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Chapter 1

Introduction

1.1 Motivation

It is widely accepted that the volatility of financial returns evolves over time. As a conse-

quence, the distribution of returns has higher kurtosis than if they were Gaussian, indicating

that extreme returns have higher probability than expected under a Normal distribution.

Another consequence of volatility movements is the clustering of large and small returns

over time. This volatility clustering is reflected in positive significant autocorrelations of

squared returns, which show a slow decay toward zero. Furthermore, there is also extensive

empirical evidence about the existence of an asymmetric response of volatility to positive

and negative past returns. In particular, increases in volatility are larger when previous

returns are negative than when they have the same magnitude but are positive. This phe-

nomenon, originally put forward by Black (1976) is known as leverage effect. The presence of

this asymmetric behavior can be detected when analyzing the relationship between returns

and future squared returns through the cross-correlations which usually are significant and

negative.

In practice, the models proposed to represent the dynamic evolution of volatilities should

be able to represent the empirical properties usually observed in financial returns and de-

scribed above, namely, positive and persistent although small autocorrelations of squares,

negative cross-correlations between returns and future squared returns and excess kurtosis.

The main objective of this thesis is to analyze and compare the ability of some popular

models in Financial Econometrics to represent conditionally heteroskedastic returns with
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leverage effect. In empirical applications, it is important to know which of the alternative

models available is more adequate or at least which are the advantages and limitations of

each of them.

We consider five of the most popular conditional heteroskedastic models with leverage

effect within the GARCH family, namely, the Quadratic GARCH (QGARCH) proposed inde-

pendently by Engle and Ng (1993) and Sentana (1995)1, the Threshold GARCH (TGARCH)

of Zaköıan (1994), the GJR of Glosten et al. (1993), the Exponential GARCH (EGARCH) of

Nelson (1991) and the Asymmetric Power ARCH (APARCH) of Ding et al. (1993). Further-

more, we only consider the simplest formulation of each of these models which specify the

conditional variance as a non-linear function of one-lagged conditional variances and returns

as this specification is the most popular among empirical researchers.

Previously several authors have compared the predictive power of asymmetric conditional

heteroskedastic models reporting mixed results2. In this thesis, we focus on from two different

perspectives. First, from a theoretical point of view, we study and compare how the dynamics

of conditional volatilities represented by each model are restricted to guarantee the positivity

of volatilities and the stationarity and finite kurtosis of returns. These restrictions come from

the functional form selected to represent the volatility and are distinctive for each model.

Comparing the theoretical limitations that arise from the functional form assumed by each

asymmetric GARCH model considered here, is the main topic of Chapter 2.

In practice, after fitting a particular GARCH model to a time series of financial returns,

it is very usual to analyse its adequacy by comparing the sample properties of the series with

those implied by the fitted model, which are known as plug-in moments. In Chapter 3, we

analyse whether this comparison is adequate. We show that the finite sample properties of

sample and plug-in moments can be very different leading to misleading conclusions about

the adequacy of a fitted model when they are compared.

The rest of this chapter is organized as follows. Section 1.2 describes the main empirical

properties of several series of real financial returns that will be later used to illustrate several

results along the thesis. Section 1.3 describes the main properties of asymmetric GARCH

1Engle and Ng (1993) and Sentana (1995) proposed the same model under two different acronyms, namely,
AGARCH (Asymmetric GARCH) and QGARCH, respectively. In this thesis we use the latter because the
model has been more fully worked out by Sentana (1995). Also, note that one should be careful with the
use of acronyms as they have not been fully consistent in the existing literature. For example, AGARCH
has been used to represent at least four different specifications.

2See for example, Loudon et al. (2000), Balaban (2004) and Alberg et al. (2008), Hansen and Lunde
(2005), Awartani and Corradi (2004) and Chen et al. (2006) for other comparisons.
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models. Finally, the organization of this thesis is described in Section 1.4.

1.2 Empirical characteristics of financial returns

As we mentioned before, the main sample properties that GARCH models should represent

are excess kurtosis, positive and persistent although small autocorrelations of squares and

negative cross-correlations between returns and future squared returns. In this section, we

illustrate these properties by analyzing several time series of returns. Consider first, the

series of daily returns of the SP500 index observed from January 3rd 1994 to July 31st

2007 and of the exchange rates of US Dollar against the Australian Dollar (USD/AUD)

observed from January 2nd 1990 to May 9th 2006. To avoid the misleading effects of outliers

on the estimation of the volatility, the series have been filtered from outliers by equaling all

observations larger than 5σ̂t to σ̂tsign(yt) where σ̂t is an estimate of the conditional standard

deviation3

Both series of returns have been plotted in Figure 1.1 together with their correlogram

of squares, their sample cross-correlations and the Non-parametric NIC (NPN) estimator as

proposed by Engle and Ng (1993)4. The sample kurtosis of the SP500 and AUD/USD returns

are higher than in the Gaussian case, reaching values of 6.88 and 4.30, respectively. The

volatility clustering observed in the series of returns is reflected in the positive and significant

autocorrelations of squares. In the case of the SP500 returns, the first autocorrelation

of squares is 0.20 whereas for the USD/AUD returns this value is 0.07. As usual, these

autocorrelations are not very large and are highly persistent. On the other hand, the cross-

correlations are also significant and negative, suggesting the presence of leverage effect which,

as expected, is stronger in the SP500 returns where the first cross-correlation is −0.12, than

in the exchange rate returns where it is only −0.07. A similar conclusion arises from the

NPNs plotted in the last column of Figure 1.1 where the asymmetric response of volatility

to positive and negative lagged returns is clear in the SP500 returns.

Daily returns of the SP500 index will also be considered in Chapter 3 but observed for a

3Carnero et al. (2008) show the large biases caused by outliers on the estimation of the underlying
volatilities and advocate for using filters similar to that implemented in this chapter. Alternatively, the
abnormally large movements in prices can be explained by the presence of jumps; see, for example, Eraker
et al. (2003). Including jumps in the GARCH models considered in this chapter will complicate the analysis
without changing the main results and it is beyond our objectives.

4It is important to note that the estimated NPNs depend heavily on the window used for their estimation.
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different period of time, from January 2nd 2002 to June 25th 2010, with a kurtosis of 7.12,

first autocorrelation of squares equal 0.34 and a first cross-correlation of −0.07. We also

consider returns of the EUR/USD exchange rate observed during the same time period. In

this case, the kurtosis is equal 4.28, there is a significant first autocorrelation of squares of

0.12 and a negligible first cross-correlation of 0.02. Figure 1.2 plots both series together with

their correlograms of squares and their sample cross-correlations.

1.3 Properties of GARCH models with leverage

effect.

In this section we introduce the GARCH models with leverage effect considered in this thesis

and summarize the theoretical properties already known about them.

Consider the following model for returns

yt = εtσt (1.3.1)

where σt is the volatility and εt is a serially independent sequence with zero mean, variance

one and symmetric density with finite kurtosis, κε. The specification of σt is described bellow

for each of the five models considered.

1.3.1 QGARCH model

The first model considered is the QGARCH model which is given by

σ2
t = ω + αy2

t−1 + βσ2
t−1 + δQyt−1. (1.3.2)

The main statistical properties of the QGARCH model have been derived by Sentana (1995)

who shows that it is stationary if p < 1 where p = α+β can be interpreted as the persistence

of shocks to the volatility. In this case, the marginal variance of returns is given by σ2
y = ω

1−p .

Note that the stationarity of the model does not depend on the asymmetry parameter, δQ.

However, if σ2
y is finite, the asymmetry parameter has to be restricted to guarantee the

positivity of σ2
t . In particular δ2

Q ≤ 4ασ2
y(1− p). To avoid the dependence of the asymmetry

parameter on the marginal variance, we analyze the positivity restrictions in terms of the
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parameter δ∗Q =
δQ
σy
. Consequently, if the model is stationary, the positivity restriction is

given by

δ∗2Q ≤ 4α(1− α− β). (1.3.3)

The restriction for the existence of the fourth order moment, derived by He and Teräsvirta

(1999a), is given by

(kε − 1)α2 + p2 < 1. (1.3.4)

When restriction (1.3.4) is satisfied, the kurtosis of yt is given by ky = kε
1−p2+δ∗2Q

1−[(κε−1)α2+p2]
.

The dynamic properties of QGARCH models appear in the autocorrelation function (acf)

of squared returns and in the cross-correlations between future squares and original returns.

In particular, using the results in He and Teräsvirta (1999a), the acf of y2
t can be derived as

follows

ρ2(τ) =


2α(1−p+αp)+δ∗2Q (kεα+β)

2(1−p2+α2)+kεδ∗2Q
, τ = 1

pτ−1ρ2(1), τ > 1.

(1.3.5)

The cross-correlations between y2
t and yt−τ , derived by Sentana (1995), are given by

ρ21(τ) =


δ∗Q

(κy−1)1/2
, τ = 1

(α + β)ρ21(τ − 1), τ > 1.

(1.3.6)

Finally, another useful tool to describe of the properties of GARCH models with leverage

effect is the News Impact Curve (NIC) proposed by Engle and Ng (1993) which analyzes the

effect of past returns on conditional variances. The NIC relates past returns and volatilities

by holding constant the information up to time t − 2 and evaluating all lagged conditional

variances at the level of the marginal variance of returns. In general, the NIC captures the

leverage effect by allowing either the slope of its two sides to differ or its center to be located

at a point where past returns, yt−1, are positive. In particular, Engle and Ng (1993) show

that the NIC of the QGARCH mode is given by

σ2
t = A+ α

(
yt−1 +

δQ
2α

)2

(1.3.7)
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where A = ω
(

1−α
1−α−β

)
− δ2Q

4α
.

1.3.2 TGARCH model

The TGARCH model specifies the volatility as follows

σt = ω + α |yt−1|+ βσt−1 + δTyt−1. (1.3.8)

The stationarity condition is given by

δ2
T < 1− α2 − β2 − 2αβν1 (1.3.9)

where ν1 = E (|εt|) which, for example, is given by
√

2
π

when εt is Gaussian and by√
(ν−2)
π

Γ((ν−1)/2)
Γ(ν/2)

when εt has a Student-ν distribution; see He and Teräsvirta (1999a). When

the stationary restriction in (1.3.9) is satisfied, the marginal variance of returns is given by

σ2
y = ω2 1 + q

(1− q) (1− p)

where q = αν1 + β and p = δ2
T + α2 + β2 + 2αβν1.

The kurtosis of yt, derived by He and Teräsvirta (1999a), is given by

ky = kε
[(1− p)(1− q)(3d+ 5p+ 3q + 3dp+ 5dq + 3pq + dpq + 1]

(1 + q)2(1− d)(1− f)
(1.3.10)

where d = (α+β)3 +α3(ν3−1)+3αβ2(ν1−1)+3δ2
T (αν3 +β) and f = (α + β)4 +α4 (kε − 1)+

4αβ [β2 (ν1 − 1) + α2 (ν3 − 1)] + 6δ2
T [2αβν3 + α2kε + β2] with ν3 = E(|εt|3).

The following expression of the acf of y2
t is given by He and Teräsvirta (1999a)

ρ2(τ) =


(1−q)(1−p){2q̄(1−f)∆3+p̄∆4}−(1+q)(1−d)(1−f){2q+p(1−q)}

∆
, τ = 1

pρ2(τ − 1) + θqτ−1, τ > 1,

(1.3.11)
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where

∆ = kε∆4(1− q)(1− p)− (1 + q)2(1− d)(1− f),

θ = (1/∆){2(1− p)(1− f)[∆3q̄(1− q)− q(1 + q)(1− d)]}

∆3 = (1 + p)(1 + q) + 2(p+ q)

∆4 = (1 + p)(1 + q)(1 + d) + 2(1 + p)(q + d) + 4(qd+ p)

q̄ = αν3 + β

p̄ = β2 + 2αβν3 + kε(α
2 + δ2

T ).

The cross-correlations between y2
t and yt−τ can be derived by using the results in He et

al. (2008) as follows

ρ21(τ) =

{
2
√

(1−q)(1−p)δT (
τ−1∑
j=0

qτ−1−jpj+pτ−1q̄(1+pq)(1−d)−1(1+q)−1)

√
(1+q)(ky−1)

, τ ≥ 1. (1.3.12)

Finally, the NIC of the TGARCH model is given by

σ2
t = (A+ α |yt−1|+ δTyt−1)2 (1.3.13)

where A = ω + βσy; see Henstchel (1995).

1.3.3 GJR model

The GJR model specifies the conditional variance as

σ2
t = ω + αy2

t−1 + βσ2
t−1 + δGI(εt−1 < 0)y2

t−1 (1.3.14)

where I(·) is the indicator function that takes value 1 when the argument is true.

As in the QGARCH model, is necessary to restrict its parameters in order to ensure

positivity. In particular, Hentschel (1995) shows that σ2
t is positive if

ω > 0, α, β, δG ≥ 0. (1.3.15)
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Furthermore, the model is stationary if

δG < 2(1− α− β). (1.3.16)

When the stationarity condition is satisfied, the marginal variance of yt is given by

σ2
y = ω

1−p where p = α + β + 0.5δG.

He and Teräsvirta (1999a) derive the following condition for the existence of the fourth

order moment

p2 + α(κε − 1)(α + δG) + 0.25δ2
G(2κε − 1) < 1. (1.3.17)

When the condition in (1.3.17) is satisfied, the kurtosis of yt is given by

ky = kε
1− p2

1− p2 − α(kε − 1)(α + δG)− 0.25δ2
G(2kε − 1)

.

The acf of y2
t , derived by He and Teräsvirta (1999a), is given by

ρ2(τ) =


(β+kε(α+δG))(1−p2)−p(1−p2−α(kε−1)(α+δG)−0.25δ2G(2kε−1))

kε(1−p2)−(1−p2−α(kε−1)(α+δG)−0.25δ2G(2kε−1))
τ = 1

ρ2(1)pτ−1 τ > 1.

(1.3.18)

Using the results in He et al. (2008), we have derived the following expression of the

cross-correlations between y2
t and yt−τ

ρ21(τ) =


δGν3γ3

σ3
y

√
ky−1

, τ = 1

pτ−1ρ21(1), τ > 1

(1.3.19)

where γ3 = E(σ3
t ).

Finally, the NIC of the GJR model is given by

σ2
t =

{
A+ αy2

t−1, yt−1 > 0

A+ (α + δG)y2
t−1, yt−1 < 0,

(1.3.20)

where A = ω + βσ2
y.



1.3 Properties of GARCH models with leverage effect. 9

1.3.4 EGARCH model

The EGARCH model specifies the conditional variance as follows

log σ2
t = ω∗ + β log σ2

t−1 + α |εt−1|+ δEεt−1 (1.3.21)

where ω∗ = ω−αE |εt| . The specification of the volatility in terms of its logarithmic transfor-

mation implies that there are not restrictions on the parameters to guarantee the positivity

of the variance. Nelson (1991) establishes the conditions for covariance stationarity of the

EGARCH model under particular specifications of the error distribution. Furthermore, a suf-

ficient condition for the stationarity of the EGARCH model in (1.3.21) is |β| < 1 when εt has

a distribution such that E
[
log+ (ω + α |εt−1|+ δEεt−1)

]
< ∞; see Straumann and Mikosch

(2006). Nelson (1991) establishes the conditions for covariance stationarity of the EGARCH

model under particular specifications of the error distribution. In particular, assuming that

|β| < 1, the EGARCH model is always stationary if εt has a Normal or a Generalized Error

Distribution (GED) with parameter ς > 1. However, when εt has a Student-ν or a GED dis-

tribution with parameter ς ≤ 1, yt is stationary if α ≤ − |δE| which is a rather implausible

restriction when dealing with real time series of returns. This is the reason why, in practice,

many authors chose the GED distribution instead of the Student-ν distribution when dealing

with heavy tailed errors in EGARCH models.

The stationarity guarantees the existence of higher order moments and, in particular,

of the kurtosis. If yt is stationary, the unconditional variance, kurtosis and acf of squares

can be derived using the results in Nelson (1991) 5. They have respectively the following

expressions

σ2
y = exp

(
ω

1− β

) ∞∏
i=1

E(exp(βi−1g(εt−i))) (1.3.22)

ky = kε

∞∏
i=1

E(exp(2βi−1g(εt−i)))

[E(exp(βi−1g(εt−i)))]
2 (1.3.23)

5He et al. (2002) derive the acf of power transformed returns, |yt|θ for the EGARCH model giving closed
form expressions for some of the expectations involved in (1.3.22) to (1.3.24) when the errors are Normal or

have a Generalized Errors Distribution (GED). Karanasos and Kim (2003) derive the acf of |yt|θ of a general
EGARCH(p, q) model with Gaussian, GED and Double Exponential errors.
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ρ2(τ) =
E(ε2

t exp(βτ−1g(εt)))P1P2 − P3

kεP4 − P3

(1.3.24)

where g(εt) = α (|εt| − E |εt|)+δEεt, P1 =
∏τ−1

i=1 E(exp(βi−1g(εt−i))), P2 =
∏∞

i=1E(exp((1+

βτ )βi−1g(εt−i))), P3 =
∏∞

i=1 [E(exp(βi−1g(εt−i))]
2

and P4 =
∏∞

i=1 E(exp(2βi−1g(εt−i))).

It is interesting to remark that the rate of decay of the autocorrelations of squares is not

constant; see Carnero et al. (2004) who show that this rate tends to β for large lags whereas

for small ones it depends on α and δE.

Ruiz and Veiga (2008) derive the following expression of the cross-correlations between

y2
t and yt−τ

ρ21(τ) =
E(εt exp(βτ−1g(εt)))P1P5

P
1/4
3 [kεP4 − P3]1/2

(1.3.25)

where P5 =
∏∞

i=1E(exp(βi+τ−1+ 1
2
βi−1)g(εt−i)); see also Demos (2002) who derives the cross-

correlation function for Gaussian errors and Karanasos and Kim (2003) who obtain a general

expression of ρ21(τ) in ARMA(r, s)-EGARCH(p, q) models from which expression (1.3.25)

can be obtained as a particular case.

Finally, the NIC of the EGARCH model is given by

σ2
t =

 A exp
[
δE+α
σy

yt−1

]
, yt−1 > 0

A exp
[
δE−α
σy

yt−1

]
, yt−1 < 0,

(1.3.26)

where A = σ2β
y exp [ω∗].

1.3.5 APARCH model

The last model with leverage effect considered in this chapter is the APARCH that specifies

the conditional variance as follows

σλt = ω + αA (|yt−1| − δAyt−1)λ + βσλt−1. (1.3.27)

The restrictions for the positivity of σλt are given by Ding et al. (1993) as follows:

ω > 0, λ ≥ 0,−1 < δA < 1, αA ≥ 0 and β ≥ 0. (1.3.28)
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Furthermore, the condition for the existence of E
(
σλt
)

is given by

αAE (|εt| − δAεt)λ + β < 1 (1.3.29)

which depends on the error distribution. Ding et al. (1993) derive the expression of

E (|εt| − δAεt)λ for Gaussian errors and Karanasos and Kim (2006) obtain it for Student-ν,

GED and Double exponential distributions.

He and Teräsvirta (1999b) derived the following condition for the existence of the expec-

tation E(σ2λ
t )

α2
A

2
[(1+δA)2λ+(1−δA)2λ]E

(
|εt|2λ

)
+αAβ[(1+δA)λ+(1−δA)λ]E

(
|εt|λ

)
+β2 < 1. (1.3.30)

A summary of the contributions and formulas detailed in this section appears in Table

1.1 which reports the contribution of the different authors that have derived conditions for

the existence of moments and closed expressions of the properties considered in this chapter.

Additionally, Table 1.2 summarizes analytical expressions for the positivity, stationarity and

finite fourth order moment of the asymmetric GARCH models considered.

1.4 Organization of this thesis

After this chapter, where we introduce the motivation of this research, illustrate the main

properties of the time series of returns considered in the empirical applications of this thesis

and summarize the statistical properties of the GARCH models with leverage effect, the rest

of the thesis is organized as follows.

The first part of Chapter 2 is devoted to study how the conditions for the positivity of

volatility, stationarity and finite kurtosis limit the domain of the parameters of the models

and therefore the dynamic of the conditional variance. In Section 2.3 we analyze whether

the restriction can be violated when looking at the estimated parameters of simulated series

which are generated by models that satisfy all the conditions for the existence of moments.

Section 2.4 contains an empirical application that illustrates the theoretical results explained

in the chapter. The chapter ends in Section 2.5 summarizing the main conclusions.
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We turn our attention in Chapter 3 to the finite sample properties of the moments when

asymmetric GARCH models are considered to represent the conditional volatility. We base

our analysis on Monte Carlo methodologies. Section 3.2 is focused on comparing the finite

sample properties of the plug-in and sample moments when TGARCH specifications are

considered. Section 3.3 extends the Monte Carlo experiments to QGARCH and EGARCH

models. The illustration in Section 3.4 completes this chapter before ending in Section 3.5.

with a summary of conclusions.

Finally, Chapter 4 contains the main conclusions of this thesis and describes several

venues for further research.
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Figure 5.- Daily returns, yt; (�rst column), sample autocorrelations of y2t (second column), cross-
correlations between yt and y2t�1 (third column) and PNP (fourth column) of S&P500 (�rst row) and
AUD/USD observed returns (second row).

SP500

USD/AUD

31

Figure 1.1: Daily returns, yt, (first column), sample autocorrelations of y2t (second column),
cross-correlations between yt and y2t+1 (third column) and PNP (fourth column) of SP500
(first row) and USD/AUD observed returns (second row).
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SP500

Figure 2.- Daily returns, yt; (�rst column), sample autocorrelations of y2t (second column),

cross-correlations between yt and y2t�1 (third column) of S&P500 (�rst row) and EUR/USD returns

(second row).

S&P500

AUD/USD

Table 2.- Sample variance, s2t ; kurtosis, ky , �rst autocorrelations of y
2
t , r2(1) and �rst cross-

correlations between yt and y2t�1, r12(1) of S&P500 (�rst column) and EUR/USD returns (second

column)

S&P500 EUR/USD

s2t 1:71 0:39

ky 7:12 4:28

r2(1) 0:34 0:12

r12(1) �0:07 0:02
.
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Figure 2.- Daily returns, yt; (�rst column), sample autocorrelations of y2t (second column),

cross-correlations between yt and y2t�1 (third column) of S&P500 (�rst row) and EUR/USD returns

(second row).

S&P500

AUD/USD

Table 2.- Sample variance, s2t ; kurtosis, ky , �rst autocorrelations of y
2
t , r2(1) and �rst cross-

correlations between yt and y2t�1, r12(1) of S&P500 (�rst column) and EUR/USD returns (second

column)

S&P500 EUR/USD

s2t 1:71 0:39

ky 7:12 4:28

r2(1) 0:34 0:12

r12(1) �0:07 0:02
.

12

Figure 1.2: Daily returns, yt, (first column), sample autocorrelations of y2t (second column),
cross-correlations between yt and y2t+1 (third column) of SP500 (first row) and EUR/USD
observed returns (second row).
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rä

sv
irt

a
(1

99
9a

)
H

e
et

al
.

(2
00

5)
H

en
ts

ch
el

(1
99

5)
H

e
an

d
Te

rä
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Chapter 2

GARCH models with leverage effect

2.1 Introduction

In this chapter, we look at the ability of the alternative GARCH models described in Chap-

ter 1 for representing the properties often observed in real time series of financial returns

when they are restricted to satisfy the conditions that guarantee the positivity of volatilities

and the covariance stationarity and finite kurtosis described in Chapter 1. Although these

restrictions may unduly restrict the dynamics of the conditional variances that each of the

models can represent, they are often imposed because of their interest from different points

of view. For example, the asymptotic properties of many estimators usually implemented

to estimate the parameters of heteroskedastic models often rely on the stationarity and/or

on the existence of finite fourth order moments of returns; see, for example, Straumann and

Mikosch (2006). There are also several important results on the properties of condition-

ally heteroskedastic models that require finite kurtosis of returns; see, for example, Drost

and Nijman (1993) and Meddahi and Renault (2004) for properties under temporal aggre-

gation of GARCH and square-root stochastic autoregressive volatility (SR-SARV) models

respectively. Furthermore, it is obviously desirable that the model fitted to estimate the

evolution of volatility guarantee the positivity of the estimated volatilities at all times. The

positivity, stationarity and finite kurtosis restrictions are also important when predicting

the future evolution of volatilities which is itself important for a wide range of financial

applications; see, for example, Engle and Ng (1993) for a description of many of these appli-

cations. Therefore, in practice, one often looks for models that guarantee the positivity of
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the estimated conditional variances and simultaneously satisfy the stationarity and/or finite

kurtosis conditions.

However, if the parameters are not adequately restricted, the positivity, stationarity and

finite kurtosis restrictions are often violated when asymmetric GARCH models are fitted

to real time series of financial returns. For example, the parameters of the GJR models

estimated by Engle and Ng (1993), Henstchel (1995) and Engle (2003) do not satisfy the

restriction for the existence of the kurtosis while Loudon et al. (2000) estimate TGARCH

models that do not satisfy the restrictions for finite marginal variances. The violation of

the restrictions can be interpreted in two different ways. First of all, it is possible that the

corresponding moments are not truly defined in the returns series analyzed. However, there

is also the possibility that the moments are well defined but the evolution of the volatility

is such that cannot be explained by the restricted model; see Carnero et al. (2004) for this

second possibility in the context of the symmetric GARCH(1,1) model.

The main objective of this chapter is to analyze how the restrictions imposed on the

parameters to guarantee the positivity of volatilities and the covariance stationarity and

finite kurtosis of returns limit the dynamics of the conditional variances that each of the

models can represent. We show that in order to represent the asymmetry of volatility usually

observed in real financial returns, it is not unusual that the estimated parameters of the GJR

model do not satisfy the restriction for finite fourth order moment. However, this should not

be in general interpreted as the series having infinite kurtosis. The parameters of the GJR

model and, consequently, the volatility dynamics have to be heavily restricted to guarantee

the existence of the kurtosis. Therefore, it could be expected that, in order to represent real

volatilities, the finite fourth order restriction is often violated in practice. The restriction

imposed on the TGARCH model to have finite fourth order moment also limits the dynamics

that this model can represent but to a lesser degree. On the other hand, the asymmetry that

the QGARCH model is able to represent can also be heavily restricted when the parameters

satisfy the positivity restriction. This is a very serious drawback of the QGARCH model as

one always looks for positive volatilities. The APARCH model is apparently more flexible

although there are not general conditions for the stationarity and finite fourth order moment.

Finally, even if one should be careful with the error distribution assumed in the EGARCH

model, this model is the most flexible among the models considered.

In this chapter, we also analyze with simulated data whether the restrictions can be

violated when looking at estimated parameters, even when they are truly satisfied. We show
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that when the parameters are estimated, one can often conclude that the moments do not

exist even when the data is generated by Data Generating Processes (DGP) with well defined

moments.

Finally, the results are illustrated by estimating the volatility of two real time series

of daily financial returns, namely returns of the SP500 index and of the exchange rate of

the Australian Dollar against the Dollar which have been described in Chapter 1. Taking

into account that usually the final goal when fitting a conditionally heteroskedastic model

is to estimate the underlying volatility of returns, we also look at the differences among the

estimates of the conditional standard deviations generated by the models considered. We

show that the TGARCH, EGARCH and APARCH estimates are rather similar. However,

the conditional variances estimated by the QGARCH and GJR models differ between them

and with respect to the other three specifications.

The rest of this chapter is organized as follows. Section 2.2 analyses the flexibility of the

five models with leverage effect considered when their parameters are restricted to satisfy

the positivity, stationarity and finite kurtosis conditions. In Section 2.3, we analyze with

simulated data, the implications on the positivity of volatilities and the stationarity and

finite kurtosis conditions when they are checked by looking at estimated parameters. With

this goal, we carry out Monte Carlo experiments by fitting all the models considered to series

generated by each of the other models. Section 2.4 illustrates the results by analyzing daily

financial returns of the SP500 index and of the Australian-Dollar against the Dollar. Finally,

Section 2.5 summarizes the main conclusions and gives some guidelines for future research.

2.2 Restrictions in GARCH-type models with

leverage effect

In this section, we analyze the restrictions on the dynamics of the underlying volatilities

imposed by each of the asymmetric GARCH models described in Chapter 1 when they are

restricted to satisfy the positivity, stationary and finite fourth order moment parameter

restrictions summarized in Section 1.3. In particular, we focus on the ability of each of

the models considered to represent the combinations of kurtosis, acf of squares and cross-

correlations between returns and future squared returns often observed in real returns.
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2.2.1 QGARCH model

In the context of the QGARCH model defined in (1.3.2) one can observe that the stationarity

of the model does not depend on the asymmetry parameter, δQ, and it is only determined by

α+ β. Furthermore, when the model is stationary, the positivity restriction in (1.3.3) limits

the maximum asymmetry that the model can represent. More explicitly, this restriction

implies that, for fixed α, the maximum absolute asymmetry parameter decreases as β and,

consequently, the persistence, increases. This result is illustrated in Figure 2.1 that plots the

maximum values of |δ∗Q| that satisfy the positivity restriction as a function of α and β when

α+β < 1. On the other hand, for fixed β, the maximum absolute value of δ∗Q increases with

α when α < 0.5(1 − β) and decreases otherwise. Finally, in expression (1.3.3), it is easy to

observe that if the persistence, α+ β, is fixed, the maximum value of
∣∣δ∗Q∣∣ increases with α.

Note that, for the parameter values usually encountered in practice, i.e. small α and large

β, Figure 2.1 shows that the maximum absolute value of δ∗Q and, consequently, the leverage

effect that the QGARCH model is able to represent, is very small. Therefore, regardless of

the error distribution, the positivity restriction of the QGARCH model can unduly restrict

the dynamics of the conditional variance.

In the case of the restriction for the existence of the fourth order moment in (1.3.4), it

does not depend on the asymmetry parameter. However, note that the restrictions imposed

on α and β for the fourth order moment of returns to exist are stronger as the kurtosis of

εt increases. Figure 2.2 shows how the parameter space of α and β reduces under different

error distributions. In particular, we plot the parameter space that guarantees finite fourth

order moment for Gaussian, Student−7 and Student−5 errors.

With respect to the autocorrelations (1.3.5), they decay exponentially with parameter p

as in the symmetric GARCH model; see Sentana (1995). Therefore, the rate of decay of the

acf of y2
t does not depend on the asymmetry parameter, δ∗Q. The presence of the leverage

effect only affects the first order autocorrelation which is larger than in the corresponding

symmetric model. However, remember that if one wants to guarantee the positivity of σ2
t

with the persistence, p, being close to one and α close to zero, the maximum absolute value

of |δ∗Q| is very small. Consequently, in this case, the effect of the leverage effect on the

autocorrelations of squares is negligible. As an illustration, the first panel of Figure 2.3 plots

the acf of squares of a QGARCH model with Gaussian errors and parameters ω = 0.03,

α = 0.1, β = 0.87 and δ∗Q = −0.109. These values have been chosen to resemble the values

usually estimated when QGARCH models are fitted to real time series of financial returns;
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see, for example, Engle and Ng (1993) and Henstchel (1995). In any case, note that the

asymmetry parameter, δ∗Q, has been chosen at its maximum absolute value to guarantee

the positivity of σ2
t and the constant, ω, has a value such that the marginal variance of

returns is one. In this model, the persistence is, as usually observed in practice, rather

large, 0.98, while the kurtosis of returns is 5.44. Figure 2.3, which also plots the acf of

the corresponding symmetric model with δ∗Q = 0, shows that, for the parameter values

considered, the autocorrelations of squares are nearly indistinguishable in the QGARCH

model with leverage effect with respect to the corresponding symmetric model.

When analyzing the expression of the cross-correlations in (1.3.6), we can observe that

their magnitude decreases as the persistence of the volatility increases because, as we men-

tioned above, in this case, δ∗Q has to decrease to guarantee the positivity of σ2
t . Figure 2.3,

which plots the cross-correlations of the same model considered above, illustrates that, in the

cases of interest from the empirical point of view, in which the persistence is rather large, the

QGARCH model generates very small cross-correlations between returns and future squared

returns.

Finally, note that the NIC of the QGARCH model defined in (1.3.7) is a parabola shifted

to the right by a distance
δQ
2α

with respect to the corresponding symmetric GARCH model

with δQ = 0. Figure 2.3 plots the NIC of the QGARCH model chosen with illustrative

purposes together with that of the corresponding symmetric model1.

2.2.2 TGARCH model

From the definition of the TGARCH model in (1.3.8) one can observe that there are not

necessary restrictions to guarantee the positivity of σ2
t . However, the parameters of the

TGARCH model have to be restricted to guarantee stationarity and the existence of the

fourth order moment.

Starting with the stationarity condition in (1.3.9), Figure 2.5 represents the admissible

values of |δT | that guarantee the stationarity of the TGARCH model with Gaussian errors

as a function of positive α and β parameters. Note that although the stationarity of the

TGARCH model depends on the distribution of εt, the values of ν1 are not very different

for the distributions of εt usually assumed in practice, namely the Gaussian and Student-

1See also Figure 2.4 which plots the autocorrelations of squares, cross-correlations and NICs of other
QGARCH models with similar conclusions
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ν distributions. For example, when εt has a Student-ν distribution with ν = 5 degrees

of freedom, ν1 = 0.735 while ν1 = 0.798 when εt is Gaussian. Consequently, given that

the restrictions imposed on δT for the TGARCH model to be stationary are rather similar

for these error distributions, Figure 2.5 only plots the stationarity restrictions for Gaussian

errors. Observe that when β is close to one, the maximum asymmetry allowed is rather

small. On the other hand, the asymmetry that the TGARCH model can represent decreases

when α increases.

The parameters of the TGARCH model have to be further restricted to guarantee finite

fourth order moment as it is clear from the expressions of d and f in (1.3.10). Given that

when α and β are positive, as it is the case in the empirically relevant models, f < 1 implies

that d < 1, the kurtosis is finite if

f < 1. (2.2.1)

In expression (2.2.1) it is not obvious which is the relationship between the asymmetry,

the parameters α and β and the error distribution. Therefore, Figure 2.5 also represents the

values of the asymmetry parameter that guarantee finite kurtosis as a function of positive

α and β when the errors are Gaussian and when they have Student-ν distributions with

ν = 5 and 7 degrees of freedom. Note that when β is close to 1, as it is often the case in

many empirical applications, δT has to be very small. Consequently, the TGARCH model

may have difficulties to represent simultaneously leverage effect with finite kurtosis and large

persistence. Figure 2.5 also illustrates that for a fixed value of β, it is possible to increment

the asymmetry that the TGARCH model is able to represent by decreasing the dependence

of squared returns, i.e. by decreasing α. Finally, note that the restrictions imposed on |δT |
become stronger as the degrees of freedom decrease. Therefore, as the errors are allowed

to have more kurtosis, the leverage effect represented by the TGARCH model should be

smaller and it loses even more flexibility. As an additional illustration, Figure 2.6 plots the

parameter space for α and β that guarantee stationarity and finite kurtosis in the TGARCH

model with Gaussian errors when δT = 0 and δT = 0.15.

The autocorrelations of squares of the TGARCH model, defined in (1.3.11) are repre-

sented in the second row of Figure 2.3 for a TGARCH model with Gaussian errors and

parameters ω = 0.057, α = 0.14, β = 0.825 and δT = −0.12. Once more, the parameter ω

has been chosen in such a way that the marginal variance of returns is one and the asymmetry
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parameter has its maximum value to guarantee the existence of the kurtosis of yt. The per-

sistence is 0.88 smaller than that of the QGARCH model chosen in the previous subsection.

When choosing models with larger persistence of shocks to the variance, they often violate

the restriction of existence of the kurtosis for sensible values of the parameters. Finally,

note that the kurtosis of returns is rather large, 10.10. For comparison shake, Figure 2.3

also plots the autocorrelations of squares of the corresponding symmetric models. Observe

that in the TGARCH model, the presence of asymmetries could generate large differences

in these autocorrelations.

With respect to the cross-correlations in expression in (1.3.12), Figure 2.3 plots them for

the same TGARCH model considered above. These cross-correlations are rather large when

compared with those of the QGARCH model. They decay exponentially. Therefore, it seems

that although the TGARCH model has difficulties to represent series with finite kurtosis

and persistent shocks to volatility, the restrictions imposed on its asymmetry parameter to

guarantee finite kurtosis are milder than those imposed on the QGARCH model to guarantee

positive conditional variances.

Finally, note that the expression of the NIC of the TGARCH model in equation (1.3.13)

permits a rotation of the NIC but it does not allow for a shift. Figure 2.3 plots the NIC

of the TGARCH model described above and that of the corresponding symmetric model.

Once more, we can observe that the asymmetry that the TGARCH model can represent is

stronger than that of the QGARCH model2.

2.2.3 GJR model

The GJR model defined in (1.3.14) is similar to the TGARCH model but the volatility is

specified in terms of σ2
t instead of σt. Consequently it is necessary to restrict its parameters in

order to ensure positivity. Furthermore, the GJR model also has to be restricted to guarantee

stationarity. The expressions for the corresponding conditions can be found in (1.3.15)

and (1.3.16), respectively. Note that the positivity and stationarity do not depend on the

conditional distribution of εt.

Figure 2.8, that plots the parameter space of the GJR model that guarantees stationarity,

illustrates that, as in the TGARCH model, the maximum value of δG decreases with α and β.

2Figure 2.7 illustrates the autocorrelations of squares, cross-correlations and NICs of additional TGARCH
models.
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For small values of α and values of β close to one, the maximum values of δG that guarantee

the stationarity are rather small.

When analyzing the condition for the existence of the fourth order moment, one can

realize that the existence of this moment depends on the distribution of εt. For fixed values

of α and β, larger kurtosis of εt imply more restrictive conditions on δG. Figure 2.8 also plots

the maximum allowed values of δG that guarantee finite kurtosis of yt as a function of the

parameters α and β when εt has Normal, Student-5 and Student-7 distributions. Note that,

as expected given the close relationship between the TGARCH and GJR models, the shapes

of these surfaces are very similar to those plotted in Figure 2.5 for the TGARCH model.

Finally note that the restriction in (1.3.17) implies that the GJR model has also difficulties

to represent high persistence together with finite kurtosis.

The third row of Figure 2.3 plots the acf of y2
t of a GJR model given in expression

in (1.3.18). We have considered a model with Gaussian errors and parameters ω = 0.035,

α = 0.1, β = 0.83 and δG = 0.07 which have been chosen to resemble the parameter estimates

obtained when the GJR model is fitted to real time series of returns; see, for example, Engle

(2003) and Chen et al. (2006). Once more, the constant, ω, has been chosen in such a way

that the marginal variance is one and the asymmetry parameter has the maximum allowed

value to guarantee finite kurtosis. The persistence is 0.965 and the kurtosis is 7.20. Note

that the differences between the acf of squares in the GJR model and in the corresponding

symmetric model are even larger than those observed in the TGARCH model described

above.

The cross-correlation function of the GJR model defined in (1.3.19) has the particularity

that γ3 has to be computed by simulation as suggested by He et al. (2008)3. The corre-

sponding cross-correlations, plotted in Figure 2.3 for the same GJR model considered above,

have an exponential decay similar to that observed in the QGARCH and TGARCH models.

The magnitudes of the cross-correlations are very small, in line with the values shown by the

QGARCH model and far from the TGARCH case. However, note that the cross-correlations

of the GJR model are less reliable as they are based on simulated moments.

The NIC in (1.3.20) is quadratic and has different slopes on either side of the origin.

Given that δG has to be positive to guarantee positive conditional variances, the NIC has a

steeper slope in its negative side than in its positive side. Figure 2.3 illustrates the shape

3For each model, 1500 series of size 5000 are generated. For each series the median of σ3
t is computed.

Then, the median of MED(σ3
t ) is computed through replicates.
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of the NIC in (1.3.20) by plotting it for the particular model described above. This plot

illustrates that the asymmetry that the GJR model is able to represent when it is restricted

to have finite kurtosis is rather small. Unless the shocks are very large, the effect of positive

and negative past returns is nearly the same4.

2.2.4 EGARCH model

The EGARCH model, proposed by Nelson (1991) does not need any restriction on the

parameters to guarantee the positivity of the variance; see expression in (1.3.21). The

stationarity condition depends on the error distribution considered, as explained in Section

1.3.4, and it guarantees the existence of the kurtosis.

Using the expression in (1.3.24), the last row of Figure 2.3 plots the acf of squares for a

Gaussian EGARCH model with parameters ω = −0.003, α = 0.12, β = 0.99 and δE = −0.08.

As we mentioned above, in the EGARCH model with Gaussian errors, the asymmetry pa-

rameter is not restricted to guarantee positivity, stationarity or finite kurtosis and, therefore,

we have chosen it to resemble the values often estimated with real data; see Engle and Ng

(1993). The marginal variance is equal to one, the kurtosis is 5.84 and the persistence is

0.99. Figure 2.3 also plots the acf of squares of the corresponding symmetric model. This

figure illustrates that the EGARCH model can generate first order autocorrelations clearly

larger than in the corresponding symmetric model.

Figure 2.3 also plots the cross-correlation function in equation (1.3.25) of the EGARCH

model described before. The exponential decay is similar to that observed in QGARCH,

TGARCH or GJR models.

Finally, consider the NIC in (1.3.26). It allows an asymmetric response of volatility

to negative and positive returns. Furthermore, because the exponential curve eventually

dominates the quadratic, in the EGARCH model, big returns have a greater impact on

volatility than in the symmetric GARCH models. As the TGARCH model, the EGARCH

model does not allow for a shift of the NIC. Figure 2.3, which plots the NIC of the EGARCH

model considered before, shows that the effect of positive and negative past returns of the

same magnitude can be clearly different. Also note the similarity of the NICs of the TGARCH

and EGARCH models. Even more, comparing the autocorrelations of squares, the cross-

4Figure 2.9 illustrates the shapes of the autocorrelations of squares, cross-correlations and NICs of alter-
native GJR models.
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correlations and the NICs of the TGARCH and EGARCH models, it is rather clear the

similarity between these two models5.

2.2.5 APARCH model

One of the main attractiveness of the APARCH model described in (1.3.27) is that it nests

some of the GARCH models with leverage effect described before. For example, when

λ = 1 and δT = αAδA, we obtain the TGARCH model in (1.3.8) while when λ = 2, and

δG = 4αAδA and α = αA(1 − δA), the GJR model in (1.3.14) is obtained. Consequently,

the APARCH model has been extensively implemented in the empirical analysis of financial

returns. However, one of its limitations is that the conditions for the positivity of σ2
t and

the stationarity and finite kurtosis of returns are unknown in the general case. Therefore,

one cannot know the empirical properties that the APARCH model is able to represent.

Nevertheless, for completeness, next we describe the available results on the properties of

the APARCH model.

When analyzing the restriction for the positivity of σλt , it is not clear whether it should

be positive for all λ. Consider, for example, that λ = 1, as in the TGARCH model. In this

case, σ2
t is always positive regardless of whether σt is positive or negative. Therefore (1.3.28)

is a sufficient but not necessary condition for the positivity of the conditional variance.

Similarly, when facing to the expression in (1.3.29) one can realize that this condition

is sufficient for stationary when λ ≥ 2, otherwise it guarantees the existence of moments of

order λ < 2 but it does not necessarily imply the existence of the marginal variance. For

example, consider, once more, λ = 1, then the restriction in equation (1.3.29) guarantees the

existence of E (σt) which is necessary but not sufficient for the existence of σ2
y.

Again, condition (1.3.30) does not imply finite kurtosis for all λ. For example, if λ = 1,

it only guarantees the existence of the variance as in the TGARCH model. However, when

λ = 2, it reduces to β2 + α2
A(1 + 6δ2

A + δ4
A) + 2αAβ(1 + δ2

A) < 1 which is the condition for

finite kurtosis in the GJR model. Therefore, condition (1.3.30) is sufficient for stationarity

when λ ≥ 1 while it is sufficient for finite kurtosis when λ ≥ 2. Consequently, it is not

possible to carry out a comparative analysis of the maximum allowed values of δA when the

model is stationary, has finite kurtosis and the conditional variances are positive for general

5Figure 2.10 plots the autocorrelations of squares, the cross-correlations and the NICs of the alternative
EGARCH.
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values of λ. In practice, λ is usually estimated between 1 and 2. In this case, the restriction

in (1.3.30) guarantees the existence of the variance but not of the kurtosis. Therefore, we

do not pursue the same kind of analysis carried out for the other four models considered in

this chapter.

It is important to note that there are not closed form expressions of the variance and

kurtosis of yt. These expressions are only available when λ = 1, 2 and, in these cases, they

coincide with the expressions given above for the TGARCH and GJR models respectively.

Similarly, the autocorrelations of squares and cross-correlations are only available for these

two particular cases.

2.3 The restrictions with estimated parameters.

In the previous section, we have analyzed the restrictions imposed on the parameter space

of the QGARCH, TGARCH, GJR and EGARCH models in order to guarantee positivity

of the conditional variances and stationarity and finite kurtosis of returns. However, in

empirical applications, the true model is unknown and these restrictions are checked using

estimated parameters. In this section, we analyze whether the conclusions obtained by

checking the restrictions on estimated parameters are in concordance with the true existence

of moments. The objective is twofold. First, for each model used as DGP, we assume that

the true specification is fitted and the parameters are estimated by Maximum Likelihood

(ML) by maximizing the likelihood corresponding to the assumed error distribution and by

Quasi Maximum Likelihood (QML)6 based on maximizing the Gaussian likelihood. The

consistency of the QML estimator can be proved by using the results in Straumann and

Mikosch (2006) who prove, as particular cases, the consistency of the QML estimator of the

QGARCH and EGARCH models7. However, it is important to note that the asymptotic

distributions of the ML and QML estimators of the EGARCH model are still unknown and

6The software for the ML and QML estimators has been developed by the first author in Matlab. The
sample variance has been used as the initial value for the conditional variance; in any case, Straumann and
Mikosch (2006) show that, as far as the models are stationary, the initial values for the conditional variances
do not have any asymptotic effect.

7Deb (1996), using simulated data, suggests that the QML estimator of the EGARCH model based on
maximizing the Gaussian likelihood when the true distribution of the errors is Student-11, may not even be
consistent. However, the design used in the Monte Carlo experiments is not very realistic as it is based on
ARCH parameters which are too large as to represent real data. Furthermore, the number of replicates is
too small.
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this open problem can be seen as one of the limitations of this model8. Once the parameters

have been estimated, we check whether the restrictions of interest, which are known to be

truly satisfied in the DGP, are satisfied when testing them on the estimated parameters.

Our second objective is to analyze the robustness of each fitted model when the data

is generated by a different DGP. In this sense, we analyze the robustness of each model

against misspecification of both the functional form of the conditional variance and the error

distribution.

For these purposes, we generate R = 1000 series of size T = 2000 by each of the four

GARCH models with leverage effect considered in the previous section and, additionally,

by an APARCH model with λ = 1.2 and ω = 0.03, αA = 0.1, β = 0.8 and δA = 0.05.

Furthermore, we generate the series by assuming not only a Gaussian distribution but also a

standardized Student-7 and a Skewed-Student with parameters 7 and−0.15; see, for example,

Giot and Laurent (2003) for a definition of the Skewed-Student distribution. Then, all five

models, QGARCH, TGARCH, GJR, EGARCH and APARCH, are fitted to each series and

the parameters are estimated by ML and QML. Finally, the restrictions are checked using

the estimated parameters.

Table 2.1 reports the percentage of estimated models that satisfy the conditions for

positivity, finite variance and kurtosis when the parameters are estimated by ML and the

errors are Gaussian. Consider first the results obtained when the QGARCH model is fitted.

The results in Table 2.1 show that the QGARCH model may have problems to satisfy the

positivity restriction when the series are generated by the QGARCH and TGARCH models

and to satisfy the finite kurtosis condition when they are generated by the GJR and EGARCH

models. Remember that all the models used as DGP are such that the positivity restrictions

are satisfied. However, when the DGP is the QGARCH and we fit it, only 50.6% of the

estimated parameters satisfy this restriction. The situation is even worse when the DGP is

the TGARCH model as, in this case, only 32.8% of the estimated QGARCH models satisfy

the positivity restriction. The stationarity condition is almost always satisfied regardless of

the DGP. However, when looking at the existence of the kurtosis, there are 14.9% and 8.2%

of the estimated QGARCH that do not satisfy this condition when the series are generated

by the GJR and EGARCH models, respectively.

8Straumann (2005) derive the asymptotic distribution of the ML estimator when β = 0. Alternatively,
Pérez and Zaffaroni (2008) propose to use a Whittle estimator of the EGARCH model for which the asymp-
totic distribution is known and analyse its finite sample properties under the assumption of Gaussian errors.
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Looking now at the results obtained when the TGARCH model is fitted, we can observe

that both the stationarity and finite fourth order conditions are satisfied in nearly all cases.

Only when the series are generated by the EGARCH model, there are 7.4% of the TGARCH

models that do not satisfy the condition for finite kurtosis.

The next model fitted is the GJR model. In this case, there is a large percentage of series

in which the estimated parameters do not satisfy the positivity condition mainly when the

series are generated by the TGARCH, EGARCH and APARCH models. The stationarity

condition is satisfied in nearly all cases. Only when the series are generated by the EGARCH

model, there are 14.2% of the estimated GJR models that do not satisfy this condition.

However, the percentages of estimated models that satisfy the condition for the existence of

the kurtosis are very small. Note, for example, that only 19% of the GJR models fitted when

the series are generated by the TGARCH model satisfy the condition for the existence of

the kurtosis. Even when the series are generated by a GJR model with finite kurtosis, only

74.5% of the estimated GJR models satisfy the condition for the existence of the kurtosis.

On the other hand, the EGARCH estimates always satisfy the conditions for the existence

of the kurtosis regardless of the DGP.

Finally, when fitting the APARCH model, the positivity restriction has been imposed9.

Remember that conditions (1.3.29) and (1.3.30) are the stationarity conditions when λ ≥
2 and λ ≥ 1, respectively. Therefore, we have computed the percentage of series that

satisfy (1.3.29) when λ̂ ≥ 2 and that satisfy (1.3.30) when λ̂ ≥ 1. This is the quantity

reported as the percentage of series that satisfy the stationarity condition in Table 2.1.

On the other hand, (1.3.30) is the condition for the existence of kurtosis when λ ≥ 2.

Therefore, the percentage reported in Table 2.1 corresponds to the percentage of series that

satisfy (1.3.30) among those in which λ̂ ≥ 2. When the series are generated by the GJR and

EGARCH models and the APARCH model is fitted, there is a large percentage of series in

which the stationarity condition is not satisfied. This percentage is even larger when looking

at the condition for finite kurtosis. In this case, with the exception of series generated by

the own APARCH model, the APARCH estimates only satisfy the finite kurtosis restriction

in very small percentage of series.

Table 2.2 reports the Monte Carlo results of the same experiment when the errors are

Gaussian and T = 5000. We can observe that the conclusions are similar to those obtained

from the results reported in Table 2.1 for T = 2000. Therefore, it seems that the problem is

9Without this restriction, the estimator did not converge in a large number of replicates.
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not related with the precision when estimating the parameters but with the specification of

the volatility assumed by each of the models. In order to analyse the effect of the distribution

on the conclusions above, the series have also been generated with Student−7 and Skewed-

Student−7 errors. Tables 2.3 and 2.4 report the Monte Carlo results when the parameters

are estimated by ML and T = 200010. The conclusions are similar to those obtained when

the errors are Gaussian. Finally, the parameters of the models with Student−7 and Skewed-

Student−7 errors have been estimated by QML by maximizing the Gaussian likelihood.

Tables 2.5 and 2.6 reports respectively the results when T = 2000. Once more these tables

illustrate that the results are similar regardless of the estimator implemented.

2.4 Empirical application

In this section, the five GARCH models with leverage effect previously described are fitted to

represent the evolution of the volatility of the series of SP500 returns observed from January

3rd 1991 to July 31st 2007 and of the exchange rates USD/AUD form January 2nd 1990 to

May 9th 2006 described in Section 1.2. For each model and series analyzed, we check whether

the estimated parameters satisfy the positivity, finite variance and kurtosis restrictions. Fur-

thermore, given that the final goal when fitting a conditionally heteroskedastic model is to

obtain estimates of the underlying volatility, we compare the estimated volatilities obtained

with the alternative models.

As we show in Section 1.2, both series have significant autocorrelations of squares and

leverage effect (more pronounced in the SP500 returns). Therefore, we fit the QGARCH,

TGARCH, GJR, EGARCH and APARCH models with Student-ν errors. Table 2.7 reports

the estimation results for the SP500 returns11. The estimated degrees of freedom in the

5 models are approximately 8, so that it seems that the distribution of the standardized

returns shows leptokurtosis. Furthermore, the estimated power parameter of the APARCH

model is 1.280 which is closer to the TGARCH model than to the GJR formulation. In fact,

the parameters estimated when the TGARCH model is fitted are almost identical to those

estimated for the APARCH model12. In any case, the estimates of β are always very close

10In this illustration β < 1 is the stationarity and finite kurtosis restriction considered for the EGARCH
models.

11The Appendix reports the results when the models are fitted assuming that the errors are Gaussian.
12Note that the asymmetry parameter of the TGARCH model is equal to the product of the α and δA

parameters of the APARCH model.
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to 1 while the estimates of α are small although significant. Finally, note that the estimates

of the asymmetry parameter are also significant in all models.

After estimating the conditional deviations for each of the models, σ̂t, the residuals are

computed as ε̂t = yt/σ̂t. Table 2.7 also reports several diagnostics based on these residuals.

For all the models fitted, the kurtosis have been clearly reduced with respect to the sample

kurtosis of SP500 returns which is 6.88 although they are significantly different from the

kurtosis implied by the estimated Student distribution when using a Kolmogorov-Smirnov

test. Note, that the kurtosis implied by a Student-8 distribution is 4.5 so that the kurtosis of

the residuals is only slightly larger. Furthermore, the autocorrelations of squared residuals

are not significant. Therefore, it seems that all the fitted models have been successful in

representing the dynamic evolution of the squares and the kurtosis observed in the SP500

returns.

Engle and Ng (1993) propose to test the adequacy of the specification of asymmetric

GARCH models by implementing the sign bias, negative bias, positive bias and joint tests

which are reported in Table 2.7 together with their corresponding standard deviations. We

can observe that the conclusions for all models are the same and the four tests are significant.

Therefore, all models fitted to represent the evolution of conditional variances of the SP500

returns fail to represent adequately the leverage effect and can be further improved.

Finally, Table 2.7 also reports whether the positivity and finite variance and kurtosis

restrictions are satisfied. The estimates of the parameters of the QGARCH and GJR models

are such that the positivity and stationarity conditions are not satisfied. Consequently, when

looking at these estimated models, we may conclude that the marginal variance, kurtosis,

autocorrelations of squares and cross-correlations are apparently not defined for SP500 re-

turns. In the other two models, the TGARCH and the EGARCH, the estimated parameters

satisfy the three conditions13. Finally, in the APARCH model, we can only check whether

the stationarity condition is satisfied. Figure 2.11 plots the plug-in correlations of squares,

cross-correlations and NIC obtained when the estimated parameters of the TGARCH and

EGARCH models are substituted in the corresponding formula described in the previous

section. When comparing first the three plug-in functions, we can observe that they are very

close regardless of whether the model fitted is the TGARCH or the EGARCH. Furthermore,

comparing the plug-in autocorrelations of squares and cross-correlations between returns and

13The stationarity conditions of the EGARCH model should be taken with caution as, as we mentioned
above, they are unknown when the errors have a Student-ν distribution.
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future squared returns with their corresponding sample counterparts plotted in Figure 1.1,

we can observe that both are very close. Therefore, the estimated models represent ade-

quately the autocorrelations of squares and cross-correlations. However, when comparing

the plug-in NICs with the corresponding PNPs, we can see that the former have positive

slopes which are too small when compared with those of the later. Therefore, it seems that

the effect of positive returns is not adequately represented by the fitted models. This can

explain why some of the adequacy test described above are rejected.

As mentioned above, the final goal when fitting conditionally heteroskedastic models

is to obtain estimates of the underlying volatilities. The differences among the variances

estimated by each of the models may be important when using them in financial applications

as, for example, for option valuation models, rebalancing portfolios or measuring the risk

by computing the Value at Risk (VaR). The main diagonal of Figure 2.12 plots estimates of

the volatility obtained after fitting each of the five models considered to the SP500 returns.

The lower triangle of this figure plots the differences between the volatilities estimates while

its upper triangle plots scatter plots of the estimated volatilities taken two by two. The

general shape of the estimated volatilities is similar. However, it is remarkable the similarity

between the variances estimated by the TGARCH, EGARCH and APARCH models. The

similarity between TGARCH and APARCH models could be expected given that, as we

mentioned above, the parameter estimates in both models are very similar. On the other

hand, the conditional variances estimated by the QGARCH and GJR models are different

of the conditional variances estimated by any of the other alternative specifications and

different between them. Note that, in general, when the volatility is large, conditional

variances estimated by the QGARCH models are smaller than those estimated by any of the

other models, whereas GJR models behaves in an opposite way14.

The estimation results corresponding to the US Dollar/Australian Dollar exchange rates

described in Section 1.2 are reported in Table 2.8. In this case, the estimated degrees of

freedom are approximately 7 implying a leptokurtic distribution of the errors, regardless

of the model specified to represent the evolution of the conditional variances15. Also, it

is interesting to note that the asymmetry parameters are not significant in the QGARCH

and GJR models and significant although rather small in the TGARCH and EGARCH

models. This result could be expected given that exchange rates show smaller leverage

14Similar results can be observed for the Gaussian case represented in Figure 2.14 in the Appendix.
15The results under Gaussian errors are reported in Table 2.10 in the Appendix.
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effects than equity indexes16. Again, the APARCH model suggests an specification closer to

the TGARCH model, with the estimated power parameter being λ̂ = 1.279. Its parameters

are also close to those estimated by the TGARCH model. As usual, all the estimates of

α are small and those of β are close to 1. With respect to the diagnostics, the residuals

have slightly smaller kurtosis than the returns which is 4.3. Note, that if the errors have

a Student-7 distribution, their kurtosis is 5. Therefore, although the Kolmogorov-Smirnov

test rejects that kurtosis of standardized residuals is equal to the kurtosis of the estimated

Student distribution, this rejection is due to the fact that the former is smaller than the

later. The autocorrelations of squared residuals and the cross-correlations of residuals are

not significant. Furthermore, the sign and negative bias tests are not significant although

the positive bias test is significant. Therefore, there is still room for improvement in the

specification of the asymmetries.

The last part of Table 2.8 reports whether the restrictions for positivity and finite variance

and kurtosis are satisfied. All the models satisfy the positivity restrictions. However, the

QGARCH and GJR estimates do not satisfy the conditions for the existence of the kurtosis.

Once more, by looking at these estimates we may conclude that the USD/AUD exchange

rate returns do not have finite kurtosis. However, when looking at the estimates of the

TGARCH and EGARCH models, the kurtosis seems to be perfectly defined.

Figure 2.11 plots the autocorrelations of squares, cross-correlations and NICs implied by

the estimated TGARCH and EGARCH models. As in the case of the SP500 returns, the

plug-in autocorrelations, cross-correlations and NIC are very similar regardless of whether

the TGARCH or the EGARCH models are fitted. Furthermore, when comparing the plug-in

functions with their sample counterparts, we can also observe that they are very close to

each other.

Figure 2.13 plots the same quantities plotted in Figure 2.12 for the exchange rates volatil-

ities. The conclusions about the relationships between the variances estimated by each of the

models are very similar to those obtained from the plots in Figure 2.12 for the SP500 returns.

Once more, we observe a great similarity between the conditional variances estimated by the

TGARCH, EGARCH and APARCH models. In this case, there is also similarity between

the QGARCH and GJR estimates.

16When the errors are assumed to be Gaussian, the estimated leverage effect parameters were significant.
It seems that although the assumption on the error distribution does not affect the other parameters of the
volatility, it has an effect on the estimated asymmetry parameter.
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2.5 Conclusions

There is a large number of alternative GARCH models proposed in the financial economet-

rics literature to represent the dynamic evolution of volatilities with leverage effects. In this

chapter, we compare the properties of five popular asymmetric GARCH models when they

are restricted to guarantee positivity of conditional standard deviations, stationarity and

existence of fourth order moments. In particular, we consider the QGARCH, TGARCH,

GJR, EGARCH and APARCH models. We show that the QGARCH dynamics are heav-

ily restricted when its parameters are restricted to guarantee positivity of the conditional

variances. Consequently, the asymmetry that the QGARCH model is able to represent in

practice is very limited. On the other hand, the TGARCH asymmetry parameter has to

be restricted to guarantee stationarity and finite kurtosis. However, it seems that these

restrictions do not impose strong limitations on the leverage effect as far as the persistence

is not too high. With respect to the GJR model, we show that the leverage effect that this

model can represent is strongly limited when the parameters are restricted to satisfy the

finite kurtosis condition. The EGARCH model is more flexible although very similar to the

TGARCH model. The conclusions about the strong limitations of the QGARCH and GJR

models are illustrated by analyzing two time series of real daily returns. We show that when

fitting these two models, one may conclude that the kurtosis is not finite while the conclusion

is reversed when fitting the TGARCH and EGARCH models. Finally, in the two empirical

examples considered, we also show that the conditional standard deviations estimated by

the TGARCH, EGARCH and APARCH models are very similar. Therefore, if the objective

is to estimate the underlying volatilities of a series of returns, choosing any of these three

models seems to give the same answer.

There are many other alternative models proposed in the literature to represent the

asymmetric response of volatilities to positive and negative returns. For example Brännäs

and Gooijer (2004) propose an extension of the QGARCH model that allows more flexibility

in the asymmetric response of volatility. However, it seems that in this model even the low

order moments lack explicit analytical expressions. Also, Babsiri and Zaköıan (2001) propose

a model that introduces contemporaneous asymmetry on returns and Wu and Xiao (2002)

conclude that an extension of the EGARCH model with separate coefficients for large and

small negative shocks is more adequate to capture the asymmetry effect than the standard

EGARCH model. There are also several proposals to model the leverage effect in the context

of Stochastic Volatility (SV) models. Harvey and Shephard (1996) propose to represent the
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asymmetric response of volatilities by introducing correlation between the level and volatility

noises; see also Yu (2005) for further properties of this model. So et al. (2002) proposed

a Threshold Stochastic Volatility model to represent simultaneously the mean and variance

asymmetries. Demos (2002) has proposed a model that encompasses both the Asymmetric

SV (A-SV) and the EGARCH models as particular cases17. Recently, Kawakatsu (2007) has

proposed a new A-SV model that generalizes that proposed by Harvey and Shephard (1996).

In this model, the log-volatility is a quadratic function of a latent variable. Zhang and King

(2008) also propose a generalization of the SV model with leverage effect based on the Box-

Cox transformation of the squared volatility. Finally, Meddahi and Renault (2004) propose

a semiparametric volatility model, closely related to the SV model, that encompasses many

of the asymmetric GARCH models considered in this chapter without imposing so many

restrictions on the parameters. In general, the restrictions imposed on the parameters of SV

models to guarantee existence of moments are less severe than those imposed in GARCH

models. Comparing asymmetric GARCH and SV models is left for further research. Finally,

it could be also of interest to extend the analysis to models with volatility effects in the mean

as those proposed by He et al. (2008) or Arvanitis and Demos (2004).

17Carnero et al. (2004) show that the A-SV model is more flexible than the EGARCH model.
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Figure 2.1: Parameter space for the stationary QGARCH model when the positivity
restriction is satisfied.
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Figure 1.- Parameter space for the stationary QGARCH(1,1) model when the positivity restriction is
satis�ed.

Figure 2.- Parameter space for �nite kurtosis in QGARCH(1,1) models with Gaussian, Student-7 and
Student-5 errors.

42

Figure 2.2: Parameter space for finite kurtosis in QGARCH models
with Gaussian, Student-7 and Student-5 errors.
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Figure 2.- Autocorrelations of squares (�rst column), cross-correlations (second column) and NIC
(third column) of di¤erent asymmetric GARCH models with Gaussian noises. The solid lines correspond
to the functions when �(:) 6= 0 while the dashed lines are the corresponding functions when �(:) = 0:

QGARCH: ! = 0:03; � = 0:1; � = 0:87; �Q = �0:109

TGARCH: ! = 0:057; � = 0:14; � = 0:825; �T = �0:12

GJR: ! = 0:035; � = 0:1; � = 0:83; �G = 0:07

EGARCH: ! = �0:0031; � = 0:12; � = 0:99; �E = �0:08

27

Figure 2.3: Autocorrelations of squares (first column), cross-correlations (second column) and
NIC (third column) of different asymmetric GARCH models with Gaussian noises. The solid
lines correspond to the functions when δ(•) 6= 0 while the dashed lines are the corresponding
functions when δ(•) = 0.
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Figure 3.- Autocorrelation function of squares, cross-correlation function and news impact curve for
di¤erent QGARCH models with Gaussian noises. The acf of squares and NIC have also been plotted for
the corresponding symmetric models. The solid lines correspond to the moments computed when �Q 6= 0
while the dashed line are the corresponding moments when �Q = 0:

Autocorrelations of y2t Cross-Correlations NIC

! = 0:05; � = 0:15; � = 0:80; �Q = �0:170

! = 0:03; � = 0:1; � = 0:87; �Q = �0:109

! = 0:02; � = 0:1; � = 0:88; �Q = �0:089

! = 0:01; � = 0:09; � = 0:9; �Q = �0:06

42

Figure 2.4: Autocorrelation function of squares, cross-correlation function and news impact
curve for different QGARCH models with Gaussian noises. The solid lines correspond to the
moments when δQ 6= 0 while the dashed lines correspond to δQ = 0.
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Figure 2.5: Admissible parameter space of the TGARCH model
with different error distributions that satisfy the stationarity and finite
fourth order moment restrictions.
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Figure 4.- Parameter space for stationarity TGARCH(1,1) models with �nite fourth order moments
and di¤erent error distributions.

Figure 5.- Parameter space for the parameters of TGARCH(1,1) models with Gaussian errors and
persistence p = 0:90 that satisfy the stationarity and �nite fourth order moment restrictions.

44

Figure 2.6: Parameter space for the parameters of TGARCH models
with Gaussian errors and persistence p = 0.90 that satisfy the station-
arity and finite fourth order moment restrictions.
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Figure 6.- Autocorrelation function of squares, cross-correlation function and news impact curve for

di¤erent TGARCH models with Gaussian noises. The acf of squares and NIC have also been plotted for
the corresponding symmetric models. The solid lines correspond to the moments computed when �T 6= 0
while the dashed line are the corresponding moments when �T = 0:

Autocorrelations of y2t Cross-Correlations NIC

! = 0:057; � = 0:14; � = 0:825; �T = �0:12

! = 0:07; � = 0:15; � = 0:8; �T = �0:16

! = 0:049; � = 0:1; � = 0:865; �T = �0:14

! = 0:025; � = 0:09; � = 0:9; �T = �0:1
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Figure 2.7: Autocorrelation function of squares, cross-correlation function and news impact curve
for different TGARCH models with Gaussian noises. The solid lines correspond to the moments
when δT 6= 0 while the dashed lines correspond to δT = 0.
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Figure 2.8: Admissible parameter space of the GJR model with differ-
ent error distributions that satisfy the stationarity and finite fourth order
moment restrictions.
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Figure 8.- Autocorrelation function of squares, cross-correlation function and news impact curve
for di¤erent GJR models with Gaussian noises. The acf of squares and have also been plotted for the
corresponding symmetric models. The solid lines correspond to the moments computed when �G 6= 0
while the dashed line are the corresponding moments when �G = 0: Third order moments are computed
numerically trough a MonteCarlo simulation.

Autocorrelations of y2t Cross-Correlations NIC

! = 0:045; � = 0:1; � = 0:8; �G = 0:11

! = 0:035; � = 0:1; � = 0:83; �G = 0:07

! = 0:025; � = 0:1; � = 0:845; �G = 0:06

! = 0:015; � = 0:07; � = 0:885; �G = 0:06
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Figure 2.9: Autocorrelation function of squares, cross-correlation function and news impact curve
for different GJR models with Gaussian noises. The solid lines correspond to the moments when
δG 6= 0 while the dashed line correspond to δG = 0. Third order moments are computed numerically
trough a MonteCarlo simulation.
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Figure 9.- Autocorrelation function of squares, cross-correlation function and news impact curve for

di¤erent EGARCH models with Gaussian noises. The acf of squares and NIC have also been plotted for
the corresponding symmetric models. The solid lines correspond to the moments computed when �E 6= 0
while the dashed line are the corresponding moments when �E = 0:

Autocorrelations of y2t Cross-Correlations NIC

! = �0:0017; � = 0:09; � = 0:98; �E = �0:06

! = �0:0029; � = 0:06; � = 0:985; �E = �0:1

! = �0:0031; � = 0:12; � = 0:99; �E = �0:08

! = �0:0015; � = 0:05; � = 0:995; �E = �0:07

47

Figure 2.10: Autocorrelation function of squares, cross-correlation function and news impact
curve for different EGARCH models with Gaussian noises. The solid lines correspond to the
moments when δE 6= 0 while the dashed lines correspond to δE = 0.
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DGP QGARCH TGARCH GJR EGARCH APARCH
Fitted

QGARCH σ2
t > 0 50.6 32.8 99.7 97.9 100.0
σ2
y <∞ 100.0 100.0 100.0 99.8 100.0
κy <∞ 99.8 100.0 85.1 91.8 100.0

TGARCH σ2
t > 0 Always Always Always Always Always
σ2
y <∞ 100 100.0 99.8 99.6 100.0
κy <∞ 100 100.0 99.4 92.6 100.0

GJR σ2
t > 0 92.0 62.4 99.6 85.5 79.1
σ2
y <∞ 100.0 100.0 100.0 85.8 100.0
κy <∞ 60.2 19.0 74.5 20.1 100.0

EGARCH σ2
t > 0 Always Always Always Always Always
σ2
y <∞ 100.0 100.0 100.0 100.0 100.0
κy <∞ 100.0 100.0 100.0 100.0 100.0

APARCH σ2
t > 0 Imposed Imposed Imposed Imposed Imposed
σ2
y <∞ 91.4 99.40 77.12 77.22 100
κy <∞ 27.9 66.70 21.78 22.27 100

Table 2.1: Percentages of fitted Gaussian models that satisfy the restrictions for positivity and
finite variance and kurtosis when T = 2000 and the parameters are estimated by ML.
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DGP QGARCH TGARCH GJR EGARCH APARCH
Fitted

QGARCH σ2
t > 0 49.2 28.9 100 99.8 100.0
σ2
y <∞ 100.0 100.0 100.0 99.8 100.0
κy <∞ 100.0 100.0 99.5 95.7 100.0

TGARCH σ2
t > 0 Always Always Always Always Always
σ2
y <∞ 100.0 100.0 99.8 98.2 100.0
κy <∞ 100.0 100.0 99.5 95.7 100.0

GJR σ2
t > 0 60.1 72.2 99.8 98.3 88.7
σ2
y <∞ 100.0 100.0 100.0 91.5 100.0
κy <∞ 63.4 10.0 85.3 5.0 100.0

EGARCH σ2
t > 0 Always Always Always Always Always
σ2
y <∞ 100.0 100.0 100.0 100.0 100.0
κy <∞ 100.0 100.0 100.0 100.0 100.0

APARCH σ2
t > 0 Imposed Imposed Imposed Imposed Imposed
σ2
y <∞ 90.8 98.9 74.8 72.3 100.0
κy <∞ 25.4 61.5 18.5 20.1 100.0

Table 2.2: Percentages of fitted Gaussian models that satisfy the restrictions for positivity and
finite variance and kurtosis when T = 5000 and the parameters are estimated by ML.
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DGP QGARCH TGARCH GJR EGARCH APARCH
Fitted

QGARCH σ2
t > 0 49.7 25.5 100 97.1 100.0
σ2
y <∞ 100.0 100.0 100.0 98.6 100.0
κy <∞ 98.1 91.3 100.0 68.8 100.0

TGARCH σ2
t > 0 Always Always Always Always Always
σ2
y <∞ 100.0 100.0 100.0 99.8 100.0
κy <∞ 99.4 97.4 100.0 86.9 100.0

GJR σ2
t > 0 99.6 65.3 100.0 85.1 66.7
σ2
y <∞ 99.7 99.2 100.0 80.2 100.0
κy <∞ 18.1 1.0 0.1 9.1 100.0

EGARCH σ2
t > 0 Always Always Always Always Always
σ2
y <∞ 100.0 100.0 100.0 100.0 100.0
κy <∞ 100.0 100.0 100.0 100.0 100.0

APARCH σ2
t > 0 Imposed Imposed Imposed Imposed Imposed
σ2
y <∞ 90.0 99.4 99.7 96.2 97.6
κy <∞ 22.0 0.0 0.9 7.1 86.6

Table 2.3: Percentages of fitted Student−ν models that satisfy the restrictions for positivity and
finite variance and kurtosis when T = 2000 and series are generated under Student−7 errors.
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DGP QGARCH TGARCH GJR EGARCH APARCH
Fitted

QGARCH σ2
t > 0 47.8 40.9 99.4 94.6 100.0
σ2
y <∞ 100.0 100.0 99.0 96.6 100.0
κy <∞ 81.3 85.7 35.5 58.8 100.0

TGARCH σ2
t > 0 Always Always Always Always Always
σ2
y <∞ 100.0 100.0 100.0 99.6 99.9
κy <∞ 98.9 96.4 95.5 92.6 99.9

GJR σ2
t > 0 98.0 61.3 99.0 85.5 66.3
σ2
y <∞ 100.0 100.0 98.9 95.0 100.0
κy <∞ 28.6 1.0 34.1 22.1 100.0

EGARCH σ2
t > 0 Always Always Always Always Always
σ2
y <∞ 100.0 100.0 100.0 100.0 100.0
κy <∞ 100.0 100.0 100.0 100.0 100.0

APARCH σ2
t > 0 Imposed Imposed Imposed Imposed Imposed
σ2
y <∞ 99.8 96.5 52.0 99.7 100.0
κy <∞ 29.2 0.0 22.7 5.0 80.2

Table 2.4: Percentages of fitted Skewed-Student−ν models that satisfy the restrictions for positiv-
ity and finite variance and kurtosis when T = 2000 and series are generate under Skewed-Student−7
errors.
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DGP QGARCH TGARCH GJR EGARCH APARCH
Fitted

QGARCH σ2
t > 0 47.1 29.3 100 96.0 100.0
σ2
y <∞ 100.0 100.0 100.0 98.0 100.0
κy <∞ 97.5 100.0 100.0 87.6 100.0

TGARCH σ2
t > 0 Always Always Always Always Always
σ2
y <∞ 99.8 100.0 99.8 93.9 100.0
κy <∞ 96.9 95.8 99.5 68.6 100.0

GJR σ2
t > 0 99.4 60.8 100.0 81.6 66.0
σ2
y <∞ 99.3 98.7 100.0 79.4 100.0
κy <∞ 39.1 9.8 100.0 30.8 100.0

EGARCH σ2
t > 0 Always Always Always Always Always
σ2
y <∞ 100.0 100.0 100.0 100.0 100.0
κy <∞ 100.0 100.0 100.0 100.0 100.0

APARCH σ2
t > 0 Imposed Imposed Imposed Imposed Imposed
σ2
y <∞ 88.2 99.8 100.0 98.0 98.9
κy <∞ 20.2 60.0 0 61.9 91.5

Table 2.5: Percentages of fitted Gaussian models that satisfy the restrictions for positivity and
finite variance and kurtosis when T = 2000 and series are generated under Student−7 errors.
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DGP QGARCH TGARCH GJR EGARCH APARCH
Fitted

QGARCH σ2
t > 0 50.7 48.1 99.3 86.8 100.0
σ2
y <∞ 100.0 100.0 97.1 96.7 100.0
κy <∞ 97.3 97.8 70.7 79.7 100.0

TGARCH σ2
t > 0 Always Always Always Always Always
σ2
y <∞ 100.0 100.0 97.8 92.7 100.0
κy <∞ 96.1 96.6 87.0 63.9 100.0

GJR σ2
t > 0 97.0 58.4 97.6 83.1 66.2
σ2
y <∞ 99.7 99.6 97.7 95.1 100.0
κy <∞ 77.3 24.1 69.9 55.2 100.0

EGARCH σ2
t > 0 Always Always Always Always Always
σ2
y <∞ 100.0 100.0 100.0 100.0 100.0
κy <∞ 100.0 100.0 100.0 100.0 100.0

APARCH σ2
t > 0 Imposed Imposed Imposed Imposed Imposed
σ2
y <∞ 93.0 98.5 79.8 93.9 98.8
κy <∞ 43.0 45.5 27.5 44.9 91.4

Table 2.6: Percentages of fitted Gaussian models that satisfy the restrictions for positivity and
finite variance and kurtosis when T = 2000 and series are generated under Skewed-Student−7
errors.
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QGARCH TGARCH GJR EGARCH APARCH

ω 0.014∗
(0.000)

0.014∗
(0.001)

0.009∗
(0.001)

−0.085∗
(0.001)

0.012∗
(0.001)

α 0.055∗
(0.001)

0.058∗
(0.001)

−0.002
(0.008)

0.108∗
(0.001)

0.050∗
(0.001)

β 0.933∗
(0.001)

0.942∗
(0.001)

0.938∗
(0.001)

0.985∗
(0.001)

0.941∗
(0.001)

δ −0.075∗
(0.001)

−0.049∗
(0.006)

0.110∗
(0.001)

−0.089∗
(0.001)

−0.88
(0.037)

∗

λ 1.28∗
(0.208)

ν 7.85 7.97 7.88 7.91 8.01

Residuals
Mean 0.000 0.002 0.000 0.002 0.002
S.D. 0.998 0.998 0.999 0.998 0.999

Skewness −0.437∗ −0.425∗ −0.474∗ −0.430∗ −0.444∗

Kurtosis 4.713∗ 4.681∗ 4.938∗ 4.758∗ 4.771∗

Jarque−Bera 536.2∗ 516.1∗ 676.7∗ 557∗ 570.9∗

Q(20) 23.56 24.25 24.12 24.87 24.45
Q2(20) 10.55 9.40 11.50 10.88 9.35
Q21(20) 45.80∗ 44.36∗ 45.27∗ 43.84∗ 44.26∗

Sign Bias −0.212
(0.065)

∗ −0.201∗
(0.065)

−0.223∗
(0.067)

−0.201∗
(0.065)

−0.208∗
(0.065)

Negative Bias −1.654∗
(0.042)

−1.599∗
(0.042)

−1.658∗
(0.044)

−1.606∗
(0.043)

−1.606∗
(0.043)

Positive Bias 0.893∗
(0.052)

0.878∗
(0.052)

0.848∗
(0.054)

0.884∗
(0.052)

0.865∗
(0.053)

Joint Test 1497∗
(0.000)

1337∗
(0.000)

1248∗
(0.000)

1306∗
(0.000)

1291∗
(0.000)

Restrictions
Positivity − Always − Always Y es

σ2
y − 1.11 − 1.07 Y es
ky − 9.76 − 8.35 Unknown

- Means that the moment is not defined.
* Significant at 5% level.
Asymptotic standard deviations in parenthesis.

Table 2.7: Estimated models for daily SP500 returns.
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QGARCH TGARCH GJR EGARCH APARCH

ω 0.001∗
(0.001)

0.004∗
(0.001)

0.001∗
(0.005)

−0.009∗
(0.002)

0.003∗
(0.002)

α 0.034∗
(0.006)

0.041∗
(0.006)

0.029∗
(0.001)

0.134∗
(0.015)

0.041∗
(0.007)

β 0.963∗
(0.006)

0.962∗
(0.007)

0.964∗
(0.004)

0.988∗
(0.001)

0.962∗
(0.006)

δ −0.005
(0.004)

−0.006∗
(0.004)

0.010
(0.008)

−0.013∗
(0.001)

−0.132∗
(0.082)

λ 1.279∗
(0.282)

ν 7.21 7.31 7.20 6.81 7.29

Residuals
Mean −0.003 −0.002 −0.003 −0.001 −0.002
S.D. 0.996 0.996 0.996 0.969 0.996

Skewness −0.293∗ −0.292∗ −0.293∗ −0.268∗ −0.292∗

Kurtosis 4.264∗ 4.218∗ 4.265∗ 4.260∗ 4.236∗

Jarque−Bera 345.1∗ 324.1∗ 345.8∗ 333.4∗ 333.3∗

Q(20) 18.84 19.18 19.10 18.85 19.09
Q2(20) 18.28 20.47 18.39 22.51 19.83
Q21(20) 31.23 31.76 31.41 30.89 31.60

Sign Bias 0.008
(0.055)

0.003
(0.055)

0.010
(0.056)

0.004
(0.053)

0.006
(0.056)

Negative Bias −0.112
(0.080)

−0.099
(0.080)

0.112
(0.080)

−0.103
(0.076)

−0.104
(0.080)

Positive Bias 0.163∗
(0.080)

0.155∗
(0.080)

0.162∗
(0.080)

0.131∗
(0.076)

0.157∗
(0.079)

Joint Test 3.56∗
(0.013)

3.121∗
(0.025)

3.560∗
(0.013)

2.798∗
(0.039)

3.241∗
(0.021)

Restrictions
Positivity Y es Always Y es Always Y es

σ2
y 0.57 0.46 0.50 0.57 Y es
ky − 6.47 − 6.89 Unknown

- Means that the moment is not defined.
* Significant at 5% level.
Asymptotic standard deviations in parenthesis.

Table 2.8: Estimated models for daily USD/AUD exchange rates returns.
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Figure 6.-Plug-in autocorrelogram of squares, cross-correlogram and NIC under the TGARCH and
EGARCH models estimated for the S&P500 and AUD/USD daily returns.

SP500
TGARCH

EGARCH

USD/AUD
TGARCH

EGARCH

1

Figure 2.11: Plug-in autocorrelogram of squares, cross-correlogram and NIC under the TGARCH
and EGARCH models estimated for the SP500 and USD/AUD daily returns.
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Figure 7.- Estimated conditional standard deviations, di¤erences between them and scatter plots

between conditional standard deviations of the S&P500 returns.
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Figure 2.12: Estimated conditional standard deviations, differences between them and scatter plots between
conditional standard deviations of the SP500 returns. σ̂Qt ,σ̂Tt ,σ̂Gt ,σ̂Et and σ̂At are the conditional standard
deviations estimated by the QGARCH, TGARCH, GJR, EGARCH and APARCH models, respectively.
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Figure 8.- Estimated conditional standard deviations, di¤erences between them and scatter plots

between conditional standard deviations of the AUD/USD exchange.
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Figure 2.13: Estimated conditional standard deviations, differences between them and scatter plots between
conditional standard deviations of the USD/AUD returns. σ̂Qt ,σ̂Tt ,σ̂Gt ,σ̂Et and σ̂At are the conditional standard
deviations estimated by the QGARCH, TGARCH, GJR, EGARCH and APARCH models, respectively.
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2.6 Appendix A. Empirical results when fitting the

asymmetric GARCH models with Gaussian errors

This appendix contains the tables and figures corresponding to the estimation results when

the QGARCH, TGARCH, GJR, EGARCH and APARCH models are fitted to the SP500

and USD/AUD returns assuming Gaussian errors.
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QGARCH TGARCH GJR EGARCH APARCH
SP500

ω 0.016∗
(0.003)

0.017∗
(0.003)

0.013∗
(0.001)

−0.088∗
(0.009)

0.017∗
(0.002)

α 0.057∗
(0.007)

0.059∗
(0.006)

−0.001
(0.006)

0.110∗
(0.012)

0.056∗
(0.006)

β 0.927∗
(0.009)

0.937∗
(0.007)

0.930∗
(0.005)

0.981∗
(0.003)

0.936∗
(0.005)

δ −0.081∗
(0.009)

−0.051∗
(0.014)

0.115
(0.008)

∗ −0.110∗
(0.010)

0.049
(0.009)

∗

λ 1.130∗
(0.189)

Residuals
Mean 0.000 0.002 0.000 0.002 0.001
S.D. 0.999 0.999 0.999 0.999 0.999

Skewness −0.430∗ −0.417∗ −0.464∗ −0.418∗ −0.427∗

Kurtosis 4.656∗ 4.613∗ 4.849∗ 4.659∗ 4.658∗

Jarque−Bera 506.32∗ 479.78∗ 622.49∗ 502.32∗ 506.13∗

r2(1) −0.020 −0.020 −0.030 −0.030 −0.030
r21(1) −0.059 −0.056 −0.058 −0.056 −0.056
Q(20) 23.70 24.10 23.99 24.34 24.06
Q2(20) 11.74 10.72 12.25 11.39 10.63
Q21(20) 43.90∗ 43.93∗ 44.75∗ 43.10∗ 44.06∗

Plug-in moments
Implied persistence 0.982 0.969 − 0.981 Unknown

Positivity of σ2
t − Always − Always Y es

Implied σ2
y − 1.264 − 1.280 Y es

Implied ky − 5.750 − 4.979 Unknown
Implied ρ2(1) − 0.229 − 0.205 Unknown
Implied ρ21(1) − −0.079 − −0.072 Unknown

− Means that the moment is not defined.
* Significant at 5% level.
Asymptotic standard deviations in parenthesis.

Table 2.9: Estimated models for the daily returns of SP500 index under Gaussian errors.
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QGARCH TGARCH GJR EGARCH APARCH
USD/AUD

ω 0.003∗
(0.000)

0.008∗
(0.001)

0.003∗
(0.001)

−0.077∗
(0.008)

0.008∗
(0.002)

α 0.034∗
(0.004)

0.042∗
(0.004)

0.029∗
(0.005)

0.083∗
(0.009)

0.045∗
(0.005)

β 0.957∗
(0.005)

0.954∗
(0.005)

0.957∗
(0.005)

0.986∗
(0.002)

0.951∗
(0.005)

δ −0.005
(0.003)

−0.005∗
(0.001)

0.005
(0.003)

−0.013∗
(0.005)

−0.153∗
(0.070)

λ 1.094∗
(0.205)

Residuals
Mean −0.003 −0.002 −0.003 −0.003 −0.002
S.D. 1.002 1.002 1.002 1.002 1.002

Skewness −0.298∗ −0.299∗ −0.305∗ −0.299∗ −0.296∗

Kurtosis 4.256∗ 4.241∗ 4.302∗ 4.248∗ 4.240∗

Jarque−Bera 344.03∗ 337.49∗ 367.63∗ 340.47∗ 335.85∗

r2(1) 0.012 0.021 0.012 0.021 0.017
r21(1) −0.052 −0.054 −0.054 −0.053 −0.054
Q(20) 18.673 18.710 18.804 18.816 18.668
Q2(20) 13.574 14.995 12.756 14.766 13.968
Q21(20) 29.903 30.338 30.338 29.839 30.407

Plug-in moments
Implied persistence 0.991 0.977 0.986 0.986 Unknown

Positivity of σ2
t Y es Always Y es Always Y es

Implied σ2
y 0.371 0.451 0.239 0.454 Y es

Implied ky 3.506 4.682 3.199 3.318 Unknown
Implied ρ2(1) 0.080 0.180 0.058 0.068 Unknown
Implied ρ21(1) −0.008 −0.040 − −0.013 Unknown

− Means that the moment is not defined.
* Significant at 5% level.
Asymptotic standard deviations in parenthesis.

Table 2.10: Estimated models for the daily returns of the USD/AUD exchange under Gaussian errors.
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QGARCH TGARCH GJR EGARCH APARCH

0.0

0.5

1.0

1.5

2.0

2.5

3.0

500 1000 1500 2000 2500 3000

�̂Qt �̂Tt vs �̂Qt �̂Gt vs �̂Qt �̂Et vs �̂Qt �̂At vs �̂Qt

­.6

­.4

­.2

.0

.2

.4

.6

500 1000 1500 2000 2500 3000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

500 1000 1500 2000 2500 3000

�̂Qt ��̂Tt �̂Tt �̂Gt vs �̂Tt �̂Et vs �̂Tt �̂At vs �̂Tt

­.6

­.4

­.2

.0

.2

.4

.6

500 1000 1500 2000 2500 3000
­.6

­.4

­.2

.0

.2

.4

.6

500 1000 1500 2000 2500 3000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

500 1000 1500 2000 2500 3000

�̂Qt ��̂Gt �̂Tt ��̂Gt �̂Gt �̂Et vs �̂Gt �̂At vs �̂Gt

­.6

­.4

­.2

.0

.2

.4

.6

500 1000 1500 2000 2500 3000
­.6

­.4

­.2

.0

.2

.4

.6

500 1000 1500 2000 2500 3000
­.6

­.4

­.2

.0

.2

.4

.6

500 1000 1500 2000 2500 3000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

500 1000 1500 2000 2500 3000

�̂Qt ��̂Et �̂Tt ��̂Et �̂Gt ��̂Et �̂Et �̂At vs �̂Et

­.6

­.4

­.2

.0

.2

.4

.6

500 1000 1500 2000 2500 3000
­.6

­.4

­.2

.0

.2

.4

.6

500 1000 1500 2000 2500 3000
­.6

­.4

­.2

.0

.2

.4

.6

500 1000 1500 2000 2500 3000
­.6

­.4

­.2

.0

.2

.4

.6

500 1000 1500 2000 2500 3000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

500 1000 1500 2000 2500 3000

�̂Qt ��̂At �̂Tt ��̂At �̂Gt ��̂At �̂Et ��̂At �̂At

2

Figure 2.14: Estimated conditional standard deviation, differences between them and scatter plot between
conditional standard deviation for the SP500 returns under Gaussian errors.



61Figure 17a.- Estimated conditional standard deviation, differences between estimated S.D. and scatter
plot between conditional standard deviation for the USD/AUD exchange under Gaussian errors.
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Figure 2.15: Estimated conditional standard deviation, differences between them and scatter plot between
conditional standard deviation for the USD/AUD returns under Gaussian errors.





Chapter 3

Comparing sample and plug-in

moments in asymmetric GARCH

models.

3.1 Introduction

It is very common to analyze the adequacy of a fitted model by comparing its implied or

plug-in kurtosis, autocorrelations of squares and cross-correlations with the corresponding

sample moments of the original returns; see Breidt et al. (1998), Baille and Chung (2001),

Karanasos and Kim (2006), Malmsten and Teräsvirta (2004) and Figà-Talamanca (2008) and

the empirical application in Chapter 2 among many others. However, although the finite

sample properties of the sample kurtosis and autocorrelations of squares have already been

analyzed, those of the corresponding plug-in moments are unknown; see An and Ahmed

(2008) for the negative finite sample biases of the sample kurtosis and Bollerslev (1998),

He and Teräsvirta (1999a) and Pérez and Ruiz (2003) for the negative biases of the sample

autocorrelations. In this chapter, we analyze the finite sample properties of the plug-in

moments, considering not only the kurtosis and autocorrelations of squares but also the cross-

correlations between returns and future squared returns. We further extend our analysis

to study whether comparing these moments with the corresponding sample moments is

appropriate for analysing the adequacy of a fitted model. We focus our analysis on the

context of GARCH models with leverage effect. In particular, we consider the TGARCH
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model of Zaköıan (1994) because of its good performance when representing heteroskedastic

time series with leverage effect; see previous chapter. We also consider the QGARCH model

of Sentana (1995) and the EGARCH model of Nelson (1991) because of their popularity.

Although in Chapter 2 we have shown the limitations of the QGARCH model to represent

the empirical properties often observed in real time series, we include this model in the

analysis because a large number of authors implement it following Engle and Ng (1993).

The rest of this Chapter is organized as follows. Section 3.2 reports the results of several

Monte Carlo experiments carried out to compare the finite sample properties of the sample

and plug-in moments in the context of the TGARCH model. Section 3.3 extends these results

to the EGARCH and QGARCH models. Section 3.4 illustrates the results by comparing the

sample and plug-in moments of two financial series of returns. Finally, Section 3.5 concludes

this chapter.

3.2 Finite sample properties of plug-in and sample

moments under TGARCH specifications.

Because of the results on the adequacy of the different models described in Chapter 2, we

focus on the TGARCH model defined in equations (1.3.1) and (1.3.8). The distribution

of εt is assumed to be either Gaussian or Student-7. As explained in detail in Chapter 2,

the parameters of model (1.3.8) have to be restricted to guarantee stationarity, finite fourth

order moment of yt and positive conditional variances under conditions (1.3.9) and (1.3.10),

respectively.

In order to compare the finite sample properties of the plug-in and sample moments, we

generate R = 1000 series of different sizes by alternative TGARCH models. To illustrate

our findings, firstly consider the TGARCH model with parameters α = 0.17, β = 0.8 and

δT = −0.1 and sizes T = 500, 2000 and 5000. The parameter ω is such that the marginal

variance of yt is one. Denote by κ, ρ2(1) and ρ21(1), the population kurtosis, first order

autocorrelation of squares and first order cross-correlation between yt and y2
t+1, respectively

which are given by κ = 9.01, ρ2(1) = 0.344 and ρ21(1) = −0.112 when the errors are

Gaussian, whereas κ = 16.91, ρ2(1) = 0.237 and ρ21(1) = −0.077 when they are Student-7.

The corresponding plug-in moments are denoted by κ̂, ρ̂2(1) and ρ̂21(1). Finally, the sample

moments are denoted by k, r2(1), r21(1). For each time series generated, we compute the
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sample and the plug-in moments1. Table 3.1 reports their Monte Carlo relative biases and

standard deviations.

Consider first the results for the kurtosis. The plug-in kurtosis have positive relative

biases which can be very large when T = 500. Both, biases and standard deviations, decrease

with the sample size. However, the relative biases of the sample kurtosis are negative and

very large regardless of the error distribution and sample size considered; see An and Ahmed

(2008) for a similar conclusion. Furthermore, the biases hardly decrease with the sample size.

The relative biases of k − κ̂ are rather large and even larger when the errors are Student-7.

Therefore, the sample and plug-in kurtosis tend to be far apart even when the model is

correctly specified; see also the first column of Figure 3.1 which plots kernel densities of k,

κ̂ and their differences for T = 2000 and Gaussian errors. Comparing plug-in and sample

kurtosis may lead to misleading conclusions about the adequacy of a fitted model.

When looking at the results corresponding to the plug-in first order autocorrelation of

squares, we can observe that the relative biases are negative. The magnitude of the biases

and standard errors are similar regardless of the error distribution. On the other hand,

although the biases of the sample autocorrelations are also negative, they are much larger in

magnitude; Bollerslev (1988), He and Teräsvirta (1999) and Pérez and Ruiz (2003) also report

negative biases of the sample autocorrelations. As expected, both the biases and standard

deviations decrease with the sample size. Therefore, we expect that the plug-in first order

autocorrelations of squares would be in average larger than their sample counterparts and,

obviously, closer to the population autocorrelations. Also note that the standard deviations

of the sample autocorrelations are much larger than those of the plug-in. Consequently, as in

the case of the kurtosis, comparing the plug-in first order autocorrelation of squares with the

sample autocorrelation can lead to reject the adequacy of a well specified GARCH model;

see also the second column of Figure 3.1 which plots kernel densities of r2(1), ρ̂2(1) and their

differences when T = 2000 and the errors are Gaussian.

Finally, the relative biases and standard deviations of the sample cross-correlations de-

pend on the error distribution and sample size considered. It is also important to note that

although, the biases of the sample cross-correlations have magnitudes larger than those of the

corresponding plug-in cross-correlations, they are, in general, relatively small. Once more,

the standard deviations of the differences are very large compared with the magnitude of the

cross-correlations. Therefore, comparing ρ̂21(1) and r21(1) may also be rather misleading to

1The parameters have been estimated by ML using software developed by the first author in Matlab.
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conclude about the adequacy of an asymmetric GARCH model fitted to a given time series

of returns; see the third column of Figure 3.1.

Tables 3.2 and 3.3 summarize the relative biases of alternative TGARCH specifications

with Gaussian errors when the generated series have sizes equal to T = 1000, T = 2000

and T = 5000. The first table reports the results of models with leverage effect while

the second corresponds to the same models with the asymmetry parameter equal to zero.

The four models considered cover a wide range of population kurtosis values and have first

autocorrelation of squares and cross-correlation values similar to those observed in practice.

The parameters and the population moments of each model are summarized in the first and

second column of the table, respectively.

Note that in any case, one can observe that main characteristics on the plug-in and

sample moments previously mentioned in this section, remain valid for any of the alternative

TGARCH models. The size of the bias when estimating the sample kurtosis increases with

the population kurtosis; see, for example, the fourth TGARCH model in the table with

κ = 19.017. This model has biases on the sample and plug-in kurtosis that are around ten

times the corresponding biases observed in the first model of the table, whose population

kurtosis is 4.412. This effect is independent of the sample size considered and is also clear

when comparing the biases of the intermediate case of κ = 9.012 and κ = 9.318.

Figure 3.2 plots kernel densities of the differences between sample and plug-in moments

for the four asymmetric TGARCH models when T = 2000. The conclusions are similar to

those described in relation with figure 3.1.

3.3 Finite sample properties of plug-in and sample

moments for QGARCH and EGARCH models.

In this section, we analyze the finite sample properties of the plug-in and sample moments of

alternative GARCH models with leverage effect. The models considered are the QGARCH

and EGARCH models described in (1.3.8) and (1.3.21), respectively. We have considered

them because of their popularity in financial literature although we have already mentioned

their limitations to represent the leverage effect.

For each model, we select four alternative parameter specifications with Gaussian errors.



3.3 Finite sample properties of plug-in and

sample moments for QGARCH and EGARCH models. 67

For each specification, we carry out Monte Carlo experiments analogous to those described

for the TGARCH model in the previous section. Again, the models have to be restricted

to guarantee the positivity, stationarity and finite fourth moment conditions as described in

Chapter 1.

First, consider the simulation results under the QGARCH models of size T = 1000,

T = 2000 and T = 5000 which are reported in Table 3.4. It contains the relative biases

between sample and plug-in moments with respect to the corresponding populations moments

that appear in the second column of the table.

As in the TGARCH model, the plug-in kurtosis has positive relative biases while the

biases of to the sample kurtosis are negative. In any case, both standard deviations decrease

with the sample size as they do also the biases of the sample kurtosis. For example, in the

second model with κ = 5.446 and parameters α = 0.1, β = 0.87 and δQ = −0.109, the

relative biases of k go from −19.19% with standard deviation equal to 1.381 when T = 1000,

to −10.24% with standard deviation equal 1.227 when T = 5000. It is worth of mention that

the size of the sample kurtosis bias increases, in absolute terms, with kurtosis. Compare for

example the sample kurtosis bias of −33.65% when T = 5000 in the fourth model considered

where κ = 10.235 with respect to the values in the second model already comented.

In the case of the relative biases for κ̂, it is not clear that the biases decreases with the

sample size or not, it seems that there is a dependence on the population kurtosis. For

example, in the first and second models were κ = 4.914 and κ = 5.446, the biases decreases

with the sample size but this effect is just the opposite in the third and fourth model where the

population kurtosis are 8.437 and 10.235, respectively. Therefore, it is difficult to conclude

whether the plug-in bias increases or decreases with sample size and/or population kurtosis

or not.

Consider now the results for ρ̂2(1) and r2(1), they both show, in general, negative biases

that decrease with the sample size as in the TGARCH case. The standard deviations decay

also with the sample size. See for example the second model where the biases for ρ̂2(1) go from

−1.29% with standard deviation equal to 0.062 when T = 1000, to −1.04% with standard

deviation equal 0.027 when T = 5000. For the biases of the sample first autocorrelation,

they go from −12.92% with standard deviation equal to 0.076 when T = 1000 to 0.55% with

standard deviation equal 0.051 when T = 5000.

The situation with the cross-correlation is the opposite to the one observed for the auto-
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correlations. In general, contrarily to the behavior observed in the TGARCH models, ρ̂21(1)

and r21(1), show positive biases that in the case of the sample cross-correlation decrease with

the sample size. For the plug-in cross-correlation, the relative biases are much smaller than

the corresponding sample biases and there seems to remain stable for all the sample sizes.

See the values of the second model, when T = 1000 the bias of r21(1) is 6.38% whereas it is

only 1.12% for the plug-in biases and when T = 5000 the bias of the sample cross-correlation

reduces to 4.67% whereas for the plug-in case it is 1.23%, which is similar to the value for

T = 1000.

Table 3.5 summarizes the results of the Monte Carlo experiments when the corresponding

symmetric models are considered. One can observe that the biases show similar patterns to

those described above for the asymmetric models.

As a final illustration, the sign of the biases and the shape of the kernel densities of the

differences between sample and plug-in moments of the QGARCH models when T = 2000,

can be observed in Figure 3.3.

Now focus on the EGARCH simulation results that are summarized in Table 3.6. As

in the TGARCH and QGARCH models, the biases of the sample kurtosis are negative and

they decrease when sample size increase. See for example the evolution of the biases of k in

the second model that go from −23.03% when T = 1000 to −7.62% when T = 5000.

Things change when face to the biases of the plug-in kurtosis. These are positively

biased, are smaller, in absolute terms, than the sample ones but they do not decrease with

the sample size as the sample ones do. The plug-in kurtosis biases tend to be stable for

all the sample sizes considered as can be observed in the second model where they all are

around 5%, or in the last one where the biases start at 8.60% when T = 1000 and are still

7.39% when the sample size increases to T = 5000.

In the context of the autocorrelation of squares, both sample and plug-in biases are

negative and the biases decrease when the sample size increases. Again, in absolute terms,

the biases of the sample moments are bigger than the plug-in ones. See for example the

second model when T = 1000, where the sample and plug-in biases are−25.46% and−6.17%,

respectively. All theses characteristics goes in line with those highligted for the TGARCH

and QGARCH models.

With respect to the sample cross-correlations, contrarily to the previous models consid-

ered, they show negative biases. This is not the general case for the plug-in first cross-
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correlations that tend to be positively biased, and which are smaller, in absolute terms,

than the sample ones. In any case, both sample and plug-in cross-correlation biases decrease

when the sample size increases. The second model when T = 5000 is a clear example of

the different behavior that the biases of the sample and plug-in cross-correlation show under

EGARCH specifications.

In the case of the symmetric EGARCH models, whose relative biases are summarized

in Table 3.7, the conclusions are similar to those mentioned for the asymmetric models but

it is worth of mention than the size of the biases for k and κ̂ and the standard deviations

are smaller in the symmetric model, in absolute terms, when compared to the corresponding

asymmetric ones independently of the sample size considered.

Figure 3.4 shows the kernel densities of the differences between sample and plug-in mo-

ments of the EGARCH models when T = 2000. Again, note the effect of the negative biases

on sample kurtosis and autocorrelation of squares on the shape of these densities.

3.4 Empirical application

In this section we fit the TGARCH and EGARCH models to the series of daily returns

of the SP500 index and of the EUR/USD exchange rate observed from January 2nd 2002

to June 25th 2010 and described in Section 1.3. Figure 1.2 plots both series together with

their corresponding sample autocorrelations of squares and cross-correlations between yt and

y2
t+h. The autocorrelations of squares of both series are significant; see also Table 3.8 which

reports the corresponding Box-Ljung statistic. The cross-correlations of SP500 returns are

also significant and negative suggesting the presence of leverage effect. However, the cross-

correlations of EUR/USD returns are not significant. Therefore, a GARCH model with

leverage effect may be appropriate for the SP500 returns while the EUR/USD returns could

be represented by a symmetric GARCH model. We fit TGARCH and EGARCH models

with Student-ν errors to each of these series. The estimated TGARCH model for the SP500

returns is given by

σt = 0.012
(0.002)

+ 0.054
(0.009)

|yt−1|+ 0.948
(0.008)

σt−1 −0.054
(0.006)

yt−1
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with ν̂ = 11.95. The estimated volatility of the EUR/USD returns is given by

σt = 0.003
(0.002)

+ 0.040
(0.007)

|yt−1|+ 0.963
(0.007)

σt−1 −0.004
(0.005)

yt−1

with ν̂ = 15.08.

Under the EGARCH specification, the estimated model for the SP500 returns is

log σ2
t = −0.068

(0.013)
+ 0.090

(0.017)
|εt−1|+ 0.991

(0.002)
log σ2

t−1 − 0.101
(0.011)

εt−1

with ν̂ = 11.61 and for the EUR/USD returns it is given by

log σ2
t = −0.067

(0.013)
+ 0.080

(0.015)
|εt−1|+ 0.994

(0.003)
log σ2

t−1 − 0.007
(0.007)

εt−1

with ν̂ = 15.25.

Note that, as expected, the asymmetry of the EUR/USD returns is not significant. Table

3.8, which reports several moments of the standardized returns, shows that they have smaller

kurtosis than the original observations. Furthermore, when looking at the Box-Ljung statistic

to test for the significance of the autocorrelations of squares and cross-correlations, we can

observe that they are not any more significant. Therefore, it seems that the TGARCH and

EGARCH models are able to explain the autocorrelations of squares and cross-correlations

between returns and future squared returns.

Finally, Table 3.8 reports the plug-in moments obtained after substituting the parameter

estimates in the expressions of the corresponding population moments2. When looking at the

results for the SP500 returns, we observe that the plug-in kurtosis is much larger than the

sample kurtosis. Therefore, we may think that the TGARCH and EGARCH models are not

adequate to represent the SP500 kurtosis. However, according to our simulation results, the

plug-in kurtosis is positively biased while the sample kurtosis has a negative bias. Therefore,

in spite of the large distance between the sample and plug-in kurtosis, the TGARCH and

EGARCH models could still be adequate for the SP500 returns. When comparing the plug-

in and sample autocorrelations of squares and cross-correlations between returns and future

squared returns, we can observe that the differences are pretty small. However, although the

2Again take with caution the plug-in moments under EGARCH models when the errors have a Student-ν
distribution.
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sample autocorrelations of squares are larger than the plug-in autocorrelations, which is in

contrast with the biases observed in our Monte Carlo results, remember that the dispersion of

the differences between sample and plug-in autocorrelations is very large. When comparing

plug-in and sample moments of the EUR/USD returns, we can observe that all moments are

very similar.

3.5 Conclusions

This chapter analyzes the suitability of comparing plug-in and sample kurtosis, autocorre-

lations of squares and cross-correlations between returns and future squared returns when

checking the adequacy of a fitted GARCH model. We show that the biases of the sample

and plug-in kurtosis have opposite sign, depend on the sample size and in the case of the

sample kurtosis biases, they are also influenced by the level of leptokurtosis.

The differences between sample and plug-in autocorrelations are in general negatively

biased with respect to the population value. Again they decrease with the sample size but

in any case, they have very large dispersion.

Finally, when comparing the plug-in and sample cross-correlations, the sign of the biases

depends on the model considered. Once more, the dispersion of the differences between

plug-in and sample cross-correlations is very large even in large sample sizes.

Therefore, comparing sample and plug-in moments is not an adequate tool to decide

about the adequacy of a fitted conditionally heterocedastic model.

Alternatively to the GARCH models, it could also be of interest to compare the finite

sample properties of the plug-in and sample moments in the context of asymmetric stochastic

volatility models; see Pérez at al. (2009) for the population moments when the asymmetry

is introduced through correlation between the level and volatility disturbances. However,

we left this topic for further research due to the lack of a well established estimator for the

parameters of asymmetric stochastic volatility models; see, for example Harvey and Shephard

(1996) and Kawakatsu (2007) for extensions of the QML estimator, while Asai (2008) propose

a MCL estimator, Lee et al. (2011) propose a hierarchical-likelihood approach, Durham

(2006) propose a SML estimator and Omori and Watanabe (2008), Raggi and Bordignon

(2006) and Smith (2009) propose MCMC estimators.
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Gaussian Student-7
T=500 T=2000 T=5000 T=500 T=2000 T=5000

κ̂
k

k-κ̂

37.89%
(14.448)

−35.67%
(3.540)

−77.11%
(14.027)

19.06%
(8.169)

−24.41%
(3.409)

−43.62%
(3.409)

4.76%
(2.466)

−20.52%
(2.944)

−25.29%
(2.943)

17.38%
(28.600)

−56.56%
(6.261)

−65.56%
(21.559)

15.31%
(14.52)

−42.09%
(5.692)

−57.41%
(14.106)

13.25%
(9.187)

−34.65%
(5.216)

−47.90%
(9.518)

ρ̂2(1)
r2(1)

r2(1)− ρ̂2(1)

−6.80%
(0.061)

−27.67%
(0.109)

−22.85%
(0.096)

−1.32%
(0.034)

−15.32%
(0.085)

−14.13%
(0.085)

−0.46%
(0.022)

−11.85%
(0.067)

−11.40%
(0.067)

−8.00%
(0.063)

−26.66%
(0.106)

−18.81%
(0.091)

−2.07%
(0.086)

−11.69%
(0.033)

−9.17%
(0.084)

−0.24%
(0.022)

−8.04%
(0.072)

−7.78%
(0.069)

ρ̂21(1)
r21(1)

r21(1)− ρ̂21(1)

−5.47%
(0.023)

−2.18%
(0.084)

3.30%
(0.096)

−1.90%
(0.012)

4.60%
(0.047)

6.92%
(0.047)

−0.08%
(0.007)

3.70%
(0.033)

4.52%
(0.033)

−1.72%
(0.022)

19.93%
(0.079)

21.02%
(0.071)

−1.66%
(0.011)

22.81%
(0.051)

24.41%
(0.049)

−1.80%
(0.007)

23.19%
(0.036)

24.93%
(0.039)

Table 3.1: Monte Carlo relative biases and standard deviations (in parenthesis) of sample and plug-in
moments and their differences.
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Table 1.- Monte Carlo relative biases and standard deviations (in parenthesis) of sample and

plug-in moments and their di¤erences.

Gaussian Student-7

T=500 T=2000 T=5000 T=500 T=2000 T=5000

�̂

k

k -�̂

37:89%
(14:448)

�35:67%
(3:540)

�77:11%
(14:027)

19:06%
(8:169)

�24:41%
(3:409)

�43:62%
(3:409)

4:76%
(2:466)

�20:52%
(2:944)

�25:29%
(2:943)

17:38%
(28:600)

�56:56%
(6:261)

�65:56%
(21:559)

15:31%
(14:52)

�42:09%
(5:692)

�57:41%
(14:106)

13:25%
(9:187)

�34:65%
(5:216)

�47:90%
(9:518)

�̂2(1)

r2(1)

r2(1)� �̂2(1)

�6:80%
(0:061)

�27:67%
(0:109)

�22:85%
(0:096)

�1:32%
(0:034)

�15:32%
(0:085)

�14:13%
(0:085)

�0:46%
(0:022)

�11:85%
(0:067)

�11:40%
(0:067)

�8:00%
(0:063)

�26:66%
(0:106)

�18:81%
(0:091)

�2:07%
(0:086)

�11:69%
(0:033)

�9:17%
(0:084)

�0:24%
(0:022)

�8:04%
(0:072)

�7:78%
(0:069)

�̂12(1)

r12(1)

r12(1)� �̂12(1)

�5:47%
(0:023)

�2:18%
(0:084)

3:30%
(0:096)

�1:90%
(0:012)

4:60%
(0:047)

6:92%
(0:047)

�0:08%
(0:007)

3:70%
(0:033)

4:52%
(0:033)

�1:72%
(0:022)

19:93%
(0:079)

21:02%
(0:071)

�1:66%
(0:011)

22:81%
(0:051)

24:41%
(0:049)

�1:80%
(0:007)

23:19%
(0:036)

24:93%
(0:039)

Figure 1.- Kernel densities of the Monte Carlo sample moments (dashed), plug-in moments

(continuous) (top panel) and their di¤erences (lower panel): The vertical line represents the pop-

ulation moments. The �rst column corresponds to �y, the second to �2(1) and the third to �12(1):

7

Figure 3.1: Kernel densities of the Monte Carlo sample moments (dashed), plug-in mo-
ments (continuous) (top panel) and their differences (lower panel). The vertical line repre-
sents the population moments. The first column corresponds to κy, the second to ρ2(1) and
the third to ρ21(1).
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Model Population Moments T=1000 T=2000 T=5000

α = 0.13 κ = 4.412
κ̂
k

1.70
(0.679)

−4.72
(1.167)

5.00
(0.431)

−4.19
(0.851)

0.41
(0.263)

−0.27
(0.749)

β = 0.78 ρ2(1) = 0.221
ρ̂2(1)
r 2(1)

−2.15
(0.039)

−13.17
(0.076)

−1.24
(0.027)

−8.73
(0.061)

−0.23
(0.005)

−3.27
(0.049)

δT = −0.10 ρ21(1) = −0.138
ρ̂21(1)
r 21(1)

−1.77
(0.020)

−6.26
(0.044)

−0.97
(0.013)

−4.84
(0.033)

0.01
(0.009)

−2.69
(0.023)

α = 0.17 κ = 9.012
κ̂
k

27.62
(10.231)

−31.83
(3.494)

19.06
(8.169)

−24.41
(3.409)

4.76
(2.466)

−20.52
(2.944)

β = 0.8 ρ2(1) = 0.344
ρ̂2(1)
r 2(1)

−3.00
(0.046)

−21.99
(0.089)

−1.32
(0.034)

−15.32
(0.085)

−0.46
(0.022)

−11.85
(0.067)

δT = −0.1 ρ21(1) = −0.112
ρ̂21(1)
r 21(1)

−4.09
(0.016)

−1.05
(0.059)

−1.90
(0.012)

4.60
(0.047)

−0.08
(0.007)

3.70
(0.033)

α = 0.1 κ = 9.318
κ̂
k

22.08
(8.357)

−34.46
(3.238)

11.56
(5.700)

−28.95
(3.133)

7.23
(2.775)

−21.16
(3.043)

β = 0.88 ρ2(1) = 0.309
ρ̂2(1)
r 2(1)

−1.44
(0.041)

−25.23
(0.092)

−0.83
(0.076)

−18.92
(0.077)

0.64
(0.020)

−13.02
(0.065)

δT = −0.1 ρ21(1) = −0.110
ρ̂21(1)
r 21(1)

−4.46
(0.013)

−0.63
(0.058)

−3.21
(0.042)

0.65
(0.043)

−1.70
(0.006)

1.01
(0.031)

α = 0.15 κ = 19.017
κ̂
k

38.08
(29.724)

−57.19
(7.009)

46.19
(27.436)

−51.61
(6.527)

28.63
(17.778)

−45.77
(6.270)

β = 0.8 ρ2(1) = 0.369
ρ̂2(1)
r 2(1)

−1.37
(0.031)

−23.90
(0.102)

0.57
(0.023)

−18.58
(0.090)

1.19
(0.016)

−15.35
(0.075)

δT = −0.16 ρ21(1) = −0.129
ρ̂21(1)
r 21(1)

−5.02
(0.020)

31.74
(0.062)

−5.75
(0.019)

32.71
(0.091)

−4.72
(0.014)

30.75
(0.034)

Table 3.2: Percentages of Monte Carlo biases and standard deviations in the TGARCH Gaussian models.
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Model Population Moments T=1000 T=2000 T=5000

α = 0.13 κ = 3.393
κ̂
k

0.62
(0.191)

−1.62
(0.317)

0.34
(0.129)

−0.54
(0.221)

0.22
(0.080)

0.00
(0.150)

β = 0.78 ρ2(1) = 0.151
ρ̂2(1)
r 2(1)

−0.01
(0.042)

−6.79
(0.052)

−0.16
(0.026)

−4.63
(0.041)

0.57
(0.016)

−1.08
(0.028)

δT = 0 ρ21(1) = 0
ρ̂21(1)
r 21(1)

−0.01�

(0.035)

0.06�

(0.043)

0.02�

(0.017)

0.02�

(0.030)

−0.01�

(0.011)

0.06�

(0.020)

α = 0.17 κ = 4.540
κ̂
k

2.41
(0.996)

−8.40
(0.816)

2.07
(0.650)

−4.54
(0.811)

0.40
(0.359)

−2.30
(0.755)

β = 0.8 ρ2(1) = 0.258
ρ̂2(1)
r 2(1)

−2.26
(0.047)

−14.73
(0.074)

−0.22
(0.036)

−8.857
(0.064)

−0.52
(0.021)

−4.73
(0.047)

δT = 0 ρ21(1) = 0
ρ̂21(1)
r 21(1)

0.02
(0.022)

�

−0.05
(0.054)

�

0.01
(0.015)

�

0.02
(0.040)

�

0.04�

(0.010)

0.08�

(0.027)

α = 0.1 κ = 3.687
κ̂
k

0.10
(0.425)

−4.11
(0.415)

0.80
(0.300)

−1.56
(0.408)

0.06
(0.164)

−0.53
(0.299)

β = 0.88 ρ2(1) = 0.158
ρ̂2(1)
r 2(1)

−3.33
(0.047)

−14.12
(0.057)

−0.41
(0.030)

−6.62
(0.050)

−0.64
(0.018)

−1.84
(0.035)

δT = 0 ρ21(1) = 0
ρ̂21(1)
r 21(1)

−0.06
(0.038)

�

−0.02
(0.040)

�

−0.40
(0.013)

�

−0.16
(0.032)

�

−0.01�

(0.008)

−0.03�

(0.021)

α = 0.15 κ = 3.830
κ̂
k

−10.23
(0.706)

−4.08
(0.504)

−18.89
(0.030)

−1.46
(0.480)

−19.00
(0.017)

−0.38
(0.344)

β = 0.8 ρ2(1) = 0.203
ρ̂2(1)
r 2(1)

−0.84
(0.057)

−10.61
(0.062)

−0.63
(0.012)

−6.12
(0.051)

−0.29
(0.007)

−1.10
(0.040)

δT = 0 ρ21(1) = 0
ρ̂21(1)
r 21(1)

−0.04�

(0.041)

−0.16�

(0.045)

0.02�

(0.015)

−0.17�

(0.034)

0.01�

(0.009)

−0.06�

(0.023)

Table 3.3: Percentages of Monte Carlo biases and standard deviations in the symmetric TGARCH
Gaussian models. ”�” Means that the difference is absolute.
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Figure 17.- f! = 0:112; � = 0:13; � = 0:78; �T = �0:10 and �T = 0g:

� �2(1) �21(1)

f! = 0:112; � = 0:13; � = 0:78; �T = �0:10g

.

f! = 0:059; � = 0:17; � = 0:8; �T = �0:1g

f! = 0:037; � = 0:1; � = 0:88; �T = �0:1g

f! = 0:071; � = 0:15; � = 0:8; �T = �0:16g

2

Figure 3.2: Kernel densities of the Monte Carlo differences between sample moments and plug-in
moments for different TGARCH Gaussian models when T = 2000.
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Model Population Moments T=1000 T=2000 T=5000

α = 0.14 κ = 4.912
κ̂
k

13.55
(3.026)

−11.14
(1.836)

8.01
(2.320)

−6.64
(1.840)

1.82
(0.648)

−2.40
(1.774)

β = 0.8 ρ2(1) = 0.218
ρ̂2(1)
r 2(1)

−1.48
(0.058)

1.67
(0.084)

0.09
(0.042)

8.99
(0.072)

−0.001
(0.026)

13.26
(0.062)

δQ = −0.1 ρ21(1) = −0.051
ρ̂21(1)
r 21(1)

−0.03
(0.016)

−0.08
(0.055)

0.04
(0.012)

−0.19
(0.043)

−0.01
(0.007)

−0.29
(0.030)

α = 0.1 κ = 5.446
κ̂
k

22.55
(6.954)

−19.19
(1.381)

9.28
(6.697)

−13.52
(1.381)

1.59
(0.959)

−10.24
(1.227)

β = 0.87 ρ2(1) = 0.226
ρ̂2(1)
r 2(1)

−1.29
(0.062)

−12.92
(0.076)

−0.9
(0.045)

−5.87
(0.065)

−1.04
(0.027)

0.55
(0.051)

δQ = −0.109 ρ21(1) = −0.051
ρ̂21(1)
r 21(1)

1.12
(0.016)

6.38
(0.048)

1.30
(0.011)

9.18
(0.038)

1.23
(0.007)

4.67
(0.027)

α = 0.14 κ = 8.437
κ̂
k

4.07
(5.859)

−37.06
(2.390)

7.93
(5.265)

−32.45
(2.331)

13.09
(4.726)

−26.13
(2.283)

β = 0.825 ρ2(1) = 0.298
ρ̂2(1)
r 2(1)

−20.50
(0.056)

−16.34
(0.088)

−12.32
(0.045)

−10.88
(0.076)

−3.96
(0.033)

−3.63
(0.064)

δQ = −0.12 ρ21(1) = −0.044
ρ̂21(1)
r 21(1)

16.84
(0.018)

26.29
(0.060)

26.61
(0.048)

23.69
(0.048)

21.66
(0.01)

20.45
(0.035)

α = 0.16 κ = 10.235
κ̂
k

−1.58
(7.813)

−45.35
(3.055)

4.16
(7.080)

−40.37
(2.987)

12.25
(6.449)

−33.65
(2.830)

β = 0.8 ρ2(1) = 0.320
ρ̂2(1)
r 2(1)

−11.65
(0.057)

−16.13
(0.095)

−6.67
(0.044)

−11.21
(0.078)

−2.36
(0.033)

−4.86
(0.065)

δQ = −0.16 ρ21(1) = −0.040
ρ̂21(1)
r 21(1)

26.30
(0.018)

45.89
(0.065)

14.99
(0.014)

34.74
(0.051)

−4.52
(0.011)

32.49
(0.037)

Table 3.4: Percentages of Monte Carlo relative biases and standard deviations in the QGARCH Gaussian
models.
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Model Population Moments T=1000 T=2000 T=5000

α = 0.14 κ = 4.523
κ̂
k

13.64
(4.303)

−10.31
(1.286)

4.94
(1.230)

−6.89
(1.152)

2.47
(0.638)

−4.49
(0.822)

β = 0.8 ρ2(1) = 0.197
ρ̂2(1)
r 2(1)

1.79
(0.059)

5.40
(0.081)

−0.63
(0.044)

11.29
(0.068)

0.39
(0.030)

19.36
(0.057)

δQ = 0 ρ21(1) = 0
ρ̂21(1)
r 21(1)

−0.03�

(0.016)

−0.48
(0.054)

�

−0.02�

(0.011)

−0.16�

(0.043)

0.03�

(0.007)

0.14�

(0.028)

α = 0.1 κ = 4.534
κ̂
k

9.77
(2.651)

−13.12
(1.288)

8.44
(2.067)

−8.58
(1.305)

2.82
(0.795)

−4.47
(1.189)

β = 0.87 ρ2(1) = 0.184
ρ̂2(1)
r 2(1)

−5.77
(0.063)

−10.94
(0.074)

−1.94
(0.051)

2.50
(0.066)

−0.14
(0.033)

11.34
(0.054)

δQ = 0 ρ21(1) = 0
ρ̂21(1)
r 21(1)

0.06�

(0.013)

−0.02�

(0.047)

−0.03
(0.009)

�

−0.25
(0.037)

�

−0.01�

(0.005)

−0.02�

(0.027)

α = 0.14 κ = 6.976
κ̂
k

2.35
(4.721)

−32.80
(2.190)

8.12
(3.978)

−27.97
(2.092)

14.93
(4.030)

−22.96
(1.966)

β = 0.825 ρ2(1) = 0.269
ρ̂2(1)
r 2(1)

−12.95
(0.013)

−14.82
(0.085)

−10.17
(0.052)

−7.81
(0.073)

−1.45
(0.041)

−1.18
(0.060)

δQ = 0 ρ21(1) = 0
ρ̂21(1)
r 21(1)

0.02
(0.064)

�

−0.18
(0.057)

�

0.05
(0.008)

�

−0.01
(0.045)

�

0.03�

(0.005)

0.15
(0.032)

�

α = 0.16 κ = 8.647
κ̂
k

−6.18
(6.020)

−42.68
(3.113)

1.59
(5.710)

−37.98
(3.078)

11.52
(5.212)

−29.82
(3.037)

β = 0.8 ρ2(1) = 0.298
ρ̂2(1)
r 2(1)

−15.21
(0.063)

−17.04
(0.088)

−9.07
(0.051)

−9.94
(0.076)

−2.95
(0.037)

−1.38
(0.067)

δQ = 0 ρ21(1) = 0
ρ̂21(1)
r 21(1)

0.00
(0.013)

�

0.11
(0.059)

�

0.01
(0.009)

�

0.03
(0.047)

�

0.02
(0.005)

�

0.07
(0.038)

�

Table 3.5: Percentages of Monte Carlo biases and standard deviations in the symmetric QGARCH
Gaussian models. ”�” Means that the difference is absolute.
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� �2(1) �21(1)

f! = 0:06; � = 0:14; � = 0:8; �Q = �0:1g

f! = 0:03; � = 0:1; � = 0:87; �Q = �0:109g

f! = 0:035; � = 0:14; � = 0:825; �Q = �0:12g

f! = 0:4; � = 0:16; � = 0:8; �Q = �0:16g

2

Figure 3.3: Kernel densities of the Monte Carlo differences between sample moments and plug-in
moments for different QGARCH Gaussian models when T = 2000.
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Model Population Moments T=1000 T=2000 T=5000

α = 0.12 κ = 3.262
κ̂
k

−0.06
(0.148)

−0.53
(0.246)

0.03
(0.096)

−0.24
(0.175)

0.09
(0.054)

−0.13
(0.116)

β = 0.93 ρ2(1) = 0.079
ρ̂2(1)
r 2(1)

−5.84
(0.033)

−7.82
(0.046)

−2.27
(0.022)

−1.64
(0.034)

−0.17
(0.012)

−2.63
(0.021)

δE = −0.08 ρ21(1) = −0.059
ρ̂21(1)
r 21(1)

−2.92
(0.028)

−3.65
(0.037)

−1.18
(0.016)

−2.19
(0.025)

0.31
(0.008)

−2.17
(0.017)

α = 0.13 κ = 4.388
κ̂
k

5.13
(0.722)

−23.03
(1.763)

5.46
(0.460)

−15.36
(1.348)

5.56
(0.287)

−7.62
(1.2572)

β = 0.99 ρ2(1) = 0.236
ρ̂2(1)
r 2(1)

−6.17
(0.049)

−25.46
(0.077)

−2.85
(0.034)

−17.28
(0.063)

−0.91
(0.021)

−9.53
(0.050)

δE = −0.08 ρ21(1) = −0.051
ρ̂21(1)
r 21(1)

2.64
(0.011)

−12.44
(0.051)

2.50
(0.007)

−6.73
(0.034)

0.59
(0.004)

−4.18
(0.025)

α = 0.3 κ = 9.590
κ̂
k

5.53
(3.519)

−24.87
(2.852)

3.93
(2.147)

−15.07
(2.825)

3.83
(1.299)

−6.02
(2.774)

β = 0.97 ρ2(1) = 0.350
ρ̂2(1)
r 2(1)

−2.89
(0.036)

−18.40
(0.091)

−1.62
(0.024)

−13.54
(0.080)

−0.63
(0.015)

−7.96
(0.064)

δE = −0.14 ρ21(1) = −0.091
ρ̂21(1)
r 21(1)

1.72
(0.014)

−9.51
(0.064)

−3.57
(0.010)

−2.90
(0.051)

0.54
(0.006)

1.87
(0.038)

α = 0.2 κ = 9.766
κ̂
k

8.60
(2.630)

−15.15
(3.314)

6.89
(1.671)

−5.72
(3.276)

7.39
(1.034)

4.35
(3.193)

β = 0.98 ρ2(1) = 0.321
ρ̂2(1)
r 2(1)

−2.79
(0.035)

−21.71
(0.090)

−1.65
(0.023)

−14.78
(0.078)

−0.56
(0.014)

−9.46
(0.062)

δE = −0.15 ρ21(1) = −0.090
ρ̂21(1)
r 21(1)

2.20
(0.012)

−7.04
(0.060)

0.94
(0.008)

−1.12
(0.049)

0.25
(0.005)

−1.05
(0.033)

Table 3.6: Percentages of Monte Carlo biases and standard deviations in the EGARCH Gaussian
models.
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Model Population Moments T=1000 T=2000 T=5000

α = 0.12 κ = 3.085
κ̂
k

−0.06
(0.068)

−0.11
(0.184)

0.00
(0.051)

−0.06
(0.129)

0.00
(0.030)

−0.05
(0.082)

β = 0.93 ρ2(1) = 0.054
ρ̂2(1)
r 2(1)

−1.18
(0.036)

−7.63
(0.038)

−3.72
(0.016)

−1.50
(0.028)

1.34
(0.013)

−1.32
(0.018)

δE = 0 ρ21(1) = 0
ρ̂21(1)
r 21(1)

−0.03�

(0.027)

−0.07�

(0.034)

−0.07�

(0.024)

−0.12�

(0.025)

−0.02�

(0.008)

−0.07�

(0.016)

α = 0.13 κ = 3.501
κ̂
k

0.98
(0.296)

−10.99
(0.655)

1.40
(0.192)

−8.30
(0.519)

1.89
(0.125)

−5.18
(0.431)

β = 0.99 ρ2(1) = 0.151
ρ̂2(1)
r 2(1)

−10.48
(0.050)

−22.31
(0.061)

−6.00
(0.033)

−12.67
(0.052)

−2.87
(0.023)

−7.12
(0.038)

δE = 0 ρ21(1) = 0
ρ̂21(1)
r 21(1)

0.04�

(0.015)

−0.01�

(0.040)

−0.06�

(0.008)

−0.11�

(0.040)

0.00�

(0.005)

−0.07�

(0.021)

α = 0.3 κ = 5.607
κ̂
k

1.40
(1.156)

−7.04
(1.622)

1.71
(0.751)

−1.83
(1.347)

2.56
(0.516)

1.44
(1.161)

β = 0.97 ρ2(1) = 0.290
ρ̂2(1)
r 2(1)

−3.45
(0.045)

−15.60
(0.079)

−1.60
(0.031)

−8.98
(0.071)

−0.41
(0.020)

−4.34
(0.053)

δE = 0 ρ21(1) = 0
ρ̂21(1)
r 21(1)

0.10
(0.018)

�

0.00
(0.057)

�

−0.01
(0.012)

�

0.08
(0.045)

�

0.03�

(0.008)

0.05�

(0.031)

α = 0.2 κ = 4.467
κ̂
k

−0.10
(0.541)

−2.11
(0.790)

1.02
(0.385)

1.52
(0.738)

2.01
(0.254)

5.46
(0.541)

β = 0.98 ρ2(1) = 0.212
ρ̂2(1)
r 2(1)

−6.67
(0.047)

−18.98
(0.067)

−3.73
(0.033)

−12.60
(0.053)

−1.47
(0.022)

−5.55
(0.040)

δE = 0 ρ21(1) = 0
ρ̂21(1)
r 21(1)

−0.01
(0.016)

�

0.11
(0.050)

�

0.06
(0.010)

�

0.00
(0.035)

�

0.01
(0.006)

�

0.03
(0.024)

�

Table 3.7: Percentages of Monte Carlo biases and standard deviations in the symmetric EGARCH
Gaussian models. ”�” Means that the difference is absolute.
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Figure 21.-f! = �0:003; � = 0:12; � = 0:93; �E = �0:08 and �E = 0g:

� �2(1) �21(1)

f! = �0:003; � = 0:12; � = 0:93; �E = �0:08g

f! = �0:003; � = 0:12; � = 0:99; �E = �0:08g

f! = �0:015; � = 0:3; � = 0:97; �E = �0:14g

f! = �0:01; � = 0:2; � = 0:98; �E = �0:15g

2

Figure 3.4: Kernel densities of the Monte Carlo differences between sample moments and plug-in
moments for different EGARCH Gaussian models when T = 2000.
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SP500 EUR/USD
Sample Residuals Plug-in Sample Residuals Plug-in

TGARCH EGARCH TGARCH EGARCH TGARCH EGARCH TGARCH EGARCH

Kurtosis 7.12 4.19∗ 4.27∗ 16.82 16.13 4.28 3.50∗ 3.49∗ 4.71 4.14
ρ2(1) 0.34 −0.07 −0.07 0.25 0.20 0.12 −0.03 −0.03 0.11 0.10

Q2(20) 3148.50∗ 30.04 25.31 − − 616.08∗ 15.86 15.21 − −
ρ21(1) −0.07 −0.05 −0.05 −0.07 −0.05 0.02 0.02 0.02 0.00 0.00

Q21(20) 217.15∗ 30.77 27.56 − − 34.41 18.30 17.35 − −
* Significant at 5% level

Table 3.8: Sample moments together with their corresponding diagnostic statistics and plug-in moments.





Chapter 4

Summary of conclusions and future

research

In this thesis we focus on analyzing and comparing the ability of asymmetric GARCH models

to represent conditional volatility when it has leverage effect.

In Chapter 2 we compare the theoretical limitations of several GARCH-type models when

their parameters are restricted to satisfy positivity, stationarity and finite kurtosis restric-

tions. This limitations come from the functional form selected to represent the volatility

under each model. We show that the QGARCH and GJR models although very popular

in empirical applications, lack of flexibility to represent the asymmetry often observed in

real time series of financial returns. In the first model, the limitations come mostly from

the positivity restriction because it strongly limits the maximum value for the asymmetry

parameter, δQ, when α is small, which is the case for financial time series. In the GJR model,

is the finite kurtosis restriction, above all, the one that limits the asymmetry of the model.

This condition is even more restrictive the larger is β and the smaller is α, which are again

the usual combination of parameters when fitting real financial data. On the other hand, the

TGARCH and EGARCH models show more flexibility to represent the dynamic evolution

of volatilities when they are restricted to guarantee stationarity and finite kurtosis together

with positive conditional variances.

In Chapter 3 we study whether comparing sample moments of a series as, for example,

kurtosis, autocorrelations of squares or cross-correlations with the corresponding plug-in val-

ues implied by a fitted is appropriate in order to decide about the adequacy of the model.
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We conclude that plug-in and sample moments have very different properties as estimators

of their corresponding population moments. Consequently comparing them is not adequate

independently of the asymmetric GARCH model considered. Within the models considered,

QGARCH, TGARCH or EGARCH, the QGARCH model show the biggest dispersion be-

tween sample and plug-in moments when compared to corresponding quantities obtained

when analyzing TGARCH or EGARCH models.

As we mentioned in previous chapters, it is of interest to analyze the abilities of asym-

metric Stochastic Volatility Models from the same points of view considered in Chapter 2,

checking their theoretical limitations, and in Chapter 3, revisiting the relationships between

their sample, plug-in and population moments.

Finally, from a predictive perspective, comparing the predictive limitations that each

model could show from the restrictions that arise from the volatility expressions of both

asymmetric GARCH and asymmetric Stochastic Volatility models it is doubtless a question

to be considered in future research.



Chapter 5

Resumen

El objetivo de esta tesis es analizar y comparar la capacidad de algunos de los modelos habi-

tuales de series temporales para representar la volatilidad de las series financieras y sus ca-

racteŕısticas más importantes. En concreto, una de las principales consiste en que las series

suelen presentan mayor número de observaciones extremas que las esperadas bajo Gausia-

nidad. Además, las observaciones se agrupan de tal manera que tras movimientos grandes

siguen movimientos grandes, mientras que por el contrario, cuando los movimientos comien-

zan a ser pequeños siguen siéndolo durante cierto tiempo. Este agrupamiento de volatilidad

se refleja a través de la autocorrelación de cuadrados que suele ser significativa, positiva y

presenta decaimiento exponencial.

Finalmente, otra caracteŕıstica extensamente observada y propuesta por Black (1976) es

la respuesta asimétrica de la volatilidad ante rendimientos positivos o negativos y conocida

como leverage effect. En concreto, el incremento en la volatilidad es mayor cuando los

retornos anteriores son negativos que cuando éstos son de la misma magnitud pero positivos.

La presencia de este tipo de comportamiento se detecta en las correlaciones cruzadas entre

rendimientos y rendimientos futuros al cuadrado, que habitualmente son significativos y

negativos.

Los modelos considerados en esta tesis son algunos de los más conocidos dentro de la fa-

milia de modelos GARCH de leverage effect. Son el modelo Quadratic GARCH (QGARCH),

propuesto de manera independiente por Engle y Ng (1993) y Sentana (1995), el modelo

Threshold GARCH (TGARCH) de Zaköıan (1994), el modelo GJR de Glosten et al. (1993),

el modelo GARCH Exponencial (EGARCH) de Nelson (1991) y el modelo Asymmetric Power
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GARCH (APARCH) de Ding et al. (1993).

En esta tesis, nos centramos en el análisis bajo dos perspectivas diferentes. En primer

lugar, desde un punto de vista teórico, en el Caṕıtulo 2 estudiamos y comparamos cómo

la dinámica de la volatilidad representada por cada modelo queda restringida al asumir

que éste verifica las condiciones de positividad para la varianza, la estacionariedad y la

existencia de kurtosis finita. Éstas condiciones se definen uńıvocamente para cada modelo

como consecuencia de la forma funcional que lo define y limitan su espacio paramétrico.

Además, en la Sección 2.3 analizamos a través de la metodoloǵıa Monte Carlo, cómo incluso

partiendo de series construidas bajo modelos GARCH asimétricos con momentos finitos,

podŕıa llegarse a conclusiones diferentes dependiendo del tipo de modelo elegido para ajustar

las series. Finalmente, en la Sección 2.4 se consideran series financieras reales para ilustrar

las capacidades descritas en el Caṕıtulo 2 para los distintos modelos. Las conclusiones del

caṕıtulo se recogen en la Sección 2.5, e indican que los modelos se agrupan bajo dos patrones

diferenciados. En primer plano estaŕıan los modelos TGARCH, EGARCH y APARCH, para

los que las restricciones sobre los parámetros no condicionan la dinámica de los modelos

cuando se ajustan a series financieras. Por otro lado, la volatilidad condicional estimada por

estos tres modelos es muy similar. En otro plano estaŕıan los modelos QGARCH y GJR

cuyas restricciones para la existencia de los momentos limitan fuertemente la dinámica de la

volatilidad que pueden representar.

En la práctica, tras ajustar un modelo GARCH concreto a una serie temporal de rendimien-

tos, es habitual analizarlo comparando los mometos muestrales de la serie con los plug-in

inferidos por el modelo. En el Caṕıtulo 3 estudiamos si este segundo enfoque de análisis

es o no adecuado. Las secciones 3.2 y 3.3 se ocupan del estudio de los modelos mediante

metodoloǵıas Monte Carlo, mientras en que la Sección 3.4 se reserva al análisis bajo casos

reales de series financieras. Las conclusiones desarrolladas en la Sección 3.5 indican, entre

otros aspectos, cómo el diferente comportamiento entre los momentos muestrales y plug-in

con respecto a los poblaciones, puede conllevar a conclusiones inapropiadas.

Como caṕıtulo final, en el Caṕıtulo 4 se resumen las principales conclusiones extráıdas

de los caṕıtulos anteriores y se puntualizan algunas futuras ĺıneas de estudio que surgen

como consecuencia de lo expuesto en esta tesis. Entre ellas, cabe destacar la importancia

de comparar las propiedades aqúı estudiadas bajo el enfoque de la predicción, analizando el

impacto de imponer condiciones de existencia de momentos sobre la capacidad predictiva de

los modelos. Por otro lado, también seŕıa de interés analizar las capacidades de los modelos
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de volatilidad estocástica bajo los mismos enfoques de estudio que hemos planteado para los

modelos GARCH de leverage effect.
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