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Abstract

Topology of spaces of valuations and geometry of singularities

We study the fiber of the Riemann-Zariski space above a closed point x of an algebraic
variety X defined over an algebraically closed field. We characterize its homeomorphism
type for regular points and normal surface singularities. This is done by studying the
relation between this space and the normalized non-Archimedean link of x in X. We
prove that their behavior is the same.
Keywords: Riemann-Zariski space, normalized non-Archimedean link, valuative tree,
dual graph.

Topología de espacios de valoraciones y geometría de las singularidades

Estudiamos la fibra del espacio de Riemann-Zariski sobre un punto cerrado x de una
variedad algebraica X definida sobre un cuerpo algebraicamente cerrado. Caracterizamos
su tipo de homeomorfismo para puntos regulares y singularidades normales de superfi-
cie. Hacemos esto estudiando la relación entre dicho espacio y el link no arquimediano
normalizado de x en X. Demostramos que se comportan igual.
Palabras clave: espacio de Riemann-Zariski, link no arquimediano normalizado, árbol
valorativo, grafo dual.

Topologie des espaces de valuations et géométrie des singularités

On étudie la fibre de l’espace de Riemann-Zariski au-dessus d’un point fermé x d’une
variété algébrique X définie sur un corps algébriquement clos. On caractérise son type
d’homéomorphisme pour des points réguliers et des singularités normales de surface. Cela
est fait en étudiant le lien avec l’entrelac non Archimédien normalisé de x dans X. On
démontre qu’ils ont le même comportement.
Mots-clefs: espace de Riemann-Zariski, entrelac non Archimédien normalisé, arbre valua-
tive, graphe dual.
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Summary

Valuations are a fundamental tool in algebraic geometry. Historically they played an im-
portant role in [DW82] where valuations were introduced to construct algebraically the
Riemann surface associated to a field of algebraic functions of one variable. Later Zariski
generalized this idea and valuations became an essential ingredient in its approach to the
problem of resolution of singularities of an algebraic variety X. In [Zar44], he endowed
the set X of all valuation rings of the function field K of X containing the base field with
a topology and established its quasi-compactness. This was a key point in his program
for resolution. It turns out to be also a key result in some recent attempts to solve this
problem in positive characteristic following new strategies also using local uniformization
(see [CP08, Tei14]).

In this work we suppose that X is an algebraic variety defined over an algebraically closed
field k (i.e., an integral separated scheme of finite type over k) and we fix a closed point x
in X. We initiate the study of the homeomorphism type of the space RZ(X,x) consisting
of all valuations rings in X dominating the local ring OX,x, endowed with the topology
induced by the Zariski topology. We call RZ(X,x) the Riemann-Zariski space of X at x.
Our goal is to clarify the relation between the topological properties of this space and the
local geometry of X at x. Note that the one-dimensional case is well understood. If X is
an algebraic curve then RZ(X,x) is in bijection with the local analytic branches of X at
x. However, the situation is richer in higher dimension.

Similar preoccupations have appeared in the context of the theory of analytic spaces as de-
veloped by Berkovich and others after [Ber90]. Adopting this point of view one associates
to X is analytification Xan. A point of Xan is an absolute value (giving rise to a rank one
valuation by taking minus the logarithm) on the residue field of a point of X, extending
the trivial absolute value of k. We may consider the subspace L(X,x) of all points in Xan

which specialize to x excepting the trivial one. One nice feature of this space, established
by Thuillier in [Thu07], is that it has the homotopy type of the dual complex associated to
the exceptional divisor of a resolution of singularities of (X,x) whose exceptional divisor
has simple normal crossings.

In fact, the space RZ(X,x) is closely related to the normalized non-Archimedean link
NL(X,x) of x in X which is obtained from L(X,x) by identifying points defining equi-
valent valuations (see [Fan14a]). If X is reduced to x then RZ(X,x) is a singleton and
NL(X,x) is empty. When X is a curve then RZ(X,x) and NL(X,x) are finite spaces of the
same cardinality. Therefore we may assume that the algebraic varieties we consider have
dimension at least two. Note that NL(X,x) is a compact space whereas RZ(X,x) is never
Hausdorff. In general, there is a canonical continuous surjective map from RZ(X,x) to
NL(X,x), and the latter appears to be the largest Hausdorff quotient of the former space



Summary

in the case of normal surfaces. This is no longer true in higher dimension. A detailed
proof of these facts is given in Subsections 1.2.3 and 1.2.4 respectively.

We address first the regular case. We call d the dimension of X. Recall that the Krull
dimension of a topological space is the supremum of the lengths of all chains of irreducible
closed subspaces of the space. Observe that NL(X,x) has Krull dimension zero since it is
Hausdorff. We look instead at its covering dimension as defined in [Pea75], and we show
that NL(X,x) has covering dimension d − 1. If another regular closed point y ∈ Y of an
algebraic variety defined over the same field k is given, and NL(X,x) is homeomorphic
to NL(Y, y), then this result on the dimension implies that X and Y have the same di-
mension. The converse also holds. Assume that X and Y have both dimension d. By
Cohen’s structure theorem there exists an isomorphism of k-algebras σ from the formal
completion ÔX,x of the local ring OX,x to that of OY,y (they are isomorphic to the ring
of formal power series in d variables with coefficients in k). This enables us to define a
natural bijection between the semivaluations of ÔY,y and those of ÔX,x by composition
with σ. By a semivaluation we mean here a map from the ring to [0,+∞] verifying the
standard axioms of valuations but which may send to infinity some non-zero element of
the ring.

Observe that OX,x and OY,y do not need to be isomorphic as k-algebras, even if they have
the same fraction field. Suppose that X is non singular and take two different closed points
x, x′ ∈ X. If there exists such an isomorphism between the local rings of X at these points,
then we can find an isomorphism U → U ′ which sends x to x′, where U,U ′ ⊂ X are open
neighborhoods of x and x′ respectively. Hence we would have a birational map from X to
X itself sending x to x′. If X is of general type and the ground field is algebraically closed
of characteristic zero, the birational automorphism group of X is finite (see [HMX13] for
a bound). In this case, there exists only a finite number of points x′ for which OX,x could
be isomorphic as k-algebra to OX,x′ .

Let us now go back to our problem. Note that it has been reduced to the study of the
extensions of a semivaluation of OX,x to its formal completion. In fact, one can show that
a point ν in NL(X,x) defines in a canonical way a suitably normalized semivaluation ν̂
of ÔX,x whose restriction to k is trivial. It suffices to define ν̂(f) = lim

n→+∞
ν(fn), where

(fn)∞n=1 is a Cauchy sequence in OX,x which converges to f . This result is true whenever
the point x is analytically irreducible, that is, if ÔX,x is an integral domain.

Our first main result is the following:

Theorem A. Let X,Y be two algebraic varieties defined over the same algebraically closed
field k. For all regular closed points x ∈ X, y ∈ Y , the spaces NL(X,x) and NL(Y, y) are
homeomorphic if and only if X and Y have the same dimension.

In dimension two, one can be more specific. A topological model for NL(A2
C, 0) has

already been proposed in [FJ04, Section 3.2.3]. In this monograph the normalized non-
Archimedean link of the origin in the affine complex plane is referred to as the valuative
tree. This space carries a canonical affine structure which allows one to perform convex
analysis on it and which finds interesting applications in dynamics and complex analysis
in [FJ07, FJ05]. More precisely it has a rooted nonmetric R-tree structure (see [FJ04,
Definition 3.1 and Theorem 3.14] and [Nov14]). Roughly speaking, this means that is a
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topological space where any two different points are joined by a unique real line interval.
This structure was extended in [Gra07] to the case of a regular closed point of a surface.
The homeomorphism type of an arbitrary Berkovich curve is also treated in [HLP14] un-
der a countability assumption on the base field. Since NL(A2

k, 0) is homeomorphic to the
closed unit ball over the discrete valued field k((t)), their result shows that NL(A2

k, 0) is a
Ważewski universal dendrite when k is countable.

We now turn to the Riemann-Zariski setting. It is known that X has the same Krull di-
mension as X. We show that RZ(X,x) has Krull dimension d− 1. Again this fact implies
that two varieties X and Y defined over k have the same dimension when RZ(X,x) and
RZ(Y, y) are homeomorphic for some regular closed points x ∈ X, y ∈ Y . The converse
also holds, however in this situation the proof is more involved. If one tries to reproduce
the proof given in the case of the normalized non-Archimedean links, we are led to study
the behavior of a valuation of K whose valuation ring dominates OX,x under passage to
the formal completion of the ring.

When x is an analytically normal point of a surface (i.e. the formal completion ÔX,x is a
normal domain), it is shown in [Spi90b] that a valuation of RZ(X,x) extends in a unique
way to a valuation of the fraction field of ÔX,x whose valuation ring dominates that ring.
This result applies to our situation since any regular point is analytically normal. However
this statement about extensions of valuations is no longer true in dimension greater than
two. Such an extension always exists, but it is not difficult to construct some explicit
examples where it is not unique. In fact, either it extends uniquely or it has infinitely
many such extensions (see [HS91]).

Therefore one needs to follow a different strategy. Recall that the henselization ÕX,x of
OX,x is the inductive limit of the system of equiresidual local étale OX,x-algebras. Let us
take an open affine neighbourhood U ⊆ X of x given by a finitely generated k-algebra
A = k[T1, . . . , Tn]/I of dimension d. The Noether normalization Lemma states that there
exist d elements x1, . . . , xd in A algebraically independent over k such that A is a finitely
generated k[x1, . . . , xd]-module and m∩ k[x1, . . . , xd] = (x1, . . . , xd), where m is the maxi-
mal ideal of A corresponding to the point x. Moreover, each xi can be chosen to be the
residue class of a generic k-linear combination

∑
1≤i≤n αijTj modulo I (see [Eis95, Theo-

rem 13.3]). One can show that it is also possible to chose them in such a way that the
tangent map TU,x → TAd

k
,0 is injective. Hence the finite morphism from U to Ad

k is étale
in the point x. Then OU,x is a local étale equiresidual OAd

k
,0-algebra and therefore ÕX,x

and the henselization of k[x1, . . . , xd](x1,...,xd) coincide.

As a consequence, for any regular closed point y ∈ Y of a d-dimensional algebraic variety
defined over k, we can find an isomorphism of k-algebras σ from ÕX,x to the henselization
ÕY,y of OY,y. Let us denote by K̃ the fraction field of ÕX,x (note that ÕX,x is a subring
of ÔX,x, which is an integral domain by hypothesis). The previous remark allows us to
define a natural bijection between the valuations of K̃ whose valuation ring dominates
ÕY,y and the ones whose valuation ring dominates ÕX,x, by composition with σ. The
question which naturally arises now is if a valuation of RZ(X,x) defines in a canonical
way a valuation of K̃ whose valuation ring dominates ÕX,x. This turns out to be true. In
order to show this fact we rely on a deep result of [HOST12] on the extension of valuations
to a local étale ring extension, under the assumption of the excellence of the local domain.

11
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Our second main result is the following:

Theorem A’. Let X,Y be two algebraic varieties defined over the same algebraically
closed field k. For all regular closed points x ∈ X, y ∈ Y , the spaces RZ(X,x) and
RZ(Y, y) are homeomorphic if and only if X and Y have the same dimension.

Two consequences of this statement are particularly noteworthy. On the one hand, this
result shows that the homeomorphism type of RZ(X,x) and NL(X,x) depends only on
the dimension of the variety X and the base field k. On the other hand, assuming that
resolution of singularities holds, it reveals the self-homeomorphic structure of RZ(X,x) by
considering a projective system of non-singular varieties. This property is also observed
in the valuative tree and in the space of real places of L(y) where L = R((tQ)) (see [FJ04,
Theorem 6.51] and [Kuh13, Corollary 21] respectively). We make this precise in Section
2.3.

Next, we consider a singular point x of a normal algebraic surface X. First of all let us
point out that the spaces RZ(X,x) and NL(X,x) have more structure than just topology.
Actually they are both locally ringed spaces. The second carries a natural analytic struc-
ture locally modeled on affinoid spaces over k((t)). These local k((t))-analytic structures
are not canonical and cannot in general be glued to get a global one. This structure was
studied in [Fan14a] and shown to determine the completion of the local ring OX,x (see
[Fan14a, Corollary 4.14]). However it is only the underlying topological spaces that con-
cerns us here. We introduce the notions necessary to state our main result concerning the
homeomorphism type of RZ(X,x) and NL(X,x) in this case.

By a graph we mean a finite connected graph with at least one vertex, without loops and
without multiple edges. Recall that a graph Γ is a purely combinatorial object which
can be seen as a finite one-dimensional CW-complex. To be precise, we endow the set of
vertices V of Γ and its set of edges E with the discrete topology and the unit interval [0, 1]
with the induced topology from the standard topology of the real line. The topological
space |Γ|, which we call the topological realization of Γ, is the quotient space of the disjoint
union V t (E× [0, 1]) under the natural identifications v ∼ (e, 0) and v′ ∼ (e, 1) given by
incidence of vertices and edges.

We say that a graph is a tree if its topological realization is simply connected. Following
[Sta83] we associate to any graph its core (see also the definition of the skeleton of a
quasipolyhedron given in [Ber90]). The core of a graph Γ which is not a tree is the sub-
graph of Γ obtained by repeatedly deleting a vertex of degree one and the edge incident to
it, until no vertex of degree one remains. Recall that the degree of a vertex is the number
of edges connected to it. We denote the core of Γ by Core (Γ).

Let Γ be a graph which is not a tree. Observe that if Γ has no vertex of degree one, then
Γ is its own core. Note also that |Γ| admits a deformation retraction to |Core (Γ) |. The
complement of |Core (Γ) | in |Γ| is the set of points in |Γ| which admit an open neighbor-
hood whose closure is a tree and whose boundary is reduced to a vertex of Γ. We may
thus think of Γ as its core with some disjoint trees attached to it.

We introduce an equivalence relation in the set of graphs on which the characterization
given in our result relies. Two graphs Γ and Γ′ are equivalent if either they are both trees

12
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or neither is a tree and |Core (Γ) | is homeomorphic to |Core (Γ′) |. Observe that this equi-
valence relation is stricter than the homotopy equivalence. The three graphs consisting
of two triangles sharing a vertex, two triangles sharing a side, and a line segment with a
triangle attached to each endpoint, have all homotopy equivalent topological realizations
but are not pairwise equivalent.

Recall that a proper birational map πX′ : X ′ → X is a good resolution if X ′ is smooth and
the exceptional locus EX′ = π−1

X′ (x)red is a divisor with normal crossing singularities such
that its irreducible components are smooth and the intersection of any two of them is at
most a point. To any good resolution is associated its dual graph ΓX′ whose vertices are
in bijection with the irreducible components of EX′ and where two vertices are adjacent
if and only if the corresponding irreducible components of EX′ intersect.

Our main result in this setting is the following:

Theorem B. Let x ∈ X and y ∈ Y be singular points of normal algebraic surfaces defined
over an algebraically closed field k and ΓX′, ΓY ′ the dual graphs associated to two good
resolutions of (X,x) and (Y, y) respectively. The following statements are equivalent:

1. The spaces RZ(X,x) and RZ(Y, y) are homeomorphic.

2. The spaces NL(X,x) and NL(Y, y) are homeomorphic.

3. The graphs ΓX′ and ΓY ′ are equivalent.

This statement implies that the spaces of valuations RZ(X,x) and NL(X,x) associated
to any rational surface singularity (X,x) are homeomorphic to RZ(A2

k, 0) and NL(A2
k, 0)

respectively. In order to obtain more precise information on the singularity (X,x) it will
be necessary to explore finer structures of RZ(X,x).

As we stated before, NL(X,x) is the largest Hausdorff quotient of RZ(X,x). Therefore
if 1 holds then NL(X,x) is homeomorphic to NL(Y, y). Let us now explain briefly our
strategy to prove that 2 implies 3 and that 3 implies 1.

The topological realization of any dual graph ΓX′ can be embedded into NL(X,x) as
a closed set and there exists a continuous retraction map rX′ : NL(X,x) → |ΓX′ | (see
[Fav10]). The key observation is the following: any fiber r−1

X′ (ν) under rX′ is a tree whose
boundary is reduced to ν. A proof of this statement follows from [FJ04, Theorem 6.51].
In fact, it is shown in [Fan14a, Proposition 9.5 (i)] that the fiber r−1

X′ (ν) is an analytic disk
when endowed with its canonical analytic structure. We mean here by a tree a topological
space which is homeomorphic to a rooted nonmetric R-tree in the sense of [FJ04]. If a
graph is a tree, then it is also a tree in this sense.

We define the core of NL(X,x) as the set of all points in NL(X,x) which do not admit
an open neighborhood whose closure is a tree and whose boundary is reduced to a single
point of NL(X,x) and we denote it by Core (NL(X,x)). In [Ber90] the core is referred
to as the skeleton. Observe that by definition Core (NL(X,x)) is empty if and only if
NL(X,x) is a tree. We show that, given a good resolution πX′ : X ′ → X, the space
NL(X,x) is a tree if and only if ΓX′ is a tree. Furthermore, if neither is a tree then we
have Core (NL(X,x)) = |Core (ΓX′) | as subspaces of NL(X,x). It is straightforward to

13
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deduce from this that 2 implies 3.

Finally, let us present a sketch of the proof that 3 implies 1, which is the most delicate
part of the proof of Theorem B. We start with two good resolutions πX′ : X ′ → X and
πY ′ : Y ′ → Y , and suppose that their dual graphs are equivalent. Our goal is to construct
an homeomorphism from RZ(X,x) to RZ(Y, y). We first construct two good resolutions
πX′′ : X ′′ → X and πY ′′ : Y ′′ → Y which factor through πX′ and πY ′ respectively and
such that ΓX′′ and ΓY ′′ are isomorphic graphs. This isomorphism determines a natural
bijection between the irreducible components {Ei}mi=1 of EX′′ and those, say {Di}mi=1, of
EY ′′ . We map the divisorial valuation in RZ(X,x) defined by Ei to the divisorial valuation
in RZ(Y, y) defined by Di. Thus, in order to define a bijection from RZ(X,x) to RZ(Y, y)
it suffices to concentrate on the valuations having as center in X ′′ a closed point. To do
so we choose a bijection σ between the set of closed points of EX′′ and EY ′′ such that
σ(Ei ∩ Ej) = Di ∩ Dj and σ(Ei) ⊆ Di. The idea is to apply Theorem A’ to obtain an
homeomorphism from RZ(X ′′, x′′) to RZ(Y ′′, σ(x′′)). The construction of the bijection
from RZ(X,x) to RZ(Y, y) using this idea requires a careful local study at the points of
EX′′ . The fact that it is an homeomorphism then follows by examination of the behaviors
of sequences of centers and their images by σ.

We now outline the contents of the chapters:

In Chapter 1 we introduce the spaces of valuations we deal with in this work. Section
1.1 is devoted to Riemann-Zariski spaces. We start by recalling some basic facts about
valuations. Then we present the main topological properties of the Riemann-Zariski space
Z(K|R) associated to a field K and a subring R of K. The study of this space has received
in the last few years some special attention (see [FFL13a, FFL13b, Olb15]). We explain
in particular that it is a spectral space and we also consider Z(K|R) endowed with its
constructible topology. Next we restrict ourselves to the case where K is the function field
of X and R is the base field k. In this geometrical context the space Z(K|R) is denoted
by X. We discuss briefly its locally ringed structure. Then we focus on the subspace of
X consisting of all valuations having a center in X, which is the projective limit of the
projective system of all proper birational models of X, and the Riemann-Zariski space
RZ(X,x) of X at a closed point x. We exhibit some topological properties of RZ(X,x),
for instance its connectedness, and we compute its Krull dimension.

In Section 1.2 we turn to spaces of semivaluations. We consider the space V(A, p) of nor-
malized semivaluations associated to an integral domain A and an ideal p of A and develop
some of its topological features. The most significant example is the valuative tree. Then
we concentrate on the normalized non-Archimedean link NL(X,x) of x in X. The section
finishes with the study of the relationship between this space and RZ(X,x). This relation
leads us to study the largest Hausdorff quotient of RZ(X,x).

The purpose of Chapter 2 is to give the proofs of Theorems A and A’. In Sections 2.1 and
2.3 we present detailed proofs of the statements which are needed to complete those proofs
and which we have already mentioned. Since the henselization of a local ring appears as
an essential tool, in Section 2.2 we include basic definitions and some results involving
it useful in the sequel. Chapter 3 provides a short discussion about trees and graphs.
More precisely, in Section 3.2 we define the equivalence relation on the set of graphs in
two different ways and we show that they are equivalent. Finally, Chapter 4 contains the
proof of Theorem B.

14



Resumen

Las valoraciones son una herramienta fundamental de la geometría algebraica. Histórica-
mente jugaron un papel importante en [DW82] donde fueron introducidas para construir
algebraicamente la superficie de Riemann asociada a un cuerpo de funciones algebraicas
en una variable. Posteriormente Zariski generalizó esta idea y las valoraciones pasaron a
ser un ingrediente esencial en su enfoque del problema de resolución de singularidades de
una variedad algebraica X. En [Zar44], Zariski dota de una topología el conjunto X de
todos los anillos de valoración del cuerpo de funciones racionales K de X que contienen el
cuerpo base y establece su casi-compacidad. Este es un punto clave en su estrategia para
la resolución. Asimismo resulta ser un resultado importante en algunos intentos recientes
de resolver este problema en característica positiva (siguiendo nuevas vías usando también
uniformización local, ver [CP08, Tei14]).

En este trabajo suponemos que X es una variedad algebraica definida sobre un cuerpo
algebraicamente cerrado k (es decir, un esquema separado íntegro de tipo finito sobre k)
y fijamos un punto cerrado x de X. Iniciamos el estudio del tipo de homeomorfismo del
espacio RZ(X,x) formado por todos los anillos de valoración de X que dominan al anillo
local OX,x, dotado de la topología introducida por Zariski. Llamamos a RZ(X,x) el es-
pacio de Riemann-Zariski de X en x. Nuestro objetivo es clarificar la relación entre las
propiedades topológicas de este espacio y la geometría local de X en x. Dicha relación es
bien conocida en dimensión uno. Si X es una curva algebraica RZ(X,x) está en biyección
con las ramas analíticas de X en x. Sin embargo la situación es más rica en dimensión
superior.

Preocupaciones similares han aparecido en el marco de la teoría de espacios analíticos
desarrollada por Berkovich y otros autores según [Ber90]. Adoptando este punto de vista
asociamos a X su analytification Xan. Un punto de Xan es un valor absoluto definido en
el cuerpo residual de un punto de X y que extiende el valor absoluto trivial de k (un valor
absoluto da lugar a una valoración de rango uno tomando menos el logaritmo). Sea L(X,x)
el subespacio de Xan formado por todos los puntos que se especializan en x, excepto el
trivial. Una cualidad interesante de este espacio, establecida por Thuillier en [Thu07], es
que tiene el mismo tipo de homotopía que el complejo dual asociado a una resolución de
singularidades de (X,x) cuyo divisor excepcional es un divisor con cruzamientos normales
simples.

De hecho, el espacio RZ(X,x) está íntimamente relacionado con el link no arquimedi-
ano normalizado NL(X,x) de x en X, obtenido a partir de L(X,x) identificando puntos
que definen valoraciones equivalentes (ver [Fan14a]). Si X se reduce al punto x entonces
el espacio de Riemann-Zariski RZ(X,x) es también un punto; por su parte, NL(X,x)
es vacío. Cuando X es una curva, RZ(X,x) y NL(X,x) son espacios finitos del mismo
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cardinal. Por tanto podemos suponer que las variedades algebraicas que consideramos
son de dimensión al menos dos. Obsérvese que estos espacios disfrutan de propiedades
topológicas diferentes: NL(X,x) es compacto mientras que RZ(X,x) no es Hausdorff. En
general existe una aplicación canónica continua y sobreyectiva de RZ(X,x) en NL(X,x),
y este último espacio es el mayor cociente Hausdorff del primero en el caso de superficies
normales (esto no es cierto en dimensión superior). Demostraciones detalladas de estas
afirmaciones pueden encontrarse en las Subseciones 1.2.3 y 1.2.4 respectivamente.

En primer lugar abordamos el caso regular. Sea d la dimensión de X. Recordemos que la
dimensión de Krull de un espacio topológico es el supremo de las longitudes de todas las
cadenas de subespacios cerrados irreducibles del mismo. Como NL(X,x) es Hausdorff, su
dimension de Krull es cero. Miramos en su lugar la dimension de recubrimiento, definida
como en [Pea75], y probamos que NL(X,x) tiene dimensión de recubrimiento d− 1. Dado
un segundo punto cerrado regular y ∈ Y de una variedad algebraica definida sobre el
mismo cuerpo k, si NL(X,x) es homeomorfo a NL(Y, y), entonces este resultado sobre la
dimensión implica que las variedades X e Y son de la misma dimensión. El recíproco
también se verifica. Supongamos que X e Y son ambas de dimension d. Por el Teorema
de Cohen, existe un isomorfismo de k-álgebras σ del completado ÔX,x del anillo local OX,x
en el completado ÔY,y de OY,y (ambos anillos son isomorfos al anillo de series formales en
d variables con coeficientes en k). Esto nos permite definir una biyección entre las semi-
valoraciones de ÔY,y y las de ÔX,x mediante composición con σ. Entendemos aquí por
una semivaloración una aplicación del anillo en [0,+∞] que verifica los axiomas propios
de una valoración, pero que puede enviar a infinito elementos diferentes del cero.

Obsérvese que OX,x y OY,y no son necesariamente isomorfos como k-álgebras, ni siquiera
cuando tienen el mismo cuerpo de fracciones. En efecto, supongamos que X es no singular
y consideremos dos puntos cerrados distintos x, x′ ∈ X. Si existe un isomorfismo entre los
anillos locales de X en estos puntos, entonces podemos encontrar un isomorfismo U → U ′

que envía x en x′, donde U,U ′ ⊂ X son entornos abiertos de x y x′ respectivamente.
Tenemos por tanto una aplicación birracional de X en sí mismo enviando x en x′. Si X
es de tipo general y el cuerpo base es algebraicamente cerrado de característica cero, el
grupo de automorfismos birracionales de X es finito (ver [HMX13] para una cota). En
este caso solo existe un número finito de puntos x′ para los que OX,x puede ser isomorfo
como k-álgebra a OX,x′ .

Volvamos a nuestro problema. El mismo se reduce ahora al estudio de las extensiones de
una semivaloración de OX,x a una semivaloración de su completado. Demostramos que
un punto ν de NL(X,x) define de forma canónica una semivaloración convenientemente
normalizada ν̂ de ÔX,x cuya restricción a k es trivial. Basta definir ν̂(f) = lim

n→+∞
ν(fn),

donde (fn)∞n=1 es una sucesión de Cauchy en OX,x que converge a f . Este resultado es
cierto siempre que x es analíticamente irreducible, esto es, si ÔX,x es un dominio de inte-
gridad.

Nuestro primer resultado principal es el siguiente:

Teorema A. Sean X,Y dos variedades algebraicas definidas sobre el mismo cuerpo al-
gebraicamente cerrado k. Para todo par de puntos cerrados regulares x ∈ X, y ∈ Y ,
los espacios NL(X,x) y NL(Y, y) son homeomorfos si y solo si X y Y son de la misma
dimensión.
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En el caso de dimensión dos podemos ser más específicos. Un modelo topológico para
NL(A2

C, 0) ha sido propuesto en [FJ04, Section 3.2.3]. En esta monografía el link no arqui-
mediano normalizado del origen en el plano complejo recibe el nombre de árbol valorativo.
Este espacio cuenta con una estructura afín canónica que permite realizar análisis convexo
y que encuentra aplicaciones interesantes en dinámica y análisis complejo en [FJ07, FJ05].
Más precisamente, posee estructura de árbol real no métrico con raíz (ver [FJ04, Definition
3.1 y Theorem 3.14] y [Nov14]). A grandes rasgos se trata de un espacio topológico donde
cualesquiera dos puntos están unidos por un único intervalo real. Dicha estructura ha sido
extendida en [Gra07] al caso de un punto cerrado regular de una superficie. Por su parte,
el tipo de homeomorfismo de una curva de Berkovich arbitraria ha sido también tratado
en [HLP14] bajo hipótesis de numerabilidad del cuerpo base. Puesto que NL(A2

k, 0) es
homeomorfo a la bola unidad cerrada sobre el cuerpo k((t)) (equipado con su valoración
discreta), este resultado muestra que NL(A2

k, 0) es una dendrita universal de Ważewski
cuando k es numerable.

Tratemos ahora el problema en el marco Riemann-Zariski. Es sabido que X tiene la misma
dimensión de Krull que X. Demostramos que RZ(X,x) tiene dimensión de Krull d − 1.
De nuevo este resultado implica que dos variedades X e Y definidas sobre k son de la
misma dimensión cuando podemos encontrar puntos cerrados regulares x ∈ X, y ∈ Y
tales que RZ(X,x) y RZ(Y, y) son homeomorfos. El recíproco también es cierto, aunque
la demostración en este caso es más complicada. En un intento de reproducir la prueba
dada para el link no arquimediano normalizado, nos interesamos primeramente por el
comportamiento de una valoración de K cuyo anillo de valoración domina OX,x cuando
pasamos al completado de este último.

Suponiendo que x es un punto analíticamente normal de una superficie (esto es, el com-
pletado ÔX,x es normal), en [Spi90b] se demuestra que una valoración de RZ(X,x) se
extiende de forma única a una valoración del cuerpo de fracciones de ÔX,x cuyo anillo de
valoración domina dicho anillo. Este resultado se aplica en nuestra situación puesto que
todo punto regular es analíticamente normal. Sin embargo este teorema sobre extensión
de valoraciones no es cierto en dimensión mayor que dos. Dicha extensión siempre existe,
pero no es difícil construir ejemplos explícitos donde no es única. Es más, o bien existe
una única extensión, o bien hay infinitas (ver [HS91]).

Necesitamos por lo tanto adoptar una estrategia diferente. Recordemos que el henselizado
ÕX,x de OX,x es el límite inductivo del sistema de OX,x-álgebras locales étales equi-
residuales. Sea U ⊆ X un entorno afín abierto de x dado por una k-álgebra finitamente
generadaA = k[T1, . . . , Tn]/I de dimensión d. El Lema de normalización de Noether afirma
que existen d elementos x1, . . . , xd de A, algebraicamente independientes sobre k, tales que
A es un k[x1, . . . , xd]-módulo finitamente generado y m∩k[x1, . . . , xd] = (x1, . . . , xd), donde
m es el ideal maximal de A correspondiente al punto x. Cada xi puede suponerse igual a
la clase de una combinación k-lineal genérica

∑
1≤i≤n αijTj módulo I (ver [Eis95, Theorem

13.3]). Se puede probar que además es posible tomar dichos elementos de modo que la
aplicación tangente TU,x → TAd

k
,0 sea inyectiva. Así, el morfismo finito de U en Ad

k es
étale en el punto x. Luego OU,x es una OAd

k
,0-álgebra local étale equirresidual y ÕX,x y el

henselizado de k[x1, . . . , xd](x1,...,xd) coinciden.

Como consecuencia, para todo punto cerrado regular y ∈ Y de una variedad algebraica de
dimensión d definida sobre k, podemos encontrar un isomorfismo de k-álgebras σ de ÕX,x
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en el henselizado ÕY,y de OY,y. Sea K̃ el cuerpo de fracciones de ÕX,x (obsérvese que
ÕX,x es un subanillo de ÔX,x, que es un dominio de integridad por hipótesis). La obser-
vación anterior nos permite definir una biyección entre las valoraciones de K̃ cuyo anillo
de valoración domina ÕY,y y aquellas cuyo anillo de valoración domina ÕX,x, mediante
composición con σ. Parece natural ahora preguntarse si una valoración de RZ(X,x) de-
termina de forma canónica una valoración de K̃ cuyo anillo de valoración domina ÕX,x.
La respuesta es afimativa. Para demostrarlo nos apoyamos en un resultado profundo de
[HOST12] sobre extensión de valoraciones a una extensión local étale bajo la hipótesis de
excelencia del anillo local.

Nuestro segundo resultado principal es el siguiente:

Teorema A’. Sean X,Y dos variedades algebraicas definidas sobre el mismo cuerpo al-
gebraicamente cerrado k. Para todo par de puntos cerrados regulares x ∈ X, y ∈ Y ,
los espacios RZ(X,x) y RZ(Y, y) son homeomorfos si y solo si X e Y son de la misma
dimensión.

De este teorema se derivan dos consecuencias particularmente notables. Por un lado de-
muestra que el tipo de homeomorfismo de RZ(X,x) y NL(X,x) depende únicamente de
la dimensión de la variedad X y del cuerpo base k. Por otro lado, admitiendo la exis-
tencia de resolución de singularidades, pone de manifiesto la estructura auto-homeomorfa
de RZ(X,x) si consideramos un sistema proyectivo de variedades no singulares. Esta
propiedad se observa también en el árbol valorativo y en el espacio de lugares reales de
L(y) donde L = R((tQ)) (ver [FJ04, Theorem 6.51] y [Kuh13, Corollary 21] respectiva-
mente). Precisamos esta noción en la Sección 2.3.

A continuación consideramos un punto singular x de una superficie algebraica normal X.
Llegados a este punto queremos resaltar que los espacios RZ(X,x) y NL(X,x) tienen una
estructura más rica que simplemente una topología. De hecho ambos son espacios local-
mente anillados. El segundo posee además una estructura analítica natural localmente
modelada en espacios afinoides sobre k((t)). Estas estructuras k((t))-analíticas locales no
son canónicas y en general no pueden pegarse para obtener una global. Dicha estructura
ha sido estudiada en [Fan14a], donde se demuestra que determina el completado del anillo
local OX,x (ver [Fan14a, Corollary 4.14]). Sin embargo, son solo los espacios topológi-
cos subyacentes los que nos ocupan aquí. Introducimos ahora las nociones necesarias
para enunciar nuestro resultado principal sobre el tipo de homeomorfismo de RZ(X,x) y
NL(X,x) en este caso.

Un grafo es un grafo finito, conexo, con al menos un vértice, sin bucles y sin aristas múlti-
ples. Recordemos que un grafo Γ es un objeto puramente combinatorio que puede ser visto
como un CW-complejo finito de dimensión uno. Más precisamente, dotamos el conjunto
de vértices V y el conjunto de aristas E de Γ de la topología discreta, y el intervalo [0, 1]
de la topología inducida por la topología usual de la recta real. El espacio topológico |Γ|,
que llamamos la realización topológica de Γ, es el espacio cociente obtenido a partir de la
unión disjunta Vt(E× [0, 1]) mediante las identificaciones naturales v ∼ (e, 0) y v′ ∼ (e, 1)
dadas por las indicencias entre aristas y vértices.

Decimos que un grafo es un árbol si su realización topológica es simplemente conexa. De
acuerdo con [Sta83], asociamos a todo grafo su núcleo (ver también la definición del es-
queleto de un casipoliedro dada en [Ber90]). El núcleo de un grafo Γ que no es un árbol es
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el subgrafo de Γ obtenido a partir de Γ por eliminaciones sucesivas de un vértice de grado
uno y la arista incidente a él, hasta que no queden vértices de grado uno. Entendemos
por el grado de un vértice el número de aristas incidentes a él. Denotamos el núcleo de Γ
como Core (Γ).

Sea Γ un grafo que no es un árbol. Obsérvese que si Γ no tiene vértices de grado uno
entonces Γ es su propio núcleo. Obsérvese también que |Γ| admite una retracción por de-
formación en |Core (Γ) |. El complementario de |Core (Γ) | en |Γ| es el conjunto de puntos
de |Γ| que admiten un entorno abierto cuya clausura es un árbol y cuya frontera se reduce
a un vértice de Γ. Por tanto podemos imaginar Γ como su núcleo con algunos árboles
disjuntos “colgando” de él.

Introducimos a continuación la relación de equivalencia en el conjunto de grafos en la que
está basada la caracterización que damos en nuestro resultado. Dos grafos Γ y Γ′ son
equivalentes si ambos son árboles, o bien ninguno es un árbol y |Core (Γ) | es homeomorfo
a |Core (Γ′) |. Esta relación es más estricta que la equivalencia de homotopía. Los tres
grafos siguientes tienen realizaciones topológicas homotópicamente equivalentes, pero no
son dos a dos equivalentes: dos triángulos compartiendo un vértice, dos triángulos com-
partiendo un lado, y un segmento con un triángulo pegado en cada vértice.

Recordemos que un morfismo propio birracional πX′ : X ′ → X es una buena resolución si
X ′ es no singular y el lugar excepcional EX′ = π−1

X′ (x)red es un divisor con cruzamientos
normales tal que sus componentes irreducibles son lisas y la intersección de cualesquiera
dos de ellas es a lo sumo un punto. A toda buena resolución se le asocia su grafo dual
ΓX′ , cuyos vértices están en biyección con las componentes irreducibles de EX′ y donde
dos vértices son adyacentes si y solo si las correspondientes componentes irreducibles de
EX′ se intersectan.

Nuestro resultado principal en este contexto es el siguiente:

Teorema B. Sean x ∈ X, y ∈ Y puntos singulares de superficies algebraicas normales
definidas sobre un cuerpo algebraicamente cerrado k, y ΓX′, ΓY ′ los grafos duales asociados
a dos buenas resoluciones de (X,x) e (Y, y) respectivamente. Las siguientes afirmaciones
son equivalentes:

1. Los espacios RZ(X,x) y RZ(Y, y) son homeomorfos.

2. Los espacios NL(X,x) y NL(Y, y) son homeomorfos.

3. Los grafos ΓX′ y ΓY ′ son equivalentes.

Este teorema implica que los espacios de valoraciones RZ(X,x) y NL(X,x) asociados
a cualquier singularidad racional de superficie (X,x) son homeomorfos a RZ(A2

k, 0) y
NL(A2

k, 0) respectivamente. Para obtener información más precisa sobre la singularidad
(X,x) será necesario explorar estructuras más finas de RZ(X,x).

Como dijimos anteriormente, NL(X,x) es el mayor cociente Hausdorff de RZ(X,x). Por
lo tanto si la afirmación 1 del Teorema B se verifica, entonces NL(X,x) es homeomorfo a
NL(Y, y). En las siguientes líneas explicamos brevemente nuestra estrategia para probar
que 2 implica 3 y que 3 implica 1.
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La realización topológica de todo grafo dual ΓX′ puede verse como un subespacio cerra-
do de NL(X,x) y existe una aplicación retracción continua rX′ : NL(X,x) → |ΓX′ | (ver
[Fav10]). La idea clave de la demostración es ver que la fibra r−1

X′ (ν) de rX′ es un árbol cuya
frontera se reduce a ν, para toda ν ∈ NL(X,x). Esta afimación es consecuencia de [FJ04,
Theorem 6.51]. Es más, en [Fan14a, Proposition 9.5 (i)] se prueba que la fibra r−1

X′ (ν)
es un disco analítico cuando es dotada de su estructura analítica canónica. Entendemos
aquí que un árbol es un espacio topológico que es homeomorfo a un árbol real no métrico
con raíz en el sentido de [FJ04]. Si un grafo es un árbol entonces también lo es con esta
definición.

Definimos el núcleo de NL(X,x) como el subconjunto de NL(X,x) formado por los puntos
que no admiten un entorno abierto cuya clausura es un árbol y cuya frontera se reduce
a un único punto de NL(X,x). Lo denotamos por Core (NL(X,x)) (en [Ber90] el núcleo
es llamado el esqueleto). Obsérvese que por definición Core (NL(X,x)) es vacío si y solo
si NL(X,x) es un árbol. Demostramos que, dada una buena resolución πX′ : X ′ → X, el
espacio NL(X,x) es un árbol si y solo si ΓX′ es un árbol. Además, si ninguno es un árbol
entonces tenemos Core (NL(X,x)) = |Core (ΓX′) | como subespacios de NL(X,x). De aquí
se deduce directamente que 2 implica 3.

Por último, presentamos un resumen de la demostración de que 3 implica 1, que es la
parte más delicada de la prueba del Teorema B. Comenzamos con dos buenas resoluciones
πX′ : X ′ → X y πY ′ : Y ′ → Y cuyos grafos duales son equivalentes. Nuestro objetivo es
construir un homeomorfismo de RZ(X,x) en RZ(Y, y). En primer lugar construimos dos
buenas resoluciones πX′′ : X ′′ → X y πY ′′ : Y ′′ → Y que factorizan por πX′ y πY ′ , respec-
tivamente y tales que ΓX′′ y ΓY ′′ son grafos isomorfos. Este isomorfismo determina una
biyección entre las componentes irreducibles {Ei}mi=1 de EX′′ y las de EY ′′ , que llamamos
{Di}mi=1. Envíamos la valoración divisorial de RZ(X,x) definida por Ei a la valoración
divisorial de RZ(Y, y) definida por Di. Así, para definir una biyección de RZ(X,x) en
RZ(Y, y) basta con que nos concentremos en las valoraciones que tienen como centro en
X ′′ un punto cerrado. Con este fin, elegimos una biyección σ entre el conjunto de puntos
cerrados de EX′′ y el de EY ′′ cumpliendo σ(Ei ∩Ej) = Di ∩Dj y σ(Ei) ⊆ Di. Aplicando
el Teorema A’ obtenemos un homeomorfismo de RZ(X ′′, x′′) en RZ(Y ′′, σ(x′′)). La cons-
trucción de la biyección de RZ(X,x) en RZ(Y, y) siguiendo esta idea require un estudio
local minucioso en los puntos de EX′′ . El hecho de que sea además un homemorfismo se
demuestra tras examinar el comportamiento de sucesiones de centros y sus imágenes por σ.

Resumimos ahora el contenido de los diferentes capítulos:

En el Capítulo 1 introducimos los espacios de valoraciones sobre los que trata este tra-
bajo. La Sección 1.1 está dedicada a los espacios de Riemann-Zariski. Comenzamos con
un recordatorio sobre propiedades básicas de las valoraciones. Seguidamente presentamos
las principales propiedades topológicas del espacio de Riemann-Zariski Z(K|R) asociado
a un cuerpo K y a un subanillo R del mismo. El estudio de este espacio ha recibido
una atención especial en los últimos años (ver [FFL13a, FFL13b, Olb15]). En particular,
explicamos que es un espacio espectral y consideramos Z(K|R) equipado con la topología
constructible. A continuación nos restringimos al caso en que K es el cuerpo de funciones
racionales de X y R el cuerpo base k. En este contexto geométrico, denotamos el espacio
Z(K|R) por X. Tras comentar brevemente su estructura de espacio anillado, nos concen-
tramos en el subespacio de X formado por las valoraciones centradas en X, que es el límite
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proyectivo del sistema formado por todos los modelos propios birracionales de X, y en el
espacio de Riemann-Zariski RZ(X,x) de X en un punto cerrado x. Exponemos algunas
de las propiedades topológicas de RZ(X,x), como por ejemplo su conexidad, y calculamos
su dimensión de Krull.

En la Sección 1.2 pasamos a los espacios de semivaloraciones. Consideramos el espacio
V(A, p) de valoraciones normalizadas asociado a un dominio de integridad A y a un ideal
p de A y ponemos de manifiesto algunas de sus propiedades topológicas. El ejemplo más
significativo es el árbol valorativo. A continuación nos concentramos en el link no arqui-
mediano normalizado NL(X,x) de x en X. La sección termina con el estudio de la relación
entre este espacio y RZ(X,x). Dicha relación nos lleva a estudiar el mayor cociente Haus-
dorff de RZ(X,x).

El objetivo del Capítulo 2 es presentar las demostraciones de los Teoremas A y A’. En las
Secciones 2.1 y 2.3 presentamos las pruebas de los resultados necesarios para completar
dichas demostraciones y que hemos mencionado anteriormente. Puesto que la henselización
de un anillo local es una herramienta fundamental, hemos incluido en la Sección 2.2 defi-
niciones básicas y algunos resultados que utilizamos con posterioridad. El Capítulo 3
contiene una breve exposición sobre árboles y grafos. Más precisamente, en la Sección 3.2
definimos la relación de equivalencia en el conjunto de grafos de dos maneras diferentes y
mostramos que coinciden. Por último, el Capítulo 4 contiene la demostración del Teorema
B, que hemos resumido anteriormente.
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Résumé

Les valuations sont un outil essentiel en géométrie algébrique. Historiquement elles ont
joué un rôle important dans [DW82] où les valuations ont été introduites pour construire
la surface de Riemann associée à un corps de fonctions algébriques d’une variable. Plus
tard Zariski généralise cette idée et les valuations deviennent un ingrédient essentiel dans
son approche du problème de la résolution des singularités d’une variété algébrique X.
Dans [Zar44], il muni l’ensemble X de tous les anneaux de valuation du corps de fonctions
rationnelles K de X contenant le corps base d’une topologie et établit sa quasi-compacité.
Ce fut un point clé de son programme pour la résolution. C’est également un résultat clé
dans certaines tentatives récentes visant à résoudre ce problème en caractéristique positive,
en suivant des nouvelles stratégies utilisant l’uniformisation locale (voir [CP08, Tei14]).

Dans ce travail nous supposons que X est une variété algébrique définie sur un corps
algébriquement clos k (c’est-à-dire, un schéma séparé intègre de type fini sur k) et nous
fixons un point fermé x de X. Nous initions l’étude du type d’homéomorphisme de l’espace
RZ(X,x) formé par tous les anneaux de valuation de X dominant l’anneau OX,x, muni
de la topologie induite par la topologie de Zariski. Nous appelons RZ(X,x) l’espace de
Riemann-Zariski de X dans x. Notre objectif est de clarifier la relation entre les pro-
priétés topologiques de cet espace et la géométrie locale de X dans x. Notez que le cas
unidimensionnel est bien compris. Si X est une courbe algébrique alors RZ(X,x) est en
bijection avec les branches analytiques de X dans x. Cependant, la situation est plus riche
en dimension supérieure.

Des préoccupations similaires sont apparues dans le cadre de la théorie des espaces ana-
lytiques tel qu’elle a été développé par Berkovich et autres après [Ber90]. En adoptant ce
point de vue, on associe à X son analytifié Xan. Un point de Xan est une valeur absolue
(qui donne lieu à une valuation en prenant moins le logarithme) sur le corps résiduel d’un
point de X étendant la valeur absolue triviale de k. Nous pouvons considérer le sous-
espace L(X,x) formé par tous les points de Xan qui se spécialisent en x à l’exception du
trivial. Une propriété intéressante de cet espace, établi par Thuillier dans [Thu07], est qu’il
a le type d’homotopie du complexe dual associé au diviseur exceptionnel d’une résolution
des singularités de (X,x) dont le diviseur exceptionnel a des croisements normaux simples.

En fait, l’espace RZ(X,x) est étroitement liée à l’entrelac non-Archimédien normalisé
NL(X,x) de x dans X qui est obtenu à partir de L(X,x) en identifiant des points défini-
ssant des valuations equivalentes (voir [Fan14a]). Si X est réduite à x, alors RZ(X,x) est
un singleton et NL(X,x) est vide. Lorsque X est une courbe alors RZ(X,x) et NL(X,x)
sont des espaces finis de la même cardinalité. Nous pouvons donc supposer que les variétés
algébriques que nous considérons sont de dimension au moins deux. Notez que NL(X,x)
est un espace compact tandis que RZ(X,x) est jamais séparé. En général, il y a une
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surjection continue canonique de RZ(X,x) dans NL(X,x), et celui-ci est le plus grand
quotient séparé du premier dans le cas des surfaces normales (ce n’est plus vrai en dimen-
sion supérieure). Une preuve détaillée de ces faits est donnée aux paragraphes 1.2.3 et
1.2.4 respectivement.

Nous abordons d’abord le cas régulier. Nous appelons d la dimension de X. Rappelons
que la dimension de Krull d’un espace topologique est le supremum des longueurs de
toutes les chaînes de sous-espaces fermés irréductibles de l’espace. Observez que NL(X,x)
a dimension de Krull zéro car il est Hausdorff. Nous regardons à la place sa dimension de
recouvrement tel que définie dans [Pea75], et nous montrons que NL(X,x) a pour dimen-
sion de recouvrement d−1. Si un autre point fermé y ∈ Y d’une variété algébrique définie
sur le même corps k est donné, et NL(X,x) est homéomorphe à NL(Y, y), alors ce résultat
sur la dimension implique que X et Y ont la même dimension. La réciproque est égale-
ment vraie. Supposons que X et Y ont tous les deux dimension d. D’après le Théorème
de Cohen, il existe un isomorphisme de k-algèbres σ du completé ÔX,x de l’anneau local
OX,x dans celui de OY,y (ils sont isomorphes à l’anneau des séries formelles en d variables
avec des coefficients dans k). Cela nous permet de définir une bijection naturelle entre
les semivaluations de ÔY,y et celles de ÔX,x par composition avec σ. Par une semivalua-
tion nous entendons ici une application de l’anneau dans [0,+∞] vérifient les axiomes des
valuations mais qui peut envoyer à l’infini des éléments non nuls de l’anneau.

Observez que OX,x et OY,y ne sont pas forcément isomorphes comme k-algèbres, même
quand ils ont le même corps de fractions. Supposons que X est non singulière et prenons
deux points fermés différents x, x′ ∈ X. S’il existe un tel isomorphisme entre les anneaux
locaux de X en ces points, nous pouvons trouver un isomorphisme U → U ′ qui envoie x
dans x′, où U,U ′ ⊂ X sont des voisinages ouverts de x et x′ respectivement. Ainsi, nous
aurions une application birationnelle de X dans elle même en envoyant x dans x′. Si X
est de type général et si le corps de base est algébriquement clos de caractéristique nulle,
le groupe d’automorphismes birationnels de X est fini (voir [HMX13] pour une borne).
Dans ce cas, il existe seulement un nombre fini de points x′ pour lesquels OX,x pourrait
être isomorphe comme k-algèbre à OX,x′ .

Revenons maintenant à notre problème. Observons qu’il a été réduit à l’étude des exten-
sions d’une semivaluation de OX,x à son complété. En fait, on peut montrer qu’un point
ν de NL(X,x) définit d’une manière canonique une semivaluation convenablement norma-
lisée ν̂ de ÔX,x dont la restriction à k est triviale. Il suffit de définir ν̂(f) = lim

n→+∞
ν(fn),

où (fn)∞n=1 est une suite de Cauchy dans OX,x qui converge vers f . Ce résultat est vrai
lorsque le point x est analytiquement irréductible, c’est-à-dire, si ÔX,x est intégre.

Notre premier résultat principal est le suivant:

Théorème A. Soient X,Y deux variétés algébriques définies sur le même corps al-
gébriquement clos k. Pour tous points fermés réguliers x ∈ X, y ∈ Y , les espaces NL(X,x)
et NL(Y, y) sont homéomorphes si et seulement si X et Y ont la même dimension.

En dimension deux on peut être plus précis. Un modèle topologique pour NL(A2
C, 0) a déjà

été proposé dans [FJ04, Section 3.2.3]. Dans cette monographie l’entrelac non-Archimédien
normalisé de l’origine dans le plan affine complexe est dénommé l’arbre valuatif. Cet es-
pace porte une structure affine canonique qui permet de faire de l’analysis convexe dessus
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et qui trouve des applications intéressantes en dynamique et en analyse complexe dans
[FJ07, FJ05]. Plus précisément, il a une structure d’arbre réel enraciné non métrique
(voir [FJ04, Definition 3.1 et Theorem 3.14] et [Nov14]). Grosso modo, ceci signifie que
c’est un espace topologique où deux points différents sont reliés par un unique intervalle
réel. Cette structure a été étendu en [Gra07] au cas d’un point fermé régulier d’une sur-
face. Le type d’ homéomorphisme d’une courbe arbitraire de Berkovich est également
traité dans [HLP14] sous une hypothèse de dénombrabilité du corps de base. Étant donné
que NL(A2

k, 0) est homéomorphe à la boule unité fermée sur le corps k((t)) (muni de sa
valuation discrete), leur résultat montre que NL(A2

k, 0) est une dendrite universelle de
Ważewski quand k est dénombrable.

Passons maintenant au cadre de Riemann-Zariski. Il est connu que X a la même dimen-
sion de Krull que X. Nous montrons que RZ(X,x) a pour dimension de Krull d − 1.
Encore une fois ce fait implique que deux variétés X et Y définies sur k ont la même
dimension lorsque RZ(X,x) et RZ(Y, y) sont homéomorphes pour certains points fermés
réguliers x ∈ X, y ∈ Y . La réciproque est vraie aussi, cependant dans cette situation la
démonstration est plus compliquée. Si l’on essaie de reproduire la preuve donnée dans le
cas des entrelacs non-Archimédiens normalisés, nous sommes amenés à étudier les exten-
sions d’une valuation de K dont l’anneau de valuation domine OX,x au complété formel
de l’anneau.

Lorsque x est un point analytiquement normal d’une surface (c’est-à-dire, le complété
ÔX,x est normal), il est montré dans [Spi90b] qu’une valuation de RZ(X,x) s’étend de
manière unique à une valuation du corps des fractions de ÔX,x dont l’anneau de valuation
domine cet anneau. Ce résultat s’applique à notre situation car tout point régulier est
analytiquement normal. Cependant cette affirmation à propos des extensions des valua-
tions n’est plus vraie en dimension supérieure à deux. Une telle extension existe toujours,
mais il n’est pas difficile de construire des exemples explicites où elle n’est pas unique. En
fait, soit elle s’étend de façon unique soit il y a une infinité de telles extensions (voir [HS91]).

Par conséquent, on doit suivre une stratégie différente. Rappelons que l’hensélisé ÕX,x de
OX,x est la limite inductive du système des OX,x-algèbres locales étales equirésiduelles.
Prenons un voisinage ouvert affine U ⊆ X de x donné par une k-algèbre de type fini
A = k[T1, . . . , Tn]/I de dimension d. Le lemme de normalisation de Noether affirme qu’il
existe des éléments x1, . . . , xd de A, qui sont algébriquement indépendants sur k, tels que A
est un k[x1, . . . , xd]-module de type fini et m∩k[x1, . . . , xd] = (x1, . . . , xd), où m est l’idéal
maximal de A correspondant au point x. En outre, chaque xi peut être choisi pour être
la classe résiduelle d’une combinaison k-linéaire générique

∑
1≤i≤n αijTj modulo I (voir

[Eis95, Theorem 13.3]). On peut montrer qu’il est également possible de les choisir de
manière à ce que l’application tangente TU,x → TAd

k
,0 soit injective. Alors le morphisme

fini de U vers Ad
k est étale dans le point x. Ensuite OU,x est une OAd

k
,0-algèbre locale étale

equirésiduelle et donc ÕX,x et l’hensélisé de k[x1, . . . , xd](x1,...,xd) coincident.

En conséquence, pour tout point fermé régulier y ∈ Y d’une variété algébrique de dimen-
sion d définie sur k, nous pouvons trouver un isomorphisme de k-algèbres σ de ÕX,x vers
l’hensélisé ÕY,y de OY,y. Notons K̃ le corps de fractions de ÕX,x (notez que ÕX,x est
un sous-anneau de ÔX,x, qui est intègre par hypothèse). La remarque précédente nous
permet de définir une bijection naturelle entre les valuations de K̃ dont l’anneau de valua-
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tion domine ÕY,y et celles dont l’anneau de valuation domine ÕX,x, par composition avec
σ. La question qui se pose naturellement maintenant est de savoir si une valuation de
RZ(X,x) définit d’une manière canonique une valuation de K̃ dont l’anneau de valuation
domine ÕX,x. Il se trouve que la répose est affirmative. Afin de montrer ce fait nous
nous appuyons sur un résultat profond de [HOST12] sur l’extension des valuations à une
extension locale étale d’anneaux, sous l’hypothèse de l’excellence de l’anneau local.

Notre deuxième résultat principal est le suivant:

Théorème A’. Soient X,Y deux variétés algébriques définies sur le même corps al-
gébriquement clos k. Pour tous points fermés réguliers x ∈ X, y ∈ Y , les espaces RZ(X,x)
and RZ(Y, y) sont homéomorphes si et seulement si X et Y ont la même dimension.

Deux conséquences de ce théorème sont particulièrement remarquables. D’un côté, ce ré-
sultat indique que le type d’homéomorphisme de RZ(X,x) et NL(X,x) ne dépend que de
la dimension de la variété X et du corps de base k. D’autre part, en supposant l’existence
de résolution de singularités, il révèle la structure auto-homéomorphe de RZ(X,x) en con-
sidérant un système projectif de variétés non singulières. Cette propriété est également
observée dans l’arbre valuatif et dans l’espace des places réels de L(y) où L = R((tQ)) (voir
[FJ04, Theorem 6.51] et [Kuh13, Corollary 21] respectivement). Nous précisons cette no-
tion dans la Section 2.3.

Ensuite nous considérons un point singulier x d’une surface algébrique normale X. Tout
d’abord notons que les espaces RZ(X,x) et NL(X,x) ont plus de structure qu’une topolo-
gie. Ce sont des espaces annelés en anneaux locaux. Le second porte une structure
analytique naturelle localement modelée sur des espaces affinoïdes sur k((t)). Ces struc-
tures k((t))-analytiques locales ne sont pas canoniques et ne peuvent pas en général être
recollées pour en obtenir une globale. Cette structure a été étudiée dans [Fan14a] et il
a montré qu’elle détermine le complété de l’anneau local OX,x (voir [Fan14a, Corollary
4.14]). Cependant, ce sont seulement les espaces topologiques sous-jacents ce qui nous
intéresse ici. Nous introduisons maintenant les notions nécessaires pour énoncer notre
résultat principal concernant le type d’homéomorphisme de RZ(X,x) et NL(X,x) dans ce
cas.

Par un graphe nous entendons un graphe connexe fini avec au moins un sommet, sans
boucles et sans arêtes multiples. Rappelons qu’un graphe Γ est un objet purement combi-
natoire qui peut être vu comme un CW-complexe unidimensionnel fini. Pour être précis,
nous munissons l’ensemble des sommets V de Γ et l’ensemble de ses arêtes E de la topolo-
gie discrète, et l’intervalle unité [0, 1] de la topologie induite par la topologie standard de
la droite réelle. L’espace topologique |Γ|, que nous appelons la réalisation topologique de
Γ, est l’espace quotient obtenu de la réunion disjointe Vt (E× [0, 1]) par les identifications
v ∼ (e, 0) et v′ ∼ (e, 1) données par l’incidence des sommets et arêtes.

Nous disons qu’un graphe est un arbre si sa réalisation topologique est simplement co-
nnexe. D’après [Sta83] nous associons à tout graphe son noyau (voir aussi la définition du
squelette d’un quasipolyhedron donnée dans [Ber90]). Le noyau d’un graphe Γ qui n’est
pas un arbre, est le sous-graphe de Γ obtenu en supprimant de façon récursive un sommet
de degré un et l’arête qui lui est incidente, jusqu’à ce qu’il ne reste pas de sommets de degré
un. Rappelons que le degré d’un sommet est le nombre d’arêtes qui lui sont incidentes.

26



Résumé

On note le noyau de Γ par Core (Γ).

Soit Γ un graphe qui n’est pas un arbre. Remarquez que si Γ n’a pas de sommet de de-
gré un, alors Γ est son propre noyau. Notez également que |Γ| admet une rétraction par
déformation sur |Core (Γ) |. Le complémentaire de |Core (Γ) | dans |Γ| est l’ensemble des
points de |Γ| qui admettent un voisinage ouvert dont la fermeture est un arbre et dont la
frontière est réduite à un sommet de Γ. Nous pouvons donc imaginer Γ comme son noyau
avec un certain nombre d’arbres disjoints attachés à lui.

Nous introduisons maintenant la relation d’équivalence dans l’ensemble des graphes sur
lasquelle repose la caractérisation de notre résultat. Deux graphes Γ et Γ′ sont équivalents
si ils sont tous les deux des arbres, ou bien aucun ne l’est et |Core (Γ) | est homéomorphe
à |Core (Γ′) |. Observez que cette relation d’équivalence est plus stricte que l’équivalence
d’homotopie. Les trois graphes, comprenant deux triangles partageant un sommet, deux
triangles partageant un côté, et un segment avec un triangle attaché à chaque extremité,
ont tous des réalisations topologiques homotopiquement équivalentes, mais ils ne sont pas
deux à deux équivalents.

Rappelons qu’un morphisme birationnel πX′ : X ′ → X est une bonne résolution si X ′ est
lisse et le lieu exceptionnel EX′ = π−1

X′ (x)red est un diviseur à croissements normaux, tel
que ses composantes irréductibles sont lisses et l’intersection de deux d’entre elles est au
plus un point. À toute bonne résolution est associée son graphe dual ΓX′ dont les sommets
sont en bijection avec les composantes irréductibles de EX′ et où deux sommets sont adja-
cents si et seulement si les composantes irréductibles correspondantes de EX′ s’intersectent.

Notre résultat principal dans ce cadre est le suivant:

Théorème B. Soient x ∈ X et y ∈ Y des points singuliers de deux surfaces normales
définies sur un corps algébriquement clos k, et ΓX′, ΓY ′ les graphes duaux associés à
deux bonnes résolutions de (X,x) et (Y, y) respectivement. Les affirmations suivantes sont
équivalentes:

1. Les espaces RZ(X,x) et RZ(Y, y) sont homéomorphes.

2. Les espaces NL(X,x) et NL(Y, y) sont homéomorphes.

3. Les graphes ΓX′ et ΓY ′ sont équivalents.

Ce théorème implique que les espaces de valuations RZ(X,x) et NL(X,x) associés à toute
singularité rationnelle de surface (X,x) sont homéomorphes à RZ(A2

k, 0) et NL(A2
k, 0)

respectivement. Afin d’obtenir des informations plus précises sur la singularité (X,x), il
sera nécessaire d’explorer des structures plus fines de RZ(X,x).

Comme nous l’avons dit plus haut, NL(X,x) est le plus grand quotient séparé de RZ(X,x).
Par conséquent, si 1 est vérifié alors NL(X,x) est homéomorphe à NL(Y, y). Nous allons
maintenant expliquer brièvement notre stratégie pour prouver que 2 implique 3 et que 3
implique 1.

La réalisation topologique de toute graphe dual ΓX′ peut être vue comme un sous-espace
fermé de NL(X,x) et il existe une rétraction continue rX′ : NL(X,x) → |ΓX′ | (voir
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[Fav10]). L’observation clé est la suivante: toute fibre r−1
X′ (ν) de l’application rX′ est

un arbre dont la frontière est réduite à ν. Une preuve de cette affirmation découle de
[FJ04, Theorem 6.51]. En fait, il est demontré dans [Fan14a, Proposition 9.5 (i)] que la
fibre r−1

X′ (ν) est un disque analytique lorsque elle est munie de sa structure analytique
canonique. Nous entendons ici par arbre un espace topologique qui est homéomorphe à
un arbre réel enraciné non métrique dans le sens de [FJ04]. Si un graphe est un arbre,
alors il l’est aussi dans ce sens.

Nous définissons le noyau de NL(X,x) comme l’ensemble de tous les points de NL(X,x)
qui n’admettent pas un voisinage ouvert dont la fermeture est un arbre et dont la frontière
est réduite à un unique point de NL(X,x), et on le note par Core (NL(X,x)). Dans [Ber90]
le noyau est appellé squelette. Remarquez que, par définition, Core (NL(X,x)) est vide
si et seulement si NL(X,x) est un arbre. Nous montrons que, étant donnée une bonne
résolution πX′ : X ′ → X, l’espace NL(X,x) est un arbre si et seulement si ΓX′ est un
arbre. En outre, si aucun n’est un arbre alors nous avons Core (NL(X,x)) = |Core (ΓX′) |
en tant que sous-espaces de NL(X,x). On en déduit que 2 implique 3.

Enfin, voici une esquisse de la preuve du fait que 3 implique 1, qui est la partie la plus déli-
cate de la démonstration du Théorème B. Nous commençons avec deux bonnes résolutions
πX′ : X ′ → X et πY ′ : Y ′ → Y , et supposons que leurs graphes duaux sont équivalents.
Notre objectif est de construire un homéomorphisme de RZ(X,x) sur RZ(Y, y). Nous
construisons d’abord deux bonnes résolutions πX′′ : X ′′ → X et πY ′′ : Y ′′ → Y qui
se factorisent par πX′ et πY ′ respectivement, et de telle sorte que ΓX′′ et ΓY ′′ sont des
graphes isomorphes. Cet isomorphisme détermine une bijection naturelle entre les com-
posantes irréductibles {Ei}mi=1 de EX′′ et celles, disons {Di}mi=1, de EY ′′ . Nous envoyons
la valuations divisorielle de RZ(X,x) définie par Ei à la valuation divisorielle de RZ(Y, y)
définie par Di. Ainsi, afin de définir une bijection de RZ(X,x) en RZ(Y, y), il suffit de
se concentrer sur les valuations ayant comme centre dans X ′′ un point fermé. Pour ce
faire, nous choisissons une bijection σ de l’ensemble des points fermés de EX′′ sur celui
de EY ′′ tel que σ(Ei ∩ Ej) = Di ∩Dj et σ(Ei) ⊆ Di. L’idée est d’appliquer le Théorème
A’ pour obtenir un homéomorphisme de RZ(X ′′, x′′) en RZ(Y ′′, σ(x′′)). La construction
de la bijection de RZ(X,x) en RZ(Y, y) en utilisant cette idée nécessite d’une étude locale
attentive aux points de EX′′ . Le fait qu’il soit un homéomorphisme résulte de l’examen
des comportements des suites de centres et de leurs images par σ.

Nous décrivons maintenant le contenu des chapitres:

Dans le Chapitre 1, nous introduisons les espaces de valuations que nous traitons dans ce
travail. La Section 1.1 est consacrée aux espaces de Riemann-Zariski. Nous commençons
par rappeler quelques faits basiques sur les valuations. Ensuite, nous présentons les prin-
cipales propriétés topologiques de l’espace de Riemann-Zariski Z(K|R) associé à un corps
K et un sous-anneau R de K. L’étude de cet espace a reçu dans ces dernières années une
attention spéciale (voir [FFL13a, FFL13b, Olb15]). Nous expliquons en particulier qu’il
est un espace spectral et nous considérons aussi Z(K|R) muni de sa topologie constructible.
Dans la suite nous nous limitons au cas où K est le corps des fonctions rationnelles de X
et R le corps de base k. Dans ce contexte géométrique l’espace Z(K|R) est noté par X.
Nous discutons brièvement sa structure d’espace annelé. Ensuite, nous nous concentrons
sur le sous-espace de X formé de toutes les valuations ayant un centre dans X (qui est la
limite projective du système projectif de tous les modèles propres birationnels de X), et
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l’espace de Riemann-Zariski RZ(X,x) de X en un point fermé x. Nous exposons certaines
propriétés topologiques de RZ(X,x), par exemple sa connexité, et nous calculons sa di-
mension de Krull.

Dans la Section 1.2 nous nous tournons vers les espaces de semivaluations. Nous consi-
dérons l’espace V(A, p) des semivaluations normalisées associé à un anneau intègre A et
un idéal p de A, et developpons certaines de ses caractéristiques topologiques. L’exemple
le plus significatif est l’arbre valuatif. Ensuite, nous nous concentrons sur l’entrelac non-
Archimédien normalisé NL(X,x) de x dans X. La section se termine avec l’étude du lien
entre cet espace et RZ(X,x). Cette relation nous amène à étudier le plus grand quotient
séparé de RZ(X,x).

Le but du Chapitre 2 est de donner les démonstrations des Théorèmes A et A’. Dans les
Sections 2.1 et 2.3 nous présentons des preuves détaillées des résultats qui sont nécessaires
pour compléter ces démonstrations et que nous avons déjà mentionnés. Étant donné que
l’hensélisé d’un anneau local apparaît comme un outil essentiel, dans la Section 2.2 nous
incluons les définitions de base et certains résultats utiles dans la suite. Le Chapitre 3
présente une brève discussion sur les arbres et les graphes. Plus précisément, dans la
Section 3.2 on définit la relation d’équivalence sur l’ensemble des graphes de deux façons
différentes et nous montrons qu’elles reviennent au même. Enfin, le Chapitre 4 contient
la preuve du Théorème B.
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Chapter 1

Spaces of valuations

The purpose of this chapter is to introduce the valuations spaces considered in this work.
In Section 1.1 we deal with valuations and Riemann-Zariski spaces. Then we turn into
semivaluations and analytification of algebraic varieties in Section 1.2. The main diffe-
rences between these two points of view are the presence in the first of valuations of rank
larger than one and the fact that a semivaluation may take the value infinity at some non
zero elements.

1.1 Riemann-Zariski spaces

In this section we follow the tradition initiated by Zariski. We present the most significant
topological properties of Riemann-Zariski spaces. Next we restrict ourselves to the geo-
metrical context and look at the Riemann-Zariski space associated to an algebraic variety
X. We concentrate on the study of the fiber RZ(X,x) of this space above a closed point
x ∈ X.

1.1.1 Basics on valuations

An integral domain R is a valuation ring if for all nonzero elements x, y ∈ R, either x
divides y or y divides x in R. This implies that R is a local ring. If R has K as fraction
field, then it is said to be a valuation ring of K. The abelian group ΦR := K∗/R∗,
where ∗ stands for the group of units, is totally ordered by the order induced by the
division relation on R and the canonical group homomorphism νR : K∗ → ΦR, where
the operation of ΦR is now noted additively, verifies that νR(x + y) ≥ min {νR(x), νR(y)}
for all x, y ∈ K∗. Every group homomorphism ν from K∗ to a totally ordered abelian
group which satisfies this last condition is called a valuation of K. If such a valuation ν
is given, the set Rν := {x ∈ K∗ / ν(x) ≥ 0} ∪ {0} is a valuation ring of K whose maximal
ideal is mν := {x ∈ K∗ / ν(x) > 0} ∪ {0}. Classically, two valuations of K which differ by
an order-preserving group isomorphism are called equivalent and they are identified. The
valuations ν and νRν are equivalent, so valuations of K (up to equivalence) and valuations
rings of K are related by a natural bijection and in the sequel we make no difference
between them. A valuation ν of K is non-trivial if ν(f) 6= 0 for some f ∈ K∗, otherwise
it is called trivial.

Associated to a valuation ν of K are its value group Φν := ΦRν and its residue field
kν := Rν/mν . We may also consider an element +∞ greater than any element of Φν ,
extend in the natural way the group law on Φν to Φν ∪ {+∞} and set ν(0) = +∞. We
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define the rank of ν, rk ν, as the rank of its value group, i.e. the ordinal type of the chain
of proper isolated subgroups of Φν ; and the rational rank of ν, rrk ν, as the dimension
of the Q-vector space Φν ⊗Z Q. If we consider a subfield k of K contained in Rν , then
we have a natural embedding k ↪→ kν . We denote by dim ν the transcendence degree of
this field extension and call it the dimension of ν. Abhyankar’s inequality (see [Abh56,
Lemma 1]) states that rrk ν + dim ν ≤ tr.degkK whenever tr.degkK is finite.

Let ν be a valuation of K of finite rank rk ν > 1 and Ψ a proper isolated subgroup of
Φ = Φν , Ψ 6= (0). Then the quotient group Φ/Ψ is naturally totally ordered (an element
of the quotient is non negative if it corresponds to a non negative element of Φ) and the
canonical epimorphism Φ → Φ/Ψ is a monotone non decreasing map of totally ordered
groups. The composed morphism ν ′ : K∗ → Φ → Φ/Ψ is a valuation of K such that
mν′ ( mν ( Rν ( Rν′ . Moreover, every valuation ring of K containing Rν can be
obtained in this way. The integral domain Rν = Rν/mν′ is a valuation ring of the residue
field kν′ and its associated value group Φν is isomorphic to Ψ. Note that its maximal ideal
is mν = mν/mν′ and its residue field kν equals kν . We say that ν is composite with ν ′ and
ν and we write ν = ν ′ ◦ ν. We refer to [ZS60] for details and more basic facts concerning
isolated subgroups and composite valuations.

1.1.2 The Riemann-Zariski space Z(K|R)

Given a field K and a subring R of K, the Riemann-Zariski space Z(K|R) is the set of
valuations rings of K that contain R, equipped with the Zariski topology. This topology
is obtained by taking the subsets

E(A) := {ν ∈ Z(K|R) / A ⊂ Rν} ,

when A ranges over the family of all finite subsets of K, as a basis of open sets. If
A = {f1, . . . , fm} then we write E(A) = E(f1, . . . , fm). The Riemann-Zariski space is
always a quasi-compact space, but it is in general very far from being Hausdorff: given
ν ∈ Z(K|R), its closure in Z(K|R) is the set of all valuations ν ′ in Z(K|R) such that
Rν′ ⊆ Rν ([ZS60] Ch. VI §17, Theorem 40 and Theorem 38, respectively).

More generally, Z(K|R) is a spectral space. That is, apart from being a quasi-compact
topological space, it also satisfies the three following properties:

1. It is a Kolmogorov space (i.e. for any two different points in the space, there is an open
set which contains one of these points but not the other):

If ν and ν ′ are two distinct valuations of K then either Rν 6⊂ Rν′ or Rν′ 6⊂ Rν . Without
loss of generality we may suppose that there exists f ∈ K∗ such that ν(f) ≥ 0 and
ν ′(f) < 0. Hence we see that there exists an open set of Z(K|R) containing one of the
valuations but not containing the other.

2. The family of quasi-compact open subsets is closed under finite intersection and forms
a basis for the open sets:

Given f1, . . . , fm ∈ K, E(f1, . . . , fm) is homeomorphic to the Riemann-Zariski space
Z(K|R[f1, . . . , fm]), so that any basic open subset of Z(K|R) is in fact quasi-compact.
It suffices now to observe that any quasi-compact open subset of Z(K|R) is a finite
union of basic open subsets and that E(A) ∩ E(A′) = E(A ∪ A′) for any pair A,A′ of
finite subsets of K.
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3. Every non empty irreducible closed subset F contains a point whose closure is F (such
a point is called a generic point and it is unique if the property 1 holds):

Recall that a non empty subset of a topological space is irreducible if it is not the union
of two non empty closed subsets of the space. The proof given in [DFF87] in the special
case when K is the fraction field of R can be adapted in a straightforward way to the
general case.

Lemma 1.1 ([DFF87], Lemma 4.2 (a)). Let F be a non empty irreducible closed subset
of Z(K|R). Any valuation ν of Z(K|R) such that Rν is contained in

⋃
µ∈F Rµ belongs to

F .

Proof. We proceed by contradiction. Suppose that there exists ν ∈ Z(K|R) such that
Rν ⊆

⋃
µ∈F Rµ and ν /∈ F . Let us first point out that if ν ∈ E(f) for some f ∈ K then

f ∈ Rν and, by hypothesis, there is a valuation ring of F which also contains f , so the
open subset E(f) is not contained in Z(K|R) \ F .
Since F is closed, we can find a finite subset A of K such that ν ∈ E(A) ⊆ Z(K|R) \ F .
By the previous remark we may assume that A = {f1, . . . , fm} with m ≥ 2. Then
the subset F is contained in the finite union of at least two closed subsets of Z(K|R),
F ⊆ Z(K|R)\E(A) =

⋃
1≤i≤m(Z(K|R)\E(fi)). Neither of these subsets contains F since

ν ∈ E(fi) for every i ∈ {1, . . . ,m}. This means that F is not an irreducible subset of
Z(K|R) and ends the proof.

Proposition 1.2 ([DFF87], Lemma 4.2 (b) and Proposition 4.3). Let F be a non empty
irreducible closed subset of Z(K|R). For any valuation ν ∈ F , the subset I =

⋂
µ∈F mµ

of Rν is a prime ideal of Rν and the localization (Rν)I is a valuation ring of K which
belongs to F and whose closure in Z(K|R) is F .

Proof. Let us fix ν ∈ F and show that I is an ideal of Rν . It is clear that I is closed
under addition.
Note that for any f, g ∈ K such that fg ∈ I we have µ(f−1g−1) = −µ(fg) < 0 for every
µ ∈ F and thus F ∩E(f−1, g−1) = ∅. This means that F is contained in the union of the
closed subsets B(f) = Z(K|R) \ E(f−1) and B(g) = Z(K|R) \ E(g−1). If neither f nor
g is in I, then F is contained neither in B(f) nor in B(g). This gives us a contradiction
with the irreducibility of F , hence either f or g must belong to I.
Take x ∈ Rν and y ∈ I. Since x−1(xy) ∈ I and x−1 /∈ I, the previous remark applied to
f = x−1 and g = xy implies that xy ∈ I. We conclude that I is a prime ideal of Rν . Let
us denote V the localization of Rν with respect to I. Recall that V belongs to Z(K|R)
and has I as maximal ideal ([Vaq00], Proposition 3.3). Given µ ∈ F , by definition I ⊆ mµ

and we easily deduce that K \ V ⊆ K \ Rµ. Hence F is contained in the closure of V in
Z(K|R). Finally, let us verify that V ∈ F .
By Lemma 1.1 it suffices to prove that every element in V belongs to some valuation ring
of F . Given a nonzero element f ∈ V , if f ∈ K \Rµ for every µ ∈ F , then f−1 ∈

⋂
µ∈F mµ.

This contradicts the maximality of I in V and ends the proof.

Spectral spaces have been characterized in [Hoc69] as the topological spaces that are
homeomorphic to the spectrum of some commutative ring equipped with the Zariski topo-
logy. In our situation we have the following explicit construction of such a commutative
ring ([HK10, Corollary 2.9 ] and [FFL13a, Corollary 3.6]):
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If t is an indeterminate, given ν ∈ Z(K|R) we may denote ν ′ the Gauss valuation exten-
ding ν, that is, the valuation ν ′ of Z(K(t)|R) defined by ν ′(f) = min1≤i≤s {ν(ai)} for each
nonzero polynomial f = a0 +a1t+ . . .+asts ∈ K[t]. The Riemann-Zariski space Z(K|R) is
then homeomorphic to the spectrum of the subring Kr(K|R) =

⋂
ν∈Z(K|R)Rν′ of K(t) (if

R is an integrally closed domain and K is its fraction field, this result was already proven
in [DF86, Theorem 2]).

Let X be an arbitrary topological space. A net in X is a family (xi)i∈I of elements of
X indexed by a directed set I. Given x ∈ X and a net (xi)i∈I in X, we say that (xi)i∈I
converges to x, and we write xi → x, if for any open neighborhood U of x there exists
i0 ∈ I such that xi ∈ U for any i ≥ i0. Recall that a map f : X → Z between two
topological spaces is continuous at x ∈ X if, and only if, for any net (xi)i∈I in X such
that xi → x in X we have f(xi)→ f(x) in Z.

The following lemma is a direct consequence of the definition of the topology of the
Riemann-Zariski space.

Lemma 1.3. Let ν ∈ Z(K|R) and (νi)i∈I be a net in Z(K|R), νi → ν if and only if for
any f ∈ Rν there exists i0 ∈ I such that f ∈

⋂
i≥i0

Rνi.

Proof. Take f ∈ K such that f ∈ Rν . Since ν ∈ E(f), if νi → ν then we can find i0 ∈ I
such that νi ∈ E(f) for any i ≥ i0, i.e. f ∈ Rνi for any i ≥ i0. Let us now show the
converse.
Given an open neighborhood U of ν there exist f1, . . . , fm ∈ K such that ν ∈ E(f1, . . . , fm)
and E(f1, . . . , fm) ⊆ U . Since E(f1, . . . , fm) =

⋂m
j=1E(fj), by hypothesis for every j in

{1, . . . ,m} we can find i0,j ∈ I such that fj ∈
⋂
i≥i0,j Rνi . We define i0 ∈ I to be an upper

bound of {i0,j}mj=1 ⊆ I. Then fj ∈
⋂
i≥i0 Rνi for every j ∈ {1, . . . ,m}. It follows that

νi ∈
⋂m
j=1E(fj) for any i ≥ i0 and therefore νi → ν.

1.1.3 Constructible topology and center map

Let X be an arbitrary topological space and let K(X) be the subalgebra of the Boolean
algebra of subsets of X generated by the collection of all open quasi-compact subsets of
X (i.e. K(X) is the smallest set of subsets of X that contains all open quasi-compact
subsets and is stable under finite intersections and under taking complements). We call
constructible sets the elements of K(X) and Xcons the topological space obtained by con-
sidering the constructible topology onX, that is the topology onX having the constructible
sets as a basis of open sets.

Lemma 1.4. Let X be a spectral space. Then Xcons is a Hausdorff space.

Proof. Given two different points x, y ∈ X, since X is a Kolmogorov space, we can assume
that there is an open subset of X which contains x but not y. Every open subset of X
can be written as a union of constructible sets of X, so we can find U ∈ K(X) such that
x ∈ U and y ∈ X \ U . Both U and X \ U are open subsets of Xcons, thus x and y have
disjoint neighborhoods.

If X is a spectral space, then its constructible sets are precisely the finite unions of subsets
U ∩ (X \V ) with U, V open quasi-compact subsets of X. Moreover, Xcons is a Stone space
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([Hoc69], Proposition 4), i.e. a quasi-compact Hausdorff totally disconnected topological
space. Hence Z(K|R)cons has all these properties and a basis for its open sets is given by

{E(A) / A ⊂ K finite} ∪
{
E(A0)

⋂(
m⋂
i=1

(Z(K|R) \ E(Ai))
)/

A0, . . . , Am ⊂ K, finite
}

(1.1)

Recall that the order of a family of subsets, not all empty, of a topological space X is the
largest n (if it exists) such that the family contains n+ 1 elements with non empty inter-
section. If such an integer n does not exist, then the order is said to be +∞. The covering
dimension of X is the least n such that any finite open cover of X has a refinement of
order not exceeding n, or +∞ if there is no such an integer.

The covering dimension of any non empty quasi-compact Hausdorff totally disconnected
space is zero (see [Pea75, Ch. 3, Proposition 1.3]). As a consequence of this result, the
space Z(K|R)cons has covering dimension zero.

Given two spectral spaces X and Y , a continuous map X → Y is a spectral map if the
inverse images of quasi-compact open subsets are quasi-compact. Assuming that this is
condition satisfied, the inverse image of any constructible set of Y is a constructible set ofX
and thus the map is also continuous if we endowX and Y with the constructible topologies.
In our situation, given a subring R of a field K, we get a map cR : Z(K|R) → Spec R
sending any valuation ν to its center in R, which is by definition the prime ideal mν ∩R
of R. We call this map the center map.

Proposition 1.5. Endowing Spec R with the Zariski topology, the center map cR is a
spectral map.

Proof. A basic open subset of Spec R is of the form Df = {p ∈ SpecR / f /∈ p} where f
is a nonzero element of R. Note that c−1

R (Df ) = E(f−1). Therefore cR is continuous.
Moreover, since any quasi-compact open subset U of SpecR is a finite union of basic open
subsets Df , we can write its inverse image under cR as a finite union of quasi-compact
subsets of Z(K|R) and thus c−1

R (U) is itself quasi-compact.

Lemma 1.6. Let K be a field, R a subring of K and ν, ν1 ∈ Z(K|R) with rk ν1 = 1 and
Rν ( Rν1. The center of ν1 in R is {f ∈ R / ∀α ∈ Φ ∃m ∈ Z>0 such that mν(f) > α},
where Φ denotes the value group of ν.

Proof. Given f ∈ R, ν1(f) ≥ 0. We need to prove that ν1(f) > 0 if, and only if, for any
α ∈ Φ there exists a positive integer m such that mν(f) > α.
Let us suppose first that ν1(f) > 0. Take α = ν(g) for some g ∈ K∗. Since ν1(f) > 0 and
Φν1 is an Archimedean group, we can find m ∈ Z>0 such that mν1(f) > ν1(g). We get
ν1(fmg−1) > 0 and thus ν(fmg−1) > 0. This implies that mν(f) > α.
We proceed now by contraposition. Let us suppose that ν1(f) = 0 and show that there
exists α ∈ Φ such that mν(f) ≤ α for any m ∈ Z>0. Denote Ψ the isolated subgroup of Φ
associated to ν1 and consider α ∈ Φ \Ψ, α > 0. Since ν1(f) = 0, we have that ν(f) ∈ Ψ.
If mν(f) > α for some m ∈ Z>0, the fact that Ψ is convex implies that α must also belong
to Ψ. This contradicts the choice of α and finishes the proof.
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1.1.4 The Riemann-Zariski space associated to an algebraic variety

We restrict ourselves to the case where K is the function field of an algebraic variety X
over a field k, i.e. X is an integral separated scheme of finite type over k, and we denote
by X the Riemann-Zariski space Z(K|k). If X is a point then X is reduced to the trivial
valuation ([ZS60] Ch. VI §4, Theorem 5, Corollary 1), so we always assume that the
transcendence degree of K over k is positive. For the moment we do not make any other
assumption about the field k.

Given a valuation ν ∈ X, the valuative criterion of separatedness (see [Har77, Theorem
4.3]) states that there exists at most one scheme-theoretic point x ∈ X such that Rν domi-
nates the local ring OX,x, that is OX,x ⊆ Rν and the maximal ideal mν of Rν intersects
OX,x in its maximal ideal mX,x. If such a point exists, it is called the center of ν in X
(we may also consider the irreducible closed set {x} as the center) and we say that ν is
centered in X. When X = Spec R is an affine variety, the center of a valuation in X is
nothing but its center in R as it was defined in Subsection 1.1.3.

The set RZ(X) of all valuations ν ∈ X such that ν is centered in X is the (finite) union of
the open sets E(xi,1, . . . , xi,n(i)) where

{
Spec k[xi,1, . . . , xi,n(i)]

}s
i=1

is an open affine cove-
ring of X, therefore it is a quasi-compact open subset of X and, as a consequence of the
valuative criterion of properness ([Har77], Theorem 4.7), is equal to the whole Riemann-
Zariski space if and only if X is a complete variety. We endow RZ(X) with the topology
induced by the Zariski topology of X.

Example 1.7. Let k be a field and X = Speck[t] the affine line. The valuation rings of k(t)
which contain the base field k are of two kinds. One the one hand we have the local rings
Rνp = k[t](p(t)) where p(t) ∈ k[t] is an irreducible polynomial. On the other hand we have
the valuation ring Rν∞ = {p(t)/q(t) / deg p(t) ≤ deg q(t)}. Note that k[t] is contained in
Rνp for any p(t), but not in Rν∞ . We have RZ(X) ( X.

A birational morphism π : Y → X induces an isomorphism between the function fields of
X and Y , so we can identify their Riemann-Zariski spaces. Moreover, if ν is an element
of RZ(Y ) then it also belongs to RZ(X) and the image by π of the center of ν in Y is
precisely the center of ν in X. In the case that π is also proper then it follows from the
valuative criterion of properness that RZ(Y ) and RZ(X) coincide.

If πY : Y → X and πY ′ : Y ′ → X are proper birational morphisms, we say that Y ′
dominates Y if the birational map π−1

Y ◦ πY ′ : Y ′ → Y is a morphism. Given two such
pairs (Y, πY ) and (Y ′, πY ′) we can always find a third one dominating both (we may
consider their birational join, see [Spi90a, Definition 1.4.1] and [ZS60, Ch. VI §17 Lemma
6]), so the setM of all the pairs (Y, πY ) is a projective system indexed by the domination
relation. We have the following fundamental result:

Theorem 1.8 (Zariski). The natural map from RZ(X) to the projective limit lim←−
Y ∈M

Y

which corresponds to sending a valuation ν to its center on each algebraic variety in M,
is a homeomorphism when we endow lim←−

Y ∈M
Y with the projective limit topology (i.e. the

coarsest topology for which all the projection maps are continuous when we equip each
variety inM with the Zariski topology).
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Even though we focus on the topology, the Riemann-Zariski space X has a richer structure
than just topology. In particular it admits a locally ringed space structure, introduced
in [Hir64]. The structure sheaf on X is the sheaf of rings whose sections on any open
subset U ⊆ X are given by OX(U) =

⋂
ν∈U Rν and where the restriction maps are the

inclusion maps. The local ring OX,ν at a valuation ν is the corresponding valuation ring
Rν . As locally ringed spaces, the open RZ(X) endowed with the induced ringed structure
is isomorphic to the projective limit lim←−

Y ∈M
Y (see [KS08, Theorem 3.2.5]).

Remark 1.9. The locally ringed space (X,OX) is not in general locally affine. Note that the
ring of regular functions on a basic open subset U = E(f1, . . . , fm) ( X is the intersection
of all valuation rings ofK containing the k-algebra A = k[f1, . . . , fm]. By [ZS60, Ch. VI §5
Theorem 6], that is the integral closure A of A in K. The ring A is also a finitely generated
k-algebra ([Eis95], Corollary 13.13) and in particular, it is noetherian. If (U,OX|U ) is
isomorphic to an affine scheme, then the localization of A with respect to any prime ideal
must be a valuation ring of K. Since A is noetherian, A must be a Dedekind domain with
fraction field K. Therefore we deduce that the Riemann-Zariski space is not generally a
scheme (it is always the case when d = 1 since in this case the Riemann-Zariski space
is a complete non-singular model of the curve). We refer to [Olb15, Theorem 6.1] for
a characterization of the subspaces of the Riemann-Zariski space Z(K|R) that are affine
schemes.

1.1.5 The Riemann-Zariski space RZ(X, x) of X at x

We keep the notations of Subsection 1.1.4.

Definition 1.10 (Riemann-Zariski space of X at x). Given a closed point x ∈ X, we
denote by RZ(X,x) the set of all valuations of RZ(X) whose center in X is x, equipped
with the induced topology. We call this space the Riemann-Zariski space of X at x.

Note that RZ(X,x) is a closed subspace of RZ(X) and it is therefore itself quasi-compact.

Let us first explore the case dim X = 1 and fix a closed point x ∈ X. If x is a regular
point then OX,x is a regular local ring of dimension one with fraction field K and there-
fore a valuation ring of K. The space RZ(X,x) is thus reduced to a unique point. If x is
singular, then RZ(X,x) is in one-to-one correspondence with the set of maximal ideals of
the integral closure of OX,x in K.

Recall that the Krull dimension of a topological space Z is the supremum in the extended
real line of the lengths of all chains of irreducible closed subspaces of Z. A chain

∅ ( Z0 ( . . . ( Zl ⊆ Z

is of length l. The only irreducible subspaces of a non-empty Hausdorff space are the
singletons, so the dimension of any Hausdorff topological space is zero.

Proposition 1.11. For any closed point x ∈ X, dimRZ(X,x) = dimX − 1.

Proof. We have already pointed out that dim RZ(X,x) = 0 wheneverX is one-dimensional.
Suppose now that the dimension of X is d > 1.
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Let π : X̃ → X be the normalization of the blowing-up of X at the closed point x ∈ X.
For any reduced irreducible component E of π−1(x), O

X̃,E
is a one-dimensional discrete

valuation ring of K that dominates OX,x and whose residue field is isomorphic to the
function field of E. Let us fix such a component E1 and denote by ν1 the corresponding
rank one valuation and choose a valuation ν1 of the residue field kν1 such that k ⊆ Rν1

and tr.degkkν1 = d − 2. If we denote by p : Rν1 → kν1 the canonical projection, then
Rν2 := p−1(Rν1) is a valuation ring of K dominating OX,x and contained in Rν1 . We may
iterate this construction until we have built a sequence of composite valuations νi+1 = νi◦νi
for 1 ≤ i ≤ d− 1 in RZ(X,x) such that

∅ ( {νd} ⊆ {νd−1} ⊆ . . . ⊆ {ν1} ⊆ RZ(X,x),

where the bar means closure in RZ(X,x). Since {νi} is irreducible in RZ(X,x) so is its
closure. It follows from the fact that RZ(X,x) is a Kolmogorov space that two different
valuations must have different closures and thus the dimension of RZ(X,x) is at least
d− 1.
The Riemann-Zariski space X has dimension d ([Vaq00], Proposition 7.8), so that we have
the inequalities dim RZ(X,x) ≤ dim RZ(X) ≤ d. Since X is the closure of the trivial
valuation, it is an irreducible space and as a consequence so is RZ(X). By our assumption
on the point x, RZ(X,x) is a proper closed subset of RZ(X) and therefore the dimension
of RZ(X,x) must be strictly less than the dimension of RZ(X). The only possibility is
then dim RZ(X,x) = d− 1 and dim RZ(X) = d.

The closure of a rank one valuation is a maximal irreducible subspace of RZ(X,x). Hence
RZ(X,x) is not irreducible unless d = 1 and RZ(X,x) is a singleton. However:

Proposition 1.12 ([Tem13], Theorem 2.4.2). The space RZ(X,x) is connected provided
that OX,x is analytically irreducible, that is, its completion ÔX,x is an integral domain.

Proof. When OX,x is analytically irreducible, the fiber over x of the normalization mor-
phism X̃ → X is reduced to a closed point x̃ ([Gro65], 7.8.3-(vii)) and RZ(X,x) is precisely
RZ(X̃, x̃). We may thus concentrate on the normal case.
Let us assume that X is normal and proceed by contradiction. Suppose that RZ(X,x)
can be presented as the union of two disjoint nonempty open subsets U,U ′ ( RZ(X,x).
Since RZ(X,x) is quasi-compact and any closed subspace of a quasi-compact space is also
quasi-compact, each of these open subsets must be a finite union of basic open sets. Let us
consider an affine open subset V of X. We write U as a finite union of basic open subsets
of RZ(X,x) and we define {f1/g1, . . . , fn/gn} to be the (finite) set of all rational functions
of X appearing that expression, with fi, gi ∈ OX(V ). In an analogous way, we take
rational functions on X defining U ′, represented by h1/l1, . . . , hm/lm in V . Consider the
blowing-up π : Y → X of X with respect to the coherent sheaf of ideals in OX extending
the ideal

∏
1≤i≤n(fi, gi) ·

∏
1≤j≤m(hj , lj) of OX(V ). The fiber π−1(x) is the union of cY (U)

and cY (U ′), where cY denotes the map which sends a valuation of RZ(Y ) to its center in
Y . This union is, by construction, disjoint. The fact that cY is a closed map (this can
be deduced from [ZS60] Ch. VI §17, Lemma 1 and Lemma 4) implies that π−1(x) is not
connected and give us a contradiction with Zariski connectedness Theorem (see [Gro61,
Proposition 4.3.5]).

A topological space Z is called a Fréchet-Urysohn space if whenever z ∈ Z is in the closure
of a subset A of Z, there is a sequence of points in A which converge to z.
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Lemma 1.13. Let f : Z → Y a map between two topological spaces. If Z is a Fréchet-
Urysohn space then f is continuous if, and only if, given any point z in Z and any
sequence (zn)∞n=1 in Z converging to z there exists a subsequence (zγ(n))∞n=1 such that
f(zγ(n))→ f(z) in Y .

Proof. If f is continuous at a point z ∈ Z and (zn)∞n=1 is a sequence in Z such that zn → z,
then f(zn)→ f(z) in Y and thus we can take γ(n) = n for any n ≥ 1. We prove now the
converse. Let us take F ⊆ Y a closed subset and show that its inverse image under f is
closed in Z. Given a point z in the closure of f−1(F ) in Z, since Z is a Fréchet-Urysohn
space, we can find a sequence (zn)∞n=1 in f−1(F ) converging to z. By hypothesis there
exists a subsequence (zγ(n))∞n=1 such that f(zγ(n)) → f(z) in Y . This implies that f(z)
belongs to the closure of F in Y , and therefore to F . We conclude that z ∈ f−1(F ) and
this ends the proof.

According to [Fav15, Theorem 3.1], if X is a normal projective (this hypothesis is in fact
superfluous) algebraic variety defined over a field k and x is a closed point of X, then
RZ(X,x) is a Fréchet-Urysohn space.

We shall state the following theorem to sum up.

Theorem 1.14. Let x be a closed point of an algebraic variety X of dimension d ≥ 1
defined over a field k. The space RZ(X,x) consisting of the set of valuations of the function
field of X whose center in X is x, endowed with the Zariski topology, is a quasi-compact
space of dimension d−1. In addition, RZ(X,x) is also a connected Fréchet-Urysohn space
provided that X is normal.

1.2 Spaces of normalized semivaluations

In this section we adopt the point of view of the theory of analytic spaces as developed
by Berkovich and others after [Ber90] and we associate to any algebraic variety X its
analytification. As we did in Section 1.1, we focus on the fiber of this space above a closed
point x ∈ X and consider the space NL(X,x). We end this section by establishing the
relation between RZ(X,x) and NL(X,x).

1.2.1 Basics on semivaluations

Let A be an integral domain. A semivaluation of A is a map ν : A → R ∪ {+∞} which
satisfies ν(0) = +∞, ν(1) = 0 and ν(fg) = ν(f) + ν(g), ν(f + g) ≥ min {ν(f), ν(g)} for
any f, g ∈ A. Note that a semivaluation of A extends to a valuation of the fraction field of
A if and only if it takes the value +∞ only at zero. In general, the set sν of all elements
sent to +∞ by ν is a prime ideal of A and ν defines a valuation of the fraction field of the
integral domain A/sν . If a field k contained in A is given, then all the semivaluations of
A are assumed to extend the trivial valuation of k.

We choose here to adopt an additive point of view. Observe that we may also speak in
terms of multiplicative (non-Archimedean) seminorms of A. A multiplicative seminorm of
A is a map |·| : A→ R≥0 such that |0| = 0, |1| = 1 and |fg| = |f ||g|, |f+g| ≤ max {|f |, |g|}
for any f, g ∈ A. A semivaluation ν of A corresponds to the multiplicative seminorm of A
defined by e−ν . Conversely, if | · | is a multiplicative seminorm of A then − ln(| · |) defines
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a semivaluation of A. A multiplicative seminorm is called an absolute value if |f | = 0
implies f = 0 (it gives rise to a valuation of the fraction field of A, hence it has a valuation
ring naturally associated). The trivial absolute value of A sends any non-zero element of
A to 1.

Example 1.15. Let k be a field. Consider the polynomial ring in one variable A = k[t]. For
any real number ε such that 0 < ε < 1, the map ηε : A→ R≥0 defined by ηε(f) = εordtf for
all non zero f ∈ A and ηε(0) = 0, is an absolute value of A. The semivaluation associated
to ηε is νε = − ln ε ordt. Observe that they are all equivalent as valuations of k(t) and thus
they are identified with the order of vanishing at the origin. However when considered as
semivaluations they are pairwise different.

We say that a semivaluation of A is centered if it takes values in [0,+∞]. Given such a
semivaluation ν, we denote by Γν the semigroup ν(A) \ {+∞}.

Lemma 1.16. Let A be a noetherian integral domain. For any centered semivaluation ν
of A, Γν is well-ordered.

Proof. Since Γν is a subsemigroup of R≥0, it is totally ordered. Let S be a nonempty
subset of Γν and let us show that S has a least element. Consider the set of elements
f ∈ A such that ν(f) ∈ S and denote by I the ideal of A which it generates. Since A is
noetherian, I is finitely generated. We may choose f1, . . . , fs verifying ν(fi) ∈ S such that
I = (f1, . . . , fs)A. Then α = min {ν(fi)}si=1 ∈ S and α ≤ β for any β ∈ S.

We endow the set of all centered semivaluations of A with the topology of pointwise con-
vergence and we denote the space obtained by V(A). This topology has for a basis of open
sets finite intersections of subsets of the form {ν ∈ V(A) / a < ν(f) < b} where a and b are
nonnegative real numbers and f belongs to A. In other words, it is the topology induced
by the product topology in [0,+∞]A =

∏
j Yj , where each Yj is a copy of [0,+∞] and the

product is indexed by A. Observe that a net (νi)i∈I of semivaluations in V(A) converges
to ν ∈ V(A) in the topology of pointwise convergence if and only if for each f in [0,+∞],
(νi(f))i∈I converges to ν(f) in [0,+∞].

Lemma 1.17. The space V(A) is compact.

Proof. The space [0,+∞]A is Hausdorff and in addition it is quasi-compact by Tychonoff’s
Theorem (see [Mun00, Theorem 37.3]). Hence V(A) is Hausdorff, and in order to prove
its quasi-compactness it suffices to show that it is closed in [0,+∞]A.
Let (νi)i∈I be a net in [0,+∞]A and ν ∈ [0,+∞]A such that νi ∈ V(A) for all i ∈ I and
νi → ν. Then we have that νi(f) → ν(f) in [0,+∞] for any f ∈ A. Since νi(f) ≥ 0
for all i, we get ν(f) ≥ 0. It is straightforward to verify that ν(0) = +∞, ν(1) = 0
and ν(fg) = ν(f) + ν(g) for any f, g ∈ A. Moreover, if k is a field contained in A and
νi(f) = 0 for all f ∈ k∗, then ν(f) = 0. To conclude that V(A) is closed and end the
proof, it remains to show that ν(f + g) ≥ min {ν(f), ν(g)} for any f, g ∈ A.
Take f, g ∈ A and denote Mi = min {νi(f), νi(g)} for any i ∈ I. The map from the
product [0,+∞] × [0,+∞] to [0,+∞] defined by (a, b) 7→ min {a, b}, is continuous. The
net ((νi(f), νi(g)))i∈I converges to (ν(f), ν(g)), thus Mi → min {ν(f), ν(g)} in [0,+∞].
Since νi(f + g) ≥Mi for all i ∈ I, this yields ν(f + g) ≥ min {ν(f), ν(g)}.
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From now on we suppose that A is a noetherian integral domain and p is an ideal of A. For
each ν ∈ V(A) we set ν(p) = min {ν(f) / f ∈ p}. If {f1, . . . , fm} is a system of generators
of p, then ν(p) = min {ν(fi)}mi=1. For every i ∈ {1, . . . ,m} the map from V(A) to [0,+∞]
defined by ν 7→ ν(fi) is continuous. Hence we also get a continuous map when sending
ν ∈ V(A) to ν(p).

The center of ν ∈ V(A) is the prime ideal {f ∈ A / ν(f) > 0} of A. Note that the center
of ν contains the ideal sν . By the previous remark, the subset V(A, p) of V(A) consisting
of all semivaluations ν normalized by the condition ν(p) = 1, is closed. We endow this
subset with the induced topology and call it the space of normalized semivaluations (with
respect to p). Since V(A) is compact, the space V(A, p) is also compact. In addition, every
semivaluation ν such that 0 < ν(p) < +∞ (i.e. such that p is contained in the center of ν
but not in sν) is proportional to a unique normalized semivaluation in V(A, p).

Lemma 1.18. Let A be an integral domain containing a field k and m a maximal ideal
of A. Then V(A,m) is homeomorphic to V(Am,mAm).

Proof. Let us denote by  : A → Am the canonical ring homomorphism. For any ν in
V(Am,mAm) we define ϕ(ν) = ν ◦ , which is a well-defined element of V(A,m). Observe
that given a semivaluation ν of V(A,m), the condition ν(m) = 1 and the maximality
of m imply that sν ( m = {f ∈ A / ν(f) > 0}. In particular, ν(g) = 0 for any g ∈ A
which is not in m. The map ϕ : V(Am,mAm) → V(A,m) is surjective. Indeed given
ν ∈ V(A,m), the map ν ′ : Am → [0,+∞] defined by ν ′(f/g) = ν(f) is a suitably normalized
semivaluation of Am such that ϕ(ν ′) = ν. It is just as straightforward to verify that ϕ is
also injective and continuous. Since the source and the target of ϕ are compact spaces, ϕ
is an homeomorphism.

Finally we restrict our attention to centered semivaluations of the formal power series ring
C[[x, y]]. We denote the maximal ideal of C[[x, y]] by m.

Based on the fundamental work of Zariski, Spivakovsky gives in [Spi90b] the first complete
classification of the valuations of the fraction field of a regular 2-dimensional local domain
A whose valuation rings dominate A. This classification is taken up again in [FJ04] when
A = C[[x, y]]. This monograph gives different interpretations of valuations in the analytic,
geometric and algebraic contexts and offers a new point of view describing the structure
of the space V = V(A,m). Of particular importance to our work is the fact that V is
naturally a rooted nonmetric R-tree (see Example 3.3). The space V is thus called the
valuative tree.

Let us point out here that we may define a different normalization on the subset of V
consisting of the semivaluations ν such that 0 < ν(m) < +∞. More precisely, we may
consider those semivaluations taking the value 1 on z where z ∈ m and ord z = 1. This
subset together with the valuation ordz and equipped with the induced topology is denoted
by Vz. Recall that given a non zero f ∈ A, ordz(f) is the largest power of z which divides
f . The space Vz is called the relative valuative tree.

Lemma 1.19 ([FJ04], Lemma 3.59). The spaces V and Vz are homeomorphic.

Proof. Take ν ∈ V. If ν(z) < +∞ then we set ϕ(ν) = ν/ν(z) ∈ Vz. Otherwise sν is the
ideal generated by z and ν is the semivaluation of A defined by intersection multiplicity
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with {z = 0}. In this case we set ϕ(ν) = ordz. The map ϕ is continuous and bijective,
hence a homeomorphism.

1.2.2 The normalized non-Archimedean link NL(X, x) of x in X

From the rest of this section we denote by X an algebraic variety defined over an alge-
braically closed field k, i.e. X is an integral separated scheme of finite type over k. We
denote by | · |0 the trivial absolute value of k. We follow the notations introduced in
[Fan14b].

We associate to X its analytification Xan in the sense of [Ber90] which is defined as follows.
Consider the set of all pairs (ξ, | · |) where ξ is a point of X (not necessarily closed) and
| · | is an absolute value of the residue field κ(ξ) of X at ξ extending | · |0. The space Xan

consist of this set equipped with the weakest topology such that:

1. The natural projection ı : Xan → X is continuous, and

2. for any open subset U ⊆ X and any f ∈ OX(U), the map ı−1(U) → R≥0 which sends
(ξ, | · |) to |f̄ | is continuous, where f̄ denotes the residue class of f in κ(ξ).

The topological space Xan is always Hausdorff, and it is compact if and only if X is a
complete variety (see [Ber90, Theorem 3.5.3]). If X is a point then Xan is reduced to the
trivial absolute value, so we always assume that the transcendence degree of K over k is
positive.

The residue field of Xan at a point x = (ξ, | · |) is the completion of κ(ξ) with respect to
the absolute value | · |. We denote it by H (x) and its valuation ring by H (x)o. The ex-
tension κ(ξ) ↪→H (x) induces a morphism Spec H (x)→ X. If it extends to a morphism
Spec H (x)o → X then we say that x has a center in X (it follows from the valuative
criterion of separateness that this morphism is unique whenever it exists). We denote the
image of the closed point of Spec H (x)o under this morphism by spX(x) and we call it
the center of x in X. We denote by Xi the set of points in Xan which have a center in X
and we endow it with the induced topology. By the valuative criterion of properness, Xi

and Xan coincide if and only if X is a complete variety.

The specialization map spX : Xi → X which sends any point of Xi to its center in X is
an anticontinuous map (i.e. the inverse image of any open subset of X is closed in Xi).
Recall that its analogous in the Riemann-Zariski setting, the center map RZ(X)→ X, is
continuous. Furthermore, for all x ∈ Xi the point spX(x) belongs to the closure of ı(x)
in X.

Remark 1.20. Suppose that X = Spec A, where A is a finitely generated k-algebra. A
point x = (ξ, | · |) of Xan belongs to Xi if |f̄ | ≤ 1 for any f ∈ A, where f̄ denotes the
residue class of f in A/ξ. If this is satisfied, then spX(x) =

{
f ∈ A / |f̄ | < 1

}
. Observe

that ξ is contained in spX(x), which means exactly that spX(x) is in the closure of ξ.
The space Xi is in fact homeomorphic to V(A). Indeed, a point (ξ, | · |) ∈ Xi gives rise
to the centered semivaluation

A→ A/ξ
|·|−→ [0, 1] − ln−−→ [0,+∞]
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of A. Conversely, with the notations of Subsection 1.2.1, a semivaluation ν of V(A) defines
a prime ideal sν of A and an absolute value | · | of κ(sν) by setting e−ν(f̄) for any f̄ ∈ A/sν .
This gives a one-to-one correspondence. Continuity follows directly from the definition of
the topologies:
The weakest topology on Xan which satisfies condition 2 also verifies condition 1. If we
take a non zero f ∈ A and denote by Df = {ξ ∈ X / f /∈ ξ} the basic open subset of X
defined by f , then the inverse image of Df under the map ı is the set of all (ξ, | · |) ∈ Xan

such that |f̄ | > 0.
Finally, take a non zero f ∈ A. The inverse image of X \Df under spX is the set of all
points (ξ, | · |) of Xi such that |f̄ | < 1, which is an open subset of Xi. Hence the map
spX is anticontinuous.

Let us fix a subvariety Z of X. For any x ∈ Xi, if x belongs to ı−1(Z) then it is also in
sp−1
X (Z). We define L(X,Z) = sp−1

X (Z) \ (Xi ∩ ı−1(Z)), which is an open subset of Xi,
and we endow it with the induced topology from the topology of Xi. In [Fan14b] the
space L(X,Z) is referred to as the non-Archimedean link of Z in X.

Let π : X ′ → X be a proper morphism which induces an isomorphism from the open
subset X ′ \ π−1(Z) to the open subset X \ Z. We have a well-defined mapping from
L(X ′, π−1(Z)) to L(X,Z) by sending x′ = (ξ′, | · |) to x = (π(ξ′), | · |). The center of x in X
is π(spX′(x′)). Take now a point x = (ξ, | · |) of L(X,Z). Since X ′ \ π−1(Z)→ X \Z is an
isomorphism, there exists a unique morphism from SpecH (x) to X ′ making commutative
the diagram

Spec H (x) X ′

Spec H (x)o X

π

ϕx

where ϕx comes from the fact that x ∈ Xi. By the valuative criterion of properness, there
exists a unique morphism ϕx from Spec H (x)o to X ′ such that ϕx = π ◦ ϕx. Therefore
the point x′ = (π−1(ξ), | · |) belongs to L(X ′, π−1(Z)). This defines a bijective map from
L(X ′, π−1(Z)) to L(X,Z) which is in fact an homeomorphism (see [Thu07, Proposition
11.1]). For any x ∈ L(X,Z), we say that spX′(x′) is the center of x in X ′. Observe that
the map spX′ : L(X,Z)→ X ′ is anticontinuous.

The space L(X,Z) was introduced in [Thu07], where it is called the generic fiber of the
formal completion of X along Z. If Z is the singular locus of X, then [Thu07, Proposition
4.7] shows that L(X,Z) is homotopy equivalent to the dual complex associated to the
exceptional divisor of a resolution of singularities of (X,Z) whose exceptional divisor has
simple normal crossings. This results holds whenever the base field k is perfect.

From now on we concentrate in the case where Z is reduced to a closed point x of X.
Then there is only one point in Xan of the form (x, | · |), namely | · | must be | · |0. Hence
L(X,x) = sp−1

X (x) \ {(x, | · |0)}.

Remark 1.21. Let U = Spec A be an open affine neighborhood of x in X and m the
maximal ideal of A corresponding the point x. For any x = (ξ, | · |) ∈ L(X,x), since
spX(x) = x belongs to the closure of ξ in X, the point ξ belongs to U . The homeomor-
phism from Ui to V(A) given in Remark 1.20 induces an homeomorphism from L(X,x)
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to {ν ∈ V(A) / 0 < ν(m) < +∞} equipped with the topology induced by the topology of
V(A).

We now identify two points of the space L(X,x) if they define the same valuation. More
precisely, we consider the following action of R>0 on L(X,x): given λ ∈ R>0 and a point
(ξ, | · |) of L(X,x), we define λ · (ξ, | · |) = (ξ, | · |λ).

Definition 1.22 (Normalized non-Archimedean link of x in X). Given a closed point
x ∈ X, the normalized non-Archimedean link of x in X, denoted by NL(X,x), is the
quotient of L(X,x) by the group action defined above, endowed with the quotient topology.

In [Fan14a] the space NL(X,x) is introduced for an arbitrary subvariety of X and endowed
in a richer structure. This space carries a natural analytic structure locally modeled on
affinoid spaces over k((t)). However, these local k((t))-analytic structures are not canonical
and cannot in general be glued to get a global one. Here we only concern ourselves with
topology.

Lemma 1.23. If U = SpecA is an open affine neighborhood of x in X and m the maximal
ideal of A defining the point x, then NL(X,x) is homeomorphic to the space of normalized
semivaluations V(A,m).

Proof. By Remark 1.21 it suffices to show that V(A,m) is homeomorphic to the quotient
L/R>0 of the space L = {ν ∈ V(A) / 0 < ν(m) < +∞} by the action of R>0 given by
multiplication: (λ · ν)(f) = λ ν(f) for all f ∈ A.
We define a surjective map ϕ from L to V(A) as follows. Given ν ∈ L we set ϕ(ν) = ν

ν(m) .
Since the map from V(A) to [0,+∞] defined as ν 7→ ν(m) is continuous, the map ϕ is
also continuous. Furthermore, ϕ(ν) = ϕ(ν ′) if and only if ν and ν ′ are proportional, so ϕ
descends to the quotient. Therefore we have a map ϕ : L/R>0 → V(A) which is continuous
and bijective. Its inverse map is the composition of the embedding V(A) ↪→ L and the
quotient map L → L/R>0. Hence ϕ is an homeomorphism.

In view of Lemma 1.18, NL(X,x) is also homeomorphic to the space of normalized semi-
valuations V(OX,x,mX,x).

Finally, we compute the covering dimension of NL(X,x). When X is a curve, any semival-
uation of NL(X,x) is in fact a valuation of the function field K of X whose valuation ring
dominates OX,x. Thus NL(X,x) is a finite space in bijection with RZ(X,x) (each point
corresponds to a maximal ideal of the integral closure of OX,x in K). Since NL(X,x)
is Hausdorff, it is a discrete topological space and every open cover of the space has a
refinement consisting of disjoint open sets, so that its covering dimension is zero. More
generally we have:

Proposition 1.24. The covering dimension of NL(X,x) is not greater than dimX − 1.

Proof. Let us denote by d the dimension of X. According to [Mun00, Theorem 32.2] every
compact (quasi-compact and Hausdorff) space is normal. Hence NL(X,x) is a normal
space. If NL(X,x) =

⋃
i≥1 Fi where each Fi is a closed subspace of covering dimension not

exceeding d−1, then by [Pea75, Ch. 3, Theorem 2.5], the covering dimension of NL(X,x)
is not greater than d− 1. Let us show that such a family {Fi}i≥1 exists.
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Take an open affine neighborhood U = Spec A of x in X and a system of generators
{f1, . . . , fs} of the maximal ideal m corresponding to the point x. For all 1 ≤ i ≤ s, we
define Fi = {ν ∈ NL(X,x) / ν(fi) = 1}. Since all the maps ν 7→ ν(fi) are continuous,
{Fi}si=1 is a family of closed subset of NL(X,x). We have NL(X,x) =

⋃s
i=1 Fi, so in order

to end the proof it suffices to show that Fi has covering dimension at most d − 1 for all
i ∈ {1, . . . , s}.
Let us take an integer i, 1 ≤ i ≤ s. The regular function fi ∈ A induces a morphism
U → Speck[t] = A1

k so that A can be regarded as a k[t]-module. We set B = A⊗k[t] k((t)).
Note that fi ⊗ 1 = 1 ⊗ t in B. Since A is a k-algebra of finite type, B is a k((t))-algebra
of finite type. We denote V = SpecB and consider its analytification V an in the sense of
Berkovich. By [Ber90, Theorem 3.4.8(iv)], the covering dimension of V an is equal to the
dimension of V , which is d− 1. Therefore the covering dimension of any closed subspace
of V an is less or equal than d− 1 (see [Pea75, Proposition 1.5]). To complete the proof we
now show that F = Fi can be identified with a closed subspace of V an.
By definition, V an is the set of semivaluations of B which extend the valuation ordt of
k((t)), endowed with the topology of pointwise convergence. In other words, the underlying
set of V an consists of all semivaluations ν of B that are trivial on k∗ and satisfy ν(1⊗t) = 1.
We consider the closed subspace

W =
{
ν ∈ V i / ν(fj ⊗ 1) ≥ 1 ∀j ∈ {1, . . . , s} , j 6= i

}
of V an. We claim that W is homeomorphic to F . Indeed, the map ϕ from W to F
which sends ν ∈ W to the semivaluation of A defined by g 7→ ν(g ⊗ 1) is continuous.
Furthermore, ϕ is a bijection. If ν is a semivaluation of A lying in F then it extends in
a unique way to a semivaluation of B. This extension is defined by ν̃(g ⊗ 1) = ν(g) and
ν̃(1⊗ t) = ν̃(fi⊗ 1) = 1. We have ν̃(fj ⊗ 1) = ν(fj) ≥ 1 for all j ∈ {1, . . . , s}, j 6= i, hence
ν̃ ∈W . SinceW is quasi-compact and F is Hausdorff, the map ϕ is a homeomorphism.

Corollary 1.25. If the point x is either a regular point or an isolated singularity of X and
we assume the existence of resolution of singularities, the covering dimension of NL(X,x)
is dimX − 1.

Proof. We keep the notations of the proof of Proposition 1.24. We know that the covering
dimension of NL(X,x) is at most d− 1. Since covering dimension is monotone on closed
subspaces (see [Pea75, Proposition 1.5]), in order to prove the statement it suffices to find
a closed subspace F of NL(X,x) whose covering dimension is d− 1.
Let π : X ′ → X be a proper birational map such that X ′ is non-singular, π is an iso-
morphism over X \ {x} and the exceptional divisor E = supp π−1(x) is a simple normal
crossings divisor. Without loss of generality, we may assume that there exist d irreducible
components E1, . . . , Ed of the exceptional divisor such that

⋂d
i=1Ei is reduced to a point x′.

We denote by b1, . . . , bd its multiplicities. Pick local coordinates (z1, . . . , zd) at the point
x′ such that Ei = {zi = 0}. Since the point x′ is regular, the completion of the local ring
of X ′ at x′ is isomorphic as k-algebra to k[[z1, . . . , zd]]. Any β = (β1, . . . , βd) ∈ Rd

≥0 such
that

∑d
i=1 βibi = 1 gives rise to a valuation νβ of NL(X,x). It suffices to set νβ(0) = +∞

and

νβ(f) = min
{

d∑
i=1

βiαi / cα 6= 0
}
,

if f ∈ Am is written as
∑
α cαz

α in k[[z1, . . . , zd]].
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We define a map ϕ from the simplex ∆ =
{

(y1, . . . , yd) ∈ Rd
≥0 /

∑d
i=1 yi = 1

}
to NL(X,x)

as follows. Given y = (y1, . . . , yd) ∈ ∆, we set ϕ(y) = νβ(y) where β(y) = (y1/b1, . . . , yd/bd).
The map ϕ is injective and continuous (see [JM12] for details). The fact that ∆ is quasi-
compact implies that ϕ(∆) is quasi-compact and thus closed in NL(X,x). Therefore ϕ
yields a homeomorphism between ∆ and a closed subspace F = ϕ(∆) of NL(X,x). Since
∆ has covering dimension d− 1, the subspace F has also covering dimension d− 1.

1.2.3 The canonical map from RZ(X, x) to NL(X, x)

Let X be an algebraic variety defined over an algebraically closed field k and x ∈ X a
closed point. The aim of this subsection is to show that there exists a natural surjective
continuous map from RZ(X,x) to NL(X,x).

Given a valuation ν ∈ RZ(X,x) of rank r ≥ 1, we consider the maximal chain of valuation
rings of K containing Rν , Rν = Rνr ( Rνr−1 ( . . . ( Rν1 . Let us choose j to be the
smallest integer i ∈ {1, . . . , r} such that νi is centered in x. If j = 1 then we set

π(ν)(f) = ν1(f)
ν1(mX,x)

for any non zero f ∈ OX,x. Let us now suppose r > 1 and j > 1. We define then π(ν) as
follows.

The quotient ring Rνj/mνj−1 is a valuation ring of the residue field of the valuation νj−1.
It corresponds to the rank one valuation νj−1 such that νj = νj−1 ◦ νj−1. By definition of
the integer j, its center in the ring OX,x/(OX,x∩mνj−1) is mX,x/(OX,x∩mνj−1). Therefore,
given a non zero f ∈ OX,x, by setting

π(ν)(f) =
{
νj−1(f̄) if f /∈ mνj−1

+∞ otherwise

where f̄ denotes the residue class of f in OX,x/(OX,x ∩mνj−1), we define a semivaluation
π(ν) on X centered in x. After division by a suitable constant we obtain an element of
NL(X,x) that, by abuse of notation, we will also call π(ν).

Let us introduce some notations. Given ν ∈ RZ(X,x), in the sequel we will denote by
ν∗ the valuation νj and when j > 1, ν ′∗ the valuation νj−1 and ν∗ the rank one valuation
νj−1.

Proposition 1.26. The map π : RZ(X,x)→ NL(X,x) is surjective and continuous.

We will make use of the following result to prove Proposition 1.26.

Lemma 1.27. Let X be an algebraic variety and Y,Z two subvarieties of X, neither
one containing the other. Let X ′ → X be the blowing up of X at Y ∩ Z (defined as the
sum IY + IZ of the ideal sheaves). Then the strict transforms of Y and Z have empty
intersection.
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Proof. Without loss of generality we may assume that X is affine. Suppose that IY is
generated by {fi}ni=1 and IZ by {gj}mj=1. The strict transform of Y is empty at a point x′
of X ′ where (IY + IZ) · OX′,x′ = (fi)OX′,x′ for some i. Similarly, the strict transform of
Z is empty when this ideal is generated by gj for some j. Therefore the strict transforms
of Y and Z are disjoint.

We are now in position to prove Proposition 1.26.

Proof of Proposition 1.26. Let us denote by R the local ring of X at the point x and m
its maximal ideal. We call K its fraction field.

The map π is surjective. For any v ∈ NL(X,x), sv = v−1(+∞) is a prime ideal of R. If
this ideal is reduced to zero, then v extends in a unique way to a rank one valuation of
K and the image by π of this valuation is v. Otherwise v induces a valuation v of the
fraction field of the quotient ring R/sv whose center in this ring is the maximal ideal m/sv.
The choice of a valuation ν ′ of K such that Rν′ dominates the localization Rsv gives us a
composite valuation ν ′ ◦ v of K with center x in X and whose image by π is v. Therefore
π is a surjective mapping.

The map π is continuous. To prove that π is continuous it suffices to show that the
inverse image of any open set of the form {v ∈ NL(X,x) / a < v(f) < b}, where a, b ∈ Q,
1 ≤ a < b and f ∈ m, is open in RZ(X,x). The openness of such a subset will follow
once we have proved that the subsets U>α = {ν ∈ RZ(X,x) / α < π(ν)(f) ≤ +∞} and
U<α = {ν ∈ RZ(X,x) / π(ν)(f) < α} are open subsets of RZ(X,x) for any rational number
α ≥ 1 and any non zero f ∈ m. We shall only prove that U>α is open. The same arguments
show that U<α is also open. In order to prove that U>α is open, for any ν ∈ U>α we
construct an open set U ⊆ RZ(X,x) included in U>α that contains ν.

Pick α = p/q with p, q coprime integers, p ≥ q > 0 and a non zero f ∈ m. We denote by
φ : X ′ → Spec R the blowing-up of Spec R at its closed point. Let ν be a valuation in
U>α.

Case 1: π(ν)(f) = +∞. Let η : Y → X ′ be the normalized blowing-up of (mN +(f)) ·OX′ ,
with N > α. The composed morphism ψ = φ◦η : Y → X is a proper birational morphism
that is an isomorphism over X \ {x} and ψ−1(x) is purely of codimension one. Let
c : RZ(X,x) → Y be the continuous map which associates to any valuation in RZ(X,x)
its center in Y .

Observe that y = c(ν) is contained the strict transform of {f = 0}. Indeed, the hypothesis
on π(ν)(f) implies that the center z′ of ν ′∗ in X ′ is contained in {f = 0}. Since ν ′∗ is
not centered in the point x ∈ X, we deduce that z′ is not contained in the center of the
blowing-up η. Hence c(ν ′∗) (which is the strict transform of z′) is contained in the strict
transform of {f = 0} and therefore y is also contained in that strict transform.

Pick any irreducible component E of ψ−1(x) that contains y. Let g ∈ OX,x be such that
(g) ·OY,y = m ·OY,y. Then (gN ) ·OY,y = (mN +(f)) ·OY,y, since otherwise f would generate
(mN + (f)) · OY,y and this is impossible because the strict transform of {f = 0} contains
y. We conclude that gN divides f in OY,y. Therefore

νE(m) = νE(g) ≤ νE(f)
N

<
νE(f)
α

,
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where νE denotes the divisorial valuation defined by E. This means that all the irreducible
components of ψ−1(x) containing the point y verify π(νE) ∈ U>α.

Take an open neighborhood U ⊂ Y of y which is strictly contained in EG \ (EG ∩ D),
where EG is the union of all the irreducible components of ψ−1(x) containing y and D
is the union of the remaining ones. Let us prove that U = c−1(U) is an open subset of
RZ(X,x) which satisfies the desired properties.

It is an open set since U is open and c is continuous, and it contains ν by construction.
Finally we show that U is contained in U>α. Take µ ∈ U and set z = c(µ∗). The center of
µ in Y belongs to U , so that z is also in U . Since the center of µ∗ in X is the point x, there
exists E in EG such that z belongs to E. Pick g ∈ OX,x such that (g) · OY,z = m · OY,z.
We have π(νE) ∈ U>α, so νE(fp/gq) > 0 and fp/gq belongs to mY,z (note that fp/gq is
without indeterminacy). In particular, µ∗(fp/gq) > 0 and we deduce that π(µ)(f) > α as
required.

Case 2: π(ν)(f) < +∞. We replace the birational morphism η : Y → X ′ above by
the normalized blowing-up of (mp + (f q)) · OX′ . Abusing notation, we denote by η this
birational morphism. Write ψ : Y → X for the composed birational morphism as before
and c : RZ(X,x)→ Y for the center map.

Denote y∗ = c(ν∗) and pick g ∈ OX,x such that (g) · OY,y∗ = m · OY,y∗ . By construction
either f q/gp or gp/f q are regular at the point y∗. Since ν ∈ U>α we deduce that f q/gp
must vanish at y∗.

We say that an irreducible component E of ψ−1(x) is good when the image by the map π
of the divisorial valuation νE defined by E belongs to U>α. It is bad otherwise. We may
assume that y∗ belongs at least to one good component. Otherwise it suffices to consider
the blowing-up Y ′ → Y of Y with respect to the sheaf of ideals defining y∗. The center
of ν∗ in Y ′ must be in the newly created exceptional divisor, all of whose components are
good because f q/gp has to vanish on them.

Let EG (resp. EB) be the union of all good (resp. bad) components containing y∗ and D
the union of the irreducible components of ψ−1(x) which do not contain y∗. We denote
by IG (resp. IB) the sheaf of ideals defining EG (resp. EB), and for any integer l ≥ 1 we
consider the normalized blowing-up φl : Yl → Y of the sheaf of ideals I lG + IB.

Claim: The center of ν∗ in Yl does not belong to the strict transform of any bad component
at least for any l large enough.

Proof of the claim. We fix l ≥ 1, and suppose that the center z of ν∗ in Yl belongs to the
strict transform of some bad component. This means that (I lG + IB) · OYl,z = I lG · OYl,z.
Denote JB = IB · OYl,z and JG = IG · OYl,z. This gives ν∗(JB) ≥ l ν∗(JG) > 0. If ν∗ is a
rank one valuation, then l is bounded and this ends the proof. Suppose that ν∗ has rank
larger than one. Since ν ′∗ is not centered in x ∈ X, we have ν ′∗(JB) = ν ′∗(JG) = 0. This
implies that ν∗(JB) and ν∗(JG) belong to the convex subgroup of Φν∗ where ν∗ takes its
values. This subgroup has rank one, so we conclude again that l is bounded.

Let us fix l for which the claim applies. Then we consider the complement U in Yl of the
union of the strict transforms of EB and D. Let

U = {µ ∈ RZ(X,x) such that the center of µ in Yl belongs to U} .
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This is an open set since U is open, and it contains ν since the center of ν is included in
the one of ν∗ which belongs to U . In order to complete the proof, we now show that U is
contained in U>α.

Take µ ∈ U and denote by z the center of µ∗ in Yl. The center of µ in Yl belongs to U ,
so that z is also in U . Since the center in X of µ∗ is the point x, we deduce that either z
belongs to the strict transform of E for some E in EG or z belongs to the exceptional locus
of φl. Suppose that the first happens. Pick g ∈ OX,x such that (g) ·OYl,z = m ·OYl,z. Since
E is a good component, νE(fp/gq) > 0 and fp/gq belongs to mYl,z (note that fp/gq is
without indeterminacy). We get π(µ)(f) > α as required. If z belongs to the exceptional
locus of φl, then c(µ∗) is φl(z) ∈ EG and we also have π(µ)(f) > α.

1.2.4 Largest Hausdorff quotient of RZ(X, x): the normal surface case

The purpose of this subsection is to prove the following:

Proposition 1.28. If x is a normal point of a surface X, the space NL(X,x) is the largest
Hausdorff quotient of RZ(X,x).

Given ν, ν ′ ∈ RZ(X,x), we write ν ∼ ν ′ if there exists µ ∈ RZ(X,x) such that ν and ν ′
are both in the closure of µ. The binary relation ∼ on RZ(X,x) is obviously reflexive and
symmetric. It is in fact an equivalence relation:
Suppose that {ν, ν ′} ⊆ {µ} and {ν ′, ν ′′} ⊆ {µ′}, where the bar means closure in RZ(X,x).
Then Rν′ ⊆ Rµ and Rν′ ⊆ Rµ′ . Since the valuation rings of K containing any fixed
valuation ring form a chain with respect to set inclusion, either Rµ ⊆ Rµ′ or Rµ′ ⊆ Rµ.
Without loss of generality we may assume that Rµ ⊆ Rµ′ and thus {ν, ν ′′} ⊆ {µ′}.

Let us denote q : RZ(X,x) → RZ(X,x)/∼ the quotient map, which sends a valuation to
the equivalence class containing it, and RZ(X,x)∼ the quotient space RZ(X,x)/∼ (i.e.
the set of equivalence classes of elements of RZ(X,x) equipped with the finest topology
which makes q continuous).

Consider ν, ν ′ ∈ RZ(X,x) with q(ν) = q(ν ′). By definition there exists µ ∈ RZ(X,x) such
that ν and ν ′ belong to the closure of µ. It follows directly from the definition of the map
π in Proposition 1.26 that π(ν) = π(ν ′) = π(µ), so π factors through q. Let us denote π̃
the unique continuous map from RZ(X,x)∼ to NL(X,x) satisfying π̃ ◦ q = π.

Proposition 1.29. In the hypothesis of Proposition 1.28, the spaces RZ(X,x)∼ and
NL(X,x) are homeomorphic.

Proof. Since RZ(X,x)∼ is the image of RZ(X,x) by q and RZ(X,x) is quasi-compact,
RZ(X,x)∼ is also quasi-compact. Thus π̃ is a continuous surjective map from a quasi-
compact space to a Hausdorff space, and therefore to establish the result it is enough to
show that π̃ is injective.
Suppose that π(ν) = π(ν ′) = v for some ν, ν ′ ∈ RZ(X,x). Let us prove that ν ∼ ν ′. If
v is a valuation of K then by construction ν and ν ′ are both in the closure of v, hence
ν ∼ ν ′. We assume now that sv = v−1(+∞) is not reduced to zero. By the hypothesis on
the dimension, the valuations ν and ν ′ have necessarily rank two. Writing ν = ν1 ◦ ν1 give
us that sv = OX,x ∩mν1 ( mX,x. The localization (OX,x)sv is a local ring of dimension
one with fraction field K. The fact that OX,x is integrally closed implies that (OX,x)sv
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is also integrally closed, and therefore a valuation ring of K. Since it is dominated by
Rν1 we must have (OX,x)sv = Rν1 . The same arguments apply to ν ′, so we conclude that
there exists µ ∈ RZ(X) (but which does not belong to RZ(X,x)) such that ν = µ ◦ ν and
ν ′ = µ ◦ ν ′. Now it suffices to observe that π(ν) = π(ν ′) means that the valuations ν and
ν ′ are the same when restricted to the subring OX,x/(OX,x ∩mµ) of the residue field kµ.
Thus ν = ν ′ and then ν = ν ′.

This enables us to complete the proof of Proposition 1.28.

Proof of Proposition 1.28. The space NL(X,x) is homeomorphic to RZ(X,x)∼ by Propo-
sition 1.29. Since it is Hausdorff, in order to prove the corollary, we need to prove
that any continuous map from RZ(X,x) into a Hausdorff space factors uniquely through
q : RZ(X,x) → RZ(X,x)∼ (see [Mac71] Ch. V, 9, Proposition 2). This property follows
from the fact that in dimension two the equivalence relation ∼ on RZ(X,x) translates
into the following: two valuations of RZ(X,x) are equivalent if they belong to the closure
of the same divisorial valuation of RZ(X,x) (hence they cannot be separated by disjoint
open sets and as a consequence they have the same the image under any continuous map
to Hausdorff space).

The map π̃ is not in general injective as illustrated by the following example:

Example 1.30. Consider R = C[x1, x2, x3](x1,x2,x3) and denote by K its fraction field.
Recall that by the order of a polynomial at xi we refer to the largest power of xi which
divides the polynomial. We define a rank two valuation v2 of K by setting

ν2(f) = (ν1(f), ordx2f1(0, x2, x3)) ∈ Z2
lex

for any nonzero f ∈ C[x1, x2, x3], where ν1(f) = ordx1f and f1 = x
−ν1(f)
1 f . Similarly, we

define ν ′1(f) = ordx2f and ν ′2(f) = (ν ′1(f), ordx1f2(x1, 0, x3)) ∈ Z2
lex. Observe that ν2 and

ν ′2 have both center in R the prime ideal (x1, x2)R, and residue field isomorphic to C(x3).
Let us denote ν the x3-adic valuation of C(x3). Then we get two valuations of K of rank
three, say ν = ν2 ◦ ν and ν ′ = ν ′2 ◦ ν, whose center in R is the maximal ideal of R. By
construction ν 6∼ ν ′ and π(ν) = π(ν ′). Indeed, their image by π is the semivaluation of R
which maps f ∈ R to infinity if f ∈ (x1, x2)R, and otherwise to ordx3f(0, 0, x3).
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Chapter 2

Homeomorphism type in the
regular case

In this chapter we prove Theorem A and Theorem A’. The organization of the chapter is
as follows.

Let x be an analytically irreducible closed point of an algebraic variety X defined over
an algebraically closed field. In the first section we show that a point in NL(X,x) defines
in a canonical way a suitably normalized semivaluation on the completion ÔX,x of the
local ring of X at x whose restriction to the base field is trivial. We then rely on this
observation to prove Theorem A. In the second section we present some results concerning
the henselization of a local ring which are needed in the sequel. Finally, in the third section
we discuss briefly the problem of extending in a unique way a valuation of RZ(X,x) to a
valuation of the fraction field of ÔX,x dominating that ring and prove Theorem A’, using
the fact that the extension to the henselization is unique.

2.1 Proof of Theorem A

For the rest of this section, X is an algebraic variety defined over an algebraically closed
field k. We consider a closed point x ∈ X at which X is analytically irreducible and
denote by R the local ring of X at x and by m its maximal ideal. By assumption the
m-adic completion R̂ of R is an integral domain. We call m̂ the maximal ideal of R̂.

Proposition 2.1. There is a one-to-one correspondence between NL(X,x) and the set
of all centered semivaluations ν̂ : R̂ → [0,+∞] extending the trivial valuation of k and
normalized by the condition ν̂(m̂) = 1.

Proof. Let ν be a semivaluation of NL(X,x) and consider Γν = ν(R) \ {+∞}. Recall that
ν is a centered semivaluation of R such that ν|k∗ = 0 and ν(m) = 1 (see Lemma 1.18 and
Lemma 1.23). Take a nonzero f ∈ R̂ and a Cauchy sequence (fn)∞n=1 in R converging
to f . If the sequence (ν(fn))∞n=1 is not bounded above by an element of Γν , then we
set ν̂(f) = +∞. Now suppose that there exists an upper bound in Γν for the sequence
(ν(fn))∞n=1. Consider the subset

Λ =
{
β ∈ Γν / ∀ n ∃ n′ > n such that ν(fn′) ≤ β

}
.

Lemma 1.16 implies that Γν is well ordered. By hypothesis Λ is not empty, so we may
consider the smallest element α of Λ. If α = 0 then we deduce that ν(fn) = 0 for all n
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large enough and we set ν̂(f) = 0. Assume that α > 0. Since Γν does not contain any
infinite bounded sequence (see [HOST12, Lemma 2.2] and [CT08, Lemma 3.1]), the set
{β ∈ Γν / β < α} is finite. Let α′ ∈ Γν be the immediate predecessor of α. By definition
of α, the element α′ does not belong to Λ. Hence ν(fn) > α′ for all n large enough, that
is, ν(fn) ≥ α for n � 0. We deduce that ν(fn) = α for all n large enough and we set
ν̂(f) = α.
The definition of ν̂ does not depend on the choice of the Cauchy sequence. Moreover, if
(ν(fn))∞n=1 is not bounded then it tends to infinity. It is straightforward to verify that
ν̂(f) = lim

n→+∞
ν(fn) defines a semivaluation on R̂ having the desired properties.

In order to end the proof we need to show the uniqueness of ν̂. Let µ̂ : R̂ → [0,+∞] be
a semivaluation verifying the conditions of the statement. For any f ∈ R̂ we can find a
Cauchy sequence (fn)∞n=1 in R converging to f such that f −fn ∈ m̂n for any n ≥ 1. Since
µ̂(m̂) = 1, then for any n we have the inequalities µ̂(f − fn) ≥ n and

µ̂(f) ≥ min {µ̂(f − fn), µ̂(fn)} ≥ min {n, ν(fn)} .

If µ̂(f) = α ∈ R then it follows that ν(fn) = α for every n > α. Suppose now that
µ̂(f) = +∞. If the sequence (ν(fn))∞n=1 is bounded above then there exists β such that
µ̂(f − fn) = min {µ̂(f), ν(fn)} = ν(fn) ≤ β for all n ≥ 1, which is a contradiction. Hence
µ̂(f) = ν̂(f) for all f ∈ R̂.

We denote by N̂L(X,x) the space of normalized semivaluations V(R̂, m̂) defined in Sub-
section 1.2.1. That is, N̂L(X,x) is the space consisting of the set of all semivaluations
ν̂ : R̂ → [0,+∞] which are trivial on k and such that ν̂(m̂) = 1, equipped with the
topology of pointwise convergence. Recall that N̂L(X,x) is compact. As a consequence of
Proposition 2.1 we have the following:

Corollary 2.2. The spaces NL(X,x) and N̂L(X,x) are homeomorphic.

Proof. The map from N̂L(X,x) to NL(X,x) defined by ν̂ 7→ ν̂ ◦ ı, where ı : R ↪→ R̂ is the
inclusion, is a continuous bijection from a quasi-compact space into a Hausdorff space.

The normalized non-Archimedean link NL(A2
C, 0) of the origin in the affine plane over

C is thus homeomorphic to the valuative tree V of [FJ04]. A topological model for this
space is proposed in [FJ04, Section 3.2.3]. It turns out that the homeomorphism type of
NL(A2

k, 0) depends only on the cardinality of the base field k, when k is an algebraically
closed field of characteristic zero.

Next we address the proof of the first main result of this chapter.

Theorem A. Let X,Y be two algebraic varieties defined over the same algebraically closed
field k. For all regular closed points x ∈ X, y ∈ Y , the spaces NL(X,x) and NL(Y, y) are
homeomorphic if and only if X and Y have the same dimension.

Proof. It follows from Proposition 1.25 that X and Y have the same dimension whenever
NL(X,x) and NL(Y, y) are homeomorphic. Conversely, under our assumptions on the
points x and y, if X and Y have the same dimension then the formal completions of the
local rings OX,x and OY,y are isomorphic as k-algebras. Hence N̂L(X,x) and N̂L(Y, y) are
naturally homeomorphic. Corollary 2.2 implies that NL(X,x) and NL(Y, y) are homeo-
morphic.
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2.2 Henselization of a local ring

Throughout this section, A is a noetherian local ring with maximal ideal m and residue
field k = A/m. We will give a quick review of the definitions and results concerning the
henselization that we need for the understanding of the rest of the chapter.

The ring A is henselian if it satisfies Hensel’s lemma. That is, given a monic poly-
nomial P ∈ A[t], if there exists a factorization P = F G in k[t] with F ,G relative
prime monic polynomials, then there exists F,G ∈ A[t] reducing to F and G respec-
tively and such that P = FG. For some equivalent definitions of being henselian, we refer
to [LM02, Nag62b, Ray70].

Hensel’s Lemma does not hold for most of the rings found in algebraic geometry. Consider
for instance A = k[x](x) where k is a field. Then P (t) = t2 + t + x ∈ A[t] is irreducible
but P (t) = t(t+ 1) in k[t]. However any complete local ring is henselian (one may drops
the noetherian assumption, see [Nag62b, Theorem 30.3]) and thus A can be embedded in
a henselian local ring.

The henselization of A is a henselian local ring Ã with a local homomorphism ı : A → Ã
which has the following universal property: for any local homomorphism ϕ : A→ B with
B a henselian local ring, there exists a unique local homomorphism ϕ̃ : Ã→ B such that
ϕ̃ ◦ ı = ϕ.

We give now an explicit construction of Ã. Recall that an A-algebra is finite if it is a
finitely generated module over A. We say that a local A-algebra B is étale if the following
conditions are satisfied:

- B is the localization of a finite A-algebra at a prime ideal lying over m,

- B is a flat A-module,

- B is unramified (i.e. the maximal ideal of B is mB and the residue field B/mB is a
finite separable extension of k).

If the residue field of B is k then B is called an equiresidual local étale A-algebra. We have
the following characterization:

Proposition 2.3 ([LM02], Proposition 13.1). Let B be a local A-algebra. B is an equiresi-
dual local étale A-algebra if and only if B is the localization of a finite A-algebra and the
natural inclusion A ↪→ B induces an isomorphism Â→ B̂ of formal completions.

Example 2.4. Consider an A-algebra B = (A[t]/(f(t)))p where f(t) = tn + . . . + a1t + a0
with a0 ∈ m and a1 /∈ m, and p is a maximal ideal of A[t]/(f(t)) containing the class of t
modulo (f(t)). Then B is an equiresidual local étale A-algebra. In fact, any equiresidual
local étale A-algebra is of this form (see [LM02, Corollaire 12.29]).

Let I be the set of isomorphism classes of equiresidual local étale A-algebras. Consider for
each i ∈ I a representative Bi. Set i ≤ j if there exists an homomorphism of A-algebras
fij : Bi → Bj . Denote by ni and nj the maximal ideals of Bi and Bj respectively. Then
we have fij(ni) = fij(mBi) ⊆ mBj = nj , thus fij is a local homomorphism. Moreover,
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since the formal completions of Bi and Bj are isomorphic, the map fij is injective. One
can also show that such a homomorphism fij is unique.

Proposition 2.5 ([LM02], Propositions 13.4 and 13.6). The relation ≤ is an order relation
in I and (I,≤) is a directed set. The inductive limit Ã =

⋃
i∈I Bi of the direct system

(Bi, fij) is a henselization of A.

We denote by m̃ the maximal ideal of the henselization Ã of A. We now list some pro-
perties of Ã (for their proof we refer once more to the literature). First of all, the local
homomorphism ı : A→ Ã is faithfully flat, m̃ = mÃ and the homomorphism k → Ã/m̃ is
an isomorphism. The ring Ã is also noetherian and has the same formal completion as A.
Furthermore, A is reduced (resp. integrally closed) if and only if Ã has the same property.

Example 2.6. Let A be an excellent local ring and denote by Â its formal completion.
Suppose that A is analytically normal (i.e. Â is a normal domain). Denote by Âalg the
ring of all elements in Â which are algebraic over A. Since Ã is a direct limit of algebraic
extensions, Ã is contained in Âalg. In fact, Ã = Âalg. It is proved in [Nag62b, Corollary
44.3] that Ã is algebraically closed in Â. That is, any element in Â which is algebraic over
Ã is already in Ã. Therefore Âalg is contained in Ã.
In particular, given a field k, k[[x1, . . . , xd]]alg is the henselization of the localization of the
polynomial ring k[x1, . . . , xd] at the maximal ideal generated by x1, . . . , xd.

The following result is well-known. The proof we present allows us to show Corollary 2.8,
which will be a key point in the proof of Theorem B.

Proposition 2.7. Let X,Y be two algebraic varieties of the same dimension defined over
an algebraically closed field k. If x ∈ X and y ∈ Y are regular closed points, then the
henselizations of the local rings OX,x and OY,y are isomorphic as k-algebras.

Proof. Suppose that X has dimension d. Take an open affine neighborhood U ⊆ X of x
and denote by A the finitely generated k-algebra OX(U). Then the point x corresponds
to a maximal ideal m = (x1, . . . , xd)A of A and F = {x1, . . . , xd} is a minimal system
of generators of Am. The family F is algebraically independent over k. Indeed, a non
trivial polynomial relation between x1, . . . , xd would give a non trivial polynomial relation
between their initial forms, which is not possible since Am is regular. Hence we have a
polynomial ring B = k[x1, . . . , xd] contained in A. Let us denote by p the maximal ideal
of B generated by F . We now show that Am is a equiresidual local étale Bp-algebra.
The formal completion of Am is by construction isomorphic to the formal power series
ring k[[x1, . . . , xd]]. It remains to show that Am is a localization of a finite Bp-algebra (see
Proposition 2.3).
We begin by considering A′ = A ⊗B Bp, which is a finitely generated Bp-algebra. The
ideal m′ = m⊗B Bp +A⊗B pBp of A′ is maximal since A′/m′ ∼= k ⊗B k ∼= k. In addition,
m′ is the unique prime ideal of A′ lying over pBp. According to [Gro61, Corollaire 4.4.7],
there exists a finite Bp-algebra C and a maximal ideal n of C such that n∩Bp = pBp and
Cn is isomorphic to A′m′ as Bp-algebra. We have reduced the problem to show that Am

and A′m′ are isomorphic as Bp-algebras.
In order to see this, we consider the multiplicative closed subsets b = B \ p and a = A \m
of A. Note that b ⊆ a. As B-modules, A′ = A⊗B Bp = b−1(A⊗B B) = b−1A. So we have
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the following commutative diagram

A b−1A = A′

(ab)−1A = Am S−1A′

ıA′

ψ

where S is the image by ıA′ of a and ψ is an isomorphism of rings. Observe that an element
of S can be written as s/1 = s ⊗ 1 in A′ with s ∈ A, s /∈ m. Then the image of s ⊗ 1 in
A′/m′ is not zero. This implies that m′ and S are disjoint. We claim that A′ is a local
ring. If this holds, then S−1A′ = A′m′ as A-algebras and we are done.
Finally, we verify that A′ is local. Suppose that q is a maximal ideal of A′ and take z ∈ q.
Then we can find t ∈ A \ b such that zt ∈ A. If zt is a unit of A then it is also a unit
of A′, which contradicts the maximality of q. Therefore zt is not a unit of A. Since A is
local, zt ∈ m and we can write z = x/t in A′ with x ∈ m. Therefore q ⊆ mA′ ⊆ m′, which
means that q = m′.
This ends the proof of the fact that Am is an equiresidual local étale Bp-algebra. Then
the henselization of Am is isomorphic to that of Bp. We deduce that the henselizations of
OX,x and OY,y are both isomorphic as k-algebras to the henselization of the local ring of
Ad
k at the origin.

Corollary 2.8. Let X,Y be two algebraic varieties of dimension d defined over the same
algebraically closed field k. Let x ∈ X, y ∈ Y be regular closed points. For any pair of
systems of local coordinates {x1, . . . , xd} and {y1, . . . , yd} of x and y respectively, there
exists an isomorphism of k-algebras σ̃ : ÕX,x → ÕY,y such that σ(xi) = yi for all i.

Proof. In the hypothesis of the statement we have picked open affine neighborhoods U ⊆ X
and V ⊆ Y of x and y respectively and {x1, . . . , xd} ⊆ OX(U), {y1, . . . , yd} ⊆ OY (V ) such
that mX,x = (x1, . . . , xd)OX,x and mY,y = (y1, . . . , yd)OY,y. Let σ be the isomorphism
of k-algebras from k[x1, . . . , xd](x1,...,xd) to k[y1, . . . , yd](y1,...,yd) defined by σ(xi) = yi for
all i = 1, . . . , d. The universal property of the henselization allows us to extend σ to
an isomorphism of k-algebras σ̃ from the henselization of k[x1, . . . , xd](x1,...,xd) to that of
k[y1, . . . , yd](y1,...,yd). By Proposition 2.7, those henselian local rings are ÕX,x and ÕY,y
respectively. This ends the proof.

2.3 Proof of Theorem A’

We now turn to the Riemann-Zariski situation. In this section we shall work in the same
setting as at the beginning of Section 2.1. We consider an analytically irreducible closed
point x ∈ X of an algebraic variety defined over an algebraically closed field k. We keep
the same notations and denote by K̂ the fraction field of R̂.

We begin by studying the behavior of valuations under the passage to formal completion
in a particular situation.

Theorem 2.9 ([Spi90b], Theorem 3.1). With the same notations, let us suppose that R
has dimension two and is analytically normal (i.e. its formal completion R̂ is a normal
domain). Given a valuation ν ∈ RZ(X,x) there exists a unique valuation ν̂ of K̂ such
that ν̂|K = ν and Rν̂ dominates R̂.
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Proof. Let us denote by Φ the value group Φν of ν. By Abhyankar’s inequality either
rk ν = 1 or rk ν = 2. If rk ν = 1 then Φ is isomorphic as ordered group to a subgroup of
R. Otherwise it follows from [Abh56, Corollary 1] that Φ is isomorphic as ordered group
to Z2

lex.
If Φ is a subgroup of R, Proposition 2.1 applied to ν gives then a semivaluation ν̂ of R̂
such that ν̂(m̂) = min {ν̂(f) / f ∈ m̂} > 0. If ν̂ takes the value +∞ only at zero, then
it defines a valuation of K̂ satisfying the desired properties. Otherwise p̂ = ν̂−1(+∞) is
a prime ideal of R̂ of height one and ν̂ induces a valuation ν̂ of the fraction field of R̂/p̂
whose valuation ring dominates that ring. Since R̂ is normal, R̂p̂ is a regular local ring
of dimension one. Hence R̂p̂ = R̂ν̂1

for a discrete valuation ν̂1 of K̂ of rank one. The
composite valuation ν̂ = ν̂1 ◦ ν̂ satisfies the required properties.
Assume now that Φ = Z2

lex and write ν = ν1 ◦ ν, p = mν1 ∩ R. Let (0) ( Φ′ ( Φ be the
chain of isolated subgroups of Φ. Recall that Φν1 is isomorphic as ordered group to Φ/Φ′
and Φν to Φ′. The ring R is noetherian, so we may use exactly the same arguments given
in the proof of Lemma 1.16 to show that the semigroup Γ = ν(R) \ {+∞} is well-ordered.
We set γ = min {ν(f) / f ∈ m} and consider the smallest group Φ1 in the chain such that
γ ∈ Φ1. Observe that Φ1 is either Φ′ or Φ. We also set Γ1 = Γ ∩ Φ1. We have γ ∈ Γ1.
For the rest of the proof, by fn → f we mean that (fn)∞n=1 is a Cauchy sequence in R
which converges to f ∈ R̂. We set

p̂ =
{
f ∈ R̂ / ∃ fn → f such that (ν(fn))∞n=1 is not bounded by an element of Φ1

}
.

If f ∈ R̂ belongs to p̂ then (ν(fn))∞n=1 is not bounded by an element of Φ1 for all fn → f .
The set p̂ is in fact a prime ideal of R̂.

Case 1. Let us first study the situation Φ1 = Φ′. On the one hand, this equivalent to
the existence of f ∈ m such that ν1(f) = 0. Thus p ( m. On the other hand, we have
p̂∩R = p. It follows that pR̂ = p̂ is a prime ideal of R̂ of height one. Since R̂ is normal, R̂p̂

is a regular local ring of dimension one. Moreover its maximal ideal is generated by some
t ∈ p. Then any f ∈ R̂ can be written uniquely as ts(g/h) with s ∈ Z≥0 and g, h ∈ R̂ \ p̂.
Next we define the restriction of ν̂ to R̂ \ p̂.
The semigroup Γ1 equals ν(R/p) \ {+∞}. Take f ∈ R̂ \ p̂ and fn → f . Then there exists
ϕ ∈ Φ1 such that ν(fn) ≤ ϕ for all n. Note that in particular ν(fn) ∈ Φ1 for all n (because
Φ1 is convex). The element ϕ belongs to the set

Λ =
{
β ∈ Γ1 / ∀ n ∃ n′ > n such that ν(fn′) ≤ β

}
.

Let α be the smallest element of Λ (Γ1 is well-ordered). Since Φ1 is archimedean, Γ1
contains no infinite bounded sequences (see [CT08, Lemma 3.1]) and α, γ ∈ Γ1, we can
repeat the arguments given in the proof of Proposition 2.1 to show that ν(fn) = α for all
n large enough. The value α is independent of the choice of the Cauchy sequence. We set
ν̂(f) = α.
For an arbitrary element f of R̂, we define ν̂(f) = ν̂(ts(g/h)) = s ν(t) + ν̂(g)− ν̂(h). We
obtain in this way a valuation ν̂ of K̂ with the required properties.

Case 2. Finally we address the situation Φ1 = Φ. This is equivalent to m ⊆ mν1 ,
and thus to p = m. Therefore the semigroup Γν1 = ν1(R) \ {+∞} is well-ordered and
contains no infinite bounded sequences. We associate to any ϕ ∈ Γ the ideals of R,
Pϕ = {f ∈ R / ν(f) ≥ ϕ} and P+

ϕ = {f ∈ R / ν(f) > ϕ}. According to [ZS60, Appendix
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3, Corollary of Lemma 4], for any ϕ1 ∈ Γν1 the subset
{
ϕ ∈ Γ / P+

ϕ1 ⊆ Pϕ ⊆ Pϕ1

}
is finite.

We deduce that the set {ϕ ∈ Γ / ϕ ≤ β} is also finite for any β ∈ Γ. Hence if f ∈ R̂ \ p̂
and fn → f , the sequence (ν(fn))∞n=1 takes a finite number of values in Φ. Let us prove
that this sequence must be stationary.
We proceed by contradiction. Suppose that there exists β, β′ ∈ Φ, β < β′, such that β
and β′ are attained infinitely many times by the sequence (ν(fn))∞n=1. Let n be a positive
integer. Then there exists n0 ≥ 1 such that fi−fj ∈ mn for any i, j ≥ n0. Takem,m′ ≥ n0
such that ν(fm) = β and ν(fm′) = β′. We have β = min {β, β′} = ν(fi − fj) ≥ nγ.
Therefore β ≥ nγ for any n ≥ 1. We find a contradiction since γ /∈ Φ′.
This limit value is fact independent of the choice of the Cauchy sequence. This enables
us to define a valuation ν̂ of the fraction field of R̂/p̂ with value group Φ and such that
Rν̂ dominates R̂/p̂. Since R̂ has dimension two and it is noetherian, p̂ must be the zero
ideal. We get a valuation ν̂ of K̂ satisfying the desired properties.

Remark 2.10. In the proof of Theorem 2.9 given in [Spi90b], for any f ∈ R̂ which is not
in p̂, ν̂(f) is defined to be lim sup

n→+∞
ν(fn) for any Cauchy sequence (fn)∞n=1 in R which

converges to f . This upper limit is a well defined element of Γ1 since Γ1 is well-ordered
and (ν(fn))∞n=1 is bounded in Φ1. We show that the sequence (ν(fn))∞n=1 is stationary.

The point of the following example is to emphasize that some invariants of the valuation,
in particular the rank, are not preserved under the extension.

Example 2.11. Consider R = C[x, y](x,y) and denote by K its fraction field. Let w(x) =∑
i≥1 aix

i be a series in C[[x]] which is transcendental over C(x). Consider the prime
ideal p̂ of R̂ generated by h(x, y) = y − w(x). Observe that by construction p̂ ∩ R = (0).
Therefore we have an injection φ : R ↪→ R̂/p̂. Since R̂/p̂ is a regular local ring of dimension
one, it is a discrete valuation ring of its fraction field. We may consider ν the restriction of
this valuation to K. In other words, the ring R̂/p̂ is isomorphic to C[[t]] and φ corresponds
to sending x to t and y to w(t). Hence ν(f) = ordtf(t, w(t)) for any nonzero f ∈ R.
In order to extend ν to a valuation ν̂ as desired, one needs to choose a valuation of the
fraction field of R̂ dominating the localization R̂p̂. But again this last one is a regular
local ring of dimension one, so there is a unique valuation ν ′ we can choose: the order of
vanishing at the maximal ideal p̂R̂p̂. For any nonzero f ∈ R̂,

ν̂(f) = (ν ′(f), ordtf̄(t, w(t))) ∈ Z2
lex,

where f̄(x, y) = h(x, y)−ν′(f)f(x, y).

The previous example suggest the following:

Example 2.12. Consider R = C[x, y, z](x,y,z) and K = C(x, y, z). Let w(x) =
∑
i≥1 aix

i

and u(x) =
∑
i≥1 bix

i be two series in C[[x]] which are algebraically independent over
C(x). Recall that this means that there is no non trivial polynomial P ∈ C(x)[t1, t2] such
that P (w(x), u(x)) = 0. By [MS39, Lemma 1], there exists an infinite number of such
formal power series. Let p̂ be the prime ideal of R̂ generated by h1(x, y, z) = y − w(x)
and h2(x, y, z) = z − u(x). As in Example 2.11 we have p̂ ∩ R = (0) and an injection
R ↪→ R̂/p̂ ∼= C[[t]] by sending x to t, y to w(t) and z to u(t). Let ν be the restriction to
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K of the t-adic valuation ν̄ of C((t)). To construct an extension ν̂ of ν one needs again to
choose a valuation of the fraction field of R̂ dominating the localization R̂p̂. But now R̂p̂

is two-dimensional so we have infinitely many valuations with which to compose ν̄.

One should note that, unlike the case of NL(X,x), extending a valuation of RZ(X,x)
to a valuation of K̂ whose valuation ring dominates R̂ can not be done in general in an
unique way. The approach which led to the proof of Theorem A seems difficult to carry
out successfully in the Riemann-Zariski setting. Instead, we focus on the extension of a
valuation to the henselization R̃ of R. We are assuming that R̂ is an integral domain, so
R̃ is also an integral domain. We call K̃ the fraction field of R̃.

Since R is a local noetherian domain which is excellent we are under the hypothesis of the
following theorem:

Theorem 2.13 ([HOST12], Theorem 7.1). Let A be a local noetherian excellent domain
with fraction field K and ν a valuation of K whose valuation ring dominates A. Let Ae
be a local étale A-algebra contained in the henselization of A. There exists a unique prime
ideal H of Ae such that H ∩ A = (0) and ν extends to a valuation νe of the fraction field
of Ae/H whose valuation ring dominates that ring. Furthermore, the following properties
are also satisfied: the extension νe is unique, the group of values is preserved and H is a
minimal prime of Ae.

Take a valuation ν ∈ RZ(X,x). Let us apply the previous result to ν. Consider a local
étale R-algebra Re contained in R̃. Observe that Re is also an integral domain. We denote
by Ke its fraction field. Since the zero-ideal is the unique minimal prime of Re, the last
assertion of Theorem 2.13 implies that H = (0). We conclude that ν extends in a unique
way to a valuation νe ∈ Z(Ke|k) whose valuation ring dominates Re and having the same
value group as ν.

We denote by R̃Z(X,x) the subspace of the Riemann-Zariski space Z(K̃|k) consisting of
the set of all valuation rings of K̃ dominating R̃, endowed with the topology induced by
the Zariski topology.

Remark 2.14. Given ν ∈ RZ(X,x), there exists a unique valuation ν̃ ∈ R̃Z(X,x) such that
ν̃|K = ν. To see this, take a nonzero f ∈ R̃. Since R̃ is the inductive limit of the system
of equiresidual local étale R-algebras (see Proposition 2.5), there exists such a R-algebra,
say Re, such that f ∈ Re. We define ν̃(f) = νe(f), where νe is the valuation of the
fraction field of Re whose existence guarantees Theorem 2.13. Since Re is a localization of
a finite R-algebra, Re is excellent (excellence is preserved by localization and any finitely
generated algebra over an excellent ring is excellent). If Re ↪→ Re

′ then we deduce that
νe
′(g) = νe(g) for all g ∈ Re. Therefore ν̃ is well defined and gives rise to a valuation of

R̃Z(X,x). The uniqueness of ν̃ follows directly from Theorem 2.13.
Observe that by construction ν and its extension ν̃ have the same value group.

Proposition 2.15. The spaces RZ(X,x) and R̃Z(X,x) are homeomorphic.

Proof. By Remark 2.14, the map ρ : R̃Z(X,x) → RZ(X,x) which sends a valuation µ to
its restriction µ|K to the field K is bijective. Moreover, it is clearly a continuous map
because Rµ|K = K ∩Rµ for any such a valuation µ. In order to prove that ρ is open, one
only needs to check that ρ(E(f)) is open in RZ(X,x) for every f ∈ K̃.
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Pick an element f ∈ K̃. Since K ↪→ K̃ is an algebraic field extension, we can consider
the minimal polynomial p(t) = tn + an−1t

n−1 + . . . + a0 ∈ K[t] of f . The set V of all
valuations ν ∈ RZ(X,x) such that ai ∈ Rν for all i ∈ {0, . . . , n− 1} is contained in
ρ(E(f)). Indeed, given ν ∈ V , if ν̃ is its extension to R̃Z(X,x) then we have the inclusions
R[a0, . . . , an−1] ⊆ Rν ⊆ Rν̃ . Since f is integral over R[a0, . . . , an−1] this yields f ∈ Rν̃ , that
is, ν ∈ ρ(E(f)). Conversely, ρ(E(f)) ⊆ V . To see this, let us take µ ∈ R̃Z(X,x) such that
f ∈ Rµ and show that µ|K ∈ V . We need to prove that ai ∈ Rµ for all i ∈ {0, . . . , n− 1}.
Let L = K(f, α1, . . . , αn−1) be the splitting field of p(t) and µ an extension of µ|K to L.
The coefficients of p(t) are symmetric polynomials functions of the roots f, α1, . . . , αn−1,
therefore to conclude that ai ∈ Rµ for any i ∈ {0, . . . , n− 1} is sufficient to verify that
αj ∈ Rµ for all j ∈ {1, . . . , n− 1}.
According to [ZS60, Ch. VI §7, Corollary 3] every extension of µ to the field L can be
written as µ◦σ for σ in the Galois group Gal(L|K). The uniqueness of the extension to K̃
implies the uniqueness of the extension to the subfield K(f), so µ(σ(f)) = µ(f) for every
σ ∈ Gal(L|K) and µ(αj) ≥ 0 for all j ∈ {1, . . . , n}.

Remark 2.16. Let us denote Z = RZ(X,x) and Z̃ = R̃Z(X,x) and consider both spaces
as locally ringed spaces (see Subsection 1.1.4). Observe that the morphism ρ : Z̃ → Z is
not an isomorphism of locally ringed spaces since O

Z̃, ν̃
= Rν̃ is not necessarily isomorphic

to OZ,ρ(ν̃) = Rν̃ ∩K.

The same result holds for the constructible topology.

Proposition 2.17. Viewing RZ(X,x) as subspace of Z(K|k)cons and R̃Z(X,x) as subspace
of Z(K̃|k)cons, the spaces RZ(X,x) and R̃Z(X,x) are homeomorphic.

Proof. Let us go back to the bijective map ρ : R̃Z(X,x)→ RZ(X,x) defined in the proof
of Proposition 2.15. It follows directly from the description (1.1) of the basic open sets
for the constructible topology that ρ is continuous for these topologies. Since Z(K|k)cons

is Hausdorff, to see that ρ is a homeomorphism it is enough to prove that R̃Z(X,x) is
quasi-compact.
The constructible topology of Z(K̃|R̃) is exactly the one induced by the constructible topo-
logy of Z(K̃|k). Therefore the quasi-compactness of R̃Z(X,x) as subspace of Z(K̃|k)cons is
equivalent to the property of being closed in Z(K̃|R̃)cons (because Z(K̃|R̃)cons is compact).
In order to end the proof we show now that R̃Z(X,x) has this property.
On the one hand, observe that the maximal ideal m̃ of R̃ is closed in Spec R̃. As a
consequence it is also closed in (Spec R̃)cons. On the other hand, R̃Z(X,x) is the inverse
image under the center map c

R̃
: Z(K̃|R̃)cons → (Spec R̃)cons of m̃. The fact that R̃Z(X,x)

is closed in Z(K̃|R̃)cons follows from Proposition 1.5.

We now prove the second main result of this chapter.

Theorem A’. Let X,Y be two algebraic varieties defined over the same algebraically
closed field k. For all x ∈ X, y ∈ Y regular closed points, the spaces RZ(X,x) and
RZ(Y, y) are homeomorphic if and only if X and Y have the same dimension.
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Proof. If RZ(X,x) and RZ(Y, y) are homeomorphic then it follows by Proposition 1.11
that X and Y have the same dimension. Let us now prove the converse.
As the assumptions of Proposition 2.7 are satisfied, the henselizations of OX,x and OY,y
are isomorphic as k-algebras. We have then a natural homeomorphism between R̃Z(X,x)
and R̃Z(Y, y). To end the proof it suffices to apply Proposition 2.15.

Remark 2.18. Take ν ∈ RZ(X,x) and consider its extension ν̃ ∈ R̃Z(X,x). In view of
[ZS60, Ch. VI §6, Corollary 1], the transcendence degree of the field extension kν ↪→ kν̃
is not greater than tr.degKK̃. Since the field extension K ↪→ K̃ is algebraic, we get
tr.degkkν = tr.degkkν̃ . Therefore the homeomorphism given in Theorem A’ preserves not
just the rank and the rational rank (recall that Φν = Φν̃) but also the dimension of the
valuation.

When we can freely make use of the existence of resolutions of singularities, Theorem A’
allows us to show that, in the regular case, the Riemann-Zariski space of X at x has the
following property: we can observe anywhere in RZ(X,x) small patterns of the space that
look like the whole RZ(X,x). More precisely, following [CD94] we say that a topological
space Z is a self-homeomorphic space if for any open subset U ⊆ Z there is a subset V ⊆ U
such that V is homeomorphic to Z.

Corollary 2.19. Let X be an algebraic variety defined over an algebraically closed field
k of characteristic zero. If x ∈ X is a regular closed point, then RZ(X,x) is self-
homeomorphic.

Proof. Suppose that X has dimension d > 1 (otherwise the result is clear). Theorem A’
implies that RZ(X,x) is homeomorphic to the Riemann-Zariski space of the d-dimensional
affine space over k at the origin. Therefore it suffices to show that Z = RZ(Ad

k, 0) is self-
homeomorphic.
To see this, take U an open subset of Z. Without loss of generality we may assume that U
is a basic open subset, that is, U = {ν ∈ Z / f1/g1, . . . , fm/gm ∈ Rν} where fi and gi are
polynomials in k[x1, . . . , xd] and gi 6= 0 for all i = 1, . . . ,m. We need to show that there
exists V ⊆ U homeomorphic to Z. Let ψ : Y → X be the blowing-up of Ad

k with respect
to the ideal (x1, . . . , xd) ·

∏
1≤i≤m(fi, gi) of k[x1, . . . , xd]. Pick a resolution of singularities

π′ : X ′ → Y and denote π = ψ◦π′. We choose a closed point x′ ∈ π−1(0) in an affine chart
W ⊆ X ′ such that fi/gi ∈ OX′(W ) for all i = 1, . . . ,m. By construction RZ(X ′, x′) ⊆ U .
Since x′ is regular, using again Theorem A’ we see that RZ(X ′, x′) is homeomorphic to Z.
Hence it suffices to take V = RZ(X ′, x′) to complete the proof.
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Graphic tools

This chapter provides a short introduction to trees and graphs. They are both important
tools in the treatment of the two-dimensional case (Theorem B). Firstly, the normalized
non-Archimedean link NL(X,x) associated to a normal surface singularity contains a fami-
ly of subsets, each of which carries a tree structure (even the whole space may carry such
a structure). We specify in the first section what we mean by a tree and we show some
properties useful for the sequel. Secondly, the complement of the union of the trees of the
family evoked above deprived of their roots turns out to be a finite graph. Its equivalence
class, under a certain equivalence relation, determines the homeomorphism type of both
the Riemann-Zariski space RZ(X,x) and NL(X,x). In the second section we concentrate
on graphs, giving in particular the definition of this equivalence relation.

3.1 Trees

For us a tree is a rooted non-metric R-tree in the sense of [FJ04] (we refer for details to
Sections 3.1 and 7.2).

A tree is a topological space consisting of a partially ordered set (T ,≤) such that:

- There exists a unique smallest element τ0 in T (called the root of T ),

- if τ ∈ T , then {σ ∈ T / σ ≤ τ} is isomorphic (as ordered set) to a real interval,

- every totally ordered convex subset of T is isomorphic (as ordered set) to a real interval,

- every non-empty subset of T admits an infimum in T ,

which is equipped with the weak tree topology, described as follows. Given two elements
τ, τ ′ in T , we denote by τ ∧ τ ′ the infimum of {τ, τ ′} and we call the subset

[τ, τ ′] =
{
σ ∈ T / τ ∧ τ ′ ≤ σ ≤ τ

}
∪
{
σ ∈ T / τ ∧ τ ′ ≤ σ ≤ τ ′

}
a segment. If τ ∈ T , we define an equivalence relation on the set T \{τ} by setting τ ′ ≡τ τ ′′
if and only if [τ, τ ′] ∩ [τ, τ ′′] 6= {τ}. The equivalence classes are called the tangent vectors
at τ and each of them determines an open subset of T , Uτ (τ ′) = {σ ∈ T \ {τ} : σ ≡τ τ ′}.
The weak tree topology is the topology generated by all these subsets when τ ranges over
T . Thus an open subset of T is a union of finite intersections of subsets of the form Uτ (τ ′).
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Given two different points τ, τ ′ of a tree (T ,≤), for any σ ∈ [τ, τ ′] \ {τ, τ ′}, Uσ(τ) and
Uσ(τ ′) are disjoint open neighborhoods of τ and τ ′, thus T is Hausdorff. Furthermore,
the segment [τ, τ ′] endowed with the induced topology from that of T is homeomorphic
to [0, 1] endowed with the induced topology from that of R:
Indeed, the second axiom allows us to define a bijective mapping φ : [0, 1] → [τ, τ ′] such
that their restrictions to [0, φ−1(τ ∧ τ ′)] and [φ−1(τ ∧ τ ′), 1] are isomorphism of ordered
sets. It is clear that the inverse image of a proper basic open subset of [τ, τ ′] under φ is a
real interval of the form [0, a) or (a, 1] with 0 ≤ a ≤ 1, thus φ is continuous. Since [0, 1] is
quasi-compact and [τ, τ ′] is Hausdorff, we conclude that φ is an homeomorphism.

Therefore any tree is arcwise connected. Moreover it is uniquely arcwise connected. That
is, for every two of its points there is exactly one arc in the space joining these points.

Lemma 3.1. Let (T ,≤) be a tree and τ, τ ′ two different points of T . The image of any
injective continuous mapping γ : [0, 1] → T with γ(0) = τ and γ(1) = τ ′ is the segment
[τ, τ ′].

Proof. Consider γ([0, 1]) equipped with the induced topology from that of T . Since
γ : [0, 1] → γ([0, 1]) is an homeomorphism, if we have [τ, τ ′] ⊆ γ([0, 1]) then the in-
verse image of [τ, τ ′] under γ is a connected subset of [0, 1] containing 0 and 1. Hence we
have [τ, τ ′] = γ([0, 1]) as desired. Let us therefore show that [τ, τ ′] ⊆ γ([0, 1]).
We can assume that τ is the root of T (we may need to redefine the partial ordering on T ,
see 3.1.2 of [FJ04]). In view of [FJ04, Corollary 7.9], the mapping f which sends t ∈ [0, 1]
to γ(t) ∧ τ ′ ∈ [τ, τ ′] is continuous. Take σ ∈ [τ, τ ′] different from τ and τ ′. Define Σ to be
the set of all t ∈ [0, 1] such that f(t) = σ. On the one hand, Σ is nonempty thanks to the
Intermediate Value Theorem. On the other hand, Σ is closed, so s = inf Σ belongs to Σ.
In order to complete the proof it suffices to show that γ(s) = σ.
We proceed now by contradiction to prove that γ(s) = σ. Suppose that γ(s) 6= σ. The
basic open subset Uσ(γ(s)) of T is mapped to σ by f , hence U = Uσ(γ(s))∩ γ([0, 1]) is an
open subset of γ([0, 1]) containing γ(s) such that f(U) = {σ}. It follows that there exists
an open neighborhood of s in [0, 1] whose image by f is reduced to σ, contradicting the
minimality of s.

Corollary 3.2. Any arcwise connected subspace of a tree is a tree.

Proof. Let (T ,≤) be a tree and S ⊆ T an arcwise connected subspace of T . As previously
noted, we can assume that the root τ0 of T belongs to S. Since S is arcwise connected, by
Lemma 3.1, the segment [τ0, σ] of T is contained in S for any σ ∈ S. It is straightforward
to deduce from this that S together with the restriction of the partial ordering ≤ satisfies
the axioms of a tree and that the weak tree topology it carries coincide with the topology
induced from that of (T ,≤).

Example 3.3. Let us go back to the valuative tree V. We use the same notations as in
Section 1.2 and call A = C[[x, y]] and m the maximal ideal of A. Recall that V is the set
of semivaluations ν : A → [0,+∞] such that ν|C∗ = 0 and normalized by the condition
ν(m) = 1, equipped with the topology of pointwise convergence.
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It is shown in [FJ04, Section 3.2] (see also [Nov14]) that V is a tree with the partial
ordering ≤ defined by

ν ≤ ν ′ if and only if ν(f) ≤ ν ′(f) for all f ∈ C[[x, y]].

The proof relies on the encoding of valuations by key polynomials (see [FJ04, Ch. 2])
and it is quite technical in nature. A second approximation to the tree structure of V is
possible taking into account that a valuation of the fraction field of A whose valuation
ring dominates A corresponds univocally to a sequence of infinitely near points over the
origin (see [FJ04, Chapter 6]).

Two remarks follow easily from the definition of the partial order. First observe that the
normalization we have chosen makes νm the smallest element of V, where νm(f) = ord f =
max {n / f ∈ mn}, all non zero f ∈ A. Hence νm is the root of (V,≤). Furthermore, any
irreducible φ ∈ m gives rise to a semivaluation νφ of V by considering the intersection
multiplicity divided by ord φ. If we suppose that ν ≥ νφ then ν(φ) ≥ νφ(φ) = +∞, so
that sν = (φ)A. Since the quotient domain A/(φ)A is one dimensional, we conclude that
ν = νφ. Therefore the curve valuations νφ are maximal elements of V. We refer to [FJ04,
Proposition 3.20] for a complete picture of V.

In turn, the relative valuative tree Vz is also a tree. Given ν, ν ′ ∈ Vz, the partial order
relation is defined by setting ν ≤z ν ′ if and only if ν(f) ≤ ν ′(f) for all f ∈ C[[x, y]]. Note
that the valuation ordz is the root of (Vz,≤z). We refer to [FJ04, Section 3.9] for details.

3.2 Graphs

There are several definitions of a graph. Here we have adopted the view point of [Ser80].

A graph Γ consists of two sets V (Γ) and E(Γ), whose elements are respectively called the
vertices and the edges of Γ, and two maps:

- E(Γ)→ E(Γ), e 7→ ē, such that e 6= ē and ¯̄e = e

- E(Γ)→ V (Γ), e 7→ ι(e)

Therefore any edge e ∈ E(Γ) comes with a reverse edge ē. For any edge e we call ι(e) and
ι(ē) the endpoints of e. We also say that e is incident to ι(e) and ι(ē), or e joins ι(e) to
ι(ē). Two vertices are adjacent if there exists an edge incident to both (a vertex may be
adjacent to itself).

Given u, v ∈ V (Γ), a path of length n ≥ 1 joining u to v is a sequence of vertices and
edges of Γ of the form u = v0, e1, v1, e2, . . . , en, vn = v where vi−1 = ι(ei) and vi = ι(ēi)
for i = 1, . . . , n. If ei 6= ēi+1 for i = 1, . . . , n− 1, then the path is reduced. By convention
we shall call a path of length zero any sequence of the form u, u where u is a vertex of Γ.
A path of length zero is always reduced. A graph is connected if any two vertices can be
joined by a path. Throughout this section by graph we mean a connected graph which is
in addition finite, which means that its sets of vertices and edges are both finite.

A graph Γ is a purely combinatorial object, however it can also be regarded as a finite
one-dimensional CW-complex (see [Chi01]). In order to do this, we endow V (Γ) and E(Γ)
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with the discrete topology and the unit interval [0, 1] with the induced topology from that
of R. The topological space |Γ|, which we call the topological realization of Γ, is the quo-
tient space of the disjoint union V (Γ)t(E(Γ)× [0, 1]) under the identifications (e, 0) ∼ ι(e)
and (e, t) ∼ (ē, 1− t) for any e ∈ E(Γ) and t ∈ [0, 1]. Let us denote by q the quotient map
and, for any e ∈ E(Γ), call |e| = q({e}× [0, 1]) an edge of |Γ|. Then |e| = |ē| and any edge
of |Γ| is homeomorphic either to [0, 1] or the unit circle S1.

The degree of a vertex v of a graph Γ is the number of edges e of Γ such that ι(e) = v. It
corresponds to the number of connected components of a small punctured neighborhood
of v in |Γ|,

(⋃
ι(e)=v q ({e} × [0, te))

)
\ {v} where 0 < te < 1.

Amorphism from a graph Γ to a graph Γ′ is a mapping γ from V (Γ)∪E(Γ) to V (Γ′)∪E(Γ′)
which sends vertices to vertices and edges to edges in such a way that γ(ē) = γ(e) and
γ(ι(e)) = ι(γ(e)) for any e ∈ E(Γ). Note that this implies that γ(ι(ē)) = ι(γ(e)) for
any e ∈ E(Γ). An isomorphism of graphs is a bijective morphism of graphs. We say
that a graph Γ is a subgraph of Γ′ if V (Γ) ⊆ V (Γ′), E(Γ) ⊆ E(Γ′) and the inclusion
V (Γ) ∪ E(Γ) ↪→ V (Γ′) ∪ E(Γ′) is a morphism. If this is verified, then we have a natural
closed embedding |Γ| ↪→ |Γ′|.

We define now an operation on a graph whose result is still a graph but which does not
induce a morphism. Given a graph Γ, a subdivision of an edge e of Γ consists of the
addition of a new vertex v to V (Γ), the addition of new edges e′, e′′ (and their reverses) to
E(Γ), joining ι(e) to v and v to ι(ē) respectively, and the deletion of e and ē. We say that a
graph Γ′ is a subdivision of Γ if there exists a finite sequence Γ = Γ0 → Γ1 → . . .→ Γn = Γ′
where each arrow represents either an isomorphism of graphs or an edge subdivision.

Lemma 3.4. Let Γ, Γ′ be two graphs. The topological realizations of Γ and Γ′ are homeo-
morphic if and only if there exist a subdivision Σ of Γ and a subdivision Σ′ of Γ′ such that
Σ and Σ′ are isomorphic.

Proof. The topological realization of a given graph is homeomorphic to the topological
realization of any graph obtained by subdivision of one of its edges, therefore it is clear
that two graphs |Γ| and |Γ′| are homeomorphic if they have isomorphic subdivisions.
Let us now show the converse. If |Γ| and |Γ′| are homeomorphic to the unit circle S1 then
the result is clear, so let us suppose that this is not the case. We define ∆ (resp. ∆′) to be
a graph without vertices of degree two and whose topological realization is homeomorphic
to |Γ| (resp. |Γ′|). Observe that such a ∆ (resp. ∆′) exists since Γ (resp. Γ′) is not
homeomorphic to S1: we just need to perform a finite number of operations, any of them
being the inverse of an edge subdivision, starting from Γ (resp. Γ′). Pick a homeomorphism
f : |∆| → |∆′|. Since all the vertices of |∆| and |∆′| are of degree different from two, f res-
tricts to a bijection between V (∆) and V (∆′) which respects the degree. Take for instance
an edge e of ∆ with endpoints u, v both of degree greater than two. Then f(|e|) is a closed
connected subset of |∆′| with f(|e|) ∩ V (∆′) = {f(u), f(v)} = f(∂|e|) = ∂f(|e|), so there
must be an edge of ∆′ with endpoints f(u) and f(v). The same is true on the other cases.
In fact f induces a bijection η : E(∆)→ E(∆′) such that f maps the endpoints of any edge
e of ∆ to the endpoints of η(e). It suffices now to subdivide m times every edge of ∆ and
every edge of ∆′ where m = max {card(V (Γ))− card(V (∆)), card(V (Γ′))− card(V (∆′))}
to find isomorphic subdivisions of Γ and Γ′.

A graph Γ is a tree if given any two vertices u, v of Γ there exists a unique reduced path
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joining u to v. The topological realization of Γ is then a tree in the sense introduced
before. More precisely, the choice of a vertex of Γ determines a unique tree structure on
|Γ|:
Let us choose a vertex of Γ and call it v0. Take a point p = q((e, t)) = q((ē, 1 − t))
of |Γ|, p 6= v0. There exists a unique edge b ∈ {e, ē} for which we can find a reduced
path v0, e1, v1, . . . , vn−1 = ι(b), en = b, vn = ι(b̄). We may assume that b = e. Since
Γ is a tree, we have in addition that any two vertices in the path are different, so it
induces an injective continuous mapping αp : [0, 1] → |Γ| such that αp(0) = v0 and
αp(1) = p. We set αv0(u) = v0 for all u ∈ [0, 1]. It suffices to declare p ≤ p′ if and only if
αp([0, 1]) ⊆ αp′([0, 1]).

Given a graph Γ which is not a tree, following the notations of [Sta83] we associate to Γ
its core.

Definition 3.5 (The core of a graph). Let Γ be a graph which is not a tree. If Γ has no
vertex of degree one, then Γ is its own core; otherwise its core is the subgraph of Γ obtained
by repeatedly deleting a vertex of degree one and the edges incident to it (which are exactly
two, one being the reverse of the other) until no more vertices of degree one remain.

We may thus think of Γ as its core, denoted Core (Γ), with some disjoint trees attached
to it (see Figure 3.1).

Figure 3.1: A graph and its core on the right.

Lemma 3.6. Let Γ be a graph which is not a tree. The complement of |Core (Γ) | in |Γ|
is the set of points p ∈ |Γ| which admit an open neighborhood U ( |Γ| whose closure U in
|Γ| is a tree and whose boundary ∂U is reduced to a vertex of Γ.

Proof. Take p ∈ |Γ|. Let us suppose first that U ( |Γ| is an open neighborhood of p
verifying the hypothesis of the Lemma. Note that U = U t {v} for some v ∈ V (Γ). Since
the boundary of U is reduced to v, if q({e}×(a, b)) is contained in U for some 0 ≤ a < b ≤ 1
and e ∈ E(Γ), then |e| is entirely contained in U . From this and the fact that a tree is
connected it follows that there exists a subgraph Γ′ of Γ such that U = |Γ′|. The graph Γ′
is clearly a tree. Moreover, recall that if u ∈ V (Γ) belongs to U then |e| ⊆ U for any edge
e of Γ such that ι(e) = u and ι(ē) 6= v. Therefore we have that E(Γ′) ∩ E(Core (Γ)) = ∅
and V (Γ′)∩V (Core (Γ)) is either empty or equal to {v}, which implies that p /∈ |Core (Γ) |.
Assume now that p does not belong to the topological realization of Core (Γ). Consider
e ∈ E(Γ) \ E(Core (Γ)) such that p ∈ |e|. There exists a unique subgraph Γ′ of Γ such
that e ∈ E(Γ′), the graph Γ′ has a unique vertex v′ of degree one which is in addition an
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endpoint of e, and Core (Γ) = Core (Γ′). We may suppose that v′ = ι(ē). We can find a
unique path v0, e1, v1, . . . , vn, en = e, vn = v′ in Γ′ of length n ≥ 1 where v0 ∈ V (Core (Γ))
and vi, ei /∈ E(Core (Γ)) for 1 ≤ i ≤ n. The connected component of |Γ| \ {v0} which
contains |e| is an open neighborhood of p, its closure is a tree and its boundary is the
point v0.

Remark 3.7. Note also that Γ admits a deformation retraction to Core (Γ).

We define two elementary modifications, which we call collapses, in a fixed graph Γ:

- Removing a vertex of Γ of degree one and the edges incident to it.

- Provided that V (Γ) is not reduced to a single point, removing a vertex v of Γ of degree
two and every edge incident to it and adding a new pair of edges e, ē with endpoints
the vertices that were adjacent to v.

Figure 3.2: Examples of collapses.

The inverse operations of both types of collapse are called expansions and we also con-
sider them, and any isomorphism of graphs, as elementary modifications. Remark that an
expansion which is the inverse of a collapse of the second kind described above is an edge
subdivision. The other kind of expansion consists on choosing a vertex u of Γ and adding
a new vertex v to V (Γ) and two edges e, ē to E(Γ) such that ι(e) = u and ι(ē) = v.

A modification is a finite sequence Γ = Γ0 → Γ1 → . . . → Γn = Γ′ where each arrow
represents an elementary modification.

Definition 3.8 (Equivalent graphs). We say that two graphs Γ and Γ′ are equivalent if
there exists a modification which transforms Γ into Γ′.

Figure 3.3: Equivalence is finer than homotopy.

An elementary modification produces a graph whose topological realization is homotopy
equivalent to that of the graph, but equivalence and homotopy are two different notions:
the three graphs in Figure 3.3 have homotopy equivalent topological realizations but they
are not pairwise equivalent (the latter statement will follow from Proposition 3.11).
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Remark 3.9. Let Γ be a graph. Γ is a tree if, and only if, it is equivalent to a graph which
is reduced to a unique vertex (without any edges).

Lemma 3.10. Let Γ,Γ′ be two graphs. If Γ and Γ′ are equivalent, then there exist two
finite sequences of expansions Γ = Γ0 → Γ1 → . . . → Γn and Γ′ = Γ′0 → Γ′1 → . . . → Γ′m
such that Γn and Γ′m are isomorphic.

Proof. Assume that Γ and Γ′ are not isomorphic graphs. Let f : Γ = Γ0 → . . .→ Γn = Γ′
be a modification. Without loss of generality, we can assume that any two graphs in the
sequence are not isomorphic. Suppose that there is at least a collapse and an expansion
in the sequence (otherwise the result is clear). The basic idea is that all the expansions
can be done first.
Let us concentrate on the simplest interesting modification: the composition of a collapse
c and an expansion ε, Γ c→ Γ1

ε→ Γ′ (the result is also clear in the symmetric situation).
Denote by p the vertex of Γ removed by c and by p′ the vertex of Γ′ added to Γ1 by ε.
Suppose that p′ is of degree one. Since c is a collapse, there exists a unique vertex v ∈ V (Γ),
v 6= p such that ε(c(v)) is adjacent to p′. If v is not adjacent to p then it is clear that
we get Γ′ from Γ adding first p′ and then an edge that joins it to v (and its reverse edge)
and finally collapsing p in the resulting graph. If v is adjacent to p then p has degree
two, otherwise we would have ε = c−1. Thus there exists u ∈ V (Γ) different from p (but
maybe equal to v) and a reduced path u, e, p, e′, v in Γ. Again Γ′ can be obtained from Γ
by performing first an expansion and then a collapse.
If the degree of p′ is two, then ε is the subdivision of an edge e1 of Γ1. Since c is a collapse,
there exists a unique pair of vertices u, v ∈ V (Γ), both different from p, such that e1 joins
c(u) to c(v). Note that the case u = v is not excluded. The vertex u must be adjacent to
v, otherwise ε would be c−1. Moreover,

card ({e ∈ E(Γ) / ι(e) = u, ι(ē) = v}) ≤ card ({e ∈ E(Γ1) / ι(e) = c(u), ι(ē) = c(v)})

because c is a collapse. The fact that ε◦ c is not an isomorphism implies that the previous
inequality is an equality, that is, there does not exist a reduced path in Γ of the form
u, e, p, e′, v. Removing an edge which joins u to v and its reverse edge, adding p′ and two
edges joining p′ to u and p′ to v respectively and their reverse edges, and finally collapsing
p in the graph that we obtain, transforms Γ into Γ′.

Therefore, there exists an expansion Γ ε′→ Γ′1 and a collapse Γ′1
c′→ Γ′ such that ε◦c = c′ ◦ ε′

and it suffices to take ∆ = Γ′1.
Suppose now that n ≥ 3. If the set

I = {i ∈ {1, . . . , n− 1} / Γi−1 → Γi is a collapse and Γi → Γi+1 is an expansion}

is empty, then the assertion follows immediately. Otherwise we define r = min I. As we
remarked before, we can exchange the subsequence Γr−1 → Γr → Γr+1 by the composition
of an expansion Γr−1 → Γ′r and a collapse Γ′r → Γr+1. After that one may need to clean
up the sequence f ′ : Γ→ . . .→ Γr−1 → Γ′r → Γr+1 → Γ′ of isomorphisms. We now repeat
the whole process, replacing the modification f by f ′. After a finite number of steps we
end up with I empty.

Proposition 3.11. Two graphs Γ and Γ′ are equivalent if, and only if, either they are
both trees or they are not and |Core (Γ) | is homeomorphic to |Core (Γ′) |.
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Proof. By Remark 3.9, any two trees are equivalent and, given any two equivalent graphs
Γ and Γ′, Γ is a tree if and only if Γ′ is a tree. So let us assume that Γ and Γ′ are not trees.
Since any graph (which is not a tree) is equivalent to its core, Γ and Γ′ are equivalent if,
and only if, so are their cores. Therefore it suffices to show that this last statement is
equivalent to |Core (Γ) | and |Core (Γ′) | being homeomorphic.
In view of Lemma 3.4, if the topological realizations of Core (Γ) and Core (Γ′) are home-
omorphic then there exists a graph ∆ such that Core (Γ)→ ∆ and Core (Γ′)→ ∆, where
each arrow denotes a finite sequence of edge subdivisions and graph isomorphisms. Thus
Core (Γ) is equivalent to Core (Γ′) by definition.
Suppose now that Core (Γ) and Core (Γ′) are equivalent. According to Lemma 3.10, there
exists a graph ∆ which is obtained from Core (Γ) and Core (Γ′) by finite sequences of
expansions ε and ε′ respectively. The modifications Core (Γ) ε→ ∆ → Core (∆) and
Core (Γ′) ε′→ ∆ → Core (∆) are necessarily compositions of edge subdivisions and graph
isomorphisms and the graph Core (∆) is a subdivision of Core (Γ) and Core (Γ′). Hence
the topological realizations of Core (Γ) and Core (Γ′) are homeomorphic.

Remark 3.12. Two finite simplicial complexes are simple-homotopy equivalent if there
exists a finite sequence of elementary simplicial collapses and expansions from one to
the other. Such a sequence is called a simple homotopy equivalence. A modification of
graphs in the sense we introduced is an example of simple-homotopy equivalence (for the
general definition we refer to [Coh73, Chapter I, §2]). Any two simple-homotopy equivalent
simplicial complexes are homotopy equivalent. The converse is not true in general. In
[Whi50] Whitehead associated to any finite simplicial complex Y a group Wh(Y ), defined
in terms of the fundamental group π1(Y ), and assigned to each homotopy equivalence
f : X → Y a unique element τ(f) ∈ Wh(Y ) which is 0 if and only if f is a simple-
homotopy equivalence. If Y is a graph, then π1(|Y |) is a free group. It is known that in
this case Wh(Y ) is trivial (see [BHS64] and [Sta65]). Therefore the notions of homotopy
and simple-homotopy equivalence coincide in our situation and hence an equivalence of
graphs is stronger than a simple-homotopy equivalence.
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Chapter 4

Homeomorphism type in the
normal surface singularity case

This chapter is divided into two sections. The first section is devoted to the normalized
non-Archimedean link NL(X,x) for a normal surface singularity x ∈ X. We explain
how the topological realization of certain graphs associated to resolutions of singularities
of X embed in the space NL(X,x) and then how it can be described as the limit of
those simplicial complexes. Next we detect a small piece of NL(X,x), its core, of crucial
importance for our purposes. In the second section we prove Theorem B.

4.1 The core of NL(X, x)

Throughout this section x is a singular point of a normal algebraic surface X defined over
an algebraically closed field k. We denote by K its function field. Our presentation of the
normalized non-Archimedean link NL(X,x) of x in X as a limit of simplicial complexes
follows [Fav10].

We say that a proper birational map πX′ : X ′ → X is a good resolution if X ′ is smooth
and the exceptional locus EX′ = π−1

X′ (x)red is a divisor with normal crossing singularities
such that its irreducible components are smooth and the intersection of any two of them
is at most a point. A good resolution always exists.

Recall that since a good resolution πX′ : X ′ → X is proper and induces an isomorphism
from the open subset X ′ \EX′ to the open subset X \ {x}, any semivaluation of NL(X,x)
admits a center in X ′. Moreover, the map spX′ : NL(X,x) → X ′ which sends any
semivaluation to its center in X ′ is anticontinuous. We refer to Subsection 1.2.2 for details.
In particular, the subset U(p) = {ν ∈ NL(X,x) / spX′(ν) = p} is open in NL(X,x) for any
closed point p ∈ EX′ . We keep this notation for the rest of this section.

Remark 4.1. Let πX′ : X ′ → X be a good resolution and E an irreducible component of
the exceptional locus EX′ . Given a closed point p ∈ E which is a regular point of EX′ , the
closure of U(p) in NL(X,x) is U(p)

⊔{
b−1
E νE

}
, where νE is the divisorial valuation defined

by E and bE = νE(mX,x). To see this, let us take ν ∈ NL(X,x) \ U(p), ν 6= b−1
E νE , and

show that there exists an open neighborhood V ⊆ NL(X,x) of ν which does not intersect
U(p). If the center of ν in X ′ is a closed point p′ ∈ EX′ , then p′ 6= p and it suffices to
consider V = U(p′). Otherwise, assuming that EX′ is not irreducible, the center of ν in
X ′ is an irreducible component of EX′ different from E. Then it suffices to define V to be
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the inverse image of EX′ \W under the specialization map spX′ : NL(X,x)→ X ′, where
W is an open neighborhood of p in E not containing the singular points of EX′ .

To any good resolution πX′ : X ′ → X we attach a graph, its dual graph ΓX′ , whose ver-
tices are in bijection with the irreducible components of EX′ and where two vertices are
adjacent if and only if the corresponding irreducible components of EX′ intersect. A dual
graph has no loops (ι(e) 6= ι(ē) for any edge e) and no multiple edges (if two different
edges e, e′ have the same endpoints then e′ = ē).

The topological realization of any dual graph ΓX′ can be embedded into NL(X,x) as a
closed set in the following way:
Any vertex of ΓX′ corresponds to a unique irreducible component E of the exceptional lo-
cus EX′ , so we can identify every vertex with a normalized divisorial valuation in NL(X,x),
b−1
E νE where bE = νE(mX,x). By abuse of notation, throughout this subsection we con-
tinue to write νE for the normalized valuation b−1

E νE . We consider now an edge |e| of |ΓX′ |
whose endpoints are identified with the irreducible components E and E′ of EX′ . Pick lo-
cal coordinates (z, z′) at the point p of X ′ where E and E′ intersect such that E = {z = 0}
and E′ = {z′ = 0}. Since p is a regular point of X ′ the completion ÔX′,p is isomorphic as
k-algebra to k[[z, z′]]. Thus given f ∈ OX′,p, f 6= 0, we can write f =

∑
ci,jz

i(z′)j with
ci,j ∈ k. For any t ∈ [0, 1] we define a monomial valuation of K by setting

νt(f) = min
{
t

bE
i+ 1− t

bE′
j

/
ci,j ∈ k∗

}
and νt(0) = +∞. We identify the point q((e, t)) ∈ |e| with the quasi-monomial valuation
in NL(X,x) defined by νt(f) for all f ∈ OX,x. This construction, independent of the
choice of local coordinates, gives an injective continuous mapping |ΓX′ | ↪→ NL(X,x). In
the sequel we may not distinguish between |ΓX′ | and its image in NL(X,x).

For any good resolution πX′ : X ′ → X there exists a naturally defined continuous retrac-
tion map rX′ : NL(X,x)→ |ΓX′ |:
Given a semivaluation ν ∈ NL(X,x), if ν ∈ |ΓX′ | then we define rX′(ν) = ν. Suppose
that ν does not belong to |ΓX′ | and denote p the center of ν in X ′ (which is a closed
point of X ′). If p is the intersection of two irreducible components E and E′ of EX′ , we
take local coordinates (z, z′) at p such that E = {z = 0} and E′ = {z′ = 0} and we map
ν to the quasi-monomial rX′(ν) ∈ |ΓX′ | corresponding to the unique monomial valuation
νt ∈ U(p) such that νt(z) = ν(z) and νt(z′) = ν(z′). Otherwise the point p belongs to a
single irreducible component E of EX′ and we set rX′(ν) = νE .

If πX′′ : X ′′ → X is a good resolution which dominates πX′ : X ′ → X, then the restriction
rX′,X′ of rX′′ to |ΓX′′ | is the natural continuous retraction we may consider from |ΓX′′ | to
|ΓX′ |. Let us make this more precise:
Given a good resolution π : Z → X, by [Nag62a, Theorem 4.3] Z can be embedded as
an open dense subset of a complete surface Z. Let Z̃ be a resolution of singularities
of Z. Since Z̃ is a non-singular complete surface, Z̃ is in fact projective (see [Zar58]).
Therefore Z is quasi-projective. Observe now that πX′ ◦ π−1

X′′ is a birational morphism
between two non singular quasi-projective surfaces and therefore it is the composition of
a sequence of blowing-ups of points (this fact follows from the factorization theorem of
birational morphisms between non-singular projective surfaces [Sha77, Theorem 5] and
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Nagata’s compactification Theorem). Let us assume that πX′ ◦ π−1
X′′ is the blowing up of

a point p ∈ EX′ (in the general case the retraction is defined recursively). The graph ΓX′′
is obtained from ΓX′ by the elementary subdivision of an edge of ΓX′ whenever p is a
singular point of EX′ . Thus in this case the topological realizations of ΓX′ and ΓX′′ are
homeomorphic and the retraction |ΓX′′ | → |ΓX′ | is nothing but the identity map. If p is
a non singular point of EX′ , then ΓX′′ is obtained from ΓX′ by an expansion which is the
inverse of a collapse of the first kind. The topological realization of ΓX′′ is that of ΓX′ with
a new segment |e| attached to a vertex v ∈ V (ΓX′). In this case the map |ΓX′′ | → |ΓX′ |
sends every point of |e| to v and restricts to the identity on |ΓX′ |.

Furthermore, these maps are compatible (i.e. rX′ = rX′,X′ ◦ rX′′) and the induced conti-
nuous mapping NL(X,x)→ lim←−|ΓX′ | is an homeomorphism.

The following proposition is a consequence of results of [FJ04]:

Proposition 4.2. Let πX′ : X ′ → X be a good resolution and E an irreducible component
of the exceptional locus EX′. For any closed point p ∈ E which is a regular point of EX′,
the closure of U(p) in NL(X,x) is a tree whose boundary is reduced to the normalized
divisorial valuation νE associated to E.

Proof. We denote by U(p) the closure of U(p) in NL(X,x). By Remark 4.1, U(p) equals
U(p)

⊔
{νE}. Since U(p) is an open subset of NL(X,x), the boundary of U(p) is reduced

to the semivaluation νE . We now prove that U(p) is a tree.
First of all observe that we are not assuming that πX′ factors through the normalized
blowing up of x ∈ X, so we could have some embedded components. Therefore we write the
pull-back of the coherent sheaf of ideals m of OX defining the point x as OX′(−C)⊗OX′ I,
where C is a divisor on X ′ with supp C = EX′ and I is a coherent sheaf of ideals in OX′
with finite co-support (that is, for any affine chart U of X ′, Spec(OX′(U)/I(U)) is a finite
set of closed points). Choose local coordinates (z, z′) at p such that E = {z = 0}. The
ideal Ip of OX′,p is either a primary ideal or the ring OX′,p.
Suppose that Ip is a primary ideal ofOX′,p. ThenmX,xOX′,p = (z)bE ·Ip. Hence in the open
subset U(p) the normalization ν(mX,x) = 1 translates into ν(z)bE + ν(Ip) = 1. We denote
by Îp the extension of Ip in k[[z, z′]]. Passing to the completion, we can identify U(p)
with the subspace of V(k[[z, z′]]) consisting of all semivaluations ν : k[[z, z′]] → [0,+∞]
whose restriction to k∗ is trivial, which are centered in the maximal ideal (z, z′) and such
that ν(z)bE + ν(Îp) = 1. If ν(z) = 0 for some ν ∈ U(p), since there exists n ≥ 1 such that
zn ∈ Ip we would get 0 = ν(zn) ≥ ν(Ip) = 1, which is a contradiction. Therefore ν(z) > 0
for all ν ∈ U(p) and we have a well defined map ϕ from U(p) to the relative valuative tree
Vz. It suffices to define ϕ(νE) = ordz and

ϕ(ν) = bE ν

1− ν(Îp)
= ν

ν(z)

for any ν ∈ U(p). In the case where Ip is the ring OX′,p, we have ν(Ip) = 0 and we may
consider ϕ : U(p)→ Vz defined exactly as before. We claim that ϕ is an homeomorphism.
Indeed, the map from Vz to U(p) which sends ordz to νE and ν ∈ Vz \ {ordz} to ν

ν(mX,x)
is the inverse map of ϕ. Since NL(X,x) and Vz are both endowed with the topology of
pointwise convergence, it is straightforward to verify that they are both continuous maps.
According to [FJ04, Proposition 3.6.1], Vz is a tree rooted at ordz. From this fact and the
existence of ϕ we deduce that U(p) is a tree (rooted at νE) and this finishes the proof.
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The key observation is the following:

Proposition 4.3. Let ΓX′ be the dual graph associated to a good resolution πX′ : X ′ → X.
Any fiber r−1

X′ (ν) of the natural retraction rX′ : NL(X,x)→ |ΓX′ | is a tree whose boundary
is reduced to the semivaluation ν.

Proof. Let ν be a semivaluation in |ΓX′ |. Assume first that ν is a vertex of ΓX′ and
denote by E the irreducible component of the exceptional locus EX′ which determines ν.
Consider the set F of all closed points p ∈ E which are not singular points of EX′ . The
fiber r−1

X′ (ν) can be written as {ν}
⊔
p∈F U(p), where U(p) is the open subset of NL(X,x)

of semivaluations whose center in X ′ is p. By Proposition 4.2, the closure U(p) of U(p)
in NL(X,x) is a tree whose boundary is reduced to the normalized divisorial valuation
ν = νE . Therefore r−1

X′ (ν) is a bunch of trees sharing a unique point ν which is the
boundary of every tree in the family. In fact, the fiber of rX′ above ν is itself a tree, as we
explain next.
Take µ, µ′ ∈ r−1

X′ (ν). Abusing notation, we declare µ ≤ µ′ if there exists p ∈ F such that
µ, µ′ ∈ U(p) and µ ≤ µ′ in U(p). This defines a tree structure on r−1

X′ (ν). Moreover, any
basic open subset for the weak tree topology is also open for the induced topology from
the topology of NL(X,x). To see this, consider µ and µ′ two different semivaluations in
r−1
X′ (ν) and denote by W the basic open subset in (r−1

X′ (ν),≤) determined by the tangent
vector at µ corresponding to µ′. If µ ∈ U(p) and µ′ ∈ U(p′) with p 6= p′, then

W = Uµ(ν)
⋃

q∈F, q 6=p
U(q), (4.1)

where Uµ(ν) is open in U(p). If µ, µ′ ∈ U(p) then W = Uµ(µ′) ⊆ U(p) if µ ≤ µ′ < ν in
U(p); otherwise W can be written as in (4.1). In any case W is open in NL(X,x). Now
observe that the fiber r−1

X′ (ν) is closed, so it is quasi-compact as subspace of NL(X,x). Since
any tree is Hausdorff, we can conclude that r−1

X′ (ν) and (r−1
X′ (ν),≤) are homeomorphic,

which implies that the fiber of rX′ above ν is a tree.

Figure 4.1: The basic open subset W is drawn in red

Suppose now that ν belongs to the interior of an edge of |ΓX′ |. If ν corresponds to
an irrational in the interval (0, 1) then r−1

X′ (ν) = {ν} and the statement is true in this
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case. Otherwise, ν is a quasi-monomial valuation of rational rank one. This means that
ν is a divisorial valuation. Hence there exists a finite sequence of blowing up of points
π : X ′′ → X ′ such that πX′′ = πX′ ◦ π is a good resolution and the center of ν in X ′′ is a
prime divisor E ⊆ EX′′ . Since r−1

X′′(ν) = r−1
X′ (ν), we have reduced the problem to the first

case we treated above.

Corollary 4.4. The normalized non-Archimedean link NL(X,x) is a tree if, and only if,
the dual graph associated to any good resolution is a tree.

Proof. Let πX′ : X ′ → X be a good resolution. Since |ΓX′ | ⊆ NL(X,x) is arcwise
connected, by Corollary 3.2, if NL(X,x) is a tree then |ΓX′ | is also a tree. Let us now
show the converse.
Assume that the dual graph associated to any good resolution is a tree. Take a dual
graph ΓX′ and choose a tree structure (|ΓX′ |,≤) of |ΓX′ |. Proposition 4.3 allow us to
equip NL(X,x) with a tree structure. Abusing notation, given two semivaluations ν, ν ′ in
NL(X,x) we declare ν ≤ ν ′ if and only if one of the following conditions is satisfied:

- ν, ν ′ ∈ |ΓX′ | and ν ≤ ν ′ in |ΓX′ |

- ν ∈ |ΓX′ |, ν ′ /∈ |ΓX′ | and ν ≤ rX′(ν ′) in |ΓX′ |

- ν, ν ′ /∈ |ΓX′ |, rX′(ν) = rX′(ν ′) and ν ≤ ν ′ in r−1
X′ (µ) where µ = rX′(ν).

It is straightforward to verify that (NL(X,x),≤) satisfies the four axioms of a tree, so
we concentrate on the topology. Since NL(X,x) is quasi-compact and (NL(X,x),≤) is
Hausdorff, to show that these two spaces are homeomorphic and end the proof it suffices
to prove that any basic open set of (NL(X,x),≤) is open in NL(X,x). Let us take
ν, ν ′ ∈ NL(X,x), ν 6= ν ′, and show that Uν(ν ′) is open in NL(X,x).
We suppose first that ν ∈ |ΓX′ |. If ν = rX′(ν ′) then Uν(ν ′) is nothing else than the basic
open set in r−1

X′ (ν) determined by the tangent vector at ν corresponding to ν ′. Otherwise
Uν(ν ′) is the inverse image under rX′ of the basic open set in |ΓX′ | determined by the
tangent vector at ν which corresponds to rX′(ν ′). Therefore, in both cases, Uν(ν ′) is open
in NL(X,x).
Suppose now that ν /∈ |ΓX′ | and set µ = rX′(ν). If µ = rX′(ν ′) and ν < ν ′ then Uν(ν ′) is
just the basic open set in r−1

X′ (µ) determined by the tangent vector at ν corresponding to
ν ′. Otherwise Uν(ν ′) can be written as the union of r−1

X′ (|ΓX′ | \ {µ}) and the basic open
set in r−1

X′ (µ) determined by the tangent vector at ν defined by µ. Again in both cases we
have that Uν(ν ′) is open in NL(X,x).

We define the core of NL(X,x) in a way analogous what to we did for graphs (see the
topological characterization given in Lemma 3.6). In [Ber90, p. 76] the core is referred to
as the skeleton.

Definition 4.5 (The core of NL(X,x)). The core of the normalized non-Archimedean
link NL(X,x) of x in X is the set of all semivaluations in NL(X,x) which do not admit
a proper open neighborhood whose closure is a tree and whose boundary is reduced to a
single semivaluation of NL(X,x). We denote it Core (NL(X,x)).

Observe that by definition Core (NL(X,x)) is empty if and only if NL(X,x) is a tree.
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Chapter 4. Homeomorphism type in the normal surface singularity case

Lemma 4.6. If πX′ : X ′ → X is a good resolution, then Core (NL(X,x)) ⊆ |ΓX′ |.

Proof. Take ν ∈ NL(X,x) and suppose that ν /∈ |ΓX′ |. Then rX′(ν) is different from ν.
Set µ = rX′(ν). In view of Proposition 4.3, r−1

X′ (µ) \ {µ} is an open neighborhood of ν
such that its closure r−1

X′ (µ) is a tree and its boundary is reduced to µ. This means that
ν /∈ Core (NL(X,x)).

However one can be more specific:

Proposition 4.7. Let πX′ : X ′ → X be a good resolution. If NL(X,x) is not a tree, then
Core (NL(X,x)) = |Core (ΓX′) | as subspaces of NL(X,x).

Proof. Observe that under the assumptions of the proposition the topological realization
of ΓX′ is not a tree (see Corollary 4.4).

Take ν ∈ NL(X,x) and suppose first that ν ∈ Core (NL(X,x)). We know by Lemma 4.6
that ν ∈ |ΓX′ |. We proceed by contradiction. Suppose ν /∈ |Core (ΓX′) |. According to
Lemma 3.6 there exists an open neighborhood W ( |ΓX′ | of ν such that its closure Cl(W )
in |ΓX′ | is a tree and its boundary is reduced to a vertex ν ′ of ΓX′ . Since the retraction
rX′ is continuous, U = r−1

X′ (W ) ( NL(X,x) is an open neighborhood of ν. The closure U
of U in NL(X,x) is contained in r−1

X′ (Cl(W )) = r−1
X′ (ν ′)

⊔
U . In fact, U = {ν ′}

⊔
U because

r−1
X′ (ν ′) \ {ν ′} is open in NL(X,x). Imitating the proof of Corollary 4.4, we see that U in
NL(X,x) inherits a natural tree structure from that of Cl(W ) and r−1

X′ (µ) for any µ ∈W .
Hence ν does not belong to the core of NL(X,x) and we get a contradiction. This proves
that Core (NL(X,x)) is contained in |Core (ΓX′) |.

In order to finish the proof it suffices to check that ν /∈ |Core (ΓX′) | whenever ν ∈ |ΓX′ |
and ν /∈ Core (NL(X,x)). Suppose that ν satisfies these two conditions. Take a proper
open subset U of NL(X,x) which contains ν and such that its closure U in NL(X,x) is a
tree and its boundary is reduced to a semivaluation ν ′. Since ν ∈ |ΓX′ |, W = U ∩ |ΓX′ |
is a non-empty open subset of |ΓX′ |. If W = |ΓX′ | then |ΓX′ | ⊆ U and by Corollary 3.2,
ΓX′ would be a tree, contradicting the hypothesis of the lemma. Thus W ( |ΓX′ |. Let
us denote Z the closure of W in |ΓX′ |. The connectedness of |ΓX′ | implies that W is not
closed. We have W ( Z ⊆ U ∩ |ΓX′ | = (U ∩ |ΓX′ |)

⊔
({ν ′} ∩ |ΓX′ |). We deduce from this

that ν ′ must belong to |ΓX′ | and Z = U ∩ |ΓX′ | = W
⊔
{ν ′}. Indeed, if ν ′ /∈ |ΓX′ | then we

would get Z ⊆ U ∩ |ΓX′ | = W , which is a contradiction.

By enlarging U slightly if necessary, we may choose ν ′ to be a vertex of ΓX′ . If Z is a tree
(as subspace of |ΓX′ |) then from Lemma 3.6 it would follow that ν /∈ |Core (ΓX′) | and this
would end the proof. Let us prove that Z is a tree.

Recall that we see |ΓX′ | as a subspace of NL(X,x), so the subspace topology that Z
inherits from |ΓX′ | is the same as the one it inherits from U . Since U is a tree, if Z is
arcwise connected then Corollary 3.2 holds and Z is also a tree. Therefore it suffices to
take p ∈ W arbitrary and show that there exists a path γ in Z from p to ν ′. Suppose
first that p belongs to the interior of an edge |e| of |ΓX′ |. The only boundary point of
Z is ν ′ thus |e| is entirely contained in Z. If the edge e is incident to ν ′ then it is easy
to define such a path γ. Otherwise it suffices to join either ι(e) or ι(ē) to ν ′ by a path
in Z. Hence we can concentrate on the case when p is a vertex of ΓX′ . Suppose that
p ∈ V (ΓX′). Since the boundary of Z is reduced to ν ′,

⋃
ι(e)=p |e| must be contained in Z.

Note that in particular any vertex of ΓX′ adjacent to p is also in Z. If p is adjacent to ν ′
then the edge of ΓX′ joining p to ν ′ induces the desired path. Otherwise the problem is
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reduced to finding a path in Z from a vertex adjacent to p to ν ′. The graph ΓX′ is finite
and connected, so the existence of such a path γ is guaranteed. This shows that Z is tree
and enables us to complete the proof.

One can also show that the fiber r−1
X′ (ν) is in fact an analytic disk when endowed with its

canonical analytic structure (see [Fan14a, Proposition 9.5 (i)]).

Finally, let us now summarize what we have seen in Corollary 4.4 and Proposition 4.7:

Proposition 4.8. Let πX′ : X ′ → X be a good resolution. The space NL(X,x) is a tree
if and only if ΓX′ is a tree. If neither is a tree, we have Core (NL(X,x)) = |Core (ΓX′) |
as subspaces of NL(X,x).

4.2 Proof of Theorem B

The purpose of this section is to give the proof of the main result of this chapter:

Theorem B. Let x ∈ X and y ∈ Y be singular points of normal algebraic surfaces defined
over an algebraically closed field k and ΓX′, ΓY ′ the dual graphs associated to two good
resolutions of (X,x) and (Y, y) respectively. The following statements are equivalent:

1. The spaces RZ(X,x) and RZ(Y, y) are homeomorphic.

2. The spaces NL(X,x) and NL(Y, y) are homeomorphic.

3. The graphs ΓX′ and ΓY ′ are equivalent.

We start by presenting some lemmas needed for the proof. For the rest of this section
we shall assume that X and Y are algebraic surfaces defined over the same algebraically
closed field k. Recall that, given two regular closed points x ∈ X and y ∈ Y , the choice of
an isomorphism between the henselizations of the local rings OX,x and OY,y gives us an
homeomorphism between RZ(X,x) and RZ(Y, y) (see Theorem A’).

Lemma 4.9. Suppose that X and Y are non singular. Let E,D be prime divisors in X
and Y respectively and x ∈ E, y ∈ D two closed points. Let σ : ÕY,y → ÕX,x be an
isomorphism between the henselizations of the local rings which sends the equation of D to
the equation of E. For any valuation ν ∈ RZ(X,x), Rν ⊆ RνE if and only if Rϕ(ν) ⊆ RνD ,
where ϕ : RZ(X,x)→ RZ(Y, y) denotes the homeomorphism induced by σ.

Proof. Let us first consider an arbitrary algebraic variety X defined over k and x ∈ X a
regular closed point. Keeping the notations of Section 2.3, given ν ∈ RZ(X,x), ν and its
extension ν̃ ∈ R̃Z(X,x) have the same value group Φ. Assume that Φ has rank larger than
one. By the description given in Lemma 1.6, the center q in OX,x of the rank one valuation
with which ν is composite coincides with q̃ ∩ OX,x, where q̃ is the center in ÕX,x of the
rank one valuation with which ν̃ is composite. Moreover, q = mX,x if and only if q̃ is the
maximal ideal of ÕX,x. Recall that any prime ideal of height one of a UFD is principal.
In particular when dimOX,x = 2, we deduce that if q is generated by an element f ∈ OX,x
then q̃ is generated by an element f̃ ∈ ÕX,x dividing f in ÕX,x.
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In the hypothesis of the lemma, we have picked local coordinates (u, v) at x and (u′, v′)
at y such that E = {u = 0}, D = {u′ = 0} and σ(u′) = u. Let us take a valuation
ν ∈ RZ(X,x) and suppose that Rν ⊆ RνE holds. Then rk ν = 2 (note that ν 6= νE) and
hence rk ϕ(ν) = 2. We consider µ ∈ RZ(Y ) such that Rϕ(ν) ( Rµ. Let us show that
µ = νD. The converse is proved in an analogous way.
Denote by ϕ̃(ν) the extension of ϕ(ν) to R̃Z(Y, y). Applying the remarks made at the
beginning of the proof to ν, we can write the center in ÕY,y of the rank one valuation with
which ϕ̃(ν) is composite as ã = (σ−1(ũ))ÕY,y, for some ũ ∈ ÕX,x dividing u in ÕX,x. In
addition, ϕ̃(ν) is not centered in the maximal ideal m̃Y,y. Taking again into account the
remarks made at the beginning we see that the center of µ in OY,y is a = ã∩OY,y ( mY,y.
Since σ−1(ũ) divides σ−1(u) in ÕY,y and u′ = σ−1(u), we deduce that u′ belongs to a. It
suffices now to observe that a is a principal ideal and u′ is irreducible in order to conclude
that µ = νD.

We might state the following lemma in terms of nets in RZ(X), but for our purposes it
suffices to deal with sequences.

Lemma 4.10. Suppose that the surface X is non singular. Let E be a prime divisor in
X and (νn)∞n=1 a sequence of valuations in RZ(X). If the center xn of νn in X belongs to
E for any n and xi 6= xj for i 6= j, then (νn)∞n=1 is convergent. In addition, νn → ν in
RZ(X) if and only if ν is in the closure of the divisorial valuation associated to E.

Proof. A sequence (νn)∞n=1 satisfying the hypothesis of the lemma converges to the divi-
sorial valuation νE . Indeed, given any f in the function field of X with νE(f) ≥ 0, for n
large enough, xn is not a pole of f and thus νn(f) ≥ 0. Recall that by Lemma 1.3 this
means that νn → νE . If ν is a valuation of RZ(X) in the closure of νE , ν 6= νE , and U
is an open neighborhood of ν, then νE ∈ U . Since (νn)∞n=1 converges to νE , νn ∈ U for n
large enough. Therefore, νn → ν. We will proceed by contradiction to finish the proof of
the second assertion.
Take (νn)∞n=1 satisfying the assumptions about the sequence of centers and suppose that
νn → ν where ν ∈ RZ(X) is not in the closure of νE . We denote by x the center of ν in
X. Note that the continuity of the map which sends a valuation of RZ(X) to its center
in X implies that xn → x in X. Moreover, x must be a closed point of E. To see this,
observe that either x is a closed point of X or the generic point ξ of a prime divisor D,
D 6= E, of X. Consider the open subset U = X \ E. By hypothesis xn /∈ U for all n ≥ 1.
If x is a closed point of X and x /∈ E then U is an open neighborhood of x in X and
this contradicts xn → x. If x = ξ then xn → y for all y ∈ {ξ} = D. Take a closed point
y ∈ D \ E, then U is an open neighborhood of y in X and this contradicts xn → y.
Since ν does not belong to the closure of νE in RZ(X), it satisfies either rk ν = 1 or
Rν ( Rν1 for some rank one valuation ν1 ∈ RZ(X), ν1 6= νE . Let us now study both
possibilities.
Suppose that ν is a rank one valuation. Pick local coordinates (u, v) at x such that
E = {u = 0} and a rational function f on X regular at x. Since the value group of ν
is archimedean, we can find a positive integer m such that ν(fm/u) ≥ 0. On the other
hand, the hypothesis made on the sequence of centers implies that, for n large enough, f
is a unit of OX,xn and therefore νn(fm/u) = −νn(u) < 0. We see that (νn)∞n=1 does not
converge to ν.
Now suppose that ν is a rank two valuation composite with a rank one valuation ν1
different from νE . Consider a finite composition π : X ′ → X of point blowups above x
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such that the center C of ν1 in X ′ and the strict transform of E are disjoint. The sequence
(π−1(xn))∞n=1 of centers in X ′ does not converge to the center of ν in X ′, because this
center is a closed point of C. Hence we conclude that (νn)∞n=1 does not converge to ν and
this ends the proof.

We are now in position to prove Theorem B.

Proof of 1⇒ 2. Assume that RZ(X,x) and RZ(Y, y) are homeomorphic. By Proposition
1.28, NL(X,x) and NL(Y, y) are also homeomorphic.

Proof of 2⇒ 3. Suppose that NL(X,x) and NL(Y, y) are homeomorphic. If NL(X,x) is a
tree then NL(Y, y) must also be a tree. According to Corollary 4.4, ΓX′ and ΓY ′ are both
trees and thus they are equivalent graphs. Suppose that both normalized non-Archimedean
links are not trees. The definition of the core is purely topological, hence we have a natural
homeomorphism between the cores of NL(X,x) and NL(Y, y) when equipped with their
respective induced topologies. Since neither ΓX′ nor ΓY ′ are trees (again by Corollary 4.4)
we are led to consider their cores. By Proposition 4.7, we conclude that |Core (ΓX′) | and
|Core (ΓY ′) | are homeomorphic. Therefore ΓX′ and ΓY ′ are equivalent graphs.

Proof of 3⇒ 1. Suppose that ΓX′ and ΓY ′ are equivalent graphs. Our goal is to construct
an homeomorphism ϕ from RZ(X,x) to RZ(Y, y). We begin by the case where there exists
an isomorphism of graphs τ : ΓX′ → ΓY ′ . In Step 1 we assume that both exceptional locus
are irreducible, while in Step 2 we treat the case of any two isomorphic graphs. Next we
address the general case.

Step 1. Let us assume first that the exceptional loci of πX′ and πY ′ , denoted E and D
respectively, are both irreducible. Note that E and D have both the same cardinality as
the field k. Indeed, since E is a proper normal curve over k, we have a finite flat surjective
morphism from E to P1

k of degree n = [L : k(t)] where L denotes the function field of
E, and thus an injection E ↪→ P1

k × {1, . . . , n}. The cardinality of E is bounded by the
cardinalities of P1

k and P1
k × {1, . . . , n}, which both equals the cardinality of the field k.

We define a bijective map ϕ : RZ(X,x) → RZ(Y, y) as follows. The divisorial valuation
associated to E is sent to the divisorial valuation associated to D, that is, ϕ(νE) = νD. We
choose a bijection σ between the closed points of E and those of D and, for every closed
point z ∈ E an isomorphism σz : ÕY ′,σ(z) → ÕX′,z between the henselizations of the local
rings which maps the local equation of D to that of E (see Corollary 2.8). A valuation
ν ∈ RZ(X ′, z) is sent by ϕ to its image in RZ(Y ′, σ(z)) by the homeomorphism induced
by σz (see Theorem A’). Let us prove that ϕ is continuous. Observe that by construction,
ϕ−1 will be also continuous.

According to [Fav15, Theorem 3.1], RZ(X,x) is a Fréchet-Urysohn space. Thus the conti-
nuity of ϕ will follow if, given a sequence of valuations (νn)∞n=1 in RZ(X,x) converging to
a valuation ν ∈ RZ(X,x), we can extract a subsequence such that (ϕ(νγ(n)))∞n=1 converges
to ϕ(ν) (see Lemma 1.13). For any positive integer n, we denote by xn the center of νn in
X ′. Note that the sequence (xn)∞n=1 converges to the center x′ of ν in X ′.

First suppose that there exists z ∈ E and n0 ≥ 1 such that xn = z for n ≥ n0. If z is a
closed point of E, then the sequence (xn)∞n=1 has z as unique limit and therefore x′ = z.
We have that (νn)∞n=n0 ⊆ RZ(X ′, z) and ν ∈ RZ(X ′, z). This yields ϕ(νn)→ ϕ(ν) because
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ϕ restricted to RZ(X ′, z) is continuous. Suppose now that z is the generic point of E, that
is, νn = νE for all n ≥ n0. If x′ is also the generic point of E then ν = νE and is clear
that ϕ(νn) → ϕ(ν). Otherwise x′ is a closed point of E and, by Lemma 1.3, we are then
in the situation Rν ( RνE . If this is the case, then Lemma 4.9 implies Rϕ(ν) ( RνD . Since
(ϕ(νn))∞n=1 converges to νD (apply again Lemma 1.3), it also converges to any valuation
in the closure of νD, so ϕ(νn)→ ϕ(ν). This ends the proof in the case where the sequence
of centers (xn)∞n=1 is stationary.
Suppose now that sequence of centers does not stabilize and we can extract a subsequence
(νγ(n))∞n=1 of valuations where all the centers are different. Then (νγ(n))∞n=1 satisfies the
assumptions of Lemma 4.10. Since this sequence also converges to ν, the valuation ν
is in the closure of νE , and by Lemma 4.9, ϕ(ν) is in the closure of νD. Observe that
by construction the centers of (ϕ(ν)γ(n))∞n=1 are also pairwise distinct. Applying again
Lemma 4.10 to the sequence (ϕ(νγ(n)))∞n=1 we conclude that ϕ(νγ(n))→ ϕ(ν).
If the sequence of centers does not stabilize but we are not in the previous situation,
then there exists a finite number of different points z1, . . . , zl of E (l ≥ 2) such that
xn ∈ {z1, . . . , zl} for all n large enough and any point is visited by the sequence infinitely
many times. Since xn → x′, we deduce that l = 2, one point is the generic point of
E and the other one is x′ (which must be a closed point of E). Hence we can extract
a subsequence (νγ(n))∞n=1 of valuations in RZ(X ′, x′) which converges to ν ∈ RZ(X ′, x′).
The continuity of ϕ restricted to RZ(X ′, x′) implies that ϕ(νγ(n))→ ϕ(ν). This ends the
proof of the continuity of ϕ and the proof of Step 1.

Step 2. Suppose now that the exceptional loci of πX′ and πY ′ both have m ≥ 2 irreducible
components and that there exists a graph isomorphism τ : ΓX′ → ΓY ′ . The isomorphism
τ determines a natural enumeration of those irreducible components, say E1, . . . , Em and
D1, . . . , Dm respectively. We fix a bijection σ :

⋃m
i=1Ei →

⋃m
i=1Dj between the closed

points such that σ(Ei ∩ Ej) = Di ∩ Dj for any i, j ∈ {1, . . . ,m}, i 6= j, such that Ei
intersects Ej and σ(Ei) ⊆ Di for 1 ≤ i ≤ m. For any closed point z of the exceptional
locus EX′ =

⋃m
i=1Ei, we choose an isomorphism between the henselizations of the local

rings σz : ÕY ′,σ(z) → ÕX′,z that sends the local equation of every Di passing through σ(z)
to the local equation of the corresponding component Ei in EX′ (see Corollary 2.8). We
define a bijection ϕ from RZ(X,x) to RZ(Y, y) exactly as we did before. That is, by means
of the homeomorphism at the level of valuation spaces determined by each σz and setting
ϕ(νEi) = νDi for 1 ≤ i ≤ m.
In order to check the continuity of ϕ we follow the same idea as in Step 1. Let us take a
sequence of valuations (νn)∞n=1 in RZ(X,x) converging to a valuation ν ∈ RZ(X,x). We
denote by x′ the center of ν in X ′ and by xn the center of νn in X ′ for any n ≥ 1. We
differentiate again three possibilities for the sequence (xn)∞n=1 of centers. In fact, we can
find i ∈ {1, . . . ,m} such that one of the following situations holds:

- There exists z ∈ Ei and n0 ≥ 1 such that xn = z for n ≥ n0.

- We can extract a subsequence of valuations where all the centers in X ′ are different and
belong to Ei.

- We can extract a subsequence of valuations where all the centers in X ′ are equal to x′
which is in addition a closed point of Ei.

It suffices now to repeat the same arguments used in the proof of the case of one prime
divisor in each good resolution to show that there exists a subsequence (νγ(n))∞n=1 such
that (ϕ(νγ(n)))∞n=1 converges to ϕ(ν).
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4.2. Proof of Theorem B

General case. If ΓX′ and ΓY ′ are not isomorphic graphs then by Lemma 3.10 there exist
a graph ∆ and two finite sequences of expansions which transform ΓX′ and ΓY ′ into ∆.
Let us suppose that one of the dual graphs is isomorphic to ∆, for instance ΓX′ . Then
by hypothesis we can get from Y ′ and after a finite number of blowing up of points above
the point y, a good resolution π

Ỹ
: Ỹ → Y which factors through πY ′ and such that Γ

Ỹ
is isomorphic to ΓX′ . We are now in the case treated above. If neither ΓX′ nor ΓY ′ are
isomorphic to ∆, we just need to do the previous construction starting from both good
resolutions.

It is proven in [Kol14, Theorem 2] that any finite simplicial complex of dimension one
can be obtained as the dual graph associated to a good resolution of an isolated surface
singularity. In particular, for any connected finite graph Γ there exists a normal surface
singularity (X,x) and a good resolution X ′ → X such that ΓX′ is isomorphic to Γ. Taking
into account this result, the proof of Theorem B may be simplified arguing by induction
on the length of the modification which transforms ΓX′ into ΓY ′ .
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