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Primera Parte‘ (Capitulos D

Uno de los principales invariantes de una singularidad de hipersuperficie
es la estructura de Hodge mixta (EHM) sobre la cohomologia de la fibra
de Milnor. En el caso aislado, Steenbrink dio un método para calcular esta
estructura usando una sucesion espectral construida a partir de los divisores
asociados a la normalizacién semiestable de una resolucién encajada [Ste77].

Sin embargo, en la préactica la combinatoria del divisor excepcional de
la resolucion es tan compleja que el estudio de la sucesién espectral resulta
muy complicado, ver por ejemplo [Art94b] donde se calcula una resolucién
encajada y la correspondiente normalizacion semiestable de singularidades
superaisladas de superficie usando explosiones de puntos y curvas racionales.

Después de la normalizacion semiestable el nuevo espacio ambiente con-
tiene singularidades normales que se obtienen como cociente de una bola
en C" por la acciéon de un grupo finito. Los espacios que tienen sola-
mente este tipo de singularidades se llaman V -variedad. Fueron introduci-
das en [Sat56] y tienen las mismas propiedades sobre Q que las variedades
diferenciables, por ejemplo, admiten dualidad de Poincaré si son compactas
y tienen estructura de Hodge pura si son compactas y Kéahler [Bai56].
Ademds, se puede definir la nocién de divisor con cruces normales [Ste77].

Motivado por esto y para tratar de simplificar la combinatoria del divisor
excepcional, introducimos la nociéon de Q-resolucion encajada. La idea es
la siguiente. Cldsicamente una resolucién encajada de {f = 0} C C"*! es
una aplicacién propia m: X — (C"*1,0) de una variedad lisa X verificando,
entre otras condiciones, que 7*({f = 0}) es un divisor con cruces normales.
Para debilitar la condicién sobre la preimagen de la singularidad, permitimos
que el nuevo espacio ambiente X tenga singularidades cocientes abelianas y
el divisor 7*({f = 0}) cruces normales en X.
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Ma3s concretamente, aqui presentamos la definicién de uno de los objetos
més importantes de nuestro estudio.

Definiciéon. Sea M un espacio cociente abeliano. Consideramos H C M
una subvariedad analitica de codimensién 1. Una Q-resolucion encajada de
(H,0) C (M,0) es una aplicacién analitica propia m : X — (M, 0) tal que:
(1) X es una V-variedad con singularidades cocientes abelianas.
(2) 7 es un isomorfismo sobre X \ m~!(Sing(H)).
(3) m*(H) es una hipersuperficie con Q-cruces normales en X.

El presente trabajo estd dedicado al estudio de invariantes de hipersu-
perficies singulares (H,0) C (C"*1,0) a través de una Q-resolucién encajada
o la normalizacién semiestable asociada. Nos centraremos en dos invariantes
importantes de H: el polinomio caracteristico de la monodromia compleja
(Capitulo y la estructura de Hodge mixta sobre la cohomologia de la
fibra de Milnor (Capitulo [V).

Como hemos dicho anteriormente, la motivacién de usar Q-resoluciones
encajadas en lugar de las clasicas es doble. Por un lado, son generalizaciones
de las resoluciones encajadas usuales, para las que se espera que los inva-
riantes anteriores se puedan calcular de manera efectiva. Por otro lado, la
complejidad combinatoria y computacional de las Q-resoluciones encajadas
es mucho mas sencilla, pero conservan la misma informacién necesaria para
la comprensién de la topologia de la singularidad.

Notacion. Para tratar estas resoluciones, necesitamos introducir algo de
notacién. Sea G := [iq, X - - - X 4, un grupo finito abeliano arbitrario escrito
como productor de grupos finitos ciclicos, esto es, 14, es el grupo ciclico de
las raices d;-ésimas de la unidad. Consideramos una matriz de pesos

A= (a)iy = [a0| - |aa] € Mat((r +1) x (n+1),2)
y la accién

(fay X -+ X p1g,) x CPHL — CHL
(€arx) = (30 €40y, ... E80n - £8m z,).

El conjunto de todas las érbitas C"™!/G se llama espacio cociente (ciclico)
de tipo (d; A) y se denota por

(1)

do | ago -+ aon
X(d;A) =X
dr | arg -+ amp
La érbita de un elemento (x,...,z,) bajo esta accién se denota por

(0 - -, %n)](a;4) ¥ el subindice se omite si no hay lugar a confusién.
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Nota. La condicién (3) de la definicién anterior significa que si f : (M,0) —
(C,0) es el germen de una funcién analitica y (H,0) es la hipersuperficie
definida por f, entonces la transformada total 7 1(H) = (f o m)~1(0) est4
localmente dada por una funcién de la forma xg --- 2" : X(d; A) — C,
donde X (d; A) :== C"*/uq y pq actian diagonalmente como en (L))

Los nimeros anteriores m; no tienen ningun significado cuando uq no
induce una accién “small” sobre GL(n + 1,C). Esto motiva lo siguiente.

Definicién. Eltipo (d; A) se dice normalizado si la accién es libre en (C*)"+1
y pa se identifica con un subgrupo small de GL(n + 1,C).

Un problema clasico en Teorfa de Singularidades es describir o dar un
método para calcular invariantes una vez conocida una resolucién encajada.
La existencia de tal resolucion esta garantizada por los trabajos de Hironaka.
Con el mismo espiritu, uno de los propésitos de este trabajo es proporcionar
informacién sobre la singularidad a través de una Q-resolucién encajada.

Como herramienta para encontrar Q-resoluciones encajadas, usaremos
explosiones ponderadas con centro liso. Prestaremos especial atencién a los
casos de dimension 2 y 3 y explosiones de puntos. Tales explosiones pueden
entenderse desde la geometria torica pero en este trabajo las presentamos
méas geométricamente, generalizando las usuales.

Ejemplo. Supongamos (d;a,b) normalizado y ged(w) =1, w := (p,q). En-
tonces, el espacio total de la explosién w-ponderada del origen de X (d;a,b),

(2) T(d;a,b),w (d a, b) - X(d7 a, b)7
se puede escribir como
PO d b d
UlUUFX(P 1, q+/)’p>UX(q P+uqa71>
e e e
y las cartas estdn dadas por

—q + Bpb

d
Primera carta X <p; 1,
e e

> — ﬁl,
[ 9)] = [((=P,29), [1 2 ylw)] (g0

d —
Segunda carta X <q P pqa

;a ’1 ? UQ’

[(x’ye)] [((xyp yq)7 [J,' ] >] (d;a,b)”

En lo anterior, e = ged(d, pb—qa) y fa = pub =1 (méd d), ver para los
detalles. Notese que el origen de las dos cartas son singularidades cocientes
ciclicas. Estan situadas en el divisor excepcional E que es isomorfo a P!,
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Para estudiar las Q-resoluciones encajadas necesitamos una teoria de
interseccion. Para ello tenemos que trabajar con divisores en V-variedades.
Dos clases de divisores aparecen en la literatura: divisores de Weil y de
Cartier. Los divisores de Weil son combinaciones lineales localmente finitas
con coeficientes enteros de subvariedades de codimensién 1 y los divisores
de Cartier son secciones globales del haz cociente de funciones meromorfas
médulo funciones holomorfas que no se anulan nunca. La relacién entre
divisores de Cartier y fibrados en linea proporciona una buena manera de
definir la multiplicidad de interseccién de dos divisores.

En la categoria lisa, ambos conceptos coinciden pero no es el caso para
variedades singulares, ni siquiera para las normales. También podemos con-
siderar Q-divisores de Weil y de Cartier (tensorizando los correspondientes
grupos por Q). El primer resultado importante de este trabajo es que estos
dos conceptos coinciden para V-variedades.

Teorema 1. Sea X wuna V-variedad. Entonces, la aplicacion definida a
través de la nocion de divisor de Weil asociado,

Tx ® 1 : CaDiv(X) ®z Q — WeDiv(X) 7 Q,

es un isomorfismo de Q-espacios vectoriales. En particular, dado un divisor
de Weil D en X, siempre existe k € Z tal que kD € CaDiv(X).

Probablemente este resultado es conocido por los especialistas pero no
hemos encontrado una demostracion en la literatura. Existen algunos re-
sultados parciales para variedades toricas. Ademads, en este trabajo damos
un algoritmo para presentar explicitamente un Q-divisor de Weil como un
Q-divisor de Cartier, ver Tlustramos el uso de este algoritmo con
un ejemplo de un espacio obtenido después de una explosién ponderada.

Ejemplo. Sea (4.4, €l morfismo propio definido en ({2). Entonces, su
divisor excepcional F es un divisor de Weil que no se corresponde con ningiin
divisor de Cartier. Sin embargo, siguiendo la discusién anterior, se puede
escribir como Q-divisor de Cartier del modo ﬁ{(ﬁl, 294), (Us, yir)}.

El teorema |1| anterior nos permite desarrollar una teoria de interseccién
racional sobre V-variedades con las propiedades usuales esperadas, que estan

recogidas en la proposicion |(111.1.3)]

Definicién. Sea X una V-variedad y consideremos D;, Dy € Q-Div(X). El
numero de interseccidn estd definido como D1-Dy := ﬁ (k1D1 - kaDs) € Q,
donde k1, k2 € Z se eligen para que k1D € WeDiv(X) y ko Dy € CaDiv(X).
Andlogamente, se define el nimero de interseccion local en P € Dy N Do,
si D1 € Ds. Idem el pull-back estéd definido por F*(Ds) := éF*(kQDQ) si
F:Y — X es un morfismo propio entre dos V-variedades irreducibles.
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Este niimero de interseccién racional fue primero introducido por Mum-
ford para superficies normales, ver [Mum61) Pag. 17]. Nuestra definicién
coincide con la de Mumford gracias al buen comportamiento con respecto al
pull-back, ver Theorem La principal ventaja es que la nuestra no
involucra una resolucién del espacio ambiente y, por ejemplo, esto nos per-
mite encontrar facilmente férmulas para la auto-interseccién de los divisores
excepcionales de explosiones ponderadas sin calcular ninguna resolucién.

De hecho, esto es el segundo resultado importante de este trabajo.

Proposicion 2. Sea 7 := T(gqp) 0 €l morfismo definido en [2). Conside-
ramos dos Q-divisores C y D en X(d;a,b). Entonces,

2
(1) B-7*(C) =0, (1) B ==
sY=C+ 2 0.D=c.p-Y*
2)w (C’)—C’+6E, (5)C-D=C-D g’
A_ fV N2 s M
(S)E-C:@, (6) D*=D e (D compacto),

donde v y p denotan la (p,q)-multiplicidad de C y D en P, es decir,
(resp. y) tienen (p,q)-multiplicidad p (resp. q).

Nuestro tercer resultado importante es una versién del teorema de Bézout
para cocientes de planos proyectivos ponderados.

Proposicion 3. Sean m1, mo, ms los determinantes de los tres menores de
orden 2 de la matriz (5 Z Z) Supongamos que ged(p, q,r) = 1 y escribamos
e = ged(d, m1, ma,m3). Siw = (p,q,r), entonces el nimero de interseccion
de dos Q-divisores en P2 (d; a,b,c) := P2 /juq es

€
W degw(Dl) degw(D2) €Q.

Nétese que el divisor excepcional de la explosién (p, g, )-ponderada de
un punto de tipo (d;a,b,c) es isomorfo a P2 (d;a,b, c), ver Asi este
resultado nos ayudard a describir Q-resoluciones encajadas de superficies
en C3, ver el capitulo donde se trata con detalle el caso superaislado.

DDy =

Ahora ya tenemos todos los ingredientes necesarios para estudiar los
dos invariantes mencionados en términos de una Q-resolucién encajada de
la singularidad y la normalizaciéon semiestable asociada. Ambos resultados
dependen de una estratificacién de un QQ-divisor con cruces normales. Asi,
necesitamos introducir algo de notacién.

Notacién. Sea f : (M,0) — (C,0) el germen de una funcién analitica y
sea (H,0) la hipersuperficie definida por f. Dada una Q-resolucién enca-
jada de (H,0), 7 : X — (M,0), consideramos Fj, ..., Fy las componentes
irreducibles del divisor excepcional y H la transformada estricta.
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Normalmente se escribe Ey = H y S={0,1,...,s} para que la estrati-
ficacién de X asociada al Q-divisor con cruces normales 7' (H) = J;cq Ei
esté definida por

E} = < Nier Ez) \ (Uigél Ez‘),
para I C S posiblemente vacio.

Sea también X = | | e (;j una estratificacién de X dada por los puntos
singulares cocientes de manera que la ecuacion local de g := fom en P €
E7; N Qj sea de la forma

gt X(d;A) — C, (0<k<n)

y las multiplicidades m; y la accién uq son la misma a lo largo de cada
estrato £ N Q;. En este contexto m(E7 N Q) esta definido por

SF_gagim; SF_garym;
o || Tt
A veces también lo denotamos por m(E, P) o incluso m(P), P € E} N Qj,
si no hay lugar a confusién, ver |(IV.3.12) y [(V.1.4)|

m(E7 N Qj ) := ged <m0, ey My

El cuarto resultado importante de este trabajo es la generalizacién de
la formula de A’Campo para Q-resoluciones encajadas, ver para
un enunciado mdas completo. Su demostracién estd basada en [Dim04]
Th. 6.1.14.] y asi necesitamos trabajar con complejos constructibles de haces
con respecto a una estratificacién y el “nearby cycles” de f.

Teorema 4. Z(f;t) = H (1 — tm(Efi}mQj))X(E{i}mQj) :
i=1,...,s, j€J

Noétese que solo los estratos Ef{’l.} N Q; que provienen del divisor excep-
cional contribuyen a Z(f;t). Esto refleja el buen comportamiento de las
singularidades cocientes abelianas con respecto a los cruces normales. Por
el contrario, las no abelianas parecen funcionar de otra manera, ver §IV.5|
donde se muestra que los “puntos dobles” pueden contribuir a Z(f;t).
Nota. Silaecuacién de gen P € Efi}ﬂQj es de la forma 2™ : X(d;a,b) — C
y el tipo (d;a,b) estd normalizado, entonces m(P) = . Asi esta formula
ya ha sido estudiada en [Vey97] para singularidades de curvas planas.

Vamos a describir la normalizacién semiestable de g : X — D%. Sea e
el minimo comun multiplo de todas las multiplicidades que aparecen en el
divisor E := ¢71(0) = Ey U---U E y consideremos ¢ : Dzl/e — D% la
cubierta ramificada definida por o(t) = t°. Denotamos por (X1, g1,01) el
pull-back de g y . Finalmente, sea v : X — X, la normalizacién de X 1y
denotemos por g := gy oV y o := o1 o v los morfismos naturales. También
pongamos D; = o }(E;) parai=0,...,sy D = Uiy Di-
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Este diagrama conmutativo representa el proceso completo de la norma-
lizacién semiestable.

D;¢ ¥ 2 x = D7271/e

R

En esta situacion, m(g*(0), P) con P € g~1(0) se puede interpretar
como el cardinal de la fibra sobre P de la cubierta ¢ : X — X. Nuestro
quinto resultado importante es una descripcion detallada de esta cubierta.
Su demostracion estd basada en el calculo explicito de la normalizacién de
¢ — g - - a) ™ visto como elemento de Clzo, ..., z,]"d @c Clt], ver [(V.1.7)
Proposicion 5. La variedad X solo tiene singularidades cocientes abelianas
situadas en g~1(0) = D, el cual es un divisor reducido con cruces normales
en X. Ademds, o : X — X es una cubierta ciclica de e hoja no ramificada
sobre X \ g71(0). Para® #1C S:={0,1,...,s} yj € J, se tiene:

(1) La restriccion o| : 0~ *(ES N Q;) — ES N Q; es una cubierta ciclica
ramificada de m(E} N Q;) hojas no ramificada sobre EF N Q;.

(2) El espacio 0" (E9N Q) es una V-variedad con singularidades co-
cientes abelianas con ged({m(P) | P € EYNQ;}) componentes
conezxas.

(3) Sea ¢ : X — X el generador candnico de la monodromia de la cu-
bierta p. Entonces, su restriccion a gfl(E}’ NQj) es un generador
de la monodromia de o|: 0" (ES N Q;) = ESN Q.

La idea principal que hay detrds de esta construccion es que en el caso
clasico después de considerar la normalizacién semiestable, el espacio am-
biente contiene singularidades cocientes. La proposiciéon anterior prueba que
lo mismo es cierto para Q-resoluciones encajadas y asi la construccién de
Steenbrink con la sucesién espectral se puede adaptar para proporcionar una
EHM sobre los grupos de cohomologia El propésitos del capitulo
es la descripcién explicita de una sucesion espectral que converge a la coho-
mologia de la fibra de Milnor a partir de una Q-resolucién encajada

Puesto que la Q-resolucion encajada se puede elegir para que “casi todo”
divisor excepcional contribuya a la monodromia, nuestra sucesién espectral
es mejor en el sentido de que menos divisores apareceran en la normalizacién
semiestable y por tanto la combinatoria serd méas sencilla. Vamos a ver con
un ejemplo cémo se aplican todos los resultados anteriormente presentados.
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Ejemplo. Supongamos ged(p, q) = ged(r,s) =1y g < L. Sea f = (2P +
y?)(z" + y®) y consideremos C; = {2P + y? = 0} y Co = {z" + y* = 0}.
Una Q-resolucién encajada de {f = 0} C C? se puede calcular con la (g, p)-
explosién del origen de C2, seguida de la (s, gr — ps)-explosién de un punto
de tipo (¢; —1,p), comparar con (2), ver figura

(s;—1,7) Q_<rqp5 s q>
C, c, " \Nrgq—ps|—-r p
Zﬁ ® p(q+ )&
s(p+r)& | @ ‘ (p;q,—1)

FIGURA 1. Q-resolucién encajada de f = (2P + y?)(z” + y*).

La auto-intersecciones se calculan con la proposicién [2] y la matriz de

interseccién es A = Tqips ( _q/ P 7; /s ) Por el teorema |4} el polinomio carac-
teristico es (a+0) o)
t—1)(tP\9s) —1) (5P —1
a2 D 1) om0 -

(thrs — 1) (tp+7' _ 1)
Estudiamos la normalizacién semiestable con la proposicién [5l Su grafo
dual ponderado se muestra en la figura

(p—1)(g+s) —ged(p,s) + 1 _(=1(p+r) —gedps) +1
2 o 77 2

m1:1

g1 =

mgzl

Cl C2

D1 D2

Ficura 2. Grafo dual de la normalizacién semiestable de f.

La estructura de Hodge mixta de la cohomologia de la fibra de Milnor
H'(F,C) se obtiene de la sucesién espectral de Steenbrink:

Hl(F, (C) _ H0,0 @ HO,l D HLO D Hl,l 7
GrY H(F,C) Grl H(F,C) Gry” HY(F,C)

donde

HO,O _ Cgcd(p,s)—l H071 —C% @ (ng’ H171 — (Cng(I%S)'

Y

Los géneros g1 y g2 se han calculado en la figura 2l La accién de la mo-
nodromfa sobre GryY H'(F, C) est4 dada por el polinomio %
que esto proporciona los autovalores de la monodromia con bloques de Jor-

dan de tamano 2, ver |(V.4.3)| para mas detalles.

. Notese
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Segunda Parte ‘ (Capitulos |V y [VIL

En estos dos capitulos aplicamos parcialmente las nuevas técnicas de-
sarrolladas anteriormente para el estudio de singularidades superaisladas de
hipersuperficies y singularidades de Yomdin-Lé (ponderadas) de superficies.

Estas singularidades han sido estudiadas ampliamente por muchos au-
tores, ver el “survey” [ALMOG6] donde se repasa parte de la teoria de estas
singularidades y sus aplicaciones incluyendo algunos desarrollos recientes
y novedosos. Fueron introducidas por Luengo y también aparecen en un
articulo de Stevens, donde se considera el estrado p-constante, ver [Lue87]
y [Ste89]. Después, Artal describié en su tesis doctoral [Art94b] una re-
solucién encajada de tales singularidades usando explosiones de puntos y
curvas racionales.

Aqui, en el capitulo[VI] presentamos una descripcién de una Q-resolucién
encajada de singularidades superaisladas de superficies en términos de una
Q-resolucién encajada (global) de su cono tangente. Probamos que sola-
mente se necesitan explosiones ponderadas de puntos. Por el contrario, el
espacio total que aparece tiene singularidades cocientes abelianas.

Maés concretamente, sea f = fi,, + f;n+1 + - la descomposicién de f
en componentes homogéneas. Denotamos por C := V(f,,) C P? el cono
tangente y supongamos que V := V(f) es superaislada, es decir, Sing(C) N
V(fm+1) = 0. El principal resultado de esta parte es una coleccién de resul-
tados que se pueden resumir como sigue, ver [(VI.2.2)| [(VI.2.10)} [(VI.2.13)|

Teorema 6. Sea o : YF — (C, P) una Q-resolucion encajada del cono
tangente para P € Sing(C). Supongamos que

(@")(C,Py=C+ > mier
aES(Fi)

es la transformada total de (C, P), donde EF es el divisor excepcional de la
(pF, qF)-explosion de un punto P, que pertenece al lugar de no transversa-
lidad. Denotemos por vl la (pf, qb)-multiplicidad de C en P,.

Entonces, se puede construir una Q-resolucion encajada p : X — (V,0)
de la singularidad de superficie tal que la transformada total es

PV,0)=V+mE+ Y (m+1L)mlEL,
PeSing(C)
aGS(Fi)

y EF aparece después de la (pf,qf, vl)-explosion del punto P, (ndtese que

el lugar de no transversalidad en dimension 2 y 3 se identifican).
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La principal ventaja comparada con la de Artal [Art94b] es que en ésta

dltima se necesitan en cada paso vl

.. (en lugar de solo una) explosién de

puntos y curvas racionales para llegar a una situacién parecida.

En el capitulo aplicamos el teorema [4| (férmula de A’Campo’s gene-
ralizada) para calcular el polinomio caracteristico y el nimero de Milnor, ver
teorema y corolario En particular, las férmulas de [Sie90]
y [Ste89] se pueden obtener de esta manera. En el futuro estudiaremos
otros invariantes mas sofisticados como la estructura de Hodge mixta de la
cohomologia de la fibra de Milnor.

Como consecuencia probamos que un divisor excepcional de la Q-resolu-
ci6n encontrada para (V,0) contribuye a la monodromia compleja si y solo si
lo hace el correspondiente divisor en el cono tangente, ver Asi los
pesos se pueden elegir para que todo divisor excepcional de la Q-resolucién
encajada de (V,0) contribuya a la monodromia.

Estas técnicas se pueden aplicar para estudiar singularidades superais-
ladas en dimensién superior, ver §VI.4] y lo mismo ocurre para singulari-
dades de Yomdin-Lé (ponderadas) de superficies, ver capitulo

’Tercera Parte‘ (Capitulo

El ultimo capitulo trata sobre el algoritmo checkRoot y sus aplicaciones

para calcular el polinomio de Bernstein-Sato con bases de Grébner. Para dar
una descripcién mas detallada de los problemas que estamos interesados y
los resultados que hemos obtenido, pasamos a recordar algunas definiciones
basicas en campo de los D-méddulos.

Dado un polinomio f € C[x] en varias variable el polinomio de Bernstein-
Sato (también llamado b-funcion global) de f se define como el polinomio
ménico no nulo by(s) de menor grado que verifica

P(s)f** = bs(s)f* € Clx,5,1/f] - f*
para P(s) € D,l[s] := D, ®c C[s], donde D,, denota la n-ésima algebra de
Weyl. La existencia de tal polinomio no nulo estd garantizada por [Ber72].
Andlogamente se define el polinomio de Bernstein-Sato local (también lla-
mado b-funcion local) de f en p € C" y se denota por by p(s).

Se conocen varios algoritmos para calcular la b-funcién de un polinomio,
ver por ejemplo [0ak97c|, [SST00], [BMO02], [Nor02], [Sch04al, [LMO0S§].
Sin embargo, desde el punto de vista computacional, es muy complejo obte-
ner este polinomio en general. A pesar de recientes progresos, en la practica
solo se pueden tratar un ntimero limitado de ejemplos.
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Motivados por esto y para mejorar el calculo del polinomio de Bernstein-
Sato con bases de Grobner, estudiamos los siguientes problemas computa-
cionales:

(1) Encontrar B(s) = Hle(s — ;)™ € C[s] tal que bs(s)|B(s).
(2) Comprobar si «; es raiz de la b-funcién.
(3) Calcular la multiplicidad de o; como raiz de by(s).

Existen algunos métodos conocidos para obtener una cota superior para
el polinomio de Bernstein-Sato de una hipersuperficie singular, una vez cono-
cida, por ejemplo, una resolucién encajada de tal singularidad [Kas77], ver
seccién [VIII:3] Sin embargo, no conocemos ningtn algoritmo para calcular
la b-funcién a partir de esta cota superior.

El resultado més importante de esta parte final es el teorema |(VIII.2.1)]
que tiene varias consecuencias, ver [(VIIL.2.6)| y [[VIIL.5.1)l En particular, se
tiene lo siguiente que resuelve los problemas (2) y (3) anteriores.

Corolario 7. Sea mq, (resp. mq(p)) la multiplicidad de o« como raiz de
br(—s) (resp. byy(—s)). Sean los ideales I = Annp, (f°) + Dn[s](f) e
In;=(I:(s+a)") + D[s](s + ). Entonces,

(1) mq > i <= Iy, # Dy[s],

(2) ma(p) > i <= pe V(. NClx]).

El correspondiente algoritmo se llama checkRoot y en general es mucho
mas rapido que el calculo de todo el polinomio de Bernstein, debido a que
en (1) no hace falta usar érdenes de eliminacién para calcular una base de
Grébner de I, ;. Ademds, el elemento (s + «)°, afiadido como generador,
parece simplificar tremendamente los cdlculos, comparar con [Nak09].

Como primera aplicacién, después de calcular una resolucién encajada,
hemos hallado by(s) de la singularidad no aislada f = (zz+y)(z* +y° +zy?)

en unos 30 segundos, ver [(VIIL.3.3)l Este ejemplo (que aparecié primero
en [CUOQO35]) era intratable con cualquier sistema de dlgebra computacional.

Este algoritmo tiene varias aplicaciones como el calculo de la b-funcién
cuando se puede encontrar una cota superior (mediante resolucién encajada,
para singularidades topolégicamente equivalentes o usando la férmula de
A’Campo y los nimero espectrales), las raices enteras de bs(s) (importantes
por ejemplo en el problema de comparacién logaritmico) y una estratifi-
caciéon de C" con la b-funcién local constante en cada estrato (el algoritmo
propuesto no emplea descomposicién primaria, comparar con [NIN10]).

Los métodos de este capitulo han sido implementados en SINGULAR en
las librerias dmod.1ib y bfun.lib. Todos los ejemplos que se presentan aqui
han sido calculados con esta implementacion.






INTRODUCTION

First Part] (Chapters [{V)

One of the main invariant of a given hypersurface singularity is the
mixed Hodge structure (MHS) on the cohomology of the Milnor fiber. In the
isolated case, Steenbrink gave a method for computing this Hodge structure
using a spectral sequence that is constructed from the divisors associated
with the semistable reduction of an embedded resolution, see [Ste77].

However, in practice the combinatorics of the exceptional divisor of the
resolution is often so complicated that the study of the spectral sequence
becomes very hard, see e.g. [Art94b] where an embedded resolution and
its associated semistable reduction for superisolated surface singularities is
computed using blow-ups at points and rational curves.

After the semistable reduction process the new ambient space contains
normal singularities which are obtained as the quotient of a ball in C" by
the linear action of a finite group. Spaces admitting only such singularities
are called V-manifolds. They were introduced in [Sat56] and have the
same homological properties over Q as manifolds, e.g. they admit a Poincaré
duality if they are compact and carry a pure Hodge structure if they are
compact and Kéhler, see [Bai56]. Moreover, a natural notion of normal
crossing divisor can be defined on V-manifolds, see [Ste77].

Motivated by this fact and in order to try to simplify the combina-
torics of the exceptional divisor mentioned above, we introduce the notion
of embedded Q-resolution. The idea is as follows. Classically an embedded
resolution of {f = 0} ¢ C"*! is a proper map 7 : X — (C"*1,0) from a
smooth variety X satisfying, among other conditions, that 7*({f = 0}) is
a normal crossing divisor. To weaken the condition on the preimage of the
singularity we allow the new ambient space X to contain abelian quotient
singularities and the divisor 7*({f = 0}) to have “normal crossings” on X.



xxil INTRODUCTION

More precisely, here is the formal definition of one of the main objects
of our study.

Definition. Let M be an abelian quotient space. Consider H C M an ana-
lytic subvariety of codimension one. An embedded Q-resolution of (H,0) C
(M, 0) is a proper analytic map 7 : X — (M, 0) such that:

(1) X is a V-manifold with abelian quotient singularities.

(2) 7 is an isomorphism over X \ 7~ !(Sing(H)).

(3) m*(H) is a hypersurface with Q-normal crossings on X.

The present work is devoted to the study of invariants of a hypersurface
singularity (H,0) C (C™"! 0) by looking at either an embedded Q-resolution
or its associated semistable reduction. We will focus on two important in-
variants of H, namely the characteristic polynomial of the complex mon-
odromy (Chapter and the mixed Hodge structure on the cohomology of
the Milnor fiber (Chapter [V).

As mentioned above, the motivation for using embedded Q-resolutions
rather than standard ones is twofold. On the one hand, they are natural gen-
eralization of the usual embedded resolutions, for which the invariant above
are expected to be calculated effectively. On the other hand, the combi-
natorial and computational complexity of embedded Q-resolutions is much
simpler, but they keep as much information as needed for the comprehension
of the topology of the singularity.

Notation. To deal with these resolutions, some notations need to be intro-
duced. Let G := pg, X - -+ X p1q, be an arbitrary finite abelian group written
as a product of finite cyclic groups, that is, ug; is the cyclic group of d;-th
roots of unity. Consider a matrix of weight vectors

A= (aij)i,j = [a() ’ cee ]an] S Mat((r + 1) X (n + 1),Z)
and the action

3)

(/‘Ld() X oo X /‘Ldr) X Cn+1 — (:n-i,—l7
(éd’x) = ( 380 o ‘fg:O Lo, - - - 753871 e Eg:" l’n)

The set of all orbits C"*!/G is called (cyclic) quotient space of type (d; A)
and it is denoted by

do |aco -+ aon
X(d;A):=X : :
dr arg **°  Qrp
The orbit of an element (xg,...,z,) under this action is denoted by
[(0,- -, %n)](a;4) and the subindex is omitted if no ambiguity seems likely

to arise.
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Remark. Condition (3) of the previous definition means that if f : (M,0) —
(C,0) is a non-constant analytic function germ and (H, 0) is the hypersurface
defined by f on (M,0), then the total transform 7= 1(H) = (f o 7)~1(0) is
locally given by a function of the form xg --- " : X(d; A) — C, where
X(d; A) := C""!/puq and pg acts diagonally as in (3).

The previous numbers m;’s have no intrinsic meaning when pgq does not
induce a small action on GL(n + 1,C). This motivates the following.

Definition. The type (d; A) is said to be normalized if the action is free on
(C*)"*! and pgq is identified with a small subgroup of GL(n + 1,C).

A classic problem in Singularity Theory is to describe or give a method
for calculating invariants once an embedded resolution is known. The exis-
tence of such a resolution is guaranteed by the works of Hironaka. In the
same spirit, one of the main aims of this work is to provide information
about the singularity by looking at an embedded Q-resolution of it.

As a tool for finding embedded Q-resolutions we will use weighted blow-
ups with smooth center. Special attention is paid to the case of dimension 2
and 3 and blow-ups at points. Such blow-ups can be understood from toric
geometry but in this work they are presented more geometrically, generaliz-
ing the standard ones.

Example. Assume (d;a, b) is normalized and ged(w) = 1, w := (p, q). Then,
the total space of the w-weighted blow-up at the origin of X (d;a,b),

—

(4) T(dsab)w * X (d;a,), — X(d;a,b),
can be written as
~ d . — b d —
Gl = x (21, 1) |y (24, 220 )

and the charts are given by

First chart X <pd; 1, —q+ ppb
e

: ) — O,
[ 0)] = [, 2%), (12 ylo)] (g0

qd —p+ pga

Second chart X (
e e

,1> — (72,

(@ y9)] = [(@y, 9D, [z 1w)] (g0

Above, e = ged(d, pb — ga) and Sa = pb =1 (mod d), see for details.
Observe that the origins of the two charts are cyclic quotient singularities;
they are located at the exceptional divisor E which is isomorphic to P!,
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To manage to study embedded Q-resolutions an intersection theory is
needed. It is also required to deal with divisors on V-manifolds. Two kinds
of divisors appear in the literature: Weil and Cartier divisors. Weil divisors
are locally finite linear combination with integral coefficients of irreducible
subvarieties of codimension 1 and Cartier divisors are global sections of the
quotient sheaf of meromorphic functions modulo non-vanishing holomorphic
functions. The relationship between Cartier divisors and line bundles pro-
vides a nice way to define the intersection multiplicity of two divisors.

In the smooth category, both notions coincide but this is not the case
for singular varieties, not even for normal ones. One can also consider Weil
and Cartier Q-divisors (tensoring the corresponding groups by Q). The first
main result of this work is that these two notions coincide for V-manifolds.

Theorem 1. Let X be a V-manifold. Then, the linear map defined using
the notion of associated Weil divisor,

Ty ®1: CaDIV(X) Rz Q — WGDIV(X) ®z Q,

is an isomorphism of Q-vector spaces. In particular, for a given Weil divisor
D on X, there always ezists k € Z such that kD € CaDiv(X).

This result is probably known for specialists but we have not found a
proof in the literature. There are some partial results for toric varieties
(defined with simplicial cones). Moreover, in this work we give an algorithm
to explicitly represent a Weil Q-divisor as a Cartier Q-divisor, see .
We illustrate the use of this algorithm with an example living in the space
obtained after a weighted blow-up.

Example. Let 7(444) . be the proper morphism defined in . Then, its
exceptional divisor F is a Weil divisor which does not correspond to a Cartier
divisor. However, following the preceding discussion, it can be written as
Cartier Q-divisor like ﬁ{(ﬁl, 244), (Us, y)}.

Theorem (1] above allows one to develop a rational intersection theory
on V-manifolds with the usual expected properties collected in Proposi-

tion |(II1.1.3)

Definition. Let X be a V-surface and consider D1, Dy € Q-Div(X). The
intersection number is defined as D7 - Dy 1= ﬁ (k1D1 - kaDsy) € Q, where
k1,ke € Z are chosen so that k1 D; € WeDiv(X) and koDy € CaDiv(X).
Analogously, it is defined the local intersection number at P € D1 N Do,
if the condition Dy ¢ Ds is satisfied. Idem the pull-back is defined by
F*(D9) := éF*(k‘ng) if F:Y — X is a proper morphism between two
irreducible V-surfaces.
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This rational intersection number was first introduced by Mumford for
normal surfaces, see [Mum61), Pag. 17]. Our definition coincides with Mum-
ford’s because it has good behavior with respect to the pull-back, see Theo-
rem|(I11I.1.5)l The main advantage is that ours does not involve a resolution
of the ambient space and, for instance, this allows us to easily find formu-
las for the self-intersection numbers of the exceptional divisors of weighted
blow-ups, without computing any resolution.

In fact, this is essentially the second main result of this work.

Proposition 2. Let 7 := T(g.q,) be the morphism defined in [@). Consider
two Q-divisors C and D on X (d;a,b). Then,
2

(1) E-7*(C) =0, (4) E? = —%,

(2)77*(C)=6+EE, (5)65:00—%,

(?))E-a—ﬂ (6)132—D2—M—2 (D compact)
dpq’ dpq pacts;

where v and p denote the (p,q)-multiplicities of C and D at P, i.e. x
(resp. y) has (p, q)-multiplicity p (resp. q).

Our third main result is a version of Bézout’s Theorem for quotients of
weighted projective planes.

Proposition 3. Let us denote by my, ma, mg the determinants of the three
5%2). Assume that ged(p,q,7) = 1 and
write e = ged(d, m1,me, ms3). If w = (p,q,r), then the intersection number

of two Q-divisors on P2 (d;a,b,c) :== P2 /ug is
degw(Dl) degw(D2) € Q

minors of order 2 of the matrix (

(&

Dy - Dy = dpar

Note that the exceptional divisor of the (p, g, r)-weighted blow-up at a
point of type (d;a,b,c) is naturally isomorphic to P2 (d;a,b,c), see
Hence this result will help us describe embedded Q-resolutions of surfaces
in C?, see e.g. Chapter where the superisolated case is treated in detail.

Now we have all the necessary ingredients to study the two commented
invariants in terms of an embedded Q-resolution of the singularity and its
associated semistable reduction. Both results depend on the stratification
of a Q-normal crossing divisor. Hence some notation need to be introduced.

Notation. Let f : (M,0) — (C,0) be a non-constant analytic function
germ and let (H,0) be the hypersurface defined by f. Given an embedded
Q-resolution of (H,0), 7 : X — (M,0), consider Ej, ..., Es the irreducible
components of the exceptional divisor and H the strict transform.
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One writes Ey = H and S = {0,1,..., s} so that the stratification of X
associated with the Q-normal crossing divisor 71 (H) = |J;c g E; is defined
by setting

E; = ( MNier Ez) \ (Ui¢l Ei>7
for a given possibly empty subset I C S.

Also, let X = | ics @; be a finite stratification of X given by its quotient
singularities so that the local equation of g := fom at P € Ef N (Q); is of
the form

gt X(d;A) — C, (0<k<n)
and the multiplicities m;’s and the action uq are the same along each stra-
tum E} N Q;. In this context m(E7 N Q) is defined as

ko aojm; kg arjm;
oy || Bty
Sometimes it is denoted by m(E,P) or even m(P), P € E} N Q;, if no
ambiguity seems likely to arise, cf. [(IV.3.12) and |(V.1.4)|

m(E; N Qj) := ged (mo, e, Ty,

The fourth main result of this work is the generalized A’Campo’s formula
for embedded Q-resolutions, see Theorem for a more complete
statement. Its proof is based on the result [Dim04} Th. 6.1.14.] and hence
one needs to deal with constructible complexes of sheaves with respect to a
stratification and the nearby cycles associated with an analytic function.

o A\ X(ESNQ;)
Theorem 4. Z(f, t) = H (1 _ tm(E{i}mQJ)) {i} %I .
i=1,...,s, jE€J

Note that only the strata EEZ.} N @; coming from the exceptional divisor
contribute to Z(f;t). This reflects the good behavior of abelian quotient
singularities with respect to normal crossing divisors. By contrast, non-
abelian groups seem to work differently, see where it is shown that
“double points” may contribute to Z(f;t).

Remark. If the equation of g at P € Ef{’i}ﬂQj is of the form 2™ : X (d;a,b) —
C and the latter quotient space is normalized, then m(P) = . Hence this
formula has already been studied in [Vey97] for plane curve singularities.

Let us briefly describe the semistable reduction of g : X — D,27. Let e
be the least common multiple of all possible multiplicities appearing in the
divisor E := ¢g71(0) = EgU--- U E, and consider o : D7271/e — D% the
branched covering defined by o(t) = t¢. Denote by (Xi,91,01) the pull-
back of ¢ and o. Finally, let v : X — X; be the normalization of X; and
denote by g := g1 ov and g := o1 o v the natural maps. Write D; = o~ }(E;)
fori=0,...,s and D =J;_, D;.
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This commutative diagram illustrates the whole process of the semistable
reduction.

~ v g
Di< X Xl ! D7271/e

BEN

In this situation, m(g*(0), P) with P € g=1(0) can be interpreted geo-
metrically as the cardinality of the fiber over P of the covering o : X = X.
Our fifth main result is a detailed description of this covering. Its proof is
based on the explicit computation of the normalization of t¢ — 2" - - - "

regarded as an element in Clz, ..., z,]*d ®c C[t], cf. [(V.1.7)]

Proposition 5. The variety X only has abelian quotient singularities lo-

cated at g~1(0) = D which is a reduced divisor with normal crossings on X.

Also, o : X — X is a cyclic branched covering of e sheets unramified over
X\ g7 50). Moreover, for® #1 C S :=1{0,1,...,s} and j € J, one has:

(1) The restriction o| : o *(ES N Q;) — ESNQ; is a cyclic branched
covering of m(ES N Q;) sheets unramified over E7 N Q;.

(2) The variety o"*(ES N Q;) is a V-manifold with abelian quotient
singularities with ged({m(P) | P € EYNQ;}) connected compo-
nents.

(3) Let ¢ X — X be the canonical generator of the monodromy of the

covering 0. Then, its restriction to Q_l(E}’ NQj) is a generator of
the monodromy of | : 0 ' (ES N Q;) = E5 N Q.

The main idea behind this construction is that in the classical case af-
ter considering the semistable reduction the ambient space already contains
quotient singularities. Proposition [5| says that the same is true for embed-
ded Q-resolutions and thus the construction by Steenbrink with the spectral
sequence can be adapted to provide a mixed Hodge structure on the coho-
mology groups, see Theorem In fact, one of the aims of Chapter
is to describe explicitly a similar spectral sequence converging to the coho-
mology of the Milnor fiber starting with an embedded Q-resolution, §V.3|

Since the embedded Q-resolution can be chosen so that “almost every”
exceptional divisor contributes to the complex monodromy, our spectral
sequence is better in the sense that less divisors will appear in the semistable
reduction and thus the combinatorial of the spectral sequence will be simpler.
We illustrate the use of all the preceding results presented in this part with
an example.
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Example. Assume ged(p,q) = ged(r,s) = 1 and g < % Let f= (2P +
y?9)(z" + y®) and consider C; = {zP + y? = 0} and Cy = {z" + y* = 0}.
An embedded Q-resolution of {f = 0} C C? can be computed with the
(q,p)-blow-up at the origin of C2, followed by the (s, qr — ps)-blow-up at a

point of type (¢; —1,p), cf. (4), see Figure

(s;—1,7) Q—(”’_ps s _q>
C, C, “\Nrq—ps|—-r p
Zﬁ ° p(q +s)&1
s(p+1)& | Q ‘ (p;q,—1)

FIGURE 3. Embedded Q-resolution of f = (2P 4+ y9)(z" + y*).

The self-intersection numbers are calculated using Proposition [2|and the

intersection matrix is A = - 1 (7” p 1 ) By Theorem the character-
q—ps 1 —q/s

istic polynomial is
(t—1) (tp(q+8) —1) (tS(err) —1)
(tq+s _ 1) (tp+r _ 1)

The semistable reduction is studied using Proposition Its weighted
dual graph is shown in Figure

A(t) =

(p—1)(qg+s) —ged(p,s) + 1 _(s=1(p+r)—ged(p,s) +1
2 o 2

m1=1 m2:1

g1 =

Cl C2

Dl D2

FIGURE 4. Dual graph of the semistable reduction of f.

The mixed Hodge structure (MHS) on the cohomology of the Milnor
fiber H!(F,C) is obtained from Steenbrink’s spectral sequence:

H(FC)= HY o BYoH o gt .
GrlV H'(F,C) GrWV H(F,C) Gry H(F,C)

where
g0 — (Cgcd(p,s)—l, HOl — co9 ® Co2, gL — Cng(ILS)'

The genera ¢g; and go are calculated in Figure The action of the
monodromy on Gry’ H'(F,C) is given by the polynomial %. Note
that this provides the eigenvalues of the monodromy with Jordan blocks of

size 2, see Example [(V.4.3)| for details.
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’ Second Part ‘ (Chapters VI and

In these two chapters the new techniques developed above are par-
tially applied to the study of superisolated hypersurface singularities and
(weighted) Yomdin-Lé surface singularities.

These singularities have been extensively studied by many authors, see
the survey [ALMO6] where part of the theory of these singularities and
their applications including some new and recent developments are reviewed.
They were introduced by Luengo and also appear in a paper by Stevens,
where the p-constant stratum is considered, see [Lue87] and [Ste89]. Af-
terward Artal described in his PhD thesis [Art94b] an embedded resolution
of such singularities using blow-ups at points and rational curves.

Here, in chapter [VI, we present a detailed description of an embedded
Q-resolution for superisolated surface singularities in terms of a (global)
embedded Q-resolution of its tangent cone. It is proven that only weighted
blow-ups at points are needed. By contrast, the final total space produced
has abelian quotient singularities.

More precisely, let f = fp, + fm+1 + - be the decomposition of f
into its homogeneous parts. Denote by C := V(f,,) C P? its tangent cone
and assume that V := V(f) is superisolated, i.e. Sing(C) NV (fi+1) = 0.
The main result of this part is a collection of several results that can be
summarized as follows, cf. |(VI.2.2)| [(VI.2.10), [(VI.2.13)]

Theorem 6. Let o© : Y — (C,P) be an embedded Q-resolution of the
tangent cone for P € Sing(C). Suppose that

@) (C,P)=C+ > mlel
aES(Fi)

is the total transform of (C, P), where E is the exceptional divisor of the
(paP, qf)—blow—up at a point P, belonging to the locus of non-transversality.
Denote by vl the (pf, ¢F')-multiplicity of C at P,.

Then, one can construct an embedded Q-resolution p : X — (V,0) of the
superisolated singularity such that the total transform is

pPr(V,0)=V+mEy+ > (m+1)mlE},
PeSing(C)
aGS(Fi)

and EY appears after the (pf, qF , vl)-blow-up at the point P, (note that the
locus of non-transversality in dimension 2 and 3 are identified).
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The main advantage compared with Artal’s resolution |[Art94b] is that
in the latter v (rather than just one) blow-ups at points and rational curves
at each step are needed to achieve a similar situation.

The generalized A’Campo’s formula, Theorem[d] is applied and the char-
acteristic polynomial and the Milnor number are calculated as an applica-
tion, see Theorem and Corollary In particular, the for-
mulas in [Sie90] and [Ste89] can be obtained in this way. Other more
sophisticated invariants, including mixed Hodge structure of the cohomol-
ogy of the Milnor fiber, are the subjects of our study for the future.

As a consequence, we prove that an exceptional divisor in the Q-resolu-
tion obtained for (V0) contributes to the complex monodromy if and only
if so does the corresponding divisor in the tangent cone, see Thus
the weights can be chosen so that every exceptional divisor in the embedded
Q-resolution of (V,0) contributes to its monodromy.

This techniques can be applied to study superisolated singularities in
higher dimension, see §VI.4] and the same applies to (weighted) Yomdin-Lé
surface singularities, see Chapter [VII]

Third Part | (Chapter

The last chapter is about the checkRoot algorithm and its applications
for the computation of the Bernstein-Sato polynomial by means of non-
commutative Grobner bases. In order to give a more precise description of
the problems we are interested in and the results we obtain, let us recall
some basic definitions from the realm of D-modules.

Given a polynomial f € C[x] in several variables, the Bernstein-Sato
polynomial (also called global b-function) of f is defined as the (non-zero)
monic polynomial bf(s) € C[s]| of minimal degree satisfying

P(s)f** = bs(s)f* € Clx, 5,1/ f] - f*
for some P(s) € Dy[s] := D, ®c C[s], where D,, denotes the n-th Weyl alge-
bra. The existence of such a non-zero polynomial is guaranteed by [Ber72].
Analogously, it is defined the local Bernstein-Sato polynomial (also called
local b-function) of f at p € C", and it is denoted by bs,(s).

Several algorithms for computing the b-function associated with a poly-
nomial are known, see for instance [QOak97c|, [SST00], [BMO02], [Nor02],
[Sch04al, [LMO08]. However, from the computational point of view it is
very hard to obtain this polynomial in general. Despite significant recent
progress, only restricted number of examples can be actually treated.
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Motived by this fact and in order to enhance the computation of the
Bernstein-Sato polynomial via Grébner bases, we study the following com-
putational problems:

(1) Find B(s) = Hle(s — o)™ € C[s] such that bs(s) divides B(s).
(2) Check whether «; is a root of the b-function.
(3) Compute the multiplicity of ; as a root of by(s).

There exist some well-known methods to obtain an upper bound for
the Bernstein-Sato polynomial of a hypersurface singularity once we know,
for instance, an embedded resolution of such singularity [Kas77], see Sec-
tion [VIIL.3] However, as far as we know, there is no algorithm for computing
the b-function from this upper bound.

The main result of this final part is Theorem|(VIII.2.1), which has several
consequences, see e.g. [[VIIL.2.6)| and [[VIIL.5.1)] In particular, one obtains
the following result solving problems (2) and (3) above.

Corollary 7. Let mqy (resp. mq(p)) be the multiplicity of a as a root of
br(—s) (resp. byp(—s)). Consider the ideals I = Annp, 4(f°) + Du[s|(f)
and In; = (I: (s+a)") + D[s|(s + «). Then,

(1) mq > i <= 1y, # Dy[s],

(2) ma(p) > i <= pe V(. NClx]).

The corresponding algorithm is called checkRoot and in general is much
faster than the computation of the whole Bernstein polynomial because no
elimination ordering is needed in (1) for computing a Grébner basis of I ;.
Also, the element (s + «)?, added as a generator, seems to simplify tremen-
dously such a computation, cf. [Nak09].

As a first application, after computing an embedded resolution, we could
obtain bg(s) for the non-isolated singularities f = (zz + y)(a* + y° + zy?)
in about 30 seconds, see Example [(VIII.3.3)l This example (first appeared
in [CUO05]) was intractable by any computer algebra system.

Applications of this algorithm includes the computation of the b-function
where there is a possibility to compute an upper (it can be achieved by means
of embedded resolution, for topologically equivalent singularities or using the
formula by A’Campo and spectral numbers), the integral roots of bs(s) (im-
portant e.g. for the logarithmic comparison problem), and a stratification of
C™ with the local b-function being constant on each stratum (the algorithm
we propose does not employ primary decomposition, cf. [NN10]).

The methods from this chapter have been implemented in SINGULAR
as libraries dmod.1ib and bfun.lib. All the examples presented here have
been computed with this implementation.






Quotient Singularities and Embedded
Q-Resolutions

The purpose of this chapter is to fix the notation and provide several
tools to calculate a special kind of embedded resolutions allowing the am-
bient space to contain abelian quotient singularities. These resolutions are
called embedded Q-resolutions, see Definition below. To do this, we
study weighted blow-ups with smooth center. Special attention is paid to
the case of dimension 2 and 3 and blow-ups at points.

In Chapter [[TI, we develop an intersection theory on this natural con-
text of varieties with abelian quotient singularities. This theory was first
introduced by Mumford over normal surfaces, see [Mum61]. The tools
presented in this chapter will permit computing the self-intersection num-
bers of the exceptional divisors of weighted blow-ups in dimension two, see
Proposition

All these techniques are applied in Chapters and and they are
essential for our study of (weighted) Yomdin-Lé singularities. We do not
pretend to be exhaustive and though objects presented here have many
interesting properties, we focus on those that are used later.

As for notation through this work we often use (i1,...,4x) instead of
ged(iy, ..., i) in case of complicated and long formulas if no ambiguity
seems likely to arise.

SEcTION §1I.1
V-manifolds and Quotient Singularities

Definition (I.1.1). A V-manifold of dimension n is a complex analytic
space which admits an open covering {U;} such that U; is analytically iso-
morphic to B;/G; where B; C C" is an open ball and G; is a finite subgroup
of GL(n,C).
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V-manifolds were introduced in [Sat56] and have the same homological
properties over Q as manifolds. For instance, they admit a Poincaré duality
if they are compact and carry a pure Hodge structure if they are compact
and Kahler, see [Bai56]. They have been classified locally by Prill [Pri67].
To state this local result we need the following.

Definition (I.1.2). A finite subgroup G of GL(n,C) is called small if no
element of G has 1 as an eigenvalue of multiplicity precisely n — 1, that is,
G does not contain rotations around hyperplanes other than the identity.

(I.1.3). For every finite subgroup G of GL(n,C) denote by Gy, the normal
subgroup of G generated by all rotations around hyperplanes. Then, the
Ghig-invariant polynomials form a polynomial algebra and hence C" /Gy, is
isomorphic to C".

The group G /Gh,ig maps isomorphically to a small subgroup of GL(n, C),
once a basis of invariant polynomials has been chosen. Hence the local
classification of V-manifolds reduces to the classification of actions of small

subgroups of GL(n,C).

Theorem (1.1.4) ([Pri67]). Let G1 and G3 be small subgroups of GL(n,C).
Then C" /G is isomorphic to C" /Gy if and only if G1 and Gy are conjugate
subgroups. O

I.1-1. The abelian case: normalized types

We are interested in V-manifolds where the quotient spaces B;/G; are
given by (finite) abelian groups. In this case the following notation is used.

(I.1.5). Let G := pg, X --- X pg, be an arbitrary finite abelian group written
as a product of finite cyclic groups, that is, u4, is the cyclic group of d;-th
roots of unity. Consider a matrix of weight vectors

A= (aij)@j = [a1 ‘ cee \an] S Mat(r X n,Z)
and the action

()

(Md1 X"'X:udr)xcn—)cnv

(Ed,x) = ( 31“ . -fg:l T, ... ,5;11” . 53:” Tn).

Note that the i-th row of the matrix A can be considered modulo d;. The
set of all orbits C"/G is called (cyclic) quotient space of type (d; A) and it
is denoted by

di |ann -+ a

X(d;A) =X

dr | ar1 -+ Gpp
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The orbit of an element (x1,...,z,) under this action is denoted by
(%1, .,2n)](q;4) and the subindex is omitted if no ambiguity seems likely
to arise. Sometimes we use multi-index notation

d=(di,...,d), a; = (aj,...,ar;),
Ed:(gdp"'agdr)? X:($17"'7xn)7 /,Ld:MdIX"'X/LdT,
so that the action takes the simple form

pa X C"— C",  (€q,x) = (€3 1,..., ET" zn).

The following result shows that the family of varieties which can locally
be written like X (d; A) is exactly the same as the family of V-manifolds
with abelian quotient singularities.

Lemma (I.1.6). Let G be a finite abelian subgroup of GL(n,C). Then,
C™/G s isomorphic to some quotient space of type (d; A).

PROOF. Let us write G = Cy, x --- x Cy, as a product of cyclic groups.

Let My, ..., M, be generators of these cyclic groups so that
G={M" - M |iy=0,...,dy —1}.

Each of these matrices M;, i« = 1,...,r, is conjugated to a diagonal
G
M; ~ ;

G

where (g4, is a primitive d;-th root of unity. Moreover, they are simultane-

matrix of the form

ously diagonalizable because they commute.
This proves that C"/G ~ X ((du, ..., dr); (aij)i;)- O

Different types (d; A) can give rise to isomorphic quotient spaces, see
Remark We shall prove that they can always be represented by an
upper triangular matrix of dimension (n—1) xn, see Lemma Finding
a simpler type (d; A) to represent a quotient space will lead us to the notion

of normalized type, see Definition |(1.1.10)]

Remark (I.1.7). Assume just for a while that n = 3. The simple group
automorphism on yg X g given by (£,71) + (én~1, 1) shows that the following
two spaces are isomorphic under the identity map.

d|ai1 a2 a3 ) ( d
X =X
< d| a1 az a3 d

Note that the determinants of the minors of order 2 are the same in both
side of the previous equation. Analogous considerations hold for higher
dimension.

a1 —air a2 —ai2 a3 —aig

an aia ais )
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Lemma (I.1.8). The space X(d; A) = C"/pua can always be represented by
an upper triangular matriz of dimension (n — 1) X n. More precisely, there

ezist a vector e = (e1,...,en—1), a matriz B = (b; ;)i j, and an isomorphism
[(21,...,20)] = [(z1,...,28)] for some k € N such that
er |bi1 - bin—1 bin
X(d; A) = 2 I : : = X(e; B).
€n—1 0 te bnfl,nfl bnfl,n

PROOF. To keep the proof as simple as possible, consider only the
case n = 3. The general case is analogous. Let (di;ai1,a12,a13) and
(dg; as1,age,as3) be the first two rows of the matrix defining the quotient
space. Multiplying conveniently, one can assume d; = do. Choose «,f
satisfying Bézout’s identity aai1 + Bag1 = ged(aii, ag1). Using repeatedly
Remark one finds an isomorphism induced by the identity map be-

X d; a11 a12 a13

d; a21 a2 a23 and

tween our space

d
X
d
This process allows one to reduce the claim to the case n = 1. The proof
is complete after Example |(1.1.12)| O

(I.1.9). The action shown in () is free on (C*)™, that is,

[XE(C*)", £d-x:x] = €4 =1,

0 a11a2—az1a12  411023—021013
ged(a11,a21) ged(a11,a21)

ged(air, ag1) aaiz + Baze  aaiz + Bass )

if and only if the group homomorphism ug — GL(n,C) given by

ai
d

(6) Sd:(gdlv---agdr)'—>
&
is injective. If this is not the case, let H be the kernel of this group ho-
momorphism. Then C"/H = C" and the group uq/H acts freely on (C*)"
under the previous identification.
Thus one can always assume that the free (as well as the small) condition
is satisfied. This motivates the following definition.

Definition (I.1.10). The type (d; A) is said to be normalized if the follow-
ing two conditions hold.
(1) The action is free on (C*)".
(2) The group pq is identified with a small subgroup of GL(n, C) under
the group homomorphism given in @
By abuse of language we often say the space X(d;A) is written in a
normalized form when we actually mean the type (d; A) is normalized.
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Proposition (1.1.11). The space X(d; A) is written in a normalized form
if and only if the stabilizer subgroup of P is trivial for all P € C" with
exactly n — 1 coordinates different from zero.

In the cyclic case the stabilizer of a point as above (with exactly n — 1
coordinates different from zero) has order ged(d, a1, ..., Q... ay). O

The procedures described in |(I.1.9)| and [(I.1.3)| can be used to convert
general types (d; A) into their normalized form. Theorem |(I.1.4)| allows one
to decide whether two quotient spaces are isomorphic. In particular, one can

use this result to compute the singular points of the space X(d; A). This
method is specially simple in the cyclic case, see|(1.1.15)| below.

I.1-2. Dimension 1, 2, 3 and the cyclic case

Now, in the following examples, we discuss the previous normalization
process in dimension one, two, and three separately. Also a paragraph is
devoted to the cyclic case.

Example (I.1.12). (Dimension 1). When n = 1 all spaces X(d; A) are
isomorphic to C. Note that X ((d,...,d,); (a11,...,a:1)") is the same space
as X((dy,...,d)); (a}y,-..,aly)!) where d, = m and al, =
Therefore we can assume that ged(d;, a;1) = 1.

The map [z] — 2% gives an isomorphism between X (di;a11) and C.
For r = 2 one has that (we write the symbol “="

induced by the identity map)

ai1
ged(di,aq1)

when the isomorphism is

C C ~ . o
_ Clya - =, C/ua, © X(d;andy) — C,
Hdy X Hd, Hdy B
2
] — ah, [z] —  zecdldnd),

To see the equality () observe that

_ _ d
Cay - 2N = &gy - [2] = [0 2] = £ P

It follows that the corresponding quotient space is isomorphic to C under
the map [z] — zlom(did2),

In higher dimension (without assuming ged(d;,a;1) = 1) the isomor-
phism takes the form

X((dy,...,dr);(a11, .- am1)) — C: [z] = zt,

Kzlcm(d1 dr).
ged(dy,a11)’ 7 ged(dr, ar1)

This integer ¢ is closely related to our notion of multiplicity (at a point)
of a normal crossing divisor, see |(IV.3.12) and |[(V.1.4)}
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Example (I.1.13). (Dimension 2). Following Lemma all quotient
spaces for n = 2 are cyclic. The space X (d;a,b) is written in a normalized
form if and only if ged(d, a) = ged(d, b) = 1. If this is not the case, one uses
the isomorphisrrﬂ (assuming ged(d, a,b) = 1)

. d . a b
X(d;a,b) — X((d,axd,b)’ W’Wﬂ)’

[(z,9)] = [, ylt9)]

to convert it into a normalized one.
d;ab

On the other hand, one can have spaces like X ( i S) also written in
a normalized form. In fact, the previous quotient space is written in a

normalized form if and only if so are both rows and ged(d, e) = 1.

Example (I.1.14). (Dimension 3). The space X(d;a,b,c) is written in a
normalized form if and only if ged(d, a,b) = ged(d, a,c) = ged(d,b,c) = 1.
As above, isomorphisms of the form [(z,y, 2)] + [(x,y, 2¥)] can be used to
convert types (d;a,b, c) into their normalized form.

For n = 3 there exists non-cyclic quotient spaces written in a normal-

ized form. As an example we give X (3 i (1) (1)) In fact, the general space

X (‘i - g ‘Lf) is written a in normalized form if and only if so are both rows
and (d,e,m1) = (d,e,mz2) = (d,e,m3) = 1, where mi, mgy, ms are the

determinants of the three minors of order 2.

(I.1.15). (Cyclic case). In the cyclic case the order of the stabilizer subgroup
is specially easy to compute and hence the normalized form can be described

explicitly. In fact, X(d;ay,...,ay) is written in a normalized form if and
only if ged(d, a1, ...,a;,...,a,) =1, Vi =1,...,n. Here we summarize how
to convert types (d;az,...,a,) into their normalized form.

(1) X(d;a1,...,an) =~ X(d; ag(r)s- - 00(m)), Yo € Xy

(2) X(d;0,a9,...,a,) =C x X(d; ag,...,a,).

(3) X(dya1,...,a,) = X(4; %, .., %) if k divides d and all a;’s.

(4) X(d;ai,...,an) = X(d; kay, ..., kay) if ged(d, k) = 1.

(5) X(d;ay,...,ap) ~ X(%;al,a—lj,...,%), the isomorphism is given
by [(z1,22,...,20)] = [(2F, 22,...,2,)].

In [Fuj75], the author computes resolutions of these cyclic quotient sin-
gularities and also studies, among others, the properties shown above.

1Recall the notation (41,...,%%) = ged(i1,...,4%) in case of complicated or long
formulas.
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1.1-3. Working with local equations

Let X(d; A) = C"/uqg be a quotient singularity not necessarily cyclic or
written in a normalized form. Let f : X(d; A) — C be a global function, that
is, f is a holomorphic function preserving the action. One is interested in
finding a local equation for the divisor defined by f : (X (d; A),[P]) — (C,0)
as a germ of functions at P = (p1,...,p,) € C*\ {0}.

Note that the usual change of coordinates ¢ : C* — C" given by x; —
x; + p; induces an isomorphism on X(d;A) if and only if the condition
[pj # 0 = dilaij, Vi] is satisfied. Equivalently, the j-th column of A is
zero (modulo d) whenever p; # 0.

Now the trick is to find an isomorphism induced by the identity map
(X(d; A),[P]) ~ (X(d';A"),[P]) such that (d’; A") verifies the condition
above. The following result illustrates this idea.

Lemma (I.1.16). Let P = (p1,...,p%,0,...,0) € C", 1 < k <n, p; #0.
Let (uq)p be the stabilizer subgroup of P. There exist d' and A’ such that
X(d'5 A') = €/ (ua)

The natural projection X (d’; A") — X (d; A) defines a branched covering
unramified over a small neighborhood of [P]. In particular, as germs, one
has (X (d; A), [P]) = (X(d,; 4), [P]).

In the cyclic case the order of (uq)p is ged(d,aq,. .., a).

PROOF. Note that puq/(1a) p acts freely on ((C*)*xC"*) /(uq)p. Thus
the natural projection

((C*)k: X (Cn—k <(C*)k X Cnik>/(,u,d)p ((C*)k % (Cn—k
— = > [P]
(1a)p pa /(pa)p 1ta
is an unramified covering and the claim follows. The order of the stabilizer
subgroup in the cyclic case can be computed directly. ([

Observe that the new data (d’; A’) obtained in the previous lemma sat-
isfies the required condition. In fact,

X(d; A" = X(d';0,...,0,a),4,...,a,) = C* x (C"*/uq).
Now the usual change of coordinates can be used to compute the local

equation of f at [P].

(I1.1.17). Let Ox(q.4) be the sheaf of analytic functions on X (d; A) and let
Ox(a;4),/p] be the corresponding local ring at [P] € X(d; A). Then one has

~

Ox(a;a),[p] = (Ocn p)Halr =5 (Ogn o)Ha)r,

Tr; = T+ Dpi.
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Define the equivalence relation on X(d;A) given by [(p1,...,pn)] ~
[(q1,...,qn)] if and only if Vi = 1,...,n,[pi # 0 & ¢ # 0]. Then the
local ring Ox (q;4),;p] only depends on the equivalence class of [P]. In par-
ticular, for a given A € C*, Ox(q;4),1p] = Ox(d;4),xp) holds. This has to do
with the notion of cone in topology.

Example (I.1.18). Let us examine a special case that will be used later.
Assume that X = X(d;a,b,c) is written in a normalized form, see Exam-
ple . Let f : X — C be the polynomial map given by f = x4. The
support of the divisor defined by f can be decomposed into several strata
depending of their quotient singularities, or equivalently, depending on the
order of the stabilizer subgroup, as the following picture shows. However,
the local equation of the divisor is always the same, since (d;a, b, c) is nor-
malized.

d °!
dy = ged(d, a)

dy da dy = ged(d, b)

FIGURE I.1. Stratification of {4 = 0} C X(d;a,b,c).

We finish this section with a general result about quotient spaces and
V-manifolds. The proof is a consequence of all the properties that have been
studied.

Proposition (I.1.19). The spaces X (d; A) = C"/uq are normal irreducible
algebraic varieties of dimension n. Their singular locus has codimension
greater than or equal to 2 and it is located on the coordinate axes.

The FEuler characteristic is x(X(d; A)) = 1 because in fact they are
contractible. Therefore V -manifolds are normal varieties and their singular
locus forms a subvariety of codimension at least 2. U

SECTION §1.2
Weighted Projective Spaces

The main reference that has been used in this section is [Dol82]. Here
we concentrate our attention on the analytic structure.

Let w = (qo,---,qn) be a weight vector, i.e. a finite set of positive inte-
gers. There is a natural action of the multiplicative group C* on C"*1\ {0}
given by

(o, ..., xn) —> (tPxq,... t7xy,).
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The set of orbits % under this action is denoted by P, (or P*(w) in
case of complicated weight vectors) and it is called the weighted projective
space of type w. The class of a nonzero element (zg,...,z,) € C*""! is
denoted by [zg : ... : z,], and the weight vector is omitted depending on
the context. When (qo,...,qn) = (1,...,1) one obtains the usual projective
space and the weight vector is always omitted. For x € C"™!\ {0}, the
closure of [x],, in C"*! is obtained by adding the origin; it is an algebraic
curve.

(I.2.1). (Another way to present P7). Let P™ be the classical projective
space and fi, = g, X -+ X pUg, the product of cyclic groups. Consider the
group action

o X PP s P
((£q07"'7§Qn)7 [zo:...: ;L‘n]) = gm0t Egunl.

Then the set of all orbits P™/p,, is isomorphic to the weighted projective
space of type w and the isomorphism is induced by the branched covering

P> [wg:...:xp) — [z 2], € PL.
Note that this branched covering is unramified over

PZ\{[m077xN}w|m0$n:O}

and has % sheets. Moreover, the covering respects the coordinate
yeendn

axes.

Example (1.2.2). Let P2 — P2 be the branched covering defined above
with weights w = (1,2, 3). For instance, the preimage of [1: 1 : 1], consists
of 6 points, namely the set {[1: & : &3] € P? | & € pa, &3 € us}.

More generally, the degree (the number of sheets) of a covering of the
form P? — P2 /4, where 4 defines an action of type (d;a, b, c), is calculated

in Lemma |(II1.4.2)| and Proposition |(I11.4.3)} This degree will be essential

to state Bézout’s Theorem on P2 /.

(I.2.3). (Analytic structure). As in the classical case, the weighted projec-
tive spaces can be endowed with an analytic structure. However, in general
they contain cyclic quotient singularities.

Consider the decomposition P, = UyU- - -UU,, where U; is the open set
consisting of all elements [z : ... : x,), with z; # 0. The map

Q,ZO:C”—>U0, Jo(xl,---,xn) =z Zplw

is clearly a surjective analytic map but it is not a chart since injectivity fails.
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In fact, [1: 21 :...: 2y =[1: 2] : ..., 2], if and only if there exists
£ € g, such that z, = £%x; for all ¢ = 1,...,n. Hence the map above
induces the isomorphism

Yo + X(qo; q1,---5q0) —> U,
[(z1,...,20)] +— [Lizi:...: Zp)w.
Analogously, X (¢;; qoy---,Gis---,qn) = U; under the obvious analytic

map. Therefore P}, is an analytic space with cyclic quotient singularities as
claimed.

(I.2.4). (Simplifying the weights). For different weight vectors w and w’ the
corresponding spaces IP{, and P, can be isomorphic. Consider

d = ng(QO7 .. 7QTL)7
di = ng(QOy~-’(/]\z’a--~7Qn),
ei = lem(do, ..., di, ... dy).

Note that e;|g;, ged(d;,d;) = d for i # j, and ged(e;, d;) = d.

Proposition (1.2.5). Using the notation above, the following map is an
isomorphism:

]P’”(qo,...,qn) — ]Pm(q—o,... q—”),

€0 ?en
do dn
[wo:...ian] = [zl coiad
PROOF. Assume first that d = 1. Then gcd(g;,d;) = 1 and e; =
do---d;-+-d,. Now from |(I.1.15)] one has the following sequence of iso-
morphisms of analytic spaces:

. = Qa1 g2 q o~ 90 . 41 g2 q
X(QO,Qla--~aQn)—X(QOa d7;7d7037d73)—X(d71a %7d0d17"')d021)
2nd 3rd nth
~ ( qQ . 41 q2 q3 dn ) ~ L. X(@ q1 @)
- didz’ dodz’ dody’ dodidz’ """ dodid2/ T - ep’ er’ " e/’

Observe that in the i-th step, we divide the corresponding weight vector
by d; except the i-th coordinate and hence the associated map in each step

1S [($1,---,$i,...,$n)] — [(le’“ . 7x§li,---,$n)]. Therefore
[1:%1 : "-:xn]w'—> [12.1'(%1 : "':xgn]w’

is an isomorphism by composition. Analogously one proceeds with the other
charts.

The general case ged(qo,...,qn) = d can easily be deduced from the
previous one. O



§1.3. Weighted Blow-ups and Embedded Q-Resolutions 11

Remark (1.2.6). Note that, due to the preceding proposition, one can always
assume the weight vector satisfies ged(qo, - -+, @iy -+ -, qn) = 1, fori =0,...,n.
In particular, P!(qo, q1) = P! and for n = 2 we can take (qo, g1, g2) pairwise
relatively prime numbers. In higher dimension the situation is a bit more
complicated.

We conclude with a general result.

Theorem (1.2.7). The space P, is a normal irreducible projective alge-
braic variety of dimension n. All singularities are cyclic quotient and form
a subanalytic space of codimension greater than or equal to 2. The FEuler
characteristic is x(PI) = x(P") =n + 1. O

Remark (1.2.8). In what follows we need to work over (P¥ x C"¥)/uq where
the action is as in . These spaces are also normal irreducible algebraic
varieties of dimension n with singular locus of codimension at least 2. The
Euler characteristic is k + 1.

SEcTION §1.3
Weighted Blow-ups and Embedded Q-Resolutions

Classically an embedded resolution of {f = 0} C C™ is a proper map
m: X — (C™0) from a smooth variety X satisfying, among other conditions,
that 7~1({f = 0}) is a normal crossing divisor. To weaken the condition on
the preimage of the singularity we allow the new ambient space X to contain
abelian quotient singularities and the divisor 771 ({f = 0}) to have “normal
crossings” over this kind of varieties. This notion of normal crossing divisor
on V-manifolds was first introduced by Steenbrink in [Ste77].

Definition (I.3.1). Let X be a V-manifold with abelian quotient singu-
larities. A hypersurface D on X is said to be with Q-normal crossings if
it is locally isomorphic to the quotient of a normal crossing divisor under a
group action of type (d; A).

That is, given x € X, there is an isomorphism of germs (X,z) ~
(X(d; A),[0]) such that (D,z) C (X,x) is identified under this morphism
with a germ of the form

({[x] € X(d; A) | " - -2 = 0},[(0,...,0)]).

Let M = C""!/uq be an abelian quotient space not necessarily cyclic
or written in normalized form. Consider H C M an analytic subvariety of
codimension one.
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Definition (I.3.2). An embedded Q-resolution of (H,0) C (M,0) is a
proper analytic map 7 : X — (M, 0) such that:

(1) X is a V-manifold with abelian quotient singularities.
(2)  is an isomorphism over X \ 7~ !(Sing(H)).
(3) 7~(H) is a hypersurface with Q-normal crossings on X.

Remark (1.3.3). Let f : (M,0) — (C,0) be a non-constant analytic function
germ. Consider (H,0) the hypersurface defined by f. Let 7 : X — (M, 0) be
an embedded Q-resolution of (H,0) C (M,0). Then 7=}(H) = (f o7)~%(0)
is locally given by a function of the form )" ---z;"* : X(d; A) — C.

In what follows we will use weighted blow-ups with smooth center as a
tool for finding embedded Q-resolutions.

(1.3.4). (Classical blow-up of C"*! with smooth center). Assume the center
is L :{zp="--+ =z = 0}. Let us use multi-index notation

x = (20,...,2n) €C" [u] =[ug:...:uy] € PF,
and consider
Cli= {(x,[u]) € C"* X PF | (wg,...,xp) € [ug: ... : ug)}.

Then the natural projection 7 : @EH — C"*! is an isomorphism over
the complement C7™' \ 771(L). The exceptional divisor E := 7~'(L) is
identified with P*¥ x C"*. The space

@Z—HZU()U'“UU]C

can be covered by k+1 charts each of them isomorphic to C"*1. For instance,
the following map defines an isomorphism:

(Cn+1 — UQ:{UU#O} C (/C\Z—H,
X ((azo,xoxl,...,xoxk, Thaly ey Tn), [Lixyo... xk])

(1.3.5). (Weighted (po,...,px)-blow-up of C**! with smooth center). As-

sume the center is L : {zg = --- =z = 0}. Let w = (po, ..., pr) be a weight
vector. As above, consider the space
C’z+1(w) = {(x, [u],) € C"H x IP’fJ | (zo,...,xk) € [ug : ... :uk]w}.

Here the condition about the closure means that
JdteC, x;=tru;, 1=0,...,k

Then the natural projection 7 : @ﬁﬂ(w) — C™*! is an isomorphism
over C}T(w)\ 771(L) and the exceptional divisor E := 7~!(L) is identified
with the V-manifold P¥ x C"*.
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Again ((E%H(w) = UpU---UUy can be covered by k+1 charts. However,
the map ¢q : C"*t! — Uy given by
ctt B Up={u #0} C Cr(w),
x = (@, 2hl e, el e, wpgn, @), L@ wkw),

is surjective but not injective. In fact, ¢o(x) = ¢o(y) if and only if

Yo = £ Ly,
IE € gy yi = EPiwy,  i=1,... .k,
yi:xi) Z:k—"l,,n

Hence the previous map g induces the isomorphism
X(pOa _17p17 <o 7pk) X Cn_k — UO'

Note that these charts are compatible with the ones described in [(1.2.3)]
for the weighted projective space. In Uy the exceptional divisor is {xg = 0}
and the first chart of P¥ is the quotient space X (po; p1, ... ,Dk)-

(1.3.6). ((po,- - -,pk)-blow-up of X(d; A) with smooth center). Assume the
center is L : {xg = -+ =z, = 0}. Let w = (po,...,pr) be a weight vector.
The action yg on C"*! extends naturally to an action on C}(w) as follows,

€q- (x,[uly) =5 (€20, .-, €5 2n), [€30u0 ¢ - .t EF wil)-

Let X(d;A); (w) := @ﬁﬂ(w)/ud denote the quotient space under this
action. Then the induced projection

o —

m:X(d;A); (w) — X(d; A), [(x, [u]w)] (d:A) — [X](d;A)

is an isomorphism over Xm) 7 (w)\ 771(L) and the exceptional divisor
E :=n71(L) is identified with the variety (PX x C"~%)/ugq.

The action pg above respects the charts of @zﬂ(w) so that the new
ambient space can be covered as

X(d; A), (w) =T U--- U Ty,

where U; := U; /g = {u; # 0}.
Let us study, for instance, the first chart. By using ¢ one identifies Uy
with
X(po; =1,p1, .-, p) x C*F

and ptq = ftg, X -+ X g, with the group

Hpod
(r)

Phpo X~ X g
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Finally, one has the following action

(Mpod/(upox @ xupo)) x (X(po;—l,pl,...,pk.) X C”—k)

defined by

([(anl‘o, Spoarmaoxh . ,gpoak—pkaoxk)]’ (EPOak+lxk+1’ o ’spoanxn))
This shows that
X< po | —1 P1 Pk 0 -0 >
pod | @y poair —piag -+ poar — Prdg Podk+1 - Podn

is isomorphic to ﬁo and the isomorphism is defined by
7
[x] % ((acgo,xglxl, e T Ty Thg1, ), L@y xk]w)
For i =1,...,k, one proceeds analogously.

As for the the exceptional divisor £ = 7~ 1(L) = (PF x C" %) /uq, it is
usually written as

E=VyU---UV

—

so that these charts are compatible with the ones of X(d;A); (w) in the
sense that V; = Ui|(z,—0y, 1 = 0,..., k. Hence, for example,
~ e 0 . 0
Vo= X ( Po n Pk > '
pod | poar —p1ag -+ PoAk — PkA0 PoRAk+1 o Podn

Remark (1.3.7). Let w = (po,...,pr) be a weight vector and write e =
ged(po, - .., pi). Denote pi = p;/e for i = 0,...,k and ' = (pj,..., D))
Using the previous notation there is an isomorphism

F: X(d; ) (w) — X(d; A) ()

of blowing-ups (i.e. F' om,, = m,) induced by the identity map. Hence one
can always assume that ged(po,...,pg) = 1.

~

For instance, in the first chart F': U, o — ﬁw’,O takes the form

. e
Fo : [(1‘0,1‘1,...,1}”)] — [($0,$1,...,1’n)],
1 - 0 - 0 Pw,0  ~
( Po p1 Dk ) G
pod | ap poar —pidg -+  Podk — PkA0 PoAkf1 ‘- Poln
Fol # F
! -1 4 .. 4 0 e 0 ~
( Z/)O / . / / Pr / / / —_-— Uw’ 0
pod | a0 ppar —prao -+ Podk — PrA0  Podk+1  cc° Podn Pw’,0
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o —

Definition (I.3.8). Let 7 : X (d; A); (w) — X (d; A) be the w-blow-up with
smooth center L : {zg = --- = xp = 0}. Then the total transform n*(H)
decomposes as

7™(H) = H + mE,
where E := 71(L) is the ezceptional divisor of w, H := 7~ L(H \ L) is the
strict transform of H, and m is the multiplicity of EZ at a smooth point.

I.3—-1. Dimension 2

Let X be an analytic surface with abelian quotient singularities. Con-
sider m : X — X the weighted blow-up at a point P € X with respect to
w = (p, q). We distinguish three different situations.

(i) The point P is smooth. Without lost of generality one can assume
that X = C? and 7 = 7, : C2 — C? is the weighted blow-up at the origin
with respect to w = (p, q). The new ambient space is covered as

C2=U1UU, = X(p;—1,9) U X (g5 p, 1)
and the charts are given by

First chart | X(p;—1,q) — Uy,
[(z,9)] —  ((@P,2%),[1:yl).

Second chart | X(¢; p,—1) — Uy,
[(z,y)] = (@ y9), [z 1]w).

-1
w

The exceptional divisor E = 7;1(0) is isomorphic to P, which is in turn
isomorphic to P! under the map
p q

ziyYlyr— [y, pp=———vr, g=———.
-y R ged(p.q)’ "' ged(p,q)

The singular points of @3} are cyclic quotient singularities located at the ex-
ceptional divisor. They actually coincide with the origins of the two charts;
in the case ged(p, ¢) = 1 they are written in a normalized form.

Example (1.3.9). Let f : C> — C be the function given by f = 2P + y¢
with ged(p, q) = 1. Consider 7, ) : C(zq n C? the (p, q)-weighted blow-up
at the origin. In U; the total transform is given by the function

P41 +y?) : X(q;—1,p) — C.

The equation y? = —1 has just one solution in U; and the local equation
of the total transform at this point is of the form xP?y = 0.
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Hence the proper map m(, ) is an embedded Q-resolution of the plane

curve C = {f = 0} C C2 where all spaces are written in a normalized form.

U1 Zr U2
e o TP
(¢;—1,p) ‘ (piq,—1)

FIGURE 1.2. Embedded Q-resolution of {zP + y? = 0} C C2.

(ii) The point P is of type (d;p,q). Assume X = X(d;p,q) and it
is written in a normalized form, i.e. ged(d, p) = ged(d, q) = 1. Also assume
T = Tud : @Z,d — X(d;p,q) is the weighted blow-up at the origin with
respect to w = (p,q). The new ambient space is cover as

C24=U1UUs = X(p;—d,q) U X (g;p, —d)
and the charts are given by

First chart | X(p;—d,q) — Uy,
(%] = ([P 2%)]a, 12 yl).

Second chart | X(q; p, —d) — Us,
[(@,yD] = (g yDa: [2 2 1))

As above, the exceptional divisor E = 7, 1(0) is identified with P}, which
is isomorphic to P' under the map

p q

iyl [z Y], pr=——, = — .
w2y | hop ged(p,q)’ ' ged(p, q)

The singular points of @fj 4 are cyclic quotient singularities and coincide
with the origins of the two charts. They are written in a normalized form if

ged(p,q) = 1.

Example (I.3.10). Assume ged(p,q) = 1 and p < ¢q. Let f = (2P +
y?)(2? 4+ yP) and consider C; = {2P 4+ y? = 0} and Cy = {2 + y” = 0} the
two irreducible components of {f = 0}.

Let (gp) @%q’p) — C? be the (g, p)-weighted blow-up at the origin. The
new space has two singular points of type (¢; —1,p) and (p; g, —1) located
at the exceptional divisor £;. The local equation of the total transform in
the first chart is given by the function

2PPHD (14 y0) (27 P 4 yP) © X (g5 —1,p) — C.
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Here z = 0 is the equation of the exceptional divisor and the other
factors correspond to the strict transform of C; and Cs (denoted again by
the same symbol).

Hence & has multiplicity p(p + ¢); it intersects transversely C; at a
smooth point while it intersects Cy at a singular point (the origin of the
first chart) without Q-normal crossings.

02 Cl (p7 —1,(]) Cl
C,
(¢:—1,p) ‘ (p;q,—1) (@® —p?) ‘ (p;q,—1)

FiGure 1.3. Embedded Q-resolution of f = (aP + y?)(z? + yP).

Let us consider 7, ;2,2 , the (p, ¢* — p?)-weighted blow-up at the origin
of X(¢;—1,p),

~

T2 Clpgep2y.g — X(@p.d° —p%) = X(g;—1,p).

The new space has two singular points of type (p; —q, ¢>*—p?) = (p; —1,q)
and (¢? — p?;p, —q). In the first chart, the local equation of the total trans-
form of zP(P+9) (27°~P* 4 4P} is given by the function

xp(p+Q)(1 +yP): X(p;—1,q) — C.

Thus the new exceptional divisor & has multiplicity p(p + ¢) and inter-
sects transversely the strict transform of Cy at a smooth point. Hence the
4©T(g,p) 18 an embedded Q-resolution of { f = 0} c C?
where all quotient spaces are written in a normalized form. Figure [[.3]illus-

ComPposition 7, 422y 4 OT(

trates the whole process.

(iii) The point P is of type (d;a,b). As above, assume that X =
X (d;a,b) and the map

T = T(dab)w X(d;a,b), — X(d;a,b)

is the weighted blow-up at the origin of X (d; a,b) with respect to w = (p, q).

p -1
ga—pb b )

The new space is covered as
5o p|—1 q q
UhulUs; =X uxX

! 2 < pd| a pb—qa > ( qd
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The charts are given by

First chart X ( p
pd

1 ~
q ) — Ul,
a pb—qa

[, 9)] = [(@P,2%y), [U: ylo)] (g0

Second chart | X ( q
qd

P -1 7
ga—pb b > —

(@ 9)] = [(@y?,y), [2 2 1w)] (gan):

The exceptional divisor E = u d.la ) w(O) is identified with the quotient
space PL(d;a,b) := PL /uq which is isomorphic to P! under the map

P! (d;a,b) — P!
[T:yle — [zd9/e. ydple],
where e = ged(dp,dq,pb — ga). Again the singular points are cyclic and

correspond to the origins. They may be not written in normalized form
even if ged(p, q) = 1 and (d; a,b) is normalized.

(I.3.11). Let us give another expression for the previous charts. We follow

the proof of Lemma |(I.1.8)] and Remark |(I.1.7)] Let a and [ satisfying
ad + Ba = ged(d,a). One has the following isomorphisms induced by the

identity ma

p | -1 q _(pdjd —qd
o pd| a pb—qa )] \ pd|a pb-—qa
7
:<pd (d,a) —q(d,g)bwob)
pd| 0 @a)

For the last equality note that a(—gd) + B(pb — qa) = —qged(d,a) + [pb
and the determinant of the minor of the matrix representing the second

quotient space is dpb. From , assuming ’ ged(d,a,b) =1

, one also has the

isomorphism

* < o

(d,a) —q(d,a)+ ppb o pd B
0 b ) — X <(da)1 q(d,a)wpb),

(@] = [y ).

Analogously one can proceed with the second chart. Choose A, p satis-
fying Bézout’s identity Ad + pub = ged(d, b).

2Recall once again the notation (i1,...,%) = ged(i1, ..., i) for long formulas.
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Then the equations of the two charts in these new coordinates are given
by the isomorphism

First chart | X ﬂ;
(d,a)

[(2, 5N = [((2P, 2%), [1 2 y)]-

1,—q(d,a)+ﬁpb) — Uy,

Second chart | X

- —p(d, b 1 U
(d,b)7 p( ) )—i—,uqa, ) — 2

(22 )] = [((ey?,y7), [x + 1)]-

These spaces are written in a normalized form if and only if the following
greatest common divisor equals one:

<<§3"q<d’ 2 +’pr> B (dp’ dq’pb_qa> = <(C;l’qb)a—p(d, b) +uqa) :

Although elementary, the proof of the preceding equalities are not in-

tuitive. That is why the first one is commented separately in the result
below.

Lemma (1.3.12). With the assumption above,

<(j];), —q(d,a) + 5pb> = (dp, dq, pb — qa).

Moreover, ((ji) e b),pb qa) also equals the previous number.

PRrooF. Note that
and consequently

(éi),—q(d, a) +pr> = <dp, (;lf?s),—q(d, a) +ﬁpb> :

The following two couples of equalities complete the first part of the

#‘é,a) = gcd (pd,#ﬁ@), since ged(d,a,b) = 1

proof.

° (d‘fa)-[—q( )+pr] (dpb): b — qa.
L4 (:li)'[_Q( )+6pb]+6dpb = dg.

. —dqb(d a) Bp b—a( qd) + B(pb — ga).
Tay = 1w (Pb — qa) + oy (dg).

The second part of the statement is again rather artificial but elemen-
tary; the details are left to the reader. O

—~
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Remark (1.3.13). Assume that ged(d, a,b) = 1. The (p, ¢)-weighted blow-
up at the origin of X (d; a,b) is isomorphic to the w’-weighted blow-up at the

origin of X (d';a’, ), where the new vectors are

w/ = (p : ng(d7 b)v q- ng(d7 CL)),

d a b
d/ / b/ — )
(d,a.b) ( gcd(d, a) ged(d, b)’ ged(d, a)’ ged(d, b)>
In fact, there is a commutative diagram of blowing-ups

— —

H
X(d;a,b), — X(d; V),

7"—(cl;a,b),wl # lﬂ-(d’;a’,b’),w’

X(d;a,b) — X(d';a,b)
where H and h are isomorphisms of analytic spaces defined by

(@), [ VDul@any o (@00, @), @ D)) gy

h a
[(IL’, y)] (d;a,b) — [(x(d’b)a y(d’ ))](d’;a’,b’)7

and H gives rise to the identity map on each chart.
Note also that if

C={f=0}C X(d;a,b), C' ={f =0} X(d;d,V)

such that h*(C') = C, then ord,(f) = ordy (f") = ord(f(«P,y?)). Hence

the order is preserved under this construction.

Remark (I.3.14). Using the notation in |(I.3.11)} assume ged(p,q) = 1 and
X(d;a,b) is written in a normalized form. To normalize the last cyclic

quotient spaces obtained in that paragraph, let

e = ged(pd, —q + Bpb) = ged(d, pb — qa).

Then one has the isomorphism

. = d.q —q+Bpb
X(pd;1,—q+Bpb) —> X (B0, =),
H

[(z,y)] [(z%,y)]-
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One proceeds analogously with the second chart. Finally the equations
of the two charts in these new coordinates are given by

First chart X <M;1,CHW)> — ﬁl,
e
[(2%,9)] = [((27, 2%9), [1 2 9)o)] g0 -

Second chart —_ 1 — Ug,

e

x (qd p+uqa

[(z,y%)] — [((»Typ y9), [+ )] (d;a,b)"

Recall that § and p are the inverse of a and b modulo d, respectively. Note
that both quotient spaces are now written in their normalized form.

Example (I1.3.15). Assume ged(p,q) = ged(r,s) = 1 and 2 < . Let
f= (2P +y?) (2" + y*) and consider

C,={2P4+y?=0}, Coy={z"+y°=0}

the two irreducible components of f.

Working as in Example |(1.3.10)|, one obtains the following picture rep-
resenting an embedded Q-resolution of {f = 0} C C2.

(5;-1,7) Q_(rq—ps s —q>
C, C, -\ rq—ps|-r p
Zﬁ ° plg+s)&
s(p+r)& | @ ‘ (p;q,—1)

FIGURE 1.4. Embedded Q-resolution of f = (P + y?)(x" + y*).

After writing the quotient spaces in their normalized form one checks
that this resolution coincides with the one given in Example|(I.3.10)| assum-
ing r =¢q and s = p.

(I.3.16). (Puiseux expansion). Let us study the behavior of Puiseux pairs
under weighted blow-ups. Let C = {f = 0} C C? be the irreducible plane
curve given by

L Pi r n
—y+(agz e+ Fagir )+ (byxs 4o byrs) + -],

.
Il =
—

—

where p; < -+ < pg, r1 < --- <71y p - < "= and each fraction is irreducible.
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Let m(gp,) @%q,m) — C? be the (g, p1)-blow-up at the origin. In the first

chart, that is, after performing the substitution
(2,y) — (29, 2™y),
one obtains the following equation for the total transform
zPhid H —y+ (a1 + ag@P? Pt 4. 4 aijpkfp1)+

T19—P1S T19—P18

(bljl’ S +"'+bljx S )+...]:0_

At first sight the exceptional divisor and the strict transform intersect
at d different smooth points. However, since a(fj does not depend on j
by conjugation, all of them are the same. After the following change of
coordinates

Yy — Y+ (ag;aP? P + - 4 apaPR ),
the local equation of the total transform 7r(_qlpl)(C) at this point is

d
pld /q 719—P1S
X | | -y -+ blj s -+ bl]

T1q— pls

)4+ -] =o.

This proves that in the irreducible case, only a weighted blow-up is
needed for each Puiseux pair in order to compute an embedded Q-resolution.
Moreover, the embedded Q-resolution obtained is as in Figure

& &y

&l Es Es

F1Gure 1.5. Embedded Q-resolution of an irreducible plane curve.

In the non-irreducible case, the situation is a bit more complicated but
can still be described in terms of the Puiseux pairs of each irreducible com-
ponent and their intersection multiplicities.

I.3—2. Dimension 3

Let X be a 3-dimensional variety with abelian quotient singularities and
consider 7w : X — X the weighted blow-up at a point P € X with respect
to w = (p,q,r). Two special situations are considered.
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(i) The point P is smooth. As usual one assumes that X = C? and
the map 7 = =m, : ((/ii’) — C? is the weighted blow-up at the origin with
respect to w = (p,q,r). Also assume gcd(p,q,7) = 1. The new space is
covered as

C =U,UU,UUs = X(p; ~1,¢,7) U X (g;p, —1,7) UX (r; p, ¢, 1),
and the charts are given by
X(pi—1l,qr) — Ur: [(@,y,2)] = ((aP,2%,2"2),[1:y: 2]w),
9)  X(gp,-1r) —Uz: [(zy,2)] = ((@y?,y%y"2), [z 1 2w),
X(ripg,—1) — Us: (2,9, 2)] = ((@2P,y27,27), [z y < 1))

In general @g has three lines of (cyclic quotient) singular points located
at the exceptional divisor 7,1(0) ~ P2. They correspond to the three lines
at infinity of the previous weighted projective plane. The stratification of
the exceptional divisor is shown below in terms of its quotient singularities,
or equivalently, in terms of the order of the stabilizer subgroups. For exam-

ple, the stratum labeled as (p, q) is isomorphic to C* and the order of the
stabilizer subgroup is ged(p, q).

z=0

FiGURE 1.6. Stratification of the exceptional divisor of the
(p, q, )-weighted blow-up at a smooth point.

Note that although the quotient spaces are written in their normalized
form, there is an isomorphism of weighted projective spaces that simplifies
the expression of the exceptional divisor:

2 r 2 P 1 d
Pwar) — F <(p,r)'(p,q)’(q,p)'(q,r)’(T’P)'(Tﬂ))’

x . Tz — ;Ung(q?T) . ng(p,T) . Zng(p’q) 3
[2:y: 2] [ y ]

However, this simplification may be not useful when working with the
whole ambient space because its charts are not compatible with C2.
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Thus the natural covering of the exceptional divisor is
PL=ViUVaUVs = X(piq,7) UX(g;p,7) UX(r;p,q),
and the charts are given by
Xprgr) — Vi {w,2)] = [L:y: 2,
X(gpr) — Va: [(@,2)] = [z:1:z],
X(ripg) — Vi [(@y)] = [z:y: 1.
Now one sees that
Vi =Uil=0y, Va2="U2ly=0}, V3 ="Usl|q=0}-

In other words, the restriction of the charts of @i’) gives rise to the charts of
the projective plane P2.

Remark (1.3.17). Using just a weighted blow-up of this kind, one can
find an embedded Q-resolution for Brieskorn-Pham surfaces singularities,
ie. 2P + y? 4+ 2" = 0, see Example This can be generalized to
higher dimension obtaining an embedded Q-resolution for 2" +- - -+ 25" by
blowing-up the origin with suitable weights.

(ii) The point P is of type (d;a,b,c). Assume X = X (d;a,b,c) and
the map

T = T(dabc)w : X(m, c), — X(d;a,b,c)

is the weighted blow-up at the origin of X(d;a,b,c) with respect to w =
(p,q,7). The new space is covered as

— C3 UUU,UU; ~ ~ =~
X(d;a,b,c)wsz:$=U1UUQUU3,
Hd [d
where

~ U X(p;—1 -

g, = U _ X ,q,r):X<p 1 q r >
d Hd pd| a pb—qa pc—ra

~ U X(a:p. —1 _

g, - U2 _ X(@p, ,T):X<q P 1o )
Hd pd qd | gqa—pb b qc—rb

~ U3 X(ripq,—1 —

b, — Us _ X(ripa ):X<r p q 1>.
1 W rd|ra—pc rb—qc ¢




§1.3. Weighted Blow-ups and Embedded Q-Resolutions 25

The charts are given by the induced maps on the corresponding quotient
spaces, see @D For instance, the first map is

(2,9, 2)] = [((aF, 2%y, 272), [1 1 y : 2]w)].

The exceptional divisor £ = 71(_(1:,[& be) ,(0) is identified with
IP)Q
P2 (d; a,b,c) == —£.
Hd

There are three lines of quotient singular points in F and outside E the map
T(dsab,c)w 18 an isomorphism.

The expression of the quotient spaces can be modified as in dimension 2,
see Let o and 8 be such that ad + Sa = ged(d, a), then one has

that the space X <£; _al pbﬁqa pciar> equals
X pd (d) CL) _Q(d’ CL) + ,pr _T(d7 (1) + ch
(d,a) | 0 b c ’

Note that in general the previous space is not written in a normalized form,
even if (d;a,b, c) is already normalized and ged(p,q,7) = 1.

To obtain the normalized one, follow the processes described in |(I.1.9)]
and|(1.1.3)] For instance, the previous space @ is cyclic if either ged(d, a) = 1
or ged(p,a) = 1.

o ged(d,a) =1 = Q= X(pd;1,—q+ Bpb, —r + Bpc).
e gced(p,a) =1 = Q = X(pd;a,pb— qa,pc —ar).

As the following example shows this is not always the case.

Example (1.3.18). Blowing-up the origin of X(2;2,1,1) with respect to
(2,1,2), one obtains the following decomposition of the new space into nor-
malized quotient spaces,
X(2:2,1,1 —x (2P P9 ux@onnyuxe
(777)(27172)_ 211 0 1 U(va:)u (a77)'
In particular, the origin of the first chart is a quotient singular point
which is not isomorphic to a cyclic singularity.

(1.3.19). Turning to the exceptional divisor E = P2(d;a,b,c), it can be
written as
P2 ViUVhUVs

P2 (d;a,b,c) = -2
ol ) td td

=V UV U3,

where
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N X (p:

oV (p,q,r):X<p q r >
Hd Hd pd | pb—qa pc—ra

N X (o

RV Xunn (ol voov)
Hd d qd | gqa —pb qc—rb

%:VE%:X(T;ZLQ):X<T p q )
hd 1 rd | ra—pc rb—qc

Hence these charts are compatible with the ones of X (d;a,b,c), in the
sense that Vi = Ui|(z—0}, Vo = Ualy—o}, and V3 = Us|(,—p}. Note that all
these singular quotient spaces can be rewritten as cyclic singularities.

1.3-3. Higher dimension

Here we only consider a special kind of weighted blow-ups with smooth

center where the ambient space is smooth too, as in |(I.3.4)| and |(1.3.5)]
These blow-ups will be used later to compute an embedded Q-resolution for
superisolated singularities in higher dimension, see Section [VI.4]

Let m, : CP(w) — C™* be the w-weighted blow-up of C"*! with

smooth center L = {z¢g = -+ = x;, = 0} where w = (po, 1, ®) 1). The new

space is covered as
C" =UgU--- Uy,
where
Up = X (po; —1,1, %) 1) x C"F,

and U; = C*! for all i # 0.
The charts are given by

{ X(po; —1,1, 1) x €% 2% Uy = {ug #0} C Cii(w),

[X] — ((mgo,xgxl,...,xoxk, Thaly--- ,.I'n), [1 Y /3 mk]w);

{ Crtt 2 Uy = {u £ 0} € Cri(w),

X (($0x1170,$1,...,x1$k, Thdy -y Tn)y[To 1. xk]w);

{ Crtt By U = {u #£0) € CHY(w),

x = ((woa®, mi@p, ..., T, Thg1, -, Tn), ot @1 0. 1),
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The exceptional divisor is isomorphic to P¥ x C*~*. The singular locus
of Ct(w) is the subset [(0,...,0)] x C*7*. These quotient singular points
are all cyclic and the space

Up = X(po; —1,1, ¥ 1) x C*
is always written in a normalized form.

Remark (1.3.20). If n = k the previous singular locus is reduced to a point.
This is the case, for instance, of the blowing-up at the origin in dimension 3
(le. n=k=2).






Cartier and Weil Divisors on V-Manifolds:
Pull-Back of a Q-Divisor

This chapter is based on [AMO11a] and its aim is to show that when X
is a V-manifold there is an isomorphism of Q-vector spaces between Cartier
and Weil divisors, see Theorem below. It is explained in
how to write explicitly a Q-Weil divisor as a Q-Cartier divisor. Also, the
case of the exceptional divisor of a weighted blow-up in dimension 2 (which
is in general just a Weil divisor) is treated in Example |(I1I.2.15)

Following the theory of holomorphic line bundles, the pull-back of a Q-
divisor can be defined using this approach, see Section[[I.4] This provides all
the necessary ingredients to develop a rational intersection theory on variety
with quotient singularities. Although Chapter [} is devoted to the details,
an illustrative example is shown at the end, see

SEcTION §1I.1
Divisors on Complex Analytic Varieties

Let X be an irreducible complex analytic variety. As usual, consider Ox
the structure sheaf of X and Kx the sheaf of total quotient rings of Ox. De-
note by K% the (multiplicative) sheaf of invertible elements in Kx. Similarly
O% is the sheaf of invertible elements in Ox.

Remark (I1.1.1). By a complex analytic variety we mean a reduced complex
space. A subvariety V of X is a reduced closed complex subspace of X, or
equivalently, an analytic set in X, cf. [GR84]. An irreducible subvariety
V' corresponds to a prime ideal in the ring of sections of any local complex
model space meeting V.



30 Chapter II. Cartier and Weil Divisors on V-Manifolds

Definition (I1.1.2). A Cartier divisor on X is a global section of the sheaf
K% /O%, that is, an element in I'(X,K%/0%) = H°(X,K%/O%). Any
Cartier divisor can be represented by giving an open covering {U; }ier of X
and, for all i € I, an element f; € I'(U;, K% ) such that

ﬁ eI'(U;nU;,0%), VYi,jel.

fi
Two systems {(U, fi) }ier, {(Vj,9j)}jes represent the same Cartier di-
visor if and only if on U; NV}, f; and g; differ by a multiplicative factor

in Ox(U; N V;)*. The abelian group of Cartier divisors on X is denoted
by CaDiv(X). If D := {(Us, fi) }ier and E := {(V}, g;)}jeJ, then

D+ E = {(U;NV}, fig;) Yier jes-

The functions f; above are called local equations of the divisor on U;. A
Cartier divisor on X is effective if it can be represented by {(U;, fi)}: with
all local equations f; € I'(U;, Ox).

Any global section f € I'(X, K% ) determines a principal Cartier divisor
(f)x = {(X, f)} by taking all local equations equal to f. That is, a Cartier
divisor is principal if it is in the image of the natural map

I(X, Kx) — (X, KX /O%).

Two Cartier divisors D and E are linearly equivalent, denoted by D ~ E,
if they differ by a principal divisor. The Picard group Pic(X) denotes the
group of linear equivalence classes of Cartier divisors.

The support of a Cartier divisor D, denoted by Supp(D) or |D|, is the
subset of X consisting of all points x such that a local equation for D is not
in O% ,. The support of D is a closed subset of X.

Definition (I1.1.3). A Weil divisor on X is a locally finite linear combina-
tion with integral coefficients of irreducible subvarieties of codimension one.
The abelian group of Weil divisors on X is denoted by WeDiv(X). If all
coeflicients appearing in the sum are non-negative, the Weil divisor is called
effective.

Remark (I1.1.4). In the algebraic category meromorphic functions are as-
sumed to be regular functions and hence the locally finite sum of Defini-
tion is automatically finite. Therefore WeDiv(X) is the free abelian
group on the codimension one irreducible algebraic subvarieties of X. Sim-
ilar considerations hold if X is a compact analytic variety.
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Given a Cartier divisor there is a Weil divisor associated with it. To
see this, the notion of order of a divisor along an irreducible subvariety of
codimension one is needed.

(I1.1.5). (Order function). Let V' C X be an irreducible subvariety of codi-
mension one. It corresponds to a prime ideal in the ring of sections of any
local complex model space meeting V. The local ring of X along V', denoted
by Ox v, is the localization of such ring of sections at the corresponding
prime ideal; it is a one-dimensional local domain.

For a given f € Ox,y define ordy (f) to be

ordy (f) := lengthy, ., (OC;)V) ,

where lengthy, - denotes the length as an Ox y-module. This determines
a well-defined group homomorphism

ordy : I'(X,KY) — Z

that satisfies, for a given f € I'(X, K% ), the following local finiteness prop-
erty: (U, is assumed to be an open neighborhood of x)

Vee X, U, C X | #{ordy(f) A0 |V NU, # 0} < +oc.

The previous length, X being a complex analytic variety of dimension
n > 2, can be computed as follows. Choose x € V such that x is smooth
in X and (V,z) defines an irreducible germ. Thus, this germ is the zero set
of an irreducible g € Ox . Then

Ordv(f) = OrdV,a:(f)y

where ordy () is the classical order of a meromorphic function at a smooth
point with respect to an irreducible subvariety of codimension one; it is
known to be given by the equality

f=¢"""heOxs htg
The same applies if X is 1-dimensional and smooth.

Remark (IL.1.6). The order ordy,(f) does not depend on the defining
equation g, as long as we choose ¢ irreducible. In fact, two irreducible g, ¢’ €
Ox , with V(g) = V(¢') only differ by a unit in Ox ,. Moreover, ordy ,(f)
does not depend on z, since the set of regular points V,eq is connected if V'
is irreducible.
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Now if D is a Cartier divisor on X, one writes ordy (D) = ordy (f;) where
fi is a local equation of D on any open set U; with U; NV # (). This is well
defined since f; is uniquely determined up to multiplication by units and
the order function is a homomorphism. Define the associated Weil divisor
of a Cartier divisor D by setting

Tx : CaDiv(X) — WeDiv(X)

D = Y ordy(D) - [V],
VcX
where the sum is taken over all codimension one irreducible subvarieties V'
of X. The previous sum is locally finite, i.e. for any = € X there exists an
open neighborhood U such that the set

{ordy(D) £0 |V NU # 0}

is finite. By the additivity of the order function, the mapping Tx is a
homomorphism of abelian groups.

A Weil divisor is principal if it is the image of a principal Cartier divisor
under Tx; they form a subgroup of WeDiv(X). If C1(X) denotes the quotient
group of their equivalence classes, then Tx induces a morphism

Pic(X) — CI(X).

These two homomorphisms (Tx and the induced one) are in general
neither injective nor surjective. In this sense one has the following result.

Theorem (I1.1.7). (cf. [GD67, 21.6]). If X is normal (resp. locally facto-
rial) then the previous maps CaDiv(X) — WeDiv(X) and Pic(X) — CI(X)
are injective (resp. bijective). The image of the first map is the subgroup of
locally pm’ncipam Weil divisors. O

Remark (I1.1.8). Locally factorial essentially means that every local ring
Ox z is a unique factorization domain. In particular, every smooth analytic
variety is locally factorial. In such a case, Cartier and Weil divisors are
identified and denoted by

Div(X) := CaDiv(X) = WeDiv(X).
Their equivalence classes coincide under this identification and we often

write Pic(X) = CI(X).

LA Weil divisor D on X is said to be locally principal if X can be covered by open
sets U such that D|y is principal for each U.
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Example (I1.1.9). Let X be the surface in C* defined by the equation
2?2 = xy. The line V = {z = 2 = 0} defines a Weil divisor which is not
a Cartier divisor. In this case Pic(X) = 0 and CI(X) = Z/(2). Note that
X is normal but not locally factorial. However, the associated Weil divisor
of {(X,z)} is

Tx({(X,2)}) = > ordg(z)-[2] =2[V].
ZCX, irred
codim(Z)=1

Thus [V] is principal as an element in WeDiv(X) ®z Q and corresponds to
the Q-Cartier divisor ${(X,z)}.

Using the notation of Chapter [I} this fact can be interpreted as follows.
First note that identifying our surface X with X(2;1,1) under

[(z,9)] — (2%, 4%, zy),

the previous Weil divisor corresponds to D = {z = 0}. Although f = z
defines a zero set on X (2;1,1), it does not induce a function on the abelian
quotient space. However, 22 : X(2;1,1) — C is a well-defined function and
gives rise to the same zero set as f. Hence as Q-Cartier divisors

D= {(X(21.1).2%)}

SECTION §II.2
Divisors on V-Manifolds: Q-Divisor

Example |(II.1.9)| above illustrates the general behavior of Cartier and
WEeil divisors on V-manifolds, namely Weil divisors are all locally principal
over Q. To prove it we need some preliminaries.

(IL.2.1). If X is smooth, contractible, and Stein, then H'(X,0%) = 0,
Vi > 1. Indeed, there is a short exact sequence of sheaves of abelian groups

0—Zy — (Ox,+) ZB (0%, ) —0
that gives rise to the following long exact sequence in cohomology
0— HYX,Zy) — H°(X,0x) — H(X,0%) —
HY(X,Zyx) — H'(X,0x) — HY(X,0%) —
H*(X,Zyx) — H*(X,0x) — H*(X,0%) — -+

Let i > 1. Since X is contractible, H(X,Zy) = 0. The cohomology
H'(X,Ox) vanishes too because X is Stein and Oy is a coherent sheaf.
Hence H'(X,0%) = 0 as claimed and the previous long exact sequence is
nothing but 0 — Zx(X) — Ox(X) — O%(X) — 0.
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(I1.2.2). The short exact sequence of sheaves of multiplicative groups
0— Oy — Ky — K%/Ox — 0
gives the long exact sequence in cohomology
0 — H(X,0%) — H°(X,K%) — H°(X,K%/0%) —
HY(X,0%) — H'(X,K%) — H'(X,K%/O%) —
H*(X,0%) — H*(X,K%) — H*(X,K%/O%) — -+
If, as above, H'(X,0%) = 0, Vi > 1, then the previous long exact
sequence gives rise to the short exact sequence
0 — Ox(X) — K% (X) — CaDiv(X) — 0

together with an isomorphism H'(X,K%) — HY(X,K%/O0%), Vi > 1. In
particular, every Cartier divisor on X is principal, that is, it is of the form
{(X, f)} where f € I'(X,K%).

Remark (11.2.3). As an easy consequence of |(11.2.1)| and [(I1.2.2)} one has
that every effective Weil divisor on an open ball B C C" is given by the zero

set of a holomorphic function f : B — C. The Weil divisor is irreducible on
B if and only if f defines a prime ideal in Ocn(B). In the algebraic category
the corresponding holomorphic function is a polynomial.

Lemma (I1.2.4). Let B C C™ be an open ball and let G be a finite group
acting on B. Then one has C1(B/G) @7 Q = 0.

PRrROOF. Let V C B/G =: U be an irreducible subvariety of codimension
one. We shall prove that there exists £ > 1 such that k[V] € WeDiv(U) is
principal.

Consider the natural projection 7 : B — U. Then W := 7= 1(V) gives
rise to an effective Weil divisor on the open ball B. By Remark
there exists f : B — C a holomorphic function such that W = {f = 0} C B.
Thus,

V=rW)=A{lx]|xeB, f(x) =0} ={f=0}CU.

Moreover, by construction the holomorphic function f satisfies the fol-

lowing property

(10) VPeU, [f(P)=0 = f(oc-P)=0,Yo€G]|.

Note that f does not necessarily defines an analytic function on U.
This reflects the fact that, although V' is given by just one equation, [V] &€
WeDiv(U) is not principal, see Example |(I1I.1.9)] Now the main idea is to
change f by another holomorphic function F' such that V = {F = 0} but
now with F' € I'(U, Op).
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Let us consider F' =[] . f? where f7(x) = f(o - x); clearly it verifies
the previous conditions. Then {(U, F')} is a principal Cartier divisor and its
associated Weil divisor is

Ty({(UF)}) = > ordy(F)-[Z] =ordy(F)-[V].
ZCU, irred
codim(Z)=1
Note that ordz(F) # 0 implies Z =V, since V is irreducible. O

Remark (I1.2.5). The proof of this result is based on an idea extracted
from [Ful98| Ex. 1.7.6].

Theorem (I1.2.6). Let X be a V-manifold. The notion of Cartier and
Weil divisor coincide over Q. More precisely, the linear map

Tx ®1:CaDiv(X) ®z Q — WeDiv(X) ®z Q

is an isomorphism of Q-vector spaces. In particular, for a given Weil divisor
D on X, there always exists k € Z such that kD € CaDiv(X).

Proor. By Proposition the variety X is normal and then The-
orem |(I1.1.7)| applies. Therefore the linear map Tx ® 1 is injective and its
image is the Q-vector space generated by the locally principal Weil divisors
on X.

Let V C X be an irreducible subvariety of codimension one. Consider
{U;}; an open covering of X such that U; is analytically isomorphic to B;/G;
where B; C C" is an open ball and Gj is a finite subgroup of GL(n,C). By
Lemma [(IL2.4)] CI(U;) ® Q = 0 for all i.

Thus [V|y,] is principal as an element in WeDiv(U;) ®z Q which implies
that V is locally principal over QQ; hence it belongs to the image of Tx®1. [

Definition (I1.2.7). Let X be a V-manifold. The vector space of Q-Cartier
divisors is identified under Tx with the vector space of Q-Weil divisors. A
Q-divisor on X is an element in CaDiv(X) ®z Q = WeDiv(X) ®z Q. The
set of all Q-divisors on X is denoted by Q-Div(X).

I1.2-1. Writing a Weil divisor as a Q-Cartier divisor

Following the proofs of Lemma|(II.2.4)| and Theorem |(I1.2.6)| every Weil

divisor on X can locally be written as Q-Cartier divisor like
1

Viol = ooy (O F)

where F' =[] .o f7 and VNU = {f = 0} with f : B — C being holomor-
phic on an open ball and satisfying .
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The rest of this section is devoted to explicitly calculating ordy (F).
First, in Proposition |(I11.2.8)], it is shown that F' is essentially a power of f,
if the latter is chosen properly. Then, ordy (F') is computed in Proposi-

tion [(T1.2.12)|

Proposition (I1.2.8). Let f : B — C be a non-zero holomorphic function
on an open ball B C C" such that the germ f, € O, is reduced for all
x € B. Let G be a finite subgroup of GL(n,C) acting on B. As above,

consider
F=1]r
oceG

where f°(x) = f(o-x) foro € G.

The following conditions are equivalent:

(1) VP e B, [f(P)=0 = f(oc-P)=0,Vo € G].
(2) Vo € G, 3h, € T'(B,O%) such that f7 = hyf.
(3) 3h € T(B, O%) such that F = hflCl
(4) 3k > 1, 3h € (B, O%) such that hf* € T'(B/G, Og/a)-

Proor. For (1) = (2), first note that f7 € IV(f). Now fix x € B.
Since f, is reduced, there exists a holomorphic function A on a small enough
open neighborhood of x such that as germs (f?); = hy f,. The order of the
converging power series (f?), and f, are equal because the action is linear.
Thus h, is a unit in Op ;. In particular, % is holomorphic and does not
vanish at x € B.

For (2) = (3), consider h = [[ ¢ ho- Then one has

F=11r=]1]t) = (H hg> I =,

oeG oeG oceG
For (3) = (4), since F : B/G — C is analytic, take k = |G|. Finally,
note that VP € B,
f(P)= 0= (hf*)(P) = (hf*)(o - P) =0 <= f(o- P)=0.
Hence (4) = (1) follows and the proof is complete. O

The following example shows that the reduceness condition in the state-
ment of the previous result is necessary.

Example (I1.2.9). Let f = (2% + y)(2? — y)? € C[x,y] and consider the
cyclic quotient space M = X (2;1,1). Then {f = 0} C M defines a zero set,
i.e. condition (1) holds, but there are no £ > 1 and h € I'(B, O};) such that
hf* is a well-defined function over M.
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Remark (11.2.10). If the holomorphic function f : B — C in Proposi-
tionis given by a polynomial, then the condition [f, € Op , reduced
Vz € B] holds if and only if f is reduced as a polynomial. In such a case,
the holomorphic nowhere-vanishing function h, (and hence h) above is a
non-zero constant. Therefore fI¢ itself (without multiplying by a unit) is a

well-defined analytic function on B/G, cf. |(IV.4.1)]

The situation of Remark [(I1.2.10)| above is specific for polynomials and,
in general, it does not apply in the holomorphic case, as the following ex-
ample indicates.

Example (II.2.11). Let f : C> — C be the holomorphic function given
by f = e®zy and consider the quotient space M = X(2;1,1). Then f
defines a zero set on M and it verifies the four equivalent conditions of
Proposition However, there is no k > 1 such that f* induces a
function over M. As it is said, this happens because f is not a polynomial.

Proposition (I1.2.12). Let B C C" be an open ball and G a finite subgroup
of GL(n,C) acting on B. Let V C B/G =: U be an irreducible subvariety
of codimension one and consider

F=]]#
oceG

where f: B — C is a holomorphic function defining V.
If G is small and f is chosen so that f, € Op, is reduced Vo € B, then
ordy (F : U — C) = |G]|.

PROOF. Choose [P] € V such that [P] is smooth in U and (V,[P])

defines an irreducible germ, then ordy (F') = ordy,p)(F'), see|(IL.1.5
By Theorem [(I.1.4)| since G is small and [P] € U is smooth, using the

covering 7 : B — U, one finds an isomorphism of germs
(U,[P]) = (B/Gp,[P]) = (B, P)

induced by the identity mapﬂ The germ (V,[P]) is converted under this
isomorphism into (W, P) where W is the zero set of fp € Op p.

On the other hand, by Proposition |(I1.2.8), there exists h € I'(B, OF)
such that F' = hfIGl. Putting all together the wanted order is

ordy(p|(F : U = C) = ordy s, p(hf“l : B - C) = |G|

as claimed. O

2See also Lemma, (I.1.16)[ where the abelian case in treated in detail.
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Remark (I1.2.13). Recall that 7 : B — B/G =: U denotes the projection.
Without any condition on G and f (i.e. neither G small nor f, € Op,
reduced Vx € B are required), the order can still be computed as follows

Ordv(F) = Z deg(Wz/V) ’ OrdWi(f)7

where the W;’s are the irreducible components of 7~ 1(V) (assumed to be
a finite number) and deg(W;/V') is the degree of the restriction mapping
mlw, : Wi = V.

Note that under the assumption of Proposition ordw,(f) =1
and ), deg(W;/V) = |G|.

(I1.2.14). Here we summarize how to write a Weil divisor as an element in
CaDiv(X) ®z Q where X is an algebraic V-manifold.

(1) Write D =}, ;a;[V;] € WeDiv(X), where a; € Z and V; C X
irreducible. Also choose {U;};es an open covering of X such that
Uj = Bj/G; where B; C C™ is an open ball and G is a small finite
subgroup of GL(n,C).

(2) For each (i, j) € I x J choose a polynomial f; ; : U; — C satisfying
the condition [(fi;)z € Op,. reduced Vz € Bj| and such that
Vi N Uj = {f@j = 0} Then,

_ 1 Gyl
[%’Uj]_@{(Uj’f'L,j )}

(3) Identifying {(Uj, fl-lgj |)} with its image under the natural inclusion
CaDiv(U;) < CaDiv(X), one finally writes D as a sum of locally
principal Cartier divisors over Q,

D= Y w5y

(i,7)eIxJ Gl

We finish this section with an example where the exceptional divisor
of a weighted blow-up (which is in general just a Weil divisor) is explicitly
written as a Q-Cartier divisor.

Example (I1.2.15). Let X be a surface with abelian quotient singularities.
Let 7 : X — X be the weighted blow-up at a point of type (d;a,b) with
respect to w = (p,q). In general, the exceptional divisor E := 71(0) =
PL(d;a,b) is a Weil divisor on X which does not correspond to a Cartier

divisor. Let us write E as an element in CaDiv(X) ®7 Q.
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As in |[.3-1(iii), assume 7 = 7(g.q.p)w : mb) — X(d;a,b). Assume
also that ged(p, ¢) = 1 and (d; a, b) is normahzed see Remark|(I.3.14)| Using
the notation in that remark, the space X is covered by U1 U Us and the first

chart is given by
Q= X(BL=5) — O,
(@] = (@) [0 9l g

where e = ged(d, pb — qa). See (8) for details.
In the first chart, E is the We11 divisor {z = 0} C @;. Note that
the type representing the space @)1 is in a normalized form and hence the

(11)

corresponding subgroup of GL(2,C) is small.
Following the discussion |(I1.2.14)| the divisor {z = 0} C Q; is written
as an element in CaDiv(Q;) ®z Q like I%{(Ql, ij)}, which is mapped to

pd (U1, 2%} € CaDiv(U) @7 Q

under the isomorphism .
Analogously, E in the second chart is d{(UQ, 4)}. Finally, one writes
the exceptional divisor of 7 as claimed,

7{ Ul, U2, }"‘ { Ula (i\]?)yd)}
U U .
dp ( 1, )a( 273/ )}
Example (I1.2.16). Now consider the ambient space to be the quotient

weighted projective line PL(d;a,b) = Vi U V, which is isomorphic to P!
under the map

Pl (d;a,b) — P!
[Z:yle w09y Pl

where e = gcd(dp, dq,pb— qa). Here we are not assuming (d; a, b) is normal-
ized or ged(p, q) = 1, cf. - 1.3—1{(iii)
Then, for 1nstance, the Weil d1V1sor e-[{v = 0}] on P} (d; a,b) corresponds
to the Cartier divisor
v

(%) (1)}

Note that in this example Cartier and Weil divisors coincide over Z,
since the quotient weighted projective line P (d;a, b) is smooth.
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SEcTION §II.3
Holomorphic Line Bundles and their Sections

Let F': Y — X be a morphism between two irreducible complex analytic
varieties. The pull-back of a Cartier divisor D = {(U;, f;) }ier on X can be
defined by pulling back the local equations of D as

F*(D) = {(F~Uy), fio Flp-1vy) }1e;
and it is a Cartier divisor on Y provided F(Y) € Supp(D). Moreover, F*

respects sums of divisors and preserves linear equivalence.

The main purpose of this section is to define F*(D) without any restric-
tion on the support of D, so that F™* gives rise to a group homomorphism

between Pic(X) and Pic(Y), cf. |(I1.4.1) and Definition |(II.4.2)l To do so,

the relationship between Cartier divisors and holomorphic line bundles is
needed, see Theorem [(11.3.12)| below. Recall that the pull-back of a divisor
is the main object to develop an intersection theory.

I1.3—-1. Line bundle associated with a Cartier divisor

Definition (IL.3.1). A surjective holomorphic map 7 : E — X is called
complex (or holomorphic) line bundle on X if it is a complex vector bundle
of rank one, that is, there exists an open covering {U; };er of X satisfying:

e For every ¢ € I there is a biholomorphic map
P, : Fﬁl(Ui) — U; X C

such that (pry o®;)(e) = w(e) for e € 7~ 1(U;), where pry is the
projection U; x C — U; and,

e the restriction ®;| : 771 (x) — {2} x C is an isomorphism of vector
spaces.

The pair (U;, ®;) is called a local trivialization. For two local trivializa-
tions (U;, ®;) and (Uj, ®;) the map

(I)Z-o(I);l : (UiﬂUj) xC— (UiﬂUj) x C
induces a holomorphic function (called transition function)
¢z‘j : UiﬁUj — C*
such that (@io@j_l)(x,t) = (z, ¢ij(2)t) for x € U;NU; and t € C. The tran-

sition functions satisfy the following compatibility conditions. Let i,j,k € T
and x € U; NU; N Uy, # 0, then one has

(12) 0ij(2)ojn(z) = di(z) [ = duilz) =1, ¢ji(x) " = ¢y(x)].
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(I1.3.2). Conversely, suppose now that we are given an open covering
{Ui}ier of X and a family of holomorphic functions {¢; ; : UiNU; — C*}; jer
verifying the previous compatibility conditions . Then one can construct
a line bundle having {¢;;};; as transition functions. An outline of the con-
struction is as follows. Consider £ = [[,;.;(U; x C) and define an equivalence
relation by setting

(z,t)i ~ (y,8); <= v =y and t= ¢;;j(x)s.

The fact that this is a well-defined equivalence relation is a consequence
of the compatibility conditions . One shows that the quotient E? =
E/~ under this relation is a complex analytic variety and the projection
7: E® = X, [(z,t);] = z is a line bundle with transition functions {¢;;}i ;-
In fact, the map

W_I(Ui) — U; xC
[(z,1);] = (=, di5(2)1),

defines a local trivialization on Uj;; its inverse is given by the obvious map
(z,t) — [(z, )]

Remark (I1.3.3). Both constructions are inverse to each other. Let 7 : E —
X be a line bundle with local trivializations {(U;, ®;)}ic; and transition
functions {¢;;}i je;. Then the map E? — E, [(x,t);] = ®;(x,t) is an
analytic isomorphism of line bundles.

Definition (I1.3.4). Two families of holomorphic functions associated with
an open covering {U; }ier of X,

{¢ij :UinU; = C}ijjer, {ij : UinUj = C}yjer,
are said to satisfied the coboundary condition if there exists another family
of holomorphic functions {c; : U; — C*}; such that 1;; = g—;gbij on U; NUj,
Vi,j € I with U; N U; # 0.

(I1.3.5). In the bijection (7 : E — X) +— ({¢s; : U NU; — C*};;5),
the notion of isomorphic line bundles corresponds to the notion of families
satisfying the coboundary condition.

More precisely, let F' : E — E’ be an isomorphism of line bundles.
Consider {(Uuq)z)}zel and {Qbij}i,j (I‘ESp. {(Uu \I’i)}iel and {Q;Z)ij}i,j) a local
trivializing cover and the transition functions of E (resp. E’). Then one has
that

J

where the holomorphic nowhere-vanishing functions «; : U; — C* are in-
duced by (U; 0 F o ®; 1) (x,t) = (x, (2)t).
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Conversely, let {(;51] :U; N Uj — C*}Z’J' and {1/11] :U; N Uj — (C*}i,j be
two families satisfying the coboundary condition, say for {«; : U; — C*},.
Consider E? and EY the respective line bundles obtained as in The
map F : E® — E¥ given by [(z,t);] — [(z, a;(x)t);] is well defined and it
gives an isomorphism of line bundles.

Definition (I1.3.6). Let D = {(U;, fi) }ier be a Cartier divisor on X. The
line bundle associated with D is the bundle with transition functions

i
¢zg f]

It is denoted by Ox(D) and is well defined up to isomorphisms of line

bundles by ((11.3.5)}

The set of line bundles (up to isomorphism) with the tensor product
forms an abelian group. The trivial line bundleﬁ Oy is the identity element
and the inverse element is given by the dual line bundle E*. This operation
has a good behavior with respect to the sum of Cartier divisors.

U;NU; — C*, Vi,jel.

Lemma (I1.3.7). Let D and E be two Cartier divisors on X and consider
h: X — C a non-zero meromorphic function. The following properties hold:

1) Ox({(X,h)}) ~ Ox.

2) Ox(D+E)~0Ox(D)® Ox(E).

3) Ox(~D) = Ox(D)".

4) D~ F<— Ox( ) Ox(E) O

~~ I~~~

This shows that the map Pic(X) — {line bundles}/~, defined by [D] —
Ox (D) is an injective group homomorphism. It is also surjective whenever
a non-zero global meromorphic section exists for a given line bundle, see

below |(I1.3.9)|

I1.3—2. Meromorphic sections of a line bundle

Definition (II.3.8). Given a line bundle 7 : E — X and an open set
U C X, a holomorphic (resp. meromorphic) map s : U — F is said to be
a holomorphic (resp. meromorphic) section if the composition 7 o s is the
inclusion U < X. When U = X the section is called global. The sheaf of
meromorphic sections is a Kx-module.

3Note the symbol Ox denotes both the structure sheaf of X as a complex analytic
variety, and the trivial line bundle X x C — C. This is justified because the sheaf of
sections of the trivial line bundle is identified with the structure sheaf.
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(I1.3.9). Let {¢;; : UiNU; — C*}; jer be the transition functions of a line
bundle 7 : E — X. Consider a family of holomorphic maps f; : U; — C,
1 € I, satisfying the compatibility conditions

f](x)¢z](x):fz($), x € UiﬁUj #@

Then {fi}icr defines a global holomorphic section s : X — E, since
each f; gives a section of U; x C and this pulls back by the trivialization
to a section of #~!(U;). The compatibility conditions imposed on {f;}icr
ensure that these sections of 7~1(U;) agree on U; N U;j. Conversely, any
global holomorphic section gives rise to a family as above. The functions f;
on U; are determined by the equation (®; o s)(x) = (=, fi(z)) for z € U;.

In the preceding paragraph the word “holomorphic” can be replaced by
the word “meromorphic”. In particular, any non-zero global meromorphic
section s : X — FE will give an open covering {U;};c; of X and a family of
non-zero meromorphic functions {f; : U; — C};er such that the quotient

¢z‘j:j:i‘:UiﬂUj — C* (i,jEI)
J
is holomorphic and never vanishes. Therefore s determines a Cartier divisor
on X, denoted by (s) := {(Ui, fi) }ier-

This implies that the map (Pic(X),+) — ({line bundles}/~, ®) above
defined by [D] — Ox(D) is a group isomorphism if there exist non-zero

global meromorphic sections for any given line bundle.

Lemma (II.3.10). Let s1,s2 : X — E be two non-zero global meromorphic
sections of a line bundle m: E — X.

(1) There exists h : X — C a non-zero global meromorphic function
such that so = hsy and hence (s2) = (s1) + {(X,h)}.

(2) (s1) = (s2) if and only if h € T'(O%, X). In such a case, the sections
are called equivalent.

(3) The Cartier divisor is effective if and only if the section is holo-
morphic. O

Definition (I1.3.11). Let D = {(Uj, fi)}ier be a Cartier divisor on X.
The canonical section associated with D is the non-zero global meromorphic
section of Ox (D) defined by the collection {f; : U; — C};cr. It is denoted
by sp : X = Ox (D).

Consider a family of holomorphic functions {«; : U; = C*};cr . Then
{(Ui, a; fi) }ier defines the same Cartier divisor as D above. The associated
line bundles are isomorphic by and the isomorphism respects the
sections. As a consequence, one has the following result.
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Theorem (I1.3.12). Given two pairs (E,s) and (E',s") of line bundles with
sections, let us write (E,s) ~ (E',s") if there exists an isomorphism of line
bundles F': E — E' such that s’ = F o s.

Then there is a natural bijection

CaDiv(X) — {(line bundle, non-zero global )}/ ~

mero. section
given by D — [(Ox (D), sp)]; its inverse is [(E,s)] — (s). O
Remark (I1.3.13). A couple of comments about the theorem:

e Define another equivalence relation by setting (E,s) ~go (E', ') if
there exists an isomorphism of line bundles F' : E — E’ such that
the sections F o s and s’ are equivalent. Then (E,s) ~ (E',s') if
and only if (E,s) ~o (E',5).

e Since there is an isomorphism between Pic(X) and line bundles
modulo isomorphisms, taking classes modulo being linearly equiv-
alent on the left-hand side corresponds to forgetting the section on
the right-hand side.

SEcTION §11.4
Pull-Back of a Q-Divisor

(I1.4.1). (Pull-back of a line bundle). Let F' : Y — X be a morphism
between two irreducible complex analytic varieties. Let 7 : F — X be a
complex line bundle with local trivialization cover {(U;, ®;)}ier and transi-
tion functions {Qbij}i,jel-

Then its pull-back, denoted by F*m: F*E — Y,

[ FE:={(y.e) €Y x E| F(y) = (a)} = Y xx E |
is a complex line bundle with local trivialization {(F~1(U;), ¥;)}ier, where
U (B N (FN D) — FNU) < C,
(ye) = (y,pr2®ife)),
and transition functions

{63 0 Flrrwynuy : FHUiNU;) — €,

(5

The inverse of ¥; is given by (y,t) = (y, ®; '(F(y),t)).
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As for the behavior with respect to the sections, if s : X — E is a non-
zero global meromorphic section of F defined by a collection of meromorphic
functions { f; : U; — C}er, then its pull-back, denoted by F*s:Y — F*E,

(F"s)(y) == (s F)(y), y)

is the global meromorphic section of F*E associated with
{fZ o F‘F_l(Ui) : F_I(Ul) — C}iel‘

Moreover, F*s is the zero section of F*F if and only if

F(Y') € Supp(s) := Supp((s))-

The following diagram represents the pull-back of a line bundle with a
global meromorphic section. Note that locally F'is F' x 1¢.

F
VF*E——E

F*s - F*ﬂl # lﬂ' -8

R

Definition (II.4.2). Let F' : Y — X be a morphism between irreducible
complex analytic varieties. Let D be a Cartier divisor on X and consider
[D] its equivalence class in Pic(X). Define F*[D] to be the equivalence class
in Pic(Y') of the divisor associated with any non-zero global meromorphic
section of the bundle F*Ox (D), i.e. F*[D] = [(t)] where t is a non-zero
meromorphic section as above.

Remark (11.4.3). The pull-back is well defined and it has the following
properties:

(1) In our setting, there always exist non-zero global meromorphic sec-
tions of a line bundle of the form F*Ox (D).

(2) The pull-back F*[D] € Pic(Y) only depends on the equivalence
class of D. Assume D ~ D’ and consider ¢ and t' two non-zero
global meromorphic sections of F*Ox (D) and F*Ox(D’), respec-
tively. Then, using Lemma [(II.3.10)|1) and the functoriality of the
pull-back, one sees that [(¢)] = [(t')] € Pic(Y).

(3) If F(Y) € Supp(D), then F*[D] coincides with the one given at
the beginning of this section. This follows from and the
fact that ¢t = F*sp is a non-zero global meromorphic section of
F*Ox (D). Hence Definition gives rise to a group homo-
morphism F* : Pic(X) — Pic(Y) as claimed.
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(4) The pull-back is a contravariant functor, that is, if Z is another
irreducible complex analytic variety and G : Z — Y is a morphism,
then (Go F)* = F* o G*.

Although F' : Y — X induces a group homomorphism between the
Picard groups of X and Y, in practice it is convenient to treat the following
two cases separately: (Here D is a Cartier divisor on X)

o If F(Y) ¢ Supp(D), then F*(D) € CaDiv(Y).

e Otherwise F*(D) is only defined up to linear equivalence.

This approach is essentially the one presented by Fulton in [Ful98, Ch. 2]
where the notion of pseudo-divisor is introduced. There, if F(Y') C Supp(D),
then the pull-back F*[D] is defined as the equivalence class in Pic(Y") of any
Cartier divisor E on Y whose line bundle Oy (E) is isomorphic to F*Ox (D).

Definition (I1.4.4). Let F' : Y — X be a morphism between two irre-
ducible V-manifolds and consider D € Q-Div(X). Then D can be written
as a finite sum ) ;_; a; D; where D; € CaDiv(X) and o; € Q. The puli-back
of D is defined as

F*(D):= ) ;- F*(Dy),
i=1
where F*(D;) is the pull-back of a Cartier divisor as in |(I1.4.2)]

Hence F*(D) is an element in CaDiv(Y) ®z Q if F(Y) € |D;l, for all
i=1,...,r, and it is only defined up to Q-linear equivalence if F(Y') C |D;,|
for some ip € {1,...,r}. In any case,

[F*(D)] € Pic(Y) @z Q.

Now we have all the necessary ingredients to develop a rational intersec-
tion theory on varieties with quotient singularities. Chapter [[T]] is devoted
to working out all the details, but first the following illustrative example
will be given.

Example (I1.4.5). Let X = X(2;1,1) and consider the Weil divisors D; =
{z = 0} and Dy = {y = 0}. Let us compute the Weil divisor associated

with jp, D2, where jp, : D1 <> X is the inclusion. Following |(I1I.2.14), the
divisor Dy can be written as %{(X, y*)}. By definition, since Dy € Ds, the
pull-back is

. 1
]D1D2 = 5{(D1,y2|D1)}~
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Thus its associated Weil divisor is

” 1
Ip,(jp, D2) = 5 > ordp(y®|p,) - [P]
PeD,

1

= 5 ordo.0) (¥”|p,) - [(0,0)] = 5 - [(0,0)].

Note that there is an isomorphism D; = X (2;1) ~ C, [y] — %2, and the
function y? : D1 — C is converted into the identity map C — C under this
isomorphism. Hence ord( ) (¥*|p,) = 1. It is natural to define the (global

N | =

and local) intersection multiplicity as

1
Dy - Dy = (D1 - D2)j0,0) = >






Intersection Theory on Surfaces with Quotient
Singularities

Previously in Chapter [[| we saw how useful weighted blow-ups can be to
compute embedded Q-resolutions. In this chapter, to study this special kind
of resolutions, we develop an intersection theory on varieties with quotient
singularities.

Roughly speaking, given X a complex analytic variety, the intersection
product D- E is well understood whenever D is a compact Weil divisor on X
and F is a Cartier divisor on X. Over varieties with quotient singularities
the notion of Cartier and Weil divisor coincide after tensoring with Q, see
Theorem and hence a rational intersection theory can be defined on
this kind of varieties.

This theory was first introduced by Mumford on normal surfaces, see
[Mum61]. We give an alternative equivalent definition, without involving
an embedded resolution of the ambient space, that allows us to compute the
self-intersection numbers of the exceptional divisors of weighted blow-ups in
dimension two. Also Bézout’s theorem for quotients of weighted projective
planes is studied.

See [AMO11b] for further applications including the computation of
abstract resolutions of surfaces via Jung method. Also, see [AMO11c]| for
an overview on this chapter and [Ort10] for a more direct approach.

SEcTiON §IIT.1
Intersection Numbers: Generalities

Base on Example [(I1.4.5)| the intersection number of two Q-divisors is
defined in terms of the degree map as follows.
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(II1.1.1). (Degree of a Q-divisor). Let C be an irreducible analytic curve.
Given a Weil divisor on C with finite support, D = >""_, n; - [Pj], its degree
is defined as

deg(D) = an € 7.
i=1

It is a group homomorphism. Moreover, if C is compact, the degree of
a principal divisor is zero and thus passes to the quotient yielding the
map deg : Cl(C) — Z, cf. [Ful98|, Prop. 1.4].

The degree of a Cartier divisor is the degree of its associated Weil divisor,
that is, by definition

deg(D) := deg(1¢ D).

Finally, extending to rational coefficients, one obtains a group homomor-
phism

(13) deg : {D € Q-Div(C) with finite support } —Q
that passes to the quotient Pic(C) ®z Q when the curve is compact.

Definition (III.1.2). Let X be a V-manifold of dimension 2 and consider
Dy,Dy € Q-Div(X). If D; is irreducible, then the intersection number,
denoted by Dq - Do, is defined as

Dy - Dy :=deg (jp, D2) € Q,

where jp, : |Di| < X denotes the inclusion and deg is the map in (13).
The expression above extends linearly if D is a finite sum of irreducible
Q-divisors.

Following |(II1.1.1)| and Definition [(I1.4.4)| this number is only well de-
fined if either |D1| € |Ds| and |D1| N |Ds] is finite, or the divisor D; has a

compact support.
Let us discuss these two cases separately. To simplify assume D; is an
irreducible Q-divisor.

e If Dy has compact support, then extending the order function to
rational coefficients ordp : CaDiv(|D;|) ®z Q — Q, one writes the
intersection number D1 - Dy as

deg(FE) = deg( Z ordp(E) - [P}) = Z ordp(FE),
PeD; PeDy

where F is any Q-Cartier divisor on |D;| representing the rational
class [jp, Do € Pic(|D1]) ®z Q.
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o If [Dy]| € |Dsl, then j}, D2 € CaDiv(|D;]) ®z Q and its support is
the set |D1| N |Dz|. In this situation the order at P its-self
(D1 - D3)p :=ordp (jj*leg) €eQ
is well defined and it is called the local intersection number at P.
In addition, if |D;| N |D2| is finite, then by definition
Di-Dy= Y. (Di-Dy)p.
Pe|D1|N|De|

If Dy is not irreducible, then the local intersection number (D; - Dy)p is
extended by linearity so that the previous formula still holds.

In the following result the main usual properties of intersection numbers
are collected. Its proofs is omitted since it is well known for the classical
case (i.e. without tensoring with Q), cf. [Ful98], and our generalization is
based on extending the classical definition to rational coefficients.

Proposition (IT1.1.3). Let X be a V-manifold of dimension 2 and con-
sider D1, Dy, D3 € Q-Div(X). Then the local and the global intersection
numbers, provided the indicated operations make sense according to Defini-

tion satisfy the following properties: (o € Q, P € X)
(1) Bilinear:
Global | Dy - (D + D3) = Dy - Dy + Dy - D3
(D1+ D) - D3 = Dy - D3+ Do - D3
(aDq) - Dy = Dy - (aD2) = a(Dy - Do)

Local | (D1 - (Da+ D3))p = (D1-Da)p+ (D1~ D3)p
((D1+ D3) - D3), = (D1 - D3)p + (D2 - D3)p
((aDl) DQ)P = (D1 (CkDQ))p = a(Dl . Dg)p

(2) Commutative: If Dy - Dy and D - D1 are both defined, then
Dy - Dy = Dy - Dy. Analogously (D1 - Da)p = (D2 - Dy)p if both
local numbers are defined.

(3) Non-negative: Assume D1 and Do are effective, irreducible, and
distinct. Then Dy - Dy and (D1 - Da)p are greater than or equal to
zero if they are defined. Moreover, (D - Da)p = 0 if and only if
P ¢ |D1|N|Ds|, and hence Dy-Ds = 0 if and only if |D1|N|Da| = 0.

(4) Non-rational: If Dy € CaDiv(X) and D; € WeDiv(X), then
Dy - Dy and (D1 - Da)p are integral numbers. By the commutative
property, the same holds if D1 is a Cartier divisor and D2 is a Weil
divisor.
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(5) Q-Linear equivalence: Assume Di has compact support. If Dy
and D3 are Q-linearly equivalent, i.e. [D2] = [D3] € Pic(X) ®z Q,
then D1 - Dy = Dy - D3. Due to the commutativity, the roles of
Dy and Dy can be exchanged. In particular, Dy - Dy = 0 for every
principal Q-divisor Ds.

(6) Normalization: Let v : |E| — |D1| be the normalization of the
support of Dy and jp, : |D1| < X the inclusion. Then Dy - Dy =
deg (jD1 o V)*DQ. Observe that in this situation the normalization
18 a smooth complex analytic curve. U

Remark (II1.1.4). This rational intersection number was first introduced
by Mumford for normal surfaces, see [Mum61, Pag. 17]. Our Defini-
tion coincides with Mumford’s because it has good behavior with
respect to the pull-back, see Theorem . The main advantage is that
ours does not involve a resolution of the ambient space and, for instance, this
allows us to easily find formulas for the self-intersection numbers of the ex-
ceptional divisors of weighted blow-ups, without computing any resolution,

see Proposition |(111.3.2)|

The following result (the pull-back formula) is essential for obtaining
Bézout’s Theorem on quotients of weighted projective planes as well as for
studying the local intersection number on X (d; A). Again its proofs follows
from the fact that our generalization is based on extending the classical
definition to rational coefficients.

Theorem (II1.1.5). Let F : Y — X be a proper morphism between two
irreducible V-manifolds of dimension 2, and Dy, Dy € Q-Div(X).

(1) The cardinal of F~Y(P), P € X, is finite and generically constant.
This generic number is denoted by deg(F).

(2) If Dy - Dy is defined, then so is F*(Dy) - F*(D3). In such a case,
one has F*(Dy) - F*(Dy) = deg(F) (D - E).

(3) If (D1-D2)p is defined for some P € X, then so is the local number
(F*(D1) - F*(D2))g, VQ € F~Y(P). In such a case, it is verified
that 3 gep-1(py(F*(D1) - F*(D2))q = deg(F)(D1 - D2)p. O

The rest of this section is devoted to reviewing some classical results
concerning the intersection multiplicity, namely the computation of the local
intersection number at a smooth point, the self-intersection numbers of the
exceptional divisors of blow-ups at a smooth point, and the classical Bézout’s
Theorem on P2, Afterward, these results are generalized in the upcoming
sections.
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(IT1.1.6). (Local intersection number at a smooth point). Let X be a smooth
analytic surface. Consider Dy, Dy two effective (Cartier or Weil)H divisors
on X and P € X a point. From Remark the divisor D; is locally
given by a holomorphic function f;, ¢ = 1,2, in a neighborhood of P. Then
(D1 - D2)p equals

ordp(f2|D1) = lengthg,, . <(;2D|;P> = dime <<f1sz>)

Moreover, X being a smooth variety, Ox p is isomorphic to C{z,y} and
hence the previous dimension can be computed, for instance, by means of
Grobner bases with respect to local orderings.

(II1.1.7). (Classical blow-up at a smooth point). Let X be an analytic
surface. Let m : X — X be the classical blow-up at a smooth point P.
Consider C' and D two (Cartier or Weil) divisors on X with multiplicities
mc and mp at P. Denote by E the exceptional divisor of w, and by C
(resp. D) the strict transform of C' (resp. D). Then,

(1) E-7(C) =0,

(2) = (C ) C 4+ meE,
(3) me,

(4)

(5) C- D:C-D—mcmD.

In addition, if D has compact support, then D?=D? - m2D. Note that
the exceptional divisor has multiplicity 1 at every point. This is why for the

>D1Dj=‘

self-intersection numbers of the exceptional divisors every time we blow up
a point on them, when computing an embedded resolution of a plane curve,
one only has to subtract 1.

Example (II1.1.8). The fourth property can easily be deduced assuming
the first three. Let us prove it here by using directly Definition .
Assume X = C2 and 7 : C2 — C2? is the blow-up at the origin. By definition,
E? = deg(j5LE) = deg(t), where t : E — j5Ox(E) is any non-zero global
meromorphic section of j;,Ox(E).

e Let us cover C2 by Uy U Uy and use coordinates ((x,y), [u : v])
for C2 x P'. As a Cartier divisor, the exceptional divisor of 7 is

E = {(Uy,2),(Us2,y)}.

1Recall that on smooth analytic varieties, Cartier and Weil divisors are identified
and their equivalence classes coincide under this identification, i.e. Pic(X) = Cl(X), see
Theorem [(I1.1.7)
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e Then Ox(E) is the line bundle on C? with transition function
¢12 : Uy NUy — C*, ¢12(((x,y), [u : U])) = % Thus jEOX(E) is the
line bundle on F = V; U V5 with transition function

u
P9 V1NV — (C*, 1/)12([71 : U]) = ;

e The family {(V1,%),(V2,1)} gives rise to a non-zero global mero-
morphic section of j5Ox (E). Its associated Weil divisor on P! is
—{v =0} € WeDiv(P!) which has degree —1.

Another way to proceed is to show directly that the dual of j;,Ox(E) is
isomorphic to the line bundle on E associated with the Weil divisor {v = 0}.

(I11.1.9). (Bézout’s Theorem on P?). Every analytic (Cartier or Weil)
divisor on P? is algebraic and thus it can be written as a difference of
two effective divisors. On the other hand, every effective divisor is de-
fined by a homogeneous polynomial. The degree of an effective divisor
on P? is the degree, deg(F), of the corresponding homogeneous polyno-
mial. This degree map is extended linearly yielding a group homomorphism
deg : Div(P?) — Z that characterizes the linear equivalence classes in the
following sense: VD1, Dy € Div(P?),

(14) [D1] = [Ds] € Pic(P?) = CI(P?) <= deg(D1) = deg(D>).

Let D1, Dy be two divisors on P2, then D; - Dy = deg(D1)deg(D>).
In particular, the self-intersection number of a divisor D on P? is given by
D? = deg(D)?. In addition, if |D1| € |Ds|, then |Dy| N |Dy| is a finite set of
points and, by the discussion after Definition one has

deg(Dl) deg(Dg) = D1 . D2 = Z (Dl . Dg)p.
P€|D1|W|D2|

The proof of this result is an easy consequence of |(III.1.3)] and the
fact that D; is linearly equivalent to deg(D;)L;, where L; is a linear form,
1 = 1,2, by . The rest of this chapter is devoted to generalizing the

classical results of [(TIT.1.6)} [TIT.1.7)] and [(TIT.1.9)| to V-manifolds, weighted
blow-ups, and quotients of weighted projective planes, respectively.

SECTION § ITI.2
Computing Local Intersection Numbers

Let X be an algebraic V-manifold of dimension 2. Consider D; and Do
two effective Q-divisors on X, and P € X a point. From cf. proof
of Lemma the divisor D; is locally given in a neighborhood of P by
a reduced polynomial f;, i =1, 2.
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On the other hand, the point P can be assumed to be a normalized type
of the form (d; a,b). Hence the computation of (Dj - D3)p is reduced to the
following particular case.

(IT1.2.1). (Local intersection number on X (d;a,b)). Denote by X the cyclic
quotient space X(d;a,b) and consider two divisors D; = {f; = 0} and
Dy = {f2 = 0} given by reduced polynomials. Assume that,

e (d;a,b) is normalized,

e Dy is irreducible,

e f1 induces a function on X,

o [Di] £ |Dy|.

Then as Q-Cartier divisors Dy = {(X, f1)}, D2 = 2{(X, f&)}, and the

pull-back is jj, Do = 1{(Dy, f¢|p,)}. Following the definition, the local
number (D - D2)(p] equals

1 1 Op [P]> 1 <OX[P] >
—ord d = — length ( = = —dim : .
7 ordip(f2]p,) = - lengtho, ) Fdpy) —d S\, f9)

The local ring Oy (p) is described in detail in |(I.1.17); there is an iso-
morphism of local rings if P = (a, ) # (0,0),

Oxip — Ocz00)
(z,y) = (@+ay+p),
and for P = (0,0) one has Ox (0,0 = C{z,y}".

Also 2 dime(C{z, y}/(f1, f§)) coincides with dime C{z, y}/(f1, f2) when
f1 and fo are converging power series. So finally,

} im M _ .

(D1 - Dy)p) = a C< (f1, &) ) P =(0,0);
1 2)[P] dim <C{m—a,y—ﬁ}) P = (a,p) # (0,0)
- (f1, f2) ’ ) ,0).

Analogously, if f; does not define a function on X, for computing the
intersection number at [(0,0)], one substitutes f; by f{ and divides the
result by d.

Another way to calculate (D - Dg)[(o’o)] is to consider the projection
pr : C> - X(d;a,b) and apply the local pull-back formula, see Theo-
rem |(IIL.1.5)(3). Indeed, let D; be the pull-back divisor of D; under the
projection, ¢ = 1,2. Then,

1 1 .
(D1 - D2)j0,0) = &(Dl - D2)0,0) = 5 dimc <

C{w,y}>
(fi.f2) )
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In particular, combining these two expressions obtained for (D1-D2)(,0),
if two polynomials f and g define functions on X, then

dime (S50 ) = game (S5

As in the smooth case, all the preceding dimensions can be computed
by means of Grobner bases with respect to local orderings.

Example (ITI1.2.2). Let X = X(2;1,1) and consider the Weil divisors
Dy = {z = 0} and Dy = {y = 0}. In Example |(II.4.5)] it is shown, by
directly using the definition of the intersection product, that
1
(D1 Da)io.0) = 5-
In this section two expressions have been obtained for computing this

local number:

1. C{z, 1
e (D1 D2)0,0) = 7 dimc < { y}> =_.

2 (z,y) 2
1 . C{x,y}H 1 1

The isomorphism C{z1, 22, 23}/ (2122 — 22) — C{x?,y?, vy} = C{z, y}*2 de-
fined by (21, 20, 23) — (22, 9%, xy) was used to prove that

B2

(22, 9y?) (21, 22, 22)

Remark (I11.2.3). If the point P € X is represented by a type of the
form (d; A), where A € Mat(r x 2,7Z), one considers the natural projection
pr : C2 — X(d; A) and applies the pull-back formula as above. Hence in
general one has

1

(D1 D2)j0,0) = dog| pr: C2 = X(d; A)] (D1 - D2)(0,0)5

where INDZ is the pull-back divisor of D; under the projection. A generalization

of Lemma |(I11.4.2)| could be useful in this sense.

SecTION §IT1.3
Intersection Numbers and Weighted Blow-ups

In chapter [[] weighted blow-ups were introduced as a tool for computing
embedded Q-resolutions. To obtain information about the corresponding
embedded singularity, an intersection theory on V-manifolds has been de-
veloped.



§IT1.3. Intersection Numbers and Weighted Blow-ups 57

Here we calculate self-intersection numbers of exceptional divisors of
weighted blow-ups on analytic varieties with abelian quotient singularities,
see Proposition

A preliminary lemma is presented separately so that the proof of the
main result of this section becomes simpler.

Lemma (IT1.3.1). Let h : Y — X be a morphism between two irreducible
V-manifolds of dimension 2.

Consider wx : XX (resp. wy : Y - Y ) a weighted blow-up at a point
of X (resp. Y) and take Cx a Q-divisor on X. Denote by Ex (resp. Ey)
the exceptional divisor of mx (resp. wy ), and @X the strict transform of Cx.

Let us suppose that there exist two rational numbers, e and v, and a
finite proper morphism H:Y = X completing the commutative diagram

y — X
l J, Then, the following hold:
YV ——=X * ~ v
(1) 7% (Cx) = Cx + LEXx,
such that: @) E & ev o
(a) H*(Ex) = eby, XX T Qeg(m) 7Y
(b) 73 (h*(Cx)) = H(Cx) +vEy.  (3) B} = 3o BL.

ProoF. For (1) note the total transform 7% (C'x) can always be written
as Cx + mEx for some m € Q. Considering its pull-back under H*, one
obtains two expressions for the same Q-divisor on Y,

diagram b ~
H (w3 (Cx)) TE™ 75 (h*(Cx)) 2 B (Cx) + vEy,
H*(Cx + mEx) = H*(Cx) + mH*(Ex) 2 H*(Cx) + meEy

It follows that m = %.

For (2) first note that deg(H) = deg(h). From [(IIL3.2)[1), see below,
one has that Ey -y (h*(Cx)) = 0. On the other hand, H being proper,
Theorem (2) can be applied thus obtaining

C * * (A a)-(b
deg(h)(Ex - Cx) = H*(Ex) - H*(Cy) “2”

= eBy - [ry(h*(Cx)) — vEy|

= —evEL.

Analogously, deg(h)E% = H*(Ex)? = ¢?F% and (3) follows. O
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Now we are ready to present the main result of this section.

Proposition (I11.3.2). Let X be an analytic surface with abelian quotient
singularities and let m : X — X be the (p, q)-weighted blow-up at a point
P € X of type (d;a,b). Assume ged(p,q) = 1 and (d;a,b) is a normalized
type, i.e. ged(d, a) = ged(d,b) = 1. Also write e = ged(d, pb — qa).

Consider two Q-divisors C and D on X. As usual, denote by E the ex-
ceptional divisor of w, and by C (resp. 13) the strict transform of C' (resp. D).
Let v and p be the (p, q)-multiplicities of C and D at P, i.e. x (resp. y) has
(p, q)-multiplicity p (resp. q).

Then, there are the following equalities:

(1) E-7*(C) = 0.

(2) 7*(C)=C+ EE
~ eV
3) F-C=—
(3) g
2
e
4) B* = — —.
(4) e
5 C-D=C-D— —.
(5) -
In addition, if D has compact support then D* = D* — e
Pq

Proor. Using Proposition (5), the first item can be proved as
in the smooth case since 7*(C') is locally principal as Q-divisor on X. The
fifth item, and final conclusion, is an easy consequence of (2)-(4) and the
fact that #*(C) - 7*(D) = C - D.

For the rest of the proof, one assumes that

—

m=nx:X(d;a,b), — X(d;a,b)

is the weighted blow-up at the origin of X (d; a,b) with respect to w = (p, q).
Now the idea is to apply Lemma [(II1.3.1)[ to the commutative diagram

~  ~n H o —— ~
Y :=C2— X(d;a,b), = X

w
WYJ # Jﬂx

Y ;= C? — X(d;a,b) =: X.
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Above, the morphisms H and h are defined by

(@y) [u: o)) 5 (@2 y9), [P 0] (dsan);
(@y) = (@ YD)

and 7y is the classical blowing-up at the origin. In this situation E%, = —1.
The claim is reduced to the calculation of deg(h) and the verification of the
conditions (a)-(b) in Lemma

The degree is deg(h) = pq - deg [pr :C? = X(d;a, b)] = dpq. For (a),
first recall the decompositions

—

(15) X(d;a,b),=U,UU; and C?=U,UU,

given by the non-cancellation of the variables u and v. By Example|(I1.2.15)
one writes the exceptional divisor of wx as

e o~ o~
EXzi{ U17$dq ) UQuydp }
T { O (Do)
Hence its pull-back under H, computed by pulling back the local equa-
tions, is

e

H*(Bx) = 3 A (01,2, U2,y } = e { (U1, 2), (U2,9) | = eBy.

Finally, for (b), one uses local equations to check that 73 (h*(C)) =
H *(6) + vFEy. Suppose the divisor C' is locally given by a meromorphic
function f(z,y) defined on a neighborhood of the origin of X (d;a,b); note
that v = Ol"d(p’q)(f).

The charts associated with the decompositions are described in
detail in Section [[.3-I[iii). As a summary, we recall here the first chart of

each blowing-up:

X Qli—X<];0d _al pbgqa> — 0,
[(z,9)] = [((aP,2%),[1: ylw)].
my (C2 — Ul,
(@,9) = ((z,2y),[1:9]).

Note that H respects the decompositions and takes the form (z,y) —
[(z,y9)] in the first chart.
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Then, one has the following local equations for the divisors involved:

Divisor Equation Ambient space
BC) faPyh) =0 c?
T ((0) flaraty) =0 C2U
¢ f(xl;,quy) =0 Q1 =0

~ D pdqd
H*(0) M:O (ORE=Nyf}

From these local equations (b) is satisfied and the proof is complete. [J

(II1.3.3). Under the conditions of Proposition |(I111.3.2)| and using the no-

tation of its proof, let us compute the self-intersection number of the ex-
ceptional divisor of m : X — X, following directly Definition |(III.1.2)| as in
Example |(I11.1.8)l Write £ = ﬁEl, where

E = {(ﬁl,xdq), (ﬁzaydp)}-

By definition, E - Ey = deg(jF1) = deg(t) where t : E — j5O0x(Eq) is
any non-zero global meromorphic section of j5Ox (E1).

e The sheaf Ox(F1) is the line bundle on X with transition function
~ ~ d .

¢12: Ut N Uz = C, dr2(((z,y), [u : vlw)) = %5 Thus j5Ox(Er)
is the line bundle on F = 171 U ‘72 with transition function

~ o~ uda
1o ViNVe = C* 1a([u:v]y,) = et
e The family {(V}, %), (V2,1)} gives rise to a non-zero global mero-
morphic section of j5O0x (E1). Its associated Weil divisor on PL /1,
is —e-[{v = 0}] € WeDiv(P.,(d; a, b)) which has degree —e, compare
with
62

Consequently, E? = ﬁ(E ‘Eyp) = dpg 35 claimed. Another way to proceed
is to show directly that the dual of j3,Ox (E) is isomorphic to the line bundle
on E associated with the Weil divisor e - [{v = 0}].
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(IT1.3.4). In the same spirit of the preceding example, let us calculate E - C
using directly Definition |(II1.1.2)| and the fact that

E-C= > (E-O)p.
PeE NC
Suppose C' is locally given by a meromorphic function f(z,y) = 0 defined
on a neighborhood of the origin of X (d;a,b). Consider
f=f+fout+-

the decomposition of f(z,y) into (p, ¢)-homogeneous parts. The global equa-
tion of ENC = {f, = 0} C P.(d;a,b) can be written as

k
fuolw,y) = 2%y [ (a7 — ely?)™.
i=1
Note that v = ord(, (f) = pa + ¢B8 + pg>_;_ m;. The intersection

multiplicity of F and C' at the point [g; : 1], is m;, while it is 3—(‘;’ (resp. g—;),

not necessarily an integer, at the possibly singular point [0 : 1] (resp. [1 : 0]).

All these statements follows from §I11.2] since by |(1.3.14) the local equations

of £ and é in the second chart are
— E =0;
e e C: ][ (27— Eg)mi =0,

where ¢ is the inverse of b modulo d. To compute the intersection multiplicity
at [1 : 0] the first chart is needed, but the details are omitted.
On the other hand, the isomorphism

Pl (d;a,b) — P!
[z:yl, [md‘I/e : ydp/e],
tells us that

lei: 1] =[gj: 1]y € Pl(d;a,b) — (£9)

7

ol
ol

= (sg-) )

Consequently, the cardinality of ENC \ {[0 : 1],[1 : 0]} is di/e and in fact

one has
T

Smi=Y(E O =2 Y (B0
=1

=1 P#[0:1],[1:0]
Finally, collecting all the information above, it follows that
Z(E'G)P:(E'a)[0:1]+(E’é)[1:0}+ Z (E-C)p=
ENC P£[0:1],[1:0]

T
ae Be e e ev
= — 4+ — + =>» my = — | pa+qB+pg m) = —.
2 m dpq( ; ) dpg
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Another way to proceed in order to calculate E - C is to realize that the
required intersection product is the degree of the Weil divisor on PL(d;a, b)
given by f,(z,y) = 2%y’ [[}_, (27 — lyP)™i. This expression is mapped to

ae E e e
oy [0 — ety
i=1
under the isomorphism PL(d;a,b) — P!. The latter is clear to have degree

% as a Weil divisor on P!.

Remark (I11.3.5). Although elementary, the computation of the self-in-
tersection numbers E? and E - C by using directly the definition is long

and tedious. That is why Proposition |(I11.3.2)[is proven with the pull-back
formula |(I11.1.5)| so that the proof becomes simpler and clearer.

Let us discuss two special cases of Prop. |(111.3.2)| according to

namely the point P € X is smooth and the point P is of type (d;p,q) with
ged(d,p) = ged(d,q) = 1. Consider the w-blow-up 7 := 7, : C2 — C?
(resp. =Ty 4 ¢ C 4 — X(d;p,q)). The following properties hold:

1) E-7*(C) = 0 (in both cases).

2) 7 (C ) C +vE (resp. 7*(C) = C + Y E).

)

) E é (in both cases).

) Bf=—— (resp E? = ;q).

5)C-D = C’D——(respC’D C-D—gb).

Remark (I11.3.6). To state formulas when P € X is a point represented by
a type of the form (d; A), where A € Mat(r x 2,Z), one proceeds as in the
proof of Proposition In particular, one has to compute deg(h), e
and v.

For instance, to calculate e such that H*(Ex) = eEy, one needs to write
Ex as a Q-Cartier divisor as in Example or equivalently, to find
the number e such that the map

[(z,9)] — (2%y)
is an isomorphism of analytic germs. In fact, one can show that

_ deg(pr)
deg(pr |z=0)’

where pr : C? — @ is the projection on the first chart.
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When (d; A) = (d;a,b) but the type is not necessarily normalized or
ged(p, q) # 1, then
— ng(dpa dQ7pb B qa‘)
ged(d, a,b)
For deg(h) a generalization of Lemma |(III.4.2)| is needed. The details are
left to the reader.

Example (II1.3.7). Let us consider the following divisors on C2,
Cr={((e’ —¢*)° —a™y’) =0}, Cr={2—y*=0},

03:{m3+y2:0}, 04:{1'20}, C5:{y:0}.

The local intersection numbers (C; - Cj)o, 4,5 € {1,...,5}, i # j, are en-

coded in the intersection matrix associated with any embedded Q-resolution
of C = U?:l C;, see [AMO11b] for a proof of this result.
Let m : C%Q’g) — C? be the (2,3)-weighted blow-up at the origin. The
new space has two cyclic quotient singular points of type (2;1,1) and (3;1,1)
located at the exceptional divisor £;. The local equation of the total trans-
form in the first chart is given by the function

Y- =2 1=y +9D) y: X(21,1) — C,

where x = 0 is the equation of the exceptional divisor and the other factors
correspond in the same order to the strict transform of Cy, Cs, Cs, Cs
(denoted again by the same symbol). To study the strict transform of Cy
one needs the second chart, the details are left to the reader.

Hence &; has multiplicity 29 and self-intersection number — ; it inter-
sects transversely C3, Cy, and C5 at three different points, while 1t intersects
C4 and C5 at the same smooth point P, different from the other three. The
local equation of the divisor & U Cy U C7 at this point P is

‘T29 Yy (l’5 - y2) = 0)
see Figure below.
Ei(—5) Iz (—%0)
@ \P
Cs Cy 03 04 io Cs

FIGURE III.1. Embedded Q-resolution of C' = U?:l C; C C2
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Let 7y be the (2,5)-weighted blow-up at the point P above. The new
ambient space has two singular points of type (2;1,1) and (5;1,2). The local
equations of the total transform of & U Cy U C; are given by the following
two functions:

1st chart

z® .y -(17y2):X(2;1,1)—>C
N
Eo C2 Cq

2nd chart

2y (P -1): X(2;1,1) — C
—~ N ——

&1 & Cy

Thus the new exceptional divisor & has multiplicity 73 and intersects
transversely the strict transform of C7, Co, and &£1. Hence the composition
9 0 71 is an embedded Q-resolution of C' = U?Zl C; C C2.

Figure above illustrates the whole process. As for the self-intersec-
tion numbers,

go_Lt g1z _ I
6 1-2-5 30
The intersection matrix associated with the embedded Q-resolution obtained
and its opposite inverse are

4= (11%30 —11//51())  B=-AT= <162 ?ﬁ) '

Now one observes the intersection number is encoded in B as follows.
Fori=1,...,5,set k; € {1,...,5} such that § # C; N &, =: {P;}. Denote
by O(C;) the order of the cyclic group acting on P;. Then,

bk
O(C:) O(Cj)°
Looking at the figure one sees that
(k1,...,ks) = (2,2,1,1,1),
(O(C1),...,0(C5)) = (1,2,1,3,2).

(Ci- Cj)y =

Hence, for instance,

bkyky Do 34
o(C1)0(Cy) 1-2 2
which is indeed the intersection multiplicity at the origin of C; and Cs.
Analogously for the other indices.

(C1-Ca)o =

=17,
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Remark (I11.3.8). Consider the group action of type (5;2,3) on C2. The
previous plane curve C'is invariant under this action and then it makes sense
to compute an embedded Q-resolution of C := C/us C X (5;2,3). Similar
calculations, as in the previous example, lead to a figure as the one obtained
above with the following relevant differences:

o & N &; is a smooth point.

e & (resp. &) has self-intersection number —% (resp. —3).
e The intersection matrix is A’ = (7117 /6 711 /2) and its opposite in-
verse is
_ 6/5 12/5
B/ — _ A/ 1 — .
(4) (12/ 5 34/ 5)

Hence, for instance,

- = b 34/5 17

Cqi-Co)y = —22 — -

( 1 2)0 1.2 9 5 )
which is exactly the intersection number of these two curves, since that
local number can also be computed as (Cy - C2)g = £(C - Ca)o. Analogous

considerations hold for (C; - C})o, i,j = 1,...,5.

SEcTION §II1.4
Bézout’s Theorem for Weighted Projective Planes

For a given weight vector w = (p, ¢,7) € N® and an action on C3 of type
(d;a,b,c), consider the quotient weighted projective plane

P2 (ds a,b,¢) =P} /g
and the corresponding morphism 7(g.q.4 ) w : P2 — P2(d;a,b,c) defined by
(16) T(dsabe)w ([T 2y 2 2]) = [2P 1y 1 27,
Recall that P2 (d;a, b, c) is a variety with abelian quotient singularities;

its charts are described in[(1.3.19)l The degree of a Q-divisor on P2 (d;a, b, c)
is the degree of its pull-back under the map 7(4,qp,c)w, that is, by definition,

D € Q-Div (Pi(d; a,b,c)), deg,(D) :=deg <’7'(*d;a7b70)7w(D)) .

Thus if D = {F = 0} is a Q-divisor on P?(d;a,b,c) given by a w-
homogeneous polynomial that indeed defines a zero set on the quotient pro-
jective space, then deg (D) is the classical degree, denoted by deg,(F), of
the quasi-homogeneous polynomial.
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(IT1.4.1). The degree of a Q-divisor on P2 (d; a, b, ¢) has the following behav-
ior with respect to the normalization process of weighted projective planes.
o Let w=(p,q,7) € N? and ' = mw. Consider the morphism
P2 — ]P’i, induced by the identity map. Let D’ be a Q-divisor
on IP’?U, and D its pull-back under the previous map. Then,
1
deg (D) = ————d D).
(D) = s deg (D)
— 3 ! _ p q T
o Letw=(p.q,r) €N* and o' = (G5 ol G e
sider the morphism P? — ]P’i, defined by

Cu ged(gr) . o ged(pr) . Lecd(pg)]
[y 2y — [2 y z Jes

) . Con-

Let D’ be a Q-divisor on IP’i, and D its pull-back under the previous
map which is a Q-divisor on P2. Then,
_ deg, (D)
ged(p. q) - ged(p, ) - ged(g, )
The following result can be stated in a more general setting. However,
it is presented in this way to keep the exposition as simple as possible.

degw’ (D,)

Lemma (II1.4.2). The degree of the projection pr : C?> — X(g‘,fg) is
given by the formula
d-e
ged [d -ged(e,r, s), e-ged(d,a,b), as — br] '

PROOF. Assume ged(d,a,b) = ged(e,r,s) = 1; the general formula is
obtained easily from this one, since

d
< dia b > _ | eedldab
ejpr s gcd(z,r,s)
The degree of the required projection C? — X (
the order of the abelian group

H= {(E,n) € pa X pe | €0 =1, " = 1} < (1 X pe)-
To calculate ¢, let us consider (£,7n) € pg X pe and solve the system
&' =1,
{ &n* = 1.
Raising both equations to the e-th power, one obtains £%¢ = 1 and &% = 1.
Hence,

a b
ged(d,a,b)  ged(d,a,b)
T S :
ng(E,?",S) ng(@J‘,S)

fjg’;) is %, where / is

§ € pa N pae N ppe = Hgcd(d,ae,be) = Mged(d,e)-
Note that the assumption ged(d,a,b) = 1 was used in the last equality.
Analogously, it follows that 1 € pigcq(a,e), provided that ged(e,r,s) = 1.
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Thus there exist 4,7 € {0,1,...,gcd(d,e) — 1} such that & = ¢’ and
n = ¢/, where ( is a fixed primitive (d,e)-th root of unity. Now the claim is
reduced to finding the number of solutions of the system of congruences

at+r; = 0
{ bitsj = 0° (mod ged(d, €)).

This is known to be ged(d, e, as — br) and now the proof is complete. O

Proposition (I11.4.3). Using the notation above, let us denote by my, ma,
pary,

ms the determinants of the three minors of order 2 of the matrix (a b e

Assume that ged(p, q,r) = 1 and write e = ged(d, m1, ma, m3).
Then, the intersection number of two Q-divisors on P2 (d;a,b,c) is

°_deg,, (Dy)deg,, (D) € Q.

B dpqr
In particular, the self-intersection number of a Q-divisor is given by

D? = Toar deg,,(D)?. Moreover, if |D1| € |Ds|, then |D1| N |Ds| is a finite

Dy - Dy

set of points and
e
(17) s deg,(D1)deg,(Dy) = Y (D1-Dy)p.

Pe|D1|N[De|

Proor. For simplicity, let us write just 7 for the map in , omitting
the subindex. Note that 7 is a proper morphism between two irreducible
V-manifolds of dimension 2. Thus by Theorem [(III.1.5)(2) and the classical
Bézout’s theorem on P? one has the following sequence of equalities,

deg(T) (D1 . Dg) = T*(Dl) . T*(Dg)
= deg (77(D1)) deg (77(D2))
= degw(Dl) degw(DQ)'

The rest of the proof is the computation of deg(7); the final part is a conse-

quence of discussion after Definition |(I11.1.2)
In the first chart 7 takes the form C? — X (741 0 1, )s (4, 2) = [(y9,27)],

pd; m1 ma

see [(I.3.19)| for details. By decomposing this morphism into C> — C2,
(y7 Z) = (quzT) and the projection (C2 - X(Zd: 731 ﬂzg)a (y7 Z) = [(y,Z)],
one obtains

pd; m1 ma2

deg(7) = gqr - deg [C2 K>X(p o )} .
The determinant of the corresponding matrix is gmo — rm; = pms. From
Lemma |(I11.4.2)] the latter degree is
p-pd dp

ng (p : ng(pd7 my, m?)vpd7pm3) B ng (da my,ma, m3) ’

and hence the proof is complete. ([
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Corollary (I11.4.4). Let X, Y, Z be the Weil divisors on the quotient
space P2 (d;a,b,c) given by {z = 0}, {y = 0}, and {z = 0}, respectively.
Using the notation of Proposition|(I11.4.3), one has:

ep 5  €q er
1) X2=—"2-, Y=+, Z=—.
(1) dqr’ dpr’ dpq

e e e
2) X Y =— X -Z=— Y 7 =—. O
(2) dr’ dq’ dp

Remark (II1.4.5). Some comments about the previous results.

(1) The local intersection numbers (D; - D2)p in are computed
in in terms of the dimension of a C-vector space. This
dimension can in turn be computed by means of Grébner bases
with respect to local orderings as usual.

(2) If d = 1, then e = 1 too and the formulas above become a bit
simpler. In particular, one obtains Bézout’s theorem on weighted
projective planes, (the last equality if |D1| € |Ds| only)

Dy - Dy = plqrdegw(Dl)degw(DZ) = Y. (D1 Dy)p.
Pe|D1|N|Da|
(3) To state Bézout’s theorem on P2 (d; A), where A € Mat(r x 3,7Z),
one proceeds in the same way. First consider the natural morphism
7:P2 - P2(d; A) defined by [z : y : 2]+ [2P : 39 : 2"].,, then apply
the pull-back formula, and finally compute the degree of 7. That
is, VD1, Dy € Q- Div (IP’i(d; A)), one has
D, - Dy = de;(T) deg,,(D1)deg,(D2).
The latter degree is reduced, as in the proof of Prop.
to the calculation of the degree of the projection C*> — X (e; B),
(y,2) — [(y,2)], where the type (e; B) is obtained after taking
charts on the corresponding projective planes. In this sense a gen-

eralization of Lemma |(111.4.2)|is welcome.

Example (II1.4.6). Without assuming gcd(p,q,r7) = 1 in [(II1.4.3)| the

degree of 7 is 2L where e = ged [d -ged(p, q,7), m1, ma, mg)] The general

e

formula for the degree of 7 : P2 — P2(d; A) is left to the reader.



Monodromy Zeta Function and Lefschetz Numbers

In this chapter the behavior of the Lefschetz numbers and the zeta func-
tion of the monodromy with respect to an embedded Q-resolution is inves-
tigated, cf. [Marllc]. These two invariants have already been studied in
different contexts by several authors. Hence before going into details, let us
recall some of those approaches.

Let f: (C"*1,0) — (C,0) be a germ of a non-constant analytic function
and let (H,0) be the hypersurface singularity defined by f. Consider the
Milnor fiber F' = {z € C"* : ||z|| < ¢, f(z) = 1} (0 < n << &, where
e small enough) and h : F — F the corresponding geometric monodromy.
The induced automorphisms on the complex cohomology groups are often
denoted by h := HY(h) : H1(F,C) — HY(F,C).

In [A’C75], A’Campo gives a method for computing the Lefschetz num-
ber of the iterates h* := h o--- o h of the geometric monodromy, defined
by

ARF) =) (=1)7tr HI(R®),

q=0

in terms of an embedded resolution of the singularity (H,0) C (C"*1 0).
These Lefschetz numbers are related to the monodromy zeta function

Z(f) := [ ] det(1d* —tH(h)) "
q=0

by the following well-known formula

(18) 2(7) = exp (— ZA(h’“)t,f).

k>1
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Using this relationship he derives a new expression for Z(f). More pre-
cisely, let 7 : X — (C"*1,0) be an embedded resolution of (H,0). Consider
the total transform of H written as

TI'*(H) = jf\[-i- ZmiEi,
=1

where H is the strict transform of H , and Eq,...,E, are the irreducible
components of the exceptional divisor 7*(0). Now, define

B =B\ (Eﬂ(UE]Uﬁ)>

J#i
Then, the Lefschetz numbers and the complex monodromy zeta function
are given by

A(hk) = Zr: miX(Ei), Z(f) = ﬁ(l _ tmi)X(Ez’)_
i=1, m;|k i=1

The Euler characteristic of the Milnor fiber is therefore
(19) X(F) = AR%) =) mix(E)).
i=1

When (H,0) defines an isolated singularity, both the characteristic poly-
nomial of the monodromy A(¢) and the Milnor number

p=dim H"(F,C) = deg A(t)

can be obtained from the zeta function as follows,

T (71)71
1 s 7,
Alt) = [t — H(t i )x(E)

=1

w=(=1)" [ -1+ imiX(Ei)}v

i=1
and in particular by (19), p = (—1)"[—1 + x(F)] holds.

Another contribution in the same direction is found in [GLM97], where
the authors give a generalization of A’Campo’s formula for the zeta function
via partial resolutions, that is, the map 7 : X — (C""! 0) is assumed to
be just a modification (i.e. the condition about normal crossing divisor in
the embedded resolution is removed). Also Dimca, using the machinery of
constructible sheaves, proved the same result allowing X to be an arbitrary
analytic space, see [DimO04], Th. 6.1.14.].
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The aim of this chapter is to generalize all the previous results, giving
the corresponding A’Campo’s formula and the Lefschetz numbers in terms
of an embedded Q-resolution, see Theorem below. Note that Veys
has already considered this problem for plane curve singularities [Vey97].

From now on, and depending on the context, we shall denote the mon-
odromy zeta function by Z(f), Z(f)(t), Z(f;t), Z¢(t) or Z(t), interchange-
ably. The same applies for the Lefschetz numbers and the characteristic
polynomial.

SECTION §IV.1
Toward A’Campo’s Formula

Before giving the precise statement, let us see some examples to motivate
A’Campo’s formula in this setting. First, note that the zeta function and
the Lefschetz numbers also exist in case of singular underlying spaces, such
as X (d; A). Moreover, if the function f is defined by a quasi-homogeneous
polynomial, then f: X(d; A)\ f~1(0) — C* is a locally trivial fibration and
the global Minor fibration is equivalent to the local one.

(IV.1.1). Let X(d; A) = C"/ug be a cyclic quotient singularity, not nec-
essarily written in a normalized form, i.e (d; A) = (d;a1,...,a,). Consider
f: X(d;A) — C a global algebraic function of the form f = z{* (analo-
gously one could proceed with z]"). Since it is a well-defined function, d
must divide aym. Let us write
e = ged(d, ay), d=de, a1 = aje.

Then d'|m and the equation 2 = 1 has m/d’ different solutions over the
space X (d; A), as one can easily check by direct computations.

Consider ¢ = exp(27i/m) a primitive m-th root of unity, it follows that
the corresponding Milnor fiber F = f~1(1) = {x € X(d; A) | 2* = 1} is
homeomorphic to the affine variety

m/d -1
LI {i¢ @2 )] € X (5 4) | 2, 20 €T,
i=0
which has the same homotopy type as m/d’ different points.

Let v : [0,1] — C* be a generator of the fundamental group of C*,
for instance «(t) = exp(2wit), and take [(z1,...,x,)] € F. Then the path
a:[0,1] — X(d; A) \ f~1(0) given by

&(t) = [(e%txl, x9,. .. ,I’n)]

defines a lifting of « with initial point [(z1,...,2,)].
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Thus the geometric monodromy h : F' — F' corresponds to the map

2mi

a(0) = [(z1, ..., xn)] =5 [(em 21, . .., 20)] = d(L).

From this expression, one deduces that the monodromy at the level zero
HO(h) : HO(F,C) — HOY(F,C) is the linear map C™/¥ — €™/ associated
with the matrix A = [ez] ... |e,,/a|e1], where {e1, ..., €y, /4 } is the canonical
basis of C™/? Finally, one has that

A(RF) = T ged(d,ar) if Tk, Zop(t) =1 ™ ged(dar)
0 otherwise;

(IV.1.2). The next step would be to consider a global function defining
a normal crossing divisor with more that one irreducible component, i.e.
f=a" ™ X(d; A) — C, k > 2. To simplify the main ideas, assume
also that ged(myq,...,my) = 1. Let us use the notation,

e=ged(d,a1,...,a;), d=de, a;=adae, (i=1,... k).
The Milnor fiber F = f~!(1) is homotopic to

{[(xl,...,xk)} € X(d;ar,...,ag) | "™ a)* = 1},
which can be identified with
F' = {[(ml,...,xk)] € X(dsal,... ap) | @™ = 1}.
As above, the path & : [0,1] — X (d; A) \ f~1(0) given by
a(t) = [(em 21,0, ..., 7))

defines a lifting of o : [0,1] — C*, «a(t) = exp(2mit), with initial point
[(z1,...,2p)] € F. Thus the geometric monodromy h : F' — F' corresponds
to the map

F(0) = [(@1, .- )] 2 [(em 21, -, 2)] = (L),
Hence H?(h)™ = Idgerc), Yq¢ = 0,...,n. Since H?(h) is a topological
invariant of f, one can also prove that
Hi(h)™ =1d*,...,HY(h)™ =1d*.
Consequently, all the induced automorphisms on the cohomology groups

Hi(h) are indeed the identity maps.
One finally has that

AR = X(F) =0, Z(-ait) = (- ) = 1
Note that (C*)¥ > F' := {2 = 1} — F' is an unramified

covering of d' sheets and F’ is homotopic to the (k — 1)-dimensional real
torus Tx_1 := (S1)¥~1. This can be used to show that y(F) = x(F') = 0.
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The general case ged(my, ..., my) # 1 is discussed later where the Lef-
schetz fixed point theorem is used to prove that all Lefschetz numbers are

zero too, see Lemma |(IV.3.11)]

SECTION §IV.2
Partial Statement and Examples

Now, from the discussion above, the following result becomes very natu-
ral. See Theorem [(IV.3.14)[for a more general and complete result allowing
abelian quotient singularities in the ambient spaces.

Theorem (IV.2.1). Let f : (C**1 0) — (C,0) be a non-constant analytic
germ defining an isolated singularity and let H = {f = 0}. Assume that
7 X — (C"1,0) is an embedded Q-resolution of (H,0) having X cyclic
quotient singularities. Let Xo = n~1(H) be the total transform and denote
by S = 71(0) the exceptional divisor. Consider Sy, 4 to be the set

the equation of Xg in s is given by the function
seS | a": X(d;A) — C, where z; is a local coordinate
of X in s and d/ ged(d,a;) = d'.

Then, the characteristic polynomial of the complex monodromy of the
germ (H,0) is

(="
1 /
2 A e _ m/d _ 1 X(Sm@’)
(20) ()= | T )
m,d’

Remark (IV.2.2). If all cyclic quotient singularities appearing in X are
written in their normalized form and ged(d,a;) # 1, then X \ Xy must
contain singular points. This, however, contradicts that 7 is an embedded

Q-resolution. Therefore, after normalizing, one can always assume d = d’.

This theorem has already been proven by Veys in [Vey97] for plane
curve singularities, that is, for n = 1. If all d’s are equal to one, then
7: X — (C"10) is an embedded resolution of (H,0) in the classical sense
and one obtains exactly the formula by A’Campo [A’C75]. We postpone the
complete proof of the theorem, devoting the rest of this section to showing
several examples.

The tools developed in Chapters [[] are used without explicit mention.
The rational self-intersection numbers of the exceptional divisors, when com-
puting an embedded Q-resolution of the singularity, see Chapter [[II} are
omitted because they are not needed in Theorem
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Example (IV.2.3). Let f : C*> — C be the polynomial function given by
f=xP + y4. Let us write

e = ged(p, q), D = Die, q = qie.

Consider 7 : @2((]1,])1) — C? the (g1, p1)-weighted blow-up at the origin.
Recall that @Q(ql,pl) = Up U U; has two singular points corresponding to
the origin of each chart.

In Uy = X(q1;—1,p1), the total transform of f is given by the function
aPre(1 4 y?). The equation y¢ = —1 only has q/q1 = e different solutions
in Uy and the local equation of the total transform at each of these points
is of the form zP191¢y.

Hence 7 is an embedded Q-resolution of C = {f = 0} where all spaces
are written in their normalized form.

Uo (e) U1
. ° m=piqie

(q1;—1,p1) H H (p1;q1,—1)

FiGURE IV.1. Embedded Q-resolution of f = xP + y9.

The set Sy, 4 is not empty for the pairs (m,d) = (p1qie, 1), (p1g1€,q1),
and (p1qie,p1). Their Euler characteristics are

X(Splfhe,l) =2- (6 + 2) = —¢
X(Sprgre,qr) = X(Sprgrepr) = 1.

Now, we apply Theorem |(IV.2.1)| and obtain
(t— D —1)e
(P —1)(t9—1)

Another interesting way to calculate the characteristic polynomial could
be the following. Consider 7 : C?(¢q,p) — C the (g, p)-weighted blow-up at
the origin. Now Uy = X(gq; —1, p) and the equation of the total transform in
this chart is 2P4(1 + y?). As above, the map 7 is an embedded Q-resolution
of C and our formula can be applied. However, the exceptional divisor,

At) =

outside the two singular points, is not given by xP? as one can expect at first
sight. The reason is that X (¢; —1,p) is not written in its normalized form.

P s
(¢:—1,p)

FiGure IV.2. Non-normalized cyclic quotient singularity.
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The isomorphism X(¢;—1,p) = X(q1;—1,p1) sends the well-defined
function zP? : X(¢;—1,p) — C to z'e X(q1;-1,p1) — C, and thus the
required equation is z'e 1 C2 = C. After applying the formula, one obtains
the same characteristic polynomial.

This example shows that although one can blow up using non coprime
weights, if possible, it is better to do it with the corresponding coprime
weights to simplify calculations. However, the normalized condition is not
necessary in the hypothesis of the statement.

Example (IV.2.4). Assume p1/q1 < p2/qq are two irreducible fractions and
ged(qr,g2) = 1. Let C be the complex plane curve with Puiseux expansion
p1 P2
Yy=x% +xwe.

Consider 7 : @2(q1,p1) — C? the (qq, p1)-weighted blow-up at the ori-
gin. The exceptional divisor & has multiplicity p1g1¢2 and it contains two
singular points of type (¢1;—1,p1) and (p1;¢1,—1). The strict transform
C of the curve and &y intersect at one smooth point, say P. The Puiseux
expansion of C in a small neighborhood of this point is

P291 —P192
y =X 92 s

and thus m; is not a embedded Q-resolution.

((D) °

c &
\: i . —x—>
50 <_2 —————¢ ————————o— 50

(@) P (p) (q1) &1 (p1)

P2

Py Py
F1Gure IV.3. Embedded Q-resolution of C = {y = mqi + }

Now let 7o be the (g2, p2q1 — p1g2)-blow-up at P. The multiplicity of
the new exceptional divisor & is ¢2(p1q1g2 + p2q1 — p1g2). It intersects
transversely & at a singular point of type

(p2g1 — P1g2; G2, —1)

and also contains another singular point of type (g2; —1,p2q1). The strict
transform of the curve is a smooth variety and it cuts transversely & at a
smooth point.

Hence the composition 71 o o defines an embedded Q-resolution of the
curve C C C? where all cyclic quotient spaces are written in their normalized
form. Figure illustrates the whole process.
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The corresponding Euler characteristics are x = 1, for the three singular
points, and

X (&0 \ {3 points}) = x(&1 \ {3 points}) = —1.

Note that the singular point of type (p2¢1 — p1¢g2) does not contribute
to the monodromy zeta function, since it belongs to more than one divisor.
After applying formula , one obtains

(t — 1) (tp1q1q2 — 1) (tQ2(p1Q1QQ+p2q1—p1q2) _ 1)

Alt) = (tqu — 1) (tq1q2 — 1) (tp1q1q2+p2q1—p1q2 — 1) » p=degA(t).

In case q; and ¢ are not coprime, the same arguments apply and one
can find a formula for the characteristic polynomial of an irreducible plane
curve with two (and then with arbitrary) Puiseux pairs. These formulas are
quite involved and we omit them.

Example (IV.2.5). Let e, e, e3 be three positive integers and denote by

e = ged(er, ez, e3). Assume that w = (%, %2, %) is a weight vector of pair-

wise relatively prime numbers. Let C be the projective curve in P2 defined
by the polynomial
€2¢€3 €13 €12

F:mT—i—ya +Ze

Note that this polynomial is quasi-homogeneous of degree ejesez/e?. One

is interested in computing the Euler characteristic of C.

Consider 7 : @i’] — C3 the weighted blow-up at the origin with respect
to w and take the affine variety H = {F = 0} C C3. The space ((A:i =
Uop U Uy U U; has just three singular points, corresponding to the origin of
each chart and located at the exceptional divisor E = 7*(0) = P2. The

order of the cyclic groups are &, £

€1 s
2, 22, and <, respectively.

()

-~ [

]}DQ(Q €2 3) H eijeses
e’ e’ e ———
2
[ ] [ ]

() (=)

€1e3 €1€2

FiGUre 1IV.4. Embedded Q-resolution of 2 4 Yy e +z2 e

In the third chart Uy = X (£; < 22 —1), an equation of the total trans-

e’ e’ e?
form is
615253 6263 5163

27 (xTe 4y e +1).
Using Lemma |(I.1.16)] one sees that the exceptional divisor and the strict

transform are smooth varieties intersecting transversely. Thus 7 is an em-

bedded Q-resolution of H where all the quotient spaces are written in their
normalized form.
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The set Sy, q is not empty for m = eregez/e? and d € {1,942 @]

) 6’ e’ e
Since the intersection £ N H can be identified with C, the Euler character-
istics are
X(Sm,l) - _X(C)v
X(Sp, 1) = X(Sp 22) = X(Sppa) = 1.

‘e

From Theorem |(IV.2.1)| the characteristic polynomial of H is
) - )
(t—1)("EF -9
On the other hand, the Milnor number is known to be
b= () (22 ) (o)
e e e

Using that p = deg A(t), one finally obtains

A(t) = (t

e1es€
X(C)=e1+es+e3— 162 3.

Example (IV.2.6). Let p,q,r be three positive integers and consider the
polynomial function f : C*> — C given by
f=aP +yT+2".

To simplify notation, we set e; = ged(q, ), e2 = ged(p, ), e3 = ged(p, q),
e = ged(p, q,7), and k = ejezes. The following information will be useful
later:

ged(gr, pr,pq) = 22 = E,
e e
dy = ged (% %) _ %; ay = lem(ds, ds) = iql: — dyds
do = ged (%, %) = % ;i ag:=lem(dy,ds) = ejj: ,
ds := ged (%, %) = e(j; i as:=lem(dy,ds) = e:jj.

Take the weight vector w = £(qr,pr,pq) and let 7 : @S’J — C3 be the
weighted blow-up at the origin with respect to w. The new space

@iIUoUUlUUQ

has three lines (each of them isomorphic to P!) of singular points located
at the exceptional divisor E = 7*(0) = P2. They actually coincide with the
three lines Lo, L1, Lo at infinity of P2.
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In the third chart Us = X
transform is

(4, 5, 9%, —1), an equation of the total
2R (2P 4yl + 1),

where z = 0 is the exceptional divisor and the other equation corresponds
to the strict transform.

FiGURE IV.5. Embedded Q-resolution of f = xP + y9 + 2.

Worklng in this coordinate system, one sees that the line Lg (resp Ly)
and H intersect at exactly e; (resp. e2) points. Analogously, LQOH consists
of es points. Moreover, using Lemma we have that H and E are
smooth varieties that intersect transversely. Hence the map 7 is an embed-
ded Q-resolution of {f = 0} C C? where all the cyclic quotient spaces are
presented in their normalized form.

The Euler characteristics as well as the fractions m/d for the non-empty
sets Sy, q are calculated in the two tables below.

S'epqr 1 Sepqr _ep Sepqr _eq Separ _er
k k eges k ejes k ejeg
m epqr ar pr P
d k €1 €9 €3
X e1 +eg+e3 . . .
—€1 — €2 —€3
—x(C)
Separ eqr | Separ epr | Separ epq
7k k Tk E 0k
m/d q T
X 1 1
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Here we denote by C the variety in P2 defined by the quasi-homogeneous
polynomial 2P 4+ y? + 2". Recall that from Proposition |(1.2.5)] the map
P2 — P?(<L, 22, <) given by

ep eq er

[€:y: 2]y, — [xe2es @ yeres :z6162](32 o)
e’e’e

is an isomorphism and it maps the hypersurface C to

{x82:3 +y618 T e1¢2 _0}

By Example |(IV.2.5)] its Euler characteristic is

€1€e9€
X(C):€1+62+63— 162 3,

and finally, from Theorem |[(IV.2.1), one obtains the characteristic polyno-
mial of f,

G I G [ U
(t—1)(t7 — 1) (2 — 1) (L5 — 1)
Note that the Euler characteristic of C could also be obtained using
that the Milnor number is = (p — 1)(¢ — 1)(r — 1) = deg A(¢), as in the
preceding example.

Example (IV.2.7). Let f : C> — C be the polynomial function defined
by f = 2% 4+ hy(x,y, 2). Assume that C = {h,, = 0} C P? has only one
singular point P = [0 : 0 : 1], which is locally isomorphic to the cusp z?+y?,
ged(p, q) = 1. Denote k1 = ged(k, p) and ky = ged(k, q).

Consider the classical blow-up at the origin 7; : C3 — C3. In the third
chart, the local equation of the total transform is

Mk 2l yP) = 0.

The strict transform H and the exceptional divisor Ej intersect transversely
at every point but in P € C = EyN H. Also H \ P is smooth.

(&) ()

EiNEy ﬂ Ey

N Eq
FIGURE IV.6. Intersection of Ey (resp. Ey) with the rest
of components.

mEo
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One is therefore interested in the blowing-up at the point P with respect
to (kp, kq,pq). However, in order to obtain cyclic quotient spaces in their
normalized form, it is more suitable to choose w = (kk—i, %, 24 instead.

1R2 1R2 1R2
Let w9 be the weighted blow-up at P with respect to the vector w. The
local equation of the total transform in the second chart is given by the
polynomial function

L (m+k) _m, _k 441 — X kq  kp 4 e
{y” 2+t O}C Tiky Fiks' Eika )

where y = 0 represents the new exceptional divisor Ej.

The composition m = w1 o o is an embedded Q-resolution. The final
situation is illustrated in Figure see Chapter [VI]| for details.

The sets for which the Euler characteristic has to be computed are

Pq
Smi, Set, S&k%, Sg,kq2 , S& kfzz ; ! = %(m + k).

Clearly X (S, pg/kiks) = 1 X(St,p/ky) = —k2, and x(S¢ ¢/k,) = —k1, since
they are homeomorphic to a point, P*\ {k2+2 points} and P\ {k;+2 points}
respectively. The set S, 1 is P? \ C. Finally, we use the additivity of the
Euler characteristic to compute x(Se1).

Indeed, let D C P2?(ky,k2,1) be the variety defined by the equation
2Rk L ogk2 k1 — (. Note that, by Proposition D is isomorphism
to the surface

HNOE, = {zF + 294 4? =0} C P?

and, by Example (IV.2.5) (using e; = ki, e2a = ko, e3 = 1), its Euler
characteristic is k1 + ko + 1 — k1ko. Then,

X(S&l):3—(2+2+2+X(D))+k1+k2+4:k1/€2.

Every cyclic quotient singularity is written in their normalized form and
thus the generalized A’Campo’s formula can be applied with d’ = d,

(tm _ 1)X(IP>2\C) (tm+k _ 1) (tﬁ(m%) B 1)k1k2

A =
(t) t—1 (t%(m—kk) B 1)k1 (t%(m—i-k) _ 1)k2
2 C)
(tm _ 1)X(P \
= AR (TR,
| P

Let us explain the notation. The symbol Ap(t) denotes the characteristic
polynomial of C at P = [0 : 0 : 1], where the curve is locally isomorphic to
2%+ yP, and if A(t) = [[;(#™ — 1)%, then A*(¢) denotes

m; ged(m,k)a;
INOES| (tgcd(mwk) - 1) .

%
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The family of examples 2™ % + h,,(x,y, ), where h,, defines a reduced
projective plane curve such that Sing(h,,) N {z = 0} = () as a subset in P?,
i.e. Yomdin-Lé surface singularities, is studied in Chapter [VII

We conclude by emphasizing that in the classical A’Campo’s formula
one has to pay attention to compute the Euler characteristic while the mul-
tiplicities remain trivial. Using our formula we also have to take care of com-
puting the multiplicities and the order of the corresponding cyclic groups,
especially when the quotient singularity is not in its normalized form. Dis-

cussion |(I.1.15)[ and Lemma |(I.1.16)| are very useful in this sense.

SECTION §IV.3
Proof of the Theorem

One way to proceed is to rebuild A’Campo’s paper [A’C75], thus giving
a model of the Milnor fibration in our setting. This method is very natural
but perhaps a bit long and tedious. In [GLM97], the authors give a gener-
alization of A’Campo’s formula for the monodromy zeta function via partial
resolution but the ambient space considered there is still smooth and the
proof can not be generalized to an arbitrary analytic variety.

That is why a very general result by Dimca is used instead, see Theo-
rem below. This leads us to talk about constructible complexes of
sheaves with respect to a stratification and also about the nearby cycles as-
sociated with an analytic function. Using this theorem, only the monodromy
zeta function of a monomial defining a function over a quotient space of type
X(d; A) is needed.

IV.3-1. A result by Dimca

To state the result we need some notions about sheaves and constructibil-
ity. We refer, for instance, to [DimO04] and the references listed there for
further details.

(IV.3.1). Consider Sh(X, Vectc) the abelian category of sheaves of C-vector
spaces on a topological space X. To simplify notation its derived category is
often denoted by D*(X). The constant sheaf corresponding to C is denoted
by Cx; it is by definition the sheaf associated with the constant presheaf
which sends every open subset of X to C. If U C X is connected open,

then Cx(U) = C.
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Let f : X — Y be a continuous mapping between two topological spaces.
The direct image functor f, : Sh(X, Vectc) — Sh(Y, Vectc) is defined on
objects by (foF)(V) = F(f~1(V)), for any sheaf F on X and any open
set V C Y. This functor is additive and left exact; its derived functor is
denoted by Rf, : D*(X) — D*(Y).

The inverse image functor f=! : Sh(Y, Vectc) — Sh(X, Vectc) is defined
as f~1G being the sheaf associated with the presheaf

Ur— lim G (V).
fao)cv
Here G is a sheaf on Y and U C X is open. This functor is exact and
hence the corresponding derived functor Rf ! : D*(Y) — D*(X) is usually
denoted again by f~1.

If f(U) C Y is open, then (f~!1G)(U) = G(f(U)). In particular, if the
map iy : U — X denotes the inclusion of an open set, then il}l}" = Flu.
The restriction to an arbitrary subspace Z C X is defined by

Flz =1i;'F,

where i1z : Z — X is the inclusion.
Using this notation one has Cy|z := z'}lQX =C,.

(IV.3.2). Let X be a complex analytic space and S = {X};ecs a locally
finite partition of X into non-empty, connected, locally closed subsets called
strata of S. The partition § is called a stratification if it satisfies the following
conditions:
(1) The boundary condition, i.e. each boundary 9X; = X; \ X; is a
union of strata in S.
(2) Constructibility, i.e. for all j € J the spaces X and 9X; are closed
complex analytic subspaces in X.

(3) Stratification, i.e. all the strata are smooth constructible subvari-
eties of X.

Definition (IV.3.3). Let S = {X},cs be a stratification on X.

(i) A sheaf complex F* € D*(X) is called S-constructible if the restric-
tion of each cohomology sheaf H?(F*)|x, is a Cx -local system of finite rank,
that is, one has the isomorphisms of C Xx,-vector spaces

Hq(.F.)’Xj ~ ng;q

(ii) Given u : F* — F* an automorphisms of Cy-vector spaces, the
complex F* is called equivariantly S-constructible with respect to u, if it is
S-constructible and the induced automorphisms on the cohomology groups
HY(u)y : H™(F®)y — H™(F®), are all conjugate.
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(IV.3.4). Let X be a complex analytic variety and g : X — C a non-
constant analytic function. Consider the diagram,

g HO) s X LOX N\ g1 0) —— E

fl#J{f

* ~
C exp C*

where i : g71(0) < X and j : X \ g~!(0) — X are inclusions, C* is the
universal cover of C*, and E denotes the pull-back.

Definition (IV.3.5). Let F* € D*(X) be a complex. The nearby cycles
of F* with respect to the function g : X — C is defined to be the sheaf
complex given by

Vg F* =i R(jo®).(jo )\ F* € D*(g7(0)).

The nearby cycles is a local operation in the sense that if U C X is
an open set, then (Y3 F*)[w = 1y, F*|w holds. Also note that ¢, F* only
depends on g and F*|x\4-1(g)-

There is an associated monodromy deck transformation h : £ — FE
coming from the action of the natural generator of 71 (C*) which satisfies
7o h = 7. This homeomorphism induces an isomorphism of complexes

My : g F® — g F*.

For every point € g~1(0) there is a natural isomorphism from the stalk
cohomology of 1, F* at x to the cohomology of the Milnor fiber at x with
coefficients in F*, that is, for all € > 0 small enough and all ¢ € C* with
|t| << €, one has

(21) H(1hy F®)p = HY (g7 (t) N Be(w), F)
~ 191 () N Bula), 7).

where the open ball B¢(x) is taken inside any local embedding of (X, z) in
an affine space.

The monodromy morphism M, , on the left-hand side corresponds to
the morphism on the right-hand side induced by the monodromy homeo-
morphism of the local Milnor fibration associated with g : (X, z) — (C,0).

Now we are ready to state Dimca’s theorem. To be precise, he only
considered the case when the ambient space is smooth M = C"'!, see
below. Repeating exactly the same arguments, one obtains the result for
any analytic variety.
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Theorem (IV.3.6) ([DimO04], Th. 6.1.14). Let f : (M,p) — (C,0) be
the germ of a mon-constant analytic function which is defined on a small
neighborhood U of p. Let H be the hypersurface {x € U | f(x) = 0}. Assume
m: X — U is a proper analytic map such that m induces an isomorphism
between X \ 7 1(H) and U \ H.

Let g = f o denote the composition and j : X \ 7 *(H) — X the
inclusion. Let S be a finite stratification of the exceptional divisor 7=1(0)
such that 1, (Rj*QX\W_1(H)) is equivariantly S-constructible with respect to
the semisimple part of My. Then,

A = S $)Agzs):  2(f) = [] 29,254,
SeS SeSs

where xg is an arbitrary point in the stratum S and Z(g,xs), A(g,xs) are
the zeta function and the Lefschetz number of the germ g at xg.

Remark (IV.3.7). Let 7* = Rj.Cx\,1(y). Using the notation of the
previous theorem, the isomorphism of tells us that

/Hq(wgf.)x = Hq(an(C)

where F, is the Milnor fiber at x.

This clarifies when the complex of sheaves 1, F* is equivariantly S-
constructible with respect to the semisimple part of M. In particular, this
condition is satisfied, for instance, when the local equation of g along each
stratum is the same.

IV.3-2. Zeta function of a normal crossing divisor

Let M = C"/uq be a quotient space of type X(d; A), not necessarily
cyclic or written in a normalized form. Recall the multi-index notation:

di a1 ... a
L i d=(d,....d),
X(dA) =X ) 0 )
a; = (alj, e 7a,,j).
d,« Apr1 ... Qpp
In Section [[TT, we have seen that for each j = 1,...,n there is an iso-
morphism

X(d;a)) — C
(22) .
[xj] = xjjv

where

0 =lc < d dr )
i =lem | ———-—r, ., ————— .
! ged(dy, aij) ged(dy, ary)
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Given a homogeneous polynomial defined over M, the classical formula
for the monodromy zeta function depending on the degree of the polynomial
and the Euler characteristic of the Milnor fiber seems to be more compli-
cated in this setting. Using the techniques developed in Chapter [VI] one
can provide formulas at least for plane curves and surfaces but the trick of
applying the fixed point theorem does not work anymore. However, for our
purpose, only the normal crossing case is needed.

(IV.3.8). We first proceed to compute the geometric monodromy of a homo-
geneous polynomial f: M — C of degree N := deg(f). Let o : [0,1] — C*
be a generator of the fundamental group of C*, for example, a(t) = exp(2mit)
and consider [x] € F = f~1(1). The path

a: 0,1 — M\ fY0),

t — [(e%tﬂvl, cee 6%’53:”)]
defines a lifting of a with initial point [(z1,...,2,)]. Thus the geometric

monodromy h : FF — F corresponds to the map

h 2w 2mi

a(0) = [(z1,...,2n)] — [(eN z1,....eN x,)] = a(l).

As in the case M = C", this also works for quasi-homogeneous poly-
nomials, replacing the exponentials for suitable numbers according to the
weights.

(IV.3.9). Let us study the monodromy zeta function in the simplest normal
crossing case, i.e. f =" : M — C. The Milnor fiber

Fo= (1) = {d € M |2} = 1)

has the same homotopy type as F := {[(x1,0,...,0)] € M | ]"* = 1} which
can be identified with

{[z1] € X(d;ay) | 27" =1}.

In fact, r : F — F' : [x] — [z1] is a strong deformation retraction.
Since h(F') C F’, the geometric monodromy h : F' — F' is homotopic to its
restriction h' := h|p : F' — F’. Using the isomorphism (22)),

X(d;a;) ~C: [z] — 2™,

the claim is reduced to the calculation of the zeta function of the polynomial
1,71711/61 : C — C. But this is known to be 1 — ¢/,
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(IV.3.10). Assume now that f = z{"*---2,"* : M — C, k > 2. The Milnor
fiber F := f~1(1) has the same homotopic type as

Slx (k)

Ha

F' ::{[(:cl,...a:k)] € xS

mi my
1),

where jiq defines an action of type (d;ai,...,a;) on the space (S')¥. As
above, there is a strong deformation retraction

r:F — F/,

x] K%ﬁwwﬁﬁﬁwnﬁﬂ

satisfying that h(F') C F'.
We shall see that the Lefschetz numbers A((h')7) = A(h?) equal zero for
all j > 1. This would imply Z;(t) = 1 by virtue of . Two cases arise:

e If (h')7 does not have fixed points, then by the classical fixed point
theorem A((h')7) = 0.

e Otherwise, (h’)7 is the identity map and A((h')?) = x(F’) = 0.
Note that there is an unramified covering
(SHES Fli= {af e =1} T F

with a finite number of sheets. The first of the preceding spaces F has e =

ged(my, ..., my) disjoint components, each of them homotopically equiva-
lent to a real (k — 1)-dimensional torus T;_; = (S1)¥~1. Tt follows that
1
F') = —1)=0.
W) = G ex(Ti)

Note that the condition £ > 2 has only been used at the end. In the
case k = 1, one has

degm =101, e=my, x(To)=1, x(F')=my/l.
We summarize the previous discussion in the following lemma.

Lemma (IV.3.11). The monodromy zeta function of a normal crossing
divisor given by x" -z : X(d; A) - C, k> 1, is

1=t k=1
1 k> 2,

Z(xgnlx;n’“ : X(d;A) = G t) :{

where {1 = lem <dl d,«)
! ged(dy,ar1)’ 7 ged(dy, ar) )
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As we see, the strata belonging to more than one irreducible components
do not contribute to the monodromy zeta function. This reflects the good
behavior of abelian quotient singularities with respect to normal crossing
divisors. By contrast, non-abelian groups seem to work differently, see
where it is shown that “double points” may contribute to Z(f;t).

IV.3-3. A’Campo’s formula for embedded Q-resolutions

Let f: (M,0) — (C,0) be a non-constant analytic function germ and
let (H,0) C (M,0) be the hypersurface defined by f. Given an embedded
Q-resolution of (H,0), 7 : X — (M, 0), consider as in the classical case,

I ::EA(EZ-Q( U Ekuﬁ)>

k=1,...,s
k#1

where E1, ..., Es are the irreducible components of the exceptional divisor
of w, and H is the strict transform of H.

Definition (IV.3.12). Let X be a complex analytic space having only
abelian quotient singularities and consider D a Q-divisor with normal cross-
ings on X. Let ¢ € D be a point living in exactly one irreducible component
of D. Then, the equation of D at ¢ is given by a function of the form
2" X(d; A) — C, where z; is a local coordinate of X in g.

The multiplicity of D at ¢, denoted by m(D, q), is defined by

m d1 Cl,«
m(D,q) := e—j, ¢; =lem (gcd(dl,alj)7' “’gcd(dr,am)) )
If there exists 1" contained in exactly one irreducible component of D
and the function ¢ € T — m(D,q) is constant, then we use the notation
m(T) := m(D,qp), where g is an arbitrary point in 7.

Remark (IV.3.13). The integer m(D, q) does not depend on the type (d; A)
representing the quotient space. A more general definition, including the
case when ¢ € D belongs to more than one irreducible component, will be

given in [[V.14]

To simplify the notation one writes Ey = Hand S = {0,1,...,s} so
that the stratification of X associated with the Q-normal crossing divisor
7 Y(H) = U,cq Ei is defined by setting

(23) E} = ( Nier Ez) \ (Ui§é[ Ez‘),
for a given possibly empty set I C S. Note that, for i = 1,...,s, one has

that Ef[jz} = Ez
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Let X = |_|je 7 Qj be a finite stratification on X given by its quotient
singularities so that the local equation of g = fow at ¢ € Ef NQ; is of the
form

") B/G — C,

where B is an open ball around ¢, and G is an abelian group acting diagonally
as in (d; A). The multiplicities m;’s and the action G are the same along each
stratum E7 N @, i.e. they do not depend on the chosen point ¢ € £ N Q.
Let us denote

Evz‘,j = Ez N Qj, myj = m(Em).

The following result is nothing but a generalization of [(IV.2.1)| written
in the language of divisors. To use the classical convection on indices, M =
C™" /uq (instead of C"/pq) in the theorem below.

Theorem (IV.3.14). Let f : (M,0) — (C,0) be a non-constant analytic
function germ and let H = {f = 0}. Consider F the Milnor fiber and
h : F — F the geometric monodromy. Assume m : X — (M,0) is an
embedded Q-resolution of (H,0). Then, using the notation above, one has:
(i=1,....s, j€J)

k
(1) The Lefschetz number of h¥ = ho @) oh:F — F, k>0, and the

Euler characteristic of F' are
ARy =" miex(Eig),
1,9, klm; ;
X(F) =Y mij-x(Eij) = AR°).
2
(2) The local monodromy zeta function of f at 0 is
Z(t) =[] (@ —meapB.
.3

(3) In the isolated case, the characteristic polynomial of the complex
monodromy of (H,0) C (M,0) is

(="

N, o

/L’J

and the Milnor number is

p= (DM =1 Y ma x(Bry)| = deg A®)
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PROOF. Only the proof of (2) is given; the other items follow from this
one. Using that g = H and S = {0,1,...,s}, the support of the total
transform can be written as

m Y (H)=HUr'(0) =] E:
€S
Let X = | |;cg E7 be the stratification of X given in associated with
this Q-normal crossing divisor. This partition gives rise to a stratification
on 7 1(0) = | | B, where the intersection is taken over

IeP(S)\{0,{0}}.

However, the equivariant property is not satisfied in general, since the
strata may contain singular points of X. Instead, let S be the following finer
stratification

S= {E; N Qj}]cs, jeJ*
10,70}

Now the family S is a finite stratification of the exceptional divisor of 7
such that the complex ) ror (RjxC x\ r—1(p1y) 18 equivariantly S-constructible,
where

jiX\7m Y H)— X

is the inclusion. Hence Theorem |(IV.3.6)| applies. Moreover, given ¢ €
771(0), there exist I = {i1,...,ix} CS, k>1(k=1=1i #0),and j € J
such that the local equation of g := f o7 at ¢ is given by the function

gk B;/G; — C.

11 23

The numbers m;,’s and the action G are the same along each stratum
of §. By Lemma the strata with £ > 2 do not contribute to the
monodromy zeta function.

Take x7 = x;; an arbitrary point in E7 N @);, then from the previous
discussion one has

Z(f)=[1 2@g.2r)= [ 2Z(g,z1 ;")

TeS ICS, jeJ
I1#0,{0}
EO' n j . I
= H Z(g,CC{l}’])X( {i} QJ) — H (1 o tml,])X(Ez,])‘
=1, i=1,....8
jet i

Above, Lemma|(IV.3.11)|is used for the computation of the monodromy
zeta function at x(;) ;. Observe also that Efi} NQj = Ev'iyj. Now the proof
is complete. O
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Remark (IV.3.15). Let X =|];.; @ be another finite stratification of X
such that the function

q € E;N Q) — m(E;,q)

is constant. Then the previous theorem still holds replacing Ez‘,j =E;N Qj
by E; N Q).

Remark (IV.3.16). When Sing(M) C H, then M \ H is smooth and thus
so is X \ 7~1(H). Consequently, all singularities of X are contained in the
total transform 7~ !(H), and the numbers m; ;’s take the simple form

_m
lem(dy, ..., d,)’

Mij =

after having normalized the types involved in the corresponding embedded

Q-resolution of the singularity, cf. [(IV.2.2)]

SECTION §IV.4
Zeta Function of Not-Well-Defined Functions

In what follows, the monodromy zeta function associated with not well-
defined functions over M = X (d; A) is needed. Assume f € Clzy,...,z,] is
a polynomial such that the following condition holds for all P € C™,

f(P)=0 = f(6a-P)=0, V& € pa.
Then the zero set {[x] € M | f(x) =0} =: {f = 0} C M is well defined,

although f may not induce a function over M.

Proposition (IV.4.1). Let f € Clx1,...,zy] be a reduced polynomial. The
following conditions are equivalent:

(1) VP € C", [f(P) =0 = f(§a- P) =0, Véa € pa].
(2) 3v € N" such that f(£q - x) = Y f(x), V€q € pia-
(3) 3k > 1 such that f*:= f- ¥ .f : M — C is a function.

PROOF. The only non-trivial part is perhaps (1) = (2). Define g;(x) for
each i =1,...,r to be the polynomial

gi(x) = f((1,.., Gy 1) - %) = F(G - x),

where (; is a fixed primitive d;-th root of unity. By (1), since f is reduced,
one has

g € IV(f) == (f).
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There exists h; € C[x] such that g; = h;f. Taking degrees the polyno-
mials h;’s must be constants. But,

Fx) = f(¢ %) =g x)

= hi- f(G" T x) = = b f(x).
Hence h; = ¢;* for some v; € N. Now the vector v = (v1,...,v,) € N
satisfies (2) and the claim follows. O

The following example shows that the reduceness condition in the state-
ment of the previous result is necessary.

Example (IV.4.2). Let f = (22 + y)(22 — y)® € C[z,y] and consider the
cyclic quotient space M = X(2;1,1). Then {f = 0} C M defines a zero
set but there is no k such that f* is a function over M. This is basically
Example [(I1.2.9)]

(IV.4.3). If f: X(d; A) — C is a well-defined function, using A’Campo’s
formula, one easily sees that Z(f*;t) = Z(f;t*). Therefore, when f is not
a function but is f* is, it is natural to define the monodromy zeta function
of f as follows

Z(ft) = Z(f5 7).
One can prove that it is well defined, that is, it does not depend on k.
Indeed, assume that f! also induces a function over M, for some | > 1.

Using Bézout’s identity for k,! we have that 84 . Mf — C is a function
too. Denote e := ged(k,l), k = kie, and [ = [ye. Then,

Z(fF5t8) = Z(FReeme) = 20 ) = Z(1%5 000 ) = Z(f540),

The zeta function defined is a rational function on C[t%], where k is
the minimum [ > 1 such that f! is a function over M. When f itself is a
function, that is £ = 1, then it is a rational function on C[t] as usual.

The Euler characteristic of the Milnor fiber and the Milnor number are
taken by definition as

Xg :=deg Z(f;t):
pp = (=1)"(=1+xy),
where the degree of t/* is 4 /k. They are, in general, rational numbers and
they verify
(—1)"(1 — k) + e
’ :

Ky =
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In this situation, our generalized A’Campo’s formula can be applied
directly to f, that is, without going through f*. See Section for the
notion of embedded Q-resolution in this setting. Note that in this case, the
numbers m; ;’s of Theorem are rational numbers.

Let us see an example.

Example (IV.4.4). Let f = 2%°(22 +y3) € C[z,y] and consider the space
M = X(d;p,q) not necessarily written in a normalized form but assume
ged(d, p,q) = 1 and d|(2p — 3¢) hold. Then f defines a zero set but does not
induce a function over M.

Figure represents an embedded Q-resolution of {f = 0} ¢ M
which has been obtained with the (m, m)—weighted blowing-up at
the origin. The numbers in brackets are the order of the cyclic groups
after normalizing and the others are the multiplicities of the corresponding

divisors.

a 1 b
ged(d,q) ged(d,p)
3a+2b+6
ged(d,p) ged(d,q)

m
()] | it
ged(d,q) ged(d,p)

FIGURE IV.7. Q-resolution of {x“yb(xz +93) = O} C X(d;p,q).

Hence the monodromy zeta function, the Euler characteristic of the Mil-
nor fiber, and the Milnor number are:

Z(t)=(1—t")
Xf:_m7
uf:m+1.

Here a, b are assumed to be non-zero, since otherwise the singular points
of the final total space would also contribute to Z(f;t). We show some
special values for jiy.

(d,p, Q) (6a372) (17_’_) (6’3)2)
(a,b) (2,3) (1,1) (1,1)
1 4 12 17/6

Observe that the first two values correspond to the polynomial functions
ry(x +y) and zy(2? + 9°) defining over C2, respectively.
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(IV.4.5). In the previous example, X (d;p, q) can be normalized to

d D q
* <(d7p)(d, q)" (d,p)’ (d, q)) '

Under this isomorphism the polynomial f = z%®(2? 4 4?) is sent to

a

_b _2 _3
x @) - @) (x<d,q> +y<d,p>),

which is not a polynomial in general. This seems to force one to work with
non-normalized spaces.

However, since d|(2p — 3q) and ged(d,p,q) = 1, then ged(d, q)|2 and
ged(d, p)|3. Thus the preceding expression is a polynomial times a monomial
with rational exponents.

This fact is not a coincidence as the following result clarifies, see also
Remark Although it can be stated in a more general setting, to
simplify the ideas, we only consider polynomials in two variables over cyclic
quotient singularities.

Proposition (IV.4.6). Let d,p,q be three numbers, ged(d,p,q) = 1. Let
f(z,y) € Clz,y] be a polynomial such that

[z, &y) = &1 f (. y).

Ifat f(z,y) and y { f(z,y), then f(at/edlda) yl/edldr)) is again a
polynomial.
As a consequence, an arbitrary polynomial g(x,y) satisfying

9(&x,&5y) = Eq9(x,y),

is converted after normalizing X (d; p, q) into a polynomial times a monomial
with rational exponents, that is, it can be written in the form,

1 1
g(azm,ym) = xaybh(x’ y)a
where h(z,y) € Clz,y] and a,b € Q.

PROOF. Since y { f(z,y), there exists &’ > 0 such that 2*' is a monomial
of f. The action is diagonal and does not change the form of the monomials.
Hence z¥ has the same behavior with respect to the action as f, that is,
kP gk — cogk | This implies that d|(k'p—v). Take k > 0 such that k = —&’
modulo d.

Now z*f(x,y) : X(d;p,q) — C is a function with = { f(x,y). Then
ged(d, q)|k and f(z'/2d(@9) 1) is a polynomial, see Remark Anal-
ogously the expression f(z, yt/ ng(d’p)) is a polynomial too and the proof is
complete. O
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(IV.4.7). As for weighted projective planes, let F' € C[z,y, z] be a (p,q,7)-
homogeneous polynomial with ged(p, ¢, 7) = 1. The monodromy zeta func-
tion of F(x,y, z) at a point of the form [a : b: 1] is defined by

Z(F(x,y,z), [a:b:1]; t) = Z(f(x,y, 1), (a,b); t).

Note that f(&z, &4 1) = geg(f)f(x, y, 1) and thus f(z,y, 1) satisfies the
conditions of Proposition |(IV.4.1)[(2), where the quotient space is simply
M = X(r;p,q). Therefore the expression above equals

Z(f(x,9,1)", (a,b); V7).

Analogously, the zeta function at every point of P?(p, ¢, 7) is defined and one
sees that it is independent of the chosen chart.

This can be generalized to spaces like P!’ /uq, where pq is an abelian
finite group acting diagonally as usual.

Remark (IV.4.8). To define the monodromy zeta function for polynomials
defining a zero set but there is no k such that f* is a function over the
quotient space, one could use A’Campo’s formula and try to prove that
the rational function obtained is independent of the chosen embedded Q-
resolution. We do not insist on the veracity of this fact because it is not the
purpose of this work.

Example (IV.4.9). We continue here with Example Blowing up
the origin of X (2;1,1) with respect to the weights (1,2), an embedded Q-
resolution of {f = 0} C X(2;1,1) is computed and thus it makes sense to
define the zeta function using this resolution.

(1 —tH)(1 —t2)
(1—1%)

8 ° Zr ® Z(t) =
(2;1,1) ‘ (4;1,1)

FIGURE IV.8. Embedded Q-resolution of {(2? + y)(x? —
y)? =0} C X(2;1,1) and its monodromy zeta function.

SECTION §IV.5
Why Abelian? D4 as a Quotient Singularity

All over the chapter, the ambient space X is assumed to be C" /G, where
G is an abelian finite subgroup of GL(n,C). In this final part, using Dy as
a quotient singularity, it is exemplified the behavior for non-abelian groups.
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As we shall see, double points in an embedded Q-resolution of a well-
defined function f : X — C contributes, in general, to its monodromy
zeta function. In this sense abelian groups are the largest family for which
Theorem applies.

Let C? with coordinate (z,y) and consider the subgroup of GL(2,C)
generated by the matrices

i 0 0 -1
=) =0
Thus A? = B?2 = (AB)? = —Id,. This group of order 8, often denoted by
BDsg, is called the binary dihedral group. The quotient singularity C2/BDg
is denoted by Dj.

Let us compute the zeta function of f := (zy)™ : Dy — C, where m is an
even positive integer so that the map is well defined. Consider = : C2 - 2
the usual blow-up at the origin. The action BDg on C? extends naturally to
an action on C2 such that the induced map T : @Q/BDS — C?/BDg =: Dy
defines an embedded Q-resolution of {f =0} C Djy.

More precisely, there are three quotient singular points all of them of
type (2;1,1) located at the exceptional divisor. They correspond to the
points [0 : 1], [L : 1], [i : 1] € P1/BDs. The strict transform intersects
transversely the exceptional divisor at P := ((0,0),[0: 1]) and the equation
of the total transform at this point is given by z™y™ : X(2;1,1) — C, see

Figure [V.9]

(2;1,1)
m PY S
(2;1,1) (21,1) P
m

F1Gure I1V.9. Embedded Q-resolution of {(zy)™ = 0} C Djy.

From Theorem|(IV.2.1), the monodromy zeta function of f and the Euler
characteristic of the Milnor fiber are

(1—tm/2)2 1 —¢m/2

T—tm 142
In particular, Z(t) is not trivial although f defines a “double point” on Dy,
as claimed.

Z(t) =

X(F)=degZ(t) =0.






Mixed Hodge Structure on the Cohomology of the
Milnor Fiber

Steenbrink in [SteT7| gave a mixed Hodge structure (MHS) on the co-
homology of the Milnor fiber using a spectral sequence that is constructed
from the divisors associated with the semistable reduction of an embedded
resolution. The aim of this chapter is to describe explicitly a similar spectral
sequence converging to the cohomology of the Milnor fiber starting with an
embedded Q-resolution.

The main idea behind this construction is that in the classical case af-
ter considering the semistable reduction the ambient space already contains
quotient singularities. We prove that the same is true for embedded Q-
resolutions and thus the construction by Steenbrink with the spectral se-
quence can be adapted to provide a MHS on the cohomology HY(F,C).

Since the embedded Q-resolution can be chosen so that every excep-
tional divisor contributes to the complex monodromy, our spectral sequence
is better in the sense that less divisors will appear in the semistable reduc-
tion and thus the combinatorial complexity of the spectral sequence will be
simpler, cf. [Mar11b].

SECTION § V.1
The Semistable Reduction

This tool was introduced by Mumford in [KKMS73l, pp. 53-108] and
roughly speaking the mission of the semistable reduction is to get a reduced
divisor that provides a model of the Milnor fibration. The spectral sequence
converging to the cohomology of the Milnor fiber will be defined in terms
of this reduced divisor, see Section Here we present a more general
approach than the needed for the Milnor fibration.
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(V.1.1). Let X be a complex analytic variety and let g : X — D% be a non-

constant analytic function. Assume X only has abelian quotient singularities

and ¢g~1(0) is a Q-normal crossing divisor, that is, g is locally given by a

function of the form z™ - - - z;"" : X(d; A) — C. Let e be the least common

multiple of all possible multiplicities appearing in the divisor g~!(0) and

consider o : Df71 Je — D% the branched covering defined by o(t) = t°.
Denote by (X1, ¢1,01) the pull-back of g and o.

g1 2
X; — D2,

2
X ——Dj

The map o7 is a cyclic covering of e sheets ramified over g='(0). If
F denotes the Milnor fiber of g : X — C, then o7 '(F) has e connected
components which are projected diffeomorphically onto F'.

We have not yet completed the construction of the semistable reduction
because X7 is not normal. Indeed, given P € g~!(0) there exist integers
k > 0 and my,...,mp > 1 such that

g(zo, ..., xn) = x4 - xZ”“ : B2n+2/ud — C,

where B?"*2 is an open ball of C"*! and the group pq acts diagonally
as in (d; A). Denote by P; the unique point in o7 '(P). Then, X; in a
neighborhood of P is of the form

(24) {([(:co,...,xn)],t) € X(d;A) x C ‘ tezxgl()...lek}’

and hence the space X7 is not necessarily normal.

Let v : X — X; be the normalization and denote by g := ¢g1 o v and
0 := o1 ov the natural maps. The normalization process has essentially two
steps when the corresponding ring is a unique factorization domain (UFD).
First, separate the irreducible components, and then find the normalization
of each component. In the latter case, the ring in question is a domain and
the following result applies.

Lemma (V.1.2). Let A C B be an integral extension of commutative rings.
Suppose that B is an integrally closed domain such that Q(B)|Q(A) is a Ga-
lois extension. Then, the normalization of the ring A is A = BGa(Q(B)|Q(4))

PROOF. Since B is normal and the extension A C B is integral, then
A= BnNQ(A). Now the statement follows from the Galois condition. [
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Example (V.1.3). The ring of functions of X(2;1,1) is isomorphic to
C[z?, vy, y?] as an algebraic variety. In this ring the polynomial xy is ir-
reducible but not prime. To compute the normalization of the quotient
ring C[z2, zy,y?]/(xy), one can not proceed in the same way as in a UFD.
This happens because uo does not define an action on the factors of the
polynomial zy.

Although the ring of functions of the previous space is not a UFD,
see Example |(V.1.3)| above, to compute the normalization of X; one can
proceed in the same spirit because of the special form of the polynomial
¢ — ag" - a2, see proof of Proposition |(V.1.7)l Before that we need to
introduce some notations.

Definition (V.1.4). Let X be a complex analytic space having only abelian
quotient singularities and consider F a Q-normal crossing divisor on X.
Assume P € |E| is a point such that the local equation of E at P is given
by the function

a0t s X(dyA) = C" ug — €, (0<k<n)

where xg,...,x, are local coordinates of X at P, d = (dy,...,d,), and
A= (aij)m S Mat((r + 1) X (n + 1),2).

The multiplicity of E at P, denoted by m(E, P) or simply m(P) if the
divisor is clear from de context, is defined by

k k
> _j—0 Q01 >0 am’mj>

m(E, P) := gcd <m0,...,mk, i e 7

If there exists T' C |E| such that the function P € T — m(E, P) is con-
stant, then we use the notation m(7") := m(E, Fy), where Py is an arbitrary
point in T'.

Remark (V.1.5). Using the general fact lem(g, ..., 3?) = m, one

easily checks that this definition coincides with the one of|(IV.3.12)|for £ = 0,

cf. , that is,

m(E, P) =

e L = lem (do d’“)
L ng(do,aoo) Y ng(dr, arO) ’

where F is a Q-divisor on X locally given at the point P by the well-defined
function =g : X (d; A) — C.

In the situation of the multiplicity m(g*(0), P) with P € g=1(0)
can be interpreted geometrically as follows.
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Lemma (V.1.6). The number of prime (or irreducible) factors of the poly-
nomial t¢ — xg'® - --x,"* regarded as an element in Clxo, ..., z,]" @c Clt]
is m(g*(0), P). Hence this number also coincides with the cardinality of the

fiber over P of the covering o : X > X.

PROOF. Let us denote ¢ = ged(my,...,my) and C; = Z?:o a;jm; for
i = 0,...,7. The polynomial t¢ — z(* --- 2" € Clao,...,zn,1] factorizes

into ¢ different components as

-1

e mo mg ¢ i %+
t _$0 (L'k :H<tl_<€x0 xk)’
=0

where (y is a primitive ¢-th root of unity. However, this factors are not
invariant under the group pg, since they are mapped to

e . mo ™ e o Cr . mg My
by the action of (&4, --.,&4,) € pa. Recall that C"/ug = X (d; A).
Let H; be the cyclic group defined by H; := {fdcii/e | {a, € pa,}, for
i =0,...,r, and consider H = Hy--- H,. Since t* — zy"---z}"* defines a

function over X (d; A) x C, then d; must divide C; and, consequently, all
the previous groups are (normal) subgroups of py. The order of py/H is
exactly the number of prime (or irreducible) components of the preceding
polynomial regarded as an element in Clzy, ..., z,]"d ®c C[t].
; d; _
The order of H; is |H;| = ed(d, O = gcd((,éc’i/di)' Then, one has

|H| = |Ho -+ Hy| =lem (|Hol,..., |H,|)
(25) _ ‘ -
C Cr p)
ng(g’dT?""’I) m( )

In the expression above, a general property about greatest common divisor
and least common multiple already mentioned in |(V.1.5)| was used. O

Assume that ¢g71(0) = EgU--- U E, and let us denote D; = o~ (E;) for
i =0,...,5s and D = |J;_yD;. This commutative diagram illustrates the
whole process of the semistable reduction.

(26) D ¥ o xy I D,
QJV 4 a1 J{O’
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Consider the stratification of X associated with the normal crossing
divisor g71(0) C X. That is, given a possibly empty set I C {0,1,...,s},
consider

By = ( Nier Ez) \ (Uigél Ez)
Also, let X = |_|je 7 Qj be a finite stratification of X given by its quotient
singularities so that the local equation of g at P € E7 N @Q; is of the form

" -2y . B/G — C,

where B is an open ball around P, and G is an abelian group acting diag-
onally as in (d; A). The multiplicities m;’s and the action G are the same
along each stratum E; N @;, i.e. they do not depend on the chosen point
P e E; N Qj. Denote myj := m(E7 N Q;). Finally, assume that E7 N Q; is
connected.

Proposition (V.1.7). The variety X only has abelian quotient singularities
located at g—1(0) = D which is a reduced divisor with normal crossings
on X. Also, o: X >3 Xisa cyclic branched covering of e sheets unramified
over X \ g7(0). Moreover, for ) # I C S := {0,1,...,s} and j € J, the
following properties hold.

(1) The restriction o| : 0 *(ES N Q;) — ESNQ; is a cyclic branched
covering of my ; sheets unramified over E7 N Q);.

(2) The variety o~ (ES N Q;) is a V-manifold with abelian quotient
singularities with ged({m(P) | P € EYNQ;}) connected compo-
nents.

(3) Let ¢ : X — X be the canonical generator of the monodromy of the

covering 0. Then, its restriction to Q_l(E}’ NQj) is a generator of
the monodromy of | : 0 ' (ES N Q;) = E5 N Q.

(4) The Euler characteristic of each connected component of D; is

S g (ENQ) [ wedn(r) | P e BY)
{i}cIc{0,1,...,s}
jeJ
PrOOF. First note that the morphism p : X5 Xisa cyclic branched
covering unramified over X \ g71(0), since so is o7 : X; — X and the
normalization v : X — X 1 does not change the normal points.
Let P € g71(0) and choose coordinates zy, ..., z, as in so that
X1 C X(d; A) x C is locally given by the polynomial t¢ — z(" --- 2", Let
us denote for i =0,...,k,

m(P) =m(g*(0),P), € =e/m(P),  mj=m;i/m(P).



102 Chapter V. MHS on the Cohomology of the Milnor Fiber

Consider the ring
Clzo, ..., Tn, 1]
(=g ah)

A=

The action given by X(d; A) is extended to A so that the variable ¢ is
invariant. Then, by Lemma the normalization A#d of the ring A#d
is isomorphic to the direct sum of m(P) isomorphic copies of the normaliza-

tion of
Clzo, .- ., @n)* @c Ct] ( Clzo, - -, Tn, 1] )"d
(1 =gty NG gt )
Therefore to compute it we only need to consider the case m(P) = 1,

for which the ring A*d is an integral domain. Now we plan to apply
Lemma to a ring extension A#d C B, where B is a polynomial
algebra.

Let ¢; = e/m; for i = 0,...,k. Denote B = Clyo,...,yn] and con-
sider A¥d as subring of B by putting

T =y if 0<i<k,
T =y for >k,
t=19Y0" Yk

Note that A can not be embedded in B because it is not even a domain.
Since g acts diagonally on C"*2, there exists N > 0 such that

N N N N
ySO ,---73/;? » Ykgls+- o ¥Un € Abta,
This implies that the extension A#4 C B is integral. Also, B is a normal
domain. It remains to prove that Q(B)|Q(A"4) is a Galois field extension.
One has

Clys™, .y Nyl ul) € Q(AM) C Q(B) = C(yo, - -, yn)-

Note that the largest extension is clearly Galois. Its Galois group is abelian
and it is isomorphic to

flegN X =+ X fleg N X N X TF Xy

Thus Ata = BGal(Q(B)|Q(A*d))

This shows that Spec(4#d) and hence X are V-manifolds. Locally D
is the quotient under the group Gal(Q(B)|Q(A4)) of the reduced divisor
Yo - -yr = 0. The rest of the statement follows from the fact that the
branched coverings involved are cyclic. For the last part, use the classical
Riemann-Hurwitz formula. O
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Remark (V.1.8). Assume Clzo, ..., zp|"d = C[{z° - 25" }aeca]. Then Ard
is identified with the subring

C[{yOzOcO X Q. Cl Q41

0 Y 'yk+1 '“ygn}OzG/h yoyk}cc[yovayn]

Hence the Galois extension
Gal(Q(B)|Q(AM)) C pregn X =+ X preyny X pvx 7F

is given by the elements (o, ..., &k, Mk+1, - - -, Mn) such that

oA { Q0oL gk Ol pan
So & =1

In general, this group is not a small subgroup of GL(n + 1,C), that is,
there may exist elements of the group having 1 as an eigenvalue of multi-
plicity precisely n.

Remark (V.1.9). Note that ¢| : 0" (EYNQ;) — E?NQ; is an isomor-
phism when I = {i} and the multiplicity of E; (at the smooth points) is
equal to one.

In what follows this construction is applied to g = f o w, where the
map f : (M,p) — (C,0) is the germ of a non-constant analytic function
and 7 : X — (M,p) is an embedded Q-resolution of {f = 0} C (M, p),
cf. Section Let us see an example.

Example (V.1.10). We continue here with Example |(IV.2.3)| where the
plane curve f = xP 4+ is considered. Recall that after the (g1, p1)-weighted
blow-up at the origin, one obtains an embedded Q-resolution with only one
exceptional divisor £ of multiplicity lem(p, q), where p = pj ged(p, ¢) and

q = q1 ged(p, q).

ged(p,q)
.« . g ‘(_)

(QI;*lapl)‘ C ‘(pl;ql,fl)

g@(.p_,q)

C
FIGURE V.1. Semistable reduction of zP + 9.

Following Proposition D = o7 }(€) is irreducible and the restric-
tion g : D — & is a branched covering of lem(p, ¢) sheets. Also, the singular
point of type (q1;—1,p1) (resp. (p1;q1,—1)) is converted into p (resp. q)
smooth points in the semistable reduction. Finally, o] : g—l(é) — Cis an
isomorphism. This implies that the Euler characteristic of D is

X(D) =p+q+ged(p,q) — pqg = ged(p,q) + 1 — p.
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The p points in D which are lift over the point of type (q1;—1,p1) are
smooth. Of course, the same happens for the point of type (p1;¢1, —1). Also,
the intersection of the strict transform with D gives rise to ged(p, ¢) smooth
points. As we shall see the smoothness is not relevant for providing a mixed
Hodge structure on the cohomology of the Milnor fiber.

SECTION § V.2
Monodromy Filtration

This exposition is extracted from [Art94b], which is in turn based on
the book [AGVS8S|.

Let H be a C-vector space of finite dimension. Consider a nilpotent
endomorphism N : H — H, i.e. there exists k € N such that N¥ = 0. Its
Jordan canonical form is determined by the sequence of integers formed by
the size of the Jordan blocks.

There is an alternative way to encode the Jordan form giving instead
an increasing filtration on H. Let us fix k € Z; it will be called the central
index of the filtration. Consider a basis of H such that the matrix of IV in
this basis is the Jordan matrix. It is a direct sum of Jordan blocks of the
following form:

01 0 0
0 0 1 0
00 0 . 1
00 0 --- 0
Each Jordan block determines a subfamily {vy,...,v,} of the basis such

that N(v;) = v;—q fori=2,...,r and N(v1) = 0. Let us denote by I(v;) the
unique integer determined by the following two conditions:

(1) Uvi) =Uvi—1) +2,Vi=2,...,r.

(2) {l(v1),...,l(v,)} is symmetric with respect to k.
In fact, this integer is I(v;) =k —r+2i —1,Vi=1,...,r, as one can check
directly.

Applying this construction to all the Jordan blocks, one defines W; as the
vector subspace of H generated by {v | v in the basis, [(v) <}. This gives
rise to an increasing filtration {W;};cz on H. Its graded part is denoted by
Gr)V(H) := W;/W,_; for | € Z.

Also, denote by J;(IN) the number of Jordan blocks in NV of size [. Then,
it is satisfied that

Ji(N) = dim(GrZV_ZH(H)) - dim(Gka—l—l(H))-
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Proposition (V.2.1) ([Sch73|). There exists a unique increasing filtration
{Wi}iez such that:

(1) N(Wi) C Wi_s.

(2) N': Gy (H) — G}l (H) is an isomorphism. O

This filtration is called the weight filtration of N with central index k.
One checks that the filtration {W; };cz defined above satisfies these two prop-
erties. In particular, the description of {W;};cz does not depend on the
chosen basis.

(V.2.2). Using this construction, the Jordan form of an arbitrary automor-
phism M : H — H can be described too. Let M = M, M, be the decompo-
sition of M into its unipotent and semisimple components. It is known that
M, Mg = MsM, and that the decomposition is unique, see [Ser66]. Recall
that the semisimple part contains the information about the eigenvalues and
the unipotent one, the information about the size of the Jordan blocks.

Note that the endomorphism N := log(M,,) is nilpotent and the number
of Jordan blocks of size [ is J;(N) = J;(M,) = J;(M).

For a given k € Z, consider the weight filtration associated with NV with
central index k. Due to the properties of the decomposition, the subspaces
W, are invariant by the action of My, and thus by the action of M.

The endomorphism induced by M, on each graded part Gr/"(H) is
semisimple and, since M, is unipotent, it is indeed the identity. Hence
the actions of M and M, on Gr}" (H) coincide.

The conclusion is that the Jordan form of M is determined by the fil-
tration {W;};cz and the action of M over GrYV(H) for Il € Z.

Example (V.2.3). The decomposition above for a Jordan block of size 3

is given by
A 10 A0 0\ /1 At o0
0 X 1]=10 Xxo0ffo 1 Xt
0 0 A 0 0 A 0 0 1
Y, M, M,
ox1t o . 3 .
Let us denote K = (0 0 ,\—1). Then, since K° = 0, the nilpotent endo-
00 0
morphism N is
1 -1
0 0 O

One clearly sees that the Jordan normal forms of the matrices N, M, and
M are all the same type but with different eigenvalues.
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(V.2.4). Let (V,0) C (C™"1,0) be a germ of an isolated hypersurface sin-
gularity at the origin. Denote by ¢ : H"(F,C) — H"(F,C) its complex
monodromy.

Consider the decomposition of H"(F, C) as a direct sum of two subspaces
invariant under ¢, H#! and H', such that Id — ¢ is invertible over H#! and
nilpotent over H'.

Let W#! be the weight filtration of |1 with central index n. Analo-
gously, denote by W' the weight filtration of ¢|y1 with central index n + 1.
These filtrations satisfy Wzéll =W} =0, W4, = H! and W;l = H#1.

Definition (V.2.5). The monodromy filtration of the cohomology of the
Milnor fiber is W := Wt @& W7L.

Note that the Jordan form of the complex monodromy is completely
determined by the action of ¢ over the graded parts of the monodromy
filtration W. Let us fix the notation for the characteristic polynomials of ¢
acting on the following vector spaces:

Vector space Characteristic polynomial
H := H"(F,C) A(t)
Gep'y () ATH®)
GrrVLleJrl(H) Ap(1)
Gry) (H) @ Gy, () NG

Observe that the Jordan blocks of size [ are given by the polynomial
Alfl(t)
INF O
equals the number of Jordan blocks of size [ for the eigenvalue (.

More precisely, the multiplicity of ( € C as root is this polynomial

SECTION § V.3
The Spectral Sequence by Steenbrink

The Jordan form of the complex monodromy is closely related to the the-
ory of mixed Hodge structures (MHS), first introduced in [Del71al, [Del71b),
Del74]. By different methods, Steenbrink and Varcenko proved that the
cohomology of the Milnor fiber admits a MHS compatible with the mon-
odromy, see [Ste77] and [Var80), [Var81].

Definition (V.3.1). A Hodge structure of weight n is a pair (Hz, F) con-
sisting of a finitely generated abelian group Hz and a decreasing filtration
F = {FP},cz on Hc := Hz ®7C satistying Hc = FP @ F"—P*! for all p € Z.
One calls F' the Hodge filtration.
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An equivalent definition is obtained replacing the Hodge filtration by a
decomposition of H¢ into a direct sum of complex subspaces HP4, where
p + q = n, with the property that HP¢ = H%P. The relation between these
two descriptions is given by

He= @ B, FP=H"™'  HM=F’NFL
pt+q=n i>p

The typical example of a pure Hodge structure of weight n is the coho-
mology H™(X,7Z) where X is a compact Kéhler manifold. In the sequel, we
will use the fact that, for compact Kéhler V-manifold, H"(X,Z) can also
be endowed with a pure Hodge structure of weight n. Deligne proved that
the same is true for smooth compact algebraic varieties, see [Del71b].

Above, one may replace Z by any ring A contained in R such that ARzQ
is a field and obtain A-Hodge structures. In particular, one uses A = Q or R.
In this way the primitive cohomology groups of a compact Kéhler manifold
are R-Hodge structures.

Definition (V.3.2). A mized Hodge structure is a triple (Hz, W, F') where
Hy is a finitely generated abelian group, W = {W,,},cz is an increasing
filtration on Hg := Hz ®7 Q, and F' = {FP},cz is a decreasing filtration on
Hc := Hz ®7 C, such that F induces a Q-Hodge structure of weight n on
each graded part GrZV(HQ), Vn € Z. One calls F' the Hodge filtration and
W the weight filtration.

Let us denote again by the same letter the filtration induced by W on the
complexification Hg, i.e. W,,(Hc) = W,, ® C. Then, the filtration induced
by F on Gr”(Hc) is defined by

FPA(W,@C)+W,_1 ®C
FP (G (H)) = n n .

Thus the condition above on the weight and Hodge filtrations can be stated
as, Vn,p € Z,

F? (Gr) (Hg)) @ Fr—p+! (Gr)V (He)) = Gr)) (Hc).

Example (V.3.3). Let D be a divisor with normal crossings whose ir-
reducible components are smooth and Kéahler. Then, H*(D,Z) admits a
functorial MHS, see [GS75]. This results is extended to V-manifolds with
@-normal crossings whose irreducible components are Kahler.

In [Del71b], it is proven that if X is the complement in a compact
Kéhler manifold of a normal crossing divisor, then H*(X,Z) has a functorial
MHS which does not depend on the ambient variety.
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From now on, let us fix 7 an embedded Q-resolution of the singular-
ity. The following result can be proven as in [Ste77] repeating exactly the
same arguments. The main reason is that, starting with an embedded Q-
resolution, the total space produced after the semistable reduction is again
a V-manifold with abelian quotient singularities, see Proposition

Theorem (V.3.4). There exists a spectral sequence { EX*} constructed from
the embedded Q-resolution w that verifies:

(1) It converges to the cohomology of the Milnor fiber and degenerates
at Es.

(2) The spaces EY"? has a pure Hodge structure of weight p respected by
the differentials. In particular, EY? = EX also has a pure Hodge
structure of weight p.

(3) There exists a Hodge filtration on the cohomology of the Milnor
fiber which induces a Hodge filtration on ER!. One constructs a
weight filtration using the filtration with respect to the first index:

G}V (H*(F,C)) = B~ = B

Therefore, these two filtrations provide a MHS on the cohomology of the
Milnor fibration. This structure is an invariant of the singularity which only
depends on the resolution . O

In [Var81], there is another construction of the MHS on the cohomology
of the Milnor fiber, using asymptotic integration. The weight filtration of
both MHS coincide. Varéenko’s definition does not depend on the resolution.
Although both Hodge filtrations do not coincide, they induce the same pure
Hodge structure on the graded part of the weight filtration.

Theorem (V.3.5). The complexification of the weight filtration of the MHS
of the cohomology of the Milnor fiber is exactly the monodromy filtration.
Moreover, the complex monodromy @ acts over the first term FEy of the
spectral sequence and commutes with the differentials. The action induced
on the complexification of Es = FEo coincides with the action induced on
the graded parts of the monodromy filtration. ([

We finish this section with the explicit description of Steenbrink’s spec-
tral sequence. As we shall see, it is constructed from the divisors associated
with the semistable reduction of g := fonm: X — C.

(V.3.6). Consider the divisor D associated with the semistable reduction
of the embedded Q-resolution 7. Let us decompose D = DyU D U---U Dy
so that Dy corresponds to the strict transform of the singularity and the
divisor D4 := D1 U---U D, corresponds to the exceptional components.
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Let us introduce some notation.
o Let I = (io,...,ik) with 0 <ig < -+ <ip < s.
Dy = Dio,...,ik = Dio N---N Dik7
D[ = Dio,n-,ik = Dy \ U (D] N D])

JF10ye ik

The first one is a projective V-manifold of dimension!| n — k. The
second one is a smooth complex variety of the same dimension.

oLetO§i0<~--<ik§sandij<i;~<ij+1with—1§j§k:.

Denote by
i
J .
KZUv"'7Zj7Zj+17-~-7Zk 7’07"’7Z]7Zj71/]+17"~72k D,LOV":Z]:ZJJrl»"'?,Lk’

the natural inclusion.

e Let DIF .= |_| Di,....i -
0<ig<-+<ip<s
eLet D= || Dipiy

1<ip<---<ip<s

Definition (V.3.7). Let k € Z with 0 < k <nandleti,j € Z withi,j > 0.
Define kEi’k_J as
ikl T
kEiyk_j o H (D+ a@) lf ] - 07
1 T . ,
H=2(DW Q) if j>0.
Note that for j = 0 the divisor Dy is used, while for j > 0 it is taken

the divisor D. All the spaces whose cohomology is considered are compact.

(V.3.8). These spaces give rise to the first term E; of our spectral se-
quence E = {ER?}:

n
D . k .
BY = P B,
k=0

where ¥ EP'? = 0 if it is not defined previously.

Note that the space pEi’k_] possesses a natural pure Hodge structure
of weight 7 — 27, since it is defined as the cohomology of degree i — 25 of a
compact Kihler V-manifold. Performing an index shifting HP/:917 := HP,
pEi’k_] also has a pure Hodge structure of weight i, ¢f. Theorem |(V.3.4)

1Recall the convection on indices, e.g. for plane curve n = 1.
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It still remains to define the differentials. In the first term F; the differ-
entials are of type (0,1), i.e. upward vertical arrows.

(V.3.9). Let us resume the notation of |(V.3.6)| Let

!

i

'] . . . . . . . . . .
(Hio,...,ik>* : H*(Ezo,...,zj,z;,1j+1,...,1k7Q) )li*(Dlo,“.,zj,zﬁrl,...,zkaQ)

be the homomorphism induced by the inclusion on the homology groups. Us-
ing Poincaré duality for compact V-manifolds, one has the following Gysin-
type maps:

H, (ng,...,zj,29,1j+1,...,zk ’ Q) H, (Dzo,...,z],z]+1,...,zka Q)

-}

T
%
IR
Ik
1R
<7
)

-

2(n—k—1)—x 2(n—k)—x*
H ( ) <D107~~~aij)i;'7ij+17"'aik’ Q) === H ( ) (Dio"“7ij?ij+17~-~aik7 Q)

These arrows are only possible if the spaces are compact. It is always the
case except for k = 0 and ig = 0, where the corresponding map is defined
as zero.

By abuse of notation, the morphism associated with the dashed arrow

that completes the previous diagram is again denoted by (K,zé lk)*

Definition (V.3.10). The differentials on *Ey, *§ : KEPF—7=1 _ kphh=i
are defined by

k+j+1

i—2(j+1 ) . = E - K. ~ .
’H © )(Dlo ----- ’k+j+l’Q) —o ( ) 205585 Uet5+1/ %

Remark (V.3.11). The pair (*E1,%§) is the term FE of the spectral sequence
that provides the MHS of
|_| Dio,...,ika

0<ip << <s

which is the complement of a divisor with normal crossings on a projective
variety.

To finish with the description of the differentials, the interactions be-
tween different ¥ F; have to be taken into account. These differentials are of
Mayer-Viétoris type. Denote by

. *
K
( 'LOa---7'Lk+j)

the corresponding homomorphism on the cohomology groups.
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Definition (V.3.12). The morphisms k#4415 : K gih=7 _ k1 phh=ktl ;0
defined as

. *
k,k+1 o — _ €(l;i0,...,ik+ i) 1]
1) ‘H’L—Q](Dio yyyy ot Q) ‘= E ( 1) 7 Hio,~~~vik+j )
LF00,5 ikt
where e(l; do, . .. ,ik4;) is the number of coeflicients i, ..., 4y ; less than [.

Remark (V.3.13). The pair (kEi’k,k’kHé) is exactly the term E; of the
spectral sequence providing the MHS of the divisor with normal crossings D
which appears in [Del71b]. Observe that the first two columns of this

spectral sequence for k = 0 coincides with the first two columns of the term
FEq of {Eﬁ’q}

Definition (V.3.14). The direct sum of the differentials ¥ and #¥*14 is
the differential § of the term Ej.

G e, @D
E
° 1Eﬂl 0,1) t::;:_’::" """" 1 I (2,1)

FIGURE V.2. Decomposition of E = {EL?} for n = 1,2.

This section ends with the explicit description of the spectral sequence
{ER?} ®q C for the cases n = 1,2. For n = 1, let us denote with a triangle
the terms belonging to ' E; and with a circle the ones belonging to °E;.

A H(DY,C) (k=1)
0,151\
'HO(DL(-]]yC) """""" OHI(DL(_)],(C) e 'HQ(DL(_)},C)
. Toé
(k? = 0) .HO(_D[H,(C)

FIGURE V.3. Steenbrink’s spectral sequence for plane
curves, i.e. n = 1, with its decomposition F; = °E; @ 'E;.
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For surfaces, that is n = 2, denote with a square the terms belonging
to 2Ey, with a triangle the ones belonging to ' Ey, and finally with a circle
those coming from "E;.

ma(DY)  (k=2)

1’25
arDY) - amy DYy - am2(DY) (k=1)
0,15 015 oenis
- AH(DP)
e HO(D) o HL(DI) o T o 3(DY) - o H4(DY)
o 12(DY)
05 05 0§
(k=0)  oHODW) - o H'(DU) - o H?(DI)
) .
e HO(DP)

FIGURE V.4. Steenbrink’s spectral sequence for surfaces,
i.e. n = 2, with its decomposition E; = °FE; @ 'E; @ 2E;.

SECTION § V.4
Example of a Plane Curve

Assume ged(p, q) = ged(r,s) = 1and 2 < L. Let f = (2P +y9) (2" +y°)
and consider C; = {zP + y¢ = 0} and Cy = {2" + y®* = 0}. In Exam-
ple |(1.3.15) an embedded Q-resolution of {f = 0} C C? is computed, see
Figure below.

(s;—1,7) @ Ry QZ(rq—ps s —q)
Ry rq—ps|—r p
C, C
1
R3 P,
° p(q+s)&
sp+nE1Q P P (g 1)

FIGURE V.5. Embedded Q-resolution of f = (xP + y?)(x" + y*).
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Let us calculate here the MHS associated with the Milnor fiber of f and
its complex monodromy. Before that, the notion of (weighted) dual graph
in this setting is introduced.

Usually one encodes a normal crossing divisor with its dual complex: one
vertex for each irreducible component, one edge for the intersection of two
irreducible components, one triangle for the intersection of three irreducible
components, etc. This is particularly useful for normal crossing divisors on
surfaces where the dual complex is converted into a (weighted) graph.

(V.4.1). Let us explain in detail how to encode a Q-divisor with Q-normal
crossings on a V-manifold using its weighted dual graph. We are interested
in the following cases: the divisor 7*(C) = (f o7)*(0) C X in an embedded
Q-resolution 7 of a plane curve C = f*(0), and also in its corresponding
semistable reduction. Their weighted dual graph I" is defined as follows:

e The set Vi of vertices of I' is the ordered set of irreducible com-
ponents of 7*(C) (for some arbitrary order). It is decomposed in
two subsets Vr = VP [T V;€; the first one corresponds to the ex-
ceptional components and the second one to the strict transforms,
using arrow-ends.

e The set Er of edges of I' is in bijection with the double points
of 7*(C).

e Each E € V) is weighted by its genus gg (omitted if gg = 0). It
is also weighted by its self-intersection number ep € Q, see Defini-

tion |(I11.1.2)

e Each F € Vr is weighted by mp defined as follows: given a generic
point in F, one can choose local analytic coordinates (xp, yg) cen-
tered at this point such that yg = 0 is a local equation of F and
(fom)(E,yp) = yr "

e For E € 1, let Sing’(E) be the set of singular points of XinE
which are not double points. Then, together with E, the sequence
of normalized types {(dp;ap, bP)}PESingO(E)’ where F is the image
of y =0, is given. Note that dp divides mg.

e If the double point P, = E1 N Ey, B < Ey, associated with v € Er
is singular, we provide a normalized type (d;a,b), where Ej is the
image of x = 0 and Ej is the image of y = 0. Note that d divides
ampg, + bmg,.

Remark (V.4.2). The weighted dual graph can also be considered associated
with an abstract good Q-resolution. This is especially useful for describing
a Q-resolution via Jung method, see [AMO11b] for details.
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Example (V.4.3). The embedded Q-resolution of the preceding example,
see Figure above, is computed with the (g, p)-blow-up at the origin of C?
followed by the (s, gr —ps)-blow-up at a point of type (¢; —1,p). Its weighted
dual graph is shown in Figure

81 52
my = p(s+q) me = s(p+r)
- r S R
€1 = T plrq—ps) €2 = T5rq—p9)
C, = ° ° > C,

(pig,—1) (ra—psiar+bs,=1) (g 1)

FIGURE V.6. Dual graph of the embedded Q-resolution of
{(zP + y9) (2" + y*) = 0} C C?, where ap + bq = 1.

The self-intersection numbers are calculated using|(111.3.2)| The point @
is also of type (rq—ps; ar+bs, —1) where ap+bg = 1. In fact, it is normalized
since ged(rq — ps,ar + bs) = 1.

Now is the time to study the semistable reduction of the embedded Q-
resolution obtained in Example Denote by P; the point in & of
type (p;q,—1), P> the intersection of C; with &, and P3 a generic point
in £;. Analogously, denote by R; the point in & of type (s;—1,7), Ry the
intersection of Cy with &, and R3 a generic point in &, cf. Figure

Let E = CLUCyUE& U& C X be the total transform of the plane
curve {f = 0} C C?2 for the embedded Q-resolution m : X — C2. Also,
write g := f o and use the notation in [(V.1.1)| and so that E = ¢g*(0).
Following Definition the numbers m(FE, P), where P € E is one of
the previous points, are calculated below:

m(E7P1)ZQ+87 m(EaRl):p+T7
m(E, Py) =1, m(E, Rg) =1,
m(E,Pg):p(q+s), m(E,Rg):s(p—{—r)

On the other hand, by Lemma |(V.1.6), the cardinality of the fiber
over Q € & N &y of the covering ¢ : X — X (i.e. the semistable reduc-
tion) is

m(E, Q) = ged (p(q +8),s(p+r), A,B),

where
A= Plats) stsptn)-(=g) _
rq — ps
poPlats) (=r)+sptr) p .
rq — ps

Consequently, m(E, Q) = ged(p, s).
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From Proposition |[(V.1.7), one deduces the following statements. The
divisors D1 := o~ 1(£1) and Dy := o~ (&) have just one connected compo-
nent. Their Euler characteristics are

x(D1) =g+ s+ged(p,s) +1—p(g+s),
X(D2) =p+r+ged(p,s)+1—s(p+r).

The preimage of the strict transforms, 0~'(Cy) and ¢~!(Cs), are isomorphic
to C; and Cs respectively, and thus denoted again by the same letter.

(p—1)(g+ s) —ged(p,s) +1 (s—=1(p+r)—ged(p,s)+1
2 o 2

my; =1 mo =1

g1 =

Cl C2

D, Dy

FiGurE V.7. Dual graph of the semistable reduction of f.

Since the singularity defined by f is isolated, the generalized Steenbrink’s
spectral sequence gives rise the exact sequences

0 — Ker (*16) — #(DY) 2% gO(ply — Coker (*16) —> 0,
—— —_———
C Gr{ H(F,C)

and

0— Ker (%) — HO(DM) 2% 52(D) — Coker (%) — 0.
——— —_————
GrYV H1(F,C) 0

Moreover, Gr}¥ H(F,C) = Hl(DLS]).
The divisor DE?] is the disjoint union of Dy and Dy, and D (resp. DE})

consists of ged(p, s) + 2 (resp. ged(p, s)) points. Hence,
H(DY)) =2

m } — H = Grl/ H'(F,C) = ceedle) L,
HO(DY') = ged(p, s)

Analogously, H°(D!) = ged(p, s) 4 2 and H2(DB(_)]) = 2, which implies that

HY' = GrY HY(F,C) = Ceed®s),

As for the (pure) Hodge structure of weight 1 associated with the co-
homology Hl(DLE]) = H% @ H'O it is known to be determined by the
genus of the corresponding real surface. In this case, H%! = C9 @ C%?
and H'O = C9 @ C9.
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Remark (V.4.4). It must be satisfied that 3  dim¢ HP? = p. In fact, the
Milnor number is the degree of the characteristic polynomial, which is by
Theorem |(IV.3.14)| equal to

(t _ 1) (tp(qus) — 1) (tS(erT) — 1)
(tq+s _ 1) (tp+r _ 1)

Summarizing, the mixed Hodge structure of the cohomology of the Mil-
nor fiber H!(F,C) obtained is

A(t) =

H(F,C)= H o H™eHY o g |
GrY HY(F,C) GV HY(F,C) Gry HY(F,C)

where
HO,O _ (Cgcd(p,s)—l
HO =9 @ o2,
HO —C9 gpCe = HO.L,
H171 — (Cng(p7s)_
The genera g; and go are calculated in Figure The action of the
monodromy on Gry H'(F,C) is given by the polynomial
teed(p,s) _ 1
t—1
Note that this provides the eigenvalues of the monodromy with Jordan
blocks of size 2.



An Embedded Q-Resolution for Superisolated
Singularities

Let (V,0) C (C3,0) be a germ of surface singularity in C*. By definition,
V is the zero set of a holomorphic function f : U — C, where U C C3 is a
small neighborhood of the origin and f(0) = 0. Denote also by f the germ
at the origin of this function; it is an element of the local ring C{z,y, z}.
Consider the decomposition of f into homogeneous parts,

f(xvyvz) = fm(xayvz) +fm+1(x7yvz) + - )

where f; is homogeneous of degree i and f,, # 0. The integer m is the
multiplicity of the singularity and the order of the series f. Denote by
C := V(fn) C P? the projective plane curve defined by the tangent cone of
the singularity. The following families are considered in this work:

(1) Superisolated singularity (or, shortly, SIS): the local equation f
satisfies P2 O Sing(C) NV (fns1) = 0.

(2) Yomdin-Lé singularity (YS): the decomposition of f into homoge-
neous polynomials is of the form f = f,, + fiar + -+ and the
condition Sing(C) NV (fytxr) = 0 holds.

(3) Weighted Yomdin-Lé singularity (WYS): let w = (a,b,c) € N3
be three positive numbers such that ged(a, b, ¢) = 1. The sum f =
fm+ fmak+- - is the decomposition of f into (a, b, ¢)-homogeneous
parts and Sing(C) NV (fax) = 0 in P2,

Remark (VI.0.5). Recall that when f; is a quasi-homogeneous polynomial
with respect to w, it defines a curve in the weighted projective plane P2,
The notion of singular point in this setting is given in Chapter [T} Now, the
third definition above makes sense.
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These singularities have been studied by many authors. We are content
to cite merely the survey [ALMO6], where part of the theory of these singu-
larities and their applications including some new and recent developments
are reviewed.

Although these three families can be studied simultaneously, for better
exposition they are presented and treated separately. In this chapter, a
detailed description of an embedded Q-resolution of superisolated surface
singularities in terms of an embedded Q-resolution of its tangent cone is
given. In particular, it is proven that only weighted blow-ups at points are
needed.

Also, we shall see that an exceptional divisor in the resolution of (V,0)
contributes to the complex monodromy if and only if so does the corre-
sponding divisor in the tangent cone. Thus the weights can be chosen so
that every exceptional divisor in the Q-resolution of (V,0) contributes to
the monodromy.

The generalized A’Campo’s formula applies and the characteristic poly-
nomial and the Milnor number are calculated as an application. Other more
sophisticated invariants, including mixed Hodge structure of the cohomology
of the Milnor fiber, are the subject of our study for the future.

As we will see, the previous chapters are essential for describing the
embedded Q-resolution. More precisely, the following sections and results

will be very useful: §[.3-1] .32 [(TIT.2.1)} [(TIL.3.2)] [(TIT.4.3)]

SECTION § VI.1
Preparations for the Q-Resolution

These singularities have been introduced by Luengo and also appear in a
paper by Stevens, where the u-constant stratum is studied, see [Lue87] and
[Ste89] respectively. Afterward Artal described in his PhD thesis [Art94b]
an embedded resolution of such singularities using blow-ups at points and
rational curves.

Here an embedded Q-resolution is given and particularly it is proven
that only weighted blow-ups at points are needed. By contrast, the final
ambient space obtained has abelian quotient singularities.

(VI.1.1). Let (V,0) be a SIS in (C?,0) defined by a holomorphic function
f:U — C. As above, denote by m the multiplicity of V', and C the tangent
cone. Let mg : U — U be the blow-up at the origin. Recall that the total
transform is the divisor 7§(V) = V+ mEy, where V is the strict transform
of V, and FEy is the exceptional divisor of mg. The intersection Vn Ey is
identified with the tangent cone of the singularity.
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Let us consider P € V' N FEy = C. After linear change of coordinates we
can assume that P = ((0,0,0),[0:0:1]) =[0:0: 1] € C. Take a chart of
U around P where z = 0 is the equation of Ey and the blowing-up takes the
form

(z,y,2) = (22,y2, 2).

Then the equation of V is
‘7 : fm(xvya 1) +z ferl(xay? 1) + me+2($7y7 1) + - i| =0.

Two cases arise: if P is smooth in the tangent cone, then V is also smooth
at P and the intersection with Ey at that point is transverse; otherwise, i.e
P € Sing(C), the SIS condition Sing(C) NV (fmm+1) = 0 implies that the
previous expression in brackets is a unit in the local ring C{z,y, z} and, in
particular, V is still smooth. Now the order of fm(z,y,1) is greater than or
equal to 2 and the intersection VN Ly is not transverse at P.

o (V) = V +mE,
]| o
Vn Ey=C

FIGURE VI.1. Step 0 in the embedded Q-resolution of (V,0).

We summarize the previous discussion in the following result, which is
actually the step zero in the resolution of [Art94b].

Lemma (VI.1.2) (Step 0). Let P € C be a point in the tangent cone. Then
V is smooth in a neighborhood of P.

Moreover, the surfaces V and Ey intersect transversely at P if and only
if P is a smooth point in C. Otherwise, i.e. P € Sing(C), there exist local
analytic coordinates around P such that the equations of the exceptional
divisor and the strict transform are of the form

Eo: Z:();
Vi z+h(z,y) =0,

where h(z,y) = 0 is an equation of C and its order is at least 2.
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Note that in the (weighted) Yomdin-Lé surface singularity case the step

zero is very similar, cf. Lemma [(VIL.0.2)| and [[VIL3.1)}

SECTION § VI.2
Construction of the Embedded Q-Resolution

We now proceed to construct the full Q-resolution of (V,0). By the
preceding lemma, the set of points where 7§(V') is not a normal crossing
divisor is finite, namely Sing(C). Therefore the next step in the resolution
of (V,0) is to blow up those points. Let us fix P € Sing(C) and consider
local coordinates as in Lemma Even though many objects that
appear in this section depend on P, to simplify notation, it is omitted if no
confusion seems likely to arise.

Definition (VI.2.1). Given a divisor D, the set of points where D is not a
normal crossing divisor is called the locus of non-transversality of D and it

is denote by NT'(D). In our case, the locus of non-transversality after the
blowing-up at the origin of (V,0) is NT'(x§(V')) = Sing(C).

The following result is the first step in a sequence of blow-ups. We adopt
the convention of writing the exceptional divisors appearing in the tangent
cone in calligraphy letter, while normal letter is used for the divisors in the
resolution of (V0).

Also, the objects coming from the blowing-up at P, # P (resp. P) are
indexed by the corresponding subindex a (resp. the number 1). Finally,
recall that the strict transform of a divisor is denoted again by the same
letter as the own divisor.

Lemma (VI1.2.2) (Step 1). Let (p1,q1) € N? be two positive coprime num-
bers. Let wy be the weighted blow-up at P € C with respect to (p1,q1).
Denote by & its exceptional divisor and by vy the (p1,q1)-multiplicity of C
at P.

Consider m the (p1,q1, v1)-weighted blow-up at P in dimension 3 and F;
the corresponding exceptional divisor. Then, the total transform of mi(V')
verifies:

(1) wxi(V) =V +mEy + (m+ 1) Ey,
(2) NT(mim5(V)) = NT(wi(C)).

PROOF. Let us start by blowing up the point P € C with respect to the
weight vector (p1,q1), ged(pi,q1) = 1, in the tangent cone. Consider the

local coordinates of Lemma |(VI.1.2)| around P so that the equation of C
is h(x,y) = 0; thus v1 = ordy, q,) h(z,y).
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Recall that the ambient space obtained has two cyclic quotient singular
points corresponding to the origin of each chart and located at the excep-
tional divisor £ . The latter can be identified with the usual projective
line P'(p1,q1) ~ P! under the map [z : y] — [z : 2P!], and it has self-
intersection ;117 by |(II1.3.2), Using the charts described in Section

1st chart X(p1;—-1,¢1) — @2(]?1,%)7
[z, )] = (@, 2%y), [ Ylpra))s
2nd chart X(q1;p1,-1) — @Q(Pl,(h),
(@) = (@™ ™) [ i an);

one obtains the following equations for the divisor @] (C) = C + 11 &;.

E: x=0;
X ;—1, 2
(p1 q) {C:

& =0;
X(qiip, -2 Y
C: ha(x,y)=0.

Note that hi(z,y) and he(x,y) are not functions on the previous quotient
spaces but they define a zero set, since they satisfy

h (& 2, &0 y) = €5 ha(x,y),
ho(Ea, &1 y) = € ha(, y).

Also, if the sum h = hy, + hy, 47 + -+ is the decomposition of h(z,y) into
(p1, q1)-homogeneous parts, then hy(0,y) = hy, (1,y), hao(z,0) = hy, (2,1),
and the (global) equation of C N &; C P(py, q1) is of the form

(27)

o, (z,7) —xybeql— a1/P1 )¢ = 0.

Thus the intersection multiplicity of & and C at the point [y; : 1] is e;,
while it is % (resp. %), not necessarily an integer, at the singular point

[0: 1] (resp. [1:0]), see|(II.3.4)[ and Remark |(VI.2.3)| below.

S ASAVATY

b#£0 . 1}

FIGURE VI.2. Step 1 in the embedded Q-resolution of (C, P).
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Now describe the weighted blow-up at P with respect to (pi1,q1,v1) in
dimension 3. The new space has in general two (not three because p; and ¢
are coprime) cyclic quotient singular lines, each of them isomorphic to P!,
and located at the new exceptional divisor Fq. They correspond to the lines
at infinity z = 0 and y = 0 of By = P?(p1, q1, v1).

As an abstract space, E'; contains two singular points and it is isomorphic
to another weighted projective plane as the following expression shows, see

Proposition |(1.2.5)|

2 2 p q v
P (pl,QIvVl) — P ((pl,lyl)’ (q1,11/1)7 (Pl,l/l)%fh,yl)>’

[z:y: 2] — [zl@) . gyr) . g,

The multiplicity of E; is the sum of the (pi1,q1,v1)-multiplicities, in
our local coordinates, of the components of the divisor nj(V') that pass
through P, that is vym 4+ v1 = (m + 1)v1. Hence the total transform is the
divisor

it (V) =V +mEy+ (m+ 1) Ey.

The equations in the three charts are given in the table below. Note

that the cyclic quotient spaces are written in their normalized form, since

ged(p1, q1,v1) = 1, see Section for details.

X(p1; =1, q1,11) X(q;p1,—1,11)
(z,y,2) = | (2P, a9y, 3" 2) (zyPr, y",y" 2)
Ey z=0 z=0
FE z=0 Yy = 0
1% z4+hi(z,y) =0 z+ ho(z,y) =0
X(vi;p1,q1,—1)
(z,y,2) — (z2PL yz9t, 2¥1)
EO -
E1 z=20
1% 1+ hyy (2, y) + 2 hy (2, y) + - =0

Using the automorphism on X (p1;—1,¢1,v1) defined by [(x,y,2)] —
[(z,y,z+ hi(x,y))], which is well defined due to (27)), one sees that both Ey
and V intersect transversely E1. The equations of these intersections are
given by

EoﬂElz{ZZO},
VNE ={z+hy(2,y) =0},

as projective subvarieties in By = P?(py, q1,v1).
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By [(II1.4.3) these smooth projective curves are two sections of E; with
self-intersection ﬁ‘ They meet at #(CN &) points with exactly the same

intersection number as in CN &y, that is, for P € CN& = Vn EgN Eq, one
has

(28) (BonELVNEs B = (C&i: Ty, -

On the other hand, the intersection of the total transform with Ey pro-
duces an identical situation to the tangent cone. All these statements follow
from the equations above. In Figure we see the intersection of the
divisor 77 (V) with Ey and Ej, respectively.

EyNE;

FEiNEy

FIGURE VI.3. Step 1 in the Q-resolution of (V,0).

Finally, the triple points of the total transform in dimension 3 are iden-
tified with the points of CN &y and, by , the intersection at one of those
points is transverse if and only if so is it in dimension 2. This concludes the
proof. ([l

Remark (VI1.2.3). To study the curves {z = 0} and {z + h,, (z,y) = 0}
in P2(py,q1,v1) at the point [0 : 1 : 0], one chooses the second chart of
the weighted projective plane and obtains the local equations z = 0 and
z + x% = 0 around the origin of X (¢1;p1,v1).

The intersection multiplicity at that point is a/q1, although the quotient
space is not written in its normalized form, see Analogous consid-
erations follow for the points [y; : 1 : 0] and [1: 0: 0]. This fact was used to

prove .

Remark (V1.2.4). The curve V N By meets the line # = 0 (resp. y = 0)
in the projective plane P?(py,q1,v1) at exactly one point and the intersec-
tion is always transverse. If a = 0 (resp. b = 0), then ged(q1,v1) = @1
(resp. ged(py, 1) = p1) and that point is different from the origins, see table
with the equations. This is important to obtain transversality in the next
steps of the resolution of (V,0).
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After the first blow-up a very similar situation to Lemma is
produced, except that there is a new divisor to be considered and the points
where the total transform does not have normal crossings could be singular
in the ambient space. The main advantage compared with Artal’s resolu-
tion [Art94b] is that in the latter 1 blow-ups at points and rational curves
were needed to achieve a similar situation.

(VI.2.5). Before going on with the second step let us give the natural strati-
fication of each exceptional divisor associated with its quotient singularities.
In the tangent cone, the only exceptional divisor is decomposed as

&1 =E1U&q Ulip,

where & 1 is isomorphic to P!\ {[0: 1],[1 : 0]} and & 4,, €1, are the two
origins of the projective line.

In dimension 3, we have two exceptional divisors. The first one is de-
composed as

Eo = Eo,1 U Eo.q, U Eop, s

where the smooth part Ep; is a weighted projective plane with a weighted
blow-up (at a point) minus two points, and Ey 4, , Epp, are those two points.
The stratification of the second one is

E = El,l U El,gcd(ql,ul) U El,gcd(pl,lll) U El,Vl U E17Q1 U E17P1'

To describe it, denote L; := {z = 0}, Ly := {y = 0} C P?(p,q,v). The
smooth part is the previous projective plane minus L U Ls. The strata of
dimension 1 are

El,gcd(q1,l/1) =L \ {[0 :0: 1]a [O 1 0]}7
El,gcd(pl,lq) =Ly \ {[O :0: 1]a [1 :0: 0]}

Finally, the zero-dimensional strata E1 ,,, E14,, E1,, are the three origins.

See proof of Lemma |[(VI.2.2)| and its figures.

The next result is the second step in the resolution of (V,0) and it
corresponds to the second step in the resolution of (C,P). Fix a point
P, € NT(w;(C)) and, to cover all cases, assume P, is possibly not smooth
in the ambient space.

Lemma (VI1.2.6) (Step 2). Let (pa,qa) € N? be two positive coprime num-
bers. Let w, be the weighted blow-up at P, with respect to (pa,qa). Denote
by &, its exceptional divisor, v, the (pq, qq)-multiplicity of C at P,, and mg
the multiplicity of &,.
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Consider Ty the (pa, qa, Va)-weighted blow-up at P, in dimension 3 and let
E, be the corresponding exceptional divisor. Then, the new total transforms
satisfy:
(1) my = P
ged(p1, a + Paqr)

(2) WZWT(C) = CH+ & +me&a,

(3) mimin{(V) = V4 mEy + (m+ D1 Ey + (m+ 1)mgE,,
(4) NT(mamin;(V)) = NT (wawi(C)).

PrOOF. To fix ideas assume that P, = [1: 0] € CN&;. The other cases
follow analogously. Let us first describe the (pg, ¢4 )-weighted blow-up at the
point P, in the tangent cone. Consider local coordinates around P, so that
the equation of w;(C) = C + 11 & is given by the well-defined function

" hy(z,y) + X(p1;—1,q1) — C,

where x = 0 is the exceptional divisor & and hi(xz,y) = 0 is the strict
transform of the curve as in the proof of Lemma Hence the order
at Py is v, = ord(p, 4.y h1(7,y).

Also, take oy, f1 satisfying the Bézout’s identity aypi + 51q1 = 1 so that
X(p1;—1,q1) = X(p1;51,—1) and thus x"*hy(z,y) also defines a function
on the latter quotient space.

Denote d := ged(p1, ga + Pagqi). Two new cyclic quotient singularities of
orders 2iPe and P appear in the ambient space. They correspond to the
origin of each chart and thus located at the new exceptional divisor

1

E = P(pa,qa) _ Pl ( -1 )
a — Lip, — % (Pa,qa) p1; ,41),

which has self-intersection p;pdjqa’ see |(I11.3.2)
Let h1 = hy, +hy,+1+ - - - be the decomposition of hi(z,y) into (pa, ga)-
homogeneous parts. Denote by g1(x,y) and g2(x,y) the unique polynomials

such that

hi(zPe, z%y) = 2" g1 (2, y),
hi(zyPe,y*) = y" ga(z,y).
Then,
91 (@7, y)le=0 = 91(0,) = hu, (1,y),
2@, y1) =0 = g2(2,0) = b, (2,1).
Hence the set of points CN &, is given by the (global) equation
{hu,(z,y) =0} C P, (015 —1,41).
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Note that h,, (z,y) is not a function on the previous quotient space but
it defines a zero set, since

hl/a (5];111.7 giy) - é.p’j% hVa ($7 y)?
ho, (€t E571y) = &7 (2, y).

The multiplicity of the new exceptional divisor &, is m, = %5“”1. The
equations of the total transform ww](C) in the two charts are given in the
table below, see Section [[.3-1| and |(1.3.14)]

(29)

Equations of w}w](C) Chart
Eu: =0 ~
o X (o1, 0 ) — C(p,aa) 1
11 =
C: gilaa,y)=0 [ 9)] = (@ 2%), [1: Y] p.00)]
ot y=0 +8 52

X( B e, —1) — C(parqa) [ 1
E: =0 ¢ ¢ ) /pl

1

C: ga(w,y1) =0 [z, y)] = [y y), [ Upega)]

Now let us see the behavior of the (pg, qq, Vo )-weighted blow-up at the
point P, in dimension 3. In our local coordinates around

P,=[1:0:0] € (VNEy)NE,

the equation of the divisor ni7n;(V) = V +mEy + (m+ 1)1 B, is given by
the function

me(m—s—l)m(z + hi(z,y)) + X(p1;—1,q1,v1) — C.

Note that X (p1;—1,q1,v1) = X(p1; 51, —1,—B1v1). Now we use the charts
described in Section [[L3-2

The ambient space has two new lines of singular points corresponding
to the lines at infinity {x = 0} and {y = 0} of the exceptional divisor

2

P(mea,Va) 2
Ea - :]P(pa’qa,ya)(pl;_17q17V1)‘
Hpy

Recall that [0: 0 : 1] € E, is a quotient singular point not necessarily cyclic.
The multiplicity of F, is the sum of the (pq, ¢q, v4)-multiplicities of the
components of the divisor wjz§(V') that pass through P, divided by d =
ng(pla Qo + pan), that iS,
Vam +pa(m + D1 + g (mA41)(vg + parn)

7 = 7 = (m+ 1)m,.
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To study the locus of non-transversality in a neighborhood of E,, the
equations of the total transform are calculated in the following table. Note
that the third chart is not given in a normalized form but, as we shall see,
it is not needed for our purpose.

1st chart
E,:x2=0 n
B . X<p15a; g e dpaq17ma)
Eo c2=0
~ 1 v
Viztgi(za,y) =0  [(a%y,2)] = [((aP,2%y,a%z2),[1:y: 2])]
2nd chart
E,:y=0
¢ . Y _ P19a  Pa + B1Ga Vo — B1V14a
Ei:x2=0 X 7 yi ,—1, 7
EO c2=0

V:z —1—92(:17,3/%) =0 [(x,yd,z)] > [((xypa,yqa,y”az), [z:1: z])]

3rd chart
E,:2=0 1
Ei:x2=0 X< Va Pa Qa )
Ey: — P1Va | PaV1 +Va QaV1 — q1Va —V1
Vil MEWE) 0 [(z,g,2)] = [((@2P,y2%,2%), [0y 1])]

The divisor mEy + (m + 1)v1Ey + (m + 1)myE, has clearly normal
crossings. Since the polynomial x"1y™ego(x, y%) defines a function on the
quotient space X (e %, —1), the following map is a well-defined au-

tomorphism on the corresponding cyclic quotient space

P19a_Pa + B14a Vo — B1v14q
X( ) 7_17 )
d d d
1
[(z,y,2)] — [(z,y, 2 + ga(a, y )]
and hence the divisor V + (m + 1)1 Ey + (m + 1)myE, has also normal
crossings.

Only the intersection VN Ey N E, has to be studied. To do so, we
consider the curves Eg N E, = {z =0} and VN E, = {z + hy,(x,y) = 0}

as subvarieties in E, = P?pa 0 Va)(pl; —1,q1,v1). The first two charts of the
latter space are respectively isomorphic to
P1Pa Ga + Padi P19a Pa+ B19a Va — B1V1Ga
X My ), X ; , .
d d d d d
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By Proposition |(I11.4.3), these smooth projective curves are two sections

of E, with self-intersection number pl’;;’a‘za; note that

ng (p17 qa +paq17 Vg +pCLV17 q1Vaq — qua) = d)

which is the greatest common divisor needed in the proposition mentioned
above.

Now working as in Remark see also |(I111.2.1)| and |(I111.3.4)] one
sees that they meet at #(C N &,) points with exactly the same intersection
multiplicity as in the latter, that is, for P € CN &, = vn EqN E,, one has

(30) (Eo N E,, VN Ey; Ea)P - (c,ga; @’g’pmqa)/upl)lj.

As in the first step, the intersection of the total transform with FEj
produces an identical situation to the tangent cone. Also, note that Figures
and can also be used to illustrate the general situation here. The
main difference is that the line at infinity {x = 0} C E, coincides with
Ey N E, and thus the point [0: 0 : 1] € E, belongs to two divisors.

Now, to finish, observe that the triple points Vn Ey N E, of the total
transform in dimension 3 are identified with the points of CNE, and, by ,
the intersection at one of those points is transverse if and only if so is it in
dimension 2. (]

Remark (VI1.2.7). Note that if 2%g;(z,y) : X(e; —1,7) — C defines a func-
tion and z 1 g1 (z,y), then d := ged(e, r) divides k and ¢; (xé, y) is a polyno-
mial. This implies, in particular, that m, is an integer since the polynomial
xVatPat1g () defines a function on X (p1pa; —1, ¢ + paq1)-

Remark (VI1.2.8). If y t hy,(z,y), or equivalently &, > [1 : 0] ¢ C, then
Palva and p1|(v1 + 22); consequently, ged(BF%, mq) = Bpe.

Indeed, assume that h,, (x,y) = z0y°> [[,~,(x% — viyP*)%. Then, its
order is v, = €9Pg+€ocfa+Pada Y ; €i- By , the following two expressions

are equal:
1 _ _ .
h‘l/a (§p1 x? g; y) = §p1€0+600q1 xeoyeoo H(fplq”‘xqa - giparyiypa)el =

_ 0 tesoqi—Gad ;€ _eq. e q q1Pa+q Da )€
=&, i yooH(xa_é'pl a a,-yiy a) ’L’

gZihVa (l‘, y) = g}.feoyeoo H(:L»‘Ia _ %‘yp“)ei.

Hence py divides v1 + eg — es0q1 + qa Zl e;. In the case e5 = 0, the latter
number is 1 + ;—Z and the claim follows.
Anologously, if x t by, (z,y) (& E,2[0: 1] ¢ C < ¢y = 0), then one has

that ¢q|v, and pll(g—z — Biv1); consequently, ged (P, pﬁglq") = Bife,




§ VI.2. Construction of the Embedded Q-Resolution 129

Remark (VI.2.9). Although the third chart, say X3, is not in general a
cyclic quotient space, there are a couple of situations where it is.

e If ged(vy,v,) = 1, then the action given by the second row includes
the first one and thus X3 is just C3 under the second row action.

e Also if ged(p1,v1) = 1 and A is the inverse of v1 modulo p;, then
X (p1;—1,¢1,v1) can be written in the form X (p1; A\, —Aq1, —1) and
thus XS = X(plya;pa + >\Va7 4o — )\Q1Va7 _1)

Let I and I' ;. be the dual graphs associated with the total transform and
the exceptional divisor, after having computed an embedded Q-resolution
of (C, P), respectively. Denote by S(I') and S(I'y) the sets of their vertices.
The classical partial order on S(I'y) is denoted by <.

The locus of non-transversality after the last blow-up in dimension 3 is
identified with the locus of non-transversality in the resolution of (C, P).
Each of these points corresponds to a weighted blow-up in the resolution
of the tangent cone, that is, to a vertex of I';. Thus in the next step we
need to blow-up those points to produce a similar situation. Again the same
operation will be applied to the points where the total transform is not a
normal crossing divisor. These points will also be associated with vertices
of P+.

The following result is proven by induction on S(I'y) using the rela-
tion <. Lemma is the first step in the induction. The proof of
Lemma [(VI.2.6)| tells us the way to show the general case. Let b € S(I'y) be
a vertex such that P, belongs to the locus of non-transversality of the total
transform. As usual, denote by &, the exceptional divisor appearing after
blowing up the point Fj.

Proposition (VI.2.10) (Step b). Let wy, be the (py, qp)-weighted blow-up
at P, with b € S(I'y.). Denote by &, its exceptional divisor, vy the (py, qp)-
multiplicity of C C C2, and my, the multiplicity of &y.

Consider my, the (py, @b, Vp)-weighted blow-up at Py in dimension 3 and E
the corresponding exceptional divisor. Then, after blowing up the point Py,
the new total transform verifies:

(1) The exceptional divisor Ey is isomorphic to P%(py, qy, vb)/tte and
its multiplicity equals (m + 1)my. In general, the lines at infinity
{z = 0} and {y = 0} are quotient singular in the ambient space
and the point [0 : 0 : 1] is the only one which may be non-cyclic.
By contrast, the stratum {z =0} \ {[0: 1:0],[1:0:0]} C Ep is
always smooth.
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(2)

(6)

Let a be a vertex such that a < b. Then, E, N Ey, # 0 if and only if
Py, € &. In such a case, the curve E, N Ey is one of the two lines
at infinity of Ey different from {z = 0}. If P, € E,NEyw, a # d,
then the corresponding lines are different and hence they meet at
the point [0: 0 : 1].

The intersection of the rest of components with Ey produces an
identical situation to the resolution of (C, P), after blowing up the
point P,. More precisely,

XA/HE():C,
EyNEy =&,
E,NEy=E, Va<b

The curves Eg N By = {z =0} and VN E, = {z + H, (z,y) = 0}
o2

are two (#)—sections of Ey and the intersecting points can be

identified with C N &,. Moreover, the intersection multiplicity of

these two sections at one of those points is the same as in the
latter, that is, for P € CN&E, =V N Ey N Ey, one has

(Bon By, VN By By) = (C.i €Yy g /iic) -

If Py € &, then E,NEy and VﬂEb always meet at exactly one
point. This point passes through EoNEy if and only if CNE,NE, # (.
This is the case when there exist quadruple points.

The locus of non-transversality of the total transform in dimension
3 is identified with the one in the resolution of (C, P). These points
belong to VN EoN Ey = CN &y and they correspond to the ones
where the curves EyN Ey and Vn Ey, or equivalently &, and C, do
not meet transversely.

The strict transform V never passes through [0 : 0 : 1] € Ey. In
particular, V' only contains cyclic quotient singularities.

PRrOOF. By induction on S(I'}) with respect to <. The base case is
Lemma, As for the inductive step, one proceeds as in the proof
of Assume, by induction, that the local equation of the total
transform in the resolution of the tangent cone around P, is given by the
function (ged(e,r) = ged(e,s) = 1)

(31)

xMay™ H(x,y) : X(e;r,s) — C,

where C = {H(z,y) = 0} is the equation of the strict transform and the

others correspond to the divisors &, and &, (they may not appear if m, or
my equals zero).
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Also, the equation of the total transform around P, in dimension 3 is
given by the function

(32)  gmtbma g (mtme m [z+ H(z,y)] : X(e;r,s,t) — C,

where V = {z+ H(z,y) = 0} is the strict transform, Ey = {z = 0}, and the
others are the divisors E, and E, (if they exist). Using that both and
are well-defined functions, one has

t+mg-T+mg s € (e).

The verification of the statement is very simple once the local equations
of the divisors appearing in the total transform are calculated. The main
ideas behind are contained in the proof of Lemmas [(VI1.2.2)| and [([VL.2.6)
The details are omitted to avoid repeating the same arguments; only the

local equations are given, see below.

To do so, consider the following data and use the charts described in
Sections[[.3-1|and[[.3-2} As auxiliary results[(II1.2.1)] [(TIL.3.2)] and [(TI1.4.3)]
are also needed.

Do Mg+ Gy Mg + Vp

vy = ordgy, q,) H(z,y) my = d
d=ged(e,pp-s—qp-T)
s'r+s=0 mod (e) r’'s+r=0 mod (e)
H (aPb, aPy) H (zy™, y®)
Hy(z,y) = — Hs(z,y) = g

These are the equations in the resolution of the tangent cone C pre-
sented as zero sets in the corresponding (abelian) quotient space, cf. proof

of Lemma |(VI.2.6)

Equations Chart
51; : rz=0 ep Qb -+ S,p
Ea: — X[ =, 22 CQ(?baQb)/Me
d’ d
ga/ y=
1
C: Hi(zd,y)=0| [@hy)] — [(@,2%y),[1:ylp,a)]
E: y=0 eq » +rq
Ee: =0 X b b b,—1> — (CQ(Pb,(Jb)/Me
Ew 1 —
1
C: Hy(z,ya)=0| [(zy)] = [((@yr, y®), [z Up,q)]
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In dimension 3, the local equations of the total transform are presented as
well-defined functions over the corresponding quotient spaces. The notation
is self-explanatory to recognize the equation of each divisor.

/ t/
1st chart X %;_17qb+5pb7Vb+ P _, ¢
d d d
sy [zt Hy(a )
/ "
2nd chart X<?lb; Po +d7“ qb’ 1 7 +d Qb> .

x(m—‘rl)ma . y(m+1)mb . Zm [Z + H2 (1.7 y%)]

Uy

3rd chart X (

-1
Do db > . C

evy | rvp —tpy Svp —tqy 1

p(m+1)ma y(m+1)ma/ . y(m+1)my-d |:1 + H(Iz:géyqu)}

Here t' and t" are taken so that t'r +¢t = 0 and t"s +¢t = 0 mod-
ulo (e). The exceptional divisor Ej, is identified with P?(py, gy, 1)/ fte Where

the action is of type (e;r,s,t), i.e. Ep = P%pb#]bvl’b)(e; T, S, t). O

Remark (VI.2.11). Note that the equations after the blowing-up at P,
around the points where the total transform is not a normal crossing divisor
are of the same form as in and . Hence, by induction, this fact
holds for every stage of the resolution.

Remark (VI.2.12). Let us write Hy, (z,y) = 2y°> [[;5, (a® —yyP?)%. As

in Remark |(VI.2.8)] if
ytHy(z,y) (<= &3[1:0]¢C < ex=0),

then py[vs, and e|(;2 +1'); consequently, ged (<, ””‘jpb) =D

%M):%
d’  d d

Analogously,
eo = 0 implies ged(

Theorem (VI.2.13). Given an embedded Q-resolution of (C,P) for all
P € Sing(C), one can construct an embedded Q-resolution of (V,0), con-
sisting of weighted blow-ups at points. Fach of these blow-ups corresponds to
a weighted blow-up in the resolution of (C,P) for some P € Sing(C), that
is, it corresponds to a vertex of Fi. O

We shall see later that an exceptional divisor in the resolution of (V,0)
obtained contributes to the monodromy if and only if so does the corre-
sponding divisor in the tangent cone, see|(VI.3.3) and |[(VI.3.5)|
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In particular, the weights can be chosen so that every exceptional divisor
in the embedded Q-resolution of (V,0) contributes to the monodromy.

SECTION § VI.3
The Characteristic Polynomial of the Monodromy

Here we plan to apply Theorem to compute the characteristic
polynomial of the monodromy and the Milnor number of (V,0) in terms of
its tangent cone (C, P). Some notation need to be introduced, concerning
the stratification of each irreducible component of the exceptional divisor in
terms of its quotient singularities.

(VI.3.1). Given a point P € Sing(C), denote by o : Y? — (C, P) an em-
bedded Q-resolution of the tangent cone. Assume that the total transform
is given by
(") (C,P)=C+ > mler,
aGS(I‘i)

where £ is the exceptional divisor of the (p,¢l’)-blow-up at a point P,
belonging to the locus of non-transversality. Denote by I/f the (pf; ,qf; )-
multiplicity of C at P,.

Recall that £ is naturally isomorphic to ]P)%pf,q P) /pte. Using this iden-
tification, define

Eax=E N0 [1: 0]y, & ={0:1]}, &, ={1:0]}

The strata gfjj = 5;)]- \ (é’fjj N (Ub;éa EFUQ)) for j = 1,2,y (see notation

just above Theorem |(IV.3.14))) will be considered in Lemma |(VI.3.3)

(VI.3.2). Let us see the situation in the superisolated singularity (V,0).
Denote by p : X — (V,0) the embedded Q-resolution obtained following

Proposition |(VI.2.10)l Then, the total transform is

PrV,0)=V+mE+ Y (m+1L)mlEL,
PeSing(C)
aGS(Fi)
and EF appears after the (pf, ¢, vF’)-blow-up at the point P, (recall that
the locus of non-transversality in dimension 2 and 3 are identified).
The divisor EF is naturally isomorphic to P%pf:,qf,uf) /tte. Using this
identification, define

El') = EP\ {zy = 0}, El, ={z=0}\{[0:1:0],[0:0:1]},
El ={y=03\{[1:0:0],[0:0:1]}, El,, ={0:0:1}.

a,
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Analogously, one considers Ei »» and Ei y> S0 that EP =] ; Ef: ; really
defines a stratification. However, these two strata belong to more than one
irreducible divisor in the total transform and hence they do not contribute
to the characteristic polynomial.

As for Ej, according to its quotient singularities, no stratification need
to be considered (it is smooth).

The Euler characteristic of Ey and Evfd- = Ef’j \ (E(fj N ( Ub;éa Ef U ‘7))
for j = 1,x,y,zy (see notation just above Theorem as well as its
multiplicity are calculated in Lemma

EoNE?

FIGURE VI.4. Stratification of £ and E! needed for the
generalized A’Campo’s formula.

Lemma (VI.3.3). Using the previous notation, the Euler characteristic
and the multiplicity of Ey are

X(Eo) = x(P*\ C),  m(Ey) =m.
For the rest of strata of EL, let us fiz a point P € Sing(C). Then, one
has that
1 a=1, j=2zy
X(Eqy) =140 a#1, j=uay
—X(&F)) Va, j=1,2,y;

. . 1 =1, 7=
XED) #0 = m(EL) = {mfp DI
m(&, ;) - (m+1) Va, j=1uz,y.

In fact, Va € S(Fi), a # 1, the stratum ET . is empty and, in particular,

a7xy
its Euler characteristic is zero.

PROOF. Let F be an irreducible component of the exceptional divisor
of p. Let us travel back in the history of the resolution until the time when
FE first appears. Consider the space defined at that moment by F minus the
intersections with the other components.



§ VI.3. The Characteristic Polynomial of the Monodromy 135

Since all the weighted blow-ups have center in that intersections, this
space is naturally isomorphic to E. Using these arguments, we will per-
form the calculations of the Euler characteristics at the moment when the
component appears in the history of the resolution.

For Ejy, the space Ej is isomorphic to Ey \ (‘7 N Ey) which is identified
with P\ C; its multiplicity is m, see discussion before Lemma and
Figure

For the rest of the proof the cases j = 1, x,y, xy are treated separately.
Let us fix a point P € Sing(C) and omit the index “P” to simplify the
notation.

Recall that E, = P?pa#]aﬂ/a)/'ue7 see Lemma |(VI.2.10)(1). Also Fig-
ure [VL.4 will be useful.

° j=1xy:

The stratum FE, 4, is the point [0: 0 : 1] € E,. By |(VI1.2.10)| it belongs
to just one divisor if and only if a # 1, see Lemma |(VI.2.2) and its proof.
This implies that y (£ 4,) = 1 and that

X(Eazy) =0,  Vae S(T4)\ {1}
Following Definition [(TV.3.12)} the multiplicity of Ej ., is (m+Dv1 gince the

Vi
origin [0 : 0 : 1] € E; is a cyclic quotient singular point of order v;, see

Lemma |(VI.2.2)|

o j=u:

The stratum E, ; is the line {x = 0} C E,. If there is another component
of the divisor that passes through &, , = [0: 1] € &,, then one has &, , = 0,
and either anx = Eq, \ {2 points} or EV(M = (). Otherwise, Sva@ =10: 1]
and E,, = E,, \ {3 points}, see second part of ). In the case
when the Euler characteristic is different from zero, by Remark
the multiplicity is
(m+1)my (m+1)my <

m(Eb,x) = gcd(%, Vb"!‘;”%) - % = (m + 1)m(gb,x)

The case j = y is exactly the same as j = .

e j=1:
Consider the projection of E, \ Eq 4y onto the line {z = 0} = &,. This
map is identify with the morphism

T ]P)%pmqa,l/a)(e; r,s, )\ {[0:0:1]} — P%pa,qa)(@ r,s),

[x:y:z] — [z:y].

Note that the restriction 7| : Ea,l — Ev'a,l is a fibration with fiber isomorphic
to C\ {2 points} and hence x(fiber) = —1.
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The multiplicity of the smooth part is (m + 1)m, in the superisolated
singularity while it is m, in the tangent cone.

To finish observe that in any case, one has that x(E, ;) = —x(a,;) and,
if they are different from zero, m(E, ;) = (m + 1)m(&, ;). Now the proof is
complete. O

Remark (VI.3.4). The Euler characteristic of the complement of a projec-
tive plane curve in P? is known to be

X(PP\C) = (m>=3m+3)— > pup,
PeSing(C)
see [Esn82], or [Art94a] for an elementary proof based on the additivity of

the Euler characteristic.

Theorem (VI1.3.5). The characteristic polynomial of the complex mon-

odromy of (V,0) is

(™ — 1)XENO)
t—1

Awp(t) = H Ac,py (™),

PeSing(C)

where A(qp)(t) denotes the characteristic polynomial of the local complex
monodromy of (C, P).

PROOF. Given a point P € Sing(C), let us compute the characteristic
polynomial of (C, P). Its total transform is

(@")(C.P)=C+ > mlel,
aGS(Fi)
and the stratification associated with each exceptional divisor needed for

applying A’Campo’s formula is &, = Va’l L g’a@ L év’%y. Then, by Theo-

rem |(IV.3.14)

(33) Ay =@t-1) T @€ -1,
aGS(Fi)
j=lLzy
Let us see the situation in the superisolated singularity (V,0). The total
transform is

p*(V,0) =V +mEy + Z (m+ 1)mPELF
PeSing(C)
aES(Fi)

and the corresponding stratification is EF = E(f L u E(f . U Ef’ y U Evcf oy
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By Theorem |(IV.3.14)| the characteristic polynomial of (V,0) is

(34)  Apgy(t) = —— (mE) _ 1pxF) [T () - E,

t—1 .
PeSing(C)
aGS(Fi)
j=Llz,y,xy

From Lemma |[(VL.3.3), m(Ey) = m and x(Ep) = x(P?\ C), and the

latter can be computed combinatorially as indicated in the statement. Let
us calculate the contribution of the preceding product for a given point
P € Sing(C).

Again using Lemma and, in particular, the fact that a # 1
implies x(EF, ) = 0, one has that

a7xy

[T (- 1)x<E5j> _
aGS(Ff)
=1, z,y,xy
. P 3 -p
= (tm(E{D,zy) _ 1>X(E17xy) H <tm(E5,g) _ 1>X(Ea,j)
~ acS(I
o=l I=w J'€=1,(x+y)
, _ (P
= (tm+1 B 1)1 H (t(m+1)m(5;f].) _ 1) x(t?a,j)‘
qES(Ff)
j=l,z,y

By (33), the last expression is equal to Acc,p) (t™*1) and hence (34) is
exactly the formula of the statement. O

Remark (VI.3.6). Note that the first part of A(t) is closely related to the
zeta function of the tangent cone f,,(x,v, 2) regarded as an function on C3.
In fact, Z(fm : C3 = C; t) = (1 — t™)XE\C),

This is a consequence of the fact that the monodromy zeta function of
a homogeneous polynomial of degree d is Z(t) = (1 — t%)X(F)/d  where F is
the corresponding Milnor fiber.

Corollary (VI1.3.7). The Milnor number of a superisolated surface singu-
larity can be expressed in terms of the Milnor numbers of the singular points
of the tangent cone, namely

p(V,0)=(m—-1°+ > uC,P).
PeSing(C)
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PrRoOOF. The Milnor number coincides with the degree of the character-
istic polynomial. Then,

=m m2— m — — € m
deg A(t) = m( 3m +3 zp:up) 1+§P:dgAP(t)( +1)

mp

:m3—3m2—|—3m—mz,up—1+(m—|—1)z,up
P P

:(m—1)3+z,up.
P

Above, the sums are taken over P € Sing(C). O

SECTION § V1.4
Higher Dimension

The family of singularities studied in this chapter can be easily general-
ized to higher dimension. In such a case, a (classical) embedded resolution of
the tangent cone, consisting of blow-ups with smooth center, is used instead
to describe the embedded Q-resolution of the singularity. In order not to
repeat the same arguments of the preceding sections, only a sketch of the
embedded Q-resolution is presented.

Let f = fon+ fny1+- -+ € C{zo,...,z,} be the decomposition of f into
its homogeneous parts. Assume f defines a superisolated singularity (V,0),
i.e. Sing(C) NV (fm+1) = 0. This implies that C := V(f,,,) C P" only has a
finite number of singular points, say {Pi,..., P, }.

One starts the resolution of (V,0) with the usual blow-up at the origin
of C"*!, producing an identical situation to Lemma but in higher
dimension. That is, the exceptional divisor Ey and the strict transform
intersect transversely at P if and only if P is smooth in C.

As for the singular points, there exist local coordinates around P; such
that the equations of the exceptional divisor and the strict transform are

Eo! 560:0;
Step 0 ~
P { V. xo+h(zy,...,2q) =0,

where h(z1,...,z,) = 0 is an equation of the germ (C, P;) and its order is at
least 2. In this coordinates P; = [1: 0 : ... : 0]. Moreover, x(Ep) = x(P"\C)
and m(Fp) = m.
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Let P be one of the singular points of C. Now one proceeds with the
(usual) blow-up at P in the tangent cone and with the (v, 1, (n) 1)-blow-up
at P in (V,0), where v; = ord h(x), see Here are the equations of
the total transforms:

Cone: x7'hi(x) =0;
Step 1 : (m+1)v
SIS:  zf'zy "o+ hi(x)) =0.

From these equations, the locus of non-transversality in dimension 2
and 3 are identified. Note that the new ambient space has just one singular
point @ of type (1/1; 1,1,...,1) located at the exceptional divisor E;. The
strict transform V and the d1V1sor Ey do not pass through ). Hence the
corresponding stratification is FEy = El LU Ey .Q» where the latter represents
the singular point ) and the other one the smooth part of the divisor.

Moreover, x(E11) = —x(&1), m(E11) = (m + 1)vy and x(E1g) = 1,
m(ELQ) = m + 1. We use the following argument to compute the Euler
characteristic of the smooth part. Denote by h,,(x) the vi-homogeneous
part of h(x), F1 = {xo = 0}, and Fy = {zp + hy,(x) = 0} C Ej. Then,

& =P 1\ {h,(x) =0} = (F1\ (F1 N F)),

(35) Evni =P, )\ (FNE)UFRUQ].

Consequently, x(F11) =n+1—x(F1) —n—1= —x(E}) as claimed.

Finally, to give the embedded Q-resolution of (V,0), every time there is
a (usual) blow-up in the tangent cone with center Z = {z1 = --- = 3, = 0},
one considers the (v,1, #), 1)-blow-up with center {zg = --- = z; = 0},
where v is the order of C with respect to Z.

The new ambient space is covered by k + 1 charts, namely U; = C"*!
fori=1,...,kand Uy = X(v;—1,1, *) 1) x C**. Hence the exceptional
divisor E = IP’](“V,L B C"* contains the subset [(0,...,0)] x C"* as
quotient singularities, see §I.3-3l The equations of the total transform are:

Step Cone : z{™ .- 2" - hi(x) =0;
ep i
P SIS: i xgmﬂ)ml e xl(mﬂ)ml “(zo + hi(x)) =0.

The main difference in the i-th step (i # 0, 1) is that the singular points
of F; always belong to more than one exceptional divisor and thus they
do not contribute to the characteristic polynomial. The stratification is
therefore the usual one. Moreover, using the same arguments as in , one
has that x(E;) = —x(&) and m(E;) = (m 4+ 1)m(&;).
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Now we have all the ingredients to apply Theorem [(IV.3.14)l The de-
tails are left to the reader because they do not provide any new idea. The
characteristic polynomial of the monodromy of (V,0) C (C™*1,0) is

(tm — 1)x<Pn\c>] S

H Ac,p) (™),
PeSing(C)

Aw,p(t) = P

where A p)(t) denotes the characteristic polynomial of the local complex
monodromy of (C, P).

The Euler characteristic of P"\ C is calculated combinatorially from the
expression m - x(P"\ C) = 1+ (—1)"[(m — 1)"™! — MY peSing(P) pp] and
thus the Milnor number is

p(V,0)=(m—-1""+ > u(C,P).
PeSing(C)



Yomdin-Lé Surface Singularities

The family of singularities studied in Chapter [VI| can be generalized
as follows. Let f = fu + fimskx + -+ € C{x,y,z} be the decomposition
of f into its homogeneous parts, & > 1. Denote V := V(f) C C? and
C := V(fmn) C P2. Then, the germ (V,0) is said to be a Yomdin-Lé surface
singularity (YS) if the condition Sing(C) NV (fm+x) = 0 holds in P2

The main difficulty in finding a (usual) embedded resolution of this kind
of singularities is that after several blow-ups at points and rational curves,
following the ideas of [Art94b|, one eventually obtains a branch of resolu-
tions depending on k. Thus the study of this singularities by using these
tools seem to be very long and tedious.

However, an embedded Q-resolution of (V,0) can be computed exactly as
in Chapter i.e. by means of weighted blow-ups at points, see Ex.|(IV.2.7)|
In fact, this is the main purpose of this chapter. Again, the weights at each
step can be chosen so that every exceptional divisor in the Q-resolution con-
tributes to the monodromy. As an application, the characteristic polynomial
and the Milnor number are calculated using Theorem

In order not to repeat the same arguments, the proofs of this chapter
are sketched, commented, or simply omitted. Moreover, they are presented
following the same structure as in Chapter [VI] so that one can easily com-
pares the corresponding results with the SIS. In the discussion, one usual
thinks that & # 1, since otherwise (V,0) is a SIS, cf. [Marl1al.

As for notations and conventions, we use the same as in the previous
chapter. It is extremely recommended to take a look at it before continuing
because, in this sense, this chapter is not self-contained. In particular, see

proof of Lemma |(VI.2.2)]
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(VIIL.0.1). We start the Q-resolution of (V,0) with the usual blow-up at the
origin my : C3 — C3. The total transform is the divisor (V) = V +mE,
where V is the strict transform and Ej is the exceptional divisor. The
intersection V N Ey is identified with the tangent cone of the singularity.

Let us consider P € V N Ey = C. After linear change of coordinates we
can assume that P = ((0,0,0),[0:0:1]) =[0:0: 1] € C. Take a chart of
C3 around P where z = 0 is the equation of Fy and the blowing-up takes
the form

(z,y,2) = (22,y2,2).
Then, the equation of Vis

‘7 : fm(xay7 1) + Zk |:fm+k(x7y7 1) + me-l—k-‘rl(x’ya 1) + - ] =0.

Two cases arise: if P is smooth in the tangent cone, then V is also smooth
at P and the intersection with Ey at that point is transverse; otherwise,
i.e. P € Sing(C), the YS condition Sing(C) NV (fitx) = 0 implies that the
previous expression in brackets is a unit in the local ring C{x,y, z} and v
is not smooth at P (unless £k = 1). Now the order of f,,(z,y,1) is greater
than or equal to 2 and the intersection Vn Ey is not transverse at P.

(V) = V +mE,
/ﬂ/ / = Sing(C)
Vn Ey=C

F1cure VIIL.1. Step 0 in the embedded Q-resolution of (V,0).

We summarize the previous discussion in the following result, which is
the step zero in our Q-resolution of (V,0).

Lemma (VILO0.2) (Step 0). Let P € C. The surfaces V and Ey inter-
sect transversely at P if and only if P is a smooth point in C. Otherwise,
i.e. P € Sing(C), there exist local analytic coordinates around P such that
the equations of the exceptional divisor and the strict transform are

Ey: z2=0;
Vi 2F4h(zy) =0,

where h(z,y) = 0 is an equation of C and its order is at least 2.
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Remark (VII.0.3). Observe that the main difference at this stage is that
V' is not smooth at the singular points of the tangent cone and its equation
at those points has z* as one of its terms.

SECTION § VII.1
An Embedded Q-Resolution for YS

After the step zero NT(nj(V)) is identified with Sing(C). The next
step in the Q-resolution of (V,0) is to blow up those points. Let us fix
P € Sing(C) and consider local coordinates as in Lemma The
idea is to choose suitable weights so that the strict transform of V' has again
an equation of the same form, namely z* 4+ H(z,y) = 0.

Given an exceptional divisor in the tangent cone &,, a € S(I'y), and m,
its multiplicity, denote k, := gcd(k,m,). When a = 1, then m; = v; and
thus k; = ged(k, v1).

Lemma (VIL.1.1) (Step 1). Let (p1,q1) € N? be two positive coprime num-
bers. Let wy be the (p1,q1)-weighted blow-up at P € C. Denote by & its
exceptional divisor and by vy the (p1, q1)-multiplicity of C at P.

Consider m the (%,%,%)-weighted blow-up at P in dimension 3
and FE1 the corresponding exceptional divisor. Then, the total transforms
verify:

(1) wi(C) = C + &,
v

(2) mim(V) =V + mEo + (m + k),
1

El:

(3) NT(mim5(V)) = NT(wi(C)).

PROOF. The weighted blow-up at P in the tangent cone is described
in detail in the first part of the proof of Lemma Thus we only
consider here the weighted blow-up at P with respect to (%, kk—qll, Z—i) in
dimension 3.

The new space has in general three cyclic quotient singular lines, see
Remark (1) below, each of them isomorphic to P!, and located at
the new exceptional divisor F;. They correspond to the three lines at infinity

of By :PQ(@ kqu ﬂ)
k1 k1 k/"

The multiplicity of E7 is the sum of the multiplicities, in our local coor-
dinates, of the components of the divisor 7(j(V') that pass through P, that
is, mZ—i + k,’;—i =(m+ k:)%

Hence the total transform is the divisor

mirt (V) =V + mEy + (m + k)%El.
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To study the locus of non-transversality, the equations in the three charts
are calculated in the table below. Note that the cyclic quotient spaces

kpi1 kqn 11

are represented by their normalized types, since ged (W’ T 171) =1, see
Section [L3=2] for details.

k k k k
X ﬂ;_Lﬂ’ﬂ X ﬂ;ﬂ7_17ﬂ
kjl k:l kl k‘l kl kl
m kpp kag v kpp o kay vy
(z,y,2) — (x 1,z ki y,zhz) (zy B,y y=z)
Ey z=0 z2=0
E1 =0 y:O
~ ko Kk
1% 2%+ hy(z*,y) =0 2P 4 ho(x,yF1) =0
x (ke ko
ki k1 Kk
m kpy kg
(,y,2) — (xz k1 yzF zF1)
Ey —
E1 ZIO
~ kL
14 14 hy (z,y) + 2R hy iz, y) +--- =0

Clearly F7 and Ey intersect transversely. The strict transform V also
cuts E; transversely except perhaps at {z = 0} C E;. The equations of
these intersections are given by

EoNEy = {z =0},
‘A/ﬁEl = {zk—i-hyl(x,y) =0},

mmﬁ)
ki k1 k1/"

as projective subvarieties in Ej = IP’Q(

EyNE;

F1curg VIIL.2. Step 1 in the embedded Q-resolution of (V,0).
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By [(IT1.4.3), these smooth projective curves have self-intersection num-
bers k’;;: +- and % respectively. They meet at #(C N &) points with
intersection number k; /k times the intersection number in C N &, that is,

for Pe CnNné& =V NEyN Eq, one has

Lk (p1,q1)

On the other hand, the intersection of the total transform with Eq pro-
duces an identical situation to the tangent cone, see Remark [(VIL.1.2)|2) for
a more detailed explanation.

All these statements follow from the equations above. In Figure
we see the intersection of the divisor 77 (V') with Ey and E4, respectively.
See also Figure for the situation in C.

Finally, the triple points of the total transform in dimension 3 are iden-
tified with the points of CN &y and, by , the intersection at one of those
points is transverse if and only if so is it in dimension 2. This concludes the

(36) (f/mEl,EomEl;El)P:@-(C,gl; C2 )P.

proof. O

Remark (VIL.1.2). Just to emphasize, we collect below the main differences
with the embedded Q-resolution of a superisolated surface singularity at this

stage, cf. Lemma |(VI.2.2)[ and its proof.

(1) The stratum {z =0} \ {[0:1:0],[1:0:0]} C E; is not smooth.
In fact, the group acting on these points is of type (%, -1,0, %),

see Figure [VIT.2]

(2) In principle, the intersection of Ey with the rest of components seem
to be different from the situation in the tangent cone, because in
the first chart £y N Ey = {z = 0} and V N Ey = {hy(zF/F y) = 0}

on X(%; -1, kk—qll) After normalizing the latter type, one finds the

equation of & and C on X (p1;—1,¢1), cf. [(VIL.1.3)]

(3) Write hy, (z,y) = 2%° [[;(z9 —4f'yP1)% = 0. If @ = 0, or equiv-
alently & > [0 : 1] ¢ C, then {z = 0} C E; cuts VN E; =
{z* + h,, (z,y) = 0} in exactly ged(k, o) points different from the
origins of Ej. Analogously, {y = 0} C FE; intersects in ged(k, z’%)
points if b = 0. This can be checked directly or applying Bézout’s

Theorem on FEj, see Proposition |(I11.4.3)|

Let I and I' 4 be the dual graphs associated with the total transform and
the exceptional divisor, after having computed an embedded Q-resolution
of (C, P), respectively. Denote by S(I') and S(I') the sets of their vertices.
The classical partial order on S(I'y) is denoted by <.
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The locus of non-transversality after the last blow-up in dimension 3 is
identified with the locus of non-transversality in the resolution of (C, P).
Each of these points corresponds to a weighted blow-up in the resolution
of the tangent cone, that is, to a vertex of [';.. Thus in the next step we
need to blow-up those points to produce a similar situation. Again the same
operation will be applied to the points where the total transform is not a
normal crossing divisor. These points will be associated with vertices of I' ;.
as well.

Before describing a generic step, blowing up the point P, as in Proposi-
tion|(VI.2.10)| let us clarify the justification for working with non-normalized

spaces.

(VIIL.1.3). After the first blow-up the local equation of the total trans-
form of (C,P) is given by z"*hi(z,y) : X(p1;—1,91) — C, see proof of
Lemma |(VI.2.2)l The situation in dimension 3 is provided by

k) YL & k k
.’E( +k)ki . Zm . [Zk +h1(xkl 7y)} : X( 51;_17 kQ1’Zl> C?
—_—— -~ 1 1 1

FE1 FEo %

as we have just seen in the proof of Lemma The divisors E7 and
&1 are both represented by x = 0.

However, the equation of the strict transform of C and V do not corre-
spond to each other directly. This obstruction can be solved working with
non-normalized types, since the function

xk’%hl(m%,y) : X<kpl;—1,k(h) — C
k1 k1
also gives rise to the total transform of C on a space represented by a non-
normalized type.

On the other hand, the embedded Q-resolution of a Yomdin-Lé surface
singularity will contain in general non-cyclic quotient singularities. Hence
providing normalized types is long and tedious. Motivated by this fact and
for better understanding of the relationship between C and (V,0), we present
the embedded Q-resolution without explicitly giving the normalized type of
each quotient space.

The following result is proven by induction on S(I';) using the rela-
tion <. Lemma |(VII.1.1)| and [(VIL.1.3)| just above is the first step in the
induction. Let b € S(I'y) be a vertex such that P, belongs to the locus
of non-transversality of the total transform. As usual, denote by &, the

exceptional divisor appearing after blowing up the point P,.
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Proposition (VII.1.4) (Step b). Let wy be the (py, qp)-weighted blow-up
at P, with b € S(I'y). Denote by &, its exceptional divisor, vy the (py, qp)-
multiplicity of C C C2, and my, the multiplicity of &,. Assume, if necessary,
that k|py and k|q, so that k|vy too.

Consider my, the (py, gy, 7 )-weighted blow-up at Py, in dimension 3 and Ej,
the corresponding exceptional divisor. Then, after blowing up the point Py,

the new total transform verifies:

(1)

(2)

The exceptional divisor Ey is isomorphic to P?(py, qp, L)/ e and
its multiplicity equals (m + k)%f In general, their three lines at

finity are quotient singular in the ambient space.

Let a be a vertex such that a < b. Then, E, N Ey, # 0 if and only if
P, € &,. In such a case, the curve E, N Ey is one of the two lines
at infinity of Ey different from {z = 0}. If Py € E,NEw, a # d,
then the corresponding lines are different and hence they meet at
the point [0 : 0 : 1].

The intersection of the rest of components with Ey produces an
identical situation to the resolution of (C, P), after blowing up the
point Py,. More precisely,

vﬂE():C,
EyNEy =&,
E,NEy=E, Va<b

The curves Eg N Ey = {z =0} and V N B, = {z* + H,, (z,y) =0}
have self-intersection numbers 7852?% and _ggéybkb respectively, and
the intersecting points can be identified with C N &y.

Moreover, the intersection multiplicity of these two curve at
those points can be computed as follows. Let P € Vn EyNEy, =

CnN&y, then one has

1

(‘7 N Ey, Eg N Ey; Eb>P - m . (C’gb; @%pb,Qb)/Me)P’

where O(Ey, ;) denotes the order of the group acting on the natural
stratum By, := {2z =0} \ {[0:1:0],[1:0:0]} C Ep.

Let P, € & (a <b) and assume e.g. E, N Ey, = {x = 0} C Ey.
IfCNné,NE, =0, then E, N Ey and VN Ey meet transversely
at exactly gcd(k,m(é’b’z)) points different from the origins of Ej.
Otherwise, i.e. CNE, N By # 0, the letter curves only meet at one
point, which besides passes through FEy N Ey. This is the case when
there exist quadruple points.
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(5) The locus of non-transversality of the total transform in dimen-
sion 3 is identified with the one in the resolution of (C, P). These
points belong to VN EyN Ey, = CNE, and they correspond to the
ones where the curves EgNEy and ?ﬂEb, or equivalently & and C,
do not meet transversely.

(6) The strict transform V never passes through [0:0:1] € Ep.

PRrROOF. By induction on S(I';) with respect to the order <. The base
case is Lemmatogether with its modification explained in
As for the inductive step, one proceeds as in the proof of Assume,
by induction, that the local equation of the total transform in the resolution
of the tangent cone around P, is given by the function

(37) "y H(z,y) : X(e;r,s) — C,

where C = {H(z,y) = 0} is the equation of the strict transform and the
others correspond to the divisors &, and &,/ (they may not appear if n, or ng
equals zero). In principle, the type (e;r,s) is not assumed to be normalized.
Hence n, and n, are not the multiplicities of &, and &, .

Also, the equation of the total transform around P, in dimension 3 is
given by the function

(m+k)ng (m+k)na/
k

(38) x Yy~ F -zm-[2k+H(x,y)] : X(e;r,s,t) — C,

where V = {z*+ H(z,y) = 0} is the strict transform, Ey = {z = 0}, and the
others are the divisors F, and E, (if they exist). Using that both equations
are well-defined functions on the corresponding quotient spaces, one has
(39) %-r+%-s+t50 (mod e).

The verification of the statement is very simple once the local equations
of the divisors appearing in the total transform are calculated. The main
ideas behind are contained in the proof of Lemma |(VII.1.1)| and |(VII.1.3)]
The details are omitted to avoid repeating the same arguments; only the

local equations are given, see below. To do so, consider the following data
and use the charts described in Sections and As auxiliary results

ZHI.2.1]|7 iHI.3.2$|, and [(TIT.4.3)| are also needed.

vy := ordy, o) H(z,y) Ny =Py Ng + @ Ny + Vp
H (zPb 29 H (zyPb %
Hi (2, y) = 20000 Hy(z,y) = 2z

Note that if Q? denotes the quotient space of the first chart in the
tangent cone (see below) and (QF,[(0,1)]) = (C2,(0,1)), [(z,y)] — (2%, y)
defines an isomorphism of germs, then the multiplicity of the new exceptional
divisor &, is my = .
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These are the equations in the resolution of the tangent cone. They are
presented as zero sets omitting their multiplicities.

Equations Chart
E: =0 » 1 q /
Eat — X< “ 1T ’ ) — C%(pb, @) [ e
£, y=0 b€ | T DpS— QT
C: Hi(z,y)=0 [z 9)] = [(@,2%y),[1: y)pya)]
gb : Yy = 0

1 .

Ea: =0 X< o b ) — CQ(pb,qb)/ue
£, — € | @ — PpS S
C: Hy(z,y)=0 [(m,y)] = [((37ypbayqb)7 [2: 11(%,%)”

In dimension 3, the local equations of the total transform are presented as
well-defined functions over the corresponding quotient spaces. The notation
is self-explanatory to recognize the equation of each divisor. In the first
chart, however, it is indicated the divisor corresponding to each equation.
Note that, for instance, the polynomial of the first chart has been obtained
after performing the substitution (z,y, z) — (zPt, %y, T ).

—1 v
1st chart X< Po P ko ) — C
pve | T ppS —qpr ppt — Pr
(m+k)n (m+k)n s
Ey Ea’ Eo ‘7
—1 Y
2nd chart X< P Po - ) — C
e | @r —ppSs 8 @t — Ps
(m+k)ng (m+k)n
T E ey E 2™ [ Ho(x,y)]
L) -1
3rd chart | X[ % pe b —C
g : < Ze| tr—pt Ps—qgt t
m na (m‘HC)nal m n
x( +}f> Y & . Z( +kk) b {1 + H(:Ez:ﬁéyqu)}

Note that if QY denotes the quotient space of the first chart in dimen-
sion 3 (see above) and (QY, [(0,1,1)]) = (C?,(0,1,1)), [(z,y, 2)] = (", y, 2)
defines an isomorphism of germs, then the multiplicity of the new exceptional

divisor B is R, O
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Remark (VII.1.5). Observe that the columns of the new spaces satisfy a
condition analogous to . For example, using , it can be checked that

ny [(—1\ | na ) % _ {0 Db
. - = d .
k < r ) + k <pbs — qbr) + <pbt — 2r o) ™M ppe

In other words, the third column is a linear combination of the first two ones,
modulo the order of the corresponding group. This can be used to prove

that L = ged(¢, ¢) and hence the multiplicity of Ej is % indeed.

Theorem (VII.1.6). Given an embedded Q-resolution of (C,P) for all
P € Sing(C), one can construct an embedded Q-resolution of (V,0), con-
sisting of weighted blow-ups at points. Each of these blow-ups corresponds to
a weighted blow-up in the resolution of (C, P) for some P € Sing(C), that
is, it corresponds to a vertex of Fﬁ. [l

By [(VIL.2.3)[ and |(VII.2.4)| an exceptional divisor in the Q-resolution
of (V,0) contributes to the monodromy if and only if so does the corre-
sponding divisor in (C, P). Hence the weights can be chosen so that every

exceptional divisor contributes to the monodromy.

SECTION § VII.2
The Characteristic Polynomial of the Monodromy

Here we plan to apply Theorem to compute the characteristic
polynomial of the monodromy and the Milnor number of (V,0) in terms of
its tangent cone (C, P). Some notation need to be introduced, concerning
the stratification of each irreducible component of the exceptional divisor in
terms of its quotient singularities.

(VIL.2.1). Given a point P € Sing(C), denote by o’ : Y? — (C, P) an em-
bedded Q-resolution of the tangent cone. Assume that the total transform
is given by
"), Py=C+ ¥ mPel,
aesS(Ty)

where £ is the exceptional divisor of the (p, ¢’)-blow-up at a point P,
belonging to the locus of non-transversality. Denote by v! the (pf,ql)-
multiplicity of C at P,.

Recall that £ is naturally isomorphic to P%pf,qf)/ te. Using this iden-
tification, define

Eax=E {0110}, &L ={0:1]}, &, ={[1:0]}

The strata gfj = Sfj \ (Sfj N (Ub;éa EFUQ)) for j = 1,2,y (see notation
just above Theorem |(IV.3.14))) will be considered in Lemma |[(VII.2.3)]
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(VIIL.2.2). Let us see the situation in the Yomdin-Lé singularity (V,0).
Denote by p : X — (V,0) the embedded Q-resolution obtained following
Proposition|(VIL.1.4)l Then, the total transform is (recall k%’ := ged(k, m?))

P
* - me
pr(V,0)=V+mEy+ > (m+k)kPEf,
PeSing(C) a
aGS(Ff)

and Ef appears after the blow-up at the point P, with suitable weights (re-
call that the locus of non-transversality in dimension 2 and 3 are identified).

The divisor EF is naturally isomorphic to P2 /. Using this identifica-
tion, define

EP) = EP\ {zyz = 0}, El, ={z=0}\{[0:1:0],[0:0:1]},
Bl ={y=0}\{[1:0:0],[0:0:1]}, El ., ={0:0:1}.

a,

Analogously, one considers E(f 2 E(f 2z and E(f y> SO that EP = |_|j E(f j
really defines a stratification. However, these three strata belong to more
than one irreducible divisor in the total transform and hence they do not
contribute to the characteristic polynomial.

As for Ey, according to its quotient singularities, no stratification need
to be considered (it is smooth).

The Euler characteristic of Ey and Egj = Ef’j \ (Ef:j N ( Up2a EPU ‘7))
for j = 1,z,y,xzy (see notation just above Theorem as well as its
multiplicity are calculated in Lemma

EyNEF

FIGURE VII.3. Stratification of £ and EP needed for ap-
plying the generalized A’Campo’s formula.

The following three results are presented without their proofs because
they do not provide any new idea. They are the analogous of Lemmal|(VI.3.3)]

Theorem |(VI.3.5), and Corollary [(VI.3.7)] respectively. Anyway, recall that

the Euler characteristic of P2\ C is m? —3m + 3 — > PeSing(P) HP-
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Lemma (VII.2.3). Using the previous notation, the Euler characteristic
and the multiplicity of Eqy are

X(Eo) = x(P*\ C),  m(Ey) =

For the rest of strata of EX, let us fizx a point P € Sing(C). Then, one
has that

1 a=1, j=uay
X(Eq;) =140 a#l, j=uy
—gcd k:m 5P Ya, j=1,2,y;
m-+k a=1, j=u=zy
( ) 7& 0 = m m 4 k SP ) y . .
a, j=1,z,y.
ged (k, m( EP )) J Y
In fact, Ya € S(Fi), a # 1, the stratum Ea 2y 18 empty and, in particular,
its Fuler characteristic is zero. [l

Theorem (VII.2.4). The characteristic polynomial of the complex mon-
odromy of (V,0) is

pm _ 1)x(F\C) i
Aw)(t) = ( t—)l H A?C,P)(t ),
PeSing(C)

where Ac,py(t) denotes the characteristic polynomial of the local complex

monodromy of (C, P) and if A(t) = [[;(t™ — 1)%, then AF(t) denotes
mg Cd(mi,k)(li
NGRS (tgcd(mm - 1)g . 0

i
Corollary (VIIL.2.5). The Milnor number of a Yomdin-Lé surface singu-
larity can be expressed in terms of the Milnor numbers of the singular points
of the tangent cone, namely
p(V,0)=(m—17°+k > uC,P). O
PeSing(C)

SECTION § VII.3
Weighted Yomdin-Lé Surface Singularities

There is still another generalization of a SIS. Let w := (a, b, ¢) € N? with
ged(a,b,c) = 1. Let f = fo, + fonak + -+ € C{z,y, 2z} be the decomposition
of f into its w-homogeneous parts, k > 1. Denote V := V(f) ¢ C? and
C := V(fm) C P2. Then, (V,0) is said to be a weighted Yomdin-Lé surface
singularity (WYS) if the condition Sing(C) NV (fix) = @ holds in P2.
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This family can be treated the same way. However, it is not the purpose
of this work to describe in detail an embedded Q-resolution of a WYS.
Instead, only the step zero is presented. As we shall see, one can continue
the process, following in a natural way the ideas explained in this chapter,
to find an embedded Q-resolution of (V,0).

(VIL.3.1). We start the Q resolution of (V,0) with the w-blow-up at the
origin 7 : C3 — C3, see The total transform is the divisor 7j(V) =
V4t mkEy, where V is the strict transform and Ej is the exceptional divisor.
The intersection VﬂEo is identified with the tangent cone of the singularity.
Let us consider P € vﬂEo = C. To simplify the exposition one assumes
that P = ((0,0,0),[0:0:1]) =[0:0: 1] € C. Take a chart of C3 around P
where z = 0 is the equation of Ey and the blowing-up takes the form

(x,y,2) = (22,y2", 2.
Then, the equation of V on X(c;a,b,—1) is

~

V: fm(xaya 1) + Zk fm-‘rk(xaya 1) + Zlfm-l—k-‘rl(xvya 1) + - :| =0.

Two cases arise: if P is smooth in the tangent cone, then V is also smooth
at P and the intersection with Fjy at that point is transverse; otherwise,
i.e. P € Sing(C), the WYS condition Sing(C) NV (fm+x) = 0 implies that
the previous expression in brackets is a unit in the corresponding local ring
and V is not smooth at P. Now the order of fm(z,y,1) is greater than or
equal to 2 and the intersection VN Ey is not transverse at P.

(L] o
VNE =

/P N/ Eo
V

FIGURE VII.4. Step 0 in the embedded Q-resolution of (V,0).

To achieve a similar situation after the step zero, one proceeds with the
(p1, q1)-weighted blow-up at a point of type (¢;a,b) in the tangent cone and
with the (%, kk—qll, %)—Weigh‘ced blow-up at a point of type (¢;a,b,—1) in
dimension 3, cf. Lemma |[(VII.1.1)l As it is said, an embedded Q-resolution

of (V,0) can be computed in this way.






VIII

Algorithms for Checking Rational Roots of
b-Functions and their Applications

The content of this chapter has already been submitted for publication
in a joint work with Viktor Levandovskyy. There is a preliminary version

available at [LM10], see also [LMO08,, [ALMO09, ABL"10].

Bernstein-Sato polynomial of a hypersurface is an important object with
numerous applications. However, its computation is hard, as a number
of open questions and challenges indicate. In this chapter we propose a
family of algorithms called checkRoot for optimized checking whether a
given rational number is a root of Bernstein-Sato polynomial and in the
affirmative case, computing its multiplicity.

This algorithms are used in the new approach to compute the whole
global or local Bernstein-Sato polynomial and b-function of a holonomic
ideal with respect to a weight vector. They can be applied in numerous
situations, where an upper bound for the Bernstein-Sato polynomial can be
established. Namely, it can be achieved by means of embedded resolution,
for topologically equivalent singularities or using the formula of A’Campo
and spectral numbers. We also present approaches to the logarithmic com-
parison problem and the intersection homology D-module.

Several applications are presented as well as solutions to some challenges
which were intractable with the classical methods. One of the main applica-
tions consists of computing of a stratification of affine space with the local
b-function being constant on each stratum. Notably, the algorithm we pro-
pose does not employ primary decomposition. Also we apply our results for
the computation of Bernstein-Sato polynomials for varieties.
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The methods from this chapter have been implemented in SINGULAR as
libraries dmod.1lib and bfun.1lib, see [LMO06] and other related packages.
All the examples have been computed with this implementation.

SEcTION § VIII.1
Introduction

Through the chapter we assume K to be a field of characteristic 0. By
R,, we denote the ring of polynomials K[z1,...,x,] in n variables over K
and by D,, we denote the ring of K-linear partial differential operators with
coefficients in R,,, that is the n-th Weyl algebra. The ring D,, is the asso-
ciative K-algebra generated by the partial differential operators 0; and the
multiplication operators x; subject to relations

{c%xj = xj(‘)i + (52']',1’]‘%2' = X%, 8]81 = 8l8] | 1<4,5< n}

That is, the only non-commuting pairs of variables are (x;, 0;); they satisfy
the relation 0;x; = x;0; + 1. We use the Lie bracket notation [a, b] := ab—ba
for operators a, b, then e.g. the latter relation can be written as [0;, x;] = 1.
Finally, we denote by D,[s] the ring of polynomials in one variable s with
coefficients in the n-th Weyl algebra, i.e. D,[s] = D,, ®k K][s].

Let us recall Bernstein’s construction. Given a non-constant polynomial
f € R, in n variables, consider M = R,|[s, %] - f% which is by definition
the free R,|[s, %]—module of rank one generated by the formal symbol f*.
Then M has a natural structure of left D,,[s]-module. Here the differential
operators act in a natural way,

Theorem (VIII.1.1) ([Ber72]). Given a non-constant polynomial f € Ry,
there ezists a non-zero polynomial b(s) € Kls| and a differential operator
P(s) € Dy[s] such that

1
(40) PEf - =b(s) ' € Rofs. ] =
The monic polynomial b(s) of minimal degree satisfying is called
the Bernstein-Sato polynomial or the global b-function of f.

This chapter is organized as follows. In Section the checkRoot
family of algorithms for checking rational roots of the global and local
Bernstein-Sato polynomial is developed. We also show how to compute
the b-function of a holonomic ideal with respect to a certain weight vector.
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In Section [VIIL.3] we show how to obtain an upper bound in various
situations: by using an embedded resolution, for topologically equivalent
singularities, by using A’Campo’s formula and spectral numbers. In partic-
ular, we demonstrate a complicated example of (non-isolated) quasi-ordinary
singularity.

In Section we discuss the possibilities to obtain integral roots
of the b-function and apply it to the computation of the minimal integral
root in the context of Intersection Homology D-module and Logarithmic
Comparison Theorem. In Section [VIII.5] we present a new method for
computing the stratification of the affine space according to local Bernstein-
Sato polynomials.

We want to stress, that Bernstein-Sato polynomials for most of the ex-
amples, presented in this chapter, cannot be computed by direct methods
with any computer algebra system including SINGULAR:PLURAL [GLSO06].
Indeed, these examples were known as open challenges in the community
and here we present their solutions for the first time.

The examples of this chapter have been performed on a PC with Intel
Core 13-540 Processor (4M Cache, 3.06 GHz) equipped with 4 GB RAM
running Ubuntu 10.04 LTS Linux.

SECTION § VIII.2
The checkRoot Family of Algorithms

For the sake of completeness, some of the ideas coming from [LMOS],
as well as some results and their proofs have been included here. Several
algorithms for computing the b-function associated with a polynomial are
known, see e.g. [0ak97al, [0ak97bl, [0ak97c|, [SST00|, [BMO02], [Nor02],
[Sch04a], [LMO0S8|. However, from the computational point of view, it is
very hard to obtain this polynomial in general. Despite significant recent
progress, only restricted number of examples can actually be treated. In
order to enhance the computation of the Bernstein-Sato polynomial via
Grobner bases, we study the following computational problems.

(1) Obtain an upper bound for b (s), that is, find a nonzero polynomial
B(s) € K[s] such that by (s) divides B(s). Write

d
B(s) = [ [ (s — a)™.

i=1
(2) Check whether «; is a root of the b-function.
(3) Compute the multiplicity of o; as a root of by(s).
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There exist some well-known methods to obtain an upper bound for
the Bernstein-Sato polynomial of a hypersurface singularity once we know,
for instance, an embedded resolution of such singularity [Kas77], see Sec-
tion [VIIL.3] However, as far as we know, there is no algorithm for computing
the b-function from this upper bound. In this section we present algorithms
for checking whether a given rational number is a root of the b-function and
for computing its multiplicity. As a first application, using this idea, we
could obtain bs(s) for some interesting non-isolated singularities, see Exam-

ple [(VIII.3.3)| below.
From the definition of the b-function it is clear that
(41) (bs(s)) = (Annp, (5 (f*) + (f)) N K]s].
In fact, this is another way to define the Bernstein-Sato polynomial. This
equation was used to prove the main result of this section, namely Theo-

rem |(VIII.2.1)|

Theorem (VIIL.2.1). Let R be a K-algebra, whose center contains K[s].
Let q(s) € K[s] be a polynomial in one variable and I a left ideal in R
satisfying I NK[s] # 0. The following equalities hold:

(1) (I+R{q(s))) NK[s] = I N K[s] +K[s]{q(s)),
(2) (I:4q(s)) NK[s] = (INK]s]) : q(s),
) (1 als)) NKls] = (INK[s)  g(6).
In particular, using the ideal I = Annp, (f*)+ (f) C Dnls] in the previous
equation , one has
o [Annp,5)(f*) + Dnls|(f, a(s))] N K[s] = ( ged(bs(s),q(s)) ).

o [(Annp,g(f) + Dalsl(F) : a(s)] NKls] = ( gy )

o [(Annp,((f*) + Dalsl(f)) : a(s)®] NKIs] = (bs(s)) : a(s)>.

PROOF. Let b(s) # 0 be a generator of I NK]s]. At first, suppose that
h(s) € (I + R{q(s))) N K[s]. Then one can write

(42) h(s) = P(s) + Q(s)q(s),

where P(s) € I and Q(s) € R. Let d(s) be the greatest common divisor of
b(s) and g(s). There exist by(s) and ¢i(s) such that d(s)bi(s) = b(s) and
d(s)qi(s) = q(s), and hence b1(s)q(s) = q1(s)b(s). Since s commutes with
all elements in R, multiplying in by bi(s), one obtains

bi(s)h(s) = b1(s)P(s) + Q(s)qi(s)b(s) € I.
Thus b1(s)h(s) € I NK[s] = (b(s)) and therefore h(s) € (b(s)) : (bi(s)) =
(d(s)) = INK]s]+ (q(s)). The other inclusion follows obviously. The second
and the third parts can be shown directly and now the proof is complete. [J
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Note that the second (resp. third) part of the previous theorem can
be used to heuristically find an upper bound for bs(s) (resp. the roots of
bg(s)). Since q(s) is in the center of D, [s], the quotient and saturation ideals
can be computed effectively e.g. via the kernel of a module homomorphism
procedures, cf. [Lev05]. More classical but less effective approach is to use
the extra commutative variable, say 7', and the formula

I+ q(s)* = Dyfs, TI{I,1 = Tq(s)) 1 Dy[s].
Let us see an example to illustrate how useful could be Th.|(VIII.2.1)]

Example (VIIL.2.2). Let f € C[z,y] be the polynomial z(z? + y*). The
annihilator of £ in D[s] can be generated by the operators P (s) = 3zy%0, —
y30, — 3220, and Py(s) = 3w0, + 2yd, — 9s. Consider the univariate poly-
nomial

q(s) = (s+1)(s +5/9)(s +8/9)(s +10/9)(s + 7/9)(s + 11/9)(s + 13/9).

Computing a Grobner basis, one can see that the ideal in D[s,T| generated

by {Pi(s), P2(s), f,1—Tq(s)} is the whole ring. From Theorem|(VIIL.2.1)|3),

one deduces that ¢(s) contains all the roots of bs(s).

Using this approach we only have to check whether an ideal is the whole
ring or not. Therefore any admissible monomial ordering can be chosen,
hence the one, which is generically fast.

Given an arbitrary rational number «, consider the ideal I, C D,[s]
generated by the annihilator of f*, the polynomial f, and s + a. Theo-
rem 1) says that the equality I, = Dj[s] holds generically (this
is clarified in Corollary below). Hence the roots of the Bernstein-
Sato polynomial are the rational numbers for which the condition I, # D,,|s]
is satisfied.

This allows one to work out with parameters, that is over K(«)(x, 9;)[s],
and find the corresponding complete set of special parameters. The latter
procedure is algorithmic [LZ07] and implemented in SINGULAR. Note, that
the set of candidates to obstructions, returned by the latter algorithm is in
general bigger, than the set of real obstructions.

Corollary (VIII.2.3). Let {Pi(s),..., Px(s)} be a system of generators of
the annihilator of f* in Dy[s]. The following conditions are equivalent:

(1) oo € Qs is a oot of bg(—s).
(2) Dy[s](Pi(S),..., Px(s), f,s+ a) # Dy][s].

(3) Dn<P1(_a)> R Pk(_a)a f> 7& Dy,.
Moreover, in such a case Dy[s](Pi(s), ..., Pp(s), f, s+a)NK[s] = K[s](s+a).
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PRrROOF. Let J = Dy[s|(Pi(s),..., Px(s), f,s + «) and denote by K the
ideal J N D,,. Then, one clearly has K = D, (Pi(—«),... Py(—a), f). Now
since

J=D[s] «—= JNK[s]=K][s] <= K = D,,

and ged(bs(s), s + a) = 1 if and only if by(—a) # 0, the result follows from
applying Theorem |[(VIIL.2.1)| using ¢(s) = s + a. O

Once we know a system of generators of the annihilator of f* in D,[s],
the last corollary provides an algorithm for checking whether a given rational
number is a root of the b-function of f, using Grobner bases in the Weyl
algebra.

Algorithm 1 cHECKROOT1 (checks whether v € Q¢ is a root of bs(—s))

Input 1: {Pi(s),..., Px(s)} € Dn[s], generators of Annp, 4(f®);
Input 2: f, a polynomial in R,; «, a number in Qs;
Output: true, if o is a root of by(—s); false, otherwise;

KI:<P1(—(M),...,Pk(—0é),f>; >K=JnD,CD,
G := reduced Grobner basis of K w.r.t. ANY term ordering;
return (G # {1});

VIII.2—1. Multiplicities

Two approaches to deal with multiplicities are presented. We start with

a natural generalization of Corollary |(VIII.2.3)

Corollary (VIIL.2.4). Let m, be the multiplicity of o as a root of by(—s)
and let us consider the ideals J; = Annp, 1 (f*) + (f, (s + a)"*!) C Dyl[s],
fori=0,...,n. Then, the following conditions are equivalent:

(1) mq > i.

(2) Ji NK[s] = ((s +a)"*T).

(3) (s+a) & J.
Moreover, if Dypls] 2 Jo 2 J1 2 -+ 2 Jme1 = Jm, then mq = m. In

=

particular, m <n and Jy—1 = Jp =+ = Jp.

PRrOOF. Let us first see 1 <= 2. Since the multiplicity m, > ¢ if and
only if ged(bs(s), (s + a)™) = (s + a)"™!, the equivalence follows from

applying Theorem |(VIIL.2.1)(1) using ¢(s) = (s + a)*™.
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Note that if (s + a)? € J; N K][s], then clearly J; N K[s] 2 ((s + )1,
that is, the implication 2 = 3 holds.

For 3 = 2, let h(s) € K[s] be the monic generator of the ideal J; NK[s].
Since (s + a)i*t! € J; N K[s] = (h(s)), there exists j < i + 1 such that
h(s) = (s + a)’. Suppose that j < i. Then one has

(s+a) =(s+a)(s+a) =(s+a)Th(s) € J.

That, however, contradicts 3 and thus 5 =14+ 1.

The rest of the assertion follows by applying the previous result using
i=mand i=m— 1, since (s +a)™ € J,, and (s +a)™" ! ¢ J,,_1 from the
hypothesis. ([

Again once we know a system of generators of the annihilator of f*
in D,[s], the last corollary provides an algorithm for checking whether a
given rational number is a root of the b-function of f and for computing its
multiplicity, using Grobner bases for differential operators.

Algorithm 2 CHECKROOT2 (computes the multiplicity of o € Q¢ as a
root of by(—s))

Input 1: {Pi(s),..., Px(s)} € Dy[s], generators of Annp, 4(f®);

Input 2: f, a polynomial in R,; «, a number in Q-;

Output: my, the multiplicity of a as a root of bs(—s);

for i=0ton do
J = Dols)(Pi(s), - Pe(s), £, (5 + ) 1); >
G := Grobner basis of J w.r.t. ANY term ordering;

r := normal form of (s + «)* with respect to G;

if » = 0 then
Mg = 1; pr=0= (s+a) el
break > leave the for block
end if
end for

return mgy;

PROOF. (of Algorithm [2).
Termination: The algorithm CHECKROOT2 clearly terminates and one only
has to consider the loop from 0 to n because the multiplicity of a root of
b¢(s) is at most n, see [Sai94].
Correctness: Corollary implies the correctness of the method. [
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Remark (VIIIL.2.5). There exists another version of checkRoot2 with just
one step, due to the formula, see Corollary |(VIII.2.4) above,

(Annp, [ (f*) + Duls|{f, (s + &)™) NK]s] = ((s + &)™)

However, this method only seems to be useful when the multiplicity is close
to n, otherwise checkRoot2 is more effective. The reason is that in general,
the multiplicity is far lower than the number of variables.

This algorithm is much faster, than the computation of the whole Bern-
stein polynomial via Grobner bases, because no elimination ordering is
needed for computing a Grobner basis of J. Also, the element (s + )™t
added as a generator, seems to simplify tremendously such a computation.
Actually, when ¢ = 0 it is possible to eliminate the variable s in advance and

we can perform the whole computation in D,,, see Corollary |(VIIL.2.3)(3)
above.

Nevertheless, Algorithm [2] meets the problem to calculate on each step
a Grébner basis G for an ideal of the form I+ ((s+a)*™!) and the set G;_;
is not used at all for such computation. A completely new Groébner basis
has to be performed instead. The classical idea of quotient and saturation
are used to solve this obstruction. In particular, the following result holds.

Corollary (VIIL.2.6). Let mq be the multiplicity of o as a root of by(—s)
and let us consider the ideal I = Annp, (f*) + Dnls|(f). The following
conditions are equivalent:

(1) mq > i.

(2) (I:(s+a)")+ Dpls)(s+ a)# Dyls].

(3) ([ (s + O‘)i)‘s:—a # Dy

PRrROOF. Given J C D,[s| an ideal, we denote by b(s) the monic gener-
ator of the ideal J NK[s]. Then, from Theorem [[VIIL.2.1)[1), condition 2 is
satisfied if and only if —avis a root of by, (4q)i(s). This univariate polynomial
is nothing but bf(s)/ged(bs(s), (s + )"), due to Theorem |(VII1.2.1)[(2). On
the other hand, one has the obvious equivalence

b (s)
ged(by(s), (s + @))’
and hence the claim follows. ]

Mo > 1 <= (s—l—oz)‘

Since s + a belongs to the center of D,[s], the ideal I : (s + )’ can
recursively be computed by the formulas

I:(s+a)={INDylsl{(s+a))/(s+ ),
I:(s+a)={:(s+a) 1) :(s+a).
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The following is a sketch of another algorithm for computing multiplic-
ities using quotient ideals. The termination and correctness follow from

Corollary |(VIIL.2.6)]

Algorithm 3 CHECKROOT3 (computes the multiplicity of o € Q¢ as a
root of by(—s))

Input 1: {P1(s),..., Px(s)} € Dyls], generators of Annp, 4(f*);
Input 2: f, a polynomial in R,,; «, a number in Q¢;

Output: m,, the multiplicity of « as a root of by(—s);

m:=0; I:=Dy[s|(Pi(s),...,Px(s),f); J:=1I+ Dy[s](s+ a);
while G # {1} do
m:=m + 1;
I'=1:(s+«); >1:(s+a)
J =1+ Dyls|{(s+a); (orJ:=1I|s=_q)
G := reduced Grobner basis of J w.r.t. ANY term ordering;
end while
return m;

Remark (VIIL.2.7). Several obvious modifications of the presented algo-
rithms can be useful depending on the context. Assume, for instance, that
q(s) is a known factor of the Bernstein-Sato polynomial and one is inter-
ested in computing the rest of b¢(s). Then the ideal I : ¢(s) contains such
information. This simple observation can help us in some special situations.

Remark (VIII.2.8). Define the reduced Bernstein-Sato polynomial of f €
Ry tobeby(s) = bg(s)/(s+1). The Jacobian idealof f is Jp = Of .. 9Ly

Ox1’ " Y Oxp

It is known, that taking (f)+Jy instead of (f) has the following consequence

(Annp £2+ (f, 2L, 20 nK(s] = () (s)) = (X2,

Hence, all the algorithms above can be modified to this setting, resulting

in more effective computations. This is the way it should be done in the
implementation. We decided, however, not to modify the description of
algorithms in order to keep the exposition easier.

VIII.2—2. Local versus global b-functions

Here we are interested in what kind of information one can obtain from
the global b-function for computing the local ones and conversely. In order
to avoid theoretical problems we will assume in this paragraph that the
ground field is C.
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Several algorithms to obtain the local b-function of a hypersurface f
have been known without any Grébner bases computation but under strong
conditions on f. For instance, it was shown in [Mal75] that the minimal
polynomial of —9;t acting on some vector space of finite dimension coincides
with the reduced local Bernstein polynomial, assuming that the singularity
is isolated.

Definition (VIIIL.2.9). Let p € C" be a point and m, = ({z1—p1,...,Tp—
Pn}) C Ry, the corresponding maximal ideal. Let Dj, be the local Weyl alge-
bra at p, that is the n-th Weyl algebra with coefficients from Clz, ..., zy]p
instead of R,, = C[z1,...,zy,]. Define the local b-function or local Bernstein-
Sato polynomial to be the univariate monic polynomial by () of the minimal
degree, such that the identity P(s)f - f* = b(s) - f* holds for P(s) € Dp|[s].

Theorem (VIIL.2.10). (Briang¢on-Maisonobe (unpublished) and [MIN91] ).
Let by (s) be the local b-function of f at the point p € C™ and bs(s) the global
one. Then, by(s) = lemyecn by p(s) = lempeging(f) bfp(5)- O

The previous theorem can be very useful for computing the global b-
function using the local ones. Let us see an example.

Example (VIIL.2.11). Let C be the curve in C? given by the equation
f=(y*> —2%)(3z — 2y — 1)(x + 2y). This curve has three isolated singular
points (0,0), (1,1), and (1/4,—1/8). The following is its real picture.

p1

b3

Freure VIII.1. The cup (2,3) with two lines.

The library gmssing.lib contains a procedure bernstein, which com-
putes the local b-function at the origin. Moving to the corresponding points
we can also compute by p, ().

brp () = (s+1)*(s+5/8)(s+7/8)(s+9/8)(s + 11/8)
brps(s) = (s +1)*(s+3/4)(s +5/4)
brps(s) = (s +1)*(s+2/3)(s +4/3)
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From this information and using Theorem |(VIII.2.10), the global b-
function is
br(s) = (s+1)%(s +2/3)(s +5/8)(s +3/4)(s +7/8)
(s+4/3)(s+5/4)(s+9/8)(s +11/8).

The computation of the global b-function with Theorem is
effective, when the singular locus consists of finitely many isolated singular
points. The SINGULAR library gmssing.lib implemented by M. Schulze
[Sch04b] and based on his work [Sch04a] allows one to compute invariants
related to the the Gauss-Manin system of an isolated hypersurface singu-
larity. In the non-isolated case the situation is more complicated, since no
explicit algebraic description of the Gauss-Manin connection exists. For
computing the local b-function in this case (which is important on its own)
we suggest using the global b-function as an upper bound and a local version
of the checkRoot algorithm, see Section below.

T. Oaku presented algorithms for computing the local b-function in
[Oak97a] and [Oak97c]. In these algorithms, no knowledge of a global
b-function is needed. However, these algorithms are quite hard from the
computational point of view. Namely, more complicated elimination in Weyl
algebra together with numerous computations of quotient ideals in a com-
mutative ring need to be executed. An intersection of a left ideal with a
principal subalgebra needs to be performed as well, and for the local case
this has to be done within the localized ring.

In [Nak09], H. Nakayama presented an algorithm for computing local
b-functions. One step in his algorithm uses a bound for the multiplicity of
a given rational root of the global b-function. Then the algorithm checks if
this multiplicity agrees with the local one. This approach is very similar to
our checkRoot algorithm.

Localization of non-commutative rings

We recall some properties of rings of fractions in non-commutative set-
ting. The reader is referred to [GWO04] and [MRO1] for further details.

Definition (VIIL.2.12). Let R be a ring and S C R a multiplicatively
closed set. A left ring of fractions (analogously for right rings of fractions)
for R with respect to S is a ring homomorphism ¢ : R — @ such that:
(1) ¢(s) is a unit of @ for all s € S.
(2) Each element of () can be written in the form for ¢(s)~'¢(r) for
some r € Rand s € S.
(3) ker(¢) ={r € R|sr=0 for some s € S}.
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Theorem (VIIL.2.13). There exists a left ring of fractions for R with
respect to S if and only if S is a left denominator set, that is, the following
conditions hold:

e Left Ore condition: for each r € R and s € S, there exist v’ € R
and s’ € S such that s'r = r's, that is, St N Rs # ().

e Left reversible: if rs = 0 for somer € R and s € S, then 3’ € R
such that sr’ = 0.

In such a case, the pair (Q, @) is universal for homomorphisms ¢ : R — T
such that ¢(S) consists of units of T and therefore Q is unique up to unique
isomorphism. Moreover, if R also has a right ring of fractions Q' with
respect to S, then Q ~ @Q'. O

Because of the uniqueness, the left ring of fractions @ (when it exists)
is often denoted by S™!'R, and the natural map ¢ : R — ST R is called the
localization map. To simplify notation the elements of S™!R are denoted
by s~'r, even when ker ¢ # 0. Two quotients sl_lrl and 32_17“2 are equal if
and only if there exist s € S and a € R such that as; = sse and ar; = srs.
Actually S~'R could be described as S x R modulo the previous equivalence
relation. The localization for left (resp. right) modules can be generalized
in the obvious way and it is verified S™'M = SR ®r M (resp. MS~! =
M ®@p RS™H).

Remark (VIIL.2.14). If S satisfies the left Ore condition and it is left
reversible, then the previous equivalence relation is the same as the following
one, (s1,71) ~ (s2,72) <= Ja,b € R|asy =bsy €S, ary = bro.

Recall the following two classical results on localizations.

Lemma (VIIL.2.15). Let Ry N Ry be a ring extension and S C Ry a
multiplicatively closed set. Assume ST 'Ry and S™' Ry exist and consider the
corresponding localization maps ¢, : R — SRy and ¢ : Ry — S™'Rs.
Let j: ST'Ry — S™'Ry be the map induced by i. Then, j is injective and
for every left ideal I C Ry one has ST' INS 'Ry = STYINRy). O

Lemma (VIIL.2.16). Let R be a ring, S C R a multiplicatively closed set
and I C R a left ideal. Assume SR exists. Then, S~'I is not the whole
ring ST'R if and only if IN S = 0. O

Example (VIII.2.17). Let R = D be the classical n-Weyl algebra and
S = K[x] \ m,, where p € K" is an arbitrary point, cf. Definition [[VIIL2.9)]
Then S is a left and right denominator set as in the statement of Theo-
rem |(VIIL.2.13)| and the localization (K[x]\m,)™!D is naturally isomorphic
to Dj,,. Analogous construction also holds for the extension D[s| = K[s|®k D.
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Local version of the checkRootl algorithm

Theorem is general enough to be applied for checking rational
roots of local Bernstein-Sato polynomials. To simplify the exposition, we
concentrate our attention on the local version of checkRoot1 algorithm. See
Section for other generalizations.

Let f € Cxy,...,z,] be a polynomial, p € C", and a € Q. Then the

first part of Theorem |(VIII.2.1)] see also Corollary |(VIII.2.3)| tells us that

(s + «) is a factor of the local b-function at p if and only if the left ideal
(43) Annp, g (f*) + Dy[s](f, s + a)
is not the whole ring D,[s]. From Lemma |(VIIL.2.15)| using Ry = Dis],

Ry = D(t,0t) = DegK(t,0t | ot -t =t-0t+1), S = C[x]\ my,, and
I = Annpy gy (f°) = Iy the Malgrange ideal associated with f, one obtains

Annp (f%) = Dyls] Annpq(f°).

Proposition (VIII.2.18). Let {Pi(s),...,Px(s)} be a system of generator
of Annpq(f*) and consider the ideal I = D[s|(Pi(s),..., P(s), f,s + ).
Then we have

(s+a)|bsp(s) <= peV({INCK]).

PRrOOF. From the previous discussion, Dp[s]I equals the ideal and
thus s + « is a factor of by,(s) if and only if Dy[s]I # Dy[s]. Now, by

Lemma |(VIII.2.16)| using R = D[s] and S = C[x] \ m,,
Dy[s|I # Dpls] <= IN(C[x]\m,) =0 <= INC[x] Cm,y,
and the claim follows. O

There are several ways to check whether an ideal I C D,[s] is proper or
not. However, it is an open problem to decide which one is more efficient.
Mora division and standard bases techniques seem to be more suitable in this
case, since otherwise a (global) elimination ordering is needed. On the other
hand, using this approach, such orderings are unavoidable for obtaining
the stratification associated with local b-functions, see Section where
several examples are shown.

VIII.2-3. b-functions with respect to weights and checkRoot

The b-function associated with a holonomic ideal with respect to a weight
is presented. We refer [SST00] for details. Let 0 # w € R%, and consider
the V-filtration with respect to w, {V;, | m € Z} = V on D, where Vj, is
spanned by {xo‘é)ﬁ | —wa+wp < m} over K. That is, z; and 0; get weights
—w; and w; respectively.
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Note that the relation d;x; = x;0; + 1 is homogeneous of degree 0 with
respect to such weights. The associated graded ring
Gr" (D) == @B Vin/Vin1
mEZ
is isomorphic to D, which allows us to identify them.
For a non-zero operator
pP= Z aagxo‘(‘?ﬁ eD,
a,BENT
the maximum max, g{—wa+wp | cas # 0} € R is denoted by ord" (P) and
the principal symbol of P is the V-homogeneous operator given by
oV (P):= Z Aapr®0”.
—wa+wp = ordy (P)

In addition, for a given ideal I C D, the associated graded ideal is defined
as the vector space spanned by all its principal symbols, that is, Gr" (I):=
K- {ocV(P) | P € I'}. Sometimes, the principal symbol (resp. associated
graded ideal) is called the initial form (resp. initial ideal) and it is denoted

by in(fw,w)(P) (resp. in(fw,w) (I))

Definition (VIII.2.19). Let I C D be a holonomic ideal. Consider 0 #
w € R%, and s := 31" | w;x;0;. Then Gr¥(I) NK[s] # 0 is a principal ideal
in K[s]_. Its monic generator is called the global b-function of 1 with respect
to the weight w.

Although Theorem can not be applied in this setting, since
s = Y, w;z;0; does not belong to the center of the algebra, a similar
result still holds, due to the properties of the V-filtration, see Proposi-
tion [(VIIL.2.20)| below. Also Corollaries[(VIIL.2.3)] [[VIIL.2.4)] and [[VIIL2.6)|

can be established using initial parts instead of annihilators.

Proposition (VIIL.2.20). ( Gr¥(I) + GtV (D){q(s))) NK[s] = GtV (I) N
K(s] 4+ K[s](q(s))-

PROOF. Actually it is an easy consequence of being treated with V-
homogeneous ideals. Consider h(s) = Q + R - q(s), where Q € GrV(I)
and R € Gr¥ (D). Taking V-homogeneous parts in the previous expression,
one finds Qy € Gr"(I) and Ry € Gr" (D) of degree 0 such that h(s) =
Qo + Ro - q(s). Now, since ¢(s) commutes with Qp, one can proceed as in

the proof of Theorem |(VIII.2.1)[1). O

Many algorithms in the realm of D-modules are based on the computa-
tion of such b-functions. For some applications like integration and restric-
tion, only the maximal and the minimal integral roots have to be computed.
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However, the previous proposition can not be used to find the set of all
integral roots, since neither upper nor lower bound is known in advance.
For instance, N. Takayama used the following simple example to show the
general unboundness: I = (x0 +k), k € Z is D1-holonomic and in(_; 1)(1)N
C[s] = (s + k) with s = t9;. Nevertheless, there is the natural possibility
to check a particular root of a b-function with respect to the non-negative
weight w.

SECTION § VIIIL.3
Computing b-Functions via Upper Bounds

As different possible ways to find upper bounds, we present embedded
resolutions, topologically equivalent singularities, and A’Campo’s formula.
Depending on the context local or global version of our algorithm is used.

VII1I.3-1. Embedded resolutions

In this part we will work again over the field C of the complex numbers.
However, in actual computation we can assume that the ground field is gen-
erated by a finite number of (algebraic or transcendental) elements over the
field Q and that the algebraic relations among these elements are specified.

Definition (VIII.3.1). Let h:Y — C” be a proper birational morphism.
We say that h is a global embedded resolution of the hypersurface defined by
a polynomial f € Clzy,...,z,], X := V(f), if the following conditions are
satisfied:

(1) Y is a non-singular variety.
(2) h: Y\ h71(X) — C"\ X is an isomorphism.
(3) h~1(X) is a normal crossing divisor.

Since h~1(X) is a normal crossing divisor, the morphism F = foh :
Y — C is locally given by a monomial. Hence, we can define the b-function

of F' as the least common multiple of the local ones. If F' is locally given by

Qn
n

bF,p(s):ﬁ<s+ofl>---ﬁ<s+;>: I 1I (s—i-i];).

i=1 i=1 1<ij<a; 1<k<n

the monomial x* = z{* --- 2% at the point p, then one has

The following is the global version of the classical result by Kashi-
wara [Kas77|. The upper bound statement is due to Varchenko ([Var81])
and Saito ([Sai93), [Sai94]).
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Theorem (VIII.3.2). For f € R, there exists an integer k such that
be(s) is a divisor of the product bp(s)bp(s + 1)---bp(s + k). Moreover,
0<k<n-—1.

PROOF. Since h is a global embedded resolution of X = V'(f), h induces
a local embedded resolution of the germ (X, p) at every point p € X. Now,
the existence of k > 0 with the divisibility property follows from the theorem
by Kashiwara [Kas77] and from the fact that the global b-function is the
least common multiple of the local ones, see Theorem The proof
for the upper bound can be found in the references above. ([l

This theorem allows one to find upper bounds also for the global case.
Let us see an example to show how one can apply the algorithm checkRoot
in order to compute the b-function.

Example (VIIL.3.3). Let f = (zz + y)(2* + ¥° + 2y*) € Q[z,v,2] and
consider the univariate polynomial B (s) = b,s(s)b,1s(s)b,24(s). Since every
root of by(—s) belongs to the real interval (0,3), see Theorem
computing an embedded resolution of the singularity and using Kashiwara'’s
result [Kas77], we obtain that B(s) = Bi(s)Bi(s+ 1)Bi(s+2) is an upper
bound for by(s).

Once we know a system of generators of Annp, [, f*, checking whether
each root of the upper bound is a root of the Bernstein-Sato polynomial was
simple. It took less than 5 seconds except for those which appear in the
table below. We also observe that when a candidate is not a root indeed,
the computation is very fast. To the best of our knowledge, this example
(first appeared in [CUQ35)) is intractable by any computer algebra system.

br(s) = (s+1)%(s +17/24)(s +5/4)(s + 11/24)(s + 5/8)
(s +31/24)(s+ 13/24)(s + 13/12)(s + 7/12)(s + 23/24)
(s+5/12)(s+3/8)(s+11/12)(s +9/8)(s + 7/8)
(

s+ 19/24)(s + 3/4) (s + 29/24) (s + 25/24)

The running time is given in the format minutes:seconds.

Running time

Root of B(—s)
checkRoot2 | checkRoot1

Root of by(—s) ?

5/4 18:47 12:42 Yes
31/24 47:31 31:05 Yes
9/8 0:56 0:24 Yes

29/24 17:41 7:57 Yes
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Remark (VIII.3.4). Choosing the lexicographical ordering with 0, > x
in D, when using the checkRoot algorithm, reduced the running time to
just 25 second. We ignore whether the lexicographical ordering is suitable
for other families of singularities.

Let us give a brief description for computing a global embedded resolu-
tion of f. Denote by V; := V(zz + %) and Vs := V(2 + ¢° + zy*) the two
components of V(f). Note that Sing(V2) C V4 NV, and the singular locus
Sing(f) = V1 NV can be decomposed into two disjoint algebraic sets as

Sing(f) =V(zz+y,yz* —y2 + D) UV(z,y) =Y U Z

The varieties V; and Va intersect transversely at every point of Y. In-
deed, let us consider P = (a,b,c) € Y. Then V; and V5 are smooth at P
and their tangent spaces

{cx+y+az=0} and {(4a®+ bz + (50" + 4ab®)y = 0}

can not be the same (a # 0 holds).

Consider 7 : C3 — C3 the blow-up of C? with center in Z. Denote by Y71
and ‘72 the corresponding strict transforms of Vi and V5. The exceptional
divisor £ has multiplicity 5 and, 171 and ‘72 do not meet in a small neighbor-
hood of F;. Moreover, 171 and F intersect transversely. The local equation
of Vh U By is given by the polynomial y%(z* 4+ y + 2y).

FIGURE VIII.2. Embedded resolution of V ((zz + y)(z* + y° + 2y))

Now, one can proceed as in the case of plane curves, since the local
equation involves just two variables. Finally, we obtain seven divisors with
normal crossings, see Figure This method can also be applied to the
family (zz + y)g(z,y) under some extra conditions on g(z,y).

Remark (VIII.3.5). To the best of our knowledge, resolution of singularities
has never been used before for computing Bernstein-Sato polynomials in an
algorithmic way. Recall that an embedded resolution can be computed algo-
rithmically in any dimension and for any affine algebraic variety [BEV05].
There is a sophisticated implementation by A. Frithbis-Kriiger and G. Pfister
[FPO5] in SINGULAR.
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One can find upper bounds for the case of hyperplane arrangements by
computing an embedded resolution. This allows one among other to test
formulas for Bernstein-Sato polynomials of non-generic arrangements. A
formula for the Bernstein-Sato polynomial of a generic hyperplane arrange-
ment was given by Walther in [Wal05].

VIII.3—2. Topologically equivalent singularities

Let f,g be two topologically equivalent singularities and assume that
bs(s) is known. Since the set Ey = {€*™* | bso(a) = 0} is a topological
invariant of the singularity { f = 0} at the origin [Mal75, Mal83] and every
root belongs to (—n,0) (Theorem [[VIIL3.2)]), one can find an upper bound
for by(s) from the roots of bs(s) and use our algorithms for computing by (s).
The upper bound is constructed as HﬁeE(s — f3), where

E:={a+k|a€E; kel at+ke(—n,0)}

In general it is complicated to check whether two singularities are equiv-
alent. However, there are some special families for which this can be done.
This is the case of quasi-ordinary singularities, see e.g. [Lip88]. Consider
an example of a non-isolated one.

Example (VIII.3.6). Let f = 2% + 2%y and g = f +2°y*z. Since the cor-
responding discriminants with respect to z are normal crossing divisors, the
associated germs at the origin define quasi-ordinary singularities. Moreover,
the characteristic exponents are in both cases the same and hence they are
topologically equivalent, see e.g. [Lip88§|.

The Bernstein-Sato polynomial of f at the origin has 27 roots, all of
them with multiplicity one except for &« = —1 which has multiplicity two.
Here is the list in positive format.

15941323195111717117

62107 32107 374220 122 10° 127 207 12° 10?

12 7 20° 207 67 20° 207 127 47 27 127 20°| 4 ] 20

19 132772191353731@

The exponential of the previous set has 24 elements. Each of them gives
three candidates for by o(—s) except for —a = 1 which gives just two. For
instance —a = 1/2 gives rise the following three possible roots,

1 {135}
S 7 Y5)5°5 ("
2 2°2°2
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There are 71 possible roots in total. Note that using this approach we
do not have any information about the multiplicities. Finally one obtains
the roots for by o(—s).

15941323195111717117

’67 10737107 374220127107 127 207 127 10°
13 27 721 9 13 51 7 11 23

20° 20’ 62207200 127 47 27 127 20 20

Observe that the Bernstein polynomials are very similar. The roots of
bso(—s) marked with a box have disappeared in by o(—s) and the ones in
bold 3/2, 31/20 have become 1/2, 11/20.

We have selected this example to show the topologically equivalent ap-
proach to keep the exposition as simple as possible. However, there is a
family of examples depending on three indices

fmpq =2 + 2Pyd, Gmpq =" + 2Pyd + xp—lyq—lz
where the polynomials define topologically equivalent singularities if m < p,
m < ¢, and at least one of the two inequalities is strict.
In the table we put the information on timings in [hours:/minutes:seconds
format for the computation of the Bernstein-Sato polynomial of g. The

symbol “—” means that the computation did not terminate (or full memory)
after 5 hours.
SINGULAR Risa/Asir
: deg by(s)
(m,p,q) | checkRoot | bfct | bfctAnn || bfct | bfunction
(4,6,5) 0:27 3:19 | 0:18 1:32 1:03 26
(5,7,6) 7:22 — 12:32 — 28:27 49
(6,8,7) 51:15 — 1:33:28 — 2:34:11 57

Observe that although bfctAnn and bfunction are competitive in this
family of examples, we notice a better control of the memory due to the fact
that many “small” Grébner bases were needed for the checkRoot approach,
while a “big” Grébner basis is performed for the other methods. That is
why our new algorithm is specially useful for extreme examples.

VIII.3-3. A’Campo’s formula

The Jordan form of the local Picard-Lefschetz monodromy of superiso-
lated surface singularities was calculated by Artal-Bartolo in [Art94b]. The
main step in this computation was to present explicitly an embedded res-
olution for this family and study the mixed Hodge structure of the Milnor
fibration.
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Since every root of the Bernstein-Sato polynomial belongs to the in-
terval (—n,0) (Theorem and the characteristic polynomial is a
topological invariant, using the results by Malgrange [Mal75), Mal83], one
can eventually provide an upper bound for the b-function. Let us see an
example that was not feasible even with the powerful specialized implemen-
tation by Schulze [Sch04b].

Example (VIIL.3.7). Let V be the superisolated singularity defined by
f =25+ (2*2 +y° + zy*). The characteristic polynomial is

(5 —1)(t5 —1)(#120 — 1)
(=D~ - 1)

A(t) =

This polynomial has 76 different roots modulo Z and thus we know in
advance that the Bernstein-Sato polynomial (resp. the reduced one) has at
least 77 (resp. 76) different roots. Using the previous results in 230 possible
candidates, only 77 of them are roots of the b-function indeed, all of them
with multiplicity one:

1 27 101 41 17 83 103 43 53 29 107 23 89 109 71 91 37 73 31

> 407 1207 602 202 1207 120° 60’ 60 407 1207 407 1207 120’ 120’ 120’ 40° 120’ 40~
113 37 47 19 77 97 39 13 49 59 79 33 119 3 4 121 47 161 181 61

The total running time was 41.5 minutes. In the table below we show the
candidates roots, for which computation ran more than 2 minutes. Again
we observe that the detection of a non-root is very fast indeed. As usual,
the running time is given in the format minutes:seconds.

Cadidate | Running time | Root of by(—s) 7
181/20 2:52 Yes
91/60 6:01 Yes
61/40 4:53 Yes
31,/20 4:21 Yes

Remark (VIIL.3.8). Spectral numbers are defined using the semi-simple
part of the action of the monodromy on the mixed Hodge structure on the
cohomology of the Milnor fiber [Ste77], [Var81]. In [GHO7, Th. 3.3],
[Sai93l Th. 0.7] it is proven, that some roots of the Bernstein-Sato polyno-
mial of a germ with an isolated critical point at the origin, can be obtained
from the knowledge of the spectral numbers of the germ.
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Since spectral numbers do not change under p-constant deformations,
this also gives a set of common roots of the Bernstein-Sato polynomials asso-
ciated with the members of a p-constant deformation of a germ. Therefore,
they provide a lower bound, as well as an upper bound, for bs(s).

SECTION § VIII.4
Integral Roots of b-Functions

For several applications only integral roots of the b-function are needed,
e.g. [SSTO00]. We present here problems related to the so-called Logarithmic
Comparison Theorem and Intersection Homology D-module. Depending on
the context local or global version of our algorithm is used.

VIII.4-1. Upper bounds from different ideals

Consider a left ideal I C Annpjy f°. Then I+ (f) C Annpy f°+ (f) C
D[s], that is the former is a proper ideal. Then define the relative b-
polynomial b;(s) € K[s] to be the monic generator of (I + (f)) NK[s], then
be(s) | bff(s). Note, that quite often bfc(s) = 0. Butif bfc(s) # 0, it gives us an
upper bound for bs(s). In particular, one can take I, giving rise to a holo-
nomic D[s]-module, that is GK.dimD[s]/I = GK.dimD[s]/ Annp, [ =
n+ 1.

Since (s + 1) | bg(s) | bfc(s)7 one can consider the reduced relative b-

—~—

polynomial b}(s) € K[s] to be the monic generator of (1+(f, %’ e %)) N
K[s]. A prominent example of I as above is the logarithmic annihila-
tor. Let I = Anngfs]( /%) be the ideal in D[s] generated by the oper-
ators P(s) € Annpp, of total degree at most one in 0;. Let us define

b (s) 1= bT(*)4(s) = (Amnip) (f*) + D[s|(f) ) NK[s]. The reduced b} (s)
is useful as well.

VIII.4-2. Minimal integral root of bs(s) and LCT

Since every root of bs(s) belongs to the real interval (—n,0), integral
roots are bounded and therefore the whole Bernstein-Sato polynomial is not
needed. Let us see an example that could not be treated before with the
classical methods.
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Example (VIII.4.1). Let A be the matrix given by

I i) I3 T4

A= Trs Tg T I

Tg T10 T11 T12
Let us denote by A;, i = 1,2, 3,4, the determinant of the minor result-
ing from deleting the i-th column of A, and consider f = A1AsA3A,. The
polynomial f defines a non-isolated hypersurface in C'2. Following Theo-

rem |(VIIL.3.2)| the set of all possible integral roots of by(—s) is
{11,10,9,8,7,6,5,4,3,2,1}.

Using the algorithm checkRoot with the logarithmic annihilator, see
Section above, instead of the classical one, we have proven, for
a=2,...,11, that

1
Am) (%) + Dalsl(f, s + a) = Dyls),
and hence —1 is the minimal integral root of by(s). The following is the

timing information of the whole procedure. Of course, —1 is always a root,
but it is interesting to compare the timings of confirming this fact.

Possible integral roots 1 2. 11
Root of bgcl)(s) ? Yes No
Running time 1:19:31 | = 0:03:24

This example was suggested by F. Castro-Jiménez and J.-M. Ucha for
testing the Logarithmic Comparison Theorem, see e.g. [Tor07]. The use of
logarithmic annihilator allowed us to reduce the computation time. How-
ever, for f from this example it is known, that Annp, 4 (f°) = Anngi[s] (f*)
and this fact together with some homogeneous properties were used to com-

pute other roots of b (s), see Example (VIIL.4.4)| below.

Quasi-homogeneous polynomials

Assume F' € R, is a w-quasi-homogeneous polynomial with w; # 0, that
is, there are numbers wy,...,w, such that with & = Z?:l w;x;0; one has
F = ¢(F). Take c € K* and let us denote f = Fj,, _; for some fixed k.
We are interested in studying the relationship between the Bernstein-Sato
polynomials of f and F'.

Proposition (VIIL.4.2). Let F € R,, be a quasi-homogeneous polynomial
with respect to the weight vector w = (w1, ..., wy). Assume wy # 0 for some
ke {1,...,n} and define f = F|y,—. for c € K*. Then, bs(s) divides br(s).
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Proor. Consider the V-filtration on D,, given by the variable x;. Let
P(s) € Dyls] be a differential operator satisfying the functional equation
for F. There exists d > 0 such that z{P(s) € Y .ooz% - Vo. From the
quasi-homogeneity of F' one can deduce that -

1
0, @ 5T = — (s +1-— Zwixi8i> o F5TL,
Wi ;
i#k

Let D’ be the (n—1)-th Weyl algebra in the variables x1, ..., %k, ..., 2.
Thus Vy = D'[z40k] and 2 P(s)- F**1 can be written in the form Q(s)- F5*1
where the operator 0 does not appear in Q(s) € Dy,[s]. The functional
equation for F' has been converted in the following one:

2¢P(s) e F5T1 = Q(s) @ F*™ = 2{ bp(s) ® F*.

Now the substitution x; = ¢ € K* can be made and the claim follows. [J

Example (VIII.4.3). The Bernstein-Sato polynomials of F = 2%z + y3
and f = F,_ = 2?2 +y3 are
br(s) =(s+1)(s+5/6)(s+7/6)(s+4/3)(s+5/3).
bj:(rs)
From the result by Kashiwara [Kas77] one can see, blowing up the origin

of F, that the last two factors are related to the b-function of {2% = 0}. This
is a general fact.

Example (VIIL.4.4). Now, we continue Example |(VIIL.4.1)l Let g be the
polynomial, resulting from f by substituting x1, xo, x3, x4, 5, T9 With 1.

Using Proposition |(VIII.4.2)| several times, one can easily see that bgy(s)
divides by (s). Finally, the checkRoot algorithm is used to obtain that

(s+1)* (s +1/2)(s+3/2)(s +3/4)(s + 5/4)

is a factor of by(s) and therefore a factor of bs(s).

Factor of by(s) | (s+1/2) | (s +3/4) | (s +3/2) | (s+ 1)* | (s +5/4)
Running time 0:02 0:04 0:10 3:45 4:46

VIII.4-3. Intersection homology D-module

We introduce some new notation. We refer to [Tor09] for further details.
Let X be a complex analytic manifold of dimension n > 2, Ox the sheaf of
holomorphic function on X and Dx the sheaf of differential operators with
holomorphic coefficients. At a point x € X, we identify the stalks Ox
with the ring O = C{z1,...,z,} of converging power series and Dy , with

D=0{0,...,0,).
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Given a closed subspace Y C X of pure codimension p > 1, we denote
by H ﬁ,] (Ox) the sheaf of local algebraic cohomology with support in Y. Let
LY, X)CH f;,] (Ox) be the intersection homology Dx-Module of Brylinski-
Kashiwara. This is the smallest Dx-submodule of HY,(Ox) which coincides

[Y]
with HE

[Y](OX) at the generic points of Y.

A natural problem is to characterize the subspaces Y such that £(Y, X)
coincides with H, [1;/]
of Kashiwara-Mebkhout, the regular holonomic D x-module H ﬁ,](O X ) cor-

(Ox). Indeed, from the Riemann-Hilbert correspondence

responds to the perverse sheaf Cy[p], while £(Y,X) corresponds to the
intersection complex ICY.. This way, the condition L(Y, X) = H f;,]((’) x) is
equivalent to the following one: the real link of Y at a point z € Y is a
rational homology sphere. Torrelli proved, that the following connection to
local Bernstein-Sato polynomial exists.

Theorem (VIII.4.5) (Theorem 1.2 in [Tor09]). Let Y C X be a hyper-
surface and h € Ox 5 a local equation of Y at a point y € Y. The following
conditions are equivalent:

(1) L(Y,X)y coincides with H[I;/](Ox)y.
(2) The reduced local Bernstein-Sato polynomial of h has no integral
T001.

The proof of the theorem is based on a natural generalization of a clas-
sical result due to Kashiwara which links the roots of the b-function to some
generators of (’)[%]fa, a € C.

Example (VIII.4.6). Let Y be the affine variety in X = C3 defined by
the polynomial f = 27 + (222 + y%)(2® 4+ 3?2). The surface Y has the origin
as its only singular point and thus the local b-function and the global one
coincide.

The only possible integral roots are —2 and —1. Now consider .J¢, the
Jacobian ideal of f, cf. Remark Since the reduced Bernstein-Sato
polynomial is required, the ideal

AnnD[s] (fs) + D[S]<f7 Jf’ s+ a)

is used for checking rational roots, compare with Corollary [(VIIL.2.3)|2).
We see that the previous ideal is not the whole ring for & = 1 and hence the
set of points € Y such that £(Y, X), = HS/](OX):(: is Y\ {0}.

Using the implementation by Schulze [Sch04b] (based on Gauss-Manin
connection), the computation of the whole Bernstein-Sato polynomial took
123 seconds, while with our approach only 11 seconds were needed.
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Remark (VIIL.4.7). Given Y as above, the set of points x € Y for which
the condition £(Y, X), = Hﬁ,]((’)x)x is satisfied, defines an open set in Y
that can be effectively computed with the stratification associated with the
integral roots of the reduced local b-functions, see the sequence of varieties

below. For instance, in Example ((VIIL.5.2)] the open set is V(f) \ V4.

SEcTION § VIIL.5
Stratification Associated with Local b-Functions

From Theorem one can find a stratification of C" so that
by p(s) is constant on each stratum. The first method for computing such
stratification was suggested by Oaku [Oak97b] (see also [Oak97al, [(0ak97c]
and [BO10| for further information). However, this method relies on the
primary decomposition of commutative ideals. Following the ideas started
in Section we propose a new natural algorithm for computing
such a stratification. At first, a stratification for each root of the global
b-function is computed. Then one obtains a stratification, associated with
the local b-function, notably without any primary ideal decomposition, see
Examples [(VIIL.5.2)| |(VIIL.5.3)| and [(VIIL.5.5)| below. We have created an
experimental implementation, which was used for presented examples. The

substitution of primary decomposition with elementary operations clearly
decreases the total complexity of this algorithm.
This is a natural generalization of Proposition |(VIII.2.18)

Theorem (VIIL.5.1). Let {Pi(s),...,Px(s), f} be a system of generators

of Annpg(f*) + D[s|(f) and consider the ideals In; = (I : (s +a)') +
Dl[s|(s + a), for a root of bs(s) and i =0,...,mq — 1. Then, one has

ma(p) > i < pe V(ly;NClx]).

PROOF. Repeat the same argument as in Corollary |(VIII.2.6)| and pro-

ceed as in the proof of Proposition |(VIII.2.18), using Lemmas |(VIII.2.15)|
and |(VIII.2.16)| when necessary. O

Using the notation of the previous theorem, let V,,; be the affine variety
corresponding to the ideal I, ; N C[x]. Then,

(44) @ = mea C mea_l C---C Va,O C Va,—l — (Cn7

and mq(p) = ¢ if and only if p € V, ;-1 \ Vo, We call this sequence the
stratification associated with the root o.. Let us see some examplesﬂ to show
how this result can be used to compute a stratification associated with local
b-functions.

IThe examples have been taken from http://www.freigeist.cc/gallery.html
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Example (VIIL.5.2). Consider f = (2% + 9/4y® + 22 — 1)3 — 2223 —
9/80y223 € C[x,vy, 2]. The global b-function is

br(s) = (s+1)*(s+4/3)(s +5/3)(s + 2/3).

Take Vi = V(22 +9/4y* —1,2), Vo = V(z,y,2? — 1), and V3 = V(1922 +
1,171y% — 80,2). Then V; (resp. V3) consists of two (resp. four) different
points and V3 C Vi, V1 N V3 = (. The singular locus of f is union of V;
and V3. The stratification associated with each root of bs(s) is given by

a = -1, 0 c VicV(f) c C3;
a = —4/3, 0 ¢ WViuVy, c C3;
a = —5/3, 0 c VuVs cC C3;
a = —2/3, 0 c Vi c C3.

From this, one can easily find a stratification of C? into constructible
sets such that by ,(s) is constant on each stratum.

1 peC\V(f),

s+ 1 peV(f)\(V1UVy),
brp(s) = q (s +1)*(s +4/3)(s +2/3) pEVI\ Vs,

(s+1)%(s+4/3)(s +5/3)(s+2/3) peVs,

(s+1)(s+4/3)(s+5/3) p € Va.

The total running time including the computation of the global Bernstein
polynomial was 8 min 7 sec. The system Risa/Asir needed more than 7 hours
to obtain the same stratification.

Consider more interesting examples, which have already been studied
in §VIIIL.3| when computing bs(s).

Example (VIIL.5.3). Let us proceed with Example The strat-
ification associated with every root of bs(s) except for o = 1 is given by
the sequence ) C Z C C3. For o = 1 of multiplicity 2, the corresponding
sequence is ) C Y U Z C V(f) € C3. Hence the local b-function at p € C3 is

1 peC\V(f),
by (s) = s+1 peV(H)\(YLuZ),
e (s+1)* pey,

bf(S) pEZ

Using the lexicographical ordering with 0, > x on D during the compu-
tation of the intersection with C[x], cf. Remark|(VIII.3.4)| reduced the total

running time to just 38 sec.
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Remark (VIIL.5.4). Note that one can define a stratification associated
with the roots of the local b-functions, that is taking no multiplicities into
account. We have observed that our algorithm is especially useful and very
fast for computing this stratification. In particular, this is the case when
each root has multiplicity one. Finally, also observe that in any case the
global b-function is not actually needed, if a set containing the roots of by(s)
is used instead.

Example (VIIL.5.5). Let us compute here the stratification associated
with local b-functions of Example Denote by Vi, V5 the two axes
Vi = V(x,z), Va:=V(y, z). The singular locus is in both cases the union
of these varieties. Then, by ,(s) is

1 p e C\V(f),
s+1 peV()\(N1UW),
by yas(s) p € Vi\ {0},
bayys(s) p € Va\ {0},

\ (s+3/2)(s+7/4)lem (bz4+m6($), bz4+y5(s)) p=0.

The stratification given by the singularity {g = 0} is the same as above.
The local b-functions in each stratum is obtained performing the replace-
ments

A48 — z4+x6+m5z,
Aryd o Ay +yts
(s+3/2)(s+7/4) — (s+1/2).
This can be interpreted as follows. Let P = (a,0,0) € V; \ {0}. The local
equation of f (resp. g) is z* + 2% = 0 (resp. 2* + 25 + 252). By the semi-
continuity of the Bernstien-Sato polynomial the local b-function at P divides
the Bernstein-Sato polynomial at the origin. Analogous considerations hold

for P € V5 \ {0}. The system Risa/Asir did not finish the computation of
the stratification after more than 40 hours.

Remark (VIIL.5.6). We see some common properties between the factor-
ization of a Bernstein-Sato polynomial with the so-called central charac-
ter decomposition by Levandovskyy [LevO05|. In particular, for by(s) =
[loca(s =)™, where A C Q is the set of roots of bs(s), there is an algo-
rithm for computing the following direct sum decomposition of the module

D[s]/(Annpy () + (f)) = @D D[sl/(Annp (f°) + (f)) : T (),
a€A

where J(a) = (bs(s)/(s — a)™). We plane to investigate this topic further
and provide cyclic D[s]-modules, corresponding to different strata.
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There is a very recent paper [NN10] by Nishiyama and Noro, where the
authors build a stratification without using primary decomposition. The
authors use initial ideals with respect to weight vectors in computations,
which is a classical (cf. [SSTO00]) alternative to the methods, utilizing an-
nihilators Annp,(f®). In [ALMO9] there is a comparison of performance
of both approaches for the computation of Bernstein-Sato polynomials. No-
tably, no method is clearly superior over another. Rather there are classes of
examples, where the difference is very distinct. In particular, initial-based
method scores better results on hyperplane arrangements, while annihilator-
based methods are better at complicated singularities, which are not hyper-
plane arrangements. A comparison of two methods for stratification is very
interesting and it is an important task for the future. However, it seems to
us that the method we presented will allow more thorough analysis of the
algebraic situation due to the applicability of central character decomposi-
tion. At the moment it is not clear, whether such a decomposition exists for
initial ideals.

Remark (VIIL.5.7). The intersection I NK[td;, x] suggested by Nishiyama
and Noro in the computation of the stratification associated with local b-
functions is very expensive from the computational point of view. Using
our approach this elimination problem is solved. By contrast, once you have
computed the intersection, Noro’s approach seems to be faster. Therefore
our methods is specially good for complicated and extreme examples.

SECTION § VIIIL.6
Other Applications

VIII.6-1. Bernstein-Sato polynomials for varieties

Let f = (f1,..., fr) be an r-tuple in K[z]". Denote by K(S) the universal
enveloping algebra U (gl,.), generated by the set of variables S = (s;;), where
1,7 =1,...,r, subject to relations:

(S35, Ski] = Ojksit — OuSkj-

Then, we denote by D,(S) := D, ®g K(S). Consider a free K[x,s,%]—
module of rank one generated by the formal symbol f° and denote it by
M =Kz, s11,. .., Srr, ﬁ] - %, where f* = f{*..... fs. The module M
has a natural structure of left D, (S)-module. Denote by Annp, (gy(f*) the
left ideal of all elements P(S) € D, (S) such that P(S) e f* =0, that is the
annihilator of f* in D, (S).
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Theorem (VIII.6.1) (Budur, Mustata, Saito [BMSO06]). For every r-tuple
f=(f1,..., fr) € K[z]", there exists a non-zero polynomial in one variable
b(s) € K[s] and r differential operators Pi(S), ..., P.(S) € Dy(S) such that

(45) S Pu(S) e fE=b(s11 4+ s) - [ € M.
k=1

The Bernstein-Sato polynomial bg(s) of f = (fi,..., fr) is defined to be
the monic polynomial of the lowest degree in the variable s satisfying the
equation . It can be verified that by(s) is independent of the choice of a
system of generators of (f1,..., fr).

Then the Bernstein-Sato polynomial of f can be computed as follows

(Annp, ) (f) + (f1r,- -0 fo)) DK s11 + -+ spp] = (by(s11 + ... + 500)).

In [ALMO09, [ALM10], an algorithm to find a system of generators
of Annpgy(f*) was given. Moreover, in computing the intersection of an
ideal with the univariate subalgebra an optimized algorithm (which avoids
elimination with Grobner basis) was used.

The preceding formula together with Theorem can be used to
check rational roots of Bernstein-Sato polynomials also for affine algebraic
varieties. Hence, following Corollary a stratification associated
with the local b-functions can be computed.

VIII.6-2. A remark in Narvaez’s paper

In [Nar08|, Narvdez introduces a polynomial denoted by [3(s) veri-
fying B(s) Annpg(f°) C Ann(DIES](fS). For all the examples treated in
[Nar08], he was able to compute an operator P’'(s) € D[s] such that
bi(s) — P'(s)f € Anng[)s](fs). The last example in the paper is quite in-
volved and could not be computed by using any computer algebra system
directly. An iterated process for finding approximations of involutive bases
was used instead. Indeed, for this propose the operator is not really needed,
since

bp(s) = P(s)f € Amip) () = b(s) = bs(s) <= b (s) | bs(s),
and thus after computing bgcl)(s), one only has to check whether each root
of the latter polynomial is indeed a root of the b-function and the same with
the multiplicities.

By definition, the following inclusions hold

B(s)(Annpg(f) + () € Amb) (f)+ (f) C Annpg(f9) + (f)-
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This implies that by(s) | bgcl)(s) | B(s)bs(s). In addition, if B(s) divides

b¢(s), then the polynomials bgcl)(s) and by (s) both have the same roots and

)
the previous condition is equivalent to ma(bgcl)(s)) = mqa(bs(s)) for every
root « of B(s).

Example (VIIL.6.2). Let f = (w123 + 2)(2] — 27) be the last example
from [Nar08|]. The Bernstein-Sato polynomial and the polynomial 5(s) are
respectively

= () (D DD DD+
= (D D) e Do)

Now one only has to check that all roots of 8(s) have multiplicity 1
as a root of bgcl)(s). This can be done using Theorem |(VIIL.2.1)| with I =

Anng[)s] (f*)+(f). Using this approach, the computations become very easy
(less than 5 seconds in this example).



CONCLUSION AND FUTURE WORK

As we have demonstrated in this work, embedded Q-resolutions are nat-
ural generalization of the standard embedded resolutions, for which the usual
invariants are expected to be calculated effectively. Moreover, the combi-
natorial and computational complexity of embedded Q-resolutions is much
simpler, but the keep as much information as needed for the comprehension
of the topology of the singularity.

This reflects the good behavior of abelian quotient singularities with
respect to normal crossing divisors. By contrast, non-abelian groups seem
to work differently, see §IV.5| where it is shown that “double points” may
contribute to Z(f;t). In this sense abelian groups are the largest family for
which these tools apply.

Here we list some specific open problems and questions, related to the
topic, to be considered for future work. In fact, some of them are currently
being studied.

(1) In Chapter [V} following Steenbrink’s approach [Ste77], we provide
a mixed Hodge structure on the cohomology of the Milnor fiber using a
spectral sequence that is constructed from the divisors associated with the
semistable reduction of an embedded Q-resolution. On the other hand, in
Chapter [VI] we give a detailed description of an embedded Q-resolution for
superisolated surface singularities in terms of its tangent cone. However, the
corresponding semistable reduction and its associated spectral sequence has
not been studied in this work. The same applies to (weighted) Yomdin-Lé
surface singularities, see Chapter This problem will be considered in
the future so as to complete this work.
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(2) Theorem |(VIL.1.6)| says that only weighted blow-ups at points are
needed to compute an embedded Q-resolution of a Yomdin-Lé surface sin-

gularity. On the other hand, there exist invariants associated with a hy-
persurface singularity which can be calculated from an embedded resolution
obtained with just blow-ups at points. The generalization of the previous re-
sults to weighted blow-ups at points and embedded Q-resolutions will lead
us to compute other invariants for Yomdin-Lé surface singularities. This
includes, among others, the Poincaré series for which very little is known.

(3) In Chapter we found the generalized A’Campo’s formula for
embedded Q-resolutions. In relation to the monodromy conjecture, it could
be interesting to find a formula for the topological zeta function in terms of
an embedded Q-resolution. In principle this will be feasible since the latter
invariant has a good behavior with respect to a stratification. Hence only
the topological zeta function Zy.y(s) for normal crossing divisors has to be
computed.

(4) Using the fact that the characteristic polynomial is a topological
invariant and the results of Malgrange [Mal75], one can find an upper bound
for the Bernstein-Sato polynomial from an embedded Q-resolution of the
singularity, assuming it is isolated. It could be nice to generalize Kashiwara’s
result [Kas77] for embedded Q-resolutions in order to find upper bounds
for the non-isolated case as well. Moreover, this will give rise better upper
bounds in the sense that less extra candidates will appear.

(5) There exist algorithms in D-modules for computing the cohomology
of the complement C?\ V(f), where f is a polynomial in 2 variables. These
algorithms use the notion of b-function of a holonomic ideal with respect to
a weight vector. We hope that these new techniques can be generalized so
as to compute the cohomology of X (d; A) \ V(f), where f is a polynomial
defining a zero set on X (d; A). This is closely related to the computation of
the cohomology of the complement P2\ V (F), where F is quasi-homogeneous
with respect to w.

As for the last part of this work (Chapter , we have demonstrated
that the family of checkRoot algorithms (implemented in the SINGULAR
library dmod.1lib) has many useful applications in the realm of D-modules.
Nowadays, it is the only method that allows one to obtain some roots of the
b-function without computing the whole Bernstein-Sato polynomial. The
latter is often infeasible despite all the recent progress in computational
D-module theory.
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We emphasize, that presented techniques are elementary (by utilizing
the principal ideal domain of the center K[s] of D,[s]) but very powerful
from the computational point of view. Many intractable examples and con-
jectures could be treated with this new method, as we have partially illus-
trated. Moreover, a stratification associated with the local b-functions can
be obtained without primary decomposition [QOak97b] as in the very recent
paper [NN10]. It is very interesting to study these algorithms further and
compare our approach with the one of [NN10].

Unfortunately, these techniques cannot be generalized for Bernstein-Sato
ideals, since such ideals lie in K[sq, ..., s,,] for m > 2.

We have shown that one can use the idea of checkRoot for checking
rational roots of b-function of a holonomic ideal with respect to a weight
vector [SSTO00]. This gives an easier method for computing, among other,
integral roots of such b-functions, if an upper bound is known in advance.
In this context, it would be very interesting to have a version of Kashiwara’s
result for some holonomic ideals and certain weights, since many algorithms
in D-modules theory are based on integrations and restrictions which need
minimal and/or maximal roots.
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Como hemos demostrado en este trabajo, las Q-resoluciones encajadas
son generalizaciones naturales de las estdndares para las que se espera que
los invariantes usuales se puedan calcular efectivamente. Ademas, la com-
plejidad combinatoria y computacional de las Q-resoluciones encajadas son
mucho mas sencillas pero conservan la misma informacion necesaria para la
comprension de la topologia de la singularidad.

Esto refleja el buen comportamiento de las singularidades cocientes abe-
lianas respecto de los cruces normales. Por el contrario, los grupos no
abelianos funcionan de otra manera, ver donde se muestra que los
“puntos dobles” pueden contribuir a Z(f;t). En este sentido los grupos
abelianos son la familia mas grande para las que estas técnicas se aplican.

Aqui se listan algunos problemas y cuestiones abiertas, relacionados con
el tema, que serd consideradas para el futuro. De hecho, algunos de ellos
esta siendo estudiados actualmente.

(1) En el capitulo |V] siguiendo las ideas de Steenbrink, proporcionamos
una estructura de Hodge mixta sobre la cohomologia de la fibra de Milnor
usando una sucesién espectral que se construye a partir de los divisores de
la normalizacién semiestable de una Q-resolucion encajada. Por otro lado,
en el capitulo damos una descripcién detallada de una Q-resolucion en-
cajada de las singularidades superaisladas de superficie en términos de su
cono tangente. Sin embargo, la correspondiente normalizacién semiestable
y la sucesién espectral asociada no ha sido estudiada en este trabajo. Lo
mismo se aplica para las singularidades de Yomdin-Lé (ponderadas) de su-
perficies, ver capitulo [VIIl Este problema serd considerado en el futuro para
completar este trabajo.
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(2) El teorema dice que solo hace falta explosiones ponderadas
de puntos para calcular una Q-resolucién encajada de una singularidad de
Yomdin-Lé de superficie. Por otro lado, existen invariantes que se pueden
calcular a partir de una resoluciéon encajada obtenida solamente con explo-
siones de puntos. La generalizacién de los resultados anteriores para explo-
siones ponderadas de puntos y Q-resoluciones encajadas permitira calcular
otros invariantes de estas singularidades. Esto incluye, entre otros, las series
de Poincaré de las cuales se conoce muy poco.

(3) En el capitulo hemos encontrado la generalizacién de la férmula
de A’Campo para Q-resoluciones encajadas. En relacién con la conjetura
de la monodromia, seria interesante encontrar una férmula para la funcién
zeta topoldgica en términos de una Q-resolucion encajada. En principio esto
es factible puesto que el invariante anterior se comporta bien con respecto
a estratificaciones. Asi, solamente tenemos que calcular la funcién zeta
topoldgica Zip(s) de un divisor con cruces normales.

(4) Usando que el polinomio caracteristico es un invariante topolégico y
los resultados de Malgrange [Mal75], se puede encontrar una cota superior
del polinomio de Bernstein-Sato a partir de una Q-resolucién encajada de la
singularidad, suponiendo que es aislada. Estaria bien generalizar el resultado
de [KasT7| para Q-resoluciones encajadas y asi encontrar también cotas
superiores para el caso no aislado. Ademas, esto dard lugar a mejores cotas
superiores es el sentido de que menos candidatos extras apareceran.

(5) Existen algoritmos en D-mdédulos para calcular la cohomologfa del
complementario C?\ V' (f), donde f es un polinomio en 2 variables. Estos al-
goritmos usan la nocién de b-funcién de un ideal holénomo con respecto a un
vector de pesos. Esperamos que estas nuevas técnicas se puedan generalizar
para calcular la cohomologia de X (d; A) \ V(f), donde f es un polinomio
que define un conjunto de ceros en X (d; A). Esto estd relacionado con el
calculo de la cohomologia del complementario P2 \ V(F), donde F es cuasi-
homogéneo con respecto a w.

En cuanto a la dltima parte de este trabajo (capitulo , hemos de-
mostrado que la familia de algoritmos checkRoot (implementados en la li-
breria dmod.1lib de SINGULAR) tiene muchas aplicaciones ttiles en el campo
de los D-médulos. Hoy en dia, es el inico método que nos permite obtener
algunas raices de la b-funcion sin calcular todo el polinomio de Bernstein-
Sato. Esto ultimo no es habitualmente factible, a pesar de todos los progre-
sos recientes en teoria de D-mddulos computacional.
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Enfatizamos que las técnicas presentadas son elementales (utilizamos que
K[s] es un dominio de ideales principales contenido en D,,[s]) pero muy po-
tentes desde el punto de vista computacional. Muchos ejemplos intratables
y conjeturas pudieron ser tratados con este nuevo método, como hemos par-
cialmente ilustrado. Ademads, se puede obtener una estratificacién asociada
a la b-funcién local sin usar descomposicion primaria, como en el reciente
articulo [NN10]. Es interesante estudiar estos algoritmos y compararlos
con los nuestros.

Desafortunadamente, estas técnicas no se pueden generalizar para los
ideales de Bernstein-Sato puesto que viven en K[si, ..., sp] con m > 2.

Hemos mostrado que se puede usar la idea de checkRoot para comprobar
raices de la b-funcién de un ideal holénomo con respecto a un vector de
pesos [SSTO00Q]. Esto da un método mas ficil para calcular, entre otras, las
raices enteras de tales b-funciones, si una cota superior es conocida. En este
contexto, serfa muy interesante tener una version del resultado de Kashiwara
para ciertos ideales holénomos puesto que muchos algoritmos en teoria de
D-médulos estan basados en integracién y restriccion que necesitan la menor
y/o mayor raiz entera.
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