Publication:
Analytic properties of polynomials orthogonal with respect to coherent pair of measures supported on the unit circle

Loading...
Thumbnail Image
Identifiers
Publication date
2016-11
Defense date
2017-02-07
Tutors
Journal Title
Journal ISSN
Volume Title
Publisher
Impact
Google Scholar
Export
Research Projects
Organizational Units
Journal Issue
Abstract
This work presents a study of orthogonal polynomials from a matrix point of view. We deal with semiclassical and coherent orthogonal polynomials. We also consider the difference and q-difference operators. We also study the coherent pairs of measures supported on the unit circle. In Chapter 1 we present the framework on which the different chapters are developed as well as an historical overview about coherent pairs on the real line and on the unit circle, where it should be noted that there exist only few works and it is a field yet to explore. Besides, in Chapter 2 a new tool introduced by L. Verde-Star in [61] and [62], based on the representation of a sequence of polynomials fPn(x)gn_0 by using an infinite lower semi-matrix, is presented in a very detailed way. This tool is used to characterize sequences of classical orthogonal polynomials and sequences of discrete and classical q-orthogonal polynomials in terms of banded matrices. To do this, the polynomials are represented with respect to the monomial basis (…) and the coeficients ak;j are used as entries of the matrix A = [ak;j ]. Several properties of orthogonal polynomials can be easily obtained with this approach. Afterwards, in Chapter 3, a new characterization of semiclassical orthogonal polynomials is presented by using the matrix approach described in Chapter 2. Semiclassical orthogonal polynomials are usually defined by a structure relation such as (…). This is the so-called first structure relation and it was introduced by P. Maroni. Besides, we give a relation between the Jacobi matrix associated with semiclassical orthonormal polynomials and the matrix whose entries are the coeficients appearing in the previous structure relation. We also use the matrix approach to characterize when a pair of sequences of orthogonal polynomials constitutes a coherent pair. The most general characterization for the coherence on the real line was given by M. N. de Jesús, F. Marcellán, J. Petronilho, and N. C. Pinzón-Cortés. They studied the structure relation (…) where, M;N; m; k are non negative integers and the constants (…) satisfy some natural conditions. By using the matrix approach, the coherence relation is equivalent to the existence of a banded matrix whose size is related to the class of coherence. We have studied the cases of (1,0)-coherence and (M; 0)-coherence which are characterized with a (0,1)-banded matrix and a (0;M)-banded matrix, respectively. In the same way, we have studied the cases of (1,0)-coherence of order m and (M; 0)-coherence of order m, where the order stands for the quantity of derivatives taken over the terms of the sequence of orthogonal polynomials corresponding to the measure (…). In this situation we obtained similar results as in the case of no derivatives. It is worth mentioning that in both cases we carry out numerical experiments to illustrate the results we developed. In Chapter 4, we consider the action of the difference operator and the divided difference operator D in the linear space of polynomials with real coefficients. D_ is either D! or Dq defined by (…). We obtain a new structure relation for the D_-semiclassical orthogonal polynomials that is used later on to deduce the D_-semiclassical character of a given linear functional in terms of banded matrices. We also developed a similar characterization for the D_-coherence. Finally, in Chapter 5 we present a study of polynomials which are orthogonal with respect to measures supported on the unit circle, having as a goal to give a characterization of all the pairs of Borel positive measures (…) supported on the unit circle such that the corresponding sequences of monic orthogonal polynomials (…). This problem is an extension of the one studied in [45] by F. Marcellán and A. Sri Ranga where they consider one term less in the right hand side of the previous equation. This work is contained in Chapter 5.
Este trabajo presenta un estudio de familias de polinomios ortogonales desde un punto de vista matricial. Abordamos los polinomios ortogonales semiclásicos y coherentes. También consideramos los operadores de diferencias y de q-diferencias. Además se hace un estudio sobre pares coherentes de medidas con soporte en la circunferencia unidad. En el Capítulo 1 se presenta de manera detallada todo el marco de trabajo sobre el cual se desarrollan los distintos capítulos de esta tesis, así como una reseña histórica sobre los pares coherentes en la recta real y en la circunferencia unidad, donde cabe señalar que existen muy pocos trabajos actualmente y es un área de investigación todavía por explorar. Además, en el Capítulo 2 se presenta de manera detallada una herramienta de estudio introducida por L. Verde-Star para estudiar sucesiones de polinomios ortogonales clásicos, así como sucesiones de polinomios ortogonales discretos y q-ortogonales (…). Después, en el Capítulo 3, se presenta una nueva interpretación de los polinomios ortogonales semiclásicos utilizando el enfoque del Capítulo 2. En el Capítulo 4 se considera la acción del operador en diferencias o en diferencias divididas en el espacio lineal de polinomios con coeficientes reales (…). Finalmente, en el Capítulo 5 se presenta un estudio de familias de polinomios que son ortogonales con respecto a medidas con soporte en la circunferencia unidad, teniendo como objetivo dar una descripción de todos los pares de medidas de Borel positivas (…). Este problema es una extensión del estudiado por F. Marcellán y A. Sri Ranga donde consideran un término menos en la parte de la derecha de la ecuación. Este trabajo está contenido dentro del Capítulo 5.
Description
Mención Internacional en el título de doctor
Keywords
Coherent pairs, Matrix approach, Structure relations, Linear functionals, Stieltjes functions, Carathéodory functions, Orthogonal polynomials, Lebesgue linear functional, Bernstein-Szegö linear functional, Monic Jacobi matrix, Hessenberg matrix, Unit circle
Bibliographic citation
Collections