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Preface

The importance of Lie groups in all areas of mathematics is indisputable. They have
been studied from several points of view, and the richness of their structure makes
them to be present not only in all areas of mathematics, but also in other areas of
science.

The theory of Lie groups was completely developed with the classification of
all simple connected compact Lie groups, which cannot be attributed to a single
mathematician but was achieved thanks to the contributions of several people, like
É. Cartan, W. Killing, A. Borel, E. B. Dynkin and H. S. M. Coxeter among others.

As algebraic topologists, the natural step to take from that point was then to
develop models isolating some of the topological properties of compact Lie groups.
There is not a single way to proceed, and several models could be defined, depending
on the properties we want to study.

Our particular interest then lies on the topological properties of p-completions
of classifying spaces of compact Lie groups. Roughly speaking, by p-completing a
space, we isolate the information that we may obtain from the cohomology of the
space at the prime p from other information that may make the picture more difficult
to understand.

From this point of view, a first generalization was introduced in [DW94]: the well-
known p-compact groups. In fact, this model does not generalizes all compact Lie
groups, but only those compact Lie groups whose group of components is a p-group.
This new class of spaces was completely classified in [AGMV08] at the prime p odd,
and in [AG09] and [Møl07] at the prime p = 2. In [DW94], the authors proved that
the mod p cohomology of a finite loop space is always a finitely generated algebra.

More recently, p-local compact groups were introduced in [BLO07] as such a more
general model. It has been proved in [BLO07] that indeed p-local compact groups
include all (p-completions of classifying spaces of) compact Lie groups, as well as all
p-compact groups. However, the more general the model is, the more difficult its
study becomes. In this sense, we are far from describing all p-local compact groups in
terms of a (smaller) well-understood list of p-local compact groups, and several basic
properties of them have to be “explored” before this can be done.

In this work, then, we try to cover some gaps in the newborn theory of p-local
compact groups, such as the definition and (some) properties of connected p-local
compact groups, and the mod p cohomology rings of p-local compact groups. While
the hopes are high that most of the constructions and results in this work will sooner
or later be proved to hold in the general case, the theory of p-local compact groups is
rather evasive, and it will not be an easy task.

Below we summarize briefly the work done in this memory, and we refer the
reader to each chapter for further details on a specific subject.

ix
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The first chapter introduces the notion of a p-local compact group as a triple
G = (S,F ,L), where S is a discrete p-toral group, F is a saturated fusion system
over S (roughly speaking, a category whose objects are the subgroups of S and such
that the morphisms among objects are actual group monomorphisms satisfying some
set of axioms(I), (II) and (III)), and where L is a centric linking system associated
to F (roughly speaking, a category whose objects are the F -centric subgroups of S,
and such that the morphism sets are extensions of the corresponding morphism sets
in F , again satisfying a set of axioms (A), (B) and (C)). We also summarize all the
results from [BLO07] that we will use at some point in this memory. We complement
the definitions and results from this source with some useful properties of p-local
compact groups which do not appear in [BLO07], like the fact that the normalizer
fusion subsystem of a fully normalized subgroup is always saturated (a feature which
was proved to hold for p-local finite groups in [BLO03b]), and an equivalent set of
axioms for the saturation of a fusion system, inspired in the paper [KS08].

Each of the following chapters introduces original work on p-local compact groups
and saturated fusion systems.

The second chapter studies the realization of saturated fusion systems by infinite
groups, in the same way as this was done for finite fusion systems in [Rob07], that
is, using amalgams of locally finite artinian groups. Solving this problem in partic-
ular requires extending the results on constrained saturated fusion systems done in
[BCG+05] §4, which turns out not to be difficult in the exercise in the case of saturated
fusion systems over discrete p-toral groups, thanks to the results on higher limits
developed in [BLO07] §5. While we were originally planning to apply the results on
realization of saturated fusion systems to avoid assuming the existence of a centric
linking system, in general the groups one obtains using the results in chapter §2
are rather difficult to work with (this is not at all surprising, in view of the results in
[Rob07], where it is already shown that in the case of finite fusion systems one already
will find the resulting groups difficult to work with).

The third chapter introduces a notion of connectivity of saturated fusion systems
and p-local compact groups, and studies the existence of connected components in
the case the group S has rank 1. In this sense, we first give a list of all connected
p-local compact groups of rank 1, and also show that each connected fusion system
over a rank 1 p-local compact group has a unique associated linking system. This list
just confirms what was initially expected, i.e., that rank 1 connected p-local compact
groups correspond to connected compact Lie groups of rank 1 (that is, S1, SO(3) and
S3). Note that the same was proved to happen when classifying p-compact groups.

In addition to this list, we also prove that each saturated fusion system over a rank
1 discrete p-toral group determined a unique connected saturated fusion subsystem
over a discrete p-toral subgroup of rank 1, which can be then considered as the
connected component of the original fusion system. The corresponding result on
rank 1 p-local compact groups is also proved, although needs a better explaining.
In this case, such a p-local compact group G determines a unique connected rank
1 p-local compact group G0, which we think of as the connected component of G.
However, to properly consider G0 as a p-local compact subgroup of G, some kind
of inclusion, at least at the level of linking systems, had to be constructed. Such
an inclusion functor has indeed been constructed, but in a rather ad hoc way. This
inclusion, in fact, provides an example of a morphism (i.e., functor) between linking
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systems which does not send centric subgroups to centric subgroups. More examples
of such functors are provided in chapter 5. It remains to be solved the problem of
a proper classification of all rank 1 p-local compact groups in terms of the list of
connected rank 1 p-local compact groups that we provide.

The fourth chapter introduces unstable Adams operations for p-local compact
groups. The first two sections in this chapter contain the construction of such opera-
tions on p-local compact groups originally done in [Jun09], and the third section uses
this ideas to construct unstable Adams operations on the groups realizing saturated
fusion systems which we previously studied in chapter 2. There is in fact not much
difficulty in doing so, since both the construction of such groups and the construction
of unstable Adams operations in [Jun09] are somehow similar.

The fifth chapter studies the action of unstable Adams operations on a given p-local
compact group, and is probably one of the most important chapters in this memory,
together with chapter 3. More concretely, we study the fixed points of a given p-local
compact group G under the action of families of unstable Adams operations {Ψi}.

This problem can be approached from different points of view, and we have
chosen an algebraic way of treating the problem. Thus, we propose a definition of
the invariants of G under the action of each Ψi which is not the obvious one (since
it seems not to work in general) and we prove that there always exists some M such
that, for all i ≥ M, we obtain triples Gi = (Si,Fi,Li) which are almost p-local finite
groups. However, the last condition to show in order to prove that the Gi are p-local
finite groups is rather technical and quite difficult to prove in general.

Nevertheless, we prove that indeed theGi are p-local finite groups for some specific
situations, the most important being when G is a rank 1 p-local compact group.

This study allows us to conclude, for instance, that the classifying space ofG is the
(p-completion of the) homotopy colimit of the classifying spaces of the Gi, which in
fact come equipped with inclusions Gi ↪→ Gi+1. In particular, when the Gi are proved
to be p-local finite groups, this again provides examples of functors between linking
systems which do not send centric subgroups to centric subgroups. Furthermore, if
the Gi are p-local finite groups, then one can prove a version of the Stable Elements
theorem for p-local compact groups, using the same result on p-local finite groups
(proved in [BLO03b]).

The two appendices at the end contain technical results needed all along this
memory. We have chosen to place them at the end and in different chapters due to
the extension of the contents in each of them.

The first appendix deals with extensions of p-local compact groups by discrete
p-toral groups, using the more general setting of transporter systems introduced for
p-local finite groups in [OV07]. In fact, in this chapter we just prove that the results
in the former paper extend as expected to the compact case.

The second chapter deals with saturated fusion subsystems of p-power index and
index prime to p of a given saturated fusion system. Again, we extend the known
results from [BCG+07] for p-local finite groups to the compact case, while in this
case we cannot extend the whole of the contents in the former paper since a better
understanding of quasicentric subgroups would be needed first. In particular, we
prove the existence of a unique minimal saturated subsystem of index prime to p,
a result which can be extended to a result on p-local compact groups, and which is
fundamental in the definition of connectivity for p-local compact groups.
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i l’oportunitat d’entrar al món de la topologia algebraica, i a tots els que en algun
moment han gaudit d’una estança a la secretaria del departament.
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Chapter 1

Background on p-local compact groups

In this chapter we introduce p-local compact groups and list the properties which
will be used in the rest of this work. Most of the notions and results are taken from
the main source about p-local compact groups, that is, the paper by C. Broto, R. Levi
and B. Oliver [BLO07], and hence we have organized this chapter following the same
order as the original paper.

More specifically, the first section is devoted to discrete p-toral groups, which
will play the role of Sylow p-subgroups in p-local compact groups. Then, in the
second section we introduce fusion systems over discrete p-toral groups, and in the
third section we present a rather powerful construction on saturated fusion systems
which will allow us to reduce computations on a finite number of (conjugacy classes
of) subgroups. The fourth section introduces centric linking systems associated to
saturated fusion systems, as well as classifying spaces of p-local compact groups. In
this section we have also included some results from sections §8, 9 and 10 [BLO07].
The fifth section contains some results on higher limits which will be useful when
showing the vanishing of some obstructions in later chapters. The sixth section studies
normalizer fusion subsystems, in the same way as they were studied in appendix
§A of [BLO03b]. Finally, the seventh section provides an alternative definition for
saturation of fusion systems which is inspired in definition 2.4 [KS08].

This chapter is to be understood as a list of basic definitions and properties to use
in later chapters on this work. We do not provide proofs of results already proved
in other sources (mainly from [BLO07]) for the sake of simplicity. The reader is then
refered to the corresponding source for further details.

1.1 Discrete p-toral groups

Discrete p-toral groups are the natural replacement for Sylow p-subgroups in order
to extend the definitions of fusion and linking systems from [BLO03b]. They were
already proved to be a resourceful tool to use on the study of p-compact groups, as
shown in [DW94].

LetZ/p∞ be the union of the cyclic groupsZ/pn under the obvious inclusions. We
will think of Z/p∞ as a multiplicative group for convinience. Note that Z/p∞ is an
infinitely p-divisible group, that is, for each x ∈ Z/p∞ there exists y ∈ Z/p∞ such that
yp = x.

1
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Definition 1.1.1. A discrete p-toral group is a group P which contains a normal subgroup
TP C P, isomorphic to a finite product of copies of Z/p∞, and such that the quotient P/TP is a
finite p-group.

For such a group, we say that TP is the connected component or maximal torus of P
and P/TP is the group of components of P. We say also that the discrete p-toral group P is
connected if P = TP.

The rank of a discrete p-toral group P is the rank of the maximal torus TP. That is, if
TP � (Z/p∞)r, then we will say that rk(P) = r.

The connected component of a discrete p-toral group P can be characterized as the
subgroup of all infinitely p-divisible elements of P, that is, for all x ∈ P, there exists
some y ∈ P such that yp = x. This is a property that will be used repeatedly along this
work. If TP � (Z/p∞)k, then we can define rk(P) = k, and

(1.1) |P|
de f
= (rk(P), |P/TP|).

The order of a discrete p-toral group is then considered as an element in N2 with
the lexicographical order. Thus, we say that |P| ≤ |P′| if and only if rk(P) < rk(P′), or
rk(P) = rk(P′) and |P/TP| ≤ |P′/TP′ |. In particular, P ≤ P′ implies |P| ≤ |P′|.

This class of groups will play the role of Sylow p-subgroups for p-local compact
groups. As explained in [BLO07], the reason for choosing discrete p-toral groups for
such a mission is that they enjoy certain finiteness properties, necessary for the theory
to work. We describe these properties below, since we will also make (implicit or
explicit) use of them.

A group G is locally finite if every finitely generated subgroup of G is finite, and is
a locally finite p-group if every finitely generated subgroup is a finite p-group. These
two classes of groups are closed under taking subgroups, quotients and extensions.

A group G is called artinian if every nonempty set of subgroups, partially ordered
by inclusion, has a minimal element. Equivalently, G is artinian if its subgroups
satisfy the descending chain condition. Again, this class of groups is closed under
subgroups, quotients and extensions.

Proposition 1.1.2. (1.2 [BLO07]). A group is a discrete p-toral group if and only if it is
artinian and a locally finite p-group.

Below we list several properties of discrete p-toral groups.

Lemma 1.1.3. (1.4 [BLO07]). The following hold for each discrete p-toral group P.

(i) For each n ≥ 0, P contains finitely many conjugacy classes of subgroups of order pn.

(ii) P contains finitely many conjugacy classes of elementary abelian subgroups.

Lemma 1.1.4. (1.8 [BLO07]). If P � P′ are distinct discrete p-toral groups, then P � NP′(P).

1.2 Fusion systems over discrete p-toral groups

Now we introduce fusion systems over the class of groups described in the previous
section. Both their definition and properties are similar to those for the finite case
([BLO03b]), and in fact finite fusion systems are a particular case of the definition we
give here.
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Definition 1.2.1. A fusion system F over a discrete p-toral group S is a category whose
objects are the subgroups of S and whose morphism sets HomF (P,P′) satisfy the following
conditions:

(i) HomS(P,P′) ⊆ HomF (P,P′) ⊆ Inj(P,P′) for all P,P′ ≤ S.

(ii) Every morphism in F factors as an isomorphism in F followed by an inclusion.

Given a fusion systemF over a discrete p-toral group S, the rank is the rank of the discrete
p-toral group S.

Two subgroups P,P′ are called F -conjugate if IsoF (P,P′) , ∅. For a subgroup P ≤ S,
we denote

〈P〉F = {P′ ≤ S|P′ is F -conjugate to P}.

Definition 1.2.2. LetF be a fusion system over a discrete p-toral group S. A subgroup P ≤ S
is called fully F -normalized, respect. fully F -centralized, if |NS(P′)| ≤ |NS(P)|, respect.
|CS(P′)| ≤ |CS(P)|, for all P′ ≤ S which is F -conjugate to P.

The fusion system F is called saturated if the following three conditions hold:

(I) For each P ≤ S which is fully F -normalized, P is fully F -centralized, OutF (P) is finite
and OutS(P) ∈ Sylp(OutF (P)).

(II) If P ≤ S and f ∈ HomF (P,S) is such that P′ = f (P) is fully F -centralized, then there
exists f̃ ∈ HomF (N f ,S) such that f = f̃|P, where

N f = {g ∈ NS(P)| f ◦ cg ◦ f −1
∈ AutS(P′)}.

(III) If P1 ≤ P2 ≤ P3 ≤ . . . is an increasing sequence of subgroups of S, with P = ∪∞n=1Pn,
and if f ∈ Hom(P,S) is any homomorphism such that f|Pn ∈ HomF (Pn,S) for all n,
then f ∈ HomF (P,S).

Let P ≤ S. Then, 〈P〉F contains (at least) a fully F -normalized element P′. Thus,
OutF (R) is finite for all R ≤ S. Also, the group AutF (R) is artinian and locally finite,
being an extension of a finite group by an artinian locally finite p-group (which is
Inn(R)). Actually, as is shown in Proposition 2.3 [BLO07], the condition that OutF (P)
be finite in the definition above is not necessary, but helps in simplifying the definition.

When F is a saturated fusion system, we may think of T = TS, the connected
component of S, as the “maximal torus” of F , and of AutF (T) as the “Weyl group” of
T.

Lemma 1.2.3. (2.4 [BLO07]). Let F be a saturated fusion system over a discrete p-toral
group S, with maximal torus T. Then, the following hold for all P ≤ T.

(i) For every P′ ≤ S which is F -conjugate to P and fully F -centralized, P′ ≤ T, and there
exists ω ∈ AutF (T) such that ω|P ∈ IsoF (P,P′).

(ii) Every f ∈ HomF (P,T) is the restriction of some ω ∈ AutF (T).

As noted above, the groups OutF (R) are all finite. The following result can be
understood as an extension of this fact.
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Lemma 1.2.4. (2.5 [BLO07]). Let F be a saturated fusion system over a discrete p-toral
group S. Then, for all P,P′ ≤ S, the set

RepF (P,P′)
de f
= Inn(P′) \HomF (P,P′)

is finite.

We next define F -centric and F -radical subgroups. They play a similar role as in
the finite case.

Definition 1.2.5. Let F be a saturated fusion system over a discrete p-toral group. A
subgroup P ≤ S is called F -centric if all the elements of 〈P〉F contain their S-centralizers,
that is,

CS(P′) = Z(P′) for all P′ ∈ 〈P〉F .

A subgroup P ≤ S is called F -radical if OutF (P) contains no nontrivial normal p-
subgroup, that is,

Op(OutF (P)) = {1}.

Clearly, F -centric subgroups are fully F -centralized, and conversely, if P is fully
F -centralized and centric in S, then it is F -centric.

Proposition 1.2.6. (2.7 [BLO07]). Let F be a saturated fusion system over a discrete p-toral
group S, and let P ≤ P′ ≤ S be such that P is F -centric. Then, P′ is F -centric.

Given a saturated fusion system F , there is another class of subgroups, which
contains the class of F -centric subgroups, and that will sporadically appear all along
this work.

Definition 1.2.7. A subgroup H ≤ S is said to be F -quasicentric is, for all H′ ∈ conjHF ,
the centralizer fusion system CF (H′) is the fusion system of the discrete p-toral group CS(H′).

While we cannot prove all the results that hold aboutF -quasicentric subgroups in
the finite case, some key results can indeed be extended to the compact case, mainly
when no quasicentric linking system is involved. In this sense, appendix B is devoted
to study some of those situations which are of interest for this work.

We finish this section introducing some notions about the F -conjugacy classes in
a (saturated) fusion system F . This will not be used here but later on, but we find it
better to include it here.

Definition 1.2.8. Let F be a (saturated) fusion system over a discrete p-toral group S, and
let A ≤ S. Then,

• we say that A is weakly F -closed if, for all P ≤ S containing A and all f ∈
HomF (A,S), f (A) ≤ A;

• we say that A is stronglyF -closed if, for all P ≤ S and all f ∈ HomF (P,S), f (P∩A) ≤
A;

• we say that A is F -normal if, for all P ≤ S and all f ∈ HomF (P,S), there exists
γ ∈ HomF (PA,S) such that γ|P = f and γ|A ∈ AutF (A).
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Note that, in any of the three cases above A is normal in S. In definition 1.6.1 we
will introduce the normalizer fusion subsystem of a subgroup A in a (saturated) fusion
system F , denoted by NF (A). It will follow by definition of this fusion subsystem
that A is F -normal if and only if NF (A) = F .

Lemma 1.2.9. Let F be a saturated fusion system over a discrete p-toral group S, and let
A ≤ S. If A is F -normal then it is strongly F -closed, and if A is strongly F -closed then it is
weakly F -closed.

1.3 A finite retract of a saturated fusion system

When working with saturated fusion systems over discrete p-toral groups, one has,
in principle, to deal with infinitely many conjugacy classes of objects. For instance,
it is easy to find examples of saturated fusion systems which contain infinitely many
conjugacy classes of centric subgroups. This is, of course, a great inconvenience
when trying to show certain properties for saturated fusion systems. Fortunately, it
was developed in [BLO07] a construction which retracts a saturated fusion system to
a certain subcategory containing finitely many conjugacy classes of objects, among
which all centric radical subgroups are contained.

This construction will play a central role all along this work, and the reader will
be constantly refered to the properties listed this section.

Set then, for simplicity, W = AutF (T), the Weyl group of the maximal torus T in F .

Definition 1.3.1. Set the following

(i) The exponent of S/T,

e = exp(S/T) = min{pk
|xpk
∈ T for all x ∈ S}.

(ii) For each P ≤ T,

I(P) = {t ∈ T|ω(t) = t for all ω ∈W such that ω|P = idP},

and let I(P)0 denote its connected component.

(iii) For each P ≤ S, set P[e] = {xpe
|x ∈ P} ≤ T, and set

P• = P · I(P[e])0 = {xt|x ∈ P, t ∈ I(P[e])0}.

(iv) SetH• = {P•|P ∈ F }. Also let F • ⊆ F and L• ⊆ L the full subcategories with object
sets Ob(F •) = H• and Ob(L•) = H• ∩Ob(L).

Lemma 1.3.2. (3.2 [BLO07]). The following hold for every saturated fusion system F over
a discrete p-toral group S.

(i) The setH• contains finitely many S-conjugacy classes of subgroups of S.

(ii) For all P ≤ S, (P•)• = P•.

(iii) If P ≤ P′ ≤ S, then P• ≤ (P′)•.
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(iv) If P ≤ S is F -centric, then Z(P•) = Z(P).

As a consequence of the above lemma, we have the following result.

Proposition 1.3.3. (3.3 [BLO07]). Let F be a saturated fusion system over a discrete p-toral
group. Fix P,P′ ≤ S and f ∈ HomF (P,P′). Then f extends to a unique homomorphism
f • ∈ HomF (P•, (P′)•), and this makes P 7→ P• into a functor from F to itself.

Corollary 1.3.4. (3.4 and 3.5 [BLO07]). The functor ( )• is a left adjoint to the inclusion of
F
• as a full subcategory of F .

All F -centric F -radical subgroups of S are in H•. In particular, there are only finitely
many F -conjugacy classes of such subgroups.

Finally, we state Alperin’s fusion theorem for saturated fusion systems over dis-
crete p-toral groups.

Theorem 1.3.5. (3.6 [BLO07]). Let F be a saturated fusion system over a discrete p-toral
group S. Then, for each f ∈ IsoF (P,P′) there exist sequences of subgroups of S

P = P0,P1, . . . ,Pk = P′ and Q1, . . . ,Qk,

and elements f j ∈ AutF (Q j) such that

(i) for each j, Q j is fully normalized in F , F -centric and F -radical;

(ii) also for each j, P j−1,P j ≤ Q j and f j(P j−1) = P j; and

(iii) f = fk ◦ fk−1 ◦ . . . ◦ f1.

1.4 Linking systems over discrete p-toral groups

Linking systems are the third and last piece needed to form a p-local compact groups.
They provide some simplicial information in order to recover classifying spaces (when
the p-local compact groups comes induced by an actual group) which cannot be
obtained from the fusion system.

Definition 1.4.1. Let F be a saturated fusion system over a discrete p-toral group S. A
centric linking system associated to F is a category L whose objects are the F -centric
subgroups of S, together with a functor

ρ : L −→ F c

and “distinguished” monomorphisms δP : P→ AutL(P) for each F -centric subgroup P ≤ S,
which satisfy the following conditions.

(A) ρ is the identity on objects and surjective on morphisms. More precisely, for each pair of
objects P,P′ ∈ L, Z(P) acts freely on MorL(P,P′) by composition (upon identifying Z(P)
with δP(Z(P)) ≤ AutL(P)), and ρ induces a bijection

MorL(P,P′)/Z(P) �
−→ HomF (P,P′).
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(B) For each F -centric subgroup P ≤ S and each g ∈ P, ρ sends δP(g) ∈ AutL(P) to
cg ∈ AutF (P).

(C) For each ϕ ∈MorL(P,P′) and each g ∈ P, the following square commutes in L:

P
ϕ //

δP(g)
��

P′

δP′ (h)
��

P ϕ
// P′,

where h = ρ(ϕ)(g).

Definition 1.4.2. A p-local compact group is a triple G = (S,F ,L), where S is a discrete
p-toral group, F is a saturated fusion system over S, and L is a centric linking system
associated to F . The classifying space of G is the p-completed nerve

BG
de f
= |L|∧p .

Given a p-local compact group G, the rank of G is the rank of the discrete p-toral group S.

We will often denote a p-local compact group by G, assuming that S is its Sylow
p-subgroup,F is the corresponding fusion system, andL is the corresponding linking
system.

Lemma 1.4.3. (4.3 [BLO07]). Fix a p-local compact group G, together with the projection
ρ : L → F c, and let P,Q,R ∈ L. Then the following hold.

(i) Fix any sequence P
f
→ Q

g
→ R of morphisms inF c, and let g̃ ∈ ρ−1(g) and g̃ f ∈ ρ−1(g f )

be arbitrary liftings. Then there is a unique morphism f̃ ∈MorL(P,Q) such that

g̃ ◦ f̃ = g̃ f ,

and furthermore ρ( f̃ ) = f .

(ii) If ϕ,ϕ′ ∈ MorL(P,Q) are such that ρ(ϕ′) = cg ◦ ρ(ϕ) for some g ∈ Q. Then there is a
unique h ∈ Q such that ϕ′ = δQ(h) ◦ ϕ in MorL(P,Q).

As expected, the classifying space of a p-local compact group behaves nicely.

Proposition 1.4.4. (4.4 [BLO07]). Let G be a p-local compact group. Then, |L| is p-good.
Also, the composite

S
π1(θ)
−→ π1(|L|) −→ π1(BG)

induced by the inclusion BS θ
→ |L|, factors through a surjection

S/T� π1(BG).

Let G be a p-local compact group, and let ( )• be the functor defined on F in 1.3.1.
It was shown in [Jun09] that this functor can be in fact extended to a functor on L
with similar properties, although this will not be used in this work.

We finish this section justifying (somehow) the interest of p-local compact groups:
both compact Lie groups and p-compact groups induce p-local compact groups, and
they are not the only examples.
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Theorem 1.4.5. (8.10, 9.10 and 10.7 [BLO07]). The following holds in general.

(i) Fix a linear torsion group G, a prime p different from the defining characteristic of
G and a Sylow subgroup S ∈ Sylp(G). Then, G induces a p-local compact group
G = (S,FS(G),Lc

S(G)) such that
BG ' BG∧p .

(ii) Fix a compact Lie group G and a maximal discrete p-toral group S ∈ Sylp(G). Then, G
induces a p-local compact group G = (S,FS(G),Lc

S(G)) such that

BG ' BG∧p .

(iii) Let (X,BX, e) be a p-compact group, and let BS
f
→ BX be a Sylow p-subgroup. Then,

there is an induced p-local compact group G = (S,FS, f (BX),Lc
S, f (BX)) such that

BG ' BX.

1.5 Some results on higher limits

Obstruction theory is implicit in the definition of p-local compact groups, and many
results and calculations depend on the vanishin of certain obstructions. We collect
certain results on higher limits which will be needed later on and also show the
obstructions for the existence and uniqueness of associated centric linking systems.
We start by introducing the orbit category, which plays a central role in this section.

Definition 1.5.1. Let F be a saturated fusion system over a discrete p-toral group S. The
orbit category O(F ) of F is defined as the category with objects the subgroups of S and
morphism sets

MorO(F )(P,Q) = RepF (P,Q).

Let O(F c) and O(F •c) be the full subcategories of O(F ) with object sets the F -
centric and F -centric subgroups in H• of S respectively. The orbit category has the
same problem as had the fusion system: the category has “far too many objects”. The
results on higher limits used for p-local finite groups made use of the subcategory
O(F c), but in the compact case this subcategory may still have inifinitely many con-
jugacy classes of objects. This is not the case in O(F •c), and the following result from
[BLO07] allows us to work on O(F •c) without loss of generality.

Lemma 1.5.2. (5.1 [BLO07]). Let F be a saturated fusion system over a discrete p-toral
group S. Then, there are well-defined functors

O(F c)
( )• //

O(F •c),
incl

oo

such that ( )• is a left adjoint to the inclusion.

As a consequence, the following is proved in [BLO07].
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Proposition 1.5.3. (5.2 [BLO07]). Let F be a saturated fusion system over a discrete p-toral
group. Then, for any functor F : O(F )→ Z(p) there is an isomorphism

lim
←−−

∗

O(F )(F) � lim
←−−

∗

O(F •c)(F|F •).

Another important tool from §5 in [BLO07] is the following proposition.

Proposition 1.5.4. Let F be a saturated fusion system over a discrete p-toral group S. Let
also

Φ : O(F c)op
−→ Z(p) −mod

be any functor which vanishes except on the isomorphism class of some fixed F -centric
subgroup Q ≤ S. Then,

lim
←−−

∗

O(F c)(Φ) � Λ∗(OutF (Q); Φ(Q)).

Let F be a saturated fusion system over a finite p-group S. In Proposition 3.1
[BLO03b] it was shown that the existence and uniqueness of centric linking systems
associated to F depended on the vanishing of certain classes in some higher limits.
Below we give a similar result for saturated fusion systems over discrete p-toral
groups. As usual, let F be a saturated fusion system over a discrete p-toral group S.

The following functor will play a central role in all calculations of higher limits
that will be done in this group.

Definition 1.5.5. We define the center functor as the functorZF : O(F c)→ Ab defined by
ZF (P) = Z(P) and

ZF (P
f
→ Q) = (Z(Q) incl

→ Z( f (P))
f−1

→ Z(P))

(note that Z(Q) ≤ Z( f (P)) since both P and Q are F -centric).

Proposition 1.5.6. Let F be a saturated fusion system over a discrete p-toral group S. Then
there is an element η(F ) ∈ lim

←−−

3
O(F c)(ZF ) such that F has an associated centric linking

system if and only if η(F ) = 0.
Also, the group lim

←−−

2
O(F c)(ZF ) acts freely and transitively on the set of all isomorphism

classes of centric linking systems associated to F .

The proof to this result is identical to the corresponding result in the finite case,
Proposition 3.1 in [BLO03b].

1.6 The K-normalizer fusion subsystem of a subgroup

Given a saturated fusion system F over a discrete p-toral group S and a subgroup
P ≤ S which is fully F -normalized, one can define rather naturally the normalizer
fusion subsystem of P in F , the saturation of which is of great importance for some
constructions we will do later on. Hence, in this section we extend the results in
appendix §A [BLO03b] to the compact case.

We start by introducing some notation (which already comes from appendix §A
in [BLO03b]). Let A ≤ S be any subgroup, K ≤ Aut(A), and set

AutK
F

(A) = K ∩ AutF (A) and AutK
S (A) = K ∩ AutS(A).
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Define also the K-normalizer of A as

NK
S (A) = {x ∈ NS(A)|cx ∈ K}.

Note that AutK
S (A) = NK

S (A)/CS(A), since for all x ∈ CS(A), cx = id ∈ K. We can also

think about the K-normalizer of A as the pull-back of K incl
→ Aut(A)← NS(A), where the

right-side arrow is the morphism sending x ∈ NS(A) to cx ∈ AutS(A) ≤ Aut(A). There
are two cases of this construction that will be of special interest for us: K = Aut(A)
and K = {id}. In these cases, we have

NAut(A)
S (A) = NS(A) and N{id}S (A) = CS(A).

For f ∈ HomF (A,Q), we will write

f K f −1 = { f ◦ γ ◦ f −1
|γ ∈ K},

and say that A is fully K-normalized if, for all f ∈ HomF (A,S),

|NK
S (A)| ≥ |N f K f−1

S ( f (A))|.

Definition 1.6.1. For a fixed A ≤ S and a fixed K ≤ Aut(A), we define the K-normalizer
fusion subsystem of A in F , NK

F
(A) as the fusion system over NK

S (A) with morphism sets

HomNK
F

(A)(P,P
′) = { f ∈ HomF (P,P′)|∃γ ∈ HomF (PA,P′A) : γ|P = f , γ|A ∈ K}.

In particular, we will refer to the normalizer fusion system and the centralizer fusion
system when K = Aut(A) and K = {id} respectively. This two cases will be of great
importance for us.

The main purpose of this section is then proving the following proposition.

Proposition 1.6.2. Let F be a saturated fusion system over a discrete p-toral group S, and
let A ≤ S, K ≤ Aut(A) be such that A is fully K-normalized in F . Then, the fusion system
NK
F

(A) is saturated.

Some technical lemmas are needed in order to prove this result, just as well as they
are needed in [BLO03b] for the very same purpose. We start by showing an analog
of Lemma 1.4 in [BLO03b]. This will allow us in turn to follow the same proof for
Proposition A.6 in [BLO03b] in the compact case.

Lemma 1.6.3. Let F be a fusion system over a discrete p-toral group S such that axioms (II)
and (III) in definition 1.2.2 are satisfied, and such that the next condition is also satisfied

(I’) Each subgroup P ≤ S is F -conjugate to a fully F -centralized subgroup P′ such that
OutF (P′) is finite and such that

OutS(P′) ∈ Sylp(OutF (P′)).

Then, F is saturated.

Proof. We have to check that axiom (I) in 1.2.2 is satisfied, that is
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(I) If P ≤ S is fully F -normalized, then it is fully F -centralized, OutF (P) is finite,
and

OutS(P) ∈ Sylp(OutF (P)).

Thus, let P ≤ S be fully F -normalized, and let P′ be as in condition (I’), and
f ∈ IsoF (P,P′). Since P and P′ are F -conjugate, there is an explicit isomorphism

AutF (P)
f∗ // AutF (P′)

ϕ � // f ◦ ϕ ◦ f −1.

Furthermore, this isomorphism restricts to an isomorphism between the correspond-
ing inner automorphism subgroups, and hence it induces an isomorphism OutF (P) �
OutF (P′).

Now, since OutS(P′) ∈ Sylp(OutF (P′)), and since OutS(P) is a finite p-subgroup
of OutF (P), it follows that we can choose f so that f∗(OutS(P)) is a subgroup of
OutS(P′) ∈ Sylp(OutF (P′)).

Now, we can apply axiom (II) to the morphism f . If we set

N f = {g ∈ NS(P)| f ◦ cg ◦ f −1
∈ AutS(P′)},

then it follows that N f = NS(P) by the above, and hence P′ is also fully F -normalized.
This in turn implies that P is fully F -centralized and that condition (I) above holds.

�

Proposition 1.6.4. Let F be a saturated fusion system over a discrete p-toral group S, and
A ≤ S, K ≤ Aut(A). Then, the following properties hold:

(i) There is a subgroup A′ ≤ S and an isomorphism f ∈ IsoF (A,A′) such that A′ is fully
F -centralized and

Aut f K f−1

S (A′) ∈ Sylp(Aut f K f−1

F
(A′)).

(ii) A is fully K-normalized in F if and only if A is fully F -centralized in F and

AutK
S (A) ∈ Sylp(AutK

F
(A)).

(iii) Fix f ∈ HomF (A,S), and A′ = f (A), K′ = f K f −1. If A′ is fully K′-normalized in F ,
then there are homomorphisms

γ ∈ HomF (NK
S (A)A,S) and χ ∈ K

such that γ|A = f ◦ χ.

Proof. (i) Choose f0 ∈ HomF (A,S) such that A′ = f0(A) is fully normalized in F . Then,
by condition (I) of saturation, A′ is fully F -centralized and OutS(A′) ∈ Sylp(OutF (A′)).
Hence, f0AutK

S (A) f −1
0 is a subgroup of a Sylow p-subgroup in AutK

F
(A′). That is, there

exists α ∈ AutF (A′) such that

f0AutK
S (A) f −1

0 ≤ (α−1AutS(A′)α) ∩ ( f0AutK
F

(A) f −1
0 ) ∈ Sylp( f0AutK

F
(A) f −1

0 ).
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Set f = α ◦ f0, K′ = f K f −1. It follows that

AutK′
S (A′) = AutS(A′) ∩ ( f AutK

F
(A) f −1) ∈ Sylp(AutK′

F
(A′)).

(ii) Suppose first that A is fully F -centralized and

AutK
S (A) ∈ Sylp(AutK

F
(A)).

In particular, |CS(A)| ≥ |CS( f (A))|, for all f ∈ HomF (A,S), and we want to check that
|NK

S (A)| ≥ |N f K f−1

S ( f (A))|. This follows immediately from the extensions

CS(A) −→ NK
S (A) −→ AutK

S (A)
CS( f (A)) −→ N f K f−1

S ( f (A)) −→ Aut f K f−1

S ( f (A)),

and the fact that f −1 induces an inclusion Aut f K f−1

S ( f (A)) ↪→ AutK
S (A).

Conversely, suppose that A is fully K-normalized in F . By (i), there exists f ∈
HomF (A,S) such that f (A) is fully F -centralized and

Aut f K f−1

S ( f (A)) ∈ Sylp(Aut f K f−1

F
( f (A))).

The following inequalities hold by hypothesis

• |CS(A)| ≤ |CS( f (A))|,

• |NK
S (A)| ≥ |N f K f−1

S ( f (A))|, and

• |AutK
S (A)| ≤ |Aut f K f−1

S ( f (A))|.

By the same arguments in the proof of Lemma 1.6.3, all these inequalities have to be
equalities, and (ii) holds.

(iii) Assume that f ∈ HomF (A,S) is such that A′ = f (A) is fully K′ = f K f −1-
normalized in F .

First note that A′ is fully K′-normalized if and only if it is fully K′ · Inn(A′)-
normalized in F . Hence, we can replace K by K · Inn(A) without loss of generality,
and thus A ≤ NK

S (A) (similarly for A′).
Since A′ is fully K′-normalized, by (i) it is fully F -centralized and

AutK′
S (A′) = Aut f K f−1

S (A′) ∈ Sylp(Aut f K f−1

F
(A′)).

Furthermore, there is some χ ∈ AutK
F

(A) such that

f (χAutK
S (A)χ−1) f −1

≤ AutK′
S (A′).

Now, since A′ is fully F -centralized, we can apply axiom (II) to the morphism
f ◦ χ ∈ HomF (A,S) to see that it extends to some γ ∈ HomF (N,S), where

N = N f◦χ = {g ∈ NS(A)|( f ◦ χ)cg( f ◦ χ)−1
∈ AutS(A′)}.

Note that if g ∈ NK
S (A), then g ∈ N, and (iii) follows.

�
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Lemma 1.6.5. Let F be a saturated fusion system over a discrete p-toral group S, and let
A ≤ S, K ≤ Aut(A) be such that A is fully K-normalized in F . Then, the following holds:

(i) For any f ∈ HomF (NK
S (A)A,S), f (A) is fully f K f −1-normalized in F .

(ii) For any H C K, A is fully H-normalized in F .

Proof. Point (i) corresponds to Lemma A.4 in [BLO03b] and point (ii) to Lemma A.5
in [BLO03b]. Both proofs apply here.

�

Let F be a saturated fusion system over a discrete p-toral group S, and let A ≤ S,
K ≤ Aut(A) be such that A is fully K-normalized in F . Consider the K-normalizer
fusion subsystem NK

F
(A). We introduce some notation before the proof of 1.6.2.

For each P ≤ NK
S (A), I ≤ Aut(P), set

I · K = {α ∈ Aut(PA)|α|P ∈ I, α|A ∈ K} ≤ Aut(PA).

Then, the following holds

(1.2) NI
NK

S (A)
(P) = NI·K

S (PA)(≤ NK
S (A)).

Furthermore, the following restriction map is surjective

(1.3) AutI·K
F

(PA)� AutI
NK
F

(A)
(P).

Let P ≤ NK
S (A), and f ∈ HomNK

F
(A)(P,NK

S (A)). By definition, we can see f as a
morphism f ′ ∈ HomF (PA,S) such that f ′

|A ∈ K, f ′
|P = f , f ′(P) ≤ NK

S (A).

Lemma 1.6.6. Let P ≤ NK
S (A), I ≤ Aut(P). Then the following holds:

(i) There exists a morphism f ∈ HomF (PA,S) such that f (PA) is fully f (I · K) f −1-
normalized in F and f|P is a morphism in NK

F
(A).

(ii) If P is fully I-normalized in NK
F

(A), then PA is fully (I · K)-normalized in F .

Proof. (i) Choose f0 ∈ HomF (PA,S) such that f0(PA) is fully f0(I · K) f −1
0 -normalized in

F , and set f1 = ( f0)|A. Since A is fully K-normalized in F , we can apply Proposition
1.6.4 (iii) to the morphism f −1

1 : f1(A)→ A. Thus, there exist

φ ∈ HomF (N
f1K f−1

1
S ( f1(A)) f1(A),S) and χ ∈ f1K f −1

1

such that φ| f1(A) = f −1
1 ◦ χ = χ′ ◦ f −1

1 , where χ′ = f −1
1 χ f1 ∈ K.

If we set now f = φ ◦ f0, then it satisfies

• f|A = (φ ◦ f0)|A = (χ′ ◦ f −1
1 ◦ f1) = χ′ ∈ K;

• f (P) = χ( f0(P)) ≤ NK
S (A),
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where the second inequality holds since f0(P) ≤ N
f1K f−1

1
S ( f1(A)) and becauseφ(N

f1K f−1
1

S ( f1(A))) ≤
NK

S (A). Thus, f|P is a morphism in NK
F

(A) and f (PA) is fully f (I · K) f −1-normalized in
by Lemma 1.6.5 (i).

(ii) Assume P is fully I-normalized in NK
F

(A). Using point (i), we can choose
f ∈ HomF (PA,S) such that f (PA) is fully f (I · K) f −1-normalized in F , and f|P is a
morphism in NK

F
(A).

Then, we have a chain of inequalities

|NI·K
S (PA)| = |NI

NK
S (A)

(P)| ≥ |N f I f−1

NK
S (A)

( f (P))| = |N f (I·K) f−1

S ( f (PA))|,

where the two equalities hold by (1.2) and because f|A ∈ K, and the inequality holds
because P is fully I-normalized in NK

F
(A).

Hence, PA is fully (I ·K)-normalized inF since f (PA) is fully f (I ·K) f −1-normalized
in F .

�

We are ready to prove Proposition 1.6.2 above.

Proof. (of Proposition 1.6.2). We will prove condition (I’) in 1.6.3 and conditions (II)
and (III) from 1.2.2. For the sake of an easier reading, we will recall each of the
statements here.

(I’) For each P ≤ NK
S (A), there exists f ∈ HomNK

F
(A)(P,NK

S (A)) such that f (P) is fully
centralized in NK

F
(A), and

AutNK
S (A)( f (P)) ∈ Sylp(AutNK

F
(A)( f (P))).

Let KP = Aut(P) · K. By Lemma 1.6.6 (i), there exists γ ∈ HomF (PA,S) such that
γ(PA) is fully γKPγ−1-normalized in F , and such that f = γ|P is a morphism in NK

F
(A).

Then, by (1.2), CNK
S (A)( f (P)) = N1·K

S (γ(PA)) = Nγ(1·K)γ−1

S (γ(PA)). Let f ′ ∈ HomNK
F

(A)(P,NK
S (A))

be any other morphism in NK
F

(A), and let γ′ ∈ HomF (PA,S) be such that γ′
|P = f ′. Then,

again by (1.2), CNK
S (A)( f ′(P)) = Nγ′(1·K)(γ′)−1

S (γ′(PA)), and hence

|CNK
S (A)( f (P))| = |Nγ(1·K)γ−1

S (γ(PA))| ≥ |Nγ′(1·K)(γ′)−1

S (γ′(PA))| = |CNK
S (A)( f ′(P))|,

because γ(PA) is fully γ(1 · K)γ−1-normalized in F .
It remains to check the Sylow condition. Since the subgroup γ(PA) is fully γKPγ−1-

normalized in F , by Proposition 1.6.4 (ii) it follows that

AutγKPγ−1

S (γ(PA)) ∈ Sylp(AutγKPγ−1

F
(γ(PA))).

Also, NNK
S (A)( f (P)) = NγKPγ−1

S (γ(PA)) by (1.2) and also because γKPγ−1 = Aut( f (P)) · K.
Hence, by (1.3),

AutNK
S (A)( f (P)) ∈ Sylp(AutNK

F
(A)( f (P))).

(II) If f ∈ HomNK
F

(A)(P,NK
S (A)) is such that P′ = f (P) is fully centralized, then there

exists f̃ ∈ HomNK
F

(A)(N f ,NK
S (A)) extending f , where

N f = {g ∈ NNK
S (A)(P)| f cg f −1

∈ AutNK
S (A)(P

′)}.
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First, we construct a candidate to extend f . Let I = AutN f (P), that is, all the
automorphisms of P which are conjugation by an element in N f . Then, I′ = f I f −1

≤

AutNK
S (A)(P′), and

AutI′

NK
S (A)

(P′) = I′ = AutI′
AutNK

F
(A)

(P′),

since the groups on the right and on the left are intersections with I′. Thus AutI′

NK
S (A)

(P′) ∈

Sylp(AutI′

NK
F

(A)
(P′)).

This, together with the fact that P′ is fully centralized in NK
F

(A) and Proposition
1.6.4(ii), implies that P′ is fully I′-normalized, and hence, by Lemma 1.6.6(ii), f (P)A is
fully I′ · K-normalized in F .

By definition of NK
F

(A), there exists γ ∈ HomF (PA,S) such that γ|P = f , γ|A ∈ K
(thus γ(PA) = f (P)A). Also, by Proposition 1.6.4(iii), there exist

φ ∈ HomF (NI·K
S (PA)A,S) and χ ∈ I · K

such that φ|PA = γ ◦ χ.
Now, by construction and by (1.2), N f ≤ NI·K

S (PA) = NI
NK

S (A)
(P), and hence f0 =

φ|N f ∈ HomF (N f ,S). This is our candidate to be an extension of f . Namely, f0 has to
satisfy

• ( f0)|A ∈ K,

• f0(N f ) ≤ NK
S (A), and

• ( f0)|P = f .

The first condition is satisfied since ( f0)|A = φ|A = (γ ◦χ)|A, and both γ|A and χ|A are
in K, and the second condition follows then by construction.

The third condition, however, may fail: ( f0)|P = γ|P ◦ χP, where χ|P ∈ I = AutN f (P).
This is not a problem since this means that χ|P = cg for some g ∈ N f , and we can
modify f0 to satisfy also the third condition (withou losing the other conditions): f
extends to f0 ◦ c−1

g ∈ HomNK
F

(A)(N f ,NK
S (A)).

(III) Let P1 ≤ P2 ≤ . . . be an ascending chain of subgroups of NK
S (A), and let P = ∪Pn.

If f ∈ Hom(P,NK
S (A)) is such that fn = f|Pn is a morphism in NK

F
(A) for all n, then so is

f .
For each n, since fn is a morphism in NK

F
(A), there exists a morphism γn ∈

HomF (PnA,S) such that (γn)|Pn = fn, (γn)|A ∈ K. Let φn = (γn)|A. For each n, since
φn ∈ K, there exists ωn ∈ K such that

φn = φn+1 ◦ ωn.

Let in : PnA→ Pn+1A be the natural inclusion, and let i′n : PnA→ Pn+1A be defined
by i′(x) = x if x ∈ Pn and i′n(x) = ωn(x) if x ∈ A. Note that if x ∈ Pn ∩ A, then

ωn(x) = (φ−1
n+1 ◦ φn)(x) = x,

and hence i′n is a well-defined group homomorphism which makes the following
diagrama commutative:

Pn+1A γn+1

''OOOOO

S.

PnA

i′n

OO

γn

77ooooo
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Thus, {γn} is an element of a (non-empty) inverse system, and thus, by Proposition
1.1.4 [RZ00], there exists an element γ in the limit satisfying γ|Pn = fn, γ|P = f , γ|A ∈ K.
Thus, γ is a morphism in F , and so f is a morphism in NK

F
(A).

�

1.7 An alternative definition of saturation

The definition of a saturated fusion system is rather technical, and usually proving
saturation becomes quite a colossal task. This is why in the various papers about
fusion systems that have appeared since they were defined different strategies to deal
with saturation have been developed. We have already seen one of this situations in
Lemma 1.6.3, in the previous section.

In this section we study an equivalent definition for saturation of fusion systems
over discrete p-toral groups which was originally developed for fusion systems of
blocks in [KS08] (see Definition 2.4 in [KS08]). Let F be a fusion system over a
discrete p-toral group S, and consider the following conditions:

(I’) AutS(S) ∈ Sylp(AutF (S)).

(II’) Let f : P → S be a morphism in F such that P′ = f (P) is fully F -normalized.
Then, f extends to a morphism f̃ : N f → S in F , where

N f = {g ∈ NS(P)| f ◦ cg ◦ f −1
∈ AutS(P′)}.

The main result of this section is the following proposition.

Proposition 1.7.1. The fusion system F is saturated (in the sense of definition 1.2.2) if and
only if it satisfies axioms (I’), (II’) and (III) (the last one being the same as in 1.2.2).

Before proving this, we need some technical results, in order to compare the
axioms from definition 1.2.2 to this new set of axioms.

Lemma 1.7.2. Let F be a saturated fusion system over a discrete p-toral groups S. Then, a
subgroup P ≤ S is fully F -normalized if and only if it is fully F -centralized and AutS(P) ∈
Sylp(AutF (P)).

Proof. The “only if” part is clear by axiom (I) for saturated fusion systems, and we
have to prove the “if” part. Assume then that P is fullyF -centralized and AutS(P) is a
Sylow p-subgroup of AutF (P). Let also P′ ∈ 〈P〉F be a fully F -normalized subgroup.
Then, there is a morphism f ∈ HomF (NS(P),NS(P′)) such that f (P) = P′, and hence
also f (CS(P)) ≤ CS(P′).

In fact, since P is fully F -normalized, it follows that f|CS(P) is an isomorphism, and
thus f induces a monomorphism

f̄ : AutS(P) −→ AutS(P′).

The statement follows now because AutS(P) ∈ Sylp(AutF (P), AutS(P′) ∈ Sylp(AutF (P′),
and f induces an isomorphism

AutF (P)
f ∗ // AutF (P′)

γ � // f ◦ γ ◦ f −1.

�
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Now we can prove Proposition 1.7.1 above.

Proof. (of Proposition 1.7.1). Clearly, if F is saturated (in the sense of definition
1.2.2), then in particular it satisfies axioms (I’) and (II’). Thus, we are left to prove the
converse.

Assuem then thatF satisfies axioms (I’), (II’) and (III), and we have to prove thatF
satisfies axioms (I) and (II) (since (III) is already granted). First we show that axiom (I)
holds on F . Let P ≤ S be any subgroup, and let f ∈ HomF (P,S) be such that P′ = f (P)
is fully F -normalized. Then, by axiom (II’), f extends to some f̃ ∈ HomF (N f ,S),
where

N f = {g ∈ NS(P)| f cg f −1
∈ AutS(P)},

and, in particular, CS(P) ≤ N f . Thus, if follows that f̃ (CS(P)) ≤ CS(P′), and hence,
since this holds for all P ∈ 〈P′〉F , P′ is fully F -centralized.

Suppose now that P is fully F -normalized, and we want to prove that AutS(P) is
a Sylow p-subgroup of AutF (P). Actually, by axiom (I’), there is nothing to prove if
P = S, so we can assume that P is a proper subgroup of S. Assume also that P is
maximal in order among all (fully F -normalized) subgroups of S such that AutS(P) is
not a Sylow p-subgroup of AutF (P), and let H ∈ Sylp(AutF (P) be such that AutS(P) � H.
Let also f ∈ H \ AutS(P) be a morphism normalizing AutS(P) (since both AutS(P) and
H are discrete p-toral groups, such a morphism exists).

It follows then that for each x ∈ NS(P), there exists some y ∈ NS(P) such that
f (xgx−1) = y f (g)y−1, for all g ∈ P, and hence N f = NS(P), and hence by axiom (II’), f
extends to some γ ∈ AutF (NS(P)). Furthermore, by taking an appropriate power of γ,
we may assume that γ has p-power order.

Now, let f ′ ∈ HomF (NS(P),S) be such that N′ = f ′(NS(P)) is fully F -normalized.
Since P � S, it follows by Lemma 1.1.4 that P � NS(P), and hence AutS(N′) ∈
Sylp(AutF (N′)). In particular, γ′ = f ′γ( f ′)−1 is conjugated in AutF (N′) to an el-
ement in AutS(N′), and hence we can assume that f ′ has been chosen such that
γ′ = ch ∈ AutS(N′), for some h ∈ NS(N′).

Since γ|P = f , the automorphism γ′ restricts to an automorphism of f ′(P), and
hence y ∈ NS( f ′(P)). It follows that f ′(NS(P)) ≤ NS( f ′(P)), and since P is fully F -
normalized, the last inequality is in fact an equality, and

γ(g) = ( f ′(h))u( f ′(h))−1

for all g ∈ NS(P), and thus f ∈ AutS(P), in contradiction with the hypothesis of
f ∈ H \ AutS(P).

Finally, we prove that axiom (II) holds in F . Let f ∈ HomF (P,S) be such that
P′ = f (P) is fully F -centralized, and we have to prove that f extends to some f̃ ∈
HomF (N f ,S). Choose then some γ ∈ HomF (P′,S) such that P′′ = γ(P′) is fully F -
normalized and such that, in the notation of axiom (II’), Nγ = NS(P′), and let f ′ = γ◦ f .

Since P′′ is fully F -normalized, by (II’) it follows that both γ and f ′ extend to
morphisms γ̃ ∈ HomF (Nγ,S) and f̃ ′ ∈ HomF (N f ′ ,S) respectively. We want then to see
that

(i) N f ≤ N f ′ , and

(ii) f̃ ′(N f ) ≤ γ̃(Nγ).
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Were it the case, the composition (γ̃−1
◦ f̃ ′)|N f would then be the extension of f we are

looking for.
Let first g ∈ N f . It follows then that there is some h ∈ NS(P′) such that f cg f −1 = ch.

Furthermore, since Nγ = NS(P′), it follows then that there is some x ∈ NS(P′′) such
that

cx = γchγ
−1 = γ( f cg f −1)γ−1 = (γ f )cg(γ f )−1 = ( f ′)cg( f ′)−1.

Since this holds for all g ∈ N f , point (i) above follows.
Let now g ∈ N f , and let x = f̃ ′(g). Let also h ∈ NS(P′) be such f (gyg−1) = h f (y)h−1

for all y ∈ P. Since x = f̃ ′(g), it follows that f ′(gyg−1) = x f ′(y)x−1, and hence

γ(h f (y)h−1) = f ′(gyg−1) = x f ′(y)x−1,

which in turn implies that x = γ̃(h)c for some c ∈ CS(P′′). Now, note that CS(P) ≤ N f ′ ,
γ̃(CS(P′)) ≤ CS(P′′) and, since P′ is fully F -centralized, we deduce that γ̃(CS(P′)) =

CS(P′′). Thus, c ∈ γ̃(Nγ), and hence x ∈ γ̃(Nγ). It follows then that f̃ ′(N f ) ≤ γ̃(Nγ).
�

1.8 Further notation

Along this work, some assorted notation will be used. Thus, this section is to be
understood as a summary of the main conventions we will follow.

The first notion to introduce is that of a Sylow p-subgroup for infinite groups.,
whenever it makes sense.

Definition 1.8.1. Let G be a group, and let S be an artinian locally finite p-subgroup of G.
We say that S is a Sylow p-subgroup of G if any finite p-subgroup P ≤ G is G-subconjugate
to S.

The following lemma from §8 [BLO07] provides a tool to decide whether a group
has Sylow p-subgroups.

Lemma 1.8.2. (8.1 [BLO07]). Fix a group G, a normal discrete p-toral group Q C G, and a
group K ≤ G such that G = QK. Assume that K has Sylow p-subgroups. Then, G has Sylow
p-subgroups, and

Sylp(G) = {QS|S ∈ Sylp(G)}.

This is the case, for instance, of the automorphism groups AutF (P) and AutL(P) in
a (saturated) fusion system or a linking system, since these groups are locally finite.
Furthermore, since these groups have a normal discrete p-toral group of finite index
(Inn(P) and P respectively), their Sylow p-subgroups turn out to be discrete p-toral
groups again. This fact will be used repeatedly and implicitely in this work.

The following notions, too, will used frequently. Let G be a group, and p a prime
number. Some of the following subgroups have already appeared in this chapter.

• Op(G) is the maximal normal p-subgroup of G;

• Op′(G) is the maximal normal subgroup of G of order prime to p;

• Op(G) is the minimal normal subgroup of G of p power index;
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• Op′(G) is the minimal normal subgroup of G of p′ index.

Definition 1.8.3. Let G be a group and p a prime number. We say that G is p-reduced if
Op(G) = {1}, and that G is p′-reduced if Op′(G) = {1}.

The following lemma needs no proof.

Lemma 1.8.4. Let G be a group and let p be a prime number. Then, the following holds:

(i) Op(G) is the subgroup of G generated by all infinitely p-divisible elements of G, and

(ii) Op′(G) is the subgroup of G generated by all elements of p-power order.





Chapter 2

Groups realizing fusion systems

When dealing with p-local compact groups, and with saturated fusion systems in
general, it is sometimes useful to have a group realizing the fusion system. The
problem of constructing such group models for finite fusion systems has been dealt
with from different points of view, see for instance [Rob07] and [LS07]. In this chapter
we extend (some of) the results in [Rob07] for fusion systems over discrete p-toral
groups. That is, given such a saturated fusion systemF over S, we show the existence
of a group G such that FS(G) = F .

While the results in [Rob07] hold for a larger class of fusion systems than the
class of saturated ones (and it is possible to extend the results in this chapter to the
generality of [Rob07]), we are actually interested only on saturated fusion systems,
and hence restrict the statements here to this class of fusion systems for simplicity. In
this sense, we depend, in a previous step, on the work on constrained fusion systems
done in [BCG+05]. Equivalent results for the compact case are needed if we want to
extend the results from the first paper. Thus, this chapter is divided in two sections,
the first one studying constrained fusion systems over discrete p-toral groups, and
the second one realizing saturated fusion systems over discrete p-toral groups.

We have chosen to extend Robinson’s models for fusion systems because of their
resemblance with the construction of unstable Adams operations for p-local com-
pact groups done in [Jun09], since we intend to combine both constructions in later
chapters. We have not, however, explored the possibilities of other group models for
fusion systems, which will certainly be of interest in the theory of p-local compact
groups.

2.1 Constrained fusion systems

As happened already in the case of saturated fusion systems over finite p-groups,
constrained fusion systems are really well behaved, and this translates in the fact
that, for such a fusion system, there exists a unique associated centric linking system.
Actually, there is not much work to do in this section since most of the work on higher
limits that we need here has already been done in [BLO07].

Let G be a locally finite, artinian p′-reduced group (definition 1.8.3). The group G
is then said to be p-constrained if there exists some normal p-subgroup P C G which
is centric in G (i.e., CG(P) ≤ P).

21
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Definition 2.1.1. Let F be a saturated fusion system over a discrete p-toral group S. We say
that F is constrained if it contains an object P which is F -centric and F -normal.

We now show the equivalent to Proposition 4.2 in [BCG+05] about the obstructions
to existence and uniqueness of associated linking systems. For a saturated fusion
system F , recall the center functorZF on O(F c) defined in 1.5.5 byZF (P) = Z(P) for
all F -centric subgroups.

Proposition 2.1.2. Let F be a constrained saturated fusion system over a discrete p-toral
group S. Then,

lim
←−−

i
O(F c)(ZF ) = 0

for all i > 0. In particular, there exists a unique (up to isomorphism) centric linking system
associated to F .

Proof. As a first reduction, by Proposition 1.5.3, there is an isomorphism lim
←−−

∗

O(F c)(ZF ) �
lim
←−−

∗

O(F •c)(ZF ), where the orbit subcategory O(F •c) contains finitely many conjugacy
classes. This allows us now to follow the strategy for the proof of Proposition 4.2 in
[BCG+05].

Fix a subgroup Q C S which is F -centric and normal in F . Let also P1,P2, . . .Pm

be representatives of the F -conjugacy classes of F -centric subgroups P ≤ S such that
P � Q. We can order these representatives by their order, that is, |P j| ≤ |P j+1| for all j.
We can then filtrate the functorZF as follows. For j = 0, 1, . . . ,m, letZ| ⊆ ZF be the
subfunctor

Z j(P) =

{
Z(P) , if P is F -conjugate to P j for some k > j,
0 , otherwise.

This filtration satisfies then that for each j, Z j−1/Z j vanishes except on the single
F -conjugacy class of P j. By Proposition 5.4 in [BLO07], it follows that

lim
←−−

∗

O(F •c)(Z j−1/Z j) � Λ∗(OutF (P j); Z(P j)).

Since P j � Q (and since P j isF -centric), NP jQ(P j)/P j � OutQ(P j) is a non-trivial normal
subgroup of OutF (P j), and since OutF (P j) is finite, it follows by 6.1 (ii) in [JMO92b]
that Λ∗(OutF (P j); Z(P j)) = 0. This in turn implies that lim

←−−

∗(Z j) = 0 for all j, and in
particular for j = 0. Thus, there is an isomorphism

(2.1) lim
←−−

∗

O(F •c)(ZF ) � lim
←−−

∗

O(F •c)(ZF /Z0),

whereZF /Z0 is the quotient functor

(2.2) (ZF /Z0)(P) =

{
Z(P) = Z(Q)P , if P ≥ Q,
0 , if P � Q.

Let Γ = OutF (Q) and S′ = OutS(Q) � S/Q. Since F is saturated (and Q is F -
normal), it follows that S′ ∈ Sylp(Γ). Consider the Z(p)[Γ]-module M = Z(Q). Note
that, since Q is F -normal and F -centric, rk(Q) = rk(S) (since OutS(Q) has to be finite),
and hence S′ is a finite p-group. Thus, we can consider the fixed-point functor on
OS′(Γ), H0M, defined by H0M(P) = MP, and this turns out to be acyclic by Proposition
5.2 in [JMO92b]. Hence, by (2.1), the proof will be finished if we show that

lim
←−−

∗

O(F •c)(ZF /Z0) � lim
←−−

∗

OS′ (Γ)(H
0M).
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As in the finite case (using the functor ( )•), it follows now, since Q is F -normal
and F -centric, that OS′(Γ) is isomorphic to the full subcategory of O(F •c) with objects
the subgroups of S containing Q. Under this identification, H0M is the restriction of
ZF /Z0 by (2.2), and the isomorphism above follows since (ZF /Z0)(P) = 0 for all
P � Q, and since there are no morphisms in O(F •c) from an object in the subcategory
to an object not in it.

Finally, existence and uniqueness of a centric linking L associated to F follow by
Proposition 1.5.6.

�

Finally, we prove the main result about constrained saturated fusion systems.

Proposition 2.1.3. Let F be a constrained saturated fusion system over a discrete p-toral
group S. Then, there exists a unique (up to isomorphism) p′-reduced p-constrained artinian
locally finite group G such that

(i) S ∈ Sylp(G),

(ii) F = FS(G), and

(iii) ifL is a (the) centric linking system associated toF , then G � AutL(P) for anyF -centric
subgroup P which is normal in F , and L � LS(G).

Proof. By Proposition 2.1.2, let L be the linking system associated to F , and let
ρ : L → F c be the projection functor. Fix also a compatible set of inclusions {ιP,Q} in
L.

Let QC be a F -centric F -normal subgroup, and let G = AutL(Q). Then, since L is
a transporter system (as showed in Proposition A.2.5) there is an inclusion

S = NS(Q)
δQ
−→ AutL(Q) = G.

Since Q is F -centric and F -normal, S/Q � OutS(Q) ∈ Sylp(OutF (Q)), and hence there
is a commutative diagram

Q // S
δQ

��

// OutS(Q)

��
Q

δQ

// G // OutF (Q).

This implies, in particular, that S is a Sylow p-subgroup of G in the sense that each
p-subgroup of G is subconjugate to a subgroup of S (since OutF (Q) is finite and hence
the Sylow theorems apply on it). Note also that, since G is the automorphism group
of Q in L, it is an artinian locally finite group.

The rest of properties in the statement above now hold using the same arguments
used to prove Proposition 4.2 in [BCG+05], but we reproduce here the prove for the
sake of clarity.

We next prove that G is p′-reduced and p-constrained. Let P,P′ ≤ S be any pair
of subgroups containing Q. By Lemma 3.2 [OV07], for any ϕ ∈ MorL(P,P′), there is
a unique restriction of ϕ to Q, in the sense that there is a unique γ(ϕ) ∈ G such that
ιQ,S ◦ γ(ϕ) = ϕ ◦ ιQ,P. Furthermore, these restrictions satisfy that
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(a) γ(ϕ′ ◦ ϕ) = γ(ϕ′) · γ(ϕ) ∈ G, for any pair of composable morphisms (containing
Q), and

(b) γ(δ(x)) = x for all x ∈ NS(P,P′).

In addition, by axiom (C) of linking systems, it follows that, for each g ∈ P,

δ(ρ(ϕ))(g) ◦ ϕ = ϕ ◦ δ(g) ∈MorL(P,S),

which, after restricting to Q, yields the relation

δ(ρ(ϕ)(g)) ◦ γ(ϕ) = γ(ϕ) ◦ δ(g) ∈ G,

or, equivalently,

(c) γ(ϕ) ∈ NG(P,P′) and cγ(ϕ) = ρ(ϕ) ∈ HomF (P,P′).

Now, there are equalities

CG(Q) = Ker(AutL(Q)
ρ
−→ AutF (Q)) = Z(Q),

where the first equality holds from property (c) (applied with P = P′ = Q), and the
second holds by axiom (A) of linking systems. Hence, Q is centric in G. This also
shows that G is p′-reduced and p-constrained.

Next we prove that F = FS(G). The inclusion HomF (P,P′) ⊆ HomG(P,P′) is easily
seen to hold by lifting morphisms to L and using property (c) above. On the other
hand, let P,P′ ≤ S (and assume Q is contained in both P and P′), and let g ∈ NG(P,P′),
and cg be the induced morphism. Then, f = cg restricts to an automorphism in F of
Q by (c) above, and since Q is fully F -centralized, this morphism extends to some
f̃ ∈ HomF (N f ,S), where

N f = {x ∈ S = NS(Q)| f cx f −1
∈ AutS(Q)}

as usual. Furthermore, it is clear by hypothesis that P ≤ N f . In particular, f extends
to f̃ ∈ HomF (P,S) ⊆ HomG(P,S) (taking restrictions of the original f̃ if necessary). Let
then h ∈ NG(P,S) be such that f̃ = ch, and note that (ch)|Q = f̃|Q = f = cg. Hence, h = gx,
for some x ∈ CG(Q) = Z(Q), and x ∈ P, cx ∈ AutF (P). Thus, f = cg ∈ HomF (P,S), and
f (P) = gPg−1

≤ P′.
Finally, we check property (iii) in the statement. Since G is artinian and locally

finite, and has Sylow p-subgroups, we can apply Theorem 8.7 in [BLO07] to see that
G induces a p-local compact group (S,F ′,L′). But in fact we have already proved that
F
′ = FS(G), and by Proposition 2.1.2, there is (up to isomorphism) a unique centric

linking system L associated to FS(G). Hence, L � LS(G) � L′.
Let Q ≤ S be F -centric and F -normal. We want to prove that G � AutL(Q). Let

Q′ = Op(G), and note that CG(Q′) = Z(Q′) since G is p-constrained (there exists some
discrete p-toral subgroup P C G which is centric, and hence Q′ ≥ P by definition of
Q′). Since Q is normal in F , each cg ∈ AutG(Q′) extends to some ch ∈ AutG(QQ′). It
follows that g−1h ∈ CG(Q′) = Z(Q′), h ∈ NG(QQ′), and so g ∈ NG(QQ′). This shows
that QQ′ is a normal discrete p-toral subgroup of G, and hence, by definition of Q′,
Q ≤ Q′. Hence, for any g ∈ G, cg ∈ AutG(Q′) restricts to cg ∈ AutF (Q), and Q C G. In
particular,

AutL(Q) = NG(Q)/Op(CG(Q)) = G/{1} = G.

�
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2.2 Robinson groups realizing fusion systems

Now we can extend the results from [Rob07] to the compact case. This models for
fusion systems are amalgams of locally finite, and this make them a rather wild model,
sometimes difficult to deal with. For instance, while such a group will have S as a
Sylow p-subgroup by construction, it is not at all clear that an arbitrary subgroup
G′ ≤ G has Sylow p-subgroups at all.

Let F be a saturated fusion system over a discrete p-toral group S, and choose
representatives P1 = S,P2, . . . ,Pr of the F -conjugacy classes of F -centric F -radical
subgroups, such that P j is fully F -normalized for all j. From 1.3.2 (i) and 1.3.4 we
already know that there are finitely many F -conjugacy classes of such subgroups.

Now, for each P j in the list above, we have proved in 1.6.2 that the fusion system

N j
de f
= NF (P j) is saturated, since we have chosen P j to be fully F -normalized. Fur-

thermore, since P j is F -centric, it is also N j-centric, and it is normal in N j just by
definition of the normalizer fusion subsystem. Thus, N j is a constrained saturated
fusion system, and we may apply Proposition 2.1.3 to it: N j is realized by a certain
group L j such that NS(P j) ∈ Sylp(L j) by 2.1.3 (i).

Definition 2.2.1. Let F be a saturated fusion system over a discrete p-toral group S. A
fusion-controlling set is a setP = {P1 = S,P2, . . . ,Pr} of representatives of theF -conjugacy
classes of F -centric (F -radical) subgroups such that, for each j, P j is fully F -normalized.

Note that the group L j realizing the normalizer fusion subsystem NF (P j) is de-
termined up to isomorphism by P j and F , and hence there is no need of fixing L j

too.
Since Ob(F •) contains finitely many F -conjugacy classes, it follows that so does

such a set P. Furthermore, as long as P contains F -centric fully F -normalized
subgroups, the following hold for all P ∈ P:

(i) the normalizer fusion subsystem NF (P) is a saturated a saturated fusion system
over NS(P), and

(ii) P is a NF (P)-centric subgroup which is normal in NF (P).

In particular, NF (P) is constrained and Theorem 2.1.3 applies to it.

Lemma 2.2.2. Let F be a saturated fusion system over a discrete p-toral group S, and let
P be a fusion-controlling set for F . For each P ∈ P, let L be the group realizing the fusion
system NF (P). Then, the following holds:

(i) P = Op(L);

(ii) L/P = OutF (P);

(iii) NS(P) ∈ Sylp(L).

Proof. It is immediate by definition.
�

The main result of this section is stated below.
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Theorem 2.2.3. Let F be a saturated fusion system over a discrete p-toral group S, and let
P = {P1 = S,P2, . . . ,Pr} be a fusion-controlling set for F . Furthermore, for each P j ∈ P, let
N j = NS(P j) and L j be the group obtained in 2.1.3.

Then, the group
G = L1 ∗N2 L2 ∗N3 . . . ∗Nr Lr

satisfies the following properties:

(i) P1 = S is a Sylow p-subgroup of G;

(ii) G realizes the fusion system F , that is F = FS(G).

We will call the group G in the statement a Robinson group realizing the fusion
system F . Notice that G depends on the fusion-controlling set P that we have
previously fixed, but different choices of fusion-controlling sets give rise to isomorphic
groups.

Before proving the theorem, we study the case where r = 2, that is,

G = L1 ∗N2 L2.

The proof for Theorem 2.2.3 is reduced then to show the following result.

Theorem 2.2.4. Let H and K be groups which have Sylow p-subgroups and such that such
Sylow p-subgroups are discrete p-toral groups, and let S ∈ Sylp(H), P ∈ Sylp(K) be such that
P ≤ S. Then, the group G = H ∗P K has Sylow p-subgroup S and the G-fusion system on S is
precisely that generated by the H-fusion system on S and the K-fusion system on P.

A lemma is needed before giving a proof for the theorem.

Lemma 2.2.5. (Lemma 1 [Rob07]). Let G = A ∗C B, where C is a common subgroup of A and
B. Let also X ≤ A and g ∈ G \A be such that Xg

≤ A or Xg
≤ B. Write g = a0b1a1 . . . bsasb∞,

where ai ∈ A \ C for i = 0, . . . , s and bi ∈ B \ C for i = 1, . . . , s,∞. Set X0 = Xa0 , Y1 = Xb1
0 ,

X1 = Ya1
1 , etc. Then,

〈X0,Yi,Xi|1 ≤ i ≤ s〉 ≤ C.

This lemma is proved in [Rob07] without finiteness restrictions on A, B, C or X.
Thus the proof is the same here.

Proof. (of Theorem 2.2.4). By (the corollary of) Theorem 4.3.8 in [Ser03], and using
the Sylow hypothesis on S ≤ H and P ≤ K, it follows that every finite p-subgroup of G
is subconjugate to S. Since every discrete p-toral subgroup of G, R, can be expressed
as a union of finite p-subgroups, R = ∪R j, it follows then that every discrete p-toral
subgroup of G is subconjugate to S, and hence S is a Sylow p-subgroup of G.

It is easy to see then that the fusion system over S induced by G contains the fusion
system over S induced by H and the fusion system over P induced by K, F ⊆ FS(G),
and we have to prove the equality.

By Lemma 2.2.5, if R ≤ H, h1, . . . , hr+1 ∈ K \ P and g1, . . . , gr ∈ H \ S are such that

R′ = Rh1 g1...hr grhr+1 ≤ H,

then all the intermediate subgroups R,Rh1 ,Rh1 g1 , . . . ,R′ are subgroups of P.
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Let now R ≤ S be a non-trivial subgroup, and suppose that 〈R,Rg
〉 ≤ S for some

g ∈ G, and we have to show that conjugation by g is a morphism in F . If g ∈ H,
there is nothing to show, so we can assume that this is not the case. Thus, there exist
(possibly identity) elements g−∞, g∞ ∈ H, and elements h1, . . . , hr, hr+1 ∈ H \ S and
g1, . . . , gr ∈ K \ P such that

g = g−∞h1g1 . . . hrgrhr+1g∞.

If we set R0 = Rg−∞ and R1 = (R0)h1 g1...hr grhr+1 , then 〈R0,R1〉 ≤ H, and hence by Lemma
2.2.5, all the intermediate subgroups

R0, (R0)h1 , (R0)h1 g1 , . . . , (R0)h1 g1...hr+1

are contained in P.
Now, conjugation from R to R0 is a morphism in FS(H) (that is, it corresponds

to conjugation by g−∞ ∈ H). Conjugation from R0 to (R0)h1 is a morphism in FP(K)
(conjugation by h1 ∈ K). In general, conjugation from (R0)h1...h j to (R0)h1...h j g j is a
morphism in FS(H) (for j = 1, . . . , r), while conjugation from (R0)h1...g j to (R0)h1...h j+1 is a
morphism inFP(K) (for j = 1, . . . , r). Finally, conjugation from (R0)h1...hr+1 to (R0)h1...hr+1 g∞

is a morphism in FS(H).
This shows that every morphism induced by conjugation by an element of G on

subgroups of S can be expressed as a sequence of conjugations in FS(H) and FP(K),
and hence F = FS(G).

�

Proof. (of Theorem 2.2.3). This is just an iterated application of Theorem 2.2.4.
�

Let F be a saturated fusion system over a discrete p-toral group S, let P be an
(enlarged) fusion-controlling set for F , and let G be the corresponding Robinson
group realizing F . Let also P ≤ S. Then, for each Q ∈ P such that P ≤ Q, there is an
obvious inclusion

(2.3) ιP,Q : P incl
−→ Q δ

−→ LQ
incl
−→ G,

where LQ is the group realizing the normalizer fusion subsystem of Q.





Chapter 3

Connected p-local compact groups

The notion of p-local compact groups was introduced as a unifying homotopical
setting for (p-completed classifying spaces of) compact Lie groups and p-compact
groups. As such, one would like then to have classification of p-local compact groups,
and, if possible, as close as possible to the classification of compact Lie groups and
p-compact groups ([AGMV08] and [AG09]).

If this is to be the case, then a notion of connectivity on p-compact groups is needed
in order to do a first reduction from general p-local compact groups to connected p-
local compact groups. This is in fact a major gap in the theory, closely related to the
fact that Bousfield-Kan p-completion ([BK72]) does not preserve fibrations in general.

We introduce in this chapter the notion of connected p-local compact groups, and
exploit it in the case of rank 1 p-local compact groups. In this sense, it is not difficult
to give a list of all connected p-local compact groups of rank 1, but it is not at all clear
yet how one can reduce to consider only connected p-local compact groups.

This chapter is then organized as follows. We start by giving a notion of connec-
tivity for p-local compact groups and showing some of its properties. The second
section is devoted to study connectivity on p-local compact groups of rank 1. In this
chapter we prove that given a rank 1 p-local compact group G, a unique connected
p-local compact subgroup is determined by G, G0, which we consider as the con-
nected component of G, and furthermore, it can be equipped with an inclusion of
p-local compact groups. Finally, the third section discusses briefly the existence of
such connected components in the general rank case.

The author wants to thank C. Broto, R. Levi and B. Oliver for their useful notes on
connectivity for p-local compact groups, as well as many talks on the subject. Some
of the notions in this chapter were “suspected” to the author, but got the final shape
thanks to them.

3.1 A notion of connectivity

As a first attempt to define connectivity on p-local compact groups we could say
that G = (S,F ,L) is (topologically) connected if BG = |L|∧p is simply connected. This
turns out to be quite a confusing definition, since some p-local finite groups can be
connected in this sense. Thus, a stronger notion is required, and since the “only”
difference between saturated fusion systems over finite p-groups and discrete p-toral

29
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groups is the existence of a maximal torus of positive rank, this notion should take
into account this maximal torus.

Lemma 3.1.1. LetF be a saturated fusion system over a discrete p-toral group S, and let T be
its maximal torus. Then, there exists a (unique) minimal strongly F -closed subgroup S0 ≤ S
containing T.

The subgroup S0 will be called the connected component of S with respect to F .
Note that if S is finite, then S0 = {1}.

Proof. The existence of S0 can be proved by taking the intersection of all strongly
F -closed subgroups of S containing T, since the intersection of two stronglyF -closed
subgroups is again a strongly F -closed subgroup.

�

An alternative characterization of the subgroup S0 can be given as follows. Let P1

be the subgroup of S generated by all the elements of S which are F -subconjugate
to T, and let in general Pn+1 be the subgroup of S generated by all the elements in S
which are F -subconjugate to Pn. Let also S′0 = ∪Pn.

Lemma 3.1.2. Let F be a saturated fusion system over a discrete p-toral group S, and let S0

be the connected component of S with respect to F and S′0 be defined as above. Then, S′0 = S0.

Definition 3.1.3. Let F be a saturated fusion system over a discrete p-toral group S, and let
S0 be the connected component of S with respect to F . The group of components of F is
defined then as the saturated fusion system

π0(F )
de f
= F /S0

over the finite p-group S/S0.
Similarly, if G is a p-local compact group, and S0 is the connected component of S with

respect toF , then the p-local finite group of components ofG is defined as the p-local finite
group

π0(G)
de f
= (S/S0, π0(F ), π0(L)

de f
= (L/S0)c).

The fact that π0(F ) is saturated follows by Proposition A.1.1, since S0 is strongly
F -closed. Similarly, by Proposition A.3.3, together with Proposition A.2.6, π0(G) is
indeed a p-local finite group.

For a saturated fusion system F over a discrete p-toral group S, let Op′(F ) over S
be the minimal saturated fusion subsystem of F of index prime to p, whose existence
has been proved in Theorem B.4.3. By Theorem B.4.4, an associated centric linking
system L on F induces a centric linking system Op′(L) associated to Op′(F ).

Definition 3.1.4. Let F be a saturated fusion system over a discrete p-toral group S, and let
S0 be the minimal strongly F -closed subgroup of S containing T. Then, we say that F is
connected if each x ∈ S is F -subconjugate to T and F = Op′(F ).

Let G be a p-local compact group. Then, we say that G is connected if the corresponding
fusion system F is connected in the sense above.
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Note that if F is connected, then in particular S = S0. The above condition on
Op′(F ) appears in order to avoid “unnatural” situations, like the p-compact groups
known as the Sullivan spheres, whose induced p-local compact groups satisfy that all
x ∈ S is F -subconjugate to T, but Op′(F ) & F , and can in fact be seen as extensions
of finite groups by a discrete p-torus of rank 1. Note also that, if S is finite and F is
a connected saturated fusion system over S, then S = {1} and F is the trivial fusion
system.

Lemma 3.1.5. If G is a connected p-local compact group, then BG is topologically connected.

Proof. By Proposition 4.4 [BLO07], there is a natural epimorphism S� π1(BG), where
π1(BG) is in fact a finite p-group. Thus, if we set K for the kernel of this epimorhphism,
then K contains the maximal torus T of S.

We next claim that K is a strongly F -closed subgroup. Indeed, let P ∈ Ob(L),
ϕ ∈ AutL(P), f = ρ(ϕ) ∈ AutF (P) and g ∈ P ∩ K. Then, by axiom (C) on linking
systems,

δP(x) = ϕ ◦ δP(g) ◦ ϕ−1,

where x = f (g). Let alsoω : Mor(L)→ π1(|L|) the map from (the proof of) 4.4 [BLO07],
and set for simplicity ω : Mor(L)→ π1(BG) the composition of the former ω with the
p-completion. In particular, this map sends compositions to products.

It follows then that ω(δP(g)) = [1] ∈ π1(BG), since g ∈ K, and hence

ω(δP(x)) = ω(ϕ) · ω(δP(g)) · ω(ϕ−1) = [1],

which means that x ∈ K. Alperin’s fusion theorem then implies that K is strongly
F -closed.

Now, by hypothesis, S is its own connected component with respect to F , and in
particular, if S0 denotes the minimal strongly F -closed subgroup of S containing T,
then S0 = S. Since K is strongly F -closed and contains T, it follows that K = S.

�

Before finishing this section, we prove some technical lemmas that will be useful
later on in this chapter.

Lemma 3.1.6. Let F be a saturated fusion system over a discrete p-toral group S, and let
P ≤ S be F -subconjugate to T. Then,

CP(T)
de f
= CS(T) ∩ P = T ∩ P.

The last lemma can be understood as follows. If x ∈ S isF -conjugate to an element
of the torus T, then either x is already an element in T or x acts nontrivially on T.

Proof. Let f : P→ T be a morphism in F . We can assume that P = 〈x〉 (otherwise we
can restrict f to all the cyclic subgroups of P), and furthermore we can suppose that
P′ = f (P) is a fully F -centralized, since it is a subgroup of T. Hence, we can apply
axiom (II) of saturated fusion system to f : f extends to a morphism f̃ ∈ HomF (N f ,S),
where

N f = {g ∈ NS(P)| f cg f −1
∈ AutS(P′)}.

In particular, note that CS(P) · P ≤ N f .
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Now, suppose that P acts trivially on T, that is, T ≤ CS(P), and in particular f
extends to

PT
f̃
−→ S,

such that f̃ (P) = f (P) ≤ T and f̃ (T) ≤ T since T is the maximal infinitely p-divisible
subgroup of S. Thus, f̃ (PT) = T, which means that PT = T, since f is a monomor-
phism, and P ≤ T.

�

A discrete p-toral group S with maximal torus T fits by definition in an extension

T −→ S −→ S/T,

where S/T is a finite p-group. This extension, in turn, comes equipped with a mor-
phism

(3.1) ωS : S/T −→ Aut(T),

defined by ωS(xT)(t) = xtx−1 for all t ∈ T, where x ∈ S is a representative of the class
xT.

Lemma 3.1.7. Let F be a saturated fusion system over a discrete p-toral group S, and let S0

be the connected component of S with respect to F . Then, the restriction of ωS to S0/T ≤ S/T
is a monomorphism. In particular, S0/T acts faithfully on T.

Proof. Let xT ∈ S0/T, and suppose thatωS(xT) = idT. Then, for any x ∈ S0 representing
xT, x acts trivially on T, and, by definition of S0, is F -subconjugate to T. Thus, by
Lemma 3.1.6, x ∈ T and xT = 1T.

�

Lemma 3.1.8. Let F be a saturated fusion system over a discrete p-toral group S, and let T
be the maximal torus. If T is central in S, that is, if S = CS(T), then T is F -normal, and F is
an extension of a saturated fusion system (over the finite p-group S/T) by T.

If in addition L is an associated centric linking system for F , then L is an admissible
extension of L/T by T (in the sense of definition A.5.4), and there is a fibration

BT −→ |L| −→ |L/T|.

Note that L/T is not, in general, a linking system associated to F /T, but a trans-
porter system (in the sense of definition A.2.1) such that the set Ob(L/T) contains all
F /T-centric F /T-radical subgroups.

Let for instance S = T (a discrete p-torus of any rank), and let K ≤ Aut(T) be a
finite p′ group (that is, p does not divide |K|). Let also F be the fusion system over S
spanned by AutF (S) = K, that is, all morphisms inF are restrictions of automorphisms
in AutF (S), and let L be the category with Ob(L) = {S} and AutL(S) = T o K, where K
acts on T by automorphisms. Then, G = (S,F ,L) is clearly a p-local compact group,
and T satisfies the conditions in the above lemma.

In this case, the quotient fusion system F /T is just the trivial fusion system over
the trivial p-group {1}, and the quotient L/T is clearly not a centric linking system
associated toF /T, since axiom (A) is not satisfied. It is, however, a transporter system
associated to the quotient fusion system F /T.
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No matter how nice this lemma may seem, if we change in the statement the
conditions on T by the same conditions on a subtorus T′ � T of strictly lower rank,
then it fails to be true in general.

Proof. Let f : P → P′ be a morphism in F , and we have to check that it extends to
some γ : PT→ P′T such that γ|T ∈ AutF (T).

Suppose first that P′ is fully F -centralized. We may then apply axiom (II) to f to
see that this morphism extends to some γ : P · CS(P)→ P′ · CS(P′). In particular, since
T ≤ CS(P),CS(P′), γ restricts to a morphism

PT
γ
−→ P′T.

Furthermore, since T is the maximal infinitely p-divisible subgroup of S, it follows
that γ(T) ≤ T, that is, γ|T ∈ AutF (T).

If P′ is not fully F -centralized, we may consider P′′ ∈ 〈P′〉F such that P′′ is fully
F -centralized, and morphisms f ′ : P → P′′ and f ′′ : P′ → P′′ in F such that the
following diagram is commutative

P′′

P

f ′
>>}}}}}}}}

f
// P′

f ′′
``BBBBBBBB

By applying the above arguments on f ′ and f ′′, we see that these morphisms extend
respectively to γ′ : PT→ P′′T and γ′′ : P′T→ P′′T, and hence the composition

γ = (γ′′)−1
◦ γ′ : PT→ P′T

extends the original f . Again, since T is the maximal infinitely p-divisible subgroup
of S, it follows that the restriction of γ to T is an automorphism (in F ) of T.

Thus T is F -normal, and the extension theory developed for p-local compact
groups in appendix §A applies: Proposition A.1.1 says that F /T is a saturated fusion
system over S/T.

The second part of the statement also follows from the extension theory developed
in appendix §A. In particular, the extension is easily seen to be admissible since T is
central in S.

�

Since we intend to study connectivity of p-local compact groups, we expect the
“connected components” that we might find to be somehow invariant in the original p-
local compact group. We introduce for this purpose the following notion of invariance
of fusion subsystems (definition 3.1 in [Lin06]). Actually, what we call here invariant
subsystems are called normal subsystems in [Lin06], but, by the time we started this
work, this notion had already been renamed as invariant subsystems in [Asc08], where
a stronger notion of invariance is also introduced. We do not mention this last
(stronger) condition here since it is not clear that connected components will satisfy
it in general.

Definition 3.1.9. Let F be a saturated fusion system over a discrete p-toral group S, and let
S′ ≤ S and F ′ ⊆ F be a fusion subsystem over S′. Then, F ′ is invariant in F if
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(i) S′ is strongly F -closed;

(ii) for each P ≤ Q ≤ S′ and each γ ∈ HomF (Q,S), the map

HomF ′(P,Q)
γ∗ // HomF ′(γ(P), γ(Q))

f � // γ ◦ f ◦ γ−1

is a bijection.

For instance, let G be a finite group, let S ∈ Sylp(G), and let N be a normal subgroup
of G. Let also FS(G) be the (saturated) fusion system over S induced by G. Then,
the fusion subsystem FS∩N(N) (i.e., the fusion system over S ∩ N induced by N) is
invariant in FS(G).

Note that, if F ′ in the definition above is saturated, then it is enough to check
condition (ii) only for F ′-centric F ′-radical, by Alperin’s fusion Theorem 1.3.5.

3.2 Rank 1 p-local compact groups and their connected
components

In this section we study the connected component of a p-local compact group of rank 1.
Even in such a concrete situation, the connectivity problem becomes a rather difficult
issue, and in general all proofs follow ad hoc arguments. We provide in this section
a list of all connected p-local compact groups of rank 1, and show how, given a rank
1 p-local compact group G, it always contains a unique connected p-local compact
subgroup G0 over the connected component of S with respect to F . Furthermore,
we are able to define inclusion functors L0 → L, which we consider as the inclusion
of connected components, in all cases. However, we have not managed to express
any G in terms of its connected component together with the p-local finite group of
components. We list below the main results of this section.

Theorem 3.2.1. Let F be a connected saturated fusion system over a discrete p-toral group
S of rank 1. Then, F has a unique associated centric linking system L.

Furthermore, the p-local compac group G = (S,F ,L) is induced by one (and only one) of
the connected compact Lie groups in the list below:

(i) G1 = S1,

(ii) G2 = SO(3), or

(iii) G3 = S3,

where cases (ii) and (iii) appear only for p = 2. In particular, if G is induced by G j, then

BG ' (BG j)∧p .

Note that there is nothing “unexpected” in the list above, in the sense that all
connected rank 1 p-local compact groups are induced by connected compact Lie
groups, and this list coincides with the classification of rank 1 connected compact Lie
groups, and also with the classification of rank 1 connected p-compact groups. The
following corollary was also an expected result.
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Corollary 3.2.2. Let G2 and G3 be the connected p-local compact groups induced by the
compact Lie groups G2 and G3 in the list above. Let also T be the maximal torus of G3, and let
Z/2 � T1 ≤ T be the order 2 subgroup of T.

Then, T1 is a central subgroup of G3, and G3 is an admissible extension (in the sense of
definition A.5.4) of G2 by T1. In particular, there is a fibration

BZ/2 ' BT1 −→ BG3 −→ BG2.

Another important feature of rank 1 p-local compact groups is that one can assign
a connected p-local compact group G0 (from the list in Theorem 3.2.1) to each p-local
compact groupG. In fact, thisG0 is uniquely determined by the connected component
of S with respect to F . In this result we use the notion of invariant fusion subsystem,
3.1.9, which corresponds to definition 3.1 [Lin06].

Theorem 3.2.3. Let F be a saturated fusion system over a discrete p-toral group S whose
maximal torus has rank 1, and let S0 be the connected component of S with respect to F .
Then, F uniquely determines a fusion subsystem F0 over S0 such that the following holds:

(i) F0 is a connected saturated fusion system,

(ii) F0 ⊆ F is invariant in F .

We say then that F0 is the connected component of F .
Similarly, let G = (S,F ,L) be a rank 1 p-local compact group, and let S0 be the connected

component of S with respect to F . Then, G uniquely determines a p-local compact group
G0 = (S0,F0,L0) such that the following holds:

(i) F0 is the connected component of F , and

(ii) G0 is isomorphic as a p-local compact group to one of the p-local compact groups listed
in Theorem 3.2.1.

We say then that G0 is the connected component of G.

In fact, 2-local compact groups whose connected component is induced by S3 de-
pend completely on 2-local compact groups whose connected component is induced
by SO(3). Corollary 3.2.2 above is a particular case of the following result.

Corollary 3.2.4. Let G be a 2-local compact group of rank 1 whose connected component is
the 2-local compact group G3 induced by the compact Lie group G3 = S3 (in Theorem 3.2.1),
let T be the maximal torus of G, and let Z/2 � T1 ≤ T be the order 2 subgroup of T.

Then, T1 is a central subgroup of G, and G is an (admissible) central extension (in the
sense of A.5.1) of a 2-local compact group G′ by T1, where the connected component of G′

is the 2-local compact group G2 induced by the compact Lie group G2 = SO(3) (in Theorem
3.2.1). In particular, there is a fibration

BT1 −→ BG −→ BG′.

The p-local compact groupG0 in Theorem 3.2.3 can be considered as the connected
component of G since it is connected and uniquely determined by G. However, in
general, the centric linking system L0 is not a subcategory of L, since in general
F0-centric subgroups will not be F -centric subgroups. Instead, given the p-local
compact groupG, together with its connected component, we will construct a functor
ι0 : L0 → Lwhich will play the role of the inclusion of the connected component.
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Corollary 3.2.5. Let G be a rank 1 p-local compact group, and let G0 and π0(G) be the
corresponding connected component and the p-local finite group of components. For each
P0 ∈ L

cr
0 , let P = P0 · CS(P0). Then,

(i) P is F -centric, and

(ii) AutL(P) contains a subgroup isomorphic to AutL0(P0).

In particular, a faithful functor ιcr : L0 → L can be defined by sending each P0 to the
corresponding P, and such that

(iii) the composition
|L0| ' |L

cr
0 | −→ |L| −→ |π0(L)|

is nullhomotopic, and

(iv) there is a natural transformation from the inclusion functor incl : F cr
0 → F

c to the
functor i0 : F cr

0 → F
c induced by ι0.

All the above results will be proved in the following subsections by describing
explicitly each possible situation. In particular, we will treat separately the case p > 2
from the case p = 2. This is motivated by Lemma 3.2.6 below, where (as a corollary)
we prove that in the case p is an odd prime, the maximal torus T is always F -
normal. Thus, the p odd version of the results above is proved almost automatically
in Proposition 3.2.7 (except from the construction of the faithful functor, which will
be treated in Proposition 3.2.26).

The case p = 2 is significantly longer to explain. In this case, we will start by
studying which discrete 2-toral groups S0 can appear as the connected component of
a discrete 2-toral group S with respect to a saturated fusion system F on S. Thus,
Theorem 3.2.1 is proved as Proposition 3.2.19, Theorem 3.2.3 is then a consequence
of Proposition 3.2.18, and Corollary 3.2.4 follows by Lemma 3.2.17. The construction
and properties of the faithful functors (Corollary 3.2.5) for p = 2 will be studied in
Proposition 3.2.26, 3.2.30 and 3.2.32.

We start by stating a well-known fact about the automorphism group of a discrete
p-torus of rank 1. and in this case it is not difficult to give a complete description of
the whole group. In particular, our interest lies in the finite subgroups of Aut(Z/p∞),
since for a saturated fusion system F , the group AutF (T) has to be finite.

Lemma 3.2.6. Let T � Z/p∞. Then,

Aut(T) �
{
Z/2 ×Z∧2 , p = 2,
Z/(p − 1) ×Z∧p , p > 2.

Proof. Let f ∈ Aut(T). Recall that

T � Z/p∞ =

∞⋃
n=1

Z/pn = lim
−−→

Z/pn.

Thus, we see that the restriction of f to every cyclic subgroup Tn = Z/pn gives an
automorphism of this subgroup, fn, such that the following squares are commutative
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for any n:

Tn
fn //

inclTn+1
Tn

��

Tn

inclTn+1
Tn

��
Tn+1 fn+1

// Tn+1.

Thus, it is clear that we can identify the automorphism group Aut(T) with the
inverse limit of the inverse system {Aut(Tn)}. Finally, by Theorem 4.4.7 [RZ00], there
is an isomorphism

lim
←−−

Aut(Tn) �
{
Z/2 ×Z∧2 , p = 2,
Z/(p − 1) ×Z∧p , p > 2.

�

As a consequence, for p > 2, the maximal torus T will always be central in S, and
hence, by Lemma 3.1.8, if F is a saturated fusion system over S, then T is F -normal.
We restate and prove Theorems 3.2.1 and 3.2.3 for p odd as the following proposition.

Proposition 3.2.7. Let F0 be a connected saturated fusion system over a discrete p-toral
group S0, with p odd. Then, the following holds:

(i) S0 = T, and

(ii) F0 is isomorphic to the saturated fusion system induced by the compact Lie group S1,

F0 � FT(S1).

In particular, F0 has a unique associated linking system L0 � LT(S1), and

|L0|
∧

p ' (BS1)∧p .

Let p be an odd prime, and let G = (S,F ,L) be a rank 1 p-local compact group, with
maximal torus T. Then,

(i) T is a F -normal subgroup, and in particular it is strongly F -closed. Hence, the
connected component of S with respect to F is T itself, and

(ii) the connected component of F is (isomorphic to) the fusion system FT(S1).

In particular, G is an admissible extension of G/T by T, and there is a fibration

BT −→ |L| −→ |L/T|.

Proof. Let first F be any saturated fusion system over a discrete p-toral group S of
rank 1, with p > 2. Since for p odd the maximal torus T ≤ S is central in S, it follows by
Lemma 3.1.8 that T is a F -normal subgroup, and in particular it is strongly F -closed.

Thus, if F0 is connected and saturated over S0, then S0 = T by definition of the
connected component of S0 with respect to F0. Furthermore, since T is abelian, the
saturated fusion system F0 over T is completely determined by AutF0(T), which is
a finite subgroup of Aut(T). Thus, AutF0(T) ≤ Z/(p − 1), but, if AutF0(T) is not the
trivial subgroup of Aut(T), then F0 % Op′(F0), and hence cannot be connected. This
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determines completely the list of connected saturated fusion systems over discrete
p-toral groups of rank 1, when p > 2.

It is now an easy calculation to show that the obstructions to the existence and
uniqueness of an associated centric linking system associated to F0 both vanish, since
the orbit category O(F c

0 ) contains a single object with trivial automorphism group.
Since S1 already induces a centric linking system L0 associated to F0, it follows that
this has to be the unique centric linking system associated to F0. By Theorem 1.4.5, it
follows that |L|∧p ' (BS1)∧p .

Let nowG be a p-local compact group of rank 1, with p odd. Again, T isF -normal,
and in particular strongly F -closed. It is also clear that F contains F0 above as a
subsystem, since AutF0(T) = {id}. It remains then to check the invariance of F0 in F ,
and in particular we only have to check that condition (ii) in definition 3.1.9 holds,
but this is obvious since for any two subgroups P ≤ Q of T, HomF0(P,Q) = {inclQ

P }.
The last part of the statement follows easily since T ≤ Z(S), and hence the extension

is admissible.
�

3.2.1 Some rank 1 discrete 2-toral groups

We are thus left to study the case p = 2. The strategy followed here is rather exhaustive.
We will first study some properties of rank 1 discrete 2-toral groups and see which
ones can appear as the connected component S0 of a bigger discrete 2-toral group
S with respect to a saturated fusion system F . This will give rise to a short list of
possibilities for S0, and for each one we will check in later subsections that there only
exists a unique saturated, connected fusion system F0 over S0, and furthermore that
for each such F0 there exists a unique associated centric linking system L0.

Let then S be a discrete 2-toral group of rank 1 with maximal torus T. In this
section we want to study which discrete 2-toral groups can appear as the connected
component of a bigger discrete 2-toral group with respect to some saturated fusion
system.

In this case, Lemma 3.2.6 says that there only exists a nontrivial automorphism of
Z/2∞ of (finite) order 2, which corresponds to the automorphism

(3.2) T τ // T

t � // t−1.

This is obviously an order 2 automorphism, and we can now deduce the following
result.

Lemma 3.2.8. Let S be a discrete 2-toral group of rank 1, and let T = ∪Tn be the maximal
2-torus, where Tn � Z/2n for all n. Then, either T ∩ Z(S) = T or T ∩ Z(S) = T1.

Furthermore, if T ∩Z(S) = T1 and x ∈ S \CS(T), then all the elements in the coset xT are
S-conjugate to x.

Proof. The condition T ∩ Z(S) = T means that CS(T) = S. Thus, suppose that there
exists some x ∈ S \ CS(T). Since S is locally finite, the automorphism cx defined by
cx(y) = xyx−1 has order a finite power of 2. In particular, when restricted to T, it has
to be a nontrivial finite automorphism, and hence (cx)|T = τ in (3.2).
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Now, there is only an order 2 element in T, namely t1, and hence τ(t1) = t1, that is,
T ∩ Z(S) ≥ T1. On the other hand, if t ∈ T is of higher order, then clearly τ(t) , t, and
hence the first part of the statement is proved.

Let x ∈ S be as above. Then, for each t ∈ T, we have xtx−1 = t−1, and hence

t−1xt = xt2,

which proves the second part of the statement since all the elements in T are infinitely
2-divisible (that is, each element in T has at least one square root).

�

Lemma 3.2.9. Let S be a rank 1 discrete 2-toral group, with maximal torus T � Z/2∞, and
let F be a saturated fusion system over S. Then, the connected component of S with respect
to F is isomorphic to one (and only one) of the following discrete 2-toral groups:

(i) T,

(ii) D2∞ = ∪D2n = 〈x,T|x2 = 1, xtx−1 = t−1 for all t ∈ T〉 = T o 〈x〉, or

(iii) Q2∞ = ∪Q2n = 〈y,T|y4 = 1, y2 = t1, yty−1 = t−1 for all t ∈ T〉,

where t1 is the single order 2 element in T.

Proof. Let S be such a discrete 2-toral group. By Lemma 3.1.7, if S0 ≤ S is to be the
connected component of S with respect to some fusion system over S, then S0/T has to
act faithfully on T, and hence by Lemma 3.2.6 S0/T has to be isomorphic to a subgroup
of Z/2. If S0/T = {1}, then S0 = T.

Suppose otherwise that S0/T � Z/2. Then, by II.3.8 in [AM04], the isomorphism
type of S0 is determined by the group

H2(Z/2; Tτ) � Z/2,

where the superindex means that the coefficients are twisted by the automorphism τ
(3.2). In particular this means that there are (up to isomorphism) two possible discrete
2-toral groups S0 of rank 1 with the desired action on T and such that S0/T � Z/2.

Consider the following two families of 2-groups:

(3.3)
{D2n = 〈tn, xn|t2n−1

n = 1 = x2
n, tnxn = xnt2n−1

−1
n 〉}n≥2,

{Q2n = 〈tn, xn|t2n−2

n = x2
n, t2n−1

n = 1, tnxn = xnt2n−1
−1

n 〉}n≥3,

There are obvious injections D2n → D2n+1 and Q2n → Q2n+1 by sending (in both cases)
tn to t2

n+1 and xn to xn+1, which allow us to consider

D2∞ =
⋃
∞

n=3 D2n and Q2∞ =
⋃
∞

n=2 Q2n ,

which are two nonisomorphic discrete 2-toral groups of rank 1 with the desired
properties.

�

We have already studied the automorphism group T in Lemma 3.2.6, and now we
seek a better understanding of the automorphism groups of D2∞ and Q2∞ .
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Lemma 3.2.10. Let S0 be isomorphic to D2∞ or Q2∞ . Then, the group Aut(S0) fits in an
extension

Inn(S0) −→ Aut(S0) −→ Z∧2 .

Hence, Inn(S0) is a locally finite artinian subgroup of Aut(S0), and is maximal among all
subgroups of Aut(S0) with these properties.

Proof. Let S0 be as in the statement, with maximal torus T. Then, S0/T � Z/2 and by
2.8.7 in [Suz82] there is an exact sequence

0→ H1(Z/2; Tτ) −→ Aut(S0)/AutT(S0) Φ
−→ Aut(T) × Aut(Z/2),

where the superindex τ on T means that the coefficients are twisted by the automor-
phism τ (3.2) and AutT(S0) = {ct ∈ Aut(S0)|t ∈ T}. Now, Aut(Z/2) = {id}, and, by II.3.8
in [AM04], H1(Z/2; Tτ) = 0. Now, we know that the factor Z/2 ≤ Aut(T) is in the
image of Φ, since it corresponds to the automorphism τ, that is, conjugation (in S0)
by an element x ∈ S0 \ T. In fact, it is not difficult to see that any automorphism
f ∈ Z∧2 ≤ Aut(T) can be extended to an automorphism of S0, and hence Φ is epi and
Aut(S0) fits in an extension

AutT(S0) −→ Aut(S0) −→ Aut(T).

Now, by definition, AutT(S0) ≤ Inn(S0), and in fact the pull-back of Aut(S0) →
Aut(T)← 〈τ〉 is Inn(S0), and hence we deduce an extension

Inn(S0) −→ Aut(S0) −→ Z∧2 � Aut(T)/〈τ〉.

SinceZ∧2 has no finite subgroups, it follows that Inn(S0) is the greatest artinian locally
finite subgroup of Aut(S0).

�

Lemma 3.2.11. Let S0 � Q2∞ , T be its maximal torus, and T1 ≤ T be the subgroup of T of
order 2. Then, Z(S0) = T1 and S0/T1 � D2∞ .

Lemma 3.2.12. Let S0 � D2∞ , with maximal torus T. Then, ∀x ∈ S0 \ T, x2 = 1.
Let S0 � Q2∞ , with maximal torus T. Then, ∀y ∈ S0 \ T, y4 = 1 and y2 = t1.

Proof. Let first S0 � D2∞ . In this case, S0 = To〈x〉 for some x ∈ S0\T. Furthermore, there
is a section s : S0/T→ 〈x〉 ≤ S0 which is a group homomorphism, since D2n+1 = Tno〈x〉
for all n. Since all the elements in the coset xT are S0-conjugate as shown in Lemma
3.2.8, the first part of the statement follows.

Let now S0 � Q2∞ . Then again, all the elements y ∈ S0 \ T are S0-conjugate, by
Lemma 3.2.8. Also, by definition of Q2∞ , there is at least one y ∈ S0 \ T such that
y2 = t1 ∈ T and such that y4 = 1, where t1 is the order 2 element in T. Thus the second
part of the statement is proved.

�
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3.2.2 Connected saturated fusion systems over discrete 2-toral groups
of rank 1

So far we know which discrete 2-toral groups of rank 1 can appear as the Sylow
2-subgroup of a connected saturated fusion system, we still do not know whether
for each S0 in 3.2.9 we can find connected saturated fusion systems over S0 or not
(note that if one drops the connectivity condition, then one can always consider the
trivial saturated fusion system over S0, which will not be connected in general). In
this subsection we prove the following result.

Proposition 3.2.13. Let S0 be any of the discrete 2-toral groups in Lemma 3.2.9. Then, there
is a connected saturated fusion system F0 over S0 which is unique up to isomorphism.

To prove this result we will study each case in 3.2.9 separately. The first one is
actually quite easy to check.

Lemma 3.2.14. Let S0 = T. Then, there is a unique connected saturated fusion system F0

over S0, namely, F0 = FT(S1).

Proof. It is clear that FT(S1) is both connected and saturated over S0 = T. Thus we
have to check that this is the only choice.

Let F0 be a saturated fusion system over T. Since T is abelian, the whole fusion
system is determined by AutF0(T) by axiom (II), which has to be a finite subgroup of
Aut(T) and furthermore has to satisfy axiom (I) for fusion systems. Thus, AutF0(T) =
{id} and hence F0 � FT(S1).

�

The main part of this section is devoted to prove the existence of a unique con-
nected saturated fusion system over D2∞ , which in turn will imply the existence of a
unique connected saturated fusion system over Q2∞ . Actually, these fusion systems
do not come out of nowhere since they are induced by the compact connected Lie
groups SO(3) (in the case S0 � D2∞) and S3 (in the case S0 � Q2∞), but we will give a
full descriptive construction of them, since we want to prove uniqueness too.

Lemma 3.2.15. Let S0 be a discrete 2-toral group with the isomorphism type of either D2∞ or
Q2∞ , with maximal torus T, and suppose F is a saturated fusion system over S0. Then,

AutF (T) = AutS0(T) � Z/2.

Proof. By hypothesis, there already exists some x ∈ S0 such that (cx)|T = τ in (3.2),
and hence AutF (T) cannot be the trivial group. Since then AutS0(T) is the greatest
finite subgroup of Aut(T) and we are assuming F to be saturated, it follows that
AutF (T) = AutS0(T).

�

Lemma 3.2.16. Let S0 � D2∞ . Then, there exists a unique connected saturated fusion system
F0 over S0, which is induced by the compact Lie group SO(3).

Proof. Start assuming the existence of such a fusion system F . We will find some
restrictions for it to actually exist, which will lead to both existence and uniqueness.
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Recall that S0 = T o 〈x〉, where x is an order 2 element acting nontrivially on T.
Since we know that AutF (T) = 〈cx〉, we may apply the functor ( )• from 1.3.1 to F . If
F is saturated, then Ob(F •) contains all the F -centric F -radical subgroups of S0.

It is a rather easy exercise to obtain a list of representatives of the S0-conjugacy
classes of subgroups in F •, and we outline the details below.

Set T = ∪Tn, where Tn � Z/2n for each n. Let also A ≤ T be any subgroup, and set
as usual

I(A) = {t ∈ T|ω(t) = t for all ω ∈ AutF0(T) such that ω|A = idA}.

Then, since AutF0(T) = 〈cx〉, we easily deduce that

• if A ≤ T1, then I(A) = T1 and I(A)0 = {1}, since the element x acts trivially on T1;

• if A ≥ T2, then I(A) = T = I(A)0, since cx does not restrict to the identity on T2.

Now, in the notation of the definition of the functor ( )•, 1.3.1, e = 1, since S0/T � Z/2,
and thus for any P ≤ S0, the following holds:

• if P[1]
≤ T1, then P• = P;

• if P[1]
≥ T2, then P• = P · T.

Now it is easy to deduce the following list of representatives of the S0-conjugacy
classes of subgroups in F •. We set for simplicity C = 〈x〉.

(3.4) {{1},T1,T2,T,C,T1 × C,T2 o C,T o C = S0}.

We can discard many of the elements in the list below by easy arguments:

• the subgroups {1}, T1, T2 and C cannot be F -centric;

• the subgroup T cannot be F -radical since its outer automorphism group (in F )
is a 2-groups by Lemma 3.2.15;

• the subgroup T2 o C cannot be F -radical because, as we prove below, its outer
automorphism group in F is a 2-group.

Indeed, T2 o C � D8, whose automorphism group is isomorphic to D8. Its inner
automorphism group is

Inn(T2 o C) = (T2 o C)/(T1) � Z/2 ×Z/2,

and hence Out(T2 o C) � Z/2. Now, it is easy to check that the element t3 ∈ T3

induces by conjugation a nontrivial automorphism of T2oC which is clearly not
in Inn(T2 o C). Hence,

Z/2 � OutS0(T2 o C) ≤ OutF (T2 o C) ≤ Out(T2 o C) � Z/2,

and OutF (T2 o C) � Z/2 is a 2-group.
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This leaves us with only two S0-conjugacy classes to study: 〈S0〉S0 = {S0} and
〈T1 × C〉S0 . Set for simplicity P = T1 × C.

Now, from Lemma 3.2.10 we deduce that AutF (S0) = Inn(S0), so we really do not
have choice here.

Consider now P. It is an elementary abelian 2-group of rank 2 (i.e., isomorphic
to Z/2 × Z/2), and in fact the set 〈P〉S0 already contains all the elementary abelian
subgroups of S0 of rank 2. Hence 〈P〉F = 〈P〉S0 .

On the one hand, the automorphism group of P is then isomorphic to the sym-
metric group on three letters,

Aut(P) � Σ3.

On the other hand, using the group relation xtx = t−1 (for all t ∈ T), is follows easily
that CS0(P) = P and NS0(P) = T2 o C. Since 〈P〉F = 〈P〉S, it follows that P is fully
F -normalized, and hence

Z/2 � (T2 o C)/P = NS0(P)/CS0(P) ≤ AutF (P) ≤ Aut(P) � Σ3.

Thus, either AutF (P) � Z/2 or AutF (P) � Σ3. Note, however, that if AutF (P) � Z/2,
then F is not connected.

On the other hand, if F0 is the fusion system over S0 determined by AutF0(S0) =
Inn(S0) and AutF0(P) � Σ3, then it is easy to check that F0 is both connected and
saturated. The uniqueness now follows since we have already seen that, with the
connectivity condition, there is no other choice to build up a saturated fusion system
over S0.

Now, the compact Lie group SO(3) induces a connected saturated fusion system
over S0, and hence F0 = FS0(SO(3)).

�

Finally, we deal with the case S0 � Q2∞ . This case is also easy to handle, since it
can be shown to completely depend on the case S0 � D2∞ .

Lemma 3.2.17. Let S0 � Q2∞ . Then, there is a unique connected saturated fusion system F0

over S0, which is induced by the compact Lie group S3.
Furthermore, if we set T1 ≤ T for the order 2 subgroup, then F0 satisfies the following

properties:

(i) T1 is central in F0,

(ii) there is an isomorphism of saturated fusion systems F0/T1 � FD2∞ (SO(3)),

(iii) the map θ : Ob(F0) → Ob(F0/T1) defined by θ(P) = P/T1 gives a bijective correspon-
dence between the set of F0-centric subgroups and the set of F0/T1-centric subgroups
which restricts in turn to a correspondence between F0-centric F0-radical subgroups
and F0/T1-centric F0/T1-radical subgroups.

Proof. The uniqueness of such F0 is proved by explicitly constructing it as we did in
(the proof of) Lemma 3.2.16. To show property (i), recall that in Lemma 3.2.12 we
have seen that all the elements y ∈ S0 \ T have order 4. Thus, S0 contains a single
order 2 element, the generator of T1, which means that T1 is strongly F0-closed for
any saturated fusion system over F0. Since in addition T1 = Z(S0), the condition of
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being Fo-central is easily checked using axiom (II) on F0. Property (ii) is immediate,
and property (iii) follows easily by inspection of the subgroups in Q2∞ and D2∞ .

�

We have then given a list of all possible connected saturated fusion systems of
rank 1, and the next question to solve is whether, given a general saturated fusion
system, F , it does have a uniquely determined connected component F0, and if so,
which is the relation between F0 and F .

With all the information we have, we can state the following proposition.

Proposition 3.2.18. Let F be a saturated fusion system over a discrete p-toral group S of
rank 1. Then, there is a unique connected saturated fusion subsystem F0 ⊆ F , which is
invariant in F in the sense of definition 3.1.9.

Proof. For p odd, this has been shown in Proposition 3.2.7. For p = 2, it is not difficult
to see that

(?) determining S0, the connected component of S with respect toF , also determines
the fusion subsystem F0, in particular as a fusion subsystem of F .

Indeed, let F be such a saturated fusion system over S. The statement in (?) is clear
if the connected component of S is T. Suppose now that the connected component of
S is S0 = To 〈x〉 � D2∞ , and let P = T1× 〈x〉 ≤ S0. It follows then that, for the element x
to be in S0, a morphism f : 〈x〉 → T in F has to exists (since otherwise, the connected
component of S with respect to F would be T). Using axiom (II) we can then see that
AutF (P) � Σ3, and hence the full fusion system F0 describe in (the proof of) Lemma
3.2.16 is contained in F . Since F0 has been proved to be the only connected saturated
fusion system over S0, (?) is clear in this case. The statement (?) when S0 � Q2∞

follows also by the same arguments.
The invariance issue can be easily checked by inspection of each case. We check

it below in the case S0 � D2∞ . Note that we only need to prove the invariance
condition on the F0-centric F0-radical subgroups of S0 since F0 is saturated. Set, as
usual, P = T1 × 〈x〉 ≤ S0. Then, by Lemma 3.2.16, S0 and P are representatives of the
S0-conjugacy classes of F0-centric F0-radical subgroups. The invariance conditions is
now easily seen to hold for both conjugacy classes since, again by Lemma 3.2.16,

AutF0(S0) = AutF (S0) = Inn(S0),

and
AutF0(P) = AutF (P) = Aut(P).

�

3.2.3 Centric linking systems associated to connected saturated fu-
sion systems in rank 1

In this section we study the existence and uniqueness of centric linking systems
associated to the saturated fusion systems in Proposition 3.2.13. We study each case
separately, and describe explicitly the (unique) linking system in the case S0 � D2∞ .

The following proposition is a restatement of Theorem 3.2.1 for p = 2, and provides
a list of all 2-connected compact groups of rank 1.
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Proposition 3.2.19. Let S1 = T, S2 = D2∞ and S3 = Q2∞ be the discrete 2-toral groups listed
in Lemma 3.2.9, and for j = 1, 2, 3 let F j be the unique connected saturated fusion system
over S j from Proposition 3.2.13. Consider also the (connected) compact Lie groups G1 = S1,
G2 = SO(3) and G3 = S3.

Then, for each j, there is a unique centric linking systemL j associated toF j. Furthermore,
this linking system satisfies L j � LS j(G j), and

|L j|
∧

2 ' (BG j)∧2 .

Thus, for each j, the resulting 2-local compact group G j is connected, and these are the only
connected 2-local compact groups of rank 1.

Again, we prove this result by steps, considering each S j separately. The case j = 1
is as usual easy to check.

Lemma 3.2.20. Let S0 = T, and let F0 = FS0(S0). Then there is a unique centric linking
system L0 associated to F0, whith classifying space

|L0|
∧

2 ' (BS1)∧2 .

That is, G0 = (S0,F0,L0) is the 2-local compact group induced by S1.

Proof. As happened in the proof of Proposition 3.2.7, showing that the obstructions
to the existence and uniqueness of a centric linking system associated to F0 vanish
is immediate, since O(F c

0 ) contains a single object with trivial automorphism group,
and this centric linking system has to be the one induced by S1.

Alternatively, since the only F0-centric subgroup is S0 itself, a centric linking
system associated to F0 will have a single object, namely S0. Furthermore, AutL0(S0)
is completely determined by the extension

S0
δS0
−→ AutL0(S0) −→ AutF0(S0) = {id}.

Thus, AutL0(S0) = S0, and there is no choice there. Finally, the classifying space of
such a linking system with a single object has homotopy type

|L0|
∧

2 ' (BAutL0(S0))∧2 ' (BS1)∧2 .

�

Lemma 3.2.21. Let S0 � D2∞ , and let F0 be its corresponding connected saturated fusion
system. Then, there is a unique centric linking system L0 associated to F0, whose classifying
space satisfies

|L0|
∧

2 ' (BSO(3))∧2 .

That is, G0 = (S0,F0,L0) is the 2-local compact group induced by SO(3).

Proof. Recall that the obstructions for the existence and uniqueness of associated
linking systems lie in the groups lim

←−−

j
O(F0)(ZF0), for j = 2, 3 respectively (by Proposition

1.5.6). In this particular case, using that for all j there is an isomorphism

lim
←−−

j
O(F0)(ZF0) � lim

←−−

j
O(F cr

0 )(ZF0),
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it follows easily by Proposition B.1 [BM07] that these groups are trivial in particular
for j = 2, 3, and hence there exists a unique centric linking systemL0 associated to F0.

More concretely, in the terminology of Appendix B [BM07], the calculations that
we want to perform are equivalent to the calculation of lim

←−−

j
I(1)(M), for j = 2, 3, where

G = Σ3, H1 = Z/2 ≤ G, I(1) is the category with objects {0, 1} and morphism sets

AutI(1)(0) = G AutI(1)(1) = {id}
HomI(1)(0, 1) = ∅ HomI(1)(1, 0) = H1 \ G,

and M is the diagram

G << (Z/2 ×Z/2) Z/2.oo oo
oo

Proposition B.1 [BM07] is then easily seen to apply in this case.
Nevertheless, we will give an explicit description of such L0 and its construction,

since it will help in later sections. Recall the notation in the proof of Lemma 3.2.16,
and recall that F0 is determined by AutF0(S0) = Inn(S0) and AutF0(P) � Σ3.

Suppose L0 is a centric linking system associated to F0. Then, L0 is determined
by the groups AutL0(S0) and AutL0(P). This is, for instance, a consequence of Propo-
sition 4.2.2, the version of Alperin’s fusion theorem for linking systems developed as
Proposition 4.8 [Jun09].

Consider first the subgroup S0. Then, AutL0(S0) fits in an extension

S0
δS0
−→ AutL0(S0) −→ OutF0(S0) = {1}.

Thus, AutL0(S0) � S0, and there is no choice here.
Consider now the subgroup P. The group AutL0(P) fits in an extension

P = Z(P)
δP
−→ AutL0(P) −→ AutF0(P) = OutF0(P) � Σ3.

Furthermore, D8 � NS0(P) ∈ Sylp(AutL0(P)). Thus, using for instance the list of groups
of order 24, we see that the only choice is AutL0(P) � Σ4, the symmetric group on 4
letters.

Now it is easy to check that the categoryL0 with object set Ob(L0) = {R ∈ F c
0 } and

morphisms spanned by AutL0(S0) = S0 and AutL0(P) � Σ4 satisfies the axioms of a
linking system.

Finally, it remains to check that the compact Lie group SO(3) induces the 2-local
compact group (S0,F0,L0), which is an easy exercise.

�

Lemma 3.2.22. Let S0 � Q2∞ , and let F0 be its corresponding connected saturated fusion
system. Then, there exists a unique centric linking systemL0 associated toF0, with classifying
space

|L0|
∧

2 ' (BS3)∧2 .

That is, G0 = (S0,F0,L0) is the 2-local compact group induced by S3.

Proof. In this case, it would be easy to apply again Proposition B.1 [BM07] to show
that the obstructions to the existence and uniqueness of L0 vanish, as we did in the
proof for Lemma 3.2.21.
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We give also an alternative proof. By Lemma 3.2.17, there is a correspondence
between the sets of F0-centric subgroups and F0/T1-centric subgroups, which in fact
restricts to a correspondence between F0-centric F0-radical subgroups and F0/T1-
centric F0/T1-radical subgroups.

Also by Lemma 3.2.17, any linking systemL associated toF0 has to be an extension
of the linking system induced by SO(3), LD2∞ (SO(3)), by T1, and these extensions are
determined by the group

H2((BSO(3))∧2 ;Z/2) � Z/2.

Thus, there exists (up to isomorphism) only one nontrivial extension of LD2∞ (SO(3))
by Z/2, and the group S3 induces one. This proves the statement.

�

This finishes the proofs of Theorems 3.2.1 and 3.2.3, since we have completed the
list of connected 2-local compact groups, and we also have checked that, given a
saturated fusion system F over a discrete 2-toral group S, the connected component
of S with respect to F , S0, is completely determined by F . The proof for Corollary
3.2.4 holds easily now.

Lemma 3.2.23. Let G be a 2-local compact group whose connected component is the 2-local
compact group induced by S3. Let also T1 ≤ T be the order 2 subgroup of T. Then, T1 is a
F -central subgroup, and G/T1 is a 2-local compact group whose connected component is the
2-local compact group induced by SO(3).

In particular, G is an admissible extension of G/T1 by T1.

Proof. It follows clearly from Lemma 3.2.11. The extension is admissible because T1

is central in G.
�

The following notion is then well-defined for rank 1 p-local compact groups.

Definition 3.2.24. LetG be a p-local compact group of rank 1, and letG0 be the unique rank1
connected p-local compact group determined by G and whose Sylow subgroup S0 is strongly
F -closed. We call then G0 the connected component of G.

3.2.4 Inclusions of connected components

We have then assigned to each p-local compact group G a connected p-local compact
group G0, uniquely determined by G, and now we define inclusions (of p-local com-
pact groups) of G0 into G. More concretely, we will define a functor ι0 : Lcr

0 → L

which will induce the inclusion map BG0 → BG. As usual in this section, we will deal
with each case separately (depending on the connected component of G).

Lemma 3.2.25. Let G be a rank 1 p-local compact group, and let G0 be its connected com-
ponent. Then, for each P0 ∈ L0, P0 is fully F -centralized, and hence P = P0 · CS(P0) is
F -centric.

Proof. The first part of the statement follows since 〈P0〉F = 〈P0〉S in all cases, and the
second part follows by Proposition 1.2.6.

�
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We first consider p-local compact groups whose connected component is the p-
local compact group induced by S1. This is, as usual, the easiest case to deal with.
Let G0 be the connected component of G. Then, L0 has a single object, T, with
automorphism group

AutL0(T) = δT(T) � T.

In particular, Lcr
0 = L0. One can then define the functor ι0 as follows.

(3.5) L0
ι0 // L

T � // ι0(T) = T · CS(T)

AutL0(T) � // ι0(AutL0(T)) = ιS(T) ≤ ιS(S) ≤ AutL(T).

Proposition 3.2.26. Let G be a rank 1 p-local compact group whose connected component
G0 is the p-local compact group induced by S1. Let also π0(G) be its p-local finite group of
components.

Then, T is normal in F , G is an extension (in the sense of A.5.1) of G/T by T, and there
is a fibration

|L0| −→ |L| −→ |π0(G)|,

where the left arrow is (homotopically equivalent to) the map induced by the functor ι0, and
the right arrow is the map induced by the functor L → L/S0 (between transporter systems).

Proof. In this case, either using Lemma 3.1.8 or Lemma B.2.5, one can prove that T
is normal in F . Hence by Proposition A.3.3, there is indeed a fibration like in the
statement. The rest of the statement is also clear by the extension theory developed
in appendix §A.

�

We now turn to the most difficult case to deal with. That is, that of 2-local
compact groups whose connected component is the 2-local compact group induced
by SO(3). As in the previous discussion, we start by defining and describing the
functor ι0 : Lcr

0 → L.
We recall some notation from the previous sections. The torus T can be seen as

the union of all cyclic groups of order 2n, Tn = 〈tn〉. Also, we fix an order 2 element
x ∈ S0 ≤ S such that xtx−1 = t−1 for all t ∈ T. Recall also that in this case, Ob(Lcr

0 )
contains only two S0-conjugacy classes (which in fact correspond to S-conjugacy
classes):

〈S0〉F0 = 〈S0〉S0 = 〈S0〉S = 〈S0〉F = {S0}

〈P0〉F0 = 〈P0〉S0 = 〈P0〉S = 〈P0〉F ,

where P0 = T1 × 〈x〉 � Z/2 × Z/2. Fix then the representatives S0 and P0 for each
conjugacy class above. Since for each representative its conjugacy class both in F
and in F0 is completely determined by S0, it will be enough to define ι0 on these two
objects. We already have candidates for ι0(S0) and ι0(P0) by Lemma 3.2.25. Namely,
S′ = S0 · CS(S0) and P = P0 · CS(P0) respectively.

Lemma 3.2.27. The subgroup S′ ≤ S is, in fact, S itself.
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Proof. Recall that AutF (S0) = AutS(S0) = Inn(S0). Hence, since S0 is clearly fully
F -normalized (and F is saturated by hypothesis), there is a commutative diagram

Z(S0) //

��

CS(S0) //

��

CS(S0)/Z(S0)

S0
//

��

S //

��

S/S0

Inn(S0) AutS(S0).

The statement clearly follows from this diagram.
�

Thus, the functor ι0 could be already defined on objects by ι0(S0) = S and ι(P0) = P.
However, it is not clear a priori that such an injective functor can be defined on the
level of morphisms. In fact, since AutL0(S0) = δS0(S0), there is an obvious inclusion of
AutL0(S0) into AutL(S), induced by the inclusion S0 ≤ S:

(3.6) δS0(S0) = AutL0(S0) ↪→ δS(S0) ≤ δS(S) ≤ AutL(S),

and the problem lies in showing a similar statement for P0. Recall that there are
isomorphisms AutF0(P0) = AutF (P0) � Σ3 and AutL0(P0) � Σ4.

Lemma 3.2.28. There is a subgroup B ≤ AutL(P) which is isomorphic to the automorhism
group AutL0(P0), and which satisfies the following properties:

(i) for each ϕ ∈ B, the morphism ρ(ϕ) ∈Mor(F ) restricts to an automorphism of P0, and

(ii) the subgroup B contains the subgroup δP(NS0(P0)).

Proof. We first check that there is an inclusion AutF0(P0) = AutF (P0) ≤ AutF (P). Note
that, via the axiom (II) for saturated fusion systems, we can in fact embed AutF0(P0)
into AutF (P), but only as sets.

By 2.8.7 in [Suz82], there is an exact sequence

(3.7) 0→ H1(P/P0; P0) −→ AutF (P)/AutP0(P)
ΦP
−→ AutF (P0) × Aut(P/P0),

where, in fact, AutP0(P) = {cy ∈ AutF (P)|y ∈ P0} = {id} since P = P0 · CS(P0) and P0 is
abelian. Note also that by definition of P, the natural action (by conjugation) of P/P0

on P0 is trivial.
Let then f0 ∈ AutF0(P0) be an order 3 automorphism, and let f1 ∈ AutF (P) be an

extension of f0 (in the sense of axiom (II)). Then,

ΦP( f1) = ( f0, f̄ )

for some f̄ ∈ Aut(P/P0). Let also ω2 = ct2 , and note that ΦP(ω2) = (ω2, id), since
P/P0 ≤ S/S0 and S/S0 acts trivially on S0. Thus, f2 = ω2 ◦ f1 ◦ ω−1

2 satisfies

ΦP( f2) = (ω2 ◦ f0 ◦ ω
−1
2 , f̄ ) = ( f −1

0 , f̄ ),
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and hence f = f2 ◦ f −1
1 = [ω2, f1] (the commutator of ω2 and f1) is such that

ΦP( f ) = ( f −2
0 , id) = ( f0, id).

Also, ΦP( f 3) = (id, id), that is, f 3
∈ H1(P/P0; P0), which is clearly a (finite) 2-group. It

follows that the subgroup 〈 f 〉 ≤ AutF (P) has a subgroup of order 3. We can assume
that f itself has order 3 without loss of generality.

We now check that the subgroup A = 〈ω2, f 〉 is isomorphic to AutF0(P0). Mainly,
we have to show that

ω2 ◦ f ◦ ω−1
2 = f −1.

By definition, f = [ω2, f1] = ω2 f1ω−1
2 f −1

1 . Thus, by replacing f by this expression in
ω2 ◦ f ◦ ω−1

2 , (and using that ω2 has order 2), we obtain

ω2 ◦ f ◦ ω−1
2 = ω2(ω2 f1ω

−1
2 f −1

1 )ω−1
2 = f1ω2 f −1

1 ω−1
2 = f1 f −1

2 = f −1

and A has the desired isomorphism type. Note also that all the elements in A are
extensions in the sense of axiom (II) of the automorphisms in AutF0(P0).

Next, we show the existence of the subgroup B ≤ AutL(P). This subgroup will be
in fact a lifting in L of the subgroup A above, and hence property (i) will follow. Let
Ã ≤ AutL(A) be the pull-back of AutL(P)

ρ
→ AutF (P) ← A. There is a commutative

diagram

Z(P)
δP // AutL(P)

ρ // AutF (P)

Z(P)
δP

// Ã //

OO

A

OO

and it follows from the Sylow theorems that Ã contains an order 3 element, namely
ϕ, which is a lifting in L of the morphism f ∈ A.

Let also B = 〈δP(NS0(P0)), ϕ〉 ≤ Ã. We claim that B is isomorphic to the group
AutL0(P0). If we check that B has order 24, then, the fact that there is an extension
δP(P0) → B → A, together with the list of all groups of order 24 will imply that B
has the desired isomorphism type. Note that δP(P0) C AutL(P), since S0 is strongly
F -closed (use axiom (C) to check it).

Thus, we only have to check what happens with the composition δ(t2) ◦ϕ ◦ δ(t−1
2 ).

In particular, we want to see that this conjugation is a composition of a morphism in
δP(NS0(P0)) followed by a power of ϕ. Since ρ(δ(t2)ϕδ(t−1

2 )) = ω2 fω−1
2 = f −1, it follows

by axiom (A) that
δ(t2) ◦ ϕ ◦ δ(t−1

2 ) = δ(z) ◦ ϕ−1,

for some z ∈ Z(P). Furtheremore, since ϕ3 = δ(1), the identity element in AutL(P), one
has (using axiom (C)):

δ(1) = δ(z f (z) f 2(z)).

This is the same as saying that z ∈ C∗(〈 f 〉; Z(P)) is a cocicle (see II.3.8 in [AM04]).
However, since f has order 3 and Z(P) is a finite 2-group, it follows that the reduced
cohomology H̃∗(〈 f 〉; Z(P)) = 0, and hence z is also a coboundary. That is, there is some
y ∈ Z(P) such that

z = y−1 f (y).



3.2 Rank 1 connected components 51

It follows now that the projection of z in P/P0 is the trivial element, since, by assump-
tion, f induces the identity on P/P0. Hence, z ∈ P0, and B has the desired isomorphism
type. Properties (i) and (ii) in the statement now hold by construction.

�

In fact, Lemma 3.2.28 is a particular case of the following result.

Lemma 3.2.29. Let R ≤ S be any subgroup, and let R0 = R ∩ S0 as usual. Let also
ΦR : AutF (R) → AutF (R0) × Aut(R/R0) the natural map which sends an automorphism f
to the restriction to R0 on the first factor and to the induced automorphism on R/R0 on the
second factor.

Then, Im(ΦR) is a direct product of a subgroup H of AutF (R0) by a subgroup of Aut(R/R0),
and there is a section s : H ↪→ AutF (R).

Proof. If R0 is not in the F -conjugacy class of P0 = T1×〈x〉, then AutF (R0) = AutS0(R0),
and the statement is clear since NS0(R0) ≤ NS(R). If R0 is in the F -conjugacy class of
P0, then the same arguments used to prove Lemma 3.2.28 above apply here.

�

Once the subgroup B ≤ AutL(P) is fixed, we can identify AutL0(P0) with B in a
way that the “distinguished” Sylow 2-subgroup δP0(NS0(P0)) ≤ AutL0(P0) is sent to the
subgroup δP(NS0(P0)) ≤ B. The functor ι0 : Lcr

0 → L is then spanned by the following

(3.8) L
cr
0

ι0 // L

S0
� // ι0(S0) = S

P0
� // ι0(P0) = P

AutL0(S0) � // ι0(AutL0(S0)) = δS(S0)

AutL0(P0) � // ι0(AutL0(P0)) = B,

and it follows that it is a functor because the conjugacy classes of S0 and P0 inF satisfy
〈S0〉F = {S0} and 〈P0〉F = 〈P0〉S0 .

We cannot prove such a strong statement as 3.2.26 in this case, since it is clear that
S0 is not an F -normal subgroup of S. It is in fact an a future project to study further
consequences of the existence of this inclusion functor, and to see if one can define
some kind of “action” of L on L0 through ι0. It is not clear at all to what extend we
have the right to refer to L0 as the connected component of L.

Proposition 3.2.30. Let G be a rank 1 2-local compact group whose connected component
is the 2-local compact group induced by SO(3). Let also π0(G) be the corresponding 2-local
finite group of components.

Then, the composition |L0| ' |L
cr
0 | −→ |L| −→ |π0(G)| (where the arrows are induced by

ι0 and the projection L → L/S0 respect.) is nullhomotopic.

Proof. It follows by construction of ι0 and by definition of π0(G) = G/S0.
�
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Let F be the fiber of the projection |L| → |π0(L)|. Then, the above result implies
the existence of the dotted arrow in the diagram below.

|L0|

~~ ��

'∗

$$IIIIIIIII

F // |L| // |π0(L)|.

However, it does not seem in general that the above map |L0| → F will be a (mod p)
homotopy equivalence.

Even if |L0| is far from being the fiber of the projection |L| → |π0(L)|, having an
inclusion functor as ι0 is an important property of L0. However, there are still some
details to check.

Let G be a rank 1 p-local compact group, and let G0 be its connected component,
together with the inclusion functor ι0 : Lcr

0 → L. It is easy to see that the following
square is not commutative in general:

L
cr
0

ι0 //

ρ0

��

L

ρ

��
X

F
cr

0 incl.
// F .

Instead, let i0 : F cr
0 → F be the functor induced by projecting ι0 on F (through the

projection functor ρ). More explicitly, on objects, i0 is defined by sending an object
Q0 ∈ Ob(F cr

0 ) to i0(Q0) = ι0(Q0) = Q0 · CS(Q0). On morphisms, let f ∈ HomF cr
0

(Q0,Q′0)
and let ϕ ∈MorLcr

0
(Q0,Q′0) be a lifting of f , and define i0( f ) = ρ(ι0)(ϕ).

Corollary 3.2.31. The following hold for the functor i0 defined above:

(i) For each f ∈Mor(F cr
0 ), i0( f ) is an extension of f in the sense of axiom (II).

(ii) There is a natural transformation between the functors incl and i0.

In particular, the square above commutes up to homotopy after realization.

Proof. Point (i) is immediate.
To prove point (ii), define θ : incl.→ i0 by

θ(Q0) = [Q0 = incl(Q0) ↪→ i0(Q0) = Q0 · CS(Q0)]

on objects and by

Q0
incl //

f0
��

Q0 · CS(Q0)

f

��
θ( f0)

Q′0 incl
// Q′0 · CS(Q′0)

for each morphism f0 ∈Mor(F cr
0 ), where f = ρ(ι(ϕ0)), for some lifting ϕ0 of f0 in Lcr

0 .
To prove that θ is a natural transformation we have then to check that the above

square is commutative. Now, by point (i), f = i0( f0) is an extension of f0 in the sense
of axiom (II), and hence the square is indeed commutative. Thus, after realization, θ
induces a homotopy equivalence.

�
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The following question arises naturally after the above discussion. Several choices
are made in order to define the functor ι0 (3.8), mainly regarding the subgroup B ≤
AutF (P0 · CS(P0)), and different sets of choices may give rise to different functors ι′0,
which in turn give rise to homotopy commutative squares

|L
cr
0 |

|ι′0| //

|ρ0|

��

|L|

|ρ|

��
h

|F
cr

0 | |incl.|
// |F c
|,

where all arrows are independent of the choices except for (maybe) |ι′0|. What is then
the relation (if any) among all possible inclusion functors ι0? We suspect that this is
related with some notion (still to be made clear) of action ofL onL0, but it seems that
developing this in detail and with the enough generality would take too long in time
and space, and hence we leave it as an open question.

Finally, letGbe a 2-local compact group whose connected componentG0 is induced
by S3. Then, by Corollary 3.2.4,G is an extension of a 2-local compact groupG′ byZ/2,
where the connected component of G′, G′0 is the 2-local compact group induced by
SO(3). Furthermore, the projection G → G′ restricts to the projection G0 → G

′

0, which
in turn induces a bijective correspondence between F0-centric F0-radical subgroups
and F ′0 -centric F ′0 -radical subgroups.

Then, we can define a functor ι : Lcr
0 → L by pulling back the functor ι′0 : L′0 → L

′.
Thus, Proposition 3.2.30 and Corollary 3.2.31 can be extended as below, and the
corresponding proofs are given by the commutative diagram

BZ/2 // |L0|
//

��

|L
′

0|

��
BZ/2 // |L| //

��

|L
′
|

��
|π0(L)| |π0(L′)|.

Proposition 3.2.32. Let G be a rank 1 2-local compact group whose connected component is
the 2-local compact group induced by S3. Let also π0(G) be the corresponding 2-local finite
group of components.

Then, the composition |L0| ' |L
cr
0 | −→ |L| −→ |π0(G)| (where the arrows are induced by

ι0 and the projection L → L/S0 respect.) is nullhomotopic.

Corollary 3.2.33. The following hold for the functor i0 : Lcr
0 → L:

(i) For each f ∈Mor(F cr
0 ), i0( f ) is an extension of f in the sense of axiom (II).

(ii) The induced maps |incl.| and |i0| are homotopy equivalent.

3.3 Connectivity on p-local compact groups of general
rank

It is clear that the exhaustive description of rank 1 p-local compact groups to study
connectivity is out of range if we think of doing the same in the general case. We want,
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however, to discuss superficially the issue of connectivity in the general rank case. In
this sense, we will describe some rather natural construction that could lead to the
existence of connected components for all p-local compact groups. Our construction
is, however, quite primitive.

We first show some easy proposition about a class of p-local compact groups which
admit connected components. We are thinking of constrained p-local compact groups.

Proposition 3.3.1. Let F be a constrained saturated fusion system over a discrete p-toral
group S, with maximal torus T of rank r, and let L be the unique centric linking system
associated to F , and G the corresponding p-local compact group.

Then, the p-local compact group induced by the connected compact Lie group (S1)r,
G0 = (T,F0,L0), is the (unique) connected component of G. Furthermore, the following
holds:

(i) T is normal in F ,

(ii) FT((S1)r) is invariant in F in the sense of [Lin06], and

(iii) if P ≤ S is F -centric and F -normal, then T ≤ P and there is a commutative diagram

BT // BP //

��

BP/T

��
BT // BG //

��

BG/T

��
BG/P BG/P,

where G/T, G/P are p-local finite groups.

In particular, a functor ι0 : LT((S1)r)→ L can be defined by

(3.9) L0
ι0 // L

T � // ι0(T) = R
de f
= T · CS(T)

AutL0(T) � // ι0(AutL0(T)) = δR(T) ≤ δR(R) ≤ AutL(R),

such that, if π0(G) is the p-local finite group of components, then there is a fibration

BT ' |L0|
|ι0|
−→ |L| −→ |π0(L)|.

Proof. Let P ≤ S be F -centric and F -normal. Then, rk(S) = rk(NS(P)) = rk(P), since
OutS(P) = NS(P)/P is a finite p-group. Thus, T ≤ P, and since P is F -normal and T is
the maximal infinitely p-divisible subgroup of S, it follows that T is also normal in F ,
and in particular it is strongly F -closed.

Hence, the connected component of S with respect to F is T, and it is clear that
there is a unique connected saturated fusion system over T, F0 = FT((S1)r), as well as
a unique associated centric liniking system L0 = LT((S1)r) on F0.

The invariance of F0 in F is obvious since AutF0(T) = {id}, and T is the only F0-
centric object in F0. The existence of the commutative diagram is also clear since both
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T and P are F -normal, and the existence of the fibration follows by the extension
theory from appendix §A.

�

LetGbe a p-local compact group (of rank greater than 1), and let S0 be the connected
component of S with respect to F . The following questions remain open

• Is there a connected saturated fusion subsystem F0 ⊆ F over S0? maybe more
than one?

• Suppose such a connected saturated fusion subsystem exists. Is it invariant in
F (in the sense of definition 3.1.9)?

• Suppose such a connected saturated fusion subsystem exists. Is there an asso-
ciated linking system L0?

• Furthermore, suppose such a linking system exists. Can we construct an inclu-
sion functor ι0 : Lcr

0 → L as in Corollary 3.2.5?

As a matter of fact, we can algorithmically construct a fusion system over S0.
However, the saturation issue of our candidate remains unsolved. We describe this
construction below, after the following interesting property about the functor ( )•.

Lemma 3.3.2. Let F be a saturated fusion system over a discrete p-toral group S, and let
(S0,F0) be a saturated fusion subsystem of F over a strongly F -closed subgroup S0 ≤ S such
that T ≤ S0. Let ( )• and ( )•0 be the “bullet” functors defined in 1.3.1 for F and F0. Then,

Ob(F •0 ) ⊆ Ob(F •).

Proof. It follows easily from the definition of the functor ( )• in 1.3.1, together with
the fact that S0/T ≤ S/T and AutF0(T) ≤ AutF (T).

�

Let F be a saturated fusion system over a discrete p-toral group S, and let S0

be the connected component of S with respect to F . We want to construct a fusion
subsystem F0 ⊆ F over S0, and the first step to take is reduce the S0-conjugacy classes
of subgroups of S0 to consider to a finite number of them, just as is done via the
functor ( )• in F . Since, to define ( )•, the only information needed is AutF (T), we
first need to determine who should be the automorphism group in F0 of T.

Let K̂ be the set of subgroups of AutF (T) such that AutS0(T) ∈ Sylp(H) for each
H ∈ K̂ . There is a partial ordering in K̂ given by inclusion of subgroups, and we may
then consider the subsetK of maximal subgroups in K̂ under this order relation. Let

(3.10) AutF0(T)
de f
= ∩H∈KH ≤ AutF (T)

Lemma 3.3.3. The subgroup AutF0(T) has AutS0(T) as a Sylow p-subgroup.

Proof. It is obvious since each H ∈ K has AutS0(T) as a Sylow p-subgroup.
�
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We would like connected components of fusion systems to be also invariant in the
sense of definition 3.1.9 (3.1 in [Lin06]). Note that in particular this would mean that
AutF0(T) ought to be normal in AutF (T), which is not at all clear to be the case.

Now, we can define an operation ( )•0 on the set of subgroups of S0 following the
steps in definition 1.3.1. Let H•0 = {(P)•0|P ≤ S}. Lemma 1.3.2 (i) applies also in this
case to show that H•0 contains finitely many S0-conjugacy classes, and by Lemma
3.3.2,H•0 ⊆ Ob(F •).

Since the setH•0 comes equipped with a partial order relation given by inclusion
of subgroups, one could now start an inductive process (starting on S0) to define
AutF0(P) for each P ∈ H•0 out of AutF (P) whenever P can be fully F0-normalized (this
too can be done inductively).

This defines a fusion subsystem F0 of F over S0 which satisfies axiom (I) (and
probably axiom (III) too) by construction of F0. However, checking axiom (II) is a
difficult problem, as well as checking invariance of F0.

It would be also interesting studying the following situation. Let G be a compact
Lie group with connected component G0, and let G, G0 be the corresponding induced
p-local compact groups. One should the check first whether G0 is connected in the
sense of definition 3.1.4, and, if this is the case, then try constructing an inclusion
functor ι0 : L0 → L as in Corollary 3.2.5.



Chapter 4

Unstable Adams operations on p-local
compact groups and Robinson groups

We introduce in this chapter a powerful tool for p-local compact groups: unstable
Adams operations. These operations play an important role in the theory of compact
Lie groups, for instance when describing the space of self-maps of classifying spaces
(see Theorem 1 [JMO90]), in K-theory (see [AC77]), and many others, and we expect
the analogous operations on p-local compact groups to be as central in the theory as
they are for compact Lie groups.

Unstable Adams operations for p-local compact groups were prove to exist in
[Jun09], where a explicit construction of operations can be found. We will recall in
this chapter the constructions from the original source, avoiding proofs when they
can be checked in [Jun09]. As an improvement of these results, we construct as well
unstable Adams operations on Robinson groups realizing saturated fusion systems.

First, we define unstable Adams operations, both for p-local compact groups and
for Robinson groups realizing fusion systems.

Definition 4.0.4. LetG = (S,F ,L) be a p-local compact group, and let q be a prime different
from p, and m ∈ N. We define an unstable Adams operation Ψ of degree qm on G as a
triple (ψS, ψF , ψL), where

(i) ψS : S→ S is a fusion preserving automorphism such that, for all t ∈ T, ψ(t) = tqm ;

(ii) ψF : F → F is the natural functor induced by ψS;

(iii) ψL : L → L is a functor such that ψL(P) = ψS(P) and such that

ρ ◦ ψL = ψF ◦ ρ,

where ρ : L → F is the usual projection functor.

Let F be a saturated fusion system over a discrete p-toral group S, G be a Robinson group
associated to F , and let q be a prime different from p, and m ∈N. Let also ιT : T → G be the
canonical monomorphism from Lemma 2.3. An unstable Adams operation of degree qm on
G is a group automorphism ΨG : G→ G such that

(i) ΨG induces a fusion preserving automorphism on S;

(ii) the restriction of ΨG to T is the qm-th power map.
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Note that, in the definition of unstable Adams operations for p-local compact
groups, since ψL(S) = ψS(S), in particular it follows that for each P ∈ Ob(L) and each
t ∈ T ∩ P,

ΨL(δP(t)) = δψS(P)(ψS(t)).

4.1 Unstable Adams operations on saturated fusion sys-
tems

We start by constructing unstable Adams operations of saturated fusion systems. This
section does not contain any new result, but describes explicitly how to construct un-
stable Adams operations on fusion systems. In fact, all we have to do is define fusion
preserving automorphisms of the Sylow S, restricting to a certain automorphism of
the maximal torus. Mainly, the aim of this section is showing the following result.

Theorem 4.1.1. (3.2 [Jun09]). Let F be a saturated fusion system over a discrete p-toral
group S with maximal torus T, and let q be a prime different from p.Then, there exists m ∈N
and ψm : S → S such that ψm is a fusion preserving automorphism and such that, for each
t ∈ T, ψm(t) = tqm .

Let F be a saturated fusion system over a discrete p-toral group S, and let T ≤ S
be its maximal torus. Then, there is an extension

T −→ S −→ S/T,

where S/T is a finite p-group. Thus, we can write S/T = {a1, . . . , al}. Furthermore, if
we fix a (finite) set χ ⊆ S of representatives of the a j, then we may write S = 〈T, χ〉,
and every y ∈ S can be uniquely writen as

y = tyx j,

for some ty ∈ T and some x j ∈ χ. From now on, consider the set χ fixed.
We can now define, for each m ∈N, a map from S to S itself as follows:

(4.1) S
ψm // S

y = tyx j
� // ψm(y) = tqm

y x j.

This, of course, may not even be a group homomorphism. However, by increasing
m, this map can be greatly improved. Mainly all the results in this sections are based
in the following lemma.

Lemma 4.1.2. Let p, q be different prime numbers, and let n,m ∈ N be such that qm
− 1 is

congruent with 0 modulo pn but not modulo pn+1. Then, qpm
− 1 is congruent with 0 modulo

pn+1.

Proof. We may write qm
− 1 = pnk, for some k ∈ N not congruent with 0 modulo p,

k ≤ p − 1. We distinguish two different cases.



4.1 Unstable Adams operations on saturated fusion systems 59

Suppose first that p > 2. Consider (qm
− 1)p:

ppnkp = (qm
− 1)p =

p∑
j=0

(
p
j

)
(−1) j(qm)(p− j) = A + B,

where
A = qpm

− 1 and B =
∑p−1

j=1

(p
j

)
(−1) j(qm)p− j.

Obviously, ppnkp is congruent with 0 modulo pn+1, since n + 1 < pn. Hence, we have
to check that B ≡ 0 modulo pn+1.

Seen as a polynomial on qm, B has an even number of terms, and, since j =
1, . . . , p − 1, it follows that p divides all the coefficients in B. Furthermore, since(a

b

)
=

( a
a−b

)
, it follows that 1 is a root of this polynomial, that is

B = p(qm
− 1)B′,

where B′ is a polynomial on qm of lower degree. Since qm
− 1 = pnk by hypothesis, it

follows now that pn+1 divides B, and hence the statement is true for p odd.
Suppose now that p = 2. This case is easier: if qm

− 1 = 2n, then

22n = (qm
− 1)2 = q2m

− 2qm + 1 = (q2m
− 1) − (2qm

− 2) = (q2m
− 1) − 2(qm

− 1),

and q2m
− 1 is congruent with 0 modulo 2n+1.

�

Lemma 4.1.3. (3.3 [Jun09]). Fix P ≤ S and f ∈ AutF (P). Then the following holds:

(i) there exists some m1 such that, for all i ≥ m1, ψi : S→ S is a group automorphism;

(ii) there exists some m2 such that, for all i ≥ m2, the automorphism ψi satisfies ψi(P) = P;

(iii) there exists some m3 such that, for all i ≥ m3, the automorphism ψi satisfies ψi(P) = P
and ψi f = fψi. In particular, ψi fψ−1

i = f ∈ AutF (P).

Actually, since the lemma above only depends on certain finiteness conditions, we
can deduce the following.

Corollary 4.1.4. (3.4 [Jun09]). Let H = {P1, . . . ,Pn} a finite set of subgroups of S, and for
each j letM j ⊆ AutF (P j) be a finite subset of automorphisms. Then, there exists m ∈N such
that, for all i ≥ m, for each P j ∈ H and each f ∈ M j,

ψi(P j) = P j and ψi fψ−1
i = f .

Next step towards Theorem 4.1.1 is the following lemma.

Lemma 4.1.5. (3.5 [Jun09]). Let P ≤ S, f ∈ AutF (P) and m be such that, for all i ≥ m, ψi is
a group automorphism, ψi(P) = P and ψi fψ−1

i ∈ AutF (P). Then, for each g ∈ P,

ψi ◦ (cg ◦ f ) ◦ ψ−1
i ∈ AutF (P).
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Since, for each P ≤ S the group OutF (P) is finite, if we fix P and a finite set of
representatives in AutF (P) of the elements in OutF (P), then there exists m such that,
for all i ≥ m, ψi(P) = P and

ψi ◦ AutF (P) ◦ ψ−1
i = AutF (P).

Proposition 4.1.6. (3.7 [Jun09]). Let P ≤ S and m be such that, for all i ≥ m, ψi(P) = P and
ψiAutF (P)ψ−1

i = AutF (P). Then, for each g ∈ S,

ψi ◦ AutF (Pg) ◦ ψ−1
i = AutF (Pψi(g)).

Now, to prove Theorem 4.1.1 we just need to fix a setH of representatives of each
of the S-conjugacy classes of F -centric F -radical subgroups of S, and for each P ∈ H ,
also fix a set of representativesMP in AutF (P) of the elements in OutF (P), and increase
m until all the previous results hold for each P ∈ C. Note that, by Lemma 1.3.2 (i) and
Corollary 1.3.4, the setH is finite. Alperin’s fusion theorem (Theorem 1.3.5) finishes
the proof.

Theorem 4.1.7. (3.9 [Jun09]). LetF be a saturated fusion system over a discrete p-toral group
S, and let m be as in Theorem 4.1.1. Then, there exist infinitely many functors Ψim : F → F
such that, for each i, when restricted to the maximal torus T ≤ S, Ψim is the qim-th power map.

Proof. Since we have already shown the existence of at least one functor Ψm, we can
now compose Ψm with itself, giving rise to a new such functor of degree 2m. Iterating
the process proves the result.

�

Note too that the construction of ψm is done by “making choices” of represen-
tatives, the main choice made when fixing the set χ ⊆ S of representatives of the
elements in S/T. Thus, a different set of choices may lead to a different unstable
Adams operation on the same fusion system.

Proposition 4.1.8. (3.10 [Jun09]). Let χ1, χ2 ⊆ S be different sets of choices, and let m1,m2

such that χ j gives rise to an unstable Adams operation Ψm j on the same F , for j = 1, 2. Then,
there exists M such that, for all i ≥M, as functors on F ,

Ψim1 = Ψim2 .

One can already see the similarities between the construction of Robinson groups
realizing saturated fusion systems and the construction of unstable Adams operations,
since it mainly depends on a choice of a fusion-controlling set for F .

4.2 Unstable Adams operations on linking systems

In this section we finish introducing the work from [Jun09] with the construction of
unstable Adams operations on linking systems associated to saturated fusion systems
over discrete p-toral groups. Again, nothing new is proved in this section.
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Definition 4.2.1. Let G be a p-local compact group, and let ΨF , ΨL be functors defined on
F and L respectively. We say that they are compatible functors if

ρ ◦ΨL = ΨF ◦ ρ,

where ρ : L → F is the usual projection functor.

We start by giving an analog of Alperin’s fusion theorem for linking systems.

Proposition 4.2.2. (4.8 [Jun09]). LetL be a centric linking system associated to a saturated
fusion systems F over a discrete p-toral group S. Then, for each ϕ ∈ IsoL(P,P′) there exist
sequences of objects in L,

P = P0,P1, . . . ,Pk = P′ and Q1, . . . ,Qk,

and morphisms φ j ∈ AutL(Q j) such that

(i) Q j is F -centric F -radical for each j = 1, . . . , k;

(ii) P j−1,P j ≤ Q j, and ρ(φ j)(P j−1) = P j for each j = 1, . . . , k; and

(iii) ιP′,Qk ◦ ϕ = φk ◦ φk−1 ◦ . . . ◦ φ1 ◦ ιP,Q1 .

The proposition above is actually all we need in order to prove the following
result. Let χ be a set of representatives in S of the elements in S/T, H be a set of
representatives of the S-conjugacy classes of F -centric F -radical subgroups,MP be
a set of representatives in AutF (P) of the elements in OutF (P), for each P ∈ H , and
m be such that ψm is a fusion preserving automorphism of S as in Theorem 4.1.1
(constructed with respect to all these choices we have just done). Let also ψF be the
self-functor on F defined by ψm.

Recall, by Theorem 4.1.7, that in fact we have a whole infinite family {ψim}i of
fusion preserving automorphisms defined on S.

Now, for each P ∈ H , let M̂P be a set of liftings in AutL(P) of the elements inMP.
Then, each φ ∈ AutL(P) can be uniquely writen as φ = δP(g) ◦ ϕ for some g ∈ P and
some ϕ ∈ M̂P, and we can define maps

AutL(P)
ΨP,i // AutL(P)

φ = δP(g) ◦ ϕ � // δP(ψim(g)) ◦ ϕ.

Lemma 4.2.3. (4.10 [Jun09]). For each P ∈ H and each ϕ ∈ M̂P, there exists some mP such
that, for all i ≥ mP, the map ΨP,i is a group automorphism.

Thus, once we find M such that, for all i ≥M, the above lemma holds for all P ∈ H ,
the same arguments used to prove Theorem 4.1.1 apply to show the following result.

Theorem 4.2.4. (4.12 [Jun09]). Let G be a p-local compact group, and let q be a prime
different from p. Then, there exists m ∈ N and an automorphism Ψm = (ψS, ψF , ψL) such
that

(i) ψL and ψF are compatible functors,
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(ii) ψL(δS(S)) = δS(ψS(S)) ≤ AutL(S), and

(iii) the restriction to the maximal torus T is the qm-th power map.

Again, once such an automorphism onG has been constructed, its iterated compo-
sitions give rise to a whole family of automorphisms of increasingly greater degrees.

Corollary 4.2.5. Let G be a p-local compact group, and let q be a prime different from p.
Let also m and Ψm be as in Theorem 4.2.4. Then, there is a whole family of unstable Adams
operations, {Ψim}, defined on G. For each i, Ψim has degree qim.

By definition, an unstable Adams operation Ψ on G = (S,F ,L) is a triple Ψ =
(ψS, ψF , ψL). It happens, however, that for the unstable Adams operations constructed
in [Jun09], the whole triple Ψ can be recovered from the functor ψL. This does not
mean that this is the case for all unstable Adams operations.

4.3 Unstable Adams operations on groups realizing fu-
sion systems

Finally, in this section, we construct unstable Adams operations for Robinson groups
realizing saturated fusion systems. This construction is almost immediate since both
Robinson groups and the unstable Adams operations from [Jun09] share some points
in their constructions. Let then F be a saturated fusion system over a discrete p-toral
group S. Whether F comes together with an associated centric linking system or not
is of no importance here. Let also q be a prime different from p.

As in the previous section, let χ be a set of representatives in S of the elements in
S/T,H be a set of representatives of the S-conjugacy classes of F -centric (F -radical)
subgroups,MP be a set of representatives in AutF (P) of the elements in OutF (P), for
each P ∈ H , and m be such that ψm is a fusion preserving automorphism of S as
in Theorem 4.1.1 (constructed with respect to all these choices we have just done),
together with the self-functor on F , ψF , defined by ψm. Let also {ψim}i be the whole
family of fusion preserving automorphisms on S induced by iterated compositions of
ψm with itself.

Let P ⊆ H be the subset of fully F -normalized subgroups (since we have fixed
inH representatives of all the S-conjugacy classes of F -centric F -radical subgroups,
we have, in particular, fixed fully F -normalized representatives of the F -conjugacy
classes of F -centric (F -radical) subgroups). Then, by Alperin’s fusion theorem, they
form an (enlarged) fusion-controlling set for F , and we may apply Theorem 2.2.3 to
obtain a group G realizing F .

Fix P ∈ P, and let NP = NS(P). Since P is fully F -normalized, the normalizer
fusion subsystem NF (P) is saturated and constrained, and we may apply Proposition
2.1.3 to it: there is a unique centric linking system LP associated to NF (P), which is
induced by the group LP = AutLP(P). Furthermore, NP ∈ Sylp(LP).
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Now, by definition, there is a commutative diagram

Z(P) // P //

δP
��

Inn(P)

��
Z(P)

δP

// LP
//

��

AutF (P)

��
OutF (P) OutF (P),

so we can fix a set of liftings M̂P in LP of the elements inMP ⊆ AutF (P). Once this is
done, we can construct a family of unstable Adams operations, {ΨP,i} on LP as done
in Theorem 4.2.4. By construction, the automorphism ΨP,i sends δP(NP) to δP(NP) for
all i. Let ψNP,i be the automorphism of NP induced this way.

Lemma 4.3.1. For each P ∈ P, let NP = NS(P), let LP be the normalizer linking system and
let {ΨP,i} the family of operations on LP constructed above. Then, there exists some M such
that, for all i ≥M, for each pair P,P′ ∈ P and all x ∈ NP ∩NP′ ,

ψNP,i(x) = ψNP′ ,i(x).

Proof. We prove the above lemma for a pair P,P′ ∈ P, the general statement being an
easy consequence. Let TP ≤ NP, TP′ ≤ NP′ be the corresponding maximal tori. Then,
by definition, the automorphisms ψNP,i and ψNP′ ,i restrict to the qim-th power map on
TP and TP′ , and hence the statement is true for all x ∈ TP ∩ TP′ .

To finish the proof, note that (NP∩NP′)/(TP∩TP′) is a finite p-group (TP∩TP′ being
the maximal torus of the discrete p-toral group NP ∩ NP′). If we fix representatives
x1, . . . , xk of the elements of this quotient in NP ∩ NP′ , then, it is implicit in Lemma
4.1.3 that there exists M such that, for all i ≥M and each of these representatives x j,

ψNP,i(x j) = x j = ψNP′ ,i(x j),

and hence the statement holds for the pair P,P′.
�

Proposition 4.3.2. Let G be the Robinson group realizing F constructed from the (enlarged)
fusion-controlling setP. Then, there exists some M such that, for all i ≥M, the automorphisms
{ΨP,i}P∈H ′ induce an automorphism

ΨG,i : G −→ G.

Furthermore, if T is the maximal torus of S, then, ΨG,i restricts to the qim-th power map
on T.

Proof. Again, the proof reduces to showing the case H ′ contains only two elements,
P,P′. That is, suppose G = L1 ∗N2 L2, where N j ∈ Sylp(L j), j = 1, 2, and N2 ≤ N1.

By Lemma 4.3.1 above, there is some M such that, for all i ≥M, the automorphisms
ψN1,i and ψN2,i agree on the intersection N1∩N2 = N2. The universal property of amal-
gams (push-outs) implies now that Ψ1,i together with Ψ2,i induce an automorphism
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ΨG,i : G→ G:
I //

��

L1

i1
�� i1◦Ψ1,i

��

L2 i2
//

i2◦Ψ2,i ++

G
ΨG,i

��
G,

where I = N1 ∩N2.
The last part of the statement follows by definition of the automorphisms Ψ1,i and

Ψ2,i.
�

Theorem 4.3.3. Let F be a saturated fusion system over a discrete p-toral group, H be a
set of representatives of the S-conjugacy classes of F -centric F -radical subgroups, P be the
(enlarged) fusion-controlling set insideH , and let G be the Robinson group realizing F built
up from P.

Let also ψF ,i be a family of Adams operations defined onF as in Theorem 4.1.7, and {ΨG,i}

a family of Adams operations defined on G as in Proposition 4.3.2. Then, there exists some M
such that, for all i ≥M, the functor ψF ,i is naturally induced by ΨG,i.

Proof. This is immediate, since the functor ψF ,i is induces by the fusion preserving
automorphism ψS,i, which in turn is implicit in ΨG,i by definition.

�



Chapter 5

Fixed points of p-local compact groups
under the action of unstable Adams
operations

Let G be a group, and let f : BG → BG be a self-map. Then, one can consider the
subspace of homotopy fixed points of BG under f , BGh f , defined as the following
homotopy pull-back:

BGh f
γ //

γ

��

BG

∆
��

BG id× f
// BG × BG,

and in some particular cases it can be shown that BGh f is homotopy equivalent to the
classifying space of another group H, BGh f

' BH. For instance, this happens when
f = Bα, with α ∈ Aut(G) an actual automorphism of G. However, this is in general
a difficult problem to solve, and usually one looks for such a homotopy equivalence
after completing the space BGh f on some suitable prime p.

An interesting example of this situation is deduced from the following result by
E. M. Friedlander and G. Mislin.

Theorem 5.0.4. (1.4 [FM84]). Let G be a reductive complex Lie group G, let q be a prime,
and let F̄q be the algebraic closure of the field Fq. Then, for each prime p different from q, there
is a map

BG(F̄q) −→ BG,

inducing isomorphisms in mod p cohomology, where G(F̄q) is the discrete group of F̄q-rational
points of a Chevalley integral group scheme associated to G.

We can then easily prove the following corollary.

Corollary 5.0.5. Let G and q be as in Theorem 5.0.4. Let also p be a prime different from q,
and let Ψ be an unstable Adams operation of degree a p-adic unit acting on BG. Then, there
is a homotopy equivalence

(BG(Fqn))∧p ' (BGhΨ)∧p

for certain n.
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This result is proved by considering the Frobenius map α on G(F̄q) with same
degree as Ψ. In this case, the space of homotopy fixed points of BG(F̄q) under Bα is
simply the classifying space of the fixed-point subgroup of G(F̄q) by α, G(Fqn) for a
certain n, which is the same as in the statement of the corollary above.

This is of even greater importance since, up to homotopy, all self-maps of compact
connected simple Lie groups are compositions of an actual automorphism of the group
followed by an unstable Adams operation, as proved by S. Jackowski, J. McClure and
B. Oliver in [JMO92a].

Theorem 5.0.6. Let G be a compact connected simple Lie group with maximal torus T and
Weyl group W. Then there is a bijection

Rep(G,G) ∧ {k ≥ 0|k = 0 or (k, |W|) = 1} �
−→ [BG,BG]

of monoids with zero element, which sends the pair (α, k) to the composition Ψk
◦ Bα.

Here, Rep(G,G) � {0} q Out(G), and Ψk is the unique (up to homotopy) unstable
Adams operation of degree k on BG.

A similar situation was studied by C. Broto and J. Møller in [BM07], where the
authors replace the compact connected Lie group G by a p-compact group (X,BX, e)
such that BX is 1-connected.

Theorem 5.0.7. (Theorem A [BM07]). Let p be an odd prime, and let (X,BX, e) be a
1-connected p-compact group. Let also q be a prime power, prime to p, and let τ be an
automorphism of the p-compact group of finite order prime to p.

Then, the space of homotopy fixed points of BX by the action of τ◦Ψq, denoted by BXhτΨq ,
is the classifying space of a p-local finite group.

The results from [BM07] suggest that a more general setting is needed if we intend
to unify all these results in a single theorem about spaces of homotopy fixed points,
and p-local compact groups seem to be an appropriate candidate.

Let thenG be a p-local compact group, let Ψ be an unstable Adams operation, and
let X be the space of homotopy fixed points of BG under Ψ. There are then (at least)
two main different ways of studying the space X, namely from the topological point
of view and from the combinatorial point of view.

The topological approach to this problem can be sketched as follows. Consider
the natural map BS→ BG. This maps induces in turn a map f : B(SΨ)→ X, where SΨ

stands for the subgroup of all x ∈ S such that Ψ(x) = x, and then one can reproduce
the construction from section §7 in [BLO03b] to obtain a triple (SΨ,FSΨ, f (X),Lc

SΨ, f (X)).
Then, one “only” has to check that all conditions in Theorem 7.5 [BLO03b] hold for
this triple to see that X is the classifying space of a p-local finite group.

The combinatorial approach starts by studying the invariants in G as a triple,
that is by checking if one obtains a p-local finite group (SΨ,F Ψ,LΨ) by means of
the combinatorial description of Ψ as a triple (ψS, ψF , ψL). Then, one “only” has to
compare the homotopy type of the classifying space of this p-local finite group with
the X.

In this work we have focused on the combinatorial approach of the problem,
and, more concretely, on the problem of obtaining p-local finite groups from unstable
Adams operations on G, and the issue of comparing the homotopy types is left as a
future project.
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We consider then a fixed p-local compact group and a family of unstable Adams
operations as constructed in [Jun09]. The advantage of considering a whole family
instead of a single operation is clear, since some properties hold only after considering
operations of suitably higher degrees.

We obtain a family of triples {Gi = (Si,Fi,Li)} such that, for all i, Gi looks “almost”
like a p-local finite group, in the sense that Fi is anHi-generated,Hi-saturated fusion
system over Si (for a certain subsetHi ⊆ Ob(Fi) which we will properly describe), and
Li satisfies the axiom of a linking system associated to Fi, while the question of the
saturation of Fi remains, in general, unsolved.

One particular situation that we have managed to solve (in the positive case) is that
of p-local compact groups of rank 1. The detailed knowledge of such p-local compact
groups that we have acquired in chapter §3 clearly helps, specially the existence of
connected components in this case and the explicit description of them. Thus, one
may ask whether we can develop a similar strategy for the general case or not, the
first problem being that yet we have not proved the existence and uniqueness of
connected components in the general case.

The first section of this chapter contains some technical results on invariance in
linking systems (under the action of unstable Adams operations). This results are then
exploited in the second section, in the case where a whole family of operations acts on
a p-local compact group. The definition and properties of the family {Gi = (Si,Fi,Li)}
are described in section §5.2.2. After introducing these triples, we exploit further their
properties, specially in the case where eventually the Gi become p-local finite groups.
In this sense, we prove in section §5.3 an analog of the Stable Elements theorem for
p-local compact groups. Examples are then studied in section §5.4. The assumption of
the existence of a centric linking system L is of great importance in our construction,
but a section is devoted at then end to discuss the situation where no linking system
is assumed to exist.

We state below the main results of this section. The first result is a compendium
of the results from section §5.2. The second result is the Stable Elements theorem
(proved later on as Theorem 5.3.8). The third result states that all rank 1 p-local
compact groups can be approximated by p-local finite groups via families of unstable
Adams operations (and corresponds to Theorem 5.4.1).

Theorem 5.0.8. LetG be a p-local compact group, and let {Ψi} be a family of unstable Adams
operations defined on G, and such that, for all i, Ψi+1 = (Ψi)p.

Then, there exists some M such that, for all i ≥ M, there exists a set {Hi} of subgroups of
Si, a triple Gi = (Si,Fi,Li) (defined in terms of the action of Ψi on L) and a faithful functor
Θi : Li → Li+1 such that the following holds:

(i) the functor ( )• : F → F gives an inclusion of setsHi ↪→Hi+1,

(ii) Fi is anHi-generatedHi-saturated fusion system,

(iii) Li satisfies the axioms of a linking system with respect to the full subcategory of Fi with
object setHi, and

(iv) there is a homotopy equivalence (hocolim BGi)∧p ' BG, where, by analogy with p-local
finite groups, BGi stands for the p-completion of the realization of the nerve of Li.
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Theorem 5.0.9. Let G be a p-local compact group such that admits an approximation by
p-local finite groups (in the sense of definition 5.3.5). Then, there is an isomorphism

H∗(|L|;Fp) �
−→ H∗(F )

de f
= lim
←−−
O(F c)

H∗( ;Fp) ⊆ H∗(BS;Fp),

and in particular H∗(BG;Fp) = H∗(|L|;Fp) is noetherian.

Theorem 5.0.10. LetG be a rank 1 p-local compact group, and let {Ψi} be a family of unstable
Adams operations defined on G. Then, {Ψi|} induces an approximation of G by p-local finite
groups (in the sense of definition 5.3.5).

It is also worth mentioning that, in the cases where theGi are p-local finite groups,
we obtain also inclusions of p-local finite groups, that is, functors between the linking
systems. These functors are of a certain interest since they are not the identity on
objects.

5.1 Unstable Adams operations acting on centric linking
systems

FixG a p-local compact group and q a prime different from p, and let Ψ be an unstable
Adams operation on G (whose existence has been shown in Theorem 4.2.4). In this
section we study invariance in Gwith respect to Ψ.

We will in fact restrict ourselves to consider only unstable Adams operations as
constructed in chapter §4. Such an Adams operation Ψ = (ψS, ψF , ψL) is completely
determined by the functor ψL : L → L, as noted at the end of section §4.2, and this is
already a good reason to restrict in turn our study to the action of ψL.

In fact, restricting to ψL is also justified by the following. Let SΨ
≤ S be the

subgroup of fixed elements of S underψS, and let P ≤ SΨ be any (nontrivial) subgroup.
Then, it follows by construction of ψF that all the elements f ∈ AutF (P) remain
invariant under ψF . On the other hand, in general, the set NS(P) \NSΨ(P) will not be
empty, and it stands to reason that an automorphism of P induced by conjugation by
an element in this set should not be considered as invariant.

Definition 5.1.1. We say that R ∈ L is Ψ-invariant if Ψ(R) = R. Similarly, a morphism
ϕ ∈MorL(R,R′) is Ψ-invariant if Ψ(ϕ) = ϕ.

In this chapter, we will work with a family of unstable Adams operations defined
by iterations of an original operation Ψ (of the kind constructed in chapter §4), and
the choices made to define such an operation will be rather relevant. Thus, it is worth
compiling here in a few lines the list of choices to take in order to construct Ψ. Let G
be a fixed p-local compact group and q be a fixed prime different from p.

Basic Ingredients - 1. Fix the following list of elements, objects and morphisms in G:

(i) a set χ of representatives in S of the elements in S/T;

(ii) a setH of representatives of the F -conjugacy classes of F -centric subgroups in
the set Ob(F •);
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(iii) for each P ∈ H , a set HP of representatives of the S-conjugacy classes in 〈P〉F
(and such that P itself is inHP representing its own S-conjugacy class);

(iv) for each P ∈ H and each pair R,R′ ∈ HP, a set MR,R′ of representatives in
IsoF (R,R′) of the elements in RepF (R,R′);

(v) for each P ∈ H , and for each pair R,R′ ∈ HP, a set M̂R,R′ of liftings in IsoL(R,R′)
of the elements inMR,R′ .

This list will remain fixed for the rest of the chapter. We think of it as the “basic
ingredients” needed to construct Ψ, and will refer to it as BI-1. The reason for the
numbering is that at some point we will want to “enlarge” it by adding to it some
more objects or morphisms, although always a finite number of them.

Note that we are including in BI-1 more elements than are really needed in order
to define an Adams operation on G, but this is not a problem, as has been shown
in chapter §4 ([Jun09]), since all the properties there hold for a finite number of
subgroups and morphisms.

Finally, let m ∈ N be such that there is a well-defined Adams operation Ψm =
(ψS, ψF , ψL) on G, of degree qm as in Theorem 4.2.4. To (slightly) simplify notation,
we will refer to the functor ψL as Ψ, since there will not be place for confusion.

5.1.1 Detecting Ψ-invariants in a linking system

Note that, by construction of Ψ, all the objects and morphisms in BI-1 are Ψ-invariant,
and now we want to “detect” which other objects Q and morphisms ϕ′ in L are Ψ-
invariant. The only way to do so is by comparing any other object or morphism
with some object or morphism which we know, a priori, to be Ψ-invariant, i.e., by
comparing Q and ϕ′ with the elements in BI-1.

Consider the subgroup

(5.1) SΨ = {x ∈ S |Ψ(x) = x} ≤ S,

and note that for any pair Q,Q′ of Ψ-invariant objects in L, all the morphisms in the
subset δQ,Q′(NS(Q,Q′) ∩ SΨ) ⊆MorL(Q,Q′) are Ψ-invariant too.

Lemma 5.1.2. Let R,R′ be subgroups fixed in BI-1, together with M̂R,R′ . Then, an isomor-
phism γ ∈ IsoL(R,R′) is Ψ-invariant if and only if γ = δR′(g) ◦ ϕ for some g ∈ R′ ∩ SΨ and
some ϕ ∈ M̂R,R′ .

Proof. By definition of M̂R,R′ , any isomorphism in IsoL(R,R′) can be written uniquely
as γ = δR′(g) ◦ ϕ for some g ∈ R′ and some ϕ ∈ M̂R,R′ . Thus, the statement is obvious.

�

Lemma 5.1.3. Let R be fixed in BI-1, and let Q ∈ 〈R〉S. Then, Q is Ψ-invariant if and only
if, for all x ∈ NS(R,Q), x−1Ψ(x) ∈ NS(R).

Proof. First, assume that Q is Ψ-invariant, and write Q = xRx−1 for some x ∈ NS(R,Q).
Thus, if we apply Ψ to this equality, we get

x · R · x−1 = Q = Ψ(Q) = Ψ(x) · R ·Ψ(x)−1,
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and hence x−1Ψ(x) ∈ NS(R).
Now, suppose that, for any x ∈ NS(R,Q), x−1Ψ(x) ∈ NS(R). Fix some x ∈ NS(R,Q),

and note that the condition above is equivalent to saying that

Ψ(x)x−1 = x(x−1Ψ(x))x−1
∈ NS(Q).

Thus, we may write R = x−1
·Q ·x, and, by applying Ψ, we get R = Ψ(x)−1

·Ψ(Q) ·Ψ(x),
and hence

Ψ(Q) = Ψ(x) · R ·Ψ(x)−1 = Ψ(X)x−1
·Q · xΨ(x)−1 = Q.

�

Lemma 5.1.4. Let R,R′ fixed in BI-1, and let Q ∈ 〈R〉S, Q′ ∈ 〈R′〉S. Then, a morphism
ϕ′ ∈ IsoL(Q,Q′) is Ψ-invariant if and only if there exist a ∈ NS(R,Q), b ∈ NS(R′,Q′) and
ϕ ∈ M̂R,R′ such that

(i) ϕ′ = δ(b) ◦ ϕ ◦ δ(a−1), and

(ii) δ(b−1Ψ(b)) ◦ ϕ = ϕ ◦ δ(a−1Ψ(a)).

Proof. Note that condition (ii) above is equivalent to the following condition

(ii’) δ(Ψ(b)b−1) ◦ ϕ′ = ϕ′ ◦ δ(Ψ(a)a−1).

Suppose first that ϕ′ is Ψ-invariant. Choose any x ∈ NS(R,Q) and y ∈ NS(R′,Q′),
and let φ = δ(y−1) ◦ϕ′ ◦ δ(x). Then, there exists f ∈ MR,R′ (a morphism in F ) such that

[ f ] = [ρ(φ)] ∈ RepF (R,R′).

Furthermore, by definition of RepF (R,R′), and by Lemma 4.3 (a) in [BLO07], it follows
that there exists a unique z ∈ R′ such that

ϕ = δ(z) ◦ φ,

where ϕ ∈ M̂R,R′ is the fixed lifting of f in L.
Thus, we have a commutative diagram in L

Q
ϕ′ //

δ(x)
��

Q′

δ(zy−1)
��

R ϕ
// R′,

where the horizontal arrows are Ψ-invariant morphisms.
If we set now a = x ∈ NS(R,Q) and b = yz−1

∈ NS(R′,Q′), then condition (i) is
already satisfied, and we have to check that condition (ii) also holds. Since both ϕ
and ϕ′ are Ψ-invariant, we may apply Ψ to (i) to get the following equality

δ(b) ◦ ϕ ◦ δ(a−1) = ϕ′ = Ψ(ϕ′) = δ(Ψ(b)) ◦ ϕ ◦ δ(Ψ(a)−1),

which is clearly equivalent to condition (ii), since morphisms in L are epimorphisms
in the categorical sense by Lemma A.2.2 (iv).
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Suppose now that conditions (i) and (ii) are satisfied for certain a, b and ϕ. Write
ϕ = δ(b−1) ◦ ϕ′ ◦ δ(a), and apply Ψ to this equality. Since ϕ is Ψ-invariant, we get

δ(Ψ(b)−1) ◦Ψ(ϕ′) ◦ δ(Ψ(a)) = δ(b−1) ◦ ϕ′ ◦ δ(a).

Thus, after reordering the terms in this equality and using condition (ii’) above, we
obtain

Ψ(ϕ′) ◦ δ(Ψ(a)a−1) = ϕ′ ◦ δ(Ψ(a)a−1),

which in turn implies that Ψ(ϕ′) = ϕ′ since morphisms in L are epimorphisms in the
categorical sense by Lemma A.2.2 (iv).

�

Note that, for any y ∈ S,
x−1Ψ(x) ∈ T,

since x = ty for some t ∈ T and y ∈ χ, and all the elements in χ are Ψ-invariant. This
already justifies the feeling that this problem is closely related to the existence and
properties of a hypothetical connected component of G (or at least of F0).

5.2 Families of unstable Adams operations acting on a
linking system

Expecting that the invariants ofL under the action of Ψ will give rise to a p-local finite
group would be excesively optimistic, and probably false in general too, but we can
improve the situation quite a lot if instead of considering a single unstable Adams
operation on Gwe consider a whole family of operations on G of increasingly higher
degrees.

As we have seen in chapter §4, given an unstable Adams operation Ψ on G,
different iterations of it give rise to new, different unstable Adams operations Ψ′ on
G. Fix then the p-local compact group G and fix also such an operation Ψ of degree
qm, together with a list like BI-1. Set then Ψ0 = Ψ, and

Ψi+1 = (Ψi)p,

that is, the operation Ψi iterated p times. Thus, since Ψ0 has degree qm for certain m,
for each i the operation Ψi has degree qpim. We fix the family

(5.2) {Ψi}i∈N

for the rest of this section. Note that, if an object or a morphism in L is Ψ j-invariant
for some j, then it is Ψi-invariant for all i ≥ j by definition of the family above.

Before getting into further details, we want to fix some notations that we will use
from now on. For each i, set

(5.3) Si
de f
= {x ∈ S |Ψi(x) = x},

and more generally we will use the following notation

Ri
de f
= R ∩ Si
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for the subgroup of fixed elements of R under Ψi.
Also, from time to time we will need to discard the first M operations (for some

finite M) from the family (5.2) in order for a certain property to hold. When this
happens, we will re-label the family following the formula “Ψi ⇒ Ψi−M”. This way,
we can keep using expressions as “for all i” instead of constantly pointing out which
is the lower bound of operations to consider in (5.2).

The following results are consequences of Lemma 4.1.2.

Lemma 5.2.1. For each i, Ti � Ti+1, and hence

T = ∪i∈NTi.

Proof. Fix i, and suppose Ti � (Z/pn)r for some n, where r = rk(T). Since for each
t ∈ T, Ψi(t) = tqpim , this is the same as saying that qpim

− 1 is congruent with 0 modulo
pn, but not modulo pn+1. By Lemma 4.1.2, it follows that qpi+1m

− 1 is congruent with 0
modulo pn+1 (at least), and hence Ti+1 strictly contains Ti.

�

Corollary 5.2.2. For each x ∈ S there exists some finite Mx such that, for all i ≥ Mx, x is
Ψi-invariant.

Proof. In BI-1 we have fixed a set χ of representatives of the elements in S/T, and it is
clear that every x ∈ S can be uniquely written as x = yt for certain y ∈ χ and t ∈ T.
Now, the elements in χ are Ψi-invariant for all i, by construction, and it is clear then
that x is Ψi-invariant if and only if t is Ψi-invariant.

�

Finally, we can prove the following result.

Proposition 5.2.3. The following hold in L:

(i) Let Q ∈ Ob(L). Then, there exists some MQ such that, for all i ≥MQ, Q is Ψi-invariant.

(ii) Let ϕ be a morphism in L. Then, there exists some Mϕ such that, for all i ≥ Mϕ, ϕ is
Ψi-invariant.

Proof. (i) Let Q ∈ L, and let TQ be its maximal torus. Fix also representatives in Q of
the elements in Q/TQ. Since this is a finite set, and Ψi(TQ) = TQ for all i, the result
follows from Corollary 5.2.2.

(ii) Let now ϕ : Q → Q′ be a morphism in L. By (i), there exists some M′ such
that, for all i ≥M′, both Q and Q′ are Ψi-invariant.

We can suppose that ϕ is an isomorphism. Furthermore, we can assume that ϕ is
not any of the morphisms fixed in BI-1, since otherwise we are finished.

Now, Q ∈ 〈R〉S, Q′ ∈ 〈R′〉S for certain R,R′ fixed in BI-1, and we can write

ϕ = δ(b) ◦ ϕ′ ◦ δ(a−1)

for some ϕ′ ∈ M̂R,R′ , a ∈ NS(R,Q) and b ∈ NS(R′,Q′). Thus, it is enough to see that
there exists some Mϕ such that Ψi(a) = a, Ψi(b) = b for all i ≥ Mϕ, and this has been
shown in Corollary 5.2.2

�
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5.2.1 A stronger invariance condition for linking systems

Once we have fixed the family of operations which will act on G, the next step is
deciding which invariants we will consider, keeping in mind that we want to provide
them with some structure. More concretely, we would like to define triples (Si,Fi,Li)
such that the following eventually holds:

(i) for all i, each of these triples is a p-local finite group , and

(ii) for each i some relation exists between the triples (Si,Fi,Li) and (Si+1,Fi+1,Li+1).

As a first attempt, one could then define a fusion system over Si with morphism
sets spanned by compositions of restrictions of all the Ψi-invariant morphisms in L,
and unfortunately this is addressed to fail in being a saturated fusion system, mainly
because first, given R ∈ Ob(L), the subgroup Ri = R ∩ Si need not be Fi-centric in
general, and second, given a morphism fi : Ri → Si in Fi (which will be in general
the restriction of some f ∈ Mor(F )) on which one might apply axiom (II), there is no
way to relate the subgroup N fi (in Fi) with the subgroup N f (in F ), hence one does
not have any way to make sure that the extensions of axiom (II) holds in Fi. The key
point to avoid these problems lies in the functor ( )• defined in 1.3.1.

Definition 5.2.4. Let K be a subgroup of S. We say that the subgroup R ∈ Ob(F •) is
K-determined if

(R ∩ K)• = R.

For a K-determined subgroup R we call the subgroup R ∩ K the K-root of R.

It is clear that our interest lies in the case K = Si (5.3). We first prove the existence
of such groups.

Lemma 5.2.5. Let R ∈ Ob(F •). Then, there exists some MR such that, for all i ≥ MR, R is
Si-determined.

Proof. Let TR be the maximal torus of R, and note that R can be expressed as R = ∪Ri.
Thus, there exists some M such that, for all i ≥M, Ri contains a set of representatives
of the elements in R/TR.

Now recall the definition of the functor ( )•: for Q ≤ S, Q• = Q · I(Q[e])0, where e
is such that S/T = pe. Thus, since R = R• and AutF (T) is finite, it is easy to check that
there exists some M′

≥M such that, for all i ≥M′,

I(R[e]
i ) = I(R[e]),

which finishes the proof.
�

Implicit in the lemma above there is the fact that, if R is S j-determined, then it is
Si-determined for all i ≥ j, since

R = (R ∩ Si)• ≤ (R ∩ S j)• ≤ R• = R.

As an immediate consequence, it follows that all the subgroups fixed in BI-1
eventually become Si-determined.
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Lemma 5.2.6. There exists some finite M1 such that, for all i ≥ M1, all the subgroups fixed
in BI-1 are Si-determined.

Proof. Since we have only fixed finitely many subgroups in BI-1, the statement follows
by Lemma 5.2.5.

�

We now list some properties of Si-determined subgroups.

Lemma 5.2.7. Let R ∈ Ob(F •) be an Si-determined subgroup, for some i. Then,

(i) R = Ri · TR, where TR is the maximal torus of R;

(ii) Ri contains a set of representatives of all the elements in R/TR; and

(iii) Ri contains a set of representatives of all the elements in R/(R ∩ T), where T is the
maximal torus of S.

Proof. (i) Since R is Si-determined, we have

R = (Ri)• = Ri · I(R[e]
i )0.

Furthermore, since Ri is finite, it follows that I(R[e]
i )0 has the same rank as R, and thus

there is an equality I(R[e]
i )0 = TR.

(ii) It has already been pointed out before, since R/TR = (Ri · TR)/TR.
(iii) It follows from (ii) and the commutative diagram

TR
// R ∩ T //

��

(R ∩ T)/TR

��
TR

// R //

��

R/TR

��
R/(R ∩ T) R/(R ∩ T).

�

Lemma 5.2.8. The following holds in L for all i:

(i) if R is Si-determined, then it is Ψi-invariant;

(ii) if R is Si-determined and ϕ ∈ IsoL(R,R′) is Ψi-invariant, then R′ is also Si-determined.

Proof. (i) is immediate after the previous lemma. Indeed,

Ψi(R) = Ψi(Ri · TR) ≤ R,

since Ψi(x) = x for all x ∈ Ri, and Ψi(TR) = TR by the very definition of Ψi.
(ii) Now, let R be Si-determined and ϕ ∈ IsoL(R,R′) be a Ψi-invariant morphism.

Then, for each x ∈ Ri we can apply axiom (C) of L to get a commutative diagram

R
ϕ //

δ(x)
��

R′

δ(y)
��

R ϕ
// R′,
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where y = ρ(ϕ)(x). Since three of the four arrows are Ψi-invariant by hypothesis, it
follows that so is δ(y), i.e., y ∈ R′i .

The proof is now finished by applying the functor ( )• and its properties to f :
Ri → R′i , together with the hypothesis of R being Si-determined.

�

Caution!. Let R,R′ be Si-determined. If Ri and R′i are F -conjugate, then by Proposition
1.3.3, it follows that R and R′ are also F -conjugate. However, the opposite may not be true.

The following results justify working with Si-determined subgroups.

Proposition 5.2.9. There exists some M2 such that, for all i ≥M2, if R is Si-determined, then

CS(Ri) = CS(R).

Proof. We will prove the statement for a single S-conjugacy class in Ob(F •), since by
Lemma 1.3.2 (i) there are only finitely many such conjugacy classes.

Let then R ∈ Ob(F •), consider the S-conjugacy class 〈R〉S, and let

TR = {TQ|Q ∈ 〈R〉S}

be the set of maximal tori of subgroups in the S-conjugacy class of R. First we show
that this is a finite set. Indeed, for any two Q,Q′ ∈ 〈R〉S and any f ∈ IsoF (Q,Q′), the
infinite p-divisibility property on TQ and TQ′ implies that f (TQ) = TQ′ . Now, by Lemma
1.2.3, f|TQ is the restriction of an automorphism in AutF (T), and this automorphism
group is finite because T is abelian.

For each TQ ∈ TR, write TQ = ∪(TQ)i, where (TQ)i is the subgroup of Ψi-invariant
elements of TQ. Thus, for each i we have inclusions

(TQ)i ≤ (TQ)i+1 ≤ TQ,

and we may take their centralizers in S. This reverses the inclusions, and hence the
artinian condition of S implies that there exists MTQ such that, for all i ≥MTQ ,

CS(TQ) = CS((TQ)i).

Since TR is finite, we may finally consider MR = max{MTQ |TQ ∈ TR}.
Now, let i ≥ MR, and let Q ∈ 〈R〉S be Si-determined. Then, by Lemma 5.2.7 (ii),

Qi contains a set Q̄ of representatives of the elements of Q/TQ, and the subgroup
HQ = 〈Q̄〉 is finite because S is locally finite. Furthermore, we can write

Q = HQ · TQ and Qi = HQ · (TQ)i.

Thus, by taking centralizers on both equalities (and since i ≥MR as above), we get

CS(Q) = CS(HQ) ∩ CS(TQ) = CS(HQ) ∩ CS((TQ)i) = CS(Qi).

Finally, take M2 to be the maximum of the MR, for a set of representatives of the
S-conjugacy classes in Ob(F •).

�

As an easy consequence, we have the following.



76 Fixed points of p-local compact groups under the action of Adams operations

Corollary 5.2.10. For all i ≥ M2 and all R which is Si-determined, if CS(R) = Z(R) then
CSi(Ri) = Z(Ri).

Proof. If CS(R) = Z(R), then

CSi(Ri) = Si ∩ CS(Ri) = Si ∩ CS(R) = Si ∩ Z(R) ≤ Ri.

�

Also, the Si-determined condition allows us to prove the following.

Proposition 5.2.11. There exists some M3 such that, for all i ≥ M3, if R ∈ Ob(F •) is an
Si-determined subgroup, and Ri is its Si-root, then, NS(Ri) ≤ NS(R).

Proof. Fix R ∈ Ob(F •), and let TR = {TQ|Q ∈ 〈R〉S}. Then, since this set is finite (and
because T ≤ CS(TQ) and T ≤ CS((TQ)i)), it is clear that there exists some MR such that,
for all i ≥MR and all Q ∈ 〈R〉S, if g ∈ NS((TQ)i) then g ∈ NS(TQ).

Let then i ≥ MR, Q ∈ 〈R〉S such that Q is Si-determined, and g ∈ NS(Qi). Then, in
particular, g ∈ NS((TQ)i) ≤ NS(TQ), and hence g ∈ NS(Q).

�

As a corollary, the following holds.

Corollary 5.2.12. Let i ≥ M3, and let R,R′ Si-determined subgroups, and Ri,R′i be the
corresponding Si-roots. Let also f : R → R′ be a morphism in F which restricts to a
morphism fi between the Si-roots, and set

N f = {g ∈ NS(R)| f cg f −1
∈ AutS(R′)},

N′fi = {h ∈ NSi(Ri)| fich f −1
i ∈ AutSi(R

′

i)}.

Then, there is an inclusion N′fi ≤ N f .

5.2.2 A family of “quasi”-p-local finite groups

Using the notion of Si-determined subgroups we can now define a family of triples
(Si,Fi,Li), which, as we will show, behave almost as p-local finite groups, in a sense
to be made precise below.

First, we recall some notation and a result from [BCG+05] which will be used in
this chapter.

Definition 5.2.13. Let F be a fusion system over a finite p-group S, and let H ⊆ Ob(F )
be a subset of objects. Then, we say that F is H-generated if every morphism in F is a
composite of restrictions of morphisms in F between subgroups in H , and we say that F is
H-saturated if the saturation axioms in definition 1.2.2 hold for all subgroups in the setH .

The following result is somehow the key for our constructions to work. Given a
setH of subgroups in a fusion system over a finite p-group, this theorem provides a
tool to determine whether the fusion system is saturated.
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Theorem 5.2.14. (Theorem A [BCG+05]). Let F be a fusion system over a finite p-group
S, and let H be a subset of objects of F closed under F -conjugacy and such that F is H-
generated andH-saturated. Suppose further that, for each F -centric subgroup P < H , P is
F -conjugate to some P′ such that

(5.4) OutS(P′) ∩Op(OutF (P′)) , {1}.

Then, F is saturated.

Note that, if F turned out to be saturated, it would mean that H contains all
F -centric F -radical subgroups of S.

To be more specific, then, we will define triples (Si,Fi,Li) for all i, and we will then
show that for i big enough there exists a set Hi of subgroups of Si such that Fi is an
Hi-generatedHi-saturated fusion system and thatLi satisfies the axioms of a linking
system with respect to Fi.

As a final step, we would like to apply Theorem 5.2.14 on Fi to prove saturation,
although there appear certain difficulties with the technical condition (5.4), which we
will discuss later on in this chapter.

For each i, consider the sets

(5.5)
H
•

i = {R ≤ S|R is F -centric and Si-determined},
Hi = {Ri = R ∩ Si|R ∈ H•i }.

Note that the functor ( )• gives a one-to-one correspondence between these two sets.
Also, for each pair R,R′ ∈ H•i , consider the sets

AL(R,R′)i = {ϕ ∈ IsoL(R,R′)|ϕ is Ψi-invariant},
AF (R,R′)i = { f = ρ(ϕ)|ϕ ∈ AL(R,R′)i}.

Lemma 5.2.15. Let R,R′ ∈ H•i , and let ϕ ∈ AL(R,R′)i. Then, f = ρ(ϕ) restricts to an
isomorphism fi : Ri → R′i .

Proof. Let x ∈ Ri ≤ R. Then, by applying axiom (C) of linking systems, we get a
commutative diagram in L

R
ϕ //

δ(x)
��

R′

δ(y)
��

R ϕ
// R′,

where y = f (x). Since both ϕ and δ(x) are Ψi-invariant morphisms in L, then so is
δ(y), i.e., y ∈ Si ∩ R′ = R′i .

�

We may consider then the sets

(5.6) A(Ri,R′i) = { fi = resR
Ri

( f )| f ∈ AF (R,R′)i} ⊆ IsoF (Ri,R′i).

Note that this set can be identified with AF (R,R′)i via the functor ( )•. We can now
define the following categories.
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Definition 5.2.16. For each i, define the fixed-point fusion system Fi to be the fusion
system over Si with morphism sets generated by compositions of restrictions of morphisms in
the sets A(Ri,R′i), for Ri,R′i ∈ Hi.

Also, for each i, define the fixed-point linking system Li be the category with object set
Hi and with morphism sets (formally) spanned by the sets AL(R,R′), after identifying Hi

withH•i via the functor ( )•.
Finally, set Gi = (Si,Fi,Li).

We can think ofLi also as a subcategory ofL, and this identification will be rather
helpful at some points, but the proper definition makes more sense since we expect it
to be a linking system associated toFi (as will be the case in some important examples
that we show later on).

One can also extend Li to a category L̃i which is closed under overgroups in the
sense that, if Ri ∈ Hi and Ri ≤ Qi ≤ Si, then Qi ∈ Ob(L̃i), and where the morphism sets
in this bigger category are compositions of restrictions of morphisms inLi, but this is
not of much interest for us.

The projection functor ρ : L → F naturally induces now functors

(5.7) ρi : Li −→ Fi

which are the identity on objects and ρi(ϕ) = resR
Ri

(ρ(ϕ)), for all Ri,R′i ∈ Hi and all
ϕ ∈ AL(R,R′)i. Also, the “distinguished monomorphisms” δ : R→ AutL(R) naturally
induce “distinguished monomorphisms”

(5.8) δi : Ri −→ AutLi(Ri).

The following lemma is obvious.

Lemma 5.2.17. For all Ri ∈ Hi and all x ∈ Ri, the functor ρi sends δi(x) ∈ AutLi(Ri) to
cx ∈ AutFi(Ri).

Proposition 5.2.18. For all i, the fusion system Fi is Hi-generated. Furthermore, for all
Ri,R′i ∈ Hi, there are equalities of sets

A(Ri,R′i) = HomFi(Ri,R′i) and AL(R,R′)i = MorLi(Ri,R′i).

Proof. TheHi-generation of Fi is clear by definition of Fi.
To show the second part of the statement, it is enough to check only the equality

of morphisms sets in Li. Now, this isomorphism holds since AL(R,R′)i is the set of
all Ψi-invariant isomorphisms in L, and any other morphism that could appear in
MorLi(Ri,R′i) would be a composition of restrictions of Ψi-invariant automorphisms,
thus Ψi-invariant too.

�

We now face the question of theHi-saturation ofFi. This in fact will require adding
some more items to the list BI-1, in order to make sure that the axiom (II) holds. First,
we make a brief discussion on the Ψi-invariance of extensions of morphisms, which
will motivate the list BI-2 below.

Let R
ϕ
→ R′ be a morphism inL. An extension of ϕ inL is a morphism ϕ̃ : R̃→ R̃′,

where R ≤ R̃, R′ ≤ R̃′, and
δ(1) ◦ ϕ = ϕ̃ ◦ δ(1).
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In general, the condition of ϕ being Ψi-invariant will not imply that the extension
ϕ̃ is also Ψi-invariant. This problem becomes easier if we compare extensions to
morphisms which we know to be Ψi-invariant a priori.

Suppose then that both ϕ and ϕ̃ are Ψi-invariant. Let also Q ∈ 〈R〉S, Q′ ∈ 〈R′〉S,
a ∈ NS(R,Q) and b ∈ NS(R′,Q′) be such that the morphism

ϕ′ = δ(b) ◦ ϕ ◦ δ(a−1) : Q −→ Q′

satisfies the equality

(5.9) δ(b−1Ψi(b)) ◦ ϕ = ϕ ◦ δ(a−1Ψi(a)).

Note that, in particular, it follows by Lemma 5.1.4 that ϕ′ is Ψi-invariant.
In this situation, we can deduce an extension for ϕ′ from the extension ϕ̃ of ϕ.

Indeed, if we set ϕ̃′ = δ(b) ◦ ϕ̃ ◦ δ(a−1), then it follows easily that

δ(1) ◦ ϕ′ = ϕ̃′ ◦ δ(1).

The next lemma states that, under the assumption of ϕ̃ being Ψi-invariant, we can
give conditions for ϕ̃′ to be also Ψi-invariant.

Lemma 5.2.19. In the situation above, the morphism ϕ̃′ is Ψi-invariant if a−1Ψi(a) ∈ R̃.

Note that the condition a−1Ψi(a) ∈ R̃ is equivalent to the condition b−1Ψi(b) ∈ R̃′.

Proof. By Lemma 5.1.4, we only have to show that

δ(b−1Ψi(b)) ◦ ϕ̃ = ϕ̃ ◦ δ(a−1Ψi(a)).

Assume then that a−1Ψi(a) ∈ R̃. Then, axiom (C) yields a commutative square

R̃
ϕ̃ //

δ(a−1Ψi(a))
��

R̃′

δ(y)
��

R̃ ϕ̃
// R̃′,

where y = ρ(ϕ̃)(a−1Ψi(a)). On the other hand, the equality (5.9) above is a restriction
of this square, and thus y = b−1Ψi(b) and the statement follows by Lemma 5.1.4.

�

Now, in list BI-1 we fixed a finite set of morphisms, but we did not fixed extensions
for the morphisms in that set. This is why now we extend BI-1 by adding some more
objects and morphisms. For a morphism f : R→ R′ in F , set, as usual,

N f = {g ∈ NS(R)| f ◦ cg ◦ f −1
∈ AutS(R′)}.

Basic Ingredients - 2. In addition to the elements in the lists BI-1, we fix the following
elements:

(vi) for each pair R,R′ of subgroups in BI-1, and for each f ∈ MR,R′ , an extension
f̃ : N f → S in the sense of axiom (II) applied to f in F ;
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(vii) for each f̃ as above, the induced morphism f̃ • : N•f → S, after applying Proposi-
tion 1.3.3;

(viii) for each f̃ • as above, a lifting ϕ̃ : N•f → S inL. We choose these liftings such that
the following diagram commutes in L:

R
ϕ //

δ(1)
��

R′

δ(1)
��

N•f ϕ̃
// S,

where ϕ ∈ M̂R,R′ is the lifting of f in L fixed in BI-1.

This part of the list needs some justification:

• Since the subgroups fixed in BI-1 are all F -centric, there is no problem in apply-
ing axiom (II) to the morphisms fixed in that list.

• Furthermore, since the R, R′ are F -centric, it follows by Proposition 1.2.6 that
so are N f and N•f . In particular, N•f ∈ Ob(L•).

Note that this still involves only a finite number of items. Note also that the subgroup
N•f may not coincide with the representative of its S-conjugacy class fixed previously
in BI-1, but this is not a problem, since it is clear that there exists a finite M4 such that,
for all i ≥M4, the following holds:

(i) all the subgroups fixed above are Si-determined,

(ii) all the morphisms fixed above are Ψi-invariant, and

(iii) each N•f is Si-conjugate to the corresponding representative of its S-conjugacy
class fixed in BI-1.

We can now prove the Hi-saturation of Fi. We will use the equivalent axioms
from Proposition 1.7.1. For the sake of a better reading of the proof, we will recall the
statement of each axiom before proving it.

Proposition 5.2.20. For all i, the fusion system Fi isHi-saturated.

Proof. (I’) The subgroup Inn(Si) is a Sylow p-subgroup of AutFi(Si).
By Proposition 5.2.18, AutFi(Si) is isomorphic to AF (S)i ≤ AutF (S). Since in BI-1

we have fixed a set MS of representatives of all the elements in OutF (S), it follows
that AF (S)i fits in an extension

Inn(Si) −→ AF (S)i −→ OutF (S).

Since F is saturated, {1} ∈ Sylp(OutF (S)), and hence

Inn(Si) ∈ Sylp(AutFi(Si)).
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(II’) Let fi ∈ HomFi(Ri,Si) be such that R′i = fi(Ri) is fully Fi-normalized. Then,
there exists a morphism f̃i ∈ HomFi(N̄ fi ,Si) extending fi, where

N̄ fi = {g ∈ NSi(Ri)| fi ◦ cg ◦ f −1
i ∈ AutSi(R

′

i)}.

This part of the proof will be done by steps.
Let fi : Ri → R′i be such a morphism in Fi, and let f = ( fi)• ∈ AF (R,R′)i and

ϕ ∈ AL(R,R′)i such that ρ(ϕ) = f . Set also N̄ = N̄ fi for simplicity, and note that, by
Lemma 5.2.12, there is an inclusion N̄ ≤ N f .

• Case 1. R and R′ are subgroups fixed in BI-1.

We claim that there exist f ′ ∈ MR,R′ , ϕ′ ∈ M̂R,R′ and x ∈ R′i such that

(i) [ f ] = [ f ′] ∈ RepF (R,R′),

(ii) N f = N f ′ ,

(iii) ρ(ϕ′) = f ′, and

(iv) ϕ = δ(x) ◦ ϕ′ in L.

The existence of f ′ and ϕ′ satisfying (i) and (iii) is clear from BI-1. Thus, by
definition of RepF (R,R′), there exists y ∈ R′ such that

f = cy ◦ f ′.

Furthermore, N f = N f ′ since f and f ′ only differ by conjugation by an element of S.
Now, we only have to apply Lemma 4.3 (a) in [BLO07] to see that there exists x ∈ R′

such that
ϕ = δ(x) ◦ ϕ′.

Since both ϕ and ϕ′ are Ψi-invariant, x ∈ R′i .
Let now ϕ̃′ be the extension of ϕ′ fixed in BI-2, and let

ϕ̃ = δ(x) ◦ ϕ̃′ : N•f ′ −→ S.

Again, since ϕ̃′ and δ(x) are both Ψi-invariant, then so is ϕ̃. Furthermore, since N•f ′ is
Si-determined by BI-2, it follows that so is Im(ρ(ϕ̃)), ϕ̃ is a morphism in Li, and ρi(ϕ̃)
is an extension of fi in the sense of axiom (II).

• Case 2. One (and possibly both) of the subgroups R, R′ is not in BI-1.

Since ϕ is Ψi-invariant, by Lemma 5.1.4 it follows that there exist H, H′ and
ϕ′ ∈ M̂H,H′ in BI-1, and a ∈ NS(H,R), b ∈ NS(H′,R′) such that

(i) ϕ = δ(b) ◦ ϕ′ ◦ δ(a−1), and

(ii) δ(b−1Ψi(b)) ◦ ϕ′ = ϕ′ ◦ δ(a−1Ψi(a)).
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Let f ′ = ρ(ϕ′), and let ϕ̃′ ∈MorL(N•f ′ ,S) be the extension of ϕ′ fixed in BI-2. Then,
by Lemma 5.2.19, the morphism

ϕ̃ = δ(b) ◦ ϕ̃′ ◦ δ(a−1) : a(N•f ′)a
−1
−→ S

is also Ψi-invariant. This holds since, by (ii) above, a−1Ψi(a) ∈ N f ′ ≤ N•f ′ .

Note that, in particular, f̃ = ρ(ϕ̃) is an extension of f in the sense of axiom (II).
However, this is not enough to finish the proof, since it does not imply that ϕ̃ is a
morphism in Li. To finish the proof, we have to show that either N•f = aN•f ′a

−1 is
Si-determined, or, more generally, that there exists a subgroup Q ≤ N•f such that

(i) N̄ ≤ Q,

(ii) Q is Si-determined, and

(iii) Q is F -centric.

Note first that N̄• ∈ L, since Ri ≤ N̄ and R = R•i is F -centric. Recall also that by
Lemma 5.2.12 there this an inclusion N̄ ≤ N f , and hence

N̄• ≤ N•f .

Thus, if N̄• is Si-determined, we take Q = N̄•. Suppose then that N̄• is not Si-
determined, and let Qi = N̄• ∩ Si and Q = Q•i .

The subgroup Qi satisfies that N̄ ≤ Qi ≤ N̄•, since N̄ ≤ N f ∩ Si by definition, and
this proves (i). It follows then by 1.3.2 (ii) and 1.3.3 (iii) that Q = N̄•, and thus

Q ∩ Si = N̄• ∩ Si = Qi.

Applying now the functor ( )• above proves (ii). Finally, to see that Q is F -centric,
just note that Ri ≤ N̄ ≤ Qi. Hence, since R = Ri is F -centric, so is Q.

This case is then solved by taking the restriction of ϕ̃ to Q, which is a morphism
in Li.

�

Finally, we check that Li satisfies the axioms of a linking system.

Proposition 5.2.21. For all i, the category Li is a linking system associated to Fi.

Proof. Recall the definition of the functor ρi : Li → Fi in (5.7) and the “distinguished
monomorphisms” δi : Ri → AutLi(Ri) from (5.8). Thus, we have to prove that the
axioms in definition 1.4.1 hold for Li.

(A) The functor ρi is the identity on objects and surjective on morphisms. More
precisely, for each pair of objects Ri,R′i ∈ Li, Z(Ri) acts freely on MorLi(Ri,R′i) by
composition (upon identifying Z(Ri) with δi(Z(Ri)) ≤ AutLi(Ri)), and ρi induces a
bijection

MorLi(Ri,R′i)/Z(Ri)
�
−→ HomFi(Ri,R′i).

By Proposition 5.2.9 (and its corollary), for all Ri ∈ Li,

Z(Ri) = Z(R) ∩ Si,



5.2 Families of unstable Adams operations acting on a linking system 83

and thus the free action of Z(Ri) on MorLi(Ri,R′i) follows from the free action of Z(R)
on MorL(R,R′). The isomorphism follows simply by definition of Fi and Li.

(B) For each Ri ∈ Li and each g ∈ Ri, ρi sends δi(g) ∈ AutLi(Ri) to cg ∈ AutFi(Ri).
This is Lemma 5.2.17, proved above.

(C) For each ϕ ∈ MorLi(Ri,R′i) and each g ∈ Ri, the following square commutes in
Li:

Ri
ϕ //

δi(g)
��

R′i
δi(ρi(ϕ)(g))

��
Ri ϕ

// R′i .

This holds by definition of Li (as a subcategory of L) and because axiom (C)
already holds in L.

�

We would like to prove the saturation ofFi via Theorem 5.2.14 because that would
mean that all Fi-centric Fi-radical subgroups are in the setHi, on which we have full
control. To do so, we still have to show that, for any Fi-centric subgroup Hi ≤ Si

which is not inHi, there is some H′i ∈ 〈Hi〉Fi such that

OutSi(H
′

i ) ∩Op(OutFi(H
′

i )) , {1}.

Let Hi ≤ Si be such an Fi-centric subgroup not inHi. Then there are two different
situations to distinguish:

(a) Hi is not an Si-root, that is, (Hi)• ∩ Si 	 Hi, or

(b) Hi is an Si-root, that is, (Hi)• ∩ Si = Hi but (Hi)• is not F -centric.

Here, the difficult case to treat is (b), but we can “get rid of” (a) quite easily, as we
show below.

Proposition 5.2.22. Let Hi ≤ Si be a Fi-centric subgroup not inHi and such that Hi is not
an Si-root. Then, condition (5.4) holds.

Proof. Let H = (Hi)•. Since Hi is not an Si-root, if follows that

Hi � H ∩ Si
de f
= H′i ,

and there is a natural inclusion

AutFi(Hi) ≤ AutFi(H
′

i ),

induced by the functor ( )• as follows. For each fi ∈ AutFi(Hi), let f = ( fi)• be the
unique induced automorphism in AutF (H), and let f ′i = resH

H′i
( f ) ∈ AutFi(H

′

i ).
Consider the following subgroup of AutFi(Hi),

A = {cx ∈ AutFi(Hi)|x ∈ NH′i
(Hi)}.

Via the previous inclusion, we can see A as

A = AutFi(Hi) ∩ Inn(H′i ).
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Furthermore, since Hi � H′i , it follows that Hi � NH′i
(Hi), and hence Inn(Hi) � A.

Now, AutFi(Hi), seen as a subgroup of AutFi(H
′

i ), normalizes Inn(H′i ). Thus, A C
AutFi(H

′

i ), and
{1} , A/Inn(Hi) ≤ Op(OutFi(Hi)).

Finally, by definition of A, we have A ≤ AutSi(Hi). Thus, A/Inn(Si) ≤ OutSi(Hi),
and condition (5.4) holds.

�

Proving that condition (5.4) holds for subgroups of Si which are Si-roots of non-
F -centric subgroups is a considerably more difficult issue. One might consider then
to prove saturation of the fusion systems Fi by other means.

This is, however, not reasonable, since then one would not know whether Hi

contains or not all Fi-centric Fi-radical subgroups. This poses two main problems,
the first being that the category Li may not contain enough objects to span a whole
centric linking system associated to Fi, and the second being that there could not be
a natural way to define inclusions Li ↪→ Li+1, while there actually is one when Hi

contains all Fi-centric Fi-radical subgroups, as we discuss in the following section.
Somehow it seems then that we are forced to prove saturation of Fi by applying

Theorem 5.2.14. A better understanding of the properties of the objects in Ob(F •) ⊆
Ob(F ) which are not F -centric is then needed if we are to prove saturation through
Theorem 5.2.14.

Definition 5.2.23. Let G be a p-local compact group, and let {Ψi} be a family of unstable
Adams operations defined on G. We say that, for some i, Fi is 5A-saturated if Theorem A
[BCG+05] applies to prove the saturation of Fi with respect to the setHi.

We finish this section by studying the behaviour of families of unstable Adams
operations and extensions of p-local compact groups in the sense of A.5.1. Given
such an extension, A → G → G/A, a family of unstable Adams operations on the
quotient p-local compact group induces a family of unstable Adams operations on
the extension and viceversa. This is a rather helpful fact, since, roughly speaking, Gi

will be a p-local finite group if and only if (G/A)i is a p-local finite group.

Proposition 5.2.24. Let G be a p-local compact group, A ≤ T be a F -normal subgroup, and
G/A be the quotient p-local compact group. Then, the following holds:

(i) A family {Ψi} of unstable Adams operations on G induces a family {Ψi/A} of unstable
Adams operations on G/A such that, for each i, both Ψi and Ψi/A have the same degree.

(ii) A family {Ψ̄i} of unstable Adams operations on G/A induces a family {Ψi} of unstable
Adams operations on G such that, for each i, both Ψ̄i and Ψi have the same degree.

(iii) For all i, there is an extension of transporter systems Ai → Li → (L/A)i.

(iv) If for some i Fi is saturated, then so is (F /A)i, and

(v) If, for some i, the extension Ai → Li → (L/A)i is admissible and (F /A)i is 5A-saturated,
then Fi is 5A-saturated.
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Proof. Points (i) and (ii) are a consequence of the extension theory developed in
appendix §A, toghether with the fact that the maximal torus of S/A, T̄, is the quotient
of the maximal torus of S by A, and that any unstable Adams operation respects the
maximal torus (in the sense that any rank 1 subtorus is sent to itself by the Adams
operation).

Point (iii) follows by construction. Note that, in particular, there is an equality
Fi/Ai = (F /A)i, where the fusion system on the left part of the equality is the quotient
of the fusion system Fi by Ai, and the fusion system on the right part of the equality
is the fusion system defined in 5.2.16.

By Proposition A.1.1, if Fi is saturated, then so is Fi/Ai = (F /A)i, and this proves
point (iv). Finally, if the extension in point (iii) is admissible, then by Theorem A.5.5
it follows that Fi is 5A-saturated.

�

5.3 Some interesting consequences

LetGbe a p-local compact group, and let {Ψi}be a family of unstable Adams operations
defined on G. Some of the properties that we study in this section can be deduced
without proving the saturation of the fusion systems Fi, while others will require
further assumptions.

Our interest in the family {Gi} goes beyond the individual structure of eachGi: we
want also inclusionsGi ↪→ Gi+1 (of p-local finite groups when possible). In this section
we will see first that such inclusions always exist, independently from the Gi being
p-local finite groups. Once this will be proved, we will restrict our study to p-local
compact groups and families of unstable Adams operations giving rise to a family of
p-local finite groups, and further properties will be deduced in this case.

Let us start by describing the inclusions Gi ↪→ Gi+1, regardless of further hypoth-
esis. Define, for all i,

(5.10) Li
Θi // Li+1

Ri
� // (Ri)• ∩ Si+1 = Ri+1

ϕ � // ϕ.

It is easy then to check that this is a well-defined functor: since Ri ∈ Hi is the (unique)
Si-root of an Si-determined subgroup R ∈ Ob(L), it follows by construction that
Ri+1 ∈ Hi+1. Furthermore, by definition of Li, there is an inclusion of sets

Mor(Li) ⊆Mor(Li+1).

Furthermore, it is obvious that this functor is faithful.
Note that these inclusion functors do not induce in general commutative squares

Li
Θi //

ρi

��

Li+1

ρi+1

��
X

F
c

i incl.
// Fi+1,

since, in general, for any R ∈ H•i � Ob(Li),
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• ρi+1(Θi(R)) = R ∩ Si+1, while

• incl(ρi(R)) = R ∩ Si.

This is, in fact, not much of a problem, since it can be “fixed” as we “fixed” a
similar problem which appeared when defining inclusions of connected components
of rank 1 p-local compact groups (see Corollary 3.2.31). Let θi : F c

i → Fi+1 be the
functor induced by Θi.

Proposition 5.3.1. For all i, there is a natural transformation τi between the functors incl :
F

c
i → Fi+1 and θi : F c

i → Fi+1.

Proof. The natural transformation is induced by the functor ( )• on F . Indeed, define
τi : incl→ θi by

τi(Ri) = [incl(Ri) = Ri ↪→ Ri+1 = (Ri)• ∩ Si+1]

on objects and by

Ri
incl //

fi
��

Ri+1

fi+1

��
τi( fi)

R′i incl
// R′i+1,

for each morphism fi : Ri → R′i in F c
i , where fi+1 = resR

Ri+1
(( fi)•).

This is well defined since Ri is the (unique) Si-root of the Si-determined subgroup
R ≤ S, which means that

(Ri)• = R.

Thus, to check that this is indeed a natural transformation we only have to prove that
the previous square is commutative, as it actually is because, by Proposition 1.3.3,
the morphism fi extends to a unique f = ( fi)• : (Ri)• = R → R′ = (R′i)

•, which in turn
restricts to a unique fi+1 between the corresponding Si+1-roots.

�

Thus, we can consider the triple (inclSi+1
Si
, inclFi+1

Fi
,Θi) as an inclusion of the triple Gi

intoGi+1. We will refer to the whole triple as Θi for simplicity. As an easy consequence
of the existence of such inclusions, we deduce the following result.

Theorem 5.3.2. Let G be a p-local compact group, {Ψi} be a family of unstable Adams
operations acting on G, and {Gi} the family of triples obtained from {Ψi}. Then,

(hocolim (|Li|)∧p
'

−→ BG.

Proof. The statement follows since, as categories, L = ∪Li.
�

Next, we study an important property of the subgroups in the set Hi when seen
as objects in F j, for some j ≥ i.

Proposition 5.3.3. Let Ri ∈ Hi. Then, the following holds:

(i) Ri is Fi-centric,
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(ii) Ri is F -quasicentric, and

(iii) Ri is F j-quasicentric for all j ≥ i.

In fact, the above result is just a particular case of the following more general
proposition.

Proposition 5.3.4. Let R ≤ S be F -quasicentric and Si-determined for some i. Then,

(i) Ri is F -quasicentric, and

(ii) Ri is F j-quasicentric for all j ≥ i.

Proof. First, we claim that, for all Qi ∈ 〈Ri〉F , there are equalities

CS(Qi) = CS(Q),

where Q = Q•i . Indeed, for Ri this holds directly by Proposition 5.2.9, since by
hypothesis R is Si-determined. Also, since R is Si-determined, it follows by Lemma
5.2.7 (ii) that Ri contains a set of representatives of the elements in R/TR, namely R̄,
where TR is the maximal torus of R. Thus, if we set HR = 〈R̄〉, we can write

R = HR · TR and Ri = HR · (TR)i.

Let then Qi ∈ 〈Ri〉F , let Q = Q•i , and let f ∈ IsoF (Ri,Qi). Then, using Proposition
1.3.3 and the infinitely p-divisibility of TR,

Q = f (HR) · TQ and Qi = f (HR) · (TQ)i,

from where it follows that

CS(Qi) = CS( f (HR)) ∩ CS((TQ)i) = CS( f (HR)) ∩ CS(TQ),

since the set {TQ | Q ∈ 〈R〉F } is finite.
Next, we claim that both CFi(Ri) and CF (Ri) can be indentified with certain subcat-

egories of CF (R) (and the same happens for each Qi ∈ 〈Ri〉Fi , with respect to Q = (Qi)•).
Indeed, let C be either CF (Ri) or CFi(Ri) for simplicity, and note that, since CS(Ri) =

CS(R), the Sylow p-subgroup ofCwill certainly be a subgroup of the Sylow p-subgroup
of CF (R). Let then f : H→ H′ a morphism in C. Then, by definition of the centralizer
fusion subsystem, there is a morphism f̃ : H · Ri → H′ · Ri in C and a commutative
diagram

H
f //

��

H′

��
H · Ri

f̃ // H′ · Ri

Ri

OO

Ri,

OO
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where the vertical arrows are inclusions. By applying the functor ( )• to this diagram,
one then gets a new commutative diagram

H•
f //

��

(H′)•

��
(H · Ri)•

f̃ // (H′ · Ri)•

R

OO

R,

OO

from where it follows that f : H→ H′ is also a morphism in CF (R), since H·R ≤ (H·Ri)•

and H′ · R ≤ (H′ · Ri)•. Note also that all these arguments are still valid if we change
Ri by any other Qi ∈ 〈Ri〉F .

This, together with the natural inclusion of categories CF (R) ⊆ CF (Ri) implies that

CCS(R)(CS(R)) = CF (R) = CF (Ri),

where the first equality holds since, by hypothesis, R is quasi-centric. Since the same
holds for any Qi ∈ 〈Ri〉F , this proves point (i). Point (ii) for j = i also follows easily
from

CFi(Ri) ⊆ CF (R) = CF (Ri) = CCS(R)(CS(R)).

Point (ii) in general now follows since we can deduce equalities

CF j(Ri) = CF j(R j) = CCSj (R j)(CS j(R j))

using the same arguments as above, and the same holds for any Qi ∈ 〈Ri〉F j .
�

Definition 5.3.5. We say that the family {Ψi} induces an approximation of G by p-local
finite groups if, for all i,

(i) Gi is a p-local finite group, and

(ii) each Ri ∈ F
cr

i is Fi+1-quasicentric.

Clearly, by Proposition 5.3.3, if Gi is 5A-saturated for all i, then {Ψi} induces an
approximation ofG by p-local finite groups in the sense of definition above. Condition
(ii) above is the lightest condition that we can ask for in order to have inclusions
Gi → Gi+1 for all i. Indeed, by Theorem B in [BCG+07], if Gi+1 is a p-local finite group,
then there exists a unique quasicentric linking system Lq

i+1 containing Li+1 as a full
subcategory and such that the inclusion of categories induces

|Li+1|
∧

p ' |L
q
i+1|
∧

p .

This, way, there are faithful functors

(5.11) L
cr
i −→ L

q
i+1,
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which can be considered as inclusions of p-local finite groups. Note that this inclusion
functors do induce commutative diagrams

L
cr
i

Ξi //

ρi

��

L
q
i+1

ρi+1

��
F

cr
i incl

// F
q

i+1.

The following result is obvious.

Theorem 5.3.6. Let G be a p-local compact group, {Ψi} be a family of unstable Adams
operations inducing an approximation of G by p-local finite groups, then there is a homotopy
equivalence

(hocolim (|Li|, |Ξi|))∧p
'

−→ BG.

The notation (|Li|, |Ξi|) is used here to mark the difference with the homotopy
colimit from Theorem 5.3.2, where the spaces are the same, but the maps are not. In
fact, as we next discuss, there is no need of this difference in the notation.

Let G be a p-local compact group, and let {Ψi} be a family of unstable Adams
operations inducing an approximation of G by p-local finite groups. Consider also,
for all i, the diagram

(5.12) L
cr
i

Ξi //

Θi &&

L
q
i+1

Li+1,

OO

where Ξi is the natural inclusion from (5.11), the vertical arrow is the inclusion from
Theorem B [BCG+05], and Θi is the inclusion functor defined in (5.10). Let also Θ̂i be
the composition

Θ̂i : Lcr
i

Θi
−→ Li+1 ↪→ L

q
i+1.

The diagram (5.12) need not be commutative in general, but we can easily prove the
following.

Proposition 5.3.7. For all i, there is a homotopy equivalence |Θ̂i| ' |Ξi|.

Proof. We will see that there is a natural transformation Υi between Ξi and Θ̂i, thus
proving the statement. Indeed, define

Υi(Ri) = [Ri = incl(Ri)
δ(1)
↪→ (Θ̂)i(Ri) = Ri+1]

on objects and

Ri
δ(1) //

ϕi

��

Ri+1

ϕi+1

��
Υi(ϕi)

R′i δ(1)
// R′i+1,
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for each morphism ϕi ∈ Mor(Li), where, in fact, ϕi+1 = ϕi as morphisms in L (the
reader may think of ϕi and ϕi+1 as the “restriction” of ϕ to Ri and Ri+1, although
neither Ri nor Ri+1 need to be objects in L). Thus, we have to show that the above
square is commutative, which is, in fact, obvious by definition of Li+1.

�

An interesting consequence of having an approximation of a p-local compact group
G by p-local finite groups is the analog of the Stable Elements theorem (Theorem 5.8
in [BLO03b]) for G, which determines the mod p cohomology of G in terms of the
cohomology of the fusion system F as a subring of the mod p cohomology of BS.

Such an statement cannot be proved in the compact case following the same
arguments as in the finite case, but there is a rather easy proof in the caseG admits an
approximation by p-local finite groups. We state below the Stable Elements theorem
for p-local compact groups.

Theorem 5.3.8. Let G be a p-local compact group. Then, the natural map

H∗(|L|;Fp) �
−→ H∗(F )

de f
= lim
←−−
O(F c)

H∗( ;Fp) ⊆ H∗(BS;Fp)

is an isomorphism, and H∗(BG;Fp) = H∗(|L|;Fp) is noetherian.

Let then G be a p-local compact group, and let {Gi} be an approximation of G by
p-local finite groups, induced by a family of unstable Adams operations {Ψi}. Let also
Θi : Li ↪→ Li+1 be the inclusion functors defined in (5.10). We start by proving that, in
this particular case, the functor H∗( ;Fp) commutes with the homotopy colimit from
Theorem 5.3.2 (or Theorem 5.3.6).

Proposition 5.3.9. The functors Θi induce natural isomorphisms

H∗(BS;Fp) � lim
←−−

H∗(BSi;Fp) and H∗(BG;Fp) � lim
←−−

H∗(BGi;Fp).

Proof. Let X be BG (respectively BS), and for each i let also Xi be BGi (respectively
BSi). Consider also the homotopy colimit spectral sequence for cohomology (which,
for coefficients in Fp, is dual to the Bousfield-Kan spectral sequence defined in XII.5.7
in [BK72]):

Er,s
2 = lim
←−−

rHs(Xi;Fp) =⇒ Hr+s(X;Fp).

We will see that, for r ≥ 1, Er,s
2 = {0}, which, in particular, will imply the statement.

For each s, let Hs
i = Hs(Xi;Fp), and let Fi be the induced morphism in cohomology

(in degree s) by the map |Θi| (respectively Bincl : BSi → BSi+1).
Now, H∗(Xi;Fp) is noetherian by Theorem 5.8 [BLO03b], and it follows in particular

that Hs
i is an Fp-vector space of finite dimension. It is clear then that the inverse

system {Hs
i ; Fi} satisfies the Mittag-Leffler condition (see 3.5.6 in [Wei94]), and as a

consequence the higher limits lim
←−−

r Hs
i all vanish for r ≥ 1. This in turn implies that all

the differentials in the above spectral sequence are trivial, and the spectral sequence
collapses.

�
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Proof. (of Theorem 5.3.8). We omit the coefficients Fp in all cohomology rings for
simplicity. Since, by hypothesis, Gi is a p-local finite group for each i, we can apply
the Stable Elements theorem (Theorem 5.8 in [BLO03b]) to it: there is a natural
isomorphism

H∗(|Li|;Fp) �
−→ H∗(Fi)

de f
= lim
←−−
O(F c

i )

H∗( ;Fp) ⊆ H∗(BSi;Fp)

In particular, for each i, H∗(Fi) ⊆ H∗(BSi). Thus, by the above isomorphisms,
together with Proposition 5.3.9, it follows that

H∗(BG) � lim
←−−

H∗(BGi) � lim
←−−

H∗(Fi) ⊆ lim
←−−

H∗(BSi) � H∗(BS).

Furthermore, there are natural inclusions O(F c
i ) ⊆ O(F c

i+1) (induced by the functor
( )• in the same way as it induces the inclusion functors Θi in (5.10)) such that, as
categories,

O(F ) � lim
−−→
O(F c

i ).

Thus, it follows that
lim
←−−
O(F c)

H∗( ;Fp) � lim
←−−

i

lim
←−−
O(F c

i )

H∗( ;Fp).

Finally, since H∗(BS) is noetherian by Proposition 12.1 [DW98], it follows then that so
is H∗(BG;Fp).

�

5.4 Examples

In this section we study several examples of p-local compact groups for whom families
of unstable Adams operations give rise to approximations by p-local finite groups.
Since the ideas used to study each example differ significantly from the ohers, we
treat each example in separate sections.

The first example we will study is probably the most important one: we will see
that all rank 1 p-local compact groups can be approximated by p-local finite groups.
The second example treats the p-local compact groups induced by the linear torsion
groups GLn(F̄q). The third example studies the 3-local compact groups which one
obtains as limits of families of 3-local finite groups in [DRV07].

The examples in this section are also to be understood as a list of ideas to prove
the existence of approximations of p-local compact groups by p-local finite groups
through unstable Adams operations. One open question then is whether we can find
a unifying argument to explain all the examples shown here.

5.4.1 Rank 1 p-local compact groups

To study these examples, we will make strong use of Theorem 3.2.1, and the explicit
descriptions of the connected components of p-local compact groups of rank 1 that
we have given in chapter §3. The main result of this example is the following.
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Theorem 5.4.1. Let G be a p-local compact group of rank 1, and let {Ψi} be a family of
unstable Adams operations on G. Then, this family induces an approximation of G by p-local
finite groups.

This theorem will be proved as Propositions 5.4.4, 5.4.16 and 5.4.17, by check-
ing that for i big enough, the fusion systems Fi are 5A-saturated, in a case-by-case
argument, depending on the connected component of G.

First, we study the problem for connected rank 1 p-local compact groups.

Proposition 5.4.2. Let G be a connected p-local compact group of rank 1. Then, for any
family of unstable Adams operation {Ψi}, there exists some M such that, for all i ≥ M, Fi is
5A-saturated and Gi is a p-local finite group.

Proof. For each connected p-local compact group G (in the list of Theorem 3.2.1) and
each family of Adams operations {Ψi} defined onG, we have to prove that there exists
some M such that, for all i ≥M, the finite fusion system Fi is 5A-saturated. Recall the
statement of Theorem 3.2.1: there are only three cases to check, that is

(i) G = (T,FT(S1),LT(S1)),

(ii) G = (D2∞ ,FS(SO(3)),LS(SO(3))), and

(iii) G = (Q2∞ ,FS(S3),LS(S3)),

where the last two cases only happen for p = 2.
(i) In this case it is obvious thatGi is a p-local finite group, sinceGi = (Ti,FTi(Ti),LTi(Ti)),

andHi = {Ti} contains all Fi-centric subgroups.
(ii) To simplify notation, set S = D2∞ , F = FS(SO(3)) and L = LS(SO(3)). Also,

remember the set of representatives of the S-conjugacy classes of subgroups in Ob(F •)
which we listed in (3.4):

{{1},T1,T2,T,C,T1 × C,T2 o C,T o C = S},

where only T, T1×C, T2oC and S represent S-conjugacy classes ofF -centric subgroups.
Thus, the following is easily seen to hold. If R ∈ Ob(F •) is S-conjugate to a subgroup
in the above list which is not F -centric, then

CT(R) \ (Z(R) ∩ T) , ∅.

Now, by applying Lemma 5.4.3 below, it follows that there exists some M such that,
for all i ≥M, if R ∈ Ob(F •) is Si-determined but notF -centric, then Ri is notFi-centric.
Hence, Theorem 5.2.14 (Theorem A in [BCG+05]), together with Proposition 5.2.22,
applies to show that Fi is saturated.

(iii) This case holds because of Proposition 5.2.24 and because in this case G is an
admissible extension of the 2-local compact group in (ii) by Z/2 by Corollary 3.2.2.

�

Lemma 5.4.3. Suppose R ∈ Ob(F •) is such that (Z(R) ∩ T) � CT(R). Then, there exists M
such that, for all i ≥M, if Q ∈ 〈R〉S is Si-determined then

(Z(Qi) ∩ Ti) � CTi(Qi).
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Proof. For such a subgroup R, consider the set

CT = {CT(Q)|Q ∈ 〈R〉S}.

Since AutF (T) is finite, so is this set. The lemma is proved then by taking M such that,
for all i ≥M, CT(Q) ∈ CT contains a set of representatives of the elements in CT(Q)/T′,
where T′ is the maximal torus of CT(Q).

�

We now study the general case. Let G be a rank 1 p-local compact group, and let
G0 be its connected component. The proof will depend on the homotopy type of G0.
The case where G0 is the p-local compact group induced by S1 is, as usual, easy to
solve.

Proposition 5.4.4. Let G be a rank 1 p-local compact group whose connected component
has the homotopy type of (BS1)∧p . Then, there exists some M such that, for all i ≥ M, Fi is
5A-saturated.

Proof. Suppose first that T ≤ Z(S), and recall that this is always the case for p > 2, by
Lemma 3.2.6. Furthermore, in this case the extension T→ G→ G/T is admissible by
Proposition 3.2.7 (this proposition was stated for p odd, but it is clear that, under the
assumption of T ≤ Z(S), the statement was also valid for p = 2). We can now apply
Proposition 5.2.24 to this extension: by 5.2.24 (i), the family {Ψi} of operations defined
on G induces a family {Ψi/T} of operations on G/T, and since G/T is a p-local finite
group, it follows that there exists some m0 such that, for all i ≥ m0, Ψi/T is the identity
on G/T. In particular, for i ≥ m0, (G/T)i = G/T is a p-local finite groups whose fusion
system is 5A-saturated. Thus, by 5.2.24 (iii) and (v), for all i ≥ m0 the fusion system
Fi is 5A-saturated since the extension Ti → Li → L/T is admissible.

Suppose now that T is not central in S (this means, in particular, that p = 2), and
recall that, by Lemma 3.2.6 together with (3.2), there is some x ∈ S such that xtx−1 = t−1,
for all t ∈ T.

Even if this is the case, we know that T is normal in F by Corollary 3.2.4, and
hence all F -centric F -radical subgroups have rank 1. Now, since S has rank 1, it
follows that there are finitely many subgroups of S of rank 1.

Note that this means that there exists some m1 such that, for all i ≥ m1, all the
subgroups R ∈ Ob(F •) of rank 1 are Si-determined, and, furthermore, R is F -centric
if and only if Ri is Fi-centric.

Thus, we only have to deal with the finite subgroups of S in Ob(F •). Now, since
this set contains finitely many S-conjugacy classes, there is some m2 such that, for all
i ≥ m2 and all R ∈ Ob(F •) which has rank 0 and is Si-determined, Ri ∩ Ti � Ti. In fact,
note that if R is finite and Si-determined, then R = Ri.

We may assume that m2 is also big enough such that, for all i ≥ m2, Lemma 5.4.3
applies. Let then H be a finite Si-determined subgroup. If there is no y ∈ H acting
nontrivially on T, then CT(H) = H, and hence by Lemma 5.4.3 CTi(H) 	 H, and H is
not Fi-centric.

Assume otherwise that there is some y ∈ H acting nontrivially on T, and let
Tn = H ∩ T. It is clear that if n = 0, then H is not Fi-centric, since T1 ≤ CTi(H). Thus,
suppose n ≥ 1, and note that, since y acts by sending t ∈ T to t−1, it follows that
Tn+1 ≤ NSi(H).
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We claim that in this case H satisfies condition (5.4). Indeed, let

A
de f
= 〈Inn(H),AutTi(H)〉,

where AutTi(Ri) ≤ AutFi(Ri) is the subgroup of conjugations by elements of Ti which
send Ri to itself. It is clear that Inn(H) � A, since conjugation by tn+1 is not an
automorphism in Inn(H), and we prove below that A C AutFi(H).

The group AutFi(H) is by definition spanned by compositions of restrictions of
subgroups Ri such that R = (Ri)• has rank 1, and the groups AutFi(Ri) which span
it are all projections (through the functor ρi) of the groups AutLi(Ri), which can be
considered as subgroups of AutL(R).

Now, T ≤ R means that T can be seen also as a subgroup of AutL(R) above, and
since T is F -normal, it means that, for all ϕ ∈ AutL(R), conjugation by ϕ in AutL(R)
sends T to itself. Hence, A C AutFi(H), and thus condition (5.4) holds on H.

We have then proved that for all i ≥M = m2, Fi is 5A-saturated.
�

Let now G be a 2-local compact group whose connected component G0 is the
2-local compact group induced by SO(3). This is, as usual, the most difficult to deal
with. In this case, we will show that there exists some M such that, for all i ≥ M, if
Ri ≤ Si is an Si-root but R = (Ri)• is not F -centric, then either condition (5.4) holds for
Ri or Ri cannot be Fi-centric. This, together with Proposition 5.2.22, will imply the
5A-saturation of Fi.

We start by proving several technical results that will be used later on. First,
we show an interesting property which will allow us to “detect” Si-determined sub-
groups. In fact, this property holds for all rank 1 p-local compact groups, regardless
of their connected component, but we will used it in this particular case and hence it
seemed more convenient to place it here. After this general property we will prove
next a property of the p-group S/T when S0 � D2∞ which will make calculations easier
later on.

Lemma 5.4.5. Let R ∈ Ob(F •) be an Si-determined subgroup. There exists some MR such
that, for all i ≥MR, if Q ∈ 〈R〉S is Si-determined, then Qi ∈ 〈Ri〉S.

Proof. Let R be such a subgroup. Then, since S has rank 1, it follows that either R
contains the whole T or R is finite. In the first case, the conjugacy class of R in F
contains finitely many subgroups, and hence the statement follows easily.

Suppose then that R is finite. Then, for any Q ∈ 〈R〉S, Q is Si-determined if and
only if Q = Qi, and again the statement is easily seen to hold.

�

As a consequence, we can now “detect” Si-determined subgroups. The following
result can be regarded as a particular case of Lemma 5.1.3.

Lemma 5.4.6. Let R ∈ Ob(F •), and let MR be as in Lemma 5.4.5. Then, Q ∈ 〈R〉S is
Si-determined if and only if for all y ∈ NS(Ri,Qi),

y−1Ψi(y) ∈ CT(R).

Note that the condition above is equivalent to Ψi(y)y−1
∈ CT(Q).
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Proof. Suppose first that Q is Si-determined. Then, by Lemma 5.4.5, Qi ∈ 〈Ri〉S. Let
y ∈ NS(Ri,Qi), and note that, by Proposition 5.2.11, a ∈ NS(R,Q). Now, for each g ∈ Ri,
let h = ygy−1

∈ Qi. Since both g and h are Ψi-invariant, we have h = Ψi(y)gΨi(y−1),
and hence

g(y−1Ψi(y)) = (y−1Ψi(y))g.

Thus, y−1Ψi(y) ∈ CT(Ri) = CT(R) by Proposition 5.2.9.
Assume now that, for all y ∈ NS(Ri,Qi), y−1Ψi(y) ∈ CT(R), and fix such an element

y. For each g ∈ Ri, let h = ygy−1, and write g = y−1hy. Since g is Ψi-invariant, and
Ψi(y)y−1

∈ CT(Q), it is easy to check now (by applying Ψi on the latter equality) that
h is also Ψi-invariant. Proposition 1.3.3 finishes the proof.

�

The following result is a property of 2-local compact groups whose connected
component is the 2-local compact group induced by SO(3).

Lemma 5.4.7. LetG be a 2-local compact group whose connected componentG0 is the 2-local
compact group induced by SO(3), let S and S0 be the corresponding Sylow subgroups, and let
T be the maximal torus of S. Consider also the group extension

1→ T −→ S −→ S/T→ 1,

and let ω : S/T → Aut(T) be the morphism which realizes the action of S/T on T, and let
K = Ker(ω). Then,

S/T = S0/T × K.

Proof. Since S0 � D2∞ , we know that S0 already contains a nontrivial element x which
acts nontrivially on T, and hence |S/T| = |S0/T| · |K|. Furthermore, by definition of
S0/T and K, it is clear that

S0/T ∩ K = {1}.

Finally, the elements in K commute with the elements in S0/T since S0/T � Z/2 is a
normal subgroup of S/T.

�

Consider then the group extension 1→ S0 → S→ K→ 1. Let R be any subgroup
of S, and let i be big enough such that Si/Ti = S/T. Let also Ri = R ∩ Si as usual, and
let (R0)i = Ri ∩ S0. Then, Ri fits in an extension

(5.13) 1→ (R0)i −→ Ri −→ Ri/(R0)i = R/R0 → 1,

where R/R0 ≤ K and hence acts trivially on T.

Lemma 5.4.8. There exists some k such that, if Tk ≤ R, then T ≤ R•. As a consequence, there
exists m1 such that, for all i ≥ m1, the following holds:

(i) Tk ≤ Si, and

(ii) if R is Si-determined and Tk ≤ Ri, then T ≤ R.

Furthermore, we can choose m1 such that, for all i ≥ m1, R is F -centric if and only if Ri is
Fi-centric.
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Proof. The existence of such k is obvious, since T = ∪Ti and Ob(F •) contains finitely
many S-conjugacy classes of objects: we just have to take k such that

(Tk)• = T.

Thus, the existence of m0 satisfying (i) and (ii) is also clear since S = ∪Si and, if R is
Si-determined, then

T = (Tk)• ≤ (Ri)• = R.

The last part of the statement is easy to prove as well, since S contains finitely many
subgroups R of rank 1, and hence we can consider m1 to be big enough so that any
property that we want holds on R.

�

This lemma provides a first reduction. Indeed, we can now consider only sub-
groups R which are Si-determined and such that Ri ∩ Ti � Tk, for k as in Lemma 5.4.8.
Note that, such a subgroups R is Si-determined if and only if R = Ri.

Let then R be such an Si-determined subgroup, let also (R0)i = Ri ∩ S0. Then, (R0)i

is in the S0-conjugacy class on one of the subgroups in the following list

(5.14) {{1},Tn, 〈x〉,Tn o 〈x〉},

where n < k (this can be easily seen from the study that we have already made on
rank 1 2-local compact groups in chapter 3). Depending on the S0-conjugacy class of
(R0)i (within the above list), we will now show that there exists some M such that, for
all i ≥M, if Ri is an Si-root but R = (Ri)• is notF -centric, then either Ri is notFi-centric
or it satisfies condition (5.4).

Lemma 5.4.9. There exists some m2 such that, for all i ≥ m2, if (R0)i is in the S-conjugacy
class of {1}, Tn or 〈x〉, then Ri is not Fi-centric.

Proof. Since n < k and Tk ≤ Si, in all three cases it follows that

CT(R) \ (Z(R) ∩ T) , ∅,

and the statement follows then by Lemma 5.4.3.
�

Let F0 be the saturated fusion system over S0 induced by SO(3), and note that the
subgroups {1}, Tn and 〈x〉 are the non-F0-centric subgroups within the list (5.14). To
deal with the F0-centric subgroups within that list, we need the following result.

Lemma 5.4.10. If (R0)i is F0-centric, then

NS0((R0)i) ≤ NSi(Ri).

Proof. If (R0)i is F0-centric, then (R0)i ∈ 〈Tn o 〈x〉〉S0 for some (finite) n. Assume for
simplicity that (R0)i = Tn o 〈x〉. Thus, by (5.13), it follows that

Tn+1 o 〈x〉 = NS0((R0)i) ≤ NSi(Ri).

�
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Let Ri ≤ Si be any subgroup, and set H = (R0)i for simplicity. Then, there is an
exact sequence (2.8.7 in [Suz82])

(5.15) 0→ H1(Ri/H; Z(H))→ AutFi(Ri)/AutH(Ri)
ΦRi
→ AutFi(H) × Aut(Ri/H).

We will use this exact sequence repeatedly to prove several technical lemmas.

Lemma 5.4.11. There exists some m3 such that, for all i ≥ m3, if (R0)i is in the S0-conjugacy
class of Tn o 〈x〉, for some n ≥ 2, and such that (R0)i � (S0)i, then Ri satisfies condition (5.4).

Proof. Let t ∈ Tn+1 be a generator. Then, since (R0)i � (S0)i, it follows that t ∈ Ti, and
hence AutFi((R0)i) = AutF ((R0)i) = AutS0((R0)i). Consider the exact sequence (5.15)
applied in this case. By Lemma 3.2.29, the image of ΦRi is a direct product K × K′,
for certain subgroups K ≤ AutFi((R0)i) and K′ ≤ Aut(Ri/(R0)i), and there is a partial
section s : K ↪→ AutFi(Ri). In fact, in this case (n ≥ 2), it is easy to see that

K = Aut(S0)i((R0)i) = AutFi((R0)i),

and ω = ct ∈ AutFi(Ri) gives rise to a nontrivial element in OutFi(Ri).
Let L ≤ AutFi(Ri) be the subgroup such that

L/Aut(R0)i(Ri) = H1(Ri/(R0)i; Z((R0)i)),

which is clearly a 2-group, and let L′ = 〈L, s(K)〉, which is again a 2-subgroup since L′

fits in an extension
L −→ L′ −→ K.

We want to see that L′ is normal in AutFi(Ri). Note that, by definition, for all γ ∈ L′,

ΦRi(γ) = (γ0, id)

in the extension (5.15), for some γ0 ∈ AutFi((R0)i). In fact, L′ is the subgroup of
AutFi(Ri) of automorphisms satisfying this condition, since K = AutFi((R0)i).

Let f ∈ AutFi(Ri) and γ ∈ L′. Then,

ΦRi( fγ f −1) = (γ′, id),

which implies that fγ f −1
∈ L′. Since, as noted above, ω = ct induces a nontrivial

element in OutSi(Ri), and clearly ω ∈ L′, it follows that

OutSi(Ri) ∩Op(OutFi(Ri)) , {1}

as desired.
�

We are then left to study the case where R satisfies that (R0)i is in the S0-conjugacy
class of T1 × 〈x〉. This case requires a longer discussion and also involves another
enlargement of the list BI-1+2. Note that, for such subgroup R,

(5.16) CT(R) = CT(Ri) ≤ CT((R0)i) = T1,

where the first equality holds by Proposition 5.2.9.
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Basic Ingredients - 3. Fix the following list of objects and morphisms, in addition to
those already fixed in lists BI-1 and BI-2:

(ix) a set H ′ of representatives of the F -conjugacy classes of non-F -centric sub-
groups Q ∈ Ob(F •) such that Q0 ∈ 〈T1 × 〈x〉〉S0 ;

(x) for each P ∈ H ′, a set H ′P of representatives of the S-conjugacy classes in 〈P〉F
(and such that P itself is inH ′P representing its own S-conjugacy class);

(xi) for each P ∈ H ′ and each R ∈ H ′P such that CS(R) = Z(R), a morphism fR : R→ R′,
where R′ ∈ H ′P is such that CS(R′) 	 Z(R′).

(xii) for each such a morphism fR : R→ R′, an “Alperin-like” decomposition

(5.17)
L1

γ1 // L1 L2
γ2 // L2 Lk

γk // Lk

R0 f1
//

AA�����
R1

]];;;;;

AA�����

f2
// R2

]];;;;;
// . . . // Rk−1

??�����

fk
// Rk,

]]<<<<<

where R0 = R, Rk = R′, L j is F -centric F -radical and fully F -normalized for
j = 1, . . . , k, and

fR = fk ◦ fk−1 ◦ . . . ◦ f2 ◦ f1.

(xiii) for each γ j above, a lifting ϕ j in L.

Let also M6 be such that, for all i ≥M6, all the subgroups fixed in the list above are
Si-determined, all the morphisms ϕ j are Ψi-invariant (that is, ϕ j is a morphism inLi),
and such that for each P ∈ H ′, if R ∈ H ′P is such that CS(R) 	 Z(R), then CSi(Ri) 	 Z(Ri).

In fact,points (xii) and (xiii) in this list can be improved using the following
technical lemma.

Lemma 5.4.12. Let Q ≤ S be a F -centric F -radical fully F -normalized subgroup such that
Q0 ∈ 〈Tn o 〈x〉〉S0 for some n ≥ 2. Then, every automorphism γ ∈ AutF (Q) extends to some
γ̃ ∈ AutF (Q · S0), and similarly every automorphism ϕ ∈ AutL(Q) is the restriction of an
automorphism ϕ̃ ∈ AutL(Q · S0).

Proof. Suppose for simplicity that Q0 = Tn o 〈x〉. By (5.13), and since NS0(Q0) =
Tn+1 o 〈x〉, it follows that

NS0(Q0) ≤ NS(Q).

If we prove that any γ ∈ AutF (Q) extends to γ′ ∈ AutF (Q·Tn+1), then the statement will
be proved by iteration of this, together with axiom (III) for saturated fusion system.

Consider the exact sequence (5.15) above. Then, since AutF (Q0) = AutS0(Q0), the
(partial) section of the morphism ΦQ in this exact sequence given by Lemma 3.2.29 can
be taken such that s(AutF (Q0)) ≤ AutS(Q). Let L ≤ AutF (Q) be the subgroup such that
L/AutQ0(Q) = H1(Q/Q0; Z(Q0)). Then, L is clearly a normal p-subgroup of AutF (Q),
and since Q is fully F -normalized, it follows by axiom (I) of saturated fusion systems
that L ≤ AutS(Q). Furthermore, the subgroup L′ ≤ AutF (Q) generated by L together
with s(AutF (Q0)) is also a subgroup of AutS(Q). Note that L′ is also the subgroup of
AutF (Q) of automorphisms γ such that ΦQ(γ) = (?, id).
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Now, let t ∈ Tn+1 be a generator, ω = ct ∈ AutS(Q), and γ ∈ AutF (Q). Then,
ω′ = γωγ−1 satisfies

ΦQ(ω′) = (?, id),

and hence ω′ ∈ L′ ≤ AutS(Q). By axiom (II) for saturated fusion system, γ extends to
some γ′ : Q · Tn+1 → S. It follows also that Im(γ′) = Q · Tn+1, since γ′ extends γ and S0

is strongly F -closed.
Iterating this process, we obtain a family γ j ∈ AutF (Q · Tn+ j) of automorphisms

extending the original γ, which, in the limit, yield an automorphism γ̃ ∈ AutF (Q · S0).
The same arguments now apply in L to prove the second part of the statement.

One may use the axioms of transporter systems onL to prove it (see definition A.2.1).
�

Lemma 5.4.13. We can choose each morphisms ϕ j in the list BI-3 (xiii) to be such that,

ϕ j ∈ NAutL(L j)(δL j(NT(L j))).

Proof. It is enough to check the statement for a single ϕ ∈ AutL(L) (we suppress here
the subindex in order to simplify notation). Also, we can assume that R0 = T1 × 〈x〉
for simplicity (after point (ix) in the BI-3), and hence L0 = Tn o 〈x〉 for some n ≥ 1.

Suppose first that n ≥ 2. Then, by Lemma 5.4.12, ϕ is the restriction of some
ϕ̃ ∈ AutL(L · S0). Since T ≤ L · S0, and T is the maximal infinitely 2-divisible subgroup
of S, if we apply axiom (C) for linking systems to ϕ̃ and δ(t), it follows that

ϕ̃ ◦ δ(t) = δ(t′) ◦ ϕ̃

for some t′ ∈ T, and hence, by taking restriction of the above, the statement follows.
Suppose now that n = 1. Note that in this case L0 = R0. Suppose also we are given

any γ ∈ AutF (L), and let f0 = resL
L0

(γ) and ω = s( f0), where s is the (partial) section to
morphism ΦL in the exact sequence (5.15) given by Lemma 3.2.29. Then, γ′ = ω−1

◦ γ
satisfies

ΦL(γ′) = (id, γ̄),

where γ̄ : L/L0 → L/L0 is the automorphism induced by γ. Equivalently,

ΦL(γ′γ−1) = (id, id).

Thus, if H ≤ AutF (L) is the subgroup such that H/AutL0(L) = H1(L/L0; L0), then,
H ≤ AutS(L) because H is a normal p-subgroup of AutF (L) and L is fullyF -normalized,
and γ′ ◦ γ−1

∈ H. In particular, this means that γ′(R) and γ(R) are S-conjugated.
To finish the proof, lift γ′ to some ϕ′ ∈ AutL(L). In this case, we have to check that

ϕ′ ◦ δ(t2) ◦ (ϕ′)−1
∈ δ(T2),

because NT(L) = T2. Since resL
L0

(γ′) = id, we can now apply the same arguments as
in Lemma 5.4.12 to check that ϕ′ extends to some ϕ̃′ ∈ AutL(L · S0). The statement
follows now because S0 is strongly F -closed.

�

As a consequence of Lemmas 5.4.5 and 5.4.6, we can now deduce the following.
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Lemma 5.4.14. There exists some M7 such that, for all i ≥M7 and for all Q ∈ Ob(F •) which
is Si-determined, if CS(Q) 	 Z(Q), then CSi(Qi) 	 Z(Qi).

Proof. Clearly, the statement holds for the representatives fixed in list BI-3. Further-
more, since we have fixed only finitely many representatives, it is enough to prove
the lemma for the S-conjugacy class of one of them, namely 〈R〉S.

By Proposition 5.2.9, CT(Ri) = CT(R). Set then

CT(Ri) = T′R × FR,

for some subtorus T′R ≤ T and some finite subgroup FR ≤ T. Let TR be the maximal
torus of R, and note that if rk(TR) � rk(T′R), then the statement follows immediately by
Lemma 5.4.3, since the same will hold for all Q ∈ 〈R〉S. Also, since AutF (T) is finite
and FR is finite, there exists some M such that, for all i ≥ M and all Q ∈ 〈R〉S, FQ ≤ Si

(here we apply the same arguments as those used to show Proposition 5.2.9).
Hence, we can assume without loss of generality that rk(TR) = rk(T′R). Let now

Q ∈ 〈R〉S be an Si-determined subgroup, and let Qi be its Si-root. By Lemma 5.4.5,
Qi ∈ 〈Ri〉S. Fix also some y ∈ NS(Ri,Qi).

Suppose first that FR is not contained in Ri, and let z ∈ FR be such that z < Ri. Set
also z′ = yzy−1. Since z ∈ Ti and Ti is normal in S, it follows that z′ ∈ Ti, and hence (by
Lemma 5.4.6), z′ ∈ CSi(Qi) \ Z(Qi).

Suppose otherwise that FR ≤ Ri. This means that CT(Ri) = CT(R) ≤ Z(Ri), and
hence, for any z ∈ CSi(Ri) \ Z(Ri) (and by Lemma 5.4.6),

z(y−1Ψi(y)) = (y−1Ψi(y))z,

and hence z′ = yzy−1
∈ CSi(Qi) \ Z(Qi).

�

Finally, we check that, for i big enough, if Q ∈ Ob(F •) is Si-determined, non-F -
centric, and such that (Q0)i ∈ 〈T1 × 〈x〉〉S0 , then Qi is not Fi-centric.

Lemma 5.4.15. There exists some m4 such that, for all i ≥ m4, if (Q0)i is in the S0-conjugacy
class of T1 × 〈x〉, then Qi is not Fi-centric.

Proof. The statement holds for the representatives fixed in BI-3, by assumption. Let R
be any of these representatives. We will prove the statement for 〈R〉S, and the general
statement will follow easily.

If CS(R) 	 Z(R), then by Lemma 5.4.14 the statement holds for 〈R〉S. Thus, suppose
CS(R) = Z(R). Let Q ∈ 〈R〉S and consider too the morphism fR : R → R′ and its
Alperin-like decomposition fixed in points (xi) and (xii) of BI-3.

Consider the first commutative square in this decomposition of fR:

L1
γ1 // L1

R f1
//

incl.

OO

R1.

incl.

OO

Since CT(R) = CT(Ri) = T1 � Z/2 (as noted in (5.16)), for all Q ∈ 〈R〉S which is Si-
determined and all y ∈ NS(Ri,Qi), either y−1Ψi(y) = 1 or y−1Ψi(y) = t1, the generator
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of T1. In the first case, Qi is Si-conjugate to Ri, and thus there is nothing to show.
Hence suppose otherwise.

Fix some y ∈ NS(Ri,Qi), and let L′1 = yL1y−1. Since y−1Ψi(y) = t1 and T1 ≤ Z(S), it
follows that L′1 is also Si-determined by Lemma 5.4.6. Let now ϕ1 ∈ AutL(L1) be the
lifting of γ1 fixed in point (xiii) of list BI-3. Since, by Lemma 5.4.13, the restriction of γ1

to (R0) is the identity, it follows now by Lemma 5.1.4 that ϕ′ = δ(y)ϕ1δ(y−1) ∈ AutL(L′1)
is also Ψi-invariant, and hence a morphism in Li.

This way, we obtain from (5.17) a chain of morphisms in Fi (by taking restrictions)
from Qi to some Q′i ∈ 〈R

′

i〉S. Since CSi(R
′

i) 	 Z(R′i) by hypothesis, it follows by Lemma
5.4.14 that CSi(Q

′

i) 	 Z(Q′i), and hence Qi is not Fi-centric.
�

Proposition 5.4.16. Let G be a rank 1 p-local compact group whose connected component
has the homotopy type of (BSO(3))∧2 . Then, there exists some M such that, for all i ≥M, Fi is
5A-saturated.

Proof. We have proved in Lemmas 5.4.8, 5.4.9, 5.4.11 and 5.4.15 that there exists some
M such that, for all i ≥ M, if Ri ≤ Si is an Si-root such that Ri < Hi, then, depending
on the subgroup (R0)i = Ri ∩ S0, either Ri is not Fi-centric, or it is Fi-centric and
satisfies condition (5.4). This, together with Propositions 5.2.18, 5.2.20 and 5.2.22, and
Theorem A in [BCG+05] (5.2.14) implies that Fi is 5A-saturated.

�

Finally, we deal with 2-local compact groups whose connected component is
the 2-local compact group induced by S3. As usual, the central group extension
Z/2→ S3

→ SO(3) helps in simplifying the proof.

Proposition 5.4.17. Let G be a rank 1 p-local compact group whose connected component
has the homotopy type of (BS3)∧2 . Then, there exists some M such that, for all i ≥ M, Fi is
5A-saturated.

Proof. In this case, by Corollary 3.2.4, G is an admissible extension ofZ/2 by a 2-local
compact group G′ whose connected component has the homotopy type of (BSO(3))∧2 .
Hence, the statement follows from Lemma 5.4.16 together with Proposition 5.2.24.

�

5.4.2 General linear groups

Another example of p-local compact groups which can be approximated by p-local
finite groups are those induced by the groups GLn(F̄q), where F̄q is the algebraic
closure of the field of q elements. The arguments used here are slightly different from
those used to study rank 1 p-local compact groups.

Let q be a prime. The algebraic closure of the field Fq can be seen as the union

F̄q = ∪mFqm

of the finite fields of qm. Thus, F̄q is a locally finite field, and G = GLn(F̄q) is a linear
torsion group. Theorem 8.10 in [BLO07] (1.4.5) applies now to assure that, for any
prime p different from q, G induces a p-local compact group G.

The main result in this section is the following.
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Theorem 5.4.18. Let G be the p-local compact group induced by G = GLn(F̄q), and let {Ψi}

be a family of unstable Adams operations on G. Then, this family induces an approximation
of G by p-local finite groups.

Again, we prove that, for i big enough, the fusion systems Fi are 5A-saturated,
and hence the statement above holds.

We describe in some detail the choice of the Sylow p-subgroup of G, since we will
need some understading of it. Let T̂ ≤ G be the subgroup of diagonal matrices. That

is, the matrices in T̂ take coeffients in (F̄q)×
de f
= (F̄q) \ {0}. Let also N = NG(T̂). Then,

there is an extension
T̂ −→ N −→ Σn,

where Σn is the symmetric group on n letters, acting on T̂ by permutations of the
diagonal entries. And, in fact, this extension is easily seen to split.

On the other hand, (F̄q)× contains a copy ofZ/p∞, and hence T̂ contains a subgroup
T � (Z/p∞)n, which in fact is normal in N since (F̄q)× is the direct product of all Z/l∞,
varying l. Thus, if π ∈ Sylp(Σn), then

(5.18) S = T o π

is a Sylow p-subgroup for G.
With such a description of S it is easy now to deduce the following result.

Lemma 5.4.19. Let P ≤ S. Then, CT(P) is connected in the sense of definition 1.1.1, i.e.,

CT(P)/TCT(P) = {1}.

Proof. Since the action of π on T is by permutation of the entries in the diagonal of an
element in T, it follows that, for each rank 1 subtorus T′ ≤ T and each x ∈ S, either
xtx−1 = t for all t ∈ T′ or xtx−1 , t for all t ∈ T′. The statement follows easily from this.

�

Now, let {Ψi} be a family of unstable Adams operations defined on G, and fix a
list like BI-1+2. As we have already pointed out several times in this chapter, even if
R and Q are S-conjugate and Si-determined it does not mean that the corresponding
Si-roots are S-conjugate. However, since S has a special isomorphism type (being a
semidirect product Toπ), one can actually deduce so. This is rather interesting, since
this will allow us then to apply Lemma 5.4.6 to this example.

Lemma 5.4.20. Let R ∈ Ob(F •) be any subgroup. There is some MR such that, for all i ≥MR,
if Q,Q′ ∈ 〈R〉S are Si-determined, then Qi and Q′i are S-conjugate.

Proof. Write R = HR · T′R, where T′R = R ∩ T and HR is a finite subgroup which acts
on T′R by permutations. It is clear then that R = T′R o HR. Note that T′R = TR × FR,
where TR is the maximal torus of R and FR is some finite subgroup of T. Then, since
AutF (T) is finite, it follows (by the same arguments used to prove Proposition 5.2.9)
that the S-conjugacy class of FR is finite, and hence there exists some m1 such that,
for all i ≥ m1 and all Q ∈ 〈R〉S, FQ ≤ Si. We can also assume that, for all i ≥ m1, R is
Si-determined.
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Thus, Ri = ((TR)i × FR) o HR, since, by Lemma 5.2.7, Ri contains a set of represen-
tatives of R/TR and of R/(R ∩ T). It is easy to see now that, for i ≥ m1, if Q ∈ 〈R〉S is
Si-determined then Qi has the same isomorphism type of Ri, that is, we can write

Qi = ((TQ)i × FQ) oHQ

where HQ is a subgroup acting by permutations on T′Q, which in fact is isomorphic to
HR (although it may not be S-conjugate to HR).

Consider the sets T′R = {T′Q|Q ∈ 〈R〉S} and HR = {HQ|Q ∈ 〈R〉S}. It follows then
that the first set is finite because AutF (T) is a finite group, and the second set contains
finitely many S-conjugacy classes, since Σn contains finitely many subgroups and S
contains finitely many S-conjugacy classes of subgroups of the isomorphism type of
HR by Lemma 1.1.3. Thus, there exist m2 and representatives R1, . . . ,Rl ∈ 〈R〉S such
that, for each i ≥ m2,

(i) Rk is Si-determined for each k = 1, . . . , l, and,

(ii) if Q ∈ 〈R〉S is any other Si-determined subgroup, then there exists x ∈ S and R j

is this list such that

T′Q = x(T′R j
)x−1 and HQ = x(HR j)x

−1.

In particular, the Si-root of Q is then S-conjugate to the Si-root of R j.
Finally, since we only have to fix finitely many representatives R1, . . . ,Rl, it is clear

that there exists some m3 such that, for all i ≥ m3, the Si-root of R j is Si-conjugate to
the Si-root of R, for j = 1, . . . , l. Taking MR = m3 finishes the proof.

�

Proposition 5.4.21. There is some M such that, for all i ≥ M, if R and Q are S-conjugate
and Si-determined, then their Si-roots are Si-conjugate.

Proof. Let R ∈ Ob(F •), and let MR be as in Lemma 5.4.20. Let also Q ∈ 〈R〉S be
Si-determined. Then, by Lemma 5.4.6, for all y ∈ NS(Ri,Qi),

y−1Ψi(y) ∈ CT(Ri).

Furthermore, since, by point (i) in BI-1, Si contains a set of representatives χ of the
elements in S/T, we can assume that y ∈ T.

Consider now, for each i, the map

T
Ψ∗i // T

t � // t−1Ψi(t).

Since T is abelian, this turns out to be a group homomorphism, and since T is infinitely
p-divisible, this is in fact an epimorphism, whose kernel is the subgroup of fixed points
Ti. Furthermore, for any subtorus T′ ≤ T, Ψ∗i restricts to an epimorphism T′ � T′,
just by definition of Ψi.

Since, by Lemma 5.4.19, CT(Ri) is some subtorus T′ of T, it follows now that y = t1t2,
where t1 ∈ Ti and t2 ∈ T′ = CT(Ri), and hence Qi is Si-conjugate to Ri.

�
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We can now prove Theorem 5.4.18 above.

Proof. (of Theorem 5.4.18). We want to apply Theorem A in [BCG+05] (5.2.14) to prove
that the fusion system Fi is saturated for all i big enough, and by Propositions 5.2.18,
5.2.20 and 5.2.22 it will be enough to prove that there is some M such that, for all
i ≥M, if Q ∈ Ob(F •) is Si-determined but not F -centric, then Qi is not Fi-centric.

Fix representatives in Ob(F •) of the S-conjugacy classes of non-F -centric sub-
groups. By Lemma 1.3.2, there is only a finite number of them. For each such
representatives R, let MR be as in Lemma 5.4.20, and let M′

R ≥MR be such that, for all
i ≥M′

R, Ri is not Fi-centric. Then, by Proposition 5.4.21 above, for any other Q ∈ 〈R〉S
which is Si-determined, the Si-roots Ri and Qi are Si-conjugate, and hence neither Qi

is Fi-centric.
Since we have fixed only finitely many representatives in Ob(F •) of S-conjugacy

classes of non-F -centric subgroups, the statement follows.
�

5.4.3 3-local compact groups from families in [DRV07]

We study now some examples of 3-local compact group which appear as limits of
certain families of 3-local finite groups from [DRV07]. In particular, we study the
families F (32k+1, j), for j = 2, 3, in (table 6 of) Theorem 5.10 [DRV07].

In fact, before starting the study of such families, we would like to justify why we
restrict to these two families. First, we wanted to study families of (finite) saturated
fusion systems not realized by finite groups, hence we discarded all those realized by
actual finite groups. We also discarded all fusion systems from tables 5 and 6 in 5.10
[DRV07] which are extensions of other fusion systems also listed in these tables. This
left us with the families {F (32k, j)} j=1,2 and {F (32k+1, j)} j=1,...,4.

The families {F (32k+1, j)} j=1,4 were discarded simply because, for any k, there is no
inclusion F (32k+1, j) * F (32k+3, j), and hence we cannot even expect to obtain a p-local
compact group from them, and the same happens with the family {F (32k, 2)}. Now,
one could indeed obtain a p-local compact group,G, from the family {F (32k, 1)} by the
same arguments that we will use later on in this section. However, it happens that for
any k, F (32k, 1) cannot appear as the fixed-points p-local finite subgroup of the action
of any unstable Adams operation Ψ acting on G, since the maximal abelian normal
subgroup of F (32k, 1), Rk, is isomorphic to Z/3k

× Z/3k−1 by Lemma A.11 [DRV07]
(this subgroup should correspond to the fixed points of the maximal torus T ≤ G
under Ψ, and hence should be isomorphic either to (Z/3k)2 or to (Z/3k−1)2).

Thus, we focus on the fusion systems of the type F (32k+1, j), k ≥ 2 and j = 2, 3.
We will recall first the notation from [DRV07], and check that indeed by taking limits
over k (after fixing j), we obtain p-local compact groups G( j). We will then consider
a family of unstable Adams operations {Ψi} acting on the resulting p-local compact
group, and compare the triples Gi = (Si,F ′i ,L

′

i) induced by the Adams operations on
G( j) with the families {F (32k+1, j)} to see that indeed each Fi corresponds to a fusion
system in these families.

Note that each of the fusion systems listed in 5.10 [DRV07] has a unique associated
linking system by Corollary 3.5 [BLO03b]. We may then not mention the existence of
this linking system, but consider it implicit.
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We start by giving a brief description of the families we want to study. For each
of these families, let Bk � B(3, 2k + 1; 0, 0, 0) be the 3-group described in Theorem A.2
[DRV07]: Bk is the 3-group of order 32k+1 generated by elements {s, s1, . . . , s2k} satifying
the following list of relations:

• s j = [s j−1, s], for j ∈ {2, 3, . . . , 2k},

• [s1, s j] = 1, for j ∈ {2, 3, . . . , 2k},

• s3 = 1,

• s3
j s

3
j+1s j+2 = 1, for j ∈ {1, 2, . . . , 2k}, with s2k+1 = s2k+2 = 1.

Using Lemma A.11 [DRV07] amb combining these relations, we can now deduce
the following presentation for Bk:

(5.19) Bk = 〈s, s1, s2|s3 = s3k

1 = s3k

2 = 1, [s1, s2] = 1, [s, s1] = s2, [s, s2] = (s1s2)−3
〉.

Thus, if we set now γk = 〈s1, s2〉 ≤ Bk, then γk is a normal subgroup of Bk which is
isomorphic to Z/3k

×Z/3k, and there is an extension

γk −→ Bk −→ π = 〈s̄〉 � Z/3,

which, by Proposition A.9 [DRV07], is split. Furthermore, since the action of π on γk

is not trivial, it follows that

(5.20) Z(Bk) = (γk)π = 〈s3k−1

2 〉 � Z/3.

For simplicity, set zk = s3k−1

2 . Set also z′k = s3k−1

1 .
Consider now Bk and Bk+1, with generator sets (with respect to the presentation

(5.19)) {s, s1, s2} and {t, t1, t2} respectively. Then, one can define monomorphisms Bk ↪→
Bk+1 naturally by

(5.21) Bk
ik // Bk+1

s � // t

s1
� // t3

1

s2
� // t3

2.

It is then natural to consider the limit of this family of inclusions, S = ∪Bk, which
is a discrete p-toral group with maximal torus T = ∪kγk of rank 2. In fact, since the
splittings of the Bk are natural with respect to the inclusions Bk ≤ Bk+1, it follows that
S = T o 〈s〉.

Consider the following subgroups of Sk:

• Vl = 〈zk, ssl
1〉 � Z/3 ×Z/3, for l ∈ {−1, 0, 1}, and

• El = 〈zk, z′k, ssl
1〉 � 31+2

+ , the extraspecial group of order 33 and exponent 3, for
l ∈ {−1, 0, 1}.
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The fusion systems F (32k+1, j), for j = 2, 3, are determined then by the following table
(a summary of table 6 in 5.10 [DRV07] for the families of our interest).

Bk V0 V±1 E0 E±1 γk 3-lfg

Z/2 ×Z/2 - - GL2(3) - GL2(3) F (32k+1, 2)
GL2(3) - - - F (32k+1, 3)

where the column under Bk is the isomorphism type of OutFk( j)(Bk), and the rest of
columns give the isomorphism type of AutFk( j)(P) for the corresponding subgroup P,
when it isFk( j)-centricFk( j)-radical, or a dash when P is notFk( j)-centricFk( j)-radical.

Set for simplicity Fk( j) = F (32k+1, j), for some j, and let Lk( j) be the unique associ-
ated centric linking system. Consider again Bk, Bk+1 with generators s, s1, s2 and t, t1, t2

respectively. Then, the inclusion ik (5.21) sends zk to zk+1, z′k to z′k+1, and hence ik can
be extended to an inclusion functor ik : Fk( j)→ Fk+1( j) of saturated fusion systems.

Let then F ( j) be the fusion system over S obtained by taking the limit of these
inclusion functors ik and spanning morphism sets from that. We want to check then
that F ( j) is saturated. Note that the subgroups Vl,El ≤ Bk, for l ∈ {−1, 0, 1}, which
are not Fk( j)-conjugate, become Fk+1( j)-conjugate after taking their images through ik

(since, with the notation above, t2tt−1
2 = tt3

1 and t−1
2 tt2 = tt−3

1 ).

Lemma 5.4.22. Let P ≤ S be a F ( j)-centric F ( j)-radical subgroup. Then, P is in the
F ( j)-conjugacy class of one of the following subgroups: S, V0, E0 or T.

Proof. For P ≤ S a subgroup in the list above, the automorphism group is

AutF ( j)(P) = lim
−−→

AutFk( j)(P).

Thus, it is clear that the subgroups listed in the statement areF ( j)-centricF ( j)-radical
by definition of F ( j) (depending on the automorphism groups in the table above).
Let then P ≤ S be any other F ( j)-centric F ( j)-radical subgroup, and suppose it is not
F ( j)-conjugate to any of the subgroups in the list above.

Clearly, P cannot be finite, since if this was the case, then there would exist some
k such that P ≤ Bk and such that AutFk( j)(P) = AutF ( j)(P). Set T = T1 × T2, where Tm,
m = 1, 2, is the union of all the subgroups 〈sm〉 (in the notation of (5.19)), and let ∆ ≤ T
be the diagonal rank 1 subtorus. Thus, since S = T o 〈s〉, and 〈s〉 � Z/3, we claim that
P satisfies one (and only one) of the properties below:

(a) P ≤ T,

(b) P = S, or

(c) TP = ∆ and P contains an element x which acts nontrivially on T.

We are assuming P is not a finite subgroup, that is, that 1 ≤ rk(P) ≤ 2. Suppose
then that P is not a subgroup of T. This means then that P contains some element
x = ts (for some t ∈ T) which acts nontrivially on T. If rk(P) = 2, then P = S, so
suppose that rk(P) = 1. Then, the maximal torus of P has to be ∆, since the only rank
1 subtorus of T which is sent by conjugation by x to itself is ∆.

Now, we are assuming that P is neither S nor T, so we have to assume that P has
rank 1, in which case the automorphism group of P, AutF ( j)(P), is generated by the
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automorphism groups of S by definition ofF ( j). Since P � S, it follows that P � NS(P),
and (since all automorphisms of P are restrictions of automorphisms of S),

OutS(P) ∩Op(OutF ( j)(P)) , {1}.

�

Proposition 5.4.23. The fusion system F ( j) is saturated.

Proof. LetH be the set formed by theF ( j)-conjugacy classes of the subgroups listed in
Lemma 5.4.22. Then it is clear that F ( j) isH-generated, and it is not difficult to prove
that it is also H-saturated. Since, in addition, H contains the list of all F ( j)-centric
F ( j)-radical subgroups, it follows by Theorem A in [BCG+05] that F ( j) is saturated.

�

The following list describes the two different saturated fusion systems which are
obtained as the limits of the families that we are considering.

S V0 E0 T 3-lcg

Z/2 ×Z/2 - GL2(3) GL2(3) F (2)
GL2(3) - F (3)

Next we check that we can naturally associate a linking system to F ( j). For each
P in the list of F ( j)-centric F ( j)-radical subgroups of Lemma 5.4.22, define

AutL( j)(P)
de f
= lim
−−→

AutLk( j)(P)

(it is not difficult to check that this groups are well-defined), and let Lcr( j) be the
category with object set the F ( j)-conjugacy classes of the subgroups listed in 5.4.22
and with morphism sets spanned by the automorphism groups above.

Proposition 5.4.24. The category Lcr( j) spans a centric linking system associated to the
fusion system F ( j).

Proof. The functorρ and the “distinguished monomorphisms” δP for P ∈ Ob(Lcr( j)) are
defined as the limits of the corresponding functors ρk and “distinguished monomor-
phisms” in Lk( j). The axioms then follow easily since Lcr( j) has been defined as
some direct limit of linking systems. Since Ob(Lcr( j)) already contains all F ( j)-centric
F ( j)-radical subgroups, it follows that a full centric linking system L( j) with object
set Ob(L( j)) = Ob(F c( j)) can be spanned from Lcr( j).

�

Let now {Ψi} be a family of unstable Adams operations defined on G( j), and for
each i let G( j)i = (Si,F ( j)′i ,L( j)′i) be the triple induced by Ψi as in definition 5.2.16. It
is not difficult to prove now the main result of this section.

Proposition 5.4.25. There is some M such that, for all i ≥M, there is some ki such that

F
′

i ( j) = Fki( j),

where Fki( j) is one of the (saturated) fusion systems listed in [DRV07]. In particular, F ′i ( j)
is 5A-saturated.
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Proof. Fix lists like BI-1 and BI-2 for G( j). In particular, fix V0 and E0 in the tables
above as the representatives of their S-conjugacy classes. For each i, let ki be such that
the subgroup of fixed points in S under the action of Ψi, Si, equals the group Bki (5.19).

Note that, since 〈S〉F ( j) = {S} and 〈T〉F ( j) = {T}, it is clear that there is some m1

such that, for all i ≥ m1, the automorphism groups of Si and Ti in F ′i ( j) equal the
automorphism groups of Bki and γki in Fki( j) respectively, and we only have to deal
with the F ( j)-conjugacy classes of V0 and E0. Note that, for any i, the subgroups
E0, E1 and E−1 (repectively V0, V1 and V−1, see Lemma 5.2 in [DRV07]) are no longer
Si-conjugate, since the elements that conjugate them are not Ψi-invariant.

Now, it is easy to see that the subgroups V0 and E0 are F ( j)-centric by Lemma
5.2 [DRV07], since by definition of F ( j) there is no morphism in this fusion system
conjugating V0 with P1 = 〈z, z′〉, where z and z′ represent in T the elements zk and z′k
defined in (5.20). Furthermore, by Lemma A.15 [DRV07], any subgroup of S of the
isomorphism type of Z/3 ×Z/3 (except from P1) is F ( j)-conjugate to V0. Hence, the
only non-F ( j)-centric subgroups of S are P1 and all subgroups of the isomorphism
type of Z/3.

Let P ≤ S be a non-F ( j)-centric subgroup. We claim then that

CT(P) 	 (Z(P) ∩ T).

Suppose first that P ∈ 〈P1〉F ( j). Then, in fact P = P1 ≤ T, and the statement follows
immeadiately. Suppose now that P is isomorphic to Z/3. Then, either P ≤ T and
the statement follows, or P = 〈ts〉, for some t ∈ T, in which case P does not contain
Z(S) ≤ T, and the statement holds for P.

Thus, by Lemma 5.4.3, there is some m1 such that, for all i ≥ m1, if R ∈ Ob(F ( j)•)
is Si-determined but not F ( j)-centric, then Ri is not F ( j)′i-centric. This, together with
Proposition 5.2.22, implies that condition (5.4) holds for all i ≥ m1, and hence F ( j)′i is
5A-saturated (and in particular saturated).

Now, since both V0 and E0 are finite subgroups of S, it is easy to see that there is
some m2 such that, for all i ≥ m2, if ki is such that |Bki | = |Si|, then

AutF ( j)′i
(V0) = AutF ( j)(V0) = AutFki ( j)(V0)

AutF ( j)′i
(E0) = AutF ( j)(E0) = AutFki ( j)(E0)

and hence, by comparison with table 6 in Theorem 5.10 [DRV07], it follows that

F ( j)′i = Fki( j).

�

The following result is then obvious.

Theorem 5.4.26. Let G( j), for j = 2, 3, be one of the 3-local compact groups defined by
Propositions 5.4.23 and 5.4.24, and let {Ψi} be a family of unstable Adams operations acting
on G.

Then, the family {Ψi} induces an approximation of G( j) by p-local finite groups.
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5.5 Saturated fusion systems without associated linking
system

Up until now, we have always assumed in this chapter that, given a saturated fusion
system F over a discrete p-toral group S, there was always an associated linking
system L (forgetting about uniqueness of such linking system), but it is also worth
considering the situation where no associated linking system is assumed to exist.

When this is the case, Robinson groups realizing (saturated) fusion systems (see
Theorem 2.2.3) and the unstable Adams operations that we have defined for them
(Proposition 4.3.2) provide a setting where we might try to reproduce the construc-
tions done previously in this chapter. However, working with these infinite groups
is more complicated than it could seem on first sight.

For instance, while we have not proved an analogue of property (ii) in Theorem
2 [Rob07], which says that the centralizer of a centric subgroup has a normal free
subgroup of finite index, it is fair to expect something similar to happen to the models
we use in this work. Furthermore, the subgroups NG(P), for P ≤ S, need not be neither
artinian nor locally finite. This means that one has to be careful when thinking of
Robinson groups as substitutes of centric linking systems.

Let then F be a saturated fusion system, and let G be a Robinson group realizing
F . Let also {Ψi} be a family of unstable Adams operations acting on G. Since, in
particular, the Ψi are group automorphisms, we may then consider for each i the
subgroup

Gi = {g ∈ G|Ψi(x) = x}.

Naturally, the subgroup of fixed elements of S under Ψi, Si, is a subgroup of Gi for all
i, and here is appears the first question. Is Si a Sylow p-subgroup of Gi (in the sense
that any other finite p-subgroup of Gi is subconjugate to Si) or not?

What is not difficult to prove is the following lemma, which does not seem to be
of much interest if we cannot progress in this problem.

Lemma 5.5.1. For each g ∈ G there exists some Mg such that, for all i ≥ Mg, Ψi(g) = g. In
particular, G is the union of all the subgroups Gi.

Proof. Let g ∈ G be any element, and write it as g = g1 ∗ g2 ∗ . . . ∗ gm, where each gn is in
L j for some P j ∈ P. Since Ψ is constructed from unstable Adams operations on each
L j, it follows by Proposition 5.2.3 that for each gm there exists some Mgm such that the
statement holds. We just have to take Mg to be the maximum of all the Mgm’s to finish
the proof.

�





Appendix A

Extensions of p-local compact groups
with discrete p-toral kernel

While morphisms between any arbitrary two p-local compact groups are not defined
in general, there are some situations where morphisms can be considered. This is
even more interesting when such morphisms allow us to transfer information from
one p-local compact group to another, and this is the case of extensions. Extensions
of p-local finite groups were first studied in [BCG+07], and then in [OV07], where the
authors classified extensions of p-local finite groups with p-group kernel.

In this chapter, we extend the results from [OV07] to extensions of p-local compact
groups with discrete p-toral group kernel. In the original paper, such extensions were
used to study the construction of new exotic p-local finite groups. Leaving apart the
fact that it is not at all clear what an exotic p-local compact groups ought to be, we are
not interested in extensions of p-local compact groups from this point of view, and
hence the part of [OV07] regarding exoticity has been skipped here.

This chapter is then organized following the structure of the original source. In
the first section we define quotients of saturated fusion systems by weakly closed
subgroups, and prove that one obtains then a saturated fusion system. In the second
section we introduce the notion of transporter system, which generalizes that of
linking system, and prove some of their properties, such as the fact that a linking
system is always a transporter system, and that given a transporter system we can
obtain a linking system under certain reasonable hypothesis. The third section proves
extends the results on quotients of fusion systems to quotients of transporter systems.
In the fourth section we deal with higher limits over orbit categories and show some
properties about the homotopy type of classifying spaces of transporter systems, and
finally in section five we classify a certain class of extensions of transporter systems
called admissible, extending thus the classification of admissible extensions of finite
transporter systems from [OV07].

A.1 Quotients of fusion systems

In 1.2.8 we have introduced the notion of weakly closed subgroups of fusion systems,
as well as stronger conditions such as strongly closed and normal subgroups. Given
a (saturated) fusion system F over S and a weakly closed subgroup A, the quotient
fusion system F /P over S/A is defined naturally as the fusion system where mor-

111
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phisms are induced by morphisms in F . In this section, we prove that saturation on
F implies saturation on F /A.

Let then F be a saturated fusion system over a discrete p-toral group S, and let
A ≤ S be a subgroup. Whenever A is weakly F -closed, we define the quotient fusion
system F /A over S/A as the fusion system with morphism sets

(A.1) HomF /A(P/A,P′/A) = { f/A| f ∈ HomF (P,P′)}.

Note that S/A can be again a discrete p-toral group.

Proposition A.1.1. Let F be a saturated fusion system over a discrete p-toral group S, and
let A ≤ S be a weakly F -closed subgroup. Then, F /A is a saturated fusion system over S/A.

One lemma is needed before giving a proof for this result.

Lemma A.1.2. In the situation above, a subgroup P ≤ S containing A is fully F -normalized
if and only if P/A ≤ S/A is fully F /A-normalized.

Proof. This holds since for each P ≤ S such that A ≤ P,

NS/A(P/A) = NS(P)/A,

and since the F /A-conjugacy class of P/A corresponds to the F -conjugacy class of P.
�

Proof. (of Proposition A.1.1). We can skip checking axiom (III) in 1.2.2 for F /A since
it follows from axiom (III) on F . We will use the equivalent saturation axioms from
[KS08], proved in 1.7.1 for the compact case.

(I’) Inn(S/A) ∈ Sylp(AutF /A(S/A)).
This is equivalent to showing that {1} ∈ Sylp(OutF /A(S/A)), and this follows imme-

diately from the epimorphism of finite groups

OutF (S)� OutF /A(S/A)

and the fact that F is saturated.
(II’) Let f/A : P/A→ S/A be a morphism inF /A such that P′/A = f/A(P/A) is fully

F /A-normalized, then f/A extends to a morphisms f̃/A ∈ HomF (N f/A,S/A), where

N f/A = {gA ∈ NS/A(P/A)| f/A ◦ cgA ◦ ( f/A)−1
∈ AutS/A(P′/A)}.

Let f ∈ HomF (P,S) be a representative of f/A inF . By Lemma A.1.2 above, P′/A =
f/A(P/A) is fully F /A-normalized if and only if P′ = f (P) is fully F -normalized. In
particular, since F is saturated, P′ is also fully F -centralized, and we may apply
axiom (II) in F to the morphism f .

Axiom (II’) now follows since there is an epimorphism

N f � N f/A,

and hence an extension of f in F gives rise to the desired extension of f/A in F /A.
�
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A.2 Transporter systems associated to fusion systems

Let F be a saturated fusion system over a discrete p-toral group S, and let A ≤ S be
weakly F -closed. Suppose in addition that there exists a centric linking system L
associated to F . As shown in section 2 of [OV07], even if we may define a quotient
linking system L/A associated to F /A, this need not be a centric linking system,
sinceF -centric subgroups need not correspond toF /A-centric subgroups. This is the
reason why we introduce the wider class of transporter systems.

Let G be an artinian locally finite group such that has Sylow p-subgroups, and let
S ∈ Sylp(G). We define TS(G) as the category whose object set is Ob(TS(G)) = {P ≤ S},
and such that

MorTS(G)(P,P′) = NG(P,P′) = {g ∈ G|gPg−1
≤ P′}.

For a subsetH ⊆ Ob(TS(G)), TH (G) denotes the full subcategory of TS(G) with object
setH .

Definition A.2.1. Let F be a fusion system over a discrete p-toral group S. A transporter
system associated to F is a category T such that

(i) Ob(T ) ⊆ Ob(F );

(ii) for all P ∈ Ob(T ), AutT (P) is an artinian locally finite group;

together with a couple of functors

TOb(T )(S) ε
−→ T

ρ
−→ F ,

satisfying the following axioms:

(A1) Ob(T ) is closed under F -conjugacy and overgroups. Also, ε is the identity on objects
and ρ is inclusion on objects.

(A2) For each P ∈ Ob(T ), let

E(P) = Ker(AutT (P)→ AutF (P)).

Then, for each P,P′ ∈ Ob(T ), E(P) acts freely on MorT (P,P′) by right composition,
and ρP,P′ is the orbit map for this action. Also, E(P′) acts freely on MorT (P,P′) by left
composition.

(B) For each P,P′ ∈ Ob(T ), εP,P′ : NS(P,P′)→ MorT (P,P′) is injective, and the composite
ρP,P′ ◦ εP,P′ sends g ∈ NS(P,P′) to cg ∈ HomF (P,P′).

(C) For all ϕ ∈MorT (P,P′) and all g ∈ P, the following diagram commutes in T :

P
ϕ //

εP,P(g)
��

P′

εP′ ,P′ (ρ(ϕ)(g))
��

P ϕ
// P′.

(I) εS,S(S) ∈ Sylp(AutT (S)).
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(II) Let ϕ ∈ IsoT (P,P′), and P C R ≤ S, P′ C R′ ≤ S such that

ϕ ◦ εP,P(R) ◦ ϕ−1
≤ εP′,P′(R′).

Then, there is some ϕ̃ ∈ MorT (R,R′) such that ϕ̃ ◦ εP,R(1) = εP′,R′(1) ◦ ϕ, that is, the
following diagram is commutative in T :

P
ϕ //

εP,R(1)
��

P′

εP′ ,R′ (1)
��

R
ε̃

// R′.

(III) Let P1 ≤ P2 ≤ . . . be an increasing sequence of subgroups in Ob(T ), and P =
⋃
∞

n=1 Pn.
Suppose in addition that there exists ψn ∈MorT (Pn,S) such that

ψn = ψn+1 ◦ εPn,Pn+1(1)

for all n. Then, there exists ψ ∈MorT (P,S) such that ψn = ψ ◦ εPn,P(1) for all n.

Given a transporter system T , we will refer to the p-completion of the realization of the
nerve of T , |T |∧p , as the classifying space of the transporter system.

Note that, in axiom (III), P is an object in Ob(T ), since Ob(T ) is a set of subgroups
of S closed underF -conjugacy and overgroups. As in [OV07], the axioms are labelled
to show their relation with the axioms for linking and fusion systems respectively.

The following lemma is an analog of Lemmas 3.2 in [OV07] and 4.3 in [BLO07].

Lemma A.2.2. LetT be a transporter system associated to a fusion system F (over a discrete
p-toral group), and let ρ : T → F be the projection functor.

(i) Fix morphisms f ∈ HomF (P,Q) and f ′ ∈ HomF (Q,R), where P,Q,R ∈ T . Then, for
any pair of liftings ϕ′ ∈ ρ−1

Q,R and ω ∈ ρ−1
P,R( f ′ f ), there is a unique lifting ϕ ∈ ρ−1

P,Q( f )
such that ϕ′ ◦ ϕ = ω.

(ii) All morphisms in T are monomorphisms in the categorical sense. That is, for all
P,Q,R ∈ T and all ϕ1, ϕ2 ∈ MorT (P,Q), ψ ∈ MorT (Q,R), if ψ ◦ ϕ1 = ψ ◦ ϕ2 then
ϕ1 = ϕ2.

(iii) For every morphism ϕ ∈ MorT (P,Q) and every P0,Q0 ∈ T such that P0 ≤ P, Q0 ≤ Q
and ρ(ϕ)(P0) ≤ Q0, there is a unique morphism ϕ0 ∈MorT (P0,Q0) such that ϕ◦ ιP0,P =
ιQ0,Q ◦ϕ0. In particular, every morphism inT is a composite of an isomorphism followed
by an inclusion.

(iv) All morphisms in T are epimorphisms in the categorical sense. In other words, for all
P,Q,R ∈ T and all ϕ ∈MorT (P,Q) and ψ1, ψ2 ∈MorT (Q,R), if ψ1 ◦ϕ = ψ2 ◦ϕ then
ψ1 = ψ2.

Proof. Let FT be the full subcategory of F with object set Ob(FT ) = Ob(T ). Since
the functor ρ : T → FT is both source regular and target regular (because of axiom
(A2) of transporter systems, see definition A.5 in [OV07]), the proof for Lemma 3.2 in
[OV07] applies as well in this case.

�
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The rest of this section is devoted to prove first that linking systems are transporter
systems, and second that from a transporter system (satisfying some mild conditions)
we can always obtain a linking system.

Let G be a p-local compact group, and, for each P ∈ L fix a lifting of inclS
P : P→ S

in L, ιP,S ∈ MorL(P,S). Then, by Lemma 1.4.3, we may complete this to a family of
inclusions {ιP,P′} in a unique way and such that ιP,S = ιP′,S ◦ ιP,S whenever it makes
sense.

Lemma A.2.3. Fix such a family of inclusions {ιP,P′} inL. Then, for each P,P′ ∈ L, there are
unique injections

δP,P′ : NS(P,P′) −→MorL(P,P′)

such that

(i) ιP′,S ◦ δP,P′(g) = δS(g) ◦ ιP,S, for all g ∈ NS(P,P′), and

(ii) δP is the restriction to P of δP,P.

These injections thus form a functor from TOb(L)(S) to L.

Proof. Note that, for P = P′ = S, the injection δS is already defined by the definition
of linking system. Let then P,P′ ∈ Ob(L), and consider the following commutative
diagram in F :

P
cg //

inclSP
��

P′

inclSP′
��

S cg
// S,

where g ∈ NS(P,P′). Since g ∈ S is a lifting in L of cg, and we have fixed liftings
for inclS

P and inclS
P′ respectively, Lemma 4.3 (a) in [BLO07] applies, and it follows that

there exists a unique morphism δP,P′(g) ∈ MorL(P,P′) making the following diagram
commute:

P
δP,P′ (g)

//

ιP,S
��

P′

ιP′ ,S
��

S
δS(g)

// S,

This gives a map δP,P′ : NS(P,P′) → MorL(P,P′), and conditions (i) and (ii) follow by
4.3 (a) in [BLO07]. Hence, it remains to check the injectivity of δP,P′ .

Let g, h ∈ NS(P,P′) be such that δP,P′(g) = δP,P′(h). This would imply that

cg = π(δP,P′(g)) = π(δP,P′(h)) = ch

in F and hence, that hg−1
∈ CS(P) = Z(P) (since P is centric). By construction of δP,P′

and by Lemma 4.3 (b) in [BLO07], it would follow then that there exists z ∈ Z(S), a
nontrivial element, such that

δS(h) = δS(z) ◦ δS(g)

and hence that δP,P′(h) = δP(z) ◦ δP,P′(g). Hence, g = h and δP,P′ is injective.
�
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Proposition A.2.4. Let T be a transporter system associated to a fusion system F over a
discrete p-toral group S. Then, for any P ∈ T ,

(i) P is fully F -normalized if and only if εP,P(NS(P)) ∈ Sylp(AutT (P)).

(ii) P is fully F -centralized if and only if εP,P(CS(P)) ∈ Sylp(E(P)).

Proof. For both (i) and (ii) the “if” implication is immediate, since they only depend
on the F -conjugation class of P. Also, for S the “only if” part in (i) and (ii) also hold
by axiom (I) in the definition of transporter systems.

(i) “only if”:
Suppose P is fully F -normalized but εP,P(NS(P)) is not a Sylow p-subgroup of

AutT (P). Suppose further that P is of maximal order satisfying that (i.e, no over-
group of P satisfies those two conditions).

Let now H ∈ Sylp(AutT (P)) such that εP,P(NS(P)) ≤ H. In fact, this inclusion is by
hypothesis strict. Being both H and εP,P(NS(P)) discrete p-toral groups, the inclusion

εP,P(NS(P)) ≤ H0 = NH(εP,P(NS(P)))

is again strict. We have in fact a sequence of strict inclusions

εP,P(P) � εP,P(NS(P)) � H0

since P � S implies P � NS(P).
Let ϕ ∈ H0 \ εP,P(NS(P)). Then,

ϕ−1
◦ εP,P(x) ◦ ϕ ∈ εP,P(NS(P))

for all x ∈ NS(P) since εP,P(NS(P))CH0. It follows by axiom (II) for transporter systems
that there is an extension ofϕ, namely ϕ̃ ∈ AutT (HS(P)), making the following diagram
commute:

P
ϕ //

ιP,NS(P)

��

P
ιP,NS(P)

��
NS(P)

ϕ̃
// NS(P).

Since AutT (NS(P)) is locally finite, |ϕ̃| = pkm, where p - m. Thus, for r such that r ≡ 0
(mod m), r ≡ 1 (mod pk), (ϕ̃)r is an automorphism of NS(P) of order pk which is again
an extension of ϕ. Thus, we can assume directly that ϕ̃ has order a power of p.

Choose R fullyF -normalized andF -conjugate to NS(P), and let γ ∈ IsoT (NS(P),R).
Since we have taken P maximal with respect to the above assumptions, it follows that

εR,R(NS(R)) ∈ Sylp(AutT (R)),

and hence γ ◦ ϕ̃ ◦ γ−1 is conjugate to εR,R(y) for some y ∈ NS(R). We can suppose
without loss of generality that

γ ◦ ϕ̃ ◦ γ−1 = εR,R(y).



A.2 Transporter systems associated to fusion systems 117

By construction, ϕ̃ ∈ AutT (R) restricts to ϕ ∈ AutT (P). Sigui P′ = ρ(γ)(P) ≤ R i
γ0 = γ|P,P′ ∈ IsoT (P,P′). There is a commutative diagram

P′
γ−1

0 //

ιP′ ,R
��

P
ϕ // P

γ0 // P′

ιP′ ,R
��

R
εR,R(y)=γϕ̃γ−1

// R,

from where we deduce that γ0 ◦ ϕ ◦ γ−1
0 ∈ AutT (P′) is a restriction of εR,R(y), i.e.,

ρ(εR,R(y)) = cy ∈ AutF (R) restricts to an automorphism of P′ (in F ), which means that
y ∈ NS(P′) and γ0 ◦ ϕ ◦ γ−1

0 = εP′,P′(y).
On the other hand. since P is fully F -normalized, it follows that

ρ(γ)(NS(P)) = NS(P′),

and y = ρ(γ)(z) for some z ∈ NS(P). We thus have the following two commutative
squares in T , where all arrows are isomorphism:

P
γ0 //

ϕ

��

P′

εP′ ,P′ (y)
��

P
γ0 //

εP,P(z)
��

P′

εP′ ,P′ (y)
��

P γ0
// P′ P γ0

// P′.

Comparing the two squares, it follows that ϕ = εP,P(z) (since all morphisms in T are
monomorphisms in the categorical sense, by Lemma A.2.2 (b)), in contradiction with
the assumption that ϕ < εP,P(NS(P)).

(ii) “only if”:
Let P ∈ Ob(T ) , and let P′ be F -conjugate to P and fully F -normalized. Then

εP′,P′(NS(P′)) ∈ Sylp(AutT (P′))

by (i), and hence
εP′,P′(CS(P′)) = εP′,P′(NS(P′)) ∩ E(P′)

is a Sylow p-subgroup of E(P′). Also, E(P) � E(P′), so P is fully F -centralized if and
only if CS(P) � CS(P′). Equivalently,

εP′,P′(CS(P′)) ∈ Sylp(E(P)).

�

Using this proposition we can give an alternative statement for axiom (I) in defi-
nition A.2.1:

(I’) If P is fully F -normalized, then εP,P(NS(P)) ∈ Sylp(AutT (P)).

This will simplify the proof that a linking system is a transporter system.

Proposition A.2.5. Let G = (S,F ,L) be a p-local compact group. Then, L is a transporter
system associated to F .
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Proof. The usual projection functor ρ : L → F in the definition of a linking system
plays also the role of the projection functor in the definition of transporter system.
Also, in Lemma A.2.3 we have defined a functor ε : TOb(L)(S) → L. It remains to
check that L satisfies the axioms in definition A.2.1.

(A1) This follows from axiom (A) on L.
(A2) By axiom (A) on L, we know that, for all P,P′ ∈ L, E(P) = Z(P) acts freely on

MorL(P,P′) and that ρP,P′ is the orbit map of this action.
Thus, we have to check that E(P′) = Z(P′) acts freely on MorL(P,P′). Suppose

ϕ ∈MorL(P,P′) and x ∈ E(P′) are such that

εP′(x) ◦ ϕ = ϕ.

Then, x centralizes ρ(ϕ)(P), so x = ρ(ϕ)(y) for some y ∈ Z(P), since P is F -centric.
Hence,

ϕ = δP′(x) ◦ ϕ = ϕ ◦ δP(y)

by axiom (C) for linking systems, and thus by axiom (A) we deduce that y = 1, x = 1
and the action is free.

(B) By construction of the functor ε, we know that

εP,P′ : NS(P,P′) −→MorL(P,P′)

is injective for all P,P′ ∈ L.
Thus, we have to check that the composite ρP,P′ ◦ εP,P′ sends g ∈ NS(P,P′) to

cg ∈ HomS(P,P′). Note that the following holds for any P,P′ ∈ L and any x ∈ NS(P,P′):

ιP′ ◦ εP,P′(x) = εP′,S(1) ◦ εP,P′(x) = εS(x) ◦ εP,S(1) = δS(x) ◦ ιP

in L and hence so does the following:

inclS
P′ ◦ ρP,P′(εP,P′(x)) = ρP,S(ιP′ ◦ εP,P′(x)) = ρP,S(δS(x) ◦ ιP) = cx.

in F .
(C) This follows from axiom (C) for linking systems.
(I’) Let P ∈ L be fully F -normalized. We want to check that

εP,P(NS(P)) ∈ Sylp(AutL(P)).

Now, if P is fully F -normalized (and F -centric, since it is an object in L), then
CS(P) = Z(P) and NS(P)/Z(P) = AutS(P) ∈ Sylp(AutF (P)). Since E(P) = Z(P), axiom (I’)
follows.

(II) Let ϕ ∈ IsoL(P,P′), P C R, P′ C R′ be such that

ϕ ◦ εP,P(R) ◦ ϕ−1
≤ εP′,P′(R′).

We want to see that there exists ϕ̃ ∈MorL(R,R′) such that

ϕ̃ ◦ εP,R(1) = εP′,R′(1) ◦ ϕ.

Since P′ is F -centric, it is fully F -centralized. Then, we may apply axiom (II) for
fusion systems to the morphism f = ρ(ϕ), that is, f extends to some f̃ ∈ HomF (N f ,S),
where

N f = {g ∈ NS(P)| f cg f −1
∈ AutS(P′)},
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and clearly R ≤ N f . Hence, f̃ restricts to a morphism in HomF (R,S). Furthermore,
f̃ (R) ≤ R′ since f conjugates AutR(P) into AutR′(P′).

Now, (ιP′,R′ ◦ ϕ) ∈ MorL(P,R′) is a lifting in L for inclR′
P′ ◦ f ∈ HomF (P,R′), and we

can fix a lifting ψ ∈ MorL(R,R′) for f̃ . Thus, by Lemma 1.4.3 (i) there exists a unique
ι̃ ∈MorL(P,R), a lifting of inclR

P , such that

ιP′,R′ ◦ ϕ = ψ ◦ ι̃.

Since ρ(̃ι) = inclR
P = ρ(ιP,R), by axiom (A) it follows that there exists some z ∈ Z(P) such

that
ι̃ = ιP,R ◦ δP(z) = δR(ρ(ιP,R)(z)) ◦ ιP,R,

where the second equality holds by axiom (C). Hence

ιP′,R′ ◦ ϕ = (ψ ◦ δR(ρ(ιP,R)(z))) ◦ ιP,R.

(III) Let P1 ≤ P2 ≤ . . . be an increasing sequence of objects in L, P = ∪Pn, and
ϕn ∈MorL(Pn,S) satisfying ϕn = ϕn+1 ◦ ιPn,Pn+1 for all n. We want to see that there exists
some ϕ ∈MorL(P,S) such that ϕn = ϕ ◦ ιPn,P for all n.

Set fn = ρ(ϕn) for all n. Then, by hypothesis, fn = fn+1 ◦ inclPn+1
Pn

for all n. Now, it is
clear that { fn} forms a nonempty inverse system, and there exists f ∈ HomF (P,S) such
that fn = f|Pn for all n (the existence follows from Proposition 1.1.4 in [RZ00], and the
fact that f is a morphism in F follows from axiom (III) for fusion systems).

Consider now the following commutative diagram (in F ):

P

f

��

P1

incl

88qqqqqqqqqqqqq

f1 &&MMMMMMMMMMMMM

S.

The same arguments used to prove that axiom (II) for transporter systems holds
on L above apply now to show that there exists a unique ϕ ∈ MorL(P,S) such that
ϕ1 = ϕ ◦ ιP1,P. Combining this equality with ϕ1 = ϕ2 ◦ ιP1,P2 and Lemma A.2.2 (iv)
(morphisms in L are epimorphisms in the categorical sense), it follows that

ϕ2 = ϕ ◦ ιP2,P.

Proceeding by induction it now follows that ϕ satisfies the desired condition.
�

Finally, we show that, given a transporter systemT , we can always obtain a linking
system L. However, this linking system may not be a centric linking system, in the
sense that Ob(L) may not contain all F -centric subgroups of may contain subgroups
which are not F -centric.

Proposition A.2.6. Let T be a transporter system associated to a fusion system F over a
discrete p-toral group S. Then, for every P ∈ T which is F -centric,

E(P) = Z(P) × E0(P),
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where all the elements in E0(P) are of order prime to p.
Hence, the category L defined by Ob(L) = {P ∈ T |P is F − centric} and by

MorL(P,P′) = MorT (P,P′)/E0(P)

is a linking system associated to F .

Proof. Recall that, for each P ∈ T , E(P) = Ker(AutT (P) � AutF (P)). Thus, by axiom
(C) for transporter systems it follows that E(P) commutes with εP(P): the following
diagrama is commutative,

P
ϕ //

εP(g)
��

P
εP(g)

��
P ϕ

// P,

for all g ∈ P and all ϕ ∈ E(P). That is,

εP(P) ≤ CAutT (P)(E(P)),

and hence εP(Z(P)) is central in E(P) (this in fact holds for all P ∈ T ).
Now, suppose P ∈ T is F -centric. Then, P is fully F -centralized, and hence by

Proposition A.2.4 (ii),

εP(CS(P)) = εP(Z(P)) ∈ Sylp(E(P)),

and E(P) = εP(Z(P)) × E0(P), where each element in E0(P) has order prime to p.
Finally, let T c

⊆ T be the full subcategory of T with object set the F -centric
subgroups in T . Then, T c is again a transporter system, and L defined as in the
statement is a quotient category of T c, which means that composition is well-defined
in L. The axioms for linking systems on L now hold because of axioms (A1), (A2),
(B) and (C) on T c.

�

A.3 Quotients of transporter systems

Quotients of (saturated) fusion systems have been introduced and studied in section
A.1, and now we want to extend those definitions and properties to transporter
systems. More specifically, we have proved in Proposition A.1.1 that the quotient of
a saturated fusion system by a weakly F -closed subgroup is again a saturated fusion
system, and now we prove that the quotient of a transporter system by a weakly
closed subgroup is again a transporter system.

Definition A.3.1. Let T be a transporter system associated to a fusion system F over a
discrete p-toral groups S, and fix A ≤ S, not necessarily an object in T . Then,

• we say that A is weakly T -closed if for any P,P′ ∈ T containing A as a subgroup
and any ϕ ∈MorT (P,P′), the morphism f = ρ(ϕ) ∈ HomF (P,P′) satisfies f (A) ≤ A;

• we say that A is stronly T -closed if for any pair of objects P,P′ ∈ T and any
ϕ ∈MorT (P,P′), the morphism f = ρ(ϕ) satisfies f (P ∩ A) ≤ P′ ∩ A;



A.3 Quotients of transporter systems 121

• we say that A isT -normal if for any pair of objects P,P′ ∈ T and anyϕ ∈MorT (P,P′),
there existsψ ∈MorT (PA,P′A) such that εP′,P′A(1)◦ϕ = ψ◦εP,PA(1) and ρ(ψ)(A) ≤ A.

Lemma A.3.2. If A is T -normal, then it is strongly T -closed. If A is strongly T -closed,then
it is weakly T -closed.

Let T be a transporter system associated to a fusion system F over a discrete p-
toral group S, and let A ≤ S be a weakly T -closed subgroup. We define the quotient
transporter system ofT by A,T /A, as the category with object set Ob(T /A) = {P/A|P ∈
T , A ≤ P}, and with morphism sets

(A.2) MorT /A(P/A,P′/A) = MorT (P,P′)/εP(A) = εP′(A) \MorT (P,P′).

As happened in Proposition A.1.1 with quotient fusion systems, the structure on T
induces some structure on T /A.

Proposition A.3.3. Let T be a transporter system associated to a fusion system F over a
discrete p-toral group S, and let A ≤ S be a weakly T -closed subgroup. Then, T /A is a
transporter system associated to the fusion system F /A over S/A.

Proof. The functor ρ/A : T /A → F /A is induced by ρ, and the functor ε/A :
TOb(T /A)(S/A)→ T /A is defined by

(ε/A)P/A,P′/A(gA) = [εP,P′(g)] ∈MorT (P,P′)/εP(A).

Axioms (A1) and (B) hold for T /A because they already hold for T .
Axioms (A2), (C), (I) and (II) hold using the same arguments in the proof for

Proposition 3.10 in [OV07].
Thus, we just have to show that axiom (III) also holds for T /A. Suppose that

we are given an ascending chain of subgroups in S/A, P1/A ≤ P2/A ≤ . . .. Set then
P/A = ∪Pn/A, and for each n let ϕn/A ∈MorT /A(Pn/A,S/A) be such that

ϕn/A = ϕn+1/A ◦ ε/APn/A,Pn+1/A(1).

We want to see that there exists ϕ/A ∈MorT (P/A,S/A) such that for each n ϕn/A is the
corresponding restriction of ϕ/A.

We start by chosing liftings in T of the morphisms ϕn/A so that we can apply
axiom (III) in T . Start by chosing a lifting ϕ1 ∈MorT (P1,S) of ϕ1/A, and now suppose
we have already chosen liftings ϕ1, . . . , ϕn such that, for each i = 1, . . . ,n − 1,

ϕi = ϕi+1 ◦ εPi,Pi+1(1),

and choose a lifting ϕ′n+1 ∈ MorT (Pn+1,S) of ϕn+1/A. This lifting may not satisfy that
ϕn = ϕ′n+1 ◦ εPn,Pn+1(1), but by definition of T /A there exists some a ∈ A such that

ϕn = ϕ′n+1 ◦ εPn,Pn+1(1) ◦ εPn(a) = (ϕ′n+1 ◦ εPn+1(a)) ◦ ϕPn,Pn+1(1),

where the second equality holds by axiom (C) for transporter systems applied on
T . Thus, ϕn+1 = ϕ′n+1 ◦ εPn+1(a) satisfies de desired condition. Inductively, we obtain
liftings for all ϕn/A such that each lifting is the restriction of the next one.

Now, we can apply axiom (III) for transporter systems on T for the family {ϕn}:
there exists some ϕ ∈ MorT (P,S) such that ϕn = ϕ ◦ εPn,P(1) for all n, and the induced
morphism ϕ/A ∈MorT (P/A,S/A) is the morphism in T /A we were looking for.

�
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A.4 Homotopy properties of transporter systems

We have seen in Proposition A.2.6 that, given a transporter system, we can obtain
a linking system by taking suitable quotients of the automorphism groups in the
transporter system. We will now prove that actually in this situation, the classifying
spaces of the transporter system and of the linking system are homotopy equivalent.
Some calculations on higher limits over orbit categories will be needed in order to
prove that.

Thus, let T be a transporter system. We first introduce the orbit category of T ,
which is analogous to the orbit category of a fusion system as defined in 1.5.1.

Definition A.4.1. The orbit category ofT is the categoryO(T ) with object set Ob(O(T )) =
Ob(T ) and with morphism sets

MorO(T )(P,Q) = εQ,Q(Q) \MorT (P,Q).

Lemma A.4.2. Fix a transporter system T associated to a fusion system F over a discrete
p-toral group S, and let

Φ : O(T )op
−→ Z(p) −mod

be any functor which vanishes except on the F -conjugacy class of one subgroup Q ∈ O(T ).
Then,

lim
←−−

∗

O(T )(Φ) � Λ∗(AutO(T )(P); Φ(P)).

Proof. This lemma is proved by the same arguments used to prove Proposition 5.4 in
[BLO07] (an analog for transporter systems of Proposition 2.8 in [BLO07] can easily
be deduced precisely using this result).

�

Corollary A.4.3. Fix a transporter system T associated to a fusion system over a discrete
p-toral group S.

(i) Assume the functor Φ : O(T )op
→ Z(p) −mod has the property that for all P ∈ T such

that Φ(P) , 0, there is an element of order p in AutO(T )(P) which acts trivially on Φ(P).
Then,

lim
←−−

∗

O(T )(Φ) = 0.

(ii) Assume the functor Ψ : T op
→ Z(p) −mod has the property that for all P ∈ T such that

Ψ(P) , 0, there is g ∈ CS(P) \ P such that εP,P(g) acts trivially on Ψ(g). Then,

lim
←−−

∗

T
(Ψ) = 0.

Proof. (i) By Lemma 5.12 in [BLO07] together with the hypothesis on (i), it follows that
Λ∗(AutO(T )(P); Φ(P)) = 0 for all P ∈ T . By Lemma A.4.2 and an appropriate filtration
of Φ and the long exact sequences in higher limits for extensions of functors on O(T )
finishes the proof of (i).

(ii) It follows from point (i) together with Proposition A.11 in [OV07].
�
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Proposition A.4.4. LetT be a transporter system associated to aF system, and suppose that
T contains all the F -centric F -radical subgroups as objects. Let T c be the full subcategory of
T with object set the F -centric objects of T , and let L be the centric linking system obtained
from T c (Proposition A.2.6).

Then, the inclusion T c ↪→ T and the projection T c � L induce homotopy equivalences

|T |
∧

p ' |T
c
|
∧

p ' |L|
∧

p .

Proof. Lemma 1.3 in [BLO03a] holds also if we ask K(c) to be locally finite instead of
finite. Thus we can apply it in these case to see that the projection T c � L induces a
homotopy equivalence

|T
c
|
∧

p ' |L|
∧

p .

We have to prove then that the inclusion T c ↪→ T induces too a homotopy
equivalence. Consider the functor Φ : T op

→ Ab which sends all objects to Fp and all
morphisms to the identity, and let Φ0 ⊆ Φ be the subfunctor

Φ0(P) =

{
Φ(P) if P < T c,
0 if P ∈ T c.

Then, there are isomorphisms

H∗(|T |;Fp) � lim
←−−

∗

T
(Φ) and H∗(|T |, |T c

|;Fp) � lim
←−−

∗

T
(Φ0).

Now, for each P < T c which is fully centralized and each g ∈ CS(P) \ P, εP,P(g)
acts trivially on Φ(P), and by Lemma A.4.3 (ii) it follows then that lim

←−−

∗

T
(Φ0) = 0, and

hence the inclusion of |T c
| in |T | is a mod p homology isomorphisms and induces a

homotopy equivalence of p-completions.
�

A.5 Extensions of transporter systems by discrete p-toral
groups

Finally, we define extensions of transporter systems with discrete p-toral group kernel,
and introduce also the notion of admissible extensions. We will then classify all
admissible extensions, extending thus the results from [OV07].

Definition A.5.1. Let T be a transporter system. An extension of T by a discrete p-toral
group is a category T̃ , together with a functor τ : T̃ → T which is the identity on objects,
and such that, for all P̄, Q̄ ∈ Ob(T̃ ), the following hold:

(i) KP̄
de f
= Ker[Aut

T̃
(P̄)→ AutT (P)] is a discrete p-toral group;

(ii) KP̄ acts freely on Mor
T̃

(P̄, Q̄) by right composition and τ is the orbit map of this action;
and

(iii) KQ̄ acts freely on Mor
T̃

(P̄, Q̄) by left composition and τ is the orbit map of this action.
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By definition, the functor τ is source and target regular functor in the sense of
definition A.5 in [OV07]. In particular, Lemma A.7 in [OV07] says then that, for all
P̄, Q̄ ∈ T̃ ,

KP̄ = KQ̄ = A,

for a certain discrete p-toral group A. Thus, we can talk about extensions of T by the
discrete p-toral group A.

First we will check that such an extension is again a transporter system. Let then
S̃ be the pull-back of τS̄ and εS:

(A.3) S̃ //

��

Aut
T̃

(S̄)

τS̄

��
S εS

// AutT (S).

Let q : S̃→ S and ε̃S̃ : S̃→ Aut
T̃

(S̄) be the structure maps of the pull-back. Then, q is
surjective and ε̃S̃ is injective.

Set also A = Ker(q), and P̃ = q−1(P) for each P ∈ T . Then, for each P ∈ T , the
subgroup P̃ fits in an extension

A −→ P̃
q|P
−→ P,

and hence we can identify the set of objects in T̃ with the set of subgroups P̃ ≤ S̃
defined as above for each P ∈ T . Note that S̃ is a discrete p-toral group since both S
and A are.

A fusion system over S̃ can also be defined as follows. Define a functor ρ̃ : T̃ → Gps
to be the identity on objects and sending a morphism ϕ̃ in T̃ to the unique group
homomorphism defined in Lemma 5.5 in [OV07]. Define F̃ as the image of ρ̃. As
shown in [OV07], it turns out to be a fusion system over S̃.

Proposition A.5.2. The category T̃ defines a transporter system associated to the fusion
system F̃ . In particular, F̃ is Ob(T̃ )-saturated. Furthermore, A is T̃ -normal, and

(S,F ,T ) � (S̃/A, F̃ /A, T̃ /A).

Proof. Since Lemmas 5.2, 5.3, 5.4, 5.5 in [OV07] hold also in this case, the proof of
Proposition 5.6 in [OV07] also applies here, and we only have to show that T̃ satisfies
axiom (III) for transporter systems.

Let then P̃1 ≤ P̃2 ≤ . . . be an increasing sequence of subgroups in Ob(T̃ ), and let
P̃ = ∪P̃. Suppose also that for all n there exists ϕ̃n ∈Mor

T̃
(P̃n, S̃) such that

ϕ̃n = ϕ̃n+1 ◦ ε̃P̃n,P̃n+1
(1).

We have to prove then that there exists ϕ̃ ∈Mor
T̃

(P̃, S̃) such that

ϕ̃n = ϕ̃ ◦ ε̃P̃n,P̃
(1).
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By projecting all the P̃n and the ϕ̃n to T , we get a family of subgroups {Pn} and
morphisms {ϕn} like the above, and we can apply axiom (III) on T to see that there
exists ϕ ∈MorT (P,S) such that ϕn = ϕ ◦ εPn,P(1) for all n.

Let ϕ̃′ ∈Mor
T̃

(P̃, S̃) be a lifting in T̃ of ϕ. Since, by construction, the projections of
ϕ̃1 and of ϕ̃′ ◦ ε̃P̃1,P̃

(1) on T are equal, it follows that, in T̃ , they differ by a morphism
in A = Ker(q). This means that there exists some a ∈ A such that

ϕ̃ = ϕ̃′ ◦ ε̃(a)

restricts to ϕ̃1 and is still a lifting of ϕ.
Using that ϕ̃1 = ϕ̃2 ◦ ε̃P̃1,P̃2

(1) and that ε̃P̃1,P̃
(1) = ε̃P̃2,P̃

(1) ◦ ε̃P̃1,P̃2
(1), we have the

following equalities

ϕ̃ ◦ ε̃P̃2,P̃
(1) ◦ ε̃P̃1,P̃2

(1) = ϕ̃1 = ϕ̃2 ◦ ε̃P̃1,P̃2
(1).

Since the natural projection functor π : T̃ → T is, in particular, target regular by
definition, it follows by Lemma A.8 in [OV07] that morphisms in T̃ are epimorphisms
in the categorical sense, and hence, from the above equalities we deduce that the
restriction of ϕ̃ to P̃2 is ϕ̃2 as desired. Repeating this proces we see that axiom (III)
holds in T̃ .

�

Finally, we classify extensions of a fixed transporter system T by a fixed discrete
p-toral group A. Here, by an action of the transporter systemsT (or of its fundamental
group π1(|T |)) on A we mean the natural action described in Lemmas 5.7 and A.7 in
[OV07].

Proposition A.5.3. For a given transporter systemT , the extensions ofT by a given discrete
p-toral group A are in one-to-one correspondence with actions Φ of π1(|T |) on A, together
with elements of H2(|T |; A) (with coefficients twisted by Φ).

Proof. The same proof as for Proposition 5.8 in [OV07] applies here.
�

Definition A.5.4. Let T be a transporter system associated to a fusion system F over a
discrete p-toral group S.

Let Φ : π1(|T |)→ Γ be a group homomorphism, and let S1 = Ker(Φ◦εS,S). The morphism
Φ is called admissible if, for all fully F -centralized P ≤ S such that CS1(P) ≤ P, P ∈ Ob(T ).

The action of a transporter system T on A, Φ : π1(|T |)→ Out(A), is called admissible
if the morphism Φ is admissible.

An extension A→ T̃ → T is admissible if the natural action of T on A is admissible.

Theorem A.5.5. LetT be a transporter system, A be a discrete p-toral group, and A→ T̃ →
T be an admissible extension of transporter systems. Then, the following hold:

(i) Ob(T̃ ) contains all F̃ -centric F̃ -radical subgroups. Moreover, if P̃ ≤ S̃ is a F̃ -centric
not in T̃ , then it is F̃ -conjugate to some P̃′ such that

OutS̃(P̃′) ∩Op(Out
F̃

(P̃′)) , {1}.

(ii) F̃ is a saturated fusion system.





Appendix B

Fusion subsystems of p-power index
and index prime to p

Extensions of p-local finite groups have been exhaustively studied in [BCG+07] and
[OV07], and, while the results from the later paper have been proved to fully extend
to p-local compact groups (see appendix §A), this is not the case for the former paper,
the reason being that quasicentric subgroups play a central role in the arguments used
in [BCG+07].

Nevertheless, some results can be extended to the compact case, such as the Hyper-
focal subgroup theorem, or some results about detection of saturated fusion subsys-
tems, which are of interest in this work. In fact, the main interest for us in extending
the work in [BCG+07] to p-local compact groups is in order to give a well-defined
notion of connectivity of p-local compact groups, and, somehow surprinsingly, this
part of [BCG+07] extends without problem to the compact case.

This chapter is then organized as follows. The first section extends the Hyper-
focal subgroup theorem to p-local compact groups. Far from being an independent
section, the results from section §1 will be used all along the rest of this chapter. The
second section develops then some criteria to decide whether a certain subsystem of
a saturated fusion system is saturated. Sections three and four are then devoted to
detect all saturated fusion subsystems of a given saturated fusion system of p-power
index and index prime to p respectively.

B.1 The Hyperfocal subgroup theorem for p-local com-
pact groups

For a finite group G, the subgroup Op(G) is defined as the minimal normal subgroup
of p-power index, or, equivalently, as the subgroup of G generated by all elements
of order prime to p. In section §1.8, we have generalized this notion to a (possibly
infinite) group G as the subgroup generated by all infinitely p-divisible elements.

Definition B.1.1. Let F be a saturated fusion system over a discrete p-toral group S, and
define the hyperfocal subgroup of F as the subgroup of S

Op
F

(S) = 〈{g−1α(g)|g ∈ P ≤ S, α ∈ Op(AutF (P))},T〉.

127
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Note that, since T ≤ Op
F

(S), its index in S is a finite power of p.
We want to prove that for a p-local compact group G, π1(BG) � S/Op

F
(S). Since we

follow the steps in [BCG+07], we first need a version of Puig’s hyperfocal theorem for
artinian locally finite groups (Lemma 2.2 in [BCG+07]).

Let then G be an artinian locally finite group such that has Sylow p-subgroups, fix
S ∈ Sylp(G), and define

Op
G(S)

de f
= Op

FS(G)(S) = 〈{g−1α(g)|g ∈ P ≤ S, α ∈ Op(AutG(P))},T〉
= 〈{[g, x]|g ∈ P ≤ S, x ∈ NG(P) of p′ orderp},T〉.

Lemma B.1.2. Let G be an artinian locally finite group such that has Sylow p-subgroups,
and let S ∈ Sylp(G). Then,

Op
G(S) = S ∩Op(G).

Proof. Let Op(G) be the subgroup of G generated by all elements of order prime to p
in G, which is a subgroup of Op(G). We prove the following result:

Op
G(S)

de f
= 〈{g−1α(g)|g ∈ P ≤ S, α ∈ Op(AutG(P))}〉 = S ∩Op(G),

which is equivalent to the statement in the proposition.
The inclusion Op

G(S) ≤ S ∩ Op(G) holds by the same arguments as in Lemma 2.2
[BCG+07], and we want to see the converse inclusion. Let {Gi} be a family of finite
subgroups of G such that G = ∪Gi, and set Si = S ∩ Gi. It follows then that S = ∪Si.
We can choose the subgroups Gi such that Si ∈ Sylp(Gi) for all i.

We first check that Op
G(S) = ∪Op

Gi
(Si). This is in fact clear since, for each g−1α(g) ∈

Op
G(S), we can find M1 such that, for all i ≥ M1, g ∈ Si and α is conjugation by an

element in Gi, and hence g−1α(g) ∈ Op
Gi

(Si).
Next we show that S ∩Op(G) = ∪(Si ∩Op(Gi)). Note that, since S = ∪Si, we have

S ∩Op(G) = ∪(Si ∩Op(G)).

Since, for each i, Op(Gi) is generated by all elements in Gi of order prime to p, it follows
that for all i we have inclusions

Si ∩Op(Gi) ≤ Si ∩Op(G),
Si ∩Op(Gi) ≤ Si+1 ∩Op(Gi+1).

Let y ∈ Si ∩ Op(G), in particular, y ∈ Op(G), and hence y ∈ Op(G j) for all j ≥ i big
enough. Since Si ≤ S j for j ≥ i, it follows that, for each i, there exists some j such that

Si ∩Op(Gi) ≤ Si ∩Op(G) ≤ S j ∩Op(G j).

Hence, S ∩ Op(G) = ∪(Si ∩ Op(Gi)), and by the hyperfocal subgroup theorem in the
finite case, Lemma 2.2 in [BCG+07],

Op
G(S) = ∪Op(Gi) = ∪(Si ∩Op(Gi) = S ∩Op(G).

�
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Let G be a p-local compact group, with fundamental group

π1(BG) = π1(|L|∧p ).

Assume that a compatible set of inclusions {ιP,Q} has been fixed in L.
Consider the space |L|, and fix S ∈ L as the basepoint of the realization of the

category L. For each morphism ϕ ∈ MorL(P,Q), let J(ϕ) ∈ π1(|L|) be the homotopy
class of the loop ιQ ◦ ϕ ◦ ι−1

P in |L|. Then, this defines a functor

J : L −→ B(π1(|L|)),

where all objects in L are sent to the unique object in B(π1(|L|)), and where all
inclusion morphisms are sent to the identity automorphism. Let j : S→ B(π1(|L|)) be
the composition of J with the distinguished monomorphism δS : S ↪→ AutL(S).

In fact, the same can be considered for the full subcategory L• ⊆ L, whose object
set is Ob(L•) = {P ∈ Ob(L)|P = (P)•}, since the functor ( )• : L → L• is left adjoint to
the inclusion L• ⊆ L, and hence |L| ' |L•| by Corollary 1 in [Qui73]. In particular,
this means that there is a natural isomorphism

π1(|L|) � π1(|L•|).

Furthermore, by 1.3.4, Ob(L•) contains finitely many F -conjugacy classes of objects,
among which are contained allF -centricF -radical subgroups. We will thus in general
work onL• rather than onL. Nevertheless, we keep the above notation for simplicity.

Proposition B.1.3. Let G be a p-local compact group. Then the following hold:

(i) For any group Γ and any functor λ : L• → B(Γ) which sends inclusions to the identity,
there is a unique homomorphism λ̄ : π1(|L•|)→ Γ such that λ = B(λ̄) ◦ J.

(ii) For g ∈ P ∈ L, J(δP(g)) = J(δS(g)). In particular, J(δP(g)) = 1 in π1(|L•|) if and only if
δP(g) is nulhomotopic as a loop based at the vertex P of |L•|.

(iii) If α ∈MorL•(P,Q), and ρ(α)(x) = y, then

j(y) = J(α) · j(x) · J(α)−1.

(iv) If any x and y areF -conjugate elements of S, then j(x) and j(y) are conjugate inπ1(|L•|).

As a consequence, the above properties hold also for the functor λ ◦ ( )•.

Proof. It is clear that any functor λ : L• → B(Γ) induces, after geometric realizations,
a homomorphism λ̄ : π1(|L•|) → Γ. If, in addition, the functor λ sends inclusion
morphisms to the identity morphism inB(Γ), then λ = B(λ̄) ◦ J by definition of J. The
rest of the properties follow from axiom (C) for linking systems.

�

Thus, we want to construct functors from L• to B(Γ) sending inclusions to the
identity automorphism, so that we can obtain some information on the fundamental
group π1(|L•|). The following lemma is the key result to build up such functors
inductively. The properties of the functor ( )• will be implicitely used in all the
proofs (see chapter §4 in [Jun09]).
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Lemma B.1.4. Let G be a p-local compact group, together with a fixed compatible set of
inclusions {ιP,Q}. LetH0 be a subset of objects in L• which is closed under F -conjugacy and
overgroups (in L•). Let also P be an F -conjugacy class of F -centric subgroups maximal
among those not contained in H0, set H = H0 ∪ P, and let LH0 ⊆ LH ⊆ L

• be the full
subcategories with these object sets. Assume, for some Γ, that

λ0 : LH0 −→ B(Γ)

is a functor which sends inclusions to the indetity. Fix P ∈ P which is fully F -normalized,
and fix a homomorphism λP : AutL•(P)→ Γ. Assume also that

(∗) for all P � Q ≤ NS(P) such that Q is fully normalized in NF (P) and for allα ∈ AutL•(P)
and β ∈ AutL(Q) such that α = β|P, λP(α) = λ0(ββ).

Then, there exists a unique extension ofλ0 to a functorλ : LH → B(Γ) which sends inclusions
to the identity, and such that λ(α) = λP(α) for all α ∈ AutL•(P).

Note that, in condition (∗), Q may not be an object in Ob(L•), but, by Proposition
1.3.3, for all β ∈ AutL(Q), β• ∈ AutL•(Q•).

Proof. The uniqueness of the extension is an immediate consequence of Alperin’s
fusion Theorem (1.3.5). We have to prove then the existence of λ. We prove first that
(∗) implies the following statement:

(∗∗) For all Q,Q′ ∈ Ob(L•) which strictly contain P, and for all β ∈ MorL•(Q,Q′) and
α ∈ AutL•(P) such that α = β|P, λP(α) = λ0(β).

In fact, as we next justify, it is enough to consider the case where P ≤ N = (NQ(P))•,N′ =
(NQ′(P))•. Indeed, since ρ(β)(P) = ρ(α)(P) = P, then ρ(β)((NQ(P)) ≤ NQ′(P). Also, by
the properties of ( )•, there are chains of inclusions

P ≤ NQ(P) ≤ N ≤ Q
P ≤ NQ′(P) ≤ N′ ≤ Q′

and ρ(β)(N) ≤ N′, which in turn implies that the morphism β restricts to some β̄ ∈
MorL(N,N′) (since P is F -centric, the so are NQ(P) and NQ′(P)), and since P is strictly
contained in Q and Q′, then P � N,N′, and by the induction hypothesis, λ0(β) = λ0(β̄).

Now, by the Alperin’s fusion Theorem for linking systems, Proposition 4.2.2, β is
a composition of restrictions of automorphisms of subgroups inL• which, as in proof
of Lemma 2.3 in [BCG+07], can be chosen such that P is contained in all of them,

β = βk ◦ βk−1 ◦ . . . ◦ β0,

and hence it follows that

λ0(β) = λ0(βk)λ0(βk−1) . . . λ0(β0) =

= λP((βk)|P)λP((βk−1)|P) . . . λP((β0)|P) = λP(β|P) = λP(α),

where the second equality holds by (∗).
Now we can extend λ0 to a functor defined on all morphisms in LH not in LH0 .

Let ϕ ∈MorL(P1,Q) be such a morphism, and let P2 = ρ(ϕ)(P1). Then, P1,P2 ∈ P, and
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there is a uniqueϕ′ ∈ IsoL(P1,P2) such thatϕ = ιP2,Q◦ϕ
′. Since P is fullyF -normalized

by hypothesis, it follows by Lemma 1.3 in [BCG+07] that there exist isomorphisms
ϕ̃i ∈ IsoL((NS(Pi))•,Ni), i = 1, 2, for certain Ni ≤ (NS(P))•, such that their restrictions to
P1,P2 are isomorphisms ϕi ∈ IsoL(Pi,P). Set then ψ = ϕ2 ◦ ϕ′ ◦ ϕ−1

1 ∈ AutL•(P), and
define

λ(ϕ) = λ(ϕ′) = λ0(ϕ̃−1
2 )λP(ψ)λ0(ϕ̃1).

We have to make sure that the above definition does not depend on the decom-
position ϕ′ = ϕ−1

2 ψϕ1. Let then ϕ′ = (ϕ′2)−1ψ′(ϕ′1) be another decomposition, and
consider the commutative diagram

P
ψ

��

P1
ϕ1oo

ϕ′1 //

ϕ′

��

P
ψ′

��
P P2ϕ2

oo
ϕ′2

// P,

where, for i = 1, 2 the isomorphisms ϕi, respect. ϕ′i , are restrictions of isomorphisms
ϕ̃i, respect. ϕ̃′i , defined on (NS(Pi))•. Then, to show that λ(ϕ′) is well defined, we have
to show that

λP(ψ′) · λ0(ϕ̃′1 ◦ ϕ̃
−1
1 ) = λ0(ϕ̃′2 ◦ ϕ̃

−1
2 ) ◦ λP(ψ),

and this holds since, by (∗∗),

λ0(ϕ̃′i ◦ ϕ̃
−1
i ) = λP(ϕ′i ◦ ϕ

−1
i ).

Furthermore, the functor λ sends, by definition, inclusion morphisms to the in-
dentity, and compositions to products.

�

Proposition B.1.5. Let G be a p-local compact group, and fix a compatible set of inclusions
{ιP,Q} in L. Then, there is a unique functor

λ̂ : L −→ B(S/Op
F

(S))

which sends inclusions to the identity, and such that λ(δS(g)) = g for all g ∈ S.

Proof. We construct a functor λ : L• → B
de f
= B(S/Op

F
(S)) inductively, using Lemma

B.1.4. The functor λ̂ : L → B will be then defined as the composition λ ◦ •, and its
uniqueness follows from the uniqueness of λ.

Thus, let H0 ⊆ Ob(L•) be a subset which is closed under F -conjugacy and over-
groups. Note that this set may be empty. Let also P be an F -conjugacy class of sub-
groups inL• maximal among those not inH0, setH = H0∪P, and letLH0 ⊆ LH ⊆ L

•

be the corresponding full subcategories.
Suppose also that a functor

λ0 : LH0 −→ B

has already been defined, satisfying that

• λ0(δS(g)) = g for all g ∈ S (if S ∈ H0), and



132 Fusion subsystems of p-power index and index prime to p

• λ0 sends inclusions to the identity.

Fix also P ∈ P such that it is fully F -normalized, and let δP : NS(P)→ AutL•(P) the
monomorphism of Lemma A.2.3. Then, by Proposition A.2.4, Im(δP) ∈ Sylp(AutL•(P).
To simplify the notation, we will refer to Im(δP) as NS(P). Then,

AutL•(P)/Op(AutL•(P)) � NS(P)/(NS(P) ∩Op(AutL•(P))) = NS(P)/N0,

where, by Lemma B.1.2, N0 is the subgroup generated by all commutators [g, x] for
g ∈ Q ≤ NS(P) and x ∈ NAutL• (P)(Q), together with the maximal torus of P (since P
being F -centric implies that rk(P) = rk(NS(P))).

Thus, conjugation by x lies in the automorphism group AutF (Q) by 1.13 (d) in
[BCG+07] (since we are not using quasicentric linking systems, we may apply this
result), and hence [g, x] = gcx(g)−1

∈ Op
F

(S), N0 ≤ Op
F

(S), and the inclusion NS(P) ≤ S
extends to a homomorphism

λP : AutL•(P) −→ S/Op
F

(S).

Next, we check that λ0 and λP satisfy condition (∗) in Lemma B.1.4. Let N =
(NS(P))•, and let P � Q ≤ N be fully F -normalized in NF (P), Q ∈ L•, and let
α ∈ AutL•(P), β ∈ AutL•(Q) be such that α = β|P. We have to see that λP(α) = λ0(β).

First note that, after taking the k-th power of both α and β, for some suitable k ≡ 1
(mod p), we can suppose that both automorphisms have order a (finite) power of p.
Then, since Q is fully F -normalized, it follows that

AutNS(P)(Q) ∈ Sylp(AutNF (P)(Q),

and thus, there is an automorphism γ̃ ∈ Op(AutNL(P)(Q)) such that γ̃βγ̃−1 = δQ(g) for
some g ∈ NS(Q) ∩NS(P). Note that, in particular, λ0 sends γ̃ to the identity since it is
a composite of automorphisms of infinitely p-divisible order. If we now set γ = γ̃|P, it
follows that γ ∈ Op(AutL(P)) and hence λP(γ) = 1, and by axiom (C),

λ0(β) = λ0(δQ(g)) = g = λP(δP(g)) = λ(α).

This implies that we can now apply Lemma B.1.4 to extend λ0 to a functor defined on
LH .

�

Theorem B.1.6. (The Hyperfocal subgroup theorem for p-local compact groups). Let G be a
p-local compact group. Then

π1(BG) � S/Op
F

(S).

More precisely, the natural map τ : S→ π1(BG) is surjective with kernel Ker(τ) = Op
F

(S).

Proof. Let λ̂ : L → B(S/Op
F

(S)) be the functor of Proposition B.1.5, and let |λ| be
the induced map between geometric realizations. Since S/Op

F
(S) is a finite p-group,

|B(S/Op
F

(S))| is p-complete, and |λ| factors through the p-completion BG = |L|∧p . Con-
sider the following commutative diagram:

S
j //

τ
''NNNNNNNNNNNNNN π1(|L|)

( )∧p
��

π1(|λ|)

((QQQQQQQQQQQQQ

π1(BG)
π1(|λ|∧p )

// S/Op
F

(S).
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The morphism τ is surjective by Proposition 1.4.4. Also, by construction, the com-
posite π1(|λ|∧p ) ◦ τ = π1(|λ|) ◦ j is the natural projection. Hence Ker(τ) ≤ Op

F
(S). The

converse inclusion holds by the same arguments as those used to prove the hyperfocal
subgroup theorem for p-local finite groups (Theorem 2.5 in [BCG+07]).

�

The next result is again a generalization to p-local compact groups of a result on
p-local finite groups. In this case, it corresponds to Proposition 2.6 in [BCG+07], and
needs no prove.

Proposition B.1.7. Let G be a p-local compact group. Then, the induced map

π1(|L|) −→ π1(|F c
|)

is surjective, and its kernel is generated by elements of p-power order.

B.2 Finding saturated fusion subsystems

Let F be a saturated fusion system over a discrete p-toral group S. In this section we
study two specific situations in which we can obtain a saturated fusion subsystem F ′

over a subgroup S′ ≤ S from F . One of this situations can be in fact extended to a
result on p-local compact groups, while the same cannot (yet) be done for the second
one since quasicentric linking systems are involved in the proofs in [BCG+07].

As usual, for an artinian locally finite group G, Op(G) is the subgroup generated
by all infinitely p-divisible elements in G, and Op′(G) is the subgroup generated by all
elements of p-power order.

Definition B.2.1. Let F be a saturated fusion system over a discrete p-toral group S, and let
(S′,F ′) ⊆ (S,F ) be a saturated fusion subsystem, that is, S′ ≤ S is a subgroup, and F ′ is a
subcategory of F which is saturated as a fusion system over the subgroup S′.

(i) We say that (S′,F ′) is of p-power index in (S,F ) if

S′ ≥ Op
F

(S) and AutF ′(P) ≥ Op(AutF (P))

for all P ≤ S′.

(ii) We say that (S′,F ′) is of index prime to p in (S,F ) if

S′ = S and AutF ′(P) ≥ Op′(AutF (P))

for all P ≤ S.

We will also use the following notation.

Definition B.2.2. Fix a discrete p-toral group S. A restrictive category over S is a category
F such that Ob(F ) is the set of all subgroups of S, such that all morphisms in F are group
monomorphisms between the subgroups, and with the following additional properties:

(i) for each P′ ≤ P ≤ S and Q′ ≤ Q ≤ S, and for each f ∈ HomF (P,Q) such that f (P′) ≤ Q′,
f|P′ ∈ HomF (P′,Q′),
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(ii) for each P ≤ S, AutF (P) is artinian and locally finite, and

(iii) for each pair P,Q ≤ S of finite subgroups, the set HomF (P,Q) is finite.

A restrictive category F over S is normalized by an automorphism γ ∈ AutF (S) if for
each P,Q ≤ S, and each f ∈ HomF (P,Q),

γ fγ−1
∈ HomF (γ(P), γ(Q)).

For any restrictive category F over S and any (artinian locally finite) subgroup A ≤
Aut(S), 〈F ,A〉 is the smallest restrictive category over S which contains F together with all
automorphisms in A and their restrictions.

Definition B.2.3. Let F be any fusion system over a discrete p-toral group S.

(i) Op
∗ (F ) ⊆ F denotes the smallest restrictive subcategory of F whose morphism set

contains Op(AutF (P)) for all P ≤ S.

(ii) Op′
∗ (F ) ⊆ F denotes the smallest restrictive subcategory of F whose morphism set

contains Op′(AutF (P)) for all P ≤ S.

The subcategory Op
∗ (F ) is not in general a fusion system, and this is the reason to

use restrictive categories. The subcategory Op′
∗ (F ) is always a fusion system (since

AutS(P) ≤ Op′(AutF (P)) for all P ≤ S), but in general fails to be saturated.

Lemma B.2.4. The following holds for any fusion system F over a discrete p-toral group S:

(i) Op
∗ (F ) and Op′

∗ (F ) are normalized by AutF (S).

(ii) If F is saturated, then F = 〈Op
∗ (F ),AutF (S)〉 = 〈Op′

∗ (F ),AutF (S)〉.

(iii) If F ′ ⊆ F is any restrictive subcategory normalized by AutF (S) and such that F =
〈F
′,AutF (S)〉, then for each P,Q ≤ S and f ∈ HomF (P,Q), there is an automorphism

γ ∈ AutF (S), and morphisms f ′ ∈ HomF ′(γ(P),Q) and f ′′ ∈ HomF ′(P, γ−1(Q)) such
that f = f ′ ◦ γ|P = γ ◦ f ′′.

Proof. The same proof as for Lemma 3.4 in [BCG+07] applies here, since all the proper-
ties needed there have an analogous for saturated fusion systems over discrete p-toral
groups.

�

Lemma B.2.5. Let F be a saturated fusion system over a discrete p-toral group S. Fix
a normal subgroup S0 C S which is strongly F -closed. Let (S0,F0) be a saturated fusion
subsystem of (S,F ). Then, for any P ≤ S which is F -centric F -radical, P ∩ S0 is F0-centric.

Proof. Let P ≤ S be a F -central F -radical subgroup, and let P0 = P ∩ S0. Choose
then P′0 ∈ 〈P0〉F such that it is fully F -normalized. It follows then that P′0 is fully
F -centralized, and there is some f ∈ HomF (NS(P0),NS(P′0)) such that f (P0) = P′0.
Furthermore, since S0 is strongly F -closed, P ≤ NS(P0). Let then P′ = f (P), and note
that P′0 = P′ ∩ S0.
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For any other P′′0 ∈ 〈P0〉F0 , there is some γ ∈ HomF (P′′0 ·CS(P′′0 ),P′0 ·CS(P′0)) such that
γ(P′′0 ) = P′0 by axiom (II), and thus γ(CS0(P′′0 )) ≤ CS0(P′0). So, if CS0(P′0) = Z(P′0), then
CS0(P′′0 ) = Z(P′′0 ) for all P′′0 ∈ 〈P

′

0〉F0 , and P0 is F0-centric.
Without loss of generality, we can assume that P′ = P and P′0 = P0. Since S0

is strongly F -closed, it follows that, for every α ∈ AutF (P), α(P0) = P0. Let then
A0
≤ AutF (P) be the subgroup of elements which restricts to the identity on P0 and

on P/P0. This turns out to be a normal discrete p-toral subgroup of AutF (P) since, by
the exact sequence (2.8.7 in [Suz82])

0→ H1(P/P0; Z(P0)) −→ AutF (P)/AutP0(P)
ΦP
−→ AutF (P0) × Aut(P/P0),

there is an isomorphism A0/AutP0(P) � H1(P/P0; Z(P0)). Thus, A0 is a subgroup of
Op(AutF (P)), and since P is F -radical it follows that A0

≤ Inn(P).
Let now x ∈ CS0(P0), and assume that the coset x · Z(P0) ∈ CS0(P0)/Z(P0) is fixed

by the conjugation action of P. Hence, x ∈ S0, [x,P0] = 1 and [x,P] ≤ Z(P0), which
implies that cx ∈ A0 and xg ∈ CS(P) for some g ∈ P. Since P is F -centric, this means
that xg ∈ P, and thus that x ∈ CS0(P0) ∩ P = Z(P0). That is, [CS0(P0)/Z(P0)]P = 1, so
CS0(P0)/Z(P0) = 1, and P0 is F0-centric.

�

Let G be a p-local compact group and let Γ be a group. We may think of a functor
L → B(Γ) which sends inclusions to the identity as a function Θ̄ : Mor(L)→ Γ which
sends composites to products and inclusions to the identity. Given such a function
and a subgroup H ≤ Γ, we may consider then LH ⊆ L, the subcategory of Lwith the
same object set and with Mor(LH) = Θ̄−1(H). This in turn induces a fusion subsystem
FH ≤ F via the projection functor ρ : L → F .

Now, assume there is no associated linking system to the fusion system F . We
want to reproduce somehow the previous constructions in this new setting.

Let Sub(Γ) denote the set of nonempty subsets of Γ. Given a function Θ̄ as
above, there is an obvious associated function Θ : Mor(F c) → Sub(Γ), which sends
a morphism f ∈ Mor(F c) to Θ̄(ρ−1( f )). Furthermore, the function Θ̄ also induces a
homomorphism θ = Θ̄ ◦ δS from S to Γ.

Definition B.2.6. Let F be a saturated fusion system over a discrete p-toral group S, and let
F0 ⊆ F be any full subcategory such that Ob(F0) is closed under F -conjugacy. A fusion
mapping triple for F0 consists of a triple (Γ, θ,Θ), where Γ is a group, θ : S → Γ is a
homomorphism, and

Θ : Mor(F0) −→ Sub(Γ)

is a map which satisfies the following conditions for all subgroups P,Q,R ≤ S which lie in F0:

(i) For all P
f
→ Q

f ′
→ R in F0 and all x ∈ Θ( f ′), Θ( f ′ ◦ f ) = x ·Θ( f ).

(ii) If P is fully F -centralized, then Θ(IdP) = θ(CS(P)).

(iii) If f = cg ∈ HomF (P,Q), where g ∈ NS(P,Q), then θ(g) ∈ Θ( f ).

(iv) For all f ∈ HomF (P,Q), all x ∈ Θ( f ) and all g ∈ P, xθ(g)x−1 = θ( f (g)).

(v) If P � (P)•, then for all f ∈ AutF (P), Θ( f ) = Θ( f •).
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For any fusion mapping triple (Γ, θ,Θ) and any H ≤ Γ, we let F ∗H ⊆ F the smallest
restrictive subcategory which contains all f ∈ Mor(F c) such that Θ( f ) ∩ H , ∅. Let
also FH ⊆ F

∗

H be the full subcategory whose objects are the subgroups of θ−1(H).
The following lemma states further properties of fusion mapping triples.

Lemma B.2.7. Fix a saturated fusion system F over a discrete p-toral group S, let F0 be a
full subcategory such that Ob(F0) is closed under F -conjugacy, and let (Γ, θ,Θ) be a fusion
mapping triple for F0. Then the following hold for all P,Q,R ∈ Ob(F0):

(vi) Θ(IdP) is a subgroup of Γ, and Θ restricts to a homomorphism

ΘP : AutF (P) −→ NΓ(Θ(IdP))/Θ(IdP).

Thus ΘP( f ) = Θ( f ) (as a coset of Θ(IdP)) for all f ∈ AutF (P).

(vii) For all P
f
→ Q

f ′
→ R in F0 and all x ∈ Θ( f ), Θ( f ′ ◦ f ) ⊇ Θ( f ′) · x, with equality if

f (P) = Q. In particular, if P ≤ Q then Θ( f ′
|P) ⊇ Θ( f ′).

(viii) Assume S ∈ Ob(F0). Then for any f ∈ HomF (P,Q), any γ ∈ AutF (S) and any
x ∈ Θ(γ), Θ(γ fγ−1) = xΘ( f )x−1, where

γ ◦ f ◦ γ−1inHomF (γ(P), γ(Q)).

Proof. (vi) By (i), for any α, β ∈ AutF (P) and any x ∈ Θ(α), there is an equality
Θ(αβ) = x ·Θ(β). When applied with α = β = IdP, this implies that indeed Θ(IdP) ≤ Γ
(and note that Θ(IdP) is not the empty set by definition ofSub(Γ)). When applied with
β = α−1, then x−1

∈ Θ(α−1) if x ∈ Θ(α).
Thus, Θ(α) = x ·Θ(IdP) implies that

Θ(α−1) = Θ(IdP)x−1 and Θ(α−1) = x−1Θ(IdP),

which in turn implies that Θ(α) is both a left and right coset. Thus Θ(α) ⊆ NΓ(Θ(IdP))
for all α ∈ AutF (P), and the induced map ΘP is then a homomorphism.

(vii) By (i), Θ(αβ) ⊇ Θ(α) · Θ(β) for any pair of composable arrows in F0, and in
particular

Θ(αβ) ⊇ Θ(α) · x

if x ∈ Θ(β). If β is an isomorphism, then 1 ∈ Θ(IdP) = x · Θ(β−1) by (vi) and (i), and
hence x−1

∈ Θ(β−1). This yields inclusions

Θ(α) = Θ(αββ−1) ⊇ Θ(αβ)x−1
⊇ Θ(α)xx−1,

and hence they are all equalities. The last part of (vii) is the special case where P ≤ Q
and β = inclP,Q (1 ∈ Θ(inclP,Q) by point (iii)).

(viii) For x ∈ Θ(α), Θ(αβ) = x ·Θ(β) = Θ(αβα−1) · x by (i) and (vii).
�

Recall that, given a group Γ, where a functor L → B(Γ) induces a functor L• →
B(Γ) and viceversa. We now prove a similar statement regarding fusion systems
and fusion mapping triples. This will again allow us to reduce problems involving
infinitely many F -conjugacy classes to finitely many.
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Lemma B.2.8. Let F be a saturated fusion system over a discrete p-toral group S, let F0 ⊆ F

be a full subcategory, closed under F -conjugacy, and let F •0 be the full subcategory of F0 with
object set {P ∈ Ob(F0)|P = (P)•}. Let also (Γ, θ,Θ) be a fusion mapping triple for F0. Then,
(Γ, θ,Θ•) is fusion mapping triple for F •0 , where Θ• = Θ ◦ incl.

Reciprocally, let F •0 ⊆ F be a full subcategory which is closed under F -conjugacy and
such that each P ∈ F •0 satiesfies P = (P)•, and let F0 be the greatest subcategory of F such
that for all P ∈ F0, (P)• ∈ F •0 and such that

{ f •| f ∈Mor(F0)} = Mor(F •0 ).

Let also (Γ, θ,Θ) be a fusion mapping triple for F •0 . Then, (Γ, θ,Θ◦) is a fusion mapping
triple for F0, where Θ◦ = Θ ◦ ( )•.

Proof. In each case, we have to check that the new maps, Θ• and Θ◦ respectively,
satisfy the conditions in definition B.2.6, but this is immediate by condition (v) in this
definition.

�

For reasons that will be made clear in later sections, we need to work with F -
quasicentric subgroups. For a (saturated) fusion system F over a discrete p-toral
group S, let F q

⊆ F be the full subcategory of F with object set all the F -quasicentric
subgroups.

Lemma B.2.9. Let F be a saturated fusion system over a discrete p-toral group S, and let
P ≤ S be an F -quasicentric subgroup. Then, P• is also F -quasicentric.

Proof. It is a consequence of Proposition 1.3.3, together with the fact that, since P ≤ P•,
then CS(P) ≥ CS(P•).

�

The following result is the induction step that we need in order to construct fusion
mapping triples for fusion subsystems. It can be thought of as an equivalent of
Lemma B.1.4 for fusion systems.

Lemma B.2.10. Fix a saturated fusion system F over a discrete p-toral group S. LetH0 be
a set of F -quasicentric subgroups of S which is closed under F -conjugacy and overgroups,
and such that for all P ∈ H0, P = (P)•. Let P be an F -conjugacy class of F -quasicentric
subgroups maximal among those not in H0, and such that for all P ∈ P, P = (P)•, and set
H = H0 ∪ P. Let also FH0 ⊆ FH ⊆ F

q be the full subcategories with these object sets. Fix a
group Γ and a homomorphism θ : S→ Γ, and let

Θ : Mor(FH0) −→ Sub(Γ)

be such that (Γ, θ,Θ) is a fusion mapping triple for FH0 . Let P ∈ P be fully normalized in F ,
and fix a homomorphism

ΘP : AutF (P) −→ NΓ(θ(CS(P)))/θ(CS(P))

such that the following conditions hold:

(a) xθ(g)x−1 = θ( f (g)) for all g ∈ P, f ∈ AutF (P) and x ∈ ΘP( f ).
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(b) For all P � Q ≤ S such that P C Q and Q is fully normalized in NF (P), and for all
f ∈ AutF (P) and f ′ ∈ AutF (Q) such that f = f ′

|P, ΘP( f ) ⊇ Θ(( f ′)•).

Then, there is a unique extension of Θ to a fusion mapping triple (Γ, θ, Θ̃) on FH such that
Θ̃( f ) = ΘP( f ) for all f ∈ AutF (P).

Proof. Note that the above conditions (a) and (b) are necessary if such an extension of
Θ is to be constructed, since they correspond to points (vi) and (vii) in Lemma B.2.7.
Now, the uniqueness of the extension follows from Alperin’s fusion theorem, 1.3.5,
and the proof for the existence is identical to the proof of Lemma B.1.4.

�

We now present a criterion to detect saturated fusion subsystems when a fusion
mapping triple is provided.

Proposition B.2.11. Let F be a saturated fusion system over a discrete p-toral group S, and
let (Γ, θ,Θ) be any fusion mapping triple on F q, where Γ is either a p-group or a p′-group.

Then, the following hold for any subgroup H ≤ Γ, where we set SH = θ−1(H):

(i) FH is a saturated fusion system.

(ii) If γ is a p-group, then a subgroup P ≤ SH is FH-quasicentric if and only if it is
F -quasicentric. Also, F ∗H ⊇ Op

∗ (F ).

(iii) If Γ is a p′-group, then SH = S. A subgroup P ≤ S is FH-quasicentric (fully FH-
centralized, fully FH-normalized) if and only if it is F -centric (fully F -centralized,
fully F -normalized). Also, F ∗H ⊇ Op′

∗ (F ).

Proof. Points (ii) and (iii) correspond to points (b) and (c) in Proposition 3.8 in
[BCG+07], and hold by the same arguments.

About the saturation of FH, axioms (I) and (II) hold by the same arguments used
to prove point (a) in 3.8 [BCG+07]. Thus, we only have to prove that axiom (III) also
holds for FH. Let P1 ≤ P2 ≤ . . . be an ascending family of subgroups of SH, P = ∪Pn,
and let f ∈ Hom(P,SH) be such that fn = f|Pn ∈ HomFH (Pn,SH) for all n. We have to
show that f ∈ HomFH (P,SH).

Since F is saturated, it follows that f ∈ HomF (P,SH). Using point (vi) in Lemma
B.2.7 above, we see that, for all n, Θ( fn+1) ⊆ Θ( fn). Now, since Γ is finite by assumption,
and since by hypothesis fn is a morphism in FH for all n, it follows that there exists
some M such that, for all n ≥M,

Θ( fn) ∩H = Θ( fn+1) ∩H , ∅.

By point (v) in definition of fusion mapping triples, it implies that Θ( f ) , ∅, and hence
that

Θ( f ) ∩H , ∅.

�

Proposition B.2.11 can be extended to a result on p-local compact groups when
we restrict to p′-groups Γ, since in the analogous situation for p-local finite groups,
quasicentric linking systems are not involved and hence we can reproduce the proofs
given there.
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For a p-local compact group G, recall the homomorphism j : S → π1(|L|) in-
duced by the distinguished monomorphism δS : S → AutL(S), and the functor
J : L → B(π1(|L|)) which sends morphisms to (homotopy classes of) loops. Let θ̂
be a homomorphism from π1(|L|) to a p′-group Γ, and set

θ = θ̂ ◦ j ∈ Hom(S,Γ) and Θ̂ = B(θ̂) ◦ J : L → B(Γ).

Since J depends on a choice of a compatible set of inclusions {ιP,Q}, so do these
definitions above. For any H ≤ Γ, letLH ⊆ L be the subcategory with the same object
set and morphism set Θ̂−1(H). Let also FH be the fusion subsystem over SH generated
by ρ(LH) ⊆ F c.

Theorem B.2.12. Let G be a p-local compact group, together with a fixed compatible set of
inclusions {ιP,Q} in L. Fix a p′-group Γ and a surjective homomorphism θ̂ : π1(|L|) � Γ.
Then, for each H ≤ Γ, GH = (SH,FH,LH) is a p-local compact group whose classifying space
is homotopy equivalent to the covering space of |L| with fundamental group θ̂−1(H).

Proof. Define Θ : Mor(F •c)→ Sub by setting Θ(α) = Θ̂(ρ−1(α)), where Θ̂ = B(θ̂) ◦ J as
above. Then, θ and Θ satisfy conditions (i)-(v) in B.2.6: (i) and (ii) follow from axiom
(A) for linking systems, (iii) follows from Proposition 1.13 [BCG+07], (vi) follows
from axiom (C) for linking systems, and (v) follows from the properties of the functor
( )• (in particular, because given ϕ ∈ Mor(L) and f = ρ(ϕ), there is an equality
f • = (ρ(ϕ))• = ρ(ϕ•)). Hence, (Γ, θ,Θ) is a fusion mapping triple onF •c, which in turn
induces a fusion mapping triple (Γ, θ,Θ◦) onF c by Lemma B.2.8. Also, by Proposition
B.2.11, for all H ≤ Γ, FH is a saturated fusion subsystem of F over SH.

Let Op′
∗ (F ) be the category defined in B.2.3, and let Op′

∗ (F )c be the full subcategory
whose objects are the F -centric subgroups of S, and let L∗H = Θ̂−1(1). By (iii) B.2.11,
ρ(L∗H) contains Op′

∗ (F )c, and hence by (ii) B.2.4, all morphisms in L are compositions
of morphisms in L∗H and restrictions in AutL(S). Thus, by definition of L∗H, and since
Θ̂(α) = Θ̂(β) whenever α is a restriction of β, it follows that Θ̂ restricts to a surjection
of AutL(S) onto Γ. In particular,

(1) for all P ∈ Ob(L) and all g ∈ Γ, there exists some P′ ≤ S and α ∈ IsoL(P,P′) such
that Θ̂(α) = g,

where α can be chosen to be the restriction of an automorphism of S.
We now prove that LH is a (centric) linking system associated to FH. Since Γ is

a p′-group, it follows by (iii) B.2.11 that SH = S for all H ≤ Γ. Let then P ≤ S be
a F -centric subgroup, and let g ∈ P. Then, by construction, Θ̂(δS(g)) = θ(g) and
Θ̂(ιP) = 1, which in particular implies that the inclusion morphisms are in LH.

Also, since ιP ◦ δP(g) = δS(g) ◦ ιP, it follows that Θ̂(δP(g)) = θ(g), and in particular
δP(g) ∈ AutLH (P) if and only if g ∈ S. From this we see then that the distinguished
monomorphism δP restricts to a distinguished monomorphism

P −→ AutLH (P).

It also implies that the axioms (A), (B) and (C) for LH hold because they already hold
on L. Thus, (S,FH,LH) is a p-local compact group.
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Finally, we prove that |LH| is indeed homotopy equivalent to a certain covering
space of |L|. Note that Mor(LH) = Mor(L) ∩ Θ̂−1(H). Let EΓ(γ/H) the category with
object set Γ/H, and with a morphism g from the coset aH to the coset gaH for each
g ∈ Γ and each aH ∈ Γ/H. Thus,

AutEΓ
(1 ·H) � H and |EΓ(Γ/H)1 = EG/H ' BH.

Let then L̃ be the pullback category in the following square:

L̃
//

��

EΓ(Γ/H)

��
L // B(Γ).

Thus, Ob(L̃) = Ob(L) × Γ/H and Mor(L̃) is the set of pairs of morphisms in L and
EΓ(Γ/H) which are sent to the same morphism in B(Γ). The linking system LH can
then be identified with the full subcategory of L̃whose objects are the pairs (P, 1 ·H),
for P ∈ Ob(L). It follows by (1) that this inclusion LH ↪→ L̃ is an isomorphism of
categories, and thus |LH| ' |L̃|. On the other hand, by construction, |L̃| is the covering
space of |L|with fundamental group θ−1(H).

�

B.3 Fusion subsystems of p-power index

In this section, we classify all saturated fusion subsystems of (finite) p-power index in
a given saturated fusion system F , and in particular show the existence of a unique
minimal subsystem Op(F ) of this type. This will be done by applying the results from
the previous section. Since quasicentric linking systems are deeply involved in the
analogous situation for p-local finite groups, we will not be able to extend the results
from section §4 in [BCG+07] to p-local compact groups.

Let F be a saturated fusion system over a discrete p-toral group S, let Op
F

(S) be
its hyperfocal subgroup, and define Γp(F ) = S/Op

F
(S), which is a finite p-group since

T ≤ Op
F

(S). We will show that there is a bijective correspondence between subgroups
of Γp(F ) and saturated fusion subsystems of p-power index in F .

We start by constructing a fusion mapping triple for F q, so that we can apply
Proposition B.2.11.

Lemma B.3.1. Let F be a saturated fusion system over a discrete p-toral group S, and let

θ : S −→ Γp(F )

be the natural projection. Then there is a fusion mapping triple (Γp(F ), θ,Θ) on F q.

Proof. For simplicity, set Γ = Γp(F ). We will construct a fusion mapping triple (Γ, θ,Θ)
for F •q and then extend it to a fusion mapping triple for F q by Lemma B.2.8. The
map Θ will be constructed inductively using Lemma B.2.10.

LetH0 ⊆ Ob(F •q) be a (possibly empty) subset which is closed underF -conjugacy
and overgroups. Let also P be an F -conjugacy class in Ob(F •q) maximal among
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those not in H0, set H = H0 ∪ P, and let FH0 ⊆ FH ⊆ F
•q be the corresponding full

subcategories. Assume also that a fusion mapping triple (Γ, θ,Θ0) has been already
constructed for FH0 .

Recall also that, for an artinian locally finite group G which has Sylow p-subgroups,

Op
G(S) = 〈{[g, x]|g ∈ P ≤ S, x ∈ NG(P) of order prime to p},T〉,

where T is the maximal p-discrete torus of S. By Lemma B.1.2, Op
G(S) = S∩Op(G), and

thus
G/Op(G) � S/Op

G(S).

Fix P ∈ P such that it is fully F -normalized, and let N0 be the subgroup generated
by commutators [g, x] for g ∈ NS(P) and x ∈ NAutF (P)(NS(P)) of order prime to p,
together with the maximal torus of NS(P). In this situation, AutS(P) ∈ Sylp(AutF (P))
because P is fully F -normalized, and AutN0(P) = Op

AutF (P)(AutS(P)), and by Lemma
B.1.2,

AutF (P)/Op(AutF (P)) � AutS(P)/AutN0(P) � NS(P)/〈N0,CS(P)〉.

Also, N0 ≤ Op
F

(S), and so the inclusion of NS(P) in S induces a homomorphism

ΘP : AutF (P)� NS(P)/〈N0,CS(P)〉 → NS(CS(P) · S0)/CS(P) · S0,

where S0 = Op
F

(S) for short. Point (i) in Lemma B.2.10 holds by construction of ΘP.
Thus, we have to prove that point (ii) in B.2.10 also holds. Let then P � Q ≤

NS(P) be a subgroup which is fully normalized in NF (P), and let α ∈ AutF (P) and
β ∈ AutF (Q) be such that α = β|P. We have to check that ΘP(α) ⊇ Θ0(β•).

Taking the k-th power of both α and β (β•) for some appropriate k congruent with
1 modulo p, we can assume that both morphisms have order a power of p. Now,
since Q is fully normalized in NF (P) (and this is a saturated fusion system), it follows
that AutNS(P)(Q) ∈ Sylp(AutNF (P)(Q)), and thus there are automorphisms f ∈ AutF (Q),
f ′ = f|P ∈ AutF (P) such that fβ f −1 = (cg)|Q for some g ∈ NS(Q) ∩ NS(P). Thus,
( f ′)α( f ′)−1 = (cg)|P. Furthermore, by the properties of the functor ( )•, f • ∈ AutF (Q•),
and f •β•( f •)−1 = (cg)|Q• . It follows then that

Θ0(β•) = Θ((cg)|Q•) = g · θ(CS(Q•)) ⊆ g · θ(CS(P)) = ΘP((cg)|P) = ΘP(α).

Thus, using Lemma B.2.10, we can extend Θ0 to a fusion mapping triple defined
onFH . SinceF •q contains finitely manyF -conjugacy classes, we obtain then a fusion
mapping triple for F •q, and a fusion mapping triple for F q.

�

We can now classify all fusion subsystems of p-power index.

Theorem B.3.2. LetF be a saturated fusion system over a discrete p-toral group S, let Op
F

(S)
be the hyperfocal subgroup of F , and let Γp(F ) = S/Op

F
(S). Then, for each R ≤ S containing

Op
F

(S) there is a unique saturated fusion subsystem FR ⊆ F over R with p-power index in
F . Furthermore, FR satisfies:

(i) a subgroup P ≤ R is FR-quasicentric if and only if it is F -quasicentric, and
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(ii) for each pair P,Q ≤ R of FR-quasicentric subgroups,

HomFR(P,Q) = { f ∈ HomF (P,Q)|Θ( f ) ∩ (R/Op
F

(S)) , ∅}.

Here, Θ is the map in the fusion mapping triple constructed in Lemma B.3.1.

Proof. Let FR ⊆ F be the fusion system over R defined on F -quasicentric subgroups
by the formula given in (i), and then extended to arbitrary subgroups by taking com-
positions of restrictions of these morphisms. Note that this fusion system corresponds
to the fusion system FR/Op

F
(S) from Proposition B.2.11, but we adopt this notation for

the sake of simplicity.
By Proposition B.2.11 (i) and (ii),FR is a saturated fusion system over R, a subgroup

P ≤ R isFR-quasicentric if and only if P isF -quasicentric, and AutFR(P) ≥ Op(AutF (P))
for all P ≤ R.

Let now F ′R ⊆ F another saturated fusion subsystem over R which has p-power
index. We have to prove that F ′R = FR. By hypothesis, for all P ≤ R, both automor-
phism groups AutFR(P) and AutF ′R(P) contain Op(AutF (P)), and hence each of them
is generated by Op(AutF (P) together with a Sylow p-subgroup. Thus if P is fully
F -normalized in both FR and F ′R, then

AutFR(P) = 〈Op(AutF (P)),AutR(P)〉 = AutF ′R(P).

Let TR ≤ R be its maximal torus. Since TR has finite index in R, it is easy to
see (inductively) that, for all TR ≤ P ≤ R, AutFR(P) = AutF ′R(P). We can now define
functors ( )•i , i = 1, 2 on FR and F ′R respectively, and, since AutFR(TR) = AutF ′R(TR),
satisfy

H
1 de f

= {(P)•1|P ≤ R} = {(P)•2|P ≤ R}
de f
= H2.

Furthermore, the first set contains all FR-centrc FR-radical subgroups and finitely
many FR-conjugacy classes, and the same happens to the second set with respect to
F
′

R. It is not difficult to see, inductively on the order of the subgroups in the above sets,
and using Alperin’s fusion theorem, that for each P ∈ H1,H2, P is fullyFR-normalized
if and only if it is F ′R-normalized, and that

AutFR(P) = AutF ′R(P).

Hence, FR = F ′R, and hence the uniqueness of FR holds.
�

We can now define Op(F ) as the minimal saturated fusion subsystem of F of
p-power index, which is a saturated fusion (sub)system over the hyperfocal subgroup
Op
F

(S).

B.4 Fusion subsystems of index prime to p

In this section, we classify all saturated fusion subsystems of (finite) index prime to
p in a given saturated fusion system F , and in particular show that there exists a
unique minimal subsystem Op′(F ) of this type. We will apply the results from the
section §B.2.
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Let G be a (possibly infinite) group, and let Op′(G) be the intersection of all normal
subgroups in G of finite index prime to p. Given an epimorphism f : G � H such
that Ker( f ) ≤ Op′(G), it follows that f induces an isomorphism G/Op′(G) � H/Op′(H).
Thus, given a p-local compact group G, Proposition B.1.7 says that the projection
ρ : L → F c induces an isomorphism

π1(|L|)/Op′(π1(|L|)) � π1(|F c
|)/Op′(π1(|F c

|)).

Fix a saturated fusion system F over a discrete p-toral group S, and define

Γp′(F ) = π1(|F c
|)/Op′(π1(|F c

|)).

We will show that the natural functor

εF c : F c
−→ B(Γp′(F )),

induces a bijective correspondence between subgroups of Γp′(F ) and fusion subsys-
tems of F of index prime to p.

Recall (definition B.2.3) the subcategory Op′
∗ (F ) ⊆ F , the smallest fusion subsystem

which contains Op′(AutF (P)) for all P ≤ S. Define

Out0
F

(S) = 〈[ f ] ∈ OutF (S)| f|P ∈MorOp′
∗ (F )(P,S), some F -centricP ≤ S〉.

Then Out0
F

(S) COutF (S), since Op′
∗ (F ) is normalized by AutF (S) by Lemma B.2.4 (i).

Proposition B.4.1. There is a unique functor

θ̂ : F c
−→ B(OutF (S)/Out0

F
(S))

with the following properties:

(i) θ̂( f ) = [ f ] for all f ∈ AutF (S).

(ii) θ̂( f ) = [1] if f ∈ Mor(Op′
∗ (F )c). In particular, θ̂ sends inclusion morphisms to the

identity.

Furthermore, there is an isomorphism

θ̄ : Γp′(F ) �
−→ OutF (S)/Out0

F
(S)

such that θ̂ = B(θ̄) ◦ εF c .

Proof. By Lemma B.2.4 (iii), each morphism f ∈ HomF c(P,Q) factors as a composite of
the restriction of some α ∈ AutF (S) followed by a morphism f ′ ∈ HomOp′

∗ (F )c(α(P),Q),
f = f ′ ◦ α|P. Thus, if we have two such decompositions

f = f ′1 ◦ (α1)|P = f ′2 ◦ (α2)|P,

then (after factoring out inclusions), we have

(α2 ◦ α
−1
1 )|P = ( f ′2)−1

◦ f ′1 ∈ IsoOp′
∗ (F )c(α1(P), α2(P)).
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This implies then that α2 ◦ α−1
1 ∈ Out0

F
(S), and hence we can define

θ̂( f ) = [α1] = [α2] ∈ OutF (S)/Out0
F

(S).

This prove that θ̂ is well defined on morphisms, and sends all objects in F c to
the unique object of B(OutF (S)/Out0

F
(S)). By Lemma B.2.4 (iii) again, this functor

preserves compositions, and thus is a well defined functor. Furthermore, it satisfies
conditions (i) and (ii) above by construction. The uniqueness of θ̂ is clear.

It remains then to prove the isomorphism at the end of the statement. Since
OutF (S)/Out0

F
(S) is a finite p′-group, π1(|θ̂|) factors through a homomorphism

θ̄ : π1(|F c
|)/Op′(π1(|F c

|)) −→ OutF (S)/Out0
F

(S),

and the inclusion of BAutF (S) into |F c
| (as a subcomplex with one vertes S) induces

then a homomorphism

τ : OutF (S) −→ π1(|F c
|)/Op′(π1(|F c

|)).

Furthermore, τ is an epimorphism since F = 〈Op′
∗ (F ),AutF (S)〉 (by Lemma B.2.4 (ii)),

and because any automorphism in Op′
∗ (F ) is a composite of restrictions of automor-

phisms of p-power order.
By (i), and since θ restricted to AutF (S) is the projection onto OutF (S), the com-

posite θ̄ ◦ τ is the projection of OutF (S) onto the quotient group OutF (S)/Out0
F

(S).
Finally, Out0

F
(S) ≤ Ker(τ) by definition of Out0

F
(S), and hence θ̄ is an isomorphism.

�

In order to apply Proposition B.2.11 to prove Theorem B.4.3, we need to prove that
fusion mapping triples for F c can be extended to fusion mapping triples on F q.

Lemma B.4.2. Let F be a saturated fusion system over a discrete p-toral group S, and let
(Γ, θ,Θ) be a fusion mapping triple on F c. Then there is a unique extension

Θ̃ : Mor(F q) −→ Sub(Γ)

of Θ such that (Γ, θ, Θ̃) is a fusion mapping triple on F q.

Proof. We have seen in Lemma B.2.8 that a fusion mapping triple for F c induces a
fusion mapping triple for F •c. Let (Γ, θ,Θ) be also this induced fusion mapping triple
for simplicity. We will then extend Θ to a fusion mapping triple for F •q, and then
apply Lemma B.2.8 again to obtain a fusion mappin triple for F q.

Let thenH0 ⊆ F
•q be a set closed underF -conjugacy and overgroups (inF •q), and

such that it contains Ob(F •c), and let P be a conjugacy class in F •q maximal among
those not inH0. We want to extend Θ toH = H0 ∪ P.

Let P ∈ P be fully F -normalized. For each α ∈ AutF (P), there is an extension
β ∈ AutF (R), where R = P · CS(P), which in turn induces a unique β• ∈ AutF (R•).
Furthermore, by Proposition 1.2.6, both R and R• are F -centric (because P is fully
F -normalized), and in particular R• ∈ H0. We can define then a map

ΘP : AutF (P) −→ Sub(NΓ(θ(CS(P))))
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by ΘP(α) = Θ(β•) · θ(CS(P)). By (i) and (ii) in the definition of fusion mapping triples,
Θ(β•) is a left coset of θ(CS(R)) (because, by Lemma 1.3.2 (iv), Z(R) = Z(R•)), and by
(iv) it is also a right coset (where the left and right coset representatives can be chosen
to be the same). Hence, ΘP(α) is a left and right coset of θ(CS(P)) (again with the same
coset representative on both sides).

If β′ ∈ AutF (R) is any other extension of α, then by Lemma 3.8 in [BCG+05] (which
applies as well in this case), there is some g ∈ CS(P) such that β′ = cg ◦ β, and then
(again by definition B.2.6) Θ((β′)•) = Θ(cgβ•) = θ(g)Θ(β•), and

Θ((β′)•) · θ(CS(P)) = θ(g)Θ(β•) · θ(CS(P)) =

= Θ(β•)θ(β•(g)) · θ(CS(P)) = Θ(β•) · θ(CS(P))

and so the definition of ΘP(α) is independent of the choice of the extension of β. This
shows that ΘP is well defined.

Note also that ΘP respects compositions and, since ΘP(α) = x·θ(CS(P)) = θ(CS(P))·x
for some x ∈ Γ, we conclude that x ∈ NΓ(θ(CS(P))). Thus, ΘP induces a homomorphism

ΘP : AutF (P) −→ NΓ(θ(CS(P)))/θ(CS(P)).

We can now apply Lemma B.2.10 to extend Θ toH .
If α ∈ AutF (P) and x ∈ ΘP(α), then x = y · θ(h) for some h ∈ CS(P) and y ∈ Θ(β•),

where • is an extension of α to R = PCS(P). Hence, for any g ∈ P,

xθ(g)x−1 = y · (hgh−1)y−1 = yθ(g)y−1 = θ(β•(g)) = θ(α(g)).

This shows that point (i) in Lemma B.2.10 holds.
Assume now that P � Q ≤ NS(P), and let α ∈ AutF (P), β ∈ AutF (Q) be such that

α = β|P. Then, in the notation of axiom (II) for saturated fusion systems, Q ·CS(P) ≤ Nα,
and hence α extends to some other γ ∈ AutF (Q · CS(P)), and

ΘP(α) = Θ(γ•) · θ(CS(P))

by definition of ΘP. By Lemma 3.8 [BCG+05] again, γ|Q = cg ◦ β for some g ∈ CS(P),
and hence by definition B.2.6, Θ(γ•) = Θ(cg ◦ β•) = θ(g) ·Θ(β•), and so

ΘP(α) = θ(g) ·Θ(β•) · θ(CS(P)) =

= Θ(β•)θ(β•(g)) · θ(CS(P)) = Θ(β•) · θ(CS(P)).

In particular, ΘP(α) ⊇ Θ(β•), and point (ii) in Lemma B.2.10 also holds. Thus we can
extend Θ toH .

�

Theorem B.4.3. For any saturated fusion system F over a discrete p-toral group S, there is
a bijective correspondence between subgroups

H ≤ Γp′(F ) = OutF (S)/Out0
F

(S)

and saturated fusion subsystemsFH ofF over S of index prime to p inF . The correspondence
is given by associating to H the fusion system generated by θ̂−1(B(H)), where θ̂ is the functor
of Proposition B.4.1.
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Proof. Let F0 ⊆ F be any saturated fusion subsystem over S which contains Op′
∗ (F ).

Then Out0
F

(S)COutF0(S), and one can set H = OutF0(S)/Out0
F

(S). We first show that a

morphism f ∈Mor(F c) is in F0 if and only if θ̂( f ) ∈ H, which in turn implies that

F0 = θ̂−1(H).

Clearly it is enough to prove this for isomorphisms in F c.
Let P,Q ≤ S be F -centric, F -conjugate subgroups, and fix an isomorphism f ∈

IsoF (P,Q). By Lemma B.2.4, we can write f = f ′ ◦ α|P, where α ∈ AutF (S) and
f ′ ∈ IsoOp′

∗ (F )(α(P),Q). Then, f is in F0 if and only if α|P is in F0. Also, by definition

of θ̂ (and of H), θ̂( f ) ∈ H if and only if α ∈ AutF0(S). Thus we have to prove that
α|P ∈Mor(F0) if and only if α ∈ AutF0(S).

The “if” part is obvious, and we have to check the “only if” part. The same
argument used to prove Proposition B.2.11 (iii) shows here that α(P) isF0-centric, and
hence fully F -centralized in F0. Since α|P extends to an (abstract) automorphism of
S, axiom (II) implies that it extends to some α1 ∈ HomF0(NS(P),S). By Proposition
2.8 [BLO07], α1 = (α|NS(P)) ◦ cg for some g ∈ Z(P), and hence α|NS(P) ∈ HomF0(NS(P),S).
Furthermore, P � NS(P) since, by hypothesis, P � S. Applying this process repeatedly
(and using the functor ( )• in F0), it follows that α ∈ AutF0(S).

Now, fix a subgroup H ≤ OutF (S)/Out0
F

(S), and let FH be the smallest fusion

system over S which contains θ̂−1(B(H)). We show then that FH is a saturated fusion
system over S of index prime to p inF . ForF -centric subgroups P,Q ≤ S, HomFH (P,Q)
is the set of all morphisms f ∈ HomF (P,Q) such that θ̂( f ) ∈ H. Thus, in particular,
FH ⊇ Op′

∗ (F ) because all morphisms in Op′
∗ (F ) are sent by θ̂ to the identity.

Define a map Θ : Mor(F c) → Sub(Γp′(F )) by setting Θ( f ) = {θ̂( f )}, that is, each
image is a subset with one element. Let also θ ∈ Hom(S,Γp′(F )) be the trivial (and
unique) homomorphism. Then, it follows that (Γp′(F ), θ,Θ) is a fusion mapping triple
of F c, which, by Lemma B.4.2, can be extended to a fusion mapping triple for F q, and
thus FH is saturated by Proposition B.2.11.

By Alperin’s fusion Theorem (1.3.5), FH is the unique saturated fusion subsystem
ofF with the property that a morphism f ∈ HomF (P,Q) betweenF -centric subgroups
of S lies in FH if and only if θ̂( f ) ∈ H. This shows that the correspondence is bijective.

�

Finally, we extend this result to a theorem on p-local compact groups.

Theorem B.4.4. Fix a p-local compact groupG. Then, for each H ≤ OutF (S) which contains
Out0

F
(S), there is a unique p-local compact subgroup GH = (S,FH,LH) such that

(i) FH has index prime to p in F ,

(ii) OutFH (S) = H, and

(iii) LH = ρ−1(FH).

Furthermore, |LH| is homotopy equivalent, via its inclusion into |L|, to the covering space of
|L|with fundamental group H̃, where H̃ is the subgroup ofπ1(|L|) such that θ̄(H̃/Op′(π1(|L|)))
corresponds to H/Out0

F
(S) under the isomorphism θ̄ from Proposition B.4.1.
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Proof. The statement is proved by Theorem B.2.12, applied to the composite functor

L
ρ
−→ F

c θ̂
−→ B(OutF (S)/Out0

F
(S)).

Indeed, this result says then that (S,FH,LH) is a p-local compact groups, and that
|LH| is homotopy equivalent to the covering space of L with fundamental group H̃.
Uniqueness follows from Theorem B.4.3.

�

In particular, if we take H = Out0
F

(S), it follows that there exists a unique min-
imal saturated fusion subsystem (resp. p-local compact subgroup) Op′(F ) (resp.
(S,Op′(F ),Op′(L))) of index prime to p in F . Furthermore, a centric linking system
associated to F induces a (unique) centric linking systemOp′(L) associated to Op′(F ).
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