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Resum

L’any 1960 Komatsu va introduir certes classes de funcions C∞ definides
per estimacions del creixement dels successius iterats d’un operador en
derivades parcials quan estudiava propietats de regularitat de certes equa-
cions en derivades parcials. Aquesta línia d’investigació ha estat molt ac-
tiva fins a l’actualitat amb els treballs de molts autors: destaquem, en-
tre altres, Bolley, Camus, Kotake, Langenbruch, Métivier, Narasimhan,
Newberger, Rodino, Zanghirati i Zielezny. Tota aquesta bibliografia està
relacionada amb l’anomenat problema dels iterats que consisteix, parlant
sense presició, en caracteritzar les funcions d’una certa classe mitjançant
el comportament dels iterats d’un operador prèviament donat.

En la primera part d’aquesta tesi continuem la investigació descrita an-
teriorment en un context més general: classes no quasi analítiques segons
la teoria de Braun, Meise i Taylor. L’estudi d’aquestes classes és actual-
ment una àrea d’investigació molt activa per les seues aplicacions a la teo-
ria d’operadors diferencials en derivades parcials: destaquem entre altres
el treball de Bonet, Braun, Domański, Fernández, Frerick, Galbis, Taylor i
Vogt. En el Capítol 1 introduïm aquestes classes i enunciem les propietats
que utilitzarem al llarg d’aquesta tesi.

En el Capítol 2 definim les classes no quasi analítiques respecte dels ite-
rats d’un operador en derivades parcials P(D) i estudiem les seues propi-
etats topològiques com la completesa i la nuclearitat. En particular, de-
mostrem que estes classes són un espai localment convex complet si i sols
si P(D) és hipoel·líptic i veiem que en aquest cas són també un espai nu-
clear. Tot seguit, provem per aquestes classes un teorema de tipus Paley-
Wiener.

El nostre objectiu en el Capítol 3 és donar resultats sobre el problema
dels iterats en classes no quasi analítiques. Així, generalitzem resultats
de Newberger, Zielezny, Métivier i Komatsu i donem caracteritzacions
perquè una classe no quasi analítica definida pels iterats d’un operador
coincidesca amb una classe no quasi analítica en el sentit de Braun, Meise
i Taylor.
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Tota la investigació feta sobre espais de funcions definits per iterats
d’operadors s’havia centrat en classes de tipus Roumieu. Tanmateix, de-
mostrem que els resultats dels capítols 2 i 3 també són certs per a classes
de tipus Beurling.

En l’any 1990, Langenbruch i Voigt demostraren que tot espai de Fréchet
format per distribucions invariant sota l’acció d’un operador hipoel·líptic
està inclòs contínuament en C∞. En el capítol 4 introduïm els operadors
ultradiferencials i investiguem extensions del resultat de Langenbruch i
Voigt al context ultradiferenciable. El nou concepte d’espai de Fréchet
(ω, P(D))-estable imposa als iterats de l’operador P(D) una condició d’equi-
continuitat i ens permet mostrar la relació d’aquest tipus de resultats amb
el problema dels iterats.

La segona part d’aquesta tesi se centra en l’estudi de funcions vectori-
als en un espai localment convex. Motivats per les investigacions anteri-
ors de Bonet, Domański, Komatsu, Kriegl, Michor, Rainer i Schwartz, en
el Capítol 5 donem diverses definicions de funció ultradiferenciable amb
valors vectorials i demostrem que tota funció dèbilment ultradiferenciable
en valors en un espai de Fréchet E és fortament ultradiferenciable si i sols
si E té la propietat (DN) de Vogt. D’aquesta manera, resolem un problema
proposat per Kriegl i Michor en un congrés que va tindre lloc a Paderborn
(Alemanya) en novembre de l’any 2008.



Resumen

En el año 1960 Komatsu introdujo ciertas clases de funciones C∞ definidas
mediante estimaciones del crecimiento de los sucesivos iterados de un
operador en derivadas parciales cuando estudiaba propiedades de reg-
ularidad de las soluciones de ciertas ecuaciones en derivadas parciales.
Esta línea de investigación ha sido muy activa hasta la actualidad a través
de los trabajos de muchos autores. Destacamos, entre otros, Bolley, Ca-
mus, Kotake, Langenbruch, Métivier, Narasimhan, Newberger, Rodino,
Zanghirati y Zielezny. Toda esta bibliografía involucra el llamado prob-
lema de los iterados que consiste, grosso modo, en caracterizar las fun-
ciones de una cierta clase en términos del comportamiento de los iterados
de un operador previamente fijado.

En la primera parte de esta tesis seguimos con la investigación men-
cionada antes en un contexto más general: clases no casi analíticas de
funciones ultradiferenciables en el sentido de Braun, Meise y Taylor. El
estudio de estas clases no casi analíticas es una área de investigación muy
activa debido a sus aplicaciones a la teoría de operadores en derivadas
parciales: destacamos entre otros el trabajo de Bonet, Braun, Domański,
Fernández, Frerick, Galbis, Taylor y Vogt. En el Capítulo 1 introducimos
estas clases y enunciamos las propiedados que utilizaremos a lo largo de
esta tesis.

En el Capítulo 2 definimos las clases no casi analíticas con respecto a
los iterados de un operador en derivadas parciales P(D) y estudiamos sus
propiedades topológicas como la completitud y la nuclearidad. En par-
ticular, demostramos que estas clases son un espacio localmente convexo
completo si y sólo si el operador P(D) es hipoelíptico y vemos que en tal
caso son además un espacio nuclear. A continuación, demostramos que
estas clases verifican un teorema de tipo Paley-Wiener.

En el Capítulo 3 tenemos como objetivo obtener resultados sobre el
problema de los iterados en clases no casi analíticas. Generalizamos varios
resultados de Newberger, Zielezny, Métivier y Komatsu y damos caracte-
rizaciones de cuándo una clase no casi analítica definida en términos de
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los iterados de un operador coincide con una clase no casi analítica según
Braun, Meise y Taylor.

Toda la investigación que se había hecho sobre espacios de funciones
definidos por iterados de operadores se había centrado en clases de tipo
Roumieu. Sin embargo, demostramos que los resultados dados en los
Capítulos 2 y 3 también son válidos para clases de tipo Beurling.

En el año 1990, Langenbruch y Voigt demostraron que todo espacio de
Fréchet formado por distribuciones que sea invariante bajo la acción de un
operador hipoelíptico está continuamente incluido en C∞. En el capítulo 4
introducimos los operadores ultradiferenciales e investigamos extensiones
del resultado de Langenbruch y Voigt al contexto ultradiferenciable. El
nuevo concepto de espacio de Fréchet (ω, P(D))-estable involucra a los
iterados de P(D) mediante una condición de equicontinuidad y nos per-
mite mostrar la relación de este tipo de resultados con el problema de los
iterados.

La segunda parte de esta tesis se centra en el estudio de funciones con
valores vectoriales en un espacio localmente convexo. Motivados por in-
vestigaciones previas de Bonet, Domański, Komatsu, Kriegl, Michor, Rai-
ner y Schwartz, en el Capítulo 5 damos varias definiciones de función ul-
tradiferenciable con valores vectoriales y demostramos que cada función
débilmente ultradiferenciable con valores en un espacio de Fréchet E es
fuertemente ultradiferenciable si y sólo si E tiene la propiedad (DN) de
Vogt. De este modo, resolvemos un problema propuesto por Kriegl y Mi-
chor en un congreso celebrado en Paderborn (Alemania) en noviembre del
año 2008.



Summary

Classes of smooth functions defined by estimates on the growth of the
successive iterates of a partial differential operator were introduced by
Komatsu in order to study regularity properties of certain partial diffe-
rential equations. This research was continued until recent days by several
authors like Bolley, Camus, Kotake, Langenbruch, Métivier, Narasimhan,
Newberger, Rodino, Zanghirati, Zielezny and others. All this work is rela-
ted to the problem of iterates which consists, roughly speaking, in charac-
terizing the functions in a given class of functions in terms of the behavior
of the iterates of a fixed differential operator.

In the first part of this thesis we continue the research described above
in a more general setting: non quasi analytic classes of ultradifferentiable
functions as defined by Braun, Meise and Taylor. The study of these non
quasianalytic classes of ultradifferentiable functions has received much
attention in recent years due to its applications to the theory of partial di-
fferential operators: we refer to the work of Bonet, Braun, Domański, Fer-
nández, Frerick, Galbis, Taylor and Vogt. In Chapter 1 we introduce these
classes and give the properties that will be used throughout this memoir.

In the second chapter we define non quasianalytic classes with respect
to the iterates of a partial differential operator P(D) and study their locally
convex properties like completeness and nuclearity. In fact, we prove that
theses classes are a complete locally convex space if and only if the ope-
rator P(D) is hypoelliptic and that, in this case, such spaces are nuclear.
After that, it is proved that these classes verify a Paley-Wiener type theo-
rem.

The aim of Chapter 3 is to obtain results concerning the problem of
iterates on non quasianalytic classes. We extend results by Newberger,
Zielezny, Métivier and Komatsu and give characterizations in order that
a non quasianalytic class defined with respect to the iterates of a partial
differential operator coincides with a class of ultradifferentiable functions
in the sense of Braun, Meise and Taylor.

We want to emphasize that the previous literature on iterates of diffe-
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rential operators only deals with Roumieu classes. However, all the results
presented in Chapters 2 and 3 remain true in the Beurling case.

In 1990, Langenbruch and Voigt proved that a Fréchet space of distri-
butions which is stable under a single hypoelliptic differential operator is
continuously included in C∞. In Chapter 4 we introduce ultradifferential
operators and give extensions of the result of Langenbruch and Voigt to
the ultradifferential setting. The new notion of (ω, P(D))-stable Fréchet
space imposes an equicontinuity condition on the successive iterates of
P(D) and allows us to show the connections of this topic with the pro-
blem of iterates.

In the second part of this thesis we investigate vector valued functions
in a locally convex space. Motivated by previous work by Bonet, Do-
mański, Komatsu, Kriegl, Michor, Rainer and Schwartz, we introduce in
Chapter 5 several notions of vector valued ultradifferentiable function and
we prove that every weakly non-quasianalytic ultradifferentiable function
with values in a Fréchet space E is topologically (or strongly) ultradiffer-
entiable if and only if the space E satisfies the topological invariant (DN) of
Vogt. Thus, we solve a problem posed by Kriegl and Michor in a meeting
celebrated in Paderborn (Germany) in November 2008.



Introduction and motivation

The aim of this thesis is to investigate some topics related to non quasi-
analytic classes. This research is concerned with the theory of functional
analysis and more particularly, with the area of Fréchet spaces and its ap-
plications to linear partial differential operators. The main purpose of this
dissertation is to present some results on:

Spaces defined in terms of the successive iterates of a differential
operator

Fréchet spaces invariant under differential operators

Vector valued functions

in the setting of non quasianalytic classes.
The study of several non quasianalytic classes of ultradifferentiable

functions, their topological duals (ultradistributions) and convolution op-
erators and linear partial differential operators between these classes has
been a very active area of research since the last century. In 1908 Holm-
gren, when studying regularity properties of solutions of the homoge-
neous heat equation, introduced certain non quasi analytic classes. More
general classes, the so called Gevrey classes, were introduced in 1918 by
Gevrey [30]. In the 1960’s Roumieu extended the Schwartz’s theory of dis-
tributions using non quasianalytic classes of ultradifferentiable functions
as test spaces. Non quasianalytic classes of ultradifferentiable functions
are intermediate classes between real analytic functions and the class of all
C∞-functions containing non trivial elements with compact support. There
are essentially two ways to introduce these classes: the theory of Carle-
man and Komatsu, in which one looks at the growth of the derivatives on
compact sets (see the paper by Komatsu [38] published in 1973), and the
theory developed by Björck [3] in 1966 following the ideas previously an-
nounced by Beurling in 1961, in which one pays attention to the growth
of the Fourier transform of test functions. The point of view of Braun,
Meise and Taylor [22] permits a unified treatment of both theories: it is
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strictly broader than Bjork’s theory and contains the most relevant cases
of Komatsu’s theory, in particular, the Gevrey classes. In general, classes
defined in one way cannot be defined in another way; see the article of
Bonet, Meise and Melikhov [17] for a complete study of the comparison
of these two approaches. The theorem of Denjoy-Carleman characterizes
non quasianalytic classes versus the quasianalytic case (classes without
functions with compact support) in the sense of Carleman and Komatsu.

The idea of Beurling and Björk is the following. Let ϕ be a continuous
function with compact support. The function ϕ belongs to D(RN) if and
only if the function

ϕ̂(x) exp {k log(1 + |x|)}

is integrable for all k ∈ N0. In Beurling-Björk’s theory the function ζ 7→
log(1 + |ζ|) is replaced by a subadditive weight function ω which is big-
ger than ζ 7→ log(1 + |ζ|) in some sense. In this way, the new test space
defined by ω is included in D(RN) and hence its dual (ultradistributions)
contains the space of Schwartz distributions. In 1990, Braun, Meise and
Taylor replace the subadditivity of the weight by a weaker condition. More
precisely, an increasing and continuous function ω : [0, ∞[→ [0, ∞[ is said
to be a weight function if is satisfies the following conditions

(α)∃K ≥ 1 : ω(2t) ≤ K(1 + ω(t)), (β)
∫ ∞

1

ω(t)
t2 dt < ∞,

(γ) lim
t→∞

log(1 + t)
ω(t)

= 0, (δ) ϕ : t 7→ ω(et) is convex.

Let ω be a weight function and let Ω be a non empty open subset of
RN . The corresponding test spaces are defined as

D(ω)(Ω) :=
{

f ∈ D(Ω) :
∫

RN
| f̂ (t)|ekω(t)dt < ∞ for all k > 0

}
,

and

D{ω}(Ω) :=
{

f ∈ D(Ω) :
∫

RN
| f̂ (t)|eεω(t)dt < ∞ for some ε > 0

}
,

and they are called test spaces of Beurling type and Roumieu type, respec-
tively. Condition (β) is called non quasianalytic condition and guarantees
that D(ω)(Ω) and D{ω}(Ω) are non trivial. Condition (δ) allows to de-
scribe the test spaces by controlling the growth of the derivatives with the
Young conjugate as follows,

D(ω)(Ω) :=
{

f ∈ D(Ω) : ∀k ∈N,
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sup
x∈Ω

sup
α∈NN

0

∣∣∣ f (α)(x)
∣∣∣ exp

(
−kϕ∗

(
|α|
k

))
< ∞

}
and

D{ω}(Ω) :=
{

f ∈ D(Ω) : ∃k ∈N,

sup
x∈Ω

sup
α∈NN

0

∣∣∣ f (α)(x)
∣∣∣ exp

(
−1

k
ϕ∗ (|α|k)

)
< ∞

}
,

where ϕ∗ is the Young conjugate of the convex function ϕ. These test
spaces induce non quasianalytic classes of ultradifferentiable functions
E(ω)(Ω) (Beurling) and E{ω}(Ω) (Roumieu) in a similar way as C∞(Ω) is
obtained from D(Ω).

Given 0 < d < 1, the Gevrey class with exponent s = 1
d > 1 is denoted

by Gs(Ω) and it is defined as the space of all smooth functions f ∈ C∞(Ω)
such that for each compact subset K ⊂⊂ Ω there is a constant C > 0
satisfying for each multiindex α ∈NN

0 the following estimate

sup
x∈K
| f (α)(x)| ≤ C|α|+1(α!)s.

Note that for s = 1, the last estimate characterizes the real analytic func-
tions. If ω(t) = td, 0 < d < 1, the space of ultradifferentiable functions
of Roumieu type E{ω}(Ω) coincides with the classical Gevrey class of ex-
ponent s = 1

d > 1. Gevrey classes play an important role in the theory
of partial differential operators. It is well known that the heat operator in
RN , N ≥ 2,

L :=
∂

∂xN
−

N−1

∑
j=1

∂2

∂x2
j
,

has a fundamental solution which is smooth in RN \ {0} but not real ana-
lytic in xN = 0. However, this fundamental solution belongs to the Gevrey
class when Ω = RN \ {0} and 0 < d ≤ 1/2. Thus, it is natural to consider
intermediate classes between C∞(Ω) and the real analytic functions (and
their dual spaces) and operators between them.

In this work we consider non quasi analytic classes in the sense of
Braun, Meise and Taylor. This point of view and its applications to par-
tial differential operators has received much attention in recent years in
the following directions: (1) surjectivity of the operator, i.e., solvability of
the underlying equation, (2) existence of a continuous and linear solution
operator, (3) study of the range of the operator in case it is not surjective,
(4) structure of the kernel of the operator and regularity of the solutions
and (5) parameter dependence. We refer [13], [14], [15], [29], [53] and the
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recent paper [11]. The first two volumes of Hörmander [33] constitute a
basic reference in these topics.

In the first chapter non quasi analytic classes in the sense of Braun,
Meise and Taylor are introduced. We give some notation and background
which will be necessary in the sequel.

Classes of C∞-functions defined in terms of the successive iterates of a
partial differential operator appeared in 1960, when Komatsu [37], using
tools introduced by Hörmander [32], characterized when a smooth func-
tion f ∈ C∞(Ω) in an open subset Ω ⊂ RN is real analytic in terms of the
successive iterates of an elliptic partial differential operator P(D). In par-
ticular, given an elliptic differential operator P(D) of order m, a function
f ∈ C∞(Ω) is real analytic if and only if for each compact subset K ⊂⊂ Ω
there exists a constant C > 0 such that for each j ∈N0

‖Pj(D) f ‖2,K ≤ Cj+1(j!)m,

where Pj(D) is the j-th iterate of P(D), i.e., Pj(D) = P(D) ◦ · · · ◦︸ ︷︷ ︸
j

P(D)

and ‖ · ‖2,K denotes the L2-norm on the compact K.
Later, Kotake and Narasimhan gave this result using elliptic operators

with analytic coefficients. See [40, Theorem 1].
In 1973, Newberger and Zielezny [57] treated this problem in the set-

ting of the Gevrey classes: let Gs(Ω) be the Gevrey class of exponent s > 1
and let Gs

P(Ω) be the class of smooth functions in Ω such that for each
K ⊂⊂ Ω there exists a constant C > 0 such that ∀j ∈N0,

‖Pj(D) f ‖2,K ≤ Cj+1(j!)s,

then
Gs(Ω) = Gms

P (Ω)

whenever P is an elliptic polynomial with degree m.
Moreover, in case P and Q are hypoelliptic polynomials, it is proved

the equivalence between the inequality |Q(ξ)|2 ≤ C(1 + |P(ξ)|2)h, ∀ξ ∈
RN and the inclusion Gs

P(Ω) ⊂ Gsh
Q (Ω) for s large enough.

Classes Gs
P(Ω) are called generalized Gevrey classes. Métivier [55]

proved the converse of the result by Newberger and Zielezny, that is, the
equality Gs(Ω) = Gms

P (Ω) implies the ellipticity of P.
This research is continued by several authors like Bolley, Camus, Rodino

[4, 6] and Zanghirati [65, 66, 67, 68]. We also mention the recent contri-
butions by Bouzar and Chaili [18], Calvo and Hakobyan [23] and Calvo
and Rodino [24] where these authors characterize certain Gelfand-Shilov
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spaces in terms of the iterates of a globally elliptic operator P with poly-
nomial coefficients. Langenbruch utilized generalized Gevrey classes in
connection with different problems, like boundary values of zero solu-
tions of hypoelliptic differential operators [45, 46], diametral dimension of
solution spaces [47] and isomorphic classification [48].

Microlocal versions of the problem of iterates have been given by Bol-
ley, Camus and Mattera [5], Zanghirati [68], Bouzar and Chaili [20] in 2006
and others.

The problem of iterates consists in giving conditions on P in order to
guarantee the equality Gd(Ω) = Gmd

P (Ω) or more general in characterizing
the functions in a given class of functions in terms of the behavior of the
iterates of a fixed differential operator. See [18], [55], [37], [57] and also
[19], [24], [40] and [67].

Let P be a linear partial differential operator with constant coefficients.
In the second chapter, we introduce classes of smooth functions EP,(ω)(Ω)
and EP,{ω}(Ω) of Beurling and Romieu type involving the successive iter-
ates of the operator P, that is, satisfying for each j ∈N0 the following type
estimates

‖Pj(D) f ‖2,K ≤ C exp
(
−λϕ∗(

j
λ

)
)

,

where K is a compact subset in Ω and λ a positive number. We call EP,(ω)(Ω)
and EP,{ω}(Ω) generalized non quasianalytic classes. The completeness of
these spaces is characterized in terms of the hypoellipticity of P. For this
class of polynomials the nuclearity of EP,(ω)(Ω) and EP,{ω}(Ω) is proved.
After that, we establish a Paley-Wiener type theorem for EP,(ω)(Ω) and
EP,{ω}(Ω). As a consequence, we show that the test functions of EP,(ω)(Ω)
and EP,{ω}(Ω) are nuclear spaces and give a sufficient condition to ensure
that these test functions are an algebra.

Chapter 3 is devoted to extend results of Komatsu [37] and Newberger-
Zielezny [57] to the ultradifferentiable setting. Moreover, we treat the
problem of iterates on non quasianalytic classes. In fact, for weights ω

satisfying a certain growth condition, we show that the non quasianalytic
class of ultradifferentiable functions E(ω)(Ω) (or E{ω}(Ω)) coincides with
a generalized non quasianalytic class defined by the polinomial P if and
only if P is elliptic, thus extending a result by Métivier [55]. If the weight
function is a power of the logarithm, we show that the equality between
the corresponding class of ultradifferentiable functions and the general-
ized non quasianalytic class defined by P is characterized by the hypoel-
lipticity of P, thus showing that the growth condition above is needed to
get the ellipticity of P.
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In 2000, Langenbruch and Voigt proved the following result: a Fréchet
space of distributions which is stable under differential operators is con-
tinuously included in C∞. These authors proved that in order to guar-
antee this continuous inclusion it is enough to assume that the Fréchet
space is stable under a single hypoelliptic differential operator. In Chap-
ter 4 we give extensions of this result to the ultradifferentiable setting us-
ing strongly (ω)-hypoelliptic operators. We also show the connections of
this topic with the problem of iterates of differential operators. For in-
stance, we introduce the notion of Fréchet space (ω, P(D))-stable in or-
der to prove that a Fréchet space of ultradistributions invariant under
some class of hypoelliptic, semi-elliptic or elliptic differential operators is
formed by ultradifferentiable functions. The notion of (ω, P(D))-stability
involves an equicontinuity condition on the successive iterates of P(D).

Vector valued distributions and vector valued ultradifferentiable func-
tions also have received much attention in recent papers. This research
began in 1957 with the work by Schwartz [60, 61]. Komatsu studied in
1982 [39] classes of ultradifferentiable functions or ultradistributions with
values in a sequentially complete topological vector space, thus extending
the previous work of Schwartz.

In 1990, Kriegl and Michor introduced several notions of real analytic
curves in a locally convex space E, i.e, vector valued maps f : R → E
which are real analytic (see [42]). This research was motivated by applica-
tions to differential and analytic manifolds; see [43]. Real analytic curves
with values in Fréchet or (LB)-spaces were studied by Bonet and Doman-
ski in several papers since 1998 [9, 10, 12]. In particular, these authors clar-
ified the relation between various notions of real analyticity introduced by
Kriegl and Michor [9]. Their main tool is the modern theory of Fréchet and
LB-spaces. Moreover, Bonet and Domanski have applied their results to
investigate surjective linear partial differential operators between spaces
of vector valued real analytic functions and parameter dependence of the
solutions of these operators [9, 10, 11, 12].

Kriegl, Michor and Rainer [44] have studied recently non-quasianalytic
curves f : R → E with values in a locally convex space E in the setting of
non-quasianalytic classes of Denjoy-Carleman type.

Let ω be a weight function in the sense of Brau, Meise and Taylor. In
the last chapter, vector valued ω-ultradifferentiable functions f : Ω → E
with values in a locally convex space E are considered. As in the cases of
real analytic or non-quasianalytic curves treated by Kriegl, Michor and
Rainer, three possible notions are given. Solving a problem posed by
Kriegl and Michor in a meeting celebrated in Paderborn (Germany) in
November 2008, it is proved that every weakly non-quasianalytic ultra-
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differentiable function with values in a Fréchet space E is topologically (or
strongly) ultradifferentiable if and only if the space E satisfies the topo-
logical invariant (DN) of Vogt. We also treat the case that E is a complete
LB-space.





Chapter 1

Preliminaries:
non-quasianalytic classes

In this chapter, non quasianalytic classes in the sense of Braun, Meise
and Taylor are introduced. We establish the definitions and the funda-
mental properties that we shall need through this thesis. We follow [22].

Definition 1.0.1. A non-quasi-analytic weight f unction is an increasing
continuous function ω : [0, ∞[→ [0, ∞[ with the following properties:

(α) there exists L ≥ 0 with ω(2t) ≤ L(ω(t) + 1) for all t ≥ 0,

(β)
∫ ∞

1

ω(t)
t2 dt < ∞,

(γ) log(t) = o(ω(t)) as t tends to ∞, that is, lim
t→∞

log(t)
ω(t)

= 0.

(δ) ϕω : t→ ω(et) is convex.

Normally, we will denote ϕω simply by ϕ.

For a weight function ω we define ω : CN → [0, +∞[ by ω(z) := ω(|z|)
and again we denote this function by ω.

The condition (β) is called non-quasianalytic condition and it implies
ω(t) = o(t). Moreover, this condition implies the existence of functions
with compact support in the class of ultradifferentiable functions that we
will define later.

1
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Definition 1.0.2. The Young conjugate ϕ∗ : [0, ∞[→ R of an increasing

and convex function ϕ with ϕ(0) = 0 and lim
x→∞

x
ϕ(x)

= 0 is given by

ϕ∗(s) := sup{st− ϕ(t), t ≥ 0}.

Given a weight function ω, there exists another weight function σ such
that σ(t) = ω(t) for t > 0 large enough and σ(t) = 0 if t ∈ [0, 1]. Therefore,
there is no loss of generality to assume that ω vanishes on [0, 1]. Then ϕ∗

has only non-negative values, it is convex and ϕ∗(t)/t is increasing and
tends to ∞ as t→ ∞ and ϕ∗∗ = ϕ.

Lemma 1.0.3. Given ϕ as above, by condition (α) of weight function, there exists
L ≥ 0 such that

ϕ(x + 1) ≤ L(1 + ϕ(x))

for all x ∈ [0, ∞[. Then, there exists y0 > 0 such that

ϕ∗(y)− y ≥ Lϕ∗(
y
L
)− L

for all y ≥ y0.

Lemma 1.0.4. Given λ > 0 there exists a constant C > 0 (depending on λ) such
that

exp
(

2λϕ∗(
x + 1

2λ
)
)
≤ C exp

(
λϕ∗(

x
λ

)
)
∀x > 0.

Proof. From the convexity of ϕ∗ we obtain

ϕ∗(
x

2λ
+

1
2λ

) ≤ 1
2

ϕ∗(
x
λ

) +
1
2

ϕ∗(
1
λ

).

The conclusion follows with C = exp
(
λϕ∗( 1

λ )
)
.

Example 1.0.5. The following functions are, after a change in some inter-
val [0, M], examples of weight functions:
(i) ω(t) = td for 0 < d < 1.
(ii) ω(t) = (log(1 + t))s, s > 1.
(iii) ω(t) = t(log(e + t))−β, β > 1.
(iv) ω(t) = exp(β(log(1 + t))α), 0 < α < 1.

Let N0 = N ∪ {0} be the set of non negative integers. Then, let us
denote by NN

0 the set of N−tuples. For each α = (α1, . . . , αN) ∈ NN
0 we

write
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f (α) = (∂/∂x1)α1 · · · (∂/∂xN)αN f ,

and using the notation Dxj = −i ∂/∂xj, where i is the imaginary unit, we
write

Dα f = Dα1
x1
· · ·DαN

xN
f .

In what follows, Ω denotes an arbitrary subset of RN and K ⊂⊂ Ω
means that K is a compact subset in Ω.

Definition 1.0.6. Let ω be a weight function.

(a) For a compact subset K in RN which coincides with the closure of
its interior and λ > 0, define the seminorm

pK,λ( f ) := sup
x∈K

sup
α∈NN

0

∣∣∣ f (α)(x)
∣∣∣ exp

(
−λϕ∗

(
|α|
λ

))
,

and set
Eλ

ω(K) := { f ∈ C∞(K) : pK,λ( f ) < ∞},

which is a Banach space endowed with the pK,λ(·)-topology.

(b) For an open subset Ω in RN , the class of ω-ultradi f f erentiable
f unctions o f Beurling type is defined by:

E(ω)(Ω) := { f ∈ C∞(Ω) : pK,λ( f ) < ∞, for every K ⊂⊂ Ω and every λ > 0}.

The topology of this space is

E(ω)(Ω) = proj
←−

K⊂⊂Ω

proj
←−
λ>0

Eλ
ω(K).

This topology is also described by the fundamental system of seminorms
given by {pKn,n}n∈N where {Kn}n∈N is a compact exhaustion of Ω. One
can show that E(ω)(Ω) is a Fréchet space, that is, a complete and metriz-
able locally convex space. Moreover, E(ω)(Ω) is reflexive and nuclear. We
denote by E(ω)(Ω)′β the strong dual of E(ω)(Ω).

(c) For a compact subset K in RN which coincides with the closure of
its interior and λ > 0, set

E{ω}(K) = { f ∈ C∞(K) : there exists m ∈N such that pK, 1
m
( f ) < ∞},
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This space is the strong dual of a nuclear Fréchet space (i.e, a (DFN)-space)
if it is endowed with its natural inductive limit topology, that is,

E{ω}(K) = ind−→
m∈N

E
1
m

ω (K).

(d) For an open subset Ω in RN , the class of ω-ultradi f f erentiable
f unctions o f Roumieu type is defined by:

E{ω}(Ω) := { f ∈ C∞(Ω) : ∀K ⊂⊂ Ω ∃λ > 0 such that pK,λ( f ) < ∞}.

Its topology is the following

E{ω}(Ω) = proj
←−

K⊂⊂Ω

E{ω}(K),

that is, it is endowed with the topology of the projective limit of the spaces
E{ω}(K) when K runs the compact subsets of Ω. This is a complete PLS-
space, that is, a complete space which is a projective limit of LB-spaces
(i.e., a countable inductive limit of Banach spaces) with compact linking
maps in the (LB)-steps. Moreover, E{ω}(Ω) is also a nuclear and reflexive
locally convex space. In particular, E{ω}(Ω) is an ultrabornological (hence
barrelled and bornological) space. We denote by E{ω}(Ω)′β the strong dual
of E{ω}(Ω).

The elements of E(ω)(Ω) (resp. E{ω}(Ω)) are called ultradifferentiable
functions of Beurling type (resp. Roumieu type) in Ω.

In the case that ω(t) := td (0 < d < 1), the corresponding Roumieu
class is the Gevrey class with exponent 1/d. In the limit case d = 1, not
included in our setting, the corresponding Roumieu class E{ω}(Ω) is the
space of real analytic functions on Ω whereas the Beurling class E(ω)(RN)
gives the entire functions.

If a statement holds in the Beurling and the Roumieu case then we will
use the notation E∗(Ω). It means that in all cases * can be replaced either
by (ω) or {ω}.

Definition 1.0.7. Two weight functions ω and σ are said to be equivalent
if ω = O(σ) and σ = O(ω).
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Remark 1.0.8. Let us consider ω and σ two equivalent weight functions
and let us denote ϕ(x) = ω(ex) and ψ(x) = σ(ex). If ω ≤ σ ≤ Cω for
some constant C > 0, then

Cϕ∗(y/C) ≤ ψ∗(y) ≤ ϕ∗(y), y ≥ 0.

As a consequence ω and σ define the same class of ultradifferentiable func-
tions.

The corresponding classes of test functions are defined as follows:

Definition 1.0.9. For a compact set K in RN , define

D∗(K) := { f ∈ E∗(RN) : supp f ⊂ K},

endowed with the induced topology. Recall that the condition (β) guaran-
tees that D∗(K) 6= {0}. In fact, in [22, Remark 3.2 (1) and Corollary 3.6 (1)]
it is shown that D∗(K) 6= {0}. D(ω)(K) is a Fréchet space while D{ω}(K)
is the strong dual of a nuclear Fréchet space (i.e., it is a (DFN)-space). For
an open set Ω in RN , define

D∗(Ω) := ind−→
K⊂⊂Ω

D∗(K).

According to [22, Proposition 4.7], the following inclusion

D∗(Ω) ↪→ E∗(Ω)

is continuous with dense range.
Next lemma is well-known, but it is not easy to find a precise reference.

Lemma 1.0.10. The spaces E∗(Ω) and D∗(Ω) can be described with L2-norms,
i.e., we can replace pK,λ by the seminorms

qK,λ( f ) := sup
α∈NN

0

∥∥∥ f (α)
∥∥∥

2,K
exp

(
−λϕ∗

(
|α|
λ

))
where

‖ f ‖2,K = (
∫

K
| f |2) 1

2 .

Proof. We only need to prove that for each compact subset K ⊂⊂ Ω and
λ > 0, there is other compact subset L ⊂⊂ Ω, µ > 0 and a constant D > 0
(depending only on K and λ) such that for all f ∈ E∗(Ω),

pK,λ( f ) ≤ DqL,µ( f ).
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We fix K ⊂⊂ Ω and λ > 0. We take L ⊂⊂ Ω such that K ⊂
◦
L ⊂ Ω,

where
◦
L denotes the interior set of L. By the Sobolev Lemma, there exists

a constant C > 0 such that

sup
x∈K
| f (x)| ≤ C sup

|β|≤N+1

∫
L
| f (β)| ∀ f ∈ C∞(Ω).

Then,

sup
x∈K
| f (α)(x)| ≤ C sup

|β|≤N+1

∫
L
| f (α+β)| =

= C sup
|β|≤N+1

∫
L
| f (α+β)| exp

(
−λϕ∗(

|α|+ |β|
λ

)
)

exp
(

λϕ∗(
|α|+ |β|

λ
)
)
≤

≤ C2qL,λ( f ) exp
(

λϕ∗(
|α|+ N + 1

λ
)
)
≤ C3qL,λ( f ) exp

(
λ

2N+1 ϕ∗(
2N+1

λ
|α|)

)
.

where we have applied that ϕ∗ is increasing, Lemma 1.0.4 and Hölder’s
inequality.
As a consequence,

pK, λ
2N+1

( f ) ≤ C3qL,λ( f ).

So, given λ > 0 we take µ = 2N+1λ.

The elements of the topological dual D(ω)(Ω)′ (resp. D{ω}(Ω)′) are
called ultradistributions of Beurling type (resp. Roumieu type). Since
D(ω)(Ω) ⊂ D{ω}(Ω) is a continuous and dense inclusion, D{ω}(Ω)′ is
a subspace of D(ω)(Ω)′.

Let T ∈ D∗(Ω)′. The support of T is defined as

supp∗ T :=
{

x ∈ Ω | for each neighborhood U of x

there is ϕ ∈ D∗(U) such that < T, ϕ > 6= 0
}

.

If T ∈ D′{ω}(Ω) then supp(ω) T = supp{ω} T.
Moreover, if ω = o(σ), then D{σ}(Ω) ⊂ D(ω)(Ω) with continuous

and dense inclusion ([22, Proposition 3.9]). As a consequence, D(ω)(Ω)′ ⊂
D{σ}(Ω)′. If T ∈ D′{ω}(Ω),

supp(ω) T = supp{ω} T = supp{σ} T

is fulfilled.
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An ultradistribution µ ∈ D∗(Ω)′ can be continuously extended to
E∗(Ω)′ if, and only if, µ has compact support in Ω. The space of ultra-
distributions, having compact support, of Beurling type (resp. Roumieu
type) is denoted by E(ω)(Ω)′ (resp. by E{ω}(Ω)′).

Now, we introduce the convolution of ultradistributions:

Definition 1.0.11. Let µ ∈ E∗(RN)′ be given and suppose µ 6= 0. Define:

Sµ : D∗(RN)′ −→ D∗(RN)′, Sµ(E) := µ ∗ E,

where < µ ∗ E, ϕ >=< E, µ̌ ∗ ϕ > and µ̌ ∗ ϕ : x → µ(ϕ(x + ·)), x ∈ RN .
Then, Sµ is a continuous and linear operator.

If E ∈ E∗(RN), then µ ∗ E ∈ E∗(RN). Let us denote by Tµ : E∗(RN) −→
E∗(RN) the restriction of Sµ to E∗(RN).

The following proposition is used in the next chapter. See [22, Propo-
sition 6.4].

Proposition 1.0.12. D∗(RN) ∗D∗(RN)′ is a subset of E∗(RN). For f ∈ D∗(RN)
and E ∈ D∗(RN)′ we have f ∗ E(x) = 〈Ey, f (x− y)〉.

Definition 1.0.13. Let f ∈ D∗(Ω)′. The singular support of f with respect
to ∗, denoted by sing∗supp f , is the complementary set of the biggest open
set A in Ω where f ∈ E∗(A).

Now, we recall Paley-Wiener type theorems in the ultradifferentiable
setting: the Fourier-Laplace transform establishes an isomorphism between
D(ω)(Ω) and certain weighted spaces of holomorphic functions. E(ω)(RN)′

also may be interpreted as a space of holomorphic functions.

Definition 1.0.14. The Fourier-Laplace transform of a function ϕ ∈ D(Ω)
is defined as ϕ̂ : CN → C, where

ϕ̂(z) :=
∫

RN
e−ix·z ϕ(x)dx, z ∈ CN ,

and x · z = x1 · z1 + · · ·+ xN · zN .

The Fourier-Laplace transform of ϕ is an entire function. In fact, it is
the unique entire function on CN whose restriction to RN coincides with
the Fourier transform of ϕ.

Let K ⊂ RN be a convex compact subset. Then,

HK(x) := sup
y∈K

x · y, x ∈ RN ,
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is called supporting function of K.
A Paley-Wiener type theorem in the classic case is proved in [33, I,Theorem

7.3.1]. With respect to test functions on non quasi analytic classes, the fol-
lowing theorem holds.

Theorem 1.0.15. Let K ⊂ RN be a convex compact subset. An entire function
h ∈ H(CN) is the Fourier-Laplace transform of ϕ ∈ D(ω)(Ω) with supp ϕ ⊂ K
if and only if for any n ∈N there exists a positive constant Cn > 0 such that∣∣h(z)

∣∣ ≤ Cn exp
(

HK(|Imz|)− nω(z)
)
, z ∈ CN .

As a consequence, the topology of the spaceD(ω)(K) introduced in the
definition 1.0.9 is given by the fundamental system of seminorms

‖ f ‖m :=
∫
| f̂ (ξ)|em ω(ξ)dξ, m ∈N.

Definition 1.0.16. (1) For each z ∈ CN let us denote

vz(x) = exp(−ix · z), x ∈ RN .

(2) We define the Fourier-Laplace transform µ̂ of µ ∈ E(ω)(RN)′ as

µ̂(z) =< µ, vz > .

Theorem 1.0.17. [Paley-Wiener-Schwartz] Let K ⊂ RN be a convex compact
subset. For any entire function f and any weight function ω, the following state-
ments are equivalent:

(1) There exists an ultradistribution µ ∈ E(ω)(RN)′ with supp µ ⊂ K such
that µ̂ = f .

(2) There exists λ > 0 such that for all ε > 0 there exists C > 0 in such a way

| f (z)| ≤ C exp(HK(Imz) + ε|Imz|+ λω(Rez)), z ∈ CN ,

is fulfilled.

(3) There exists λ > 0 such that for all ε > 0 there exists C > 0 in such a way∫
RN
| f (x + iy)|e−λω(x)dx ≤ CeHK(y)+ε|y|, y ∈ RN ,

is fulfilled.

In this thesis, we consider non quasi analytic classes of ultradifferen-
tiable functions in the sense of Braun, Meise and Taylor but it is convenient
to have in mind classes of ultradifferentiable functions in the sense of Car-
leman and Komatsu [38]. These classes are defined by weight sequences.



9

Definition 1.0.18. A sequence of positive numbers (Mp)p∈N0 is called weight
sequence if it satisfies the following conditions:

(M0) There exists c > 0 such that (c(p + 1))p ≤ Mp, p ∈N0.

(M1) M2
p ≤ Mp−1Mp+1 for all p ∈N0 and M0 = 1.

(M2)′ There are A, H > 1 such that Mp+1 ≤ AHp Mp, p ∈N0.

A weight sequence is called non quasianalytic if it satisfies

∞

∑
p=1

Mp−1

Mp
< ∞,

otherwise it is called quasianalytic.

Definition 1.0.19. Let (Mp)p∈N0 be a weight sequence and let Ω be an
open subset in RN . For each compact subset K in Ω and each positive
number h > 0, consider the seminorm

pK,h( f ) = sup
x∈K

sup
α∈NN

0

| f (α)(x)|
h|α|Mα

.

The Carlemann class E(Mp)(Ω) of Beurling type is defined as

E(Mp)(Ω) := { f ∈ C∞(Ω) : for every K ⊂⊂ Ω and each
h > 0, pK,h( f ) < ∞},

and the Carlemann class of Roumieu type

E{Mp}(Ω) := { f ∈ C∞(Ω) : for every K ⊂⊂ Ω there exists
h > 0 such that pK,h( f ) < ∞}.

Bonet, Meise and Melikhov characterize in [17] the weight sequences
such that the corresponding class of ultradifferentiable functions coincide
with a class of ultradifferentiable functions in the sense of Braun, Meise
and Taylor. They also characterize those weight functions ω for which
there exists a weight sequence (Mp)p∈N0 such that the classes defined by
ω and by (Mp)p∈N0 , respectively, coincide.





Chapter 2

Generalized non-quasianalytic
classes

Let P be a linear partial differential operator with constant coefficients.
In this chapter, we introduce classes of smooth functions EP,(ω)(Ω) and
EP,{ω}(Ω) of Beurling and Romieu type involving the successive iterates
of the operator P. This classes have nice topological properties when the
polynomial P is hypoelliptic. In Theorem 2.2.5 we prove that EP,(ω)(Ω)
and EP,{ω}(Ω) are complete if and only if P is hypoelliptic. Moreover,
if P is hypoelliptic we prove that EP,(ω)(Ω) and EP,{ω}(Ω) are nuclear
and a Paley-Wiener type theorem for these generalized non quasi ana-
lytic classes is established. These are the contents of Theorem 2.1.11 and
Theorem 2.3.10.

2.1. The class EP,ω(Ω)

We consider smooth functions in an open set Ω such that ∃C > 0 veri-
fying for each j ∈N0

‖Pj(D) f ‖2,K ≤ C exp
(

λϕ∗(
j
λ

)
)

,

where K is a compact subset in Ω and Pj(D) is the j-th iterate of the partial
differential operator P(D), i.e,

Pj(D) = P(D) ◦ · · · ◦︸ ︷︷ ︸
j

P(D).

If j = 0, then
P0(D) f = f .

11
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Given a polynomial P ∈ C[z1, . . . , zN ] with degree m,

P(z) = ∑
|α|≤m

aαzα,

the partial differential operator P(D) is the following:

P(D) = ∑
|α|≤m

aαDα, where Dα =
1
i

∂α.

The spaces of ultradifferentiable functions with respect to the succes-
sive iterates of P are defined as follows:

Let ω be a weight function. Given a polynomial P, an open set Ω of
RN , a compact subset K ⊂⊂ Ω and λ > 0, we define the seminorm

‖ f ‖K,λ := sup
j∈N0

‖Pj(D) f ‖2,K exp
(
−λϕ∗(

j
λ

)
)

and set
Eλ

P,ω(K) = { f ∈ C∞(K) : ‖ f ‖K,λ < +∞}.

Eλ
P,ω(K) is a Banach space endowed with the ‖ · ‖K,λ-norm.

The space of ultradifferentiable functions of P of Beurling type with respect
to the iterates is:

EP,(ω)(Ω) = { f ∈ C∞(Ω) : ‖ f ‖K,λ < +∞ for each K ⊂⊂ Ω and λ > 0}.

It is endowed with the topology given by

EP,(ω)(Ω) := proj
←−

K⊂⊂Ω

proj
←−
λ>0

Eλ
P,ω(K).

If {Kn}n∈N is a compact exhaustion of Ω we have

EP,(ω)(Ω) = proj
←−
n∈N

proj
←−
k∈N

E k
P,ω(Kn) = proj

←−
n∈N

En
P,ω(Kn).

This metrizable locally convex topology is defined by the fundamental
system of seminorms {‖ · ‖Kn,n}n∈N.

The space of ultradifferentiable functions of Roumieu type with respect to
the iterates of P is defined by:

EP,{ω}(Ω) = { f ∈ C∞(Ω) : ∀K ⊂⊂ Ω ∃λ > 0 such that ‖ f ‖K,λ < +∞}.
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Its topology is defined by

EP,{ω}(Ω) := proj
←−

K⊂⊂Ω

ind−→
λ>0

Eλ
P,ω(K).

As in the Gevrey case, we call theses classes generalized non quasi ana-
lytic classes. Inspired by previous papers we have defined the generalized
non quasi analytic classes in terms of L2-norms. Now we show in case
that the polynomial P is hypoelliptic, we can replace the L2-norms by Lp-
norms where 1 ≤ p ≤ ∞. Previously, we need some preliminaries on
Hörmander’s Bp,k spaces. We follow the chapters X and XI of [33, II].

Definition 2.1.1. A positive function k defined in RN is said to be a tem-
perate weight function if there exist positive constants C > 0 and c > 0
such that

k(ξ + µ) ≤ (1 + C|ξ|)ck(µ), ξ, µ ∈ RN .

Let P be a polynomial. Let us denote P(α) = ∂(α)P. The basic example
of temperate weight function is the function P̃ defined as

P̃(ξ) =

(
∑
α

|P(α)(ξ)|2
) 1

2

, ξ ∈ RN .

Note that the sum is finite.

Definition 2.1.2. Let k be a temperate weight function. Given 1 ≤ p ≤ ∞,
we denote by Bp,k the set of all tempered distributions u ∈ S(RN)′ such
that the Fourier transform û is a function and the norm

‖u‖p,k :=
(

1
(2π)N

∫
RN
|k(ξ)û(ξ)|pdξ

) 1
p

is finite.

When p = ∞, the norm ‖u‖p,k shall be interpreted as the supremum of
|k(ξ)û(ξ)| in RN .

The space Bp,k is a Banach space with the norm ‖ · ‖p,k.

Example 2.1.3. In case the function k is given by P̃ (for some polynomial
P) and p = 2, according to Parseval’s formula we have

‖u‖2,P̃ =
(
∑
α

‖P(α)(D)u‖2
2,RN

) 1
2 .

If k(ξ) = (1 + |ξ|2) s
2 for some real number s and p = 2 we recover the well

known Sobolev spacesHs.
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Let Ω be an open subset in RN . We denote Bloc
p,k(Ω) the space of those

distributions u ∈ D(Ω)′ such that for all φ ∈ D(Ω), φu ∈ Bp,k. Let
{Kn}n∈N be a compact exhaustion of Ω and take a sequence {φn}n∈N in
D(Ω) such that φn = 1 on Kn and supp φn ⊂ Kn+1. Then, Bloc

p,k(Ω) is a
Fréchet space with the seminorms u→ ‖uφn‖p,k.

Take k = 1 and p = 2. Observe that Bloc
2,1(Ω) is the space of the func-

tions locally in L2(Ω), that is, L2
loc(Ω).

The following results are useful to pass results involving spacesBloc
p,k(Ω)

to statements in a classical form. See [33, II, Theorem 10.1.25 and Theorem
11.1.8].

Theorem 2.1.4. Let j ∈N0 be given. The space Bloc
p,k(Ω) is included in the space

C j(Ω) of all functions j times differentiable with continuous derivatives if, and
only if,

(1 + |ξ|)j

k(ξ)
∈ Lp′ , where

1
p

+
1
p′

= 1.

Definition 2.1.5. A polynomial P is called hypoelliptic if the associated
differential operator P(D) has the following regularity property: if u ∈
D(Ω)′ verifies that P(D)u ∈ C∞(Ω) then u ∈ C∞(Ω).

A complete study of this class of polynomials is given in the Chapter XI
of [33, II]. The following property is useful: a polynomial P is hypoelliptic
if and only if there exist positive constants c, C > 0 such that

|P(α)(ξ)|
|P(ξ)| ≤ C|ξ|−|α|c

if ξ ∈ RN and |ξ| is large enough. We refer this condition as Condition IIb
of [33, II, Theorem 11.1.3].

From now on, we will suppose that the hypoelliptic polynomials in
our results are non constant. Otherwise, the results will be trivial.

Theorem 2.1.6. Let P be a hypoelliptic polynomial and let u ∈ D(Ω)′ be given.
If P(D)u ∈ Bloc

p,k(Ω), then u ∈ Bloc
p,P̃k

(Ω).

Proposition 2.1.7. Let P be a hypoelliptic polynomial. Then,
⋂

j∈N0

Bloc
p,P̃j(Ω) =

C∞(Ω) as Fréchet spaces.

Proof. Note that
⋂

j∈N0

Bloc
p,P̃j(Ω) is a Fréchet space. In order to prove⋂

j∈N0

Bloc
p,P̃j(Ω) ⊂ C∞(Ω) we use Theorem 2.1.4. Let us denote

P̃′(ξ) =

(
∑
α 6=0
|P(α)(ξ)|2

) 1
2

.
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It follows from condition IIb of [33, II, Theorem 11.1.3] that there are c, C >

0 positive constants such that for all ξ ∈ RN ,

(1 + |ξ|)c ≤ C
P̃(ξ)
P̃′(ξ)

.

Note that P̃, P̃′ > 0. In fact, in virtue of Taylor’s Theorem we have P̃(ξ0) =
0 for some ξ0 ∈ RN (respect. P̃′(ξ0) = 0 for some ξ0 ∈ RN) if and only if
P = 0 (respect. P is constant). Then for all j ∈N0,

1
P̃(ξ)j

≤ Cj 1
P̃′(ξ)j(1 + |ξ|)cj

.

As a consequence, given m ∈N0 there is j ∈N0 such that

(1 + |ξ|)m

P̃(ξ)j
∈ Lp′ .

Therefore, given m ∈N0 there is j ∈N0 such that

Bloc
p,P̃j(Ω) ⊂ Cm(Ω).

To conclude, we apply the Closed Graph Theorem.

Let P be a polynomial and let Ω be an open subset of RN . Consider the
space

LP(Ω) = { f ∈ L1
loc(Ω) : ∀j ∈N0, Pj(D) f ∈ L1

loc(Ω)}.

Denote ||| f |||L,j := sup
0≤k≤j

‖Pk(D) f ‖1,L and endow LP(Ω) with the fun-

damental system of seminorms {||| · |||L,j}L⊂⊂Ω,j∈N0 . Then LP(Ω) is a
Fréchet space. In fact, let { fn} be a Cauchy sequence in LP(Ω). Then, for
each j ∈ N0, there is gj ∈ L1

loc(Ω) such that {Pj(D) fn} converges to gj in
L1

loc(Ω). Since P(D) is continuous on D′(Ω) it follows that gj = Pj(D)g0.
Hence, g0 ∈ LP(Ω) and { fn} converges to g0 in LP(Ω).

Lemma 2.1.8. If P is hypoelliptic, then LP(Ω) = C∞(Ω) as Fréchet spaces. As
a consequence, for each m ∈ N0 and for each K compact subset in Ω there are a
constant C > 0, a natural number j ∈ N0 and a compact subset L in Ω such
that for all f ∈ C∞(Ω),

sup
|α|≤m

sup
x∈K
| f (α)(x)| ≤ C sup

0≤k≤j
‖Pk(D) f ‖1,L. (2.1)
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Proof. Let f ∈ LP(Ω) be given and fix j ∈ N0. Note that the Fourier
Transform of a function in L1 in bounded. Then P(D)j f ∈ L1

loc(Ω) ⊂
Bloc

∞,1(Ω) and in view of Theorem 2.1.6 we have f ∈ Bloc
∞,P̃j(Ω). Hence, by

Proposition 2.1.7, f ∈ ⋂
j∈N0

Bloc
∞,P̃j(Ω) = C∞(Ω). Using the Closed Graph

Theorem it follows the inclusion LP(Ω) ↪→ C∞(Ω) is continuous.

Corollary 2.1.9. Suppose P hypoelliptic. On EP,∗(Ω) we can replace the semi-
norms

‖ f ‖K,λ = sup
j∈N0

‖Pj(D) f ‖2,K exp
(
−λϕ∗(

j
λ

)
)

,

by the seminorms

‖ f ‖p
K,λ = sup

j∈N0

‖Pj(D) f ‖p,K exp
(
−λϕ∗(

j
λ

)
)

, p ≥ 1,

and also by the seminorms

‖ f ‖∞
K,λ = sup

j∈N0

sup
x∈K
|Pj(D) f (x)| exp

(
−λϕ∗(

j
λ

)
)

.

Proof. Fix 1 ≤ p < ∞. We will prove that the fundamental systems of
seminorms given by ‖ · ‖p

K,λ is equivalent to the system of seminorms given
by ‖ · ‖∞

K,λ.
In view of the previous Lemma, for each K compact subset in Ω there

are a constant C > 0, a natural number j ∈N0 and L compact subset in Ω
such that for all f ∈ C∞(Ω),

sup
x∈K
| f (x)| ≤ C sup

0≤k≤j
‖Pk(D) f ‖1,L.

Fix l ∈N0. Applying this inequality to the function Pl(D) f we have

sup
x∈K
|Pl(D) f (x)| ≤ C sup

0≤k≤j
‖Pk+l(D) f ‖1,L,

for all l ∈N0 and for all f ∈ C∞(Ω). Now, proceeding as in Lemma 1.0.10
we conclude that for each compact subset K in Ω and λ > 0 there are L
compact subset and a positive constant C′ > 0 depending on K and λ such
that ‖ f ‖∞

K,λ ≤ C′‖ f ‖1
L,µ in view of Lemma 1.0.4. Moreover, the Hölder’s

inequality guarantees that ‖ f ‖1
K,λ ≤ C′′‖ f ‖p

K,λ for some positive constants
C′′ > 0.

Obviously, ‖ f ‖p
K,λ ≤ C′′′‖ f ‖∞

K,λ for some positive constant C′′′ > 0
holds.
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Assume that P is hypoelliptic. Inspired by Lemma 2.1.8 and Corollary
2.1.9 we study the nuclearity of the spaces EP,(ω)(Ω) and EP,{ω}(Ω).

Definition 2.1.10. A locally convex space E is said to be nuclear, if for each
absolutely convex zero neighborhood U in E there exists an absolutely
convex zero neighborhood V and a measure µ on the polar σ∗-compact
V◦, so that

‖x‖U ≤
∫

V◦
|y(x)|dµ(y), for all x ∈ E.

A projective limit of nuclear spaces is nuclear. The nuclearity is also
an hereditary property under countable inductive limits. In order to see
that an inductive limit indn Xn is nuclear it is enough to prove that for all
n there exists m > n such that the inclusion Xn ↪→ Xm is a nuclear map.
The composition of two absolutely summing maps is nuclear. Hence in
order to prove that an inductive limit is indn Xn nuclear it is enough to
prove that for all n there exists m > n such that the inclusion Xn ↪→ Xm is
absolutely summing.

Let E and F be Banach spaces. Denote by BE the unit ball of E. Re-
call that a sufficient condition in order that a linear map T : E → F be
absolutely summing is that there is a positive measure µ on B◦E such that

‖Tx‖ ≤
∫

B◦E
|y(x)|dµ(y), for all x ∈ E.

See the Chapter 28 of [54] and the books [34] and [41, II] for more details.

Theorem 2.1.11. Suppose P is hypoelliptic. Then, the spaces EP,(ω)(Ω) and
EP,{ω}(Ω) are nuclear.

Proof. Beurling case:

First, observe that Lemma 1.0.3 allows replace the seminorms

‖ f ‖p
K,λ = sup

j∈N0

‖Pj(D) f ‖p,K exp
(
−λϕ∗(

j
λ

)
)

, 1 ≤ p ≤ ∞,

by the seminorms

∑
j∈N0

‖Pj(D) f ‖p,K exp
(
−λϕ∗(

j
λ

)
)

.

In fact, this Lemma and the condition (α) of weight function give a natural
number L and y0 > 0 such that

ϕ∗(y)− y ≥ Lϕ∗(
y
L
)− L for each y ≥ y0.
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Take y = j
λ . For j large enough, the last inequality implies

exp
(
−λϕ∗(

j
λ

)
)
≤ exp (Lλ) exp (−j) exp

(
−Lλϕ∗(

j
Lλ

)
)

. (2.2)

Thus, fixed K ⊂⊂ Ω and λ > 0 there is a constant C > 0 such that for all
f ∈ EP,(ω)(Ω)

‖ f ‖p
K,λ ≤ ∑

j∈N0

‖Pj(D) f ‖p,K exp
(
−λϕ∗(

j
λ

)
)
≤ C‖ f ‖p

K,Lλ.

We consider EP,(ω)(Ω) endowed with the seminorms

∑
j∈N0

∫
K
|Pj(D) f (x)|dx exp

(
−λϕ∗(

j
λ

)
)

.

Fix λ > 0 and K compact subset. By the inequality (2.2) we have

∑
j∈N0

∫
K
|Pj(D) f (x)|dx exp

(
−λϕ∗(

j
λ

)
)
≤

C ∑
j∈N0

∫
K
|Pj(D) f (x)|dx exp

(
−Lλϕ∗(

j
Lλ

)
)

exp (−j)

for some positive constant C > 0. Define

∆j : K →
(
EP,(ω)(Ω)′, σ

(
EP,(ω)(Ω)′, EP,(ω)(Ω)

))
such that

∆j(x)[ f ] := Pj(D) f (x) exp
(
−Lλϕ∗(

j
Lλ

)
)

.

Then,
|∆j(x)[ f ]| ≤ ‖ f ‖∞

K,Lλ.

Hence, ∆j(x) ∈ EP,(ω)(Ω)′ and then ∆j is a well defined and continuous
map. Moreover ∆j(K) ⊆ V◦ where V is the absolutely convex zero neigh-
borhood defined by

V :=
{

f ∈ EP,(ω)(Ω) such that ‖ f ‖∞
K,Lλ ≤ 1

}
.

Now, consider the following map

µj : C(V◦)→ R, µj(g) := C
∫

K
g(∆j(x)) exp (−j)dx.
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Denote m(K) the Lebesgue measure of the compact K. If g : V◦ → R is a
continuous function on V◦, it is clear that

|µj(g)| ≤ C exp (−j)m(K) sup
f∈V◦
|g( f )|.

This fact implies that µj is a continuous linear map which is positive, i.e,
µj(g) ≥ 0 whenever g ≥ 0. So, µj defines a measure on (V◦, σ∗). We
consider now

µ := ∑
j∈N0

µj

which is a measure on (V◦, σ∗). Then,

∑
j∈N0

∫
K
|Pj(D) f (x)|dx exp

(
−λϕ∗(

j
λ

)
)
≤

C ∑
j∈N0

∫
K
|Pj(D) f (x)|dx exp

(
−Lλϕ∗(

j
Lλ

)
)

exp (−j) ≤

≤ C ∑
j∈N0

∫
K
|∆j(x)[ f ]|dx exp (−j) = ∑

j∈N0

∫
V◦
|y( f )|dµj(y)

=
∫

V◦
|y( f )|dµ(y).

and the nuclearity in the Beurling case follows.

Roumieu case:

To see that
EP,{ω}(Ω) := proj

←−
K⊂⊂Ω

ind−→
λ>0

Eλ
P,ω(K)

is nuclear it is enough to see that

ind−→
n
E

1
n

P,ω(K)

is nuclear for each compact subset K. We will see that the map

E
1
n

P,ω(K) ↪→ E
1

nL
P,ω(K)

is absolutely summing. E
1

nL
P,ω(K) and E

1
n

P,ω(K) are Banach spaces endowed
with the norms ‖ · ‖∞

K, 1
Ln

and ‖ · ‖∞
K, 1

n
, respectively. Note that the inequality

(2.2) applied to λ = 1
nL gives, for j large enough,

exp
(
− 1

nL
ϕ∗(Lnj)

)
≤ exp (

1
n
) exp (−j) exp

(
− 1

n
ϕ∗(nj)

)
. (2.3)
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Then, for some constant C > 0, we have

‖ f ‖∞
K, 1

Ln
≤ ∑j∈N0

‖Pj(D) f ‖p,K exp
(
− 1

Ln ϕ∗(Lnj)
)

≤ C exp ( 1
n ) ∑j∈N0

‖Pj(D) f ‖p,K exp
(
− 1

n ϕ∗(nj)
)

exp (−j).

Define

∆j : K →
(
E

1
n

P,ω(K)′, σ
(
E

1
n

P,ω(K)′, E
1
n

P,ω(K)
))

such that

∆j(x)[ f ] := Pj(D) f (x) exp
(
− 1

n
ϕ∗(nj)

)
.

Denote by U the unit ball of E
1
n

P,ω(K). Proceeding as in the Beurling case
we can define a measure on U◦ such that

‖ f ‖∞
K, 1

Ln
≤
∫

U◦
|y( f )|dµ(y).

2.2. The completeness of EP,ω(Ω)

In order to extend the results by Newberger-Zielezny [57] we need to
apply the Closed Graph Theorem and the Grothendieck’s Factorization
Theorem. So, it is important to know whether the spaces EP,∗(Ω) are com-
plete or not. In this section we show that the spaces EP,∗(Ω) are not neces-
sarily complete spaces. In fact, completeness is characterized in terms of
the hypoellipticity of the polynomial P. Moreover, in case completeness
fails, a finer topology on EP,∗(Ω) is introduced so that the space becomes
complete. This topology will be considered in Theorem 3.1.2. In spite of
the importance of the completeness when dealing with functional analytic
tools, as far as we know this is the first time that the completeness of these
spaces is discussed.

We start with an example:

Example 2.2.1. The space EP,(ω)(R2) is not complete for the polynomial
P(x, y) = x.
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Proof. Let {ρm}m∈N be a regularizing sequence on the real line and take a
function g(y) ∈ C(R) \ C∞(R). We define fm(x, y) := (ρm ∗ g)(y), m ∈ N,
a sequence of functions in R2. It is well known that fm ∈ C∞(R2) and, for
Kn = [−n, n]2,

qKn,n( fm) = ‖ ∂0

∂x0 fm(x, y)‖2,Kn exp
(
−nϕ∗(

0
n
)
)

= (2n)
1
2 ‖(ρm ∗ g)(y)‖2,[−n,n] < +∞.

Therefore, { fm}m∈N is a sequence in EP,(ω)(R2). Moreover, since for each
n ∈N we have,

qKn,n( fm − fl) ≤ 2n sup
[−n,n]

|(ρm ∗ g)(y)− (ρl ∗ g)(y)|,

and {ρm ∗ g}m∈N converges uniformly to g on the compact subsets of the
real line, it is clear that { fm}m∈N is a Cauchy sequence in EP,(ω)(R2). How-
ever, { fm}m∈N is not convergent. Otherwise, let f denote the correspond-
ing limit. Then { fm(x, y)}m∈N converges to f (x, y) for all (x, y) ∈ R2, from
where it follows that f (x, y) = g(y). This is a contradiction because g is not
a C∞ function.

The previous example shows that in order to have completeness for
the space EP,(ω)(Ω) it is necessary to obtain C∞(Ω) functions from Cauchy
sequences in EP,(ω)(Ω). According to [33, II, 11.1.5], if the solutions of
P(D)u = 0 , u ∈ Bloc

p,k(Ω), are all in C∞(Ω) then P(D) has to be hypoellip-
tic. Therefore, if P(D) is not hypoelliptic we can find u ∈ Bloc

p,k(Ω) \C∞(Ω)
such that P(D)u = 0. A suitable election of p and k (see Theorem 2.1.4 and
Proposition 2.1.7) allows us to assume that this u belonging to the kernel of
P(D) is a continuous function or even, a Cm-function. As a consequence,
we need the hypoellipticity of P in order that EP,∗(Ω) becomes complete.

Proposition 2.2.2. Let Ω be an open subset of RN . If the space EP,∗(Ω) is
complete, then P is hypoelliptic.

Proof. Proceeding by contradiction we assume that P is not hypoelliptic.
We first analyze the case that Ω = RN . Since P is not hypoelliptic, there
exists a continuous function

u ∈ C(RN) \ C∞(RN) such that P(D)u = 0.

Beurling case. We take a regularizing sequence {ρn}with suppρn = B(0, 1
n )

and we show that {u ∗ ρn} is a Cauchy sequence in EP,(ω)(RN) which is
not convergent.
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It is clear that u ∗ ρn ∈ C∞(RN) for all n ∈ N. Moreover, P(D)(u ∗
ρn) = P(D)u ∗ ρn = 0. As a consequence, Pj(D)(u ∗ ρn) = 0 if j 6= 0.
Therefore,

‖u ∗ ρn‖K,λ ≤ (m(K))
1
2 sup

x∈K
|u ∗ ρn(x)| < +∞,

for all K ⊂⊂ RN and for all λ > 0, i.e, u ∗ ρn ∈ EP,(ω)(RN) for each n ∈N.
In a similar way,

‖u ∗ ρn − u ∗ ρl‖K,λ ≤ (m(K))
1
2 sup

x∈K
|u ∗ (ρn − ρl)(x)|

which implies that {u ∗ ρn} is a Cauchy sequence in EP,(ω)(RN). If {u ∗
ρn} converges to f ∈ EP,(ω)(RN), then {u ∗ ρn} converges to f uniformly
on the compact sets, hence f = u. This is a contradiction since u is not
infinitely differentiable.
Roumieu case. The sequence {u ∗ ρn} constructed in the Beurling case is a
Cauchy sequence in EP,{ω}(RN) since the inclusion map

EP,(ω)(RN) ↪→ EP,{ω}(RN)

is continuous. We see that {u ∗ ρn} does not have limit in EP,{ω}(RN). We
recall that

L2
loc(RN) = proj

←−
K⊂⊂RN

{ f mesurable : ‖ f ‖2,K < ∞} .

Then, the inclusion map

EP,{ω}(RN) ↪→ L2
loc(RN)

is continuous. If {u ∗ ρn} converges to f in EP,{ω}(RN), then {u ∗ ρn} con-
verges to f in L2

loc(RN). However, for each K ⊂⊂ RN

‖u ∗ ρn − u‖2,K ≤ (m(K))
1
2 sup

x∈K
|u ∗ ρn(x)− u(x)| → 0 as n→ +∞.

Then f = u, which is a contradiction since u is not C∞.
In the case that Ω is an arbitrary open subset of RN , we can assume (after
a suitable translation if necessary) that

∃u ∈ C(Ω + B(0, 1)) \ C∞(Ω) such that P(D)u = 0.

Then the convolutions u ∗ ρn are defined on Ω and we can proceed as
above.
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In order to prove the converse of Proposition 2.2.2, we introduce the
following spaces. Let ω be a weight function. Given a polynomial P, an
open set Ω of RN , a compact subset K ⊂⊂ Ω and λ > 0, define

rK,λ( f ) := sup
j∈N0

‖Pj(D) f ‖1,K exp
(
−λϕ∗(

j
λ

)
)

and

Lλ
P,ω(K) := { f ∈ L1(K) : Pj(D) f ∈ L1(K) ∀j ∈N0, rK,λ( f ) < +∞}.

Beurling case:

LP,(ω)(Ω) = { f ∈ L1
loc(Ω) : f ∈ Lλ

P,ω(K) for each K ⊂⊂ Ω and λ > 0}.

If {Kn}n∈N is a compact exhaustion of Ω this space is endowed with the
topology given by

LP,(ω)(Ω) = proj
←−
n∈N

proj
←−
k∈N

Lk
P,ω(Kn) = proj

←−
n∈N

Ln
P,ω(Kn).

This metrizable locally convex topology is defined by the fundamental
system of seminorms {rKn,n(·)}n∈N. Using standard arguments it follows
that LP,(ω)(Ω) is a Fréchet space.

Theorem 2.2.3. Let Ω be an open subset of RN . For a weight function ω and
a polynomial P, LP,(ω)(Ω) is a Fréchet space if it is endowed with the topology
defined above.

Proof. Let { fk}k∈N be a Cauchy sequence in LP,(ω)(Ω). We fix n ∈ N and
ε > 0, then ∃l0 ∈N such that

‖Pj(D)( fl − fk)‖1,Kn exp
(
−nϕ∗(

j
n
)
)

< ε if k, l ≥ l0, (2.4)

for all j ∈N0.
On the other hand, for each j ∈ N0 there exist (nk) and hj ∈ L1(Kn) such

that Pj(D) fnk converges to hj a.e and ‖Pj(D)( fl)− hj‖1,Kn exp
(
−nϕ∗( j

n )
)

converges to 0 if l → +∞. Since P(D) is continuous on D(Ω)′ we have
hj = Pj(D) f ∈ L1(Kn).
In (2.4) we take l = l0, k→ +∞ and we have

‖Pj(D)( fl0 − f )‖1,Kn exp
(
−nϕ∗(

j
n
)
)
≤ ε.
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In particular, for all j ∈N,

‖Pj(D) f ‖1,Kn exp
(
−nϕ∗(

j
n
)
)
| ≤ ε + ‖ fl0‖n,

which shows that

rKn,n( f ) < ε + rKn,n( fl0) < +∞

and f ∈ LP,(ω)(Ω). Moreover, from (2.4) proceeding as above we obtain
rKn,n( fk − f )→ 0 as k→ ∞ and the proof is finished.

Roumieu case:

LP,{ω}(Ω) = { f ∈ L1
loc(Ω) : ∀K ⊂⊂ Ω ∃λ > 0 such that f ∈ Lλ

P,ω(K)}.

This space is endowed with the following locally convex topology:

LP,{ω}(Ω) := proj
←−

K⊂⊂Ω

ind−→
λ>0

Lλ
P,ω(K).

Proposition 2.2.4. The space of Roumieu type LP,{ω}(Ω) is complete.

Proof. We fix a compact subset K of Ω. If suffices to prove that the count-
able inductive limit of Banach spaces

X = ind−→
n∈N

Ln
P,ω(K)

is complete. According to a Theorem of Mujica [56] (see also [58, Corollary
8.5.22 (ii)]), we only need to check that there is a Hausdorff locally convex
topology s on X such that the unit ball of eachLn

P,ω(K) is compact in (X, s).
To do this it is enough to apply the Banach-Alaoglu Theorem (see [54,
Theorem 23.5]): consider E := ∏j∈N0

(L1(Kn), tn), where tn denotes the
weak topology, and define s as the topology induced on X by the injective
map

X → E, f 7→ {Pj(D) f }j∈N0 .

Theorem 2.2.5. The space EP,∗(Ω) is complete if and only if P is a hypoelliptic
polynomial.
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Proof. Let us assume that P is hypoelliptic. In order to show that EP,∗(Ω) is
complete it suffices to prove that the spaces EP,∗(Ω) and LP,∗(Ω) coincide
algebraically and topologically. Fix Ω′ a relatively compact open subset
in Ω. Let f ∈ LP,∗(Ω′) be given. Since P(D)j f ∈ L1

loc(Ω′) ⊂ Bloc
∞,1(Ω′), in

view of Theorem 2.1.6 we have f ∈ Bloc
∞,P̃j(Ω′). Hence, by Proposition 2.1.7,

f ∈ ⋂
j∈N0

Bloc
∞,P̃j(Ω′) = C∞(Ω′). Denote by (Kj)j a fundamental sequence of

compact sets in Ω such that each Kj is contained in the interior of Kj+1. Our
argument above shows that the restriction maps Lλ

P,ω(Kj+1) into Eλ
P,ω(Kj)

continuously, from where the conclusion follows.

In order to construct a complete finer locally convex topology on EP,∗(Ω)
in the general case, we fix a compact exhaustion {Kn} of Ω and we con-
sider the following system of seminorms on EP,(ω)(Ω) :

{‖ · ‖n}n∈N ∪ {pn}n∈N

where

‖ f ‖n := ‖ f ‖Kn,n = sup
j∈N0

‖Pj(D) f ‖2,Kn exp
(
−nϕ∗(

j
n
)
)

,

and {pn}n∈N is a fundamental system of seminorms of E(Ω), i.e,

pn( f ) := sup
|α|≤n

sup
x∈Kn

| f (α)(x)|.

Then, {max(‖ · ‖n, pn)}n∈N is a fundamental system of seminorms of a
locally convex topology τ(ω),∞ on EP,(ω)(Ω). The proof of the following
result is standard. One can adapt the proof of Theorem 2.2.3.

Proposition 2.2.6. Let Ω be an open subset of RN . For a weight function ω and
a polynomial P, the space (EP,(ω)(Ω), τ(ω),∞) is a Fréchet space.

Proof. Let { fk}k∈N be a Cauchy sequence in EP,(ω)(Ω). In particular, { fk}k∈N

is a Cauchy sequence in E(Ω), which is complete. Hence there exists
f ∈ E(Ω) such that for each n ∈ N, pn( fk − f ) → 0 as k → +∞. Now,
we see that { fk}k∈N → f in EP,(ω)(Ω). We only need to prove that for each
n ∈N,

‖ f ‖n < +∞

and
‖ fk − f ‖n → 0 as k→ +∞.
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We fix n ∈N and ε > 0, then

∃l0 ∈N such that ‖Pj(D)( fl − fk)‖2,Kn exp
(
−nϕ∗(

j
n
)
)

< ε if k, l ≥ l0,

(2.5)
for all j ∈N0.
On the other hand, for each j ∈ N0 there exist (nk) and hj ∈ L2(Kn) such

that Pj(D) fnk converges to hj a.e and ‖Pj(D)( fl)− hj‖2,Kn exp
(
−nϕ∗( j

n )
)

converges to 0 if l → +∞. Since P(D) is continuous in E(Ω) we have
hj = Pj(D) f .
In (2.5) we take l = l0, k→ +∞ and we have

‖Pj(D)( fl0 − f )‖2,Kn exp
(
−nϕ∗(

j
n
)
)
≤ ε.

In particular, for all j ∈N,

‖Pj(D) f ‖2,Kn exp
(
−nϕ∗(

j
n
)
)
≤ ε + ‖ fl0‖n,

which shows that
‖ f ‖n < ε + ‖ fl0‖n < +∞

and f ∈ EP,(ω)(Ω). Moreover, from (2.5) proceeding as above we obtain
‖ fk − f ‖n → 0 as k→ ∞ and the proof is finished.

In the Roumieu case, we consider the following topology: for n ∈ N

and K ⊂⊂ Ω, we endow E
1
n

P,ω(K) with the fundamental system of semi-
norms

{max(‖ · ‖K, 1
n
, pm)}m∈N.

It is easy to see that E
1
n

P,ω(K) is a Fréchet space. The topology τ{ω},∞ on
EP,{ω}(Ω) is defined by

(EP,{ω}(Ω), τ{ω},∞) = proj
←−

K⊂⊂Ω

ind−→
n∈N

E
1
n

P,ω(K).

The space ind−→
n∈N

E
1
n

P,ω(K) is an (LF)-space, i.e, a countable inductive limit of

Fréchet spaces.

Proposition 2.2.7. Let Ω be an open subset of RN . For a weight function ω and
a polynomial P, the space (EP,{ω}(Ω), τ{ω},∞) is complete.

The proof requires the following result for (LF)-spaces.
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Definition 2.2.8. Let X = ind−→
n∈N

Xn be an (LF)-space. X is called boundedly

stable if on each set which is bounded in some Xn all but finitely many of
the step topologies coincide.

Next theorem, due to Wengenroth, follows from Theorem 6.4 (page
112) and Corollary 6.4 (page 113) of [64]:

Theorem 2.2.9. Let X = ind−→
n∈N

Xn be an (LF)-space and {‖ · ‖n,m}m∈N a fun-

damental system of seminorms of Xn. If X is boundedly stable and satisfies the
condition (P3*), i.e,

∀n ∃l ≥ n ∀m ≥ l ∃N ∈N ∀M ∈N ∃K ∈N, S > 0 ∀x ∈ Xn

‖x‖l,M ≤ S(‖x‖m,K + ‖x‖n,N),

then X is complete.

Proof of Proposition 2.2.7: It is enough to show that for each K ⊂⊂ Ω,

the space X = ind−→
n∈N

E
1
n

P,ω(K) is complete. We denote Xn = E
1
n

P,ω(K) and

{‖ · ‖n,m}m∈N = {max(‖ · ‖ 1
n
, pm)}m∈N. To see that X is complete, we

show that X verifies the hypothesis of Theorem 2.2.9, i.e, X is boundedly
stable and satisfies the condition (P3*). We apply Lemma 1.0.3 and the
condition (α) of weight function to get a natural number L and y0 > 0
such that

ϕ∗(y)− y ≥ Lϕ∗(
y
L
)− L for each y ≥ y0.

Take y = jm
λ . The last inequality implies

exp
(
−λϕ∗(mj

λ )
)

exp
(
−λLϕ∗( mj

λL )
) ≤ exp (Lλ− jm) −→ 0 if j→ +∞. (2.6)

To see that X is boundedly stable it suffices to prove that any bounded set
B in Xn is relatively compact in XnL. Since E(Ω) is a Montel space, we only
need to show that if { fk}k∈N is a bounded sequence in Xn and converges
to 0 in E(Ω), then

{ fk}k∈N converges to 0 in XnL, i.e, ‖ fk‖K, 1
nL
−→ 0 si k→ +∞.

Since { fk}k∈N is a bounded sequence in Xn, there exists a constant C > 0
such that for all k ∈N, ‖ fk‖K, 1

n
≤ C. Let η > 0, in view of (2.6) there exists

j0 ∈N0 such that

‖Pj(D)( fk)‖2,K exp
(
− 1

Ln
ϕ∗(jnL)

)
≤
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≤ η

(
sup
i∈N0

‖Pi(D)( fk)‖2,K exp
(
− 1

n
ϕ∗(in)

))
≤ η C if j > j0.

Therefore,

‖ fk‖K, 1
Ln
≤ max

i=0,1,...,j0

(
ηC, ‖Pi(D)( fk)‖2,Ke−

1
Ln ϕ∗(iLn)

)
.

Since { fk}k∈N converges to 0 in E(Ω) we have ‖ fk‖K, 1
Ln
≤ ηC if k is large enough.

The property (P3*) is satisfied. Indeed, take l = n, N = 1, K = M and
S = 1, then

∀n ∀m ≥ n ∀M ∈N ∀x ∈ Xn

‖x‖n,M ≤ ‖x‖m,M + ‖x‖n,1,

since

‖x‖n,M = max(‖x‖K, 1
n
, pM(x)) =

{
‖x‖K, 1

n
≤ ‖x‖n,1 ≤ ‖x‖m,M + ‖x‖n,1

pM(x) ≤ ‖x‖m,M ≤ ‖x‖m,M + ‖x‖n,1
�

To summarize we give the following corollary.

Corollary 2.2.10. The following statements are equivalent:

1. P is hypoelliptic.

2. The topology τ(ω),∞ on EP,(ω)(Ω) (respec. τ{ω},∞ on EP,{ω}(Ω)) consid-
ered in Proposition 2.2.6 (respect in Proposition 2.2.7) coincides with the
natural topology of EP,(ω)(Ω) (respec. on EP,{ω}(Ω)).

3. The inclusion EP,∗(Ω) ↪→ E(Ω) is continuous.

4. EP,∗(Ω) is complet.

Proof. 1⇒ 2

Beurling case:
Since P is hypoelliptic, Theorem 2.2.5 implies the completeness of EP,(ω)(Ω)

with its natural topology. It is clear that the identity map

Id :
(
EP,(ω)(Ω), max(‖ · ‖n, pn)

)
−→

(
EP,(ω)(Ω), ‖ · ‖n

)
is continuous and by the Open Mapping Theorem (see [54, Theorem 24.30])
it is a topological homeomorphism.
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Roumieu case:
The normed space E

1
n

P,ω(K) is closed in the Fréchet space EP,(ω)(Ω)

and hence, E
1
n

P,ω(K) is a Banach space endowed with the ‖ · ‖K, 1
n
-topology.

Again by the Open Mapping Theorem, this topology is the same that
the topology given by the fundamental system of seminorms {max(‖ ·
‖K, 1

n
, pm)}m∈N.

2⇒ 3 Obvious.
3⇒ 4

Since EP,(ω)(Ω) ↪→ EP,{ω}(Ω) is continuous, the inclusion map

EP,(ω)(Ω) ↪→ E(Ω)

is continuous. Hence

Id :
(
EP,(ω)(Ω), ‖ · ‖n

)
−→

(
EP,(ω)(Ω), max(‖ · ‖n, pn)

)
is also continuous. Therefore, any Cauchy sequence { fk}k∈N in(
EP,(ω)(Ω), ‖ · ‖n

)
, is also a Cauchy sequence in

(
EP,(ω)(Ω), max(‖ · ‖n, pn)

)
,

which is complete by Theorem 2.2.6. The conclusion in the Beurling case
easily follows. As a consequence, (Theorem 2.2.5) P is hypoelliptic and
EP,{ω}(Ω) is also complete.

4⇒ 1 This is the content of Theorem 2.2.5.

2.3. A Paley-Wiener type theorem and its consequences

Let ω be a weight function and m ≥ 1, it is easy to prove that σ(t) :=
ω(t

1
m ) is also a weight function. Moreover, ϕ∗σ(x) = ϕ∗ω(mx).
Suppose P is a hypoelliptic polynomial of order m. Our aim is to es-

tablish a Paley-Wiener type theorem for the generalized non quasi analytic
class E

P,∗(t
1
m )

(Ω). In order to guarantee the existence of test functions in

this space we show that the class of ultradifferentiable functions E∗(Ω) is
always contained in E

P,∗(t
1
m )

(Ω) where m is the degree of P. As a conse-

quence, D∗(Ω) is a subset of E
P,∗(t

1
m )

(Ω).

In Theorem 2.3.15 we prove that the test space of E
P,∗(t

1
m )

(Ω) is nuclear

and in Proposition 2.3.16 we give a sufficient condition to guarantee that
these spaces of test functions are an algebra.
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Theorem 2.3.1. Let Ω ⊂ RN be an open subset. For a weight function ω and
a polynomial P with degree m, the inclusion E∗(t)(Ω) ⊆ E

P,∗(t
1
m )

(Ω) holds and
the inclusion map is continuous.

Notation. E∗(t)(Ω) ⊆ E
P,∗(t

1
m )

(Ω) means that both inclusions E(ω)(Ω) ⊆
EP,(σ)(Ω) and E{ω}(Ω) ⊆ EP,{σ}(Ω) hold.

We need the following technical lemma.

Lemma 2.3.2. Given a constant C ≥ 1 and a weight function ω, there exist two
constants A and B (depending on C and ω) such that for all j ∈N and λ > 0,

Cj exp
(

λϕ∗(
j
λ

)
)
≤ exp(λ

A
B

) exp
(

λ

B
ϕ∗(

B
λ

j)
)

.

Proof. From de definition of Young conjugate we get

exp
(

λϕ∗(
j
λ

)
)

= sup
s≥1

sj exp (−λω(s)) . (2.7)

Choose l ∈N such that 2l ≥ C. By condition (α), there exist A and B such
that

ω(t) = ω(C
t
C

) ≤ ω(2l t
C

) ≤ A + Bω(
t
C

). (2.8)

Then,

Cj exp
(

λϕ∗(
j
λ

)
)

(2.7)
= sup

s≥1
(sC)j exp (−λω(s)) = sup

t≥C
tj exp

(
−λω(

t
C

)
) (2.8)
≤

(2.8)
≤ sup

t≥1
tj exp

(
λ(

A
B
− ω(t)

B
)
)

= exp
(

λ
A
B

)
sup
t≥1

tj exp
(
−λ

1
B

ω(t)
)

(2.7)
=

(2.7)
= exp

(
λ

A
B

)
exp

(
λ

B
ϕ∗(

B
λ

j)
)

.

Proof of Theorem 2.3.1: We set P(z) = ∑
|α|≤m

aαzα, P(D) = ∑
|α|≤m

aαDα and

M := max{|aα| : |α| ≤ m}. Choose F large enough such that for each
j ∈ N, Mj(mj)N ≤ Fj and take the constants A and B of Lema 2.3.2 such
that for each j ∈N,

Fj exp
(

λϕ∗(
j
λ

)
)
≤ exp

(
λ

A
B

)
exp

(
λ

B
ϕ∗(

B
λ

j)
)

. (2.9)
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To see E(ω(t))(Ω) ⊆ E
P,(ω(t

1
m ))

(Ω), take f ∈ E(ω(t))(Ω) and we fix K ⊂⊂
Ω, λ > 0 and j ≥ 1. We observe that the polynomial of the operator Pj(D)
is Pj = P · · ·︸︷︷︸

j

P and its degree is mj. Moreover, there exists C > 0 such

that for each α ∈NN
0 ,

‖ f (α)‖2,K ≤ C exp
(

Bλϕ∗(
|α|
Bλ

)
)

. (2.10)

We can choose C = pK,Bλ( f ). Hence,

‖Pj(D) f ‖2,K ≤ Mj pK,Bλ( f ) ∑
|γ|≤mj

exp
(

Bλϕ∗(
|γ|
Bλ

)
)

≤ pK,Bλ( f )Mj(mj)N exp
(

Bλϕ∗( mj
Bλ )
)

≤ pK,Bλ( f )Fj exp
(

Bλϕ∗( mj
Bλ )
)

(2.9)
≤ pK,Bλ( f ) exp(λA) exp

(
λϕ∗(mj

λ )
)

.

Therefore,

‖Pj(D) f ‖2,K exp
(
−λϕ∗(

mj
λ

)
)
≤ pK,Bλ( f ) exp(λA). (2.11)

This proves E(ω(t))(Ω) ⊆ E
P,(ω(t

1
m ))

(Ω) and that this inclusion is continu-

ous. This settles the Beurling case.
In the Roumieu case, let f ∈ E{ω(t)}(Ω) be given. For each K ⊂⊂

Ω there exists λ > 0 such that f ∈ Eλ
ω(t)(K). Proceeding as above f ∈

E
λ
B

P,ω(t
1
m )

(K) ⊂ E
P,{ω(t

1
m )}

(Ω). Now, from (2.11) we get the continuity of

the inclusion
Eλ

ω(t)(K) ↪→ E
λ
B

P,ω(t
1
m )

(K)

and the theorem follows. �

Proposition 2.3.3. E∗(Ω) is a dense subspace of E
P,∗(t

1
m )

(Ω).

Proof. First, we suppose Ω = RN .
Beurling case. Applying Lema 1.0.3 there exist L ≥ 1 and y0 > 0 such

that
ϕ∗(y)− y ≥ Lϕ∗(

y
L
)− L for each y ≥ y0.
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Take y = jm
λ . The last inequality implies

exp
(
−λϕ∗(mj

λ )
)

exp
(
−λLϕ∗( mj

λL )
) ≤ exp (Lλ− jm) −→ 0 if j→ +∞. (2.12)

Using Theorem 2.3.1

D(ω)(RN) ↪→ E(ω)(RN) ↪→ E
P,(ω(t

1
m ))

(RN).

Let f ∈ EP,(ω)(RN) be given. Proceeding as in [22, Lema 3.8] we take
a regularizing sequence {ρn}n∈N in D(ω)(RN) and prove that f ∗ ρn ∈
E(ω)(RN). To get this aim we fix a compact subset K of RN and λ > 0,
then

sup
α∈NN

0

∥∥∥( f ∗ ρn)(α)
∥∥∥

2,K
exp

(
−λϕ∗

(
|α|
λ

))
= sup

α∈NN
0

∥∥∥ f ∗ ρ
(α)
n

∥∥∥
2,K

exp
(
−λϕ∗

(
|α|
λ

))
=

= sup
α∈NN

0

∥∥∥∥∫suppρn

f (· − y)ρ
(α)
n (y)dy

∥∥∥∥
2,K

exp
(
−λϕ∗

(
|α|
λ

))
≤

≤ sup
α∈NN

0

sup
y∈suppρn

∣∣∣ρ(α)
n (y)

∣∣∣ exp
(
−λϕ∗

(
|α|
λ

))∥∥∥∥∫suppρn

| f (· − y)|dy
∥∥∥∥

2,K
< ∞.

Now, it is enough to show that for each compact subset K of RN , λ > 0
and p ∈N

‖ f − f ∗ ρn‖K,λ −→ 0 if n→ ∞.

Given η > 0, using (2.12) and (2.11) there exists j0 ∈N0 such that

‖Pj(D)( f − f ∗ ρn)‖2,K exp
(
−λϕ∗(

mj
λ

)
)
≤

≤
(

sup
i∈N0

‖Pi(D)( f − f ∗ ρn)‖2,K exp
(
−Lλϕ∗(

mi
Lλ

)
))

e−λϕ∗( mj
λ )

e−Lλϕ∗( mj
Lλ )
≤

≤ exp (λAL) (‖ f ‖K,Lλ + pK,LλB( f ∗ ρn))
e−λϕ∗( mj

λ )

e−Lλϕ∗( mj
Lλ )

< η if j > j0.

As a consequence,

‖ f − f ∗ ρn‖K,λ ≤ max
i=0,1,...,j0

(
η, ‖Pi(D)( f − f ∗ ρn)‖2,Ke−λϕ∗( mi

λ )
)

.

Hence
‖ f − f ∗ ρn‖K,λ ≤ η if n is large enough.
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Roumieu case. Let f ∈ E
P,{ω(t

1
m )}

(RN). We take {ρn}n∈N ∈ D(ω)(RN)

as above and fix a compact subset K of RN . Since f ∈ E
P,{ω(

1
m )}

(RN),

there exists λ > 0 such that f ∈ Eλ
P,ω(K). Proceeding as above f ∗ ρn ∈

Eλ
P,ω(K) and f ∗ ρn converges to f in E

λ
L

P,ω(K). As a consequence, f ∗ ρn con-
verges to f in E

P,{ω(
1
m )}

(RN).

To finish, we suppose that Ω is an arbitrary open subset of RN . We fix
a compact subset K and λ > 0 and we choose a compact subset L such that

K ⊂
◦
L ⊂ L ⊂ Ω. Let f ∈ E

P,(ω(t
1
m ))

(Ω) be given. We define f̃ = f on L

and f̃ = 0 in other case. Then f̃ ∈ D′(ω)(RN) and according to Proposition

1.0.12 ρn ∗ f̃ is an ultradifferentiable function which coincides with f ∗ ρn

on K if n is large enough. Then, given ε > 0 there exists n0 such that
‖ f − ρn0 ∗ f̃ ‖K,λ < ε. From this the conclusion follows.

As a consequence of the former results we get:

1. D∗(Ω) is a dense subset of E
P,∗(t

1
m )

(Ω).

2. The functions in E
P,∗(t

1
m )

(Ω) with compact support are a dense sub-

set of E
P,∗(t

1
m )

(Ω).

Let K be a convex compact subset of RN . Recall that the supporting
function of K is the function HK : RN → R given by HK(x) := sup

y∈K
x · y.

Lemma 2.3.4. Let ω a weight function, P a polynomial and f ∈ C∞(RN). The
following statements hold:

1. If there is λ > 0 satisfying

C :=
(∫

RN
| f̂ (ξ)|2 exp (λω(|P(ξ)|)) dξ

) 1
2

< ∞,

then

(∗) sup
j∈N0

‖Pj(D) f ‖2,RN exp
(
−λ

2
ϕ∗(

2j
λ

)
)
≤ C

(2π)
N
2

.
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2. Let K be a compact convex subset of RN and denote by m(K) the Lebesgue
measure of K. If (*) holds and f has compact support contained in K, there
is a constant D > 0 (depending on λ and ω) such that for all z ∈ CN the
following inequality holds

| f̂ (z)| ≤ m(K)
1
2

CD

(2π)
N
2

exp
(

HK(Imz)− λ

4
ω(|P(z)|)

)
.

Proof. (1) By Plancherel’s Theorem,

‖Pj(D) f ‖2,RN =
1

(2π)
N
2
‖P(ξ)j f̂ (ξ)‖2,RN ≤

≤ C

(2π)
N
2

sup
|P(ξ)|6=0

|P(ξ)|j exp
(
−λ

2
ω(|P(ξ)|)

)
≤

≤ C

(2π)
N
2

sup
|P(ξ)|6=0

exp
(

j ln |P(ξ)| − λ

2
ω(|P(ξ)|)

)
≤

≤ C

(2π)
N
2

exp

(
λ

2
ϕ∗(

j
λ
2

)

)
.

(2) Applying Hölder inequality,

|P̂j(D) f (z)| ≤
∫

K
|Pj(D) f (t) exp(−itz)|dt ≤ (2.13)

≤ m(K)
1
2 exp(HK(Imz))

C

(2π)
N
2

exp

(
λ

2
ϕ∗(

j
λ
2

)

)
.

Suppose |P(z)| > 1, then

| f̂ (z)| ≤ m(K)
1
2

C

(2π)
N
2

exp(HK(Imz)) exp

(
λ

2
ϕ∗(

j
λ
2

)

)
1

|P(z)|j
.

Now, we use condition γ of weight function in order to find t0 such that

ln(t)
λ
2

≤ 1
2

ω(t) +
ln(t0)

λ
2

∀t > 0.
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Observe that

supj∈N0
j ln |P(z)| − λ

2 ϕ∗( j
λ
2
) =

λ

2
sup
j∈N0

(
j + 1

λ
2

ln |P(z)| − ϕ∗(
j
λ
2

)

)
− ln |P(z)|

≥ λ

2
sup
x≥0

(x ln |P(z)| − ϕ∗(x))− ln |P(z)|

=
λ

2
(

ϕ∗∗(ln |P(z)|
)
− ln |P(z)|

=
λ

2
(

ϕ(ln |P(z)|)
)
− ln |P(z)|

=
λ

2
ω(|P(z)|)− ln |P(z)|

≥ λ

4
ω(|P(z)|)− ln t0.

Taking the infimum

| f̂ (z)| ≤ m(K)
1
2

C

(2π)
N
2

exp(HK(Imz))t0 exp(−λ

4
ω(|P(z)|)). (2.14)

In case that |P(z)| ≤ 1, the inequality (2.14) is also true. To show that,
recall that ω(|P(z)|) = 0 and ϕ∗(0) = 0 and take j = 0 in (2.13).

Given K ⊂⊂ Ω a compact subset and λ > 0, recall that

‖ f ‖K,λ = sup
j∈N0

‖Pj(D) f ‖2,K exp
(
−λϕ∗(

j
λ

)
)

.

We use the following notation:

Dλ
P,ω(K) = { f ∈ C∞(RN): supp f ⊂ K and ‖ f ‖K,λ < ∞}

and
DP,(ω)(K) = proj

λ>0
Dλ

P,ω(K),

DP,{ω}(K) = ind
λ>0
Dλ

P,ω(K).

Definition 2.3.5. Let Ω be an open subset of RN and let ω be a weight
function. We define the test spaces of ultradifferentiable functions with
respect to the iterates of the operator P as:

DP,(ω)(Ω) = ind
K⊂⊂Ω

proj
λ>0
Dλ

P,ω(K)
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DP,{ω}(Ω) = ind
K⊂⊂Ω

ind
λ>0
Dλ

P,ω(K)

Given λ > 0, consider the following seminorm

tλ( f ) :=
(∫

RN
| f̂ (ξ)|2 exp(λω(|P(ξ)|)dξ

) 1
2

.

Proposition 2.3.6. Suppose P hypoelliptic. Then, the fundamental systems of
seminorms {‖ · ‖K,λ}λ>0 and {tλ(·)}λ>0 on DP,(ω)(K) are equivalent.

Proof. Using Lemma 2.3.4 (1) it is clear that

‖ f ‖K,λ ≤
1

(2π)
N
2

t2λ( f ), ∀λ > 0 and ∀ f ∈ DP,(ω)(K).

In order to see the other inequality, take z = ξ ∈ RN in 2.3.4 (2). Then,

| f̂ (ξ)| ≤ m(K)
1
2 D‖ f ‖K, λ

2
exp

(
−λ

4
ω(|P(ξ)|)

)
.

Then,

| f̂ (ξ)|2 exp
(

λ

4
ω(|P(ξ)|)

)
≤ m(K)D2‖ f ‖2

K, λ
2

exp
(
−λ

4
ω(|P(ξ)|)

)
.

Therefore,

t λ
4
( f ) ≤ m(K)

1
2 D‖ f ‖K, λ

2

(∫
RN

exp
(
−λ

4
ω(|P(ξ)|)

)
dξ

) 1
2

.

Now, we only have to check that exp
(
−λ

4 ω(|P(ξ)|
)

is integrable. Let F >

0 a positive constant. The condition (γ) of weight function guarantees

λ

4
ω(|P(ξ)|) ≥ (F + 1) ln(|P(ξ)|)

= ln(|P(ξ)||P(ξ)|F)

if |ξ| is large enough. Condition IIb of [33, Theorem 11.1.3] asserts that
there exist D, d > 0 such that

|P(ξ)| ≥ D|ξ|d if |ξ| is large enough.
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Then, for a suitable F > 0 we have

λ

4
ω(|P(ξ)|) ≥ ln(|P(ξ)||P(ξ)|F)

≥ ln(|P(ξ)|DF|ξ|dF)

≥ ln(1 + |ξ|2)N .

if |ξ| is large enough. As a consequence, there is a constant C > 0 such

that exp
(
−λ

4
ω(|P(ξ)|

)
≤ C

(1 + |ξ|2)N which is integrable.

Remark 2.3.7. Since P is hypoelliptic, according to condition IIb of [33,
Theorem 11.1.3], we have P ≈ P̃ if |ξ| is large enough. So, we can replace
P by P̃ in tλ( f ), i.e,

tλ( f ) :=
(∫

RN
| f̂ (ξ)|2 exp(λω(P̃(ξ))dξ

) 1
2

.

The following Paley-Wiener type theorem in a classic version is proved
in [33, I,Theorem 7.3.1].

Theorem 2.3.8. [Paley-Wiener-Schwartz] Let K be a convex compact subset of
RN with supporting function HK. If u is a distribution of order N with support
contained in K, then

|û(z)| ≤ C(1 + |z|)NeHK(Imz), ∀z ∈ CN .

Conversely, every entire function in CN satisfying the last inequality is the Fourier-
Laplace transform of a distribution with support contained in K.
If u is a C∞-function with compact support contained in K there is for every N a
constant CN such that

|û(z)| ≤ CN(1 + |z|)−NeHK(Imz), ∀z ∈ CN .

Conversely, every entire function in CN satisfying for every N the last inequal-
ity is the Fourier-Laplace transform of a C∞-function with compact support con-
tained in K.

The next Paley-Wiener type theorem for L2 is shown in [59, Theorem
19.3] for one variable. A version for several variables is proved in [62,
Theorem 4.9]. Denote BA := {x ∈ RN : |z| ≤ A}.
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Theorem 2.3.9. Suppose A and C are positive constants and F is an entire func-
tion in CN such that

|F(z)| ≤ CeA|z| ∀z ∈ CN

and ∫
RN
|F(x)|2dx < ∞.

Then, there is a function f ∈ L2(BA) vanishing outside BA such that

F(z) =
∫

BA

f (x)e−ixzdx.

With respect to generalized non quasi analytic classes, this Paley-Wiener
type theorem holds:

Theorem 2.3.10. Let P be a hypoelliptic polynomial and ω a weight function.
Then, the Fourier-Laplace transform of a function in DP,(ω)(RN) verifies

| f̂ (z)| ≤ CeA|z| ∀z ∈ CN

for some constants C, A > 0 and moreover, for every λ > 0, the estimate(∫
RN
| f̂ (x)|2 exp(λω(|P(x))|)dx

) 1
2

< ∞

is fulfilled. Conversely, every entire function satisfying the above conditions is
the Fourier-Laplace transform of a function in DP,(ω)(RN).

Proof. Let f ∈ DP,(ω)(RN) be given and take A > 0 such that supp f ⊂ BA.
By Theorem 2.3.8 there is a constant C > 0 such that | f̂ (z)| ≤ CeA|z| ∀z ∈
CN . Proposition 2.3.6 gives for each λ > 0 the estimate(∫

RN
| f̂ (x)|2 exp(λω(|P(x))|)dx

) 1
2

< ∞.

Conversely, suppose F is an entire function in CN verifying the above
estimates. In particular

∫
RN |F(x)|2dx < ∞. Thus, Theorem 2.3.9 gives a

function f ∈ L2(BA) with supp f ⊂ BA such that F(z) =
∫

BA
f (x)e−ixzdx.

Note that for each λ > 0,(∫
RN
| f̂ (x)|2 exp(λω(|P(x))|)dx

) 1
2

=

=
(∫

RN
|F(x)|2 exp(λω(|P(x))|)dx

) 1
2

< ∞.
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By Proposition 2.3.6, in order to show that f ∈ DP,(ω)(RN) we check that
we can take f in C∞(RN).

Fix λ > 0 and write

f̂ (x) = f̂ (x)e
λ
2 ω(|P(x)|)e−

λ
2 ω(|P(x)|).

Proceeding as Lemma 2.3.4, we now that the function e−
λ
2 ω(|P(x)|) is in L2,

therefore Hölder inequality implies f̂ ∈ L1 and by Inversion Formula (see
[59, Theorem 9.14])

f (x) =
1

(2π)N

∫
RN

f̂ (ξ)eixξdξ a.e.

In order to see that the function

g(x) =
∫

RN
f̂ (ξ)eixξdξ

is in C∞ it is enough to show that for each α ∈NN
0 , the function ξα f̂ (ξ)eixξ

is integrable. Observe

|ξ(α)|| f̂ (ξ)| ≤ (|ξ1|+ · · ·+ |ξN |)|α|| f̂ (ξ)|

≤ (
√

N|ξ|)|α|| f̂ (ξ)|

=
√

N
|α|

eln |ξ||α| | f̂ (ξ)|.

Now, condition IIb of [33, II, Theorem 11.1.3] gives two positive constants
C, d > 0 such that

|P(ξ)| ≥ C|ξ|d if |ξ| is large enough.

In condition IIb we can assume C > 1. Then,

ln |ξ||α| ≤ ln
(
C−

|α|
d |P(ξ)|

|α|
d
)
≤ |α|

d
ln (|P(ξ)|).

Condition (γ) of weight function guarantees that

ω(|P(ξ)|)
ln |P(ξ)| ≥

|α|
d

4
λ

if |ξ| is large enough.

Finally, if |ξ| is large enough

|ξ(α)|| f̂ (ξ)| ≤
√

N
|α|

e
λ
4 ω(|P(ξ)|)| f̂ (ξ)| =

√
N
|α|
| f̂ (ξ)|e λ

2 ω(|P(ξ)|)e−
λ
4 ω(|P(ξ)|),

which is integrable by Hölder inequality. Then,

∃g(α)(x) =
∫

RN
ξα f̂ (ξ)eixξdξ.
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Analogously, one can prove the Roumieu case:

Theorem 2.3.11. Let P be a hypoelliptic polynomial and ω a weight function.
Then, the Fourier-Laplace transform of a function in DP,{ω}(RN) verifies

| f̂ (z)| ≤ CeA|z| ∀z ∈ CN

for some constants C, A > 0 and for some λ > 0, the estimate

(∫
RN
| f̂ (x)|2 exp(λω(|P(x))|)dx

) 1
2

< ∞

is fulfilled. Conversely, every entire function satisfying the above conditions is
the Fourier-Laplace transform of a function in DP,{ω}(RN).

Our next aim is to prove that the test spaces

DP,(ω)(Ω) = ind
K⊂⊂Ω

proj
λ>0
Dλ

P,ω(K)

and
DP,{ω}(Ω) = ind

K⊂⊂Ω
ind
λ>0
Dλ

P,ω(K)

are nuclear whenever the polynomial P is hypoelliptic.

Given λ > 0, we introduce the following seminorm

sλ( f ) =
∫

RN
| f̂ (ξ)| exp(λω(|P(ξ))|)dξ.

Given a compact subset K of Ω we define

D1,P,(ω)(K) = { f ∈ C∞(RN): supp f ⊂ K and ∀λ > 0, sλ( f ) < ∞}.

Since f ∈ L1, its Fourier transform is bounded. Then,

tλ( f ) ≤ ‖ f̂ ‖
1
2
∞

(∫
RN | f̂ (ξ)| exp(λω(|P(ξ))|)dξ

) 1
2

= ‖ f̂ ‖
1
2
∞ (sλ( f ))

1
2 .

On the other hand, we write

f̂ (ξ) exp(λω(|P(ξ))|) = f̂ (ξ) exp(2λω(|P(ξ))|) exp(−λω(|P(ξ))|).



2.3 A Paley-Wiener type theorem and its consequences 41

The Hölder inequality and the fact that exp(−λω(|P(ξ))|) is in L2 imply
the continuous inclusion(

DP,(ω)(K), tλ

)
↪→
(
D1,P,(ω)(K), sλ

)
.

The inequalities above shows that the identity(
D1,P,(ω)(K), sλ

)
→
(
DP,(ω)(K), tλ

)
holds algebraically.

Proposition 2.3.12. Suppose P hypoelliptic. The identity map(
DP,(ω)(K), tλ

)
→
(
DP,(ω)(K), sλ

)
is an homeomorphism.

Proof. The metrizable space
(
DP,(ω)(K), tλ

)
is closed in the Fréchet space

EP,(ω)(RN). Hence,
(
DP,(ω)(K), tλ

)
is a Fréchet space.

The space
(
DP,(ω)(K), sλ

)
is also complete. In fact, proceeding as in

Theorem 2.3.10, each f ∈ DP,(ω)(K) can be written as

f (α)(x) =
1

(2π)N

∫
RN

ξα f̂ (ξ)eixξdξ for all α ∈NN
0 .

Moreover,

| f (α)(x)| ≤ 1
(2π)N sup

ξ 6=0
exp

(
− λω(|P(ξ)|) + |α| ln |ξ|

) ∫
RN
| f̂ (ξ)|eλω(|P(ξ)|)dξ

≤ 1
(2π)N exp (λϕ∗(

|α|
λ

))
∫

RN
| f̂ (ξ)|eλω(|P(ξ)|)dξ

=
1

(2π)N exp (λϕ∗(
|α|
λ

))sλ( f ).

As a consequence, the inclusion(
DP,(ω)(K), sλ

)
↪→ D(K)

is continuous. Let { fn} a Cauchy sequence in DP,(ω)(K). There exists
f0 ∈ D(K) such that { fn} → f in D(K). Then, f̂ → f̂0 in S(RN). On
the other hand, for each λ > 0, hλ

n := f̂n exp (λω(|P|)) defines a Cauchy
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sequence in L1. Then, we find hλ ∈ L1 such that hλ
n → hλ in L1 and

moreover a subsequence hλ
nk

which converges to hλ a.e in the pointwise
convergence. Then, hλ = f̂0 exp (λω(|P|)), f0 ∈ DP,(ω)(K) and { fn} con-

verges to f0 in
(
DP,(ω)(K), sλ

)
.

The conclusion follows by the Closed Graph Theorem.

Definition 2.3.13. A polynomial P(ξ) = ∑|α|≤m aαξα of order m is called
elliptic if its principal part ∑|α|=m aαξα 6= 0 whenever ξ 6= 0.

Equivalently, P is elliptic if there is a positive constant C > 0 such that
|ξ|m ≤ C(1 + |P(ξ)|). According to [33, II, Theorem 11.1.10], every elliptic
polynomial is hypoelliptic.

Remark 2.3.14. Recall that the seminorms of D(ω)(K) are given by∫
RN
| f̂ (ξ)| exp(λω(|ξ|)dξ.

If P is elliptic of order m, we have |P(ξ)| ≈ |ξ|m. So, the seminorms of
D(ω)(K) are recovered by the seminomrs

sλ( f ) =
∫

RN
| f̂ (ξ)| exp(λσ(|P(ξ))|)dξ,

if we take the weight σ(t) = ω(t
1
m ). In fact, we will prove in the next chap-

ter (Theorem 3.1.7) that the ellipticity of P implies E
P,∗(t

1
m )

(Ω) = E∗(t)(Ω).

Theorem 2.3.15. Let Ω be an open subset of RN and K ⊂⊂ Ω a compact subset.
If P is a hypoelliptic polynomial, then the spaces DP,(ω)(Ω) and DP,{ω}(Ω) are
nuclear.

Proof. We fix a compact subset K ⊂⊂ Ω and prove that DP,(ω)(K) is nu-
clear. Then, the space

DP,(ω)(Ω) = ind−→
K⊂⊂Ω

DP,(ω)(K)

is also nuclear.
We consider DP,(ω)(K) endowed with the seminorms sλ.
Fix λ > 0 and define

∆ : RN →
(
DP,(ω)(K)′, σ

(
DP,(ω)(K)′,DP,(ω)(K)

))
,

∆(ξ)[ f ] := f̂ (ξ) exp (2λω(|P(ξ)|)).
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Note that Lemma 2.3.4 (2) implies for all ξ ∈ RN , the inequality

|∆(ξ)[ f ]| ≤ Dt8λ( f )

for some constant D > 0. Hence, ∆(ξ) ∈ DP,(ω)(K)′ and ∆ is a continu-
ous well defined map. Moreover ∆(RN) ⊆ V◦ where V is the absolutely
convex zero neighborhood defined by

V :=
{

f ∈ DP,(ω)(K) such that t8λ( f ) ≤ 1
D

}
.

Now, we consider the following map

µ : C(V◦)→ R, µ(g) :=
∫

RN
g(∆(ξ)) exp (−λω(|P(ξ)|))dξ.

If g : V◦ → R is a continuous function on V◦, it is clear that

|µ(g)| ≤
(∫

RN
exp (−λω(|P(ξ)|))dξ

)
sup
f∈V◦
|g( f )|.

This fact implies that µ is a continuous linear map which is positive, i.e,
µ(g) ≥ 0 whenever g ≥ 0. So, µ defines a measure on (V◦, σ∗) and for
each λ > 0,

sλ( f ) =
∫

RN
| f̂ (ξ)| exp (2λω(|P(ξ)|)) exp (−λω(|P(ξ)|))dξ

=
∫

RN
|∆(ξ)[ f ]| exp (−λω(|P(ξ)|))dξ

≤
∫

V◦
|y( f )|dµ(y).

That shows that DP,(ω)(K) and DP,(ω)(Ω) are nuclear. Following the
arguments of Theorem 2.1.11 one can prove that DP,{ω}(Ω) is nuclear.

Proposition 2.3.16. Let P be a hypoelliptic polynomial and ω a weight function
such that ω(|P(x + y)|) ≤ K + Kω(|P(x)|) + Kω(|P(y)|) for some constant
K > 0. Then DP,∗(Ω) is an algebra.

Proof. We consider the seminorms sλ( f ) =
∫

RN | f̂ (x)| exp(λω(|P(x))|)dx.
Note that∫

RN
| f̂ g(x)| exp(λω(|P(x))|)dx =

∫
RN
| f̂ ∗ ĝ(x)| exp(λω(|P(x))|)dx ≤

≤
∫

RN

∫
RN
| f̂ (y)||ĝ(x− y)| exp(λω(|P(x))|)dydx.
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The hypothesis gives a positive constant C > 0 in such a way

sλ( f g) ≤ CsKλ( f )sKλ(g).

Example 2.3.17. Consider the hypoelliptic heat polynomial in two vari-
ables, P(t, x) = it + x2, and Gevrey weights ω(t) = ta for a ∈]0, 1

2 ], then
DP,∗(Ω) is an algebra.

By Theorem 2.3.1, we haveDt2a(Ω) ⊂ DP,ta(Ω) and therefore,DP,ta(Ω)
is non trivial. For ω(t) = t

1
2 , easily one can check

|P ((x, t) + (y, u)) | 12 ≤ K + K|P(x, t)| 12 + K|P(y, u)| 12 .

We call X = P(x + y, t + u), Y = P(x, t) and Z = P(x, t). For 0 < a < 1
2 ,

we want to see
Xa ≤ K(1 + Ya + Za)

for some K > 0.
By the inequality above, we have X

1
2 ≤ K(1 + Y

1
2 + Z

1
2 ) for all X, Y, Z ≥ 0.

Observe that p := 1
2a > 1. Since on RN all the norms are equivalent we

have ‖ · ‖p ≤ D‖ · ‖1 for some D > 0. Then,(
1 + (Ya)

1
2a + (Za)

1
2a

)2a
≤ D(1 + Ya + Za).

As a consequence,

X ≤ K2(1 + Y
1
2 + Z

1
2 )2 ≤ K2D(1 + Ya + Za)

1
a

and then
Xa ≤ K2aDa(1 + Ya + Za).



Chapter 3

The problem of iterates on
non-quasianalytic classes

The aim of this chapter is to extend to the ultradifferentiable setting
the results by Komatsu, Newberger-Zielezny and Métivier mentioned in
the introduction. After that, we obtain some results on the problem of
iterates on non quasi analytic classes. The main result is Theorem 3.2.3.
Under the assumption that the weight function ω verifies a growth con-
dition introduced by Bonet, Meise and Melikhov, this theorem asserts that
the equality E

P,∗(t
1
m )

(Ω) = E∗(t)(Ω) holds if and only if P is elliptic.

3.1. The growth of EP,ω(Ω)

According to a well known result of Hörmander (see [32, Theorem
3.2]), if P is a hypoelliptic polynomial and Q any polynomial, there are
constants h > 0 and C > 0 such that

|Q(ξ)|2 ≤ C(1 + |P(ξ)|2)h, ∀ξ ∈ RN .

Moreover, the smallest h with this property is a rational number.

In case h ≤ 1, Q is said to be weaker than P. We recall that two hy-

poelliptic polynomials P and Q are equally strong if
Q(ξ)
P(ξ)

and
P(ξ)
Q(ξ)

are

bounded at infinity in RN .
Given P and Q hypoelliptic polynomials we show the equivalence be-

tween the inequality |Q(ξ)|2 ≤ C(1 + |P(ξ)|2)h and the inclusion EP,∗(t)(Ω) ⊆
E

Q,∗(t
1
h )

(Ω) for weight functions satisfying the following growth condition

45
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B-M-M:
There exits a constant H ≥ 1 such that for all t ≥ 0

2ω(t) ≤ ω(Ht) + H. (3.1)

This condition is considered by J.Bonet, R. Meise and S.N.Melikhov in [17]
in order to characterize those weight functions ω such that there exists
a sequence {Mp} with the property that the class of ultradifferentiable
functions in the sense of Braun-Meise-Taylor associated to the weight ω

coincides with the non-quasianalytic class in the sense of Komatsu (see
definition 1.0.19 and [38]) defined by the sequence {Mp}. Gevrey weights
verify this condition.

We will prove the following theorems:

Theorem 3.1.1. Let P and Q be hypoelliptic polynomials with h > 0 and C > 0
such that |Q(ξ)|2 ≤ C(1 + |P(ξ)|2)h, ∀ξ ∈ RN . Let Ω ⊂ RN be an open subset
and ω a weight function, then there exits m0 such that if m ≥ m0

E
P,∗(t

1
m )

(Ω) ⊆ E
Q,∗(t

1
mh )

(Ω),

and the inclusion map is continuous.

Theorem 3.1.2. Let Ω ⊂ RN be an open subset, ω a weight function satisfying
the condition B-M-M, cf. (3.1). Let P be an hypoelliptic polynomial and let Q
be an arbitrary polynomial such that EP,∗(t)(Ω) ⊆ E

Q,∗(t
1
h )

(Ω) for some h ≥ 1.

Then
|Q(ξ)|2 ≤ C(1 + |P(ξ)|2)h, ∀ξ ∈ RN .

In the proofs we need two technical lemmata.

Lemma 3.1.3. Let ω be a weight function, m ≥ 1 and γ,µ > 0 such that
γ ≤ µm. Then for each k ∈N, i = 0, 1, ..., k and λ > 0,

kiγ exp
(

λϕ∗
(

(k− i)µm
λ

))
≤ exp (λω(k)) exp

(
λϕ∗

(
kµm

λ

))
.

As a consequence, since ω(t) = o(t) there exists C > 0 (depending on ω) such
that

kiγ exp
(

λϕ∗
(

(k− i)µm
λ

))
≤ C exp(λCk) exp

(
λϕ∗

(
kµm

λ

))
.
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Proof.

kiγ exp
(

λϕ∗
(

(k− i)µm
λ

))
exp

(
−λϕ∗

(
kµm

λ

))
=

= kiγ exp
(
−λ

(
ϕ∗(

kµm
λ

)− ϕ∗(
(k− i)µm

λ
)
))

.

Since ϕ∗ is a convex function, we have ϕ∗(A)− ϕ∗(B) ≥ ϕ∗(A− B) if 0 ≤
B < A. Therefore,

kiγ exp
(

λϕ∗
(

(k− i)µm
λ

))
exp

(
−λϕ∗

(
kµm

λ

))
≤

kiµm exp
(
−λϕ∗( iµm

λ )
)

= exp
(

λ
(

iµm ln(k)
λ − sups≥0{

iµms
λ −ω(es)}

))
≤ exp (λω(k))

taking s = ln(k) in the last inequality.

The next lemma is stated in [28, Lemma 1.4] without a proof. We include
a proof here for the sake of completeness.

Lemma 3.1.4. Let h > 0, λ > 0 be positive constants, then for all t ≥ 1

(1) sup
j∈N0

tj exp
(
−λϕ∗(

hj
λ

)
)
≤ exp

(
λω(t

1
h )
)

and

(2) sup
j∈N0

tj exp
(
−λϕ∗(

hj
λ

)
)
≥ 1

t
exp

(
λω(t

1
h )
)

.

Proof. Proof of (1):

sup
j∈N0

tj exp
(
−λϕ∗(

hj
λ

)
)

= sup
j∈N0

tj exp

(
−λ sup

s≥0
{hjs

λ
−ω(es)}

)

We take s = ln(t)
h ≥ 0, therefore

sup
j∈N0

tj exp
(
−λϕ∗(

hj
λ

)
)
≤ sup

j∈N0

tjt−j exp
(

λω(t
1
h )
)

= exp
(

λω(t
1
h )
)

.
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In order to show (2), having in mind j ≤ s < j + 1:

sup
j∈N0

tj exp
(
−λϕ∗(

hj
λ

)
)

= sup
j∈N0

exp
(

λ(
j
λ

ln(t)− ϕ∗(
hj
λ

))
)

≥ sup
s≥0

exp
(

λ(
s
λ

ln(t)− ϕ∗(
hs
λ

))− ln(t)
)

=
1
t

exp
(

λϕ∗∗(
ln(t)

h
)
)

= 1
t exp

(
λω(t

1
h ))
)

.

Proof of Theorem 3.1.1: Using [32, Theorem 3.2] we can suppose h = µ
ν ,

where µ, ν ∈N. Then, for some constant C > 0,

|Qν(ξ)|2 ≤ C(1 + |Pµ(ξ)|2) ξ ∈ RN . (3.2)

Let Ω′ be an open subset relatively compact in Ω. Given δ > 0, we set
Ω′δ := {x ∈ Ω′ : d(x, ∂Ω′) > δ} where ∂Ω′ is the boundary of Ω′. The
condition (3.2) and [32, Theorem 4.2] imply that there exist γ > 0 and C
(which depends of P,Q and the diameter of Ω′) such that for each s ≥ 0
and t > 0,

sup
0<τ≤t

τγ‖Qν(D) f ‖2,Ω′s+τ
≤ C

{
sup

0<τ≤t
τγ‖Pµ(D) f ‖2,Ω′s+τ

+ ‖ f ‖2,Ω′s

}
, f ∈ C∞(Ω).

Moreover, γ = µ
b where 0 < b ≤ 1 is the real number which gives (see [32,

Theorem 3.1]) the inequality

|gradP(ξ)|2 ≤ C(1 + |P(ξ)|2)1−b.

for the hypoelliptic polynomial P. Hence,

‖Qν(D) f ‖2,Ω′s+t
≤ C

{
‖Pµ(D) f ‖2,Ω′s + t−γ‖ f ‖2,Ω′s

}
, f ∈ C∞(Ω).

Let k ∈ N, k ≥ 1, δ > 0. Applying repeatedly the last inequality to
s = (1 − i

k )δ, t = δ
k and Q(k−i)ν f for i = 0, 1, . . . , k we obtain ( see [57,

Theorem 1])

‖Qkν(D) f ‖2,Ω′2δ
≤ Ck

k

∑
i=0

(
k
i

)(
k
δ

)iγ

‖P(k−i)µ(D) f ‖2,Ω′ f ∈ C∞(Ω). (3.3)
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For k = 0 this inequality remains true.
On the other hand, for i = 0, 1, . . . , ν− 1 we have

|Qi(ξ)|2 ≤ 1 + |Qν(ξ)|2, ξ ∈ RN .

Again, [32, Theorem 4.2] implies ∀i = 0, 1, . . . , ν− 1,

‖Qi(D) f ‖2,Ω′2δ
≤ C′

{
‖Qν(D) f ‖2,Ω′δ

+ ‖ f ‖2,Ω′δ

}
, f ∈ C∞(Ω). (3.4)

where C′ depends of δ.
For j ∈ N0, we put j = kν + l, k,l ∈ N0, l ≤ ν− 1. Applying (3.4) to i = l
and Qkν f ,

‖Qj(D) f ‖2,Ω′2δ
≤ C′

{
‖Q(k+1)ν(D) f ‖2,Ω′δ

+ ‖Qkν(D) f ‖2,Ω′δ

}
, f ∈ C∞(Ω).

(3.5)
As a consequence, using (3.3) we obtain

‖Qj(D) f ‖2,Ω′2δ
≤ C

′
Ck+1

k+1

∑
i=0

(
k + 1

i

)(
k + 1

δ

)iγ

‖P(k+1−i)µ(D) f ‖2,Ω′+

(3.6)

+C
′
Ck

k

∑
i=0

(
k
i

)(
k
δ

)iγ

‖P(k−i)µ(D) f ‖2,Ω′ , f ∈ C∞(Ω).

We set m0 := 1
b ≥ 1. Let Ω be an open subset of RN and let m ≥ m0,

f ∈ E
P,(ω(t

1
m ))

(Ω). We fix K ⊂⊂ Ω and λ > 0. There exist Ω
′

and δ > 0

such that K ⊂ Ω
′
2δ ⊂ Ω′ ⊂⊂ Ω. We call E the constant of Lemma 3.1.3

such that for each k ∈N, i = 0, 1, ..., k and λ > 0,

kiγ exp
(

λϕ∗
(

(k− i)µm
λ

))
≤ exp(λEk) exp

(
λϕ∗

(
kµm

λ

))
.

Denote F := 2C( 1
δ )

γeλE. We can suppose F ≥ 1 and 1
δ > 1. We take A and

B the constants of Lemma 2.3.2 such that ∀k ∈N and ∀λ > 0,

Fk exp
(

λϕ∗(
k
λ

)
)
≤ exp(λ

A
B

) exp
(

λ

B
ϕ∗(

B
λ

k)
)

.

We apply the inequality (3.6) and f ∈ E
P,(ω(t

1
m ))

(Ω) to get

‖Qj(D) f ‖2,K ≤ ‖Qj(D)‖2,Ω′2δ
≤

≤ C
′′
Ck+1

k+1

∑
i=0

(
k + 1

i

)(
k + 1

δ

)iγ

exp
(

2pBλϕ∗
(

(k + 1− i)µm
2pBλ

))
+
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+C
′′
Ck

k

∑
i=0

(
k
i

)(
k
δ

)iγ

exp
(

Bλϕ∗
(

(k− i)µm
Bλ

))
when p is the first entire after µm. Therefore,

‖Qj(D) f ‖2,K ≤

C
′′
Ck+1

k+1

∑
i=0

(
k + 1

i

)(
k + 1

δ

)iγ

exp
(

2pBλϕ∗
(

(k− i)µm + p
2pBλ

))
+

+C
′′
Ck

k

∑
i=0

(
k
i

)(
k
δ

)iγ

exp
(

Bλϕ∗
(

(k− i)µm
Bλ

))
since ϕ∗ is increasing. Now, using Lemma 1.0.4 and Lemma 3.1.3 we have

‖Qj(D) f ‖2,K ≤ D
(

2C(
1
δ
)γeBλE

)k

exp
(

Bλϕ∗
(

kµm
Bλ

))
=

= DFk exp
(

Bλϕ∗
(

kµm
Bλ

))
.

In view of lemma 2.3.2,

‖Qj(D) f ‖2,K ≤ D exp
(

Bλ
A
B

)
exp

(
λϕ∗

(
kµm

λ

))
=

= D exp(Aλ) exp
(

λϕ∗
(

khνm
λ

))
≤ D exp(Aλ) exp

(
λϕ∗

(
jhm
λ

))
.

As a consequence for each j ∈N,

‖Qj(D) f ‖2,K exp
(
−λϕ∗

(
jhm
λ

))
≤ D exp(Aλ).

Then,
f ∈ E

Q,(ω(t
1

mh ))
(Ω).

In order to see the inclusion map

E
P,(ω(t

1
m ))

(Ω) ↪→ E
Q,(ω(t

1
mh ))

(Ω)

is continuous, let f ∈ E
P,(ω(t

1
m ))

(Ω) and we fix K ⊂⊂ Ω, λ > 0. Proceeding

as above:

‖Qj(D) f ‖2,K exp
(
−λϕ∗

(
jhm
λ

))
≤

≤ C
′
Ck+1

k+1

∑
i=0

(
k + 1

i

)(
k + 1

δ

)iγ

exp
(
−λϕ∗

(
jhm
λ

))
‖P(k+1−i)µ(D) f ‖2,Ω′+
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+C
′
Ck

k

∑
i=0

(
k
i

)(
k
δ

)iγ

exp
(
−λϕ∗

(
jhm
λ

))
‖P(k−i)µ(D) f ‖2,Ω′ .

Note by Lemma 3.1.3, for each k ∈N, i = 0, 1, ..., k and λ > 0,

kiγ exp
(
−λϕ∗

(
jhm
λ

))
≤ exp(λEk) exp

(
−λϕ∗

(
(k− i)µm

λ

))
.

So, for each j ∈N,

‖Qj(D) f ‖2,K exp
(
−λϕ∗

(
jhm
λ

))
≤

≤ DFk sup
l∈N0

‖Pl(D) f ‖
2,Ω′

exp
(
−λϕ∗(

lm
λ

)
)

.

Hence,

‖Qj(D) f ‖2,K exp
(
−λ

B
ϕ∗
(

jhmB
λ

))
≤

≤ D exp(λ
A
B

) sup
l∈N0

‖Pl(D) f ‖
2,Ω′

exp
(
−λϕ∗(

lm
λ

)
)

.

Proceeding as in Theorem 2.3.1, the Roumieu case is analogous. �

Proof of Theorem 3.1.2:
Roumieu Case. We fix a compact subset K0 ⊂⊂ Ω. The following

inclusions hold:

EP,(ω(t))(Ω) ⊆ EP,{ω(t)}(Ω) ⊆ E
Q,{ω(t

1
h )}

(Ω) ⊆ ind−→
n∈N

E
1
n

Q,ω(t
1
h )

(K0).

From theorem 2.2.5 we get that EP,(ω(t))(Ω) is a Fréchet space. Now we

consider on E
1
n

Q,ω(t
1
h )

(K0) the topology of Theorem 2.2.7, so that ind−→
n∈N

E
1
n

Q,ω(t
1
h )

(K0)

is an (LF)-space. By Closed Graph Theorem and Grothendieck’s Factor-
ization Theorem (see [54, Theorems 24.31 and 24.33]), there exists n0 ∈ N

such that

EP,(ω(t))(Ω) ⊆ E
1

n0

Q,ω(t
1
h )

(K0)

with continuous inclusion. So, given any seminorm max
(

pm, ‖ · ‖Q,K0, 1
n0

)
,

of E
1

n0

Q,ω(t
1
h )

(K0), there exist C > 0, a compact K ⊂⊂ Ω, p ∈ N0 and λ > 0
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such that, for all f ∈ EP,(ω(t))(Ω),

sup
j∈N0

‖Qj(D) f ‖2,K0 exp
(
− 1

n0
ϕ∗(hjn0)

)
≤ max

(
pm, ‖ f ‖Q,K0, 1

n0

)
≤ (3.7)

≤ C sup
j∈N0

‖Pj(D) f ‖2,K exp
(
−λϕ∗

(
j
λ

))
.

If ξ ∈ RN , we denote fξ(x) = ei<x,ξ> and observe that

Qj(D)ei<x,ξ> = Q(ξ)jei<x,ξ> and f α
ξ (x) = ξαiαei<x,ξ>.

Moreover, fξ ∈ EP,(ω)(Ω) since for a compact subset K ⊂⊂ Ω and λ > 0

‖Pj(D) fξ‖2,K = m(K)|P(ξ)|j ≤ C exp
(

λϕ∗
(

j
λ

))
by Lemma 2.3.2.
Applying inequality (3.7) to fξ we get

sup
j∈N0

|Q(ξ)|j exp
(
− 1

n0
ϕ∗(hjn0)

)
≤ C2 sup

j∈N0

|P(ξ)|j exp
(
−λϕ∗

(
j
λ

))
.

(3.8)
For |Q(ξ)| and |P(ξ)| greater or equal than 1 we obtain from (3.8) and
Lemma 3.1.4,

exp
(

1
2n0

ω(|Q(ξ)| 1h )
)
≤ C2 exp (λω(|P(ξ)|)) .

Hence,

ω(|Q(ξ)| 1h ) ≤ C3 + C4ω(|P(ξ)|) ≤ C5ω(|P(ξ)|)

whenever |P(ξ)|, |Q(ξ)| ≥ 1. On the other hand, condition B-M-M implies
that for each k ∈N there exists Hk such that 2k−1ω(t) ≤ ω(Hkt) whenever
t ≥ 1. Then,

ω(|Q(ξ)| 1h ) ≤ ω(C6|P(ξ)|) whenever |P(ξ)|, |Q(ξ)| ≥ 1.

Having in mind ω vanishes on [0, 1] and it is increasing and |P| tends to
+∞ if |ξ| tends to +∞ we finally conclude that there is C7 > 0 such that,

|Q(ξ)| 1h ≤ C7|P(ξ)| for every ξ ∈ RN .

The Beurling case is easier because EP,(ω)(Ω) is a Fréchet space. �
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Corollary 3.1.5. Let ω be a weight function given. Let P and Q be hypoelliptic
polynomials and let Ω be an open subset of RN .

1. If P and Q are equally strong then there is m0 such that m ≥ m0 implies
E

P,∗(t
1
m )

(Ω) = E
Q,∗(t

1
m )

(Ω).

2. The converse is true under the additional assumption that ω satisfies con-
dition B-M-M.

Proof. (1) There are constants C, D > 0 such that |Q(ξ)|2 ≤ C(1 + |P(ξ)|2)
and |P(ξ)|2 ≤ C(1 + |Q(ξ)|2), ∀ξ ∈ RN . By Theorem 3.1.1 there are m1

and m2 such that

E
P,∗(t

1
m )

(Ω) ⊆ E
Q,∗(t

1
m )

(Ω) if m ≥ m1

and
E

Q,∗(t
1
m )

(Ω) ⊆ E
P,∗(t

1
m )

(Ω) if m ≥ m2.

Take m0 = max(m1, m2).

(2) We apply Theorem 3.1.2.

Next we show that for any elliptic polynomial P of degree m, the classes
E

P,∗(t
1
m )

(Ω) and E,∗(t)(Ω) are the same as sets and as topological vector

spaces. This is an extension of a result of Komatsu (see [37]). The con-
verse in the Gevrey setting is due to Métivier [55]. We need the following
Lemma due to Komatsu (see [37, Lemma 3]).

Lemma 3.1.6. Let Ω be an open subset of RN . Suppose that P is an elliptic
operator of order m and let ρ0 > 0 be given. Then, there exists a constant C > 0,
which only depends on N, ρ0 and P, such that for each f ∈ C∞(Ω) and for each
α ∈N0

N verifying |α| ≤ m,

‖ f (α)‖2,Ωρ+σ
≤ C‖P(D) f ‖2,Ωσ

|α|
m ‖ f ‖2,Ωσ

1− |α|m + C
1

ρ|α|
‖ f ‖2,Ωσ

for every 0 < ρ ≤ ρ0 and σ > 0.

Theorem 3.1.7. Let ω be a weight function and let Ω be an open subset of RN .
For any elliptic polynomial P of degree m we have

E
P,∗(t

1
m )

(Ω) ⊆ E∗(t)(Ω)

and the inclusion map is continuous.
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Proof. Let Ω′ be an open subset relatively compact in Ω. We first estimate
the derivatives f (α) of order |α| = km, k ∈ N0. We write α = p + q with
|p| = m and |q| = (k − 1)m. Using Lemma 3.1.6 with ρ = δ

k and σ =
δ(1− 1

k ), δ small enough, we get a constant C > 0 such that ∀ f ∈ C∞(Ω′),

‖ f (α)‖2,Ω′δ
= ‖

(
f (q)
)(p)
‖2,Ω′δ

≤ C
{
‖P(D) f (q)‖2,Ω′

δ(1− 1
k )

+ (
k
δ
)m‖ f (q)‖2,Ω′

δ(1− 1
k )

}
.

Applying this Lemma k times as is (3.3) we obtain

‖ f (α)‖2,Ω′δ
≤ Ck

k

∑
i=0

(
k
i

)(
k
δ

)im

‖P(k−i)(D) f ‖2,Ω′ (3.9)

whenever |α| = km. In the case that α ∈ N0
N is an arbitrary multi-index

we write α = β + γ, where |β| = km and |γ| < m.

We observe that xay1−a ≤ x + y holds if x, y ≥ 0 and 0 < a < 1.
Therefore,

‖P(D) f ‖2,Ω′δ

|γ|
m ‖ f ‖2,Ω′δ

1− |γ|m ≤ ‖P(D) f ‖2,Ω′δ
+ ‖ f ‖2,Ω′δ

.

Hence it follows from Lemma 3.1.6 that there is a constant C′ such that

‖ f (γ)‖2,Ω′2δ
≤ C′(‖P(D) f ‖2,Ω′δ

+ ‖ f ‖2,Ω′δ
) ∀ f ∈ C∞(Ω′δ) y ∀|γ| < m.

(3.10)
C′ dependes of δ. We apply (3.10) to f (β) to obtain

‖ f (α)‖2,Ω′2δ
≤ C′(‖P(D) f (β)‖2,Ω′δ

+ ‖ f (β)‖2,Ω′δ
). (3.11)

Now the inequality (3.9) implies

‖P(D) f (β)‖2,Ω′δ
= ‖(P(D) f )(β)‖2,Ω′δ

≤ Ck
k

∑
i=0

(
k
i

)(
k
δ

)im

‖P(k+1−i)(D) f ‖2,Ω′ ≤

≤ Ck+1
k+1

∑
i=0

(
k + 1

i

)(
k + 1

δ

)im

‖P(k+1−i)(D) f ‖2,Ω′ .

From this inequality, (3.11) and (3.9) we conclude

‖ f (α)‖2,Ω′2δ
≤ C′Ck+1

k+1

∑
i=0

(
k + 1

i

)(
k + 1

δ

)im

‖P(k+1−i)(D) f ‖2,Ω′+

+C′Ck
k

∑
i=0

(
k
i

)(
k
δ

)im

‖P(k−i)(D) f ‖2,Ω′ .
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As γ ≤ µm, we can use Lemma 3.1.4, proceeding as in Theorem 3.1.1 with
h = µ

ν = 1
m and γ = µ

b = m, to conclude that

E
P,∗(t

1
m )

(Ω) ⊆ E∗(t)(Ω)

with continuous inclusion.

Corollary 3.1.8. Let ω be a weight function and let Ω be an open subset of RN

and P an elliptic polynomial. Then the equality E
P,∗(t

1
m )

(Ω) = E∗(t)(Ω) holds.

Proof. It is a consequence of Theorems 2.3.1 and 3.1.7.

Corollary 3.1.9. Let ω be a weight function and let Ω be an open subset of RN .
If P is a hypoelliptic polynomial, then there exists m0 such that m ≥ m0 implies
E

P,∗(t
1
m )

(Ω) ⊆ E
∗(t

1
mh )

(Ω) with continuous inclusion.

Proof. Condition IIb of [33, Theorem 11.1.3] gives two positive constants
C, h > 0 such that |ξ| ≤ C(1 + |P(ξ)|)h. Consider the elliptic polynomial
Q(ξ) = |ξ|2 = ξ2

1 + . . . + ξ2
N of degree 2. Then, |Q(ξ)|2 ≤ C′(1 + |P(ξ)|2)2h

for an other positive constant C′ > 0. Theorem 3.1.1 implies the existence
of m0 such that E

P,∗(t
1
m )

(Ω) ⊆ E
Q,∗(t

1
m2h )

(Ω) if m ≥ m0. By Theorem 3.1.7,

E
Q,∗(t

1
m2h )

(Ω) = E
∗(t

1
mh )

(Ω).

3.2. Results on the problem of iterates

The problem of iterates consists in characterizing the functions in a
given class of functions in terms of the behavior of the iterates of a fixed
differential operator.

Let ω be a weight function and let P be a polynomial of order m. In this
section we want to characterize when E

P,∗(t
1
m )

(Ω) = E∗(t)(Ω) in terms of

the polynomial P. First, we show that the coincidence between E
P,∗(t

1
m )

(Ω)

and E∗(t)(Ω) implies the hypoellipticity of P. For weight functions verify-
ing the growth condition B-M-M, we will prove that this equality holds
if and only if the polynomial P is elliptic. The assumption that ω verifies
the property B-B-M is needed in order to achieve this result. In fact, in
Corollary 3.2.2 we consider the weight function ω(t) = logβ(1 + t), β > 1,
which does not have this property and see that the equality E

P,∗(t
1
m )

(Ω) =

E∗(t)(Ω) holds if and only if P is hypoelliptic.
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Lemma 3.2.1. If E
P,∗(t

1
m )

(Ω) = E∗(t)(Ω) algebraically, then P is hypoelliptic
and the previous equality also holds in the topological sense.

Proof. We will present the proof for Ω = RN . Otherwise, we can proceed
as in Proposition 2.3.3.

Beurling case:

We put σ(t) = ω(t
1
m ). Since

{ f ∈ C∞(RN) : P(D) f = 0} ⊂ EP,(σ)(RN),

our hypothesis implies that

{ f ∈ C∞(RN) : P(D) f = 0} = { f ∈ E(ω)(RN) : P(D) f = 0}.

We fix a compact subset K ⊂ RN and λ > 0. From the Open Mapping
Theorem we deduce that there are a constant C > 0, m ∈N and a compact
set Q such that

pK,λ( f ) ≤ C sup
|α|≤m

sup
x∈Q
| f (α)(x)| (3.12)

whenever f ∈ C∞(RN) and P(D) f = 0. We now assume that P is not hy-
poelliptic. Then we can apply Theorem 2.1.4 and Proposition 2.1.7 to find
a function f ∈ Cm(RN) \ C∞(RN) such that P(D) f = 0. We take {ρn} a
regularizing sequence. Then { f ∗ ρn} is a Cauchy sequence in Cm(RN) and
from inequality (3.12) we conclude that also { f ∗ ρn} is a Cauchy sequence
in E(ω)(RN). This is a contradiction.

Roumieu case:

We fix a compact subset K ⊂ RN . Now, our hypothesis implies that
the inclusion

{ f ∈ C∞(RN) : P(D) f = 0} ⊆ ind
n
E

1
n

ω (K)

holds. Moreover, the restriction map has closed graph. By Closed Graph
Theorem and Grothendieck’s Factorization Theorem there exists n0 ∈ N

such that the map T : { f ∈ C∞(RN) : P(D) f = 0} → E
1

n0
ω (K) given

by T( f ) = f |K is well defined and continuous. This gives an inequality
similar to (3.12) and we can conclude as above.
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Corollary 3.2.2. Let Ω be an open subset of RN . Let ω(t) = logβ(1 + t),
β > 1, be given and P a polynomial. Then EP,∗(Ω) = E∗(Ω) holds algebraically
if, and only if, P is hypoelliptic. In this case, the equality EP,∗(Ω) = E∗(Ω) is
also topological.

Proof. If m ≥ 1, observe that the weight σ(t) = ω(t
1
m ) is equivalent to

the weight ω(t) = logβ(1 + t). Therefore, in view of Remark 1.0.8, the
equalities Eω(Ω) = Eσ(Ω) and EP,ω(Ω) = EP,σ(Ω) hold in the Beurling
and Roumieu cases.

Suppose EP,∗(Ω) = E∗(Ω), then P is hypoelliptic by Lemma 3.2.1. Con-
versely, if P is hypoelliptic, Corollary 3.1.9 asserts the existence of m0 large
enough and h > 0 such that E

P,∗(t
1

m0 )
(Ω) ⊆ E

∗(t
1

m0h )
(Ω) with continuous

inclusion, that is, EP,∗(Ω) ⊆ E∗(Ω) with continuous inclusion. The other
inclusion is a consequence of Theorem 2.3.1.

For weight functions satisfying the growth condition B-M-M, we can
proceed as in Theorem 3.1.2 and obtain the following result:

Theorem 3.2.3. Let ω be a weight function verifying condition B-M-M. Sup-
pose P is a polynomial which degree is m. Then E

P,∗(t
1
m )

(Ω) = E∗(t)(Ω) holds

algebraically if and only if P is elliptic. In this case the equality E
P,∗(t

1
m )

(Ω) =

E∗(t)(Ω) is also topological.

Proof. If P is elliptic then E
P,∗(t

1
m )

(Ω) = E∗(t)(Ω) by theorem 3.1.7. In order

to show the converse, we apply once again Theorem 3.1.7 to the elliptic
polynomial Q(ξ) = ξ2

1 + . . . + ξ2
N of order 2 to get

E
P,∗(t

1
m )

(Ω) = E∗(t)(Ω) = E
ξ2

1+...+ξ2
N ,∗(t

1
2 )

(Ω).

Moreover, according to Lemma 3.2.1, P is hypoelliptic and we can proceed
as in Theorem 3.1.2 to deduce

(ξ2
1 + . . . + ξ2

N)
1
2 ≤ C|P(ξ)| 1

m if |ξ| is large enough.

That is, for some constant C > 0,

(ξ2
1 + . . . + ξ2

N)m ≤ C(1 + |P(ξ)|2).





Chapter 4

Fréchet spaces invariant under
differentiation

M. Langenbruch and J. Voigt proved in [50] that a Fréchet space of
distributions which is stable under differential operators is continuously
included in C∞. They also showed that to guarantee this continuous inclu-
sion it is enough to assume that the Fréchet space is stable under a single
hypoelliptic differential operator P(D) and that this property in fact char-
acterizes the hypoellipticity of the operator. Our aim in this chapter is to
provide extensions of these results to the ultradifferentiable setting and
show their connection with the problem of iterates of differential opera-
tors.

Observe that the class of ultradistributions of Roumieu type
E := D′{ω}(RN) is a Fréchet space invariant under differential operators
which is not included in C∞(RN). Nevertheless, a result similar to that of
Langenbruch and Voigt can be obtained after imposing the extra assump-
tion that E is stable under suitable differential operators of infinite order,
available in any non quasianalytic class other than C∞(RN). These opera-
tors are called ultradifferentiable operators. After some preliminaries on
ultradifferential operators we extend in the second section the result of
Langenbruch and Voigt using strongly (ω)-hypoelliptic ultradifferential
operators. The main result is Theorem 4.2.1.

Each hypoelliptic linear partial differential operator with constant co-
efficients is also Gevrey hypoelliptic for some Gevrey class depending on
the operator, hence it makes sense to study whether Fréchet spaces of
distributions invariant under a single hypoelliptic operator and satisfy-
ing some extra assumptions should be contained not only in the space
of all smooth functions but in a smaller class of ultradifferentiable func-

59
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tions. This question is related to the problem of iterates. So, in the last
section of this chapter we address the question whether a Fréchet space
E ⊂ D′(ω)(RN) which is invariant under the action of a single one elliptic
operator P(D) that satisfies some extra assumptions on equicontinuity is
necessarily contained in E(ω)(RN). The cases that P(D) is hypoelliptic or
semielliptic are also considered. As a consequence we obtain several re-
sults related to the problem of iterates for non-quasianalytic classes. Main
results in this section are Theorem 4.3.4 and Corollary 4.3.9.

4.1. Preliminaries: ultradifferential operators

We introduce now the ultradifferential operators with constant coeffi-
cients. We follow [21].

Lemma 4.1.1. Let G ∈ H(CN) be an entire function such that log |G(z)| =
O(ω(|z|)) as |z| tends to infinity. Then, there is a constant k > 0 such that

|G(α)(0)| ≤ α!eke−kϕ∗( |α|k ), ∀α ∈NN
0 .

Definition 4.1.2. Let G ∈ H(CN) be an entire function such that log |G(z)| =
O(ω(|z|)) as |z| tends to infinity. Then, the previous Lemma allows to
show that

TG(ϕ) := ∑
α∈NN

0

(−i)|α|
G(α)(0)

α!
ϕ(α)(0)

defines an ultradistribution TG ∈ E ′(ω)(RN) whose support reduces to {0}.
The convolution operator

G(D) : D′(ω)(RN)→ D′(ω)(RN), G(D)ν := TG ∗ ν

is called an ultradifferential operator of class (ω).

If f ∈ E(ω)(RN), then G(D) f ∈ E(ω)(RN). G(D) has the important
property that its restriction to E(ω)(RN) can be interpreted as a differential
operator of infinite order

G(D) : E(ω)(RN)→ E(ω)(RN).

More precisely, for every f ∈ E(ω)(RN) one has,

G(D) f (x) = ∑
α∈NN

0

i|α|
G(α)(0)

α!
f (α)(x).
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Observe that the Fourier transform of TG is

T̂G(z) = TG(e−iz·)

= ∑
α∈NN

0

(−i)|α|
G(α)(0)

α!
(−iz)α

= ∑
α∈NN

0

G(α)(0)
α!

(−z)α

= G(−z).

The ultradifferential operator G(D) is called elliptic if
G(D)−1(A(RN)

)
⊂ A(RN), where A(RN) denotes the class of real ana-

lytic functions on RN . It is said to be (ω)-hypoelliptic if G(D)−1(E(ω)(RN)
)
⊂

E(ω)(RN). The ellipticity and the (ω)-hypoellipticity of an ultradifferen-
tial operator are characterized in terms of the distribution of zeros and the
growth of the entire function G(z) (see [25] and [14]). We will say that the
(ω)-hypoelliptic ultradifferential operator G(D) is strongly (ω)-hypoelliptic
if there is a constant C > 0 such that

Cω(|x|) ≤ log |G(x)| , x ∈ RN .

The existence of strongly (ω)-hypoelliptic ultradifferential operators fol-
lows from [21, 49].

In order to define ultradifferential (of class {ω}) operators on the class
D′{ω}(RN) we can proceed as above imposing that log |G(z)| = o(ω(|z|))
as |z| tends to infinity.

4.2. Fréchet spaces invariant under ultradifferential
operators

We want to extend the result of Langenbruch and Voigt to the ultra-
differentiable setting. As we already have mentioned before, the space
of ultradistributions of Roumieu type E := D′{ω}(RN) is a Fréchet space
which is stable under differential operators but which is not contained in
E(ω)(RN).

Moreover, following the arguments of [14, Proposition 2.13], one can
construct an (ω)-hypoelliptic ultradifferential operator G(D) such that

G(D)
(
D′{ω}(RN)

)
⊂ D′{ω}(RN).

That means that a Fréchet space which is invariant under an (ω)-hypoelliptic
ultradifferential operator is not necessary formed by ultradifferentiable
functions.
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Note that G(D) strongly (ω)-hypoelliptic implies

G(D)
(
D′{ω}(RN)

)
* D′{ω}(RN).

Otherwise, G(D) defines a continuous operator G(D) : D′{ω}(RN) →
D′{ω}(RN) whose transposed operator G(−D) : D{ω}(RN) → D{ω}(RN)
is continuous. Then, log |G(z)| = o(ω(|z|)) which is a contradiction with
the growth condition of strongly (ω)-hypoelliptic operator.

Next result is an extension of [50, Theorem 1] to the ultradifferentiable
setting.

Theorem 4.2.1. Let E be a Fréchet space which is continuously included in
D′(ω)(RN) and such that G(D)E ⊂ E for some strongly (ω)-hypoelliptic ul-
tradifferential operator G(D) of class (ω). Then E ⊂ E(ω)(RN) with continuous
inclusion.

Proof. We need some preparation. Let (Kj) denote the closed ball centered
at the origin and with radius j and

Xj := {µ ∈ E ′(ω)(RN); supp µ ⊂ Kj, ||µ||∗j := sup
z∈CN

|µ̂(z)| e−jω(|z|)−j|Im z| < ∞},

where µ̂ denotes the Fourier-Laplace transform of µ (see [22] and Theorem
1.0.17). Then Xj is a Banach space and

E ′(ω)(RN) = ind
j→

Xj.

For every j ∈N, the bilinear form

B : E×D(ω)(Kj+1)→ C, B(h, ϕ) := 〈h, ϕ〉 ,

is separately continuous, hence it is continuous. Consequently, if we fix
a fundamental system of seminorms (pm) of E then there are constants
Cj > 0 and mj ∈N, such that

|〈h, ϕ〉| ≤ Cj pmj(h) |ϕ|mj
∀h ∈ E, ϕ ∈ D(ω)(Kj+1),

where

|ϕ|m := sup
x∈RN

sup
α∈NN

0

∣∣∣ϕ(α)(x)
∣∣∣ exp

(
−mϕ∗(

|α|
m

)
)
.

According to property (α) of weight function, there is a constant L ∈ N

such that
ω(et) ≤ L(1 + ω(t)) ∀t ≥ 0. (4.1)
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By assumption there is a constant C > 0 with Cω(|x|) ≤ log |G(x)| for
every x ∈ RN . Now, for each j we define Gj(z) as a suitable power of G(z)
such that

(1 + j + 2mjL) ω(|x|) ≤ log
∣∣Gj(x)

∣∣ , x ∈ RN . (4.2)

Then Gj(D) is an ultradifferential operator of (ω)-class which is strongly

(ω)-hypoelliptic. Let now ψj ∈ D(ω)(
◦
K j+1) be a test function which is

constant ψj = 1 on a neighborhood of Kj. For any µ ∈ Xj we define

f (x) =
1

(2π)N

∫
RN

µ̂(t)
Gj(t)

ei<x,t> dt.

Then we can decompose

µ = Gj(−D) f = Gj(−D)
(
ψj f
)
+ Gj(−D)

(
(1− ψj) f

)
.

Moreover, we can apply (4.2) and

|tα|e−mω(t) ≤ exp
(
mϕ∗(

|α|
m

)
)
∀ m ∈N, α ∈NN

0 ,

to conclude that f ∈ C∞(RN) and

| f |2Lmj := sup
α∈NN

0

sup
x∈RN

∣∣∣ f (α)(x)
∣∣∣ exp

(
− 2mjLϕ∗(

|α|
2mjL

)
)
≤ Dj||µ||∗j

for some constant Dj > 0 which does not depend on µ. Our aim is to
prove that each ultradistribution h ∈ E can be extended to a continuous
and linear map

Th : E ′(ω)(RN)→ C.

First we claim that the linear map

Φ : Xj → E(ω)(RN), µ 7→
(
1− ψj(x)

) 1
(2π)N

∫
RN

µ̂(t)
Gj(t)

ei<x,t> dt

is well-defined and continuous. In fact, since Gj(−D) is an (ω)-hypoelliptic
operator and Gj(−D) f = µ we have, for every µ ∈ Xj,

sing(ω)supp f ⊂ sing(ω)supp µ ⊂ Kj,

hence
(1− ψj) f ∈ E(ω)(RN).
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On the other hand, from the convexity of ϕ∗ and (4.1) we get, for every
x ∈ RN and α ∈NN

0 ,∣∣∣(ψj f )(α)(x)
∣∣∣ ≤ ∑

β≤α

(
α

β

) ∣∣∣ψ(β)
j (x)

∣∣∣ ∣∣∣ f (α−β)(x)
∣∣∣

≤ | f |2Lmj

∣∣ψj
∣∣
2Lmj

exp
(
α + 2Lmj ϕ

∗( |α|2Lmj
)
)

≤ | f |2Lmj

∣∣ψj
∣∣
2Lmj

exp
(
2mj ϕ

∗( |α|2mj
) + mj

)
and, consequently∣∣ψj f

∣∣
2mj
≤ emj | f |2Lmj

∣∣ψj
∣∣
2Lmj
≤ Djemj

∣∣ψj
∣∣
2Lmj
||µ||∗j . (4.3)

Moreover, it follows from the previous estimates that Φ : Xj → D′(ω)(RN)
is weakly continuous, hence Φ : Xj → E(ω)(RN) is continuous by the
closed graph theorem and the claim is proved.

We now fix h ∈ E and consider a regularizing family (ηε)ε↓0, ηε ∈
D(ω)(RN). Define

Tj : Xj → C

by

Tj(µ) = lim
ε→0

〈
Gj(D)h, (ψj f ) ∗ ηε

〉
+
〈

h, Gj(−D)
(
(1− ψj) f

)〉
,

where

f (x) =
1

(2π)N

∫
RN

µ̂(t)
Gj(t)

ei<x,t> dt.

Let us prove that Tj is a well-defined linear map. Since Gj(D)h ∈ E and
(ψj f ) ∗ ηε ∈ D(ω)(Kj+1) we get∣∣〈Gj(D)h, (ψj f ) ∗ (ηε1 − ηε2)

〉∣∣ ≤ Cj pmj

(
Gj(D)h

) ∣∣(ψj f ) ∗ (ηε1 − ηε2)
∣∣
mj

.

On the other hand, using (4.3), we have

lim
ε→0

∣∣(ψj f ) ∗ ηε − (ψj f )
∣∣
mj

= 0,

from where it follows that( 〈
Gj(D)h, (ψj f ) ∗ ηε

〉 )
ε↓0

is a Cauchy net. On the other hand,

Gj(−D)
(
(1− ψj) f

)
= µ− Gj(−D)(ψj f )
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is compactly supported, hence

Gj(−D)
(
(1− ψj) f

)
∈ D(ω)(RN).

Consequently Tj is a well-defined linear map. From (4.3) and the continu-
ity of

Gj(−D) ◦Φ : Xj → D(ω)(Kj+1)

we conclude that there is a positive constant Mj such that∣∣Tj(µ)
∣∣ ≤ Cj pmj

(
Gj(D)h

) ∣∣ψj f
∣∣
mj

+
∣∣〈h, (Gj(D) ◦Φ)µ

〉∣∣
≤ Mj||µ||∗j ,

which proves that
Tj : Xj → C

is a continuous and linear form. Moreover, for µ ∈ Xj ∩ D(ω)(RN) we
have

Tj(µ) = lim
ε→0

( 〈
h, Gj(−D)(ψj f ) ∗ ηε

〉
+
〈

h, Gj(−D)((1− ψj) f ) ∗ ηε

〉 )
= lim

ε→0

〈
h, Gj(−D) f ∗ ηε

〉
= lim

ε→0
〈h, µ ∗ ηε〉 = 〈h, µ〉 .

Since the restriction of Tj+1 to Xj coincides with Tj, we finally conclude that
there is a continuous and linear form T : E ′(ω)(RN)→ C with the property
that T(µ) = 〈h, µ〉 for all µ ∈ D(ω)(RN). That is, as ultradistributions,

h = T ∈ E(ω)(RN).

4.3. Iterates and Fréchet spaces invariant under par-
tial differential operators

In this section we are interested in the following question: let E ⊂
D′(ω)(RN) be a Fréchet space and P(D) a differential operator of finite or-
der such that P(D)E ⊂ E. We want to look for additional conditions in
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order to ensure that E ⊂ E(ω)(RN).

This condition consists precisely in involving extra equicontinuity as-
sumptions on the iterates of P acting on the Fréchet space E.

Definition 4.3.1. Let E be a Fréchet space such that E ⊂ D′(ω)(RN) with
continuous inclusion and let P(D) be a differential operator of degree m.
Then E is said to be (ω, P(D))−stable if P(D)E ⊂ E and, moreover, for
every k ∈N, the sequence of operators

Pj(D)e−kϕ∗(m j
k ) : E→ E

is equicontinuous, that is, for every k ∈ N and every continuous semi-
norm r on E there is a continuous seminorm s on E with

r
(

Pj(D) f
)
≤ ekϕ∗(m j

k )s( f ) ∀j ∈N, f ∈ E. (4.4)

Example 4.3.2. We put ωm(t) = ω(t
1
m ). For every hypoelliptic polynomial

P and for every m ∈N the Fréchet space EP,(ωm)(RN) is (ω, P(D))−stable.

In the limit case ω(t) = log(1 + t), (ω, P(D))−stability simply means
that P(D)E ⊂ E.

Given a differential operator P(D) and an (ω, P(D))−stable Fréchet
space E ⊂ D′(ω)(RN), we want to analyze whether E consists of smooth
functions or even E ⊂ E(λ)(RN) for some weight λ related to ω. We ob-
serve that, for an arbitrary polynomial P(D), the space

E := {S ∈ D′{ω}(RN) : P(D)S = 0},

consisting of the ultradistributions of Roumieu type in the Kernel of P(D),
is an (ω, P(D))−stable Fréchet space. Hence in order to have a positive
answer to the previous question the polynomial P has to be hypoelliptic.

As proved in Theorem 3.1.7, for any elliptic polynomial P of degree m the
space E

P,(ω(t
1
m ))

(RN) is contained in E(ω)(RN). This fact and the result by

Langenbruch and Voigt [50, Theorem 1] permit us to prove a similar result
for arbitrary (ω, P(D))−stable Fréchet spaces of distributions.

Proposition 4.3.3. Let P(D) be an elliptic differential operator of degree m. If
the Fréchet space E ⊂ D′(RN) is (ω, P(D))−stable then E ⊂ E(ω)(RN) with
continuous inclusion.
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Proof. According to Langenbruch, Voigt [50, Theorem 1], E is continuously
included in C∞(RN). Hence, for any f ∈ E, k ∈N and K ⊂ RN ,

sup
j∈N0

‖ Pj(D) f ‖2,K e−kϕ∗(m j
k ) < ∞,

which means that
f ∈ E

P,(ω(t
1
m ))

(RN).

Since P is an elliptic operator, we can apply Theorem 3.1.7 to conclude that
f ∈ E(ω)(RN).

This result can be partially extended to Fréchet spaces of ultradistribu-
tions.

Theorem 4.3.4. Let P(D) be an elliptic differential operator of degree m such
that its principal part has real coefficients. If the Fréchet space E ⊂ D′(ω)(RN) is
(ω, P(D))-stable then E ⊂ E(ω)(RN) with continuous inclusion.

Proof. We will see that E is invariant under the action of a strongly (ω)-
hypoelliptic operator and then the conclusion follows applying Theorem
4.2.1. Throughout the proof, in order to simplify the notation, we will put
σ := ωm.

According to [49, Corollary 1.4] there are an entire function g ∈ H(C)
without zeros on the real line and a conic neighborhood Γ of R \ {0}, de-
fined by |Im z| < ε|Re z|, such that

|g(z)| ≤ AeBσ(|z|) ∀z ∈ C and |g(z)| ≥ aebσ(|z|) ∀z ∈ Γ. (4.5)

We now put
P = Q + Pm,

where Pm is the principal part of P and Q is a polynomial of degree at most
m− 1. For each ξ ∈ Rn we have, for some d > 0 and for |ξ| large enough,∣∣∣ Im P(ξ)

Re P(ξ)

∣∣∣ ≤ |Q(ξ)|
|Pm(ξ)|−|Q(ξ)|

≤ |Q(ξ)|
d|ξ|m−|Q(ξ)| .

Hence, there is R > 0 such that P(ξ) ∈ Γ whenever ξ ∈ RN and |ξ| ≥ R.
We now define G ∈ H(CN) by

G(z) := g
(
ε0P(z)

)
,
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where ε0 > 0 is such that G(ξ) 6= 0 for every ξ ∈ RN with |ξ| ≤ R. Hence
G(ξ) 6= 0 for every ξ ∈ RN . Then, for some constants C, D > 0, we have

|G(z)| ≤ AeBσ(ε0|P(z)|) ≤ CeDσ(|z|m)

= CeDω(|z|)

for every z ∈ CN . On the other hand, there is δ > 0 with |P(ξ)| ≥ δ|ξ|m for
|ξ| large enough. Consequently, there is q ∈N such that

|G(ξ)| ≥ aebσ(ε0|P(ξ)|)

≥ aebω(2−q|ξ|)

for each ξ ∈ RN with |ξ| large enough. Since G does not vanish on RN , we
finally deduce

|G(ξ)| ≥ a′eb′ω(|ξ|)

for |ξ| ∈ RN . To conclude that G(D) is a strongly (ω)-hypoelliptic ultrad-
ifferential operator of (ω)-class it is enough to show that (see [14, Theorem
2.1])

lim
|z| → ∞
G(z) = 0

|Im z|
ω(|z|) = ∞.

We are going to prove that each z ∈ CN with |Imz| ≤ Aω(|z|) also sat-
isfies |ImP(z)| < ε|ReP(z)| provided that |z| is big enough, and conse-
quently G(z) = g(P(z)) 6= 0. Since ω(t) = o(t) we may assume |Imz| ≤
Aω(|Rez|) for some different constant A. Clearly,

|ImQ(z)| ≤ |Q(z)| ≤ C|z|m−1 ≤ C(1 + A)m|Rez|m−1.

On the other hand, by Taylor formula

Pm(z) = Pm(Rez + iImz) = Pm(Rez) + ∑
α 6=0

P(α)
m (Rez)

α!
(iImz)α.

Each term in the sum above is estimated as follows

|P(α)
m (Rez)(iImz)α| ≤ |Rez|m−|α||Imz||α|.

Therefore, for |z| big enough, the whole sum is not bigger than D|Rez|m−1|Imz|.
Since the principal part of P has real coefficients we finally have

|ImP(z)| ≤ D′|Rez|m−1|Imz| ≤ D′A|Rez|m−1ω(|Rez|)
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whereas

|ReP(z)| ≥ |Pm(Rez)| − D′A|Rez|m−1ω(|Rez|)

≥ d|Rez|m − D′A|Rez|m−1ω(|Rez|)

≥ L|Rez|m.

Hence, it is clear that
|ImP(z)| < ε|ReP(z)|

provided that |z| is big enough.

We now check that G(D)E ⊂ E. Since the entire function

g(z) = ∑
j∈N0

ajzj

satisfies (4.5), we can use the convexity of ϕ∗ and Cauchy inequalities to
find k ∈N and C > 0 such that

|aj| ≤ Ce−kϕ∗(m j
k ) ∀j ∈N0.

Moreover,
G(D) = ∑

j∈N0

ajPj(D).

If r is a continuous seminorm on E then there is another continuous semi-
norm s on E such that, for every f ∈ E,

∑
j∈N0

|aj|r
(

Pj(D) f
)
≤ CD sup

j∈N0

e−2kϕ∗(m j
2k )r
(

Pj(D) f
)

≤ CDs( f ),

where

D = ∑
j∈N0

e2kϕ∗(m j
2k )

ekϕ∗(m j
k )

< +∞.

This proves that the series ∑
j∈N0

ajPj(D) f converges in the Fréchet space E

and G(D) f ∈ E.

Remark 4.3.5. If E is invariant under complex conjugation, the assumption
that the principal part of P should be real is redundant. Indeed, (ω, P(D))-
stability then implies (ω, Q(D))-stability where Q(D) = P(D)P(D) =
P(D)P(−D) and the principal part of Q has real coefficients.



70 Fréchet spaces invariant under differentiation

According to Condition IIb of [33, II, Theorem 11.1.3], for every hypoellip-
tic differential operator P(D) of degree m, there are c > 0 and 0 < r < 1
such that |P(ξ)| ≥ c|ξ|rm and |P(α)(ξ)| ≤ c−1|P(ξ)||ξ|−r|α| if ξ ∈ RN and

|ξ| is large enough. Let us take a weight function ω such that lim
t→∞

ω(t)
tr =

0. In the sequel we will consider λ(t) := ω(tr).

Proposition 4.3.6. We assume that the hypoelliptic differential operator P(D)
of degree m satisfies

lim
x∈RN ,|x|→∞

ImP(x)
ReP(x)

= 0.

If the Fréchet space E ⊂ D′(λ)(RN) is (ω, P(D))−stable then E ⊂ E(λ)(RN)
with continuous inclusion.

Proof. Let (Kj) denote the closed ball centered at the origin and with radius
j and

Xj := {µ ∈ E ′(λ)(RN); supp µ ⊂ Kj, ||µ||∗j := sup
z∈CN

|µ̂(z)| e−jλ(|z|)−j|Im z| < ∞}.

Then Xj is a Banach space and

E ′(λ)(RN) = ind
j→

Xj.

For every j ∈N, the bilinear form

B : E×D(λ)(Kj+1)→ C, B(h, ϕ) := 〈h, ϕ〉 ,

is separately continuous, hence it is continuous. Consequently, if we fix
a fundamental system of seminorms (pm) of E there are constants Cj > 0
and mj ∈N, such that

|〈h, ϕ〉| ≤ Cj pmj(h) |ϕ|mj
∀h ∈ E, ϕ ∈ D(λ)(Kj+1),

where

|ϕ|m := sup
x∈RN

sup
α∈NN

0

∣∣∣ϕ(α)(x)
∣∣∣ exp

(
−mϕ∗λ(

|α|
m

)
)
.

As in the proof of Theorem 4.3.4, there are an entire function g ∈ H(C)
without zeros on the real line and a conic neighborhood Γ of R \ {0}, de-
fined by |Im z| < ε|Re z|, such that

|g(z)| ≤ AeBω(|z| 1
m ) ∀z ∈ C and |g(z)| ≥ aebω(|z| 1

m ) ∀z ∈ Γ.
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We now define G ∈ H(CN) by G(z) := g
(

P(z)
)

and we check that G(D)
is (ω)−hypoelliptic. In fact, for some constants C, D > 0,

|G(z)| ≤ AeBω(|P(z)| 1
m ) ≤ CeDω(|z|)

for every z ∈ CN and

|G(ξ)| ≥ aebω(|ξ|r) = aebλ(|ξ|)

for some a, b > 0 and every ξ ∈ RN . We now check that

lim
|z| → ∞
G(z) = 0

|Im z|
ω(|z|) = ∞.

To this end we observe that G(z) = 0 implies |Im P(z)| ≥ ε|Re P(z)|.
Hence, it suffices to prove that, for any A > 0, the inequality |Im z| <

Aω(|z|) implies |Im P(z)| < ε|Re P(z)| whenever |z| is large enough.
Since ω(t) = o(t) we may assume |Imz| ≤ Aω(|Rez|) for some different
constant A. Using Taylor’s formula we have, for z = x + iy, x, y ∈ RN ,

P(z) = P(x) + ∑
α 6=0

P(α)(x)
α!

(iy)(α).

Now, since P is hypoelliptic get, for some positive constant C (which de-
pends on A),

∣∣ ∑
α 6=0

P(α)(x)
α!

(iy)(α)∣∣ ≤ C
∣∣P(x)

∣∣ ∑
α 6=0

1
α!
(ω(|x|)
|x|r

)|α|.
Therefore, using lim

t→∞

ω(t)
tr = 0 and limx∈RN ,|x|→∞

ImP(x)
ReP(x) = 0 we deduce

that ∣∣ ∑
α 6=0

P(α)(x)
α!

(iy)(α)∣∣ < min (
ε

2
,

1
2
)|ReP(x)|

for |x| large enough (equivalently, for |z| large enough, since |y| ≤ Aω(|x|)
and ω(|x|) = o(|x|) as |x| tends to ∞). Therefore, for |z| large enough,

|Im P(z)| < ε

2
|Re P(x)|

while

|Re P(z)| ≥ |Re P(x)| −
∣∣ ∑

α 6=0

P(α)(x)
α!

(iy)(α)∣∣ ≥ 1
2
|Re P(x)|.
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Hence,
|Im P(z)| < ε|Re P(z)|,

as we wanted to check. Consequently, G(D) is (ω)−hypoelliptic [14, The-
orem 2.1]. Proceeding as in Theorem 4.3.4 we conclude that G(D)E ⊂ E
and G(D) : E → E is continuous and linear map. To finish the proof, let
µ ∈ Xj be given and take lj ∈N with

blj −mj > j + 1

(where mj is as large as needed later) and define Gj(D) = Glj(D) and

f j(x) :=
1

(2π)N

∫
RN

µ̂(t)
Gj(t)

ei<x,t> dt.

Since, for every α ∈NN
0 ,

∣∣ tαµ̂(−t)
Gj(t)

∣∣ ≤ ||µ||∗j
a

e(−blj+j)λ(t)+|α| log(t)

≤
||µ||∗j

a
e−λ(t)e

mj ϕ
∗
λ( |α|mj

)
,

then
f j ∈ C∞(RN) ⊂ D′(ω)(RN)

and

sup
x∈RN

sup
α∈NN

0

∣∣∣ f (α)
j (x)

∣∣∣ e
−mj ϕ

∗
λ( |α|mj

)
< +∞.

Moreover
Gj(−D) f j = µ

in D′(ω)(RN). Let ψj ∈ D(ω)(
◦
K j+1) be such that ψj = 1 on a neighborhood

of Kj. As in Theorem 4.3.4 we will prove that each ultradistribution h ∈ E
can be extended to a continuous and linear map

Th : E ′(λ)(RN)→ C.

Since Gj(−D) is (ω)−hypoelliptic then

sing(ω)supp f j ⊂ conv (sing(ω)supp f j) ⊂ Kj

and the mapping

Xj → E(ω)(RN), µ 7→ (1− ψj(x))
1

(2π)N

∫
RN

µ̂(t)
Gj(t)

ei<x,t> dt
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is well-defined. Moreover, as in the proof of Theorem 4.2.1, the mapping
Xj → E(λ)(RN) is continuous. Hence, by the closed graph theorem, also

Xj → E(ω)(RN)

is continuous. We now fix h ∈ E and consider a regularizing family (ηε)
of test functions in D(ω)(RN). If mj is big enough, we may guarantee that

lim
ε→0

∣∣(ψj f j) ∗ ηε − (ψj f j)
∣∣
mj

= 0,

from where it follows that( 〈
Gj(D)h, (ψj f j) ∗ ηε

〉 )
ε↓0

is a Cauchy net. Define
Tj : Xj → C

by

Tj(µ) = lim
ε→0

〈
Gj(D)h, (ψj f j) ∗ ηε

〉
+
〈

h, Gj(−D)((1− ψj) f j)
〉

.

The same argument as in Theorem 4.2.1 gives that Tj is a continuous linear
form, the restriction of Tj+1 to Xj coincides with Tj and Tj(µ) = 〈h, µ〉 for
every µ ∈ Xj ∩D(ω)(RN). That is, there is f ∈ E(λ)(RN) such that

〈 f , µ〉 = 〈h, µ〉

for every µ ∈ D(ω)(RN). Since D(ω)(RN) is dense in D(λ)(RN) then h =
f ∈ E(λ)(RN).

Now, we introduce a more general class of hypoelliptic operators. Let
m = (m1, . . . , mN) ∈NN , α = (α1, . . . , αN) ∈NN

0 be given and set

|α : m| =
N

∑
k=1

αk

mk
.

Let P(D) = ∑α aαDα a partial differential operator. Suppose that |α : m| ≤
1 for all the terms in P(D), then

P(D) = ∑
|α:m|≤1

aαDα.

We set P0(D) = ∑|α:m|=1 aαDα and we call P0(D) the generalized principal
part of P(D) with respect to m.
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Definition 4.3.7. If P0(ξ) 6= 0 for 0 6= ξ ∈ RN the operator P(D) is called
semi-elliptic.

According to [33, II, Theorem 11.1.11], every semi-elliptic polynomial
is hypoelliptic.

Example 4.3.8. Note that when mk = m for every k, the semi-elliptic oper-
ators are just the elliptic operators of order m. The heat operator and the
p-parabolic operators of Petrowsky are semi-elliptic.

Corollary 4.3.9. We assume that the differential operator P(D) of degree m sat-
isfies

1. P(D) is hypoelliptic and has real coefficients

or

2. P(D) is semi-elliptic with real generalized principal part.

If the Fréchet space E ⊂ D′(λ)(RN) is (ω, P(D))−stable then E ⊂ E(λ)(RN)
with continuous inclusion.

Proof. It is straightforward to check that in both cases

lim
x∈RN ,|x|→∞

ImP(x)
ReP(x)

= 0.

Then, Proposition 4.3.6 applies. For the semi-elliptic case use the inequal-
ity

|ξα| ≤
(

N

∑
k=1
|ξk|mk

)|α:m|

,

which is a consequence of |ξk|mk ≤ ∑N
k=1 |ξk|mk .

A weight ω is called a strong weight if it satisfies the additional condi-
tion
(ε) there exists C ≥ 1 such that for all y > 0,

∫ ∞

1

ω(ty)
t2 dt ≤ Cω(y) + C.

Examples of weight functions with and without property (ε) can be found
in [52].
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Corollary 4.3.10. Let ω be a strong weight and P(D) a (ω)−hypoelliptic dif-
ferential operator of degree m such that

lim
x∈RN ,|x|→∞

ImP(x)
ReP(x)

= 0.

Then E
P,(ω(t

1
m ))

(RN) is continuously contained in E(λ)(RN) for some non-quasiana-
lytic weight λ.

Proof. According to [26, 3.7], there is 0 < r < 1 such that P(D) is {tr}−hypo-

elliptic and lim
t→∞

ω(t)
tr = 0. Then Proposition 4.3.6 implies that

E = E
P,(ω(t

1
m ))

(RN) is continuously contained in E(λ)(RN) for λ(t) :=

ω(tr).

To finish this chapter, we give an alternative proof of Corollary 3.2.2 in
the Beurling case.

Lemma 4.3.11. Let P(D) and Q(D) be partial differential operators of order m1

and m2, respectively. Suppose that E is a Fréchet space which is (ω, P(D))−stable
and (ω, Q(D))−stable, then E is also (ω, P(D) ◦Q(D))−stable.

Proof. Note that the order of (P ◦ Q)(D) is m1 + m2. Given k ∈ N and
given r a continuous seminorm on E, the (ω, P(D))−stability gives a semi-
norm s on E with

r
(
(P ◦Q)j(D) f

)
≤ ekϕ∗( m1 j

k )s(Qj(D) f ) ∀j ∈N, f ∈ E. (4.6)

Now, since E is (ω, Q(D))−stable, take a seminorm t on E such that

r
(
(P ◦Q)j(D) f

)
≤ ekϕ∗( m1 j

k )ekϕ∗( m2 j
k )t( f ) ∀j ∈N, f ∈ E. (4.7)

Since, ϕ is convex we can deduce the inequality

kϕ∗(
m1 j

k
) + kϕ∗(

m2 j
k

) ≤ kϕ∗(
(m1 + m2)j

k
)

to conclude that E is (ω, P(D) ◦Q(D))−stable.

Corollary 4.3.12. Let ω(t) = logβ(1 + t), β > 1, be given and P(D) a differ-
ential operator of degree m. Then EP,(ω)(RN) = E(ω)(RN) if, and only if, P is
hypoelliptic.
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Proof. First, recall that the weight ωm(t) = ω(t
1
m ), m ≥ 1, is equivalent

to the weight ω(t) = logβ(1 + t). It follows from Corollary 3.2.1 that
the hypoellipticity of P is a necessary condition in order to get the iden-
tity EP,(ω)(RN) = E(ω)(RN). We now assume that P is hypoelliptic and
denote P(ξ) := P(ξ) the conjugate of P. The polynomials P and P are
equally strong, hence we deduce from Corollary 3.1.5 that EP,(ω)(RN) =
EP,(ω)(RN). In particular, using the previous Lemma, we have EP,(ω)(RN)
is an (ω, P(D) ◦ P(D))−stable Fréchet space. Since the hypoelliptic poly-
nomial (of degree 2m) PP has real coefficients we can apply Proposition
4.3.6 to finally conclude that EP,(ω)(RN) is contained in E(ω)(RN). The con-
verse inclusion always holds in view of Theorem 2.3.1.



Chapter 5

Vector valued
ultradifferentiable functions of
Roumieu type in Fréchet
spaces

In this chapter, vector valued ω-ultradifferentiable functions f : Ω →
E in the setting of non-quasianalytic classes in the sense of Braun, Meise
and Taylor with values in a locally convex space E are introduced. As in
the cases of real analytic or non-quasianalytic curves treated by Kriegl, Mi-
chor and Rainer, three possible notions of vector valued ultradifferentiable
function are given. We will define weakly ultradifferentiable function and
strongly ultradifferentiable function and also the notion of vector valued
ultradifferentiable function in a bornologically sense. Our aim is to charac-
terize when these notions coincide in case E is a Fréchet or an (LB)-space.

Like in the case of real analytic functions [9], the topological invariant
(DN) of Vogt ([54]) plays an important role. More particularly, we prove in
Theorem 5.2.4 that the three definitions above coincide in a Fréchet space
E if and only if E satisfies (DN). However, the case of an (LB)-space E be-
haves different from the real analytic case. This is the content of Theorem
5.2.6.

Our main tools are tensor products [41], the characterizations of the
identity L(E, F) = LB(E, F) [7, 63] and the modern theory of Fréchet
spaces [54].

5.1. Definitions and properties

77
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From now on, E denotes a sequentially complete locally convex space
and ω a non-quasianalytic weight function. A treatment of C∞-functions
with values in a locally convex space can be seen in Jarchow [34].

Definition 5.1.1. A function f : Ω → E is weakly ω-ultradifferentiable (of
Roumieu type), and we denote f ∈ E{ω}(Ω, E), if for all u ∈ E′, u ◦ f ∈
E{ω}(Ω), i.e., ∀u ∈ E′ and ∀K ⊂⊂ Ω, u ◦ f ∈ C∞(Ω) and there exists m
such that

sup
x∈K

sup
α∈N0

∣∣∣(u ◦ f )(α)(x)
∣∣∣ exp

(
− 1

m
ϕ∗ (|α|m)

)
< ∞.

According to a classical result of Grothendieck [31], a function f : Ω→
E belongs to C∞(Ω, E) in a vector sense if and only if for all u ∈ E′,
u ◦ f ∈ C∞(Ω). As a consequence, it follows E{ω}(Ω, E) ⊂ C∞(Ω, E).

Let ω be a non-quasianalytic weight function. Denote

Sω := {σ : σ is a weight function satisfying σ = o(ω), i.e., lim
t→∞

σ(t)
ω(t)

= 0}.

By [53, Corollary 3.3], the family of seminorms defined by

‖ f ‖K,σ := sup
x∈K

sup
α∈NN

0

∣∣∣ f (α)(x)
∣∣∣ exp (ϕ∗σ (|α|)) , f ∈ E{ω}(Ω),

where K is compact subset in Ω and σ ∈ Sω, is a fundamental system of
seminorms of E{ω}(Ω). This result also holds in the quasianalytic case for
an open convex subset Ω by a result due to Bonet, Galbis and Momm (see
[16, Lemma 13]).

We recall a regularity condition in inductive limits due to Makarov
[51].

Definition 5.1.2. An inductive limit X = indn Xn is regular if each bounded
subset of the inductive limit is contained and bounded in some step Xn.

A complete LF-space is regular by the Grothendieck Factorization The-
orem.

Proposition 5.1.3. Let E be a sequentially complete locally convex space and let
f : Ω → E. Then, f ∈ E{ω}(Ω, E) if and only if f ∈ C∞(Ω, E) and for each
continuous seminorm q of E and K compact subset in Ω there exists m ∈N such
that

sup
x∈K

sup
α∈NN

0

q
(

f (α)(x)
)

exp
(
− 1

m
ϕ∗ (|α|m)

)
< ∞.
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Proof. Assume f ∈ E{ω}(Ω, E). By the result of Grothendieck, f ∈ C∞(Ω, E).
On the other hand, for all u ∈ E′, u ◦ f ∈ E{ω}(Ω). For every weight
σ ∈ Sω, every compact subset K and for all u ∈ E′ we have

sup
x∈K

sup
α∈NN

0

|u( f (α)(x))| exp (−ϕ∗σ (|α|)) < ∞. (5.1)

Then, the set
{

f (α)(x) exp (−ϕ∗σ (|α|)) : x ∈ K, α ∈N0

}
is weakly bounded

and hence bounded in E. As a consequence, given a continuous seminorm
q on E, it is clear that the subset of E{ω}(Ω) given by

Bq := {u ◦ f : |u| ≤ q, u ∈ E′}

is bounded in E{ω}(Ω). For each compact subset K in Ω, Bq is bounded in
E{ω}(K) which is complete and regular, hence there is m ∈N such that Bq

is contained and bounded in E
1
m

ω (K), i.e.,

sup
g∈Bq

pK, 1
m
(g) < ∞.

This and Hahn-Banach’s Theorem imply

sup
x∈K

sup
α∈NN

0

q
(

f (α)(x)
)

exp
(
− 1

m
ϕ∗ (|α|m)

)
= sup

g∈Bq

pK, 1
m
(g) < ∞.

We emphasize that in Proposition 5.1.3 the natural number m depends
on the seminorm q and the compact set K. Compare with the definition
below.

Definition 5.1.4. A smooth function f : Ω → E is topologically or strongly
ω-ultradifferentiable (of Roumieu type), and we denote f ∈ E t

{ω}(Ω, E), if
∀K ⊂⊂ Ω there exists m such that ∀q continuous seminorm of E

sup
x∈K

sup
α∈NN

0

q
(

f (α)(x))
)

exp
(
− 1

m
ϕ∗ (m|α|)

)
< ∞.

Remark 5.1.5. In view of Proposition 5.1.3, E t
{ω}(Ω, E) ⊂ E{ω}(Ω, E).

The Definitions 5.1.1 and 5.1.4 should be compared with the notions
of CM-curve or strongly CM-curve in [44, Definition 3.1] given by Kriegl,
Michor and Rainer. These authors consider increasing weight sequences
M = (Mp)p∈N0 satisfying (M1) and (M2’) as in Definition 1.0.18 and define
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ultradifferentiable curves with values in a locally convex space, c : R→ E,
using the approach of Carleman and Komatsu [38] (see also Definition
1.0.19). A curve c : R → E is called CM if for all u ∈ E′, u ◦ c ∈ E{Mp}(R).
The curve c is called strongly CM if for all compact subset K ⊂ R there is
h > 0 such that the set{

c(p)(x)
hp Mp

: x ∈ K, p ∈N0

}

is bounded in E.

We introduce now bornologically ω-ultradifferentiable functions. First,
we recall the notion of Banach Disk. Let B be an absolutely convex bounded
subset in E. Denote by ‖ · ‖B the Minkowski functional of B, that is, for
each f ∈ E

‖ f ‖B = inf{t > 0 : f ∈ tB}.

We set EB = spanE =
⋃

t tB. EB is a normed space endowed with the
Minkowski functional of B. In case E is sequentially complete one can
prove that EB is a Banach space and the inclusion EB ↪→ E is always con-
tiunuous.

An absolutely convex bounded subset B in a locally convex space E is
called Banach disk if the space EB is Banach.

Definition 5.1.6. A function f : Ω→ E is bornologically ω-ultradifferentiable
(of Roumieu type), and we denote f ∈ E b

{ω}(Ω, E), if there exists a closed
absolutely convex bounded subset B (a Banach disk since E is sequentially
complete) such that

f ∈ E{ω}(Ω, EB).

Our purpose is to study the equalities

E t
{ω}(Ω, E) = E{ω}(Ω, E) and E t

{ω}(Ω, E) = E b
{ω}(Ω, E)

when E is a Fréchet or an (LB)-space, thus answering a question by Kriegl
and Michor. To do this, following an idea of Bonet and Domanski [9], we
must represent E{ω}(Ω, E) as a tensor product. Recall that given locally
convex spaces X and Y, their Schwartz’s ε-product is XεY := Le(X′co, Y). It
is endowed with the topology of uniform convergence on equicontinuous
sets in X′. Here X′co is the topological dual of X with the topology of uni-
form convergence on convex compact subsets in X and X′β the topological
dual with the topology of uniform convergence on bounded subsets. See
[41, II]. Of course, if X is Montel then XεY = Lβ(X′β, Y). A linear map
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f : X → Y is called bounded if there is a 0-neighborhood U in X such that
f (U) is bounded in Y, or equivalently, there is a bounded disk B in Y such
that f : X → YB is continuous. In this case, we write f ∈ LB(X, Y).

Lemma 5.1.7. The linear H span of {δx : x ∈ Ω} is a sequentially dense subset
of E{ω}(Ω)′β.

Proof. Fix u ∈ E{ω}(Ω)′β. There is a compact subset K such that u ∈ E{ω}(K)′.
The (LB)−space E{ω}(K) is reflexive and if f ∈ E{ω}(K) verifies 〈δx, f 〉 = 0
for all x ∈ K, then f = 0. A Hahn-Banach argument implies that H is
weak-star dense in the Fréchet space E{ω}(K)′β. Therefore, there exists a
sequence {uj}j∈N0 ⊂ H such that uj tends to u in E{ω}(K)′β and hence, uj
tends to u in E{ω}(Ω)′β.

Theorem 5.1.8. Let E be a sequentially complete locally convex space. The spaces
E{ω}(Ω, E) and L(E{ω}(Ω)′β, E) are algebraically isomorphic. Moreover, this
isomorphism maps E b

{ω}(Ω, E) onto LB(E{ω}(Ω)′β, E).

Proof. We define ∆ : Ω→ E{ω}(Ω)′β by ∆(x) = δx. The map

Φ : L(E{ω}(Ω)′β, E)→ E{ω}(Ω, E), Φ(W) = W ◦ ∆,

is well defined and linear. In fact, for every u ∈ E′ we have u ◦W ∈
E{ω}(Ω)′′, hence, by reflexivity, there is ϕ ∈ E{ω}(Ω) such that

ϕ(x) = δx(ϕ) = (u ◦W)(δx) = u
(
Φ(W)

)
(x),

which proves that u ◦ Φ(W) = ϕ ∈ E{ω}(Ω). Now we define H :=
span {δx : x ∈ Ω} and we endow it with the topology induced by E{ω}(Ω)′β.
If f ∈ E{ω}(Ω, E) we denote by Ψ( f ) : H → E the linear extension of the
map Ψ( f )(δx) := f (x), x ∈ Ω. We check that Ψ( f ) is continuous. Fix a
continuous seminorm q on E and consider the bounded set Bq in E{ω}(Ω)
defined by Bq := {u ◦ f : |u| ≤ q, u ∈ E′}. If y ∈ H belongs to B◦q then

q
(
Ψ( f )(y)

)
= sup
|u|≤q

∣∣u(Ψ( f )(y)
)∣∣ ≤ 1.

By Lemma 5.1.7, H is sequentially dense in E{ω}(Ω)′β and there is a unique
continuous and linear extension Ψ( f ) : E{ω}(Ω)′β → E. That is, Ψ( f ) ∈
L(E{ω}(Ω)′β, E) and the map

Ψ : E{ω}(Ω, E)→ L(E{ω}(Ω)′β, E)
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is well defined and linear. Since Φ ◦ Ψ and Ψ ◦Φ coincide with the iden-
tity, both Φ and Ψ are linear isomorphisms. Finally we see that the iso-
morphism Ψ maps E b

{ω}(Ω, E) onto LB(E{ω}(Ω)′β, E). Let f ∈ E b
{ω}(Ω, E)

be given. There is a Banach disk B such that f ∈ E{ω}(Ω, EB) and

Ψ( f ) ∈ L(E{ω}(Ω)′β, EB) ⊆ LB(E{ω}(Ω)′β, E).

Conversely, if W ∈ LB(E{ω}(Ω)′β, E) there is a Banach disk B such that
W ∈ L(E{ω}(R)′β, EB). Then, Φ(W) ∈ E{ω}(R, EB) ⊆ E b

{ω}(R, E).

Lemma 5.1.9. Let E be a Fréchet space If f ∈ C∞(Ω, E), then there is a closed
Banach disc B in E such that f ∈ C∞(Ω, EB).

Proof. Let {Kn}n∈N be a compact exhaustion of Ω and, for each n ∈N, we
consider the compact set

Bn :=
⋃
{ f (α)(Kn) : |α| ≤ n}.

According to a result due to Mackey (see [41, I, 29.1 (5)]) there are λn > 0
such that C :=

⋃
n∈N λnBn is a bounded set in E. We denote by B the

closure of the absolute convex hull of C and prove that f ∈ C∞(Ω, EB). It
is easy to see that f ∈ C(Ω, EB). Proceeding by induction, let us assume
that f ∈ Cm(Ω, EB) and fix a compact subset K ⊂ Ω, a multi-index α with
|α| = m and 1 ≤ j ≤ N. Take n ∈N such that K is contained in the interior
of Kn and find µ > 0 with f (β)(Kn) ⊂ µB whenever |β| ≤ m + 2. Then,
for every x ∈ K, u ∈ B◦ and t 6= 0 small enough we have, after applying
Taylor’ Theorem to the real-valued function u ◦ f ,〈

f (α)(x + tej)− f (α)(x)
t

− ∂

∂xj
f (α)(x), u

〉
=

t
2

〈
∂2

∂x2
j

f (α)(x + ξej), u

〉

for some ξ such that |ξ| ≤ |t|. Hence

sup
x∈K

∣∣∣∣ f (α)(x + tej)− f (α)(x)
t

− ∂

∂xj
f (α)(x)

∣∣∣∣
EB
≤ µ|t|,

which proves that f ∈ Cm+1(Ω, EB).

Theorem 5.1.10. If E is a Fréchet space, then, E t
{ω}(Ω, E) = E b

{ω}(Ω, E).
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Proof. Let f ∈ E b
{ω}(Ω, E) be given. By the previous lemma there is a

Banach disk B such that f ∈ E{ω}(Ω, EB). Moreover, according to Propo-
sition 5.1.3, for all compact subset K there is m such that

sup
x∈K

sup
α∈NN

0

‖ f (α)(x)‖EB exp
(
− 1

m
ϕ∗ (|α|m)

)
< ∞.

Since the inclusion EB ↪→ E is continuous it easily follows that f ∈ E t
{ω}(Ω, E).

Conversely, let us assume that f ∈ E t
{ω}(Ω, E) and fix a compact ex-

haustion {Kn}n∈N of Ω. For each n there is mn ∈N such that the set

Bn :=
{

f (α)(x) exp
(
− 1

mn
ϕ∗ (|α|mn)

)
: x ∈ Kn, α ∈NN

0

}
is bounded in E. From (the proof of) Lemma 5.1.9 there are λn > 0 such
that the closed absolutely convex hull B of

⋃
n∈N λnBn is a Banach disc and

f ∈ C∞(Ω, EB). Moreover, from the definition of Bn we have that

sup
x∈Kn

sup
α∈NN

0

‖ f (α)‖EB exp
(
− 1

mn
ϕ∗ (|α|mn)

)
≤ λ−1

n ,

from where we conclude that f ∈ E b
{ω}(Ω, E).

The next theorem is proved in [44, Lemma 5.2] for functions f : RN →
E in the setting of Denjoy-Carlemann classes with a different proof.

Theorem 5.1.11. Let E be a sequentially complete locally convex space such that
E′β is a Baire space. Then, E{ω}(Ω, E) = E t

{ω}(Ω, E).

Proof. In view of Proposition 5.1.3 it is clear that E t
{ω}(Ω, E) ⊆ E{ω}(Ω, E).

In order to show the other inclusion, let f ∈ E{ω}(Ω, E) fixed and K com-
pact subset. The map T : E′β → E{ω}(K) given by T(u) = (u ◦ f )|K has
closed graph and we can apply a Grothendieck’s Factorization Theorem

([58, 1.2.20 (i)]) to conclude that there is m ∈N such that T : E′β → E
1
m
{ω}(K)

is well defined and continuous. Therefore, the set{
f (α)(x) exp

(
− 1

m
ϕ∗ (|α|m)

)
: x ∈ K, α ∈NN

0

}
is weakly bounded in E, hence it is bounded.
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5.2. Main results

Let ω be a non-quasianalytic weight function. We characterize when
the three definitions of vector valued {ω}-ultradifferentiable function given
in the previous section coincide if E is a Fréchet space or a complete LB-
space. We start with the following example due to Kriegl, Michor and
Rainer [44].

Example 5.2.1. Let E be the countable product of copies of the scalar field,
endowed with the product topology, which is a nuclear Fréchet space. Let
ω(t) = t1/α, s := 1/α > 1, be a Gevrey weight. There are curves in
E{ω}(R, E) which are not in E t

{ω}(R, E) by [44, Example 3.2]. This fact is
based on the existence of f ∈ E{ω}(R) such that

{ f (α)(x) exp
(
−λϕ∗

(
|α|
λ

))
: α ∈N0, x ∈ K}

is unbounded for any compact subset K ⊂ R containing 0 and a suitable
λ.

We recall the definition of topological invariant (DN) of Vogt [54].

Definition 5.2.2. A Fréchet space E with a fundamental system of semi-
norms (‖ · ‖n)n∈N is said to satisfy the property (DN) of Vogt if

∃n ∀m ≥ n ∃l ≥ m, C < ∞ ∀x ∈ E: ‖x‖2
m ≤ C‖x‖n‖x‖l .

In fact, ‖ · ‖n is a norm which is called dominating norm. Every power
series spaces on infinite type has the property (DN) and a nuclear Fréchet
space has the property (DN) if and only if it is isomorphic to a subspace of
the space s of rapidly decreasing sequences. See [54, Chapter 29] for more
details.

Power series spaces of order one are defined as follows. Let α =
(αj)j∈N be a monotonically increasing sequence in [0, ∞[ with limj αj = ∞,
we set

Λ1(α) =

{
x ∈ CN : ‖x‖r := ∑

j∈N

|xj|rαj < ∞ for all 0 < r < 1

}
.

Λ1(α) is a reflexive Fréchet space equipped with the fundamental system
of norms

{‖ · ‖r}0<r<1.

In view of [63, Theorem 2.1], for positive increasing sequences α = (αj)
verifying supj

αj+1
αj

< ∞, a Fréchet space E has (DN) property if and only
if L(Λ1(α), E) = LB(Λ1(α), E). The next theorem is a consequence of [22,
Proposition 4.9].
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Theorem 5.2.3. Let ω be a non-quasianalytic weight, Ω an open subset in RN

and α(ω, N) := {ω(j
1
N )}j∈N. Then,

E{ω}(Ω)′ =
⊕
N

Λ1(α(ω, N)).

Theorem 5.2.4. Let ω be a non-quasianalytic weight and let E be a Fréchet space.
Then E{ω}(Ω, E) = E t

{ω}(Ω, E) if and only if E has the property (DN).

Proof. We first suppose E{ω}(Ω, E) = E t
{ω}(Ω, E). In view of Theorems

5.1.8 and 5.1.10 the identity

L(E{ω}(Ω)′β, E) = LB(E{ω}(Ω)′β, E) (5.2)

holds and from the fact that Λ1
(
{ω(j

1
N )}j∈N

)
is a complemented subspace

of E{ω}(Ω)′ it easily follows that also

L(Λ1({ω(j
1
N )}j∈N), E) = LB(Λ1({ω(j

1
N )}j∈N), E).

On the other hand, condition (α) of weight function implies supj

ω

(
(j+1)

1
N

)
ω(j

1
N )

<

∞. Hence we can apply [63, Theorem 2.1] to conclude that E satisfies (DN).
Conversely, suppose that E has the (DN) property. Then,

L(Λ1({ω(j
1
N )}j∈N), E) = LB(Λ1({ω(j

1
N )}j∈N), E).

Now, it is enough to apply Theorem 5.2.3, [54, Proposition 24.3] and [1,
Proposition 1] to get that also L(E{ω}(Ω)′β, E) = LB(E{ω}(Ω)′β, E). Hence,
Theorem 5.1.8 permits to conclude that E{ω}(Ω, E) = E t

{ω}(Ω, E).

Bonet, Meise and Melikhov characterize in [17, Theorem 14] those weight
sequences (Mp)p∈N0 for which there exits a weight function ω such that
the corresponding class of ultradifferentiable functions defined by (Mp)p∈N0

coincide with the class of ultradifferentiable functions in the sense of Braun,
Meise and Taylor defined by ω. To do this, these authors introduced the
following conditions on the weight sequence (Mp)p∈N0 .

We say that (Mp)p∈N0 verifies (M2) if it has the following property
stronger than (M2)’:

there are A, H > 1 such that Mp ≤ AHp min
0≤p≤q

Mp Mp−q, p ∈N0.

We set mp := Mp
Mp−1

. We say that (Mp)p∈N0 verifies B-M-M∗ if

there exists Q ∈N with lim inf
j→∞

mQj

mj
> 1.
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Corollary 5.2.5. Let (Mp)p∈N0 be a sequence of positive numbers satisfying
(M0), (M1), (M2) ,(M3) and condition B-M-M∗. A Fréchet space E satisfies
(DN) if and only if every CM curve with values in E is a strong CM curve.

Proof. By [17, Theorem 14], CM curves in E correspond to elements in
E{ω}(]a, b[, E) and strong CM curves in E correspond to elements in
E t
{ω}(]a, b[, E). The conclusion follows by Theorem 5.2.4.

Gevrey classes satisfy all the assumptions of Corollary 3.5.

In the real analytic case, the property which characterizes those Fréchet
spaces E for which A(Ω, E) = At(Ω, E) holds is the condition (DN) (see
[9, Theorem 18] and [10, Theorem 3]). The property which characterizes
those (LB)-spaces for which A(Ω, E) = Ab(Ω, E) holds is that E′β has the

property (Ω) of Vogt (see [9, Theorem 21] and [10, Theorem 5]). However,
in the ultradifferentiable setting we get the following result.

Theorem 5.2.6. Let ω be a non-quasianalytic weight and let E = indn En be a
complete LB-space. Then E{ω}(Ω, E) = E b

{ω}(Ω, E) if and only if E is a Banach
space.

Proof. Let us assume that E{ω}(Ω, E) = E b
{ω}(Ω, E) and E is not normable.

From Theorems 5.1.8 and 5.2.3 we get

L(
⊕
N

Λ1(α(ω, N)), E) = LB(
⊕
N

Λ1(α(ω, N)), E). (5.3)

Let ϕ denote the countable direct sum of copies of the scalar field. We
take x ∈ Λ1(α(ω, N)) and u ∈ Λ1(α(ω, N))′ such that u(x) = 1, define
π : ⊕NΛ1(α(ω, N)) → ϕ and i : ϕ → ⊕NΛ1(α(ω, N)) by π({zn}n) =
{u(zn)}n and i({αn}n) = {αnx}. It is clear that π ◦ i = Idϕ, hence ϕ is
a complemented subspace of

⊕
N Λ1(α(ω, N). It follows that L(ϕ, E) =

LB(ϕ, E) . This is a contradiction. Indeed, since E is not normable we can
find a subsequence (nk)k ⊂ N and xk ∈ Enk+1 \ Exk . We can apply a result
by Bonet ([7, Proposition 11]) to find (Ck)k∈N ⊂]0.∞[ such that (Ckxk)k∈N

is bounded in E. This is impossible because every complete LB-space is
regular and (Ckxk)k∈N is not included in any step.
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