (s + α)i+1,

added as a generator, seems to simplify tremendously such a computation.

Actually, when i = 0 it is possible to eliminate the variable s in advance and

we can perform the whole computation in Dn, see Corollary (VIII.2.3)(3)

above.

Nevertheless, Algorithm 2 meets the problem to calculate on each step

a Gröbner basis Gi for an ideal of the form I+ 〈(s+α)i+1〉 and the set Gi−1

is not used at all for such computation. A completely new Gröbner basis

has to be performed instead. The classical idea of quotient and saturation

are used to solve this obstruction. In particular, the following result holds.

Corollary (VIII.2.6). Let mα be the multiplicity of α as a root of bf (−s)
and let us consider the ideal I = AnnDn[s](f

s) + Dn[s]〈f〉. The following

conditions are equivalent:

(1) mα > i.

(2)
(
I : (s+ α)i

)
+Dn[s]〈s+ α〉 6= Dn[s].

(3)
(
I : (s+ α)i

)
|s=−α 6= Dn.

Proof. Given J ⊆ Dn[s] an ideal, we denote by bJ(s) the monic gener-

ator of the ideal J ∩K[s]. Then, from Theorem (VIII.2.1)(1), condition 2 is

satisfied if and only if −α is a root of bI:(s+α)i(s). This univariate polynomial

is nothing but bf (s)/ gcd(bf (s), (s+α)i), due to Theorem (VIII.2.1)(2). On

the other hand, one has the obvious equivalence

mα > i ⇐⇒ (s+ α)
∣∣∣ bf (s)

gcd(bf (s), (s+ α)i)
,

and hence the claim follows. �

Since s + α belongs to the center of Dn[s], the ideal I : (s + α)i can

recursively be computed by the formulas

I : (s+ α) = (I ∩Dn[s]〈s+ α〉)/(s+ α),

I : (s+ α)i = (I : (s+ α)i−1) : (s+ α).
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The following is a sketch of another algorithm for computing multiplic-

ities using quotient ideals. The termination and correctness follow from

Corollary (VIII.2.6).

Algorithm 3 checkRoot3 (computes the multiplicity of α ∈ Q>0 as a

root of bf (−s))
Input 1: {P1(s), . . . , Pk(s)} ⊆ Dn[s], generators of AnnDn[s](f

s);

Input 2: f , a polynomial in Rn; α, a number in Q>0;

Output: mα, the multiplicity of α as a root of bf (−s);

m := 0; I := Dn[s]〈P1(s), . . . , Pk(s), f〉; J := I +Dn[s]〈s+ α〉;
while G 6= {1} do

m := m+ 1;

I := I : (s+ α); . I : (s+ α)i

J := I +Dn[s]〈s+ α〉; (or J := I|s=−α)

G := reduced Gröbner basis of J w.r.t. ANY term ordering;

end while

return m;

Remark (VIII.2.7). Several obvious modifications of the presented algo-

rithms can be useful depending on the context. Assume, for instance, that

q(s) is a known factor of the Bernstein-Sato polynomial and one is inter-

ested in computing the rest of bf (s). Then the ideal I : q(s) contains such

information. This simple observation can help us in some special situations.

Remark (VIII.2.8). Define the reduced Bernstein-Sato polynomial of f ∈
Rn to be b′f (s) = bf (s)/(s+1). The Jacobian ideal of f is Jf = 〈 ∂f∂x1 , . . . ,

∂f
∂xn
〉.

It is known, that taking 〈f〉+Jf instead of 〈f〉 has the following consequence

(AnnD[s] f
s + 〈f, ∂f∂x1 , . . . ,

∂f
∂xn
〉) ∩K[s] = 〈b′f (s)〉 = 〈 bf (s)

s+1 〉.
Hence, all the algorithms above can be modified to this setting, resulting

in more effective computations. This is the way it should be done in the

implementation. We decided, however, not to modify the description of

algorithms in order to keep the exposition easier.

VIII.2–2. Local versus global b-functions

Here we are interested in what kind of information one can obtain from

the global b-function for computing the local ones and conversely. In order

to avoid theoretical problems we will assume in this paragraph that the

ground field is C.
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Several algorithms to obtain the local b-function of a hypersurface f

have been known without any Gröbner bases computation but under strong

conditions on f . For instance, it was shown in [Mal75] that the minimal

polynomial of −∂tt acting on some vector space of finite dimension coincides

with the reduced local Bernstein polynomial, assuming that the singularity

is isolated.

Definition (VIII.2.9). Let p ∈ Cn be a point and mp = 〈{x1−p1, . . . , xn−
pn}〉 ⊂ Rn the corresponding maximal ideal. Let Dp be the local Weyl alge-

bra at p, that is the n-th Weyl algebra with coefficients from C[x1, . . . , xn]p
instead of Rn = C[x1, . . . , xn]. Define the local b-function or local Bernstein-

Sato polynomial to be the univariate monic polynomial bf,p(s) of the minimal

degree, such that the identity P (s)f · fs = b(s) · fs holds for P (s) ∈ Dp[s].

Theorem (VIII.2.10). (Briançon-Maisonobe (unpublished) and [MN91]).

Let bf,p(s) be the local b-function of f at the point p ∈ Cn and bf (s) the global

one. Then, bf (s) = lcmp∈Cn bf,p(s) = lcmp∈Sing(f) bf,p(s). �

The previous theorem can be very useful for computing the global b-

function using the local ones. Let us see an example.

Example (VIII.2.11). Let C be the curve in C2 given by the equation

f = (y2 − x3)(3x − 2y − 1)(x + 2y). This curve has three isolated singular

points (0, 0), (1, 1), and (1/4,−1/8). The following is its real picture.

p1

p3

p2

Figure VIII.1. The cup (2, 3) with two lines.

The library gmssing.lib contains a procedure bernstein, which com-

putes the local b-function at the origin. Moving to the corresponding points

we can also compute bf,pi(s).

bf,p1(s) = (s+ 1)2(s+ 5/8)(s+ 7/8)(s+ 9/8)(s+ 11/8)

bf,p2(s) = (s+ 1)2(s+ 3/4)(s+ 5/4)

bf,p3(s) = (s+ 1)2(s+ 2/3)(s+ 4/3)
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From this information and using Theorem (VIII.2.10), the global b-

function is

bf (s) = (s+ 1)2(s+ 2/3)(s+ 5/8)(s+ 3/4)(s+ 7/8)

(s+ 4/3)(s+ 5/4)(s+ 9/8)(s+ 11/8).

The computation of the global b-function with Theorem (VIII.2.10) is

effective, when the singular locus consists of finitely many isolated singular

points. The Singular library gmssing.lib implemented by M. Schulze

[Sch04b] and based on his work [Sch04a] allows one to compute invariants

related to the the Gauss-Manin system of an isolated hypersurface singu-

larity. In the non-isolated case the situation is more complicated, since no

explicit algebraic description of the Gauss-Manin connection exists. For

computing the local b-function in this case (which is important on its own)

we suggest using the global b-function as an upper bound and a local version

of the checkRoot algorithm, see Section VIII.2–2 below.

T. Oaku presented algorithms for computing the local b-function in

[Oak97a] and [Oak97c]. In these algorithms, no knowledge of a global

b-function is needed. However, these algorithms are quite hard from the

computational point of view. Namely, more complicated elimination in Weyl

algebra together with numerous computations of quotient ideals in a com-

mutative ring need to be executed. An intersection of a left ideal with a

principal subalgebra needs to be performed as well, and for the local case

this has to be done within the localized ring.

In [Nak09], H. Nakayama presented an algorithm for computing local

b-functions. One step in his algorithm uses a bound for the multiplicity of

a given rational root of the global b-function. Then the algorithm checks if

this multiplicity agrees with the local one. This approach is very similar to

our checkRoot algorithm.

Localization of non-commutative rings

We recall some properties of rings of fractions in non-commutative set-

ting. The reader is referred to [GW04] and [MR01] for further details.

Definition (VIII.2.12). Let R be a ring and S ⊆ R a multiplicatively

closed set. A left ring of fractions (analogously for right rings of fractions)

for R with respect to S is a ring homomorphism φ : R→ Q such that:

(1) φ(s) is a unit of Q for all s ∈ S.

(2) Each element of Q can be written in the form for φ(s)−1φ(r) for

some r ∈ R and s ∈ S.

(3) ker(φ) = {r ∈ R | sr = 0 for some s ∈ S}.
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Theorem (VIII.2.13). There exists a left ring of fractions for R with

respect to S if and only if S is a left denominator set, that is, the following

conditions hold:

• Left Ore condition: for each r ∈ R and s ∈ S, there exist r′ ∈ R
and s′ ∈ S such that s′r = r′s, that is, Sr ∩Rs 6= ∅.
• Left reversible: if rs = 0 for some r ∈ R and s ∈ S, then ∃r′ ∈ R

such that sr′ = 0.

In such a case, the pair (Q,φ) is universal for homomorphisms ϕ : R → T

such that ϕ(S) consists of units of T and therefore Q is unique up to unique

isomorphism. Moreover, if R also has a right ring of fractions Q′ with

respect to S, then Q ' Q′. �

Because of the uniqueness, the left ring of fractions Q (when it exists)

is often denoted by S−1R, and the natural map φ : R→ S−1R is called the

localization map. To simplify notation the elements of S−1R are denoted

by s−1r, even when kerφ 6= 0. Two quotients s−1
1 r1 and s−1

2 r2 are equal if

and only if there exist s ∈ S and a ∈ R such that as1 = ss2 and ar1 = sr2.

Actually S−1R could be described as S×R modulo the previous equivalence

relation. The localization for left (resp. right) modules can be generalized

in the obvious way and it is verified S−1M ∼= S−1R ⊗RM (resp. MS−1 ∼=
M ⊗R RS−1).

Remark (VIII.2.14). If S satisfies the left Ore condition and it is left

reversible, then the previous equivalence relation is the same as the following

one, (s1, r1) ∼ (s2, r2) ⇐⇒ ∃a, b ∈ R | as1 = bs2 ∈ S, ar1 = br2.

Recall the following two classical results on localizations.

Lemma (VIII.2.15). Let R1
i
↪→ R2 be a ring extension and S ⊂ R1 a

multiplicatively closed set. Assume S−1R1 and S−1R2 exist and consider the

corresponding localization maps φ1 : R1 → S−1R1 and φ2 : R2 → S−1R2.

Let j : S−1R1 → S−1R2 be the map induced by i. Then, j is injective and

for every left ideal I ⊆ R2 one has S−1I ∩ S−1R1 = S−1(I ∩R1). �

Lemma (VIII.2.16). Let R be a ring, S ⊆ R a multiplicatively closed set

and I ⊆ R a left ideal. Assume S−1R exists. Then, S−1I is not the whole

ring S−1R if and only if I ∩ S = ∅. �

Example (VIII.2.17). Let R = D be the classical n-Weyl algebra and

S = K[x] \mp, where p ∈ Kn is an arbitrary point, cf. Definition (VIII.2.9).

Then S is a left and right denominator set as in the statement of Theo-

rem (VIII.2.13), and the localization (K[x]\mp)
−1D is naturally isomorphic

to Dp. Analogous construction also holds for the extension D[s] = K[s]⊗KD.
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Local version of the checkRoot1 algorithm

Theorem (VIII.2.1) is general enough to be applied for checking rational

roots of local Bernstein-Sato polynomials. To simplify the exposition, we

concentrate our attention on the local version of checkRoot1 algorithm. See

Section VIII.5 for other generalizations.

Let f ∈ C[x1, . . . , xn] be a polynomial, p ∈ Cn, and α ∈ Q. Then the

first part of Theorem (VIII.2.1), see also Corollary (VIII.2.3), tells us that

(s+ α) is a factor of the local b-function at p if and only if the left ideal

(43) AnnDp[s](f
s) +Dp[s]〈f, s+ α〉

is not the whole ring Dp[s]. From Lemma (VIII.2.15) using R1 = D[s],

R2 = D〈t, ∂t〉 := D ⊗K K〈t, ∂t | ∂t · t = t · ∂t + 1〉, S = C[x] \ mp, and

I = AnnD〈t,∂t〉(fs) = If the Malgrange ideal associated with f , one obtains

AnnDp[s](f
s) = Dp[s] AnnD[s](f

s).

Proposition (VIII.2.18). Let {P1(s), . . . , Pk(s)} be a system of generator

of AnnD[s](f
s) and consider the ideal I = D[s]〈P1(s), . . . , Pk(s), f, s + α〉.

Then we have

(s+ α) | bf,p(s) ⇐⇒ p ∈ V (I ∩ C[x]).

Proof. From the previous discussion, Dp[s]I equals the ideal (43) and

thus s + α is a factor of bf,p(s) if and only if Dp[s]I 6= Dp[s]. Now, by

Lemma (VIII.2.16) using R = D[s] and S = C[x] \mp,

Dp[s]I 6= Dp[s] ⇐⇒ I ∩ (C[x] \mp) = ∅ ⇐⇒ I ∩ C[x] ⊆ mp,

and the claim follows. �

There are several ways to check whether an ideal I ⊆ Dp[s] is proper or

not. However, it is an open problem to decide which one is more efficient.

Mora division and standard bases techniques seem to be more suitable in this

case, since otherwise a (global) elimination ordering is needed. On the other

hand, using this approach, such orderings are unavoidable for obtaining

the stratification associated with local b-functions, see Section VIII.5 where

several examples are shown.

VIII.2–3. b-functions with respect to weights and checkRoot

The b-function associated with a holonomic ideal with respect to a weight

is presented. We refer [SST00] for details. Let 0 6= w ∈ Rn≥0 and consider

the V -filtration with respect to w, {Vm | m ∈ Z} = V on D, where Vm is

spanned by
{
xα∂β | −wα+ wβ ≤ m

}
over K. That is, xi and ∂i get weights

−wi and wi respectively.
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Note that the relation ∂ixi = xi∂i + 1 is homogeneous of degree 0 with

respect to such weights. The associated graded ring

GrV (D) :=
⊕

m∈Z
Vm/Vm−1

is isomorphic to D, which allows us to identify them.

For a non-zero operator

P =
∑

α,β∈Nn
aαβx

α∂β ∈ D,

the maximum maxα,β{−wα+wβ | cαβ 6= 0} ∈ R is denoted by ordV (P ) and

the principal symbol of P is the V -homogeneous operator given by

σV (P ) :=
∑

−wα+wβ= ordV (P )

aαβx
α∂β.

In addition, for a given ideal I ⊆ D, the associated graded ideal is defined

as the vector space spanned by all its principal symbols, that is, GrV (I) :=

K · {σV (P ) | P ∈ I}. Sometimes, the principal symbol (resp. associated

graded ideal) is called the initial form (resp. initial ideal) and it is denoted

by in(−w,w)(P ) (resp. in(−w,w)(I)).

Definition (VIII.2.19). Let I ⊂ D be a holonomic ideal. Consider 0 6=
w ∈ Rn≥0 and s :=

∑n
i=1wixi∂i. Then GrV (I) ∩K[s] 6= 0 is a principal ideal

in K[s]. Its monic generator is called the global b-function of I with respect

to the weight w.

Although Theorem (VIII.2.1) can not be applied in this setting, since

s =
∑

iwixi∂i does not belong to the center of the algebra, a similar

result still holds, due to the properties of the V -filtration, see Proposi-

tion (VIII.2.20) below. Also Corollaries (VIII.2.3), (VIII.2.4), and (VIII.2.6)

can be established using initial parts instead of annihilators.

Proposition (VIII.2.20).
(

GrV (I) + GrV (D)〈q(s)〉
)
∩ K[s] = GrV (I) ∩

K[s] + K[s]〈q(s)〉.

Proof. Actually it is an easy consequence of being treated with V -

homogeneous ideals. Consider h(s) = Q + R · q(s), where Q ∈ GrV (I)

and R ∈ GrV (D). Taking V -homogeneous parts in the previous expression,

one finds Q0 ∈ GrV (I) and R0 ∈ GrV (D) of degree 0 such that h(s) =

Q0 + R0 · q(s). Now, since q(s) commutes with Q0, one can proceed as in

the proof of Theorem (VIII.2.1)(1). �

Many algorithms in the realm of D-modules are based on the computa-

tion of such b-functions. For some applications like integration and restric-

tion, only the maximal and the minimal integral roots have to be computed.



§VIII.3. Computing b-Functions via Upper Bounds 169

However, the previous proposition can not be used to find the set of all

integral roots, since neither upper nor lower bound is known in advance.

For instance, N. Takayama used the following simple example to show the

general unboundness: I = 〈x∂1 +k〉, k ∈ Z is D1-holonomic and in(−1,1)(I)∩
C[s] = 〈s + k〉 with s = t∂t. Nevertheless, there is the natural possibility

to check a particular root of a b-function with respect to the non-negative

weight w.

Section §VIII.3

Computing b-Functions via Upper Bounds

As different possible ways to find upper bounds, we present embedded

resolutions, topologically equivalent singularities, and A’Campo’s formula.

Depending on the context local or global version of our algorithm is used.

VIII.3–1. Embedded resolutions

In this part we will work again over the field C of the complex numbers.

However, in actual computation we can assume that the ground field is gen-

erated by a finite number of (algebraic or transcendental) elements over the

field Q and that the algebraic relations among these elements are specified.

Definition (VIII.3.1). Let h : Y → Cn be a proper birational morphism.

We say that h is a global embedded resolution of the hypersurface defined by

a polynomial f ∈ C[x1, . . . , xn], X := V (f), if the following conditions are

satisfied:

(1) Y is a non-singular variety.

(2) h : Y \ h−1(X)→ Cn \X is an isomorphism.

(3) h−1(X) is a normal crossing divisor.

Since h−1(X) is a normal crossing divisor, the morphism F = f ◦ h :

Y → C is locally given by a monomial. Hence, we can define the b-function

of F as the least common multiple of the local ones. If F is locally given by

the monomial xα = xα1
1 · · ·xαnn at the point p, then one has

bF,p(s) =

α1∏

i=1

(
s+

i

α1

)
· · ·

αn∏

i=1

(
s+

i

αn

)
=

∏

1≤ij≤αj

∏

1≤k≤n

(
s+

ik
sk

)
.

The following is the global version of the classical result by Kashi-

wara [Kas77]. The upper bound statement is due to Varchenko ([Var81])

and Saito ([Sai93, Sai94]).
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Theorem (VIII.3.2). For f ∈ Rn, there exists an integer k such that

bf (s) is a divisor of the product bF (s)bF (s + 1) · · · bF (s + k). Moreover,

0 ≤ k ≤ n− 1.

Proof. Since h is a global embedded resolution of X = V (f), h induces

a local embedded resolution of the germ (X, p) at every point p ∈ X. Now,

the existence of k ≥ 0 with the divisibility property follows from the theorem

by Kashiwara [Kas77] and from the fact that the global b-function is the

least common multiple of the local ones, see Theorem (VIII.2.10). The proof

for the upper bound can be found in the references above. �

This theorem allows one to find upper bounds also for the global case.

Let us see an example to show how one can apply the algorithm checkRoot

in order to compute the b-function.

Example (VIII.3.3). Let f = (xz + y)(x4 + y5 + xy4) ∈ Q[x, y, z] and

consider the univariate polynomial B1(s) = bx5(s)by18(s)bz24(s). Since every

root of bf (−s) belongs to the real interval (0, 3), see Theorem (VIII.3.2),

computing an embedded resolution of the singularity and using Kashiwara’s

result [Kas77], we obtain that B(s) = B1(s)B1(s+ 1)B1(s+ 2) is an upper

bound for bf (s).

Once we know a system of generators of AnnDn[s] f
s, checking whether

each root of the upper bound is a root of the Bernstein-Sato polynomial was

simple. It took less than 5 seconds except for those which appear in the

table below. We also observe that when a candidate is not a root indeed,

the computation is very fast. To the best of our knowledge, this example

(first appeared in [CU05]) is intractable by any computer algebra system.

bf (s) = (s+ 1)2(s+ 17/24)(s+ 5/4)(s+ 11/24)(s+ 5/8)

(s+ 31/24)(s+ 13/24)(s+ 13/12)(s+ 7/12)(s+ 23/24)

(s+ 5/12)(s+ 3/8)(s+ 11/12)(s+ 9/8)(s+ 7/8)

(s+ 19/24)(s+ 3/4)(s+ 29/24)(s+ 25/24)

The running time is given in the format minutes:seconds.

Root of B(−s) Running time
Root of bf (−s) ?

checkRoot2 checkRoot1

5/4 18:47 12:42 Yes

31/24 47:31 31:05 Yes

9/8 0:56 0:24 Yes

29/24 17:41 7:57 Yes
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Remark (VIII.3.4). Choosing the lexicographical ordering with ∂x > x

in D, when using the checkRoot algorithm, reduced the running time to

just 25 second. We ignore whether the lexicographical ordering is suitable

for other families of singularities.

Let us give a brief description for computing a global embedded resolu-

tion of f . Denote by V1 := V (xz + y) and V2 := V (x4 + y5 + xy4) the two

components of V (f). Note that Sing(V2) ⊂ V1 ∩ V2 and the singular locus

Sing(f) = V1 ∩ V2 can be decomposed into two disjoint algebraic sets as

Sing(f) = V (xz + y, yz4 − yz3 + 1) ∪ V (x, y) =: Y t Z.

The varieties V1 and V2 intersect transversely at every point of Y . In-

deed, let us consider P = (a, b, c) ∈ Y . Then V1 and V2 are smooth at P

and their tangent spaces

{cx+ y + az = 0} and {(4a3 + b4)x+ (5b4 + 4ab3)y = 0}

can not be the same (a 6= 0 holds).

Consider π : Ĉ3 → C3 the blow-up of C3 with center in Z. Denote by V̂1

and V̂2 the corresponding strict transforms of V1 and V2. The exceptional

divisor E1 has multiplicity 5 and, V̂1 and V̂2 do not meet in a small neighbor-

hood of E1. Moreover, V̂1 and E intersect transversely. The local equation

of V̂2 ∪ E1 is given by the polynomial y5(x4 + y + xy).

5 24

18

12

6V̂1 V̂2

Figure VIII.2. Embedded resolution of V ((xz + y)(x4 + y5 + xy4))

Now, one can proceed as in the case of plane curves, since the local

equation involves just two variables. Finally, we obtain seven divisors with

normal crossings, see Figure VIII.2. This method can also be applied to the

family (xz + y)g(x, y) under some extra conditions on g(x, y).

Remark (VIII.3.5). To the best of our knowledge, resolution of singularities

has never been used before for computing Bernstein-Sato polynomials in an

algorithmic way. Recall that an embedded resolution can be computed algo-

rithmically in any dimension and for any affine algebraic variety [BEV05].

There is a sophisticated implementation by A. Frühbis-Krüger and G. Pfister

[FP05] in Singular.
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One can find upper bounds for the case of hyperplane arrangements by

computing an embedded resolution. This allows one among other to test

formulas for Bernstein-Sato polynomials of non-generic arrangements. A

formula for the Bernstein-Sato polynomial of a generic hyperplane arrange-

ment was given by Walther in [Wal05].

VIII.3–2. Topologically equivalent singularities

Let f, g be two topologically equivalent singularities and assume that

bf (s) is known. Since the set Ef = {e2πiα | bf,0(α) = 0} is a topological

invariant of the singularity {f = 0} at the origin [Mal75, Mal83] and every

root belongs to (−n, 0) (Theorem (VIII.3.2)), one can find an upper bound

for bg(s) from the roots of bf (s) and use our algorithms for computing bg(s).

The upper bound is constructed as
∏
β∈E(s− β), where

E := {α+ k | α ∈ Ef , k ∈ Z, α+ k ∈ (−n, 0)}.

In general it is complicated to check whether two singularities are equiv-

alent. However, there are some special families for which this can be done.

This is the case of quasi-ordinary singularities, see e.g. [Lip88]. Consider

an example of a non-isolated one.

Example (VIII.3.6). Let f = z4 +x6y5 and g = f +x5y4z. Since the cor-

responding discriminants with respect to z are normal crossing divisors, the

associated germs at the origin define quasi-ordinary singularities. Moreover,

the characteristic exponents are in both cases the same and hence they are

topologically equivalent, see e.g. [Lip88].

The Bernstein-Sato polynomial of f at the origin has 27 roots, all of

them with multiplicity one except for α = −1 which has multiplicity two.

Here is the list in positive format.

1, 5
6 ,

9
10 ,

4
3 ,

13
10 ,

2
3 ,

3
4 ,

19
20 ,

5
12 ,

11
10 ,

17
12 ,

17
20 ,

11
12 ,

7
10 ,

19
12 ,

13
20 ,

27
20 ,

7
6 ,

21
20 ,

9
20 ,

13
12 ,

5
4 ,

3
2 ,

7
12 ,

31
20 ,

7
4 ,

23
20

The exponential of the previous set has 24 elements. Each of them gives

three candidates for bg,0(−s) except for −α = 1 which gives just two. For

instance −α = 1/2 gives rise the following three possible roots,

1

2
→
{1

2
,
3

2
,
5

2

}
.
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There are 71 possible roots in total. Note that using this approach we

do not have any information about the multiplicities. Finally one obtains

the roots for bg,0(−s).

1, 5
6 ,

9
10 ,

4
3 ,

13
10 ,

2
3 ,

3
4 ,

19
20 ,

5
12 ,

11
10 ,

17
12 ,

17
20 ,

11
12 ,

7
10 ,

13
20 ,

27
20 ,

7
6 ,

21
20 ,

9
20 ,

13
12 ,

5
4 ,

1
2 ,

7
12 ,

11
20 ,

23
20

Observe that the Bernstein polynomials are very similar. The roots of

bf,0(−s) marked with a box have disappeared in bg,0(−s) and the ones in

bold 3/2, 31/20 have become 1/2, 11/20.

We have selected this example to show the topologically equivalent ap-

proach to keep the exposition as simple as possible. However, there is a

family of examples depending on three indices

fm,p,q = xm + xpyq, gm,p,q = xm + xpyq + xp−1yq−1z

where the polynomials define topologically equivalent singularities if m ≤ p,
m ≤ q, and at least one of the two inequalities is strict.

In the table we put the information on timings in [hours:]minutes:seconds

format for the computation of the Bernstein-Sato polynomial of g. The

symbol “−” means that the computation did not terminate (or full memory)

after 5 hours.

Singular Risa/Asir
deg bg(s)

(m, p, q) checkRoot bfct bfctAnn bfct bfunction

(4, 6, 5) 0:27 3:19 0:18 1:32 1:03 26

(5, 7, 6) 7:22 − 12:32 − 28:27 49

(6, 8, 7) 51:15 − 1:33:28 − 2:34:11 57

Observe that although bfctAnn and bfunction are competitive in this

family of examples, we notice a better control of the memory due to the fact

that many “small” Gröbner bases were needed for the checkRoot approach,

while a “big” Gröbner basis is performed for the other methods. That is

why our new algorithm is specially useful for extreme examples.

VIII.3–3. A’Campo’s formula

The Jordan form of the local Picard-Lefschetz monodromy of superiso-

lated surface singularities was calculated by Artal-Bartolo in [Art94b]. The

main step in this computation was to present explicitly an embedded res-

olution for this family and study the mixed Hodge structure of the Milnor

fibration.
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Since every root of the Bernstein-Sato polynomial belongs to the in-

terval (−n, 0) (Theorem (VIII.3.2)) and the characteristic polynomial is a

topological invariant, using the results by Malgrange [Mal75, Mal83], one

can eventually provide an upper bound for the b-function. Let us see an

example that was not feasible even with the powerful specialized implemen-

tation by Schulze [Sch04b].

Example (VIII.3.7). Let V be the superisolated singularity defined by

f = z6 + (x4z + y5 + xy4). The characteristic polynomial is

∆(t) =
(t5 − 1)(t6 − 1)(t120 − 1)

(t− 1)(t30 − 1)(t24 − 1)
.

This polynomial has 76 different roots modulo Z and thus we know in

advance that the Bernstein-Sato polynomial (resp. the reduced one) has at

least 77 (resp. 76) different roots. Using the previous results in 230 possible

candidates, only 77 of them are roots of the b-function indeed, all of them

with multiplicity one:

1, 27
40 ,

101
120 ,

41
60 ,

17
20 ,

83
120 ,

103
120 ,

43
60 ,

53
60 ,

29
40 ,

107
120 ,

23
40 ,

89
120 ,

109
120 ,

71
120 ,

91
120 ,

37
40 ,

73
120 ,

31
40 ,

113
120 ,

37
60 ,

47
60 ,

19
20 ,

77
120 ,

97
120 ,

39
40 ,

13
20 ,

49
60 ,

59
60 ,

79
120 ,

33
40 ,

119
120 ,

3
5 ,

4
5 ,

121
120 ,

47
40 ,

161
120 ,

181
120 ,

61
60 ,

71
60 ,

27
20 ,

91
60 ,

41
40 ,

143
120 ,

163
120 ,

61
40 ,

21
20 ,

73
60 ,

83
60 ,

31
20 ,

127
120 ,

49
40 ,

167
120 ,

187
120 ,

43
40 ,

149
120 ,

169
120 ,

131
120 ,

151
120 ,

57
40 ,

133
120 ,

51
40 ,

173
120 ,

67
60 ,

77
60 ,

29
20 ,

137
120 ,

157
120 ,

59
40 ,

23
20 ,

79
60 ,

89
60 ,

139
120 ,

53
40 ,

179
120 ,

6
5 ,

7
5 .

The total running time was 41.5 minutes. In the table below we show the

candidates roots, for which computation ran more than 2 minutes. Again

we observe that the detection of a non-root is very fast indeed. As usual,

the running time is given in the format minutes:seconds.

Cadidate Running time Root of bf (−s) ?

181/20 2:52 Yes

91/60 6:01 Yes

61/40 4:53 Yes

31/20 4:21 Yes

Remark (VIII.3.8). Spectral numbers are defined using the semi-simple

part of the action of the monodromy on the mixed Hodge structure on the

cohomology of the Milnor fiber [Ste77], [Var81]. In [GH07, Th. 3.3],

[Sai93, Th. 0.7] it is proven, that some roots of the Bernstein-Sato polyno-

mial of a germ with an isolated critical point at the origin, can be obtained

from the knowledge of the spectral numbers of the germ.
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Since spectral numbers do not change under µ-constant deformations,

this also gives a set of common roots of the Bernstein-Sato polynomials asso-

ciated with the members of a µ-constant deformation of a germ. Therefore,

they provide a lower bound, as well as an upper bound, for bf (s).

Section §VIII.4

Integral Roots of b-Functions

For several applications only integral roots of the b-function are needed,

e.g. [SST00]. We present here problems related to the so-called Logarithmic

Comparison Theorem and Intersection Homology D-module. Depending on

the context local or global version of our algorithm is used.

VIII.4–1. Upper bounds from different ideals

Consider a left ideal I ⊆ AnnD[s] f
s. Then I + 〈f〉 ⊆ AnnD[s] f

s + 〈f〉 (
D[s], that is the former is a proper ideal. Then define the relative b-

polynomial bIf (s) ∈ K[s] to be the monic generator of
(
I + 〈f〉

)
∩K[s], then

bf (s) | bIf (s). Note, that quite often bIf (s) = 0. But if bIf (s) 6= 0, it gives us an

upper bound for bf (s). In particular, one can take I, giving rise to a holo-

nomic D[s]-module, that is GK.dimD[s]/I = GK.dimD[s]/AnnD[s] f
s =

n+ 1.

Since (s + 1) | bf (s) | bIf (s), one can consider the reduced relative b-

polynomial b̃If (s) ∈ K[s] to be the monic generator of
(
I+〈f, ∂f∂x1 , . . . ,

∂f
∂xn
〉
)
∩

K[s]. A prominent example of I as above is the logarithmic annihila-

tor. Let I = Ann
(1)
D[s](f

s) be the ideal in D[s] generated by the oper-

ators P (s) ∈ AnnD[s] of total degree at most one in ∂i. Let us define

b
(1)
f (s) := bI(fs)f (s) =

(
Ann

(1)
D[s](f

s) +D[s]〈f〉
)
∩K[s]. The reduced b̃

(1)
f (s)

is useful as well.

VIII.4–2. Minimal integral root of bf (s) and LCT

Since every root of bf (s) belongs to the real interval (−n, 0), integral

roots are bounded and therefore the whole Bernstein-Sato polynomial is not

needed. Let us see an example that could not be treated before with the

classical methods.
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Example (VIII.4.1). Let A be the matrix given by

A =




x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12


 .

Let us denote by ∆i, i = 1, 2, 3, 4, the determinant of the minor result-

ing from deleting the i-th column of A, and consider f = ∆1∆2∆3∆4. The

polynomial f defines a non-isolated hypersurface in C12. Following Theo-

rem (VIII.3.2), the set of all possible integral roots of bf (−s) is

{11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1}.
Using the algorithm checkRoot with the logarithmic annihilator, see

Section VIII.4–1 above, instead of the classical one, we have proven, for

α = 2, . . . , 11, that

Ann
(1)
Dn[s](f

s) +Dn[s]〈f, s+ α〉 = Dn[s],

and hence −1 is the minimal integral root of bf (s). The following is the

timing information of the whole procedure. Of course, −1 is always a root,

but it is interesting to compare the timings of confirming this fact.

Possible integral roots 1 2 ... 11

Root of b
(1)
f (s) ? Yes No

Running time 1:19:31 ≈ 0:03:24

This example was suggested by F. Castro-Jiménez and J.-M. Ucha for

testing the Logarithmic Comparison Theorem, see e.g. [Tor07]. The use of

logarithmic annihilator allowed us to reduce the computation time. How-

ever, for f from this example it is known, that AnnDn[s](f
s) = Ann

(1)
Dn[s](f

s)

and this fact together with some homogeneous properties were used to com-

pute other roots of bf (s), see Example (VIII.4.4) below.

Quasi-homogeneous polynomials

Assume F ∈ Rn is a w-quasi-homogeneous polynomial with wi 6= 0, that

is, there are numbers w1, . . . , wn such that with ξ =
∑n

i=1wixi∂i one has

F = ξ(F ). Take c ∈ K∗ and let us denote f = F|xk=1 for some fixed k.

We are interested in studying the relationship between the Bernstein-Sato

polynomials of f and F .

Proposition (VIII.4.2). Let F ∈ Rn be a quasi-homogeneous polynomial

with respect to the weight vector w = (w1, . . . , wn). Assume wk 6= 0 for some

k ∈ {1, . . . , n} and define f = F |xk=c for c ∈ K∗. Then, bf (s) divides bF (s).
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Proof. Consider the V -filtration on Dn given by the variable xk. Let

P (s) ∈ Dn[s] be a differential operator satisfying the functional equation

for F . There exists d ≥ 0 such that xdkP (s) ∈ ∑i≥0 x
i
k · V0. From the

quasi-homogeneity of F one can deduce that

xk∂k • F s+1 =
1

wk

(
s+ 1−

∑

i 6=k
wixi∂i

)
• F s+1.

Let D′ be the (n−1)-th Weyl algebra in the variables x1, . . . , x̂k, . . . , xn.

Thus V0 = D′[xk∂k] and xdkP (s) ·F s+1 can be written in the form Q(s) ·F s+1

where the operator ∂k does not appear in Q(s) ∈ Dn[s]. The functional

equation for F has been converted in the following one:

xdkP (s) • F s+1 = Q(s) • F s+1 = xdk bF (s) • F s.
Now the substitution xk = c ∈ K∗ can be made and the claim follows. �

Example (VIII.4.3). The Bernstein-Sato polynomials of F = x2z + y3

and f = F|z=1 = x2 + y3 are

bF (s) = (s+ 1)(s+ 5/6)(s+ 7/6)︸ ︷︷ ︸
bf (s)

(s+ 4/3)(s+ 5/3).

From the result by Kashiwara [Kas77] one can see, blowing up the origin

of F , that the last two factors are related to the b-function of {z3 = 0}. This

is a general fact.

Example (VIII.4.4). Now, we continue Example (VIII.4.1). Let g be the

polynomial, resulting from f by substituting x1, x2, x3, x4, x5, x9 with 1.

Using Proposition (VIII.4.2) several times, one can easily see that bg(s)

divides bf (s). Finally, the checkRoot algorithm is used to obtain that

(s+ 1)4(s+ 1/2)(s+ 3/2)(s+ 3/4)(s+ 5/4)

is a factor of bg(s) and therefore a factor of bf (s).

Factor of bg(s) (s+ 1/2) (s+ 3/4) (s+ 3/2) (s+ 1)4 (s+ 5/4)

Running time 0:02 0:04 0:10 3:45 4:46

VIII.4–3. Intersection homology D-module

We introduce some new notation. We refer to [Tor09] for further details.

Let X be a complex analytic manifold of dimension n ≥ 2, OX the sheaf of

holomorphic function on X and DX the sheaf of differential operators with

holomorphic coefficients. At a point x ∈ X, we identify the stalks OX,x
with the ring O = C{x1, . . . , xn} of converging power series and DX,x with

D = O〈∂1, . . . , ∂n〉.
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Given a closed subspace Y ⊂ X of pure codimension p ≥ 1, we denote

by Hp
[Y ](OX) the sheaf of local algebraic cohomology with support in Y . Let

L(Y,X) ⊂ Hp
[Y ](OX) be the intersection homology DX -Module of Brylinski-

Kashiwara. This is the smallest DX -submodule of Hp
[Y ](OX) which coincides

with Hp
[Y ](OX) at the generic points of Y .

A natural problem is to characterize the subspaces Y such that L(Y,X)

coincides with Hp
[Y ](OX). Indeed, from the Riemann-Hilbert correspondence

of Kashiwara-Mebkhout, the regular holonomic DX -module Hp
[Y ](OX) cor-

responds to the perverse sheaf CY [p], while L(Y,X) corresponds to the

intersection complex IC•Y . This way, the condition L(Y,X) = Hp
[Y ](OX) is

equivalent to the following one: the real link of Y at a point x ∈ Y is a

rational homology sphere. Torrelli proved, that the following connection to

local Bernstein-Sato polynomial exists.

Theorem (VIII.4.5) (Theorem 1.2 in [Tor09]). Let Y ⊂ X be a hyper-

surface and h ∈ OX,x a local equation of Y at a point y ∈ Y . The following

conditions are equivalent:

(1) L(Y,X)y coincides with Hp
[Y ](OX)y.

(2) The reduced local Bernstein-Sato polynomial of h has no integral

root.

The proof of the theorem is based on a natural generalization of a clas-

sical result due to Kashiwara which links the roots of the b-function to some

generators of O[ 1
f ]fα, α ∈ C.

Example (VIII.4.6). Let Y be the affine variety in X = C3 defined by

the polynomial f = z7 + (x2z+ y3)(x3 + y2z). The surface Y has the origin

as its only singular point and thus the local b-function and the global one

coincide.

The only possible integral roots are −2 and −1. Now consider Jf , the

Jacobian ideal of f , cf. Remark (VIII.2.8). Since the reduced Bernstein-Sato

polynomial is required, the ideal

AnnD[s](f
s) +D[s]〈f, Jf , s+ α〉

is used for checking rational roots, compare with Corollary (VIII.2.3)(2).

We see that the previous ideal is not the whole ring for α = 1 and hence the

set of points x ∈ Y such that L(Y,X)x = Hp
[Y ](OX)x is Y \ {0}.

Using the implementation by Schulze [Sch04b] (based on Gauss-Manin

connection), the computation of the whole Bernstein-Sato polynomial took

123 seconds, while with our approach only 11 seconds were needed.
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Remark (VIII.4.7). Given Y as above, the set of points x ∈ Y for which

the condition L(Y,X)x = Hp
[Y ](OX)x is satisfied, defines an open set in Y

that can be effectively computed with the stratification associated with the

integral roots of the reduced local b-functions, see the sequence of varieties

(44) below. For instance, in Example (VIII.5.2), the open set is V (f) \ V1.

Section §VIII.5

Stratification Associated with Local b-Functions

From Theorem (VIII.2.10), one can find a stratification of Cn so that

bf,p(s) is constant on each stratum. The first method for computing such

stratification was suggested by Oaku [Oak97b] (see also [Oak97a, Oak97c]

and [BO10] for further information). However, this method relies on the

primary decomposition of commutative ideals. Following the ideas started

in Section VIII.2–2, we propose a new natural algorithm for computing

such a stratification. At first, a stratification for each root of the global

b-function is computed. Then one obtains a stratification, associated with

the local b-function, notably without any primary ideal decomposition, see

Examples (VIII.5.2), (VIII.5.3), and (VIII.5.5) below. We have created an

experimental implementation, which was used for presented examples. The

substitution of primary decomposition with elementary operations clearly

decreases the total complexity of this algorithm.

This is a natural generalization of Proposition (VIII.2.18).

Theorem (VIII.5.1). Let {P1(s), . . . , Pk(s), f} be a system of generators

of AnnD[s](f
s) + D[s]〈f〉 and consider the ideals Iα,i =

(
I : (s + α)i

)
+

D[s]〈s+ α〉, for α root of bf (s) and i = 0, . . . ,mα − 1. Then, one has

mα(p) > i ⇐⇒ p ∈ V (Iα,i ∩ C[x]).

Proof. Repeat the same argument as in Corollary (VIII.2.6) and pro-

ceed as in the proof of Proposition (VIII.2.18), using Lemmas (VIII.2.15)

and (VIII.2.16) when necessary. �

Using the notation of the previous theorem, let Vα,i be the affine variety

corresponding to the ideal Iα,i ∩ C[x]. Then,

(44) ∅ =: Vα,mα ⊂ Vα,mα−1 ⊂ · · · ⊂ Vα,0 ⊂ Vα,−1 := Cn,

and mα(p) = i if and only if p ∈ Vα,i−1 \ Vα,i. We call this sequence the

stratification associated with the root α. Let us see some examples1 to show

how this result can be used to compute a stratification associated with local

b-functions.

1The examples have been taken from http://www.freigeist.cc/gallery.html
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Example (VIII.5.2). Consider f = (x2 + 9/4y2 + z2 − 1)3 − x2z3 −
9/80y2z3 ∈ C[x, y, z]. The global b-function is

bf (s) = (s+ 1)2(s+ 4/3)(s+ 5/3)(s+ 2/3).

Take V1 = V (x2 +9/4y2−1, z), V2 = V (x, y, z2−1), and V3 = V (19x2 +

1, 171y2 − 80, z). Then V2 (resp. V3) consists of two (resp. four) different

points and V3 ⊂ V1, V1 ∩ V3 = ∅. The singular locus of f is union of V1

and V2. The stratification associated with each root of bf (s) is given by

α = −1, ∅ ⊂ V1 ⊂ V (f) ⊂ C3 ;

α = −4/3, ∅ ⊂ V1 ∪ V2 ⊂ C3 ;

α = −5/3, ∅ ⊂ V2 ∪ V3 ⊂ C3 ;

α = −2/3, ∅ ⊂ V1 ⊂ C3.

From this, one can easily find a stratification of C3 into constructible

sets such that bf,p(s) is constant on each stratum.

bf,p(s) =





1 p ∈ C3 \ V (f),

s+ 1 p ∈ V (f) \ (V1 ∪ V2),

(s+ 1)2(s+ 4/3)(s+ 2/3) p ∈ V1 \ V3,

(s+ 1)2(s+ 4/3)(s+ 5/3)(s+ 2/3) p ∈ V3,

(s+ 1)(s+ 4/3)(s+ 5/3) p ∈ V2.

The total running time including the computation of the global Bernstein

polynomial was 8 min 7 sec. The system Risa/Asir needed more than 7 hours

to obtain the same stratification.

Consider more interesting examples, which have already been studied

in §VIII.3 when computing bf (s).

Example (VIII.5.3). Let us proceed with Example (VIII.3.3). The strat-

ification associated with every root of bf (s) except for α = 1 is given by

the sequence ∅ ⊂ Z ⊂ C3. For α = 1 of multiplicity 2, the corresponding

sequence is ∅ ⊂ Y tZ ⊂ V (f) ⊂ C3. Hence the local b-function at p ∈ C3 is

bf,p(s) =





1 p ∈ C3 \ V (f),

s+ 1 p ∈ V (f) \ (Y t Z),

(s+ 1)2 p ∈ Y,
bf (s) p ∈ Z.

Using the lexicographical ordering with ∂x > x on D during the compu-

tation of the intersection with C[x], cf. Remark (VIII.3.4), reduced the total

running time to just 38 sec.
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Remark (VIII.5.4). Note that one can define a stratification associated

with the roots of the local b-functions, that is taking no multiplicities into

account. We have observed that our algorithm is especially useful and very

fast for computing this stratification. In particular, this is the case when

each root has multiplicity one. Finally, also observe that in any case the

global b-function is not actually needed, if a set containing the roots of bf (s)

is used instead.

Example (VIII.5.5). Let us compute here the stratification associated

with local b-functions of Example (VIII.3.6). Denote by V1, V2 the two axes

V1 := V (x, z), V2 := V (y, z). The singular locus is in both cases the union

of these varieties. Then, bf,p(s) is




1 p ∈ C3 \ V (f),

s+ 1 p ∈ V (f) \ (V1 ∪ V2),

bz4+x6(s) p ∈ V1 \ {0},
bz4+y5(s) p ∈ V2 \ {0},
(s+ 3/2)(s+ 7/4) lcm

(
bz4+x6(s), bz4+y5(s)

)
p = 0.

The stratification given by the singularity {g = 0} is the same as above.

The local b-functions in each stratum is obtained performing the replace-

ments

z4 + x6 7−→ z4 + x6 + x5z,

z4 + y5 7−→ z4 + y5 + y4z,

(s+ 3/2)(s+ 7/4) 7−→ (s+ 1/2).

This can be interpreted as follows. Let P = (a, 0, 0) ∈ V1 \ {0}. The local

equation of f (resp. g) is z4 + x6 = 0 (resp. z4 + x6 + x5z). By the semi-

continuity of the Bernstien-Sato polynomial the local b-function at P divides

the Bernstein-Sato polynomial at the origin. Analogous considerations hold

for P ∈ V2 \ {0}. The system Risa/Asir did not finish the computation of

the stratification after more than 40 hours.

Remark (VIII.5.6). We see some common properties between the factor-

ization of a Bernstein-Sato polynomial with the so-called central charac-

ter decomposition by Levandovskyy [Lev05]. In particular, for bf (s) =∏
α∈A(s − α)mα , where A ⊂ Q is the set of roots of bf (s), there is an algo-

rithm for computing the following direct sum decomposition of the module

D[s]/(AnnD[s](f
s) + 〈f〉) ∼=

⊕

α∈A
D[s]/(AnnD[s](f

s) + 〈f〉) : J(α)∞,

where J(α) = 〈bf (s)/(s− α)mα〉. We plane to investigate this topic further

and provide cyclic D[s]-modules, corresponding to different strata.
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There is a very recent paper [NN10] by Nishiyama and Noro, where the

authors build a stratification without using primary decomposition. The

authors use initial ideals with respect to weight vectors in computations,

which is a classical (cf. [SST00]) alternative to the methods, utilizing an-

nihilators AnnD[s](f
s). In [ALM09] there is a comparison of performance

of both approaches for the computation of Bernstein-Sato polynomials. No-

tably, no method is clearly superior over another. Rather there are classes of

examples, where the difference is very distinct. In particular, initial-based

method scores better results on hyperplane arrangements, while annihilator-

based methods are better at complicated singularities, which are not hyper-

plane arrangements. A comparison of two methods for stratification is very

interesting and it is an important task for the future. However, it seems to

us that the method we presented will allow more thorough analysis of the

algebraic situation due to the applicability of central character decomposi-

tion. At the moment it is not clear, whether such a decomposition exists for

initial ideals.

Remark (VIII.5.7). The intersection I ∩K[t∂t,x] suggested by Nishiyama

and Noro in the computation of the stratification associated with local b-

functions is very expensive from the computational point of view. Using

our approach this elimination problem is solved. By contrast, once you have

computed the intersection, Noro’s approach seems to be faster. Therefore

our methods is specially good for complicated and extreme examples.

Section §VIII.6

Other Applications

VIII.6–1. Bernstein-Sato polynomials for varieties

Let f = (f1, . . . , fr) be an r-tuple in K[x]r. Denote by K〈S〉 the universal

enveloping algebra U(gl r), generated by the set of variables S = (sij), where

i, j = 1, . . . , r, subject to relations:

[sij , skl] = δjksil − δilskj .

Then, we denote by Dn〈S〉 := Dn ⊗K K〈S〉. Consider a free K[x, s, 1
f ]-

module of rank one generated by the formal symbol f s and denote it by

M = K[x, s11, . . . , srr,
1

f1···fr ] · f s, where fs = fs111 · . . . · fsrrr . The module M

has a natural structure of left Dn〈S〉-module. Denote by AnnDn〈S〉(f
s) the

left ideal of all elements P (S) ∈ Dn〈S〉 such that P (S) • fs = 0, that is the

annihilator of f s in Dn〈S〉.
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Theorem (VIII.6.1) (Budur, Mustaţǎ, Saito [BMS06]). For every r-tuple

f = (f1, . . . , fr) ∈ K[x]r, there exists a non-zero polynomial in one variable

b(s) ∈ K[s] and r differential operators P1(S), . . . , Pr(S) ∈ Dn〈S〉 such that

(45)
r∑

k=1

Pk(S)fk · fs = b(s11 + · · ·+ srr) · fs ∈ M.

The Bernstein-Sato polynomial bf (s) of f = (f1, . . . , fr) is defined to be

the monic polynomial of the lowest degree in the variable s satisfying the

equation (45). It can be verified that bf (s) is independent of the choice of a

system of generators of 〈f1, . . . , fr〉.
Then the Bernstein-Sato polynomial of f can be computed as follows

(AnnDn〈S〉(f
s) + 〈f1, . . . , fr〉) ∩K[s11 + · · ·+ srr] = 〈bf (s11 + . . .+ srr)〉.

In [ALM09, ALM10], an algorithm to find a system of generators

of AnnD〈S〉(fs) was given. Moreover, in computing the intersection of an

ideal with the univariate subalgebra an optimized algorithm (which avoids

elimination with Gröbner basis) was used.

The preceding formula together with Theorem (VIII.2.1) can be used to

check rational roots of Bernstein-Sato polynomials also for affine algebraic

varieties. Hence, following Corollary (VIII.2.6), a stratification associated

with the local b-functions can be computed.

VIII.6–2. A remark in Narváez’s paper

In [Nar08], Narváez introduces a polynomial denoted by β(s) veri-

fying β(s) AnnD[s](f
s) ⊆ Ann

(1)
D[s](f

s). For all the examples treated in

[Nar08], he was able to compute an operator P ′(s) ∈ D[s] such that

bf (s) − P ′(s)f ∈ Ann
(1)
D[s](f

s). The last example in the paper is quite in-

volved and could not be computed by using any computer algebra system

directly. An iterated process for finding approximations of involutive bases

was used instead. Indeed, for this propose the operator is not really needed,

since

bf (s)− P (s)f ∈ Ann
(1)
D[s](f

s) ⇐⇒ b
(1)
f (s) = bf (s) ⇐⇒ b

(1)
f (s) | bf (s),

and thus after computing b
(1)
f (s), one only has to check whether each root

of the latter polynomial is indeed a root of the b-function and the same with

the multiplicities.

By definition, the following inclusions hold

β(s)
(

AnnD[s](f
s) + 〈f〉

)
⊂ Ann

(1)
D[s](f

s) + 〈f〉 ⊂ AnnD[s](f
s) + 〈f〉.
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This implies that bf (s) | b(1)
f (s) |β(s)bf (s). In addition, if β(s) divides

bf (s), then the polynomials b
(1)
f (s) and bf (s) both have the same roots and

the previous condition is equivalent to mα(b
(1)
f (s)) = mα(bf (s)) for every

root α of β(s).

Example (VIII.6.2). Let f = (x1x3 + x2)(x7
1 − x7

2) be the last example

from [Nar08]. The Bernstein-Sato polynomial and the polynomial β(s) are

respectively

bf =
(
s+ 1

)3(
s+

3

4

)(
s+

3

8

)(
s+

9

8

)(
s+

1

4

)(
s+

7

8

)(
s+

1

2

)(
s+

5

8

)
,

β =
(
s+

3

4

)(
s+

5

8

)(
s+

1

2

)(
s+

3

8

)(
s+

1

4

)
.

Now one only has to check that all roots of β(s) have multiplicity 1

as a root of b
(1)
f (s). This can be done using Theorem (VIII.2.1) with I =

Ann
(1)
D[s](f

s)+ 〈f〉. Using this approach, the computations become very easy

(less than 5 seconds in this example).
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As we have demonstrated in this work, embedded Q-resolutions are nat-

ural generalization of the standard embedded resolutions, for which the usual

invariants are expected to be calculated effectively. Moreover, the combi-

natorial and computational complexity of embedded Q-resolutions is much

simpler, but the keep as much information as needed for the comprehension

of the topology of the singularity.

This reflects the good behavior of abelian quotient singularities with

respect to normal crossing divisors. By contrast, non-abelian groups seem

to work differently, see §IV.5 where it is shown that “double points” may

contribute to Z(f ; t). In this sense abelian groups are the largest family for

which these tools apply.

Here we list some specific open problems and questions, related to the

topic, to be considered for future work. In fact, some of them are currently

being studied.

(1) In Chapter V, following Steenbrink’s approach [Ste77], we provide

a mixed Hodge structure on the cohomology of the Milnor fiber using a

spectral sequence that is constructed from the divisors associated with the

semistable reduction of an embedded Q-resolution. On the other hand, in

Chapter VI, we give a detailed description of an embedded Q-resolution for

superisolated surface singularities in terms of its tangent cone. However, the

corresponding semistable reduction and its associated spectral sequence has

not been studied in this work. The same applies to (weighted) Yomdin-Lê

surface singularities, see Chapter VII. This problem will be considered in

the future so as to complete this work.
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(2) Theorem (VII.1.6) says that only weighted blow-ups at points are

needed to compute an embedded Q-resolution of a Yomdin-Lê surface sin-

gularity. On the other hand, there exist invariants associated with a hy-

persurface singularity which can be calculated from an embedded resolution

obtained with just blow-ups at points. The generalization of the previous re-

sults to weighted blow-ups at points and embedded Q-resolutions will lead

us to compute other invariants for Yomdin-Lê surface singularities. This

includes, among others, the Poincaré series for which very little is known.

(3) In Chapter IV, we found the generalized A’Campo’s formula for

embedded Q-resolutions. In relation to the monodromy conjecture, it could

be interesting to find a formula for the topological zeta function in terms of

an embedded Q-resolution. In principle this will be feasible since the latter

invariant has a good behavior with respect to a stratification. Hence only

the topological zeta function Ztop(s) for normal crossing divisors has to be

computed.

(4) Using the fact that the characteristic polynomial is a topological

invariant and the results of Malgrange [Mal75], one can find an upper bound

for the Bernstein-Sato polynomial from an embedded Q-resolution of the

singularity, assuming it is isolated. It could be nice to generalize Kashiwara’s

result [Kas77] for embedded Q-resolutions in order to find upper bounds

for the non-isolated case as well. Moreover, this will give rise better upper

bounds in the sense that less extra candidates will appear.

(5) There exist algorithms in D-modules for computing the cohomology

of the complement C2 \V (f), where f is a polynomial in 2 variables. These

algorithms use the notion of b-function of a holonomic ideal with respect to

a weight vector. We hope that these new techniques can be generalized so

as to compute the cohomology of X(d;A) \ V (f), where f is a polynomial

defining a zero set on X(d;A). This is closely related to the computation of

the cohomology of the complement P2
ω\V (F ), where F is quasi-homogeneous

with respect to ω.

checkRoot

As for the last part of this work (Chapter VIII), we have demonstrated

that the family of checkRoot algorithms (implemented in the Singular

library dmod.lib) has many useful applications in the realm of D-modules.

Nowadays, it is the only method that allows one to obtain some roots of the

b-function without computing the whole Bernstein-Sato polynomial. The

latter is often infeasible despite all the recent progress in computational

D-module theory.
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We emphasize, that presented techniques are elementary (by utilizing

the principal ideal domain of the center K[s] of Dn[s]) but very powerful

from the computational point of view. Many intractable examples and con-

jectures could be treated with this new method, as we have partially illus-

trated. Moreover, a stratification associated with the local b-functions can

be obtained without primary decomposition [Oak97b] as in the very recent

paper [NN10]. It is very interesting to study these algorithms further and

compare our approach with the one of [NN10].

Unfortunately, these techniques cannot be generalized for Bernstein-Sato

ideals, since such ideals lie in K[s1, . . . , sm] for m ≥ 2.

We have shown that one can use the idea of checkRoot for checking

rational roots of b-function of a holonomic ideal with respect to a weight

vector [SST00]. This gives an easier method for computing, among other,

integral roots of such b-functions, if an upper bound is known in advance.

In this context, it would be very interesting to have a version of Kashiwara’s

result for some holonomic ideals and certain weights, since many algorithms

in D-modules theory are based on integrations and restrictions which need

minimal and/or maximal roots.
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Como hemos demostrado en este trabajo, las Q-resoluciones encajadas

son generalizaciones naturales de las estándares para las que se espera que

los invariantes usuales se puedan calcular efectivamente. Además, la com-

plejidad combinatoria y computacional de las Q-resoluciones encajadas son

mucho más sencillas pero conservan la misma información necesaria para la

comprensión de la topoloǵıa de la singularidad.

Esto refleja el buen comportamiento de las singularidades cocientes abe-

lianas respecto de los cruces normales. Por el contrario, los grupos no

abelianos funcionan de otra manera, ver §IV.5 donde se muestra que los

“puntos dobles” pueden contribuir a Z(f ; t). En este sentido los grupos

abelianos son la familia más grande para las que estas técnicas se aplican.

Aqúı se listan algunos problemas y cuestiones abiertas, relacionados con

el tema, que será consideradas para el futuro. De hecho, algunos de ellos

está siendo estudiados actualmente.

(1) En el caṕıtulo V, siguiendo las ideas de Steenbrink, proporcionamos

una estructura de Hodge mixta sobre la cohomoloǵıa de la fibra de Milnor

usando una sucesión espectral que se construye a partir de los divisores de

la normalización semiestable de una Q-resolución encajada. Por otro lado,

en el caṕıtulo VI, damos una descripción detallada de una Q-resolución en-

cajada de las singularidades superaisladas de superficie en términos de su

cono tangente. Sin embargo, la correspondiente normalización semiestable

y la sucesión espectral asociada no ha sido estudiada en este trabajo. Lo

mismo se aplica para las singularidades de Yomdin-Lê (ponderadas) de su-

perficies, ver caṕıtulo VII. Este problema será considerado en el futuro para

completar este trabajo.
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(2) El teorema (VII.1.6) dice que solo hace falta explosiones ponderadas

de puntos para calcular una Q-resolución encajada de una singularidad de

Yomdin-Lê de superficie. Por otro lado, existen invariantes que se pueden

calcular a partir de una resolución encajada obtenida solamente con explo-

siones de puntos. La generalización de los resultados anteriores para explo-

siones ponderadas de puntos y Q-resoluciones encajadas permitirá calcular

otros invariantes de estas singularidades. Esto incluye, entre otros, las series

de Poincaré de las cuales se conoce muy poco.

(3) En el caṕıtulo IV, hemos encontrado la generalización de la fórmula

de A’Campo para Q-resoluciones encajadas. En relación con la conjetura

de la monodromı́a, seŕıa interesante encontrar una fórmula para la función

zeta topológica en términos de una Q-resolución encajada. En principio esto

es factible puesto que el invariante anterior se comporta bien con respecto

a estratificaciones. Aśı, solamente tenemos que calcular la función zeta

topológica Ztop(s) de un divisor con cruces normales.

(4) Usando que el polinomio caracteŕıstico es un invariante topológico y

los resultados de Malgrange [Mal75], se puede encontrar una cota superior

del polinomio de Bernstein-Sato a partir de una Q-resolución encajada de la

singularidad, suponiendo que es aislada. Estaŕıa bien generalizar el resultado

de [Kas77] para Q-resoluciones encajadas y aśı encontrar también cotas

superiores para el caso no aislado. Además, esto dará lugar a mejores cotas

superiores es el sentido de que menos candidatos extras aparecerán.

(5) Existen algoritmos en D-módulos para calcular la cohomoloǵıa del

complementario C2\V (f), donde f es un polinomio en 2 variables. Estos al-

goritmos usan la noción de b-función de un ideal holónomo con respecto a un

vector de pesos. Esperamos que estas nuevas técnicas se puedan generalizar

para calcular la cohomoloǵıa de X(d;A) \ V (f), donde f es un polinomio

que define un conjunto de ceros en X(d;A). Esto está relacionado con el

cálculo de la cohomoloǵıa del complementario P2
ω \ V (F ), donde F es cuasi-

homogéneo con respecto a ω.

checkRoot

En cuanto a la última parte de este trabajo (caṕıtulo VIII), hemos de-

mostrado que la familia de algoritmos checkRoot (implementados en la li-

breŕıa dmod.lib de Singular) tiene muchas aplicaciones útiles en el campo

de los D-módulos. Hoy en d́ıa, es el único método que nos permite obtener

algunas ráıces de la b-función sin calcular todo el polinomio de Bernstein-

Sato. Esto último no es habitualmente factible, a pesar de todos los progre-

sos recientes en teoŕıa de D-módulos computacional.
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Enfatizamos que las técnicas presentadas son elementales (utilizamos que

K[s] es un dominio de ideales principales contenido en Dn[s]) pero muy po-

tentes desde el punto de vista computacional. Muchos ejemplos intratables

y conjeturas pudieron ser tratados con este nuevo método, como hemos par-

cialmente ilustrado. Además, se puede obtener una estratificación asociada

a la b-función local sin usar descomposición primaria, como en el reciente

art́ıculo [NN10]. Es interesante estudiar estos algoritmos y compararlos

con los nuestros.

Desafortunadamente, estas técnicas no se pueden generalizar para los

ideales de Bernstein-Sato puesto que viven en K[s1, . . . , sm] con m ≥ 2.

Hemos mostrado que se puede usar la idea de checkRoot para comprobar

ráıces de la b-función de un ideal holónomo con respecto a un vector de

pesos [SST00]. Esto da un método más fácil para calcular, entre otras, las

ráıces enteras de tales b-funciones, si una cota superior es conocida. En este

contexto, seŕıa muy interesante tener una versión del resultado de Kashiwara

para ciertos ideales holónomos puesto que muchos algoritmos en teoŕıa de

D-módulos están basados en integración y restricción que necesitan la menor

y/o mayor ráız entera.





Bibliography

[ABL+10] D. Andres, M. Brickenstein, V. Levandovskyy, J. Mart́ın-Morales,

and H. Schönemann. Constructive D-module theory with SINGULAR.

Mathematics in Computer Science, 4(2-3):359–383, 2010.
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[Ber72] I. N. Bernštĕın. Analytic continuation of generalized functions with

respect to a parameter. Funkcional. Anal. i Priložen., 6(4):26–40, 1972.
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[FP05] A. Frühbis-Krüger and G. Pfister. A Singular 3.0 library for reso-

lution of singularities (desingularization) with the algorithm of villa-

mayor. resolve.lib, 2005.

[Fuj75] A. Fujiki. On resolutions of cyclic quotient singularities. Publ. Res.

Inst. Math. Sci., 10(1):293–328, 1974/75.

[Ful98] W. Fulton. Intersection theory, volume 2 of Ergebnisse der Mathematik

und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathe-

matics [Results in Mathematics and Related Areas. 3rd Series. A Series

of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, second

edition, 1998.

[GD67] A. Grothendieck and J. Dieudonne. Éléments de géométrie algébrique.
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[Nar08] L. Narváez-Macarro. Linearity conditions on the Jacobian ideal and

logarithmic-meromorphic comparison for free divisors. In Singularities

I, volume 474 of Contemp. Math., pages 245–269. Amer. Math. Soc.,

Providence, RI, 2008.

[NN10] K. Nishiyama and M. Noro. Stratification associated with local b-

functions. J. Symbolic Comput., 45(4):462–480, 2010.

[Nor02] M. Noro. An efficient modular algorithm for computing the global b-

function. In Mathematical software (Beijing, 2002), pages 147–157.

World Sci. Publ., River Edge, NJ, 2002.

[Oak97a] T. Oaku. An algorithm of computing b-functions. Duke Math. J.,

87(1):115–132, 1997.

[Oak97b] T. Oaku. Algorithms for b-functions, restrictions, and algebraic local

cohomology groups of D-modules. Adv. in Appl. Math., 19(1):61–105,

1997.

[Oak97c] T. Oaku. Algorithms for the b-function and D-modules associated with

a polynomial. J. Pure Appl. Algebra, 117/118:495–518, 1997. Algo-

rithms for algebra (Eindhoven, 1996).

[Ort10] J. Ortigas-Galindo. Teorema de Bézout en planos proyectivos pon-
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