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- Resumen

Esta memoria estda dedicada al estudio de grupos de automorfismos de superfi-
cies de Klein. Mas concretamente, a la bisqueda de condiciones bajo las que un
grupo abeliano finito es isomorfo a un grupo de automorfismos de alguna superfi-
cie de Klein compacta de cierto género algebraico, diferenciando entre superficies
orientables sin borde, superficies no orientables sin borde y superficies con borde.
Ademas, esos resultados nos permitiran responder a los llamados problemas de
género minimo y orden mdzimo de forma diferente y, ciertamente, mas concisa

que las conocidas hasta ahora.

Los aspectos teodricos en los que se basan los desarrollos propuestos se presentan
en el primer capitulo. Si bien Klein propuso por primera vez la utilizacién de
superficies de Klein (asociando una superficie posiblemente no orientable o con
borde a cada curva algebraica compleja), no fue hasta finales de los afios 60 del
pasado siglo cuando Alling y Greenleaf realizan diversos trabajos, los recopilan en

[1] y comienzan el tratamiento moderno de tales superficies.

Una superficie de Klein esta dotada de una estructura dianalitica, ampliacién
de la estructura analitica de superficies de Riemann que permite funciones de tran-
sicion antianaliticas, i.e., tales que su conjugada compleja es analitica. Ademas,
el dominio de las funciones de transicién entre cartas puede ser un abierto de
C*, el semiplano superior cerrado del plano complejo. De esa forma se generaliza
el concepto de superficie de Riemann, que consta de superficies orientables y sin
borde, al de superficie de Klein, en el que se incluyen, ademas, tanto superficies
no orientables como con borde. El género algebraico de una superficie de Klein
es el nimero entero ng + k — 1, donde n = 2 o 1, dependiendo de si la superficie
es orientable o no, g es el género topoldgico de la superficie y k el nimero de

componentes conexas de su borde.

La composicién de morfismos entre superficies de Klein posee una serie de
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propiedades que hacen que, cuando se trata de morfismos biyectivos de una su-
perficie de Klein en si misma, i.e., de automorfismos de una superficie de Klein,
en conjunto dispongan de una estructura de grupo. Entre los distintos grupos de
automorfismos de los que puede disponer una superficie de Klein, los que acttan
propiamente discontinuamente tienen especial importancia. Esencialmente, ningiin
automorfismo de un grupo tal consigue acercar tanto como queramos a dos puntos
que pertenecen a oOrbitas diferentes, y hay un ntimero finito de automorfismos que
a un punto dado lo llevan arbitrariamente cerca de si mismo. Cabe resenar que
el espacio de Orbitas de un grupo de automorfismos que actiia propiamente dis-
continuamente admite una Unica estructura dianalitica para la que la proyeccion

canodnica es un morfismo.

Entre los grupos que actiian propiamente discontinuamente, destacamos los
subgrupos discretos del grupo de automorfismos Aut(#) del semiplano superior
complejo H. Son llamados discretos en tanto que se trata de subespacios topold-

gicos discretos de Aut(#H), ya que este es isomorfo al grupo topolégico PGL(2,R).

Si el espacio cociente H /A de un subgrupo discreto A de Aut(H) es compacto,
decimos que A es un grupo cristalogrdfico no euclideo, o, de forma abreviada por
sus siglas en inglés, un grupo NEC. En particular, si H/A es una superficie de
Riemann, A es un grupo Fuchsiano, lo cual equivale a que todos los elementos de
A actiien manteniendo la orientacion en H. En los demés casos, cuando H/A es
no orientable o tiene borde, el grupo NEC es propio. Se dice que un grupo NEC es
de superficie si ninguno de sus elementos de orden finito mantiene la orientacion.
En todo caso, el cociente H /A admite una tnica estructura dianalitica tal que la

proyeccién candnica H — H /A es un morfismo.

Un punto clave es el hecho de que los grupos NEC uniformizan a las superficies
de Klein compactas de género algebraico mayor que uno, es decir, toda superficie
de Klein tal puede ser representada por el cociente H /T" para cierto grupo NEC
de superficie I'.  Este resultado fue establecido por Preston [31] y generaliza el
concepto de uniformizacién de superficies de Riemann propuesto anteriormente
por Poincaré y Klein como fruto de un apasionante intercambio epistolar entre
1880 y 1882.

Macbeath [23] y Wilkie [38] asociaron una coleccién de nimeros enteros y

simbolos a cada grupo NEC que permite diferenciarlo de otros grupos NEC. Tal
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coleccion es llamada signatura, que, en general, es de la siguiente forma:

(g; £ Ima, ... ome]; {(nag, - oomis,), 0 =1, ... k).

Para un grupo Fuchsiano se utiliza (g; m4, ..., m,) de forma abreviada. Un grupo
NEC es de superficie si su signatura es de la forma (g; £; [—]; {(—),.*.,(—)}). La
signatura de un grupo NEC A determina la estructura algebraica y topologica del
espacio cociente H/A. El drea de cualquier region fundamental de H /A es 2mu(A),
donde

u(A)sz‘“;(l‘;)*iii@_;)’

i=1j=1
donde n = 1 si la signatura tiene signo ‘—’ y es 2 si el signo es ‘+’. Para cualquier
subgrupo A’ de A de indice finito se verifica [A : A'] = pu(A)/u(A), que es la
férmula de Riemann-Hurwitz asociada al recubrimiento H/A" — H/A. La sig-

natura proporciona asimismo la presentacion candnica del grupo NEC.

Una consecuencia directa de la férmula de Riemann-Hurwitz y del hecho de
que Aut(#H/T") es el cociente N(I')/I", donde I' es un grupo de superficie y N(I')
es el normalizador de I" en Aut(#), es que todo grupo de automorfismos de una
superficie de Klein compacta de género algebraico mayor que uno tiene orden
finito. Asi mismo, los grupos de automorfismos de H /T" estén caracterizados como
cocientes A/I' para cierto grupo NEC A del que I' es subgrupo normal de indice
finito. De esta forma, un grupo G sera de automorfismos de H /T" si y solo si existe
un epimorfismo A — G cuyo ntcleo sea el grupo NEC de superficie I'. A dicho tipo
de epimorfismos se les denomina epimorfismos con nicleo de superficie. De forma
equivalente, un epimorfismo con nicleo de superficie se caracteriza por mantener

el orden de todo elemento de A de orden finito que conserva la orientacion.

Para algunas familias de grupos finitos actuando sobre superficies de determi-
nada clase (de Riemann, de Riemann no orientables, o con borde; en todo caso,
compactas y de género algebraico mayor que uno) ha sido posible encontrar condi-
ciones sobre los parametros de la signatura de A y de la estructura algebraica de G
para que existan epimorfismos con ntucleo de superficie A — . Este tipo de condi-
ciones, junto con la formula de Riemann-Hurwitz, permiten establecer de forma
precisa cuando un grupo de la familia correspondiente actia sobre alguna superfi-
cie compacta de un género algebraico dado (mayor que uno). El primer resultado
en este sentido fue el de Harvey [19], en el que se detallan dichas condiciones para
grupos ciclicos de automorfismos de superficies de Riemann, resultado que ampli-

aron Bujalance, Etayo, Gamboa y Gromadzki [11] a superficies de Klein con borde
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y Breuer [3] a acciones de grupos abelianos finitos en superficies de Riemann. Las
otras dos situaciones para las que se han obtenido dichas condiciones son para gru-
pos ciclicos actuando sobre superficies de Riemann no orientables, establecido por
Bujalance [4], y para grupos diédricos actuando sobre superficies de Riemann, por
Bujalance, Cirre, Gamboa y Gromadzki [8]. Para el caso de p-grupos el problema
ha sido estudiado por Kulkarni y Maclachlan [21].

Es conocido que todo grupo finito actia como grupo de automorfismos de
alguna superficie de Riemann [20], de alguna superficie de Riemann no orientable,
asi como de alguna superficie de Klein con borde [5] (en todos los casos se entiende
que las superficies son compactas y de género algebraico mayor que uno). Un grupo
finito dado puede actuar en superficies de distinto género. El llamado problema de
género minimo de un grupo finito consiste en encontrar el menor de los géneros
algebraicos de las superficies sobre las que puede actuar. Dependiendo del tipo de
superficie a la que nos refiramos, se han dado diferentes denominaciones a dicho
género minimo: género simétrico si se trata de superficies de Riemann y género
simétrico fuerte si, ademas, se exige que los automorfismos conserven la orien-
tacion, numero cross-cap simétrico para superficies de Riemann no orientables, y

género real para superficies de Klein con borde.

Por otra parte, sobre superficies compactas de un mismo género algebraico
dado pueden actuar diversos grupos. Cuando el género algebraico es mayor que
uno, el nimero de tales grupos es finito. Llamamos problema del mdzimo orden al
calculo del mayor orden entre los grupos de una familia de grupos que actian sobre
superficies de un género algebraico determinado (se distinguen entre diferentes

tipos de superficies al igual que en el problema del género minimo).

El Capitulo 1 finaliza con una serie de consideraciones sobre la factorizacion
de epimorfismos con ntcleo de superficie a través de la abelianizacién del grupo
NEC. Las condiciones para la existencia de epimorfismos entre grupos abelianos
expuestas por Breuer en [3] serdan aplicadas en nuestra situacién en capitulos pos-
teriores y aportaran informacion importante para el estudio de la existencia de

epimorfismos con nicleo de superficie.

En el Capitulo 2 se inician las aportaciones originales de esta memoria. Se
centra en automorfismos de superficies de Riemann. Breuer [3] amplié para grupos
abelianos las condiciones de Harvey para grupos ciclicos de automorfismos [19]. Las

condiciones de Breuer establecen ciertas relaciones entre los factores invariantes de
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un grupo abeliano A y la signatura de un grupo Fuchsiano A para la existencia de
epimorfismos de superficie A — A. Una de esas condiciones requiere la existencia
de un epimorfismo A — A. En esta memoria proponemos una modificacién de
dicha condicion, planteandola, como el resto de condiciones, como una relacién
entre los citados parametros del grupo abeliano y el grupo Fuchsiano. Para ello,
utilizamos las condiciones, también expuestas por Breuer, para la existencia de
epimorfismos A, — A de la abelianizaciéon de A sobre A. Aprovecharemos, en
los capitulos posteriores, dichos aspectos sobre la abelianizacién de un grupo NEC
para estudiar los epimorfismos de superficie de un grupo NEC sobre un grupo

abeliano.

Las condiciones de existencia de epimorfismos con ntucleo de superficie nos
permitiran demostrar, de forma maés breve, la expresiéon de Maclachlan [24] para
el género simétrico fuerte 0°(A) de un grupo abeliano A. Dicha expresion esta
indicada como el valor minimo dentro un conjunto de valores candidatos a género
minimo del grupo abeliano. Es posible concretar ese valor minimo para diferentes
tipos de grupos abelianos, o, al menos, reducir ese conjuto de valores candidatos
con una simple inspeccion de los cocientes entre los sucesivos factores invariantes

del grupo abeliano.

Nos permitiran, asi mismo, encontrar el menor de los géneros simétricos fuertes
entre los de los grupos abelianos con igual orden. Un aplicaciéon inmediata de esto
ultimo es una nueva prueba del maximo orden que puede tener un grupo abeliano

que actia sobre una superficie de Riemann de determinado género.

Los resultados presentados en el Capitulo 2 han sido publicados por el autor en
el articulo “Some results on abelian groups of automorphisms of compact Riemann
surfaces” [32].

En el Capitulo 3 estudiamos los grupos de automorfismos abelianos en superfi-
cies de Klein compactas con borde. También ha sido posible en este caso obtener
las condiciones sobre la signatura de un grupo NEC A y los factores invariantes
de un grupo abeliano A para la existencia de epimorfismos 6 : A — A con nucleo

de superficie.

El hecho de que la superficie de Klein posea borde implica ciertas restricciones
en la signatura del grupo NEC: debe tener algin ciclo-periodo (de forma que el
cociente H/ker f puede tener borde) y sus periodos de enlace deben tener valor

dos. Las condiciones se obtienen, grosso modo, buscando los grupos NEC con
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generadores suficientes y asegurandonos de que el epimorfismo sea, en efecto, so-
breyectivo y que mantenga las relaciones del grupo NEC.

Al igual que en el Capitulo 2, la factorizacién del epimorfismo 6 : A — A a
través de la abelianizacion del grupo NEC nos permitird obtener una condicion
que asegure un numero suficiente de generadores en el grupo NEC. Como ya se
ha comentado, se trata de trasladar a nuestra situacion las condiciones de Breuer

para que exista algun epimorfismo entre grupos abelianos.

Una vez obtenidas las condiciones de existencia de epimorfismos con nicleo de
superficie, las utilizamos para calcular el género real o(A) de un grupo abeliano
A, ya sea ciclico o no, anteriormente establecido por Bujalance, Etayo, Gamboa
y Martens en [12] y por McCullough en [29], respectivamente. Al igual que para
superficies de Riemann, esto nos permite calcular el menor de los géneros reales
entre los de los grupos abelianos del mismo orden y, con ello, abordar de forma
sencilla el problema del maximo orden, ya resuelto antes por Bujalance, Etayo,
Gamboa y Gromadzki [11], para grupos abelianos actuando sobre superficies de

Klein compactas con borde de género algebraico dado (mayor que uno).

Los resultados presentados en el Capitulo 3 han sido publicados por el autor

en el articulo “Abelian actions on compact bordered Klein surfaces” [33].

El Capitulo 4 lo dedicamos a superficies de Riemann no orientables. Como en
los capitulos precedentes, hemos estudiado las condiciones necesarias y suficientes
para que un grupo abeliano sea un grupo de automorfismos de alguna superficie
de Riemann no orientable de género topoldgico mayor que dos. Pero, en este
caso, solo ha sido posible obtenerlas para ciertos tipos de grupos abelianos, los
de orden impar y aquellos cuyo 2-subgrupo de Sylow es ciclico. Para el resto de
grupos abelianos de orden par no ha sido posible obtenerlas, como se comenta en

la Seccidn 4.3.

En el caso de grupos abelianos de orden impar, la signatura del grupo NEC no
puede tener ciclo-periodos si queremos que un epimorfismo 6 : A — A tenga nucleo
de superficie tal que H/ker f sea una superficie de Riemann no orientable. En tal
caso, practimente es suficiente con la condicién de Breuer sobre la existencia de

epimorfismos de la abelianizacién de A sobre el grupo abeliano A.

Cuando consideramos, a continuacion, grupos abelianos cuyo 2-subgrupo de

Sylow es ciclico la signatura del grupo NEC puede tener ciclo-periodos, pero deben
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ser vacios. Aqui la existencia de epimorfismos con ntcleo de superficie requiere,
ademas, alguna otra condicion si la signatura del grupo NEC no tiene ciclo-periodos

o si solo tiene uno.

Finalmente, las condiciones para que un grupo abeliano de esos tipos actte
sobre una superficie de Riemann no orientable de nuevo nos permiten constatar, de
forma mas sencilla que las hasta ahora conocidas, la solucion al problema del género
minimo correspondiente, i.e., el calculo del nimero cross-cap simétrico (A) de un
grupo abeliano A de los tipos indicados, establecido por Etayo [14] y Gromadzki
[18].






Introduction

Computing groups of automorphisms of Riemann and Klein surfaces is a classical
problem initiated by Schwartz, Hurwitz, Klein and Wiman, among others, at the
end of the 19th century. Surfaces with a nontrivial finite group of automorphisms
are of particular importance, since they correspond to the singular locus of the
moduli space of such surfaces. By the uniformization theorem, compact Riemann
and Klein surfaces of algebraic genus greater than one can be seen as the quotient
of the hyperbolic plane under the action of a discrete subgroup of its isometries
(a non-Euclidean crystallographic group, in general, or a Fuchsian group if it only
contains orientation-preserving isometries). This approach gave rise to the use of
combinatorial methods, which have proven the most fruitful in computing groups

of automorphisms.

Thus far, research has focused on low genus surfaces or on surfaces with a
certain group of automorphisms endowing the surface with significant properties
(for instance, hyperelliptic, elliptic-hyperelliptic, Wiman, Accola-Maclachlan and

Kulkarni surfaces).

Not surprisingly, cyclic groups were tackled firstly [39]. Combinatorial methods
were first applied by Harvey [19]. He found necessary and sufficient conditions for
a cyclic group to act on a Riemann surface. Such conditions are expressed in terms
of the algebraic structure of the Fuchsian group associated to the action. Harvey’s
Theorem has been widely used since. Similar results have only been found for
dihedral [8] and abelian groups [3, Theorem 9.1]. For p-groups, the problem has
been studied by Kulkarni and Maclachlan [21].

For cyclic actions on Klein surfaces with boundary, the result corresponding to
Harvey’s Theorem was proven in [11, §3.1]. A similar theorem for abelian actions
remained unknown, although some meaningfull, partial results were well-known,

such as the answer to the minimum genus problem for cyclic [12] and noncyclic

xiii
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abelian groups [29].

Minimum genus and maximum order problems have been studied for a number
of families of groups using diverse techniques. Some thorough surveys on these
topics can be found in [9, 6, 7]. One of these techniques takes advantage of previ-
ously established conditions for the existence of surface-kernel epimorphisms onto a
group of the family. This approach usually provides a shorter proof to the solution
to the minimum genus and maximum order problems, as we will see in subsequent

chapters.

In this thesis, we obtain the following results:

Chapter 2. We establish a refinement of Breuer’s conditions [3, Theorem 9.1]
for the existence of abelian actions on compact Riemann surfaces of genus
greater than one. In this new form, every condition is entirely expressed
in terms of the invariant factors of the abelian group and the signature of
the Fuchsian group. As a consequence, we obtain a new, shorter proof of
Maclachlan’s solution to the minimum genus problem and, in many cases, an
explicit expression using some results concerning the invariant factors of the
abelian group. We find the least strong symmetric genus for the family of
abelian groups, cyclic or not, of the same given order, as well as the unique
abelian group attaining such minimum genus, which leads to a new proof
of the maximum order problem for the family of abelian groups acting on
Riemann surfaces of a given genus greater than one. These results were
published in [32].

Chapter 3. We state conditions for an abelian group to act on some compact
bordered Klein surfaces of algebraic genus greater than one, expressing such
conditions in terms of the algebraic structure of the NEC group associated
to that action. We then deduce by new, more concise methods the real genus
of an abelian group and solve the related maximum order problem. We also
find the expression for the least real genus of abelian groups of the same
given order. The results in this chapter are already published in [33].

Chapter 4. We find conditions of existence of actions of abelian groups of odd
order or with cyclic Sylow 2-subgroup on compact nonorientable Riemann
surfaces of topological genus greater than two. That makes it easier to obtain

the known expression of the symmetric cross-cap number of such groups.



]. . Preliminaries

We devote this chapter to look over the underlying matters that are referred to in
this thesis. Uniformization of Klein surfaces makes it possible to address the study
of actions of finite groups on Klein surfaces by means of combinatorial methods of
NEC groups. We also gather a number of results concerning abelian groups and

the abelianization of NEC groups.

1.1 Klein surfaces

Klein surfaces constitute a generalization of Riemann surfaces that include
bordered and nonorientable surfaces. They broaden the scope of Riemann surfaces
by allowing transition functions that may include complex conjugation besides
analytic functions and domains in the closed upper half-plane C*. This makes up
what is called a dianalytic structure [1]. The topological genus g, the number k of
boundary components and the orientability are known as the topological type of a
Klein surface, and the integer p = ng + k — 1 as its algebraic genus, where n = 2

if the surface is orientable and n = 1 otherwise.

The equivalence between categories of compact Riemann surfaces and complex
projective and smooth algebraic curves was extended to categories of Klein surfaces
and real algebraic curves by Alling and Greenleaf [1]. By means of this equivalence,
any result on automorphisms of compact Klein (Riemann) surfaces turns into
a corresponding result on birational transformations of real (complex) algebraic

curves.

We now introduce the main results concerning Klein surfaces which will be

used herein (a thorough account on this topic can be found in [11] chapters 0 and
1).

Definition 1.1.1. A surface is a connected Hausdorff topological space X together
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with a topological atlas, i.e., a family A = {(U;, ;) : i € I} of charts such that
{U; : i € I} is an open covering of X and each map ¢; : U; — ¢;(U;) is a
homeomorphism onto an open subset of C or C* = {z € C : Im(z) > 0} —the

closure of the open upper half-plane H. The homeomorphisms
piow: i (UiNU;) — (Ui N ;)

are called transition functions of A. Assuming the identification of C with R?, the

orientability of X is defined as for a real 2-manifold. The boundary of X is

0X ={z € X :Ji € I such that z € U;, p;(x) € R and ¢;(U;) C C*}.

A nonorientable surface or a surface with nonempty boundary do not admit an
analytic structure. However, a small generalization of the notion of analytic map

will enable us to define a proper structure on such surfaces.

Definition 1.1.2. Let U be an open set of C. A map f : U — C is antianalytic
in U if its complex conjugate f is analytic in U, and f is dianalytic in U if it is

analytic or antianalytic on each connected component of U.

If U is connected and f is both analytic and antianalytic on U, then f is
constant. An analytic map is orientation-preserving, while an antianalytic map
reverses the orientation. If f and g are both analytic or both antianalytic, then
g o f is analytic; if one is analytic and the other is antianalytic, then g o f is
antianalytic.

In order to deal with surfaces with boundary, it will be also necessary to con-

sider maps having an open subset of C* as domain.

Definition 1.1.3. Let A be an open set of C* that is not open in C. A map
f A — Cis dianalytic in A if it is the restriction of a dianalytic map whose

domain is an open set of C containing A.

Definition 1.1.4. A topological atlas A is dianalytic if its transition functions are
dianalytic. Two atlases A and B are equivalent if AU B is dianalytic. A dianalytic
structure on X is the equivalence class of a dianalytic atlas of X. A pair consisting

of a surface X and a dianalytic structure on X will be called a Klein surface.

Morphisms between Klein surfaces can be orientation-reversing and can gener-
ate boundary. The proper definition of such morphisms is achieved by means of

the following map:
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Definition 1.1.5. The folding map is the continuous and open map
¢:C—C":a+by—1—a+bV-1.

Definition 1.1.6. A morphism between Klein surfaces X and Y is a continuous
map f: X — Y such that f(0X) C 9Y and for all x € X there exist dianalytic
charts (U, ¢) and (V,4) of X and Y, respectively, with z € U and f(x) € V, and
an analytic function F': ¢(U) — C such that the following diagram commutes:

f

U >V
; y
o(U) £ Cc 25t

The composition of morphisms is ruled by the following result [2]:

Proposition 1.1.7. Let X, X' and X" be Klein surfaces and f: X — X' and g :
X" — X" be nonconstant continuous maps such that f(0X) C 0X' and g(0X') C

0X". Consider the following assertions:

(1) f is a morphism;
(2) g is a morphism;

(3) go f is a morphism.
Then,
a) (1) and (2) imply (3);
b) if f is onto, (1) and (3) imply (2);
c) if f is open, (2) and (3) imply (1).

Definition 1.1.8. An automorphism of a Klein surface X is an isomorphism X —

X in the category of Klein surfaces.

It follows from Proposition 1.1.7 that the set Aut(X) of all automorphisms of
X is a group under the operation of composition of morphisms. The group Aut(X)

is called the full group of automorphisms of X

Definition 1.1.9. A group of automorphisms of a Klein surface X is a subgroup
of Aut(X).



4 | Chapter 1. Preliminaries

When a group G is isomorphic to a group of automorphisms of a Klein surface
we say that G acts on that surface; if G' acts on some surface of algebraic genus

p, the group G acts on genus p.

Let G be a group of automorphisms of a Klein surface X. The stabilizer of
x € X is the subgroup G, = {f € G : f(x) = 2}. Given two subsets U and V of
X, we also define G(U,V) ={f € G:UnN f(V) # @} and denote G(U,U) by Gy
(so that Gy = Gg}).

Definition 1.1.10. A group G of automorphisms of a Klein surface X acts properly
discontinuously if the following conditions hold:

i) Each x € X has a neighborhood U such that Gy is finite.

ii) If z,y € X and x ¢ O,, then there exist a neighborhood U of = and a
neighborhood V' of y such that G(U, V) = @.

iii) If x € X, (U, ) is a chart with x € U, f € G, is not the identity and the
map o f o ! (suitable restricted) is analytic, then x is isolated in the set
of fixed points of f.

Groups of automorphisms of a Klein surface X acting properly discontinuously
hold some important features. As stated in [1] Theorem 1.8.4, the quotient of
X under the action of such a group can be endowed with a unique dianalytic
structure.

Theorem 1.1.11. If a group G of automorphisms of a Klein surface X acts prop-
erly discontinuously on X, then the quotient X/G admits a unique dianalytic struc-

ture such that the canonical projection X — X/G is a morphism.

1.2 Non-Euclidean crystallographic groups and uniformization of

Klein surfaces

The group Aut(H) of automorphisms of the upper complex half-plane is iso-

morphic to PGL(2,R). Indeed, recall that Aut(#) is the set of all transformations

az+b az+b
z = and z — i

for real numbers a, b, ¢ and d such that ad — bc > 0 and
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ad — bc < 0, respectively, and the group epimorphism
GL(2,R) — Aut(H)

) (a b) ; a=tbif det A > 0,
= = JA 2

¢ d CHb jfdet A< 0

has kernel {A\ly : A € R — {0}}, where I, is the identity matrix, and the quo-
tient GL(2,R)/{\ 5} is just PGL(2,R). As a topological space, Aut(H) contains

subgroups made up of isolated elements:

Definition 1.2.1. A subgroup of Aut(H) is discrete if it is discrete as a topological
subspace of Aut(H).

Proposition 1.2.2. FEvery discrete subgroup of Aut(H) acts properly discontinu-
ously on H.

The following result is an immediate consequence of Theorem 1.1.11.

Corollary 1.2.3. The orbit space H/G of H under the action of a discrete subgroup
G of Aut(H) admits a unique dianalytic structure such that the canonical projection

H — H/G is a morphism.

Definition 1.2.4. A non-FEuclidean crystallographic (NEC) group A is a discrete
subgroup of Aut(#) for which H/A is compact.

An NEC group is a Fuchsian group if it contains only orientation preserving
automorphisms; otherwise, it is said to be a proper NEC group. An NEC group

with no orientation preserving elements of finite order is called surface NEC group.

By an important result stated by Preston [31], surface NEC groups uniformize

compact Klein surfaces:

Theorem 1.2.5. If X is a compact Klein surface of algebraic genus p > 2, then
there exists a surface NEC group I such that X and H /T are isomorphic as Klein
surfaces.

Theorem 1.2.6. Let I" and I be surface NEC groups. The compact Klein surfaces
H/T and H/T" of algebraic genus greater than or equal to 2 are isomorphic if and
only if T and T" are conjugate subgroups in Aut(H).
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1.3 Signature and canonical presentation of an NEC group

Nonisomorphic NEC groups differ from one another in the signature. It was
introduced by Macbeath [23] and Wilkie [38] and is as follows:

(g; £5 Ima, ... ome]; {(an, - ymus,), i =1, .00 k).

The signature of a Fuchsian group is usually denoted by (g; my,...,m,). For a
surface NEC group, it is of the form (g; £; [—]; {(—),.*.,(—)}) and we say that
the surface group is unbordered if k = 0 and bordered otherwise. The signature
of an NEC group A determines both its algebraic structure and the topological
structure of the orbit space H/A.

The integers m; > 2 are called proper periods, n;; > 2 are the link periods,
(ns, ..., nis;) are the period cycles and g is the orbit genus. The orbit space H /A
has topological genus g, k boundary components and is orientable if the sign of
the signature is ‘4’ and nonorientable otherwise. The covering map H — H/A
ramifies over r interior points with ramification indices m; and, on each boundary
component, over s; points with ramification indices n;;. The integer ng + k — 1
is the algebraic genus of H/A, where n = 2 if the sign of the signature is ‘+’
and n = 1 otherwise. An arbitrary set of such numbers and symbols defines the

signature of an NEC group if and only if

r 1 1 k& 1
ng+k—2+z<1—m)+22 (1—>>0. (1.1)
i=1 i

i=1j=1 Nij

The expression in the left side is denoted by p(A). The hyperbolic area of any
fundamental region of H/A is 2ru(A). We will call p(A) the reduced area of A.
Also, if A’ is a subgroup of A of finite index, then A’ is an NEC group and

(A A= p(A)/ (D), (1.2)

which is the Riemann-Hurwitz formula associated to the covering H/A" — H/A.

The signature provides a canonical presentation of A with the following canon-



1.3. Signature and canonical presentation of an NEC group | 7

ical generators and relations depending on the sign of the signature:

Tiy. ., Ty (elliptic elements),

C10s -+ -5 Clsys - -+ s CkOs - - - 5 Chisy (hyperbolic reflections),

€1y, Ep (hyperbolic or elliptic elements),
ar,by,...,a4b, if the sign is ‘+’ (hyperbolic translations),
di,...,d, if the sign is ‘—’ (glide reflections),

=1, c?j =1, (Cijorci)" =1, ei_lcioeicisi =1,
Ty xper - eparbray 7t agbgag_lbg‘l =1 if the sign is ‘+’ and
xl---xrel-nekdf---d;:l if the sign is ‘—".

The last one is called the long relation. An abstract group with such a presentation

is an NEC group with signature as above if and only if (1.1) is fulfilled.

For further purposes, the following should be considered. Hereinafter, we as-

i(p1)

sume factorizations m; = py ... ptiPs) with prime numbers p; < --- < p, and

integers p;(p;) = 0 such that p;(p;) + -+ - + pr(p;) > 0. For each prime p;, we re-

arrange the integers 111 (p;), . . ., pr(p;j) to obtain an increasing sequence of integers
f(py) < fia(py) < -+ < fir(py) and define i = "™ pli®9). Then, ;|
and there is an integer 7 such that m; =1 fori=1,...,r — 7 and m; > 1 for the
7 integers i =r — 7+ 1,...,r. Also, we can check that
! 1 ! 1
1——) < 1——. 1.3
(7)< 5l 9

For, consider the following matrices with the factors of periods m;,m; in their
rOWS:

piLl(pl) e p/s'tl(ps) p{t\l(pl) e El(ps)

M = : M = :
p;lw(pl) .. p,gr(ps) plltr(m) L psﬁr(ps)

We can get M from M by an interchange of entries in pairs of consecutive rows
of M. Let (i,7) = p;“(pj) be the entry of M in row i and column j. First, take
the first and second rows and, for each j € {1,..., s}, interchange (1, j) and (2, j)
if (2,5) < (1,7). Then we proceed with the second and third rows, and so on for

the remaining rows on the produced matrices. We obtain M repeating the whole
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process if necessary. It is enough to consider only one of these steps, say, for two

successive Tows

biq

al s

P - Py IZ8 Ds
)

b1 ajy Ajq bs

pl .« e p]l o e p]q pS

with integers a;, b; such that 0 < a; < b;; we take consecutive unordered columns

for readability. If we let

b b;

— a1 J1 Jq Q. ! a1 Q.
ml_pl ...pjl p]q ...p89 ml_pl ”'psg
b ajq Ajq b ! b b

m2_p1...pjl p]q ...pss m2_p1...p85’

then mymy = mim/, and thus

1 1 1 1 1 (my m)
—_— 4+ — — 7,"‘7, :7, 7/—1 - <O,
m1 Mo my moy mi \ My my

since m} < my < mj. It follows that —m%l — %& S S

1.4 Surface-kernel epimorphisms

In this section, we introduce some of the results on which matters considered

in subsequent chapters are directly based.

Theorem 1.4.1. [26] Let T be a surface NEC group. Then,

i) the normalizer N(I') of T in Aut(H) is an NEC group and
ii) Aut(H/T) ~ N(T')/T.

As a consequence, when X = H /T is a Klein surface of algebraic genus p > 2,
the order of Aut(X) equals the index [N(I") : I'], which is finite by the Riemann-
Hutwitz formula (1.2). We highlight this important fact:

Theorem 1.4.2. The group Aut(X) of automorphisms of a compact Klein surface
X of algebraic genus p > 2 is finite.

The following result is well known for Riemann surfaces [22], and it was estab-
lished in [34, §2] and [26, Proposition 3] for nonorientable Riemann surfaces and

bordered Klein surfaces, respectively.
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Theorem 1.4.3. Let I' be a surface NEC group. A group G is a group of auto-
morphisms of H /T if and only if G is isomorphic to the factor group AJT for some

NEC group A containing I' as a normal subgroup.

Therefore, the action of G on H/I" can then be given by an epimorphism
6 : A — G whose kernel is T'.

Definition 1.4.4. An epimorphism 6 : A — G from an NEC group A onto a group
G whose kernel is a surface NEC group is called a surface-kernel epimorphism.
We say that 6 is a orientable, nonorientable, unbordered or bordered surface-kernel
epimorphism if H/ker @ is orientable, nonorientable, has empty boundary or has

nonempty boundary, respectively.

Since the order of §(z) divides the order of an element x € G of finite order,

the next result follows easily:

Lemma 1.4.5. A homomorphism 6 : A — G from an NEC group A onto a group
G is a surface-kernel epimorphism if and only if the order of (x) equals the order

of x for every orientation-preserving element x € A of finite order.

One of the main goals of this thesis is to find, for a given integer p > 2,
conditions on a finite abelian group A to be a group of automorphisms of some
compact Klein surface of algebraic genus p. As we have noted above, this is
equivalent to finding conditions for the existence of an epimorphism A — A whose
kernel is a surface NEC group with signature (g; +; [—]; {(—),.%.,(—)}) such
that p = ng + k — 1. Such conditions will be established in terms of the defining
parameters of the NEC group A and of the abelian group A.

1.5 Minimum genus and maximum order problems

We mentioned in Theorem 1.4.2 that every group of automorphisms of a com-
pact Klein surface of algebraic genus p > 2 is finite. It is also well-known that
every group of finite order acts on some compact Klein surface of algebraic genus
greater than one. More precisely, every group of finite order acts on some com-

pact Riemann surface [20], on some compact nonorientable Riemann surface and
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on some compact bordered Klein surface [5] (in the latter case, we can also dis-
tinguish between orientable and nonorientable surfaces) of algebraic genus greater

than one.

A finite group may act on Klein surfaces of different genera. Given a finite
group, the minimum genus problem consists in finding the least genus on which
a group acts. In this respect, Riemann surfaces, nonorientable Riemann surfaces
and bordered Klein surfaces are considered separately. The following terminology
was introduced in [36, 37, 27, 28].

Definition 1.5.1. The strong symmetric genus c°(G) of a finite group G is the
minimum topological genus of the compact Riemann surfaces of genus greater

than one on which G acts preserving orientation.

The symmetric genus o(G) of a finite group G is the minimum topological
genus of the compact Riemann surfaces of genus greater than one on which G

acts, either preserving or reversing orientation.

The symmetric cross-cap number &(G) of a finite group G is the minimum
topological genus of the compact nonorientable Riemann surfaces of topological

genus greater than two on which G acts.

The real genus p(G) of a finite group G is the minimum algebraic genus of the
compact bordered Klein surfaces of algebraic genus greater than one on which G
acts. |

Remark 1.5.2. Some authors allow values 0 and 1 in the definition of real genus.
Cyclic groups and ZZ ~ D, are the only abelian groups that act on genus 0 —the
closed disk is the unique bordered surface of algebraic genus 0—, and Z3 ~ Zy x Do
and Zs & Zs, (u > 1) are the only noncyclic abelian groups that act on genus 1
—the closed annulus and the Mobius strip are the unique bordered surfaces of

algebraic genus 1—, see [27] theorems 3 and 4. |

The maximum order problem is closely related to the minimum genus problem.
Several groups may act on Klein surfaces of a given algebraic genus. When the
algebraic genus is greater than one, there are only finitely many such groups.
Computing the largest group order in a family of groups which act on a given
algebraic genus is what we call the mazimum order problem for that family. We

will also distinguish between actions on Riemann surfaces, nonorientable Riemann
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surfaces and bordered Klein surfaces.

1.6 A brief remainder on abelian groups

According to the previous comments, we are interested in examining a specific
type of homomorphisms onto finite groups, namely, surface-kernel epimorphisms,
and, in particular, we will focus on surface-kernel epimorphisms onto finite abelian
groups. In this respect, it is worth mentioning some elementary features of abelian

groups.

When A is a finitely generated abelian group, its invariant factor decomposition
is A~ Z"®Zy, & - D7, for integers n > 0, called torsion-free rank of A, and v; >
1, called invariant factors of A, with v; dividing v;,1, and primary decomposition
Ax=Z" DA, DDAy, where ¢4 < --- < g are the prime numbers dividing the
order of A and A, = {x € A|¢"x = 0 for some n > 0} is the g-primary component
of A —the ¢-Sylow subgroup Syl,(A). We also assume v; = q‘f“'(c“) . -qi"'(q*) for
i=1,...,t,500 < a(q) < < alq) and Ay = Zoy) @ -+ ® Zyoy- The

integers q;”(qf ) are the elementary divisors of A.

Below it will be helpful to express a finite abelian group as follows:
AxZL) DLy & - DLy,

(for readability, Z, ® Y. @ Z, will be denoted by Z.') where v; > 2 and v; divides
vit1, so that there exists some integer m < t such that vy,...,v,_,, are odd and
the m integers v;_,,41,...,v; are multiple of 4; note that, though unique, this

expression may not coincide with the invariant factor decomposition of A.

Also, an element of the finite abelian group Z,, & - - - @ Z,, will be denoted by

(ay,...,a;) where the integer a; is to be understood as its residue class modulo v;.

1.7 Abelianization of NEC groups

We are mainly concerned with conditions of existence of epimorphisms ¢ :
A — A from an NEC group onto a finite abelian group. In this context, the

abelianization A, of A provides significant information.
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Recall that the derived subgroup G’ of a group G is the subgroup generated by
the set of all commutators of G (elements of the form [z, y] = xyz~'y~! with z,y €
G). Tt is easily seen that G' < G. The abelianization of G is the quotient Gy, =
G/G’, which is obviously an abelian group. Moreover, if A is an abelian group
and ¢ : G — A is a group homomorphism, its kernel contains G’ and so ¢ factors
through G, i.e., there exists a (unique) group ho-
momorphism ¢ : G, — A such that ¢ = ¢om, where G ¢ A
7 : G — G is the canonical projection. Note also x /

Gap '

that, 7 being surjective, the composition ¢ = ¢ o7

is onto for every epimorphism ¢ : G, — A.

Therefore, it is worth considering epimorphisms between abelian groups. Breuer
stated conditions for the existence of such epimorphisms as a set of inequations
on the rank and the number of cyclic factors in the primary decomposition of the

abelian groups:

Lemma 1.7.1. [3, lemmas A.1 and A.2] Let q be a prime number and R, Ny, ...,

Ng,r,nq, ..., ng be non-negative integers. There is an epimorphism
S S
R N; n;
7 @@Zqi — ZT®@Z¢.
i=1 i=1
if and only if

R>r and R+> N; 2 r+> n for j=1,...,s. (1.4)
i=j i=j

For arbitrary finite abelian groups A and B, there is an epimorphism 7% & A —

Z" & B if and only if there is an epimorphism Z% & A, — Z" & B, for each prime

q dividing the order of B.

In order to study these conditions for epimorphisms A, — A, we need to
know the structure of A, in terms of the signature of A. Here a distinction is
made between Fuchsian and proper NEC groups. For a Fuchsian group A, we find
its abelianization in [3, Lemma A.3]; with the notation of Section 1.3 it reads as

follows:

Lemma 1.7.2. The abelianization of a Fuchsian group A with signature (g; my, . . .,

m,) is isomorphic to Z* if r =0 or 1 and

Ay ~ Z2g@ZTAn B D7

My —
r—r+1 r—1

otherwise.
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Now, we compute the abelianization of proper NEC groups. When the signa-
ture has some period cycle, the abelianization is obtained by some considerations
on the canonical presentation of the proper NEC group. Otherwise, if it has no
period cycle (hence the sign of the signature is ‘—’), we will compute the Smith

normal form of the relation matriz of the canonical presentation of A.

Let (X | R,[X, X]) be a presentation of a finitely generated abelian group A,
where X = {x1,...,2,} is a set of generators, [X, X] stands for the commutation
relations between all pairs of generators and R is the set of all other (noncommuta-
tion) relations. The elements of a row of the relation matriz R of this presentation
are the exponents of the generators of a relation (multiplicatively written). If the
cardinal of R is m, then R is an m x n integer matrix. We can apply elementary

row and column operations,

a) interchange two rows (columns),
b) multiply by —1 a row (column),

c¢) add an integer multiple of one row (column) to another,

in order to transform R into another integer matrix (¢;;) of the same dimensions,
called the Smith normal form of R, such that ¢;; = 0if ¢ # j and €;; divides €41 ;+1.
Smith proved its existence in [35]. Let ¢ be the number of non-null integers ¢;;.
It is well-known that the non-null integers ¢;; are the invariant factors of A and
n — q is the torsion-free rank (see, for instance, [25, Section 3.3] or [30, Chapter
2]). Applications of elementary row and column operations to the relation matrix
correspond to Tietze transformations of the group presentation, and leave the
associated abelian group unchanged.

The integers €; can be computed as follows: €17 = p1, €22 = pa/p1, €33 = p3/p2,
etc., where p; is the greatest common divisor of the determinants of the submatrices
of R of order ¢. This method for computing the Smith normal form was firstly
stated by Smith [35]; see also, for instance, [25, Section 3.3] or [30, Chapter 2].

Lemma 1.7.3. The abelianization of a proper NEC group A with signature (g; £ ;

[ma,.ooome]; {(nay .o oymus,), 1= 1,000 k}) s

Ay = ZM9 1 T(Ay), (1.5)
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where
TAw) ® Zsy . & BLy &Ly ifk=0,1r>0,
r—r+1
2y ®Ly . ®-- DLy, otherwise
r—r+4+1

is the torsion subgroup of Nu, 1 equals 2 if the sign of the signature is +’ and 1

otherwise, and

S = #{period cycles with no even link periods} + #{even link periods}.

Proof. When k£ > 0, we remove one generator e; by the long relation in the
abelianized presentation, only remaining relations containing generators of finite
order. The remaining canonical generators e;, a;, b; and d; provide the factor
Z"9+k=1 while the elliptic generators and their relations turn into Z,,, ®- - -®Z,,, ~
Ly . @ DL .

r—rt1

The factor ZQS originates from the generators c;;. There are k + 51 + -+ - + 55,
of such generators; we remove k of them (each relation e; 161'067;01'31- = 1 lets us
remove ¢;o or ¢;,, when abelianized) and also those generators ¢;; for which n;; is
odd (when abelianized, the relation (¢;j_1¢;;)™ = 1 becomes either ¢;;_1¢;; =1 or

trivial for odd and even values of n;;, respectively).

If £ =0 (hence the sign of the signature is ‘—’ since A is proper), the presen-

tation of Ay is
<ZE1, vy Ly dl, R ,dg | Qszi, Ty« .%Td% cee d;, [xi,xj], [Ii, dj], {dl, d]]> (16)
The relation matrix of this presentation is

my

R =
0
my
1 11 2 702
and its Smith normal form is the integer matrix
€1 O
€9
0 _
e 0900
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where ¢; divides ¢;,1. The integers ¢; are the invariant factors of an abelian group
with presentation (1.6) and, as we noted above, they can be computed as follows:
€1 = p1, €2 = Pa/p1,.-., €11 = Pri1/pr, Where p; is the greatest common divisor

of the determinants of the submatrices of R of order <.

Clearly, py = 1. Non-null determinants of 2 x 2 submatrices of R are m;, 2m; or
m;, my, and thus py = ged(my, ..., m,). Likewise, non-null 3 x 3 determinants take
values m;, my,, 2m; m;, or m; m;,m;, so that ps = ged(myma,..., mm,, moms,
..,my_1m,). In general, we can easily check that

pr = ged{m, - - My, M<i<ip<o<ip_y<r for k=2,...,r—1and

Pre1 = 2myq - =M.

Obviously, if p is a prime number dividing some m;, then p; contains as factors

the k — 1 smallest powers of p in the factor decomposition of my, ..., m,:
P1 = 17
_ o pn Wis _ =5
p2=Dp1 o cPgt =M,
_ ﬁu-‘rﬁzl U1st2s o
pP3s =p1 o pEteTE =My,
. ﬁ11+"'+ﬁ —1,1 st 1 o~ —~
pr_pl r ...pl;lg Hr 1a9_m1...mril’

_ 11+ e st lrs _ 9= =
Pr+1 = 2p1 e 'pgls Hre = 2my - - my,

where, in the notation introduced in Section 1.3, fi;; = fi;(p;), and thus

€1 = 17 €2 =M1, €3 =M2, ..., € = Myp_1, €41 = 2m7"
Therefore, Ay, = 29 ' @ Zsy . @& ® Ly | @ Ly, when k= 0. |
r—r+1

It follows that Syl (T (Ag)) is trivial if » < 1 and isomorphic to Z ~ & --- &

qH1 (2)

Zqﬁr_ﬂq) otherwise when A is a Fuchsian group and, if A is a proper NEC group,
Zs ithk=r=0,
Sylo(T (Aap)) =~ Lo ® @ ZQﬁr_l(m ® L 2 i k=0andr >0,
Zy @ L @ ®Ly if & >0,
Syl (T (Aw)) = 0 @O Zq;r(q) for ¢ > 2.
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By Lemma 1.7.1, we obtain necessary and sufficient conditions for an epimor-
phism A, — A to exist. Indeed, these conditions are expressed in terms of the
number of cyclic factors of Syl, (T (Aw)) and A,. Let Ny(i) and ny(i) be the num-
ber of cyclic factors of Syl, (T (Aq)) and A,, respectively, of order greater than or
equal to ¢*. As a consequence of Lemma 1.7.1, the existence of an epimorphism

A — A is thus equivalent to the fulfillment of the following inequalities:
ng +k — 1+ Ng(i) = ny(i) (1.7)

for each prime ¢ dividing |A| and every integer i > 0

(29+ N, () in the left term if A is a Fuchsian group). Note that n,(1) is the number
of nontrivial cyclic factors of A, and, if ¢ > 2 and A is a proper NEC group, N,(1)
is the number of proper periods divisible by ¢. Also, N,(i) = 0 if ¢ { m; for all

e f{l,...,rh.

It can be helpful to represent graphically the inequalities (1.7) overlapping the
graphs of the number of factors of Syl,(7T (As)) and A, for a given ¢. Conditions

are fulfilled if and only if the second line never places above the first one.

ng+k-1+N(1)
ny(1)

ng+k-1

12 eer ogqopzfirofira ool opg oy

FIGURE 1.1: Example fulfilling conditions (1.7) for a prime ¢ dividing |A|. We show
the values a1(q),...,a:(q) and fi1(q), ..., dr—1(g) on the horizontal axis. As we move
from right to left along each integer value x on the horizontal axis, the dotted line
cumulatively adds up the number of factors of order ¢ in A,. Likewise, the solid line
adds up the factors of Syl,(T(Agp)) starting from the right with value ng + k — 1. In
this example, A is a proper NEC group, ¢ > 2, ng+k —1=2 and [i,—3 = [ir—2.



2 - Abelian actions on Riemann surfaces

In this chapter, Breuer conditions for orientation-preserving abelian actions on
compact Riemann surfaces of genus g > 1 are refined so that every condition is
entirely expressed in terms of the invariant factors of the abelian group and the
signature of the Fuchsian group. This alternative statement results in a more
concise proof of Maclachlan’s solution to the minimum genus problem; in many
cases, we can fix an explicit expression using some results about the invariant
factors of the abelian group. Finally, we find an explicit solution to the minimum
genus problem for the family of abelian groups, cyclic or not, of the same given

order, as well as the unique abelian group attaining the minimum genus.

2.1 Surface-kernel epimorphisms onto an abelian group

Conditions for the existence of a surface-kernel epimorphism from a Fuchsian
group A onto a finite abelian group A were first stated by Breuer [3, Theorem.
9.1]. Unlike for other families of groups, one of these conditions simply claims
the existence of an epimorphism A — A, relying this issue upon lemmas A.1 and
A.2 in [3], collected here in the inequalities (1.7) for each prime ¢ dividing the
order of A. In Theorem 2.1.2, we embed conditions (1.7) for the existence of an
epimorphism A,, — A into Breuer’s theorem. This way we achieve conditions only
in terms of the signature of the Fuchsian group and the invariant factors defining

the abelian group.

Theorem 2.1.1. (Breuer) Let A be a finite abelian group, A a Fuchsian group with
signature (g;my,...,m,) and M = lem(my,...,m,). There ezists a surface-kernel

epimorphism Y : A — A if and only if the following conditions are satisfied:

(o) There exists an epimorphism A — A.

(i) lem(my,...,mi_1,Miy1,...,m;) = M for alli.

17
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(ii) M‘ expA; if g=0, then M = exp A.

(iii) r # 1; if g =0, then r > 3.

(iv) If M is even and only one of the elementary divisors of A is divisible by the
mazimum power of 2 dividing M, then the number of periods m; divisible by

such power of 2 is even.

Now, we make use of conditions (1.7) for the existence of an epimorphism

Ay — A to replace condition (o) in Breuer’s theorem:

Theorem 2.1.2. Let A be a Fuchsian group with signature (g;mq,...,m,), M =
lem(my, ...,m,) and integers t > 1 and vy, ..., vy with v; > 1 and vq|- - |vy. There
exists a surface-kernel epimorphism N — Z,, &---& Zy, if and only if the following

conditions are satisfied:

(i) lem(mq, ..., m;_1,Mis1,...,m,.) = M for alli.

(ii) M‘vt; if g=0, then M = v,.

(iii) r # 1; if g =0, then r > 3.

(iv) If M is even and only one of the elementary divisors of Ly, @® -+ ® Ly, 1
divisible by the maximum power of 2 dividing M, then the number of periods
m; divisible by such power of 2 is even.

(v) If t > 2g, then r >t — 2g + 1 and every elementary divisor of Z,, divides,
at least, t — 29 — k + 2 periods m; for k=1,...,t —2g.

Proof. Condition (v) replaces condition (o) in Theorem 2.1.1. Below we prove that

both conditions are equivalent. Hence, theorems 2.1.1 and 2.1.2 are equivalent.

If there exists a surface-kernel epimorphism A — A, then we know, by Theorem
2.1.1, that conditions (i)-(iv) are satisfied. Conditions (i) and (i) imply that
fr—1(q) = fir(q) < ay(q) for each prime ¢ dividing the order of A, and so dividing
vy (For readability, we will write «; and fi; instead of «;(q) and fi;(¢) in what

follows.)

If t < 2g, the inequalities (1.7) are always fulfilled for every prime ¢ dividing
vy, since t = ng(ay) = -+ = ny(ay). However, if t > 2g, that need not necessarily
be the case. Now, we show that, when ¢ > 2¢, conditions (1.7) hold if and only if

r>t—2g+1 and oy < [l—1—gqogk for E=1,...,t—2g, (2.1)
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or, explicitly,

N

a1 X ,urft+2g7

and r >t —2g+ 1.

If (2.1) holds, let k € {1,...,t —2g} and [ be the smallest integer in {1,...,k}
such that oy = . Then ny(ax) = ng(ow) =t —1+ 1 and N,(a) = Ny(y). By

(21)7 (87 < /jr—l—t+2g+l7 50
Ny(ay) 2r—1—(r—1—-t4+29+1)+1=t—-29—-1+1.

Hence, 29 + N,(ay) > ny(ay). This proves that (2.1) implies (1.7).

Now, assume that conditions (1.7) hold. Since v; # 1, there exists some prime
q dividing v; for which 0 < oy < -+ < o and ny(oy) = t. The inequality
29 + Ny(aq) = ng(aq) =t in (1.7) implies N,(a;) =t —2g > 0, so that r > 1 (by
Lemma 1.7.2, N,(i) = 0if r = 0 or 1), hence r—1 > N (a;) and thus r > t—2g+1.

The last 2g values ay_g441, ..., a4 can be smaller than (except a, by condition
(ii)), equal to or greater than fi,_;. However, it is always a;_o, < fi,—1: otherwise,
the last 2¢g + 1 values o;_og,...,q;, at least, would be greater than fi,_;, thus
Ny(ai—9y) = 0 and ny(4—24) = 29 + 1, so the inequality 29 + N,(ai—2y) = ni—gg

would not be fulfilled and an epimorphism would not exist.

Also, the next value a;_s,—1 smaller than or equal to oy_o, must satisfy o951
< [iy_2; otherwise, some inequality in (1.7) would not be fulfilled. Likewise, it

must be oy_o5—2 < fly—3, Q_24-3 < fir—4, and so on. Hence, (1.7) implies (2.1).

Now, since [i; < [ijy1, it is clear that conditions (2.1) hold if and only if
ar < f1; foreach k€ {1,...;t—2¢9} andi=r—1—t+2g+k,...,r — 1. Since
A = max{p; i1, ,, this means that ¢** divides qﬁ" fori=r—1—t+2g+k,...,r
and thus also divides, at least, t —2g — k + 2 periods m;. This is condition (v). W
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2.2 Explicit expression for the strong symmetric genus

Conditions of Theorem 2.1.2 allow us to obtain a new shorter proof —see
Theorem 2.2.1— of Maclachlan’s solution of the minimum genus problem for a
finite noncyclic abelian group [24, Theorem. 4]|. Furthermore, upon closer study
of this solution, we find an explicit expression for the minimum genus in many

cases, as is shown in Remarks 2.2.3, 2.2.4, 2.2.5 and subsequent comments.

In particular, condition 2.1.2.(v) makes it possible to use the invariant factors
U1,..., V94 as periods of a Fuchsian group, and this group is a candidate to
minimize pu(A) = 2(g — 1) +>7_, (1 —1/m;): elementary divisors of Z,, always
divide certain periods m; of any Fuchsian group satisfying conditions of Theorem

2.1.2, and this suggests to compose a signature with vy, ..., v,_9, as periods.

Theorem 2.2.1. (Maclachlan) Let A = Z,, & -+ ® Z,,, withv; > 1 andvy|- - |vy,

be a noncyclic abelian group of order |A| > 9. The strong symmetric genus 0°(A)
of A satisfies

2004 -1 - {2(9—1)+t§g(1_;>+1_v1 }

|A| 0<2g<t/

where t' =t ift =2 or odd, and t' =t +1 if t > 2 is even (interpreting vy as 1).
Remark 2.2.2. [24, p. 711] The strong symmetric genera of noncyclic abelian
groups of order smaller than or equal to 9 are:

0°(ZLe ® Zs) = 2,

0°(Zo ® Zy) = 3,

0°(Zo ® Lo ® Zs) = 3,

0°(Zs ® Z3) = 4.

Proof of Theorem 2.2.1. Let F be the family of Fuchsian groups for which there
exists a surface-kernel epimorphism onto A, and let A, be any Fuchsian group in

F with orbit genus g, say, with signature (g; mq,...,m,).

First, we note that, for any integer g such that 0 < 2¢g < t, the signature

(g;v1, ..., Vi—og—1, Ut_ag, Vst_2y) defines a Fuchsian group if |[A| = vy - v, > 9
—recall (1.1). For, let
=2 1 1 1 1 2
M:29—2+Z<1—)+1— =t—1———- = - :
i=1 i Vi—2g U1 Vt—2g-1  Ut—2g
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Since v; > 2 and 0 < 2¢ < t, it follows that pu > % Clearly, u > 0 if t > 4,
and also if ¢ = 3 (in this case, p = 0 if ¢ = 0 and v; = vy = v3 = 2, but then
V10903 = 8 < 9; otherwise, u > 0 since vjv9v3 > 9 and thus v; > 2 for some ).
If t =2, then g =0and p =1 —1/v; — 2/vy, so that p < 0 if v; = vy = 2,

201 = v9 =4 or v; = vy = 3 (but |A] < 9 is these cases) and p > 0 otherwise.

We denote this Fuchsian group by /~Xg. The signature fulfills conditions of
Theorem 2.1.2, so A, € F. We notice that, by condition (v) of Theorem 2.1.2 and
since 2¢g < t, it must be r > 2. By conditions (i) and (v) of Theorem 2.1.2, we

have v;_og| My, Vy_og—1|My—1, Vi—og—2|My_a, ..., U1|My_1194. It follows that

1 1 1 1 1
<1—>+---—|— 1-— + 11— <<1—,\)+---+<1—,\),
U1 Vt—24 Vt—2g my my

o~ ~

so the signature (g; m,_s11,...,m,) defines a Fuchsian group, A,, since pu(A,) > 0,

and p(A,) < u(/A\g) (recall 7 is such that m,_» = 1 and m,_s;1 > 1). Then, by

(1.3), M(]\g) < ﬂ(ﬁg) < p(Ay).

For any ¢g with 2g > ¢ > 1, the signature (¢g; —) defines a Fuchsian group I',
and fulfills conditions of Theorem 2.1.2,soI'y € F. Then p(I'y) = 2(g—1) < p(Ay)
for any A, € F. Also, p(I'y) < p(T'y) if ¢ < g. Let g = min{g € Z | 29 > t,
g>1}. Then,g=2ift=2,g=(t+1)/2if tis odd, and g =t/2 if t > 2 is even;
the corresponding values of p(I';) are 2, t — 1 and t — 2, respectively.

Therefore, we have to compare ;1(A,) and p(I') for any g satisfying 0 < 2g < ¢.

If g =0, then u(A,) < u(I'y) for t = 2 or ¢ odd (recall that p(A,) > 0 when |A| > 9
and 0 < g < t). But, if ¢ is even, it could be u(A,) > (') for every g such that
2g < t. To take this possibility into account, we define vg = 1, ¢/ =t if t = 2 or

odd, and t' =t + 1 if t > 2 is even. [ |

Now we get some insight into the expression for the strong symmetric genus in
Theorem 2.2.1. In many cases, we can avoid calculating the minimum, since it is
possible to find out in advance which g satisfying 0 < g < ¢ provides it, by simple
inspection of the invariant factors of the abelian group. In the remainder of this
section we assume ¢ > 3 since the case t = 2 was solved in [24, Theorem 4], see

example 2.2.6.

We can write 0°(A) =1+ %l min {po, pi1, - . ., g }, where

t—2g

ug=2(9—1)+;<1_;)+<1_ 1 )

Vt—2g
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and ¢’ = [t/2] is the integer part of ¢/2. Let also

/l}.
G = as fori=1,...,t— 1.
U;
If t is odd, we arrange the integers {q, ..., q_1} into pairs, reversing the order

of subindices:

(qt—la qt—?)a ) (q47 q3)7 (CZQa Ch)

If t is even, we can consider A as an abelian group with ¢+ 1 invariant factors,
A~ {0}®Z, & ®ZL,, without changing the expressions for y, and 0°(A); now
the (t+1) — 1 = ¢ quotients of two consecutive invariant factors become vy /1 = vy,

ve /U1 = q1, ..., Uy/U_1 = q4_1, resulting in the sequence of pairs

(Qt—la qt—2)7 ceey (Q37 QQ)J <QI7 Ul)'

The expression of ji41; in terms of the foregoing f, is

2 1 1 2 — (Qt72 -2 = 1)%72 -1
Hg+1 = fg + + — = g + g 9
Vt—2g Vt—2¢g—1 Vt—2g—2 Vt—24

for g =0,...,¢ — 1 (interpreting vy = 1 and gy = v if ¢ is even). Writing them

explicitly,
2—(q—2— 1)@
/’Ll:l’to—i_ (tv )t )
t
2 —(q—g — 1)qs_
M?Z/J“l+ (tvt ) ) : 3a etC.,

we observe that the difference p; — o depends on ¢;_1, ¢;—2, v, which are the largest
subindices for ¢ and v. These subindices reduce by 2 each step as g increases. The
last difference p1y — py—1 depends on go, q1,v3 (or on go = vy and ¢ if ¢ is even).
It follows that:

G2 =1 Vg2 = V1
a) pp < pp = or = or
(%—17%—2) = (1, 2) P
(2,2) 4vpg = 2011 = vy (2.2)
b) wo=m <= (@-1,¢-2) =1 or > or
(1,3) B9 = V41 = V¢

¢) po > p1 otherwise.
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The same happens for each pair i, ftg+1 and (gi—24—1, @t—24—2). So, in general, p,

is smaller as ¢ increases, and 0°(A) is mostly given by fiy:

Remark 2.2.3. If vy # vy # - - # v, then
A
O'O(A) = 1 + |2| /,Lg/

since, in this case, ¢; > 1 for all ¢, so p1y > p1g41 for all g € {0,...,¢" — 1}. |

On the other hand, we can have y, < 1444 for all g (the following two remarks

fix the inaccurate results noted in [32] remarks 4.5 and 4.6):

Remark 2.2.4. Assume that either v;11 = v; or v; 41 = 2v; for each i € {1,...,t —
1}. If t is odd or ¢t = 2, then

A
0°(A) =1+ |2| Lo-

When t > 2 is even, 1/, may be smaller than . Indeed, this occurs very often

since
1 1 2
Pjp=po+ —+- -+ —+——1
U1 Vt—1 Ut
and thus
14] o1 1, 2
1+ 5 pryo if U1_|_..._|_m_1+vt<1,and
0’(A) =
|A

1+ 2‘ lo  otherwise.

In both remarks 2.2.3 and 2.2.4, we have only made use of the case (¢_1, q—2) =
(2,2) in (2.2.b). It is straightforward to include the other case (¢i—24—1, ¢t—24—2) =
(1,3), for values of g in {1,..., ¢}, to enlarge the set of cases with the same result
0%(A) =1+ |Alpo/2 or 1+ |A|py /2.

Also, we can get 0°(A) =1+ |A|p,/2 for each g € {0,...,¢'}, at least when ¢
is odd, by combining conditions in both remarks to get po > 1 = ... = pg-1 =
Hg S Pg+1 S -2 S g

Remark 2.2.5. Let t beodd and g € {0,...,¢'}. If w9, 1 # vi_9y # - -+ # v and
Vip1 = v; or v = 2v; forall i € {1,...,t —2g — 2}, then
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Conditions (2.2) show that it is difficult to study which p, provides 0°(A4) in
general. But we can still give some hints that ease the situation by reducing the

number of candidates among { o, ..., py } to obtain o°(A).

It can help to assign a symbol to each pair (g;—ag—1, qi—24—2) for ¢ =0,...,¢'—1

as follows:

g /lg+1 if (Qt—Qg—ly qt—Qg—Q) = (a 1) or (17 2)7
g 7 g+l if (Qt72g717 qt*2g*2) = (27 2) or (17 3)7
IN(g+1 otherwise.

So, for example, the sequence of pairs (¢;—1, ¢t—2), - - -, (¢4, ¢3), (¢2, ¢1) —ending with

(q1,v1) if t is even— is represented by

ONG NN\ s TN TN

if and only if

fo > p1 < fo > 3 > g =[5 v fhgr—2 > fgi—1 > g

Obviously, the case 971N\, 79! indicates that p, is a candidate to obtain o°(A),
but not py_y or pgii. Also, po or py are candidates if o  or “\,, appear,
respectively, but not if we have °\, or 79"

When , 79 occurs, then g1 = py + 1/vi_94 OF pgr1 = g + 2/v;_9, corre-
sponding to each possibility in (2.2.a).

It is easy to see that, in general, pg41 > f1y = pg12 in the case ; S9N o,
with the only exception when (g;_o5-1,qi—24—2) = (1,1) and (gi—24—3, qt—24-4) =

(3,2), in which case g1 > pigya > pg, since pgp1 = iy + 2/vi95 and pgo =
fg + 1/vi_o,. We introduce another symbol for this last situation:

g/N‘[H_2 = Hg < Hgt2 < Hgt1
<~ (Qt—zg—th—Qg—Q) = (1, 1) and (Qt—2g—37Qt—2g—4) = (372)7

so fi, is a candidate to obtain o°(A), but not jgiq or pgie. In the following

examples, we assume fi,9 < fi; < fig+1 Whenever we write , /971N, o (the case

/™ is excluded from that sequence and we split it apart as a separate case).

Example 2.2.6. [24, Theorem 4] If ¢ = 2 and |A| > 9, then 0°(A) = J(vivo —v2) —
U1+ 1.
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1 1 2 2
Example 2.2.7. t =3. Here g =0,1, pgo=2— — — — — —, My = 2 — — and,
v Vg U3 U1

1
considering the pair (go, ¢1), there are only three cases (in each one, we point out
which i, provides the strong symmetric genus):

0\(1 H1 01 H1 = o 0/‘1 Ho-

Example 2.2.8. t = 4. We have ¢ =0, 1,2 and

We consider the sequence (g3, g2), (q1,v1); there are ten cases:

INC N\ 25 o/ Ho =1\ M2
N1 =2 Mo = [ 0o/ =? Ho 071772 Mo = fi1 = Ho
NG AP M1 0./ N2 2 01/ M1 = Ho

0 /2 Lo

Example 2.2.9. ¢t = 5. Here, the sequence is (¢4, q3), (¢2,¢1), ¢ = 0,1,2 and

The cases are the same as in the previous example.

Example 2.2.10. The strong symmetric genus of A ~ Z;® Zy4 D Z14 D Zgy D Z336 is
0%(A) = 1+|A| p2/2 = 1+ |A| (t—1—2/v1)/2 = 71914753, since the corresponding
sequence is (4,6), (1,2), so the diagram is ¢ 71\ 2.

Example 2.2.11. Consider the groups

AR Zys @ Loy @ ZLuso D Lgoo © Zgoo,  with sequence (1,2), (5,6),
B =~ Z3 D Z450 D Z450 D Zgoo @ Zgoo, with sequence (1, 2), (1, 150), and
C = Zg D Z450 D Z450 D Zgloogo, with sequence (1800, 1), (150, 3)
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The three groups have order N = 492075000000 and diagram o 71\ ,,. Hence

0°(A) =1+ Npp/2 =1+ N(t — 1 —2/v,)/2 = 951345000001,
0°(B) =1+ Nug/2 =1+ N(t — 1 — 2/v1)/2 = 820125000001,
0°(C) =1+ Nuy/2 =1+ N(t — 2)/2 = 492075000001,

for the corresponding value of ps, t and v; in each case. We notice that ¢°(C) <
0°(B) < 0°(A). The following section deals with this issue.

2.3 Least strong symmetric genus of abelian groups

of the same order

Harvey solved the minimum genus problem for cyclic groups [19, Theorem 6].
Given an integer N > 1, we now focus on abelian groups of order N. Each of these
groups has a strong symmetric genus; in this thesis, the lowest of these genera will
be called the least strong symmetric genus of abelian groups of order N, and will
be denoted by ¢°(N). In this section, we obtain ¢°(/N) by means of Theorem 2.2.1.
Taking advantage of this result, we also obtain a new proof of the solution to the

maximum order problem for abelian groups stated by Breuer [3, Corollary 9.6].

We first consider, in Theorem 2.3.1, abelian groups having order N and a
fixed number ¢ of nontrivial invariant factors. Applying this result, we obtain,
in Theorem 2.3.2, the abelian group of order N that provides the least strong

symmetric genus by comparing the resulting genera for admissible values of ¢.

We observe that, if N = pi* ---p% is the prime factorization of N and Z,, @
-+ @ Z,, is an abelian group of order vy ---v; = N, with v; > 1 and wvy|-- - |vy,

then ¢ < max;—; s{aj}'

Theorem 2.3.1. The least strong symmetric genus of all abelian groups of order

N > 1 with t > 1 nontrivial invariant factors is

N _ L _ L
0°(N, 1) = (t—l)(p—l)g—pt "+1 ift=2,tisodd orp—t+1< =%, and
(t-2)3 +1 otherwise,

where p is the smallest prime such that p'|N. Moreover, the least strong symmetric
. . t—1
genus is attained by Zy, © -+ @ Ly D Linjpi—1.
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Proof. Let N = pi* ---p% be the prime factorization of N and A ~ Z,, & --- &
Lo, with t > 1, |A] = vy -+ v, = N, v; > 1 and vy|- - - |v;. Hence, there must be, at
least, a prime p; € {p1,...,ps} such that p;lv; for all i € {1,...,t}, so pj|N. Let

p be the smallest such prime,

p= irluns {pj | p}; divides N} :
By Theorem 2.2.1, we obtain the strong symmetric genus of A from the smallest
py for the admissible values g = 0,...,¢', with ¢ = 0if ¢ = 2 and ¢ = |t/2]

otherwise. If we let A vary with ¢ and its order fixed, then the invariant factors
V=" =01 =D V= —— (2.3)
give the smallest p, for each g = 0,...,¢": this is straightforward to check when

g >0, since 1/v; < 1/p,i=1,...,t—1, for any other invariant factors such that
vi---v; = N. For g = 0, we observe that 0 < (** —2)(s — 1), which is equivalent

to
1 2 1 2
o2 2 (2.4
n  sm ns m
for any integers s > 2, m > 2 and n > 1 such that ns|m. Let vy, ..., v; be invariant

factors such that v; - --v; = N. Applying (2.4) repeatedly, it follows that

1 1 1 2qt_1< 1 1 2
q q N = U1 Vt—1 Uy

for any prime ¢ dividing v;. Since ¢'|N, we have p < ¢. In case that ¢ # p, p*¢
divides N and thus ¢"~! < N/2pq since p > 2. Hence,

N t—1 t—1

N
(q—p)t—1)=—+p" ' =g >—+p =g >0

2pq ~ 2pq

and thus

p N ~ ¢ N

t—1 2ptt t—1 2¢1

Therefore, Zp@l-:_-l-@ZpEBZ N/pt-1 attains the least strong symmetric genus (N, t).

For the invariant factors (2.3), we have po = (t — 1)(p — 1)/p — 2p'~ /N, and
0°(A) = 14+ J po if t = 2. When t > 2, and following Section 2.2, the corresponding
sequences (N/p', 1), (1,1),...,(1,1)iftisodd, and (N/p*, 1), (1,1),...,(1,1),(1,p)
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if ¢t is even, lead to the cases

o ML D if ¢ is odd,

o ST A2 if t is even and p = 2,
o SR T2 if ¢ is even and p = 3,
o M SPTIN if ¢t is even and p > 5.

Hence, pg < p; when i > 0, so that 0°(A) = 1+%u0 unless t > 2is even and p > 5,
in which case 0°(A) = 1+ ¥ min{yuo, pe2}. If t > 2 is even, then pp =t — 2, so
o < puy2 if and only if p — ¢+ 1 < 2p*/N (this includes p € {2,3}). |

Now, we consider different values of t € {2,... ,max;—; _s{a;}}. By comparing
the values 0°(N,t) in Theorem 2.3.1 with the strong symmetric genus o°(Zy)
of the cyclic group Zy, we obtain the following theorem, that can be seen as
a generalization of Harvey’s solution of the minimum genus problem for cyclic
groups.

Theorem 2.3.2. The minimum genus of a compact Riemann surface of genus

greater than one that admits an abelian group of automorphisms of order N is

2 if N =234,56 ors,
3 if N=Tor9,
1
§(N —1) if N > 9 is prime,
o°(N) = , N

—(p—1) (—1) if N > 9 is not prime and p*{ N,
p

N
(p—1) (2 - 1) otherwise,

p

where p is the smallest prime divisor of N. The abelian group

i) Zy if N <9 orp>t N,

i) Zyp ® Lyyp otherwise,

attains the minimum genus.
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Proof. Let N = p{* ---p% be the prime factorization of N. If N <9, by Theorem
6 in [19], Theorem 2.2.1 and Remark 2.2.2, 0°(N) is given by the cyclic group Zy.
For N > 9, we distinguish two cases: a) oy = 1; b) oy > 1. Let p(t) be the smallest

prime ¢ such that ¢'|N, 7 = max;-,..s{a;} and
() =(t=1) (1= | = 5 w0 7
folt) = o)) NP |

a) ay = 1. If N = p;---ps, there is only one abelian group of order N,
the cyclic group Zy. Otherwise, and also for noncyclic groups to take place, we
consider N = pp(t)®>m(t) for primes p; < p(t), and m(t) > 1 an integer such that
p < q if ¢ is a prime dividing m(t) —p(t) and m(t) may be different for each
te{2,...,7}.

By Theorem 6 in [19],

UO(ZN)Z;(pl—l) <N—1> = l(pl—l)g _b —|—1,

and, by Theorem 2.3.1, either o°(N,¢) = 1+ Zo(t) or 6°(N,t) = (t —2)N/2 + 1.

In the first case,

o _ 1 N t—1
o (th)—1+§(t—1)(p(t)—1)@ p(t)
1 N N -
= 500(0) = 1)+ 50 = 2)(p(0) ~ Vs (1) 41
A’ C

We notice that 0°(Zy) < 0°(N,t) since
A<A, B<0, C=-pit)ift=2 andC >0 ift>2.

The last inequality holds since p(t)!|N and, therefore, N/p(t) > p(t)'"!. In case
that 0°(N,t) = (t—2)N/2+1, then 0°(Zy) < 0°(N,t) as well, since (p; —1)/p1 <
1 <t—2fort> 2 even in this case. Hence, 0°(Zy) < 0°(N,t)if t € {3,...,7}.

We address the case t = 2 as follows: if N = 2-3?, then 0°(Zy) = 0°(N, 2) = 4.
Any other noncyclic abelian group with o; = 1 has order N > 18. In this case,
(a) D1 > 27 or

(b) p1 =2 and p(2) > 3, or
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(¢) pr =2, p(2) =3 and m > 1.

It follows that

(P(2) =p) N = 2pip(2)?,
since p(2) —p; = 2 and N > p1p(2)? in (a) and (b), and, in (c), p(2) — p1 = 1 and
N > 2p;p(2)%. Hence,

(p(2) = p1) N = 2p1p(2)* + pip(2)(1 + p1) > (p(2) — p1) N —2pip(2)* > 0,
thus
P(2)N +pip(2) > piN + 2pip(2)* — pip(2).

Dividing by —2pip(2) and adding N/2 + 1/2 to both sides, we get 0°(Zy) <
0°(N,2).

Then, 0°(Zy) < 0°(N,t) for any t € {2,...,7} —equality holds only when

N = 18— and the cyclic group Zy attains the minimum genus when a; = 1.

b) If &y > 1 then, by Theorem 6 in [19],

1 N
(Zy)==(p1 — 1)—.
0°(Zn) 2(271 )p1
For noncyclic groups of order N and t € {2,...,7} invariant factors, either
N 1 2
AN =1+ —po(t) =1+t -1 (1 ——= | —=pt)!
) =Tt ) =1 (0= 1) (1= 1) = 2ol

or 0°(N,t) = (t —2)N/2+ 1 by Theorem 2.3.1. In particular, if ¢t = 2,
1 N
o°(N,2) = ~(p(2) — 1)—— — (p(2) — 1).
(¥,2) = 5(5(2) = 1)~ (62) — 1)
Since 1 < p; < p(2), it follows that 0°(N,2) < 0°(Zy). Also 0°(N,2) < 0°(N,t)
if 0°(N,t) = (t —2)N/2+ 1, since (p(2) —1)/p(2) <1 <t —2 for t > 2 even.

Now it remains to check that 0°(N,2) < 6°(N,t) forallt € {3,...,7} whenever
0°(N,t) =1+ Jpo(t). For, we first change slightly the notation and define

po(p,t) = (£ — 1) <1 - ;) - ;p”,

If we prove that
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i) po(p,t —1) < po(p,t) for all t € {3,...,a} if N = p*m with p prime and
integers o > 3 and m > 1 such that p { m, and

i) po(p,t) < po(g,t) for an integer ¢ > 2 and p < ¢ primes such that p‘|N and
t
¢'|N,

then it follows that po(p1,2) minimizes puo(p,t) for N = p* ---p% with primes
P < Dj+1, P € {p1,...,ps} and t € {2,...,7}, thus 0°(N,2) < o°(N,t) for all
te{2,....,7}

i) We notice that
pa—lm _ 2<pt—1 _ pt—2)
N
for all t € {3,...,a}, since p*t'm —2(p"t —p™2) < Nift >3, p>1,a >3 and
m > 1.

po(p,t) — po(p,t —1)=1— > 0

ii) Since p < ¢, we can write N = p®¢**m, where a3 > 1, ap > 1 and m > 1

is an integer such that ptm and ¢t m. If t € {2,... min{ay, as}}, then

1 1 2qt—1_2pt—l
1) — H=@t-1|--=) -2

to(q,t) — po(p,t) = ( )(p q) N

1

— (= 1)(g—p)m —A) >0,

pqm(( )q—p) )

with
9 9

pocl—lqOéQ—t - pal—tqa2—17
since t > 2, ¢ > p > 2 and m > 1; therefore (t — 1)(¢ —p)m > 1 and 0 < A < 1.
Then pg(p,t) < po(q,t) whenever p < g and ¢t € {2,..., min{ay, as}}. [ |

2.4 Maximum order problem

The group Zy ® Zsago has order 4g + 4 and acts as a group of automorphisms
of a compact Riemann surface of genus ¢: for, consider the triangle group with
signature (0; 2,29 + 2,29 + 2) in Theorem 2.1.2 —see also [3, Example 9.9]. In
fact, this is the maximum order for a finite abelian group acting on genus g, as
Breuer [3, Corollary 9.6] proved from Maclachlan’s result [24, Theorem 4] —see
Theorem 2.2.1— for the minimum genus. This result follows easily from Theorem
2.3.2 as well.
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Corollary 2.4.1. The mazimum order for an abelian group of automorphisms of a

compact Riemann surface of genus g > 1 is 4g + 4.

Proof. Let A be any abelian group of automorphisms of a compact Riemann
surface of genus g of order N = pi" - - - p$*, with integers s > 1, a; > 0 and primes
pj < pj+1- The genus g must be greater than or equal to the minimum genus
0°(N) provided by Theorem 2.3.2. Let g* = 0°(N). It follows that N < 4g + 4 is
trivially satisfied when N < 9: N < 12=4¢g* +4 <49+ 4if N € {2,3,4,5,6,8},
and N < 16 =4g*+4if N € {7,9}.

Now let N > 9. Then N =2¢*+1<29+1<4g+4if N is prime. If N > 9
is not prime and a; = 1, let N = p;1q for an integer ¢ > 1, p; f ¢ and p; < p for
every prime p|g. Then 4¢* +4 = N(2(p1 —1)/p1 —2/q) + 6, s0 4g* +4 =N + 2
if pp =2,49"+4= N+ q if p; = 3. Since 2(p; — 1)/p1 grows and 2/q decreases
with increasing py, and ¢ > 7 if p; = 5, then 4¢* +4 > g—gN + 4 if p; > 5. Hence,
4g+4 > 49" +4 > N provided that N > 9 is not prime and oy = 1.

Finally, we prove that 4¢g* +4 > N if N > 9 and o; > 1. Indeed, let us
write N = p?q for an integer ¢ > 3 if p; € {2,3} and ¢ = 1 or ¢ > p; otherwise.
Then 4g* +4 = N(2(p; — 1)/p1 — 4/p1q) + 8, s0 4" + 4 = N if p; = 2, and it is
also straightforward to check that 4g* +4 > N for the cases {p; = 3,¢ = 3} and
{p1 = 5,q = 1}. We have 4g* + 4 > N also for greater values of p; and ¢, since
2(p1 — 1)/p1 grows and 4/p;q decreases with increasing values of p; and g. [



3 Abelian actions on bordered

Klein surfaces

In this chapter, we state necessary and sufficient conditions for a finite abelian
group to act as a group of automorphisms of some compact bordered Klein surface
of algebraic genus p > 1. This result provides a new method to obtain the real
genus and to solve the maximum order problem of abelian groups. We also compute

the least real genus of abelian groups of the same order.

3.1 Bordered surface-kernel epimorphisms

In this section, we establish necessary and sufficient conditions for a given finite
abelian group to act as a group of automorphisms of some compact bordered Klein
surface, i.e., we find conditions on the signature of a proper NEC group A so that
an abelian group A is isomorphic to A/T" for some bordered surface group I'. In

such a case, A is a group of automorphisms of the bordered Klein surface #/T".

The signature of A must contain some period cycle —otherwise A would not
have any normal bordered surface subgroup. Moreover, the following lemma shows
how the period cycles of A look like. It was stated for nonorientable Riemann sur-
faces in [18, Corollary 2.3]. The proof included here for completeness is much the

same though slight changes are needed so as to apply to bordered Klein surfaces.

Lemma 3.1.1. Let A be a finite abelian group and A an NEC group. If there
exists a surface-kernel epimorphism A — A, then every link period equals 2 and
no period cycle has only a single link period. If the order of A is odd, then every

period cycle is empty.

Proof. Let 0 : A — A be a surface-kernel epimorphism. As A is abelian, we have

33
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0((cij—1ci;)?) = 0(c;;_1)0(c};) = 1. Hence ng; = 2; otherwise n;; would be even and
greater than 2 and thus ker § would contain the orientable element (cij,lcij)Q of

finite order n;;/2, so that ker § would not be a surface group.

Assume that (n;;) = (2) is a period cycle. Then (cioci1)? = 1 and 0(cipeir) =
O(e; 101-061-01-1) = 1. Therefore c;oc;; would belong to ker ¢ and would be an ori-
entable element of finite order.

Finally, assume that the order of A is odd and the signature of A contains a
nonempty period-cycle (n;1,...) = (2,...). The order of 6(c;;) divides both |A|
and 2 (since ¢; = 1), hence (c;;) = 1 for all j and thus ¢;;_1c;; € ker 6 would be

an orientable element of finite order 2. [ |

Theorem 3.1.2. Let A be an NEC group with signature (g; £; [mq,...,m.]; {(=)%,
(2,%42,2),...,(2,%.,2)}), k > 0,e >0, s; # 1, and a nontrivial abelian group
ARTLY S Ly & -+ DLy, wheret =0, v; > 2, v;|Vi1, V1,...,V_m are odd and
Vtemal, - - -, U are multiple of 4 for some integer m < t. Let also w =ng+k — 1,
S=cec+Sc1+-+8sk n=21if +is the signature sign of A and n = 1 otherwise.
Then, there exists a bordered surface-kernel epimorphism A — A if and only if

(1) m; =2 ift =0, my|vy if n =0 and m; | lem(2,v;) otherwise for all i,

(7)) ift >w andi € {1,...,t—w}, then every elementary divisor of Z,, divides,

at least, t —w + 1 — @ proper periods,

(ii) if m+n >w+ S — 1, then at least m +n —w — S + 1 proper periods are

even,
(i) if m+n =0, then k =«¢,

(v) if m+n=1, then s; is even for all i.

Proof. Let 6 : A — A be a bordered surface-kernel epimorphism.

(7) The order of 6(x;) is m; for all i (see Lemma 1.4.5). The order of every
element of A divides
2 if t =0,
expA =, it n =0,

lem(2,v;) otherwise.
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(i) Suppose that t > w and let ¢ be a prime dividing vy, f1; = [1;(q) as defined in
Section 1.3 and «, ..., a; be integers such that ¢“|v; and ¢**! { v;. By (1.7), the
w integers a1, - - ., may take any value, but the following ¢ — w inequalities
must hold:

aq < Hr—t+w+1, sy Q-1 < Hr—1, Ay < Hr

(note that «; # 1 if ¢ = 2 since either v; is odd or 4|v;). It follows that ¢** divides,
at least, t — w proper periods, ¢*? divides, at least, t — w — 1 proper periods, and

so on —recall that fi; < fij11.

(7ii) As 0 : A — A is bordered surface-kernel, then there is, at least, one
reflection in A that belongs to ker#. This reflection is conjugate in A to some
canonical reflection, say ¢y, and thus ¢y € kerf as well. Let N = <Ckl>A be
the normal subgroup generated by cg;. A presentation of A/N is that of A with
the additional relation ¢;; = 1 and thus a presentation of (A/N),, has generators

T, €;, Cij, A3, by OT X4, €, ¢;5, d; and relations

™

; 2
i=Lhrmeerrep=1,¢=1, e =1

m

or I,

; 2 2 2
i=1 memeey s egdy o dy =1, ¢ =1, o = 1

Computing the Smith normal form of its relation matrix gives (A/N)up =~ Agp/Zo.
This is the same abelianization as for A but

SyZQ(T((A/N)ab)) ~ Zzs_l ® 7~ P---PZ

on1(2) onr(2)"

Now, by the universal property of the quotient group, there exists a unique homo-
morphism ¢ : A/N — A such that ¢ om = 6, where 7 : A — A/N is the canonical
epimorphism. Since # and 7 are epimorphisms, ¢ is onto as well, so we can ap-
ply Breuer’s conditions (1.7) —replacing Ag, by (A/N)ap— to the epimorphism
¢ (A/N)yp — A, where pon’ = ¢ and 7 : A/N — (A/N), is the canonical

epimorphism; in particular, for ¢ = 2 and i = 1,
ng+k—1+ Ny(1l) = na(l) = m+n.

If we let 9 be the number of even proper periods, then the number of nontrivial
cyclic factors of Syla(T((A/N)a)) is No(1) =1 + S — 1 and it follows that ng +
k—1+rs+S—1>2m+mn, hencera >m+n—w-—5+ 1.
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(7v) The order of A is odd (m+n = 0), so the claim follows from Lemma 3.1.1.

(v) Let Syla(A) = Zgoa, (M1, ..., 0is;) = (2,2,...,2). Since ¢;; has order two
then 6(c;;) must belong to Zae and has order 1 or 2, so either 6(c;;) = 0 or 2~ for
all j. Also, 0(cio) = 0(cis;) by the relation e; *cipeicis, = 1 and 6(cij—1) # 0(cij) for
Jj=1,...,s; (otherwise §(c;j_1¢;;) = 1 and ¢;;_1¢;; would be an orientable element

of order 2 in ker ). This is possible only if s; is even.

We prove the sufficiency of the conditions by defining epimorphisms 6, : A —
A, for each prime ¢ in the set {q1,...,¢\} of prime numbers dividing the order of

A, and a surface-kernel epimorphism 6 : A — A as the direct product epimorphism

0:A—A:g '—>9(g) = (0q1<g)?"'79(b\(g))'

For readability, we let p; = u;(q) —see Section 1.3— in the definition of each
homomorphism 6,. Also, we assume that p; < pt;41; otherwise, there is a permu-
tation —in general, different for each value of ¢— such that fi; = pir;), fii < i1
and we replace x; by x; and p; by [i; in the definition of 6,(z;) below —so that

the order of 0(x;) is m;.

Let Ay & Zgoy @ -+ @ Zgom+n be the 2-Sylow subgroup of A (a; = 1ifi < n
and o; > 1if ¢ > n). If m+n =1, we define 0(cig) =0 if k = ¢, O(cyg) = 271 if
k> ¢, 0(cip) =2 fori =2,...,¢ and, for a nonempty period cycle, we assign

0 and 2%t~ 1 alternatively. If m +n > 1, we consider the sequence

C20y - -+ 5 Ce05 Cet1,05 - - - 5 Cetl,s5c01—15 -+ » » CkOy -+ 5 Chysp—1 (31)

containing S — 1 elements (we rule out the elements cjy and ¢, for i > €). We
let Oa(c19) = (0,...,0) and assign (2°171,0,...,0) to the first element in that
sequence, (0,292710,...,0) to the second element, and so on until we assign
(0,...,0,29m+=1) to the (m +n)th element; then we assign again (2°171,0,...,0)
to the (m + n + 1)th element, etc.

Finally, we define
62(01‘52.) = 92(61'0) for ¢ > e.
It follows that 6y preserves the relations cfj =1 and e; 1Ci0€icisi =1, Oy(cij_1¢45)

has order 2 and 65(c;;) is trivial or has order 2.

We note that ¢;p € ker f; and that the images of the first min(n, S —1) elements
min(n,5—1 .
in the sequence (3.1) generate the subgroup Zy® e )GBZQ of Ay, since Oy(ca0) =

(1,0, e ,0), 62(030) = (O, ]_,0, “u ,O), etc.
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Let

Y= €1y ooy Yhel = €k—1, Vk = A1, Vkt1 = b1, -y Yw—1 = Qg, Yo = by,
or
M= €1y Vo1 = €1, Ve = A1, - - Y = dg,
according to the sign of the signature of A, and
-1 ifg=0,
0=40 if g >0 and sign(A) is ‘+’,
—2 if ¢ > 0 and sign(A) is ‘—’,

We define 0, on the canonical generators x;, e;, a;, b; or d; as follows: if S —1 >

and w > m,
Os(x;) = (0,...,0,20m+n= 0 G =1 ...,71,

O2(vi) = (0,...,0), i=1,...,w—m,
O2(;) = (0, mtn-wti=1.0,1,0,. 27%.,0), i=w—m+1,...,w,

ifS—1>nand w<m,

02(1’@'):(0,...,0,20‘””"7}“), 1=1,....,r—m-+w,

Oy (z;) = (0, mtnonwii=10, 1,0, rhw=isl 0, 29m+n—H)

62(.%‘2) = (0,...,072am+"7#i), 1=1,...,m,
,0), i=1,...,w—m—n+S5—1,
Os(7y;) = (0,mtn—wti-1.0,1,0,. %<2 .,0), i=w—m—-n+S9,...,w,

>
[\
—
=2
~—

I
—~
=

ifS—1l<nandm+n>w+95—-1,

Os(x;) = (0,...,0,20m+n" ) =1 ....r—m—-n+w+S—1,

O (z;) = (0, mtn—rwii=1 () 1,0, rHw—izl (, 2%m+n =)

37
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and

Os(ex) = if m >mng >0,
(0,. min( 51 0,6,...,0, —u+ ) if m<ngorg=0,

where u = >77 | 29mtn=Hi,

Now, let ¢ # 2 be a prime number dividing |A| and A; & Zge1 @ -+ & Ly
be the ¢g-Sylow subgroup of A —note that some factors of A, may be trivial, i.e.,
a; =--- =y =0 for some t' < t. We define 6, as follows —note that r +w >t

by condition (77):

eq(Cio):(o,...,O), izl,...,k,

,....,r—t+w ift>w,
O (i) = (0,...,0,¢" "), i=
1.7 if t < w,

t=r—t+w+1,...,r ift>w,

0,(v:) = (0,...,0), i=1,...,w—t ift<w,
1,...,w if t > w,
0,(v:) = (0,.t=wtiz1.00,1,0,. 074 .,0), =
w—t+1,...,w ift<w,
(—1,...,=1,6,.1971 6, —u—+0) ift>ng>0,
O4(er) = ]
(6,...,0,—u+9) ift <ngorg=0,
where u = Y77, g™ #. The long relation is clearly preserved by 6.

No element of finite order other than some reflections belongs to kerf since
the elements 6(c;;_1¢;;) have order two and the order of #(x;) is m;. Indeed,
by condition (7), any prime number dividing m; also divides |A|, hence m; =

qllu(fh) L qﬁfi(fb\) (

follows that |0,(z;)| = ¢*@ for all i (taking into account condition (i) for i =

recall that u;(q) = 0 for a prime ¢ not dividing m;). Also, it

r—t+w-+1,...,rif t > w and condition (i) fori =r—m-—-n+w+S,...,r
if g =2and m+n>w+S5-—1). As §,(x;) and 0,(z;) belong to different

primary components of A if ¢ # ¢, the order of §(z;) = (6, (x:), ..., 0, (x;)) is

1Ni(Q1) 1i(gn) wilqr) (ax)

lem(g s ) =4 S\t =m,.
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Therefore, 0 is surface-kernel. We also notice that the surface group ker@ is
bordered since it contains, at least, one reflection (for instance cig, or .41 if
m+n=1and k > ¢).

Finally, 6, is onto since, by conditions (7) and (i), A, is generated by the
images of the canonical generators z;, e;, ¢;; and a;,b; or d;. Therefore, 6 is onto
as well. For, consider an elementary divisor ¢®@ of A and the generator h =
(0,...,0,1,0,...,0) of some cyclic factor

H={0}& - ®{0} & Zpw ®{0} & & {0}

of A,. Then, h = 6,(g) for some g € A. Obviously, §(g) may have nontrivial com-

ponents in some other primary component A, for a prime ¢’ # ¢, but not the ele-
qﬂzt(‘l)

—%_@(g) has order ¢*(@ since ged(q, v,/q™@) = 1. Hence, (8(g»/4"")) = H. W

qet ()

0(g) since @ 0, (g) is trivial whenever ¢’ # ¢q. Moreover, the element

ment

Remark 3.1.3. For the surface-kernel epimorphism 6 defined in the proof of The-
orem 3.1.2, the number k' of boundary components of the bordered Klein surface
H/kerf can be computed by means of [11, §2.3], namely, &' = 2"v; - - - v;/|0(e1)|
if m+mn#1ork=¢, where [f(e1)| = 1,2,v4_y41 Or 204441 depending on the
parameters t,m,n,w and S; if m+n =1and k > ¢, then &' = 2" 1y, - - - vy (k —€).
Another epimorphism 6 may provide a Klein surface H/ ker 6 of different topolog-

ical type, and so with a different number of boundary components. |

As a consequence of the Riemann-Hurwitz formula (1.2) and Theorem 3.1.2,

we can find out whether an abelian group acts on genus p > 1.

Corollary 3.1.4. Let Ax 723} ® Zy, & -+ D Zy, be an abelian group, where t > 0,
v; > 2, vi|vis1, V1, U are odd and Vi_pyiq, ..., v are multiple of 4 for some
nonnegative integer m < t, and let p > 1 be an integer. Then, A is a group
of automorphisms of some compact bordered Klein surface of algebraic genus p
if and only if there exist integers n = 1 or 2, g,k,€,Sci1,---, Sk, M1,..., My and
w=mng+k —1 such that

(1) m; =2 ift =0, my|ve if n =0 and m; | lem(2,v;) otherwise for all i,
(i) ift >w andi € {1,...,t—w}, then every elementary divisor of Z,, divides,
at least, t —w + 1 — @ proper periods,
(ii) if m+n >w+ S —1, then at least m +n —w — S + 1 proper periods are

even,
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(iv) if m+n =0, then k = ¢,
(v) if m+n =1, then s; is even for all 1,
(vi) and
1

p—1 - ( ) Set1 + o+ Sp
— = k—2 1—— .
2701 - -0y g+ +; m; + 4

3.2 Real genus of an abelian group

The real genus of cyclic groups was first obtained by Bujalance, Etayo, Gamboa
and Martens in [12]. Shortly after, McCullough stated the corresponding result
for noncyclic abelian groups in [29, theorems 2.7 and 3.2]; it was given an explicit
expression in [6, Theorem 4.1]. By means of rather different methods (that of the
combinatorial theory of NEC groups used herein), both results also follow from

Theorem 3.1.2, as we discuss hereunder.

Later, further results on the real genus of cyclic groups were established (for
certain group orders) concerning cyclic groups acting on bordered Klein surfaces
of fixed orientability and number of boundary components; see [11, Chapter 3]
and [13, 15, 16]. However, those results are beyond the scope of Theorem 3.1.2,
since we cannot fix the orientability and number of boundary components of the

quotient H/ ker # in this theorem.

Theorem 3.2.1. [12| The real genus of the cyclic group of order N is

2 if N =2,
p(Zy) =3 (q—1)(N/g—1) if 1N and Njq> 1, (3.2)
(¢—1)N/q otherwise,

where q is the smallest prime divisor of N.

Proof. We obtain the expressions in (3.2) from NEC groups with signatures (0; +;
[2,2,2;{(=)}), (0;+; [¢, N/ql; {(=)}) and (0; +; [¢, N]; {(—)}), respectively, by me-
ans of the Riemann-Hurwitz formula. These NEC groups fulfill conditions of Theo-
rem 3.1.2. As we now prove, it follows from Theorem 3.1.2 that 1+ Nu(A) > p(Zn)
for any other proper NEC group A with signature (g; &; [m,..., m,]; {(—)%,
(2,%%et1,2) ..., (2,.5.,2)}), k > 0, fulfilling conditions of Theorem 3.1.2 (hence
> = 0if N is odd and it is even if N is even).
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Let N = ¢“u, with ¢ not dividing u. We have to prove that
S pA) =w—1+ Y, (1—1/my) + %2,
where w =ng+k—1,s=73%,s; and
., pZy)—1 J1-1/¢g—1/u ifa=T1andu>1,
e N - 1/q—1/N otherwise.
This is obvious if w > 1. If w = 1, then » > 1 or s > 0 (otherwise, u(A) would
not be greater than 0); if » > 1, since ¢ < m; by condition (i) of Theorem 3.1.2,

it follows that u* < 1 —1/¢ < 1 —1/my < p(A); if s > 0 then ¢ = 2 and
pt < 1/2 < p(A).

If w =0, then r > 1 by condition (i) of Theorem 3.1.2. Also, r+ s/2 > 2 since
pu(A) > 0. Clearly, p* < p(A) if r+s/2 > 4.

In case that r + s/2 = 3 we have u(A) > —1+3/2 = 1/2. If ¢ = 2, then
pt < 1/2 < p(A). If ¢ > 2, then s =0, r =3 and ¢ < my, hence p* <1 —1/¢q <
1—1/mq < p(A).

Otherwise, r + s/2 = 2. Iff w = 0, r = 1 and s/2 = 1, then ¢ = 2 and
p(A)=1/2—=1/my. Also, p*=1/2—-1/uifa=1andu>1and p*=1/2—1/N
otherwise. But p(A) = p* in both cases: as a result of condition (7) of Theorem

3.1.2, m; =wuif a=1and u > 1 (since v; = u), and m; = N otherwise (v; = N).
Finally, if w =0, r = 2 and s = 0, we consider two cases:

i) ged(my, mg) > 1. Then myme = hN, by conditions (%), (i) and (i) of
Theorem 3.1.2, for some integer h such that h|N and ¢ < h < m; < N. Therefore,
1/my+1/mgo < 1/h+ 1/N and thus

1

fc1o 1 <1+t b2
o= q N h N = mi; Mo

A
|
|
|
|
I

=

=

ii) ged(my, my) = 1. Then mymy = N—hence N is not prime—by conditions
(i), (ii) and (iii) of Theorem 3.1.2 and p(A) — p* = f(my), where
1 1 =z qg ifa=landn>1,
fa)="4 5w =
g N =z N 1 otherwise.
It suffices to show that f(mq) > 0 for every admissible value of m;. We first note
that

f@=7(5)="5" fM+1%=f@i):q@14>+€_§_l
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and f is strictly convex upwards in (0, +00) since f”(z) = —2/23. Since mymy = N
and ged(mq, mo) = 1, the admissible values of m; and m are in the interval [g, %]

if @« = 1 and in the interval (¢+1, q%) if @ > 1. In the first case, u > 1 (since N is

not prime), € = ¢ and f(q) = f (%) = 0; in the second case, f(¢+1) = f (q%) =
1 1

D T 0 since ¢ < ¢®! and ¢ < u. In both cases, f(m;) > 0 since is

strictly convex upwards in the interval of admissible values of m;. [ |

Remark 3.2.2. The real genus of the groups Z2, Z3 and Zy & Zg, (u > 1) was
obtained in [29, Theorem 3.2]:

Theorem 3.1.2 allows us to obtain signatures of NEC groups attaining such alge-
braic genera: (0; +; [—]; {(2,2,2)}), (0; +; [—]; {(2,2,2,2)}) and (0; +; [2,2ul;
{(—)}), respectively, fulfill conditions of Theorem 3.1.2 and it can be proved that
any other signature fulfilling such conditions leads to a greater or equal algebraic

genus. |

Theorem 3.2.3. [29, Theorem 3.2][6, Theorem 4.1] The real genus of a noncyclic
abelian group A different to 2.2, 7.3 and Zy ® Loy (u = 2) is p(A) = 1 + |A| p*,

where * is, with the notation of Theorem 3.1.2,

1 1
a)t_l_i_..._ z'fn<m,
V1 Vt—n
1 1 0 .
b)t—l _______ + if2m+0 <m+n <2t —9, (3~4)
U1 Vi—e 205
—2t+1
C)t_1+m+”4 + if2t <m+n,

e=(m+n—20)/2,d=1ifm+n is odd and § = 0 otherwise.

Proof. The real genus is attained by an NEC group A* with signature

a) (05 +; [or,- - va]s L)1)
D) (05 +; [v1, s Uy minsy, (04 1)vy_manms]; {(=) "3 1Y)
C) <O7 =+ [_]7 {(_)t7 (27 m+7.z'—'2t+17 2)}>

respectively. This NEC group fulfills conditions of Theorem 3.1.2 and p(A*) = u*.

Now, we prove that it follows from Theorem 3.1.2 that p* < p(A) for any other
NEC group A fulfilling such conditions.
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We can assume that A has signature

(0; +; [my,...,m.]; {(=)*1,(2,.5.,2)}), (3.5)

where m;|m;11, s # 1, sisevenif m+mn =1and s =0 if m +n = 0. The reasons

for this are the following.

The signature

(g £y gy omy]s {(5)5,(2,%5,2), ..., (2, 5+, 2) })

defines an NEC group A that fulfills conditions of Theorem 3.1.2 and, by (1.3),
1(A) < p(A) if A is an NEC group with signature

(g; £5 Ima,...,me]; {(—)5, (2,551, 2),...,(2, 5., 2)})

also fulfilling such conditions. Therefore, we can assume that my|-- - |m,.

In order to prove that p(A) > 0, we first note that A ~ A if » < 1. So, in case
that k > 0, this signature does not define an NEC group —i.e., u(A) <0 < pu(A)—
if and only if r > 1, g =0, k=1, sy =0 and m,_; = 1 (note that, if r = 2, then

my = mg = 2 if and only if m; = My = 2, so that also A ~ A in this case).

Now, let w = 1g + k — 1. Obviously, u(A) > 0 if w > 0. By condition (ii) of
Theorem 3.1.2, t > 1 and w = 0 means that m, 1 > 1;if t =1, then m +n > 2
since A is noncyclic, hence, if also w = 0, either s; > 0 or, by condition (%ii), there
are two or more even proper periods and thus m,_; > 1; finally, if ¢ = 0, then
m; = m; = 2 (and thus u(A) = p(A)). Therefore, pu(A) > 0.

Finally, consider an NEC group A, with signature
(0; +5 [ma,ymy s {(2)7F1 (2,2, 2))),

where s = 3°F | s; and 7, g and k are the parameters of A. It is straightforward to
check that u(A,) = p(A) and A, fulfills conditions of Theorem 3.1.2 if A does.

So assume that A has signature (3.5) and let

S

= p(A) —w—l—l—Z(l—) 1

and w* =n, (m+mn—439)/2 or t for case a), b) and ¢), respectively, of (3.4).
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If t < w, then p* <t —1< w—1< p for cases a) and b). For case c), if
m+n—2w—s+ 1 <0, then
m+n—2w+1 w—1 .

— >

,u}w—l—f-i}w—qu

and, if m+n—2w—s+1> 0, then >(1 —1/m;) > (m+n—2w —s+1)/2 by

condition (%) and

m+n—-—2w—-s+1 s m+n—2t—s+1 .
+ - =u + 1 =

>w-—1
w=zw—1+ 9 1

sincem+n—2t—s+1>2m+n—2w—s+1>0.
Otherwise, t > w. If t > w > w* —hence we factor out case ¢)—, then
t—w 1 t—w* t—w 1
w < w*—l—l—Z(l—)—i— Y 1= w—1+z<1—) <
i=1 Vi i=t—w+1 -1 (%
since, by condition (77), v1|My_trwits - -y V|0

If t > w = w* —we also factor out case ¢)—, then, in case a) and case b) with
m+n even (§ =0),

t—w 1
wo= w—1+2(1—v> < p
i=1 i

by condition (7)) as above. In case b) with m +n odd (§ = 1),

Lo, b n s
2'Ut7w B Vt—w 2Utfw - my 4

1—

provided that s > 2, and, if s = 0, then there is, at least, m +n — 2w =m +n —
(m+n —1) = 1 even proper period by condition (7i) (note that S — 1 = w if
s = 0) and thus 2v;_,|m, since v;_,, is odd (note that t —w < t — m since, in case
b), w* = m). Therefore, u* < p either if s > 0 or s = 0.

Finally, if t > w and w* > w, we deal with cases a), b) and c) separately. For

readability, we rename the first ¢ — w integers v; by defining v} as follows:

1 Ce 1 o e Ui_w
\ I 1 \J

! / / !
vpoce vr—t+w Ur—t-‘,—w—i—l T Uy

Hence, v}|m; for all i by condition (7i), and thus 1 — 5 <1 — L.

!
v; m;
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a) t > m >n=w">w. We consider the following partition of {1,...,r}:
L ] L A B C ]
r—t+w n—w—s+1 m—-n n—w
ITI
L p— ]
L — ]

(#A < t —m in the figure, but #A may be greater than t — m). Let A = @& if
n—w-—s+1<0. In case that s =0, let #4 =n — w.

Note that 4|v; if i € BUC and v; is odd otherwise, and p* = n—1+3,0(1 i,)

If w+ s> n (hence s > 2 since w < n), then

1 s _ 3n—w) n—w
Z<1—>—|—> + =n—w
- 1 1 1

since 4|m; for i € C, and thus p>w —1+Y,00(1— =) +n—w > p.

fw+s—1<nands > 2, then m+n—2w—s+1> 0since m >n > w, and,
by condition (iii), m; is even if i € {AUBUC} and thus r > m+n—2w—s+1=
#{AUBUC} Let C =CiUCy, with Cy ={r—n+w+1,...,r —s+ 1} and

={r—s+4+2,...,r}, #C, = #A, #Cy = s — 1. ForzeAvlsoddandmzls
even, hence 2v}|m;. Also, 4/m; for j € Cy, hence 4vj|m; if i € A. Then

S0-m) 2 0-m)2 5 (-a) 50w

(2

1 1 1
=n—w— 1 l1—-————|>n—w-— 1 1——
n—w-—=s+ +ZA:< 20 4v’> n—w-—=s+ +XA:< v’)

% %

As 4|m; for 1 € Cy and #Cy = s — 1,

S 1 S 1
o= V42> (1-2)+2=s-1 _1
Z( >+4 (s )( 4>+4 s—lrg=s

Cs m;
Ifw+s—1<nands=0,then Cy =@, #A =#C =n —w and

Z(l—?)>n—w+§<1—;>.

AUC m; i

It follows that p* < p if either s > 2 or s = 0.
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b)yt—6> %”_5 = w* > w. We partition {1,...,r} as follows:
L [ | [ | A ]
r—t+w t—w* w*—w
t—w
Noéte that 1— m =1- ﬁ + 2v£w* and thus p* = w* —1+3,4(1 - vi;) +
2Ut7w* :
b.1) s 2( w). Hence ZA(l —Ly+ 2> 2w —w) + Lw —w) =

f* since 3 < vy|m; for i € A and
#HA=w* —w. Therefore,,u}w 1+ZZ€A(1——)—|—w —w—f—m/,u

b.2) w* —w+ 1< s <2(w* —w). If vy is even, then 4 < vy|m,; for i € A and
t = m, hence m + n is even since 2m < m +n < 2t if m + n is odd, and thus
w*=n=m =1tand p* = w* — 1. Therefore,,u}w—l—i—ZA(l—m%)—i—i >
w—143(w* —w) + F(w* —w) =w* — 1= p*. Otherwise, v; > 3 is odd. By
condition (777), there are, at least, 2w* — 2w — s+ 1 > 0 even proper periods, hence
m; > 6 for these proper periods since also v1|m; and v; > 3 is odd (note that
t—w>2(w*—w)—s+1since t > w* and w* —w — s+ 1 < 0). Therefore,

1 2 5
ZA:<1—Z>+4>3(10—1—5—1—w*)—l—6(2w*—2w—s—|—1)—i—f1

. s—|—2> . +1 n
Zw —w > w' —w
12 6 204y

and p > p*.

b.3) s < w* —w + 1. The number of even proper periods is, at least, 2w* —
2w —s+1+90 > 0if s > 2 and 2w* — 2w+ > 0 if s = 0; we partition

{r—2w*+2w+s—49,...,r} (but {r —2w*+2w+1-—90,...,r} if s = 0) as follows:
D B Ay Ay
I§l w* —w—s+1 ' w*—w—s+1 ' s—1 I

(#A1 =#B =w"—wand Ay = @ if s =0). Asw* > m, we have w* —w > m—w
and thus v} is odd and 2v}|m; for i € B or D. Therefore,

S

DUB m;

* 502 20y
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B3

DUB B 1
-3 (1- )+ T+ X
DUB 7 D B
>§:<1—1>+ i +w —w—s+1
g DUB Ui 204

since #B = #A;, m; < m; it i € B and j € Ay, and v} < v

i € D. Also, if s > 2, then m; > 4 for i € Ay since 2v1|m; (m; is even, and v is
*

r— w*_;’_,w - Ut_w* lf

odd since t > m; recall that v; divides, at least, t —w > w* —w > s — 1 proper

periods) and thus
1 s 3 s 3
- ) +2>2%-1D+2=s-2>5-1
S(-p) iD=

Therefore

1 0
s ()t (1)
DUBUA1UA2 m; 4 DUB v; 2vt7’w*

and thus p* > p.

)t =w">w, p="E28 T —w<m4n—2w—s+1(but t —w <

m +n — 2w when s = 0), we partition {1,...,r} as follows:
L B [ | C ]
r—t+w t—w

m4+n—2w—s+1

(with #{BUC} = m +n — 2w when s = 0). Then, m; > 4 if i € C since m; is

even and v; > 3 divides m;. Therefore,

w—l—i—Z(l—) Z}w—l—i— “(#B) + (#0)+f

BUC

1 3
:w—1—|—§(m+n—t—w—s+1)+z(t—w)+i

m+n—2w—s+1—(t—w)
4

*

if s > 2, and, if s =0,

*

> p

*

m+n—2w;1—(t—w) >

1 3 *
u}w—1+§(m+n—t—w)+1(t—w):u +
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Ift—w>m+n—2w—s+1 (hence s > m+n—t—w+1> 0since 2t < m+n

and t > w), we partition {1,...,r} as follows:

m+n—2w—s+1

Then, v; > 3 divides m;, hence m; > 3, if i € B or C; in addition, m; is even,
hence m; > 4, if 1 € C. Therefore,

s 3
w—l—i—Z(l—) S w—142 (#B) Sgo)+ 2
BUC 47 4
m+n—4t+2w+1+42s
12
and thus p > p* since s >m+n—1t—w+ 1. [

=t—1+

The following examples highlight some cases that arise in the straightforward,
routine proof of Theorem 3.2.3 by means of Theorem 3.1.2; as we noted, we can
focus on NEC groups with signature (0; +; [mq,...,m,]; {(=)*%(2,.5.,2)}) and

mi’miJrl-
Example 3.2.4. Let ¢ > 2 be a prime number.

a) Let A~ Zo®Z,®Zsy DLy, By (3.4.a), p(A) = 64¢> —40¢* + 1, attained by
(0; +5 [¢,4q); {(—),(—)}). If A is an NEC group with signature (0; +; [my,...,
m,]; {(—)}) fulfilling conditions of Theorem 3.1.2, then r > 3 and, at least, three
proper periods are multiple of ¢, two proper periods are multiple of 4¢ and three
proper periods are even. For the signature (0; +; [2¢,4q,4q]; {(—)}), we obtain
1+ |Al p(A) = 64¢ — 32¢° + 1 > p(A).

b) Let A= Zo ® Zy ® Zy ® Zyy. By (3.4.b), p(A) = 16¢> — 8¢ + 1, attained by
(0; +; [2q]; {(—),(—)}). If we consider the signature (0; +; [mq,...,m.]; {(—)}),
then, by Theorem 3.1.2, » > 3 and, at least, two proper periods are multiple of
¢, one proper period is multiple of 4¢ and three proper periods are even. For
instance, we obtain 1 + |A|u(A) = 24¢®> — 12¢ + 1 > p(A) for the signature
(05 +5 [2,2q,44); {(—)}).

c) Let AxZy @ Zy @ Ly ® Ly ® Ly, By (3.4.c), p(A) = 192¢ + 1, attained by

(0; +; [=]; {(=), (=), (2,2)}). For the signature (0; +; [ma, ..., m:); {(=), (=)}),
Theorem 3.1.2 gives r > 3 and, at least, one proper period is multiple of 4 and
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three proper periods are even. We obtain 1 + |A| u(A) = 224g+ 1 > p(A) for the
signature (0; +; [2,2,4]; {(=), (—)}). u

3.3 Least real genus of abelian groups of the same order

We may take advantage of the results of the previous section: for a given integer
N > 1, we find the least algebraic genus of any bordered Klein surface of algebraic
genus p > 1 on which some abelian group of order N acts. For ease and by abuse
of notation, we denote it by p(N) (it is not the real genus of a group but the least

real genus attained in a family of groups).

Theorem 3.3.1. The least real genus of abelian groups of order N > 1 is

2 if N <4,
5 if N = 16,

p(N) = ' L
N-—-1 if N > 4 is prime, and
(q—1)(N/q—1) otherwise,

where q is the smallest prime divisor of N.

Proof. In case that N is prime the result follows from (3.2), and the case N = 16
follows from computing the real genus of the five abelian groups of order 16 by
means of (3.2), (3.3) and (3.4) —namely, p(Za @ Zoy @ Zy © Z2) = 5.

Now, assume that N is a composite odd number, say N = ¢“u, ¢ 1 u. For any

noncyclic abelian group A ~ Z,, & Z,, of order N,

p(Zy) < p(A) if « =1 and
p(Zg ® ZLinsg) < p(Zn) < p(A) if o >1and A% Z;® Znyg.
Therefore, p(N) = (¢ — 1)(N/q — 1). For, we notice that

p(A) -1 _ p(Zy)—1
N N

+ f(v),

where
1 e 1 =z g ifa=1andu>1,
)=t o1t o
¢ N =z N 1 otherwise.
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As viv9 = N and vy divides v,, the admissible values of v; are in the interval
[¢,V/N]. The function f is increasing in this interval since f'(x) = 1/2® — 1/N.
Also, v1 2 qand f(¢) =0ifa =1 (i.e., € = q), hence f(vy) = 0 and p(Zy) < p(A).
Ifa > 1 (ie., e=1),then f(q) < 0and f(g+1) > 0since ¢ < ¢* ! and ¢ < u (note
that v; = ¢if @« =2and u =1, i.e., if N = ¢*); hence p(Z,®Zy,,) < p(Zn) < p(A)
for A % Z,®Zy,q in this case. Also, p(Zy) < p(A) for any noncyclic abelian group
AxZy ® - @ Zy, of order N and t > 2. Indeed,

p(A)—1 p(Zy)—1 1 € 1 1 ¢ ( 1>
= -+ = — — — 1——.
N N * q + N v v * ; v
Therefore,
p(A)—1  p(Zy)—1 1 € 1 1 t—=2
> -4 - - — __ -
N N + q + N v v + 2

since 1 —1/v; > 1/2. Hence p(A) > p(Zy) if t > 2 since 1/v; < 1/g and (t—2)/2 >
1/Ui'

Finally, we address even values of N different to 2 and 16. For N = 4, then
p(Z3) = p(Z4) = 2 by (3.3) and (3.2). For N = 8, then p(Z3) = p(Zy ® Z4) =
N/2—1 < p(Zg) = 4 by (3.3) and (3.2). Otherwise, if 41 N, then p(Zy) = N/2—1
and, if 4|N, then p(Zy © Zys2) = N/2 =1 < p(Zyn) = N/2 by (3.3) and (3.2),
hence p(N) is at most N/2 — 1 for such values of N. We now prove that p* > 1/2,
hence p(A) = 1+ Nu* > N/2—1, for any other noncyclic abelian group A of order
N by examining the three cases in (3.4):

a) n < m. In this case, p* =n— 14+ 312711 — 1/v;). As1—1/v; > 1/2 and
n < t, if follows that p* > 1/2 (note that A is cyclic if n =0 and t = 1).
b) 2m + 6 < m+n < 2t — 0. In this case,

t— m+n—34

—14+ > (1-1/v)+ 0/20;_min=s.

=1

_m—l—n—(5
N 2

*

1

Clearly, p* > 1/2 in the following cases: m+n—3§ > 2;m+n—3§ =2 and t > 1;
orm+mn—39=0and ¢t > 2 (note that m and n — ¢ have the same parity due
to the definition of d, so m +n — ¢ # 1). Otherwise, either u* > 1/2 or A is not
noncyclic different to Zy ® Zy/2, depending on the values of m,n — ¢ and t (note
that m <t and m < n —9):

eifm=1n—90=1andt=1,thenn=1orn =2, but n =2 is not possible
since m +n < 2t — J, hence n = 1 and thus A =~ Zo @ Zy/s;
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eifm=0,n—-0=2andt=0,then N =4 and A= Zy ® Zys;

eifm=0n—-0=2andt =1, then N = 4u (u odd) and A = Zy ® Zyy»
(n # 3 since m +n < 2t —90);

e ifm=0,n—90=0andt=0, then A is the trivial group;
e ifm=0,n—90=0andt=1, then A is cyclic;

eifm=0,n—90=0andt =2 thenn =1 (N is odd if n = 0) and thus
w=1—1/v;—1/2v9 > 1—-1/3—-1/6 = 1/2 since v; and v, are odd (m=0)
and 6 = 1.

eifm=1n—-90=—-1andt =1, then n =0 and A is cyclic.

eifm=1n—-0=—-landt=2,thenn=0and p* =1—1/v; — 1/vy >
1—1/3—=1/12 > 1/2 since vy is odd, v1|vy and 4|v,.

c) 2t <m+n. We have p* =t — 1+ (m+n—2t+1)/4. Therefore, u* > 1/2 if

t > 1since 2t <m+n. If t =0 (hence m = 0) and n > 5, then p* > 1/2 as well.
Otherwise, the abelian group (Z., Z3, Z3 or Z4) has been addressed previously.
]

Remark 3.3.2. The abelian group of order N acting on genus p(N) is unique
(Zo® 7y ® Ly ®Zs for N = 16 and either Zy or Zq @ Zy,q otherwise) unless N = 4
or 8. |

3.4 Maximum order problem

The maximum order problem for abelian groups was solved in [3, Corollary 9.6]
in case of Riemann surfaces of genus g > 1, and in [11, §4.5] for compact bordered
Klein surfaces of algebraic genus p > 1. As we now prove, this last result follows
easily from theorems 3.1.2, 3.3.1 and 3.2.3.

Corollary 3.4.1. The largest order of an abelian group acting on a compact bor-
dered Klein surface of algebraic genus p > 2 is 16 if p =5 and 2p + 2 otherwise.

Proof. 1f p = 5, then the largest order is 16 since, by Theorem 3.3.1, p(16) = 5
and p(N) > N/2 —1 > 5 for N > 16.
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Otherwise, we notice that the abelian group Zy ®Z, 1 acts on genus p since an
NEC group with signature (0; +; [2,p + 1]; {(—)}) fulfills conditions of Theorem
3.1.2, so the largest order is at least 2(p + 1).

Consider an abelian group A of order N that acts on genus p, so p > p(N). If
N # 16, then p(N) > N/2 — 1 by Theorem 3.3.1 —note that (¢ — 1)(N/q—1) =
N/2—14(q—2)(N —2q)/2¢— and thus N < 2(p+ 1).

Now, suppose that N = 16, hence p > p(16) = 5. If p > 7, then 2(p+ 1) > 16.
Finally, p # 6 since Zy @ Zo @® Zo & Zs does not act on genus p = 6 (by Theorem
3.1.2 and the Riemann-Hurwitz formula) and p(A) > 7 for any other abelian group
A of order 16 (by Remark 3.2.2 and Theorem 3.2.3). |

Remark 3.4.2. There are only finitely many abelian groups acting on some com-
pact bordered Klein surface of a given algebraic genus p > 1. For any abelian
group A acting on such a surface H /T, there is also a finite number of signatures
of NEC groups satisfying conditions of Theorem 3.1.2 and the Riemann-Hurwitz

formula.

Therefore, given an integer p > 2, Theorem 3.1.2 makes it possible to define
an algorithm for computing the set of all abelian groups acting on some compact
bordered Klein surface of algebraic genus p: for each abelian group A of order
|A] < 2p+2 (or |A| < 16 if p = 5), we can check whether there exists some NEC
group A fulfilling conditions of Theorem 3.1.2 and such that u(A) = (p — 1)/]A|.

For cyclic actions, Bujalance, Costa, Gamboa and Lafuente presented in [10]
an effective algorithm to obtain the order and ramification indices of finite cyclic
groups acting on some compact Klein surface of fixed topological type. Its design
is based on known upper bounds to the order of the cyclic group and some results
on cyclic actions, in the vein of Theorem 3.1.2, stated in [11, 17, 19]. |



4 . Abelian actions on nonorientable

Riemann surfaces

With regard to nonorientable compact Riemann surfaces, we study in this chapter
how to characterize the action of abelian groups on topological genus greater than
two. The case of odd order abelian groups is easily addressed with techniques used
above. However, even order abelian actions turn out to be more involved and we

have settled only certain cases.

4.1 General results

In [4], Bujalance established conditions for the existence of surface-kernel epi-
morphisms onto cyclic groups, on the basis of the following result stated by Singer-
man [34, Theorem 1].

Theorem 4.1.1. A finite group G is a group of automorphisms of a nonorientable
unbordered Klein surface of topological genus g > 2 if and only if there exists
a proper NEC group A and a homomorphism 6 : A — G such that kerf is a

nonorientable surface group without period cycles and O(AT) = G.

This prompts to say that a homomorphism 6 of a proper NEC group A into a
finite group G is nonorientable unbordered surface-kernel if ker 6 is a nonorientable
surface group without period cycles and #(A*) = G. The condition on ker# can
be translated into conditions on the orders of the image of elliptic generators x;
and reflections ¢;;.

Theorem 4.1.2. [4, Prop. 3.2] An epimorphism 60 : A — G of a proper NEC
group with signature (g; £; [mq,...,m.]; {(i1, ..., nis,), 0 = 1,...,k}) onto a fi-
nite group G is nonorientable unbordered surface-kernel if and only if 0(x;) has

order m;, 0(c;j) has order 2, 0(c;j_1 - ¢;j) has order n;; and 6(AT) = G.

\53
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In order to apply theorems 4.1.1 and 4.1.2 in what follows, we observe that the
existence of an element of A that belongs to both kerf and A — A™ allows us to
claim that 0(A™) = G if 0 is onto. Indeed, since A is a subgroup of index two in
A, if there exists an element u € kerf N (A — A™), then any h € A — AT can be
expressed as h = h'u for some b’ € At so that 6(h) = 0(h/)0(u) = O(h') and thus
O(AT) = O(A). This fact will be used without further mention in the proofs below.

As a result of Theorem 4.1.2, the signature of the NEC group fulfills the fol-

lowing conditions when we consider abelian groups.

Lemma 4.1.3. [4, Corollary 3.3][18, Corollary 2.3] Let A be a finite abelian group,
A a proper NEC group and A — A a nonorientable unbordered surface-kernel
epimorphism. Then every link period equals 2 and no period cycle has only a
single link period. If the order of A is odd, then the signature of A has no period

cycle.

4.2 Odd order abelian actions

When A ~ A/T is an odd order abelian group of automorphisms of the un-
bordered compact Klein surface H /T", the signature of A has no period cycles by
Lemma 4.1.3 and the signatures of A and I" have the same sign. When this sign is
‘+’, A is a Fuchsian group and the conditions for the existence of a surface-kernel

epimorphism A — A were stated in [3] as we have seen in Chapter 2.

Now, we obtain the corresponding result for actions on nonorientable Riemann
surfaces. The conditions of existence of a surface-kernel epimorphism are eas-
ily obtained from a basic property of groups and the factorization through the

abelianization of the NEC group.

Theorem 4.2.1. Let A be a proper NEC group with signature (g; —; [mq, ...,
m.]; {—}) and vy,... ;v be odd integers such thatt > 1, v; > 1 and v; divides
vir1. Then, there exists a monorientable unbordered surface-kernel epimorphism
N—Zy, & D ZLy, if and only if

(i) m;|v; for all i and,

(ii) if t > g—1, then every elementary divisor of Z,, divides, at least, t —g—1i+2
proper periods fori=1,...,t — g+ 1.
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Proof. Let 0 : A - A~ Z, & ---& Z, be a nonorientable surface-kernel epi-
morphism. The order of 0(x;) divides exp A = v;. By Theorem 4.1.2, |0(z;)| = m;

and thus m; divides v;.

Now, assume that t > g — 1 and let ¢ be any prime number dividing v;. Let 7 :
A — Ay be the canonical projection. The epimorphism 6 factors through A, so
there is a (unique) homomorphism @ : A,, — A such that § = for. Since 6 is onto,
0 is also onto and thus (1.7) holds: g — 1+ N,(i) > n,(4) for integers i > 0. These
inequalities impose some restrictions on the values of ay(q), ..., _g4+1(q). If we
suppose that a(q) > fi,—¢+4(q), then, at most, t —g of the integers fi;(¢) are greater
than or equal to a;(q) —recall that fi;(¢) < fii+1(¢)— and thus Ny(ay(q)) < t—g.
Also, ny(ai(q)) =t since a1(q) > 0, hence g — 1 + Ny(an(q)) <t —1 < ny(a1(q)),
which is not consistent with (1.7). Therefore, a1(q) < fiy—t+4(q). Likewise we

obtain

Oég(q) < ﬂr—t+g+1<Q)a ceey Qg (Q) < /jr(Q)

It follows from these ¢t — g + 1 inequalities that ¢®*@ divides, at least, t — g + 1
proper periods, ¢2(@ divides, at least, t — g proper periods, and so on. This proves

condition (7).

Now, assuming that conditions (i) and (7i) hold, we build a nonorientable
unbordered surface-kernel epimorphism as the direct product epimorphism 6 :
A= A:g —0(g) = (04(9),...,04(g)) of epimorphisms 6, : A — A, for each
q € {q,...,q\} (the set of prime factors of the order of A).

For readability, let a; = a;(q), i = pi(q) and assume that p; < p41 (oth-
erwise, there is a permutation, in general, different for each value of ¢ such
that [i; = pr and we replace z; by x4y and p; by fi; in the definition of
8,(x;) below so that the order of 6(x;) is m;). Let n = >I_, ¢*** (mod ¢**),
ne€{0,1,...,¢q* — 1}, and define

z if g =1 and n is even,
L %(qat +n) if g=1 and n is odd,
142 if g > 1 and n is even,
14 2(¢* +n) if g>1andnisodd

and (note that condition (i) gives r > t—g+1ift >g—1,and thusr+g—12>1¢
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whether ¢ is greater than g — 1 or not)

0,(x;) =(0,0,0,...,0,0,0,...,0,¢" "), i=1,....,r—t+g—1,

QQ(Ir—t—&-g) = (1, 0,0,...,0,0,0,...,0, qat_“T*Hg)’
O (Tr—t49+1) = (0,1,0,...,0,0,0,...,0,g% Hrotrott),

0,(z.) = (0,0,0,...,0,1,0,...,0,¢%#),
Qq(dl) = (070707-..,0,0,17...,0’()),

0,(dy_1) = (0,0,0,...,0,0,0,...,0,1),

QQ(dQ) = (q 7qatig+2 - 17 s 7qat71 - 17 —U> .

_ 1 qat—g+l _

5 5

Observe that p,. = oy by condition (7i), hence ¢®*~#* = 1, in case that g = 1. The

long relation is preserved by 6 since f4(zy - - dF ---d2) = 0.

By condition (i), we can write m; = g ~~q‘;"(q*). It also follows that
0,(x;)| = ¢* for all 4, taking into account condition (i) for i =r+g—1t,... .
Since 0,(z;) and 0, (x;) belong to different primary components of A if ¢ # ¢, the
order of O(x;) = (04, (i), ..., 0, (x;)) is

lcm(qﬁ“(ql), o 7q§fi(q/\)) _ qiLi(Q1) . qf\ti((h) = m,.

The homomorphism 6, is onto since, by condition (%), A, is generated by
{0,(xrgg-t), -, Og(z),04(dr), ..., 0,(dy—1)}. Therefore, 6 is also onto. For, con-
sider an elementary divisor ¢®(@ of A and the generator h = (0,...,0,1,0,...,0)
of the cyclic factor

H={0}& - {0} ®Zyw®{0} & & {0}

of A,. Then, h = 0,(g) for some g € A. Obviously, §(g) may have nontrivial com-

ponents in some other primary component A, for a prime ¢’ # ¢, but not the ele-

@ (g) since v O (g) is trivial whenever ¢’ # ¢q. Moreover, the element

qa?@ 0(g) has order ¢*9 since ged(q, v;/q**?) = 1. Hence, (G(g”t/qat(Q))) =H.

ment
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Finally, 0(d;*) = 0, so d;* € ker 6§, and, since v; is odd, d;* € A—A*. Therefore,
O(AT) = A and, by Theorem 4.1.2, # is a nonorientable unbordered surface-kernel

epimorphism. |

Remark 4.2.2. If g = 1 and k = 0, then the signature of an NEC group A with sign
‘—” must have r > 2 proper periods; otherwise ;(A) < 0 by the Riemann-Hurwitz
formula (1.2). [ ]

Remark 4.2.3. If t = 1, then Theorem 4.2.1 becomes Theorem 3.7 in [4]. |

Corollary 4.2.4. Let A~ Z,, ® --- B Z,, be an abelian group of odd order, where
v; divides viy 1, and let g > 2 be an integer. Then, A is a group of automorphisms
of some nonorientable compact Riemann surface of topological genus ¢’ if and only

if there exist integers g, mq, ..., m, such that
(i) m;| vy for all i,
(ii) if t > g—1, then every elementary divisor of Z,, divides, at least, t —g—1i+2
proper periods fori=1,...,t —g+ 1, and

(iii)

-2 r 1
J :9_2+Z<1_)-
Ut i=1 ‘

’Uln.. m'l

Etayo’s result [14] for the symmetric cross-cap number of a noncyclic abelian
group of odd order (see also [18, Proposition 6.3]) follows easily from Theorem
4.2.1.

Corollary 4.2.5. Let A~ Zy,, & --BZy, be a noncyclic abelian group of odd order,

where v; divides viy1. Then, the symmetric cross-cap number of A is
! 1
G(A) =2+4v, - v l_HZ(l_ﬂ .
i=1 Ui

Proof. For, note that the signature (1; —; [vy,...,v]; {—}) defines an NEC group
A* and fulfills conditions of Theorem 4.2.1. Therefore, A ~ A*/T'y- for some surface
NEC group I'y« with signature (¢*; —; [—]; {—}) and thus 6(A) < g* —the value

of g* is determined by the Riemann-Hurwitz formula (1.2),

g —2

I :—1+§;(1—;>. (4.1)
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Now we prove that, if A is another NEC group with signature (g; —; [mq, ..., m,];
{—}) fulfilling conditions of Theorem 4.2.1 and A ~ A/I'y, then g* < ¢’ and thus
7(A) = ¢g*. By the Riemann-Hurwitz formula (1.2),

g/_2 T ( 1>
—qg—2 1——).
ar ot e

Ift<g—1,then —1+¢t<g—2. By (41), (¢* —2)/|A| < =1+t and thus
- ( n (-5 =
—1+t+ l——)<g—-2+ 1—— | = .
Al Z m; ; m; |A]

Therefore, let ¢ > ¢g. By (1.3), we may assume that my| - - - [m,., since u(A) < p(A)
if A is an NEC group with signature (g; — M, 741, -.,my; {—}). By condition

(77) of Theorem 4.2.1, vy | myig—t, Vo | Myig_tt1, .-, Vt—g+1 | m,, hence
F0-0 500508
=1 i i=r—t+g m; i=1 m;

(recall that » —t 4+ g > 1 by condition (7i) of Theorem 4.2.1). If g = 1, then

2(-0)<50-7)

i=1 (% m;

and

: 1 : 1 - 1
—1—1—2(1—“)<—1+Z(l—m>:g—2+2(l—‘).
i=1 i i=1 ? =1

7

If g > 1, then
t 1 t
> (1 - ) < Y 1=g-1
‘ +2 ' i=t—g+2

and, adding up (4.2),

B D) (-8

Therefore, L2 < =2 either if g =1 or g > 1. |

1] IAI

Remark 4.2.6. When comparing the strong symmetric genus 0°(A) in Theorem
2.2.1 and the symmetric cross-cap number (A) of a noncyclic abelian group A of
odd order, we have

(A)

0°(A) < 5

(for, consider g = 0 in McLachlan’s expression in Theorem 2.2.1; for order 9, see
Remark 2.2.2). [
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As a consequence, we can obtain the smallest topological genus of nonorientable

Riemann surfaces on which some abelian group of given odd order acts.

Corollary 4.2.7. Let N > 1 be an odd integer. The least symmetric cross-cap

number of abelian groups of order N is
N if N is prime, and
G(N) = / p
(q—1)(N/qg—1)4+1 otherwise,

where q is the smallest prime divisor of N. It is attained by

i) Zx if N is a prime number or ¢* t N, and
i) Zq® Lnyq otherwise.

Proof. The symmetric cross-cap number of a cyclic group of odd order was ob-

tained by Bujalance in [4]:
N if N is prime,

0(Zn) =14(q—1)(N/q—1)+1 if N is not prime and ¢*>{ N,
(g—1)(N/q—1)+q otherwise.

Therefore, when N is an odd prime number, 6(N) = N. Otherwise, N is a
composite odd number, say N = ¢*u, ¢ 1 u. For any noncyclic abelian group
A~ Zy, ®Z,, of order N,

G(Zn)
0(Zq ® Znyqg) < 7(Zn)

Therefore, 6(N) = (¢ — 1)(N/q — 1) + 1. For, we notice that

< o(A) if a=1and
< a(A) ifa>1and A% Zy @ Znyg.

5(A) -2 _ 5(Zy) -2

where
1 e 1 =z g ifa=1andu>1,
I - T
qg N =z N 1 otherwise.

As vivg = N and v, divides v,, the admissible values of v; are in the interval
[¢,V/N]. The function f is increasing in this interval since f'(x) = 1/2® — 1/N.
Also, v; > qand f(q) =0ifa =1 (i.e., e = q), hence f(v1) > 0and 6(Zy) < 7(A).
Ifa > 1 (ie.,e=1),then f(q) < 0and f(g+1) > 0since ¢ < ¢* ! and ¢ < u (note
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that v; = gifa = 2and u = 1, i.e., if N = ¢?); hence 6(Z,®Zn,q) < 0(Zn) < 7(A)
for A % Zy ® Zy, in this case. Also, 6(Zy) < ¢(A) for any noncyclic abelian
group A = Z,, ® -+ ® Z,, of order N and t > 2. Indeed,

FA) -2 #2Zy)—-2 1 € 1 1 ( 1 )
- R . 1— =),

N N + q + N (%1 (%) + ; V;
Therefore,

FA) -2 FZy)—2 1 ¢ 1 1 t-2

> _ - -
N N + q * N vy e * 2

since 1 — 1/v; > 1/2. Hence 6(A) > ¢(Zy) if t > 2 since 1/v; < 1/q and
(t—2)/2>1/v;. |

4.3 Even order abelian actions

In this section, we consider abelian groups whose Sylow 2-subgroup is cyclic.
We find that it is necessary to add some conditions to that obtained for odd order
abelian actions, namely concerning signatures without period cycles or with only

one period cycle.

For other abelian groups of even order —those with noncyclic Sylow 2-sub-
group—, we have not achieved a complete characterization of nonorientable un-
bordered surface-kernel epimorphisms 6 : A — A from a proper NEC group onto
such an abelian group. Obviously, large enough values of the parameters of the
signature of the NEC group allow relations of the presentation of the NEC group
to be preserved and provide enough generators to ensure surjectivity and the exis-
tence of a nontrivial element in ker N (A — A™). Indeed, this is the usual situation.
Challenges arise when the signature has no period cycles and some proper period
is even, or when, having period cycles, the number of ‘effective’ canonical gener-
ators of A —more precisely, with the notation used herein, w 4+ S + 79, where 9
is the number of even proper periods— equals the number of factors of the Sylow
2-subgroup of A. These types of signatures turn out to entail a complex task, so
that the complete characterization of this kind of abelian actions on nonorientable

Riemann surfaces of a given algebraic genus still remains as an open problem.

Consequently, we now focus on abelian groups with cyclic Sylow 2-subgroup.

The following basic result sharpens the type of signatures we have to deal with.
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Lemma 4.3.1. Let A be a finite abelian group such that Syla(A) is cyclic, A a
proper NEC group and A — A a nonorientable unbordered surface-kernel epimor-

phism. Then, every period cycle in the signature of A is empty.

Proof. 1f Syly(A) = Zae and (nyy, ..., nis,) = (2,2,...,2) is a nonempty period cy-
cle of A (recall Lemma 4.1.3), then 6(c;j_1) = 6(c;;) = 2%1, since both 6(c;;—1) and
6(c;;) are elements of Syla(A) of order 2. But then 6(c;;_1¢;;) = 0 and 0(c;j-1¢i5)

cannot have order n;; = 2, in contradiction with Theorem 4.1.2. |

Theorem 4.3.2. Let A be a proper NEC' group with signature (g; £ [mq, ..., m.];
{(—)*}), and A =~ Zya & Zy, ® -+ ® Zy, an abelian group, where o > 0, t > 0,
v; > 2 is odd and v; divides v;yq. Let also M =lem(mq,...,m,), w=ng+k — 1,
n = 2 if the signature sign of A is +’ and n = 1 otherwise. Then, there ezists
a nonorientable unbordered surface-kernel epimorphism A — A if and only if the

following conditions hold:

(i) m; divides 2* if t = 0, and m; divides 2%v; otherwise.

(i) Ift > w and i € {1,...,t —w}, then every elementary divisor of Z,, divides,

at least, t —w + 1 — ¢ proper periods.

iii) If k =0 and 2% f M, then g > 1; if, in addition, o > 1 and 2°~! divides an
(iii)

even number of proper periods, then g > 2.
(iv) If k =0 and 2% | M, then 2% divides an even number of proper periods.

(v) If g=0 and k = 1, then 2*| M.

Proof. Let 6 : A — A be a nonorientable unbordered surface-kernel epimorphism
and 0, = m, o 0 for a prime number ¢, where 7, : A — Syl,(A) is the canonical

homomorphism. Conditions (7) and () follow as in Theorem 4.2.1.

(77i) Suppose that k =0, 2*{ M and g = 1. Hence, 05(x;) is even for all i and
Syls(A) =~ Zsa must be generated by 6y(d;) and thus 05(dy) is odd. Therefore,
ker N (A — A™) is empty since any element in A — A" contains an odd number of

canonical glide reflections.

Now, suppose that k = 0, ¢ = 2, a > 1, 2° M and 2°7! divides an even
number of proper periods. If 27! m;, then 0y (z;) is multiple of four; otherwise,

05 (z;) is even but not multiple of four and, since there is an even number of such
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proper periods, 0s(x; ---x,) is multiple of four. Also, 65(d;) and 602(dy) are of
different parity, say, 02(d;) is odd and 65(dy) is even (otherwise, every element in
ker # would contain an even number of glide reflections and would be orientation-
preserving) and thus 0y(dZd}) is even but not multiple of four. Therefore, the
long relation would not be preserved, since 0y(x; - - z,d2d}) would be even but

not multiple of four.

(iv) Otherwise, Oy(xy - - - 2,d7 - - - d?) is odd and the long relation would not be

preserved.

(v) When o > 1, the claim follows from (1.7) since 29 +k—1 = 0 and Ny(«a) >
no(a) means that fi, > «. If @« = 1 and we suppose that M is odd, then 0(c19) = 1,
02(x;) = 0 and, by the long relation, #s(e;) = 0; hence, ker 6 N (A — A1) = & since
any element in A — AT contains ¢;g an odd number of times, and this is not

consistent with Theorem 4.1.1.

We prove the sufficiency of the conditions by defining epimorphisms 6, : A —
A, for each prime ¢ in the set {q1,...,¢\} of prime numbers dividing the order of

A, and a surface-kernel epimorphism 6 : A — A as the direct product epimorphism

0:N—=A:g—=0(g)=(05,(9)- 04 (9))-

-5 Ugy

For readability, we let u; = p;(q) (see Section 1.3) in the definition of each
homomorphism 6,. Also, we assume that p; < pt;41; otherwise, there is a permu-
tation (in general, different for each value of ¢) such that fi; = p-(; and we replace
x; by 2, and p; by [i; in the definition of §,(x;) below —so that the order of

M =€1, ---y Vk—1= €k—1, Yk = A1, Vk+1 = b17 sy Yw—1 = Qgy, Yw = bg7
or
V=€l Vel = €1,V = A1, - - o Yo = dg,
according to the sign of the signature of A, and
-1 ifg=0,
0=4q0 if g >0 and sign(A) is ‘+,
—2 if g > 0 and sign(A) is ‘—".

Let also ¢ # 2 be a prime number dividing |A| and A, &~ Zjo1 @ -+ @ Zge: be

the ¢-Sylow subgroup of A—mnote that some factors of A, may be trivial, i.e.,
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a; = --- = ap = 0 for some ' < t. We define §, as follows—note that r +w >t
by condition (7i):
eq(Cio):((),...,O), izl,...,k,
L...,r—t4+w ift>uw,
Qq(xz) = (0,...,0,(]0“7‘“1.), 1=

1,....r if t <w,

t=r—t+w+1,...,r ift>w,
0q(vi) = (0,...,0), i=1,...,w—t ift<uw,
1,...,w if t > w,
w—t+1,...,w ift<w,
(=1,...,—1,6,.m97t.,0,0 —u) ift>ng >0,

(0,...,0,0 —u) ift <mgorg=0,

where u = Y77, ¢t 7.

O4(ex) =

Now, we define 0y considering the following cases.

a) k=0,2*fM and g > 2.

92([[’1'):2&_'%, 7;:1,...,7“,
Or(dy) = =1 = 207,
i=1
02<d2) = 17
Gg(dz):(), 223,,g

b) k=0,2tM,g=2and o= 1.
O(x;) =0, v=1,...,r,
02(d1) = 1, b2(d2) = 0.

c) k=0,2¢ M, g =2and a > 1. By condition (i), 2! divides an odd
number of proper periods and thus 37_, 247#~1 is odd.

(92(.%'1'):2&7‘%, izl,...,T,
92<d1) — _Zza—ui—l’
=1

05(ds) = 0.
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d) k= 0and2%| M. Assume that 2 |m,. Then, >.'—{ 2¢~#i is odd by condition

(iv). )

92(1‘1):2&7’%, izl,...,r—l,
r—1

92(1}) = - Z 20&7/”7
i=1

92(d1> = O, 1 = 1, , g,

e) k= 17 g = 0
O (x;) = 2971, i=1,...,7
92(61) = — Z’L 2a_ﬂz’
Oy(c1g) =271
By condition (v), fy(2) = 1 for some x € {z1,...,z,} and thus cgz>" ¥ €

kerd N (A — A™).

f) Otherwise, we define

05(7v;) = 0, i1=1,...,w—1,

0 if @« =1 and sign(A) is ‘-,
1 otherwise,

Oa(er) =6 — 322974,

Oy(cio) =271, i=1,... .k

We observe that either d (o = 1) or c1972" ' belongs to ker 6 N (A — AT)
and thus §(AT) = A.

Corollary 4.3.3. Let Ax Zoa ® Zy, B - -+ B Zy, be an abelian group, where o > 0,
v; s odd and v; divides vii1 for all i, and let ¢ > 2 be an integer. Then, A
is a group of automorphisms of some nonorientable compact Riemann surface of
topological genus g' if and only if there exist integers n =1 or 2, g, k,mq,...,m,
and w =ng + k — 1 such that
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(i) m; divides 2% if t =0, and m; divides 2*v; otherwise;
(i) if t >w and i € {1,...,t —w}, then every elementary divisor of Z,, divides,
at least, t —w + 1 — 1 proper periods;
(iii) if k =0 and 2* t M, then g > 1; if, in addition, « > 1 and 2*~! divides an
even number of proper periods, then g > 2;
(v) if k=0 and 2%| M, then 2% divides an even number of proper periods;
(v) if g=0 and k =1, then 2%| M; and
(vi)
g —2
201, -+ vy

- 1
gt k=2 (1 _ ) .
ng + + ; m
The symmetric cross-cap number of a noncyclic abelian group of even order
with cyclic Sylow 2-subgroup, as stated in [18, Proposition 6.2] by Gromadzki, also
follows from Theorem 4.3.2 (note the resemblance to the expression of Corollary
4.2.5 for abelian groups of odd order).

Corollary 4.3.4. Let A = Zoa @& Zy, & -+ B Zy, be a noncyclic abelian group of
even order, where v; is an odd integer and v; divides v;11. Then, the symmetric

cross-cap number of A is

5(A):2+2’”‘v1---vt[t§:1(1—1)—230t].

i=1 Vi

Proof. For, note that the signature (0; +; [v1,...,vi—1,2%]; {(—)}) defines an
NEC group A* and fulfills conditions of Theorem 4.3.2. Therefore, A ~ A*/T'j-,
where I'j« is a surface NEC group with signature (¢*; —; [—]; {—}). By the
Riemann-Hurwitz formula (1.2), (¢* — 2)/|A| = pu(A*), where

,u(A*):—l—th:l(l—l‘)—i-l— !

— v, 200,
Now we proof that, if A is another NEC group with signature (g; +; [mq, ..., m,];
{(=)*}) fulfilling conditions of Theorem 4.3.2 and A ~ A/T, then g* < ¢’ and
thus 0(A) = g*. By the Riemann-Hurwitz formula (1.2), (¢’ — 2)/|A| = p(A),
where

T 1
u(A)zlu—l—l—Z(l—m), w=mng+k—1
i=1 i

Ift<w,then —1+t<w-—1and

" 1 r 1
M(A*)<—1+t<—1+t+§j<1—><w—1+§ (1—
A 2 .

i=1 m; my;

) = n(),
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Now, we consider the case t > w. By (1.3), we may assume that my|-- - |m,., since
u(A) < p(A) if A is an NEC group with signature (g; +; [, 7,1, - .., 7,); {(—)*}).
By condition (7i) of Theorem 4.3.2, r—t4+w+1 = 1 and vy | My ywi1y - - -, Vimw | My
If w > 0, then

t—w 1 r 1 r 1

(=)< 2 (-m)<x(-3)

i=1 Vi i=r—ttwt1 m; i=1 m;

and

t—1 1 1 t
> (1—)+1— < > l=uw,
ZO‘Ut

i=t—w+1 i i=t—w+1
hence, adding up both inequalities, pu(A*) < wp(A). If w = 0, then 2*|m, by

conditions (%) and (v), hence
t—1 1 1 r 1
S0 <50 4)
i=1 ' 1 '

and



“Conclusions and further developments

The results obtained in this thesis determine the algebraic genera of compact Klein
surfaces on which a given abelian group acts as a group of automorphisms in terms
of the invariant factors of the abelian group. More precisely, formerly known char-
acterizations of abelian actions on Riemann surfaces are revisited and, moreover,
they are extended to other families of Klein surfaces, namely nonorientable com-
pact Riemann surfaces and compact bordered Klein surfaces. All abelian actions
are addressed except those of even order abelian groups with noncyclic Sylow 2-
subgroup on nonorientable compact Riemann surfaces. This latter case remains

as an open problem.

Some of the techniques used in this thesis can be applied to other families of
finite groups. Conditions for the existence of an epimorphism A, — Gy from
the abelianization of an NEC group A onto that of a finite group G may provide
useful information in order to establish conditions for the existence of surface-

kernel epimorphisms A — G.

Other possible developments might extend these results to the study of abelian
actions on Klein surfaces of given algebraic genus, number of boundary compo-
nents and orientability, possibly distinguishing between orientation-preserving and
orientation-reversing actions. When fixing the number of boundary components,
a preliminary approach could be considering actions of abelian groups of specific
type, say p-groups. Also, other specific types of surfaces could be considered (for

instance, pseudo-real Riemann surfaces).
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Notation

H

C+

G, |g]
exp G
T(G)
Sylp(G)
G, G, G]
Gab

Open upper half-plane in C.

Closed upper half-plane in C.

Group Isomorphism.

Order of a group G, order of an element g € G.
Exponent of a group G.

Torsion set of a group G.

Sylow p-subgroup of a group G.

Derived or commutator subgroup of a group G.
Abelianization of a group G.

Cyclic group of order n.

Full group of dianalytic automorphisms of a Klein sur-
face X.

Reduced hyperbolic area of any fundamental region for
an NEC group A.

Strong symmetric genus of a finite group G.
Symmetric cross-cap number of a finite group G.

Real genus of a finite group G.
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