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Chapter 1

Introduction and statements of the
results

Christian Huygens is credited with being one of the first scholars to investigate isochronous
systems in the XVII century. He studied the cycloidal pendulum, which has isochronous
oscillations, in opposition to the monotonicity of the period of the usual pendulum. It is
probably the first example of a nonlinear isochronous center. For more details see [24].

Isochronicity appears in a wide variety of physical phenomena. Furthermore it is
important in stability theory, since a periodic solution in the region surrounding the center
type singular point is Liapunov stable if and only if the neighboring periodic solutions
have the same period. For more details on these topics see [16].

We say that p ∈ R2 is a center if it is a singular point of a planar differential system
such that there is a neighborhood U of p where all the orbits of U\{p} are periodic. For
every q ∈ U\{p} let T (q) denote the period of the periodic orbit through q. When T (q)
is constant for all q ∈ U\{p} we say that p is an isochronous center . The fact that p
is isochronous does not imply that the angular velocity of the vector −→pq is the same for
all periodic orbits in U\{p}. When this happens we say that p is a uniform isochronous
center or a rigid center .

The study of polynomial differential systems in R2 with a uniform isochronous center
has increased in the last decades, see for instance [1, 12, 19, 21, 30] and the bibliography
therein. The relevance of investigating these systems is due, on the one hand, to their
importance in the general problem of isochronicity. Indeed, any analytic system with
linear part (−y, x)t has an isochronous center at the origin if and only if it is possible
to be transformed, by applying an analytic change of coordinates of the form (x, y) →
(x+ P (y2), y +Q(x, y)) into the system

ẋ = −y + x H(x, y), ẏ = x+ y H(x, y), (1.1)

where H is an analytic function and H(0, 0) = 0, for more details see [51, 2]. On the
other hand, system (1.1) in polar coordinates x = r cos θ, y = r sin θ is

ṙ =
∑
k≥1

Hk(cos θ, sin θ)rk+1, θ̇ = 1,

1



Introduction

where each Hk is the homogeneous part of degree k of the function H. These systems can
be written under the form of a generalized Abel differential equation

dr

dθ
=
∑
k≥1

Hk(cos θ, sin θ)rk+1. (1.2)

Equation (1.2) provides information about system (1.1), and vice versa, since the constant
solution r = 0 of (1.2) corresponds to the origin of (1.1), and the periodic solutions of
(1.2) with r > 0 correspond to periodic orbits of (1.1), see [5, 2].

In this work we study the planar polynomial differential systems of degree 3 and 4 with
a uniform isochronous center. We provide a classification for these systems with respect
to the topological equivalence of their global phase portraits in the Poincaré disc. We
also investigate the bifurcation of limit cycles from the uniform isochronous centers and
from the periodic orbits surrounding these centers, both for continuous and discontinuous
polynomial perturbations.

1.1 Preliminaries on the global phase portraits

The next result characterizes when a center is a uniform isochronous center.

Proposition 1.1. Assume that a planar polynomial differential system ẋ = P (x, y),
ẏ = Q(x, y) of degree n has a center at the origin of coordinates. Then this center is
uniform isochronous if and only if by doing a linear change of variables and a rescaling
of time it can be written as

ẋ = −y + x f(x, y), ẏ = x+ y f(x, y), (1.3)

with f(x, y) a polynomial in x and y of degree n− 1, f(0, 0) = 0.

Proposition 1.1 is proved in section 2.2.

The classification of the global phase portraits in the Poincaré disc for the uniform
isochronous centers of the polynomial differential systems of degrees 1 and 2, and some
results regarding the uniform isochronous centers of degrees 3 and 4 are summarized in
what follows. Without loss of generality we assume that the uniform isochronous center
is at the origin of coordinates.

1.1.1 Uniform isochronous centers of degree 1

A linear differential system with a uniform isochronous center after a linear change of
variables and a rescaling of time becomes ẋ = −y, ẏ = x. In this case the uniform
isochronous center is global. The corresponding phase portrait is shown in Figure 1.1.

1.1.2 Uniform isochronous centers of degree 2

The quadratic polynomial differential system with a uniform isochronous center after a
linear change of coordinates and a rescaling of time can be written into the form ẋ =

2
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Figure 1.1: Phase portrait of the
uniform isochronous center of degree 1.

Figure 1.2: Phase portraits of the
uniform isochronous center of degree 2.

−y + x2, ẏ = x + xy. The respective phase portrait for this system is shown in Figure
1.2.

This result was provided by Loud [45] in 1964. In his work Loud studied all the families
of quadratic isochronous systems.

1.1.3 Uniform isochronous centers of degree 3

The following result, due to Collins [18] in 1997, also obtained by Devlin et al [20] in
1998, and by Gasull et al [25] in 2005, provides a characterization of the planar cubic
polynomial differential systems with a uniform isochronous center.

Theorem 1.2. A planar cubic polynomial differential system has a uniform isochronous
center at the origin if and only if it can be written as

ẋ = −y + x(a1x+ a2y + a3x
2 + a4xy − a3y2),

ẏ = x+ y(a1x+ a2y + a3x
2 + a4xy − a3y2),

(1.4)

and satisfies a21a3 − a22a3 + a1a2a4 = 0, ai ∈ R, i = 1, . . . , 4.

The next result is due to Collins [18].

Proposition 1.3. System (1.4) satisfying a21a3 − a22a3 + a1a2a4 = 0, may be reduced to
one of the following forms

ẋ = −y(1− x2), ẏ = x(1 + y2), (1.5)

ẋ = −y + x2 + Ax2y, ẏ = x+ xy + Axy2. (1.6)

where A ∈ R.

Collins provided the phase portraits and the first integrals of the cubic uniform
isochronous centers using (1.5) and (1.6) which present at most one parameter.

1.1.4 Uniform isochronous centers of degree 4

Algaba et al [4] in 1999, and Chavarriga et al [13] in 2001 independently provided
the following characterization of quartic polynomial systems with a uniform isochronous
center at the origin.

3
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Theorem 1.4. Consider f(x, y) =
∑3

i=1 fi(x, y) with fi(x, y), i = 1, 2, 3 homogeneous
polynomials of degree i, and f 2

1 + f 2
2 6= 0, f3 6= 0 such that (1.3) is a quartic polynomial

differential system with a non–homogeneous nonlinear part. Then the only case of local
analytic integrability in a small open neighborhood of the origin of system (1.3) is given,
modulo a rotation, by

ẋ = −y + x(A1x+B2xy + C1x
3 + C3xy

2),

ẏ = x+ y(A1x+B2xy + C1x
3 + C3xy

2).
(1.7)

where A1, B2, C1, C3 ∈ R.

1.2 Results on global phase portraits and on first

integrals

We provide the global phase portraits in the Poincaré disc of all uniform isochronous
centers of degree 3 and 4. We also provide the explicit expressions of the first integrals in
the case of the uniform isochronous centers of degree 3.

1.2.1 Uniform isochronous centers of degree 3 and their first
integrals

Collins [18] presented the global phase portraits and the first integrals for the uniform
isochronous centers of degree 3 using systems (1.5) and (1.6). Therefore one needs to
change the differential system (1.4) to these normal forms before applying Collins’ results.
Our results present the first integrals and the global phase portraits in the Poincaré disc
for the uniform isochronous cubic centers in terms of all the parameters of system (1.4).
These results have been published in [31].

In the next theorem, we present the first integrals for the uniform isochronous centers
of degree 3 described by systems (1.4).

Theorem 1.5. The first integrals H of system (1.4) in polar coordinates x = r cos θ, y =
r sin θ are described in what follows.

Case 1: a2
1 − a2

2 6= 0.

Subcase 1.1: a4 6= 0.

Subcase 1.1.1: 4a4 6= a2
1 − a2

2.

H = e
−2 arctan

[
R+2a4r(−a2 cos θ+a1 sin θ)

RS

]
[

a4r
2

R + r(a2 cos θ − a1 sin θ)(a2a4r cos θ − a1a4 sin θ −R)

]S
,

where R = a21 − a22, S =
√

4a4/R− 1.

In case of a negative square root, we have a complex first integral and therefore both
its real and imaginary parts are also first integrals, if not null.

4
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Subcase 1.1.2: 4a4 = a2
1 − a2

2.

H =
re

2
2−a2r cos θ+a1r sin θ

2− a2r cos θ + a1r sin θ
.

Subcase 1.2: a4 = 0.

H =
r

1− a2r cos θ + a1r sin θ
.

Case 2: a2
1 − a2

2 = 0.

Subcase 2.1: a2 = a1.

Subcase 2.1.1: a1 = 0.

H =
r2

1− a4r2 cos2 θ + a3r2 sin(2θ)
.

Subcase 2.1.2: a1 6= 0, a4 = 0.

Subcase 2.1.2.1: a3(a2
1 + 4a3) 6= 0.

H =e
−2 arctan

[
a1+2a3r(cos θ−sin θ)

a1R

]
[

a3r
2(sin(2θ)− 1)

(cos θ − sin θ)2[1 + a1r(sin θ − cos θ) + a3r2(sin(2θ)− 1)]

]R
,

where R =
√
−1− 4a3/a21.

Subcase 2.1.2.2: a3 = 0.

H =
r

1− a1r(cos θ − sin θ)
.

Subcase 2.1.2.3: a3 = −a2
1/4.

H =
re

2
2−a1r(cos θ−sin θ)

2− a1r(cos θ − sin θ)
.

Subcase 2.2: a2 = −a1.

Subcase 2.2.1: a1 = 0. This case becomes the subcase 2.1.1.

Subcase 2.2.2: a1 6= 0, a4 = 0.

Subcase 2.2.2.1: a3(4a3 − a2
1) 6= 0.

H =
e

1
R

[
−2 arctan

(
a1+2a3r(sin θ+cos θ)

a1R

)
+R arctanh(tan θ)

]
a3r

2(sec(2θ) + tan(2θ))

1 + a1r(sin θ + cos θ) + a3r2(1 + sin(2θ))
,

where R =
√

4a3/a21 − 1.

Subcase 2.2.2.2: a3 = 0.

H =
r

1− a1r(cos θ − sin θ)
.

Subcase 2.2.2.3: a3 = a2
1/4.

H =
r

e1+
1
2
a1r(cos θ+sin θ)

(
1 + 1

2
a1r(cos θ + sin θ)

) .
5
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Theorem 1.5 is Theorem 3.3 presented in chapter 3, and it is proved in section 3.3.1
of that chapter.

In the next result, we classify the global phase portraits in the Poincaré disc of the
uniform isochronous centers of degree 3 described by systems (1.4) in terms of all their
parameters.

Theorem 1.6. The global phase portrait in the Poincaré disc of the differential system
(1.4) is topologically equivalent to one of the four phase portraits presented in Figure 1.3.

(b) (c)(a )
1

(a )
2

Figure 1.3: Phase portraits of cubic uniform isochronous centers.

More precisely, the global phase portrait of (1.4) is topologically equivalent to either the
phase portrait (a1) or (a2) of Figure 1.3 if one of the following conditions holds

� a1a2 6= 0, and a4(a
2
1 − a22) > 0, and a4 ≤ (a21 − a22)/4;

� a2 = −a1 6= 0, and 0 < a3 ≤ a21/4, and a4 = 0;

� a2 = a1 6= 0, and −a21/4 ≤ a3 < 0, and a4 = 0;

� a1 = 0, and a2 6= 0, and −a22/4 ≤ a4 < 0;

� a1 6= 0, and a2 = 0, and 0 < a4 ≤ a21/4;

to the phase portrait (b) if one of the following conditions holds

� a1a2 6= 0, and a4(a
2
1 − a22) > 0, and a4 > (a21 − a22)/4;

� a2 = −a1 6= 0, and a3 > a21/4, and a4 = 0;

� a2 = a1 6= 0, and a3 < −a21/4, and a4 = 0;

� a1 = 0, and a2 6= 0 and a4 < −a22/4;

� a1 6= 0, and a2 = 0 and a4 > a21/4;

to the phase portrait (c) if one of the following conditions holds

� a1a2 6= 0, and a4(a
2
1 − a22) < 0;

� a2 = −a1 6= 0, and a3 < 0, and a4 = 0;

� a2 = a1 6= 0, and a3 > 0, and a4 = 0;

6
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� a1 = 0, and a2 6= 0, and a4 > 0;

� a1 6= 0, and a2 = 0, and a4 < 0;

� a1 = a2 = 0.

The cases where a3 = a4 = 0 are omitted in Theorem 1.6 because in such cases system
(1.4) is a quadratic polynomial differential system, which has already been studied.

Theorem 1.6 corresponds to Theorem 3.4, and it is proved in section 3.3.2.

1.2.2 Uniform isochronous centers of degree 4

We provide a topological classification of the global phase portraits in the Poincaré
disc of all quartic uniform isochronous centers. We split our study into two cases,
distinguishing when the nonlinear part of the planar quartic polynomial differential system
is homogeneous or not.

Non–homogeneous nonlinear part

In this case the quartic uniform isochronous centers are of the form (1.7), according to
Theorem 1.4.

Theorem 1.7. Consider a quartic polynomial differential system X : R2 → R2 and
assume that X has a uniform isochronous center at the origin such that their nonlinear
part is not homogeneous. Then the global phase portrait of X is topologically equivalent
to one of the 12 phase portraits of Figure 1.4.

More precisely, since X can always be written as system (1.7), the global phase portrait
of X is topologically equivalent to the phase portrait

(a) of Figure 1.4 if either C1C3 > 0, or if C3 = 0, B2 < 0, or if C1 = 0, C3 6= 0 and if
either r3 = r2 = r1, ∀r1, r2, r3 ∈ R∗, or if r1 6= 0 and r2,3 = a±bi, ∀r1, b ∈ R∗, a ∈ R;

(b) of Figure 1.4 if C1 = 0, C3 6= 0 and if either r1, r2, r3 > 0, or r1, r2, r3 < 0, or
r1r2 > 0, r3 = r2, or r2 = r1, r1r3 > 0;

(c) of Figure 1.4 if C1 = 0, C3 6= 0 and if either r1 < 0, r2, r3 > 0, or r1, r2 < 0, r3 > 0,
or r1 < 0, r2 > 0, r3 = r2, or r2 = r1, r1 < 0, r3 > 0;

(d) of Figure 1.4 if C3 = 0, C1 6= 0, B2 > 0, C1 6= −A1B2;

(e1) or (e2) of Figure 1.4 if either C3 = 0, C1 6= 0, B2 > 0, C1 = −A1B2, or B2 = C3 = 0;

(f) or (g) or (h) of Figure 1.4 if C1C3 < 0, B2 = 0;

(i) or (j) or (k) of Figure 1.4 if C1C3 < 0, B2 6= 0;

where in the cases with C1 = 0, we have that r1, r2, r3 are the roots of the polynomial
−C3 −B2x− A1x

2 − x3 and we assume that r1 ≤ r2 ≤ r3 when these roots are real.

Theorem 1.7 corresponds to Theorem 4.3, and it is proved in section 4.3.1. This result
has been published in [32].
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(g)

(d)

(a)

(f)

(b) (c)

(h)

(i) (k)(j)

(e )
2

(e )
1

Figure 1.4: Phase portraits of the uniform isochronous centers (1.7).
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Homogeneous nonlinear part

In this case we have the following result.

Theorem 1.8. Let
ẋ = −y + xf(x, y), ẏ = x+ yf(x, y), (1.8)

be a polynomial differential system of degree 4, such that f(x, y) is a cubic homogeneous
polynomial. Then any quartic polynomial differential system which can be written into the
form (1.8) has a uniform isochronous center at the origin and its global phase portrait is
topologically equivalent to one of the 3 phase portraits of Figure 1.5.

(f)(l) (a)

Figure 1.5: Phase portraits of (1.8) with quartic homogeneous polynomial nonlinearities.

We remark that the phase portraits (a) and (f) in Theorems 1.7 and 1.8 are topologically
equivalent.

Theorem 1.8 is Theorem 4.4, and it is proved in section 4.3.2. This result has been
submitted for publication, see [35].

1.3 Preliminaries on the bifurcation of limit cycles

Let O be an open subset of R2 and let X : O → R2 be a vector field. A periodic orbit γ
of X is a limit cycle if there exists a neighborhood of γ such that it is the only periodic
orbit contained in this neighborhood. The biggest connected set of periodic solutions
surrounding a center and having in its inner boundary the center itself is called the period
annulus of the center.

A classical way to investigate limit cycles is perturbing a differential system which
has a center. In this case the perturbed system can exhibit limit cycles that bifurcate,
either from the center equilibrium point (having the so-called Hopf bifurcation), or from
some of the periodic orbits surrounding the center, see for instance Pontrjagin [50], the
second part of the book [17], and the hundreds of references quoted there. The problem
of studying the limit cycles bifurcating from a center, or from its periodic solutions has
been exhaustively studied in the last century and is closely related to the Hilbert’s 16th

Problem. Nevertheless, in spite of all efforts, there is no general method to solve this
problem.

Essentially there are four methods for determining the number of limit cycles which
bifurcate from the periodic orbits of a period annulus of a center. The first method is based
on studying the fixed points of the Poincaré return map, see for instance [10, 14]. The

9
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second method uses the Poincaré-Pontrjagin-Melnikov integrals or the Abelian integrals,
which are also related with the Poincaré return map. These two integrals are equivalent
in the plane, see section 6 of chapter 4 of [29], and section 5 of chapter 6 of [7]. The third
method is based on the inverse integrating factor, see section 6 of [26] or [27]. The last
method is based on the averaging theory, see for example [11, 53], and it is also related
with the Poincaré map. From [11] one can check that in the plane the averaging method
of first order is equivalent to the method of the Abelian integrals. Moreover the first two
methods only give information on the number of periodic orbits of the unperturbed system
that become limit cycles after the perturbation. The last two methods can also provide
the shape of the bifurcated limit cycle up to some order of the perturbation parameter,
see [27, 38].

The theory of averaging has a long history that starts with the classical works of
Lagrange and Laplace, who provided an intuitive justification of the method. The first
formalization of this theory was done in 1928 by Fatou [23]. For a more modern exposition
of the averaging theory see the book of Sanders, Verhulst and Murdock [53].

Bifurcation of limit cycles in continuous planar differential systems are still largely
studied. Nonetheless due to the considerable number of discontinuous phenomena in the
real world, see for example [9, 54] and the references therein, a significant interest in the
investigation of limit cycles of discontinuous piecewise differential systems has arisen. For
instance in [44], applying the theory of regularization, the averaging theory is extended
up to order 1 for studying the periodic solutions of systems of the form x′ = ε

(
F (t, x, ε)+

sign(h(x))G(t, x, ε)
)
. In [41] there is a version of the averaging theorem up to order 2 for

a bigger class of discontinuous piecewise differential equations x′ = εF1(t, x, ε). Finally in
[42] it is stated averaging theorems for studying the periodic solutions of discontinuous
piecewise differential equations of the form x′ = F0(t, x) + εF1(t, x) + ε2F2(t, x, ε).

1.4 Result on averaging theory

We develop the averaging theory at any order for computing the periodic solutions of
discontinuous piecewise differential systems of the form

r′ =

{
F+(θ, r, ε) if 0 ≤ θ ≤ α,
F−(θ, r, ε) if α ≤ θ ≤ 2π,

(1.9)

where

F±(θ, r, ε) =
k∑
i=1

εiF±i (θ, r) + εk+1R±(θ, r, ε).

The set of discontinuity of system (1.9) is Σ = {θ = 0} ∪ {θ = α} with 0 < α < 2π. Here
F±i : S1 ×D → R for i = 1, . . . , k, and R± : S1 ×D × (−ε0, ε0) → R are Ck+1 functions,
where D is an open and bounded interval of (0,∞), and S1 ≡ R/(2π).

We remark that for α = 2π system (1.9) becomes continuous. So the averaging theory
developed here can also be applied to continuous differential systems.

The averaging function fi : D → R of order i, for i = 1, 2, . . . , k, is defined as

fi(ρ) =
y+i (α, ρ)− y−i (α− 2π, ρ)

i!
,

10
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where y±i : S1 ×D → R, for i = 1, 2, . . . , k − 1, are defined recurrently as

y±i (θ, ρ) = i!

∫ θ

0

(
F±i (φ, ρ) +

i∑
l=1

∑
Sl

1

b1! b2!2!b2 · · · bl!l!bl
·

∂LF±i−l (φ, ρ)
l∏

j=1

y±j (φ, ρ)bj

)
dφ,

where Sl is the set of all l-tuples of non–negative integers (b1, b2, · · · , bl) satisfying b1 +
2b2 + · · ·+ lbl = l, and L = b1 + b2 + · · ·+ bl.

The explicit expressions of y±i up to order 7 are given in Appendix C.

Our result on the periodic solutions of system (1.9) is the following.

Theorem 1.9. Assume that, for some ` ∈ {1, 2, . . . , k}, fi = 0 for i = 1, 2, . . . , ` − 1
and f` 6= 0. If there exists ρ∗ ∈ D such that f`(ρ

∗) = 0 and f ′`(ρ
∗) 6= 0, then for |ε| >

0 sufficiently small there exists a 2π–periodic solution r(θ, ε) of system (1.9) such that
r(0, ε)→ ρ∗ when ε→ 0.

Theorem 1.9 corresponds to Theorem 5.4, and it is proved in section 5.3.1. This result
has been submitted for publication, see [34].

1.5 Results on limit cycles

We define a small limit cycle as a limit cycle which bifurcates from a center equilibrium
point, whereas a medium limit cycle is one which bifurcates from a periodic orbit of the
period annulus of a center. A singular point p is a weak focus if it is a center for the
linearized system at p and p is not a center.

We study the bifurcation of limit cycles in planar polynomial differential systems of
degrees 3 and 4 with a uniform isochronous center at the origin, both for continuous and
discontinuous polynomial perturbations.

1.5.1 Bifurcation of limit cycles from the uniform isochronous
centers of degree 3

We consider the following continuous systems

ẋ = −y + xf(x, y) +
6∑
i=1

εipi(x, y),

ẏ = x+ yf(x, y) +
6∑
i=1

εiqi(x, y),

(1.10)

where f(x, y) is as in Theorem 1.2, and the system

ẋ = −y + x2y + εpK(x, y), ẏ = x+ xy2 + εqK(x, y), (1.11)

11
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where

pj = αj1x+ αj2y + αj3x
2 + αj4xy + αj5y

2 + αj6x
3 + αj7x

2y + αj8xy
2 + αj9y

3,

qj = βj1x+ βj2y + βj3x
2 + βj4xy + βj5y

2 + βj6x
3 + βj7x

2y + βj8xy
2 + βj9y

3,

pK = α0 + p1, qK = β0 + q1.

Moreover we consider the discontinuous systems(
ẋ
ẏ

)
= X (x, y) =

{
X1(x, y) if y > 0;
X2(x, y) if y < 0.

(1.12)

(
ẋ
ẏ

)
= Y(x, y) =

{
Y1(x, y) if y > 0;
Y2(x, y) if y < 0.

(1.13)

where

X1(x, y) =

(
−y + xf(x, y) +

∑6
i=1 ε

ipi(x, y)

x+ yf(x, y) +
∑6

i=1 ε
iqi(x, y)

)
,

X2(x, y) =

(
−y + xf(x, y) +

∑6
i=1 ε

iui(x, y)

x+ yf(x, y) +
∑6

i=1 ε
ivi(x, y)

)
,

Y1(x, y) =

(
−y + x2y + εpK(x, y)
x+ xy2 + εqK(x, y)

)
,

Y2(x, y) =

(
−y + x2y + εuK(x, y)
x+ xy2 + εvK(x, y)

)
,

uj = γj1x+ γj2y + γj3x
2 + γj4xy + γj5y

2 + γj6x
3 + γj7x

2y + γj8xy
2 + γj9y

3,

vj = δj1x+ δj2y + δj3x
2 + δj4xy + δj5y

2 + δj6x
3 + δj7x

2y + δj8xy
2 + δj9y

3,

uK = γ0 + u1, vK = δ0 + v1.

We state our results in what follows.

Theorem 1.10. For |ε| 6= 0 sufficiently small the maximum number of small limit cycles
of the differential system (1.10) is 3 using the averaging theory of order 6, and this number
can be reached.

Theorem 1.10 corresponds to Theorem 5.5, and it is proved in section 5.3.2.

Theorem 1.11. For |ε| 6= 0 sufficiently small the maximum number of medium limit
cycles of the differential system (1.11) is 3 using the first order averaging theory and this
number can be reached.

Theorem 1.11 is Theorem 5.6, and its proof is presented in section 5.3.3.

Theorem 1.12. For |ε| 6= 0 sufficiently small the maximum number of small limit cycles
of the discontinuous differential system (1.12) is 5 using the averaging method of order 6
and this number can be reached.

Theorem 1.12 corresponds to Theorem 5.7, and it is proved in section 5.3.4.

12
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Theorem 1.13. For |ε| 6= 0 sufficiently small the maximum number of medium limit
cycles of the discontinuous differential system (1.13) is 7 using the averaging method of
first order and this number can be reached.

Theorem 1.13 corresponds to Theorem 5.8, and its proof is presented in section 5.3.5.

These results on the bifurcation of limit cycles from the uniform isochronous centers
of degree 3 have been published in [31].

1.5.2 Bifurcation of limit cycles from the uniform isochronous
centers of degree 4

Let Hc(n) denote the maximum number of limit cycles that bifurcate from the origin of
system (1.3), when it is perturbed inside the class of all continuous polynomial differential
systems of degree n, and Hd(n) denotes the maximum number of limit cycles that bifurcate
from the origin of system (1.3), when it is perturbed inside the class of all discontinuous
piecewise polynomial differential systems of degree n with two zones separated by the
straight line y = 0.

We consider the following family of continuous differential systems

ẋ = −y + xp(x, y) +
4∑
i=1

εipi(x, y),

ẏ = x+ yp(x, y) +
4∑
i=1

εiqi(x, y),

(1.14)

where

pj =αj0 + αj1x+ αj2y + αj3x
2 + αj4xy + αj5y

2 + αj6x
3 + αj7x

2y + αj8xy
2 + αj9y

3

+ αj10x
4 + αj11x

3y + αj12x
2y2 + αj13xy

3 + αj14y
4,

qj =βj0 + βj1x+ βj2y + βj3x
2 + βj4xy + βj5y

2 + βj6x
3 + βj7x

2y + βj8xy
2 + βj9y

3

+ βj10x
4 + βj11x

3y + βj12x
2y2 + βj13xy

3 + βj14y
4,

and of the discontinuous differential systems(
ẋ
ẏ

)
= X (x, y) =

{
X1(x, y) if y > 0,
X2(x, y) if y < 0,

(1.15)

where

X1(x, y) =

(
−y + xp(x, y) +

∑k
i=1 ε

ipi(x, y)

x+ yp(x, y) +
∑k

i=1 ε
iqi(x, y)

)
,

X2(x, y) =

(
−y + xp(x, y) +

∑k
i=1 ε

iui(x, y)

x+ yp(x, y) +
∑k

i=1 ε
ivi(x, y)

)
,

uj =γj0 + γj1x+ γj2y + γj3x
2 + γj4xy + γj5y

2 + γj6x
3 + γj7x

2y + γj8xy
2 + γj9y

3

+ γj10x
4 + γj11x

3y + γj12x
2y2 + γj13xy

3 + γj14y
4,

vj =δj0 + δj1x+ δj2y + δj3x
2 + δj4xy + δj5y

2 + δj6x
3 + δj7x

2y + δj8xy
2 + δj9y

3

+ αj10x
4 + δj11x

3y + δj12x
2y2 + δj13xy

3 + δj14y
4,
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with k = 4 or k = 7 depending on the order of the averaging theory that we can compute.
For the continuous and the discontinuous cases we have to consider either

p(x, y) = t10x+ t01y + t20x
2 + t11xy + t02y

2 + t30x
3 + t21x

2y + t12xy
2 + t03y

3, (1.16)

with tij ∈ R, i+ j = 1, 2, 3, t230 + t221 + t212 + t203 6= 0, or

p(x, y) = t10x+ t11xy + t30x
3 + t12xy

2, (1.17)

with t230 + t212 6= 0, or

p(x, y) = t30x
3 + t21x

2y + t12xy
2 + t03y

3. (1.18)

We remark that the polynomials p(x, y) in (1.17) and (1.18) are used to study the
cases of quartic polynomial differential systems with a uniform isochronous center at the
origin, either having a non–homogeneous nonlinear part (using (1.7) of Theorem 1.4), or
a homogeneous nonlinear part, respectively. On the other hand, since (1.16) is a general
cubic polynomial in x and y without constant term, it is used to study the bifurcation of
limit cycles in both cases when the origin can be either a uniform isochronous center or
a weak focus.

In the following we state our results.

Theorem 1.14. Using averaging theory of order 4 we obtain, for |ε| 6= 0 sufficiently
small, Hd(4) ≥ 6 for the differential system (1.15) with p(x, y) of the form (1.16) (i.e.
system (1.15) has a weak focus or a uniform isochronous center at the origin).

Theorem 1.14 is Theorem 6.2, and it is proved in section 6.3.1.

Theorem 1.15. Using averaging theory of order 4 we obtain, for |ε| 6= 0 sufficiently
small, Hd(4) ≥ 5 for the differential system (1.15) with p(x, y) either of the form (1.17)
or (1.18) (i.e. system (1.15) has a uniform isochronous center at the origin).

Theorem 1.15 corresponds to Theorem 6.3, and its proof is presented in section 6.3.2.

Theorem 1.16. Using the averaging theory of order 7 we obtain, for |ε| 6= 0 sufficiently
small, Hd(4) ≥ 6 for the differential system (1.15) with p(x, y) of the form (1.17) and
αj0 = βj0 = γj0 = δj0 = 0, j = 1, . . . , 7.

Theorem 1.16 is Theorem 6.4, and is proved in section 6.3.3.

Theorem 1.17. Using the averaging theory of order 4 we obtain, for |ε| 6= 0 sufficiently
small, Hc(4) ≥ 2 for the differential system (1.14) with p(x, y) of the form (1.16).

Theorem 1.18. Using the averaging theory of order 4 we obtain, for |ε| 6= 0 sufficiently
small, Hc(4) ≥ 1 for the differential system (1.14) with p(x, y) either of the form (1.17)
or (1.18).

Theorems 1.17 and 1.18 correspond to Theorems 6.5 and 6.6, respectively. They are
proved in section 6.3.4.
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We remark that all these results were obtained studying only the Hopf bifurcation,
that is, we studied the number of small limit cycles that can bifurcate from the uniform
isochronous center

We also remark that to prove Theorems 1.14 and 1.15 (respectively Theorems 1.17
and 1.18) we shall use the averaging theory of order 4 for discontinuous (respectively
continuous) differential systems, together with a rescaling of the variables. In these proofs
we can see, using Descartes Theorem (see Theorem 6.1 in this work), that the lower bounds
which appear in the theorems are actually upper bounds for the averaging theory of order
4. From Theorems 1.14 and 1.15 (respectively Theorems 1.17 and 1.18) it follows that
if applying the averaging theory of order 4 to the differential system (1.15) (respectively
(1.14)) we obtain 6 (respectively 2) limit cycles, the origin of the differential system (1.15)
(respectively (1.14)) is a weak focus.

These results on the bifurcation of limit cycles from the uniform isochronous centers
of degree 4 have been submitted for publication, see [34].

1.5.3 Application of the averaging theory in a concrete planar
polynomial differential system of degree 4

In this section we apply the averaging theory to study the bifurcation of limit cycles
from the period annulus of the uniform isochronous center of a given planar polynomial
differential system of degree 4.

Peng and Feng studied in [48] the following quartic polynomial differential system with
a uniform isochronous center at the origin

ẋ = −y + xy(x2 + y2), ẏ = x+ y2(x2 + y2). (1.19)

They show that under any quartic homogeneous polynomial perturbations, at most 2
limit cycles bifurcate from the period annulus of system (1.19) using averaging theory of
first order, and this upper bound can be reached. In addition these authors prove that
for the family of perturbed quartic polynomial differential systems

ẋ =− y + xy(x2 + y2) + ε(a10x+ a01y + a11xy + a21x
2y + a03y

3

+ a40x
4 + a31x

3y + a22x
2y2 + a13xy

3 + a04y
4),

ẏ =x+ y2(x2 + y2) + ε(b10x+ b01y + b20x
2 + b02y

2 + b30x
3

+ b12xy
2 + b40x

4 + b31x
3y + b22x

2y2 + b13xy
3 + b04y

4),

(1.20)

there are at most 3 limit cycles bifurcating from the period annulus of (1.19) using
averaging theory of first order, and this upper bound is sharp.

We remark that the perturbed system (1.20) studied by Peng and Feng do not consider
all the quartic polynomial differential systems because they omit the coefficients a00, a20,
a02, a30, a12, b00, b11, b21, b03.

We consider the polynomial differential systems

ẋ = −y + xy(x2 + y2) + ε

4∑
i=0

pi(x, y),

ẏ = x+ y2(x2 + y2) + ε
4∑
i=0

qi(x, y),

(1.21)
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where pi =
∑
j+k=i

ajkx
jyk and qi =

∑
j+k=i

bjkx
jyk are real homogeneous polynomials of

degree i.

The following result completes the preliminary study presented in [48] using averaging
theory of first order.

Theorem 1.19. For |ε| 6= 0 sufficiently small there are quartic polynomial differential
systems (1.21) having at least 8 limit cycles bifurcating from the periodic orbits of the
uniform isochronous center (7.1).

Theorem 1.19 is Theorem 7.1. The proof is presented in section 7.3. This result has
been submitted for publication, see [33].

Note that in Theorem 1.19 we study medium limit cycles, i.e. limit cycles bifurcating
from the periodic orbits surrounding the uniform isochronous center of the differential
system (1.19), whereas in the previous subsection we have studied the small limit cycles
of all quartic uniform isochronous centers, i.e. the limit cycles bifurcating from the center
equilibrium point.
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Preliminaries

In this chapter we present some preliminary concepts, definitions and results that we shall
use throughout this work.

2.1 Definitions and concepts

Let O be an open subset of R2. A vector field of class Cr on O is a Cr map X : O →
R2, where X(x) represents a vector attached at the point x ∈ O. We can associate a
differential equation to the vector field X as the following

ẋ = X(x), (2.1)

where x ∈ O and the dot denotes the derivative with respect to the variable t. The
variables x and t are called the dependent variable and the independent variable of (2.1),
respectively.

Let p ∈ O and J an open interval containing the origin. Then ϕp : J → O denotes
the solution of (2.1) (i.e. ϕ̇p(t) = X(ϕp(t)) such that ϕp(0) = p. The solution ϕp is called
maximal if for every solution ξp : K → O such that J ⊂ K and ϕp = ξp

∣∣
J

then J = K
and, consequently ϕp = ξp. The orbit γp of a vector field X through the point p is the
image of the maximal solution ϕp : J → O endowed with an orientation if the solution
is regular. The phase portrait of the vector field X : O → R2 is the description of O as
union of all orbits of X.

A point p ∈ O such that X(p) = 0 (respectively 6= 0) is called a singular point
(respectively regular point) of X. If a singular point has a neighborhood that does not
contain any other singular point, than such singular point is called an isolated singular
point .

The linear part of X at the point p is the Jacobian matrix of X calculated at that
point. A singular point p is non-degenerate if zero is not an eigenvalue of the linear part of
the vector field at p. If both eigenvalues of the linear part of the vector field at that point
have nonzero real part, the singular point p is called hyperbolic. The singular point p is
called semi-hyperbolic if exactly one eigenvalue of the linear part of the vector field at p is
equal to zero. Hyperbolic and semi-hyperbolic singularities are also known as elementary
singular points . If the linear part of the vector field at p is not identically zero but both
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eigenvalues are zero, then p is a nilpotent singular point . The singular point p is called
linearly zero if the linear part of the vector field at this point is identically zero.

Polynomial differential systems can be extended to infinity, compactifying the plane
by adding a circle at the infinity, and analytically extending the flow to this boundary
circle. This is done by the so called Poincaré compactification, which allows to study the
behavior of the orbits near infinity. The singular points that are on the circle at infinity
are the infinite singular points of the initial polynomial differential system, and the other
singular points are called finite singular points . For further details about the Poincaré
compactification, see Appendix A.

The concepts of node, cusp, saddle and node are the usual ones found in the literature,
for more details see for instance pp. 7 and 110 of [22].

The singular point p is called a center if there exists an open neighborhood consisting,
besides the singularity, only of the periodic orbits.

Let p ∈ R2 be a singular point of an analytic differential system in R2, and assume that
p is a center. Without loss of generality we can assume that p is the origin of coordinates
(if necessary we do a translation of coordinates sending p at the origin). Then, after a
linear change of variables and a rescaling of the time variable (if necessary), the system
can be written in one of the following three forms

ẋ = −y + F1(x, y), ẏ = x+ F2(x, y); (2.2)

ẋ = y + F1(x, y), ẏ = F2(x, y); (2.3)

ẋ = F1(x, y), ẏ = F2(x, y); (2.4)

where F1(x, y) and F2(x, y) are real analytic functions without constant and linear terms,
defined in a neighborhood of the origin.

A center of an analytic differential system in R2 is called linear type, nilpotent or
degenerate if after an affine change of variables and a rescaling of the time it can be
written as system (2.2), (2.3) or (2.4), respectively.

The period annulus of a center is the biggest connected set of periodic solutions
surrounding a center and having in its inner boundary the center itself. Compactifying
R2 to the Poincaré disc (see Appendix A), the boundary of the period annulus of a center
has two connected components: the center itself and a graphic, except perhaps in the
case of a global center , where the two connected components are the center itself and the
boundary of the Poincaré disc, which can be a periodic orbit or a graphic.

We say that p is a weak focus if it is a center for the linearized system at p and p is
not a center.

An orbit γ(t) is a periodic orbit if there exists a constant k > 0 such that γ(t+k) = γ(t),
for all t ∈ R. A periodic orbit γ is called a limit cycle if there exists a neighborhood of
γ such that γ is the only periodic orbit contained in this neighborhood. In this work a
small limit cycle is one which bifurcates from either a focus or a center, and a medium
limit cycle is one which bifurcates from a periodic orbit of the period annulus of a center.

Let p be a center of a polynomial differential system in R2. Without loss of generality
we can assume that p is the origin of coordinates. We say that p is an isochronous center if
it is a center having a neighborhood such that all the periodic orbits in this neighborhood

18



Chapter 2. Preliminaries

have the same period. We say that p is a uniform isochronous center , also known in the
literature as a rigid center if the system, in polar coordinates x = r cos θ, y = r sin θ,
takes the form ṙ = G(r, θ), θ̇ = k, k ∈ R \ {0}. For more details, see Conti [19].

Let
ẋ = P (x, y), ẏ = Q(x, y), (2.5)

be a real polynomial differential system. The vector field associated to the differential
system (2.5) is defined by

X = P
∂

∂x
+Q

∂

∂y
.

The polynomial differential system (2.5) is integrable on an open subset O ∈ R2 if there
exists a nonconstant function H : O → R, called a first integral of the system on O, which
is constant on all solution curves (x(t), y(t)) of (2.5) contained in O. Clearly H is a first

integral of (2.5) on the open subset O if and only if XH = P
∂H

∂x
+Q

∂H

∂y
≡ 0 on O.

Let O be an open subset R2 and let R : O → R be an analytic function which is not
identically zero on O. The function R is an integrating factor of the differential system
(2.5) on O if one of the following three equivalent conditions holds on O.

∂(RP )

∂x
= −∂(RQ)

∂y
, div(RP,RQ) = 0, XR = −R div(P,Q).

The divergence of the vector field X is defined, as usual, by

div(X) = div(P,Q) =
∂P

∂x
+
∂Q

∂y
.

The first integral H associated to the integrating factor R is given by

H(x, y) =

∫
R(x, y)P (x, y)dy + h(x),

where h is chosen such that ∂H/∂x = −RQ, and we suppose that the domain of
integration O is well adapted to the specific expression.

In Appendices A and B we discuss about the Poincaré compactification and the
topological equivalence, respectively.

2.2 Some results on the uniform isochronous centers

In this section we present some results about uniform isochronous centers for polynomial
differential systems in R2.

The next result characterizes when a center is a uniform isochronous one.

Proposition 2.1. Assume that a planar polynomial differential system ẋ = P (x, y),
ẏ = Q(x, y) of degree n has a center at the origin of coordinates. Then this center is
uniform isochronous if and only if by doing a linear change of variables and a rescaling
of time it can be written as

ẋ = −y + x f(x, y), ẏ = x+ y f(x, y), (2.6)

with f(x, y) a polynomial in x and y of degree n− 1, f(0, 0) = 0.
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In what follows we provide a proof for this proposition.

Proof: Using blow up techniques we know that neither nilpotent nor degenerate centers
can have uniform isochronous centers. This is due to the fact that, after the blow up,
nilpotent and degenerate centers become a graphic, and the periodic orbits of those
centers tending to the graphic have period tending to the infinity, and thus, the period
cannot be constant. Hence, only systems having linear-type centers can present a uniform
isochronous center

ẋ = −y + p(x, y), ẏ = x+ q(x, y),

where p(x, y) and q(x, y) are polynomials starting with at least terms of second order.

By doing a polar change of coordinates in this system, we have

ṙ =
x p(x, y) + y q(x, y)√

x2 + y2

∣∣∣∣∣
(x,y)=(r cos θ,r sin θ)

,

θ̇ = 1 +
x q(x, y)− y p(x, y)

x2 + y2

∣∣∣∣
(x,y)=(r cos θ,r sin θ)

.

But by hypothesis, such system has a uniform isochronous center at the origin, that is,
θ̇ = 1. Hence, x q(x, y)− y p(x, y) = 0, and thus

p(x, y) = x f(x, y), q(x, y) = y f(x, y),

where f(x, y) is a polynomial.

Reciprocally, if a polynomial differential system is of the form (2.6), then by doing a
polar change of coordinates we obtain

ṙ = r f(r cos θ, r sin θ), θ̇ = 1.

Hence, it has a uniform isochronous center at the origin.

The assumption of the existence of a center in proposition 2.1 cannot be removed.
There are polynomial differential systems in R2 under the form (2.6) which do not have a
uniform isochronous center at the origin. In what follows we present an example provided
by Conti [19]. Consider the system

ẋ = −y − x(x2 + y2), ẏ = x− y(x2 + y2).

In polar coordinates this system is written as ṙ = −r3, θ̇ = 1 and therefore the origin of
the coordinates is a “uniform isochronous” stable focus.

Proposition 2.2. If a planar polynomial differential system has a uniform isochronous
center, then this center is the unique finite singular point of the differential system.

Proof: Without loss of generality we can assume that the uniform isochronous center is
the origin of coordinates.

The result follows by Proposition 2.1, since (−y + xf(x, y))2 + (x+ yf(x, y))2= (x2 +
y2)(1 + f 2(x, y)) > 0, for x2 + y2 > 0, and therefore the origin of coordinates is the only
finite singular point of the differential system.
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In short, no planar polynomial differential system can have more than one uniform
isochronous center. On the other hand, there are differential systems with more than one
isochronous center, as illustrated by the following example (see [45])

ẋ = −y + xy, ẏ = x− x2

2
+ 2y2,

which has isochronous centers at the origin and at (2, 0).

Proposition 2.3. The global phase portrait in the Poincaré disc of any planar polynomial
differential system of degree n ≥ 2 with a uniform isochronous center has the infinity filled
of singular points.

Proof: Consider a planar polynomial differential system ẋ =
∑n

i=0 Pi ẏ =
∑n

i=0Qi

where each Pi, Qi is a homogeneous polynomial of degree i, for i = 0, . . . , n. It is well
known that the infinite singular points in the Poincaré disc of this system are given by
the end points of the real linear factors of the homogeneous polynomial xQn − yPn. For
system (2.6) we have that xQn− yPn = xyf(x, y)− yxf(x, y) ≡ 0. Therefore every point
at the boundary of the Poincaré disc is an infinite singular point for system (2.6).

The following result can be found in Theorem 3.1 of [19].

Proposition 2.4. Consider the polynomial differential system (2.6) of degree n. If n > 1
and the origin is a uniform isochronous center then it cannot be a global center.

Proof: Under the hypotheses of the proposition we can write f(x, y) =
n−1∑
n=1

fh(x, y), with

each fh(x, y) a homogeneous polynomial of degree h. The trajectories of system (2.6) in
polar coordinates correspond to the solutions θ 7→ r(θ) of

dr

dθ
=

n−1∑
h=1

fh(cos θ, sin θ)rh+1. (2.7)

Each periodic solution of (2.6) has associated a positive 2π−periodic solution of (2.7)
and vice-versa. Then the origin of (2.6) is a global center if and only if all the positive
solutions of (2.7) are 2π−periodic. In order to prove that this is not possible, unless in
the case of fh ≡ 0, for h = 1, . . . , n − 1, we replace r by σ = r−1, r > 0, sending the
solutions r of (2.7) into the solutions σ of

dσ

dθ
= −

n−1∑
h=1

fh(cos θ, sin θ)σ1−h. (2.8)

So the periodic orbits of (2.6) correspond to the positive 2π−periodic solutions of (2.8).
Now if the origin is a uniform isochronous center of (2.6) the family F of the periodic
solutions of system (2.8) is non-empty. We shall show that there exist solutions that
actually do not belong to F .

If the uniform isochronous center is global, let σk for k ∈ N be the periodic solutions
of system (2.8) such that σk(0) = 1/k. So σk+1(θ) < σk(θ), 0 ≤ θ ≤ 2π because by the
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Existence and Uniqueness Theorem of solutions of a differential system (see, for example,
Theorem 1.2.4 of [53]), the orbits of σk and σk+1 cannot intersect and by hypothesis
σk+1(0) < σk(0). Then from (2.8) we have

σn−1k (θ) =
1

kn−1
− (n− 1)

∫ θ

0

f1(cosϕ, sinϕ)σn−2k (ϕ)dϕ− . . .

− (n− 1)

∫ θ

0

fn−2(cosϕ, sinϕ)σk(ϕ)dϕ

− (n− 1)

∫ θ

0

fn−1(cosϕ, sinϕ)dϕ.

(2.9)

On the other hand, since {σk(θ)}k∈N is a decreasing sequence converging to the function
zero, it follows by Dini’s Theorem (see for instance [52] for further details) that σk(θ)→ 0
uniformly. Therefore from (2.9) we have∫ θ

0

fn−1(cosϕ, sinϕ)dϕ = 0, for 0 ≤ θ ≤ 2π,

that is,

fn−1(cosϕ, sinϕ) = 0, for 0 ≤ θ ≤ 2π

which is a contradiction.

Recall that a polynomial differential system is Hamiltonian if there exist a map H
defined in R2, such that the differential system can be written as

ẋ = ∂H/∂y, ẏ = −∂H/∂x.

Proposition 2.5. If a planar polynomial differential system of degree n ≥ 2 has a uniform
isochronous center than this system is not Hamiltonian.

Proof: A polynomial differential system ẋ = −y+P (x, y), ẏ = x+Q(x, y) is Hamiltonian
if and only if

∂P (x, y)

∂x
+
∂Q(x, y)

∂y
= 0. (2.10)

In the case of the differential system (2.6), we write f(x, y) =
n−1∑
i=1

fi(x, y) where each

fi(x, y) =
∑
j+k=i

aj,kx
jyk and then we have

∂(xf(x, y))

∂x
+
∂(yf(x, y))

∂y
=

∂

(
n−1∑
i=1

∑
j+k=i

aj,kx
j+1yk

)
∂x

+

∂

(
n−1∑
i=1

∑
j+k=i

aj,kx
jyk+1

)
∂y

=
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n−1∑
i=1

∑
j+k=i

(j + 1)aj,kx
jyk +

n−1∑
i=1

∑
j+k=i

(k + 1)aj,kx
jyk =

n−1∑
i=1

∑
j+k=i

(j + k + 2)aj,kx
jyk.

The only way to vanish this expression in order to satisfy condition (2.10) is that aj,k ≡ 0
for all j, k = 0, 1, . . . , n−1 such that 1 ≤ j+k ≤ n−1. But this implies that f(x, y) ≡ 0,
which is a contradiction. Therefore, system (2.6) is not Hamiltonian.

A planar polynomial differential system ẋ = P (x, y), ẏ = Q(x, y) is complex if
after performing the change of coordinates z = x + iy the resulting differential system
ż = u(x, y) + iv(x, y) satisfies the Cauchy-Riemann equations

∂u(x, y)

∂x
=
∂v(x, y)

∂y
,

∂u(x, y)

∂y
= −∂v(x, y)

∂x
. (2.11)

Proposition 2.6. If a planar polynomial differential system of degree n ≥ 2 has a uniform
isochronous center than this system is not complex.

Proof: According to Theorem 2.1 a planar polynomial differential system with a uniform
isochronous center can always be written as (2.6). We show that if the polynomial
differential system (2.6) has degree n ≥ 2, then it does not satisfy (2.11) unless f(x, y) is
a constant polynomial, and therefore system (2.6) is not a complex system.

Let ż = u(x, y) + iv(x, y) be the resulting differential system from (2.6) by the change
of variables z = x+ iy. Since u(x, y) = −y + xf(x, y), v(x, y) = x+ yf(x, y) with f(x, y)
a polynomial of degree n− 1, for n ≥ 2 we have

∂u(x, y)

∂x
= f(x, y) + x

∂f(x, y)

∂x
,

∂v(x, y)

∂y
= f(x, y) + y

∂f(x, y)

∂y
,

∂u(x, y)

∂y
= −1 + x

∂f(x, y)

∂y
,

∂v(x, y)

∂x
= 1 + y

∂f(x, y)

∂x
.

In order to fulfill (2.11) the following equations must hold

x
∂f(x, y)

∂x
= y

∂f(x, y)

∂y
, x

∂f(x, y)

∂y
= y

∂f(x, y)

∂x
,

and consequently we must have (x2 + y2)
∂f(x, y)

∂x
= 0 and (x2 + y2)

∂f(x, y)

∂y
= 0. That

is,
∂f(x, y)

∂x
=

∂f(x, y)

∂y
= 0 for (x, y) 6= (0, 0). Thus to satisfy the Cauchy-Riemann

equations (2.11), f(x, y) needs to be constant, which is a contradiction, because by
hypothesis it is a polynomial of degree at least 1.

In the case of homogeneous uniform isochronous centers, Conti provided the following
result in Theorem 2.1 of [19]. For the sake of completeness we provide a proof in what
follows.
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Theorem 2.7. Let f(x, y) =
∑

i+j=n−1

pi,jx
iyj be a homogeneous polynomial of degree n−1.

Then system (2.6) has a uniform isochronous center at the origin if either n is even, or
if n is odd and

n−1∑
ν=0

[
pn−1−ν,ν

∫ 2π

0

cosn−1−ν θ sinν θ dθ

]
= 0.

Proof: Let n ≥ 2 and f(x, y) =
∑

i+j=n−1

pi,jx
iyj be a homogeneous polynomial of degree

n− 1, f(0, 0) = 0 in system (2.6). Then system (2.6) has either a center or a focus at the
origin and in polar coordinates it is written as

ṙ = rnf(cos θ, sin θ), θ̇ = 1,

where f(cos θ, sin θ) =
n−1∑
ν=0

pn−1−ν,ν cosn−1−ν θ sinν θ. Then

dr

dθ
= rnf(cos θ, sin θ).

and therefore

H = H(r, θ) =
rn−1

1 + (n− 1)rn−1
∫ θ

0

f(cosϕ, sinϕ) dϕ

(2.12)

is a first integral for the differential system if H(r, 0) = H(r, 2π). Thus in order to
determine the conditions for a center at the origin we have to consider two cases.

If n is even, then∫ 2π

0

f(cosϕ, sinϕ) dϕ =
n−1∑
ν=0

pn−1−ν,ν

∫ 2π

0

cosn−1−ν ϕ sinν ϕdϕ = 0, because f(cos(ϕ +

π), sin(ϕ+ π)) = −f(cosϕ, sinϕ). Therefore H(r, 0) = H(r, 2π).

If n is odd, then it is required that
n−1∑
ν=0

[
pn−1−ν,ν

∫ 2π

0

cosn−1−ν θ sinν θ dθ

]
= 0, in order to satisfy H(r, 0) = H(r, 2π).

In what follows we present results on the uniform isochronous centers in planar
polynomial differential systems of degrees 1 and 2. Without loss of generality, we assume
that the uniform isochronous center is at the origin of coordinates (if necessary, we do a
translation of coordinates sending the singular point to the origin).

2.2.1 Uniform isochronous centers of degree 1

A linear differential system with a uniform isochronous center after a linear change of
variables and a rescaling of time becomes

ẋ = −y, ẏ = x,

and its phase portrait is presented in Figure 2.1.
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Figure 2.1: Phase portrait of the uniform isochronous center of degree 1.

2.2.2 Uniform isochronous centers of degree 2

The quadratic polynomial differential systems with a uniform isochronous center after a
linear change of coordinates and a rescaling of time can be written into the form

ẋ = −y + x2, ẏ = x+ xy.

This is part of a more general result provided by Loud [45] in 1964, which covers not only
the uniform isochronous systems, but the family of all quadratic isochronous systems.
The following theorem summarizes these results.

Theorem 2.8. Consider a system of the form

ẋ = −y + P2(x, y) ẏ = x+Q2(x, y), (2.13)

where P2 and Q2 are homogeneous quadratic polynomials and at least one of them is
non-vanishing. Assume that system (2.13) has a center at the origin.

Then the origin is an isochronous center of the system (2.13) if and only if this system
can be brought to one of the following systems S1, S2, S3, S4 through a linear change of
coordinates and rescaling of time. The first integral for each system is provided in table
2.1.

Name System First integral

S1 ẋ = −y +
x2

2
− y2

2

x2 + y2

1 + y
ẏ = x(1 + y)

S2 ẋ = −y + x2
x2 + y2

(1 + y)2

ẏ = x(1 + y)

S3 ẋ = −y +
x2

4

(x2 + 4y + 8)2

1 + y
ẏ = x(1 + y)

S4 ẋ = −y + 2x2 − y2

2

4x2 − 2(y + 1)2 + 1

(1 + y)4

ẏ = x(1 + y)

Table 2.1: First integrals of the uniform isochronous centers of degree 2.
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The respective phase portraits for systems S1, S2, S3 and S4 are shown in Figure 2.2.

(S )
1 2

(S )

(S )
3

(S )
4

Figure 2.2: Phase portraits of isochronous quadratic systems.

Clearly, S2 is the only one having a uniform isochronous center according to Theorem
2.1.
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Global phase portraits and first
integrals of the uniform isochronous
centers of degree 3

We provide a topological classification of the global phase portraits in the Poincaré disc
of all uniform isochronous centers of degree 3. We also provide the explicit expressions of
the first integrals for these systems.

3.1 Background

The uniform isochronous centers of degree 3 has been studied since at least the last decade
of the past century. The following result, due to Collins [18] in 1997, also obtained by
Devlin et al [20] in 1998, and by Gasull et al [25] in 2005, characterizes these differential
systems.

Theorem 3.1. A planar cubic polynomial differential system has a uniform isochronous
center at the origin if and only if it can be written as

ẋ = −y + x(a1x+ a2y + a3x
2 + a4xy − a3y2),

ẏ = x+ y(a1x+ a2y + a3x
2 + a4xy − a3y2),

(3.1)

and satisfies a21a3 − a22a3 + a1a2a4 = 0, ai ∈ R, i = 1, . . . , 4.

The following result is due to Collins [18].

Proposition 3.2. System (3.1) satisfying a21a3 − a22a3 + a1a2a4 = 0, may be reduced to
either one of the following forms

ẋ = −y(1− x2), ẏ = x(1 + y2), (3.2)

ẋ = −y + x2 + Ax2y, ẏ = x+ xy + Axy2, (3.3)

where A ∈ R.
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Using (3.2) and (3.3), which present at most one parameter, Collins was able to provide
the phase portraits and the first integrals of the cubic uniform isochronous centers. For
the sake of completeness we present these first integrals in table 3.1.

System Condition First integral

(3.2) -
x2 + y2

1 + y2

0 6= A < 1/4 (x2 + y2)

[
y +

1−K

2A

]− 1
K
−1 [

y +
1 + K

2A

] 1
K
−1

(3.3) A > 1/4
(x2 + y2)2

Ay2 + y + 1
e

[
2
L
arctan L

2Ay+1

]

A = 1/4
(x2 + y2)e

4
2+y

(2 + y)2

where K =
√

1− 4A and L =
√

4A− 1.

Table 3.1: First integrals of the uniform isochronous centers of degree 3.

3.2 Main results

Collins [18] presented the phase portraits and first integrals for systems (3.2) and (3.3)
and therefore one needs to change the differential systems (3.1) to such normal forms
before applying Collins’ results. Our theorems present the first integrals and the global
phase portraits in the Poincaré disc for the uniform isochronous cubic centers in terms of
all the parameters of system (3.1) for the uniform isochronous centers. These results are
published in [31].

3.2.1 First integrals

In the next theorem, we present the first integrals for the uniform isochronous centers of
degree 3, in terms of all their parameters.

Theorem 3.3. The first integrals H of system (3.1) in polar coordinates x = r cos θ, y =
r sin θ are described in what follows.

Case 1: a2
1 − a2

2 6= 0.

Subcase 1.1: a4 6= 0.

Subcase 1.1.1: 4a4 6= a2
1 − a2

2.

H = e
−2 arctan

[
R+2a4r(−a2 cos θ+a1 sin θ)

RS

]
[

a4r
2

R + r(a2 cos θ − a1 sin θ)(a2a4r cos θ − a1a4 sin θ −R)

]S
,
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where R = a21 − a22, S =
√

4a4/R− 1.

In case of a negative square root, we have a complex first integral and therefore both
its real and imaginary parts are also first integrals, if not null.

Subcase 1.1.2: 4a4 = a2
1 − a2

2.

H =
re

2
2−a2r cos θ+a1r sin θ

2− a2r cos θ + a1r sin θ
.

Subcase 1.2: a4 = 0.

H =
r

1− a2r cos θ + a1r sin θ
.

Case 2: a2
1 − a2

2 = 0.

Subcase 2.1: a2 = a1.

Subcase 2.1.1: a1 = 0.

H =
r2

1− a4r2 cos2 θ + a3r2 sin(2θ)
.

Subcase 2.1.2: a1 6= 0, a4 = 0.

Subcase 2.1.2.1: a3(a2
1 + 4a3) 6= 0.

H =e
−2 arctan

[
a1+2a3r(cos θ−sin θ)

a1R

]
[

a3r
2(sin(2θ)− 1)

(cos θ − sin θ)2[1 + a1r(sin θ − cos θ) + a3r2(sin(2θ)− 1)]

]R
,

where R =
√
−1− 4a3/a21.

Subcase 2.1.2.2: a3 = 0.

H =
r

1− a1r(cos θ − sin θ)
.

Subcase 2.1.2.3: a3 = −a2
1/4.

H =
re

2
2−a1r(cos θ−sin θ)

2− a1r(cos θ − sin θ)
.

Subcase 2.2: a2 = −a1.

Subcase 2.2.1: a1 = 0. This case becomes the subcase 2.1.1.

Subcase 2.2.2: a1 6= 0, a4 = 0.

Subcase 2.2.2.1: a3(4a3 − a2
1) 6= 0.

H =
e

1
R

[
−2 arctan

(
a1+2a3r(sin θ+cos θ)

a1R

)
+R arctanh(tan θ)

]
a3r

2(sec(2θ) + tan(2θ))

1 + a1r(sin θ + cos θ) + a3r2(1 + sin(2θ))
,
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where R =
√

4a3/a21 − 1.

Subcase 2.2.2.2: a3 = 0.

H =
r

1− a1r(cos θ − sin θ)
.

Subcase 2.2.2.3: a3 = a2
1/4.

H =
r

e1+
1
2
a1r(cos θ+sin θ)

(
1 + 1

2
a1r(cos θ + sin θ)

) .
Theorem 3.3 is proved in section 3.3.1.

3.2.2 Global phase portraits

We classify the global phase portraits in the Poincaré disc of the uniform isochronous
centers of degree 3, in terms of all their parameters.

Theorem 3.4. The global phase portrait in the Poincaré disc of the differential system
(3.1) is topologically equivalent to one of the four phase portraits presented in Figure 3.1.

(b) (c)(a )
1

(a )
2

Figure 3.1: Phase portraits of cubic uniform isochronous centers.

More precisely, the global phase portrait of (3.1) is topologically equivalent to either the
phase portrait (a1) or (a2) of Figure 3.1 if one of the following conditions holds

� a1a2 6= 0, and a4(a
2
1 − a22) > 0, and a4 ≤ (a21 − a22)/4;

� a2 = −a1 6= 0, and 0 < a3 ≤ a21/4, and a4 = 0;

� a2 = a1 6= 0, and −a21/4 ≤ a3 < 0, and a4 = 0;

� a1 = 0, and a2 6= 0, and −a22/4 ≤ a4 < 0;

� a1 6= 0, and a2 = 0, and 0 < a4 ≤ a21/4;

to the phase portrait (b) if one of the following conditions holds

� a1a2 6= 0, and a4(a
2
1 − a22) > 0, and a4 > (a21 − a22)/4;

� a2 = −a1 6= 0, and a3 > a21/4, and a4 = 0;
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� a2 = a1 6= 0, and a3 < −a21/4, and a4 = 0;

� a1 = 0, and a2 6= 0 and a4 < −a22/4;

� a1 6= 0, and a2 = 0 and a4 > a21/4;

to the phase portrait (c) if one of the following conditions holds

� a1a2 6= 0, and a4(a
2
1 − a22) < 0;

� a2 = −a1 6= 0, and a3 < 0, and a4 = 0;

� a2 = a1 6= 0, and a3 > 0, and a4 = 0;

� a1 = 0, and a2 6= 0, and a4 > 0;

� a1 6= 0, and a2 = 0, and a4 < 0;

� a1 = a2 = 0.

The cases where a3 = a4 = 0 are omitted in Theorem 3.4 because in such cases system
(3.1) is a quadratic polynomial differential system, which has already been exhaustively
studied, see for instance system S2 at p.38 of [12].

Theorem 3.4 is proved in section 3.3.2.

Our results have been checked with the software P4, see for more details on this
software the chapters 9 and 10 of [22].

3.3 Proofs of the results

3.3.1 Proof of Theorem 3.3

We analyze each distinct case in order to compute the first integrals, considering the
condition

a21a3 − a22a3 + a1a2a4 = 0 (3.4)

for the equation
ẋ = −y + xf(x, y), ẏ = x+ yf(x, y), (3.5)

where f(x, y) = a1x+ a2y + a3x
2 + a4xy − a3y2, presented in Theorem 3.1.

Case 1: a2
1 − a2

2 6= 0. The condition (3.4) can be expressed as

a3 = − a1a2a4
a21 − a22

,

and in polar coordinates the system can be written as

dr

dθ
= r2(a1 cos θ + a2 sin θ) +

a4r
3(−a2 cos θ + a1 sin θ)(a1 cos θ + a2 sin θ)

a21 − a22
. (3.6)

Subcase 1.1: a4 6= 0.
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Subcase 1.1.1: 4a4 6= a2
1 − a2

2. It is easy to verify that

H =e
−2 arctan

[
a21−a

2
2+2a4r(−a2 cos θ+a1 sin θ)

(a21−a
2
2)R

]
[

a4r
2

a21 − a22 + r(a2 cos θ − a1 sin θ)(a22 − a21 + a2a4r cos θ − a1a4 sin θ)

]R
,

is a first integral of system (3.6), where R =
√

4a4/(a21 − a22)− 1. This first integral is

defined at r = 0. Therefore, the origin is a center.

We note that, in case of a negative square root, we have a complex first integral and
therefore both its real and imaginary parts are also first integrals, if not null.

Subcase 1.1.2: 4a4 = a2
1 − a2

2. In polar coordinates system (3.5) is written as

dr

dθ
= Ar3 +Br2.

where A = 1/4(a1a2 sin2 θ+ (a21−a22) sin θ cos θ−a1a2 cos2 θ), B = a1 cos θ+a2 sin θ. This
is an Abel differential equation satisfying

dA(θ)

dθ
B(θ)− A(θ)

dB(θ)

dθ
= aB(θ)3,

with a = 1/4. Applying the results presented in [37], the equation is integrable with the
first integral

H =
re

2
2+r(a1 sin θ−a2 cos θ)

2 + r(a1 sin θ − a2 cos θ)
.

Since it is defined at r = 0, we have a center.

Subcase 1.2: a4 = 0. System (3.6) is reduced to

dr

dθ
= r2(a1 cos θ + a2 sin θ),

and
H =

r

1− a2r cos θ + a1r sin θ

is a first integral for this system, and thus, the origin is a center.

Case 2: a2
1 − a2

2 = 0

Subcase 2.1: a2 = a1. The expression (3.4) is reduced to a21a4 = 0. Therefore we have
the following possibilities.

Subcase 2.1.1: a1 = 0. Applying the condition a1 = a2 = 0 in system (3.5), we obtain
in polar coordinates

dr

dθ
= r3(a3 cos2 θ + a4 sin θ cos θ − a3 sin2 θ).

The following expression is a first integral of this system

H =
r2

1− a4r2 cos2 θ + a3r2 sin(2θ)
.
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Subcase 2.1.2: a4 = 0. Under this condition, system (3.5) has in polar coordinates the
following expression

dr

dθ
= r2a1(cos θ + sin θ) + r3[a3(cos2 θ − sin2 θ)].

Subcase 2.1.2.1: a3(a2
1 + 4a3) 6= 0. The following expression is a first integral of the

system

H =e
−2 arctan

[
a1+2a3r(cos θ−sin θ)

a1R

]
[

a3r
2(sin(2θ)− 1)

(cos θ − sin θ)2[1 + a1r(sin θ − cos θ) + a3r2(sin(2θ)− 1)]

]R
,

where R =
√
−1− 4a3/a21.

Subcase 2.1.2.2: a3 = 0. In this case system (3.5) becomes in polar coordinates

dr

dθ
= r2a1(cos θ + sin θ).

A first integral for this system is

H =
r

1− a1r(cos θ − sin θ)
.

Subcase 2.1.2.3: a3 = −a2
1/4. In polar coordinates system (3.5) is written as

dr

dθ
= −1

4
a1r

2[a1 cos(2θ)r − 4(cos θ + sin θ)].

This is an Abel differential equation satisfying

dA(θ)

dθ
B(θ)− A(θ)

dB(θ)

dθ
= aB(θ)3, a ∈ R,

where A(θ) = −1

4
a21 cos(2θ), B(θ) = a1(cos θ + sin θ) and a =

1

4
. Using the results

presented in [37], the equation is integrable with the first integral

H =
2re

2
2−a1r(cos θ−sin θ)

2− a1r(cos θ − sin θ)
.

Since it is defined at r = 0, we have a center.

Subcase 2.2: a2 = −a1.

Subcase 2.2.1: a1 = 0. This case becomes the subcase 2.1.1.

Subcase 2.2.2: a4 = 0. System (3.5) becomes in polar coordinates

dr

dθ
= r2a1(cos θ − sin θ) + r3[a3(cos2 θ − sin2 θ)].
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Subcase 2.2.2.1: a3(−a2
1 + 4a3) 6= 0. The following expression is a first integral of the

system

H =
e

1
R

[
−2 arctan

(
a1+2a3r(sin θ+cos θ)

a1R

)
+R arctanh(tan θ)

]
a3r

2(sec(2θ) + tan(2θ))

1 + a1r(sin θ + cos θ) + a3r2(1 + sin(2θ))
,

Where R =
√

4a3/a21 − 1.

Subcase 2.2.2.2: a3 = 0. System (3.5) becomes in in polar coordinates

dr

dθ
= r2a1(cos θ − sin θ).

A first integral of this system is the following

H =
r

1− a1r(cos θ − sin θ)
.

Subcase 2.2.2.3: a3 = a2
1/4. In polar coordinates system (3.5) can be written as

dr

dθ
= a1r

2(cos θ − sin θ) +
1

4
[a21r

3 cos(2θ)].

This is an Abel differential equation satisfying

dA(θ)

dθ
B(θ)− A(θ)

dB(θ)

dθ
= aB(θ)3, a ∈ R,

where A(θ) =
1

4
a21 cos(2θ), B(θ) = a1(cos θ−sin θ) and a =

1

4
. Using the results presented

in [37], we conclude that a first integral for the system is

H =
r

e1+
1
2
a1r(cos θ+sin θ)

(
1 + 1

2
a1r(cos θ + sin θ)

) .
3.3.2 Proof of Theorem 3.4

We provide all the possible phase portraits for the planar cubic differential systems with
a uniform isochronous center at the origin in the Poincaré disc, by studying the finite and
infinite singular points of such systems. Consider the condition

a21a3 − a22a3 + a1a2a4 = 0 (3.7)

for the equation
ẋ = −y + xf(x, y), ẏ = x+ yf(x, y), (3.8)

where f(x, y) = a1x+ a2y + a3x
2 + a4xy − a3y2, presented in Theorem 3.1.

Finite singular points
By proposition 2.2 (see section 2.2) the differential system (3.8) has no finite singular

points except the origin.
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Proposition 2.4 (see section 2.2) together with the fact that the origin is the unique
finite singular point in system (3.8) imply that the boundary of the period annulus of the
uniform isochronous center at the origin is a graphic formed by infinite singular points
and their separatrices.

Infinite singular points
For studying the infinite singular points in the Poincaré disc, we use the concepts and

formulae provided in the Appendix A.

We perform the analysis of the vector field at infinity. In the chart U1 the differential
system (3.8) becomes

u̇ = (1 + u2)v2, v̇ = (−a3 − a4u+ a3u
2 − a1v − a2uv + uv2)v. (3.9)

We remark that (u, 0) for all u ∈ R is an infinite singular point of the differential system
(3.8) in U1, and this result was expected due to proposition 2.3. In order to obtain the
phase portraits, we perform a change of coordinates of the form dt = vds, and system
(3.9) becomes

u′ = (1 + u2)v, v′ = −a3 − a4u+ a3u
2 − a1v − a2uv + uv2, (3.10)

where the prime denotes derivative with respect to s.

In the chart U2 system (3.8) becomes

u̇ = −(1 + u2)v2, v̇ = (a3 − a4u− a3u2 − a2v − a1uv − uv2)v.

We only need to study the point (0, 0) of U2. By performing a change of coordinates of
the form dt = vds we obtain the system

u′ = −(1 + u2)v, v′ = a3 − a4u− a3u2 − a2v − a1uv − uv2. (3.11)

In order to study the singular points at infinity of systems (3.10) and (3.11), we have to
consider several cases. We shall apply Theorems 2.15, 2.19 and 3.15 of [22] to obtain the
local phase portraits at each singular point.

Case I: a2
1 − a2

1 6= 0. The condition (3.7) is written as a3 = −a1a2a4/(a21−a22). If a4 = 0,
then a3 = 0, and hence system (3.8) degenerates to a quadratic differential system, which
has already been studied, as previously mentioned in this article. Therefore, we are going
to omit the cases in which a4 = 0.

Subcase I.1: a1a2 6= 0. The expression (3.10) for our system in U1 becomes

u′ = (1 + u2)v,

v′ =
a1a2a4
a21 − a22

− a4u−
a1a2a4
a21 − a22

u2 − a1v − a2uv + uv2.
(3.12)

The singular points at the infinity are p1 = (−a1/a2, 0) and p2 = (a2/a1, 0). The linear
parts of system (3.12) at p1 and p2 are, respectively 0

(
a1
a2

)2

(a21 + a22)a4
a21 − a22

0

 ,

 0

(
a2
a1

)2

−(a21 + a22)a4
a21 − a22

−a
2
1 + a22
a1

 .
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These singularities are studied later on. For U2 the expression (3.11) becomes

u′ = −(1 + u2)v,

v′ = − a1a2a4
a21 − a22

− a4u+
a1a2a4
a21 − a22

u2 − a2v − a1uv − uv2.

Since we are assuming a1a2 6= 0, the origin of U2 is not a singular point.

Subcase I.1.1: a4(a2
1 − a2

2) > 0.

Subcase I.1.1.1: a4 ≤
a2
1 − a2

2

4
.

Subcase I.1.1.1.1: a1 > 0. p1 is a saddle and p2 is a stable node.

Subcase I.1.1.1.2: a1 < 0. p1 is a saddle and p2 is an unstable node.

Subcase I.1.1.2: a4 >
a2
1 − a2

2

4
. p1 is a saddle and p2 is a focus.

Subcase I.1.2: a4(a2
1 − a2

2) < 0. p1 is a focus/center and p2 is saddle.

Subcase I.2: a1 = 0. In chart U1, we have

u′ = (1 + u2)v, v′ = −a4u− a2uv + uv2, (3.13)

and therefore the only infinite singular point is the origin, which we will designate by OU1 .
Similarly, in chart U2 we have the origin OU2 as the unique infinite singular point, since
the expression of the vector field becomes

u′ = −(1 + u2)v, v′ = −a4u− a2v − uv2. (3.14)

The linear parts of systems (3.13) and (3.14) at the origin are respectively(
0 1
−a4 0

)
,

(
0 −1
−a4 −a2

)
.

Hence we have the following cases.

Subcase I.2.1: a4 > 0. OU1 is a focus/center and OU2 is a saddle.

Subcase I.2.2: −a2
2

4
≤ a4 < 0.

Subcase I.2.2.1: a2 > 0. OU1 is a saddle and OU2 is a stable node.

Subcase I.2.2.2: a2 < 0. OU1 is a saddle and OU2 is an unstable node.

Subcase I.2.3: a4 < −
a2
2

4
. OU1 is a saddle and OU2 is a focus.

Subcase I.3: a2 = 0. In chart U1, we have

u′ = (1 + u2)v, v′ = −a4u− a1v + uv2, (3.15)

and therefore the only infinite singular point is the origin, which we will designate by OU1 .
Similarly, in chart U2 we have the origin OU2 as the unique infinite singular point, since
the expression of the vector field becomes

u′ = −(1 + u2)v, v′ = −a4u− a1uv − uv2. (3.16)
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The linear parts of systems (3.15) and (3.16) at the origin are respectively(
0 1
−a4 −a1

)
,

(
0 −1
−a4 0

)
.

Hence we have the following cases.

Subcase I.3.1: a4 < 0. OU1 is a saddle and OU2 is a focus/center.

Subcase I.3.2: 0 < a4 ≤
a2
1

4
.

Subcase I.3.2.1: a1 > 0. OU1 is a stable node and OU2 is a saddle.

Subcase I.3.2.2: a1 < 0. OU1 is an unstable node and OU2 is a saddle.

Subcase I.3.3: a4 >
a2
1

4
. OU1 is a focus and OU2 is a saddle.

Case II: a2
1 − a2

2 = 0. The condition (3.7) is simplified to a1a2a4 = 0 and therefore the
following cases might occur.

Subcase II.1: a1 = a2 = 0 and a4 6= 0.
Subcase II.1.1: a3 6= 0. p1 is a focus/center and p2 is a saddle. In fact the expression
(3.10) for our system in U1 becomes

u′ = (1 + u2)v, v′ = −a3 − a4u+ a3u
2 + uv2. (3.17)

The singular points at the infinity are p1,2 = ((a4 ∓
√

4a23 + a24)/2a3, 0). The linear parts
of system (3.17) at p1 and p2 are, respectively 0 2 +

a4(a4 −
√

4a23 + a24)

2a23
−
√

4a23 + a24 0

 ,

 0 2 +
a4(a4 +

√
4a23 + a24)

2a23√
4a23 + a24 0

 .

It is easy to see that p1 is a focus/center and p2 is a saddle.

For U2 the expression (3.11) becomes

u′ = −(1 + u2)v, v′ = a3 − a4u− a3u2 − uv2.

The singular points at the infinity are p3,4 = ((−a4 ∓
√

4a23 + a24)/2a3, 0). Since −a4 ∓√
4a23 + a24 6= 0 for all a3, a4 ∈ R\{0}, the origin of U2 is not a singular point and hence,

the only infinite singular points are p1 and p2.

Subcase II.1.2: a3 = 0. The expression (3.10) for our system in U1 becomes

u′ = (1 + u2)v, v′ = −a4u+ uv2, (3.18)
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and therefore the origin OU1 is the unique infinite singular point in U1. Similarly, in the
chart U2 the origin OU2 is an infinite singular point because system (3.11) becomes

u′ = −(1 + u2)v, v′ = −a4u− uv2. (3.19)

The linear parts of systems (3.18) and (3.19) at the origin are respectively(
0 1
−a4 0

)
,

(
0 −1
−a4 0

)
.

Hence we have the following cases.

Subcase II.1.2.1: a4 < 0. OU1 is a saddle and OU2 is a focus/center.

Subcase II.1.2.2: a4 > 0. OU1 is a focus/center and OU2 is a saddle.

Subcase II.2: a2 = −a1 6= 0 and a4 = 0. We are only interested in the cases that a3 6= 0,
because as previously mentioned, when a3 = a4 = 0 system (3.8) becomes a quadratic
differential system, which has already been exhaustively studied.

The expression (3.10) for our system in U1 becomes

u′ = (1 + u2)v, v′ = −a3 − a1v + a3u
2 + a1uv + uv2.

The singular points at the infinity are p1,2 = (∓1, 0). The linear parts this system at
p1 and p2 are, respectively (

0 2
−2a3 −2a1

)
,

(
0 2

2a3 0

)
.

For U2 the expression (3.11) becomes

u′ = −(1 + u2)v, v′ = a3 + a1v − a3u2 − a1uv − uv2.

The singular points at infinity are p3,4 = (∓1, 0). The origin of U2 is not a singular point
and hence, the only infinite singular points are p1 and p2. These singularities are studied
in what follows.

Subcase II.2.1: a3 < 0. p1 is a saddle and p2 is a focus/center.

Subcase II.2.2: 0 < a3 ≤ a2
1/4.

Subcase II.2.2.1: a1 > 0. p1 is a stable node and p2 is a saddle.

Subcase II.2.2.2: a1 < 0. p1 is an unstable node and p2 is a saddle.

Subcase II.2.3: a3 > a2
1/4. p1 is a focus and p2 is a saddle.

Subcase II.3: a2 = a1 6= 0 and a4 = 0. Again we are only interested in the cases that
a3 6= 0.

The expression (3.10) for our system in U1 becomes

u′ = (1 + u2)v, v′ = −a3 − a1v + a3u
2 − a1uv + uv2.
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The singular points at infinity are p1,2 = (∓1, 0). The linear parts of the system at p1 and
p2 are, respectively (

0 2
−2a3 0

)
,

(
0 2

2a3 −2a1

)
.

These singularities are studied later on.

For U2 the expression (3.11) becomes

u′ = −(1 + u2)v, v′ = a3 + a1v − a3u2 − a1uv − uv2. (3.20)

The singular points at infinity for (3.20) are p3,4 = (∓1, 0). The origin of U2 is not a
singular point.

Subcase II.3.1: a3 > 0. p1 is a focus/center and p2 is a saddle.

Subcase II.3.2: −a2
1/4 ≤ a3 < 0.

Subcase II.3.2.1: a1 > 0. p1 is a saddle and p2 is a stable node.

Subcase II.3.2.2: a1 < 0. p1 is a saddle and p2 is an unstable node.

Subcase II.3.3: a3 < −a2
1/4. p1 is a saddle and p2 is a focus.

Subcase II.4: a1 = a2 = a4 = 0. Again we are only interested in the cases that a3 6= 0.
In this case system (3.8) has the particular form

ẋ = −y + a3x
3 − a3xy2, ẏ = x+ a3x

3 − a3xy2.

The expression (3.10) for our system in U1 becomes

u′ = (1 + u2)v, v′ = −a3 + a3u
2 + uv2. (3.21)

The singular points at the infinity are p1,2 = (∓1, 0). The linear parts of system (3.21) at
p1 and p2 are, respectively (

0 2
−2a3 0

)
,

(
0 2

2a3 0

)
.

These singularities are studied in the next subcases.

For U2 the expression (3.11) becomes

u′ = −(1 + u2)v, v′ = a3 − a3u2 − uv2.

The singular points at infinity are p3,4 = (∓1, 0). The origin of U2 is not a singular point.

Subcase II.4.1: a3 > 0. p1 is a focus/center and p2 is a saddle.

Subcase II.4.2: a3 < 0. p1 is a saddle and p2 is a focus/center.

Finally, the global phase portraits in the Poincaré disc for the planar cubic polynomial
differential systems with a uniform isochronous center at the origin are obtained using the
study of the finite and infinite singular points in the local phase portraits and the first
integrals calculated in Theorem 3.3. Hence Theorem 3.4 is proved.
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Global phase portraits of the
uniform isochronous centers of
degree 4

We provide a topological classification of the global phase portraits in the Poincaré disc
of all planar quartic polynomial differential systems with a uniform isochronous center at
the origin.

4.1 Background

Algaba et al [4] in 1999, and Chavarriga et al [13] in 2001, independently provided
the following characterization of quartic polynomial systems with a uniform isochronous
center at the origin.

Theorem 4.1. Consider f(x, y) =
∑3

i=1 fi(x, y) with fi(x, y), for i = 1, 2, 3 homogeneous
polynomials of degree i, f 2

1 + f 2
2 6= 0 and f3 6= 0. Then (2.6) is a quartic polynomial

differential system having a non–homogeneous nonlinear part. Then the only case of local
analytic integrability in a small open neighborhood of the origin of system (2.6) is given,
modulo a rotation, by the time-reversible system.

ẋ = −y + x(A1x+B2xy + C1x
3 + C3xy

2),

ẏ = x+ y(A1x+B2xy + C1x
3 + C3xy

2).
(4.1)

where A1, B2, C1, C3 ∈ R.

By the following classical result due to Poincaré [49] and Liapunov [46] Theorem
4.1 characterizes the quartic uniform isochronous centers, except the ones for which the
polynomial f(x, y) is a homogeneous polynomial of degree 3.

Theorem 4.2. An analytic differential system ẋ = −y + F1(x, y), ẏ = x+ F2(x, y), with
F1(x, y) and F2(x, y) real analytic functions without constant and linear terms defined in
a neighborhood of the origin, has a center at the origin if and only if there exists a local
analytic first integral of the form H = x2 + y2 +G(x, y) defined in a neighborhood of the
origin, where G starts with terms of order higher than two.
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The proof of Theorem 4.1 by Chavarriga et al is made by calculating the Liapunov
constants to find necessary conditions and by applying time-reversibility for sufficiency.
For a complete proof of Theorem 4.1, see [13] or [4].

In the case C1 = 0, Algaba et al [4], and Chavarriga et al [12] provided the first integral
for system (4.1).

H(x, y) = (x2 + y2)e
−2
∫ A1+B2y+C3y

2

1+A1y+B2y
2+C3y

3 dy.

In the first paper, polynomial commutators were used to prove the result, and in the
latter it considers that system (4.1) presents the invariant algebraic curve h2(x, y)

.
=

1 + A1y + B2y
2 + C3y

3 = 0. Algaba et al [4] also provided the phase portraits for (4.1)
for the case C1 = 0. In such case system (4.1) has a polynomial commutator, allowing to
get the bifurcation diagram of the system.

4.2 Main results

The classification of the global phase portraits in the Poincaré disc of the quartic uniform
isochronous centers consists of 13 topologically different phase portraits. Our investigation
consider two cases, distinguishing when the nonlinear part of the differential system is
homogeneous or not.

4.2.1 Non–homogeneous nonlinear part

In this case our result is

Theorem 4.3. Consider a quartic polynomial differential system X : R2 → R2 and
assume that X has a uniform isochronous center at the origin such that their nonlinear
part is not homogeneous. Then the global phase portrait of X is topologically equivalent
to one of the 12 phase portraits of Figure 4.1.

More precisely, since X can always be written as system (4.1), the global phase portrait
of X is topologically equivalent to the phase portrait

(a) of Figure 4.1 if either C1C3 > 0, or if C3 = 0, B2 < 0, or if C1 = 0, C3 6= 0 and if
either r3 = r2 = r1, ∀r1, r2, r3 ∈ R∗, or if r1 6= 0 and r2,3 = a±bi, ∀r1, b ∈ R∗, a ∈ R;

(b) of Figure 1.4 if C1 = 0, C3 6= 0 and if either r1, r2, r3 > 0, or r1, r2, r3 < 0, or
r1r2 > 0, r3 = r2, or r2 = r1, r1r3 > 0;

(c) of Figure 1.4 if C1 = 0, C3 6= 0 and if either r1 < 0, r2, r3 > 0, or r1, r2 < 0, r3 > 0,
or r1 < 0, r2 > 0, r3 = r2, or r2 = r1, r1 < 0, r3 > 0;

(d) of Figure 4.1 if C3 = 0, C1 6= 0, B2 > 0, C1 6= −A1B2;

(e1) or (e2) of Figure 4.1 if either C3 = 0, C1 6= 0, B2 > 0, C1 = −A1B2, or B2 = C3 = 0;

(f) or (g) or (h) of Figure 4.1 if C1C3 < 0, B2 = 0;
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(g)

(d)

(a)

(f)

(b) (c)

(h)

(i) (k)(j)

(e )
2

(e )
1

Figure 4.1: Phase portraits of the uniform isochronous centers (4.1).

43



Chapter 4. Global phase portraits

(i) or (j) or (k) of Figure 4.1 if C1C3 < 0, B2 6= 0;

where in the cases with C1 = 0, we have that r1, r2, r3 are the roots of the polynomial
−C3 −B2x− A1x

2 − x3 and we assume that r1 ≤ r2 ≤ r3 when these roots are real.

Theorem 4.3 is proved in section 4.3.1 and it has been published in [32].

4.2.2 Homogeneous nonlinear part

Our result is the following.

Theorem 4.4. Let
ẋ = −y + xf(x, y), ẏ = x+ yf(x, y), (4.2)

be a polynomial differential system of degree 4, such that f(x, y) is a cubic homogeneous
polynomial. Then any quartic polynomial differential system which can be written into the
form (4.2) has a uniform isochronous center at the origin and its global phase portrait is
topologically equivalent to one of the 3 phase portraits of Figure 4.2.

(f)(l) (a)

Figure 4.2: Phase portraits of (4.2) with quartic homogeneous polynomial nonlinearities.

Note that the phase portraits (a) and (f) in Theorems 4.3 and 4.4 are topologically
equivalent.

Theorem 4.4 is proved in section 4.3.2. This result has been submitted for publication,
see [35].

Our results have been checked with the software P4, see the chapters 9 and 10 of [22]
for more details on this software.

4.3 Proofs of the results

4.3.1 Proof of Theorem 4.3

For providing all the possible global phase portraits in the Poincaré disc for the planar
quartic polynomial differential systems with a uniform isochronous center at the origin
such that their nonlinear part is not homogeneous, we shall start studying all the finite and
infinite singular points of such systems. We remark that in this proof we never consider
the quartic polynomial differential systems (4.2) with a uniform isochronous center such
that f(x, y) is a homogeneous polynomial.
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Every planar quartic polynomial differential system with a uniform isochronous center
at the origin such that their nonlinear part is not homogeneous can always be written as

ẋ = −y + x(A1x+B2xy + C1x
3 + C3xy

2),

ẏ = x+ y(A1x+B2xy + C1x
3 + C3xy

2).
(4.3)

where A1, B2, C1, C3 ∈ R, see Theorem 4.1. These systems are invariant under the
transformation (x, y, t) 7→ (−x, y,−t), so all their phase portraits are symmetric with
respect to the y−axis.

Finite singular points
By proposition 2.2 (see section 2.2) the differential system (4.3) has no finite singular

points except the origin.

The fact that the origin is the unique finite singular point in system (4.2) together
with proposition 2.4 (see section 2.2) imply that the boundary of the period annulus of
the uniform isochronous center at the origin is a graphic formed by infinite singular points
and their separatrices.

Infinite singular points
In the chart U1 the differential system (4.3) becomes

u̇ = (1 + u2)v3,

v̇ = (−C1 − C3u
2 −B2uv − A1v

2 + uv3)v,
(4.4)

and therefore the points (u, 0) for all u ∈ R are infinite singular points of the differential
system (4.3) in U1. Due to proposition 2.3 this result was already expected. In order
to obtain the local phase portraits at these points, after the rescaling of time ds = vdt
system (4.4) becomes

u′ = (1 + u2)v2,

v′ = −C1 − C3u
2 + v(−B2u− A1v + uv2),

(4.5)

where the prime denotes derivative with respect to s.

In chart U2, system (4.3) becomes

u̇ = −(1 + u2)v3,

v̇ = (−C3u− C1u
3 −B2uv − A1uv

2 − uv3)v.
(4.6)

We only need to study the point (0, 0) of U2. Doing the rescaling of time ds = vdt, we
obtain the system

u′ = −(1 + u2)v2,

v′ = −C3u− C1u
3 −B2uv − A1uv

2 − uv3.
(4.7)

We shall apply the well known results for the hyperbolic, semi–hyperbolic and nilpotent
singular points for the characterization of the local phase portraits at each singular point
of systems (4.5) and (4.7), for further information see for instance Theorems 2.15, 2.19
and 3.15 of [22].

Case I: C1 = 0. We remark that if C1 = C3 = 0 system (4.3) degenerates to a cubic
polynomial differential system, which their first integrals and phase portraits are given
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in Theorems 3.3 and 3.4, respectively in this work. Therefore in Case I we shall assume
C3 6= 0.

We first analyze the chart U2. We denote by OU2 the origin of the chart U2. The
corresponding linear part of system (4.7) at OU2 is(

0 0
−C3 0

)
.

Therefore OU2 is a nilpotent singularity and applying Theorem 3.5 of [22] we conclude
that it is a cusp, whose behavior depends on the sign of the coefficient C3. Hence, the
local phase portrait at the origin for system (4.7) might be one of the two shown in Figure
4.3.

v

u

c
3
>0

u

v

c
3
<0

Figure 4.3: Local phase portrait at the origin of system (4.6). The horizontal axis is filled of
singular points.

We now perform the study for the chart U1. Clearly the only singular point at infinity
in the chart U1 is the origin, which we denote by OU1 .

The corresponding linear part of system (4.5) at OU1 is identically zero. So it is
necessary to apply a directional blow up (u, v) 7→ (u,w) where v = uw, and we obtain
the system

u′ = (1 + u2)u2w2,

w′ = u(−C3 −B2w − A1w
2 − w3).

(4.8)

Performing a change of the independent variable of the form dT = u ds in system (4.8),
we get the system

u′ = (1 + u2)uw2,

w′ = −C3 −B2w − A1w
2 − w3,

(4.9)

where the prime now denotes derivative with respect to T. The singular points of system
(4.9) are of the form (0, ri), i = 1, 2, 3, where r1, r2, r3 are the roots of the polynomial
−C3−B2w−A1w

2−w3, that is, A1 = −(r1+r2+r3), B2 = r1r2+r1r3+r2r3, C3 = −r1r2r3.
We observe that, since we are assuming C3 6= 0, we have r1r2r3 6= 0. Hence, we have the
following cases. Of course, of these roots we only need to take into account the real ones.

Subcase I.1: Three simple real roots. Without loss of generality we assume that
r1 < r2 < r3. The singular points at the infinity are p1 = (0, r1), p2 = (0, r2), and
p3 = (0, r3). The corresponding linear part of system (4.9) at each of these points is
respectively (

r21 0
0 −(r1 − r2)(r1 − r3)

)
,

(
r22 0
0 (r1 − r2)(r2 − r3)

)
,
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(
r23 0
0 −(r1 − r3)(r2 − r3)

)
.

Applying Theorem 2.15 of [22] and the hypotheses r1 < r2 < r3, r1r2r3 6= 0 in the
above expressions we conclude that p1 and p3 are saddles, and p2 is an unstable node.
The resulting singularity obtained from the blow down of p1, p2 and p3 depends on the
position of these singular points with respect to the origin of the u−axis. Hence we have
the following subcases.

Subcase I.1.1: 0 < r1 < r2 < r3. The local phase portraits at the singularities p1, i =
1, 2, 3 for system (4.9) and system (4.8) are shown in Figures 4.4 and 4.5, respectively.

w

u

p
3

p
2

p
1

Figure 4.4: Phase portrait of system (4.9)
for 0 < r1 < r2 < r3.

w

u

p
3

p
2

p
1

Figure 4.5: Phase portrait of system (4.8)
for 0 < r1 < r2 < r3. The vertical axis is
filled of singular points.

Going back through the blow up we get the local phase portrait at the origin of system
(4.5), see Figure 4.6. Finally, taking into account the rescaling of time ds = vdt, we obtain
that the phase portrait at the origin of system (4.4) is topologically equivalent to the one
of Figure 4.7.

v

u

Figure 4.6: Phase portrait of system (4.5)
for 0 < r1 < r2 < r3.

v

u

Figure 4.7: Phase portrait of system (4.4)
for 0 < r1 < r2 < r3. The horizontal axis is
filled of singular points.

For the chart U2, since r1, r2, r3 > 0 then C3 = −r1r2r3 < 0, and we obtain a local
phase portrait as the one in Figure 4.3(C3 < 0).

In short, the global phase portrait in this case is obtained taking into account all the
local phase portraits of the finite and infinite singular points, the Existence and Uniqueness
Theorem of solutions (see, for example, Theorem 1.2.4 of [53]), the fact that all the phase
portraits of planar quartic polynomial differential systems with a uniform isochronous
center at the origin are symmetric with respect to the y−axis, and that the graphic at the
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boundary of the period annulus of the uniform isochronous center at the origin is formed
by separatrices of infinite singular points. We conclude that the global phase portrait for
Subcase I.1.1 is topologically equivalent to the one of Figure 4.1(b) of Theorem 4.3.

Subcase I.1.2: r1 < 0 < r2 < r3. The resulting local phase portrait at the origin of
system (4.4) is given in Figure 4.8. This local phase portrait is obtained proceeding in a
similar way to Case I.1.1.

For the chart U2, since r1 < 0 and r2, r3 > 0 then C3 = −r1r2r3 > 0 and we have a
local phase portrait topologically equivalent to the one of Figure 4.3(C3 > 0). Therefore
the global phase portrait for Subcase I.1.2 is shown in Figure 4.1(c) of Theorem 4.3.

Subcase I.1.3: r1 < r2 < 0 < r3. The phase portrait at the origin of system (4.4) is
given in Figure 4.9. This local phase portrait is obtained proceeding in a similar way to
Case I.1.1.

For the chart U2, since C3 = −r1r2r3 < 0, we have a local phase portrait topologically
equivalent to the one of Figure 4.3(C3 < 0). Then the global phase portrait for Subcase
I.1.3 is shown in Figure 4.1(c) of Theorem 4.3.

v

u

Figure 4.8: Phase portrait of system (4.4)
for r1 < 0 < r2 < r3.

v

u

Figure 4.9: Phase portrait of system (4.4)
for r1 < r2 < 0 < r3.

Subcase I.1.4: r1 < r2 < r3 < 0. The resulting phase portrait at the origin of system
(4.4) is given in Figure 4.10, obtained as in case I.1.1.

v

u

Figure 4.10: Phase portrait of system (4.4) for r1 < r2 < r3 < 0.

For the chart U2, since C3 = −r1r2r3 > 0, we have a local phase portrait topologically
equivalent to the one of Figure 4.3(C3 > 0). So the global phase portrait for Subcase I.1.3
is shown in Figure 4.1(b) of Theorem 4.3.

Subcase I.2: One simple real root and one double real root. Without loss of
generality we consider two distinct cases depending on the relative position of the simple
and the double real roots: r1 < r2 = r3 and r1 = r2 < r3. We start with the first case.
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The singular points at infinity are p1 = (0, r1) and p2 = (0, r2). The corresponding linear
part of system (4.9) at each of these points is respectively(

r21 0
0 −(r1 − r2)2

)
and

(
r22 0
0 0

)
.

Now we assume r1 < r2 = r3, and r1, r2 6= 0 in the above expressions and applying
Theorems 2.15 and 2.19 of [22], we conclude that p1 is a saddle and p2 is a saddle-node.
The resulting singularity obtained from the blow down of p1 and p2 depends on the position
of such singular points with respect to the horizontal axis. Hence we have the following
cases.

Subcase I.2.1: 0 < r1 < r2. In this case the local phase portrait at the origin of system
(4.4) is given in Figure 4.11, obtained as in case I.1.1.

For the chart U2, since C3 = −r1r22 < 0, we have a local phase portrait similar to the
one in Figure 4.3(C3 < 0). Consequently the global phase portrait for Subcase I.2.1 is
shown in Figure 4.1(b) of Theorem 4.3.

Subcase I.2.2: r1 < 0 < r2. The local phase portrait at the origin of system (4.4) is
given in Figure 4.12, obtained as in case I.1.1.

For the chart U2, since C3 = −r1r22 > 0, we have a local phase portrait topologically
equivalent to the one of Figure 4.3(C3 > 0), and the global phase portrait for Subcase
I.2.2 is shown in Figure 4.1(c) of Theorem 4.3.

v

u

Figure 4.11: Phase portrait of system (4.4)
for 0 < r1 < r2 = r3.

v

u

Figure 4.12: Phase portrait of system (4.4)
for r1 < 0 < r2 = r3.

Subcase I.2.3: r1 < r2 < 0. The resulting phase portrait at the origin of system (4.4)
is given in Figure 4.13. This local phase portrait is obtained proceeding in a similar way
to the case I.1.1.

For the chart U2, since C3 = −r1r22 > 0, we have a local phase portrait topologically
equivalent to the one of Figure 4.3(C3 > 0).

The resulting global phase portrait for Subcase I.2.3 is shown in Figure 4.1(b) of
Theorem 4.3.

Now we analyze the case r1 = r2 < r3. The singular points at the infinity are p1 =
(0, r1), p2 = (0, r3). The corresponding linear part of system (4.9) at each of these points
is respectively (

r21 0
0 0

)
,

(
r23 0
0 −(r1 − r3)2

)
,

Considering that we assume r1 < r3, and r1, r3 6= 0 in the above expressions and
applying Theorems 2.15 and 2.19 of [22], we conclude that p1 is a saddle-node, and p2 is a
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saddle. The resulting singularity obtained from the blow down of p1, and p2 depends on
the position of such singular points to the horizontal axis. Hence, we have the following
cases.

Subcase I.2.4: 0 < r1 < r3. In this case the local phase portrait at the origin of system
(4.4) is given in Figure 4.14, obtained as in case I.1.1.

We remark that the dynamics in the above phase portrait is almost topologically
equivalent to the one of Case I.2.1, except between the two separatrices.

For the chart U2, since C3 = −r21r3 < 0, we have a local phase portrait topologically
equivalent to the one of Figure 4.3(C3 < 0). Then the global phase portrait for Subcase
I.2.4 is shown in Figure 4.1(b) of Theorem 4.3.

v

u

Figure 4.13: Phase portrait of system (4.4)
for r1 < r2 = r3 < 0.

v

u

Figure 4.14: Phase portrait of system (4.4)
for 0 < r1 = r2 < r3.

Subcase I.2.5: r1 < 0 < r3. In this case the local phase portrait at the origin of system
(4.4) is given in Figure 4.15.

For the chart U2, since C3 = −r21r3 < 0, we have a local phase portrait topologically
equivalent to the one of Figure 4.3(C3 < 0). Hence the global phase portrait for Subcase
I.2.5 is shown in Figure 4.1(c) of Theorem 4.3.

Subcase I.2.6: r1 < r3 < 0. In this case the local phase portrait at the origin of system
(4.4) is given in Figure 4.16.

We remark that the dynamics in the above phase portrait is almost topologically
equivalent to the one of Case I.2.1, except between the two separatrices.

For the chart U2, since C3 = −r21r3 > 0, we have a local phase portrait topologically
equivalent to the one of Figure 4.3(C3 > 0). Therefore the global phase portrait for
Subcase I.2.6 is shown in Figure 4.1(b) of Theorem 4.3

v

u

Figure 4.15: Phase portrait of system (4.4)
for r1 = r2 < 0 < r3.

v

u

Figure 4.16: Phase portrait of system (4.4)
for r1 = r2 < r3 < 0.

Subcase I.3: One triple real root. In this case we have r1 = r2 = r3. Hence the only
singular point at infinity is p1 = (0, r1). The corresponding linear part of system (4.9) at
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p1 is (
r21 0
0 0

)
.

Since r1 6= 0 from Theorem 2.19 of [22], it follows that p1 is a saddle. Then the resulting
singularity obtained from the blow down of p1 depends on the position of such singular
point with respect to the horizontal axis. So we distinguish the following cases.

Subcase I.3.1: r1 > 0. In this case the local phase portrait at the origin of system (4.4)
is given in Figure 4.17.

For the chart U2, since C3 = −r31 < 0, we have a local phase portrait topologically
equivalent to the one of Figure 4.3(C3 < 0). So the global phase portrait for Subcase I.3.1
is shown in Figure 4.1(a) of Theorem 4.3.

Subcase I.3.2: r1 < 0. In this case the local phase portrait at the origin of system (4.4)
is given in Figure 4.18.

For the chart U2, since C3 = −r31 > 0, we have a local phase portrait topologically
equivalent to the one of Figure 4.3(C3 > 0). Then the global phase portrait for Subcase
I.3.2 is shown in Figure 4.1(a) of Theorem 4.3.
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u

Figure 4.17: Phase portrait of system (4.4)
for 0 < r1 = r2 = r3.

v

u

Figure 4.18: Phase portrait of system (4.4)
for r3 = r2 = r1 < 0.

Subcase I.4: One simple real root and two complex conjugate roots. We denote
the real root as r1 and the two complex conjugate roots as r2,3 = a± ib. Note that, if at
least one of the roots ri, i = 1, 2, 3 is zero, we have C3 = −r1(a2 + b2) = 0 and as already
commented, the case C1 = C3 = 0 leads to a cubic polynomial differential system, which
has already been studied. Since we are only interested in analyzing the quartic systems,
we assume C3 6= 0, which leads to r1, b 6= 0.

The unique real singular point at infinity is p1 = (0, r1). The linear part of system
(4.9) at p1 is (

r21 0
0 −(b2 + (a− r1)2)

)
.

Since r1, b 6= 0 by Theorem 2.15 of [22], we get that p1 is a saddle. Then the singularity
obtained from the blow down of p1 depends on the position of such singular point with
respect to the horizontal axis. So we have the following cases.

Subcase I.4.1: r1 > 0. In this case the local phase portrait at the origin of system (4.4)
is given in Figure 4.19.

For the chart U2, since C3 = −r1(a2 + b2) < 0, we have a local phase portrait
topologically equivalent to the one of Figure 4.3(C3 < 0). Therefore the resulting global
phase portrait for Subcase I.4.1 is shown in Figure 4.1(a) of Theorem 4.3.
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Subcase I.4.2: r1 < 0. In this case the local phase portrait at the origin of system (4.4)
is given in Figure 4.20.

v

u

Figure 4.19: Phase portrait of system (4.4)
for r1 > 0, r2,3 = a± ib.

v

u

Figure 4.20: Phase portrait of system (4.4)
for r1 < 0, r2,3 = a± ib.

For the chart U2, since C3 = −r1(a2 + b2) > 0, we have a local phase portrait
topologically equivalent to the one of Figure 4.3(C3 > 0), and the global phase portrait
for Subcase I.4.2 is shown in Figure 4.1(a) of Theorem 4.3.

Case II: C3 = 0. We assume C1 6= 0 since otherwise system (4.3) becomes a cubic
differential system.

We first study the chart U1. Then system (4.5) in this chart becomes

u′ = (1 + u2)v2,

v′ = −C1 −B2uv − A1v
2 + uv3.

(4.10)

Analyzing system (4.10) we obtain that there is no singular point at infinity in the chart
U1.

For the chart U2 we only need to study the origin OU2 . The system (4.7) in that chart
writes

u′ = −(1 + u2)v2,

v′ = −C1u
3 −B2uv − A1uv

2 − uv3,
(4.11)

The linear part of system (4.11) at OU2 is identically zero. Thus it is necessary to apply
a directional blow up v = uw to it, resulting the following system

u′ = −(1 + u2)u2w2,

v′ = u(−C1u−B2w − A1uw
2 + w3).

(4.12)

Doing the rescaling of time dT = uds in system (4.12) and we get

u′ = −(1 + u2)uw2,

v′ = −C1u−B2w − A1uw
2 + w3,

(4.13)

where the prime now denotes derivative with respect to T . The singular points of system
(4.13) are p1 = (0, 0), p2 = (0,−

√
B2) and p3 = (0,

√
B2). Hence we consider the following

cases.

Subcase II.1: B2 > 0. We have p1, p2, p3 as three distinct real singular points. The
corresponding linear part of system (4.13) at p1 is(

0 0
−C1 −B2

)
.
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Applying Theorem 2.19 of [22] we conclude that p1 is an unstable node.

The linear parts of system (4.13) at p2 and p3 are identical, namely(
−B2 0

−A1B2 − C1 2B2

)
.

Applying Theorem 2.15 of [22] it follows that p2 and p3 are saddles. Going back with
the blow down we get the local phase portrait at the origin of system (4.6) topologically
equivalent to the one of Figure 4.21.

v

u

Figure 4.21: Phase portrait of system (4.6) for B2 > 0.

All global phase portraits of planar quartic polynomial differential systems with a
uniform isochronous center at the origin are symmetric with respect to the y−axis.
Moreover, the graphic at the boundary of the period annulus of the uniform isochronous
center at the origin is formed by separatrices of infinite singular points. Considering these
results and the above calculations, we shall have two distinct global phase portraits for
Subcase II.1.

Subcase II.1.1: C1 = −A1B2. Under this hypothesis we have the following result.

Lemma 4.5 (Invariant straight lines). If B2 > 0, C1 = −A1B2 and C3 = 0 in the quartic
polynomial differential system (4.3) of Theorem 4.1, then the system has the two invariant

straight lines x = ±
√

1/B2.

Proof: If B2 > 0, C1 = −A1B2 and C3 = 0 in system (4.3), then it writes ẋ =

(B2x
2 − 1)(−A1x

2 + y), ẏ = x(1 + A1y − A1B2x
2y + B2y

2). Hence x = ±
√

1/B2 are
invariant.

Using lemma 4.5 we obtain the global phase portrait for Subcase II.1.1 shown in Figure
4.1(e) of Theorem 4.3.

Subcase II.1.2: C1 6= −A1B2. The global phase portrait is shown in Figure 4.1(d) of
Theorem 4.3.

Subcase II.2: B2 < 0. The only real singular point is the origin, p1 = (0, 0). The linear
part of system (4.13) at p1 is (

0 0
−C1 −B2

)
.

Applying Theorem 2.19 of [22] we conclude that p1 is a saddle.

The local phase portrait at the origin of system (4.6) depends on the sign of the
coefficient C1 as shown in Figure 4.22, obtained as in case I.1.1.
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Figure 4.22: Phase portrait of system (4.6) for B2 < 0.

Although the system might present two distinct local phase portraits at the origin,
the corresponding global phase portraits are topologically equivalent, and it is shown in
Figure 4.1(a) of Theorem 4.3.

Subcase II.3: B2 = 0. The only singular point is the origin, p1 = (0, 0). The linear part
of system (4.13) at p1 is (

0 0
−C1 0

)
.

Therefore p1 is a nilpotent singular point. Applying Theorem 3.5 of [22], we conclude
that p1 is a saddle, similar to the one illustrated in Figure 4.23.

Figure 4.23: saddle of a nilpotent singularity.

The local phase portrait at the origin of system (4.6) in this case is given in Figure
4.24. Then the global phase portrait is shown in Figure 4.1(e) of Theorem 4.3.

v

u

Figure 4.24: Phase portrait of system (4.6) for C3 = B2 = 0.

Case III: C1C3 > 0. There are only two possible singular points in the chart U1,
(−
√
−C1/C3, 0) and (

√
−C1/C3, 0). Since C1C3 > 0 system (4.5) in U1 has no real

singular points.

In the chart U2 the origin, which we denote by OU2 is the only real singular point of
system (4.7). Its linear part is (

0 0
−C3 0

)
.
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Therefore OU2 is a nilpotent singularity and by Theorem 3.5 of [22] it is a cusp, whose
behavior depends on the sign of the coefficient C3. Hence the local phase portrait at the
origin for system (4.6) might be one of the two shown in Figure 4.3. Then the global
phase portrait is shown in Figure 4.1(a) of Theorem 4.3.

Case IV: B2 = 0,C1C3 < 0. The expression (4.5) for the system in the local chart U1

is
u′ = (1 + u2)v2,

v′ = −C1 − C3u
2 − A1v

2 + uv3,
(4.14)

So there are two singular points at infinity in U1, p1,2 = (±
√
−C1/C3, 0). Similarly in the

chart U2 the origin OU2 is a singularity, because the system in that chart is

u′ = −(1 + u2)v2,

v′ = −C3u− C1u
3 − A1uv

2 − uv3,
(4.15)

The linear parts of system (4.14) at p1 and p2, and of system (4.15) at OU2 are(
0 0

−2C3

√
−C1/C3 0

)
,

(
0 0

2C3

√
−C1/C3 0

)
,

(
0 0
−C3 0

)
,

respectively.

The point OU2 in the chart U2 is a nilpotent singularity and by Theorem 3.5 of [22]
it is a cusp, whose local phase portrait depends on the sign of the coefficient C3. Hence
the local phase portrait at the origin for system (4.6) might be one of the two shown in
Figure 4.3.

Since both p1 and p2 are also nilpotent singularities we apply the same theorem to
determine that p1 and p2 are cusps, whose behavior also depend on the sign of C3, but
are slightly distinct from that one of OU2 . For C3 < 0 the local phase portraits at p1 and
p2 are topologically equivalent to Figure 4.25(I) and (II) respectively, whereas for C3 > 0,
the local phase portraits at p1 and p2 are topologically equivalent to Figure 4.25(II) and
(I), respectively.

(I)

v

u

(II)

v

u

Figure 4.25: Phase portrait of system (4.6) for B2 = 0, c1C3 < 0.

Applying similar arguments as in the previous cases, we shall have three possible
configurations for the global phase portraits, they are shown in Figures 4.1(f), (g) and
(h) of Theorem 4.3.

Case V: B2 6= 0,C1C3 < 0. The expression (4.5) for the system in the local chart U1 is

u′ = (1 + u2)v2,

v′ = −C1 − C3u
2 −B2uv

2 − A1v
2 + uv3,

(4.16)
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So there are two singular points at infinity, p1 = (
√
−C1/C3, 0) and p2 = (−

√
−C1/C3, 0).

Similarly in the chart U2 the origin OU2 is a singularity, because this system writes

u′ = −(1 + u2)v2,

v′ = −C3u− C1u
3 −B2uv − A1uv

2 − uv3,
(4.17)

The linear parts of system (4.16) at p1 and p2, and of system (4.17) at OU2 are
respectively (

0 0

−2C3

√
−C1/C3 −B2

√
−C1/C3

)
,(

0 0

2C3

√
−C1/C3 B2

√
−C1/C3

)
,(

0 0
−C3 0

)
.

The singular points p1 and p2 are semi-hyperbolic singularities. By Theorem 2.19 of
[22], p1 and p2 are saddle-nodes. We remark that in Case IV, which only differs from
the present one by the vanishing of the coefficient B2, the two singular points p1 and p2 in
the chart U1 are cusps. Both cusps and saddle-nodes are singular points of index 0. The
cusps in the previous case bifurcate to saddle-nodes by changing B2 from zero to non-zero
values.

The local phase portraits at p1 and p2 depend on the values of the coefficients A1, B2,
C1 and C3. The possible local phase portraits are shown from figures 4.26 to 4.30. These
local phase portraits are obtained as in case I.1.1. The local phase portraits to the cases
A1, B2, C3 > 0, C1 < 0 and B2, C3 > 0, A1, C1 < 0 are topologically equivalent to the
ones in Figures 4.30 and 4.27, respectively.
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p
2

Figure 4.26: Phase portrait of system (4.4) for A1, C1 > 0, B2, C3 < 0.
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Figure 4.27: Phase portrait of system (4.4) for C1 > 0, A1, B2, C3 < 0.
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Figure 4.28: Phase portrait of system (4.4) for A1, C3 > 0, B2, C1 < 0.
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Figure 4.29: Phase portrait of system (4.4) for C3 > 0, A1, B2, C1 < 0.

The point OU2 in the chart U2 is a nilpotent singular point. Applying Theorem 3.5
of [22] we see that it is a cusp, whose behavior depends on the sign of the coefficient
C3. Hence the local phase portrait at the origin for system (4.6) might be one of the two
shown in Figure 4.3.

Using similar arguments as in the previous cases, we shall prove that there exist three
possible configurations for the global phase portraits. They are shown in Figures 4.1(i),
(j) and (k) of Theorem 4.3. We remark that all three configurations are possible, setting
B2 = ε > 0 in the examples presented in Case IV.

4.3.2 Proof of Theorem 4.4

The fact that any quartic polynomial differential system of the form (4.2) has a uniform
isochronous center at the origin is a direct consequence of Theorem 2.7 (see section 2.2).

In order to provide all possible phase portraits in the Poincaré disc for the uniform
isochronous system (4.2) with homogeneous nonlinearities of degree 4, we shall study the
finite and infinite singular points of such systems.

Finite singular points

v

p
2

uu

v

p
1

Figure 4.30: Phase portrait of system (4.4) for A1 ∈ R, B2, C1 > 0, C3 < 0.
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By proposition 2.2 (see section 2.2) the differential system (4.2) has no finite singular
points except the origin.

Propositions 2.2 and 2.4 imply that the boundary of the period annulus of the uniform
isochronous center at the origin is a graphic formed by infinite singular points and their
separatrices.

Infinite singular points

In the chart U1 the differential system (4.2) when f(x, y) is a homogeneous polynomial
of degree 3 becomes

u̇ = v3(1 + u2),

v̇ = v(uv4 − f(1, u)).
(4.18)

Therefore all the points (u, 0), for all u ∈ R are infinite singular points in U1. In order to
obtain the local phase portraits near the infinity, we rescale system (4.18) doing ds = vdt
and we obtain

u′ = v2(1 + u2),

v′ = uv4 − f(1, u),
(4.19)

where the prime denotes derivative with respect to s.

Now the infinite singular points of system (4.19) are (u∗, 0) with u∗ a zero of f(1, u).
So at the chart U1 we have at most 3 infinite singular points.

Since at most one more additional infinite singular point can appear, which is the
origin of the chart U2, without loss of generality we can assume that all the infinite
singular points of system (4.2) after the rescaling ds = vdt are in the local chart U1,
otherwise doing a rotation in the coordinates (x, y) this would be the case. So in what
follows we do not need to study whether the origin of the chart U2 is an infinite singular
point.

To investigate the infinite singular points of system (4.2), we need to split our study
into several cases, according to the cubic homogeneous polynomial f(x, y). Taking into
account that we can assume that all the infinite singular points after the rescaling ds = vdt
are in the local chart U1, the polynomial f(x, y) must have one of the following expressions,
with a 6= 0

f1 = a(y − r1x)(y − r2x)(y − r3x), r1 < r2 < r3,

f2 = a(y − r1x)2(y − r2x), r1 < r2,

f3 = a(y − r1x)3,

f4 = (αx2 + βxy + γy2)(y − r1x), β2 − 4αγ < 0,

f5 = (αx2 + βxy + γy2)y, β2 − 4αγ < 0.

In the polynomial fk, k = 1, 2, 3 we can assume that a = 1 in system (4.2) by doing
the rescaling (x, y) 7→ (x/ 3

√
a, y/ 3
√
a), and otherwise we can assume γ = 1 applying the

rescaling (x, y) 7→ (x/ 3
√
γ, y/ 3

√
γ).

In short we must study the phase portraits of the uniform isochronous system (4.2)
with f(x, y) in one of the following cases

Case I: f(x, y) = (y − r1x)(y − r2x)(y − r3x), r1 < r2 < r3;

Case II: f(x, y) = (y − r1x)2(y − r2x), r1 < r2;
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Case III: f(x, y) = (y − r1x)3;

Case IV: f(x, y) = (αx2 + βxy + y2)(y − r1x), with β2 − 4α < 0;

Case V: f(x, y) = (αx2 + βxy + y2)y, with β2 − 4α < 0.

Except for the Cases I and IV, in which system (4.2) depends of 3 parameters, in all
other cases it depends at most of 2 parameters.

For the characterization of each local phase portrait, we shall apply the well known
results for the hyperbolic and nilpotent singular points, see for instance Theorems 2.15
and 3.5 of [22]. In what follows we study each case in detail.

Case I. In the chart U1 the differential system (4.2) becomes

u̇ = (1 + u2)v3,

v̇ = v[r1r2r3 − (r1r2 + r1r3 + r2r3)u+ (r1 + r2 + r3)u
2 − u3 + uv3],

(4.20)

Performing the rescaling of time ds = vdt system (4.20) writes as

u′ = (1 + u2)v2,

v′ = r1r2r3 − (r1r2 + r1r3 + r2r3)u+ (r1 + r2 + r3)u
2 − u3 + uv3.

(4.21)

The singular points at infinity are p1 = (r1, 0), p2 = (r2, 0) and p3 = (r3, 0). The linear
parts of system (4.21) at each of these points are respectively(

0 0
(r2 − r1)(r1 − r3) 0

)
,

(
0 0

(r1 − r2)(r2 − r3) 0

)
,

(
0 0

(r1 − r3)(r3 − r2) 0

)
.

Since r1 < r2 < r3 the terms ri− rj for i 6= j, i, j = 1, 2, 3 never vanish. Consequently
the corresponding linear parts of system (4.21) at p1, p2 and p3 are never identically
zero and thus they are nilpotent singular points. For each singular point, we perform
appropriate translations and rescalings of time to have system (4.21) under the normal
form necessary to apply Theorem 3.5 of [22]. Taking into account the hypothesis r1 <
r2 < r3, we conclude that each one of these 3 singular points is a cusp. Therefore modulus
a translation to the origin and undoing the rescaling of time ds = vdt, the local phase
portrait for each singular point of system (4.20) might be one of the two shown in Figure
4.31.

u

v

p
1

and p
3 p

2

u

v

Figure 4.31: Local phase portraits at p1, p2 and p3 of system (4.20). The horizontal axis is
filled of singular points.
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Each global phase portrait for this case is obtained taking into account: all the local
phase portraits of the finite and infinite singular points; the Existence and Uniqueness
Theorem of solutions; the fact that the boundary of the Poincaré disc consists entirely of
singular points; and that the graphic at the boundary of the period annulus of the uniform
isochronous center at the origin is formed by separatrices of infinite singular points. Hence
the global phase portrait for Case I is topologically equivalent to the ones of Figure 4.2(a)
or (b) of Theorem 4.4. We remark that the two configurations are possible by setting
convenient values to the real parameters r1, r2 and r3.

Case II. In the chart U1 system (4.2) is written as

u̇ = (1 + u2)v3,

v̇ = v[r21r2 − (r21 + 2r1r2)u+ (2r1 + r2)u
2 − u3 + uv3],

(4.22)

and after the rescaling of time ds = vdt system (4.22) becomes

u′ = (1 + u2)v2,

v′ = r21r2 − (r21 + 2r1r2)u+ (2r1 + r2)u
2 − u3 + uv3.

(4.23)

The singular points at infinity are p1 = (r1, 0) and p2 = (r2, 0). We first analyze p1. The
corresponding linear part of system (4.23) at this singular point is identically zero. Thus
it is necessary to apply a directional blow up (u, v) 7→ (u,w) where v = uw, obtaining the
following system, modulo a translation of p1 to the origin

u̇ = u2(1 + r21 + 2r1u+ u2)w2,

ẇ = u[r2 − r1 − u− (1 + r21)w
3 − r1uw3].

(4.24)

Performing a change of the independent variable of the form dT = u ds in (4.24), we get
the system

u′ = u(1 + r21 + 2r1u+ u2)w2,

w′ = r2 − r1 − u− (1 + r21)w
3 − r1uw3,

(4.25)

where the prime now denotes derivative with respect to T. On the axis u = 0 there is a
unique singularity q1 = (0, 3

√
(r2 − r1)/(1 + r21)). The corresponding linear part of system

(4.25) at q1 is (
−3(1 + r21)

1/3(r2 − r1)2/3 0
0 (1 + r21)

1/3(r2 − r1)2/3
)
.

Applying Theorem 2.15 of [22] and the hypothesis r1 < r2 we conclude that q1 is a
saddle. The local phase portrait at q1 for system (4.25) and system (4.24) are shown in
Figures 4.32 and 4.33, respectively.

Going back through the blow up we get the local phase portrait at the origin of system
(4.23), see Figure 4.34. Finally, taking into account the rescaling of time ds = vdt, we
obtain that the phase portrait at the origin of system (4.22) is topologically equivalent to
the one of Figure 4.35.

Now we perform the study for p2. The corresponding linear part of system (4.23) at
this singular point is (

0 0
−(r1 − r2)2 0

)
.
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Figure 4.32: Phase portrait of system
(4.25).

w

u

Figure 4.33: Phase portrait of system
(4.24). The vertical axis is filled of singular
points.
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Figure 4.34: Phase portrait of system
(4.23).
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Figure 4.35: Phase portrait of system
(4.20). The horizontal axis is filled of
singular points.

Since r1 < r2 by hypothesis, (r1 − r2) never vanishes. Therefore p2 is a nilpotent
singular point. By performing convenient translation and rescaling of time to have system
(4.23) under the normal form necessary to apply Theorem 3.5 of [22], and taking into
account the hypothesis r1 < r2, we conclude that this singular point is a cusp. Therefore
modulus a translation to the origin and undoing the rescaling of time ds = vdt, the local
phase portrait of system (4.22) for p2 is topologically equivalent to the picture on the left
side of Figure 4.31. The global phase portrait for Case II is topologically equivalent to
the one of Figure 4.2(c) of Theorem 4.4.

Case III. In the chart U1 system (4.2) becomes

u̇ = (1 + u2)v3,

v̇ = v(r31 − 3r21u+ 3r1u
2 − u3 + uv3),

(4.26)

and after the rescaling of time ds = vdt system (4.26) is written as

u′ = (1 + u2)v2,

v′ = r31 − 3r21u+ 3r1u
2 − u3 + uv3.

(4.27)

The only singular point at infinity is p1 = (r1, 0). The corresponding linear part of system
(4.27) at this singular point is identically zero. Thus it is necessary to apply a directional
blow up (u, v) 7→ (u,w) where v = uw, obtaining the following system, after performing
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a translation of p1 to the origin

u̇ = u2(1 + r21 + 2r1u+ u2)w2,

ẇ = −u[u+ (1 + r21)w
3 + r1uw

3].
(4.28)

Performing a change of the independent variable of the form dT = u ds in (4.28), we get
the system

u′ = u(1 + r21 + 2r1u+ u2)w2,

w′ = −(u+ (1 + r21)w
3 + r1uw

3).
(4.29)

On the axis u = 0 there is a unique singularity q1 = (0, 0). The corresponding linear part
of system (4.29) at q1 is (

0 0
−1 0

)
.

Applying Theorem 3.5 of [22] we conclude that q1 is a saddle. The local phase portrait
at q1 for system (4.29) and system (4.28) are shown in Figures 4.36 and 4.37, respectively

w

uq
1

Figure 4.36: Phase portrait of system
(4.29).

w

u

Figure 4.37: Phase portrait of system
(4.28). The vertical axis is filled of singular
points.

Going back through the blow up we get the local phase portrait at the origin of system
(4.27), see Figure 4.38. Finally, we obtain that the phase portrait at the origin of system
(4.26) is topologically equivalent to the one of Figure 4.39. Thus the global phase portrait

v

u

Figure 4.38: Phase portrait of system
(4.27).
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Figure 4.39: Phase portrait of system
(4.26). The horizontal axis is filled of
singular points.

for this case is topologically equivalent to the one of Figure 4.2(c) of Theorem 4.4.

Case IV. In the chart U1 system (4.2) is

u̇ = (1 + u2)v3,

v̇ = v[r1α + (r1β − α)u+ (r1 − β)u2 − u3 + uv3].
(4.30)
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We perform the rescaling of time ds = vdt to obtain

u′ = (1 + u2)v2,

v′ = r1α + (r1β − α)u+ (r1 − β)u2 − u3 + uv3.
(4.31)

The unique singular point at infinity is p1 = (r1, 0) and the corresponding linear part of
system (4.31) at p1 is (

0 0
−α− r1(r1 + β) 0

)
.

Due to the hypothesis β2− 4α < 0, the expression −α− r1(r1 + β) never vanishes. In
fact, if α = −r1(r1 + β) then by the hypothesis we would have (β + 2r1)

2 < 0 which is
obviously a contradiction. Thus p1 is a nilpotent singular point. Applying Theorem 3.5
of [22] we conclude that the resulting local phase portrait at the origin of system (4.30) is
topologically equivalent to the one on the left of Figure 4.31. This local phase portrait is
obtained using a similar method applied in the previous cases. The global phase portrait
for Case IV is topologically equivalent to the one of Figure 4.2(c) of Theorem 4.4.

Case V. In the chart U1 system (4.2) is written as

u̇ = (1 + u2)v3,

v̇ = uv(−α− βu− u2 + v3).
(4.32)

We perform the rescaling of time ds = vdt to obtain

u′ = (1 + u2)v2,

v′ = u(−α− βu− u2 + v3).
(4.33)

The origin is the unique singular point at the infinity and the linear part of system (4.33)
at (0, 0) is (

0 0
−α 0

)
.

Since α > 0, due to the hypothesis β2 − 4α < 0, the linear part of system (4.33)
at (0, 0) is never identically zero and therefore the origin is a nilpotent singular point.
Applying Theorem 3.5 of [22] and a similar procedure as those applied in the previous
cases, we conclude that the resulting local phase portrait at the origin of system (4.32) is
topologically equivalent to the one on the left of Figure 4.31. The global phase portrait
for this case is topologically equivalent to the one of Figure 4.2(c) of Theorem 4.4.

Remark 4.6. From the proof of Theorem 4.4 it follows that the global phase portrait of
any quartic polynomial differential system which can be written into the form (4.2) is
topologically equivalent to the phase portrait (l) or (m) of Figure 4.2 if we are in Case I,
and to the phase portrait (a) of Figure 4.2 otherwise.
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Chapter 5

Limit cycles bifurcating from
continuous and discontinuous
perturbations of uniform isochronous
centers of degree 3

In this chapter we develop the averaging theory at any order for computing the periodic
solutions of discontinuous piecewise differential system of the form

r′ =

{
F+(θ, r, ε) if 0 ≤ θ ≤ α,
F−(θ, r, ε) if α ≤ θ ≤ 2π,

where F±(θ, r, ε) =
∑k

i=1 ε
iF±i (θ, r) + εk+1R±(θ, r, ε) with θ ∈ S1 and r ∈ D, where D is

an open interval of R+, and ε is a small real parameter.

Applying this theory we study the bifurcation of limit cycles in planar cubic polynomial
differential systems with a uniform isochronous center at the origin when they are perturbed,
either inside the class of all continuous cubic polynomial differential systems, or inside the
class of all discontinuous piecewise cubic polynomial differential systems with two zones
separated by the straight line y = 0. Later on in chapter 6 we apply this theory to analyze
the number of limit cycles which bifurcate from the uniform isochronous centers of planar
quartic polynomial differential systems.

5.1 Background

One of the main open problems in the qualitative theory of polynomial
differential systems in R2 is the determination of their limit cycles. Bifurcations of limit
cycles have been exhaustively studied in the last century and is closely related to the
Hilbert’s 16th Problem. However, in spite of all efforts, up to now there is no general
method to solve this problem.

Bifurcation of limit cycles in continuous planar differential systems are still largely
studied. Nonetheless due to the considerable number of discontinuous phenomena in the
real world, see for example [9, 54] and the references therein, a significant interest in the
investigation of limit cycles of discontinuous piecewise differential systems has arisen. For
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instance in [44], applying the theory of regularization, the averaging theory is extended
up to order 1 for studying the periodic solutions of systems of the form x′ = ε

(
F (t, x, ε)+

sign(h(x))G(t, x, ε)
)
. In [41] there is a version of the averaging theorem up to order 2 for

a bigger class of discontinuous piecewise differential equations x′ = εF1(t, x, ε). Finally in
[42] it is stated averaging theorems for studying the periodic solutions of discontinuous
piecewise differential equations of the form x′ = F0(t, x) + εF1(t, x) + ε2F2(t, x, ε).

5.1.1 Result on averaging theory

We develop the averaging theory at any order for computing the periodic solutions of
discontinuous piecewise differential system of the form

r′ =

{
F+(θ, r, ε) if 0 ≤ θ ≤ α,
F−(θ, r, ε) if α ≤ θ ≤ 2π,

(5.1)

where

F±(θ, r, ε) =
k∑
i=1

εiF±i (θ, r) + εk+1R±(θ, r, ε). (5.2)

The set of discontinuity of system (5.1) is Σ = {θ = 0} ∪ {θ = α} with 0 < α < 2π. Here
F±i : S1 ×D → R for i = 1, . . . , k, and R± : S1 ×D × (−ε0, ε0) → R are Ck+1 functions,
where D is an open and bounded interval of (0,∞), and S1 ≡ R/(2π).

We point out that taking α = 2π system (5.1) becomes continuous. So the averaging
theory developed in this section also applies to continuous differential systems.

For i = 1, 2, . . . , k, we define the averaging function fi : D → R of order i as

fi(ρ) =
y+i (α, ρ)− y−i (α− 2π, ρ)

i!
, (5.3)

where y±i : S1 ×D → R, for i = 1, 2, . . . , k − 1, are defined recurrently as

y±i (θ, ρ) = i!

∫ θ

0

(
F±i (φ, ρ) +

i∑
l=1

∑
Sl

1

b1! b2!2!b2 · · · bl!l!bl
·

∂LF±i−l (φ, ρ)
l∏

j=1

y±j (φ, ρ)bj

)
dφ,

(5.4)

where Sl is the set of all l-tuples of non–negative integers (b1, b2, · · · , bl) satisfying b1 +
2b2 + · · ·+ lbl = l, and L = b1 + b2 + · · ·+ bl.

As we shall see the averaging functions fi control the existence of isolated periodic
solutions of system (5.1). These functions are obtained directly from y±i using (5.4). We
provide the explicit formulae of y±i up to order 7 in Appendix C.

5.1.2 Bifurcation of limit cycles from the uniform isochronous
centers of degree 3

As already previously stated in this work, a small limit cycle is one which bifurcates
from a center equilibrium point, and a medium limit cycle is one which bifurcates from a
periodic orbit surrounding a center.
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We study the largest number of small and medium limit cycles for the uniform
isochronous cubic centers, when they are perturbed either inside the class of all continuous
cubic polynomial differential systems, or inside the class of all discontinuous differential
systems formed by two cubic differential systems separated by the straight line y = 0.

Given a perturbed differential system, the next result provides a method to write it
under the form (5.2) for the continuous case, that is, by setting α = 2π in system (5.1).

Theorem 5.1. Consider the unperturbed system ẋ = P (x, y), ẏ = Q(x, y), where P,Q :
R2 → R are continuous functions, and assume that this system has a continuous family of
period solutions {Γh} ⊂ {(x, y) : H(x, y) = h, h1 < h < h2}, where H is a first integral of
the system. For a given first integral H assume that xQ(x, y)− yP (x, y) 6= 0 for all (x, y)
in the period annulus formed by the ovals {Γh}. Let ρ : (

√
h1,
√
h2)× [0, 2π)→ [0,∞) be

a continuous function such that

H(ρ(R, θ) cos θ, ρ(R, θ) sin θ) = R2

for all R ∈ (
√
h1,
√
h2) and all θ ∈ [0, 2π). Then the differential equation which describes

the dependence between the square root of the energy R =
√
h and the angle θ for the

perturbed system ẋ = P (x, y) + εp(x, y), ẏ = Q(x, y) + εq(x, y), where p, q : R2 → R are
continuous functions is

dR

dθ
= ε

µ(x2 + y2)(Qp− Pq)
2R(Qx− Py)

+O(ε2) (5.5)

where µ = µ(x, y) is the integrating factor corresponding to the first integral H of the
unperturbed system and x = ρ(R, θ) cos θ, y = ρ(R, θ) sin θ.

For more details see [11].

We also need the next results. The first one can be found in Proposition 1 of [39] and
the latter in [36].

Proposition 5.2. Let f0, . . . , fn be analytic functions defined on an open interval I ⊂ R.
If f0, . . . , fn are linearly independent then there exists s1, . . . , sn ∈ I and λ0, . . . , λn ∈ R

such that for every j ∈ {1, . . . , n} we have
n∑
i=0

λifi(sj) = 0.

We say that the functions (f0, . . . , fn) defined on the interval I form an Extended
Chebyshev system or ET-system on I, if and only if, any nontrivial linear combination
of these functions has at most n zeros counting their multiplicities and this number is
reached. The functions (f0, . . . , fn) are an Extended Complete Chebyshev system or an
ECT-system on I if and only if for any k ∈ {0, 1, . . . , n}, (f0, . . . , fk) form an ET-system.

Theorem 5.3. Let f0, . . . , fn be analytic functions defined on an open interval I ⊂ R.
Then (f0, . . . , fn) is an ECT-system on I if and only if for each k ∈ {0, 1, . . . , n} and all
y ∈ I the Wronskian

W (f0, . . . , fk)(y) =

∣∣∣∣∣∣∣∣∣
f0(y) f1(y) · · · fk(y)
f ′0(y) f ′1(y) · · · f ′k(y)

...
...

. . .
...

f
(k)
0 (y) f

(k)
1 (y) · · · f

(k)
k (y)

∣∣∣∣∣∣∣∣∣
is different from zero.
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In order to study the bifurcation of limit cycles in the planar uniform cubic centers
we take into account Proposition 3.2 due to Collins [18], presented in chapter 3 of this
work. According to this proposition, a planar cubic differential system with a uniform
isochronous center at the origin can be reduced to either of the following two forms

ẋ = −y(1− x2),
ẏ = x(1 + y2),

(5.6)

ẋ = −y + x2 + Ax2y,

ẏ = x+ xy + Axy2.
(5.7)

with A ∈ R. For now on we shall call (5.6) and (5.7) as Collins first form and Collins
second form, respectively.

5.2 Main results

5.2.1 Result on averaging theory

Our result on the periodic solutions of (5.1) is the following.

Theorem 5.4. Assume that, for some ` ∈ {1, 2, . . . , k}, fi = 0 for i = 1, 2, . . . , ` − 1
and f` 6= 0. If there exists ρ∗ ∈ D such that f`(ρ

∗) = 0 and f ′`(ρ
∗) 6= 0, then for |ε| > 0

sufficiently small there exists a 2π–periodic solution r(θ, ε) of (5.1) such that r(0, ε)→ ρ∗

when ε→ 0.

Theorem 5.4 is proved in section 5.3.1. This result has been submitted for publication,
see [34].

5.2.2 Bifurcation of limit cycles from the uniform isochronous
centers of degree 3

We consider the following continuous systems

ẋ = −y + xf(x, y) +
6∑
i=1

εipi(x, y),

ẏ = x+ yf(x, y) +
6∑
i=1

εiqi(x, y),

(5.8)

where f(x, y) is as in Theorem 3.1, and the system

ẋ = −y + x2y + εpK(x, y), ẏ = x+ xy2 + εqK(x, y), (5.9)

where

pj = αj1x+ αj2y + αj3x
2 + αj4xy + αj5y

2 + αj6x
3 + αj7x

2y + αj8xy
2 + αj9y

3,

qj = βj1x+ βj2y + βj3x
2 + βj4xy + βj5y

2 + βj6x
3 + βj7x

2y + βj8xy
2 + βj9y

3,
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pK = α0 + p1, qK = β0 + q1.

Moreover we consider the discontinuous systems(
ẋ
ẏ

)
= X (x, y) =

{
X1(x, y) if y > 0;
X2(x, y) if y < 0.

(5.10)

(
ẋ
ẏ

)
= Y(x, y) =

{
Y1(x, y) if y > 0;
Y2(x, y) if y < 0.

(5.11)

where

X1(x, y) =

(
−y + xf(x, y) +

∑6
i=1 ε

ipi(x, y)

x+ yf(x, y) +
∑6

i=1 ε
iqi(x, y)

)
,

X2(x, y) =

(
−y + xf(x, y) +

∑6
i=1 ε

iui(x, y)

x+ yf(x, y) +
∑6

i=1 ε
ivi(x, y)

)
,

Y1(x, y) =

(
−y + x2y + εpK(x, y)
x+ xy2 + εqK(x, y)

)
,

Y2(x, y) =

(
−y + x2y + εuK(x, y)
x+ xy2 + εvK(x, y)

)
,

uj = γj1x+ γj2y + γj3x
2 + γj4xy + γj5y

2 + γj6x
3 + γj7x

2y + γj8xy
2 + γj9y

3,

vj = δj1x+ δj2y + δj3x
2 + δj4xy + δj5y

2 + δj6x
3 + δj7x

2y + δj8xy
2 + δj9y

3,

uK = γ0 + u1, vK = δ0 + v1.

In what follows we state our results.

Theorem 5.5. For |ε| 6= 0 sufficiently small the maximum number of small limit cycles
of the differential system (5.8) is 3 using the averaging theory of order 6, and this number
can be reached.

Theorem 5.5 is proved in section 5.3.2 of this chapter.

Theorem 5.6. For |ε| 6= 0 sufficiently small the maximum number of medium limit cycles
of the differential system (5.9) is 3 using the first order averaging theory and this number
can be reached.

Theorem 5.6 is proved in section 5.3.3.

Theorem 5.7. For |ε| 6= 0 sufficiently small the maximum number of small limit cycles
of the discontinuous differential system (5.10) is 5 using the averaging method of order 6
and this number can be reached.

Theorem 5.7 is proved in section 5.3.4.

Theorem 5.8. For |ε| 6= 0 sufficiently small the maximum number of medium limit
cycles of the discontinuous differential system (5.11) is 7 using the averaging method of
first order and this number can be reached.
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Theorem 5.8 is proved in section 5.3.5.

Theorems 5.5 and 5.6 extend previous results presented in [25]. In that work the
authors proved the existence of one or two limit cycles in some subfamilies of uniform
isochronous cubic centers. Moreover Theorem 5.8 extends the work done in [40] on the
number of medium limit cycles which can bifurcate from a family of uniform isochronous
quadratic centers perturbed by discontinuous differential systems with the straight line
of discontinuity y = 0, to the uniform isochronous cubic centers given by the Collins first
form.

These results have been published in [31].

5.3 Proofs of the results

5.3.1 Proof of Theorem 5.4

The proof of Theorem 5.4 is based on the following lemma.

Lemma 5.9 (Fundamental Lemma). Let r±(·, ρ, ε) : [0, θρ) → Rk be the solution of
r′ = F±(θ, r, ε) with r±(0, ρ, ε) = ρ. If θρ > T, then

r±(θ, ρ, ε) = ρ+
k∑
i=1

εi
y±i (θ, ρ)

i!
+Ok+1(ε),

where y±i (t, z) for i = 1, 2, . . . , k are defined in (5.4).

The proof of Lemma 5.9 can be found in [43].

Now we prove Theorem 5.4. First of all we have to show that there exists ε0 sufficiently
small such that for each ρ ∈ D and for every ε ∈ [−ε0, ε0] the solutions r±(θ, ρ, ε)
are defined for every θ ∈ [0, T ]. Indeed, by the Existence and Uniqueness Theorem of
solutions (see, for example, Theorem 1.2.4 of [53]), r±(θ, ρ, ε) is defined for all 0 ≤ θ ≤
inf (T, d/M±(ε)) , for each r with |r − ρ| < d and for every ρ ∈ D, where

M±(ε) ≥

∣∣∣∣∣
k∑
i=1

εiF±i (θ, r) + εk+1R±(θ, r, ε)

∣∣∣∣∣ .
Clearly ε can be taken sufficiently small in order that inf (T, d/M±(ε)) = T for all ρ ∈ D.
Moreover, since the vector fields F±(θ, r, ε) are T–periodic, the solutions r±(θ, ρ, ε) can
be extended for θ ∈ R.

We denote
f(ρ, ε) = r+(α, ρ, ε)− r−(α− T, ρ, ε).

It is easy to see that system (5.1) for ε = ε̄ ∈ (−ε0, ε0) has a periodic solution passing
through ρ̄ ∈ D if and only if f(ρ̄, ε̄) = 0.

From Lemma 5.9 we have that

f(ρ, ε) =
k∑
i=1

εi
y+i (α, ρ)− y−i (α− T, ρ)

i!
+Ok+1(ε)

=
k∑
i=1

εifi(ρ) +Ok+1(ε)
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where the function fi is the one defined in (5.3) for i = 1, 2, · · · , k. From hypothesis

f(ρ, ε) = εrfr(ρ) + · · ·+ εkfk(ρ) +Ok+1(ε).

Since fr(ρ
∗) = 0 and f ′r(ρ

∗) 6= 0, the implicit function theorem applied to the function
F(ρ, ε) = f(ρ, ε)/εr guarantees the existence of a differentiable function ρ(ε) such that
ρ(0) = ρ∗ and f(ρ(ε), ε) = εrF(ρ(ε ), ε) = 0 for every |ε| 6= 0 sufficiently small. Then the
proof of the theorem follows.

5.3.2 Proof of Theorem 5.5

We use the Collins first and second forms to prove Theorem 5.5. Due to the fact that
system (5.1) becomes continuous by taking α = 2π, the averaging theory developed in
subsection 5.1.1 also applies to continuous differential systems.

We shall use the averaging theory given in Theorem 5.4 up to order 6 to study the limit
cycles for Collins first and second forms. In order to calculate the respective averaging
functions fi, for i = 1, . . . , 6, we used the formulae of yi, for i = 1, . . . , 6 presented in
Appendix C (for simplicity we omit the “±” in the notations of the functions fi and yi
because we are in the continuous case).

Collins first form
Consider system (5.8) with f(x, y) = xy, that is, the unperturbed system is the Collins

first form.

ẋ = −y + x2y +
6∑
i=1

εipi(x, y),

ẏ = x+ xy2 +
6∑
i=1

εiqi(x, y).

(5.12)

In order to analyze the Hopf bifurcation for system (5.12), applying Theorem 5.4, we
introduce a small parameter ε doing the change of coordinates x = εX, y = εY . After
that we perform the polar change of coordinates X = r cos θ, Y = r sin θ, and by doing a
Taylor expansion truncated at the 6th order in ε we obtain an expression for dr/dθ similar
to (5.2) with α = 2π. The explicit expression is quite large so we omit it.

System (5.12) is a polynomial system. The functions Fi(θ, r), i = 1, . . . , 6 and
R(θ, r, ε) (we omit the “±” in the notations of the functions Fi and R because we
are in the continuous case) of system (5.12) are analytic. Moreover these functions
are 2π−periodic because the variable θ appears through sines and cosines. Hence the
assumptions of Theorem 5.4 are satisfied. We take the open interval D of Theorem 5.4 as
D = {r : 0 < r < 1} because the Collins first form has the period annulus of the center
in the band −1 < x < 1.

Applying Theorem 5.4 we obtain the averaging function of first order

f1(r) = πr(α1
1 + β1

2).

Clearly f1(r) has no solution in D. Thus there is no small limit cycle which bifurcates
from the uniform isochronous center at the origin by the averaging method of first order.
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Setting β1
2 = −α1

1 we obtain f1(r) = 0. So we can apply the averaging theory of second
order using Theorem 5.4, obtaining the averaging function of second order.

f2(r) = πr(α2
1 + β2

2).

Since f2(r) has no solution in D, there is no small limit cycle which bifurcates from the
uniform isochronous center at the origin applying the averaging method of second order.
Doing β2

2 = −α2
1 we get f2(r) = 0, and then we can apply the averaging method of third

order obtaining
f3(r) = r(A3r

2 + A1),

where
A3 =

π

4
(4α1

1 + 3α1
6 + α1

8 + β1
7 + 3β1

9), A1 = π(α3
1 + β3

2).

The rank of the Jacobian matrix of the function A = (A1, A3) with respect to the
variables α1

1, α
3
1, α

1
6, α

1
8, β

3
2 , β

1
7 , β

1
9 is maximal. Then the coefficients A1 and A3 are linearly

independent in their variables.

The averaging function f3(r) has one solution in D if 0 < −A1/A3 < 1. Hence applying
Theorem 5.4 it is proved that at most 1 small limit cycle can bifurcate from the uniform
isochronous center at the origin and this number can be reached.

In order to apply the averaging method of order 4, we need to have f3(r) = 0 so we
set β3

2 = −α3
1 and β1

7 = −(4α1
1 + 3α1

6 + α1
8 + 3β1

9). The resulting averaging function of
fourth order is

f4(r) = r(B3r
2 +B1),

where

B3 =
π

4
(4α1

1α
1
2 + 2α1

1α
1
7 + 2α1

1β
1
8 + 3β1

1β
1
9 + α1

2α
1
8 + 3α1

2β
1
9 − 2α1

3β
1
3

+ α1
3α

1
4 − β1

3β
1
4 + α1

4α
1
5 − β1

4β
1
5 + 2α1

5β
1
5 + β1

1α
1
8 + 4α2

1 + 3α2
6

+ β2
7 + α2

8 + 3β2
9),

B1 =π(α4
1 + β4

2).

The rank of the Jacobian matrix of the function B = (B1, B3) with respect to its variables
is maximal, thus B1, B3 are linearly independent in their variables.

Therefore f4(r) has one solution in D if 0 < −B1/B3 < 1. Hence we can show that
at most 1 small limit cycle can bifurcate from the uniform isochronous center and this
number can be reached, applying Theorem 5.4. Solving B1 = 0 for β4

2 and B3 = 0 for β2
7 ,

we obtain f4(r) = 0 so we can apply the averaging theory of order 5, and its corresponding
averaging function is

f5(r) = r(C5r
4 + C3r

2 + C1),

where

C5 =
π

4
(2α1

1 + 2α1
6 + α1

8 + β1
9),

C3 =
π

4
(4α1

1(α
1
2)

2 + 2α1
1α

1
2α

1
7 + 2α1

1α
1
2β

1
8 + 2α1

1(α
1
3)

2 − α1
1α

1
3β

1
4

+ β1
1β

1
3β

1
4 + 2α1

1α
1
3α

1
5 − 2α1

1β
1
3β

1
5 + α1

1(α
1
4)

2 − α1
1(β

1
4)2 − α1

1β
1
3α

1
4

72



Chapter 5. Limit cycles of uniform isochronous centers of degree 3

+ α1
1α

1
4β

1
5 − 2α1

1(β
1
5)2 + α1

1β
1
4α

1
5 + 4α1

1α
2
2 + 2α1

1α
2
7 + 2α1

1β
2
8

+ 3β1
1β

2
9 + (α1

2)
2α1

8 + 3(α1
2)

2β1
9 + 3β1

1α
1
2β

1
9 + α1

2α
1
3α

1
4 + 2α1

2α
1
4α

1
5

− α1
2β

1
4β

1
5 + 4α1

2α
1
5β

1
5 + β1

1α
1
2α

1
8 + 4α1

2α
2
1 + α1

2α
2
8 + 3α1

2β
2
9

+ 2β1
1α

1
3β

1
3 − 2α1

3β
2
3 + α1

3α
2
4 − β1

3β
2
4 + β1

1α
1
4α

1
5 + α1

4α
2
3 − β1

4β
2
3

+ α1
4α

2
5 − β1

4β
2
5 + 2β1

1α
1
5β

2
5 + α1

5α
2
4 − β1

5β
2
4 + 2α1

5β
2
5 + 2α1

7α
2
1

+ α1
8β

2
1 + α1

8α
2
2 + 3β1

9β
2
1 + 2β1

8α
2
1 + 3β1

9α
2
2 − 2β1

3α
2
3 + 2β1

5α
2
5

+ β1
1α

2
8 + 4α3

1 + 3α3
6 + β3

7 + α3
8 + 3β3

9),

C1 =π(α5
1 + β5

2),

and since the rank of the Jacobian matrix of the function C = (C1, C3, C5) with respect
to its variables is maximal, Ci, i = 1, 3, 5 are linearly independent in their variables.

The averaging function of fifth order f5(r) can have at most 2 solutions in D, see
Proposition 5.2. Thus applying Theorem 5.4 it is proved that at most 2 small limit cycles
can bifurcate from the uniform isochronous center at the origin and this number can be
reached, using the averaging method of order 5.

In order to apply the averaging theory of order 6 we solve C1 = 0 for β5
2 , C3 = 0 for

β3
7 and C5 for β1

9 , resulting that f5(r) = 0. Calculating the averaging function of sixth
order we have

f6(r) = r(D5r
4 +D4r

3 +D3r
2 +D1),

where

D5 = − 1

384
π(45α1

1α
1
2 + 192α1

6α
1
2 − 112α1

3α
1
4 − 112α1

4α
1
5 − 192α1

1α
1
7

+ 96α1
1α

1
9 + 288α1

6α
1
9 + 96α1

8α
1
9 − 192α2

1 − 192α2
6 − 96α2

8

+ 192α1
6β

1
1 + 288α1

3β
1
3 + 64α1

5β
1
3 − 16β1

3β
1
4 + 320α1

3β
1
5 + 96α1

5β
1
5

+ 237α1
1β

1
1 − 16β1

4β
1
5 + 288α1

1β
1
6 + 288α1

6β
1
6 + 96α1

8β
1
6 − 96β2

9),

D4 = −1

8
α1
1π(α1

2 + β1
1)(α1

4 + β1
3 + 2β1

5),

D3 = − 1

512
π(108α1

2(α
1
1)

3 + 36β1
1(α1

1)
3 − 384α1

3α
1
4(α

1
1)

2

+ 72α2
1(α

1
1)

2 + 256α1
3β

1
3(α1

1)
2 + 128β1

3β
1
4(α1

1)
2 − 256α1

5β
1
5(α1

1)
2

+ 384β1
4β

1
5(α1

1)
2 + 319(α1

2)
3α1

1 − 27(β1
1)3α1

1 − 256α1
2(α

1
3)

2α1
1

− 256α1
2(α

1
4)

2α1
1 + 9α1

2(β
1
1)2α1

1 + 128α1
2(β

1
4)2α1

1 − 128β1
1(β1

4)2α1
1

− 128α1
4α

1
5(α

1
1)

2 + 512α1
2(β

1
5)2α1

1 − 512α1
2α

1
3α

1
5α

1
1 − 256α1

5α
2
3α

1
1

+ 572α1
2α

2
2α

1
1 − 256α1

7α
2
2α

1
1 − 512α1

3α
2
3α

1
1 − 256(α1

2)
2α1

7α
1
1

− 256α1
4α

2
4α

1
1 − 256α1

3α
2
5α

1
1 − 256α1

2α
2
7α

1
1 + 256α3

2α
1
1 − 256α3

7α
1
1

+ 867(α1
2)

2β1
1α

1
1 + 256(α1

3)
2β1

1α
1
1 + 828α2

2β
1
1α

1
1 + 128α1

2α
1
4β

1
3α

1
1

+ 128α2
4β

1
3α

1
1 − 128α1

4β
1
1β

1
3α

1
1 + 128α1

2α
1
3β

1
4α

1
1 − 256α1

2α
1
5β

1
4α

1
1

+ 128α2
3β

1
4α

1
1 − 128α2

5β
1
4α

1
1 − 128α1

3β
1
1β

1
4α

1
1 − 256α1

2α
1
4β

1
5α

1
1

− 128α2
4β

1
5α

1
1 + 256α1

2β
1
3β

1
5α

1
1 − 256β1

1β
1
3β

1
5α

1
1 − 256(α1

2)
2β1

8α
1
1

− 256α2
2β

1
8α

1
1 + 828α1

2β
2
1α

1
1 + 60β1

1β
2
1α

1
1 + 128α1

4β
2
3α

1
1

+ 256β1
5β

2
3α

1
1 + 128α1

3β
2
4α

1
1 − 128α1

5β
2
4α

1
1 + 256β1

4β
2
4α

1
1
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− 128α1
4β

2
5α

1
1 + 256β1

3β
2
5α

1
1 + 512β1

5β
2
5α

1
1 − 256α1

2β
2
8α

1
1

+ 768β3
1α

1
1 − 256β3

8α
1
1 + 30α2

1(β
1
1)2 + 128α2

1(β
1
4)2

+ 256α2
1(β

1
5)2 − 128(α1

2)
2α1

3α
1
4 − 384(α1

2)
2α1

4α
1
5 + 768(α1

2)
3α1

6

+ 256(α1
2)

3α1
8 − 482(α1

2)
2α2

1 − 256(α1
3)

2α2
1 − 128(α1

4)
2α2

1

− 256α1
3α

1
5α

2
1 − 256α1

2α
1
7α

2
1 − 128α1

3α
1
4α

2
2 − 256α1

4α
1
5α

2
2

+ 1536α1
2α

1
6α

2
2 + 512α1

2α
1
8α

2
2 − 512α2

1α
2
2 − 128α1

2α
1
4α

2
3

− 128α1
2α

1
3α

2
4 − 256α1

2α
1
5α

2
4 − 128α2

3α
2
4 − 256α1

2α
1
4α

2
5

− 128α2
4α

2
5 − 256α2

1α
2
7 − 128(α1

2)
2α2

8 − 128α2
2α

2
8 − 512α1

2α
3
1

− 256α1
7α

3
1 + 768α1

6α
3
2 + 256α1

8α
3
2 − 128α1

4α
3
3 − 128α1

3α
3
4

− 128α1
5α

3
4 − 128α1

4α
3
5 − 128α1

2α
3
8 − 512α4

1 − 384α4
6 − 128α4

8

− 256α1
2α

1
4α

1
5β

1
1 + 768(α1

2)
2α1

6β
1
1 + 256(α1

2)
2α1

8β
1
1 + 60α1

2α
2
1β

1
1

+ 768α1
6α

2
2β

1
1 + 256α1

8α
2
2β

1
1 − 128α1

5α
2
4β

1
1 − 128α1

4α
2
5β

1
1

− 128α1
2α

2
8β

1
1 − 128α3

8β
1
1 + 256α1

3(β
1
1)2β1

3 + 128α1
4α

2
1β

1
3

+ 256α3
3β

1
3 − 256α2

3β
1
1β

1
3 + 128α1

3α
2
1β

1
4 − 128α1

5α
2
1β

1
4

+ 128(β1
1)2β1

3β
1
4 − 768(α1

2)
2α1

5β
1
5 − 128α1

4α
2
1β

1
5 − 512α1

5α
2
2β

1
5

− 512α1
2α

2
5β

1
5 − 256α3

5β
1
5 − 512α1

2α
1
5β

1
1β

1
5 − 256α2

5β
1
1β

1
5

+ 256α2
1β

1
3β

1
5 + 128(α1

2)
2β1

4β
1
5 + 128α2

2β
1
4β

1
5 − 256α1

2α
2
1β

1
8

− 256α3
1β

1
8 − 128α1

4α
1
5β

2
1 + 768α1

2α
1
6β

2
1 + 256α1

2α
1
8β

2
1 − 128α2

8β
2
1

− 256α1
3β

1
3β

2
1 − 128β1

3β
1
4β

2
1 − 256α1

5β
1
5β

2
1 + 256α2

3β
2
3 − 256α1

3β
1
1β

2
3

− 128β1
1β

1
4β

2
3 − 128β1

1β
1
3β

2
4 + 128α1

2β
1
5β

2
4 + 128β2

3β
2
4 − 512α1

2α
1
5β

2
5

− 256α2
5β

2
5 − 256α1

5β
1
1β

2
5 + 128α1

2β
1
4β

2
5 + 128β2

4β
2
5 − 256α2

1β
2
8

− 384(α1
2)

2β2
9 − 384α2

2β
2
9 − 384α1

2β
1
1β

2
9 − 384β2

1β
2
9 + 768α1

6β
3
1

+ 256α1
8β

3
1 + 256α1

3β
3
3 + 128β1

4β
3
3 + 128β1

3β
3
4 + 128β1

5β
3
4

− 256α1
5β

3
5 + 128β1

4β
3
5 − 384α1

2β
3
9 − 384β1

1β
3
9 − 128β4

7 − 384β4
9),

D1 =π(α6
1 + β6

2),

Therefore f6(r) can have 3 solutions in D according to Proposition 5.2. By Theorem
5.3 (r, r3, r4, r5) is an ECT-system because W1(z) = z, W2(z) = 2z3, W3(z) = 6z5,
W4(z) = 48z7 are nonzero in D, where Wj(z), j = 1, 2, 3 denotes the Wronskian of the
first j functions in (r, r3, r4, r5). Moreover D1, D3, D4 and D5 are linearly independent
functions. In fact only D5 presents the coefficients α1

9 and α2
6, only D3 has the coefficient

α2
2, and D1 is the only one with the coefficients α6

1 and β6
2 . We claim that D4 is also

linearly independent of the other coefficients. Suppose that this is false. Then there exist
real numbers k, l,m not all zero such that D4 = kD1 + lD3 +mD5. But D1 is the only one
with the variables α6

1 and β6
2 , so in order to D4 does not present these variables we must

set k = 0. Since the other two functions D3 and D5 also have variables which uniquely
appears in their respective expressions, the same argument holds so l = m = 0. But then
D4 ≡ 0, which is a contradiction. Therefore D1, D3, D4 and D5 are linearly independent
functions.

Hence applying the averaging theory of order 6 we can show that at most 3 small limit
cycles can bifurcate from the uniform isochronous center at the origin and this number
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can be reached.

Now we perform similar calculations to the Collins second form.

Collins second form
Consider system (5.8) with f(x, y) = x+ Axy.

ẋ = −y + x2 + Ax2y +
6∑
i=1

εipi(x, y),

ẏ = x+ xy + Axy2 +
6∑
i=1

εiqi(x, y),

(5.13)

where A ∈ R\{0}, since for A = 0 system (5.13) is a quadratic system, which has been
exhaustively studied.

Similarly to the previous procedures applied in the Collins first form, in order to
analyze the Hopf bifurcation for system (5.13), applying Theorem 5.4, we introduce a
small parameter ε doing the change of coordinates x = εX, y = εY . After that we
perform the polar change of coordinates X = r cos θ, Y = r sin θ, and by doing a Taylor
expansion truncated at the 6th order in ε we obtain an expression for dr/dθ similar to
(5.2) with α = 2π. Using the same arguments as in the proof of the Collins first form
the differential equation dr/dθ = . . . satisfies the assumptions of Theorem 5.4. We take
D = {r : 0 < r < r0 < 1}, where the unperturbed system has periodic solutions passing
through the point (r < r0, θ = 0).

Applying Theorem 5.4 we obtain the averaging function of first order

f1(r) = πr(α1
1 + β1

2).

Clearly f1(r) has no solution in D. Setting β1
2 = −α1

1 we obtain f1(r) = 0. So we can
apply the averaging theory of order 2 using Theorem 5.4, obtaining

f2(r) = πr(α2
1 + β2

2)

Again f2(r) has no solution in D. Doing β2
2 = −α2

1 we get f2(r) = 0. Then we can apply
the averaging method of third order

f3(r) = r(A3r
2 + A1),

where

A3 =
π

4
(4Aα1

1 + α1
4 + 3α1

6 + α1
8 − 3β1

3 − β1
5 + β1

7 + 3β1
9),

A1 =π(α3
1 + β3

2).

Thus f3(r) can have one solution in D if 0 < −A1/A3 < r0. In order to apply the
averaging method of forth order, we need to have f3(r) = 0. We set β3

2 = −α3
1 and

β1
7 = −(4Aα1

1 + α1
4 + 3α1

6 + α1
8 − 3β1

3 − β1
5 + 3β1

9). The resulting averaging function of
fourth order is

f4(r) = r(B3r
2 +B1),
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where

B3 =
π

4
(4Aα1

1α
1
2 + 4Aα2

1 + 3α1
1α

1
3 + 3β1

1β
1
3 − 3α1

1β
1
4 + 3α1

1α
1
5 + 2α1

1α
1
7

+ 2α1
1β

1
8 + 3β1

1β
1
9 + α1

2α
1
4 − α1

2β
1
5 + α1

2α
1
8 + 3α1

2β
1
9 − 2α1

3β
1
3

+ α1
3α

1
4 − β1

3β
1
4 + α1

4α
1
5 − β1

4β
1
5 + 2α1

5β
1
5 + β1

1α
1
8 − 3β2

3 + α2
4

− β2
5 + 3α2

6 + β2
7 + α2

8 + 3β2
9),

B1 =π(α4
1 + β4

2).

Then f4(r) has one solution in D if 0 < −B1/B3 < r0. Solving B1 = 0 for β4
2 , and

B3 = 0 for β2
7 , we obtain f4(r) = 0, and we can apply the averaging theory of order 5. Its

corresponding averaging function is

f5(r) = r(C5r
4 + C3r

2 + C1),

where

C5 =
π

24
(12A2α1

1 + 18Aα1
1 − 17Aβ1

3 + 7Aα1
4 − 19Aβ1

5 + 12Aα1
6 + 6Aα1

8

+ 6Aβ1
9 − 12β1

3 + 6α1
4 − 6β1

5 + 18α1
6 + 12α1

8 + 18β1
9),

C3 =
π

4
(4Aα1

1(α
1
2)

2 + 4Aα1
1α

2
2 + 4Aα1

2α
2
1 + 4Aα3

1 − 3(α1
1)

2β1
3 − 3(β1

1)2β1
3

+ 3(α1
1)

2α1
4 − 3(α1

1)
2β1

5 + 3β1
1α

1
1β

1
4 + 3α1

1α
1
2α

1
3 − 3α1

1α
1
2β

1
4 + β3

7

+ 6α1
1α

1
2α

1
5 + 2α1

1α
1
2α

1
7 + 2α1

1α
1
2β

1
8 + 2α1

1(α
1
3)

2 − 3β1
1α

1
1α

1
3 + α3

8

− α1
1α

1
3β

1
4 + β1

1β
1
3β

1
4 + 2α1

1α
1
3α

1
5 − 2α1

1β
1
3β

1
5 + α1

1(α
1
4)

2 − α1
1(β

1
4)2

− α1
1β

1
3α

1
4 + α1

1α
1
4β

1
5 − 2α1

1(β
1
5)2 + α1

1β
1
4α

1
5 + α1

8α
2
2 + 2β1

5α
2
5 + 3β3

9

− 3α1
1β

2
4 + 3α1

1α
2
5 + 2α1

1α
2
7 + 2α1

1β
2
8 + 3β1

1β
2
9 + (α1

2)
2α1

4 − (α1
2)

2β1
5

+ (α1
2)

2α1
8 + 3(α1

2)
2β1

9 + 3β1
1α

1
2β

1
9 + α1

2α
1
3α

1
4 + 2α1

2α
1
4α

1
5 + β1

1α
2
8

− α1
2β

1
4β

1
5 + 4α1

2α
1
5β

1
5 + β1

1α
1
2α

1
8 + α1

2α
2
4 − α1

2β
2
5 + α1

2α
2
8 + 3α1

2β
2
9

+ 2β1
1α

1
3β

1
3 + 3α1

3α
2
1 + 3β1

3β
2
1 − 2α1

3β
2
3 + α1

3α
2
4 − β1

3β
2
4 + β1

1α
1
4α

1
5

+ α1
4α

2
2 + α1

4α
2
3 − β1

4β
2
3 + α1

4α
2
5 − β1

4β
2
5 + 2β1

1α
1
5β

1
5 − 3β3

3 + 3β1
1β

2
3

+ 3α1
5α

2
1 + α1

5α
2
4 − β1

5β
2
4 + 2α1

5β
2
5 + 2α1

7α
2
1 + α1

8β
2
1 + 3α1

1α
2
3 + α3

4

+ 3β1
9β

2
1 − 3β1

4α
2
1 + 2β1

8α
2
1 − β1

5α
2
2 + 3β1

9α
2
2 − 2β1

3α
2
3 − β3

5 + 3α3
6),

C1 =π(α5
1 + β5

2),

and since the rank of the Jacobian matrix of the function C = (C1, C3, C5) with respect
to its variables is maximal, Ci, i = 1, 3, 5 are linearly independent in their variables The
averaging function f5(r) has at most 2 solutions in D, see Proposition 5.2. In order to
apply the averaging method of order 6 we solve C1 = 0 for β5

2 , C3 = 0 for β3
7 , and C5 = 0

for β1
9 , resulting f5(r) = 0. We remark that these expressions only hold for A 6= −3. The

results for A = −3 are presented later on. Calculating the averaging function of sixth
order we obtain

f6(r) = r(D5r
4 +D3r

2 +D1).

The expressions of Di for i = 1, 3, 5 are very long so we present them in Appendix D.

Therefore f6(r) has at most 2 solutions in D. Using the same arguments than in the
proof of the Collins first form for f6(r) we can show that at most 2 small limit cycles
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can bifurcate from the uniform isochronous center at the origin and this number can be
reached.

Now we analyze the bifurcation of small limit cycles for the center of (5.13) in the case
A = −3. We remark that until the averaging method of order 5 the respective averaging
functions for this special case can be obtained by plugging A = −3 in the equations of
the general case, so we do not explicit them. Hence we solve C1 = 0 for β5

2 , C3 = 0 for
β3
7 , and C5 = 0 for α1

8, and we get f5(r) = 0 when A = −3. Calculating the averaging
function of sixth order we obtain

f6(r) = r(D5r
4 +D4r

3 +D3r
2 +D1).

The explicit expressions of Dj for j = 1, 3, 4, 5 are very long so we present them in
Appendix E.

Therefore f6(r) has at most 3 solutions in D according to Proposition 5.2. Using
similar arguments as those applied in the proof of the Collins first form for f6(r) it is
proved that at most 3 small limit cycles can bifurcate from the uniform isochronous
center at the origin and this number can be reached.

This completes the proof of Theorem 5.5.

5.3.3 Proof of Theorem 5.6

A first integral H and its corresponding integrating factor µ for system (5.6) are H(x, y) =
(x2 + y2)/(1− x2) and µ = −2/(x2 − 1)2. When h ∈ (0, 1) then H(x, y) = h are periodic
solutions around the center (0, 0) contained in the open disc of radius 1 centered at the
origin. For proving Theorem 5.6 we shall use Theorem 5.1. Therefore applying the
notation of Theorem 5.1 we have h1 = 0, h2 = 1 and ρ(R, θ) = R/(R2 cos2 θ + 1) for
all 0 < R < 1 and θ ∈ [0, 2π). Then all the hypotheses of Theorem 5.1 are satisfied for
system (5.6). Using Theorem 5.1 we transform the perturbed differential system (5.9)
into the form

dR

dθ
= ε

∑5
i=0Mi(θ, α, β)Ri

1 +R2 cos2 θ
+O(ε2) (5.14)

where

M0(θ, α, β) =−
√

1 +R2 cos2 θ(α0 cos θ + β0 sin θ),

M1(θ, α, β) =− α1 cos2 θ − (α2 + β1) cos θ sin θ − β2 sin2 θ,

M2(θ, α, β) =(−1/4
√

2)
√

2 +R2 +R2 cos(2θ)((7α0 + 3α3 + α5

+ β4) cos θ + (α0 + α3 − α5 − β4) cos(3θ) + 2(α4

+ β0 + β3 + β5 + (α4 + β0 + β3 − β5) cos(2θ)) sin θ),

M3(θ, α, β) =− (2α1 + α6) cos4 θ − (2α2 + α7 + β1 + β6) cos3 θ sin θ

− (α1 + α8 + β2 + β7) cos2 θ sin2 θ − (α2 + α9 + β8)

cos θ sin3 θ − β9 sin4 θ,

M4(θ, α, β) =(−1/2
√

2) cos θ
√

2 +R2 +R2 cos(2θ)(α0 + α3 + α5

+ (α0 + α3 − α5) cos(2θ) + α4 sin(2θ)),
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M5(θ, α, β) =(−1/4) cos θ((3(α1 + α6) + α8) cos θ + (α1 + α6 − α8)

cos 3θ + 2(α2 + α7 + α9 + (α2 + α7 − α9) cos 2θ) sin θ),

where α = (α0, . . . , α9) and β = (β0, . . . , β9).

We must study the zeros of the averaging function f : (0, 1)→ R defined by

f(R) =

∫ 2π

0

∑5
i=0Mi(θ, α, β)Ri

1 +R2 cos2 θ
dθ.

By computing the previous integral, we obtain

f(R) = π(α6 − α1 − 3α8 − β2 − β7 + 3β9)g0 − π(α1 + α6 + α8)g1

+ 2π(α8 − β9)g2 + 2π(α6 − α8 − β7 + β9)g3, (5.15)

where
g0 = R, g1 = R3, g2 = R

√
1 +R2, g3 = (1−

√
1 +R2)/R.

In order to find the maximum number of simple zeros of the function f we need to prove
that the four functions gi : (0, 1) → R, i ∈ {0, . . . , 3} given in (5.15) are an ECT-system
and according to Theorem 5.3 this is the case if each Wronskian Wj(g0, . . . , gj) 6= 0, j ∈
{0, . . . , 3}. More precisely

W0 =R, W1 = 2R3, W2 = −2R6/(1 +R2)3/2

W3 =12R2(8 + 12R2 + 4R4 − 8(1 +R2)3/2 −R4
√

1 +R2)/(1 +R2)7/2.

For R ∈ (0, 1) we have that all the Wronskians above are nonzero. Moreover the rank
of the Jacobian matrix of the coefficients of gi, i = 0, . . . , 3 in f(R) in the variables
α1, α6, α8, β2, β7, β9 is maximal. Thus applying Theorems 5.3 and 5.4, we conclude that
wit is proved that at most 3 medium limit cycles can bifurcate from the periodic solutions
surrounding the uniform isochronous cubic center of the Collins first form and this number
can be reached. This completes the proof of Theorem 5.6.

5.3.4 Proof of Theorem 5.7

We use the Collins first and second forms to prove Theorem 5.7. We were able to apply
up to the averaging theory of order 6 using Theorem 5.4, and in order to calculate
the respective averaging functions fi, for i = 1, . . . , 6 we used the formulae of y±i from
Appendix C.

Collins first form
Consider the planar cubic polynomial differential system (5.10) with f(x, y) = xy. In

order to analyze the Hopf bifurcation for this system, applying Theorem 5.4, we set α = π
and we introduce a small parameter ε doing the change of coordinates x = εX, y = εY.
After that we perform the polar change of coordinates X = r cos θ, Y = r sin θ and by
doing a Taylor expansion truncated at the 6th order in ε we obtain an expression for dr/dθ
similar to (5.1), with α = π. The explicit expression is very large so we omit it.

The differential system (5.10) with f(x, y) = xy is a polynomial system, therefore the
corresponding functions F±i (θ, r) and R±i (θ, r, ε), for i = 1, . . . , 4 are analytic. Moreover,
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since the variable θ appears through sines and cosines, system (5.10) with f(x, y) = xy
is 2π−periodic when it it is written under the form dr/dθ. We shall have D of Theorem
5.4 as D = {r : 0 < r < 1}.

We obtain each y+i and y−i , i = 1. . . . , 4 using the formulae in Appendix C, respectively
for X1 and X2 of system (5.10) with f(x, y) = xy, after the changes described in the
previous paragraphs of this section. Then we calculate the averaging functions fi, i =
1. . . . , 6 using equation (5.3). Therefore, by Theorem 5.4 we have the averaging function
of first order

f1(r) = πr(α1
1 + β1

2 + γ11 + δ12).

Clearly f1(r) has no solution in D. Thus there is no small limit cycles bifurcating from
the uniform isochronous center at the origin by the averaging theory of first order. Now
setting γ11 = −(α1

1 + β1
2 + δ12) we obtain f1(r) = 0. So we can apply the averaging theory

of order 2, obtaining
f2(r) = r(A2r + A1),

where

A2 =
2

3
(α1

4 − γ14 + β1
3 + 2β1

5 − δ13 − 2δ15),

A1 =
π

4
(α1

1α
1
2 + 2α2

1 + 2π(α1
1)

2 − α1
1γ

1
2 + 2γ21 − α1

1β
1
1 + α1

2β
1
2 + 4πα1

1β
1
2

− γ12β1
2 − β1

1β
1
2 + 2π(β1

2)2 + 2β2
2 + α1

1δ
1
1 + β1

2δ
1
1 + 2δ22).

Thus f2(r) has one solution in D if 0 < −A1/A2 < 1. Therefore applying Theorem 5.4
it is proved that at most 1 small limit cycle can bifurcate from the uniform isochronous
center at the origin and this number can be reached. To apply the averaging method of
third order we need that f2(r) = 0. Thus we solve A1 = 0 for γ14 and A2 = 0 for γ21 from
these coefficients. Calculating the next averaging function we have

f3(r) = r(B3r
2 +B2r +B1),

where

B3 =
1

8
π(−4β1

2 + 3α1
6 + β1

7 + α1
8 + 3β1

9 − 4δ12 + δ17 + 3δ19 + 3γ16 + γ18),

B2 =
2

9
(α1

1α
1
3 − 3β1

1β
1
3 + 6πα1

1β
1
3 − α1

1β
1
4 + 6πα1

1α
1
4 + 2α1

1α
1
5 + 12πα1

1β
1
5

− α1
1δ

1
4 + α1

1γ
1
3 + 2α1

1γ
1
5 + 6πβ1

2β
1
3 + 3α1

2α
1
4 − 4β1

2β
1
4 + 6α1

2β
1
5

+ 12πβ1
2β

1
5 − β1

2δ
1
4 − 5β1

2α
1
3 + 6πβ1

2α
1
4 − 3α1

4γ
1
2 + 2β1

2α
1
5 + 3β2

3

+ 3α2
4 + 6β2

5 + 3δ11δ
1
3 + 3δ12δ

1
4 − 3β1

3γ
1
2 − 6β1

5γ
1
2 + 3δ13γ

1
2 + β1

2γ
1
3

+ 6δ12γ
1
3 + 2β1

2γ
1
5 − 3δ23 − 3γ24 − 6δ25),

B1 =
1

16
π(10π2(α1

1)
3 − 8πβ1

1(α1
1)

2 + 30π2(α1
1)

2β1
2 − 4(α1

1)
2β1

2

+ 8π(α1
1)

2α1
2 + 3(β1

1)2β1
2 + 4π(α1

1)
2δ11 − 4(α1

1)
2δ12 − 4π(α1

1)
2γ12

+ 3(β1
1)2α1

1 − 16πβ1
1α

1
1β

1
2 − 2β1

1α
1
1δ

1
1 + 3α1

1(α
1
2)

2 + 30π2α1
1(β

1
2)2

− 4α1
1(β

1
2)2 − 8πβ1

1(β1
2)2 − 2β1

1α
1
1α

1
2 + 16πα1

1α
1
2β

1
2 + 2α1

1α
1
2δ

1
1

+ 8πα1
1β

1
2δ

1
1 − 2β1

1β
1
2δ

1
1 − 8α1

1β
1
2δ

1
2 − 2α1

1α
1
2γ

1
2 − 4α1

1β
2
1
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+ 16πα1
1α

2
1 + 4α1

1α
2
2 + 16πα1

1β
2
2 − 4β1

1β
2
2 − α1

1(δ
1
1)2

− 4α1
1(δ

1
2)2 − α1

1(γ
1
2)2 + 2β1

1α
1
1γ

1
2 − 8πα1

1β
1
2γ

1
2 − 2α1

1δ
1
1γ

1
2

+ 4α1
1δ

2
1 − 4α1

1γ
2
2 + 10π2(β1

2)3 + 3(α1
2)

2β1
2 + 4π(β1

2)2δ11
− 4(β1

2)2δ12 − 2β1
1α

1
2β

1
2 + 8πα1

2(β
1
2)2 + 2α1

2β
1
2δ

1
1 + 4α1

2α
2
1

− 4β1
2β

2
1 + 4α1

2β
2
2 + 16πβ1

2β
2
2 − β1

2(δ11)2 − 4β1
2(δ12)2

− 2α1
2β

1
2γ

1
2 + 4β1

2δ
2
1 − 4β1

1α
2
1 + 16πβ1

2α
2
1 + 4α2

1δ
1
1

− 4α2
1γ

1
2 + 4β1

2α
2
2 + 4β2

2δ
1
1 + 8α3

1 + 8β3
2 − β1

2(γ12)2 + 2β1
1β

1
2γ

1
2

− 4π(β1
2)2γ12 − 2β1

2δ
1
1γ

1
2 − 4β2

2γ
1
2 − 4β1

2γ
2
2 + 8γ31 + 8δ32),

and since the rank of the Jacobian matrix of the function B = (B1, B2, B3) with respect
to its variables is maximal, Bi, i = 1, . . . , 3 are linearly independent in their variables.

The averaging function f3(r) can have at most 2 solutions in D, see Proposition 5.2.
Thus using Theorem 5.4 we conclude that at most 2 small limit cycles can bifurcate from
the uniform isochronous center at the origin and this number can be reached. In order to
apply the averaging theory of order 4 we need that f3(r) = 0, so we vanish its coefficients
B1, B2 and B3 by conveniently isolating δ32, δ25 and δ19 from these coefficients. The resulting
averaging function of order 4 is

f4(r) = r(C4r
3 + C3r

2 + C2r + C1),

where

C4 =
4

15
(α1

4 − 4β1
3 − 6β1

5),

C3 =
1

144
(128(α1

4)
2 + 256β1

3α
1
4 + 512β1

5α
1
4 + 36α1

3πα
1
4 + 36α1

5πα
1
4

− 144π2(β1
2)2 + 128(β1

3)2 + 512(β1
5)2 − 54α1

6πβ
1
1 + 18α1

8πβ
1
1

+ 72πβ1
1β

1
2 − 144α1

1π
2β1

2 + 108α1
6π

2β1
2 + 36α1

8π
2β1

2 − 216α1
2πβ

1
2

− 63α1
7πβ

1
2 + 27α1

9πβ
1
2 − 72α1

3πβ
1
3 − 36πβ1

3β
1
4 + 512β1

3β
1
5

− 36πβ1
4β

1
5 + 72α1

5πβ
1
5 − 99πβ1

2β
1
6 − 99α1

1πβ
1
6 − 18πβ1

1β
1
7

+ 36π2β1
2β

1
7 + 36α1

1π
2β1

7 + 18α1
2πβ

1
7 − 81πβ1

2β
1
8 − 9α1

1πβ
1
8

+ 54πβ1
1β

1
9 + 108π2β1

2β
1
9 + 108α1

1π
2β1

9 + 162α1
2πβ

1
9 − 144πβ2

2

+ 36πβ2
7 + 108πβ2

9 + 108α1
1α

1
6π

2 + 36α1
1α

1
8π

2 + 54α1
2α

1
6π

+ 9α1
1α

1
7π + 54α1

2α
1
8π + 27α1

1α
1
9π + 108α2

6π + 36α2
8π),

C2 =
1

108
(32α1

4(α
1
1)

2 + 45π2β1
3(α1

1)
2 − 16β1

3(α1
1)

2 − 36πβ1
4(α1

1)
2

+ 90π2β1
5(α1

1)
2 − 32β1

5(α1
1)

2 + 45α1
4π

2(α1
1)

2 + 36α1
3π(α1

1)
2

+ 48α1
2α

1
3α

1
1 + 192α1

2α
1
5α

1
1 + 48α2

3α
1
1 + 96α2

5α
1
1 − 48α1

3β
1
1α

1
1

− 54α1
4πβ

1
1α

1
1 − 176α1

4β
1
2α

1
1 + 90α1

4π
2β1

2α
1
1 − 144α1

3πβ
1
2α

1
1

− 162πβ1
1β

1
3α

1
1 + 90π2β1

2β
1
3α

1
1 + 112β1

2β
1
3α

1
1 + 54α1

2πβ
1
3α

1
1

+ 48β1
1β

1
4α

1
1 − 180πβ1

2β
1
4α

1
1 − 108πβ1

1β
1
5α

1
1 + 180π2β1

2β
1
5α

1
1

+ 324α1
2πβ

1
5α

1
1 + 108πβ2

3α
1
1 − 48β2

4α
1
1 + 216πβ1

5α
1
1

+ 162α1
2α

1
4πα

1
1 − 256β1

2β
1
5α

1
1 − 48α1

2β
1
4α

1
1 + 144α1

5πβ
1
2α

1
1
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+ 108α2
4πα

1
1 − 64α1

4(β
1
2)2 + 45α1

4π
2(β1

2)2 − 180α1
3π(β1

2)2

+ 144(α1
2)

2α1
4 + 48α1

3α
2
1 + 96α1

5α
2
1 + 144α1

4α
2
2 + 144α1

2α
2
4

+ 144α3
4 − 240α1

2α
1
3β

1
2 + 192α1

2α
1
5β

1
2 − 240α2

3β
1
2 + 96α2

5β
1
2

+ 240α1
3β

1
1β

1
2 − 54α1

4πβ
1
1β

1
2 + 162α1

2α
1
4πβ

1
2 + 108α2

4πβ
1
2

+ 45π2(β1
2)2β1

3 + 128(β1
2)2β1

3 − 162πβ1
1β

1
2β

1
3 + 54α1

2πβ
1
2β

1
3

− 144π(β1
2)2β1

4 − 48α2
1β

1
4 − 192α1

2β
1
2β

1
4 + 192β1

1β
1
2β

1
4

+ 288(α1
2)

2β1
5 + 108α2

1πβ
1
3 + 144(β1

1)2β1
3 + 72α1

5π(β1
2)2

+ 72α1
5π(α1

1)
2 + 90π2(β1

2)2β1
5 + 64(β1

2)2β1
5

+ 216α2
1πβ

1
5 − 144β1

3β
2
1 − 240α1

3β
1
2 + 96α1

5β
2
2 + 108πβ1

3β
2
2

− 192β1
4β

2
2 + 216πβ1

5β
2
2 + 108α1

4πβ
2
2 − 144β1

1β
2
3 + 108πβ1

2β
2
3

− 192β1
2β

2
4 + 288α1

2β
2
5 + 216πβ1

2β
2
5 + 144β3

3 + 288β3
5

+ 108α1
4α

2
1π − 108πβ1

1β
1
2β

1
5 + 324α1

2πβ
1
2β

1
5 + 288α2

2β
1
5),

C1 =
1

192
π(π3(α1

1)
4 + 12π(α1

1)
4 + 36α1

2(α
1
1)

3 − 12π2β1
1(α1

1)
3 − 36β1

1(α1
1)

3

+ 4π3β1
2(α1

1)
3 + 12α1

2π
2(α1

1)
3 + 48π(β1

1)2(α1
1)

2 + 6π3(β1
2)2(α1

1)
2

− 24π(β1
2)2(α1

1)
2 + 72α2

1(α
1
1)

2 − 48α1
2πβ

1
1(α1

1)
2 − 36α1

2β
1
2(α1

1)
2

− 36π2β1
1β

1
2(α1

1)
2 + 36β1

1β
1
2(α1

1)
2 + 36α1

2π
2β1

2(α1
1)

2 − 48πβ2
1(α1

1)
2

+ 24π2β2
2(α1

1)
2 − 24β2

2(α1
1)

2 + 24α2
1π

2(α1
1)

2 + 48(α1
2)

2π(α1
1)

2

+ 48α2
2π(α1

1)
2 + 60(α1

2)
3α1

1 − 60(β1
1)3α1

1 + 4π3(β1
2)3α1

1

+ 36α1
2(β

1
1)2α1

1 − 36α1
2(β

1
2)2α1

1 − 36π2β1
1(β1

2)2α1
1 + 36β1

1(β1
2)2α1

1

+ 36α1
2π

2(β1
2)2α1

1 + 144α1
2α

2
2α

1
1 + 96α3

2α
1
1 − 36(α1

2)
2β1

1α
1
1

− 48α2
2β

1
1α

1
1 − 96α2

1πβ
1
1α

1
1 + 96π(β1

1)2β1
2α

1
1 − 48α2

1β
1
2α

1
1

− 96α1
2πβ

1
1β

1
2α

1
1 + 48α2

1π
2β1

2α
1
1 + 96(α1

2)
2πβ1

2α
1
1 + 96α2

2πβ
1
2α

1
1

− 48α1
2β

2
1α

1
1 + 144β1

1β
2
1α

1
1 − 96πβ1

2β
2
1α

1
1 − 96πβ1

1β
2
2α

1
1

+ 48π2β1
2β

2
2α

1
1 − 48(β1

2)β2
2α

1
1 + 96α1

2πβ
1
2α

1
1 − 96β3

1α
1
1

+ 96πβ3
2α

1
1 + 96α1

2α
2
1πα

1
1 + 96α3

1πα
1
1 + π3(β1

2)4 + 12π(β1
2)4

− 12π2β1
1(β1

2)3 − 36β1
1(β1

2)3 + 12α1
2π

2(β1
2)3 + 72α2

1(β
1
1)2

+ 48π(β1
1)2(β1

2)2 − 24α2
1(β

1
2)2 − 48α1

2πβ
1
1(β1

2)2 + 24α2
1π

2(β1
2)2

+ 48(α1
2)

2π(β1
2)2 + 48α2

2π(β1
2)2 + 48π(β2

2)2 + 72(α1
2)

2α2
1

+ 96α2
1α

2
2 + 96α1

2α
3
1 + 192α4

1 − 48α1
2α

2
1β

1
1 + 36α1

2(β
1
2)3

− 96α3
1β

1
1 + 60(α1

2)
3β1

2 − 60(β1
1)3β1

2 + 36α1
2(β

1
1)2β1

2 + 144α1
2α

2
2β

1
2

+ 96α3
2β

1
2 − 36(α1

2)
2β1

1β
1
2 − 48α2

2β
1
1β

1
2 − 96α2

1πβ
1
1β

1
2 + 96α1

2α
2
1πβ

1
2

+ 96α3
1πβ

1
2 − 48π(β1

2)2β2
1 − 48α1

2β
1
2β

2
1 + 144β1

1β
1
2β

2
1 + 72(α1

2)
2β2

2

− 96α2
1β

2
1 + 72(β1

1)2β2
2 + 24π2(β1

2)2β2
1 + 72(β1

2)2β2
2 + 96α2

2β
2
2

− 48α1
2β

1
1β

2
2 − 96πβ1

1β
1
2β

2
2 + 96α1

2πβ
1
2β

2
2 − 96β2

1β
2
2 + 96α2

1πβ
2
2

− 96β1
2β

3
1 + 96α1

2β
3
2 − 96β1

1β
3
2 + 96πβ1

2β
3
2 + 192β4

2 + 48(α2
1)

2π).

Using similar arguments as in the study of the previous averaging functions, we
conclude that f4(r) can have at most 3 solutions in D, so at most 3 small limit cycles
can bifurcate from the uniform isochronous center at the origin and this number can be
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reached. In order to apply the averaging method of order 5 we must have that f4(r) = 0.
Thus we solve C1 = 0, C2 = 0, C3 = 0 and C4=0 isolating β4

2 , β3
5 , β2

9 and β1
5 respectively.

Now we can apply the averaging theory of order 5, and its averaging function is

f5(r) = r(D5r
4 +D4r

3 +D3r
2 +D2r +D1),

where again we do not provide the explicit expressions of Dj for j = 1, . . . , 5. Hence f5(r)
has at most 4 solutions in D. Doing analogous arguments as in the proof of Theorem 5.5
to prove that Dj for j = 1, . . . , 5 are linearly independent functions and to prove that
(r5, r4, r3, R2, r) is an ECT-system (see Theorem 5.3), we prove that at most 4 small limit
cycles can bifurcate from the uniform isochronous center at the origin using the averaging
theory of order 5, and this number can be reached.

To apply the averaging theory of order 6 we solve D1 = 0 for δ52, D2 = 0 for δ45, D3 = 0
for δ39, D4 for δ23, and D5 = 0 for γ16 , so we get f5(r) = 0. Calculating the averaging
function of order 6 we obtain

f6(r) = r(E6r
5 + E5r

4 + E4r
3 + E3r

2 + E2r + E1).

We do not provide the expressions of Ei for i = 1, . . . , 6 because they are too long.
Thus f6(r) has at most 5 solutions in D. Doing analogous arguments than in the proof of
Theorem 5.5 we can show that at most 5 small limit cycles can bifurcate from the uniform
isochronous center at the origin using the averaging theory of order 6, and this number
can be reached.

Collins second form
Similarly to the previous arguments used in the Collins first form case, we apply

Theorem 5.4 to study the Hopf bifurcation for system (5.10) with f(x, y) = x + Axy,
for A ∈ R. We set α = π and we introduce a small parameter ε by doing the change
of coordinates x = εX, y = εY and then we perform the standard polar change of
coordinates X = r cos θ, Y = r sin θ. Doing a Taylor expansion truncated at the 6th order
in ε we obtain an expression for dr/dθ under the form (5.1), with α = π. The explicit
expression is very large so we omit it.

We shall have the open interval D of Theorem 5.4 as D = {r : 0 < r < r0 < 1}, where
the unperturbed system has periodic solutions passing through the point (r < r0, θ = 0).
Moreover since system (5.10) with f(x, y) = x+Axy is a polynomial differential system,
the corresponding functions F±i (θ, r) and R±i (θ, r, ε), i = 1, . . . , 4 are analytic. Finally,
the variable θ appears through sines and cosines in system (5.10) with f(x, y) = x+Axy
when it is written under the form dr/dθ, and therefore it is 2π−periodic.

We obtain each y+i and y−i , i = 1. . . . , 4 using the formulae provided in Appendix C
respectively for X1 and X2 of system (5.10) with f(x, y) = x + Axy, after the changes
described before. Then we calculate the averaging functions fi, i = 1. . . . , 6 using equation
(5.3). Hence, by Theorem 5.4 we have the averaging function of first order

f1(r) =
1

2
πr(α1

1 + β1
2 + δ12 + γ11).

Therefore f1(r) has no solution in D. Setting γ11 = −(α1
1 + β1

2 + δ12) we have f1(r) = 0.
So we can apply the averaging theory of order 2 obtaining

f2(r) = r(A2r + A1),
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where

A2 =
2

3
(−3β1

2 + β1
3 + α1

4 + 2β1
5 + 3δ12 − δ13 − 2δ15 − γ14),

A1 =
π

4
(2π(α1

1)
2 + α1

1(−β1
1 + α1

2 + 4πβ1
2 + δ11 − γ12)− β1

1β
1
2 + 2π(β1

2)2

+ α1
2β

1
2 + β1

2δ
1
1 + 2α2

1 + 2β2
2 − β1

2γ
1
2 + 2γ21 + 2δ22).

Thus f2(r) can have one solution in D if 0 < −A1/A2 < r0. Therefore applying Theorem
5.4 we can show that at most 1 small limit cycle can bifurcate from the uniform isochronous
center at the origin and this number can be reached. To apply the averaging theory of
order 3 we solve A1 = 0 and A2 = 0 isolating γ14 and γ21 respectively. Calculating the next
averaging function we have

f3(r) = r(B3r
2 +B2r +B1),

where

B3 =
π

8
(−4Aβ1

2 − 4Aδ12 − 3β1
2 − 2β1

3 + 2α1
4 + β1

5 + 3α1
6 + β1

7 + α1
8 + 3β1

9

+ 3δ12 − 4δ13 − 3δ15 + δ17 + 3δ19 + 3γ16 + γ18),

B2 = +
2

9
(9β1

1β
1
2 − 18πα1

1β
1
2 + α1

1α
1
3 − 3β1

1β
1
3 + 6πα1

1β
1
3 − α1

1β
1
4

+ 6πα1
1α

1
4 + 2α1

1α
1
5 + 12πα1

1β
1
5 − α1

1δ
1
4 + α1

1γ
1
3 + 2α1

1γ
1
5 − 18π(β1

2)2

+ 6πβ1
2β

1
3 − 4β1

2β
1
4 + 3α1

2α
1
4 + 12πβ1

2β
1
5 + 6α1

2β
1
5 − β1

2δ
1
4 − 5β1

2α
1
3

+ 6πβ1
2α

1
4 − 3α1

4γ
1
2 + 2β1

2α
1
5 − 9β2

2 + 3β2
3 + 3α2

4 + 6β2
5 − 9δ11δ

1
2

+ 3δ11δ
1
3 + 3δ12δ

1
4 + 9β1

2γ
1
2 − 3β1

3γ
1
2 − 6β1

5γ
1
2 + 3δ13γ

1
2 − 9α1

2β
1
2

+ β1
2γ

1
3 + 6δ12γ

1
3 + 2β1

2γ
1
5 + 9δ22 − 3γ23 − 3γ24 − 6δ25),

B1 = +
π

16
(10π2(α1

1)
3 − 8πβ1

1(α1
1)

2 + 30π2(α1
1)

2β1
2 − 4(α1

1)
2β1

2

+ 8π(α1
1)

2α1
2 + 3(β1

1)2β1
2 + 4π(α1

1)
2δ11 − 4(α1

1)
2δ12 − 4π(α1

1)
2γ12

− 16πβ1
1α

1
1β

1
2 − 2β1

1α
1
1δ

1
1 + 3α1

1(α
1
2)

2 + 30π2α1
1(β

1
2)2 − 4α1

1(β
1
2)2

− 8πβ1
1(β1

2)2 − 2β1
1α

1
1α

1
2 + 16πα1

1α
1
2β

1
2 + 2α1

1α
1
2δ

1
1 + 8πα1

1β
1
2δ

1
1

− 2β1
1β

1
2δ

1
1 − 8α1

1β
1
2δ

1
2 − 2α1

1α
1
2γ

1
2 − 4α1

1β
2
1 + 16πα1

1α
2
1 + 4α1

1α
2
2

+ 16πα1
1β

2
2 − 4β1

1β
2
2 − α1

1(δ
1
1)2 − 4α1

1(δ
1
2)2 − α1

1(γ
1
2)2

+ 2β1
1α

1
1γ

1
2 − 8πα1

1β
1
2γ

1
2 − 2α1

1δ
1
1γ

1
2 + 4α1

1β
3
1 − 4α1

1γ
2
2 + 10π2(β1

2)3

+ 3(α1
2)

2β1
2 + 4π(β1

2)2δ11 − 4(β1
2)2δ12 − 2β1

1α
1
2β

1
2 + 8πα1

2(β
1
2)2

+ 2α1
2β

1
2δ

1
1 + 4α1

2α
2
1 − 4β1

2β
2
1 + 4α1

2β
2
2 + 16πβ1

2β
2
2 − β1

2(δ11)2

− 4β1
2(δ12)2 − 2α1

2β
1
2γ

1
2 + 4β1

2δ
2
1 − 4β1

1α
2
1 + 16πβ1

2α
2
1

+ 4α2
1δ

1
1 − 4α2

1γ
1
2 + 4β1

2α
2
2 + 4β2

2δ
1
1 + 8α3

1 + 8β3
2 + 3(β1

1)2α1
1

− β1
2(γ12)2 + 2β1

1β
1
2γ

1
2 − 4π(β1

2)2γ12 − 2β1
2δ

1
1γ

1
2 − 4β2

2γ
1
2

− 4β1
2γ

2
2 + 8γ31 + 8δ32).

Then f3(r) has at most 2 solutions in D. Thus applying Theorem 5.4 it is proved that at
most 2 small limit cycles can bifurcate from the uniform isochronous center at the origin
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and this number can be reached. To apply the averaging method of order 4 we solve
B1 = 0, B2 = 0 and B3 = 0 isolating δ32, δ25, δ19 respectively. The next averaging function
is

f4(r) = r(C4r
3 + C3r

2 + C2r + C1).

We do not provide the expressions of Cj for j = 1, . . . , 4 because they are too long.

Of course f4(r) has at most 3 solutions in D, that is, applying the averaging theory
of order 4 we can show that at most 3 small limit cycles can bifurcate from the uniform
isochronous center at the origin and this number can be reached. To apply the averaging
method of order 5 we solve C1 = 0, C2 = 0, C3 = 0 and C4 = 0 isolating β4

2 , β3
5 , β2

9 and
β1
9 respectively. The next averaging function is

f5(r) = r(D5r
4 +D4r

3 +D3r
2 +D2r +D1),

where again we do not give the expressions of Dj for j = 1, . . . , 5. Hence f5(r) has at
most 4 solutions in D. Using analogous arguments than in the proof of Theorem 5.5 and
applying Theorem 5.4 we can show that at most 4 small limit cycles can bifurcate from
the uniform isochronous center at the origin and this number can be reached.

In order to apply the averaging theory of order 6 we solve D1 = 0 for δ52, D2 = 0 for
δ45, D3 = 0 for δ39, D4 for δ29, and D5 = 0 for γ16 , so we get f5(r) = 0. Calculating the
averaging function of order 6 we obtain

f6(r) = r(E6r
5 + E5r

4 + E4r
3 + E3r

2 + E2r + E1).

We do not provide the expressions of Ei for i = 1, . . . , 6 because they are too long. Thus
f6(r) has at most 5 solutions in D. Doing analogous arguments than in the proof of
Theorem 5.5 and applying Theorem 5.4 it follows that at most 5 small limit cycles can
bifurcate from the uniform isochronous center at the origin using the averaging theory of
order 6, and this number can be reached.

This ends the proof of Theorem 5.7.

5.3.5 Proof of Theorem 5.8

We proceed as in the proof of Theorem 5.6 in section 5.3.3 since the unperturbed system
(5.6) is the same. Hence a first integral H, its corresponding integrating factor µ, and
a function ρ satisfying the hypotheses of Theorem 5.1 are H(x, y) = (x2 + y2)/(1 − x2),
µ = −2/(x2 − 1)2, and ρ(R, θ) = R/(R2 cos2 θ + 1) for all 0 < R < 1 and θ ∈ [0, 2π).

Applying Theorem 5.1 we transform the perturbed differential system (5.11) into the
form

dR

dθ
=


ε

∑5
i=0Mi(θ, α, β)Ri

1 +R2 cos2 θ
+O(ε2) if y > 0,

ε

∑5
i=0Ni(θ, γ, δ)R

i

1 +R2 cos2 θ
+O(ε2) if y < 0,

(5.16)

where the functions Mi(θ, α, β) coincide with those given in system (5.14), Ni(θ, γ, δ) =
Mi(θ, γ, δ) for i = 0, . . . , 5, with γ = (γ0, . . . , γ9), δ = (δ0, . . . , δ9).
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The discontinuous differential system (5.16) is under the assumptions of Theorem 5.1.
Hence we must study the zeros of the averaged function f : (0, 1)→ R

f(R) =

∫ π

0

∑5
i=0Mi(θ, α, β)Ri

1 +R2 cos2 θ
dθ +

∫ 2π

π

∑5
i=0Ni(θ, γ, δ)R

i

1 +R2 cos2 θ
dθ

We compute these integrals obtaining

f(R) =π(α6 − α8 − β7 + β9 + γ6 − γ8 − δ7 + δ9)g0 + π/2(α6

− α1 − 3α8 − β2 − β7 + 3β9 − γ1 + γ6 − 3γ8 − δ2 − δ7
+ 3δ9)g1 − π/2(α1 + α6 + α8 + γ1 + γ6 + γ8)g2 + (β5 (5.17)

− α4 − β0 − β3 + γ4 + δ0 + δ3 − δ5)g3 + π(α8 − β9 + γ8

− δ9)g4 + (γ4 − α4)g5 + (α4 − β0 + β3 − β5 − γ4 + δ0

− δ3 + δ5)g6 + (α4 − 2β5 − γ4 + 2δ5)g7,

where

g0 =(1−
√

1 +R2)/R, g1 = R, g2 = R3,

g3 =
√

1 +R2, g4 = R
√

1 +R2, g5 = R2
√

1 +R2,

g6 =(arcsinhR)/R, g7 = R arcsinhR.

In order to find the maximum number of simple zeros of function f we need to prove that
the eight functions gi : (0, 1) → R, i ∈ {0, . . . , 7} given in (5.17) form an ECT-system
and according to Theorem 5.3 this is the case if each Wronskian Wj(g0, . . . , gj) 6= 0, j ∈
{0, . . . , 7}. More precisely

W0 =(1−K)/R, W1 = (2K − 2−R2)/(RK),

W2 =2K−3(1− 6K2 + 8K3 − 3K4),

W3 =6R−3K−7(8− 8K + 4R6K +R4(16− 7K) + 4R2(6− 5K)),

W4 =− 36R−2K−10(4R6K +R2(76− 56K) +R4(40− 17K)

− 40(K − 1)),

W5 =1080R−5K−15(24(K − 1) +R2(R2K(3R2 − 5) + 4(4K − 7))),

W6 =25920R−7K−20(64(1−K) +R2(R2K(6R2 − 17) + 32(7− 6K))

+ 105R3 arcsinhR),

W7 =1244160R−8K−26(4R8 − 515R4 − 12R6 − 256(K − 1) +R2(896K

− 243) + 105RK(2R2 − 5) arcsinhR),

where K =
√

1 +R2. For 0 < R < 1 we have that all the Wronskians above are nonzero.
Moreover the rank of the Jacobian matrix of the coefficients of gi for i ∈ {0, . . . , 7} in
(5.17) in the variables α1, α4, α6, α8, β0, β2, β3, β5, β7, β9, γ1, γ4, γ6, γ8, δ0, δ2, δ3, δ5, δ7, δ9 is
8. Hence applying the averaging theory of first order and Theorem 5.3 it is proved that
at most 7 medium limit cycles can bifurcate from the periodic solutions of the cubic
uniform isochronous center of the Collins first form and this number can be reached. This
completes the proof of Theorem 5.8.
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Chapter 6

Limit cycles bifurcating from
continuous and discontinuous
perturbations of uniform isochronous
centers of degree 4

In this chapter, we apply the averaging theory developed in chapter 5 to provide lower
bounds for the maximum number of limit cycles that bifurcate from the origin of quartic
polynomial differential systems of the form ẋ = −y + xp(x, y), ẏ = x + yp(x, y), with
p(x, y) a polynomial of degree 3 without constant term, when they are perturbed, either
inside the class of all continuous quartic polynomial differential systems, or inside the
class of all discontinuous piecewise quartic polynomial differential systems with two zones
separated by the straight line y = 0.

6.1 Background

According to Proposition 2.1 (see section 2.2) any planar polynomial differential system
of degree n with a uniform isochronous center can be written into the form

ẋ = −y + x p(x, y), ẏ = x+ y p(x, y), (6.1)

where p(x, y) is a polynomial in x and y of degree n− 1 and p(0, 0) = 0.

Let Hc(n) denote the maximum number of limit cycles that bifurcate from the origin of
system (6.1), when it is perturbed inside the class of all continuous polynomial differential
systems of degree n, and Hd(n) denotes the maximum number of limit cycles that bifurcate
from the origin of system (6.1), when it is perturbed inside the class of all discontinuous
piecewise polynomial differential systems of degree n with two zones separated by the
straight line y = 0. We provide lower bounds for Hc(4) and Hd(4) in both cases when
the origin is either a uniform isochronous center, or a weak focus. The method used for
obtaining these lower bounds is based on the averaging theory.

In order to prove our results we also need the Descartes Theorem about the number
of zeros of a real polynomial, see [8].
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Theorem 6.1 (Descartes theorem). Consider the real polynomial r(x) = ai1x
i1 +ai2x

i2 +
. . . + airx

ir with 0 = i1 < i2 < . . . < ir and aij 6= 0 real constants for j ∈ {1, 2, . . . , r}.
When aijaij+1

< 0, we say that aij and aij+1
have a variation of sign. If the number

of variations of signs is m, then r(x) has at most m positive real roots. Moreover, it is
always possible to choose the coefficients of r(x) in such a way that r(x) has exactly r− 1
positive real roots.

6.2 Main results

We consider the following family of continuous differential systems

ẋ = −y + xp(x, y) +
4∑
i=1

εipi(x, y),

ẏ = x+ yp(x, y) +
4∑
i=1

εiqi(x, y),

(6.2)

where

pj =αj0 + αj1x+ αj2y + αj3x
2 + αj4xy + αj5y

2 + αj6x
3 + αj7x

2y + αj8xy
2 + αj9y

3

+ αj10x
4 + αj11x

3y + αj12x
2y2 + αj13xy

3 + αj14y
4,

qj =βj0 + βj1x+ βj2y + βj3x
2 + βj4xy + βj5y

2 + βj6x
3 + βj7x

2y + βj8xy
2 + βj9y

3

+ βj10x
4 + βj11x

3y + βj12x
2y2 + βj13xy

3 + βj14y
4,

and of the discontinuous differential systems(
ẋ
ẏ

)
= X (x, y) =

{
X1(x, y) if y > 0,
X2(x, y) if y < 0,

(6.3)

where

X1(x, y) =

(
−y + xp(x, y) +

∑k
i=1 ε

ipi(x, y)

x+ yp(x, y) +
∑k

i=1 ε
iqi(x, y)

)
,

X2(x, y) =

(
−y + xp(x, y) +

∑k
i=1 ε

iui(x, y)

x+ yp(x, y) +
∑k

i=1 ε
ivi(x, y)

)
,

uj =γj0 + γj1x+ γj2y + γj3x
2 + γj4xy + γj5y

2 + γj6x
3 + γj7x

2y + γj8xy
2 + γj9y

3

+ γj10x
4 + γj11x

3y + γj12x
2y2 + γj13xy

3 + γj14y
4,

vj =δj0 + δj1x+ δj2y + δj3x
2 + δj4xy + δj5y

2 + δj6x
3 + δj7x

2y + δj8xy
2 + δj9y

3

+ αj10x
4 + δj11x

3y + δj12x
2y2 + δj13xy

3 + δj14y
4,

with k = 4 or k = 7 depending on the order of the averaging theory that we can compute.
For the continuous and the discontinuous cases we have to consider either

p(x, y) = t10x+ t01y + t20x
2 + t11xy + t02y

2 + t30x
3 + t21x

2y + t12xy
2 + t03y

3, (6.4)
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with tij ∈ R, i+ j = 1, 2, 3, t230 + t221 + t212 + t203 6= 0, or

p(x, y) = t10x+ t11xy + t30x
3 + t12xy

2, (6.5)

with t230 + t212 6= 0, or

p(x, y) = t30x
3 + t21x

2y + t12xy
2 + t03y

3. (6.6)

We remark that the polynomials p(x, y) in (6.5) and (6.6) are used to study the cases
of quartic polynomial differential systems with a uniform isochronous center at the origin,
having a non–homogeneous nonlinear part (see Theorem 4.1) or a homogeneous nonlinear
part, respectively. On the other hand, since (6.4) is a general cubic polynomial in x and
y without constant term, it is used to study the bifurcation of limit cycles in both cases
when the origin can be either a uniform isochronous center or a weak focus.

In the following we state our results.

Theorem 6.2. Using averaging theory of order 4 we obtain, for |ε| 6= 0 sufficiently small,
Hd(4) ≥ 6 for the differential system (6.3) with p(x, y) of the form (6.4) (i.e. system (6.3)
has a weak focus or a uniform isochronous center at the origin).

Theorem 6.2 is proved in section 6.3.1.

Theorem 6.3. Using averaging theory of order 4 we obtain, for |ε| 6= 0 sufficiently small,
Hd(4) ≥ 5 for the differential system (6.3) with p(x, y) either of the form (6.5) or (6.6)
(i.e. system (6.3) has a uniform isochronous center at the origin).

Theorem 6.3 is proved in section 6.3.2.

Theorem 6.4. Using the averaging theory of order 7 we obtain, for |ε| 6= 0 sufficiently
small, Hd(4) ≥ 6 for the differential system (6.3) with p(x, y) of the form (6.5) and
αj0 = βj0 = γj0 = δj0 = 0, j = 1, . . . , 7.

Theorem 6.4 is proved in section 6.3.3.

Theorem 6.5. Using the averaging theory of order 4 we obtain, for |ε| 6= 0 sufficiently
small, Hc(4) ≥ 2 for the differential system (6.2) with p(x, y) of the form (6.4).

Theorem 6.6. Using the averaging theory of order 4 we obtain, for |ε| 6= 0 sufficiently
small, Hc(4) ≥ 1 for the differential system (6.2) with p(x, y) either of the form (6.5) or
(6.6).

Theorems 6.5 and 6.6 are proved in section 6.3.4.

These results have been submitted for publication, see [34].

We remark that all these results were obtained for Hopf bifurcation, that is, we studied
the number of small limit cycles that can bifurcate from the uniform isochronous center.

We also remark that to prove Theorems 6.2 and 6.3 (respectively Theorems 6.5 and 6.6)
we shall use the averaging theory of order 4 for discontinuous (respectively continuous)
differential systems, together with a rescaling of the variables. In these proofs we can
see, using Descartes Theorem (see Theorem 6.1 in this work), that the lower bounds

89



Chapter 6. Limit cycles of uniform isochronous centers of degree 4

which appear in the theorems are actually upper bounds for the averaging theory of
order 4. From Theorems 6.2 and 6.3 (respectively Theorems 6.5 and 6.6) it follows that
if applying the averaging theory of order 4 to the differential system (6.3) (respectively
(6.2)) we obtain 6 (respectively 2) limit cycles, the origin of the differential system (6.3)
(respectively (6.2)) is a weak focus.

All calculations were performed with the assistance of the software Mathematica.

6.3 Proofs of the results

6.3.1 Proof of Theorem 6.2

Consider system (6.3) with p(x, y) of the general form (6.4). In order to analyze the Hopf
bifurcation for this system, applying Theorem 5.4, we set α = π and we introduce a small
parameter ε doing the change of coordinates x = εX, y = εY. After that we perform the
polar change of coordinates X = r cos θ, Y = r sin θ, and by doing a Taylor expansion
truncated at the 4th order in ε we obtain an expression for dr/dθ of the form (5.1), with
α = π. The explicit expression is quite large so we omit it.

The differential system (6.3) is a polynomial system, so the corresponding functions
F±i (θ, r) and R±i (θ, r, ε), i = 1, . . . , 4 are analytic. Moreover, since the variable θ appears
through sines and cosines, system (6.3) in the form dr/dθ is 2π−periodic. It suffices to
apply Theorem 5.4 to take the open interval D = {r : 0 < r < r0}, where the unperturbed
system has periodic solutions passing through the points (0, r) with 0 < r < r0.

We obtain each y+i and y−i , i = 1. . . . , 4 using the formulae provided in Appendix
C respectively for X1 and X2 of system (6.3), after the changes described in the first
paragraph of this section. Then we calculate the averaging functions fi, i = 1. . . . , 4 using
equation (5.3). Hence, by Theorem 5.4 we have the averaging function of first order

f1(r) = A1r + A0,

where

A1 =
1

2
π(3t01(α

1
0 + γ10) + α1

1 + β1
2 + γ11 + δ12 − 3t10(β

1
0 + δ10)),

A0 =2(β1
2α

1
0 + (α1

0)
2t01 − β1

0(α1
0t10 + β1

1)− γ10δ12 − (γ10)2t01 + δ10(γ10t10 + δ11)

+ β2
0 − δ20).

The rank of the Jacobian matrix of the function A = (A0, A1) with respect to the
variables t01, t10, α

1
0, α

1
1, β

1
0 , β

1
1 , β

1
2 , γ

1
0 , γ

1
1 , δ

1
0, δ

1
1, δ

1
2 is maximal. Then the coefficients A0

and A1 are linearly independent in their variables.

Clearly f1(r) has at most one solution in D. Thus applying Theorem 5.4 it is proved
that at most 1 limit cycle can bifurcate from the origin of system (6.3) with p(x, y) of
the form (6.4), using the averaging theory of first order. Solving A1 for α1

1 and A0 for δ20
we have f1(r) = 0, and we can apply the averaging theory of order 2. Its corresponding
averaging function is

f2(r) = B3r
3 +B2r

2 +B1r +B0,
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where

B3 =2π(t02 + t20),

B2 =
1

3
(−4)(3t01(2α

1
0t10 − α1

2 + 4γ10t10 + γ12)− 8t02(α
1
0 − γ10)− α1

0t20 − α1
4 − β1

3

− 2β1
5 + 6γ11t10 + γ10t20 + γ14 + δ13 + 2δ15 + 3t201(β

1
0 − δ10)− 3β1

0t
2
10

− 15δ10t
2
10 + 3β1

2t10 + 3δ12t10 + 4β1
0t11 − 4δ10t11),

B1 =
1

4
π(−8α1

3β
1
0 + 8α1

0β
1
5 − 3t01(t10(−α1

0γ
1
0 + 15β1

0δ
1
0 + 8(α1

0)
2 + 8(β1

0)2

+ (γ10)2 − 7(δ10)2) + 3α1
2γ

1
0 − 5β1

0δ
1
2 − 4α1

0α
1
2 − 4β1

0β
1
2 − 5β1

0γ
1
1

− β1
1γ

1
0 + 5γ11δ

1
0 + γ10δ

1
1 − 7γ10γ

1
2 + δ10δ

1
2 − 4α2

0 − 4γ20)

+ 3t201(8α
1
0β

1
0 + γ10(15β1

0 − 7δ10)) + 16t02((α
1
0)

2 + (γ10)2) + α1
0γ

1
1t10

− 3α1
2γ

1
1 − 3α1

2δ
1
2 + β1

1δ
1
2 + 24α1

0β
1
0t

2
10 − 3α1

0δ
1
0t

2
10

− 24α1
0β

1
2t10 + 9α1

2δ
1
0t10 + α1

0δ
1
2t10 − 16α1

0β
1
0t11 + 4α1

0α
1
4 − 4β1

0β
1
4

+ β1
1γ

1
1 − 8γ13δ

1
0 − γ11δ11 + 3γ12δ

1
2 + 8γ10δ

1
5 + 3γ10δ

1
0t

2
10

− 9γ12δ
1
0t10 − γ10δ12t10 − γ10γ11t10 − 16γ10δ

1
0t11 + 3γ11γ

1
2 + 4γ10γ

1
4

− δ11δ12 − 4δ10δ
1
4 + 4α2

1 + 4β2
2 + 4γ21 + 4δ22 − 3β1

1δ
1
0t10

+ 24β1
0β

1
1t10 + 3δ10δ

1
1t10 − 24β2

0t10 + 16(β1
0)2t20 + 16(δ10)2t20),

B0 =− 4(−α1
0β

1
2δ

1
1 + α1

0β
1
1β

1
2 + α1

0β
1
0β

1
4 − (α1

0)
2β1

5 + t01((α
1
0)

2(β1
1 − δ11)

+ α1
0(3α

1
2γ

1
0 + 2β1

0(γ11 + δ12)) + t10(−6β1
0α

1
0δ

1
0 − (α1

0)
2γ10 + (α1

0)
3

− 6γ10(3β1
0δ

1
0 + (β1

0)2 − (δ10)2)) + γ10(6β1
0δ

1
2 + 3β1

0β
1
2 + 6β1

0γ
1
1

− 4γ11δ
1
0 + 3γ10γ

1
2 − δ10δ12 + 3α2

0 + 3γ20)) + 3γ10t
2
01(2α

1
0β

1
0

+ γ10(3β1
0 − δ10)) + t02((γ

1
0)3 − (α1

0)
3) + α1

0β
1
0γ

1
0t

2
10 − α1

0β
1
2γ

1
0t10

+ β1
0(δ12)2 + α1

0α
1
2γ

1
1 + β1

0β
1
1δ

1
1 + α1

0α
1
2δ

1
2 + β1

0β
1
2δ

1
2

+ β1
1β

2
0 + β1

0β
2
1 − α1

0β
2
2 − (α1

0)
2β1

0t
2
10 + α1

0β
1
0δ

1
1t10 − 2α1

0β
1
0β

1
1t10

+ (α1
0)

2β1
2t10 − 3α1

0α
1
2δ

1
0t10 + α1

0β
2
0t10 + (α1

0)
2β1

0t11 − α1
0(β

1
0)2t20

− β1
0(β1

1)2 − (β1
0)2β1

3 + 2β1
0γ

1
1δ

1
2 + β1

0(γ11)2 + β1
0β

1
2γ

1
1 − (γ11)2δ10

− γ11δ12δ10 − γ10δ14δ10 + γ10γ
1
2δ

1
2 + (γ10)2δ15 + γ11α

2
0 − δ11β2

0

− δ10δ21 + γ11γ
2
0 + γ10δ

2
2 − 6β1

0γ
1
1δ

1
0t10 − 2(β1

0)2γ11t10

+ β1
0β

1
1γ

1
0t10 + 4γ11(δ10)2t10 − 3γ10γ

1
2δ

1
0t10 − γ10β2

0t10 − (γ10)2δ10t11

+ γ10(δ10)2t20 + δ13(δ10)2 + γ10γ
1
1γ

1
2 + δ12α

2
0 − 3δ10α

2
0t10

+ δ12γ
2
0 − 3δ10γ

2
0t10 − β3

0 + δ30 + 9β1
0(δ10)2t210 + 6(β1

0)2δ10t
2
10

− 3(δ10)3t210 − 3β1
0β

1
2δ

1
0t10 − 6β1

0δ
1
2δ

1
0t10 − 2(β1

0)2δ12t10 + δ12(δ10)2t10),

and since the rank of the Jacobian matrix of the function B = (B0, B1, B2, B3) with respect
to its variables is maximal, Bi, i = 0, . . . , 3 are linearly independent in their variables.

Hence f2(r) has at most 3 solutions in D, see Theorem 6.1. Applying Theorem 5.4 it
is proved that at most 3 limit cycles can bifurcate from the origin of system (6.3) with
p(x, y) of the form (6.4), using the averaging theory of order 2. Solving B3 for t02, B2 for
α1
4, B1 for β2

2 and B0 for δ30 we obtain f2(r) = 0, and we can apply the averaging theory
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of order 3, which corresponding averaging function is of the form

rf3(r) = C4r
4 + C3r

3 + C2r
2 + C1r + C0,

and Ci for i = 0, . . . , 4 are linearly independent in their variables, because the rank of the
Jacobian matrix of the function C = (C0, . . . , C4) with respect to its variables is maximal.
We do not explicitly provide their expressions, since they are very long. Therefore f3(r)
has at most 4 solutions in D, by Theorem 6.1. Applying Theorem 5.4 it is proved that at
most 4 limit cycles can bifurcate from the origin of system (6.3) with p(x, y) of the form
(6.4) using the averaging theory of order 3. By conveniently choosing variables to cancel
the coefficients Ci, i = 0, . . . , 4 we have f3(r) = 0. Hence we apply the averaging theory
of order 4 to obtain the averaging function of order 4

rf4(r) = D6r
6 +D5r

5 +D4r
4 +D3r

3 +D2r
2 +D1r +D0.

Since the rank of the Jacobian matrix of the function D = (D0, . . . , D6) with respect to
its variables is maximal, the coefficients Di, i = 0, . . . , 6 are linearly independent in their
variables. Their expressions are very long so we do not provide them here. As a result
of these calculations, it follows that f4(r) has at most 6 solutions in D by Theorem 6.1.
Applying Theorem 5.4 we conclude that at most 6 limit cycles can bifurcate from the
origin of system (6.3) with p(x, y) of the form (6.4), using the averaging theory of order
4. This result is a lower bound for Hd(4), hence Theorem 6.2 is proved.

6.3.2 Proof of Theorem 6.3

First we consider the systems of the form (6.3) with p(x, y) of the form (6.5). According
to Theorem 4.1, the corresponding unperturbed system has a uniform isochronous center
at the origin. In order to study the Hopf bifurcation for this case, we apply the results
obtained in the proof of Theorem 6.2, by conveniently vanishing the coefficients of (6.4),
used in that proof. More precisely, we take t01 = t20 = t02 = t21 = t03 = 0.

We also consider the systems of the form (6.3), with p(x, y) of the form (6.6), whose
corresponding unperturbed system also has a uniform isochronous center at the origin, see
Theorem 2.7. Again, we use the results obtained in the proof of Theorem 6.2, vanishing
the appropriate coefficients of (6.4), that is, we take t01 = t10 = t20 = t11 = t02 = 0.

Considering the above restrictions to the coefficients of p(x, y) we obtain the averaging
functions fi, i = 1, . . . , 4 and since they are similar to those calculated in the proof of
Theorem 6.2 we do not explicitly present them here. It is interesting to observe that the
same number of limit cycles in each averaging order was obtained with p(x, y) of the form
(6.5) and (6.6).

The following table summarizes the results obtained in this proof and in the proof of
Theorem 6.2.

It follows that if system (6.3) has 6 limit cycles up to the averaging theory of order 4,
then it must have a weak focus at the origin.

6.3.3 Proof of Theorem 6.4

Consider system (6.3) with p(x, y) of the form (6.5) and take αj0 = βj0 = γj0 = δj0 = 0, for
j = 1, . . . , 7. In this case the corresponding unperturbed system has a uniform isochronous
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Averaging order # limit cycles
Theorem 6.2 Theorem 6.3 with p(x, y) given by (6.5) or (6.6)

1 1 1
2 3 2
3 4 4
4 6 5

Table 6.1: Number of limit cycles for discontinuous differential systems (6.3).

center at the origin, see Theorem 4.1. In order to analyze the Hopf bifurcation for this
case, applying Theorem 5.4, we set α = π and we introduce a small parameter ε doing
the rescaling x = εX, y = εY. After that doing the polar change of coordinates X =
r cos θ, Y = r sin θ and a Taylor expansion truncated at the 7th order in ε we obtain an
expression for dr/dθ of the form (5.1), with α = π. The explicit expression is quite large
so we omit it. All hypotheses for applying Theorem 5.4 to this case are satisfied using
similar arguments to those presented for the proof of Theorem 6.2.

We obtain each y+i and y−i , i = 1. . . . , 7 using the formulae provided in Appendix C
respectively for X1 and X2 of system (6.3), after the changes previously described. Then
we calculate the averaging functions fi, i = 1. . . . , 7 using equation (5.3). We remark that,
up to the averaging theory of order 4, the results in this case can be easily obtained from
those already calculated in the proof of Theorem 6.3, taking into account the condition
αj0 = βj0 = γj0 = δj0 = 0, j = 1, . . . , 7, so we do not explicitly present the averaging
functions from order 1 to 3 here. Starting from the averaged function of order 4 we have

f4(r) = R4r
4 +R3r

3 +R2r
2 +R1r,

and Ri for i = 1, . . . , 4 are linearly independent in their variables, since the rank of the
Jacobian matrix of the function R = (R1, . . . , R4) with respect to its variables is maximal.
We do not explicitly provide their expressions, because they are very long. Therefore f4(r)
has at most 3 solutions in D, by Theorem 6.1. Applying Theorem 5.4 it is proved that at
most 3 limit cycles can bifurcate from the origin of system (6.3) with p(x, y) of the form
(6.5), and αj0 = βj0 = γj0 = δj0 = 0, j = 1, . . . , 7 using the averaging theory of order 4.

The next averaging functions are calculated in a similar way, so we obtain

f5(r) = S5r
5 + S4r

4 + S3r
3 + S2r

2 + S1r,

and Si for i = 1, . . . , 5 are linearly independent in their variables,

f6(r) = T6r
6 + T5r

5 + T4r
4 + T3r

3 + T2r
2 + T1r,

and Tj for j = 1, . . . , 6 are linearly independent in their variables,

f7(r) = U7r
7 + U6r

6 + U5r
5 + U4r

4 + U3r
3 + U2r

2 + U1r,

and Uk for k = 1, . . . , 7 are linearly independent in their variables. The expressions of Si,
i = 1, . . . , 5, Tj, j = 1, . . . , 6 and Uk, k = 1, . . . , 7 are very long so we do not provide them
here.
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Thus f5(r), f6(r) and f7(r) has at most 4, 5 and 6 solutions in D, respectively, see
Theorem 6.1. Applying Theorem 5.4 we conclude that at most 4, 5, and 6 limit cycles
can bifurcate from the origin of system (6.3) with p(x, y) of the form (6.5), and αj0 = βj0 =
γj0 = δj0 = 0, j = 1, . . . , 7 using the averaging theory of order 5, 6 and 7, respectively.
Therefore Theorem 6.4 is proved.

The following table summarizes our results for this case

Averaging order # limit cycles

1 0
2 1
3 2
4 3
5 4
6 5
7 6

Table 6.2: Limit cycles for quartic discontinuous differential systems with a uniform
isochronous center at the origin.

6.3.4 Proof of Theorems 6.5 and 6.6

System (5.1) becomes continuous by taking α = 2π and therefore the averaging theory
developed in chapter 5 also applies to continuous differential systems.

First, consider the continuous differential system (6.2) with p(x, y) of the form (6.4).
In order to study the limit cycles for this system we only need the expressions of y+i , i =
1. . . . , 4, which were already calculated for studying the previous cases. Hence, the
averaging functions fi, i = 1. . . . , 4 can be obtained by the same algorithm used for the
discontinuous differential systems, by taking α = 2π.

The unperturbed continuous differential system corresponding to the perturbed system
(6.2), with either p(x, y) of the form (6.5) or (6.6) has a uniform isochronous center at the
origin, according to Theorems 4.1 and 2.7, respectively. We apply the same arguments as
in the previous paragraph, by taking α = 2π and using the expressions of y+i , i = 1. . . . , 4
calculated in the proof of Theorem 6.3 to obtain the averaging functions fi, i = 1. . . . , 4
for this case. We remark that the same number of limit cycles was obtained in both cases
where p(x, y) is either of the form (6.5) or (6.6), in each averaging order studied.

Since the calculations and arguments are quite similar to those used in the previous
proofs, we omit the explicit expressions of the averaging functions. We summarize our
results in the following table

We remark that from this proof, it follows that system (6.2) with p(x, y) of the form
(6.4) has a weak focus at the origin provided that it has 2 limit cycles up to the averaging
theory of order 4.
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Averaging order # limit cycles
general case Uniform center

1 0 0
2 1 0
3 1 1
4 2 1

Table 6.3: Number of limit cycles for continuous differential systems (6.2).
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Chapter 7

Application of the averaging theory
in a concrete planar polynomial
differential system of degree 4

In this chapter, we apply the averaging theory to study the bifurcation of limit cycles in
a concrete planar polynomial differential system of degree 4 with a uniform isochronous
center at the origin. More precisely, we study the limit cycles that bifurcate from the
periodic solutions of the differential system ẋ = −y + xy(x2 + y2), ẏ = x + y2(x2 + y2)
when it is perturbed inside the class of all quartic polynomial differential systems. Using
the averaging theory of first order we show that at least 8 limit cycles can bifurcate from
the period annulus of the considered center.

7.1 Background

Peng and Feng studied in [48] the following quartic polynomial differential system with a
uniform isochronous center at the origin

ẋ = −y + xy(x2 + y2), ẏ = x+ y2(x2 + y2). (7.1)

They show that under any quartic homogeneous polynomial perturbations, at most 2
limit cycles bifurcate from the period annulus of system (7.1) using averaging theory of
first order, and this upper bound can be reached. In addition these authors prove that
for the family of perturbed quartic polynomial differential systems

ẋ =− y + xy(x2 + y2) + ε(a10x+ a01y + a11xy + a21x
2y + a03y

3

+ a40x
4 + a31x

3y + a22x
2y2 + a13xy

3 + a04y
4),

ẏ =x+ y2(x2 + y2) + ε(b10x+ b01y + b20x
2 + b02y

2 + b30x
3

+ b12xy
2 + b40x

4 + b31x
3y + b22x

2y2 + b13xy
3 + b04y

4),

(7.2)

there are at most 3 limit cycles bifurcating from the period annulus of (7.1) using averaging
theory of first order, and this upper bound is sharp. We remark that the perturbed system
(7.2) studied by Peng and Feng do not consider all the quartic polynomial differential
systems because they omit the coefficients a00, a20, a02, a30, a12, b00, b11, b21, b03 as we shall
present in the next section.
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7.2 Main results

we consider the polynomial differential systems

ẋ = −y + xy(x2 + y2) + ε

4∑
i=0

pi(x, y),

ẏ = x+ y2(x2 + y2) + ε
4∑
i=0

qi(x, y),

(7.3)

where pi =
∑
j+k=i

ajkx
jyk and qi =

∑
j+k=i

bjkx
jyk are real homogeneous polynomials of

degree i.

In what follows we state our result.

Theorem 7.1. For |ε| 6= 0 sufficiently small there are quartic polynomial differential
systems (7.3) having at least 8 limit cycles bifurcating from the periodic orbits of the
uniform isochronous center (7.1).

Note that Theorem 7.1 improves the result of Peng and Feng in 5 additional limit
cycles. The proof of Theorem 7.1 is presented in section 7.3. This result has been
submitted for publication, see [33].

All calculations were performed with the assistance of the software Mathematica.

7.3 Proof of Theorem 7.1

By Theorem 2.7 it follows that system (7.1) has a uniform isochronous center at the origin.
A first integral H and its corresponding integrating factor µ for system (7.1) are

H(x, y) =
1

3(x2 + y2)3/2
− x

(x2 + y2)1/2
, µ(x, y) =

1

(x2 + y2)5/2
,

respectively. When h ∈ (1,+∞) then H(x, y) = h are periodic solutions around the
center (0, 0). For proving Theorem 7.1 we shall use Theorem 5.1. We choose

ρ(R, θ) =
1

(R2 + 3 cos θ)1/3
,

thenH(ρ cos θ, ρ sin θ) = R2/3 for allR >
√

3 and θ ∈ [0, 2π). Therefore all the hypotheses
of Theorem 5.1 are satisfied for system (7.1). Using Theorem 5.1 we transform the
perturbed differential system (7.3) into the form

dR

dθ
= ε

(
3

2R

Qp− Pq
ρ5

)∣∣∣∣
x=ρ cos θ,y=ρ sin θ

+O(ε2), (7.4)

where
Qp− Pq = A+B,
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with

A =a00x+ b00y + (a02 + b11)xy
2 + a20x

3 + (a00 + b03)y
4

− b00xy3 + (a00 + a12 + b21)x
2y2 − b00x3y + a30x

4 + a02y
6

+ (a02 + a20 − b11)x2y4 + (a20 − b11)x4y2 + (a12 − b03)xy6

(a12 + a30 − b03 − b21)x3y4 + (a30 − b21)x5y2,
B =a10x

2 + (a01 + b10)xy + b01y
2 + (a11 + b20)x

2y + b02y
3

+ (a21 + b30)x
3y + (a03 + b12)xy

3 + a40x
5 + (a31 + b40 − b10)x4y

+ (a22 + a10 + b31 − b01)x3y2 + (a13 + a01 + b22 − b10)x2y3

+ (a04 + a10 + b13 − b01)xy4 + (a01 + b04)y
5 − b20x5y

+ (a11 − b20 − b02)x3y3 + (a11 − b02)xy5 − b30x6y
+ (a21 − b30 − b12)x4y3 + (a21 + a03 − b12)x2y5 + a03y

7

− b40x7y + (a40 − b31)x6y2 + (a31 − b40 − b22)x5y3

+ (a40 + a22 − b31 − b13)x4y4 + (a31 + a13 − b22 − b04)x3y5.

The coefficients {aij, bij}i,j∈{0,...,4} which appear in A and B are different. The expression
B corresponds to the perturbed system (7.2) studied in [48]. The authors of [48] obtained
for this system the following averaging function

gB(R) =
3

4R

[(
M4 −

3M1 + 4M2 + 8M3

36

)
R2 − M1 + 2M2

82
R6 − 2M1

729
R10

+

(
2M1

729
R12 +

2M2

81
R8 +

2M3

9
R4 − 2(M1 + M2 + M3)

)
1√

R4 − 9

]
,

(7.5)

where
M1 =a22 − a40 − a04 + b31 − b13,
M2 =− 2a22 + a40 + 3a04 − b31 + 2b13,

M3 =a22 − 3a04 − b13,
M4 =a10 + b01.

(7.6)

Peng and Feng prove that the function gB(R) has at most 3 zeros in R ∈ (
√

3,+∞), and
using the averaging theory of first order they show that the maximum number of limit
cycles of system (7.2) emerging from the period annulus of the unperturbed system (7.1)
is 3.

In this work we extend the results presented in [48] by calculating the part of the
averaging function of system (7.3) corresponding to the expression A. In this way we
perturbed the center (7.1) inside the whole class of quartic polynomial differential systems.
We note that (7.4) is continuous and bounded for θ ∈ (0, 2π) and R ∈ (

√
3,+∞) therefore

the integral of (7.4) is the sum of the integrals of its parts A and B. Then from the
expression (7.4) we have

dR

dθ
= ε

(
3

2R

A

ρ5

)∣∣∣∣x=ρ cos θ
y=ρ sin θ

+ ε

(
3

2R

B

ρ5

)∣∣∣∣x=ρ cos θ
y=ρ sin θ

+O(ε2).
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We obtain the averaging function f(R) = gA(R) + g∗B(R) where

gA(R) =a00g0(R) + a02g1(R) + a12g2(R) + a20g3(R) + a30g4(R)

+ b03g5(R) + b11g6(R) + b21g7(R),

g∗B(R) =
4∑
j=1

Mi gMj(R),

and g∗B(R) is the function (7.5) rearranged in a convenient way, with Mj, j = 1, . . . , 4
given in (7.6). The expressions of gi(R), i = 0, . . . , 7 and of gMj(R), j = 1, . . . , 4 are
shown in sections F.1 and F.1 of Appendix F, respectively.

Out of the 12 functions Gi = gi : (
√

3,+∞) → R, i ∈ {0, . . . , 7}, Gi+7 = gMi :
(
√

3,+∞) → R, i ∈ {1, . . . , 4} we have that 9 are linearly independent. Indeed, by
proceeding to the calculation of the Taylor expansions in the variable R around R = 2
until the 15th power of R for the 12 functions, which are too long and therefore they are
not presented here, and by using the software Mathematica we conclude that the rank of
the matrix 12× 16, where in the k row there are the 16 coefficients of R0, R1, . . . , R15 of
the Taylor expansion of Gk, k ∈ {0, . . . , 11}, is 9.

By Proposition 5.2 since there are 9 linearly independent functions among the 12
previously described, then there exists a linear combination of them with at least 8 zeros,
because all the coefficients of the 12 functions are linearly independent, as it is easy
to check, and hence the coefficients of the 9 linearly independent functions, which are a
subset of the 12 functions, are also linearly independent. Thus there exist R1, R2, . . . , R8 ∈
(
√

3,+∞) and coefficients aij, bij ∈ R, i, j ∈ {0, . . . , 4} such that f(Rk) = 0, k ∈
{1, . . . , 8}.

In summary, there are quartic polynomial differential systems (7.3) having at least 8
limit cycles bifurcating from the period orbits of the uniform isochronous center (7.1).

Note that in Theorem 7.1 we study medium limit cycles, i.e. limit cycles bifurcating
from the periodic orbits surrounding the uniform isochronous center of the differential
system (7.1), whereas in chapter 6 we have studied the small limit cycles of all quartic
uniform isochronous centers, i.e. the limit cycles bifurcating from the center equilibrium
point.
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Appendix A

Poincaré Compactification

Consider X a planar polynomial vector field of degree n. The Poincaré compactified
vector field p(X ) corresponding to X is an analytic vector field induced on S2 as follows,
for further details see for instance [28], or chapter 5 of [22]. Let S2 = {y = (y1, y2, y3) ∈
R3 : y21 + y22 + y23 = 1} (the so called Poincaré sphere) and TyS2 be the tangent space
to S2 at the point y. Moreover, consider the central projection f : T(0,0,1)S2 → S2.
This map defines 2 copies of X , one in the northern hemisphere and the other in the
southern one. Denote by X ′ the vector field Df ◦ X defined on S2 except on its equator
S1 = {y ∈ S2 : y3 = 0}. Note that S1 is identified to the infinity of R2. Then p(X ) is the
only analytic extension of yn−13 X ′ to S2. On S2\S1 there are two symmetric copies of X ,
and studying the behavior of p(X ) around S1, we obtain the behavior of X at infinity. The
projection of the closed northern hemisphere of S2 on y3 = 0 under (y1, y2, y3) 7−→ (y1, y2)
is known as the Poincaré disc, and it is denoted by D2. One important property of the
Poincaré compactification is that S1 is invariant under the flow of p(X ).

Since S2 is a differentiable manifold we consider the six local charts Ui = {y ∈ S2 : yi >
0}, and Vi = {y ∈ S2 : yi < 0} where i = 1, 2, 3 for computing the expression for p(X ).
The diffeomorphisms Fi : Ui → R2 and Gi : Vi → R2 for i = 1, 2, 3 are the inverses of
the central projections from the planes tangent at the points (1, 0, 0), (−1, 0, 0), (0, 1, 0),
(0,−1, 0), (0, 0, 1), and (0, 0,−1) respectively. We denote by (u, v) the value of Fi(y) or
Gi(y) for any i = 1, 2, 3. Note that (u, v) represents different things according to the local
charts under consideration.

In the local chart (U1, F1), p(X ) is written as

u̇ = vn
[
−uP

(
1

v
,
u

v

)
+Q

(
1

v
,
u

v

)]
, v̇ = −vn+1P

(
1

v
,
u

v

)
,

and the expression for p(X ) in the local chart (U2, F2) is

u̇ = vn
[
P

(
u

v
,

1

v

)
− uQ

(
u

v
,

1

v

)]
, v̇ = −vn+1Q

(
u

v
,

1

v

)
,

and finally for (U3, F3) it is

u̇ = P (u, v), v̇ = Q(u, v).

The expression for p(X ) in each chart (Vi, Gi) is the same as in the chart (Ui, Fi),
multiplied by (−1)n−1, i = 1, 2, 3. The points of S1 in any chart have v = 0. Therefore
we have a polynomial vector field in each local chart.
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We define finite (respectively, infinite) singular points of X or p(X ) the singular points
of p(X ) which lie in S2\S1 (respectively S1). We note that if y ∈ S1 is an infinite singular
point, then −y is also a singular point. Since the local behavior near −y is the local
behavior near y multiplied by (−1)n−1, it follows that the orientation of the orbits changes
when the degree is even.

The unique singular points at infinity which cannot be contained into the charts U1∪V1
are the origins of U2 and V2. Then, when we study the infinite singular points on the
charts U2 ∪ V2, we only have to verify if the origin of these charts are singularities.
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Topological equivalence

Two polynomial vector fields X and Y on R2 are topologically equivalent if there exists a
homeomorphism on S2 which preserves the infinity S1 carrying orbits of the flow induced
by p(X) into orbits of the flow induced by p(Y ), preserving or reversing simultaneously
the sense of all orbits.

A separatrix of p(X) is an orbit which is either a singular point, or a limit cycle, or a
trajectory which lies in the boundary of a hyperbolic sector at a finite or infinity singular
point.

We denote by Sep(p(X)) the set formed by all separatrices of p(X). The set Sep(p(X))
is closed, see [47]. Each open connected component of S2 \Sep(p(X)) is called a canonical
region of p(X). A separatrix configuration is a union of Sep(p(X)) plus one representative
solution chosen from each canonical region. Moreover, Sep(p(X)) and Sep(p(Y )) are
equivalent if there exists a homeomorphism in S2 preserving the infinity S1 carrying orbits
of Sep(p(X)) into orbits of Sep(p(Y )), preserving or reversing simultaneously the sense of
all orbits.

The next result is due to Neumann [47] and characterizes the topologically equivalence
between two Poincaré compactified vector fields.

Theorem B.1. Let X and Y be two polynomial vector fields in R2. If p(X) and p(Y )
have finitely many separatrices, then p(X) and p(Y ) are topologically equivalent if and
only if their separatrix configurations are equivalent.

Theorem B.1 implies that, to obtain the global phase portrait of a polynomial vector
field p(X) with finitely many separatrices, we need to determine the separatrices of p(X)
and one orbit in each canonical region.

Using the arguments of the proof of Theorem B.1 the next result follows.

Theorem B.2. Let X and Y be two polynomial vector fields in R2. If p(X) and p(Y )
have the infinity filled of singular points and finitely many separatrices in R2, then p(X)
and p(Y ) are topologically equivalent if and only if their separatrix configurations are
equivalent.

According to Theorem B.2, in order to have the global phase portrait of a polynomial
vector field X with the infinity filled of singular points and finitely many separatrices in
R2, we need to determine the separatrices of p(X) and one orbit in each canonical region.
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Appendix C

Expressions of yi(θ, ρ), for i = 1, . . . ,7

We present the expressions of yi(θ, ρ), for i = 1, . . . , 7.

y±1 (θ, ρ) =

∫ θ

0

F±1 (φ, ρ)dφ,

y±2 (θ, ρ) =

∫ θ

0

(
2F±2 (φ, ρ) + 2∂F±1 (φ, ρ)y±1 (φ, ρ)

)
dφ,

y±3 (θ, ρ) =

∫ θ

0

(
6F±3 (φ, ρ) + 6∂F±2 (φ, ρ)y±1 (φ, ρ)

+ 3∂2F±1 (φ, ρ)y±1 (φ, ρ)2 + 3∂F±1 (φ, ρ) y±2 (φ, ρ)
)
dφ,

y±4 (θ, ρ) =

∫ θ

0

(
24F±4 (φ, ρ) + 24∂F±3 (φ, ρ)y±1 (φ, ρ)

+ 12∂2F±2 (φ, ρ)y±1 (φ, ρ)2 + 12∂F±2 (φ, ρ)y±2 (φ, ρ)

+ 12∂2F±1 (φ, ρ)y±1 (φ, ρ)y±2 (φ, ρ)

+ 4∂3F±1 (φ, ρ)y±1 (φ, ρ)3 + 4∂F±1 (φ, ρ)y±3 (φ, ρ)
)
dφ,

y±5 (θ, ρ) =

∫ θ

0

(
120F±5 (φ, ρ) + 120∂F±4 (φ, ρ)y±1 (φ, ρ)

+ 60∂2F±3 (φ, ρ)y±1 (φ, ρ)2 + 60∂F±3 (φ, ρ)y±2 (φ, ρ)

+ 60∂2F±2 (φ, ρ)y±1 (φ, ρ)y±2 (φ, ρ) + 20∂3F±2 (φ, ρ)y±1 (φ, ρ)3

+ 20∂F±2 (φ, ρ)y±3 (φ, ρ) + 20∂2F±1 (φ, ρ)y±1 (φ, ρ)y±3 (φ, ρ)

+ 15∂2F±1 (φ, ρ)y±2 (φ, ρ)2 + 30∂3F±1 (φ, ρ)y±1 (φ, ρ)2y±2 (φ, ρ)

+ 5∂4F±1 (φ, ρ)y±1 (φ, ρ)4 + 5∂F±1 (φ, ρ)y±4 (φ, ρ)
)
dφ,

y±6 (θ, ρ) =

∫ θ

0

(
720F±6 (φ, ρ) + 720∂F±5 (φ, ρ)y±1 (φ, ρ)

+ 360∂2F±4 (φ, ρ)y±1 (φ, ρ)2 + 360∂F±4 (φ, ρ)y±2 (φ, ρ)

+ 120∂3F±3 (φ, ρ)y±1 (φ, ρ)3 + 360∂2F±3 (φ, ρ)y±1 (φ, ρ)y±2 (φ, ρ)

+ 120∂F±3 (φ, ρ)y±3 (φ, ρ) + 30∂4F±2 (φ, ρ)y±1 (φ, ρ)4

+ 180∂3F±2 (φ, ρ)y±1 (φ, ρ)2y±2 (φ, ρ) + 120∂2F±2 (φ, ρ)y±1 (φ, ρ)y±3 (φ, ρ)
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+ 90∂2F±2 (φ, ρ)y±2 (φ, ρ)2 + 30∂F±2 (φ, ρ)y±4 (φ, ρ)

+ 60∂4F±1 (φ, ρ)y±1 (φ, ρ)3y±2 (φ, ρ) + 60∂3F±1 (φ, ρ)y±1 (φ, ρ)2y±3 (φ, ρ)

+ 90∂3F±1 (φ, ρ)y±1 (φ, ρ)y±2 (φ, ρ)2 + 30∂2F±1 (φ, ρ)y±1 (φ, ρ)y±4 (φ, ρ)

+ 60∂2F±1 (φ, ρ)y±2 (φ, ρ)y±3 (φ, ρ) + 6∂5F±1 (φ, ρ)y±1 (φ, ρ)5

+ 6∂F±1 (φ, ρ)y±5 (φ, ρ)
)
dφ,

y±7 (t, ρ) =

∫ t

0

(
5040F±7 (φ, ρ) + 5040∂F±6 (φ, ρ)y±1 (φ, ρ)

+ 2520∂2F±5 (φ, ρ)y±1 (φ, ρ)2 + 2520∂F±5 (φ, ρ)y±2 (φ, ρ)

+ 2520∂2F±4 (φ, ρ)y±1 (φ, ρ)y±2 (φ, ρ) + 840∂3F±4 (φ, ρ)y±1 (φ, ρ)3

+ 840∂F±4 (φ, ρ)y±3 (φ, ρ) + 840∂2F±3 (φ, ρ)y±1 (φ, ρ)y±3 (φ, ρ)

+ 630∂2F±3 (φ, ρ)y±2 (φ, ρ)2 + 1260∂3F±3 (φ, ρ)y±1 (φ, ρ)2y±2 (φ, ρ)

+210∂4F±3 (φ, ρ)y±1 (φ, ρ)4 + 210∂F±3 (φ, ρ)y±4 (φ, ρ)

+ 210∂2F±2 (φ, ρ)y±1 (φ, ρ)y±4 (φ, ρ) + 420∂3F±2 (φ, ρ)y±1 (φ, ρ)2y±3 (φ, ρ)

+ 420∂4F±2 (φ, ρ)y±1 (φ, ρ)3y±2 (φ, ρ) + 630∂3F±2 (φ, ρ)y±2 (φ, ρ)2y±1 (φ, ρ)

+ 42∂5F±2 (φ, ρ)y±1 (φ, ρ)5 + 420∂2F±2 (φ, ρ)y±2 (φ, ρ)y±3 (φ, ρ)

+ 42∂F±2 (φ, ρ)y±5 (φ, ρ) + 630∂3F±2 (φ, ρ)y±2 (φ, ρ)2y±1 (φ, ρ)

+ 7∂6F±1 (φ, ρ)y±1 (φ, ρ)6 + 105∂5F±1 (φ, ρ)y±1 (φ, ρ)4y±2 (φ, ρ)

+ 140∂4F±1 (φ, ρ)y±1 (φ, ρ)3y±3 (φ, ρ) + 630∂4F±1 (φ, ρ)y±1 (φ, ρ)2y±2 (φ, ρ)2

+ 105∂3F±1 (φ, ρ)y±1 (φ, ρ)2y±4 (φ, ρ) + 42∂2F±1 (φ, ρ)y±1 (φ, ρ)y±5 (φ, ρ)

+ 420∂3F±1 (φ, ρ)y±1 (φ, ρ)y±2 (φ, ρ)y±3 (φ, ρ)

+ 105∂3F±1 (φ, ρ)y±2 (φ, ρ)3 + 105∂2F±1 (φ, ρ)y±2 (φ, ρ)y±4 (φ, ρ)

+70∂2F±1 (φ, ρ)y±3 (φ, ρ)2 + 7∂F±1 (φ, ρ)y±6 (φ, ρ)
)
dφ.
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Appendix D

Averaging function of order 6 for the
Collins second form, A 6= 0.
Continuous Case

We present the averaging function of order 6 for the Collins second form, in the case
A 6= 0, discussed in the proof of Theorem 5.5.

f6(r) = r(D5r
4 +D3r

2 +D1).

where

D5 =− π(237A3α1
1β

1
1 + 45A3α1

1α
1
2 − 192A3α2

1 + 2406A2α1
1β

1
1

+ 1446A2α1
1α

1
2 − 476A2α1

1α
1
3 + 524A2α1

1β
1
4 + 60A2α1

1α
1
5

+ 694A2β1
1β

1
5 + 288A2α1

1β
1
6 − 192A2α1

1α
1
7 + 96A2α1

1α
1
9

+ 272A2α1
2α

1
4 + 454A2α1

2β
1
5 + 192A2α1

2α
1
6 − 400A2α1

3α
1
4

− 256A2α1
3β

1
5 + 656A2β1

1α
1
4 + 16A2α1

4β
1
4 − 176A2α1

4α
1
5

+ 16A2β1
4β

1
5 − 32A2α1

5β
1
5 + 192A2β1

1α
1
6 − 720A2α2

1 + 272A2β2
3

− 112A2α2
4 + 304A2β2

5 − 192A2α2
6 − 96A2α2

8 − 96A2β2
9

+ 5229Aα1
1β

1
1 + 4509Aα1

1α
1
2 − 540Aα1

1α
1
3 + 2124Aα1

1β
1
4

+ 1980Aα1
1α

1
5 + 2322Aβ1

1β
1
5 + 2376Aα1

1β
1
6 − 1080Aα1

1α
1
7

− 72Aα1
1β

1
8 + 792Aα1

1α
1
9 + 1008Aα1

2α
1
4 + 1746Aα1

2β
1
5

+ 864Aα1
2α

1
6 − 360Aα1

3β
1
5 + 432Aα1

3α
1
6 + 176Aα1

3α
1
8

+ 1584Aβ1
1α

1
4 + 288Aα1

4β
1
4 + 864Aα1

4α
1
5 + 216Aβ1

4β
1
5

+ 720Aα1
4β

1
6 − 48Aα1

4α
1
7 + 48Aα1

4β
1
8 + 432Aα1

4α
1
9

+ 744Aα1
5β

1
5 + 720Aα1

5α
1
6 + 648Aβ1

5β
1
6 + 208Aα1

5α
1
8

+ 24Aβ1
5β

1
8 + 576Aβ1

1α
1
6 + 144Aβ1

4α
1
6 + 288Aα1

6β
1
6

+ 288Aα1
6α

1
9 − 24Aβ1

5α
1
7 − 96Aβ1

1α
1
8 + 16Aβ1

4α
1
8 + 96Aβ1

6α
1
8

+ 96Aα1
8α

1
9 + 216Aβ1

5α
1
9 − 432Aα2

1 + 1008Aβ2
3 − 432Aα2

4

+ 1008Aβ2
5 − 864Aα2

6 − 480Aα2
8 − 576Aβ2

9 + 3456α1
1β

1
1

+ 1728α1
1α

1
2 − 2880α1

1α
1
3 + 1152α1

1β
1
4 + 864α1

1α
1
5
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+ 2016β1
1β

1
5 + 3024α1

1β
1
6 − 2016α1

1α
1
7 − 720α1

1β
1
8 + 576α1

2α
1
4

+ 1152α1
2β

1
5 + 864α1

2α
1
6 − 1152α1

3α
1
4 − 1152α1

3β
1
5

− 288α1
3α

1
6 + 1440β1

1α
1
4 + 288α1

4β
1
4 + 288α1

4α
1
5 + 288β1

4β
1
5

+ 864α1
4β

1
6 − 576α1

4α
1
7 − 288α1

4β
1
8 + 576α1

5β
1
5

+ 864α1
5α

1
6 + 1296β1

5β
1
6 + 192α1

5α
1
8 − 144β1

5β
1
8 + 864β1

1α
1
6

+ 288β1
4α

1
6 + 432α1

6β
1
6 − 144α1

6α
1
7 − 144α1

6β
1
8

+ 432α1
6α

1
9 − 288β1

5α
1
7 − 48α1

7α
1
8 + 144β1

6α
1
8 − 48α1

8β
1
8

+ 144α1
8α

1
9 + 576β2

3 − 288α2
4 + 288β2

5 − 864α2
6 − 576α2

8

− 864β2
9)/[384(A+ 3)],

D3 =− π(108A2α1
2(α

1
1)

3 − 828Aα1
2(α

1
1)

3 − 3456α1
2(α

1
1)

3

− 1152Aα1
3(α

1
1)

3 − 3456α1
3(α

1
1)

3 − 384Aα1
5(α

1
1)

3

− 1152α1
5(α

1
1)

+36A2β1
1(α1

1)
3 + 2412Aβ1

1(α1
1)

3 + 6912β1
1(α1

1)
3

− 1536Aα1
2α

1
4(α

1
1)

2 − 4608α1
2α

1
4(α

1
1)

2 − 640Aα1
3α

1
4(α

1
1)

2

− 1920α1
3α

1
4(α

1
1)

2 − 128Aα1
4α

1
5(α

1
1)

2 − 384α1
4α

1
5(α

1
1)

2

+ 72A2α2
1(α

1
1)

2 − 2088Aα2
1(α

1
1)

2 − 6912α2
1(α

1
1)

2 − 768Aα2
4(α

1
1)

2

− 2304α2
4(α

1
1)

2 + 1536Aα1
4β

1
1(α1

1)
2 + 4608α1

4β
1
1(α1

1)
2

− 128Aα1
4β

1
4(α1

1)
2 − 384α1

4β
1
4(α1

1)
2 − 768Aα1

2β
1
5(α1

1)
2
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2β

1
5(α1

1)
2 − 512Aα1

3β
1
5(α1

1)
2 − 1536α1

3β
1
5(α1

1)
2

− 256Aα1
5β

1
5(α1

1)
2 − 768α1

5β
1
5(α1

1)
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1β
1
5(α1

1)
2

+ 5760β1
1β

1
5(α1

1)
2 + 128Aβ1

4β
1
5(α1

1)
2 + 384β1

4β
1
5(α1

1)
2

+ 384Aβ2
3(α1

1)
2 + 1152β2

3(α1
1)

2 − 384Aβ2
5(α1

1)
2

− 1152β1
5(α1

1)
2 + 319A2(α1

2)
3α1

1 + 3069A(α1
2)

3α1
1

+ 2304(α1
2)

3α1
1 − 27A2(β1

1)3α1
1 + 1071A(β1

1)3α1
1

+ 3456(β1
1)3α1

1 − 256Aα1
2(α

1
3)

2α1
1 − 768α1

2(α
1
3)

2α1
1
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2(α

1
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2α1
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2(α
1
4)

2α1
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2(β
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1
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2(β
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Appendix E

Averaging function of order 6 for the
Collins second form, A = 0.
Continuous case.

We present the averaging function of order 6 for the Collins second form, in the case
A = 0, discussed in the proof of Theorem 5.5.

f6(r) = r(D5r
4 +D4r

3 +D3r
2 +D1),

where
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5 + 128α1

2α
3
8

− 1536α4
1 + 128α4

4 + 384α4
6 + 128α4

8 − 320(α1
2)

2α1
4β

1
1

+ 256α1
2α

1
4α

1
5β

1
1 − 384(α1

2)
2α1

6β
1
1 + 180α1

2α
2
1β

1
1 − 384α1

3α
2
1β

1
1

− 320α1
4α

2
2β

1
1 − 384α1

6α
2
2β

1
1 + 128α1

5α
2
4β

1
1 + 128α1

4α
2
5β

1
1

+ 128α1
2α

2
8β

1
1 + 128α3

8β
1
1 + 832(α1

2)
3β1

3 + 384(β1
1)3β1

3

− 256α1
3(β

1
1)2β1

3 − 128α1
4α

2
1β

1
3 + 1664α1

2α
2
2β

1
3 + 832α3

2β
1
3

− 256α3
3β

1
3 + 832(α1

2)
2β1

1β
1
3 + 832α2

2β
1
1β

1
3 + 256α2

3β
1
1β

1
3

− 384α1
2α

2
1β

1
4 − 128α1

3α
2
1β

1
4 + 128α1

5α
2
1β

1
4 − 384α3

1β
1
4
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+ 384α2
1β

1
1β

1
4 − 128(β1

1)2β1
3β

1
4 + 960(α1

2)
3β1

5 + 768(α1
2)

2α1
5β

1
5

+ 128α1
4α

2
1β

1
5 + 1920α1

2α
2
2β

1
5 + 512α1

5α
2
2β

1
5 + 512α1

2α
2
5β

1
5

+ 960α3
2β

1
5 + 256α3

5β
1
5 + 1088(α1

2)
2β1

1β
1
5 + 512α1

2α
1
5β

1
1β

1
5

+ 1088α2
2β

1
1β

1
5 + 256α2

5β
1
1β

1
5 − 256α2

1β
1
3β

1
5 − 128(α1

2)
2β1

4β
1
5

− 128α2
2β

1
4β

1
5 + 256α1

2α
2
1β

1
8 + 256α3

1β
1
8 + 384(α1

2)
3β1

9

+ 768α1
2α

2
2β

1
9 + 384α3

2β
1
9 + 384(α1

2)
2β1

1β
1
9 + 384α2

2β
1
1β

1
9

− 320α1
2α

1
4β

2
1 + 128α1

4α
1
5β

2
1 − 384α1

2α
1
6β

2
1 + 128α2

8β
2
1

+ 832α1
2β

1
3β

2
1 + 256α1

3β
1
3β

2
1 − 768β1

1β
1
3β

2
1 + 128β1

3β
1
4β

2
1

+ 1088α1
2β

1
5β

2
1 + 256α1

5β
1
5β

2
1 + 384α1

2β
1
9β

2
1 − 384(β1

1)2β2
3

− 256α2
3β

2
3 + 256α1

3β
1
1β

2
3 + 128β1

1β
1
4β

2
3 + 384β2

1β
2
3

− 384α2
1β

2
4 + 128β1

1β
1
3β

2
4 − 128α1

2β
1
5β

2
4 − 128β2

3β
2
4

− 128(α1
2)

2β2
5 + 512α1

2α
1
5β

2
5 − 128α2

2β
2
5 + 256α2

5β
2
5

+ 256α1
5β

1
1β

2
5 − 128α1

2β
1
4β

2
5 − 128β2

4β
2
5 + 256α2

1β
2
8

+ 384(α1
2)

2β2
9 + 384α2

2β
2
9 + 384α1

2β
1
1β

2
9 + 384β2

1β
2
9

− 320α1
4β

3
1 − 384α1

6β
3
1 + 1216β1

3β
3
1 + 1088β1

5β
3
1

+ 384β1
9β

3
1 − 256α1

3β
3
3 + 384β1

1β
3
3 − 128β1

4β
3
3

− 128β1
3β

3
4 − 128β1

5β
3
4 − 128α1

2β
3
5 + 256α1

5β
3
5

− 128β1
4β

3
5 + 384α1

2β
3
9 + 384β1

1β
3
9 − 384β4

3

− 128β4
5 + 128β4

7 + 384β4
9),

D1 =π(α6
1 + β6

2).
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Appendix F

Expressions of gi(R) and gMj(R).

We present the expressions of gi(R), i = 0, . . . , 7 and gMj(R), j = 1, . . . , 4.

F.1 Functions gi(R), for i = 0, . . . , 7

g0 =− 3π((R2 + 3)(−6R10(R2 + 3)2/3 + 59R6(R2 + 3)2/3 − 1440R2

(R2 + 3)2/3 + 6R8((R4 − 9)2/3
3
√
R2 − 3 + 3(R2 + 3)2/3)−R4(709

(R4 − 9)2/3
3
√
R2 − 3 + 177(R2 + 3)2/3) + 360(12(R2 + 3)2/3

− 61
3
√
R2 − 3(R4 − 9)2/3)) 2F1(−

1

2
,
2

3
; 1;

6

R2 + 3
)

3
√
R2 − 3

+ (7320(R4 − 9)2/3
3
√
R2 − 3− 1440(R2 + 3)2/3 +R2(1346

(R4 − 9)2/3
3
√
R2 − 3 + 6R8(R2 + 3)2/3 + 618(R2 + 3)2/3 − 6R6

((R4 − 9)2/3
3
√
R2 − 3 + (R2 + 3)2/3)−R4(12(R4 − 9)2/3

3
√
R2 − 3 + 71(R2 + 3)2/3) +R2(685(R4 − 9)2/3

3
√
R2 − 3 + 59

(R2 + 3)2/3))) 2F1(
1

2
,
2

3
; 1;

6

R2 + 3
)(R2 − 3)4/3 + (R2 + 3)4/3

((−1346(R4 − 9)2/3
3
√
R2 + 3 + 618(R2 − 3)2/3 +R2(685(R4 − 9)2/3

3
√
R2 + 3− 59(R2 − 3)2/3 +R2(12(R4 − 9)2/3

3
√
R2 + 3− 71

(R2 − 3)2/3 + 6R2(−(R4 − 9)2/3
3
√
R2 + 3 +R2(R2 − 3)2/3

+ (R2 − 3)2/3))))R2 + 120(61(R4 − 9)2/3
3
√
R2 + 3

+ 12(R2 − 3)2/3)) 2F1(
1

2
,
2

3
; 1;− 6

R2 − 3
)− (R2 − 3)

3
√
R2 + 3(6R10

(R2 − 3)2/3 − 59R6(R2 − 3)2/3 + 1440R2(R2 − 3)2/3 + 360(61

(R4 − 9)2/3
3
√
R2 + 3 + 12(R2 − 3)2/3) +R4(709

3
√
R2 + 3(R4 − 9)2/3

− 177(R2 − 3)2/3) + 6R8(3(R2 − 3)2/3 − 3
√
R2 + 3(R4 − 9)2/3))

2F1(−
1

2
,
2

3
; 1;− 6

R2 − 3
))
/

14560R(R2 − 3)2/3(R2 + 3)2/3(R4 − 9)2/3;
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g1 =π(−(2R4 − 39)(3R2 3
√
R2 − 3 + 9

3
√
R2 − 3 + 2(R2 + 3)2/3

3
√
R4 − 9)R2

2F1(−
2

3
,
1

2
; 1;

6

R2 + 3
) + 2(R4 − 12)((R2 + 3)(3R2 3

√
R2 + 3

− 9
3
√
R2 + 3 + 2(R2 − 3)2/3

3
√
R4 − 9) 2F1(

1

3
,
1

2
; 1;− 6

R2 − 3
)

+ (R2 − 3)(3R2 3
√
R2 − 3 + 9

3
√
R2 − 3 + 2(R2 + 3)2/3

3
√
R4 − 9)

2F1(
1

3
,
1

2
; 1;

6

R2 + 3
))−R2(2R4 − 39)(3R2 3

√
R2 + 3− 9

3
√
R2 + 3

+ 2(R2 − 3)2/3
3
√
R4 − 9) 2F1(−

2

3
,
1

2
; 1;− 6

R2 − 3
))/

880R
3
√
R4 − 9;

g2 =3π((R2 + 3)(72R14(R2 + 3)2/3 − 840R10(R2 + 3)2/3 + 391R6

(R2 + 3)2/3 + 50688R2(R2 + 3)2/3 − 72R12((R4 − 9)2/3
3
√
R2 − 3

+ 3(R2 + 3)2/3) + 24R8(73(R4 − 9)2/3
3
√
R2 − 3 + 105(R2 + 3)2/3)

− 51R4(261(R4 − 9)2/3
3
√
R2 − 3 + 23(R2 + 3)2/3)− 1728(88

(R2 + 3)2/3 − 15
3
√
R2 − 3(R4 − 9)2/3)) 2F1(−

1

2
,
2

3
; 1;

6

R2 + 3
)

3
√
R2 − 3 + ((12294(R4 − 9)2/3

3
√
R2 − 3− 24702(R2 + 3)2/3 +R2

(8535(R4 − 9)2/3
3
√
R2 − 3 + 391(R2 + 3)2/3 +R2(−2640(R4 − 9)2/3

3
√
R2 − 3− 1711(R2 + 3)2/3 − 24R2(61(R4 − 9)2/3

3
√
R2 − 3 + 3R6

(R2 + 3)2/3 + 35(R2 + 3)2/3 − 3R4((R4 − 9)2/3
3
√
R2 − 3 + (R2 + 3)2/3)

−R2(6(R4 − 9)2/3
3
√
R2 − 3 + 41(R2 + 3)2/3)))))R2 + 576(88

(R2 + 3)2/3 − 15
3
√
R2 − 3(R4 − 9)2/3)) 2F1(

1

2
,
2

3
; 1;

6

R2 + 3
)(R2 − 3)4/3

+
3
√
R2 + 3((50688(R2 − 3)2/3 +R2((391(R2 − 3)2/3 + 24R2(73

(R4 − 9)2/3
3
√
R2 + 3 + 3R6(R2 − 3)2/3 − 35R2(R2 − 3)2/3 − 105

(R2 − 3)2/3 +R4(9(R2 − 3)2/3 − 3
3
√
R2 + 3(R4 − 9)2/3)))R2 + 51(23

(R2 − 3)2/3 − 261
3
√
R2 + 3(R4 − 9)2/3)))R2 + 1728(15(R4 − 9)2/3

3
√
R2 + 3 + 88(R2 − 3)2/3)) 2F1(−

1

2
,
2

3
; 1;− 6

R2 − 3
)(R2 − 3)

− (R2 + 3)4/3(((−8535(R4 − 9)2/3
3
√
R2 + 3 + 391(R2 − 3)2/3

+R2(−2640(R4 − 9)2/3
3
√
R2 + 3 + 1711(R2 − 3)2/3 + 24R2(61

(R4 − 9)2/3
3
√
R2 + 3− 35(R2 − 3)2/3 +R2(6(R4 − 9)2/3

3
√
R2 + 3

− 41(R2 − 3)2/3 + 3R2(−(R4 − 9)2/3
3
√
R2 + 3 +R2(R2 − 3)2/3

+ (R2 − 3)2/3)))))R2 + 6(2049(R4 − 9)2/3
3
√
R2 + 3

+ 4117(R2 − 3)2/3))R2 + 576(15(R4 − 9)2/3
3
√
R2 + 3
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+ 88(R2 − 3)2/3)) 2F1(
1

2
,
2

3
; 1;− 6

R2 − 3
))/

442624R(R2 − 3)2/3(R2 + 3)2/3(R4 − 9)2/3;

g3 =π((−29R2 3
√
R2 + 3 + 87

3
√
R2 + 3 + 6R6 3

√
R2 + 3

+ 98(R2 − 3)2/3
3
√
R4 − 9 +R4(4(R2 − 3)2/3

3
√
R4 − 9

− 18
3
√
R2 + 3))R2

2F1(−
2

3
,
1

2
; 1;− 6

R2 − 3
)

+ (−29R2 3
√
R2 − 3− 87

3
√
R2 − 3 + 6R6 3

√
R2 − 3

+ 98(R2 + 3)2/3
3
√
R4 − 9 + 2R4(9

3
√
R2 − 3

+ 2(R2 + 3)2/3
3
√
R4 − 9))R2

2F1(−
2

3
,
1

2
; 1;

6

R2 + 3
)

− 2(R2 + 3)(8R2 3
√
R2 + 3− 24

3
√
R2 + 3 + 3R6 3

√
R2 + 3

+ 64(R2 − 3)2/3
3
√
R4 − 9 +R4(2(R2 − 3)2/3

3
√
R4 − 9

− 9
3
√
R2 + 3)) 2F1(

1

3
,
1

2
; 1;− 6

R2 − 3
)− 2(R2 − 3)(8R2 3

√
R2 − 3

+ 3R6 3
√
R2 − 3 +R4(9

3
√
R2 − 3 + 2(R2 + 3)2/3

3
√
R4 − 9)

+ 8(3
3
√
R2 − 3 + 8(R2 + 3)2/3

3
√
R4 − 9)) 2F1(

1

3
,
1

2
; 1;

6

R2 + 3
))/

880R
3
√
R4 − 9;

g4 =3π((R2 + 3)(6R8 − 7R4 − 1056)(R2 − 3)2/3 2F1(−
1

2
,
2

3
; 1;

6

R2 + 3
)

+ (R2 + 3)2/3(6R8 − 7R4 − 1056)(R2 − 3) 2F1(−
1

2
,
2

3
; 1;− 6

R2 − 3
)

− (6R8 + 12R6 + 17R4 + 58R2 − 352)(R2 − 3)5/3 2F1(
1

2
,
2

3
; 1;

6

R2 + 3
)

+ (R2 + 3)2/3(−6R10 − 6R8 + 19R6 + 7R4 + 526R2 + 1056)

2F1(
1

2
,
2

3
; 1;− 6

R2 − 3
))
/

2912R(R4 − 9)2/3;

g5 =− 9π(−(R2 + 3)(−120R14(R2 + 3)2/3 + 1704R10(R2 + 3)2/3

− 3641R6(R2 + 3)2/3 − 11520R2(R2 + 3)2/3 + 120R12((R4 − 9)2/3

3
√
R2 − 3 + 3(R2 + 3)2/3) + 17280(7(R4 − 9)2/3

3
√
R2 − 3

+ 2(R2 + 3)2/3)− 8R8(403(R4 − 9)2/3
3
√
R2 − 3 + 639(R2 + 3)2/3)

+ 3R4(10587(R4 − 9)2/3
3
√
R2 − 3 + 3641(R2 + 3)2/3))

2F1(−
1

2
,
2

3
; 1;

6

R2 + 3
)

3
√
R2 − 3 + ((35994(R4 − 9)2/3

3
√
R2 − 3

− 9858(R2 + 3)2/3 +R2(22585(R4 − 9)2/3
3
√
R2 − 3 + 3641(R2 + 3)2/3
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+R2(−5008(R4 − 9)2/3
3
√
R2 − 3− 6449(R2 + 3)2/3

− 8R2(343(R4 − 9)2/3
3
√
R2 − 3 + 213(R2 + 3)2/3

+ 3R2(−10(R4 − 9)2/3
3
√
R2 − 3 + 5R4(R2 + 3)2/3 − 81(R2 + 3)2/3

3
√
R2 − 3 + (R2 + 3)2/3))))))R2 + 5760(7(R4 − 9)2/3

3
√
R2 − 3

+ 2(R2 + 3)2/3)) 2F1(
1

2
,
2

3
; 1;

6

R2 + 3
)(R2 − 3)4/3

+
3
√
R2 + 3((11520(R2 − 3)2/3 +R2(−31761(R4 − 9)2/3

3
√
R2 + 3

+ 10923(R2 − 3)2/3 +R2(3641(R2 − 3)2/3 + 8R2(403(R4 − 9)2/3

3
√
R2 + 3 + 15R6(R2 − 3)2/3 − 213R2(R2 − 3)2/3 − 639(R2 − 3)2/3

+ 15R4(3(R2 − 3)2/3 − 3
√
R2 + 3(R4 − 9)2/3)))))R2

+ 17280(2(R2 − 3)2/3 − 7
3
√
R2 + 3(R4 − 9)2/3))

2F1(−
1

2
,
2

3
; 1;− 6

R2 − 3
)(R2 − 3)− (R2 + 3)4/3((35994(R4 − 9)2/3

3
√
R2 + 3 + 9858(R2 − 3)2/3 +R2(−22585(R4 − 9)2/3

3
√
R2 + 3

+ 3641(R2 − 3)2/3 +R2(−5008(R4 − 9)2/3
3
√
R2 + 3 + 6449(R2 − 3)2/3

+ 8R2(343(R4 − 9)2/3
3
√
R2 + 3− 213(R2 − 3)2/3

+ 3R2(10(R4 − 9)2/3
3
√
R2 + 3− 81(R2 − 3)2/3 + 5R2(−(R4 − 9)2/3

3
√
R2 + 3 +R2(R2 − 3)2/3 + (R2 − 3)2/3))))))R2 + 5760(2(R2 − 3)2/3

− 7
3
√
R2 + 3(R4 − 9)2/3)) 2F1(

1

2
,
2

3
; 1;− 6

R2 − 3
))/

2213120R(R2 − 3)2/3(R2 + 3)2/3(R4 − 9)2/3;

g6 =π(2(29R2 3
√
R2 + 3− 87

3
√
R2 + 3− 6R6 3

√
R2 + 3 + 78(R2 − 3)2/3

3
√
R4 − 9 + 2R4(9

3
√
R2 + 3− 2(R2 − 3)2/3

3
√
R4 − 9))R2

2F1(−
2

3
,
1

2
; 1;− 6

R2 − 3
) + 2(29R2 3

√
R2 − 3 + 87

3
√
R2 − 3

− 6R6 3
√
R2 − 3 + 78(R2 + 3)2/3

3
√
R4 − 9− 2R4(9

3
√
R2 − 3

+ 2(R2 + 3)2/3
3
√
R4 − 9))R2

2F1(−
2

3
,
1

2
; 1;

6

R2 + 3
)

+ 4(R2 + 3)(8R2 3
√
R2 + 3 + 3R6 3

√
R2 + 3− 24(

3
√
R2 + 3

+ (R2 − 3)2/3
3
√
R4 − 9) +R4(2(R2 − 3)2/3

3
√
R4 − 9− 9

3
√
R2 + 3))

2F1(
1

3
,
1

2
; 1;− 6

R2 − 3
) + 4(R2 − 3)(8R2 3

√
R2 − 3

+ 3R6 3
√
R2 − 3 +R4(9

3
√
R2 − 3 + 2(R2 + 3)2/3

3
√
R4 − 9)

+ 24(
3
√
R2 − 3− (R2 + 3)2/3

3
√
R4 − 9)) 2F1(

1

3
,
1

2
; 1;

6

R2 + 3
))/

1760R
3
√
R4 − 9;
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g7 =3π(3(R2 + 3)(2R8 − 11R4 + 64)(R2 − 3)2/3 2F1(−
1

2
,
2

3
; 1;

6

R2 + 3
)

+ 3(R2 + 3)2/3(2R8 − 11R4 + 64)(R2 − 3) 2F1(−
1

2
,
2

3
; 1;− 6

R2 − 3
)

− (6R8 + 12R6 − 9R4 + 6R2 + 64)(R2 − 3)5/3 2F1(
1

2
,
2

3
; 1;

6

R2 + 3
)

− (R2 + 3)5/3(6R8 − 12R6 − 9R4 − 6R2 + 64) 2F1(
1

2
,
2

3
; 1;− 6

R2 − 3
))/

2912R(R4 − 9)2/3;

where 2F1(a, b, c, z) is the hypergeometric function which has the following series expansion

+∞∑
k=0

(a)k(b)k
(c)k

zk

k!
,

with

(a)k =

{
1 if k = 0;
a(a+ 1)(a+ 2) · · · (a+ k − 1) if k > 0.

F.2 Functions gMj(R), for j = 1, . . . , 4

gM1 =− R

16
− R5

108
− R9

486
− 3

2R
√
R4 − 9

+
R11

486
√
R4 − 9

;

gM2 =− R

12
− R5

54
+

√
R4 − 9

6R
+

1

54

√
R4 − 9R3;

gM3 =− R

6
+

√
R4 − 9

6R
;

gM4 =
3R

4
.
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Villars, Paris, 1951, 3–84.
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Poincaré sphere, 101
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