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Chapter 1

Introduction

What we know about the global
financial crisis is that we don’t know
very much.

Paul Samuelson, Nobel laureate in
Economic Sciences, 1970

1.1 Motivation
In 2008 the world economy came across its most hazardous crisis since the Great De-
pression of the 1930s. Some financial service firms collapsed even though those who
were regarded as ‘too big too fail’. Lehmann Brothers, the fourth largest investment
bank in the US, underwent the bailout program by the US government along with AIG,
Goldman Sachs, Merrill Lynch, Citigroup Inc., to keep them from bankruptcy; however
it eventually went bankrupt in September 2008. The Dow Jones got its largest drop
in a single day since the days following the attacks on September 11, 2001. Whereas
the S&P500 had a number of days with extreme movements (≥ 4%) greater than its
overall 80-year history in that October. The confidence in financial market was shat-
tered and the suspiciousness spread throughout the globe. Central banks in England,
China, Canada, Sweden, Switzerland and the European Central Bank (ECB) resorted
to rate cuts to relief the world economy but could not stop such a widespread financial
meltdown.

The crisis motivated practitioners and academics to reassess the statistical models
being used in the financial world and started to question the adequacy of standard
models. It urges us to reconsider how well we understand the tools being used to forecast
the future and manage the risk. Volatility, even though is not the same as risk, is strongly
related and being used widely to determine risk. For example, the value-at-risk (VaR)
that banks and trading houses use to determine the value of reserve capital to set-aside,
is defined as the minimum expected loss with a 1-percent confidence level for a given
time horizon (see Poon & Granger, 2005). Volatility is also a key input in the pricing
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of derivative securities, whose trading volume has been largely increasing recently. The
knowledge of past and current volatility is not yet sufficient to deal with the uncertainty
in financial market. For instance, to price an option, it is necessary to know the volatility
of the underlying asset throughout the life of the option. Therefore, a crucial task
for investors and policy makers who seek rational decisions in risk management and
derivatives valuation is to forecast the volatility accurately.

A large number of volatility models have been proposed as a matter of massive
interest. The major classes of volatility models that have been extensively investigated
are the class of generalized conditional autoregressive heteroskedastic (GARCH) models
and the class of stochastic volatility (SV) models. GARCH models are constructed by
specifying the dynamics to the variances of standardized residuals of returns conditional
on past history. Result in a class of models that is simple both in parameter estimation
and volatility forecasting. Nevertheless, GARCH are modeled only in discrete time,
while principal theory in option pricing are derived in continuous environment. Therefore
option pricing under GARCH framework turns into a particularly complicated task. In
contrast with SV models that volatility are modeled as stochastic variables with desired
properties, whether or not in continuous conditions. SV models are usually discrete
time approximations to continuous time stochastic processes. Consequently, SV models
are closely related to the fundamental theory in finance, their properties are easier to
find and they are easily generalized to multivariate series in a very natural way (Harvey
et al., 1994). However SV models draw less attention from practitioners since parameter
estimation can be often complicated.

Volatility forecasting is a critical task in several financial applications. It is even more
challenging to forecast volatility in the period of financial crisis. Recently, Brownlees
et al. (2012) presented a comprehensive study of volatility forecasting through the period
of the crisis of 2008 with five GARCH models. A broad range of practical issues in
volatility forecasting was examined among this type of models, the amount of data to
use in estimation, the frequency of estimation update, and the relevance of heavy-tailed
likelihoods for volatility forecasting. They found that volatility during the 2008 crisis is
well approximated by predictions made one day ahead, where one-month-ahead forecasts
are deteriorated. This encourages us to investigate in the performances of other models
and develop new model with high predictive ability. The model that could explain the
current situation and foretell the coming crisis would be desirable.

Latency of volatility causes difficulty to infer from its observed values. Both pre-
viously indicated models, GARCH and SV models, use returns information to model
and forecast volatility as returns are ‘byproduct’ of unobservable volatilities. Widely-
used variables that have been used to inference about volatility are absolute return and
squared return. High-frequency realized volatility that is calculated from intraday prices
is also valid but the data are not publicly accessible. Alternative to return, price range,
which is the difference between highest and lowest prices during the day are also em-
ployed as volatility estimator. Range-based volatility models are not vastly investigated
as return-based volatility models even though some researchers have claimed that the
range is more efficient than return. We extensively investigate in the properties of the
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range as the estimator of volatility and finally incorporate it into the new proposed
volatility model.

1.2 Data Set Description

A financial data set usually consists of a record of trades of financial assets such as
stocks, bonds or foreign exchange rates. The data can be obtained from many sources,
including websites, commercial vendors and financial markets. Most sources provide
daily data that usually consist of open price, close price, high price, low price, traded
amount (volume) and number of trades. In fact every single trade of a particular asset
is registered with time, amount, settling price, bid price, ask price and setting date. So
that some sources also provide intra-daily data sets with some expense.

Here we work on daily data that are usually accessible freely in some sources. The
data set consists of daily exchange rates of three major currencies between 2006 and
2010 collected from Bloomberg. The domestic currency is the US dollar and the foreign
currencies are the euro (EUR), the British pound (GBP) and the Japanese yen (JPY).
The prices of EUR, GBP and JPY are quoted in terms of USD. The record of data
includes price, high price and low price which in fact refer to close price, daily highest
price and lowest price respectively. The time horizon spans from 1 January 2006 to 31
December 2010 that we divide into four periods due to the global financial situation at
that time.

The Pre-Crisis period is from 1 January to 30 June 2007 that the financial market is
calm in general. The Crisis 1 ranges from 1 July 2007 to 30 June 2008 that some signs
of coming crisis being noticed. In 9 August 2007, BNP Paribas is the first major bank
to acknowledge the risk of exposure to sub-prime mortgage markets by freezing three
of their funds, indicating that they have no way of valuing the complex assets inside
them. Adam Applegarth, Northern Rock’s chief executive, later says that it was ”the
day the world changed”. The Crisis 2, from 1 July 2008 to 30 June 2009, is the period
that several financial firms face difficulty. The American bank Lehman Brothers files
for bankruptcy in 15 September 2008, prompting worldwide financial panic. And the
Post-Crisis, from 1 July 2009 to 31 December 2010, is just after the period of turmoil
from 2008 to 2009.

The data are plotted in Figure 1.2.1 showing the movements of prices in four specified
periods. In this figure, it is clearly seen the fluctuation of all exchange rates during the
crisis 2. The prices of JPY starts to rise up significantly in the crisis 1 along with the
prices EUR and GPB that have been growing since the pre-crisis period. The pre-crisis
period seems to be the most stable period while the post-crisis period still show some
fluctuations unless not as much as the crisis 2. Figure 1.2.2 shows the (close) prices,
high prices and low prices of EUR in the first month of the data set.
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Figure 1.2.1: Currency Exchange Rate between 2006 and 2010

Figure 1.2.2: Low price, Close price and High price of EUR
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1.3 Mathematics in Finance

In 1900, advanced mathematics was introduced to financial world for the first time
by Louis Bachelier, a young French graduate student at the Sorbonne (the historic
University of Paris). In his doctoral thesis (Bachelier, 1900), Théorie de la spéculation
(The theory of speculation), that was advised by Henri Poincaré, he made a remarkable
claim that stock prices moved according to a random walk. A random walk is that
something moves randomly in direction and distance at each increment in time. He
presented mathematics of stock price showing that the price evolves away from its initial
value as the square root of the time elapsed. The radical implication of Bachelier’s claim
was that there was no more useful information in the path of a stock price over time than
there was in the wanderings of a drunk down the street of Paris. Even though what he
had done was recognized by the mathematical community and understood his valuable
work by the time he died in 1946, Bachelier’s work was not introduced to economists
until 1954.

Paul Samuelson, the first American to win the Nobel Memorial Prize in Economic
Sciences, was notified about Bachelier’s thesis by a statistician name Jimmie Savage and
obtained a copy of the thesis from the Sorbonne. The idea of using stochastic methods to
analyze economic phenomena like the movement of the stock price in Bachelier’s thesis
was innovative and had a profound influence on Samuelson’s work. Bachelier’s work had
been circulated among economists by Samuelson in 1965(Samuelson, 1965). The term
random walk became even more recognizable by the 1973 book of Burton Malkiel’s, A
Random Walk Down Wall Street (Malkiel, 1973). The random walk hypothesis asserts
that price changes are unpredictable. It is consistent with the efficient-market hypothesis
developed by Eugene Fama(Fama, 1965) asserting that it is impossible to beat the mar-
ket, because stock market efficiency causes existing stock prices to always incorporate
and reflect all relevant information.

Meanwhile the random walk was being introduced to economics, Harry Markowitz
firstly established risk, measurement of uncertainty, into financial modeling in his sem-
inal theory of portfolio selection in 1952 (Markowitz, 1952). His mean-variance model
emphasized the rule that the investor did (or should) consider expected return a de-
sirable thing and variance of return, which was called risk, an undesirable thing. The
introduction of risk to portfolio allocation was novel, prior to his work the emphasis was
placed on picking single high-yield stocks without any regard to their effects on portfo-
lios as a whole. In 1973, Fischer Black and Myron Scholes published a famous option
pricing model (Black & Scholes, 1973), namely Black-Scholes formula, that the price
of the stock was assumed to follow a geometric Brownian motion with constant drift
and diffusion coefficient. It is used to calculate the theoretical price of European put
and call options. The term “Black-Scholes formula” was named by Robert C. Merton,
who was the first to publish a paper expanding the mathematical understanding of the
options pricing model (Merton, 1973). Afterward, Markowitz won the Nobel Memorial
Prize in Economic Sciences in 1990 and so did Merton and Scholes in 1997, but Black
was ineligible for the prize because of his death in 1995.
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A brief story behind the presence of advanced mathematics that has changed the
course of financial engineering has been adequately narrated in Jeremy Bernstein’s essay,
“Paul Samuelson and the Obscure Origins of the Financial Crisis”1.

1.4 Organization
This thesis is arranged in 6 chapters. This chapter has introduced the motivation, the
data set to be investigated and some introduction to financial mathematics. In Chapter
2, the theoretical framework including the definitions, theory, and the literature reviews
are provided for further investigation in the following chapters. Then the marginal
distributions of returns are investigated with a particular distribution in Chapter 3.
This chapter shows how good the normal inverse Gaussian (NIG) distributions are fitted
to the data.

Chapter 4 provides the guide to volatility forecasting consisting of all necessary re-
lated practical issues in volatility and also propose three forecasting models for volatility.
The implementation in the chapter shows how well the forecasting models perform in the
real situations. Chapter 5 adds up the contribution of exogenous variables in volatility
estimating, especially range-based estimators. Several range-based volatility estimators
are investigated by simulations in different scenarios. The information obtained from
this chapter is preparatory to construct new volatility models in the last chapter.

Finally, Chapter 6 collects all the ideas and information obtained from previous chap-
ters to introduce the DNIG model. The new stochastic volatility models that are tested
to be accurate both in describing the distribution of returns and in volatility forecasting.
Related practical information and extensive results are given in the appendix.

1Jeremy Bernstein (born December 31, 1929 in Rochester, New York) is an American theoretical
physicist and science essayist.



Chapter 2

Financial Econometrics

This chapter includes theoretical framework in the financial literature, providing related
definitions, theory, and the literature reviews of related works focusing on volatility
modeling.

2.1 Introduction

In financial markets, there are quantities that we can observed at a curtain frequency
such as closing, open, high and low prices, and trading volumes. These values are subject
to uncertainty and unknown until they are observed. Mathematically, we regard this
information as a real-valued random variable whose value is uncertain and can not be
determined until it is observed. We denote X a random variable in some probability space
(Ω,F , P ) and x its outcome or the observation. If a random variable takes possible values
in an interval or a collection of intervals, we call it a continuous random variable. The
possible values of a continuous random variable is described by a cumulative distribution
function (cdf) F , where F (x) := P (X ≤ x) with P (·) referring to the probability of the
bracketed event. If the distribution function is differentiable, there exists the probability
density function f , commonly abbreviated to pdf, where f(x) := dF/dx. The expectation
or mean of a continuous random variableX is defined by E[X] = µ :=

´∞
−∞ xf(x)dx. And

the expectation of a function g ofX can be computed by E[g(X)] =
´∞
−∞ g(x)f(x)dx. We

define the nth moment of X by E[Xn] and the nth central moment is µn := E[(X−µ)n].
The variance of X, which measures the expected squared distance from the mean, is
defined by var(X) := E[(X −µ)2] = E[X2]−E[X]2. The variance is also denoted by σ2
and the square root of variance is called the standard deviation. Furthermore, other two
important quantities for describing a random variable are the skewness and the kurtosis
defined by skew(X) := µ3/µ

3/2
2 and kurt(X) := µ4/µ

2
2 − 3.

For a pair of random variables (X,Y ), the joint distribution and the joint density
functions are defined by F (x, y) := P (X ≤ x and Y ≤ y) and f(x, y) := ∂2F/∂x∂y
respectively. Provided that a particular outcome X = x occurs, then the density of Y
conditional on the event X = x, namely the conditional density of Y given X = x, is

7
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defined by f(y|x) := f(x, y)/fX(x). Here we use subscription to denote the underlying
random variable e.g. fX is the density function of X. Consequently, the conditional
expectation of Y given x is E[Y |x] :=

´∞
−∞ yf(y|x)dy. If the bivariate density f(x, y)

equals to the product of the two densities fX(x)fY (y) for all x and y, then X and Y are
independent; otherwise X and Y are dependent. The covariance is a measure of linear
dependence between two random variables defined by cov(X,Y ) := E[(X−µX)(Y −µY )].
The correlation is the covariance standardized by the standard deviations of the random
variables, cor(X,Y ) := cov(X,Y )/σXσY . The independence implies zero correlation, but
the converse does not hold in general. For several variables, the definitions of related
quantities are defined in the same way, see detail in Taylor (2005), Chapter 3.

A sequence of random variables {Xt}, with t representing time, is called a stochastic
process. Sometimes we call it the process generating observed data, or simply either
a process or a model. A stochastic process can be either discrete or continuous de-
pending on the time domain t. For a stochastic process {Xt}, the autocovariance and
the autocorrelation of Xt at lag τ are defined respectively by γτ := cov(Xt, Xt+τ ) and
ρτ := cov(Xt, Xt+τ )/γ0. For a stochastic process {Xt}, the information set available
at time t is denoted by Ft. It often contains the history of observations up to time t,
{Xs = xs, s ≤ t} but additional relevant information known at time t are also included.
This information set employs the concept of conditioning by a random vector instead
of conditioning by event (see Pfeiffer (1989) Chapter 19 and Taylor (2005), Section 3.2
and 9.5 ). The expectation of a random variable X conditional on Ft, denoted by
Et[X] = E[X|Ft], is called the conditional expectation; in the same way we denote the
conditional variance and covariance. A stochastic process {Xt} is said to be stationary
if means, variances and covariances do not depend on time, that is, for all t and τ we
have E[Xt] = µ, var(Xt) = σ2 and cov(Xt, Xt+τ ) = γτ . The time-ordered set of obser-
vations {x1, x2, ..., xn} is called a time series. The process generating the time series is
usually unknown, our task is to exploit, infer and reasonably model the properties of the
stochastic process driving the observations. Most interesting observed data in financial
market are prices and returns of assets that we will introduce in the next section.

2.2 Prices and Returns
Denote by Pt the price of an asset at time t and assume that the asset pays no dividends.
The return on investment is calculated from the change in price of the asset over a trading
period. The simple net return r∗t on the asset between time t− 1 and t is defined as

r∗t := (Pt − Pt−1) /Pt−1 (2.2.1)

and we call 1 + r∗t = Pt/Pt−1 the simple gross return. It is more convenient when we
consider a k-period return over most recent k trading periods, r∗t,k, in term of simple
gross returns

1 + r∗t,k = Pt/Pt−k = (Pt/Pt−1)(Pt−1/Pt−2)...(Pt−k+1/Pt−k) =

k−1∏
j=0

(1 + r∗t−j)
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Thus the multi-period simple gross return is the product of single-period gross returns
and the simple net return is simply the simple gross return minus one. The simple
net return r∗t is often called a rate of return per a particular time period. The unit of
time period in the academic literature are often specified as daily, monthly, or annual.
Another definition of return is the continuously compounded return or log return (for
period t) defined as

rt = log(1 + r∗t ) = log (Pt/Pt−1) = pt − pt−1 (2.2.2)

where pt = log(Pt) is the log price at time t. Log returns become preferable when
consider multi-period returns because

rt,k = log(1 + r∗t,k) =
k−1∑
j=1

log(1 + r∗t−j) =
k−1∑
j=0

rt−j

does not involve multiplicative operation. Practically, simple return and log return are
very similar numbers, since the Maclaurin series for log(1 + r∗t ) is

rt = log(1 + r∗t ) = r∗t −
1

2
r∗2t +

1

3
r∗3t − ...

and daily returns are usually small lying between −10% to 10%. Throughout this thesis,
except stated otherwise, return and price are generally referred to log return and log
price respectively. Figure 2.2.1 shows the returns of EUR. It can be seen that there
are more fluctuations during the crises. Moreover, large changes tend to be followed by
large changes, of either sign, and small changes tend to be followed by small changes; this
property is called volatility clustering that was firstly addressed by Mandelbrot (1963).

As we introduce the random walk hypothesis in Section 1.3, it states that prices
wander in an unpredictable manner. There are several definitions of the random walk
hypothesis in the literature. They usually incorporate models for price process with
conditions expressing the idea of unpredictable movements. Here we give our first defi-
nition of random walk hypothesis (RWH1) by assuming that the price process follows a
Gaussian random walk as the following. For a price process {pt}, the dynamics of {pt}
are given by the equation:

pt = pt−1 + µ+ σϵt, ϵt ∼ i.i.d.N(0, 1) (2.2.3)

equivalently,

rt = µ+ σϵt and pt = p0 +

t∑
i=1

ri (2.2.4)

where µ is the expected price change or drift and the error terms ϵt are independent and
identically distributed () as standard normal. Denoting rt = pt − pt−1 the increment of
the process, then RWH1 can be given by the following conditions:

(i) the increments rt are independent;
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Figure 2.2.1: EUR returns

Returns of EUR are more fluctuating during the crises. Moreover, large changes tend to be followed by
large changes and small changes tend to be followed by small changes; this property is called volatility
clustering.

(ii) the process {rt} is stationary ;

(iii) the increments rt are normally distributed, rt ∼ N(µ, σ2).

Without declaring explicitly, it is generally assumed that a Gaussian random walk is
driftless (µ = 0), otherwise it is stated as a Gaussian random walk with drift (µ ̸= 0).
This definition is the restrictive version of the Random Walk 1 model in Campbell et al.
(1997). According to Section 2.1 of Campbell et al. (1997), there are three versions
of random walk hypothesis conditioned by the dependence that can exist between the
increments. A more general version of the random walk hypothesis, corresponding to
the Random Walk 3 model in Campbell et al. (1997), is obtained by replacing the
independence condition in (i) by uncorrelated increments and omitting the Gaussian
condition in (iii). Hence the second definition of the random walk hypothesis () is given
by

{rt} is stationary and cov(rt, rt+τ ) = 0 for all t and all τ > 0.

Remark that in the case of the Gaussian random walk, uncorrelatedness and indepen-
dence are equivalent. Clearly, the RWH1 implies the RWH2. Widely used tests of the
random walk hypothesis such as the Q-test of Box & Pierce (1970) and the variance-ratio
test of Lo & MacKinlay (1988) employs sample autocorrelations and hence are tests of
RWH2. These tests reject RWH1 whenever they reject RWH2. The uncorrelated hy-
pothesis is of more attention because the i.i.d. hypothesis is not very relevant if we are
interested in the predictability of returns. Taylor (2005) also discusses definitions of the
random walk hypothesis.

Various kinds of dependence between the increments can be characterized by consid-
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ering the covariance
cov (f(rt), g(rt+τ )) = 0 (2.2.5)

for all t and for τ ̸= 0, where f(·) and g(·) are two arbitrary functions. If f(·) and g(·)
are restricted to be arbitrary linear functions, then (2.2.5) implies that the increments
are (serially) uncorrelated. If one of either f(·) or g(·) is restricted to be linear while the
other is unrestricted, then (2.2.5) is equivalent to the martingale hypothesis stating that
tomorrow’s price is expected to be equal to today’s price, given the asset’s entire price
history (see Campbell et al. (1997)). The martingale hypothesis is a necessary condition
for an efficient market, where the current price fully reflects the information contained
in past prices. Finally, if (2.2.5) holds for all arbitrary f(·) and g(·), it implies that the
increments are (mutually) independent.

2.3 Stylized Facts for Financial Returns
Statistical properties of financial returns have been studied and documented broadly
across time as well as across markets. The properties that are commonly presented in
any set of returns are called stylized facts or stylized features for financial returns. The
statistical features of the distribution of a set of returns can be summarized by four
statistics: sample mean (r̄), sample variance (s2), sample skewness (w), and sample
kurtosis (k). For a set of returns {r1, r2, ..., rn}, these statistics are defined by

r̄ =
1

n

n∑
t=1

rt, s2 =
1

n− 1

n∑
t=1

(rt − r̄)2,

w =
1

n− 1

n∑
t=1

(rt − r̄)3

s3
, k =

1

n− 1

n∑
t=1

(rt − r̄)4

s4
− 3.

Note that the square root of sample variance is the sample standard deviation. These
statistics are the estimates of population mean, variance, skewness and kurtosis respec-
tively. They are generally used to describe the shape of the inferred distribution. The
regular reference is the standard normal distribution; suppose that X ∼ N(0, 1), then
E[X] = 0, var(X) = 1, skew(X) = 0 and kurt(X) = 0. A distribution that the kurtosis
is positive is said to be leptokurtic. Skewness statistics are sometimes used to assess
the symmetry of distributions, whereas kurtosis statistics are usually interpreted as a
measure of similarity to normal distribution.

Taylor (2005) documents statistical features of twenty daily returns range from Jan-
uary 1991 to December 2000, containing returns from equity investments in indices or
individual stocks, currency exchanges, commodity, bill and bond contracts. He found
that all twenty sets of returns were leptokurtic and nineteen of the twenty had excess
kurtosis more than ten of those standard errors. This is a clear evidence that the returns-
generating process is far from normal. However, he argued that the presence of skewness
in some sets of returns might be a consequence of very occasional negative outliers. Ac-
cording to Taylor (2005), there are three major stylized facts that are found in almost
all sets of daily returns obtained from those prices.
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Figure 2.3.1: Kernel density of EUR returns

Kernel density of EUR returns is approximately symmetric, has higher peak and fatter tails than that
of normal distribution.

1. First, the distribution of returns is not normal.

2. Second, there is almost no correlation between returns for different days.

3. Third, the correlation between the magnitudes of returns on nearby days are pos-
itive and statistically significant.

The incidents of the three major properties are also found across time as well as across
markets in Harrison (1998) and Mitchell et al. (2002).The first major stylized fact speaks
of the distribution of daily returns that can be said more specifically as: it is approxi-
mately symmetric, has a high peak and it has fatter tails than that of a normal distribu-
tion. Here we roughly define a tail of a distribution that is fatter than that of a normal
distribution as a heavy tail. The exact definition of a heavy-tailed distribution and fur-
ther discussion will be given in Section 2.4. The evidence of a high peak in empirical
distributions was shown by the greater number of observations that lied between r̄−0.5s
and r̄ + 0.5s than that of a normal distribution. While the greater numbers of extreme
observations below r̄−3s or above r̄+3s than that of a normal distribution corresponded
to two heavy tails. The heavy tails indicates that there are more chances that extreme
events, so called outliers, occurs. In Taylor (2005), outliers such that returns are more
than three standard deviations from the mean is about four times the normal figure; the
extreme outliers that returns are more than four standard deviations from the mean is
approximately sixty times the normal figure.

Figure 2.3.1 compares kernel estimates of the probability distribution for standard-
ized returns, zt = (rt−r̄)/s, with the normal distribution for EUR returns. These density
estimates have been calculated in R using a generic function ‘density’. The kernel density
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estimator, f̂(z), is expressed as

f̂(z) =
1

nB

n∑
t=1

ϕ

(
z − zt
B

)
where ϕ(·) is the density of the standard normal distribution and B is the bandwidth,
a smoothing parameter. For a distribution with unit variance, it is acceptable to use
B = n−1/5.1

The first stylized fact is a principal guideline for modeling a probability distribution
of daily returns. A satisfactory probability distribution for daily returns must have
high kurtosis and be either exactly or approximately symmetric. Several distributions
with these properties have been reviewed in Taylor (2005), including the generalized
Student’s t, the lognormal-normal, the normal inverse Gaussian and the generalized
hyperbolic distributions.

The second stylized fact is of the dependence between the returns for time periods
t and t + τ . The dependence is measured by the sample autocorrelation at lag τ that
estimates the correlation between τ periods apart returns from n observations;

ρ̂τ,r =
n−τ∑
t=1

(rt − r̄)(rt+τ − r̄)
/ n∑

t=1

(rt − r̄)2, τ > 0. (2.3.1)

The sample autocorrelation ρ̂ is the estimator of an autocorrelation parameter ρ in
a stationary stochastic process that the autocorrelation between any pair of random
variables only depends on the lag. The autocorrelation estimates can be used to test the
hypothesis that the process of interest is generated by uncorrelated random variables.
The standard error of an autocorrelation estimate is approximately 1/

√
n, so that an

autocorrelation estimate reject the null hypothesis of zero autocorrelation at 5% level of
confidence if it lies outside the confidence interval (−2/

√
n, 2/

√
n). Figure 2.3.2 shows

the autocorrelations for EUR returns up to lag 30 with the 95% confidence interval about
zero. It is clear that most of the autocorrelations are not significantly different from zero.
Taylor (2005) finds that more than 90% of 600 sample autocorrelations at lag 1 to 30 are
between -0.05 and 0.05. Not only that some 99% of the estimates are between -0.1 and
0.1. This is an evidence of the absence of linear dependence in the stochastic process
generating daily returns. Taylor also tests the hypothesis that the process generating
observed returns is a series of i.i.d. random variables using the portmanteau Q-statistic
of Box & Pierce (1970), it results that most of the returns processes, 14 of the 20, are
not i.i.d at 5% level of confidence.

Even though the lack of dependence between returns for different day, the dependence
between absolute returns, likewise squared returns, on nearby days is positive; this is
the third major stylized fact. According to Taylor (2005), he shows that all estimates
for the first thirty lags exceed 0.05 and are significant at the 1% level for tests of i.i.d.

1Silverman (1986) gives a rule-of-thumb for choosing the bandwidth of a Gaussian kernel density

estimator that is expressed as B =
(

4S5

3n

) 1
5 ≈ 1.06Sn− 1

5 .
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Figure 2.3.2: EUR autocorrelations

Autocorrelations of returns in the first 30 lags are not significantly different from zero. It can be said
that there is almost no correlation between returns for different days.

hypothesis. The linear dependence among absolute returns and among squared returns is
evidently far more than that among returns. At the first lag, his results show that a high
value of |rt| tends be followed by a high value of |rt+1|. He also demonstrates that there
is a considerable number of lags that the across-series averages of the autocorrelations for
absolute returns have more dependence than that for squared returns. The averages of
the autocorrelations seem to decline slowly as the number of lags increase; Taylor argues
that the decline of the averages of the autocorrelations do not give evidence of a long-
memory property in the individual series. All the statistical properties of the returns
and transformed returns found in Taylor (2005) are also found in our three series of
returns.

Figure 2.3.3 shows the averages of the autocorrelations for the absolute and squared
returns of the three currencies. The averages of the autocorrelations are positive at
nearby lags and decrease at further lags. Most of the averages of the autocorrelations
for absolute returns are greater than that for squared returns. In conclusion, the charac-
teristics of returns time series are as the followings: there are very little autocorrelations
present in series of returns {rt}, the autocorrelations of absolute returns are positive
up to several further lags, and the autocorrelations of squared returns are also positive
with lesser degree. From the dependence condition (2.2), it is clear that the returns-
generating process is (serially) uncorrelated but not (mutually) independent. The inci-
dents of the three major stylized are found in several studies across time and markets;
Hsieh (1988),Boothe & Glassman (1987),Campbell et al. (1997).
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Figure 2.3.3: Autocorrelations of absolute and squared returns; averages across 3 cur-
rencies

Average autocorrelations of absolute and squared returns across the series of three currencies are signif-
icantly greater than zero in some substantial lags and decline slowly as the number of lags increases.
This indicates the existence of dependency between absolute returns and squared returns.

2.4 Heavy Tails & the CV-Plots
The presence of heavy tails in the distribution of returns stated in the first major stylized
fact plays major role in this section. In Section 2.3, according to Taylor’s results, the
heavy tails were addressed by the number of extreme observations that are either below
or above the mean by three times the standard deviation. This property is actually refers
to leptokurtic distributions whose kurtosis are greater than zero and consequently ex-
treme values are “more probable than normal”. A more precise definition of heavy-tailed
distribution is given by considering the tail distribution. Letting F be the distribution
of a random variable X. The tail distribution of X, also known as a survival function
or reliability function, is defined as F̄ (x) := 1− F (x) = P (X > x).

Definition 1. The distribution F has a (right-) heavy tail2 if

lim
x→∞

e−λxF̄ (x) = ∞, for all λ > 0.

Some authors use the word ‘long tail’ instead of ‘heavy tail’ in this definition. The
tail distribution F̄ of a heavy-tailed distribution is said to be a heavy-tailed function.
Some examples of heavy-tailed distributions are the Pareto distribution, the Cauchy
distribution, , the Student’s t distribution, and the Weibull distribution. The Weibull

2See Foss et al. (2013).
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distribution has tail distribution F̄ given by F̄ (x) = exp (−(x/κ)α) for some scale param-
eter κ > 0 and shape parameter α > 0. The Weibull distribution is heavy-tailed if and
only if α < 1. The exponential distribution is a particular case of the Weibull distribu-
tion where α = 1. We can also say that a heavy-tailed distribution is a distribution that
has a tail that is heavier than an exponential. A fundamental theorem in extreme value
theory that we will regularly employ in this section is the Pickands–Balkema–de Haan
theorem proposed by Pickands (1975); Balkema & de Haan (1974). In first instance, let
X be a continuous non-negative random variable with distribution function F . For any
threshold u > 0, the distribution function of threshold excedances, Xu = (X−u|X > u),
denoted by Fu, is defined as

1− Fu(x) =
1− F (x+ u)

1− F (u)
or equivalently, F̄u(x) =

F̄ (x+ u)

F̄ (u)
.

Theorem 2 (Pickands-Balkema-de Haan). Let Xu = (Xu − u|X > u) with support at
(0,∞). Then, for any distribution, F (x), we have

Fu(x) → GPD(x; ξ, ψ) as u→ ∞

where GPD(·; ξ, ψ) is the generalized Pareto distribution () with parameters ξ and ψ.

The GPD function is defined by

GPD(x; ξ, ψ) =

1−
(
1 + ξx

ψ

)− 1
ξ if ξ ̸= 0

1− exp
(
− x
ψ

)
if ξ = 0

.

The GPD is the Pareto distribution if ξ > 0, it is the exponential distribution if
ξ = 0 and it is a distribution with compact support if ξ < 0. The Pareto distribution
has polynomial tails whereas the exponential distribution has exponential tails. Here we
introduce a method to distinguish the behavior of tails by comparing to the exponential
distribution. The method of CV-plot is proposed by del Castillo et al. (2014), it is
a graphical method to show departures from exponentiality in the tails. It relies on
the residual coefficient of variation () of the conditional excedance over a threshold,u,
defined by

CV(u) = var(X−u|X > u)1/2
/
E[X−u|X > u].

The CV (u) is independent of scale parameter. The empirical CV of of the conditional
excedance for a sample {xj} of size n is given by

cvn(u) = su/x̄u (2.4.1)

where x̄u and su are the mean and the standard deviation of the set of exedances over
the threshold u, {xj − u | xj > u, j = 1, .., n} respectively. The cvn(u) is independent
of scale and it is a consistent estimator of CV(u) provided the second moment of X
is finite. Let {x(j)} be the ordered sample of {xj} such that x(1) ≤ x(2) ≤ ... ≤ x(n),
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then the CV-plot is the representation of the empirical CV of the conditional excedance
(2.4.1) given by j → cv(x(j)). The CV-plot does not depend on scale parameter so
that the CV-plot {xj} and {λxj} are identical. The CV-plot is used to distinguish the
tails of the random sample {xj} from that of the exponential tails. del Castillo et al.
(2014) also set up theory to determine pointwise error limits for the CV-plots from the
null hypothesis of exponentiality. Let n(u) be the number of observations in the set
{xj − u | xj > u, j = 1, ..., n}.

Proposition 3. Let X be a random variable with an exponential distribution with mean
µ, then

√
n(u)(cv(u) − 1) converges to a Gaussian process {Xt} with zero mean and

covariance function given by

cov(Xs, Xt) = exp (−|t− s|/(2µ)) .

This is the covariance function of the Ornstein-Uhlenbeck process, the continuous time
version of an AR(1) process. It is a stationary Markov Gaussian process. In particular,
for any fixed u

n(u)(cv(u)− 1)
d−→ N(0, 1). (2.4.2)

Therefore, pointwise error limits for the CV-plot are calculated from (2.4.2) (the
symbol ‘d’ refers to the convergence in distribution that will be introduced in Section
2.6).

Figure 2.4.1 shows the CV-plots of samples from different distributions with 95%
pointwise limits around cv = 1. The set of positive sample is called the positive part
and the set of minus the negative sample is called the negative part. In the case of
normal distribution, we can see that the cv are mostly below the lower limit, and they
enter the error limits when the thresholds are sufficiently large. This is because the
normal distribution has lighter tails than that of the exponential distribution, and for a
sufficiently large threshold the tail distributions converge to the GPD as stated in the
Pickands–Balkema–de Haan theorem. The exponential distribution always has its cv
inside the error limits, this can be used as a reference. In the cases of the Student’s t
and the lognormal distributions, most of the cv are over the upper error limits. This is
indicative of heavy-tailed distributions. The cv enter the error limits at large thresholds,
however, these cv are not relevant because the sample size, i.e., the number of excedances
over the thresholds are too small.

We apply the CV-plots to the returns for the three currencies. The results shown
in Figure 2.4.2 indicate that all the positive tails and also the absolute returns are over
the upper error limits while the negative tails are mostly inside the error limits. It is
clear that the hypothesis of exponentiality is rejected in all cases. This implies that the
returns for these currencies are from distributions with heavy tails which is compatible
with the first major stylized fact for returns.
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Figure 2.4.1: CV-plots of some distributions
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CV-plots of samples from normal distribution, exponential distribution, Student’s t distribution and
lognormal distribution. The cv of normal distribution are below the lower limit about cv = 1 because
it has lighter tails than that of exponential distribution. Exponential distribution cv are always in the
95% confidence intervals about cv = 1 whereas Student’s t distribution and lognormal distribution have
heavier tails than that of exponential distribution. At large thresholds, the cv of all distributions enter
the confidence intervals about cv = 1. However, numbers of excedances over large thresholds are too
small and the empirical cv are not relevant.

2.5 Discrete Time Models

Accordingly, the random walk hypothesis provides the basic idea of price process and
the three major stylized facts give a clear-cut direction to model daily returns. Any
satisfactory statistical model for daily returns must be consistent with the three major
stylized facts that are of prominence. The third major stylized fact for returns is indica-
tive of positive autocorrelations among absolute returns and squared returns; this fact
implies the volatility clustering property stated in Section 2.2 such that changes in price
are not constant. The measure of price variability over some period of time is called
volatility. Typically, volatility describes the standard deviation of returns but the defi-
nition may vary in different contexts. In the RWH1 model, volatility is the parameter σ
which describes the standard deviation of returns that is assumed constant for all time
t. However, in financial markets, it seems that volatility increases during crises and then
decrease in at appropriate time. For example, in Figure 2.2.1 the variations of prices
are clearly higher during the crises than that of normal periods. Even though there is
no complete explanation why volatility changes, it is more relevant to model asset price
with changing volatility.

As distinguished from the RHW1 model that assume constant mean and constant
variance for returns, the standard formulation of daily returns that have been widely
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Figure 2.4.2: CV-plots of returns for currency exchanges
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(b) JPY returns
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(c) GBP returns

0 200 400 600 800 1000 1200

0.
6

0.
8

1.
0

1.
2

1.
4

Absolute

Sample

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

0 100 200 300 400 500 600

0.
6

0.
8

1.
0

1.
2

1.
4

Positive tail

Sample

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

0 100 200 300 400 500 600

0.
6

0.
8

1.
0

1.
2

1.
4

Negative tail

Sample

C
oe

ffi
ci

en
t o

f v
ar

ia
tio

n

CV-plots of returns from EUR, JPY and GBP show that the distributions of returns are heavy tailed
because most of the cv are above the upper limits of cv = 1.
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accepted currently is given by
rt = µ+ σtϵt (2.5.1)

where µ is the expected return, ϵt ∼ i.i.d.N(0, 1) are random errors and σt are time-
varying volatilities. As a result rt are normally distributed with constant mean µ and
variance σ2t . Denoting the residual or excess return by yt = rt − µ, another common
formulation is

yt = σtϵt. (2.5.2)

There are two main classes of models that use different approaches to model the volatility
in (2.5.2), ARCH models and stochastic volatility (SV) models. ARCH models specify a
process for the conditional variance of returns by a linear function of past observations,
while SV models specify a stochastic process for volatility.

2.5.1 ARCH models
Autoregressive conditional heteroskedastic (ARCH) processes have been introduced by
Engle (1982). He presented a stochastic process whose variables have conditional mean
zero and conditional variance given by a linear function of previous squared variables.
In the financial econometric contexts, the variable of interest is the return from an asset.
The changes in conditional variance of return give us the word conditional heteroskesastic
and the word autoregressive comes from the autoregressive process of squared residuals
in his pioneering research. The simplest specification of ARCH process is ARCH(1).
Given that the residuals follow (2.5.2). ARCH(1) process is given by

σ2t = ω + αy2t−1 (2.5.3)

where the volatility parameters ω > 0 and α > 0 are strictly positive to ensure the
positivity of the conditional variance σ2t and the case that α = 0 is out of interest.
Therefore the conditional distribution of the return is normal, rt|Ft−1 ∼ N(µ, σ2t ). The
conditional changes in the scale variable σt entitles the conditional heteroskesastic (CH)
part of the acronym ARCH. This ARCH(1) specification results that the volatility of
the return in period t depends only on the previous return. The general formulation of
ARCH(q) model is

σ2t = ω +

q∑
j=1

αjy
2
t−j (2.5.4)

with ω > 0 and αj ≥ 0. The process is stationary if
∑q

j=1 αj < 1. Typically, ARCH(p)
model can not describe the returns process successfully with low order of p because of the
phenomenon of volatility persistence in financial markets (see Section 9.2 in Taylor, 2005
). This leads to the generalization of ARCH which becomes the best known specification,
GARCH (generalized ARCH) models proposed by Bollerslev (1986). The GARCH (1,1)
model, which is the simplest, yet the most popular model in empirical research, is given
by

σ2t = ω + αy2t−1 + βσ2t−1 (2.5.5)
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with ω > 0, α ≥ 0 and β ≥ 0. The unconditional variance of the return equals σ2 =
ω

1−α−β . The GARCH(1,1) model is appreciated because it has decent advantages, yet
the model is simple with only three parameters. Following Taylor (2005), the major
properties of a GARCH(1,1) process, provided α + β < 1, can be summarized as: the
unconditional variance is finite; the unconditional kurtosis is always positive and can
be finite; the correlation between the squared return rt and rt+τ is zero for all τ > 0;
and the correlation between the squared excess returns y2t and y2t+τ is positive for all
τ > 0 and equals C(α + β)τ , with C positive and determined by both α and β. These
properties are adequately consistent with the three major stylized facts for returns. The
general formulation of GARCH(p,q) is defined by

σ2t = ω +

p∑
i=1

αiy
2
t−i +

q∑
j=1

βjσ
2
t−j .

The popularity of ARCH models leads to several specifications, for examples, nonlinear
GARCH (NGARCH) from Engle (1990), the exponential GARCH (EGARCH) from
Nelson (1991), threshold GARCH (TGARCH) from Glosten et al. (1993) and asymmetric
power ARCH (APARCH) from Ding et al. (1993). Some reviews in the literature on
ARCH models are in Bollerslev et al. (1992), Bauwens et al. (2006) and Teräsvirta
(2009).

Let Ft−1 be the information set know at time t − 1. The distribution of return
conditional on past history is

rt|Ft−1 ∼ N(µ, σ2t ) , or equivalently, yt|Ft−1 ∼ N(0, σ2t ). (2.5.6)
We also denote Θ as a vector of parameters. For example, the parameter vector of
GARCH(1,1) model is Θ = (µ, ω, α, β)′. The knowledge of the conditional distributions
of returns allows us to form the likelihood function with ease. Given a set of n observed
returns {r1, r2, ..., rn}. The first parameter that could be estimated is the mean µ that
is estimated by the sample mean r̄. Then it is more convenient to deal with the excess
returns {y1, y2, .., yn} where yi = ri − r̄. Because the conditional distributions of the
excess returns are also known but the less number of parameters are to be estimated. The
likelihood function is a function of Θ which is constructed by the product of conditional
densities f(yt|Ft−1),

L(Θ) = f(y1|F0) · f(y2|F1) · · · f(yn|Fn−1). (2.5.7)
Maximizing the likelihood L(Θ) gives an appropriate estimate of the parameters Θ. The
resulting estimate is equivalent to maximizing the logarithm of L(Θ). The log-likelihood
function is

l(Θ) = logL(Θ) =
n∑
t=1

log f(yt|Ft−1,Θ),

which is a lot easier to optimize. From (2.5.6), the conditional distributions yt|Ft−1 are
normal. Hence, the log-likelihood function l(Θ) can be explicitly written as

l(Θ) =
n∑
t=1

(
−1

2
log(2π)− 1

2
log(σ2t )−

y2t
2σ2t

)
. (2.5.8)
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Maximization of (2.5.8) provides the maximum likelihood estimate Θ̂.

2.5.2 Stochastic volatility models
In contrast to ARCH models that the conditional variance is specified by a function of
past observations, stochastic volatility (SV) models directly specify a stochastic process
for volatility. Therefore the properties of SV models can be designed via the stochastic
process generating volatility. SV and ARCH models explain the same stylized facts
for returns. While ARCH models are more popular because of their ease of maximum
likelihood estimation, SV models arise naturally in derivative pricing theory. The SV
literature has its origin in Rosenberg (1970), Clark (1973), Taylor (1982) and Tauchen
& Pitts (1983). Recall the formulation of daily returns in (2.5.1), returns in excess of a
constant mean µ is

yt = σtϵt, ϵt ∼ i.i.d.N(0, 1).

SV models involve two conditions: first the volatilities {σt} follow a positive stationary
stochastic process, second the processes {σt} and {ϵt} are stochastically independent3.
The standard SV model of Taylor (1986) is given by a Gaussian AR(1) process for its
logarithm,

log(σt) = α+ β log(σt−1) + ηt. (2.5.9)

The parameter β represents volatility persistence, with −1 < β < 1. The volatility
residuals ηt are i.i.d. normally distributed as ηt ∼ i.i.d.N(0, σ2η). The standard SV
model has received more attention than any other SV specifications because it holds
the following properties: all the moments of returns are finite; the kurtosis of returns
is positive; the correlation cor(rt, rt+τ ) is zero and the correlation of squared excess re-
turns, cor(y2t , y2t+τ ), is positive for all τ > 0; finally the autocorrelation function of |yt|p
has approximately the same shape as of y2t for all positive p. Nevertheless, maximum
likelihood estimation for the standard SV model is complicated and hence the param-
eters are estimated by alternative methods such as quasi-maximum likelihood (QML)
methods, the generalized method of moments (GMM) or the MCMC method. These
estimation methods for the standard SV model can be seen in Taylor (2005). Recently,
Lee et al. (2011) introduced the hierarchical-likelihood approach to estimate the standard
SV model.

Other than the standard SV model, various stochastic processes for {σt} have been
proposed. If the distribution of σ2t is assumed properly, then the distribution of returns
is a mixture of normal distributions with higher kurtosis than that of normal distribu-
tion and their autocorrelations are zero at all positive lags. There are several suggestions
about the distribution of σ2t in the literature. Clark (1973) proposes a lognormal dis-
tribution for σ2t , result in a lognormal-normal distribution for returns. Moreover, there
are gamma distribution (Madan & Seneta, 1990), inverse gamma distribution (Praetz,
1972) and inverse Gaussian (IG) distribution(Barndorff-Nielsen, 1997) which are partic-
ular cases of the generalized inverse Gaussian (GIG) distribution. Specially, when the

3The vector variables (σ1, σ2, ..., σn) and (ϵ1, ϵ2, ..., ϵn) are independent for all positive integers n.



2.5. DISCRETE TIME MODELS 23

distribution of σ2t is IG or GIG, the distribution of returns is normal inverse Gaussian
(NIG) or generalized hyperbolic (GH) respectively. The GH and the GIG distributions
are both infinitely divisible, proven by Barndorff-Nielsen & Halgreen (1977). The merit
of this property will be discuss in Section 2.6. Remark that volatility is latent and
unobservable, hence the estimation of model parameters is certainly complicated.

2.5.3 Volatility estimates

Volatility is latent variable but it is an important input in several financial models. For
this reason either the estimate or forecast of volatility is necessary. Denote σt as the
volatility of an asset at time t, the squared of the volatility, σ2t , on period t is the variance
rate. A standard way to estimate the volatility, σt, at the end of period t using the most
recent m observations on the return {rt} is

σ̂2t =
1

m− 1

m∑
i=1

(rt−i − r̄)2 (2.5.10)

where r̄ = 1
m

∑m
i=1 rt−i is the mean of returns of last m observations. This estimator, σ̂t,

is called realized volatility or historical volatility. Unambiguously, some authors define
realized volatility using intra-daily data, which is not applied in this thesis. Volatility
is usually expressed in term of annualized volatility representing the volatility per year.
The number of trading days per year is regularly assumed to be 252, thus the annualized
volatility calculated from daily volatility σt is approximately

√
252σt. Suppose that the

return process has a constant mean µ, that is estimated by r̄. The excess return of the
process {rt} are yt = rt − µ, that can be estimated by yt ≈ rt − r̄. Replacing 1

m−1 by 1
m

in 2.5.10, the simplified formula is

σ̂2t =
1

m

m∑
i=1

y2t−i (2.5.11)

which makes very little difference to the variance estimates. The equation (2.5.11) gives
equal weigh to all observations. It makes sense to give more weight to recent data to
estimate the current level of volatility σt. The weighting scheme is given by

σ̂2t =

m∑
i=1

αiy
2
t−i (2.5.12)

The variable αi > 0 is the amount of weight assigned to the observation i days ago.
We can design how we weigh each observation properly but the weights must sum to
unity, so that

∑m
i=1 αi = 1. This allows us to assign more significancy to the data that

is believed to influence the process. Since we are estimating current level of volatility,
it is appropriate that the most recent data are considered with higher weights. So we
choose the weights, αi, in such a way that they decrease exponentially as we move back
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Figure 2.5.1: Volatility estimates of EUR (annualized)

Volatility estimates of EUR using realized volatility model and EWMA model. The volatility estimates
in the Crisis 2 are considerably higher than in other periods.

through time. Given that the weights are exponentially decreasing with rate 0 < λ < 1,
that is αi+1 = λαi. If α1 = 1− λ, with some simple calculations, then

σ̂2t = (1− λ)y2t−1 + λσ2t−1 − (1− λ)λmy2t−1−m

The term (1 − λ)λmy2t−1−m is sufficiently small to be ignored for large m. Finally, we
arrive

σ̂2t = (1− λ)y2t−1 + λσ̂2t−1. (2.5.13)

This is the exponentially weighted moving average (EWMA) model used in the Risk-
Metrics database, which was created by J.P. Morgan4 and made publicly available in
1994. The parameter used in the RiskMetrics is λ = 0.94 for updating daily volatilities
estimates. Figure 2.5.1 shows volatility estimates using 22-day realized volatility and
EWMA with λ = 0.94. Volatility estimates are extremely high during the Crisis 2.

2.6 Continuous Time Models
A major breakthrough in financial engineering was made by a continuous time model,
when Fischer Black, Myron Scholes, and Robert Merton presented the model for stock
price and the formula for option pricing in the early 1970s. They developed probably
the most celebrated of all models used in finance that has become known as the Black-
Scholes model. The model has been greatly influential to practitioners and academics

4See J.P. Morgan, RiskMetrics Monitor, Fourth Quarter, 1995
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on the way to price and hedge options. As a result of the development of the favorable
model, Robert Merton and Myron Scholes were awarded the Nobel prize for economics
in 1997. Fischer Black should have been awarded the prize as well but he passed away
before in 1995. Accordingly, succeeding models in option and derivative pricing theory
have been influenced by the Black-Scholes model and mostly rely on continuous time.
In this section we present some continuous time models and some important properties
that connect continuous time models to discrete time models.

2.6.1 Brownian motion
Beginning with the basic idea arising in the RWH1 model, it is sensible to think of
the natural continuous-time version of the RWH1 process. The (standard) Brownian
motion, which is also called the Wiener process, is a continuous-time stochastic process
B = {Bt}t≥0 satisfying the following properties:

(i) B0 = 0 a.s., that is P (B0 = 0) = 1;

(ii) {Bt} has independent increments, that is for 0 ≤ t1 < t2 ≤ t3 < t4, Bt4 − Bt3 is
independent of Bt2 −Bt1 ;

(iii) {Bt} has stationary increments, that is the distribution of Bt−Bs only depend on
the time difference t− s;

(iv) Bt are Gaussian, that is Bt = Bt −B0 ∼ N(0, σ2t).

The Brownian motion was named after Robert Brown, an English botanist who firstly
observed the irregular motion of pollen grains in water in 1826. Later this motion was
described in (plausible) mathematical terms by Bachelier in 1900, by Einstein in 1905,
and by von Sinoluchovski in 1906. Nevertheless, Norbert Wiener was the first one who
gave a rigorous mathematical derivation of this process in 1923, and so it is also called
a Wiener process. The famous Black-Scholes option pricing formula was derived by
assuming that the log price process follows a Brownian motion. In consequence, the
price process follows the so-called geometric Brownian motion (GBM).

Seemingly, the RWH1 model and Brownian motion are intuitively agreeing. One of
the formal constructions of Brownian motion employs the concept of weak convergence
and the central limit theorem; which asserts that if {ξj}∞j=1 is a sequence of i.i.d. ran-
dom variables with mean zero and variance σ2 <∞, then {Sn} defined by Sn =

∑n
j=1 ξj

converges in distribution to a random variable distributed as N(0, σ2n). This theorem
advised that a properly normalized sequence of random walks will converge in distri-
bution to a Brownian motion. This idea is developed to the invariance principle of
Donsker’s (1951) which proves the convergence. Let us consider the sequence of partial
sums S = {Sk}∞k=0 where S0 = 0 and Sk =

∑k
j=1 ξj for k ≥ 1. From S, we obtain a

sequence of continuous-time process X(n) = {X(n)
t }t≥0 with scaled linear interpolations

X
(n)
t =

1

σ
√
n

(
S⌊nt⌋ + (nt− ⌊nt⌋)ξ⌊nt⌋+1

)
, t ≥ 0 (2.6.1)
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where ⌊t⌋denotes the greatest integer less than or equal to t. The following theorem is
known as the invariance principle of Donsker’s.

Theorem 4 (Donsker, 1951). Let {ξj}j∈N be a sequence of i.i.d random variables on
(Ω,Σ, P ) with zero means and finite variances σ2 > 0. If X(n) is defined by (2.6.1),
then

X(n) d−→ B as n→ ∞

where B = {Bt}t≥0 is the standard Brownian motion or the Weiner process with Bt ∼
N(0, σ2t) and ‘d’ denotes the convergence in distribution.

The definition of convergence in distribution and the proof of the theorem can be
found in Theorem 4.20 of Karatzas & Shreve (2005). The central limit theorem suggests
the normal distribution in the Brownian motion. One might believe that normal distri-
bution is the only proper distribution for the increments, however, this is incorrect. A
more general continuous-time model is constructed in the following section.

2.6.2 Lévy process
As Brownian motion is a limit of the random walk, we may think of constructing a
continuous-time process in the same way. Suppose that we wish to design a continuous
time process {Yt}t≥0 such that the value of Y1 at time t = 1 has a particular distribution
D. The time interval is divided into n subintervals of equal length. The corresponding
increments {ξ(n)j }nj=1 are assumed to be independent from a common distribution D(n)

such that the sum Y1 =
∑n

j=1 ξ
(n)
j ∼ D. When n increases, the distribution of increments

F (n) change but the distribution of the sum D stays unchanged. This property of the
distribution D leads to the introduction of one of the most important classes as follows:

Definition 5 (Infinitely divisible). A distribution DX with characteristic function φX :
u 7→ E[exp(iuX)] is called infinitely divisible if for each n ∈ N, there is a characteristic
function φ(n)

X , such that φX = (φ
(n)
X )n.

This is equivalent to saying that a random variable X is infinitely divisible if for each
n ∈ N there exists {X(n)

i }ni=1 of i.i.d. random variables such that

X = X
(n)
1 +X

(n)
2 + · · ·+X(n)

n .

Then if DX in the above construction is infinitely divisible, it can be used to introduce
a continuous-time stochastic process by taking n → ∞. The resulting process is called
a Lévy process {Xt}t≥0 defined by the following properties:

(i) X0 = 0 a.s.;

(ii) {Xt} has independent increments;

(iii) {Xt} has stationary increments;
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(iv) Xt are continuous in probability, that is for any ϵ > 0 and t ≥ 0 it holds that
lims→t P (|Xs −Xt| > ϵ) = 0.

The last condition (iv) can be relaxed as Xt are right continuous and have limits from the
left with probability one. An immediate example of Lévy process is the Brownian motion.
Lévy process was introduced by the French mathematician Paul Lévy in the 1930s, much
of the theory was developed by himself, A. N. Khintchine, and K. Itô. Recently there has
been a great revival of interest in these processes, due to new theoretical developments
and also a wealth of novel applications, particularly to option pricing in mathematical
finance. Lévy processes are receiving more interest than models based on Brownian
motion because they are capable in describing the observations in financial markets in a
more accurate way. The applications of Lévy processes in finance can be found in Cont
& Tankov (2004) and Kijima (2003). The following theorem allows us to consider Lévy
processes in a simple manner (see Raible (2000)).

Theorem 6. If {Xt}t≥0 is a Lévy process, then the marginal distribution of Xt is
determined by X1.

Infinitely divisibility and Lévy process are related by the following theorem (see Sato,
2014).

Theorem 7. If {Xt}t≥0 is a Lévy process, then, for any t, the distribution of Xt is
infinitely divisible. Conversely, for any infinitely divisible distribution D, there uniquely
(in the sense of law) exists a Lévy process {Xt}t≥0 such that X1 has distribution D.

Theorem 7 provides us the class of distributions for which Lévy processes exist and it
is possible to find the approximation to the Lévy process by a random walk. Examples of
infinitely divisible distributions include the normal, Poisson, gamma, inverse Gaussian,
hyperbolic, variance gamma, scaled-t, and normal inverse Gaussian. The last four dis-
tributions are included in the class of generalized hyperbolic (GH) distributions, while
inverse Gaussian distribution is in the class of generalized inverse Gaussian (GIG) distri-
butions. Barndorff-Nielsen & Halgreen (1977) proved that both GH and GIG classes are
infinitely divisible. GH distributions are often used to fit financial data since they have
tails heavier than the normal distribution. In financial literature, scaled-t distributions
were introduced by Praetz (1972), variance gamma distributions by Madan & Seneta
(1990), hyperbolic distributions by Eberlein & Keller (1995), and NIG distributions by
Barndorff-Nielsen & Shephard (2001).

We are specially interested in the NIG distribution because it is one of only two
subclasses of GH distributions that are closed under convolution. The other subclass
having this property is the variance gamma distribution. This property asserts that if
X1 is has NIG distribution then X1/n also has NIG distribution. In particular, if the
observed process at a certain frequency scale follows a NIG distribution, then at lower
frequency scales it follows an NIG distribution too. We extensively study financial data
with NIG distribution in Chapter 3. test
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Chapter 3

Explanatory Data Analysis with
NIG

In this chapter, financial data is analyzed with a particular distribution stated in pre-
vious chapter, the normal inverse Gaussian (NIG) distribution. The properties of NIG
distribution are presented and the distribution is fitted to real data. The estimation has
been done with three approaches: the method of moments, the maximum likelihood and
the h-likelihood. We also show how good the data are fitted with NIG distributions.

3.1 The NIG Distribution
The NIG distribution proposed by Barndorff-Nielsen (1997) is the distribution on the
whole real line having density function

f(x;α, β, µ, δ) = a(α, β, µ, δ)q

(
x− µ

δ

)−1

K1

(
δαq

(
x− µ

δ

))
exp(βx) (3.1.1)

where

a(α, β, µ, δ) = π−1α exp
(
δ
√

(α2 − β2)− βµ
)

and q(x) =
√

1 + x2.

Kλ is the modified Bessel function of the third kind with index λ given by the integral
expression

Kλ(x) =
1

2

ˆ ∞

0
yλ−1 exp

(
−x(y + y−1)/2

)
dy. (3.1.2)

The parameters α, β, µ and δ satisfy 0 ≤ |β| ≤ α, µ ∈ R and δ > 0. The distri-
bution is symmetric around µ provided β = 0. We shall denote this distribution by
NIG(α, β, µ, δ). The moment generating function M(t;α, β, µ, δ) of NIG(α, β, µ, δ) is
expressed as

M(t;β, µ, δ) = exp
(
δ
(√

α2 − β2 −
√
α2 − (β + t)2

)
+ µt

)
. (3.1.3)

29
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Thus all moments of X ∼ NIG(α, β, µ, δ) have simple explicit expression and, in par-
ticular, the mean and the variance are

E[X] = µ+ δβ/(α2 − β2)1/2 and var[X] = δα2/(α2 − β2)3/2. (3.1.4)

It follows from (3.1.3) that the normal inverse Gaussian distributions are infinitely di-
visible and close under convolution if the parameters α and β are fixed. If X1, X2, .., Xm

are independent normal inverse Gaussian random variables with common parameters α
and β, that is Xi ∼ NIG(α, β, µi, δi) for 1 ≤ i ≤ m, then X(m) = X1 +X2 + · · · +Xm

is again distributed as normal inverse Gaussian X(m) ∼ NIG(α, β,
∑m

i=1 µi,
∑m

i=1 δi).
Remark that the normal distribution N(µ, σ2) is a limiting case for β = 0, α → ∞ and
δ/α = σ2.

In particular, we aim to employ NIG distribution to fit time series of excess returns
yt = rt − r̄ which have zero mean and are approximately symmetric as we discussed
in Section 2.3. Therefore we take special attention to the NIG(α, β, µ, δ) with µ = 0
and β = 0. Using the alternative parameterization ϕ = δ/α > 0 and ω = αδ > 0,
the zero-mean symmetric NIG distribution, denoted by Y ∼ NIG(ϕ, ω) has the density
function

f(y;ϕ, ω) =
ω exp(ω)
π
√
y2 + ϕω

K1

(√
ω2 +

ω

ϕ
y2
)
. (3.1.5)

And the moment generating function M(t;ϕ, ω) of NIG(ϕ, ω) is simply

M(t;ϕ, ω) = exp
(
ω −

√
ω

ϕ
− t2

)
.

Consequently the variance and the kurtosis are

var[Y ] = ϕ and kurt[Y ] = 3/ω.

Thus, given a sample drawn from NIG(ϕ, ω), the parameters ϕ and ω can be readily
estimated from its sample moments. Suppose that {y1, y2, .., yn} is a sample of indepen-
dent observations drawn from the distribution NIG(ϕ, ω). Using the sample variance
s2 and the sample kurtosis k, the parameters can be estimated by ϕ̂ = s2 and ω̂ = 3/k.
Furthermore, the parameters can be estimated by maximizing the log likelihood function

l(ϕ, ω) =

n∑
t=1

[
ω + log(ω)− log(π)− 1

2
log(y2t + ϕω) + log

(
K1(

√
ω2 +

ω

ϕ
y2t )

)]
.

(3.1.6)
The NIG(ϕ, ω) is also close under convolution when the ratio ω/ϕ is fixed. Given
X1, X2, ..., Xm are independent random variables distributed as Xi ∼ NIG(ϕi, ωi) with
a common ratio α2 = ωi/ϕi , then X(m) = X1 +X2 + ...+Xm is distributed as X(m) ∼
NIG (

∑m
i=1 ϕi,

∑m
i=1 ωi).
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3.2 Data Descriptive Statistics

The data set we are exploring here is the exchange rates of three currencies stated in
Section 1.2. From now on we will work with the time series of excess returns times 100

yt = 100(rt − r̄). (3.2.1)

We use the following abbreviations referring to the time series of exchange rates in a
specific period: EUR to EUR/USD in the whole period, EUR-pre to EUR/USD in the
Pre-Crisis period, EUR-c1 to EUR/USD in the Crisis 1 period, and EUR-post to EUR/
USD in the Post-Crisis period. The abbreviations for JPY/USD and GBP/USD are
given in the same manner. The number of returns over all period is n = 1305, the
number of returns in Pre-Crisis, Crisis 1, Crisis 2 and Post-Crisis periods are 390, 261,
261 and 393 respectively.

Table 3.1 shows the summary statistics for all the time series. The average returns
r̄ over one day are very small thus they are often assumed to be zero. In our case
we subtract them from the return series and consider only the series of excess returns
yt in (3.2.1), other statistics are calculated from yt instead of rt. It is noticeable that
the variances during the Crisis 2 are higher than other periods for all currencies. The
calmest period of all currencies is the Pre-Crisis period. The skewness statistics are not
far from zero and do not provide much evidence of asymmetric distributions. Except
for the series EUR-post, all others series have positive kurtosis as pointed out in Section
2.3. The standard error of a kurtosis estimate k is

√
24/n for a random sample from a

normal distribution. In our series the standard errors range from 0.14 to 0.30 depending
on n. The three series of overall periods EUR, JPY and GBP show significant positive
kurtosis because they exceed zero by more than ten times standard errors. Only the
EUR-post series has very small negative kurtosis that is insignificantly less than zero.

Table 3.2 shows the relative frequencies for time series of returns within or beyond
the number of standard deviation from the mean. The reference distribution is the
standard normal distribution. The relative frequencies around the mean in the range
from ȳ − 0.5s to ȳ + 0.5s of all series but GBP-post are higher than that of normal
distribution, corresponding to high peaks in empirical distributions. The frequencies of
extreme values that are beyond three standard deviations are also more than that of
normal distribution in most series. The relative frequencies of extreme values of some
series are greater than 1% even beyond 6 standard deviations. The higher frequencies of
extreme values corresponds to fat tails. In conclusion, the descriptive statistics for our
time series are well agreeing with the stylized facts for financial returns that we have
discussed in Section 2.3.

3.3 Fitting Financial Data with NIG Distribution

Now we are going to fit the data with NIG distribution. Since we NIG(ϕ, ω) does not
involve the skewness parameter β, so we test weather this parameterization is appropriate
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Table 3.1: Descriptive statistics for time series of returns

series n mean (r̄) variance (s2) skewness (w) kurtosis (k)
EUR 1305 0.01 0.42 0.46 3.70
EUR-pre 390 0.03 0.19 0.37 1.14
EUR-c1 261 0.06 0.27 -0.26 0.30
EUR-c2 261 -0.04 1.00 0.72 2.02
EUR-post 393 -0.01 0.37 0.08 -0.09
JPY 1305 0.03 0.52 0.52 4.38
JPY-pre 390 -0.01 0.24 0.45 1.27
JPY-c1 261 0.06 0.54 0.86 4.80
JPY-c2 261 0.04 0.97 0.57 2.77
JPY-post 393 0.04 0.48 -0.11 2.01
GBP 1305 -0.01 0.48 0.03 5.18
GBP-pre 390 0.04 0.21 0.25 0.79
GBP-c1 261 0.00 0.26 -0.46 0.39
GBP-c2 261 -0.07 1.25 0.20 2.35
GBP-post 393 -0.01 0.40 0.01 0.19

The descriptive statistics for returns (r̄) and excess returns (s2, w, k) show that the distributions of
(excess) returns are approximately symmetric with positive kurtosis.

for financial data. Then we continue analyzing the data with NIG distribution with
different methods of estimation and test for the goodness-of-fit.

3.3.1 Skewness

The skewness estimates in Table 3.1 shows some non zero skewness indicating that
the data may be drawn from asymmetric distribution. If this hypothesis is true then
we shall not assume skewness parameter β in the NIG distribution to be zero. Here
we test if the skewness parameter β in the NIG distribution significantly improve the
goodness of fit in our data by the likelihood-ratio test. Given the null hypothesis that
the excess returns yt follow a zero mean symmetric NIG distribution, yt ∼ N(ϕ, ω). The
alternative hypothesis is that the returns follow the skewed NIG distribution with the
density function

fsk(y;ϕ, ω, β) =
ω exp

(√
ω2 − ϕωβ2

)
π
√
y2 + ϕω

K1

(√
ω2 +

ω

ϕ
y2
)
exp(βy).

The corresponding log-likelihood function for skewed NIG distribution is

lsk(ϕ, ω, β) =
n∑
t=1

[√
ω2 − ϕωβ2 + log(ω)− log(π)− 1

2
log(y2t + ϕω) + log

(
K1(

√
ω2 +

ω

ϕ
yt)

)
+ βyt

]
.
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Table 3.2: Frequency distributions

Percentage of returns within/beyond the number of standard deviations from the mean
with in beyond

0.25 0.5 1 1.5 2 3 4 5 6
Normal 19.74% 38.29% 31.73% 13.36% 4.55% 0.27% 0.01%
EUR 26.13% 48.12% 25.75% 11.34% 4.44% 1.30% 0.46% 0.23% 0.08%
EUR-pre 22.05% 43.33% 28.97% 12.05% 5.38% 0.77% 0.26%
EUR-c1 23.37% 44.44% 28.74% 14.56% 5.75%
EUR-c2 24.52% 48.28% 25.29% 12.64% 5.75% 1.15%
EUR-post 22.14% 40.20% 32.06% 15.27% 4.07%
JPY 25.98% 45.82% 24.90% 10.04% 4.60% 1.23% 0.38% 0.15% 0.15%
JPY-pre 24.87% 45.38% 26.92% 13.33% 4.87% 0.77% 0.26%
JPY-c1 24.52% 42.91% 25.67% 9.20% 3.45% 0.77% 0.38% 0.38% 0.38%
JPY-c2 20.69% 41.00% 24.52% 9.58% 6.13% 0.77% 0.38% 0.38%
JPY-post 24.43% 44.02% 27.48% 11.96% 4.83% 1.53% 0.25%
GBP 25.52% 46.44% 23.75% 10.57% 4.44% 1.38% 0.46% 0.23% 0.08%
GBP-pre 24.36% 44.10% 27.69% 14.36% 6.15% 0.26% 0.26%
GBP-c1 22.22% 41.38% 29.12% 14.18% 5.36% 0.38%
GBP-c2 22.61% 44.44% 27.59% 11.11% 4.21% 1.53% 0.38%
GBP-post 18.83% 34.10% 28.50% 11.96% 4.58% 0.51%

The relative frequencies of extreme values of returns for ten returns series show that most of the returns
series have greater relative frequencies beyond three standard deviations than that of the standard normal
distribution. Evidently, the distribution of returns exhibits fat tails.

The test statistic D is twice the difference between the two log-likelihoods

D = 2 (lsk(ϕ, ω, β)− l(ϕ, ω))

Then the test statistic D is approximately a chi-square distribution with one degree of
freedom. The 95th percentile of a chi-square distribution with one degree of freedom
is 3.84 that is far greater than the statistics calculated from our data shown in Table
3.3. There is no evidences that the time series in our data set follows a skewed NIG
distribution and hence we rationally exclude the skew parameter β from our model.

3.3.2 Parameter estimation
The parameters of a zero-mean symmetric NIG distribution can be estimated simply
either by the method of moments (MoM) or the maximum likelihood estimation (MLE).
The method of moments is very convenient and the estimated parameters can be used as
initial values for MLE. From (3.1.3) the variance and the kurtosis of Y ∼ NIG(ϕ, ω) are
var(Y ) = ϕ and kurt(Y ) = 3/ω. Thus for a time series of excess returns {y1, y2, ..., yn}
supposed to follow a symmetric NIG distribution yt ∼ NIG(ϕ, ω), the parameters can
be estimated by ϕ̂ = s2 and ω̂ = 3/k, where s2 and k are the sample variance and sample
kurtosis. Table 3.4 shows the estimated parameters from MoM and MLE. The values
of ϕ̂ from both method are almost identical in several series, but the estimates of ω are
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Table 3.3: Likelihood ratio test

Series log-likelihood
Dsymmetric NIG skewed NIG

EUR -1215.66 -1215.66 2.23E-07
EUR-pre -220.22 -220.22 5.19E-07
EUR-c1 -199.25 -199.25 3.68E-06
EUR-c2 -358.29 -358.29 2.81E-06
EUR-post -359.33 -359.33 -1.98E-05
JPY -1352.92 -1352.92 1.39E-06
JPY-pre -267.45 -267.45 -1.65E-05
JPY-c1 -279.59 -279.59 2.23E-07
JPY-c2 -356.43 -356.43 -4.20E-07
JPY-post -400.07 -400.07 -5.08E-06
GBP -1298.41 -1298.41 1.66E-06
GBP-pre -241.37 -241.37 1.14E-06
GBP-c1 -192.94 -192.94 2.65E-07
GBP-c2 -390.62 -390.62 -9.49E-06
GBP-post -375.61 -375.61 1.09E-05

The log-likelihood-ratio statistics D are far smaller than the critical value 3.84. Hence, the null hypothe-
ses stating that the symmetric NIG distribution and the skewed NIG distribution are similarly fitted
to the data are not rejected at 95% confidence. Hence we rationally exclude the skewness parameter β

from our models.

slightly different. Remark that ω̂ from the MoM estimation is satisfactory only when
k > 0, because ω must be positive. The EUR-post has negative kurtosis, hence the MoM
estimate is not satisfactory. We use an initial value slightly greater than zero, ω̂0 = 0.1,
to obtain the maximum-likelihood estimate that is far greater than other estimates. The
more the parameter ω, the less the kurtosis for the distribution. As a consequence, the
distribution is approximately normal with variance ϕ. This result can be seen in the
density plot in the next subsection. Hereafter, we take the MoM as the initial guess for
true parameter and practically use MLE in application.

3.3.3 Goodness of fit

Firstly, we asses the goodness of fit by graphical methods. In Figure 3.3.1, the density
plots for most of the series are better with NIG distributions than normal distributions,
either with MLE parameters or MoM parameters. The fitted NIG distributions have
higher peaks than that of fitted normal distributions agree adequately with the data.
In the case of EUR-post that the kurtosis estimate is negative, the MLE fitted NIG
distribution is indistinguishable from the fitted normal distribution while the MoM fit-
ted NIG is not satisfactory. Other cases, the MLE fitted NIG distributions and MoM
fitted distributions are a bit different, however, clearly that they fit better than normal
distributions.
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Table 3.4: Estimated parameters from MoM and MLE

series ϕ̂ ω̂
MoM MLE MoM MLE

EUR 0.421 0.418 0.811 0.977
EUR-pre 0.187 0.187 2.637 2.346
EUR-c1 0.274 0.276 9.854 2.655
EUR-c2 1.001 1.008 1.488 0.980
EUR-post 0.365 0.364 -32.160 700.720
JPY 0.517 0.505 0.685 1.204
JPY-pre 0.240 0.240 2.354 1.929
JPY-c1 0.543 0.521 0.625 1.992
JPY-c2 0.972 0.950 1.083 1.633
JPY-post 0.476 0.472 1.490 1.669
GBP 0.485 0.471 0.579 1.067
GBP-pre 0.207 0.209 3.795 2.135
GBP-c1 0.259 0.259 7.707 5.695
GBP-c2 1.254 1.235 1.278 1.584
GBP-post 0.397 0.396 15.956 17.724

The estimated parameters from MoM and MLE are very similar in most cases. The values of ϕ̂ from
both method are almost identical in several series, but the estimates of ω are slightly different. Remark
that ω̂ from the MoM estimation is satisfactory only when k > 0, because ω must be positive. Practically
, we take the MoM as the initial guess for true parameter and use MLE in application.

Furthermore, Figure 3.3.2 show the quantile-quantile (Q-Q) plots of MLE fitted NIG
quantiles against sample quantiles. Most of the points in each plot lie nicely on the line
except for some outliers. The Q-Q plots for the post-crisis period are nearly perfect fit
to the lines. These graphics show that the NIG distribution are considerably accurate
in describing the distribution of financial returns.
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Figure 3.3.1: The density plots for returns superimposed on the fitted densities of normal
and NIG.
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The density plots for most of the returns series are better with NIG distributions than normal distribu-
tions, either with MLE parameters or MoM parameters.
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Figure 3.3.2: The Q-Q plots of fitted NIG quantiles against sample quantiles for returns
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Most of the points in each plot lie nicely on the line except for some outliers. These graphics show that
the NIG distributions are considerably accurate in describing the distributions of financial returns.
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For quantitative analysis we make use of the Pearson’s χ2 test for goodness of fit.
The null hypothesis is that the observations are consistent with the tested distribution.
The test statistic X2 is calculated from categorized data that the partitioning can influ-
ence the value of the statistic especially when some categories contain small numbers of
observations. Therefore we categorize the data by equal probabilities to have the same
expected value in each class. Then the test statistic is calculated by

X2 =

k∑
i=1

(Oi − Ei)
2/Ei

where k is the number of classes, Oi are the observed frequencies and Ei are the expected
frequencies. The expected frequency of NIG distribution is calculated by numerical
integration since there is no explicit form of the distribution function. An example of
X2 calculation is given in Table 3.5a, we fix the number of classes as k = 20. Since the
parameters are estimated by maximum likelihood, the asymptotic distribution of X2

can be bounded between chi-square with k − 1 and chi-square with k − p− 1 degrees of
freedom, where p is the number of estimated parameters. The corresponding p-value are
reported in Table 3.5b, the true asymptotic p-value lies between p-value1 and p-value2.
The least p-value, that is of the JPY-pre, is 0.016 still greater than 0.01, thus it is not
rejected at 99% confidence. The other cases are clearly not rejected at 95% confidence.
In conclusion, from both graphical and quantitative methods, the NIG distribution is
very accurate in fitting financial returns.
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Table 3.5: Goodness-of-fit test

(a) X2 statistic calculation

Class O E

(−∞,-1.03] 69 65.25 0.216
(-1.03,-0.735] 73 65.25 0.920

(-0.735,-0.565] 64 65.25 0.024
(-0.565,-0.444] 59 65.25 0.599
(-0.444,-0.347] 56 65.25 1.311
(-0.347,-0.265] 71 65.25 0.507
(-0.265,-0.193] 61 65.25 0.277
(-0.193,-0.126] 74 65.25 1.173
(-0.126,-0.062] 66 65.25 0.009
(-0.062,0.00] 55 65.25 1.610
(0.00,0.062] 65 65.25 0.001
(0.062,0.126] 82 65.25 4.300
(0.126,0.193] 65 65.25 0.001
(0.193,0.265] 66 65.25 0.009
(0.265,0.347] 62 65.25 0.162
(0.347,0.444] 57 65.25 1.043
(0.444,0.565] 60 65.25 0.422
(0.565,0.735] 69 65.25 0.216
(0.735,1.03] 67 65.25 0.047
(1.03, ∞) 64 65.25 0.024

X2 = 12.870

(b) Pearson’s χ2 test for NIG distribution

X2 p-value1 p-value2
EUR 12.870 0.745 0.845
EUR-pre 15.436 0.564 0.695
EUR-c1 18.770 0.342 0.472
EUR-c2 19.690 0.290 0.413
EUR-post 16.008 0.523 0.657
JPY 24.640 0.103 0.173
JPY-pre 31.744 0.016 0.033
JPY-c1 14.785 0.611 0.736
JPY-c2 16.471 0.491 0.626
JPY-post 12.547 0.766 0.861
GBP 16.119 0.515 0.649
GBP-pre 24.462 0.107 0.179
GBP-c1 18.157 0.379 0.512
GBP-c2 12.487 0.770 0.864
GBP-post 17.229 0.439 0.574

Table 3.5a show how the statistic X2 is computed. Each class has equal expected frequency, thus the
error related to partitioning has been reduced. Table 3.5b shows the test statistics X2 and the estimated
p-values. The true p-value lie between p-value1 and p-value2. Clearly, the null hypotheses are not
rejected at 99% confidence. The observations are properly fitted to NIG distributions.

3.4 Summary

In this chapter, we have analyzed the financial data with NIG distribution. The empir-
ical distributions of the data are not normal, they have high peaks and fat tails. The
symmetric NIG distribution has been proved to be equally fitted to the data compared
to the skewed NIG distribution. Hence the symmetric NIG distribution is preferred be-
cause of less parameters. The (zero-mean symmetric) NIG distribution can be estimated
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analogously with method of moments and maximum likelihood estimation. Practically,
we use the MoM as initially values for MLE. The goodness-of-fits have been tested and
the exploratory data are adequately fitted to NIG distributions. In conclusion, the NIG
distribution is very appropriate for describing financial data.



Chapter 4

Volatility Forecasting

In this chapter, we develop volatility forecasting models that the volatility is assumed
stochastic. The NIG-SV model that the returns follow NIG distributions is specially
interested as we have shown in the previous chapter that the marginal distributions of
returns are well fitted to NIG distributions. We also discuss on some practical issues
in volatility forecasting that practitioners usually encounter. The volatility forecasting
strategy including the evaluation measures are also provided. An alternative approach
on estimation for stochastic volatility models, especially for the NIG-SV model, is inves-
tigated. The latent information estimates are obtained as by-products of the estimation.
Consequently, we develop forecasting models based on the latent information that per-
form better than standard models in some occasions.

4.1 Practical Issues in Volatility Forecasting
Volatility forecasting is one of the most challenging fields in financial econometrics.
Hence numerous papers studying performance of various models have been published
over the last two decades. The investigation in volatility forecasting consists of vast
aspects both theoretically and practically including volatility definitions, volatility mea-
surement, volatility models, model’s parameter estimation, objectives of volatility fore-
casting, forecast evaluation and volatility proxies. Poon & Granger (2003) gives a
comprehensive review of volatility forecasting covering 93 papers from 1976 to 2002.
They also extensively discuss several practical issues in volatility forecasting in Poon
& Granger (2005) and . Recently Brownlees et al. (2012) give an informative guide to
practically forecast volatility with GARCH models. This section is mainly based on the
work of Poon & Granger (2003, 2005) and Brownlees et al. (2012).

4.1.1 Volatility proxy

Volatility is unobservable even ex post. It is therefore more complicated when we make
comparison of forecasting methods. The unknown true volatility is regularly replaced by
related observable quantity called volatility proxy to be used as a reference when making

41
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comparison. The true volatility is usually estimated by sample standard deviation that
is called realized volatility in (2.5.11). This is a result of proxying a daily volatility by a
squared daily return. Then the average volatility over m days is proxied by the realized
volatility calculated from m observations. Given the excess return yt = σtϵt stated in
(2.5.2), Lopez (2001) shows that y2t is an unbiased estimator of σ2t . However, Poon
& Granger (2003) argues that squared return is very imprecise estimator of volatility.
The use of y2t as volatility proxy will lead to low coefficient of determination R2 and
undermine the inference regarding forecast accuracy.

Other standard volatility proxies are daily range Rt = max{logPτ}−min{logPτ}, t−
1 ≤ τ ≤ t and daily realized volatility RV (k)

t =
∑k

j=1 y
2
t,j , where yt,j are intraday returns.

Under the assumption that the log price follows a Brownian motion yt = σtdWt, where
στ = σt for t − 1 ≤ τ ≤ t. Parkinson (1980) gives an accurate volatility estimator
using daily range by σ̂2t = R2

t / (4 log(2)). The mean squared error (MSE) of Parkinson’s
estimator is approximately one-fifth of the MSE of the squared return. Nevertheless,
the range-based volatility estimator depends critically on the assumed price generating
process, which is a potential drawback of the range as a volatility proxy. Daily realized
volatility is unbiased estimator and has gained much attention recently, see Andersen
et al. (2001, 2003) and Barndorff-Nielsen & Shephard (2002, 2004). However, for most
assets, high-frequency data are not publicly accessible and it is not easy to obtain reliable
high frequency data.

Patton (2011) gives a class of loss functions that is attractively robust in the sense
that they asymptotically generate the same ranking of models regardless of the proxy
being used as long as the proxy is unbiased and minimal regularity conditions are met. It
ensures that model rankings achieved with proxies like squared returns or daily realized
volatility correspond to the ranking that would be achieved if forecasts were compared
against the true volatility. Hence the squared return is a reasonable and affordable
choice of volatility proxy for point forecast evaluation. When a long horizon volatility
is forecasted, a point forecast becomes very noisy as the forecast horizon lengthens.
Instead, the cumulative volatility over the forecast horizon is more accurate because of
error cancellation (see Poon & Granger, 2003). Suppose that the forecast horizon is k,
the cumulative volatility over the forecast horizon σ2t+k,t =

∑k
i=1 σ

2
t+i is then proxied by

the sum of squared returns over the forecast horizon σ̂2t+k,t =
∑k

i=1 y
2
t+i.

4.1.2 Forecast evaluation

The performance of forecasting volatility is considered by the choices of models and
strategies. It is worth mentioning that we focus only on out-of-sample implementation
because it is closer to real applications. A good forecasting model should be one that can
withstand the robustness of an out-of-sample test. The forecast performance is evaluated
by the average loss achieved by the model that is calculated by a loss function with a
proper volatility proxy. The less average loss, the more accuracy. Several loss functions
have been employed in the literature on volatility forecast evolution, see Patton (2011).
Under our choice of volatility proxy, the squared return, Patton (2011) suggests the MSE



4.1. PRACTICAL ISSUES IN VOLATILITY FORECASTING 43

and quasi likelihood (QL) loss functions that are robust in the ranking preservation as
discussed in the previous subsection. The two loss functions are defined by

QL(σ̂2t+k, vt+k|t) =
σ̂2t+k
ft+k|t

− log
σ̂2t+k
ft+k|t

− 1

MSE(σ̂2t+k, vt+k|t) = (σ̂2t+k − ft+k|t)
2

where σ̂2t+t is an unbiased ex post proxy of volatility (such as squared return or daily
realized volatility ) and ft+k|t is a volatility forecast based on information up to time t
and the forecast horizon k > 0.

The MSE loss is a usual loss function in the literature, however Brownlees et al.
(2012) show that the QL loss is more preferable than the MSE loss for forecast com-
parison because of two reasons. First, the loss series is iid under the null hypothesis
that the forecasting model is correctly specified while MSE contains high levels of serial
dependence even under the null. Second, the bias of QL is independent of the volatility
level, while MSE has a bias that is proportional to the square of the true volatility.
We employ both QL and MSE loss functions in our investigation. Furthermore, the
predictive ability of two forecasts if they are equally accurate by the test of Diebold &
Mariano (1995). Suppose f (1)t and f

(2)
t are two forecasts of σ2t , we define the forecast

loss differential between the two forecast by et = g(σ̂2t , f
(1)
t ) − g(σ̂2t , f

(2)
t ) where g is

the loss function. We say that the two forecasts have equal accuracy if and only if the
loss differential has zero expectation for all t. Assume the loss series {e1, e2, , , eT }, the
Diebold-Mariano statistic is

DM =
ē√

2πf̂e(0)
/
T

where ē =
(∑T

τ=1 eτ

)
/T and f̂e(0) is a consistent estimate of the spectral density of the

loss differential at frequency 0. In standard practice f̂e(0) is given by

f̂e(0) =
1

2π

T−1∑
τ=−(T−1)

I

(
τ

k − 1

)
γ̂e(τ) where γ̂e(τ) =

1

T

T∑
t=|τ |+1

(et − ē)(et−|τ | − ē)

and

I

(
τ

k − 1

)
=

{
1 for

∣∣∣ τ
k−1

∣∣∣ ≤ 1

0 otherwise
.

The test statistic DM is asymptotically N(0, 1) distributed under the null hypothesis of
equal forecast accuracy.

4.1.3 Forecasting models
In this subsection, we describe some commonly used models that deploy historical infor-
mation to formulate volatility forecasts. Base on the information available up to time
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t, Ft, the forecast for the future volatility σ2t+k is often obtained from the conditional
expectation E[σ2t+k|Ft], alternatively denoted by either Et[σ2t+k] or σ2t+k|t. We denote
f
M
t+k|t the volatility forecast for σ2t+k formulated at time t with forecasting model M.

The realized volatility in (2.5.11) and the EWMA in (2.5.13) already make one-step-
ahead forecasts by the definitions. Assuming that the volatilities follow a random walk,
then σ̂2t is the optimal forecast for σ2t+k. If the volatility is estimated at time t, for
example with realized volatility σ̂2t = 1

m

∑m
i=0 y

2
t−i, the forecast for the volatility at time

t+ k formulated at time t is

f
RW
t+k|t = σ̂2t . (4.1.1)

A more sophisticated model estimates the current volatility by EWMA model and the
forecast obtained from the conditional expectation is also of the form (4.1.1). One of
the most popular models is GARCH(1,1), where the k-step-ahead forecast at time t is
given by

f
GARCH
t+k|t = σ2 + (α+ β)k(σ̂2t − σ2) (4.1.2)

where σ2 = ω
1−α−β is the unconditional variance. It is easily seen that GARCH(1,1) fore-

casts converge to the unconditional variance as k → ∞. These three forecasting models
are used as general benchmarks in the literature. Any newly developed forecasting model
should be better or as good as these models in forecasting ability.

4.1.4 The role of the log transformation
In the financial literature, some volatility models involve log transformation, for ex-
amples, the EGARCH model by Nelson (1991) and the standard SV model by Taylor
(1986). When the log transformation involves in the model, the estimates for either
volatility or log volatility may be obtained from the estimation procedure. It is worth
considering weather we should make forecast based on the original series {σt} or the
log-transformed series {log(σt)}. In time-series analysis, the log transformation is con-
sidered to stabilize the variance of time series. Hence the time series that is modeled
and forecasted under the log transformation is expected to be more accurate. When the
series of log volatility {log(σt)} is modeled and forecasted by a time series model, for
example ARMA model, one may directly apply the exponential function to obtain the
forecast for the original series {σt}. However, instantaneous reverse transformation of
optimal forecast for transformed variable does not result in optimal forecast for original
variable in general. In other words, if vt+k|t is an optimal forecast for log(σt+k) then
exp(vt+k|t) is not an optimal forecast for σt+k. Granger & Newbold (1976) propose the
optimal forecast for σt+k provided the log-transformed series {log(σt)} is Gaussian and
stationary as

ft+k|t = exp
{
vt+k|t +

1

2
var(vt+k|t)

}
where vt+k|t is the optimal forecast for log(σt+k). This method immediately apply when
log-transformed series is modeled by stationary ARMA processes. Further investigation
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in the role of the log transformation in forecasting economic variables is also found in
Lütkepohl & Xu (2010).

4.1.5 Recent work and forecasting strategy
In practice, there are several issues related to volatility forecasting as we have discussed
in this section. It is worth to develop from existing discoveries. The recent work from
Brownlees et al. (2012) has provided a pragmatic and fruitful guide to volatility fore-
casting through the period of financial crisis. Brownlees et al. (2012) have tested the
forecasting performances of four models in ARCH class including GARCH(1,1), TARCH,
EGARCH, NGARCH and APARCH using broad time series of exchange rates, domestic
equity indices and international equity indices. The study also takes into account the
strategies being used for estimation and different forecast horizons. There findings are
summarized as the followings:

(i) models perform best using the longest available data series,

(ii) updating parameter estimates at least weekly counteracts the adverse effects of
parameter drift,

(iii) no evidence that the Student t likelihood improves forecasting ability,

(iv) soaring volatility during the crisis of 2008 was well described by short-horizon
forecasts,

(v) crisis forecasts deteriorated at long horizons (one-month horizon),

(vi) at the one-month horizon, the difference between asymmetric and symmetric GARCH
becomes insignificant.

Based on these findings, we further investigate in volatility forecasting with stochas-
tic volatility models, that are closely related to continuous time models and derivative
pricing theory. The objective is to obtain forecasting models that accurately forecast
volatility through the crisis of 2008. The ARCH-type models have been proved that they
performs well in short-horizon forecasts. Therefore, we forecast only on 22-step-ahead
horizon to be compatible with the one-month horizon that deteriorating forecasts were
reported in Brownlees et al. (2012). To focus on the forecast performances on differ-
ent models, we keep the forecasting strategy fix based on the guide of Brownlees et al.
(2012).

The parameter estimates are updated every five days using longest available data
up to the estimation update. Since point forecast is usually noisy, instead we make
cumulative volatility forecast over the horizon σ2t+k,t =

∑k
i=1 σ

2
t+i that is proxied by the

sum of squared returns over the forecast horizon

σ̂2t+k,t =

k∑
i=1

y2t+i. (4.1.3)
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The sum of squared returns σ̂2t+k,t is an unbiased proxy of the cumulative volatility σ2t+k,t.
Therefore it has been employed as the target variable for the cumulative forecast

Ft+k|t =
k∑
i=1

ft+i|t (4.1.4)

formulated at time t. Forecast the cumulative volatility over the forecast horizon is
more accurate than point forecast because of error cancellation, moreover the cumulative
volatility forecast is the required input in the pricing model relying on a riskless hedge
(Poon, 2005).

The data in the Pre-Crisis period is reserved as the initial sample window for esti-
mation and forecasting. Every five days the sample window is expanded and the related
parameters are reestimated with the extended sample. Then the estimation and fore-
casting run throughout the remaining period using the expanding windows. When the
forecasts from different models are made, we evaluate the forecast performances by com-
paring the average QL losses. The MSE losses are also calculated but we mainly consider
the QL losses. The long-run average losses are taken from the whole forecasting period,
the average losses from a single period are also considered. When a two forecasting
models are compared, the Diebold-Mariano test is applied to test whether they have
equal accuracy.

4.2 Parametric Lévy Processes
Lévy process is a continuous-time stochastic process that can be constructed from a
distribution with infinitely divisible property. Lévy processes have been introduced
for analyzing financial returns because the associated distributions can be modeled to
capture the heavy tails and other relevant features of returns better than normal distri-
bution. In particular, a class of generalized hyperbolic distributions is very often able to
fit the distributions of financial data. This have been established in considerable inves-
tigations, such as the variance gamma model by Madan & Seneta (1990), the hyperbolic
model by Eberlein & Keller (1995), the NIG model by Barndorff-Nielsen (1997) and the
generalized hyperbolic (GH) Lévy processes by Barndorff-Nielsen & Shephard (2001).

4.2.1 The generalized hyperbolic Lévy processes
The GH class of distributions was introduced by Barndorff-Nielsen & Shephard (2001)
consisting of the hyperbolic distributions, the NIG distributions, the scaled-t distribu-
tions and the variance-gamma distributions. The GH distribution is characterized by
five parameters, written as X ∼ GH(λ, α, β, δ, µ). The probability density function of a
GH distribution is given by

f(x;λ, α, β, µ, δ) =
(γ/δ)λ√
2πKλ(δγ)

.
Kλ− 1

2

(
α
√
δ2 + (x− µ)2

)
(√

δ2 + (x− µ)2
/
α
) 1

2
−λ

.eβ(x−µ) (4.2.1)
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where γ2 = α2 − β2 and Kλ is the modified Bessel function of the third kind with index
λ given in (3.1.2). The distribution is symmetric if β = 0, δ is the scale parameter
and µ is the location parameter. The subclass of hyperbolic distributions is obtained
by letting λ = 1, the subclass of NIG distributions is obtained by letting λ = −1/2,
the subclass of variance-gamma distributions is obtained when δ = 0 and finally the
subclass of asymmetric-scaled t distributions is obtained when α = |β|. See Bibby
& Sørensen (2003) for details and properties of GH class of distributions. As we have
shown in Chapter 3, the zero-mean symmetric distributions are preferable in many cases.
Again we set µ and β to zeros and reparametrize ϕ = δ/γ = δ/α and ω = δγ = δα,
this parameterization is useful because the parameters ϕ, ω and λ are invariant under
affine transformations (see Bibby & Sørensen, 2003). The zero-mean symmetric GH
distribution GH(λ, ϕ, ω) has the density

f(x;λ, ϕ, ω) =
(ϕ2 + ϕ

ωx
2)(2λ−1)/4

ϕλ
√
2πKλ(ω)

Kλ−1/2

(√
ω2 +

ω

ϕ
x2
)

(4.2.2)

The GH distribution can be interpreted as scale-location mixture of normal distribution
where the mixing distribution is a generalized inverse Gaussian (GIG) distribution. The
GIG distributions, denoted as X ∼ GIG(λ, ϕ, ω), are described by three parameters and
defined on the positive half axis. The probability density function of the GIG distribution
is given by

f(x;λ, ϕ, ω) =
xλ−1

2ϕλKλ(ω)
. exp

(
−1

2
ω(ϕx−1 + ϕ−1x)

)
, x > 0. (4.2.3)

The class of GIG distributions consists of the subclasses of gamma distributions, inverse
gamma distributions and inverse Gaussian (IG) distributions. The class was first pro-
posed by Étienne Halphen in 1946 to model the distribution of the monthly flow of water
in hydroelectric stations (see Bibby & Sørensen, 2003). The subclass of IG distributions is
obtained from GIG distributions where λ = −1/2, that is IG(ϕ, ω) = GIG(−1/2, ϕ, ω).
Since K−1/2(ω) =

√
π/2ω exp(−ω), it follows that the IG distribution does not involve

the Bessel function,

IG(x;ϕ, ω) =
x−3/2

√
ϕω√

2π
· exp(ω) · exp

(
−1

2
ω(ϕx−1 + ϕ−1x)

)
, x > 0. (4.2.4)

The relationship between GH distributions and GIG distributions was originally given
by Barndorff-Nielsen & Halgreen (1977) as the derivation of GH distribution from GIG
distribution. The relationship can be stated as if

X|W ∼ N(0, w) and W ∼ GIG(λ, ϕ, ω)

then the marginal distribution of X is GH, X ∼ GH(λ, ϕ, ω). GH distribution is then
interpreted as a scale mixture of normal distribution where the mixing distribution is
GIG. As special cases, the NIG distribution arises when the mixing distribution is an IG
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distribution, and the variance-gamma distribution appears when the mixing distribution
is a gamma distribution. Hence, their names come from their mixing distributions.
When the mixing distribution is an inverse gamma distribution, the mixture becomes
the asymmetric-scaled t distribution and the t distribution arises when β = 0 as a scale
mixture of normal. In particular, the symmetric NIG distribution and the Student-t
distribution have scale mixture of normal representations as in the following definition.

4.2.2 Scale mixture of normal
Definition 8. Let X be a continuous random variable with location µ and scale σ.
The probability density function of X is said to have a scale mixtures of normal (SMN)
representation if it can be expressed as

fX(x;µ, σ) =

ˆ ∞

0
N
(
x;µ, κ(λ)σ2

)
π(λ)dλ (4.2.5)

where N(x; ·, ·) is the normal density function, κ(λ) is a positive function of λ, and π(·)
is a density function defined on R+.

We refer to λ and π(·), respectively, as the mixing parameter and mixing density of
this scale mixture representation.

The Student-t distribution with location µ, scale σ and degrees of freedom ν,
X ∼ tν(µ, σ) can be expressed as

tν(x;µ, σ) =

ˆ ∞

0
N(x;µ,

σ2

λ
)Ga(λ;

ν

2
,
ν

2
)dλ

where Ga(·; a, b) is the gamma density function of the form Ga(x; a, b) = ba

Γ(a)λ
a−1e−bλ.

It is equivalent to the hierarchical form

X|(µ, σ2, ν, λ) ∼ N(µ,
σ2

λ
) and λ|ν ∼ Ga(

ν

2
,
ν

2
).

The symmetric NIG distribution with zero mean Y ∼ NIG(ϕ, ω) can be repre-
sented by

fY (y;ϕ, ω) =

ˆ ∞

0
N(y; 0, ϕu)IG(u; 1, ω)du

where IG(1, ω) denotes the inverse Gaussian distribution with mean 1. It can be ex-
pressed hierarchically as

Y |(ϕ, u) ∼ N(0, ϕu) and u|ω ∼ IG(1, ω).

Barndorff-Nielsen & Halgreen (1977) shows that GH distribution is infinitely divisible.
Thus there is a Lévy process {Yt}t≥0 uniquely defined by the fact that the law of Y1
has GH density. We call this process the GH Lévy process with parameters (λ, α, δ, µ).
The GH Lévy processes considered by Barndorff-Nielsen & Shephard (2001) becomes
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a popular alternative to Brownian motion for modeling financial processes. In general,
the GH densities of Yt for t ̸= 1 are unknown, and they can not be simulated from the
process in a non-intensive manner.

As stated in Barndorff-Nielsen & Shephard (2012), this model is so general that it
is typically difficult to manipulate mathematically and so is not often used empirically.
Instead special cases are usually employed. For examples, the variance gamma (VG)
process by Madan & Seneta (1990) which has extensively used in the financial literature
and the hyperbolic Lévy process by Eberlein & Keller (1995). We pay special attention
to the NIG Lévy process by Barndorff-Nielsen (1997) which we have shown in Chapter
3 that the NIG distributions are adequately fitted to financial data. Moreover, the class
of NIG distributions is closed under convolution, this implies that the distribution of Yt
in the NIG Lévy process {Yt}t≥0 is NIG at all time point.

The classes of NIG distributions and VG distributions are only two subclasses of
GH distributions that have this property. Hence the NIG and VG Lévy processes are
more natural GH Lévy processes than the other GH Lévy processes. The discrete-time
model for NIG Lévy process is also proposed in Barndorff-Nielsen (1997) that allows us
to model stochastic volatility for daily returns, denoted by NIG-SV model. Note that
the close-under-convolution property also asserts that if the observed process at a certain
frequency scale follows a NIG distribution, then at lower frequency scales it follows a
NIG distribution.

4.3 NIG-SV Model and HGLM Method
4.3.1 The model
For the excess returns {yt}nt=1, the NIG-SV model is defined by{

yt = σtϵt

σ2t ∼ IG(ϕ, ω)
(4.3.1)

where ϵt ∼ i.i.d.N(0, 1). It follows that yt ∼ NIG(ϕ, ω), the marginal distribution of {yt}
and the log-likelihood function are given by (3.1.5) and (3.1.6) respectively. Moreover,
the variance and the kurtosis of yt are

var(yt) = ϕ and kurt(yt) = 3/ω.

4.3.2 H-likelihood estimation
The NIG-SV model and maximum likelihood estimation have been implemented in Chap-
ter 3. Not only the MLE and MoM are available for estimation in the NIG-SV model,
del Castillo & Lee (2008) give another approach to estimate parameters for a large class
of SV models so called the hierarchical generalized linear model (HGLM) method. del
Castillo & Lee (2008) view all the GH Lévy models in the previous section as general
random effects models introduced by Lee & Nelder (2006), and therefore the associating
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hierarchical likelihood (h-likelihood) are applied to estimate the model’s parameters (see
Lee & Nelder, 1996 and Lee & Nelder, 2006).

Given the NIG-SV model in (4.3.1), we firstly supposes that

σ2t = ϕut

where ut are random effects from a positive infinite divisible distribution, that represent
the news arriving to the markets. In this case ut ∼ IG(1, ω). This makes ϕ be the scale
parameter whereas E[ut] = 1 and σ2t ∼ IG(ϕ, ω) as specified in (4.3.1). This constraint
is useful in multivariate setting that we will clarify later. del Castillo & Lee (2008) gives
the log-link function

log(σ2t ) = α+ bt (4.3.2)

where α = log(ϕ)1 and bt = log(ut). Then NIG-SV model in (4.3.1) together with
(4.3.2) becomes an HGLM model with random effects in the dispersion. In particular,
it is a special case of the double HGLM (DHGLM) by Lee & Nelder (2006) where
the volatility involves the random effect appearing in the dispersion structure (see del
Castillo & Lee, 2008). Using the joint distribution (yt, bt) ∼ f(yt|bt)fΘ(bt), it follows
that the h-likelihood is

h =

n∑
t=1

{log f(yt|bt) + log fΘ(bt)} (4.3.3)

where f(yt|bt) and fΘ(bt) are the conditional density functions of yt given bt and of bt
with some parameters Θ. The h-likehood carries all the information in the data about
the unobserved quantity bt and the fixed parameters Θ when the random effect bt is
additive (see Lee & Nelder, 2006). This is the reason for writing the model with the log-
link function in (4.3.2). In general the log-likelihood is obtained by l = log

´
exp(h)db

that is usually difficult. Lee & Nelder (2001) propose the use of Laplace approximation
to l, so-called the adjusted profile h-likelihood,

pb(ϕ, ω) = h−2 log
(
− 1

2π

∂2h

∂b2
|b=b̂

)
(4.3.4)

where b̂ solves ∂h/∂b = 0. Maximizing pb gives the estimates for fixed parameters (ϕ, ω)
and the unobserved random effects bt. An advantage of the h-likelihood approach is that
it does not require the integration, necessary to obtain ordinary (marginal) likelihood,
and hence no analytic formula for the probability density function is needed. del Castillo
& Lee (2008) report that the first-order adjusted profile h-likelihood in (4.3.4) is substan-
tially accurate in many cases, however it can lead to non-negligible biases when apply
to financial data. This problem can be solved by using the second-order improvement

Sb(h) = pb(h)− F/24

1The parameter α in this setting is distinct from the parameter of GH distribution.
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where
F = trace

[{
3

(
−∂

4h

∂b4

)
− 5

(
−∂

3h

∂b3

)
D−1

(
−∂

3h

∂b3

)}
D−2

]
|b=b̂

and D = diag
[(
∂2h/∂b2

)]
. The standard errors for the estimation which are approxi-

mated from the Hessian matrices in both approximations are satisfactory (Lee & Nelder,
2006).

Particularly for the NIG-SV model where the parameter vector Θ is (ϕ, ω)′, the condi-
tional density for yt|bt is f(yt|bt) = N(0, ϕu(bt)) and the density function for bt is given
byfΘ(bt) = f (u(bt)) u̇(bt) = exp(bt)IG(1, ω). The explicit expressions for log f(yt|bt)
and log fΘ(bt) are

log f(yt|bt) = −1

2

{
log(2π) + log(ϕ) + bt +

y2t e
−bt

ϕ

}
(4.3.5)

log fΘ(bt) = −1

2

{
log(2π)− log(ω) + 3 log(bt)− 2ω + ω(b−1

t + bt)− 2bt
}
(4.3.6)

Hence the h-likelihood in (4.3.3) has the explicit expression as the summation of (4.3.5)
and (4.3.6). The random effects can be estimated by solving ∂h/∂bt = 0, that we have

b̂t = log
(
2(ωt − 1)

ω

)
(4.3.7)

where ωt =
√

1 + ω2 + ωy2t /ϕ. Consequently, the adjusted profile h-likelihood is ex-
pressed as

pb(ϕ, ω) =n

{
−1

2
log(2π)− 1

2
log(ϕ) + ω +

3

2
log(ω)

}
− 1

2

n∑
t=1

log
[
ωt (ωt − 1)2

]
−

n∑
t=1

ωt

(4.3.8)
and the second-order approximation is

Sb(ϕ, ω) = pb(ϕ, ω)−
1

24

n∑
t=1

3ω2
t − 5

ω3
t

. (4.3.9)

Remark that the adjusted profile h-likelihoods in both (4.3.8) and (4.3.9) do not depend
on Bessel functions because the mixing distribution IG does not involve Bessel function.
This is a reason why NIG-SV model is preferable than other GH models. Moreover, h-
likelihood method does not need integration to find the marginal distribution as required
in the maximum likelihood method.

Table 4.1 shows the estimates of parameters for NIG-SV models fitted to twenty
time series with first-order, second-order h-likelihoods and maximum likelihood methods.
Most estimates of ϕ are almost similar with the three methods of estimation. In the
case of ω, the first-order h-likelihood estimates and the maximum likelihood estimates
are concordant but the estimates from the second-order h-likelihood show some biases.
First-order h-likelihood estimations always converge, but second-order h-likelihood and
maximum likelihood estimations diverge in the EUR-post series.
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Table 4.1: Parameter estimation for NIG-SV models with maximum likelihood (ML),
first-order h-likelihood (H1),and second-order h-likelihood (H2) with the corresponding
standard errors.

Series
ML H1 H2

ϕ̂ ω̂ ϕ̂ ω̂ ϕ̂ ω̂

EUR 0.4176 0.9775 0.4010 1.3232 0.4996 0.5032
(0.026) (0.191) (0.020) (0.145) (0.034) (0.060)

JPY 0.5048 1.2044 0.4961 1.4019 0.6156 0.5449
(0.029) (0.238) (0.025) (0.155) (0.042) (0.067)

GBP 0.4706 1.0675 0.4562 1.3484 0.5680 0.5275
(0.028) (0.202) (0.023) (0.146) (0.039) (0.063)

EUR-pre 0.1868 2.3456 0.1932 1.6627 0.2352 0.6422
(0.017) (1.180) (0.018) (0.377) (0.030) (0.162)

JPY-pre 0.2403 1.9291 0.2456 1.5892 0.3010 0.5960
(0.023) (0.917) (0.023) (0.354) (0.038) (0.143)

GBP-pre 0.2089 2.1346 0.2147 1.6111 0.2625 0.5995
(0.020) (1.150) (0.020) (0.366) (0.033) (0.144)

EUR-c1 0.2762 2.6550 0.2869 1.6560 0.2715 4.6630
(0.030) (2.125) (0.032) (0.472) (0.027) (5.715)

JPY-c1 0.5207 1.9923 0.5340 1.6278 0.6511 0.6540
(0.060) (0.972) (0.060) (0.430) (0.101) (0.203)

GBP-c1 0.2587 5.6948 0.2759 1.9077 0.2573 8.8277
(0.025) (5.932) (0.030) (0.584) (0.024) (10.171)

EUR-c2 1.0078 0.9803 0.9677 1.3220 1.2050 0.5095
(0.138) (0.422) (0.111) (0.324) (0.185) (0.135)

JPY-c2 0.9496 1.6326 0.9600 1.5367 1.1782 0.6335
(0.114) (0.734) (0.108) (0.389) (0.181) (0.185)

GBP-c2 1.2354 1.5836 1.2454 1.5178 1.5318 0.6002
(0.149) (0.752) (0.140) (0.389) (0.235) (0.172)

EUR-post 0.3645 700.72 0.3969 2.1658 0.3645 2397.30
(0.026) (262.14) (0.036) (0.608) (0.026) NA

JPY-post 0.4722 1.6686 0.4777 1.5406 0.5871 0.5961
(0.046) (0.682) (0.044) (0.328) (0.073) (0.141)

GBP-post 0.3963 17.72 0.4297 2.3435 0.3961 23.30
(0.029) (28.87) (0.038) (0.663) (0.029) (37.98)

Parameter estimates for NIG-SV models with three methods of estimation are almost similar with three
methods. The estimates from first-order h-likelihood method and maximum likelihood method are
concordant but the estimates from second-order h-likelihood show notably biases in the estimates of ω.
The first-order h-likelihood estimations converge in all cases while the other methods diverge in some
cases written in boldfaces.
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4.3.3 Multivariate NIG-SV model

The NIG-SV model with HGLMmethod can be extended to multivariate model naturally
by applying the same random effects to all entries. For yt = (y1,t, y2,t, ..., yd,t)

′, the
multivariate NIG-SV model is given by

yi,t = σi,tϵi,t

σ2i,t ∼ IG(ϕi, ω)

log(σ2i,t) = αi + bt

(4.3.10)

for i = 1, .., d, t = 1, .., n and ϵt = (ϵ1,t, ..., ϵd,t)
′ ∼ N(0,Ω). The random effect is

introduced to the model by σ2i,t = utϕi, the αi = log(ϕi) and bt = log(ut). Here ϕi = σ2i
is a scale parameter in the sense that the random effect ut = σ2i,t/ϕi is distributed
as IG(1, ω) and the mixing distribution σ2i,t = utϕi ∼ IG(ϕi, ω). The random effect
ut represents the news arriving to the markets that has the same effect to all indices.
Suppose that var(ϵt) = Ω = (ρij), then we have

E(yt|ut) = 0 and var(yt|ut) = utΣ

where Σ = (σij) and σij = σiσjρij . Here Σ = Λ′ΩΛ, where the correlation matrix, Ω, is
assumed to be known and Λ is the diagonal matrix of the standard deviations

√
ϕi = σi.

It is clearly seen that Σ does not depend on t, and the distributions of yt conditional on
ut are multivariate normal. Both MLE and HGLM methods for estimation are applied
in the multivariate NIG-SV model. The expressions for the log likelihood, h-likelihood
and its adjusted profile likelihoods are provided in the appendix.

Table 4.2 shows the parameter estimates of three currency exchange rates for different
periods. Most of the estimates with three methods are almost similar. These results
demonstrate the promising extensive utility of the HGLM approach. Other SV models
in the class of GH models such as the VG model and scaled-t model are also extendable
in this manner.

4.3.4 Optimization

An important step when the likelihood function is defined, either the maximum likelihood
or the h-likelihood is to find the value that maximize the likelihood function. This step
is called optimization which includes the algorithm to locate the optimal value that
satisfies the criteria. Here we present two common maximization methods in financial
econometrics.

4.3.4.1 Method of scoring

A general way to find the value that maximize a function is done by considering the
first and the second derivatives of the function. A local maximum x0 of a differentiable
function f must satisfy the necessary conditions such that f ′(x0) = 0 and the f ′′(x0) < 0.
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Table 4.2: Parameter estimation for multivariate NIG-SV models in five periods.

period method ϕ̂EUR ϕ̂JPY ϕ̂GBP ω̂

All

ML 0.4137 0.5198 0.4671 0.9357
(0.021) (0.029) (0.024) (0.097)

H1 0.3896 0.4877 0.4401 1.2262
(0.018) (0.025) (0.021) (0.118)

H2 0.4197 0.5276 0.4742 0.8916
(0.022) (0.030) (0.025) (0.088)

Pre-Crisis

ML 0.1909 0.2357 0.2080 2.9766
(0.013) (0.018) (0.015) (0.871)

H1 0.1913 0.2362 0.2083 2.9278
(0.013) (0.018) (0.014) (0.665)

H2 0.1927 0.2376 0.2096 2.6814
(0.014) (0.019) (0.015) (0.837)

Crisis 1

ML 0.2717 0.5046 0.2717 2.3023
(0.026) (0.052) (0.027) (0.677)

H1 0.2708 0.5022 0.2696 2.4670
(0.025) (0.051) (0.026) (0.603)

H2 0.2748 0.5118 0.2758 2.0606
(0.027) (0.054) (0.028) (0.619)

Crisis 2

ML 1.0078 0.9625 1.2305 1.2914
(0.109) (0.112) (0.132) (0.321)

H1 0.9696 0.9249 1.1868 1.6173
(0.097) (0.100) (0.117) (0.358)

H2 1.0264 0.9813 1.2522 1.1871
(0.113) (0.117) (0.137) (0.282)

Post-Crisis

ML 0.3766 0.4493 0.4050 5.0156
(0.027) (0.035) (0.030) (1.741)

H1 0.3824 0.4519 0.4110 4.0188
(0.028) (0.036) (0.030) (1.028)

H2 0.3766 0.4494 0.4050 5.0276
(0.027) (0.035) (0.030) (1.867)

Parameter estimates for multivariate NIG-SV models with three methods of estimation are consistent.
This results demonstrate the promising extensive utility of the HGLM approach.
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This is the principle idea to construct an algorithm to find that value. The first derivative
of the log-likelihood function with respect to the vector of parameters Θ,

G(Θ) =
∂ logL(Θ)

∂Θ
,

is known as the gradient or the score. In the case of iid, where the vector of parameters
is fixed Θ = (θ1, θ2, . . . , θk)

′, the gradient is

G(Θ) = (∂ logL(Θ)/∂θ1, ∂ logL(Θ)/∂θ2, . . . , ∂ logL(Θ)/∂θk)
′ .

The maximum likelihood estimate, denoted by Θ̂, requires

G(Θ̂) = G(Θ)
∣∣
Θ=Θ̂

= 0 (4.3.11)

to satisfy the first-order condition for a maximum. The second-order derivative of
logL(Θ), so called the Hessian, is given by

H(Θ) =


∂2 logL(Θ)
∂θ1∂θ1

∂2 logL(Θ)
∂θ1∂θ2

· · · ∂2 logL(Θ)
∂θ1∂θk

∂2 logL(Θ)
∂θ2∂θ1

∂2 logL(Θ)
∂θ2∂θ2

· · · ∂2 logL(Θ)
∂θ2∂θk...

... . . . ...
∂2 logL(Θ)
∂θk∂θ1

∂2 logL(Θ)
∂θk∂θ2

· · · ∂2 logL(Θ)
∂θk∂θk


and denote H(Θ0) = H(Θ)|Θ=Θ0 . It is necessary for a maximum that Hessian is negative
definite, i.e. x′H(Θ̂)x < 0, for all non-zero vector x. To solve the equation (4.3.11), we
consider the first-order Taylor series expansion of the gradient function around the true
parameter Θ0,

G(Θ) ≃ G(Θ0) +G′(Θ0)(Θ−Θ0) (4.3.12)

where G′(Θ) = H(Θ). Then equation (4.3.12) can be written as

G(Θ) ≃ G(Θ0) +H(Θ0)(Θ−Θ0).

Hence the maximum likelihood estimate Θ̂ satisfies

G(Θ̂) = 0 ≃ G(Θ0) +H(Θ0)(Θ̂−Θ0). (4.3.13)

When (4.3.13) is expressed as an equality, the solution is

Θ̂ = Θ0 −H−1(Θ0)G(Θ0). (4.3.14)

The true parameter Θ0 is unknown and it can not be used to evaluate Θ̂, however
equation (4.3.14) suggests the route to reach the solution. Typically, numerical procedure
to obtain the solution is given by setting an initial value that lies in the plausible region,
namely Θ1. Then the solution is iteratively updated by a particular scheme. The
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Newton-Raphson algorithm uses equation (4.3.14) directly to update the kth solution
Θ(k) by

Θ(k) = Θ(k−1) −H−1(Θ(k−1))G(Θ(k−1)) (4.3.15)

where H(k−1) = H(Θ)|Θ=Θ(k−1)
, G(k−1) = G(Θ)|Θ=Θ(k−1)

and Θ(k−1) is the solution
obtained by the (k − 1)th step. The algorithm proceeds until Θ(k) ≃ Θ(k−1), that the
equation (4.3.15) leads to

Θ(k) −Θ(k−1) = −H−1(Θ(k−1))G(Θ(k−1)) ≃ 0,

which is satisfied if G(Θ(k−1) ≃ 0 since H−1(Θ(k−1)) is negative definite. Therefore the
final solution Θ(k) satisfies the condition that defines the maximum likelihood estimator.
That is Θ̂ = Θ(k).

The method of scoring employs the information matrix

I(Θ) = E

[
−∂

2 logL(Θ)

∂Θ∂Θ′

]
by replacing it to −H−1(Θ0) in (4.3.14). The updating scheme of the method of scoring
is given by

Θ(k) = Θ(k−1) + I−1(Θ(k−1))G(Θ(k−1))

where I(Θ(k−1)) = I(Θ)|Θ=Θ(k−1)
. The main problem of method of scoring arises from

the difficulty in calculation of the information matrix.

4.3.4.2 BHHH algorithm

The BHHH algorithm was proposed by Berndt, Hall, Hall and Hausman in 1974 (Berndt
et al. (1974)). The information matrix is replaced by

I(Θ) = E

[
∂ logL(Θ)

∂Θ

∂ logL(Θ)

∂Θ′

]
= E

[
−∂

2 logL(Θ)

∂Θ∂Θ′

]
(4.3.16)

which is a result from the information matrix equality

E

[
∂ logL(Θ)

∂Θ

∂ logL(Θ)

∂Θ′

]
+ E

[
∂2 logL(Θ)

∂Θ∂Θ′

]
= 0.

Equation (4.3.16) also holds for the log-likelihood function at the tth observation,logLt(Θ),
therefore

E

[
∂ logLt(Θ)

∂Θ

∂ logLt(Θ)

∂Θ′

]
= E

[
−∂

2 logLt(Θ)

∂Θ∂Θ′

]
.

The expectation E
[
∂ logLt(Θ)

∂Θ
∂ logLt(Θ)

∂Θ′

]
is estimated by

E

[
∂ logLt(Θ)

∂Θ

∂ logLt(Θ)

∂Θ′

]
= lim

n→∞

1

n

n∑
t=1

GtG
′
t
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where Gt is the gradient evaluated at the tth observation, that is Gt = ∂ logLt(Θ)
∂Θ . Hence

the expectation of the outer product of gradient for the full log-likelihood function is

E

[
∂ logL(Θ)

∂Θ

∂ logL(Θ)

∂Θ′

]
= lim

n→∞

n∑
t=1

GtG
′
t.

For finite observations, the expectation is estimated by

B(Θ) =

n∑
t=1

GtG
′
t =

n∑
t=1

∂ logLt(Θ)

∂Θ

∂ logLt(Θ)

∂Θ′ .

Consequently, the updating scheme for the BHHH algorithm is

Θ(k) = Θ(k−1) +B−1(Θ(k−1))G(Θ(k−1))

which does not require the second derivative to implement.

4.4 Latent Information and Volatility Forecasting
Volatility is latent variable, we cannot observe this quantity directly from the market.
It is usually estimated from related observable quantities such as return or price range.
In the previous section we have applied the h-likelihood method to estimate the model
parameters for NIG-SV models. A consequential product of using h-likelihood estimation
is the series of random effect estimates and hence the estimates of log volatilities.

4.4.1 Random effects and log volatility estimates
The h-likelihood estimation for NIG-SV model yields the estimates of the random effects
b̂t from equation (4.3.7). This variable is modeled to represent the news arriving to the
market and the log-volatility estimate can be recovered from

log(σ̂2t ) = log(ϕ̂) + b̂t (4.4.1)

and the estimator for volatility is consequently

σ̂2t = exp
[
log(ϕ̂) + b̂t

]
. (4.4.2)

Therefore after the NIG-SV model is estimated by h-likelihood method, we yield the
series of log-volatility estimates {log(σ̂2t )}nt=1. A common way to forecast volatility using
(transformed) volatility estimates is to assign a proper model to the time series. The
class of ARMA models is a basic class of time series models that has a vast contribution
in the financial literature. Several financial time series models are constructed on the
basis of ARMA models. For example the standard SV model by Taylor (1986) is set
up by an AR(1) process in the log of volatilities, the GARCH(1,1) model is founded by
ARMA(1,1) process. Taylor (1987) uses price ranges and returns as volatility estimates
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and makes volatility forecasts by fitting the estimates to ARMA(1,1) models. Gallant
et al. (1999) and Alizadeh et al. (2002) show that the sum of two AR(1) processes
is capable in modeling volatility, the resulting process is ARMA(2,1). The EGARCH
model advocated by Nelson (1991) is founded by assigning ARMA process to {log(σ2t )}.
Pong et al. (2004) apply ARMA(2,1) and ARFIMA models to the series {log(σt)} that
is estimated from daily realized volatilities. The ARFIMA model is a generalization to
ARMA model with fractional integration. Even though ARMA models can be extended
in several ways, such as ARFIMA, and higher orders ARMA(p,q), we tend to keep our
models simple and tractable with less number of parameters. Hence the ARMA(1,1)
model becomes our preference. Modeling the series {log(σ̂2t )} by ARMA(1,1) is also
comparable to the EGARCH(1,1) model. A stationary ARMA(1,1) model for {log(σ̂2t )}
is given by

log(σ̂2t ) = c+ ϕ1 log(σ̂2t−1) + ϵt + θ1ϵt−1 (4.4.3)
where ϵt ∼ WN(0, σ2ϵ ) are white noise (uncorrelated random variables with zero mean
and finite variance) and |ϕ1| < 1. The infinite MA representation of (4.4.3) is

log(σ̂2t ) = c+

∞∑
j=0

ψjϵt−j

where ψ0 = 1, ψ1 = ϕ1 + θ1 and ψj = ϕj−1
1 (ϕ1 + θ1) for j ≥ 2. It follows that

E[log(σ̂2t )] = c and var
(
log(σ̂2t )

)
= σ2ϵ

∑∞
j=0 ψ

2
j . The parameter estimation can be

achieved by minimizing the conditional sum of squares function S(Θ) =
∑
e2t where

et = ϵt(Θ) and Θ = (ϕ1, θ1)
′. If log(σ̂21) is taken to be fixed, the prediction errors et can

be computed from the recursion

et = log(σ̂2t )− ϕ1 log(σ̂2t−1)− θ1et−1, t = 2, . . . , n

with e1 = 0. The minimization can be accomplished by the optimization algorithm in
Subsection 4.3.4. The forecast is given by the minimum mean square estimator (MMSE)
of log(σ̂2t+k). That is equal to

log(σ̂2t+k|t) = c+

∞∑
j=0

ψk+jϵt−j (4.4.4)

and
var
(
log(σ̂2t+k|t)

)
= MSE

(
log(σ̂2t+k|t)

)
= (1 + ψ2

1 + · · ·+ ψ2
k−1)σ

2
ϵ .

In practice, the forecast is usually be carried out with ϵt replaced by et = ϵt(Θ). If n is
large, the difference between ϵt and et is negligible (see Harvey, 1981). The MMSE in
(4.4.4) is the forecast for log volatility. To obtain the volatility forecast σ2t+k|t, applying
the exponential function to the log forecast log(σ̂2t+k|t) results in biased forecast for σ2t+k.
Granger & Newbold (1976) have discussed on this issue and give the correction

f
NIG
t+k|t = exp

{
log(σ̂2t+k|t) + var(log(σ̂2t+k|t)

}
. (4.4.5)
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4.4.2 Implementation and empirical results
Here we forecast volatility with the model given in (4.4.4) and (4.4.5) employing the
strategy given in Section 4.1.5. The target variable is the cumulative volatility over the
forecast horizon σ2t+k,t =

∑k
i=1 σ

2
t+i that is proxied by sum squared returns y2t+k,t =∑k

i=1 y
2
t+i. The benchmark forecasts are obtained from the random walk model

F
RW
t+k|t =

k−1∑
i=0

y2t−i

and GARCH(1,1) model

F
GARCH
t+k|t =

k∑
i=i

f
GARCH
t+i|t

where fGARCH
t+i|t is i-step GARCH(1,1) forecast formulated at time t given by (4.1.2). Our

forecasting models obtained from NIG-SV models and h-likelihood are

F
NIG-SV
t+k|t =

k∑
i=i

f
NIG-SV
t+i|t

where fNIG
t+i|t is modeled by (4.4.3).

Preliminary experiments show that forecasting the volatility with ARMA(1,1) model
in (4.4.3) does not produce good results because the averages of forecasts are substan-
tially smaller than the volatility proxies. For instance in the case of EUR series, the
long-run average of the 22-day forecasts is 5.269, while the average sum of squared re-
turns is 11.631. That is more than twice the average of forecasts. To adjust the level of
forecasts to match the level of volatility proxies, we apply the simple linear regression
between the volatility estimates from (4.4.2) and the squared returns. Suppose that in-
sample estimates of volatility {σ̂21, .., σ̂2n} are fitted to the corresponding squared returns
as

y2t = aσ̂2t , t = 1, ..., n,

then the NIG-SV* forecasting model is given by

f
NIG-SV*
t+k|t = af

NIG-SV
t+i|t . (4.4.6)

Another forecasting model that is found to considerably improve the forecast perfor-
mances in our data set is obtained by fitting the log volatility to the ARMA(1,1) process
with zero mean

log(σ̂2t ) = ϕ′1 log(σ̂2t−1) + ϵt + θ′1ϵt−1. (4.4.7)

If the corresponding infinite MA representation is log(σ̂2t ) =
∑∞

j=0 ψ
′
j , then the ad hoc

forecasting model, denoted by NIG-SV′, is given by

f
NIG-SV′

t+k|t = exp
{
log(σ̂2t+k|t) + var(log(σ̂2t+k|t)

}
(4.4.8)
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Figure 4.4.1: The QL loss series of EUR forecasts
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Table 4.3: Volatility forecasting with RW, GARCH, NIG-SV and NIG-SV*

QL loss MSE loss
RW GARCH NIG-SV NIG-SV* NIG-SV′ RW GARCH NIG-SV NIG-SV* NIG-SV′

Long-run average
EUR 0.127 0.120 0.639 0.259 0.307 55.61 55.78 132.13 108.62 106.11
JPY 0.300 0.247 0.546 0.236 0.310 129.21 109.12 141.13 126.91 115.27
GBP 0.157 0.157 0.671 0.324 0.363 105.70 107.16 223.42 189.84 189.38

Crisis 1 average
EUR 0.122 0.130 0.320 0.091 0.115 6.74 6.17 14.54 6.27 7.70
JPY 0.583 0.474 0.815 0.254 0.408 137.69 112.97 112.14 77.64 86.10
GBP 0.172 0.110 0.182 0.061 0.069 6.52 4.83 8.23 4.04 4.31

Crisis 2 average
EUR 0.211 0.201 1.762 0.423 0.881 168.85 171.30 423.93 242.83 347.47
JPY 0.246 0.257 0.954 0.196 0.568 262.91 230.06 346.77 186.05 289.55
GBP 0.227 0.328 2.008 0.524 1.080 328.14 341.00 738.62 407.56 628.88

Post-Crisis average
EUR 0.074 0.060 0.087 0.252 0.044 10.24 9.36 10.14 82.00 5.92
JPY 0.162 0.101 0.111 0.252 0.079 35.25 26.46 22.26 117.71 17.34
GBP 0.101 0.072 0.082 0.352 0.066 18.54 14.35 12.68 158.71 10.52

The average losses taken from different periods. The NIG-SV* is favorite in the Crisis 1 whereas the
NIG-SV′ is favorite in the Crisis 2. There is no clear winner in the other periods.

where log(σ̂2t+k|t) =
∑∞

j=0 ψ
′
k+jϵt−j and var

(
log(σ̂2t+k|t)

)
= (1 + ψ′2

1 + · · ·+ ψ′2
k−1)σ

2
ϵ .

Figure 4.4.1 shows the loss series of cumulative volatility forecasts for EUR from
the beginning of Crisis 1 to the end of Post-Crisis. It can be seen graphically that the
losses of forecast are higher in the Crisis 1 and extremely high in the Crisis 2 for all
forecasting models. The NIG-SV model and NIG-SV′ models perform poorly in the
Crisis 2 comparing to GARCH model. The losses of NIG-SV* are approximately in the
middle of the other three models. And the NIG-SV′ performs nicely in the Post-Crisis
period.

Numerically, the average losses taking over different periods are shown in Table4.3.
First, we can see that the MSE losses are extremely high in the Crisis 2. This reflects the
high dependence between the loss and the level of true volatility as we have discussed
in 4.1.2. Therefore we take more attention to the QL losses. The NIG-SV* model is
favorite in the Crisis 1 whereas the NIG-SV′ model is favorite in the Post-Crisis. In
the Crisis 2, the average losses are relatively high and there is no clear winner in this
period, GARCH, NIG-SV* and RW models win the competitions for EUR, JPY and
GBP respectively.

4.5 Summary
In this chapter, we have presented the route to volatility forecasting from the begin-
ning with related issues to the new models for forecasting. Self-contained guide for
volatility forecasting in practice is given. Stochastic volatility models in the class of GH
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models, especially the NIG-SV model, have been discussed as promising in describing
and forecasting volatility. The HGLM approach for estimation and the associating h-
likelihood method have been studied and implemented to the real data. The empirical
results show that h-likelihood method is comparable to maximum likelihood method
but h-likelihood method is simpler because the integration does not involve. Moreover,
applying h-likelihood method yield the estimates of latent variables that can be use to
forecast volatility. The new models for volatility forecasting based on NIG-SV model
have been presented. Finally, the new forecasting models have been implemented to the
real data and they perform better than the standard models in many cases.



Chapter 5

Range-Based Volatility Models

Volatility is unobservable in the market and the dynamics of volatility is unknown. To
measure the volatility we need to exploit observable variables. In the previous chapter,
returns have played a key part in volatility modeling. Nevertheless, there are other
observable variables available in financial markets such as trading volume, daily high,
low, open, and close prices. In this chapter, we show how other relevant variables are
exploited to estimate volatility provided a particular process for prices is assumed. Price
range, which is the difference between daily high and low prices, plays an important role
in this section. Although the daily high and low are only two numbers, they provide
a lot of information about volatility since they are extracted from prices record of the
whole day.We introduce some range-based volatility models which assume geometric
Brownian motions to price processes and also propose the new estimators that correct
the discretization error of the existing models. The accuracy and the efficiency of range-
based volatility estimators are investigated by simulations.

5.1 Range-Based Volatility Estimators
Data on the daily range are widely available in board assets over long historical span.
In general, it does not cost the practitioners to obtain the data as in the case of intra-
day prices. Daily range is not only a single number, but it does represents the price
movements over the whole trading day. Thus some investigators utilize the information
contained in the range to estimate volatility rather than the return. Based on the as-
sumption that intraday log prices follow a Brownian motion, Parkinson (1980) provides
one of the first estimators of volatility from price range. He asserts that the estimator
is five times more accurate than squared return which is the naive estimator and it is
unbiased when expected returns are zero. Garman & Klass (1980) improve Parkinson’s
estimator by incorporating open and close prices to the estimator, results in a more accu-
rate estimator, that is as accurate as the sum of eight squared intraday returns. Brunetti
& Lildholdt (2002) compliment the results of Parkinson (1980) providing the range-based
volatility estimator subject to minimum mean squared error (MMSE) criterion and also
the range-based estimator of the standard deviation.

63
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All these estimators only consider the special case that the expected returns are
zero. Rogers & Satchell (1991) provide an estimator that is unbiased whatever the
drift is, this estimator incorporates high, low, open and close prices. Alizadeh et al.
(2002) discover an accurate probability link between volatility and range data when
intraday prices follow a driftless GBM, that the distribution of log range given volatility
is approximately normal. Further results on range-based volatility estimators appear in
Beckers (1983),Gallant et al. (1999),Yang & Zhang (2000).

The estimators of Parkinson (1980), Garman & Klass (1980),Rogers & Satchell (1991)
and Yang & Zhang (2000) have been tested by Shu & Zhang (2006) using both simula-
tions and real data. They claim that the variances estimated with range-based estima-
tors are quite close to the daily integrated variance. These estimators, except for the
estimator of Yang & Zhang (2000), have been further analyzed by Molnár (2012) with
numerous simulations and empirical data. He concludes that the estimator of Garman
& Klass (1980) is the best estimator that the returns normalized by this estimator are
approximately Gaussian. This result is consistent with the results obtained from high
frequency data. The empirical results support the use of estimators for actual market
data.

For range-based volatility modeling and forecasting, Taylor (1987) finds that the
ranges have higher autocorrelations than that of the absolute returns. This indicates
that the ranges are more likely to be forecasted accurately and becomes a satisfactory
option in volatility modeling and forecasting. Range-based volatility models include
the two-factor SV model of Alizadeh et al. (2002), the conditional autoregressive range
model (CARR) of Chou (2005), the range-based EGARCH model of Brandt & Jones
(2006), the range-based threshold conditional autoregressive (TARR) model by Chen
et al. (2008) and the asymmetric smooth transition dynamic range models of Lin et al.
(2012).

Range-based volatility models are developed by common assumptions : the trading is
continuous, the volatility is constant during the day, and the log-price process is driftless.
Hence, we firstly assume that price movements during the period of time τ ∈ [t − 1, t],
{Pτ}t−1≤τ≤t follow geometric Brownian motion written in the differential form

dPτ = µdPτdτ + σPτdBτ (5.1.1)

where the drift rate µd and the diffusion coefficient σ are assumed constants, and Bτ is a
standard Brownian motion given in Section 2.6.1. Equation (5.1.1) has the well-known
solution

Pτ = P0 exp
{(

µd −
σ2

2

)
τ + σ (Bτ −B0)

}
that the log price pt = log(Pt) over the period [t− 1, t] follow a random walk with drift

pt − pt−1 = µ+ σϵt (5.1.2)

where µ = µd − σ2

2 and ϵt = σBt ∼ N(0, σ2). The price process is driftless if µ = 0, i.e.,

pt − pt−1 = σϵt. (5.1.3)
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The highest price and the lowest price in the interval [t−1, t] areHt = sup {Sτ : t− 1 ≤ τ ≤ t}
and Lt = inf {Sτ : t− 1 ≤ τ ≤ t}. Denote the price at the beginning of the day by Ot
(open), the price in the end of the day by Ct (close), the highest price of the the day Ht,
and the lowest price of the day Lt. Then we consider the following variables

c∗t = log(Ct)− log(Ot), h∗t = log(Ht)− log(Ot), and l∗t = log(Lt)− log(Ot).

Typically the price on the beginning of the day differs slightly from the closing price
on the previous day. This setting is valuable when the opening jumps are concerned.
However the opening jumps are typically small in comparison to daily volatility. Thus we
assume that the opening jump does not exist, i.e. Ot = Ct−1 and consider the following
quantities

rt = ct = log(Ct)− log(Ct−1), ht = log(Ht)− log(Ct−1), and lt = log(Lt)− log(Ct−1).

The difference between log-high and log-low is called price range, denoted by Rt = ht−lt.
The estimators of Parkinson (1980), Garman & Klass (1980), Rogers & Satchell (1991)
and Brunetti & Lildholdt (2002) are investigated in this chapter. For simplicity, we
consider GBM in the unit interval τ ∈ [0, 1] and drop out the time subscript t.

The Parkinson Estimator Under the assumption that the prices follow a drift-
less Brownian motion in(5.1.3), Parkinson (1980) proposes one of the first range-based
volatility models,

σ̂2P =
1

4 log(2)(h− l)2. (5.1.4)

This estimator is derived in which σ̂2 is an unbiased estimator of σ2. It is a result from
the distribution function of the range of the standard Brownian motion derived by Feller
(1951). Parkinson (1980) claims that the estimator is more efficient than the square of
return r2 that is a very common estimator of σ2. Parkinson showed that the relative
MSE calculated by MSE

(
σ̂2P , σ

2
) /

MSE
(
r2, σ2

)
is 0.20367. This means that Parkinson’s

estimator is approximately five times more efficient than squared return.

The Brunetti-Lildholdt Estimator In addition to Parkinson’s range-based esti-
mator for σ2 that is derived subject to unbiasness. Brunetti & Lildholdt provide the
estimator for σ2 subject to MMSE criterion.

σ̂2BL =
4 log(2)
9ξ(3)

(h− l)2 = 0.25628 (h− l)2 (5.1.5)

�(·) denotes the Riemann zeta function. In the case of σ2, the relative MSE increases
from 0.20367 to 0.43416 when the estimator is constructed subject to the MMSE crite-
rion.
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The Garman-Klass Estimator Not only utilize the information contained in the
range, Garman & Klass (1980) seek the minimum variance estimator based on c, h and
l that can be expressed as an analytical function of c, h and l. Their estimator is given
by the formula

σ̂2GK∗ = 0.511(h− l)2 − 0.019(c(h+ l)− 2hl)− 0.383c2.

The second term is very small and thus they recommend the more practical estimator
neglecting the cross-product term,

σ̂2GK = 0.5(h− l)2 − (2 log(2)− 1)c2. (5.1.6)

The Roger-Satchell Estimator The previous three estimators are derived from the
driftless Brownian motion. Rogers & Satchell (1991) provide the estimator that allows
arbitrary drift given by

σ̂2RS = h (h− c) + l (l − c) (5.1.7)

They prove that E [h (h− c) + l (l − c)] = σ2 , therefore σ̂2RS is an unbiased estimator of
σ2 . This estimator σ̂2RS is independent of drift, it is unbiased even though µ ̸= 0.

5.2 Simulation Study on Range-Based Volatility Estima-
tors

The properties of some range-based volatility estimators are tested in Shu & Zhang
(2006) and Molnár (2012). The common estimators that have been analyzed in both
investigations are the estimators of Parkinson, Garmann and Klass, and Rogers and
Satchell. Shu & Zhang (2006) focus on the effects of nonzero drift, and opening jump
on the accuracy and efficiency of each estimator. The impact of changing volatility on
each estimator is also tested. They conclude that if stock prices follow a GBM with
small drift and with no opening jump, the three range-based estimators all provide good
estimation of the true variance. If the drift term is large, the Parkinson estimator and the
Garman-Klass estimator will significantly overestimate the true variance, whereas the
Rogers and Satchell estimator estimator is drift independent. They also find that when
the volatility is time varying, the average estimation error is smaller than the constant
volatility case when the volatility is modeled by a deterministic function of price. This
result shows that the range-based estimators are able to capture the short-run dynamics
of volatility variation.

However, they did not take into account the effects of discretization. Molnár (2012)
neither considers the discretization effects but he takes a great number of simulations
that a continuous Brownian motion is approximated by a random walk with 100,000 steps
repeated 500,000 simulations. He studies the performance of the estimators when all the
assumptions of these estimators hold perfectly and rates the Garman–Klass estimator as
the best volatility estimator based on daily (open, high, low and close) data. In Molnár
(2012), the empirical results show that the returns standardized by the Garman-Klass
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volatility estimates are close to normal. That is consistent with the results obtained
from high-frequency data studied by Andersen et al. (2001). Therefore, in the absence
of high-frequency data, further development of volatility models based on open, high,
low and close prices is promising.

In this section, we study by simulations the properties of range-based volatility esti-
mators in realistic situations that the assumptions of the estimators do not hold perfectly.
We focus on the effects of nonzero drift and the changing volatility. In Shu & Zhang
(2006), the volatility is simulated with three different models: the constant volatility
model, the deterministic volatility model, and the jump volatility model. Here we sim-
ulate the volatility by the NIG-SV model. We also take into account the impact of
discretization, hence we simulate intraday price paths according to practical record of
transactions. A 5-minute prices record over 9 hours of trading, i.e., from 8:00 to 17:00,
consists only 108 transactions data per day. Hence we take relatively low numbers of
steps comparing to the simulations study in Shu & Zhang (2006) and Molnár (2012)
that the number of intraday movements are 500 and 100,000 respectively.

The simulations are directed to examine the performance of each estimator under
two assumptions: the changing drift effects and the changing volatility effects. On each
day, the price is assumed to move 20, 40 and 100 steps that the numbers of movements
correspond to approximately every 30, 15 and 5 minutes prices record over 9 trading
hours respectively. For the constant volatility simulations, the price paths are simulated
by Gaussian random walks. For the stochastic volatility simulations, the price paths are
simulated by NIG-SV models.

5.2.1 Discretization error
In simulations, the Brownian motion is modeled by a random walk with Gaussian steps.
It follows that the maximum of the random walk is in general smaller than the max-
imum of the Brownian motion and the minimum of the random walk is greater than
the minimum of the Brownian motion. Consequently, all those range-based volatility
estimators will generally underestimate true volatility in simulations. The downward
bias is identified by Garman & Klass (1980) and also Beckers (1983). Rogers & Satchell
(1991) give a correction of the downward bias to their estimators when the number of
steps taken by the random walk in the time interval [0, 1] is known. Assume that we
simulate a log-price path,{p0, p1,, p2, . . . , pk}, by taking k steps of 1/k step size to rep-
resent a Brownian motion, pτ , in the time interval τ ∈ [0, 1]. Thus the simulated high
and low prices are given by hk = max {sj : 0 ≤ j ≤ k} and lk = min {lj : 0 ≤ j ≤ k} and
pk = ck. They can be written as

h = hk +∆ and l = lk − ∆̃

where ∆ and ∆̃ have the same law. Then the Rogers-Satchell estimator is

σ̂2RS = (hk +∆) ((hk +∆)− pk) +
(
lk − ∆̃

)((
lk − ∆̃

)
− pk

)
=

(
∆2 + ∆̃2

)
+∆(2hk − pk)− ∆̃ (2lk − pk) + hk (hk − pk) + lk (lk − pk) .
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They show that expectations E[∆] = a√
k
σ and E[∆2] = b

kσ
2, where a =

√
2π
(
0.25−

(√
2− 1

)
/6
)

and b = (1 + (3π/4)) /12. The estimator is then corrected by replacing ∆, ∆̃,∆2 and
∆̃2 by their expectations. Then the corrected estimator σ̂RSk is the positive root of the
equation

Q(σ̂RSk) = (1− 2b

k
)σ̂2RSk −

2a√
k
(hk − lk) σ̂RSk − hk (hk − pk)− lk (lk − pk) = 0.

The solution always exists for k > 2b, since Q(σ) → ∞ as |σ| → ∞ and Q(0) < 0.
Eventually the corrected estimator σ̃RSk is given by

σ̂RSk =
−B +

√
B2 − 4AC

2A
(5.2.1)

where A = 1 − 2b
k , B = − 2a√

k
(hk − lk) and C = −hk (hk − pk) − lk (lk − pk). Remark

that the final price pk is the closing price c.
The knowledge of E[∆] and E[∆2] is very useful since we can also apply this method

to correct the other estimators. The corrected Parkinson’s estimator is σ̂Pk where σ̂Pk
solves (

4 log(2)− 4b

k

)
σ̂2Pk −

4a√
k
(hk − lk)σ̂Pk − (hk − lk)

2 = 0 (5.2.2)

The corrected Brunetti-Lildholdt estimator solves(
1

0.25628
− 4b

k

)
σ̂2BLk −

4a√
k
(hk − lk)σ̂BLk − (hk − lk)

2 = 0 (5.2.3)

And the corrected Garman-Klass estimator solves(
2− 4b

k

)
σ̂2GKk −

4a√
k
(hk − lk)σ̂GKk − (hk − lk)

2 + (4 log(2)− 2)p2k = 0. (5.2.4)

5.2.2 Simulation with constant volatility
Suppose that we simulate a daily log-prices by a k-step Gaussian random walk, then the
following day prices also follow another k-step Gaussian random walk starting from the
previous day last price. The process continues until day nth, then we will have a matrix
of size n× k that represents the simulated log prices following a Gaussian random walk
with constant volatility σ.

pi,j+1− pi,j =
1

k
µ+ σϵi,j

where i = {1, . . . , n}, j = {1, . . . , k} and ϵi,j ∼ N(0, 1). We take pi,1 = pi−1,k hence open-
ing jumps are not allowed. Each pi = pi,k is the closing price, h∗i = max {si,j : 1 ≤ j ≤ k}
and l∗i = min {si,j : 1 ≤ j ≤ k} are high price and low price of day ith respectively. The
normalized prices at day ith are given by

ci = pi − pi−1, hi = h∗i − pi−1 and li = l∗i − pi−1.
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The simulations are taken subject to variation in drifts, volatilities and numbers of
intraday price movements. Our empirical data has average daily return of 0.0001 and
average daily variance of 4.7×10−5. Therefore the drifts are given by µ = 0, 0.0005, 0.001,
0.005 and 0.01. The daily variances are taken from σ2 = 2.5×10−5, 10×10−5, 40×10−5

and 90 × 10−5. The numbers of intraday movements are 20, 40 and 100. In each
simulation, we simulate price path for 100 days and repeat for 1000 simulations.

The major concerns on an estimator are the accuracy and the efficiency. The accuracy
corresponds to the difference between the true value and the estimate. The efficiency
corresponds to the uncertainty of the estimator. Here we measure the accuracy by loss
functions given in Section 4.1.2, MSE and QL. In each simulation, given the volatility σ
constant over n days, the accuracy of the estimator σ̂2 is measured by the average losses

MSE(σ̂2, σ2) = 1

n

n∑
i=1

(σ̂2i − σ2)2 and QL(σ̂2, σ2) = 1

n

n∑
i=1

(
σ2

σ̂2i
− log σ

2

σ̂2i
− 1

)
.

The absolute errors, |σ̂2 − σ2|, are also computed. The absolute error is useful when
the bias is concerned. For the efficiency, we measure by the variance ratio between the
Parkinson estimator and the estimator of interest. That is

Eff(σ̂2) = var(σ̂2P )
/
var(σ̂2).

In each simulation, we evaluate the performance of each estimator with the indicated
measures. The simulations are taken 1000 times, then we report the average values of
the measurements in the final results.

5.2.3 Simulation with stochastic volatility
In contrast to Brownian motion that the volatility is constant, the volatility in the
NIG-SV model is stochastic

pi,j+1 − pi,j =
1

k
µ+ σi,jϵi,j (5.2.5)

σ2i,j ∼ IG(
ϕ

k
,
ω

k
)

where i = {1, . . . , n}, j = {1, . . . , k} and ϵi,j ∼ N(0, 1). As the consequence of the
close-under-convolution property of NIG distribution, we have the following properties.

(i) If y ∼ IG(ϕ, ω) then λy ∼ IG(λϕ, ω).

(ii) If yi ∼ IG(ϕ, ω) for i = 1, 2, . . . , n, then
∑n

i=1 yi ∼ IG(nϕ, nω).

(iii) If y ∼ NIG(ϕ, ω) then λy ∼ NIG(λ2ϕ, ω).

(iv) If yi ∼ NIG(ϕ, ω) for i = 1, 2, · · · , n, then
∑n

i=1 yi ∼ NIG(nϕ, nω).

Proposition 9. Suppose ϵ ∼ N(0, 1) and σ2 ∼ IG(ϕ, ω), then y = σϵ ∼ NIG(ϕ, ω).
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We simulate price paths by assuming that intraday volatility σ2i,j of the day ith follow
an inverse Gaussian distribution σ2i,j ∼ IG(ϕk ,

ω
k ), where k is the number of intraday

observations. Then the daily volatility follows σ2i ∼ IG(ϕ, ω). By Proposition 9, we
multiply the intraday volatility to the Gaussian random variable to obtain the intraday
return that follows yi,j ∼ NIG(ϕk ,

ω
k ) and finally the summation of intraday returns is

the daily return that follows yi ∼ NIG(ϕ, ω).
The IG random variables σ2i,j are simulated following del Castillo & Lee (2008)

employing the method of Rydberg (1997). If u is distributed as IG(1, ω′) then v =
ω′(u − 1)2/u is distributed as a chi-square distribution with degree of freedom one, χ2

1

. Therefore, we begin with simulating v with distribution χ2
1 (the square of a standard

normal distribution), then we consider

u1 = 1 +
v

2ω′ −
√
4ω′v + v2

2ω′ , and u2 =
1

u1
.

The desired u is chosen from u1 and u2 with probabilities 1/(1+u1) and u1/(1+u1) taking
u = u1 or u = u2 respectively, it turns out that u is IG(1, ω′) distributed. Given ω′ = ω/k
and multiply u by 1/k, we obtain the intraday volatility σ2i,j = u/k ∼ IG(ϕ/k, ω/k).
The daily volatility is simply the summation of intraday volatilities that turn out to be
σ2i ∼ IG(ϕ, ω). In simulations, we assume that our data are generated by (5.2.5). The
volatility is stochastic with fixed expected daily variance ϕ = E[σ2i ] = 10 × 10−5. In
stead of vary the volatility that is already stochastic, we vary the kurtosis of the daily
returns. In our empirical data, the average kurtosis is 4.42. Accordingly, we vary the
kurtosis by 1, 3, 5 and 7 that results in varying the parameter ω = 1, 1/3, 1/5, and 1/7
respectively. The drifts are taken from the same list as in the case of constant volatility
simulations.

5.3 Discussion on the Results
Table 5.1 shows partial results from the simulations with constant volatility. In panel
(a), the log prices follow driftless Brownian motion. The Garman-Klass estimator is the
most accurate estimator when the accuracy is measured by MSE. It is also the most
efficient estimator in term of relative variance. The corrected Garman-Klass estimator
is the most accurate estimator in term of QL measure. The squared return and the
(corrected) Parkinson estimators are less bias but the large MSE in the squared return
show that it is very noisy estimator. The Brunetti-Lildholdt esimator has smallest
standard deviation as it was constructed for.

All range-based estimators are less bias with the correction of discretization error.
The QL losses of the squared returns is 4502910, that we replace any number greater
1000 by ’inf’. The extremely high level of QL measure is the result of near zero divisors.
Since the QL function involves the ratio between the true value and the estimate, the
QL loss increases highly if the estimate is close to zero. The naive estimator suffers the
most by the QL measure because of the zero returns. In the case of the Rogers-Satchell,
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Table 5.1: The accuracy and efficiency of range-based volatility estimators when log
prices follow Brownian motion with intraday movements k = 40, daily variance σ2 =
10× 10−5.

(a) Log prices follow driftless Brownian motion µ = 0

r2i P Pk BL BLk GK GKk RS RSk

Mean 9.94 8.09 9.72 5.75 6.70 7.38 9.59 7.34 9.45
Absolute error 0.06 1.91 0.28 4.25 3.30 2.62 0.41 2.66 0.55
Standard error 1.41 0.57 0.69 0.41 0.48 0.43 0.56 0.52 0.63
MSE 19.83 3.76 4.90 3.52 3.41 2.69 3.37 3.48 4.18
QL inf 0.46 0.33 0.88 0.66 0.48 0.27 26.77 0.89
Efficiency 0.20 1.00 0.78 1.06 1.09 1.40 1.13 1.10 0.93

(b) Log prices follow Brownian motion with drift µ = 0.01

r2i P Pk BL BLk GK GKk RS RSk

Mean 19.89 11.61 13.94 8.25 9.61 8.41 11.25 7.02 9.45
Absolute error 9.89 1.61 3.94 1.75 0.39 1.59 1.25 2.98 0.55
Standard error 2.46 0.95 1.14 0.68 0.79 0.56 0.75 0.57 0.72
MSE 69.63 8.69 13.71 4.56 5.79 2.96 5.04 3.90 4.68
QL inf 0.37 0.30 0.63 0.49 0.40 0.24 12.26 1.08
Efficiency 0.13 1.00 0.63 1.88 1.49 2.94 1.75 2.26 1.92

In panel (a), the corrected Garman-Klass estimator (GKk) is the most accurate estimator in term of QL
measure. The squared return (r2i ) and the Parkinson estimator and its correction (P and Pk) are less
bias. The large MSE in the squared return show that it is very noisy estimator. The Brunetti-Lildholdt
esimator has smallest standard deviation. All range-based estimators are less bias with the correction
of discretization error.
In panel (b), when the drift is very large, the Garman-Klass estimator (GK) still performs properly with
small QL and MSE. The Rogers-Satchell (RS) and its correction (RSk) are robust under the change
in drift as they are expected. The Parkinson estimator (P) and the Brunetti-Lildholdt estimator (BL)
including their corrections (Pk and BLk) deteriorate by the increasing drift when measure by MSE.
Note: Each simulation has 100 days with k movements per day. The simulation is repeated 1000 times.
The MSE and QL measure the accuracy of the estimator. The smaller the value of MSE (QL), the
greater the accuracy of the estimator. The efficiency is relative to the Parkinson estimator. The higher
value of efficiency is preferred. The absolute error measures the average distant from the true volatility.
The values of Mean, Absolute error and Standard error are scaled by 105, the values of MSE are scaled
by 109.
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Table 5.2: The effect of discretization when log prices follow Brownian motion with
σ2 = 10. The averages of variance estimates (×105 ) with 95% confidence intervals are
presented.

(a) Log prices follow driftless Brownian motion µ = 0

k r2i P Pk BL BLk GK GKk RS RSk

20 9.97 7.46 9.73 5.30 6.61 6.49 9.57 6.41 9.32
(2.73) (1.06) (1.39) (0.76) (0.94) (0.78) (1.14) (0.95) (1.26)

40 9.94 8.09 9.72 5.75 6.70 7.38 9.59 7.34 9.45
(2.77) (1.13) (1.35) (0.80) (0.93) (0.85) (1.10) (1.01) (1.23)

100 10.01 8.75 9.80 6.22 6.84 8.26 9.69 8.24 9.62
(2.77) (1.17) (1.31) (0.83) (0.91) (0.92) (1.08) (1.06) (1.21)

(b) Log prices follow driftless Brownian motion µ = 0.01

k r2i P Pk BL BLk GK GKk RS RSk

20 20.14 10.96 14.30 7.79 9.72 7.42 11.45 5.95 9.34
(4.78) (1.71) (2.23) (1.21) (1.51) (0.88) (1.37) (0.99) (1.33)

40 19.89 11.61 13.94 8.25 9.61 8.41 11.25 7.02 9.45
(4.83) (1.87) (2.24) (1.33) (1.54) (1.09) (1.46) (1.12) (1.40)

100 20.02 12.35 13.83 8.78 9.65 9.39 11.20 8.01 9.58
(4.72) (1.78) (1.99) (1.27) (1.39) (1.03) (1.24) (1.09) (1.24)

The original estimators poorly estimate the true variance when the number of intraday movements is as
small as 20. The corrections significantly improve the bias both when the drift is zero and the drift is
large.

the estimator is zero if the intraday prices move in one direction that the close price
equals to either the high or the low price.

In Table 5.1 panel (b), the log prices follow Brownian motion with (very large) drift.
The Garman-Klass is impressively robust. It has small QL, the MSE increases slightly
but the bias is even smaller. The Rogers-Satchell and its correction are robust under the
change in drift as they are expected. The Parkinson estimator and the Brunetti-Lildholdt
estimator including their corrections deteriorate by the increasing drift when we measure
the MSE. Nevertheless, they perform better when the QL measure is employed. In fact,
all estimators improve in term of QL losses when the drift is increased. The full results
of all sixty simulation schemes in the end of this chapter show that the Garman-Klass
estimator is the best performing estimator. It wins 59 of 60 in the MSE competitions
while its correction wins all the QL competitions.

Table 5.2 show the effect of discretization error. In the case of driftless Brownian
motion, all the range-based estimator underestimate the true volatility if the number
of intraday movements is as small as 20. The true volatility is not in 95% confidence
interval of any uncorrected estimator. The corrected estimators significantly improve
the downward bias. Increasing the intraday movements to 100 does not guarantee that
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Table 5.3: The accuracy and efficiency of range-based volatility estimators when log
prices follow NIG-SV model with intraday movements k = 40, expected variance E[σ2i ] =
10× 10−5, kurtosis 1/ω = 5.

(a) Log prices follow NIG-SV model µ = 0, average variance = 9.8× 10−5

r2t P Pk BL BLk GK GKk RS RSk

Mean 9.85 5.53 6.64 3.93 4.58 3.86 5.19 3.23 4.36
Absolute error 0.05 4.27 3.16 5.87 5.22 5.93 4.61 6.57 5.44
Standard error 2.48 1.07 1.28 0.76 0.88 0.63 0.85 0.57 0.74
MSE 85.61 14.21 15.55 14.46 14.05 14.24 12.65 17.09 4.60
QL inf 2.07 1.60 3.33 2.70 2.47 1.61 12.78 3.59
Efficiency 0.26 1.00 0.95 0.98 1.00 1.03 1.15 0.85 3.25

(b) Log prices follow NIG-SV model µ = 0.01, average variance = 9.72× 10−5

r2t P Pk BL BLk GK GKk RS RSk

Mean 19.68 9.21 11.06 6.54 7.63 5.17 7.16 3.47 4.88
Absolute error 9.96 0.51 1.34 3.18 2.10 4.56 2.56 6.26 4.85
Standard error 3.26 1.28 1.54 0.91 1.06 0.70 0.95 0.67 0.85
MSE 85.61 15.78 19.65 13.66 14.03 12.71 11.60 16.75 4.60
QL inf 0.77 0.66 1.14 0.95 1.18 0.73 51.81 4.56
Efficiency 0.29 1.00 0.82 1.16 1.12 1.33 1.42 0.99 3.59

In both cases, the corrected Rogers-Satchell estimator is significantly better than the others in term
of MSE measure, whereas the corrected Parkinson estimator performs best with QL measure. The
corrections improve the downward bias only slightly. When the drift is introduced, the MSE change very
little but the QL decrease in most cases.

the true volatility will be met. In the case of Brownian motion with drift, all but
the Parkinson estimator have average estimates lower than the true volatility at 20
and 40 intraday movements. The Parkinson estimator becomes overestimating when
the number of movements increase to 100 but the other estimators improve with the
increasing number of movements and the corrections.

Table 5.3 show the partial results when the log price is assumed to follow the NIG-SV
model. The best performing estimators are almost identical in both cases with large drift
and without drift. The corrected Rogers-Satchell estimator is significantly better than
the others in term of MSE measure, whereas the corrected Parkinson estimator performs
best with QL measure. The corrections improve the downward bias only slightly. Among
the uncorrected estimators, all but the Rogers-Satchell estimators have almost similar
MSE when the drift is zero. When the large drift is introduced, the Garman-Klass and
the Brunetti-Lildholdt estimators have smaller MSE whereas the QL losses decrease in
all uncorrected estimator except for the Rogers-Satchell estimator.

Table 5.4 show that the number of intraday movements in simulation has minor effect
on the bias. In the case of driftless simulations, all but squared returns underestimate the
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Table 5.4: The effect of discretization when log prices follow NIG-SV model with E[σ2i ] =
10 × 105, kurtosis=5. The averages of variance estimates (×105 ) with 95% confidence
intervals are presented.

(a) Log prices follow NIG-SV model µ = 0

k r2i P Pk BL BLk GK GKk RS RSk

20 9.60 5.26 6.86 3.74 4.66 3.59 5.53 2.96 4.62
(5.50) (2.29) (2.99) (1.63) (2.03) (1.26) (1.99) (1.09) (1.62)

40 9.85 5.53 6.64 3.93 4.58 3.86 5.19 3.23 4.36
(4.86) (2.09) (2.51) (1.48) (1.73) (1.23) (1.67) (1.12) (1.45)

100 9.78 5.65 6.33 4.02 4.42 4.06 4.86 3.45 4.14
(5.33) (2.26) (2.53) (1.60) (1.76) (1.30) (1.57) (1.15) (1.35)

(b) Log prices follow NIG-SV model µ = 0.01

k r2i P Pk BL BLk GK GKk RS RSk

20 19.47 8.88 11.58 6.31 7.87 4.79 7.75 3.07 5.20
(6.17) (2.45) (3.19) (1.74) (2.17) (1.37) (2.13) (1.35) (1.92)

40 19.68 9.21 11.06 6.54 7.63 5.17 7.16 3.47 4.88
(6.39) (2.51) (3.02) (1.79) (2.08) (1.37) (1.86) (1.31) (1.66)

100 19.99 9.52 10.66 6.76 7.44 5.48 6.69 3.77 4.61
(6.63) (2.63) (2.95) (1.87) (2.06) (1.44) (1.75) (1.36) (1.58)

The number of intraday movements in simulation has minor effect on the bias. In the case of driftless
simulations, all but squared returns underestimate the expected variance even though the number of
intraday movements is increased to 100. When the drift is added, the Parkinson estimator is considered
to be the best estimator because of small bias and high efficiency.

expected variance even though the number of intraday movements is increased to 100.
The squared return is unbiased estimator if the drift does not involve, however it is very
noisy because of high standard deviation. The Parkinson estimator has downward bias
if the drift is zero but it is more accurate when the large drift is added. The Parkinson
estimator is considered to be the best estimator because the small bias is compensated
by the high efficiency.

Table 5.5 show the performance comparison of the estimators when the price pro-
cesses follow different models. Clearly, most of the estimators are less accurate when
the volatility is stochastic. Nevertheless, the range-based estimators are still a lot better
than the squared return. With the MSE measure, the corrected Rogers-Satchell is the
most robust estimator under the change in volatility whatever the drift is.

5.4 Summary

The simulation study in this chapter shows that the range-based volatility estimators
are very efficient comparing to the squared return in both cases that the true volatility
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Table 5.5: The accuracy of the range-based estimators when the price processes follow
GBM and NIG-SV models.

Model r2t P Pk BL BLk GK GKk RS RSk

Panel A : µ = 0

MSE
{

GBM 19.83 3.76 4.90 3.52 3.41 2.69 3.37 3.48 4.18
NIG-SV 85.61 14.21 15.55 14.46 14.05 14.24 12.65 17.09 4.60

QL
{

GBM inf 0.46 0.33 0.88 0.66 0.48 0.27 26.77 0.89
NIG-SV inf 2.07 1.60 3.33 2.70 2.47 1.61 12.78 3.59

Panel B: µ = 0.01

MSE
{

GBM 69.63 8.69 13.71 4.56 5.79 2.96 5.04 3.90 4.68
NIG-SV 85.61 15.78 19.65 13.66 14.03 12.71 11.60 16.75 4.60

QL
{

GBM inf 0.37 0.30 0.63 0.49 0.40 0.24 12.26 1.08
NIG-SV inf 0.77 0.66 1.14 0.95 1.18 0.73 51.81 4.56

Most of the estimators are less accurate when the volatility is stochastic but they are a lot better than
the squared return. With the MSE measure, the corrected Rogers-Satchell is the most robust estimator
under the change in volatility regardless the size of the drift.

is constant and stochastic. Even though the price process involves the drift, the range-
based estimators are still accurate. The number of intraday movements can be used to
increase the accuracy of the estimators. This number can be replaced by the number of
intraday transactions if it is available. If the number of intraday movements is unknown,
the Garman-Klass estimator performs relatively accurate in both constant and stochastic
volatility models. The Parkinson estimator is also a proper estimator when the volatility
is stochastic. Therefore, the use of range and exogenous variables is very satisfactory
in modeling the volatility. We take this advantage to create a new stochastic volatility
model incorporating exogenous variables in the next chapter.
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Chapter 6

Dynamic Normal Inverse
Gaussian Models

In this chapter, we incorporate all the information obtained from previous chapters to
construct new stochastic volatility models. The models are defined and their properties
are given in the first section. Then the methods for estimation and forecasting are
proposed. The estimation methods are implemented to the real data and the parameters
are tested for the signification. The forecast performances are compared to the standard
models and the NIG-SV models given in Chapter 4.

6.1 The DNIG Model
In previous chapters, several volatility models have been studied. We found that the
NIG-SV models are well fitted to the data and the HGLM method of estimation allows us
to make forecast with NIG-SV models. Moreover, the simulations in Chapter 5 illustrate
the relevance of using the price range as volatility estimator. In this chapter, we propose
new SV models that take advantages of the previous models by incorporating the range
in to the NIG-SV model and applying the HGLM approach to estimate the model’s
parameters.

The new volatility model is developed by combining the ideas of three volatility
models: the standard SV model, the NIG-SV model and the range-based volatility
estimators. The standard SV model (Taylor, 1986) in (2.5.9) is defined by a Gaussian
AR(1) process for the logarithm of volatility. It receives a lot of attention because of the
capability in describing volatility and return. However, the parameter estimation for the
standard SV model is complicated when the MLE is applied to estimate the parameters
because the likelihood function is difficult to compute. In another way, the NIG-SV
model that the volatility is specified by a random variable is capable of explaining the
distribution of returns and the estimation can be easily done by MLE or H-likelihood. We
also find that the variance and the kurtosis of returns that are related to the parameters
of the NIG-SV model significantly change during the crisis. It motivates us to provide
the dynamics that drives the volatility in the NIG-SV model as in the standard SV

77
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model.
The difficulty of estimating the standard SV model arises from the inability to ob-

serve the past volatility in the AR(1) process, therefore the estimation requires excessive
computation. Substituting the unobserved variable log(σ2t−1) by a proper volatility esti-
mates would simplify the estimation procedure. Here we choose the range as the volatility
estimator as we have proven its relevance in the previous chapter. The combination of
these ideas lead us to the dynamic NIG stochastic volatility (DNIG) model.

6.1.1 Definition
Suppose that the volatility are constant over a unit-time period and the intraday prices
follow

dpτ = στdBτ

στ = σt ∀τ ∈ (t− 1, t].

Define the daily log-range byRt := maxτ∈(t−1,t]{logSτ}−minτ∈(t−1,t]{logSτ} = log(Ht)−
log(Lt). The dynamic NIG stochastic volatility model of order 1, denoted by DNIG(1),
is defined by 

yt = σtϵt, ϵt ∼ i.i.d.N(0, 1)

log(σ2t ) = α+ β log(R2
t−1) + bt

ut = exp(bt) ∼ IG(1, ω).

(6.1.1)

There are three parameters, namely α, β and ω. This specification defines the dynamics
for the logarithm of volatility as the combination of the observation α+β log(R2

t−1) and
the random effect bt. The distribution of volatility conditional on past history is inverse
Gaussian with a constant parameter ω and a time-varying parameter ϕt,

σ2t |Ft−1 = exp
(
α+ β log(R2

t−1)
)
ut ∼ IG(ϕt, ω),

where ϕt = exp
(
α+ β log(R2

t−1)
)
and Ft is the set of information up to time t. Then the

distribution of the return conditional on past information is normal inverse Gaussian,

yt|Ft−1 ∼ NIG(ϕt, ω). (6.1.2)

Thus the variance and the kurtosis of the return conditional on past history is

var(yt|Ft−1) = ϕt = exp
(
α+ β log(R2

t−1)
)
and kurt(yt|Ft−1) = ω.

It is easily seen that the DNIG(1) model is the NIG-SV model if the parameter β equals
to zero. The DNIG model is constructed by assigning the dynamics to the volatility and
the returns are conditionally distributed as NIG, hence we name this model the dynamic
NIG-SV model.
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6.1.2 Higher order setting
The DNIG(1) model simply considers the volatility driven by the previous log-range.
The model can be extended to incorporate higher order of past history. The DNIG
model of order k, denoted by DNIG(p), is defined by

yt = σtϵt, ϵt ∼ i.i.d.N(0, 1)

log(σ2t ) = α+
∑p

i=1 βi log(R2
t−i) + bt

ut = exp(bt) ∼ IG(1, ω).

(6.1.3)

This extension is one of most advantages of the DNIG model comparing to the standard
SV model because the standard SV model has never been extended to incorporate higher
order of autoregression. One of the reasons that the standard SV models with higher
orders have not been investigated because the estimation is cumbersome even in the
case of the first order standard SV model. The DNIG model allows us to investigate
more in the short-term dynamics of volatility. In the later section, we mainly employ
the DNIG(1) and the DNIG(2) models to explore their properties.

6.2 Parameter Estimation
Another advantage of the DNIG model is that the dynamics involves observable vari-
ables, the ranges, instead of the past volatility that is unobservable. The conditional
distributions of observed returns are known and thus the estimation is uncomplicated.
The parameter estimation is done in two approaches, the maximum likelihood estima-
tion and the h-likelihood estimation. Here we give the explicit expression for estimation
in the case of DNIG(1) model. The methods also apply to the higher order models.

6.2.1 Maximum likelihood estimation
The knowledge of the conditional distribution of the return allows us to construct the
likelihood function for parameters estimation.Suppose that the returns {yt}nt=1 follow
the DNIG(1) model with the set of parameters Θ = (α, β, ω)′. Given the observed
information set Fn including the returns {y1, y2,, ..., yn} and the ranges {R1, . . . , Rn},
the distribution of the return yt conditional on past history is normal inverse Gaussian
as in (6.1.2). The probability density function of the NIG(ϕ, ω) distribution has been
given in (3.1.5).Hence the log-likelihood function is explicitly written in terms of α, β
and ω as

l(α, β, ω) =

n∑
t=1

log(f(yt|Ft−1;α, β, ω))

= n [log(ω) + ω − log(π)] +
n∑
t=1

{
−1

2
log
(
y2t + ω exp(α+ β log(R2

t−1)
)}

(6.2.1)

+
n∑
t=1

log
[
K1

(√
ωy2t

exp
(
α+ β log(R2

t−1)
) + ω2

)]
.
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Maximizing the log-likelihood function in (6.2.1) provides an appropriate estimate of the
parameter Θ from the observed information.

6.2.2 H-likelihood estimation
The model (6.1.1) can be viewed as HGLM with random effects in the dispersion. Then
the associated h-likelihood is applied

h(b; Θ) =

n∑
t=1

{log f(yt|bt;α, β) + log f(bt;ω)}

where b = {bt}nt=1 is the vector of random effects. Since yt|bt is normally distributed
with zero mean and variance σ2t , then

log f(yt|bt;α, β) = −1

2
log(σ2t )−

1

2
log(2π)− 1

2

y2t
σ2t

= −1

2

{(
α+ β log(R2

t−1) + bt
)
+ log(2π)

}
−1

2
y2t exp

[
−
(
α+ β log(R2

t−1) + bt
)]

(6.2.2)

The pdf of bt is f(bt;ω) = |∂u(bt)/∂bt| · fu (u(bt);ω) where u(bt) = exp(bt) ∼ IG(1, ω).
The pdf of u ∼ IG(1, ω) has been given in (4.2.4) , therefore

log f(bt;ω) = log (exp(bt) · f(exp(bt);ω))

=
1

2
log(ω)− 1

2
log(2π) + ω − bt

2
− ω

2
(exp(−bt) + exp(bt)) (6.2.3)

Hence the h-likelihood is (6.2.2) plus(6.2.3). At a fix time t, we use the notation
ht(bt; Θ) = log f(yt|bt;α, β) + log f(bt;ω), then

ht(bt; Θ) = ω +
1

2
log(ω)− 1

2
α− log(2π)− 1

2
β log(R2

t−1)

−ω
2
(exp(−bt) + exp(bt))−

1

2
y2t exp

[
−
(
α+ β log(R2

t−1) + bt
)]

− bt

Consequently we reach

h(b; Θ) = n

[
ω +

1

2
log(ω)− 1

2
α− log(2π)

]
− 1

2
β

n∑
t=1

log(R2
t−1)

−1

2
ω

n∑
t=1

(exp(−bt) + exp(bt))−
1

2

n∑
t=1

{
y2t exp

[
−
(
α+ β log(R2

t−1) + bt
)]

+ 2bt
}

The marginal log-likelihood l =
´
exp(h)db is approximated by the Laplace approxima-

tion (Lee & Nelder, 2001)

pb(h) = h− 1

2
log det {D(h, b)/(2π)} |b=b̂ (6.2.4)
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where D(h, b) = −∂2h/∂b2 and b̂ solves ∂h/∂b = 0. Consider

∂h

∂bt
= −1 +

1

2
y2t exp

[
−
(
α+ β log(R2

t−1) + bt
)]

− 1

2
ω (− exp(−bt) + exp(bt))

and

∂2h

∂bs∂bt
=

{
−1

2y
2
t exp

[
−
(
α+ β log(R2

t−1) + bt
)]

− 1
2ω (exp(−bt) + exp(bt)) , s = t

0 s ̸= t

then b̂t that solves ∂h/∂bt = 0 is

b̂t = log

−1 +
√
ω2 + ωy2t exp

[
−
(
α+ β log(R2

t−1)
)]

+ 1

ω

 (6.2.5)

The model parameter Θ = (α, β, ω)′ is directly obtained by maximizing (6.2.4) and the
estimates of random effects b̂ = (b̂1, ..., b̂n) are extracted by (6.2.5). The standard errors
,std.err, can be computed from the hessian Ĥ = [∂2pb/∂θ

2]|θ=θ̂, std.erri =
√
Îi,i where

Î = −Ĥ−1. Eventually, the volatility is estimated by

σ̂2t = exp
(
α+ β log(R2

t−1) + b̂t

)
. (6.2.6)

6.2.3 Empirical results on estimation
Table 6.1 shows that the estimated parameters with both maximum likelihood and h-
likelihood methods when the returns follow the DNIG(1) model. The estimated pa-
rameter from both methods are very similar, especially the estimates of α and β. The
estimates of ω are also lie in 95% confidence intervals of each other in most cases even
though they are slightly different.

The estimates of ω in GBP-c1, EUR-post and GBP-post are extremely high and
have large standard errors with the maximum likelihood method whereas the estimates
from h-likelihood method are more consistent with the estimates from other series. The
higher estimated values of ω in EUR-post, GBP-post, EUR-c1 and GBP-c1 correspond
to the lower kurtosis in the marginal distributions presented in Section 3.2. That the
kurtosis are 0.09, 0.19, 0.30 and 0.39 respectively. When the time series are taken from
the whole period of EUR, JPY and GBP, the parameter β are significantly different from
zero. The estimates of β range from 0.319 to 0.469 which are close to the constant of
the Parkinson estimator 0.361. Table 6.2 shows similar results when the returns follow
the DNIG(2) models.

Table 6.3 show the log-likelihood ratio statistics when the goodness-of-fit are com-
pared among the NIG-SV, the DNIG(1) and the DNIG(2) models. The null hypothesis
is that the null model which is the restricted case of the alternative model are similar
fitted to the data. The alternative hypothesis is that the alternative model is better
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Table 6.1: Parameter Estimates and their 95% confidence intervals for DNIG(1) models
with MLE and h-likelihood methods.

Series Maximum likelihood H-likelihood
α β ω α β ω

EUR -0.846 0.356 1.461 -0.843 0.357 1.495
(0.057) (0.046) (0.336) (0.052) (0.046) (0.176)

JPY -0.704 0.319 1.460 -0.701 0.319 1.493
(0.055) (0.049) (0.307) (0.051) (0.049) (0.171)

GBP -0.788 0.467 2.168 -0.758 0.469 1.659
(0.052) (0.041) (0.537) (0.051) (0.043) (0.202)

EUR-pre -1.786 -0.106 2.349 -1.729 -0.098 1.653
(0.135) (0.099) (1.190) (0.139) (0.102) (0.374)

JPY-pre -1.484 -0.080 2.047 -1.456 -0.090 1.629
(0.122) (0.108) (1.011) (0.119) (0.109) (0.370)

GBP-pre -1.629 -0.066 2.173 -1.606 -0.079 1.642
(0.131) (0.096) (1.175) (0.132) (0.099) (0.378)

EUR-c1 -1.169 0.206 2.838 -1.133 0.211 1.707
(0.134) (0.115) (2.462) (0.137) (0.122) (0.504)

JPY-c1 -0.691 0.263 2.308 -0.664 0.258 1.737
(0.112) (0.113) (1.177) (0.111) (0.117) (0.481)

GBP-c1 -1.250 0.176 7.361 -1.194 0.171 1.998
(0.125) (0.128) (9.711) (0.142) (0.142) (0.644)

EUR-c2 -0.152 0.213 1.077 -0.194 0.223 1.393
(0.166) (0.140) (0.487) (0.145) (0.136) (0.354)

JPY-c2 -0.220 0.243 1.611 -0.219 0.245 1.560
(0.140) (0.117) (0.719) (0.135) (0.116) (0.400)

GBP-c2 -0.288 0.483 2.238 -0.264 0.483 1.712
(0.145) (0.109) (1.177) (0.146) (0.111) (0.471)

EUR-post -1.013 -0.043 700.883 -0.928 -0.067 2.214
(0.072) (0.090) (262.144) (0.089) (0.108) (0.639)

JPY-post -0.747 0.062 1.724 -0.736 0.061 1.580
(0.097) (0.107) (0.717) (0.092) (0.108) (0.343)

GBP-post -0.925 0.078 16.537 -0.848 0.080 2.447
(0.075) (0.118) (23.336) (0.089) (0.131) (0.723)

The parameters estimates for DNIG(1) models from MLE and h-likelihood methods are con-
sistent. The h-likelihood estimation always converges but the maximum likelihood estimation
does not converge or converges with extremely high standard error when the kurtosis are close
to zero.

fitted to the data. In our cases, the NIG-SV model is the restricted case of the DNIG(1)
model. And the DNIG(1) model is the restricted case of the DNIG(2) model. The p-
values less than 0.1 indicate that the null hypothesis are rejected at 90% confidence. It
is clear that the DNIG(2) model improves the goodness-of-fit when it is compared to the
NIG-SV model in most cases. It also improves the goodness-of-fit in many cases when
it is compared to the DNIG(1) model.
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Table 6.2: Parameter Estimates and their 95% confidence intervals for DNIG(2) models
with MLE and h-likelihood methods.

Series Maximum likelihood H-likelihood
α β1 β2 ω α β1 β2 ω

EUR -0.850 0.184 0.362 2.064 -0.825 0.182 0.362 1.614
(0.054) (0.051) (0.050) (0.543) (0.053) (0.052) (0.052) (0.197)

JPY -0.713 0.213 0.255 1.553 -0.707 0.213 0.256 1.511
(0.055) (0.054) (0.055) (0.327) (0.051) (0.054) (0.055) (0.173)

GBP -0.799 0.299 0.305 2.906 -0.754 0.301 0.302 1.761
(0.049) (0.050) (0.050) (0.822) (0.051) (0.053) (0.053) (0.223)

EUR-pre -1.627 -0.101 0.183 2.702 -1.591 -0.109 0.187 1.715
(0.166) (0.097) (0.100) (1.440) (0.174) (0.101) (0.104) (0.396)

JPY-pre -1.352 -0.109 0.263 2.195 -1.315 -0.105 0.268 1.641
(0.135) (0.107) (0.102) (1.063) (0.134) (0.110) (0.105) (0.370)

GBP-pre -1.632 -0.046 -0.011 2.179 -1.606 -0.047 -0.013 1.618
(0.159) (0.097) (0.094) (1.178) (0.162) (0.100) (0.098) (0.369)

EUR-c1 -1.115 0.188 0.109 3.429 -1.069 0.192 0.105 1.695
(0.143) (0.114) (0.111) (3.486) (0.152) (0.124) (0.121) (0.496)

JPY-c1 -0.694 0.229 0.122 2.420 -0.657 0.228 0.118 1.725
(0.111) (0.119) (0.140) (1.229) (0.112) (0.124) (0.144) (0.471)

GBP-c1 -1.212 0.152 0.084 8.315 -1.157 0.142 0.069 1.965
(0.140) (0.130) (0.134) (11.761) (0.160) (0.145) (0.148) (0.619)

EUR-c2 -0.314 0.032 0.357 1.368 -0.320 0.033 0.358 1.460
(0.165) (0.151) (0.137) (0.657) (0.152) (0.150) (0.136) (0.375)

JPY-c2 -0.242 0.200 0.079 1.632 -0.233 0.202 0.080 1.537
(0.145) (0.131) (0.122) (0.730) (0.141) (0.131) (0.123) (0.390)

GBP-c2 -0.395 0.340 0.249 2.672 -0.351 0.346 0.241 1.754
(0.152) (0.126) (0.131) (1.530) (0.156) (0.131) (0.135) (0.489)

EUR-post -1.019 -0.068 0.118 688.119 -0.937 -0.102 0.162 2.119
(0.072) (0.092) (0.098) NaN (0.090) (0.110) (0.118) (0.584)

JPY-post -0.743 0.056 0.040 1.724 -0.729 0.054 0.040 1.554
(0.097) (0.108) (0.103) (0.722) (0.092) (0.109) (0.105) (0.334)

GBP-post -0.930 0.067 0.133 27.629 -0.847 0.070 0.104 2.377
(0.073) (0.117) (0.112) (67.153) (0.089) (0.133) (0.129) (0.685)

The parameters estimates for DNIG(2) models fromMLE and h-likelihood methods are consistent
as same as the results for DNIG(1) models. The h-likelihood is preferred because the estimation
always converses in our data set.

Table 6.3: The log-likelihood ratio statistics and the corresponding p-values of the null
model vs the alternative model. The series are modeled by NIG-SV, DNIG(1) and
DNIG(2) models.

NIG-SV vs DNIG(1) NIG-SV vs DNIG(2) DNIG(1) vs DNIG(2)
D p-value D p-value Dβ1 p-value

EUR 56.34 6.11E-14 111.45 6.29E-25 55.11 1.14E-13
JPY 42.29 7.87E-11 69.06 1.01E-15 26.77 2.29E-07
GBP 117.07 2.77E-27 159.06 2.89E-35 41.98 9.20E-11
EUR-pre 1.16 0.280 12.64 0.002 11.48 0.001
JPY-pre 0.55 0.457 13.22 0.001 12.67 3.72E-04
GBP-pre 0.48 0.490 5.92 0.052 5.45 0.020
EUR-c1 3.11 0.078 4.54 0.103 1.43 0.231
JPY-c1 5.29 0.022 6.99 0.030 1.70 0.192
GBP-c1 1.81 0.179 2.52 0.284 0.71 0.400
EUR-c2 2.29 0.130 10.26 0.006 7.97 0.005
JPY-c2 4.45 0.035 6.42 0.040 1.97 0.160
GBP-c2 18.96 1.33E-05 23.26 8.90E-06 4.29 0.038
EUR-post 0.23 0.634 5.59 0.061 5.36 0.021
JPY-post 0.34 0.562 1.78 0.411 1.44 0.230
GBP-post 0.45 0.504 3.66 0.160 3.22 0.073

The boldfaced p-values indicate that the null hypothesis of similar likelihood are rejected at 90% confi-
dence. The test statistic D are distributed as chi-square distributions with k degree of freedom, where
k is the difference between the numbers of models’ parameters. Most cases the DNIG(2) models are
better fitted to the tested series than the NIG-SV and the DNIG(1) models. The DNIG(1) models are
better fitted to the series in the crises than the NIG-SV models. Overall, both DNIG(1) and DNIG(2)
models are better fitted to the series than the NIG-SV models.
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Figure 6.2.1: The evolution of log-likelihood ratio statistics when the NIG-SV model is
tested against the DNIG(1) model.
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The values of the statistic D are plotted at the final day of each estimation period using all available
information up to that day and reestimate every five days. The red dashed lines indicate the critical
values where the statistics are different from zero at 90% confidence. The test statistics of EUR, JPY
and GBP first cross the critical lines at 15 Aug 2008, 14 Mar 2008 and 3 Oct 2008 respectively.

It is remarkable that in the pre-crisis and the post-crisis periods, the null hypothesis
holds for the NIG-SV model against the DNIG(1) model. This indicates that the param-
eter β of the DNIG(1) model is close to zero in the regular period, but it becomes more
significative in the crises. This may be used as an indicator that a crisis is occurring
in the period of estimation. Figure 6.2.1 shows the evolution of the log-likelihood ratio
statistics when the models are estimated using all available data up to that day. The
red dashed lines indicate the critical values where the DNIG(1) model is fitted to the
data better than the NIG-SV model with 90% confidence. The test statistics of EUR, JPY
and GBP first cross the critical lines at 15 Aug 2008, 14 Mar 2008 and 3 Oct 2008 respectively.

6.2.4 Residual analysis

The empirical study of returns with high-frequency data by Andersen et al. (2001)
shows that the standardized returns (returns divided by their standard deviations) are
normally distributed. This results correspond to the first line in (2.5.9). Theoretically,
the distribution of returns standardized by their true volatility yt/σt = ϵt ∼ N(0, 1) are
standard normal.Thus we expect that returns standardized by proper volatility estimates
are normally distributed with zero mean and unit variance. Therefore the volatility
model is able capture the information that causes heavy-tailed distribution in the returns
into its dynamics and thus the standardized returns have no heavy tails.

In this section we study the volatility estimated by DNIG models and consider the
distributions of standardized returns. The h-likelihood method allows us to estimate
the volatility by (6.2.6) that involves the observed ranges and the estimates of random
effects. After we estimate the model parameters by h-likelihood for each time series, we
compute the volatility estimates and the standardized returns.
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Table 6.4: Summary statistics for returns standardized by volatilities estimated from
NIG-SV, DNIG(1) and DNIG(2) models.

NIG-SV DNIG(1) DNIG(2)
mean SD skewness kurtosis mean SD skewness kurtosis mean SD skewness kurtosis

EUR -0.01 0.95 0.04 -0.63 0.00 0.90 0.07 -0.67 0.00 0.95 0.06 -0.72
JPY -0.01 0.95 0.10 -0.63 -0.01 1.01 0.11 -0.61 -0.01 0.95 0.13 -0.66
GBP 0.01 0.95 -0.06 -0.62 0.01 0.92 -0.06 -0.43 0.02 0.95 -0.04 -0.75

Figure 6.2.2: The histograms for returns standardized by the volatility estimates from
DNIG models

(a) The distributions of returns standardized by NIG-SV volatility estimates.
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(b) The distributions of returns standardized by DNIG(1) volatility estimates.
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(c) The distributions of returns standardized by DNIG(2) volatility estimates
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The returns standardized by volatility estimates from DNIG models are very well fitted to the standard
normal distribution. This implies that the information about the returns has been captured into the
dynamics of volatility, left only the Gaussian noises in the standardized returns.

The summary statistics for standardized returns are shown in Table 6.4. The his-
togram for each time series is drawn along with the densities of the standard normal
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distribution and the fitted normal distribution.
The standardized returns are very well described by the standard normal distribution

both in the summary statistics and the histograms shows in Figure 6.2.2b and Figure
6.2.2c. The presences of skewness and kurtosis are very small in all cases, the means are
almost zero and the standard deviations are only slightly different from one. It is clear
that the standardized returns are approximately standard normal.

The heavy-tailed information of standardized returns are also captured by the CV-
plots of absolute returns explained in Chapter 2. All the empirical cv lie between the
90% confidence intervals about cv = 1 provided the number of samples are greater than
some thresholds. It follows that the heavy tails do not presence in the distributions of
the standardized returns. All these results show that our volatility models are capable
in capturing the information from the data into the dynamics of volatility and thus the
residuals are normally distributed.

6.3 Volatility Forecasting
In Chapter 4, the ARMA(1,1) process is implemented to the log-volatility estimated
from the NIG-SV model to make forecast since there is no natural dynamics in the
volatility process. In contrast, the DNIG model is constructed with the dynamic in
the log-volatility process. Hence the forecast is carried out in a more natural way than
the NIG-SV model. The DNIG model involves the range in the dynamics, thus some
properties of the range are necessary.

6.3.1 Moments of the range
The assumption of constant volatility over a single time period is useful since the asymp-
totic distribution of range is computable. Feller (1951) provides the probability density
function of the range in form of infinite series

f(Rt|σt) = 8
∞∑
k=1

(−1)k−1k
2

σt
ϕ

(
kRt
σt

)
where ϕ is the standard normal probability density function. For practical use, the
infinite summation is truncated. The cumulative distribution function of the range and
a formula for calculating moments have been later provided by Parkinson (1980),

F (Rt|σt) =

∞∑
k=1

(−1)k−1k

{
erfc

(
(k + 1)Rt

σt
√
2

)
− 2erfc

(
kRt

σt
√
2

)
+ erfc

(
(k − 1)Rt

σt
√
2

)}
E[Rpt |σt] =

4√
π
Γ

(
p+ 1

2

)(
2p/2 − 22−p/2

)
ζ(p− 1)σpt , for p ≥ 1

where erfc(x) := 1 − erf(x), erf(x) is the ‘error function’: erf(x) := 2/
√
π
´∞
0 e−t

2
dt

and ζ(x) is the Riemann zeta function. Particularly, we have E[Rt|σt] =
√

8/πσt and
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Figure 6.2.3: CV-plots of returns standardized by volatilities estimated from DNIG
models

(a) NIG-SV models
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(b) DNIG(1) models
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(c) DNIG(2) models
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The CV-plots show that the cv of absolute standardized returns are below the lower limits and enter
the 90% confidence intervals about cv = 1 at curtain thresholds. This means that the tails of the
standardized returns lighter than exponential, that are not heavy tails.
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E[R2
t |σt] = 4 log(2)σ2t . The first four moments of log-range are given by Alizadeh et al.

(2002),

E[log(Rt)|σt] = 0.43 + log(σt)
var(log(Rt)|σt) = 0.292

skew(log(Rt)|σt) = 0.17

kurt(log(Rt)|σt) = 2.80.

The results are consistent with Brandt & Jones (2006) , who uses quadrature and ordi-
nary least squares to obtain the expectation of the log-range

E[log(Rt)|σt] = 0.4257 + log(σt).

Consequently, we also have

E[log(R2
t )|σt] = 2E[log(Rt)|σt] = 0.8514 + log(σ2t ). (6.3.1)

These properties are very useful for constructing DNIG forecasting models in the next
subsection.

6.3.2 DNIG forecasting model
The one-step forecast of the logarithm of volatility for DNIG(1) model based on the
information up to time t is given by the conditional expectation

log(σ2t+1|t) = E[log(σ2t+1)|Ft] = α+ β log(R2
t ) + E[bt+1|Ft]

The two-step forecast involves the conditional expectation of the log-range

log(σ2t+2|t) = α+ βE[log(R2
t+1)|Ft] + E[bt+2|Ft].

Since we know that E[log(R2
t+1)|σt+1] = c+ log(σ2t+1), therefore we replace log(σ2t+1) by

the first step forecast and write E[bt+k|Ft] in the compact notation Et[bt+k],

log(σ2t+2|t) = α+ β(c+ log(σ2t+1|t) + Et[bt+2]

Then further forecasts can be computed recursively

log(σ2t+k|t) = α+ β(c+ log(σ2t+k−1|t) + Et[bt+k].

We assume that the random effects bt are independent, then the conditional expectation
of the future random effects are identical to Et[bt+1]. If β < 1, the k-step forecast can
be written as

log(σ2t+k|t) =
1− βk

1− β
α+

1− βk−1

1− β
βc+ βk log(R2

t ) +
1− βk

1− β
Et[bt+1]. (6.3.2)
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The conditional expectation of the random effect Et[bt+1] can be estimated by the mean
of the random effects obtained from h-likelihood. Let the forecast horizon k in (6.3.2)
run to infinity, the long-run forecast converges to

lim
k→∞

log(σ2t+k|t) =
α+ βc+Et[bt+1]

1− β
.

The DNIG(2) forecasting model can be obtained in the same manner. The first and
second step forecasts are

log(σ2t+1|t) = α+ β1 log(R2
t ) + β2 log(R2

t−1) + Et[bt+1]

and

log(σ2t+2|t) = α+ β1E[log(R2
t+1)|Ft] + β2 log(R2

t ) + Et[bt+2]

= α+ β1

(
c+ log(σ2t+1|t)

)
+ β2 log(R2

t ) + Et[bt+2].

Then the further forecasts can be achieved recursively by

log(σ2t+k|t) = α+ β1

(
c+ log(σ2t+k−1|t)

)
+ β2

(
c+ log(σ2t+k−2|t)

)
+ Et[bt+k]. (6.3.3)

This method is also applied for DNIG models with higher orders.

6.3.3 Implementation and empirical results

6.3.3.1 Implementation

In the DNIG(1) model, the forecasts for log volatility in (6.3.2) is realized by taking
the conditional expectation of the random effect as the average of past k random effect
estimates. That is

Êt[bt+k] =
1

k

k−1∑
i=0

b̂t−i.

with the estimated parameters Θ̂ and the random effect estimates {b̂t} computed by
(6.2.5). Remark that in each recursion, we apply the same estimate Êt[bt+k] to all future
forecasts log(σ2t+1|t), ..., log(σ2t+k|t). Then the k-step forecast for the volatility formulated
at time t is

f
DNIG(1)
t+k|t = exp

[
log(σ̂2t+k|t)

]
. (6.3.4)

Preliminary implementations show that the DNIG(1) forecasting model in (6.3.4) gen-
erally produce volatility forecasts substantially lower the corresponding squared returns
which are the volatility proxies as it happens in the case of NIG-SV model in Chapter
4. Hence the simple linear regression between the volatility estimates from the DNIG(1)
model and the squared returns is applied to improve the forecast performance. Suppose
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Table 6.5: Average QL loss of cumulative volatility forecasts

Average QL loss
RW GARCH NIG-SV NIG-SV* NIG-SV′ DNIG(1) DNIG(1)* DNIG(2) DNIG(2)*

Long-run average
EUR 0.127 0.120 0.639 0.259 0.307 0.609 0.184 0.628 0.177
JPY 0.300 0.247 0.546 0.236 0.310 0.603 0.200 0.670 0.197
GBP 0.157 0.157 0.671 0.324 0.363 0.671 0.225 0.662 0.214

Crisis 1 average
EUR 0.122 0.130 0.320 0.091 0.115 0.289 0.079 0.302 0.078
JPY 0.583 0.474 0.815 0.254 0.408 0.799 0.271 0.884 0.282
GBP 0.172 0.110 0.182 0.061 0.069 0.186 0.060 0.191 0.059

Crisis 2 average
EUR 0.211 0.201 1.762 0.423 0.881 1.601 0.358 1.600 0.413
JPY 0.246 0.257 0.954 0.196 0.568 1.081 0.194 1.163 0.235
GBP 0.227 0.328 2.008 0.524 1.080 1.946 0.461 1.885 0.483

Post-Crisis average
EUR 0.074 0.060 0.087 0.252 0.044 0.147 0.133 0.182 0.080
JPY 0.162 0.101 0.111 0.252 0.079 0.166 0.161 0.211 0.120
GBP 0.101 0.072 0.082 0.352 0.066 0.120 0.169 0.137 0.129

The average QL losses over different periods for all forecasting models including the models from Chapter
4. The target variable is the sum of squared return that is the proxy for cumulative volatility. The forecast
horizon is k = 22, that correspond to one-month forecast. The parameters are reestimated every five
days.

that in-sample volatility estimates {σ̂21, .., σ̂2n} obtained from DNIG(1) model by (6.2.6)
are fitted to the corresponding squared returns as

y2t = aσ̂2t , t = 1, ..., n,

then the DNIG(1)* forecasting model is given by

f
DNIG(1)*
t+k|t = af

DNIG(1)
t+k|t .

The DNIG(2) and DNIG(2)* are also implemented in the same manner.

6.3.3.2 Results

The QL average losses over different periods from the DNIG forecasting models including
the results from the forecasting models in Chapter 4 are shown in Table6.5. The long-
run average QL losses show that GARCH, DNIG(2)* and GARCH forecasting models
are favorites for EUR, JPY and GBP respectively. Among the DNIG models, the DNIG
models with higher orders have less average QL losses. The DNIG(2)* and NIG-SV*
are also favorites in the Crisis 1 period but in the Crisis 2 there is no clear winner. In
the Post-Crisis, the NIG-SV′ has impressive performances. It is notable that the DNIG
forecasting models are favorites for JPY in all cases.

Figure 6.3.1 show the plots of QL loss series for JPY forecasted with GARCH, NIG-
SV*, DNIG(1)* and DNIG(2)*. The less value of the QL loss, the more the accuracy
of the forecasting model. Graphically, the DNIG(2)* has relatively low QL losses than
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Figure 6.3.1: The plots of QL loss series for JPY from GARCH and DNIG models

The QL loss series are taken from different forecasting models with the same xy -scale. The less the QL
loss, the more the accuracy. The graphs show that the DNIG(2)* is very accurate relative to the other
models. The accuracy can be measured by the average loss over a particular period, however, this plots
show that a forecasting model can be favorite if a proper period is taken.

NIG-SV* and DNIG(1)* and it is comparable to GARCH. The forecast accuracy that
is taken from the average QL loss depends on the periods of measurement. GARCH
model exhibits extremely high losses in the crises, that the peaks of the losses from
DNIG models are considerably smaller. In the Post-Crisis, GARCH and DNIG(2)* have
almost similar losses.

6.4 Future Research

The DNIG model has great potential to develop in several ways. Here are some ideas for
future research. First, multivariate DNIG model can be obtained in the same manner of
multivariate NIG-SV model shown in Chapter 4 that the HGLM method of estimation
is readily available. The multivariate model will help us understand the co-movement of
several asset returns simultaneously. Second, other exogenous variables such as trading
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volume, open and close prices might be incorporated into the dynamics of volatility in
addition to the range. Moreover, high-frequency realized volatility is also promising,
thanks to Christian Brownlees for this suggestion. Relevant variables added into the
model might result in more accurate estimator of volatility as we have seen in Chapter
5. Finally, other GH models presented in Chapter 4 such as variance gamma model
can be estimated by HGLM method as same as NIG-SV model. Hence it is possible to
incorporate the dynamics into GH models for more general results. These ideas have not
been comprehensively investigated but they are very promising for the future research.

Summary
The new stochastic volatility model has been proposed. It is constructed by incorpo-
rating the ideas from the NIG-SV model, the standard SV model and the range-based
volatility estimators. Results in the stochastic volatility model with dynamics in log
volatility. The new proposed DNIG model can be easily extended to higher order set-
ting. It can be estimated simply by maximum likelihood or h-likelihood. Moreover, the
h-likelihood method also provides the volatility estimates. It is also remarkable from the
estimates of the parameter β that the ranges become more significative in the crises.

In most cases the DNIG(2) models fit better to the series than the NIG-SV and the
DNIG(1) models. This tells us that the AR(2) information, that has not been used by
other researchers, is relevant. The residual analysis shows that the returns standardized
by DNIG volatility estimates are approximately standard normal. That heavy-tailed
information in the returns is captured into the dynamics of volatility perfectly. The
DNIG models are also employed to forecast the volatility at one-month horizon. The
DNIG forecasting models can be implemented in a simple way and the results are better
than GARCH models in many cases.



Summary and Conclusions of the
Thesis

This thesis has presented the insight into volatility forecasting covering from the basic
ideas, required theory, simulation study, practical implementation, to the new proposed
models. We have analyzed the data with alternative tools that can make us aware of
different things that have been observed with other common methods. We aim to bring
new light, rather than replace models settled. The ideas have been developed from the
preliminary theory in Chapter 2. The properties of return have been investigated based
on existing distribution in Chapter 3. We conclude that the NIG distribution is capable
of describing the marginal distribution of return during the crisis and it can be estimated
plainly with either the method of moments or the maximum likelihood estimation. The
results in Chapter 3 show that the NIG distribution has attractive potential to model
the financial data. It grants an alternative way of modeling financial data in such a way
that GARCH does not supply (the marginal distribution).

Chapter 4 provides the pragmatic guide to volatility forecasting including all nec-
essary information. The ideas from Chapter 3 have been developed to introduce the
NIG-SV model, a stochastic volatility model proposed by Barndorff-Nielsen (1997). We
also introduce the HGLM method for estimation that is comparable to the maximum
likelihood method but the complicated integration is avoided. The empirical results show
that the HGLM method is as accurate as the maximum likelihood method. Moreover,
the key role of the h-likelihood in the HGLM method, it provides us the estimates of
random effects that are latent in the market. We consequently apply the random effects
to estimate and forecast volatility. The new forecasting models in this chapter overcome
the standard forecasting models in some occasions.

Chapter 5 is investigated separately from previous chapters. Rather than the return,
exogenous variables such as open, close, high and low prices play the most important
role in this chapter. Several range-based volatility estimators have been introduced and
we also correct the bias generated from discretization. We test by simulations whether
these estimators are relevant in different scenarios when the theoretical conditions do not
hold perfectly. It turns out that the Garman-Klass estimator perform impressively in
many occasions. Other estimator also provides proper estimates for volatility when the
conditions are close to their theoretical settings. We conclude that the range contains
substantial information and it is relevant to incorporate into a model.
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In the end, all information obtained from Chapter 2 to Chapter 5 are summarized
into the new model in Chapter 6. The DNIG model is a stochastic volatility model
that is based the NIG-SV model with the dynamics driven by the range. The DNIG
model can be easily extended to higher orders, that has never been done in the standard
SV model and it can be estimated by the HGLM method. In most cases the DNIG(2)
models fit better to the series than the NIG-SV and the DNIG(1) models. The relevant
information of AR(2) shown in this thesis has never been discovered by other researchers.
It is also remarked that the parameter β that is the coefficient of the range might be an
indication of the crisis. Estimate the DNIG model with the HGLM method yields the
random effects estimates and consequently the estimates for volatility which are latent
information. It has been tested that the returns standardized by volatilities estimated
from DNIG models do not exhibit heavy tails. This result shows that DNIG models are
capable in capturing the relevant information from the returns. The DNIG model with
the HGLM method also allow us to forecast volatility with ease. The DNIG forecasting
models have been tested with the real data in comparisons with the standard models
and they perform nicely. In many cases, the results are better than GARCH(1,1). Last
but not least, the DNIG model can be developed in many ways such as multivariate
modeling, exogenous variables incorporating and generalization to GH models. The
further research is promising.



Nomenclature

F̄ (·) survival function, reliability function

Ft information set available at time t

γτ autocovariance at lag τ

µn nth central moment

ρτ autocorrelation at lag τ

σ2 (unconditional) variance

cor(X,Y ) correlation between X and Y

cov(X,Y ) covariance between X and Y

kurt(·) kurtosis

skew(·) skewness

var(·) variance

{Xt} stochastic process

D distribution

E[·] expectation

F cumulative distribution function

f probability density function or a function in general

Fu distribution function of threshold excedances

fX density function of rancom variable X

ft+k|t volatility forecast
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G(Θ) gradient of logL(Θ)

GH(λ, ϕ, ω) zero-mean symmetric generalized hyperbolic distribution

H(Θ) hessian of logL(Θ)

I(Θ) information matrix of logL(Θ)

k forecast horizon

k sample kurtosis, forecast horizon

P (·) probability

Pt price of an asset at time t

r∗t simple net return in Chapter 2, logarithm of price range in later Chapters

r∗t,k simple net return over most recent k trading period

R2 coefficient of determination

s2 sample variance

w sample skewness

WN(0, σ2) white noise (uncorrelated random variable with zero mean and finite vari-
ance).

ARCH autoregressive conditional heteroskedastic

ARFIMA autoregressive fractionally integrated moving average

CV residual coefficient of variation

DNIG dynamic NIG-SV

EGARCH exponetial GARCH

EWMA exponentially weighted moving average

GARCH generalized autoregressive conditional heteroskedastic

GBM geometric Brownian motion

GH generalized hyperbolic

GIG generalized inverse Gaussian
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GMM generalized method of moments

GPD generalized Pareto distribution

HGLM hierachical generalized linear model

i.i.d. independent and identically distributed

IG inverse Gaussian

MLE maximum likelihood estimation

MMSE minimum mean square estimator

MoM method of moments

MSE mean squared error

NIG normal inverse Gaussian

NIG-SV normal inverse Gaussian stochastic volatility

pdf probability density function

QL quasi likelihood

QML quasi-maximum likelihood

RWH1 random walk hypothesis 1 : Gaussian random walk

RWH2 random walk hypothesis 2: uncorrelated and stationary increments

SV stochastic volatility



Index

A
APARCH, 21, 45
autocorrelation, 8, 13

sample, 13
autocovariance, 8
Autoregressive conditional heteroskedastic,

20

B
Black-Scholes formula, 5
Black-Scholes model, 24
Brownian motion, 25

C
central moment, 7
characteristic function, 26
coefficient of variation, 16
conditional density, 7
conditional expectation, 8
continuous, 7
correlation, 8
covariance, 8
cumulative distribution function, 7
CV-plot, 16

D
dependent, 8
drift, 9
dynamic NIG stochastic volatility, 78

E
efficient-market hypothesis, 5
EGARCH, 21, 45
EWMA, 24
expectation, 7

exponentially weighted moving average, 24

G
gamma

distribution, 27
GARCH, 2, 20
GBM, 25
generalized hyperbolic

distribution, 22, 27
generalized inverse Gaussian, 47

distribution, 22, 27
generalized method of moments, 22
generalized Pareto distribution, 16
geometric Brownian motion, 25
GH Lévy

process, 48
GIG, 22
GMM, 22
gradient, 53

H
heavy tails, 12
Hessian, 53
HGLM method, 49
hierarchical-likelihood, 22
hyperbolic

distribution, 27
hyperbolic Lévy

process, 48

I
independent, 8
independent and identically distributed, 9
Infinitely divisible, 26
infinitely divisible, 22, 26
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information set, 8
inverse gamma

distribution, 22
inverse Gaussian

distribution, 22, 27

J
joint density, 7
joint distribution, 7

K
kurtosis, 7

L
lag, 13
Lévy process, 26
leptokurtic, 11

M
martingale hypothesis, 11
MCMC, 22
mean, 7, 11
method of scoring, 55
minimum mean squared error, 63
mixing density, 48
mixing parameter, 48

N
negative definite, 55
Newton-Raphson algorithm, 55
NGARCH, 21, 45
NIG Lévy

process, 48
NIG-SV, 49
normal

distribution, 27
normal inverse Gaussian

distribution, 22, 27

O
opening jump, 65, 66
optimization, 53
outliers, 12

P
Poisson

distribution, 27
price, 8

log, 9
probability density function, 7
probability space, 7

Q
QML, 22
quasi likelihood, 42
quasi-maximum likelihood, 22

R
random variable, 7
random walk, 5

Gaussian, 9
random walk hypothesis, 5
range, 2
reliability function, 15
return

continuously compounded, 9
log, 9
simple gross, 8
simple net, 8

risk, 5
RiskMetrics, 24
RWH1, 9, 25
RWH2, 10

S
sample

kurtosis, 11
skewness, 11
standard deviation, 11
variance, 11

scale mixture of normal, 47
scaled-t

distribution, 27
score, 53
serially uncorrelated, 11
skewness, 7
standard deviation, 7
standard SV model, 22
stationary, 8, 13
stochastic process, 8
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stochastic volatility, 2, 20, 22
stylized facts, 11
stylized features, 11
survivor function, 15
SV, 2, 22

T
tail distribution, 15
TARCH, 45
TGARCH, 21
The empirical CV of of the conditional ex-

cedance, 16
threshold excedances, 16
time series, 8

V
variance, 7
variance gamma

distribution, 27
process, 48

variance rate, 23
volatility, 1, 18

annualized, 23
historical, 23
realized, 23

volatility clustering, 9
volatility proxy, 41

W
white noise, 57
Wiener process, 25
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Appendix A

HGLM Method for Multivariate
NIG-SV Model

For multivariate NIG-SV model given by (4.3.10), suppose that {yt}nt=1 where yt =
(y1,t, y2,t, ..., yd,t)

′ is the sample of d indices of size n. The parameter Θ = (ϕ, ω) with
ϕ = (ϕ1, ϕ2, .., ϕd) can be estimated by maximizing the log likelihood

l(ϕ, ω) = n

{
log(2)− d+ 1

2
log(2π)− 1

2

d∑
i=1

log(ϕi) + ω +
d+ 3

4
log(ω)− 1

2
log(|Ω|)

}

−d+ 1

4

n∑
t=1

log
(
y′
tΣ

−1yt + ω
)
+

n∑
t=1

log
[
K d+1

2

(√
ωy′

tΣ
−1yt + ω2

)]

Alternatively, the h-likelihood is expressed as

h =

n∑
t=1

{log f(yt|bt) + log fΘ(bt)}

where the explicit expressions for log f(yt|bt) and log fΘ(bt) are

log f(yt|bt) = −1

2

{
d log(2π) + log |Σ|+ dbt + y′

tΣ
−1yte

−bt
}

log fΘ(bt) = −1

2

{
log(2π)− log(ω) + 3 log(bt)− 2ω + ω(b−1

t + bt)− 2bt
}
.

The random effects can be estimated by solving ∂h/∂bt = 0, that we have

b̂t = log
(
2ωt − (d+ 1)

2ω

)
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where ωt = 1
2

√
(d+ 1)2 + 4(ωy′

tΣ
−1yt + ω2) . Consequently, the adjusted profile h-

likelihood is expressed as

pb(ϕ, ω) =n

{
−d
2
log(2π)− 1

2
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i=1

log(ϕi)−
1

2
log(|Ω|) + ω +

d+ 2
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−

n∑
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ωt

and the second-order approximation is

Sb(ϕ, ω) = pb(ϕ, ω)−
1

24

n∑
t=1

3ω2
t − 5(d+ 1)2/4

ω3
t

.

Practically, Σ = Λ′ΩΛ, where Λ is the diagonal matrix of the standard deviations
√
ϕi =

σi and we use the sample correlation matrix for the estimation of Ω to speed up the
algorithm.



Appendix B

Extensive Simulation Results

Table B.1 to B.8 are the results from the simulations that the price paths are simulated
by geometric Brownian motion with constant volatility. Table B.1 to B.6 show the
effect of different drifts added to the simulations. The measurements of accuracy and
efficiency are reported. B.7 and B.8 show the effect of discretization. The average
estimates and their 95% confidence intervals are reported with different numbers of
intraday movements. Table B.9 to B.16 show the corresponding results when the price
paths are simulated with the NIG-SV model. The values of mean, absolute error and
standard error are scaled by 105, the values of MSE are scaled by 109.
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Appendix C

The BHHH algorithm for DNIG
model

The BHHH algorithm is one of the most widely used methods for maximizing the log-
likelihood function in financial econometrics. The BHHH requires only the gradient of
the log-likelihood function and therefore the implementation is relatively simple.

The log-likelihood function at the tth observation is

lt(α, β, ω) = log(f(yt|Ft−1;α, β, ω))

= log

 ω exp(ω)
π
√
y2t + ϕtω

K1

√ωy2t
ϕt

+ ω2


= log(ω) + ω − log(π)− 1

2
log
(
y2t + ω exp(α+ β log(d2t−1)

)
+ log

(
K1

(√
ωy2t

exp
(
α+ β log(d2t−1)

) + ω2

))

Thus, the gradient at the tth observation is the vector Gt = (∂lt/∂α, ∂lt/∂β, ∂lt/∂ω)
′.

Given zt =
√

ωy2t
exp(α+β log(R2

t−1))
+ ω2 and ω ≥ 0 the entries of the gradient are

∂lt
∂α

= −1

2

ω exp
(
α+ β log(R2

t−1)
)

y2t + ω exp
(
α+ β log(R2

t−1)
) + (1

z
− K2(zt)

K1(zt)

)
∂zt
∂α

∂lt
∂β

= −1

2

ω log(R2
t−1) exp

(
α+ β log(R2

t−1)
)

y2t + ω exp
(
α+ β log(R2

t−1)
) +

(
1

z
− K2(zt)

K1(zt)

)
∂zt
∂β

∂lt
∂ω

=
1

ω
+ 1− 1

2

exp
(
α+ β log(R2

t−1)
)

y2t + ω exp
(
α+ β log(R2

t−1)
) + (1

z
− K2(zt)

K1(zt)

)
∂zt
∂ω
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where

∂zt
∂α

= − 1

2zt

(
ωy2t

exp
(
α+ β log(R2

t−1)
))

∂zt
∂β

= − 1

2zt

(
ωy2t log(R2

t−1)

exp
(
α+ β log(R2

t−1)
))

∂zt
∂ω

=
1

2zt

(
y2t

exp
(
α+ β log(R2

t−1)
) + 2ω

)

The gradient G is therefore the summation of Gt, that is G =
∑n

t=1Gt. The infor-
mation matrix I = [Ii,j ] equals the outer product of gradient B = [Bi,j ] that is estimated
by

Îi,j = B̂i,j =
1

n

n∑
t=1

∂lt
∂Θi

.
∂lt
∂Θj

.

Employing the BHHH algorithm, the estimated parameter are updated by

Θ̂(k) = Θ̂(k−1) +B−1
(k−1)G(k−1).
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