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Resumen

Los limites projectivos de limites inductivos de espacios de Banach, también lla-
mados espacios-(PLB), surgen de forma natural en el andlisis matemadtico. Por
ejemplo el espacio de distribuciones, el espacio de funciones real analiticas y var-
ios espacios de funciones ultradiferenciables y de ultradistribuciones son de este
tipo. En esta tesis estudiaremos espacios-(PLB), cuyos bloques de contruccién
son espacios de Banach de funciones holomorfas definidas por normas supremo
ponderadas. El estudio de estos espacios extiende la investigacién de Agethen,
Bierstedt, Bonet quienes han considerado recientemente espacios-(PLB) pondera-
dos de funciones continuas. Desde otra perspectiva, extiende la investigacién de
limites inductivos ponderados de espacios de Banach de funciones holomorfas, los
cuales han sido analizados intensamente por varios autores los tltimos anos.

Nuestro propédsito es estudiar las propiedades localmente convexas de los espa-
cios descritos arriba. En particular, investigamos cuando son ultrabornolégicos
o tonelados. Como punto de partida en la definicién de los espacios que inves-
tigamos tenemos una sucesiéon doble de funciones (pesos) estrictamente positivas
y continuas, nuestro objetivo es caracterizar las propiedades mencionadas antes
en términos de esta sucesién. Ademds, investigamos bajo qué circunstancias se
pueden intercambiar el limite proyectivo y el inductivo y por lo tanto el espacio-
(PLB) coincide con el limite inductivo de espacios de Fréchet definidos por la
misma sucesion; espacios de este 1ltimo tipo has sido investigados por Bierstedt,
Bonet.

Probamos condiciones necesarias para las propiedades de los espacios antes men-
cionadas y para que los limites inductivo y projectivo sean intercambiables bajo
hipd6tesis muy poco restrictivas. En cuanto a condiciones suficientes usamos métodos
homoldgicos, cuya exploracién fue iniciada por Palamodov al final de los sesenta
y continuada por Vogt, Wengenroth y otros a lo largo de los tultimos 40 anos. Por
razones técnicas los métodos que acabamos de mencionar no se aplican a todos
los casos que queremos estudiar. Por consiguiente, presentamos un criterio para
decidir si los espacios son tonelados adaptado a estas situaciones. No obstante,
parece ser inevitable descomponer funciones holomorfas para probar cualquier re-
sultado relativo a a las condiciones suficientes. Por lo tanto introducimos varios
contextos en los cuales lo ultimo es posible. Dentro de estos contextos conseguimos
la descomposicion de diferentes formas; es decir, por descomposicién de polinomios
(en el disco y en el espacio), un método conectado con la teoria de proyecciones
de Bergman, dos tipos de representaciones del espacio de sucesiones y el método 0
de Hormander. Bajo algunas hipétesis adicionales (satisfechas -como mostramos-
por muchos ejemplos) finalmente damos en casi todos los contextos menciona-
dos anteriormente unas caracterizaciones completas de cuando el espacio es ultra-
bornolégico, cuando es tonelado y cuando los limites inductivo y projectivo son
intercambiables.

Para finalizar nuestra investigacién de espacios-(PLB) ponderados, presentamos
dos resultados (uno para funciones continuas y otro para holomorfas) los cuales
muestran que espacios de este tipo se pueden escribir en algunos casos como el
producto tensorial de un espacio de Fréchet y un espacio-(DF). Combinado con
los resultados en espacios-(PLB) ponderados, el resultado en funciones continuas
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esd conectado con el trabajo de Grothendieck, el cual estudié cuando este tipo
de producto tensorial era ultrabornolégico. El segundo resultado en representa-
ciones de productos tensoriales muestra que algunos espacios de ultradistribuciones
(introducidos recientemente por Schmets y Valdivia) resultan ser espacios-(PLB)
ponderados de funciones holomorfas.



Resum

Els limits projectius de limits inductius d’espais de Banach, també anomenats
espais-(PLB), sorgeixen de forma natural a l’analisi matematica. Per exemple
I’espai de distribucions, ’espai de funcions real analitiques, i diversos espais de
funcions ultradiferenciables i ultradistribucions sén d’aquest tipus. En aquesta
tesi estudiem espais-(PLB), els blocs de construccié els quals sén espais de Banach
de funcions hol.lomorfes definides per normes suprem ponderades. La investi-
gacié d’aquests espais extén la recerca d’Agethen, Bierstedt, Bonet, els quals han
estudiat recentment espais-(PLB) ponderats de funcions continues. Des d’altra
perspectiva, extén ’estudi de limits inductius ponderats d’espais de Banach de
funcions hol.lomorfes, els quals han estat estudiats intensament per diversos au-
tors els darrers anys.

El nostre proposit és estudiar les propietats localment convexes dels espais
descrits abans. En particular, investiguem quan sén ultrabornologics o tonel-
lats. Com a punt de partida en la definicié dels espais que investiguem tenim una
successié doble de funcions (pesos) estrictament positives i continues. El nostre
objectiu és caracteritzar les propietats mencionades abans en termes d’aquesta
successié. A més, investiguem sota quines circumstancies es poden intercanviar el
limit projectiu i 'inductiu i per tant l'espai-(PLB) coincideix amb el limit induc-
tiu ponderat d’espais de Fréchet definits per la mateixa successié; espais d’aquest
darrer tipus han estat investigats per Bierstedt, Bonet.

Provem condicions necessaries per a les propietats abans mencionades dels espais
i per a que els limits inductiu i projectiu siguen intercanviables sota hipotesis
molt poc restrictives. En quant a condicions suficients usem metodes homologics,
I’exploracié dels quals va iniciar Palamodov al final dels seixanta i van continuar
Vogt, Wengenroth i altres al llarg dels darrers 40 anys. Per raons tecniques els
metodes que acabem de mencionar no s’apliquen a tots els casos que volem estu-
diar. Conseqtientment, presentem un criteri per a decidir si els espais sén tonellats
adaptat a aquestes situacions. Tanmateix, sembla ser inevitable descompondre
funcions hol.lomorfes per a provar qualsevol resultat relatiu a les condicions sufi-
cients. Per tant introduim diversos contextos als quals el darrer és possible, dins
d’aquests contextos aconseguim la descomposicié de maneres diferents, és a dir,
per descomposicié de polinomis (en el disc i en el pla), un meétode connectat amb
la teoria de projeccions de Bergman, dos tipus de representacions de 'espai de
successions i el d-metode de Hormander. Sota algunes hipotesis addicionals (que
satisfan -com mostrem- molts exemples) finalment donem en quasi tots els con-
textos mencionats anteriorment unes caracteritzacions completes de quan ’espai
és ultrabornologic, quan és tonellat i quan els limits inductiu i projectiu sén inter-
canviables.

Per finalitzar la nostra investigacié d’espais-(PLB) ponderats, presentem dos re-
sultats (un per funcions continues i altre per a hol.lomorfes) els quals mostren que
espais d’aquest tipus es poden escriure en alguns casos com el producte tensorial
d’un espai de Fréchet i un espai-(DF). Combinat amb els resultats en espais-
(PLB) ponderats, el resultat en funcions continues estd connectat amb el treball
de Grothendieck, el qual va estudiar quan aquest tipus de producte tensorial era ul-
trabornologic. El segon resultat en representacions de productes tensorials mostra
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que alguns espais d’ultradistribucions (introduits recentment per Schmets i Val-
divia) resulten ser espais-(PLB) ponderats de funcions hol.lomorfes.



Summary

Projective limits of inductive limits of Banach spaces, so-called (PLB)-spaces,
arise naturally in analysis. For instance the space of distributions, the space of
real analytic functions and several spaces of ultradifferentiable functions and ultra-
distributions are of this type. In this thesis we study (PLB)-spaces whose building
blocks are Banach spaces of holomorphic functions defined by a weighted sup-
norm. The investigation of these spaces extends research of Agethen, Bierstedt,
Bonet who recently studied weighted (PLB)-spaces of continuous functions. From
another perspective, it extends the study of weighted inductive limits of Banach
spaces of holomorphic functions, which have been studied intensely during the last
years by several authors.

Our aim concerning the spaces described above is to study locally convex proper-
ties like ultrabornologicity or barrelledness. As the starting point in the definition
of the spaces under investigation is a double sequence of strictly positive and con-
tinuous functions (weights), our aim is to characterize the forementioned properties
in terms of this sequence. In addition, we investigate under which circumstances
projective and inductive limit can be interchanged and therefore the (PLB)-space
coincides with the weighted inductive limit of Fréchet spaces defined by the same
sequence; spaces of the latter type have been investigated by Bierstedt, Bonet.

We prove necessary conditions for the forementioned properties of the spaces and
for the interchangeability of projective and inductive limit under rather mild as-
sumptions. Concerning sufficient conditions we make use of homological methods,
whose exploration was started by Palamodov in the late sixties and carried on
by Vogt, Wengenroth and many others during the last 40 years. For technical
reasons the methods just mentioned do not apply to all cases which we want to
study. Thus, we first present a criterion for barrelledness adjusted to these situ-
ations. However, it seems to be inevitable to decompose holomorphic functions
to prove any result concerning sufficient conditions at all. Therefore we introduce
several settings in which the latter is possible; within these settings the decomposi-
tion is achieved in different ways, namely by the decomposition of polynomials (on
the disc and on the plane), a method connected with the theory of Bergman pro-
jections, two types of sequence space representations and Héormander’s O-method.
Under some additional assumptions (which are — as we show — satisfied in many
examples) we finally provide in almost all settings mentioned above a full charac-
terization of ultrabornologicity, barrelledness and interchangeability of projective
and inductive limit.

To accomplish our investigation of weighted (PLB)-spaces, we present two results
(one for continuous and one for holomorphic functions) which show that spaces
of this type can sometimes be written as a tensor product of a Fréchet space
with a (DF)-space. Combined with results on weighted (PLB)-spaces the result
on continuous functions is connected to work of Grothendieck, who studied ul-
trabornologicity of such kinds of tensor products. The second result on tensor
product representations exhibits that some of the so-called mixed spaces of ultra-
distributions (introduced recently by Schmets and Valdivia) happen to be weighted
(PLB)-spaces of holomorphic functions.
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1 Introduction

In this thesis we investigate the structure of spaces of holomorphic functions de-
fined on an open subset of CV that can be written as a countable intersection of
countable unions of weighted Banach spaces of holomorphic functions where the
latter are defined by weighted sup-norms. The spaces we are interested in are
examples of (PLB)-spaces, i.e. countable projective limits of countable inductive
limits of Banach spaces. Spaces of this type arise naturally in analysis, for in-
stance the space of distributions, the space of real analytic functions and several
spaces of ultradifferentiable functions and ultradistributions are of this type. In
particular, some of the so-called mixed spaces of ultradistributions (studied re-
cently by Schmets, Valdivia [68, 69, 70]) appear to be weighted (PLB)-spaces of
holomorphic functions (see section 15). In fact, all the forementioned spaces are
even (PLS)-spaces that is the linking maps in the inductive spectra of Banach
spaces are compact and some of them even appear to be (PLN)-spaces (i.e. the
linking maps are nuclear). During the last years the theory of (PLS)-spaces has
played an important role in the application of abstract functional analytic meth-
ods to several classical problems in analysis. We refer to the survey article [38] of
Domariski for applications, examples and further references.

The applications reviewed by Domanski [38] are based on two abstract tools,
namely sequence space representations and the theory of the so-called first derived
projective limit functor; in fact our investigations in this thesis are also based on
these two methods. The latter method has its origin in the application of homo-
logical algebra to functional analysis. The research on this subject was started
by Palamodov [62, 61] in the late sixties and carried on since the mid eighties by
Vogt [77] and many others. We refer to the book of Wengenroth [84], who laid
down a systematic study of homological tools in functional analysis and in par-
ticular presents many ready-for-use results concerning concrete analytic problems.
In particular, [84, section 5] illustrates that for the splitting theory of Fréchet or
more general locally convex spaces, the consideration of (PLB)-spaces which are
not (PLS)-spaces is indispensable.

A major application of the theory of the derived projective limit functor Proj’
is the connection between its vanishing on a countable projective spectrum of
(LB)-spaces and locally convex properties of the projective limit of the spectrum
(e.g. being ultrabornological or barrelled). This connection was firstly noticed by
Vogt [77, 79], see [84, 3.3.4 and 3.3.6], who also gave complete characterizations of
the vanishing of Proj' and the forementioned properties in the case of sequence
spaces, cf. [79, section 4]. A natural extension of Vogt’s work is to study the case of
continuous functions, which was the subject of the thesis of Agethen [1]. Recently,
an extended and improved version of her results was published by Agethen, Bier-
stedt, Bonet [2]. In addition to the study of the projective limit functor, Agethen,
Bierstedt, Bonet studied the interchangeability of projective and inductive limit,
i.e. the question when the (PLB)-spaces are equal to the weighted (LF)-spaces of
continuous functions studied for the first time by Bierstedt, Bonet [18]. More-
over, the work of Agethen, Bierstedt, Bonet exhibits that certain spaces of linear
and continuous operators between Kothe echelon spaces as well as certain ten-
sor products of a Kothe echelon with a coechelon space happen to be weighted
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(PLB)-spaces of continuous functions, see [2, section 4]. In view of the results of
[2], it is a natural objective to extend the investigation on weighted (PLB)-spaces
of holomorphic functions, having in mind the same type of questions.

As in the cases of sequence spaces and continuous functions the starting point
in the definition of weighted (PLB)-spaces of holomorphic functions is a double
sequence of strictly positive and continuous functions (weights). According to the
above, our first aim is the characterization of locally convex properties of the spaces
in terms of this sequence. Secondly, we study the interchangeability of projective
and inductive limit, which is of course closely connected with weighted (LF)-spaces
of holomorphic functions, defined and studied recently by Bierstedt, Bonet [19].
A main concern in the research on the latter subject was the so-called projective
description problem, whose study was initiated in the seminal article of Bierstedt,
Meise, Summers [27] (for (LB)-spaces) and carried on by many others; we refer
to the survey article [12] of Bierstedt for historical notes, further references and a
summary of the state-of-the-art concerning projective description. Weighted (LB)-
spaces of holomorphic functions as such but also results on projective description
(which provides a characterization of the weighted inductive topology in terms of
weighted sup-seminorms when answered positively) play an important role for this
work, since the steps in the projective spectra under investigation are spaces of
this type.

First, we establish definitions and terminology for the study of the weighted (PLB)-
spaces of holomorphic functions AH(G) and (AH)o(G) under O- respectively o-
growth conditions in section 2. In section 3 we return to the case of continuous
functions, where we give a review of the main results of Agethen, Bierstedt, Bonet.
We supplement these results by presenting a tensor product representation which
extends those of [2, section 4] in the way that the Kothe (co-)echelon spaces are
replaced by a weighted Fréchet and a weighted (LB)-space of continuous functions,
respectively. Involving the linear topological invariants (DN) and (£2), introduced
by Vogt [75] and Vogt, Wagner [81] and studied by many others, we deduce a cri-
terion for the latter tensor products to be ultrabornological. The general question
of determining locally convex properties of the tensor product of a Fréchet and
a (DF)-space was raised by Grothendieck in the last section of [45]. In section 4
we firstly present a necessary condition for the vanishing of Proj! under the as-
sumption that all the weighted Banach spaces are contained in some “big” space
(for the spaces under investigation this is the case since here we are concerned
with subspaces of the space of all holomorphic funtions). Secondly, we present an
inheritance property of (quasi-)barrelledness, see 4.4, which is an abstract version
of a well-known method used by Bierstedt, Bonet [16]. We conclude this rather
abstract section with a criterion for bornologicity of projective limits of inductive
limits of normed spaces (cf. 4.10) which will turn out to be very useful for finding
sufficient conditions for barrelledness in the case of o-growth conditions. After
these supplementary and preparatory sections we start the study of AH(G) and
(AH)o(G) in section 5 with results on necessary conditions for the vanishing of
Proj! and for barrelledness of the spaces. With the help of 4.4 we are able to
prove that the same weight condition is necessary for barrelledness of AH(G) and
(AH)o(G) within a setting of rather mild assumptions on the domain G and the
double sequence, which is motivated by the article [20] of Bierstedt, Bonet, Galbis.
In the second part of section 5, we discuss the special cases of so-called essential
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weights (see Taskinen [72]) and consequences of condition () which is a generaliza-
tion of condition (V) of Bierstedt, Meise, Summers [27]. In sections 6-10 we study
sufficient conditions for the vanishing of Proj! and for barrelledness of (AH )y (G),
where we use for the latter the criterion 4.10 of section 4. For the application of
the homological methods and also to use 4.10 we have to decompose holomorphic
functions. Since there is up to now no method available to do this in broad gener-
ality (as it is possible in the case of continuous functions, cf. [2, 3.5]), we have to
restrict ourselves to special situations. Thus, in sections 6 and 7 we study spaces
over the unit disc and the complex plane where a decomposition of holomorphic
functions can be achieved by a decomposition method for polynomials. These two
settings trace back to work of Bierstedt, Bonet [19] and Bierstedt, Bonet, Taskinen
[22]; the setting in section 6 relies on results of Lusky [53, 54]. In section 8 we
study another special setting for the unit disc where the decomposition method
is connected with the theory of Bergman projections and goes back to the article
[32] of Bonet, Englis, Taskinen. In section 9 we use two different methods (based
on Meise [56] and Domariski, Vogt [41]) to obtain a sequence space representation
of AH(G) which allows us to use the results on continuous functions in order to
get sufficient conditions for the vanishing of Proj'. By the special assumptions
of that section the space AH(G) is a priori a (PLN)-space. The last special set-
ting (section 10) deals with non-radial weights and the decomposition is based on
Hérmanders 0-methods in the variant developped by Meise, Taylor [57]. Before
we study the interchangeability of projective and inductive limit in section 12, we
discuss relations between the weight conditions and also abstract conditions (in
particular of the condition (B1) which arised in the bornologicity criterion 4.10)
used in the earlier sections. We also examine the special cases of AH(G) and
(AH)o(G) being Fréchet or (LB)-spaces. In section 13 we revisit condition (X)
and present several corollaries under this additional assumption, which is in some
sense rather natural as it is satisfied by many of the examples presented in section
14. Finally, in the appendix (section 15) we show that several mixed spaces of
ultradistributions (cf. [68, 69, 70]) can be regarded as weighted (PLB)-spaces of
holomorphic functions.

2 Preliminaries

Let G be an open subset of C? and d > 1. By H(G) we denote the space of all
holomorphic functions on G. A weight a on G is a strictly positive and continuous
function on G. For a weight a we define

Ha(G) = {f € H(G): Ifll = supa(:)| ()] < 0}
Hao(G) :={f € H(G); a|f]| vanishes at co on G }.

Recall that a function g: G — R is said to vanish at infinity on G if for each € > 0
there is a compact set K in G such that |g(z)| < € for all z € G\K. The space
Ha(G) is a Banach space for the norm || - ||, and Hao(G) is a closed subspace of
Ha(G). In the first case we speak of O-growth conditions and in the second of
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o-growth conditions.

In order to define the projective spectra we are interested in, we consider a dou-
ble sequence A = ((an,n)nen)nNen of weights on G which is decreasing in n and
increasing in IV, i.e.

VN, neN : annt1 <ann < AN41n-

This condition will be assumed on the double sequence A in the rest of this work.
We define the norms || - | n,n := || - [[ay.,, and hence we have

YN, neN |- nner <[ llvn < - Ivein

Accordingly, Han »,(G) € Hann+1(G) and H(an,)o(G) € H(annt+1)o(G) holds
with continuous inclusions for all N and n and we can define for each N € N the
weighted inductive limits

ANH(G) :=ind,, Han»(G) and (An)oH(G) :=ind, H(an n)o(G).
We denote by By, the closed unit ball of the Banach space Han ,(G), i.e.
Byn={f€HG); |fllnn <1}

By Bierstedt, Meise, Summers [27, end of the remark after Theorem 1.13] (cf. also
Bierstedt, Meise [25, Proposition 3.5.(2)]) we know that Ay H(G) is a complete,
hence regular (LB)-space. We will assume without loss of generality by multiplying
by adequate scalars, that every bounded subset B of Ay H(G) is contained in By ,,
for some n.

The weighted inductive limits (A )oH (G) need not to be regular. The closed unit
ball of the Banach space H(an n)o(G) is denoted by

By = {f € H(ann)o(G); [|fllnn <1}

For each N € Nwe have Ay;11H(G) CANH(G) and (Ap41)0H(G) C (An)oH(G)
with continuous inclusions. AH := (AyH(G))n and AgH := ((An)oH(G))n are
projective spectra of (LB)-spaces with inclusions as linking maps. We can then
form the following projective limits, called weighted (PLB)-spaces of holomorphic
functions

AH(Q) := projy AnH(G),
(AH)o(G) = projn (An)oH(G),
which are the object of our study in this work. From the universal property of
the inductive limit it follows that (An)oH(G) € AxyH(G) holds with continu-

ous inclusion for each N € N. Hence the same is true for the projective limits,
i.e. AH(G) C (AH)o(G) holds with continuous inclusion.

Our objectives concerning these spaces are the following:

a. Investigation of the structure of AH(G) and (AH )o(G): In particular finding
necessary or sufficient conditions for the spaces having “nice” locally convex
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properties, e.g. being (ultra-)bornological or barrelled, which are formulated
in terms of A.

b. Investigation of (homological) properties of the projective spectra AH and
AoH: In particular finding necessary or sufficient conditions for the vanishing
of the derived functor of the projective limit functor on these spectra.

c. Investigation of the commutativity of projective and inductive limit: In par-
ticular finding necessary or sufficient conditions for the interchangeability.

An important tool to handle weighted spaces of holomorphic functions is the tech-
nique of associated weights or growth conditions mentioned by Anderson and Dun-
can [3], studied for the first time in a systematic way by Bierstedt, Bonet, Taskinen
[21] and used in many articles dealing with weighted spaces of holomorphic func-
tions. For a given weight a we call w := % the corresponding growth condition and
define [21, Definition 1.1]

W= (2)":G—R, z— sup |g(z)| = sup |g(2)].
g|€1‘1<(G)~ gE€Bq
glsw

In [21, previous to Observation 1.12], Bierstedt, Bonet, Taskinen put a := % and

called a the weight associated with a. Since this notation is a bit subtle (to get
a we cannot just replace w with a in the above formula) we have to be careful
and always distinguish weights and growth conditions. Note that by the above
remarks (%)N = % holds. However, we will in most cases stick to the first notation
(cf. the weight conditions below). Bierstedt, Bonet, Taskinen (cf. [21, 4.B after
1.12]) introduced as well an associated weight for the case of o-growth conditions,
i.e. Wy = (1)§, where

1

wo = (5)5: G—=R, 2z sup |g(2)| = sup |g(z)|,

gEH(G), |g|<w 9€Bg
and a|g| vanish-
es at oo on G

but we will see that in a rather general setting both notions coincide.

In [80] Vogt introduced the conditions (Q) and (wQ). In the case of weighted
(PLB)-spaces one can reformulate these conditions in terms of the weights as
follows. We say that the sequence A satisfies condition (Q) if

VNIM>=N,nVK>M m,e>03k S>0: < max (—=—, -5,

an an,n’ aK k

we say that it satisfies (wQ) if

YVNIM>N,nVK>Mm3k S>0:

S S)'

< max (
S max aN,n’ aK K

AM,m

It is clear that condition (Q) implies condition (wQ). Bierstedt, Bonet gave in [18]
an example of a sequence which satisfies (wQ) but not (Q). We define the following
conditions by the use of the associated weights, where the quantifiers are always
those of (wQ) or (Q) resp. and the estimates are the following:

Q¢ () smax (7)) (35)7)
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(Q)oNut : (akj_m)w max (az\EmL’ a}f,k))w

<
WQi ¢ ()" s Smax((52)7 (7))
(WQ)ONut : (al\/}mL)N < S

By Bierstedt, Bonet, Taskinen [21, Proposition 1.2.(vii)] é
plies (%)N, (%)N < max (%, %)N and hence max ((%)N, (%)
all weights a and b in the above sense. That is, condition (Q);, implies (
and (wQ) implies (wQ)_ , in general. Moreover, by [21, Proposition 1.2.(vii)]

condition (wQ) implies (wQ)_ . and condition (Q) implies (Q)

out”

2~
~— o=

In [76, Satz 1.1] Vogt introduced the following condition to characterize Fréchet
spaces between which all continuous linear mappings are bounded. According to
Vogt, but reformulated for our setting, we say that a sequence A as above satisfies
condition (B) if

,,,,,

Condition (B)™ is defined by the same quantifiers as above and the estimate re-
placed by

As above, [21, Proposition 1.2.(vii)] provides that (B) implies (B)~.

3 Weighted (PLB)-spaces of continuous functions:
Summary of known and some supplementary results

3.1 Properties of the spaces AC(X) and (AC),(X)

The continuous analoga of the spaces AH(G) and (AH)o(G) have been defined
and investigated in the thesis of Agethen [1]. Recently her results have been
extended, reorganized and published in Agethen, Bierstedt, Bonet [2]. This is the
main reference for this section. Let in the sequel X be a locally compact and o-
compact topological space. The definition of AC(X) and (AC)y(X) is completely
analogous to that of AH(G) and (AH )o(G) given in section 2: We simply replace
H with C and G with X everywhere. Since by Bierstedt, Bonet [17, Section 1]
the spaces AyC(X) are always complete we may — as in the holomorphic case —
assume that every bounded set in AxC(X) is contained in By, for some n. Also
as in the holomorphic case, (An)oC(X) needs not to be regular. By [27, Theorem
2.6] it is regular if and only if it is complete and this is equivalent to the fact
that the sequence An = (an n)nen is regularly decreasing (see [27, Definition 2.1
and Theorem 2.6] and 3.18). However, (An)oC(X) C AxyC(X) is a topological
subspace for each N € N (cf. [27, Corollary 1.4.(a)]) and hence (AC)y(X) is
a topological subspace of AC(X). Let us denote by AC = (AyC(X))y and
AoC = ((An)oC(X))n as in the holomorphic case the projective spectra of (LB)-
spaces. Then AgC is reduced in the sense that (AC)o(X) is dense in every step
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(cf. [2, section 2]). We have the following two results concerning homological
properties of the spectra AC and AyC' and the locally convex properties of AC(X)
and (AC)o(X).

Theorem A. ([2, Theorem 3.7]) The following are equivalent.
(i) Proj'AeC = 0. (iii)  (AC)o(X) is barrelled.
(ii) (AC)o(X) is ultrabornological. (iv) A satisfies condition (wQ).

Theorem B. (|2, Theorems 3.5 and 3.8]) We have (i)<(ii)=-(iii)=-(iv)=(v), where
(i) A satisfies condition (Q), (iv) AC(X) is barrelled,
(ii) Proj'AC =0, (v) A satisfies condition (wQ).
(iii) AC(X) is ultrabornological,

In the sequel we complement the above by considering the special situation that the
domain X is the product of two topological spaces X; and X5 and the sequence A
is the product of an increasing sequence (ak)ney defined on X; and a decreasing
sequence ((a2)~!),en defined on X,. In this special setting we can associate a
weighted Fréchet space to each of the sequences (a})nyen and (a2),en and thus
draw the line between properties of the (PLB)-space and the invariants (DN) and
(Q) for Fréchet spaces. In order to do this we have to characterize (DN) and ()
in terms of the weights.

3.2 Supplementary results: (DN) and () vs. (wQ)

Vogt [75] and Vogt, Wagner [81] introduced the following conditions, which are
topological invariants of Fréchet spaces. We say that a Fréchet space E with a
fundamental sequence of seminorms (|| - || )nen satisfies condition (DN), if

InVm>2n0<0<13k>m,C>0Vz € E: |z|n < C|z|f|z)Li?.

By Meise, Vogt [60, 29.10] the latter statement is equivalent to the original formu-
lation [60, Definition on p. 359] of (DN). According to [60, Definition on p. 367] we
say that a Fréchet space F with a fundamental sequence of seminorms (|| - || )nen
satisfies condition (£2), if

YNIM>NVK>M3ID>0,0<0<1vyeE |yt <D(lyli)? (lylly) =7,

where [|y|[}, == sup) ., <1 |¥(z)|. It is well-known (and an immediate consequence
of [60, 29.13]) that replacing the above estimate by the inclusion Uy C rUyn +
Dr'=1/0Uy (required for each r > 0 and where U, := {z € E; ||z, < 1} for
n € N) yields an equivalent formulation of (£2).

3.2.1 Weighted Fréchet spaces of continuous functions

Definition 3.1. Let A = (a,,)nen be an increasing sequence of weights on a Haus-
dorff locally compact and o-compact topological space X. We say that A satisfies
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condition (DN)_ if
3an>n,O<9<13k2m,0>0:am<0aza1_9.

n

We say that A satisfies condition (€)  if

YNIM>NYK>M3D>00<6<1:.1 <D(L) ()"

Lemma 3.2. Let A = (ay)nen be an increasing sequence of weights on a Haus-
dorff locally compact and o-compact topological space X. The Fréchet space
CA()(X) = proj,, C(an)(0)(X) satisfies condition (DN) if and only if the sequence
A satisfies (DN)_ .

Proof. “<” We choose n as in (DN)_. For given m > n, 0 < # < 1 we choose
k>m and C > 0 as in (DN)_. For an arbitrary f € CAy(X) we obtain

[1fllm = sup am (z)[f(2)]
zeX

< C sup ag(w)a, "’ (2)|f ()17

zeX

< C sup (ag(2)| f(2)])" sup (an ()| f(x)])'
zeX zeX

= CIIfIIRIIFI°

and hence we have shown (DN).

“=" Let zo € X be fixed. Since X is locally compact, there is a neighborhood filter
(K )pep for zg consisting of compact sets. Since X is Hausdorff, Ngep K3 = {0}
We choose for each K3 a function fz € C.(X), that is in the space of continuous
functions with compact supportspaces|C.(X), with fz(xzo) =1, 0 < fz < 1 and
supp f3 € K. Thus we have Ngepsupp fz3 = {xo}. Now we consider the net
(supgex a(2)|fa(2)]")ser C R for some fixed weight a and v > 0 and obtain

sup a(z)|f(x)|" = sup a(z)[fg(x)]” < sup a(z) — alxo)
rzeX rEsupp f3 rEsupp fg

and sup,e x a(z)|f3(2)|" = a(xo)|f3(20)[” = alzo).

Now we select n as in (DN). For given m > n and 0 < 6 < 1 we choose k > m and
C > 0 as in (DN). Now we fix some 2y € X and consider the fz defined above.
We have

sup a ()] f5(2)| < C sup ai (2)|f5(2)|” sup a5~ ()| fo ()" *
reX reX reX

for each g € B. Taking limits on each side yields the desired inequality, which
finishes the proof since xg was arbitrary. |

Lemma 3.3. Let A = (a,)nen be an increasing sequence of weights on a Hausdorff
locally compact and o-compact topological X. The Fréchet space C'A)(X) =
proj,, C(a,))(X) satisfies condition (£2) if and only if the sequence A satisfies
(€)

w*
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Proof. “<=” We put a := ﬁ and b := i and use (cf. [60, proof of 29.13]) that

m>igl(sa—|—sl 1/9b) 9 (9— )0 1 l 9b0

holds for arbitrary a and b > 0. We put C := 0~1(§~! — 1)~1 > 0 and thus get
a7 < % (sa+ st—1/0 b)
for each s > 0. Hence we obtain

0 1-6 _
D(5) (G5) <@gy +s 710 0n) smax (2555, 2571 00)

for each s > 0. Now we define 7 := 42 s and D’ := 22(.£)1=1/% > 0, hence
s = Zr and therefore 2%51’1/0 = %(%)1*1/9 rl=1/0 — % r1=1/9  Replacing
D' with D we get

() YN3M > NVK >M3D>0,0<6<1Vr>0: ;- <max (57, 22,

Now we show (2) in the second formulation mentioned at the beginning of this
section. Let N be given. We choose M > N as in (x). For given K > M we select

D >0 and O < 0 <1 asin (x) and take an arbitrary r > 0. Let f € Ug;) be fixed,
e |f] € = < max (55 D"lfl/e) By [2, Lemma 3.4] there exist @1, @2 €

20,1\]’ 2(1}(
Drl-1/0
)

C(X) w1th O < @1, 92 < 1, 1 + 2 = f such that 1] < =, |pa| < =
ie o € TUJ(V , P2 € Drl’l/eUI((o) and thus f € TU](\;)) +D7’1’1/9UI((°), where

U =1{f € C(A))(X) ; sup an(z)|f(x)] < 1}

zeX

“=7” For a fixed N and for zy € X we consider 0,,: C(ay)o(X) — C, 0z, (f) :=
f(zo). Then we have
1

11620 I3 = Sup 1020 ()] = Sup [f (o)l < Zxtzey
N N

We choose ¢ € Cc(X) with ¢(z9) =1, 0< ¢ < 1on X and put fy := ;2. Then
fo € Clan)o(X) and

sup an ()| fo(x)] = sup ay(z) 225 = sup p(x) = 1,

zeX zeX reX
ie. fo € US. 4y(fo) = folwo) = 2252k = s implies 3, |y = sty (D
is the special case of () where we choose the functional to be §, for arbitrary
e X. |

3.2.2 (DN) and () vs. (wQ)

After these preparations we are ready to investigate the situation we mentioned
at the end of section 3.1: For ¢ € {1,2} let X, denote a locally compact and o-
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compact Hausdorff topological space. Moreover, let A* = (a?,)nen be an increasing
sequence of weights on Xj, i.e. a;, < a;,; for all n € N. We define the double
sequence A = ((ann)NeN)nen by setting

1
ang : X1 x Xo = R, (21,22) = ann(z1,22) = [aly ® 1n](a01,x2) Zi(zz)'

Thus, A satisfies the estimates an n+1(21,22) < ann(z1,22) < ant10 (21, 22) for
all N, n and (x1,x2) € X7 X X2. In the sequel we refer to a sequence of the latter
form by A = A'®(A2%)~!. To simplify notation we put X := X; x X5 and consider
the (PLB)-space (AC)(X) in the notation established at the beginning of section
3. In view of 3.A we want to investigate if there is some relation between the
conditions (DN) and () for the Fréchet spaces C(A%)o(X;) and the (PLB)-space
(AC)o(X). According to the results above we can consider the weight conditions

(DN),,, (£2),, and (wQ).

The following result was proved by the author using different versions of (DN)_ and
(€2),,- This original proof was contained in a first version of [83] and was inspired
by that of [78, Theorem 5.1] of Vogt, who showed that Ext!(FE, F) = 0 holds for a
nuclear Fréchet space E satisfying (DN) and a Fréchet space F satisfying (), see
also [84, Corollary 5.2.8]. The versions of (DN)_ and (£2), aswell as the following
proof (which is much simpler then the original one) are based on suggestions of
the referee of [83].

Lemma 3.4. Let A' resp. A? be an increasing sequence of weights on X7 resp. Xo.
Assume that A' satisfies (€2), and that A? satisfies (DN)_. Then the sequence
A=Al ® (A4%)7! on X; x X, satisfies (wQ).

Proof. In our special setting we have to show the following
YVNIM>2NnVK>2M m3k, S>0V(z1,22) € X1 X Xo:

a? m(z2)
LLM("KI) =

az (w2) ai(wz))

ap(21) ag(z1) /"

In order to do this, let N be given. We select M > N as in (Q),, and n as in
(DN),,. For given K > M there exist D > 0 and O < 6 < 1 with the estimate
in (Q),,. For arbitrary m and the same 6 there exist k¥ > m and C > 0 with the
estimate in (DN)_. We put S := 2CD and multiply the estimates in (DN)_ and
(Q),, to get

< Smax (

aZ, (z2) az(w2) a2 (z2) \1-0
a}u(aczl) CD(af((le)) (aN(aczl))
az(w2) a2 (z2)
< CD(aIk((xl) aN(acl))
< S max( ap(z2) al(z2) )
= ap(z1)’ ak(x1)
for each (z1,22) € X1 X Xo. [ ]

Proposition 3.5. Let A' resp. A% be an increasing sequence of weights on X
resp. Xo. Consider the sequence A = Al ® (Az)’1 on X = X; x X5 and assume
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that C(Al)(X1) satisfies (Q2) and that C(A42)g(X3) satisfies (DN). Then (AC)o(X)
is ultrabornological.

Proof. This follows immediately with 3.2, 3.3, 3.4 and 3.1.A. |

Example 3.6. In general the assumptions of 3.5 do not imply that A satisfies
condition (B). Let s be the Fréchet space of rapidly decreasing sequences. Then
for A = (ap)ren with ax(j) = j* we have (cf. [60, 28.16])

s={zecKY; VkeN: lim j¥|z;| =0} = co(A) = CAy(N).
J—00

In particular, s satisfies (DN) and () (cf. Meise, Vogt [60, I11.29]). Now we
consider — exactly as in [82, Example 5.14] — A = ((any ® a%)neN)NeN on N x N,
ie.

(AC)o(N x N) = projy ind,, C(an ® 7-)o(N x N)

For completing our example it is enough, to show that A does not satisfy (B).
But this one can find in [82, Example 5.14], where the above example was stated
to show that condition (wQ) does not imply condition (B) in general. In [82] for
the above space condition (wQ) was checked “by hand” — as we have seen, now
3.5 provides a much more convient way to conclude this. For consequences of the
latter see section 3.3.

3.2.3 (DN) and (Q) vs. (wQ)

In this section we show that 3.5 remains true if in the assumptions we change
(DN) into the weaker condition (DN) and on the other hand replace (€2) with the

stronger condition (92). In order to do this, we have to go through the preceding

proofs and assure that all our arguments apply to the new situation.

As Meise, Vogt [60, Definition previous to 29.11] and e.g. Bonet, Domariski [29,
30, 31], we define the invariants (DN) and (6) Let E be a Fréchet space with an
increasing fundamental system of seminorms (|| - ||n)nen. We say that E satisfies

condition (DN) if

InVm=2nIk>m,0<0<1,C>0Vx€E:|z|n<C|z|f|z)i?.

We say that F satisfies condition (Q), if
YN 3IM>NVK>M,0<0<13D>0vy e E: |yl < Dlyli)’ (lylla)—°

Definition 3.7. Let A = (a,)nen be an increasing sequence of weights on a Haus-
dorff locally compact and o-compact space X. We say that A satisfies condition
HanEnHkEm,a>0,C>O:am<Caza}l_9.

We say that A satisfies condition (ﬁ)w if

VN3IM>NVEK>Ma>03D>0: L <D(L)"(L)"
anr
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The following two lemmas can be proved in complete analogy to 3.2 and 3.3.

Lemma 3.8. Let A = (a,)nen be an increasing sequence of weights on a Hausdorff
locally compact and o-compact topological X. The Fréchet space C'Ag)(X) =
proj,, C(an) ) (X) satisfies (DN) if and only if the sequence A satisfies (DN), .

Lemma 3.9. Let A = (a,,)nen be an increasing sequence of weights on a Hausdorff
locally compact and o-compact topological X. The Fréchet space C'A)(X) =

proj,, C(an) ) (X) satisfies (€2) if and only if the sequence A satisfies (£2),,.

Analogously to 3.4 one may prove the following.

Lemma 3.10. Let A’ resp. A% be an increasing sequence of weights on X resp. X».
Assume that A! satisfies (ﬁ)w and that A? satisfies (DN),,- Then the sequence
A=A ® (A4%)7! on X; x X, satisfies (WQ).

Finally, 3.8, 3.9 and 3.10 imply the desired analog of 3.5.

Proposition 3.11. Let A! resp. A2 be an increasing sequence of weights on X
resp. X». Consider the sequence A = Al®(A?)71 on X = X; x X, and assume that
C(AY)o(X,) satisfies () and that C(A4%)y(X>) satisfies (DN). Then (AC)o(X) is
ultrabornological.

3.2.4 Tensor product representation

The constructions in the earlier sections already suggest the question, wether the
space (AC)o(X) with an underlying sequence A = A' ® (A?)~! can be realized as
the tensor product of a Fréchet and an (LB)-space. In this section we deduce a
representation of this kind, which finally will enable us (see 3.17) to utilize 3.5 to
prove a criterion for the ultrabornologicity of an e-tensor product of a weighted
Fréchet space of continuous functions and a weighted (LB)-space of continuous
functions.

The underlying general question of determining topological properties of the ten-
sor product of a Fréchet space and a (DF)-space was raised by Grothendieck in
the last section of his these [45]. He investigated the case of m-tensor products
of echelon and coechelon spaces of order one, see [45, Chapitre II, §4, No. 3,
Theorem 15]. His results inspired many authors to further studies; see Varol [74,
Section 0] for references and a generalization of Grothendiecks original result to
the case of m-tensor products of a Koéthe coechelon space of order one and arbi-
trary Fréchet spaces ([74, Theorem 2.1]). Varol [74, Theorem 2.7] investigated in
addition the case of e-tensor products of Kéthe coechelon spaces of order zero and
arbitrary Fréchet spaces. Note that also the classical result [45, Chapitre II, §4,
No. 3, Corollaire 2] (see also Bonet, Pérez Carreras [63, Proposition 11.6.13]) of
Grothendieck on the ultrabornologicity of s’ & s is a result on an e-tensor product
of a Fréchet space and a (DF)-space due to the nuclearity of s.

In this section we will again consider a sequence A = A!' ® (42)~! on X =
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X1 x Xo of the type explained earlier. We put V? := (4%)7! = ((a%) ™) ven,
which gives rise to the weighted (LB)-space of continuous functions VZC(X3) =
indy C((a3,) 1 )o(Xa).

In order to prove the desired result on the tensor product representation 3.16
below and for re-use in the appendix (15.4), we first present an abstract result,
which roughly speaking states that given two (PLB)-spaces E = projy ind,, En »
and F' = projy ind,, Fn, with En, = Fy,, for all N and n in a way that these
isomorphisms are “compatible” with the linking maps of the spectra we get £ &
F. In view of this rough formulation (of a plausible statement) the notation
we introduce now for the proof seems rather disproportionate, but without this
technical notation, it seems to be hard to give a detailed and complete proof.

Let En,, be Banach spaces for n, N € N. Assume that we are given continuous

and injective maps il\"N+1: Entin — En, and iﬁ[ﬂ,n? Enyn — Ennt1. We

put iV = z,]yn = idg,, and z%n = i7Nn’m71 0---0 iﬁﬂrlm for m > n and get
zfcvm oiN . = ifxn for arbitrary N and k > m > n. Thus, &y = (Enn, i, ,) I8

an inductive spectrum of Banach spaces for each N (see e.g. Vogt [77, section 2,
p. 12]). We put Ey = ind,, Ey ,, denote by il : Ex,, — Ex the canonical maps.
Moreover, we assume that i) , o il "N+t = LN+ o V41 holds for all N and
m = n. By the latter assumption we get for each N from the universal property
of the inductive limit Ex41 a map iy ny+1: Eny1 — En which satisfies
(1) inngg 0dN T =il o gNNFL

for each n. We put iy y = idg, and iy N = inN41 0 - 0ip—1,m for M > N
and get ix a0 imn = ign for all N > M > K. Therefore, &€ = (En,in,m)
is a projective spectrum of (LB)-spaces. We put E = projy Fx and denote by
in: E — Epn the canonical maps.

Proposition 3.12. Let E = projy ind,, En,, and F' = projy ind,, Fx , be (PLB)-
spaces where we replace for the case of F' in the above notation E with F', & with
JF and ¢ with j. Assume that we are given a system of isomorphisms T, : Fxn —
En , with the properties

N .
(2) TNJH‘I OJn+1mn = n+1n © TN,n

N,N+1 _ N,N+1
(3) Tnmojy =iy oTni1m.

Then the spectra €& and F are equivalent and in particular £ = F holds.

Proof. 1. Let us first show that &y ~ Fy for each N € N. For fixed N we put
o =Ty and Y =41, 0 Tjgln Then we have
/BTJLV o aiv = jlem o Tlgﬁln oTNn = jﬁ‘_l,n and

N N _ N -1 @ .N -1 _ .N
Qpt1 00, =TNnt10 In+1,n © TN,n = lnt1n © TNy o TN,n =ln+in
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that is the diagram

N N
“n4+1,n n+2,n+1
Enn, —— Enpnt1 Enpyog —— -+

S
S 2
N d N K N
Xn *n+1 ? *n+2
FN,n FN,n+1 FN,n+2 o
N .
In+1,n In+2,n+1

is commutative and we thus have Eny ~ Fy.
2. The above equivalence induces for each N € N an isomorphism T : Fy — En
with

4)  Tnojy =iy oTny

for each n € N.

3. Now we claim & ~ F. We put ay =Ty and By = jn—1,N oT&l. Then we have

. 1 .
Bvoan =jn-inoTy oIy =jny-_1,ny and
. (5) . -1 .
anyofnt1 =TyojnNt10TN+1 = inN+10TNt10TN ) = iNt1N

where
(5) TNojNnN+1=1NN+1°TN+1
is obtained as follows. By the universal property of the inductive limit it is enough
to show that
TN ojJN,N+10© GNHL =iy N1 0 Ty o gV Tt

holds for each n € N. Thus, let n be fixed. Then
Ty o jnnt1 0 i 1 E Ty o j o jAN+

@ .N N, N+1
- Zn o TN,n Ojn

3)

3 .N _:N,N+1
= Zn OZn

o TN+1,n
@ . :N+1
=INN+1°%,  OoTNy1n
) . CN+1
= INN+1°TN+100p

which yields (5). Thus, the diagram

. - N
IN,N+1 IN—-1,N
Fyi ~ Fiy » Fnv_1

x> »
AN41 ey aN ° an—1

Eni1 ~ En By ——— -
IN,N+1 IN—-1,N

commutes and hence & ~ F. By Wengenroth [84, 3.1.7] this implies in particular
E=F. |

Remark 3.13. Since the formulation and the proof of 3.12 is somewhat technical
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let us mention that if we regard Enyi1n € Enyn C Enn41 as linear subspaces

and assume that the maps i))"V 1 and i 41.n are just the inclusion maps (and the

same for F' and j), the conditions (2) and (3) reduce to

TN,n-&—l‘FN,n = TN,n and TN,n|FN+1m = TN+1,n

which is in many cases very easy to see.

Let us add the following consequence of the proof of 3.12.

Scholium 3.14. Let € = (En,inm,n) and € = (Fn,jm,N) be projective spectra
of locally convex spaces with injective linking maps. Assume that we are given a
sequence of isomorphisms T : Fy — En with

(6) Tnojnn+1=1NN+10TN41
for each N € N. Then € ~ F and in particular £ = F'.
Proof. Since (6) is exactly equation (5) in the proof of 3.12 we may obtain the

equivalence as in the third part of the latter proof. E = F follows again from [84,
3.1.7]. |

Remark 3.15. Analogously to 3.13 let us note that the condition (6) can be
written as

IN|Fy = Tngt
if we regard Eny1 C En as linear subspaces and assume that the iy n are just

the inclusion maps (and the same for F' and j).

With the above preparations we can prove the result already announced by putting
several well-known isomorphisms together.

Proposition 3.16. Let A! resp. A2 be an increasing sequence of weights on X
resp. X». Consider the double sequence A = A' ® (A?)~! on X = X; x X5 and
assume that V? = (42)7! is regularly decreasing. Then we have the isomorphism

C(AY)o(X1) ®:V3O(Xs) = (AC)(X),

where C'(A')o(X1) = projy C(ak)o(X1) resp. V2C(Xs3) = ind,, C((a2)1)o(X2) is
a weighted Fréchet resp. (LB)-space of continuous functions.

Proof. We compute

C(AN)o(X1) @ V5CO(X2) = (projy Clay)o(X1)) @ (ind, C((a3)™")o(X2))
' projy [Clajy)o(X1) @ ind, C((a2)™")o(X2)]

2 projy ind, [C(ak)o(X1) @ C((a2))o(X2)]

2 projy ind,, [Clal ® (a2)™)o(X1 x X3)]

= (AC)o(X).

=
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The isomorphy (1) is true in general, see e.g. Jarchow [50, 16.3.2].

(2) can be seen as follows. We have

a. [48, Theorem 4.1]: C(ak/)o(X1) is an e-space by Hollstein [48, Proposition
2.3],

b. [48, Theorem 4.1.(ii)]: V3C(X2) is quasi-complete, compact-regular (see
Bierstedt, Meise, Summers [27, Corollary 2.7]) and all the C((a2)™1)o(X2)
have the approximation property (see Bierstedt [8, Theorem 5.5.(3)]),

c. [48, Proposition 4.4.(1)]: C(ak)o(X1) is Banach and VZC(X3) is compact-
regular (see b.),

d. [48, Theorem 4.1., 2nd part]: V3C(X2) and all the C((a2)71)o(X3) are com-
plete (see b.).

Therefore by Hollstein [48, Theorem 4.1] we have an isomorphism

ind,, [C(ak)o(X1) @ C((a2)™)o(X2)] =5 Clak)o(Xy) &e indy C((a2) ™ o(Xa)

for each V € N, which is just the mapping induced by the maps idC(a}\,)o(Xl) Ry
via the universal property of the inductive limit on the left hand side (note that
by the properties we stated above, Kithe [52, §44, 2.(5)] yields that we have the
equalities C'(ay )o(X1) ® C((ay,)"")o(X2) = Clay)o(X1) ®= C((ar,)”*)o(X2) and
Clay)o(X1) ® indy C((a7) Ho(X2) = Clay)o(X1) ®e indy C((az))o(X2)),
cf. [48, remarks previous to Prop. 4.4]. Therefore the maps T satisfy the condi-
tion of 3.15 and we get the desired isomorphism (2) by 3.14.

Finally, (3) follows from Bierstedt [9, 1.2] and 3.12 since
T Clay)o(X1) @: C((ah) ™ Ho(X2) — Clay @ (ap) ™ Ho(X1 x Xa),

J J
ij ® gi — [(961,%2) — Zfi(ml)gi(fcz)]
i=1 =1
(Kothe [52, §44, 2.(5)] implies C(ak)o(X1) ®: C((a2)™1)o(X2) = Clak)o(X1)
®: C((a2)~1)o(X2) since both spaces are complete and C((a2)~1)o(X2) has the
approximation property by a.) satisfies the conditions in 3.13 where we regard

Clan41)0(X1) @ C((a2)")o(X2) € Clay)o(X1) @ C(az) ™ o(X2)
C Clay)o(X1) ®: C(ag 1) " o(X2)

as linear subspaces via the maps in n41 ®idC((a%)*1)o(X2) and idc(a}v)o(xl) ®Jn+1,n
where iy y+1: Clakii)o(X1) — Cak)o(X1) and jniin: C((a2) Mo(Xs) —
C((a?,,)"")o(X2) are the inclusion maps. [ |

In the special case of sequence spaces, the above tensor product is of the type
NO(A) ®e k°(B), i.e. it is the tensor product of a Kothe echelon and Kéthe coech-
elon space and thus 3.16 can be regarded as an extension of [2, Lemma 4.3] to
continuous functions.



WEIGHTED (PLB)-SPACES OF CONTINUOUS FUNCTIONS 31

The space considered in 3.6, (AC)o(N x N) with A = ((ay ® a,;!) yen)nen and
ar(j) = j* is by 3.16 isomorphic to the space s ®. k°(B) where B = (j7%); ren
(in this case the regularly decreasing condition [26, Definition 3.1] can easily be
verified).

Corollary 3.17. Let A! resp. A? be an increasing sequence on X; resp. X,. We
consider a double sequence A = Al ® (A2?)~! and assume that V2 = (A%)7! s reg-
ularly decreasing, that C(A1)o(X;) satisfies (2), resp. (Q2), and that C(A%)y(X>)
satisfies (DN), resp. (DN),. Then the e-tensor product C(A')g(X7) ®. V3C(X>)
of a Fréchet space and a (DF)-space is ultrabornological.

Proof. This follows directly from 3.16 and 3.5. |

Let us explain the meaning of 3.17 in the case of sequence spaces: Let A = (a, )nen
be a Kothe matrix and B = (b, )nen be a decreasing sequence of strictly positive
functions on N which is regularly decreasing. We put B~! = (b;1),,ey and assume
that \(A) satisfies () and A\°(B~!) satifies (DN) or that A\°(A) satisfies (©2) and
AO(B~1) satisfies (DN). Then 3.17 implies that the space \°(A) ®. k°(B) is ultra-
bornological.

We note that B is regularly decreasing if and only if A\°(B~1) is quasinormable
and that this is equivalent to condition (wS) of Bierstedt, Meise, Summers, see
[26, Proposition on p. 48 and Proposition 3.2].

Let us mention, that the latter statement follows also from the results in [2, Sec-
tion 4] and Proposition 3.4, since in [2, Section 4] ultrabornologicity of the space
N0(A) @, k°(B) was characterized via condition (wQ). Moreover, the results 3.16
and 3.17 should be compared with results of Piszczek [66, Theorem 9 and Theo-
rem 6] and Domaniski [39, Corollary 5.6] who studied tensor products of (nuclear)
(PLS)-spaces.

3.3 Interchangeability of projective and inductive limit

In [18] Bierstedt, Bonet investigated the spaces VC(X) = ind,, projy Cvy,,n(X)
and VoC(X) = ind,, projy C(vn,n)o(X) and called this setting the (LF)-case of
VC(X) (resp. VoC (X)) in analogy to the (LB)-case studied by Bierstedt, Meise,
Summers in [27], where the underlying system of weights V = ((vn, N)nen)Nen
was assumed to satisfy vpy1 v < vp, v < U n41 In contrast to our definition of A.
Since we want to study under which conditions projective and inductive limit in
the definition of AC(X) and (AC)o(X) can be interchanged, we have to consider
the (LF)-spaces

VC(X) =ind,, projy Can,(X) and VoC(X) = ind,, projy C(an,n)o(X),

that is in the notation of [18] we put v, n := an,,. According to [18] we will in
the sequel denote the steps of the latter inductive limits with

CVp(X) :=projy Can »(X) and C(V,,)o(X) := projy Clann)o(X).
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The following theorem summarizes the results of Agethen, Bierstedt, Bonet [2] on
the commutativity of projective and inductive limit, i.e. with the notation we just
established the question if AC(X) = VC(X), resp. (AC)o(X) = VoC(X) holds.

Theorem C. ([2, 3.10, 3.11]) For the (PLB)- and (LF)-spaces AC(X) and VC(X)
(resp. (AC)o(X) and VoC(X)) the following statements are true.
(1) VC(X) C AC(X) and VoC(X) C (AC)o(X) holds in general with contin-
uous inclusions. AC(X) = VC(X) holds algebraically if and only if the
sequence A satisfies condition (B).

(2) If the sequence A satisfies condition (B), then the space (AC)y(X) equals
VoC(X) algebraically. If each (An)o(X) is complete, then the converse is
also true.

(3) If all (An)oC(X) are complete, then (AC)o(X) = VoC(X) holds alge-
braically and topologically if and only if the sequence A satisfies the condi-
tions (B) and (wQ).

(4) If A satisfies the conditions (B) and (Q), then AC(X) = VC(X) holds al-
gebraically and topologically. If AC(X) = VC(X) holds algebraically and
topologically, then A satisfies the conditions (wQ) and (B).

Remark 3.18. Note that the completeness of the steps (Ag) yC(X) of the (PLB)-
space (AC)o(X) can be characterized by the following condition of Bierstedt,
Meise, Summers. Let V = (v,)nen be a decreasing sequence of weights on X.
According to [27, Definition 2.1], V is said to be regularly decreasing if

Vnadm>2nVe>0,k>m3Id>0Ve e X:v,(x) = ev,(x) = vp(x) = dv, ().

In [27, Theorem 2.6.(a)], Bierstedt, Meise, Summers showed that VoC(X) is com-
plete if and only if V is regularly decreasing. In particular we may replace the
completeness assumptions in 3.3.C by requiring Ay = (an,n)nen to be regular
decreasing for each N.

To end this section, let us mention the paper [65] by Piszczek, who studied ques-
tions related to the above in the setting of arbitrary (PLS)- resp. (LFS)-spaces
and power series spaces.

4 Generalities on projective limits of inductive limits
of normed and Banach spaces

For the study of the spaces AH(G) und (AH )o(G) we will make use of homological
methods. For notation on this subject we refer to Wengenroth [84] and Vogt [77].
This section provides some refinements of results of the general theory which are
adjusted to the situations we are dealing with.
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4.1 A necessary condition for the vanishing of Proj’

Let X = (X, p}}) be a projective spectrum of (LB)-spaces Xy = ind,, X . We
denote by X = projy Xy = projyind, X, its limit and assume that Xy =
Unen Bn,n where By, denotes the unit ball of the Banach space X . The Xy
are tacitly assumed to be separated.

For many (PLB)-spaces which arise in nature, all the Banach spaces Xy, are
contained as linear subspaces in some “big” space. For example this is true for
AH(G) and (AH)o(G): All the Han»(G) and H(an,)o(G) are subspaces of
H(G). Our first result abstracts exactly the situation of AH(G); in this case
(under some mild assumptions, see section 5) the balls By, are compact in H(G)
if we endow H(G) with the compact open topology. For the proof we need the
following well known fact.

Lemma 4.1. Let X, Y and Z be topological spaces, i: X — Z, j: Z — Y and
k: X — Y be maps such that joi = k. If j is injective and moreover j and k are
continuous then ¢ has closed graph.

Proof. We consider
gr(i) CX x Z T X %Y D gr(k).

Then, idx xj is continuous w.r.t. the product topologies on X x Z and X x Y.
We claim that (idx xj)~'(gr(k)) = gr(i). Since gr(k) C X x Y is closed as k is
continuous and idx x7j is continuous this will finish the proof.

“D” We have (idx xj)(z,i(x)) = (z,j(i(x))) = (x,k(x)) and therefore (z,i(x)) €
(idx xj) "z, k(x)).

“C” Let (z,y) € (idx xj)~!(gr(k)). Then by definition (idx xj)(z,y) = (x,j(y))
€ gr(k). That means j(y) = k(z) = (j oi)(x) and since j is injective, we have
y = i(z) which implies that (z,y) € gr(¢) holds. [ ]

Theorem 4.2. Assume that there exists a locally convex space (Y, 7) and a se-
quence (iy)nen, where iy : Xy — (Y, 7) is continuous and injective, such that the
compatibility condition iy o p); = iy for all M > N is satisfied. If Proj 'x=0
then
VNIM>=N,nVEK>M m3k S>0:pYBumCS(pXBrr+ Byn).

Proof. Proj* X = 0 yields by a result of Retakh [67] (see Palamodov [61, Theorem
5.4], Wengenroth [84, 3.2.9]) that there exists a sequence (Bx)nen, where By C
Xy is a Banach disc for each N, such that

() pY;(Bar) € By for N < M,
(BYYVNIM>=NVK>M: pY, Xy CpNXk+ By.

Let N € N be given. We choose M > N as in (). Since By is a Banach disc in
the (LB)-space Xy = ind,, Xn ,, there exists n such that By C Xy, is already a
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Banach disc and hence there exists S’ > 1 with By C S’By,,. Now let K > M
be given. By the above and by (3) we have

parXnr € p XK + S By = P%(k}éw Brw) + 8B

U pNBgw +S'B
k,eNPK Kkt N,n

N

U (S0 Br i + S'Byn
k,eN( PrBrk + S Bnn)

U S'"(pN Bk i + By n)-
N (Px Br kv + BN o)

We put Cyr := S (p¥Bg . + Byn) € Xy and note that iy(Cr) C (Y, 7) is
a Banach disc, since linear continuous images of Banach discs aswell as sums of
Banach discs are again Banach discs (for the latter see [63, proof of 3.2.6]). Let
us denote the associated Banach space by Zi. We have

Cr = 8" (pk By + Bnn) € S'(pr Br w11+ Bym) = Crrga,

thus in(Ck) C in(Cr41) and hence Zy C Zjs 1 with continuous inclusion. We
define Z = indys Zy/, i.e. algebraically we have

in(phrXnr) C iN(k/LéN S'(pRBrw + Bnn)) C Z.

Now let m be given. We have X7, C Xy, ie. pJ]\\gXM,m - p]A\/[IXM and thus
in%XM,m C Z. We claim that i := iy o pﬁ\V/[ o iyt XMm — 4 is continuous,
where i ,, denotes the inclusion map Xy ,, < Xps. Since the iy (Cy) are Banach
discs in (Y, 7), we have continuous inclusions jj: Zps — (Y, 7) and hence by the
universal property of the inductive limit Z = indy Z;» we get that the inclusion
j: Z — (Y,7) is continuous. On the other hand, the composition k := iy o
ivn: Xam — (Y, 7) is continuous and injective. Since j is just the identity we
have joi =joino pAN4 O ip,m = iM ©im,m = k. By 4.1, 7 has closed graph and
since Z is webbed and Xz ., is even Banach, ¢ has to be continuous.

By Grothendieck’s factorization theorem (e.g. [60, 24.33]) there exists k such that
(X nm,m) C Zy and i: Xpy . — Zj is continuous. Since Xy, and Zy, are Banach
spaces the image of the unit ball under ¢ has to be bounded, that is there exists
S” > 0 such that ’L.Nopﬂj\gBM,m = iNOp]\I\;[OiM,mBJVI,m = i(BJVI,m> Q S"~iNOk (iM,m
is the identity). Since iy is injective this yields p}; C SCj and we finally obtain
the desired condition by using the definition of C and selecting S := 5" -S5”. W

Remark 4.3. The condition in 4.2 is exactly the condition (P,) of Braun, Vogt
[36]. They showed that a (DFS)-spectrum X is reduced and satisfies (P,) if and
only if Proj' X = 0.

4.2 An inheritance property of barrelledness

The following abstract results generalizes a method used by Bierstedt, Bonet [16,
Proof of “(ii)=-(iii)” of Theorem 3.10] for vector valued sequence spaces. Bierstedt,
Bonet showed that the projective hull of a Kéthe coechelon space of order zero,
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Ko(V, E) is (quasi-)barrelled, if the projective hull of the Kéthe coechelon space of
order infinity for the same sequence of weights is barrelled by proceeding exactly
as we will do in the proof of 4.4. The same method was also applied by Agethen,
Bierstedt, Bonet [2, Proof of Theorem 3.8.(2)]. In particular it applies to the
inclusion mapping (AH)o(G) C AH(G) as we will see in 6.2.

Lemma 4.4. Let X and X be locally convex spaces and J: Xy — X be a linear
and continuous map. Assume that there exists an equicontinuous net (Sy)aca C
L(X, Xp) such that S,(J(z)) — « holds for each x € Xy. If X is barrelled, then
Xy is quasibarrelled.

Proof. Let Ty be a bornivorous barrel in Xy. We put

T::{xeX;VaeA:SaxeTO}: QASgl(TO).
«@

Since the S,, are linear and continuous, 7" has to be absolutely convex and closed.
We claim that it is absorbing and hence a barrel. Let y € X be given. Consider
theset B, :={Say € X; a0 € A} C Xo. Let (pr)rer and (g,)uenmr be fundamental
systems of seminorms for X, resp. X. For arbitrary A € L there exists C > 0 and
P, -, pp such that p(Say) < Cmaxg—1,.. ,qyu,(y) for all @ € A, since (Sa)aca
is equicontinuous (e.g. Horvath [49, 3.4.5]). Hence

sup pa(z) = sup pa(Say) < C max gy, (y) < oo,
rEB, aEA k=1,....,n

i.e. By is bounded in Xy. Since T is bornivorous, there exists 3 > 0 such that
B, C §1y, hence we have %Say €Ty foralla € A, ie. %y € T and finally y € 8T,
which establishes our claim. Since X is barrelled, T' has to be a neighborhood of
zero. We show J~1(T') C T which provides that Tj is a neighborhood of zero
and thus finishes the proof. Let € J=*(T). That is J(z) € T and by definition
Sa(J(x)) € Ty. But since S, (J(x)) — z and Ty is closed this yields x € Tp. [ |

Remark 4.5. Note that the assumptions of 4.4 imply that the mapping J is even
injective: If J(z) = 0 then 0 = S,(0) = So(J(z)) — = and hence z = 0.

The next statement is useful for checking that “canonical candidates” for nets
(Sa)aca have the properties needed to apply 4.4. As we will see later, in the
holomorphic setting the S, can choosen to be the maps which send a holomorphic
function on its a-th Cesaro mean (A = N in this case).

Let Xy = projy X%, X% = ind, X]Q,m and X = projy Xy, Xy = ind, Xy, be
(PLB)-spaces where we assume that all linking maps are just inclusions, P C X
be a linear space included in each Banach space and (Y, 7) be a locally convex space
such that all the spaces considered above are contained in Y and their topologies
are stronger than 7. Moreover, let XJO\,m C Xn,n be a topological subspace for all
N, n € N. Let (Sa)aca € L(Y, P) be a net of maps. In view of the assumptions
above we can restrict the S, to each of the Banach spaces Xy 5, to each of the
(LB)-spaces X and to the (PLB)-space X. Moreover we can consider it as a map
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into each Banach space X}, ,, into each (LB)-space XR; and into the (PLB)-space
Xo. To simplify notation we will write for all these maps just S,,.

Remark 4.6. If in the situation above, (Sa)aca € L(X N n, X?V,n) is equicontinu-
ous for each N, n € N then (S, )aca is equicontinuous in L(X, Xj).

Proof. We fix N € N and claim that (S,)aca € L(Xn, X$) is equicontinuous.
By Horvéth [49, Prop. 3.4.5] it is enough to show that (Sa)aca € L(Xnn, X¥)
is equicontinuous for each n € N. For fixed n let V' C X%, be a 0-neighborhood.
Then V' N XJOV,n is a 0-neighborhood in XR,JL. By our assumptions there exists a
0O-neighborhood U in Xy, such that S, (U) C V N X?Vm C V for each a € A,
which establishes the claim.

Now let V be a 0O-neighborhood in Xy. Then there exists N € N and a 0-
neighborhood V' in X% such that V = V' N Xy. By the above there exists
a O-neighborhood U’ in Xy such that S,(U’) C V' for each o € A. We put
U :=U’'N X, which is a 0-neighborhood in X and obtain S, (U) = S, (U' N X) C
V'N Xy =YV for each o € A and are done. [ ]

Remark 4.7. In the above abstract setting we can even show that the mapping
J is nearly open in the sense of Ptak (cf. Kothe [52, p. 24)), i.e.

VU € Uo(Xo) : TOU) € Up(imT )

holds.

Proof. We fix U € Up(Xp). Since (So)aca is equicontinuous there exists V €

Up(X) such that S, (V) C U for each o € A. We claim that V Nim J C J(UXO).

Let y € VNim J. Then there exists € Xy such that J(z) = y and for all « € A we

have U 5 S, (J(z)) = Sa(y) — x, hence x € UXO, ie. J(z)=ye€ J(UXO), which

establishes the claim. Since J(UXO) C J(U)X we have V NimJ C J(U)X and

hence V N imJ C (U)X. Thus, we have shown that for arbitrary U € Uy(Xp)

there exists V' € Up(X) such that VNim J C (U)X, i.e. for arbitrary U € Uy(Xop),
J(U)X is a 0-neighborhood in im T [ ]

Remark 4.8. (a) The situation of 4.4 applies to weighted (PLB)-spaces of con-
tinuous functions as introduced in section 2, by taking for the equicontinuous
net the mappings

Se: AC(X) — (AC)o(X), Sa(f)(z) :=alx) - f(z),

where A:={a € C(X); 0<a<1}and a < 8 :& alz) < f(x) for each
x € X. Then [2, 8.3.(2)] follows directly from 4.4.

(b) If we put X = N we are in the case of sequence spaces, i.e. in the usual
notation we consider an infinite matrix (aj;N,n)j,N’neN with

aj;Nn > 0and aj; N1 < 05N < G5;N+1n
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and denote the spaces AC(N) and (AC)o(N) by
X =projyind, Xy, and Xy = projyind, X?V’n
where

Xnn = {x = (z1,22,...); |z|nn = su;N)aj;N,nhcj\ < oo}
je
and
X&n = {x = (z1,22,...); lIm ajnn|z,| = 0}
j—oo

with the induced norm. The space d of finite sequences is contained in all
spaces defined above. Moreover, all the spaces are contained in the space
KN of all sequences. For t € N we define

Sp: KN = d, Sy(x) = (x1,20,...,24,0,...).

The sequence (S;)sen is equicontinuous as a subset of L(Xy n, X3, ,,) for all
N,n € N and we have S,z — « in X°.

Thus, (i), 4.6 and 4.4 imply that X° is (quasi-)barrelled if X is barrelled.

(¢) As we have seen so far, the setting considered in 4.4 applies to the inclusion
(AC)p(X) € AC(X). Hence 4.7 yields that this inclusion mapping is nearly
open. However, in the situation of (AC)¢(X) C AC(X) we already know
that the embedding map is even open. It is not clear if the abstract situation
allows to prove the latter. In 5.5 we will see that the same situation occurs
in the case of holomorphic functions.

Proof. (a) Using 4.6 it is enough to show that the net (S, )aca is equicontinuous
as a subset of L(Can n(X),C(ann)o(X)). But this follows from

[Safllnn = sup ann(@)|a(z)f(z)| < sup ana(x)|[f(@)| = [|fll~n
reX zeX

for arbitrary « € A.

Let f € (AC)o(X) and let N be arbitrary. Then there exists n such that f €
Clann)o(X). As S, f has compact support, we have Sof € Clann)o(X). We
claim that S,f — f in C(ann)o(X). Let € > 0 be given. Then there exists
K C X compact such that ay ,|f| < e on X\K. Since X is locally compact there
exists f € C.(X) with B|x = 1. Let @ > 8 be in A. Then

[Saf = flINn = sup ann(2)[Saf(z) = f(2)] = sup ayn(2)|f(2)[(1 — a(z)).
rzeX rzeX
1

—a(x)) is zero for all z with S(z) = 1, i.e. in particular (1—«)|x = 0. Moreover,
0<1

— o < 1 holds on X. Thus

HScxf - f”N,n = sup aN,n(x)|f(z)|(1 - Oé(:E)) < sup aN,n(I)|f(x)‘ g €,
zeX\K zeX\K

and we have shown the claim. Hence S, f — f in (An)oC(X) and since N was
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arbitrary S, f — f in (AC)o(X). [ |

4.3 Bornologicity of projective limits of inductive limits of
normed spaces

In the following sections we want to study the space (AH)o(G). To find sufficient
conditions for the barrelledness of this space we will first study the space of polyno-
mials endowed with a weighted topology. More precisely we will endow this space
with the projective topology of a spectrum of spaces which are countable inductive
limits of normed spaces. Hence the resulting space is a priori not a (PLB)-space.
For its investigation we will need the following results.

Let XX = (Xn, p}}) be a projective spectrum of inductive limits of normed spaces
Xy = ind,, Xn 5, where the pJ\N4 are inclusions of linear subspaces. We denote by
X = proj,, ind,, Xn ,, its limit and assume that Xy = Upen Bn,n, where By, de-
notes the closed unit ball of the normed space Xy ,,. For all n € N, we will assume
that for each bounded set B C X there exists n € N such that B C By ;. If the
spaces Xy are regular inductive limits the latter can be assumed without loss of
generality.

Lemma 4.9. Assume that

(Bl)  VN3IMVYm3n:BumC 0 (ByanX+ 1B

holds for the spectrum X. Let T C X be an absolutely convex set such that
(B2) INVn3IS>0:By,NX CST

holds. Then T is a 0-neighborhood in X.

Proof. We select N as in (B2). For this N, we select M as in (B1). For n € N, we
put

T, := N (T + tBn.,).

n
keN
Since T" and By, are absolutely convex, T,, is absolutely convex for each n € N.
Moreover, since T' C X = Nyreny Xn7 we have T'C Xy by definition and By, C
X holds for each n € N. Thus we have T,, C Xy for all n € N. We claim that
T, C T, 41 holds for each n. Let t € T, = Ngen T+ %BNW For each k there exists
t' € T and b € By, such that ¢t =t + % Since b € By, € By nt+1 We get that
t € T,41. Hence, Uyen T, is absolutely convex. We put Tp := Xy N (Upen Th)-
Clearly, Ty is absolutely convex in X ;.

We claim that T absorbs By, for each m € N. To see this, we fix m € N and
select n as in (B1), i.e.

(O) BM,m - kQN(BN,n NnX+ %BN,n)

By (B2) for the above n there exists S > 0 such that By ,NX C ST. For arbitrary
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k € N we add 4By, on both sides and obtain

BNnwNX 42BNy CST+ tBny = ST + & Bny = S(T + < Bnn)-
Since k was arbitrary, this yields

Nl (BN N X + £Bnn) € S0, (T + g Bnn) C ST

The latter combined with (o) yields Bas,m C ST;,. With By, € X we obtain

BM,m :BM’mﬂXM C ST, NXy gS(TnﬂXM) C STy

and have established the claim. Since X is bornological as it is an inductive limit
of normed spaces, and we assumed that the By, form a fundamental system of
bounded sets for X,; the above yields that Ty € Ug(Xps). Thus, To N X is a
0-neighborhood in X. Now we claim that Ty N X C 2T. Let t € Ty N X be given,
ie. t € X and t € T, for some n. For this n we apply (B2) to get S > 0 such that
By, NX C ST. We select k > S. By the definition of T}, = Ngen(T + %BNJL),
t has to be in T + %BN,n, ie. t =t + %bk €, wheret € X, t;, € T C X and
by, € By . Thus, by, = k(t — tx) has to be in X N By, C ST. Moreover, b, € ST,
hence %bk S %T and since % < 1, we have by € T. Finally

r=t,+ by €ET+T C2T and $(ToNX)CT

and since % (Tp N X) is a O-neighborhood in X, T has to be a 0-neighborhood in
X. ]

Theorem 4.10. Let X as in 4.9 satisfy (B1). Then X is bornological if and only
if condition (B2) holds for each absolutely convex and bornivorous set 7' C X.

Proof. “=" If X is bornological then T is a 0-neighborhood. By definition there
exists N € N and V € Up(Xy) such that that VN X C T. Now we fix n € N
and consider By, which is bounded in Xp. Hence there exists S > 0 such that
BN,n C SV and thus Ban NX CST.

“<” By 4.9, T is a 0-neighborhood in this case. |

4.4 Remarks on condition (B1)

Let us make some remarks on the conditions established in the latter section.

Remark 4.11. (a) If T is a O-neighborhood in X, then (B2) is satisfied without
any other assumption.

(b) If the space spectrum X = (Xy,CN, ;) satisfies (B1), then it is reduced in
the sense "
YVNIM>N: Xy CX V.

(c) If the Xy, are all Banach spaces and Proj' X = 0 holds, then (B1) is
satisfied.
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Proof. (a) We showed this in the proof of 4.10.

(b) For given N we choose M > N as in (B1). Let € X;; be given. Then there
exists m such that x € Xpr, and p > 0 with px € By For this m by (B1)
there exists n with

7X n
Busm C kmN(BN’n NX+1Bnn) CByaNX
. ,

n

X . .
and hence pr € By, NX " ". Thus there exists (;)jen € By, N X with
xz; — px for j — oo wrt. || - ||v,n and hence in particular w.r.t. the inductive

X . . . =X
topology of Xx. Hence pz € X " and since the latter is a linear space, z € X .

(¢c) We may assume w.l.o.g. that (Byn)nen is a fundamental system of Banach
discs in each of the (LB)-spaces Xy. In the proof of Wengenroth [84, 3.3.4] it is
shown that Proj! X = 0 implies

YNIMVDeBD(Xy)IAeBD(Xy): DCAANX M4

where BD(X ) is the system of all Banach discs in X and (Xy)4 is the Banach
space associated to the Banach disc A. Now we may replace the Banach disc A
by Bas,m for some m, resp. D by By, for some n and thus the above condition
transforms into

YNIMVYm3In: Bym CByanX ™"

where we used that (Xx)p,., is just the Banach space Xy ,. But then we have

XN,n

BN;n NnxX Q (BN,n NnxX J’_EBN,TL) g N (BN,n NnxX + %BN,n)
keN

N

e>0
5= vXN,n .

by observing that for a fixed z € By, N X M for each e > 0 there exists z. €

By, NX such that ||z — x|y, < € that is x € Us(x:) = 2. + U (0) = zc +eBn n,

where U, (y) denotes the ball with radius € and centre y in the Banach space
XNon- [ ]

Remark 4.12. Let us recall and discuss several (different) notions of reducedness
introduced in the literature. Let X = (Xy, p}}) be a projective spectrum of locally
convex spaces and X its limit. By p’¥: X — Ex we denote the canonical maps.

(a) The “classical” notion (e.g. Floret, Wloka [42, p. 143]) is the following. X is
reduced if and only if

——X
VN: pN(X) " = Xy.
If the p are just inclusions (as it is the case in all spectra which we consider)

then the latter means that the limit space is dense in every step. In the sequel
let us call this property classical reducedness.

(b) In [84, 3.2.17] Wengenroth called X if and only if

N Nw N
VN3IM>NVYK>M:ph(Xar) C pN(Xk)
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holds. This notion is also the one used by Braun, Vogt [36, Definition 4].
(¢) Moreover, Wengenroth [84, 3.5.5] called X strongly reduced if and only if

VN IM > N: pN (Xar) S PN (X))

In the notation above strong reducedness (in the sense of (¢)) implies reducedness
(in the sense of (b)), cf. Wengenroth [84, remarks previous to 3.3.8] and classical
reducedness (in the sense of (a)) implies strong reducedness.

Moreover, Wengenroth [84, remarks previous to 3.3.8] mentioned that for a spec-
trum X of separated (LB)-spaces Proj 1Y = 0 implies that X is strongly reduced
and that for a spectrum X of Banach spaces reducedness, strongly reducedness
and the vanishing of Proj! are equivalent.

Proof. “(c) = (b)” Let X satisfy the condition in (¢). In order to show (b) let N

be given. We choose M according to (c). Let K > M be given. Then p¥ (X ) C
X XN XN

A = o o () € R (Xr)

“(a) = (c)” Let X satisfy the condition in (a). In oder to show (c) let N be given.

Choose M = N. Since p¥ is the identity, (a) yields exactly the inclusion required
in (c). [ ]

After these first (abstract) observations, which we will extend in 4.17, let us in-
vestigate the meaning of condition (B1) in the case of weighted (PLB)-spaces of
continuous functions.

Remark 4.13. (a) AoC always satisfies condition (B1).
(b) If AC satisfies (B1), then A satisfies (Q) that is

VNIMVYmInVK,e>03k S>0: 21— <max (=, -5).

aM,m

and clearly (Q) implies (Q).

(¢) AoC satistying (B1) does not imply that the sequence A satisfies (wQ).
(d) If A satisfies (Q) then the spectrum AC satisfies condition (B1).

Proof. (a) We claim By, ,, = B}, N (AC)O(X)C(GN’")O(X).

“D” Trivial.
“C” Let f € By, that is an|f| vanishes at oo and ann|f| < 1 on X. Let
S, and A be defined as in 4.8.(a). We consider (Ssf)aca. Then we have S, f €
Cann)o(X) and since an n|Sa f| < ann|f| < 1 we have S, f € By ,,N(AC)o(X).
By the proof of 4.8.(a) we have S, f — f w.r.t. || - ||~,»n and hence f belongs to
BY,,, N (AC)(X) "

To check (B1) let N be given. We put M := N and for given m we put n := m.
Then we have by the above

, which establishes the claim.

B € B NACHX) ™" = 0 B, 0 (ACK(X) + £BR 0
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(b) For given N we select M as in (B1) and for given m we select n as in (B1).
Then

Buyrm €

(Bnn NAC(X) + +Bn.n)

N
keN
ol (AC(X) 4 £Bn.n)

c
- EQO (AC(X) + 5BN,n)-

For the last inclusion let f € Ngen(AC(X)+ 4+ Bn,,) and € > 0 be given. We select
k € N sucht that % < e. Then exist f; € AC(X) and f5 € %BN,H such that f =
fi1+ f2. According to our choice of k we get fo € eBn 4, and thus f1+f2 € AC(X)+
€Bn .. Since epsilon was arbitrary this yields f € Neso(AC(X) +Bny).

Now we fix & > 0. Since —— € By, the above yields - L ¢ AC(X) + 5BNn-

anM,m M,m

Thus there exist f and g such that —— = f+ £g with f € AC(X) and g € By y,.

apM,m
That is, for each K there exists k and A > 0 with |f] < ﬁ and |g| < # and
we may compute h ’

A
a]\;l,m = |f+€g‘ < ‘f| + %‘g| < asz + 2ai7,n S max(2a2;n7 Uj()\k)

to obtain finally condition (Q) by setting S := 2\. In view of the quantifiers, it is
clear that (Q) is a specialization of (Q).

(c) There are examples of sequences A which do not satisfy (wQ) (cf. [82, Example
5.12]) but (B1) is always satisfied (by (a)).

(d) By 3.B, (Q) is equivalent to Proj'AC = 0. Thus, 4.11.(c) yields that (B1)
holds. ]

If A satisfies condition (Q) it follows from 4.13.(d) that AC satisfies (B1) and
(cf. section 2) that A satisfies (wQ). In view of 3.1.B — which provides a charac-
terization of Proj* AC = 0 (via (Q)) but no characterization of ultrabornologicity
or barrelledness of AC(X) — it is not clear if (wQ) is also sufficient for these prop-
erties. Unfortunately, we cannot solve this problem but (which is even worse)
show (see 4.15) that the methods developed in the previous section (in particular
4.10) cannot be used to make any progress in this direction. For the proof of 4.14
we need the following notation which is of (independent) interest in view of our
discussion after 4.17.

We say that A satisfies condition (wS) if

VMIMVm3ImVe>03aeA: —L— <a+—=—,

~
AN m AN om!

where A := {a: X —]0,00[;a € C(X) and VN In: sup,cy ann(z)a(z) < oo }.
Observation 4.14. The following are equivalent.

(i) A satisfies condition (wQ) and AyC satisfies (B1).
(ii) A satisfies condition (Q).

Proof. “(ii)=-(i)” Clearly (Q) implies (wQ) and by 4.13.(d), (Q) implies also (B1).
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“(i)=(ii)” Condition (B1) clearly implies
YMIM VYm3Im Ve >0: B]\/[I)m - AC(X) +€BM,m’-

We show that A satisfies (wS). For given M we select M’ and for given m we select
m’ as in the condition above. Let € > 0 be given. To show the estimate in (), we
consider —— € By, that is by the latter condition there exist a’ € AC(X) and

Angt m

1 _ 1 _ /
f € By, such that e =0 + ef and hence o = |am/,m < d'| + el f| €
a—+ a;n/ since f € By, and by selecting @ := |a/|.

Let us now write (wQ) in the following way

VNIM, nVKm 3k S>0 11— <51 +-L)

ANt m! aN,n QK k

and claim (Q) in the notation

VNIM , nVK,m,e>03k S >0 —t— g - 45

ANl = ann ag "

Let N € N be given. We choose M and n as in (wQ). We put M into (wS) and
obtain M’. Let K, m and € > 0 be given. We put m into (wS) and obtain m/.
We put m’, K and € > 0 into (wQ) and obtain & and S > 0. Finally, we put §
into (wS) and obtain @. Now by (wQ) and (wS) we have the two estimates

1
AN !

1 S S
and (00) v < o + Ten

(o) L_<a+4

an’ m

Since @ € AC(X) we in particular have @ € AxC(X) and hence there exists &’
and A > 0 such that
(000) AR ) @ <A

and we clearly may choose k' > k. Hence

(00)
< a+ 52+ )<a+ =+ =

AN,n aAK .,k

A+s+s+€1<A+s+s

= ags AN,n aN,n ar,k S G g ann’

Now we put S := (A +¢) and have —— < -5 + 2o as desired. ]

X
AN m AR, Kk’ aN,n

Remark 4.15. As already mentioned, 4.14 emphazises that we cannot use the
techniques developed in section 4.3 to find sufficient conditions for bornologicity
of AC(X) which are strictly weaker than (Q) since in 4.10 we assume (B1) and
bornologicity (or even barrelledness) implies (wQ) by 3.B, hence by the above we
already have (Q).

Scholium 4.16. If the spectrum AC satisfies (B1),

(BI) VNIM>NVYm3nVe>03BC AC(X) bounded: By € B+ By
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holds.

Proof. In the proof of 4.14 we showed that (B1) implies (wS), which we may write
in the following way

YVNIM>NVYm3nVe>03acA: 1 <a+ =

aM,m an,n’

To show (B1), let N be given. We select M as in (wS). For given m we select n as
in (wS). Let € > 0 be given. We put § into (wS) and select @ as in (wS). We put
B:={fe AC(X); |f| <4a}. Now we have to show the inclusion in (B1): Let
f € Barm that is aym|f| < 1, ie. |f] < ﬁ <A+ g5 < 2max(@, 5—-) =
max(2a, QGLNL) According to [2, Lemma 3.5] there exist fi, fo € C(X) with
f=fi+foand |fi] <2-2a, |f2] <2-5°—. That is fi € B and fa € eBn p,

2aN,n

ie. f€ B+eBny. [ |

For a further interpretation of (B1) we compare (B1) with the following two con-
ditions of Braun, Vogt [36]: Let X be as in section 4.3. Let us write the conditions
of [36, 4.] in the following way. We say that X satisfies (P,) if

VNIM, nVK, m’ dk, S >0: BM,m’ - S(BN,n+BK,k)-
We say that X satisfies (Py) if
VNIM' nVK,me>03k,5 >0: Byym CeByn+ S Br .

Braun, Vogt [36] proved that Proj' X = 0 holds if X satisfies (P;), where X is an
arbitrary projective spectrum of (LB)-spaces.

Proposition 4.17. Let X be as above and assume that the Xy are regular (LB)-
spaces. If X satisfies (P,) and (B1) then X satisfies (P»).

Proof. (B1) can be written as follows
VM 3IMVYm3Im'Ve>03BC X bounded: Byrr .y, € B+ By

We show (P) in the way it is stated above. Let N € N be given. We choose M
and n as in (P,) and put M into (BI) to obtain M’. Let K, m and € > 0 be given.
We put m into (B1) and obtain m’. We put m’, K and ¢ > 0 into (P,) and obtain
k and S > 0. Finally, we put § into (B1) and get a bounded set B C X. Now we
have by (B1) and (P,) the two inclusions

(O) BM’,m - B+ %B]M,m’ and (OO) BM;m’ - SBN,n + SBK,k-

Since B is bounded in X, B is also bounded in the (LB)-spaces Xk and this space
is regular, i.e. there exists &’ and A > 0 such that

(0oo) B C ABg
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and we clearly may choose k' > k. Hence

(o)
BM’,m g B+ %BM,m’

(00)
C B+ 5(SBNn+ SBk ) € B+eBny +eBrk

(coo0

)
C ABgy +eBnp+eBnn+eBrir C ()\ + E)BK’}C/ +eBNn.

Now we put S’ := (A + ¢) and have Bays ., € S'Bg g + €BN . [ ]

Remark 4.18. The implication in 4.16, that is “(B1) = (B1)”, is not true in
general (cf. 4.22). This follows from an investigation of the following special case.
Assume Xy, = Xy pt1 =: Xy for all n € N and w.lo.g. Bnt1 € Byyi that is
X = proj,, Xn. We assume the Xy to be Banach spaces. Then X is a Fréchet
space. In this case condition (B1) reduces to

VNIM>N:By C N ByNX+ By
keN

and (B1) reduces to
VN IM>NVe>0dB C X bounded: By; C B+ ¢eBy
which implies
YVNIM>NVe>03BC X bounded: ByyNX C B+¢(ByNX).

The latter condition is exactly the definition of quasinormability, which was in-
vented by Grothendieck [44, Definition 4, p. 106 and Lemma 6, p. 107]( cf. [60,
Definition after Proposition 26.12]).

Remark 4.19. As we just mentioned, by Grothendieck a Fréchet space E is called
quasinormable if

VYU € Up(E)3V € Up(E)Ve>03B C E bounded: V C B+ ¢l.

The latter definition generalizes the Schwartz spaces: A Fréchet spaces is Schwartz
if and only if the above condition holds with a finite set B, cf. [60, Remark previous
to 26.13].

Let us moreover remark that Grothendieck’s definition of quasinormability is
equivalent to the following condition, cf. [60, Lemma 26.14]

Vp3IqVk,e>03A>0: U, C AUy +cUp,

where (Up,)nen denotes a basis of 0-neighborhoods in E. The above condition is
due to Bonet [28, (2) on p. 301] who pointed out that the latter is equivalent to
quasinormability by observing that the above condition is equivalent to the fact
that the Fréchet space E satisfies (2) in Meise, Vogt [59, Theorem 7]: According
to the article [59, section (iii) and (iv)] we put

M:={p; ¢: ]0,00[— ]0,00[ is strictly increasing }.
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Then the Fréchet space E is said to satisfy condition (£2,) for some ¢ € M, if
VpIdgVEIC>0Vr>0:U; C Cap(r)Uk—i—%Up
holds. The result [59, Theorem 7] now in particular states that E is quasinormable

if and only if there exists ¢ € M such that E satisfies ().

Note, that Bonet [28] also gives an alternative proof for the equivalence of quasi-
normability and his condition, which is independent of the result [59, Theorem 7]
and in particular “less involved” than the proof of the result of Meise and Vogt.

Proposition 4.20. If X = (X /) yen is a projective spectrum of Banach spaces
with inclusions as linking maps and X = projy Xn is the corresponding Fréchet
space, we have (i)=(ii)<(iii) where

(i) Condition (B1) holds,

(ii) X is reduced in the sense VN I M > N: X, C YXN,

(iii) Condition (B1) holds.
In particular, “(B1) = (B1)” holds for projective spectra of Banach spaces with
inclusions as linking maps.

Proof. “(i)=>(ii)” Let (B1) be satified that is
VNIM>NVe>03BC X bounded: By C B+ eBy.

To show that X is reduced, we fix N € N and choose M as in the condition above.
Then (B1) implies in particular that By C X 4 eBy holds for each ¢ > 0 that is

By C YXN and thus X, C YXN.

“(ii)=-(iii)” For given N we choose M > N such that X,; C XY Leta € By
Since By € Xy C YXN we have x € YXN. Since By € By we also have
x € By. Hence x € By C By OYXN. Now we claim z € BOXXN. If x is in

the interior of By we can choose a sequence (z;)jen € X with z; — x in Xy.
Since z is in the interior of By there exists J € N such that z; € By for all

j = J. Hence (z;);>5 € By N X with 2; —  in Xy and thus z € BNﬂXXN. If

otherwise [|z[|x =1 let (z;)jen € X with z; — z in Xy. Put y; := >—. Then
J
X
(yj)jen S BvNX and y; — i~ =7 =z and hencex € By N X",

“(iii)=-(i1)” This is true even in the (PLB)-case, see 4.11.(b).

The last statement is now clear. [ |

For the rest of this section we will study the case that the spaces AC(X) and
(AC)o(X) are Fréchet spaces. That is we put an, = 2"ay for some increasing
sequence (ay)nyen- Alternatively, we may simply define AC(X) = projy Can(X)
and (AC)o(X) = projy Clan)o(X).

Before we present results on the above spaces for rather general, that is Hausdorff
locally compact and o-compact, X (cf. 4.23 and 4.24) let us study the case X = N.
In this situation, the spaces under consideration turn out to be the well-known
Ké&the echelon spaces A>°(A) and A°(A) where the Kéthe matrix A is given by
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A = (an)nen (in the notation of [26, Definition 1.2]).

The following observations are easy; they all refer to the case that the spaces
AC(X) and (AC)o(X) are Fréchet spaces and that X = N.

(a) The system A introduced in the proof of 4.14 is just the Kéthe set

V ={a:N— ]0,00[; VN: supay(i)a(i) < oo}
ieN
of Bierstedt, Meise, Summers [26, Definition 1.4].
(b) Condition (wS) of the proofs of 4.14 and 4.16 reduces to

VN3IM>NVe>03aed: - <a+ =
which is equivalent to condition

VNIM>NVe>03dacAVieN:

(wS) 1

m < ﬁ(i) whenever E(Z) < #(i)

of Bierstedt, Meise, Summers [26, Proposition 3.2].
(¢) The conditions (Q) and (Q) both are equivalent to

YVNIMVK, e>035>0: ;L <=+ 2.

anN aK

Let us now review some well-known results on the spaces A>°(A) and A\°(A), which
should be compared with 4.23 and 4.24. In the following remark we denote by AL
and AL the natural spectra corresponding with A>(A) and \°(A).

Remark 4.21. (Bierstedt, Meise, Summers [26, Proposition on p. 48, Proposition
3.2, Corollary 3.5 and Example 3.11], Vogt [78, last Remark on page 167] and
Meise, Vogt [60, 27.20]) Let A be a K6the matrix.

(a) The following are equivalent.
(i) AL is reduced.
(if) A°°(A) is quasinormable.
(iii) A satisfies condition (wS).
(iv) A satisfies condition (Q).
(v) A satisfies condition (Q).
(b) The spectrum AL is always reduced. Moreover, the following are equivalent.
(i) A°(A) is quasinormable.
(ii) A satisfies condition (wS).
(iii) A satisfies condition (Q).
(iv) A satisfies condition (Q).
(c) There exists a Kéthe matrix A which does not satisfy condition (wS), that
is the spectrum AL is reduced but A\°(A) is not quasinormable.

From 4.21.(c) we get immediately the following.

Remark 4.22. (a) The implication “(ii)=-(i)” in 4.20 cannot be true in general.
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(b) The implication “(B1)= (B1)” cannot be true in general: We showed in 4.20
that for projective spectra of Banach space with inclusions as linking maps
(B1) is equivalent to reducedness and we remarked in 4.18 that in this case
(B1) implies quasinormability.

As promised let us now treat the Fréchet spaces AC(X) and (AC)o(X) for a
Hausdorff locally compact and o-compact space X. Since we just explained what
conditions (wS), (Q) and (Q) look like in the Fréchet case we can start right away.

Note that in section 6 we will obtain similar results for holomorphic functions.

Proposition 4.23. In the Fréchet case under O-growth conditions the following
are equivalent.

(i) AC(X) is quasinormable.  (v) A satisfies (Q).

(i) AC is reduced. (vi) A satisfies (Q).
(iii) AC satisfies (B1). (vii) A satisfies condition (WS).
(iv) AC satisfies (B1).

Proof. “(i)=(ii)” This is 4.20.

“(ii)=>(iii)” This is 4.20.

“(iii)=>(iv)” This is 4.16.

“(iv)=(i)” As we mnoted in 4.18, for projective spectra of Banach spaces with
inclusions as linking maps (B1) implies quasinormability.

“(v)&(vi)” As we noted previous to 4.21, in the Fréchet case (Q) and (Q) co-
incide.

“(v)=(iii)” This is 4.13.(d)

“(iii)=(v)” In the Fréchet case condition (wQ) reduces to

YVN3IM>NYEK>M35>0: ;- < Smax (5-, 7-)

an’ ak

and is always satisfied: Let N be given. We choose M := N. Let K > M be
given. We put S := 1. Then the estimate % < max(ﬁ7 i) is trivial. Hence,
4.14 yields the desired implication.

“(i)<(vii)” This follows from Bierstedt, Meise [24, Proof of Proposition 5.8]. W

Let us sum up the information we have concerning o-growth conditions in the
Fréchet case.

Proposition 4.24. In the Fréchet case under o-growth conditions the following
statements are true.

(
(B1) are not equivalent for AyC.
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Proof. (a) This follows from Agethen, Bierstedt, Bonet [2, section 2].

(b) See the proof of “(iii)=-(v)* in 4.23.

(c) By 4.20, (B1) is equivalent to the reducedness of (AC)o(X). Hence the assertion
follows from (a).

(d) This follows from 4.21.(c). Now, it is enough to recall that for projective
spectra of Banach spaces with inclusions as linking maps condition (B1) implies
the definition of quasinormability. |

At the end of section 11 we will organize the results above and the corresponding
results on the holomorphic (PLB)- and Fréchet spaces in a comprehensive way
by drawing schemes of implications arranged in a table which allows a direct
comparison of the different settings and cases (cf. 11.8).

Remark 4.25. In addition to the Fréchet cases of the (PLB)-spaces we can also
look at their (LB)-cases. That is, we assume Xy, = Xni1., = X, forall N € N
and w.l.o.g. B,, C By, +1. In this case condition (B1) reduces to

VYm3In: By, C kQNBn + 1By

and it is clear that this condition is satisfied in general. In view of our discussion
concerning (Q) it might look convenient to change the quantifiers in (B1) into the

following stronger condition (B1)*

VNIM, nVm: Bym € N Bynn,NX 4+ %BN,n
’ keN

since then the proof of 4.13.(b) would yield that (B1)* implies (Q). But, in the
(LB)-case (B1)* reduces to

InVYm: By C N By+ 1B,
keN

which implies that there exists n such that for each m the inclusion B,, C EX" =
B,, is valid and hence X,,, C X,, holds. But this implies that X = X, is a Banach
space. This shows that (B1)* would be a much too strong condition.

5 Weighted (PLB)-spaces of holomorphic functions:
Results for arbitrary and for balanced domains

After the abstract results of the last section we start with the investigation of the
spaces introduced in section 2. In what follows we establish necessary conditions
for barrelledness of the spaces AH(G) and (AH)o(G). This is possible under rather
mild assumptions: In [20] Bierstedt, Bonet, Galbis studied the following setting;:
G is balanced, all considered weights are radial (i.e. for each weight a they assume
a(z) = a(A\z) for every A € C with |\|] = 1), the Banach space topologies are
stronger than co and the polynomials are contained in all the considered spaces.
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They remark that for bounded G the latter is equivalent to requiring that each
weight ay ., extends continuously to G with annloc = 0, while for G = Ce
the assumption means exactly that each weight ay , is rapidly decreasing at oo
(cf. [20, remark previous to 1.2]). In this setting (which we will in the sequel call the
balanced setting) we have BS = B, (cf. [20, 1.5.(c)]) and each step (Ax)oH (G) is
even a topological subspace of Ax H(G) (see Bierstedt, Bonet, Galbis [20, 1.6.(d)])
and hence this is also true for the (PLB)-spaces. Bierstedt, Bonet, Taskinen [21,
1.13] showed that w = Wy if Hag(G)"” = Ha(G) holds isometrically. By [20, 1.5.(d)]
the latter is the case in the balanced setting. One of the crucial techniques used by
Bierstedt, Bonet, Galbis is based on the existence of a Taylor series representation
about zero for each f € H(G),

F(z) =) pr(z) forz€D,
k=0

where py, is a k-homogeneous polynomial for K =0, 1, .... The series converges to
f uniformly on each compact subset of G. The Cesaro means of the partial sums
of the Taylor series of f are denoted by S,,(f), n =0, 1, ..., that is,

n

l
[Sn()(z) = %H Z (Zpk(z)) for z € G.

=0 k=0

Each S, (f) is a polynomial of degree less or equal to n and S,,(f) — f uniformly
on every compact subset of G (cf. [20, section 1]).

5.1 Reducedness

Proposition 5.1. Assume that we are in the balanced setting. Then AgH is
reduced (in the sense of 4.12.(a)).

Proof. By the definition of the balanced setting we have P C H(an,)o(G) for all
N, n € N, where P denotes the space of polynomials. Moreover, each Han ,(G)
has a topology stronger than co. Thus, by Bierstedt, Bonet, Galbis [20, 1.6]
it follows that P is dense in (An)oH(G) for each N € N. Thus, the polyno-
mials are contained in the projective limit (AH)o(G), and hence (An)oH(G) 2

(AH)O(G)(AN)OH(G) 2 P _ (AN)oH(G) holds for each N € N, i.e. the

projective limit is dense in every step, that is, AgH is reduced. |

Scholium 5.2. In the balanced setting, the space of all polynomials P on G is
dense in every step of the projective spectrum AgH and also dense in its limit

(AH)o(G).

Note, that it is open if AH is reduced under the assumptions of the balanced
setting or even under the stronger assumptions of the subsequent sections.
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5.2 Necessary conditions for the vanishing of Proj!
Let us first state an immediate consequence of section 4.1. In the sequel we will

show that the following result can even be improved.

Corollary 5.3. (of 4.2) Assume that we are in the balanced setting. If Proj' AH =
0 then (wQ). . holds for the sequence A.

out

Proof. In the balanced setting we know that all the considered Banach spaces are
continuously included in (H(G),co). Hence, 4.2 yields

YN3IM>=NnVK>Mm3k5>0:BymCSBxx+ Byn).

In order to show (wQ)> ., we put B :={g € H(G) ; am,m|g| <1} and observe

B={geH(G); g€ Bum}
C{geH(G); g€ S(Bxx+Bnn)}
={9g€H(G); g=5(g91 +92), g1 € Bxr and g2 € By, }
={9€ H(G); g=S(g1 + 92), aK,k|91| 1 and aNn|92| 1}
={g9€ H(G); g=5(g91+ g2), lo1] < }
C{geH(G); g=S(g1+g2), gl < (\gll + l92]) < S(a;,k +an)
={9€ H(G); (g + o) ol < S} =
Since the quantifiers in the above condition coincide with those in (wQ)_ ,, it is
enough to show the estimate
(morm) () =sup{lg(2)]; g € B} <sup{lg(z)]; g € C'}
=Sl ofe) 9 € H(G), (e + ) lgl < 1)
=S(zr + ) () < 28 (max (757, 737)) (2)-
Hence we obtain condition (wQ), . by selecting the last constant to be 2S. ]
As we noted in section 2, among the “tilded” conditions (WQ) . and (wQ);,, the

latter is the stronger one. We will show in 5.8 that Proj! AH = 0 implies (WQ);ys
which improves the above result. In order to do this, we have to investigate the
o-growth case first.

Theorem 5.4. Assume that we are in the balanced setting. Then we have the
implications (i)=(ii)=-(iii)=(iv), where

(i) Proj'A¢H =0, (iii) (AH)o(G) is barrelled,

(i) (AH)o(G) is ultrabornological, (iv) A satisfies condition (wQ); .

Proof. “(i)=(ii)=-(iii)” The first implication holds in general, see Wengenroth
(84, 3.3.4] (cf. Vogt [77, 5.7]). The second also holds in general.
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“(iii)=(iv)” Barrelledness and reducedness imply by [84, 3.3.6] (cf. [77, 5.10]),
condition (Py), that is

YVNIM>N,nVEK>Mm3k S>0Y¢e (Ax)oH(G):
lolaz,m < SUlelnn + el

where [l¢[},, = supseps [¢(f)| denotes the dual norm. For arbitrary z € G we
consider the special case ¢ = §, with 6. (f) := f(z) and compute

18-k = sup [8:(5)] = ()5 (2) = (52) " (2):

fEBY

Thus, and since the sum in the above condition can be estimated by two times the
maximum we get (wQ); immediately. [ ]

In the proof above the reducedness of the spectrum AgH is an essential ingredient.
Since we do not know if the projective spectrum in the O-growth case is reduced
we have to work a little harder in this case: We will make use of 4.6 to see that the
family (S;);en is equicontinuous. Then we can apply 4.4 to transfer our results
from the o-growth to the O-growth case.

Lemma 5.5. Assume that we are in the balanced setting. The family (S;);en
of the Cesaro means of the partial sums of the Taylor series is an equicontinuous
net the space L(AH(G),(AH)o(G)) which satisfies S;(J(f)) — f for each f €
(AH)o(G), where J: (AH)o(G) — AH(G) is the inclusion mapping.

Proof. In [20, 1.2.(b)] Bierstedt, Bonet, Galbis showed that the sequence (S;) jen C
L(Hann(G),H(an,)o(G)) is an equicontinuous net for all N and n € N. 4.6
yields the equicontinuity in L(AH(G), (AH)o(G)).

Let f € (AH)o(G) and N € N be arbitrary. Then there exists n such that
f € H(ann)oH(G). Since S;f is a polynomial we have S;f € H(ann)oH(G)
and by Bierstedt, Bonet, Galbis [20, 1.2.(e)] S;f — f in H(ann)oH(G). Hence
S;f — f holds in (An)oH(G). Since N was arbitrary, we obtain S;f — f in
(AH),(G). n

Corollary 5.6. Assume that we are in the balanced setting and assume AH(G)
to be barrelled. Then (AH )o(G) is barrelled.

Proof. By 4.4 and 5.5 barrelledness of AH(G) implies that (AH)o(G) is quasi-
barrelled. By Vogt [79, 3.1] for (AH)o(G) quasibarrelledness is equivalent to bar-
relledness, since the projective spectrum in the o-growth case is reduced thanks to
5.1. |

Remark 5.7. As we have mentioned already in 4.8, 5.5 together with 4.7 yield
that the inclusion (AH)o(G) — AH(G) is nearly open in the balanced setting,.
But as in the case of continuous functions we know already that this inclusion is
even open in this setting (cf. section 2 and 3.1).
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Now we are able to prove the promised improvement of 5.3 in the O-growth case.

Theorem 5.8. Assume that we are in the balanced setting. Then we have the
implications (i)=(ii)=-(iii)=(iv), where

(i) Proj'AH =0, (iii) AH(G) is barrelled,

(i) AH(G) is ultrabornological, (iv) A satisfies condition (wQ);, .

Proof. “(i)=(ii)=-(iii)” The first implication holds in general, see Wengenroth
(84, 3.3.4] (cf. Vogt [77, 5.10]). The second also holds in general.

“(iii)=(iv)” By 5.6 barrelledness of AH(G) implies that (AH)o(G) is barrelled
and hence 5.4 yields condition (wQ); . |

5.3 Remarks on associated weights

The results obtained so far substantially represent all our results on necessary
conditions for barrelledness of the spaces AH(G) and (AH ) (G) which involve only
the sequence A: Only in section 9 we will derive different necessary conditions by
the use of sequence space representations. All other “improvements” of the results
5.4 and 5.8 which will be discussed later do not extend the latter, but are due to the
fact that under the assumptions of the special settings we will discuss in sections
6-10 (which we need to derive sufficient conditions) condition (wQ);  might turn
out to be equivalent to certain a priori stronger conditions; in particular in several
situations it will be possible to ommit the ~’s from the conditions and therefore
get much more accessible results. However, in view of the above proofs it seems
to be impossible to show e.g. that (wQ) is necessary for barrelledness under the
rather general assumptions of this sections.

A general setting in which the latter is possible is that of so-called essential weights,
which we will now explain. In the terminology of Taskinen [72] a weight is called
essential if there exists C' > 0 such that

(++) (Z)" <as<C- (@)

holds on G. We have the following result which is even true without the assump-
tions of the balanced setting.

Proposition 5.9. Assume that every weight a € A satisfies (+). Then (i) — (iii)
resp. (iv) — (vi) are equivalent, where

(i) A satisfies condition (wQ), (iv) A satisfies condition (Q),

(i) A satisfies condition (wQ);,, (v) A satisfies condition (Q);,,

(iii) A satisfies condition (wQ)J ., (vi) A satisfies condition (Q),,

out”

Proof. In the sequel let Cy, > 0 be such that (ﬁ)N _— : <Cnp - (a;n)w
for all N, n € N. 1 Y

“(i)=-(iil)” This follows directly from Bierstedt, Bonet, Taskinen [21, 1.2.(vii)] and
is true in general, cf. section 2.
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“(ii)=(ii)” Let (wQ)”

out

VNIM=N,nVK>Mm3k S >0: ()" <max (21—, )"

an,m aN,n’ OK.k

be satisfied. In order to show (wQ); let N be given. We select M and n as
in (wQ),.- For given K and m we select k and S' > 0 as in (wQ)) , and put
S := 5" max(Cn n, Ck ). Then

~
ou

( L )N gS'max( L #)NgS'maX( L L )

aM,m an,n’ aOK Kk aN,n’ aK .k

< §'max (Onn (537) 7 Orean (7)) < Smax ((55) 7 (552)7)

aN,n aAK k

and we are done.
“(if)=(1)” Let (wQ);,

VNIM>N,nVK>Mm3k S >0:(-2-)" <Smax((:2-)",(52)")

amM,m aN,n aK k

be given. To show (wQ) let N be given. We select M and n as in (wQ);,. For
given K and m we select k and S’ > 0 as in (wQ);,, and put S := S’Chs,m. Then

) (Gex) ) < Smax (55 57)

aK,k aNn,n’ K,k

1 < CM,m(

an,m

~ < Cuyp S’ max ((

an,m ) anN,n

and we are done.

“(iv)=(vi)” This follows directly from Bierstedt, Bonet, Taskinen [21, 1.2.(vii)]
and is true in general, see section 2.

“(vi)=(v)”: Let (Q)ou

VNHM}N,nVK2M7m7g>O3]@7S’>0;( 1 )Ngmax( e S’ )N

an,m an,n’ OK.k

be given. To show (Q); let N be given. We select M and n as in (Q) .. Let K,

in out”

m and € > 0 be given. We select k£ and S' > 0 according to (Q),., w.r.t. K, m

and 5/ = m and put S = Sl maX(CN,'rnCK,’C)‘ Then

()™ < max (52, 250)

anm,m

< max ((£08)”, (080

aN,n AOK Kk

< g (), (S )
=max ((;:5)7, (z27)7)-

“(v)=(iv)” Let (Q);,
YNIM>N,nVK>Mm,e>0 3k S >0:

()™ < max ((55) 7 (55)7)

be satisfied. In order to show (wQ) let N be given. We select M and n as in (Q);, .
Let K, m and € > 0 be given. We select k and S” > 0 according to (Q);, w.r.t. K,
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m and € = z=—. We put S := S’Cy,,. Then

CI\/I,nL :

L < CM,m(#)N gCM,mmaX((ﬁ)Na( 5 )N)

aM,m aM,m aK k
/ ! 'C s'c
< ( e S ) < (6 M,m M,m)
= CM’m max ann’ oK/ max aNn ' aKk
= max( e S )
AN,n’ AK Kk

which finishes the proof. |

5.4 Condition (X)

In [18, section 5] Bierstedt, Bonet introduced a condition which they called (X) for
weighted (LF)-spaces of continuous functions. This condition is a generalisation of
condition (S) (or (V)) of Bierstedt, Meise, Summers [27], for (LB)-spaces (cf. also
15.2). Moreover, it is the canonical extension of a condition for sequence spaces
introduced by Vogt [80, 5.17]. We reformulate (X) for the (PLB)-setting: A double
sequence A = ((an n)neN)Nen satisfies condition (X) if

YNIK>NVEkIn>k: ZZZ vanishes at oo on G.

As we have seen in the previous sections, in many situations we have to replace
the weights by their associated weights. Thus, we say that a sequence A as above
satisfies condition (X))~ if

VNIK>NVk3In>k: C;?{—’:VanishesatooonG.

Note that by Bierstedt, Bonet, Taskinen [21] ax., = ~I$" where wy ,, is the

w
1

growth condition assigned to an, i.e. wny, = .
,n

Now we can prove the
following.

Proposition 5.10. If A satisfies condition (X) or (X)~ then AH(G) = (AH)o(G)
holds algebraically.

Proof. Assume that (X)~ holds. Let f € AH(G) and N € N be given. We choose
K > N according to (£) and select k such that f € Hak (G). Then there exists
b, > 0 such that ax | f| < by, i.e. |f| < -2%- on G. By Bierstedt, Bonet, Taskinen

OK k

[21, 1.2.(iii) and (vi)] this implies | f| < by (5—)" = btk x- Now we select n > k
according to (X)™~ and compute w;n [f] < bg gg: Since by (X) the right hand

side vanishes at co on G, this has also to be true for ﬁ\ f|- Finally, we have by
fl = ﬁm < =1—|f| and therefore ax.,|f]|

[21, 12(1)] ’lI}N’n < WN,n i.e. AN .n TN
has also to vanish at oo on G, i.e. we have shown that for each N there exists n
such that f € H(an»)o(G) holds. That is f € (AH)o(G).

The above proof clearly shows that the statement concerning (X) is valid, too. W

Corollary 5.11. Assume that we are in the balanced setting. If A satisfies condi-
tion (X) or (X)~ then AH(G) = (AH)o(G) holds algebraically and topologically.
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Proof. Since in the balanced setting (AH )o(G) is a topological subspace of AH(G),
this follows immediately with 5.10. ]

Remark 5.12. The proof of 5.10 even shows that the spectra AgH and AH are
equivalent in the sense of Wengenroth [84, 3.1.6] if we assume A to satisfy (X) or
(X)™.

Proof. In the proof of 5.10 we obtained a sequence (K (N))nyen with K(N) > N
for each N such that AgnyH(G) C (An)oH(G) holds for each N € N. We denote
the inclusion mappings with iy x(n) and obtain the following diagram

— (Arz))oH — (Ar@))oH (G — (A1)oH(G
o)
m&(l\ﬂ’&{ J M
D Ay H(G) — - —— Ay H(G) — -+ —— A H

where the vertical arrows are the linking maps of the projective spectra, i.e. com-
positions of the inclusions of the steps, e.g.

K(1)—1
SK(1)
—

w»—A

(Ax))oH(G) (Al) H(G).

We define (k(N))nyen and (I(N))nen by k(N) = I(N) = KN(1). For each N the
map an: (Agny)oH(G) — AynyH(G) is the inclusion map (Agnq))oH(G) €
AgnyH(G) and By : (Ayw))oH(G) — Agm-1)H(G) by Bn = ign~a)gn-1(1)s
where we have N < KV (1) < KN*1(1) that is N < I(N) < k(N) < I(N +
1). Moreover, the above diagram is commutative and hence AH and AgH are
equivalent. [ |

Consequence 5.13. Let A satisfy condition (3) or (¥)~. Then by 5.12 and Wen-
genroth [84, 3.1.7] Proj' AH = Proj' AoH holds (as linear spaces). In particular
in this case, Proj! AH = 0 if and only if Proj' AgH = 0.

Observation 5.14. If we reformulate the result [18, 5.2] of Bierstedt, Bonet for
the (PLB)-setting, the latter means exactly that condition (X) implies that (wQ)
and (Q) are equivalent.

In addition to the above observation, we may prove a similar result for (%)~
(wQ);, and (Q);, by a slight modification of the proof of [18, 5.2].

Lemma 5.15. Let A satisfy condition (X)~. Then the following are equivalent.
(i) A satisfies (Q);;

n?

(i) YNIM >N, m,e>0VK Ik, C C G compact Vz € G\C:
War,m(z) < e max (@N,n(z),ﬁ)K,k(z)),
(iii) VNIN>M, mVK Ik, C CG compact Vz e G\C:

'LDM,m < max (@N)n(Z),’lI)K,k(Z)),
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(iv) A satisfies (wQ);,..
Proof. “(i)=-(iv)” Trivial.

“(ii)=>(iii)” Trivial.

“(ii)=(i)” For given N we choose M > N and n as in (ii). For given K > M, m
and € > 0 we select k¥ and C as in (ii). Now we put

S := max (e, iug f;}”{ :((;)))

where the supremum is less than infinity since C' is compact. Now let z € G. If
z € G\C, then Wysm(z) < emax (Wnn(2), Wkk(2)) < Smax (W (2), Wk k(2))

holds by (ii). Otherwise, for z € C, the definition of S yields S > lg‘;’(”:((j)) and

hence with (ii), Warm (2) < Sk k() < max (eWn,,(2), Sk k(2)).
“(iii)=-(iv)” This can be proved analogously to the above.
“(iv)=-(i1)” Assume (X)~ in the form

VMIM >MVYVm3Im >m: ufM/’"j vanishes at co on G.

W g

In order to check (ii), we fix N € N and select M > N and n as in (wQ);,. For
this M we choose M’ > M as in (X)~. Given k, m and 0 < € < 1 we take m’ > m

from (%)™, i.e. such that gi‘é/"j vanishes at co on G and apply (wQ); w.r.t. K

and m/ to get k and S > 0 with Was ny < Smax (W, Wk,k). Now we put
Co={2€G; tarm(z) > Fimml(z) } = {2€G; Pranld 5 2y

. Wy . .
Since QL, vanishes at oo on G there exists a compact set C’ C G such that
M,m

Mmoo £ on G\C’ and hence C C C’. Moreover all weights are continuous
M, m

and therefore C' is closed, hence compact. Now let z € G\C. By the definition
of C' and the estimate we deduced at the beginning Was ;m(2) < §Wapm(2) <
€ max (1I)N7n, szk), which is the desired estimate. For € > 1 the assertion follows
immediately. |

As mentioned at the beginning of section 5.3, our results on necessary conditions
of section 5.2 can be strengthend via (X)~ only in the sense that now (wQ); is
equivalent to (Q)o

in*®

Corollary 5.16. (of 5.8) Assume that we are in the balanced setting. If A satisfies
condition ()™~ then (AH)y(G) = AH(G) holds algebraically and topologically,
Proj!' AoH = Proj* AH and we have (i)=(ii)=(iii)=(iv)<(v) where
(i) Proj'AH =0, (iv) A satisfies condition (wQ);,,
(ii) (AH)(0)(G) is ultrabornological, (v) A satisfies condition (Q)j,.
(iii) (AH)((G) is barrelled,

In the last section we discussed the case of essential weights. Let us extend this
discussion to (X)©. Indeed, if all weights in A are essential, we get that (X) and
(X)~ are equivalent. This follows from the following lemma.
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Lemma 5.17. Let a and b be weights on G and assume that there exists Cj,

~

Cy > 0 such that (é)N < % < C’a(%)w and (%) < % < C’b(%)w holds on G.
Then a/b vanishes at infinity on G if and only if the same is true for @/b.

Proof. “=” Let a/b vanish at infinity. To show that the same holds for a/b let

£

e > 0 be given. We put ¢’ := &-. Then there exists K C G compact such that
a/b < e on G\K hence on G\K we have

“<" Let &/5 vanish at infinity and let € > 0 be given. We put &’ := Cib Then there
exists K C G compact such that a/b < ¢’ on G\ K and hence

SS]

on G\K. |

By 5.17 we get the following formulation of 5.16.

Corollary 5.18. (of 5.16) Assume that we are in the balanced setting and that
all weights in A are essential. If A satisfies condition (X) then (AH)o(G) =
AH(G) holds algebraically and topologically, Proj' AgH = Proj' AH and we
have (i)=-(ii)=-(iii)=(iv)<(v) where
(i) Proj'AH =0, (iv) A satisfies condition (wQ),
(i) (AH)(0)(G) is ultrabornological,  (v) A satisfies condition (Q).
(iii) (AH)(G) is barrelled,

6 A special setting for the unit disc: The class W

To find sufficient conditions for the vanishing of Proj' AH and for barrelledness of
(AH)o(G), we need to decompose holomorphic functions. In the case of the unit
disc, a decomposition suitable for our purposes is possible if we assume that our
defining sequence A belongs to some set of weights W which is assumed to be of
class W defined by Bierstedt, Bonet [19]. That is, we assume that W consists of
radial weights and further that each w € W satisfies lim, ~ w(r) = 0 and is non-
increasing if restricted to [0,1]. We assume W to be stable under multiplication
with strictly positive scalars and under the formation of finite minima. Next, we
assume that there exists a sequence of linear and continuous operators (R )n=12....,
R, : (H(D),co) — (H(D), co) such that for n =1,2,... the image of R, is a finite
dimensional subspace of the space P of polynomials on ID. Further we assume that
for each p € P there exists n with R,p = p and that for arbitrary n, m =1,2,...
Ry 0 Ry = Riin(n,m) holds. Moreover, we require that there is ¢ > 0 such that for
each n € N, 7 €]0,1[ and p € P the estimate sup,_, |[Rnp](2)| < esup, -, [p(2)|
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holds. By setting Ry :=0and r, :=1—27" for n = 0,1,2,... we get a system
(Rn,Tn)n=0,1,2,... which is assumed to satisfy the following two conditions

(P1) 3C21VveW,peP:

& sup (v(rn) sup |[(Rnsz — Ru1)pl(2)]) < supv(2)|p(2)];
neN |z|=7n z€D

supv(z)|p(z)] < Csup (v(rn) sup |[(Rn+1 — Rn)p](z)}).
z€D neN |z|=Tn

(P2) Voe W3ID(Ww) 21V (pn)nen CP, p, # 0 only for finitely many n:

iggv(?r)l ;[(Rnﬂ — R.)pal(2)| < D(v) sup (v(re) s pe(2)])-

Note that for a system of weights in W the requirements of the balanced setting
are automatically satisfied. Moreover, Theorem’s 3.1 and 4.1 of Bierstedt, Bonet
[19] and the results of Bierstedt, Meise, Summers [27] imply that for A C W,
AnH(D) C ANC(D) and (An)oH(D) C (An)oC(D) are all topological subspaces.

6.1 Sufficient conditions for the vanishing of Proj'AH

Our investigation in section 5.2 has shown that finding necessary conditions for
the vanishing of Proj® the o-growth case was easier to handle than the O-growth
case, since the spectrum AgH is reduced. However, also in the O-growth case the
balanced setting allowed to prove “the same” result for the o-growth case: In both
situations, (wQ);, is necessary for barrelledness. As we will see in the sequel for
sufficient conditions the situation is the other way round, that is the O-growth
case is the easier one. But the situation is not symmetric: We are not able to
prove sufficient conditions for Proj! AgH = 0 at all.

In this whole section we will need that our defining sequence of weights A is con-
tained in some set W which is of class W, since we cannot decompose holomorphic
functions without such an assumption and as we will see decomposition is the
crucial point in all the following proofs.

Let us moreover remark that in what follows it would clearly be possible to replace
condition (Q),, or (Q)i, by (Q), since we noted already in section 2 that (Q) and
(Q);, both imply (Q),, ;- But since the necessary conditions we obtained in the
latter section had to be formulated with associated weights, we will proceed in
the same way concerning the sufficient conditions. Moreover, (Q)7 . a priori is a

weaker (albeit less accessible) condition than (Q).

Theorem 6.1. Let A be a sequence in W and assume that A satisfies condition
(Q)o- Then Proj' AH = 0.

Proof. In order to show that Proj' AH = 0 we use Braun, Vogt [36, Theorem
8] (which was independently obtained by Frerick, Wengenroth [43]). That is, we
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have to show condition (P)
YNIM, nVK, me>03k S>0: BuymCeByn+ SBri.

For given N we select M and n as in (Q), . For given K, m,e > 0 we put
!

g = m and choose K and S’ > 0 according to (Q), , w.r.t. ¢ and put

S :=8'(2¢* + Ds). Now we fix an arbitrary f € By, and consider S;f. We have
ar,m|Sef] < anmlf| < 1, Le. [Sef| < L With Bierstedt, Bonet, Taskinen

an,m
[21, Proposition 1.2.(iii)] it follows |S;f| < (aM,m)N and by the estimate in (Q)_ .

we obtain |Syf| < max(s’(a;n), S’(ﬁ))” < max(ain, ai/k) where the last
estimate follows from Bierstedt, Bonet, Taskinen [21, Proposition 1.2.(i)]. We put
Uy = %, Uy = ag;’“ and u := min(ug, uz). Then the above transforms to
[Sef] < maux(ui17 1712) =1 ie ulSf| <1. As W is closed under the formation of
finite minima and under multiplication with positive scalars v € W holds.

From now on we will use the decomposition method invented by Bierstedt, Bonet
[19], which was used successfully also by Wolf [85, 86]: We can decompose S;f =
RiSif 4+ 502 [ (Ry+1 — R,)S: f where both summands are polynomials.

Let us study the first summand: By the estimate previous to (P1) there exists ¢ > 0
such that sup|, |, |[[1S:f](2)| < esup|, =, |S:f(2)[]. We multiply with u(r;) and
use ul Sy f| < 1 to get u(r1)supy, -, |[R15:f](2)] < cu(ri) supp,—,, [Sef(2)] < 1.
By the definition of u we have u(r1) = min(uy(r1),u2(r2)). Let i € {1, 2} such
that u(r1) = u;(r1). Now we can use the second inequality of (P1) to obtain the
following estimate. There exists C' > 1 such that

sup i(2)| R Suf ()] < Csup (ui(rm) S (R — Ro)RuS:f](2)])
= Cu(r) Sup [(R2 — R1)R1S¢ f1(2)]
< 2cCu(ry) sup |R1S:f(z)|
< 26%C. o

By the definition of the u; and the choice of i we get sup,cp ann(2)|R1.5:f(2)]
< 2¢2Ce" or sup,epark(2)|R1Sif(2)] < 2¢2CS, ie. RiSif € 2¢2Ce'By,, or
Rlstf S 2CQCSBK’]€.

Now we consider Sif — R1Sif = > o0 [(Ruy1 — R,)S:f. We may use the first

v=1

inequality in (P1) for v and Sy f to get with the same C' > 1 as in the last step

o] sup(u(ry) Sup [(Brr2 = Bo1) Suf)(2)]) < supu(z)Sef ()] < 1
ve z|=r, zE
Le. for each v € N we have u(r,)sup,—,, |[(Rv+2 — Ru—1)S:f](2)| < C. Now
we write N = J; U Jy such that u(rj) = uy(r;) for j € Jy and u(r;) = us(r;) for
j € Ja. For i € {1, 2} we put

(Rl,+2 — Ry,1>5tf for n € J;
0 otherwise.

gi = Z(Rqul —R))S:f and pl = {

veld;
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Then we obtain by construction S;f — R1S:f = g1 + g2 and the properties of class
Wyield gi = > c; (Rus1 — Ro)Sif = > s (Rug1 — Ru)(Ruge — Ry1)Sif =
>ves, (Rus1 — Ry)p,,. Since (p},)yen € P with only finitely many p;, # 0 we can
apply (P2) and get D(u;) =: D; > 1 such that

supui(Z)\gi(Zﬂ = sup’Z v+1 — u]( )‘

z€D z€D

< D; sup (Ui('ry sup ‘py(Z)D

veN |z|=ry

= D; sup (ui(r,) sup [p}(2)])

ved; |z|=r0

= D; sup (ui(ry) sup |[(Rys2 — Ru—1)S:f](2)])

veld; |z|=ry

< Disw (u(ry) Sup [(Ros2 — Ru—1)Se f1(2)])
ved; z|l=r,
< D,C.

This yields g1 € chEIBN)n and g2 € DQCS/BK}]{;. Thus, Stf = RlStf—i—gl +g9 €
8/(262—|—l)1)C’B]\/‘,n—FS/(QCQ~§-l)2)BK7]c = aBN,n"‘SBK,k for each t € N. Since BN,n
and B j, are both co-compact and Sy f — f w.r.t. co we obtain f € eBn n+SBk 1
and hence (P;). By Braun, Vogt [36, Theorem 8] it follows Proj' AH = 0. ]

6.2 Barrelledness of (AH),(G)

In the proof of the last result we used in the final step that the balls By, are
co-compact. For the balls BY; , this cannot be true: If By, is co-closed for all

N, n € N, then we get By, = mco = By, where the last set is co-compact.
The equality By ,, = Bn,» yields HaN »(G) = H(ann)o(G) which implies (using
H(ann)o(G)" = Hann(G), see Bierstedt, Bonet, Galbis [20, Theorem 1.5.(d)])
that H(an ,)o(G) is reflexive. By Bonet, Wolf [35, Corollary 2] this implies that
the space is finite dimensional. But this is a contradiction to P C H(an,)o(G)
and dim P = oo, which we have at least in the balanced setting and in particular
in the setting where A C W which we need to decompose.

Unfortunately the above obstacles do not permit us to use the methods we utilized
for O-growth conditions to get sufficient conditions for the vanishing of Proj ! A H.
But by some detour we will find a sufficient condition for (AH )y (D) being barrelled
under the assumptions of class 'W.

To get the latter, we have to consider the space of polynomials P endowed with
two different topologies. Algebraically all the spaces which we will introduce now,
are the same. We will state the following in the setting of (LF)-spaces, although
it would be enough to consider only (LB)-space in view of the application we
have in mind. Hence we consider a definining sequence V = ((v,, n) Nen)nen With
Unt1,N < Unp,N < Up ny1. Finally we will of course need the assumptions of class
'W. However, let us state the next definitions in the most possible generality —
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fact we will use the results independent of class W again in section 7. We put
P(vn,n)o(G) == (P, | - [In,n), P(Va)o(G) = projy P(vn,n)o(G)

and
V()P(G) = indn P(Vn)o(G)

Clearly, the o-growth notation seems to be artificial, but the space just defined is
the smallest in the chain

VoP(G) C VoH(G) C VH(G)

where we of course stick to the balanced setting to assure that the polynomials
are contained in the spaces of holomorphic functions. In the sequel we will write P
for the space of polynomials endowed with the topology induced by VoH(G) and
VoP(QG) for the same space endowed with the inductive topology defined above.
The following lemma provides that the polynomials form a so-called limit subspace
of VoH (D).

To prove the following lemma we use several results on the so-called method of
“projective description”, which was invented and studied by Bierstedt, Meise,
Summers [27] for (LB)-spaces of continuous and holomorphic functions and since
then has been extended and improved by several autors. We refer to the survey
article [12] of Bierstedt for historical notes, further references and a summary of the
“state of the art” concerning this subject. At this point we just give the definition
of the so-called “projective hull” for a weighted (LF)-space of holomorphic function
and explain what we understand under projective description. For this purpose
let V be a sequence as above. We put

Vi={veC(G);v20and VnIN(n), a, > 0: U< anv, n(m) on G}
and define the projective hulls
HV(G) := projy. Ho(G) and HVy(Q) := projs v Hoo(G)

of the (LF)-spaces VH(G) and Vo(G), respectively. It is easy to see that both
spaces are contained in their projective hulls with continuous inclusions and in-
deed in the first case both spaces coincide algebraically. We say that projective
description holds if VH(G) = HV (G) holds topologically and Vo H(G) C HV o(G)
is a topological subspace, respectively. In this case, the inductive topology of the
(LF)-spaces can be given by a system of weighted sup-seminorms and therefore the
topology becomes much more accessible for concrete computations. In fact, the
setting of class W was invented by Bierstedt, Bonet [19] in order to prove that pro-
jective description holds for weighted (LF)-spaces with weights within this class,
see the proof of 6.2 for detailed references.

Lemma 6.2, Let V be in W. Then VoP(D) C VoH (D) is a topological subspace.

Proof. In the case of projective spectra a subspectrum yields a subspace in gen-
eral. Hence, P(V,,)o(D) C H(V,,)o(D) is a topological subspace for each n € N.
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Moreover, the inclusion Vo P(D) C Vo H (D) is continuous by the universal property
of the inductive limit. Hence we have to show

VU e UO(VOP(D)) dV e UO(IP’) . VCU

By [19, 3.1] the topology of P can be described by the seminorms || - ||z, v € V.
We proceed analogously to the proof of Bierstedt, Bonet:

We fix an absolutely convex 0-neighborhood U in VP (D). For each n we choose
N(n) and &, > 0 such that

Un = {f € P(Vn)O(D) ) Hf”n,N(n) < 5n} c2™U.

This is possible since P(V,,)o(D) — Vo P (D) is continuous. For each n let us denote
by D,, > 1 the constant D (v, n(n)) of condition (P2) and let A, := CDye, !, where
C is the constant in condition (P1). For each m we define

Wy = Min A0y N(1)-
v=1,....m

According to our assumption on the set W we have w,,, € W for each m. Moreover,
the sequence (wy,)men is decreasing. Now we put

Wi i={9 € C(Vin)o(D) ; [|gllw,, <1}

Since (wm)men is decreasing, we have W,, C W,,;1 for each m and W,, is a
0-neighborhood in C(V;,,)o(ID), since

{9 € C(Vin)o(D); Sup U, N(m) (D) F(2)] <AL C Wi,

By the above, W := U,,eny W, is an absolutely convex 0-neighborhood in the
space VoC (D) = ind,, C(Vin)o(D). By Bierstedt, Meise, Summers [27, 1.3] there
exists ¥ € V such that

{9 €VoC(D); Slelg@(Z)lg(Z)l <1pcw

We put o
Wo:={g € HVy(D); Sugﬁ(z)|g(z)| <1}
zE

Wy is a 0-neighborhood in the projective hull, hence by [19, 3.1] and the definition
of P, i.e. P C VoH(D) C H(V)o(D) are all topological subspaces, Wy NP is a
0-neighborhood in P. We put V := (¢ + 1)~}(Wy NP) which is a 0-neighborhood

in P and claim that V C U. Here, ¢ > 0 is the constant defined previous to (P1).

Let ¢ € V. We put p := (¢ + 1)g. Then p € Wy NP and we have to show that
p € (¢ + 1)U. Since p € Wy N VoC(D) C W, there is m such that w,,|p| < 1 on
D. We have

b= Z(RnJrl - Rn)p = Rlp + Z(RnJrl - Rn)p
n=0

n=1

and the sum is in fact finite. We first treat the term R;p. By the condition
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previous to (P1) and the estimate on w,,|p| we get

Wy (r1) sup |Rip(2)| < cwn(r1) sup |p(2)] < 1.

|zl=r1 |z|=r1

We select s € {1,...,m} with wy,(r1) = Asvs n(s)(r1). From the second inequality
in (P1) applied to the polynomial R;p and v n(s) and once more the condition
previous to (P1), we conclude

SUP”s,N(s)(Z)|R1p(Z)| < Csupvs,N(s)(T’n)( sup |(Rn+l _Rn)Rlp(Z)D

z€D neN |z|=rn

= CUS,N(S)(H)‘S‘UP |(R2 — R1)Rip(2)]
Z|=T1

= C>\§1wm(T1)IS|up |(R2 — R1)Rip(2)]
Z|=T1

< 2¢CA; wpn (1) sup |Rip(2)]

|z|=r1

< 220\

< 2¢2C Do\t

< 202557

which implies Ryp € 2¢2U, C c2U.

N

Now we treat p— Rip = .- (Rn+1 — Ry)p. We apply the inequality in (P1) for
wyy, and the estimate for wy, |p| to get

(*) wm(rn)( sup |(Rn+2 - Rn—l)p(z)D < c

|Z|:Tn
for each n € N. Inductively we write N as a disjoint union U7*; J, such that
Wi (1) = AsVs N (s) (1) for je Js.

For s =1,...,m we put gs := > c; (Rj+1 — R;)p, which is a polynomial. Clearly
p—Rip=>3 1,9, Wefixse{l,...,m} and put

Py =

s (Rpi2 — Rp—1)p forn e J
0 otherwise.

The properties of the sequence (R, )nen imply

00
gs = Z (R7l+1 - Rn)(Rn+2 - Z n+1l — fl

neJg n=1

and all the sums are finite. Hence

8

Sugvs,N(s)(Z”gs( z)| = supvs N(s) Z n+l — n|
zE

Since only a finite number of the p; are non-zero and all the weights belong to the
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set W, we can apply (P2) and the estimate (x) to conclude

SupUS,N(S)(z)|gs(Z)| < Dy Sup( sup ‘pi(z)l)US,N(S)(rn)
2€D z€D |z|=r,

N

D, sup ( sup |pr(Z)|)US,N(S)(Tn)

neds |z|=rp

= Ds( sup |Rn+2 _Rnfl)p(z)‘)vs,N(s)(Tn)

|z|=rx

Ds)\s_l( sup |p;(z)|)wm(rn)

|z|:"4n
< DJIC

= Es,

N

which yields g, € Us C 27°U.
Finally

m m
p—Rlp:ng € ZS*SUQ U,
s=1 s=1

i.e. p € (2 + 1)U as desired. [ |

Now we consider the (LB)-case of 6.2, i.e. the inductive limit Vo P(D) and the
(LB)-spaces Vo H (D) and VH (D), where V C W. Then by 6.2, Vo P(D) C Vo P(D)
is a topological subspace and Vo H (D) C VH (D) is a topological subspace even in
the balanced setting. Moreover, the (LB)-space VH (D) is regular in this situation.

The next result (which is well-known) will exhibit a fundamental system of bound-
ed sets in the (LB)-space VoP(D), see 6.4.

Lemma 6.3. Let £ and F be locally convex spaces, i: E — F be linear, contin-
uous, open and injective. Let (By)nen be a fundamental system of bounded sets
in F. Then (i~!(Bx))nen is a fundmental system of bounded sets in E.

Proof. Let us first show that for each bounded set B C F there exists N and p > 0
such that pi~'(By) € B. For this purpose let B C E be bounded. Then i(B)
is bounded in F. Since (By)nen is a fundamental system of bounded sets in F,
there exists N and p > 0 such that pi(B) C By, i.e.

(6)  Vze€i(B)3Ibe By:a=pb.

We claim that B C pi~!(By). Let y € B be given. Then i(y) € i(B). By (o),
there exists b € By such that i(y) = pb € pBy. Hence i(y) € pBy and thus
i(3y) = 3i(y) € By Since i is injective, 1y € i~ (By), i.e. y € pi~'(By) which
establishes the claim.

It remains to show that i~1(B) is bounded in E for each N € N. We fix N € N
and U € Uy(E) and have to show that there exists p > 0 such that pi~!(By) C U.
Since i is open, i(U) is open in F and since By is bounded, there exists p > 0
such that pBy C i(U). We claim that pi~!(By) C U. Let x € pi~'(By),
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ie. %x € i~ 1(By) and thus z(%x) € By. Hence i(z) € pBy C i(U) and since ¢ is
injective, we have x € U and are done. |

Consequence 6.4. Let V C W. Then the system of unit balls (P?),en, i.e.

P :={pe Pv,)oD); [|fln <1} =By NP=B,NP,

where BY” denotes the unit ball of the Banach space H (v,)(0)(ID), is a fundamental
system of bounded sets in the inductive limit Vo P (D).

Proof. Since VH (D) is regular, (B, )nen is a fundamental system of bounded sets
in VH(D). 6.3 yields that the same is true for (P, )nen in the space VoP(D). W

For the proof of the next proposition we need the following technical lemma.

Lemma 6.5. Let X = projy ind,, X, with normed spaces Xy ,,. Let T C X be
absolutely convex and bornivorous and (n(N))nyen € N be arbitrary. Then there
exists N’ € N such that NN_,; By n(ny is absorbed by T'.

Proof. Assume the contrary. Hence, for N’ € N fixed ﬂ%':l BN n(ny 18 not ab-
sorbed by 7. That is, for each p > 0 there exists z € ﬂ%lzl By Ny \pT and
hence for each N there exists x € ﬂ%/:l By Ny \NT'. In particular we get = €
ﬂ%/:l By, N(n)\IN'T. Hence we have for each N’ some xy: € ﬂ%;l BN ) \N'T
and may put B := {zn/; N’ € N}. Now we claim that B is bounded in X. In
order to show this, we fix L € N and write

B:{QSN/;lgngL}U{xN/;NIBL}

To show that B C X is bounded it is enough to show the latter for B’ :=
{zn'; N' > L} since {xn'; 1 < N’ < L} is finite. We claim that B’ C X,
and that B’ is bounded there. By definition each xx: € B’ lies in NY_, By n(n)

and for L < N’ we have

N/

B CB

er1 Nn(N) € BLnr)
and the latter set is bounded in X;. Hence the same holds for B and we have
established the claim. By our assumptions, T is bornivorous. Hence there exists
A > 0 such that B C AT, since B is bounded. Now we choose N’ > \. Then
xns € N'T D AT, i.e. 2y & AT which is a contradiction. |

In the following proposition we have (for technical reasons) to assume that W is
closed under finite maxima. 6.10 will provide that this is true for the main example
of a set W of class W.

Proposition 6.6. Let A C W and assume that W is closed under finite max-
ima. Let A satisfy condition (wQ). Then (AP)(G) := projy ind,, P(an,n)o(D) is
bornological.
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Proof. By Bierstedt, Bonet [18], condition (wQ) implies condition (wQ)* that is
3 (n(0))sen € N increasing VN IM VK, m3S >0, k:

We fix an absolutely convex and bornivorous set T in (AP)(D). Since (AP)o(D) =
P(an.n)o(D) holds algebraically for all N, n we may consider T" as a subset of the
latter space and claim that there exists N such that for each n the ball Py, =

_1 <
o S S max (

Ao, n(o)

—— min
AK. k' 5=1,...,N

Bj(\c,i)n NP is absorbed by T. We proceed by contradiction and hence assume
() VM 3Im(M): Py ) is not absorbed by T.

By 6.5, there exists N such that NY_; P°

o,m(o

) is absorbed by T. For the se-
quence (n(0))y,en and this N we choose M as in (wQ)*. By (x) there exists
m(M) such that for each K there exists Sk > 0 and k(K) such that —1— <

AN, m (M)
1

AR k(K)

yMing—1,. N 1 ) We claim

’ Ao, n(o)

Sk max(
(o) VK: m < Sk max(ug, wy)

where we used the definitions wy := min,—1, . N .

, U = Mming—1, . K

Go,n (o) U ko ()

and Sy = max,—i . xS, To establish the claim let us fix K. Then for
_ 1 1

pw=1,..., K wehave STant o < Spantoon < max (%,k(u) , wN) by the very def-

inition of S% and the estimate we deduced from (wQ)*. If o——=—— < wy holds,

Shean, m(M)

we are done. Otherwise the above yields
K

__ 1
S m (M)

1 _
TN — for p=1,....K,

<ming—1,.. K —1  — ug and we are done as well.
oty k()

i.e.

Now we again make use of the decomposition method based on class W to show
the following

N K
VK ElTK > 0: PIC\)/I,m(M) g TK[UQIP;’n(U) +Mgl P:,k(u)}'

We fix K. Let p € Py ), 1€ angm(a) Ip| < 1 hence |p| < —L— and by (o)

AN (M)
we get the estimate

. s . s’
< 8% max(ug, wy) = max ( min K min K
|p‘ X PK ( K N) (0_:1"“’N a”’"(”)7u:1,...,K amk(“))a
1 . K 1 : S .
may define w1 Mile=1, N gty o0 1S Ml K gt and thus obtain

Ao, n(c a : :
U1 = MaXe—1,. . N 57,”, Up = MaX,—1, . K “57'7(“) € W since W is closed under
K K
the formation of finite maxima. We put u := min(u1, us). Since W is closed under
1

finite minima, u € W holds. Moreover, - = max(%, L) that is by the above
17 u2

bl < &, ie ulpl < 1.

Now we may repeat the proof of 6.1, i.e. apply the decomposition method of
Bierstedt, Bonet [19] to obtain for p = R1p+g1+g2 the estimates sup, cp u1|R1p| <
2¢2C or sup,cp ug|Rip| < 2¢°C, sup,epuilgr| < D1C and sup,cp uz2|ga| < DoC
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that is Rip € 2¢2C S5 NY_, P
DCSh N, P2 o)

max (D1, Ds)) and obtain

n(o) OF Bap € 2c2C'Sh, ﬂff:l P¢ ) as well as g1 €

and g € D2CS% ﬁff:l P:ﬁk(“). We put 7 1= CSh(2¢2 +

N K
p=Rip+g1+g2 € 2"+ D1)CSy N Py )+ (26 + D2)CSje N PRy
o= H=

ie.pe€ TK[ﬁf,Vzl P;’n(d) + ﬂff:l P:’k(#)], which establishes the claim.

6.5 yields the existence of K’ such that ﬂffz,l PP 1 is absorbed by T'. But now
we have in particular

o N o K ©
M,m(M) g TK' [621 Pg7n((7) + ,U.Ql P/"')k(ﬂ)])

where the set on the left hand side is not absorbed by T" unlike the set on the right
hand side, a contradiction.

To finish the proof, we observe that our claim is exactly the statement (B2) in 4.9.
Since statement (B1) of 4.9 is trivial for the projective spectrum under consider-
ation (just put M := N and n := m), and by 6.4, (P§,,)nen is a fundamental
system of bounded sets in (Ay)oP(D) for each N € N| the conclusion follows from
4.10. ]

For the final result we need the following lemma, which we will also use in section
7, compare with Bonet, Pérez Carreras [63, 4.2.1].

Lemma 6.7. Let X and Y be locally convex spaces, X C Y be a dense topological
subspace. If X is bornological then Y is quasibarrelled.

Proof. Let T C Y be a bornivorous barrel. We put V := T'N X. Then V is
absolutely convex and we claim that V is bornivorous. Let B C X be bounded.
Then B C Y is bounded. Since T is bornivorous there exists p > 0 such that
B C pI'. Thus, B=BnNX C pT'NnX C pV. Since X is bornological, V is
a 0-neighborhood in X. Since X C Y is dense, the same is true for 7V iny
(see e.g. Jarchow [50, 3.4.1]). But since T is closed, v’ C T and hence T is a
0-neighborhood. Therefore, Y is quasibarrelled. |

Theorem 6.8. Assume A C W and that W is closed under finite maxima. Let A
satisfy condition (wQ). Then (AH)q(D) is barrelled.

Proof. By 6.6, the space (AP)q(D) is bornological. 6.2 provides that (AP)(D) C
(AH)((D) is a topological subspace and this subspace is dense by 5.2. By Lemma
6.7, (AH)o(D) is quasibarrelled. As we mentioned already in a previous proof, for
(AH)o(G) quasibarrelledness is equivalent to barrelledness by Vogt [79, 3.1] since
the projective spectrum in the o-growth case is reduced (cf. 5.1) and thus we are
done. |
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6.3 Summary of results

Remark 6.9. Let us summarize the results of sections 5 and 6 in the following
schemes, which in particular illustrate again the lines of the proofs for the results
and the assumptions needed for each single implication.

N e AH(G) s
(Q)out :>PI‘OJ 1AH O == Illtl‘a = bégél?:})d (WQ)HI (WQ)out
/f bornological
@ - et @
(AH)o(G)
barrelled

Figure 1: Class W: Scheme of implications for O-growth conditions.

e (AH)o(G) e (AH)o(G )l’;ﬂ&‘i;;d

Proj'AgH =0 :> ultra- == . Glled (WQ)m : (WQ) oue
bornological
chvgﬂ
(AP)o(G)
bornological ig.

G=D, ACW, W closed
under finite maxima

(wQ)

Figure 2: Class W: Scheme of implications for o-growth conditions.

6.4 The main example: 'W(gg,ko)

The main example for some system W which is of class W is the set of all radial
weights w on D which satisfy lim, ~ w(r) = 0, are non increasing on [0, 1] and
such that there are eg > 0 and kg € N which satisfy

(L1) nf =) > <

and

(L2) hin sup % <1-ego.

In this case R,, can be choosen as the convolution with the de la Vallée Poussin

kernel i.e. for a holomorphic function f on D, f(2) = Y 3o, axz®, we have

277, 2n+ 2n+1

nf Zakz + Z kzk.

k=241
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That is, R,, is just the arithmetic mean of the partial sums of index 27, ..., 2"+l -1
of the Taylor series of f. The conditions (L1) and (L2) form a uniform version of
the conditions introduced by Lusky in [53, 54] and they also appear in the sequence
space representation for weighted (LB)-spaces studied by Mattila, Saksman, Tas-
kinen [55]. Bierstedt, Bonet showed in [19] that this system W satisfies the axioms
of class W.

For the proof of 6.6 we assumed that W is closed under finite maxima. This is
not included in the definition of class W given by Bierstedt, Bonet [19] but for
the main example explained above the latter is true. To prevent confusion, from
now on we will denote the above example by W(eg, ko) whereas W always is some
arbitrary set of class 'W.

Observation 6.10. The set W(eo, ko) is closed under finite maxima.

Proof. Clearly it is enough to check that the condition (L1) and (L2) are stable
under finite maxima. Let wy, wy € W(eq, ko).

To check condition (L1) we compute

maxuy st — max(wi (i), w2 (resn) - min( g mriey)
_ min(maX(wl(:Sr(12;;J2(Tk+l))7 max(wl(:i;(lr)};;UQ(rk+l)))
s rwi(reg1) w2(res1)
2 mln( wy(rg) wz(r:) )
2 €0,
for each k € N since infren %7 infren % > g¢. Hence we have

inf max(wi (Tk+1),w2(Tk41)) >

kEN max (w1 (rg),w2(ry)) €o
which is (L1) for max(wy,ws).
To check condition (L2) we compute
e = (mas(wy (k) wa () - min( Gt )™

max(wi (rg),w2(rk)) max(wi (rg),wa(r)) ))_1
w1 (Thtkg) ) w2 (Tht kg )

= (min(

< (min( w1 (Tk) wa(Tk) )))—1

w1 (Thtkg)’ W2 (Trtkg

_ Wi (Thtkg) W2(Thtkg)
_max( wl(’rk,)o 9 w2(rk)0 )

w1 (Tktkg)
wi(rk)

w1 (Th+kg)

for each k € N since lim supy, Wi (R

, lim sup,, < 1—¢g and thus

max(w1 (rr+1),w2(re41))

. . Wi (ko) W2(Tktkg)
hlrcnsup X (w1 (1) w3 (7)) < lim sup max( wl(:k)f)’ wz(r:)o)
o0 k—oo
: (Thtrg) 71; (Thtkg)
< max(lllirisip %, hlrcn sup %)
<1—¢g,

which is (L2) for max(wy,ws). [ |
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We discussed already at the beginning of sections 5.3 the appearence of associated
weights in the weight conditions which we used to characterize properties of the
spaces or the spectra. Clearly, the appearence of the associated weights is natu-
ral within the setting of holomorphic functions and — as we also noted already —
concerning necessary conditions within the balanced setting they seem to be in-
evitable. But however, we promised that in several situations it will be possible to
ommit all the ~’s from the conditions. In fact for A C W(eo, ko) this is true, since
weights in this set are essential automatically. The latter follows from Bierstedt,
Bonet [19] who showed that the conditions (L1) and (L2) are equivalent to the
conditions (U) and (L) of Shields and Williams [71] who showed that the above
holds ([71, Lemma 1.(iv)]). A detailed proof is contained in Domariski, Lindstrém
[40]. Compare also Bierstedt, Bonet, Taskinen [21, Proposition 3.4].

Let us now formulate a collective and in view of concrete examples quite accessible
version of the results obtained in this section.

Corollary 6.11. (of 6.1) Let A be contained in the set W(eq, ko). Then we have
(i)=(ii)=(ili)=(iv)=(v), where

(i) A satisfies condition (Q). (iv) AH(D) is barrelled,
(ii) Proj'AH =0, (v) A satisfies condition (wQ).
(iii)) AH(D) is ultrabornological,

Corollary 6.12. (of 6.8) Let A be contained in the set W(eg, kg). Then (AH )y(D)
is barrelled if and only if A satisfies condition (wQ).

7 A special setting for the complex plane: The class
(E)C.c

In this section we study the case G = C. Similar to the last section we need special
assumptions on the weights which allow a decomposition of holomorphic functions
to get sufficient conditions for Proj' AH = 0 resp. barrelledness of (AH)o(C). A
convenient setting to do this was invented by Bierstedt, Bonet, Taskinen in [22].
Following their definition 2.1, we denote by (E)c . for given constants C, ¢ > 0
the set of all radial weights a: C — R<( which are of the form

a(z) = b(|z])e "
where b: Ryg — Ry is differentiable, strictly increasing and satisfies

sup ) <o
re[0,00]

The weights in the “class (E)c¢,.” have the following important properties.

Theorem D. (Bierstedt, Bonet, Taskinen [22, 2.3]) For fixed C, ¢ > 0 there exists
a sequence (T}, )n=1,2,... of linear mappings T,,: P — P of finite rank from the space
of polynomials P into itself, which satisfies the following properties
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(a) The operators T, satisfy T}, o T}, = 0 if |n — m| > 2 and we have
ThwoTlhy1 =Thy10T,.

(b) For each p € P we have ) > | T,,p = p and the sum is finite.
(¢) There is a constant D > 1 such that for each r > 1 and every p € P we have

sup |T,p(z)| < D sup |p(2)].

|z|=r |z|=r

(d) There exist increasing positive sequences (pn)n=12,... and (0y)n=12,..., Pn <
0y, such that for each weight a € (E)c.., a(z) = b(]z|)e~ |, there exists a
constant C'(a) > 0 such that for each p € P

Bsup  sup b(pa)e I Tp(2)] < [pa
nz1p,<lz|<on

and
Iplla < Cla)sup  sup  b(pn)e | Tup(z)],
nzlp,<|z|<on
where D is the constant of statement (c¢), which does not depend on the
weight a.

(e) There exists a constant 0 < d < 1, independent of the weight, such that
(with the notation of (d)) b(pn) = db(pn+1) for n > 1.

Note that for a system of weights in (E)¢, . the requirements w.r.t. to the results of
Bierstedt, Bonet, Galbis [20] which we explained above are automatically satisfied.
Moreover, Theorem’s 3.2 and 4.1 of Bierstedt, Bonet, Taskinen [22] imply that for
Ain (E)¢.e, AnH(C) C A,C(C) and (A,)oH(C) C H(A,)o(C) are all topological
subspaces (for each n € N). With the result of Bierstedt, Meise, Summers [27] we
stated above it follows that in this case (A, )oH(C) C (A, )oC(C) is a topological

subspace for each n € N.

In the sequel it will be less important to know the constants C' and ¢ and hence we
will consider a system of weights E such that there exist C, ¢ > 0 with E = (E)¢.

7.1 Sufficient conditions for the vanishing of ProjlAH
The proof of the following result is based on the decomposition method developed
by Bierstedt, Bonet, Taskinen [22] which was also used by Wolf [87].

Theorem 7.1. Let A be a sequence in E and assume that A satisfies condition
(Q)>;- Then Proj' AH = 0.

Proof. In order to show that Proj' AH = 0 we use Braun, Vogt [36, Theorem
8] (which was independently obtained by Frerick, Wengenroth [43]). That is, we
have to show condition (Ps)

YNIM,nVK,me>03k S>0: BymCeByn+ SBki.
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For given N € N we select M and n as in (Q),,. For given K, m and ¢ >

0 we put ¢ := (3D?*d"*C;)"'e (where C; := C(an,,)) and choose k and S’
according to (Q)> . with respect to &’. Finally we put S := 3D*d~'C5S’ (where
Csy := C(ak,k)). The constants are those of Theorem 7.D. Now we fix an arbitrary

f € B and consider S, f. We have aMm|Stf| Sammlf] < 1,ie ]S f] < %

With [20, 1.2.(iii)] it follows |S,f| < (5:2)~ and by the estimate in (Q)J, we

AM,n

. ’ S/ ~ ’ S/
obtain |S; f| < maX(aN -, aKk) < max(aN -, aKk). Now we put u1 = an n,
Ug = Gk, Q1 = 51" ay = ? and u := min(ajui, agug) to obtain [Sif] <
max(;- -, 5oor) = min(arur, asug) = L on C and hence u[S;f| <1 on C.

Since A C F we have an (2) = by.n(|2])e”*l and ax x(2) = brx(|2])e 2. We
put s := min(ay sy, aes2) where s; := by, and sg := bg . Then we may choose
M(J) € {1,2} for each J € N such that s(p;) = arrnsar(ps), where (p)sen
is the sequence in 7.D.(d). We define the sets

Ny :={JeN; M(J)=1} and Ny := {J € N; M(J) = 2},

ie. N=N;UN,. For M = 1,2 we define py; := ZJEN]\/] T;(Stf), where the sum
has in fact only finitely many non-zero terms by 7.D.(b). Now by 7.D.(a) we may
compute

Tipm = 3 jeny, [T 0 Ti](Sef)
I:XM.J—ITJ oTy_1+ XM,JTL? + XM,J+1TJ © TJ-H} (Stf)
= [XM,J—1TJ*1 oTy+ XM,JT3 + XM.,J+1TJ+1 © TJ} (Stf)a

1 if J € Ny,
X,y =

where

0 otherwise.

7.D.(d) and 7.D.(c) imply (with C(uy) = C4)

7.D.(d)
Ipillve < Cisup  sup  ba(ps)e = Typar(2)]
J21py<|z|<oy

= Cysup sup by n(pJ el ||[XM J— 1TJ 10Ty + X, ]T?
J21p;<|zI<oy

+ XM,J+1TJ+1 o TJ] (Stf)|

b (pysa)e= sup (T on)(stf)(zn)

|z|=r

< Cf sup [ sup
JeN; Lpjpi<r<os

(bt
sup  (bwalpe™ sup (1350012

pJ§7‘<UJ |z|=r

swp (b 1)e" sup |<TJoTJ1><stf><z>>}

PJ 1Sr<o - 1( |z|=r

brn(pys1)e=" D sup ITJ+1(Stf>(Z)>

|z|=r

7.D.(c)
< Cf sup sup
JeN; Lpjri<r<os
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+ sup (bNyn(pJ)e”D sup TJ(Stf)(Z”)

pISr<oy |z|=r

+  sup <bN,n(pJ_1)ech sup |TJ—1(Stf)(z)|>]

PI-1<T<0O -1 |z|=r

_ Doy sup[ sup (bN,n@JH)eC'Z'|TJ+1<stf><z>|>
PI+1

JeNy <lzl<os41

+ sup (bN,n(pJ)eC|ZTJ(Stf)(Z)|>

pa<|z|<oy

s (bl )e HT O] = o
pr—1<z|<o -1
For J € Ny we have by, (ps) = al_ls(pJ) and hence by 7.D.(e)

arbnn(ps) = s(ps) < s(py+1),
oa1bnn(ps) = s(ps) < 2s(ps-1).

doby n(pg+1)

<
a1byn(pr-1) <

Therefore we have

-1
o3t

bnn(prs1) < ==s(pse1) = T8(pr+1)s
bvn(ps) <ar's(ps) =e's(ps) < Gs(ps),

—1 ,
Oél IS5

bnn(pr—1) < =4-s(ps-1) = 5s(ps-1)

and hence

© < oG | s (s i)

JEN1 Lpyii<lzl<osp

+  sup <S(pJ)BCZ|TJ(Stf)(Z)|)

ps<|z|<oy

N Cam e ey e

pr-1<|z|<os 1

N

!
DC1% sup 3 - max [ sup
JEN; pi+1<]2|<o 541

ps<|zl<oy

(pr)e I Tra(51)(2) ).
)

sup
pr-1<|z|<os-1

sup,max[ sup s(pJ_»e-“|TJ_j<stf><z>|}
JeN I=—10.1 | 5 L|z|<o5—;

W= 3DCE gy sup sup  s(pe)e T (S f)(2)]
J=—1,0,1 k+j€EN; p.<|z|<ow

(s
s (sto)e TS0 ).
(s

(a2 T4 (503 ) |

3DC €’
d
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7.D.(d)

< S DS f |l
< 3D%*Cye'd .

Finally we get ||p1||n.n < 3D?Cie'd™?, i.e. p1 € 3D?C1e'd ' By . Analogously,
we obtain ||pe||xx < 3D?C2S5’d™!, i.e. po € 3D*CS'd By .. By 7.D.(b) we get

Sif =p1 +p2 €3D*d'C1e'By ., +3D*d"*CoS' B, = eBy o + SBi ..

The last set is co-compact and we have Sy f — f for t — oo with respect to co and
hence f € eBn . + SBk i, which finishes the proof of (P). [ |

7.2 Barrelledness of (AH),(G)

In order to find sufficient conditions for (AH )y(G) being barrelled we proceed as
in section 6.2. Since 6.3 and 6.5 are independent of the special assumptions (class
W) of section 6.2, it is enough to prove analoga of 6.2, 6.4 and 6.6. Then we will
be able to conclude as in 6.8 to get the desired result.

We use the notation established at the beginning of section 6.2.

Lemma 7.2. Let V = (v, )nen bein E. Then (the (LB)-space) Vo P(C) C VoH(C)
is a topological subspace.

Proof. Since the identity Vo P(C) — P is continuous, it is enough to show
YU € Up(VoP(C)) IV € Up(P): V C U.

By Bierstedt, Bonet, Taskinen [22, 3.2] VoH(C) is a topological subspace of
HV,(C) hence the topology of P is given by the seminorms || - ||z, 7 € V. Let
U € Ug(VoP(C) be given. We may assume that U = T'(U32, €, P?) where g, > 0

is decreasing. In [22, 3.1], Bierstedt, Bonet, Taskinen defined v € V such that
Vi={peP;|plz<1}CU

and by the above V € Uy (P). [ |

In the above setting we have
VoP(C) C VoH(C) C VH(C)

where all inclusions are topological subspaces. Moreover, VH(C) is regular. Thus,
6.3 implies the following analog of 6.4 for the current setting.

Consequence 7.3. Let V C E. Then (P;)nen with P, := Bo NP =B, NP is

a fundamental system of bounded sets in the inductive limit Vo P(C), where BY
denotes the unit ball of the Banach space H (vy,))(C).

Let us now prove the analog of 6.6.
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Proposition 7.4. Let A C E and assume that F is closed under the formation of
finite maxima. Let A satisfy condition (wQ). Then (AP)o(G) is bornological.

Proof. We proceed as in 6.6: By Bierstedt, Bonet [18], condition (wQ) implies
condition (wQ)* that is

3(n(0))oen € N increasing VN IM VK, m3S >0, k:

1 1 : 1

o < Smax (m,ﬁr{un )

We fix an absolutely convex and bornivorous set T in (AP)(C). Since (AP)o(C) =
P(an.n)o(C) holds algebraically for all N, n we may consider T" as a subset of the
latter space and claim that there exists N such that for each n the ball Py, is
absorbed by T. We proceed by contradiction and hence assume

.....

() VM 3Im(M): Py ) is not absorbed by T

By 6.5, there exists N such that NY_; P°

() is absorbed by T. For the se-
quence (n(c))seny and this N we choose M as in (wQ)*. By (%) there exists

m(M) such that for each K there exists Sk > 0 and k(K) such that L <

AN, m (M)

) and thus we get as in the proof of 6.6

1
max _
Sk (——, min,—y,.., F——

(o) VK:—L — <S8} max( min )
AN, m (M) p=1,.. K k) g=1,..,N %on(o)

)

with Sy = max,—1_. x Sy.

Now we will again make use of the decomposition method based on class (E)c¢,c
to show the following

VK 37k > 0: Pypoary © TK[ m Pyt ﬂlpﬁ,k(m]

1
anr m(M)

We fix K € N. Let p € Py, e anrmanlp| < 1 hence [p| < and

/

by (o) we get the estimate |p| < max (minU:LMN
1

,min,—q

ay n(a) K % k(m

B : 1 1 : 1 . 1
define w T Milemy, N G o S Wi, K e and a7 (= g = S;(

and obtain uw; = max,—1,.. . N Ugn(o)s U2 = MAX,=1, K Quk(u)- As in the proof

of 7.1 we put u := min(aiuy, azup) and get = = rnax(allu1 am) that is by the

above |p| < o, i.e. ulp| < 1.

ACE 1mphes Ugn(o)(2) = bg,n(a)(|z|)e*0‘z‘ and ay, () (2) = bmk(u)(\zDe*C'Z' for
z€C,1<o<Nandl<pu<K. Weput si(]2]) := maxs—1,.. .~ by n(s)(]2]) and
s52(|2]) == max,—1,... K b, k(w)(]2]) and obtain

ul(z) = U—HllaXN (bU,n(U)(|Z|)eic‘Z‘) = (U:nllf.%.}.(,N ba,n(o)(|z|))eic"2| = 81(‘Z|)eic|2|
ualz) = mpax, (uao(12De™ ) = ( max g (20)e ! = sallele

Since we assumed that F is closed under finite maxima, u; and us € E and
hence we may apply the results of 7.D to the functions s; and s;. We de-
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fine s := min(as1,@282) and get with the method of the proof of 7.1 (with
s1(prs1) < Zs(psia), s1lps) < Zs(py) and s1(ps-1) < Zs(py_1)) the in-
equality ||p1]l., < 3D%*C1S%d™! and analogously ||p2lu, < 3D?C2S5d~! that
is

€ 3D207154 [Cy 1 Byioy +Co 1 Byusgo] C7ic[ 1 P2,y + 0 PO ]
p K 1(7:1 o,n(o) 2111‘:1 wk(p)] =TK =1 o,n(o) u=1 k()

by setting 7k := 3D?d 1S} max(Cy,Cs). As in the proof of 6.6, statement (B1)
of 4.9 is trivial and our claim is exactly the statement (B2). 6.4 provides that
(PX.n)nen is a fundamental system of bounded sets in (An)o (D) for each N € N
and the conclusion follows from 4.10. ]

As over the unit disc, 6.7 combined with the results above yields immediately the
desired result on bornologicity of (AH)q(C).

Theorem 7.5. Assume A C E and assume that F is closed under the formation
of finite maxima. Let A satisfy condition (wQ). Then (AH)q(C) is barrelled.

7.3 Summary of results

Remark 7.6. Analogously to 6.9, let us summarize the results of sections 5 and 7
in the following schemes, which in particular illustrate again the lines of the proofs
for the results and the assumptions needed for each single implication.

@
\ _ G=c ) ie. AH(G) e aApg(c i N
(Qous E Proj i AH =0 :i) ultra- = barrélle)d (WQ)im == (WQ)gu
/‘ S ornological
Q) e balanccd\ / balanced
setting setting
(AH)o(G)
barrelled

Figure 3: Class (E)c,: Scheme of implications for O-growth conditions.

Proi A H — ig. (AH)o(G) is (AH)O(G)b:;?;}gZd L im N
o) AoH =0 :}>30r111110tlroag_iCa]:> barrelled = (WQ)‘m = (WQ)out

el
(AP)o(G)
bornological ig.
G=C, ACE, E closed ﬂ

under finite maxima

(wQ)

Figure 4: Class (E)c,: Scheme of implications for o-growth conditions.
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In contrast to the last section it is not clear if the sets (E)Qc are closed under
finite maxima in general. Moreover, it is also unclear, if the weights in (E) , are
essential in general. However, in concrete cases the latter might be true and thus
the following versions of our results are useful for applications.

Corollary 7.7. (of 7.1) Let A be in E and assume that all the weights in A are
essential. Then we have (i)=-(ii)=(iii)=(iv)=(v), where
(i) A satisfies condition (Q), (iv)  AH(C) is barrelled,
(ii) Proj'AH =0, (v) A satisfies condition (wQ).
(iii) AH(C) is ultrabornological,

Corollary 7.8. (of 7.5) Let A be in E and assume that E is closed under finite
maxima and that all weights in A are essential. Then (AH)o(C) is barrelled if and
only if A satisfies condition (wQ).

8 Another special setting for the unit disc: The
condition (LOG)

In this section we present another set of assumptions which allows the decompo-
sition of holomorphic functions defined on the unit disc. The definition of the
so-called class (LOG) goes back to Bonet, Englis, Taskinen [32, 4.1] and was used
to prove a projective description for weighted (LB)-spaces of holomorphic func-
tions. Moreover, it was applied by Wolf [88] to characterize weighted (LB)-spaces
having the Dual Density Condition (for the latter notion see e.g. the articles of
Bierstedt, Bonet [13, 14, 15]).

In this section all the considered weights are defined on the unit disc D of the com-
plex plane. For every x € N we put 7, := 1 — 272", rg:= 0 and I, := [r, "ep1].
We say that the sequence A = ((an,n)Nen)nen satisfies condition (LOG) if each
weight in the sequence is radial and approaches monotonically 0 as » 1 and
there exist constants 0 < a < 1 < A such that

(LOG 1) A-ann(re+1) 2 ann(re) and
(LOG 2) ann(rrs1) < a-ann(ry)

holds for all N, n and x € N.

The above assumptions imply that if a sequence A satisfies condition (LOG) it also
satisfies the assumptions of the balanced setting (cf. the remarks at the beginning
of section 5). Therefore, we get necessary conditions for the vanishing of Proj!,
ultrabornologicity and barrelledness from 5.4.

As in the previous sections we need in the final step of the proof of 8.2 that the balls
By, are co-compact and thus we a priori are only able to handle the O-growth
case, cf. also 8.3. However, the method of Bonet, Englis, Taskinen is different from
the methods used in the previous sections; it does not involve a decomposition of
polynomials.
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8.1 Sufficient conditions for the vanishing of ProjlAH

In the sequel we will use the following well-known fact, for the sake of completeness
we give a proof.

Remark 8.1. Let v be a radial weight which is decreasing on [0, 1[. Assume that
(rn)nen C [0,1] is a sequence with r,, /' 1 as n — oo. Let g € Ho(D) and put
gn(2) := g(rnz) for z € D. Then g, — g holds w.r.t. the compact open topology.

Proof. We note first that g, € Hv(D) holds. For K C D compact we select
0 < R < 1 such that K C Bg(0) and estimate

sup [g(2) — g(rnz)| < sup max |g'(§)[|z — 72|
zeK 2€K E€[rnz,2]

< (1 —rp)sup max |g'(¢)]
zeK 66[7‘”2 Z]

n—oo

g'(z)] —0

<(l-r,) sup
2€BR(0)

which yields the desired co-convergence. |

The following proof was inspired by the method developed in [32, section 4] which
was also used in [88].

Proposition 8.2. Let A satisfy condition (LOG) and assume that condition (Q)_
is satisfied. Then Proj' AH = 0.

out

Proof. In order to show that Proj' AH = 0 we use Braun, Vogt [36, Theorem
8] (which was independently obtained by Frerick, Wengenroth [43]). That is, we
have to show condition (Ps)

VNEM,HVK, m,€>03k, S>0: B]u’mgé"BNm#*SBK’k.

We denote by 0 < a < 1 < A the constants of (LOG 1) and (LOG 2) and put
B i=max (30° 0%, sup,spy0 2 "AT1272" 1) Now we put 1" := 24A%(B+ A%) +
4(A% +2B).

For given N we select M and n as in (Q),,. For given K, m, e > 0 we put ¢’ := 55
and choose k and S’ > 0 according to (Q)., w.r.t. ¢ and put S := 2TS’. Now

we fix an arbitrary f € Basm,. We have |f| < ;m? i.e. with Bierstedt, Bonet,
Taskinen [21, Proposition 1.2. (iii)] it follows |f] < (aM
(Q)oue We obtain | f| < max(e’ ( -), S’(aK . )™ < max(gS g S ) where the last

7aK

estimate follows from Bierstedst, Bonet Taskinen [21, Proposmon 1.2.(i)]. We put

U = mln(aN . ag;"'). Hence ||f||u < 1. By defining ug = ann, 1 = axk,
ag = 1/¢’ and a; := 1/5" we get u = min(agug, ajuy). We put (according to
Bonet, Englis, Taskinen [32, Proof of 4.5]) f..(z) := f(r.z). By 8.1 we have

fr. — f within the compact open topology.

_€

)~. By the estimate in
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Since all the weights in A are non-increasing, this is also true for u. Hence
(LOG 1)

(1) inf w(z) =u(rer1) = ulrege) = inf w(z) > A %u(rg).
|2|€1, |2|€1w 41

For every x in N we pick i(k) € {0, 1} such that

(2)  ulre) = GigeyUi(e) (Th) = Qi) ‘Zg Ui (2).

For v € N and ¢ € {0, 1} we define Ny := {x € N; k < vand i(k) = ¢}. For

each k > 1 we put g,(2) := f(res12) — f(rez) and go(2) := f(0) and finally for
£ € {0, 1} we define
hy := Z k-

KEN,
We have

(ho+h1+g0)(2) = Y gu(2)+ Y gu(2) +g0(2)

KEN1 KEN>2

Y (Flrariz) = fre2)) + D (F(ras1z) = f(re2) + g0(2)

K<Y K<Y
i(r)=0 i(r)=1

S Fresiz) — F(rez)
~k=0

v+1

Z flrez) — Z f(rez)
k=1 k=0

= f(roz) + f(rus12) — f(roz)

= f(Tu+1Z)

for arbitrary z that is f. ., = go + ho + h1. For the constant function go we have
190(2)| = 1 (O] = |£(ro)] < aigd ico)(0)~"

that is an(2)ln(2)] < & < § (£i(0) = 0) or axx(2l(2)] < & < § (f

i(0) = 1).

Now we fix £ € {0,1}, pick x € Ny and estimate |g,(z)| for different z.

1. Assume first |z| > r,—1 (where we put r,_1 := rg for Kk = 0).
a. Let kK > 2. Then we have
K _ok—1
ezl = [rallzl = Irellre—i] = 1 —=272)(1 =272 )
_ 1 . 272}{/71 . 272n + 272n . 272){71

1272 _ 92"
1_ 2721&—1 B 2721&—1
—1-2.272""

\VARR\V
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>1-272""

= Trk—2.
Since 7 < Tx4+1 and |z] < 1 we get
T2 < |rez] < |Teg12] < Tegr

for k > 2. Since ||f]|. < 1, we have |f(2)| < u(z)~! on D. Thus we get
by the above, since u is non-increasing and by (1)

dfn

f(rn-i-l) - f(rn)|
|f(ri<az)| + ‘f(TnJrlz)‘

w(rez) t Fulres12)t

9 (2)

N

NN

2 sup u(r)”*

Tr—2ST<Tr41

2 sup u(r)”!
TEIN—ZUIN—IUIN

2max ( sup wu(r)™', sup u(r)”', sup u(r)”")
r€l;_2 rel,1 rel

2u(rey1)
2A%u(r,) "
2

AQaZIUg(TN)_l

NN

where the last equality follows since u(ry) = a;()ui(x)(rx) and £ € Ny
implies i(k) = £ (cf. (2)).

b. Let x = 1. In this case we have

191(2)] = [ f(r22) — f(r12)] < [f(r22)] + [f(r12)]
(roz) t +u(ri2) ™!

u
2 sup u(r)”?
To<T<T2

<
<
<

=2 sup u(r)?
relogUl,

= 2max ( sup u(r)_17 sup U(T)_l)
rely rely

= 2u(ry) "

o)

< 2A4%u(ry) 7t
=2A%a; " up(ry) ™t

where the last equality follows as above.

c. Let kK = 0. Then we have |g;(2)] = |f(0)| and ||f|| < 1 implies in
particular u(0)|f(0)] < 1, i.e.

19x(2)] = [£(0)] < w(0)™" = u(ro) ™"

a;(é)ui(o) (ro)~*
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< 2142@;(,1@)“1'(/{) (rn)il

= 2A2a;1uz(rn)_1

by (2), since A > 1 and by our selection k € Nj.

To sum up the results of the cases a., b. and c., we have
|9(2)] < 2A4%a; Mug(ry) ™

for |z| > rx—1 and k > 0.

. Assume that £ >t + 1 and |z| € I, i.e. 4 < |z2| < 1e41. We have |g,(2)] =

|f(rez) — f(re+12)| by definition. By the mean value theorem there exists £
between r,z and r,412z with

|f(rez) = Fras)|l = 1/ (ONrez = rrprz] < (Ellre — rayal-

Hence we may estimate

l9x(2)] < sup F(ONlre = et
[re 2| <€ Trt12]
< sup If(©)27%,

reTe <E|STrg 1741
since [rppq —re] =1-2"2"" —14272° <272 g>t4liet<n-—1
implies |€] < rg417e41 < Te41 < 7 and we thus may use the Cauchy formula

G r@i<d [
Inl=rsx

to estimate |f(£)]. We have |f(n)] < u(n)~! = u(r,) ™!, since || f]l. < 1 and

u is radial. Now we estimate ﬁ
a. Let kK > t+ 2. That is, kK > t+ 3, ie. t < kK — 3. Hence |{| <
Pap1Tep1l < TrpiToo < Teg. Now, [ =& > |[n] — [¢]| = |n| — [¢] >
P —Troo =1 —272" = 14272"% = 2-2"" _ 2-2" W claim that
9-2""% _ 92" 5 9-19-2""% 4. We clearly have 2% — 25872 > 1,
ie. 261> 25=2 and thus 22"~ > 22" 7 therefore 272" < 272" "” and
thus —2-22" = —21-2" > —2-2""" This implies 2-22" ~ —2.272" >
2.272"77 _9=2"" — 9-2""" which shows the claim. Thus we have
= ¢ > 271272 hence g < 222" which yields <

1
, L [n—¢* =
22.22277 =4.22" " Now we get
r—1 k—1
|f/(€)‘ < %'4'22 u(rn)_l <4'22 U(Tm)_l
from (3) since 7, < 1 and can continue the estimate of |g,(2)], i.e.

19n(2)] < 4-2%7 272 ()7
=4. 22%1_2”11(7“”)_1

=14. 22N71(1_21)u(m)_1
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=14. 272&7111(7"”)71

= 4.22%1&[111@(7“,@)_1

where the last equality is obtained as in the previous cases.

b. Let Kk =t + 2. That is t = k — 2. Hence |§] < Tp417t41 < Tht1Th—1 <
Tx—1. Similar to the above, [n—¢| > ry—re—1 = 1-2-2" 14972 =
2-2""" _9-2" and we claim that 22" —2-2" > 2-19-2""" Lolds. We
clearly have 2" — 2671 > 1 je. 2% —1 > 2! and thus 92" -1 > 22“17
therefore 2172" < 272" and thus —2.22" = —21-2" > _9-2""" Thjg
implies 2-272" " —2.272" > 2.2-2""" _2-2""" — 2-2""" yhich shows
the claim. Similar to the above, we get |np — & > 271272 hence

i <2-227 which yields g < 2222277 =422 We get

/()] < 252 - 428 u(re) 7H < 4- 2% u(r)

from (3) since r,, < 1 and can also in this case continue the estimate of
19x(2)]; e,

l9x(2)] <422 u(r,) 1272 =4u(r,) ' = da;  ug(ry) ™t

by the choice kK € Ny.
Now we use (LOG 1) (k — t)—times to obtain

wp(re) < Aug(ropr) < Aug(rigo) < <A () < A Pug(ry).
Since |z| > r¢, ue is radial and decreasing for r 1 we have ug(r) > u(z

and thus we get uy(2) < ug(ry) < A" 'uy(r,), which finally yields u,(r,) !
A"7tyy(2)~t. We continue the estimates in a. and b.

~—

N

c. Let £ > ¢+ 2. From the latter and our estimate in a. we get |g,.(2)|
4a[1w(z)_1A”_t2_2K71. By our selection of B we get A"~ 122"
B27* and therefore |g,(2)| < 4-27%Ba, 'u,(2)7L.

d. Let & =t + 2. Then the above yields |g, ()| < 4a, 'u,(2) "1 A2.

To sum up the results of 2., we have

<
<

27*B if k>t+2

. <4 -1 -1
9:(2)] < da "uelz) { A i k=t+42

for |z| € I; and k as indicated above.

To complete the proof, let now z € D be arbitrary. We select t € N such that
|Z| el = [Tt,’/‘t+1]. Then

he(2) | Y7 9] < D lga(2) + D 1gul2)] = Gu(z) + He(2).

KEN, KENy KENy
R<E41 K>t41

(i) Consider Gy(z), that is all occuring k satisfy 0 < k < t+ 1 and Kk € Ny.
Thus we have Kk — 1 < ¢, hence |z| > r > rx,—1 (remember that we defined
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r_1 :=ro = 0). By the estimate obtained in 1. we therefore have

Go(2) = ) lgn(2)] < > 24%; ug(r,) 7
KENy KEN,
r<t+1 r<t+1

(LOG 2) implies up(rer1) < aug(ry), i.e. ug(rs)™' < aup(reyq1)~! for arbi-
trary k. Iterating this estimate ¢ — x times for a fixed k < t we get

wp(r) 7t < aup(re1) P < <@t T up(rpi—n) T = a T () T

With the latter we may estimate

Z 2A4%a;  up(r,) 7t < Z 2A%a; M up(ry) !

KENy k<41
r<t+1

t

= 2/12%_1 < Z we(re) ™t + uz(rtﬂ)l)

< 24%; " < Z at " ug(ry) Tt + Ang(rt)l)
t

— 2A2azlug(7‘t)71 ( Z a’ + A2)

< 24%; Mug(ry) ™t < Z a’ + A2)
o=0
< 24%(B + A*a, tu(z) !

where we used that B > )\ a”, that u, is radial and decreasing for r ' 1
and |z| > ry, whence up(ry) ™ < ug(2)™!. Thus we have

Gi(2) < 2A%(B + A% a; Mue(z) 71

(ii) Consider Hy(z). Then all the occuring k satisfy k > t+ 1 and kK € Ny. By

the estimates in 2. we obtain

Ho(2) £ Y gx(2)] = Sigeraye lgrval + D 19x(2)]

KEN, KENy
r>t+1 K>t+2

<day tug(2) A% + Z 4-27"Ba, 'ug(z) 7"

KENy
K>t+2

< (4A% +4B Z 27" a; Mu(2)
~=0

= 4(A% 4+ 2B)a, 'u(2) ",

where § denotes the Kronecker symbol.
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Combining the estimates in (i) and (ii) we obtain
|he(2)] = Ge(2) + Ho(2) < (2A%(B+ A?) +4(A%? +2B))a, 'ue(2) ™ = Tay 'ue(2) ™

that is
ug(2)|he(2)| < Tag*

for each z € D and ¢ = 0, 1. By the definition of u, and a, this means

ann(2)lo(2)] = wo(2)|ho(2)| < Te' <

N|o

and
ag k(2)|hi(2)] = ur(2) b (2)] < TS' < §

for each z € D. Hence hg € §Bn,, by the first estimate and hy € gBKJC by the
second estimate. This yields
froen = go+ho+h

5BNn+ %BK,I@ + 55BN+ %BK,]C
EBN}n + SBK,]C.

N m

Since eBn.n + SBi i is co-compact, f € eBy , + SBg i follows from 8.1 and we
are done. |

Let us extend the remarks we made previous to 8.1.

Remark 8.3. (a) If in the situation of 8.1 g € Huvo(D) holds, then g, — g
holds also in Huvg(D) and thus in each step (An)oH (D) of the projective
limit (AH)o(D). This is also a well known fact; we include a proof for the
sake of completeness.

(b) [32, 4.5] implies that (An)o(D) € H(Vx)o(D) is a topological subspace and
hence by [27, 1.3.(a)] also (An)o(D) C (An)oC(D) is a topological subspace
for each N which finally yields that (AH)q(D) is a topological subspace of the
corresponding (PLB)-space (AC)q(D) of continuous functions, if we assume
that A satisfies (LOG).

(¢) It seems not to be possible to apply the method studied in this section to the
o-growth case although it yields an approximation within the weighted in-
ductive limits, see (a). As in the preceeding sections the lack of compactness
of the unit balls (cf. the remarks at the beginning of section 6.2) anticipates
the latter.

Proof. (a) We showed already the co-convergence. Let now £ > 0 be given. Since
g € Hug(D) there exists 0 < Ry < 1 such that v(z)|g(z)| < § for each |z\ > Ry.
We select 0 < Rg < Ry < 1. Then in particular sup,, > g, v(2 )|g( )| < 5. By the
above we may select N such that supy, <, v(2)|g(2 ) g(rnz)| < § for n N. By
increasing N we may assume that r, Ry > Ry for n > N. Now We get

supv(2)[g(2) = g(ra2)| < sup v(2)[g(2) = g(r2)| + sup v(2)[g(2) = g(rm2)|
z€D |z|<Ry |z|>R1

< S+ sup v(2)|g(2)| + sup v(2)|g(r,2)]
|z| >Ry |2]>R1
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<5+5+ sup v(§)]g()]
‘E‘?Tan

< % + % + sup v(&)]g(§)]
|€]=Ro

€ £ €
<§+§+§—E

forn > N. [ |

8.2 Summary of results

Remark 8.4. Let us summarize the results of sections 5 and 8 in the following

scheme.
Qi
N AH(G)
_ G=D . ig. e AH(GQ o ie N
(@ = Proj AH=0 = ultra. =5 AHC), (wQ) = (WQ)o,
/T forete)) ornological
Q) hE balanced\ / balanced
setting setting
(AH)o(G)
barrelled

Figure 5: Condition (LOG): Scheme of implications.

As in section 7.3 we state the following result for the case of essential weights.

Corollary 8.5. Assume that A satisfies (LOG) and that all weights in A are es-
sential. Then we have (i)=-(ii)=(iii)=(iv)=-(v), where
(i) A satisfies condition (Q), (iv) AoH(D) is barrelled,
(ii) Proj'A¢H =0, (v) A satisfies condition (wQ),
(ili) AoH(D) is ultrabornological,

9 Projective limits of (DFN)-spaces of entire
functions

For the following definitions we refer to Meise [56], Berenstein, Taylor [5, 6, 7] and
the book of Berenstein, Gay [4]. In the references just mentioned the following
definitions and the results we will quote deal with the space C? for d > 1. Since we
finally will only investigate weighted (PLB)-spaces of holomorphic functions over
the plane, we will restrict ourselves to d = 1 right from the beginning. p: C — R3¢
is said to be a weight function, if it has the following properties.

(DFN 1) p is continuous and (pluri)subharmonic.
(DFN 2) log(1 + |2|?) = O(p(z)) for |z| — oo.
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(DFN 3) 3C > 1VweC: SUP|;— <1 p(z) < Cinf|,_, <1 p(2) + C.

We consider a double sequence P = ((pn.n)NeN)nen of weight functions on C with
the following properties.

(DFN 4) VNa n:PN+1,n < PN.n gpN,n—&-L
(DEN 5) VN, n 31, L > 0: 2pn.n < pas + L.

Now we put A = exp(—P), i.e. ann(2) = exp(—pnn(2)) for z € C; as usual we
call the members of A weights. Following Meise [56, 2.1 — 2.3], the above means
that each sequence Py = (PN.n)nen is a weight system in his notation and hence,
the steps Ay H(C) are all (LB)-spaces of the type A, (C), considered by Meise.
Moreover, the special case py, = npy with any decreasing sequence (pn)nen
of weight functions yields as steps exactly the spaces A, (C) considered e.g. in
Berenstein, Gay [4, Chapter 2]. Clearly, A consists of radial weights if and only if
the same is true for P — and we will assume this for the whole section.

By Meise [56, 2.4] we know that the steps Ay H(C) are (DFN)-spaces, i.e. strong
duals of nuclear Fréchet spaces. In particular, the Ay H(C) are nuclear, complete
and reflexive. In addition, condition (X) which we introduced in 5.4 is always
satisfied as we show in the following lemma.

Lemma 9.1. Let A = exp(—>P) and P be as above. Then A satisfies condition

(%)

Proof. For given N we select K := N. For given k we select n and L > 0 as in
(DFN 5), i.e. such that 2pn < pn,n, + L that is pn ., > 2pn g — L. For r > 0 we
have

ana(r) _ e PN pn (1) =pnin(r) < oPN () =(2pN g (r)=L) _ o L—pN ()
CLK’k(T) e*pN,k“‘) ~ :

Since py.x(r) — oo for 7 — oo by (DFN 2), 22" _, () holds for 7 — co. That

? a;(yk('r‘)
vanishes at oo on C. [ |

. AN, n
X >
18, Kk

At the beginning of section 5 we described the assumptions of the balanced setting:
The domain G has to be balanced, the weights have to be radial, the Banach space
topologies have to be stronger than co and the polynomials have to be contained
in all the considered spaces. We mentioned in section 5 that in this case the
assumption concerning the polynomials means exactly that each weight ay , is
rapidly decreasing at oo (cf. the remark in [20, previous to 1.2]). Hence we get the
following.

Lemma 9.2. Assume that log(1 + 7?) = o(p(r)) for r — oo holds for each p € P.
Then the assumptions of the balanced setting apply to the space AH(C).

Proof. Let p € P. It is enough to check that a(z) := exp(—p(z)) is rapidly decreas-
ing at co. Let j € N be given. Since p is radial we have to show that r7a(r) — 0
for r — 0o. We choose € > 0 such that ¢ < % Then there exists R > 0 such that
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log(1 +7%) < ep(r) < 5p(r) and hence —p(r) < —jlog(1 +7%) = log((1 +7%)7)
holds for » > R. We get

ra(r) =7 exp(—p(r)) </ expllog(1+7%) 7)) = L,

for r > R and hence r7a(r) — 0 for r — oo as desired. [ |

Now, the results of section 5.4 imply immediately that the spectra AH and AqH
are equivalent, Proj' AH = 0 if and only if Proj! AgH = 0 and that the spaces
(AH)o(C) and AH(C) are equal algebraically and topologically, if we assume that
log(1 + |2|%) = o(pn.1(]z|)) for |z| — oo holds for each N. Moreover, for A, (Q)
and (wQ) are equivalent in this case.

In the sequel we will use three different (but related) methods to obtain suf-
ficient conditions for the vanishing of Proj VAH. All methods will yield a se-
quence space representation of the space AH(C), i.e. we represent AH(C) as
projy ind,, £°(by ) where the by ,, are the following.

1. In the first approach we use the representation arising from Meise [56, Propo-
sition 2.8]; by, will be defined by some integral.

2. In the second approach we use methods of Domanski, Vogt [41] to get by
which are defined as the weighted sup-norms (w.r.t. the original weights
an ) of the monomials. This approach uses the theory of (equicontinuous)
bases.

3. Finally, we reformulate the latter in terms of the Young conjugates ¢*.

9.1 The space Ap(C) — Summary of known and some
supplementary results

Before we start with the “program” sketched above we collect certain facts on the
steps of the (PLB)-spaces under consideration; for the sake of simplicity we stick
to the notation of Meise (cf. [56, Definition 2.3]), which is the following.

For a weight function p on C we consider the following spaces.

HX(C):={f € H(C); [|fllpoc == Slelg|f(z)|e—P(Z) <)
HHO) = { £ € HD): flpa = ( [ 1FEFe ™ am(z)'"* < o0}

where m denotes the Lebesque measure on C = R2. Let P = (p,,)nen be a sequence
of weight functions (that is (DFN 1)-(DFN 3) holds) such that (cf. (DFN 4) and
(DEN 5)) pn < pp41 holds for all n and such that for each n there exists | and
L > 0 such that 2p,, < p; + L. Then we put

Ap(C) = ind,, H*(C).
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Meise [56, Proposition 2.4.(c)] stated (without proof) the following. For the sake
of completeness we will give a proof.

Lemma 9.3. In the situation of this section we have Ap(C) = ind,, H? (C). In
particular, the associated inductive spectra are equivalent.

Proof. We show

(a) VE3Im >k: H? (C) € Hy° (C) with continuous inclusion and
(b) Vk3Im >k: HX*(C) C H? (C) with continuous inclusion.

In order to show (a) we need the following well-known trick: Let r > 0,0 < p < 7,
w € C and g € Ap(C) be given. We have

27 it ) 2m )
g(w) = 5= /7 9E) g, = i/ %pe”dt = %/ g(w + pe')dt
9B, (w) 0 0

g(w)s = /Org(w)pdp

T 2m
=5 / / g(w + p(cost + isint))pdtdp
o Jo

=9 [ g(z)dm(z)
Br(w)

which finally implies

(a) Let k € N be given. We select | > k and L > 0 such that 2py < p; + L that
is pr < %(pl +L). Let f € Hy?(C) and w € C be given. We put g := f? and
r:= exp(—p;(w)) in the formula (x) and may thus compute

) = |f(w)?] = |22 / f(2)2dm(2)|

jw—z|<emPi(w)

(w)
SE o BN SO
w—z|Le PV

_ e2py(w) / |f(z)|26—2pk(2)6210k(2)dm(z)
T |w—z| e P1(w)

< e2p7lr(w) sup erk(z) / |f(z)|2e—2pk(z)dm(z)
jw—z|<emm )

] <=7 ()

< 62”77:) sup e21%(Z)/ 1£(2)2e~ 2P+ dmy(2)
C

w—z|<1

°) 2py(w)
S At P[P
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< lezpl(wH%(m(W)JrL)Jrc||f||121k,2

L <
= %ec( 7+ 2+ 3)pi(w) ||f||127k72

3

where we used in (o) that by (DFN 3) there exists a constant C' > 1 — which
is independent of w — such that supj,_,<1pe(2) < Cinfly <1 pe(2) + C <

Cpr(w) + C. Now we put D := %ec(%“) and obtain |f(w)|2e~@FEIPi(w) <
D| |2, » and hence | f(w)]e~ 5P < VD || -

Pk

We select N € N such that (14 £) < 2V. Then there exist (by iterating the
condition we used already) m and M > 0 such that 2Vp; < p,, + M and we obtain
(14 S)pi(w) < 2Vpi(w) < prm(w) + M that is —(1 + £)py(w) = — (P (w) + M)
and thus exp(—(1+ S)pi(w)) > exp(—(pm(w) + M)) = exp(—pp(w)) exp(—M)
which implies exp(—pm (w)) < exp(M)exp(—(1 + §)pi(w)).

Combining the two estimates we get
e )| f(w)] < eMe DM f(w)| < MVD] flp, 2

and thus (for arbitrary w) [|fllp,.c0 = supyece ™[ f(w)] < eMVD|f]p, .2
which shows the desired inclusion and its continuity.

(b) Let k € N and f € H}, (C) be given. We select m and M > 0 such that
2pr < pm + M that is p,, > 2pr — M and hence —p,, < —2pr + M. We compute

1= [P Oam(:)
:/|f(z)‘26—2m(2)62(m(Z)—pm(Z))dm(Z)
C

< Hf||127k,oo / 62(pk(2)—pm(Z))dm(Z)
C

I [ 2 )
C

= M e [ Oam() =2 ).

By (DFN 2) there exists D > 1 and R > 0 such that log(1 + |2|?) < Dpn(2) + R

and hence 1+ [2[? < exp(R) exp(Dpm(2)) which implies exp(~Dpy(2)) < S0
for each z € C. Hence we get

. z 2
(O) < 62M||f||12)k?00/(c (e Dpy( )) dm(Z)
R 2
<62M||f”127k»00/c(1:‘72‘2) dm(z)
— (2(M+R) /C de(z) 115, 00-

Since the integral is finite the estimate yields the desired continuous inclusion. W
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The result 9.5 is also due to Meise [56, Proposition 2.8]. Since in the next section
we want to form projective limits of spaces of type Ap(C) we need to know if the
isomorphism in Meise’s result will yield an isomorphism of these projective limits.
Hence we precise the formulation of [56, Proposition 2.8] in this direction; the
isomorphism is given in Meise’s proof.

We use the following well-known notation. Let B = (b;.,,)jnen be a Kéthe matrix.
We identify its entries b;,, with the maps b,(j) = bj., and consider the Kéthe
coechelon spaces of order 2 and oo that is

k*(B) = ind, £*(b,) and k°°(B) = ind,, £*°(b,)
where for b = (b)) jen

o) = {2 = (z)jens [zl = (D (Iz1679)?)* <00} and
j=0

J

£°(b) := {z = (2j)jen; |2|p,00 := SUP \zj|bj_1 < oo }
jEN

For the proof of 9.5 we need the following lemma.

Lemma 9.4. Let p be a weight function and assume that log(1 + |2]?) = o(p(2))
holds. Let

bj = (271' /OO r2j+1672p(r)d7")_1/2.
0

is an isometrical isomor-

Then the map T': H}(C) — £%(b), T(f) := (f“;!(o))jeN

phism.

Proof. Tt is well-known that the space Hg (C) is Hilbert w.r.t. the scalar product
(f,9)mz = Ic f(2)g9(2)e=2PF)dm(z). Since log(1 + |2|?) = o(p(z)), for given j
there exists d > 0 such that log(1 + r?) < j%p(r) + d, hence log((1 + r2)7+2) <
2p(r) +d(j + 2) and therefore (1 +72)772 < exp(2p(r)) exp(d(j + 2)) which yields
exp(—2p(r)) < %. Hence

o0 o0

254+1 -2 2j41 4(i+2)

/ 22y < / P e dr
0 0

oo
d(j+2 2041
e @ )/ :2_7'+4d7’
0

= ed(j+2) / T%dr
0

and we have shown that the integral fooo 723+ exp(—2p(r))dr is finite (which means
in particular that the b; are well-defined).

We define the sequence (f;)jen € HZ(C) where f;: C — C, fj(z) := bz’ and
claim that (f;);jen is a complete orthonormal system in the Hilbert space Hz (©).
In fact

(fir fumz :/ij(z)meﬂp(z)dm(z)
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[e%s) 27
/ / fi(r fl re”) =20(") it dr
o Jo

e’} 27
/ / b; rletiprie e~ 2P pdtdr
o Jo

—op(r 2m
. fooo pitit1o—=2p(r) g, 1 ei(j_l)tdt
- ( 00 1.2j4+1p—2p(r Y20 o o141 ,—2p(r 1/2 2m

g2 r2itte=20mar) ([0 r2tte-20(rdr) 0

1 =1
1o j#AL

For f € H;(C) we have (in H(C)) f =372 a;(f)2’ where

J 2m it
a(f) =150 = L e = [ Lesdar
0

7! 271 oU (0) z rkeiit

for arbitrary r > 0. We compute

o fid ez = / 1) Bz
C

0 2 ] ) B
= / / f(re”)rje_”te_Qp(")rdrdt
o Jo

0o 27
:/ r2j+162p(r){ f(rettyr=ie=itqt | dr
0 0

:27raj(f)/ r2itle=20(r) gy
0

Let f € H2(C) satisfy (f, fj>Hg = 0 for all j € N. Then the above shows that
a;(f) = 0 for each j, hence f = 0 and e.g. Meise, Vogt [60, Remark after 12.4]
yields the claim.

Next we claim that (bje;);en, where e; denotes the j-th unit vector, forms a
complete orthonormal system in the space ¢2(b) which is Hllbert (cf. [46, § 95 on
page 51]) under the scalar product (z,%)e4) = Zj 0 %;Y;b; . We have

1 j=1
biei,b =0, ... by ) (0, by -
<j6j l€l>€2(b) <( j-thejntry )( i-th el"try )>62(b) {0 J#l

If (x,bje;)p2 ) = 0 for all j, the computation

<£L’,b]’€j>g2(b) = <(£IJO,{,C1,...),(O,...,bj,...)>52( ) = .’E]b b 2 = bfj

j-th entry

shows that all 2; have to be zero and hence x = 0 holds. Again, the claim follows
e.g. by [60, Remark after 12.4].
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The above computations show in particular that a;(f) = (f, f;)u2b; for each
7 € N. Hence we have

T(f) = ))jen = Z%ea = Z [, fi)mzbje;

7=0
and thus
(T(f),T(9)exw) = Z fs fi) Hzb; ejvz<gvfi>Hgbiei>£2(b)
=0 i=0

Z fo £y uz(g, £i) 2 (bjes, biei) e )

=0

(f, fiduz 9, i) 2

tnqg

<.
I
o

tnqg

i
<

—~ .

fa g>H§

since the f; form a complete orthonormal system (cf. [60, 12.5]). Thus, 7" is an
isometry. In particular, for given j

f] = Z ijfl H2bl€l =b; €5
=0

holds that is each basis element of £2(b) is hit by the map 7. Hence T is surjective
and we are done. ]

Proposition 9.5. (Meise [56, Proposition 2.8]) Let P be as in 9.3. Assume in
addition that log(1 + |2|?) = o(p1(2)). Then ind, H? (C) = ind, ¢*(b,) = k*(B),
where k%(B) is the Kéthe coechelon space of order 2 w.r.t. the Kéthe matrix
B = (bj;n)j,nEN with

bjin = (277/ r2j+1e_2p"'(T)dr)_1/2.
0

An isomorphism is given by T': ind,, H} (C) — ind, £*(b,), f — (%)jew

Proof. We put T,: H2, (C) — 2(b,), Tu(f) == ({22, ~ By 94, T, is
an isometrical isomorphism for each n. Denote by i,41n: 2(b,) — £2(bpy1)
and by jny1.: HZ (C) — HZ ., (C) the inclusion maps. Since by definition
Tn+1|H§n(C) = T, holds we have Tj,41 © jnt1,n = nt1,n © Iy, for each n. We
define the following sequences of maps: a,: Hgn (C) — £2(by), apn = T, and
Bn: P(bn) — Hp  (C), By = jny1moT, ", that is

. 1 .
ﬁn o Qp = Int+1,n © Tn o Tn = In+1n

. 1 . 1 .
Qp41 O ﬂn = Tn+1 O JIn+1,n © Tn = ln4+1,n © Tn o Tn = ln+1,n
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i.e. the diagram

R £2 b in41, n_ 2(bn+1) 42 n+1 £2(bn+2) o
[ \ [an-}—l 2%, {an“
— H; ., (C) Hy,..(C)
Jn+1,n e Jn42,n+1 e

is commutative and hence the inductive spectra (HZ (C))nen and (€2(by))nen of
Banach spaces are equivalent and hence their inductive limits are isomorphic.

Let jn: HZ (C) — indy HZ (C) and iy: (?(b,) — indg *(bx) be the canonical
(inclusion) maps. Then by the universal property of the inductive limit the maps
inoTy: Hgn (C) — indy, £2(by,) induce a map S: indy Hgk (C) — indy, £2(by,) such
that S o j, = i, o T,, for all n which is by the above an isomorphism. Let f €
ind, H?, (C) be given. Choose n such that f € H2 (C). Then S(f) = Sojn(f) =
in o Tn(f) = Tn(f) = T(f) since the j, and i, are just inclusions of subspaces.
That is S = T is an isomorphism. |

Remark 9.6. With the notation and assumptions of 9.5 we have k?(B) = k*°(B):
By Meise [56, 2.4] the space ind,, H7 (C) is a (DFN)-space, hence by 9.5 the same
is true for k*(B). Thus the Crothendieck-Pietsch condition (cf. [64, 6.1.2] and
[26, Remark after 5.4]) yields that even all the spaces kP(B) for arbitrary orders
1 < p < ooorp=0 coincide (see [11, 2.15 and the subsequent remark]).

Consequence 9.7. Under the assumptions of the 9.5 we have

dfn . 0o . 2 Z: . 2 . 0o dfn ;
Ap(C) = ind, H;?(C) = ind, H, (C) =ind, £~(b,) = ind, £>(b,) = k™ (B).

9.5 and an inspection of the proof of 9.4 yields the following result which will be
important in section 9.3.

Scholium 9.8. (of 9.4) Under the assumptions of 9.5 the monomials ¢;: C —
C, gj(2) = 27 constitute an equicontinuous basis in the space Ap(C) where the
coefficient functionals are the Taylor coefficients.

Proof. First of all, by 9.2 the g; are contained in each of the Banach spaces H.° (C).
Let f € Ap(C). Hence there exists n such that f € H} (C). The proof of 9.4
shows that we have

F=S £ =3 b2 = a () = Y 100
=0 =0 =0 =0

holds in H? (C) and hence in Ap(C).

Assume that (a});en is a sequence such that f = > 72 a;z7 holds in Ap(C). Then
the latter is also true in (H(C),co) and hence a} = a;(f) for each j since in
(H(C),co) the power series representation is unique.
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In order to show that (p;),en is a Schauder basis we have to check that a;: Ap(C) —
C is continuous for each j € N. We fix j and n. Let f € Han (C). We estimate

aj<f>—|;m«/|| L
z|l=
*Pn(z) Pn(z)
< ;r/ Liee e Py
z|=1

< sup P L / F(2)e )] |dz|
|z|=1 |z|=1
ePn(1>

< 2m

27 sup |f(z)\e_p"(z)
zeC

= epn(l)Hf”pm

Hence the restriction a; : ng (C) — C is continuous for each n. By the universal

property of the inductive limit a; has to be continuous on Ap(C) for arbitrary j.

Since the space Ap(C) is barrelled, the basis has to be equicontinuous (cf. e.g. Jar-
chow [50, 14.3.3)). |

After these preparations we start with the “program” sketched at the beginning
of this section.

9.2 Integral representation

We use the notation established at the beginning of section 9. Assume that log(1+
|2]?) = o(pn,1(2)) holds for each N € N. From 9.7 we get immediately
ANH(C) € ind, HZ (C) = ind, HZ, (C)

TN

~ ind, 2(byn) = indy £°(by,) =

k> (By).

for each N € N where By = (bj.n.n)jN,nen With

oo
bjiNm = (27T/ T2j+16_2p’\’«"(’")dr)_1/2
0

and T : ind, H2, (C) — ind,, 2(by ) is defined by Ty (f) = (£52)

Lemma 9.9. Assume that log(1 + |2|?) = o(pn,1(2)) holds for each N € N. Then
the map

f(j)(o))
J' /jeN

T': projy ind, HgNln (C) — projy ind,, 2(bn ), f+— (
is an isomorphism. In particular, the associated projective spectra are equivalent.

Proof. We show that the spectra (ind,, ng,n(c))NGN and (ind,, £%(bnn))Nen are
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equivalent. We define the maps ay: ind, ng,n(c) — ind,, £%(bn,n), an == Tn
and By : ind, £2(bx.,) — ind, H? (C), Bn = jn.n—10Ty". Then

PN—-1,n

. -1 .
Byvoany =jnnN-—1°Ty oTn =jNN-1
. 1 . 1 .
anyofBny1 =TnojntinoTnyy =intiNnoTNy1 0Ty | =int1N

where we used Tnojny1,8 = in+1,80Tn+1 which holds since T |ing,, 2 © =
N+1,n

Tny1. Hence the diagram

c s ind, H2_ | (C) P ind,, H2(C) Y5 ind, HE,(C) —— -

AN 41 anN AN -1

> indn 62([)]\[4_17”) 4> indn KQ(bN,n) 4' indn fz(bN_l,n) —_
*N+1,N *N,N—1
commutes, the spectra are equivalent and their projective limits are isomorphic.
Let us denote by jx and iy the canonical (inclusion) maps proj g ind,, Hglm (C) —
ind,, HZQ,K,” (C) and projg ind,, £?(bx.n) — ind, £?(by.n). Then the maps Ty o
JN: Projg ind, HZ%K)W (C) — ind,, *(bx ) induce a mapping

S: projy ind, Hy | (C) — projy ind, £%(by.n)

such that iy o S =Ty o jn for all N which is by the above an isomorphism.

Now let f € projyind, H}, (C) and N € N be arbitrary. Then S(f) = iy o
S(f) =Tnojn(f) =T(f) since iy and jy are just inclusion maps. Hence T' = S
is an isomorphism. |

In view of the equation previous to 9.9 we can regard the T also as maps
AnH(C) — k°°(By). Hence, 9.9 yields that

T
AH(C) = projy k°°(Bn) = projy ind,, £°(bn ) =projy ind, Cb;,,ln(N) =BC(N)

where we use the the double sequence B = ((b;vln) NeN)nen formed by the weights
bg,}n (j) = b;]lvn Thus, 3.1.B immediately yields necessary and sufficient condi-
tions for the vanishing of Proj ' BC, ultrabornologicity and barrelledness of BC(N)
and since the spectra AH and BH are equivalent and the corresponding spaces
are isomorphic, we thus get a result on Proj! AH and AH (C). By the following
remark we even get a characterization of the forementioned properties.

Remark 9.10. In 9.6 we noted that the space ind,, HZ (C) = k*(B) is a (DFN)-
space under the assumptions of 9.5 and that therefore the sequence B = (b;.,);, nen
satisfies the Grothendieck-Pietsch condition

(N)  Vk3In>k: 25 0 forj — oo

in

<

in the notation of Bierstedt, Meise, Summers [26, Remark subsequent to 5.4].
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Concerning the sequence B = ((b&hb) NeN)neN the above implies that each step
ByC(N) of the projective spectrum satisfies condition (S) of Bierstedt, Meise,
Summers [27], i.e. for fixed N we have

1
Vk3n >k En 0 for j— oo

7N,k
and therefore B satisfies in particular condition (X)
—1

VNIK>NVk3In=>k: O vanishes at oo on N.

—1
bK,k

Now we can state the desired characterization.

Theorem 9.11. Assume that log(1 + |2]?) = o(pn.1(2)) holds for each N. Then
the following are equivalent.

(i) B satisfies condition (wQ).  (iii) AH(C)= BC(N) is ultrabornological.
(ii) Proj'AH =Proj' BC =0. (iv) AH(C)= BC(N) is barrelled.

9.3 Basis method

In this section we deduce a sequence space representation using methods of Domaii-
ski, Vogt [41]. In order to do this, we need the following abstract result.

Proposition 9.12. Let E = projy En with locally convex spaces En such that
Eny1 € En and inclusions as linking maps. We denote by ny: E — En the
canonical (inclusion) map and consider (e;),eny C E.

(1) Assume that (e;)jeny € En is an equicontinuous basis for each N.
(2) For each N let £: Ex — C, Y2 &N (z)e; = x — £ (x) be the j-th
coefficient functionals. Assume that §jN |Exs = fJN *1 holds for each N.

Then (e;);en is an equicontinuous basis in E.

Proof. First we have to show that (e;);en is a basis in E. Let « € E be given. We
put &(z) := & (z) (= &) (x) for each N € N) and claim Z;’il &i(x)e; = x. Let
p € cs(E). Since E = projy Enx we may assume p = maxyey py with M C N
finite, py € cs(Ey) for N € M, cf. Meise, Vogt [60, Definition after 24.4]. We
compute

K K

p(ZEj(:c)ej - f) = nggﬁpN(ijv(f)ej — f) — 0 for K — oo.
3=0 §=0

Now we assume that ((;)jen, (j: £ — C also satisfies Z;io (i(x)e; = xin E.

Then this equality holds also in E; and since (e;);en is a basis in F; with coefficient

functionals (£5)jen, ¢j(x) = & (x) = &;(x) and hence (; = &; for each j.

Since &; = 531‘ o, where 5} and 7 are continuous, the same is true for &;. Hence,
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(ej)jen is a Schauder basis in E.

It remains to check that (e;);en is equicontinuous. By (1) we have
(x) Vpe€ cs(Exy)3dge€ cs(Ey), Cn >0Vz € Ey, j € N: \gjv(x)|p(ej) < Cng(x)

for each N. Let p € cs(E). As above we may assume p = maxyea Py. For each
N € M we have py € cs(Ey) and we thus may select gy € ¢s(Exn) and Cy > 0
according to (x). Now we put ¢ := maxyen gy and C' := maxyen Cn. For given
x € E, j € N we compute

&@lple) = 16| max pv(e;) = max € (x) pa(e,)

(%)
< < = =
< max Ongy(z) < max Cqy (z) = C max gy (z) = Cy(x)

which finishes the proof. |

Consequence 9.13. Assume that log(1 + |2]*) = o(pn,1(2)) holds for each N.
The monomials ¢;: C — C, p,(z) = 27 constitute an equicontinuous basis in the
space AH(C).

Proof. This follows directly from 9.8 and 9.12. |

Now, we may apply Domanski, Vogt [41, Theorem 2.1] to get a sequence space
representation of the (PLN)-space AH(C). We define the Kothe (PLB)-matrix

B = (bjin.n)Nnens bjsNon = P (P) = [IPsllv.n = sUD e P
ze
and obtain by [41, Theorem 2.1] that (in the notation of Domanski, Vogt)
AH(C) 2 E,(B) = projy ind,, EY"(B)

where EN™(B) = {2 = (2)jery ; |12l|§) < 00}, In := {j; Vn: bjnn > 0}

and ||:EH§\<;072 = Supjery |[75]0j;n 0. In view of the appearence of the b;. v, we have

Iy = N for each N which simplifies the above into

AH(C) & Eo(B) = proj ind, { = (T;)jenN; Sugbj;N,n x| < oo }
jic

J
If we identify the elements of the Kéthe (PLB)-matrix with the maps by, N — R,
bnn(4) = bj.n.n the spaces EX"(B) are exactly the weighted Banach spaces
of continuous functions Cby ., (N) investigated by Agethen, Bierstedt, Bonet [2].
Hence, the space E(B) coincides with the weighted (PLB)-space of continuous
functions BC(N) for the double sequence B = ((byn)NeN)nen. In the proof of
[41, Theorem 2.1] Domariski, Vogt showed even that the projective spectra of
(LB)-spaces are equivalent — in our situation this means that BC and AH are
equivalent and hence that Proj' BC' = 0 if and only if Proj' AH = 0. By our
observations previous to 9.14 the space BC(N) is a (PLN)-space and thus the steps
ByC(N) = ind, Cby(N), which can be identified with the coechelon spaces
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k> (By) w.r.t. the Kéthe matrix By = (bj,n,)jnen for fixed N, are (DFN)-
spaces. Thus, we get in complete analogy to 9.10 (but with “inverted” entries
of the Kothe matrices) that the sequence B = ((by,n)Nen)nen satisfies condition
(X). From the latter observations and 3.1.B we get immediately the following.

Theorem 9.14. Assume that log(1 + |z]?) = o(pn,1(2)) holds for each N. Then
the following are equivalent.
(i) B satisfies condition (wQ).  (iii) BC(N)
(ii) Proj'BC =Proj' AH =0. (iv) BC(N)

AH(C) is ultrabornological.
AH(C) is barrelled.

1R

9.4 Young conjugates

In this section we present a reformulation of the results of section 9.3 in terms of
the Young conjugate. We stick to the assumptions made in the last section. In
the notation established after 9.13 we considered the Kéthe (PLB)-matrix B :=
(bj;N,n)j,N,neN with bji,NJl = ||ijN,n- We have

Ipjllv,n = sup e PN (2|29 | = sup e 87PN () — exp (sup(jlogr — pnn(r)))-
zeC =0 r>=0

If we put onn: C — R, onn(2) = pnn(exp(z)), the last expression in the

above computation is exactly exp (¢ ,(j)) where YNt R>o — R is the Young

)

conjugate of ¢, defined by ¢}, (y) = supger., (¢ -y — ¢n,n(x)). Hence we have

bj;N,n = eXp ((p}(\f,n(.]))

and thus 9.14 can be restated for the sequence B defined by B = ((bn,n)NeN)neN
with by n(j) = exp(pi,(4))-

Theorem 9.15. Assume that log(1 + |2]?) = o(pn.1(2)) holds for each N. Then
the following are equivalent.
(i) B satisfies condition (wQ), (iii) BC(N)
(ii) Proj'AH = Proj' BC =0, (iv) BC(N)

AH(C) is ultrabornological,
AH(C) is barrelled.

1R

Let us add, that condition (i) of 9.15 can be expressed as follows in terms of the
Young conjugates.

Remark 9.16. The sequence B satisfies condition (wQ) if and only if

YNIM>N,nVK>Mm3k S>0:

exp(—@hsm) < Smax (exp(—¢h ), exp(—¢ik 1))

9.5 A condition on P

In this section we present a condition on the sequence P, which is sufficient for
all the sequences B of the sequence spaces representations established in the last
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three sections to satisfy condition (wQ). Since in this section the defining sequence
of the weighted (PLB)-spaces is in fact P (since A is just exp(—P), the latter is a
clearly a desirable result.

Definition 9.17. The sequence P = ((pn,n)NeN)nen is said to satisfy condition
(wQ)" if
YNIM>N,aVK>Mm3k S>0Yr>0:

Pum,m (1) < S + max (pN)n(T), pK,k(r)).

Lemma 9.18. If P = ((pn.n)Nen)nen satisfies (WQ)P then B = ((by.n)NeN)neN
with _
bj;N,n = Sup eipN’n(z)|Zj|
zeC
satisfies (wQ).

Proof. For given N we select M and n as in (WQ)P. For given K and m we
select k and § > 1 as in (wQ)". We put &’ := exp(S) > 0. ie. S = log¥s'.
Then for arbitrary j and 7 > 0 we have par,m(r) < S+ max (pnn(r), pri(r)) =
max (log S" + pnn(r), log S" + pK,k(r)) and hence by multiplication with r—1,
taking exp(:) and then the infimum on both sides we get

(log S'+pN,n(r), log S'+pK1k(r))

inf ePMom (M) =0 L inf e™ax rJ
r>=0 r>0
— inf (maX (elog S'+pN.n(r) log S/+m<,k(7"))r—3)
>0 ’
= inf max ('8 SN () =i plog S/“’K’k(r)r*j)
r=0
= inf max (S’epNv"(r)r*j, S’epK*(”)r*j)
r>0
= S max ( inf epN*"(T)Tfj, inf epKv‘"'(r)rfj)
r=0 r=0
that is
inf epM,m(Z)|z—j‘ < 8 max ( inf epN,n(Z)lz_jl’ inf ePK,k(Z)|Z—j|).
zeC zeC zeC
o . . . 1 / 1 1
— < —_— ——
By the definition of the by, this is exactly B ) S max .S (bN,n(a)’ bx,k(J))’

which is the estimate in (wQ).

Corollary 9.19. If P = ((pn.n)Nen)nen satisfies (wQ)" then also sequences ob-
tained in 9.2 and 9.4 satisfy (wQ).

Proof. This is clear in view of the equivalences stated in 9.11, 9.14 and 9.15. W
9.6 Summary of results

In the following theorem we summarize the three different sequence space repre-
sentations, their consequences aswell as the necessary conditions we obtain from
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section 5.

Theorem 9.20. Let P = ((pn.n)nen)nen @ sequence of radial weight functions
which is decreasing in n and increasing in N such that for each IV and each n there
exists [ and L > 0 with 2pn ., < pny + L. Assume that log(1 + |2]?) = o(pn 1)
for each N and put A = exp(—P). Let B = ((bn,n)nen; € = ((¢N,n)NeN)nen and
D= ((dN,n)NeN)nEN be defined via

bN,n(j) = (/ T‘2j+1e_2pN,n(T‘)dr) 1/2’
0

enm(j) = sup e P yd,
r>0

dnn(j) = exp(exp” (pn.n(4)))-

Then B, € and D satisfy condition (X), (ii) — (v) are equivalent, (i) implies the
latter and the latter implies (vi), where

(i) P satisfies (wQ)",

) B satisfies (wQ),  (ii’) C satisfies (wQ),  (ii”) D satisfies (wQ),
) Projt AH =0,
(iv) AH(C) is ultrabornological,

)  AH(C) is barrelled,

) A satisfies (wQ)

Proof. The equivalence of (ii), (iii), (iv) and (v) follows from 9.11. From 9.14 it
follows that (ii"), (iii), (iv) and (v) are equivalent. The equivalence of (i), (iii),
(iv) and (v) holds, since € = D holds by our considerations in section 9.4. The
implication “(i)=(ii')” is exactly 9.18 and “(v)=-(vi)” we get from 5.8. |
Let us now assume that all the weights in A are essential in the sence that (%) T = %
for all @ € A. This is equivalent to the assumption that

p(z) = sup log|f(2)]
feH(C)
[fI<eP

holds for each z € C where a(z) = e ?(*). Since in the current setting all the
information contained in A is already contained in the sequence P the latter for-
mulation of essentialness is in some sense more natural (and accessible) than the
very definition.

Corollary 9.21. Assume in the situation of 9.20 that all the weights in A are
essential. Then all the conditions in 9.20 are equivalent.

Proof. Tt is enough to check that (vi) implies (i). If the weights in A are essential,
(vi) implies that A satisfies (wQ), see 5.9. We claim that P satisfies (wQ)". For
given N we select M and n as in (wQ). For given K > M and m we select k as
in (wQ) and denote by S the constant in (wQ), where we may assume that S > 1
holds. We put S’ :=1logS > 0. Let r > 0 be fixed. Then the estimate in (wQ)
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yields ePMm() < Smax(ePn (") ePr(T)  Applying log, this yields Pmm (1) <
S’ + max(pn, n(r),pK (r)) which is the estimate in (wQ)". [ |

10 A non-radial setting for the complex plane

10.1 Meise, Taylor’'s decomposition Lemma

Meise, Taylor [57] proved a decomposition lemma for entire functions. Among
other applications they showed that the space Ap(C); for certain sequences P
satisfies condition (DN). Since we want to use their decomposition method to
investigate again a class of (PLB)-spaces arising from sequences of weights of a
special type we will review the definitions and results of Meise, Taylor first. Most
of their results are stated for C4, d > 1. Since we will finally have to restrict
ourselves to the case d = 1, we will right from the beginning state everything for
this case.

Let w: [0, 00[ — [0, 0o[ be an increasing continuous function which satisfies w(0) =
0. According to [57, Definition 1.1] let us call w a weight function, if it has the
following properties.

(WF1) 3C>0Vy>0: [ < Cuw(y) +C.
(WF 2) The function ¢: R — [O, oo[7 — w(e!) is convex.

(WF 3) limy oo 255 = 0.

For later use let us state the following remarks of Meise, Taylor.

Remark 10.1. (Meise, Taylor [57, Remark 1.2]) For each weight function w there
exists a concave weight function x and C' > 0 such that w(y) < x(y) < Cw(y)+C
holds for each y > 0; x is given by x(y) = [~ %dt = yfyoo %ds.

The above means that we w.l.o.g. may assume that w is concave and hence sub-
additive. We will use this frequently in the sequel.

Let u: R — R be continuous such that [~ L®l gt <« 00. By P,: C — R we

oo 1+t2
denote the harmonic extension of w which is deﬁned by

ol po w1 iyl > 0
Pul+iy) =4 ™Aoo Tormpdt il
u(l') lfy:o.

For a weight function w we will understand P,, as the harmonic extension of w|g

where we (as usual) regard w as a radial function on C.

Remark 10.2. (Meise, Taylor [57, Remark 1.4])

(a) For u as above, P, is continuous on C and harmonic in the open upper half
plane.
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(b) For every weigt function w there exists D > 0 such that for w(z) < P,(2) <
Dw(z) + D holds for all z € C

For the proof of 10.12 we need the following property of the harmonic extension,
which is also used by Meise, Taylor [57]. For the sake of completeness we will give
a proof.

Lemma 10.3. Let u: R — R be continuous such that f - IHQ‘ dt < oo and let
v, p and A € R. Then

Pmin(uu+A,,uqu) (Z) < mln(VPu(Z) + A7 /LPu(Z) - A)
holds for each z € C.

Proof. Let z = x + iy be given. In view of the definition of P the case y = 0 is
trivial. If |y| > 0, we have

Paons (o in) = B [l a0
min(/Oo %dt /jo mdt)
min(u/_ = Zgiﬂ dt—i—A/ tw

’“‘/_O; et - /_OO wwdt>

= min (uPy(z + iy) + A, vP,(z + iy) — A),

N
<

sl

<

sl

where we used f_oooo dt = I%I for the last equality. |

1
(t—=z)2+y?

Let us now state the decomposition lemma.

Lemma 10.4. (Meise, Taylor [57, Lemma 2.1]) Let p1, p2 and u: C — R be
continuous functions and let u be subharmonic. Let f € H(C), let 2 C C be a
region and assume that (1)-(4) holds, where

(1) VzeQ: |f(2)] < er®),

(2) V= Q: ()] < ),

(3) V= € C: u(z) < min(pr(2), pa(2)),

(4) V2 €09, w e C with |w| < 1: |[f(z+ w)| < e*Hw),

Then there exists C' — independent of f —and f1, fo € H(C) such that f = f1 + fa
and (5) and (6) are satisfied, where

(5) f(C |f z) 2 *2Pj(z)*410g(1+\2|2)d)\( ) < < 02 for j =1, 2,
(6) f(c|fJ )2 e—2max(u(z), log | £ (2)| =4 log(1+|=|* )d)\( )< C?forj=1,2

and A denoted the Lebesgue measure on C.
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The next result is only a slight modification of [57, Lemma 2.2].
Lemma 10.5. Let p, ¢ and 7: C — R be continuous. Put

U:={f € H(C); sup,cc|f(z)|e ") < 1},
Vi={f € H(C); [o|f(z)Pe 21 ~40e+1M ) () < 1},
W= {f € H(C); [u|f(z)[2e 2 =4los0HzM gr(2) < 1),

Assume that there exist D and Ay > 0, such that for each A > Ag there is a
subharmonic function u4: C — R and a region 24 C C such that

(1) Vz€Qa:p(z) <q(z)+ A,

(2) Vz&Qa:p(z) <r(z)— A,

(3) Vz € C: uy(z) < min(q(z )+A r(z) — A),

(4) Vz € 004, w e Cwith |w] <1:p(z) — D < ua(z +w).

Then for all € > 0 there is S > 0 such that U C SV +eW.

Proof. Let C denote the constant of 10.4. Let € > 0 be given and assume
w.l.o.g. that5<CeD Ao We put ¢ := C le Pe and S := CePe’~1. We select
A :=log 2 o.le e =e —4. By our abbumptlon on € we have ¢/ = C~le Pe L e 4o

hence 1 > e and thus A = 1og = > Ag.

Now we put p1(2) := q(2)+ A, pa(2) :=r(2)—A. If fisin U, we have | f(z)| < eP(*)
for all z € C, hence

(1) le7Pf(2)] < e PeP®) L ea+A=D L ePr(2) for 2 € Qy,
(2) le P f(z)] < e Per®) L er)=A=D L eP2(2) for 2 & Qq,
(2) ua(z)

(4)

< min(q(z) + A, r(z) — A) = min(p1(2), p2(2)) for z € C,
| e Pep(x) = ep(2)=D L eualztw) for » € 90,4 and |w| < 1

Therefore, 10.4 yields f; and fo with e P f = f; + fo, i.e. f = eP(f1 + f2) such
that the estimates in 10.4.(5) are satisfied, i.e.

fc|f1 )|2e—2p1(2)—4log(1+]z 2 Dd\(z ):fc‘fl (2)|2e2(a(2)+A)—4log(1 ]z 2 VdA(2)
= 2Af |f1(z |2 —2q(z)—4log(1+]z|? )d)\(z)
<C?

and thus f; € CeAV and analogously f» € Ce™ AW for each A > Ay. Thus
f=eP(fi+ f2) € CePeV 4+ CePe AW = CePe/ "'V 4 CelPe'W = SV + W
and we are done. [ ]

A modification of the above proof yields immediately the following.

Scholium 10.6. Let p, ¢ and r, U, V, W be as in 10.5. Assume that there exist
D and A > 0, a subharmonic function u: C — R and a region €2 C C such that
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(1) VzeQ:p(z) <q(2) + 4,

(2) V2 Q:p(z) <r(z) — A,

(3) VZE(C:u(z)gml(()—i—A r(z) — A),

(4) Vz €09, we Cwith |w| < 1: p(z) = D < u(z +w).

Then there is S > 0 such that U C S(V + W).
For later use we state the following special case of [57, 2.3].

Lemma 10.7. (Meise, Taylor [57, Lemma 2.3 for a ==1]) Let w: R — [0, 00
be even and subadditive with f “ﬁ dt < co. For a, b € R with a > b and for
A > 0 define 1): R — R by 9(t) := mln(aw(t) —aA, bw(t) + BA). Let h denote the

harmonic extension of ¥. Then the following statements are true.

(1) sup.ecsuppy|<i [h(z+w) — ( )| < max(lal, [B]) (w(1) + 2 maxyefo,1) Pu(iy))-

(2) ‘ < max(|al, b)) [7 t2+y >dt for all z € R and y > 0.

Let us from now on assume that w is a subadditive weight function. The following
definitions are slight modifications of those stated in [57, Notation 3.1]. For p >
v>0and A > 0 we define

Blvo g A): R = R, 9t v, A) = min(va(t) + A, p(t) — A).

By H(-,v,u, A) we denote the harmonic extension Py of ¢(-,v, u, A) which is
continuous on C and harmonic in the open upper and lower half plane by 10.2.(a),

> 2 gt < 0o since [ ©(t) < 50 holds

since v is continuous by definition and f 112 o T3E2

by (WF 1).

Since w(0) = 0 and lim;_, o w(t) = oo holds by (WF 3), we have w([0, oo[) = [0, o0.
Therefore, the equation w(t) = f—i has at least one positive solution ¢;. Note that
t = 0 cannot be a solution. Let N := {¢t € [0,00[; w(t) = %} be the set of all
solutions. Since w is continuous and increasing with lim;_,. w(t) = oo, N has to
be of the form [a’, b'] with 0 < o’ < V. With ¢ as in (WF 2) we get that there is an
intervall [a, b] C R such that p(t) < ;—fy for t < a and ¢(t) = j—i fora <t <b If
N has more than one element we obtain a < b and the latter statement contradicts
the convexity of ¢. Therefore there is one and only one solution of w(t) = %
and we may denote this solution by £(v, u, A). With this notation we have

pw(t) — A for |t
vw(t)+A for |t

E(v,p, A),

Y(t,v,p, A) = { (v, A).

| <€
| >
By R(v, i, A) we denote the set

R(v,p, A) :={z € C; max(|Rez|, |Imz|) < &(v,pn, A)},

and put R(v, u, A) := R(v, i, A).
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By the above, the function H(-,v, u, A) can be written as follows

m J—oco (t—z)2+y?

Hiz i 4 bl poo ) g if |y > 0,
X 1 ?V’ b =
ook Plevmd) iyl =0,

Therefore, we get immediately that H(z + iy,v,u, A) = H(z — iy, v, u, A) holds
for all z and y € R. Moreover, we have for |y| > 0 and & := (v, u, A) by the
substitution s := —t

H-otigvd) = [ s
B vw(t)+A dt ¢ pw(t)—A dt + > vw(t)+A dt
G BN R G
_ lyl ¢ vw(—s)+A “1d ¢ pw(—s)—A “1)d
R (—s+z)2+y2( ) s+ ¢ (—s+m)2+y2( ) §
- vw(—s)+A
v e
i [ [ wets)ia = a4
—_ 1Y vwis pw(s)—
= ,,[ /5 [T /5 T-mry? 08
B vw(s)+A
* / (e ds]

/Oo Y(s,v,p,A) ds

(s—z)%+y?
o0

==

|

_ lul
U

= H(x +iy,v, 1, A).

Finally, for |y| = 0 we have H(—z + iy, v, pu, A) = Y(—z, v, pu, A) = Y(z, v, pu, A) =
H(x+1iy,v,u, A), hence H(—z+1iy,v, u, A) = H(z+iy,v, u, A) for all x and y € R.

The following lemma was stated by Meise, Taylor [57, Lemma 3.2] for the special
casev=1and peN, > 2.

Lemma 10.8. For w, v, p and A as above we have

H(z,v,p, A) 2 6A with 0<d:= L(arctan(2) — arctan(3)) < 1.

inf %
2€OR(v,p,A)

Proof. To simplify notation let us put H := H(-,v,pu, A), ¥ := (-, v, u, A) and
¢ :=¢&(v, pu, A). By the symmetry properties of H we stated above it is enough to
show the following

A for y € [0,¢],
A for z € [0,€].

(1) H(§+1y)

=4
(2) Hix+1i€) =9

The case y = 0 is easy since H(§) =¢(§) =vw(§) + A > A > JA.

(1) We have
1 si=t—¢& 1 1
;’1/5 mdt = %/0 st i)
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I3 0
y 1 si=t—¢ y 1 _ 1 2§ 1x 1
7‘_/6 =217 dt " = ps /25 Py ds = ;arctan(?) § ;% =3

3
|

¢ 1 € % 1
ity
/ ol = ;/ e ds
—o0 —oo

H(¢ +iy) =1 / e dt

2¢ o'}
¢ 1 _
%/ t2+y2(71)dt_ 2/25 t2+y dt.

o0

_y uw(t +A dt+ / pw(t)—A dt
w/ 0 W G

[t]1>¢

_y l/w t A
= ”/|t|>5 Torrrdt+ o /|t>5 o it
y () gy A
T fyee oA ﬂ/t|<§ o

214/ L(t)dtJréJrg/ ) A
™ J>e (t—=8)>+y? 2 o ltl<e (t=8)>+y? 2

pw(s+€) 4
¢/2 s24y?2

W
ENS
I
[e=}
V)

V2
=
€
~
~
2

Ve

VoWV

where we get (a) by substituting s :=t —&. () follows since s € [—£/2, 0] implies
s+ & €[£/2,3¢/2] and w is increasing. () we get since arctan is increasing and
y < & implies % < % Finally, (6) follows from the fact that w is subadditive,
ie. (w(€) = w(€/2+&/2) < w(&/2) +w(€/2) = 2w(£/2) which yields w(§)/2 <
w(£/2).
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(2) We define
1ol e

R—R t) .=
" ut) {—1 if |t < €.

By Meise, Taylor [57, p. 54] we have

00 00 €
(o) min Py(u-+i€) = Pu(i€) = g[ Fragzdt = /6 mrapdt— 2 /0 Feedt = 0.
For z € [0,¢] and t € [, —£/2] we have t —§ <t — 2z < —£/2 and thus

(x) == (t—a)?

Now we estimate
oo
fl; + Zé‘ % / 2+£2

vw(t)+A di + & / pw(t)—A dt
/tl ¢ (t—2)2+¢€2 lt<e (t—z)>+¢2

8

3

WV

>§/ dt + & / idt—Fé/ L’f)dt
" Jize T e fe TTTHET T Jge (0TS
S E A L / et

G tyee THE

L AP, (z + if) +§/i e dt
© -3

> A.0+7§/E et dt

@ -5

2 gt | S

w(%)[arctan(?) — arctan(3)]

I
> 4larctan(2) — arctan(3)]

where (a) holds since min, . g w(t) = min, e o w(t) = w(g) as w is increasing.
2 2

(8) follows by substituting s :=¢ — &. [ ]

Now we have collected all the preliminary results and thus in the next section we
can start our investigation of the (PLB)-spaces.
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10.2 A sufficient condition for the vanishing of ProjlAH

As we indicated already, in [57, Proposition 3.4] Meise, Taylor showed that the
strong dual of the space Ap(C) = ind,, Ha,(C) with a,(z) = exp(—(|Imz| +
nw(z))), i.e. P = (|Im z| + nw(2))nen in their notation, enjoys the property (DN)
for each weight function w.

In the sequel we study (PLB)-spaces AH(C) for a sequence A = ((ann)neN)NeN
of the following form. As in the previous section, let w be a subadditive weight
function. Let U := ((un,n)nen)ven C ]0,00[ be a double sequence which satisfies
UN+1n < UNp < UNp+1. Then we put pyn,(2) == |Imz| + uypw(z), P =
((pN,n)neN)NeN and finally A := exp(fﬂj).

As Meise, Taylor [57, proof of 3.4] we need the following representation of the
steps of the projective spectrum. For the sake of simplicitly in the next result we
ommit the N from our notation. Note the similarities to the proof of 9.3.

Lemma 10.9. Let w be as above and (u)neny C ]0,00[ be increasing. Assume
that for each n there is k > n such that ug > u,. Put p,(z) := |Im z| + u,w(2).
Then

3 o0 ~ 3 2

ind, H,”(C) =ind, H, (C)

where

Hp2(C):={f € H(C); |If

prroo i= sup| f(2)]e P *) < oo},
zeC
— z)—4lo z|? 1/2
Hy (C):={f € HOC); [|fllp.2 = [/C\f(Z)IQB 2pn ()= 4los(1H=1%) g3 ()] * < 00}

are endowed with the natural Banach space topologies. The proof will show that
the associated inductive spectra are equivalent.

Proof. We claim

(a) Vk3Im >k: H? (C) € Hy° (C) with continuous inclusion,
(b) Vk3Im > k: HX*(C) C H? (C) with continuous inclusion.

(a) Let k be given. We select m such that w,, > uy. Let f € H?, (C) and w € C
be given. We use the trick (x) of 9.3 with g := f2 and 7 := 1, thus

F@)? = 1f @)
<L 2)|?dm(z
[ werane

_ ;/ | (2) 220 (2)~4108(1+[21%) 2 )+ 10m(LH=1%) g )
" Jw—z1<1

g% sup erk(z)+4log(1+\z\2)/|f(2)|26—2pk(Z)_410g(1+‘z‘2)dm(2)
C

w—z|<1
1 sup eQ\Imz|+2[ukw(z)+2 10g(1+‘z‘2)]Hf||12,k,2 _. (O>.

lw—z|<1
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Since we have —2-—log(1 + *) < ;—2.—log(t*) = —%—log(t) for big ¢, that

n— Uk Um —Uk Um —Uk

is (210 o 6 18D g thus by (WF 3) limy oo (2220H005 — 0, there

(um—up)w(t) = um—ur w(t) , Um —uk)w(t)
exists T > 0 such that % < 1, ie. 2log(l + t2) < (um — ug)w(t) for
€ [T, 00[. With C := maxye, 7] 2log(1 + t*) we thus get 2log(1 + t2) < (um —
ug)w(t) + C for all t € [0, 00 and therefore 21og(1 + [2]?) < (U, — ug)w(2) + C for
all z € C. From the latter we obtain

upw(2) + 2log(1 + |2) < upw(z) +C
for all z € C. Now we continue the estimate of (o) by

(0)=21 sup 62|ImZ\+2[ukw(2)+2log(1+|z|2)]||f‘|§k’2

lw—z<1
<% sup 62|Imz\+2[u,,,,u.z(z)—i—C]HfHZQJk)2

lw—z|<1
< % sup 62[1+\ImwH+2[um(w(w)+w(1))+C]||f||12)k,2

w—z|<1
e2+2umw(1)+2062(\ Im w|+umw(w)) Hf”?)k )

= 3=

e2+2umw(1)+2062pm(z) ||fH127k72
Here we used |Imz| < 14 |[Imw| for |z —w| < 1: Let z = a+ib and w =
x+iy. Then 1 > |w — z| = |a — x| + |b — y|, in particular |b — y| < 1. Hence
[Imz| = b =b—y+yl < |b—y|l+ |y <1+ |yl =1+ |Imw| Moreover,
we used w(z) < w(w) + w(l) for |z — w| < 1: We have w(z) = w(z —w 4+ w) =
w(lz —w+w|) <w(lz —w| +|w]) <w(l +|w]) <w) +w(w]) = w(l) + w(w),
since w is radial, increasing and subadditive.

Now we put D := exp(2 + 2u,w(1) + 20) and get e~ 2Pm )| f(w)|?> < D| f||?

20
ie. e Pn(®)|f(w)] < VDI fl|lpy.2- Since w was arbitrary, this implies ||f||pm,c]: =
sup,,ec e P )| f(w)] < VDI|f
tinuity.

(b) Let k € N and f € H2, (C) be given. We select m > k such that u,, > uy and
compute

|p.,2 which shows the desired inclusion and its con-

2
1FI2, 5 = /C | (2) e 2rm ()=41080+121%) g3 )
= / |f(z)|2ef2pk(z)e2pk(z)72pm(z)f4log(1+|z|2)d)\(z)
C

gSug|f(z)‘2€72pk(z)‘/([:e2|1mz|+2ukw(z)72\Imz|72umw(z)74log(l+\z\2)d)\(z)
z€E

_ ||fH2 OO/eQ(uk—um)—zllog(1+|z|2)d/\(z).
prooo |
As in (a) we select T > 0 such that 2log(1 + |2]?) < (um — ug)w(2), ie. 2(ux —
um)w(z) < —4log(1 + |2|?) holds for |z| > T. Thus, we have

/62(uk7um)7410g(1+\z\2)d/\(z)g/
C

efSIOg(lJrlz\?)d)\(Z) = / Wd)‘(z) < 00
C C
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which finishes the proof. |

Under the rather natural condition from the beginning of 10.9 for each step (that
is VN,n 3k >n:ungk > un,y) it follows from the above that for each N the
sequence (Byn)nen and also (Cn ., )nen, where

Bnn={f€HC); |fllnn <1} and Cy,={f€ HC); |f

N,n < 1}7
both form fundamental sequences of bounded sets in the inductive limit Ay (C).

Remark 10.10. Assume that
YNIM>NVK>M3InVm,e>03k S>0: Bym CeCyn+ SCr
holds. Then
VNIM>2NVYK>M3IBeBDNVAeBDy,ICeBD: ACB+C

holds, where BDy denotes the set of Banach discs in the space Ay H(C). The
latter condition is those of [84, 3.2.14], i.e. it implies that Proj YAH =0.

Proof. For given N we select M as in the first condition. For given K > M we
select n as in the first condition and put B := Cp ,, which is clearly a Banach
disc. Let A be given. A is a Banach disc in the space ApH(C) and thus there
exists m such that A C Hap,m(C) and A is a Banach disc in this space, i.e. in
particular A is bounded hence there exists S’ > 0 such that A C S'Bjs,,. We
put € := 1/5" and the forementioned m into the first condition and obtain &k and
S > 0. We put C := S5'Ck , and obtain

AC SIBM’m - S/(ECNJL + SCK’]Q CCnn+ SS/CK,k =B+C

which finishes the proof. |

Definition 10.11. Let w be as above. By 10.2.(b) there exists C'(w) > 1 such that
P,(z) < C(w)w(z) + C(w) for z € C. We put

S(w) = 4(max(C(w), (£ (arctan(2) — arctaun(%)))_l))2

s

and say that the sequence U = ((un n)nen)Nven satisfies condition (Q),, if

w?

YNIM>2NVYEK>M3InVm3k: ugg > S@)ursm + Unn-

Proposition 10.12. Let U satisfy (Q)_. Then
ACZ21IVNIM>2NVK>M3InVm3ik, D>0VA>13uy subharmonic:

1) parm(2) < pvn(2) + A for 2 € R(uy n, ur i, CA),

2) pumm(2) < prk(z) — Afor 2 & R(un n, uk i, CA),

3) ua(z) < min(pyn(2) + A, pxr — A) for z € C,

4) prm(z +w) — D < ua(z +w) for z € OR(un pn, uk k, CA) and |w| < 1.

(
(
(
(
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Proof. We put C := max(C(w), ((arctan(2) — arctan()))™!), ie. C > C(w),
hence
(5)  P,u(z) < Cw(z)+C

holds for z € C. Moreover, we put ¢ := min(C(w) ™!,  (arctan(2) — arctan(2)))
that is the statement of 10.8 is true for this § (and arbitrary v, p and A). In
addition we have S(w) = %. Now let N be given. We select M > N according
to (Q),. Given K > M, we select n according to (Q),. Given m we select k

according to (Q)_, i.e. ux = %uM,m + un,,. Now we select b > 0 such that

w?

o w(t C
6) % / At < ;&

— 00

holds. This is possible since f, <3 0 where f,(t) := %&7 g(t) == ﬁ(?z satisfies
|fn] < g on R and ffooog(t)dt < o0 by our assumptions on w. Now we define
u(-,A): C— R by
(2, A) |Im z| + S H (2 + ib,un n, ur , CA)  for Imz >0,
u(z, A) = o
|Im z| + %H(z + b, un n, Uk k, CA) for Imz < 0.
We claim that u(-, A) is subharmonic. u(-, A) is continuous on C and harmonic in
the open upper and lower half plane. From (6) and 10.7.(2) we get that ’H(x +

1Y, UN s UK s CA)| < C for each x € R. Hence we have for each v € C.(C) with
v<0

oo

[ msean =2 [ (1= d g HE + i,k CA)ola)ds > 0,
C —o00
which shows the claim.

To prove (1), note that we have

(1) w(z) < w(@€(unn, urp, CA)) < 20(E(unn, uxk, CA)) = S —

for z € R(un n,ur k, CA), since w is increasing, |z| < 2(unn, uk k, CA) and w
is subadditive. The last equality in (7) is just the definition of {(upn n, uk i, CA).
Since we have ug j > %uMm +uny, We get Uk — UNpy = %uMm and hence

> 10 .
o> T = UMm Thus

(7) 4C §<1
Unm,mw(z) < uMﬂTLFA <IA < A<unw(z)+ A

k—UN,n
for each z € R(un n, uk k, CA), which shows (1).
To prove (2), we note that z &€ R(unn, uk k, CA) implies |z| > {(un n, ur g, CA)
which implies w(z) = w(&(tn,n, uk i, CA) = —254— and thus w(z) L <

UK,k —UN,n
A, since w is increasing. This yields

_ )
Ungmw(2) + A < w(2) (upgm + 572 ) < ugpw(2)

for z ¢ R(unn,uk k, CA). The estimate (x) can be seen as follows. Since we have
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(4C)(2C-1) > 2 = 2C it follows % > 2231 and hence ug , > %uM7m+uN7n >
2C

1 . .
se—TUM,m — 20 TUNn = 561 (2CUM,m — UN,,) Which yields 2Cur r — uk r =

(2C = Nuky > QCuMm — uN,n, therefore 2Cug i = 2Cuprrm + K, — un,, and
UK,k —UN,n

finally ug r > unr,m + —55 . This finishes the proof of (2).

In order to show (3) we note that by 10.7.(1) there exists C1 = Ci(un n, UK k,w, b)
such that

(o) sup|H (z+ib,un pn,uk k, CA) — (z,uN7n,uK7k,C’A)| <Oy
zeC

holds, since uk = %uMﬂn +Un,n > UN,,. Now we have

u(z, A) < [T 2| + L (H(2, un p, s 5, CA) + 1)
g |Im z| + 5(min(uN7nPw(z) +CA ug kP,(2) — CA)) + %
5)
< [Im 2| + min (unpw(2) + A, ug kw(2) — A) + un g, +urr + S

Hence, (3) holds for ua(z) := u(z, A) — unn — urk — %

It remains to check (4). By (7) and since ug r — un,n = %uMym we have

A MR N ) (5) > 0m (5] = B (2

and thus
(8)  0A = upmw(z)

for z € OR(un pn, UKk, CA). By 10.7.(1) there exists Co = Ca(un n, Uk k,w) With
|H(z 4+ w,unn, ur k, CA) — H(z, unn, uk,k, CA)| < Co

for all z € C and |w| < 1. Therefore, 10.8 and (8) imply

u(z +w, A) > [ Tm(z +w)| + & (Hz + w, w0, r, CA) = Cr)
> |Im(z + w)| + S H (2, un p, uk p, CA) — 452
> | Im(z + w)| + 2G4 — CizCe
>|Im(z+w)|+ume(Z)—%
> [Im(z + w)| + wrrm (W (z +w) — w(1)) — SEC2
= [Im(z + w)| + urr,mw (2 + w) — urrmw(l) — SE=

for z € OR(unn, uk k, CA) and |w| < 1. By our choice of ug we have for z €
OR(un n, UKk, CA) and |w| < 1

ua(z +w) =u(z+w,A) —unn — uKk—%
> |Im(z+w)|+uM7mw(z+w)fuM7mw(1)f%fuNn uKk—g

= pam (2 +w) = (ungmw(l) + % +unn + UKk + ﬁ)

that is (4) holds with D := upsmw(l) + % +unp + Uk + % (which is
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independent of A). [ |

Corollary 10.13. If U satisfies condition (Q),, then
YNIM>NVYK>M3InV¥m,e>03k S>0: By CeCnn+ SCr i
holds.

Proof. 10.12 shows that the assumptions of 10.5 are satisfied. |

At this point we could already state a result on the vanishing of Proj' just by
combining the assumptions of 10.13 and those we made previous to 10.10. But
the next observation shows that it is possible to drop the second assumption.

Observation 10.14. (1) If U satisfies condition (Q)_, then there exists an in-
teger J such that

(x) VYN=Jn3k>n:unk>unny

holds.

(2) Let J be as in (1). Define the spectrum A>7 H := (A ;4 nH(C))yen by cut-
ting off the first J+1 spaces. Then clearly A>’H ~ AH and Proj' A>'H =
0 if and only if Proj' AH = 0. Moreover, if the original spectrum AH sat-
isfies
VNIM>NVYK>M3InVm,e>03k, S >0: Bym CeCnpn+ SCk i

the same is true for the truncated spactrum A>7 H. In particular, (x) implies
that the sequence underlying the truncated spectrum satisfies

VN, n3k>n:uyg>unny.
Proof. Tt is enough to show (1). Let (Q)_, be satisfied. We select N = 1. Then
there is M > 1 such that
VK >M3InVm3Ik: ugg > S(W)urm + UNn-

Since S(w) > 1, we have S(w)urrm + UNn > Unrm. Moreover, unrm = Uk,m
holds. Thus we get

VK Z>2M m3k>m:ugi = Urm,
where we used that ug 11 2> uk . Thus we get the desired statement by selecting
J:=M(1). |
Theorem 10.15. If U satisfies condition (Q),_, then Proj' AH = 0.

Proof. First we apply 10.13. Then we use 10.14.(2) to get that the spectrum
A>7 H satisfies the assumptions previous to 10.10. Then we use 10.10 to get the
condition in [84, 3.2.14] which yields that Proj' AH = 0. ]
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Remark 10.16. (a) Let us first note that every sequence U with

11

k—oo

VNIMZ>2NVK>2M:ug) — o0
satifies (Q)w In particular the latter is the case for sequences which satisfy
limy oo ug 1, = oo for each K.

If U satisfies condition (Q),,, then the sequence A satisfies condition (Q) —
Thus, (Q),, is a rather strong condition.

Taylor [73] obtained results on the density of the polynomials in weighted
Banach spaces H(a)o(C) for weights of the form a(z) = exp(—p(z)) with
p(2) = w(Re(z)) + v(|z|) under technical conditions on v similar to the con-
ditions (WF 1)-(WF 3). It might be possible to modify his proofs in order to
get a similar result for p(z) = u(Im(z)) + v(|z|). With this it might then be
possible to get information on reducedness for the spectra considered in this
section what clearly is desireable (cf. (d)). But since Taylor showed that the
polynomials are dense in H(v)o(C) if and only if [;* ?S_yg dt = oo for each
y = 0 (compare with (WF 1)), that is for quasianalytic weights, it looks as
if this method will yield only negative results concerning reducedness in our
(non-quasianalytic) setting.

w

Many concrete sequences U will yield that the steps of the projective spec-
trum under investigation are (LS)-spaces. If in addition the spectrum is
reduced (cf. (c)) it would be possible to apply 10.6 in conjuction with [84,
3.2.18] to get results on the vanishing of Proj! AH = 0. However, it is ques-
tionable, if this approach would yield an improvement of 10.15, since seems

not to be possible to replace in this way (Q),_ by any weaker condition.

In the article [58] Meise and Taylor modified the methods of [57] to prove
that the strong dual of Ap(C) = ind,, an, H(C) with a,(2) = exp(—(] Im 2| —
14(2))) has property (DN) for each weight function w. A modification of
their proofs might yield results similar to those of this section for another
class of weights, namely for py,(z) = |Imz| — ﬁw(z) with uy,, as in
10.2. Y

Condition (B1) revisited

11.1 The (PLB)-case

In this section we extend the remarks on condition (B1), which we made in section
4.4. We used the techniques of section 4.3 (in particular 4.10) in the settings of class
‘W and (E)C,c‘ These assumptions had been necessary, since to check condition
(B2) we had to decompose holomorphic functions. However, condition (B1) can
also be studied in the less-restrictive balanced setting.

Remark 11.1. Assume that we are in the balanced setting. Then we have the
following.
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(a) AoH satisfies condition (B1).
(b) If AH satisfies condition (B1), then A satisfies (Q)” = that is

VNIMVYm3nVK,e>03k S>0:(-2—)" < (max(-=—,-2))".

anr,m an,n’ Kk

Proof. (a) For fixed N, n € N we claim

H(an »n)o(G
B3 € By N (AH)(G) D),
“D” Trivial.

“C” Let f € By, that is ay ,|f| vanishes at infinity and an,[f| <1 on G. Since
we are in the balanced setting, the polynomials are contained in H(an )o(G)
hence Sif € H(ann)o(G) and ann,|Sef| < annlf] < 1, e s f € By, N
(AH)o(G) and by [20, Proposition 1.2.(e)] Sif — f w.r.t. || - ||nn, that is f €

BN (AH)O(G)H(aN,n)o(G)

To check condition (B1), let N be given. We put M := N. For given m we put
n := m. Then we have

, which yields the claim.

an.n)o(G
B})\/,n QB?VJLO(AH)()(G)H( N.n)o(G)

. o 1 po
(b) As in 4.13.(b), condition (B1) implies

BM,m - EQO (AH(G) + EBN,n).

We fix e > 0. Since (aMl_m )~ € Bu,m the above yields (——)~ € AH(G)+5Bn,n.
Thus, there exist f and g such that (ﬁ)w = f+ 59 with f € AH(G) and
g € Bn,,. That is, for each K there exists k and A > 0 with |f| < ;‘k and |g| <

L and we get similar to the proof of 4.13.(b) that ( e 2A)

ans,m apn,m )N < max(&N,n’ aK .k
holds. Now we apply [21, Observation 1.2.(vii) and (v)] to obtain (Q)” by setting
S =2\ |

Concerning O-growth conditions we have the following informations on condition

(B1) in the setting of the classes W and (E)¢ ., under the condition (LOG) and

also in the setting of (DFN)-spaces.

Remark 11.2. (a) Assume that A C W. If A satisfies (Q);, then (B1) holds.

(b) Assume that A C E. If A satisfies (Q);, then (B1) holds.

(c) Assume that A satisfies condition (LOG). If A satisfies (Q);, then (B1) holds.

(d) Assume that A = exp(—P) such that P satisfies the assumptions made in
9.20. If one of the conditions 9.20.(i)—(ii”) is satisfied, then condition (B1)
holds.

Proof. (a) If A C W satisfies (Q);, we have Proj' AH = 0 by 6.1 and hence by
4.11.(c) condition (B1) holds.

(b) We may conclude as in (a), but the vanishing of Proj ' AH follows from 7.1.
(¢) We may conclude as in (a), but the vanishing of Proj* AH follows from 8.2.
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(d) As above, Proj! AH = 0 holds by 9.20 and therefore 4.11.(c) yields condition
(B1). ]

Remark 11.3. As we remarked already at several points, in the case of o-growth
conditions we have no result on sufficient conditions for Proj' AgH = 0 in the set-
tings of classes W and (E), . and in the situation of condition (LOG). The abstract
results in section 4.3, in particluar 4.10 we proved exactly to get at least a sufficient
condition for barrelledness of (AH)o(G). In view of 3.1.A (where Proj' AoC = 0
is characterized via the weight condition (wQ)) for the continuous situation the
results of section 4.3 cannot yield anything new, cf. 4.15. However the methods we
used for (AH )o(G) can be applied in a similar way, that is by replacing the space
of polynomials by the space of continuous functions with compact support. In this
way it is possible to show the implication “(wQ) = (AC)o(X) barrelled” without
using the machinery of Proj!: In order to show this implication, we proceed as in
the holomorphic case. In what follows Claim A. follows from [14, Lemma 5.1]; for
the sake of completeness we give a proof.

Claim A. Let V = (v,,)nen be decreasing. Then C.(X) C VoC(X) is a limit sub-
space.

We define V.C(X) := ind,, (C.(X), || -||n) and denote by C.(X) this space endowed
with the topology induced by VoC(X). Since the identity V.C(X) — VC(X) is
continuous it is enough to show

YU € Up(V.C(X)) IV € Uo(CL(X)): V C U.

By Bierstedt, Meise, Summers [27, 1.3.(a)] VoC(X) C CVo(X) is a topological
subspace and hence the topology of C.(X) is given by || - ||z, € V. Let now U
be a 0-neighborhood in V.C(X). Then we may assume U = I'(US2 4 €,,C),) where
€n > 0 is decreasing and C,, := By N C.(X) = B, N C.(X). We claim that

V= {feCuX); |fls <1} CU

holds for ¥ := inf, ey 2", tv,. The following is very similar to the proof of [27,
Lemma 1.1]. Let f € V that is || f|lz < 1. Forn € N

F,={z € X; s’ v (2)|f(z)| > 1}

is a closed subspace of supp f. If * € Nyen F, then 2%, v, (z)|f(x)] > 1 holds
for each n and hence |f(z)| > 1, which contradicts || f|lz < 1. Thus, Npeny = 0.
Now put U, := X\F, for n € N. By the above, Upen U, = X and since supp f
is compact, there exists m such that supp f C Ul U,. Let (pn)n=1,..m be a
finite continuous partition of unity on supp f which is subordinate to the covering
(Un)n=1,...,m and set g, := 2"p, f forn =1,...,m. Then g, € Cc(X) and g,(z) =
0 if z € X\U,. For x € U,, we have v, (z)|gn(x)| = ©n(z)2"v,(z)|f(z)| < &, that
is gn € €,Cp, for n =1,...,m. Therefore

F=2enf=> 2" €T( U caCy)
n=1 n=1

and we have shown V C U which establishes claim A.
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Up to now we have (analogously to the holomorphic setting) that
V.C(X) CVyC(X) CVCO(X)

are all topological subspaces. Moreover, VC(X) is regular (see section 3.1). Hence
the C),, which we defined above form a fundamental system of bounded sets in
V.C(X) by 6.3. For a given double sequence A we consider C'(an,n)c(X) =
(Ce(X), |1 - lInm) and (AC) (X)) := projy ind,, C(an,n)c(X).

Claim B. Let A satisfy condition (wQ). Then (AC).(X) is bornological.

We proceed as in 6.6: By Bierstedt, Bonet [18], condition (wQ) implies condition
(wQ)”* that is

3 (n(0))sen C Nincreasing VN IM VK, m3S >0, k:

1 < 1 : 1
aM,m S max (aK,k ’ (,:r{lmN aa,n(a))'

We fix an absolutely convex and bornivorous set T'C (AC).(X). Since (AC).(X) =
C(ann)c(X) algebraically for all N, n we may consider T as a subset of the
latter space and claim that there exists NV such that for each n the ball Cy , =
B n C.(X) is absorbed by T'. We proceed by contradiction and hence assume

() VM Im(M): Cprrm(nr) is not absorbed by T

By 6.5, there exists N such that NY_; Co,m(c) is absorbed by T'. For the se-
quence (n(o))y,en and this N we choose M as in (wQ)*. By (x) there exists
m(M) such that for each K there exist Sk > 0 and k(K) such that L <

AN (M)

. 1 .
Sk max (TM(K) ,Ming—1, . N am,<a>) holds and get as in the proof of 6.6
o VK: < 8% max( min 1 min L
( ) an,m(M) K (uzl,m,K k() o=1,... N aa:ﬂ(ﬂ))

with Sy = max,—1_. x Sy.
Now we use the decomposition lemma [2, Lemma 3.1] — which clearly is also the
main ingredient to show “(wQ) = Proj' AqC = 0” — to show

N K
VK drg >0: CM,m(M) - TK[UQI Cmn(g) +NQ1 Cﬂvk(ﬂ)]'

We fix K € N. Let f € Carmeary, 1. anrman | f] < 1 hence | f| < 1 By (o)

an,m(M)
. . s . s
we get the estimate | f| < max (mlngzl N —E— min,—y . g —X ) We define
, e aaﬂ;(d) 2T Ay k()
1 . Sk 1 . Sk 1 .
4 = ming— < = min,— and a1 := ag := =~ to obtain
u o=1,...,N Qoon(o)’ U p=1,... K Qo) 1 2 57

U =maxe—1,. N 22, v=max,_y,. k4% By [2, Lemma 3.1] there exist
K K

f1, f2 € C(X) — and since f has compact support we can even find f1, fo € C.(X)

—such that |fi| < 2, [fo| < 2 and f = f1 4 fo, i.e. MaXo—1, . N Qo (o) | f1] < 25k

and max,—1,....k G k(| f2| < 25% and therefore

!/ N !/ K
f = fl + f2 € 2SK O'Ql CU,n(o’) + 2SK #Ql Cp,,k(u)-
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Hence we get the desired inclusion by setting 7x := 25%. Now, claim B follows
as in 6.6, since for the spectrum under consideration the statement (B1) of 4.9 is
clearly trivial and our claim was exactly condition (B2) of 4.9, i.e. 4.10 implies
that (AC).(X) is bornological.

Analogously to the holomorphic setting, 6.7 together with the above statements
and 6.4 implies that (AC)y(X) is quasi-barrelled and since the spectrum AyC' is
reduced, barrelledness follows immediately.

11.2 The Fréchet case

Also in the case of holomorphic functions we can consider the Fréchet cases of
AH(G) and (AH)o(G). As we have seen in 4.4 in this special case there is a
connection between our conditions and quasinormability of the considered spaces.

Since Wolf [86, 87] investigated quasinormability of the Fréchet spaces AH(QG)
and (AH)o(G), we will summarize her results first and then draw the line to the
conditions investigated in 4.4.

Remark 11.4. (Wolf [86, section IV] and [87, Theorem 4]) Consider the following
two conditions introduced by Wolf.

(i) A satisfies condition (W1) if

YVNIM>NVe>03aed: (;-)" <a+

Zlo

(ii) A satisfies condition (W2) if

VNIM>NVK>N,e>039>0: ()" <=+=2.

Here, A is defined analogously to the continuous case, see the remarks after 4.13.
Wolf showed the following.

(a) “(i)=(ii)” holds in general.
(b) If in the balanced setting AH(G) is quasinormable, then (i) holds.

(¢) f G =D and A C W then “(i) < (ii)” and these conditions are equivalent
to quasinormability.

(d) If G = C and W C F then “(i) < (ii)” and these conditions are equivalent
to quasinormability.

Note that in the Fréchet case, condition (Q)” = reduces to

YNIMVYEK, e>035>0: (;)7 < (max(=, 5))™.

U.N7 aK

Now we can — under the assumption of class W or (E)¢ . — state a theorem anal-
ogously to 4.23. Several implications of the next proposition are true in more
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general settings as we have seen already. At the end of this section we will —
within a comparison of continuous and holomorphic Fréchet case — subdivide the
situation once more.

Proposition 11.5. Let AH(G) = projy Han(G) be a Fréchet space. Let A C W
and G =D or A C E and G = C. Then the following are equivalent.

(i) AH(G) is quasinormable. ~ (iv) A satisfies (Q)
(ii) AH is reduced. (v) A satisfies (W1).
(iii) AH satisfies (B1). (vi) A satisfies (W2).

Moreover, condition (Q);. as well as condition (B1) implies (i)-(vi).

Proof. “(i)=-(ii)” This is 4.20.
“(ii) = (iii)” This is 4.20.
“(iii)=>(iv)” This is 11.1.(b).

(
(
“(iv)=-(vi)” We estimate (max(ﬁ’ %))N < max(=, S) < £ 4 5
“(vi)=(i)” This is 11.4.
“(i)=-(v)” This is 11.4.
“(v)=(vi)” This is 11.4.

(Q)in = (Q),,, holds by definition and (B1) implies quasinormability by definition.

|
Remark 11.6. Note that if W = W(eg, ko) by 5.9 condition (Q);. is equivalent
to (i)—(vi) of the latter Proposition. In this case, the statements (i)—(vi) above
are even equivalent to (Q). The latter is also true if A C E consists of essential
weights.

Let us now — in analogy to 4.24 — collect the results on o-growth conditions in the
Fréchet case.

Proposition 11.7. Let (AH)o(G) = projy H(an)o(G) be a Fréchet space.

(1) In the balanced setting AgH is reduced.
(2) (wQ) is always satisfied.
(3) In the balanced setting AgH satisfies condition (B1).
(4) Assume A C W and G = Dor A C E and G = C. Then we have
(i)=(ii) & (iil) < (iv), where
(i) AoH satisfies (B1), (iii) A satisfies (W1),
(i) (AH)o(G) is quasinormable, (iv) A satisfies (W2).

In particular, AH(G) being quasinormable is also equivalent to (ii)—(iv).
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Proof. (1) This follows from 5.1 and 4.12.
(2) See the proof “(iii)=-(ii)” in 4.23.

(3) By 4.20, condition (B1) is equivalent to the reducedness of AgH. Now, (a)
implies the assertion.

(4) In 4.18 we noted that in the case of a projective spectrum of Banach spaces
with inclusions as linking maps (B1) implies quasinormability. The equivalences
follow from Wolf [86, Theorem 21] resp. [87, Theorem 4]. ]

Remark 11.8. Let us compare the results within the following two tables.

continuous functions holomorphic functions

g AH(G)
E (B1) ~ reduced reduced
= 8-
1
Q 4.16 4.11.| . 4.11.| .
® balanced

setting 11-1-(P)

(Bl)=——= (Q) (B1) Q)sut
dbfi ig. * 1%
ig. 4.(1(;- ;fy 11.2 ;fy
BH A (WQ) =—=(Q) (Q)in
AC(X) - AH(G) _
quasi- <—= (wS) quasi- balanced  (WS)
normable normable setting .
by by 14 i-gﬂdfn
dfn 4.20ﬂi.g. dfn 4.20ﬂi.g.
%, Tfhc a3§é9gucs % h (Wl)
- AC(X of conditions - AH(G .
(Bl) redéce?ﬂ éz\i:gide(ingtvl\(z) (Bl) redu(cezl 1 )‘g'ﬂ 114

(wS) and (Q)-

98©0-19191L]

4.16 (W2)
4.20|| i.g. 4.20]| i.g. ) ﬂns)
11.1.(b) balanced 1y Gy N
(Bl):> (9) (Bl):> (g)out
414 « .
4'1& %" 11;\ p by
(d) dfn N dn
(Q) (Q)in

* This implication is true for A C W, A C E or for A satisfying (LOG)

Table 1: Comparison of the conditions under investigation for continuous and
holomorphic functions, Fréchet and (PLB)-spaces — O-growth conditions.
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continuous functions holomorphic functions
= (B1) is always satisfied (B1) is satisfied in the balanced setting
= . .
= AoC is always reduced ‘AOE is reduced m the
iy alanced setting
2
E (B1) is always satisfied (B1) is satisfied in the balanced setting
o . .
=3 . AoH is reduced in the
g AoC is always reduced balanced setting
o
% (wQ) is always satisfied (wQ) is always satisfied

Table 2: Comparison of the conditions under investigation for continuous and
holomorphic functions, Fréchet and (PLB)-spaces — o-growth conditions.

It is open if in the (PLB)-case of AH(G) some implications concerning (wS) and
(B1) are valid.

12 Interchangeability of projective and inductive limit

12.1 The algebraic equality

In this section we will need (as it is needed for the corresponding results on contin-
uous functions 3.3) at several points (12.4 and 12.5.(2)) that the steps (An)oH (G)
of the (PLB)-space (AH )o(G) are complete. Unfortunately, there is (in contrast to
the continuous case, cf. 3.18) no characterization of completeness of the (LB)-space
VoH (G) for a decreasing sequence V of weights. However, under the assumption
that VoH(G) C VoC(G) is a topological subspace, VoH(G) is complete if V is
regular decreasing, cf. Bierstedt [12, Corollary C]. In the setting of class W, the
setting of condition (LOG) and also in the setting of class (E) . the latter is
satisfied as we noted in the corresponding sections and hence in these cases one
might replace the completeness assumption in 12.4 and 12.5.(2) by the (a priori
stronger but in some sense more accessible) requirement that Ay = (ann)nen 1S
regularly decreasing for each N.

Lemma 12.1. VH(G) — AH(G) and VoH(G) — (AH)o(G) holds with continu-
ous inclusions.

Proof. We fix f € VH(G) = ind,, projy Han(G), i.e. there exists n such that
an n|f] < oo holds for each N. Thus, for each N there exists n such that ay | f| <
00, that is, f € Ay H(G) holds for each N and hence f € AH(G). We have shown
VH(G) C AH(G) and we obtain similarly VoH(G) C (AH)o(G). By definition the
projective limit H(Vx)(0)(G) is included continuously in the steps H(Vy) ) (G)
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which are all included continously in the inductive limit (An))H(G). Now,
applying the universal properties of inductive and projective limit yields the desired
continuity of the mappings VH(G) — AH(G) and VoH(G) — (AH)o(G). |

In order to characterize the equality we need the following lemma.

Lemma 12.2. Let F' C H(G) be a linear subspace which contains the polynomials
and let v and w be two radial weights on G, where G is assumed to be balanced.
If there exists ¢ > 0 such that

() supv(2)|f(2)| < ¢ supw(z)|f(z)|
zeG zeG

holds for each f € F, then we have v < cw on G.

Proof. Let g € H(G) with [g] < & on G. Then we have |S;g| < L on G.
Since Sig € P C F, we may apply (o) and obtain 1 sup,cqv(2)[Sig(2)| <
sup, g w(2)|S:(2)| < 1,1ie. [Sig| < £ on G and since S;g — g converges pointwise
on G for t — oo, we obtain |g| < ¢ on G, hence || < L and therefore, since
2 € H(G), || < 1 holds on G. Finally we have

o

e = suwp lg(2)] < sup Jg(2) < 56
gEH(G) geH(G)
lg|<E on G lg|<§ on G

for arbitrary z € G. [ ]

Proposition 12.3. Assume that we are in the balanced setting. Then AH(G) =
VH(G) holds algebraically if and only if A satisfies condition (B)™.

Proof. “=" For a given sequence (n(N))nyen we consider the space

F = H
NQN an (v (G),

endowed with the topology given by the system

(Pr)ren, prlf) = max  supayn)(2)lf(2)]

of seminorms. Then we have F — AH(G) with continuous inclusion, which
is complete and has a topology finer that co. Therefore F' is a Fréchet space.
AH(G) = VH(G) implies that F is included in the (LF)-space VH(G). Hence,
4.1 implies that the mapping F' — VH(G) has closed graph and with deWilde’s
closed graph theorem (e.g. [60, 24.31]) we get that it is even continuous. Now
we may apply Grothendieck’s factorization (e.g. [60, 24.33]) theorem to obtain m
such that F' C HV,,(G) holds with continuous inclusion. Hence for given M there
exists L and ¢ > 0 such that for each f € F' the estimate

sup an,m(2)|f(2)| < ¢ max supan v (2)|f(2)]
2€G N=1,....L zeq
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<ec sup (Nin?j}.{.,L ann(v)) (2)|f(2)]
holds. Since we are in the balanced setting, P C F' holds and we may apply 12.2,
to obtain ay,m < c (maxN:Lm’L aN’n(N))N on G, which is exactly the estimate
in (B)™.

“<” Let f € AH(G). By definition, for each N there exists n(N) and b, > 0
such that ay ,(vy|f| < bn. Now we select m according to (B)™ w.r.t. the sequence
(n(N))nen and claim that f € Hapm(G) holds for each M € N. Given M
we select L and ¢ > 0 as in (B)N and put b := max(by,...,br). Then we have
aNnN)|b| lonGfor N =1,...,L and therefore maxy— 1 LaNn(N)|b|<10n
G. We put wy := maxy—1

we get |£] < 57— on G. Now, (B)” implies 7 < 7“— and hence |3| < 75
holds on G. This finally yields anrm|f| < ¢b, ie. f € Hapm(G) = Hanm(G)
and therefore we established the claim. But now f € HV,,(G) C VH(G) holds

and we are done. |

L ann(N) to obtain |f| —N and since i € H(Q),

.....

Proposition 12.4. Assume that we are in the balanced setting. If A satisfies
condition (B)” then (AH)o(G) = VoH(G) holds algebraically. If all (Ay)oH(G)
are complete, the converse is also true.

Proof. “=" Let A satisfy (B)” and f € (AH)o(G). By definition, for each N
there exists n(N) such that for each ¢ > 0 there exists K. C G compact with
anny(2)|f(2)] < € for all z € G\Kn.. Now we select m according to (B)~
w.r.t. the sequence (n(N))nen and claim that f € H(apm)o(G) for each M € N.
Given M and € > 0 we select L and ¢ > 0 as in (B)” and put K, := Ky e U---U
K<, where the Ky <, ..., K < are chosen as above. Hence we have aN n(N)|f| <
< on G\K for N=1,...,L and therefore maxy=1,..... AN | f| < £ on G\K..
We put wy := maxy=1, L(an(N) and have \Cgf| < ﬁ on G\K and since
o e H(G), we get 1<) < (B)N e

we have |f| on G\K and therefore |f| on G\KE, ie. aMm|f\

on G\K.. ThlS ebtabhshes the claim. But now f 6 H( m)o(G) € VoH(G) holds
and we are done.

1
=~ < 7—— and hence

“<” For a given sequence (n(N))nyen we consider the space

Fo = NQNH(GN,n(N))O(G)v
endowed with the topology given by the system

(pr)ren, pL(f) = NI Sup ay, n(N) (2)]f(2)]

of seminorms. Then we have Fy — (AH)o(G) with continuous inclusion, which
is — by our additional assumption — complete and has a topology finer than co.
Therefore Fy is a Fréchet space. (AH)o(G) = VoH(G) implies that Fj is included
in the (LF)-space VoH(G). Again, 4.1 implies that the mapping Fy — VoH(G)
has closed graph and with de Wilde’s closed graph theorem (e.g. [60, 24.31]) we
get that it is even continuous. Now we apply Grothendieck’s factorization theorem
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(e.g. [60, 24.33]) to obtain m such that Fy C H(V,,)o(G) holds with continuous
inclusion. Hence for given M there exists L and ¢ > 0 such that for each f € Fj
the estimate

sup a]M,m(Z)|f(Z>| < cNmax sup aN,n(N)(Z)|f(Z)|

2€G =l.Lzea
< e sup (Ninf}f,L ann(Ny) (2)]f(2)]

holds. Since we are in the balanced setting, we have P C F{; and thus can apply 12.2
to obtain ayr,m < c (maxNZl ,,,,, L aNm(N))N on G, which is exactly the estimate
in (B)™. ]

12.2 Necessary conditions for the topological equality

Theorem 12.5. (1) Assume that we are in the balanced seting. If AH(G) =
VH(G) holds algebraically and topologically then A satisfies the conditions
(B)™ and (wQ);,..
(2) Assume that we are in the balanced setting and all (Ax)oH (G) are complete.
If (AH)o(G) = VoH(G) holds algebraically and topologically then A satisfies
the conditions (B)™ and (wQ);,..

Proof. (1) Condition (B)™ follows with 12.3 from the algebraical equality. The
topological equality implies that AH (G) is ultrabornological as it is isomorphic to
an (LF)-space. With Proposition 6.1 it follows that A satisfies condition (wQ);, .

(2) Condition (B)~ follows with 12.4 from the algebraical equality. Moreover, the
topological equality (AH )o(G) = VoH(G) implies that (AH)o(G) is ultrabornolog-
ical and therefore it follows from 5.4 that A satisfies (wQ) |

o
in®

12.3 Sufficient conditions for the topological equality

Theorem 12.6. (1) Let A C W. If A satisfies the conditions (B)™ and (Q)..,
then AH(D) = VH(D) holds algebraically and topologically.

(2) Let A C E. If A satisfies the conditions (B)™ and (Q),, then AH(C) =
VH(C) holds algebraically and topologically.

(3) Let A satisfy condition (LOG). If A satisfies the conditions (B)™ and (Q).
then AH(C) = VH(C) holds algebraically and topologically.

(4) Let A = exp(—P) where P is a sequence of weight functions which satisfies
the assumptions we made in section 9 (cf. in particular 9.20) and let B, C
and D be defined as in 9.20. If P satisfies (WQ)P or B, C and D satisfy
(wQ) and A satisfies (B)” then AH(C) = VH(C) holds algebraically and
topologically.

As we noted already in section 2, in the statements above we may replace (B)™
with (B) and (Q)7 . with (Q).

out
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Proof. (1) Let (B)™ and (Q),,, be satisfied. By 12.3 the identity id: AH(D) —
VH (D) is one-to-one and by Lemma 12.1 it is continuous. Since AH(D) is ul-
trabornological by Proposition 6.1 and VH (D) is webbed, we can apply the open
mapping theorem (cf. Meise, Vogt [60, 24.30]) and obtain that id ™" is continuous

and hence we have a topological isomorphism id: AH(D) — VH(D).

(2), (3) and (4) We may copy the above proof verbatim except for the fact, that
ultrabornologicity of AH(C) now follows from 7.1, 8.2, resp. 9.20. |

Remark 12.7. The above proof uses the open mapping theorem of de Wilde and
hence it depends on the ultrabornologicity of the (PLB)-space. In the settings of
the classes W and (E), . and in the situation of condition (LOG) we had not been
able to show that a certain weight condition is sufficient for the latter property
in the o-growth case. Therefore we have also no result concerning the topological
equality (AH)o(G) = VoH(G).

12.4 Summary of results

Let us summarize the results of the last two sections in the following corollaries.
We include also the special cases of essential weights. Unfortunately it is not
clear, if essentialness of all weights in A yields that the conditions (B) and (B)™
are equivalent. At least for the case A C W(eo, ko) this is indeed true since all
weights in W(eg, ko) are essential and W(e, ko) is closed under finite minima.

Corollary 12.8. Let AC W and G=D, A C F and G = C or A satisfy (LOG)
and G = D. Then the implications (i)=-(ii)=-(iii) hold, where
(i) A satisfies (B)™ and (Q)..,,
(i) AH(G)=VH(G) holds algebraically and topologically,
(iii) A satisfies (B)™ and (wQ)_ ;-

In statement (i) we may replace (B)™ and (Q)., by (B) and (Q). If moreover all
weights in A are essential, we may also in statement (iii) replace (wQ), . by (wQ).

If W =W(eo, ko), we have (i")=(ii")=-(iil’), where
(i) A satisfies (B) and (Q),
(ii')  AH(G) = VH(G) holds algebraically and topologically,
(iii") A satisfies (B) and (wQ).

Proof. Tt is enough to check that (B)™ implies (B) if A C W(ep, ko). In order
to show this, let (B)™ be satisfied. To check (B) let a sequence (n(N))yeny € N
be given. We choose m as in (B)~. For given M, we choose L and ¢ > 0
as in (B)”. Since W(ep, ko) is closed under finite maxima, by the remarks we
made in section 6.4 there exists C' > 0 such that (maXN:L,,,,L aN,n(N))N <C-
Maxy—1,..,LAN,n(N)- We put ¢ :=c'C. Then

~

~ /
ApMm < AGM.m < C max a <c¢c max a
moX mox (N:1,...,L N,n(N)) X N=l L N,n(N)

and we are done. [ |
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Corollary 12.9. Let A = exp(—P) where P is a sequence of weight functions which
satisfies the assumptions we made in section 9 (cf. in particular 9.20) and let B, C
and D be defined as in 9.20. Then (i)=-(ii)< (iii)=-(iv), where

(i) A satisfies (B)™ and P satisfies (wQ)",

(i) AH(C) = VH(C) holds algebraically and topologically,
(iii) A satisfies (B)” and B, € and D satisfy (wQ),
(iv) A satisfies (B)™ and (wQ)_

out”

In statement (i) we may replace (B)™ by (B). If moreover all the weights in A are
essential, the following are equivalent.

(') A satisfies (B)™ and P satisfies (wQ)" .

) AH(C) = VH(C) holds algebraically and topologically.
(iii") A satisfies (B)” and B, C and D satisfy (wQ).

) A satisfies (B)™ and (wQ).

13 Condition (X): W, (E)c,c and (LOG) revisited

In section 9 we discovered that the sequences A in the setting of that section always
satisfy (X). For the other settings, namely class W, class (E)c, and condition
(LOG) this might be not the case. However, in many examples the latter is
indeed true. Therefore, in the sequel we willassume that condition (2) (or (X))
is satisfies and present the corresponding corollaries of the previous results.

13.1 Class W

As suggested earlier, condition ()™ makes it possible to get a sufficient condition
for the vanishing of Proj! in the o-growth case. Clearly this is no real analog to the
result of section 6.1 since the spaces (AH )o(G) and AH(G) coincide if A satisfies
(X)™. However, in view of examples, (X)™ is — as we will see — a quite natural
condition and hence the following statements are useful for the investigation of
concrete spaces.

Proposition 13.1. Let A C W satisfy condition (X)~. Then the spaces (AH)o(D)
and AH (D) coincide algebraically and topologically and Proj* AgH = Proj' AH.
Moreover the following are equivalent.

(i) A satisfies condition (Q);, . (v)  (AH)()(D) is barrelled.
ii) A satisfies condition (Q) .. vi) A satisfies condition (wQ);..
out in
(i) Proj'AH = 0. (vii) A satisfies condition (wQ)_ ..
(iv)  (AH)()(D) is ultrabornological.

Proof. “(i)=-(ii)” This is true in general.
“(ii)=>(iii)” This is 6.1.
“(iii)=(iv)=(v)” This is true in general.
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“(v)=(vi)” This is 5.4.
“(vi)=-(vii)” This is true in general.
“(vii)=(ii)” and “(vi)=(i)” This is 5.15. n

Corollary 13.2. Let A be in the set W(eg, ko) and assume that A satisfies con-
dition (). Then the spaces (AH)o(D) and AH(D) coincide algebraically and
topologically and Proj* AgH = Proj! AH. Moreover the following are equivalent.

i) A satisfies condition (Q). iv AH) (D) is barrelled.
(0)

(ii) Proj! AwyH = 0. (v) A satisfies condition (wQ).

(iii) (AH)( (D) is ultrabornological.

If we assume that the sequence A satisfies (X)~, 13.1 yields the following.

Proposition 13.3. Let A C W satisfy condition (X)~. Then the spaces (AH)o(D)
and AH (D) coincide algebraically and topologically. Moreover, AH(D) = VH (D)
holds algebraically and topologically if and only if A satisfies the conditions (wQ);,
and (B)™.

Corollary 13.4. Let A C W(egp, ko) and assume that A satisfies condition ().
Then the spaces (AH)p(D) and AH(D) coincide algebraically and topologically.
Moreover, AH(D) = VH (D) holds algebraically and topologically if and only if A
satisfies the conditions (wQ) and (B).

13.2 Class (E)c,c

Again we combine the previous results under the assumption that A satisfies con-
dition (X)™~ and obtain a result completely analog to 13.1.

Proposition 13.5. Let A C F satisfy condition (X)~. Then the spaces (AH)o(C)
and AH (C) coincide algebraically and topologically and Proj YAH = Proj! AyH.
Moreover the following are equivalent.

(i) A satisfies condition (Q);,.. (v)  (AH)(0)(C) is barrelled.

(i) A satisfies condition (Q)_ ;- (vi) A satisfies condition (wQ);, .
(iii) Proj'AH = 0. (vii) A satisfies condition (wQ) ..
(iv)  (AH)()(C) is ultrabornological.

Proof. We may copy the proof of 13.1 except that “(ii)=-(iii)” now follows from
7.1. |

Corollary 13.6. Let A C E consist of essential weights and satisfy condition (X).
Then the spaces (AH)o(C) and AH(C) coincide algebraically and topologically
and Proj* AH = Proj! AgH. Moreover the following are equivalent.
(i) A satisfies condition (Q). (iv)  A()H(C) is barrelled.
(ii) Proj? AyH = 0. (v) A satisfies condition (wQ).
(iii) A()H(C) is ultrabornological.

Finally let us state the analog of 13.3 for the complex plane.
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Proposition 13.7. Let A C F satisfy condition (3)~. Then the spaces (AH)q(C)
and AH(C) coincide algebraically and topologically. Moreover, AH(C) = VH(C)
holds algebraically and topologically if and only if A satisfies the conditions (wQ);,
and (B)™.

Corollary 13.8. Let A C E consist of essential weights and satisfy condition (X).
Then the spaces (AH)p(C) and AH(C) coincide algebraically and topologically.
Moreover, AH(C) = VH(C) holds algebraically and topologically if and only if A
satisfies the conditions (wQ) and (B)™.

13.3 Condition (LOG)

Proposition 13.9. Let A satisfy condition (LOG) and condition (X)~. Then
the spaces (AH)o(D) and AH(D) coincide algebraically and topologically and
Proj! AH = Proj' AoH. Moreover the following are equivalent.

(i) A satisfies condition (Q);, . (v)  (AH)()(D) is barrelled.
(i) A satisfies condition (Q), ;. (vi) A satisfies condition (wQ);, .
(i) Proj'AH = 0. (vii) A satisfies condition (wQ)_ ..

(iv)  (AH)()(D) is ultrabornological.

Proof. Again, we may copy the proof of 13.1 except that “(ii)=-(iii)” now follows
from 8.2. |

Corollary 13.10. Let A consist of essential weights and satisfy the conditions
(LOG) and (X). Then the spaces (AH)o(D) and AH (D) coincide algebraically and
topologically and Proj! AH = Proj' AqH. Moreover the following are equivalent.

(i) A satisfies condition (Q). (iv)  A(H(D) is barrelled.

(ii) Proj 1A(O)H =0. (v) A satisfies condition (wQ).

(iii) A()H (D) is ultrabornological.
Proposition 13.11. Let A satisfy the conditions (LOG) and (X)~. Then the
spaces (AH)o(D) and AH (D) coincide algebraically and topologically. Moreover,
AH(D) = VH(D) holds algebraically and topologically if and only if A satisfies
the conditions (wQ);, and (B)™.
Corollary 13.12. Let A C F consist of essential weights and satisfy condition (3).
Then the spaces (AH)o(D) and AH (D) coincide algebraically and topologically.
Moreover, AH(D) = VH (D) holds algebraically and topologically if and only if A
satisfies the conditions (wQ) and (B)".

14 Examples

14.1 Examples for sequences of weights in ' W(&g,ko)

Example 14.1. Based on an example of Mattila, Saksman, Taskinen [55, 3.8] we
put ay.,(2) := N(1 — |2])*##T for some a > 0. Since ay, is clearly radial, non-



130 PROJECTIVE LIMITS OF WEIGHTED (LB)-SPACES

increasing on [0, 1] and satisfies lim|;| ~ any,n(2) = 0 we have to check that the
conditions (L1) and (L2) are satified.

(L1) Let N, n and k € N be fixed. We compute

ann(Tit1) N(1—(1—2-G+Dy)*ntT —k—14+k\a-2s 1
7 +1) — 7 = (2 ) )an+1 = 2
ann(rk) N(1—(1—2-*))* 74T 2%t

1
2a

(L2) Let N, n and k € N be fixed. For arbitrary kg we compute

where we used niﬂ < 1. Hence we may put g :=

an,n(Thtkg) _ 1 1

= <
an,n(rK) 200 S S 95 ko

where we used nil > % Since the right hand side tends to zero for kg — oo

there exists kg such that 2%%0 <1—¢g.

After we have shown that A C W(eq, ko), we claim that the above sequence satisfies
(X). For given N we select K := N. For given k we select n:= k+ 1. For r > 0
we have

ann(r) _ NO=n™T g el b = (1 p)wma T2l
ax,k(7) N(1—r)k+T

that is ZZZ vanishes at oo on .

Now we claim that A satisfies condition (wQ). For given N we select M := N and
put n:= 1. For given K > M (= N) and m we select k := m and S := K. Then
we have to check that

Vrel0,1]: rmmrt M~ < Smax (7’_%]\771,1"_’%1[(71)

that is

am al am

vrel0,1): ()N < Kmax (1) TN (1) 7 K1)

T

holds. The latter is equivalent to

Vr>1:rmit N~ < K max (T%N_l,rmHK_l).

Thus, let » > 1 be arbitrary. Then

am am ak am

rmtt N7 L pmtt = Kreit K—1 < K max (T%N*I,rmHK*l)

and we are done.
Finally let us show that A satisfies condition (B). Let (n(N))nen be given. We
put m :=n(1). For given M we select L := 1 and ¢ := M. For given r € [0, 1] we
have

aM,m(T) = ClM,n(1)(7")

= M(l 77")(1%
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o
=c- 1(1 — 7”) n(L)+1

=c¢- max (N(l — r)%?fv]ﬁl)
N=1,..L

=cC- Ninff}_(_,L(aN’n(N))

and thus are done.
Note that the weights in the above sequence are all essential by [21, 1.7.(c)].

By 13.2, the spaces (AH)o(D) and AH (D) coincide algebraically and topologically.
They are ultrabornological, Proj! AgH = Proj' AH = 0 and by 13.4 the equality
(AH) ) (D) = VH (D) holds algebraically and topologically.

14.1 was in some sense the easiest way to construct a double sequence which gives
rise to a (PLB)-space using the example of [55, 3.8] — we simply multiplied each
weight v,(z) = (1 — |2|)*7+1 of the sequence V = (v,)nen (Which was studied
by Mattila, Saksman, Taskinen in the context of (LB)-spaces) with N. The next
example is of the same type that is we again put an , := unv, but now uy will
be more complicated than above — Due to this “complication” of uy we simplify
v, by selecting a = 1.

Example 14.2. We put ay ,(z) := (1—|2]) "~ (1—|2|)71. Again, ay, is clearly
radial, non-decreasing on [0, 1[ and satisfies lim|.| »; an,»(2) = 0. Thus, we have
to check that the condition (L1) and (L2) are satified.

(L1) Let N, n and k € N be fixed. We compute

N+1

an,n(Tk+1) _ >N T =1 1 5 11_9-3
ann(Te) TN owgr T 222 7 ’

where we used % < 2 and #—1 < 1. Hence we may put g := 273,

(L2) Let N, n and k € N be fixed. For arbitrary kg we compute

aNn(Thtkg) _ 1 1 1 1 _9-3k
an,n(TK) 2k0(1]\\1]+1) 2:(_1;1 X 2ko 2ko/2

where we used % > 1 and nLH > % Since, the right hand side tends to

zero for ky — oo there exists ky such that 2-3ko < 1 — €0-

As in the previous example we claim that the above sequence satisfies (X). For
given N we select K := N. For given k we select n := k+ 1. For r > 0 we have

N41 n

ann(r) _ (A=r) N (Q—r)n+l _ o omoo ok o ol r—ol
ar k(r) (1—r)N1¢1(1_r)kL+-1 (I—r)nii7m1 =(1-r) —0

that is sz vanishes at oo on D.

Let us now show that A satisfies (wQ). Let N be given. We select M > N arbitrary.
Then% < %thatis %—% > 0 and %—% <2—% <2—-1=1
and hence % — % =: a €]0,1[. We choose n such that 1 — 25 < a which

is possible since 1 — 27 ™\, 0 for n — co. Let K > M and m be given. We put

. _m n
6 T m+1 n+lc
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CASE 1. m < n: In this case miﬂ < nLH implies 0 = mLH — n+1 < 0 and thus
(1 —7)? > 1 for each r € [0,1]. On the other hand we have (1 —r)® < 1 for
each r € [0, 1] since a €]0, 1], thus (1 — r)*(1 — r)P for all r € [0, 1].

CASE 2. m > n: Now, mLH > nLH implies 8 = m7+1 — 741 > 0. Moreover,
mlﬂ—niﬂgl—niﬂ<abythech01ceofn Thus, 0 < f < a < 1and
hence (1 —7)® < (1 —r)P for each r € [0,1].

n

To end the proof of (wQ) we select k arbitrarily and put S := 1. Now let r € [0, 1]
be fixed. By the above we have (1 — r)* < (1 — )% that is by the definition

M1 m

of a and 8 just (1 — T)%— i < (1 — )™+t 751 that is (1 — T)_%_m <
(1 _T)*%*# which yields

m

(anrm(r)) = (1 —r) 73T (1 —p)" "5
<(A—r) N (1—r)
= S(aN,n(r))il

< Smax ((aN’n(T))_a (aK,k(T))_l)

and thus finishes the proof of (wQ).

Finally let us show that condition (B) is not satisfied. That is we have to show
—(B), i.e.

F(N))NenVmIMYL,¢c>03r € [0,1]: apm(r) > C'NlnlaXLan"(N)(T)'

FRREE

Put n(N) := N and let m be given. Since 5 < 1 we have 2— 5 > 1. Therefore

we may select M such that 2+ < < 2— ;7 that is Lt + 2 < 2, since MEL 1

N+1

for M — oo. Let L be g1ven Then we have miny—1,.. 1 + N+1

> 2 since
N‘H + N—HN> 12 holds for each N. Thus we have o := T‘H + g <2<
+

mlnN,1 Lot N+1 =: 8. Let ¢ > 0 be given. Since a — < 0 we have
lim, 1 (1 —7)*~# = co and thus may choose r € [0,1] such that (1 —r)*=% > ¢,
ie. (1 —7)* > c(1 —7)5. By definition of @ and 3 the latter yields

aM’m(r) = (1 — ’I“) Mz\;l Es

Note that the weights in the above sequence are all essential by [21, 1.7.(c)].

By 13.2, the spaces (AH)o(D) and AH(D) coincide algebraically and topologi-
cally. They are ultrabornological, Proj VAoH = Proj' AH = 0 and 13.4 implies
(AH) (o) (D) # VH (D).

The next example is very natural, since it involves the space A~°° which is a space
of Bergman type (see e.g. [47, section 4.1]). Unfortunately, there is no possibility to
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construct from the latter inductive limit a (PLB)-space which fits into the setting
of class W(eg, ko).

Example 14.3. For v,: D — R, v,(z) = (1 — |2])™ (or equivalently v,(z) =
(1 —|2]?)") we have s’ = A= = ind,, Hv, (D). A natural candidate for a double
sequence A = ((ann)nen) Nen defining a (PLB)-space would be

ann(z) :=un(z)(1—|2])"

for some sequence (un)neny with uy: D — R and uy < unt1-

The double sequence A always satisfies (X): For given N we select K := N and
for given k we select n := k + 1. Then

an,n(z un (2)(1—|z|)*tt — [2] 71
ot — LG = (- )t = (- 2 M o

that is 2228 vanishes at oo on D.

Unfortunately, no sequence of this type satisfies (L1): We compute

ann(1—27FFDy (2= Dy gy (1—2- (REDy = (kD un (rit1) 9—n
ana(1-2F) = un(A-2F) —  un(@-2 @7 T un(r) :
Since (%)%N C 10, 00|, infren % =: ¢ > 0 exists and

inf @nlet) _ 9-n
keN U«N,n(Tk) .

But there cannot exist €y > 0 such that the latter is bounded from below by €5 > 0
for all n.

Therefore the results in the setting of W(eg, ko) are not applicable for double
sequences A of this type.

Remark 14.4. The simplest modification of 14.3 might be to change n into —1/n
that is to put an.,(2) := un(2)(1 — |2])7Y/" for (un)nen as in 14.3. Again, (X)
is satisfied: For given N we select K := N and for given k we select n := k + 1.
Then

an,o(r) _ un(r)(1—r)"/FE+D i1 r/1
az,k(r) = IZN(T)(lfr)*l/’“ = ( — T’)k 1 2 0,
hence ZZ—: vanishes at infinity on D.

To get that the assumptions of the balanced setting are satisfied u has to be se-
lected such that lim,. ~; un(r)(1—r)~/" = 0 and for the assumptions of W(eg, ko)
we need in addition that uy (r)(1 — r)~%/" is non-increasing for r € [0, 1].

Concerning the condition (L1) we compute

aNm/(l_Q*(kJrl)) _uy (12~ (kD) (g= (k1)) —1/n
an,n(1—-27F) un(1—2-k)(2—Fk)-1/n

_un(@=2"FFDy o N =1/n un(reg) 1/n
T un(1-27F) (2 ) —  un(rk) 2 ’

Since 21/ > 1, condition (L1) is satisfied if and only if there is g > 0 such that
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inf}, %’jﬂ:;) > ¢ holds for each N. We compute
ann(1=27HR0)) w127 R0y (a7 R0y T (rresig) gk /n
ann(1—27%) un(1—2-Fk)(2-k)-1/n - un(rw) :

Since max,, 2k0/" = 2ko  condition (L2) is satisfied if and only if there is ko such

that 2*0 lim sup,, %’“:50) < (1 —gp) with g9 as in (L1).

Example 14.5. In the situation above we put uy(z) := (1 — |2|)*V for some
sequence (an)yeny With ay N\, « for @« > 1 and ay # « for each N. Then
ann(r) = (1 —r)ev=1/" with ay — 1/n > 0 is non-increasing for » € [0, 1[ and
lim, ~1 ann(r) = 0 is satisfied for all N, n € N. By 14.4, the sequence satisfies

We have % =27 > 27 > () and thus may put g¢ := 2. Moreover,

2/(:0 UN(TlH»k'U) _ 2/{:0276!1\{/60 _ 27k0(aN71) < 27k0(0¢71) k(i?o 0

un (T%) ,

since @ — 1 > 0. Hence it is possible to find kg such that 2-%o(@=1) < 1 — ¢/,
Therefore we have shown that A C W(eg, ko) holds.

Let us show that condition (wQ) is satisfied. For given N we select M > N such
that apr < ay (this is possible since (an)nen is decreasing with limit « and all
ap are distinet from «). Therefore o := ay — apr > 0. We select n such that
L <. Let K > M and m be given. We put ' := 1 — L,

CASE 1. m < n: In this case, 8/ = < 0 that is (1 — r)ﬁl > 1 and (since

o >0) (1—7)* <1, hence (1 —r)® < (1 —7) for each r € [0,1].

CASE 2. m > n: Now, ' = %—% >Oandﬁ'=%—% < % < /. Thus
"< 1[.

0 < B <« and hence (1 —r)* < (1—7)? for each r € [0,

To finish the proof of (wQ) we select k arbitrarily, put S := 1 and fix r € [0, 1].
By the above we have (1 —7)® < (1 — )% that is by the definition of o/ and
just (1 —r)env—om (1 —p)V/n=1/m that is (1 —r)/™m=om L (1 —7)Y/?=N which
yields
(@3 (1) = (1= )/moe

< (1 _ T)l/n—aN

= S(anm(r) ™

< Smax (an,m(r) ™, ark(r) ™).
Thus, the proof of (wQ) is complete.
Note that the weights in the above sequence are all essential by [21, 1.7.(c)].

By 13.2, the spaces (AH)o(D) and AH (D) coincide algebraically and topologically.
They are ultrabornological and Proj* AgH = Proj! AH = 0 holds.
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14.2 Examples for sequences of weights in (E)c

Example 14.6. Based on the first example given by Bierstedt, Bonet, Taskinen
in [22, Examples after 2.1], we define a double sequence A = ((an,n)nen)Nen by
an.n(|2]) == (1+]z))*~me~ 2 where ((an ., )nen)ven C [0, 00[ is a bounded double
sequence which satisfies an nt1 < ann < anti1n. By [22, Examples after 2.1,
all an , belong to (E)a,1 with A :=supy ey ann < 00.

Remark 14.7. The sequence A in 14.6 satisfies condition (X) if and only if (3,)
VNIK>NVkdn>k: aNn < OK K

holds.

Proof. “=" Let (Z) be satisfied. For given N we select K > N as in (). For
given k we select n > k as in (X). Then

sal) — B = (L r)ow—oms 2%

,n

. a
holds, since =X~
AOK Kk

vanishes at oo on C. But this clearly implies oy, — axr <0
that is ann < aK,k-

“<” Let (X,) be satisfied. For given N we select K > N as in (X,,). For given k
we select n > k as in (X,). Then ay,, < ak that is ay,, — axr < 0 and the

computation above shows that L’”Erg vanishes at oo. |

Roughly speaking, the latter means that “enough” of the estimates oy n4+1 <
anpn < any1,, have to be strict, which is clearly a quite natural assumption.

Example 14.8. In the situation of 14.6 we put ay, = NLH + ”%[1 that is
we consider the double sequence A = ((ann)nen)nen With ann(|2]) = (1 +

|z|)NL+1+%e_‘z‘. 14.6 implies that A C (E)a,, holds for suitable constants a
and A. Moreover, 14.7 yields that A satisfies condition (X). We claim that condi-

tion (wQ) is satisfied. For given N we select M > N arbitrary. Then 37+ +1 > N]YH
that is o := 2L — N > (0. We choose n such that 1 < . Let K > M and m

. M+1 "~ N+1
be given.

CASE 1. m < n: In this case % > % and therefore WT'H — % > 0. Hence

M m+1 n+1

(1+T)N]Y#17M+1 = (1+r)_“ <I1<Q4r)= "

holds for each r > 0 since 1 +r > 1 and a > 0.

CASE 2. m > n: In this case —mntl < 2 that is g = 2 — mE 5 0 and
= n+1 - mil o "H — 1=, <a. Thus, we have O < B <« and hence
/8 m
(L4 ) < (1479, thus (1+7“) > (1+T) and hence (1—|—r) T =
1+r) < A+r)P=(1+r) =" for each r > 0.

m+1

Both cases together yield (lJr'r)fﬁilfT <(1 +r)7NL+17nT+1 for arbitrary r > 0.
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Now we select k arbitrarily and put S := 1. Then

m—+1

(L) ™5

(anrm(r)) "

(1+ T)f%ﬂf B
S(aN,n(T))il
< S max ((aN,n(r))_l, (aN,n(T>)_1)>

N

which is the desired estimate in (wQ).
The weights in the above sequence are all essential by [21, 1.7.(c)].

By 13.6, the spaces AH(C) and (AH)o(C) coincide algebraically and topologically,
Proj? A(o)H vanishes and the spaces are ultrabornological and barrelled.

14.3 Examples for sequences of weights satisfying (LOG)

Example 14.9. Based on the example [32, Example 5] we define the double se-
quence A = ((an,n)neN)NeN by

() 1 if |z] < o/,
ann(z) =
Nom (—1/1og(1 — |2]))"B~  otherwise,

where ' := 1 — 1/e and (@, )nen, (Bn)nNen are sequences with 0 < «,, /" « and
By N\ 8 >0and o, # a, By # B for all n, N € N. All ay, are radial and
approach monotonically 0 as 7 / 1. We put A := 2901 and a := (2log2)~ 4.
Then 0 < a < 1 < A holds. Remember that we used the abbreviation rp = 1 — 22"
for k¥ > 1 and ro = 0 within the setting of condition (LOG). For k& > 1 we
have r, > r = 1 — 272" = 3/4 2 1—1/e = r'. Thus, ann,(ro) = 1 and
ann(rr) = (=1/(og(1 — (1 — 27F)))h~y = (1/(21og 2))*A~ for k > 1. Let us
check the two estimates in condition (LOG).

(LOG 1) For k > 1 we have
Aax(ryin) = 20 (1/(2 log )
— gaBi—(k+Danfy (|og 9)~anby
> 90nfn —(k+1)anfn (log 2)*C¥nﬁN
— g (1=(51) (o g 2)~ B
— (1/(2¢ 10g2)) o
= ann(Tk)-

If on the other hand k = 0 we have

2991 (1/(21og 2)) P~
af (2log 2)70‘"'6N
af (2log 2)*‘”‘51

AafN,n (Tk:—i-l) -

2
> 2
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= (log2)~ A
> an,n(ro)-
since log2 < 1 and an ,(ro) = 1.
(LOG 2) For k > 1 we have
ann(ris1) = (1/(25 log 2))*nox

— 9—anfN—kanfn (log 2)—%51\1

< 27 f-kanby (|og 2)~an By

— 271 (1/(2" log 2))

< (210g2)~7(1/(2* log2))*#

= aan (k)

If on the other hand & = 0 we have

1/(21og2))*nP~
2log 2)_“”31\’
< (2log 2)_‘“5

= aann(ro)

ann(Tkt1)

= (
=

since an ,(ro) = 1.

Next, we claim that the sequence A satisfies condition (). For given N we select
K > N such that B < Bn which is possible by our assumptions on the sequence
(BN)nen. For given k we select n := k. For r > 1’ we may compute

an,n(r) 1 )OékﬂN—OzkﬂK

o 1 ap(By—PBr) 7.1
axk(r) (log(l—r) ) —0

- (log(l—r)

)

since ay(Bn — Bk) > 0 holds by our choice of K.

Let us now investigate condition (wQ) for a concrete example of a sequence of the
above type, that is we select concrete sequences (o, )nen and (Gn)ven-

Example 14.10. In the notation of 14.9 we put «,, := i1 and Oy = % that
is we consider A = ((an,n)nen)Nen With

1 if 2] <7,
N+1

a z) = T
N,n( ) { (—=1/log(1 — |z|)) =T~ otherwise.

For given N we have % > 1. Since nL_H /" 1 it is possible to select n such hat

] N > 1 holds. On the other hand 2+ N\ 1 and hence we may select M

such that % < 2 NEL holds. Let K > M and m be given. Then L% <

n+l N m+1
#% holds since %7 < 1. We select k arbitrarily and put S := 1. Let now

r € [0,1] be given. If r < ' the estimate in (wQ) is clearly true. If r € ]r’/ 1]

we have —1/log(1 — r) € ]0,1[. Thus, the estimate miﬂ% < HLH% implies
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M41

(=1/log(1 — r))m1 3 > (=1/log(1 — r))#% and hence

(aarm () = (=1/log(1 — 7))~ w5
< (=1/log(1 — )" mHT

which shows that (wQ) holds.
By [18, 5.2] the above provides that (Q) is satisfied and (Q) implies (Q)..,. Thus

out”

8.2 implies that Proj' AH = 0 holds and therefore AH (D) is ultrabornological
and barrelled.

14.4 Examples for projective limits of (DFN)-algebras

Remark 14.11. Let p be a weight function, (p,,)nen be an increasing radial weight
system in the notation of Meise [56, 2.2] and (px)nen be an arbitrary decreasing

sequence of weight functions. Assume that ((unn)nven)nen C Rso, (ug\}))NEN -

R+ and (ug))neN C Rsg be sequences such that uyy1 < Uy, < UNpt1, ug\l,ll <
ug\}) and ugf) < uf_i)rl holds for all N and n € N. Moreover we assume that

lim sup,, o un,, = limsup,,_, . qu’ = oo (for each N). We consider a double

sequence P which is defined by

(i) pnn(2) = unnp(z) or

(il) pNn(2z) = ug\})pn(z) or

(i) pv.n(2) = uipw (2).
Then, P satisfies the (DFN 1)-(DFN 5).

Proof. (i) Let N, n be fixed. Since p is (pluri)subharmonic the same is true for
un,np. Further, log(1 + |z|?) = O(p(z)) implies that log(1 + |2]?) = O(un »p(2))
holds. As (DFN 3) holds for p, that is there is C' > 1 such that for each w € C,
we may compute

sup pnan(2) = sup un.p(2)
|z—w|<1 [z—w|<1
= UN,n SUp p(Z)
|z—w|<1

< UN g (C inf p(z)+ C’)

|z—w|<1

=C inf un.p(z)+un,C
|z—w|<1

<O inf pya(z)+C.
|z—w|<1

where C’ := max(C,un,,C) > 1. Thus, we have shown that each py,, is a weight
function. The estimate (DFN 4) follows immediately from the assumptions on
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the sequence ((unn)nen)nen. To check (DFN 5) let N and n be given. Then
by our assumptions on ((unn)Nen)nen We may put L := 0 and select [ such that
2PN = 2uNnp < UNID = PN, + L.

(ii) The proof of the properties (DFN 1)-(DFN 3) can be performed in complete
analogy to (i). Since (U%))NGN is decreasing (and (pp)nen is increasing) by defi-
nition, (DFN 4) follows immediately. In order to check (DFN 5), let N and n be
given. Then by [56, 2.2.(2)] there exist [ and L’ > 0 such that 2p,, < p; + L’ and
hence 2pn,, = 2u%)pn < ug\l,)(pn +1L) = ug\})pn + ug\lf)[/ < pNgn + ugl)L’ since
(ug\l,))NeN is decreasing. Thus we my put L := ugl)L’ and have shown (DFN 5).
(iii) Again, (DFN 1)-(DFN 3) can be proved as in (i) and (DFN 4) follows from

the assumptions on (ug))neN and (py)nen. For (DFN 5) let again N and n be

given. By our assumptions on (ug))neN we may put L := 0 and select [ such that

2pNn = ng)pzv < ul(Q)pN = pn, + L as desired. [ ]

In the sequel we investigate concrete examples of sequences of the above types.
Let us start with a very natural and in some sense simple one of type (i): We
put p(z) := |z| and u(N,n) := n/N that is pn,(2) = F|z|. The example is very
natural, since the weights z — exp(—np(z)) for a weight function p yield (LB)-
spaces of the type investigated by Berenstein, Gay and on the other hand weights
z +— exp(—=+p(2)) give rise to well-known Fréchet spaces (cf. e.g. [56, p. 60]).
Finally, p(z) = |z| appears to be a “quite simple” example for a weight function.

Example 14.12. Let P be defined via py,, = F|2|. In view of 14.11 it remains
to check that log(1 + |z|?) = o(p) holds in order to apply 9.20. But the latter is
clear since log(1 + 2)/r — 0 for 7 — co. Let us now check if condition (wQ)" is
satisfied. For given N we select M > N and n arbitrarily. Given K > N and m
we put k := [E7 and S := 1. Then for r > 0 we have

pmm(r) = 37
<logS + %r
<

log S + max (%r, %7’)

=log S + max(pn,n(r), Pr.k(r))
that is condition (wQ)" holds. In view of 9.20 the above provides already that
Proj' AH = 0, AH(C) is ultrabornological and barrelled. However, we will give

an explicit description of the matrices B, € and D in the notation of 9.20. We
compute

bN,n(j)QZ/ r20+1e=2pN,n(7) g
0

= (2n/N)20+D / Rty
0
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= (2n/N) 720D (25 + 2)
= (2n/N)~20+D (25 +1)!

that is

by (j) = (2n/N)~0HD /(25 + 1)L
Moreover, the only zero of We_ﬁ"rj = N_le_""/N(rj_le —nrd) is r = %j,
whence sup, g e PV (i = max,>ge”¥"r? = Lj since r — e~ N1 is positive
on [0, o[ and has value 0 for » = 0. That is

dnm(j) = enn(j) = &j.

Compared with B the sequence € (and D) is first simpler and second very similar
to the original sequence P. Indeed, condition (wQ) for C is even easier to verify
than (wQ)" for P: The estimate to check reduces to < Smax (%, I’“{) since
the j’s can be cancelled. The selection of indices and constants according to the
quantifiers in (wQ) resp. (WQ)P can be performed similarly in both cases, but
because of the logarithms occuring in (WQ)P, the approach using € turns finally

out to be the easiest one concerning this example.

Example 14.13. Arguments similar to those used in 14.12 yields for the sequence
P with py,n = %29 for ¢ > 0 satisfies log(1 + |2|?) = o(pn1(2)) for |z] — oo and
arbitrary N. It can be verified similarly to the above that P satisfies condition
(wQ)". Finally it is casy to see that

. _ g+l i
bnn(j) = ¢ /2 (2n/N)" "0 | JT(22)

and |
a(5) = exald) = exp (4™ o (34))

Hence, in this example the easiest approach is checking that P satisfies (WQ)P.

Example 14.14. In addition to the examples 14.12 and 14.13 let us give three
more examples of type (i), namely three more weight functions p, which satisfy
log(1 + |2|?) = o(p(2)) for |z| — oo that is

((log(1 + |2/ ))a for o > 1,
(2) p(z):e (log(1 4 |2?)7) for 0 < B < 1,
exp(|z]7), for v > 0.

In all three cases a concrete computation of B, € or D seems to be rather difficult.
However, if e.g. uw(N,n) = n/N one can proceed as in 14.12 to show that that

P = ((u(N, n)p)nen) nen satisfies condition (wQ)".

Let us now investigate two more concrete examples, where the first one is of type
(ii) and the second one is of type (iii).
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Example 14.15. We put py, = %pn where

() 1 if z €D,
n\%) = .
P |z|™  otherwise.

Since py(z) = max(1,|z|™), p, is subharmonic for each n € N and we clearly
have p, < ppy1. Moreover, log(1 + |z]|?) = O(pn(z)) for |2| — oo holds for
each n € N. Since z — |z|™ is a weight function there exists C' > 1 such that
SUP|,_y|<1 12| < Cinf|. <1 |2|" + C for each w € C. Hence

sup pn(z) = sup max(1, |z]")
le—w|<1 |2—w|<1

=max(1, sup |z|")

|s—wl<1

=max(l,C inf |2|"+C)
|r—wl<1

< max(C, C’| inf<1 |z|" + C)

< Cmax(l, inf |[2|")+C
|r—wl<1

=C inf max(l,|z|")+C

|z—w|<1
=C inf p(2)+C

z—w|<1

holds for each n € N. It remains to check [56, 2.2.(2)]: For given k we put
m =k + 1. Then lim,_ o 2r* — r**1 = —co that is there exists L > 1 such that
ok — R+l Loie. 20F < rF 1 4 L for each r > 0. Hence

2pr(2) = max(2,2|2|*) < max(1 + L, |2|™ + L) = max(1, [2|™) + L = py(2) + L.

for arbitrary z € C. Before we investigate if P satisfies condition (WQ)P, we note
that clearly log(1 + |z|?) = o(pn,n(2)) holds for |z| — oc.

In order to check (wQ), let n be given. We select M > N and n arbitrarily. Let
K > M and m be given. We select k :=m + 1. Then lim, o I'r — irk —00
and hence S := max (exp(7; — 7 ), exp(max,>1 27" Krév)) < 0o0. Now let
r > 0 be arbitrary.

CASE 1. r < 1: Since log S > {7 — &, we may compute
log S +prk(r) =logS+ % = 37 — & + & = 37 = Pmm(7)-

CASE 2. r > 1: Since we have log S > max, > ﬁr'm — %r’mﬂ > ﬁrm — %rm“
for each » > 1, we have

log S+ prc(r) = 7™ — 4 bk = L = pag i (r)
for each r > 1.

Finally, the above yields par,m () < log S+px k() < log S+max(pnn(r), prk(r))
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for each r > 0 that is (wQ)" holds.

Example 14.16. We put py,, = npy where

[ if ze D,
pn(2) = \z|1/(N+1) otherwise.

(pn)Nven is a decreasing sequence. It can be seen as in 14.15 that each py is a
weight function. Moreover, we have log(1 + |z|?) = o(pn n(2)) for |z| — oc.

We claim, that the sequence above satisfies (WQ)P. Given N we select M > N
and n arbitrarily. Let K > M and m be given. We select k¥ = m. By our choice of
M > N we have ﬁ < ﬁ and hence lim, _, oo mrt/ M+ _ ppt/(N+1) — _
Thus there exists 79 > 1 such that mrt/(M+1) _ ppl/(N+1) < for each r > ry.
We put S := exp(maxre[l,ro](mrl/(MH))), which is clearly finite and greater or
equal to one. Now let r > 0 be given.

CASE 1. 7 < 1: In this case we have pasm(r) = m < logS+m =logS+k =
log S + pr k(r), since log.S > 0 by the choice of S.

CASE 2. 1 < r < rg: We have ppym(r) = mrt/(M+1) < MaX,¢[1,r,] myt/(M+1) —
log S < log S + kr'/(K+1Y) = log S + pg x(r) by our choice of S.

CASE 3. By the definition of r > ro we have mst/(M+1) _ ppl/(N+1) < 0 < log S
for 7 > ro, whence par (1) = mrt/M+D) Llog S +nrt/ N+ =log S+ py
holds.

Combining the three cases, we get exactly the the estimate in (WQ)P for each
r > 0.

14.5 Examples for the non-radial setting

Example 14.17. In view of the second condition in 10.16.(a) it is easy to see
that U = ((un,n)NeN)nen With un, = § satisfies (Q)w For this example we
may even adjust the proof of 10.12 such that we only need the original results of
Meise, Tayler and not the modifications presented in section 10.1. However, for A
defined via U as in section 10, Proj' AH = 0 and AH(C) is ultrabornological and

barrelled.

Example 14.18. From the second condition in 10.16.(a) it is easy to get many
examples of sequences U = ((un,n)nen)Nen such that (Q),, is satisfied, e.g.

(1) uny, = ZT\LT(; for a,, 3 > 0,

‘s _ log(n)
(i) unny = (V-

Example 14.19. Finally let us give one example for a sequence ((un,n)neN)NeN
which does not satisfy the second condition but the first one in 10.16.(a). Let
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J € N be arbitrary. Put

1 1
N(]‘ian) fOI'NgJ,
= 1 forn < N, .
UNn otherwise.
~  otherwise

The following picture

illustrates the definition of the uy,, and shows that uni1n < Unn < UNnt1
holds for all N and n € N. To show that the first condition in 10.16.(a) holds,
let N be given. We select M = min(J,N). Let K > M be given. By the

selection of M we have K > J that is for k£ > K we have ug j = % and therefore

ug,, — oo for k — co. As above, (Q), yields that Proj' AH = 0 and that AH(C)
is ultrabornological and barrelled.

15 Appendix: Mixed spaces of ultradistributions

The notion of a weight function, which we will use in this section goes back to the
seminal article [37] of Braun, Meise, Vogt. For the sake of simplicitly we will use
the definition stated by Bonet, Meise [33, 34].

Let us call a function w: R — [0, 00[ a weight function if it is continuous, even,
increasing on [0, co[ and if it satisfies w(0) = 0 and also the following conditions.

(«) There exists K > 1 such that w(2t) < Kw(t) + K.
(B8) w(t) = o(t) for t — oo.

)
)
(7) log(t) = o(w(t)) for t — oo.
() ©:[0,00[— R, ¢(t) = w(exp(t)) is convex.

If a weight function w satisfies
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then it is called a quasianalytic weight. Otherwise it is called non-quasianalytic. A

weight function w is called a strong weight function if there exists C' > 0 such that
> “’Sfét) dt < Cw(y) + C. wis called a (DN)-weight function if for each C > 1

there exists Ryp > 0 and 0 < § < 1 such that for each R > Ry the inequality

wHCR)w™(SR) < (w™1(R))? is satisfied.

Following Bonet, Meise [33, 2.3] we define the following spaces. Let K be a compact

subset of R. By C*°(K) we denote the space of all C*>°-Whitney jets on K. For

n € N we put

ny(K) = {f € C®(K); prea(f) == sup sup [ £ (x)|exp(—ng*(12)) < oo}
zeK a€Ny

and
€ (w) (K) = proj, () (K)

which is a Fréchet space if we endow it with the topology of the seminorms pg .
For N € N we put

Ly (K) == {f € CF(K); ar,n(f) == sup sup [f (@) exp(— 5 »*(Nal)) < oo}

rzeK aeNy

and
1wy (K) := indy EF 1 (K)

which is an (LB)-space if we endow it with the natural inductive topology.

The latter spaces are the building blocks of the w-ultradifferentiable functions of
Beurling (resp. Roumieu) type, cf. [33, 2.3] and [34, 2.3].
According to [33, 2.4] and [34, 2.4] we put

A(.N) = (F € H(C) 1 flca = sup £(2) exp(—hi(Im z) — Xa(2])) < o0},

for A > 0 where hr: R — R, hx () = sup, ¢ - y. Moreover we put
A(w,R) = lndn A([7R7 R]? TL) and A{w,R} = prOjN A([iRa R]v %)
which is the notation of [33, 4.4] and [34, 4.2]. Note that in the case K = [-R, R]

hg(z)=supx-y= sup x-y= R|z|
yeK ye[-R,R]

holds. We put wy,(z) := exp(—R|Im z| — nw(]z])) and vx(z) := exp(—R|Im z| —
+w(|z])) and thus get

[fllxn = supwn(2)[f(2)| and [|f]|,. 1 =supwn(2)[f(2)]-
zeC "N zeC

With the notation above we have the following result.

Theorem F. ([33, 4.5] and [34, 4.3])

(1) If wis a (DN)-weight function or a strong weight function then the Fourier-
Laplace transform JF: Ezw) [-R,R] — A, g is a linear topological isomor-
phism.



APPENDIX: MIXED SPACES OF ULTRADISTRIBUTIONS 145

(2) The Fourier-Laplace transform F: &\ \[-R, R] — Ay, gy is a linear topo-
logical isomorphism.

Moreover, in the situation of (1), A, r) is a (DFN)-space and A, 5 satisfies the
conditions (DN) and (€2).

In the sequel we consider tensor products of the spaces defined above. The re-
sulting spaces are connected with the so-called mixed spaces of ultradistibutions
considered recently by Schmets, Valdivia [68, 69, 70].

We need the following preparatory statements.

Lemma 15.1. Let V := (vy)nen be an increasing sequence of weights on an
arbitrary open subset of C?. Assume that V satisfies condition

(8"Y VN IM > N: % vanishes at oo on G.

VM

Then the two Fréchet spaces

HV(G) :=projy Hun(G)
HVy(G) := projy H(vn)o(G)

coincide algebraically and topologically.

Proof. HVh(G) C HV(Q) is a topological subspace in general. Therefore it is
enough to check that (S') implies that HV(G) C HVp(G) holds algebraically. In
order to show this let f € HV(G) and N € N be given. We select M according to
(S). Let € > 0 be given. Since f € HV(G) there is C > 0 such that vp|f] < C
on G. By (S') there exists K C G compact such that 1% < & on G\K. Hence
on[fl = ou|fl < §C =con G\K. ]
Remark 15.2. Bierstedt, Meise, Summers [27, p. 108] introduced the condition
(S) Vniam>n: % vanishes at co on G

(or (V) in their notation) for a decreasing sequence W := (wy, )nen of weights on
an arbitrary open subset G of C?. We mentioned this condition already sev-
eral times. Bierstedt, Meise, Summers [27, 0.4] showed that the (LB)-spaces
WH(G) := indy Hw,(G) and WoH (G) := ind,, H(wy,)o(G) coincide algebraically
and topologically if W satisfies (S).

Lemma 15.3. Let w be a weight function.

(1) The sequence (vy)nen, vn(2) := exp(—R|Im z|— tw(|z|)) for z € C safisfies
condition (S').

(2) The sequence (Wn)nen, Wn(z) := exp(—R|Im z| — nw(|z])) for z € C safisfies
condition (S).

Proof. (1) Let N € N be given. We select M := N + 1. For z € C we have

1
uvn(z) _ e Imzl-yw) _ e(ﬁfﬁ)w(z)
v (2) ef\lmz\fﬁw(z) :
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The above implies in particular that 3—;; is radial and it is enough to show that

lim, 00 ZZ((:)) = 0 holds. By condition () there is 9 > 1 such that logr < w(r)

for r > rg. Thus for r > ry we may compute

) _ (A0 € ol or — ik T
since ﬁ — % < 0 by the choice of M and logr > 0 for r > ry.

(2) For given n € N we select m :=n + 1. For z € C we have

—|Imz|—mw(z) _ _
by the choice of m. Again = is radial and we have to show that lim, fj)m((:)) =0

holds. As above condition () yields 79 > 1 such that logr < w(r) for r > ro.
Thus for r > ry we may compute

%:,L((:)) =) Lemloam — 1 72%F

where we again used that logr > 0 for r > rg. [ |

In the sequel we investigate the space

(o= R R1&: €[~ R, R] £ A, gy &c A r)
= projy Hun (C) &, ind,, Hw, (C)
@ projy H(vn)o(C) ®e ind,, H(wy)o(C),

where the isomorphy (1) can be seen as follows: By Jarchow [50, 16.2.2.(b)] the
map F ® F: &)\ [-R, R] @ €[ \[-R, R] — A, ry ® A,r) is injective and
open since this is true for F by 15.F. If we consider the above spaces just as
linear spaces it is clear that the map is also bijective. Hence, ¥ ®. JF is a linear
topological isomorphism. Now we take the completions and therefore there has to
be an isomorphism (‘Z’{W}[—R7 R] ®. E’(w)[—R, R] = Ay, ry @c A(w,r)- The equality
(2) follows from 15.3 in combination with 15.1 and 15.2, respectively.

Our aim is to show that this space is a weighted (PLB)-space of holomorphic
functions over CxC. For this purpose we define the double sequence of weights A =
((ann)NeN)nen by any =8 @ wp: Cx C = R, ann(21,22) = vn(21) - wn(22)
where vy and w,, are the weights defined above.

Proposition 15.4. Let w be a (DN)-weight function or a strong weight function
and R > 0. Define the double sequence of weights A = ((an,n)NeN)nen by an ., =
vy @wn: Cx C— R, ayn(z1,22) :=vn(21) - vn(z2). Then there exists a linear
topological isomorphism

twy [~ R, R &: &) [~ R, R] = (AH)o(C x C).

Proof. We have

(o} [~ R R &: €[, [-R,R] £ projy H(vy)o(C) &. ind, H(w,)o(C)
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D projy [H(ow)o(C) . indy H(w,)o(C)]
2 projy [H(vn)o(C) € ind,, H(wy)o(C)]
2 projy ind,, [H(vn)o(C) e H(wy)o(C)]
= pI"OJN ind,, [H(UN ® wy)(C x (C)]
2 (AH)o(C x ©).

(1) we have already shown above.

(2) is true in general, see Jarchow [50, 16.3.2].

(3) follows from Bierstedt, Meise [23, remarks previous to 3.11], since

a. ind, H(w,)o(C) = ind,, Hw,(C) is complete as we noted already in section
2,
b. md H(wy)o(C) is nuclear as it is a (DFN)-space (see e.g. Bierstedt [11
4.(0)])

c. ( ~)o(C) is a complete bornological (DF)-space as it is a Banach space

in combination with 3.14, since for each N € N the isomorphisms
H(vn)o(C) @ indy, H(wn)o(C) — H(vn)o(C) e indy H(wy)o(C)
are just the canonical maps, that is the condition in 3.15 holds.

(4) follows from Bierstedt, Meise [23, 3.13] since

a. ind,, H(wy,)o(C) = ind,, Hw,(C) is complete as we noted already in section
27

b. ind,, H(w,)o(C) is a (DFS)-space, since (wy, )nen satisfies (S) by 15.3, cf. Bier-
stedt, Meise, Summers [27, 0.4.(d)], and therefore it is compactly regular
(by [11, Appendix, remarks after 1] contable compact inductive limits are
boundedly retractive and by [11, Appendix, remark after 7] the latter yields
compact regularity),

c. H(un)o(C) is a Banach space,

d. ind,, H(wy)o(C) is nuclear as it is a (DFN)-space (see e.g. Bierstedt [11

2.4.(c)))

again in combination with 3.14, since the isomorphisms
ind,, [H(UN)O((C) € H(w")o((C)] — H(vn)o(C)e [indn H(wn)o(C)]
are again just the canonical maps (cf. [23, proof of 3.10]).

(5) follows from Bierstedt [10, Corollary 42]. He proved that H(V; ® V2)o(X; X
XQ) = H(Vl)o(Xl)EH(‘/é)o(Xg) for X1 Q (CN, X2 g (C]w (N, M 2 ].) and V; a
Nachbin family on X; such that that W (X;) C V; for ¢ = 1, 2 where W(X) =
{Axk ; A =20, K C X compact} and W C V if and only if for each w € W there
is v € V such that w < v on X. In the case of a weighted Banach space Hvg(C)
the corresponding Nachbin family is V' = {Av ; A > 0} and it is easy to see that
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W(C) C V holds, since v > 0. The isomorphisms

H(’UN & wn)o((C X C) = H(’I}N)o((C) EH(wn)o((C)
in [10, Corollary 42] are obtained from the result [9, Satz 3.2] on slice products.
From the proof of the latter result it follows that they are given by

[ M'—>($1'—>Mf(3317')) .

Thus they satisfy the conditions in 3.13 and we may apply 3.14. ]

Proposition 15.5. The sequence Ax = (ann)nen satisfies condition (S) for each
N e N.

Proof. Let N € N be fixed and n be given. Select m = n + 1. Since

aN,n(Zla 2’2) = UN(Zl) : wn(Zz)
= exp(—R|Im z1| — tw(|z1])) exp(—R|Im 22| — nw(|z2]))
= exp(—R(|Tm 21| + | Tm 23) — Fw(|z1]) — nw(|2])

we have
anom(z1.22) _ SXP(=R( Im 2|+ Im 20 )= rw(lz1))—mew(|z2))
N (21:22) T oxp(—R(| Tm 21|+ Im 22]) — (|21 ) —nw(] 1)
= exp(—R(|Im z1| + [Im 25]) — Fw(|21]) — mw(|z2)
+R(| Tm 21| + | Im zo]) + w(|z1]) + nw(]22]))
= exp((n — m)w(|22])
and may conclude as in 15.3.(2). ]

Remark 15.6. From 15.5 and 15.2 we get that the spaces ind,, H(an n)o(C x C)
and ind,, Hay »,(C x C) coincide for each N. Thus, we get from 15.4 even the
isomorphism

’{w}[—R7 R]®. &[,)[-R,R] = AH(C x C)

where we stick to the notation and definitions of 15.4.

As we pointed out in section 1 the latter shows that several of the so-called mixed
spaces of ultradistributions (introduced recently by Schmets, Valdivia [68, 69, 70])
can be regarded as weighted (PLB)-spaces of holomorphic functions. However,
the results established in this thesis do not cover the situation above, since we
obtained a weighted space over C x C and are dealing with non-radial weights.
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