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Agraïments

¿Saben aquel que diu? que es un tío que pasa por una ebanistería y ve un cartel que posava: falta oficial
de primera. El payo entra y diu:
–Buenas, venía por el anuncio este.
–¿Usted es oficial de ebanistería? –que li diu l’encarregat.
–De toda la vida. – que le dice el tío.
–Le tendré que hacer una prueba.
Total que l’encarregat le saca un tronco així de gran.
–Sáqueme un San José de aquí.
Y el tío empieza a picar el tronco i al cap de vuit hores el tronco lo ha convertido en un palillo així de
prim. Llega el jefe y diu:
–¿Qué, ha salido el San José ya?
–Todavía no, pero no se preocupe, que si esta aquí dentro este tío sale, oiga, este tío sale!!!

Ara és l’hora, diuen. Doncs sí, ara és el moment d’agrair a tots aquells que d’alguna
manera o una altra heu contribuït en l’el.laboració d’aquesta Tesi. Amb tot, és difícil ser
original i divertit per tal de fer un escrit que, com a totes les tesis, serà el que més cops
es llegirà. Sigui n aquest número el qual com a mínim és ú. Ara bé, observi’s que, ara
mateix, n ha incrementat i per tant n > 1: gràcies! Havent fet la gracieta, jo i la meva
inspiració, mirarem de treure un altre San José d’aquest tronco així de gran.

En primer lloc, les formalitats cal seguir-les. Així doncs, agrair al Departament
de Matemàtiques de la Universitat Autònoma de Barcelona permetre’m el gaudi de
les seves infraestructures i del voyeurisme amb el @totsdpt. També, agrair al Grup de
Sistemes Dinàmics el suport i, alhora, fer-me entretingudes les sobretaules dels dilluns.
Fins aquí ho tenia relativament fàcil.

És evident que em podria reduir al cas anterior i, abusant de tòpics, anar complint
l’expedient. Ara bé, i ara parlant seriosament, els que veniu ara (i els d’abans també, no
us enfadeu!) tenen i han tingut un paper essencial. Com no podia ser d’una altra manera
el primer element cabdal és el meu director: en Lluís Alsedà. Fa poc em deia que dels
directors se n’acostuma aprendre alguna cosa. Bé, puc garantir que amb en Lluís n’he
après un munt de coses. De la vida, de consells, de plans de fugida, d’informàtica, de
concerts, de fotografia i, és clar, de matemàtiques. Gràcies per tot Lluís.

Tampoc em puc descuidar d’una part crucial del Departament: la secretaria. Gràcies
a tots i a totes (visca el llenguatge políticament correcte però no ecològic). Ara bé, espe-
cialment a la M. José i l’Ignasi. Sense ells, amb la seva gran feina de formiguetes com
ara fotocòpies estranyes, política, aire(s) acondicionat(s) que no van, lluita de classes,
bitllets, ordinadors,... Per mi, fer aquesta Tesi sense ells hagués resultat encara més
complicat.

Parlant de la lluita de classes, resulta evident que en qualsevol escrit d’agraïment
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no pot faltar una salutació a tots els companys de despatx haguts i per haver: salut
companys! Amb tot, una abraçada a Paca La Coneja i un fortíssim Ogayrop! pels
Barracks!!! ja que sense vosaltres el grup subversiu espirituós d’ascendència euskaldun
no hagués estat possible. Precisament parlant d’impossibles, hi ha qui diu que m’és
impossible expressar-me sobre certs assumptes. Potser té raó. Però aquí em nego a fer
servir el recurs de la llagrimeta fàcil. Així doncs, després d’una llarga temporada on la
vida ha tingut una entropia massa alta: pare, mare, Jordi, germans (Pau, Júlia i Berta),
iaia, àvia, tiets i cosines (amb les respectives parelles i descendència) tots hi teniu, potser
sense saber-ho, algun tipus de participació important en la manufacturació d’aquest San
José.

I és que en general, i com diria aquella, tu, tot, tothom hi ha estat benvingut.
L’handbol per disfrutar, de manera anònima, jugar davant de moltíssima gent, la
muntanya per ajudar-me a gestionar els límits, la política per lluitar per un entorn
més just i, com que el tot és molt llarg, més val que ho deixi aquí. Si mirem el tothom,
juntament amb el totdon, també és d’allò més vast. Així que hi posaré desitjos amb al-
guns dels elements representatius com ara anar collir ceps amb en Carles, parlar hores
i hores d’handbol amb en Parra, apostes a la porteria amb en Cowboy, fer aquell Aneto
pendent amb l’Aurora, l’expedició Ebre – Monegros amb en Josep, descobrir l’autèntica
Eivissa amb la Neus, anar a aquell concert dels Guardian (abans de les onze) amb en
Joan, aprendre a donar abraçades amb la Nere o regraciar na Maria per deixar-me en
Bosa de tant en quant. I en Bosa. Agraït per tot, Bosa, algun dia de Salàs en farem Ítaca.

Ei, que et pensaves que m’havia oblidat de tu... doncs no! Simplement gràcies per
haver caigut als braços de l’efecte papallona una nit indeterminada de color negre.
Seguirem fent, somrients i tossudament alçats, la revolta.

La Garriga, Setembre de .



Introduction

The main purpose of this Thesis is to give an interface between dynamical systems and
analysis topics by means of the development of a software. Hence, the framework

of this Thesis is Numerical Analysis. In particular, such developed interface focuses into
obtain an analytical approximation of some invariant objects. From such approximation,
and due to the difficulty to make calculations in an explicit way, we want to try to assess
some properties of such invariant object. This is, roughly speaking, the main topic of the
present dissertation.

In the following we will develop, in a not in-depth way, the motivation and the
underlying problems. To this end, let us introduce the main subject of our study: a
family of pinched skew products which are defined on the Cartesian product of S1 and
R+ = [0,∞). They are of the type

()
(
θn+1
xn+1

)
= Fσ,ε(θn, xn) =

(
Rω(θn)

Fσ,ε(θn, xn)

)
,

where Rω(θ) = θ + ω, ω ∈ R\Q and σ, ε ∈ R. Precisely, in these classes of dynamical
systems invariant sets with a strange geometry appear. From now on, we will call the
invariant ϕ, which depends on σ and ε by construction. Now, let us motivate our study.

Obtaining analytical approximation of this “weird" ϕ the use of wavelets instead of
“Fourier approach” naturally arises. Indeed, the Fourier techniques, which are widely
studied and used, tries to get expansions as:

ϕ ∼ a0 +
∞∑
n=1

(an cos(nθ) + bn sin(nθ)) ,

which are not convenient for our case. Therefore, the aim of this Thesis is to describe
an efficient algorithm for the semi-analytical computation of the invariant object using
wavelets. However, we want to mention that the methodology developed strongly
depends on the Lyapunov exponent on ϕ. Recall that the Lyapunov exponent must be
understood as the mean growth rate of the distance between neighboring initial point
trajectories. The approximation is based on the computation of〈

ϕ,ψPER
−j,n

〉
=
∫

supp(ψPER
−j,n)

ϕ(θ)ψPER
−j,n(θ) dθ

since we want to approximate a function from L 2(S1) by a wavelet expansion of the
type

ϕ ∼ a0 +
∞∑
j=0

2j−1∑
n=0

〈
ϕ,ψPER

−j,n

〉
ψPER
−j,n.
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Observe that the unknown is, precisely, 〈ϕ,ψ−j,n〉 because

ψPER
j,n (x) =

∑
`∈Z

ψj,n(x+ `) = 2−j/2
∑
`∈Z

ψ

(
(x+ `)− 2jn

2j

)

and ψ(x) is a given wavelet. Namely, ψ(x) is a function such that its dyadic translations
and its dilations by powers of two form an orthonormal basis of L 2(R).

The aim for this exercise is twofold. From one side, to study bifurcations and, per-
haps, to give information of the dynamics of the object. On the other side, to estimate
the regularity of ϕ. Notice that the study of this regularity, depending on parameters,
provides another point of view to the “fractalization routes” as it is described, for in-
stance, in [Nis, JT]. Therefore we need to calculate as well as possible the coeffi-
cients

〈
ϕ,ψPER

−j,n

〉
. We will compact the notation using DPER as the vector, which can

be infinite dimensional, of wavelet coefficients.
Finally, we want to make a comment concerning to the wavelet coefficients DPER

and the regularity pf ϕ. Leaving aside the classification of ϕ in terms of its regularity,
we have used the regularity to decide, in some sense, the quality of the “numerically
obtained” DPER. Indeed, since, by construction, DPER can always restore ϕ then, how
we can control if they are good enough? The answer is the regularity in those cases
where the regularity is known.

An overview

In order to calculate the desired coefficients, let us make one step backwards. As it is
described in Chapter  and  one of the main ingredients, besides of how to compute
ψPER
−j,n(θ), is the solution of a (non)-linear system of equations. Indeed, the Equation ()

can be understood as

Fσ,ε : S1 × R −−−−−−−→ S1 × R
(θ, x) 7−→ (Rω(θ), Fσ,ε(θ, x)),

and the invariant object, ϕ, is a solution of the invariance equation

Inv(θ) = Fσ,ε(θ, ϕ(θ))− ϕ(Rω(θ)) = 0.

An underlying subject related to the above equation is the Transfer OperatorM. Let us
skip such concepts, which will be clearly explained in Chapter , and focus on something
masked behind the invariance equation. Indeed, we turn our attention to

Fσ,ε(θ, ϕ(θ))−ϕ(Rω(θ)) = (Fσ,ε ◦ϕ)(θ)− (ϕ ◦Rω)(θ) = 0⇔ (Fσ,ε ◦ϕ)(θ) = (ϕ ◦Rω)(θ)

Working on this point of view, the invariance equation becomes similar to a cohomo-
logical equation. Precisely, the nature of the solutions of the cohomological equation,
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in terms of regularity, is widely studied in many cases. Moreover, it arises as a good
starting point to understand the reducibility methods in a general context and systems
depicted in [FR, Jor, HdlLa, HdlLb, HdlL]. These are used to undertake actions
avoiding the problematic regions, which depend on σ and ε.

We point out that the methods used along the memoir are slightly different from
such techniques. Nevertheless, due to the “simplicity” of the environment space, S1×R,
the Lyapunov exponent is the link between the notion of reducibility and our point of
view, as it can be seen in [JT].

Moving to the regularity ideas, remark that the idea of the Transfer Operator de-
scribed along this Thesis will have two meanings. As a first instance, the Transfer Op-
erator must be understood as the projection on the second component of the system
given by Equation () (see [AM, Kel]):

T(ϕ)(θ) = Fσ,ε(θ, ϕ(Rω(θ)).

On the other side, when one uses the reducibility language to the Transfer Operator,
the Invariance equation becomes an operator:

T(ϕ)(θ) = ϕ(Rω(θ))− Fσ,ε(θ, ϕ(θ)).

Notice that, both are essentially the same and they are used to derive regularity prop-
erties (see e.g [dlLO, HdlLa, HdlLb, HdlL, Kel]). The main difficulty in carrying
out the regularity assessment with these techniques, depending on the parameters σ
and ε, is to plug them into wavelets theory. This is, precisely, one of the main purposes
of the developed software.

Zoom in

In Chapter  we describe the vector DPER using the invariance equation and the Transfer
Operator, we find. To do so, we deal with the Newton’s method. In such situation, we
solve the following (non)-linear system

(
Ψ̃PER
N −∆NΨPER

N

)
(Θ)DPER

N = −Inv(Θ), Θ ∈ S1
N︷ ︸︸ ︷

× · · ·×S1

for a certain N -variable functions ∆ = ∂Fσ,ε(θ,ϕ(θ))
∂x and ΨPER, related to Fσ,ε and

the wavelets ψPER respectively. Hence, in order to find the solution, the Newton-
Kantorovich hypothesis must be verified. Having said that, we warn that we will not go
further in this topic because we have applied the idea of if Newton’s method converges,
converges.

However, we can go a little bit in-depth in the above equation if we restrict ourselves
to the Haar’s case. Indeed, see Chapter  for an exhaustive explanation, our equation
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becomes (
Ψ̃PER
N −∆NΨPER

N

)
(Θ)DPER

N =
(
Id−∆NP

>
)

(Θ)DPER
N = −Inv(Θ),

using a permutation matrix given by

Pi,j =

1 if (j + b2jωc) mod N,

0 otherwise.

The idea behind this change of variables is the preconditioning techniques for linear
systems. Observe that P> is a matrix whose image is the same point θ translated a
certain quantity ω̃. Moreover, the permutation matrix P>, when j tends to∞, becomes
the rotation Rω(θ). Indeed, for all x ∈ R it follows that x − 1 ≤ bxc ≤ x. Using such

inequality it can be shown that lim
j→∞

b2jωc
2j = ω.That is, P>∞ = Rω(θ). Namely, we have

translated the Transfer Operator to another one more understandable. Indeed, we can
find the vector DPER iteratively solving

() Tσ,ε(DPER
k ) = (Id−∆σ,ε ◦Rω)(Θ)DPER

k = −Inv(Θ),

with a given initial seed DPER
0 . Hence, the “contraction – invertible properties” of Tσ,ε

will decide the convergence towards DPER. Taking Tσ,ε as an (infinite) matrix will help
us. Actually, Tσ,ε as a matrix will be a contractive matrix if its spectral radius, ς(Tσ,ε),
is less than one. Such condition is equivalent to demand ς(∆σ,ε ◦ Rω) < 1, and this is
equivalent to have the Lyapunov exponent of the system given by Equation () less than
zero (see Chapter  for more details). In view of that, it arises three “natural” situations:

(a) If the Lyapunov exponent is less than zero, then the operator is invertible and
Equation () converges to DPER hopefully.

(b) If the Lyapunov exponent is close to zero, then the operator nearby not invertible
and we have kernel. Hence, other techniques must be applied.

(c) If the Lyapunov exponent is positive, then system given by Equation () has a
repellor and we do not consider such case.

In other words, what will control in which of the above cases we are will be the
parameters σ and ε. Notice that it is linked to the question whether those parameters,
specially ε, “control” the regularity properties of ϕ or the regularity is inherent to ϕ.

Zoom out

From a general point of view, wavelet coefficients determine the regularity of a function
in the same way as in the Fourier world. Hence, in our case, DPER will decide if ϕ is on a
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certain regularity space. Let us denote this space by Bs
∞,∞(S1), where s ∈ R. Roughly

speaking, Bs
∞,∞(S1) are the generalization of Hölder spaces (under certain constraints)

for all real value of s (see e.g [Tri, Tri, Tri]). This range (even negative!) seems
a bit weird; however there are systems where ϕ it is not a graph of a (usual) function,
as it can be guessed in Figure . On the contrary, an invariant object with a strange
geometry at a first glance may become a nice object after some manipulations (see
e.g [AM, Jor]). Thus, all range of s must be allowed and other regularity spaces
may be considered.

Figure : On the left picture it is shown an attractor with area [AM]. On the right
picture it is displayed the Nishikawa-Kaneko model with σ = 3.0 and ε = 0.18 [Nis].

However, we will have two important and related drawbacks. The first one is linked
to the three “natural” situations described at the end of the last paragraph. For certain
values of σ and ε the Lyapunov exponent is relatively close to zero. In these cases,
the vector DPER is very hard to calculate, in CPU time consuming. We use standard
continuation techniques on the way of solving such problem. The other disadvantage is
that “a priori” Equation () does not knows, in some sense, if DPER

k will have some nice
vanishing property. That is, using this methodology is mandatory to converge towards
DPER to be able to classify ϕ in one of these spaces Bs

∞,∞(S1).

Organization and contributions of this Thesis

This dissertation is divided into two parts. The first one (Chapters , and ) is devoted
to recall and introduce all the theory and the methodology which is used into the
second part (Chapters ,  and ). In Chapter  a self-contained and general introduction
to wavelets it is done. However, since we will use Daubechies wavelets with p ≥ 1
vanishing moments, we will focus in such wavelets (in R or S1). Actually, along this
thesis we have performed the translation from the R-Daubechies wavelets language
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to S1. Following the generic notation, in the literature we have call it ψPER. Also, in
this first Chapter a crash course on the notion of regularity, in terms of the functional
spaces Bs

2,2(S1) and Bs
∞,∞(S1), and the relationship between them and the wavelets

coefficients,
〈
f, ψPER

−j,n

〉
, is done.

Precisely, the main topic of Chapter  is the calculation of the wavelets coefficients
using two different techniques; namely, Fast Wavelet Transform and the solution of
(non)-linear systems of equations. In a more concrete terms, we have performed an
algorithm to calculate, in an efficient and fast way, ψPER on a (really big!) mesh of points
of S1. The method is based on the Daubechies–Lagarias algorithm (see [DL, DL]).
Such computation, which is a key point of this disquisition, will be the main part of the
Chapter .

Finally, the last chapters of this first part are devoted to give a short compilation of
the theoretical framework where this dissertation is dealt. In Section . it is shown the
machinery and also we try to characterize the mechanisms involved in the geometric
properties of a particular family of quasi periodically forced skew products on the cylin-
der. As a matter of fact, combining them with ideas from [AM, Har] it is possible to
extend the results of [Sta, Sta] to a more weird class of functions. Also we derive
“theoretically” the regularity, in terms of Bs

∞,∞(S1), for ϕ of the Keller-GOPY model.
Despite of this two remarkable facts, such effort is to justify the use of the software in
other cases of SNA’s, as those ones in [AM, Nis], among the study of them in terms
of regularity.

Moving to the second part of this Thesis, two different exercises are done. The first
one, following [dlLP], is the development of an algorithm to estimate regularities, in
terms of Bs

∞,∞(S1), for s ∈ R. Such algorithm is the main goal of Chapter , and it is
used in many situations, but not only with the Fast Wavelet Transform. Indeed, in Chap-
ter  we perform the same kind of regularity assessment with a different methodology
to obtain

〈
ϕ,ψPER

−j,n

〉
.

Certainly, in the last Chapter(s), we have focused to solve the Invariance Equation
for several situations and dynamical systems. The solvers, which are iterative, are the
main contribution of such Chapter(s). Due to the good properties of the Daubechies
wavelet family, such as compact support or vanishing moments among others (see
e.g [Dau, HW, Tri]), we have derived two iterative strategies to find

〈
ϕ,ψPER

−j,n

〉
.

Both of them are based in the same argument but, due to the simplicity of the Haar
wavelet (p = 1), the first strategy give us a close to explicit method calculate the
Haar wavelet coefficients. As mentioned, beyond the “numerical approximation of the
invariant objects”, we have estimated the regularity, in terms ofBs

2,2(S1) andBs
∞,∞(S1),

of a certain models of skew products using the Haar wavelet. Both goals have been
repeated with other Daubechies wavelet. Nevertheless, we would like to remark that,
when p > 1, the core of the iterative method is the aforementioned massive evaluation
of ψPER and, also, the left conditioned discretization of the Transfer Operator. As an
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extra point, a numerical exploration of the Lyapunov exponent of a particular instance
of the kind of systems in [AM] it is done.

Loose ends of this Thesis

It is worth pointing out that in each of the chapters there are some open problems and
questions which we summarize at the end as a (possible) future work. Concretely, the
above strategies open the door too study the operator in terms of Newton-Kantorovich
theorem. This would guarantee the stability of the iterative method. In this way, there
are some open questions such as which is the limit operator, when one uses a precon-
dition technique, and how the convergence of the iterative method is affected by the
Lyapunov exponent. Of course, for a well suited norm, Newton-Kantorovich theorem
must may be used to detect, “a priori”, the lack of regularity of ϕ. Moving to the con-
tinuation methodology, since we have convergence, it seems useful to find, in a more
general context, such strips of convergence towards the desired case of σ and ε using
the operator framework.

Also, the developed software it might be updated to work on high dimensions and
some qualitative–quantitative properties of ϕ. For example, a modification of it can
produce rigorous numerical estimation of ϕ’s traits, such as the Hausdorff Dimension
or its length. Moreover, theoretical bounds on the aforesaid traits could be done using
the Haar wavelet because of its simplicity. Nonetheless, as it is described in Chapter 
and , the bug of the precision must be completely understood.
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Chapter 

An Introduction to Wavelets

Consider a square integrable function, f , of some Hilbert space H . Suppose that a
“sufficiently good” approximation is needed. Such an approximation must be given

in terms of an orthonormal basis of the aforementioned Hilbert space,{ei(x)}i∈Λ (being
Λ ⊆ Z a set of indexes). The problem is solved by determining some coefficients, di ∈ R.
Such quantities, are uniquely determined by the inner product inherited from the space
H . That is,

f ∼
∑
i∈Λ
〈f, ei〉 ei(x) =

∑
i∈Λ

diei(x).

This chapter is devoted to recall basic results and fix notation that we will use in the
following chapters. Also we will introduce an orthonormal basis of some useful Hilbert
spaces: the wavelets. Wavelets are functions that verifies certain requirements and they
are well suited to face various problems.

In the forthcoming, we will be focused on dynamical systems such that they ex-
hibit (or they have) some kind of invariance (or invariant object). In the literature there
are several techniques [HdlLa, HdlLb, HdlL, Jor] of how one can deal with the
following problem

“Given a dynamical system exhibiting periodic or quasi–periodic behavior, obtain a
sufficiently good approximation of the invariant object of the dynamical system”.

But since invariant objects can exhibit a complicated shape, obviously the shape will
depend on the system considered, then finite wavelet expansions can be used. Such
basis can capture different frequencies at different regions of the space allowing us to
perform better strategies to solve the problem. In other words, wavelets seems well
suited to approximate data with strange geometry.

. Wavelets: a shortcut

Our aim is to approximate a certain class of functions, which in a natural way they live
in S1, by means of wavelets. Recall that a standard approach used in the literature
to compute and work with invariant objects of systems exhibiting periodic or quasi-
periodic behavior is to use finite Fourier approximations (trigonometric polynomials),
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namely functions of the form

ϕ(θ) ∼ a0 +
N∑
n=1

(an cos(nθ) + bn sin(nθ)) .

But finite wavelet expansions could be used instead of the above Equation, namely:

ϕ(θ) ∼
N∑
j=0

Nj∑
n=0
〈f, ψj,n〉ψj,n(θ),

where ψj,n(θ) is obtained by translation and dilation of a mother wavelet ψ(x). To
this end, let us start by introducing an orthonormal basis of L 2(R). Firstly,recall that
a Hilbert space H is a real (or complex) inner product space that is also a complete
metric space with respect to the distance function induced by the inner product. Also,
remember that a complete metric space is defined by forcing that every Cauchy se-
quence in such space converges in the space. For us, the space H will be either L 2(R)
or L 2(S1) and hence one can define

〈f, g〉 =
∫
H
f(x)g(x) dη

as the inner product and dη will be the usual Lebesgue measure. Also

‖f‖2 =
(∫

H
|f(x)|2 dη

)1/2

is a norm in L 2(H). Moreover, if we restrict ‖ ‖2 over a closed subspace F of L 2(H)
then F is a Hilbert space also. After that, we can start the (historical) construction of the
wavelets.

.. The historical construction

There are several ways to introduce wavelets and wavelet bases. For our purposes
we will present and construct them by means of the Multi-resolution Analysis. From
such point of view will appear, in a natural way, a crucial sequence of numbers for our
calculations: the scaling filter. We refer the reader to [HW, Mal] for more detailed
and comprehensive expositions, but let us mention that for “historical” reasons we will
start out introduction to the wavelet stuff in the R case. After that, we will be able to
make the translation to the S1 in a more feasible way. With this comments in mind,
we are ready to introduce the notion of Multi-resolution Analysis.

Definition ... A sequence of closed subspaces {Vj}j∈Z of L 2(R) is aMulti-resolution
Analysis (or simply a MRA) if it satisfies the following six properties:
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(a) {0} ⊂ · · · ⊂ V1 ⊂ V0 ⊂ V−1 ⊂ · · · ⊂ L 2(R).

(b) {0} =
⋂
j∈Z
Vj .

(c) clos
( ⋃
j∈Z
Vj

)
= L 2(R).

(d) There exists a function φ whose integer translates, φ(x − n), form an orthonormal
basis of V0. Such function is called the scaling function.

(e) For each j ∈ Z it follows that f(x) ∈ Vj if and only if the dyadic translations verifies
that f(x− 2jn) ∈ Vj for each n ∈ Z .

(f) For each j ∈ Z it follows that f(x) ∈ Vj if and only if the dilations verifies that
f(x/2) ∈ Vj+1.

If we fix an MRA, we know that Vj ⊂ Vj−1, for every j, and that Vj has an orthonor-
mal basis {φj,n}n∈Z, for every j, where

φj,n(x) = 2−j/2φ
(
x− 2jn

2j

)
.

Now define the subspace Wj as the orthogonal complement of Vj on Vj−1. That is,

(.) Vj−1 =Wj ⊕ Vj .

Therefore, by the inclusion property of the spaces Vj we have

(.) L 2(R) = clos

⊕
j∈Z
Wj

 = clos

V0 ⊕
0⊕

j=−∞
Wj

 .
Now, define the mother wavelet ψ ∈ W0 to be the function whose Fourier transform is

(.) ψ̂(ξ) = 1√
2
e−iξĥ∗(ξ + π)φ̂(ξ)

where ĥ∗(ξ) is the complex conjugate of

ĥ(ξ) =
∑
n∈Z

h[n]e−inξ

and under mild conditions it is verified that φ̂(0) = 1 and, by definition, one can take
h[n] =

〈
1√
2φ
(
x
2
)
, φ(x− n)

〉
. For completeness let us recall that the Fourier Transform

of a function f is given, as usual, by

f̂(ξ) =
∫
R
f(x)e−iξx dx.
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Definition ... Let {Vj}j∈Z be a Multi-resolution Analysis and let φ(x) be its scaling
function. Define

(.) h[n] :=
〈 1√

2
φ

(
x

2

)
, φ(x− n)

〉
The sequence h[n] is called the scaling filter (or the low pass filter ) of the Multi-
resolution Analysis. We define the support of h[n], denoted by supp(h), as the minimum
subset I of Z such that I = {`, `+ 1, . . . , `′} is a set of consecutive integers and

h[n] = 0 for every n ∈ Z\I.

Remark ... From the above definitions, it is easy to see the following helpful equa-
tions

(.)
1√
2
φ

(
x

2

)
=
∑
n∈Z

h[n]φ(x− n) and
1√
2
ψ

(
x

2

)
=
∑
n∈Z

g[n]φ(x− n).

For abbreviate, and when it is not possible to induce a confusion, we will refer to
the sequence h[n] simply by filter instead of scaling filter (or low pass filter). Such list
of coefficients has two important properties which will be helpful in the forthcoming.

Proposition ... Let h[n] be a filter of theMulti-resolution Analysis and φ(x) its scaling
function associated. Then it is verified that

(a) The normalization property ∑
n∈Z

h[n] =
√

2.

(b) The double shift orthogonality property∑
n∈Z

h[n]h[n− 2l] = δ0,l for any l ∈ Z,

where δ0,l stands for the Dirac’s delta.

(c) It is verified that ∑
n∈Z

h[2n] =
∑
n∈Z

h[2n+ 1].

Proof. In order to prove the first property, just consider

1√
2
φ

(
x

2

)
=
∑
n∈Z

h[n]φ(x− n).
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Then, using a change of variables,∫
R
φ(x) dx = 1

2

∫
R
φ

(
t

2

)
dt =

√
2
∫
R

∑
n∈Z

h[n]φ(x− n) =
√

2
∑
n∈Z

h[n]
∫
R
φ(x) dx.

and the result follows since φ̂(0) = 1.
For the second item, recall that the function φ(x) verifies that φ(x − n) form an or-
thonormal basis and

φ(x− l) =
√

2
∑
n∈Z

h[n]φ(2(x− l)−m).

Therefore,

δ0,l = 〈φ(x), φ(x− l)〉

= 2
∑
n∈Z

h[n]

2
∑
m∈Z

h[m]
∫
R
φ(2x− n)φ(2(x− l)−m)


=

∑
n∈Z

∑
m∈Z

h[n]h[m]δn,2l+m

=
∑
n∈Z

h[n]h[n− 2l]

as we wanted to show.
Finally, for the last point we must say that for all ξ ∈ R then, see [Mal, Theorem .],

|ĥ(ξ)|2 + |ĥ(ξ + π)| = 2

and is a 2π-periodic function. Therefore, ĥ(π) must be zero since ĥ(2π) = ĥ(0) =
√

2.
In other words, we have

0 = ĥ(π) =
∑
n∈Z

h[n]e−inπ

The proof follows taking into account that einπ = cos(nπ) + i sin(nπ) = (−1)n.

Let us make another comment concerning on the filter. Observe that, since h[n] is
defined in terms of an equation which involves two functions then either the support
of h[n] is infinite, that is supp(h) = Z, or the support of h[n]’s is finite. We will focus on
a family of h[n] with finite support: Daubechies wavelets.

The following theorem (see [Mal, Theorem .]) allows to obtain the wavelet
basis from the scaling function and hence we will see that ψ(x) is completely charac-
terized by h:
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Theorem .. (Mallat, Meyer). The mother wavelet given by Equation (.) verifies
that, for each integer j, the family {ψj,n}n∈Z is an orthonormal basis of Wj , where:

ψj,n(x) = 2−j/2ψ
(
x− 2jn

2j

)
.

As a consequence, the family {ψj,n}(j,n)∈Z×Z is an orthonormal basis of L 2(R).

Thus, taking into account (.) and the above theorem, every map f ∈ L 2(R) can
be written as∑

j∈Z

∑
n∈Z
〈f, ψj,n〉ψj,n(x) =

∑
n∈Z
〈f, φ0,n〉φ0,n(x) +

∞∑
j=0

∑
n∈Z
〈f, ψ−j,n〉ψ−j,n(x),

which is the translation of the Fourier language to the wavelets one. We want to em-
phasize that there are many families of wavelets and each one of them it is well suited
for a kind of problems (see [Mal]). We will be focused on Daubechies wavelets which
are appropriated for our purposes in the forthcoming. Also, we will recall and prove
some properties concerning to the Haar wavelet. Such wavelet, due to its simplicity, can
be considered as a particular instance of the Daubechies wavelet family (among others).
Of course, such kind of orthonormal basis appears before all the wavelet theory was
introduced. However, it fulfills the requisites to be a wavelet.

.. Daubechies wavelets

From Theorem .., it is clear that the discrete filter h[n] characterizes the wavelet ψ(x).
As we have said before, we will work with a family of wavelets called Daubechies
wavelets and consequently we must explain how h[n] appears for such family of
wavelets. The Daubechies family appears by combining, at least, two tools: the vanish-
ing moments and the support of the wavelet. Let us start by defining the first one.

Definition ... Let ψ(x) be a wavelet from a Multi-resolution Analysis {Vj}j∈Z. We
say that ψ(x) has p-Vanishing Moments if the integer p is the minimum number such
that ∫

R
xkψ(x) dx = 0 for 0 ≤ k < p.

Notice that Definition .. means that ψ(x) is orthogonal to any polynomial of de-
gree p − 1 i.e the integral is zero. Hence, if a function is locally as a polynomial then,
if one uses a wavelet with sufficiently enough vanishing moments, the coefficients
〈f, ψj,n〉 will become, in absolute value, closer to zero. Therefore, we have an indicator
for the localization of possible function singularities once, given threshold, big wavelet
coefficients have been located.
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Let us introduce the other tool involved in the creation of Daubechies wavelets: the
size support of ψ(x). It plays an important role in order to be able to make finite (and
exact) calculations. Let us give its definition.

Definition ... Let ψ(x) be a wavelet from a Multi-resolution Analysis {Vj}j∈Z. We
define the support of ψ(x), and we will denote it by supp(ψ(x)), as the minimum
interval of the real line such that ψ(x) = 0 for every x which does not belongs to the
support of ψ(x). The size of supp(ψ(x)) is defined as the diameter of such interval.

Before continuing the explanation we should point why we to keep in mind the size
support of a wavelet ψ(x) besides the finite calculations. To this end, let us consider an
isolated singularity on x∗ of a function f and assume that x∗ belongs to the support of
some ψj,n(x). Then the coefficient 〈f, ψj,n〉 may be big or may be not. But in any case,
there exists some translations of ψj,n(x) whose support contains such point x∗ which
is probably problematic and, in terms of finite numerical calculations, it can be a error
source. Consequently, it is interesting to minimize, as much as possible, the size support
of the wavelet in order to avoid this possibly problematic overlapping.

Proposition .. (Proposition ., [Mal]). Let {Vj}j∈Z be an Multi-resolution Analysis
which has φ(x) as its scaling function, h[n] as its associated discrete filter and ψ(x) its
associated wavelet. In such conditions, φ(x) has compact support if and only if h[n]
has compact support. Moreover, their supports are equal. Let [C1, C2] be the support
of φ(x), then

[
C1−C2+1

2 , C2−C1+1
2

]
is the support of ψ(x).

Now we can state a theorem due to I. Daubechies that relate the, a priori indepen-
dent, notions of vanishing moments and the size support of a wavelet ψ(x).

Theorem .. (Daubechies, Theorem ., [Mal]). Let h be a real Conjugate Mirror
filter from a Multi-resolution Analysis {Vj}j∈Z such that ĥ(ω), has ω = π a root with
multiplicity p. Then its associated wavelet has p-vanishing moments and its support
size is larger than or equal 2p − 1. Moreover such a wavelet has a minimum size
support equal to [−p+ 1, p].

Remark ... The proof of the above Theorem it is not done here and it can be found at
[Mal] for example, but what it is important to notice is that the proof is constructive
and from it, the coefficients h[n] can be, at least numerically, computed but it is impor-
tant to remark that other methods can be used (using the Pascal’s triangle). Wavelets
constructed following such proof are a family of compactly supported orthonormal
wavelets with the minimum size of support and they are obtained from a constraint
conditions over the h[n]. In order to minimize the approximation error, these coeffi-
cients can be also constructed by means of parameterizations, as we will see in the
Remark ...
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Hence, by the above remark, we are allowed to define the Daubechies wavelets
family as follows.

Definition ... Let ψ(x) be a wavelet constructed under the hypothesis of Theorem
... Such a wavelet is called Daubechies wavelet with p vanishing moments.

As it has been mentioned before, wavelets are completely determined by h[n] and,
for example, if one wants to use one of the Daubechies wavelets family they are given
by list of coefficients, h[n], instead of a explicit formulation for ψ(x) (see [Mal, Table
.]). This last comment will be very important for us since besides the case p = 1
which is the Haar wavelet which recall that it is given by

ψ(x) =


1 0 ≤ x < 1/2,
−1 1/2 ≤ x < 1,

0 otherwise,

wavelets do not have a closed expression, in contrast to the trigonometric polynomials,
besides this trivial, but useful, equality

ψ(x) =

ψ(x) 1− p ≤ x < p,

0 otherwise.

Therefore, it is difficult to evaluate a wavelet at a given point x∗. The following chapter,
in Section ., there is a method devoted to explain a way of use of h[n] to get values
of ψ(x∗). Before continuing the explanation we want to remark one problem related
with the accuracy of the values h[n].

Remark .. ([RS, Reg]). Let us consider the case of Daubechies wavelet with four
filter coefficients, being all them real. Using the above techniques one has the following
system of equations

h[0] + h[1] + h[2] + h[3] = 2
h[0]− h[1] + h[2]− h[3] = 0
h[1] + 2 · h[2] + 3 · h[3] = ι1
h[0]h[2] + h[1]h[3] = 0

which corresponds to the normalization, first sum rule, one discrete moment ι1 and
the double shift orthogonality respectively. Hence, one can consider the solution of the
linear part in terms of h[0] and using it in the non-linear part

−2h[0]2 + (5− ι1)h[0]− 1
4 ι

2
1 + 2ι1 −

15
4 = 0

we get

h[0] =
45− ι1 ∓

√
−ι21 + 6ι− 5
4 .
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Taking into account that we are looking for a real h[n] for n = 0, . . . , 3 this implies that
ι1 ∈ [1, 5]. Now, in order to have the parameter values symmetrically to zero, we can
apply the transformation ι1 = α+ 3 and rewrite the solutions with this transformation

h[0] = 1
2 −

1
4α−

1
4w

h[1] = 1
2 −

1
4α+ 1

4w

h[2] = 1
2 + 1

4α+ 1
4w

h[3] = 1
2 + 1

4α−
1
4w

with w =
√

4− α2 and v = ι1 − 3. Now, Daubechies wavelet has two vanishing mo-
ments, then using the sum rule

2h[0]− h[1] + h[3] = 0

and solving, one has that α = 3±
√

3. This values of α yields to the well known  tap
Daubechies filter if α = 3−

√
3:

h[0] = 1 +
√

3
4 h[1] = 3 +

√
3

4 ,

h[2] = 3−
√

3
4 h[3] = 1−

√
3

4 .

One may think, what a rude way to present the filter (instead of the usual way). What
it is done here is a kind of “parametrization”, again instead of the “explicit” root of a
polynomial, which can be useful in order to minimize the error and also allows the use
of a symbolic calculator. This way, it is not usual but it can be useful for example when
one tries to make Gaussian quadratures.

Now, it only remains the translation from R to S1 of the wavelets setting.

.. Wavelets on the unit circle

As we have said at the beginning of the present chapter our natural scenario will be S1.
And so then, we need to translate some technical results from the previous section to
the unit circle setting. To this end, recall that L 2(S1) can be understood as the space
of the 1-periodic functions defined on R such that

‖f‖L 2([0,1]) =
∫ 1

0
f(x) dx <∞.

There are several ways to work with wavelets on S1 but all of them have in common
that whichever it is the point of view, one has that the space generated by the translation
of the j-generating wavelet is finite dimensional. This is contrary to the corresponding
Theorem ... Let us try to justify such comment.
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In Section . from [HW] wavelets and MRA’s are constructed to be an orthonormal
basis of L 2(S1) using the “periodization” of those ones in L 2(R). Let us define them,
in the same way:

(.) ψPER
j,n (x) =

∑
`∈Z

ψj,n(x+ `) = 2−j/2
∑
`∈Z

ψ

(
(x+ `)− 2jn

2j

)

which are, just by simple inspection, -periodic functions belonging to L 1(S1). Now, we
are ready to state the Theorem that has raised up the initial comment of this section:
the finiteness of the translations.

Theorem .. (Theorem ., [HW]). Let ψ(x) be an orthonormal wavelet from a
R-MRA. Then the system given by

{1, ψPER
j,n with j ≤ 0 and n = 0, 1, . . . , 2−j − 1}

is an orthonormal basis of L 2(S1).

Recall that from Equation (.) we have the R-expansion of f ∈ L 2(R) by linear
combinations of wavelets of the form

f =
∑
n∈Z
〈f, φ0,n〉φ0,n +

∞∑
j=0

∑
n∈Z
〈f, ψ−j,n〉ψ−j,n ∈ V0 ⊕

∞⊕
j=0
W−j

but in view of Theorem .. the above expression, in S1, becomes

f = constant +
∞∑
j=0

∑
n∈Z

〈
f, ψPER

−j,n

〉
ψPER
−j,n ∈ V0 ⊕

∞⊕
j=0
WPER
−j

where, in the spirit of such Theorem, for j ≥ 0 we define

VPER
0 := 〈1〉 and WPER

−j :=
〈
ψPER
−j,0, ψ

PER
−j,1, . . . , ψ

PER
−j,2j−1

〉
.

Notice that, as usual, 〈f1, f2, . . . , fn〉 denotes the subspace of L 2(S1) generated by the
functions f1, f2, . . . , fn, where fi ∈ L 2(S1) with i = 1, . . . , n. In view of that, one
can consider to perform the same strategy done in R to get an expression for the
periodization of Daubechies wavelet which is a wavelet with compact support but now
in S1. Recall that one we have defined the support of ψ(x), Definition .., as the
minimum interval of the real line such that ψ(x) = 0 for every x which does not
belongs to the support of ψ(x).

Proposition ... Let ψ(x) be an R-MRA orthonormal wavelet with compact support:
supp(ψ(x)) = [a, b]. Then

ψPER(x) =
∑
`∈Λx

ψ(x+ `),

where Λx ⊂ Z is a finite set.
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Proof. Recall that ψPER(x) is a 1-periodic function over R which belongs to L 2([0, 1]
and, therefore, its values are copies of those ones in [0, 1]. On the other side, since
supp(ψ(x)) = [a, b] then ψ(x) 6= 0 if a ≤ x ≤ b. Hence, to know the values of ψPER(x), `
must verify that a ≤ x+ ` ≤ b with x ∈ [0, 1]. That is ` ∈ [a−x, b−x]. Now, to conclude
the proof, just set Λx to be the minimum subset of Z such that ` ∈ [a − x, b − x] with
(x ∈ [0, 1]). That is, Λ is a set of consecutive integers Λ = `, `+ 1, . . . , `′ and such that
Λx ⊂ [da − xe, bb − xc], where bxc is the largest integer not greater than x and dxe is
the smallest integer not less than x.

Moreover, as in the R case, the vanishing moments are allowed “with the” sense
of the next Proposition which is a slightly different from the usual sense. However,
we want to emphasize that the S1-vanishing moments also holds if the R-Daubechies
wavelet has p ≥ 1 vanishing moments.

Proposition ... Let ψ(x) be an R-Daubechies wavelet with p > 1 vanishing mo-
ments. Then

ψPER
j,n (x) =

∑
`∈Λx

ψj,n(x+ `),

where 0 ≤ 1 ≤ n ≤ 2j − 1 and Λx ⊂ [d2j(1− p+ n)− xe, b2j(p+ n)− xc].

Proof. It is clear by Proposition .. and Theorem ...

Remark ... As usual, the domain of ψPER
j,n (·) it is defined as the minimal set ΩPER

j,n =
{θ ∈ S1 : ψPER

j,n (θ) 6= 0}. But, by definition ψPER
j,n (θ) 6= 0 if and only if [2j(1 − p + n) −

θ, 2j(p+ n)− θ] ∩ Z 6= ∅. Therefore, we define the domain of ψPER
j,n (·) as follows

ΩPER
j,n = {θ ∈ S1 : [2j(1− p+ n)− θ, 2j(p+ n)− θ] ∩ Z 6= ∅}.

Summarizing, up to now we have introduced Daubechies wavelets which are an
orthonormal basis of L 2(R) and L 2(S1). With this methodology in mind, we can
derive some properties of the Haar wavelet easily. Indeed, the Haar wavelet’s mother
wavelet function ψ(x) (over R) is given by

(.) ψ(x) =


1 0 ≤ x < 1

2 ,

−1 1
2 ≤ x < 1,

0 otherwise

and φ(x) =

1 0 ≤ x < 1,
0 otherwise.

stands for its scaling function φ(x). One of disadvantages of the Haar wavelet is that
it is not continuous but, this lack of continuity can be an advantage for the study of
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functions with sudden transitions. Such wavelet verifies Definition .. (for φ(x)) and
Theorems .. and .. with

h[n] =

 1
2 n = 0, 1,
0 otherwise.

Therefore, we can apply Theorem .. and Proposition .. to get the following Corol-
lary which will be very useful to determine the wavelet value over S1 of the Haar basis.

Corollary ... Let {ψj,n(x)} be the standard Haar basis given by Equation (.). Then
` is equal to zero and for all j > 0 we have that ψPER

j,n (θ) = ψj,n(x).

Now, in this quick tour, we want to go a little bit further since we will need more
technical results on wavelets setting since Daubechies wavelets have a “good behavior”
in a certain functional spaces: Besov spaces. Such spaces, roughly speaking, generalizes
the order and the “strength” of differentiability of a function. Also, a concrete space
where the usage of Haar wavelet makes sense will be introduced.

. Regularity through Besov spaces

In this section we will describe, in two steps, the functional spaces that define the
notion of regularity in a more general setting since we have to deal what it is called
“non-positive regularities”. The framework to define these regularity values is given by
the Besov spaces (see [BL, Tri]). First, following [Tri], we start by defining Besov
spaces on the real line. Next, as we have done along this memory, we will recall the
extension of such definition to S1.

.. Basic notions

The space of all real valued rapidly decreasing infinitely differentiable functions is called
the (real) Schwartz space and it is denoted by S(R). The topological dual of S(R) is
the space of tempered distributions which we will denote it by S ′(R). Also Cc(R)
will denote the space of continuous functions with compact support having continuous
derivatives of any order. In such setting, for f ∈ S ′(R), f̂(ξ) denotes the Fourier trans-
form of f and f∨(x) stands for the inverse Fourier transform (with the usual integrals).
Recall, also, that the essential supremum is defined as

ess sup
x∈R

f(x) = inf{a ∈ R : µ({x ∈ R : f(x) > a}) = 0},

where µ is a measure (in our case the usual Lebesgue measure). Let ϕ0 ∈ S(R) be such
that

ϕ0(x) :=

1 if |x| ≤ 1
0 if |x| ≥ 3/2
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and set
ϕj(x) := ϕ0(2−jx)− ϕ0(2−j+1x)

for j ∈ N. It verified that, independently of the choice of ϕ0,
∞∑
j=0

ϕj(x) = 1 for all x ∈ R.

Each of the families {ϕj}∞j=0 is called a Dyadic Resolution of Unity in R.

Definition ... Let ϕ = {ϕj}∞j=0 be a Dyadic Resolution of Unity and s ∈ R. For
f ∈ S ′(R) we define the quasi-norm

‖f‖∞,∞,ϕ,s = sup
j≥0

2js
(

ess sup
x∈R

∣∣∣(ϕj f̂)∨(x)
∣∣∣) .

Then, we define the Besov Spaces by

Bs
∞,∞(R) :=

{
f ∈ S ′(R) : ‖f‖∞,∞,ϕ,s <∞

}
.

As it can be seen in [Tri, Remark  of Section .], the spaces Bs
∞,∞(R) are, in

fact, independent of the chosen dyadic resolution of unity ϕ. Therefore, we can remove
the subscript ϕ from ‖f‖∞,∞,ϕ,s. So, in what follows we will write ‖f‖∞,∞,s instead of
‖f‖∞,∞,ϕ,s. The spaces Bs

∞,∞(R) are a particular case of the Generalized Besov Spaces
Bs
p,q(R) defined also, for example, in [Tri] and one has the inclusion property. That is,

if s < s′, then Bs′
p,q(R) ⊂ Bs

p,q(R). Let us go a little bit in-depth. Define the quasi-norm
‖f‖p,q,s by  ∞∑

j=0
2jsq

(
‖(ϕj f̂)∨‖p

)q1/q

,

The Generalized Besov Spaces are defined as follows

Bs
p,q(R) = {f ∈ S ′(R) : ‖f‖p,q,s <∞}.

For the special case of p = q = 2, the above definition coincides with the usual Sobolev
space. That is, define the norm

‖f‖k,2 =
(

k∑
i=0
‖f i)‖pp

)1/p

and define the Sobolev space to be

H k :=
{
f ∈ S ′(R) : ‖f‖k,s <∞

}
.

Notice that in the literature there are several ways to denote the aforementioned
Sobolev space such as W k,2. Such notation is due to the fact that Sobolev spaces must
be understood as the all locally summable functions such that its weak derivative is
in L p. In view of that, and for sake of simplicity, when we want to refer it will use
Bs

2,2(R). Finally, for completeness, let us recall the following definition



 Chapter . An Introduction to Wavelets

Definition ... Given an integer k ≥ 1, we define distributional derivative of order k
of f ∈ L 1

loc to be the linear functional

δDk
f
(ρ) = (−1)k

∫
R
f(x)Dkρ(x) dx.

If there exists a locally integrable function g∫
R
gρ(x) dx = (−1)k

∫
R
f(x)Dkρ(x) dx for all ρ ∈ Cc(R)

then we say that g is the weak derivative of order k of f . In other words, g is the weak
derivative of order k of f if δDk

f
= δg for all continuous functions with compact having

continuous derivatives of every order ρ.

On the other side, for s > 0 the spaces Bs
∞,∞(R) coincide with the Hölder-Zygmund

(or Lipschitz) spaces and it is natural to extend the notion of regularity to s ≤ 0 through
Bs
∞,∞(R) in the above way (we refer to [Ste, Tri] for a more complete explanation).

However, before we define what will be our notion of regularity let us make a final
comment concerning on the inclusions of spaces. What we have set to be an extension
of a Hölder space Bs

∞,∞(R) it does not coincide with the space of continuous and
differentiable functions, C1. That is, we have the following inclusion

C1(R) ⊂ Bs
∞,∞(R).

Moreover, Bs
∞,∞(R) either coincides with the functions that satisfy the Lipschitz condi-

tion (Hölder exponent equals ), Lip. That is, as before we have

C1 ⊂ Lip ⊂ B1
∞,∞

since for example |x| /∈ C1 but |x| ∈ Lip and, on the other side
√
x ∈ B1

∞,∞ but√
x /∈ Lip because it does not have bounded derivative around the origin. In view of

that, we are allowed to give the following definition.

Definition ... We say that a map f has regularity s ∈ R if f ∈ Bs
∞,∞(R).

Example ... The following examples help us to clarify this regularity notion.

(a) cos(2πx) is an analytic function whereas |cos(2πx)| is only a Lipschitz since it is
differentiable almost everywhere and its derivative it is bounded. Moreover an
upper semi-continuous function does not verify a s-Hölder condition on the jump
discontinuities for s ∈ (0, 1).

(b) Let us recall that the Hölder exponent for a functions f ∈ L∞ one has the “usual”
definition

sup
|y|>0

(
sup
x∈R

|f(x+ y)− f(x)|
|y|α

)
.
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Now define,

f(x) =


0 if x = 0,
√
x if x ∈ (0, 1/2],
√

1− x if x ∈ (1/2, 1),
0 if x = 1.

Such a function verifies, in a neighbourhood of x = 0 or x = 1, the Hölder condition
for 0 < α ≤ 1/2. This assertion follows from the unimodality of f(x) and therefore
f(x+ y) ≤ f(x) + f(y). Hence,

sup
|y|>0

(
sup
x∈R

|f(x+ y)− f(x)|
|y|α

)
= sup

|y|>0

(
sup
x∈R

|
√
x+ y · (1−

√
x+ y)

|y|α
−

√
x · (1−

√
x)|

|y|α

)

≤ sup
|y|>0

(
sup
x∈R

|
√
x · (1−

√
x)

|y|α
+

√
y · (1−√y)−

√
x · (1−

√
x))|

|y|α

)

≤ sup
|y|>0

(
|√y · (1−√y)|

|y|α

)
and the assertion follows.

(c) Moreover, one can prove that if f verifies a Hölder condition α, then its primitive
has exponent α+ 1. On the contrary, it is not true that f ′ verifies a Hölder condition
α− 1.

(d) A Hölder continuous non-differentiable function belongs to Bs
∞,∞(R) with s ∈ (0, 1).

For instance, the Weierstraß function defined by

(.) WA,B(x) :=
∞∑
n=1

An sin(Bnx),

where A,B ∈ R are such that B−1 < A < 1 < B is Hölder continuous and nowhere
differentiable. Moreover, it has regularity − logB(A); that is: from our point of view
WA,B ∈ B

− logB(A)
∞,∞ (R). Indeed, there exists C > 0 such that

|WA,B(x)−WA,B(y)| ≤ C|x− y|−
logA
logB

holds for all x, y ∈ R. Observe that | sin(Bnx) − sin(Bny)| ≤ 2 and also, by the
Mean Value Theorem, one has that

| sin(Bnx)− sin(Bny)| ≤ | cos(Bnξ)|Bn|x− y| ≤ Bn|x− y|,
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where ξ lies between x and y. Now fix N =
[− log(|x− y|)

log(B)

]
and notice that

B|x− y| ≤ B2|x− y| ≤ . . . ≤ BN |x− y| ≤ 1 < BN+1|x− y|.

Therefore, by the choice of N ,

|WA,B(x)−WA,B(y)| =
∣∣∣∣∣
∞∑
n=1

An sin(Bnx)−
∞∑
n=1

An sin(Bny)
∣∣∣∣∣

=
∣∣∣∣∣
N∑
n=1

An(sin(Bnx)− sin(Bny))

+
∞∑

n=N+1
An(sin(Bnx)− sin(Bny))

∣∣∣∣∣∣
≤

N∑
n=1

AnBN |x− y|+ 2
∞∑

n=N+1
An

≤ BN |x− y|A−A
N+1

1−A + 2A
N+1

1−A

≤ A−AN+1

1−A + 2A
N+1

1−A
≤ CAN ,

for an appropriate C . Moreover, since

AN = eN logA = e
N logB logA

logB = (BN )
logA
logB ≤

( 1
|x− y|

) logA
logB

,

it follows that
|WA,B(x)−WA,B(y)| ≤ C|x− y|−

logA
logB

as we wanted to show.

(e) The function

f(x) =



0 if x = 0,
−1

log(x) if x ∈ (0, 1/2],
−1

log(1−x) if x ∈ (1/2, 1),
0 if x = 1

does not satisfy the Hölder condition for any α > 0 on neighborhoods of 0 and
1 whereas on the rest of the interval is Lipschitz. The proof, for x = 0, is done
by contradiction, if it were an α > 0, then there would exist C > 0 and α such
that |0 − 1

log x | ≤ C|x|α for all x ∈ (0, 1/2]. But, arranging the terms, one also
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has that C|x|α| log(x)| ≥ 1. And this is impossible since for α > 0 one has that
limx→0+ C|x|α| log(x)| = 0. In particular f(x) ∈ B0

∞,∞.

(f) As a matter of fact, [RS, Section ., Example ] is devoted to give examples of
functions on such kind of spaces. Indeed, the prototypical example is to consider
α2 + β2 > 0, with β > 0, and define

fα,β(x) = υ(x)|x|α(− log |x|)−β

where υ(x) is a smooth cut-off function with supp υ ⊂ {x ∈ R : |x| ≤ δ} and δ > 0.
That is, υ(x) has the support near the origin and the singularity is located near the
origin.

(g) It is known that δ(x) ∈ B−1
∞,∞(R) where δ(x) stands for Dirac’s delta function. In

view of that, δ(x) can be considered as the second derivative of the continuous
function

f(x) =

0 if x < 0,
x if x ≥ 0.

Remark ... As it can be seen in Proposition  from [Ste, Chapter .], for 0 < s < 1
every f ∈ Bs

∞,∞(Ω) may be modified on a set of measure zero so that it becomes
continuous. We want to emphasize that this can be done by how the ‖f‖∞ is chosen.
That is, since we are defining the spaces in terms of a measure the “usual” condition of
continuity, in terms of ε, can fail on a zero measure set.

Recalling that we will have to deal with functions that live in S1, we need to extend
the Besov spaces to S1 andwewill do it following [BL, Ste]. Indeed, given f ∈ S ′(S1)
(the space of tempered distributions on S1) it is known that

f =
∑
n∈Z

f̂(n)einx.

Definition ... Let ϕ = {ϕj}∞j=0 be a dyadic resolution of unity (on R). We define the
Besov Spaces on S1 by

Bs
∞,∞(S1) :=

{
f ∈ S ′(S1) : ‖f‖∞,∞,s <∞

}
where

‖f‖∞,∞,s = sup
j≥0

2js
ess sup

x∈R

∣∣∣∣∣∣
∑
n∈Z

ϕj(n)f̂(n)einx
∣∣∣∣∣∣


is a quasi-norm for the quasi-Banach space Bs
∞,∞(S1).
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As in Definition .. we say that a circle map f has regularity s ∈ R if the function is
in Bs

∞,∞(S1). The following lemma shows that the regularity of a circle map coincides
with the regularity of its real extension which we define as follows. Given f ∈ S ′(S1)
there exists a unique fPER ∈ S ′(R) such that fPER is -periodic and the restriction of fPER

over [0, 1) coincides with f (such an fPER can be defined as f({·}), where {·} denotes
the fractional part function). This lemma is usually omitted and used implicitly but we
include here for completeness.

Lemma ... For every f ∈ S ′(S1) it follows that fPER ∈ Bs
∞,∞(R) if and only if

f ∈ Bs
∞,∞(S1).

Proof. Since fPER is -periodic and fPER
∣∣
[0,1] = f ,

f̂PER(n) =
∫ 1

0
fPER(x)e−2πinx dx =

∫ 1

0
f(x)e−2πinx dx = f̂(n).

Hence,

ess sup
x∈R

∣∣∣∣∣∣
∑
n∈Z

ϕj(n)f̂(n)einx
∣∣∣∣∣∣ = ess sup

x∈R

∣∣∣∣∣∣
∑
n∈Z

ϕj(n)f̂PER(n)einx
∣∣∣∣∣∣

= ess sup
x∈R

∣∣∣∣∣∣
∑
n∈Z

(ϕj f̂PER)(n)einx
∣∣∣∣∣∣ = ess sup

x∈R

∣∣∣(ϕj f̂PER)∨(x)
∣∣∣ .

That is, ‖fPER‖∞,∞,s = ‖f‖∞,∞,s and, hence, we have that fPER ∈ Bs
∞,∞(R) if and only

if f ∈ Bs
∞,∞(S1).

A classical tool for measuring the fact of f ∈ Bs
∞,∞, either R or S1, is to look at the

asymptotic decay of its Fourier transform but, also, with wavelets can be done. This
will be the main topic of the following section.

.. Wavelets and regularity

Until now we have recalled the notion of the regularity of a function through the spaces
Bs
∞,∞(R) and Bs

∞,∞(S1). Also, we have introduced the wavelet expansions of a given
function in L 2(R). Next, we want to show the relationship between this notion of
regularity and the wavelet coefficients. The main tool for this will be the Daubechies
wavelets, because, as we have said on Section ., they are orthonormal bases on L 2(R)
(see [Mal]) and, depending on the number of vanishing moments, they are well
adapted to the functional spaces Bs

∞,∞(R) (see [HW, Tri]).
Recall that the Daubechies wavelets are a family of wavelets with compact support

that has an element with p vanishing moments for each p ≥ 1 (see Section .. and
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[Mal] for a definition and construction respectively). In order to motivate the follow-
ing results, let us consider f to be such that verifies a Hölder condition. Then, since a
wavelet has zero mean we have∣∣∣∣∫ f(x)ψj,n(x) dx

∣∣∣∣ =
∣∣∣∣∫ f(x)ψj,n(x) dx−

∫
f(y)ψj,n(x) dx

∣∣∣∣ ≤ ∫ |x− y|α|ψj,n(x)| dx.

That is, using a “good enough” wavelets one can describe scaling properties of the
function f and the converse i also true. In view of that and from [HW, Theorem .],
[Coh, Theorem ..], [Tri, Theorem .] we can state the following theorem, in
the spirit of [dlLP, Theorem .] and [Mey, Chapter ].

Theorem ... Let s ∈ R \ {0} and let ψ be a mother Daubechies wavelet with more
than max(s, 5/2− s) vanishing moments. Then f ∈ Bs

∞,∞(R) if and only if there exists
C > 0 such that

sup
n∈Z
|〈f, ψj,n〉| ≤ C2τj with τ =

s+ 1
2 if s > 0,

s− 1
2 if s < 0,

for all j ≤ 0.

Remark ... Since the spaces Bs
∞,∞(R) satisfy the inclusion property described on

Section .., f ∈ B0
∞,∞(R) if and only if either there exist C > 0 and τ ∈ [−1

2 ,
1
2 ] such

that sup
n∈Z
|〈f, ψj,n〉| ≤ C2τj for j ≤ 0 or the numbers sup

n∈Z
|〈f, ψj,n〉| do not have an upper

bound of the form C2τj with C > 0 and τ ∈ R.

Remark ... From [Mal, Section . (Chapter )] we know that when f is self-
similar then so it is the wavelet transform. Moreover, the numbers sup

n∈Z
|〈f, ψj,n〉| should

decay exponentially with respect to j. That is,

sj := log2

(
sup
n∈Z
|〈f, ψj,n〉|

)
= τj + log2(C).

This tells us that, in this case, to compute the value of regularity swe can make a linear
regression to estimate the slope of the graph of the pairs (j, sj) and get the correct value
of s from this slope. The Pearson correlation coefficient controls the degree of linear
correlation between the variables j and sj and, hence, it is a test of the self-similarity
of f (and so, of the validity of the estimated s).

The above theorem and remarks motivate the following definition and rewriting of
Theorem .. in view of [Mey, Chapter ]. For t ∈ R we set

R(t) =


t− 1

2 if t > 1
2 ,

t+ 1
2 if t < −1

2 ,

0 otherwise.
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Theorem ... Let f ∈ L 2(R) and let ψ be a mother Daubechies wavelet with k
vanishing moments. Assume that there exists C > 0 and τ ∈ R such that

sup
n∈Z
|〈f, ψj,n〉| ≈ C2τj

for all j ≤ 0. Then, f ∈ B
R(τ)
∞,∞(R) provided that k > max(R(τ), 5

2 − R(τ)).

Remark ... In view of Lemma .., to estimate the regularity of an f ∈ S ′(S1) it is
enough to use Theorem .. for fPER.

Observe that the above Theorem is not valid for Haar wavelet since it does not verify
the property of k > max(R(τ), 5

2 − R(τ)). What it is done in the following section is a
small survey of how it can be relaxed such hypotheses.

.. Haar basis revised

As we have said, Haar wavelet does not have enough vanishing moments to be a basis
of Bs

∞,∞ with s > 0 and s < −1. Such wavelet can be readjusted, or turned to the
Schauder basis, to be a desired basis of the Besov space. The problem is that for our
forthcoming purposes this way is not useful. Therefore, we need to work a little bit
more in order to be able to use the Haar wavelet intact.

To this end, we need to introduce some definitions which, in fact, are implicit in the
previous lines. In what follows a rearrangement of N will be a one-to-one self map
from N to itself.

Definition ... Let B be a real (quasi)-Banach space. A basis {bj}∞j=1 of B is called
unconditional if for any rearrangement σ of N the resultant, {bσ(j)}∞j=1, is again a basis
of B. Also for every {λj}∞j=1 ⊂ R it follows that

∞∑
j=1

λσ(j)bσ(j) =
∞∑
j=1

λjbj .

Moreover, let the sequence {λj}∞j=1 be such that λj ∈ B for all j ∈ N. Then the series∑
λj is called unconditionally convergent if for any rearrangement σ of N the series∑
λσ(j) is convergent in B.

With such Definition, we can define the discrete version of the space Bs
p,q which is

a (quasi-)Banach space. We will denote it by ℘sp,q .

The Schauder basis (or the Faber-Schauder system) is the integral of the Haar basis. That is, for n =
0, . . . , 2j − 1 define

sj,n(x) = 21+j/2
∫ x

0
ψj,n(η) dη

where {ψj,n}Z+×Z is the usual Haar basis.
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Definition ... Let 0 < p ≤ ∞, 0 < q ≤ ∞, s ∈ R and let {λj,n}(j,n)∈Z+×Z be a
bi-indexed sequence of reals. Consider the norm

‖λ‖p,q,s =

 ∞∑
j=0

2j(s−1/p)q

∑
n∈Z
|λj,n|p

q/p


1/q

with the usual modification if p = ∞ and/or q = ∞. In such conditions we define the
Discrete Generalized Besov Spaces by

℘sp,q(R) = {λ : ‖λ‖p,q,s <∞}.

Once we have introduced all this stuff related to the aforesaid functional spaces
Bs
p,q , we can return back to the Haar wavelet. Recall that the standard Haar basis gives

rise to a simple basis in S1 just by considering to be j > 0. Having said that, and as in
Theorem .., we have the following characterization, in terms of Haar coefficients, of
the belonging property on a concrete Bs

p,q of a function f .

Theorem .. (Theorem . [Tri]). Let {ψj,n(x)}Z+,Z be the standard Haar basis given
by Equation (.). Consider 0 < p ≤ ∞, 0 < q ≤ ∞ and 1/p − 1 < s < min(1, 1/p). Let
f ∈ S ′([0, 1]). Then f ∈ Bs

p,q([0, 1)) if, and only if, it can be represented as

f = µ0φ+
∞∑
j=0

2j−1∑
n=0

µj,n2−j(s−1/p)ψj,n

with µj,n ∈ ℘sp,q(R) and unconditional convergence being in Bσ
p,q with σ < s. The

above representation is unique and given byµ0 =
∫ 1

0 f(x)φ(x) dx,
µj,n = 2j(s−1/p+1) ∫ 1

0 f(x)ψj,n(x) dx, j > 0 and n = 0, . . . , 2j − 1.

If, in addition, p < ∞ and q < ∞ then the Haar basis is an unconditional basis of
Bs
p,q([0, 1]).

That is, in our case we have that the Haar basis is a basis of Bs
p,q(S1) but when

p = q = 2 will be, for us, the most interesting case. Indeed, in the same way of
Theorem .., we can use the decay of the Haar coefficients of a function f to relate
them with the regularity, from the Sobolev point of view, of such function f . Let us
state such comments in a more formal way.
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Corollary ... Let {ψj,n(x)}Z+,Z be the standard Haar basis given by Equation (.)
and consider s ∈ (−1/2, 1/2). Then f ∈ Bs

2,2(S1) if and only if there exists a constant
C > 0 such that

sup
0≤n≤2j−1

|〈f, ψ−j,n〉| < C2−j(s−1/2)

for all j ≥, where

〈f, ψ−j,n〉 = 2j(s−1/2+1)
∫ 1

0
f(x)ψj,n(x) dx, j > 0 and n = 0, . . . , 2j − 1.

From Theorem .., in the same way as in Remark .. and Theorem .., we
have the appropriate rewriting of R for the Haar’s case.

(.) R(τ) = τ − 1 + 1
p
,

where τ is the slope of the linear model. Concretely, in the case of the above corollary
the formula becomes R(τ) = τ − 1/2.

Coming to the end of this section, let us illustrate the idea of Bs
2,2 with some in-

stances in the same spirit of Example ...

Example ... The following examples help us to clarify the notion of Sobolev spaces
and weak derivative.

(a) Consider the function

f(x) =

0 if x < 0,
x if x ≥ 0.

Then the Heaviside function

H(x) =

0 if x < 0,
1 if x ≥ 0.

is the weak derivative of f . Indeed, the distributional derivative of f is

δDk
f
(ρ) = −

∫ ∞
0

xφ′(x) dx = −xφ(x)
∣∣x=∞
x=0 +

∫ ∞
0

φ(x) dx =
∫
R
H(x) dx.

(b) The function

f(x) =

x if 0 ≤ x < 1,
2 if 1 ≤ x ≤ 2.

does not have weak derivative. Indeed, let us assume that there exists g ∈ L 1
loc(0, 2)

such that for all ρ ∈ Cc(0, 2)∫ 2

0
g(x)φ′(x) dx = −

∫ 2

0
g′(x)φ(x) dx.
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Then, ∫ 2

0
g(x)φ(x) dx = −

∫ 1

0
xφ′(x) dx− 2

∫ 2

1
φ′(x) dx

=
∫ 1

0
φ(x) dx− xφ(x)

∣∣x=1
x=0 + 2φ(1)

=
∫ 1

0
φ(x) dx+ φ(1).

To get the contradiction, let us take a sequence of φk(x) ∈ Cc(0, 2) such that for all
positive integer k φk(1) = 1 and φk(x) = 0 as k goes to infinity. Then

1 = lim
k→∞

φk(1) 6= lim
k→∞

∫ 2

0
g(x)φk(x) dx−

∫ 1

0
φk(x) dx = 0.

This means that discontinuous functions does not have a weak derivative.

(c) The ternary Cantor function does not have a weak derivative on R. To prove the
assertion, let g to be the supposed weak derivative. Then, since the Cantor function
is constant over the intervals, g(x) = 0 for all x ∈ R. On the other side, take
φ(x) ∈ Cc(R) such that φ(x) = 1 if x ∈ [0, 1] and φ(x) = 0 for x ≥ a > 1. We can
join the ingredients to get a contradiction:

0 =
∫
R
g(x)φ(x) dx = −

∫
R
f(x)φ′(x) dx = −

∫ 1

0
f(x) · 0 dx−

∫ a

1
1 · φ′(x) dx = 1.

(d) Let (a, b) ⊂ R be an open interval and assume that g ∈ L 1
loc(a, b) is the weak

derivative of f ∈ L 1
loc(a, b). Then there exists and absolutely continuous function f̃

such that for all x ∈ (a, b) f̃(x) = f(x) almost everywhere and

g(x) = lim
h→0

f̃(x+ h)− f̃(x)
h

,

also for all x ∈ (a, b). This means that each element of B1
2,2(a, b) coincides

almost everywhere with an absolutely continuous function f having derivative
f ′ ∈ L 2(a, b).

In order to conclude this chapter let us make a final comment concerning to the
wavelet and Haar coefficients. As we have said, wavelets are well posed to detect
and characterize scaling behavior. But moreover, Theorem .. gives us a method (see
Section .) to decide the quality of the coefficients 〈f, ψj,n〉. Or, in a less ambitious way,
give a kind of intuition of how weird is the function f . The problem is how one can get
the desired coefficients 〈f, ψj,n〉 and this topic will be faced in the following chapter. Of
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course, due to Corollary .., the same comments are also valid with the Haar basis.
However, as we will see in Chapter  and we have already seen, when one have to deal
with the Haar basis there are some advantages in the calculation but not in the Besov
regularity.



Chapter 

On the Computation of Wavelet
Coefficients

Up to now, we have introduced orthonormal wavelet bases by means of the Multi-
resolution Analysis. Also, we have seen how from such structure appears the

scaling filter which, recall that, plays an important role on how the wavelet is. Let us
point out that we want to calculate

〈f, ψ−j,n〉 =
∫

supp(ψ−j,n(x))
f(x)ψ−j,n(x) dx

since if one wants to make approximations of a function from L 2 by a wavelet expan-
sions of the type

f ∼ a0 +
∞∑
j=0

2j−1∑
n=0
〈f, ψ−j,n〉ψ−j,n

the unknown is, precisely, 〈f, ψ−j,n〉. The present chapter is devoted to present some
feasible techniques to compute the coefficients 〈f, ψj,n〉 once we know how h[n] is.
Again, we will be specially focused on Daubechies wavelets (either in R or S1). This
chapter must be understood as a natural continuation of Chapter  in the sense that,
there are two sections (the first two ones in Section .) which are standard in the
wavelets literature. The third one is, as far as we know, a slight modifications of existent
methods. Again, as in the previous chapter, we will show some specific properties of
the Haar wavelet basis that will be useful in the following chapters. Moreover, the first
section must be seen as the cornerstone of Chapter . Indeed, as we will see, we will
need the Daubechies wavelet basis evaluated on a huge mesh of equally spaced points
of S1. This implies that it is imperative to have a “sufficiently fast" algorithm to create
such amount of data. Such topic must be taken as a one of the contributions of the
present Thesis.

. The wavelet value: a single point

In some methods to get the value of 〈f, ψ−j,n〉 it is needed the value of the wavelet
at a given point (see for example Chapter ). If the wavelet does not have a closed
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expression, as the trigonometric polynomials for example, one has to derive a method
to get ψj,n(x) in an efficient way. This is what it is done here. As usual, we will start
with the R setting and after that we will state the main result of this section: the
“Daubechies – Lagarias algorithm” on S1. First of all, let us mention that such algorithm
is a way to get bounds of the regularity of the compactly supported wavelets (see
Section . of [Dau] to go further in such topic). In order to face the Daubechies –
Lagarias algorithm let us start with a simple recursion which will derive and motivate
the algorithm. This way of presentation is similar to the Section . of [SN] but we
will include it for sake of completeness.

The starting point is the inclusion property, the first property of Definition .., with
the scaling function (which leads us to Equation (.))

1√
2
φ

(
x

2

)
=
∑
n∈Z

h[n]φ(x− n).

Such equation, in the case of the Daubechies wavelets with p > 1 vanishing moments
becomes

φ(x) =
√

2
2p−1∑
n=0

h[n]φ(2x− n).

Remark ... Notice that we are forcing p > 1. This is because the corresponding
Daubechies wavelet for p = 1, as we have already said, is the Haar wavelet. Such
wavelet has an explicit expression and the forthcoming methodology becomes sterile.
However, it still works correctly even for p = 1.

Now, let Φ(0) = [φ(0), φ(1), . . . , φ(2p−1)] be a vector with 2p components, the vec-
tor of the half-integers values Φ(1/2) = [φ(1/2), φ(3/2), . . . , φ((2p − 1)/2)] and define
the following matrices, M0 and M1, whose entries are

m0
i,j =

√
2h[2i− j − 1] 1 ≤ i, j ≤ 2p− 1 for M0,(.)

m1
i,j =

√
2h[2i− j] 1 ≤ i, j ≤ 2p− 1 for M1.(.)

Remark ... Notice that the even columns of the matrices M0 and M1 are the even
components of the coefficients h[n]. The odd ones also. On the other side, due to
Proposition .., the sum of the odd columns and the even columns must be one. This
means that the row vector of ones is a common left eigenvector of M0 and M1 for the
eigenvalue 1.

With this new language we have the following translation:

φ(x) =
√

2
2p−1∑
n=0

h[n]φ(2x− n)⇔ Φ(x) = M0Φ(2x) + M1Φ(2x− 1).
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That is, the scaling equation can be written in terms of the vector Φ(x) and, hence, since
from Proposition .. supp(φ(x)) = [0, 2p− 1] one can check that

Φ(0) = M0Φ(0) and Φ(1/2) = M1Φ(0)

because supp(Φ(x)) = [0, 1] where, as we will see, the above expressions are a linear
systems with a solution. Moreover, using recursively what we have claimed before
and after some manipulations for x = 3/8 it is true that

Φ(3/8) = M0Φ(3/4) = M0(M1Φ(1/2)) = M0(M1(M1Φ(0))).

Now notice that the binary expression of 3/8 is 0.011 where the sequence 0, 1, 1, is the
same sequence of matrices multiplications M0 ·M1 ·M1. Therefore, roughly speaking,
we have a recursion to get the values of Φ at some points and, by definition of Φ, we can
get the values of φ at some points of its support also. Such procedure can be extended,
as we will see in the following, to all dyadic values. Indeed, let {d1, d2, . . . , dm} be the
set of - digits in the binary representation of a dyadic point x then

(.) Φ(.d1, d2, . . . , dm) = Md1Φ(.d2, d3, . . . , dm).

Notice that one problem is left since we want ψ(x) and using the recursion given by
Equation (.) we still are not able to calculate the desired value. The answer is given
by using, again, the inclusion property, but now with the wavelet, in the same way as
Equation (.):

ψ(x) =
∑
n∈Z

g[n]φ(2x− n)

since we know the values of φ(x). Of course, this kind of construction must be rig-
orously stated and the convergence results (i.e the pass to the limit) for an arbitrary
x ∈ R should be proven. This is done, mainly, in [DL, DL, Dau, Vid]. Indeed,
in [DL, DL] solutions of some functional equations, like the dilation equation, are
done and studied. Precisely, in the studies concerned to the (local and global) regular-
ity of φ(x) (and ψ(x)) a procedure to get some bounds is presented: the Daubechies –
Lagarias algorithm. Such idea will be crucial for our purposes and we will present it,
in a general framework, in what follows. Indeed, let

(.) f(x) =
N∑
n=0

c[n]f(2x− n)

be the functional equation, which is called refinable, that we want to solve. To this end,
if f(x) is a solution of above then, according to Proposition . of [DL], one can define

f(n) =

an if 0 ≤ k < N − 1,
0 otherwise,
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where an are the components of a right eigenvector of a matrix, related to the coeffi-
cients c[n], with eigenvalue . Also, define the spline approximations fj to f by

f0(x) linear on every [n, n+ 1],
f0(n) = f(n) as above and
fj = V jf0,

where V is the following linear operator (V g)(x) =
N∑
n=0

c[n]g(2x−n) and V j stands for

the j-th application of such operator. The above sequence of functions, as it is shown
in Theorem . of [DL], converges with some restrictions on the coefficients c[n] to
the function f which is, precisely the solution wanted. In other words, finding solutions
of the above refinable equation is the same as finding fixed points for the above linear
operator where g it is chosen such that has the same support of f : [0, N ]. We are almost
done, because we can build the rigorous setting of what we have pointed out at the
beginning of the section. Indeed, define the vector valued function w : [0, 1] −→ RN
as w(x)n = g(x + n − 1) for n = 1, . . . , N and define the linear operator (Vw)(x)n =
(Vg)(x+ n− 1) which can be written in the following explicit way

Vw(x) =

M0w(2x) if 0 < x ≤ 1/2,
M1w(2x− 1) if 1/2 ≤ x < 1,

where M0 and M1 the matrices are given by (.) and (.) respectively.

Remark ... Since it will be important for our implementation, we want to emphasize
that M0 and M1 have eigenvalue  and the vector whose entries are all ones as a left
eigenvector.

In order to reproduce Equation (.), consider for any x ∈ [0, 1] its binary expansion

and the well known shift operator τ applied to x: τx =
∞∑
j=2

dj2−j+1 where the numbers

are dj = 0 or dj = 1. Such operator can be, again explicitly, written as

τx =

2x if 0 ≤ x < 1/2,
2x− 1 if 1/2 < x ≤ 1.

In such conditions observe that Vw(x) = Md1(x)w(τx) and in view of that, one can
derive the analogous to Equation (.):

vj(x) = (Vjv0)(x) = Md1(x)Md2(x) · · ·Mdj(x)v0(τ jx),

where v0 = f0. The following Theorem makes clear all the ideas outlined until now.
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Theorem .. (Theorem . [DL]). Assume that the c[n], n = 0, . . . , N satisfy∑
n∈Z

c[2n] =
∑
n∈Z

c[2n+ 1] = 1

and consider the matrices M0 and M1 given by Equation (.) and Equation (.). Define
E1 to be the (N −1)-dimensional subspace orthogonal to e1 = (1, . . . , 1), the common
left eigenvector of M0 and M1 for the eigenvalue 1. Assume that there exist λ < 1
and C > 0 such that, for all m ∈ N,

max
di∈dyad(x,m)

‖Md1 · · ·Mdm

∣∣
E1
‖ ≤ Cλm.

Then the following hold:

(a) The eigenvalue  is of the (N − 1) × (N − 1)-dimensional matrix M defined by
Mi,j = c2i−j 1 ≤ i, j ≤ N−1, is simple and there us an associated right eigenvector

a with
N−1∑
i=1

ai = 1.

(b) The vector-valued functions vj(x) defined above satisfy e1 · vj(x) = 1 for all j ∈ N
and x ∈ [0, 1].

(c) The corresponding functions fj converge uniformly to a continuous function f with

‖fj − f‖∞ ≤ C2−j
lnλ
ln 2 .

(d) the limit function f is an L 1-solution to the refinable equation (.); it is normalized

so that
N∫
0
f(x) dx = 1 and it is Hölder continuous

|f(x)− f(y)| ≤ C|x− y|α

with α = lnλ
ln 2 .

The above Theorem is valid for a large class of refinable functions (i.e those ones
such that are the solution of a refinable equation) which it is not the case of wavelets.
Having said that, wavelets are close to be refinable functions since they can be obtained
from the scaling function φ(x) and, hence, it is necessary to apply Theorem .. to φ(x).
This is the spirit of the following Remark: written with the goodwill of make explicit
the Daubechies – Lagarias theorem for our particular instances.

Remark .. (Theorem .. [Vid]). The above limit must be understood, in the case
of the Daubechies wavelet with p vanishing moments, as follows:

lim
n→∞

Md1 · · ·Mdn =


φ(x) φ(x) . . . φ(x)

φ(x+ 1) φ(x+ 1) . . . φ(x+ 1)
...

...
...

...
φ(x+ 2p− 1) φ(x+ 2p− 1) . . . φ(x+ 2p− 1)

 ,
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where φ(x) is the scaling function of the Daubechies wavelet with p vanishing moments.

Thus, taking into account the above Remark is clear how one can get the value of
φ(x) at an arbitrary point but recall that we want the value of ψ(x). This value is given
by the following Theorem which is based on Theorem ...

Theorem .. (Theorem .. [Vid]). Let x be an arbitrary real number, ψ(x) be an
R-Daubechies wavelet with p ≥ 1 vanishing moments given by its filter coefficients
and let u be a vector defined as

ui(x) = (−1)1−b2xch[i+ 1− b2xc] for i = 0, . . . , 2p− 2.

If for some i the index i+1−b2xc is negative or larger than 2p−1, then the corresponding
component of u is .
Let v the vector given by

v(x, n) = 1
2p− 11′

∏
i∈dyad({2x},n)

Mi

where 1′ = (1, 1, . . . , 1) is the row-vector of ones and {·} stands for the fractional part
function. Then,

(.) ψ(x) = lim
n→∞

u(x)′v(x, n),

and the limit is constructive (with effective error bounds).

Remark ... It is important to notice that the Equation (.) is a direct consequence
of Equation (.) and the convergence given by the Theorem .. to φ(x). In other
words, Theorem .. firstly calculates φ(x) and after that uses Equation (.) to get
ψ(x). However, the expression of v(x, n) has no sense because the sum of the rows of
M∞ is identically one. That is, the right version must be

v(x, n) = 1
2p− 1

 ∏
i∈dyad({2x},n)

Mi

 1′>.

We have used the same notation because of the history.

Finally, since our environment is S1 we need to derive amethod to evaluate ψPER(x).
This method is based on Daubechies – Lagarias algorithm, Theorem .. and Section ..
but, we want to emphasize that our method in S1 can be understood as a Corollary from
such theorems and is stated below but, we will reformulate it a little bit forward as a
Proposition in order to derive the method from the proof.
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Corollary ... Let x be an arbitrary point of S1. Then,

ψPER(x) =
∑
`∈Z

lim
k→∞

u(x+ `)′v(x+ `, k),

where u(·) and v(·, k) are given by Theorem ...

Now we are ready to present one of the main results of this chapter which is the
method to evaluate in an effective manner the Daubechies wavelet. Before the state-
ment we want to point out that the following method is also valid for all wavelets
which verifies the assumptions of Theorem ...

Proposition ... Let J > 0 be an integer, ψ(x) be an R-Daubechies wavelet with
p > 1 vanishing moments and θ be an arbitrary point of S1. Set N = 2J and define
a N -dimensional row vector ΨPER(θ) such that its entries are ψ−j,n(θ)PER, where j =
0, 1, . . . , J − 1 and n = 0, . . . 2j − 1. Then, for each j = 0, 1, . . . , J − 1

Ψi
PER(θ) =


1 if i = 0,
2j/2

∑
`∈Λθ

lim
k→∞

u(2j(θ + `)− n)′v(2jθ − n, k) if i = 1, . . . , N − 1,

where the vectors u(·) and v(·, k) are given by Theorem .. and the range of the
translations is given by

n ∈ ℵθ = {n ∈ Z : max (d2jθe+ 2j`− p, 0) ≤ n ≤ min (b2jθc+ 2j`−Ni, 2j − 1)}.

Proof. Notice that the principal difference between the Corollary and Proposition, be-
sides of j and n, is v(θ + `, k) and v(θ, k). This is because {2j(θ + `)} = {2jθ} which
implies that, for a fixed θ, the products of the matrices it must be done one time and
not for all `’s. Therefore, since the limit does not depend on ` it follows that

lim
k→∞

v(2j(θ + `)− n, k) = lim
k→∞

v(2jθ − n, k) = v(2jθ − n).

On the contrary, the integer ` affects on the calculation of u(2j(θ + `)− n) because of
the properties of b·c. Once the convergence it is shown, we continue with the following
expression

ψPER
−j,n(θ) =

∑
`∈Λθ

ψ−j,n(θ + `).

In order to make more readable the proof, let us define the integer number, related
to the number of vanishing moments, Ni = (1 − p) and hence the wavelet support is
[Ni, p]. Now, by definition of support, Ni ≤ 2j(` + θ) − n ≤ p. That is, recalling that
0 ≤ n ≤ 2j − 1

Ni

2j ≤
(Ni+ n)

2j ≤ `+ θ ≤ (p+ n)
2j ≤ (p+ 2j − 1)

2j .
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Therefore,
Ni

2j − θ ≤ ` ≤
p

2j + 1− 1
2j − θ = 1−Ni

2j + 1− 1
2j − θ = 1− Ni

2j − θ.

Which leads us to dNi2j − θe ≤ ` ≤ b1−
Ni
2j − θc = b−Ni

2j − θc+ 1 and, hence,

Λθ =
{
` ∈ Z :

⌈
Ni

2j − θ
⌉
≤ ` ≤

⌊
−Ni2j − θ

⌋
+ 1

}
.

Now, being θ and ` fixed one has:

Ni ≤ 2j(`+ θ)− n ≤ p⇔ 2j(`+ θ)−Ni ≥ n ≥ 2j(`+ θ)− p.

Therefore, since 0 ≤ n ≤ 2j − 1 it follows that

d2j(`+ θ)− pe ≤ n ≤ b2j(`+ θ)−Nic ⇔ d2jθe+ 2j`− p ≤ n ≤ b2jθc+ 2j`−Ni.

Hence, it can be defined

ℵθ = {n ∈ Z : max (d2jθe+ 2j`− p, 0) ≤ n ≤ min (b2jθc+ 2j`−Ni, 2j − 1)}.

In order to prove the consistency of the last inequality that defines ℵθ , notice that,
since j > 0, 0 ≤ 2j − 1. Then 0 ≤ b2jθc + 2j` − Ni which, therefore, implies that
0 ≤ min (b2jθc+ 2j`−Ni, 2j − 1). On the other side, from `’s range we have that
2j(`+ θ) ≤ p+ 2j − 1; therefore, d2jθe+ 2j`− p ≤ 2j − 1 hence, by definition of Ni (i.e
we have Ni < −1−Ni)

d2jθe+ 2j`− p ≤ 2j(θ + `) + 1− p < 2j(θ + `)− 1−Ni ≤ b2jθc+ 2j`−Ni.

In other words, max (d2jθe+ 2j`− p, 0) ≤ min (b2jθc+ 2j`−Ni, 2j − 1) which, we
claim that has a solution for all `.

To conclude the proof, it only remains the proof of the above claim. Before we state
it, let us make emphasize that for sake of simplicity we have make the proof for our
particular case of Daubechies. The proof can be done in general.

Lemma ... Let ψ(x) be a Daubechies wavelet with 10 vanishing moments. Then,
max (d2jθe+ 2j`− p, 0) ≤ min (b2jθc+ 2j`−Ni, 2j − 1) has a solution for all `.

Proof. Let us start the proof by saying that, in order to prove the Lemma, it is enough
to show that it works for 2j ≤ 16. That is, we need to show that for 2j ≤ 16 and for all
0 ≤ n ≤ 2j − 1 there exists ` such that (1− 10) = Ni ≤ 2j(θ + `)− n ≤ p. Thus,

−9 ≤ 2j(θ + `)− n ≤ 10⇔ −9 + n ≤ 2j(θ + `) ≤ 10 + n.

Now, observe that if 2j ≤ 8 then 2j − 1 = 7. Therefore, n ≤ 7 and, hence taking ` = 0
we have −9 + n ≤ −2 < 0 ≤ 2jθ ≤ 8 < 10 + n.

To conclude the proof, it remains the case 2j = 16 then 2j − 1 = 15. Therefore,
n ≤ 15. Let us proceed by cases.
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• n ≤ 9. In this situation, we have that −9 + n ≤ 0 ≤ 2jθ. Hence, if 2jθ ≤ 10 + n

we are done just by taking ` = 0. On the contrary, if 2jθ > 10 + n we must
take ` = −1. Indeed, it is true that 2j(θ + `) ≤ 0 < 10 + n. On the other side,
2j(θ + `) = 2jθ − 2j > 10 + n− 2j = −6 + n > −9 + n.

• n > 9. In this situation we have that 10 + n ≥ 20 > 2jθ. Hence, if 2jθ ≥ −9 + n

we are done just by taking ` = 0. On the contrary, if 2jθ < −9 + n we must take
` = 1. Indeed, as above, in this situation we have 2j(θ+`) ≥ 2j > 15−9 ≥ −9+n.
On the other side, 2j(θ + `) = 2jθ + 2j < −9 + n+ 2j = 7 + n < 10 + n.

From such constructive proof of Proposition .. we can derive an algorithm to
evaluate, and store, a massive set of points of S1 which is the one of the main tools of
the Chapter . However, in order to make more clear the exposition we will include
those key results in the present chapter just after the following paragraph.

.. The Haar value

As we have said before, Haar wavelet is very simple and has an explicit formula. This
means that the above expressions can be simplified in order to use the Haar basis in
an efficient way. In the forthcoming chapters we will use a uniformly distributed mesh
of points in S1. Hence, we will need to derive the explicit formulas for the Haar basis
of S1 (recall that ψPER

−j,n(θi) = ψ−j,n(θi)). To this end, fix N = 2−J+1 and θi = i/N with
i = 0, . . . , 2N − 1. Notice that

0 ≤ i

N/2j ≤
2j−1N − 1
N/2j = 1

2 −
2j

N
and

2j−1N − 1
N/2j ≤ i

N/2j ≤
2jN − 1
N/2j = 1− 2j

N
.

for i ∈ {0, . . . , 2j−1N − 1} and i ∈ {2j−1N, . . . , 2jN − 1} respectively. Therefore, by
Equation (.), we have that

ψ−j,0 (i/N) =

 2−j/2 if i = 0, . . . , 2j−1N − 1,
−2−j/2 if i = 2j−1N, . . . , 2jN − 1.

Recall that, ψ−j,n(x) is supported over I−j,n = [2jn, 2j(n + 1)) which verifies I−j,n ∩
I−j,m = ∅ if and only if n 6= m. That is, fixed a j then the rest of the functions are
the same. Indeed, if we define s = 2J−j then we have that ψ−j,0(x) = 0 if and only if
x ∈ [2j , 1). For our particular setting it is x ∈ [2−j , 1) = [s/N,N/N). That is

ψ−j,0(i/N) =


2−j/2 for 0 ≤ i < s/2,
−2−j/2 for s/2 ≤ i < s,

0 otherwise.
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Finally, recall that n = 0, . . . , 2j−1. Then it follows that ψ−j,n(l/N) = ψ−j,0((l−ns)/N)
taking into account that ψ−j,n((i + ns)/N) = ψ−j,0(i/N). In other words, we have the
following formula for the rest of the elements:

(.) ψ−j,n(l/N) =


2−j/2 for 0 ≤ l − ns < s/2,
−2−j/2 for s/2 ≤ l − ns < s,

0 if l − ns ≥ 0.

The above expression is consistent because l−ns < 0 if and only if l < ns and, also,
l − ns ≥ s if and only if l ≥ ns + s = (n + 1)s ≤ N . Therefore, we have derived an
expression of the Haar basis over a uniform grid of S1. This simple formulation will be
very useful in Chapter . Also, can be considered as a clue in order to understand the
philosophy behind the following section.

. Massive computation

This current section is devoted to explain how we can calculate a certain matrix ΨPER
N

when Daubechies or Haar wavelets are used. To this end, recall that our framework will
be S1 and {ψPER

l }l∈Z+ the orthonormal basis given either Haar or Daubechies with p > 1
vanishing moments wavelets. In Section . we have already made some comments
concerning on the calculation of ψPER

l . Besides of this, the explanation is constructive
and tailored for our needs so that at the end we can stitch these ideas to generate a
method to evaluate and store the basis {ψPER

l }l∈Z+ . In view of that, we can trigger
an efficient way to calculate such matrix Ψ. But, who is ΨPER

N ? Before answering the
question, let us point out that first we will start with some results concerning on the
particular structure of ΨPER

N . After that, we will join Section . and . to explain how
we have performed a massive calculation of points in an efficient way.

Our framework, in this section will be an equidistantly mesh of points of the unit
circle. This section is divided in two items which corresponds to the first two rows and
the other ones. First of all, recall that from Theorem .. for each level j > 0 there are
n = 2j − 1 functions that form a bi indexed orthonormal basis which can be compacted
as follows l = 2j +n. Therefore, one must take j = −blog2(l)c and n = l−2j to reverse
the change of variables. On the other side, the equally spaced mesh of points of S1 is
given by θi = i/N where N = 2J and the integers i are between 0 and 2J − 1. Hence,
we define a square matrix ΨPER

N to be the N×N matrix whose entries (i, l) are ψPER
l (θi)

being N > 0 fixed.

The first two columns. The first column of the storage matrix it is simply, by Theo-
rem .., a column of 1’s which, if one wants to economize memory on a computer it
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can not be stored. The second column is a little bit tricky. Indeed, by definition of ΨPER
N

it corresponds to ψPER
0,0 and we claim that we only must evaluate the first half of θi’s.

Lemma ... Let ψ(x) be an R-Daubechies wavelet with p > 1 vanishing moments
then

ψPER
0,0 (θ) = −ψPER

0,0 (θ + 1/2) ∀ θ ∈ [0, 1/2].

Proof. By Proposition .. we need to show that ∀ θ ∈ [0, 1/2]

ψPER
0,0 (θ) =

∑
`∈Λθ

lim
k→∞

u(θ + `)′v(θ, k) = −ψPER
0,0 (θ + 1/2)

= −
∑
`∈Λθ

lim
k→∞

u(θ + 1/2 + `)′v(θ + 1/2, k).

To this end,

v(θ + 1/2, k) = 1
2p− 11′

∏
i∈dyad({2θ+1},k)

Mi = 1
2p− 11′

∏
i∈dyad({2θ},k)

Mi = v(θ, k),

where 1′ is the row-vector of ones. Now, notice that

b2θ + 2`c =

2` if 0 ≤ θ < 1/2,
2`+ 1 if 1/2 ≤ θ < 1.

⇒ 1− b2θ + 2`c =

 1− 2` if 0 ≤ θ < 1/2,
−2` if 1/2 ≤ θ < 1.

That is,

(.) (−1)1−b2θ+2`c =

−1 if 0 ≤ θ < 1/2,
1 if 1/2 ≤ θ < 1.

On the other side, for i = 0, . . . , 2p− 2 define

ιi = i+ 1− b2θ + 2`c =

i+ 1− 2` if 0 ≤ θ < 1/2,
i− 2` if 1/2 ≤ θ < 1.

In view of that and in order to proof the Lemma, we must show that the vector u(θ) has
the same components, perhaps in a different order, when θ is in [0, 1/2) and [1/2, 1).
Once this kind of equality is proven, by Equation (.) the proof follows because of the
“complementary” signs of each entry. To this end, recall that u(θ), in our case, is a
vector defined as

ui(θ) = (−1)1−b2θch[ιi], i = 0, . . . , 2p− 2,

where if for some i the index ιi is negative or larger than 2p−1, then the corresponding
component of ui is set to be  because the support of the filter h is 0, . . . , 2p−1. For our
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particular instance, and from the expressions above, it follows that for i = 0, . . . , 2p−2
the vector u has the following formulation

ui(θ + `) =


0 i+ 1− 2` < 0, i− 2` < 0,
−h[i+ 1− 2`] 0 ≤ θ < 1/2,
h[i− 2`] 1/2 ≤ θ < 1,
0 i+ 1− 2` > 2p− 1, i− 2` > 2p− 1.

In order to prove this kind of ‘complementary” property we split the argument in two
cases focusing the reasoning on the nonzero components of u. To this end, recall that
from Proposition .. we have a constraint on ` given by d1−p−θe ≤ ` ≤ b1−(1−p)−θc

(a) θ ∈ (0, 1/2) (therefore ιi = i + 1 − 2`). As we have said, 0 ≤ ιi ≤ 2p − 1. Thus,
0 ≤ i + 1 − 2` ≤ 2p − 1 and hence i + 1 ≥ 2` ≥ 1 − 2p + i + 1 which gives the
constraints on ` for θ ∈ (0, 1/2): 1 − p + i

2 ≤ ` ≤ i+1
2 . That is, the good range of

`’s is given by max (1− p, 1− p+ i/2) and min (b i+1
2 c, p− 1). Which, we claim, is

equivalent to

(.) 1− p+
⌈
i

2

⌉
≤ ` ≤

⌊
i+ 1

2

⌋
.

Hence, the component becomes

ui(θ + `) =
b i+1

2 c∑
`=1−p+d i2e

h[ιi] =
i+1−2b i+1

2 c∑
ι=i+1−2(1−p+d i2e)

h[ι] =
2(p−1)+µ(i)∑

ι=µ(i)
2ι

h[ι],

where µ(i) = i+ 1− 2
⌈
i
2

⌉
the last equality follows from Lemma ... Now, we are

almost done because it only remains to prove that on components of the vector u
there are the sum of the odd components of the filter h and the sum of the even
components in terms of µ(i). The proof, again taking into account Lemma .., goes
as follows

ui(θ + `) =
2(p−1)+µ(i)∑

ι=µ(i)
2ι

h[ι] =
2(p−1)∑
ι=0
2ι

h[µ(i) + ι] =
2(p−1)∑
ι=0

h[µ(i) + 2ι].

It only remains to show that max (1− p, 1− p+ i/2) = 1 − p + i/2 and
min (b i+1

2 c, p− 1) = b i+1
2 c. The first one it is obvious and the second one follows

from recalling that at most i is equal to 2p− 2. Thus

i+ 1
2 ≤ 2p− 2 + 1

2 = p− 1
2 .

Hence min (b i+1
2 c, p− 1) = b i+1

2 c and, consequently, Equation (.) is proven.
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(b) θ ∈ (1/2, 1) (therefore ιi = i− 2`). Doing similar arguments as before the constraint
on ` for θ ∈ [1/2, 1) is max (1− p, i+1

2 − p) ≤ ` ≤ min (b i2c, p− 1) which, since for
the range of i’s i/2 ≤ (2p− 2)/2 = p− 1, is equivalent to⌈

i+ 1
2

⌉
− p ≤ ` ≤

⌊
i

2

⌋
.

That is,

ui(θ + `) =
b i2c∑

`=d i+1
2 e−p

h[ιi] =
i−2(−p+d i+1

2 e)∑
ι=i−2b i2c

2ι

h[ι] =
2(p−1)+i−2(−p+d i−1

2 e)∑
ι=i−2b i2c

2ι

h[ι],

where the last equality comes from the fact that 2 − 2 = 0. Indeed, i −
2
(
−p+

⌈
i+1

2

⌉)
= 2p − 2 + i + 2 − 2

⌈
i+1

2

⌉
= 2(p − 1) + i − 2

(
−p+

⌈
i−1

2

⌉)
. Now,

again by Lemma ..

ui(θ + `) =
2(p−1)+µ̃(i)∑

ι=µ̃(i)
2ι

h[ι] =
2(p−1)∑
ι=0
2ι

h[µ̃(i) + ι] =
2(p−1)∑
ι=0

h[µ̃(i) + 2ι].

where µ̃(i) = i − 2
⌊
i
2

⌋
and as in the case of θ ∈ [0, 1/2) the components of u are

the sum of the odd (or even) components of the filter h in terms of µ̃(i).

Now we have all the tools to conclude the proof. Indeed, by Proposition .. it follows
that

∑
n∈Z

h[2n] =
∑
n∈Z

h[2n + 1] which are precisely, by the above computations, the

components of the vectors u′ and ũ where they are vectors for θ ∈ (0, 1/2] and θ ∈
(1/2, 1] respectively. Finally, from Equation (.), fixed i it follows that u′i = −ũi. In other
words, we have shown that

ψPER
0,0 (θ) = −ψPER

0,0 (θ + 1/2) ∀ θ ∈ (0, 1/2]

because of u. Finally, by the continuity of ψPER
0,0 (θ) it follows that, just by taking a

sequence θn such that its limit is zero, the above expression is true for all θ ∈ [0, 1/2).
Indeed,

ψPER
0,0 (0) = lim

n→∞
ψPER

0,0 (θn) = − lim
n→∞

ψPER
0,0 (θn + 1/2) = −ψPER

0,0 (1/2).

The following Lemma is the proof of some of the properties used in the above
Lemma.
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Lemma ... For 0 ≤ i ≤ 2p − 2 consider the following binary functions given by
µ(i) = i+ 1− 2

⌈
i
2

⌉
and µ̃ = i− 2

⌊
i
2

⌋
. Then

(a) for all 0 ≤ i ≤ 2p− 2 it is true that µ(i) = i+ 1− 2b i+1
2 c,

(b) for all 0 ≤ i ≤ 2p− 2 it is verified that µ̃(i) = i+ 1− 2
⌈
i−1

2

⌉
,

(c) for all 0 ≤ i ≤ 2p− 2 the functions µ and µ̃ are binary and complementary. That is,

µ(i) =

1 if i is even
0 if i is odd

and µ̃(i) =

0 if i is even
1 if i is odd

.

Proof. We need to prove the three properties.

(a) In order to prove the statement, it suffice to show that 2
⌈
i
2

⌉
= 2

⌊
i+1

2

⌋
. But if i is

even then
⌈
i
2

⌉
= i

2 and
⌊
i+1

2

⌋
=
⌊
i
2 + 1

2

⌋
= i

2 . On the other hand, when i is odd, the
equality is true by the properties of d·e and taking into account that i+ 1 is even.

(b) The proof of the statement follows similar argument as the previous one. Indeed, it
suffice to prove that 2

⌈
i−1

2

⌉
= 2

⌊
i
2

⌋
. When i is even, then

⌈
i−1

2

⌉
=
⌈
i
2 −

1
2

⌉
=
⌊
i
2

⌋
.

On the contrary, if i is odd i− 1 is even and
⌈
i−1

2

⌉
= i−1

2 =
⌊
i
2

⌋
.

(c) By the above item, µ(i) = i + 1 − 2
⌈
i
2

⌉
= i + 1 − 2b i+1

2 c = i + 1 − 2
⌊
i
2

⌋
. That is,

µ(i) = µ̃(i) + 1. Now, it only remains to show the values of µ(i) and this is done
splitting i in the even and odd case. Actually, if i is even then µ(i) = i + 1 − 2 i2 =
i+ 1− i = 1 and µ(i) = i+ 1− 2 i+1

2 = i+ 1− i− 1 = 0 if i is odd.

And, after such tedious Lemmae, it is almost clear what we have claimed at the
beginning of the present section: only the half of the work must be done. Now, it
remains to show how are the rest of the columns. We will see that, as we have
pointed out when using Haar’s wavelet, ΨPER

N has a kind of auto-similarity when one
uses a Daubechies wavelet.

The rest of columns. For the rest of columns one can save time computation (and/or
memory) in a similar manner as the previous Lemma. It turns out that the l > 1
columns of ΨPER

N follows some kind of circulant, by blocks, matrix. That is, for each
block of size blog2(l)c (which corresponds to the level −j) one can establish a rule to
construct, from some “privileged values”, the complete block. For instance, if l = 1
one of “privileged” set of points are θ ∈ [0, 1/2]. Indeed,

ψPER
−1,1(θ + 1/2) =

∑
`∈Z

ψ(2θ + 1 + 2`− 1) =
∑
`∈Z

ψ(2θ + 2`) = ψPER
−1,0(θ).
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The above chain of equalities guides us to the following Lemma.

Lemma ... Let ψ(x) be an R-Daubechies wavelet with p > 1 vanishing moments
and consider and fix a block of size blog2(l)cwhich generates a sequence of consecutive
naturals k between 0 and 2j − 1. Then for all x ∈ [0, 1/2j ] and 0 ≤ n ≤ 2j − 1

ψPER
−j,k(x) = ψPER

−j,n

(
x+ n− k

2j
)
,

where n − k = n − k (mod 2j). Also this fills in all the block of size blog2(l)c of the
matrix ΨPER

N .

Proof. Let l fix a block of size blog2(l)c and consider a fixed k which is, by construction,
less than 2j (notice that n also). We must distinguish two cases:

n− k ≥ 0: then n− k (mod 2j) = n− k and therefore,

ψPER
−j,n

(
x+ n− k

2j
)

=
∑
`∈Z

ψ
(
2jx+ n− k + 2j`− n

)
=

∑
`∈Z

ψ
(
2j(x+ `)− k

)
= ψPER

−j,k(x).

n− k < 0: then n− k (mod 2j) = n− k + 2j and therefore,

ψPER
−j,n

(
x+ n− k

2j
)

=
∑
`∈Z

ψ
(
2jx+ n− k + 2j + 2j`− n

)
=

∑
`∈Z

ψ
(
2j(x+ `)− k

)
= ψPER

−j,k(x),

where the last equalities comes from Theorem .. because for each j, there are
only 2j elements in the basis which is almost the end of the proof.

In order to conclude it, it only remains to point out that moving k for all the integers
between  and 2j , and also n, we recover all the entries (i, l) of the block of size
blog2(l)c.

Remark ... In view of the above Lemma, it is important to stress that ` ∈ Z. We
omit ` ∈ Λθ because the assertion follows from the techniques used in Lemma .. and
the proof of Lemma ... However, this gives us a method to fill in the matrix ΨPER

N .
Indeed, for a block of size blog2(l)c we fix θi = i/N and n.
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To conclude this “storage” part we recover the comments which concerns to
the “goodness” of the matrices generated above. The matrix ΨPER

N , if ψ(x) is an R-
Daubechies wavelet with p ≥ 1 vanishing moments, is sparse if N = 2J is big enough.
That is, ΨPER

N has the most of the elements equal to zero due to the compact support
of ψ(x). Indeed, by Theorem .. and Proposition .., we have that each ψPER

l has
compact support. Therefore, unfolding l = 2j +n, we have that at each j the support is
divided by 2. This allows us to ensure that there exist a j0 such that ψPER

l = ψl if j > j0.
Hence, because of the support, we will have a large set of columns such that they are
populated by zero except a range which is inversely proportional to 2j . In other words,
typically the matrix ΨPER

N will have the entries of the j0 first columns with nonzero
ψPER
l (θi)’s. After that j0, the columns will become zero except for a small range of

entries. This, at a first approach, god property will produce bad consequences as we
will see later on in Section ... Finally, recall that the support of Haar is [0, 1) and it is
the smallest one of the Daubechies family wavelets. Hence the above arguments are
also valid for the Haar wavelet. And, moreover, the number of non-zero elements of
the N ×N matrix ΨPER

N is N log2(N) +N = N(J + 1).
It only remains what we have sketched at the beginning of the current section:

the algorithms to calculate ΨPER
N (and Ψ̃PER

N also). This will be the main topic of the
following lines.

.. The algorithms

Thereupon we will join the results of the previous section and those ones in Sec-
tion .., .. Hence, we will provide two algorithms to work and compute Daubechies
wavelet with p > 1 vanishing moments. To this end and in order to fix ideas, let us start
by recalling that for the double-precision binary floating-point the IEEE 754 standard
specifies a binary64 as having:

(a) sign bit:  bit,

(b) exponent width:  bits,

(c) significant precision:  bits which  are explicitly stored as di’s.

Therefore, a number x is represented as follows

(−1)sign
(

1 +
52∑
i=1

d52−i2−i
)
× 2e−1023.

Keeping this in mind, we sketch how one can compute v(·) from Theorem ... Indeed,
when 0 ≤ x < 1 then sign = 0 and the number x is:
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• If exponent is zero then x = 0.Mantisa × 2−1022 (called subnormal numbers).
A word of caution must be done. Indeed, the maximum of the subnormal
double is 2.2250738585072009 × 10−308 which is very smaller than the number
7.8886090522101180541 × 10−31 = 2−100. In view of that, all subnormal num-
bers can be mapped to zero when doing numerics. In this case, exponent will be
strictly positive as in the next case.

• If exponent is non-zero then x = 1Mantisa×2e, where according to the IEEE 754
convention e = exponent − 1023. The fact that x < 1 implies that e ≤ −1; that
is, 0 < exponent ≤ 1022. Therefore we have that x = 0.1Mantisa × 2e+1. Hence
we can conclude that x = 0.00 . . . 001Mantisa where the number of initial zeros
is −(e + 1) = 1022− exponent.

Summarizing, since we are in S1 we take numbers θ ∈ [0, 1). Therefore, if we
eliminate the subnormal numbers, then we have θ = 0.00 . . . 001Mantisa where the
number of initial zeros is 1022 − exponent. Clearly, 0 ≤ 1022 − exponent < 1022 must
be verified.

On the other side, in order to get ψPER
l (θi) we need to use Proposition ... Never-

theless, it should be noted that first of all it is necessary to calculate the Daubechies –
Lagarias products v(θ) from Theorem ...

Remark ... Recall that v(x) from Theorem .. is given by the following infinite
product

v(x) = lim
n→∞

1
2p− 11′

∏
i∈dyad({2x},n)

Mi,

where the matrices M0 and M1 are explicitly given by Equation (.) and (.). For the
particular instance of 0 and using the idea behind of the well known Power Method,
a procedure which produces the eigenvalue of the biggest modulus using powers of
matrix, we can derive v(0). Indeed, the above expression is equivalent to

v(0) = lim
n→∞

1
2p− 11′

∏
i∈dyad({0},n)

Mi = lim
n→∞

1
2p− 11′

n∏
i=0

M0.

Therefore, v(0) is the eigenvector of biggest eigenvalue of M0 because the last infinite
product is only composed by the matrix M0.
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Thereafter, we are ready to derive the implementation of the calculation of the
Daubechies – Lagarias products v(x) from Theorem .. and using Proposition ...

Algorithm : The calculation of the Daubechies – Lagarias products v(x). Recall
that & is the Binary AND operator and copies a bit to the result if it exists in both
operands. Also, >> is the Binary Right Shift operator. The left operands value is
moved right by the number of bits specified by the right operand. Finally, vk)

stands for the k-th multiplication to perform.
DaubechiesLagariasProducts(θ, M0, M1, m0, v){

Data: The point θ ∈ S1, the matrices M0, M1 and the eigenvector m0 of M0.
Result: The value of the vector v(θ).
θ̃ = {2θ}, m = Mantisa(θ), v = 1′

if θ̃ = 0 then
v = m0

else
pb = m & 1, m >>= 1, nppb = 1
for i = 0 to 51 do

b = m & 1
if b = pb then nppb + +
else Mpbv

nppb), pb = b, nppb = 1

m >>= 1
end for
if pb = 1 then nppb + +, Mpbv

nppb)

else M0v
nppb), M1v

nppb)

−(e + 1) = 1022− exponent(θ̃)
if −(e + 1) < 53 then

M0v
nppb)

else
M0v

−(e+1)−b − (e + 1)/52c52)

for i = 0 to − (e + 1)/52 do
M0v

52)

end for
end if

end if
}
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The above algorithm has several comments which are outlined in the following
Remark.

Remark ... We want to emphasize several things from the Algorithm .

(a) The first thing to notice is at the first line. Indeed, we need to multiply many times
the matrices M0 and M1. In general, the matrix multiplication if carried out naively
spendsO(N3) running time. However, this time can be improved in our case. Indeed,
setting v to be the column vector of ones and starting from the right hand side, doing
Mifv, then the time decreases to O(N2), where if is the last digit of the finite binary
expansion of θ. Even doing it naively. Such naively way, since the matrices M0 and
M1 are relatively small, seems to be the best choice to proceed.

(b) Related with the above point, since the matrix product of M0 and M1 is not com-
mutative, we need the binary expansion in the right order. And the right order
is the backwards order because we start the multiplication with Mif . Of course,
taking N to be a power of two, such binary expansion for the points i/N , with
i = 0, . . . , N − 1 is easy to derive. Therefore, in such situation the Algorithm  can
be better performed.

(c) It is important to emphasize that the procedure DaubechiesLagariasProducts, as
it can be seen in the proof of Proposition .., will be called only once to calculate
ψPER
l (θi).

Now we can give the implementation, which is a direct consequence of the proof of
Proposition .., for the evaluation of ψPER. Let us emphasize that the main ingredient
v(x) is given by Algorithm  and the filter h[n] is pre-stored.
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Algorithm : The calculation of ψPER
l (θ) using the Daubechies – Lagarias products.

Recall that ? : is the Ternary Conditional Operator. Also, can be commonly re-
ferred to as the conditional operator. Notice that is the verbatim application of
Proposition ...

PERpsijntheta(θ, 2j , Ni, h[n]){
Data: The point θ ∈ S1, the dimension 2j , Ni = 1− p and the filter h[n].
Result: The value of ψPER

l (θ).
...
DaubechiesLagariasProducts(θ, v);
for ` =

⌈
Ni
2j − θ

⌉
to
⌊
−Ni2j − θ

⌋
+ 1 do

for n = max (d2jθe+ 2j`− p, 0) to min (b2jθc+ 2j`−Ni, 2j − 1) do
θ̃ = θ + 2j`− n;
if θ̃ ≤ Ni or θ̃ ≥ 1−Ni then

return 0;
else

for i = 0 to 2(1−Ni) do
if 0 ≤ i+ (1− b2θ̃c) ≤ 2(1−Ni) then ψPER

j,n (θ)+ = (i+ (1− b2θ̃c)
mod (2) ? h[i+ (1− b2θ̃c)] : − h[i+ (1− b2θ̃c)])v(i) ;

end for
end if

end for
end for

}

After this computational aspects of the above theory, we are ready to work with
wavelets ψPER

l (θ) and compute the desired wavelet coefficients dPER
−j [n]. Of course,

there are several ways to get such coefficients. In particular, we will explain three of
them in the following sections.

. Two ways to get the coefficients

In the present section, we present and develop two ways to get 〈f, ψ−j,n〉, namely the
Fast Wavelet Transform and the solution of a (non)-linear system of equations. Also,
some ideas of an ad-hoc Gaussian quadrature rule will be given. The first two ones
will be strongly used in Chapter  and  where our natural environment will be S1. To
this end, and as usual along this memory, firstly we will present the methods in R and
then, if it is needed, we will modify the methods in order to be in S1.

.. Fast Wavelet Transform

Recall that it is possible to approximate maps f ∈ L 2(R) by linear combinations of
wavelets. Indeed, by using the expression (.) and Theorem .., the projection of f to
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V−J ⊂ L 2(R) : ∑
n∈Z
〈f, φ−J,n〉φ−J,n,

is a good approximation of f provided that J > 0 is large enough. We want to rewrite
such an approximation as linear combination of wavelets of the form

f ∼
∑
n∈Z
〈f, φ0,n〉φ0,n +

J−1∑
j=0

∑
n∈Z
〈f, ψ−j,n〉ψ−j,n ∈ V0 ⊕

J−1⊕
j=0
Wj .

To do it, as usual, we define the coefficients

aj [n] := 〈f, φj,n〉 and dj [n] := 〈f, ψj,n〉

for j, n ∈ Z. With this notation, the initial approximation of f becomes∑
n∈Z

a−J [n]φ−J,n.

By (.), for every j ∈ Z we have

(.)
∑
n∈Z

a−j [n]φ−j,n =
∑
n∈Z

a−j+1[n]φ−j+1,n +
∑
n∈Z

d−j+1[n]ψ−j+1,n.

Now, to obtain the coefficients a−j+1[n] and d−j+1[n] from a−j [n], we use the Fast
Wavelet Transform (FWT) given by (see [Mal, Theorem .]):

(.)


aj+1[p] :=

∑
n∈Z

h[n− 2p]aj [n] and dj+1[p] :=
∑
n∈Z

g[n− 2p]aj [n];

with g[p] = (−1)1−ph[1− p]

for every j, p ∈ Z. Hence, from the iterative use of (.) and (.) starting with the
approximation

∑
n∈Z a−J [n]φ−J,n we obtain the approximation of f that we are looking

for:

f ∼
∑
n∈Z

a0[n]φ0,n +
J−1∑
j=0

∑
n∈Z

d−j [n]ψ−j,n ∈ V0 ⊕
J−1⊕
j=0
Wj .

For (numerical) applications such infinite approximations are usually not available
since we often work with finite information about our function. For this we need a
similar theory for subspaces of Vj and Wj of finite dimension. For j ≥ 0 we define

V∗−j :=
〈
φ−j,0, φ−j,1, . . . , φ−j,2j−1

〉
⊂ V−j , and

W∗−j :=
〈
ψ−j,0, ψ−j,1, . . . , ψ−j,2j−1

〉
⊂ W−j ,
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where 〈f1, f2, . . . , fn〉 denotes the subspace of L 2(R) generated by the linear combi-
nations of f1, f2, . . . , fn. From the comment at the end of Section .. of [Mal] (see
also [Fra, Lemma .] for a more detailed account), it follows that

(.) V∗−j+1 =W∗−j ⊕ V∗−j

for every j > 0.
Now, given a function f ∈ L 2(R) we can take a good finite approximation of the

map given by its projection to V∗−J :

(.) f ∼
2J−1∑
n=0

a−J [n]φ−J,n,

provided that J is large enough. Again, we are interested in writing such an approxima-
tion as linear combination of wavelets, but in this case this expansion must be finite:

f ∼ a0[0]φ0,0 +
J−1∑
j=0

2j−1∑
n=0

d−j [n]ψ−j,n ∈ V∗0 ⊕
J−1⊕
j=0
W∗−j .

To obtain this expression observe that (.) implies

(.)
2j−1∑
n=0

a−j [n]φ−j,n =
2j−1−1∑
n=0

a−j+1[n]φ−j+1,n +
2j−1−1∑
n=0

d−j+1[n]ψ−j+1,n

for j > 0. Now, to obtain the coefficients a−j+1[n] and d−j+1[n] from a−j [n], instead of
using formulae (.), we use the following circular convolution version of them (see
[Mal, Section ..] or the proof of [Fra, Lemma .]):

(.)


a−j+1[p] :=

2j−1∑
n=0

h[n− 2p]a−j [n] and d−j+1[p] :=
2j−1∑
n=0

g[n− 2p]a−j [n];

with g[p] = (−1)1−ph[p]

for every j > 0 and p ∈ {0, 1, . . . , 2j−1 − 1}. Hence, with the iterative use of (.) and
(.) starting with the approximation (.) we obtain

(.) f ∼ a0 +
J−1∑
j=0

2j−1∑
n=0

d−j [n]ψ−j,n ∈ V∗0 ⊕
J−1⊕
j=0
W∗−j .

as we wanted.

Remark ... It is important to point out that the “finiteness” of the FWT turns the
orthonormal basis of W∗−j into an orthonormal basis of S1 for j > 0. Therefore we do
not need anything more when we will have to deal with maps which naturally live in
S1 in the forthcoming.
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To effectively compute such an approximation one remaining problem is left :
namely, to find a good estimate of the initial coefficients a−J [n] = 〈f, φ−J,n〉. In the
literature there is a lot of discussion on how to compute these coefficients, but a sim-
ple customary approach is to use the following estimate (see, for instance, [Fra,
Lemma .] and its proof):

Lemma ... Assume that f verifies |〈f, φj,n〉| <∞ for every j, n ∈ Z× Z and

|f(x)− f(y)| ≤ C1 |x− y|α with α ∈ (0, 1]

for all real numbers x, y and a constant C1 < ∞. Suppose that the scaling function φ
from an MRA {Vj}j∈Z is such that

φ ∈ L 1(R), φ̂(0) =
∫
R
φ(x) dx = 1 and

∫
R
|x|α φ(x) dx < C2.

Then, for every j, n ∈ Z× Z,

∣∣∣〈f, φj,n〉 − 2j/2f(2jn)
∣∣∣ < C1C22

j

(
α+ 1

2

)
.

As a corollary of this lemma we see that if f is Lipschitz, then

a−J [n] ≈ 2−J/2f(2−Jn).

Let us explain the problem of such approximation. To this end, let us define

ã−J [n] = a−J [n]± ε,

where a−J [n] are the real |〈f, φj,n〉| coefficients. Since, by Proposition (..), the scaling
filter verifies

∑
n∈N

h[n] =
√

2 then, by Equation (.), one has that

ãj+N [p] = ãj+N [p]± 2N/2ε.

Therefore, at each step the coefficients aj [n] are worse inducing some error, in the finite
case, to the dj [n] ones. But moreover, in Lemma .. one only demands the existence
of 0 < C1 <∞ such that

|f(x)− f(y)| ≤ C1 |x− y|α with α ∈ (0, 1].

The problem is that such a C1 exists but it can highly complicate the election of a good
J in order to minimize the error that gives a “sufficiently” good approximation.
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.. A (non)–linear system of equations

Recall that, given a function f we want to calculate

〈f, ψ−j,n〉 =
∫

supp(ψ−j,n(x))
f(x)ψ−j,n(x) dx

in order to get an expression like

a0 +
J∑
j=0

2j−1∑
n=0
〈f, ψ−j,n〉ψ−j,n.

A good way to attack the above problem is take a similar approach of the well Col-
location Method. That is, perform a linear system of equations, being 〈f, ψ−j,n〉 the
unknowns, since one can create such system using the following identity

f(xi) = a0 +
J∑
j=0

2j−1∑
n=0
〈f, ψ−j,n〉ψ−j,n(xi),

where xi ∈ R are given. Now we know how to evaluate ψj,n(xi) and hence we can
create a system of equations in order to calculate the desired wavelet coefficients. This
will be, precisely, the main topic of the following lines. But let us make a final comment
related to the value of the wavelet at a single point and the system to solve.

Recall that we are specially interested in Daubechies wavelet, a kind of wavelets
which are compactly supported. That is, depending on whether xi is placed then the
wavelet value is zero. Therefore, the system to solve is a large sparse system (specially
when one considers the Haar wavelet).

Let us resume us explanation by emphasizing that the above system of equations
gives rise a non linear system of equations. To solve it, we will use Newton’s method.
Following its one dimensional formulation, one has to multiply by the inverse of the
Jacobian matrix JF(xn)

xn+1 = xn − JF−1(xn)F(xn).

But, one can reformulate the above expression by solving the system of linear equations

JF(xn)(X) = −F(xn)

for the unknown X = xn+1 − xn and updating correctly the seed x0.

Remark ... As we will see in Chapter  and  we will work with a Newton’s method
tailored for our particular needs. In addition, JF and F will be very specific. Hence,
we will stop here the explanation and we will be focused on how we will solve the
aforesaid linear system iteratively.
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Solving the system. Let A be a n×n nonsingular matrix and suppose that we want to
solve Ax = b, where b is a vector of dimension n. To this end, consider the polynomial
m(x) of degree k such that m(A)b = 0 and given by

m(x) = xk −
k−1∑
j=0

αjx
j .

This polynomialm(x) is, precisely, the minimum polynomial for the matrix Awhich, by
the Cayley-Hamilton theorem, its degree verifies k ≤ n and, also, notice thatm(A)b = 0
gives us the solution of the system. Indeed,

m(A)b =

Ak − k−1∑
j=0

αjA
j

 b = 0⇒ A

the unknown x︷ ︸︸ ︷(
Ak−1b− αk−1A

k−2b− · · · − α1b

α0

)
= b.

On the other side, consider the following k-dimensional vectorial space given by

Kk(A, b) =
〈
b, Ab,A2b, . . . , Akb

〉
where k is, also, the degree of the minimal polynomial m(x). In general, the linear
subspaces spanned by the images of b under the powers of A are is called the k-Krylov
subspace. The method used to solve Ax = b, roughly speaking, is based on “good
approximations” of x by a sufficiently good polynomial. All of the theoretical tools for
understanding the Krylov solvers are borrowed from [Gut, Mey, Saa, vdV] and
this will be the topic of the following paragraphs and this kind of techniques are justified
because of the sparsity of the system that we want to solve.

Definition ... A Krylov space solver is an iterative method starting from some initial
approximation x0 and the corresponding residual r0 := b− Ax0 and generating for all,
or at least most n, until it possibly finds the exact solution, iterates xn, such that

xn − x0 = pn−1(A)r0 ∈ Kn(A, r0)

with a polynomial pn−1 of degree n − 1. For some n, xn may not exist or pn−1 may
have lower degree.

Remark ... Observe that, by definition, rn := b− Axn and hence if the sequence of
the residuals, rn, converges to zero then xn is the solution.

One idea to derive the Krylov space solvers is through the projection methods to
solve linear systems. Let Ax = b be the linear system that we want to solve and
suppose that K and L are two orthogonal linear subspaces of dimension m: K⊥L. A
projection method is a process to find x̃ such that, under some conditions x̃ ∈ K and the
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residual, r = b− Ax̃, is orthogonal to L. In other words, the idea behind the projection
methods is find x̃ ∈ K such that r⊥L in the following way:

A−1b ≈ xm = x0 + pn−1(A)r0

and, of course, if the initial guess is zero then A−1b ≈ pn−1(A)b. That is, Krylov space
solvers must be understood as iterative methods to solve Ax = b from an initial guess
x0.

Definition ... The orthogonality condition over the residual, r⊥L, is called the
Petrov-Glaerkin condition.

Let us make a final informal comment related to the “shape” and the “size” of the
matrix A which will be the motivation for the following paragraph. There are several
questions refereed to thematrix like isA symmetric? How are the eigenvalues? It is well
conditioned? One can get easily its transpose? Depending on the sign of the answers,
obviously, a concrete Krylov space solver method will be better than another one.
For our purposes, since we are considering Daubechies wavelets, our matrix A will be
very sparse (due to the compact support, nonsingular, non symmetric, with difficulties
to calculate its transpose and with storage problems. It seems that the best adapted
Krylov method to solve our (non)-linear system is the Generalized Minimum Residual
Method. Since it is not very common its use and, also, for sake of completeness we
have decided to include a quick overview of the GMRES algorithm.

The GMRES algorithm. As it has been already said, we will need to solve a linear
system of equations because we are using the Newton’s Method. The way to solve such
linear systemwill be the GeneralizedMinimum Residual Method. In the following lines
we will make a quick overview of such method. To this end, let Ax = b be the linear
system of equations that we want to solve, where A is n × n nonsingular matrix. The
Generalized Minimum Residual Method, GMRES from now on, is a projection method
where the subspaces K and L are taken to be Km and AKm respectively being

Km :=
〈
v,Av,A2v, . . . , Am−1v

〉
, v = r0

‖r0‖2
.

In aim to create an orthonormal basis, one can perform the Arnoldi iteration given by
the following algorithm.

The algorithm breaks down when w is the zero vector. This happens when the
minimal polynomial of A is of degree m. As a sub-product, the Arnoldi iteration gener-
ates a (m + 1) ×m Hessenberg matrix, H̃m, whose entries different from zero are the
coefficients hi,j of Algorithm .
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Algorithm : The Arnoldi process, expressed in a vectorial way for convenience.
Arnoldi(A,V ){

Data: Matrix A and the previous m vectors, vm, from the mk-th iterate of gmres
stored in the matrix V .

Result: The new vector vm+1 from the Arnoldi process related to the m-th iterate of
gmres.

for j = 1 to m do
u = Avj ;
h1,m = v>1 u, . . . , hm,m = v>mum;
w = u− (h1,mv1 + · · ·+ hm,mvm);
hm+1,m = ‖w‖2;
vm+1 = vm+1/ ‖w‖2

end for
}

Proposition .. (Arnoldi’s Algorithm, Proposition . [Saa]). Let us consider a vector
v1 such that ‖v1‖2 = 1 and it is n-dimensional. Assume that the Algorithm  does not
stop before the m-th step. Then the vectors v1, v2, . . . , vm form an orthonormal basis
of the Krylov subspace

Km :=
〈
v1, Av1, A

2v1, . . . , A
m−1v1

〉
.

Now, consider Vm to be the n×m matrix with column vectors v1, . . . , vm it can be
shown that AVm = Vm+1H̃m since for j = 1, 2, . . . ,m

Avj =
j+1∑
i=1

hi,jvi.

With this trick in mind let us derive, as it is done in Section . from [Saa], the GMRES
algorithm by considering x ∈ x0+Km rewritten as x = x0+Vmy, where y is anm-vector.
Now define

J(y) = ‖b−A(x0 + Vmy)‖2

and, by construction of Vm+1, one has that

b−A(x0 + Vmy) = r0 −AVmy = βv1 + Vm+1H̃my = Vm+1(βe1 − H̃my)

where β = ‖r0‖2. Therefore, since Vm+1 has its column vectors orthonormal it is true
that J(y) = ‖b−A(x0 +Vmy)‖2 = ‖βe1−H̃my‖2. The GMRES gives the unique vector of
x0 +Km such that J(y) is minimum. That is, the iterative construction is the following

xm = x0 + Vmym,
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where ym = argmin‖βe1− H̃my‖2. We are ready to write down the GMRES algorithm.
Algorithm : GMRES algorithm. The matrix V are the vectors vk stored in
columns.

gmres(A, x, b, maxit){
Data: Matrix A, x, b ∈ Rn and maxit ≤ n is the maximum numbers of iterates

allowed.
Result: x ∈ Rn such that minimizes ‖Ax− b‖2.
nb = ‖b‖2, r = b−Ax0, ρ = ‖r‖2, v1 = r/ρ, g = ρ · e1;
while k < maxit do

Arnoldi(A,V );
Compute ym = argmin‖ρe1 − H̃my‖2;

end while
x = x0 + V ym;

}

Proposition .. (GMRES Algorithm, Proposition . [Saa]). Let A be a nonsingular
matrix. Then, the GMRES algorithm breaks down at step j, that is hj+1,j = 0, if and
only if the approximate solution xj is exact.

Remark ... It is clear that Algorithm  is a very simplified version of the GMRES
algorithm. In fact, with such presentation it is masked the tricky way to derive ym.
Actually, to do such calculation in an efficient way is by solving an upper triangular
linear system of equations (see [Saa, Section ..]). And, moreover, from such trian-
gular linear system, derived from Givens transformations of the matrix H̃m, it can be
controlled, at each iteration, how far away we are from the solution.

As we will see in Chapter  we will need another solver: Transpose-Free Quasi-
Minimal Residual method, TFQMR from now on. For sake of completeness, in Algo-
rithm  it is displayed its complete implementation. However, we only describe some
informal comments related to TFQMR because the underlying ideas of such method
are similar as those ones of GMRES. First of all, let us state the following Corollary.

Corollary .. (Corollary .. [Kel]). Let A a n×n matrix and let x0, b ∈ Rn given.
Thenwithin (n+1)/2 iterations the TFQMR iteration will either break down or terminate
with the solution.

That is, TFQMR goes faster to the solution. In fact, it can be seen that the residual
of GMRES can control the quasi-residual of TFQMR. The name of quasi arises from
the fact that the basis of Krylov subspace is constructed to be biorthogonal. Also, the
biorthogonalization minimizes some breakdowns in the underlying Arnoldi procedure.
However, if the memory it is not a problem then GMRES is often a good choice. In
other words, is better to perform a good precondition strategy than try to accelerate
the convergence (see e.g [Saa]). In view of that and in order to conclude this kind of
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Algorithm : TFQMR algorithm. Notice that tol is set to be ε ‖b‖2 for a given
ε. The multiplications A against yi, ui (with i = 1, 2) must be interpreted as the
construction of the Krylov subspace.

tfqmr(A, x, b, maxit, tol){
Data: Matrix A, x, b ∈ Rn and maxit ≤ n is the maximum numbers of iterates

allowed.
Result: x ∈ Rn such that quasi-minimizes ‖Ax− b‖2.
w = y1 = r0 = b−Ax0, u1 = v = Ay1;
ρ0 = r>0 r0, τ = ‖r0‖2 , θ = 0, η = 0;
while k < maxit and τ

√
m+ 1 < tol do

σk−1 = r>0 v, α = ρk−1/σk−1, y2 = y1 − αv, u2 = Ay2;
for j = 1 to 2 do

w = w − αuj , d = yj + (θ2η/α)d;
θ = ‖w‖2/τ, c = 1/1 + θ2, τ = τθc, η = c2α;
xk = xk−1 + ηd;
Compute τ

√
m+ 1;

end for
ρk = r>0 w, β = ρk/ρk−1, y1 = w + βy2, u1 = Ay1;
v = u1 + β(u2 + βv);

end while
}

paragraph, let us recall that a right precondition strategy which is, instead of solving the
original linear system Ax = b solve firstly AP−1y = b and Px = y to get the desired
solution x. Of course, a left precondition strategy is solve PAx = Pb. In both strategies,
what is wanted is a better matrix or a simpler linear system than the original ones.
Clearly, the above techniques can be reconfigured to use the precondition strategies.
We will come back to such topic in Chapter .

.. Quadrature rules using wavelets

In what follows, we will explain how one can derive a quadrature rule using a
Daubechies wavelet as a weight function. However, since our experiments do not yield
to an efficient and fast method (see the final comments of the Chapter ) it will be
presented in a rough way for two reasons. In view of that, the reader may omit this
part. The first reason is to underscore one way of the aforesaid inefficiency. The sec-
ond one, is to show another usage of the filter h[n]. Concretely, the quadrature rule is
constructed using h[n] and, hence, the values of ψ(x) are no longer needed.

Recall that there are several ways to create a quadrature rule and one of them is
to allow that the distance between interpolation points not be constant, such as the
Gaussian quadrature formulas which are, usually, more accurate. Roughly speaking, an
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n-point Gaussian quadrature rule is constructed to give exact results for polynomials
of degree at most 2n − 1. This is done by a choice of some special points xi and
create weights `i for i = 1, . . . , n. It is customary to use, as a domain of integration,
for a Gaussian quadrature rule the interval [−1, 1] and therefore the method has the
following form ∫ 1

−1
f(x) dx ≈

n∑
i=1

`if(xi).

The problem is to find a correct w(x) that provides us a “good” weight function in our
case.

The first step to construct a quadrature rule is to give a sequence of orthogonal
polynomials respect the inner product defined by the positive weight w(x). But if one
looks a picture of a Daubechies wavelet, ψ(x), clearly it is not necessarily nonnegative
and hence, in general, it cannot be a canonical weight function. Following [BBDK,
BBD+, HV], for example, one can fix the problem with the wavelets: if it is required
that w(x) ≥ 0, just define

(.) w(x) = ψ(x) + cχsupp(ψ(x))(x),

with c > 0 sufficiently big to becomew(x) ≥ 0. This method is known as lifting device an
was introduced in [BBDK]. Therefore, if we pick a “good” c, we have a good expression
for a weight given by Equation (.) and hence we are able to construct a sequence
of orthogonal polynomials using a Daubechies wavelet as a weight defining the inner
product by

(.) 〈f, g〉w =
∫

(f(x) · g(x)) · w(x) dx.

Remark ... Before continue, let us make a comment about the techniques that
we will develop in the following. We have performed some quadrature formulas for
refinable functions with filters h[n] from the tables. But another step beyond can be
done following the parametrization of h[n] (see [Reg, RS]) instead of the “explicit”
h[n] for the Daubechies wavelets in the sense of Remark ... The reason is simple,
with this parametrization one expects the increase of the degree of accuracy on the
computer calculations and also allows us the use of a symbolic calculator.

Recall that an important tool on the topic of orthogonal polynomials on the Real
Line is the management of the moments under the action of a weight. Now we are
ready to write a rule to evaluate the moments for our “special” weight by a recursion.
To this end, we will state some technical results to forge such recursion which leads us
to derive the quadrature formulas.
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Lemma ... Let us define Ik =
∫
R x

kφ(x) dx then the following relation on the
Continuous Moments for the scaling function

Ik =
√

2
2k+1 − 2

∑
n∈Z

h[n]
k−1∑
i=0

(
k − 1
i

)
nk−1−iIi

is verified.

Proof. Let us notice that with this notation and by the admissibility condition we have
that I0 = 1. Now, by using Equation (.)∫

R
xkφ(x) dx = 1

2k+1

∫
R
tkφ

(
t

2

)
dt

= 1
2k+1

∫
R
xkφ

(
x

2

)
dx

=
√

2
2k+1

∫
R

∑
n∈Z

h[n]xkφ(x− n) dx

=
√

2
2k+1

∑
n∈Z

h[n]
∫
R

(x+ n)kφ(x) dx

=
√

2
2k+1

∑
n∈Z

h[n]
∫
R

k∑
i=0

(
k

i

)
xink−iφ(x) dx

=
√

2
2k+1

∑
n∈Z

h[n]
k∑
i=0

(
k

i

)
nk−i

∫
R
xiφ(x) dx

=
√

2
2k+1

∑
n∈Z

h[n]
∫
R
xkφ(x) dx+

√
2

2k+1

∑
n∈Z

h[n]
k−1∑
i=0

(
k − 1
i

)
nk−1−i

∫
R
xiφ(x) dx.

Then1−
√

2
2k+1

∑
n∈Z

h[n]

∫
R
xkφ(x) dx =

=
√

2
2k+1

∑
n∈Z

h[n]
k−1∑
i=0

(
k − 1
i

)
nk−1−i

∫
R
xiφ(x) dx.

But
∑
h[n] =

√
2:

∫
R
xkφ(x) dx =

√
2

2k+1 − 2

∑
n∈Z

h[n]
k−1∑
i=0

(
k − 1
i

)
nk−1−i

∫
R
xiφ(x) dx

 .
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Hence

Ik =
√

2
2k+1 − 2

∑
n∈Z

h[n]
k−1∑
i=0

(
k − 1
i

)
nk−1−iIi

as we want to show.

And, in the same way of the previous Lemma we have the following result.

Lemma ... Let us define µk =
∫
R x

kψ(x) dx then the following relation on the
Continuous Moments for the wavelet

µk =
√

2
2k+1

∑
n∈Z

g[n]
k∑
i=0

(
k

i

)
nk−iIi,

where

Im =
√

2
2m+1 − 2

∑
n∈Z

h[n]
m−1∑
j=0

(
m− 1
j

)
nm−1−jIj

and I0 = 1 is verified.

Proof. Let us notice that by using Equation (.) one has∫
R
xkψ(x) dx = 1

2k+1

∫
R
tkψ

(
t

2

)
dt

= 1
2k+1

∫
R
xkψ

(
x

2

)
dx

=
√

2
2k+1

∫
R
xk
∑
n∈Z

g[n]φ(x− n) dx

=
√

2
2k+1

∑
n∈Z

g[n]
∫
R
xkφ(x− n) dx

=
√

2
2k+1

∑
n∈Z

g[n]
∫
R

(x+ n)kφ(x) dx

=
√

2
2k+1

∑
n∈Z

g[n]
∫
R

k∑
i=0

(
k

i

)
xink−iφ(x) dx

=
√

2
2k+1

∑
n∈Z

g[n]
k∑
i=0

(
k

i

)
nk−i

∫
R
xiφ(x) dx

=
√

2
2k+1

∑
n∈Z

g[n]
k∑
i=0

(
k

i

)
nk−iIi

and Ii is done by Lemma ...
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Now, since the weight has two parts, we need a final step to have a rule to evaluate
the moments of w(x) taking into account that c is sufficiently “good enough”.

Lemma ... It is verified that

mk = c

∫ b

a
xk dx = c

bk+1 − ak+1

k + 1 .

Proof. It is a straightforward computation.

Summing up all the previous results, we can state the following proposition which
will be one of the main tools to get the sequence of orthogonal polynomials respect
the weight w(x). It will be stated in terms of Daubechies wavelets but it can be applied
to all kind of wavelets.

Proposition ... Let ψ(x) a Daubechies wavelet of p ≥ 1 vanishing moments and
define a nonnegative weight function w(x) = ψ(x) + cχsupp(ψ(x))(x). Then the corre-
sponding moments, for k ≥ 0, are given by

(.) Mk :=
∫
R
w(x)xk dx =

mk if 0 ≤ k < p,
µk +mk otherwise.

Proof. The proposition follows by a direct consequence of the addition property of the
integral, Lemma .. and Lemma ...

Now, we are ready to give a recurrence to forge orthogonal polynomials but let us
start by mentioning that we have forced that w(x) to be nonnegative on and it is mea-
surable in Lebesgue’s sense for which all moments exists since ψ(x) and χsupp(ψ(x))(x)
are continuous. In other words, we can apply the classic theory of orthogonal polyno-
mials on the Real Line to construct a sequence of orthogonal polynomials {pn(x)}n∈N
by the well known three-term recurrence relation.

Given p−1(x) ≡ 0, p0(x) ≡ 1 and β0 = 0 the following three recurrence relation for
n ≥ 1:

(.) pn+1(x) = (x− αn) pn(x)− βnpn−1(x),

where

αn := 〈x · pn(x), pn(x)〉w
〈pn(x), pn(x)〉w

, βn := 〈pn(x), pn(x)〉w
〈pn−1(x), pn−1(x)〉w

and 〈·, ·〉w denotes the scalar product respect w(x) given by Equation (.), gives us a
sequence of monic orthogonal polynomials of degree n.
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Remark ... Notice that if the polynomial pn(x) has degree n then the polynomial
x · pn(x) · pn(x) has degree 2n+ 1. Hence, if n < (p− 1)/2 and we are using a wavelet
with p vanishing moments, αn is computed by using only Lemma ... In the same
way, if n < p/2 then βn is computed by using Lemma ... Both quantities do not
depend on c. Moreover, taking into account the above paragraph one has that if n <

(p− 1)/2 then the n first orthogonal polynomials of the three-term recurrence relation
for w(x) = ψ(x) + cχsupp(ψ(x))(x) coincide with the Legendre polynomials (which are a
special case of Jacobi polynomials (1−x)α(1+x)β ). Perhapsmodified, since the Legendre
polynomials, as Jacobi polynomials, are constructed over the interval [−1, 1].

Now, we are almost done with the orthogonal polynomials.

Lemma ... Let pn(x) =
n∑
i=0

ai,nx
n−i a polynomial of degree n. Then

(.) P2n(x) = pn(x) · pn(x) =
2n∑
k=0

min(k,n)∑
i=max(0,k−n)

ai,n · ak−i,nx2n−k

is a polynomial of degree 2n and∫
P2n(x)w(x) dx =

2n∑
k=0

min(k,n)∑
i=max(0,k−n)

ai,n · ak−i,nM2n−k.

Proof. The degree of P2n(x) is clearly the sum of the degree of pn(x) and pn(x) i.e 2n.
The values of the coefficients are given by the Cauchy product (essentially a discrete
and finite convolution) where the lower and upper summation limits can be checked
by inspection. On the other side, the integral is clearly done by definition of Mk and
applying the well known properties of the integral.

Notice that∫
x · P2n(x)w(x) dx =

2n∑
k=0

min(k,n)∑
i=max(0,k−n)

ai,n · ak−i,nM2n−k+1

it is verified. Using the above Lemma, one expects that it is possible to compute the
coefficients αn and βn “directly”. But one more step can be done taking into account
that

pn+1(x) =
n+1∑
i=0

ai,n+1x
n+1−i = (x− αn) pn(x)− βnpn−1(x)

= (x− αn)
n∑
i=0

ai,nx
n−i − βn

n−1∑
i=0

ai,n−1x
n−1−i

=
n∑
i=0

ai,nx
n+1−i − αn

n∑
i=0

ai,nx
n−i − βn

n−1∑
i=0

ai,n−1x
n−1−i,
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we get the following proposition which gives us an “explicit” expression for the coeffi-
cients of the orthogonal polynomial of degree n, pn(x). Again, it will be stated in terms
of Daubechies wavelets but it can be applied to all kind of wavelets.

Proposition ... Let us consider w(x) = ψ(x) + cχsupp(ψ(x))(x) as a weight function,
where c > 0 is “good enough” and ψ(x) is a Daubechies wavelet of p ≥ 1 vanishing
moments. Let

pn+1(x) =
n+1∑
i=0

ai,n+1x
n+1−i

be a monic orthogonal polynomial given by Equation (.) of degree n+1, with n ≥ 2.
Then, the coefficients ai,n+1 are recursively given by:

(.)


a0,n+1 = 1,
a1,n+1 = a1,n − αn,
ai,n+1 = ai,n − αnai−1,n − βnai−2,n−1 for 2 ≤ i ≤ n,
an+1,n+1 = −αnan,n − βnan−1,n−1

where αn = λn
%n
, βn = %n

%n−1
with

λn :=
2n∑
k=0

min(k,n)∑
i=max(0,k−n)

ai,n · ak−i,nM2n−k+1,

%n :=
2n∑
k=0

min(k,n)∑
i=max(0,k−n)

ai,n · ak−i,nM2n−k.

Proof. It is a direct consequence of the previous results, where the seeds for ai,0 are
given by the polynomials p−1(x), p0(x) and p1(x).

Now, once we have a kind of explicit expression for the orthogonal polynomials
we need some results concerning the zeros of each pn(x) to give the quadrature
rule and this is the main topic of the following paragraphs. To this end, let pn(x)
be one of the orthogonal polynomials given by Equation (.) and consider its zeros
xk1

1,n, . . . , x
ki
i,n, . . . , x

km
m,n and perhaps with some multiplicity ki. Since we have con-

structed the weight to be positive and using classical results on the theory of orthogonal
polynomials on the Real Line (see [MM, Theorem .. and ..]) it follows that all
of the zeros of pn(x) are real, distinct and they are located in the interior of the interval
[−p+ 1, p]. Moreover, if pn(x), pn+1(x) are two orthogonal polynomial of degree n and
n+1, respectively, given by Equation (.) then the zeros of pn(x) and pn+1(x) interlace.
That is,

xk,n+1 < xk,n < xk+1,n+1 for k = 1, . . . , n and n ∈ N.
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Precisely such zeros are the main ingredient for the quadrature rule. Indeed, follow-
ing Chapter  of [MM], let us introduce a n-point quadrature rule, respect the weight
w(x), given by ∫

supp (w(x))
f(x)w(x) dx =

n∑
i=1

`if(xi) +R(f)w

where xi are the zeros of the orthogonal polynomial of degree n, the quantities `i are
given by

(.) `i = 1
q′n(xi)

∫
qn(x)

(x− xi)
w(x) dx,

qn(x) is the node polynomial given by qn(x) =
n∏
i=1

(x− xi) and R(f)w is the remainder.

This kind of construction is similar, or based on, to the Barycentric Interpolationwhich is
a faster way to evaluate the Lagrange polynomial just by noticing that, in Equation (.),
we are calculating the integral of a polynomial respect the weight w(x) since

qn(x)
(x− xi)

=
n∏
j=1
j 6=i

(x− xj).

Let us explain a way to construct qn(x) in our setting. It is a straightforward (and
tedious) check that each coefficient of qn(x), let us denote them by ak,n, has

( n
n−k

)
terms

to add and each term is the multiplication of (n− k) quantities: the nodes xi. In order
to avoid the problem of the operations and the errors induced by the operations, let
us recover the Newton’s identities (see [Mea]) for our special case just by considering
the nodes xi as parameters instead of variables. That is, one can consider the monic
polynomial in z with roots x1, . . . , xn:

n∏
i=1

(z − xi) =
n∑
k=0

(−1)kak,nzn−k,

where the coefficients ak,n are given by the elementary symmetric polynomials in the
roots just by setting ak,n = ek(x1, . . . , xn). After that, define the power sums of the

roots by sk = pk(x1, . . . , xn) =
n∑
i=1

xki . Hence, by Newton’s identities the roots can be

expressed recursively in terms of the coefficients of the polynomial, ak,n, just by using

s1 = a1,n,

s2 = a1,ns1 − 2a2,n,

s3 = a1,ns2 − a2,ns1 + 3a3,n,

s4 = a1,ns3 − a2,ns2 + a3,ns1 − 4a4,n,

...



.. Two ways to get the coefficients 

Conversely, one can easily get the coefficients ak,n from the above recursion:

(.) ak,n =
sk −

(
k−1∑
i=1

(−1)i+1ai,nsk−i

)
(−k)k+1 and a0,n = 1.

And that is what we are looking for: a kind of “closed” expression for the coefficients that
allows us to take care of the propagation of the error and, consequently, the error must
be under control. We can summarize all the above calculations with the following
conjecture which is the main goal claimed at the beginning of this section: the rough
quadrature rule with a Daubechies wavelet. Rough in the sense that, for example,R(f)w
or the constant c are not given. Moreover, some of the recursions presented becomes
unreachable as n increases. This is the reason to state it as a Conjecture.

Conjecture ... Let us consider w(x) = ψ(x) + cχsupp(ψ(x))(x) as a weight function,
where c > 0 is “good enough” and ψ(x) is a Daubechies wavelet of p ≥ 1 vanish-

ing moments. Let qn(x) =
n∏
i=1

(x − xi) be its node polynomial of the n-the orthogo-

nal polynomial generated by Equation (.), where xi are its zeros. Finally, consider

qi,n(x) = qn(x)
(x−xi) . Then `i =

∫
R qi,n(x)w(x) dx =

n−1∑
k=1

ak,n−1Mk, where the coefficients

ak,n are given by Equation (.) and the continuous momentsMk are given by Propo-
sition ... Then the n-point Gauss quadrature generated by ψ(x) is given by

(.)
n∑
i=1

`if(xi) +R(f)w.

Remark ... It is a direct consequence of Equation (.), integral properties and
Proposition ... However the problem appears on determining R(f)w for our partic-
ular instances as we will see at the end of Chapter .

Let us end the present chapter with some comments. Along this chapter we have
been focused to give methodology to work and compute with wavelets in a fast way
either in R or S1. However, some of them are well suited “only" for R. What a first
glance seems to be a good choice at the end will cause several round off errors as we
will see in the Chapter . Moreover, focusing, on the aforesaid quadrature rule, which
is an inherent idea from those ones in [BBDK, BBD+, HV] but using Daubechies
wavelet, it seems to be imperative to extend the quadrature rule to S1. As a matter
of fact, our natural framework will be S1. Thus, as in the previous section, the above
quadrature rule and, hence, all the results above must be translated to the unit circle
and correctly stated (treating the circle as the interval [0, 1] with endpoints identified
and then making some change of variables) This is a future work topic.





Chapter 

Statement of the Problem

In this chapter wewill give a short compilation of the theoretical framework concerning
on the kind of dynamical systems that we will have to deal along this memory. For

the convenience of the reader and in order to facilitate access to the individual topics this
chapter is rendered as self contained as possible although the explanation is tailored,
as much as it is possible, for our particular needs and issues. We refer the reader
to [CR, FR] for a more comprehensive account.

This chapter is divided in two differentiated blocks. In the first one we will give
a survey of results and definitions faced to the tackle the problem by using Ergodic
Theory. Also it is done a study of the geometric and regularity properties involved.
The second part, already focused in our specific framework, it will be stated a series of
definitions, properties and results, from the functional analysis subject. These concepts,
besides they are the connection between the two parts of the chapter, will bring us
clues for understanding the problems generated at Chapter . Also will be helpful for
avoiding and solving them.

. Dynamics: a shortcut

The existence of attractive non-continuous invariant graphs for the quasi periodically
forced dynamical systems has generated a great interest since the theoretical results
are still poorly developed in comparison periodically forced systems. This is in contrast
with the numerical results and experiments that tries to ensure and justify properties
of the system. To this end, we need to recall some concepts.

.. Skew products on the cylinder

Let X be a finite dimensional compact smooth Riemannian manifold and consider a
map f : X −→ X, not necessarily invertible. A (semi)-discrete Dynamical System is
determined by the iteration of f . Therefore, the k-th iterate of a point x0 ∈ X will be
given by xk = f(xk−1) = fk(x0) with the usual convention that f0 is the identity map
and from such point of view, one can define the forwards orbit of a point x the set of all
positive iterates of f . One can ask for many invariants objects of such f related to X. A
set ∆ ⊂ X is said to be invariant if f(∆) = ∆ and f−1(∆) = ∆ which means that the set
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∆ is forwards invariant and backwards invariant. Let us introduce another set related
with positive orbits and the forward invariance: the ω-limit set. The omega limit set is
the set of all possible accumulation points of the sequence {fk(x)}k∈N. Finally, we will
say that two dynamical systems, f1 : X1 −→ X1 and f2 : X2 −→ X2, are topologically
conjugate if there exists a bijective function h : X1 −→ X2 such that h ◦ f2 = f1 ◦ h and
if h is onto one says that f2 is semi-conjugate to f1.

We are going to work with a special (semi)-discrete Dynamical Systems: skew prod-
ucts over a rotation which are bundle maps of the form

(.) F : S1 × R −−−−−−−→ S1 × R
(θ, x) 7−→ (Rω(θ), F (θ, x)),

whereRω(θ) = θ+ω being ω ∈ R, F : S1 × R −→ R is continuous and C1 with respect x.
Finally, S1 = R/Z is the base space of the skew product and R is the fiber space which in
many situations can be replaced by a finite interval [a, b] ⊂ R. When Rω is an irrational
rotation, that is when ω ∈ R\Q the system is called quasi periodically forced skew
product. These systems have the property that any fiber, {θ}×R, is mapped into another
fiber, {Rω(θ)} × R and, moreover, it can be seen that for all subset ∆ ⊂ S1 × R then
it follows that πθ(F(∆) = Rω(πθ(∆)) where πθ : S1 × R −→ S1 denotes the projection
with respect to the first component.

From such kind of systems we will be interested in the asymptotic behavior of the
forward orbits F which lands on graphs of a measurable functions, i.e pairs of the form
K = {(θ, ϕ(θ)) : θ ∈ S1}, and we will say that the graph is a torus. If ϕ satisfies the
functional equation, called invariance equation, F (θ, ϕ(θ)) − ϕ(Rω(θ)) = 0, then the
torus K is invariant under F and its inner dynamics is the rigid rotation Rω . We want to
emphasize that the above equation will be the main tool (and topic) in Chapter .

Before continuing the explanation we will give a definition of Lyapunov exponent
which is a kind of measure of how the orbits grow in average. From such definition,
thats why we are using it, it is possible to give, as we will see, an explicit formula to
compute the maximal Lyapunov exponent for our systems.

Definition ... Let (f,X,B) be a measurable (semi-)dynamical system such that X is
a finite dimensional compact smooth Riemannian manifold, B is the Borel σ-algebra
defined on X, and is a differentiable map from X to itself. Finally let Tx denote the
tangent space, at point x ∈ X, of X. The Lyapunov exponent in a point x ∈ X and to
the direction v ∈ TxX is given by

λ(z, v) = lim sup
n→∞

1
n

log ‖Dfn(z) · v‖ .
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And the maximal Lyapunov exponent of x ∈ X is defined as:

λmax(x) = lim sup
n→∞

1
n

log |Dfn(x)|

= max
{

lim sup
n→∞

1
n

log ‖Dfn(x)v‖ : v ∈ TxX \ {0}
}
.

where ‖ · ‖ a vector norm and | · | a matrix norm compatible with it.

It is important to notice that for all point x ∈ X and for all direction v ∈ TxX
Lyapunov exponent exists and their values, due the finite dimension of X, do not depend
on the choice of the norm. To derive the expression of the maximal Lyapunov exponent,
notice that by Oseledec’s Theorem (see [BP, Theorem ..] for example) there exists
a linear filtration, in terms of the m Lyapunov exponents, namely −∞ ≤ λ1 ≤ λ2 ≤
· · · ≤ λm <∞ such that

lim sup
n→∞

1
n

log ‖Dfn(x) · v‖

exists for every v in the tangent space to X at x v ∈ TxX, and

(.) lim
n→∞

1
n

log |det(Dzf
n(x))| =

m∑
i=1

λi.

Thus, in our case, we have two Lyapunov exponents the vertical one, namely λv , and
the other λo. For the first one it is easy to get an analytic expression:

λv = lim sup
n→∞

1
n

log

∥∥∥∥∥∥
 1 0

∂xn
∂θ

∂xn
∂x

( 0
1

)∥∥∥∥∥∥ = lim sup
n→∞

1
n

log
∣∣∣∣∂xn∂x

∣∣∣∣ .
For the other Lyapunov exponent we can use Equation (.), as it is done in [CR], to
assert that λo = 0. Actually,

λv + λo = lim sup
n→∞

1
n

log

∣∣∣∣∣∣det

 1 0
∂xn
∂θ

∂xn
∂x

∣∣∣∣∣∣ = lim sup
n→∞

1
n

log
∣∣∣∣∂xn∂x

∣∣∣∣ = λv.

And hence, we have that the desired maximal Lyapunov exponent is given by λmax =
max(λv, λo) which is negative if and only if λv ≤ 0.

Certainly, in [Wal, Theorem .] it is stated the Birkhoff Ergodic Theorem for non-
invertible systems with σ-finite measure. Recall that a positive (or signed) measure µ
on a σ-algebraB of subsets of set X is called finite if µ(X) is a finite real number (rather
than∞). The measure µ is called σ-finite is X is the countable union of measurable sets
with finite measure. Finally, a set in a measure space is said to have σ-finite measure
if it is a countable union of sets with finite measure. We want to point out that since
we will use the Birkhoff Ergodic Theorem several times in the forthcoming chapters we
will state it for sake of completeness.
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Theorem .. (Birkhoff). Suppose T : (X,B, µ) −→ (X,B, µ) to be a measure preserv-
ing application (where we allow (X,B, µ) to be σ-finite) and f ∈ L 1(µ). Then

lim
k→∞

1
k

k−1∑
i=0

f(Ti(x)) = f∗(x)

converges µ-almost everywhere, where f∗ ∈ L 1(µ). Also f∗ ◦T = f∗ almost every-
where and if µ(X) < ∞ then

∫
X f
∗ dµ =

∫
X f dµ. Moreover, if T is ergodic, then f∗ is

constant µ-almost everywhere. If (X,B, µ) is a probability space and T is ergodic we
have that for all f ∈ L 1(µ) then

lim
k→∞

1
k

k−1∑
i=0

f(Ti(x)) =
∫
X
f dµ

µ-almost everywhere.

Recall that, as usual, we say that T is ergodic respect to µ (or alternatively that µ
is ergodic with respect to T) if for every B ∈ B with T−1(B) = B, either µ(B) = 0 or
µ(B) = 1.

Along the main part of this memory, the second component of F will be given
by a product of two maps each one of them depending only on θ and x. That is,
F (θ, x) = f(x)g(θ) and we will assume that f(0) = 0 in order to make the unit circle
x ≡ 0 F-invariant. In view of that, it makes sense the calculation of λv along x ≡ 0

(.) λv = lim sup
n→∞

1
n

n∑
i=0

(
log(|f ′(0)|) + log(|g(θi)|)

)
= log(f ′(0)) +

∫
S1

log |g(θ)| dµ,

where the last equality is by using Theorem .. which forces the log-integrability of
g to be part of the hypothesis. In view of that the circle x ≡ is a repellor when λv is
positive and imposing that f and g to be bounded +∞ is also a repellor. Therefore,
between them we must have an attractor different from x ≡ 0. In order to finish this
section, since there has been a lot of discussion with the concept of strangeness, let us
define rigorously what does strange non-chaotic attractor means for us.

Definition .. ([AC]). Let (f,X,B) be a measurable (semi-)dynamical system such
that X is a finite dimensional compact smooth Riemannian manifold, B is the Borel
σ-algebra defined on X is a differentiable map from X to itself and the measure µ is
equivalent to the Lebesgue measure. A Strange non-Chaotic Attractor is a closed set
A ⊂ X such that

• Strangeness: A it is not a finite set of points neither a piecewise differentiable
manifold.
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• non-Chaoticity: The set of points in ρ(A) := {x : ω(x) ⊂ A}, ρ(A) is called
realm of attraction, whose maximal upper Lyapunov exponent is positive has
zero Lebesgue measure.

• Attractor : A is an attractor in the sense of Milnor. That is, the set ρ(A) has positive
Lebesgue measure and there is no strictly smaller closed set A′ ⊂ A such that
µ(ρ(A′)) is positive.

In order to illustrate with examples, in fact is a theoretical result which can be found
at [Har, Proposition .], and besides the well known Keller’s Theorem (Theorem ..),
which is the main topic of Section ., let us give the following Proposition which is what
it is meant for Strange.

Proposition .. ([Har]). Define the following set

Zϕ =
⋂
k>0
{θ ∈ S1 : ϕ(θ) < 1/k}.

Then, for all θ /∈ Zϕ, there exist Cθ,x > 0 such that |ϕ(θn)− xn| ≤ Cθ,xα
n |ϕ(θ)− x|,

where α is taken to be the supremum of xf ′(x)/f(x) with x ∈ (0,M ].

From the proof, Cθ,x = M/min (x, ϕ(θ)). When ϕ(θ) has zeros, this constant is not
uniform because of the density of zeros.

Finally, to conclude this generic part we will explain a numerical issue of Theo-
rem ... As we have said, λv along x ≡ 0 is easy to calculate in the sense that an
analytical expression can be obtained when F (θ, x) = f(x)g(θ). Following the same
arguments for the aforesaid Lyapunov exponent on x ≡ 0 and using that

∂xn
∂x

=
n−1∏
k=0

f ′(xk)g(θ + kω)

it can be derived, in the same way as Equation () from [Kel], the vertical Lyapunov
exponent along the invariant curve ϕ. Indeed, the formula is

λϕ =
∫
S1

log(|f ′(ϕ(θ))|) + log(|g(θ)|) dθ

which, using again Theorem .., is taken to be the limit of

lim
n→∞

1
n

n−1∑
k=0

log(|f ′(ϕ(θk))|) + log(|g(θk)|).

But we can go a little bit in-depth with such expressions; if we define

log
(
∂xk
∂x

)
:= log(|f ′(ϕ(θk))|) + log(|g(θk)|)
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then the n-th approximation of the Lyapunov exponent is given by

λn)
ϕ := 1

n

n−1∑
k=0

log
(
∂xk
∂x

)
.

Hence, following this thread, one can define the increment of λn)
ϕ by ∆n)

ϕ := λ
n)
ϕ −λn−1)

ϕ .

Therefore ∆n)
ϕ must be tend to zero when n tends to infinity λn)

ϕ = λ
n−1)
ϕ + ∆n)

ϕ . On the
other side, observe that

(n− 1)λn−1)
ϕ =

n−2∑
k=0

log
(
∂xk
∂x

)
.

Thus, we have that

λn)
ϕ =

(n− 1)λn−1)
ϕ + log

(
∂xn−1
∂x

)
n

= λn−1)
ϕ +

log
(
∂xn−1
∂x

)
− λn−1)

ϕ

n

which allows us to redefine the aforementioned increment by

(.) ∆n)
ϕ :=

log
(
∂xn−1
∂x

)
− λn−1)

ϕ

n
.

Remark ... In Chapter  we will perform an experiment with a model with an addi-
tive forcing. That is F (θ, x) = f(x)+g(θ). Notice that the above expression, Equation (.),
with the convenient changes also holds.

Such way of writing will be helpful for the numerics done in the forthcoming chap-
ters. To conclude this section we want to make a twofold comment. On the one
hand we want to emphasize that with such definition the Strange non-Chaotic Attrac-
tors found in the literature verifies it (see [CR] for further information and references).
On the other side, one can relate the dynamical properties, and hence the validation
of Definition .., with a functional approach. This is, precisely the main topic of the
Section ..

. Keller’s techniques

The previous section contains a brief summary and some technical results of a family
of pinched skew products which can generate, for some values of the parameters, a
Strange Non-Chaotic Attractor. Now, let us see how the previous techniques are applied
to a particular instance of a bi-parametric skew product:
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(.)
(
θn+1
xn+1

)
= Fσ,ε(θn, xn) =

(
Rω(θn)

fσ(xn)gε(θn)

)
.

Furthermore, we will try to have enough tools to face the problems that will arise
in the following chapters. Moreover, the understanding of such phenomenons can
be useful for the study of the invariant set generated by the System (.). Finally a
word of caution must be done. Indeed, all this machinery can be seen as useless since
in [Sta, Sta] some regularity properties are established for systems of such type.
However, such tools are interesting to see how the discontinuities are created and also
to classify theoretically, in terms of Bs

∞,∞(S1), the invariant function. Related to such
comment, the geometric properties of the invariant function will be a key point to
determine such classification.

.. Keller’s Theorem

As we have said in Section ., since by hypothesis f(0) = 0, the system (.) has the
circle x ≡ 0 invariant in contrast to x ≡ ε which it is not invariant for ε > 0. On the
other side, from Equation (.), the vertical Lyapunov exponent for almost every θ ∈ S1

it is the logarithm of

σ :=

f ′(0) exp(
∫
S1 g(θ)dθ) if

∫
S1 g(θ)dθ > −∞,

0 otherwise.

Therefore if σ > 1 the circle x ≡ 0 is a repellor. Moreover, by using Birkhoff Ergodic
Theorem, recall that the Lyapunov Exponent at x ≡ 0 is

κ(f, g) :=
∫
S1

log
∣∣∣∣∣∂f(x)g(θ)

∂x

∣∣∣∣
x=0

∣∣∣∣∣ dθ = log(f ′(0)) +
∫
S1

log |g(θ)| dθ.

When κ(f, g) is positive, x ≡ 0 is a repellor for System (.). Moreover, since f and g
are bounded, infinity is also a repellor and the system must have an attractor different
from x ≡ 0. These attractors, which are the objects that we want to study, are typically
very complicated. In order to fix ideas, we are going to restrict ourselves to the study
of a particular subfamily of model (.), which is

(.)
(
θn+1
xn+1

)
= F(θn, xn)σ,ε =

(
Rω(θn)

2σ tanh(x) · (ε+ |cos(2πθ)|)

)
,

with ω =
√

5−1
2 , σ > 0 and ε ≥ 0. Apart from the parameter ε, it is the natural restric-

tion to R+ of the system considered in [GOPY] (see Figure ., where a graph of the
attractor of this system with σ = 1.5 and ε = 0 is shown).
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Figure .: The attractor of System (.) σ = 1.5 and ε = 0. Notice the abrupt changes in
the graph of the attractor.

Concretely, when ε = 0 the Lyapunov Exponent κ(f, g) at x ≡ 0 is log(σ). Hence,
the interesting case (for us) occurs when σ > 1. The attractor of System (.) and its
dynamics is described by the following theorem:

Theorem .. (G. Keller [Kel]). Under the above assumptions there exists an upper
semi continuous function ϕ : S1 −→ R+ whose graph is invariant under System (.)
and satisfies:

(a) The Lebesgue measure on the circle, lifted to the graph of ϕ is a Sinai-Ruelle-
Bowen measure (that is,

lim
n→∞

1
n

n−1∑
k=0

f(Fk(θ, x)) =
∫
S1
f(θ, ϕ(θ)) dθ

for every f ∈ C0(S1 × R+,R) and Lebesgue almost every (θ, x) ∈ S1 × R+),

(b) if κ(f, g) ≤ 0 then ϕ ≡ 0,

(c) if κ(f, g) > 0 then ϕ(θ) > 0 for almost every θ,

(d) if κ(f, g) > 0 and g vanishes at some point then the set
{
θ ∈ S1 : ϕ(θ) > 0

}
is

meager and ϕ is almost everywhere discontinuous,
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0 1

ϕ

T(ϕ)

R−1
ω (θ) θ

f(·)g(·)

θ + ω

T

Figure .: The notion of Transfer Operator T from Keller’s definition

(e) if κ(f, g) > 0 and g > 0 then ϕ is positive and continuous; if g ∈ C1 then so is ϕ,

(f) if κ(f, g) 6= 0 then |xn − ϕ(θn)| → 0 exponentially fast for almost every θ and
every x > 0.

Observe that, when κ(f, g) > 0 and g vanishes at some point (i.e. when the system
is pinched ), it follows from statements (c,d) that ϕ is discontinuous almost everywhere.
In the particular case of System (.), the pinching condition implies that ε = 0 and, since
| cos(2πθ)| vanishes for θ ∈

{
1
4 ,

3
4

}
, it follows that the set

(.)
{

( i4 + nω (mod 1), 0) : n ∈ N, i ∈ {1, 3}
}

is both a subset of the attractor and is dense (and invariant) in x ≡ 0. On the other hand,
if ε > 0 we can not have a dense set of pinched points.

The proof of the above theorem is based on the iteration of the Transfer Operator
of the system. Since in Section . from Chapter  we will use this construction and
it is the key point of the present section let us explain it. To do so, let P be the space
of all functions not necessarily continuous from S1 to R: P(S1,R). If we look for
a functional version of the System (.) in the space P one can define the Transfer
Operator T : P −→ P as

T(ϕ)(θ) = f(ϕ(R−1
ω (θ))) · g(R−1

ω (θ)).

Remark ... In Section . we will define the notion of Transfer Operator T. The
"Keller" notion of T must be understood as the situation sketched in Figure ..

Remark ... From the above definition we obtain

T(ϕ)(θ) = πx
(
F(R−1

ω (θ), ϕ(R−1
ω (θ)))

)
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Figure .: The constant function c = 5 and three iterations of the Transfer Operator T
for System . with σ = 1.5 and ε = 0. The function c is plotted in red, T(c) in green,
T2(c) in blue and T3(c) in magenta.

where πx : S1 × R+ −→ R+ denotes the projection with respect to the second compo-
nent.

Notice that the graph of a function ϕ : S1 −→ R is invariant for the System (.) if
and only if T(ϕ) = ϕ. Precisely, to obtain the map ϕ from Theorem .., Keller takes
a sufficiently large constant function ϕ0 = c (with c > (supx∈R f(x))

(
maxθ∈[0,1] g(θ)

)
)

and iterates it under the transfer operator T (see Figure .). In such a way he gets,
since the map f is monotone, a non-increasing sequence of continuous maps given by

(.) ϕk = T(ϕk−1) = Tk(c).

Then, following the Keller’s proof, one has that

ϕ := lim
k→∞

ϕk = inf
k→∞

ϕk

exponentially fast. This idea will be one of the key points in our strategies for the esti-
mation of the regularity of the two parameter family of Strange Non–Chaotic Attractors
given by System (.) and for the knowledge of the shape of attractor which is, precisely,
the main topic of the forthcoming sections.

. Geometry of the non-pinched Transfer Operator

As we have said at the beginning of the current section, the sequence given by Equa-
tion (.) will be important for us in order to have an idea of how the invariant graph
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of the System (.) is created although the techniques presented here can not be seen
as a panacea. We have to mention that some of the ideas developed in the following
are, for us and at the beginning, a tool for study where one has to apply the Gaussian
quadrature rule developed at Section ...

.. Stark’s Theorem

As we have said, using [Sta, Sta], the regularity of the graph which contains the
attractor for the family that we are considering, in the case non-pinched, is a graph such
that has the same regularity as the skew product. We will completely justify the use of
such techniques and results. This effort is justified because it will help us to understand
some of the mechanisms of the regularity loss of ϕ. To this end, we will start with the
general setting of [Sta, Sta] in the same way of Equation (.) consider the skew
product: (

xn+1
yn+1

)
=
(

F (xn)
G(xn, yn)

)
where xn ∈ X represents the state of the driving system and yn ∈ Y is the state of the
driven system. Precisely, assuming that there exists a F -invariant set Λ ⊂ X, λ < 0 and
C > 0, one can impose conditions on the driven system:

(.) dY(Gnx(y), Gnx(y′)) ≤ CeλndY(y, y′)

for all x ∈ Λ ⊂ X where Gnx(y) : Y −→ Y is defined

Gn+1
x (y) = G(fn(x), Gnx(y)),

where G1
x(y) = Gx(y) = G(x, y). Now, once a distance dY is given, one can define, as

usual, the α-Hölder condition for a function f , namely:

dY(f(y), f(y′)) ≤ KYdY(y, y′)α,

where KY > 0. With all these tools, we can state the following theorem, which is a
slight modification of those appearing in [HPS].

Theorem .. (Theorem ., [Sta]). Suppose X is a metric space, F : X −→ X a
homeomorphism such that

(a) for all x, x′ ∈ X
dX(F−n(x), F−n(x′)) ≤ CeµndX(x, x′),

where C > 0, µ ≥ 0 and dX(·, ·) is a distance on X,

Λ ⊂ X is a closed f-invariant set, Y is a complete metric space and G : X × Y −→ Y
is continuous function such that
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(a) satisfies Equation (.) for all x ∈ Λ,

(b) for some y0 ∈ Y the function G(x, y0) : X× Y −→ Y is bounded and

(c) suppose in addition that there exists 0 < α ≤ 1 such that for any boundedW ⊂ Y
there exists a constant KW ≥ 0 satisfying

dY(G(x, y), G(x′, y)) ≤ KWdX(x, x′)α

Then there exists a bounded continuous function Φ : Λ −→ Y such that

(a) the graph of Φ is (f, g)-invariant,

(b) the graph is attracting for all (x, y) ∈ Λ× Y and

(c) Φ is uniformly Hölder on Λ with exponent γ, for 0 < γ ≤ α, such that λ+ γµ < 0.
In particular if λ < −µ and α = 1, then Φ is Lipschitz.

Let us mention that the above theorem has a bug for our purposes in the sense of
the following Remark.

Remark ... Recall that we are considering families of skew products that when ε = 0
the system becomes pinched. However, if one looks at the statement of the above
Theorem it does not mention the possibility of the pinching condition, that is when g(θ)
vanish. Therefore, one may think that the hypothesis are verified and hence the question
of the regularity, when the System (.) is pinched, is solved. We claim that it is not
true. In particular Equation (.) does not hold in the pinched case.

To prove this claim we will strongly use the invariance of the circle x ≡ 0 and the
Keller’s Theorem. Indeed, for all θ ∈ S1, one has that

(xn, θn)
n→∞
−−−−→ (θn, ϕ(θn)) exponentially fast

and ϕ(θ) > 0 almost everywhere θ ∈ S1. That is, there exists δ > 0 such that

µ({θ ∈ S1 : ϕ(θ) > 0}) > 0

where µ is the Lebesgue measure in S1. On the other hand, let

#((n ∈ (0, 1, . . . , n) | Rnω(θ) ∈ {θ ∈ S1 : ϕ(θ) > 0})

be the counter measure. By the ergodicity of Rω , one has that the above quantity is
infinite for almost everywhere θ ∈ S1. Now, let θ be such that Gnθ (x) converges to ϕ(θn)
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exponentially fast. Then if n > n0 one has, by the above arguments, that Gnθ (x) > δ/2.
Moreover, recall that ≡ 0 is invariant, hence Gnθ (0) = 0 for all n ∈ Z. Therefore

(.) d[0,M ](Gnθ (x), Gnθ (0)) > δ/2 if n > n0.

We wish to arrange that Ceλnd[0,M ](x, 0) be small enough. To this end, since λ < 0, let
n1 be such that

(.) Ceλnx < δ/2 if n > n1.

Now taking n > max (n0, n1), by Equation (.) and (.), the claim easily follows.
Hence it is not true, in the pinched case, that Equation (.) holds as we wanted to
show.

Once all this stuff is introduced we can see that in our case how we can apply the
above Theorem. As we have said at the introduction of this section, the Keller model
will be our testing ground. Therefore, all the knowledge concerning to such model
will be useful to accept or reject the numerical results in Chapters  and  and, hence,
the “goodness” of the extrapolation to other models as it will be done in Chapter .
Now, recall the definition of a distance in S1

(.) dS1(x, x′) =

|x− x′| if |x− x′| ≤ 1/2,
1− |x− x′| if |x− x′| ≥ 1/2

which induces S1 to be a metric space. We will redefine the sequence given by (.) as
follows:

(.) ϕk(σ,ε) := ϕk, where ϕk = T(ϕk−1) = Tk(c).

The above equation stands for the k-th iterate of the Transfer Operator, of the Sys-
tem (.), respect the parameters σ and ε. Now, consider the homeomorphism F = Rω
and set G = 2σ tanh(x) · (ε + |cos(2πθ)|) to be the continuous function, X = S1

with the distance given by Equation (.) and Y = [0,M ] where the constant veri-
fies M > (supx∈R 2σ tanh(x))

(
maxθ∈[0,1](ε+ |cos(2πθ)|

)
. Finally, by the ergodicity of

Rω we will take Λ = X = S1 as Rω-invariant set.

Lemma ... With Rω and 2σ tanh(x) ·(ε+ |cos(2πθ)|) the conditions of Theorem ..
are verified when ε > 0. That is, there exists a bounded continuous function Φ :
S1 −→ [0,M ] such that is uniformly Lipschitz which is (Rω, 2σ tanh(x) ·(ε+ |cos(2πθ)|))-
invariant.

Proof. We will prove all the items of the Theorem ..:
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(a) We must check that dS1(R−nω (θ), R−nω (θ′)) ≤ CeµndS1(θ, θ′) but observing that
one has |θ − nω − (θ′ − nω)| = |θ − θ′|. That is, take C = 1 and µ = 0 then

dS1(R−nω (θ), R−nω (θ′)) ≤ e0·ndS1(θ, θ′)

as we wanted to check.

(b) We must verify that 2σ tanh(x0) · (ε + |cos(2πθ)|) is bounded for some point
x0 ∈ [0,M ] but this is clear since the map (ε + |cos(2πθ)|) is continuous and it is
considered on S1.

(c) We must check that there exists 0 < α ≤ 1 and a constantKW ≥ 0 which verifies:

dS1(2σ tanh(x) · (ε+ |cos(2πθ)|), 2σ tanh(x) · (ε+
∣∣cos(2πθ′)

∣∣)) ≤ KWdS1(θ, θ′)α.

To this end, by Mean Value Theorem. Moreover, since g is absolutely continuous
thus is differentiable almost everywhere and in our case satisfies |g′(θ)| ≤ K for
almost all θ ∈ S1, then g is Lipschitz continuous with Lipschitz constant at most
KW and therefore the assertion follows.

The reader can consider the above Lemma as a triviality since Keller’s Theorem
asserts the conclusion. However, since in Theorem .. it is only required that g(θ)
must be continuous one can make the following natural question:

It is possible to generalize the Theorem from [Sta] for a large class of functions,
namely the set of continuous functions or, moreover, for a functions such that belongs

on a “other” class of Hölder?

There are examples with positive answer to the previous question. For example, and in
the same way as item (e) from Example .., let g (of the System (.)) be such that

lim
x→0

|x|α

g(x) = 0.

This means that g(x) can not verify any Hölder condition but it is continuous. By Keller’s
Theorem using such g the invariant function ϕ is continuous when ε > 0. However, it
can not verify any Hölder condition because of g. Concretely, fix a g with logarithmic
cusp on a concrete θp. Then, using the Keller’s construction such cusp is permanent
along the iteration of the Transfer Operator.

In view of that, let us focus a little bit more the situation by considering the sequence
given by {ϕk(σ,ε)}k∈N from Equation (.), once ε > 0 and σ are fixed such that the
conditions of Theorem .. are satisfied. Just by experimenting with the parameters
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σ and ε, one can observe that “there are not so many pinched regions”. Therefore
the question is: how and where the spikes appear? Recall that at the beginning of
Section .., we have defined a dense set for the System (.), see (.), where as it
can be checked in Figure . spikes appear over these points and consequently the
differentiability problems arise.

In the same way, controlling the set where g(θ) = ε (that is when |cos (2πθ)| vanish)
is a good way to understand the mechanism of creation of spikes. As a consequence
the loss of differentiability can be controlled. But this it is not almost true for all values
of ε and σ. However, one can get more information about the wavelet coefficients of a
concrete ϕk(σ,ε) (namely dkj [n]) and, thus, control the difference between dkj [n] and dlj [n]:

(.) |dkj [n]− dlj [n]| =
∣∣∣∣∣2j/2

∫
supp(ψ)

(
ϕk(σ,ε)(2

j(x+ n))− ϕl(σ,ε)(2
j(x+ n))

)
ψ(x) dx

∣∣∣∣∣ .
More concretely, consider θp ∈ S1, Uθp ⊂ S1 a neighbourhood of θ and {ϕk(σ,ε)}k∈N

be the sequence given by (.). Define, for t ∈ [0, 1], the following set

E(k)
i = {θ ∈ Uθ ⊂ S1 : ϕk(σ,ε)(tθ0 + (1− t)θ1) ≤ max

(
ϕk(σ,ε)(θ0), ϕk(σ,ε)(θ1)}.

Therefore the formal derivative ϕk(σ,ε) has a change of sign on Uθ (possibly with an
asymptote if it is not defined). Notice that, allowing the possibility of the appearance
of the asymptotes on the derivative the notion of weak derivative arise. Hence, the
Sobolev spaces must be considered. On the contrary, it is natural to expect that the
change of sign of the formal derivative ϕ′k depends on σ and ε. That is, there are
privileged zones where ϕ(σ,ε) is smooth enough. Moreover, in such Uθp is where it
can be placed the logarithmic cusp (or any kind of singularity) and they can be used
to classify ϕ. In other words, the above integral should be placed around the set that
contains all neighborhoods Uθp for a concrete ϕk(σ,ε) and ϕ

l
(σ,ε). As matter of fact, being

ε > 0 this was the idea that we have in mind from when we have tried to apply the
quadrature rule from Section .. and with the use of Proposition .. try to see the
evolution of the wavelet coefficients as ε goes to zero. The counterpart is that such plan
is “feasible” when ε > 0. Indeed, the “great problem” is when ε = 0 and was another
reason to leave a part the Gaussian quadrature rules given in Section ... The reason
is the dense set of E(k)

i with an infinite set of openings which, at the end, produces the
upper semi continuity.

Drawing to close this section, recall that from Keller’s proof if follows that

ϕk(θ)
k→∞
−−−−→ ϕ(θ) exponentially fast

but, moreover, Keller’s Theorem proves, also, the pointwise convergence for almost
θ ∈ S1 which implies a kind of uniform convergence. Indeed, by Egorov’s Theorem,
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there is a close relation between the uniform convergence and the convergence al-
most everywhere of a sequence of Lebesgue measurable functions. We state it for
completeness and we remark that such kind of convergence is called almost uniform
convergence.

Theorem .. (Egorov). Let (X,B, µ) be a measure space and let E ⊂ X be a mea-
surable set with µ(E) < ∞. Let {fn}n∈Z be a sequence of measurable functions on
E such that each fn is finite almost everywhere in E and {fn}n∈Z converges almost
everywhere in E to a finite limit. Then for every ε > 0, there exists a subset A of E
with µ(E −A) < ε such that {fn}n∈Z converges uniformly on A.

We do not want to find such measurable sets but, again as it can be seen at Keller’s
proof, all sets {θ ∈ S1 : ϕ(θ) < ε} are open. Therefore, this means that ϕ is continuous
at each point that ϕ(θ) = 0 (whether pinched or non-pinched) and, also, it is in L 1(S1).
With such comment we mean that it seems that there are regions where one can apply
standard techniques of uniform convergence on a very weird function. Having said that,
we are ready to classify the regularity of ϕ.

Proposition ... The upper semi continuous function ϕ : S1 −→ R+ whose graph is
invariant under System (.) is in L 1(S1). Moreover, is continuous at

Z(n) := {Zg + kw (mod 1) : k = 0, . . . , n} =
n⋃
k=0

Rkω(Zg) ⊂ S1

where Zg ⊂ S1 is the finite and discrete set where the continuous function g vanishes.
Finally, ϕ is in B0

∞,∞(S1) when ε = 0 and Bs
∞,∞(S1), with s ∈ (0, 1] when ε > 0 being

s = 0 for a certain subclass of functions.

Proof. The case ε > 0 is done by Theorem ... On the other side, the pinched case
(i.e ε = 0), it is done as follows. By Example .. (a) we know that Bs

∞,∞(S1) with
s ≤ 0. But, since ϕ ∈ L∞(S1) and, by construction, it is integrable then one has that
Φ ∈ B1+s

∞,∞, where Φ′ = ϕ. The latter “belonging property” of Φ holds even with s = 0.
Therefore, since ϕ is bounded then Φ is Lipschitz. That is, ϕ must be in B0

∞,∞(S1) and
moreover, when s < 0 Bs

∞,∞(S1) are distributional spaces and ϕ, by Keller’s Theorem,
is a usual function.

Wewant to finish this first block with a fewwords related with the above Proposition
and comments. From Keller’s Theorem we already know that ϕ is an upper semi
continuous function and, in turn, this implies which kind of singularities could have ϕ.
Even though, from the fact that the limit function has a “big quantity” of discontinuities
one may think that it has negative regularity but it turns out that ϕ is, at most worst
possible regularity space, in B0

∞,∞(S1). As a matter of fact, Bs
∞,∞(S1) with s < 0 can

be understood as the dual of the ones with s > 0. Hence, if s < 0 then ϕ’s such that
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are inBs
∞,∞(S1) must be attractors with area. We will come back to such topic at the

end of Chapter . Nevertheless, in a far away scope from the regularity topics there are
some interesting points for further studies such that as why ϕ it can not be extended
to a graph of a continuous function on S1, give a characterization of θ ∈ S1 such that
ϕ(θ) > 0, how weird are the continuity points of ϕ?

. Spectral techniques

As we have said at the end most of the contents of the Section ., can be reviewed in
functional terms. To this end, let us rewrite the invariance equation:

(.) ϕ(Rω(θ))− F (θ, ϕ(θ)) = 0.

Before continue the explanation, we want to remark the following obvious rewrit-
ings of the above equality as the next ones F (θ, ϕ(θ))−ϕ(Rω(θ)) = 0 or in the non ro-
tated version ϕ(θ)−F ((R−1

ω (θ), ϕ(R−1
ω (θ))) = 0 and F ((R−1

ω (θ), ϕ(R−1
ω (θ)))−ϕ(θ) = 0.

Such expressions of the invariance equation, besides its ink saving usefulness, must be
taking into account when doing numerics in a safe and cheap way. Let us resume
the explanation considering C0(X,Y) the space of continuous functions (or operators)
between the Banach spaces X and Y and defining the operator defined as

(.) T : C0(S1,R) −−−−−−−→ C0(S1,R)
ϕ(θ) 7−→ T(ϕ)(θ),

where T(ϕ)(θ) = ϕ(Rω(θ)) − F (θ, ϕ(θ)). From such point of view ϕ is an invariant
torus if and only if T(ϕ)(θ) = 0. One can see (see [dlLO]) that the operator given by
Equation (.) is Fréchet differentiable with DT : C0(S1,R) −→ C0(S1,R) defined by

DT(ϕ)h(θ) = h(Rω(θ))− ∂F (θ, ϕ(θ))
∂x

h(θ)

as its derivative.
Recall that an operator F : X −→ Y, where X and Y are normed linear spaces,

is called Fréchet differentiable at x ∈ X if there exists a bounded linear operator
DF : X −→ Y which satisfies the following relation

lim
h→0

‖F (x+ h)− F (x)−DFh‖Y
‖h‖X

= 0.

The motivations of such definitions are the close relationship between the functional
solutions of Equation (.) and the dynamical properties of the linearized dynamics
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around ϕ as it is pointed out in [HdlLa, HdlLb, HdlL, Mat]. To this end, let us
define the transfer operator M as the bounded linear operator

(.) M : C0(S1,R) −−−−−−−→ C0(S1,R)
h(θ) 7−→ M(h)(θ),

whereM(h)(θ) = M(R−1
ω (θ))h(R−1

ω (θ)) and M is the transfer matrix which gives the
linearized dynamics as follows:

S1 × R −−−−−−−→ S1 × R
(θ, x) 7−→ (Rω(θ),Mx)

being M = ∂F (θ,ϕ(θ))
∂x . The last formula is a linear cocycle which for our framework,

the one dimensional setting, is close to simple and it is the (in fact one of the) promised
relationship. Indeed, if M vanishes at least at one point then the cocycle is not invert-
ible everywhere which implies that the dynamics collapses. On the other hand, M is
invertible everywhere and its inverse is well-defined if M 6= 0. Finally, we will say
that the linear cocycle is reducible if there exist a constant matrix Γ and a change of
variables Ψ(θ) such that

Ψ−1(Rω(θ)) ·M(θ) ·Ψ(θ) = Γ.

Such application it is known as the Floquet transform. Having introduced these concepts
one step more can be done. Namely, the relation of functional analysis and the dynam-
ical properties which will leads us to some practical issues in Chapter  as for example
the continuity with respect perturbations of M ofM. But, the most important fact is
that the spectrum ofM is assembled by an union of annuli centered at zero. Moreover,
0 belongs to one of the annuli ifM is not invertible. These ideas are compressed in the
following Theorem.

Theorem .. ([CL, Mat]). LetM be a transfer operator over a rotation Rω . Then,
if ω is irrational the spectrum ofM is rotational invariant.

Now, let us drop the ball on the grass and let play with all these concepts that mixes
the functional properties with the dynamical ones.

.. The one dimensional case

As we have said, if ϕ is an invariant curve of F its linearized behavior is given by the
linear skew product

LF : S1 × R −−−−−−−→ S1 × R
(θ, x) 7−→ (Rω(θ),Υ(θ)x),
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where Υ(θ) = ∂F (θ,ϕ(θ))
∂x . It can be seen that, being ω Diophantine, LF is reducible if and

only if Υ does not vanish. But it can be said a little it more despite of the not requirement
to be Diophantine of ω. Recall that a number ω verifies a Diophantine condition if there
exists α > 0 and β ≥ 1 such that |qω − 2πp| ≥ α/|q|β for all integers p and q.

Proposition .. (Proposition  [JT]). Let M be the transfer operator associated to
LF. Then the following statements are equivalent:

(a) The linear skew product LF is reducible.

(b) The spectrum ofM does not contain 0 and coincides with the closure of the set
of eigenvalues.

(c) M has a non zero eigenvalue.

(d) M has a real non zero eigenvalue.

The above Proposition and the following Theorem, as we have said and it will be
seen, will have important implications in Chapter . Before the statement of the fol-
lowing Theorem, which relates the growth of the orbits and the loss of reducibility, let
us bear in mind that the spectral radius of a bounded linear operatorM, namely ς(M),
is the supremum among the absolute values of the elements in its spectrum, namely
Spec (M).

Theorem .. (Theorem . and . [JT]). Let Λ be the Lyapunov exponent of LF and
M be its transfer operator associated, where it suffices thatM : C0(S1,R) −→ C0(S1,R).

(a) Then, it is verified that ς(M) = eΛ.

(b) If Υ vanish then Spec (M) = {z ∈ C : |z| ≤ eΛ} and LF it is not reducible.

It is important to remark that our goal in Chapter  will not be to derive results
related to reducibility methods. However, we will use a discretization of Equation (.),
and hence of the transfer operator given by Equation (.). Therefore, and as a conse-
quence of that, the typology of problems and properties which we have described up
to now will be inherited for our particular setting.

Finally, to conclude the current chapter and in order to motivate the following one
we can recover Proposition .. which can be sketched as “when the transfer vanishes
all becomes complicated”. Thus, understanding the evolution of the complication can
gives use utile ideas for the Chapters  and  and, also, the ones that we have depicted
here.





Part II

Wavelets against Dynamical
Systems





Chapter 

Filtering Strange Non–Chaotic
Attractors

Up to now, we have focused in gather together several tools and problems concerning
to wavelets and quasi-periodically forced skew products on the cylinder. Now, we

can combine them. But, how we can get the wavelet coefficients of the invariant object
ϕ? We will get the coefficients applying verbatim the first idea depicted in Section ..
That is, we will use the Fast Wavelet Transform to perform an algorithm to control
whether ϕ ∈ Bs

∞,∞(S1) even for s ≤ 0 doing ad-hoc techniques which are valid in a
general setting.

However, it is necessary to check where are the limits of such methodology. That
is, we will try to relate the quality of the coefficients computed with the Fast Wavelet
Transform with the regularity of ϕ. Roughly speaking we will say that the coefficients
are good enough if they can recover the regularity of ϕ. Precisely, at the end of this
chapter we will make a reflection of the viability of such method. Also, and in the same
way of the above comments, we will conclude the chapter with some words of caution
referred to the use of the quadrature rules. Indeed, along this memory we have made
some overtones about the viability of using such techniques. We will completely justify
when one can use them at the end of the present chapter.

. An Algorithm to estimate regularities on L∞

In [dlLP], numerical implementations of wavelet analysis to estimate the positive
regularity of conjugacies between critical circle maps are done. Due to Theorem ..
and Remark .., we can generalize such techniques to any value (positive or not) of the
regularity measured in terms of the Besov Spaces Bs

∞,∞(R). The algorithm described
below explains how to implement this generalization.

Assume that a function f ∈ L∞(S1) is given. Hence, one has

|〈f, ψj,n〉| <∞

for all j, n ∈ Z× Z. Then we can perform the following steps:

Step . Compute the coefficients

dPER
−j [n] = 〈fPER, ψ−j,n〉
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for j = 0, . . . , J − 1 and 0 ≤ n ≤ 2j − 1.

Step . By using the coefficients dPER
−j [n] from Step , calculate

s−j = log2

(
sup

0≤n≤2j−1

∣∣∣dPER
−j [n]

∣∣∣)

for j = 0, . . . , J − 1.

Step . Make a linear regression to estimate the slope τ of the graph of the pairs
(−j, s−j) with j = 0, . . . , J − 1. Then, when there is evidence of linear correlation
between the variables −j and s−j , we set s = R(τ).

If k > max(s, 5/2 − s) then, by Theorem .., f ∈ Bs
∞,∞(R) and, hence, f has

regularity s. Otherwise we need to repeat the algorithm with a Daubechies wavelet
having a larger value of k until k > max(s, 5/2− s).

Remark ... As we have said, there is a lot of methods and literature of how one can
get the wavelets coefficients. Here, we will use the Fast Wavelet Transform. In view
of that, we can perform the following steps which are the same as Section . but we
have added a previous step:

Step Previous. Compute aPER
−J [n] := 〈fPER, φ−J,n〉 for 0 ≤ n ≤ 2J −1. This can be done,

for instance, by using Lemma ...

After that, one has a method to decide the quality of the coefficients based on the
quality of the regularity given by the above algorithm, the previous knowledge of the
regularity of the function and, what we have called, the reconstruction of the regularity
method. Indeed, by Theorem .., fPER ∈ Bs

∞,∞(R) if and only if there exists C > 0
such that

sup
n∈Z
|〈fPER, ψj,n〉| ≤ C2τj ,

even for s = 0. Therefore, given an s the coefficients 〈f, ψj,n〉 must be on a (infinite)
straight line of slope τ . On the other side, recall that in the simple regression model of
n points {xi, yi}, where i = 1, 2, . . . n, the aim is to find the equation of the straight line
y = α+βx which would give the best fit for the data points. Usually, α and β are taken
to be

(.) β̂ = Cov[x, y]
Var[x] and α̂ = ȳ − β̂ x̄,

where Cov[·, ·] is the covariance of the data Var[·] is the variance and ·̄ is the standard
average. With all this things in mind, we can perform the following quality method
(for the wavelet coefficients).

Method .. (Quality test). Given an fPER ∈ Bs
∞,∞(R), set β̂ = s in Equation (.) and

calculate α̂ with the coefficients from Step .



.. An Algorithm to estimate regularities 

Remark ... This criteria/method can be used to see the how the norm of f evolves.
Indeed, from Theorem .., there exists a C > 0 such that

sup
n∈Z
|〈fPER, ψj,n〉| ≤ C2τj .

Set α̂ to be log2(C). Therefore, if C goes to∞ then α̂ also.

To test the quality of this algorithm, and hence get the degree of accuracy of the
wavelet coefficients, wewill try it with theWeierstraß function since we have an explicit
expression for it, we have an analytic formula for its regularity in terms of its parameters
and it is “strange” everywhere. This idea is borrowed from [dlLP], but since we use
more data than [dlLP] we reproduce the example.

Example ... From Section .. (in particular Example .. (d)) we know that
WA,B ∈ B

− logB(A)
∞,∞ (R). To test the algorithm we fix the parameter B = 2 and

we take A ∈ [0.56745, 0.86475]. Hence, WA,2 ∈ Bs
∞,∞(R) with s = − log2(A) ∈

[0.2051 . . . , 0.8174 . . . ]. Then, observe that

1 < max
(
s,

5
2 − s

)
= 5

2 − s < 3.

Therefore the above algorithm is valid in this case only for Daubechies Wavelets with
k ≥ 3 vanishing moments.

To perform the above algorithm we take J = 30 (that is, we use a sample of the
graph ofWA,2 of 230 points). To carry out Step Previous, by Lemma .., we can estimate

a−J [n] ≈ 2−J/2WA,2(2−Jn).

Then, after executing Steps – of the algorithm we obtain the results depicted in Fig-
ure .. Wewant to remark that the best numerical estimate of the regularity ofWA,2(x)
with A ∈ [0.56 · · · , 0.86 · · · ] computed with a Daubechies wavelet of  vanishing mo-
ments is obtained for A = 0.86 · · · (that is, when the regularity is closer to zero). The
fact that we have to work with the Daubechies wavelet of  vanishing moments can
be explained as follows. Daubechies Wavelets with higher vanishing moments have
bigger domain and regularity (see [Mal]) and, hence, they are less adapted to approx-
imate the Weierstraß function, which has highly concentrated oscillations. It turns out
that the value of  vanishing moments is the best adapted (in the sense that minimizes
the error) to the Weierstraß function for the range of parameters considered.

We also want to remark that all the computed Pearson correlation coefficients are
bigger than .. This agrees with the fact that the Weierstraß function is self-similar.
Then, the coefficients dj [n], (as pointed out in Remark ..) must be approximately on a
straight line. This is indeed the case as Figure . shows for a particular case. It turns out
that the Daubechies wavelet with  vanishing moments also maximizes globally the
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Figure .: On the left picture the theoretical and estimated regularity of WA,2 with
A ∈ [0.56 · · · , 0.86 · · · ] are shown. The theoretical curve is plotted in blue and the
numerical one in red. The estimated regularity is computed with a Daubechies Wavelet
with  vanishing moments. On the right picture the Error function | − log2(A) − sA|
is plotted (here sA denotes the estimated regularity of WA,2). Notice that the error is
decreasing as the regularity gets closer to zero.

Figure .: The graph of the pairs (j, sj) with −29 ≤ j ≤ 0 for W0.86745,2 (the regularity
is 0.205147).



.. The numerical regularity of the attractors 

computed Pearson correlation coefficients in the range of parameters that we consider.
Moreover, since the theoretical regularity is known, one can compare the straight line
of the theoretical regularity against the numerical one (given by the pairs (j, sj)).

With all these comments in mind one has that the wavelet coefficients (with 
vanishing moments) of the Weierstraß function are closer enough to the real ones
because the difference between the numerical regularity and the theoretical one is
small enough. However, the last sentence is kind of act of faith in the sense that the
small enough depends on the quality of the coefficients and, in our setting, they depends
on the quality of the Fast Wavelet Transform. In other words, it is important to notice
that, after some experiments that we have done there are differences between Fast
Wavelet Transform of the GNU-GSL library and the “real wavelet” value. Therefore, the
wavelets coefficients are given with error which are similar to those ones represented
in Figure ..

. The numerical regularity of the attractors

As it has been already said we aim at estimating the regularity of the attractor of Sys-
tem (.) in order to have a degree of accuracy of the wavelet coefficients of an invariant
object. Before continue the explanation, let us recall it(

θn+1
xn+1

)
=
(

Rω(θn)
2σ tanh(x) · (ε+ |cos(2πθ)|)

)
.

By Keller Theorem, this attractor is the graph of a map ϕ : S1 −→ R+. Thus we have to
use the algorithm described in the previous section applied to the function ϕPER (see
Lemma ..).

But ϕPER in the pinched case is discontinuous almost everywhere (and the corre-
sponding attractor is called strange). Therefore, we are not allowed to apply verbatim
the algorithm from the previous section. In the rest of this section we will describe
how to solve this problem in the implementation of the algorithm from the previous
section.

We introduce the following notation for the wavelet coefficients of %PER:

aPER
j [n] := 〈%PER, φj,n〉 and dPER

j [n] := 〈%PER, ψj,n〉

for j, n ∈ Z.
To compute an approximation of the type (.) for ϕPER, since we do not have an

explicit formula for ϕ, we will use Theorem ..(f) and the transfer operator to get a
sufficiently good numerical approximation of this function. Indeed, by Theorem ..(f),
for almost every θ0 ∈ S1, any x0 > 0 and any ε > 0 there exists N0 such that for every
n ≥ N0 we have:

|xn − ϕ(θn)| < ε
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where (θn, xn) = Fn(θ0, x0). Moreover, the points (θn, xn) with n ∈ {N0, N0 +
1, . . . , N0 +2J−1} approximate exponentially fast the points (θn, ϕ(θn)) from graph(ϕ).
Therefore,

(.)
{

(θn, xn) : n = N0, N0 + 1, . . . , N0 + 2J − 1
}

is an approximate mesh of graph(ϕ) provided that J is large enough. Precisely, this large
enough must be estimated, given a tolerance, using Equation (.). To fix the mesh we
choose a random point θ0 and we fix some x0 such that

x0 > 2σ(ε+ 1) ≥
(

sup
x∈R

2σ tanh(x)
)(

max
θ∈[0,1]

(ε+ |cos(2πθ)|)
)
.

However, this approximate mesh has two problems to be used in our computations:

Problem () as we will see, we need a mesh of the graph of ϕ at dyadic points of the
form i2−J for i = 0, 1, . . . , 2J − 1,

Problem () we can not use Lemma .. to estimate the initial coefficients a−J [n] since
our map ϕ is discontinuous almost everywhere (and, hence, not Lipschitz).
Moreover, if one considers the closure of ϕ some topological artifacts can
appear.

.. A solution to Problem (): a C1 homeomorphism

As we have said, we need amesh of the graph of ϕ at dyadic points of the form θi = i2−J
for i = 0, 1, . . . , 2J − 1 but, clearly, if we obtain the points (θn, xn) just as iterates of a
single point by F this condition is not satisfied. The natural approach which would be to
approximately compute the points of the graph of ϕ based at the dyadic points by inter-
polating the obtained values is not feasible since, by Theorem .., we know that ϕ is
upper semi-continuous and discontinuous everywhere. Then we propose the following
solution which consists in moving to a conjugate system with the desired properties.
To do this, first we relabel the points {(θn, xn)}N0+2J−1

n=N0
to a sequence {(θ̃i, zi)}2

J−1
i=0 so

that
0 ≤ θ̃0 < θ̃1 < · · · < θ̃2J−1 < 1

(we do this simply by sorting the data (.) with respect to the first coordinate; see
Remark ..). In particular if n ∈ {N0, N0 + 1, . . . , N0 + 2J − 1} and i = i(n) ∈
{0, 1, . . . , 2J − 1} is such that θ̃i = θn, then zi = xn.

Now we consider a C1 homeomorphism h : S1 −→ S1 such that h
(
i2−J

)
= θ̃i for

i = 0, . . . , 2J − 1, h(1) = θ̃0 + 1. Such map h can be obtained by taking h to be, for
instance, a cubic spline in the intervals

[
i2−J , (i+ 1)2−J

]
for i = 0, . . . , 2J − 1.
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Clearly,
{(
i2−J , zi

)}2J−1

i=0
is now an approximate mesh of graph(%) with % = ϕ ◦ h,

based at the dyadic points. Thus, we will use the list of pairs
{(
i2−J , zi

)}2J−1

i=0
to

estimate the regularity of %.

Remark ... The map % has the following dynamical interpretation. Consider the
homeomorphism H : S1 × R+ −→ S1 × R+ defined by H(θ, x) = (h(θ), x). Then, one
can check that, graph(%) is the attractor of the dynamical system(

H−1 ◦ F ◦H
)

(θ, x) = (h−1(Rω(h(θ))), f(x)g(h(θ))),

which is conjugate to System (.).

To obtain the regularity of ϕwe need to relate the regularities of % and ϕ in terms of
the Besov Spaces Bs

∞,∞(S1). To do this we use the fact that h is a C1 homeomorphism
and that a homeomorphism is a bijective mapping of Bs

∞,∞(R) onto itself (we refer the
reader to Section . from [Tri] for a more detailed explanation). More precisely,

Proposition ... Let f ∈ Bs
∞,∞(S1) with s ∈ R and let h : S1 −→ S1 be a Cm diffeo-

morphism with m ≥ s. Then f ◦ h belongs to Bs
∞,∞(S1).

Thus, by Proposition .. and Proposition .., the regularity of ϕ and % coincide

and we can estimate the regularity of % by using the mesh
{(
i2−J , zi

)}2J−1

i=0
.

We remark that the exact formula for h is irrelevant for our algorithm. We only
use the fact that such a map h exists and the fact that it can be taken C1. To obtain

the data mesh
{(
i2−J , zi

)}2J−1

i=0
that approximates % (the attractor of the conjugate sys-

tem) we simply have to sort the obtained mesh {(θn, xn)}N0+2J−1
n=N0

for ϕ with respect
to the first coordinate θ and replace θ̃i by i2−J . Of course, this does not add any further
computational error to the mesh other than the errors coming from the iteration of the
system and truncation errors derived from the choice of J . Furthermore, the exponen-
tial contraction of the system to the attractor (see Theorem ..(f)) still holds for the
conjugate system, thus assuring that there is no loss of precision when replacing ϕ by
% (see Subsection ..).

Remark ... The process of sorting the data of an array of 230 points from S1 ×
R+ (stored as pairs of double variables in C programming language) turns to be the
bottleneck of the whole algorithm (and the most time consuming task of the whole
program). Moreover, even the process of computing and filling the array with the
initial mesh of the function ϕ already spends a “visible” amount of CPU time. Indeed,
the iteration, storing and sorting process (with a standard sort algorithm like Heapsort)
of this data spends about  CPU seconds, with a remarkable variability which depends
on the initial sorting of the data, in a computer with a Xeon processor at  GHz and  Gb
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of RAM memory. In order to reduce the time elapsed in the sorting process we use the
following trick based on the fact that the dynamical system generating the θi data is the
irrational rotation Rω . In this case we know that the Lebesgue measure is the unique
ergodic measure of Rω and, hence, its averaged spatial distribution is uniform and it
is controlled approximately by the Birkhoff Ergodic Theorem applied to the Lebesgue
measure. Indeed, we have

]
({
θ,Rω(θ), . . . , Rk−1

ω (θ)
}
∩
[
i
N ,

i+1
N

))
≈ k

N

for k large enough and for every i ∈ {0, 1, . . . , N−1}. The interpretation of this equation
is that the statement

(.) ]
({
θN0 , θN0+1, . . . , θN0+2J−1

}
∩
[
i

2J ,
i+1
2J
))

= 1

holds with high frequency for J large enough (observe that in this case we have{
θN0 , θN0+1, . . . , θN0+2J−1

}
=

{
θN0 , Rω(θN0), . . . , R2J−1

ω (θN0)
}
). Moreover, when

(.) holds, we have i =
⌊
2Jθl

⌋
, where θl is the unique element from the set{

θN0 , θN0+1, . . . , θN0+2J−1
}
∩
[
i

2J ,
i+1
2J
)
and b·c denotes the integer part function. This

observation gives a good “hash function” and the following efficient algorithm to store
and sort the data {(θn, xn)}N0+2J−1

n=N0
. First, for n = N0, N0 + 1, . . . N0 + 2J − 1 we com-

pute the point (θn, xn) = F(θn−1, xn−1). Then, we store it in the position i =
⌊
2Jθn

⌋
of the array data, if this slot is free. Otherwise, we store the point (θn, xn) in a free
position j = j(i) of the array data such that |j − i| is minimal. According to the above
observations this will happen with low frequency and the array data will be almost
sorted. Moreover, the positions of the array data which are not sorted are close the
place where they should be when the array is sorted. This is the situation when the
direct insertion sorting algorithm can be used with very good results. This means that
we are using a method of order O(2J + d) where d is the number of insertions (which
are very low due to the way we have stored all data) instead of a method of order
O(J2J) as the Heapsort algorithm.

With this trick, the iteration, storing and sorting process lasts about  CPU seconds,
almost without variability, which clearly improves the efficiency of the program.

.. A solution to Problem (): calculating the coefficients aPER
−J [n] of %PER

When % is regular enough, Lemma .. gives 2−J/2%
(
n
2J
)
as an estimate for the co-

efficients aPER
−J [n]. Recall that Theorem .. and the next-to-last item of Theorem ..

ensures this good behavior. But, as we have pointed out, ϕ (and hence %PER) is dis-
continuous almost everywhere and the above estimate of aPER

−J [n] is, a priori, not valid.
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However, as we will see, the element zn ≈ %
(
n2−J

)
from our data give indeed a good

estimate for aPER
−J [n] because our mesh is based at the dyadic points n2−J .

As it has been already said in Section .., ϕ is the pointwise limit of a non-increasing
sequence of continuous (and, hence, uniformly continuous) functions ϕk : S1 −→ R+

defined by
ϕ0(θ) = c and ϕk+1(θ) = T(ϕk)(θ)

for every θ ∈ S1 and c > supx∈R tanh(x). Consequently, %(θ) = limk→∞ ϕk(h(θ)) for
every θ.

Remark ... If we take x0 = c = ϕ0(θ0) then xk = ϕk(θk) for every k ≥ 1. To see it
notice that, from the definition of the points (θn, xn) and F, we get

θk = Rω(θk−1) and xk = πx(F(θk−1, xk−1))

for every k ≥ 1. Assume that xk−1 = ϕk−1(θk−1) fore some k ≥ 0. Then, by Re-
mark ..,

xk = πx(F(θk−1, xk−1)) = πx(F(θk−1, ϕk−1(θk−1)))
= T(ϕk−1)(Rω(θk−1)) = ϕk(θk).

Since the scaling function φ of a Daubechies Wavelet is continuous, so is φ−J,n
for each n. Hence, from the definition of the coefficients aPER

−J [n] and the Dominated
Convergence Theorem we have:

aPER
−J [n] =

∫
supp(φ−J,n)

(ϕ ◦ h)PER(θ)φ−J,n(θ) dθ

= lim
k→∞

∫
supp(φ−J,n)

(ϕk ◦ h)PER(θ)φ−J,n(θ) dθ

= lim
k→∞

ak,PER
−J [n],

where ak,PER
−J [n] :=

〈
(ϕk ◦ h)PER, φ−J,n

〉
. From the proof of the Dominated Convergence

Theorem, it can be shown that ak,PER
−J [n] converge exponentially fast to aPER

−J [n]. There-
fore, if k is large enough, by Lemma .. we have

aPER
−J [n] ∼ ak,PER

−J [n] ≈ 2−J/2(ϕk ◦ h)PER(n2−J) = 2−J/2ϕk(h(n2−J))

for n = 0, . . . , 2J − 1 (where ∼ means exponentially close).
From the definition of h it follows that, given n ∈ {0, 1, . . . , 2J − 1}, there exists

k ∈ {N0, N0 + 1, . . . , N0 + 2J − 1} such that h
(
n2−J

)
= θ̃n = θk. Therefore, by

Remark ..,
ϕk
(
h
(
n2−J

))
= ϕk(θk) = xk = zn.
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Hence, if N0 is large enough,

aPER
−J [n] ≈ 2−J/2ϕk(h(n2−J)) = 2−J/2zn

for n = 0, . . . , 2J − 1. This gives the necessary approximation of the coefficients aPER
−J [n]

to initialize the algorithm.

Remark ... Such issue of the application of the Dominated Convergence Theorem
is what we meant by control the difference between the wavelet coefficients of the
Transfer Operator in Equation (.). However, as we will see in the forthcoming sections
and at the end of the current chapter, the explicit calculation becomes very difficult. This
comment is another way to motivate Chapter .

.. A summary on the implementation of the algorithm

Step Previous . Fix σ > 1, choose a random θ0 ∈ [0, 1) and x0 > 1 and, by using the
recurrence (θn, xn) = F(θn−1, xn−1), generate the data{

(θn, xn) : n = N0, N0 + 1, . . . , N0 + 2J − 1
}
,

with N0 given by Equation (.) with a tolerance 10−14 and J = 30 (or apply a generic
transient N0).

Step Previous . Sort the above data to obtain a sequence {(θ̃n, zn)}2J−1
n=0 so that

0 ≤ θ̃0 < θ̃1 < · · · < θ̃2J−1 < 1,

and delete the concrete values of the points θ̃n. This defines a map % with the same
regularity that the map ϕ such that %

(
n2−J

)
≈ zn for n = 0, . . . , 2J − 1.

Step Previous . Set aPER
−J [n] ≈ 2−J/2zn for n = 0, . . . , 2J − 1.

Now, Steps – of the algorithm from Section . remain unaltered. As a result we
get an estimate of the regularity of the (strange) attractor of System (.) for the chosen
value of σ and ε.

. Conclusions and results

We have performed two kind of exercises. The first one it has been the application
verbatim of the above algorithm. The second one, once we have seen the results, we
have tested the quality of the wavelet coefficients by using Method ...



.. Conclusions and results 

Figure .: The estimate of the regularity R(s̃) of the (strange) attractor of System (.)
for σ ∈ [1, 2] and ε given by the parametrization ε(σ). The results are obtained by using a
sample of 230 points (that is, J = 30), a transient N0 = 105 and the Daubechies Wavelet
with  vanishing moments. For this number of vanishing moments we obtain the
minimum variance of Pearson correlation coefficient. It can be seen, by direct inspection
of the picture, that when the system becomes pinched Method .. does not give the
seal of approval to the wavelet coefficients. However the pinching value σ = 1.5 is
detected.

.. A verbatim application

We have used the above algorithm with the System (.) for σ ∈ [1, 2] and ε given by
the function

ε(σ) =

(σ − 1.5)2 when 1.5 ≤ σ ≤ 2,
0 when 1 ≤ σ ≤ 1.5.

With this parametrization the system is pinched if and only if σ ∈ [1, 1.5]. In Figure .
we plot the estimated regularities of System (.) as a function of σ with the above
parametrization.

In Figure . one can clearly appreciate three regions with different qualitative be-
havior. One of them corresponds to the pinched case (i.e. σ ∈ [1, 1.5]) and the other
two to the non-pinched one: σ ∈ (1.5, σ̃) and σ ∈ [σ̃, 2] with σ̃ ≈ 1.527. In what follows
we discuss in detail these three regions. The problems can be guessed by inspection of
Figure ..

Non pinched case: σ ∈ [σ̃, 2]

In this region we have ε = (σ−1.5)2 ' 7.29×10−4 and hence we are far from the pinched
case. The function ϕwhose graph is the attractor is continuous but not differentiable (see
[Kel, Sta, Sta]). Moreover, since we are far from the pinched case, ϕ is rather well
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(a) σ = 1.699219 (ε = 0.039688). (b) σ = 1.513672 (ε = 0.000187).

(c) σ = 1.507812 (ε = 0.000061). (d) σ = 1.425781 (ε = 0).

Figure .: Graphs of the pairs (j, sj) with −29 ≤ j ≤ 0 for the (strange) attractor of
System (.) different values of σ and ε given by the parametrization ε(σ). In agreement
with the computed Pearson correlation coefficient they are approximately linear. Also
observe that the first values of j will be the worst fitted for the straight line of the
regression in concordance with the comment below Lemma ...
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behaved since still we have lack of differentiability in few points (see Figure .). This
is confirmed by the estimated regularities that, not surprisingly (see Remark ..), are
in the interval (0, 1) and “far” from zero: R(s̃) ∈ [0.6822, 0.9669]. But these regularities
must be closer to one by Theorem ...

Figure .: The attractor of System (.) for σ = 1.699219 (and ε = 0.039688). In this
case R(s̃) = 0.91431.

Figure .: On the left picture it is shown the attractor of System (.) for σ = 1.513672
(and ε = 0.000187). The regularity of this attractor is R(s̃) = 0.6266. On the right picture
the parameter are σ = 1.507812 (ε = 0.000061) and R(s̃) = 0.4951. Notice the big
difference between the regularities of the two parametrically close attractors.
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Approaching the pinched case: σ ∈ (1.5, σ̃)

In this region, since for σ = 1.5 we are already in the pinched case, the function becomes
more irregular (see Figure (.)). Therefore, the regularity falls to zero abruptly and we
have big differences in estimated regularity between parametrically close attractors.
But moreover, these estimated regularities must be, again by Theorem .., closer to
one.

The pinched case: σ ∈ [1, 1.5]

In this case, according to .. and Proposition .., the attractor is pinched and, hence,
discontinuous almost everywhere (see Figure .). Then it is not surprising that the
regularity is equal to zero for the whole range of parameters.

In view of the above three regions and these kind of results some questions arise: are
the wavelet coefficients “sufficiently” good enough besides the inherent error induced
from the initialization of Fast Wavelet Transform? The wavelet used, to make the above
pictures, is the best for all range of parameters?

.. Testing the quality of coefficients

In contrast with the Fourier setting, one of the advantages of the wavelet context us-
age is that one has infinitely many orthonormal bases. Recall that, in order to be
under hypothesis of Theorem .., we must use Daubechies family with more than
max(s, 5/2−s) vanishing moments. However, since the number of vanishing moments,
k, cause an increment of the support size of the wavelet the first wavelet coefficients
are even worse because the support of ϕ remains unaltered (in fact the ratio of growth
between ϕ and ψ is  to 2k−1). With this comment wemean that a good strategy seems
to choose the wavelet in terms of the parameters σ and specially ε and k (besides the
assumptions on the vanishing moments mentioned above).

In order to make more clear the previous comments and ideas, we have performed
the following exercise. Since the region Approaching the pinched case is the worst one
(in therms of predicting the regularity) we have fixed σ = 1.5 and we have calculated
the wavelet coefficients using the Step Previous and Step  of the algorithm given
in Section .. After that, we have reconstructed the regularity with Method .. in
order to check if such wavelet coefficients are able to reconstruct the regularity of the
function ϕ which is given by Proposition ... The result of such experiment can be
seen at Figure ..

The first thing to notice, as we have pointed out at the beginning of this section, is
that there are better regions, in terms of ε and k, where some wavelets reconstruct the
regularity better than other. Also a we have a remarkable fact: the Pearson correlation
coefficient is always big enough whether in the good and the bad regions. On the other
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Figure .: On the left picture it is shown, in terms of the Vanishing Moments which
wavelets reach the maximum Pearson coefficient (always greater than 0.99). On the
right hand side, it can be suspected the functional space jump in terms of the norm of
ϕ. In both cases, ε ∈ (0, 1] and σ = 1.5 for the attractor of System (.).

side, the wavelet coefficients, given by the Fast Wavelet Transform, show the functional
space jump predicted at Proposition .. (see Figure .). Also they define a behavior
on the regularity problem but they seem to be not able to assess the value.

Drawing to a close this section we want to highlight that, in view of the experiments
that we have performed with the Weierstraß function or moving the parameter of the
invariant function ϕ, the implementation of the Fast Wavelet Transform that we have
used, the one from GNU-GSL library, it is not sufficiently fine. But, moreover, it seems that
Fast Wavelet Transform has some drawbacks, as the initialization specially when one
has to deal with highly irregular functions. This leads us to think that the “practical”
Fast Wavelet Transform is only valid to define tendencies when the problem of the
regularity is considered. Hence, other methods must be employed such as quadrature
rules. However, this tendencies can be taken to be numerical evidence of the regularity
space jumps especially in view of Proposition ... That is, the Fast Wavelet Transform
is about to lay the foundation stone of another way to see how ϕ becomes strange.
Although other methods more accurate must be performed.

The naive reason of take the quadrature rules way is simple. Indeed, since we have
used Fast Wavelet Transform, and hence aPER

−J , we did not take into account the special
shape of the Transfer Operator which is described by in the previous chapter. However,
if we use a quadrature rule to calculate dPER

j [n] :=
〈
ϕk(σ,ε)

PER
, ψj,n

〉
, for a sufficiently

big k > 0, we can use the information given by Theorem .. and the Dominated
Convergence Theorem. Hence, increase the degree of accuracy of the coefficients.
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Recall that in Section .. we have defined∫
supp (w(x))

f(x)w(x) dx =
n∑
i=1

`if(xi) +R(f)w

to be a n-point Gaussian quadrature rule. The problem of such method, to be perfectly
honest, is the viability and reliability of the computations performed as well as the prob-
lem of how to convert ϕ ∈ S1 to a map of R. Let us be more precise. The quadrature
given in Conjecture .., due to its computational advantages (in terms of time spent
and memory) as well as its simplicity, made us feel hopeful at a first glance. That said,
one of the first problematic milestones is the degree of accuracy of the coefficients h[n].
Indeed, it is known that the roots of a polynomial are a continuous function of the coef-
ficients. However, a not sufficiently good approximation of h[n]’s gives us a sequence of
polynomials, given by Equation (.), which they loose its orthogonality as well as they
become ill-conditioned polynomials. The theoretical solution of such problems can be
done following the thread depicted in Remark ... That is, use tools of computational
algebraic geometry such as the Gröbner basis (see [Reg, RS] an the references there
in to get a more comprehensive explanation) to get the best parameterization of the
coefficients h[n]. Nevertheless, taking into account our poor knowledge of a compu-
tational algebraic software this theoretical tool becomes unworkable for us when the
degree of the polynomial grows. Also, algebraic geometry is a topic very far away of
our scope.

On the other side, when one tries to bound the remainder R(f)w in order to have
a good quadrature rule, for the pinched case, it turns out the problem of the zeros. In
other words, the wavelet coefficients for ε 6= 0 can be computed in a reasonable time
as well as can be considered good enough in terms of reconstruction of ϕ. Instead,
consider a naive application of the Birkhoff Ergodic Theorem such as

dPER
j [n] :=

∫
ΩPER
j,n

ϕ(θ)ψPER
j,n (θ) dθ = lim

k→∞

1
k

k−1∑
i=0

f of Birk. Erg. Thm.︷ ︸︸ ︷
ϕ · ψPER

j,n · χΩPER
j,n

(Riω(θ)),

where χΩPER
j,n

is the characteristic function of the domain of ψPER
j,n . Then, even though its

poor speed of convergence it seems to be better even the quadrature rule aforemen-
tioned. The origin of this, at a first glance, surprising artifact can be explained as follows.
Indeed, recall that the base space of the skew product is S1 whereas the quadrature rule
is defined over R. We tried to use the same trick as the one used before Lemma ..
(the definition of fPER). Unfortunately, it seems to be not enough powerful for our pur-
poses and problems. In view of that the extension of the Conjecture .. on S1 will
be, for us, an open problem to solve in a future work.

In view of these comments, another method must be applied such as the resolution
of the (discretized) invariance equation (.). This will be the main topic of the next
chapter.



Chapter 

The Invariance Equation Through
Wavelets

Now we have a simple tool to work with and compute the wavelet coefficients: the
Fast Wavelet Transform. It allows us, for example, determine some tendencies

of ϕ in terms of the spaces Bs
∞,∞(S1). However, being not satisfied with this approach

and in view of we have pointed out at the ending of the previous chapter, we will go
further.

This current chapter must be seen as a melting-pot of all the techniques, subjects
and concepts that we have explained and presented up to now. Actually, we aim to get
an expression like

ϕ ∼ a0 +
J∑
j=0

2j−1∑
n=0

dPER
−j [n]ψPER

−j,n.

To get it, the central role will be played by the discretization of the Transfer Operator, T
which is given by Equation (.), in order to solve the invariance equation, given by (.),
using Newton’s method. Following this thread, it will leads us to use the method to
compute and store either Haar or Daubechies wavelet matrices given in Section . of
Chapter . Moreover, using Haar wavelet we give the "exact" solution of the linear
system derived using a simple recursion. Such solution can be obtained in O(N) time.
Recall that, roughly speaking, this means that for big input size the computer running
time increases linearly respect the size of the data entry.

Moving to the final part of the chapter, we will perform a battery of experiments
with the Skew Product given by Equation (.). Such performance should enable us two
things. The first one is the check and comparison between the results of Chapter  and
the new ones. The second item is to take advantage of the short running time (and
memory!) of the calculation when Haar wavelet is considered. Combining them we
will derive more properties of ϕ besides of the regularity pointed out in Chapter .
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. The (non)-linear system

We aim to obtain the coefficients dPER
−j [n], which recall that they are given by

dPER
−j [n] := 〈ϕ,ψ−j,n〉 =

∫
supp(ψPER

−j,n)
ϕ(θ)ψPER

−j,n(θ) dθ.

To this end, recall that we are considering skew products of the following form
(θn+1, xn+1) = (Rω(θn), Fσ,ε(θn, xn)). On the other side, when Fσ,ε(θ, x) satisfies The-
orem .., we know that there exists an upper semi continuous function ϕ : S1 −→ R
such that ϕ(Rω(θ)) = Fσ,ε(θ, ϕ(θ)) whose graph is invariant. That is, we can consider
to forge the non linear system of equations which will give us the desired coefficients
dPER
−j [n] for a large class of skew products. Indeed, recall the definition of the operator

T given by Equation (.):

T : Cn(S1 × R,R) −−−−−−−→ Cn(S1 × R,R)
ϕ(θ) 7−→ ϕ(Rω(θ))− Fσ,ε(θ, ϕ(θ)).

Let us explain how we will get the desired coefficients dPER
−j [n] aforesaid. To this end,

following mainly [Jor], we will consider the discretization of the operator T. Indeed,
we want to express the function ϕ as a finite expansion like

ϕ ∼ a0 +
∑
l∈Λ

dPER
l ψPER

l ,

where ψPER
l is an orthonormal wavelet basis of S1. Recall that l = 2j + n (therefore

one must take j = −blog2(l)c and n = l − 2j ) and Λ is the set of l’s. Now, being
J large enough and the points θi = i/2J ∈ S1, one can perform the equation with
ϕ(θi) = a0 +

∑
l∈Λ

dPER
l ψPER

l (θi) doing the following:

(.) Fσ,ε

θi, a0 +
∑
l∈Λ

dPER
l ψPER

l (θi)

 = a0 +
∑
l∈Λ

dPER
l ψPER

l (Rω(θi))

which is, clearly, the discretization of T. In view of that, we can translate such problem
to a “root finding” problem by considering each component of the invariance equation

Ii : R2J × {θi} −−−−−−−→ R
(DPER

N , θi) 7−→ Ii(dPER
l )

∣∣
θi

where we take, by definition,

Ii(DPER
N )

∣∣
θi

:= a0 +
∑
l∈Λ

dPER
l ψl(Rω(θi))− Fσ,ε

θi, a0 +
∑
l∈Λ

dPER
l ψPER

l (θi)
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and hence we can redefine the problem derived from Equation (.), in terms of the Ii’s,
by find a vector DPER

l ∈ R2J such that the following function

F : R2J −−−−−−−→ R2J

DPER
N 7−→ (I0(DPER

N )
∣∣
θ0
, . . . , I2J−1(DPER

N )
∣∣
θ2J−1

)

has a zero at DPER
N . To do this, as we have pointed out in Section .., we will use

Newton’s method. That is, we will find DPER
N,?) such that

∣∣∣DPER
N,?) −DPER

N

∣∣∣ < ε using the
recurrence

(.) JF(DPER
N,n))(X) = −F(DPER

N,n))

for the unknown X = DPER
N,n+1) − DPER

N,n) and given a seed DPER
N,0). Fixed a J > 0 it can

be seen that the (i, l)-th entry of the Jacobian matrix of JF, in our particular setting, is
given by

(.) JFi,l =


1−

∂F

(
θi,a0+

∑
l∈Λ

dPER
l ψPER

l (θi)
)

∂x if l = 0,

ψPER
l (Rω(θi))−

∂Fσ,ε

(
θi,a0+

∑
l∈Λ

dPER
l ψPER

l (θi))
)

∂x ψPER
l (θi) otherwise.

We want to emphasize that the above equation is, precisely, the discretization of the
transfer operator given by Equation (.) aforementioned in Chapter . In other words,
from the point of view of iterative solvers, the convergence towards the solution is
closely related with the reducibility properties of the skew product considered. On
the other side, we claim that if ψ(x) has compact support then the Jacobian matrix has
most of its entries populated by zeros. That is, in our particular setting JF will be sparse
matrix and is “highly structured” as it can be seen in Section ..

We end by recalling that ψPER
l is the l-th element of an orthonormal basis of S1.

Hence, being N = 2J fixed and taking into account Equation (.), the Jacobian matrix
can be compactly written as

JF =
(
Ψ̃PER
N −∆NΨPER

N

)
,

where ΨPER
N is set to be the N ×N matrix whose columns are ψPER

l (θi) and, similarly,
let Ψ̃PER

N be the N ×N matrix whose columns are ψPER
l (Rω(θi)). Finally, the diagonal

matrix given by

∂Fσ,ε

(
θi, a0 +

∑
l∈Λ

dPER
l ψPER

l (θi)
)

∂x

is stored in ∆N . To conclude this section devoted to state and perform the (non)-linear
system of equations we make the following remark.
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Remark ... The tools to calculate and store JF are a direct consequence of those
techniques explained in Section . of Chapter . However, it must be pointed out that
for the mesh θ̃i = i/N + ω ∈ S1, where ω ∈ R\Q, the above formulation of how one
can store Ψ̃PER

N remains valid. This is true because, as it can be seen in the proof of
Lemma .., the block structure of the matrix is induced by l = 2j +n. Notice also that
for θ̃i, the Daubechies Lagarias products are more complicated to calculate and, thus, it
slows down the storage process.

Now, having tailored JF for our particular needs, we are ready to explain carefully
how the Newton’s method is applied in the forthcoming section.

. Newton’s route

Recall that we are looking for the wavelet coefficients using the Newton’s method. In
this section we will explain carefully how such technique is applied for our particular
setting. That is, fixed an integer J > 0 big enough (and hence N = 2J ) we need to find,
up to a given tolerance, DPER

N,?) such that it solves the Equation (.). To find it, we will
use the recurrence given by Equation (.). The vector DPER

N,?) ∈ RN will be the vector
of wavelet coefficients dPER

−j,?)[n] related to the Daubechies wavelet ψPER
l with p ≥ 1

vanishing moments. Recall that p = 1 corresponds to the case of Haar wavelet.

.. The initial guess

As we have already said, Section .., we need an initial seed DPER
N,0) and, in order to get

such first N -dimensional vector, we will apply a practical issue of the Birkhoff Ergodic
Theorem. Indeed, let us assume that our dynamical system verifies that ϕ(·)ψPER(·) ∈
L 1(S1). Therefore by the Birkhoff Ergodic Theorem, it follows that

(.) dPER
−j,0)[n] :=

∫
ΩPER
−j,n

ϕ(θ)ψPER
−j,n(θ) dθ = lim

k→∞

1
k

k−1∑
i=0

f of Birk. Erg. Thm.︷ ︸︸ ︷
ϕ · ψPER

−j,n · χΩPER
−j,n

(Riω(θ)),

where χΩPER
−j,n

is the characteristic function of the domain of ψPER
−j,n. Of course, the afore-

mentioned assumption when one uses the system given by (.) makes sense. However,
doing numerics the limit is not applicable directly but using the periodicity and taking
N = k one may think that Equation (.) is the trapezoidal rule.

On the other side, recall that what we have a sample of points θi = i/N . Then,
using a similar trick as the one depicted in Equation (.) we can construct a sample of
ϕ over the points θi = i/N . Indeed, define for i = 0, . . . , 2J − 1 the points θ̃i = R−kω (θi)
where k > k0. As we have done before the integer k0 is defined by Equation (.) (up
to a given tolerance). That is, we have gone backwards under the rotation in order to
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have the preimage of each θi. Now, it only remains to go forwards. Indeed, consider
for i = 0, . . . , 2J − 1 the points Fk(θ̃i, x0) being, in the same way as in Section .,
x0 > (2σ(ε + 1)). Then by, Theorem .., the points constructed in such way are an
exponentially close sample of ϕ(θi) for i = 0, . . . , 2J − 1. Hence, we are allowed to
define ΦN to be a column vector whose N -components are ϕ(θi) with θi = i/N . Being
ΨPER
N
> the transpose of ΨPER

N then we have that

(.) ΨPER
N
>
ΦN = DPER

N,0),

where the vector DPER
N,0) has d

PER
−j,0)[n] as entries. Indeed, since the columns of ΨPER

N are
ψPER
l (θi) then its transpose has ψPER

l (θi) as rows. Therefore, each entry of DPER
N,0) of

Equation (.) has a multiplication like

N−1∑
i=0

ψPER
l (θi)ϕ(θi).

Which is, exactly, the Equation (.) if one divides the result by N . That is, our initial
guess for the Newton’s method will be the vector DPER

N,0) given by Equation (.) divided
by N .

Remark ... One may think that another fast way to obtain the initial seed is applying
the FWT. But due to the final comments in Chapter  we have discarded it. However,
in the case of Haar the matrix ΨPER>

N coincides with the one of the Discrete Haar Trans-
form. In other words, the resultant of ΨPER

N
>ΦN is equivalent to apply the Discrete Haar

Transform to ΦN .

To conclude this explanation of how we choose the initial seed, let us make a com-
ment concerning why we use the Trapezoidal rule to pick up our initial guess. The
reason is quite simple: the Trapezoidal rule tends to become extremely accurate when
periodic functions are integrated over their periods. Indeed, an asymptotic error estimate
is given by

−(b− a)2

12N2
[
f ′(b)− f ′(a)

]
+O(N−3).

That is, under mild conditions f ′(a) = f ′(b), and only the O(N−3) term remains when
periodic functions are considered. Of course, perhaps in our case ϕ′(0) does not exists
in the usual sense. But the above error formula is still decreasing when N goes to∞.

.. Solving the system

In this following lines we will explain the strategies that we have performed to solve
the linear system derived in Equation (.). Our goal will be find fast ways to compute
solutions of

(.) JF(X) =
(
Ψ̃PER
N −∆NΨPER

N

)
(X) = −Inv,
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where JF is given by Equation (.). Also, the vector Inv ∈ RN is the invariant equation
evaluated at θi and it is computed by means of Equation (.). To solve the above
linear system of equations, we will refer the reader to some of the concepts introduced
Section ...

Remark ... In order to make the formulas more readable we have omitted the pa-
rameters σ and ε in Equation (.). In other words, we need to solve

JFσ,ε(X) =
(
Ψ̃PER
N −∆NΨPER

N

)
(X) = −Invσ,ε,

where ∆N also depends on σ and ε.

Let us start by saying that it is difficult to find references that try to analyze the con-
vergence of the GMRES method without making assumptions on the condition number
of the Arnoldi matrix. Although, in [Mor] the author studies linear systems of the
form

(λId + T)u = f

for a certain compact operator T in a Hilbert space and λ 6= 0. Such study allows to
get bounds for the super linear convergence in terms of singular values of the operator
T. Furthermore, there are several instances where the linear system must be precon-
ditioned using either right or left preconditioning technique. Such procedure looks for
a twofold objective. On the one hand, a good precondition technique must be little
costly from the computational point of view. On the other side, the resultant matrix,
M̃ = λId + Ξ, must have “better properties”. That is the matrix Ξ must have good
properties such as small norm or its eigenvalues are well placed.

Without wishing to be ambitious, we will try to combine those ideas. That is, using
a right preconditioning technique we will try to transform the linear system given by
Equation (.) to a more simpler one. In order to have an intuition of the convergence
of the GMRES method, the resultant system will be as much similar as we can as
the one presented by [Mor]. To this end, let us say that the spectral radius of JF is
bounded when an R-Daubechies wavelet with p ≥ 1 vanishing moments that generates
an orthonormal basis of S1 is considered.

We want to remark that the proof is something silly. But it is a heuristic tool to use
when one tries to make the pass to the limit in order to bound the spectral radius of JF.
Also, for the same reason, the verbatim application of the Gershgorin circle theorem
does not add many information of how and where the eigenvalues of JF are placed.
Despite of this, we already know that the spectral radius is bounded. Indeed, as we have
pointed out in Section ., since JF is a discretization of the Mather spectrum then its
spectral radius must be in an annuli. This is a very bad notice for us because GMRES
works well in the case of clustered eigenvectors. On the other side, iterative methods,
as Jacobi or Gauss-Seidel, are discarded because the diagonal can be zero many times
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due the sparsity of JF. In view of that, we need to transform JF to a better matrix
in order to apply safely iterative solvers. This is the main topic of the following two
sections.

... Haar’s strategy

Let us zoom in a little bit more the structure of how we can convert the matrix JF to
a better one. Take a Daubechies wavelet with p ≥ 1 vanishing moments. We already
know that the columns of ΨPER

N are the first N elements of the basis {ψPER
l }l∈Z+ eval-

uated at θi = i/N . For a moment, let us assume that using a similar argument as the
one in Section .. the following chain of equalities, dividing by N , is true

JFΨPER
N
> = (Ψ̃PER

N −∆NΨPER
N )Ψ̃PER

N
> = (Id−∆NΞ).

If the matrix ∆NΞ is well conditioned, or its spectral radius is less than one or Ξ = Id
then we can consider ourselves lucky. We will come back to this last item later on.

Continuing the thread of (Id−∆NΞ) is important to recall that if Id−∆NΞ is invertible
then

(Id−∆NΞ)−1 =
∞∑
k=0

(∆NΞ)k,

where he series above converges whenever ς(∆NΞ) < 1. Hence, the matrix ∆NΞ can
be used to derive an iterative method given by

Xk+1) = (Inv−∆NΞXk)),

with effective error bounds, to find the solution of (Id−∆NΞ)X = −Inv.
We recover here the idea of the right preconditioning technique but now, using the

Haar basis (p = 1). Recall, as we have said in Section .., in concrete in Corollary ..,
it is verified that ψPER

j,n (θ) = ψj,n(x). Also with the matrix ΨPER we can forget the
superscript PER. That is, when we are considering the Haar matrix we will denote it Ψ
and Ψ̃ for its rotated version.

Lemma ... The matrix 1√
N

ΨN is orthogonal. That is 1
NΨ>NΨN = 1

NΨNΨ>N = Id.

Proof. In order to prove the statement, we must keep in mind that the Haar basis is an
orthonormal basis of S1. Therefore, the matrix 1

NΨ>NΨN has, in soul,∫
S1
ψl(θ)ψm(θ) dθ = δl,m

at each of its entries. Let us be more precise. We need to show that 1
NΨ>Ψ = Id.

To this end recall that, by definition of Ψ each its j-th column, with j > 0, is given by
Equation (.) and 1 if j = 0. In view of that, we will split the proof in to two cases.
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First row of Ψ>N . From the definition of matrix multiplication and the above com-
ments it is clear that

Ψ>NΨN =
N−1∑
k=0

Ψ>i,kΨk,j =

N if i = j = 0,
0 otherwise,

where Ψi,j stands for a particular entry of the matrix ΨN .

The other rows of Ψ>N . As we have already said in Section .. ψ−j,n(x) is sup-
ported over the Dyadic Intervals. This implies that the range where Ψi,j and Ψi,j′

are different from zero are mutually disjoint if j 6= j′. Therefore and, again, by
Equation (.) we have that

Ψ>NΨN =
N−1∑
k=0

Ψ>i,kΨk,j =

N if i = j,

0 otherwise.

To conclude the proof, recall that if two matrices A,B are such that AB = Id then BA
also (see e.g [HJ]). Therefore, the proof follows dividing Ψ>NΨN by N .

The above Lemma will be one of the crucial ones of this section. Indeed, since Ψ is
orthogonal, we claim that

(.) Ψ · Ψ̃> = Ψ · (P ·Ψ)> = Ψ ·Ψ> · P> = Id · P> = Ĩd

for a certain permutation matrix P . This, at the first glance, naive approach will become
very useful for us because our goal is to find fast solutions of Equation (.). This will
be the main topic of the following lines. But, before we continue the explanation, we
need to show the the aforementioned claim.

Lemma ... Let {ψl}l∈Z+ the Haar basis in S1 and fix ω ∈ R \Q. Then, fixed a J and
setting N = 2J , for all i = 0, . . . , N − 1

ψl(i/N) = ψ−j,n(i/N) = ψ−j,n

(
i− p mod N

N
+ ω

)
,

with p = bωNc.

Proof. In order to prove the Lemma, we claim that

ψ−j,n

(
i− p mod N

N
+ ω

)
= ψ−j,n

(
i

N
+ α

)
.

Indeed, recall that i ∈ {0, . . . , N −1} and p is one of such i’s. Hence we have two cases.
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i ≥ p First of all, notice that i− r mod N = i− r. Therefore

ψ−j,n

(
i− p mod N

N
+ ω

)
= ψ−j,n

(
i− p

N
+ ω

)
= ψ−j,n

(
i

N
− p

N
+ p

N
+ α

)
= ψ−j,n

(
i

N
+ α

)
.

i < p Now, i− r mod N = i− r +N . Therefore,

ψ−j,n

(
i− p mod N

N
+ ω

)
= ψ−j,n

(
i− p +N

N
+ ω

)
= ψ−j,n

(
i

N
+ 1− p

N
+ p

N
+ α

)
= ψ−j,n

(
i

N
+ 1 + α

)
= ψ−j,n

(
i

N
+ α

)
,

where the last equality follows from the fact that we are in S1.

In view of that, we need to show that

ψ−j,n

(
i

N
+ α

)
= ψ−j,n

(
i/N

2j + α

2j − n
)

= ψ−j,n

(
i/N

2j − n
)
.

Since the Haar function can be reformulated as

ψ(x) =

1− 2b2xc if x ∈ [0, 1)
0 otherwise

it suffices to prove that ⌊
2
(
i/N

2j + α

2j − n
)⌋

=
⌊
2
(
i/N

2j − n
)⌋

which, after some manipulations, is equivalent to show that the following equality
bi/(2j−1N)c = bi/(2j−1N) + α/(2j−1)c is true. To do so, let us define

k := bi/(2j−1N)c and l := 2j−1N.

Those numbers verify that k ≤ i/(2j−1N) < k + 1 and l = 2j−J > 1 respectively. Also,
notice that the last property implies that 2j−1 = l/N ≥ 1. That is,

bi/(2j−1N)c = k ⇔ k ≤ i/(2j−1N) < k + 1
⇔ 2j−1k ≤ i/N < 2j−1(k + 1)

⇔ kl

N
≤ i

N
<

(k + 1)l
N

⇔ kl

N
≤ i

N
<

(k + 1)l − 1
N

.
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Now, we are almost done since 0 < α < 1/N and by definition of l it follows that

2j−1k = kl

N
<

i

N
+ α <

(k + 1)l − 1
N

+ 1
N

= 2j−1(k + 1)⇔

k <
i

2j−1N
+ α

2j−1 < k + 1⇔ k = bi/(2j−1N) + α/(2j−1)c

which completes the proof.

Now the claim becomes clear. Indeed, we only have to calculate the integer p and
consider the permutation matrix P such that moves down the rows p places. Such
matrix P , as it is derived from the above proof, is given by

(.) Pi,j =

1 if (j + p) mod N,

0 otherwise.

With this trick we have Ψ̃ = PΨ as we claimed and hence Ξ = Ĩd. Now we can
focus on how we can solve the linear system given by Equation (.). To this end, recall
that a right precondition strategy which is, instead of solving the original linear system
Ax = b solve firstly AP−1y = b and Px = y to get the desired solution x. Due to
Lemma .. we are almost done. Indeed, we will take P = Ψ̃N . That is, as it is done
at the beginning of the current section, we have to solve

(.) (Ψ̃N −∆NΨN )X = −Inv ∼ (Id− ∆̃N )y = −Inv,

where ∆̃N is defined in the same way of Ĩd. That is, ∆̃N = ∆NP
>, where

P>i,j =

1 if j = (i+N − p) mod N,

0 otherwise.

Hence, the resultant matrix ∆̃N is given by

(.) ∆̃i,j =

1 if i = j,

∆i,j if j = (i+N − p) mod N.

First of all, we want to remark that now the ∼ is well done. That is, the matrix Id
is the identity matrix. Not, as we have pointed out above, an approximation of it as it
occurs when other wavelet it is considered. The same comment is also valid for the
matrix ∆̃N . Moving to the appearance of the linear system, notice that it is a extremely
simple linear system of equations. Indeed, it is formed by ones in the diagonal and
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two external diagonals (which are complementary). Moreover, recall that the k+ 1)-th
iterate of Jacobi method has the expression

x
k+1)
i = 1

aii

bi −∑
j<i

aijx
k) −

∑
j>i

aijx
k)

 .
For our particular instance, the Jacobi method has the following explicit formulation:

x
k+1)
i =

(
Invi − ∆̃ix

k)
j

)
.

But we can go further. Indeed, the following Proposition gives us the exact solution,
inO(N) time. To this end, let J > 0 be an integer fixed and defineN = {0, 1, . . . , N−1},
where N = 2J as usual. Define the map νι as

νι : N −−−−→ N

ιi 7−→ ιi + ap mod (N),(.)

where ι, ap ∈ N. The properties of the points of νNι are described in the following
Lemma.

Lemma ... Let {νι}N0 be the orbit of ι ∈ N given by (.). Then

(a) νNι = ι for all ι ∈ N.

(b) For all ι ∈ N, {νι}N0 is exhaustive if and only if ap is odd.

(c) Consider ap ∈ N and let k be the minimal integer such that ap mod 2k+1 = 2k ,
where 0 ≤ k ≤ J . If {νι}N0 is not exhaustive then there are 2k disjoint parts of
{νι}N0 .

Proof. We must prove the three properties. But, before we start with the proof, we
must remark that N ∼= (Z/NZ,+) = (Z/2JZ,+) as a groups.

• We need to show that for all ι ∈ N the equality νNι = ι holds. To do this, take
ι ∈ N and just observe that νNι = ι+Nap mod (N) = ι.

• First of all, notice that if the exhaustive property is verified then {νι}N0 is a bijection
since N is a discrete set. On the other side, the divisors of N are the powers of
two up to J . Having said that, let us start with the sufficient condition’s proof.
So, let us assume that {νι}N0 is exhaustive: for all ι ∈ N there exists an integer
0 ≤ k < N − 1 such that ι + kap = ιk for a certain ιk ∈ N and ιk 6= ιk′ if k 6= k′.
This implies that, viewing ap as a generator of a subgroup of Z/NZ, has order N .
Therefore, ap must be odd since, in general, the order of an elementm of a cyclic
group is n/ gcd(n,m).
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Conversely, take ι ∈ N and assume that ap is odd. Then, using the same argument
as above ap as a generator of a subgroup of Z/NZ has order N . Therefore, by
definition of order, ι+ kap has N different elements. That is, {νι}N0 is exhaustive.

• We know, from the above item, that if {νι}N0 is not exhaustive then ap must be
even. We claim that ap can be considered as a power of two itself. Hence, we
assume that ap = 2k. Also, viewing ap as a generator of a subgroup of Z/NZ, it
has some order between the powers of two (up to J ). Let 2J−k be this even order
to conclude define ap = 2k different sets Σι = {ι+ ap mod (N)} ⊂ N, with ι =
0, . . . , 2k − 1.
To finish the proof we need to prove the aforementioned claim. To this end, let
us define Θ to be the set of the even numbers between 0 and 2J − 1. Observe
that each ap ∈ Θ have a prefixed order which is a power of two. Now, as above,
take ap = 2k. Then ap generates Z/2J−kZ ⊂ Z/NZ and Z/2J−k has 2J−k−1

generators (the odd numbers between 0 and 2J−k). Then it follows that the order
of 2k and those odd numbers times 2k is the same. Doing such process for each k,
the assertion follows because we have classified all the even numbers by its fixed
order 2k. Following this thread, when ap is not a power of two, ap mod 2k+1 = 2k
as we wanted.

Now, we are ready to face the solution of the linear system given by Equation (.)
by means of the following proposition.

Proposition ... Fix J > 0 and let Ax = b a N × N linear system where N = 2J .
Assume that the matrix A, for i = 0, . . . , N − 1, is given by

ai,j =


1 if i = j,

−λi if j = i− p mod (N),
0 otherwise

with λi ∈ R and p > 0 is a fixed integer. Take α0 = λ0, β0 = b0, ν0
0 = 0 as initial seeds

and define, for k = 0, . . . , N − 1, the following finite recurrences

(.) ανk+1
0

= λνk+1
0

ανk0
and βνk+1

0
= λνk+1

0
βνk0

+ bνk+1
0

with νk+1
0 = νk0 + p mod (N) . If ανN−1

0
6= 1 then the system has a unique solution

which is given by

(.) xk =


αkxN−p + βk, for k = 0, . . . , p− 1,
βνN−1

0
/(1− ανN−1

0
), for k = N − p,

αkxN−p + βk, for k = p+ 1, . . . , N − 1.
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Proof. Without loss of generality, we claim that we can suppose that {ν0}N0 is exhaustive
in terms of Lemma ... The proof will be constructive and it is a slight modification
of the Thomas algorithm: the tri-diagonal Gaussian elimination. Certainly, we get x0 =
b0 + λ0xN−p from the first equation, x0 − λ0xN−p = b0, of the linear system given
by (.). Also we can define the coefficients α0 = λ0 and β0 = b0. In view of that,
and following the idea of the Gaussian elimination, we can replace x0 in the ν1

0 = p-th
equation of the system. That is, xν1

0
− λν1

0
x0 = bν1

0
:

xν1
0
− λν1

0
x0 = bν1

0
⇒ xν1

0
− λν1

0
(b0 + λ0xN−p)

= λν1
0
b1 + λν1

0
λ0xN−p + xν1

0
= bν1

0

⇒ xν1
0

= λν1
0
λ0xN−p + λν1

0
b0 + bν1

0

xν1
0

= α1xN−p + β1,

where α1 = λν1
0
λ0 and β1 = λν1

0
b0 + bν1

0
. Moreover, such coefficients can be written

as α1 = λν1
0
α0 and β1 = λν1

0
β0 + bν1

0
. Following this replacement idea, we can repeat

such process N steps to produce a list of coefficients αi and βi such that they are
used to recover each unknown xi in terms of xN−p. Since we are assuming that ν0 is
exhaustive, such recursive construction sweeps all unknowns xi of the linear system
given by (.). That is, the index i takes all the values in N in a such a way that N − p
is the last one. Moreover, for i 6= N − p, each unknown xi is written in terms of xN−p
and its corresponding coefficients αi and βi. Because of this, notice N − p-th equation
of the linear system is xN−p + λN−pxνN−1 = bN−p. Therefore, since xνN−1

0
is given in

terms of xN−p, it follows that

xN−p =
βνN−1

0

1− ανN−1
0

+ bN−p

Thus, once we have xN−p, we can recover each xi by means of Equation (.) as we
wanted to show. To conclude the proof, it only remains to mention that the proof of
the aforesaid claim is done in Lemma ...

Summarizing, the linear solution of the linear system given by (.) is done in two
steps. The first one is devoted to compute the coefficients αi and βi. The second part
is to solve back for the actual unknowns xi from xN−p. Of course, when ν is not
exhaustive it is enough to repeat the above process as many times as cycles are.

Remark ... In view of Proposition .. and Lemma .. we can derive, from its
constructive proof, a fast numerical algorithm to determine the solution of the linear
system given by Equation (.). Notice that in terms of computer running time, it is clear
what we have claimed before: the O(N) time. Even when ν is not exhaustive. Indeed,
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the solution is constructed in forward-backward manner. Therefore, taking into account
the operations at each step of the recursion, there are 2N multiplications plus N sums
going forwards and N multiplications plus N sums going backwards. Of course, when
ν is not exhaustive, by the second property of ν described in Lemma .., we have to
repeat k times the same kind of N/k operations.

Drawing to close this part, we will make two remarks. The first one can be con-
sidered the link between the dynamical properties of the skew product considered and
the linear system.

Remark ... Let A be a matrix as the one given by Proposition ... Firstly, notice
that if one subtract the identity matrix from A, the resultant, ∆, is the one of the Jacobi
method. Now, to decide if the method converges or not we must have a look at its
spectral radius, ς(∆). To this end, it can be shown that its characteristic polynomial of
∆ is

pc(x) = xN −
N−1∏
i=0

ai,i+p = xN −ΠN

Clearly, the roots of the pc(x) are the N -th roots of ΠN . Hence, as a first approximation,
we have that the determinant of ∆ will be crucial to decide if the Jacobi method is
convergent or not.

But, moreover, moving to the dynamical system given by Equation (.) something
more can be done. To fix ideas we will restrict ourselves to the multiplicative case.
Indeed, if we consider the infinite case, N goes to ∞, we have that the spectral radius
is bounded if the above infinite product is finite. That is, if by definition of ΠN , it holds
that Π∞ < ∞. Or, considering the N -root and in terms of the logarithms, we have a
bounded ς(∆) if

1
N

N−1∑
i=0

log(f ′(ϕ(θi))g(θi) <∞.

Now, taking this expression to the limit and using the Birkhoff Ergodic Theorem once
more, we have that

lim
N→∞

1
N

N−1∑
i=0

log(f ′(ϕ(θi))g(θi) =
∫
S1

log(f ′(ϕ(θ))g(θ)) dθ <∞.

which is exactly the expression of the Lyapunov exponent λϕ. That is, we can determine
if the Jacobi method converges with the Lyapunov exponent. Indeed, since ϕ is an
attractor of the dynamical system given by Equation (.) then λϕ < 0. Therefore, we
have that ς(∆) < Π∞ = eλϕ < 1.

Besides of the Jacobi convergence, λϕ controls if the system is undetermined or not
also. Indeed, we can apply similar arguments as above to the determinant of∆N which
is, precisely ΠN and also the product of all αi’s from the recursion (.). Hence, looking
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at the part of xN−p at the final lines of the Proposition ..’s proof, it is clear that ΠN

must be different from 1 and such difference is controlled by λϕ.

The second remark points out the stability, in terms of the propagation of the errors,
of the strategy performed.

Remark ... Of course, one must check what is more cheaper: the iterative way or
the exact way. But, in terms of numerical linear algebra it is important to emphasize
that we do not add any kind of error. Away from the fact that the linear system is
explicitly written and its solution also, the matrix used is neutral in terms of the error
propagation. The reason is simple, each and every one matrices used when precondi-
tioning is orthogonal. Therefore since its spectral radius is one it can not be an error
propagation source.

Now, we can try to apply the same idea of the right precondition technique when p >
1 vanishing moments are considered. As we will see in the next section, the matrices
Id and Ξ are not as good as possible. However, some solutions will be proposed.

... Daubechies’ strategy

Let us start by saying that with Daubechies wavelet we have also applied GMRES directly
to solve Equation (.) up to the limit of its usage. Indeed, recall that in the Arnoldi
process (Algorithm ) is necessary to save some vectors to evaluate the minimizer
in GMRES. Hence, when the system becomes big GMRES slows down its efficiency.
Moreover, as we have pointed out at the beginning of Section .., due to the spectrum
the GMRES breakdown is reached closer to the iterate number k = N in our situation.
That is, we solve the system given by Equation (.) exactly but with the penalization of
the sweep of all the matrix and the storage of the Krylov subspace.

However, in view of the previous section we have tried to go further using precon-
dition strategies. Having said that, let us move to the final comment of the aforesaid
section. The problem is when Id and Ξ are not as good as possible. Indeed, as we
have said in Section ., as farther to the right of the matrix Ψ̃PER are you located then
more zeros you will have. Therefore, the sample of ψPER

l at the points θ̃i is not enough
to apply the trapezoidal rule in a good way. Actually, at each entry of the matrix
Ψ̃PER
N Ψ̃PER

N
>/N we are doing

1
N

N−1∑
i=0

ψPER
l (Rω(θi))ψPER

m (Rω(θi)),

assuming that Ψ̃PER
N Ψ̃PER

N
> = N Id. Hence, Ψ̃PER

N
>Ψ̃PER

N = N Id but the nonzero coeffi-
cients are not enough to ensure an accurate approximation of the integral∫

S1
ψPER
l (Rω(θ))ψPER

m (Rω(θ)) dθ = δl,m.
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That is, even with a given tolerance, we do not have any way to get the identity matrix.
Furthermore, the trick of setting ∆̃nΞ to be a matrix such that

JFΨ̃PER
N
> = (Id− ∆̃NΞ)

does not brings us good news because of the uncontrollable behavior of such new
matrix ∆̃nΞ. However, if we fixN = 2J , with J > 0, define the matrix Id = 1

N Ψ̃PER
N
>Ψ̃PER

N

where ψPER
l it is an orthonormal basis of S1 generated by a Daubechies wavelet with

p > 1 vanishing moments. Now, recall that we want to solve Equation (.) but, in the
same way as Haar, we can use a left preconditioning technique:(

Ψ̃PER
N −∆NΨPER

N

)
(X) = −Inv⇔ Ψ̃PER

N
>
(
Ψ̃PER
N −∆NΨPER

N

)
(X) = −Ψ̃PER

N
>Inv.

That is, we will solve (using either GMRES or TFQMR)

(.)
(
Id− Ψ̃PER

N
>∆NΨPER

N

)
(X) = −Ψ̃PER

N
>Inv = Ĩnv.

instead of Equation (.). To this end, we must say that the matrix Id is closer to identity
matrix in the sense of the following remark.

Remark ... Under the above assumptions on ψ(x), the matrix Id = 1
N Ψ̃PER

N
>Ψ̃PER

N is
symmetric and its eigenvalues are strictly positive. Moreover the eigenvalues of Id are
centered around 1. The proof of the first two assertions are done by definition of the
matrix Id. Let us focus on the third property. To this end, since Id = 1

N Ψ̃PER
N
>Ψ̃PER

N , then,
applying roughly the Trapezoidal rule, each entry of Id verifies

1
N

(Ψ̃PER
N
>Ψ̃PER

N )l,m = 1
N

N−1∑
i=0

ψPER
l (Rω(θi))ψPER

m (Rω(θi))

=
∫
S1
ψPER
l (Rω(θ))ψPER

m (Rω(θ)) dθ + εl,m

= δl,m + εl,m.

Now, let

εi =


max

l=0,...,N−1
εl,l if i = 1,

max
l,m=0,...,N−1

l 6=m

εl,m
N

if i = 2.

ε1 = max
l=0,...,N−1

εl,l and ε2 = max
l,m=0,...,N−1l 6=m

εl,m To conclude the proof apply the Ger-

shgorin circle theorem. Indeed, all the eigenvalues of Id verifies that |λi − (1 + ε1)| ≤
ε2 ⊂ R. And this is the crux of the matter. Indeed, even with a N big enough there is an
unavoidable lack of precision. In other words, the diagonal of Id it is not plenty of ones
because, again, of the samples of ψPER

l (Rω(θ)). This situation is, certainly, a bug that
must be solved because it means that the wavelet values are not good enough (even
with all the cautions that we have performed).
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The reason for introducing the matrix Id is twofold. The first one is to emphasize
the need of have good ψPER

l -values. On the other hand, since Id does not depend
on ∆N one can store it in order to do not perform the multiplication at each step of
the Newton’s method. The performance of such storage has implications on the total
amount of the number of operations at each Newton step. Since we do not use it we
only mention that in the same way as in the Haar’s case, we try to generate an image of
the matrix Id using a particular instance of such matrix depicted below. Since we know
that it is symmetric, we have reinforced such idea only displaying the upper diagonal.
The general properties of such matrix are displayed in the Appendix.



1 0 a1 a1 a2 a2 a2 a2 a3 a3 a3 a3 a3 a3 a3 a3

δ0,0 b1 −b1 b2 b3 −b2 −b3 b4 b5 b6 b7 −b4 −b5 −b6 −b7
δ1,0 δ1,1 e0 e1 e2 e3 f0 f1 f2 f3 f4 f5 f6 f7

δ1,0 e2 e3 e0 e1 f4 f5 f6 f7 f0 f1 f2 f3

δ2,0 δ2,1 δ2,2 δ2,1 g0 g1 g2 g3 g4 g5 g6 g7

δ2,0 δ2,1 δ2,2 g6 g7 g0 g1 g2 g3 g4 g5

δ2,0 δ2,1 g4 g5 g6 g7 g0 g1 g2 g3

δ2,0 g2 g3 g4 g5 g6 g7 g0 g1

δ3,0 δ3,1 δ3,2 δ3,3 δ3,4 δ3,3 δ3,2 δ3,1
δ3,0 δ3,1 δ3,2 δ3,3 δ3,4 δ3,3 δ3,2

δ3,0 δ3,1 δ3,2 δ3,3 δ3,4 δ3,3
δ3,0 δ3,1 δ3,2 δ3,3 δ3,4

δ3,0 δ3,1 δ3,2 δ3,3
δ3,0 δ3,1 δ3,2

δ3,0 δ3,1
δ3,0



.

To conclude the methodology to solve Equation (.) in the Daubechies case, let
us make some comments to see the core of the Newton’s iteration. To do this, let us
assume that Id = Ψ̃PER>Ψ̃PER and Id = ΨPER>ΨPER are the identity matrix. Under such
assumptions we are solving(

Id− Ψ̃PER−1∆ΨPER
)

X = Ĩnv

because Ψ̃PER> = (Ψ̃PER)−1. Now recall that B−1AB has the same eigenvalues as A
whenever B is invertible (see e.g [HJ]). Then, taking B = (Ψ̃PER>)−1 we have that
∆ΨPERΨ̃PER> has the same eigenvalues as Ψ̃PER>∆ΨPERΨ̃PER>(Ψ̃PER>)−1. In other
words, in terms of the spectral radius it is true that ς(Ψ̃PER−1∆Ψ̃PER) = ς(∆ΨPERΨ̃PER>).
Moreover, the right hand matrix controls the left hand side matrix which has an expres-
sion similar to the reducibility property (see Section .).

On the other side, assume that ΨPERΨ̃PER> verifies a similar property as Equa-
tion (.). Then, because our assumptions the characteristic polynomial of∆ΨPERΨ̃PER>

is, following the same thread as in the Haar’s case, xn + det(∆). Hence, by definition
of the matrix ∆ we have that the spectral radius is bounded by the Lyapunov exponent
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of ϕ. Therefore, since ϕ is an attractor ς(Ψ̃PER
N
−1∆NΨPER

N ) < 1. The problem is that the
assumption which leads to the Haar’s argument is rather false (on the contrary we do
PΨPER = Ψ̃PER and this is not the case). However the situation, after numerical explo-
rations on the matrix product ΨPERΨ̃PER>, seems to be close to such situation. That is,
ΨPERΨ̃PER> is a band matrix. On the other side the first two assumptions in view of
Remark .. are also false but they are under control. In other words, it seems that a
perturbation argument (setting, for example, Ψ̃PER>Ψ̃PER ∼ Id+ε) arises as a good way
to face the problem of provide regions such that the hypothesis of Newton Kantorovich
Theorem are satisfied.

Having said that, let this explanation be a justification of the importance of having
under control of the Lyapunov exponent of ϕ in order to let the Newton’s method
converge (besides the possible numerical errors on the calculation of ψPER

l ).

Recovering of X. One problem is left for the Haar’s case. Indeed, since we are doing a
right precondition, we need to multiply the solution y by the inverse of the precondition
matrix. That is, in our case Ψ̃PER. But, again by Lemma .., we have that our solution
X is particularly simple. Indeed, X = Ψ̃PERy = PΨPER

N y is the solution of the linear
system given by Equation (.). Notice that this is not the case of Daubechies wavelets
with p > 1 vanishing moments because we solve a left preconditioned system.

. Summary: the method

Before we present the results, we wish to summarize all of the three steps performed
to find the desired vector DPER

N ∈ RN and, hence, the coefficients dPER
−j [n] using the

Newton’s method. Besides of such objective, we will include along this description of
the method some comments and remarks. Such ideas are focused to give an important
bootstrap on the efficiency of the implementation. To do this, let us recall some notation
to fix ideas.

(a) As usual along this chapter ΨPER
N will be the matrix whose columns are the firstN

elements of the basis {ψPER
l }l∈Z+ evaluated at the points in S1 given by θi = i/N .

That is

ΨPER
N i,l = 1√

N

1 if l = 0,
ψPER
l (θi) if l 6= 0.

In the same way, Ψ̃PER
N has the same columns as ΨPER

N but evaluated at rotated
points of the unit circle θ̃i = i/N + ω.

(b) As we have already said let DPER
N ∈ RN be the following vector of wavelet

coefficients (
a0, d

PER
0 [0], dPER

−1 [0], . . . , dPER
−j [N − 1],

)>
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where −j = blog2(N)c . Also, DPER
N,k) ∈ RN stands for the k-th approximation

given by the Newton’s method.

(c) In the same way as the above item, let D̃PER
N ∈ RN be the vector of the rotated

wavelet coefficients given by

(.) D̃PER
N = Ψ̃PER

N DPER
N .

The same definition for D̃PER
N,k) holds.

(d) Let ΦN ∈ RN be the following vector

ΦN = (ϕ(θ0), ϕ(θ1), . . . , ϕ(θN−1))> .

That is, the attractor ϕ of the system evaluated at the prescribed points θi ∈ S1,
with i = 0, 1, . . . , N − 1.

Now we are ready to summarize the developed methodology along this chapter.

Solving the Invariance Equation using Daubechies wavelets. Consider a skew prod-
uct given by Equation (.). To manage the invariance equation, given by Equation (.),
associated to such skew product perform the following steps:

Step Previous. Being fixed J > 0 big enough set N = 2J and a tolerance such that
Equation (.) is verified to get the vector ΦN up to a given tolerance. Fix a Daubechies
wavelet with p ≥ 1 vanishing moments.

Step : Initial guess. Compute, using the results of Section ., the matrices ΨPER
N and

Ψ̃PER
N . Use them to set 1

NΨPER
N
>ΦN = DPER

N,0) as an initial guess for the recurrence (.).
In order to avoid computational efforts notice that if the Haar wavelet is used, that is
p = 1, we have that D̃PER

N,0) = PΦN because Ψ̃PER
N ΨPER

N
> = P .

Step : Solving the system. In order to find solutions of the linear system given by
Equation (.) take one of the two possibilities:

(a) Apply, verbatim, GMRES to Equation (.) (up to your technical computer limita-
tions) or,

(b) take one of the following strategies:

(a) In the case of Haar apply Ψ̃PER
N
> to solve a right preconditioned system.

Observe that, at the k-th Newton iterate we have that the i-th component of
invariance equation written algebraically is

[
Ψ̃PER
N DPER

N,k)

]
i
−
∂Fσ,ε

(
θi,
[
ΨPER
N DPER

N,k)

]
i

)
∂x

= 0.
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In this case, using Equation (.) and the definition of DPER
N , using the rotated

coefficients we have an easy expression of the invariance equation

[
D̃PER
N,k)

]
i
−
∂Fσ,ε

(
θi,
[
P>D̃PER

N,k)

]
i

)
∂x

= 0

That is, the invariance equation is much easier with the rotated coefficients
than with the standard ones. Clearly, with such change of variables has some
cosmetic effect to the Jacobian matrix. Hence, in the case of Haar, apply
Proposition .. to solve the linear system given by Equation (.) and (.).

(b) In the case of Daubechies wavelet with p > 1 vanishing moments apply
Ψ̃PER
N
> to solve the left preconditioned version of the system. To solve Equa-

tion (.) use TFQMR from a certain level J > J0 > 0 (up to J0 use either
TFQMR or GMRES).

Step : Updating the recurrence. Recall that in the Haar’s situation, we are applying a
right preconditioning strategy to Equation (.). Hence, being p the vanishing moments
of the R-Daubechies wavelet ψ(x)D̃PER

N,k+1) = D̃PER
N,k) + X if p = 1,

DPER
N,k+1) = DPER

N,k) + X otherwise.

Notice that working with D̃PER has consequences when recovering DPER
N,?). Indeed, ob-

serve that DPER
N,?) is the solution of the linear system, according to Equation (.), given

by Ψ̃PERDPER
N,?) = D̃PER

N,?). Moreover, in the case of Haar, such solution is explicitly given
by DPER

N,?) = Ψ̃PER
N
>D̃PER

N,?).

Step : Updating the recurrence (bis). In the case of Haar, if one wants to recover the
attractor just do the following

P>D̃PER
N,?) = ΨPER

N Ψ̃PER
N
>D̃PER

N,?) = ΨPER
N DPER

N,?) = (ϕ(θ0), ϕ(θ1), . . . , ϕ(θN−1))> = ΦN .

Remark ... We want to emphasize that the same strategy performed with Haar can
be done with other Daubechies wavelet. Hence, the strategy to work and compute
with DPER must be the same as in the Haar’s case. In view of that, when one uses D̃PER

N,?)
and p 6= 1 it is mandatory to solve, the linear system Ψ̃PER

N ΦN = DPER
N,?) (once DPER

N,?)
is obtained from the above Step). Such point of view has drawbacks respect the time
because you need to solve two (big) linear systems at each Newton’s step.

Now, we apply such method to the System (.) with such method(s). This is the
main topic of the following section.
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. Results

Along this section we will perform the same kind of experimentation as the one in
Chapter  but now using the wavelet coefficients DPER

N,?). To this end, let us recall the
system that we have called Keller-GOPY attractor.(

θn+1
xn+1

)
=
(

Rω(θn)
2σ tanh(x) · (ε+ |cos(2πθ)|)

)
.

By Keller’s Theorem, this attractor is the graph of a map ϕ : S1 −→ R+ and when ε = 0
the corresponding attractor is called strange.

Our strategy is try to see whether the system is pinched or not in terms of regularity.
As in the previous chapter, we will use the same parameterization of the above system:

(.)

θn+1 = θn + ω (mod 1),
xn+1 = 2σ tanh(xn)(ε(σ) + | cos(2πθn)|)

with ω =
√

5−1
2 , σ ∈ [1, 2] and for practical reasons two parameterizations

ε1(σ) =

(σ − 1.5)2 if 1.5 ≤ σ ≤ 2.0,
0 if 1 < σ < 1.5.

ε2(σ) =

(σ − 2.0)2 if 2.0 ≤ σ ≤ 2.25,
0 if 1.9 < σ < 2.0.

.

In this way the system is pinched if and only if σ ≤ 1.5 for ε1 and σ ≤ 2.0 for ε2. Also,
recall that when σ tends to 1 then ϕ ≡ 0. The aim of such replay is the poor precision
of the signal, for σ ≤ 1.5, when one uses the Fast Wavelet Transform. As a matter of
fact, it can not be used as a initial seed of the Newton’s method due to the extremely
complicated geometry of ϕ since it can not capture most of the zeros of ϕ. We will
come back to such topic in Section ...

.. Haar wavelets

In this part we will use Daubechies wavelet with p = 1 vanishing moments with the
parameterization ε1(σ). That is, we will perform the calculation of DPER

N,?) using the Haar
basis. Hence, recall Theorem .. and Corollary .. we have the following region of
allowed s depicted in Figure .. We focus our attention to the spaces Bs

∞,∞(S1) and
Bs

2,2(S1).
In the case of Bs

∞,∞(S1) a word of caution must be done. Indeed, it is necessary to
to remark that in the case of Bs

∞,∞(S1) we will apply blindly Corollary .. adapted
to such case. This means that, at the beginning, we do not take care in which is the
value of s obtained. Of course, when we will classify ϕ we will check if the value of s
is in the allowed range. We will justify such procedure in the following lines.
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1
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−0.5
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p = 2

Figure .: The range of allowed s for the spaces Bs
p,q(S1) according to Theorem ...

The dashed vertical line corresponds to Bs
2,2(S1).

As we already know, ϕ must evolve from a continuous function to an upper semi-
continuous function when becomes pinched. Concretely, in the case of Bs

∞,∞(S1) if ε
tends to 0 then s also. That is what we have tried to capture in Figure .. Let us explain
it carefully in our case. Since ϕ ∈ L 2(S1) we can approximate it using the Haar wavelet
basis. Also, one can ask on how the coefficients vanish using the linear model depicted
in Equation (.) in the same way as in Chapter . But in view of Figure . we can not
classify ϕ in terms of the regularity spaces Bs

∞,∞(S1) with s > 0. This is not a surprising
fact since s > 0 means continuity and ε > 0 implies the continuity of ϕ. Nevertheless,
we have find the same kind of behavior as in Figure .. Concretely, when the system
becomes pinched, for σ ≤ 1.5, then ϕ ∈ B0

∞,∞(S1). On the other side when ε is positive,
for σ > 1.5, the estimated s is strictly positive with a high Pearson correlation coefficient
(see Figure .). In other words, it seems that the Haar wavelet can detect the pinching
value in some sense and it also classifies, in terms of ϕ ∈ B0

∞,∞(S1), with accuracy.

In view of the above results, we have performed a zoom around the pinched case,
σ = 1.5, to see the behavior of how the estimation of the regularity parameter vanishes.
In view of Figure . we have considered Bs

2,2(S1) as the regularity space. The results,
which are collected in Figure ., describes the same situation as in the previous case:
detection of the pinched point and the regularity space.
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Figure .: On the left hand side, it is plotted the Pearson correlation coefficient along
ε1(σ) with σ ∈ (1.2, 1.7). Notice that the best values are on the pinched zone. On the
right hand side the estimation of the regularity parameter along such parameterization.
The same comments, in the sense of the detection of the pinched point, as the ones in
Figure . apply.

Figure .: On the left hand side, it is plotted the Pearson correlation coefficient along
ε1(σ) with σ ∈ (1.49, 1.51). On the right hand side the estimation, in terms of Bs

2,2(S1),
of the regularity of ϕ along such parameterization.
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.. Daubechies wavelets

In this part we will use Daubechies wavelet with p = 10 vanishing moments with the
parameterization ε2(σ). The choice of such wavelet is done in view of the results from
Chapter  concerning to the Pearson correlation coefficient, efficiency in computing
and the Figure .. Let us explain this three points. To this end, let us start by the

Figure .: On the left hand side, it is plotted the attractor for the System (.) with
σ = 2.0 and ε = 0.25 whereas on the right hand side ε = 0.0 and σ = 2.0.

geometrical situation induced by the dynamics. As we have pointed out in Section .
ϕ has more visible spikes in terms of ε and σ (compare Figure . and .). When the
system becomes pinched there is a dense set of zeros but only some of them are visible.
Hence, the question is how a regular enough wavelet can capture such fact. This links to
question of the Person correlation coefficient. Indeed, recall that in Chapter  we have
dealt with ϕ from the signal analysis point of view. As a matter of fact, in Section .
Daubechies wavelet with p = 10 vanishing moments seems to have the better ratio
between Pearson correlation coefficient and regularity assessment. This almost explain
our choice. It only remains to say that such wavelet is one of the first wavelets such
that has an interlace between regularity of ψ(x) and the sparsity of the matrix ΨPER. In
other words, recall that as p increases the regularity of ψ(x) and its support also. Hence,
ψPER(x) wraps around S1 many times (in fact proportional to supp(ψ)). Hence, as p
increases the number of columns not purely sparse also increase. For the Daubechies
wavelet with p = 10 vanishing moments this situation starts at j = 5. That is, ΨPER has
32 columns not completely sparse.

Remark ... In view of the above comment let us emphasize that in order to take
full advantage of the sparsity properties of ΨPER the number J , which recall that fix the
matrix dimension to 2J , must be greater than 5.

Let us display the obtained results. However, a word of caution must be done.



.. Results 

Due to the stall induced either by TFQMR or the numerical errors (perhaps) inherited
by ψPER we have diminished our tolerance level to 1 × 10−15 whereas in the Haar’s
case the it was 1 × 10−16. Finally, recall that the classification of ϕ will be done using
Theorem ... Hence we focus our attention to the spaces Bs

∞,∞(S1).

Figure .: Graphs of the pairs (j, sj) for the ϕ from System (.). On the left hand side,
it is plotted the linear model with for the regularity of ϕ with σ = 2.0 and ε = 0.25
whereas on the right hand side ε = 0.0 and the same σ with a Person correlation
coefficient of 0.999591 and 0.989908 respectively. On both cases, with N = 224, they
predict correctly the regularity 0.992205 and 0.011645 respectively.

There are two remarkable facts. The first one is that we have fast convergence
towards the wavelet coefficients when ε is positive with less iterates than Haar. On
the contrary, when the system becomes pinched the number of iterates increases ap-
preciably. However, as it can be seen in Figure . and . when one deals with the
regularity of ϕ the Pearson coefficient of the linear models is clearly affected by the
pinching condition and it is even worse than the one of the Fast Wavelet Transform.
This is not a surprisingly fact since we are dealing with a discontinuous function and we
are solving the invariance equation. Hence, the geometric properties of the invariant
curve ϕ are transfered to DPER whereas on the Fast Wavelet case such properties are
more difficult to capture. In our situation we can trap it as we will see in the following
paragraph.

Indeed, as a second remarkable fact, the same comments as the ones in Figure .
and . apply. That is, the coefficients DPER can detect the pinched zone since ϕ ∈
B0

2,2(S1) when σ ≤ 2.0 for ε2(σ) (see Figure .). However, around the pinched point
the Pearson coefficient is irregular. Again, when dealing with regularity, in view of
the previous paragraphs and Section ., the coefficients DPER can be used to describe
tendencies on the evolution of the regularity of ϕ and to approximate it. This last point,
without losing sight of the regularity, is our main goal.
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Figure .: On the left hand side, it is plotted the Pearson correlation coefficient along
ε2(σ) On the right hand side the estimation, in terms of Bs

∞,∞(S1), of the regularity of
ϕ along such parameterization.

Finally, in view of the above comments and the ones in Section .. as much regular
is ϕ more vanishing moments are required to converge faster towards the wavelet
coefficients when ε is positive. However, the price to pay is the lack of precision if ε
tends to zero when dealing with regularity topics.

. Conclusions

To conclude and in light of all of the foregoing, we have two different situations and
each one of them will be independent. However both can be used in a complementary
way. Let us explain it in detail. Clearly, we have two methods that produce the same
result: a solution of the invariance Equation, for the System (.), which turns out to be,
up to a given tolerance, an approximation of ϕ:

ϕ ∼ a0 +
J−1∑
j=0

2j−1∑
n=0

〈
ϕ,ψPER

−j,n

〉
ψPER
−j,n.

However if one is focused on regularity properties, in view of Sections .. and ..,
Haar wavelet is not very useful for the positive ones. Having said that, both of them are
a good tool to detect the pinching situation.

On the other side, the use of a Daubechies wavelet has inherited the the Big Ma-
trix problem. That is, the number of operations to solve the System (.) is affordable,
respect the user time, up to 216. Far beyond such quantity the method becomes un-
reachable and (machine) unstable. In terms of give an approximation of ϕ this means
that we can perform it up to scale  1.52587891 × 10−5. After such J0 = 16 we have

In view of this “big” scale we do not have displayed the results.
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solved System (.) using TFQMR. Before continue the explanation let us remark that
we have used TFQMR because it is well suited for such linear system. However, this not
means that TFQMR is the unique iterative solver valid. As a matter of fact, it is better
to have a library of solvers such as Kaczmarz, Cimmino, Bi-Conjugate Gradient or even
multi-grid methods (see e.g [ESW, Saa]).

Now, continuing with TFQMR with 24 ≥ J > 16 we must say that for a certain
values of ε, close to zero, such solver can stall the update of the DPER

N,n) performed by
Newton. In other words, TFQMR can provoke a non-convergence situation but close to
converge towards DPER

N,?). Having said that, we do not have a clear explanation of such
fact and, moreover, such problem can be also induced for the numerical errors on the
evaluation of ψPER

l and amplified by Lyapunov exponent.

On the other side, Haar wavelet it allows us to go 210 times far away without any
problem (we have stopped at N = 226 for practical reasons). That is, we can solve the
aforesaid system in a realO(N) time. The counterpart is that for the regularity purposes
Haar wavelet has “fewer” applications than Daubechies wavelet with p > 2 vanishing
moments (recall that in Remark .. p = 2 is the 4-tap Daubechies wavelet which it is
not regular enough).

However in both situations, when the method converges, we have a semi analytical
approximation of ϕ up to a given tolerance using the Newton’s method. That is, given a
certain tolerance we have computed numerically an invariant object ϕ. Clearly, since
we can recover ϕ from DPER

N they are a good approximation in the same way as the
coefficients given by the Fast Wavelet Transform. In view of that, the control of the
regularity (besides its own interest) must be understood as control of the quality on the
coefficients. From this point of view, DPER

N can be used to detect and describe problem-
atic zones also in the same way as the ones given by the Fast Wavelet Transform.

In view of all this comments, the nature of the problem will decide the strategy to
perform. That is, let ϕ the invariant curve of Equation (.). Then, roughly speaking, if an
approximation is needed, whatever the cost, use Haar wavelet to get the desired DPER

N .
Surely you will spent many iterates but such effort will be supplied by the fast and
exact calculations. On the contrary, make a library of Daubechies wavelets (with p > 2)
using the Algorithm . Then, solve Equation (.) for such wavelets. Notice that, such
procedure is in contrast with Fourier basis because Fourier is “unique”. For example, if
the question is related to regularity topics along a parameterization, move p along your
(pre)-calculated wavelets range to reach the better Pearson coefficient.

Finally, we want to remark that the error at each Newton’s step, ε, also deter-
mines the regularity behavior of ϕ. Indeed, let DPER

N,0) be the initial guess for the New-
ton’s method. Then, each correction of the wavelet coefficients can be understood as
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DPER
N,n+1) = DPER

N,n) + εn. Hence, setting En =
n∑
i=1

εi, we have that

∥∥∥DPER
N,n)

∥∥∥ =
∥∥∥DPER

N,0) + E
∥∥∥ ≤ ∥∥∥DPER

N,0)

∥∥∥+ ‖E‖ .

In other words, the decay of the wavelet coefficients DPER
N,n) strongly depends on the

one of the initial seed and the ones of the error. And this is precisely the link with the
previous chapter. Indeed, the Fas Wavelet Transform plays the role of DPER

N,0). That is,
using the Fast Wavelet Transform we only have a static picture of ϕ after some iterates.
On the other side, the numerical approximation of the invariance equation allows us
to capture the zeros of ϕ in a better way (in the pinched case). Hence, as a conclusion,
we remark that the two strategies can be used to save time. Indeed, one can use
the Fast Wavelet Transform to explore which Daubechies wavelet better performs the
regularity problem. After that, solve the invariance equation with such wavelet up to
a given tolerance. That is, seems mandatory to have a good dictionary of Daubechies
wavelets.

For a future work, the duties must be the solution of the bug of the precision and,
also, use the information of the wavelet coefficients to give an estimation of where
the attractor is placed. From such information, since the support of the wavelets it
is a (dense) cover of S1 and its images of the ambient space, try to perform other
calculations such as the length of ϕ or its Hausdorff dimension. Also, the Haar wavelet,
due its simplicity, can be useful to derive formulas of E∞ and, hence, have a “good
choice” of N . Finally, from the operator point of view, the preconditioning techniques
can be understood as an operator. Hence, they can be used to simplify the notion of
convergence and perhaps use them to establish Newton Kantorovich hypothesis related
to Equations (.) and (.).
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Testing the Software

The main purpose of this chapter is to put in troubles the software developed from
the method derived in Section . of the previous chapter. Such problems will be

faced with the Haar wavelet basis due to the velocity of the computations and the
explicit solution of the linear system. That is, along this chapter the vector DPER will
be constructed in terms of Haar basis. Therefore the functional spaces Bs

2,2(S1) and
Bs
∞,∞(S1) only will allow s ∈ (−0.5, 0.5) and s ∈ (−1, 0) respectively.
To do this, firstly we will set our environmental space: the cylinder [0, 1] × S1. In

such cylinder we will apply two kind of skew product whose iterates may produce
an overflow problem. One of them will be a multiplicative skew product whereas
the other will be in the additive form. Such election is to realize the goodness of the
software in both situations.

We want to emphasize that this chapter is mainly experimental. That is, besides
of the quick survey of results concerning on the multiplicative skew product systems
we do not add more theoretical information. All of such results are from the original
paper [AM]. However, all this numerical experimentation will be useful to refuse
(or not) some properties and to test the validity of the software developed up to now.
Also, some pictures of the estimation of the Lyapunov exponent on the attractor of these
dynamical systems are provided. Note that, since Lyapunov exponent is important to
decide either if the matrix is invertible or not, it is important to have such information.
Finally, we want to remark that if it is not otherwise said all the numerical computations
concerning on the wavelet coefficients are done with N = 226 = 67108864 points. That
is, we will solve a 226 × 226 = 252 (non) linear system of equations. On the other side,
the vector DPER is found up to a precision less than 5×10−16. These computations have
been done with a single computer with and Intel i7 − 4770K Quad Core processor @
3.50GHz with 32Gb of RAM DDR3 @ 1867MHz. The figures are obtained by starting from
a (pseudo) random pair (θ, x), discarding its first 105 iterates and plotting the following
105. Finally ω is taken to be the golden mean:

√
5−1
2 .

. Two kind of skew products

In view of the results given in Section . we have performed the same kind of explo-
rations in other types of skew products. That is, we have found the wavelet coefficients
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DPER of an invariant curve, ϕ, in order to see how its regularity evolves. The idea of
such exercise is try to apply standard continuation techniques on skew products where
the nature of the problem causes difficulties on the convergence to DPER if the Newton’s
method is applied verbatim. Indeed, recall that lim

x→∞
tanh(x) = 1. Therefore, in the case

of the skew product given by Equation (.) the function tanh(x) has a crucial role in
avoiding overflow problems.

In view of that, our benchmarks will be dynamical systems such that the function
Fσ,ε will satisfy lim

x→∞
Fσ,ε(θ, x) = ±∞. On the other side, the attractor of these skew

products is a natural candidate to have suspicious traits of “fractalization route” as it can
be seen in Figure . and ..

Unimodal quasiperiodically forced maps

In [AM] the authors have considered skew products withRω as the base map whereas
the function in the fiber over θ is taken to be an unimodal map f of the interval [0, 1]
onto itself against g(θ). For us g(θ) = (ε + σgθ(1 − θ)) which is a continuous function
from the circle to [0, 1]. For all numerical experiments that we have performed the
logistic map will be taken as the aforesaid unimodal map (except for one which will
be explained later). That is, Fσ,ε(θ, x) = σfx(1− x)(ε+ σgθ(1− θ)).

Figure .: The pinched case is considered with σf = 4. On the right hand side σg = 1.86
whereas on the left hand side σg = 2.3.

As in the Keller’s situation the circle x ≡ 0 is invariant and, therefore, the vertical
Lyapunov exponent on it can be explicitly calculated for ε = 0:

κ(f, g) := log(f ′(0)) +
∫
S1

log |g(θ)| dθ = log(f ′(0)) + log(σg/e2).

Hence, since σf = 4, one of our working situations will start when σg > e2/4 because
then x ≡ 0 is a repellor (see [AM, Corollary .]). Clearly, κ(f, g) can be also calcu-
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lated for in terms of ε and σg . However, following this thread, and being σf = 4, the
aforementioned Lyapunov exponent will have a complicated but explicit expression.
The knowledge of such κ(f, g) will be helpful for us. Finally, it is worth to pointing
out that, the unimodality of f implies that some extra assumptions must be added to
show that the existence a strange non-chaotic attractor when the system is pinched (i.e
ε = 0).

The additive forcing

Up to now, we have been working with models where x ≡ 0 was invariant. Such
invariance strongly relies on the fact that, by hypothesis, f(0) = 0 and Fσ,ε(θn, xn) =
f(x)g(θ). Precisely, using the invariance, for those models we wanted to compute the
attractor, ϕ, so that we can detect the pinching point, ε = 0, in terms of regularity.

Of course, one can consider the case of the additive forcing but we will lose the
valuable information of κ(f, g). That is, in such situation, we will consider the additive
perturbation: Fσ,ε(θn, xn) = f(x) + g(θ). There is a famous paper [Nis] where it is
described the fractalization route seen with support of numerical computations. Cur-
rently, there is a strong debate about this route and about the fact that what we get at
the end is really a fractal (see Figure.). The system under the controversy is given by

(.)
(
θn+1
xn+1

)
= F(θn, xn) =

(
Rω(θn)

Fσ,ε(θn, xn),

)
,

where Fσ,ε(θ, x) = σx(1− x) + ε sin(2πθ).

Figure .: The plot of the attractor ϕ given by the iteration of the System .. On the
left hand side ε = 0.1 whereas ε = 0.18 is in the right hand side. Notice the different
shapes of both attractors having the same σ = 3.0.

Using the developed software and the gained experience in similar situations, as
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we will see in the following section, we will deal with the Nishikawa-Kaneko model in
order to detect changes in the behavior of ϕ, far beyond the cosmetic ones, if it happens.

. A tour in Alsedà-Misiurewicz System

The authors in [AM] introduce three operators in order to be able to prove the exis-
tence of strange non-chaotic attractors using a contractive property of those operators.
In order to fix ideas, let us (re)write the system that we will study

(.)
(
θn+1
xn+1

)
= F(θn, xn) =

(
Rω(θn)

Fσ,ε(θn, xn)

)
,

where Fσ,ε(θ, x) = 4x(1 − x)(ε + σgθ(1 − θ)). Now, recall that in Section . we have
introduced the Transfer Operator T(ϕ)(θ) = f(ϕ(R−1

ω (θ))) ·g(R−1
ω (θ)). In the same way,

the semi-transfer operator can be defined asS(ϕ)(θ) = f(minϕ(R−1
ω (θ)), c)·g(R−1

ω (θ)),
where c > 0 is a constant. Using the same ideas as in Equation (.) the iteration of S
converges pointwise towards an upper semi continuous function ϕ+. Recall that an
upper semi continuous function must have s = 0 as a regularity parameter. Finally,
the quarter-transfer operator is given by Q(ϕ)(θ) = min {T(ϕ),T(ϕ+)}. Now, we are
almost ready to state the equivalent to Keller’s Theorem in the present situation. To do
this, consider b := sup {x ∈ (k, 1] : − f−(x) < f(x)}, where f−(x) is the left one-sided
derivative of f and β = f(ess supϕ+).

Theorem .. (Theorems ., ., . and . [AM]). Assume that 0 < ess supφ+ < b.
Then there exists a function ϕ : S1 −→ R+ such that

(a) 0 ≤ ϕ ≤ φ+ and ϕ ≥ β′φ+ almost everywhere;

(b) T(ϕ) = ϕ;

(c) As in the Keller’s situation, let P be the space of all functions not necessarily
continuous from S1 to R: P(S1,R). If ρ ∈ P and εφ+ ≤ ρ ≤ φ+ for some ε > 0
then Tn(ρ) converges to ϕ almost everywhere.

(d) ϕ is a measurable and positive almost everywhere function;

(e) For almost every θ ∈ S1 and for all x ∈ (0, 1) the trajectory of the pair (θ, x)
converges exponentially fast to the graph of ϕ of falls into S1 × {1} and then
stays in S1 × {0}. In particular, for almost every θ ∈ S1 and all but countable
number of x ∈ (0, 1) the trajectory of the pair (θ, x) converges exponentially fast
to the graph of ϕ;

(f) If g 6= 1 almost everywhere then for almost every θ ∈ S1 and all x ∈ (0, 1) the
trajectory of the pair (θ, x) converges exponentially fast to the graph of ϕ;



.. A tour in Alsedà-Misiurewicz System 

(g) If f(φ+) then or almost every θ ∈ S1 and all but countable number of x ∈ (0, 1)
the trajectory of the pair (θ, x) converges exponentially fast to the graph of ϕ.

(h) If κ(f, g) > 0 then λϕ < 0.

As, in the case of Keller’s Theorem, we are interested in the case of κ(f, g) > 0.
However, there are some gaps in the cases that we will consider. Indeed, when ε = 0
the following Lemma is the explanation of some problematic values of σg in terms
of the hypothesis of the existence of a Strange non-Chaotic Attractor using the above
Theorem.

Lemma .. (Lemma . [AM]). Consider g = σg(θ(1− θ) to be such that σg > e2/2
and let f be such its turning point 1/2. Then ess supϕ+ > 1/2.

Hence, we will move σg ∈ [e2/4, e2/2]. However, to take an idea of where are such
places, in the case of ε > 0, we have done the following estimation of the Lyapunov
exponents, λϕ, using the Equation (.) (see Figure .).

Figure .: Some estimation of λϕ in terms of σg and ε. Because of formatting reasons
we have only plotted σg ∈ [1.9, 2.4] and ε ∈ [0, 0.3]. We want to notice that if a piece
of the surface which is not plotted is needed, then we will plot it.

In the following sections we will use such estimation, for the whole range, and the
above results to make some numerical experiments, conjectures and gain an important
experience.
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.. Parameterization

Our first purpose is to see how the wavelet coefficients DPER moves along the param-
eter space for the skew product given by Equation (.). Such face is reinforced by the
results derived from Equation (.). To do this, first of all we have used the following
parameterization of ε in terms of σg :
(.)

ε(σg) :=


−3323299

500000 σ
2
g + 60871083

2500000 σg −
34284691
1562500 if σg ∈ [1.6, 2.0),

(σg − 2.8)8 + 0.0005 if σg ∈ [2.0, 3.49),
366298374428641
861000000000000σ

2
g − 7013481614144179

2152500000000000σg + 179131268100176321
28700000000000000 if σg ∈ [3.49, 3.9],

0 otherwise.

To fix notation, let us recall that we aim to obtain the coefficients dPER
−j [n] which will

be collected in the vector DPER. Such vector will be found, using the Newton’s method,
up to a given tolerance (see Chapter  for further information). Since now we will move
along the parameter space, we will denote DPER

N,ε the N -dimensional vector of wavelet
coefficients respect the parameter ε. Hence, in the present situation, we are looking for
DPER
N,ε(σg) where ε(σg) is given by Equation (.).
Notice that the values σg ∈ [2.0, 3.49) gives us small values of ε. This is not done

for free. Indeed, using a symbolic calculator we have calculated κ(f, g) over such
parameterization to ensure that κ(f, g) > 0 (see Figure .). Beyond this exercise there is
another masked goal: find good regions to start continuation methods for the following
sections. Now, the reason for having this flat region becomes clear. All the coefficients of
DPER
N,ε(σg) corresponds to a nonpinched region with “non convergence problems”. Hence,

they can be used as a initial seeds for the continuation methods in regions where the
attractor is closer to zero or where the Keller’s techniques does not apply but there is
an invariant curve, even for ε = 0. This will be the main topic of the following section.

In terms of how the coefficients DPER
N,ε(σg) evolves along σg ∈ [1.6, 3.9], let us intro-

duce in the same way as in Equation (.) and Remark ..:

(.) s̃ = τ − 1 + 1
p
,

where 0 < p ≤ ∞ and τ is obtained by performing a standard linear regression between
j and sj = sup

n
|
〈
ϕ,ψPER

−j,n

〉
|. That is, we are looking at how the Haar wavelet coefficients

of ϕ vanish. In other words, we are taking s̃ as the regularity parameter without the
constraints on s inherited by Haar.

Once s̃ has been introduced, first of all let us notice that the values of ε closer to zero
must be appreciated for our vanishing parameter s̃ because we are approximating to
the pinched case. That is, ϕ becomes to have a strange behavior since it must converge
to an upper semi continuous function when ε = 0. In Figure . we have displayed how
ϕ evolves along ε(σg).
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Figure .: The plot the parameterization ε(σg) and the vertical Lyapunov exponent of
x ≡ 0 with such parameterization. Recall that, it is mandatory to have a repellor on
x ≡ 0 in order to have a finite attractor.

Moving to the regularity evolution we want to make some comments. First of all,
there are values of σg where the theoretical results of [AM] does not apply as we
will see later. However, the transition to the strangeness is still visible in the same way
as in Section .. Moreover, as σg gets closer to 4 then ϕ becomes weird and, again,
the graph of regularity parameter still marks such tendency as it can be seen at the last
part of Figures . and ..

As we have already said DPER
N,ε(σg) are in terms of the Haar wavelet basis. Hence,

one can also look for ϕ ∈ Bs
2,2(S1) using Corollary .. since looking at the pictures in

Figure . it seems that weak derivatives can appear. We only mention that such exper-
iment produces a similar picture as Figure . (for the allowed ranges of s). However,
there are values of σg such that ϕ /∈ Bs

2,2(S1) for s ∈ (−0.5, 0.5). This is not a surprisingly
fact. Indeed, for a big enough values of ε the invariant curve ϕ is sufficiently smooth
as it can be seen from Theorem .. and hence peaks can not appear. Moreover, for
values of σg ≤ e2/4 when ε = 0 then ϕ ≡ 0. Hence, in a naive way, we start from a
constant which has infinitely many derivatives and, with ε > 0, the attractor ϕ is regular
enough.

In view of such good convergence zone, we will use such results as a region for
initial seeds for continuation methods. However, the loss of regularity seems to be
a good indicator to see problematic situations, besides the pinched case, such as the
change of sign of the Lyapunov exponent on the invariant curve. In other words, seems
that wavelet coefficients also feel the changes on λϕ. We will return to such topic later
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Figure .: The range of ε given by the parameterization ε(σg) with σg ∈ [1.6, 3.9]. there
are included several instances of the attractor. Of course, in the flat region ϕ starts to
loose regularity properties.

Figure .: On the left hand side, it is plotted the Pearson correlation coefficient along
ε(σg). On the right hand side there is the regularity parameter s̃ of ϕ along such pa-
rameterization. The flat region of ε(σg) can be clearly identified because s̃ must go to
0 because of the pinching condition.
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on Section ...

.. Continuation towards the pinched case

In view of the above convergence results along the parameterization of ε by means
of ε(σ) we have done a continuation strategy respect the parameter ε. The reason
is that the initial seed, using the trapezoidal rule, it is not enough to avoid the basin
of attraction of −∞ when ε = 0. In other words, at each reconstruction step, using
DPER
N,0) from the the trapezoidal rule, each DPER

N,k) is worse than the previous one. Hence
the verbatim application of the Newton’s method fails to converge and, therefore, we
need to perform another strategy. To this end, recall that DPER

N,k) are obtained, using
Newton’s method, from Equation (.) and (.). Let X be such solution. In our situation
X strongly depends on σ and ε: Xσ,ε. The continuation strategy is based on the fact
that, being h > 0 small enough, Xσ,ε ∼ Xσ,ε+h. Hence, one can construct a sequence
of Xσ,ε+kh, k = 0, . . . , n to try to converge to the desired Xσ,ε̃, where ε̃ = ε + nh. Of
course, the same strategy can be done respect the parameter σ also.

To do this, we have used heavily Equation (.) to have an estimation of the Lyapunov
exponent on the invariant curve, λϕ, in terms of the parameters σg and ε. Despite of
having a picture of these λϕ’s (see for example Figure .), with such information and
the one derived from ε(σg) we have several good continuation regions towards the
desired ε. Again, we have applied the principle of if the Newton’s method converges, it
converges.

Figure .: Two different perspectives of the estimation of the Lyapunov exponent of the
logistic map with σf = 4 forced with a logistic map with σg ∈ [1.6, 1.9] and ε ∈ [0, 0.5].

We have started our experimentation with two attractors such that they are closer to
ϕ ≡ 0 but with σg slightly larger than e2/4 (see Figure .). Such motivation is twofold.
In one hand, to be under the assumptions of Lemma ... On the other side, try to bug
the convergence towards the wavelet coefficients DPER

N . It is important to notice that
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the values are small than 0.05 which leads to a wavelet coefficients vector DPER
N ≡ 0 if

one starts with ε = 0 directly. This is not strange fact. Indeed, e2/4 = 1.847264024732 . . .
and hence using σg = 1.85 then we are closer to have x ≡ 0 as the attractor. Also, the
change of sign of λϕ is near and, hence, the matrix (Id− ∆̃N ) turns into a non invertible
one. On the contrary, using a positive ε the continuation method converges to a DPER

N

such that ϕ > 0. Since we are in the Keller’s situation this is a good notice because ϕ
we can recover a strange non-chaotic attractor whose values are small.

Figure .: Two different values of σg and the pinched case is considered. On the right
hand side σg = 1.85 whereas on the left hand side σg = 1.86.

In view of such results we have made the same kind of experiment for other values
of σg (for example for the ϕ of right hand side Figure .) with similar results: good
convergence velocity and the “real” regularity parameter s, with a Pearson coefficient
greater than 0.99, can be assessed to be equal to zero. Clearly, this zero regularity
is what we have expected because of Lemma .. and Theorem ... That is, ϕ is a
strange non-chaotic attractor and, therefore, it must have zero regularity because of the
upper semi continuity of ϕ.

Of course, we are not saying that we can guarantee the convergence everywhere
of the continuation strategies. In fact, there are situations where the convergence to
a pinched case is heavy to get. For example, we have started with σg = 3.8 > e2/2
and ε = 0.0001. The continuation method needs about 7000 adaptive steps to converge
towards σg = 3.8 and ε = 0. For adaptive we mean that h can vary, in terms of how
convergence evolves, along the continuation performance (see Figure .). Despite of
this convergence problems we have promising news respect the regularity. Indeed,
for the pinched case and p = ∞ we have that s̃ = 0.006858. That is, it seems safe to
consider that ϕ ∈ B0

∞,∞(S1). On the contrary, for the nonpinched case s̃ = 1.2368362
and hence it is out of range. In view of that we can make two comments. We also
have a “strange” function even in the case of σg > e2/2. That is we still have a strange
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function even in the case where the reduction to the Keller’s techniques does not hold.
And, also convergence towards the expected regularity space.

The second comment concerns to the shape and the difference between the regu-
larity parameter. As it can be seen at Figure . the shape of both attractors is almost
the same. However this is only a picture. That is, the solution of the invariance equation
is able to capture, in a better way, the (dense set of) zeros of ϕ in the pinched case.
Hence, when ε = 0 the coefficients DPER

N are more accurate than the ones of the Fast
Wavelet Transform. On the other side when ε > 0, the wavelet coefficients are almost
the same as the ones of the Fast Wavelet Transform in agree with Lemma ...

Figure .: Being σg = 3.8 fixed, we have used ε = 0.0001, the left hand side picture, to
use DPER

N as an initial seed to go to the pinched case. It is worth to pointing out the close
shapes of the two pictures. In the pinched case s̃ = 0.006858 (with a Pearson coefficient
equal to 0.998631).

With those comments we mean that, perhaps, a better strategy in such situation is
to consider the invariance equation with the operators S and Q instead of T. Moreover,
perhaps the rigorous study of the continuation method can be used to derive in a more
feasible way an analogous of Theorem .. for σg > e2/2. Or, at least, provide proved
safety regions which guarantee a fast convergence to the wavelet coefficients DPER

N

besides the “trial-and-error” way.

.. Fractalization suspected

As we have already said at the end of the Section .. we want to use the idea of con-
tinuation methods with situations where the Lyapunov exponent is negative but closer
to zero. Dynamically, we will have an attractor which becomes something “neutral”.
In terms of Newton’s method this means that we will have problems in the solution of
the (non) linear system of equations. In terms of the graph of ϕ the Lyapunov exponent
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seems to mean more freedom to stretch and fold the invariant object (see e.g Fig-
ure.).

Such situation is related to the one of the right hand side picture of Figure . and
it is the origin of the controversy. In order to gain experience to try to provide some
information in the Nishikawa-Kaneko model (and also for the particular instance of the
Alsedà-Misiurewicz system) we have made some continuation experiments. Since we
are not interested in the regularity results, we have diminished theN to 222 = 4194304.
We remark that the regularity topics are related, for example, with the Hausdorff di-
mension of the object. Hence, a good estimate of the regularity gives a good estimate
of the Hausdorff dimension. In our performance, the regularity assessment it is done by
means of a linear model. Hence we need to have as much samples as it is possible. In
such situation, N = 222, we have not considered 22 samples a good framework to do
the regression.

Figure .: Two different values of σg and the nonpinched case is considered. On the
right hand side σg = 2.0 and ε = 0.3 whereas on the left hand side σg = 2.0 and
ε = 0.44. This situation looks like Figure . or the right hand side picture of Figure ..

Our initial plan was focused on try to be, as much as possible, closer to ε = 0.44.
However, our tries were a nightmare because the instability inherited from the system.
We can only arrive at ε = 0.425042 (starting on ε = 0.20424) and, looking at the result’s
files, it is appreciated the bad convergence. Indeed, Newton’s method needs more than
300 iterates to reach the solution using a initial seed closer solution. Far beyond the
naive strategy performed, this means, that we are closer to non convergence zones.
Such regions can arise from the contractive character of the Newton’s method. Hence,
the problems to reach the desired ε means that either the continuation or Newton’s
method are close to fail.

However, for sake of completeness let us say that the software returns a value of s̃ such that ϕ is
suspicious of continuity.
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Nevertheless, from the data files we have learned the following good region of
convergence. Indeed, let εInv be the error derived from the invariance equation and
εDPER how close to zero is the “current” Newton iteration. Then, if it is possible to
stabilize 1 × 10−6 ≤ εInv ≤ 1 × 10−8 and 1 × 10−3 ≤ εDPER ≤ 1 × 10−4 then Newton’s
method converge (and also the continuation strategy). On the other side, if either εInv ≥
1 × 10−3 and/or εDPER ≥ 1 × 10−1 the iteration becomes highly unstable and, mainly,
does not converge.

Clearly, such regions strongly depends on the values of σg and ε (and hence the Lya-
punov exponent). This means that such iteration process and the continuation operator
induced defines neighborhoods (in fact they are tubes) of convergence Uσg ,ε towards the
desired ε. As a conclusion, these Uσg ,ε’s perhaps can be used to (im)prove the conver-
gence theorems such as Theorem ... Also the operators can be helpful to understand
such problematic zone.

. Skew Products as bugs

In view of the above results and drawing to close this chapter, let us explain two numer-
ical experiments more. They must be understood as an examples where the developed
software does not work (up to now). Both of them, displayed on Figure . ,may rep-
resent two kind of different problems.

Figure .: On the left picture it is shown the attractor of the tent map forced by a
logistic map with σ = 4.0 and ε = 0.0 [AM]. On the right hand side it is displayed the
Nishikawa-Kaneko model (σ = 3.0 and ε = 0.18) [Nis].

As we have already said, there is a controversy of how weird is the attractor of
the Nishikawa-Kaneko System. Several techniques can be applied such as wise mag-
nifications among others. In view of that, we have made the following exploration.
Being σ = 3.0 and again, using Equation (.), we have taken the coefficients DPER

N,ε0
with
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ε0 = 0.14 to be the initial seed of the continuation method. Our goal was ε = 0.18.
However, we do not reach our desired value. As a matter of fact, we do not reach the
desired DPER far beyond the “good values” making impossible the use of s̃ to classify
it. This in contrast to the previous section. Assuming  that ϕ ∈ L 2(S1) then we can
approximate it using the Haar wavelet basis. Hence, this is suspicious that the operator
induced on the continuation – iteration in both situations are different which it is not
surprisingly because one has multiplicative forcing whereas the other is additive. And
in the multiplicative case, the concavity seems to play an important role (see [AM])
to guarantee the convergence.

On the other side we have taken Fσ,ε(θ, x) = (1− |2x− 1|)(ε+ σgθ(1− θ)), σ = 4.0
and ε = 0.0. In such situation we can not get a DPER

N,0) such that εInv and εDPER are
in the safety region analogous to the one depicted in Section ... Even with naive
continuation methods. However, the situation is different. Indeed, as it is pointed out
in [AM] ϕ it is not a usual function and hence the spaces Bs

∞,∞(S1) with s ≤ 0
must be considered. Recall that, the negative spaces can be understood as the dual
of the positive ones. However, the (numerical) calculations seems to be adapted to
such language but we still have theorems of regularity in such cases as, for instance,
Theorem .. and ...

However, in both cases seems that the operator language, specially in the right
preconditioned Haar’s case, is helpful for understanding the convergence conditions or,
perhaps, determine some obstruction problems.

. The method (updated)

We will finish this chapter with some comment concerning on the numerical experi-
ments that we have performed along of it. First of all, in Section . we have sketched
the method to calculate DPER with Daubechies wavelet for p ≥ 1. But, in view of the
explanations along this chapter and the previous one we want to remark two things.
The first one concerns the initial guess:

Step : Initial guess. Compute, using the results of Section ., the matrices ΨPER
N and

Ψ̃PER
N . Use them to set 1

NΨPER
N
>ΦN = DPER

N,0) as an initial guess for the recurrence (.).
In order to get a sufficiently good approximation of ϕ, up to a given tolerance, use
Equation (.). Also, moving the parameters use such formula to have a perspective of
good continuation zones. Combine the two strategies to get the best initial seed DPER

N,0)
possible.

The second one is about the wavelets. As we have already said, you can use the
Daubechies wavelet that you want. Hence, in the same way as it is pointed out at the
final lines of Chapter  it seems a good idea to make a library of such wavelets. In

Perhaps the assumption is false.
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Section .. we have justified its use. However, perhaps other wavelets such as Symm-
lets (see [Mal, Section ..]) converts the calculation of Ψ̃PER in something more
closer to the Haar’s case due to its quasi symmetry. Or even relaxing the hypothesis
of the orthogonality of wavelets to ones that they are only biorthogonals (see [Mal,
Section .]), then the calculations becomes more easy. In other words, on the Fourier
world there is only one basis whereas in the wavelets world there are an infinite va-
rieties of them. The problem is to find the best one blindly. To avoid this problem the
use of the Fast Wavelet Transform in all of its forms (see e.g [Mal, Chapter ] can
be used to choose a good candidate of wavelet, such that it verifies Theorem .., to
solve the invariance equation.





Appendix

In Chapter  we have introduced a matrix which, under certain circumstances can be
useful. We do not use it. However we display its properties in the following Lemma.
We must say that the proof of these properties strongly relies on Lemma ..: fixed a
block j then all the columns corresponding to such block are the same translated by
a power of two.

Lemma ... Let ψ(x) be a Daubechies wavelet with p > 1 vanishing moments and
ψPER
l its orthonormal basis of S1. Being fixed N = 2J , with J > 0, define the matrix

Id = 1
N Ψ̃PER

N
>Ψ̃PER

N . Then

(a) The first row of the matrix 1
N Ψ̃PER

N
>Ψ̃PER

N is the sum of the columns of Ψ̃PER
N .

Moreover, for each level j = 0, . . . , J we only have to calculate one value.

(b) The second row of thematrix 1
N Ψ̃PER

N
>Ψ̃PER

N verifies the identity for k = 1, . . . , J−1
Id1,m = −Id1,m+̃2l , where m+̃2l = m+ 2l (mod 2k) with l = k − 1.

(c) The block of the matrix 1
N Ψ̃PER

N
>Ψ̃PER

N j is divided in two differentiated blocks:

(c)-. The corresponding block of the same j which gives a symmetric circulant
matrix. Hence, we only have to calculate 2j different values.

(c)-. The rest of the block which corresponds to k = j+1, . . . , J−1. Each of such
blocks has different 2k values. Also, Idn,m = Id

n+1,m+̃2 for n = 0, . . . , 2j − 1
and m+̃2 = m+ 2l (mod 2k), where l = 1, . . . , J − 1− j.

Proof. Weneed to show the four properties. However, we claim that the item (b) and (c)
are the same. Hence, we will only prove the first property and the corresponding to
the level j.

(a) We need to calculate the first row of the matrix:

1
N

(Ψ̃PER
N
>Ψ̃PER

N )0,m = 1
N

N−1∑
i=0

ψPER
0 (Rω(θi))ψPER

m (Rω(θi))

for m = 0, . . . , N − 1. But, by definition ψPER
0 (Rω(θ)) = 1 for all θ ∈ S1. Hence

the conclusion easily follows since by Lemma .. for each j = blog2(m)c and
n = m− 2j the values of ψPER

j,n are the same. In view of that, the two first values
are very easy to calculate. The first one, concretely, is 1

N (Ψ̃PER
N
>Ψ̃PER

N )0,0 = 1. The
second one, taking into account Lemma .., is 1

N (Ψ̃PER
N
>Ψ̃PER

N )0,1 = 0.
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(b) Let us fix a level j. The proof will be split in two parts.

(j) Clearly, when j = 0, the claim is true. Hence, let j ≥ 1. We are focused in the
block 1

N (Ψ̃PER
N
>Ψ̃PER

N )ñ,m̃, where the sub-indexes ñ, m̃ = 2j , 2j+1, . . . , 2j+1−
1. To simplify the notation, set n = 2j − ñ and m = 2j − m̃. The symmetry
is clear because

1
N

(Ψ̃PER
N
>Ψ̃PER

N )n,m = 1
N

N−1∑
i=0

ψPER
−j,n(Rω(θi))ψPER

−j,m(Rω(θi))

= 1
N

N−1∑
i=0

ψPER
−j,m(Rω(θi))ψPER

−j,n(Rω(θi))

= 1
N

(Ψ̃PER
N
>Ψ̃PER

N )m,n.

Also, following the thread of simplify the notation, we will look at the upper
diagonal of the considered block (n ≤ m), drop the normalization coefficient
(1/N) and setting Id = 1

N (Ψ̃PER
N
>Ψ̃PER

N ). Having introduced the notation, firstly
we will show that the first row of such block has a particular structure. To
do this, let k = 0, . . . , 2j−1. By Lemma ..:

(.) ψPER
−j,0(Rω(θi)) = ψPER

−j,2j−1±k(Rω(θ
ĩ+κ)),

where ĩ+ κ) = i + κ (mod N) and κ = (2j−1 ± k)2J−j . We claim that
Id0,2j−1−k = Id0,2j−1+k for k = 0, . . . , 2j−1. The assertion, since Id0,2j does
not exist, is clear for k = 0 and k = 2j−1. For the rest, we will use the above
transformation:

Id0,2j−1−k =
N−1∑
i=0

ψPER
−j,0(Rω(θi))ψPER

−j,2j−1−k(Rω(θi))

=
N−1∑
i=0

ψPER
−j,0(Rω(θi))ψPER

−j,0(Rω(θ
ĩ+κ)))

=
N−1∑
i=0

ψPER
−j,0(Rω(θi))ψPER

−j,2j−1+k(Rω(θ
ι̃+κ)))

=
N−1∑
i=0

ψPER
−j,0(Rω(θi))ψPER

−j,2j−1+k(Rω(θi))

= Id0,2j−1+k,

where ι̃+ κ = i+ κ+ κ (mod N) = i+ 2(2j−1 + k)2J−j (mod N) = i+ 2J

(mod N) = i+N (mod N). That is, ι̃+ κ) = i. Now it only remains to prove





that Idn,m = Idn+1,m+1. Again by Lemma ..:

Idn+1,m+1 =
N−1∑
i=0

ψPER
−j,n+1(Rω(θi))ψPER

−j,m+1(Rω(θi))

=
N−1∑
i=0

ψPER
−j,n(Rω(θ

ĩ+κ)))ψ
PER
−j,m(Rω(θ

ĩ+κ)))

=
N−1∑
ι=0

ψPER
−j,n(Rω(θι))ψPER

−j,m(Rω(θι))

= Idn,m,

where κ = 2J−j and ι = ĩ+ κ) = i+ κ (mod N).
(k > j) Let us start by the case k = j + 1. Hence, we will be interested in a block of

2j rows and 2j+1 columns. Again the indexes must be understood with the
corresponding translation by a power of two: ñ = 2j + n for the rows and
m̃ = 2j+1 +m for the columns. As in the previous case the first row of such
block will be the "generator" for the rest of the rows: let

Id0,m =
N−1∑
i=0

ψPER
−j,0(Rω(θi))ψPER

−k,m(Rω(θi))

be the first row of the block of size 2j × 2j+1. We have, for m > n, by
Lemma ..:

ψPER
−j,n(Rω(θi)) = ψPER

−j,m(Rω(θ
ĩ+κ)),

where ĩ+ κ) = i + κ (mod N) and κ = (m − n)2J−j . Hence, we need to
show that Idl,m = Idl+1,m+2 for l = 0, . . . , 2j − 1. To do this notice that:

Id1,m+2 =
N−1∑
i=0

ψPER
−j,1(Rω(θi))ψPER

−(j+1),m+2(Rω(θi))

=
N−1∑
i=0

ψPER
−j,0(Rω(θ

ĩ+κ1)
))ψPER
−(j+1),m(Rω(θ

ĩ+κ2)
))

=
N−1∑
ι=0

ψPER
−j,0(Rω(θι))ψPER

−(j+1),m(Rω(θι))

= Id0,m,

where ι̃+ κ1 = (1 − 0)2J−j (mod N) and ι̃+ κ2 = (m + 2 − m)2J−(j+1)

(mod N) = 2J−j (mod N). In view of that, the assertion follows replacing
l and l + 1 in the formulation of κ1 for the case k = j + 1. The proof for a
general k it is done with the same trick for κ1 and setting ι̃+ κ2 = 2l, where
l = 1, . . . , J − 1− j.
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(c) Finally, to show what we have claimed at the beginning of the proof (the property
of the second row), we need to show that Id1,m = −Id1,m+̃2l . But by Lemma ..,

ψPER
0,0 (Rω(θi)) = −ψPER

0,0 (Rω(θ
ĩ+κ)),

where ĩ+ κ) = i + κ (mod N) and κ = 2J−1. Also, for j ≥ 1, by Lemma ..
and in the same way as in Equation (.):

ψPER
−j,0(Rω(θi)) = ψPER

−j,2j−1(Rω(θ
ĩ+κ)),

where ĩ+ κ) = i+ κ (mod N) and κ = 2J−1. Hence the assertion follows.

Remark ... It is important to notice that the index for the columns,m, are considered
in Z/2kZ. That is m+̃i = m + i (mod 2k). In order to do not do the proof unreadable
we have not introduced it. Finally, notice that the mysterious range for l corresponds
to the one of k − j moving j = 1, . . . , J − 1.
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Numerical Computation of Invariant Objects with Wavelets

Abstract: In certain classes of dynamical systems invariant sets with a strange geom-
etry appear. For example, under certain conditions, the iteration of two-dimensional
quasi-periodically forced skew product (θn+1, xn+1) = (Rω(θn), Fσ,ε(θn, xn)) where
Rω(θ) = θ + ω, ω ∈ R\Q and σ, ε ∈ R gives us Strange Non-Chaotic Attractors, ϕ.

To obtain analytical approximation of these objects it seems more natural to use
wavelets instead of the more usual Fourier approach due to its adaptability. The aim of
this thesis is to describe an efficient algorithm for the semi-analitical computation of the
invariant object, using both Daubechies and Haar wavelets, by means of the numerical
computation of the wavelet coefficients.

The aim for this exercise is twofold. From one side to be able to study possible
bifurcations or zoom in the "pinching zone" of the object. From the other side try to get
estimates of the regularity of the object. The study of this regularity depending on pa-
rameters, for a certain models of skew products, may give another point of view to the
fractalization routes described in the literature and that are currently under discussion.

To perform such exercise(s), firstly, we have translated the R-Daubechies wavelets
language to S1. After that, we have carried out two different strategies to get the
wavelet coefficients DPER. The first one based on the FastWavelet Transform. The other,
solve the Invariance Equation ϕ(Rω(θ)) = Fσ,ε(θ, ϕ(θ)) using the Newton’s method.
From such coefficients DPER we get (numerical) estimations for the aforesaid proposed
questions.

Keywords: Wavelets, Fast Wavelet Transform, Besov spaces, quasiperiodically
forced system, Lyapunov exponent, Mather spectrum
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