
13th Brainstorming Week
on Membrane Computing

Sevilla, February 2 – 6, 2015

Luis F. Maćıas-Ramos
Gheorghe Păun

Agust́ın Riscos-Núñez
Luis Valencia-Cabrera

Editors

13th Brainstorming Week
on Membrane Computing

Sevilla, February 2 – 6, 2015

Luis F. Maćıas-Ramos
Gheorghe Păun

Agust́ın Riscos-Núñez
Luis Valencia-Cabrera

Editors

RGNC REPORT 1/2015

Research Group on Natural Computing

Universidad de Sevilla

Fénix Editora, Sevilla, 2015

© Autores

ISBN: 978-84-84-944366-2-8

Edita: Fénix Editora.

 info@fenixeditora.com

 Movil 620 98 36 94 - SEVILLA

Contents

Deterministic Non-cooperative P Systems with Strong Context Conditions
A. Alhazov, R. Freund . 1

Polarizationless P Systems with One Active Membrane
A. Alhazov, R. Freund . 9

Variants of P Systems with Toxic Objects
A. Alhazov, R. Freund, S. Ivanov . 19

Extended Spiking Neural P Systems with White Hole Rules
A. Alhazov, R. Freund, S. Ivanov, M. Oswald, S. Verlan 45

Simulating Membrane Systems and Dissolution
in a Typed Chemical Calculus
B. Aman, P. Battyányi, G. Ciobanu, G. Vaszil . 63

Notes on Spiking Neural P Systems and Finite Automata
F.G.C. Cabarle, H.N. Adorna, M.J. Pérez-Jiménez . 77

Asynchronous Spiking Neural P Systems with Structural Plasticity
F.G.C. Cabarle, H.N. Adorna, M.J. Pérez-Jiménez . 91

Automaton-like P Colonies
L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú . 105

Solving SAT with Antimatter in Membrane Computing
D. Dı́az-Pernil, A. Alhazov, R. Freund, M.A. Gutiérrez-Naranjo 121

On The Semantics of Annihilation Rules in Membrane Computing
D. Dı́az-Pernil, R. Freund, M.A. Gutiérrez-Naranjo, A. Leporati 131

How to Go Beyond Turing with P Automata:
Time Travels, Regular Observer ω-Languages, and Partial Adult Halting
R. Freund, S. Ivanov, L. Staiger . 143

A Characterization of PSPACE with Antimatter and Membrane Creation
Z. Gazdag, M. A. Gutiérrez–Naranjo . 159

x Contents

kPWorkbench: A Software Framework for Kernel P Systems
M. Gheorghe, F. Ipate, L. Mierlă, S. Konur . 179

The Pole Balancing Problem with Enzymatic Numerical P Systems
D. Llorente–Rivera, M.A. Gutiérrez–Naranjo . 195

Monodirectional P Systems
A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron 207

Parallel Simulation of PDP Systems: Updates and Roadmap
M.Á. Mart́ınez-del-Amor, L.F. Maćıas-Ramos, M.J. Pérez–Jiménez 227

Some Quick Research Topics
Gh. Păun . 245

Looking for Computer in the Biological Cell. After Twenty Years
Gh. Păun . 251

Minimal Cooperation in P Systems with Symport/Antiport:
A Complexity Approach
L. Valencia-Cabrera, B. Song, L.F. Maćıas-Ramos, L. Pan,
A. Riscos-Núñez, M.J. Pérez-Jiménez . 301

Computational Efficiency of P Systems with Symport/Antiport Rules
and Membrane Separation
L. Valencia-Cabrera, B. Song, L.F. Maćıas-Ramos, L. Pan,
A. Riscos-Núñez, M.J. Pérez-Jiménez . 325

Author Index . 371

Deterministic Non-cooperative P Systems with
Strong Context Conditions

Artiom Alhazov1, Rudolf Freund2

1 Institute of Mathematics and Computer Science, Academy of Sciences of Moldova
Academiei 5, Chişinău MD-2028 Moldova
E-mail: artiom@math.md

2 Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria
E-mail: rudi@emcc.at

Summary. We continue the line of research of deterministic parallel non-cooperative
multiset rewriting with control. We here generalize control, i.e., rule applicability context
conditions, from promoters and inhibitors checking presence or absence of certain object
up to some bound, to regular and even stronger predicates, focusing at predicates over
multiplicity of one symbol at a time.

1 Introduction

It is known, see [7], that non-cooperative P systems with atomic promoters or
atomic inhibitors characterize ET0L, while using either one catalyst, see [6], [3],
or promoters or inhibitors of weight 2, see [4], leads to the computational complete-
ness of non-cooperative P systems. A question about the power of deterministic
systems was posed in [5], inspired by the fact that all identical objects have the
same behavior in the same context. This question was answered in [1]: determinis-
tic non-cooperative P systems have weak behaviour, namely, only accepting finite
number sets and their complements, even using generalized context conditions
(except the sequential case, when they keep the computational completeness).

Generalized context conditions of rule applicability are defined as a list of
pairs (pi, Fi), 1 ≤ i ≤ k, applicable to a rule if at least one condition applies,
in the following way: pi, called promoter, must be a submultiset of the current
configuration (or the contents of the current region), and none of the elements of
Fi, called inhibitors, are allowed to be submultisets of the current configuration (or
the contents of the current region). A subsequent paper, [2], precisely characterized
the power of priorities alone, as well as established how much power of promoters
and inhibitors is actually needed to reach NFIN ∪ coNFIN . Already in [1] it
has been shown that generalized context conditions are equivalent to arbitrary
predicates on boundings, i.e., all boolean combinations over conditions < m (and,

2 A. Alhazov, R. Freund

hence, also ≥ m, > m, ≤ m, = m and 6= m) for multiplicities of symbols. In other
words, generalized context conditions are able to check exactly the multiplicities
of symbols up to an arbitrary fixed bound m. In this paper we consider stronger
context conditions.

2 Definitions

Let O be a finite alphabet. In this paper we will not distinguish between a mul-
tiset, its string representation (having as many occurrences of every symbol as its
multiplicity in the multiset, the order in the string being irrelevant), and a vector
of multiplicities (assuming that the order of enumeration of symbols from O is
fixed). By O◦ we denote the set of all multisets over O. By a strong context in this
paper we mean a language of multisets, i.e., a subset of O◦.

Let a ∈ O and u ∈ O◦, then a → u is a non-cooperative rule. The rules are
applied in the maximally parallel way, which in the case of our interest, i.e., for
deterministic non-cooperative P systems, correspond to replacing every occurrence
of each symbol a by the corresponding multiset u from the right side of the appli-
cable rule (if there is any; no competition between different rules can happen due
to the determinism). Let region j of a membrane system contain multiset w.

Then rule a → u with a strong context condition C ⊂ O◦ (written a → u|C)
is applicable if and only if |w|a > 0 and w ∈ C. Consider the following examples:

• a singleton atomic promoter s ∈ O corresponds to the context +(s) = {w ∈
O◦ | |w|s > 0}; we denote this feature by pro1,1;

• a singleton atomic inhibitor s ∈ O corresponds to the complementary context
condition: −(s) = {w ∈ O◦ | |w|s = 0};

• a singleton promoter s ∈ O◦ of a higher weight corresponds to the context
+(s) = {w ∈ O◦ | s ⊆ w};

• a singleton inhibitor s ∈ O◦ of a higher weight corresponds to the complemen-
tary context condition: −(s) = {w ∈ O◦ | s 6⊆ w};

• a (finite) promoter-set S ⊂ O◦ corresponds to the context +(S) =
⋃

s∈S +(s),
i.e., at least one promoter must be satisfied;

• a (finite) inhibitor-set S ⊂ O◦ corresponds to the complementary −(S) =⋂
s∈S −(s), i.e., any inhibitor can forbid the rule;

• a promoter-set P and an inhibitor-set Q together are called a simple context
condition, written (P,Q); it corresponds to the strong context condition +(P)∩
−(Q);

• context conditions as considered in [1] and [2] constitute a finite collection
of simple context conditions (P1, Q1), · · · , (Pm, Qm), they correspond to the
strong context condition

⋃
1≤i≤m (+(Pi) ∩ −(Qi)), and were shown to be equiv-

alent to predicates on boundings3;

3 the meaning of a promoter-set in [3] is different, but the computational power re-
sults are equivalent up to the descriptional complexity parameters such as number of
promoters/inhibitors and their weights

Deterministic Non-cooperative P Systems with Strong Context Conditions 3

• a bounding bk is an operation on a multiset, for any symbol preserving its
multiplicity up to k, or “cropping” it down to k otherwise; a predicate on
bounding can be specified by a finite set M of multisets with multiplicities not
exceeding k; it corresponds to a strong context condition {w ∈ O◦ | bk(w) ∈
M}, and can express precisely all boolean combinations of conditions |w|a < j,
a ∈ O, 1 ≤ j ≤ k;

• a regular strong context condition can be specified by a regular multiset lan-
guage, or as a Parikh image of a regular string language; e.g., Eq(a, b) = {w ∈
O◦ | |w|a = |w|b} is an example; we denote the family of such conditions by
ctxt(REG);

• if a strong context condition only depends on the multiplicities of k symbols
from O (and all other symbols do not affect the applicability), we represent
this property by a superscript k of ctxt; for instance, if we denote the symbols
mentioned above by S = {s1, · · · , sk}, then ctxtk(REG) = {{u∪v | u ∈ L, v ∈
(O \ S)◦} | L ⊆ S◦, L ∈ PsREG}; hence Eq(a, b) ∈ ctxt2(REG); by ctxt(Eq)
we denote being able to compare the multiplicities of two symbols (for different
pairs of symbols separately) for being equal, together with the complementary
condition;

• to stay within Turing computability of the resulting P systems, in this paper
we only consider recursive context conditions, i.e., multiset languages with
decidable membership, denoted by ctxt(REC);

• if a one-symbol strong context condition only depends on the multiplicity of
one symbol, it can be specified by a predicate over N; e.g., Sq(a) = {w ∈ O◦ |
|w|a = k2, k ≥ 0} and Sq′(a) = {w ∈ O◦ | |w|a = k2, k ≥ 1} are examples;
hence, Sq, Sq′ ∈ ctxt1(REC); by ctxt(Sq) or ctxt(Sq′) we denote being able to
test the multiplicities (of different symbols separately) for squares (including
zero or not, respectively), together with the complementary condition.

3 Regular conditions

Theorem 1. PsaDOP1(ncoo, ctxt2(REG)) =
PsaDOP1(ncoo, ctxt(Eq)) = PsRE.

Proof. Consider an arbitrary register machine M with m registers. For each work-
ing register i, 1 ≤ i ≤ m, we represent its value by the difference of the multi-
plicities of associated objects ai and bi. Hence, increment can be performed by
producing one copy of ai, decrement can be performed by producing one copy of
bi, and zero can be distinguished from non-zero by the following regular conditions:

Zi = {w ∈ O◦ | |w|ai
= |w|bi} = Eq(ai, bi), 1 ≤ i ≤ m,

Pi = {w ∈ O◦ | |w|ai
6= |w|bi} = O◦ \ Eq(ai, bi), 1 ≤ i ≤ m,

We construct the following P system:

Π = (O,Σ, µ = []
1
, w1 = q0, R1), where

4 A. Alhazov, R. Freund

O = Q ∪ T ∪ {ai, bi | 1 ≤ i ≤ m},
Σ ⊆ {ai | 1 ≤ i ≤ m},
R1 = {q → aiq

′ | q : (ADD(i), q′) ∈ P}
∪ {q → biq

′|Pi, q → q′′|Zi | q : (SUB(i), q′, q′′) ∈ P}.

�

If only regular conditions over one symbol are allowed, then we expect the
power of such P systems to be much more limited.

4 Stronger Conditions

Consider one-symbol context conditions that are even stronger than regular.
It is expected that, with recursively enumerable conditions over one number

we get something like NRE ∪ coNRE, so we look at intermediate cases. We look
at ways of obtaining RE by encoding a number by a multiplicity of one object,
say, ai, in such a way that increment and decrement are reasonably simple to
perform by non-removable objects. We propose the following encoding: “ignoring
the greatest square”, i.e., number n = k2 + t encodes t if 0 ≤ t < 2k + 1. In this
way, zero-test becomes a test whether the encoding number is a perfect square.
Increment is performed as increment of the encoding number, followed by addition
of 2k + 1 if the next perfect square, i.e., (k + 1)2, is reached. Decrement can thus
be done by adding 2k to the encoding number. The value k can be stored as the
multiplicity of another non-removable object, say, bi, whose multiplicity should
be incremented each time the encoding number is increased by 2k or by 2k + 1.
Putting it all together, the following construction is obtained:

Zi = {w ∈ O◦ | |w|ai = k2, k ≥ 0} = Sq(ai), Pi = O◦ \ Zi, 1 ≤ i ≤ m,
We construct the following P system:

Π = (O,Σ, µ = []
1
, w1 = q0, R1), where

O = Q ∪ T ∪ {ai, bi | 1 ≤ i ≤ m},
Σ ⊆ {ai | 1 ≤ i ≤ m},
R1 = {q → aiq̃, q̃ → q′|Pi, q̃ → q̂|Zi, q̂ → aibiq

′, bi → aiaibi|q̂
| q : (ADD(i), q′) ∈ P}

∪ {q → q′′|Zi, q → q̂|Pi, q̂ → biq
′, bi → aiaibi|q̂

| q : (SUB(i), q′, q′′) ∈ P}.

Yet there is a major drawback of this result established above in comparison
with the result from Theorem 1, as the input has to be encoded: given a number
ni for input register i, we have to compute numbers ni +k2i and ki, such that k2i ≤
ni ≤ k2i + 2ki. But this is an algorithm which is not difficult to be implemented;

Deterministic Non-cooperative P Systems with Strong Context Conditions 5

also our context condition for testing a number to be a perfect square does not
require a difficult algorithm.

Hence, we have just shown the following result, where the index wa instead of a
in PswaDOP1(ncoo, pro1,1, ctxt(Sq)) indicates weak computational completeness
as for having to encode the input:

Theorem 2. PswaDOP1(ncoo, ctxt1(REC)) =
PsPswaDOP1(ncoo, pro1,1, ctxt(Sq)) = PsRE.

Adding rules ai → λ|qf , bi → λ|qf and qf → λ for 1 ≤ i ≤ m, where qf is the
final state of the simulated register machines, we even obtain the clean result, i.e.,
halting without additional objects, still preserving determinism.

We can strengthen the claim of Theorem 2 by showing strong computational
completeness (in the sense of deterministic acceptance and even deterministic way
of computing functions). Without restricting the power of register machines, we
assume that in the simulated register machine, the output registers are never
decremented. Then, for the output registers, we replace the simulation of each
increment instructions with a single rule q → aiq

′, where q : (ADD(i), q′) ∈ P and
i is an output register. In this way, the output will be produced without encoding.

It remains to show that P systems with strong context conditions over one
symbol can simulate register machines where also the input is not encoded. We
use the following idea. To represent the input N of a register in the way the P
system constructed in the proof of Theorem 2 needs it, we first describe how to get
two numbers xN and yN such that N is a function of xN and yN , and, moreover,
by computing these two numbers from N , we get their representation in the form
we need them as for the P system constructed in Theorem 2.

First we explain the algorithm how to obtain xN and yN : Starting with N
represented by N copies of an object cN , the multiplicity of these input objects
is incremented until it becomes a perfect square (counting the increments, thus
finally obtaining xN), and then incrementing it (again counting the increments,
thus finally obtaining yN) until it again becomes a perfect square. From these two
numbers xN and yNwe can regain N by the formula computed in the following:

Given input N , the next perfect squares are k2N = N + xN (xN ≥ 0) and
(kN + 1)2 = N + xN + yN , then yN = 2kN + 1, so kN = (yN − 1)/2, and N =
k2N−xN = (yN−1)2/4−xN . Of course, the function f(xN , yN) = (yN−1)2/4−xN
decoding N from xN and yN can be implemented by a register machine and
simulated by a P system as described in Theorem 2.

In the following example we specify more formally the precomputing block
mentioned above.

Example 1. Encoding the input number N .
Let the input N be given as a multiplicity of symbol ci, and we want to obtain

values xN and yN described above in auxiliary registers j and l, respectively, but
represented already in the way we need their contents xN and yN implemented

6 A. Alhazov, R. Freund

with the corresponding number of symbols aj and bj as well as al and bl. We also
use an additional starting object si and in sum the following rules:

si → ciaj s̃i|P ′i , s̃i → s′|Pj , s̃i → ŝi|Zj , ŝi → ajbjs
′, bj → ajajbj |ŝi ,

si → citi|Z ′i,
ti → cialt̃i|P ′i , t̃i → t′i|Pl, t̃i → t̂i|Zl, t̂i → albkt

′, bk → alalbl|t̂i ,

ti → q
(i)
0 |Z ′i, where

Z ′i = {w ∈ O◦ | |w|ci = k2, k ≥ 0} = Sq(ci), P
′
i = O◦ \ Z ′i.

Essentially, the rules above are exactly like increment instructions from Theo-
rem 2, tracking how many times the multiplicity of the input object ci has to be
incremented to reach a perfect square and the next perfect square.

In the next phase of the encoding procedure, the P system should simulate a

register machine which starts in state q
(i)
0 and computes the function f(xN , yN) =

(yN − 1)2/4−xN , given xN in register j and yN in register l, producing the result
(i.e., the value N of the input register i to be represented) in register i, represented
by symbols ai and bi and thus in a suitable way to be the input for the P system
constructed in Theorem 2.

Theorem 3. PsaDOP1(ncoo, ctxt1(REC)) =
PsaDOP1(ncoo, pro1,1, ctxt(Sq)) = PsRE.

Proof. Clearly, any input vector can be processed accordingly in the way described
in Example 1, and then a simulation of the register machine on these inputs as
outlined in Theorem 2 completes the explanation of the following result. �

The construction in Theorem 3 may be adjusted so that we never rely on mul-
tiplicities of symbols ai being zero, i.e., when starting with a value 0 in a register,
we start with encoding it by 1. Moreover, testing for the appearance of a symbol
which never appears more than once (which we needed for the symbols correspond-
ing to the states of the simulated register machine) corresponds with testing for
a perfect square of positive integers. Hence, for each checking set from Sq′ (or its
complement) or each singleton promoter used in the previous construction we can
use a set from Sq′ (or its complement) only. In sum we get:

Corollary 1. PsaDOP1(ncoo, ctxt(Sq′)) = PsRE.

5 Conclusions

It was known that generalized context conditions are equivalent to predicates
on boundings, and that using them in deterministic maximally parallel non-
cooperative P systems still leaves their accepting power as low as NFIN ∪
coNFIN . We have shown that regular context conditions yield computational

Deterministic Non-cooperative P Systems with Strong Context Conditions 7

completeness of deterministic maximally parallel non-cooperative P systems, ex-
pecting that the power of P systems with regular context conditions over one
symbol is still quite limited. However, we have shown computational completeness
using a simple stronger one-symbol context condition, namely, {w ∈ O◦ | |w|ai =
k2, k ≥ 0}.

References

1. A. Alhazov, R. Freund: Asynchronous and Maximally Parallel Deterministic Con-
trolled Non-Cooperative P Systems Characterize NFIN and coNFIN . In: E.
Csuhaj-Varjú, M. Gheorghe, G. Rozenberg, A. Salomaa, Gy. Vaszil: Membrane Com-
puting – 13th International Conference, CMC13, Budapest, Revised Selected Papers,
Lecture Notes in Computer Science 7762, Springer, 2013, 101–111.

2. A. Alhazov, R. Freund: Priorities, Promoters and Inhibitors in Deterministic Non-
Cooperative P Systems. In: M. Gheorghe, G. Rozenberg, A. Salomaa, P. Sośık, C.
Zandron: Membrane Computing - 15th International Conference, CMC 2014, Prague,
Revised Selected Papers, Lecture Notes in Computer Science 8961, Springer, 2014,
86–98.

3. A. Alhazov, R. Freund, S. Verlan: Promoters and Inhibitors in Purely Catalytic P
Systems. In: M. Gheorghe, G. Rozenberg, A. Salomaa, P. Sośık, C. Zandron: Mem-
brane Computing - 15th International Conference, CMC 2014, Prague, Revised Se-
lected Papers, Lecture Notes in Computer Science 8961, Springer, 2014, 126–138.

4. A. Alhazov, D. Sburlan: Ultimately Confluent Rewriting Systems. Parallel Multiset-
Rewriting with Permitting or Forbidding Contexts. In: G. Mauri, Gh. Păun, M.J.
Pérez-Jiménez, G. Rozenberg, A. Salomaa: Membrane Computing, 5th International
Workshop, WMC 2004, Milan, Revised Selected and Invited Papers, Lecture Notes
in Computer Science 3365, Springer, 2005, 178–189.

5. M. Gheorghe, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Research Frontiers of
Membrane Computing: Open Problems and Research Topics. International Journal
of Foundations of Computer Science 24 (5), 2013, 547–624.

6. M. Ionescu, D. Sburlan: On P Systems with Promoters/Inhibitors. Journal of Uni-
versal Computer Science 10 (5), 2004, 581–599.

7. D. Sburlan: Further Results on P Systems with Promoters/Inhibitors. International
Journal of Foundations of Computer Science 17 (1), 2006, 205–221.

Polarizationless P Systems with One Active
Membrane

Artiom Alhazov1, Rudolf Freund2

1 Institute of Mathematics and Computer Science, Academy of Sciences of Moldova
Academiei 5, Chişinău MD-2028 Moldova
E-mail: artiom@math.md

2 Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria
E-mail: rudi@emcc.at

Summary. The aim of this paper is to study the computational power of P systems with
one active membrane without polarizations. For P systems with active membranes, it is
known that computational completeness can be obtained with either of the following com-
binations of features: 1)two polarizations, 2)membrane creation and dissolution, 3)four
membranes with three labels, membrane division and dissolution, 4)seven membranes
with two labels, membrane division and dissolution.

Clearly, with one membrane only object evolution rules and send-out rules are per-
mitted. Two variants are considered: external output and internal output.

1 Introduction

Membrane computing is a theoretical framework of parallel distributed multiset process-
ing. It has been introduced by Gheorghe Păun in 1998, and has been an active research
area since then, see [10] for the comprehensive bibliography and [6],[8] for a systematic
survey. Membrane systems are also called P systems.

It has been shown in [4] (some results being improvements of the results from [1] and
[3]) that the following P systems with active membranes are computationally complete:
1) with one membrane and two polarizations, as acceptors, 2) polarizationless ones with
membrane creation and dissolution, 3) polarizationless ones starting with four membranes
and three labels, 4) polarizationless ones starting with seven membranes and two labels.

The object of study of this paper is the family of P systems with one active mem-
brane without polarizations. Similar questions for non-cooperative transitional P systems
without any additional features have been addressed in [2].

10 A. Alhazov, R. Freund

2 Definitions

2.1 Formal Language Preliminaries

Consider a finite set V . The set of all words over V is denoted by V ∗, the concatenation
operation is denoted by • (which is written only when necessary) and the empty word
is denoted by λ. Any set L ⊆ V ∗ is called a language. For a word w ∈ V ∗ and a sym-
bol a ∈ V , the number of occurrences of a in w is written as |w|a. The permutations
of a word w ∈ V ∗ are Perm(w) = {x ∈ V ∗ | |x|a = |w|a for all a ∈ V}. We denote
the set of all permutations of the words in L by Perm(L), and we extend this notation
to families of languages. We use FIN , REG, LIN , CF , MAT , CS, RE to denote fi-
nite, regular, linear, context-free, matrix without appearance checking and with erasing
rules, context-sensitive, and recursively enumerable families of languages, respectively.
The family of languages generated by extended (tabled) interactionless L systems is de-
noted by E(T)0L. The family of sets of numbers generated by forbidden random context
multiset grammars is denoted by NfRC. For more formal language preliminaries, we
refer the reader to [9].

Throughout this paper we use string notation to denote the multisets. When speak-
ing about membrane systems, keep in mind that the order in which symbols are written
is irrelevant, unless we speak about the symbols sent to the environment. In particu-
lar, speaking about the contents of some membrane, when we write an1

1 · · · anm
m (or any

permutation of it), we mean a multiset consisting of ni instances of symbol ai, 1 ≤ i ≤ m.

2.2 P systems with One (Active) Membrane

We present the definition of a P system with active membranes, simplified for studying
the generative power in case of one membrane.

Π = (O,µ = []
1
, w1, R1, i0), where

O is a finite set of objects,

w1 is the initial multiset in region 1,

R1 is the set of rules associated to membrane 1,

i0 is the output region; when languages are considered, i0 = 0 is assumed.

The rules of a membrane system have the forms (a0) [a → u]
1

(evolution of an
object), and (c0) [a]

1
→ []

1
b (sending an object out, possibly renaming it), where

a, b ∈ O and u ∈ O∗.
The rules are applied in maximally parallel way: no further rule should be applicable

to the idle objects, except rules of type (c0) may be applied to at most one object at any
step.

A catalytic P system (with one membrane) is a construct

Π = (O,C, µ = []
1
, w1, R1, i0), where

O is a finite set of objects,

C is a special subset of Owhose elements are called catalysts,

w1 is the initial multiset in region 1,

R1 is the set of rules associated to membrane 1,

i0 is the output region; when languages are considered, i0 = 0 is assumed.

Polarizationless P Systems with One Active Membrane 11

The rules in R are either non-cooperative rules of the form a → (b1, tar1) · · · (bk, tark)
with a and the bi, 1 ≤ i ≤ k, being from O \ C and the tari ∈ {here, out} be-
ing the targets for the corresponding symbols bi, or catalytic rules of the form ca →
c(b1, tar1) · · · (bk, tark) with c ∈ C.

A configuration of a P system is a construct which contains the information about
the contents of the skin membrane as well as the sequence of objects sent out. A sequence
of transitions between the configurations is called a computation. The computation halts
when such a configuration is reached that no rules are applicable. In case of external
output (i0 = 0), as the result of a (halting) computation we may consider the sequence of
objects sent to the environment; we denote it by L(Π). Both in case of internal output
(i0 = 1) and in case of external output, we may consider as the result the vector of
multiplicities of objects in region i0, we denote it by Ps(Π), or the total number of
objects in region i0, which we denote by N(Π).

The family of P systems with one polarizationless active membrane may be denoted
by OP1(a0, c0). The class of sets of numbers/vectors/words generated by a family F of
P system is denoted by NF, PsF and LF, respectively. We use a superscript int or
ext when speaking about internal and external output, respectively, and we may omit
subscript ext in the case of generating languages, i.e., external output is assumed for LF.

Moreover, we may use a subscript T to denote terminal filtering of the result; in this
case, a subset T ⊂ O is additionally specified forΠ, and the objects not belonging to T are
not considered in the result. For example, the family of sets of vectors of non-negative
integers generated internally by P systems with one polarizationless active membrane
with terminal filtering are denoted by PsintT OP1(a0, c0).

Example 1. To illustrate generation, consider the following P system:

Π = (O = {S, a, b, c, d, f}, µ = []
1
, w1 = a,R1, i0),

R1 = {[S → Sabcd]
1
, [S → f]

1
,

[a]
1
→ []

1
a, [b]

1
→ []

1
b, [c]

1
→ []

1
c}.

Object S produces objects a, b, c, d in arbitrary but equal amounts. Objects a, b, c are
sent out in arbitrary order. Hence, if i0 = 1 then N(Π) = N1 (i.e., the set of all positive
integers), and if i0 = 0 then L(Π) =

⋃
n≥0 Perm(anbncn) = {w ∈ {a, b, c}∗ | |w|a =

|w|b = |w|c}.

P systems can be also viewed as acceptors. In that case, an input subalphabet Σ is
additionally specified in the tuple defining P system before µ, and i0 = 1 is the input
region. An input multiset over Σ is additionally placed inside the membrane before the
computation starts, and it is accepted if and only if the computation halts. The result
Psacc(Π) is the set of all accepted inputs, and the family of vector sets accepted by P
systems with one active membrane is PsaccOP1(a0, c0).

3 Comparison with a Transitional Model:
Catalytic P Systems with One Catalyst

The model of P systems with active membranes, for the case of one membrane, can
be compared to the following case of transitional P systems: non-distributed P systems

12 A. Alhazov, R. Freund

with one catalyst. Indeed, for each P system with one active membrane, there exists a
1-catalytic non-distributed P system with the same behavior, as non-cooperative rules
work equivalently in both models: [A → u]

h
is equivalent to A → u, and sending out

corresponds to particular rules with one catalyst, i.e., [A]
h
→ []

h
a corresponds with

cA → c(a, out), or, if without restricting generality we assume the set of symbols that
may appear inside the system to be disjoint from the set of symbols that may be sent to
the environment, simply with cA→ c(a, here).

Notice that for P system with external output, we may ignore the objects remaining
inside the system when it halts (as explained in the next section), while for P systems
with internal output, we should ignore the objects sent out. In this way, for the case
of internal output, sending out corresponds to a catalytic erasing, while for the case
of external output sending out corresponds to a catalytic renaming of a non-terminal
symbol into a terminal symbol.

Hence, we can immediately conclude that

Xα
βOP1(a0, c0) ⊆ XβOP1(ncoo, cat1) for X ∈ {N,Ps, L}, α ∈ {int, ext}, β ∈ {−, T},

where β = − stands for not specifying a subscript.
One-catalytic P systems were investigated in [5], where some subclasses of P sys-

tems with one catalyst are defined and certain results on their generative power are
presented. In particular, it was shown in [5] that N−cOP1(wsepcat1) = NREG and
N−cOP1(complcat1) ⊆ NfRC. Clearly, the corresponding restrictions might also be
considered for polarizationless P systems with one active membrane, and such results
can be claimed as upper bounds for the corresponding restrictions, e.g.,

NOP1(wsep(a0, c0)) = NREG,

where the restriction of the weak separation can be reformulated for the model with active
membranes as follows: the set O of objects is divided into three disjoint subsets O′, O′′

and O′′′, such that

• objects a ∈ O′ have no associated rules (they cannot evolve or be sent out, so if they
are produced, they remain idle inside the system),

• objects a ∈ O′′ have associated send-out rules, but no evolution rules,
• objects a ∈ O′′′ have associated evolution rules, but no send-out rules.

It is worth mentioning that the additional requirement from [5] that the objects produced
by a catalytic rule cannot undergo a non-cooperative rule is automatically satisfied after
translation into the active membrane case, so the only restriction remaining in the case
of weak separation is that a rule of type (a0) and a rule of type (c0) are not allowed to
compete for the same object. This restriction means, for instance, that all objects that
have associated send-out rules cannot evolve inside the system, they simply wait there
until they are chosen to be sent out.

A different restriction considered in [5] is complete P systems (mentioned above as
complcat1). It can be reformulated in the model of polarizationless P systems with active
membranes as follows: there is no object having associated rules of type (c0) and no rules
of type (a0). This restriction means that no object is allowed to be temporarily idle;
if it is not sent out, then it either evolves immediately, or remains idle throughout the
computation. It follows that

NREG ⊆ NOP1(compl(a0, c0)) ⊆ NfRC.

Polarizationless P Systems with One Active Membrane 13

It is interesting to note that weak separation and completeness are, in some sense, two
opposite requirements. While the latter one requires that all objects which can be sent
out must evolve if they are not chosen to be sent out, the first special case requires that
no objects which can be sent out are allowed to evolve. Of course, in the most general
case there can be both kinds of objects which can be sent out.

4 External output

The first goal of this section is to present a reduction of any P system with one active
membrane without polarizations and external output to an equivalent normal form. Then
we will use this normal form to prove an upper bound result. We require the normal form
mentioned above to satisfy the following conditions:

• Every object appears on the left side of some rule.
• The only erasing rule allowed is for the initial object; if so, the initial object does not

appear on the right side of any rule. (If we have an initial multiset w, then we add
the rule S → w where S is a new symbol now being the initial object.)

We approach this goal in a few stages. First, we remark that, without restricting gen-
erality, we may assume that no objects may remain inside the system when it halts.
Indeed, let Oλ be the set of all objects that do not have associated rules. By adding rules
Rλ = {[a → λ]

1
| a ∈ Oλ}, we make sure that there are no objects that do not have

associated rules. On the other side, adding rules Rλ does not affect the result of a P sys-
tem with external output, since preserving/erasing objects from Oλ has no alternatives,
and it does not affect the environment.

Second, we remark that, without restricting generality, we may assume that the initial
multiset consists of only one object, say S, which does not appear in the right side of
any rule. Indeed, for a P system starting with a multiset (represented by) w, consider an
equivalent P system starting with a multiset consisting of a new object S, and adding
RS = {[S → w]

1
} to R1.

Third, we claim that for any P system satisfying the assumptions mentioned above,
there exists a P system without erasing rules (except, possibly, for S).

Proof. Indeed, let us first add rules Rt = {[a→ #]
1
| ([a→ λ]

1
) ∈ R1 or a = #},

where # is a new symbol, shared for all such reductions, so if it appears in a configuration,
the system will never halt, and will therefore not produce any result. This transformation
will certainly not affect the result of the system, since every new computation branch will
not be productive, while the existing branches will not be affected (since by construction,
one can always apply some other rule to a instead of trapping).

Second, compute the set Oλ of erasable objects as follows:

• Set Oλ to {a ∈ O | [a→ λ]
1
∈ R1,

• If [a→ u]
1

is in R1 and u ∈ O∗λ, then add a to Oλ,
• Iterate the previous procedure until no more elements can be added to Oλ.

Third, replace each rule [a → u]
1

by rules [a → u′]
1
, where the u′ are obtained

from u by removing (in all possible combinations) some objects from Oλ. This will again
yield an equivalent system, because every symbol that could eventually be deleted does
not have to be produced in the first place.

14 A. Alhazov, R. Freund

Fourth, remove all erasing rules. We claim that the resulting P system is still equiv-
alent to the original P system. Indeed, any object (other than S) that should be erased,
could be “pre-erased” by not producing it in the first place. However, any object that
should evolve can evolve by other rules, and any object that should be sent out can be
sent out (unless some competing object is sent out, in which case the simulation would
not be correct, so the computation is discarded by producing symbol #). �

Corollary 1. LOP1(a0, c0) ⊆ CS.

Proof. Indeed, the total number of objects (inside and outside the membrane) never
decreases throughout the computation (except, possibly, for the empty word, generated
in one step), and the length of the result matches the total number of objects when the
system halts. �

We now proceed with the lower bound result.

Theorem 1. LOP1(a0, c0) ⊇ REG • Perm(REG).

Proof. Consider an alphabet T and two arbitrary regular languages over T . Then there
exist reduced regular grammars G1 = (N1, T, P1, S1) and G2 = (N2, T, P2, S2) generating
them, such as N1 ∩N2 = ∅. We construct the following P system:

Π = (O = N1 ∪N2 ∪ T ∪ T ′, µ = []
1
, w1 = S1, R1),

T ′ = {a′ | a ∈ T},
R1 = {[A→ aB]

1
| (A→ aB) ∈ P1} ∪ {[A→ S2]

1
| (A→ λ) ∈ P1}

∪ {[A→ a′B]
1
| (A→ aB) ∈ P2} ∪ {[A→ λ]

1
| (A→ λ) ∈ P2}

∪ {[a′ → a′]
1
| a ∈ T} ∪ {[a]

1
→ []

1
a, [a′]

1
→ []

1
a | a ∈ T}.

The P system constructed above generates L(G1) •L(G2), except the symbols generated
by the second grammars are produced in a primed form, and may undergo trivial rewriting
for an arbitrarily long time before they are sent out, which ensures that after generating
a word from L(G1), any permutation of a word from L(G2) may be generated. �

We now present a few closure properties.

Lemma 1. The family LOP1(a0, c0) is closed under renaming morphisms.

Proof. The statement follows from applying the renaming morphism to the send-out
rules. �

Theorem 2. LOP1(a0, c0) is closed under union.

Proof. The closure under union follows from adding a new axiom and productions of
non-deterministic choice between multiple axioms. �

Polarizationless P Systems with One Active Membrane 15

5 Internal output

In this case the environment is no longer relevant: it does not matter which symbol is
written in the right side of a send-out rule. The object sent out no longer affects the
result, so sending out is equivalent to a sequential version of erasing.

Of course, we can generate PsREG with rules of type (a0) corresponding to the rules
of a reduced regular grammar. Hence,

PsintOP1(a0, c0) ⊇ PsREG.

Is it an open question whether non-semilinear number sets can be generated, see also
the partial results transferred from the one-catalytic model, recalled in Section 3.

6 P systems with input

In this section we show that, not very surprisingly, for P systems with one polarizationless
active membrane, their accepting power is even smaller than their generative power. More
exactly, unless such a P system accepts all allowed inputs, it only accepts specific finite
sets. We start by establishing some useful facts (we remind that we use ⊆ to denote the
submultiset relation, ∪ to denote the union of multisets, and \ to denote the difference
of multisets).

Lemma 2. Let Π ∈ OP1(a0, c0) be a P system with alphabet O, let [u]
1
⇒ [v]

1
α

in Π (α ∈ O ∪ {λ}) Then for every multiset u′ ⊆ u, either [u′]
1

is already a halting
configuration, or there exists a multiset v′ ⊆ v and β ∈ O∪{λ} such that [u′]

1
⇒ [v′]

1
β

in Π.

Proof. In a transition [u]
1
⇒ [v]

1
α, one of three possible cases happen for every (copy

of) object a in u:

• a is rewritten by some rule of Π into a (possibly empty) multiset, contributing to v;
• a is sent out by some rule of Π as α;
• a remains idle, contributing to v.

Note that v consists exactly of the resulting objects from the first case and the objects
of the third case. More precisely, let the union of multisets of the right side rules for
all copies of rewritten objects be vr, and let the multiset of idle objects be vi; then,
v = vr ∪ vi. By definition of the model, the second case was applied to at most one (copy
of) an object in u. Also by definition of the model, for each object in the third case, there
exist no rules to evolve it, except, possibly, send-out rules, in which case α 6= λ.

We recall that u′ may be obtained from u by erasing some (copies) of objects. Fix
some correspondence of (copies of) objects in u′ to objects in u, and consider a transition
from u′ by the same behavior of objects in u′ as of objects in u:

• rewritten objects will yield some submultiset v′r of vr;
• β′ will be produced in the environment, β′ = α or β′ = λ;
• idle objects will yield some submultiset v′i of vi.

16 A. Alhazov, R. Freund

It is obvious that these rules are applicable, and that v′r ∪ v′i ⊆ v. Maximality also holds,
except in one special situation: when α 6= λ, but it was produced from a (copy of) an
object not in u′, while there exists at least one object b that was idle in a transition
[u]

1
⇒ [v]

1
α.

In this situation, one object b, instead of being idle, should be sent out as β, and the
resulting multiset in the skin is v′ = v′r ∪ v′i \ b (if this situation does not happen, we take
β = β′ and v′ = v′r ∪ v′i).

Therefore, [u′]
1
⇒ [v′]

1
β in Π if at least one (copy) of object from u′ fell into the

first or the second case, and otherwise [u′]
1

is already a halting configuration. �

Lemma 3. If n ∈ N(Π), then also n′ ∈ N(Π) for any non-negative integer n′ ≤ n.

Proof. Let the alphabet of Π be O, let the initial contents of the skin membrane of Π be
w1, and let the input subalphabet of Π be Σ. By definition of acceptance, a number n
is accepted if there exists a halting computation in Π starting from configuration [u]

1
,

for some u ∈ w1Σ
n.

Consider the “sub-input” of only n′ objects, i.e., u′ ∈ w1Σ
n such that u′ ⊆ u. If

[u]
1

is already halting, then so is [u′]
1
, so the statement of the lemma holds; now we

assume the contrary: [u]
1
⇒ [v]

1
α. By the previous lemma, in one step, either the

computation with u′ in the skin will immediately halt (and the statement of the lemma
again holds), or there is a one-step transition [u′]

1
⇒ [v′]

1
β with v′ ⊆ v.

Iterating the application of the previous lemma, by induction, we conclude that there
exists a computation starting from [u′]

1
that will halt in at most as many step as the

halting computation starting from [u]
1

that we considered. Hence n′ ∈ N(Π). �

It follows that the accepted set of numbers is either N, or empty, or it contains all
integers less than or equal to the maximal accepted number, so accepting P systems
with one polarizationless active membrane cannot be computationally complete, and P
systems with one polarizationless active membrane are obviously weaker as acceptors
than as generators:

NaccOP1(a0, c0) ⊆ {∅,N} ∪ {{k | 0 ≤ k ≤ n} | n ∈ N}.

In the rest of the section we show, by all necessary examples, that this inclusion is
an equality:

Π∅ = (O = {a}, Σ = {a}, µ = []
1
, w1 = a,R1 = {[a→ a]

1
}, i0 = 1).

ΠN = (O = {a}, Σ = {a}, µ = []
1
, w1 = λ,R1 = {[a→ λ]

1
}, i0 = 1).

Πn = (O = {ai | 0 ≤ i ≤ n}, Σ = {a0}, µ = []
1
, w1 = λ,R1, i0 = 1), where

R1 = {[ai → ai+1]
1
, [ai]

1
→ []

1
a0 | 0 ≤ i < n} ∪ {[an → an]

1
}.

Clearly, Π∅ accepts nothing, since with any input it starts with at least one object, and
carries out an infinite computation. On the other end of the spectrum, system ΠN accepts
any input, by erasing it in one step and halting. Finally, we claim that system Πn accepts
exactly set {k | 0 ≤ k ≤ n}. Indeed, any object increments its index every step, unless
the object is sent out, or the index reaches n (forcing an infinite computation). It is easy
to see that at most n input objects may be sent out in this way; the system with input
(a0)k has a halting computation if and only if k ≤ n.

Polarizationless P Systems with One Active Membrane 17

Overall, we have established the following results:

REG • Perm(REG) ⊆ LOP1(a0, c0) ⊆ CS,

PsintOP1(a0, c0) ⊆ PsREG,

NαOP1(wsep(a0, c0)) = NREG, α ∈ {int, ext},
NREG ⊆ NαOP1(compl(a0, c0)) ⊆ NfRC, α ∈ {int, ext},

NaccOP1(a0, c0) = {{k | 0 ≤ k ≤ n} | n ∈ N} ∪ {∅,N}.

7 Conclusions

In this paper we have considered the family of languages generated by polarizationless P
systems with one active membrane. A normal form was given for external output case. It
was than shown that the family of generated languages lies between REG • Perm(REG)
and CS, and is closed under union and renaming morphisms. The exact characterization
is an open question, but polarizationless P systems with one active membrane can be
simulated by (and are, therefore, at most as powerful as) P systems with one catalyst,
transferring two results on the generative power of two restricted classes, independently
from the output region.

Then we also considered sets of vectors or numbers generated internally, as well as sets
of vectors or numbers accepted by polarizationless P systems with one active membrane.
Several questions about the families of these sets are still open, too.

Another possible generalization that can be considered is to also allow rules of type
(b0) to bring objects from the environment back to the skin. Note that such systems
would still correspond to a subclass of 1-catalytic P systems, but some definitions would
have to be revised, as well as all related results.

We have proved that accepting P systems with one polarizationless active membrane
are not computationally complete, unlike those with two polarizations or like those with
membrane creation and dissolution, or with multiple membranes and membrane dissolu-
tion.

The questions about the computational power of polarizationless P systems with
active membranes with 2 and 3 membranes in the initial configuration are still open, as
well as of polarizationless systems with less than 7 membranes and two labels, or of all
polarizationless systems with only one label.

References

1. A. Alhazov: P Systems without Multiplicities of Symbol-Objects. Information Pro-
cessing Letters 100, 3, 2006, 124–129.

2. A. Alhazov, C. Ciubotaru, Yu. Rogozhin, S. Ivanov: The Family of Languages Gener-
ated by Non-Cooperative Membrane Systems. In: Gh. Păun, M.J. Pérez-Jiménez, A.
Riscos-Núñez, G. Rozenberg, A. Salomaa: Membrane Computing, 11th International
Conference, CMC11, Jena, Revised Selected Papers, Lecture Notes in Computer Sci-
ence 6501, 2011, 65–79.

18 A. Alhazov, R. Freund

3. A. Alhazov, R. Freund, Gh. Păun: Computational Completeness of P Systems with
Active Membranes and Two Polarizations. In: M. Margenstern: Machines, Computa-
tions, and Universality, 4th International Conference, MCU 2004, Saint Petersburg,
Revised Selected Papers, Lecture Notes in Computer Science 3354, Springer, 2005,
82–92.

4. A. Alhazov, R. Freund, A. Riscos-Núñez: Membrane Division, Restricted Membrane
Creation and Object Complexity in P Systems. International Journal of Computer
Mathematics 83, 7, 2006, 529–548.

5. R. Freund:
Special Variants of P Systems with One Catalyst in One Membrane. In: H. Leung,
G. Pighizzini: 8th International Workshop on Descriptional Complexity of Formal
Systems - DCFS 2006, Las Cruces, New Mexico, 2006. Proceedings, 2006, 250–258.

6. Gh. Păun: Membrane Computing. An Introduction, Springer, 2002.
7. Gh. Păun, G. Rozenberg, A. Salomaa: Membrane Computing with an External Out-

put. Fundamenta Informaticae 41, 3, 2000, 313–340.
8. Gh. Păun, G., Rozenberg, A. Salomaa, A. (eds.): The Oxford Handbook of Membrane

Computing, Oxford University Press, 2010.
9. G. Rozenberg, A. Salomaa (eds.): Handbook of Formal Languages, 1-3 vol., Springer,

1997.
10. P systems webpage. http://ppage.psystems.eu/

Variants of P Systems with Toxic Objects

Artiom Alhazov1, Rudolf Freund2, and Sergiu Ivanov3

1 Institute of Mathematics and Computer Science, Academy of Sciences of Moldova
Academiei 5, Chişinău MD-2028 Moldova
Email: artiom@math.md

2 Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, 1040 Vienna, Austria
Email: rudi@emcc.at

3 Université Paris Est, France
Email: sergiu.ivanov@u-pec.fr

Summary. Toxic objects have been introduced to avoid trap rules, especially in (purely)
catalytic P systems. No toxic object is allowed to stay idle during a valid derivation in a
P system with toxic objects. In this paper we consider special variants of toxic P systems
where the set of toxic objects is predefined – either by requiring all objects to be toxic or
all catalysts to be toxic or all objects except the catalysts to be toxic. With all objects
staying inside and being toxic, purely catalytic P systems cannot go beyond the finite
sets, neither as generating nor as accepting systems. With allowing the output to be sent
to the environment, exactly the regular sets can be generated. With non-cooperative
systems with all objects being toxic we can generate exactly the Parikh sets of languages
generated by extended Lindenmayer systems. Catalytic P systems with all catalysts being
toxic can generate at least PsMAT .

1 Definitions

We assume the reader to be familiar with the underlying notions and concepts
From formal language theory, e.g., see [16], as well as from the area of P systems,
e.g., see [13, 14, 15]; we also refer the reader to [18] for actual news.

1.1 Prerequisites

The set of integers is denoted by Z, and the set of non-negative integers by N.
Given an alphabet V , a finite non-empty set of abstract symbols, the free monoid
generated by V under the operation of concatenation is denoted by V ∗. The ele-
ments of V ∗ are called strings, the empty string is denoted by λ, and V ∗\ {λ} is
denoted by V +. For any string w ∈ V , by alph(w) we denote the set of symbols

20 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

occurring in w; moreover, the set of all strings which are obtained by permut-
ing the symbols of w is denoted by Perm (w); for a set of stings L, we define
Perm (L) = {Perm (w) | w ∈ L}.

For an arbitrary alphabet V = {a1, · · · , an}, the number of occurrences of a
symbol ai in a string x is denoted by |x|ai , while the length of a string x is denoted
by |x| =

∑
ai∈V |x|ai . A (finite) multiset over a (finite) alphabet V = {a1, · · · , an}

is a mapping f : V → N and can be represented by
〈
a
f(a1)
1 , · · · , af(an)n

〉
or by any

string x for which (|x|a1 , · · · , |x|an) = (f(a1), · · · , f(an)). We will denote the vector
(f(a1), · · · , f(an)) by Ψ(f)V . The families of regular and recursively enumerable
string languages are denoted by REG and RE, respectively.

1.2 Finite Automata

The regular languages in REG are exactly the languages accepted by finite au-
tomata. A finite automaton is a quintuple M = (Q,T, δ, q0, F), where Q is the
set of states, T is the input alphabet, δ ⊆ (Q× T ×Q) is the transition function,
q0 ∈ Q is the initial state, and F ⊆ Q is the set of final states. The language over
T accepted by M is denoted by L (M). A finite automaton is called deterministic,
if for every pair (q, a) with q ∈ Q and a ∈ P there exists exactly one state p ∈ Q
such that (q, a, p) ∈ δ.

A finite automaton with output, also called generalized sequential machine or
gsm for short, is a construct M = (Q,T,Σ, δ, q0, F), where Q is the set of states,
T is the input alphabet, Σ is the output alphabet, δ ⊆ (Q× T ×Q×Σ∗) is the
finite transition function, q0 ∈ Q is the initial state, and F ⊆ Q is the set of final
states. M called deterministic, if for every pair (q, a) with q ∈ Q and a ∈ P there
exists exactly one pair (q, w) ∈ Q×Σ∗ such that (q, a, p, w) ∈ δ. A (deterministic)
gsm defines a relation (function) T ∗ → Σ∗, called (deterministic) gsm mapping.
The sets of all relations (functions) defined by (deterministic) gsm mappings are
denoted by RelREG and FunREG, respectively.

We also consider a special variant of finite automata which resembles the idea
of input-driven push-down automata (for an overview, see [11]), also called visibly
push-down automata (for example, see [3]). Hence, we call this variant where the
next state only depends on the input symbol input-driven finite automata, i.e., for
any two triples (q, a, p) , (q′, a, p′) ∈ δ with q, p, q′, p′ ∈ Q and a ∈ T we have p = p′.
In the following, the subclass of regular languages accepted by input-driven finite
automata will be denoted by IDREG.

A gsm is called input-driven if for any two tuples (q, a, p, w) , (q′, a, p′, w′) ∈ δ
with q, p, q′, p′ ∈ Q and a ∈ T we have p = p′ as in the case of finite automata; such
a gsm is called deterministic if we even have (p, w) = (p′, w′). The subclasses of
(deterministic) gsm mappings defined by input-driven finite automata with output
are denoted by RelIDREG and FunIDREG, respectively.

Variants of P Systems with Toxic Objects 21

1.3 ET0L Systems

An ET0L system is a construct G = (V, T, P1, · · · , Pm, w) where m ≥ 1, V is
an alphabet, T ⊆ V is the terminal alphabet, the Pi, 1 ≤ i ≤ m, are finite sets
(tables) of non-cooperative rules over V , and w ∈ V ∗ is the axiom. In a derivation
step in G, all the symbols present in the current sentential form are rewritten
using one table. The language generated by G, denoted by L(G), consists of all
terminal strings w ∈ T ∗ which can be generated by a derivation in G starting from
the axiom w. The family of languages generated by ET0L systems and by ET0L
systems with at most k tables is denoted by ET0L and ETk0L, respectively. If
only one table is used, we omit the T .

1.4 Register Machines

A register machine is a tuple M = (m,B, l0, lh, P), where m is the number of
registers, B is a set of labels, l0 ∈ B is the initial label, lh ∈ B is the final
label, and P is the set of instructions bijectively labeled by elements of B. The
instructions of M can be of the following forms:

• l1 : (ADD (r) , l2, l3), with l1 ∈ B\ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Increases the value of register r by one, followed by a non-deterministic jump
to instruction l2 or l3. This instruction is usually called increment.

• l1 : (SUB (r) , l2, l3), with l1 ∈ B\ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
If the value of register r is zero then jump to instruction l3; otherwise, the
value of register r is decreased by one, followed by a jump to instruction l2.
The two cases of this instruction are usually called zero-test and decrement,
respectively.

• lh : HALT . Stops the execution of the register machine.

A configuration of a register machine is described by the contents (i.e., by the
number stored in the register) of each register and by the current label, which
indicates the next instruction to be executed. Computations start by executing
the instruction l0 of P , and terminate with reaching the HALT-instruction lh.

In order to deal with strings, this basic model of register machines can be
extended by instructions for reading from an input tape and writing to an output
tape containing strings over an input alphabet Tin and an output alphabet Tout,
respectively:

• l1 : (read (a) , l2), with l1 ∈ B \ {lh}, l2 ∈ B, a ∈ Tin.
Reads the symbol a from the input tape and jumps to instruction l2.

• l1 : (write (a) , l2), with l1 ∈ B \ {lh}, l2 ∈ B, a ∈ Tout.
Writes the symbol a on the output tape and jumps to instruction l2.

Such a register machine working on strings we call a register machine with
input and output tape, and we write M = (m,B, l0, lh, P, Tin, Tout). If no output
is written, we omit Tout.

22 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

As is well known (e.g., see [10]), for any recursively enumerable set of natural
numbers there exists a register machine with (at most) three registers accepting
the numbers in this set. Register machines with an input tape, can simulate the
computations of Turing machines with two registers and thus characterize RE. All
these results are obtained with deterministic register machines, where the ADD-
instructions are of the form l1 : (ADD (r) , l2), with l1 ∈ B\ {lh}, l2 ∈ B, 1 ≤ j ≤
m.

Partially blind register machines with d registers use instructions qi :
(ADD(r), qj , qk) and qi : (SUB(r), qj). Moreover, the result is produced in the
first m registers, while in a successful computation registers m + 1, · · · , d are re-
quired to be empty in the end (and we assume that the output registers are never
decremented).

2 P systems

The ingredients of the basic variants of (cell-like) P systems are the membrane
structure, the objects placed in the membrane regions, and the evolution rules.
The membrane structure is a hierarchical arrangement of membranes. Each mem-
brane defines a region/compartment, the space between the membrane and the
immediately inner membranes; the outermost membrane is called the skin mem-
brane, the region outside is the environment, also indicated by (the label) 0. Each
membrane can be labeled, and the label (from a set Lab) will identify both the
membrane and its region. The membrane structure can be represented by a rooted
tree (with the label of a membrane in each node and the skin in the root), but also
by an expression of correctly nested labeled parentheses. The objects (multisets)
are placed in the compartments of the membrane structure and usually repre-
sented by strings, with the multiplicity of a symbol corresponding to the number
of occurrences of that symbol in the string. The basic evolution rules are multiset
rewriting rules of the form u → v, where u is a multiset of objects from a given
set O and v = (b1, tar1) · · · (bk, tark) with bi ∈ O and tari ∈ {here, out, in} or
tari ∈ {here, out} ∪ {inj | j ∈ Lab}, 1 ≤ i ≤ k. Using such a rule means “con-
suming” the objects of u and “producing” the objects b1, · · · , bk of v; the target
indications here, out, and in mean that an object with the target here remains
in the same region where the rule is applied, an object with the target out is sent
out of the respective membrane (in this way, objects can also be sent to the en-
vironment, when the rule is applied in the skin region), while an object with the
target in is sent to one of the immediately inner membranes, non-deterministically
chosen, whereas with inj this inner membrane can be specified directly. In general,
we may omit the target indication here.

Yet there are a lot of other variants of rules; for example, if on the right-
hand side of a rule we add the symbol δ, the surrounding membrane is dissolved
whenever at least one such rule is applied, at the same moment all objects inside
this membrane (the objects of this membrane region together with the whole

Variants of P Systems with Toxic Objects 23

inner membrane structure) are released to the surrounding membrane, and the
rules assigned to the dissolved membrane region get lost.

Another option is to add promoters p1, · · · , pm ∈ O+ and inhibitors
q1, · · · , qn ∈ O+ to a rule and write u → v|p1,··· ,pm,¬q1,··· ,¬qn , which rule then
is only applicable if the current contents of the membrane region includes any of
the promoter multisets, but none of the inhibitor multisets; in most cases promot-
ers and inhibitors are rather taken to be singleton objects than multisets.

For all these variants of P systems defined above, the variants of toxic objects
defined later in this paper can be defined, too. As this paper is just a starting point
of such investigations, in the following we shall restrict ourselves to P systems
containing only non-cooperative rules and/or catalytic rules (see definitions given
below).

Formally, a (cell-like) P system is a construct

Π = (O,µ,w1, · · · , wm, R1, · · · , Rm, fI , fO)

where O is the alphabet of objects, µ is the membrane structure (with m mem-
branes), w1, · · · , wm are multisets of objects present in the m regions of µ at the
beginning of a computation, R1, · · · , Rm are finite sets of evolution rules, associ-
ated with the membrane regions of µ, and fO/fI is the label of the membrane
region where the outputs are put in/from where the inputs are taken. (fO/fI= 0
indicates that the output/input is taken sent to/taken from the environment).

If a rule u → v has at least two objects in u, then it is called cooperative,
otherwise it is called non-cooperative. In catalytic P systems we use non-cooperative
as well as catalytic rules which are of the form ca→ cv, where c is a special object
which never evolves and never passes through a membrane (both these restrictions
can be relaxed), but it just assists object a to evolve to the multiset v. In a purely
catalytic P system we only allow catalytic rules. For a catalytic as well as for a
purely catalytic P system Π, in the description of Π we replace “O” by “O,C”
in order to specify those objects from O which are the catalysts in the set C. As
already explained above, cooperative and non-cooperative as well as catalytic rules
can be extended by adding promoters and/or inhibitors, thus yielding rules of the
form u→ v|p1,··· ,pm,¬q1,··· ,¬qn .

All the rules defined so far can be used in different derivation modes: in the
sequential mode (sequ), we apply exactly one rule in every derivation step; in the
asynchronous mode (asyn), an arbitrary number of rules is applied in parallel; in
the maximally parallel (maxpar) derivation mode, in any computation step of Π
we choose a multiset of rules from the sets R1, · · · , Rm in a non-deterministic way
such that no further rule can be added to it so that the obtained multiset would
still be applicable to the existing objects in the membrane regions 1, · · · ,m.

The membranes and the objects present in the compartments of a system at
a given time form a configuration; starting from a given initial configuration and
using the rules as explained above, we get transitions among configurations; a
sequence of transitions forms a computation (we often also say derivation). A
computation is halting if and only if it reaches a configuration where no rule can

24 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

be applied any more. With a halting computation we associate a result generated
by this computation, in the form of the number of objects present in membrane
fO in the halting configuration. The set of multisets obtained as results of halting
computations in Π working in the derivation mode δ ∈ {sequ, asyn,maxpar} is
denoted by mLgen,δ (Π), the set of natural numbers obtained by just counting the
number of objects in the multisets of mLgen,δ (Π) by Ngen,δ (Π), and the set of
(Parikh) vectors obtained from the multisets in mLgen,δ (Π) by Psgen,δ (Π). If we
first project the results in mLgen,δ (Π) to a terminal alphabet OT , then we add
the superscript T to N and Ps.

Yet we may also start with some additional input multiset winput over an input
alphabet Σ in membrane fI , i.e., in total we there have wfIwinput in the initial
configuration, and accept this input winput if and only if there exists a halting
computation with this input; the set of multisets accepted by halting computations
in

Π = (O,Σ, µ,w1, · · · , wm, R1, · · · , Rm, fI)

working in the derivation mode δ is denoted by mLacc,δ (Π), the corresponding
sets of natural numbers and of (Parikh) vectors are denoted by Nacc,δ (Π) and
Psacc,δ (Π), respectively.

For the input being taken from the environment, i.e., for fI = 0, we need
an additional target indication come as, for example, used in a special variant of
communication P systems introduced by Petr Sośık (e.g., see [17]) where no objects
are generated or deleted, but may only pass through membranes; (a, come) on the
right-hand side of a rule applied in the skin membrane means that the object a is
taken into the skin membrane from the environment (all objects there are assumed
to be available in an unbounded number). The multiset of all objects taken from
the environment during a halting computation then is the multiset accepted by
this accepting P system, which in this case we shall call a P automaton; the idea
of P automata was first published in [4] and considered at the same time under
the notion of analysing P systems in [8]. The set of non-negative integers and the
set of (Parikh) vectors of non-negative integers accepted by halting computations
in Π are denoted by Naut (Π) and Psaut (Π), respectively.

The family of sets Yγ,δ (Π), Y ∈ {N,Ps}, γ ∈ {gen, acc, aut} computed by
P systems with at most m membranes working in the derivation mode δ and
with rules of type X is denoted by Yγ,δOPm (X). If we first project the results in
mLgen,δ (Π) to a terminal alphabet OT , then we add the superscript T to N and
Ps.

A P system Π can also be considered as a system computing a partial recursive
function (in the deterministic case) or even a partial recursive relation (in the non-
deterministic case), with the input being given in a membrane region fI 6= 0 as
in the accepting case or being taken from the environment as in the automaton
case. The corresponding functions/relations computed by halting computations in
Π are denoted by ZYα (Π), Z ∈ {Fun,Rel}, Y ∈ {N,Ps}, α ∈ {acc, aut}.

Variants of P Systems with Toxic Objects 25

For example, it is well known (for example, see [12]) that for any m ≥ 1, for
the types of non-cooperative (ncoo) and cooperative (coo) rules we have

NREG = Ngen,maxparOPm (ncoo) ⊂ Ngen,maxparOPm (coo) = NRE.

For γ ∈ {gen, acc, aut} and δ ∈ {sequ, asyn,maxpar}, the family of sets
Yγ,δ (Π), Y ∈ {N,Ps}, computed by (purely) catalytic P systems with at
most m membranes and at most k catalysts is denoted by Yγ,δOPm (catk) and
Yγ,δOPm (pcatk), respectively; from [5] we know that, with the results being sent
to the environment (which means taking fO = 0), we have

Ygen,maxparOP1 (cat2) = Ygen,maxparOP1 (pcat3) = Y RE.

Remark 1. Here we have to add a remark which is important for the rest of this
paper. Originally, Gheorghe Păun used an internal elementary membrane to obtain
clean results without having to count the catalysts. Hence, sending out the results
also uses a second membrane region, thus, from a topological point of view, there
in fact is no difference between using the outer region or an inner membrane region
without rules to be applied there. In sum, specifying the number of membranes is
not sufficient to capture all subtle features of complexity. Hence, in the following,
we will write P1,ext to indicate that, besides the single membrane, we also use the
environment as a second membrane region. Thus, the result for (purely) catalytic
P systems now will be written as

Ygen,maxparOP1,ext (cat2) = Ygen,maxparP1,ext (pcat3) = Y RE.

In the general case, we will also use the notation Pm,ext for P systems with m
membranes and external output, and to contrast this, we will use Pm,int for systems
with internal output to make a clear difference to the normal notations Pm which
might mean both of these cases.

Finally we remark that P systems with internal output still could (mis)use the
environment to let objects vanish, yet we will assume that such symbols will be
erased instead of being sent out, so for such P systems, without loss of generality,
we can assume that there is no communication with the environment at all.

Remark 2. In order to avoid counting the catalysts in the results, we can
also make a projection erasing them. Whereas in general we would write
Ygen,maxparOP

T
1 (cat2), instead we now would write Ygen,maxparOP

−cat
1,int (cat2). In

this case, we really use one membrane only, as only one membrane region itself is
needed to obtain the results.

Remark 3. Usually, catalytic P systems and many other variants of P systems can
be flattened to one membrane, see [6]. Yet in general, flattening means that we
have to make a terminal projection to get the results or to use external output
for that purpose, i.e., with catalytic P systems flattened to one membrane, clean

26 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

results cannot be obtained without using external out or terminal extraction. In
fact, all results in the P systems area should be carefully inspected with respect
to these subtle details of complexity definitions.

As we shall see in the following sections, the way how to obtain the results in
many cases will have a significant influence on the computational power of several
variants of P systems with toxic objects.

Remark 4. As in this paper we will only consider P systems using the maximally
parallel derivation mode, in the following the subscript maxpar will be omitted.

Finally, P systems can also be considered as mechanisms for generating and
accepting string languages as well as for computing any partial recursive function
f : Σ∗ → Γ ∗ on strings. Here the input string consists of the sequence of symbols
taken in from the environment during a halting computation and the output string
is formed by the sequence of symbols sent out to the environment; hence, the P
system works like in the automaton style, but the input and output streams of
symbols are interpreted as strings. In general, any number of symbols can be
taken in and sent out in one computation step, and any possible sequence of those
symbols has to be taken into account as a substring to be concatenated with the
strings already computed by the preceding computation steps – thus, not only one
input and one output string may result from a successful halting computation.

The string relation computed by halting computations in a P system Π is
denoted by Lcom (Π). If we only consider the symbols taken in from the envi-
ronment, Lcom (Π) can be seen as an automaton accepting the strings computed
by the sequences of symbols taken in during halting computations and we also
write Laut (Π); if no symbols are taken from the environment, Lcom (Π) describes
a string language generated by Π and we also write Lgen (Π). By LδOPm (X),
δ ∈ {gen, aut}, as well as by RelLcomOPm (X) and FunLcomOPm (X) we denote
the families of string languages generated and accepted as well as the families
of string relations and functions computed by P systems with at most m mem-
branes using rules of type X. With FunRE and RelRE denoting the class of
partial recursive string functions and relations, respectively, the following results
can be derived from the results proved in [5] (for the generating case, also see [15],
Theorem 4.17):

Theorem 1. For any δ ∈ {gen, aut}, Z ∈ {Fun,Rel}

RE = LδOP1 (cat2) = LδOP1 (pcat3)

as well as
ZRE = ZLcomOP1 (cat2) = ZLcomOP1 (pcat3) .

3 Toxic Objects in P Systems

We specify a specific subset Otox of O as toxic objects. Toxic objects must not
stay idle as otherwise the computation is abandoned without yielding a result.

Variants of P Systems with Toxic Objects 27

In a successful computation, in any computation step continuing a derivation, we
always have to apply multisets of rules evolving all toxic objects. On the other
hand, if no rule can be applied any more and thus the system halts, toxic objects
do no harm and we take out the results in the usual way depending on the specific
definition for the systems under consideration.

A P system with toxic objects is only allowed to continue a computation from
a configuration C by using an applicable multiset of rules covering all copies of
objects from Otox occurring in C; moreover, if every non-empty multiset of appli-
cable rules is not covering all toxic objects, the whole computation having yielded
the configuration C is abandoned, i.e., no results can be obtained from this com-
putation.

For any variant of P systems, we add the set of toxic objects Otox and in the
specification of the families of sets of (vectors of) numbers generated/accepted by P
systems with toxic objects using rules of type X we add the subscript tox to O, thus
obtaining the families YγOtoxPm (X), for any Y ∈ {N,Ps, L}, γ ∈ {gen, acc, aut},
and m ≥ 1.

3.1 Variants of P Systems with Toxic Objects

We may distinguish the following variants:

• all symbols are toxic, i.e., we write YγOtoxallPm (X);
• in catalytic P systems, exactly the catalysts are toxic, i.e., we write

YγOtoxcatPm (X);
• at least the catalysts are toxic, i.e., we write YγOtox⊇catPm (X);
• all except the catalysts are toxic, i.e., we write YγOtox−catPm (X).

In all these notations, we may add the superscript T to indicate terminal
extraction or the superscript −cat to indicate that the catalysts are not taken
into account for the results; moreover, we replace Pm by Pm,ext or Pm,int in order
to explicitly specify that the system uses external or internal output, respectively.

Remark 5. The results established in the following implicitly may assume the P
system to be flattened to one membrane, but in the sense of the previous remarks,
we have to be very careful whether we have internal output, so that toxicity of
symbols matters, or else we have external output, in which case we assume that
the objects sent out do not affect the work of the system any more.

4 Purely Catalytic P Systems with All Objects Being Toxic

We first consider the specific variants of P systems which in any step only allow
for a bounded number k of rules to be applied, for example, purely catalytic P
systems. Obviously, in this case, as until the end of a computation every symbol
has to be affected by a rule, at most k symbols can evolve in any computation

28 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

step, which of course bounds the number of possible configurations by a constant
number, too.

For the generative case with internal output, we show that we get precisely all
finite sets, while for the accepting case (i.e., internal input), the power is also quite
limited – everything which is not finite is arbitrary, and, moreover, only specific
finite sets are accepted.

Lemma 1. For all m ≥ 1 and all k ≥ 1,

PsgenOtoxallP
−cat
m,int (pcatk) = PsFIN.

Proof. For the forward inclusion, we notice that the initial configuration is fixed,
and the size of a vector we can generate by halting in any non-initial configuration
is bounded by the maximal sum of the right-hand sides of rules over different
catalysts.

For the converse inclusion, it is enough to mention that for any finite set F of
d-dimensional vectors of non-negative integers, there exists a P system Π of type
OtoxallP

−cat
1,int (pcat1) such that

Π =
(
O = {c1, a} ∪ T,C = {c1} , µ = []

1
, w1 = c1a,R1, 1

)
,

where {c1, a} ∩ T = ∅, |T | = d with T being written 〈a1, · · · , ad〉 as an ordered
set, and R1 consists of precisely one rule c1a → c1a

k1
1 · · · a

kd
d for every element

(k1, · · · , kd) ∈ F , so each element of F is generated in one step; for F = ∅, we
simply take the rule c1a → c1a, which causes an infinite computation. For both
cases, we can define R1 as follows:

R1 =
{
c1a→ c1a

k1
1 · · · a

kd
d | (k1, · · · , kd) ∈ F

}
∪ {c1a→ c1a} .

�

Lemma 2. For all m ≥ 1 and all k ≥ 1,

NaccOtoxallPm (pcatk) = {{d} | 0 ≤ d ≤ k − 1}
∪ {{0, k′} | 0 ≤ k′ ≤ k} ∪ {∅,N} .

Proof. We proceed with the forward inclusion. Take an arbitrary P system Π of
type OtoxallPm (pcatk), where

Π = (O,C = {c1, · · · , ck′} , Σ ⊆ O \ C, µ,w1, · · · , wm, R1, · · · , Rm, i0) ,

where k′ ≤ k. Before the computation starts, input w0 ∈ Σ∗ is added to wi0 . Only
two cases are possible that do not lead to a computation which is not abandoned
immediately: either the P system halts immediately, or all objects from w1, · · · , wm
as well as all the objects from w0 ∈ Σ∗ additionally placed in region i0 participate
in catalytic rules in the first step, hence the number of catalysts must be equal to

Variants of P Systems with Toxic Objects 29

the number of non-catalysts. In the second case, it follows that the size |w0| of the
input w0 must be equal to k′ −

∑m
i=1 |wi|. In the first case, it is easy to see that

if Π immediately halts on some non-empty input, then it must also immediately
halt on the empty input. If we have at least one rule for every input symbol in
Σ, then immediate halting happens only on the empty input. If, however, there
exists at least one symbol from Σ that does not appear in the left side of any rule
from Ri0 , then any number of these symbols (let us call them “passive”) would be
accepted.

We now put it all together. For the same system, having both immediate halting
case and later halting case is only possible if besides the input, the initial system
has only catalysts. This yields exactly {0, k′}, k′ ≤ k if there are no passive objects
in Σ, or the entire set N otherwise. Only immediate halting yields {0} and N,
depending on the presence of passive objects in Σ. Finally, only later halting
yields {d} for 0 ≤ d < k (the last inequality is strict since at least one non-catalyst
is needed besides the input to reject 0). And of course, we may have a P system
with no halting computations, accepting ∅. The family of all sets mentioned above
is {{d} | 0 ≤ d ≤ k − 1}∪{{0, k′} | 0 ≤ k′ ≤ k}∪{∅,N}, which proves the forward
inclusion of the claim of the lemma.

For the converse inclusion, it is enough to exhibit P systems for each of these
sets; in every case, the input alphabet is Σ = {a}.

Π∅ =
(
O = {c1, a} , C = {c1} , Σ = {a}, µ = []

1
, w1 = c1a,R1, i0 = 1

)
,

R1 = {c1a→ c1a} ;

ΠN =
(
O = {c1, a} , C = {c1} , Σ = {a}, µ = []

1
, w1 = c1, R1, i0 = 1

)
,

R1 = ∅;

Πd,0 =
(
O = C ∪ {a}, C = {c1, · · · , cd} , Σ = {a}, µ = []

1
, w1, R1, i0 = 1

)
,

w1 = c1 · · · cd,
R1 = {cia→ ci | 1 ≤ i ≤ d} , 0 ≤ d ≤ k;

Πd =
(
O = C ∪ {a}, C = {c1, · · · , cd+1} , Σ = {a}, µ = []

1
, w1, R1, i0 = 1

)
,

w1 = c1 · · · cd+1a,

R1 = {cia→ ci | 1 ≤ i ≤ d} , 0 ≤ d ≤ k − 1.

Indeed, the only rule of Π∅ forces an infinite loop on the empty input, while for a
non-empty input the computation is blocked because more than one toxic object
a cannot be simultaneously taken by c1. On the other end of the spectrum, ΠN
accepts any input by immediate halting, because the catalyst always stays idle
as there is no rule in the system. P system Πd,0 either halts immediately with no
input, or halts after one step, erasing the input of exactly d objects, d ≤ k. Finally,
the P system Πd halts after one step, erasing the input of exactly d objects, d < k.

These observations conclude the proof. �

30 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

Note 1. Of course, characterizing sets of vectors in the accepting case would be
more tedious for the following reason. Without passive objects, P system would
accept some subset of Σ≤k−1, as well as a subset of Σ≤k containing some vectors
of weight d ≤ k and a vector of zeros, and the empty set. With passive objects, any
number of them is allowed for the case of immediate halting, while the projection
of the accepted vectors onto the non-passive objects should form a set containing
some vectors of weight d ≤ k and a vector of zeros. The meaning of the word
some throughout this note can be made more precise by analyzing exactly which
multisets of weight d can be consumed by d catalysts, depending on the rules of
the system (whereas in the case of accepting numbers, only the total weight of
such multisets was taken into consideration).

While Lemma 1 characterized PsFIN by P systems with internal output, in
the case of external output their power becomes exactly PsREG, as the following
theorem shows:

Lemma 3. For all m ≥ 1 and all k ≥ 1,

PsgenOtoxallPm,ext (pcatk) = PsREG.

Proof. Let M = (Q,T, δ, q0, F) be a deterministic finite automaton. Then we
construct the P system Π which generates Ps (L (M)):

Π =
(
O = C ∪Q ∪ T,C = {c1} , µ = []

1
, w1 = c1q0, R1, i0 = 0

)
,

R1 = {c1p→ c1q(a, out) | (p, a, q) ∈ δ, p, q ∈ Q, a ∈ T}
∪ {c1p→ c1 | p ∈ F} .

We conclude that PsREG ⊆ PsgenOtoxallP1,ext (pcat1).
The converse inclusion can be argued as follows: In any successful computation

step with k catalysts, there must be exactly k non-catalysts, and a computation
stops with having yielded a result if all objects inside the system including the cat-
alysts are idle; hence, this finite set of useful configurations is finite and constitutes
the set of states of a finite automaton simulating the computations of the P sys-
tem. Since every rule in such a system involves one catalyst and one non-catalyst,
for a configuration C to allow some derivation C ⇒ C ′ it is necessary (although
not sufficient) that the number of catalysts equals the number of non-catalysts
inside the system. Hence, for a P system

Π = (O,C, µ,w1, · · · , wm′ , R1, · · ·Rm′ , i0)

having fixed the set of objects O, the membrane structure µ of m′ ≤ m membranes,
and the set of catalysts C, with the number k′ ≤ k of catalysts, the set Q of
configurations containing a total of exactly k′ objects from O \ C in m′ regions
of the P system is bounded. Moreover, the set Q′′ of all configurations reachable
from Q in one step is also bounded. Finally, we define Q′ = Q′′ ∪ {q0} where q0 is

Variants of P Systems with Toxic Objects 31

the initial configuration, as well as Qh ⊆ Q′ to be the set of halting configurations
(in which no rule can be applied any more).

Hence, a P system with external output generating vectors of natural numbers
can be modeled by a finite automaton M = (Q′, T, δ, q0, Qh) having Q′ as the
set of states, T contains d symbols for the generation of d-dimensional vectors,
δ contains the triple (p, v, q) for any transition from a configuration p ∈ Q′ to a
configuration q ∈ Q′ sending out v; the set of the final states is precisely Qh.

In sum, with all objects being toxic, purely catalytic P systems with external
output can exactly generate the regular sets of vectors. �

The statement of Lemma 3 can be generalized to languages, as well as to P
automata and P transducers. Indeed, in case of external input (P automaton case)
and/or external output, the finite number of different configurations can serve as
the finite state set of a finite automaton for the input specified by (a, come) in the
rules and/or for the output specified by (a, out) in the rules.

Lemma 4. For all m ≥ 1 and all k ≥ 1,

LgenOtoxallPm (pcatk) = REG.

Proof. Using similar arguments as already pointed out in the previous proof, we
can easily argue that purely catalytic P systems with all objects being toxic can
generate any regular language L; the only difference now is that any sequence of
symbols sent out during a successful computation is interpreted as string.

Now we consider the converse, i.e., as in the previous proof, a P system with
external output generating strings can be modeled by the finite automaton having
Q′ as the set of states and Qh as the set of the final states as constructed there,
but now for any transition from a configuration p ∈ Q′ to a configuration q ∈ Q′
sending out v, δ contains the triple (p, v′, q) for all v′ ∈ Perm(v). �

Lemma 5. For all m ≥ 1 and k ≥ 2,

LautOtoxallPm (pcatk) = REG,
RelautOtoxallPm (pcatk) = RelREG.

Proof. For a P automaton or a P transducer Π, again take Q′ and Qh as con-
structed in the proof of Lemma 4.

A P automaton can be modeled by a finite automaton having Q′ as the set
of states. A transition from configuration p ∈ Q′ to a configuration q ∈ Q′ while
having u brought from the environment is simulated by rules (p, u′, q) for all u′ ∈
Perm(u); clearly, |u| ≤ k′. The set of the final states is precisely Qh.

A P automaton with external output can be modeled by a finite transducer
having Q′ as the set of states. A transition from configuration p ∈ Q′ to a con-
figuration q ∈ Q′ while having u brought in and v sent out is simulated by rules

32 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

(p, u′/v′, q), u′ ∈ Perm(u), v′ ∈ Perm(v); clearly, |u| ≤ k′ and |v| ≤ k′. The set
of the final states is precisely Qh.

For proving the converse inclusion, take an arbitrary finite automaton M =
(Q,T, δ, q0, F); without loss of generality, we assume that M has at least one
outgoing transition from any non-final state.

A P automaton

Π =
(
O = {c1, c2, b} ∪ T,C = {c1, c2} , Σ = T, µ = []

1
, w1 = c1c2b, R1, i0 = 1

)
R1 = {c1p→ c1q(a, come) | (p, a, q) ∈ δ, p, q ∈ Q, a ∈ T}
∪ {c2x→ c2 | x ∈ {b} ∪ T} ∪ {c2q → c2 | q ∈ F}

can simulate M , using two catalysts c1, c2. Each transition (p, a, q) ∈ δ can be
simulated by rule c1p → c1q(a, come), but also rule the c2a → c2 is needed to
erase the symbol previously brought in. The initial contents of a single membrane
is c1c2q0b, where besides q0, one additional non-catalyst b /∈ {c1, c2}∪T is used to
keep c2 busy in the first step. Halting can be simulated by rule c1q → c1 for each
final state q; in the same step c2 deletes the last symbol brought in.

A P automaton with external output can simulate a finite transducer in the
same way as a P automaton without output simulates a finite automaton. The
only difference is that now the simulated transitions have the form (p, a/u, q), and
the corresponding simulating rules are c1p→ c1q(a, come)(u, out), the rest of the
construction being exactly the same as in the previous paragraph. �

Two catalysts are needed for simulating an arbitrary finite automaton by a
P automaton, since both the state symbol and the symbol brought in from the
environment have to be processed in parallel. For the case of only one catalyst, the
object brought in from the environment itself has to serve as a state. However, in
this way, the last object brought inside completely determines the set of possible
objects that can be brought inside in the next step, which considerably reduces the
generality of finite automata. Having this in mind, we characterize input-driven
finite automata:

Lemma 6. For all m ≥ 1,

LautOtoxallPm (pcat1) = IDREG,
RelautOtoxallPm (pcat1) = RelIDREG.

Proof. The inclusion that at most IDREG/RelIDREG is generated/computed
with one catalyst follows from the fact that exactly one non-catalyst may appear in
any non-halting non-blocking configuration, and, except the initial configuration,
this is precisely the symbol taken from the environment in the previous step. In
any successful computation, the only rules applied in any step, possibly except in
the last step, are erasing one non-catalyst while bringing in another one instead.

For the inclusion that we can generate/compute the entire families
IDREG/RelIDREG, we use a construction similar to that of the previous lemma,

Variants of P Systems with Toxic Objects 33

except instead of erasing the object a brought in the previous step by c2, this ob-
ject is used instead of the state object: each transition (qa, b, qb) now is simulated
by the rule c1a → c1(b, come). The initial contents of a single membrane is c1q0,
where the initial state q0 is an additional symbol not in the input alphabet. Halting
can be simulated by the rules c1a→ c1 for all final states qa.

For the case of a P automaton with external output, the simulation is the
same as above, except that now we also have an output: the transitions to be
simulated have the form (qa, b/u, qb), and the corresponding simulating rules are
c1a → c1(b, come)(u, out); the rest of the construction is exactly the same as in
the previous paragraph. �

Finally, the domain of relations computed with internal input (with either
output region) corresponds to the sets accepted with internal input, see Lemma 2.
Similarly, the range of relations computed with internal output and with internal
input corresponds to the sets generated with internal output, see Lemma 1. The
nature of these relations always results from a finite-state behavior, but we are
not going into further details here; another question to be answered in the future
is the exact characterization of P automata with internal output.

5 Non-Cooperative P Systems with All Objects Being Toxic

In this section we consider P systems without catalysts and with only non-
cooperative rules, yet with all objects being toxic.

5.1 Connection to L Systems

Example 1. Take the following P system with all objects being toxic.

Πint =
(
O = {a, b}, µ = []

1
, w1 = a,R1 = {a→ aa, a→ b}, i0 = 1

)
.

In n computation steps we obtain a2
n

and in a final step b2
n

. Only in this last
step we may apply the rule a→ b introducing the toxic symbol b for which no rule
exists. Hence, the generated set is Ngen (Πint) = {2n | n ≥ 0}.

Example 2. The same set is accepted by the P automaton Πaut and generated by
the P system Πext with external output:

Naut (Πaut) = Ngen (Πext) = Ngen (Πint) = {2n | n ≥ 0} where

Πaut =
(
O = {a, b}, µ = []

1
, w1 = a,R1 = {a→ aa, a→ (b, come)}, i0 = 1

)
;

Πext =
(
O = {a, b}, µ = []1 , w1 = a,R1 = {a→ aa, a→ b(b, out)

}
, i0 = 0).

Indeed, the behavior of Πaut and Πext is the same as that of Πint, except produc-
ing b inside the membrane is replaced by bringing in b from the environment, or
accompanied by sending out b to the environment. Again, if both rules are simul-
taneously applied, then the toxic objects b will block the computation, but still we
will get a result if only symbols b are present in the final configuration.

34 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

We now compare non-cooperative P systems with all objects being toxic to L
systems.

Lemma 7. For (γ, α) ∈ {(gen, int), (gen, ext), (aut,−)},

PsE0L ⊆ PsγOtoxallP1,α (ncoo) .

Proof. Let G = (V, T, P,w) be an E0L system. We recall that for each symbol
a ∈ V , P has to contain some rule with a on the left side. For every a ∈ T , we
replace a by Na throughout all the rules of P . Moreover, we take Na → a into
R for every a ∈ T . These terminal rules are exactly applied in the last step of
a derivation in the P system Π, whereas the other rules in R simulate the rules
from P . As the final step with using the rules Na → a is an additional derivation
step, instead of rules a → λ erasing a symbol a we instead have to use the rules
Na → E and E → λ where E is a new symbol representing the erased symbol for
one step.

Hence, we construct the corresponding non-cooperative P system Π with all
symbols being toxic as follows (for the automaton case, we have to insert Σ = T):

Π = (O = V ∪ {Na | a ∈ T} ∪ {E} , µ = []
1
, w1 = w,R1, i0 = 1),

R1 = {h(a)→ h(u) | a→ u ∈ P, a ∈ V } ∪ {Na → E | a→ λ ∈ P, a ∈ T}
∪ {Na → a | a ∈ T} ∪ {E → λ} ,

where h : V ∪{E} → V \T ∪{Na | a ∈ T}∪{E} is the morphism given by h(a) = a
for X ∈ V \ T ∪ {E} and h(a) = Na for a ∈ T .

By construction, every object from {Na | a ∈ T}∪ {V \ T} can evolve by rules
from R1, while objects in T cannot. If a computation in Π ends up with a config-
uration in which the skin contains both objects from T and objects not from T ,
then the computation is blocked without yielding any result. Therefore, the only
derivations of Π which will not be discarded are those in which Π simulates a
derivation of G up to some configuration h(w), w ∈ (T ∪ {E})∗, and then applies
the rules Na → a and eventually the rule E → λ, and only those, to transform
h(w) into w.

To show the same result for external output, it suffices to set i0 to 0 and
replace every rule Na → a by Na → a(a, out). Alternatively, to show the same
result for external input, it suffices to set i0 to 0 and replace every rule Na → a
by Na → a(a, come). �

In the case of P systems with internal output (without terminal filtering) and
only one membrane, we can directly show the converse inclusion.

Lemma 8. PsgenOtoxallP1,int (ncoo) ⊆ PsE0L.

Proof. Let Π = (O,µ = []1 , w1, R1, i0 = 1) be a non-cooperative P system
with all objects being toxic. We construct the corresponding E0L system G as
follows:

Variants of P Systems with Toxic Objects 35

G = (V = O ∪ {#} , T, P, w = w1),

T = {a ∈ O | there exists no rule a→ u ∈ R with u ∈ O∗} ,
P = R1 ∪ {a→ # | a ∈ T ∪ {#}} .

We immediately observe that, whenever G introduces a terminal symbol, it
will be rewritten into a trap symbol in the next step. Thus, the only way for G to
produce a terminal string is to move from a string over V \T to a string over T in
a single step. But this exactly corresponds to the way in which Π evolves, because
rewriting a terminal a into # in G corresponds to discarding the derivation of Π
in which a is produced alongside non-terminals. �

Corollary 1. PsgenOtoxallP1,int (ncoo) = PsE0L.

Proof. The result follows from Lemma 8 in combination with Lemma 7 for the
case of P systems with internal output and only one membrane. �

In case of multiple membranes or terminal filtering or both, however, there is a
problem: symbols that represent objects in non-output regions do not contribute
to the output. Yet, since E0L is known to be closed under arbitrary morphisms
(see, e.g., [16] volume 1 page 34), the result can be strengthened as follows:

Theorem 2. For all m ≥ 1,

PsE0L = PsgenOtoxallP
T
m,int (ncoo)

= PsgenOtoxallPm,int (ncoo)

= PsgenOtoxallPm,ext (ncoo)

= PsautOtoxallPm (ncoo) .

Proof. We only have to show that any P system with internal output, eventually
even with terminal extraction, or else with external output (terminal extraction
need not be considered in this case, as any non-wanted symbol need not be sent
out) or external input can be simulated by an E0L-system.

First, we can flatten the given P system Π with internal output to only one
membrane, yet keeping in mind that then we have to use terminal extraction to
obtain the results in a clean form. Hence, in this case, we simply apply the construc-
tion from Lemma 8 to the flattened P system Π ′ thus obtaining an E0L-system G
generating a set of strings which exactly represent the multisets generated by the
P system Π ′. In order to obtain the original results, we have to apply a projec-
tion hT erasing all non-terminals only yielding strings/multisets over T . As E0L is
closed under arbitrary morphisms (see, e.g., [16] volume 1 page 34), from G we can
construct an E0L-system G′ directly generating the desired results. If the original
P system Π used terminal extraction to a terminal alphabet Σ, we can to apply
another projection from T to Σ to obtain the desired results (by constructing a
corresponding E0L-system G′′).

36 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

If we have a P system Π using external output, we instead first flatten the
system to an equivalent P system Π ′ with only one membrane, but still having
external output. Then, from this P system Π ′ with one membrane and external
output we construct an equivalent P system Π ′′ with only one membrane region
having internal output in the skin membrane, but with terminal filtering. Instead
of sending a symbol a out by using (a, out) on the right side of a rule in Π, we
replace any occurrence of (a, out) by Na in the rules of the skin membrane in Π ′′.
In that way, the P system Π ′′ keeps each symbol a sent out by Π in the new
inner output membrane i0 = 1 as Na. In the skin membrane, the rules Na → Na
keep these symbols alive until the application of the rules Na → a allows the
system to halt with yielding the desired result if exactly with the application of
these terminal rules no non-terminal afterwards remains in the whole system. As a
subtle detail we have to mention that we again, as in the proof of Lemma 7, have to
be careful with λ-rules a→ λ (again we use the rules a→ E and E → λ instead),
but now also with any other “passive” object b which cannot evolve any more -
such a symbol has to be treated like a terminal symbol, going to an intermediate
symbol Nb before it finally goes to b, and then each of these symbols is projected
to λ by using the terminal extraction.

Hence, we conclude that computations in Π ′′ and in Π yield the same results.
According to the construction given above, we can obtain an E0L-system G′′ such
that Ps (L (G′′)) = Ps (Π ′′) = Ps (Π).

In the automaton case, we can use similar ideas as in the previous case: instead
of (a, come) for terminal symbols from the input alphabet Σ on the right side
of rules of a P automaton Π we use NaN

′
a in a flattened P system Π ′′ with

internal output and terminal extraction. Then N ′a is used instead of a in the rules
of Π ′′ used instead of the corresponding rules of Π, and we also add the rules
Na → Na and the terminal rules Na → a. Moreover, any “passive” object b which
cannot evolve any more has to be treated as already explained before; the same
holds for the dealing with λ-rules a → λ. Hence, finally projecting all terminal
symbols on themselves and all other symbols on λ with the projection hΣ , we
have got a P system with internal input and terminal extraction Π ′′ such that
hΣ(Ps(Π ′′)) = Ps(Π). �

5.2 Internal Input

However, the accepting power of P systems with internal input is much lower,
namely subregular.

Lemma 9. PsaccOtoxallPm(ncoo) (PsREG.

Proof. First, if a P system Π accepts any non-empty input over the input alphabet
Σ, then also the empty input is accepted. Indeed, take an arbitrary P system Π
accepting some multiset win ∈ Σ∗, say in m steps. Each of the objects, both initial
ones and input ones, initially being in the system, will produce some (possibly

Variants of P Systems with Toxic Objects 37

empty) multiset of objects which cannot further evolve by rules of Π. Clearly,
replacing win by λ and following exactly the same evolution of all initial objects,
we will get an accepting computation of at most m steps.

Second, for a similar reason, if win is accepted, than any submultiset of win is
accepted.

Third, if Π accepts some input win containing at most one occurrence of any
symbol in Σ, then it also accepts every input w′in ∈ (alph (win))

∗
, i.e., any multiset

over {a ∈ Σ | |win|a > 0}. Indeed, consider the accepting computation of win, say
of m steps. In this computation, every input object a from win is either erased in at
most m steps, or produces in exactly m steps some non-empty multiset of objects
that cannot evolve by rules of Π; let us call such symbols “passive”. Replacing each
input object by an arbitrary number of its copies, following the same evolution
as in the accepting computation before, we again get a computation where every
input object is either erased in at most m steps, or produces in exactly m steps
some non-empty multiset of passive objects. This computation will either erase
everything in at most m steps, or halt in exactly m steps.

Therefore, non-cooperative P systems with internal input with all symbols
being toxic can accept at most all possible unions of sets from {T ∗ | T ⊆ Σ}. �

It can be shown that last statement from the proof given above actually is an
equality.

Theorem 3. For all m ≥ 1,

PsaccOtoxallPm(ncoo) =

{
Ps

(
n⋃
i=1

T ∗i

)
| Σ alphabet, Ti ⊆ Σ, 1 ≤ i ≤ n, n ≥ 0

}
.

Proof. The inclusion ⊆ follows from the proof of the previous theorem, so it suffices
to prove that all such sets can indeed be accepted. For n = 0, ∅ can be accepted
by the P system

Π =
(
O = {a, b}, Σ = {a}, µ = []

1
, w1 = b, R1 = {b→ b}, i0 = 1

)
.

Take arbitrary numbers n > 0 and k > 0, an input alphabet Σ =
{aj,0 | 1 ≤ j ≤ k} and sets Ti ⊆ Σ, 1 ≤ i ≤ n. We construct a P system accepting
precisely all inputs from

⋃n
i=1 T

∗
i .

Π =
(
O,Σ, µ = []

1
, w1 = λ,R1, i0 = 1

)
,

O = {aj,i | 0 ≤ i ≤ n+ 1, 1 ≤ j ≤ k} ∪ {b},
R1 = {aj,i → aj,i+1 | 0 ≤ i ≤ n, 1 ≤ j ≤ k}
∪ {aj,i → b | 1 ≤ i ≤ n, 1 ≤ j ≤ k, aj,0 ∈ Ti}
∪ {aj,n+1 → aj,n+1 | 1 ≤ j ≤ k} .

Indeed, every input object aj,0 either enters an infinite loop after n + 1 steps, or
evolves into b (that cannot further evolve by the rules of Π) after some number i

38 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

of steps if aj,0 ∈ Ti. The only way a non-empty input is accepted is if all objects
evolve into b in the same number i of steps, which is possible if and only if the
input is contained in

⋃n
i=1 T

∗
i . �

5.3 Describing Languages

In the previous subsection we have studied numbers and vectors described by
non-cooperative P systems with all objects being toxic. We have shown that they
characterize very limited subregular behavior in the case of internal input, while
in the cases of external input, internal output or external output their power is
strongly related to that of E0L systems. A natural question arises – what can
we say about languages? We now illustrate the difficulty of this problem by a
few examples, generating non-context-free languages and illustrating the power of
synchronization emerging from halting with toxic objects.

Example 3. Our first example shows how a simple non-context-free language can
be accepted using external input:

Π =
(
O = {S, a, b, c}, µ = []

1
, w1 = S,R1, i0 = 0

)
,

R1 = {S → S(a, come), S → a, a→ a, a→ (bc, come)} .

This P system accepts the language La(bc) =
⋃
n≥1 {an}Perm (bncn), since the

multiplicities of symbols a, b and c brought in are the same, and all objects b and
c must be brought inside in the same (i.e., in the last) step of the computation,
which must be after all objects a have been brought inside.

Note that, without toxicity, the result would still be some non-context-free
language consisting of the same number of symbols a, b and c, but it would also
contain strings which are not of the form {a}∗ {b, c}∗.

It is no longer surprising that replacing (x, come) by x(x, out) for all x ∈
{a, b, c} in the system above, we get a P system with external output generating
the same language La(bc).

Example 4. If, in the previous example, we replace each rule a → (bc, come) by
the two rules a → (b, come) and b → (c, come), we get a P automaton accepting
language La(b)(c) = {anbncn | n ≥ 1}, because to halt without being blocked, all
objects c must be brought inside in the same step, and therefore also all objects
b must have been brought inside just one step before that, and hence all objects
a must have already been brought in by then. Clearly, replacing (x, come) by
x(x, out) for all x ∈ {a, b, c} throughout all the rules, we get a P system with
external output again generating the language La(b)(c).

In the rest of this section we show that non-cooperative P systems can generate
rather complicated languages even without making use of the synchronization
power of toxicity, and taking all objects to be toxic does not change the language.

Variants of P Systems with Toxic Objects 39

The following example of a difficult language generated by a non-cooperative
P system with external output is taken from [2]. This language is considerably
more “difficult” than languages in REG · Perm(REG), which informally can be
explained as follows: besides permutations of symbols sent out at the same time,
it exhibits another kind of non-context-freeness, although this second source of
“difficulty” alone, however, could be captured as the intersection of two linear
languages.

Example 5. Consider the non-cooperative P system with external output

ΠD =
(
O = {D,D′, a, b, c, a′, b′, c′} , µ = []

1
, w1 = DD,R1, i0 = 0

)
,

R1 =
{
D → (a, out)(b, out)(c, out)D′D′, D → (a, out)(b, out)(c, out),

D′ → (a′, out)(b′, out, (c′, out)DD, D′ → (a′, out)(b′, out)(c′, out)
}
.

The contents of region 1 is a population of objects D, initially 2, which are
primed if the step is odd. Assume that there are k objects inside the system.
In each step, every symbol D is either erased or doubled (and primed or de-
primed), so the next step the number of objects inside the system will be any
even number between 0 and 2k. In addition to that, the output during that step
is Perm

(
(abc)k

)
, primed if the step is odd. Hence, the generated language can be

described as

L (ΠD) =
⋃

k0=1, 0≤ki≤2ki−1, 1≤i≤2t+1, t≥0

Perm
(
(abc)2k0

)
Perm

(
(a′b′c′)2k1

)
· · ·

Perm
(
(abc)2k2t

)
Perm

(
(a′b′c′)2k2t+1

)
.

To give an idea of how complex a language generated by a non-cooperative
membrane system can be, imagine that the skin may contain populations of mul-
tiple symbols that (like D in the example above) can be erased or multiplied (with
different periods), and also be rewritten into each other. The same, of course, hap-
pens in usual context-free grammars, but since the terminal symbols in P systems
with external output are collected from the derivation tree level by level instead
of from left to right as in context-free grammars, the effect is quite different.

We finally again mention that the generated language remains the same even
if all objects are toxic. Moreover, by replacing all outputs of the form (x, out) by
(x, come) and adding rules x → λ we can convert this P system with external
output into a P automaton defining the same language.

6 Catalytic P Systems with Exactly the Catalysts being
Toxic Generate at Least PsMAT

In this section we investigate catalytic P systems where precisely the catalysts are
toxic, i.e., the computation is aborted if any of them is not used in some step

40 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

before the computation halts. We prove that at least all Parikh sets of matrix
languages can be generated in this setting, using the fact that partially blind
register machines generate precisely PsMAT .

Theorem 4. For all m ≥ 1,

PsgenOtoxcatPm,int(cat∗) ⊇ PsMAT.

Proof. Let M = (d,B, l0, lh, P) be a partially blind register machine, with the first
k registers being its output registers. Let e = fk+1 · · · fd and let e(r) be e without
fr. Without loss of generality, we assume that the first instruction labeled by l0 is
an ADD-instruction. We then construct the following P system.

Π = (O,C, µ = []
1
, w1 = l0efd+1, R1, i0 = 1), where

C = {cr | k + 1 ≤ r ≤ d} ∪ {cp},
O = C ∪B ∪ {fr | m+ 1 ≤ r ≤ d+ 1} ∪ {or | 1 ≤ r ≤ d},
R1 = {cpli → cpljore, cpli → cplkore | li : (ADD(r), lj , lk) ∈ P}
∪ {cpli → cplje(r) | li : (SUB(r), lj) ∈ P}
∪ {cror → cr, crfr → cr, crfd+1 → cr# | k + 1 ≤ r ≤ d}
∪ {x→ # | x ∈ B ∪ {#} ∪ {fr | k + 1 ≤ r ≤ d}}
∪ {cplh → cpe} ∪ {cpfd+1 → cp} .

The catalyst cr for the working register r, k + 1 ≤ r ≤ d, is kept busy by the
single copy of the symbol fr; only in the case of a SUB-instruction on r, in the next
step the rule cror → cr should be applied, hence, e(r) is taken instead of e, thus
leaving the catalyst cr free for an object or. On the other hand, if such a symbol
or in that case is not present, due to maximal parallelism the rule crfd+1 → cr#
introducing the trap symbol # has to be applied. The catalyst cp is used for
guiding the computation according to the program given by P . When M reaches
the final halting instruction labeled by lh, then for a last time e is generated, but
no instruction label is generated any more, hence, in the last step of a successful
computation of Π the rule cpfd+1 → cp will be applied together with the rules
crfr → cr for k + 1 ≤ r ≤ d. The computation in Π will then only stop with
yielding a result if no rule can be applied any more, i.e., if no trap symbol has
been introduced during the computation, and moreover, at the end no symbol or
for k + 1 ≤ r ≤ d is present, i.e., if all working registers are empty.

The lack of the symbol fr when a SUB-instruction on register r is carried out
guarantees that the computation is trapped if no register symbol or, k+1 ≤ r ≤ d,
is present by the enforced application of the rule crfd+1 → cr#. If the final rule
cpfd+1 → cp is applied too early, i.e., as long as some l ∈ B is present, then the
introduction of the trap symbol # by the rule l → # is enforced by the maximal
parallelism.

We finally observe that only the catalysts are toxic here, so any number of
symbols or with 1 ≤ r ≤ d can be generated during any successful computation.

�

Variants of P Systems with Toxic Objects 41

The preceding theorem shows that a partially blind register machine with m−1
working registers can be simulated by a P system with internal output in the single
membrane with at most m catalysts these being exactly the toxic objects.

7 Conclusion and Future Research

In this paper we have introduced multiple variants of P systems with toxic objects,
depending on which objects are toxic. It is important to note that so far in P
systems toxic objects and the concept of synchronized halting with toxic objects
has not been used in the literature, and thus toxic objects also have not been used
to change the computational power of P systems, but rather to decrease the rule
complexity of P systems (toxic objects in that case being equivalent to the usual
ones, additionally having rules rewriting them into a trap symbol thus forcing the
computation to never halt). In this paper, the results are quite different. The most
visible one is the non-cooperative case, where toxicity boosts the computational
power from PsREG to PsE0L. On the other side, requiring certain, or even
all, objects to be toxic can also bring limitations to the computational power.
The most dramatic limitation is the power of purely catalytic P systems, where
complete toxicity lowers the power of internal output from PsRE all the way down
to PsFIN , and the power of internal input from NRE down to either accepting
all numbers, or accepting very restricted finite sets.

Most results we have obtained here describe the computational power of P
systems with all objects being toxic or precisely all catalysts being toxic, depending
on the kinds of rules used (e.g., non-cooperative, purely catalytic or catalytic), the
number of membranes, the output region, in terms of number sets, vector sets or
languages, or even computing relations. We repeat the results we obtained in this
paper, for easier comparison.

For all m ≥ 1, we have shown that

PsgenOtoxallPm,int (pcatk) = PsFIN, k ≥ 1,
NaccOtoxallPm (pcatk) = {{d} | 0 ≤ d ≤ k − 1}

∪ {{0, k′} | 0 ≤ k′ ≤ k} ∪ {∅,N} , k ≥ 1,
LgenOtoxallPm (pcatk) = REG, k ≥ 1,
LautOtoxallPm (pcatk) = REG, k ≥ 2,

RelautOtoxallPm (pcatk) = RelREG, k ≥ 2,
LautOtoxallPm (pcat1) = IDREG,

RelautOtoxallPm (pcat1) = RelIDREG,
PsgenOtoxallP

T
m,int (ncoo) = PsE0L,

PsgenOtoxallPm,int (ncoo) = PsE0L,
PsgenOtoxallPm,ext (ncoo) = PsE0L,

PsautOtoxallPm (ncoo) = PsE0L,
PsaccOtoxallPm(ncoo) = {Ps (

⋃n
i=1 T

∗
i) | Σ alphabet, Ti ⊆ Σ, 1 ≤ i ≤ n, n ≥ 0} ,

PsgenOtoxcatPm,int(cat∗) ⊇ PsMAT.

42 Artiom Alhazov, Rudolf Freund, and Sergiu Ivanov

Non-cooperative P systems with all objects being toxic have been shown to be
quite versatile, for example, we can easily generate {anbncn | n ≥ 1}.

Multiple problems remain open. We find particularly interesting the following
ones:

• Characterize PsgenOtoxcatPm,int(cat∗) and all other possible variants of re-
stricting the set of toxic objects not yet covered by the results obtained in this
paper.

• There still remains the open problem how to characterize the families of sets
of (vectors of) natural numbers generated by [purely] catalytic P systems with
only one [two] catalyst[s].

References

1. A. Alhazov, B. Aman, R. Freund: P systems with anti-matter. In: [9], 66–85.
2. A. Alhazov, C. Ciubotaru, Yu. Rogozhin, S. Ivanov: The family of languages gen-

erated by non-cooperative membrane systems. In: Gh. Păun, M.J. Pérez-Jiménez,
A. Riscos-Núñez, G. Rozenberg, A. Salomaa: Membrane Computing, International
Conference, CMC11, Jena, Lecture Notes in Computer Science 6501, 2011, 65–79.

3. R. Alur, P. Madhusudan: Visibly pushdown languages. In: L. Babai (Ed.): Proceedings
of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA,
June 13-16, 2004, 202–211, ACM, 2004.

4. E. Csuhaj-Varjú, Gy. Vaszil: P automata or purely communicating accepting P sys-
tems. In: Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron (Eds.): Membrane
Computing, International Workshop, WMC-CdeA 2002, Curtea de Argeş, Roma-
nia, August 19–23, 2002, Revised Papers. Lecture Notes in Computer Science 2597,
Springer, 2003, 219–233.

5. R. Freund, L. Kari, M. Oswald, P. Sośık: Computationally universal P systems with-
out priorities: two catalysts are sufficient. Theoretical Computer Science 330 (2),
251–266 (2005).

6. R. Freund, A. Leporati, G. Mauri, A. E. Porreca, S. Verlan, C. Zandron: Flatten-
ing in (tissue) P systems. In: A. Alhazov, S. Cojocaru, M. Gheorghe, Yu. Rogozhin,
G. Rozenberg, A. Salomaa (Eds.): Membrane Computing - 14th International Con-
ference, CMC 2013, Chişinău, Republic of Moldova, August 20-23, 2013, Revised
Selected Papers, Lecture Notes in Computer Science 8340, Springer, 2014, 173–188.

7. R. Freund, I. Pérez-Hurtado, A. Riscos-Núñez , S. Verlan: A formalization of mem-
brane systems with dynamically evolving structures. International Journal of Com-
puter Mathematics 90 (4) (2013), 801-815.

8. R. Freund, M. Oswald: A short note on analysing P systems. Bulletin of the EATCS
78, 2002, 231–236.

9. M. Gheorghe, G. Rozenberg, A. Salomaa, P. Sośık, C. Zandron: 15th International
Conference, CMC 2014, Prague, Czech Republic, August 20-22, 2014, Revised Se-
lected Papers. Lecture Notes in Computer Science 8961, Springer, 2014.

10. M. L. Minsky: Computation: Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, New Jersey, USA, 1967.

11. A. Okhotin, K. Salomaa: Complexity of input-driven pushdown automata. SIGACT
News 45 (2), 47–67 (2014).

Variants of P Systems with Toxic Objects 43

12. Gh. Păun: Computing with Membranes. J. Comput. Syst. Sci. 61, 108–143 (2000);
also see TUCS Report 208, 1998, www.tucs.fi.

13. Gh. Păun: Computing with Membranes. Journal of Computer and System Sciences
61 (1) (2000), 108–143 (and Turku Center for Computer Science-TUCS Report 208,
November 1998, www.tucs.fi).

14. Gh. Păun: Membrane Computing. An Introduction. Springer, 2002.
15. Gh. Păun, G. Rozenberg, A. Salomaa (Eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press, 2010.
16. G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages, 3 volumes.

Springer, 1997.
17. P. Sośık, J. Matyšek: Membrane computing: when communication is enough. In:

C. Calude, M. Dinneen, F. Peper (Eds.): Unconventional Models of Computation
2002, Lecture Notes in Computer Science 2509, Springer, 2002, 264–275.

18. The P Systems Website: http://ppage.psystems.eu.

Extended Spiking Neural P Systems
with White Hole Rules

Artiom Alhazov1, Rudolf Freund2, Sergiu Ivanov3, Marion Oswald2, and
Sergey Verlan3

1 Institute of Mathematics and Computer Science, Academy of Sciences of Moldova
Str. Academiei 5, Chişinău, MD 2028, Moldova
E-mail: artiom@math.md

2 Faculty of Informatics, Vienna University of Technology
Favoritenstr. 9, A-1040 Wien, Austria
E-mail: {rudi,marion}@emcc.at

3 Université Paris Est, France
E-mail: {sergiu.ivanov,verlan}@u-pec.fr

Summary. We consider extended spiking neural P systems with the additional possi-
bility of so-called “white hole rules”, which send the complete contents of a neuron to
other neurons, and we show how this extension of the original model allow for easy proofs
of the computational completeness of this variant of extended spiking neural P systems
using only one actor neuron. Using only such white hole rules, we can easily simulate
special variants of Lindenmayer systems.

1 Introduction

Based on the biological background of neurons sending electrical impulses along
axons to other neurons, several models were developed in the area of neural com-
putation, e.g., see [15], [16], and [10]. In the area of P systems, the model of spiking
neural P systems was introduced in [14]. Whereas the basic model of membrane
systems reflects hierarchical membrane structures, the model of tissue P systems
considers cells to be placed in the nodes of a graph. This variant was first consid-
ered in [23] and then further elaborated, for example, in [9] and [17]. In spiking
neural P systems, the cells are arranged as in tissue P systems, but the contents
of a cell (neuron) consists of a number of so-called spikes, i.e., of a multiset over
a single object. The rules assigned to a cell allow us to send information to other
neurons in the form of electrical impulses (also called spikes) which are summed up
at the target cell; the application of the rules depends on the contents of the neuron
and in the general case is described by regular sets. As inspired from biology, the
cell sending out spikes may be “closed” for a specific time period corresponding

46 A. Alhazov et al.

to the refraction period of a neuron; during this refraction period, the neuron is
closed for new input and cannot get excited (“fire”) for spiking again.

The length of the axon may cause a time delay before a spike arrives at the
target. Moreover, the spikes coming along different axons may cause effects of dif-
ferent magnitude. All these biologically motivated features were included in the
model of extended spiking neural P systems considered in [1], the most impor-
tant theoretical feature being that neurons can send spikes along the axons with
different magnitudes at different moments of time. In this paper, we will further
extend the model of extended spiking neural P systems by using so-called “white
hole rules”, which allow us to use the whole contents of a neuron and send it to
other cells, yet eventually multiplied by some constant rational number.

In the literature, several variants how to obtain results from the computations
of a spiking neural P system have been investigated. For example, in [14] the out-
put of a spiking neural P system was considered to be the time between two spikes
in a designated output cell. It was shown how spiking neural P systems in that
way can generate any recursively enumerable set of natural numbers. Moreover, a
characterization of semilinear sets was obtained by spiking neural P system with
a bounded number of spikes in the neurons. These results can also be obtained
with even more restricted forms of spiking neural P systems, e.g., no time delay
(refraction period) is needed, as it was shown in [13]. In [4], the generation of
strings (over the binary alphabet 0 and 1) by spiking neural P systems was inves-
tigated; due to the restrictions of the original model of spiking neural P systems,
even specific finite languages cannot be generated, but on the other hand, regular
languages can be represented as inverse-morphic images of languages generated by
finite spiking neural P systems, and even recursively enumerable languages can be
characterized as projections of inverse-morphic images of languages generated by
spiking neural P systems. The problems occurring in the proofs are also caused by
the quite restricted way the output is obtained from the output neuron as sequence
of symbols 0 and 1. The strings of a regular or recursively enumerable language
could be obtained directly by collecting the spikes sent by specific output neurons
for each symbol.

In the extended model considered in [1], a specific output neuron was used for
each symbol. Computational completeness could be obtained by simulating register
machines as in the proofs elaborated in the papers mentioned above, yet in an
easier way using only a bounded number of neurons. Moreover, regular languages
could be characterized by finite extended spiking neural P systems; again, only a
bounded number of neurons was needed.

In this paper, we now extend this model of extended spiking neural P systems
by also using so-called “white hole rules”, which may send the whole contents of a
neuron along its axons, eventually even multiplied by a (positive) rational number.
In that way, the whole contents of a neuron can be multiplied by a rational number,
in fact, multiplied with or divided by a natural number. Hence, even one single
neuron is able to simulate the computations of an arbitrary register machine.

Extended SN P Systems with White Hole Rules 47

The idea of consuming the whole contents of a neuron by white hole rules is
closely related with concept of the exhaustive use of rules, i.e., an enabled rule is
applied in the maximal way possible in one step; P systems with the exhaustive
use of rules can be used in the usual maximally parallel way on the level of the
whole system or in the sequential way, for example, see [27] and [26]. Yet all the
approaches of spiking neural P systems with the exhaustive use of rules are mainly
based on the classic definitions of spiking neural P systems, whereas the spiking
neural P systems with white hole rules as investigated in this paper are based on
the extended model as introduced in [1].

The rest of the paper is organized as follows: In the next section, we recall some
preliminary notions and definitions from formal language theory, especially the
definition and some well-known results for register machines. In section 3 we recall
the definitions of the extended model of spiking neural P systems as considered
in [1] as well as the most important results established there. Moreover, we show
a new result for extended spiking neural P systems – such systems with only one
actor neuron have exactly the same computational power as register machines with
only one register that can be decremented.

In section 4, we define the model of extended spiking neural P systems extended
by the use of white hole rules. Besides giving some examples, for instance showing
how Lindenmayer systems can be simulated by extended spiking neural P systems
only using white hole rules, we prove that the computations of an arbitrary register
machine can be simulated by only one single neuron equipped with the most
powerful variant of white hole rules. In that way we can show that extended
spiking neural P systems equipped with white hole rules are even more powerful
than extended spiking neural P systems, which need (at least) two neurons to
be able to simulate the computations of an arbitrary register machine. Finally, in
section 5 we give a short summary of the results obtained in this paper and discuss
some future research topics for extended spiking neural P systems with white hole
rules, for example, variants with inhibiting neurons or axons.

2 Preliminaries

In this section we recall the basic elements of formal language theory and espe-
cially the definitions and results for register machines; we here mainly follow the
corresponding section from [1].

For the basic elements of formal language theory needed in the following, we
refer to any monograph in this area, in particular, to [5] and [25]. We just list a
few notions and notations: V ∗ is the free monoid generated by the alphabet V
under the operation of concatenation and the empty string, denoted by λ, as unit
element; for any w ∈ V ∗, |w| denotes the number of symbols in w (the length
of w). N+ denotes the set of positive integers (natural numbers), N is the set
of non-negative integers, i.e., N = N+ ∪ {0}, and Z is the set of integers, i.e.,
Z = N+ ∪ {0} ∪ −N+. The interval of non-negative integers between k and m is

48 A. Alhazov et al.

denoted by [k..m], and k · N+ denotes the set of positive multiples of k. Observe
that there is a one-to-one correspondence between a set M ⊆ N and the one-
letter language L (M) = {an | n ∈M}; e.g., M is a regular (semilinear) set of
non-negative integers if and only if L (M) is a regular language. By FIN

(
Nk
)
,

REG
(
Nk
)
, and RE

(
Nk
)
, for any k ∈ N, we denote the sets of subsets of Nk that

are finite, regular, and recursively enumerable, respectively.
By REG (REG (V)) and RE (RE (V)) we denote the family of regular and

recursively enumerable languages (over the alphabet V , respectively). By ΨT (L)
we denote the Parikh image of the language L ⊆ T ∗, and by PsFL we denote the
set of Parikh images of languages from a given family FL. In that sense, PsRE (V)
for a k-letter alphabet V corresponds with the family of recursively enumerable
sets of k-dimensional vectors of non-negative integers.

2.1 Register Machines

The proofs of the results establishing computational completeness in the area of
P systems often are based on the simulation of register machines; we refer to [18]
for original definitions, and to [7] for definitions like those we use in this paper:

An n-register machine is a construct M = (n, P, l0, lh) , where n is the number
of registers, P is a finite set of instructions injectively labelled with elements from
a given set Lab (M), l0 is the initial/start label, and lh is the final label.

The instructions are of the following forms:

– l1 : (ADD (r) , l2, l3) (ADD instruction)
Add 1 to the contents of register r and proceed to one of the instructions
(labelled with) l2 and l3.

– l1 : (SUB (r) , l2, l3) (SUB instruction)
If register r is not empty, then subtract 1 from its contents and go to instruction
l2, otherwise proceed to instruction l3.

– lh : halt (HALT instruction)
Stop the machine. The final label lh is only assigned to this instruction.

A (non-deterministic) register machine M is said to generate a vector
(s1, · · · , sβ) of natural numbers if, starting with the instruction with label l0 and
all registers containing the number 0, the machine stops (it reaches the instruction
lh : halt) with the first β registers containing the numbers s1, · · · , sβ (and all other
registers being empty).

Without loss of generality, in the succeeding proofs we will assume that
in each ADD instruction l1 : (ADD (r) , l2, l3) and in each SUB instruction
l1 : (SUB (r) , l2, l3) the labels l1, l2, l3 are mutually distinct (for a short proof
see [9]).

The register machines are known to be computationally complete, equal in
power to (non-deterministic) Turing machines: they generate exactly the sets of
vectors of non-negative integers which can be generated by Turing machines, i.e.,
the family PsRE.

Extended SN P Systems with White Hole Rules 49

Based on the results established in [18], the results proved in [7] and [8] imme-
diately lead to the following result:

Proposition 1. For any recursively enumerable set L ⊆ Nβ of vectors of non-
negative integers there exists a non-deterministic (β + 2)-register machine M gen-
erating L in such a way that, when starting with all registers 1 to β+2 being empty,
M non-deterministically computes and halts with ni in registers i, 1 ≤ i ≤ β, and
registers β+ 1 and β+ 2 being empty if and only if (n1, ..., nβ) ∈ L. Moreover, the
registers 1 to β are never decremented.

When considering the generation of languages, we can use the model of a
register machine with output tape, which also uses a tape operation:

– l1 : (write (a) , l2)
Write symbol a on the output tape and go to instruction l2.

We then also specify the output alphabet T in the description of the register
machine with output tape, i.e., we write M = (n, T, P, l0, lh).

The following result is folklore, too (e.g., see [18] and [6]):

Proposition 2. Let L ⊆ T ∗ be a recursively enumerable language. Then L can be
generated by a register machine with output tape with 2 registers. Moreover, at the
beginning and at the end of a successful computation generating a string w ∈ L
both registers are empty, and finally, only successful computations halt.

3 Extended Spiking Neural P Systems

The reader is supposed to be familiar with basic elements of membrane computing,
e.g., from [21] and [24]; comprehensive information can be found on the P systems
web page [28]. Moreover, for the motivation and the biological background of
spiking neural P systems we refer the reader to [14]. The definition of an extended
spiking neural P system is mainly taken from [1], with the number of spikes k still
be given in the “classical” way as ak; later on, we simple will use the number k
itself only instead of ak.

3.1 The Definition of ESNP Systems

The definitions given in the following are taken from [1].

Definition 1. An extended spiking neural P system (of degree m ≥ 1) (in the
following we shall simply speak of an ESNP system) is a construct

Π = (m,S,R)

where

50 A. Alhazov et al.

• m is the number of cells (or neurons); the neurons are uniquely identified by
a number between 1 and m (obviously, we could instead use an alphabet with
m symbols to identify the neurons);

• S describes the initial configuration by assigning an initial value (of spikes) to
each neuron; for the sake of simplicity, we assume that at the beginning of a
computation we have no pending packages along the axons between the neurons;

• R is a finite set of rules of the form
(
i, E/ak → P ; d

)
such that i ∈ [1..m]

(specifying that this rule is assigned to cell i), E ⊆ REG ({a}) is the checking
set (the current number of spikes in the neuron has to be from E if this rule
shall be executed), k ∈ N is the “number of spikes” (the energy) consumed
by this rule, d is the delay (the “refraction time” when neuron i performs this
rule), and P is a (possibly empty) set of productions of the form (l, w, t) where
l ∈ [1..m] (thus specifying the target cell), w ∈ {a}∗ is the weight of the energy
sent along the axon from neuron i to neuron l, and t is the time needed before
the information sent from neuron i arrives at neuron l (i.e., the delay along
the axon). If the checking sets in all rules are finite, then Π is called a finite
ESNP system.

Definition 2. A configuration of the ESNP system is described as follows:

• for each neuron, the actual number of spikes in the neuron is specified;
• in each neuron i, we may find an “activated rule”

(
i, E/ak → P ; d′

)
waiting to

be executed where d′ is the remaining time until the neuron spikes;
• in each axon to a neuron l, we may find pending packages of the form (l, w, t′)

where t′ is the remaining time until |w| spikes have to be added to neuron l
provided it is not closed for input at the time this package arrives.

A transition from one configuration to another one now works as follows:

• for each neuron i, we first check whether we find an “activated rule”(
i, E/ak → P ; d′

)
waiting to be executed; if d′ = 0, then neuron i “spikes”,

i.e., for every production (l, w, t) occurring in the set P we put the correspond-
ing package (l, w, t) on the axon from neuron i to neuron l, and after that, we
eliminate this “activated rule”

(
i, E/ak → P ; d′

)
;

• for each neuron l, we now consider all packages (l, w, t′) on axons leading to
neuron l; provided the neuron is not closed, i.e., if it does not carry an activated
rule

(
i, E/ak → P ; d′

)
with d′ > 0, we then sum up all weights w in such

packages where t′ = 0 and add this sum of spikes to the corresponding number
of spikes in neuron l; in any case, the packages with t′ = 0 are eliminated from
the axons, whereas for all packages with t′ > 0, we decrement t′ by one;

• for each neuron i, we now again check whether we find an “activated rule”(
i, E/ak → P ; d′

)
(with d′ > 0) or not; if we have not found an “activated rule”,

we now may apply any rule
(
i, E/ak → P ; d

)
from R for which the current num-

ber of spikes in the neuron is in E and then put a copy of this rule as “activated
rule” for this neuron into the description of the current configuration; on the
other hand, if there still has been an “activated rule”

(
i, E/ak → P ; d′

)
in the

Extended SN P Systems with White Hole Rules 51

neuron with d′ > 0, then we replace d′ by d′−1 and keep
(
i, E/ak → P ; d′ − 1

)
as the “activated rule” in neuron i in the description of the configuration for
the next step of the computation.

After having executed all the substeps described above in the correct sequence,
we obtain the description of the new configuration. A computation is a sequence of
configurations starting with the initial configuration given by S. A computation is
called successful if it halts, i.e., if no pending package can be found along any axon,
no neuron contains an activated rule, and for no neuron, a rule can be activated.

In the original model introduced in [14], in the productions (l, w, t) of a rule(
i, E/ak → {(l, w, t)} ; d

)
, only w = a (for spiking rules) or w = λ (for forgetting

rules) as well as t = 0 was allowed (and for forgetting rules, the checking set E
had to be finite and disjoint from all other sets E in rules assigned to neuron i).
Moreover, reflexive axons, i.e., leading from neuron i to neuron i, were not al-
lowed, hence, for (l, w, t) being a production in a rule

(
i, E/ak → P ; d

)
for neuron

i, l 6= i was required. Yet the most important extension is that different rules for
neuron i may affect different axons leaving from it whereas in the original model
the structure of the axons (called synapses there) was fixed. In [1], the sequence
of substeps leading from one configuration to the next one together with the in-
terpretation of the rules from R was taken in such a way that the original model
can be interpreted in a consistent way within the extended model introduced in
that paper. As mentioned in [1], from a mathematical point of view, another inter-
pretation would have been even more suitable: whenever a rule

(
i, E/ak → P ; d

)
is activated, the packages induced by the productions (l, w, t) in the set P of a
rule

(
i, E/ak → P ; d

)
activated in a computation step are immediately put on the

axon from neuron i to neuron l, whereas the delay d only indicates the refraction
time for neuron i itself, i.e., the time period this neuron will be closed. The delay t
in productions (l, w, t) can be used to replace the delay in the neurons themselves
in many of the constructions elaborated, for example, in [14], [23], and [4]. Yet as
in (the proofs of computational completeness given in) [1], we shall not need any
of the delay features in this paper, hence we need not go into the details of these
variants of interpreting the delays in more details.

Depending on the purpose the ESNP system is to be used, some more features
have to be specified: for generating k-dimensional vectors of non-negative integers,
we have to designate k neurons as output neurons; the other neurons then will also
be called actor neurons. There are several possibilities to define how the output
values are computed; according to [14], we can take the distance between the first
two spikes in an output neuron to define its value. As in [1], also in this paper, we
take the number of spikes at the end of a successful computation in the neuron
as the output value. For generating strings, we do not interpret the spike train
of a single output neuron as done, for example, in [4], but instead consider the
sequence of spikes in the output neurons each of them corresponding to a specific
terminal symbol; if more than one output neuron spikes, we take any permutation
of the corresponding symbols as the next substring of the string to be generated.

52 A. Alhazov et al.

Remark 1. As already mentioned, there is a one-to-one correspondence between
(sets of) strings ak over the one-letter alphabet {a} and the corresponding
non-negative integer k. Hence, in the following, we will consider the checking
sets E of a rule

(
i, E/ak → P ; d

)
to be sets of non-negative integers and write

k instead of ak for any w = ak in a production (l, w, t) of P . Moreover, if
no delays d or t are needed, we simply omit them. For example, instead of(
2,
{
ai
}
/ai →

{
(1, a, 0) ,

(
2, aj , 0

)}
; 0
)

we write (2, {i} /i→ {(1, 1) , (2, j)}).

3.2 ESNP Systems as Generating Devices

As in [1], we first consider extended spiking neural P systems as generating devices.
The following example gives a characterization of regular sets of non-negative
integers:

Example 1. Any semilinear set of non-negative integers M can be generated by a
finite ESNP system with only two neurons.

Let M be a semilinear set of non-negative integers and consider a regular gram-
mar G generating the language L (G) ⊆ {a}∗ with N (L (G)) = M ; without loss of
generality we assume the regular grammar to be of the form G = (N, {a} , A1, P)
with the set of non-terminal symbols N , N = {Ai | 1 ≤ i ≤ m}, the start symbol
A1, and P the set of regular productions of the form B → aC with B,C ∈ N and
A → λ. We now construct the finite ESNP system Π = (2, S,R) that generates
an element of M by the number of spikes contained in the output neuron 1 at the
end of a halting computation: we start with one spike in neuron 2 (representing
the start symbol A1 and no spike in the output neuron 1, i.e., S = {(1, 0) , (2, 1)}.
The production Ai → aAj is simulated by the rule (2, {i} /i→ {(1, 1) , (2, j)}) and
Ai → λ is simulated by the rule (2, {i} /i→ ∅), i.e., in sum we obtain

Π = (2, S,R) ,
S = {(1, 0) , (2, 1)} ,
R = {(2, {i} /i→ {(1, 1) , (2, j)}) | 1 ≤ i, j ≤ m,Ai → aAj ∈ P}
∪ {(2, {i} /i→ ∅) | 1 ≤ i ≤ m,Ai → λ ∈ P} .

Neuron 2 keeps track of the actual non-terminal symbol and stops the derivation
as soon as it simulates a production Ai → λ, because finally neuron 2 is empty.
In order to guarantee that this is the only way how we can obtain a halting
computation in Π, without loss of generality we assume G to be reduced, i.e., for
every non-terminal symbol A from N there is a regular production with A on the
left-hand side. These observations prove that we have N (L (G)) = M .

The following results were proved in [1]:

Lemma 1. For any ESNP system where during any computation only a bounded
number of spikes occurs in the actor neurons, the generated language is regular.

Extended SN P Systems with White Hole Rules 53

Theorem 1. Any regular language L with L ⊆ T ∗ for a terminal alphabet T with
card (T) = n can be generated by a finite ESNP system with n + 1 neurons. On
the other hand, every language generated by a finite ESNP system is regular.

Corollary 1. Any semilinear set of n-dimensional vectors can be generated by
a finite ESNP system with n + 1 neurons. On the other hand, every set of n-
dimensional vectors generated by a finite ESNP system is semilinear.

Theorem 2. Any recursively enumerable language L with L ⊆ T ∗ for a terminal
alphabet T with card (T) = n can be generated by an ESNP system with n + 2
neurons.

Corollary 2. Any recursively enumerable set of n-dimensional vectors can be gen-
erated by an ESNP system with n+ 2 neurons.

Besides these results already established in [1], we now prove a characterization
of languages and sets of (vectors of) natural numbers generated by ESNPS with
only one neuron. Roughly speaking, having only one actor neuron corresponds
with, besides output registers, having only one register which can be decremented.

Lemma 2. For any ESNP system with only one actor neuron we can effectively
construct a register machine with output tape and only one register that can be
decremented, generating the same language, respectively a register machine with
one register that can be decremented, generating the same set of (vectors of) natural
numbers.

Proof. First we notice that the delays would not matter: the overall system is
sequential, and therefore it is always possible to pre-compute what happens until
the actor neuron re-opens; the weight of all pending packages is also bounded. All
the details of storing and managing all these features by the finite control of the
register machines are tedious, but very much straightforward. In the following, we
therefore assume that the ESNPS is given as:

Π = (n+ 1, S,R),

S = {(1,m1), · · · , (n,mn), (n+ 1,mn+1)},
R = {(n+ 1, Er/ir → {(1, pr,1), · · · , (n, pr,n), (n+ 1, pr,n+1)}) | 1 ≤ r ≤ q}.

Thus, given n, Π can be specified by the following non-negative integers: the num-
ber q of rules, initial spikes m1, · · · ,mn,mn+1, and, for every rule r, the following
ingredients: the number ir of consumed spikes, the numbers pr,1, · · · , pr,n+1 of pro-
duced spikes, and the regular sets Er of numbers. Note that, as it will be obvious
later, it is enough to only consider the case m1 = · · · = mn = 0, because other-
wise placing the initial spikes can be done by a 1-register machine in a preparatory
phase, before switching to the instruction corresponding to starting the simulation.

The main challenge of the construction is to remember the actual “status”
of the regular checking sets. It is known that every regular set E of numbers

54 A. Alhazov et al.

is semilinear, and it is possible to write Er =
⋃lr
j=1(krN + dr,j) ∪ Dr, i.e., all

the linear sets constituting Er can be reduced to a common period kr, and an
additional finite set. Then, we can take a common multiple k of periods kr, and
represent each checking set as Er =

(
kN+ + {d′r,j | 1 ≤ j ≤ l′r}

)
∪D′r, where D′r is

finite.
Finally, take a number M such that M is a multiple of k, that M is larger than

any element of Dr, 1 ≤ r ≤ q, that M is larger than any number d′r,j , 1 ≤ j ≤ l′r,
1 ≤ r ≤ q, that M is larger than any of ir and pr,n+1, 1 ≤ r ≤ q. Then, if neuron
n+ 1 has N spikes, the following properties hold:

• rule r is applicable if and only if N ∈ Er in case when ir ≤ N < M , and if and
only if M + (Nmod M) ∈ Er in case when N ≥M ,

• the difference between the number of spikes in neuron n+ 1 in two successive
configurations is not larger than M .

For neuron n + 1, Mk + j spikes (where 0 ≤ j ≤ M − 1) will be represented
by value k of register 1 and state j.

We simulate Π by a register machine R with one register and an output tape
of m symbols. Before we proceed, we need to remark that, without restricting the
generality, we may have an arbitrary set of “next instructions” instead of {l2, l3} in
l1 : (ADD(r), l2, l3), and arbitrary sets of “next instructions” instead of {l2} and
{l3} in l1 : (SUB(r), l2, l3). Indeed, non-determinism between choice of multiple
instructions can be implemented by an increment followed by a decrement in each
case, as many times as needed for the corresponding set of “next instructions”.
Clearly, l1 : (ADD(r), {l2}) is just a shorter form of l1 : (ADD(r), l2, l2).

Finally, besides instructions ADD(r), SUB(r), write(a) and halt, we introduce
the notation of NOP , meaning only a switch to a different instruction without
modifying the register. This will greatly simplify the construction below, and such
a notation can be reduced to either compressing the rules (by substituting the
instruction label with the label of the next instruction in all other instructions),
or be simulated by an ADD(1) instruction, followed by a SUB(1) instruction.

We take b(mn+1mod M) as the starting state of R, and the starting value of
register 1 is mn+1div M.

For every class modulo M , 0 ≤ j ≤M − 1, we define sets

Lj,0 = {lr,0 | 1 ≤ r ≤ q, j ∈ Er, ir ≥ j},
Lj,+ = {lr,+ | 1 ≤ r ≤ q, j +M ∈ Er}

of applicable rules corresponding to remainder j, subscripts 0 and + represent
cases of having less than M spikes, and at least M spikes, respectively. Let us
redefine any of these sets to {lh} if the expression above is empty.

We proceed with the actual simulation. A rule

(n+ 1, Er/ir → {(1, pr,1), · · · , (n, pr,n), (n+ 1, pr,n+1)})

can be simulated by the following rules of R:

Extended SN P Systems with White Hole Rules 55

b(j) : (S(1), Lj,+, Lj,0), lr ∈ Lj,0;

lr,α : · · · , (a sequence of pr1 instructions write(a1), · · · ,)
· · · , (prn instructions write(an)),

· · · l′r,α, (and prn+1
instructions ADD(1)), α ∈ {0,+};

l′r,+ : (NOP, {b((j − ir + pr,n+1)mod M)}), if j− ir + pr,n+1 < 0;

l′r,+ : (ADD(1), {l′r,0}), if j − ir + pr,n+1 < M ;

l′r,0 : (NOP, {b((j − ir + pr,n+1)mod M)}), if j− ir + pr,n+1 < M;

l′r,0 : (ADD(1), {b((j − ir + pr,n+1)mod M)}), if j− ir + pr,n+1 ≥ M;

lh : halt.

Indeed, instruction b(j) corresponds to checking whether neuron n+ 1 has at least
M spikes, transitioning into the halting instruction, or into the set of instructions
associated with the corresponding applicable rules, in the context of the result of
the checking mentioned above. Sending spikes to output neurons is simulated by
writing the corresponding symbols on the tape. This goal is obtained, knowing
values j, ir, pr,n+1, and whether neuron 1 had at least M spikes or not, by transi-
tioning to instruction b((j − ir + pr,n+1)mod M) after incrementing register 1 the
needed number of times (0, 1 or 2), which is equal to (j − ir + pr,n+1div M) + d,
where d = 0 if neuron 1 had at least M spikes, and d = 1 otherwise (to com-
pensate for the subtraction done by instruction b(j) in the initial checking). The
simulation of instructions continues until we reach the situation where no rules of
the underlying spiking system are applicable, transitioning to some Lj,α = {lh}.

Finally, let us formally describe the instruction sequences from lr,α to l′r,α.
For the sake of simplicity of notation, we do not mention subscripts r, α in the
notation of the intermediate instructions, keeping in mind that these are different
instructions for different r, α. The difficulty for generating the string languages is
that, by the definition, all permutations are to be considered if spikes are sent to
multiple neurons 1, · · · ,m.

lr,α : (NOP, {s(pr1 , · · · , prn)});
s(i1, · · · , in) : (NOP, {sk(i1, · · · , in) | ik > 0, 1 ≤ k ≤ n}),
0 ≤ ij ≤ prj , 1 ≤ j ≤ n, (i1, · · · , in) 6= (0, · · · , 0);

s(k)(i1, · · · , in) : (write(ak), {s(i′1, · · · , i′n)}),
i′k = ik − 1, and i′j = ij , 1 ≤ j ≤ n, j 6= k,

0 ≤ ij ≤ prj , 1 ≤ j ≤ n, (i1, · · · , in) 6= (0, · · · , 0);

s(0, · · · , 0) : (NOP, {t(prn+1)});
t(i) : (ADD(n+ 1), t(i− 1)), 1 ≤ i ≤ prn+1 ;

t(0) : (NOP, l′r,α).

The rules above describe precisely the following behavior: to produce any sequence
with the desired numbers of occurrences of symbols a1, · · · , an, a symbol is non-

56 A. Alhazov et al.

deterministically chosen (out of those, the current desired number of occurrences
of which is positive) and written, iterating until all desired symbols are written.

Next, the register is incremented the needed number of times. This finishes the
explanation of the instruction sequences from lr,α to l′r,α, as well as the explanation
of the simulation.

Therefore, the class of languages generated by ESNP systems with only one
neuron containing rules and n output neurons is included in the class of languages
generated by 1-register machines with an output tape of n symbols.

Applying Parikh mapping to both classes, just replacing write-instructions by
ADD-instructions on new registers associated with these symbols, it follows that
the class of sets of vectors generated by ESNP systems with only one neuron
containing rules and n output neurons is included in the class of sets of vectors
generated by n+ 1-register machines where all registers except one are restricted
to be increment-only. These observations conclude the proof. ut

The inclusions formulated at the end of the proof given above are actually
characterizations, as we can also prove the opposite inclusion.

Lemma 3. For any register machine with output tape with only one register that
can be decremented respectively for any register machine with only one register
that can be decremented we can effectively construct an ESNP system generating
the same language respectively the same set of (vectors of) natural numbers.

Proof. By definition, output registers can only be incremented, so the main com-
putational power lies in the register which can also be decremented. The decre-
mentable register can be simulated together with storing the actual state by storing
the number dn+ ci where: n is the actual contents of the register, ci is a number
encoding the i-th instruction of the register machine, and d is a number bigger than
all ci. Then incrementing this first register by an instruction ci and jumping to cj
means consuming ci and adding d+ cj in the actor neuron, provided the checking
set guarantees that the actual contents is an element of dN + ci. Decrementing
means consuming d+ ci and adding cj in the actor neuron, provided the checking
set guarantees that the actual contents is an element of dN+ + ci; if n = 0, then ci
is consumed and ck is added in the actor neuron with ck being the instruction to
continue in the zero case. At the same time, with each of these simulation steps,
the output neurons can be incremented in the exact way as the output registers;
in the case of register machines with output tape, a spike is sent to the output
neuron representing the symbol to be written. Further details of this construction
are left to the reader. ut

4 ESNP Systems with White Hole Rules

In this section, we extend the model of extended spiking neural P systems, in-
troduced in [1] and described in the previous section, by white hole rules. We

Extended SN P Systems with White Hole Rules 57

will show that with this new variant of extended spiking neural P systems, com-
putational completeness can already be obtained with only one actor neuron, by
proving that the computations of any register machines can already be simulated
in only one neuron equipped with the most general variant of white hole rules.
Using this single actor neuron to also extract the final result of a computation, we
even obtain weak universality with only one neuron.

As already mentioned in Remark 1, we are going to describe the checking sets
and the number of spikes by non-negative integers. The following definition is an
extension of Definition 1:

Definition 3. An extended spiking neural P system with white hole rules (of
degree m ≥ 1) (in the following we shall simply speak of an EESNP system) is a
construct

Π = (m,S,R)

where

• m is the number of cells (or neurons); the neurons are uniquely identified by
a number between 1 and m;

• S describes the initial configuration by assigning an initial value (of spikes) to
each neuron;

• R is a finite set of rules either being a white hole rule or a rule of the form as
already described in Definition 3 (i, E/k → P ; d) such that i ∈ [1..m] (specifying
that this rule is assigned to cell i), E ⊆ REG (N) is the checking set (the
current number of spikes in the neuron has to be from E if this rule shall be
executed), k ∈ N is the “number of spikes” (the energy) consumed by this rule, d
is the delay (the “refraction time” when neuron i performs this rule), and P is
a (possibly empty) set of productions of the form (l, w, t) where l ∈ [1..m] (thus
specifying the target cell), w ∈ N is the weight of the energy sent along the axon
from neuron i to neuron l, and t is the time needed before the information sent
from neuron i arrives at neuron l (i.e., the delay along the axon). A white hole
rule is of the form (i, E/all→ P ; d) where all means that the whole contents of
the neuron is taken out of the neuron; in the productions (l, w, t), either w ∈ N
as before or else w = (all + p)·q+z with p, q, z ∈ Q; provided (c+ p)·q+z, where
c denotes the contents of the neuron, is non-negative, then b(c+ p) · q + zc is
the number of spikes put on the axon to neuron l.
If the checking sets in all rules are finite, then Π is called a finite EESNP
system.

Allowing the white hole rules having productions being of the form w =
(all + p) · q+z with p, q, z ∈ Q is a very general variant, which can be restricted in
many ways, for example, by taking z ∈ Z or omitting any of the rational numbers
p, q, z ∈ Q or demanding them to be in N etc.

Obviously, every ESNPS also is an EESNPS, but without white hole rules, and
a finite EESNPS also is a finite ESNPS, as in this case the effect of white hole rules

58 A. Alhazov et al.

is also bounded, i.e., even with allowing the use of white hole rules, the following
lemma as a counterpart of Lemma 1 is still valid:

Lemma 4. For any EESNP system where during any computation only a bounded
number of spikes occurs in the actor neurons, the generated language is regular.

Hence, in the following our main interest is in EESNPS which really make use
of the whole power of white hole rules.

4.1 Examples for EESNPS

EESNPS can also be used for computing functions, not only for generating sets
of (vectors of) integer numbers. As a simple example, we show how the function
n 7→ 2n+1 can be computed by a deterministic EESPNS, which only has exactly
one rule in each of its two neurons; the output neuron 2 in this case is not free of
rules.

Example 2. Computing n 7→ 2n+1

(1,N+/1→ {(2, 1)})
1

(2, 2 · N+ + 1/all→ {(2, (all − 1) · 2)})
2

Initial value = n Initial value = 2

The rule (2, 2 · N+ + 1/all→ {(2, (all − 1) · 2)}) could also be written as
(2, 2 · N+ + 1/all→ {(2, (all) · 2− 2)}). In both cases, starting with the input
number n (of spikes) in neuron 1, with each decrement in neuron 1, the con-
tents of neuron 2 (not taking into account the enabling spike from neuron 1) is
doubled. The computation stops with 2n+1 in neuron 1, as with 0 in neuron 1
no enabling spike is sent to neuron 2 any more, hence, the firing condition is not
fulfilled any more. We finally remark that with the initial value 1 in neuron 2 we
can compute the function n 7→ 2n.

Example 3. Pure White Hole Model of EESNPS for DT0L Systems
Let G = ({a} , P, as) be a Lindenmayer system with the axiom as and the

finite set of tables P each containing a finite set of parallel productions of the
form a → ak. Such a system is called a tabled Lindenmayer system, abbreviated
T0L system, and it is called deterministic, abbreviated DT0L system, if each
table contains exactly one rule. Now let G = ({a} , P, as) be a DT0L system with
P =

{{
a→ aki

}
| 1 ≤ i ≤ n

}
. Then the following EESNPS using only white hole

rules computes the same set of natural numbers as are represented by the language
generated by G, with the results being taken with unconditional halting, i.e., taking
a result at every moment (see [2]).

{(1,N+/all→ {(1, all · ki)}) | 1 ≤ i ≤ n}
1

Initial value = s

Extended SN P Systems with White Hole Rules 59

If we want to generate with normal halting, we have to add an additional output
neuron 2 and an additional rule {(1,N+/all→ {(2, all · 1)})} in neuron 1 which
at the end moves the contents of neuron 1 to neuron 2.

4.2 Universality with EESNPS

Lemma 5. The computation of any register machine can be simulated in only one
single actor neuron of an EESPNS.

Proof. Let M = (n, P, l0, lh) be an n-register machine, where n is the number of
registers, P is a finite set of instructions injectively labelled with elements from a
set of labels Lab (M), l0 is the initial label, and lh is the final label.

Then we can effectively construct an EESNPS Π = (m,S,R) simulating the
computations of M by encoding the contents ni of each register i, 1 ≤ i ≤ n, as
pni
i for different prime numbers pi. Moreover, for each instruction (label) j we take

a prime number qj , of course, also each of them being different from each other
and from the pi.

The instructions are simulated as follows:

– l1 : (ADD (r) , l2, l3) (ADD instruction)
This instruction can be simulated by the rules
{(1, ql1 · N+/all→ {(1, all · qlipr/ql1)}) | 2 ≤ i ≤ 3}
in neuron 1.

– l1 : (SUB (r) , l2, l3) (SUB instruction)
This instruction can be simulated by the rules
(1, ql1pr · N+/all→ {(1, all · ql2/ (ql1pr))})
and
(1, ql1 · N+ \ ql1pr · N+/all→ {(1, all · ql2/ql1)})
in neuron 1; the first rule simulates the decrement case, the second one the
zero test.

– lh : halt (HALT instruction)
This instruction can be simulated by the rule
(1, qlh · N+/all→ {(1, all · 1/qlh)})
in neuron 1.
In fact, after the application of the last rule, we end up with pm1

1 · · · pmn
n in

neuron 1, where (m1, · · · ,mn) is the vector computed by M and now, in the
prime number encoding, by Π as well.

All the checking sets we use are regular, and the productions in all the white
hole rules even again yield integer numbers. ut

Remark 2. As the productions in all the white hole rules of the EESNPS con-
structed in the preceding proof even again yield integer numbers, we could also
interpret this EESNPS as an ESPNS with exhaustive use of rules:

The white hole rules in the EESNPS constructed in the previous proof are of
the general form

60 A. Alhazov et al.

(1, q · N+/all→ {(1, all · p/q)})
with p and q being natural numbers. Each of these rules can be simulated in a
one-to-one manner by the rule

(1, q · N+/q → p)
used in an ESNPS with one neuron in the exhaustive way.

Theorem 3. Any recursively enumerable set of n-dimensional vectors can be gen-
erated by an ESNP system with n+ 1 neurons.

Proof. We only have to show how to extract the results into the additional output
neurons from the single actor neuron which can do the whole computational task
as exhibited in Lemma 5. Yet this is pretty easy:

When the actor neuron reaches the halting state, the desired result mi for
output neuron i + 1 is stored as factor in this one number stored in the actor
neuron within the prime number encoding, i.e., as qmi

i , for 1 ≤ i ≤ n. Instead of
using the final rule (1, qlh · N+/all→ {(1, all · 1/qlh)}) in neuron 1 we now take
the rule (1, qlh · N+/all→ {(1, all · r1/qlh)}).

With the rules (1, riqiN+/all→ {(1, all · 1/ki) , (i+ 1, 1)}) , we can decode the
factor qmi

i to mi into output neuron i + 1, with the instruction code (prime
number) ri for 1 ≤ i ≤ n. If the contents of the actor neuron is not divid-
able by qi any more, we switch to the next instruction code ri+1 by the rule
(1, ri · N+ \ riqi · N+/all→ {(1, all · ri+1/ri)}). At the end, we can end up with 0
in the actor neuron after having used the rule (1, ri · N+ \ riqi · N+/all→ ∅) and
then stop with mi in output neuron i+ 1, 1 ≤ i ≤ n. ut

Theorem 4. Any recursively enumerable language L with L ⊆ T ∗ for a terminal
alphabet T with card (T) = n can be generated by an ESNP system with n + 1
neurons.

Proof. In the case of generating strings, we have to simulate a register ma-
chine with output tape; hence, in addition to the simulating rules already de-
scribed in Lemma 5, we have to simulate the tape rule l1 : (write (a) , l2),
which in the EESNPS means sending one spike to the output neuron
N (a) representing the symbol a. This task is accomplished by the rule
(1, l1 · N+/all→ {(1, all · l2/l1) , (N (a) , 1)}). The rest of the construction and of
the proof is similar to that what we have done in the proof of Lemma 5. ut

5 Summary and Further Variants

In this paper, we have extended the model of extended spiking neural P systems
from [1] by white hole rules. With this new variant of extended spiking neural P
systems, computational completeness can already be obtained with only one actor
neuron, as the computations of any register machine can already be simulated in
only one neuron equipped with the most general variant of white hole rules. Using

Extended SN P Systems with White Hole Rules 61

this single actor neuron to also extract the final result of a computation, we even
obtain weak universality with only one neuron.

A quite natural feature found in biology and also already used in the area of
spiking neural P systems is that of inhibiting neurons or axons between neurons,
i.e., certain connections from one neuron to another one can be specified as in-
hibiting ones – the spikes coming along such inhibiting axons then close the target
neuron for a time period given by the sum of all inhibiting spikes, e.g., see [3].
Such variants can also be considered for extended spiking neural P systems with
white hole rules.

References

1. A. Alhazov, R. Freund, M. Oswald, M. Slavkovik: Extended spiking neural P systems.
In: [11], 123–134.

2. M. Beyreder, R. Freund: Membrane systems using noncooperative rules with uncon-
ditional halting. In: D. W. Corne, P. Frisco, Gh. Păun, G. Rozenberg, A. Salomaa
(Eds.): Membrane Computing. 9th International Workshop, WMC 2008, Edinburgh,
UK, July 28-31, 2008, Revised Selected and Invited Papers. Lecture Notes in Com-
puter Science 5391, Springer, 2009, 129–136.

3. A. Binder, R. Freund, M. Oswald, L. Vock: Extended spiking neural P systems
with excitatory and inhibitory astrocytes. In: M.A. Gutiérrez-Naranjo, Gh. Păun,
A. Romero-Jiménez, A. Riscos-Núñez (Eds.): Fifth Brainstorming Week on Mem-
brane Computing, RGNC REPORT 01/2007, Research Group on Natural Comput-
ing, Sevilla University, Fénix Editora, 2007, 63–72.

4. H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: On string languages
generated by spiking neural P systems. In: [11], 169–194

5. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer,
1989.

6. H. Fernau, R. Freund, M. Oswald, K. Reinhardt: Refining the nonterminal complex-
ity of graph-controlled, programmed, and matrix grammars. Journal of Automata,
Languages and Combinatorics, 12 (1-2) (2007), 117–138.

7. R. Freund, M. Oswald: P systems with activated/prohibited membrane channels. In:
Gh. Păun , G. Rozenberg, A. Salomaa, C. Zandron (Eds.): Membrane Computing.
International Workshop WMC 2002, Curtea de Argeş, Romania. Lecture Notes in
Computer Science 2597, Springer, Berlin, 2002, 261–268.

8. R. Freund, Gh. Păun: From regulated rewriting to computing with membranes: col-
lapsing hierarchies. Theoretical Computer Science 312, 143–188.

9. R. Freund, Gh. Păun, M.J. Pérez-Jiménez: Tissue-like P systems with channel states.
Theoretical Computer Science 330 (2004), 101–116.

10. W. Gerstner, W. Kistler: Spiking Neuron Models. Single Neurons, Populations, Plas-
ticity. Cambridge Univ. Press, 2002.

11. M.A. Gutiérrez-Naranjo, Gh. Păun, A. Riscos-Núñez, F.J. Romero-Campero (Eds.):
Fourth Brainstorming Week on Membrane Computing, Vol. I RGNC REPORT
02/2006, Research Group on Natural Computing, Sevilla University, Fénix Editora,
2006.

62 A. Alhazov et al.

12. M.A. Gutiérrez-Naranjo, Gh. Păun, A. Riscos-Núñez, F.J. Romero-Campero (Eds.):
Fourth Brainstorming Week on Membrane Computing, Vol. II RGNC REPORT
02/2006, Research Group on Natural Computing, Sevilla University, Fénix Editora,
2006.

13. O.H. Ibarra, A. Păun, Gh. Păun Gh, A. Rodŕıguez-Patón, P. Sośık, S. Woodworth:
Normal forms for spiking neural P systems. In: [12], 105–136, 2006.

14. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae 71 (2 –3) (2006), 279–308.

15. W. Maass: Computing with spikes. Special Issue on Foundations of Information Pro-
cessing of TELEMATIK 8 (1) (2002), 32–36.

16. W. Maass, C. Bishop (Eds.): Pulsed Neural Networks. MIT Press, Cambridge, 1999.
17. Mart́ın-Vide C, Pazos J, Păun Gh, Rodŕıguez-Patón A (2002) A new class of symbolic

abstract neural nets: Tissue P systems. In: Proceedings of COCOON 2002, Singapore,
Lecture Notes in Computer Science 2387, Springer-Verlag, Berlin, 290–299

18. M. L. Minsky: Computation: Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, New Jersey, USA, 1967.

19. L. Pan, Gh. Păun: Spiking Neural P Systems with Anti-Matter. International Journal
of Computers, Communications & Control 4 (3), 273–282 (2009).

20. Gh. Păun: Computing with Membranes. Journal of Computer and System Sciences
61 (1) (2000), 108–143 (and Turku Center for Computer Science-TUCS Report 208,
November 1998, www.tucs.fi).

21. Gh. Păun: Membrane Computing. An Introduction. Springer, 2002.
22. Păun Gh, M.J. Pérez-Jiménez, G. Rozenberg: Spike trains in spiking neural P sys-

tems. Intern. J. Found. Computer Sci. 17 (2006), 975–1002.
23. Gh. Păun, Y. Sakakibara, T. Yokomori: P systems on graphs of restricted forms.

Publicationes Mathematicae Debrecen 60 (2006), 635–660.
24. Gh. Păun, G. Rozenberg, A. Salomaa (Eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press, 2010.
25. G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages, 3 volumes.

Springer, 1997.
26. X. Zhang, B. Luo, X. Fang, L. Pan: Sequential spiking neural P systems with ex-

haustive use of rules. BioSystems 108 (2012), 52–62.
27. X. Zhang, X. Zeng, L. Pan: On String Languages Generated by Spiking Neural P

Systems with Exhaustive Use of Rules. Natural computing 7 (4) (2002), 535–549.
28. The P Systems Website: www.ppage.psystems.eu.

Simulating Membrane Systems and Dissolution in
a Typed Chemical Calculus

Bogdan Aman1, Péter Battyányi2, Gabriel Ciobanu1, and György Vaszil2

1 Romanian Academy, Institute of Computer Science
Blvd. Carol I no.8, 700505 Iaşi, Romania
baman@iit.tuiasi.ro

gabriel@info.uaic.ro
2 Department of Computer Science, Faculty of Informatics

University of Debrecen
Kassai út 26, 4028 Debrecen, Hungary
battyanyi.peter@inf.unideb.hu

vaszil.gyorgy@inf.unideb.hu

Summary. We present a transformation of membrane systems, possibly with pro-
moter/inhibitor rules, priority relations, and membrane dissolution, into formulas of
the chemical calculus such that terminating computations of membranes correspond to
terminating reduction sequences of formulas and vice versa. In the end, the same result
can be extracted from the underlying computation of the membrane system as from the
reduction sequence of the chemical term. The simulation takes place in a typed chemical
calculus, but we also give a short account of the untyped case.

1 Introduction

In the present paper we continue the investigations started in [2, 3] concerning
the possibility of defining the semantics of membrane systems with rewriting logic
[1, 2] in order to obtain a logical description of membrane system computations.

The direct precedent of our work is [7] where a logical description of simple
membrane systems was given using the γ-calculus of Banâtre and Le Métayer
from [6] (see also [4] for more details). Their aim was to free the expression of
algorithms from the sequentiality which is not inherently present in the problem
to be solved, that is, the sequentiality which is implied by the structure of the
computational model on which the given algorithm is to be performed. They called
their calculus chemical calculus, and the underlying computational paradigm the
chemical paradigm of computation while the execution model behind them closely
resembles the way chemical reactions take place in chemical solutions. A chemical
“machine” can be thought of as a symbolic chemical solution where data can be
seen as molecules and operations as chemical reactions. If some molecules satisfy a
reaction condition, they are replaced by the result of the reaction. If no reaction is
possible, the program terminates. Chemical solutions are represented by multisets.
Molecules interact freely according to reaction rules which results in an implicitly
parallel, non-deterministic, distributed model.

In what follows, using a slightly modified variant of the operational semantics of
membrane systems presented in [3], we show how to transform a membrane system

64 B. Aman et al.

with rules using promoters/inhibitors (see [8]), priorities, and also the possibility
of membrane dissolution (introduced already in [9]), into formulas of the chemical
calculus, such that terminating computations of the membrane system correspond
to terminating reduction sequences of formulas and vice versa.

2 Preliminaries

In this section we present the basic notions and notations we are going to use.
For a comprehensive treatment of membrane systems ranging from the basic def-
initions to their computational power, see the the monographs [10, 11], for more
information on the chemical calculus, we refer to [4, 5].

A finite multiset over an alphabet V is a mapping m : V → N where N denotes
the set of non-negative integers, and m(a) for a ∈ V is said to be the multiplicity
of a in V . We say that m1 ⊆ m2 if for all a ∈ V , m1(a) ≤ m2(a). The union
or sum of two multisets over V is defined as (m1 + m2)(a) = m1(a) + m2(a),
the difference is defined for m2 ⊆ m1 as (m1 − m2)(a) = m1(a) − m2(a) for
all a ∈ V . The multiset m can also be represented by any permutation of a

string w = a
m(a1)
1 a

m(a2)
2 . . . a

m(an)
n ∈ V ∗, where if m(x) 6= 0, then there exists j,

1 ≤ j ≤ n, such that x = aj . The set of all finite multisets over an alphabet V is
denoted byM(V), the empty multiset is denoted by ∅ as in the case of the empty
set.

2.1 Membrane systems

A membrane system, or P system is a structure of hierarchically embedded mem-
branes, each having a label and enclosing a region containing a multiset of objects
and possibly other membranes. The unique out-most membrane is called the skin
membrane. The membrane structure is denoted by a sequence of matching paren-
theses where the matching pairs have the same label as the membranes they rep-
resent. We assume the membranes are labelled by natural numbers {1, . . . , n}, and
we use the notation mi for the membrane with label i. Each membrane mi, except
for the skin membrane, has its parent membrane, which we denote by µ(mi). As an
abuse of notation µ stands for both the membrane structure and both for the func-
tion determining the parent membrane of a membrane. To facilitate presentation
we assume that µ(mj) = mi implies i < j.

The evolution of the contents of the regions of a P system is described by rules
associated to the regions. The system performs a computation by passing from one
configuration to another one, applying the rules synchronously in each region. In
the variant we consider in this paper, the rules are multiset rewriting rules given
in the form of u→ v where u, v are multisets, and they are applied in the maximal
parallel manner, that is, as many rules are applied in each region as possible. The
end of the computation is defined by the following halting condition: A P system
halts when no more rules can be applied in any of the regions; the result is a
number, the number of objects in a membrane labelled as output.

A P system of degree n ≥ 1 is a construct

Π = (O,µ,w1, . . . , wn, R1, . . . , Rn, ρ1, . . . , ρn)

where

Simulating P Systems and Dissolution in a Typed Chemical Calculus 65

- O is an alphabet of objects,
- µ is a membrane structure of n membranes,
- wi ∈M(O), 1 ≤ i ≤ n, are the initial contents of the n regions,
- Ri, 1 ≤ i ≤ n, are the sets of evolution rules associated to the regions; they

are of the form u → v where u ∈ M(O) and v ∈ M(O × tar) where tar =
{here, out} ∪ {inj | 1 ≤ j ≤ n}, and

- ρ1, . . . , ρn are the priority rules associated with membranes m1, . . . ,mn.

The evolution rules of the system are applied in the non-deterministic, max-
imally parallel manner to the n-tuple of multisets of objects constituting the
configuration of the system. A configuration is the sequence C = (v1, . . . vn, µC)
where vi ∈ O∗, 1 ≤ i ≤ n are the contents of the membranes, and µC is the
current membrane structure. For two configurations C1 = (u1, . . . , un, µC1

) and
C2 = (v1, . . . , vn, µC2), we can obtain C2 from C1, denoted as C1 ⇒ C2, by apply-
ing the rules of R1, . . . , Rn. Let R = R1∪R2∪ · · ·∪Rn, where Ri = {ri1, . . . , riki}
is the set of rules corresponding to membrane mi. The application of u→ v ∈ Ri
in the region i means to remove the objects of u from ui and add the new objects
specified by v to the system. The rule application in each region takes place in a
non-deterministic and maximally parallel manner. This means that the rule appli-
cation phase finishes, if no rule can be applied anymore in either region. As a result,
each region where rule application took place, is possibly supplied with elements
of the set O × tar. We call a configuration which is a multiset over O ∪ O × tar
an intermediate configuration. If we want to emphasize that C = (w1, . . . , wn, µ)
consists of multisets over O, we say that C is a proper configuration. Rule ap-
plications can be preceded by priority check, if priority relations are present. Let
ρi ⊆ Ri ×Ri 1 ≤ i ≤ n be the (possibly empty) priority relations. Then r ∈ Ri is
applicable only if no r′ ∈ Ri can be applied with (r′, r) ∈ ρi. We may also denote
the relation (r′, r) ∈ ρi by r′ > r.

In the next phase the objects coming from v should be added to the regions as
specified by the target indicators associated to them. If v contains a pair (a, here) ∈
O × tar, then a is placed in region i, the region where the rule is applied. If v
contains (a, out) ∈ O × tar, then a is added to the contents of the parent region
of region i; if v contains (a, inj) ∈ O × tar for some region j which is contained
inside the region i (so region i is the parent region of region j), then a is added to
the contents of region j.

The symbol δ marks a region for dissolution. When it is introduced in the
membrane by a rule, after having finished the maximal parallel and communication
steps, the actual membrane disappears. Its objects move to the parent membrane
and its rules can not be applied anymore.

We can render promoter/inhibitor sets, prom/inhib, to each rule r = (u →
v) ∈ Ri. The promoter/inhibitor sets belonging to r are subsets of O. When r
is going to be applied they act as follows: r can be applied to the content wi of
membrane mi only if every element of prom is present in w and no element of
inhib can be found in w.

2.2 The chemical calculus

We give a brief summary of the chemical calculus following the presentation in [4]
and [5]. Chemical programming is the formal equivalent of Gamma programming,
which is a higher order multiset manipulating program language. Like Gamma

66 B. Aman et al.

programming, the chemical calculus is also based on the chemical metaphor: data
are represented by γ-terms, which are called molecules, and reactions between
them are represented by rewrite rules. We begin with the basic definitions. The
syntactical elements of molecules, reaction conditions, and patterns, denoted by
M, C and P , respectively, are defined as follows.

M := x | (M1,M2) | 〈M〉 | γ(P)[C].M

where x is a variable standing for any molecule, (M1,M2) is a compound molecule
built with the commutative and associative “,” constructor operator, 〈M〉 is called
a solution, and γ(P)[C].M is called a γ-abstraction with pattern P , reaction con-
dition C, result M . The γ-abstraction encodes a rewriting rule: when the pattern
P is respected and the condition C is met, a substituted variant of M is created
as a result. A pattern is

P := x | (P1, P2) | 〈P 〉,

where x matches any molecule, (P1, P2) matches a compound molecule, and 〈P 〉
matches an inert solution, that is, a solution where no reaction can occur: it consists
entirely of solutions or entirely of γ-abstractions. (The contained solutions can still
be active, however.)

The solution 〈M〉 encapsulates the molecule M which is inside the solution,
and thus, insulated from molecules outside the solution. The contents of solutions
can only be changed by reactions which occur inside the solution.

Now we define how patterns are matched, which requires the notion of sub-
stitution. A substitution is a mapping φ from the set of variables to the set of
molecules. We can define the application of a substitution to as follows:

φx = φ(x)

φ(M1,M2) = φM1, φM2

φ〈M〉 = 〈φM〉
φ(γ(P)[C].M) = γ(P)[C].φ′M,

where φ′ is obtained from φ by removing from the domain all the variables which
occur in P .

The result of a match is an assignment of molecules to variables. The first argu-
ment of match is a pattern, the second one is a molecule, its value is a substitution.
Let x denote a variable, P a pattern, and M a molecule. Then we define

match(x,M) = {x 7→M}
match((P1, P2), (M1,M2)) = match(P1,M1) ◦match(P2,M2)

match(〈P 〉, 〈M〉) = match(P,M) provided inert(M)

match(P,M) = fail in every other case,

where ◦ denotes the operation of function composition.
The reaction rule is defined as

γ(P)[C].M,N → φM,

where match(P,N) = φ assigns values to variables in such a way that φ(C) holds
in the typed case or reduces to true in the untyped case. In this case true can be
a special constant defined in advance, for example, true
 γ〈x〉[x].x.

Simulating P Systems and Dissolution in a Typed Chemical Calculus 67

We can define an operator replace (cf. [5]) which does not vanish in the course
of the reduction:

replace P by M if C
 let rec f = γ(P)[C].M, f in f.

Then the new operator obeys the following reduction rule:

replace P by M if C,N → replace P by M if C, φ(M),

where match(P,N) = φ and either φ(C) is true or it reduces to true.
At this point we should mention that the simulation takes place in the typed γ-

calculus ([5]), because it is more convenient to talk about equality and comparison
of integer values, than to check whether the conditional part of an untyped γ-
expression reduces to true (which is, in fact, undecidable in the general case). We
could, however, restrict the γ-expressions taking part in the simulation in such a
way that their conditional parts form a fragment of the γ-calculus that is decidable
with respect to equality. (We can take, e. g., the γ-calculus equivalents of Church
numerals and define Boolean operations on them.)

3 Results

First we introduce molecules for the description of membrane system configura-
tions.

Notation 1 Let [x, y] = (〈x〉, y), and [x1, . . . , xn, xn+1] = [[x1, . . . , xn], xn+1].

Remark 1. Let P = [x1, x2, . . . , xl] be a pattern in the sense of the previous sec-
tion, and M = [s1, s2, . . . , sl], where s1, . . . , sl are arithmetical expressions, i.e.
expressions composed of natural numbers, variables and arithmetical operations.
If we assume that none of the xi appears among the free variables of s1, . . . , sl,
then match(P,M) = Φ 6= fail implies Φ = [x1/s1, x2/s2, . . . , xl/sl], where Φ is
the simultaneous substitution formed by the substitutions [x1/s1], . . . , [xl/sl]. In
other words, in this special case, the molecule [x1, x2, . . . , xl] behaves as an ordered
tuple.

If we use a, b as variables for elements of O and r as a rule variable, respectively,
then we say that a rule r = u→ v ∈ Ri is valid with respect to the configuration
(w1, . . . , wn, µ) if the following conditions hold:

1. membrane structure µ contains membrane mi,
2. (∀a ∈ promr) (wi(a) ≥ 1),
3. (∀a ∈ inhibr) (wi(a) = 0), and
4. (∀a ∈ O)(∀ 1 ≤ j ≤ n) (v(a, inj) ≥ 1) implies that µ contains the mem-

brane mj (mj is not dissolved) and µ(mj) = mi, namely mi is the parent
membrane of mj .

where promr ⊆ O and inhibr ⊆ O denotes the set of promoters and inhibitors
associated to rule r, respectively.

A description of a membrane system configuration as above is a molecule of
the form

68 B. Aman et al.

Descr = [c11, . . . , c1k, . . . , cn1, . . . , cnk,

c11, . . . , c1k, . . . , cn1, . . . , cnk,

d1, . . . , dn,

p11, . . . , p1k1 , . . . , pn1, . . . , pnkn],

where cij and cij are natural numbers (1 ≤ i ≤ n, 1 ≤ j ≤ k), di ∈ {0, 1}
(1 ≤ i ≤ n) and pikj ∈ {0, 1} (1 ≤ i, j ≤ n). If N is a description we denote by cij ,
cij , etc. the respective parts of N .

Let C = (µ,w1, . . . , wn) be an (intermediate) configuration. A description
Descr(C) corresponding to C is a description, where cij = wi(aj) and cij =
wi(aj , here) +

∑
p 6=i,µ(mi)=mp wp(aj , ini) +

∑
µ(p)=i wp(aj , out) with (1 ≤ i, p ≤ n)

and (1 ≤ j ≤ k). Here µ(p) denotes the parent membrane of mp, and recall that
w(a) denotes the number of elements a in the multiset w. Intuitively, cij stands
for the number of occurrences of aj in mi, and cij denotes the location of the
targeted elements of O. Moreover, di = 1 iff mi is dissolved or under dissolution
and pikj describes the validity of rules: rule rikj is valid iff pikj = 1, if C is a proper
configuration. If C →∗ C ′, and C ′ is an intermediate configuration and there are
no proper configurations in the reduction sequence other than C, then p′ikj = 1 in

the description of C ′ iff pikj = 1 in the description of C. Observe that if C is a
proper configuration then cij = 0 for every possible i and j. When a configuration
is proper, di = 1 implies wi = 0.

A pattern for a description is a tuple of the form

S = [xm1a1 , . . . , xm1ak , . . . , xmna1 , . . . , xmnak , (1)

xm1a1 , . . . , xm1ak , . . . , xmna1 , . . . , xmnak ,

xd1 , . . . , xdn , xr1k1 , . . . , xrnkn].

Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn, ρ1, . . . , ρn) be a P system, and let C ′ =
(w′k1 , . . . , w

′
kj
, µ′) be a proper configuration obtained from the initial configuration

in a finite number of computational steps, where 1 ≤ k1 < . . . < kj ≤ n. Then the
description of C ′ relative to µ is the description obtained from Descr(C ′) when
we set di = 1 for i /∈ {k1, . . . , kj} and cij = 0 (1 ≤ j ≤ k) and pil = 0 for every
rule ril ∈ Ri. That is, we supplement Descr(C ′) as if it were a description of an
n-ary membrane system by treating the missing membranes as empty membranes.
We denote the description of a configuration C ′ relative to µ by Descrµ(C ′).

Because a description should also contain information about the structure of
the original P system itself, we append a representation of the function µ at the
end of each description. Let Π be a P system of order n as before. Then a tuple
[p2, . . . , pn] of length n−1 is appended to every description in the simulation with
the following meaning: if membrane mj has membrane mi as its parent, then pj =
i. Since the Skin has no parent membrane, numbering begins with 2. Likewise, a
description pattern is expanded with the tuple [xp2 , . . . , xpn]. Since the structure
of the original P system remains the same in the course of the simulation process,
we do not indicate the appended values for µ, they are implicitly understood to
be there.

With this in hand we are able to define the molecule in charge for deciding rule
validity. Let r = u→ v ∈ Ri, and S be a description pattern . Then let

Simulating P Systems and Dissolution in a Typed Chemical Calculus 69

Cond(r) = (xdi = 0 ∧ (2)∧
1≤j≤k

(aj ∈ promr ⊃ xmiaj ≥ 1) ∧

∧
1≤j≤k

(aj ∈ inhibr ⊃ xmiaj = 0)
)
∧

∧
1≤l≤k

∧
1≤j≤n

(
v(al, inj) ≥ 1 ⊃ xdj = 0 ∧

(
∨

l0=i>l1>...>ls−1>j=ls

(
∧

1≤t≤s

xpt = lt−1 ∧
∧

1≤q≤s−1

xdq = 1))
)

The last row expresses the fact that either mi is the parent of mj , or mi is an
ancestor of mj and all the intermediate parent membranes have been dissolved in
the construction.

Now rule validity can be expressed as

V al(r) = replace [S, 0] by [S[xr/1], 0] if Cond(r)

where the value 0 plays a role of synchronization to be specified later on. We
remark that if a rule r is determined to be valid in this phase of the simulation,
then r remains valid in the course of the simulation of a maximal parallel step.

Discussion 1 At this point, we can also incorporate in the simulation of a mem-
brane system the priority rules, if present. Let (ρ1, . . . , ρn) be the tuple prescribing
the priority relations in the membranes of the given P system. We define molecules
determining the validity of rules when priority is present. Assume r ∈ Ri. We dis-
tinguish two cases:

- There does not exist r′ ∈ Ri such that r′ > r. Then V alρ(r) is defined as
V al(r) above.

- There are rules r1, . . . , rj ∈ Ri such that rl > r (1 ≤ l ≤ j). Let S be a de-
scription pattern and denote by Cond(r) the conditional part of V al(r) defined
in Equation (2). Then

V alρ(r) =
(
replace [S, 0] by [S[xr/1], 0]

if (Cond(r) ∧
∧

1≤l≤j

xrl = 0),

replace [S, 0] by [S[xr/0], 0]

if (xr = 1 ∧ (
∨

1≤l≤j

xrl = 1)
)
.

Now we can turn to the main part of the simulation. The conditions of rule
application must reflect now the fact that the rule is executable together with the
conditions that make it valid.

Definition 1. Let r = u → v ∈ Ri, and let S be a description pattern. Then the
molecule describing the effect of an execution of r is defined as

App(r) = replace [S, 1] by [apply(S, r), 1] if(
xr = 1 ∧

∧
1≤j≤k

(u(aj) ≤ xmi,aj),

70 B. Aman et al.

where

apply(S, r)(xmsat) =

{
xmsat − u(at) if s = i,
xmsat otherwise ,

apply(S, r)(xmsat) =

xmsat + v(at, here) if s = i,
xmsat + v(at, inj) if s = j 6= i,
xmsat + v(at, out) if s = µ(i),

apply(S, r)(xdj) =

{
1 if v(δ) = 1,
xdj otherwise ,

apply(S, r)(xr) = xr.

Here we made use of the implicit stipulation that S is of the form as in Equation
(1), which is indeed the case if we ignore variable renaming.

The next group of rules is the set of communication rules. In what follows, we
define the chemical calculus equivalents of communication steps.

Definition 2.

Msg = replace [S, 2] by [msg(S), 2] if

(
∨

1≤i≤n

∨
1≤j≤k

xmiaj ≥ 1)
)
,

where

msg(S)(xmiaj) = xmiaj + xmiaj , for 1 ≤ i ≤ n and 1 ≤ j ≤ k

and
msg(S)(xmiaj) = 0, for 1 ≤ i ≤ n and 1 ≤ j ≤ k.

At this point, we simulate the effects of membrane dissolving. We have to drive
the elements leaving the actual membranes by applications of inj or out rules
or elements of membranes freshly dissolved into membranes remaining existent
after performing of the maximal parallel step. To this end, we define the following
molecule.

Definition 3.

Disi = replace [S, 3] by [disi(S), 3] if(
xdi = 1 ∧

(
∨

1≤j≤k

xmiaj ≥ 1)
)
,

where

disi(S)(xmjal) =

xmjal + xmial if j = µ(i),
0 if j = i,
xmjal otherwise.

We also need some auxiliary molecules to set the values indicating the validity
of rules to zero, in order to start a new maximal parallel step. Thus

Definition 4.

RemV al(r) = replace [S, 4] by [S[xr/0], 4] if xr = 1.

Simulating P Systems and Dissolution in a Typed Chemical Calculus 71

Now we are in a position to determine the molecule leading us through the
simulation process. Let

V alρ =
⋃
{V alρ(r) | r ∈ R},

App =
⋃
{App(r) | r ∈ R},

Dis =
⋃
{Disi | i ∈ {1, . . . , n}},

RemV al =
⋃
{RemV al(r) | r ∈ R},

Sync = replace 〈[S, xsync], V alρ, App,Msg,Dis,RemV al〉 by
〈[S, xsync + 1 mod 5], V alρ, App,Msg,Dis,RemV al〉 if∨
1≤i≤n

xri = 1,

where S is a description pattern.

Notation 2 Let N be a molecule and let

M(N) = (〈N,V alρ, App,Msg,Dis〉, Sync).

If C is a configuration of Π such that C ⇒∗ C ′ for some C ′ and i ∈ {0, 1, 2}, then
we write

M(C ′, i) = M([Descrµ(C ′), i]).

The terms of the chemical calculus, and also the configurations of membrane
systems can be considered as rewriting systems. A rewriting system, as used in
this paper, is a pair A = {Σ, (→i)i∈I}, where Σ is a set and (→i)i∈I is a set of
binary relations defined on Σ. The relations (→i)i∈I are called reduction relations.
It is supposed that a reduction relation →i is compatible with the term forma-
tion rules. Moreover, if →i is a reduction relation, we denote by →∗i its reflexive,
transitive closure. We may use the notation →= ∪i∈I(→i), too. In the following,
the set Σ is the set of configurations of a P system or, in the case of the chemical
formalism, the set of γ-terms, and →i are the binary relations rendering config-
urations to configurations or terms to terms, respectively. We say that m ∈ Σ is
in normal form, if there is no n ∈ Σ, such that m → n. Moreover, an m ∈ Σ
is strongly normalizable, if every reduction sequence starting from m is finite, or
weakly normalizable, if there exists a finite reduction sequence starting from m.
We say that a molecule or a membrane M is →i-irreducible, if there is no M ′

such that M →i M
′. In what follows, to conform to the usual membrane system

notation, we use⇒ to denote→ when we speak of a rewriting step in a membrane
computation.

Theorem 1. (1) Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn, ρ1, . . . , ρn) be a P system
of order n with membrane dissolving, promoter/inhibitor sets for rules and priority
relations. Assume

C0 = (µ,w1, . . . , wn)⇒∗ C1 = (µ′, w′n1
, . . . , w′ni),

where 1 ≤ n1 ≤ . . . ≤ ni ≤ n. Then

M(C0, 0)→∗ M(C1, 0).

72 B. Aman et al.

If the computation starting from C0 contains at least one step, then the reduction
sequence starting from M(C0, 0) is non-empty either.

(2) Let Π be a P system as above. Assume

M(C0, 0)→∗ M([N, 0]), and

assume that cij = 0 for (1 ≤ i ≤ n) and (1 ≤ j ≤ k) in N and [N, 0] is V alρ
irreducible. Then there exists a configuration C1 = (µ′, w′n1

, . . . , w′ni) of Π such
that M([N, 0]) = M(C1, 0) and

C0 ⇒∗ C1.

Moreover, if the length of Mµ(C0)→∗ M([N, 0]) is at least one, then the length of
the computation starting from C0 is non-zero.

We work our way to the proof of the theorem by stating several auxiliary
lemmas.

As formulated in [2], a computational step starting from a configuration C0 of
Π consists of a maximal parallel step (mpr), a step for removing the directions from
the targeted elements (tar) and a step for accomplishing membrane dissolution (δ).
In notation, if C0 is a configuration of Π and C0 ⇒ C1, then there are C ′0 and, if
δ is present, C ′′0 such that

C0 ⇒∗mpr C ′0 ⇒tar C
′′
0 ⇒δ C1.

In the present paper, instead of ⇒tar, we choose a sequential relation (msg) de-
fined in Definition 5 for removing messages instead of parallel communication
rules, which equally suffices for our purposes. In what follows, if C ⇒s C

′ by an
intermediate step, we denote by s ∈ mpr (s ∈ msg, s ∈ δ) the fact whether s is a
maximal parallel, message removing, or membrane dissolving step, respectively.

We verify the lemmas simultaneously by induction on the number of intermedi-
ate steps in a computational step of the P system and on the number of reductions
in the chemical calculus.

Notation 3 Let C ′ be an (intermediate) configuration, where C ⇒∗ C ′. Let
Descrµ(C ′) be the description of C ′ relative to µ. Then we use the notation below
to extract the corresponding values from M(C ′, l):

bM(C ′, l)ccij = Descrµ(C ′)i·k+j (0 ≤ i ≤ n− 1, 1 ≤ j ≤ k),
bM(C ′, l)ccij = Descrµ(C ′)(n+i)·k+j (1 ≤ i ≤ n, 1 ≤ j ≤ k),
bM(C ′, l)cdi = Descrµ(C ′)2n·k+i (1 ≤ i ≤ n),
bM(C ′, l)crij = Descrµ(C ′)(2k+1)·n+k1+...+ki−1+j (1 ≤ j ≤ ki, 1 ≤ i ≤ n).

The following claims can be verified easily. Below, let D denote a description.

Claim. Let M([D, 0])→∗V al M ′. Then M ′ = M([D′, 0]), where D′ is a description.

Claim. Let M([D, 1])→∗App M ′. Then M ′ = M([D′, 1]), where D′ is a description.

Claim. Let M([D, 2])→∗Msg M
′. Then M ′ = M([D′, 2]), where D′ is a description.

Claim. Let M([D, 3])→∗Dis M ′. Then M ′ = M([D′, 3]), where D′ is a description.

Simulating P Systems and Dissolution in a Typed Chemical Calculus 73

In the following, we assume that every possible configuration is the result of
some computational sequence starting from a fixed configuration C of the P system
Π = (O,µ,w1, . . . , wn, R1, . . . , Rn, ρ1, . . . , ρn) of order n with membrane dissolv-
ing, promoter/inhibitor sets for rules, and priority relations.

We prove the two parts of the theorem by simultaneous induction on the num-
ber of reduction steps in the chemical calculus and computational steps in the P
system, respectively.

Lemma 1. (1) If C ′ ⇒∗mpr C ′′, then M(C ′, 1)→∗App M(C ′′, 1), and conversely,
(2) if we assume M(C ′, 1)→∗App M ′′, then there is C ′′ such that C ′ ⇒∗mpr C ′′

and M ′′ = M(C ′′, 1).

Proof. We prove the lemma by simultaneous induction on the lengths of the re-
duction sequences. Assume we know the result for reduction sequences of lengths
at most s.

(1) Let C ⇒∗ C ′, assume C ′ = (µ′, w′1, . . . , w
′
n). Suppose C ′ ⇒s

mpr C
′′′ ⇒r C

′′,
C ′′ = (µ′′, w′′1 , . . . , w

′′
n), C ′′′ = (µ′′′, w′′′1 , . . . , w

′′′
n) and r = u → v ∈ Ri. Since

r is applicable to C ′′′, we have bM(C ′′′, 1)cr = 1 and u(aj) ≤ wi(aj), which
means u(aj) ≤ bM(C ′′′, 1)ccij . These together imply that App(r) can be applied
to M(C ′′′, 1) yielding M([apply(Descrµ(C ′′′), r), 1]).

- Let bM([apply(Descrµ(C ′′′), r), 1])cclj = slj . Then slj = bM(C ′′′, 1)cclj −
u(aj) = w′′′i (aj) − u(aj), if l = i, and slj = bM(C ′′′, 1)cclj = w′′′i (aj) oth-
erwise.

- Let bM([apply(Descrµ(C ′′′), r), 1])cclj = tlj . Then tlj = bM(C ′′′, 1)cclj +
v(aj , here), if l = i, tlj = bM(C ′′′, 1)cclj + v(aj , inh), if l = h 6= i and µ(mh) =
mi, and tlj = bM(C ′′′, 1)cclj + v(aj , out), if l = µ′′′(i). Taking all these into
account, tij = w′′i (aj , here) +

∑
p 6=i,µ(mi)=mp w

′′
p (aj , ini) +

∑
µ(p)=i w

′′
p (aj , out)

remains valid.
- If v(δ) = 1, then bM(C ′′, i)cdi is set to 1.

(2) Let C ⇒∗ C ′, and M(C ′, 1)→∗App M ′′. It is enough to prove the result for
the case M(C ′, 1)→App(r) M

′′, where r = u→ v. By Claim 3, M ′′ = M([D′′, 1]).
Since r is applicable to M(C ′, 1), we have, by bM(C ′, 1)cr = 1, that r = u→ v ∈
Ri is valid for some fixed i depending on r. Moreover, u(aj) ≤ bM(C ′, 1)cclj =
w′i(aj), for every 1 ≤ j ≤ k, which makes r applicable to C ′. From this point on, we
can show by a reasoning similar to that of the previous point that D′′ = M(C ′′, 1),
where C ′ ⇒r C

′′. We omit the details. �

Instead of parallel communication as defined in [2] we choose the simpler way
which is equally suitable to our present purposes and we define ⇒msg as the
following set of sequential multiset transformations.

Definition 5. Let C = (w1, . . . , wn, µ) and C ′ = (w′1, . . . , w
′
n, µ,). Then C ⇒∗tar

C ′ holds iff one of the following cases is valid.

1. Assume that wi(aj , here) > 0. Then w′i(aj) = wi(aj) + wi(aj , here) and
w′i(aj , here) = 0. All the other values remain unchanged.

2. Assume wi(aj , inl) > 0. Then w′l(aj) = wl(aj)+wi(aj , inl) and w′i(aj , inl) = 0.
All the other values remain unchanged.

3. Assume wi(aj , out) > 0 and l = µ(i) is defined. Then w′l(aj) = wl(aj) +
wi(aj , out) and w′i(aj , out) = 0. If i = Skin, then w′i(aj , out) = 0. All the
other values remain unchanged.

74 B. Aman et al.

Lemma 2. (1) Let C ′ ⇒∗msg C ′′, and assume that C ′′ is msg-irreducible. Then
M(C ′, 2)→Msg M(C ′′, 2).

(2) Conversely, assume M(C ′, 2) →Msg M ′′. Then there is C ′′ such that
C ′ ⇒msg C

′′, C ′′ is msg-irreducible, and M ′′ = M(C ′′, 1).

Proof. We prove by induction on the number of steps in C ⇒msg C
′ that, for

every 1 ≤ i ≤ n and 1 ≤ j ≤ k,

Descrµ(C)cij +Descrµ(C)cij = Descrµ(C ′)cij +Descrµ(C ′)cij . (3)

To this end, we show that, if C →msg C ′ and C = (µ,w1, . . . , wn) and C =
(µ,w′1, . . . , w

′
n), then

wi(aj) + wi(aj , here) +
∑
p 6=i

wp(aj , ini) +
∑
µ(p)=i

wp(aj , out) = (4)

w′i(aj) + w′i(aj , here) +
∑
p 6=i

w′p(aj , ini) +
∑
µ(p)=i

w′p(aj , out).

We treat Point 2 of Definition 5, the remaining cases can be handled similarly. Let
C ⇒msg C

′ by Point 2 of Definition 5. Assume wi(aj , inl) > 0. Let us consider
only the case i = l in Equation 4, since for all the other cases the equation trivially
holds. But in this case the left hand side contains wl(aj)+wi(aj , inl), and the right
hand side contains the corresponding w′l(aj)+w′i(aj , inl), which, by definition, are
equal.

(⇒)Let C ⇒msg C
′, assume that C ′ is msg-irreducible. A msg-irreducible P system

with the Skin membrane as the outermost membrane contains no messages,
thus, by Equation 3, M(C, 2)→Msg M(C ′, 2).

(⇐)Let M(C, 2)→Msg N
′. Then, by Claim 3, N ′ = M(D′, 2) for some description

D′. Let C ⇒msg C
′ such that C ′ is msg-irreducible. Then C ′ is message free,

which, by Equation 4, entails D′ = Descrµ(C ′).

�

Now, following [1], we define the skeleton of a configuration (µ,w1, . . . , wn) as
U ′ = (u′1, . . . , u

′
n), where u′i = ∗, if membrane i is dissolved or under dissolution

(that is, ui(δ) = 1 and i 6= Skin) and u′i = 0 otherwise. Let

µ0(i) = i,
µj(i) = µ(µj−1(i)) for j > 0.

Let µU ′(i) = min{j | µk(i) = j ∧ u′j 6= ∗ ∧ u′(µl(i)) = ∗ for 0 ≤ l ≤ k − 1}.
That is, µU ′(i) is the smallest membrane containing membrane i which exists or
does not disappear. Let C ′ ⇒δ C

′′, assume w′l(δ) = 1 for at least one membrane
ml. We define the effect of the dissolution rule as follows: (µ′, w′1, . . . , w

′
n) ⇒δ

(µ′′, w′′1 , . . . , w
′′
n), where w′′i = ∗ provided u′i = ∗, and w′′i (aj) = w′i(aj) +∑

{w′l(aj) | µU ′(l) = i, w′l(δ) = 1}, if u′(i) = 0.

Lemma 3. (1) If C ′ ⇒δ C
′′, then M(C ′, 3)→∗Dis M(C ′′, 3).

(2) Conversely, assume that M(C ′, 3) →∗Dis M ′′, and M ′′ is Dis-irreducible.
Then there exists a proper configuration C ′′ with C ′ ⇒δ C

′′ and M ′′ = M(C ′′, 3).

Simulating P Systems and Dissolution in a Typed Chemical Calculus 75

Proof. (1) Let C ′ = (µ,w′1, . . . , w
′
n) ⇒δ C

′′, and assume that w′i(δ) = 1. Then
bM(C ′, 3)cdi = 1. Let bM(C ′, 3)ccij > 1 for some 1 ≤ j ≤ k. Then M(C ′, 3)→Disi

M([disi(Descrµ(C ′)), 3]). Let p = µU ′(i), where U ′ is the skeleton of C ′. Let D′ =
Descrµ(C ′) and D′′ = disi(Descrµ(C ′)). Let us denote by D′cij and D′′cij the values
of the descriptions pertaining to the coordinates (i, j). It follows immediately, by
Definition 3, that

D′cpj +
∑
{D′clj | µU ′(l) = p,D′dl = 1} = (5)

D′′cpj +
∑
{D′′clj | µU ′(l) = p,D′′dl = 1}.

In other words, for every 1 ≤ j ≤ k, the sums of the occurrences of elements aj
in the dissolved or to be dissolved descendants of membrane mp plus the multi-
plicity of aj in mp remain the same at a dissolution step in the chemical calcu-
lus. Let M(C ′, 3) →Dis M([D, 3]) such that M([D, 3]) is irreducible with respect
to Dis. Then Ddi = 1 implies Dcij = 0, which, by Equation 5, involves that
D = Descrµ(C ′′).

(2) Let M(C ′, 3) →∗Dis M ′′. By Claim 3, there exists a description D′′ such
that M ′′ = M([D′′, 3]). Since M ′′ is Dis irreducible, D′′di = 1 implies D′′cij = 0. This
means, there is a proper configuration C ′′ such that Descrµ(C ′′) = D′′. Assume
w′s(δ) = 1 holds in C ′. Let D′ = Descrµ(C ′). Let U ′ be the skeleton of D′ and
p = µU ′(s). Since M ′′ is Dis irreducible, Equation 5 simplifies to

D′cpj +
∑
{D′clj | µU ′(l) = p,D′dl = 1} = D′′cpj .

Taking the corresponding configurations, this amounts to C ′ ⇒δ C
′′. �

Proof of Theorem 1.

(⇒)Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn, ρ1, . . . , ρn) be a P system of order n
with membrane dissolving, promoter/inhibitor sets for rules and priority re-
lations. Assume C0 ⇒t C1. We prove by induction on t that M(C0, 0) →∗
M(C1, 0). Let C ⇒t−1 C2 ⇒ C1. Assume C2 = (µ′′, w′′n1

, . . . , w′′ni), C1 =
(µ′, w′n1

, . . . , w′ni). Assume there exists N ′′ such that M(C ′′, 0)→V al N
′′. But

V alρ(r) is applicable iff r is valid and no rule r′ with (r′, r) ∈ ρ is valid, this
means N ′′ = M(C ′′, 0) and M(C ′′, 0) is V alρ irreducible. In this case

M(C ′′, 0)→Sync M(C ′′, 1).

Putting Lemmas 1, 2 and 3 together, taking into account the fact that
M(E, i) →Sync M(E, i + 1 mod 5) whenever M(E, i) is irreducible for the

corresponding reduction, we obtain that there exists a configuration C̃ and a
description D such that

M(C ′′, 0)→∗RemV al M([D, 4])→Sync M([D, 0]),

where D is the description Descrµ(C̃) except for the values Dr = 0. A transi-
tion in V alρ(r) is applicable at most twice for every rule r. This means there
is a description D′ such that

M([D, 0])→∗V alρ M([D′, 0])

and M([D′, 0]) is V alρ irreducible. But then D′ = Descrµ(C̃).

76 B. Aman et al.

(⇐)Follows in a way similar to the above part from Lemmas 1, 2 and 3, but this
time applying the other directions of the lemmas.

Corollary 1. Let Π = (O,µ,w1, . . . , wn, R1, . . . , Rn, ρ1, . . . , ρn) and let C =
(µ,w1, . . . , wn). Then Π is strongly (resp. weakly) normalizing iff M(C, 0) is
strongly (resp. weakly) normalizing. Moreover, the halting computations starting
from C provide the same results as those supplied by the terminating reduction
sequences of M(C, 0).

References

1. O. Agrigoroaiei, G. Ciobanu, Flattening the transition P systems with dissolution. In:
M. Gheorghe, T. Hinze, Gh. Păun, G. Rozenberg, A. Salomaa (editors), Membrane
Computing, 11th International Conference, CMC 2010, Jena, Germany, 2010, Re-
vised Selected Papers. Volume 6501 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg (2011) 53–64.

2. O. Andrei, G. Ciobanu and D. Lucanu, Structural operational semantics of P systems.
In: R. Freund, Gh. Păun, G. Rozenberg, A. Salomaa (editors), Membrane Computing,
6th International Workshop, WMC 2005, Vienna, Austria, 2005, Revised Selected
and Invited Papers. Volume 3850 of Lecture Notes in Computer Science, Springer
Berlin Heidelberg (2006) 32–49.

3. O. Andrei, G. Ciobanu and D. Lucanu, A rewriting logic framework for operational
semantics of membrane systems. Theoretical Computer Science, 373 (2007) 163–181.

4. J.P. Banâtre, P. Fradet, Y. Radenac, Principles of chemical computing. Electronic
Notes in Theoretical Computer Science 124 (2005) 133–147.

5. J.P. Banâtre, P. Fradet, Y. Radenac, Generalized multisets for chemical program-
ming. Mathematical Structures in Computer Science 16 (2006) 557–580.

6. J.P. Banâtre, D. Le Métayer, A new computational model and its discipline of pro-
gramming. Technical Report RR0566, INRIA (1986).

7. P. Battyányi, Gy. Vaszil, Describing membrane computations with a chemical calcu-
lus. Fundamenta Informaticae, 134 (2014) 39–50.

8. P. Bottoni, C. Mart́ın-Vide, G. Păun, G. Rozenberg, Membrane systems with pro-
moters/inhibitors. Acta Informatica, 38 (2002) 695–720.

9. G. Păun, Computing with membranes. Journal of Computer and System Sciences,
61(1) (2000) 108–143.

10. G. Păun, Membrane Computing. An Introduction. Springer, 2002.
11. G. Păun, G. Rozenberg, A. Salomaa (eds), The Oxford Handbook of Membrane Com-

puting. Oxford University Press, 2010.

Notes on Spiking Neural P Systems and Finite
Automata

Francis George C. Cabarle1, Henry N. Adorna1, Mario J. Pérez-Jiménez2

1Department of Computer Science
University of the Philippines Diliman
Diliman, 1101, Quezon city, Philippines;
2Department of Computer Science and AI
Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
fccabarle@up.edu.ph, hnadorna@dcs.upd.edu.ph, marper@us.es

Summary. Spiking neural P systems (in short, SNP systems) are membrane computing
models inspired by the pulse coding of information in biological neurons. SNP systems
with standard rules have neurons that emit at most one spike (the pulse) each step, and
have either an input or output neuron connected to the environment. SNP transducers
were introduced, where both input and output neurons were used. More recently, SNP
modules were introduced which generalize SNP transducers: extended rules are used
(more than one spike can be emitted each step) and a set of input and output neurons can
be used. In this work we continue relating SNP modules and finite automata: (i) we amend
previous constructions for DFA and DFST simulations, (ii) improve the construction
from three neurons down to one neuron, (iii) DFA with output are simulated, and (iv)
we generate automatic sequences using results from (iii).

Key words: Membrane computing, Spiking neural P systems, Finite automata,
Automatic sequences

1 Introduction

Spiking neural P systems (in short, SNP systems) introduced in [7], incorporated
into membrane computing the idea of pulse coding of information in computations
using spiking neurons (see for example [10][11] and references therein for more
information). In pulse coding from neuroscience, pulses known as spikes are not
distinct, so information is instead encoded in their multiplicity or the time they
are emitted.

On the computing side, SNP systems have neurons processing only one object
(the spike symbol a), and neurons are placed on nodes of a directed graph. Arcs
between neurons are called synapses. SNP systems are known to be universal in

78 F.G.C. Cabarle, H.N. Adorna, M.J. Pérez-Jiménez

both generative (an output is given, but not an input) and accepting (an input
is given, but not an output) modes. SNP systems can also solve hard problems
in feasible (polynomial to constant) time. We do not go into such details, and we
refer to [7][8][9][16] and references therein.

SNP systems with standard rules (as introduced in their seminal paper) have
neurons that can emit at most one pulse (the spike) each step, and either an
input or output neuron connected to the environment, but not both. In [15], SNP
systems were equipped with both an input and output neuron, and were known
as SNP transducers. Furthermore, extended rules were introduced in [3] and [14],
so that a neuron can produce more than one spike each step. The introduced SNP
modules in [6] can then be seen as generalizations of SNP transducers: more than
one spike can enter or leave the system, and more than one neuron can function
as input or output neuron.

In this work we continue investigations on SNP modules. In particular we
amend the problem introduced in the construction of [6], where SNP modules
were used to simulate deterministic finite automata and state transducers. Our
constructions also reduce the neurons for such SNP modules: from three neurons
down to one. Our reduction relies on more involved superscripts, similar to some
of the constructions in [12].

We also provide constructions for SNP modules simulating DFA with output.
Establishing simulations between DFA with output and SNP modules, we are then
able to generate automatic sequences. Such class of sequences contain, for example,
a common and useful automatic sequence known as the Thue-Morse sequence.
The Thue-Morse sequence, among others, play important roles in many areas of
mathematics (e.g. number theory) and computer science (e.g. automata theory).
Aside from DFA with output, another way to generate automatic sequences is by
iterating morphisms. We invite the interested reader to [1] for further theories and
applications related to automatic sequences.

This paper is organized as follows: Section 2 provides our preliminaries. Section
3 provides our results. Finally, section 4 provides our final remarks.

2 Preliminaries

It is assumed that the readers are familiar with the basics of membrane computing
(a good introduction is [13] with recent results and information in the P systems
webpage1 and a recent handbook [17]) and formal language theory (available in
many monographs). We only briefly mention notions and notations which will be
useful throughout the paper.

2.1 Language theory and string notations

We denote the set of natural (counting) numbers as N = {0, 1, 2, . . .}. Let V be an
alphabet, V ∗ is the set of all finite strings over V with respect to concatenation and

1 http://ppage.psystems.eu/

Notes on Spiking Neural P Systems and Finite Automata 79

the identity element λ (the empty string). The set of all non-empty strings over V
is denoted as V + so V + = V ∗−{λ}. We call V a singleton if V = {a} and simply
write a∗ and a+ instead of {a}∗ and {a}+. If a is a symbol in V , then a0 = λ,
A regular expression over an alphabet V is constructed starting from λ and the
symbols of V using the operations union, concatenation, and +. Specifically, (i) λ
and each a ∈ V are regular expressions, (ii) if E1 and E2 are regular expressions
over V then (E1 ∪ E2), E1E2, and E+

1 are regular expressions over V , and (iii)
nothing else is a regular expression over V . The length of a string w ∈ V ∗ is denoted
by |w|. Unnecessary parentheses are omitted when writing regular expressions, and
E+∪{λ} is written as E∗. We write the language generated by a regular expression
E as L(E). If V has k symbols, then [w]k = n is the base-k representation of n ∈ N.

2.2 Deterministic finite automata

Definition 1. A deterministic finite automaton (in short, a DFA) D, is defined
by the 5-tuple D = (Q,Σ, q1, δ, F), where:

� Q = {q1, . . . , qn} is a finite set of states,
� Σ = {b1, . . . , bm} is the input alphabet,
� δ : Q×Σ → Q is the transition function,
� q1 ∈ Q is the initial state,
� F ⊆ Q is a set of final states.

Definition 2. A deterministic finite state transducer (in short, a DFST) with
accepting states T , is defined by the 6-tuple T = (Q,Σ,∆, q1, δ

′, F), where:

� Q = {q1, . . . , qn} is a finite set of states,
� Σ = {b1, . . . , bm} is the input alphabet,
� ∆ = {c1, . . . , ct} is the output alphabet,
� δ′ : Q×Σ → Q×∆ is the transition function,
� q1 ∈ Q is the initial state,
� F ⊆ Q is a set of final states.

Definition 3. A deterministic finite automaton with output (in short, a DFAO)
M , is defined by the 6-tuple M = (Q,Σ, δ′′, q1, ∆, τ), where:

� Q = {q1, . . . , qn} is a finite set of states,
� Σ = {b1, . . . , bm} is the input alphabet,
� δ′′ : Q×Σ → Q is the transition function,
� q1 ∈ Q is the initial state,
� ∆ = {c1, . . . , ct} is the output alphabet,
� τ : Q→ ∆ is the output function.

A given DFAO M defines a function from Σ∗ to ∆, denoted as fM (w) =
τ(δ′′(q1, w)) for w ∈ Σ∗. If Σ = {1, ..., k}, denoted as Σk, then M is a k-DFAO.

80 F.G.C. Cabarle, H.N. Adorna, M.J. Pérez-Jiménez

Definition 4. A sequence, denoted as a = (an)n≥0, is k-automatic if there exists
a k-DFAO, M , such that given w ∈ Σ∗k , an = τ(δ′′(q1, w)), where [w]k = n.

Example 1. (Thue-Morse sequence) The Thue-Morse sequence t = (tn)n≥0 counts
the number of 1’s (mod 2) in the base-2 representation of n. The 2-DFAO for t
is given in Fig. 1. In order to generate t, the 2-DFAO is in state q1 with output
0, if the input bits seen so far sum to 0 (mod 2). In state q2 with output 1, the
2-DFAO has so far seen input bits that sum to 1 (mod 2). For example, we have
t0 = 0, t1 = t2 = 1, and t3 = 0.

--

]

? W

0 0

1

1

start q1/0 q2/1

Fig. 1. 2-DFAO generating the Thue-Morse sequence.

2.3 Spiking neural P systems

Definition 5. A spiking neural P system (in short, an SNP system) of degree
m ≥ 1, is a construct of the form Π = ({a}, σ1, . . . , σm, syn, in, out)

where:

� {a} is the singleton alphabet (a is called spike);
� σ1, . . . , σm are neurons of the form σi = (ni, Ri), 1 ≤ i ≤ m, where:

– ni ≥ 0 is the initial number of spikes inside σi;
– Ri is a finite set of rules of the general form: E/ac → ap; d, where E is a

regular expression over {a}, c ≥ 1, with p, d ≥ 0, and c ≥ p; if p = 0, then
d = 0 and L(E) = {ac};

� syn ⊆ {1, . . . ,m} × {1, . . . ,m}, with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses);
� in, out ∈ {1, . . . ,m} indicate the input and output neurons, respectively.

A rule E/ac → ap; d in neuron σi (we also say neuron i or simply σi if there is no
confusion) is called a spiking rule if p ≥ 1. If p = 0, then d = 0 and L(E) = {ac}, so
that the rule is written simply as ac → λ, known as a forgetting rule. If a spiking
rule has L(E) = {ac}, we simply write it as ac → ap; d. The systems from the
original paper [7], with rules of the form E/ac → a; d and ac → λ, are referred to

Notes on Spiking Neural P Systems and Finite Automata 81

as standard systems with standard rules. The extended rules (i.e. p ≥ 1) used in
this work are referred to as SNP systems with extended rules in other literature,
e.g. [6], [14], [16].

The rules are applied as follows: If σi contains k spikes, ak ∈ L(E) and k ≥ c,
then the rule E/ac → ap; d ∈ Ri with p ≥ 1, is enabled and can be applied.
Rule application means consuming c spikes, so only k − c spikes remain in σi.
The neuron produces p spikes (also referred to as spiking) after d time units, to
every σj where (i, j) ∈ syn. If d = 0 then the p spikes arrive at the same time as
rule application. If d ≥ 1 and the time of rule application is t, then during the
time sequence t, t + 1, . . . , t + d − 1 the neuron is closed. If a neuron is closed, it
cannot receive spikes, and all spikes sent to it are lost. Starting at times t+ d and
t+ d+ 1, the neuron becomes open (i.e., can receive spikes), and can apply rules
again, respectively. Applying a forgetting rule means producing no spikes. Note
that a forgetting rule is never delayed since d = 0.

SNP systems operate under a global clock, i.e. they are synchronous. At every
step, every neuron that can apply a rule must do so. It is possible that at least
two rules E1/a

c1 → ap1 ; d1 and E2/a
c2 → ap2 ; d2, with L(E1) ∩ L(E2) 6= ∅, can

be applied at the same step. The system nondeterministically chooses exactly one
rule to apply. The system is globally parallel (each neuron can apply a rule) but is
locally sequential (a neuron can apply at most one rule).

A configuration or state of the system at time t can be described by Ct =
〈r1/t1, . . . , rm/tm〉 for 1 ≤ i ≤ m: Neuron i contains ri ≥ 0 spikes and it will open
after ti ≥ 0 time steps. The initial configuration of the system is therefore C0 =
〈n1/0, . . . , nm/0〉, where all neurons are initially open. Rule application provides
us a transition from one configuration to another. A computation is any (finite
or infinite) sequence of transitions, starting from a C0. A halting computation is
reached when all neurons are open and no rule can be applied.

If σout produces i spikes in a step, we associate the symbol bi to that step.
In particular, the system (using rules in its output neuron) generates strings over
Σ = {p1, . . . , pm}, for every rule r` = E`/a

j` → ap` ; d`, 1 ≤ ` ≤ m, in σout. From
[3] we can have two cases: associating b0 (when no spikes are produced) with a
symbol, or as λ. In this work and as in [6], we only consider the latter.

Definition 6. A spiking neural P module (in short, an SNP module) of degree
m ≥ 1, is a construct of the form Π = ({a}, σ1, . . . , σm, syn,Nin, Nout)

where

� {a} is the singleton alphabet (a is called spike);
� σ1, . . . , σm are neurons of the form σi = (ni, Ri), 1 ≤ i ≤ m, where:

– ni ≥ 0 is the initial number of spikes inside σi;
– Ri is a finite set of rules of the general form: E/ac → ap, where E is a

regular expression over {a}, c ≥ 1, and p ≥ 0, with c ≥ p; if p = 0, then
L(E) = {ac}

� syn ⊆ {1, . . . ,m} × {1, . . . ,m}, with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses);

82 F.G.C. Cabarle, H.N. Adorna, M.J. Pérez-Jiménez

� Nin, Nout(⊆ {1, 2, . . . ,m}) indicate the sets of input and output neurons, re-
spectively.

In [15], SNP transducers operated on strings over a binary alphabet as well con-
sidering b0 as a symbol. SNP modules, first introduced in [6], are a special type of
SNP systems with extended rules, and generalize SNP transducers.

SNP modules behave in the usual way as SNP systems, except that spiking
and forgetting rules now both contain no delays. In contrast to SNP systems,
SNP modules have the following distinguishing feature: at each step, each input
neuron σi, i ∈ Nin, takes as input multiple copies of a from the environment (in
short, Env); Each output neuron σo, o ∈ Nout, produces p spikes to Env, if a rule
E/ac → ap is applied in σo; Note that Nin ∩Nout is not necessarily empty.

3 Main results

In this section we amend and improve constructions given in [6] to simulate DFA
and DFST using SNP modules. Then, k-DFAO are also simulated with SNP mod-
ules. Lastly, SNP modules are related to k-automatic sequences.

3.1 DFA and DFST simulations

We briefly recall the constructions from theorem 8 and 9 of [6] for SNP modules
simulating DFAs and DFSTs. The constructions for both DFAs and DFSTs have
a similar structure, which is shown in Fig. 2. For neurons 1 and 2 in Fig. 2, the
spikes and rules for DFA and DFST simulation are equal, so the constructions
only differ for the contents of neuron 3. Let D = (Q,Σ, δ, q1, F) be a DFA, where
Σ = {b1, . . . , bm}, Q = {q1, . . . , qn}. The construction for theorem 8 of [6] for an
SNP Module ΠD simulating D is as follows:

ΠD = ({a}, σ1, σ2, σ3, syn, {3}, {3}),

where

� σ1 = σ2 = (n, {an → an}),
� σ3 = (n, {a2n+i+k/a2n+i+k−j → aj |δ(qi, bk) = qj}),
� syn = {(1, 2), (2, 1), (1, 3)}.

The structure for ΠD is shown in Fig. 2. Note that n,m ∈ N, are fixed numbers,
and each state qi ∈ Q is represented as ai spikes in σ3, for 1 ≤ i ≤ n. For each
symbol bk ∈ Σ, the representation is an+k. The operation of ΠD is as follows: σ1
and σ2 interchange an spikes at every step, while σ1 also sends an spikes to σ3.

Suppose that D is in state qi and will receive input bk, so that σ3 of ΠD has ai

spikes and will receive an+k spikes. In the next step, σ3 will collect an spikes from
σ1, an+k spikes from Env, so that the total spikes in σ3 is a2n+i+k. A rule in σ3
with L(E) = {a2n+i+k} is applied, and the rule consumes 2n+ i+ k − j spikes,

Notes on Spiking Neural P Systems and Finite Automata 83

therefore leaving only aj spikes. A single state transition δ(qi, bk) = qj is therefore
simulated.

With a 1-step delay, ΠD receives a given input w = bi1 , . . . , bir in Σ∗ and
produces a sequence of states z = qi1 , . . . , qir (represented by ai1 , . . . , air) such
that δ(qi` , bi`) = qi`+1

, for each ` = 1, . . . , r where qi1 = q1. Then, w is accepted
by D (i.e. δ(q1, w) ∈ F) iff z = ΠD(w) ends with a state in F (i.e. qir ∈ F). Let
the language accepted by ΠD be defined as:

L(ΠD) = {w ∈ Σ∗|ΠD(w) ∈ Q∗F}.

Then, the following is theorem 8 from [6]

Theorem 1. (Ibarra et al [6]) Any regular language L can be expressed as L =
L(ΠD) for some SNP module ΠD.

'
&
$
%

'
&
$
%
�

-

?

12

'
&
$
%
��

3

Fig. 2. Structure of SNP modules from [6] simulating DFAs and DFSTs.

The simulation of DFSTs requires a slight modification of the DFA con-
struction. Let T = (Q,Σ,∆, δ′, q1, F) be a DFST, where Σ = {b1, . . . , bk},
∆ = {c1, . . . , ct}, Q = {q1, . . . , qn}. We construct the following SNP module sim-
ulating T :

ΠT = ({a}, σ1, σ2, σ3, syn, {3}, {3}),

where:

� σ1 = σ2 = (n, {an → an}),
� σ3 = (n, {a2n+i+k+t/a2n+i+k+t−j → an+s|δ′(qi, bk) = (qj , cs)}),
� syn = {(1, 2), (2, 1), (1, 3)}.

The structure for ΠT is shown in Fig. 2. Note that n,m, t ∈ N are fixed numbers.
For 1 ≤ i ≤ n, 1 ≤ s ≤ t, 1 ≤ k ≤ m: each state qi ∈ Q, each input symbol
bk ∈ Σ, and each output symbol cs ∈ ∆, is represented by ai, an+t+k, and an+s,
respectively.

The operation of ΠT given an input w ∈ Σ∗ is in parallel to the operation of
ΠD; the difference is that the former produces a cs ∈ ∆, while the latter produces

84 F.G.C. Cabarle, H.N. Adorna, M.J. Pérez-Jiménez

a qi ∈ Q. From the construction of ΠT and the claim in Theorem 1, the following
is Theorem 9 from [6]:

Theorem 2. (Ibarra et al[6]) Any finite transducer T can be simulated by some
SNP module ΠT .

The previous constructions from [6] on simulating DFAs and DFSTs have how-
ever, the following technical problem:

Suppose we are to simulate DFA D with at least two transitions, (1) δ(qi, bk) =
qj , and (2) δ(qi′ , bk′) = qj′ . Let j 6= j′, i = k′, and k = i′. The SNP module ΠD

simulating D then has at least two rules in σ3: r1 = a2n+i+k/a2n+i+k−j → aj ,
(simulating (1)) and r2 = a2n+i′+k′

/a2n+i′+k′−j′ → aj
′

(simulating (2)).
Observe that 2n+ i+ k = 2n+ i′+ k′, so that in σ3, the regular expression for

r1 is exactly the regular expression for r2. We therefore have a nondeterministic
rule selection in σ3. However, D being a DFA, transitions to two different states
qj and qj′ . Therefore, ΠD is a nondeterministic SNP module that can, at certain
steps, incorrectly simulate the DFA D. This nondeterminism also occurs in the
DFST simulation. An illustration of the problem is given in example 2.

Example 2. We modify the 2-DFAO in Fig. 1 into a DFA in Fig. 3 as follows:
Instead of Σ = {0, 1}, we have Σ = {1, 2}; We maintain n = m = 2, however,
the transitions are swapped, so in Fig. 3 we have the following two (among four)
transitions: δ(q1, 2) = q2, and δ(q2, 1) = q1. These two transitions cause the nonde-
terministic problem for the SNP module given in Fig. 4. The problem concerns the
simulation of the two previous transitions using rules a7/a5 → a2 and a7/a6 → a
in σ3, which can be nondeterministically applied: if σ3 contains a2 spikes and re-
ceives a3 from Env (representing input 1 for the DFA), at the next step σ3 will
have a7 spikes, allowing the possibility of an incorrect simulation.

--

]

? W

1 2

2

1

start q1 q2

Fig. 3. DFA with incorrect simulation by the SNP module in Fig. 4.

Next, we amend the problem and modify the constructions for simulating DFAs
and DFSTs in SNP modules. Given a DFA D, we construct an SNP module Π′D
simulating D as follows:

Notes on Spiking Neural P Systems and Finite Automata 85#
"

!

#
"

!
�

-

?

1
a2

a2 → a2

2
a2

a2 → a2

'

&

$

%
��

3
a2

a6/a5 → a

a7/a5 → a2

a7/a6 → a

a8/a7 → a2

Fig. 4. SNP module with incorrect simulation of the DFA in Fig. 3.

Π′D = ({a}, σ1, syn, {1}, {1}),

where

� σ1 = (1, {ak(2n+1)+i/ak(2n+1)+i−j → aj |δ(qi, bk) = qj}),
� syn = ∅.

We have ΠD containing only 1 neuron, which is both the input and output neuron.
Again, n,m ∈ N are fixed numbers. Each state qi is again represented as ai spikes,
for 1 ≤ i ≤ n. Each symbol bk ∈ Σ is now represented as ak(2n+1) spikes. The
operation of Π′D is as follows: neuron 1 starts with a1 spike, representing q1 in D.
Suppose that D is in some state qi, receives input bk, and transitions to qj in the
next step. We then have Π′D combining ak(2n+1) spikes from Env with ai spikes,
so that a rule with regular expression ak(2n+1)+i is applied, producing aj spikes to
Env. After applying such rule, aj spikes remain in σ1, and a single transition of D
is simulated.

Note that the construction for Π′D does not involve nondeterminism, and hence
the previous technical problem: Let D have at least two transitions, (1) δ(qi, bk) =
qj , and (2) δ(qi′ , bk′) = qj′ . We again let j 6= j′, i = k′, and k = i′. Note that being
a DFA, we have i 6= k. Observe that k(2n + 1) + i 6= k′(2n + 1) + i′. Therefore,
Π′D is deterministic, and has two rules r1 and r2 correctly simulating (1) and (2),
respectively. We now have the following result.

Theorem 3. Any regular language L can be expressed as L = L(Π′D) for some
1-neuron SNP module Π′D

For a given DFST T , we construct an SNP module Π′T simulating T as follows:

Π′T = ({a}, σ1, syn, {1}, {1}),

where

� σ1 = (1, {ak(2n+1)+i+t/ak(2n+1)+i+t−j → an+s|δ′(qi, bk) = (qj , cs)}),
� syn = ∅.

86 F.G.C. Cabarle, H.N. Adorna, M.J. Pérez-Jiménez

We also have Π′T as a 1-neuron SNP module similar to Π′D. Again, n,m, t ∈ N
are fixed numbers, and for each 1 ≤ i ≤ n, 1 ≤ k ≤ m, and 1 ≤ s ≤ t: each state
qi ∈ Q, each input symbol bk ∈ Σ, and each output symbol cs ∈ ∆, is represented
as ai, ak(2n+1)+t, and an+s spikes, respectively. The functioning of Π′T is in parallel
to Π′D. Unlike ΠT , Π′T is deterministic and correctly simulates T . We now have
the next result.

Theorem 4. Any finite transducer T can be simulated by some 1-neuron SNP
module Π′T .

3.2 k-DFAO simulation and generating automatic sequences

Next, we modify the construction from Theorem 4 specifically for k-DFAOs by:
(a) adding a second neuron σ2 to handle the spikes from σ1 until end of input is
reached, and (b) using σ2 to output a symbol once the end of input is reached.
Also note that in k-DFAOs we have t ≤ n, since each state must have exactly
one output symbol associated with it. Observing k-DFAOs from Definition 3 and
DFSTs from Definition 2, we find a subtle but interesting distinction as follows:

The output of the state after reading the last symbol in the input is the re-
quirement from a k-DFAO, i.e. for every w over some Σk, the k-DFAO produces
only one c ∈ ∆ (recall the output function τ); In contrast, the output of DFSTs
is a sequence of Q×∆ (states and symbols), since δ′′(qi, bk) = (qj , cs). Therefore,
if we use the construction in Theorem 4 for DFST in order to simulate k-DFAOs,
we must ignore the first |w| − 1 symbols in the output of the system in order to
obtain the single symbol we require.

For a given k-DFAO M = (Q,Σ,∆, δ′′, q1, τ), we have 1 ≤ i, j ≤ n, 1 ≤ s ≤ t,
and 1 ≤ k ≤ m. Construction of an SNP module ΠM simulating M , is as follows:

Π = ({a}, σ1, σ2, syn, {1}, {2}),
where

� σ1 = (1, R1), σ2 = (0, R2),
� R1 = {ak(2n+1)+i+t/ak(2n+1)+i+t−j → an+s|δ′′(qi, bk) = qj , τ(qj) = cs}
∪{am(2n+1)+n+t+i → am(2n+1)+n+t+i|1 ≤ i ≤ n},

� R2 = {an+s → λ|τ(qi) = cs} ∪ {am(2n+1)+n+t+i → an+s|τ(qi) = cs},
� syn = {(1, 2)}.

We have ΠM as a 2-neuron SNP module, and n,m, t ∈ N are fixed numbers.
Each state qi ∈ Q, each input symbol bk ∈ Σ, and each output symbol cs ∈ ∆, is
represented as ai, ak(2n+1)+t, and an+s spikes, respectively. In this case however,
we add an end-of-input symbol $ (represented as am(2n+1)+n+t spikes) to the input
string, i.e. if w ∈ Σ∗, the input for ΠM is w$.

For any bk ∈ Σ, σ1 of ΠM functions in parallel to σ1 of Π′D and Π′T , i.e.
every transition δ′′(qi, bk) = qj is correctly simulated by σ1. The difference how-
ever lies during the step when $ enters σ1, indicating the end of the input. Sup-
pose during this step σ1 has ai spikes, then those spikes are combined with the

Notes on Spiking Neural P Systems and Finite Automata 87

am(2n+1)+n+t spikes from Env. Then, one of the n rules in σ1 with regular expres-
sion am(2n+1)+n+t+i is applied, sending am(2n+1)+n+t+i spikes to σ2.

The first function of σ2 is to erase, using forgetting rules, all an+s spikes it
receives from σ1. Once σ2 receives am(2n+1)+n+t+i spikes from σ1, this means that
the end of the input has been reached. The second function of σ2 is to produce
an+s spikes exactly once, by using one rule of the form am(2n+1)+n+t+i → an+s.
The output function τ(δ′′(q1, w$)) is therefore correctly simulated. We can then
have the following result.

Theorem 5. Any k-DFAO M can be simulated by some 2-neuron SNP module
ΠM .

Next, we establish the relationship of SNP modules and automatic sequences.

Theorem 6. Let a sequence a = (an)n≥0 be k-automatic, then it can be generated
by a 2-neuron SNP module Π.

k-automatic sequences have several interesting robustness properties. One
property is the capability to produce the same output sequence given that the
input string is read in reverse, i.e. for some finite string w = a1a2 . . . an, we have
wR = anan−1 . . . a2a1. It is known (e.g. [1]) that if (an)n≥0 is a k-automatic se-
quence, then there exists a k-DFAO M such that an = τ(δ′′(q0, w

R)) for all n ≥ 0,
and all w ∈ Σ∗k , where [w]k = n. Since the construction of Theorem 5 simulates
both δ′′ and τ , we can include robustness properties as the following result shows.

Theorem 7. Let a = (an)n≥0 be a k-automatic sequence. Then, there is some
2-neuron SNP module Π where Π(wR$) = an, w ∈ Σ∗k , [w]k = n, and n ≥ 0.

An illustration of the construction for Theorem 5 is given in example 3.

Example 3. (SNP module simulating the 2-DFAO generating the Thue-Morse se-
quence) The SNP module is given in Fig. 5, and we have n = m = t = 2. Based
on the construction for Theorem 5, we associate symbols 0 and 1 with a7 and a12

spikes, respectively. The end-of-input symbol $, q1, and q2 are associated with a14,
a, and a2 spikes, respectively (with a and a2 appearing only inside σ1).

The 2-DFAO in Fig. 1 has four transitions, and rules r1 to r4 simulate the four
transitions. Rules r5 and r6 are only applied when $ enters the system. Rules r7
and r8 are applied to “clean” the spikes from σ1 while $ is not yet encountered by
the system. Rules r8 and r9 produce the correct output, simulating τ .

4 Final Remarks

In [3], strict inclusions for the types of languages characterized by SNP systems
with extended rules having one, two, and three neurons were given. Then in [15],
it was shown that there is no SNP transducer that can compute nonerasing and

88 F.G.C. Cabarle, H.N. Adorna, M.J. Pérez-Jiménez

'

&

$

%

'

&

$

%
- - -

1 a

r1 : a8/a7 → a3

r2 : a13/a11 → a4

r3 : a9/a7 → a4

r4 : a14/a13 → a3

r5 : a15 → a15

r6 : a16 → a16

2 r7 : a3 → λ

r8 : a4 → λ

r9 : a15 → a3

r10 : a16 → a4

Fig. 5. SNP module simulating the 2-DFAO in Fig. 1.

nonlength preserving morphisms: for all a ∈ Σ, the former is a morphism h such
that h(a) 6= λ, while the latter is a morphism h where |h(a)| ≥ 2. It is known (e.g.
in [1]) that the Thue-Morse morphism is given by µ(0) = 01 and µ(1) = 10. It
is interesting to further investigate SNP modules with respect to other classes of
sequences, morphisms, and finite transition systems. Another technical note is that
in [15] a time step without a spike entering or leaving the system was considered
as a symbol of the alphabet, while in [6] (and in this work) it was considered as λ.

We also leave as an open problem a more systematic analysis of input/output
encoding size and system complexity: in the constructions for Theorems 3 to 4,
SNP modules consist of only one neuron for each module, compared to three
neurons in the constructions of [6]. However, the encoding used in our Theorems
is more involved, i.e. with multiplication and addition of indices (instead of simply
addition of indices in [6]). On the practical side, SNP modules might also be
used for computing functions, as well as other tasks involving (streams of) input-
output transformations. Practical applications might include image modification
or recognition, sequence analyses, online algorithms, et al.

Some preliminary work on SNP modules and morphisms was given in [2]. From
finite sequences, it is interesting to extend SNP modules to infinite sequences. In
[4], extended SNP systems2 were used as acceptors in relation to ω-languages.
SNP modules could also be a way to “go beyond Turing” by way of interactive
computations, as in interactive components or transducers given in [5]. While the
syntax of SNP modules may prove sufficient for these “interactive tasks”, or at
least only minor modifications, a (major) change in the semantics is probably
necessary.

Acknowledgements

Cabarle is supported by a scholarship from the DOST-ERDT of the Philippines.
Adorna is funded by a DOST-ERDT grant and the Semirara Mining Corp. pro-
fessorial chair of the College of Engineering, UP Diliman. M.J. Pérez-Jiménez
acknowledges the support of the Project TIN2012-37434 of the “Ministerio de

2 or ESNP systems, in short, are generalizations of SNP systems almost to the point of
becoming tissue P systems. ESNP systems are thus generalizations also of (and not to
be confused with) SNP systems with extended rules.

Notes on Spiking Neural P Systems and Finite Automata 89

Economı́a y Competitividad” of Spain, co-financed by FEDER funds. Fruitful dis-
cussions with Miguel Ángel Mart́ınez-del Amor are also acknowledged.

References

1. Allouche, J-P., Shallit, J.: Automatic Sequences: Theory, Applications, Generaliza-
tions. Cambridge University Press (2003)

2. Cabarle, F.G.C, Buño, K.C., Adorna, H.N.: Spiking Neural P Systems Generating
the Thue-Morse Sequence. Asian Conference on Membrane Computing 2012 pre-
proceedings, 15-18 Oct, Wuhan, China (2012)

3. Chen, H., Ionescu, M., Ishdorj, T-O., Păun, A., Păun, Gh., Pérez-Jiménez, M.J.:
Spiking neural P systems with extended rules: universality and languages. Natural
Computing, vol. 7, pp. 147-166 (2008)

4. Freund, R., Oswald, M.: Regular ω-languages defined by finite extended spiking neu-
ral P systems. Fundamenta Informaticae, vol. 81(1-2), pp. 65-73 (2008)

5. Goldin, D., Smolka, S., Wegner, P. (Eds.): Interactive Computation: The New
Paradigm. Springer-Verlag (2006)

6. Ibarra, O., Peréz-Jiménez, M.J., Yokomori, T.: On spiking neural P systems. Natural
Computing, vol. 9, pp. 475-491 (2010)

7. Ionescu, M., Păun, Gh., Yokomori, T.: Spiking Neural P Systems. Fundamenta In-
formaticae, vol. 71(2,3), pp. 279-308 (2006)

8. Leporati, A., Zandron, C., Ferretti, C., Mauri, G.: Solving Numerical NP-Complete
Problems with Spiking Neural P Systems. Eleftherakis et al. (Eds.): WMC8 2007,
LNCS 4860, pp. 336-352 (2007)

9. Pan, L., Păun, Gh., Pérez-Jiménez, M.J.: Spiking neural P systems with neuron
division and budding. Science China Information Sciences. vol. 54(8) pp. 1596-1607
(2011)

10. Maass, W.: Computing with spikes, in: Special Issue on Foundations of Information
Processing of TELEMATIK, vol. 8(1) pp. 32-36, (2002)

11. Maass, W., Bishop, C. (Eds.): Pulsed Neural Networks, MIT Press, Cambridge (1999)
12. Neary, T.: A Boundary between Universality and Non-universality in Extended Spik-

ing Neural P Systems. LATA 2010, LNCS 6031, pp. 475-487 (2010)
13. Păun, Gh.: Membrane Computing: An Introduction. Springer-Verlag (2002)
14. Păun, A., Păun, Gh.: Small universal spiking neural P systems. BioSystems, vol.

90(1), pp. 48-60 (2007)
15. Păun, Gh., Pérez-Jiménez, M.J., Rozenberg, G.: Computing Morphisms by Spiking

Neural P Systems. Int’l J. of Foundations of Computer Science. vol. 8(6) pp. 1371-
1382 (2007)

16. Păun, Gh., Pérez-Jiménez, M.J.: Spiking Neural P Systems. Recent Results, Research
Topics. A. Condon et al. (eds.), Algorithmic Bioprocesses, Springer-Verlag (2009)

17. Păun, Gh., Rozenberg, G., Salomaa, A. (Eds) The Oxford Handbook of Membrane
Computing, OUP (2010)

Asynchronous Spiking Neural P Systems with
Structural Plasticity?

Francis George C. Cabarle1, Henry N. Adorna1, Mario J. Pérez-Jiménez2

1Algorithms & Complexity Lab, Department of Computer Science
University of the Philippines Diliman
Diliman, 1101, Quezon City, Philippines;
2Department of Computer Science and AI
Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
fccabarle@up.edu.ph, hnadorna@dcs.upd.edu.ph, marper@us.es

Summary. Spiking neural P (in short, SNP) systems are computing devices inspired
by biological spiking neurons. In this work we consider SNP systems with structural
plasticity (in short, SNPSP systems) working in the asynchronous (in short, asyn mode).
SNPSP systems represent a class of SNP systems that have dynamic synapses, i.e. neurons
can use plasticity rules to create or remove synapses. We prove that for asyn mode,
bounded SNPSP systems (where any neuron produces at most one spike each step)
are not universal, while unbounded SNPSP systems with weighted synapses (a weight
associated with each synapse allows a neuron to produce more than one spike each step)
are universal. The latter systems are similar to SNP systems with extended rules in
asyn mode (known to be universal) while the former are similar to SNP systems with
standard rules only in asyn mode (conjectured not to be universal). Our results thus
provide support to the conjecture of the still open problem.

Key words: Membrane computing, Spiking neural P systems, Structural plastic-
ity, Asynchronous systems, Turing universality

1 Introduction

Spiking neural P systems (in short, SNP systems) are parallel, distributed, and
nondeterministic devices introduced into the are of membrane computing in [7].
Neurons are often drawn as ovals, and they process only one type of object, the
spike signal represented by a. Synapses between neurons are the arcs between ovals:
neurons are then placed on the vertices of a directed graph. Since their introduc-
tion, several lines of investigations have been produced, e.g. (non)deterministic

? An improved version of this article will appear at the 14th Unconventional Computa-
tion and Natural Computation (2015), Auckland, New Zealand.

92 F.G.C. Cabarle, H.N. Adorna, M.J. Pérez-Jiménez

computing power in [7][14]; language generation in [4]; function computing de-
vices in [11]; solving computationally hard problems in [9]. Many neuroscience
inspirations have also been included for computing use, producing several variants
(to which the previous investigation lines are also applied), e.g. use of weighted
synapses [16], neuron division and budding [9], the use of astrocytes [10]. Further-
more, many restrictions have been applied to SNP systems (and variants), e.g.
asynchronous SNP systems as in [6], [3], and [15], and sequential SNP systems as
in [6].

In this work the variant we consider are SNP systems with structural plasticity,
in short, SNPSP systems. SNPSP systems were first introduced in [1], then ex-
tended and improved in [2]. The biological motivation for SNPSP systems is struc-
tural plasticity, one form of neural plasticity, and distinct from the more common
functional (Hebbian) plasticity. SNPSP systems represent a class of SNP systems
using plasticity rules: synapses can be created or deleted so the synapse graph is
dynamic. The restriction we apply to SNPSP systems is asynchronous operation:
imposing synchronization on biological functions is sometimes “too much”, i.e. not
alway realistic. Hence, the asynchronous mode of operation is interesting to con-
sider. Such restriction is also interesting mathematically, and we refer the readers
again to [6], [3], and [15] for further details.

In this work we prove that (i) asynchronous bounded (i.e. there exists a bound
on the number of stored spikes in any neuron) SNPSP systems are not universal,
(ii) asynchronous weighted (i.e. a positive integer weight is associated with each
synapse) SNPSP systems, even under a normal form (provided below), are univer-
sal. The open problem in [3] whether asynchronous bounded SNP systems with
standard rules are universal is conjectured to be false. Also, asynchronous SNP
systems with extended rules are known to be universal [5]. Our results provide
some support to the conjecture, since neurons in SNPSP systems produce at most
one spike each step (similar to standard rules) while synapses with weights function
similar to extended rules (more than one spike can be produced each step). This
work is organized as follows: Section 2 provides preliminaries for our results; syntax
and semantics of SNPSP systems are given in Section 3; our (non)universality re-
sults are given in Section 4. Lastly, we provide final remarks and further directions
in Section 5.

2 Preliminaries

It is assumed that the readers are familiar with the basics of membrane computing
(a good introduction is [13] with recent results and information in the P systems
webpage (http://ppage.psystems.eu/) and a recent handbook [14]) and formal
language theory (available in many monographs). We only briefly mention notions
and notations which will be useful throughout the paper.

We denote the set of positive integers as N = {1, 2, . . .}. Let V be an alphabet,
V ∗ is the set of all finite strings over V with respect to concatenation and the

Asynchronous Spiking Neural P Systems with Structural Plasticity 93

identity element λ (the empty string). The set of all non-empty strings over V is
denoted as V + so V + = V ∗−{λ}. If V = {a}, we simply write a∗ and a+ instead
of {a}∗ and {a}+. If a is a symbol in V , we write a0 = λ and we write the language
generated by a regular expression E over V as L(E).

In proving computational universality, we use the notion of register machines.
A register machine is a construct M = (m, I, l0, lh, R), where m is the number
of registers, I is the set of instruction labels, l0 is the start label, lh is the halt
label, and R is the set of instructions. Every label li ∈ I uniquely labels only one
instruction in R. Register machine instructions have the following forms:

• li : (ADD(r), lj , lk), increase n by 1, then nondeterministically go to lj or lk;
• li : (SUB(r), lj , lk), if n ≥ 1, then subtract 1 from n and go to lj , otherwise

perform no operation on r and go to lk;
• lh : HALT, the halt instruction.

Given a register machine M , we say M computes or generates a number n as
follows: M starts with all its registers empty. The register machine then applies its
instructions starting with the instruction labeled l0. Without loss of generality, we
assume that l0 labels an ADD instruction, and that the content of the output register
is never decremented, only added to during computation, i.e. no SUB instruction
is applied to it. If M reaches the halt instruction lh, then the number n stored
during this time in the first (also the output) register is said to be computed by M .
We denote the set of all numbers computed by M as N(M). It was proven that
register machines compute all sets of numbers computed by a Turing machine,
therefore characterizing NRE [8]. A strongly monotonic register machine is one
restricted variant: it has only one register which is also the output register. The
register initially stores zero, and can only be incremented by 1 at each step. Once
the machine halts, the value stored in the register is said to be computed. It is
known that strongly monotonic register machines characterize SLIN , the family
of length sets of regular languages.

3 Spiking neural P systems with structural plasticity

In this section we define SNP systems with structural plasticity. Initial motivations
and results for SNP systems are included in the seminal paper in [7]. A spiking
neural P system with structural plasticity (SNPSP system) of degree m ≥ 1 is a
construct of the form Π = (O, σ1, . . . , σm, syn, out), where:

• O = {a} is the singleton alphabet (a is called spike);
• σ1, . . . , σm are neurons of the form (ni, Ri), 1 ≤ i ≤ m; ni ≥ 0 indicates the

initial number of spikes in σi; Ri is a finite rule set of σi with two forms:
1. Spiking rule: E/ac → a, where E is a regular expression over O, c ≥ 1;
2. Plasticity rule: E/ac → αk(i,N), where E is a regular expression over O,
c ≥ 1, α ∈ {+,−,±,∓}, k ≥ 1, and N ⊆ {1, . . . ,m} − {i};

94 F.G.C. Cabarle, H.N. Adorna, M.J. Pérez-Jiménez

• syn ⊆ {1, . . . ,m} × {1, . . . ,m}, with (i, i) /∈ syn for 1 ≤ i ≤ m (synapses
between neurons);

• out ∈ {1, . . . ,m} indicate the output neuron.

Given neuron σi (we also say neuron i or simply σi) we denote the set of
neuron labels with σi as their presynaptic (postsynaptic, resp.) neuron as pres(i),
i.e. pres(i) = {j|(i, j) ∈ syn} (as pos(i) = {j|(j, i) ∈ syn}, resp.). Spiking rule
semantics in SNPSP systems are similar with SNP systems in [7]. In this work we
do not use forgetting rules (rules of the form as → λ) or rules with delays of the
form E/ac → a; d for some d ≥ 1. Spiking rules are applied as follows: If neuron
σi contains b spikes and ab ∈ L(E), with b ≥ c, then a rule E/ac → a ∈ Ri can be
applied. Applying such a rule means consuming c spikes from σi, thus only b − c
spikes remain in σi. Neuron i sends one spike to every neuron with label in pres(i)
at the same step as rule application. A nonzero delay d means that if σi spikes at
step t, then neurons receive the spike at t+ d. Spikes sent to σi from t to t+ d− 1
are lost (i.e. σi is closed), and σi can receive spikes (i.e. σi is open) and apply a
rule again at t+d and t+d+ 1, respectively. If a rule E/ac → a has L(E) = {ac},
we simply write this as ac → a.

Plasticity rules are applied as follows. If at step t we have that σi has b ≥ c
spikes and ab ∈ L(E), a rule E/ac → αk(i,N) ∈ Ri can be applied. The set N is
a collection of neurons to which σi can connect to or disconnect from using the
applied plasticity rule. The rule application consumes c spikes and performs one
of the following, depending on α:

• If α := + and N − pres(i) = ∅, or if α := − and pres(i) = ∅, then there is
nothing more to do, i.e. c spikes are consumed but no synapses are created or
removed. Notice that with these semantics, a plasticity rule functions similar
to a forgetting rule, i.e. the former can be used to consume spikes without
producing any spike.

• for α := +, if |N − pres(i)| ≤ k, deterministically create a synapse to every σl,
l ∈ Nj − pres(i). If however |N − pres(i)| > k, nondeterministically select k
neurons in N − pres(i), and create one synapse to each selected neuron.

• for α := −, if |pres(i)| ≤ k, deterministically delete all synapses in pres(i).
If however |pres(i)| > k, nondeterministically select k neurons in pres(i), and
delete each synapse to the selected neurons.

If α ∈ {±,∓} : create (respectively, delete) synapses at step t and then delete
(respectively, create) synapses at step t + 1. Only the priority of application of
synapse creation or deletion is changed, but the application is similar to α ∈
{+,−}. Neuron i is always open from t until t+ 1, but σi can only apply another
rule at time t+ 2.

An important note is that for σi applying a rule with α ∈ {+,±,∓}, creating
a synapse always involves an embedded sending of one spike when σi connects to
a neuron. This single spike is sent at the time the synapse creation is applied, i.e.
whenever σi attaches to σj using a synapse during synapse creation, we have σi
immediately transferring one spike to σj .

Asynchronous Spiking Neural P Systems with Structural Plasticity 95

Let t be a step during a computation: we say a σi is activated at step t if
there is at least one r ∈ Ri that can be applied; σi is simple if |Ri| = 1, with
a nice biological and computing interpretation, i.e. some neurons do not need to
be complex, but merely act as spike repositories or relays. We have the following
nondeterminism levels: rule-level, if at least one neuron has at least two rules with
regular expressions E1 and E2 such that E1 6= E2 and L(E1)∩L(E2) 6= ∅; synapse-
level, if initially Π has at least one σi with a plasticity rule where k < |N−pres(i)|;
neuron-level, if at least one activated neuron with rule r can choose to apply its
rule r or not (i.e. asynchronous).

By default SNP and SNPSP systems are locally sequential (at most one rule is
applied per neuron) but globally parallel (all activated neurons must apply a rule).
The application of rules in neurons are usually synchronized, i.e. a global clock
is assumed. However, in the asynchronous (asyn, in short) mode we release this
synchronization so that neuron-level nondeterminism is implied. A configuration of
an SNPSP system is based on (a) distribution of spikes in neurons, and (b) neuron
connections based on syn. For some step t, we can represent: (a) as 〈s1, . . . , sm〉
where si, 1 ≤ i ≤ m, is the number of spikes contained in σi; for (b) we can derive
pres(i) and pos(i) from syn, for a given σi. The initial configuration therefore
is represented as 〈n1, . . . , nm〉, with the possibility of a disconnected graph, or
syn = ∅. A computation is defined as a sequence of configuration transitions, from
an initial configuration, and following rule application semantics. A computation
halts if the system reaches a halting configuration, i.e. no rules can be applied and
all neurons are open.

A result of a computation can be defined in several ways in SNP systems
literature. For SNP systems in asyn mode however, and as in [3] [5] [15], the output
is obtained by counting the total spikes sent out by σout to the environment (in
short, Env) upon reaching a halting configuration. We refer to Π as generator, if
Π computes in this asynchronous manner. Π can also work as an acceptor but
this is not given in this work.

For our universality results, the following simplifying features are used in our
systems as the normal form: (i) plasticity rules can only be found in purely plas-
tic neurons (i.e. neurons with plasticity rules only), (ii) neurons with standard
rules are simple, and (iii) we do not use forgetting rules or rules with delays. We
denote the family of sets computed by asynchronous SNPSP systems (under the
mentioned normal form) as generators as NtotSNPSP

asyn: subscript tot indicates
the total number of spikes sent to Env as the result; Other parameters are as fol-
lows: +synk (−synj , respectively) where at most k (j, resp.) synapses are created
(deleted, resp.) each step; ndβ , β ∈ {syn, rule, neur} indicate additional levels of
nondeterminism source; rulem indicates at most m rules (either standard or plas-
ticity) per neuron; Since our results for k and j for +synk and −synj are equal,
we write them instead in the compressed form ±synk, where ± in this sense is
not the same as when α := ±. A bound p on the number of spikes stored in any
neuron of the system is denoted as boundp. We omit ndneur from writing since it
is implied in asyn mode.

96 F.G.C. Cabarle, H.N. Adorna, M.J. Pérez-Jiménez�
�

�
�

�
�
�
�
�
�
�
�
�
�
�
�� � �

j
a→ a

k
a→ a

l
a

a→ a

i a

a→ ±1(i, {j, k})

Fig. 1. An SNPSP system Πej .

To illustrate the notions and semantics in SNPSP systems, we take as an ex-
ample the SNPSP system Πej of degree 4 in Fig. 1, and describe its computations.
The initial configuration is as follows: spike distribution is 〈1, 0, 0, 1〉 for the neu-
ron order σi, σj , σk, σl, respectively; syn = {(j, k), (k, l)}; output neuron is σl,
indicated by the outgoing synapse to Env.

Given the initial configuration, σi and σl can become activated. Due to asyn
mode however, they can decide to apply their rules at a later step. If σl applies
its rule before it receives a spike from σi, then it will spike to Env twice so that
Ntot(Πej) = {2}. Since k = 1 < |{j, k}| and pres(i) = ∅, σi nondeterministically
selects whether to create synapse (i, j) or (i, k); if (i, j) ((i, k), resp.) is created; a
spike is sent from σi to σj (σk, resp.) due to the embedded sending of a spike during
synapse creation. Let this be step t. If (i, j) is created then syn′ := syn ∪ {(i, j)},
otherwise syn′′ := syn ∪ {(i, k)}. At t + 1, σi deletes the created synapse at t
(since α := ±), and we have syn again. Note that if σl does not apply its rule and
collects two spikes (one spike from σi), the computation is aborted or blocked, i.e.
no output is produced since a2 /∈ L(a).

4 Main results

In this section we use at most two nondeterminism sources: ndneur (in asyn mode),
and ndsyn. Recall that in asyn mode, if σi is activated at step t so that an r ∈ Ri
can be applied, σi can choose to apply r or not. If σi did not choose to apply r,
σi can continue to receive spikes so that for some t′ > t, it is possible that: r can
never be applied again, or some r′ ∈ Ri, r′ 6= r, is applied.

For the next result, each neuron can store only a bounded number of spikes
(see for example [3][6][7] and references therein). In [6], it is known that bounded
SNP systems with extended rules in asyn mode characterize SLIN , but it is
open whether such result holds for systems with standard rules only. In [3], a
negative answer was conjectured for the following open problem: are asynchronous
SNP systems with standard rules universal? First, we prove that bounded SNPSP
systems in asyn mode characterize SLIN , hence they are not universal.

Lemma 1 NtotSNPSP
asyn(boundp, ndsyn) ⊆ SLIN, p ≥ 1.

Proof. Taking any asynchronous SNPSP system Π with a given bound p on the
number of spikes stored in any neuron, we observe that the number of possible
configurations is finite: Π has a constant number of neurons, and that the number
of spikes stored in each neuron are bounded. We then construct a right-linear

Asynchronous Spiking Neural P Systems with Structural Plasticity 97

grammar G, such that Π generates the length set of the regular language L(G).
Let us denote by C the set of all possible configurations of Π, with C0 being
the initial configuration. The right-linear grammar G = (C, {a}, C0, P), where the
production rules in P are as follows:

(1) C → C ′, for C,C ′ ∈ C if Π has a transition C ⇒ C ′ in which the output
neuron does not spike;

(2) C → aC ′, for C,C ′ ∈ C if Π has a transition C ⇒ C ′ in which the output
neuron spikes;

(3) C → λ, for any C ∈ C in which Π halts.

Due to the construction of G, Π generates the length set of L(G), hence the
set is semilinear. ut

Lemma 2 SLIN ⊆ NtotSNPSP asyn(boundp, ndsyn), p ≥ 1.

The proof is based on the following observation: A set Q is semilinear if and only if
Q is generated by a strongly monotonic register machine M . It suffices to construct
an SNPSP system Π with restrictions given in the theorem statement, such that
Π simulates M . Recall that M has precisely register 1 only (it is also the output
register) and addition instructions of the form li : (ADD(1), lj , lk). The ADD module
for Π is given in Fig. 2. Next, we describe the computations in Π.

�
�
�
��

�
�
�

�
�
�
��

�
�
�

�
�
�
�

HH
HHj

?
-

li a→ a 1
aq/a→ a

for 1 ≤ q ≤ p
l1i

a→ ±1(l1i , {lj , lk})lj lk

Fig. 2. Module ADD simulating li : (ADD(1) : lj , lk) in the proof of Lemma 2.

Once ADD instruction li of M is applied, σli is activated and it sends one spike
each to σ1 and σl1i . At this point we have two possible cases due to asyn mode, i.e.
either σ1 spikes to Env before σl1i spikes, or after. If σ1 spikes before σl1i , then the
number of spikes in Env is immediately incremented by 1. After some time, the
computation will proceed if σl1i applies its only (plasticity) rule. Once σl1i applies
its rule, either σlj or σlk becomes nondeterministically activated.

However, if σ1 spikes after σl1i spikes, then the number of spikes in Env is not
immediately incremented by 1 since σ1 does not consume a spike and fire to Env.
The next instruction, either lj or lk, is then simulated by Π. Furthermore, due
to asyn mode, the following “worst case” computation is possible: σlh becomes
activated (corresponding to lh in M being applied, thus halting M) before σ1
spikes. In this computation, M has halted and has applied an m number of ADD
instructions since the application of li. Without loss of generality we can have the

98 F.G.C. Cabarle, H.N. Adorna, M.J. Pérez-Jiménez

arbitrary bound p > m, for some positive integer p. We then have the output
neuron σ1 storing m spikes. Since the rules in σ1 are of the form aq/a → a,
1 ≤ q ≤ p, σ1 consumes one spike at each step it decides to apply a rule, starting
with rule am/a→ a, until rule a→ a. Thus, Π will only halt once σ1 has emptied
all spikes it stores, sending m spikes to Env in the process.

The FIN module is not necessary, and we add σlh without any rule (or maintain
pres(lh) = ∅). Once M halts by reaching instruction lh, a spike in Π is sent to
neuron lh. Π is clearly bounded: every neuron in Π can only store at most p spikes,
at any step. We then have Π correctly simulating the strongly monotonic register
machine M . This completes the proof. ut

From Lemma 1 and 2, we can have the next result.

Theorem 1 SLIN = NtotSNPSP
asyn(boundp, ndsyn), p ≥ 1.

Next, in order to achieve universality, we add an additional ingredient to asyn-
chronous SNPSP systems: weighted synapses. The ingredient of weighted synapses
has already been introduced in SNP systems literature, and we refer the reader to
[16] (and references therein) for computing and biological motivations. In partic-
ular, if σi applies a rule E/ac → ap, and the weighted synapse (i, j, r) exists (i.e.
the weight of synapse (i, j) is r) then σj receives p× r spikes.

It seems natural to consider weighted synapses for asynchronous SNPSP sys-
tems: since asynchronous SNPSP systems are not universal, we look for other ways
to improve their power. SNPSP systems with weighted synapses (in short, WS-
NPSP systems) are defined in a similar way as SNPSP systems, except for the
plasticity rules and the synapse set. Plasticity rules in σi are now of the form

E/ac → αk(i,N, r),

where r ≥ 1, and E, c, α, k,N are as previously defined. Every synapse created by
σi using a plasticity rule with weight r receives the weight r. Instead of one spike
sent from σi to a σj during synapse creation, j ∈ N , r spikes are sent to σj . The
synapse set is now of the form

syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m} × N.

We note that SNPSP systems are special cases of SNPSP systems with weighted
synapses where r = 1, and when r = 1 we omit it from writing. In weighted
SNP systems with standard rules, the weights can allow neurons to produce more
than one spike each step, similar to having extended rules. In this way, our next
result parallels the result that asynchronous SNP systems with extended rules are
universal in [5]. However, our next result uses ndsyn with asyn mode, while in [5]
their systems use ndrule with asyn mode. We also add the additional parameter
l in our universality result, where the synapse weight in the system is at most l.
Our universality result also makes use of the normal form given in Section 3.

Theorem 2 NtotWSNPSP asyn(rulem,±synk, weightl, ndsyn) = NRE,m ≥ 9, k ≥
1, l ≥ 3.

Asynchronous Spiking Neural P Systems with Structural Plasticity 99

Proof. We construct an asynchronous SNPSP system with weighted synapses Π,
with restrictions given in the theorem statement, to simulate a register machine
M . The general description of the simulation is as follows: each register r of M cor-
responds to σr in Π. If register r stores the value n, σr stores 2n spikes. Simulating
instruction li : (OP(r) : lj , lk) of M in Π corresponds to σli becoming activated.
After σli is activated, the operation OP is performed on σr, and σlj or σlk becomes
activated. We make use of modules in Π to perform addition, subtraction, and
halting of the computation.

Module ADD: The module is shown in Fig. 3. At some step t, σli sends a
spike to σl1i . At some t′ > t, σl1i sends a spike: the spike sent to σr is multiplied by
two, while 1 spike is received by σl2i . For now we omit further details for σr, since
it is never activated with an even number of spikes.

At some t′′ > t′, σl2i nondeterministically creates (then deletes) either (l2i , lj) or

(l2i , lk). The chosen synapse then allows either σlj or σlk to become activated. The
ADD module thus increments the contents of σr by 2, simulating the increment
by 1 of register r. Next, only one among σlj or σlk becomes nondeterministically
activated. The addition operation is correctly simulated.

�
�
�
�

�
�
�
�

�
�
�
��
�

�
��

�
�
�

�
�
�
�

- -

?

l1i
a→ a

r
2

li
a→ a

l2i
a→ ±1(l2i , {lj , lk}, 1)

lj lk

Fig. 3. Module ADD simulating li : (ADD(r) : lj , lk) in the proof of Theorem 2.

Module SUB: The module is shown in Fig. 4. Let |Sr| be the number of
instructions with form li : (SUB(r), lj , lk), and 1 ≤ s ≤ |Sr|. |Sr| is the number of
SUB instructions operating on register r, and we explain in a moment why we use
a size of a set for this number. Clearly, when no SUB operation is performed on
r, then |Sr| = 0, as in the case of register 1. At some step t, σli spikes, sending 1
spike to σr, and 4|Sr| − s spikes to σl1i (the weight of synapse (li, l

1
i)).

σl1i has rules of the form ap → −1(l1i , {r}, 1), for 3|Sr| ≤ p < 8|Sr|. When
one of these rules is applied, it performs similar to a forgetting rule: p spikes are
consumed and deletes a nonexisting synapse (l1i , r). Since σl1i received 4|Sr| − s
spikes from σli , and 3|Sr| ≤ 4|Sr| − s < 8|Sr|, then one of these rules can be
applied. If σl1i applies one of these rules at t′ > t, no spike remains. Otherwise, the
4|Sr| − s spikes can combine with the spikes from σr at a later step.

In the case where register r stores n = 0 (respectively, n ≥ 1), then instruction
lk (respectively, lj) is applied next. This case corresponds to σr applying the

100 F.G.C. Cabarle, H.N. Adorna, M.J. Pérez-Jiménez�
�
�
�#

"

!

'

&

$

%�
�
�
�
�
�
�
�

�
�	

-
li

a→ a

r

a(a2)+/a3 → ±|Sr|(r, Sr, 4|Sr|+ s)

a→ ±|Sr|(r, Sr, 5|Sr|+ s)

l1i4|Sr|−s

ap → −1(l1i , {r}, 1)

for 3|Sr| ≤ p < 8|Sr|

a8|Sr| → ±1(l1i , {lj}, 1)

a9|Sr| → ±1(l1i , {lk}, 1)
lj lk

Fig. 4. Module SUB simulating li : (SUB(r) : lj , lk) in the proof of Theorem 2.

rule with E = a (respectively, E = a(a2)+), which at some later step allows σlk
(respectively, σlj) to be activated.

For the moment let us simply define Sr = {l1i }. For case n = 0 (respectively,
n ≥ 1), σr stores 0 spikes (respectively, at least 2 spikes), so that at some t′′ > t the
synapse (r, l1i , 5|Sr|+s) (respectively, (r, l1i , 4|Sr|+s)) is created and then deleted.
σl1i then receives 5|Sr|+ s spikes (respectively, 4|Sr|+ s spikes) from σr. Note that
we can have t′′ ≥ t′ or t′′ ≤ t′, due to asyn mode, where t′ is again the step that
σl1i applies a rule. If σl1i previously removed all of its spikes using its rules with
E = ap, then it again removes all spikes from σr because 3|Sr| ≤ x < 8|Sr|, where
x ∈ {4|Sr| + s, 5|Sr| + s}. At this point, no further rules can be applied, and the
computation aborts, i.e. no output is produced. If however σl1i did not remove its
spikes previously, then it collects a total of either 8|Sr| or 9|Sr| spikes. Either σlj
or σlk is then activated by σl1i at a step after t′′.

To remove the possibility of “wrong” simulations when at least two SUB in-
structions operate on register r, we give the general definition of Sr: Sr =
{l1v|lv is a SUB instruction on register r}. In the SUB module, a rule application
in σr creates (and then deletes) an |Sr| number of synapses: one synapse from σr
to all neurons with label l1v ∈ Sr. Again, each neuron with label l1v can receive
either 4|Sr|+ s, or 5|Sr|+ s spikes from σr, and 4|Sr| − s spikes from σlv .

Let li be the SUB instruction that is currently being simulated in Π. In order for
the correct computation to continue, only σl1i must not apply a rule with E = ap,
i.e. it must not remove any spikes from σr or σli . The remaining |Sr| − 1 neurons
of the form l1v must apply their rules with E = ap and remove the spikes from
σr. Due to asyn mode, the |Sr| − 1 neurons can choose not to remove the spikes
from σr: these neurons can then receive further spikes from σr in future steps, in
particular they receive either 4|Sr|+ s′ or 5|Sr|+ s′ spikes, for 1 ≤ s′ ≤ Sr; these
neurons then accumulate a number of spikes greater than 8|Sr| (hence, no rule
with E = ap can be applied), but not equal to 8|Sr| or 9|Sr| (hence, no plasticity
rule can be applied). Similarly, if these spikes are not removed, and spikes from
σlv′ are received, v 6= v′ and lv′ ∈ Sr, no rule can again be applied: if lv′ is the s′th
SUB instruction operating on register r, then s 6= s′ and σlv′ accumulates a number

Asynchronous Spiking Neural P Systems with Structural Plasticity 101

of spikes greater than 8|Sr| (the synapse weight of (lv′ , l
1
v′) is 4|Sr| − s′), but not

equal to 8|Sr| or 9|Sr|. No computation can continue if the |Sr|−1 neurons do not
remove their spikes from σr, so computation aborts and no output is produced.
This means that only the computations in Π that are allowed to continue are the
computations that correctly simulate a SUB instruction in M .

The SUB module correctly simulates a SUB instruction: instruction lj is sim-
ulated only if r stores a positive value (after decrementing by 1 the value of r),
otherwise instruction lk is simulated (the value of r is not decremented).

Module FIN: The module FIN for halting the computation of Π is shown in
Fig. 5. The operation of the module is clear: once M reaches instruction lh and
halts, σlh becomes activated. Neuron lh sends a spike to σ1, the neuron corre-
sponding to register 1 of M . Once the number of spikes in σ1 become odd (of the
form 2n+ 1, where n is the value stored in register 1), σ1 keeps applying its only
rule: at every step, 2 spikes are consumed, and 1 spike is sent to Env. In this way,
the number n is computed since σ1 will send precisely n spikes to Env.

The ADD module has ndsyn: initially it has pres(l2i) = ∅, and its k = 1 < |N |.
We also observe the parameter values: m is at least 9 by setting |Sr| = 1, then
adding the two additional rules in σl1i ; k is clearly at least 1; lastly, the synapse
weight l is at least 3 by again setting |Sr| = 1. This completes the proof. ut

�
�

�
�
�
�
�
���

lh

a→ a

1

a(a2)+/a2 → a

Fig. 5. Module FIN in the proof of Theorem 2.

5 Conclusions and final remarks

In [5] it is known that asynchronous SNP systems with extended rules are universal,
while the conjecture is that asynchronous SNP systems with standard rules are not
[3]. In Theorem 1, we showed that asynchronous bounded SNPSP systems are not
universal where, similar to standard rules, each neuron can only produce at most
one spike each step. In Theorem 2, asynchronous WSNPSP systems are shown to
be universal. In WSNPSP systems, the synapse weights perform a function similar
to extended rules in the sense that a neuron can produce more than one spike each
step. Our results thus provide support to the conjecture about the nonuniversality
of asynchronous SNP systems with standard rules. It is also interesting to realize
the computing power of asynchronous unbounded (in spikes) SNPSP systems.

It can be argued that when α ∈ {±,∓}, the synapse creation (resp., deletion)
immediately followed by a synapse deletion (resp., creation) is another form of
synchronization. Can asynchronous WSNPSP systems maintain their computing
power, if we further restrict them by removing such semantic? Another interesting

102 F.G.C. Cabarle, H.N. Adorna, M.J. Pérez-Jiménez

question is as follows: in the ADD module in Theorem 2, we have ndsyn. Can we
still maintain universality if we remove this level, so that ndneur in asyn mode
is the only source of nondeterminism? In [5] for example, the modules used asyn
mode and ndrule, while in [15], only asyn mode was used (but with the use of a
new ingredient called local synchronization).

In Theorem 2, the construction is based on the value |Sr|. Can we have a
uniform construction while maintaining universality? i.e. can we construct a Π
such that N(Π) = NRE, but is independent on the number of SUB instructions
of M? Then perhaps parameters m and l in Theorem 2 can be reduced.

Acknowledgments

Cabarle is supported by a scholarship from the DOST-ERDT of the Philippines.
Adorna is funded by a DOST-ERDT grant and the Semirara Mining Corp. Pro-
fessorial Chair of the College of Engineering, UP Diliman. M.J. Pérez-Jiménez
acknowledges the support of the Project TIN2012-37434 of the “Ministerio de
Economı́a y Competitividad” of Spain, co-financed by FEDER funds.

References

1. Cabarle, F.G.C, Adorna, H., Ibo, N.: Spiking neural P systems with structural
plasticity. Pre-proc. of 2nd Asian Conference on Membrane Computing, Chengdu,
China, pp. 13 - 26, 4-7 November (2013)

2. Cabarle, F.G.C., Adorna, H.N., Pérez-Jiménez, M.J., Song, T.: Spiking neural P
systems with structural plasticity (to appear). Neural Computing and Applications
doi:10.1007/s00521-015-1857-4 (2015)

3. Cavaliere, M., Egecioglu, O., Woodworth, S., Ionescu, I., Păun, G.: Asynchronous
spiking neural P systems: Decidability and undecidability. DNA 2008, LNCS vol.
4848, pp. 246 - 255 (2008)

4. Chen, H., Ionescu, M., Ishdorj, T.-I., Păun, A., Păun, G., Pérez-Jiménez, M.J.:
Spiking neural P systems with extended rules: universality and languages. Natural
Computing, vol. 7, pp. 147 - 166 (2008)

5. Cavaliere, M., Ibarra, O., Păun, G., Egecioglu, O., Ionescu, M., Woodworth, S.:
Asynchronous spiking neural P systems. Theor. Com. Sci. vol. 410, pp. 2352 - 2364
(2009)

6. Ibarra, O.H., Woodworth, S.: Spiking neural P systems: some characterizations.
FCT 2007, LNCS vol. 4639, pp. 23 - 37 (2007)

7. Ionescu, M., Păun, Gh., Yokomori, T.: Spiking Neural P Systems. Fundamenta
Informaticae, vol. 71(2,3), pp. 279-308 (2006)

8. Minsky, M.: Computation: Finite and infinite machines. Englewood Cliffs, NJ: Pren-
tice Hall (1967)

9. Pan, L., Păun, Gh., Pérez-Jiménez, M.J.: Spiking neural P systems with neuron
division and budding. Science China Information Sciences. vol. 54(8) pp. 1596 -
1607 (2011)

Asynchronous Spiking Neural P Systems with Structural Plasticity 103

10. Pan, L., Wang, J., Hoogeboom, J.H.: Spiking Neural P Systems with Astrocytes.
Neural Computation vol. 24, pp. 805 - 825 (2012)

11. Păun, A., Păun, G.: Small universal spiking neural P systems. Biosystems, vol. 90,
pp. 48 - 60 (2007)

12. Păun, G.: Computing with membranes. J. of Computer and System Science, vol.
61(1), pp. 108 - 143 (1999)

13. Păun, Gh.: Membrane Computing: An Introduction. Springer (2002)
14. Păun, G., Rozenberg, G., Salomaa, A., Eds.: The Oxford Handbook of Membrane

Computing. Oxford Univ. Press. (2009)
15. Song, T., Pan, L., Păun, G.: Asynchronous spiking neural P systems with local

synchronization. Information Sciences, vol. 219(10), pp. 197 - 207 (2013)
16. Wang, J., Hoogeboom, H.J., Pan, L., Păun, G., Pérez-Jiménez, M.J.: Spiking Neural

P Systems with Weights. Neural Computation, vol. 22(10), pp. 2615 - 2646 (2010)

Automaton-like P Colonies

Luděk Cienciala1, Lucie Ciencialová1, and Erzsébet Csuhaj-Varjú2

1 Institute of Computer Science
and
Research Institute of the IT4Innovations Centre of Excellence,
Silesian University in Opava, Czech Republic
{lucie.ciencialova,ludek.cienciala}@fpf.slu.cz

2 Faculty of Informatics, Eötvös Loránd University, Budapest, Hungary

Summary. In this paper we study P colonies where the environment is given as a string.
These variants, called automaton-like P systems or
APCol systems, behave like automata: during functioning, the agents change their own
states and process the symbols of the string. We develop the concept of APCol systems
by introducing the notion of their generating working mode. We then compare the power
of APCol systems working in the generating mode and that of register machines and
context-free matrix grammars with and without appearance checking.

Key words: String processing; P Colonies; computational power

1 Introduction

P colonies are formal models of a computing device combining properties of mem-
brane systems and distributed systems of formal grammars called colonies [16].

In the basic model, the cells or agents are represented by a finite collection of
objects and rules for processing these objects. The agents are restricted in their
capabilities, i.e., only a limited number of objects, say, k objects, are allowed to be
inside any cell during the functioning of the system. These objects represent the
current state (contents) of the agents. The rules of the cells are either of the form
a → b, specifying that an internal object a is transformed into an internal object
b, or of the form c ↔ d, specifying that an internal object c is exchanged by an
object d in the environment. After applying these rules in parallel, the state of the
agent will consist of objects b, d. Each agent is associated with a set of programs
composed of such rules.

The agents of a P colony perform a computation by synchronously applying
their programs to the objects representing the state of the agents and objects in the
environment. These systems have been extensively investigated during the years;
for example, it was shown that they are computationally complete computing

106 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

devices even with very restricted size parameters and with other (syntactic or
functioning) restrictions [1, 3, 5, 6, 7, 8, 11, 12].

According to the the basic model, the impact of the environment on the be-
haviour of the P colony is indirect. To describe the situation when the behaviour
of the components of the P colony is influenced by direct impulses coming from the
environment step-by-step, the model was augmented with a string put on an input
tape to be processed by the P colony [4]. These strings correspond to the impulse
sequence coming from the environment. In addition to their rewriting rules and
the rules for communicating with the environment, the agents have so-called tape
rules which are used for reading the next symbol on the input tape. The model,
called a P colony automaton or a PCol automaton, combines properties of stan-
dard finite automata and standard P colonies. It was shown that these variants
of P colonies are able to describe the class of recursively enumerable languages,
taking various working mode into account.

In [2] one step further was made in combining properties of P colonies and
automata. While in the case of PCol automata the behaviour of the system is
influenced both by the string to be processed and the environment consisting of
multisets of symbols, in the case of automaton-like P colonies or APCol systems
the environment is given as a string. The interaction between the agents in the
P colony and the environment is realized by exchanging symbols between the
objects of the agents and the environment (communication rules), and the states
of the agents may change both via communication and evolution; the latter one
is an application of a rewriting rule to an object. The distinguished symbol, e (in
the previous models the environmental symbol) has a special role: whenever it
is introduced in the string by communication, the corresponding input symbol is
erased.

The computation in APCol systems starts with an input string, representing
the environment, and with each agent having only symbols e in its state. Every
computational step means a maximally parallel action of the active agents: an
agent is active if it is able to perform at least one of its programs, and the joint
action of the agents is maximally parallel if no more active agent can be added
to the synchronously acting agents. The computation ends if the input string is
reduced to the empty word, there are no more applicable programs in the system,
and meantime at least one of the agents is in so-called final state.

In this paper, after recalling the model and its accepting working mode, we
introduce its generating working mode. The result of computation depends on the
mode in which the APCol system works.

In the case of accepting mode, a computation is called accepting if and only if
at least one agent is in final state and the string obtained after the computation
is ε, the empty word.

When the APCol system works in the generating mode, then a computation
is called successful if only if it is halting and at least one agent is in final state.
A string w is generated by the APCol system if starting with the empty string

Automaton-like P Colonies 107

in the environment, after finishing the computation the obtained string is w, the
computation is halting and at least one agent is in final state.

After introducing the notion of the generating working mode, we compared
the power of APCol systems working in the generating mode and that of reg-
ister machines and context-free matrix grammars with and without appearance
checking.

2 Definitions

Throughout the paper the reader is assumed to be familiar with the basics of
formal language theory and membrane computing. For further details we refer to
[14] and [20].

For an alphabet Σ, the set of all words over Σ (including the empty word, ε),
is denoted by Σ∗. We denote the length of a word w ∈ Σ∗ by |w| and the number
of occurrences of the symbol a ∈ Σ in w by |w|a. For a language L ⊆ Σ∗, the set
length(L) = {|w| | w ∈ L} is called the length set of L. For a family of languages
FL, the family of length sets of languages in FL is denoted by NFL.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V → N ; f assigns to each
object in V its multiplicity in M . The set of all multisets with the set of objects V
is denoted by V ◦. The set V ′ is called the support of M and denoted by supp(M).
The cardinality of M , denoted by |M |, is defined by |M | =

∑
a∈V f(a). Any

multiset of objects M with the set of objects V ′ = {a1, . . . an} can be represented
as a string w over alphabet V ′ with |w|ai = f(ai); 1 ≤ i ≤ n. Obviously, all words
obtained from w by permuting the letters can also represent the same multiset M ,
and ε represents the empty multiset.

2.1 Register machines and matrix grammars

Definition 1. [19] A register machine is the construct M = (m,H, l0, lh, P) where:

• m is the number of registers,
• H is the set of instruction labels,
• l0 is the start label,
• lh is the final label,
• P is a finite set of instructions injectively labelled with the elements from the set

H.

The instructions of the register machine are of the following forms:
l1 : (ADD(r), l2, l3) Add 1 to the content of the register r and proceed to the in-

struction (labelled with) l2 or l3.
l1 : (SUB(r), l2, l3) If the register r stores a value different from zero, then sub-

tract 1 from its content and go to instruction l2, otherwise
proceed to instruction l3.

lh : HALT Halt the machine. The final label lh is only assigned to this
instruction.

108 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

Without loss of generality, we may assume that in each ADD-instruction l1 :
(ADD(r), l2, l3) and in each SUB-instruction l1 : (SUB(r), l2, l3) the labels l1, l2, l3
are pairwise different.

The register machine M computes a set N(M) of numbers in the following
way: it starts with all registers empty (hence storing the number zero) with the in-
struction labelled by l0 and it proceeds to apply the instructions as indicated by
the labels (and made possible by the contents of registers). If it reaches the halt
instruction, then the number stored at that time in the register 1 is said to be com-
puted by M and hence it is introduced in N(M). (Because of the non-determinism
in choosing the continuation of the computation in the case of ADD-instructions,
N(M) can be an infinite set.) It is known (see e.g.[19]) that in this way we compute
all Turing computable sets.

Moreover, we call a register machine partially blind [13], if we interpret a sub-
tract instruction in the following way: l1 : (SUB(r); l2; l3) - if in register r there
is value different from zero, then subtract one from its contents and go to instruc-
tion l2 or to instruction l3; if in register r there is stored zero when attempting to
decrement register r, then the program ends without yielding a result.

When the partially blind register machine reaches the final state, the result ob-
tained in the first register is only taken into account if the remaining registers store
value zero. The family of sets of non-negative integers generated by partially blind
register machines is denoted by NRMpb. Partially blind register machines accept
a proper subset of NRE, the family of recursively enumerable sets of numbers.

Definition 2. A context-free matrix grammar is a construct

G = (N,T, S,M,F), where

• N and T are sets of non-terminal and terminal symbols, respectively, with
N ∩ T = ∅,

• S ∈ N is the start symbol,
• M is a finite set of matrices, M = {mi | 1 ≤ i ≤ n}, where matrices mi are

sequences of the form mi = (mi,1, . . . ,mi,ni), ni ≥ 1, 1 ≤ i ≤ n, and mi,j , 1 ≤
j ≤ ni, 1 ≤ i ≤ n, are context-free rules over (N ∪ T),

• F is a subset of all productions occurring in the elements of M ,
i.e. F ∈ {mij | 1 ≤ i ≤ n, 1 ≤ j ≤ ni}.

We say that x ∈ (N ∪ T)+ directly derives y ∈ (N ∪ T)∗ in the appearance
checking mode by application of mi,j = A → w ∈ mi – denoted by x ⇒ac y, – if
one of the following conditions hold:

x = x1Ax2 and y = x1wx2 or A does not appear in x,mi,j ∈ F and x = y.

For mi = (mi,1, . . . ,mi,ni) and v, w ∈ (N ∪ T)∗ we define v ⇒mi w if and only
if there are w0, w1, . . . , wni

∈ (N ∪ T)∗ such that

v = w0 ⇒ac
mi,1

w1 ⇒ac
mi,2

w2 ⇒ac
mi,3

. . . ⇒ac
mi,ni

wni = w

Automaton-like P Colonies 109

The language generated by G is

L(G) = {w ∈ T ∗ |S ⇒mi1
w1 · · · ⇒mik

wk, wk = w,

wj ∈ (N ∪ T)∗, mij ∈M for 1 ≤ j ≤ k, k ≥ 1, 1 ≤ i ≤ n}

The family of languages generated by matrix grammars with appearance check-
ing is denoted by MATλac. The superscript λ indicates that erasing rules (λ-rules)
are allowed.

We say that M is a matrix grammar without appearance checking if and only if
F = ∅. The family of languages generated by matrix grammars without appearance
checking is denoted by MATλ.

The following results are known about matrix languages:

• CF ⊂ MAT ⊆ MATλ ⊂ RE
• MAT ⊂ MAT ac ⊂ CS
• MATλ ⊂ MATλac = CS, where CF, CS, RE are the context-free, context-

sensitive, and recursively enumerable language classes, respectively
• NRMpb = NMATλ, where NMATλ is class of the length sets associated with

matrix languages without appearance checking (in [11]).

Further details about matrix grammars can be found in [9].

2.2 Automaton-like P colony

In the following we recall the concept of an automaton-like P colony (an APCol
system, for short) where the environment of the agents is given in the form of a
string [2].

As in the case of standard P colonies, agents of APCol systems contain objects,
each being an element of a finite alphabet. With every agent, a set of programs
is associated. There are two types of rules in the programs. The first one, called
an evolution rule, is of the form a → b. It means that object a inside of the
agent is rewritten (evolved) to the object b. The second type of rules, called a
communication rule, is in the form c↔ d. When this rule is performed, the object
c inside the agent and a symbol d in the string are exchanged, so, we can say that
the agent rewrites symbol d to symbol c in the input string. If c = e, then the
agent erases d from the input string and if d = e, symbol c is inserted into the
string.

An automaton-like P colony works successfully, if it is able to reduce the given
string to ε, i.e., to enter a configuration where at least one agent is in accepting
state and the processed string is the empty word.

110 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

Definition 3. [2] An automaton-like P colony (an APCol system, for short) is a
construct

Π = (O, e,A1, . . . , An), where

• O is an alphabet; its elements are called the objects,
• e ∈ O, called the basic object,
• Ai, 1 ≤ i ≤ n, are agents. Each agent is a triplet Ai = (ωi, Pi, Fi), where

– ωi is a multiset over O, describing the initial state (content) of the agent,
|ωi| = 2,

– Pi = {pi,1, . . . , pi,ki} is a finite set of programs associated with the agent,
where each program is a pair of rules. Each rule is in one of the following
forms:
· a→ b, where a, b ∈ O, called an evolution rule,
· c↔ d, where c, d ∈ O, called a communication rule,

– Fi ⊆ O∗ is a finite set of final states (contents) of agent Ai.

During the work of the APCol system, the agents perform programs. Since
both rules in a program can be communication rules, an agent can work with
two objects in the string in one step of the computation. In the case of program
〈a↔ b; c↔ d〉, a sub-string bd of the input string is replaced by string ac. If the
program is of the form 〈c↔ d; a↔ b〉, then a sub-string db of the input string is
replaced by string ca. That is, the agent can act only in one place in a computation
step and the change of the string depends both on the order of the rules in the
program and on the interacting objects. In particular, we have the following types
of programs with two communication rules:

• 〈a↔ b; c↔ e〉 - b in the string is replaced by ac,
• 〈c↔ e; a↔ b〉 - b in the string is replaced by ca,
• 〈a↔ e; c↔ e〉 - ac is inserted in a non-deterministically chosen place in the

string,
• 〈e↔ b; e↔ d〉 - bd is erased from the string,
• 〈e↔ d; e↔ b〉 - db is erased from the string,
• 〈e↔ e; e↔ d〉; 〈e↔ e; c↔ d〉, . . . - these programs can be replaced by pro-

grams of type 〈e→ e; c↔ d〉.

The program is said to be restricted if it is formed from one rewriting and one
communication rule. The APCol system is restricted if all the programs the agents
have are restricted.

At the beginning of the work of the APCol system (at the beginning of the
computation), there is an input string placed in the environment, more precisely,
the environment is given by a string ω of objects which are different from e.
This string represents the initial state of the environment. Consequently, an initial
configuration of the automaton-like P colony is an (n+1)-tuple c = (ω;ω1, . . . , ωn)
where ω is the initial state of the environment and the other n components are
multisets of strings of objects, given in the form of strings, the initial states of the
agents.

Automaton-like P Colonies 111

A configuration of an APCoL system Π is given by (w;w1, . . . , wn), where
|wi| = 2, 1 ≤ i ≤ n, wi represents all the objects placed inside the i-th agent and
w ∈ (O − {e})∗ is the string to be processed.

At each step of the computation every agent attempts to find one of its pro-
grams to use. If the number of applicable programs is higher than one, the agent
non-deterministically chooses one of them. At every step of computation, the max-
imal possible number of agents have to perform a program.

By applying programs, the automaton-like P colony passes from one config-
uration to another configuration. A sequence of configurations starting from the
initial configuration is called a computation. A configuration is halting if the AP-
Col system has no applicable program.

3 Accepting and generating mode of computation

The result of a computation depends on the mode in which the APCol system
works. In the case of accepting mode, a computation is called accepting if and only
if at least one agent is in final state and the string obtained is ε. Hence, the string
ω is accepted by the automaton-like P colony Π if there exists a computation by Π
such that it starts in the initial configuration (ω;ω1, . . . , ωn) and the computation
ends by halting in the configuration (ε;w1, . . . , wn), where at least one of wi ∈ Fi
for 1 ≤ i ≤ n.

The situation is different when the APCol system works in the generating mode.
A computation is called successful if only if it is halting and at least one agent is in
final state. The string wF is generated by Π iff there exists computation starting
in an initial configuration (ε;ω1, . . . , ωn) and the computation ends by halting in
the configuration (wF ;w1, . . . , wn), where at least one of wi ∈ Fi for 1 ≤ i ≤ n.

We denote by APColaccR(n) (or APColacc(n)) the family of languages ac-
cepted by APCol system having at most n agents with restricted programs only
(or without this restriction). Similarly we denote by APColgenR(n) the family of
languages generated by APCol systems having at most n agents with restricted
programs only.

APCol system Π can generate or accept a set of numbers |L(Π)|.
By NAPColxR(n), x ∈ {acc, gen}, is denoted the family of sets of natural

numbers accepted or generated by APCol systems with at most n agents.
In [2] the authors proved that the family of languages accepted by jumping

finite automata (introduced in [18]) is properly included in the family of languages
accepted by APCol systems with one agent, and it is proved that any recursively
enumerable language can be obtained as a projection of a language accepted by
an automaton-like P colony with two agents.

Theorem 1. [2] The family of languages accepted by automaton-like P colonies
with one agent properly includes the family of languages accepted by jumping finite
automata.

112 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

Theorem 2. [2] Any recursively enumerable language can be obtained as a pro-
jection of a language accepted by an automaton-like P colony with two agents.

4 The power of restricted generating APCol systems

In this section we compare the computational power of automaton-like P colonies
working in generating mode with one and two agents and that of register machine
and matrix grammars with erasing rules. We start with the comparison of APCol
systems and register machines.

Theorem 3. NAPColgenR(2) = NRE

Proof. Let us consider a register machine M with m registers. We construct an
APCol system Π = (O, e,A1, A2) simulating the computations of register machine
M . To help the easier understanding of the simulation, we provide the components
together with some explanations of their role. Let

- O = {G} ∪ {li, lIi , lIIi , lIIIi , lIVi , lVi , l
V I
i , li, li, Li, L

′
i, L
′′
i , Fi | li ∈ H}∪

∪ {r | 1 ≤ r ≤ m},
- A1 = (ee, P1, {eG})
- A2 = (ee, P2, {ee})

At the beginning of the computation the first agent generates object l0 (the label
of starting instruction of M). Then it starts to simulate instruction labelled by
l0 and it generates the label of the next instruction. The number stored at the
register r corresponds to the number of symbols r placed on the input string. The
set of programs is as follows:

(1) For initializing the simulation there is one program in P1:

P1

1 : 〈e→ l0; e↔ e〉
The initial configuration of Π is (ε; ee, ee). After the first step of computation

(only the program 1 is applicable) the system enters configuration (ε; l0e, ee).
(2) For every ADD-instruction l1 : (ADD(r), l2, l3) we add to P1 the next programs:

P1

2 : 〈e→ r; l1 ↔ e〉 , 3 : 〈e→ a; r ↔ l1〉 ,
4 : 〈l1 → l2; a↔ e〉 , 5 : 〈l1 → l3; a↔ e〉

When there is object l1 inside the agent, it generates one copy of r, puts it to the en-
vironment and generates the label of the next instruction (it non-deterministically
chooses one of the last two programs 4 and 5)

configuration of Π labels of applicable programs
A1 A2 string P1 P2

1. l1e ee rx 2 −
2. re ee l1r

x 3 −
3. al1 ee rx+1 4 or 5 −
4. l2e ee rx+1a

Automaton-like P Colonies 113

(3) For every SUB-instruction l1 : (SUB(r), l2, l3), the next programs are added to
sets P1 and P2:
P1 : P2 :

6 :
〈
l1 → lI1; e↔ e

〉
12 :

〈
lV I1 → l2; e↔ L′′1

〉
19 :

〈
e→ L1; e↔ lI1

〉
7 :
〈
e→ lII1 ; lI1 ↔ e

〉
13 :

〈
L′′1 → l2; l2 ↔ e

〉
20 :

〈
lI1 → L′1;L1 ↔ lII1

〉
8 :
〈
e→ lIII1 ; lII1 ↔ e

〉
14 :

〈
lV I1 → l3; e↔ L1

〉
21 :

〈
lII1 → L′′1 ;L′1 ↔ r

〉
9 :
〈
lIII1 → lIV1 ; e↔ e

〉
15 :

〈
L1 → F3; l3 ↔ e

〉
22 : 〈r → e;L′′1 ↔ L1〉

10 :
〈
lIV1 → lV1 ; e↔ e

〉
16 :

〈
e→ l3;F3 ↔ l3

〉
23 : 〈L1 → e; e↔ e〉

11 :
〈
lV1 → lV I1 ; e↔ e

〉
17 :

〈
l3 → F ′3; l3 ↔ e

〉
24 :

〈
lII1 → e;L′1 ↔ F3

〉
18 : 〈F ′3 → l3; e↔ e〉 25 : 〈F3 → e; e↔ e〉

At the first phase of the simulation of the SUB instruction the first agent generates
object l′1, which is consumed by the second agent. The agent A2 generates symbol
L1 and tries to consume one copy of symbol r. If there is any r, the agent sends
to the environment object L′′1 and consumes L1. After this step the first agent
consumes L′′1 or L1 and rewrites it to l2 or l3.
Instruction l1 : (SUB(r), l2, l3) is simulated by the following sequence of steps.

If the register r stores non-zero value:

configuration of Π
labels of

applicable
programs

A1 A2 string P1 P2

1. l1e ee rx 6 −
2. lI1e ee rx 7 −
3. lII1 e ee lI1r

x 8 19

4. lIII1 e L1l
I
1 lII1 r

x 9 20

5. lIV1 e L′1l
II
1 L1r

x 10 21

6. lV1 e L′′1r L1L
′
1r
x−1 11 22

7. lV I1 e eL1 L′′1r
x−1 12 23

8. l2L
′′
1 ee rx−1 14 −

9. l2e ee rx−1l2

If the register r stores value zero :

configuration of Π
labels of

applicable
programs

A1 A2 string P1 P2

1. l1e ee 6 −
2. lI1e ee 7 −
3. lII1 e ee lI1 8 19

4. lIII1 e L1l
I
1 lII1 9 20

5. lIV1 e L′1l
II
1 L1 10 −

6. lV1 e L′1l
II
1 L1 11 −

7. lV I1 e L′1l
II
1 L1 13 −

8. l3L1 L′1l
II
1 15 −

9. F3e L′1l
II
1 l3 16 −

10. l3 l3 L′1l
II
1 F3 17 24

11. F ′3e F3e l3L
′
1 18 25

12. l3e ee l3L
′
1

(4) For halting instruction lh there are programs belonging to the sets P1 and
P2. After that agent A1 generates the object lh, it writes the symbol G to the
tape. After consuming it, the second agent erases all the symbols from the tape
except these ones which correspond to the first register of the register machine.

114 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

P1 : P2 :

26 : 〈e→ G; lh ↔ e〉 27 : 〈e→ e; e↔ lh〉 28 : 〈e→ e; lh ↔ X〉
29 : 〈X → e; e↔ lh〉

X ∈ {a} ∪ {L′i, li, li | 0 ≤ i ≤ p, where |H| = p} ∪ {r | 1 < r ≤ m}
The APCol system Π starts computation in the initial configuration with

empty tape. It starts the simulation of register machine M with instruction la-
belled by l0 and it proceeds the simulation according to the instructions of the
register machine. After M reaches the halting instruction, then agent A2 in the
APCol system Π erases from the tape all the symbols except symbols 1 and then
APCol systems halts. So the length of the word placed on the tape in the last
configuration corresponds to the number stored in the first register of M at the
end of its computation.

We proved that the family of length sets of languages generated by restricted
APCol systems with two agents equals to NRE. If the APCol system is formed from
only one agent, there are some limitation for generated languages. In the following
we show the limits of the computational power of restricted APCol systems with
only one agent.

Theorem 4. NRMPB ⊆ NAPColgenR(1)

Proof. Let us consider a partially blind register machine M with m registers. We
construct an APCol system Π = (O, e,A) simulating the computations of register
machine M with:

- O = {G} ∪ {li, lIi , lIIi , lIIIi , lIVi , lVi , l
V I
i , li, li, Li, L

′
i, L
′′
i , Fi | li ∈ H}∪

∪ {r | 1 ≤ r ≤ m},
- A = (ee, P, {eG})
The functioning of the constructed APCol system is very similar to the one

from the proof of previous theorem. At the beginning of the computation, the agent
generates the object l0 (the label of starting instruction of M). Then it starts to
simulate instruction labelled by l0 and generates the label of the next instruction.
The number stored at register r corresponds to the number of symbols r placed
on the input string. The set of programs is given as follows:

(1) For initializing the simulation there is one program in P1:

P :
1 : 〈e→ l0; e↔ e〉

The initial configuration of Π is (ε; ee). After the first step of computation
(only the program 1 is applicable) the system enters configuration (ε; l0e).
(2) For every ADD-instruction l1 : (ADD(r), l2, l3) we add to P the next programs:

P
2 : 〈e→ r; l1 ↔ e〉 , 3 : 〈e→ a; r ↔ l1〉 ,
4 : 〈l1 → l2; a↔ e〉 , 5 : 〈l1 → l3; a↔ e〉

Automaton-like P Colonies 115

When there is object l1 inside the agent, it generates one copy of r, puts it to the en-
vironment and generates the label of the next instruction (it non-deterministically
chooses one of two programs 4 and 5)

configuration of Π labels of applicable programs
A string P

1. l1e rx 2
2. re l1r

x 3
3. al1 rx+1 4 or 5
4. l2e rx+1a

(3) For every SUB-instruction l1 : (SUB(r), l2, l3), the next programs are added to
set P :

P :

6 :
〈
l1 → lI1; e↔ r

〉
7 :
〈
r → l2; lI1 ↔ e

〉
8 :
〈
r → l3; lI1 ↔ e

〉
The agent generates object l′1 even if there is at least one object r in the envi-
ronment. Then it rewrites r to l2 or l3. If there is no r in the environment, the
computation halts and the agent is in non-final state.
(4) For halting instruction lh there are programs belonging to the set P :

P :

9 : 〈lh → G; e↔ e〉 10 : 〈e→ e;G↔ X〉 11 : 〈X → e; e↔ G〉
X ∈ {a} ∪ {lIi | 0 ≤ i ≤ p, where |H| = p} ∪ {r | 1 < r ≤ m}

After the object lh appears inside agent A, it generates the symbol G. Using G,
the agent erases all the symbols from the tape except those ones which correspond
to the first register of the register machine.

The APCol system Π starts computation in the initial configuration with
empty tape. It starts the simulation of the partially blind register machine M
with instruction labelled by l0 and it proceeds the simulation according to the in-
structions of register machine. After M reaches the halting instruction, the agent
A in the APCol system Π erases from the tape all the symbols except symbols 1
and then the APCol system halts. So the length of the word placed on the tape in
the last configuration corresponds to the number stored in the first register of M
at the end of its computation.

In the following we will examine the language generating power of restricted
APCoL systems.

Theorem 5. APColgenR(1) ⊆ MATλ

Proof. Let Π = (O, e,A) be a restricted APCol system with one agent. We con-
struct a matrix grammar G = (N,T, S,M) simulating Π as follows:

The symbol on the tape a 6= e is represented by a ∈ N and at the end of
simulation it can be rewritten to a ∈ T . The content of the agent is represented

116 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

by a non-terminal symbol AB ∈ N, where a, b ∈ O are objects placed inside the
agent. As in the previous cases, we provide only the necessary details.

The first applied matrix is
(
S → C EE

)
, representing the initial content of

the agent.
For every program of type 〈a→ b; c↔ d〉 , c, d 6= e there is a matrix in M :(

C → C, AC → BD , d → c
)

For every program of type 〈a→ b; e↔ d〉 , d 6= e there is a matrix in M :(
C → C, AC → BD , d → ε

)
For every program of type 〈a→ b; e↔ e〉 there is a matrix in M :(

C → C, AE → BE
)

For every program of the type 〈a→ b; c↔ e〉 , c 6= e there is a matrix in M :(
C → C, AC → BE c©)

and a set of matrices generating c somewhere in the string and deleting c©:(
C → C, x → x c , c©→ ε

)
,(

C → C, x → c x , c©→ ε
)
,

for all x such that x ∈ T .
When the APCol system reaches the halting configuration, the matrix grammar

generates the corresponding string. The string is formed from only non-terminals.
The matrix grammar has to rewrite the rammed terminal symbols to terminals and
to delete non-terminal representing the content of the agent and the non-terminal
C. The halting configuration can be presented by a string AB ·w, where |w|a = 1
for all a ∈ T such that a is present in this halting configuration and AB is content
of the agent such that ab ∈ F . The set of such a representations is finite.

For each representation AB ·a1a2 . . . ap, p ≤ |T |, we add the following matrices
to the matrix grammar:

(
C → [AB a1a2 . . . ap]

)(
[AB a1a2 . . . aq]→ [AB a1a2 . . . aq], aq → aq

)
,(

[AB a1a2 . . . aq]→ [AB a1a2 . . . aq−1]
)
, 1 < q ≤ p,(

[AB a1]→ [AB a1], a1 → a1

)
,
(
[AB a1]→ [AB]

)
(
[AB]→ ε, AB → ε

)
In this way all non-terminal symbols are rewritten to the corresponding terminals
and the non-terminal symbol corresponding to the contents of the agent is deleted.

Automaton-like P Colonies 117

If the restricted APCol system Π generates a string ω, then the matrix gram-
mar is able to generate it, too. If the APCol system halts and the agent is not in
final state, then the matrix grammar cannot generate a string consisting only of
terminals.

The last theorem is devoted to the relationship of MATλac to restricted APCol
systems with two agents.

Theorem 6. APColgenR(2) ⊆ MATλac

Proof. Let Π = (O, e,A1, A2) be the restricted APCol system with two agents.
We construct a matrix grammar G = (N,T, S,M) simulating Π as follows:

The symbol on the tape a 6= e is represented by a ∈ N and at the end of the
simulation it is rewritten to a ∈ T . The contents of the agent A1 is represented by
a non-terminal symbol AB ∈ N, where a, b ∈ O are the objects placed inside the
first agent. The contents of the agent A2 is represented by a non-terminal symbol
AB ∈ N, where a, b ∈ O are the objects placed inside the second agent.

We add label pi from the set of labels P to every program associated with both
agents. Let P ∩ (N ∪ T) = ∅. We add a set of new non-terminals {Pi | pi ∈ P} to
the set N . To control the derivation, we add non-terminals S, C, CP and #.

The first applied matrix is
(
S → C EE EE

)
, representing the initial states of

the agents.
For every possible pair of states of agents, we add the following types of matrices

toM . Let ab be a state of the agent A1. In this state there are three applicable types
of programs: 〈a→ c; b↔ d〉 – (A), 〈a→ c; b↔ e〉 – (B). The first type includes
the case where b = e and 〈a→ c; e↔ d〉 – (A’).

We divide the execution of such a program into three phases. The first phase
is to choose two programs to apply. The corresponding matrices (forming the set
M1 ⊂M) are of the form(

C → C, AB → ABv , XY → XY z
)
, (1)

where v and z depend on the type of the used programs. If the program is of the
type 〈a→ c; b↔ d〉 or 〈a→ c; e↔ d〉, v (or z) is d and it means that d will be
erased in following derivation steps. If the program is of the type 〈a→ c; b↔ e〉,
v (or z) is t and it means that there is nothing to erase from string.

Because of maximal parallelism in the computation, an agent can be in a state
when there is no program to use. For this situation, we construct another set of
matrices. We choose from the set M1 all matrices corresponding to the application
of a program of the type 〈a→ c; b↔ d〉 by the “sleeping agent”. We need not to
include matrices for the programs of type 〈a→ c; b↔ e〉 because these programs
in state ab are always applicable. To the selected matrices of the type (1), we add
the following matrices:(

C → CP , AB → ABN Pi, XY → XY z
)
, (2)

for the first agent with no applicable program and

118 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú(
C → CP , AB → ABv , XY → XYN Pj

)
, (3)

for the second agent with no applicable program and pi ∈ P, resp. pj ∈ P is the
label of program corresponding to triplet ABv resp. to XY z .

To check whether in the given state the agent has no applicable program, we
perform the following construction. Let P ′i be the set of all applicable programs of
the type (A) in the state ab of the agent. Then matrices

(CP → C,Pi → ε, d1 → #, d2 → #, . . . , dk → #) , (4)

are for checking the inactivity of the agent. d1, . . . , dk ∈ N, k = |P ′i | are non-
terminals corresponding to the objects that the agent needs to consume from the
string applying any program from P ′i . All the rules of the type dl → #, 1 ≤ l ≤ k
are in the set F . If # appears in the string, then the derivation cannot end with
a terminal word.

The last phase of the simulation of execution of programs in the APCol system
Π corresponds to the change of the state of the agents and to the changes changes
in the string. We add to M the following matrices: For the pair of programs
(〈a→ c; b↔ d〉, 〈x→ u; y ↔ z〉)(

C → C, ABd → CD , d → b , XY z → UZ , z → y

)
. (5)

For the pair of programs (〈a→ c; e↔ d〉, 〈x→ u; y ↔ z〉)(
C → C, ABd → CD , d → ε, XY z → UZ , z → y

)
(6)

For the pair of programs (〈a→ c; b↔ e〉, 〈x→ u; y ↔ z〉)(
C → C, ABt → CD b©, XY z → UZ , z → y

)
(7)

For the remaining program combinations we add another six types of matrices.
We also add the set of matrices for generating c somewhere in the string and

for deleting c©: (
C → C, x → x c , c©→ ε

)
,(

C → C, x → c x , c©→ ε
)
, for all q, x such that x ∈ T.

When the APCol system reaches the halting configuration, the matrix grammar
generates the corresponding string. The string is formed from non-terminals only.
The matrix grammar has to rewrite the rammed terminal symbols to terminals
and to delete the non-terminals representing the contents of the agents and non-
terminal C. The halting configuration can be represented by a string AB ·XY ·w,
where |w|a = 1 for all a ∈ T such that a is present in this halting configuration
and AB,XY are the contents of the agents such that ab ∈ F1 and xy ∈ F2. The
set of such a representations is finite.

Automaton-like P Colonies 119

For each representation AB · XY · a1a2 . . . ap, p ≤ |T |, we add the following
matrices to the matrix grammar:

(
C → [AB XY a1a2 . . . ap]

)(
[AB XY a1a2 . . . aq]→ [AB XY a1a2 . . . aq], aq → aq

)
,(

[AB XY a1a2 . . . aq]→ [AB XY a1a2 . . . aq−1]
)
, 1 < q ≤ p(

[AB XY a1]→ [AB XY a1], a1 → a1

)
,
(
[AB XY a1]→ [AB XY]

)
(
[AB XY]→ ε, AB → ε, XY → ε

)
In this way all non-terminal symbols are rewritten to the corresponding terminals
and the non-terminals corresponding to the contents of the agents are deleted.

If the restricted APCol system Π generates the string ω, then the matrix
grammar can generate it, too. If the APCol system halts and the agent is not in
final state, then the matrix grammar cannot generate a string consisting of only
terminals.

5 Conclusions

We developed the concept of automaton-like P colonies (APCol systems) - vari-
ants of P colonies that work on a string. We introduced the generating mode
of computation of these systems and compared the generative and computational
power of automaton-like P colonies and the generative power of context-free matrix
grammars with and without appearance checking and the computational power of
variants of register machines. The results of this paper can be summarized as
follows:

• NRMPB ⊆ NAPColgenR(1)
• APColgenR(1) ⊆MATλ

• NAPColgenR(2) = NRE

• APColgenR(2) ⊆ MATλac

Remark 1. This work was partially supported by the European Regional Develop-
ment Fund in the IT4Innovations Centre of Excellence project (CZ.1.05/1.1.00/-
02.0070), by SGS/24/2013 and by project OPVK no. CZ.1.07/2.2.00/28.0014.

References

1. Ciencialová, L., Cienciala, L.: Variation on the theme: P colonies. In: Kolář, D.,
Meduna, A. (eds.) Proc. 1st Intern. Workshop on Formal Models, pp. 27–34. Ostrava
(2006)

120 L. Cienciala, L. Ciencialová, E. Csuhaj-Varjú

2. Cienciala, L., Ciencialová, L., Csuhaj-Varjú, E.: P Colonies Processing Strings. Fun-
dam. Inform. 134(1-2), 51–65 (2014)

3. Ciencialová, L., Csuhaj-Varjú, E., Kelemenová, A., Vaszil, Gy.: Variants of P colonies
with very simple cell structure. International Journal of Computers, Communication
and Control 4(3), 224–233 (2009)

4. Ciencala, L., Ciencialová, L., Csuhaj-Varjú, E., Vaszil, Gy.: PCol Automata: Recog-
nizing strings with P colonies. In: Martinez-del-Amor, M. A. et al. (eds.) Proc. BWMC
2010, pp. 65–76. Fénix Editora, Sevilla (2010)

5. Cienciala, L., Ciencialová, L., Kelemenová, A.: Homogeneous P colonies. Computing
and Informatics 27, 481–496 (2008)

6. Cienciala, L., Ciencialová, L., Kelemenová, A.: On the number of agents in P colonies.
In: Eleftherakis,G. et. al (eds.) Membrane Computing, 8th International Workshop,
WMC 2007, Thessaloniki, Greece, June 25-28, 2007 Revised Selected and Invited
Papers. LNCS, vol. 4860, pp. 193–208. Springer (2007)

7. Csuhaj-Varjú, E., Kelemen, J., Kelemenová, A., Păun, Gh., Vaszil, Gy.: Computing
with cells in environment: P colonies. Journal of Multi-Valued Logic and Soft Com-
puting 12, 201–215 (2006)

8. Csuhaj-Varjú, E.,Margenstern, M., Vaszil, Gy.: P colonies with a bounded number
of cells and programs. In: Hoogeboom, H-J. et. al (eds.) Membrane Computing, 7th
International Workshop, WMC 2006, Leiden, The Netherlands, July 17-21, 2006, Re-
vised, Selected, and Invited Papers. LNCS, vol. 4361, pp. 352–366. Springer(2006)

9. Dassow, J., Păun, Gh.: Regulated Rewriting in Formal Language Theory. EATCS
Monographs in Theoretical Computer Science 18. Springer-Verlag Berlin (1989)

10. Fischer, P. C.: Turing machines with restricted memory access. Information and
Control 9, 364–379 (1966)

11. Freund, R., Oswald, M.: P colonies working in the maximally parallel and in the
sequential mode. In: Ciobanu, G., Păun, Gh. (eds.) Pre-Proc. 1st Intern. Workshop
on Theory and Application of P Systems, pp. 49–56. Timisoara, Romania (2005)

12. Freund, R., Oswald, M.: P colonies and prescribed teams. International Journal of
Computer Mathematics 83, 569–592 (2006)

13. Greibach, S. A.: Remarks on blind and partially blind one-way multicounter ma-
chines. Theoretical Computer Science 7(1), 311–324 (1978)

14. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading, Mass. (1979)

15. Kelemen, J., Kelemenová, A.: A grammar-theoretic treatment of multi-agent systems.
Cybernetics and Systems 23, 621–633 (1992)

16. Kelemen, J., Kelemenová, A., Păun, Gh.: Preview of P colonies: A biochemically
inspired computing model. In: Bedau, M. et al. (eds.) Workshop and Tutorial Pro-
ceedings. Ninth International Conference on the Simulation and Synthesis of Living
Systems (Alife IX), pp. 82–86. Boston Mass. (2004)

17. Kelemenová, A.: P Colonies. Chapter 23.1, In: Păun, Gh., Rozenberg, G., Salomaa,
A. (eds.) The Oxford Handbook of Membrane Computing, pp. 584–593. Oxford Uni-
versity Press (2010)

18. Meduna, A., Zemek, P.: Jumping Finite Automata. Int. J. Found. Comput. Sci. 23,
1555–1578 (2012)

19. Minsky, M.: Computation – Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, NJ (1967)

20. Păun, Gh., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-
puting. Oxford University Press (2010)

Solving SAT with Antimatter
in Membrane Computing

Daniel Dı́az-Pernil1, Artiom Alhazov2, Rudolf Freund3,
Miguel A. Gutiérrez-Naranjo4

1 Research Group on Computational Topology and Applied Mathematics
Department of Applied Mathematics - University of Sevilla, 41012, Spain
E-mail: sbdani@us.es

2 Institute of Mathematics and Computer Science, Academy of Sciences of Moldova
Academiei 5, Chişinău, MD-2028, Republic of Moldova
E-mail: artiom@math.md

3 Faculty of Informatics, Vienna University of Technology,
Favoritenstr. 9, 1040 Vienna, Austria
E-mail: rudi@emcc.at

4 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence, University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: magutier@us.es

Summary. The set of NP-complete problems is split into weakly and strongly NP-
complete ones. The difference consists in the influence of the encoding scheme of the
input. In the case of weakly NP-complete problems, the intractability depends on the
encoding scheme, whereas in the case of strongly NP-complete problems the problem
is intractable even if all data are encoded in a unary way. The reference for strongly
NP-complete problems is the Satisfiability Problem (the SAT problem). In this paper,
we provide a uniform family of P systems with active membranes which solves SAT –
without polarizations, without dissolution, with division for elementary membranes and
with matter/antimatter annihilation. To the best of our knowledge, it is the first solution
to a strongly NP-complete problem in this P system model.

1 Introduction

In [7], a solution of the Subset Sum problem in the polynomial complexity class
of recognizer P systems with active membranes without polarizations, without
dissolution and with division for elementary membranes endowed with antimatter
and matter/antimatter annihilation rules was provided. In this way, antimatter
was shown to be a frontier of tractability in Membrane Computing, since the
P systems class without antimatter and matter/antimatter annihilation rules is
exactly the complexity class P (see [10]).

122 D. Dı́az-Pernil et al.

The Subset Sum problem belongs to the so-called weakly NP-complete prob-
lems, since its intractability strongly depends on the fact that extremely large
input numbers are allowed [8]. The reason for this weakness is based on the en-
coding scheme of the input, since every integer in the input denoting a weight wi

should be encoded by a string of length only O(log wi).
On the other hand, strongly NP-complete problems are those which remain

NP-complete even if the data are encoded in a unary way. The best-known one
of these problems is the satisfiability problem (SAT for short). SAT was the first
problem shown to be NP-complete, as proved by Stephen Cook at the University of
Toronto in 1971 [5], and it has been widely used in Membrane Computing to prove
the ability of a P system model to solve NP-problems (e.g. [9, 11, 12, 14, 16, 17]).

In this paper, we provide a solution to the SAT problem in the polynomial com-
plexity class of recognizer P systems with active membranes without polarizations,
without dissolution and with division for elementary membranes endowed with an-
timatter and matter/antimatter annihilation rules. To the best of our knowledge,
this is the first time that a strongly NP-complete problem is solved in this P system
model. The details of the implementation can provide new tools for a better un-
derstanding of the problem of searching new frontiers of tractability in Membrane
Computing.

The paper is organized as follows. In Section 2, we present a general discussion
about the relationship of model ingredients used in different solutions for solving
computationally difficult problems by P systems with active membranes, and the
emerging computational power. In Section 3, we recall the P systems model used
in this paper. The main novelty is the use of antimatter and matter/antimatter
annihilation rules as well as their semantics. In Section 4, some basics on recognizer
P systems are recalled, and in Section 5 our solution for the SAT problem is
provided. The paper finishes with some conclusions and hints for future work.

2 Computation Theory Remarks

A configuration consists of symbols (which, in the general sense, may include
instances of objects, instances of membranes, or any other entities bearing in-
formation). A computation consists of transformations of symbols. Clearly, the
computations without cooperation of symbols are quite limited in power (e.g., it
is known that E0L-behavior with standard halting yields PsREG, and accepting
P systems are considerably more degenerate).

In this sense, interaction of symbols is a fundamental part of Membrane Com-
puting, or of Theoretical Computer Science in general. Various ways of interaction
of symbols have been studied in membrane computing. For the models with active
membranes, the most commonly studied ways are various rules changing polariza-
tions (or even sometimes labels), and membrane dissolution rules. One object may
engage such a rule, which would affect the context (polarization or label) of other
objects in the same membrane, thus affecting the behavior of the latter, e.g., in

Solving SAT with Antimatter in Membrane Computing 123

case of dissolution, such objects find themselves in the parent membrane, which
usually has a different label.

In the literature on P systems with active membranes, normally only the rules
with at most one object on the left side were studied. Since recently, the model with
matter/antimatter annihilation rules, e.g. see [1] and [2], attracted the attention
of researchers. Clearly, it provides a form of direct object-object interaction, albeit
in a rather restricted way (i.e., by erasing a pair of objects that are in a bijective
relation). Although it is known that non-cooperative P systems with antimatter
are already universal, studying their efficiency turned out to be an interesting line
of research. So how does matter/antimatter annihilation compare to other ways
of organizing interaction of objects?

First, all known solutions of NP-complete (or more difficult) problems in mem-
brane computing rely on the possibility of P systems to obtain exponential space
in polynomial time (note that object replication alone does not count as building
exponential space, since an exponential number can be written, e.g. in binary, in
polynomial space). Such possibility is provided by either of membrane division
rules, membrane separation rules, membrane creation rules (or string replication
rules, but string-objects lie outside of the scope of the current paper); in tissue P
systems, one could apply similar approach to cells instead of membranes.

Note that in case of cell-like P systems, membrane creation alone (unlike the
other types of rules mentioned above) makes it also possible to construct a hierar-
chy of membranes, let us refer to it as structured workspace, which is used to solve
PSPACE-complete problems. The structured workspace can be alternatively cre-
ated by elementary membrane division plus non-elementary membrane division
(plus membrane dissolution if we have no polarizations).

Besides creating workspace, to solve NP-complete problems, we need to be
able to effectively use that workspace, by making objects interact. For instance, it
is known that, even with membrane division, without polarizations and without
dissolution only problems in P may be solved. However, already with two polar-
izations (the smallest non-degenerate value) P systems can solve NP-complete
problems. What can be done without polarizations?

One solution is to use the power of switching the context by membrane dis-
solution. Coupled with non-elementary division, a suitable membrane structure
can be constructed so that the needed interactions can be performed solving NP-
complete or even PSPACE-complete problems, [4]. It is not difficult to realize
that elementary and non-elementary division rules can be replaced by membrane
creation rules, or elementary division rules can be replaced by separation rules.

Finally, an alternative way of interaction of objects considered in this paper
following [7] is matter/antimatter annihilation. What are the strengths and the
weaknesses of these three possibilities (the weaker is an ingredient, the stronger is
the result, while sometimes a weaker ingredient does not let us do what a stronger
one can)?

The power of matter/antimatter annihilation makes it possible to carry out
multiple simultaneous interactions (for example, the checking phase is constant-

124 D. Dı́az-Pernil et al.

time instead of linear with respect to the number of clauses), and it is a direct
object-object interaction.

The power of polarizations is the possibility of mass action (not critical
for studying computational efficiency within PSPACE as all multiplicities are
bounded with respect to the problem size) by changing context.

The power of non-elementary division lets us build structured workspace (prob-
ably necessary for PSPACE if membrane creation is not used instead of membrane
division, unless PPP=PSPACE), see [13], and change non-local context (e.g., the
label of the parent membrane).

The power of dissolution provides mass action (not critical for studying compu-
tational efficiency within PSPACE as all multiplicities are bounded with respect
to the problem size) by changing context.

3 The P System Model

In this paper, we use the common rules of evolution, communication and division
of elementary membranes which are usual in P systems with active membranes.
The main novelty in the model is the use of antimatter and matter/antimatter
annihilation rules. The concept of antimatter was introduced in the framework of
Membrane Computing as a control tool for the flow of spikes in spiking neural
P systems [15, 18, 22, 23]. In this context, when one spike and one anti-spike
appear in the same neuron, the annihilation occurs and both, spike and anti-
spike, disappear. Antimatter and matter/antimatter annihilation rules later were
adapted to other contexts in Membrane Computing, and currently this an active
research area [1, 2, 7].

Inspired by physics, we consider the annihilation of two objects a and b from
the alphabet Γ in a membrane with label h, with the annihilation rule for a and
b written as [ab→ λ]h. The meaning of the rule follows the idea of annihilation:
If a and b occur simultaneously in the same membrane, then both are consumed
(disappear) and nothing is produced (denoted by the empty string λ). The object
b is called the antiparticle of a and it is usually written a instead of b.

With respect to the semantics, let us recall that this rule must be applied as
many times as possible in each membrane, according to the maximal parallelism.
Following the intuition from physics, if a and a occur simultaneously in the same
membrane h and the annihilation rule [aa → λ]

h
is defined, then it has to

be applied, regardless any other option. In this sense, any annihilation rule has
priority over all rules of the other types of rules (see [7]).

A P system with active membranes without polarizations, without dissolution
and with division of elementary membranes and with annihilation rules is a cell-
like P system with rules of the following kinds (following [3], we use subscript
0 for the rule type to represent a restriction that such rule does not depend on
polarization and is now allowed to change it; if all rules have this subscript, this
is equivalent to saying that the P system is without polarizations):

Solving SAT with Antimatter in Membrane Computing 125

(a0) [a → u]
h

for h ∈ H, a ∈ Γ , u ∈ Γ ∗. This is an object evolution rule,
associated with a membrane labeled by h: an object a ∈ Γ belonging to that
membrane evolves to a string u ∈ Γ ∗.

(b0) a[]
h
→ [b]

h
for h ∈ H, a, b ∈ Γ . An object from the region immediately

outside a membrane labeled by h is taken into this membrane, possibly being
transformed into another object.

(c0) [a]
h
→ b[]

h
for h ∈ H, a, b ∈ Γ . An object is sent out from a membrane

labeled by h to the region immediately outside, possibly being transformed
into another object.

(e0) [a]
h
→ [b]

h
[c]

h
for h ∈ H, a, b, c ∈ Γ . An elementary membrane can be

divided into two membranes with the same label, possibly transforming one
original object into a different one in each of the new membranes.

(g0) [aa→ λ]
h

for h ∈ H, a, a ∈ O. This is an annihilation rule, associated with a
membrane labeled by h: the pair of objects a, a ∈ O belonging simultaneously
to this membrane disappears.

Let us remark that dissolution rules - type (d0) - and rules for non-elementary
division - type (f0) - are not considered in this model.

These rules are applied according to the following principles (with the special
restrictions for annihilation rules specified above):

• All the rules are applied in parallel and in a maximal manner. In one step,
one object of a membrane can be used by at most one rule (chosen in a non–
deterministic way), and each membrane can be the subject of at most one rule
of types (b0), (c0) and (e0).

• If at the same time a membrane labeled with h is divided by a rule of type
(e0) triggered by some object a and there are other objects in this membrane
to which rules of type (a0) or (g0) can be applied, then we suppose that first
the rules of type (g0) and only then those of type (a0) are used, before finally
the division is executed. Of course, this process in total takes only one step.

• The rules associated with membranes labeled by h are used for all copies of
membranes with label h.

4 Recognizer P Systems

Recognizer P systems are a well-known model of P systems which are basic for the
study of complexity aspects in Membrane Computing. Next, we briefly recall some
basic ideas related to them. For a detailed description, for example, see [19, 20].
In recognizer P systems all computations halt; there are two distinguished objects
traditionally called yes and no (used to signal the result of the computation),
and exactly one of these objects is sent out to the environment (only) in the last
computation step.

Let us recall that a decision problem X is a pair (IX , θX) where IX is a language
over a finite alphabet (the elements are called instances) and θX is a predicate

126 D. Dı́az-Pernil et al.

(a total Boolean function) over IX . Let X = (IX , θX) be a decision problem. A
polynomial encoding ofX is a pair (cod, s) of polynomial time computable functions
over IX such that for each instance w ∈ IX , s(w) is a natural number representing
the size of the instance and cod(w) is a multiset representing an encoding of the
instance. Polynomial encodings are stable under polynomial time reductions.

Let R be a class of recognizer P systems with input membrane. A decision
problem X = (IX , θX) is solvable in a uniform way and polynomial time by a
family Π = (Π(n))n∈N of P systems from R – we denote this by X ∈ PMCR
– if the family Π is polynomially uniform by Turing machines, i.e., there exists a
polynomial encoding (cod, s) from IX to Π such that the family Π is polynomially
bounded with regard to (X, cod, s); this means that there exists a polynomial
function p such that for each u ∈ IX every computation of Π(s(u)) with input
cod(u) is halting and, moreover, it performs at most p(|u|) steps; the family Π is
sound and complete with regard to (X, cod, s).

5 Solving SAT

Propositional Satisfiability is the problem of determining, for a formula of the
propositional calculus, if there is an assignment of truth values to its variables for
which that formula evaluates to true. By SAT we mean the problem of proposi-
tional satisfiability for formulas in conjunctive normal form (CNF). In this section
we describe a family of P systems which solves it. As usual, we will address the
resolution via a brute force algorithm, which consists of the following stages (some
of the ideas for the design are taken from [6] and [21]):

• Generation and Evaluation Stage: All possible assignments associated with
the formula are created and evaluated (in this paper we have subdivided this
group into Generation and Input processing groups of rules, which take place
in parallel).

• Checking Stage: In each membrane we check whether or not the formula eval-
uates to true for the assignment associated with it.

• Output Stage: The systems sends out the correct answer to the environment.

Let us consider the pair function 〈 , 〉 defined by 〈n,m〉 = ((n + m)(n + m +
1)/2) + n. This function is polynomial-time computable (it is primitive recursive
and bijective from N2 onto N). For any given formula in CNF, ϕ = C1 ∧ · · · ∧Cm,
with m clauses and n variables V ar(ϕ) = {x1, . . . , xn} we construct a P system
Π(〈n,m〉) solving it, where the multiset encoding of the problem to be the input
of Π(〈n,m〉) (for the sake of simplicity, in the following we will omit m and n) is

cod(ϕ) = {xi,j : xj ∈ Ci} ∪ {yi,j : ¬xj ∈ Ci}.

For solving SAT by a uniform family of deterministic recognizer P systems
with active membranes, without polarizations, without non-elementary membrane

Solving SAT with Antimatter in Membrane Computing 127

division and without dissolution, yet with matter/antimatter annihilation rules,
we now construct the members of this family as follows:

Π = (O,Σ,H = {0, 1}, µ = [[]
2

]
1
, w1, w2, R, iin = 2), where

Σ = {xi,j , yi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n},
O = {d, t, f, F, F , T, non+5, Fn+5, yesn+6, yesn+6, non+6, yes, no}
∪ {xi,j , yi,j | 1 ≤ i ≤ m, −1 ≤ j ≤ n} ∪ {xi,−1, yi,−1 | 1 ≤ i ≤ m}
∪ {ci, ci | 1 ≤ i ≤ m} ∪ {ej | 1 ≤ j ≤ n+ 3}
∪ {yesj , noj , Fj | 1 ≤ j ≤ n+ 5},

w1 = no0 yes0 F0, w2 = dn e1,

and the rules of set R are given below, presented in groups Generation, Input
processing, Checking and Output, together with explanations how the rules in the
groups work.

Generation
G1. [d]

2
→ [t]

2
[f]

2
;

G2. [t→ y1,−1 · · · ym,−1]
2
;

G3. [f → x1,−1 · · ·xm,−1]
2
;

G4. [xi,−1 → λ]
2
, 1 ≤ i ≤ m;

G5. [yi,−1 → λ]
2
, 1 ≤ i ≤ m.

In each step j, 1 ≤ j ≤ n, every elementary membrane is divided, one child
membrane corresponding with assigning true to variable j and the other one with
assigning false to it. One step later, proper objects are produced to annihilate the
input objects associated to variable j: in the true case, we introduce the antimatter
object for the negated variable, i.e., it will annihilate the corresponding negated
variable, and in the false case, we introduce the antimatter object for the variable
itself, i.e., it will annihilate the corresponding variable. Remaining barred (anti-
matter) objects not having been annihilated with the input objects, are erased in
the next step.

Input processing
I1. [xi,j → xi,j−1]

2
, 1 ≤ i ≤ m, 0 ≤ j ≤ n;

I2. [yi,j → yi,j−1]
2
, 1 ≤ i ≤ m, 0 ≤ j ≤ n;

I3. [xi,−1 xi,−1 → λ]
2
, 1 ≤ i ≤ m;

I4. [yi,−1 yi,−1 → λ]
2
, 1 ≤ i ≤ m;

I5. [xi,−1 → ci]
2
, 1 ≤ i ≤ m;

I6. [yi,−1 → ci]
2
, 1 ≤ i ≤ m.

Input objects associated with variable j decrement their second subscript during
j + 1 steps to −1. The variables not representing the desired truth value are elim-
inated by the corresponding antimatter object generated by the rules G2 and G3,
whereas any of the input variables not annihilated then, shows that the associated
clause i is satisfied, which situation is represented by the introduction of the object
ci.

128 D. Dı́az-Pernil et al.

Checking
C1. [ej → ej+1]

2
, 1 ≤ j ≤ n+ 1;

C2. [en+2 → c1 · · · cmen+3]2;
C3. [ci ci → λ]

2
, 1 ≤ i ≤ m;

C4. [ci → F]
2
, 1 ≤ i ≤ m;

C5. [en+3 → F]
2
;

C6. [F F → λ]
2
, 1 ≤ i ≤ m;

C7. [F]
2
→ []

2
T .

It took n+2 steps to produce objects ci for every satisfied clause, possibly multiple
times. Starting from object e1, we have obtained the object en+2 until then; from
this object en+2, at step n+ 2 one anti-object is produced for each clause. Any of
these clause anti-objects that is not annihilated, is transformed into F , showing
that the chosen variable assignment did not satisfy the corresponding clause. It
remains to notice that object T is sent to the skin (at step n+ 4) if and only if an
object F did not get annihilated, i.e., no clause failed to be satisfied.

Output
O1. [yesj → yesj+1]

1
, 1 ≤ j ≤ n+ 5;

O2. [noj → noj+1]
1
, 1 ≤ j ≤ n+ 5;

O3. [Fj → Fj+1]
1
, 1 ≤ j ≤ n+ 4;

O4. [T → non+5Fn+5]
1
;

O5. [non+5 non+5 → λ]
1
;

O6. [non+6]
1
→ []

1
no;

O7. [Fn+5 Fn+5 → λ]
1
;

O8. [Fn+5 → yesn+6]1;
O9. [yesn+6 yesn+6 → λ]

1
;

O10. [yesn+6]
1
→ []

1
yes.

If no object T has been sent to the skin, then the initial no-object can count up
to n + 6 and then sends out the negative answer no, while the initial F -object
counts up to n + 5, generates the antimatter object for the yes-object at stage
n + 6 and annihilates with the corresponding yes-object at stage n + 6. On the
other hand, if (at least one) object T arrives in the skin, then the no-object is
annihilated at stage n + 5 before it would be sent out in the next step, and the
F -object is annihilated before it could annihilate with the yes-object, so that the
positive answer yes can be sent out in step n+ 6.

Finally, we notice that the solution is uniform, deterministic, and uses only
rules of types (a0), (c0), (e0) as well as matter/antimatter annihilation rules. The
result is produced in n+ 6 steps.

6 Conclusions

Although the ability of the model for solving NP problems was proved in [7], to the
best of our knowledge, this is the first solution to a strongly NP problem by using

Solving SAT with Antimatter in Membrane Computing 129

annihilation rules in Membrane Computing. Let us remark the important role of
the definition for recognizer P systems we have used in this paper. This definition
is quite restrictive, since only one object yes or no is sent to the environment in
any computation. In the literature one can find other definitions of recognizer P
systems and therefore other definitions of what it means to solve a problem in
the framework of Membrane Computing. The study of the complexity classes in
Membrane Computing deserves a deep revision under these new definitions.

Acknowledgements

M.A. Gutiérrez-Naranjo acknowledges the support of the project TIN2012-37434
of the Ministerio de Economı́a y Competitividad of Spain.

References

1. Artiom Alhazov, Bogdan Aman, and Rudolf Freund. P systems with anti-matter.
In Marian Gheorghe, Grzegorz Rozenberg, Arto Salomaa, Petr Sośık, and Claudio
Zandron, editors, Membrane Computing - 15th International Conference, CMC 2014,
Prague, Czech Republic, August 20-22, 2014, Revised Selected Papers, volume 8961
of Lecture Notes in Computer Science, pages 66–85, Springer, 2014.

2. Artiom Alhazov, Bogdan Aman, Rudolf Freund, and Gheorghe Păun. Matter and
anti-matter in membrane systems. In DCFS 2014, volume 8614 of Lecture Notes in
Computer Science, pages 65–76, Springer, 2014.

3. Artiom Alhazov, Linqiang Pan, and Gheorghe Păun. Trading polarizations for labels
in P systems with active membranes. Acta Informatica, 41(2-3): 111–144, 2004.

4. Artiom Alhazov and Mario J. Pérez-Jiménez. Uniform solution of QSAT using po-
larizationless active membranes. In MCU 2007, volume 4664 of Lecture Notes in
Computer Science, pages 122–133, Springer, 2007.

5. Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings
of the Third Annual ACM Symposium on Theory of Computing, STOC ’71, pages
151–158, ACM, New York, NY, USA, 1971.

6. Andrés Cordón-Franco, Miguel A. Gutiérrez-Naranjo, Mario J. Pérez-Jiménez, and
Fernando Sancho-Caparrini. A Prolog simulator for deterministic P systems with
active membranes. New Generation Computing, 22(4): 349–363, 2004.

7. Daniel Dı́az-Pernil, Francisco Peña-Cantillana, Artiom Alhazov, Rudolf Freund, and
Miguel A. Gutiérrez-Naranjo. Antimatter as a frontier of tractability in membrane
computing. Fundamenta Informaticae, 134: 83–96, 2014.

8. Michael R. Garey and David S. Johnson. Computers and Intractability, A Guide to
the Theory of NP-Completeness. W.H. Freeman and Company, New York, 1979.

9. Zsolt Gazdag and Gábor Kolonits. A new approach for solving SAT by P sys-
tems with active membranes. In Erzsébet Csuhaj-Varjú, Marian Gheorghe, Grzegorz
Rozenberg, Arto Salomaa, and György Vaszil, editors, International Conference on
Membrane Computing, volume 7762 of Lecture Notes in Computer Science, pages
195–207, Springer, 2012.

130 D. Dı́az-Pernil et al.

10. Miguel A. Gutiérrez-Naranjo, Mario J. Pérez-Jiménez, Agustin Riscos-Núñez, and
Francisco José Romero-Campero. On the power of dissolution in P systems with
active membranes. In Rudolf Freund, Gheorghe Păun, Grzegorz Rozenberg, and
Arto Salomaa, editors, Workshop on Membrane Computing, volume 3850 of Lecture
Notes in Computer Science, pages 224–240, Springer, 2005.

11. Miguel A. Gutiérrez-Naranjo, Mario J. Pérez-Jiménez, and Francisco José Romero-
Campero. A uniform solution to SAT using membrane creation. Theoretical Com-
puter Science, 371(1-2): 54–61, 2007.

12. Tseren-Onolt Ishdorj and Alberto Leporati. Uniform solutions to SAT and 3-SAT
by spiking neural P systems with pre-computed resources. Natural Computing, 7(4):
519–534, 2008.

13. Alberto Leporati, Luca Manzoni, Giancarlo Mauri, Antonio E. Porreca, Claudio Zan-
dron. Simulating elementary active membranes - with an application to the P conjec-
ture. In Marian Gheorghe, Grzegorz Rozenberg, Arto Salomaa, Petr Sośık, Claudio
Zandron, editors, Conference on Membrane Computing, volume 8961 of Lecture Notes
in Computer Science, pages 284–299, Springer, 2014.

14. Alberto Leporati, Giancarlo Mauri, Claudio Zandron, Gheorghe Păun, and Mario J.
Pérez-Jiménez. Uniform solutions to SAT and subset sum by spiking neural P sys-
tems. Natural Computing, 8(4): 681–702, 2009.

15. Venkata Padmavati Metta, Kamala Krithivasan, and Deepak Garg. Computability
of spiking neural P systems with anti-spikes. New Mathematics and Natural Com-
putation (NMNC), 08(03): 283–295, 2012.

16. Adam Obtulowicz. Deterministic P-systems for solving SAT-problem. Romanian
Journal of Information Science and Technology, 4(1-2): 195–201, 2001.

17. Linqiang Pan and Artiom Alhazov. Solving HPP and SAT by P systems with active
membranes and separation rules. Acta Informatica, 43(2): 131–145, 2006.

18. Linqiang Pan and Gheorghe Păun. Spiking neural P systems with anti-spikes. Inter-
national Journal of Computers, Communications & Control, IV(3): 273–282, Septem-
ber 2009.

19. Mario J. Pérez-Jiménez. An approach to computational complexity in membrane
computing. In Giancarlo Mauri, Gheorghe Păun, Mario J. Pérez-Jiménez, Grzegorz
Rozenberg, and Arto Salomaa, editors, Workshop on Membrane Computing, volume
3365 of Lecture Notes in Computer Science, pages 85–109, Springer, 2004.

20. Mario J. Pérez-Jiménez, Agustin Riscos-Núñez, Álvaro Romero-Jiménez, and Damien
Woods. Complexity - membrane division, membrane creation. In Gheorghe Păun,
Grzegorz Rozenberg, and Arto Salomaa, editors, The Oxford Handbook of Membrane
Computing, pages 302 – 336. Oxford University Press, Oxford, England, 2010.

21. Mario J. Pérez-Jiménez, Álvaro Romero-Jiménez, and Fernando Sancho-Caparrini.
Complexity classes in models of cellular computing with membranes. Natural Com-
puting, 2(3): 265–285, 2003.

22. Tao Song, Yun Jiang, Xiaolong Shi, and Xiangxiang Zeng. Small universal spik-
ing neural P systems with anti-spikes. Journal of Computational and Theoretical
Nanoscience, 10(4): 999–1006, 2013.

23. Gangjun Tan, Tao Song, Zhihua Chen, and Xiangxiang Zeng. Spiking neural P
systems with anti-spikes and without annihilating priority working in a ’flip-flop’
way. International Journal of Computing Science and Mathematics, 4(2): 152–162,
July 2013.

On The Semantics of Annihilation Rules in
Membrane Computing

Daniel Dı́az-Pernil1, Rudolf Freund2,
Miguel A. Gutiérrez-Naranjo3, Alberto Leporati4

1Research Group on Computational Topology and Applied Mathematics
Department of Applied Mathematics - University of Sevilla, Spain
sbdani@us.es

2Faculty of Informatics
Vienna University of Technology, Austria
rudi@emcc.at

3Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla, Spain
magutier@us.es

4Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca, Italy
alberto.leporati@unimib.it

Summary. It is well known that polarizationless recognizer P systems with active mem-
branes, without dissolution, with division of elementary and non-elementary membranes,
with antimatter and matter/antimatter annihilation rules can solve all problems in NP
when the annihilation rules have (weak) priority over all the other rules. Until now, it was
an open problem whether these systems can still solve all NP problems if the priority of
the matter/antimatter annihilation rules is removed.

In this paper we provide a negative answer to this question: we prove that the class of
problems solvable by this model of P systems without priority of the matter/antimatter
annihilation rules is exactly P. To the best of our knowledge, this is the first paper in the
literature of P systems where the semantics of applying the rules constitutes a frontier
of tractability.

1 Introduction

The concept of antimatter was first introduced in the framework of membrane
computing as a control tool for the flow of spikes in spiking neural P systems
[6, 5, 10, 11]). In this context, when one spike and one anti-spike appear in the
same neuron, the annihilation occurs and both, spike and anti-spike, disappear.
The concept of antimatter and matter/antimatter annihilation rules later was

132 Dı́az-Pernil et al.

adapted to other contexts in membrane computing, and currently it is an active
research area [1, 2, 3].

In [3], the authors show that antimatter and matter/antimatter annihilation
rules are a frontier of tractability. The starting point is a well-known result in the
complexity theory of membrane computing: the decision problems which can be
solved by polarizationless recognizer P systems with active membranes, without
dissolution and with division of elementary and non-elementary membranes (de-
noted by AM0

−d,+ne) are exactly those in the complexity class P (see [4], Th. 2).

The main result in [3] is that systems from AM0
−d,+ne endowed with antimat-

ter and matter/antimatter annihilation rules (denoted by AM0
−d,+ne,+ant) can

solve all problems in NP and, hence, annihilation rules constitute a frontier of
tractability.

In this paper, we revisit the question of determining the computational
complexity of the problems which can be solved by P systems with the mat-
ter/antimatter annihilation rules not having priority over all the other rules. As
previously pointed out (see [3, 9]), the solution presented in [3] to an NP-complete
problem, namely Subset Sum, uses this weak priority of the annihilation rules, and
until now it has been an open problem if the model AM0

−d,+ne,+ant is still capable
to solve NP-complete problems without this priority. In this paper we show that
the answer to this open question is negative. We prove that the complexity class
of decision problems solvable by AM0

−d,+ne,+ant systems is exactly equal to P if
the priority relation is removed from the semantics for the annihilation rules.

In this way, we propose a new kind of frontier of tractability. Up to now, these
frontiers were based on syntactic ingredients of the P systems, that is, the type of
rules and not the way in which such rules are applied. In this paper, the frontier
of tractability is based on the semantics of the P system, i.e., on the way the rules
are applied.

The paper is organised as follows. First, we recall some concepts about recog-
nizer P systems, antimatter, matter/antimatter annihilation rules and the model
AM0

−d,+ne,+ant. Next, we prove our main result of computational complexity. The
paper ends with some final considerations.

2 Recognizer P Systems

First of all, we recall the main notions related to recognizer P systems and com-
putational complexity in membrane computing. For a detailed description see, for
example, [7, 8].

The main syntactic ingredients of a cell–like P system are the membrane struc-
ture, the multisets, and the evolution rules. A membrane structure consists of sev-
eral membranes arranged hierarchically inside a main membrane, called the skin.
Each membrane identifies a region inside the system. When a membrane has no
membrane inside, it is called elementary. The objects are instances of symbols from
a finite alphabet, and multisets of objects are placed in the regions determined by

On The Semantics of Annihilation Rules in Membrane Computing 133

the membrane structure. The objects can evolve according to given evolution rules,
associated with the regions.

The semantics of cell–like P systems is defined through a non-deterministic and
synchronous model. A configuration of a cell-like P system consists of a membrane
structure and a sequence of multisets of objects, each associated with one region
of the structure. At the beginning of the computation, the system is in the initial
configuration, which possibly comprises an input multiset. In each time step the
system transforms its current configuration into another configuration by applying
the evolution rules to the objects placed inside the regions of the system, in a
non-deterministic and maximally parallel manner (the precise semantics will be
described later). In this way, we get transitions from one configuration of the
system to the next one. A computation of the system is a (finite or infinite) sequence
of configurations such that each configuration –except the initial one– is obtained
from the previous one by a transition. A computation which reaches a configuration
where no more rules can be applied to the existing objects and membranes, is called
a halting computation. The result of a halting computation is usually defined by
the multiset associated with a specific output membrane (or the environment) in
the final configuration.

In this paper we deal with recognizer P systems, where all computations halt
and exactly one of the distinguished objects yes and no is sent to the environ-
ment, and only in the last step of any computation, in order to signal acceptance
or rejection, respectively. All recognizer P systems considered in this paper are
confluent, meaning that if computations start from the same initial configuration
then either all are accepting or all are rejecting.

Recognizer P systems can thus be used to recognize formal languages (equiva-
lently, solve decision problems). Let us recall that a decision problem X is a pair
(IX , θX) where IX is a language over a finite alphabet and θX is a predicate (a
total Boolean function) over IX . The elements of IX are called instances of the
problem, and those for which predicate θX is true (respectively false) are called
positive (respectively negative) instances. A polynomial encoding of a decision prob-
lem X is a pair (cod, s) of functions over IX , computable in polynomial time by a
deterministic Turing machine, such that for each instance u ∈ IX , s(u) is a natural
number representing the size of the instance and cod(u) is a multiset representing
an encoding of the instance. Polynomial encodings are stable under polynomial
time reductions.

2.1 The Class AM0
−d,+ne

A P system with active membranes without polarizations, without dissolution and
with division of elementary and non-elementary membranes is a P system with Γ
as the alphabet of symbols, with H as the finite set of labels for membranes, and
where the rules are of the following forms:

(a0) [a→ u]h for h ∈ H, a ∈ Γ , u ∈ Γ ∗. This is an object evolution rule, associated
with the membrane labelled with h. When the rule is applied, an object a ∈ Γ

134 Dı́az-Pernil et al.

inside that membrane is rewritten into the multiset u ∈ Γ ∗. (Note that here
and in the rest of the paper, we write u ∈ Γ ∗ to indicate both the multiset u
of objects from the alphabet Γ and one of the possible strings which represent
it.)

(b0) a []h → [b]h for h ∈ H, a, b ∈ Γ (send-in rules). An object from the region
immediately outside a membrane labelled with h is sent into this membrane,
possibly transformed into another object.

(c0) [a]h → b []h for h ∈ H, a, b ∈ Γ (send-out rules). An object is sent out from
the membrane labelled with h to the region immediately outside, possibly
transformed into another object.

(d0) [a]h → [b]h [c]h for h ∈ H, a, b, c ∈ Γ (division rules for elementary mem-
branes). An elementary membrane can be divided into two membranes with
the same label; object a in the original membrane is rewritten to b (respectively
to c) in the first (respectively second) generated membrane.

(e0) [[]h1
[]h2

]h0
→ [[]h1

]h0
[[]h2

]h0
, for h0, h1, h2 ∈ H (division rules for non-

elementary membranes). If the membrane with label h0 contains other mem-
branes than those with labels h1, h2, then such membranes and their contents
are duplicated and placed in both new copies of the membrane h0; all mem-
branes and objects placed inside membranes h1, h2, as well as the objects from
membrane h0 placed outside membranes h1 and h2, are reproduced in the new
copies of membrane h0.

These rules are applied according to the following principles:

• All the rules are applied in parallel and in a maximal manner. In one step,
one object of a membrane can be used by at most one rule (chosen in a non–
deterministic way), and each membrane can be the subject of at most one rule
of types (b0), (c0), (d0), and (e0).

• If at the same time a membrane labelled with h is divided by a rule of type
(d0) or (e0) and there are objects in this membrane which evolve by means of
rules of type (a0), then we suppose that first the evolution rules of type (a0)
are used, and then the division is produced. Of course, this process takes only
one step.

• The rules associated with membranes labelled with h are used for all copies of
this membrane with label h.

The class of all polarizationless recognizer P systems with active membranes,
without dissolution and with division of elementary and non-elementary mem-
branes is denoted by AM0

−d,+ne.

2.2 Polynomial Complexity Classes in Recognizer P Systems

Let R be a class of recognizer P systems. A decision problem X = (IX , θX) is
solvable in a semi-uniform way and in polynomial time by a family of recognizer P
systems Π = {Π(w)}w∈IX of typeR, denoted byX ∈ PMC?

R, if Π is polynomially
uniform by Turing machines, that is, there exists a deterministic Turing machine

On The Semantics of Annihilation Rules in Membrane Computing 135

working in polynomial time which constructs the system Π(w) from the instance
w ∈ IX , and Π is polynomially bounded, that is, there exists a polynomial function
p(n) such that for each w ∈ IX , all computations of Π(w) halt in at most p(|w|)
steps. It is said that Π is sound with regard to X if for each instance of the problem
w ∈ IX , if there exists an accepting computation of Π(w) then θX(w) is true, and
Π is complete with regard to X if for each instance of the problem w ∈ IX , if
θX(w) is true then every computation of Π(w) is an accepting computation.

Let R be a class of recognizer P systems with a distinguished input membrane,
and let Π = {Π(n)}n∈N be a family of recognizer P systems of type R. A decision
problem X = (IX , θX) is solvable in a uniform way and polynomial time by Π,
denoted by X ∈ PMCR, if Π is polynomially uniform by Turing machines, i.e.,
there exists a polynomial encoding1 (cod, s) such that the family Π is polynomially
bounded with regard to (X, cod, s); that is, there exists a polynomial function p(n)
such that for each u ∈ IX , every computation of Π(s(u)) with input cod(u) –
denoted by Π(s(u)) + cod(u), for short– is halting and, moreover, it performs
at most p(|u|) steps, and the family Π is sound and complete with regard to
(X, cod, s). It is easy to see that the classes PMC?

R and PMCR are closed under
polynomial-time reduction and complement. Moreover, since uniformity can be
considered to be a special case of semi-uniformity, the inclusion PMCR ⊆ PMC?

R
holds.

According to these formal definitions, in [4] it is proved that the complexity
class of decision problems solved by uniform or semi-uniform families of polar-
izationless recognizer P systems with active membranes, without dissolution and
with division of elementary and non-elementary membranes, is exactly P. With
the standard notation, P = PMCAM0

−d,+ne
= PMC?

AM0
−d,+ne

.

2.3 Antimatter

Antimatter and matter/antimatter annihilation rules have been introduced in the
framework of cell-like P systems in [2]. Given two objects a and b from the alphabet
Γ in a membrane labeled by h, an annihilation rule of a and b is written as
[ab → λ]h. The meaning of the rule follows the physical idea of annihilation:
If a and b occur simultaneously in the same region with label h, then both are
consumed (disappear) and nothing is produced (denoted by the empty string λ).
Let us remark that both objects a and b are ordinary elements from Γ and they can
trigger any other rule of type (a0) to (d0) described above, not only annihilation
rules. Nonetheless, in order to improve the readability, if b annihilates the object
a then b will be called the antiparticle of a and we will write a instead of b.

1 See [7, 8] for the details. Informally, given an instance u ∈ IX , s(u) is a natural number
which identifies a P system Π(s(u)) in the family. When fed with the multiset cod(u)
as input, this P system computes the value of predicate θX(u). In uniform families of
P systems, the structure and definition of Π(s(u)) is the same for all instances u ∈ IX
having the same size s(u).

136 Dı́az-Pernil et al.

With respect to the semantics, let us recall that the rule [aa → λ]h, provided
that annihilation rules have priority over all other rules, must be applied as many
times as possible in every membrane labeled by h, according to the maximal paral-
lelism, i.e., if m copies of a and n copies of a occur simultaneously in a membrane
of label h, with m ≥ n (respectively m ≤ n), then the rule is applied n times
(respectively m times), n (respectively m) copies of a and a are consumed and
m− n copies of a (respectively n−m copies of a) are not affected by this rule.

The key point in the use of the semantics of the annihilation rules in this paper
is related to the priority of this type of rules with respect to the other types. In [3],
according to the non-determinism, if an object a can trigger more than one rule of
types (a0) to (d0), then one rule among the applicable ones is non-deterministically
chosen. Nonetheless, if a and a occur simultaneously in the same membrane h and
the annihilation rule [aa → λ]h is defined, then it is applied, regardless of other
options. In this sense, any annihilation rule had priority over the other types of
rules.

In this paper, we consider the case that the annihilation does not have priority
over the other rules. If an object a can trigger more than one rule, then one rule
among the applicable ones is non-deterministically chosen regardless of its type
(obviously, for annihilation rules object a has also to occur in the same region).

Formally, a polarizationless P system with active membranes, without dis-
solution, with division of elementary and non-elementary membranes and with
annihilation rules is a construct of the form Π = (Γ,H, µ,w1, . . . , wm, R), where:

1. m ≥ 1 is the initial degree of the system;
2. Γ is the alphabet of objects;
3. H is a finite set of labels for membranes;
4. µ is a membrane structure consisting of m membranes labelled in a one-to-one

way with elements of H;
5. w1, . . . , wm are strings over Γ , describing the multisets of objects placed in the
m regions of µ;

6. R is a finite set of rules of the types (a0) to (e0) described in Section 2.1, and
the following type of rules:

(f0) [aa → λ]h for h ∈ H, a, a ∈ Γ (annihilation rules). The pair of objects
a, a ∈ Γ occurring simultaneously inside membrane h disappears.

As stated above, in this paper rules of type (f0) have no priority over the other
types of rules. If at the same time a membrane labelled with h is divided by a
rule of type (d0) or (e0) and there are objects in this membrane which are chosen
to be annihilated by means of rules of type (f0), then we assume that first the
annihilation is performed and then the division is produced. Of course, this process
takes only one step.

By following the standard notation, in [3] the authors denote the class of po-
larizationless recognizer P systems with active membranes without dissolution,
with division of elementary and non-elementary membranes, and with antimatter
and matter/antimatter annihilation rules by AM0

−d,+ne,+ant. They do not include

On The Semantics of Annihilation Rules in Membrane Computing 137

any symbol in the name to specify the priority, because they assume it as being
part of the model definition. In this paper, we will consider a class of P systems
which uses the same model of P systems AM0

−d,+ne,+ant, but without priority for
the application of the annihilation rules; in order to stress this difference, we will
denote this class of P systems by AM0

−d,+ne,+ant NoPri.

3 Removing Priority for Annihilation Rules

The main contribution of this paper is the proof of the following claim.

Theorem 1. PMCAM0
−d,+ne,+ant NoPri

= P

Proof. It is well known (e.g., see [4]) that PMCAM0
−d,+ne

= PMC?
AM0

−d,+ne
= P.

On the other hand, the following inclusion obviously holds:

PMCAM0
−d,+ne

⊆ PMCAM0
−d,+ne,+ant NoPri

,

therefore P ⊆ PMCAM0
−d,+ne,+ant NoPri

. Thus it only remains to prove that also

the converse inclusion holds:

PMCAM0
−d,+ne,+ant NoPri

⊆ P . (1)

Since PMC?
AM0

−d,+ne
= P, in order to prove (1) it suffices to prove that

PMCAM0
−d,+ne,+ant NoPri

⊆ PMC?
AM0

−d,+ne
.

Hence, let X ∈ PMCAM0
−d,+ne,+ant NoPri

be a decision problem. By definition,

there exist a polynomial encoding (cod, s) and a family of P systems {Π(i)}i∈N in
AM0

−d,+ne,+ant NoPri such that for each instance u of the problem X:

• all computations of Π(s(u)) + cod(u) halt;
• in all computations, the system sends out either one copy of the object yes

or one copy of the object no (but not both), and only in the last step of
computation.

Let us first provide an informal idea of the proof. Given an instance u ∈ IX ,
we know that all computations of Π(s(u)) + cod(u) halt, and that they all answer
yes or all answer no. Let C = {C0, . . . , Cn} be one of these halting computations,
and let us assume that the answer is yes (the other case is analogous). Then there
exists an object a1 and a rule r1 ≡ [a1]skin → yes []skin which has been applied
in the last step of the computation. There are two possibilities: either object a1
is in the skin membrane since the beginning of the computation, or there exists a
rule r2 which must have produced it inside or moved it into the skin membrane.
Rule r2 is triggered by the occurrence of an object a2 in a membrane with label
h2. Obviously, r2 cannot be an annihilation rule, since no object is produced by
such rules, then rule r2 must belong to types (a0) to (d0). Going back with the

138 Dı́az-Pernil et al.

reasoning, either a2 appears in the membrane with label h2 since the beginning of
the computation, or it is produced or moved there by the application of a rule r3,
and so on.

Finally we have a chain

(yes, env)
r1←− (a1, skin)

r2←− (a2, h2)
r3←− · · · rk←− (ak, hk)

where k ≤ n and ak appears in a membrane with label hk in the initial configura-
tion (possibly as part of the input multiset). The key idea here is two-folded. On
the one hand, annihilation rules do not produce any object; the objects that trigger
an annihilation rule disappear and nothing is produced. On the other hand, for any
halting configuration there must exist a finite sequence of rules (rk, rk−1, . . . , r2, r1)
where rk is triggered by an object from the initial configuration, r1 produces yes
and each ri produces an object that triggers ri−1. Therefore, none of rules r1, . . . , rk
is an annihilation rule.

To formally prove the result we have to check that the amount of resources for
finding the sequence of rules is polynomially bounded. With this aim, we will start
by considering the dependency graph associated with Π(s(u)) , but considering
only evolution, communication and division rules2 (i.e., only rules which can pro-
duce new occurrences of objects). Namely, if R is the set of rules associated with
Π(s(u)), we will consider the corresponding directed graph G = (V,E) defined as
follows, where the function f : H → H returns the label of the parent membrane:

V = V L ∪ V R,

V L = {(a, h) ∈ Γ ×H : ∃u ∈ Γ ∗ ([a→ u]h ∈ R) ∨
∃b ∈ Γ ([a]h → []hb ∈ R) ∨
∃b ∈ Γ ∃h′ ∈ H (h = f(h′) ∧ a[]h′ → [b]h′ ∈ R) ∨
∃b, c ∈ Γ ([a]h → [b]h[c]h ∈ R)},

V R = {(b, h) ∈ Γ ×H : ∃a ∈ Γ ∃u ∈ Γ ∗ ([a→ u]h ∈ R ∧ b ∈ u) ∨
∃a ∈ Γ ∃h′ ∈ H (h = f(h′) ∧ [a]h′ → []h′b ∈ R) ∨
∃a ∈ Γ (a[]h → [b]h ∈ R) ∨
∃a, c ∈ Γ ([a]h → [b]h[c]h ∈ R)},

E = {((a, h), (b, h′)) : ∃u ∈ Γ ∗ ([a→ u]h ∈ R ∧ b ∈ u ∧ h = h′) ∨
([a]h → []hb ∈ R ∧ h′ = f(h)) ∨
(a[]h′ → [b]h′ ∈ R ∧ h = f(h′)) ∨
∃c ∈ Γ ([a]h → [b]h[c]h ∈ R ∧ h = h′)}.

Such a dependency graph can be constructed by a Turing machine working in
polynomial time with respect to the instance size. Finally, let us consider the set

2 See [4] for the details about polynomial resources.

On The Semantics of Annihilation Rules in Membrane Computing 139

∆Π = {(a, h) ∈ Γ ×H : there exists a path (within the dependency graph)
from (a, h) to (yes, env)} .

It has also been proved that there exists a Turing machine that constructs ∆Π

in polynomial time; the proof uses the Reachability Problem in order to prove the
polynomially bounded construction.

From this construction we directly obtain that the set of rules used in the chain

(yes, env)
r1←− (a1, skin)

r2←− (a2, h2)
r3←− · · · rk←− (ak, hk)

described above can be found in polynomial time.
Finally, for the instance u ∈ IX , let us consider the P system Π(u′) with only

one membrane with label s and only one object (ak, hk) in the initial configuration.
The set of rules is

• [(ai, hi)→ (ai−1, hi−1)]s for each i ∈ {3, . . . , k − 1}
• [(a2, h2)→ (a1, skin)]s
• [(a1, skin)]s → yes []s

The system Π(u′) can be built in polynomial time by a deterministic Turing
machine. A direct inspection of the rules shows that Π(u′) ∈ AM0

−d,+ne. The
behavior of the system is deterministic, and it computes the correct answer for the
instance u ∈ IX , sending out the object yes to the environment in the last step of
computation.

We finally observe that a similar construction can be carried out for the answer
no. Hence, we conclude that X ∈ PMC?

AM0
−d,+ne

= P. ut

Remark 1. Let us finally explain the idea how to even get a uniform family of
recognizer P systems from the family constructed in the preceding proof by making
some preprocessing: For any input of length n, we include all possible input symbols
in the dependency graph. If there is a path from some symbol to yes and from
another symbol to no, then by the definition of confluence, an input containing
both of these symbols simultaneously cannot be a valid input. So, once we get
an input of length n, we first check if it has symbols deriving yes and symbols
deriving no. This certainly is possible within polynomial time.

4 Conclusions

We have proved that by removing priority in polarizationless recognizer P systems
with antimatter and annihilation rules, without dissolution, and with division of
elementary and non-elementary membranes, we obtain a new characterization of
the standard complexity class P. Since it was previously known that the same
model of P systems can solve the NP-complete problem Subset Sum when the
priority of annihilation rules is used [3], we have shown that this priority plays an
important role in the computational power of these P systems.

140 Dı́az-Pernil et al.

Indeed, the most interesting aspect of our result is the fact that if the rules
of these P systems are applied in different ways, a different computational power
is obtained. We have thus proved that the semantics of a model can be a useful
tool for studying problems of tractability. To the best of our knowledge, this is the
first time where it is proved that two models of P systems syntactically identical
correspond to two (presumably) different complexity classes simply because they
use different semantics.

This opens a new research area in the study of tractability in membrane com-
puting. Not only new ingredients or new models must be studied in order to find
new frontiers: classical results can also be revisited in order to explore the conse-
quences of considering alternative semantics.

Acknowledgements

Miguel A. Gutiérrez-Naranjo acknowledges the support of the project TIN2012-
37434 of the Ministerio de Economı́a y Competitividad of Spain. The authors
are very grateful to Artiom Alhazov for carefully reading the paper and for also
pointing out Remark 1.

References

1. Alhazov, A., Aman, B., Freund, R.: P systems with anti-matter. In: Gheorghe, M.,
Rozenberg, G., Salomaa, A., Sośık, P., Zandron, C. (eds.) Membrane Computing -
15th International Conference, CMC 2014, Prague, Czech Republic, August 20-22,
2014, Revised Selected Papers. Lecture Notes in Computer Science, vol. 8961, pp.
66–85. Springer (2014)

2. Alhazov, A., Aman, B., Freund, R., Păun, Gh.: Matter and anti-matter in membrane
systems. In: DCFS 2014. Lecture Notes in Computer Science, vol. 8614, pp. 65–76.
Springer (2014)

3. Dı́az-Pernil, D., Peña-Cantillana, F., Alhazov, A., Freund, R., Gutiérrez-Naranjo,
M.A.: Antimatter as a frontier of tractability in membrane computing. Fundamenta
Informaticae 134, 83–96 (2014)

4. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Campero,
F.J.: On the power of dissolution in P systems with active membranes. In: Freund,
R., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) Workshop on Membrane Com-
puting. Lecture Notes in Computer Science, vol. 3850, pp. 224–240. Springer, Berlin
Heidelberg (2005)

5. Metta, V.P., Krithivasan, K., Garg, D.: Computability of spiking neural P systems
with anti-spikes. New Mathematics and Natural Computation (NMNC) 08(03), 283–
295 (2012)

6. Pan, L., Păun, Gh.: Spiking neural P systems with anti-spikes. International Journal
of Computers, Communications & Control IV(3), 273–282 (2009)

7. Pérez-Jiménez, M.J.: An approach to computational complexity in membrane com-
puting. In: Mauri, G., Păun, Gh., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A.

On The Semantics of Annihilation Rules in Membrane Computing 141

(eds.) Workshop on Membrane Computing. Lecture Notes in Computer Science, vol.
3365, pp. 85–109. Springer (2004)

8. Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Jiménez, A., Woods, D.: Complexity
- membrane division, membrane creation. In: Păun, Gh., Rozenberg, G., Salomaa,
A. (eds.) The Oxford Handbook of Membrane Computing, pp. 302 – 336. Oxford
University Press, Oxford, England (2010)

9. Păun, Gh.: Some quick research topics., In these proceedings.
10. Song, T., Jiang, Y., Shi, X., Zeng, X.: Small universal spiking neural P systems with

anti-spikes. Journal of Computational and Theoretical Nanoscience 10(4), 999–1006
(2013)

11. Tan, G., Song, T., Chen, Z., Zeng, X.: Spiking neural P systems with anti-spikes
and without annihilating priority working in a ’flip-flop’ way. International Journal
of Computing Science and Mathematics 4(2), 152–162 (2013)

How to Go Beyond Turing with P Automata:
Time Travels, Regular Observer ω-Languages,
and Partial Adult Halting

Rudolf Freund1, Sergiu Ivanov2, and Ludwig Staiger3

1 Technische Universität Wien, Austria
Email: rudi@emcc.at

2 Université Paris Est, France
Email: sergiu.ivanov@u-pec.fr

3 Martin-Luther-Universität Halle-Wittenberg, Germany
Email: staiger@informatik.uni-halle.de

Summary. In this paper we investigate several variants of P automata having infinite
runs on finite inputs. By imposing specific conditions on the infinite evolution of the
systems, it is easy to find ways for going beyond Turing if we are watching the behavior
of the systems on infinite runs. As specific variants we introduce a new halting variant for
P automata which we call partial adult halting with the meaning that a specific predefined
part of the P automaton does not change any more from some moment on during the
infinite run. In a more general way, we can assign ω-languages as observer languages
to the infinite runs of a P automaton. Specific variants of regular ω-languages then, for
example, characterize the red-green P automata.

1 Introduction

Various possibilities how one can “go beyond Turing” are discussed in [11], for
example, the definitions and results for red-green Turing machines can be found
there. In [2] the notion of red-green automata for register machines with input
strings given on an input tape (often also called counter automata) was introduced
and the concept of red-green P automata for several specific models of membrane
systems was explained. Via red-green counter automata, the results for acceptance
and recognizability of finite strings by red-green Turing machines were carried over
to red-green P automata. The basic idea of red-green automata is to distinguish
between two different sets of states (red and green states) and to consider infinite
runs of the automaton on finite input objects (strings, multisets); allowed to change
between red and green states more than once, red-green automata can recognize
more than the recursively enumerable sets (of strings, multisets), i.e., in that way
we can “go beyond Turing”. In the area of P systems, first attempts to do that can

144 R. Freund, S. Ivanov, L. Staiger

be found in [4] and [18]. Computations with infinite words by P automata were
investigated in [9].

In this paper, we also consider infinite runs of P automata, but in a more
general way take into account the existence/non-existence of a recursive feature of
the current sequence of configurations. In that way, we obtain infinite sequences
over {0, 1} which we call “observer languages” where 1 indicates that the specific
feature is fulfilled by the current configuration and 0 indicates that this specific
feature is not fulfilled. The recognizing runs of red-green automata then correspond
with ω-regular languages over {0, 1} of a specific form ending with 1ω as observer
languages. A very special observer language is {0, 1}∗ {1}ω which corresponds with
a very special acceptance condition for P automata which we call “partial adult
halting”. This special acceptance variant for P automata with infinite runs on
finite multisets is motivated by an observation we make for the evolution of time
lines described by P systems – at some moment, a specific part of the evolving
time lines, for example, the part describing time 0, shall not change any more.

2 Definitions

We assume the reader to be familiar with the underlying notions and concepts
from formal language theory, e.g., see [17], as well as from the area of P systems,
e.g., see [13, 14, 15]; we also refer the reader to [25] for actual news.

2.1 Prerequisites

The set of integers is denoted by Z, and the set of non-negative integers by N. Given
an alphabet V , a finite non-empty set of abstract symbols, the free monoid gener-
ated by V under the operation of concatenation is denoted by V ∗. The elements of
V ∗ are called strings, the empty string is denoted by λ, and V ∗ \{λ} is denoted by
V +. For an arbitrary alphabet V = {a1, . . . , an}, the number of occurrences of a
symbol ai in a string x is denoted by |x|ai , while the length of a string x is denoted
by |x| =

∑
ai∈V |x|ai . A (finite) multiset over a (finite) alphabet V = {a1, . . . , an}

is a mapping f : V → N and can be represented by
〈
a
f(a1)
1 , . . . , a

f(an)
n

〉
or by

any string x for which (|x|a1
, . . . , |x|an

) = (f(a1), . . . , f(an)). The families of reg-
ular and recursively enumerable string languages are denoted by REG and RE,
respectively.

2.2 Register Machines

A register machine is a tuple M = (m,B, l0, lh, P), where m is the number of
registers, B is a set of labels, l0 ∈ B is the initial label, lh ∈ B is the final
label, and P is the set of instructions bijectively labeled by elements of B. The
instructions of M can be of the following forms:

How to Go Beyond Turing with P Automata 145

• l1 : (ADD (r) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
Increases the value of register r by one, followed by a non-deterministic jump
to instruction l2 or l3. This instruction is usually called increment.

• l1 : (SUB (r) , l2, l3), with l1 ∈ B \ {lh}, l2, l3 ∈ B, 1 ≤ j ≤ m.
If the value of register r is zero then jump to instruction l3; otherwise, the
value of register r is decreased by one, followed by a jump to instruction l2.
The two cases of this instruction are usually called zero-test and decrement,
respectively.

• lh : HALT . Stops the execution of the register machine.

A configuration of a register machine is described by the contents (i.e., by the
number stored in the register) of each register and by the current label, which
indicates the next instruction to be executed. Computations start by executing
the instruction l0 of P , and terminate with reaching the HALT-instruction lh.

In order to deal with strings, this basic model of register machines can be
extended by instructions for reading from an input tape and writing to an output
tape containing strings over an input alphabet Tin and an output alphabet Tout,
respectively:

• l1 : (read (a) , l2), with l1 ∈ B \ {lh}, l2 ∈ B, a ∈ Tin.
Reads the symbol a from the input tape and jumps to instruction l2.

• l1 : (write (a) , l2), with l1 ∈ B \ {lh}, l2 ∈ B, a ∈ Tout.
Writes the symbol a on the output tape and jumps to instruction l2.

Such a register machine working on strings often is also called a counter au-
tomaton, and we write M = (m,B, l0, lh, P, Tin, Tout). If no output is written, we
omit Tout.

As is well known (e.g., see [12]), for any recursively enumerable set of natural
numbers there exists a register machine with (at most) three registers accepting
the numbers in this set. Counter automata, i.e., register machines with an input
tape, with two registers can simulate the computations of Turing machines and
thus characterize RE. All these results are obtained with deterministic register
machines, where the ADD-instructions are of the form l1 : (ADD (r) , l2), with
l1 ∈ B \ {lh}, l2 ∈ B, 1 ≤ j ≤ m.

2.3 The Arithmetical Hierarchy

The Arithmetical Hierarchy (e.g., see [3]) is usually developed with the universal
(∀) and existential (∃) quantifiers restricted to the integers. Levels in the Arith-
metical Hierarchy are labeled as Σn if they can be defined by expressions beginning
with a sequence of n alternating quantifiers starting with ∃; levels are labeled as
Πn if they can be defined by such expressions of n alternating quantifiers that
start with ∀. Σ0 and Π0 are defined as having no quantifiers and are equivalent.
Σ1 and Π1 only have the single quantifier ∃ and ∀, respectively. We only need to
consider alternating pairs of the quantifiers ∀ and ∃ because two quantifiers of the
same type occurring together are equivalent to a single quantifier.

146 R. Freund, S. Ivanov, L. Staiger

3 Time Travel P Systems

In the most general case, we can think of P systems as devices manipulating mul-
tisets in a hierarchical membrane structure. The membranes can have labels and
polarizations both eventually changing with the application of rules. Membranes
may be divided, generated or deleted. Together with the division or the generation
of a new membrane the whole contents of another membrane may be copied. For
a general framework of P systems we refer to [7].

Usually, configurations in P systems (and other systems like Turing machines)
evolve step by step through time, see Figure 1.

0 1 2 30 1 2 3

Time configurations

Time axis

Fig. 1. Standard time line evolution.

Without time travel option, we need only consider the evolution of the system
on one time axis from time n to time n+ 1. The situation becomes more difficult
if we follow the idea of parallel worlds (time axes), which means that we have
another time dimension, described by the vertical evolution in Figure 2, i.e., the
time configurations at time n may be altered depending on future evolutions.

−1 0 1 2

⇓

−1 0 1 2

⇓

Time configurations

Time axis

Evolution
of time axes

Fig. 2. Time lines evolution.

How to Go Beyond Turing with P Automata 147

an Y es
-1

an−1 Y es
-1

· · ·

a Y es
-1

⇓

⇓

⇓

Y es
0

⇓

Fig. 3. Sending back an answer from time n to time 0.

For example, we can consider membrane systems with polarizations assigned
to the membranes. The usual polarization of the whole time configuration in the
normal case is +1, indicating that the evolution of the membrane(s) goes from time
configuration n to time configuration n+ 1. Now assume we allow polarization −1
indicating that the corresponding membrane evolves from time configuration n to
time configuration n − 1. Having kept trace of the number of computation steps,
e.g., by the multiplicity of a specific object a, we are able to send back information
– like the answer yes to a question we have posed at time 0 which then is sent back
to time configuration 0, i.e., to the time we have posed the question. In that way,
on a specific time line we can have answers to questions in zero time, see Figure 3.

During its travel through the time back, the time capsule with polarization −1
can be assumed not to be affected by the other membranes in the intermediate
time configurations. Obviously, this restriction can be alleviated for even more
complex systems.

Putting a new skin membrane around all the current time configurations of one
time axis, we again obtain a conventional evolution model, yet now with a vertical
time evolution as depicted in Figure 4. The only assumption we have to do for
making this variant possible is that at the beginning only a finite number of time
configurations exists (in fact, we usually will start with the time configuration at
time 0).

3.1 Partial Adult Halting

Going back to the time travel model of Figure 2 the question that arises is what
kind of results we may obtain and how. For example, given a specific input in time
configuration 0, we may request that from some moment on this time configuration
becomes stable, i.e., it is not changed any more (by time capsules arriving there).

148 R. Freund, S. Ivanov, L. Staiger

0 :

⇓
1 :

⇓
2 :

⇓

Time levels

Fig. 4. Conventional Evolution Model.

So the specific feature an external observer would see is that the time configu-
ration at time 0 is not changing any more starting from some specific time line at
level tl0 on, i.e., for all time levels tl ≥ tl0 the time configuration at time 0 stays
stable.

With respect to the situation described in Figure 4 this means that one specific
part (one membrane and all its contents) does not change any more.

In that way we obtain a new variant of a halting condition in P systems which
we call partial adult halting :

adult halting :

means that the configuration does not change any more

partial :

we only look at some part of the configuration

3.2 Partial Adult Halting for Turing Machines

The idea of partial adult halting can also be applied to Turing machines:

z0 z1 z2 z3 · · ·Tape :

∃t ∀n ≥ t tape(1) does not change

On tape cell 1 we want to obtain an “answer” whether the given input word
is accepted – 1 – or not – 0. We first put 0 there, and if the computation ends
saying “accept” we go back to tape cell 1 and write 1 there. Hence, with looking
to infinity in that way we obtain a “decider” for recursively enumerable languages.

How to Go Beyond Turing with P Automata 149

Generation of Complements of Recursively Enumerable Languages

Another example based on a similar idea as described above shows how to
generate the complement of an arbitrary recursively enumerable language L.

In this case, we use the model of a generating Turing machine with output
tape, and a string is said to be generated by the Turing machine M if from some
moment of the computation the output tape is not changed anymore.

generate an arbitrary string w
on the output tape
and a copy of the string w
on the work tape of M ;

on the work tape
start simulating
Deterministic Acceptor
(DTM) M ′ for L;

only if M ′ accepts w,
go back and forever
change output tape

DTM M ′

Y es

No =̂
never change
output again

Fig. 5. Generation of the complements of a recursively enumerable language L.

4 Variants of P Automata

In this section, we shortly describe some variants of P automata.

150 R. Freund, S. Ivanov, L. Staiger

4.1 The Basic Model of P Automata with Antiport Rules

The basic model of P automata as introduced in [6] and in a similar way in [8]
is based on antiport rules, i.e., on rules of the form u/v, which means that the
multiset u goes out through the membrane and v comes in instead.

A P automaton (with antiport rules) is a construct

Π = (O, T, µ, w1, . . . , wm, R1, . . . , Rm) where

• O is the alphabet of objects;
• T ⊂ O is the alphabet of terminal objects;
• µ is the hierarchical membrane structure, with the membranes uniquely labeled

by the numbers from 1 to m;
• wi ∈ (O \ T)

∗
, 1 ≤ i ≤ m, is the initial multiset in membrane i;

• Ri, 1 ≤ i ≤ m, is a finite set of antiport rules assigned to membrane i.

Given a multiset of terminal symbols in the skin membrane 1, it is usually
accepted by Π via a halting computation.

Now consider the situation of partial adult halting for a P automaton

Π = (O, T, [1[2]2]1, q0, n,R1, R2)

which – with the input multiset in addition given in the skin membrane – simulates,
in a deterministic way, a register machine defining a recursively enumerable set L
of multisets (see [12]), by the rules in R1. If the computation stops in the final state
qh, i.e., the multiset is accepted, we add the rules qh/y and n/n in R1. R2 only
contains the rule n/y. In case the multiset is accepted, n in the second membrane
is replaced by y, while the rule n/n in R1 guarantees an infinite computation. In
case the input multiset is not accepted, the register machine already guarantees
an infinite computation by the simulating P automaton, too. Hence, as in the case
of the Turing machine with partial adult halting we get a “decider” for L, with
the result from some moment on to be found in membrane 2.

4.2 P Automata with Anti-Matter

In P automata with anti-matter, for each object a we may have its anti-matter
object a−. If an object a meets its anti-matter object a−, then these two objects
annihilate each other, which corresponds to the application of the cooperative
erasing rule aa− → λ. In the following, we shall only consider the variant where
these annihilation rules have weak priority over all other rules, which allows for a
deterministic simulation of deterministic register machines, see [1].

A P automaton with anti-matter is a construct

Π = (O, T, µ, w1, . . . , wm, R1, . . . , Rm) where

• O is the alphabet of objects;

How to Go Beyond Turing with P Automata 151

• T ⊂ O is the alphabet of terminal objects;
• µ is the hierarchical membrane structure, with the membranes uniquely labeled

by the numbers from 1 to m;
• wi ∈ (O \ T)

∗
, 1 ≤ i ≤ m, is the initial multiset in membrane i;

• Ri, 1 ≤ i ≤ m, is a finite set of

non-cooperative rules: are rules of the form u → v where u ∈ O and v ∈
(O × {here, in, out})∗;

matter/anti-matter annihilation rules: are cooperative rules of the form
aa− → λ, i.e., the matter object a and its anti-matter object a− anni-
hilate each other, and these annihilation rules have weak priority over all
other rules.

With the target indications {here, in, out} we can leave an object in the current
membrane (here), whereas with {in} we send it into an inner membrane and with
{out} we send it into the surrounding membrane region.

In a similar way as in the preceding subsection we may consider the situation
of partial adult halting for a P automaton

Π = (O, T, [1[2]2]1, q0, n,R1, R2)

where following the proof from [1] the register machine actions are simulated in
the skin membrane; if the input multiset is accepted, by using the rules qh →
(f, here)(n−, in), f → f , we obtain an infinite computation with the contents of
membrane 2 being empty indicating the acceptance, as by the annihilation rule
nn− → λ the original object n is annihilated.

5 Red-Green Automata

In general, a red-green automatonM is an automaton whose set of internal statesQ
is partitioned into two subsets, Qred and Qgreen, and M operates without halting.
Qred is called the set of “red states”, Qgreen the set of “green states”. Moreover,
we shall assume M to be deterministic, i.e., for each configuration there exists
exactly one transition to the next one.

5.1 Red-Green Turing Machines

Red-green Turing machines, see [11], can be seen as a type of ω-Turing machines
on finite inputs with a recognition criterion based on some property of the set(s)
of states visited (in)finitely often, in the tradition of ω-automata (see [9]), i.e., we
call an infinite run of the Turing machine M on input w recognizing if and only if

• no red state is visited infinitely often and
• some green states (one or more) are visited infinitely often.

152 R. Freund, S. Ivanov, L. Staiger

A set of strings L ⊂ Σ∗ is said to be accepted by M if and only if the following
two conditions are satisfied:

(a) L = {w | w is recognized by M}.
(b) For every string w /∈ L, the computation of M on input w eventually stabilizes

in red; in this case w is said to be rejected.

The phrase “mind change” is used in the sense of changing the color, i.e.,
changing from red to green or vice versa.

The following results were established in [11]:

Theorem 1. A set of strings L is recognized by a red-green Turing machine with
one mind change if and only if L ∈ Σ1, i.e., if L is recursively enumerable.

Theorem 2. (Computational power of red-green Turing machines)

(a) Red-green Turing machines recognize exactly the Σ2-sets of the Arithmetical
Hierarchy.

(b) Red-green Turing machines accept exactly those sets which simultaneously are
Σ2- and Π2-sets of the Arithmetical Hierarchy.

5.2 Red–Green Register Machines

In [2], similar results as for red-green Turing machines were shown for red-green
counter automata and register machines, respectively.

As it is well-known folklore, e.g., see [12], the computations of a Turing machine
can be simulated by a counter automaton with (only two) counters; in this paper,
we will rather speak of a register machine with (two) registers and with string
input. As for red-green Turing machines, we can also color the “states”, i.e., the
labels, of a register machine M = (m,B, l0, lh, P, Tin) by the two colors red and
green, i.e., partition its set of labels B into two disjoint sets Bred (red “states”) and
Bgreen (green “states”), and we then write RM = (m,B,Bred, Bgreen, l0, P, Tin),
as we can omit the halting label lh.

The following two lemmas were proved in [2]; the step from red-green Turing
machines to red-green register machines is important for the succeeding sections,
as usually register machines are simulated when proving a model of P systems to
be computationally complete. Therefore, in the following we always have in mind
this specific relation between red-green Turing machines and red-green register
machines when investigating the infinite behavior of specific models of P automata,
as we will only have to argue how red-green register machines can be simulated.

Lemma 1. The computations of a red-green Turing machine TM can be simulated
by a red-green register machine RM with two registers and with string input in such
a way that during the simulation of a transition of TM leading from a state p with
color c to a state p′ with color c′ the simulating register machine uses instructions
with labels (“states”) of color c and only in the last step of the simulation changes
to a label (“state”) of color c′.

How to Go Beyond Turing with P Automata 153

Lemma 2. The computations of a red-green register machine RM with an ar-
bitrary number of registers and with string input can be simulated by a red-green
Turing machine TM in such a way that during the simulation of a computation
step of RM leading from an instruction with label (“state”) p with color c to an in-
struction with label (“state”) p′ with color c′ the simulating Turing machine stays
in states of color c and only in the last step of the simulation changes to a state
of color c′.

As an immediate consequence, the preceding two lemmas yield the charac-
terization of Σ2 and Π2 by red-green register machines as Theorem 2 does for
red-green Turing machines, see [2]:

Theorem 3. (Computational power of red-green register machines)

(i) A set of strings L is recognized by a red-green register machine with one mind
change if and only if L ∈ Σ1, i.e., if L is recursively enumerable.

(ii) Red-green register machines recognize exactly the Σ2-sets of the Arithmetical
Hierarchy.

(iii) Red-green register machines accept exactly those sets which simultaneously
are Σ2- and Π2-sets of the Arithmetical Hierarchy.

5.3 Red-Green P Automata

As it was shown in [2], P automata with antiport rules and with anti-matter can
simulate the infinite computations of any red-green register machine, even with a
clearly specified finite set of “states” having the same color as the corresponding
labels (“states”) of the instructions of the red-green register machine.

Hence, as a consequence, similar results as for red-green Turing machines also
hold for red-green P automata with antiport rules and with anti-matter. From the
results shown in [2] we therefore infer:

Theorem 4. (Computational power of red-green P automata)

(i) A set of multisets L is recognized by a red-green P automaton (with antiport
rules, with anti-matter) with one mind change if and only if L is recursively
enumerable.

(ii) Red-green P automata (with antiport rules, with anti-matter) recognize exactly
the Σ2-sets.

(iii) Red-green P automata (with antiport rules, with anti-matter) accept exactly
those sets which simultaneously are Σ2- and Π2-sets of the Arithmetical Hier-
archy.

154 R. Freund, S. Ivanov, L. Staiger

6 Observer Languages

An observer language for infinite computations is an ω-language over {0, 1} where
1 indicates that a specific feature of the current configuration in the infinite com-
putation sequence is fulfilled and 0 indicates that this specific feature of the current
configuration is not fulfilled.

6.1 Expressing Partial Adult Halting as Observer Language

If we define the specific feature to be that no rule is applicable in the specified
“observed” membrane, then acceptance by partial adult halting can be described
by the (regular) ω-language {0, 1}∗{1}ω.

6.2 Expressing Recognition by Red-Green P Automata Using
Observer Languages

As observer languages for infinite computations in red-green P automata we again
use ω-languages over {0, 1} where now 1 indicates that we will have to apply a
green multiset of rules to the current configuration in the infinite computation
sequence and 0 indicates that we will have to apply a red multiset of rules to the
current configuration.

So for recognizing a language from RE we use the the ω-language {0}+{1}ω,
for a language from co-RE we use the the ω-language {0}{1}ω.

The corresponding regular ω-languages for the recognition by red-green au-
tomata (Turing machines, P automata) with multiple mind-changes are described
as follows:

exactly 2k + 1 mind-changes, k ≥ 0: {0}+
(
{1}+{0}+

)k{1}ω
at most 2k + 1 mind-changes, k ≥ 0:

⋃k
i=0{0}+

(
{1}+{0}+

)i{1}ω
The upper bound for languages recognized by red-green P automata (with

antiport rules, with anti-matter) with k mind-changes for some k ≥ 0 is Σ2, see
[2].

These results will be refined in the next section.

7 Recognition Using Regular Observer Languages

In this section we investigate which languages are recognized by red-green P
automata using observer languages defined by finite automata. This class of ω-
languages defined by finite automata is well-understood and has widely been in-
vestigated (see [16, 21, 23, 24]). We follow the line of [20] where for Turing machines
infinite computations accepting finite words were investigated in detail (see also
[5]). In this paper a word w was accepted by a Turing machine when the sequence

How to Go Beyond Turing with P Automata 155

(si)i∈N of states the machine runs through during its accepting process fulfills
certain simple conditions known from the acceptance of ω-languages. This can
be seen as w to be accepted if the observed state sequence (si)i∈N belongs to a
certain (regular) observer language. We have to point out that usually the notion
acceptance is used here instead of the notion recognition as used by van Leeuwen
and Wiedermann for the red-green Turing machines.

7.1 Observer Languages of the form W · {1}ω with W ∈ REG

The observer languages in Section 6 all were of the formW ·{1}ω whereW ⊆ {0, 1}∗
is a regular language. In this section we investigate which languages can be ac-
cepted by red-green P automata using observer languages of this form. Here we
follow the line of the papers [20] and [11] where the influence of regular observer
languages on the acceptance and recognition, respectively, behavior of Turing ma-
chines was investigated.

To this end we use the following theorem which follows from a general classifi-
cation of regular ω-languages (see [19, 22] and also the survey [21]).

Theorem 5. If F ⊆ {0, 1}ω is a regular ω-language, then

1. F is in the Boolean closure of Σ2, and
2. if F ∈ Σ2 ∩Π2, then F is in the Boolean closure of Σ1.

Since every regular F ⊆ {0, 1}∗·{1}ω as a countable set is inΣ2, we immediately
obtain the following.

Corollary 1. If W ⊆ {0, 1}∗ is a regular language then W · {1}ω satisfies one of
the following conditions:

1. W · {1}ω ∈ Σ2 \Π2, or
2. W · {1}ω is a Boolean combination of ω-languages in Σ1.

Remark 1. In the second case we can obtain an even sharper result:

W · {1}ω =
⋃k

i=0
(Wi · {0, 1}ω \ Vi · {0, 1}ω)

for suitable k ∈ N and regular languages Wi, Vi ⊆ {0, 1}∗, 0 ≤ i ≤ k. In particular,
this is true for the ω-languages representing a bounded number of mind-changes
from Subsection 6.2:⋃k

i=0{0}+
(
{1}+{0}+

)i{1}ω =⋃k
i=0

(
{0}+

(
{1}+{0}+

)i{1} · {0, 1}ω \ {0}+({1}+{0}+)i{1}+{0} · {0, 1}ω)
From Corollary 1 we immediately infer:

156 R. Freund, S. Ivanov, L. Staiger

Theorem 6. Let L be recognized by a red-green P automaton (with antiport rules,
with anti-matter) using an observer language W · {1}ω where W ⊆ {0, 1}∗ is
regular.

1. Then L ∈ Σ2.

2. If W · {1}ω =
⋃k

i=0(Fi \Ei) is a Boolean combination of ω-languages Fi, Ei ∈
Σ1, 0 ≤ i ≤ k, then L =

⋃k
i=0(Ki \ Li) where Ki, Li ∈ RE, 0 ≤ i ≤ k.

The converse of Theorem 6 is also true. In particular, it shows that we can
restrict ourselves to the observer languages of Subsections 6.1 and 6.2.

Theorem 7. Let L ∈ Σ2.

1. Then L is recognized by a red-green P automaton Π using the observer language
{0, 1}∗ · {1}ω, i.e., L is accepted by Π by partial adult halting.

2. Let L =
⋃k

i=0(Ki \ Li) where Ki, Li ∈ RE, 0 ≤ i ≤ k. Then there exists a
red-green P automaton which recognizes L using an observer language with a
bounded number of mind-changes.

7.2 Regular Observer Languages

Admitting all regular ω-languages as observer languages extends the range of rec-
ognizable languages. In view of Theorem 5 we obtain a result extending what was
shown in Theorem 6.

Theorem 8. Let L be recognized by a red-green P automaton using an observer
language F ⊆ {0, 1}ω. Then

1. if F is a Boolean combination of ω-languages Fi, Ei ∈ Σ2, 0 ≤ i ≤ k, then
L =

⋃k
i=0(Ki \ Li) where Ki, Li ∈ Σ2, 0 ≤ i ≤ k,

2. if F ∈ Σ2, then L ∈ Σ2,

3. if F ∈ Π2, then L ∈ Π2, and

4. if F is regular and F ∈ Σ2 ∩Π2, then L =
⋃k

i=0(Ki \ Li) where Ki, Li ∈ RE,
0 ≤ i ≤ k.

The converse of Theorem 8 is also true:

Theorem 9. Let L be a Boolean combination of languages in Σ2. Then L is recog-
nized by a red-green P automaton using a regular observer language F ⊆ {0, 1}ω.

How to Go Beyond Turing with P Automata 157

8 Conclusion

In this paper we have investigated the computational power of P automata work-
ing with infinite runs on finite input multisets. With regular observer languages
W · {1}ω, W ∈ REG, we obtain the Σ2-sets, the same as with red-green P au-
tomata. Moreover, the Σ2-sets are already obtained by the special observer lan-
guage {0, 1}∗ · {1}ω, which corresponds to the special acceptance condition of
partial adult halting.

References

1. A. Alhazov, B. Aman, R. Freund: P Systems with Anti-Matter. In: [10], 66–85.
2. B. Aman, E. Csuhaj-Varjú, R. Freund: Red-Green P Automata. In: [10], 139–157.
3. P. Budnik: What Is and What Will Be. Mountain Math Software, 2006.
4. C.S. Calude, Gh. Păun: Bio-steps Beyond Turing. Biosystems 77 (2004), 175–194.
5. C.S. Calude, L. Staiger: A note on accelerated Turing machines. Math. Structures

Comput. Sci. 20 (6) (2010), 1011–1017.
6. E. Csuhaj-Varjú, Gy. Vaszil: P Automata or Purely Communicating Accepting P

Systems. In: Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron (Eds.): Membrane
Computing, International Workshop, WMC-CdeA 2002, Curtea de Argeş, Roma-
nia, August 19–23, 2002, Revised Papers. Lecture Notes in Computer Science 2597,
Springer, 2003, 219–233.

7. R. Freund, I. Pérez-Hurtado, A. Riscos-Núñez , S. Verlan: A formalization of mem-
brane systems with dynamically evolving structures. International Journal of Com-
puter Mathematics 90 (4) (2013), 801-815.

8. R. Freund, M. Oswald: A Short Note on Analysing P Systems. Bulletin of the EATCS
78, 2002, 231–236.

9. R. Freund, M. Oswald, L. Staiger: ω-P Automata with Communication Rules. Work-
shop on Membrane Computing, 2003, Lecture Notes in Computer Science 2933,
Springer, 2004, 203–217.

10. M. Gheorghe, G. Rozenberg, A. Salomaa, P. Sośık, C. Zandron: 15th International
Conference, CMC 2014, Prague, Czech Republic, August 20-22, 2014, Revised Se-
lected Papers. Lecture Notes in Computer Science 8961, Springer, 2014.

11. J. van Leeuwen, J. Wiedermann: Computation as an Unbounded Process. Theoretical
Computer Science 429 (2012), 202–212.

12. M. L. Minsky: Computation: Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, New Jersey, USA, 1967.

13. Gh. Păun: Computing with Membranes. Journal of Computer and System Sciences
61 (1) (2000), 108–143 (and Turku Center for Computer Science-TUCS Report 208,
November 1998, www.tucs.fi).

14. Gh. Păun: Membrane Computing. An Introduction. Springer, 2002.
15. Gh. Păun, G. Rozenberg, A. Salomaa (Eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press, 2010.
16. D. Perrin and J.-É. Pin. Infinite Words, vol. 141 of Pure and Applied Mathematics.

Elsevier, Amsterdam, 2004.
17. G. Rozenberg, A. Salomaa (Eds.): Handbook of Formal Languages, 3 volumes.

Springer, 1997.

158 R. Freund, S. Ivanov, L. Staiger

18. P. Sośık, O. Vaĺık: On Evolutionary Lineages of Membrane Systems. In: R. Freund,
Gh. Păun, G. Rozenberg, A. Salomaa (Eds.): 6th International Workshop, WMC
2005, Vienna, Austria, July 18-21, 2005, Revised Selected and Invited Papers. Lec-
ture Notes in Computer Science 3850, Springer, 2006, 67–78.

19. L. Staiger: Finite-state ω-languages. J. Comput. System Sci. 27 (3) (1983), 434–448.
20. L. Staiger: ω-computations on Turing machines and the accepted languages. In: L.

Lovász, E. Szemerédi (Eds.): Theory of Algorithms, Coll. Math. Soc. Janos Bolyai
No.44, North Holland, Amsterdam, 1986, 393–403.

21. L. Staiger: ω-languages. In: [17], vol. 3, 339–387.
22. L. Staiger, K. Wagner: Automatentheoretische und automatenfreie Charakterisierun-

gen topologischer Klassen regulärer Folgenmengen. Elektron. Informationsverarb.
Kybernetik 10 (7) (1974), 379–392.

23. W. Thomas: Automata on infinite objects. In: J. van Leeuwen (Ed.): Handbook of
Theoretical Computer Science, vol. B, pages 133–192. North Holland, Amsterdam,
1990.

24. K. Wagner: On ω-regular sets. Inform. and Control, 43 (2) (1979), 123–177.
25. The P Systems Website: http://ppage.psystems.eu.

A Characterization of PSPACE with Antimatter
and Membrane Creation

Zsolt Gazdag1, Miguel A. Gutiérrez–Naranjo2

1Department of Algorithms and their Applications
Faculty of Informatics
Eötvös Loránd University, Hungary
gazdagzs@inf.elte.hu

2Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla, 41012, Spain
magutier@us.es

Summary. The use of negative information provides a new tool for exploring the limits
of P systems as computational devices. In this paper we prove that the combination of
antimatter and annihilation rules (based on the annihilation of physical particles and
antiparticles) and membrane creation (based on autopoiesis) provides a P system model
able to solve PSPACE-complete problems. Namely, we provide a uniform family of
P system in such P system model which solves the satisfiability problem for quantified
Boolean formulas (QSAT). In the second part of the paper, we prove that all the decision
problems which can be solved with this P system model belong to the complexity class
PSPACE, so this P system model characterises PSPACE.

1 Introduction

The use of negative information provides a new challenge in the development of
theoretical aspects in Membrane Computing (see [20]). Such negative information
can be considered by extending the definition of a multiset f on a set X from
f : X → N to f : X → Z (i.e., admitting negative multiplicity of the elements
of the multiset [4, 13]) or even considering negative time and the possibility of
travelling in time [7].

One of the most extended uses of negative information in Membrane Comput-
ing is considering anti-spikes in the framework of Spiking Neural P systems. In
such model when one spike and one anti-spike appear in the same neuron, the
annihilation occurs and both, spike and anti-spike, disappear [15, 17, 22, 24]. The
use of antimatter, as an extension of the concept of anti-spikes, is being explored
in other P system models [1, 2, 5].

160 Z. Gazdag and M.A. Gutiérrez-Naranjo

Recently, it has been proved that antimatter and annihilation rules are a fron-
tier of tractability in Membrane Computing [5]. The starting point for the study
was a well-known result in the complexity theory of Membrane Computing: P sys-
tems with active membranes without polarizations, without dissolution and with
division of elementary and non-elementary membranes (denoted by AM0

−d,+ne)
can solve exactly problems in the complexity class P (see [8], Th. 2). The main
result in [5] is that AM0

−d,+ne endowed with antimatter and annihilation rules

(denoted by AM0
−d,+ne,+ant) can solve NP-complete problems.

In a certain sense, such results show that if the number of membranes of the
P system can be increased by membrane division, then endowing the model with
dissolution or annihilation rules, then the model is capable to solve NP-complete
problems.

Similar results hold in the case of P systems with membrane creation. In [9] it is
shown that these P systems when dissolution rules are allowed can solve PSPACE-
complete problems (i.e, they can solve all the decision problems which can be solved
by Turing machines, deterministic or non-deterministic, in polynomial space). In
this paper, we show that using annihilation rules instead of dissolution rules, P
systems with membrane creation are not only able to solve NP-complete problems,
but PSPACE-complete problems too. By taking [23] as starting point, in the
second part of the paper, we prove that all the decision problems which can be
solved with this P system model belong to the complexity class PSPACE, so this
P system model characterises PSPACE.

The paper is organized as follows. In the next section, the notion of P systems
with membrane creation and annihilation rules is introduced. Then recognizer P
systems are briefly described. In Section 4 we show that the well known QSAT
problem (i.e., the problem of deciding if a fully quantified Boolean formula is
true or not) can be solved in linear time by P systems with membrane creation,
with annihilation rules and without dissolution rules. In Section 5, we prove that
PSPACE is an upper bound for the set of decision problems which can be solved
with this model. Finally, some conclusions are given in the last section.

2 The P System Model

The basis of the model is two types of rules which are not so common on complexity
studies in Membrane Computing. The first type, rules of membrane creation, is
based on the biological process of autopoiesis [14]. It creates a membrane from a
single object in a similar way to the creation of a vesicle in a cell by a metabolite.
This type of rule was first considered in [12, 16] and it has been proved that
P systems with membrane creation and dissolution rules can solve NP-complete
problems (see [10, 11]) or even PSPACE-complete problems (see [9]).

The idea of using antimatter as a generalization of the anti-spikes used in
Spiking Neural P Systems was firstly proposed in [21]. Based on the physical
inspiration of particles and antiparticles, if an object a and its opposite one a

A Characterization of PSPACE with Antimatter 161

appears simultaneously in the same membrane, they are annihilated by application
of the corresponding rule aa→ λ. As pointed above, several authors have started
to explore the possibilities of using antimatter in Membrane Computing [1, 2, 5].

Formally, a P system with membrane creation and annihilation rules is a con-
struct of the form Π = (O,H, µ,w1, . . . , wm, R), where:

1. m ≥ 1 is the initial degree of the system; O is the alphabet of objects and H
is a finite set of labels for membranes;

2. µ is a membrane structure consisting of m membranes labelled (not necessarily
in a one-to-one manner) with elements of H and w1, . . . , wm are strings over
O, describing the multisets of objects placed in the m regions of µ;

3. R is a finite set of rules, of the following forms:
(a) [a→ v]h where h ∈ H, a ∈ O, and v is a string over O describing a multiset

of objects. These are object evolution rules associated with membranes and
depending only on the label of the membrane.

(b) a[]h → [b]h where h ∈ H, a, b ∈ O. These are send-in communication rules.
An object is introduced in the membrane possibly modified.

(c) [a]h → []h b where h ∈ H, a, b ∈ O. These are send-out communication
rules. An object is sent out of the membrane possibly modified.

(d) [a→ [v]h2]h1 where h1, h2 ∈ H, a ∈ O, and v is a string over O describing
a multiset of objects. These are creation rules. In reaction with an object,
a new membrane is created. This new membrane is placed inside of the
membrane of the object which triggers the rule and has associated an
initial multiset and a label.

(e) [aa → λ]h for h ∈ H, a, a ∈ O. This is an annihilation rule, associated
with a membrane labelled by h: the pair of objects a, a ∈ O belonging
simultaneously to this membrane disappears.

Rules are applied according to the following principles:

• Rules of type (a) - (d) are applied in parallel and in a maximal manner. In
one step, one object of a membrane can be used by only one rule (chosen in
a non–deterministic way), but any object which can evolve by one rule of any
form, must evolve.

• If an object can trigger two or more rules, one of such rules is non-
deterministically chosen, except for annihilation rules (type (e)). Any anni-
hilation rule has priority over all rules of the other types of rules. This fact
has a clear physical inspiration. If a particle and its antiparticle meet, they do
disappear and no other option is possible. This semantics was also used in [5].

• All the elements which are not involved in any of the operations to be applied
remain unchanged.

• The rules associated with the label h are used for all membranes with this
label, irrespective of whether or not the membrane is an initial one or it was
obtained by creation.

• Several rules can be applied to different objects in the same membrane simul-
taneously.

162 Z. Gazdag and M.A. Gutiérrez-Naranjo

Following the standard notations, the class of these P systems is denoted by
AM0

−d,+mc,+antPri, where −d indicates that dissolution rules are not used, +mc
indicates the use of membrane creation and we add +antPri to denote the use of
antimatter and annihilation rules with priority.

3 Recognizer P Systems

We recall the main notions related to recognizer P systems and complexity in
Membrane Computing. For a detailed description see, e.g., [18, 19].

A decision problem X is a pair (IX , θX) such that IX is a language over a finite
alphabet (whose elements are called instances) and θX is a total Boolean function
over IX . A P system with input is a tuple (Π,Σ, iΠ), where Π is a P system, with
working alphabet Γ , with p membranes labelled by 1, . . . , p, and initial multisets
M1, . . . ,Mp associated with them; Σ is an (input) alphabet strictly contained
in Γ ; the initial multisets are over Γ − Σ; and iΠ is the label of a distinguished
(input) membrane. Let (Π,Σ, iΠ) be a P system with input, Γ be the working
alphabet of Π, µ its membrane structure, andM1, . . . ,Mp the initial multisets of
Π. Let m be a multiset over Σ. The initial configuration of (Π,Σ, iΠ) with input
m is (µ,M1, . . . ,MiΠ ∪m, . . . ,Mp). In the case of P systems with input and with
external output, the above concepts are introduced in a similar way.

A recognizer P system is a P system with input and with external output such
that:

• The working alphabet contains two distinguished elements yes, no.
• All its computations halt.
• If C is a computation of Π, then either the object yes or the object no (but

not both) must have been released into the environment, and only in the last
step of the computation. We say that C is an accepting computation (respec-
tively, rejecting computation) if the object yes (respectively, no) appears in the
external environment associated to the corresponding halting configuration of
C.

A decision problem X can be solved in a polynomially uniform way by a family
Π = {Π(n)}n∈N of P systems of type F if the following holds:

• There is a deterministic Turing machine M such that, for every n ∈ N, starting
M with the unary representation of n on its input tape, it constructs the P
system Π(n) in polynomial time in n.

• There is a deterministic Turing machine N that started with an instance I ∈ IX
with size n on its input tape, it computes a multiset wI (called the encoding
of I) over the input alphabet of Π(n) in polynomial time in n.

• For every instance I ∈ IX with size n, starting Π(n) with wI in its input
membrane, every computation of Π(n) halts and sends out to the environment
yes if and only if I is a positive instance of X.

A Characterization of PSPACE with Antimatter 163

We denote by PMCF the set of problems decidable in polynomial time using
a polynomially uniform family of P systems of type F .

4 Solving QSAT

In this section, we show that QSAT can be solved in linear time by a polynomially
uniform family of recognizer P systems of type AM0

−d,+mc,+antPri.
The QSAT problem is the following one. Given a Boolean formula in conjunc-

tive normal form over the propositional variables {x1, . . . , xn}. Then the fully (ex-
istentially) quantified Boolean formula associated to ϕ is ϕ∗ = ∃x1∀x2 . . . Qnxnϕ,
(where Qn is ∃ if n is odd, and it is ∀, otherwise). Now, the task is to decide if
ϕ∗ is true, i.e., to decide if there exists a truth assignment I of the variables
{xi | 1 ≤ i ≤ n, i is odd} such that each extension I∗ of I to the variables
{xi | 1 ≤ i ≤ n, i is even} satisfies ϕ.

Next, we construct a recognizer P system of type AM0
−d,+mc,+antPri to solve

QSAT. The construction is a variant of the one occurring in [9] where it is shown
that QSAT can be solved in linear time using a family of P systems with membrane
creation using dissolution rules. The main difference between the construction in
[9] and the one in this paper is that instead of dissolution rules we use annihilation
rules to control the computations.

Similarly as in [9], the work of our P systems can be divided into three stages:

• Generation and evaluation stage: Using membrane creation we construct a bi-
nary complete tree where the leaves encode all possible truth assignments asso-
ciated with the formula. The values of the formula corresponding to these truth
assignments are obtained in the corresponding leaves. Moreover, the nodes at
even (resp. odd) levels from the root are codified by OR gates (respectively,
AND gates).

• Checking stage: In this stage the membrane structure corresponds to a Boolean
circuit with gates AND and OR. We compute the values of the gates starting
with the truth values computed at the leaves towards the root of the circuit
which is the output gate.

• Output stage: The system sends out to the environment the answer of the
system computed in the previous stages.

The evaluation stage will be the same as in [9], since there no dissolution rules
are applied. In the other two stages we will use annihilation rules instead of using
membrane dissolution.

Let ϕ = C1 ∧ · · · ∧ Cm be a Boolean formula in conjunctive normal form over
n variables. Then ϕ can be encoded as a multiset over the alphabet {xi,j , yi,j |
1 ≤ i ≤ m, 1 ≤ j ≤ n}, where xi,j (resp. yi,j) represents the fact that xj (resp.
¬xj) occurs in Ci (notice that since barred objects usually denote antimatters, we
cannot use x̄i,j to represent negated variables). Let us denote the above encoding
of ϕ by cod(ϕ). Let us moreover choose an appropriate pairing function 〈 , 〉 from

164 Z. Gazdag and M.A. Gutiérrez-Naranjo

N × N to N. We construct a P system Π(〈n,m〉) processing the fully quantified
formula ϕ∗ associated with ϕ, when cod(ϕ) is supplied in its input membrane. The
family presented here is:

Π = {(Π(〈n,m〉), Σ(〈n,m〉), i(〈n,m〉)) | (n,m) ∈ N2},

where the input alphabet is Σ(〈n,m〉) = {xi,j , yi,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}, the
input membrane is i(〈n,m〉) =< t,∨ >, and the P system Π(〈n,m〉) = (Γ (〈n,m〉),
H(〈n,m〉), µ, ws, w<t,∨>, R(〈n,m〉)) is defined as follows:

• Working alphabet:

Γ (〈n,m〉) = Σ(〈n,m〉)
∪ {zj,c | j ∈ {0, . . . n}, c ∈ {∧,∨}}
∪ {zj,c,l | j ∈ {0, . . . , n− 1}, c ∈ {∧,∨}, l ∈ {t, f}}
∪ {xi,j , yi,j , xi,j,l, yi,j,l | j ∈ {1, . . . , n}, i ∈ {1, . . . ,m}, l ∈ {t, f}}
∪ {ri, ri, ri,t, ri,f | i ∈ {1, . . . ,m}}
∪ {pi, qi, si, ti, ui, vi | i ∈ {1, 2, 3}} ∪ {q2, p3, t2, s3, u2, v3}
∪ {ai | i ∈ {0, . . . , n− 1}} ∪ {bi,l | i ∈ {1, . . . , n− 1}, l ∈ {t, f}}
∪ {ci,j | i ∈ {1, . . . , n− 1}, j ∈ {1, . . . , 5(n− i+ 1)}}
∪ {yes, no, yes∨, no∨, yes∧, no∧, yes∧, no∨}.

• The set of labels: H(〈n,m〉) = {< l, c >| l ∈ {t, f}, c ∈ {∧,∨}} ∪ {s}.
• Initial membrane structure: µ = [[]<t,∨>]s.
• Initial multiset: ws = ∅, w<t,∨> = {a0 z0,∧,t z0,∧,f}.
• Input membrane: []<t,∨>.
• The set of evolution rules, R(〈n,m〉), consists of the following rules (recall that

λ denotes the empty string and if c is ∧ then c is ∨ and if c is ∨ then c is ∧):

1. [zj,c → zj,c,t zj,c,f]<l,c>
[zj,c,l → [zj+1,c]<l,c>]<l′,c>

}
for

l, l′ ∈ {t, f}, c ∈ {∨,∧},
j ∈ {0, . . . , n− 1}.

With these rules the P system creates a nested membrane structure with 2n inner-
most cells each of which corresponding to a truth assignment of the variables of the
input formula. At the first step, the object zj,c evolves to two objects, one for the
assignment true (the object zj,c,t), and a second one for the assignment false (the
object zj,c,f). In the second step these objects create two membranes. The new
membrane with t in its label represents the assignment xj+1 = true; on the other
hand, the new membrane with f in its label represents the assignment xj+1 =false.

2. [xi,j → xi,j,t xi,j,f]<l,c>
[yi,j → yi,j,t yi,j,f]<l,c>

[ri → ri,t ri,f]<l,c>

 for
l ∈ {t, f} i ∈ {1, . . . ,m},
c ∈ {∨,∧} j ∈ {1, . . . , n}.

These rules duplicate the objects representing the formula. One copy corresponds

A Characterization of PSPACE with Antimatter 165

to the case when the variable is assigned true, the other copy corresponds to the
case when it is assigned false. The objects ri are also duplicated (ri,t, ri,f) in
order to keep track of those clauses that evaluate true on the previous assignments
to the variables.

3. xi,1,t[]<t,c> → [ri]<t,c>
yi,1,t[]<t,c> → [λ]<t,c>

xi,1,f []<f,c> → [λ]<f,c>

yi,1,f []<f,c> → [ri]<f,c>

 for
i ∈ {1, . . . ,m},
c ∈ {∨,∧}.

Using these rules the P system can evaluate which clauses are true under the
possible (true or false) truth assignments of the corresponding variable.

4. xi,j,l[]<l,c> → [xi,j−1]<l,c>
yi,j,l[]<l,c> → [yi,j−1]<l,c>

ri,l[]<l,c> → [ri]<l,c>

 for
l ∈ {t, f}, i ∈ {1, . . . ,m},
c ∈ {∨,∧}, j ∈ {2, . . . , n}.

In order to analyse the next variable the second subscript of the objects xi,j,l
and yi,j,l are decreased when they are sent into the corresponding membrane
labelled with l. Moreover, following the last rule, the objects ri,l get into the new
membranes to keep track of the clauses that evaluate true on the previous truth
assignments.

5. [zn,c → r1 . . . rm p1 q1]<l,c> for l ∈ {t, f} and c ∈ {∨,∧}.
After the evaluation stage, these rules introduce antimatters zi, i ∈ {1, . . . ,m}, in
the inner membranes. These antimatters will be used to check if there is a clause
that is not satisfied by the corresponding truth assignment.

6. [ri ri → λ]<l,c>
[ri → q2]<l,c>

}
for

l ∈ {t, f}, i ∈ {1, . . . ,m},
c ∈ {∨,∧}

If an antimatter is not annihilated by the first rule, i.e., there is a clause that
is not satisfied by the corresponding truth assignment, then this antimatter
introduces the antimatter q2.

7. [q1 → q2]<l,c>
[p1 → p2]<l,c>

[q2q2 → λ]<l,c>

[p3p3 → λ]<l,c>

[p2 → p3]<l,c>

[p3 → no]<l,c>

[q2 → q3p3]<l,c>

[q3 → yes]<l,c>


for

l ∈ {t, f}
c ∈ {∨,∧}

These rules introduce yes in an innermost cell with label < l, c > if and only
if the antimatter q2 is not present in this cell. On the other hand, if q2 is in

166 Z. Gazdag and M.A. Gutiérrez-Naranjo

the cell, then object no is introduced. Since q2 is introduced if and only if the
corresponding truth assignment does not satisfy all the clauses of the formula, the
appearance of yes or no in this cell indicates correctly whether the corresponding
truth assignment satisfies the formula or not.

8. [yes]<l,c> → yesc []<l,c>
[no]<l,c> → noc []<l,c>

}
for

l ∈ {t, f}
c ∈ {∨,∧}

These rules with the rules in groups 9 and 10 below will be used to check whether
an appropriate combination of truth assignments according to the quantifiers ∃
and ∀ are founded or not.

9. [yes∧ yes∧ → λ]<l,∧>
[t1 → t2]<l,∧>

[s1 → s2]<l,∧>

[t2 → t3 s3]<l,∧>

[s2 → s3]<l,∧>

[t3]<l,∧> → yes∨ []<l,∧>

[yes∧ → t2]<l,∧>

[s3]<l,∧> → no∨ []<l,∧>

[t2 t2 → λ]<l,∧>

[s3 s3 → λ]<l,∧>



for l ∈ {t, f}

10. [no∨ no∨ → λ]<l,∨>
[u1 → u2]<l,∨>

[v1 → v2]<l,∨>

[u2 → u3 v3]<l,∨>

[v2 → v3]<l,∨>

[u3]<l,∨> → no∧ []<l,∨>

[no∨ → u2]<l,∨>

[v3]<l,∨> → yes∧ []<l,∨>

[u2 u2 → λ]<l,∨>

[v3 v3 → λ]<l,∨>



for l ∈ {t, f}

11. [ai → bi+1,t bi+1,f ci+1,1]<l,c>
bi+1,l []<l,c> → [ai+1]<l,c>

}
for

l ∈ {t, f}, i ∈ {0, . . . , n− 2},
c ∈ {∨,∧}

These rules with the rules in groups 12-14 below will be used to introduce the
multisets s1t1yes

2
∧ and u1v1no

2
∨ in the appropriate membranes. These multisets

will be used then by rules in groups 9 and 10, respectively. Since these multisets
will be needed at different levels in the membrane structure in different time
steps, we need to employ a counter ci,j for the appropriate timing (see also the

A Characterization of PSPACE with Antimatter 167

groups below).

12. [an−1 → cn−1,1]<l,c>
}

for l ∈ {t, f}, c ∈ {∨,∧}

13. [ci,j → ci,j+1]<l,c>
}

for
l ∈ {t, f}, i ∈ {1, . . . , n},
c ∈ {∨,∧}, j ∈ {1, . . . , 5n− 5i+ 4}

14. [cn−k,5k+5 → s1 t1 yes
2
∧]<l,∧>

[cn−k,5k+5 → u1 v1 no
2
∨]<l,∨>

}
for

l ∈ {t, f}
k ∈ {0, . . . , n− 1}

15. [yes∧]s → yes []s
[no∧]s → no []s.

These rules are used to send out the computed answer to the environment.

4.1 A Short Overview of the Computation

The initial configuration only has two membranes, the skin and an elementary
membrane with label < t,∨ >. Labels have two types of information. On the one
hand, the first symbol can be t or f , (true of false) and the second symbol can
be ∧ or ∨ to denote if the corresponding variable is universally or existentially
quantified. Membrane creation rules are applied in parallel in order to obtain a
binary tree like structure of membranes enclosed in the skin. In the 2n-th step
of the computation, 2n elementary membranes are created. One for each possible
truth assignment of the variables. The key set of rules for the evaluation of the
variables is the set 3. According to this set of rules, a symbol rj is produced for
each variable such that its truth value makes true the clause Cj .

Each of the 2n elementary membranes in the configuration after 2n steps can
be seen as one of the possible truth assignments for the variables and the set of
different rj objects inside represent the set of clauses satisfied by the corresponding
truth assignment. In order to check if all the clauses are satisfied, a set with all the
antiparticle rj objects is generated in each elementary membrane. If all of these rj
objects are annihilated, it means that in this elementary membrane there were all
the objects rj (maybe with multiple copies). This means that the truth assignment
associated with the elementary membrane satisfies all the clauses. Otherwise, if
any rj is not consumed after the annihilation process, then we conclude that the
corresponding assignment does not satisfy the corresponding clause.

A set of technical rules produce an object yes or no inside each elementary
membrane. The target of most of these rules is to control that only one object yes
or no is generated, regardless the possible combination of multiple copies of rj in
the membrane.

Once the objects yes and no are generated in the elementary membranes, they
are sent up in the tree-like membrane structure. When two of these objects arrive
to an intermediate membrane, a new object yes or no is sent up, according to the
label of the membrane. Such label encodes the type of quantification (universal or
existential) of the corresponding variable. This stage is controlled by rules from
the sets 9 and 10.

168 Z. Gazdag and M.A. Gutiérrez-Naranjo

Finally, an object yes or no arrives to the skin and it is sent out to the envi-
ronment.

Consequently, the family Π solves in linear time the QSAT problem. Since
QSAT is a PSPACE-complete problem, we have the following result:

Theorem 1. PSPACE ⊆ PMCAM0
−d,+mc,+antPri

.

5 PSPACE upper bound

In this section we show that PMC0
AM−d,+mc,+antPri ⊆ PSPACE. The proof is

similar to the corresponding one in [23] where it is shown that PMCAM+d,+ne
⊆

PSPACE (i.e., polynomially uniform families of P systems with active mem-
branes, with polarizations, with dissolution and nonelementary membrane division
rules can solve only problems in PSPACE). Nevertheless, there are substantial
differences between the two proofs due to the different behaviour of these systems.
In [23] it is observed that the multiset content and the polarization (so called, the
state) of a membrane M after n steps of a P system Π can be obtained by recur-
sively calculating the states of M , its parent, and its children after n− 1 steps. To
achieve that always the same computations are calculated by the recursive calls, a
weak determinism on the rules of Π was introduced in [23] (notice that since Π is a
recognizer P system, it is confluent and thus it is enough to simulate only one of its
computations). Moreover, to distinguish between membranes having same labels,
unique indexes were associated to the membranes of a configuration. The index of
a new membrane in a configuration is derived from the index of the corresponding
membrane in the previous configuration.

In our proof, on the one hand, we do not have to deal with the polarizations of
the membranes. On the other hand, we should employ an indexing technique that
is different to that occurring in [23] due to the reason that in P systems with mem-
brane creation new membranes are created from objects and not from membranes.
The rest of this section is devoted to the proof of the following theorem:

Theorem 2. PMCAM0
−d,+mc,+antPri

⊆ PSPACE.

We give an algorithm A with the following properties. Let Π = {Π(n)}n∈N be
a polynomially uniform family of recognizer P systems of type AM−d,+mc,+antPri.
Then, for every n ∈ N and input multiset m of Π(n), A decides using polynomial
space in n if Π(n) produces yes started on input m.

Assume that Π(n) = (Γ,H, µ,W, hi, R). Since Π(n) is a recognizer P system,
all of its computations yield the same answer. Thus, it is enough to simulate one
particular computation of Π(n). To this end, we introduce the following weak
priorities on the rules other than annihilation rules in R (clearly, by definition,
annihilation rules have priority over the rest of the rules). We assume that evolu-
tion rules have the highest priority, followed by send-out communication, send-in
communication, and membrane creation rules. Similar type of rules have priority

A Characterization of PSPACE with Antimatter 169

over each other as follows. Assume we have two rules r1 and r2 of the same type.
Then r1 has priority over r2 if and only if one of the following conditions holds:

• r1 = [a → α]i, r2 = [a → β]i and α < β (where < is the usual lexicographical
order on words),

• r1 = a[]i → [b]i, r2 = a[]j → [c]j and (i < j or (i = j and b < c)),
• r1 = [a]i → b[]i, r2 = [a]i → c[]i and b < c,
• r1 = [a→ [α]j]i, r2 = [a→ [β]k]i and (j < k or (j = k and α < β)).

One can see that even with the above priorities, Π(n) can have different com-
putations on the same input. Indeed, assume, for example, that Π(n) has a con-
figuration which contains a membrane structure [[]2 []2]1 with an object a in
membrane 1. Assume also that Π(n) has the rule r = a[]2 → [b]2. Then when
Π(n) applies r, it nondeterministically chooses a membrane with label 1 and sends
a into this membrane. It also can bee seen that there is no such nondeterminism
concerning the other types of rules. As we will see later, using unique indexes of the
membranes having the same labels, we can avoid of this nondeterminism during
the simulation.

Next we define these unique indexes. First of all, we assume that different
membranes have different labels in the initial configuration. Assume now that
C = C1, . . . , Cl is a computation of Π(n). Let i ∈ {1, . . . , l} and M be a mem-
brane in Ci. Let d(M,Ci) denote the depth of M in the membrane structure in
Ci. More precisely, if M is the skin, then d(M,Ci) = 1; if M is a child of a mem-
brane M ′, then d(M,Ci) := d(M ′, Ci) + 1. Let moreover d(Ci) := max{d(M,Ci) |
M is a membrane in Ci}. We inductively define a function fC that assigns to ev-
ery membrane M in Ci an index from ((H ∪ N)i+1)d(M,Ci) (i.e., the index of M
will be a d(M,Ci)-tuple of words with length i+ 1 containing letters from H ∪N).
The indexes of the membranes in C1 are inductively defined as follows. For the
skin membrane M with label s, let FC(M) := (s1). Now let M be a membrane in
C1 and assume that FC(M) = (w1, . . . , wd(M,C1)). If M ′ is a child membrane of M
with label h, then FC(M ′) := (h1, w1, . . . , wd(M,C1)). An example of this indexing
in the initial configuration can be seen on Fig. 1, where these indexes are written
in the lower-right corner of the membranes. Now assume that fC already assigns

Fig. 1.

170 Z. Gazdag and M.A. Gutiérrez-Naranjo

an index to every membrane in Ci (i < l). Let M be a membrane in Ci and assume
that fC(M) = (w1, . . . , wd(M,Ci)). If M ′ is the membrane in Ci+1 that corresponds
to M , then let fC(M ′) = (w11, . . . , wd(M,Ci)1) (notice that since dissolution and
membrane duplication rules are not allowed, every membrane in Ci has a corre-
sponding membrane in Ci+1). Finally, let h ∈ H and assume that a1, . . . , ak are
those objects in M (ordered lexicographically) that create membranes with label
h in the step from Ci to Ci+1. For every j ∈ {1, . . . , k}, let Mj be that membrane
which is created from aj . Then fC(Mj) := (haijj, w11, . . . , wd(M,Ci)1). An example
of this indexing can be seen in Fig. 2, where at the first step a enters to mem-
brane with index (h1, f1) and evolves to b. Then, during the second step, b creates
the membrane with index (gbb1, h111, f111). Notice that from this index we can

Fig. 2.

decode the following information. The label of the membrane is g, its parent has
label h and index (h111, f111), and the membrane was created in the second step
of the computation from an object b. In general, the above defined indexes have
the following properties:

• For a given initial configuration C1 and a computation C = C1, . . . , Cl, the
possible indexes of the membranes in C can be effectively enumerated (notice
that the maximal number of objects in a membrane can be calculated from the
number of objects in C1 and the number of computation steps);

• For a membrane M with index (h1i1,1 . . . i1,j , . . . , hkik,1 . . . ik,j),
– if k > 1, then the index of the parent membrane of M is

(h2i2,1 . . . i2,j , . . . , hkik,1 . . . ik,j), and
– the possible indexes of the children of M can be effectively enumerated;

• For a membraneM with index (h1i1,1 . . . i1,j , . . . , hkik,1 . . . ik,j) such that j > 1,
either
– i1,1 = . . . = i1,j = 1 and M occurs already in the initial configuration, or

A Characterization of PSPACE with Antimatter 171

– i1,1 = . . . = i1,j−1 = a, for some a ∈ Γ , and M is created from a in the
(j − 1)th step of the computation.

Let C = C1, . . . , Cl be a computation of Π(n) and j ∈ {1, . . . , l}.
We introduce an order on the indexes of membranes occurring in Cj and
satisfying that d(M,Cj) = d(M ′, Cj). Assume that M and M ′ are mem-
branes with these properties and fC(M) = (h1i1,1 . . . i1,j , . . . , hkik,1 . . . ik,j),
and fC(M ′) = (h′1i

′
1,1 . . . i

′
1,j , . . . , h

′
ki
′
k,1 . . . i

′
k,j), where k = d(M,Cj). Then

(h1i1,1 . . . i1,j , . . . , hkik,1 . . . ik,j) ≤ (h′1i
′
1,1 . . . i

′
1,j , . . . , h

′
ki
′
k,1 . . . i

′
k,j) if and only if

h1i1,1 . . . i1,j ≤ h′1i
′
1,1 . . . i

′
1,j , where ≤ is the usual lexicographical order on words

assuming that, for every object a ∈ Γ and number n ∈ N, a < n.
Let C = C1, . . . , Cl be a halting computation of Π(n) such that, for every

i ∈ {1, . . . , l}, Ci has the following property. Assume that there is a membrane
M with label h in Ci and there are more than one membranes with label g in
M . Assume also that there is a rule r = a[]g → [b]g in R. Then Ci+1 is that
configuration of Π(n) where the objects a in M are sent by the rule r to that
membrane with label g which has a smaller index by the above defined order
on the indexes. We will simulate this particular computation C by recursively
calculating the multiset content of membranes in C. This is done using a function
called Content. Content gets as parameters an index of a membrane M and a
number j and returns with the multiset content of M in Cj (i.e., the content of
M after j−1 computation steps). The basic strategy of the computation, roughly,
is the following. First we try to compute the content of M and the content of its
parent M ′ in Cj−1. If M ′ does not exist in Cj−1, then M also does not exist and
we can return nil showing that the content of M in Cj is undefined. If only M
does not exist in Cj−1, we check whether it was created in the step from Cj−1 to
Cj . If no, then we return nil, otherwise we return the newly created content of M .
If both M and M ′ exist in Cj−1, then we calculate the content of M in Cj using
the contents of M and M ′ in Cj−1 and by calculating the contents of the children
of M in Cj−1.

For the better readability, in the algorithms defined below we will refer to the
annihilation (resp. evolution, send-out communication, send-in communication,
and membrane creation) rules as ann (resp. evo, in com, out com, and cre).

1. function Content((h1i1,1 . . . i1,j , . . . , hkik,1 . . . ik,j), j)
// We calculate the multiset content of a membrane M with index

(h1i1,1 . . . i1,j , . . . , hkik,1 . . . ik,j) in Cj ;
2. if j = 1 then
3. if i1,1 = 1, . . . , ik,1 = 1 AND there is a membrane structure µ =

[[[]h1
. . .]hk−1

]hk in C1 then
4. return the multiset content of the inner membrane in µ
5. else return nil
6. end if ;
7. exit

172 Z. Gazdag and M.A. Gutiérrez-Naranjo

8. end if ;
// If j = 1 and the index corresponds to a membrane in C1, then return the content
of this membrane, and return nil, otherwise;

9. S ← Content((h1i1,1 . . . i1,j−1, . . . , hkik,1 . . . ik,j−1), j − 1);
// If j > 1, then we recursively calculate the content of M in Cj−1;

10. Sp ← ∅; S′ ← ∅; Sc ← ∅; X ′ ← ∅;
11. if h1 is not the label of the skin membrane then
12. Sp ← Content((h2i2,1 . . . i2,j−1, . . . , hkik,1 . . . ik,j−1), j − 1);

// If M is not the skin, then we calculate the content of the parent M ′ of M in
Cj−1;

13. if Sp = nil then return nil; exit
// If the parent M ′ of M does not exist in Cj−1, then M cannot exist in Cj ;

14. else
15. TryRules(h2, ann, Sp, X

′, X ′);
16. TryRules(h2, evo, Sp, X

′, X ′);
17. TryRules(h2, out com, Sp, X

′, X ′);
// We remove from Sp those objects that do not contribute to the content of M
in Cj by applying rules ann, evo, and out com to the content of M ′ in Cj−1;

18. for all possible index (h′1i
′
1,1 . . . i

′
1,j−1, . . . , hkik,1 . . . ik,j−1) such

that (h′1i
′
1,1 . . . i

′
1,j−1, . . . , hkik,1 . . . ik,j−1) < (h1i1,1 . . . i1,j−1, . . . ,

hkik,1 . . . ik,j−1)
19. Sc ← Content((h′1i

′
1,1 . . . i

′
1,j−1, . . . , hkik,1 . . . ik,j−1), j − 1);

20. if Sc 6= nil then
21. TryRules(h′1, in com,X

′, X ′, Sp)
22. end if
23. end for

// We remove those objects from the content of M ′ that are sent to child mem-

branes other than M ;
24. end if
25. end if
26. if S 6= nil then
27. TryRules(h1, ann, S,X

′, X ′);
28. TryRules(h1, evo, S, S

′, X ′);
29. TryRules(h1, out com, S,X

′, X ′);
//We apply rules ann, evo, and out com to the content S of M in Cj−1;

30. TryRules(h1, in com, Sp, S
′, X ′)

// We send objects from the parent M ′ to the children M by applying in com

rules;
31. CommWithChildren((h1i1,1 . . . i1,j−1, . . . , hkik,1 . . . ik,j−1), j − 1, S, S′);

//We calculate the interactions between M and its children in Cj−1;

32. S′ ← S ∪ S′;
// We calculate the content of M in Cj ; here S contains those objects that
were not involved by any rule; S′ contains the results of the applicable rules;

33. return S′; exit
34. end if

A Characterization of PSPACE with Antimatter 173

35. if S = nil then
36. CommWithChildren((h2i2,1 . . . i2,j−1, . . . , hkik,1 . . . ik,j−1), j − 1, Sp, X

′);
// If M does not exists in Cj−1, then we examine if it can be created in M ′ in the

step from Cj−1 to Cj ; first we remove those objects from the content of M ′ that

are sent to its children during the step form Cj−1 to Cj ;
37. if a1 . . . at ⊆ Sp (a1 ≤ . . . ≤ at) such that i1,1 = . . . = i1,j−1 = at AND

i1,j = t AND [at → [v]h1]h2 ∈ R then
38. S′ ← v;

// If a1, . . . , at occur in Sp and M can be created in M ′ by the rule [at →
[v]h1]h2 , then the content of M in Cj is v;

39. return S′

40. else
41. return nil
42. end if
43. end if

Next we define the procedure TryRules which have five parameters. The first
one is a label of the membrane, the next one is a type of rules, and the last three
parameters are those sets of objects that are involved by the application of the
corresponding type of rules.

1. procedure TryRules(g, type,X, Y, Z)
2. case type of
3. ann: for each rule [aa→ λ]g do
4. remove every pair a, a from X
5. end for
6. evo: for each rule [a→ α]g do
7. remove every occurrence of a from X;
8. add to Y the same number of multiset represented by α
9. end for

10. in com: for each rule a[]g → [b]g do
11. remove every occurrence of a from Z;
12. add to Y the same number of objects b
13. end for
14. out com: for each rule [a]g → b[]g do
15. remove every occurrence of a from X;
16. add to Z the same number of objects b
17. end for
18. cre: for each rule [a→ []h]g do
19. remove every occurrence of a from X
20. end for
21. end case

Now, we define the procedure CommWithChildren which calculates the com-
munications between a membrane and its children. This procedure has four pa-
rameters. The second parameter is a number j which determines which step of

174 Z. Gazdag and M.A. Gutiérrez-Naranjo

the computation is considered. The first parameter is an index of a membrane in
Cj . The last two parameters are those sets of objects that are involved by the
communications between this membrane and its children in the step from Cj to
Cj+1.

1. procedure CommWithChildren((h1i1,1 . . . i1,j , . . . , hkik,1 . . . ik,j), j,X, Y)
2. for each gl1,1 . . . l1,j , where g ∈ H, l1,1, . . . , l1,j ∈ H ∪ N do
3. Sc ← Content((gl1,1 . . . l1,j , h1i1,1 . . . i1,j , . . . , hkik,1 . . . ik,j), j);
4. if Sc 6= nil then
5. Y ′ ← ∅;
6. TryRules(g, ann, Sc, Y

′, Y ′);
7. TryRules(g, evo, Sc, Y

′, Y ′);
8. TryRules(g, out com, Sc, Y

′, Y);
9. TryRules(g, in com, Y ′, Y ′, X);

// We apply rules of type ann and evo to keep the computation deterministic;

membrane creation rules are skipped as they do not contribute to the content

of the parent membrane stored in X; in-communication rules involve only the

content of the parent membrane;
10. end if
11. end for

Finally, we present the procedure A to decide if Π(n) sends out to the envi-
ronment yes on a given input multiset m. We assume without loss of generality
that those rules that send out to the environment yes (resp. no) have the form
[yes]s → yes (resp. [yes]s → yes), where s is the label of the skin membrane.

1. procedure A(Π(n))
// Π(n) = (Γ,H, µ,W, hi, R) is a recognizer P systems of type AM−d,+mc,+antPri

with input multiset m
2. s← the label of the skin in µ;
3. S ← ∅;
4. for each j = 1, 2, . . . do
5. S ← Content((si1 . . . ij), j) where i1 = 1, . . . , ij = 1;
6. if yes ∈ S and there is a rule [yes]s → yes then output: yes; exit
7. end if
8. if no ∈ S and there is a rule [no]s → no then output: no; exit
9. end if

10. end for

First we show that A halts on Π(n) and m. Since Content recursively calls
itself with a decreasing second parameter and Content with second parameter
1 exits after finite steps, we can conclude that Content always exits after finite
steps. Moreover, since Π(n) is a recognizer P system, it halts in l steps, for an
appropriate number l. Thus the multiset content of the skin of Π should contain
yes or no after at most l − 1 steps. Therefore, l + 1 is the highest number that
occurs as a second parameter in the calls of Content in A. This means that A
stops after a finite number of steps.

A Characterization of PSPACE with Antimatter 175

Next we discuss the space complexity of A. Let Π = {Π(n)}n∈N be a poly-
nomially uniform family of P systems of type AM−d,+mc,+antPri. By definition,
there is a polynomial p(n) such that the size of the initial configuration of Π(n)
containing an encoding of a formula in its input membrane is upper bounded by
p(n). Moreover, there is a polynomial t(n) such that the running time of Π(n) is
upper bounded by t(n).

Let C = C1, . . . , Cl be a halting computation of Π(n), for some l ≤ t(n), and
M be a membrane in Ci (i ∈ {1, . . . , l}). Then the index w = fC(M) contains
at most k + i − 1 components, where k = d(C1). Clearly, k is upper bounded by
p(n). Moreover, every component of w is a word with length at most t(n) + 2. It
follows then that w contains at most (p(n)+t(n)−1) ·(t(n)+2) letters. Clearly, for
every i ∈ {1, . . . , l}, the size of Ci is at most p(n)O(t(n)) (the size of a configuration
is the sum of the number of objects and membranes in the configuration). Thus,
every letter in w that is contained in N is at most p(n)k·t(n), for some appropriate
constant k. Therefore, storing a letter of a word in w needs at most log(p(n)k·t(n)) =
O(nt(n)) bits (notice that the first letters of the words in w are labels and the
number of different labels is bounded by p(n)). This implies that the index w can
be stored using at most O((p(n) + t(n)) · t(n) · nt(n)) bits, i.e., the number of
necessary bits is polynomial in n. Therefore, on every level of the recursion in the
function Content, the number of bits that is used to store the parameters is upper
bounded by an appropriate polynomial. Moreover, the depth of the recursion in
Content is bounded by the poynomial t(n). It follows, that the space complexity
of A is bounded by a polinomial too.

6 Conclusions and Future Work

In this paper, we have proved that the family of P systems with membrane creation
and annihilation rules characterizes the complexity class PSPACE. In [5] it has
been proved that P systems with active membranes without polarizations, with-
out dissolution and with division of elementary and non-elementary membranes
endowed with antimatter and annihilation rules can solve NP-complete problems.
It is an interesting research topic to explore the exact computational power of these
systems. It seems that these systems can only solve problems in PSPACE. On
the other hand, solving a PSPACE-complete problem with these systems seems
to be a challenging task.

Acknowledgements

MAGN acknowledges the support of the project TIN2012-37434 of the Ministerio
de Economı́a y Competitividad of Spain.

176 Z. Gazdag and M.A. Gutiérrez-Naranjo

References

1. Alhazov, A., Aman, B., Freund, R.: P systems with anti-matter. In: Gheorghe, M.,
Rozenberg, G., Salomaa, A., Sośık, P., Zandron, C. (eds.) Membrane Computing -
15th International Conference, CMC 2014, Prague, Czech Republic, August 20-22,
2014, Revised Selected Papers. Lecture Notes in Computer Science, vol. 8961, pp.
66–85. Springer (2014)

2. Alhazov, A., Aman, B., Freund, R., Păun, Gh.: Matter and anti-matter in membrane
systems. In: DCFS 2014. Lecture Notes in Computer Science, vol. 8614, pp. 65–76.
Springer (2014)

3. Berman, L.: The complexity of logical theories. Theoretical Computer Science 11,
71–77 (1980)

4. Blizard, W.D.: Negative membership. Notre Dame Journal of Formal Logic 31(3),
346–368 (1990)

5. Dı́az-Pernil, D., Peña-Cantillana, F., Alhazov, A., Freund, R., Gutiérrez-Naranjo,
M.A.: Antimatter as a frontier of tractability in membrane computing. Fundamenta
Informaticae 134, 83–96 (2014)

6. Freund, R., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): Membrane Computing,
6th International Workshop, WMC 2005, Vienna, Austria, July 18-21, 2005, Revised
Selected and Invited Papers, Lecture Notes in Computer Science, vol. 3850. Springer,
Berlin Heidelberg (2006)

7. Gott, J.: Time Travel in Einstein’s Universe: The Physical Possibilities of Travel
Through Time. Houghton Mifflin (2001)

8. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Campero,
F.J.: On the power of dissolution in P systems with active membranes. In: Freund
et al. [6], pp. 224–240

9. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Romero-Campero, F.J.: A linear so-
lution for QSAT with membrane creation. In: Freund et al. [6], pp. 241–252

10. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Romero-Campero, F.J.: A linear so-
lution of subset sum problem by using membrane creation. In: Mira, J., Álvarez,
J.R. (eds.) IWINAC (1). Lecture Notes in Computer Science, vol. 3561, pp. 258–267.
Springer, Berlin Heidelberg (2005)

11. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Romero-Campero, F.J.: A uniform
solution to SAT using membrane creation. Theoretical Computer Science 371(1-2),
54–61 (2007)

12. Ito, M., Mart́ın-Vide, C., Păun, G.: A characterization of parikh sets of ET0L lan-
guages in terms of P systems. In: Ito, M., Păun, G., Yu, S. (eds.) Words, Semigroups,
and Transductions - Festschrift in Honor of Gabriel Thierrin. pp. 239–253. World Sci-
entific (2001)

13. Loeb, D.: Sets with a negative number of elements. Advances in Mathematics 91,
64–74 (1992)

14. Luisi, P.: The chemical implementation of autopoiesis. In: Fleischaker, G., Colonna,
S., Luisi, P. (eds.) Self-Production of Supramolecular Structures, NATO ASI Series,
vol. 446, pp. 179–197. Springer Netherlands (1994)

15. Metta, V.P., Krithivasan, K., Garg, D.: Computability of spiking nueral P systems
with anti-spikes. New Mathematics and Natural Computation (NMNC) 08(03), 283–
295 (2012)

16. Mutyam, M., Krithivasan, K.: P systems with membrane creation: Universality and
efficiency. In: Margenstern, M., Rogozhin, Y. (eds.) MCU. Lecture Notes in Computer
Science, vol. 2055, pp. 276–287. Springer (2001)

A Characterization of PSPACE with Antimatter 177

17. Pan, L., Păun, Gh.: Spiking neural P systems with anti-spikes. International Journal
of Computers, Communications & Control IV(3), 273–282 (September 2009)

18. Pérez-Jiménez, M.J.: An approach to computational complexity in membrane com-
puting. In: Mauri, G., Păun, Gh., Pérez-Jiménez, M.J., Rozenberg, G., Salomaa, A.
(eds.) Workshop on Membrane Computing. Lecture Notes in Computer Science, vol.
3365, pp. 85–109. Springer (2004)

19. Pérez-Jiménez, M.J., Riscos-Núñez, A., Romero-Jiménez, A., Woods, D.: Complexity
- membrane division, membrane creation. In: Păun, Gh., Rozenberg, G., Salomaa,
A. (eds.) The Oxford Handbook of Membrane Computing, pp. 302 – 336. Oxford
University Press, Oxford, England (2010)

20. Păun, Gh.: Some quick research topics., In these proceedings.
21. Păun, G.: Four (somewhat nonstandard) research topics. In: Macćıas-Ramos, L.F.,

del Amor, M.A.M., Păun, G., Riscos-Núñez, A., Valencia-Cabrera, L. (eds.) Twelfth
Brainstorming Week on Membrane Computing. pp. 305–309. Fénix Editora, Sevilla,
Spain (2014)

22. Song, T., Jiang, Y., Shi, X., Zeng, X.: Small universal spiking neural P systems with
anti-spikes. Journal of Computational and Theoretical Nanoscience 10(4), 999–1006
(2013)

23. Sośık, P., Rodŕıguez-Patón, A.: Membrane computing and complexity theory: A char-
acterization of PSPACE. J. Comput. Syst. Sci. 73(1), 137–152 (2007)

24. Tan, G., Song, T., Chen, Z., Zeng, X.: Spiking neural P systems with anti-spikes
and without annihilating priority working in a ’flip-flop’ way. International Journal
of Computing Science and Mathematics 4(2), 152–162 (Jul 2013)

kPWorkbench: A Software Framework for Kernel
P Systems

Marian Gheorghe1, Florentin Ipate2, Laurentiu Mierla2, and Savas Konur1

1 School of Electrical Engineering and Computer Science, University of Bradford
Bradford BD7 1DP, UK
{m.gheorghe, s.konur}@bradford.ac.uk

2 Department of Computer Science, University of Bucharest
Str. Academiei nr. 14, 010014, Bucharest, Romania
florentin.ipate@ifsoft.ro, laurentiu.mierla@gmail.com

Summary. P systems are the computational models introduced in the context of mem-
brane computing, a computational paradigm within the more general area of uncon-
ventional computing. Kernel P (kP) systems are defined to unify the specification of
different variants of P systems, motivated by challenging theoretical aspects and the
need to model different problems. In this paper, we present kPWorkbench, a software
framework developed to support kP systems. kPWorkbench integrates several simula-
tion and verification tools and methods, and provides a software suit for the modelling
and analysis of membrane systems.

1 Introduction

Membrane computing is a computational paradigm, within the more general area
of unconventional computing [24], inspired by the structure and behaviour of the
eukaryotic cell. The formal models introduced in this context are called membrane
systems or P systems. After their introduction [22], membrane systems have been
widely investigated for computational properties and complexity aspects, but also
as a model for various applications [23]. The introduction of different variants
of P systems has been motivated by challenging theoretical aspects, but also by
the need to model different problems. An account of the theoretical developments
is presented in [23], a set of general applications can be found in [6], whereas
specific applications in systems and synthetic biology are provided in [11] and
some of the future challenges are presented in [14]. More recently, applications
in optimisations and graphics [16] and synchronisation of distributed systems [9]
have been developed.

Several variants of P systems have been introduced and studied to model and
analyse different problems, e.g., systems and synthetic biology [11], synchronisation
of distributed systems [9], optimisations and graphics [16]. While the introduction
of new variants allowed modelling different sets of problems, the ad-hoc addition

180 M. Gheorghe et al.

of new features has caused an abundance of P system variants, with a lack of a
coherent integrating view, and well-defined framework would allow us to analyse,
verify and validate the system behaviour.

We introduced kernel P systems (kP systems) [15] as an attempt to target these
issues and create more general membrane computing models, integrating the most
used concepts from P systems. A revised version of the model and the specification
language can be found in [12] and its usage to specify the 3-colouring problem and
a comparison to another solution provided in a similar context [8], is described in
[13]. The kP systems have been also used to specify and analyse, through formal
verification, synthetic biology systems [21, 20].

We have previously studied the theoretical aspects [15] and the verification
and simulation techniques developed for kP systems [10, 3, 2]. In this paper,
we present kPWorkbench (available and can be downloaded from its website
http://www.kpworkbench.org), a software framework developed to support the
analysis of kP systems. kPWorkbench integrates several simulation and verifica-
tion tools and methods. The framework also facilitates verification by incorporat-
ing a property language based on natural language statements, which makes the
property specification a very easy task. These features make kPWorkbench the
only available tool supporting the non-probabilistic analysis of membrane systems
through simulation and verification. The usability and novelty of our approach
have been illustrated by some case studies [21, 20] chosen from synthetic biology
(a new and emerging branch of biology that aspires to the engineering of new
biological systems).

The paper is organised as follows: in Section 2 are introduced the key con-
cepts and definitions related to kP systems; the kPWorkbench is discussed in
Section 3; in Section 4 are summarised some kP systems applications; Section 5
illustrates through some examples the use of the kPWorkbench platform and
final conclusions are provided in Section 6.

2 Kernel P Systems

A kP system is made of compartments placed in a graph-like structure. A com-
partment Ci has a type ti = (Ri, σi), ti ∈ T , where T represents the set of all
types, describing the associated set of rules Ri and the execution strategy that
the compartment may follow. Note that, unlike traditional P system models, in
kP systems each compartment may have its own rule application strategy. The
following definitions are largely from [15].

Definition 1. A kernel P (kP) system of degree n is a tuple

kΠ = (A,µ,C1, . . . , Cn, i0),

where A is a finite set of elements called objects; µ defines the membrane struc-
ture, which is a graph, (V,E), where V are vertices indicating components, and
E edges; Ci = (ti, wi), 1 ≤ i ≤ n, is a compartment of the system consisting of

A Software Framework for Kernel P Systems 181

a compartment type from T and an initial multiset, wi over A; i0 is the output
compartment where the result is obtained.

Each rule r may have a guard g denoted as r {g}. The rule r is applicable
to a multiset w when its left hand side is contained into w and g holds for w.
The guards are constructed using multisets over A and relational and Boolean
operators. For example, rule r : ac → c {≥ a3∧ ≥ b2 ∨ ¬ > c} can be applied
iff the current multiset, w, includes the left hand side of r, i.e., ac and the guard
holds for w - it has at least 3 a′s and 2 b′s or no more than a c. A formal definition
may be found in [15].

Definition 2. A rule associated with a compartment type li can have one of the
following types:

(a) rewriting and communication rule: x→ y {g},
where x ∈ A+ and y has the form y = (a1, t1) . . . (ah, th), h ≥ 0, aj ∈ A and tj
indicates a compartment type from T – see Definition 1 – with instance compart-
ments linked to the current compartment; tj might indicate the type of the current
compartment, i.e., tli – in this case it is ignored; if a link does not exist (the two
compartments are not in E) then the rule is not applied; if a target, tj, refers to
a compartment type that has more than one instance connected to li, then one of
them will be non-deterministically chosen;

(b) structure changing rules; the following types are considered:

(b1) membrane division rule: [x]tli → [y1]ti1 . . . [yp]tip {g},
where x ∈ A+ and yj has the form yj = (aj,1, tj,1) . . . (aj,hj , tj,hj) like in rewrit-
ing and communication rules; the compartment li will be replaced by p com-
partments; the j-th compartment, instantiated from the compartment type tij
contains the same objects as li, but x, which will be replaced by yj; all the links
of li are inherited by each of the newly created compartments;

(b2) membrane dissolution rule: [x]tli → λ {g};
the compartment li and its entire contents is destroyed together with its links.
This contrasts with the classical dissolution semantics where the inner multiset
is passed to the parent membrane - in a tree-like membrane structure;

(b3) link creation rule: [x]tli ; []tlj → [y]tli − []tlj {g};
the current compartment is linked to a compartment of type tlj and x is trans-
formed into y; if more than one instance of the compartment type tlj exists then
one of them will be non-deterministically picked up; g is a guard that refers to
the compartment instantiated from the compartment type tli ;

(b4) link destruction rule: [x]tli − []tlj → [y]tli ; []tlj {g};
is the opposite of link creation and means that the compartments are discon-
nected.

Each compartment can be regarded as an instance of a particular compartment
type and is therefore subject to its associated rules. One of the main distinctive
features of kP systems is the execution strategy which is now statutory to types

182 M. Gheorghe et al.

rather than unitary across the system. Thus, each membrane applies its type spe-
cific instruction set, as coordinated by the associated execution strategy.

An execution strategy can be defined as a sequence σ = σ1&σ2& . . .&σn, where
σi denotes an atomic component of the form:

• ε, an analogue to the generic skip instruction; ε is generally used to denote an
empty execution strategy;

• r, a rule from the set Rt (the set of rules associated with type t). If r is appli-
cable, then it is executed, advancing towards the next rule in the succession;
otherwise, the compartment terminates the execution thread for this particular
computational step and thus, no further rule will be applied;

• (r1, . . . , rn), with ri ∈ Rt, 1 ≤ i ≤ n symbolizes a non-deterministic choice
within a set of rules. One and only one applicable rule will be executed if
such a rule exists, otherwise the atom is simply skipped. In other words the
non-deterministic choice block is always applicable;

• (r1, . . . , rn)∗, with ri ∈ Rt, 1 ≤ i ≤ n indicates the arbitrary execution of a set
of rules in Rt. The group can execute zero or more times, arbitrarily but also
depending on the applicability of the constituent rules;

• (r1, . . . , rn)>, ri ∈ Rt, 1 ≤ i ≤ n represents the maximally parallel execution
of a set of rules. If no rules are applicable, then execution proceeds to the
subsequent atom in the chain.

The execution strategy itself is a notable asset in defining more complex be-
haviour at the compartment level. For instance, weak priorities can be easily ex-
pressed as sequences of maximally parallel execution blocks: (r1)>&(r2)>& . . .&(r3)>

or non-deterministic choice groups if single execution is required. Together with
composite guards, they provide an unprecedented modelling fluency and plastic-
ity for membrane systems. Whether such macro-like concepts and structures are
preferred over traditional modelling with simple but numerous compartments in
complex arrangements is a debatable aspect.

The kP system models are described in a machine readable language, called
kP–Lingua [10]. Below, we illustrate the kP systems concepts on an example, which
is slightly adjusted from [10, 2].

Example 1. A type definition in kP–Lingua.

type C1 {

choice {

> 2b : 2b -> b, a(C2) .

b -> 2b .

}

}

type C2 {

choice {

a -> a, {b, 2c}(C1) .

}

}

m1 {2x, b} (C1) - m2 {x} (C2) .

A Software Framework for Kernel P Systems 183

Above, C1, C2 denote two compartment types, which are instantiated as m1, m2,
respectively. m1 starts with the initial multiset 2x, b and m2 starts with x. The
rules of C1 are chosen non-deterministically, only one at a time – this is achieved
by the use of the key word choice. The first rule is fired only when its guard
becomes true; in other words, only when the current multiset has at least three
b’s. This rule also sends an a to the instance of C2 that is linked. In the type C2,
there is only one rule to be fired, which happens only when there is an a in the
compartment C1.

3 kPWorkbench

kPWorkbench is an integrated software suit developed to provide a tool support
for kP systems. kPWorkbench employs a set of tools and methods, allowing one
to model membrane systems and to analyse them through simulation and verifica-
tion. In the following, we briefly discuss some features of the software framework.

3.1 Features

Modeling.

kPWorkbench accepts kP system models specified in an intuitive modelling lan-
guage, kP–Lingua. kP systems accumulate the most important aspects of various P
system variants, so kP–Lingua provides a generic language to model various mem-
brane systems. kPWorkbench features a graphical model editor, permitting to
create new model files and editing existing files.

The grammar of the kP–Lingua language is written in ANTLR (ANother Tool
for Language Recognition) [1], automatically generating the necessary syntactic
and semantic analysers. ANTLR also constructs the data structures that rep-
resent the corresponding abstract syntax tree (AST) together with a traversing
functionality.

Simulation.

kPWorkbench offers two different approaches to simulate kP systems. In both
approaches, a kP–Lingua model is provided as an input, and the execution traces of
the model are returned as an output. These traces permit exploring the dynamics
of the system and observing how the system evolves over time.

In the first approach, we have developed a custom simulation tool [3], which
recreates the system dynamics as a set of simulation runs. The tool translates a kP–
Lingua specification into an internal data structure, which permits representing
compartments, containing multisets of objects and rules, and their connections
with other compartments.

In the second approach, we have integrated the Flame simulator [7], a general
purpose large scale agent based simulation environment. Flame is based on the X-
machine formalism [17], a type of extended finite state machine whose transitions

184 M. Gheorghe et al.

Prop. Pattern Lang. Construct LTL formula CTL formula

Next next p X p EX p
Existence eventually p F p EF p
Absence never p ¬(F p) ¬(EF p)
Universality always p G p AG p
Recurrence infinitely-often p G F p AG EF p
Steady-State steady-state p F G p AF AG p
Until p until q p U q A (p U q)
Response p followed-by q G (p → F q) AG (p → EF q)
Precedence p preceded-by q ¬(¬p U (¬p ∧ q)) ¬(E (¬p U (¬p ∧ q)))

Table 1: Some property patterns defined in kP–Queries and the LTL and CTL
translations. Note that LTL implicitly quantifies universally over paths (i.e. “ne-
cessity”). To complement this semantics, in CTL we translate some formulas by
assuming quantification over some paths (i.e. “possibility”).

are labelled by processing functions that operate on a (possibly infinite) set called
memory, that models the system data. Flame has been successfully used in various
applications, ranging from biology to macroeconomics.

In order to simulate kernel P system models using the Flame framework, an
automated model translation has been implemented for converting the kP–Lingua
specification into communicating X-machines [17]. One of the main advantages of
this approach is the high scalability degree and efficiency for simulating large scale
models.

Verification.

Although there have been some efforts to apply formal verification, in particular
model checking, methods and methodologies for various P systems (e.g., [19, 4]),
utilising a comprehensive, integrated and automated verification approach is a very
challenging task in the context of membrane computing. For example, it is very
difficult to transform some complex features, e.g. membrane division, dissolution
and link creation/destruction, into suitable abstractions in model checking tools.

We have successfully addressed these issues, and developed a verification envi-
ronment [10, 2] for kPWorkbench, integrating some state of the art model check-
ing tools, e.g. the Spin [18] and NuSMV [5]. The translations from a kP–Lingua
representation to the corresponding Spin and NuSMV inputs (i.e. Promela and
Smv, respectively) are automatically performed.

In order to facilitate the property specification task, kPWorkbench features
a property language, kP–Queries, based on natural language statements. The lan-
guage also provides a list of property patterns (templates), generated from most
commonly used queries (see Table 1). The property language permits specifying
the target logic (i.e. LTL and CTL) for different properties without placing a re-
quirement on a specific model checker. In this way, we can use the same set of
properties in various verification experiments.

A Software Framework for Kernel P Systems 185

3.2 System architecture

Fig. 1: The overview architecture of kPWorkbench framework

Figure 1 depicts an overview of the kPWorkbench system architecture, which
consists of three modules:

1. The kernel P (kP) module takes a kP system model specified in kP–Lingua,
which can be created or edited using a dedicated model editor, as input. The kP–
Lingua module parses the input file and validates its syntax via ANTLR (which
generates the necessary syntactic and semantic analysers). The kP–Model module
accommodates the corresponding data structures of the input model, comprising
compartment types, execution strategies, rules, multiset of objects and connections
between compartments. The kP–Lingua module instantiates a kP–Model object
and maps the AST generated by ANTLR to that object. This object is used as
Data Transfer Object (DTO) between different modules of the framework. This
separation helps developers to easily add new components to the framework.

2. The Simulation module consists of two components, kPWorkbench Sim-
ulator and Flame Translator. Both require the kP–Model object and simulator
parameters, e.g. number of steps, as input. The kPWorkbench Simulator com-
ponent is a custom simulator, which processes the multisets of objects of the input
model with respect to its execution strategies and rules. The Flame Translator
transforms the kP–Model object into a Flame Model object that aggregates agent,
function, input, condition and output classes. It assigns each compartment to an
agent, and the rules and the multiset of objects are stored as agent data. It cre-
ates a specific function for each type of execution strategy. In addition it creates
C functions that represent the system behaviour (they are executed by Flame

186 M. Gheorghe et al.

when the agent makes a transition from one state to another). The Flame Trans-
lator uses the ANTLR template group feature to produce the Flame simulator
specifications from the Flame Model object.

3. The Verification module contains three components: the Spin and NuSMV
translators and the kP–Queries module:

The Spin Translator has two main components: Translator and Promela
(Spin’s specification language). The Promela component aggregates the Promela
language specifications: MType, Array, Do statement, If statement, Init, etc. The
Translator maps the kP–Model object to a Promela object using the following
procedure [10]: (i) A compartment type is translated into a data type definition
with the multiset of objects and links to other compartments, and also with tem-
porary storage variables that provide the parallelism of P systems. (ii) Multiset of
objects is assigned to an integer array where an index denotes the object and its
value represents the multiplicity of the object. (iii) The set of rules are organised
according to the execution strategies mapped by a Proctype definition – a Promela
process. (iv) Maximal parallelism and arbitrary execution strategies are mapped
to the Do statement, and choice execution strategy is mapped to If statement.

After the mapping process, the Translator component translates the Promela
object to the corresponding Promela model, used by the Spin model checker. How-
ever, this translation is not simple and straightforward, especially the structure
changing rules, and arbitrary and maximal parallelism execution strategies com-
plicate the translation process. More details about the translation from kP System
model to the Spin model checker specification can be found in [10].

Similarly, the NuSMV Translator translates the kP–Model object to the corre-
sponding NuSMV representation (NuSMV’s specification language). The transla-
tor has two main components: Translator and NuSMV. The NuSMV component
consists of subcomponents representing the NuSMV language objects, such as
module, variables, INVARs, Case Statements, Conditions, and logical connectives.
The Translator maps the kP–Model object to the NuSMV object as follows: (i)
Each compartment is translated into a module. (ii) The content of compartments
is translated into variables. (iii) The initial multisets of the compartment are as-
signed into module parameters. (iv) Rules and guards are translated into the case
statements. (v) The behaviour of execution strategies and the parallelism of P
systems are achieved by introducing custom variables.

After the mapping process, the Translator component generates the NuSMV
model from the NuSMV object, which is then provided as input to the NuSMV
model checker. During the mapping process, we have overcome a few challenging
domain specific restrictions. For example, unlike Promela, NuSMV has restrictions
on defining arrays, and only allows accessing a value of array by a symbolic constant
index; but it does not allow assigning a value by a symbolic constant. Therefore,
instead of using arrays, we created a variable for each multiset of objects. Also,
in Promela, we can non-deterministically pick a true statement among branches
when there are more than one true statements; whereas, in NuSMV the selections
are only deterministic. It always chooses the first true statement from a list of

A Software Framework for Kernel P Systems 187

conditions. We overcome that issue by introducing an INVAR declaration whenever
a non-determinism behaviour is required.

The kP–Queries module receives a property, natural language based state-
ments, as input. The user can build properties from the property language edi-
tor. The editor interacts with the kP–Lingua model, and permits accessing the
native model elements, which simplifies the property building process. The kP–
Queries’ domain language has its own grammar, which is independent from and
much simpler than the target model checking languages. The DSL (domain spe-
cific language) of the property language is written in ANTLR, receiving the EBNF
grammar as input and generates the corresponding syntactic and semantic anal-
ysers as well as the corresponding AST. In order to simplify the traversal of the
AST, we adapt a strategy, which maps the AST to a better structured internal data
representation. To traverse between the elements of the internal data structure (a
tree-like hierarchy), we follow the Visitor design pattern. Namely, the internal data
nodes are treated as visitable entities, which are able to accept visitors and request
to visit them. Each visitor has a specific functionality for visiting every single node.
The visitor design pattern approach enables the kP–Queries module to translate
every node of the internal presentation of property into the target model checker’s
corresponding property specification language.

4 Applications

Although membrane computing is mainly inspired from biology, its application to
biological systems has been very limited due to the lack of a coherent and well-
defined framework that allows us to analyse, verify and validate these systems.
The methods and methodologies we have developed in [15, 10, 3, 2] to tackle these
issues have filled an important gap in this respect. kPWorkbench, implementing
these methodologies and algorithms, now provides a fully automated tool support,
facilitating the modelling and analysis of biological systems through simulation
and verification.

The usability and novelty of our approach has already been illustrated in some
well-known case studies, chosen from systems and synthetic biology. In [21], we
showed how our approach utilises the non-deterministic analysis of two biological
systems, the quorum sensing in P. aeruginosas (a bacterial pathogen) and the
synthetic pulse generator. Namely, we used our approach to observe various phe-
nomena in genetic regulatory networks, e.g. various interactions between molecular
species and various dependencies between molecules. Likewise, in [20], we showed
how our approach can be used to formally analyse unconventional programs, e.g.
some genetic Boolean gates.

We believe that our methods and techniques, and hence the kPWorkbench
platform, provide significant contributions to the membrane & unconventional
computing communities.

188 M. Gheorghe et al.

Prop. Pattern (i) Informal, (ii) Formal, (iii) Spin (LTL) Representations

1 Universality
(i) No more than one termination signal will be generated
(ii) always m.t <= 1
(iii) ltl prop { [] (c[0].x[t] <= 1 || state != step complete) }

2 Absence
(i) The system will never generate 15 as a square number
(ii) never m.s = 15
(iii) ltl prop { !(<> (c[0].x[s] == 15 && state == step complete)) }

3 Steady-state
(i) In the long run, the system will converge to a state in which, if the termination
signal is generated, no more a objects will be available
(ii) steady-state (m.a = 0 implies m.t = 1)
(iii) ltl prop { <> ([] ((c[0].x[a] == 0 -> c[0].x[t] == 1) ||

state != step complete) && state != step complete) }
Prop. Pattern (i) Informal, (ii) Formal, (iii) NuSMV (CTL) Representations

4 Existence
(i) The system will eventually consume all a objects, on some runs
(ii) eventually m.a = 0
(iii) SPEC EF m.a = 0

5 Existence
(i) On some runs the system will eventually halt
(ii) eventually m.t = 1
(iii) SPEC EF m.t = 1

6 Universality
(i) No more than one termination signal will be generated
(ii) always m.t <= 1
(iii) SPEC AG m.t <= 1

7 Absence
(i) The system will never generate 15 as a square number
(ii) never m.s = 15
(iii) SPEC !(EF m.s = 15)

8 Precedence
(i) The consumption of all a objects will always be preceded by a halting signal
(ii) m.a = 0 preceded-by m.t = 1
(iii) SPEC !(E [!(m.a = 0) U (!(m.a = 0) & m.t = 1)])

9 Response
(i) By starting the computation with at least one a object, on some runs the system
will eventually consume all of them
(ii) m.a >0 followed-by m.a = 0
(iii) SPEC AG (m.a > 0 -> EF m.a = 0)

10 Response
(i) A halting signal will always be followed by the consumption of all a objects
(ii) m.t = 1 followed-by m.a = 0
(iii) SPEC AG (m.t = 1 -> EF m.a = 0)

Table 2: List of properties derived from the property language and their represen-
tations in different formats.

5 Examples

5.1 Generating square numbers

We present below a kernel P systems model that generates square numbers (start-
ing with 1) each step. The multiplicity of object “s” is equal to the square number
produced each step.

type main {

max {

= t: a -> {} .

< t: a -> a, 2b, s .

< t: a -> a, s, t .

< t: b -> b, s .

A Software Framework for Kernel P Systems 189

m0

m1 m2

m3

Fig. 2: The structure.

}

}

m {a} (main) .

An execution trace for this model can be visualised as follows:

a

a 2b s

a 4b 4s

a 6b 9s

...

kPWorkbench automatically converts the kP-Lingua model into the corre-
sponding input languages of the Spin, and NuSMV model checkers. In order to
verify that the problem works as desired, we have constructed a set of properties
specified in kP-Queries, listed in Table 2. The applied pattern types are given in
the second column of the table. For each property we provide the following infor-
mation; (i) informal description of each kP-Query, (ii) the formal kP-Query, (iii)
the translated form of the kP-Query into the LTL specifications written in Spin
modelling language, and CTL specifications written in the NuSMV language. The
results of all queries are positive, as expected.

5.2 Broadcasting with acknowledgement

In this case study, we consider broadcasting with acknowledgement in ad-hoc net-
works. Each level of nodes in the hierarchy has associated a unique type with
communication rules to neighbouring (lower and upper) levels. This is the only
way we can simulate signalling with kP systems such that we do not hard-wire
the target membranes in communication rules, i.e. assume we do not know how
many child-nodes are connected to each parent as long as we group them by the
same type; evidently, this only applies to tree structures. The kP Systems model
written in kP–Lingua is given as follows:

type L0 {

max {

a -> b, a (L1), a (L2) .

}

}

190 M. Gheorghe et al.

type L1 {

max {

a, c -> c (L0) .

}

}

type L2 {

max {

a -> b, a (L3) .

b, c -> c (L0) .

}

}

type L3 {

max {

a, c -> c (L2) .

}

}

m0 {a} (L0) .

m1 {c} (L1) - m0 .

m2 {} (L2) - m0.

m3 {c} (L3) - m2 .

In order to verify that the model works as desired, we have verified some
properties, presented in Table 3. The results are positive, except Properties 1 and
5, as expected. These results confirm the desired system behaviour.

6 Conclusion

We have presented the kPWorkbench toolset developed to support kernel P
systems. kPWorkbench integrates several simulation and verification tools and
methods and permits modelling and analysis of membrane systems. It also features
a property language based on natural language statements to facilitate property
specification. These features make kPWorkbench the only available integrated
toolset permitting non-deterministic analysis (through simulation and verification)
of membrane systems.

We are planning to work on more case studies from different fields, e.g., systems
& synthetic biology, engineering and economics.

Acknowledgements. The work of FI and LM was supported by a grant of the
Romanian National Authority for Scientific Research, CNCS-UEFISCDI (project
number: PN-II-ID-PCE-2011-3-0688). MG and SK acknowledge the support pro-
vided for synthetic biology research by EPSRC ROADBLOCK (project number:
EP/I031812/1).

A Software Framework for Kernel P Systems 191

Prop. Pattern (i) Informal, (ii) Formal, (iii) Spin (LTL) Representations

3 Existence
(i) The terminal nodes will receive the broadcast message at the same time
(ii) eventually (m1.a >0 and m3.a >0)
(iii) ltl prop { <> ((c[0].x[a] > 0 && c[0].x[a] > 0) &&

state == step complete) }

3 Absence
(i) The root node will never receive an acknowledgement without sending a broadcast
(ii) never m0.a >0 and m0.c >0
(iii) ltl prop { !(<> ((c[0].x[a] > 0 && c[0].x[c] > 0) &&

state == step complete)) }

3 Response
(i) The node m2 will always receive broadcast message before its child node (m3)
(ii) m2.a = 1 followed-by m3.a = 1
(iii) ltl prop { [] ((c[0].x[a] == 1 -> <> (c[0].x[a] == 1 &&

state == step complete)) || state != step complete) }
Prop. Pattern (i) Informal, (ii) Formal, (iii) NuSMV (CTL) Representations

4 Existence
(i) The node m1 will eventually receive the broadcast message
(ii) eventually m1.a >0
(iii) SPEC EF m1.a > 0

5 Existence
(i) The terminal nodes will receive the broadcast message at the same time
(ii) eventually m1.a >0 and m3.a >0
(iii) SPEC EF (m1.a > 0 & m3.a > 0)

6 Absence
(i) The root node will never receive an acknowledgement without sending a broadcast
(ii) never m0.a >0 and m0.c >0
(iii) SPEC !(EF (m0.a > 0 & m0.c > 0))

7 Response
(i) The node m2 will always receive the broadcast message before its child node (m3)
(ii) m2.a = 1 followed-by m3.a = 1
(iii) SPEC AG (m2.a = 1 -> EF m3.a = 1)

9 Steady-state

(i) In the long run, the system will converge to a state in which the root node
will have been received the acknowledgement from all the terminal nodes and
no more broadcasts will occur
(ii) steady-state (m0.c = 2 implies m0.a = 0)
(iii) SPEC AF (AG (m0.c = 2 -> m0.a = 0))

9 Steady-state

(i) In the long run, the system will converge to a state in which the root node
will have been received the acknowledgement from all the terminal nodes and
no more acknowledgements will occur
(ii) steady-state (m0.c = 2 implies (m1.c = 0 and m3.c = 0))
(iii) SPEC AF (AG (m0.c = 2 -> (m1.c = 0 & m3.c = 0)))

Table 3: List of properties derived from the property language and their represen-
tations in different formats.

References

1. ANTLR website, url: http://www.antlr.org
2. Bakir, M.E., Ipate, F., Konur, S., Mierlă, L., Niculescu, I.: Extended simulation

and verification platform for kernel P systems. In: 15th International Conference on
Membrane Computing. LNCS, vol. 8961, pp. 158–168. Springer (2014)

3. Bakir, M.E., Konur, S., Gheorghe, M., Niculescu, I., Ipate, F.: High performance
simulations of kernel P systems. In: Proceedings of the 2014 IEEE 16th Interna-
tional Conference on High Performance Computing and Communication. pp. 409–
412. HPCC ’14, Paris, France (2014)

4. Blakes, J., Twycross, J., Konur, S., Romero-Campero, F., Krasnogor, N., Gheorghe,
M.: Infobiotics workbench: A P systems based tool for systems and synthetic biology.
In: [11], pp. 1–41

192 M. Gheorghe et al.

5. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV version 2: An open source tool for symbolic
model checking. In: Proc. International Conference on Computer-Aided Verification
(CAV 2002). LNCS, vol. 2404, pp. 359–364. Springer, Copenhagen, Denmark (2002)

6. Ciobanu, G., Pérez-Jiménez, M.J., Păun, G. (eds.): Applications of Membrane Com-
puting. Springer (2006)

7. Coakley, S., Gheorghe, M., Holcombe, M., Chin, S., Worth, D., Greenough, C.: Ex-
ploitation of high performance computing in the FLAME agent-based simulation
framework. In: Proceedings of the IEEE 14th International Conference on High Per-
formance Computing and Communication. pp. 538–545. HPCC ’12, Liverpool, UK
(2012)

8. Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.: A uniform family
of tissue P systems with cell division solving 3-COL in a linear time. Theoretical
Computer Science 404, 76–87 (2008)

9. Dinneen, M.J., Yun-Bum, K., Nicolescu, R.: Faster synchronization in P systems.
Natural Computing 11(4), 637–651 (2012)

10. Dragomir, C., Ipate, F., Konur, S., Lefticaru, R., Mierlă, L.: Model checking kernel
P systems. In: 14th International Conference on Membrane Computing. LNCS, vol.
8340, pp. 151–172. Springer (2013)

11. Frisco, P., Gheorghe, M., Pérez-Jiménez, M.J. (eds.): Applications of Membrane
Computing in Systems and Synthetic Biology. Springer (2014)

12. Gheorghe, M., Ipate, F., Dragomir, C., Mierlă, L., Valencia-Cabrera, L., Garćıa-
Quismondo, M., Pérez-Jiménez, M.J.: Kernel P systems - version 1. In: 11th Brain-
storming Week on Membrane Computing, pp. 97–124. Fénix Editora (2013)

13. Gheorghe, M., Ipate, F., Lefticaru, R., Pérez-Jiménez, M.J., Ţurcanu, A., Valencia-
Cabrera, L., Garćıa-Quismondo, M., Mierlă, L.: 3-Col problem modelling using simple
kernel P systems. Int. Journal of Computer Mathematics 90(4), 816–830 (2012)

14. Gheorghe, M., Păun, G., Pérez-Jiménez, M.J., Rozenberg, G.: Research frontiers of
membrane computing: Open problems and research topics. International Journal of
Foundations of Computer Scence 24, 547–624 (2013)

15. Gheorghe, M., Ipate, F., Dragomir, C.: Kernel P systems. In: 10th Brainstorming
Week on Membrane Computing, pp. 153–170. Fénix Editora (2012)

16. Gimel’farb, G.L., Nicolescu, R., Ragavan, S.: P system implementation of dynamic
programming stereo. Journal of Mathematical Imaging and Vision 47(1–2), 13–26
(2013)

17. Holcombe, M.: X-machines as a basis for dynamic system specification. Softw. Eng.
J. 3(2), 69–76 (1988)

18. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Soft. Eng. 23(5),
275–295 (1997)

19. Ipate, F., Lefticaru, R., Tudose, C.: Formal verification of P systems using Spin.
International Journal of Foundations of Computer Science 22(1), 133–142 (2011)

20. Konur, S., Gheorghe, M., Dragomir, C., Ipate, F., Krasnogor, N.: Conventional ver-
ification for unconventional computing: a genetic XOR gate example. Fundamenta
Informaticae 134(1-2), 97–110 (2014)

21. Konur, S., Gheorghe, M., Dragomir, C., Mierlă, L., Ipate, F., Krasnogor, N.: Quali-
tative and quantitative analysis of systems and synthetic biology constructs using P
systems. ACS Synthetic Biology 4(1), 83–92 (2015)

22. Păun, G.: Computing with membranes. Journal of Computer and System Sciences
61(1), 108–143 (2000)

A Software Framework for Kernel P Systems 193

23. Păun, G., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press (2010)

24. Rozenberg, G., Bäck, T., Kok, J.N. (eds.): Handbook of Natural Computing. Springer
(2012)

The Pole Balancing Problem
with Enzymatic Numerical P Systems

Domingo Llorente–Rivera1, Miguel A. Gutiérrez–Naranjo2

1 Department of Computer Science and Artificial Intelligence
University of Seville, Seville, Spain
domingo.llorente.rivera@gmail.com

2Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla, 41012, Spain
magutier@us.es

Summary. Pole balancing is a control benchmark widely used in engineering. It involves
a pole affixed to a cart via a joint which allows movement along a single axis. In this
problem, the movement of the cart is restricted to the horizontal axis by a track and
the pole is free to move about the horizontal axis of the pivot. The system is extremely
unstable and, the cart must be in constant movement in order to preserve the equilibrium
and avoid the fall of the pendulum.

In this paper, we study the pole balancing problem in the framework of Enzymatic
Numerical P Systems and provide some clues for using them in more complex systems.

1 Introduction

Numerical P systems (NPS for short) were introduced in [7] with the aim of adding
ideas from economic and business processes to the framework of Membrane Com-
puting. They represent a break with respect to the previous P system models
since they introduce the concept of variable and real numbers in the framework of
Membrane Computing. In the general framework of Membrane Computing (called
symbolic P systems, in order to stress the differences with numerical P systems),
membranes can be seen as encapsulations of the Euclidean space where multisets
of objects are placed. The computation in such devices is performed by the applica-
tion of rules which send objects from one to other membrane (maybe modified) or
modify the membrane structure (see [8]). In NPS, membranes do not contain mul-
tisets of objects. They contain variables with associated numerical values. These
numerical values can be integer, rational or real numbers. Instead of using rules in-
spired in biochemical reactions, the computation of these new devices is performed
by programs consisting of two parts: a production function and a repartition proto-
col. Production functions are real-valued functions of type F : Rk → R which take

196 D. Llorente-Rivera, M.A. Gutiérrez-Naranjo

the k variables which appear in the membrane where the program is defined and
computes a real value. The computed number is then distributed among different
variables according to the repartition protocol.

In spite of its undoubted potential as computational devices, in the literature
there are very few papers devoted to this model (see, e.g., [1, 2, 3, 4, 5, 9, 10, 11]
and references therein). Most of them devoted to enzymatic numerical P system
(ENPS), a model introduced in [3] where enzymatic-like variables are introduced
in the NPS in order to avoid the non-determinism in the choice of a program in a
membrane.

Although the original inspiration of numerical P system was the economic
processes, the main field of the applications has been control problems. These
problems are on the basis of many industrial processes and the design of software
controllers for more and more sophisticated devices is nowadays a challenge for
researchers. The household thermostat is a classic example of control problem:
provided the changing temperature outside, the thermostat must maintain the
temperature inside home close to a desired level. This implies react to the changes
in an unpredictable real-world providing an appropriate response in a short interval
of time.

Beyond simple examples, the design of controllers for many real world is an
extremely complex task. If we extend the thermostat example to a more general
climate control system, a linear controller will not be able to regulate the temper-
ature adequately.

Usually, the control system is a software program that takes the right decision
for the input. For this input-output interaction, the software receives an input
from the sensor and takes a decision as output. It is crucial for the final solution
to obtain a real-time response in less than 10 milliseconds. For this reason, the
control software must be as small as possible in order to obtain a quick response.

In this paper we go on with the study of NPS as devices for control problem
(see, e.g. [2, 4]). As pointed out by Gh. Păun in [6], controlling drones can be
a good application for this model and it can be an extension of the use of NPS
for 2D travelling robots found in the literature. Drone is the popular name for an
unmanned aerial vehicle which can be seen as a mobile 3D robot. From a technical
point of view, the main difference between the control of 2D travelling robots and
drones is the stability. The drone must keep the horizontal position as much as
possible regardless the air conditions. This implies the effective real-time control of
the different engines according to the changes in the environment. The control of
drones is nowadays a research field for the industry and it is a really hard task. In
a certain sense, the stability problem of a drone can be seen as the generalization
of a well-known problem in control, the pole-balancing problem.

The pole-balancing problem is a feedback control system with the desired be-
havior of balancing a pole (an inverted pendulum) that is connected to a motor
driven cart by a ball-baring pivot (see Fig. 1). In this problem, the movement of
the cart is restricted to the horizontal axis by a track, and the pole is free to move
about the horizontal axis of the pivot. The system is extremely unstable and the

The Pole Balancing Problem with ENPS 197

Fig. 1. Pole Balancing problem

cart must be in constant movement in order to preserve the equilibrium and avoid
the fall of the pendulum. In a more general situation (a drone, by example) the
movement of the device must be controlled in three degrees of freedom, but it is
essentially the same problem, so the pole-balancing problem can be seen as a first
approach.

In this paper, we provide a theoretical study of the pole-balancing problem in
the framework of the ENPS and provide some ideas for further uses of ENPS in
control problems. The paper is organized as follows: Firstly, a brief introduction
to ENPS and to the Pole Balancing Problem is given. Next we provide some hints
about how the problem can be dealt with ENPS and finally some conclusions and
future work lines are presented.

2 Enzymatic Numerical P Systems

Next, we briefly recall the definition of enzymatic numerical P systems, More
details can be found in [3]. An enzymatic numerical P system is formally expressed
by:

Π = (m,H, µ, (V ar1, P r1, V ar1(0)), . . . , (V arm, P rm, V arm(0)))

where:

• m is the number of membranes used in the system (degree of Π) (m ≥ 1);
• H is an alphabet that contains m symbols (the labels of the membranes);
• µ is a tree-like membrane structure;
• V ari is a set of variables from membrane i, and the initial values for these

variables are V ari(0), i ∈ {1, . . . ,m};
• Pri is the set of programs from membrane i, i ∈ {1, . . . ,m}. Programs process

variables and have one of the following forms:
(a) Non-enzymatic form

Prj,i = Fj,i(x1,i, . . . , xki,i)→ cj,1|v1 + · · ·+ cj,ni |vni

198 D. Llorente-Rivera, M.A. Gutiérrez-Naranjo

(b) Enzymatic form

Prj,i = Fj,i(x1,i, . . . , xki,i)(ej →)→ cj,1|v1 + · · ·+ cj,ni |vni

where ej ∈ V ari is an enzyme-like variable which controls the activation of
the rule.

Rules have two components, a production function and a repartition protocol.
The l-th program of the membrane i has the following form:

Prl,i = (Fl,i, cl,1|v1 + · · ·+ cl,ni
|vni

)

where Fl,i : Rcard(V ari) → R is a real-valued function such that computes a real
number from the values of the variables in V ari; cl,1, . . . , cl,ni

are natural numbers
and v1, . . . , vn1

are the variables of the membrane i together with the variables
from the immediately upper membrane, and those from the immediately lower
membranes. If the corresponding ci is 0, the expression 0|vi is omitted.

If card(Pri) = 1 for i ∈ {1, . . . ,m}, then there is one production function per
each membrane and the system is deterministic. In case of multiple programs per
membrane, one rule is non-deterministically selected.

A universal clock is considered and, at each time t, all the variables have
associated a value. The computation is performed by computing the new value of
the variables. Such computation is performed in the following way. A rule is active
if it is in the non enzymatic form or if the associated enzyme has a greater value
than one of the variables involved in the production function. In parallel, in each
membrane an active program is chosen and its production function is used in order
to calculate a production from the value of the local variables. Once calculated,
the repartition protocol is used in order to compute the proportion of such value
that it is send to each variable. The coefficients c1 . . . cn in the repartition protocol
c1|v1+ · · ·+cn|vn specify the proportion of production distributed to each variable
v1 . . . vn. Namely, such protocol sends to the variable vi the value

qi =
production × ci∑n

i=j cj

The new value of the variable is the addition of the contribution of each applied
program. In each membrane of the system one uses one program at the time, and
this happens in parallel in all membranes.

A variable x is called productive if it does appear in a production function,
and then is consumed and reset to zero, otherwise the initial value is added to the
received contributions. The values of the variables at next time step are computed
by using repartition protocols, and so, portions distributed to variables are added
to form the new value.

The Pole Balancing Problem with ENPS 199

Fig. 2. Cart of the Pole Balancing

3 The Pole Balancing Problem

Pole balancing is an control benchmark historically used in engineering. It involves
a pole affixed to a cart via a joint which allows movement along a single axis. The
cart is able to move along a track of fixed length.

A trial typically begins with the pole off-center by a certain number of de-
grees. The goal is to keep the pole from falling over by moving the cart in either
direction, without falling off either edge of the track. The controller receives as
input information about the system at each time step, such as the positions of the
poles, their respective velocities, the position and velocity of the cart, etc. An even
more difficult extension of this problem involves a cart which can move in a three
dimensional space via three or more engines. In such situation the target is not
keeping a pole in a vertical position but keeping the cart as horizontal as possible.
In this paper we do not consider such generalization and focus on the simple pole
balancing problem.

The pole balancing problem can be analysed as the conjunction of two models:
focusing on the cart (see Fig. 2) and focusing on the bar (see Fig. 3). Obviously,
the applied force over one of these models results in the modification of the state of
the other model. In the first model (Fig. 2) several parameters must be considered:
F , force for controlling the system; FFriction, force of the friction of the cart in its
movement on the railway; M , mass of the cart; N , force of the pole over the cart.
The second model focus on the bar of the pole balancing (Fig. 3), where θ is the
angle of the bar with respect to the vertical, l is the length of the bar and m is the
mass of the ball placed on the top of the bar. For the control of the pole balancing,
the control software (the NPS in our study) has to know the current state of the
pole, (x, θ) and (ẋ, ẍ, θ̇, θ̈), where x represents the position of the cart, and ẋ, ẍ
the speed and acceleration respectively. The angle θ represents the angle of the bar
with respect to the vertical position and θ̇, θ̈ the angular speed and acceleration
(resp).

The equations that define this system are:

F = Mẍ+ bẋ+N (1)

N = mẍ+mlθ̈ cos θ −mlθ̇2 sin θ (2)

200 D. Llorente-Rivera, M.A. Gutiérrez-Naranjo

The system of control is represented by the equation (3), which is the result of
adding the equations (1) and (2), where F is the output for the system of control
and the force that the controller has to apply to the system, and b is the friction
of the cart.

F = (M +m)ẍ+ bẋ+mlθ̈ cos θ −mlθ̇2 sin θ (3)

For computing cos θ and sin θ using ENPS, we use the same idea proposed in
[5] where the functions are approximated by using their analytic expressions as
infinite sums shown in equations (4) and (5). There approaches will be calculated
in the designed ENPS by the membranes Cosine and Sine, respectively.

cos(x) =

∞∑
0

(−1)n
x2n

(2n)!
(4)

sin(x) =

∞∑
0

(−1)n
x(2n+1)

(2n+ 1)!
(5)

The analytic expression of the cosine can be written as

cos(x) =

∞∑
n=0

acn

where ac0 = 1 and acn is recursively obtained as follows:

acn+1 = (−acn)× θ2

(2n)(2n− 1)

Analogously, the analytic expression of the sine can be written as

sin(x) =

∞∑
0

asn

where as0 = 1 and asn is computed as

asn+1 = (−asn)× θ2

(2n)(2n+ 1)

Fig. 3. Bar of the Pole Balancing

The Pole Balancing Problem with ENPS 201

Fig. 4. ENPS membrane applied system for control pole balancing

4 ENPS Applied to the Pole Balancing Problem

In this section, we report a work-in-progress on the design of an ENPS as a software
solution for the control of the pole balancing problem. To this aim, the different
forces that affect the system are examined and the interaction among them are
computed as a flow of information between the variables of the ENPS. The basic
schema is chown in Fig. 3.

The membrane system shown in Fig. 4 is proposed as a preliminar solution for
the pole balancing problem, using three membranes: the first membrane Controller
calculates the necessary force in order to keep the vertical position; the membranes
Cosine and Sine calculate the cos and sin functions for the angle θ. The ENPS can
be considered as a software module which receives as input the data ẋ, ẍ, θ, θ̇, θ̈
and outputs the force F for controlling the system.

The control of the pole balancing is calculated by the rule Pr11 which encodes
the Equation 3. This rule needs the constants: M , the cart mass; m, the mass of
the ball; and l, the length of the bar. It takes as input the state of the system,
encoded in the variables: acc, acceleration of the cart (ẍ); speed, velocity of the
cart (ẋ); angleSpeed (θ̇) and angleAcc, (θ̈) angle speed and acceleration. In order
to approximate cos θ and sin θ from θ, the Controller membrane uses the rules
Pr21 and Pr31. The cosine and sine are computed recursively by the rules Pr12
for the cosine and Pr13 for the sine, until the current errors, Ec for the cosine
and Es for the sine, are less than Erc and Ers respectively as it is proposed in

202 D. Llorente-Rivera, M.A. Gutiérrez-Naranjo

[12].Finally, the system returns the control related to equation 3 with the cos θ
and sin θ calculated previously.

Membranes Cosine and Sine approximate the cos and sin functions by using
the analytic expressions from Eq. (4) and (5). These membranes return cos by the
rule Pr12 and sin by the rule Pr13, where the system adds the result for each
one in cos and sin. The membranes stop when the current error is less than the
errors provided as parameters, Erc and Ers. The system stop is controlled by rule
Pr62 for the cosine and Pr63 for the sine as the current error is lower than the
parameter Erc for the cosine membrane and Ers for the sine membrane.

The following trace shows how the system from Fig. 4 should work:

• Membrane Controller:
– The input of the system ẋ0, ẍ0, θ0, θ̇0, θ̈0 are the values of the correspond-

ing variables in the initial configuration. We also consider two variables
cosApp and sinApp where the approximated values of the cos and sin
functions will be stored.

– Production Function:
· F1 = (M +m)ẍ+ bẋ+mlθ̈ cos θ −mlθ̇2 sin θ;
· F2 = cos θ;
· F3 = sin θ;

• Membrane Cosine:
– Variables: ac has an initial value of 1, nc has an initial value of 1, Cc has

an initial value of ∞, Ec has an initial value of 1;
– Production function:
· F4 = (−ac)× θ2

(2nc)(2nc−1) ;

· F5 = nc+ 1;
· F6 = θ;
· F7 = ac+ cos;
· F8 = |ac|;
· F9 = −∞;

– Reparation protocol: ac receives 1 (C21 = 1), nc receives 1 (C22 = 1), cos
receives 1 (C23 = 1), Cc receives 1 (C24 = 1), Ec receives 1 (C25 = 1);

• Membrane Sine:
– Variables: as has an initial value of 1, ns has an initial value of 1, Cs has

an initial value of ∞, Es has an initial value of 1;
– Production function:
· F10 = (−as)× θ2

(2ns)(2ns+1) ;

· F11 = ns+ 1;
· F12 = θ;
· F13 = as ∗ θ;
· F14 = |as|;
· F15 = −∞;

– Reparation protocol: as receives 1 (C31 = 1), ns receives 1 (C32 = 1), sin
receives 1 (C33 = 1), Cs receive ∞ (C34 = 1), Es receive 1 (C35 = 1);

The Pole Balancing Problem with ENPS 203

• Step 1
– Membrane Cosine:
· ac21 = 1, nc22 = 1,cos23 = 0, θ = 1, Cc =∞, Ec = 1, Erc = 0.0001;
· Compute productions function’s value:

· F4 = (−ac21)× θ2

(2nc22)(2nc22−1) ⇒ F4 = − 1
2 ;

· F5 = nc22 + 1⇒ F5 = 2;
· F6 = θ ⇒ F6 = 1;
· F7 = ac21 + cos23 ⇒ F7 = 1;
· F8 = ac21 ⇒ F8 = 1;
· F9 is not executed, because Cc− (Erc−Ec) =∞− (0.0001− 1) =
∞+ 1 is not bigger than Cc;

· Compute ’unitary portion’:
· q4 = F4/C21 ⇒ ac21 = − 1

2 ;
· q5 = F5/C22 ⇒ nc22 = 2;
· q6 = F6/θ ⇒ Θ = 1;
· q7 = F7/C23 ⇒ cos23 = 1;
· q8 = F8/C25 ⇒ Ec = 1;

– Membrane Sine:
· as31 = 1, ns32 = 1,sin33 = 0, θ = 1, Cs =∞, Es = 1, Ers = 0.0001;
· Compute productions function’s value:

· F10 = (−as31)× θ2

(2ns32)(2ns32+1) ⇒ F8 = − 1
6 ;

· F11 = ns32 + 1⇒ F9 = 2;
· F12 = θ ⇒ F10 = 1;
· F13 = as31 + sin33 ⇒ F11 = 1;
· F14 = |as31| ⇒ F14 = 1;
· F15 is not executed, because Cs− (Ers−Es) =∞− (0.0001− 1) =
∞+ 1 is not bigger than Cs;

· Compute ’unitary portion’:
· q10 = F10/C31 ⇒ as31 = − 1

6 ;
· q11 = F11/C32 ⇒ ns32 = 2;
· q12 = F12/θ ⇒ Θ = 1;
· q13 = F13/C33 ⇒ sin33 = 1;
· q14 = F14/C35 ⇒ Es = 1;

• Step 2:
– Membrane Cosine:
· ac21 = − 1

2 , nc22 = 2,cos23 = 1, θ = 1, Cc =∞, Ec = 1, Erc = 0.0001;
· Compute productions function’s value:

· F4 = (−ac21)× θ2

(2nc22)(2nc22−1) ⇒ F4 = 1
24 ;

· F5 = nc22 + 1⇒ F5 = 3;
· F6 = θ ⇒ F6 = 1;
· F7 = ac21 + cos23 ⇒ F7 = − 1

2 ;
· F8 = ac21 ⇒ F8 = 1

2 ;
· F9 is not executed, because Cc− (Erc−Ec) =∞− (0.0001− 1) =
∞+ 1 is not bigger than Cc;

204 D. Llorente-Rivera, M.A. Gutiérrez-Naranjo

· Compute ’unitary portion’:
· q4 = F4/C23 ⇒ ac23 = 1

24 ;
· q5 = F5/C22 ⇒ nc22 = 3;
· q6 = F6/θ ⇒ Θ = 1;
· q7 = F7/C23 ⇒ cos23 = 1

2 ;
· q8 = F8/C25 ⇒ Ec = 1

2 ;
– Membrane Sine:
· as31 = − 1

6 , ns32 = 2,sin33 = 1, θ = 1, Cs =∞, Es = 1, Ers = 0.0001;
· Compute productions function’s value:

· F10 = (−as31)× θ2

(2ns32)(2ns32+1) ⇒ F8 = 1
120 ;

· F11 = ns32 + 1⇒ F9 = 3;
· F12 = θ ⇒ F10 = 1;
· F13 = as31 + ns33 ⇒ F11 = 1− 1

6 = 5
6 ;

· F14 = |as31| ⇒ F14 = 1
6 ;

· F15 is not executed, because Cs− (Ers−Es) =∞− (0.0001− 1) =
∞+ 1 is not bigger than Cs;

· Compute ’unitary portion’:
· q10 = F10/C33 ⇒ as33 = 1

120 ;
· q11 = F11/C32 ⇒ ns32 = 3;
· q12 = F12/θ ⇒ Θ = 1;
· q13 = F13/C33 ⇒ sin33 = 5

6 ;
· q14 = F14/C35 ⇒ Es = 1

6 ;
• Step N-1:

– Using the same reason for the membranes Cosine and Sine, both mem-
branes are executed until error is less than Erc, Ec < Erc, for the Cosine
and Ers, Es < Ers, for the Sine. Then the execution stops.

– Membrane Controller:
· cos θ = 1, sin θ = 1, F [0];
· Compute productions function’s value:
· F1 = (M +m)ẍ+ bẋ+mlθ̈ cos θ −mlθ̇2 sin θ ⇒ F1 = (M +m)ẍ+

bẋ+mlθ̈ −mlθ̇2;
· F2 = cos θ ⇒ F2 = cos;
· F3 = sin θ ⇒ F3 = sin;

· Compute ’unitary portion’:
· q1 = F1/(C11 + C12)⇒ F13 = (M +m)ẍ+ bẋ+mlθ̈ −mlθ̇2;
· q2 = F2/C11 ⇒ cos θ = cos;
· q3 = F3/C12 ⇒ sinΘ = sin;

• Step N:
– Membrane Controller:
· cos θ = cos, sin θ = sin, F13 = (M +m)ẍ+ bẋ+mlθ̈ −mlθ̇2;
· Compute productions function’s value:
· F1 = (M +m)ẍ+ bẋ+mlθ̈ cos θ −mlθ̇2 sin θ ⇒ F1 = (M +m)ẍ+

bẋ+mlθ̈ cos−mlθ̇2 sin;
· F2 = cos θ ⇒ F2 = cos;

The Pole Balancing Problem with ENPS 205

· F3 = sin θ ⇒ F3 = sin;
· Compute ’unitary portion’:
· q1 = F1/(C11 + C12)⇒ F13 = (M +m)ẍ+ bẋ+mlθ̈ cos−mlθ̇2 sin;
· q2 = F2/C11 ⇒ cos θ = cos;
· q3 = F3/C12 ⇒ sinΘ = sin;

5 Conclusions and Future Work

In this paper, we study the use of the ENPS model in a control benchmark widely
used in engineering and report our work-in-progress on the design of an efficient
system able to control real-life pole balancing devices. Such design can be seen
of a first approach to more complex control systems. One of the most important
features of such control systems is the simplicity since they must provide an answer
as soon as possible in order to effectively solve real-time problems. In this first
approach, the solution is based on the mathematical approach known as PID,
Proportional Integral Derivative, but other approaches are possible.

After completing the design, the immediate future work is to prove the designed
NPS by integrating a NPS simulator as SNUPS [1] with a physics simulation
environment as Webots. The experimental results will provide useful feedback in
order to improve our design to make competitive with other control software.

A future second stage will be to generalize the design to 3D vehicles and check
the design with the appropriate drone flight simulator.

Acknowledgements

MAGN acknowledges the support of the project TIN2012-37434 of the Ministerio
de Economı́a y Competitividad of Spain.

References

1. Buiu, C., Arsene, O., Cipu, C., Patrascu, M.: A software tool for modeling and
simulation of numerical P systems. Biosystems 103(3), 442–447 (2011)

2. Buiu, C., Vasile, C., Arsene, O.: Development of membrane controllers for mobile
robots. Information Sciences 187, 33–51 (2012)

3. Pavel, A., Arsene, O., Buiu, C.: Enzymatic numerical P systems - a new class of
membrane computing systems. In: BIC-TA. pp. 1331–1336. IEEE (2010)

4. Pavel, A.B., Buiu, C.: Using enzymatic numerical P systems for modeling mobile
robot controllers. Natural Computing 11(3), 387–393 (2012)

5. Pavel, A.B., Vasile, C.I., Dumitrache, I.: Robot Localization Implemented with En-
zymatic Numerical P Systems. In: Prescott, T.J., Lepora, N.F., Mura, A., Verschure,
P.F.M.J. (eds.) Living Machines. Lecture Notes in Computer Science, vol. 7375, pp.
204–215. Springer (2012)

206 D. Llorente-Rivera, M.A. Gutiérrez-Naranjo

6. Păun, Gh.: Some quick research topics., In these proceedings.
7. Păun, Gh., Păun, R.A.: Membrane computing and economics: Numerical P systems.

Fundamenta Informaticae 73(1-2), 213–227 (2006)
8. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane

Computing. Oxford University Press, Oxford, England (2010)
9. Vasile, C.I., Pavel, A.B., Dumitrache, I., Kelemen, J.: Implementing obstacle avoid-

ance and follower behaviors on koala robots using numerical P systems. In: Garćıa-
Quismondo, M., Maćıas-Ramos, L.F., Păun, Gh., Valencia-Cabrera, L. (eds.) Tenth
Brainstorming Week on Membrane Computing. vol. II, pp. 215–227. Fénix Editora,
Sevilla, Spain (2012)

10. Vasile, C.I., Pavel, A.B., Dumitrache, I., Păun, Gh.: On the power of enzymatic
numerical P systems. Acta Informatica 49(6), 395–412 (2012)

11. Vasile, C.I., Pavel, A.B., Dumitrache, I.: Universality of enzymatic numerical p sys-
tems. International Journal of Computer Mathematics 90(4), 869–879 (2013)

12. Ana Brânduçsa Pavel, Cristian Ioan Vasile and Ioan Dumitrach: Robot Localization
Implemented with Enzymatic Numerical P Systems. Living Machines 2012, 204-215,
2012

Monodirectional P Systems?

Alberto Leporati, Luca Manzoni, Giancarlo Mauri,
Antonio E. Porreca, Claudio Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione
Università degli Studi di Milano-Bicocca
Viale Sarca 336/14, 20126 Milano, Italy
{leporati,luca.manzoni,mauri,porreca,zandron}@disco.unimib.it

Summary. We investigate the influence that the flow of information in membrane systems
has on their computational complexity. In particular, we analyse the behaviour of P systems
with active membranes where communication only happens from a membrane towards
its parent, and never in the opposite direction. We prove that these “monodirectional
P systems” are, when working in polynomial time and under standard complexity-theoretic
assumptions, much less powerful than unrestricted ones: indeed, they characterise classes
of problems defined by polynomial-time Turing machines with NP oracles, rather than
the whole class PSPACE of problems solvable in polynomial space.

1 Introduction

P systems with active membranes working in polynomial time are known to be able
to solve all PSPACE-complete problems [1]; this exploits membrane structures
of polynomial depth and a bidirectional flow of information (in terms of moving
objects or changing charges), both from a parent membrane to its children, and
the in opposite direction.

When restricting the depth of the membrane structures of a family of P systems
to a constant amount, it is still possible to solve problems in the counting hier-
archy CH, defined in terms of polynomial-time Turing machines with oracles for
counting problems [4]. In the proof of this result, it has been noticed that send-in

communication rules of the form a []αh → [b]βh allow us to check whether the amount
of objects located in a membrane exceeds a (possibly exponential) threshold in
polynomial time.

It is then natural to ask whether that feature is actually necessary in order to
obtain the power of counting in polynomial time. In this paper we prove (under the
standard complexity-theoretic assumption that PNP 6= P#P) that this is actually

? This work was partially supported by Università degli Studi di Milano-Bicocca, FA 2013:
“Complessità computazionale in modelli di calcolo bioispirati: Sistemi a membrane e
sistemi di reazioni”.

208 A. Leporati et al.

the case: P systems with monodirectional communication, where the information
flows only towards the outermost membrane, are limited to PNP, the class of
problems efficiently solved by Turing machines with NP oracles. This happens
even when allowing polynomially deep membrane structures, a weak form of non-
elementary membrane division, or dissolution (which, in this case, turns out to be
as powerful as weak non-elementary division). The PNP upper bound is actually
reached when dissolution or weak non-elementary division are allowed; if neither is
available, then the computation power decreases to PNP

‖ , where the queries must
all be fixed in advance, rather than asked adaptively. Chapter 17 of Papadimitriou’s
book [7] provides more details on complexity classes defined in terms of Turing
machines with NP oracles.

For an introduction to P systems with active membranes (AM), we refer the
reader to the original paper by Gh. Păun [8], supplemented by the definitions
of complexity classes PMCAM (resp., PMC?AM) of problems solved by uniform
(resp., semi-uniform) families of confluent P systems in polynomial time [5]. De-
fine M = AM(−i,−n,+wn) to be the class of monodirectional P systems with
active membranes, without send-in rules; we also remove the usual (“strong”)
non-elementary division rules, of the form[

[]+h1
· · · []+hm

[]−hm+1
· · · []−hn

]α
h
→
[
[]δh1
· · · []δhm

]β
h

[
[]ζhm+1

· · · []ζhn

]γ
h

since they also provide a way for membrane h to share information with its children
by changing their charge. We replace these rules by “weak” non-elementary division
rules [11] of the form [a]αh → [b]βh [c]γh, which allow the creation of complex membrane
structures (such as complete binary trees) without exchanging information with
the children membranes.

Let M(−d), M(−wn), and M(−d,−wn) denote monodirectional P systems
without dissolution, without weak non-elementary division, and without both kinds
of rules, respectively. For each class D of P systems, let PMCD and PMC?D be the
classes of problems solvable by uniform and semi-uniform families of P systems of
class D. Then, the main results of this paper can be summarised as follows:

• The whole class PMC
[?]
M, as well as PMC

[?]
M(−d) and PMC

[?]
M(−wn), are equiva-

lent to PNP. Here [?] denotes optional semi-uniformity.

• The class PMC
[?]
M(−d,−wn) is equivalent to PNP

‖ .

The rest of the paper is structured as follows: in Section 2 we prove some basic
limitations of monodirectional P systems; in Section 3 we exploit these results
to prove upper bounds to the complexity classes for monodirectional P systems;
in Section 4 we provide the corresponding lower bounds by simulating Turing
machines with NP oracles; in Section 5 some results of the preceding sections are
improved; finally, in Section 6 we present some open problems and directions for
future research.

Monodirectional P Systems 209

2 Properties of monodirectional P systems

We begin by proving some properties of monodirectional P systems that show how
the lack of inbound communication substantially restricts the range of behaviours
exhibited during the computations.

Definition 1. Let Π be a P system, and let C and D be configurations of Π. We
say that C is a restriction of D, in symbols C v D, if the membrane structures of
the two configurations are identical (i.e., they have the same shape, labelling, and
charges) and each multiset of objects of C is a submultiset of that located in the
corresponding region of D.

The following proposition shows that, while a recogniser P system working in
time t might create exponentially many objects per region during its computation,
only a polynomial amount (with respect to t) of them in each region does actually
play a useful role if the system is monodirectional: indeed, the final result of the
computation can be identified by just keeping track of a number of objects per
region equal to the number of steps yet to be carried out.

Lemma 1. Let Π be a monodirectional recogniser P system, and let C = (C0, . . . , Ct),
with t ≥ 1, be a halting computation of Π. Then, there exists a sequence of configu-
rations (D0, . . . ,Dt) such that

(i) we have Di v Ci for 0 ≤ i ≤ t, and each multiset of Di has at most t − i
objects;

(ii) for all i < t there exists a configuration Ei+1 such that Ei+1 is reachable in
one step from Di (Di → Ei+1 for brevity) and Di+1 v Ei+1;

(iii) a send-out rule of the form [a]αh → []βh yes (resp., [a]αh → []βh no) is applied
to the outermost membrane during the transition step Dt−1 → Et if and only
if C is an accepting (resp., rejecting) computation.

Proof. By induction on t. If t = 1, then the environment of C1 contains yes
or no, which have been sent out during the computation step C0 → C1 by a
rule [a]αh → []βh yes or [a]αh → []βh no. Let D0 v C0 be obtained by keeping only the
objects on the left-hand side of send-out, dissolution, and division rules applied
during C0 → C1 (we call these rules “blocking”, since at most one of them can be
applied inside each membrane at each step). At most one object per region is kept,
given the lack of send-in rules. Let D1 v C1 be obtained by deleting all objects.
Then:

(i) we have D0 v C0 and D1 v C1 by construction, and all multisets of D0 and D1

have at most 1 and exactly 0 objects, respectively;
(ii) let the transition D0 → E1 be computed by applying all blocking rules applied

during the step C0 → C1, which are all enabled by construction; then E1 v C1
and, since D1 v C1 and D1 contains no objects, necessarily D1 v E1;

(iii) the computation C is accepting if and only if the rule [a]αh → []βh yes is
applied from C0, and the latter is equivalent by construction to that rule
being applicable from D0 (the reasoning is similar if C is rejecting).

210 A. Leporati et al.

This proves the base case. Now let C = (C−1, C0, . . . , Ct) be a halting computation
of length t+ 1. The sub-computation (C0, . . . , Ct) is also halting, and by induction
hypothesis there exists a sequence of configurations (D0, . . . ,Dt) satisfying (i)–(iii).
Construct the configuration D−1 as follows: first of all, keep all objects from C−1
that appear on the left-hand side of blocking rules applied during the computation
step C−1 → C0; this requires at most one object per region, and guarantees that
the membrane structure’s shape and charges can be updated correctly (i.e., the
same as C0 and D0).

We must also ensure that all objects of D0 can be generated from D−1 during
the transition D−1 → E0. Once the blocking rules to be applied have been chosen,
any object a located inside a membrane of D0 can be traced back to a single object
in D−1. Either a appears on the right-hand side of one of those blocking rules,
or it appears on the right-hand side of an object evolution rule applied in the
step C−1 → C0, or it does not appear explicitly in any rule applied in that step; in
the latter case, it is either carried on unchanged from D−1 (possibly from another
region, if membrane dissolution occurred), or is created by duplicating the content
of a membrane by applying a division rule (triggered by a different object). As a
consequence, at most t objects per region of D−1, possibly in conjunction with a
single object per region involved in blocking rules, suffice in order to generate the t
objects per region of D0. As a consequence,

(i) we have D−1 v C−1 by construction, and D−1 contains at most t+ 1 objects
per region;

(ii) by applying all blocking rules and as many evolution rules as possible from
the computation step C−1 → C0 in D−1, we obtain a configuration E0 with
the same membrane structure as D0 and, as mentioned above, containing all
objects from D0 (and possibly other objects generated by evolution rules).

Since (iii) holds by induction hypothesis, this completes the proof. ut

Notice that this lemma does not give us an efficient algorithm for choosing
which objects are important for each step of the computation; it only proves that
a small (i.e., polynomial-sized) multiset per region exists. However, it is easy to
find such an algorithm by slightly relaxing the conditions: instead of limiting the
cardinality of the multisets to t − i, we limit the number of occurrences of each
symbol to that value, and simply delete the occurrences in excess separately for
each symbol. This gives us the larger cardinality bound |Γ | × (t − i) per region,
which is polynomial whenever the number of computation steps of the system is,
and still allows us to simulate the overall behaviour of the P system.

Lemma 1 fails for P systems with send-in rules because some configurations
where each multiset is small nonetheless require a previous configuration with a
region containing exponentially many objects. This is the case, for instance, for
P systems solving counting problems, where the number of assignments satisfying a
Boolean formula is checked against a threshold by means of send-in rules [4]. Those
assignments are represented in the P system by a potentially exponential number of
objects located in the same region, which are sent into exponentially many children

Monodirectional P Systems 211

membranes in parallel (i.e., at most one object enters each child membrane), and
cannot always be reduced to a polynomial amount without changing the accepting
behaviour of the P system.

Another property of monodirectional P systems is the existence of computations
where membranes having the same labels always have children (and, recursively, all
the descendents) with the same configuration. This property will be useful when
simulating confluent recogniser monodirectional P systems in Section 3.

Lemma 2. Let Π be a monodirectional P system. Then there exists a computa-
tion C = (C0, . . . , Ct) of Π where, in each configuration Ci, the following holds:
any two subconfigurations2 of Ci having membranes with the same label as roots
are identical, except possibly for the multiset and charge of the root membranes
themselves.

Proof. By induction on i. The statement trivially holds for the initial configuration
of Π, since the membranes are injectively labelled.

When a division rule is applied to a membrane h, two subconfigurations with
root h are created; this is the only way to generate multiple membranes sharing
the same label. The two resulting subconfigurations may only differ with respect
to the contents and charges of the root membranes, since the internal membranes
have evolved before the division of h occurs (recall that the rules are applied, from
a logical standpoint, in a bottom-up way [8]).

On the other hand, if two subconfigurations with identically labelled root
membranes already exist in a configuration Ci, then we can assume that the
property holds by induction hypothesis. We can then nondeterministically choose
which rules to apply in the subconfiguration having the first membrane as root,
excluding the root itself; since the other subconfiguration is identical (except
possibly for the root), the same multiset of rules can also be applied to it, thus
preserving the property in the next configuration of the system. ut

While Lemma 2 somehow “compresses” each level of the configuration of
monodirectional P systems, it does not, however, reduce the number of distinct
membranes per level to a polynomial number. Indeed, the standard membrane
computing technique of generating all (exponentially many) possible assignments
to a set of variables does not require send-in rules [10], and can be carried out in
parallel on all levels of the membrane structure.

Lemma 2 also fails for P systems with send-in rules. The reason is that two
identical subconfigurations can be made different by having a single object located
immediately outside, and nondeterministically sending it into one of the root
membranes of the two subtrees; the evolution of the two branches of the system
might then diverge completely.

2 We define a subconfiguration of Ci as a subtree (a root node together with all its
descendents) of the membrane structure of Ci, including labels, multisets, and charges
of the membranes.

212 A. Leporati et al.

3 Simulation of monodirectional P systems

It is a well-known result in membrane computing that P systems with active
membranes can be simulated in polynomial time by deterministic Turing machines
if no membrane division rules are allowed [10]. More specifically, the portion of the
system that is not subject to membrane division can be simulated deterministically
with a polynomial slowdown, while the output of the dividing membranes can
be obtained by querying an appropriate oracle. It was recently proved that, for
standard (bidirectional) P systems where only elementary membranes can divide,
an oracle for a #P function is necessary and sufficient [5].

In what follows we prove that an NP-oracle is sufficient for the simulation
of monodirectional P systems. In particular, the oracle will solve the following
problem.

Lemma 3. Given the initial configuration of an elementary membrane with label h
of a monodirectional P system, an object type a ∈ Γ , and two integers k, t ∈ N in
unary notation, it is NP-complete to decide whether the set of membranes with
label h existing at time t emits (via send-out or dissolution rules) at least k copies
of object a at that time step.

Proof. The problem is NP-hard, since one can simulate an arbitrary polynomial-
time, nondeterministic Turing machine M by using a single membrane with ele-
mentary division (without using send-in rules) and obtain the same result as M
by checking if the resulting membranes send out at least one (k = 1) “acceptance
object” at a specific time step [4].

Conversely, the problem can be solved by a nondeterministic, polynomial-time
Turing machine M as follows. Simulate t computation steps of the membrane explic-
itly, by keeping track of its charge and multiset, as in any standard simulation [10].
If the membrane divides, then M keeps track of all the resulting membranes, until
the number exceeds k. If that happens, then k copies of the membrane are chosen
nondeterministically among those being simulated (which are at most 2k after any
simulated step, if all membranes divide), and the remaining ones are discarded.
Since there is no incoming communication, any instance of the membrane can
be simulated correctly, as its behaviour does not depend on the behaviour of its
siblings. If one of the simulated membranes dissolves before t steps, one of the k
“slots” is released and can be reused in case of a further membrane division.

After having simulated t steps as described, the machine M accepts if and only
if at least k copies of a are emitted (sent out, or released by dissolution) in the
last step by the membranes being simulated. At most k membranes need to be
simulated in order to check whether at least k copies of the object are emitted
and, by exploiting nondeterminism, we are guaranteed that the correct subset
of membranes is chosen by at least one computation of M . Since k and t are
polynomial with respect to the size of the input, the result follows. ut

Monodirectional P Systems 213

The values of t and k are given in unary since, otherwise, the number of steps
or the number of membranes to simulate could be exponential with respect to the
size of the input, and the problem would not be solvable in polynomial time.

As a consequence of Lemma 3, monodirectional P systems without non-
elementary division can be simulated in polynomial time with access to an NP

oracle.

Theorem 1. PMC?M(−wn) ⊆ PNP.

Proof. The rules applied to non-elementary membranes can be simulated directly
in deterministic polynomial time by a Turing machine M [5]; this includes the
outermost membrane, which ultimately sends out the result object. In order to
update the configurations of the non-elementary membranes correctly, the objects
emitted from elementary membranes (which potentially divide) have to be added
to their multisets.

Suppose the P systems of the family being simulated work in polynomial
time p(n). By Lemma 1, the final result of the computation can be correctly
determined by keeping track of at most p(n) copies of each object per region.
Hence, we can update the configurations by using an oracle for the problem of
Lemma 3. At time step t, we make multiple queries for each label h of an elementary
membrane and for each object type a ∈ Γ : by performing a binary search on k
over the range [0, p(n)], we can find the exact number of copies of a emitted by
membranes with label h at time t, or discover that this number is at least p(n)
(and, in that case, we only add p(n) objects to the multiset). This completes the
proof. ut

Monodirectional P systems without non-elementary division become weaker if
dissolution is also disallowed: now a membrane cannot become elementary during
the computation, and thus the evolution of each dividing membrane is always
independent of the rest of the system. This allows us to perform all queries in
parallel, rather than sequentially (in an adaptive way).

Theorem 2. PMC?M(−d,−wn) ⊆ PNP
‖ .

Proof. If dissolution rules are not allowed, being elementary is a static property
of the membranes, i.e., a membrane is elementary for the whole computation if
and only if it is elementary in the initial configuration. By observing that each
query is completely independent of the others (i.e., each query involves a different
membrane, time step and object) and also independent of the configurations of the
non-dividing membranes (due to the lack of send-in rules), we can perform them
in parallel even before starting to simulate the P system. This proves the inclusion
in PNP

‖ . ut

Now consider monodirectional P systems with non-elementary membrane divi-
sion. For this kind of systems, the behaviour of a dividing membrane is, of course,
dependent on the behaviour of its children and, recursively, of all its descendants.

214 A. Leporati et al.

In order to simulate the behaviour of the children by using oracles, we define a more
general query problem, where we assume that the behaviour of the descendents of
the membrane mentioned in the query has already been established.

First of all, notice that the lack of send-in rules allows us to extend the notion
of transition step C → D between configurations to labelled subforests3 E of C
and F of D as E → F ; the only differences from the standard definition are that E
is not necessarily a single tree, and that its outermost membranes may divide and
dissolve.

Definition 2. Let Π be a monodirectional P system, let C be a configuration of Π,
and let h ∈ Λ be a membrane label. A subforest S of C is called a label-subforest
induced by h, or h-subforest for brevity, if one of the following conditions hold:

• C is the initial configuration of Π, and S consists of a single tree rooted in the
(unique) membrane h,
• C is a possible configuration of Π at time t+ 1 with C′ → C, and there exists

an h-subforest S ′ in C′ such that S ′ → S.

The notion of h-subforest can be viewed as a generalisation of the equivalence classes
of membranes in P systems without charges defined by Murphy and Woods [6].

Lemma 4. Let Π be a monodirectional P system. Then there exists a computation
of Π where, at each time step and for each membrane label h ∈ Λ, all h-subforests
are identical.

Proof. Multiple h-subforests can only be created by division of an ancestor of h; but
then, by Lemma 2, there exists a computation of Π where the resulting h-subforests
are identical. ut

Example 1. Figure 1 shows the evolution of the membrane structure of a monodi-
rectional P system and its label-subforests. The label-subforests in the initial
configuration C0 coincide with all downward-closed subtrees. In the computation
step C0 → C1 both h2 and h3 divide; the division of the latter causes the duplication
of the h3- and h4-subforests (and, indirectly, of the h5-subforest); the division of
an ancestor membrane is the only way to have more than one label-subforest. By
Lemma 4, we can always assume that multiple label-subforests induced by the same
label are identical. In the computation step C1 → C2, the rightmost membrane
having label h2 and both instances of h4 dissolve. Notice that this does not cause
the disappearance of the two h4-subforests: in the general case, the membranes h4
might contain label-subforests induced by different labels, and we still need to refer
to them as a single entity (the h4-subforest), without the need to describe the
internal structure, even when h4 ceases to exist.

As can be observed from Figure 1, a subforest can be identified as an h-subforest
by checking whether it can be generated from the downward-closed subtree rooted
in h in the initial configuration.

3 We define a subforest F ′ of a forest F to be any subgraph such that, whenever F ′

includes a vertex v, it also includes all the descendents of v.

Monodirectional P Systems 215

h1

h2

h4

h5

h2

h4

h5

h1

h2

h3

h4

h5

h3h3 h3h3

h1

h2

h3h3 h3h3

h4

h5

h4

h5

C0 C1

C2
Fig. 1. Evolution of a membrane structure and its label-subforests, which are enclosed
by dashed rectangles.

A computation that ensures that all h-subforests are identical for all h ∈ Λ
can be obtained by imposing a total ordering (a priority) on the set of rules of
the P system, and applying inside each membrane the rules with higher priority
whenever possible. In the following, we assume that a priority order (e.g., the
lexicographic order) has been fixed; there is no loss of generality in doing that,
since we only focus on confluent P systems in this paper. We define the multiset of
objects emitted by a label-subforest as the union of the multisets emitted by its
outermost membranes.

Lemma 5. Given the initial configuration of a membrane with label h of a monodi-
rectional P system, an object a ∈ Γ , two integers k, t ∈ N in unary notation, and a
table T of the objects emitted during computation steps 1, . . . , t by the label-subforests
immediately contained in h, it is NP-complete to decide whether each h-subforest
emits at least k copies of object a at time t.

216 A. Leporati et al.

Proof. The problem is NP-hard, since the set of elementary membranes with
label h of Lemma 3 is an example of h-subforest; that problem is thus a special
case (limited to label-subforests of height 0) of the current one.

To prove membership in NP we also use an algorithm similar to the proof of
Lemma 3: simulate up to k instances of membrane h, nondeterministically choosing
which ones to keep when a membrane division occurs. However, besides simulating
the rules directly involving the membranes with label h, we need to update their
configuration by adding, at each computation step, the objects emitted by the
label-subforests they contain. This is trivial, since the required data is supplied as
the input table T . Here we exploit Lemma 4, and simulate a computation where
all label-subforests contained in multiple instances of h are identical, and always
emit the same objects.

The other main difference from the proof of Lemma 3 is that we do not release
one of the k slots when one instance of membrane h dissolves, since its children may
still emit objects, and those count in determining the output of the h-subforest.
Rather, if an instance of h currently being simulated dissolved during steps 1, . . . , t,
then we add the outputs at time t of the label-subforests immediately contained
in h to the result of the computation; those outputs are obtained from table T .

The statement of this lemma then follows from an argument completely anal-
ogous to that presented in the proof of Lemma 3: there exists a sequence of
nondeterministic choices leading to the simulation of k instances of h sending out
at least k objects if and only if at least k objects are actually sent out by the
P system being simulated. ut

We can finally show that monodirectional P systems using non-elementary
division (and dissolution) also do not exceed the upper bound PNP.

Theorem 3. PMC?M ⊆ PNP.

Proof. We use an algorithm similar to the one described in the proof of Theorem 1.
However, instead of using the oracle to compute the output of the elementary
membranes, we use it to compute the output of the label-subforests. This requires
first asking all queries for the label-subforests of height 0 (with an empty table T),
then using the results as the table T for the queries involving label-subforests
of height 1, and so on, until reaching the non-divisible membranes; these can be
simulated directly by using the results of the queries involving the label-subforests
immediately contained in them. Notice that the queries involving label-subforests
of a given height can always be asked in parallel (across all values of a, k, t); the
queries must be asked sequentially only when involving different heights. ut

4 Simulation of PNP machines

In order to prove the converse inclusions between complexity classes, we describe a
simulation of any Turing machineM with an NP oracle by means of monodirectional

Monodirectional P Systems 217

P systems (an adaptation of [4]). Let Q be the set of states of M ; we assume,
without loss of generality, a binary alphabet {0, 1} for M . Finally, we denote
by δ : Q×Σ → Q×Σ × {/, .} the transition function of M .

Suppose that the configuration of M at a certain time step is the following:
the tape contains the string x = x1 · · ·xm, the state of the machine is q, and the
tape head is located on cell i. This configuration is encoded as a multiset located
in a single membrane h of the P system, as follows. There is one object 1j−i for
each 1 ≤ j ≤ m such that xj = 1; that is, each 1 in the string x is represented as an
object indexed by its position in x, shifted by i; the 0s of x are not represented by
an object, but rather by the absence of the corresponding 1. The object 10 (resp.,
its absence) represents a 1 (resp., a 0) located under the tape head; the indices
will be updated (increased or decreased) when simulating a tape head movement.
Finally, the state q of M is encoded as an object q with the same name. Further
objects, not part of the encoding of the configuration of M , may also appear for
simulation purposes.

A transition step of M is simulated by 7 steps of the P system. We assume that
the membrane h containing the encoding of the configuration of M also contains
the object 	.

Step 1. The object 	 is sent out (as the “junk” object #) in order to change the
charge of h to negative:

[]0h → []−h # (1)

Step 2. When h is negative, the object 10 is sent out, if appearing, in order
to change the charge to positive. If 10 does not appear, the membrane remains
negative.

[10]−h → []+h # (2)

The remaining tape-objects are primed:

[1i → 1′i]
−
h for i 6= 0 (3)

The state-object q is also primed, and produces the object �:

[q → q′ �]−h (4)

Step 3. The system can now observe the charge of h and establish whether 10

appeared (i.e., whether the symbol under the tape head was 1) or not (i.e., the
symbol was 0); this corresponds to a positive or negative charge, respectively. The
object q′ is rewritten accordingly:

[q′ → (q, 1)]+h [q′ → (q, 0)]−h (5)

At the same time, the neutral charge of h is restored by �:

[�]αh → []0h # for α ∈ {+,−} (6)

218 A. Leporati et al.

Step 4. For the sake of example, suppose the transition function of M on state q
is defined by δ(q, 0) = (r, 1, .) and δ(q, 1) = (s, 0, /); the other cases are similar.
The object (q, 0) or (q, 1) is rewritten accordingly:

[(q, 0)→ (r, 1, .)]0h [(q, 1)→ (s, 0, /)]0h (7)

Simultaneously, the tape-objects are primed again:

[1′i → 1′′i]0h for i 6= 0 (8)

Step 5. Now the triple generated in the previous step is “unpacked” into its
components, which include an object that will be eventually rewritten into the new
state-object, the object 1′′0 (or nothing), and an object to be used to change the
charge according to the direction of the movement of the tape head:

[(r, 1, /)→ r̂ 1′′0 ⊕]0h for r ∈ Q (9)

[(r, 1, .)→ r̂ 1′′0]0h for r ∈ Q (10)

[(r, 0, /)→ r̂ ⊕]0h for r ∈ Q (11)

[(r, 0, .)→ r̂]0h for r ∈ Q (12)

Step 6. The object ⊕, if appearing, changes the charge of the membrane to
positive:

[⊕]0h → []+h # (13)

If 	 appears, it behaves similarly, according to rule (1). Simultaneously, the object r̂
is primed and produces �:

[r̂ → r̂′ �]0h for r ∈ Q (14)

Step 7. Now the charge of h is negative if the tape head is moving right, and the
indices of the tape-objects have to be decremented, or positive if the tape head is
moving left, and the indices must be incremented; the primes are also removed:

[1′′i → 1i−1]−h [1′′i → 1i+1]+h for − (m− 1) ≤ i ≤ m− 1 (15)

The object r̂′ is now rewritten into the state-object r, and produces the 	 object
to be used in Step 1 of the simulation of the next step of M :

[r̂′ → r]αh for r ∈ Q non final and α ∈ {+,−} (16)

Finally, the neutral charge of h is restored by � through rule (6). The configuration
of the membrane now encodes the next configuration of M , and the system can
begin simulating the next computation step. The process is depicted in Figure 2.

Monodirectional P Systems 219

0 1 1 1

q

0 01 0

h

0

10 11 121−3

q 	

h

−

10 11 121−3

q #

h

+

1′1 1′21′−3

q′ #

#

�

h

0

1′1 1′21′−3

(q, 1) #

#

#

h

0

1′′1 1′′21′′−3

(s, 0, /) #

#

#

h

0

1′′1 1′′21′′−3

ŝ #

#

#⊕

h

+

1′′1 1′′21′′−3

ŝ′ #

#

#�
#

h

0

12 131−2

s #

#

#	
#

#

0 0 1 1 0 01 0

s

Fig. 2. Two successive Turing machine configurations, and the configurations of the
P system simulating the transition step (in left-to-right, top-to-bottom order).

When r ∈ Q is a final state (accepting or rejecting), instead of applying rule (16)
the system rewrites the object r̂′ as yes or no:

[r̂′ → yes]αh for r ∈ Q accepting and α ∈ {+,−} (17)

[r̂′ → no]αh for r ∈ Q rejecting and α ∈ {+,−} (18)

The object yes or no is then sent out as the result of the computation of the
P system in the next step:

[yes]0h → []0h yes [no]0h → []0h no (19)

It is easy to see that this simulation provides us with a uniform family of
P systems ΠM = {Πx : x ∈ {0, 1}?}, each consisting of a single membrane h and
simulating the deterministic Turing machine M on all possible inputs.

220 A. Leporati et al.

4.1 Simulating oracle queries

If membrane h is not the outermost membrane of the system, then we can use
division rules to simulate nondeterminism with parallelism. Suppose, for the sake
of example, that the transition function of M describes nondeterministic binary
choices such as δ(q, 0) = {(r, 1, .), (s, 0, /)}. Then, instead of the rules (7), we define
the elementary division rule

[(q, 0)]0h → [(r, 1, .)]0h [(s, 0, /)]0h (20)

The two resulting copies of membrane h can then evolve in parallel according to
the two possible choices.

This construction allows us to simulate polynomial-time deterministic Turing
machines M with an NP oracle. In this section, we use the following conventions:
the machine M simulates a work tape and a query tape with a single tape, by
using the odd and even positions, respectively. When making a query, M writes
the query string in the even positions of its tape, then enters a query state q?. The
oracle answers by erasing the query string (i.e., overwriting it with zeros), except
for the first cell, where it writes 0 or 1 according to the result. The machine M
then resumes its computation in state q!, with the tape head located on the answer.

The oracle can be simulated by a polynomial-time nondeterministic Turing
machine M ′, having initial state q? and deciding the oracle language. This machine
uses only the even positions of the tape, and ends its computation in the post-
query configuration described above. We assume that M ′ performs a series of
nondeterministic choices leading to acceptance, if an accepting computation exists
at all.

This combination of M and M ′ can be simulated by linearly nested membranes
of a P system, one membrane for each query to be asked. The computation begins
inside the innermost membrane, where we place a multiset encoding the initial
configuration of M on its input x; whenever a query is performed, the computation
moves one level higher in the membrane structure. In the following description we
refer to all nested membranes as h, for brevity; the labels can be made unique,
and the rules replicated for each label, with a polynomial-time preprocessing. The
P system simulates the computation steps of M as described above, until M
enters the query state q?. Now the system pauses the simulation of M . Instead of
producing q? and 	, as in rule (16), the system produces q? and q̃!,t, where t is the
maximum number of steps required by M ′ on query strings written by M . This
number can be bounded above by considering the polynomial running time of M ′

on the longest possible query string, which is at most as long as the running time
of M on its input x. The object q̃!,t is sent out from h as q!,t, setting its charge to
negative as 	 does, and upon reaching the parent membrane it begins counting
down:

[q̃!,t]
0
h → []−h q!,t (21)

[q!,j → q!,j−1]0h for 1 ≤ j ≤ t (22)

Monodirectional P Systems 221

In the internal membrane, the nondeterministic Turing machineM ′ is now simulated.
Since M ′ is allowed to make nondeterministic choices, in general there will be a
number of membranes simulating M ′ after the first simulated step. When one of
these membranes is simulating the last step of a computation of M ′, the object q̂′!
is produced by rule (14): then, instead of having a rule of type (16), the object q̂′! is
used to dissolve the membrane and release the tape-objects to the parent membrane:

[q̂′!]
α
h → # for α ∈ {+,−} (23)

After t steps, all membranes simulating M ′ have completed the simulation, and
have released their contents to the parent membrane. This membrane now contains:

• the object q!,0;
• objects 1i corresponding to the 1s contained in the odd positions of the tape

of M (which are left unchanged by the simulation of M ′); each of these objects
has a multiplicity equal to the number of computations of M ′ on the previous
query string;
• zero or more occurrences of 11, one for each accepting computation of M ′ on

the query string; in particular, there is at least one occurrence of 11 if and only
if the query string is accepted by the oracle. Notice that this object has index 1
even if it is on the first even position of the tape, since index 0 is reserved to
the tape cell under the head (tape cell 1).

Before resuming the simulation of M , the system needs to eliminate any duplicate
copies of objects 1i. First of all, the object q!,0 is rewritten into q!, the next state
of M :

[q!,0 → q!]
0
h (24)

We then change the behaviour of M in such a way that, before continuing its
original computation after receiving the answer to the oracle query, it sweeps its
entire tape left-to-right and back to the first cell. This behaviour, in conjunction
with the following extra rule of the P system:

[10 → ε]+h (25)

erases any duplicate of 1i for all i. Indeed, if a copy of 10 appears when h is positive,
then another copy has been sent out in the previous step by rule (2); rule (25)
eliminates such duplicates.

When the tape head of M moves back to the leftmost cell, the machine can
resume its original behaviour, and the encoding of the configuration of M in the
P system is now correct according to the description given at the beginning of this
section.

Further queries by M are simulated analogously, by exploiting another level
of the membrane structure. Notice that simulating a query actually “consumes”
one level of the membrane structure, due to the dissolution rule (23). For this
reason, the initial membrane structure of the P system simulating M consists of
an outermost membrane, containing as many nested membranes as the number of
queries performed by M .

222 A. Leporati et al.

Theorem 4. A deterministic polynomial-time Turing machine which asks p(n)
queries to an NP oracle on inputs of length n can be simulated by a uniform family
of monodirectional P systems of depth p(n) without non-elementary division rules.

Proof. The family of P systems Π = {Πx : x ∈ {0, 1}?} simulating M on input x
can be constructed uniformly in polynomial time, since only the initial multiset
depends on the actual string x, while the set of rules and the membrane structure
only depend on |x|. We only need to make sure that the indices of the tape-objects
are large enough to ensure that both the tape of M and the tape of M ′ can be
represented at the same time. ut

Corollary 1. PNP ⊆ PMCM(−wn). ut

Instead of using membrane dissolution as in rule (23), we can use the object q̂′!
to produce ⊕:

[q̂′! → ⊕]αh for α ∈ {+,−} (26)

which ensures that the charge of h is positive instead of negative two steps later.
The tape-objects are then sent out, one at a time, by using the following rules:

[1i]
+
h → []+h 1i for − (m− 1) ≤ i ≤ m− 1 (27)

The timer t of the object q̃!,t has to be increased appropriately, in order to take
into account the time needed to send out all the tape-objects. However, since
the membrane where the simulation of M is non-elementary after the first query,
rule (20) is now a weak non-elementary division rule. As a consequence, we have:

Theorem 5. A deterministic polynomial-time Turing machine which asks p(n)
queries to an NP oracle on inputs of length n can be simulated by a uniform family
of monodirectional P systems of depth p(n) without dissolution rules. ut

Corollary 2. PNP ⊆ PMCM(−d). ut

In order to prove the converse of Theorem 2, we introduce an auxiliary com-
plexity class (a variant of the class of optimisation problems OptP [3]).

Definition 3. Define OrP to be the class of functions f : {0, 1}? → {0, 1}? having a
polynomial-time nondeterministic Turing machine M such that, for all x ∈ {0, 1}?,
we have f(x) =

∨
M(x), where M(x) denotes the set of possible output strings

of M on input x, and
∨

denotes bitwise disjunction of strings; here we assume
that the bitwise disjunction of strings of different lengths is performed by padding
the shortest ones with zeros.

The purpose of the class OrP is to capture a polynomial number of parallel NP

queries with a single query to a function over binary strings.

Proposition 1. PNP
‖ = POrP[1].

Monodirectional P Systems 223

Proof. A polynomial number of parallel queries y1, . . . , ym to an oracle for L ∈ NP

can be replaced by a single query to an oracle for the function f(y1, . . . , ym) =
z1 · · · zm, where zi = 1 if and only if yi ∈ L. Let M be an NP machine decid-
ing L, and let M ′ be the following nondeterministic machine: on input y1, . . . , ym
simulate M on each yi and record the corresponding output bit zi; finally, out-
put z1 · · · zm. For all 1 ≤ i ≤ m, if yi is accepted by the oracle, then there exists a
computation of M ′ such that zi = 1: thus, by taking the bitwise disjunction of all
possible output strings of M ′, we obtain the i-th bit of f(y1, . . . , ym); this proves
that f ∈ OrP. Notice that this proof requires the query strings y1, . . . , ym to be
fixed in advance, i.e., the queries cannot be performed adaptively.

Vice versa, a single query to an oracle for f ∈ OrP with query string y
can be replaced by the following polynomial number of parallel queries, one for
each 1 ≤ i ≤ |f(y)|: “is the i-th bit of f(y) a 1?”. These queries are in NP,
since they can be answered by simulating an OrP machine M for f and selecting
only its i-th output bit; the answer will be positive if and only if there exists a
computation of M having a 1 as the i-th output bit, which (by definition of OrP)
is equivalent to the i-th bit of f(y) being 1. ut

Simulating an OrP query by means of a P system is completely analogous to
simulating an NP query, except that, instead of a single output bit, we have a
polynomial number of them. These binary strings are automatically combined by
bitwise disjunction when the tape-objects are sent out of the membrane simulating
the nondeterministic Turing machine. Furthermore, since a single OrP query suffices
to capture PNP

‖ , we obtain the following results:

Theorem 6. A deterministic polynomial-time Turing machine which asks a poly-
nomial number of parallel queries to an NP oracle on inputs of length n can be
simulated by a uniform family of monodirectional P systems of depth 1 without
dissolution (and, necessarily, without non-elementary division). ut

Corollary 3. PNP
‖ ⊆ PMCM(−d,−wn). ut

5 Further results

The depth of the P systems of Theorems 4 and 5 can be asymptotically reduced
by exploiting the equivalence of a logarithmic number of adaptive queries and a
polynomial number of parallel queries [7, Theorem 17.7], formally PNP

‖ = PNP[logn].

Suppose a deterministic polynomial-time Turing machine performs p(n) sequential
NP queries, and divide these queries into Θ(p(n)/ log n) blocks of Θ(log n) queries.
Each block can then be replaced by a polynomial number of parallel NP queries
or, by Proposition 1, by a single OrP query. Hence, p(n) sequential NP queries
can be simulated by Θ(p(n)/ log n) sequential OrP queries, and each of the latter
can be simulated by one level of depth in a P system:

224 A. Leporati et al.

Corollary 4. A deterministic polynomial-time Turing machine which asks p(n)
queries to an NP oracle on inputs of length n can be simulated by a uniform family of
monodirectional P systems of depth Θ(p(n)/ log n) without non-elementary division
rules (resp., without division rules). ut

Theorem 3 can be sharpened by making the intra-level query parallelism explicit
with OrP queries:

Corollary 5. Let Π be a family of semi-uniform polynomial-time monodirectional
P systems of depth f(n). Then Π can be simulated by a polynomial-time determin-
istic Turing machine with f(n) queries to an OrP oracle. ut

We can also prove that monodirectional families of P systems of any con-
stant depth, even with dissolution and non-elementary division rules (in sym-
bols M(O(1))), are always equivalent to families of depth one without dissolution
and without non-elementary division (in symbols M(1,−d,−wn)), and thus only
able to simulate parallel NP queries.

Theorem 7. PMC
[?]
M(O(1)) = PMC

[?]
M(1,−d,−wn) = PNP

‖ .

Proof. By Theorem 6, we already know that PNP
‖ ⊆ PMCM(O(1)), even when

limited to depth 1; the inclusion PMCM(O(1)) ⊆ PMC?M(O(1)) holds by definition.

The inclusion PMC?M(O(1)) ⊆ PNP
‖ can be proved as follows. By Theorem 3, a

family of P systems of constant depth k can be simulated in polynomial time by
asking k sets (one per level) of p(n) parallel queries, for some polynomial p. Each
set of p(n) parallel queries can be converted into Θ(log n) sequential queries [7,
Theorem 17.7], for a total of k×Θ(log n) sequential queries. These can be converted
back into a polynomial number of parallel queries. ut

Finally, observe that Theorem 3 also trivially holds for monodirectional P sys-
tems without charges. This implies a better upper bound than previously known [5]
for a monodirectional variant of the P conjecture [9, Problem F], which states that
P systems without charges and without non-elementary division characterise P.

6 Conclusions

In this paper we confirmed the importance of the direction of the information flow
in P systems with active membranes with respect to their computing power. Indeed,
when working in polynomial time and using only outward-bound communication,
the corresponding complexity class decreases from PSPACE to PNP, or from P#P

to PNP
‖ when non-elementary division and dissolution rules are disallowed. It is

interesting to notice that, unlike with other restrictions such as removing membrane
division [10] or charges and dissolution [2], the resulting P systems are still more
powerful than P (unless, of course, P = NP).

Monodirectional P Systems 225

The role of strong non-elementary division (which is replaced in this paper
by weak non-elementary division) in the absence of send-in rules is still unclear.
Even if it provides a way to convey information from a parent membrane to its
children, we do not know whether this is sufficient to altogether replace send-in
communication while maintaining a polynomial run-time.

Finally, it would be interesting to investigate monodirectional P systems where
the information flow is reversed, i.e., send-out communication and dissolution rules
(as well as strong non-elementary division rules) are disallowed. A first issue to
overcome is choosing an appropriate acceptance condition for the P systems, to
replace sending out yes or no from the outermost membrane. The acceptance
condition most similar “in spirit” to the original one is probably accepting (resp.,
rejecting) by having at least one yes (resp., no) object appear, either anywhere in
the system, or inside a distinguished (and possibly dividing) membrane, during the
last computation step; we also add the restriction that yes and no can never appear
together, since giving the priority to one of them would allow us to solve NP-
complete (or coNP-complete) problems “for free”. Such monodirectional P systems
appear to be very weak when working in polynomial time; indeed, even though
exponentially many membranes can still be created by division, they can never
communicate. Is P actually an upper bound to the class of problems they can
solve?

References

1. Alhazov, A., Mart́ın-Vide, C., Pan, L.: Solving a PSPACE-complete problem by
recognizing P systems with restricted active membranes. Fundamenta Informaticae
58(2), 67–77 (2003)

2. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Nuñez, A., Romero-Campero,
F.J.: Computational efficiency of dissolution rules in membrane systems. International
Journal of Computer Mathematics 83(7), 593–611 (2006)

3. Krentel, M.W.: The complexity of optimization problems. Journal of Computer and
System Sciences 36, 490–509 (1988)

4. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Membrane division,
oracles, and the counting hierarchy. Fundamenta Informaticae (2015), in press

5. Leporati, A., Manzoni, L., Mauri, G., Porreca, A.E., Zandron, C.: Simulating elemen-
tary active membranes, with an application to the P conjecture. In: Gheorghe, M.,
Rozenberg, G., Sośık, P., Zandron, C. (eds.) Membrane Computing, 15th International
Conference, CMC 2014, Lecture Notes in Computer Science, vol. 8961, pp. 284–299.
Springer (2015)

6. Murphy, N., Woods, D.: Active membrane systems without charges and using only
symmetric elementary division characterise P. In: Eleftherakis, G., Kefalas, P., Păun,
Gh., Rozenberg, G., Salomaa, A. (eds.) Membrane Computing, 8th International
Workshop, WMC 2007. Lecture Notes in Computer Science, vol. 4860, pp. 367–384
(2007)

7. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1993)
8. Păun, Gh.: P systems with active membranes: Attacking NP-complete problems.

Journal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)

226 A. Leporati et al.

9. Păun, Gh.: Further twenty six open problems in membrane computing. In: Gut́ıerrez-
Naranjo, M.A., Riscos-Nuñez, A., Romero-Campero, F.J., Sburlan, D. (eds.) Proceed-
ings of the Third Brainstorming Week on Membrane Computing. pp. 249–262. Fénix
Editora (2005)

10. Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P systems
with active membranes. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds.) Uncon-
ventional Models of Computation, UMC’2K, Proceedings of the Second International
Conference, pp. 289–301. Springer (2001)

11. Zandron, C., Leporati, A., Ferretti, C., Mauri, G., Pérez-Jiménez, M.J.: On the
computational efficiency of polarizationless recognizer P systems with strong division
and dissolution. Fundamenta Informaticae 87, 79–91 (2008)

Parallel Simulation of PDP Systems: Updates and
Roadmap

Miguel Ángel Martinez-del-Amor1, Luis Felipe Maćıas-Ramos2,
Mario J. Pérez–Jiménez2

1 Moving Picture Technologies, Fraunhofer IIS
Am Wolfsmantel 33, 91058 Erlangen, Germany

2 Research Group on Natural Computing, Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mails: mdelamor@us.es, lfmaciasr@us.es, marper@us.es

Summary. PDP systems are a type of multienvironment P systems, which serve as a
formal modeling framework for Population Dynamics. The accurate simulation of these
probabilistic models entails large run times. Hence, parallel platforms such as GPUs has
been employed to speedup the simulation. In 2012 [14], the first GPU simulator of PDP
systems was presented. In this paper, we present current updates made on this simulator,
and future developments to consider.

1 Introduction

P systems[16, 17] have become good candidates for computational modeling thanks
to the compartmental and discrete features, both in Systems Biology [19, 20] and
Population Dynamics [3]. In this concern, it is worth to mention the achieved
success in real ecosystem modeling through probabilistic P systems, such as the
Bearded Vulture in the Catalan Pyrenees (endangered species) [2], and the zebra
mussel in Ribarroja reservoir (exotic invasive species) [1]. These works have lead
to a formal, computational modeling framework called Population Dynamics P
systems (PDP systems) [4].

In order to experimentally validate these P systems based models, the devel-
opment of simulators is requested [17]. P-Lingua [5, 25] is a simulation framework
for P systems, which aims to be generic, multi-platform (it is written in Java)
and to provide a standard description language for P systems. It has been used
to develop simulators for many variants of P systems, specially for PDP systems.
Furthermore, experts and model designers are able to run virtual experiments in
an abstracted way (without the need of accessing to details of P systems) through
a special software called MeCoSim [18, 24]. MeCoSim uses P-Lingua as the simu-
lation core.

228 M.A. Mart́ınez-del-Amor, L.F. Maćıas-Ramos, M.J. Pérez-Jiménez

The run times offered by these general simulation frameworks are high for some
scenarios involving large and complex models. This lack of efficiency is mainly given
from the facts of both using Java Virtual Machine and implementing sequential
algorithms [10]. Indeed, simulating massively parallel devices like P systems in a
sequential fashion is twice inefficient. This issue is can be addressed by harnessing
the highly parallel architecture within modern processors to map the massively
parallelism of P systems [10, 11].

Whereas commodity CPUs can contain dozens of processors, current graphic
processors (GPUs) [8, 15] provide thousands of computing cores. They can be
programmed using general-purpose frameworks such as CUDA [9, 23], OpenCL
and OpenAcc. GPUs exploit data parallelism by using a very fast memory and
simplistic cores. Given the high level of parallelism within modern GPUs (up
to 3500 cores per device [23]), they have provided a platform to implement real
parallelism of P systems in a natural way. Many P system models have been
considered to be simulated with CUDA [11]: P systems with active membranes,
SAT solutions with families of P systems with active membranes and of tissue
P systems with cell division, Enzymatic Numerical P systems, Spiking Neural P
systems without delays, and Population Dynamics P systems [14], among others.
Most of these simulators are within the scope of PMCGPU (Parallel simulators for
Membrane Computing on the GPU) software project [26], which aims to gather
efforts on parallelizing P system simulators with GPU computing.

As shown by all of these research works, the development of a new P system
simulator requires a big research and development effort. For example, in the case
of the simulator for PDP systems, the simulation algorithm called DCBA [13, 3]
was implemented. It is based on 4 different phases with completely different char-
acteristics, and the parallelization effort is also different in each one (e.g. second
phase of DCBA is a random sequential loop that cannot be easily parallelized).
Therefore, the different semantical and syntactical elements of each P system vari-
ant lead to completely different GPU-based simulators. Not only does the GPU
code depend on the simulated variant, but its efficiency also depend on the simu-
lated P system within the variant [14].

In this paper, we show new developments on the GPU simulator for PDP
systems. In summary, a new input module received binary files has been created,
allowing to run real ecosystem models defined with P-Lingua. Moreover, we present
a road map proposal, a set of research lines for future work that is going to be
addressed.

The paper is structured as follows: Section 2 provides an overview of the re-
quired concepts to understand this paper. Section 3 presents the new feature of
the simulator consisting in a input module to read binary files, and also some
preliminary results. Finally, Section 4 discuses future developments to take into
consideration.

Parallel Simulation of PDP Systems: Updates and Roadmap 229

2 Preliminaries

In this section we briefly provide the minimum concepts for the understandability
of the paper. We will not introduce the model of PDP systems and GPU computing
into detail. Instead, we provide short descriptions along with useful references.

2.1 PDP systems model and simulation: DCBA

PDP systems [4, 3] are a branch of multienvironment P systems [6], which con-
sists in a directed graph whose nodes are called environments. Each environment
contains a single cell-like P system. Moreover, the arcs of the graph is implicitly
given by a set of communication rules which allow the movement of objects be-
tween environments in a one-to-many fashion. Thus, these rules are of the form:
(x)ej

pr−→(y1)ej1 · · · (yh)ejh . All the P systems within a PDP system have the same
skeleton: the same membrane structure (with three polarizations), the same work-
ing alphabet, and the same set of (skeleton) evolution rules. These rules are of the

form: u [v]αh → u′ [v′]βh. It can be seen that these P systems are an extension of
the active membranes model. However, no dissolution neither division are allowed,
and special care on the consistency of rules has to be taken.

PDP systems have also a probabilistic flavor in terms of probabilities associated
to the rules. On the one hand, a probability is associated to each skeleton rule for

each environment, thus being of the following form: u [v]αh
fr,j−→u′ [v′]βh. On

the other hand, a probability is associated to each communication rule globally
to the PDP system. Rules are executed in a maximal parallel way according to
the probabilities. Rules having the same left-hand side must satisfy the following
condition: the sum of their probabilities has to be 1. Eventually, rules having an
“unique” left-hand side have associated the probability 1. Inherently to the model
is the concept of rule block: a block is formed by rules having the same left-hand
side.

For the syntax of the models, refer to [3, 4] and [6]. Concerning the semantics of
the model, several simulation algorithms have been proposed since the introduction
of PDP systems. Each new algorithm aimed at improving the accuracy in which
the reality is mapped to the models. Perhaps, the most difficult feature to handle
by the simulation algorithms is the competition of objects between rules from
different blocks (note that rules within a block have a the same left-hand side, and
the objects are consumed according to the probabilities) [10].

The latest introduced algorithm for PDP system is called Direct distribution
based on Consistent Blocks Algorithm (DCBA) [13]. The approach taken in it is
based on the idea of distributing the objects along the rule blocks in a proportional
way. After this distribution, the rules within the blocks are selected according to
their probabilities using a multinomial distribution. In summary, DCBA consists
in 4 phases: 3 for selecting rules and the last one for performing the execution.
The scheme of DCBA is the following:

230 M.A. Mart́ınez-del-Amor, L.F. Maćıas-Ramos, M.J. Pérez-Jiménez

1. Initialization of the algorithm: static distribution table (columns: blocks,
Rows: (objects,membrane))

2. Loop over Time
3. Selection stage:
4. Phase 1 (Distribution of objects along rule blocks)
5. Phase 2 (Maximality selection of rule blocks)
6. Phase 3 (Probabilistic distribution, blocks to rules)
7. Execution stage

The proportional distribution of objects along the blocks is carried out through
a table which implements the relations between blocks (columns) and objects in
membranes (rows). We always start with a static (general) table, and depending
on the current configuration of the PDP system, the table is dynamically modified
by deleting columns related to non-applicable blocks. Note that after phase 1, we
have to assure that the maximality condition still holds. This is normally conveyed
by a random loop over the remaining blocks.

Finally, DCBA also handles the consistency of rules by defining the concept of
consistent blocks [13, 10]: rules within a block have the same left-hand side and
the same charge in the right-hand side. There is a further restriction within phase
1: if two non-consistent blocks (having different associated right-hand charge) can
be selected in a configuration, the simulation algorithm will return an error, or
optionally non-deterministically choose a subset of consistent blocks.

2.2 GPU computing

Today, PC’s processors offer from 2 to 16 computing cores, and this number can
be increased to 64 or even 128 in high end equipments. These cores are complex
enough to run threads simultaneously, each one with its own context, exploiting a
coarse grain level of parallelism. For example, OpenMP [22] is a threading library
for multicore processors, which can be used in C/C++.

High Performance Computing world has changed in the past years. The intro-
duction of the GPU [8] as a co-processor unit to compute and render 3-D graphics,
encouraged the change of trend in HPC solutions and start to consider heteroge-
neous platforms having CPUs and co-processors. The GPU has been devised as
a highly parallel processor since it was conceived, and now, GPGPU enables the
GPU to be used for general purpose scientific applications [21].

A GPU consists in SIMD multiprocessors interconnected to a fast bus with the
main memory system [15, 9]. Each multiprocessor has a set of computing cores
that execute instructions synchronously (they always perform the same instruction
over different data) and a small portion of sketchpad memory (similar to caches in
CPUs, but manually managed by programmers), among other elements. Current
GPUs also implement cache memories (one L2 at the level of the memory system,
and a L1 cache which resides within the sketchpad memory).

Fortunately, all these aspects are abstracted to the programmer with high level
programming models such as CUDA [9, 23]. Introduced by NVIDIA in 2007, CUDA

Parallel Simulation of PDP Systems: Updates and Roadmap 231

allows to run thousands of lightweight threads concurrently arranged in blocks.
Threads belonging to the same block can cooperate and easily be synchronized.
Threads from different blocks can only be synchronized by finishing their execution.
All these threads execute the same code, called kernel, in a SPMD (single-program,
multiple-data) fashion, since they can access to different pieces of data by using the
identifiers associated to each thread and block. Moreover, each thread can also take
different branches of execution, but this is penalized when happened within a warp
(a group of 32 threads), given that it will makes the execution to be serialized. The
largest but slowest memory system is called global memory, whereas the smallest
but fastest sketchpad memory belonging to each block is called shared memory.
The access to these memories should be done carefully, since best bandwidth is
achieved when threads access to memory in coalesced (to contiguous addresses)
and aligned way [15].

Finally, the GPU architecture has been improving by the different releases.
GT800, Fermi, Kepler and Maxwell are the codename of each NVIDIA GPU gen-
eration. Each one has been associated to a Compute Capability (CC), 1.X, 2.X,
3.X, and 5.X, respectively [23].

2.3 PDP systems parallel simulation on the GPU

As mentioned above, the main objective of DCBA is to improve the accuracy of
the algorithm. However, it comes at expenses of low efficiency. Currently, P-Lingua
framework implements the algorithm, but it is usually not recommended when
dealing with large models because of the large simulation times. This lack of effi-
ciency is mainly due to the use of Java Virtual Machine and sequential algorithms.
Indeed, simulating massively parallel devices like P systems in a sequential fashion
is twice inefficient. A solution to outcome this issue is by harnessing the highly
parallel architecture within modern processors to map the massively parallelism
of P systems [10].

GPUs provide a good platform to implement real parallelism of P systems
in a natural way, by using their high level parallelism [11]. Most of P systems
simulators based on GPU are within the scope of PMCGPU (Parallel simulators
for Membrane Computing on the GPU) software project [26], which aims to gather
efforts on parallelizing P system simulators with GPU computing. Specifically,
there is a subproject for PDP systems, called ABCD-GPU.

ABCD-GPU started with a multi-core version [12, 10], based on C++ and
OpenMP, in which the environments and/or the simulations are distributed along
the processors. Experiments showed that parallelizing by simulations leads to bet-
ter speedups; that is, in a multiprocessor CPU, it is better to parallelize coarsely.
In order to deal with finer-grain parallelism, a CUDA version has been also de-
veloped [14, 10]. In general, these parallel simulators are based on the following
principles:

• Efficient representation of the data, both for PDP system syntactical elements
and auxiliary structures of DCBA. In this concern, the static and dynamic

232 M.A. Mart́ınez-del-Amor, L.F. Maćıas-Ramos, M.J. Pérez-Jiménez

tables for phase 1 are not really implemented. Instead, the operations over
these tables are translated to operations over the syntactical elements of the
PDP system, together with much smaller structures. This approach is called
virtual table, and has shown to dramatically decrease the required amount of
data and time in DCBA.

• Exploiting levels of parallelism presented in the simulation of PDP systems:
processing of rule blocks and rules, evolution of environments, and conducting
several simulations to extract statistical data from the probabilistic model.

As mentioned in previous section, CUDA requires a large amount of parallelism
to effectively use GPUs resources [9]. Parallelizing only by simulations as in the
OpenMP version is not enough, and the parallelism level is coarse. Instead, the
solution was to extract more parallelism from the PDP systems as follows [14]:

• Thread blocks: they are assigned to each environment and each simulation.
For each transition step, there is a minimal communication along environ-
ments (only when executing communication rules), and each simulation can be
executed independently.

• Threads: each thread is assigned to each rule block/column in selection phases
(1, 2 and 3). In execution phase (4), threads will execute rules in parallel. As
it is possible to have more rule blocks than threads per thread block, they
perform a loop over rule blocks in tiles.

So far, ABCD-GPU simulator has been tested by using randomly generated
PDP systems. The goal of this was to provide a flexible way to construct bench-
marks for performance analysis, by stressing the simulator with different topolo-
gies. For example, Table 1[14] shows the performance of the simulator with PDP
systems having different lengths of the left-hand sides (in terms of number of dif-
ferent objects in the multisets u and v) in average, and running on a NVIDIA
Tesla C1060 GPU, which has 240 cores and CC 1.3. These results clearly show
that phase 2 is the bottleneck of the simulator, since it is the less parallel phase
consisting in a random sequential loop. Moreover, when the competition for ob-
jects increase (having more objects in the LHS leads to more competitions), overall
performance drastically decreases.

Test with average LHS length of 1.5
% CPU % GPU Speedup

Phase 1 53.7% 30.1% 14.23x

Phase 2 12.6% 47% 2.13x

Phase 3 22.6% 13.7% 13.2x

Phase 4 11.1% 9.2% 9.7x

Table 1. Performance testing through randomly generated PDP systems.

Parallel Simulation of PDP Systems: Updates and Roadmap 233

3 A new input module: binary files

After the first version of ABCD-GPU [14], the efforts were focused on creating a
input module to read PDP system descriptions. In this section, we briefly present
the new features of the ABCD-GPU simulator, which is a module to read bi-
nary files defining PDP systems models. We also show preliminary results of the
simulator with a real ecosystem model.

3.1 Format definition

Similarly to the simulator of P systems with active membranes [10, 11], the design
decision for the input file was a binary format. The reason for this is twofold:

• Size of files: the GPU simulator is conceived for running very large models.
Otherwise, it is not worth to be used. Thus, the communication with the simu-
lator should be as efficient as possible to avoid overheads. Since we use P-Lingua
for describing PDP system models, it makes sense to use pLinguaCore to parse
the files. In this concern, P-Lingua is used as the parser and compiler which
send a file to the simulator with unwrapped rules (recall that rules in P-Lingua
can be defined in a symbolic way). Thus, in order to reduce the size of the file
as much as possible, we have defined a binary format which assign the less bits
to each syntactic element.

• Efficiency : related with the latter, the binary file is also organized in such a
way that it fits well with the initialization of structures in the simulator. This
helps the efficiency of the parser, while reducing the size of the files.

Although using this kind of format lead to a coupled design (between the
P-Lingua parser and the simulator), it will allow to use the GPU engine while
reducing the communication/storage cost.

Next, we show the structure of the format for the binary file, which is divided
into 5 sections:

• Header: unequivocally identify this file as a binary description file for PDP
systems.

• Sub-header: defines the accuracy used along the file, for the different fields. This
allows to use the exact number of bytes according to the number of objects,
rules, etc.

• Global sizes: define the size of alphabet, number of rules, membranes, environ-
ments and membrane structure.

• Rule blocks: their information is given in 3 subsections, each one giving infor-
mation for allocating space related with the next one.

• Initial configuration description.

1 ##

2 # Binary file format for the input of the simulator: PDP systems

3 # (revision 16-09-2014). The encoded numbers must be in big-endian

234 M.A. Mart́ınez-del-Amor, L.F. Maćıas-Ramos, M.J. Pérez-Jiménez

4

5

6 # Header (4 Bytes):

7 0xAF

8 0x12

9 0xFA

10 0x21 (Last Byte: 4 bits for P system model, 4 bits for file version)

11

12 # Sub-header (3 Bytes):

13 Bit-accuracy mask (2 Bytes, 2 bits for each number N (meaning a precision

14 of 2^N Bytes)), for:

15 - Num. of objects (2 bits (meaning 2^0 -- 2^2 Bytes))

16 - Num. of environments (2 bits (meaning 2^0 -- 2^2 Bytes))

17 - Num. of membranes (2 bits (meaning 2^0 -- 2^2 Bytes))

18 - Num. of skeleton rules (2 bits (meaning 2^0 -- 2^2 Bytes))

19 - Num. of environment rules (2 bits (meaning 2^0 -- 2^2 Bytes))

20 - Object multiplicities in rules (2 bits (meaning 2^0 -- 2^2 Bytes))

21 - Initial num. of objects in membranes (2 bits (meaning 2^0 -- 2^2 Bytes))

22 - Multiplicities in initial multisets (2 bits (meaning 2^0 -- 2^2 Bytes))

23 Listing char strings (1 Byte, 5 bits reserved + 3 bits), for:

24 - Reserved (5 bits)

25 - Alphabet (1 bit)

26 - Environments (1 bit)

27 - Membranes (1 bit)

28

29

30 #---- Global sizes

31

32 # Alphabet

33 Number of objects in the alphabet (1-4 Bytes)

34 ## For each object (implicit identificator given by the order)

35 Char string representing the object (finished by ’\0’)

36

37

38 # Environments

39 Number of environments, m parameter (1-4 Bytes)

40 ## For each environment (implicit identificator given by the order)

41 Char string representing the environment (finished by ’\0’)

42

43

44 # Membranes (including the environment space as a membrane)

45 Number of membranes, q parameter + 1 (1-4 Bytes)

46 ## For each membrane (implicit identificator given by the order,

47 from 1 (0 denotes environment))

48 Parent membrane ID (1-4 Bytes)

49 Char string representing the label (finished by ’\0’)

50

51

Parallel Simulation of PDP Systems: Updates and Roadmap 235

52 # Number of rule blocks

53 Number of rule blocks of Pi/Skeleton (1-4 Bytes)

54 Number of rule blocks of the environments (1-4 Bytes)

55

56

57 #---- Information of rule blocks: number rules and length LHS

58

59 # For each rule block of Pi (skeleton)

60 Information Byte (1 Byte: 2 bits for precision of multiplicity in L/RHS

61 (2^0 -- 2^2 Bytes) + 1 bit precision number of objects

62 in LHS (2^0 -- 2^1 Bytes) + 1 bit precision number of

63 objects in RHS (2^0 -- 2^1 Bytes) + 2 bits precision

64 number of rules in the block (2^0 -- 2^2 Bytes) + 1 bit

65 don’t show probability for each environment + 1 bit show

66 parent membrane)

67 Number of rules inside the block (1-4 Bytes)

68 Number of objects in LHS; that is, length U + length V (1-2 Bytes)

69 Active Membrane (1-4 Bytes)

70 # If show parent membrane flag is active (deprecated)

71 Parent Membrane (1-4 Bytes, this is deprecated)

72 Charges (1 Byte: 2 bits for alpha, 2 bits for alpha’, 4 bits reserved,

73 using 0=0, +=1, -=2)

74

75 # For each rule block of environment

76 Information Byte (1 Byte: 2 bits for precision of multiplicity in LHS

77 (2^0 -- 2^2 Bytes) + 1 bit precision number of objects

78 in LHS (2^0 -- 2^1 Bytes) + 1 bit precision number of

79 objects in RHS (2^0 -- 2^1 Bytes) + 2 bits precision of

80 number of rules in the block (2^0 -- 2^2 Bytes) + 1 bit

81 probability for each environment + 1 bit show parent

82 membrane)

83 Number of rules inside the block (1-2 Bytes)

84 Environment (1-4 Bytes)

85

86

87 #---- Information of rule blocks: length RHS, probabilities and LHS

88

89 # For each rule block of Pi

90 ## For each rule

91 Number of objects in RHS; that is, length U’ + length V’ (1-2 Bytes)

92 ### For each environment

93 Probability first 4 decimals (prob*10000) (2 Bytes)

94 ## For LHS U: multiset in the LHS in the parent membrane U [V]_h^a

95 Number of objects in U (1-2 Bytes)

96 ### For each object

97 Object ID (1-4 Bytes)

98 Multiplicity (1-4 Bytes)

99 ## For LHS V: multiset in the LHS in the active membrane U [V]_h^a

236 M.A. Mart́ınez-del-Amor, L.F. Maćıas-Ramos, M.J. Pérez-Jiménez

100 Number of objects in V (1-2 Bytes)

101 ### For each object

102 Object ID (1-4 Bytes)

103 Multiplicity (1-4 Bytes)

104

105 # For each rule block of environment

106 Object in LHS (1-4 Bytes)

107 ## For each rule

108 Number of objects (involved environments) in RHS (1-2 Bytes)

109 Probability first 4 decimals (prob*10000) (2 Bytes)

110

111

112 #---- Information of rule blocks: RHS

113

114 # For each rule block of Pi

115 ## For each rule

116 ### For RHS U’: multiset in the RHS in the parent membrane U’ [V’]_h^a’

117 Number of objects in U’ (1-2 Bytes)

118 #### For each object

119 Object ID (1-4 Bytes)

120 Multiplicity (1-4 Bytes)

121 ### For RHS V’: multiset in the RHS in the active membrane U’ [V’]_h^a’

122 Number of objects in V’ (1-2 Bytes)

123 #### For each object

124 Object ID (1-4 Bytes)

125 Multiplicity (1-4 Bytes)

126

127 # For each rule block of environment

128 ## For each rule

129 #### For each object in RHS

130 Object ID (1-4 Bytes)

131 Environment (1-4 Bytes)

132

133

134 #---- Initial multisets and sekeleton states

135

136 # For each environment

137 ## For each membrane (membrane 0 for environment)

138 Charge (1 Byte: 2 bits, 6 bits reserved, using 0=0, +=1, -=2)

139 Number of different objects in the membrane (1-4 Bytes)

140 ## For each object:

141 Object ID (1-4 Bytes)

142 Multiplicity (1-4 Bytes)

143

Parallel Simulation of PDP Systems: Updates and Roadmap 237

3.2 Input/output parsers

The ABCD-GPU simulator has been extended with a input module which is able
of reading the above described binary format. Currently, the version is still exper-
imental, and in order to decouple the input parser from the simulator structures,
the module creates temporal data structures. Of course, in the final version, these
structures should be avoided, making the reading of input files more efficient. The
input PDP systems can be used both by the CPU and the GPU simulators.

On the other side, a first output module has been also developed. So far, the
results were printed on screen. Today, it is possible to generate CSV (Comma
Separated Values) files, which can be opened by statistics software such as R and
Excel.

3.3 Preliminary results: a real ecosystem model

Thanks to this input module, we have been able to test our simulator with a real
ecosystem model. We have chosen the model of the Bearded Vulture ecosystem in
the Pyrenees, presented in [2], for its simplicity, allowing us to perform debugging
and performance testing.

We have run two tests with 100 simulations, and 47 time steps (as required
by the model for 10 years), using two GPUs from different generations: (a) Tesla
C1060 (GT800 architecture), and (b) GeForce GTX550 (Fermi architecture). Un-
fortunately, we couldn’t use our Tesla K40 (Kepler architecture) yet since some
artifacts happened in the simulator, that requires more debugging and testing.
Table 2 shows the preliminary results extracted from our simulators.

Tesla C1060 GTX550
% CPU % GPU Acc % CPU % GPU Acc

Phase 1 53.8% 56% 4.2x 53.8% 61.2% 12.6x

Phase 2 1.6% 2% 3.4x 1.6% 6.5% 3.5x

Phase 3 37% 9.4% 17.2x 37% 22.8% 23.3x

Phase 4 7.6% 32.6% 1.02x 7.6% 9.5% 11.6x

Total 4.38x 14.4x

Table 2. Profiling the Bearded Vulture ecosystem model (2008)

At first glance, the results show that the GPU (b) (GTX550) achieves better
performance, up to 14.4x of speedup with respect to the sequential version, while
the GPU (a) achieves barely 4.38x. As we have shown before, GPU (a) can achieve
up to 7x of speedup with randomly generated P systems. However, we can see two
new behaviors that were not expected before:

• Phase 2 is not the bottleneck: it is easy to see that the considered model has
no competition for objects. Thus, phase 2 is not required for its simulation (the
only mechanism carried out is the checking of remaining active blocks).

238 M.A. Mart́ınez-del-Amor, L.F. Maćıas-Ramos, M.J. Pérez-Jiménez

• Phase 4 is the bottleneck: this results is completely unexpected at first glance.
However, a deeper analysis shows that since a few ratio of rules is executed,
and most of them has common objects in the right hand side, the generation
of objects is not performed completely efficiently. The main reason is the usage
of atomic operations for adding new objects.

However, the behavior is completely different on GPU (b):

• Phase 2 is again the bottleneck. Although it is not required, the first phase of
the kernel is run, which checks the remaining active blocks.

• The rest of phases are well accelerated. This demonstrates that the better
bandwidth and the L2 cache of this GPU help to achieve better speedups
when simulating PDP systems.

4 Road map

In what follows, we will discuss some of the future development lines under our
consideration for next versions. In fact, this list is the road map for the ABCD-
GPU project.

1. Making available Phase1 filter Kernel for GPUs with CC 3.x. In a Tesla K40
GPU, the consistency checking between rule blocks fails randomly.

2. More work on the obtaining the results from the GPU:
(a) Use asynchronous copy from the GPU (it will require a double buffer for

the multisets).
(b) Filtering the multisets on the GPU, according to some parameters defined

by the user.
(c) Finishing the output module for binary files.
(d) Development of a module that uploads the results into a database (inter-

operability with MeCoSim framework).
3. Phase 4 is becoming a bottleneck when running real ecosystem models. We

have to change the scatter strategy into a gather one. That is, the threads
reads the selection number for each rule, and create the corresponding objects.
Why not using hybrid approaches, or a queue-levels approximation? That is,
perform some atomics operations on shared memory, and then dump them to
global memory. However, this is not easy, because the multiset structure might
not fit into shared memory.

4. Phase 2 is also very slow.
(a) Auto-detect if Phase 2 is really required. For example, if we know that

the model has no competition of objects. Or if we analyze the number of
active blocks remaining after Phase 1. Otherwise, we can skip it.

(b) Compact active blocks after phase 1 for more efficiency.
(c) Real (random) disorder of rule blocks (maybe taking some ideas from [7]).

Currently, the random order is given by the thread scheduler (not a really
random).

Parallel Simulation of PDP Systems: Updates and Roadmap 239

5. Avoid current synchronization of DCBA phases. That is, run all the phases
with one single kernel (perhaps one global kernel which calls to device ver-
sions of current kernels). It could be convenient to maintain the original version
for GPUs that are used for the graphic system on the computer (limitation of
kernel time).

6. In PDP systems, the working alphabet for the skeleton and for the environ-
ments are disjoint. That is, Γ ∩ Σ = ∅. Therefore, we can work with all the
communication rules apart from the virtual table.

7. Implement a variant of DCBA, called µDCBA:
(a) It will allow to extract more parallelism within each environment. If we

pre-calculate the group of rules that really depend on each other because
they compete for objects, we will be able to apply DCBA separately to
each group, i.e. more locally and in parallel. Moreover, there will be less
resources to handle (and perhaps we would be able to move more data into
shared memory, such as the multisets).

(b) We define a transitive relation between rule blocks, called competition:
block bi directly compete for objects with block bj if they have overlapping
but not equal left-hand side. Moreover, if bk directly compete with Bj , but
not with Bi, then Bi and Bk also compete for objects (however, indirectly
through Bj).

(c) The idea is to define disjoint sets of rule blocks holding the competition
relation, and apply DCBA to each one.

(d) It would be desirable to use this variant only when the sets are balanced.
We could also assign different “small” sets to one thread block.

8. Improving the data structures. Concerning the storage of objects appearing
in the left-hand side of the rule (blocks), the current implementation on the
GPU could be improved.
(a) Current implementation is based on CSR representation of sparse matrices.

All the objects of all the left-hand sides (LHS) are stored consecutively in
a single array (see Figure 1), the array at the bottom). Each rule block
has a corresponding entry in an array that contains a pointer (the index)
to the array for LHS objects. This index says the first object of the LHS,
and the end is given by the index of the next rule block. In this way, for
example, ruleblock 4 has no object in LHS (what is weird, but can take
place in our implementation), since idx5-idx4=0. However, rule block 2
has 3 objects, since idx3-idx2=3.

(b) The problem is that each thread will iterate the objects of the LHS of each
rule block. However, the access to the array of LHS is not coalesce, what
is really bad for performance.

(c) The idea would be to use the ELL representation of sparse matrices, and
compact the objects in the LHS by chunks of consecutive rule blocks.
Rule blocks with short LHS will need to replicate with dummy objects.
In this way, the access is made coalesced (see Figure 2). The array of

240 M.A. Mart́ınez-del-Amor, L.F. Maćıas-Ramos, M.J. Pérez-Jiménez

objects should be linear (that’s why there are lines connecting each chunk).
Moreover, the array of lengths could be avoided.

(d) This will entail an interesting research. Is it good to do it or not? How
much is the waste of memory? Can we use it only when LHS lengths are
more or less balanced? Otherwise, can we use the COO representation? Is
it really much more faster? What about Fermi architecture? Will their L2
cache improve the results?, is it good or not?

9. Implement model-oriented optimizations. That is, to analyze the PDP system
model prior to the simulation and extract properties that will help to the
efficiency. For example, test if there are competition for objects, inconsistent
rule blocks, etc.

10. Parallel P-Lingua. Moreover, it would be interesting to let the model designer
to provide the above mentioned properties to the simulator. For example, to
allow in P-Lingua the usage of directives for defining modules of rules that can
be executed in parallel, similarly to the pragma directives in OpenMP.

11. Hybrid simulation of PDP systems, by using both the CPU and GPU platforms
at the same time, and implement a merge module of simulations at the end of
the process.

RB1 RB2 RB3 RB4 RB5 RB6 RB7 RB8

idx1 idx2 idx3 idx4 idx5 idx6 idx7 idx8

O1,1 O1,2 O2,1 O2,2 O2,3 O3,1 O5,1 O5,2 O6,1 O6,2 O7,1 O8,1

Rule blocks

Left-hand side indexes
(points to first object)

Objects in LHS

Fig. 1. Data structure for storing the information of left-hand sides of rule blocks, as
currently implemented.

5 Conclusions

In this paper, we have shown the preliminary results related with the input mod-
ule for the CPU/GPU simulators of PDP systems (ABCD-GPU). This module
supports files with a binary format, which we have introduced here. The purpose

Parallel Simulation of PDP Systems: Updates and Roadmap 241

RB1 RB2 RB3 RB4 RB5 RB6 RB7 RB8

len1 len2 len3 len4 len5 len6 len7 len8

O1,1 O2,1 O3,1 X O5,1 O6,1 O7,1 O8,1

Rule blocks

Left-hand side lengths

Objects in LHS

O1,2 O2,2 X X O5,2 O6,2 X X

X O2,3 X X X X X X

Fig. 2. Data structure for storing the information of left-hand sides of rule blocks, as
proposed.

of using a restricted, binary format is for efficiency. We have also shown that simu-
lating a real ecosystem model leads to different behaviors, depending on the GPU
generation. Specifically, we have seen that phase 2 is the bottleneck for a Tesla
C1060, while phase 4 is for a GTX 550 (Fermi).

Figure 3 shows the current structure of the project. The simulation engine
implements DCBA in both multicore (CPU) and manycore (GPU) platforms. The
input files are generated by pLinguaCore, which acts as a parser in the creation
of binary files. The output files will be both in CSV and binary formats soon, and
a module to upload results to a database is also under consideration. Moreover,
the platform still support the input of randomly generated PDP systems and the
output of corresponding profiling and debugging information, in order to conduct
performance benchmarks to new versions of the simulator.

Finally, it is noteworthy that in this case, Parallel Computing is not only used
to get faster solutions, but also, to obtain better results, because it enables the
users to run DCBA-based simulations in an affordable time.

Acknowledgements

The authors acknowledge the support of the project TIN2012-37434 of the “Min-
isterio de Economı́a y Competitividad” of Spain, co-financed by FEDER funds.
Miguel A. Mart́ınez-del-Amor also acknowledges the support of the Alain Ben-

242 M.A. Mart́ınez-del-Amor, L.F. Maćıas-Ramos, M.J. Pérez-Jiménez

Fig. 3. Structure of ABCD-GPU project.

soussan Fellowship programme of ERCIM, and the hosting institution Fraunhofer
IIS.

References

1. M. Cardona, M.A. Colomer, A. Margalida, A. Palau, I. Pérez-Hurtado, M.J. Pérez-
Jiménez, D. Sanuy. A computational modeling for real ecosystems based on P systems,
Natural Computing, 10, 1 (2011), 39–53.

2. M. Cardona, M.A. Colomer, A. Margalida, I. Pérez-Hurtado, M.J. Pérez-Jiménez, D.
Sanuy. A P system based model of an ecosystem of some scavenger birds, LNCS, 5957,
(2010), 182–195.

3. M.A. Colomer-Cugat, M. Garćıa-Quismondo, L.F. Maćıas-Ramos, M.A. Mart́ınez-del-
Amor, I. Pérez-Hurtado, M.J. Pérez–Jiménez, A. Riscos-Núñez, L. Valencia-Cabrera.
Membrane system-based models for specifying Dynamical Population systems. In P.
Frisco, M. Gheorghe, M.J. Pérez-Jiménez (eds.), Applications of Membrane Computing
in Systems and Synthetic Biology. Emergence, Complexity and Computation series,
Volume 7. Chapter 4, pp. 97–132, 2014, Springer Int. Publishing.

4. M.A. Colomer, A. Margalida, M.J. Pérez-Jiménez. Population Dynamics P System
(PDP) Models: A Standardized Protocol for Describing and Applying Novel Bio-
Inspired Computing Tools. PLOS ONE, 8 (4): e60698 (2013)

5. M. Garćıa-Quismondo, R. Gutiérrez-Escudero, I. Pérez-Hurtado, M.J. Pérez-Jiménez,
Agust́ın Riscos-Núñez. An overview of P-Lingua 2.0, LNCS, 5957 (2010), 264–288.

6. M. Garćıa-Quismondo, M.A. Mart́ınez-del-Amor, M.J. Pérez-Jiménez. Probabilistic
Guarded P systems: A new formal modelling framework. LNCS, 8961 (2014), 194–
214.

Parallel Simulation of PDP Systems: Updates and Roadmap 243

7. A. Gastalver-Rubio. Simulation of probabilistic P systems on GPUs, Final Research
Project, University of Seville, September 2012.

8. M. Harris. Mapping computational concepts to GPUs, ACM SIGGRAPH 2005
Courses, NY (USA), 2005.

9. D. Kirk, W. Hwu. Programming Massively Parallel Processors: A Hands On Approach,
MA (USA), 2010.

10. M.A. Mart́ınez-del-Amor. Accelerating Membrane Systems Simulators using High
Performance Computing with GPU, Ph.D. thesis, University of Seville, May 2013.

11. M.A. Mart́ınez-del-Amor, M. Garćıa-Quismondo, L.F. Maćıas-Ramos, L. Valencia-
Cabrera, A. Riscos-Núñez, M.J. Pérez-Jiménez. Simulating P Systems on GPU Devices:
A Survey. Fundamenta Informaticae, 136, 3 (2015), 269–284

12. M.A. Mart́ınez-del-Amor, I. Karlin, R.E. Jensen, M.J. Pérez-Jiménez, A.C. Elster.
Parallel simulation of probabilistic P systems on multicore platforms, Proc. Tenth
Brainstorming Week on Membrane Computing, Sevilla, Spain, Volume II, 2012, pp.
17–26.

13. M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, M. Garćıa-Quismondo, L.F. Maćıas-
Ramos, L. Valencia-Cabrera, A. Romero-Jiménez, C. Graciani, A. Riscos-Núñez, M.A.
Colomer, M.J. Pérez-Jiménez. DCBA: Simulating Population Dynamics P Systems with
Proportional Object Distribution, LNCS, 7762 (2012), 27–56.

14. M.A. Mart́ınez-del-Amor, I. Pérez-Hurtado, A. Gastalver-Rubio, A.C. Elster, M.J.
Pérez-Jiménez. Population Dynamics P systems on CUDA. 10th Conference on Com-
putational Methods in Systems Biology, LNBI, 7605 (2012), 247–266.

15. J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, J.C. Phillips. GPU Com-
puting, Proceedings of the IEEE, 96, 5 (2008), 879-899.

16. Gh. Păun: Computing with Membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143, and Turku Center for CS-TUCS Report No. 208, 1998

17. Gh. Păun, Gz. Rozenberg, A. Salomaa (eds.). The Oxford Handbook of Membrane
Computing, Oxford University Press, USA, 2010.

18. I. Pérez-Hurtado, L. Valencia-Cabrera, M.J. Pérez-Jiménez, M.A. Colomer, A.
Riscos-Núñez. MeCoSim: A general purpose software tool for simulating biological phe-
nomena by means of P Systems, Proceedings IEEE Fifth International Conference on
Bio-inpired Computing: Theories and Applications (BIC-TA 2010), volume I (2010),
pp. 637–643.

19. M.J. Pérez-Jiménez, F.J. Romero-Campero. P systems, a new computational mod-
elling tool for Systems Biology. Transactions on Computational Systems Biology VI.
LNBI, 4220 (2006), 176–197.

20. M.J. Pérez-Jiménez, F.J. Romero-Campero. A model of the Quorum Sensing system
in Vibrio fischeri using P systems. Artificial Life, 14, 1 (2008), 95–109.

21. GPGPU organization. http://www.gpgpu.org
22. OpenMP webiste. http://www.openmp.org
23. NVIDIA CUDA website, 2015. https://developer.nvidia.com/cuda-zone
24. The MeCoSim web page. http://www.p-lingua.org/mecosim
25. The P-Lingua web page. http://www.p-lingua.org
26. The PMCGPU project, 2013. http://sourceforge.net/p/pmcgpu

Some Quick Research Topics

Gheorghe Păun

Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania
gpaun@us.es, curteadelaarges@gmail.com

Summary. Some research topics are suggested, in a preliminary form, in most cases
dealing with (somewhat nonstandard) extensions of existing types of P systems.

1 Introduction

Almost at every edition of the Brainstorming, lists of open problems and research
topics were circulated – the present note should be seen as a step in this tradition,
part of a ritual. The interested reader can check the Brainstorming volumes, or,
for a more systematic list of research suggestions, (s)he should consult the “mega-
paper” [7]. Of course, many open problems and research topics can be found in
[11] and at the domain web site [14].

The list which follows contains several suggestions (this time I do not count
them...) which might look strange at the first sight, but which have their mo-
tivation, they are natural at least from a mathematical point of view. Just one
example: multisets with negative multiplicity seems to be artificial objects, but
they appear already in computer science, see, e.g., [2].

Of course, the reader is assumed to be familiar with membrane computing,
so that the presentation is minimal, both in what it concerns the details and the
references.

2 ”Negative” Extensions

It is about negative numbers, as already mentioned above...
In several places in membrane computing we have functions f : X −→ N.

The multiplicity of objects in multisets, the time associated with rules in timed
P systems, weights associated with synapses in SN P systems, life duration of
objects in P systems with object decay (what else?) are of this form. At least as
a mathematical challenge, we can try to extend these functions to f : X −→ Z,
where Z is the set of integers, both positive and negative.

246 Gh. Păun

Negative multiplicities can be interpreted in various ways – see also [2] where
such multisets are considered. A connection can be made with anti-spikes in SN
P systems, in general, with anti-matter, in the sense of [9] – with the interesting
observation that anti-matter (plus the priority of the annihilation rules over evo-
lution rules, with the annihilation rules applied in no time) is useful, it speeds-up
the functioning of P systems, see, e.g., [6]. What happens when the annihilation
does not have priority?

Of course, passing to negative integers in other cases raises problems concerning
the definition of the functioning of the systems. For instance, what means to apply
a rule having associated a negative time? Moving back in time the produced objects
is a possibility, but this means separating the objects associated to several time
moments, which would imply that objects can travel back and forth in time and
only objects of the same time can react. What happens with the observer time?
Naturally, it has to grow continuously with unit steps. How the internal times of
objects interact with the external time of the observer? Finding a good definition
of the computations in such a system is already a first task. I forecast, however,
that the interplay of the internal and the external times will lead to interesting
results. Remember also that the observer plays a crucial role in computations –
see, e.g., [3].

Of course, one further extension is to replace natural numbers with numbers in
larger classes than Z, why not?, with real numbers or even with complex numbers.
The results are not easy to forecast, but the next section can give some hints and
motivation.

3 Hypercomputing

Going beyond the ”Turing barrier” is a constant preoccupation of computer sci-
entists. I recall only three surveys, [4], [8] and [13]. In membrane computing there
are only a few attempts to achieve a hypercomputation power, see [1] and [12].

No result of this type was reported for SN P systems, in spite of the fact that
the motivation of these systems comes from the brain, and the brain is (supposed
to be) a non-Turing ”computing device”.

The problem is much more general: in the hypercomputability area there are
several tricks (Martin Davis would say even ”dishonest tricks”, as the power is
introduced from the beginning in the system and then we prove that the system
is powerful...) used in order to increase the power of of the obtained machineries
beyond the power of usual Turing machines. I list the ten ideas mentioned in [8]: 1.
O-machines (Turing machine with oracles), 2. Turing machines with initial inscrip-
tions (infinitely many cells of the input tape contain already symbols), 3. Coupled
Turing machines (input channels are provided which bring information into the
machine during the computation, as a possibly non-recursive sequence of bits),
4. Asynchronous networks of Turing machines (timing functions are provided, not
necessarily recursive), 5. Error prone Turing machines (the errors appear according

Some Quick Research Topics 247

to a function, again, not necessarily recursive), 6. Probabilistic Turing machines
(not so easy to describe), 7. Infinite state Turing machines (infinite sets of states
and transitions, but only a finite number of transitions leading from a given state),
8. Accelerated Turing machines (each step takes half of the time needed for per-
forming the previous step – like in [1]), 9. Infinite time Turing machines, 10. Fair
non-deterministic Turing machines.

Summarizing: infinite resources, specification or functioning, real numbers,
non-recursive functions involved in the computations. Similar tricks are described
in [13].

Which of these ideas can be (naturally) extended to P systems? Which of them
have even a remote biological support/motivation? Which if these ideas can also
speed-up the computations so that computationally hard problems could be solved
in a polynomial time? (At least the acceleration is doing it, as in two external time
units any computation halts...)

4 Extensions of SN P Systems

Many modifications of the structure and the functioning of SN P systems can be
imagined. Here are a few of them.

Consider SN P systems as devices computing functions f : Nk −→ Nl, for
some k, l ≥ 1 (take k input neurons and l output neurons etc.). What about
the efficiency of this way to compute functions? Any application (similar to the
application of numerical P systems in robot control)?

What about SN P systems with astrocytes, with the astrocytes controlling the
flow of spikes not according to thresholds associated with them, but using regular
expressions in a similar way as the spiking rules use them: couples (Ei,actioni)
are associated with the astrocytes and actioni is performed when the number of
spikes on the controlled synapses belongs to L(Ei).

In [5], the notion of white holes is introduced in membrane computing, as
regions where rules which expel all objects are present. What about SN P systems
with ”white hole neurons”, i.e., containing spiking rules an → an for all n? Systems
where all neurons are of this type have an interesting behavior: just consider the SN
P system in Figure 1, with all neurons being white holes, and follow its functioning.
Three increasing sequences of numbers describing the number of spikes in the
three neurons are obtained, with an intriguing growth. Can you characterize these
sequences? Ca you compute in this way known sequences, such as the Fibonacci
one?

Finally, let us return to the brain. Usually, it is considered as working at two
levels, the conscious one and the subconscious one. One model of the brain func-
tioning claims that the cortex formulates problems to the subconscious level, this
one works ”silently”, in a great extent nondeterministically, proposing solutions to
the conscious level. The cortex evaluates the proposed solutions, accepts the good
one, if any, or returns the problem to the ”lower” level, and so on, until either the
problem is solved or the problem is abandoned or... the brains gets into troubles.

248 Gh. Păun �
�

�
�

�
�

�
�

�
�

�
�

	
-

]

1

1 1

^

Fig. 1. An SN P system composed of white holes

Can this strategy be implemented in terms of SN P systems? Which is its
computing power and, also, its computing efficiency? Nondeterminism is powerful,
one can expect interesting results, provided that such an ”SN P brain”, with
two modules (somewhat like in dP systems, [10]), a nondeterministic one and a
deterministic one, connected with the environment/user, could be defined.

5 Numerical P Systems

This is a class of P systems which I feel still keeps undiscovered many nice results
and, possibly, applications. Just to recall the attention about them, I am formu-
lating here two problems, one theoretical (and also formulated in other contexts)
– (1) consider numerical P systems as decidability devices and investigate their
efficiency (complexity classes), both in the original setup and, if they are not effi-
cient enough, after introducing membrane division or other tools for producing an
exponential working space in linear time – and one applicative: (2) these systems
were used to build controllers for robots. 2D robots. What about passing to 3D
robots? This is mainly a programming issue, but it could find good applications –
for instance, in controlling the drones, so popular in the last time.

6 Final Remarks

References

1. C. Calude, Gh. Păun: Bio-steps beyond Turing. BioSystems, 77 (2004), 175–194.
2. J. Carette, A.P. Sexton, V. Sorge, S.M. Watt: Symbolic domain decomposition.

AISC/Calculemus/MKM 2010 (S. Autexier et al., eds.), LNAI 6167, Springer, 2010,
172–188.

3. M. Cavaliere, P. Leupold: Evolution and observation. A new way to look at membrane
systems. Proc. WMC 2003, LNCS 2933, Springer, 2003, 70–87.

4. B.J. Copeland: Hypercomputation. Minds and Machines, 12, 4 (2002), 461–502.
5. E. Csuhaj-Varjú, M. Gheorghe, Gy. Vaszil, M. Oswald: P systems for social networks.

Ninth Brainstorming Week on Membrane Computing, Sevilla, 2011, 113–124.

Some Quick Research Topics 249

6. D. Dı́az-Pernil, F. Peña-Cantillana, A. Alhazov, M.A. Gutiérrez-Naranjo, R. Fre-
und: Antimatter as a frontier of tractability in membrane computing. Fundamenta
Informaticae, 134, 1-2 (2014), 83–96.

7. M. Gheorghe, Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Frontiers of membrane
computing: Open problems and research topics, Intern. J. Found. Computer Sci., 24,
5 (2013), 547–623 (first version in Proc. Tenth Brainstorming Week on Membrane
Computing, Sevilla, January 30 – February 3, 2012, vol. I, 171–249).

8. T. Ord: Hypercomputation: Computing More Than the Turing Machine. Honours
Thesis, Department of Computer Science, University of Melbourne, 2003.

9. Gh. Păun: Four (somewhat nonstandard) research topics. 12th BWMC, Sevilla,
February 2014, 305–309.

10. Gh. Păun, M.J. Pérez-Jiménez: Solving problems in a distributed way in membrane
computing: dP systems, Int. J. of Computers, Communication and Control, 5, 2
(2010), 238–252.

11. Gh. Păun, G. Rozenberg, A. Salomaa, eds.: The Oxford Handbook of Membrane
Computing. Oxford University Press, 2010.

12. P. Sośık, O. Valik: On evolutionary lineages of membrane systems. Membrane Com-
puting, International Workshop, WMC6, Vienna, Austria, 2005, Selected and Invited
Papers, LNCS 3850, Springer, Berlin, 2006, 67–78.

13. A. Syropoulos: Hypercomputation: Computing Beyond the Church-Turing Barrier.
Springer, Berlin, 2008.

14. The P Systems Website: http://ppage.psystems.eu.

Looking for Computers in the Biological Cell.
After Twenty Years?

Gheorghe Păun

Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania
gpaun@us.es

1 Preliminary Cautious and Explanations

The previous title needs some explanations which I would like to bring from the
very beginning.

On the one hand, it promises too much, at least with respect to my scientific
preoccupations in the last two decades and with respect to the discussion which
follows. It is true that there are attempts to use the cell as it is (bacteria, for
instance) or parts of it (especially DNA molecules) to compute, but a research
direction which looks more realistic, at least for a while, and which has interested
me, is to look in the cell for ideas useful to computer science, for computability
models which, passing from biological structures and processes to mathematical
models, of a computational type, can not only ensure a better use of the existing
computers, the electronic ones, but they can also return to the starting point, as
tools for biological investigations.

Looking to the cell through the mathematician-computer scientist glasses, this
is the short description of the present approach, and in this area it is placed the
personal research experience which the present text is based on.

On the other hand, the title announces already the autobiographical intention.
Because a Reception Speech is a synthesis moment, if not also a career summarizing
moment, it cannot be less autobiographical than it is, one uses to say, any novel
or poetry volume. And, let us not forget, the life in the purity and signs world
(a syntagma of Dan Barbilian-Ion Barbu, a Romanian mathematician and poet)

? This is the English version of the Reception Speech I have delivered on October 24,
2014, at the Romanian Academy, Bucharest, and printed by the Publishing House of
the Romanian Academy in December 2014. The answer to this speech was given by
acad. Solomon Marcus. Some ideas and some paragraphs of the text have appeared, in
a preliminary version, in the paper Gh. Păun ”From cells to (silicon) computers, and
back”, published in the volume New Computational Paradigms. Changing Conceptions
of what is Computable (B.S. Cooper, B. Lowe, A. Sorbi, eds.), Springer, New York,
2008, 343–371.

252 Gh. Păun

of mathematics assumes/imposes a great degree of loneliness, as acad. Solomon
Marcus reminded us in his Reception Speech (2008), while the loneliness (it is
supposed to) make(s) us wiser, but it also moves us farther from the ”world-as-it-
is”, so that at some stage you no longer know how much from a mathematician
belongs to the ”world” and how much belongs to mathematics. That is why we
can consider that a mathematician is autobiographical both in his/her theorems
and in the proofs of his/her theorems, as well as in the models (s)he proposes.

Looking back in time, I find that I am now at the end of two periods of two
decades each, the second one completely devoted to ”searching computers in the
cell”, while the first period was almost systematically devoted to preparing the
tools needed/useful to this search. The present text describes mainly the latter of
these two periods.

2 Another Possible Title

For a while, I had in mind also another title, much more general, namely, From
bioinformatics to infobiology. It was at the same time a proposal and a forecast,
and the pages which follow try to bring consistency to this forecast. Actually, the
idea does not belong to me, in several places there were discussions about a new
age of biology – the same was predicted also for physics – based on using the
informational-computational paradigms, if not also based on further chapters of
mathematics, not developed yet. The idea is not to apply computer science, be it
theoretical or practical, to biology, but to pass to a higher level, to a systematic
approach to biological phenomena in terms of computability, with the key role
of information being understood. Attempts which illustrate this possibility, also
advocating for its necessity, can be found in many places, going back in time to
Erwin Schrödinger and John von Neumann. In a recent book, Infobiotics. Infor-
mation in Biotic Systems (Springer-Verlag, 2013), Vincenzo Manca also pleads for
”a new biology”, which he calls infobiotics, starting from the observation that the
life is too important to be investigated only by biologists. I would reformulate in
more general terms: the life is too important and too complex to be investigated
only by the traditional biology – with the important emphasis that exactly the biol-
ogists are called to not only benefit, but also to provide consistency to infobiology.
Together with the computer scientists and, more plausibly and more efficient, bor-
rowing from the computer scientists ideas, models, techniques, making them their
own ideas, models and techniques and developing them. There is here also a plead
for multi-trans-inter-disciplinarity (starting with the higher education), but also a
warning: this is not only possible, but, it seems, this is also at the right time, on
the verge to become urgent.

Looking for Computer in the Biological Cell 253

3 The Framework

Having in mind the title before and looking for an ”official” enveloping area, the
first syntagma which appears is natural computing – with the mentioning, however,
that it covers a very large variety of research areas, including the bioinformatics and
also moving towards infobiology. For an authoritative description, let us consider
the Handbook of Natural Computing, edited by Grzegorz Rozenberg, Thomas Bäck
and Joost N. Kok, published, in four large volumes, by Springer-Verlag, in 2012.
From the beginning of the Preface, we learn that Natural Computing is the field of
research that investigates human-designed computing inspired by nature as well as
computing taking place in nature, that is, it investigates models and computational
techniques inspired by nature, and also it investigates, in terms of information
processing, phenomena taking place in nature. The generality is obvious, adding
to the desire to identify in nature (important: not only in biology) ideas useful
to computer science, a position which, as I have already said, although it is not
completely new, if it is systematically applied, it can lead to a new paradigm in
biological research and in other frameworks too: the informational approach, hence
surpassing the traditional approach, the chemical-physical one.

The idea was formulated also in other contexts: the computational point of
view (to the information processing one adds the essential aspect of computabil-
ity) can also lead to a new physics – among others, this is the forecast of Jozef
Gruska, an active promoter of quantum computing and a pioneer of computer sci-
ence, rewarded with a diploma of this kind by the Computer Science Section of
IEEE (let us remind the fact that also Grigore C. Moisil has been awarded such
a diploma and title). On the same idea is grounded also the collective volume
A Computable Universe. Understanding and Exploring Nature as Computation,
edited by Hector Zenil and published by World Scientific in 2013. Many chap-
ters have exciting-enthusiastic titles: Life as Evolving Software, The Computable
Universe Hypothesis, The Universe as Quantum Computer, etc. There also is a
chapter-long Preface, by sir Roger Penrose, not always fully agreeing with the
hypotheses from the book.

Actually, also the Handbook of Natural Computing mentioned before includes
the quantum computing among the covered domains. Here is its contents (the main
sections, without specifying the chapters): Cellular Automata, Neural Computa-
tion, Evolutionary Computation, Molecular Computation, Quantum Computation,
Broader Perspective – Nature-Inspired Algorithms, Broader Perspective – Alterna-
tive Models of Computation. There is some degree of ”annexationism” here (for
instance, cellular automata are not too much related to the biological cells), but
let us mention that the section devoted to the molecular computation covers DNA
computing, membrane computing, and gene assembly in ciliates, the former two
areas being exactly what we are interested in here.

254 Gh. Păun

4 The Popularity of a Domain

Even remaining only at the editorial level and at the level of conferences (without
considering also the research projects, hence the financial support), one can say
that there is a real fashion of natural computing – more general, of unconventional
computing, more restricted, of bioinformatics.

Here are only a few illustrations. Springer-Verlag has a separate series of books
dedicated to natural computing monographs, named exactly in this way, it also
has a journal, Natural Computing. There is an international conference, Unconven-
tional Computing, which became, in the last year, slightly pleonastic, International
Conference on Unconventional Computation and Natural Computation. BIC-TA,
that is, Bio-Inspired Computing – Theory and Applications, is another conference
of a real success, at least in what concerns the number of participants, a meeting
whose format I has established, together with colleagues from Spain and China, in
2005, and which is organized since then each year, in China or in the neighboring
countries – this can explain the massive participation, as the Chinese researchers
are very active in this area.

We have reached the closest upper envelope of the area discussed here: the
computability inspired from biology. It is important to note that the term ”bioin-
formatics” (bio-computer science) has a double meaning, with, one can say, a
geographical determination. In the ”pragmatic West”, it mainly covers the com-
puter science applications to biology (in the ”standard” scenario, one goes from
problems towards tools, without too much theory). In Europe, both directions
of influence are taken into consideration, from biology towards computer science
and conversely. Although it is just natural that both these two research directions
should be developed together, in collaboration, the reality is not always so. In
search of solutions for current questions, some of them really urgent, for instance
from the biomedical area, mathematics and computer science often provide tools
prepared and developed in other areas. The typical example is that of differential
equations, with a glorious history in physics, astronomy, mechanics, meteorology,
and which are ”borrowed” to biology, not always checking their adequacy. I will
return to this issue, of a great importance for promoting new tools for biology.

”The European strategy”, of constructing a mathematical theory which looks
for applications after it is developed, has its appeal and advantages – but also its
traps. Being an European, being a mathematician, I have been especially attracted
by this strategy, but, in time, I became more and more interested by ”reality”, by
applications.

5 What Means to Compute?

Let us come back to the title, with the fundamental question concerning the def-
inition of the notions of computation and computer. This is a question of the
same type as ”what is mathematics?”, with many different answers, none of them

Looking for Computer in the Biological Cell 255

complete, none of them fully agreed. If information processing is a computation,
then we can see computations everywhere. With a very important detail, hidden
in the previous formulation: we can see. We, the human beings. Otherwise stated,
an observer, which interprets a process as being a computation. I do not want to
push the discussion as far as asking questions of the form ”does a tree which falls
in the water of a lake, in the middle of an uninhabited forest, produce any noise,
taking into account that there is nobody there to hear it?” – I mention the fact
that this question was the topic of a paper accepted some years ago by a con-
ference on unconventional computing, that is why I recall it – and, on the other
hand, I also do not want to involve God in this issue, the omnipresent, omniscient,
omnipotent God, considered as an universal observer (at least, not for observing
computations, maybe only for noticing noises in desert forests...).

A somewhat exaggerated but rather suggestive example is that of a drop of
liquid which falls freely in the air. During its falling down, the drop instantaneously
”solves” on its surface, by the form it takes, complex differential equations. Is this
a computation? I would not go so far. Similarly with what happens continuously
in the cells of a leaf or of the human body, at the biochemical or even at the
informational level.

The idea of a computation as a process considered so by an observer is not
at all new. One of the conclusions of the John Searle book The Rediscovery of
the Mind (MIT Press, 1992), is exactly this – a computation is not an intrinsic
property of a process, but it is observer-relative.

A very suggestive formulation of the role of the observer in considering a process
as being a computation belongs to Tommaso Toffoli. The quotation which follows
appears in a paper with a statement-title: ”Nothing makes sense in computing
except in the light of evolution” (Journal of Unconventional Computing, vol. 1,
2005, pages 3–29).

“We’we just seen that it is not useful to call computation just any nontrivial yet
somewhat disciplined coupling between state variables. We also want this coupling
to have been intentionally set up for the purpose of predicting or manipulating –
in other words, for knowing or doing something. This is what shall distinguish
bona–fide computation from other intriguing function–composition phenomena
such as weather patterns or stock–exchange cycles. But now we have new ques-
tions, namely, ‘Set up by whom or what?’, ‘What is it good for?’, and ‘How do we
recognize intention?’

Far from me to want to sneak animistic, spiritualistic, or even simply anthropic
considerations into the makeup of computation! The concept of computation must
emerge as a natural, well–characterized, objective construct, recognizable by and
useful to humans, Martians and robots alike” (my emphasis, Gh.P.).

Toffoli’s questions should be remembered and discussed, but they move us far
from our subject. Let us return to John Searle, namely, to a more technical reading
of the idea of implying an observer in the definition of a computation. This was
the approach of Matteo Cavaliere and Peter Leupold, both of them my students in
the PhD school in Tarragona, Spain, the former one being my first PhD student

256 Gh. Păun

there. They have published a series of papers with this subject, I cite here only a
recent one, by Peter Leupold, ”Is computation observer-relative?”, presented at the
Sixth Workshop on Non-Classical Models of Automata and Applications, Kassel,
Germany, July 2014. Actually, in the Cavaliere-Leupold approach there appear
two observers, one of them – we can call it observer of the first order – following a
simple process and ”translating” the steps of the process in an external language,
and the second observer, closer to the Searle-Toffoli observer, interpreting as a
computation the results of the activity of the first observer. Cavaliere and Leupold
consider a series of process-observer (of the first order) pairs which, separately,
have a reduced (computing) power, but which, together, lead to the computing
power of Turing machines from the point of view of the external observer.

6 The Turing Machine

Let us start also from another direction, from the meaning given by mathematics
to the notion of computation. Already from the thirties of the previous century
we have a definition of what is computable, the answer Alan Turing gave to the
question ”what is mechanically computable?”, formulated by David Hilbert at the
beginning of the twentieth century. ”Mechanically”, i.e., ”algorithmically” in our
today reformulation. There were many proposed answers (I recall only the recur-
sive functions and the lambda-calculus), given by great names of mathematics-
computer science (I recall here only Alonzo Church, Stephen Kleene, Emil Post),
but the solution given by Turing, what we call now Turing machine, has been
accepted as the most convincing one (a fact certified even by the highly exigent
Gödel). This is now in computer science the standard model of an algorithm (I
have not said definition, because we have only an intuitive understanding of the
idea of an algorithm, but we can say that in this way we have a definition of what
is computable).

Without entering into details, I mention only that Hilbert’s problem was more
general. It started from the algorithmic resolution of diophantine equations, those
with integer coefficients (the tenth problem in Hilbert’s 1990 list), but in its later
(in 1928) formulation Hilbert was saying that ”the Entscheidungsproblem [the de-
cision problem in the first order logic] would be solved if we would have a procedure
which, for any logical expression we would decide through a finite number of op-
erations whether it is satisfiable... Entscheidungsproblem should be considered the
main problem of the mathematical logic”. At this general level, Gödel theorems
answer negatively Hilbert’s program. Negative answers gave also Church and Tur-
ing, while Hilbert tenth problem was solved – also negatively – in 1970, by Yurii
Matijasevich (after many efforts of several mathematicians: Julia Robinson, Hilary
Putnam, Martin Davis). Turing not only gives a negative answer, moreover, he not
only defines ”the frontiers of computability”, but he also produces an example of a
problem placed behind these frontiers, a problem which is not algorithmically solv-
able, the halting problem (there is no algorithm, hence a Turing machine, which,
taking as input an arbitrary Turing machine, can tell us, in a finite number of

Looking for Computer in the Biological Cell 257

steps, whether the given input machine halts or not when starting from an arbi-
trarily given initial data). To the halting problems reduce, directly or indirectly,
most if not all undecidability results obtained after that.

The Turing machine is so important for computer science, including the natu-
ral/unconventional computability, that it is worth discussing it a little bit more.

7 Some More Technical Details

It is interesting to note that when he defined his ”machine”, Turing explicitly
started – he states this at the beginning of the paper – from the attempt to abstract
the way a human being computes, reducing to the minimum the resources used
and the operations made. In this way, in the end one obtains a ”computer” which
consists of a potentially infinite tape, bounded to the left, divided in cells where
one can write symbols from a given finite alphabet; these symbols can be read and
rewritten by a read-write head, which can ”see” only one cell, can read the symbol
written there, can change it, then it can move to the neighboring left or right cell
or it can stay in the same place; the activity of the read-write head is controlled
by the finitely many states of a memory. Thus, we get instructions of the form
s1a → s2bD with the following meaning: in state s1, with the head reading symbol
a, the machine passes to state s2, modifies a to b (in particular, a and b can be
identical), and moves the read-write head as indicated by D. One starts with the
tape empty, with the machine in a special initial state s0; one writes the initial
data on the tape (for instance, two numbers which have to be multiplied), one
places the head on the first cell of the tape (the leftmost one), and one follows the
instructions of the (e.g., multiplication) ”program” until one reaches a final state
and the machine halts, no further instruction can be applied. The contents of the
tape at that moment is the result of the computation.

Extremely reductionistic, but this is the most general model of an algorithmic
computation – because no previous definition of what is computable is known,
this assertion is only a hypothesis, called the Turing-Church thesis. However, what
made Turing machine so attractive were not only the simplicity of its definition and
its power (it was proved that the Turing machine can simulate any other computing
model), but also its robustness (the computing power is not changed if we add
further ingredients to the architecture or to the functioning, such as further tapes,
if we infinitely prolong the tape also to the left, if we consider non-deterministic
computations, etc.), and, mainly, the existence of universal Turing machines: there
exists a fixed Turing machine TMU which can simulate any particular Turing
machine TU , in the following sense. If a code of the machine TM (let us denote
it by code(TM)) is placed on the tape of TMU together with an input x of TU ,
then TMU will provide the same result as that provided by TU when starting
from input x. A little bit more formally (but still omitting some details – e.g.,
codifications), we can write TMU(code(TM), x) = TM(x). And Turing proved
that there are universal Turing machines. This was done in 1936, in the paper ”On

258 Gh. Păun

computable numbers, with an application to the Entscheidungsproblem”, published
in Proceedings of the London Mathematical Society, Ser. 2, vol. 42, 1936, 230–265,
with an erratum in vol. 43, 1936, pages 544–546.

This is the ”birth certificate” of the today computers, consequently called of
Turing-von Neumann type (in forties, when he has participate in the designing
of the first programmable electronic computers, von Neumann was influenced by
Turing ideas).

A couple of things deserve to be mentioned: the code of machine TM is the
program to be executed/simulated on TMU , starting from the data x; the in-
structions of TMU form the ”operating system” of our ”computer”; the data and
the programs are written in the same place, on the tape of the universal Turing
machines (in the ”computer memory”) – from here it follows the possibility to
process programs in the same way as we process data, hence the vulnerability of
programs to computer viruses.

Several details are important from the point of view of natural computing. The
work of the Turing machine is sequential, in each time unit one performs only one
instruction. In many places in nature, if not in most of them, in particular, in
biology, the processes develop in parallel, which is a very appealing feature for
computer science, but these processes are not necessarily synchronized, which, in
turn, raises difficulties for computer science.

There also are further differences between Turing machines, the ”biological
computers”, and the electronic computers, but we will discuss these differences
later.

For the time being we keep in mind that in what follows to compute has the
meaning suggested by Turing machines: there are an input and an output, between
them there is an algorithm which bridges inputs and outputs, and the result of a
computation is obtained in the moment when the machine halts. Very restricted,
but precise. With such a framework at hand, we can look around for computations,
moreover, we can investigate them in a well developed context, the computabil-
ity theory – actually, a set of several theories, such as automata theory, formal
language (grammar) theory, complexity theory and others.

8 Computer Science and Mathematics

This is maybe the place to remind a debate which motivated many discussions
and points of view, often biased, concerning the relation between computer science
and mathematics. Discussions of this kind have appeared also in the Romanian
Academy, they appeared in the higher education (in the sixties-seventies of the last
century, at the time of sputniks and hydroelectrical plants, we had many faculties
of ”mathematics-mechanics”, now mechanics was replaced by computer science),
the issue is often debated in mass media. Actually, the context is larger, sometimes
it is put in question the relation of mathematics with other sciences, with school
education, with the society. There are persons who are proud of the fact that they

Looking for Computer in the Biological Cell 259

”were not good in math”. It was even expressed the opinion that mathematics
is a luxury, a ”national fetish” (this expression has recently appeared in the title
of a Romanian newspaper article), in short, that one makes too much fuss of
mathematics and one teaches too much mathematics. This opinion is getting more
and more popular, supported also by the ubiquitous penetration of computers (”we
no longer need to know the multiplication table, the computer knows it for us”).

Of course, there is a problem with the mathematical education. What, how
much, and, mainly, how? – and there also are further questions; we can find them,
often also together with solutions, in the papers dedicated in the last years by
professor Solomon Marcus to education. The problem cannot be solved from bot-
tom up, the mathematicians involved in research and in higher education should
consider it – this is, for instance, the opinion of Juraj Hromkovic, from ETH
Zürich, formulated in an article published in the Curtea de la Argeş journal
(www.curteadelaarges.ro, August 2014), based on the practical activity in this
respect carried out in the institute where J. Hromkovic works (among others, this
activity was materialized in mathematical school books of a new type). In gen-
eral, the mathematicians should enter public debates and plead for their discipline,
mainly they are guilty if the domain loses its popularity. It is true that for a math-
ematician mathematics is a great game, which, like any game, has an intrinsic
rewarding, in the very development of the game, therefore it is natural that the
interest for ”popularization” is low among mathematicians, but the persons who
are proud of their mathematical infirmity, be it real or only claimed, are always
much more visible, more vocal, and the danger which comes from this is obvious.

Having in mind only the relation between mathematics and computer science,
let us mention that the theoretical computer science, placed at the intersection of
the two domains, is often considered by computer scientists as a part of mathemat-
ics, and by mathematicians as a part of computer science. Sometimes, theoretical
computer science has problems even inside computer science – as it happens also
with other theoretical branches of science with a strong practical dimension. Of
course, all these are false problems by themselves, but they can have unpleasant
practical consequences.

Being of the same opinion, I cite here an authoritative voice, that of Edsger W.
Dijkstra, one of the classics of computer science, in fact, of the practical computer
science: it is sufficient to remind that during sixties he has worked for implement-
ing the Algol language in the Amsterdam Mathematical Center, and, furthermore,
he was the promoter of structured programming, well-known among the software
practitioners. (Maybe it is good to add here that the first four years after gradua-
tion I have intensively written computer programs, in Cobol and Fortran, realizing
even the programs for computing the salaries of the workers in a large Bucharest
factory – I remember, therefore, what practical computer science means...)

”The end of computer science?”, asks Dijkstra, ironically-rhetorically, already
in the title of a note published in Communications of the ACM (vol. 44, March
2001, page 92), which starts with the following phrase: ”In academia, in industry,
and in the commercial world, there is a widespread belief that computing science as

260 Gh. Păun

such has been all but completed and that, consequently, computing has matured
from a theoretical topic for the scientists to a practical issue for the engineers,
the managers, and the entrepreneurs.” Then, it adds: ”This widespread belief,
however, is only correct if we identify the goals of computer science with what has
been accomplished and forget those goals that we failed to reach, even if they are
too important to be ignored.”

Much more explicit is Dijkstra in the speech he delivered in May 2000 at a
symposium (In Pursuit of Simplicity) organized at the Austin-Texas University,
on the occasion of his retirement. The title of the speech (published in Informa-
tion Processing Letters, vol. 77, February 2011, pages 53–61) is relevant: ”Under
the spell of Leibniz’s dream”. I recall a couple of aphoristic phrases: ”What is
theoretically beautiful tends to be eminently useful.” ”In the design of sophisti-
cated digital systems, elegance is not a dispensable luxury but a matter of life and
death, being a major factor that decides between success and failure.” ”These days
there is so much obsession with application that, if the University is not careful,
external forces, which do make the distinction [between theory and practice], will
drive the wedge between theory and practice and may try to banish the theorists to
a ghetto of separate departments and separate buildings. A simple extrapolation
will tell us that in due time the isolated practitioners will have little to apply; this
is well-known, but has never prevented the financial mind from killing the goose
that lays the golden eggs. The worst thing with institutes explicitly devoted to
applied science is that they tend to become institutes of second-rate theory.”

The plead to place us under the spell of Leibniz is obvious, because, Leibniz said
it, ”the symbols direct the reason”, and, after having a language where ”all reason
truths will be reduced to a kind of calculus”, ”the errors will only be computation
errors”. (Leibniz program, continued and formulated in more precise terms by
David Hilbert, cannot be realized, on the one hand, mathematics is too exact-
rigorous while the reality is too complex and nuanced to can transform everything
in formal computations, on the other hand, Gödel theorems proved that even the
Hilbert program is not realizable.)

Of course, the mathematics-computer science relationship is much more com-
plex, but we cannot explore it further here. I close the discussion returning to the
starting point: the today computers, programmable, of Turing-von Neumann type,
are born from the Turing universality theorem from 1936. It is interesting to note
(and comfortable for Dijkstra position) that, by means of a vote through Internet,
in 2013, looking for the most important scientific and technological British discov-
ery, the first place was won, surprisingly for our pragmatic times, by the Turing
machine and Turing universality theorem, which were placed ahead of the steam
engine, the telephone, the cement, the carbon fiber and other similarly important
things.

Looking for Computer in the Biological Cell 261

9 Does Nature Compute?

Having in mind the computability in the sense of Turing, the previous question
becomes more restrictive, but the discussion above provides us the borderlines in
between which we have to look for the answer: yes, nature computes at least at
the level of... humans, and yes, nature computes whenever there is a process which
can be interpreted as a computation by a suitable observer. Opinions which are
placed closer to the former or the latter of these limits can be easily found, I cite
here only one from the very permissive extreme, even passing over the borderline,
because the observer is not mentioned anymore.

At the beginning of Chapter 2 (”Molecular Computation”) of the collective vol-
ume Non-Standard Computation (T. Gramss, S. Bornholdt, M. Gross, M. Mitchel,
Th. Pellizzari, eds., Wiley-VCH, Weinheim, 1998), M. Gross says: ”Life is com-
putation. Every single living cell reads information from a memory, rewrites it,
receives data input (information about the state of its environment), processes the
data and acts according to the results of all this computation. Globally, the zil-
lions of cells populating the biosphere certainly perform more computation steps
per unit of time than all man made computers put together.”

In what follows, I adopt a more conservative and, at the same time, more pro-
ductive position: bearing in mind the mathematical definition of computability,
more precisely, the Turing approach, let us look around, especially in biology, in
search of ideas, data structures, operations with them, ways to control the opera-
tions, ”computer” architectures, which can suggest (1) new computability models,
(2) ways to better use the existing computers, (3) possibilities of improving the
existing computers at the hardware level, maybe even (4) new types of computers,
based on biological materials. It should be noticed the increased ambition from
a point to the next one. It is worth remembering that DNA computing started
from the very beginning from the attempt to compute in a test tube, thus directly
addressing the fourth goal in the list above.

We mainly had here in mind the goals of computer science, but the first ob-
jective also covers the second direction of research mentioned in the preface of the
Handbook of Natural Computing, the investigation of processes taking place in na-
ture in terms of computability, and this research direction should be explicitly and
separately emphasized, especially for pointing to a ”side effect” of this approach,
namely the return to biology, delivering models useful to the biologist.

At this moment, DNA computing was not too much useful to practical com-
puter science, it was useful to biology and much useful to nano-technology, sug-
gesting new research questions. Membrane computing has significant applications
to computer science and biology, with higher promises in the latter area, including
biomedicine and ecology among the application directions.

A detail: ”the goal of computer science” also covers the theoretical interest,
which is not supposed to necessarily lead to applications, in the restricted mean-
ing of the term. Let us think, for instance, to ciliates. In the division process, when
passing from the micronuclear genes to the macronuclear genes, these unicellular
beings complete complex operations of list processing, and they are doing this since

262 Gh. Păun

millions of years, much before the computer scientists gave name and investigated
these data structures. Of course, the ciliates are not thinking to computations
when doing this, but we, the humans, can build beautiful theories starting from
their activity, including computability models, sometimes equivalent in power with
Turing machines. Detains and references can be found in the monograph Compu-
tation in Living Cells. Gene Assembly in Ciliates (Springer-Verlag, 2004), by A.
Ehrenfeucht, T. Harju, I. Petre, D.M. Prescott, and G. Rozenberg.

10 An Eternal Dilemma

The previous discussion inevitably pushes us towards the long debate concern-
ing the relation between invention and discovery. The bibliography is huge, I
cite here only the book of acad. Solomon Marcus Invention or Discovery, Cartea
Românească Publishing House, Bucharest, 1989 (in Romanian). How much is in-
vention and how much is discovery in computer science – with particularization to
natural computing? I do not try to provide an answer, there are as many answers
as many view points, personal experiences, philosophical positions. The models we
work with are of a mathematical nature, the Platonic point of view ensures us that
everything is discovery, because mathematics itself is a revealed reality. Yes, but it
is already agreed that notions, concepts, theories, and models are inventions, the
theorems are discovered, the proofs are invented. We can continue the alternating
sequence by adding that the applications are discovered. Therefore, the models are
considered inventions.

However, I would like to introduce a nuance. The models are based on structures
which already exists, but they have not received yet a name. Moreover, differently
from a wall which can be discovered both by an archaeologist who knows what
he is searching for, but also by a fruit trees farmer who digs the soil with other
goals than finding the basement of an old church, a computability model can be
”seen” in a cell only by a computer scientist who has already in mind computability
models. For instance, the processes called by biologists symport and antiport exist,
they function since long ages in their ingenious ways, but they compute only for a
mathematician who is looking for a computing model based on passing ”objects”
from a cell compartment to another one. ”Computing by communication” – I have
searched for a while something like that, having the intuition that it exists, and
I had the solution when a biologist (Ioan Ardelean) told me about symport and
antiport operations. This was a model mostly discovered than invented. Actually,
a discovery which was not done by bringing to light the discovered object, but by
means of superposing the intuition of a model over a piece of reality. The imagined
model, similar to other existing computability models, was actualized during the
dialogue between reality and the formal framework. I can say that this is at the
same time invention and discovery.

Looking for Computer in the Biological Cell 263

11 Another Endless Discussion

I am not continuing with other similarly delicate questions, always of interest in
spite of any given answers. (For instance, providing us the opportunity to ask how
much art and how much science is in computer science, Donald Knuth entitled
an impressing editorial project, planned to have a dozen of volumes, The Art of
Programming.) However, I touch here another very sensitive topic, with which I was
confronted sometimes in the form of the newspaper question (but not completely
nonsensical): ”During your research in the cell area, have you ever met God?”
Of course, the expected answer is something different from ”yes” or ”no”, and
similarly obvious is that, if we take the question seriously, we will get lost on the
slippery sands of personal options, beliefs, metaphors.

If God is the order, the organization, the good and the beautiful, Spinoza’s
God, visible in the harmony of the Universe laws, as Einstein would say, then
yes, I meet Him continuously, both in cells and outside them. Furthermore: in the
title of a book originally published in 2009 by Simon & Schuster, and translated in
Romanian in 2011, Mario Livio asks Is God a Mathematician? I answer in the style
of Plato: no, God is not a mathematician, He is mathematics itself (the ”grammar
of the world”) – hence, again, I meet Him every moment.

If, however, God is what the Book proposes to me, then I go in line with
Galileo Galilei, who, in a letter sent to don Benedetto Castelli, on December 21,
1613, said (I recall it following Edmond Constantinescu, God Does not Play Dice,
MajestiPress Publishing House, Arad, 2008; in Romanian): ”God has written two
books, the Bible and the Book of Nature. The Bible is written in the language of
men. The Book of Nature is written in the language of mathematics. That is why
the language of the Bible is not suitable for speaking about nature. The two books
must be studied independently from each other.” And Galileo added: the Book of
Nature teaches us ”how the Sky/Heaven goes”, while the Bible teaches us ”how
to go to the Sky/Heaven”.

After centuries of separation – mainly dogmatical, from both sides –, alter-
nating with attempts, most of them pathetical, of reconciliation of science with
religion, the words of Galileo can look too simple or opportunistic, but they cut
in an efficient way a continuously regenerated Gordian knot. Let me mention also
a more sophisticated, but somewhat symmetrical position, of Francis S. Collins,
not only contemporary with us, but also connected to the topic of these pages,
as he was the director of National Human Genome Research Institute, one of the
leaders of the famous Human Genome Project. In 2006 he has published a book,
The Language of God. A Scientist Presents Evidence for Belief, Simon & Schus-
ter, translated in Romanian in 2009. The syntagma ”language of God” was used
also by Bill Clinton, in 2001, when he has announced the completion of ”the most
important, most wondrous map ever produced by humankind”, the map of the
around three billions of ”letters” of the ”book of life”. Even if the title seems to
suggest this, Collins is neither a creationist, nor an adept of the intelligent cre-
ation, but he is an ”evolutionary deist” and the conclusion of his book is that ”the
God of Bible is also the God of the genome” (page 222 in the Romanian version),

264 Gh. Păun

while ”science can be a form of religiosity” (page 240). This is a very comfortable
positioning, but, in what follows, I remain near Galileo.

12 The Limits of Today Computers

The fashion of natural computing and especially of the computing inspired from
biology does not have only the internal motivation, of the numerous research di-
rections explored in the last decades and proved to be theoretically interesting
and at least promising if not directly useful in practice, but it has also an external
motivation, related to the limits of the current computers, some of them rather
visible. Indeed, the computers are the twentieth century invention with the widest
impact, with implications in all components of our life, from communication to
the functioning of the financial system, from the health system to the army, from
the numerous gadgets around us to Internet. In spite of all these – actually, just
because of that – the computers which we have now have limits which we reach
often (with the mentioning that also here, like in most things, there is something
bad in the good and something good in the bad: powerful computers can be used
both in positive ways, but also for bad goals, such as breaking security systems
and cryptographic protocols on which, for instance, the protected communication
is based.) Let us however think positively and note that there are many tasks
which the today computers cannot carry out, but which we would like to have
performed.

The processors become continuously faster and more compact, the memory
storage larger and larger. Sure, but how much this tendency will last? It was much
invoked the so-called Moore law, stated in 1965 by Gordon A. Moore, co-founder of
Intel Corporation, with respect to the number of transistors which can be placed
on an integrated circuit, extended then to the cost of information unit stored,
formulated sometimes even in the form ”in each year, the computers become two
times smaller, two times faster, and two times more powerful”. Exponential in all
the three directions, thus tending fast towards the quantum limit in the dimension
of processors. Even at the more technical level, confirmed for a couple of decades,
of doubling the capacity of processors, the law – actually, only an observation,
followed by a forecast – has been adjusted several times, with the doubling/halving
moved first at one year and a half, then at two years, then at three years. Still, it
is not too bad, but one cannot continue too much even at this pace.

In fact, the real problem is a different one. Progresses are made continuously at
the technological level, but the current computers have intrinsic limits, which can-
not be overcome only by means of technological advances. The computer recognizes
fingerprints, but not human faces, it plays chess at the level of the world cham-
pion, but (on the standard board, not on reduced boards) it plays GO only at the
level of a beginner, it proves propositional calculus theorems, but cannot go over
this level (and definitely cannot distinguish trivial and non-interesting theorems
from theorems which deserve to be collected). All these and many more, mainly

Looking for Computer in the Biological Cell 265

because these computers are... of Turing-von Neumann type. That is, sequential.
Uniprocessor. (It also has other weaknesses, less restrictive in the current applica-
tions – for instance, it is a considerable energy consumer.) It computes whatever
can be computed, but this is true in principle, at the competence level. There is
here also a historical aspect. In the beginning, we were interested in what it can be
computed, in the frontiers of computability, of algorithmic decidability. All these
are important mathematical questions, but in applications it is of a direct rele-
vance the performance, the resources needed for a given computation, what we can
compute now and here, in specified conditions. How much electricity consumes a
computer and how much space it needs are no longer questions of current interest,
as they were in sixties (and still are in special frameworks, such as in cosmos and
robotics), but the time we have to wait before receiving the answer to a given
problem or the result of a computation is a crucial aspect in any application. And,
I already mentioned it, in this respect not the technological promises are crucial,
but the mathematical limits, the borderline between feasible and non-feasible.

13 A Great Challenge: the Exponential Complexity

A powerful theory was developed dealing with this subject, the computational com-
plexity theory. Since the very beginning, it has defined as tractable the problems
which can be solved in a polynomial time with respect to the size of the problem.
(An example: consider a graph – a map with localities and roads among them –
with n nodes. Which is the time necessary for an algorithm to tell us whether
or not the graph contains a Hamiltonian path, i.e., a path which visits all nodes,
passing only once through each of them? If this time is bounded by a polynomial
in n, then we say that the algorithm is of a polynomial complexity.) The problems
of an exponential complexity, those which need a time of the type 2n, 3n, etc. for
an input of size n were considered intractable. The former class was denoted by
P, the latter one with NP, with the abbreviations coming from ”polynomial” and
”non-deterministically polynomial”, respectively: a problem belongs to NP if we
can decide in a polynomial time whether a proposed solution for it is indeed a
solution or not (otherwise stated, we ”guess” a solution, then we check whether
it is correct; more technically, the solution is found by a non-deterministic Turing
machine, one which has several possible transitions at a computation step and we
rely on the fact that it always chooses the right continuation, without exhaustively
checking all possibilities). For precise details the reader can consult the monograph
of C.H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.

Let us recall that in the class NP there is a subclass, of ”the most difficult
problems in NP”, the NP-complete problems: a problem is of this type if any
other problem in NP can be reduced to it in a polynomial time. Consequently, if
an NP-complete problem could be solved in a polynomial time, then all problems
in NP could be solved in a polynomial time. The problems used in cryptography
are in most cases NP-complete.

266 Gh. Păun

A beautiful theory, which, however, in its basic version has three weaknesses:
(1) it cannot tell us yet whether or not P = NP, whether or not polynomial
solutions can be found also for the problems which are now supposed to be of an
exponential complexity, (2) the theory does not take into account such ”details”
as the coefficients and the degree of the polynomials and which, at the practical
level, can have a crucial influence on the computation time, and (3) the theory
takes into consideration the extreme cases, it is of the worst case type, it counts
the steps of computations which solve the most difficult instances of a problem,
while the reality is placed in most cases in the middle, near the ”average”. Here
is an example with a practical relevance: the linear programming problem is in
P, because the ellipsoid algorithm of Leonid Khachiyan (1979) solves the problem
in a polynomial time, but this algorithm is so complex that practically, in most
cases, it is less efficient than the old simplex algorithm, proposed during the Second
World War, considered one of the most important ten algorithms ever imagined,
but which is, theoretically, of an exponential complexity.

For these reasons, the complexity theory was refined and diversified (average
complexity, approximate algorithms – these algorithms have a direct connection
with natural computing), while the definition of tractability was carefully rede-
fined.

Anyway, the general feeling was transformed in a slogan: the Turing-von Neu-
mann computers cannot solve in a reasonable time problems of an exponential
complexity.

The interest for the P = NP problem is enormous. On the one hand, most of
the (no-trivial) practical problems are in the class NP and are not known to be
in P, hence they are (considered) intractable, cannot be efficiently solved, on the
other hand, most of the cryptographic systems in use are based on problems of an
exponential complexity, hence solving them in a polynomial time would lead to
breaking these systems. The problem whether P is or not equal to NP was already
formulated in 1971 (by Stephen Cook), and in the year 2000 it was included by
Clay Mathematical Institute, Cambridge, Massachusetts, in the list of the seven
”millennium problems”, with a prize of one million dollars for a solution.

While the importance of this problem for the theoretical computer science
cannot be overestimated, it is not clear which would be the practical consequences
of a solution, whichever this will be. There were many discussions on this topic
– see, for instance, S. Cook, ”The importance of the P versus NP question”,
Journal of the ACM, vol. 50, 2003, pages 27–29. If a proof of the strict inclusion
of P in NP will be obtained, as most computer scientists (but not all of them!)
believe, then almost nothing will be changed at the level of the practical computer
science. If the equality will be proved in a non-constructive manner, or the proof
will be a constructive one, but in a non-feasible manner (polynomial solutions to
problems in NP will be found, but with polynomials of very high degrees or with
very large coefficients), then the practical consequences will not be significant (but
a race will start for ad-hoc solutions, having the time estimated by polynomials
with reasonable degrees and coefficients). If, however, a ”cheap” passage from NP

Looking for Computer in the Biological Cell 267

to P would be found, then the consequences for the practical computer science
will be spectacular – in the good sense, excepting the cryptography, where the
consequences will be dramatic.

At the level of the software there is one further problem, which I recall here in
the formulation of Edsger W. Dijkstra (from ”The end of computer science?”, the
above mentioned paper): ”Most of our systems are much more complicated than
can be considered healthy, and are too messy and chaotic to be used in comfort
and confidence. The average customer of the computing industry has been served
so poorly that he expects his system to crash all the time.” The lack of robustness
of the complex software systems is today a concern of the same interest as it was
in the year 2000.

In order to illustrate the fact that not by means of technological progresses
one can face the exponential complexity, let us examine a simple case: let us
consider a problem of exponential complexity of the range of 2n, for instance, a
graph problem, which can be solved on a usual computer, say, for graphs with 500
nodes, in approximately one quarter of hour; let us suppose that the technology
provides us a computer which is 1000 times faster than the ones we have, which
is a totally nontrivial advance, not very frequently met. Using the new computer,
we will solve the same problems as before in about one second (around 15 minutes
means approximately 1000 seconds), but if we try to address the same problem
for graphs with more than 500 nodes, the progresses are negligible: with the new
computer we will solve in a quarter of hour only problems for graphs with at most
510 nodes. The simple reason for that is the fact that 210 is already bigger than
1000. If the problem were of complexity 3n, then we will stop around 506 nodes...

14 Promises of Natural Computing

In order to cope with the exponential complexity, but also for other reasons which I
will mention later, computer science has imagined several research directions, most
of them also related to the natural computing, even to bio-inspired computing:
(1) looking for massively parallel computers, (2) looking for non-deterministic
computers/computations, (3) looking for approximate/probabilistic solutions to
computationally hard problems.

All these three research directions were explored already in the framework of
the ”standard” computer science, both at the theoretical level and at the technol-
ogy level, the electronic one. Multiprocessor computers are available since several
years – but without reaching the massive parallelism which is supposed to solve
complex problems. If a large number of processors are put together, there appear
other problems, some of them technological (e.g., high temperature dissipation),
others, maybe more important, theoretical, concerning the synchronization of the
processors. A distinct research area deals with the synchronization complexity –
see, for instance, Juraj Hromkovic monograph Communication Complexity and
Parallel Computing, Springer-Verlag, 1997. One of the conclusions of this theory

268 Gh. Păun

says that, for a large number of processors, the synchronization cost (measured
by the number of bits necessary to this aim) becomes larger than the cost of the
computation itself, which suggests to get rid of synchronization, but then other
problems appear, as we are not accustomed to use asynchronous computers.

Even less used we are to construct and utilize ”non-deterministic computers”.
In exchange, the last of the three ideas mentioned above is rather attractive, and
in this respect of a great help is the ”brute force” of existing computers. The ap-
proach is useful especially in addressing complex optimization problems: exploring
randomly the candidate solutions space, for a large enough time, with a sufficiently
high probability we will reach optimal or nearly optimal solutions. Approximate
solutions, possibly found with a known probability of being optimal.

Here it enters the stage, with great promises, the natural computing. From now
on I will only refer to the one having a biological inspiration.

In a cell, a huge number of ”chemical objects” (ions, simple molecules, macro-
molecules, DNA and RNA molecules, proteins) evolve together, in an aqueous so-
lutions, at a high degree of parallelism, and, at the same time, of non-determinism,
in a robust manner, controlled in an intricate way, successfully facing the influences
coming from the environment, and getting in time very attractive characteristics,
such as adaptation, learning, self-healing, reproduction. Many other details are of
interest, such as the reversibility of certain processes or the energy efficiency, with
the number of operations per Joule much bigger than in the case of the electronic
processing of information (erasing consumes energy, that is why the reversible
computers are of interest; see, e.g., R. Landauer, ”Irreversibility and heat genera-
tion in the computing process”, IBM Journal of Research and Development, vol.
5, 1961, pages 183–191, and C.H. Bennett, ”Logical reversibility of computation”,
Idem, vol. 17, 1973, pages 525–532).

It seems, therefore, that during millions of years of evolution nature has pol-
ished many processes (and material supports for them) which wait to be identified
and understood by the computer scientists, in order to learn new computability
methods and paradigms, maybe for constructing computers of a new kind. And,
the computer scientists have started to work singe a long time...

Here are a few steps on this road, very shortly: Genetic algorithms, as a way
to organize the search through the space of candidate solutions, imitating the
Darwinian evolution, in order to solve optimization problems. Generalization to
evolutionary computing and evolutionary programming. Neural networks, trying
to imitate the functioning of the human brain, also used for finding approximate
solutions, especially for pattern recognition problems. A little bit later, DNA com-
puting, which has proposed a new hardware, massively parallel, based on using the
DNA molecules as a support for computations. Even younger, membrane comput-
ing, taking as the starting point the biological cell itself and cell populations.

In turn, the evolutionary computing, in general, the area of approximative al-
gorithms inspired from biology, is spectacularly ramified, in the most diverse (in
certain cases, also picturesque) directions: immune computing, ant colony algo-
rithm, bee colony algorithm, swarm computing, water flowing computing, cultural

Looking for Computer in the Biological Cell 269

algorithm, cuckoo algorithm, strawberry algorithm – and it is highly probable that
in the meantime further algorithms have been proposed...

It is important to note that all the above mentioned branches of natural com-
puting, with the exception of DNA computing, are meant to be implemented on
the usual computer, in the aim of having a better use of it; one proposes new types
of software/algorithms, not to change the computers architecture or new types of
hardware.

15 Everything Goes Back to Turing

In a certain sense and in a certain extent, the whole history of theoretical computer
science is related to biology, it has searched and has found inspiration in biology. I
have already mentioned that, in 1935-1936, when he has defined the machine which
bears now his name, Turing tried to imitate the way the humans are computing.

After one decade, McCullock, Pitts, Kleene have founded the theory of finite
automata starting from the modeling of neurons and of neural networks. Later,
the same starting point led to what is called today neural computing.

It is interesting to note that the beginnings of this research area can be identi-
fied in unpublished papers of the same Allan Turing. We have here an interesting
case which can illustrate the influence of psychology and sociology on the devel-
opment of science, telling about uninspired group leaders and about researchers
interested more in their research than in the publication of the obtained results.
Specifically, in 1948, Turing has written a short paper, called ”Intelligent ma-
chinery”, which has remained unpublished until 1968, because his boss from the
London National Physical Laboratory, ironically, named sir Charles Darwin, the
grandson of the famous biologist with the same name, has written on the corner
of the first page of the paper ”schoolboy essay”, thus preventing the publication.

”In reality, this farsighted paper was a manifesto of the field of artificial intel-
ligence. In the work (...) the British mathematician not only set out the funda-
mentals of connectionism but also brilliantly introduced many of the concepts that
were later to become central to AI, in some cases after reinvention by others.” –
I have cited from B.J. Copeland, D. Proudfoot, ”Alan Turing’s forgotten ideas in
computer science”, Scientific American, April 1999, pages 77–81. Among others,
Turing paper introduces two types of ”neural networks”, with the neurons ran-
domly connected. This was proposed as a first step towards an intelligent machine,
one of the key features of these networks being that of learning, of getting trained
for solving problems. This is neural computing avant la lettre, with the main ideas
rediscovered later, without referring to Turing. Details about Turing ”unorganized
machines” can also be found in C. Teuscher, ed., Alan Turing. Life and Legacy of
a Great Thinker, Springer-Verlag, 2003, and in C. Teuscher, E. Sánchez, ”A re-
vival of Turing’s forgotten connectionist ideas: exploring unorganized machines”,
from Proc. Connectionist Models of Learning, Development and Evolution Conf.,
Liége, Belgium, 2000 (R.M. French, J.J. Sougne, eds.), Springer-Verlag, 2001, pages

270 Gh. Păun

153–162. Furthermore, at the address http://www.AlanTuring.net one can find
details about Turing unpublished manuscripts and about the recent efforts to rein-
troduce them in circulation.

The same Turing, in the same year 1948, has proposed the ”genetic or evo-
lutionary search”, the first ideas of the evolutionary computing developed later,
a domain which contains now several powerful branches, (re)launched during the
years: evolutionary programming (L.J. Fogel, A.J. Owens, M.J. Walsh), genetic
algorithms (J.H. Holland), evolutionary strategies (I. Rechenberg, H.P. Schwefel),
all three initiated in the sixties, genetic programming (J.R. Koza, the years 1990).
The first experiment of computer ”optimization through evolution and recombina-
tion” was carried out in 1962, by Bremermann. Details can be found in A.E. Eiben,
J.E. Smith, Introduction to Evolutionary Computing, Springer-Verlag, 2003.

It would not be completely surprisingly if among Turing manuscripts we would
discover also ideas related to DNA computing – let us remember that Turing died
in June 1654, and the Nature paper where J.D. Watson and F.H.C. Crick described
the double helix structure of the DNA molecule was published one year before (”A
structure for deoxyribose nucleic acid”, vol. 171, April 25, pages 737–738).

It is worth mentioning that two other concepts with a high career in computer
science come from Turing, thus supporting the assertion that ”everything starts
with Turing”. First, Turing himself raised the question whether or not one can
compute... more than the Turing machine, imagining Turing machines with oracles,
which is a much investigated topic in the current computer science. Then, Turing
can be considered not only a founder of artificial intelligence, but also a forerunner
of what is called now artificial life: in the last years of his life, Turing was interested
in morphogenesis, in modeling the evolution from the genes of a fertilized egg to
the structure of the resulting animal.

16 An Encouraging Example: The Genetic Algorithms

Before passing to the DNA and membrane computing, topics which I will describe
in more details, let us spend some time discussing a branch of natural computing
inspired from biology which is, at the first sight, surprisingly efficient. This is the
genetic algorithms area, used for solving complex optimization problems for which
there do not exist deterministic optimal algorithms or these algorithms are not
efficient. The implicit slogan can look confusing: if you do not know where to go,
then go randomly – with the mentioning that the ”randomness” here is directed,
the ”random walk” is done ”like in nature, in species evolution”.

Everything is a metaphorical imitation of some elements from the Darwinian
evolution. Let us assume we have a two variables function (we can suggestively
represent it as a ground surface, with valleys and hills) for which we need to
find the maximum (one of them, if there are several). If we cannot analytically
address the problem, then we can choose to walk randomly through the definition
domain, looking for the greatest value of the function. To this aim, we represent the

Looking for Computer in the Biological Cell 271

domain points as ”chromosomes”, binary strings of a constant length, we choose
(randomly or through other methods) a given number of starting points, and we
compute the function value for all of them. Then we pass to ”evolution”: we take
two by two the ”chromosomes” and we recombine them (by crossover), that is, we
cut them at a specified position and then we recombine the fragments, the prefix
of one ”chromosome” with the suffix of the other one and conversely. In this way,
we obtain two new ”chromosomes”, describing two new individuals of the next
”generation”. We repeat this procedure for a specified number of times, we select
the best solution obtained so far, and we stop.

Nothing guarantees that in this way we reach the solution of the problem,
that, for instance, we do not get stuck in a local maximum, without being able
to escape, but, and this is the (pleasant) surprise, in a large number of practical
applications, this strategy works. Sure, there are a lot of variations of the previous
scenario, it is even said that the monographs in this area are a sort of ”cooking
books”, collections of recipes, lists of ingredients and suggestions of improvements
of the algorithms: besides recombination, similar to the biological evolution, one
also uses the local mutation operation, the passing from a generation to another
one can be done in many ways, the ”chromosomes” population can be distributed,
we can evolve it locally, communicating in a way or another among regions, there
are several halting criteria, and so on and so forth.

We have here at work the brute force of the computers and the evolutionary
metaphor – with results, I repeat and stress it, unexpectedly good: non-intuitive so-
lutions, rapid initial convergence, in many cases succeeding to avoid local maxima.
The only ”explanation” for these good results is the ”bio-mystical” one: genetic
algorithms are so good because they involve ingredients which nature has polished
for many millions of years in the species evolution.

All these induce, at the same speculative level, a rather optimistic conclusion:
if the genetic algorithms are so useful, in spite of the lack of any mathematical
argument for their usefulness, let us try to imitate biology also in other aspects,
with a great probability that, if we are similarly inspired to extract the right ideas,
to obtain other fruitful suggestions for improving the use of the existing computers
and, maybe, for imagining computers of other kinds, more efficient.

However, this optimism should be cooled down by the observation that a fa-
mous result in the area of evolutionary computing, in the area of approximate
optimization algorithms in general, is the so-called no free lunch theorem of David
Wolpert and William Macready (1997), which, informally, says that any two meth-
ods of approximate optimization are equally good, in average, over all optimization
problems. ”Equally good” can be also read ”equally bad”, for each method there
are problems for which the method does not provide satisfactory solutions.

17 A Coincidence

Before passing to DNA computing, an autobiographical intermezzo. In April 1994
I was in Graz, Austria, attending a conference, and there I got a copy of the paper

272 Gh. Păun

by Tom Head, from State University of New York at Binghamton, USA, soon after
that a friend and collaborator, ”Formal language theory and DNA: An analysis of
the generative capacity of specific recombinant behaviors”, published in Bulletin of
Mathematical Biology, vol. 49, 1987, pages 737–759. It was a revelation. I was then
after twenty years of formal language theory research and I immediately felt that
it is open there a large area of application of what I have done before. It is true, I
should had a similar revelation earlier, namely when I have read professor Solomon
Marcus paper ”Linguistic structures and generative devices in molecular genetics”,
from Cahiers de Linguistique Thèorique et Appliquée, vol. 11, 1974, pages 77–104,
but probably it was too early, at that time I had not passed yet through the
twenty years of preparation for natural computing which will be shortly described
in a forthcoming section. In his paper, Tom Head introduces a formal operation
with strings which formalizes the operation of recombination of DNA molecules.
He calls it splicing, and I will call it in the same way, thus distinguishing it from
the recombination operation from the genetic algorithms. The two operations are
related, but they are not identical. Still being in Graz, I have imagined a sort
of grammar based on the splicing operation, in fact, a variant simpler than that
of Tom Head and closer to the string operations in language theory. The paper
emerged in this way was published in Discrete Applied Mathematics and it con-
secrated the splicing version I have proposed. After a few weeks, I was in Leiden,
The Netherlands, where I have written a paper together with Grzegorz Rozenberg
and Arto Salomaa, the latter one from Turku, Finland, the place where I have
spent after that several years, initially devoted to DNA computing and then to
membrane computing. As usually well inspired, G. Rozenberg gave to our paper
the title ”Computing by splicing”. Because, starting then, we have named H sys-
tems the computing devices based on splicing, thus reminding the name of the
one who has introduced (invented of discovered?...) the respective operation, we
have sent the paper, in manuscript, to Tom Head. He has immediately replied, by
phone, asking us rather excited: have you known that right now it was carried out
a successful experiment of computing with DNA?! No, we did not know – this was
only a coincidence, which I place in the category of significant coincidences.

18 The First Computation in a Test Tube

Tom Head was talking about Leonard Adleman experiment, published in the au-
tumn of 1994 in Science, nr. 226, November 1994, pages 1021–1024: ”Molecular
computation of solutions to combinatorial problems”. Speculations about the pos-
sibility of using DNA molecules for computing were made already in seventies of
the last century (Ch. Bennett, M. Conrad, even R. Feynman, with his much in-
voked phrase ”there is plenty of space at the bottom”, referring to physics but
also extended to biology). Adleman has confirmed these expectations, solving in a
laboratory the problem whether a Hamiltonian path exists or not in a given graph
(I have mentioned it in a previous section). The problem is known to be NP-
complete, hence among the most difficult intractable problems, of an exponential

Looking for Computer in the Biological Cell 273

complexity (we assume that P is not equal to NP), but Adleman solved it in a
number of steps which is linear with respect to the size of the graph. It is true,
these steps are biochemical operations, performed by making use of a massive par-
allelism, even of non-determinism, all these made possible by the characteristics
of the DNA molecules and the related biochemistry.

In short, millions of copies of one stranded sequences of nucleotides, codifying
the nodes and the edges of the graph, were placed in an aqueous solution. Then,
by decreasing the temperature of the solution, these sequences annealed, forming
double stranded molecules, corresponding to the paths in the graph. Because there
were used sufficiently many copies of the initial sequences, with a high probability
we obtain in this way all paths in the graph. From them, the paths were selected
which pass through all nodes, and this was done by usual laboratory procedures:
gel electrophoresis for separating the molecules according to their length, then
selection through denaturation and amplification by PCR of the paths passing
through all nodes (hence Hamiltonian).

This procedure assumes a number of biochemical operations which is linear
with respect to the number of the nodes in the graph. The problem is NP-complete,
hence this is an extraordinary achievement – and the consequences were accord-
ingly sound. Already in the next year, 1995, it was organized in Princeton a meeting
with the title ”DNA Computing”, which became an international conference which
is still continuing. However...

19 Pro and Against Arguments

Adleman experiment was a historical achievement, the proof that it is possible.
However, the experiment has considered a graph with only 7 nodes, for which
the problem can be solved by a simple visual inspection. In comparison, at the
beginning of the nineties, the computers were already able to solve the Hamiltonian
path problem for graphs with several hundred nodes, sufficient for current practical
applications (in the meantime, the progresses continued).

Moreover, the solution was obtained by means of a space-time trade-off, the
number of molecules used was exponential with respect to the number of nodes.
Juris Hartmanis, an authoritative name in computer science, after expressing his
enthusiasm (Hartmanis compares computer science with physics: while the latter
progresses by means of crucial experiments, the former progresses by means of
proofs that something can be done, by demos; Adleman has produced such a
demo!), has computed the quantity of ADN which is necessary in order to apply
Adleman’s procedure for a graph with 200 nodes and he has found that the weight
of the ADN would be greater than the weight of the Earth...

From a practical point of view, DNA computing is, in a certain extent, in the
same point even now. Numerous experiments, but all of them always dealing with
”toy problems”, a lot of theory, a lot of lab experience gained in dealing with DNA
molecules, with results of interest for the general lab technology (just one example:

274 Gh. Păun

an improved version of PCR, the Polymerase Chain Reaction, called XPCR, was
proposed; one of the inventors is a mathematician, Vincenzo Manca, mentioned
already in the first pages of this text), but the domain has moved towards nano-
technology, no computability practical applications were reported (unless if, and
this is plausible, there were applications in cryptography which are still classified).

However, the list of possible advantages of using DNA molecules for computing
is large: a very good efficiency as a data support, with one bit at the level of a
nucleotide; energy efficiency; parallel and non-deterministic behavior, two dreams
of computer science (with the mentioning that the non-determinism also brings
problems, for instance, providing false solutions); a very developed laboratory tech-
nology; robustness, predictability, reversibility of certain processes.

20 The Marvelous Double Helix

The DNA molecule has surprising properties at the informational and computa-
tional level. Let us remind that, formulated in ”syntactic” terms, we have two
strings of letters A, C, G, T, the four nucleotides, placed face to face, in Watson-
Crick complementary pairs, always A being paired with T and C with G. The
two strings are oriented, in opposite directions with respect to each other; the
biochemists indicate the directionality by marking one end of a string with 3′ and
the other end with 5′. There already appear here a surprise, first pointed out by
G. Rozenberg and A. Salomaa in Technical Report 96-28 of Leiden University,
The Netherlands (October 1996), ”Watson-Crick complementarity, universal com-
putations, and genetic engineering”: the structure of the DNA molecule ”hides”,
in a codified manner, the computing power of Turing machines! The formulation
above is not precise, it however corresponds to the following observation. Already
in 1980, it was proved (J. Engelfriet and G. Rozenberg) that any language whose
strings can be recognized by a Turing machine can be written as the image of a
specified fixed language, let us denote it with TS(0, 1), by means of a sequential
transducer.

The previous language is the so-called ”twin-shuffle” over 0, 1 (hence the used
notation). Shuffle is the operation of mixing the letters of the two words, without
changing their ordering (exactly as in the case of shuffling two decks of playing
cards of different back colors). Here we shuffle the letters of two ”twin” words, one
string of symbols 0, 1 and the second string identical with this one, but changing
the ”color” of each symbol (for instance, we can add an upper bar or a prime to
each symbol in order to get the twin string). In turn, the sequential transducers
are the simplest transducers, with a finite memory and with a head which scans
the string from left to right. Let us note that we work with four symbols, let us
say 0, 1 and their pairs 0′, 1′. Exactly the number of the nucleotides, four. Let us
also note that TS(0, 1) is a fixed language. Given an arbitrary language, if it is
recognized by a Turing machine, then it can be obtained from this unique language
TS(0, 1), only the transducer depends on the language.

Looking for Computer in the Biological Cell 275

The nice and significant surprise is that the language TS(0, 1) can be obtained
by means of ”reading” the DNA molecules, in the following way: let us walk along
the two Watson-Crick complementary sequences, from the left to the right, advanc-
ing randomly along the two strands, and associating with the four nucleotides A,
C, G, T symbols 0, 1 according to the following rule: A = 0, G = 1, T = 0′, C = 1′.
Collecting all these strings over 0, 1, 0′, 1′, for all readings of all DNA molecules,
we get a set which is exactly TS(0, 1)!

Consequently, any language which can be defined by a Turing machine can
be obtained by translating these readings of the DNA molecules by means of
the simplest transducer, the sequential one, with a finite memory. The transducer
depends on the language, it ”extract” from TS(0, 1) the result of the computations
of a Turing machine. The power is there, what we have to do is only to make it
visible. (In a certain sense, we have again the coupling of a simple process, the
”reading” of the DNA molecule, and an observer of the first order, a simple one, the
sequential transducer, like in the papers of M. Cavaliere and P. Leupold mentioned
before, with the result reaching the highest level of computability, the power of
Turing machines.)

Two questions arise in this framework. For instance, we mentioned the different
orientation of the two strands of the DNA molecule, but in the previous reading we
pass along the two strands in the same direction, from the left to the right. There
is no problem, the reading of the double stranded DNA molecules can proceed
in opposite directions and the result is the same. Second: nature is redundant,
are all the four nucleotides (the four symbols 0, 1, 0′, 1′) necessary in order to
cover, in the sense discussed above, the power of Turing machines? No, three
symbols are sufficient – but not two! Proofs for all these results can be found
in the monograph (translated in Japanese, Chinese, and Russian) Gh. Păun, G.
Rozenberg, A. Salomaa, DNA Computing. New Computing Paradigms, Springer-
Verlag, 1998.

Speaking about computations and redundancy, let us remember that a large
part of the DNA molecule is ”residual”, it does not codify genes and we do not
exactly know what it is used for. We can then speculate: if in the cell, at the genetic
level, one performs computations (the viruses are strings of nucleotides, hence their
identification is a parsing operation, hence a computation), and these computations
are supposed to be complex, why not?, even of the level of Turing machines, then
we need a ”workspace”, a ”tape” which in the end remains empty in most of its
length, with the result placed in a finite part of it (at the beginning in the case of
the Turing machine tape). Can then the DNA without an apparent usefulness be
the workspace for complex computations, which we cannot yet understand?

21 Computing by Splicing

In his experiment, Adleman has not used the splicing operation, but the bio-
chemical ingredients specific to the splicing have been used in many other cases:

276 Gh. Păun

restriction enzymes, which cut the DNA molecules in well specified contexts, lig-
ases which glue back the nucleotides thus repairing the strands, recombination on
the basis of the ”sticky ends” of the molecules with the strands of different lengths,
hence with nucleotides which do not have their Watson-Crick pairs.

I do not recall biochemical details or mathematical details concerning the splic-
ing operation. In short, two molecules (represented as simple strings, because the
nucleotides of a strand are precisely identified by their complementary nucleotides
placed on the other strand) are cut in two parts each, in the middle of a context
specified by a pair of substrings, and the fragments obtained are recombined cross-
wise, thus obtaining two new strings. Starting from an initial set of strings and
applying this operations repeatedly (with respect to a given finite set of contexts,
hence of splicing rules), we obtain a computing device, a language generator, sim-
ilar to a grammar. We obtain an H system. A large part of the monograph DNA
Computing. New Computing Paradigms cited before is dedicated to the study of
these systems: variants, extensions, generative power, properties.

Always when a new computing model is introduced, the first question to clarify
concerns its power, in comparison with the automata theory and language theory
classifications – the Turing machine and its restrictions, the Chomsky grammars,
the Lindenmayer systems. Let us only note that the two ”poles” of computability
are the power of Turing machines, through the Turing-Church thesis the maxi-
mal level of algorithmic computability, and the power of the finite automata, the
minimal level. In terms of grammars and languages, the maximal class is that of
unrestricted Chomsky grammars and of recursively enumerable languages, while
the minimal one corresponds to regular grammars and languages.

The H systems with a finite number of starting strings and a finite number of
splicing rules generate only regular languages. This is not sufficient as computing
power, moreover, a ”computer” of this level cannot have (convenient) universality
properties, hence it cannot be programmable.

Interesting and attractive enough is the fact that, adding a minimal control
on the splicing operation, with many controls of this kind suggested by the area
of regulated rewriting or coming from biology (example: associate a promoter, a
symbol, with each splicing rule and the rule is applied only to strings which contain
that symbol; a variant – the symbol does not appear, it acts as an inhibitor), then
we obtain H systems which are equivalent with the Turing machine. The proof
is constructive, therefore we ”import” in this way from the Turing machines the
existence of the universal machine, which means that we get an universal H system,
a programmable one.

Unfortunately, so far, no such universal ”computer” based on splicing was
realized in a laboratory. The passage from the natural case, with an uncontrolled
splicing operation (thus with the power under the power of the finite automaton),
to the controlled case was not yet done in a laboratory and it is not clear whether
it can be realized in the near future. The construction of the universal computer
based on splicing has to still wait...

Looking for Computer in the Biological Cell 277

22 An Important Detail: The Autonomous Functioning

Let us not forget that a universal, programmable computer should work au-
tonomously, that is, after starting a program, the computer continues without
any external control. This is completely different from the usual DNA computing
experiments, where the human operator (or a robotic operator) controls the whole
process. For instance, in the case of the 1994 experiment, Adleman was, in fact,
the ”computer”, he has only used the DNA molecules as a support for the compu-
tation, while the computation complexity counted the lab steps performed by the
biochemist, not the internal steps, the DNA operations, performed in parallel.

There are, however, promising progresses towards the implementation of au-
tonomous computations, the key-word, very much promoted in the last years,
being self-assembly. Remarkable achievements in this direction has obtained Erik
Winfree and his group from Caltech, Pasadena, USA, and his approach is worth
mentioning also because it starts (pleasantly enough for the discussion concern-
ing the usefulness of mathematics for computer science) from an old chapter of
theoretical computer science, the domino calculus of Wang Hao, developed in the
beginning of sixties of the last century. In short, square dominos, with the edges
colored (marked), can be used for computing (by placing the dominos adjacently,
in such a way that the neighboring dominos have the contact edges of the same
color), thus simulating the work of a Turing machine. We obtain once again a
computing model which is universal.

Erik Winfree has constructed ”dominos” from DNA molecules, with the edges
marked with suitable sequences of nucleotides, he has left them free in a solution,
such that the dominos glued together according to the Watson-Crick affinity of the
nucleotides ”coloring” the edges. The approach worked well, the experiments were
successful – but everything has remained once again, in Hartmanis terms, at the
level of a demo. It is important to underline that this time it was not addressed a
given problem, as in Adleman case and as in most of the experiments reported in
the DNA computing literature, but it was implemented in a laboratory a Turing
machine, hence an universal computing model – that is why this demo is perhaps
farther reaching than that of Adleman (however, Adleman was the first one...).

There also are other attempts to obtain autonomous ”computers” in a labo-
ratory. I mention here only the simulation of a finite automaton, an achievement
of a team from Weizmann-Rehovot and Tehnion-Haifa, Israel: Y. Benenson, T.
Paz-Elizur, R. Adar, E. Keinan, Z. Livneh, E. Shapiro, ”Programmable and au-
tonomous computing machine made of biomolecules”, Nature, vol. 414, November
2001, pages 430–434, with the mentioning that one deals with a finite automaton
with only two states. Again, only a demo...

23 What Means to Compute in a Natural Way?

The DNA Computing monograph has also chapters dedicated to other ways of
computing, inspired from the DNA biochemistry, for instance, by insertion and

278 Gh. Păun

deletion of substrings (in given contexts), by means of a ”domino game” with DNA
molecules which are coupled on the basis of the Watson-Crick complementarity, a
model different from the Wang Hao one.

Splicing, insertion-deletion, prolongation of strings. In membrane computing
we use the multiset processing. The evolution itself is mainly based on recom-
bination/splicing, the local mutations appear only accidentally. In contrast, the
existing computers and almost all theoretical models of computing use the string
rewriting operation. One works locally, on strings of arbitrary length. This ob-
servation is valid for automata, grammars, Post systems, Markov algorithms. All
these operations, both the rewriting and the ”natural” ones (the splicing only with
an additional control), so different among them, lead to computability models of
the same power, that of the Turing machine.

The question is obvious: what means to compute in a natural way? With many
continuations: Why computer science has not considered (with rare exceptions)
also other operations different from rewriting? Can we devise (electronic) comput-
ers based on ”natural operations” (for instance, using the splicing or other forms
of recombination)? When Hilbert has formulated the question ”what is mechan-
ically computable?”, he probably had in mind formal logical systems, where the
substitution is a central inference rule, and Turing has proposed an answer in the
same language. Were we influenced in this way to think in the same terms when
we have designed the first computers? I have never heard that the engineers have
said that we cannot imagine, maybe also construct, computers based on different
operations.

It remains the question whether or not such new types of computers would
be better than the existing computers or not. Theoretically, they will have the
same power, hence the differences should be looked for on different coordinates:
computational efficiency, easiness of use, learning possibilities and so on.

I said above that the H systems are either of the power of finite automata
or equivalent with Turing machines. Similar situations are met in the membrane
computing. Can we then say that the classes of automata and grammars which lie
in between finite automata and Turing machines – and there are many such classes
investigated in the theoretical computer science – are not ”natural”? In some sense,
this is the case. For instance, the context-free languages have a definition which has
a mathematical-linguistic motivation, while the context-sensitive languages have
a definition with a motivation coming from the complexity theory (it refers to the
space needed for generating or recognizing the strings of a language).

24 Let Us Pass to the Cell!

In spite of the theoretical achievements, of numerous successful experiments (how-
ever, dealing with problems of small dimensions) and of the continuous progresses
in what concerns the lab techniques, the DNA computing has not confirmed the
enthusiasm of the twenty years ago, after the announcement of the Adleman ex-
periment – if not having, as I have suggested before, application in cryptography

Looking for Computer in the Biological Cell 279

which will be declassified only after several decades. There are elements which can
support this assumption. For instance, during the first DNA Computing Confer-
ence, Princeton, 1995, a communication was presented (D. Boneh, C. Dunworth,
R. Lipton: ”Breaking DES using a molecular computer”) which described a possi-
bility to break Data Encryption Standard, DES, the system used by the American
administration, using DNA, in four months. Next year, the subject was discussed
by a team containing also Adleman, and the proposed DNA experiment was sup-
posed to can break DEA in five days, provided that the lab operations would be
done by robots. A further paper of this kind was presented in 1997, the year when
DES was broken also with electronic computers and then abandoned.

Anyway, at some years after Adleman experiment it was clear that one cannot
go essentially further, it was necessary to have one more innovative idea, one more
”breakthrough” in order to make an essential step towards applications (towards
a ”killer-app”, as the Americans use to say), and one of the ”explanations” of this
situation was the fact that DNA molecules behave better in vivo (more predictable,
more robustly) than in vitro. The suggestions is just natural: let us go to the cell!

At the personal level, this moment coincided with the writing of the DNA
Computing monograph, a fact which repeated almost systematically in the first two
decades of my research career: after approximately five years of work in a branch
of theoretical computer science, I have put together, alone or in collaboration, the
results, publishing a monograph, and after that I have passed to another topic
– still remaining in the framework of theoretical computer science, especially of
formal language and automata theory. A lack of perseverance or an excess of
curiosity? Maybe a part of each of them, but a lucky combination: all chapters of
theoretical computer science which I have explored before passing to the membrane
computing area were used, sometimes in a decisive extent, in this last domain –
with which I have discontinued the tradition of a change at each five years: after
sixteen years dedicated almost exclusively to membrane computing, in spite of the
fact that I have written, as usually, a monograph after about five years from the
first paper, there is no sign of decreasing the interest for this area.

25 The Fascinating Cell

The cell is really fascinating for a mathematician-computer scientist. I am sure
that this is true also for biologists. The smallest entity which is unanimously
considered alive. The topic is not trivial: at the middle of years 1980, at the Santa
Fe Institute for complexity studies a new research vista was initiated, under the
name of artificial life, as an extension of artificial intelligence, aiming to investigate
the life per se, to simulate it on non-biological supports, on computer and in
mathematical terms. The starting point was, of course, the attempt to have a
definition for what we intuitively call life, but the progresses have not went too
far: all definitions either left out something alive, or they ensured that, for instance,
the computer viruses are alive (they have ”metabolism”, self-reproduction etc.).

280 Gh. Păun

Let us also remember that already Erwin Schrödinger has a book whose title asks
What is Life? (Cambridge Univ. Press., 1967, translated in Romanian in 1980).

The cell passes this test. It is an extraordinarily small ”factory”, with a com-
plex, intricate and efficient internal structure, where an enormous number of agents
interact, from ions to large macromolecules like that of ADN, and where informa-
tional processes are carried out at each place and in each moment. Some cells
live alone (I am not saying ”isolated”), as unicellular organisms, other cells form
tissues, organs, organisms.

It is a topic of interest the one concerning the role of the cells in making possible
the life itself. I am only citing the reference book B. Alberts, A. Johnson, J. Lewis,
M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 4th ed. Garland
Science, New York, 2002, the paper of Jesper Hoffmeyer ”Surfaces inside surfaces.
On the origin of agency and life”, Cybernetics and Human Knowing, vol. 5, 1998,
pages 33–42, also important for what follows because it proposes the slogan ”life
means surfaces inside surfaces”, referring to the membranes which define the inner
structure of the cells, and I end with a paragraph from the book of S. Kauffman,
At Home in the Universe, Oxford University Press, 1995: “The secret of life, the
wellspring of reproduction, is not to be found in the beauty of Watson–Crick
pairing, but in the achievements of collective catalytic closure.”

I am adding also a suggestive equation-slogan, which acad. Solomon Marcus
has launched during one of the first Workshops on Membrane Computing, the one
in Curtea de Argeş, 2002:

Life = DNA software + membrane hardware.

26 The Membrane. From Biology to Computability

We have thus arrived to a fundamental ingredient – the membrane. One can speak
very much about it, and the biologists and the experts in bio-semiotics have done
it. The cell itself exists because it is separated from the neighboring environment
by a membrane. Not only metaphorically, any entity exists because it is delimited
by a ”membrane”, actual or virtual, from the world around.

The (eukaryotic) cell also has a number of membranes inside: the one which en-
closes the nucleus, the complicated Golgi apparatus, vesicles, mitochondria. From
a computational point of view, the main role of these membranes is to define ”pro-
tected reactors”, compartments where a specific biochemistry takes place. There
also are other features-functions of the biological membranes which are important
for membrane computing: in membranes are placed protein channels which allow
the selective communication among compartments; on membranes are bound en-
zymes which control many of the biochemical processes which take place around
them; the membranes are useful also for creating reaction spaces small enough so
that the molecules swimming in solution can get in contact so that they can react.
It is said that when a compartment is too large for the local biochemistry to be
efficient, nature creates new membranes, in order to obtain small enough ”reac-

Looking for Computer in the Biological Cell 281

tors” (so that, by Brownian movement, the molecules collide sufficiently frequent
and react) and for creating new ”reaction surfaces”.

I stress the fact that I look here to the cell, its structure, and processes inside
it through the glasses of the mathematician-computer scientist, ignoring many
biochemical details (for instance, the structure itself of the membranes) and inter-
preting the selected ingredients according to the goal of this approach: to define a
computing model.

Let us give some details, starting with the essential role of membranes in com-
munication. If, in the biological cell or in the model we are going to define, the
compartments delimited by membranes evolve separately, then we will not have one
”reactor”, but a number of neighboring ”reactors”, evolving independently. How-
ever, the membranes ensure the integration. The polarized molecules or those of
great dimensions cannot pass through the (phospholipid, with a polarized ”head”
and two hydrophobic ”legs”) molecules of the membranes, but they can pass across
a membrane through the protein channels embedded in it. This passage is selec-
tive and sometimes it is done against the gradient, from a smaller concentration
to a higher concentration. A very interesting case is that of the simultaneous pas-
sage through a protein channel of two or more molecules: the respective molecules
cannot pass separately, but they can do it together, either in the same direction
(symport) or in opposite directions, one molecule entering the respective compart-
ment and the other one going out, simultaneously (antiport). An important chapter
of membrane computing is based on these operations and the interest comes from
the particularity of this process: there is no rewriting, but only object transport
across the borders defined by the membranes, there is no erasing, but only com-
munication. Computing by communicating (objects). We can formulate also in this
context the question what means to compute in a natural way?

We can read in many places about the informational processes taking place in
a cell, in most cases with the involvement of membranes, too.

”Many proteins in living cells appear to have as their primary function the
transfer and processing of information, rather than the chemical transformation
of metabolic intermediates or the building of cellular structures. Such proteins are
functionally linked through allosteric or other mechanisms into biochemical ‘cir-
cuits’ that perform a variety of simple computational tasks including amplification,
integration, and information storage.”

This is the abstract of the D. Bray paper ”Protein molecules as computational
elements in living cells”, published in Nature, vol. 376, July 1995, pages 307–312.
In their turn, S.R. Hameroff, J.D. Dayhoff, R. Lahoz-Beltra, A.V. Samsonovich, S.
Rasmussen, in a paper from Computer, November 1992, pages 30–39, interpret the
cytoskeleton as an automaton, while W.R. Loewenstein, in The Touchstone of Life.
Molecular Information, Cell Communication, and the Foundations of Life, Oxford
University Press, 1999, constructs a whole theory starting from the informational
aspects of the cell life. About the bio-semiotics of the cell has elaborated in many
places Jesper Hoffmeyer, already mentioned at the previous pages. I am citing
here only his paper ”Semiosis and living membranes”, presented at Seminário

282 Gh. Păun

Avançado de Comunicaçao e Semiótica. Biossemiótica e Semiótica Cognitiva, Sao
Paolo, Brasil, 1998.

In this context we can also remember the essential role of the water in the life
of the cell, as well as the processes of moving water molecules across membranes
through the dedicated channels, the aquaporines, in whose discovery our colleague
Gheorghe Benga had pioneering contributions.

27 A Terminology-History Parenthesis

Before passing to a quick description of membrane computing, let me point out a
few preliminary things.

First, about the name of the domain. I have called it membrane computing,
starting from the position of the membrane in the life of the cell, in its architec-
ture and functioning, but the choice was not the best one. ”Cellular computing”
was probably the most ”marketable” choice, but I have discarded it as being too
comprehensive.

Then, the name of the models: in the first papers, I used ”membrane systems”,
but soon those who started to investigate these models have called them ”P sys-
tems”, continuing the line of other computing devices having a name (H systems
are the closest ones). In the beginning this induced to me some public discomfort,
for instance, during conferences, but the letter P soon became autonomous, com-
pletely neutral to me. What is interesting is that there are papers which use the
syntagma ”P system”, sometimes even in the title, without citing any paper of
mine. Of course, it would be a great success if this syntagma will became largely
folkloric...

The domain has grown very rapidly and it is still active after more than sixteen
years since its initiation. I have sometimes asked myself which were the explana-
tions, and what I can do for enhancing the growth. Several aspects concurred to
the interest for the membrane computing: the favorable context (the natural com-
puting ”fashion” mentioned in the beginning); the right moment, on the one hand,
with respect to the DNA computing (which, in some sense, is covered and general-
ized by membrane computing), on the other hand, with respect to the theoretical
computer science in general and the formal language theory in particular.

There are several things to be mentioned here. After four decades since the in-
troduction of Chomsky grammars, the formal language theory became ”classical”
enough and got somewhat retired from the front research (almost completely in
USA), even if there still exist specialized conferences (for instance, about finite au-
tomata and their applications) or more general conferences (DLT – Developments
in Language Theory). Membrane computing appeared as a continuation and an ex-
tension of formal language theory: the main investigation objects are no longer the
strings of symbols and the languages, but (I anticipate) the multisets of symbols
and the sets of multisets. Strings, without taking into account the ordering of the
symbols, more technically speaking, strings ”seen” through the Parikh application,

Looking for Computer in the Biological Cell 283

the one which tells us the number of occurrences of each symbol in a given string.
The consequence was that a large number of researchers in formal language theory
became interested in the new research area. Among them, since the very beginning,
important names, such as Arto Salomaa (Finland) and Grzegorz Rozenberg (The
Netherlands), Oscar H. Ibarra (USA), Sheng Yu (Canada), Kamala Krithivasan
(India), Takashi Yokomori (Japan), Mario J. Pérez-Jiménez (Spain), as well as
very active researchers from my generation, such as Jürgen Dassow (Germany),
Erzsébet Csuhaj-Varjú (Hungary), Jozef Kelemen (The Czech Republic), Rudolf
Freund (Austria), Gheorghe Marian and Gabriel Ciobanu (Romania), Yurii Ro-
gozhin (Republic of Moldova), Linqiang Pan (China), many of them coagulating
around them research groups dedicated to membrane computing.

Somewhat surprising was the rapidly growing number of PhD students – now
doctors – who have presented theses in membrane computing. There are over 50
at this moment. I mention only the first two, Shankara Narayanan Krishna (India)
and Claudio Zandron (Italy), with the theses presented in 2001, respectively, in
2002. Starting with the summer of 2014, C. Zandron is the chairman of the steering
committee of membrane computing.

A comprehensive information about the membrane computing area can be
found at the domain website from the address http://ppage.psystems.eu, hosted
in Vienna (it is the successor of a page which has functioned for many years in
Milan, Italy, at the address http://psystems.disco.unimib.it).

Of course, it has counted very much the ”sociology” of the domain. A com-
munity was soon created, and this is very important, not only in science, but in
culture in general. They have contributed to that the seniors mentioned above,
the yearly conferences (started in 2000, with the first three editions organized in
Curtea de Argeş, Romania, where the meeting returned for the tenth edition and
where I intend to also organize the twentieth edition) as well as a series of meet-
ings which I would like to specially emphasize, one of a unusual format, which
I have organized for the first time in Tarragona, Spain, in 2003. After that, it
took place every year in Seville, also in Spain. Because it had to have a name,
I called it ”Brainstorming Week on Membrane Computing”. One week when re-
searchers interested in membrane computing work together, far from the current
preoccupations, teaching or bureaucratic tasks. A very fruitful idea was to collect
in advance open problems and research topics and to circulate them among the
participants before the meeting in Seville, then addressed, in collaboration, during
the Brainstorming. Very useful meetings – in the website of membrane computing
one can find the yearly volumes, with the papers written or only started during
the Brainstorming.

Very useful was, of course, the Internet. The first paper, ”Computing with
membranes”, has waited more than one year before it was published in Journal
of Computer and System Sciences (vol. 61, 2000, pages 108–143), but, because
I was in Turku, Finland, in the autumn of 1998, I made the paper available on
Internet, in the form of an internal report of TUCS, Turku Center for Computer
Science (Report No. 208, 1998, www.tucs.fi). Until 2000, when the journal paper

284 Gh. Păun

has appeared, there were written some dozens of papers, making possible the
organization of the first meeting dedicated to this topic, in Curtea de Argeş.

28 A Quick View on Membrane Computing

Let us not forget: we want to start from the cell and to construct a computing
model. The result (the one proposed in the fall of 1988) is something of the fol-
lowing form. We look to the cell and we abstract it until we only see the structure
of the hierarchically arranged membranes, defining compartments where multisets
of objects are placed (I am using a generic term, abstract, free of any biochemical
interpretation); these objects evolve according to given reactions. A multiset is a
set with multiplicities associated with its elements, hence it can be described by
a string; for instance, aabcab describes the multiset which contains three copies of
a, two of b, and one of c. All permutations of the string aabcab describe the same
multiset. The reactions, in their turn, are described by multiset ”rewriting” rules,
of the form u → v, where u and v are strings which identify multisets. Initially
(in the beginning of a computation), in the compartments of our system we have
given multisets of objects. The evolution rules start to be applied, like biochemical
reactions, in parallel, simultaneously, making evolve all objects which can evolve –
and thus the multisets change. Using a rule u → v as above means to ”consume”
the objects indicated by u and to introduce the objects indicated by v. We have
to notice that the objects and the rules are localized, placed in compartments, the
rules in a given compartment are applied only to objects from that compartment.
Certain objects can also pass through membranes. We proceed by applying rules
until (like in the case of a Turing machine) we get stuck, no rule can be applied,
and then the computation halts. The result of a halting computation is ”read”, for
instance, in the form of the number of objects placed in a compartment specified
in advance.

Processing of multisets (of symbols), in parallel, in the compartments defined
by a hierarchical structure of membranes – this is the short description of a ”P
system”. A distributed grammar, working with multisets of symbols – this is the
direct connection with the formal language theory.

The working site starting here looks endless.
First, one can introduce a large number of variations of P systems, with a

mathematical, computer science, biological motivation, or motivated by applica-
tions.

From the point of view of mathematics, the models should be minimalistic,
they have to contain the smallest number of ingredients. For computer science, a
computing model is good to be as powerful as possible, in the best case universal,
equivalent with the Turing machine, and as efficient as possible, in the best case
able to solve NP-complete problems in polynomial time.

Biology and applications provide a long list of alternatives, starting with the
way of arranging the membranes (hierarchical, as in a cell, or placed in the nodes

Looking for Computer in the Biological Cell 285

of an arbitrary graph, as in tissues and other populations of cells), the types of
objects (symbols as before, strings or even more complex data structures, such as
graphs or bidimensional arrays), the form of the evolution rules (also dependent
on the type of objects), the strategies of applying them, the way of defining the
result of a computation.

I have mentioned before the multiset rewriting rules. They can be arbitrary,
non-cooperative (with the left hand multiset consisting of a single object, which
corresponds to context-free rules in Chomsky grammars), or, an intermediate case,
catalytic (of the form ca → cv, where c is a catalyst, an object which assists
object a in its transformation to the multiset v). Then, we have the symport
and antiport rules, which move objects from a compartment into another one
(example: the antiport rule (u, out; v, in), associated with a membrane, moves the
objects indicated by u from this membrane to the surrounding compartment and
the objects indicated by v in the opposite direction). Very important are the rules
which divide membranes, because they increase, even exponentially, the number
of membranes in the system. Many other types of rules were investigated (for
instance, with a control on their application – with promoters, inhibitors, etc.),
but I do not mention them here, the presentation would become too technical for
the intentions of this text.

If the objects in the compartments of a system are strings, then they evolve
by means of operations specific to strings: rewriting, insertion and deletion, or,
in order to make the model more uniform from a biological point of view, by the
splicing operation from the DNA computing.

An interesting situation is that when we work with symbol objects, hence with
numbers, but the result of a computation is ”read” outside the system, in the form
of the string of the objects which are expelled from the system. It is worth noticing
the qualitative difference between the internal data structure, the multiset, and
the external one, the string, which carries out positional information.

In turn, the applications need a completely different strategy of constructing
the models – far from minimalistic, but adequate to the modeled piece of reality;
this time not the computing power is of interest, but the evolution in time of the
system. I will come back to applications.

Over this small jungle of models one superposes the investigation program
of the classic computer science: computing power, normal forms, descriptional
complexity, computational complexity, simulation programs, etc., etc.

29 Classes of Results (and Problems)

Of course, I will not recall precise theorems, but I will only mention the two main
classes of results in membrane computing and their general form.

Computational completeness/universality: most of the classes of P systems con-
sidered so far are equivalent with Turing machines, they are computationally com-
plete. Because the proofs are constructive, in this way one also brings to membrane

286 Gh. Păun

computing the universality property in the sense of Turing (that is why we speak
about computational completeness and universality as they would be synonymous).
In most cases, this result is obtained for systems of a reduced, particular form,
with a small number of membranes. For instance, cell-like P systems with only
two membranes, using catalytic rules (hence not of the general form) can compute
whatever the Turing machines can compute.

An important detail: two catalysts are sufficient. It is an open problem whether
the P systems with only one catalyst are universal. The conjecture is that the
answer is negative, but the proof still fails to appear. This is one of the most
interesting types of open problems in membrane computing (many of them still
open): identifying the precise borderline between universality and non-universality.

Efficiency: the classes of P systems which can grow (exponentially) the number
of membranes can solve NP-complete problems in a polynomial time. The idea is
to generate, in a polynomial time, an exponential working space and then to use it,
in parallel, for examining the possible solutions to a problem. Membrane division
helps, similarly the membrane creation, similarly other operations. Like in the case
of the Adleman experiment, we have again a space-time trade-off, but in our case
the space is not provided in advance, but it is created during the computation,
through ”mitosis” or by means of other ”realistic” biological operations.

There are also in this area open problems concerning the borderline between
efficiency and non-efficiency, but more difficult to be stated in plain words.

Interesting is a somewhat unexpected fact. Using rules of the form a → aa,
applied in parallel, we can produce an exponential number of copies of a in a linear
number of steps. (In n steps, we get 2n copies of a.) However, such an exponential
working space is not of any help in solving high complexity problems in a feasible
time– this is what the so-called Milan theorem, from Claudio Zandron PhD thesis,
says. If these objects are localized, placed in an exponentially large number of
membranes, then the situation is different. Otherwise stated, not only the size of
the working space matters, but also its structure, the possibility to apply different
rules in different compartments. This is a subtle aspect, which I do not know
whether it has been met also in other frameworks.

For details, the reader is refereed to the monograph Membrane Computing.
An Introduction, published by Springer-Verlag in 2002 (and recently translated in
Chinese) and, especially, to The Oxford Handbook of Membrane Computing, edited
by Gh. Păun, G. Rozenberg, and A. Salomaa and published by Oxford University
Press, in 2010.

30 Significations for Computer Science and for Biology

A computing model which has the same power as the Turing machine is a good
thing, such a computer is universal not only in the intuitive sense, but it is also
programmable. Moreover we have here a distributed, parallel computer, with a
great degree of non-determinism, controlled in various biologically inspired ways.

Looking for Computer in the Biological Cell 287

Let us, however, observe the similarities and the differences between a usual
computer program, a set of instructions of a Turing machine, and a set of evolu-
tion rules of a P system. In the programming languages, the programs consist of
precisely ordered instructions, perhaps labeled and addressed by means of these
labels. In the case of the Turing machine, the sequence of instructions to be ap-
plied is determined by the states of the machine and by the contents of the tape. In
the cell case, the reactions are potential, their set is completely unstructured, and
their application depends on the available molecules. The evolution rules are just
waiting for the data to which they can be applied, there is a competition between
rules with respect to the objects to process.

The differences are visible and they suggest once again the question what means
to compute in a natural way?, adding now the question whether we can work with
programs in the form of completely unstructured sets of instructions.

On the other hand, in the first moment, it is expected that the biologist reaction
to results of the type of the equivalence with the Turing machine is indifference, a
raising of the shoulders. Another domain, another language, another book... But:
if the cell is so powerful from a computational point of view, then, according to an
old result, the Rice theorem (”all nontrivial problems – having both instances with
a positive answer and instances with a negative answer – about a computing model
equivalent with Turing machines are algorithmically undecidable”), no nontrivial
question about the cell can be solved in an algorithmic way, by means of a program.
The biologists formulate every day such questions: How a cell, a cell population, an
organ or an organism evolves in time? Is there a substance which gets accumulated
over a given threshold, in a given compartment? What happens if we add a multiset
of molecules (a medicine), does the state of an organ improves (from specified
points of view)? – and so on. If a model of the cell would be decidable, then
we could find the answer to such questions by (algorithmically) examining the
model, at a given initial state. But, because this is not possible (cannot be done
in principle, not only we cannot do it now, here), what remains to do are the
laboratory experiment (expensive and time consuming), the computer experiment
(cheap, fast, but with the relevance depending on the quality of the model), and,
theoretically, the non-algorithmic, ad-hoc, approach.

The previous paragraphs can be seen also as a plead for biology to learn new
languages, in particular, the language of theoretical computer science, thus having
the possibility of raising problems and of finding solutions which cannot appear,
cannot be even formulated in the previous language. This would be an essential
step towards infobiology.

31 Three Novel Computer Science Problems

In the continuation of the discussion about the significance for computer science,
let us point out a remarkable fact: natural computing in general and membrane
computing in particular raise theoretical questions which were not considered in

288 Gh. Păun

the framework of the classical computer science. Here are three questions of this
kind, all three pertaining to complexity theory.

Like in the case of Adleman, most experiments of DNA computing started
from an instance of a problem and constructed a ”computer” associated with that
instance. The standard complexity theory does not allow such an approach, it asks
for uniform solutions, for programs/algorithms which start from the problem (and
its size) and solve all instances of the problem. The idea is that during the pro-
gramming stage one can already work on solving the problem, so that one can then
pretend that the solution was found faster than it was the case in reality. That is
why, also for the uniform solutions one limits the time allowed for programming,
for constructing the algorithm. Let us then place a bound also on the program-
ming time in the case when we start from an instance, so that we cannot cheat
here either. The relationship between uniform solutions and semi-uniform (with
a limited time for programming) solutions is not clarified yet, in spite of its im-
portance for the natural computing. In membrane computing there were reported
a series of related results – see, for instance, recent papers by Damien Woods
(Caltech, USA), Niall Murphy (Microsoft Research, Cambridge, UK), Mario J.
Pérez-Jiménez (Seville University, Spain).

Second: in DNA computing and in many models in membrane computing,
at least part of the steps of a computation are of a non-deterministic type, but
in the end the experiment/computation provides a unique result. The idea is to
organize the computation in such a way that it is confluent, with two variants:
either the system evolves non-deterministically for a while, then it ”converges” to
a unique configuration and then it continues in a deterministic way, or the system
”converges logically”, it gives the same result irrespective how it evolves. Again,
the complexity theory lacks a study of these situations, of the cases intermediate
between determinism and non-determinism.

Finally, the biology provides situations where extended resources wait for ex-
ternal challenges which activate a suitable portion of the resource. The examples
of the brain and of the liver, from which we use at any given time only part of
the huge number of available cells, are the most known. We can then imagine
”computers” – for instance, neural networks – with an arbitrarily large number
of cells/neurons, but containing only a limited quantity of information (not to
hide there the solution of a problem); after introducing a problem in the system,
one activates the necessary number of cells/neurons for solving it. There is no
theory dealing with this strategy (of using pre-computed resources). How the pre-
computed working space should look in order to contain only ”a limited quantity
of information”, how this information can be defined and measured, when a system
with pre-computed resources is acceptable/honest, it cannot hide the solution of
a problem in its structure?

Natural computing not only motivates the improvement of old results in com-
puter science, but it also makes necessary new developments, which were not imag-
ined before.

Looking for Computer in the Biological Cell 289

32 About the Tools Used in Membrane Computing

In order to stress once again the relationships between various branches of theo-
retical computer science which, at the first sight, look far from each other, and the
fact that membrane computing, the natural computing in general, use many old
techniques and results, let me remind some details from my personal experience.

In the first universality proof for P systems I have used the result of Yuri Mati-
jasevich mentioned also before, of characterizing the sets of numbers computed by
Turing machines as solutions of diophantine equations. I have, however, soon real-
ized that a simpler proof can be obtained starting from the characterization of the
same sets of numbers with the help of the matrix grammars. The initial paper was
published in this form. In this context it appears the necessity of improving some
old results in this area. After a while, also the matrix grammars were replaced,
the proofs are now based mainly on register machines, investigated already in the
sixties.

A technique even older was useful in the first universality proof for H systems,
namely the way of functioning of Post systems, which were introduced at the
beginning of the years 1940. Adapted to the splicing operation, this has led to
a technique called rotate-and-simulate, which has become almost standard for H
systems and their variants.

In the first years of my research activity, I was much interested in matrix
grammars and I have concluded this research with a monograph (published in
Romanian, in 1981), extended after a while to a book (published by Springer-
Verlag, in 1989), in collaboration with Jürgen Dassow, from Magdeburg, Germany,
dedicated to all restrictions in the derivation of context-free grammars. The same
happened with other domains which were useful in the membrane computing; the
Marcus contextual grammars and the grammar systems are the most important
of them.

In mathematics and computer science it is not possible to say in advance
whether and when a subject or a result will be useful...

33 Spiking Neural P (SNP) Systems

A class of P systems inspired from the brain structure and functioning deserves to
be separately discussed. It was introduced later than other models (M. Ionescu,
Gh. Păun, T. Yokomori: ”Spiking neural P systems”, Fundamenta Informaticae,
vol. 71, 2006, pages 279–308), but it seems that it will get earlier hardware imple-
mentations useful to computer science (details about this possibility can be found
in the paper ”The stochastic loss of spikes in spiking neural P systems: Design and
implementation of reliable arithmetic circuits”, by Zihan Xu, Matteo Cavaliere,
Pei An, Sarma Vrudhula, published in Fundamenta Informaticae, vol. 134, issue
1-2, January 2014, pages 183–200).

290 Gh. Păun

In a few words, such a system consists of ”neurons” linked through ”synapses”
along which circulate electrical impulses, produced in the neurons by means of spe-
cific rules. Like in the case of the real neurons (see, for instance, W. Maass: ”Net-
works of spiking neurons: The third generation of neural network models”, Neural
Networks, vol. 10, 1997, pages 1659–1671), the communication among neurons is
done by means of identical electrical impulses, spikes, for which the frequency is
relevant, codifying information. Otherwise stated, important is the distance in time
between spikes. In each moment, the axons are a sort of ”bar codes”, sequences
of 0 and 1 which move from a neuron to another one. Obviously, the model ig-
nores many neuro-biological details, but even at this reductionistic level we can
formulate a series of questions concerning the relevance for computer science. In
a certain sense, the SNP systems use the time as a support of information. The
distance between two events, two spikes here, codifies a number. Can we construct
a computer with such a ”memory”? I mention the question only as a speculation
– provocative at the theoretical level.

A result which deserves to be recalled refers to the search of SNP systems which
are universal in the Turing sense, that is, they can be programmed in such a way
to simulate any other SNP system. From the equivalence with the Turing machine,
it follows immediately that such a system exists. The problem of interest concerns
the number of neurons of an ”universal brain” of this kind, able to simulate any
computation in any particular system. This number is not at all too large. In the
paper ”Small universal spiking neural P systems”, BioSystems, vol. 90, 2007, pages
48–60, by Andrei Păun and Gh. Păun, one uses 50 – 80 neurons, depending on the
type of rules for producing spikes, but these numbers were subsequently decreased.
In newspaper terms, we can say that ”there are computationally universal brains
consisting of only a few tens of neurons”. From here we can either infer that a
computing model of the form of SNP systems is very powerful, actually, that the
neurons of these systems are too powerful, or that the Turing computability level
is not very high – or both these conclusions. Of course, the human brain does not
function as a Turing machine – but the computational paradigm was useful, in a
certain extent, in modeling the brain functioning.

34 About Implementations

The DNA computing started by the definition of the splicing operation, in 1987,
but about the possibility of using DNA molecules for computing there were dis-
cussions already one decade before. However, the domain became popular after
Adleman experiment in 1994. An example was thus created, so that the question
whether or not there are implementations of P systems is both natural and fre-
quent. It is understood that one speaks about implementations on a biological
substrate. The answer is negative. There were some attempts, but no successful
experiment was reported.

An experiment of this kind was designed in the group of professor Ehud Keinan
(with well known research both in chemistry and biology) from the Technion Insti-

Looking for Computer in the Biological Cell 291

tute in Haifa, Israel, where I have spent one week in 2006, exactly with this purpose.
Two main related problems were identified from the beginning: finding a P system
plausible to be implemented in a laboratory and, of course, finding the biochemi-
cal techniques necessary. We did not intend to solve an NP-complete problem, we
have not found a reasonable one, but we have looked for a system whose behav-
ior was illustrative for membrane computing (compartments, multisets, parallel
processing), and we have chosen a system generating numbers in the Fibonacci
sequence. The lab implementation seemed to be only a time issue – as well a ques-
tion of money, for buying the laboratory equipments and the... DNA molecules.
The plan was to simulate the membranes by means of the micro-chambers of a
reconfigurable lab installation, with the objects being DNA molecules.

The first experiments did not succeed, then the... sociology of science struck
again: the two PhD lady students who were in charge with this experiment moved
to USA. In the meantime, an USA patent has appeared, on the name of Ehud
Keinan, for implementing a P system, but using another technique, based on three
non-miscible liquids placed in a common space. As far as I know, it is about a
”theoretical implementation”, no successful experiment was reported.

The question which naturally arises is whether or not such an experiment would
bring something useful from the point of view of applications. Recalling a saying
of Benjamin Franklin, ”it is impossible to say what will become a newborn baby”,
but, having in mind the case of DNA computing, it is highly possible that this will
only be a demo, at the level of simple calculations.

Completely different is the situation of implementations on an electronic hard-
ware. There are several promising implementations on a parallel hardware (on
NVIDIA graphic cards, in Seville, Spain), on a hardware especially designed for
membrane computing (Madrid – Spain and Adelaide – Australia), on networks of
computers, even on web. All these succeed in a great extent to capture the essen-
tial characteristics of P systems, the parallelism. Having in mind the parallelism,
I do not call implementations, but simulations the cases when one uses standard
sequential computers.

On the other hand, both the simulation programs and, still more, the imple-
mentations are useful in applications.

35 Applications

Membrane computing confirms an observation already made in several situations:
when a mathematical theory, starting from a piece of reality, is sufficiently devel-
oped at the abstract, theoretical level, there are high chances to find applications
not only in the domain which has inspired it, but in other areas too, some of them
far away, at the first sight, from the reality from where the theory emerged (but
having a common deep structure). It is, very convincingly, the present case.

It was just natural to return to the cell. Biology needs tools and models, the
cell is not easy to model. It was stated that, after completing the human genome

292 Gh. Păun

reading, the main challenge for the bioinformatics is the modeling of the cell (M.
Tomita: ”Whole-cell simulation: A grand challenge of the 21st century”, Trends in
Biotechnology, vol. 19, 2001, pages 205–210). I have already mentioned that many
of the models currently used in biology are based on differential equations. In
many cases they are adequate, in many cases not. Differential equations belong to
the mathematics of the continuum, they are appropriate to very large populations
of molecules, uniformly stirred. However, in a cell, many molecules can be found
in small numbers, therefore the approximation of the finite through the infinite,
as necessary for applying differential equations, can lead to wrong results. This
makes necessary the discrete models, in particular, the P systems, which also
have other characteristics which are attractive for the biologist: they come from
biology, hence they are easily understandable, which is an aspect which should
not be underestimated; furthermore, P systems are algorithmic models, directly
programmable in order to simulate them on the computer; can be easily extended,
are scalable, adding new components, of any type, does not change the simulation
program; their behavior is emergent, cannot be predicted by just looking to the
components.

There are many applications of membrane computing in biology and
biomedicine. From the individual cell, the applications passed to populations of
cells (e.g., of bacteria) and then to... ecosystems. Here is only one title, a sug-
gestive one: ”Modeling ecosystems using P systems: The bearded vulture, a case
study”, by Mónica Cardona, M. Angels Colomer, Mario J. Pérez-Jiménez, Delfi
Sanuy, and Antoni Margalida, the last two being biologists, experts in the ecol-
ogy of the bearded vulture and animal protection from Lleida, Spain. Of course,
the ecosystem is a metaphoric cell, while the ”molecules” are the vultures, goats,
wolves, hunters, all these in discrete quantities, small known numbers, with no
possibility to be modeled with the instruments of the continuous mathematics.
Other ecosystems which were investigated concern Panda bears in China and the
zebra mussel from the water basins of the Spanish hydroelectrical plants.

So far, plausible applications. Not so expected are the applications in computer
graphics (but in this respect we have a previous example, that of Lindenmayer
systems), cryptography (in the organization of the attack against certain crypto-
graphic systems), approximate optimization (distributed evolutionary computing,
with the distribution organized like in a cell; the number of papers in this area
is very large, the topic being popular in China, and the results are surprisingly
and pleasantly good – with the mentioning that the famous no free lunch theorem
should cool down also here the enthusiasm), economic modeling (a metaphorical
extension similar to that to ecosystems), robot control.

These two last areas of applications are part of a potentially larger one, based
on the use of the so-called numerical P systems, where, in a cell-like framework
there evolve numerical variables, not molecules; the evolution is done by means of
certain programs, consisting of a production function and a repartition protocol. The
inspiration comes from economics (Gh. Păun, Radu Păun: ”Membrane computing
and economics: Numerical P systems”, Fundamenta Informaticae, vol. 73, 2006,

Looking for Computer in the Biological Cell 293

pages 213–227). The systems of this kind compute functions of several variables, in
a parallel way, and this computation is rather efficient, that is why it is expected
that this somewhat exotic class of P systems will find further applications.

Details about applications can be found in the webpage of membrane comput-
ing, in the mentioned Handbook, as well as in the collective volumes Applications of
Membrane Computing (edited by G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez) and
Applications of Membrane Computing in Systems and Synthetic Biology (edited by
P. Frisco, M. Gheorghe, M.J. Pérez-Jiménez), both of them published by Springer-
Verlag, in 2006 and 2014, respectively.

36 Doubts, Difficulties, Failures

During ceremonies like the today one [delivering a Reception Speech in the
Academy] or with the occasion of periodical reports, it is not usual, even not ap-
propriate, to also speak about difficult moments, even if this would be instructive
for the reader and useful for the domain.

On the other hand, the hesitations and the doubts are continuously a compo-
nent of the researcher life. For instance, I can compile a long list of moments where
my expectations were of a certain type and the results were different.

This happened starting with the mathematical results. For instance, in the be-
ginning I did not believe that the catalytic P systems are universal, furthermore,
that they are universal even in the case of using only two catalysts. Similarly, for
a while I have expected to find a class of systems for which the number of mem-
branes induces an infinite hierarchy (of the classes of sets of computed numbers).
In exchange, almost always the universality is obtained with only one or two mem-
branes. One membrane means no structure of the system, a trivial architecture.
Of course, we can see here the positive fact: the (catalytic) processing of multisets
is powerful enough in order to simulate a Turing machine.

Because I have in mind the case of the DNA computing, I do not count as a
failure the fact that there are no biological implementations of P systems (although
such an event would have a great publicity impact), but I still wait for an imple-
mentation on a parallel or a dedicated hardware having a ”commercial” value. Such
an implementation is necessary and, I believe, it is also possible. For instance, some
years ago, a team of biologists and computer scientists from Nothingham, Sheffield
(UK), and Seville have tried to simulate on a computer the communication among
bacteria, modeling the so-called quorum sensing. The simulation programs were
able to deal with hundreds of bacteria, the biologists wanted to pass to popula-
tions of thousands of bacteria. My expectation is that the implementations, for
instance, on NVIDIA cards, will reach soon this level of magnitude requested by
the biologists.

Concerning the applications in general, although they were not of interest at
the beginning of membrane computing, at some moment it was clear that the do-
main cannot pass over a certain level of development and notoriety without ”real”

294 Gh. Păun

applications. For a while, there were applications, but of the postdiction, not of
the prediction type. The frequent scenario is the following: we take a biological
phenomenon, discussed in a paper or in a book, we formalize it as a P system, we
write a simulation program (or we take one available – at this moment we also have
a specialized programming language, P-lingua, realized in the Seville University),
we perform experiments with data from the paper or the book, and if the results
are similar to those obtained in a laboratory or through other methods, we are
happy. Postdiction, nothing new for the biologists, we only get more confidence in
the new model and we can tune it with real data. In order to pass over this stage
it is necessary to have a biologist in the team, who should come with a research
question, with hypotheses which need to be checked. In turn, the computer sci-
entist should come with sufficiently versatile models and with sufficiently efficient
programs, in order to cope with the complexity of biological processes. After six-
teen years, the bibliography of membrane computing applications is rather large –
see the references from the previous section – although still we need biologists who
have to come towards the computer scientists, maybe to learn membrane comput-
ing or, at least, to learn to use the instruments which the computer scientists have
already realized (and tested).

I said before that I was continuously interested in forming a community –
initially, this was an intuitive desire, later it became conscious, as this was a way
to stabilize the domain against the dynamics of the groups. This looks as an
external aspect, but we do not have to ignore the influence of the psycho-sociology
on science, especially in the case of young branches. A group which is broken can
mean a group less (it depends where its members land, whether they continue or
not the research activity) or the apparition of several new groups, in new places. I
have been the witness of both these two types of consequences. Fortunately, at the
present time, the membrane computing community has dimensions which provide
it with a comfortable inertia – which, however, does not mean that membrane
computing will not get dissolved into infobiology, it already works for that...

37 At the Frontier of Science-Fiction

The main promise of natural computing is a better use of the existing computers,
pushing forward the frontier of feasibility, by providing solutions, perhaps approx-
imate, to problems which cannot be solved by means of traditional techniques.
The DNA computing came with a more ambitious goal, that of providing a new
type of hardware, of ”biological chips”, ”wet processors”, efficient not only in com-
putational terms, but also in what concerns the energy consumption, or making
plausible very attractive features, self-healing, adaptation, learning. Biology can
suggest also new computer architectures or ideas for implementing other dreams
of computer science, such as the parallel computation, the unsynchronized one,
the control of distributed processes, the reversible computation and so on.

All these are somewhat standard expectations, but there also are some ideas
which point out to the science of tomorrow, if not directly to science-fiction.

Looking for Computer in the Biological Cell 295

One of these directions is that which aims to hypercomputability, to ”compute
the uncomputable”, to pass beyond the ”Turing barrier”. The domain is well de-
veloped, there are over one dozen basic ideas which lead to computability models
stronger that the Turing machine – while physics does not forbid any one of these
ideas, moreover, it even suggests ideas which look genuinely SF, like, e.g., the use
of an internal time of the model which contains cycles or of a bidimensional time. It
is true, Martin Davis (”The myth of hypercomputation”, in Alan Turing: The Life
and Legacy of a Great Thinker, C. Teuscher, ed., Springer, 2004, pages 195-212)
considers all of them tricks by which the computing power is introduced in the
model from the very beginning, in disguise, and then one proves that the model
passes beyond the Turing machine (for example, one considers real numbers, which
can codify, in their infinite sequence of decimals, all possible computations), but
there also are some ideas which look more realistic that others.

One of them is that of acceleration, already discussed several decades ago, not
only in computer science: R. Blake (1926), H. Weyl (1927), B. Russell (1936), have
imagined processes which need one time unit (measured by an external clock) for
performing the first step, half of a time unit for the second step (the process
”learns”), and so on, at every step, half of the time needed by the previous step.
In this way, in two time units (I insist: external, measured by the observer) one
performs infinitely many (internal) steps. Such an accelerated Turing machine can
solve the halting problem, hence it is more powerful than a usual Turing machine.

Let us now remember the observation that nature creates new membranes
in order to get small reactors, where the reactions are enhanced, because of the
higher possibilities of molecules to collide. Consequently, smaller is faster. The
biochemistry in an inner membrane is faster than in the surrounding membrane.
Let us push the speculation to the end and assume that the ”life” in a membrane
is twice faster than in the membrane containing it. Exactly the acceleration we
have mentioned above. One can prove (C. Calude, Gh. Păun: ”Bio-steps beyond
Turing”, BioSystems, vol. 77, 2004, pages 175–194) that, exactly as in the case
of the accelerated Turing machine, an accelerated P system (able to repeatedly
create inner membranes) can decide the halting problem.

Hypercomputability can seem to be only a mathematical exercise, but it is
estimated that passing beyond the Turing barrier could have more important con-
sequences than finding a proof, even an efficient one, of the P = NP equality; see,
for instance, B.J. Copeland: ”Hypercomputation”, Minds and Machines, vol. 12,
2002, pages 461–502.

Let us get closer to the laboratory. I have mentioned the lab implementation of
a finite automaton with an autonomous functioning. A finite automaton can parse
strings. The genes are strings, the viruses are strings (of nucleotides). A hope of
medicine is to cure illnesses by editing genes, to eliminate viruses by identifying
them and then cutting them in pieces. A more efficient idea than to introduce
medicines in out body is to construct a ”machinery” which can recognize and edit
the necessary sequences of nucleotides, genes or viruses. To this aim, we need a
carrying vector, to bring the gene editor in the right place. The identification of

296 Gh. Păun

that place can be done by an automaton, possibly a finite one, while the vector
can be a sort of nano-carrier which can be also built from DNA molecules. In
short, un nano-robot, suitably multiplied, which can move from a cell to another
one, curing what it is necessary to be cured. A pre-project of such a nano-robot
was presented in 2004, by Y. Benenson, E. Shapiro, B. Gill, U. Ben-Dor, R. Adar
(”Molecular computer. A ’smart drug’ in a test tube”), to the tenth edition of the
DNA Computing Conference organized in Milan, Italy. In a great extent, it was the
same team which has implemented the autonomous finite automaton mentioned
before.

There still are many things to be done, the possibility to have our body con-
tinuously scanned by a gene repairing robot is not at all close to us. (Such a robot
can also have malevolent tasks, it can be a weapon – one can open here a discus-
sion about the ethics of research, but there are sufficiently many debates of this
type, even in bio-computer science. Also Francis S. Collins speaks about bioethics
in The Language of God, the book mentioned several pages before.) On the other
hand, there are numerous nano-constructions made of DNA, ”motors”, ”robots”,
etc. The nano-technology based on DNA biochemistry is spectacularly developed.
I cite, as a reference, the paper J.H. Reif, T.H. LaBean, S. Sahu, H. Yan, P.
Yin: ”Design, simulation, and experimental demonstration of self-assembled DNA
nanostructures and motors”, Proceedings of the Workshop on Unconventional Pro-
gramming Paradigms, UPP04, Le Mont Saint-Michel, September 2004.

It is worth mentioning here also an observation made by Jana Horáková and
Jozef Kelemen in ”Capek, Turing, von Neumann, and the 20th century evolution
of the concept of machine”, from Proceedings of the International Conference in
Memoriam John von Neumann, Budapest Polytechnic, 2003, pages 121–135, with
respect to the evolution of computers, somewhat in parallel with the evolution of
the idea of a robot: from organic to electromagnetic, then to electronic, and in the
end tending to return to organic.

Further speculations? Without any limits, starting from facts with a solid sci-
entific background. In the extreme edge, one can mention Frank Tipler, with his
controversial eternal life, in informational terms, which is nothing else than artifi-
cial life at the scale of the whole universe (F. Tipler: The Physics of Immortality,
Doubleday, New York, 1994). In any case, we have to be conscious that all these
are plans for tomorrow formulated today in the yesterday language, to cite a saying
of Antoine de Saint-Exupéry. The progresses in bioengineering can bring surprises
which we cannot imagine in this moment.

38 Do We Dream Too Much?

Let us come down on the Earth, to the reality, to the natural computing as we have
it now and how it is plausible to have it in the near future, adopting a lucid position,
even a skeptical one, opposed to the enthusiasm from the previous section and to
the enthusiasm of many authors. (I am not referring here to newspaper authors,
which too often use big words when talking about bioinformatics.)

Looking for Computer in the Biological Cell 297

In order to promote an young scientific branch, the enthusiasm is useful and
understandable – but natural computing is no longer an young research area. Let
us oppose here to the previous optimism a more realistic position, starting from
the differences, many and significant, between computer science and biology, from
the difficulties to implement bio-ideas in computer science and computations in
cells: the goal of life is life, not the computations, we, the computer scientists, see
everywhere computations and try to use them for us; in a certain sense, life has
unbounded time and resources, it affords to make experiments and to discard the
results of unsuccessful attempts – all these are difficult to extend to computers,
even if they are based on biomolecules. Similarly, life has a great degree of re-
dundancy and non-determinism. Then, the biological processes have a high degree
of complexity, moreover, they seem to mainly use the mathematics of approxi-
mations, probabilities, fuzzy sets, all of which are difficult to be captured in a
computing model, not to speak about the difficulty to implement them.

Still more important: we perhaps dream too much even from the theoretical
point of view. First, the space-time trade-off does not redefine the complexity
classes, at most it can enlarge the feasibility space (see again Hartmanis remarks
about Adleman experiment).

Then, there is a theorem of Michael Conrad (”The price of programmability”, in
the volume The Universal Turing Machine: A Half-Century Survey, R. Herken, ed.,
Kammerer and Unverzagt, Hamburg, 1988, pages 285–307) which says that three
desired characteristics of a computer, programmability (universality), efficiency,
and evolvability (the capacity to adapt and learn), are contradictory, there is no
computer which can have all these three features at the same time. We can interpret
this result as a general no free lunch theorem for the natural computing.

A similar theorem of limitation of ”what can be done in principle” belongs to
Robin Gandy, a student and collaborator of Turing, which offers general math-
ematical arguments to Martin Davis: the hypercomputability is a difficult thing
to reach (see, for instance, the paper by R. Gandy ”Church’s thesis and princi-
ples for mechanisms”, in the volume The Kleene Symposium, J. Barwise et al.,
eds., North-Holland, Amsterdam, 1980, pages 123–148). Gandy wanted to free
the Turing-Church thesis of any anthropic meaning (in Turing formulation, the
thesis says that ”everything which can be computed by a human being can be
computed by a Turing machine”). To this aim, he has defined a general notion of
a ”computing machine”, described by four properties formulated mathematically
and which any ”computer”, an actual or a theoretical one, should possess. Then,
Gandy proved that any machine having these properties can be simulated by a
Turing machine.

Passing from theoretical computer science to applications, let me notice that
there are visible limitations also in this respect. I am even convinced that, if one
will make lists with the properties the models and the simulations we would like to
have (adequacy, relevance, accuracy, efficiency, understandability, programmabil-
ity, scalability and so on), then impossibility theorems similar to Arrow, Conrad,

298 Gh. Păun

Gödel theorems will be proved concerning the modeling and the simulation of the
cell – the very task which M. Tomita formulated.

39 Everything is New and Old All Are...

(The title of this section reproduces a verse from a poem by Mihai Eminescu, the
national poet of Romania.)

In spite of what was said above, there is a more and more visible interest in
the modeling of the cell. Actually, a dedicated research direction was proposed,
the systems biology, with several programmatic papers, published in high visibility
journals, such as Science and Nature. The main promotor was H. Kitano (”Sys-
tems biology: A brief overview”, Science, vol. 295, March 2002, pages 1662–1664,
”Computational systems biology”, Nature, vol. 420, November 2002, pages 206–
210), which has in mind a general model of the cell, meant to be simulated on a
computer and then used, in relation also with other computer science and biolog-
ical instruments, in such a way ”to transform biology and medicine in a precise
engineering”. The goal is important and probably feasible in a medium-long term,
but the insistence with which one speaks about ”systems biology” as about a novel
idea made Olaf Wolkenhauer to ask already in the title of his paper from Bioin-
formatics (vol. 2, 2001, pages 258–270) whether this is not only ”the reincarnation
of systems theory applied in biology”. The paper recalls the efforts in this respect
made in the years 1960, with the disappointments appeared at that time, due,
among others, to the limits of the computers (but also to the limits of biology: let
us remember that the Singer-Nicolson model of the membrane as a ”fluid mosaic”
dates only from 1972). But, besides the computing power, it is possible that some-
thing else was missing, which is perhaps missing even today, both in computer
science and in biology. The last paragraph from Olaf Wolkenhauer paper invokes
the name of Mihailo Mesarovic, a classic of systems theory, which, in 1968, said:
”in spite of the considerable interest and efforts, the application of systems theory
in biology has not quite lived up the expectations... One of the main reasons for
the existing lag is that systems theory has not been directly concerned with some
of the problems of vital importance in biology”. His advice for biologists, contin-
ues Olaf Wolkenhauer, is that such a progress can only be obtained by means of a
stronger direct interaction with the systems theory researchers. ”The real advance
in the applications of systems theory to biology will come about only when the
biologists start asking questions which are based on the system-theoretic concepts
rather than using these concepts to represent in still another way the phenomena
which are already explained in terms of biophysical or biochemical principles...
then we will not have the application of engineering principles to biological prob-
lems, but rather a field of systems biology with its own identity and in its own
right.” (M.D. Mesarovic: ”System theory and biology – view of a theoretician”,
in System Theory and Biology, M.D. Mesarovic, ed., Springer, New York, 1968,
pages 59–87)

Looking for Computer in the Biological Cell 299

Mesarovic words can be taken as a motto of infobiology in favor of which the
whole present text pleads.

The transformation of biology and medicine in ”a precise engineering” can
be also related with the current difficulties to understand what is life, material-
ized, among others, in the current limits of the artificial intelligence and artificial
life. One says, for instance, that up to now the computers are good in IA, the
intelligence amplification, but not equally good in AI, artificial intelligence. Still
less progresses were made in what concerns the artificial life. In terms of Rodney
Brooks (”The relationship between matter and life”, Nature, vol. 409, January
2001, pages 409–411), this suggests that ”we might be missing something funda-
mental and currently unimagined in our models of biology”. Computers are good
in crunching numbers, but ”not good at modeling living systems, at small or large
scale”. The intuition is that life is more than biophysics and biochemistry, but
what else it is can be something which we cannot imagine today, ”some aspects
of living systems which are invisible to us right now”. ”It is not completely im-
possible that we might discover some new properties of biomolecules or some new
ingredient”. An example of such a ”new stuff”, R. Brooks says, can be the quan-
tum effects from the microtubules of the neural cells, which, according to Penrose,
”might be the locus of consciousness at the level of the individual cell” (citation
from R. Brooks).

A similar opinion was expressed by another great name of the artificial intel-
ligence, John McCarthy (”Problems and projection in CS for the next 49 years”,
Journal of the ACM, vol. 50, 2003, pages 73–79): ”Human–level intelligence is a dif-
ficult scientific problem and probably needs some new ideas. These are more likely
to be invented by a person of genius than as part of a Government or industry
project”.

Anyway, the progresses related to the collaboration between computer science
and biology should not be underestimated. If we do it, then we take a risk which
has struck big names of science and cultures. I close with a funny example of this
kind, some statements (dated around 1830) of the French philosopher Auguste
Comte: ”Every attempt to employ mathematical methods in the study of biological
questions must be considered profoundly irrational and contrary to the spirit of
biology. If mathematical analysis should ever hold a prominent place in biology –
an aberration which is happily almost impossible – it would occasion a rapid and
widespread degeneration of that science.”

Thanks to God, the philosopher was wrong – but we needed about two hundred
years to see that...

40 (Provisory) Last Words

I hope that this quick description was convincing in showing that the way from
biology to computer science and back to biology is intellectually fascinating and
useful to both sciences.

300 Gh. Păun

A few things should be remembered: (i) in all its history, computer science tried
to learn from biology, (ii) and this effort brought important benefits to computer
science and equally to biology; (iii) the progresses in this area should not be un-
derestimated, (iv) but, in general, it is plausible that we expect too much (and too
fast) from the computer science-biology symbiosis, (v) because we ignore the es-
sential differences between the two universes, the inherent limits of computability
and the fact that biology is not a mathematically formalized science, (vi) with the
mentioning that it is possible to need a new mathematics in order to model and
simulate life and intelligence; finally, (vii) let me anticipate a new age of biology,
beyond the today bioinformatics and the today natural computing, and let me also
propose a name for it, infobiology.

Should we wait two further decades in order to see it taking shape?

From an intellectual point of view, during the forty years which I have told
about here I have lived around academician Solomon Marcus, a ”big tree” which
invalidates the phrase (”In the shadow of big trees not even the grace is growing.”)
by which Constantin Brancusi motivated his decision to refuse to work under the
guidance of Rodin: professor Solomon Marcus never puts shadow on his numerous
students and collaborators, but on the contrary. I repeat, in order to stress it: on
the contrary. I witness this and I dedicate to him this discourse, thanking him
once again.

Minimal Cooperation in P Systems with
Symport/Antiport: A Complexity Approach

Luis Valencia-Cabrera1, Bosheng Song2, Luis F. Maćıas-Ramos1, Linqiang Pan2,
Agust́ın Riscos-Núñez1, and Mario J. Pérez-Jiménez1

1 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: { lvalencia, lfmaciasr, ariscosn, marper } @us.es

2 Key Laboratory of Image Information Processing and Intelligent Control,
School of Automation, Huazhong University of Science and Technology,
Wuhan 430074, Hubei, China
E-mail: boshengsong@163.com, lqpan@mail.hust.edu.cn

Summary. Membrane systems with symport/antiport rules compute by just moving
objects among membranes, and not by changing the objects themselves. In these systems
the environment plays an active role because, not only it receives objects from the system,
but it also sends objects into the system. Actually, in this framework it is commonly
assumed that an arbitrarily large number of copies of some objects are initially available
in the environment. This special feature has been widely exploited for the design of
efficient solutions to computationally hard problems in the framework of tissue like P
systems able to create an exponential workspace in polynomial time (e.g. via cell division
or cell separation rules).

This paper deals with cell-like P systems which use symport/antiport rules as commu-
nication rules, and the role played by the minimal cooperation is studied from a computa-
tional complexity point of view. Specifically, the limitations on the efficiency of P systems
with membrane separation whose symport/antiport rules involve at most two objects are
established. In addition, a polynomial time solution to HAM-CYCLE problem, a well known
NP-complete problem, by using a family of such kind of P systems with membrane
division, is provided. Therefore, in the framework of cell-like P systems with minimal
cooperation in communication rules, passing from membrane separation to membrane
division amounts to passing from tractability to NP–hardness.

1 Introduction

The P versus NP problem is one of the most important open problems in theo-
retical computer science. Broadly speaking, we can say that this problem analyzes
whether or not finding solutions is harder than checking the correctness of possible

302 L. Valencia-Cabrera et al.

solutions. It is widely believed that it is harder to solve a problem than to check
that a solution is valid/good; that is, it is widely believed that P 6= NP. The clas-
sical approach to solve this problem consists on considering a single NP–complete
problem and trying to prove whether that problem belongs to the class P or not.
In the first case, the answer of the conjecture is negative. If the NP–complete
problem considered does not belong to P, then the answer of the conjecture is
positive.

In this paper we follow the lines of previous works [3, 4, 5, 6, 8, 10, 13, 14], and
new tools to tackle the P versus NP problem are given in the framework of Mem-
brane Computing paradigm. Specifically, we deal with cell-like P systems whose
communication is implemented by means of symport/antiport rules abstracting
trans-membrane transport of couples of chemical substances, in the same or in
opposite directions. Besides, in order to achieve the efficiency of these models,
membrane division rules abstracting cell division process and membrane separa-
tion rules inspired by membrane fission process, are also included. It is worth
pointing out some relevant differences of cell-like approach with respect to tissue-
like approach. First, communication rules are not given in a single set within the
description of the model, but are organized into subsets, each one of them asso-
ciated with a membrane label. Second, the structure of the system is a rooted
tree given in an explicit way, instead of a directed graph given by means of the
set of rules of the system. Third, communication is only produced between inner
compartments if they have a parent-child relationship, and the communication
with the environment is restricted to the skin membrane. Finally, only elementary
membranes can be divided.

In the framework of cell-like P systems which use symport/antiport rules work-
ing with minimal cooperation (at most two objects are involved in these rules), we
analyze the role played by membrane division and membrane separation as a tool
to create an exponential workspace in linear time. On the one hand, we study the
limitations on the efficiency of this kind of P systems with membrane separation;
that is, we prove that the corresponding polynomial complexity class, denoted by
PMCCSC(2), is equal to class P. On the other hand, we analyze the efficiency
of the systems that use membrane division instead of membrane separation, by
giving a polynomial time solution to HAM-CYCLE problem (that is, showing that
HAM-CYCLE ∈ PMCCDC(2)). Therefore, in the framework of cell-like P systems
with minimal cooperation in communication rules, passing from membrane sepa-
ration to membrane division amounts to passing from tractability to NP–hardness.

The paper is structured as follows. We first recall some preliminaries concerning
definitions, concepts and results needed in order to make the paper self-contained.
The specific models of cell-like P systems with symport/antiport rules that we use
in this work and the corresponding complexity classes are introduced in Section 3.1.
Next section is devoted to analyze the limitations about the computational effi-
ciency of P systems with minimal cooperation which use membrane separation
rules. Section 5 presents a polynomial time solution of HAM-CYCLE problem by
means of a family of P systems with membrane division using symport/antiport

Minimal Cooperation in P Systems with Symport/Antiport 303

rules with length at most 2. Conclusions and some open problems are formulated
at the last section.

2 Preliminaries

2.1 Languages and Multisets

An alphabet Γ is a non-empty set and their elements are called symbols. A string
u over Γ is a mapping from a natural number n ∈ IN onto Γ . Number n is called
length of the string u and it is denoted by |u|. The empty string (with length 0) is
denoted by λ. A language over Γ is a set of strings over Γ .

A multiset over an alphabet Γ is an ordered pair (Γ, f), where f is a mapping
from Γ onto the set of natural numbers IN. For each x ∈ Γ we say that f(x) is the
multiplicity of x in that multiset. The support of a multiset m = (Γ, f) is defined
as supp(m) = {x ∈ Γ | f(x) > 0}. A multiset is finite if its support is a finite set.
The size of a finite multiset m, denoted by |m|, is the sum of the multiplicities of
each element of Γ (obviously that sum is a natural number). We denote by ∅ the
empty multiset. Let us note that a set is a particular case of a multiset where each
symbol of the support has multiplicity 1.

Let m1 = (Γ, f1), m2 = (Γ, f2) be multisets over Γ . Then, the union of m1 and
m2, denoted by m1 + m2, is the multiset (Γ, g), where g(x) = f1(x) + f2(x) for
each x ∈ Γ . We say that m1 is contained in m2, and we denote it by m1 ⊆ m2, if
f1(x) ≤ f2(x) for each x ∈ Γ . The relative complement of m2 in m1, denoted by
m1 \m2, is the multiset (Γ, g), where g(x) = f1(x) − f2(x) if f1(x) ≥ f2(x), and
g(x) = 0 otherwise.

2.2 Graphs and Hamiltonian cycles

Let us recall that a free tree (tree, for short) is a connected, acyclic, undirected
graph. A rooted tree is a tree in which one of the vertices (called the root of the
tree) is distinguished from the others. In a rooted tree, the concepts of ascendants
and descendants are defined in a usual way. Given a node x (different from the
root), if the last edge on the (unique) path from the root of the tree to the node
x is {x, y} (in this case, x 6= y), then y is the parent of node x and x is a child
of node y. The root is the only node in the tree with no parent. A node with no
children is called a leaf (see [1] for details).

Let G = (V,E) be a directed graph, where V = {1, . . . , n} and the set of
arcs is E = {(u1, v1), . . . , (um, vm)} ⊂ V × V . We say that a finite sequence
γ = (uα1 , uα2 , . . . , uαr , uαr+1) of nodes of G is a simple path of G of length r ≥ 1
if the following holds:

• ∀i (1 ≤ i ≤ r → (uαi , uαi+1) ∈ E).
• |{uα1

, uα2
, . . . , uαr

}| = r.

304 L. Valencia-Cabrera et al.

If uαr+1
/∈ {uα1

, uα2
, . . . , uαr

}, then we say that γ is a simple path of length r from
uα1

to uαr+1
. If uαr+1

= uα1
and r ≥ 2, then we say that γ is a simple cycle of

length r.
A Hamiltonian path of G from a ∈ V to b ∈ V (a 6= b) is a simple path

γ = (uα1
, uα2

, . . . , uαr
, uαr+1

) from a to b such that a = uα1
, b = uαr+1

, and
V = {uα1

, uα2
, . . . , uαr

, uαr+1
}. A Hamiltonian cycle of G is a simple cycle γ =

(uα1
, uα2

, . . . , uαr
, uαr+1

) of G such that V = {uα1
, uα2

, . . . , uαr
}.

If γ = (uα1 , uα2 , . . . , uαr , uαr+1) is a simple path of G then we also denote it
by the set {(uα1 , uα2)1, (uα2 , uα3)2, . . . , (uαr , uαr+1)r}. That is, (uαk

, uαk+1
)k can

be interpreted as the k-th arc of the path γ, for each k (1 ≤ k ≤ r).
Let G = (V,E) be a directed graph with V = {1, . . . , n}. Throughout this

paper, AG = {(i, j)k | i, j, k ∈ {1, . . . , n}∧(i, j) ∈ E}, A′G = {(i, j)′k | (i, j)k ∈ AG}
and A′′G = {(i, j)′′k | (i, j)k ∈ AG}.

Proposition 2.1 Let G = (V,E) be a directed graph such that V = {1, . . . , n}. If
B ⊆ AG then the following assertions are equivalent:

1. B is a Hamiltonian cycle.
2. |B| = n and the following holds: for each i, i′, j, j′, k, k′ ∈ {1, . . . , n},

(a) [(i, j)k ∈ B ∧ (i′, j′)k′ ∈ B ∧ (i, j)k 6= (i′, j′)k′ → k 6= k′]
(b) [(i, j)k ∈ B ∧ (i′, j′)k′ ∈ B ∧ (i, j)k 6= (i′, j′)k′ → i 6= i′]
(c) [(i, j)k ∈ B ∧ (i′, j′)k′ ∈ B ∧ (i, j)k 6= (i′, j′)k′ → j 6= j′]
(d) [(i, j)k ∈ B ∧ (i′, j′)k+1 ∈ B → j = i′]

Proof: Let B = {(uα1
, uα2

)1, (uα2
, uα3

)2 . . . , (uαm
, uαr+1

)n} be a Hamiltonian cy-
cle of G. Then, |B| = n and conditions (a), (b), (c) and (d) from (2) hold.

Let B ⊆ AG such that |B| = n and conditions (a), (b), (c) and (d) from (2)
hold. Then, from (a) the set B must to be of the form

B = {(uα1
, vα1

)1, (uα2
, vα2

)2 . . . , (uαn
, vαn

)n}

where:

• From (d) we deduce that ∀s (1 ≤ s ≤ n− 1→ vαs
= uαs+1

).
• From (b) we have V = {uα1

, uα2
, . . . , uαn

}.

Finally, on the one hand we have vαn
∈ {uα1

, uα2
. . . , uαn

}. On the other hand,
by condition (c) we deduce that vαn

/∈ {vα1
, . . . , vαn−1

} = {uα2
, . . . , uαn

}. Thus,
vαn

= uα1
.

�
Remark 1: Let B ⊆ AG be a Hamiltonian cycle of G. For each i, i′, j, j′, k, k′ ∈
{1, . . . , n} the following holds:

1. If (i, j)k ∈ B and j 6= j′ then (i, j′)k′ /∈ B.
2. If (i, j)k ∈ B and i 6= i′ then (i′, j)k′ /∈ B.
3. If (i, j)k ∈ B and (i, j) 6= (i′, j′) then (i′, j′)k /∈ B.
4. If (i, j)k ∈ B and (i′, j′)k+1 ∈ B then j = i′.

Minimal Cooperation in P Systems with Symport/Antiport 305

Remark 2: Let us notice that if (uα1
, uα2

, . . . , uαn
, uα1

) is a Hamiltonian cycle of
G of length n, then we can describe it by the following subset of AG:

B1 = {(uα1
, uα2

)1, (uα2
, uα3

)2, . . . , (uαn
, uα1

)n}

But (uα2
, uα3

, . . . , uαm
, uα1

, uα2
) also represents the same Hamiltonian cycle. It

can be described as follows: B2 = {(uα2
, uα3

)1, (uα3
, uα4

)2, . . . , (uα1
, uα2

)n}. Thus,
given a Hamiltonian cycle γ of G, there are exactly n different subsets of AG
codifying that cycle.
Remark 3: Let us suppose that the total number of Hamiltonian cycles of G is q.
Then, the number of different subsets B of AG verifying conditions (a), (b), (c),
and (d) from Proposition 2.1 is exactly n · q.

2.3 Encoding ordered pairs of natural numbers

The pair function 〈n,m〉 = ((n + m)(n + m + 1)/2) + n is a polynomial–time
computable function from IN× IN onto IN which is also a primitive recursive and
bijective function.

3 P systems with symport/antiport rules

In this section we introduce a kind of cell-like P systems that use communication
rules capturing the biological phenomenon of trans-membrane transport of several
chemical substances. Specifically, two processes have been considered. The first
one allows a multiset of chemical substances to pass through a membrane in the
same direction. In the second one, two multisets of chemical substances, located
in different biological membranes, only pass with the help of each other (yielding
an exchange of objects between both membranes).

Next, we introduce an abstraction of these operations in the framework of P
systems with symport/antiport rules following [9]. In these models, the membranes
are not polarized.

Definition 1. A P system with symport/antiport rules (SA P system, for short) of
degree q ≥ 1 is a tuple Π = (Γ, E , Σ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout), where:

1. Γ is a finite alphabet;
2. E (Γ ;
3. Σ is an (input) alphabet strictly contained in Γ such that E ⊆ Γ \Σ;
4. µ is a rooted tree whose nodes are injectively labelled by 1, . . . , q (the root of

the tree is labelled by 1);
5.M1, . . . ,Mq are finite multisets over Γ \Σ;
6. Ri, 1 ≤ i ≤ q, are finite sets of communication rules over Γ of the form:

(a) Symport rules: (u, out) or (u, in), where u is a finite multiset over Γ such
that |u| > 0;

306 L. Valencia-Cabrera et al.

(b) Antiport rules: (u, out; v, in), where u, v are finite multisets over Γ such
that |u| > 0 and |v| > 0;

7. iin ∈ {1, . . . , q} and iout ∈ {0, 1, . . . , q}.

A SA P system of degree q Π = (Γ, E , µ,M1, . . . ,Mq,R1, . . . ,Rq, iout) can be
viewed as a set of q membranes, labelled by 1, . . . , q, arranged in a hierarchical
structure µ (given by a rooted tree whose root is called the skin membrane), such
that: (a)M1, . . . ,Mq represent the finite multisets of objects initially placed into
the q membranes of the system; (b) E is the set of objects initially located in the
environment of the system (labelled by 0), all of them available in an arbitrary
number of copies; (c) R1, . . . ,Rq are finite sets of communication rules over Γ (Ri
is associated with the membrane i of µ); and (d) iout represents a distinguished
region which will encode the output of the system. We use the term region i (0 ≤
i ≤ q) to refer to membrane i in the case 1 ≤ i ≤ q and to refer to the environment
in the case i = 0. The length of rule (u, out) or (u, in) (resp. (u, out; v, in)) is
defined as |u| (resp. |u|+ |v|).

For each membrane i ∈ {2, . . . , q} (different from the skin membrane) we denote
by p(i) the parent of membrane i in the rooted tree µ. We define p(1) = 0, that
is, by convention the “parent” of the skin membrane is the environment.

An instantaneous description or a configuration at an instant t of a SA P system
is described by the membrane structure at instant t, all multisets of objects over
Γ associated with all the membranes present in the system, and the multiset of
objects over Γ \E associated with the environment at that moment. Recall that we
assume that there are infinitely many copies of objects from E in the environment,
and hence it does not make sense to keep record of their multiplicity along the
computation. The initial configuration of the system is (µ,M1, . . . ,Mq; ∅).

A symport rule (u, out) ∈ Ri is applicable to a configuration Ct at an instant t if
membrane i is in Ct and multiset u is contained in that membrane. When applying
a rule (u, out) ∈ Ri, the objects specified by u are sent out of membrane i into the
region immediately outside (the parent p(i) of i), which can be the environment
in the case of the skin membrane. A symport rule (u, in) ∈ Ri is applicable to a
configuration Ct at an instant t if membrane i is in Ct and multiset u is contained
in the parent of i. When applying a rule (u, in) ∈ Ri, the multiset of objects
u is taken from the parent membrane of i and enters into the region defined by
membrane i.

An antiport rule (u, out; v, in) ∈ Ri is applicable to a configuration Ct at an
instant t if membrane i is in Ct and multiset u is contained in that membrane, and
multiset v is contained in the parent of i. When applying a rule (u, out; v, in) ∈ Ri,
the objects specified by u are sent out of membrane i into the parent of i and, at
the same time, the objects specified by v are brought into membrane i.

With respect to the semantics of SA P systems, the rules of such P systems
are applied in a non-deterministic maximally parallel manner.

Let Π be a P system with symport/antiport rules. We say that configuration
Ct yields configuration Ct+1 in one transition step, denoted by Ct ⇒Π Ct+1, if
we can pass from Ct to Ct+1 by applying the rules from the system following the

Minimal Cooperation in P Systems with Symport/Antiport 307

semantics described above. A computation of Π is a (finite or infinite) sequence of
configurations such that: (a) the first term is the initial configuration of the system;
(b) for each n ≥ 2, the n-th configuration of the sequence is obtained from the
previous configuration in one transition step; and (c) if the sequence is finite (called
halting computation) then the last term is a halting configuration (a configuration
where no rule of the system is applicable to it). All the computations start from
an initial configuration and proceed as stated above; only a halting computation
gives a result, which is encoded by the objects present in the output region iout
associated with the halting configuration. If C = {Ct}t<r+1 of Π is a halting
computation, then the length of C, denoted by |C|, is r. For each i (1 ≤ i ≤ q), we
denote by Ct(i) the finite multiset of objects over Γ contained in all membranes
labelled by i (by applying division rules different membranes with the same label
can be created) at configuration Ct.

Definition 2. A P system with symport/antiport rules and membrane division
(SAD P system, for short) of degree q ≥ 1 is a tuple

Π = (Γ, E , Σ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout),

where:

1. Π = (Γ, E , Σ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout) is a P system with sym-
port/antiport rules of degree q;

2. Ri, 1 ≤ i ≤ q, are finite sets of rules over Γ of the following types:
(a) Symport/antiport rules.
(b) Division rules: [a]i → [b]i [c]i, where a, b, c ∈ Γ , i ∈ {2, . . . , q}, i 6= iout,

and i is the label of a leaf of the tree µ;
3. iin ∈ {1, . . . , q} and iout ∈ {0, 1, . . . , q}.

A SAD P system of degree q is a P system with symport/antiport rules of degree
q where membrane division rules (for only elementary membranes) are allowed.

A division rule [a]i → [b]i[c]i ∈ Ri is applicable to a configuration Ct at an
instant t if the following holds: (a) membrane i is in Ct; (b) object a is contained
in that membrane; and (c) membrane i is elementary, and it is neither the skin
membrane nor the output membrane (if iout ∈ {1, . . . , q}). When applying a divi-
sion rule [a]i → [b]i[c]i, under the influence of object a, the membrane with label
i is divided into two membranes with the same label; in the first copy, object a is
replaced by object b, and in the second one, object a is replaced by object c; all
the other objects residing in the membrane are replicated, and a copy of each one
of them is placed in each of the two new membranes.

With respect to the semantics of SAD P systems, the rules of such P systems
are applied in a non-deterministic maximally parallel manner with the following
important remark: when a membrane i is divided by a division rule at a compu-
tation step, this is the only one from Ri which can be applied to that membrane
at that step. The new membranes resulting from division could participate in the
interaction with other membranes or the environment by means of communication
rules at the next step – providing that they are not divided once again.

308 L. Valencia-Cabrera et al.

Definition 3. A P system with symport/antiport rules and membrane separation
(SAS P system, for short) of degree q ≥ 1 is a tuple

Π = (Γ, Γ0, Γ1, E , Σ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout),

where

1. Π = (Γ, E , Σ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout) is a P system with sym-
port/antiport rules of degree q;

2. {Γ0, Γ1} is a partition of Γ , that is, Γ = Γ0 ∪ Γ1, Γ0, Γ1 6= ∅, Γ0 ∩ Γ1 = ∅;
3. Ri, 1 ≤ i ≤ q, are finite sets of rules over Γ of the following types:

(a) Symport/antiport rules.
(b) Separation rules: [a]i → [Γ0]i [Γ1]i, where a ∈ Γ , i ∈ {2, . . . , q}, i 6= iout,

and i is the label of a leaf of the tree;
4. iin ∈ {1, . . . , q} and iout ∈ {0, 1, . . . , q}.

A SAS P system of degree q is a P system with symport/antiport rules of degree
q where membrane separation rules (for only elementary membranes) are allowed.

A separation rule [a]i → [Γ0]i[Γ1]i ∈ Ri is applicable to a configuration Ct at
an instant t, if there exists an elementary membrane labelled by i in Ct, different
from the skin membrane and from the output membrane, such that it contains an
object a. When applying a separation rule [a]i → [Γ0]i [Γ1]i ∈ Ri to a membrane
labelled by i in a configuration Ct, that membrane is separated into two membranes
with the same label; at the same time, object a is consumed, and the rest of the
contents of the membrane are distributed as follows: the objects from Γ0 are placed
in the first membrane, while those from Γ1 are placed in the second membrane.
In this way, several membranes with the same label i 6= 1 can be present in the
new membrane structure µ′ of the system: a new node i and a new arc (p(i), i) are
added to µ′ each time a membrane separation rule [a]i → [Γ0]i[Γ1]i is applied.

With respect to the semantics of these variants, the rules of such P systems
are applied in a non-deterministic maximally parallel manner with the following
important remark: when a membrane i is separated, the membrane separation
rule is the only one from Ri which is applied for that membrane at that step.
The new membranes resulting from separation could participate in the interaction
with other membranes or the environment by means of communication rules at
the next step – providing that they are not separated once again.

3.1 Recognizer P systems with symport/antiport rules

Recognizer P systems were introduced in [12], and they provide a natural frame-
work to solve decision problems by means of computational devices in membrane
computing (i.e., P systems).

Definition 4. A recognizer P system with symport/antiport rules (and membrane
division or membrane separation) of degree q ≥ 1 is a P system with sym-
port/antiport rules (and membrane division or membrane separation) such that:

Minimal Cooperation in P Systems with Symport/Antiport 309

1. Alphabet Γ has two distinguished symbols yes and no;
2. initial multisets are finite multisets over Γ \ Σ such that at least one copy of

yes or no is present in some of them;
3. the output region is the environment (iout = 0);
4. all computations halt;
5. if C is a computation of the system, then either symbol yes or symbol no (but

not both) must have been released to the environment, and only at the last step
of the computation.

Let us notice that, if a recognizer P system has a symport rule of the type (u, in) ∈
R1, then the multiset u must contain some object from Γ \E ; otherwise there might
exist non-halting computations of Π.

We say that a computation C of a recognizer P system is an accepting compu-
tation (respectively, rejecting computation) if object yes (respectively, object no)
appears in the environment associated with the corresponding halting configura-
tion of C, and neither object yes nor no appears in the environment associated
with any non–halting configuration of C.

We denote by CDC(k) (respectively, CSC(k)) the class of all recognizer P sys-
tems with symport/antiport rules and membrane division (respectively, membrane
separation) for elementary membranes such that the length of the communication
rules of the system is at most k.

3.2 Polynomial complexity classes of recognizer P systems with
symport/antiport rules

Next, according to [11], we define what solving a decision problem by a family
of recognizer P systems with symport/antiport rules and membrane division or
membrane separation means.

Definition 5. A decision problem X = (IX , θX) is solvable in polynomial time by
a family Π = {Π(n) | n ∈ IN} of recognizer P systems with symport/antiport rules
and membrane division or membrane separation, if the following holds:

• the family Π is polynomially uniform by Turing machines; that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ IN;

• there exists a pair (cod, s) of polynomial-time computable functions over IX
such that:
– for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input

multiset of the system Π(s(u));
– for each n ∈ IN, s−1(n) is a finite set;
– the family Π is polynomially bounded with regard to (X, cod, s); that is, there

exists a polynomial function p, such that for each u ∈ IX every computation
of Π(s(u)) + cod(u) is halting and it performs at most p(|u|) steps;

– the family Π is sound with regard to (X, cod, s); that is, for each u ∈ IX , if
there exists an accepting computation of Π(s(u)) + cod(u), then θX(u) = 1;

310 L. Valencia-Cabrera et al.

– the family Π is complete with regard to (X, cod, s); that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) + cod(u) is an accepting
one.

According to Definition 5, we say that the family Π provides a uniform solution
to the decision problem X. We also say that ordered pair (cod, s) is a polynomial
encoding from X in Π and s is the size mapping associated with that solution. It is
worth pointing out that, for each instance u ∈ IX , the P system Π(s(u)) + cod(u)
is confluent, in the sense that all possible computations of the system must give
the same answer.

If R is a class of recognizer P systems, then we denote by PMCR the set of
all decision problems which can be solved in polynomial time (and in a uniform
way) by means of recognizer P systems from R. The class PMCR is closed under
complement and polynomial–time reductions (see [11] for details). Besides, we have
P ⊆ PMCR. Indeed, if X ∈ P, then we consider the family Π = {Π(n) | n ∈ IN}
where Π(n) = Π(0), for each n ∈ IN, and Π(0) is a P system from R of degree 1
containing only two rules (yes, out) and (no, out). Let us consider the polynomial
encoding from X in Π defined as follows: (a) s(u) = 0, for each u ∈ IX ; and (b)
cod(u) = yes if θX(u) = 1 and cod(u) = no if θX(u) = 0. Then, the family Π
solves X according to Definition 5.

4 Computational efficiency of systems in CSC(2)

In this section, we study the limitations on the computational efficiency (ability
to solve hard problems in polynomial time) of systems from CSC(2). Specifically,
we show that only problems in class P can be efficiently solved in polynomial
time by means of families of recognizer P systems with membrane separation
that use symport/antiport rules involving at most two objects (i.e., with minimal
cooperation). Hence, we prove that P = PMCCSC(2).

Let us first introduce a new representation for the membrane struc-
ture of recognizer P systems with membrane separation. Let Π =
(Γ, Γ0, Γ1, E , Σ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout) be a recognizer P system of
degree q ≥ 1 from CSC(2). In order to identify the membranes created by the
application of a separation rule, we modify the labels of the new membranes in
the following recursive manner:

• The label of a membrane will be a pair (i, σ), where 1 ≤ i ≤ q and σ is a
string over {0, 1}. At the initial configuration, the labels of the membranes are
(1, λ), . . . , (q, λ).

• If a separation rule from Ri is applied to a membrane labelled by (i, σ), then
the new created membranes will be labelled by (i, σ0) and (i, σ1), respectively.
Membrane (i, σ0) will only contain the objects of membrane (i, σ) which belong
to Γ0, and membrane (i, σ1) will only contain the objects of membrane (i, σ)
which belong to Γ1. The skin membrane cannot be separated, so the label of

Minimal Cooperation in P Systems with Symport/Antiport 311

the skin membrane, (1, λ), is not changed along any computation. Note that
we can consider a lexicographical order over the set of labels of cells in the
system along any computation.

If a membrane labelled by (i, σ) is engaged by a communication rule, then, after
the application of the rule, the membrane keeps its label.

A configuration at an instant t of a P system from CSC(2) is described by
the current membrane structure, the multisets of objects over Γ contained in each
membrane, and the multiset of objects over Γ \ E currently in the environment.
Hence, a configuration of Π can be described by a multiset of labelled objects

{(a, i, σ) | a ∈ Γ ∪ {λ}, 1 ≤ i ≤ q, σ ∈ {0, 1}∗} ∪ {(a, 0) | a ∈ Γ \ E}.

Let us notice that the number of labels we need to identify all membranes appear-
ing along any computation of a P system from CSC(2) is quadratic in the size of
the initial configuration of the system and the length of the computation.

Let r = (ab, out) ∈ Ri, 2 ≤ i ≤ q, be a symport rule of Π and n ∈ IN.
We denote by n · LHS(r, (i, σ), (p(i), τ)) the multiset of objects (a, i, σ)n(b, i, σ)n,
and we denote by n · RHS(r, (i, σ), (p(i), τ)) the multiset (a, p(i), τ)n(b, p(i), τ)n.
In a similar way, n · LHS(r, (i, σ), (p(i), τ)) and n · RHS(r, (i, σ), (p(i), τ)) are
defined when r is of the form (a, out) ∈ Ri. Note that, at a given instant of the
computation, for each membrane (i, σ) there is a unique parent membrane (p(i), τ),
according to the current membrane structure.

Let r = (ab, out) ∈ R1 be a symport rule of Π and n ∈ IN. We denote by
n · LHS(r, (1, λ), 0) the multiset of objects (a, 1, λ)n(b, 1, λ)n. We denote by n ·
RHS(r, (1, λ), 0) the following multiset of objects:

(a, 0)n(b, 0)n , if a, b ∈ Γ \ E ;
(a, 0)n , if a ∈ Γ \ E and b ∈ E ;
(b, 0)n , if b ∈ Γ \ E and a ∈ E ;

∅ , if a, b ∈ E .

In a similar way, n · LHS(r, (1, λ), 0) and n · RHS(r, (1, λ), 0) are defined when r
is of the form (a, out) ∈ R1.

Let r = (ab, in) ∈ Ri, 2 ≤ i ≤ q, be a symport rule of Π and n ∈ IN. We denote
by n · LHS(r, (i, σ), (p(i), τ)) the multiset of objects (a, p(i), τ)n(b, p(i), τ)n. We
denote by n ·RHS(r, (i, σ), (p(i), τ)) the multiset of objects (a, i, σ)n(b, i, σ)n. In a
similar way, n · LHS(r, (i, σ), (p(i), τ)) and n ·RHS(r, (i, σ), (p(i), τ)) are defined
when r is of the form (a, in) ∈ Ri.

Let r = (ab, in) ∈ R1 be a symport rule of Π and n ∈ IN. We denote by
n · LHS(r, (1, λ), 0) the following multiset of objects:

(a, 0)n(b, 0)n , if a, b ∈ Γ \ E ;
(a, 0)n , if a ∈ Γ \ E and b ∈ E ;
(b, 0)n , if b ∈ Γ \ E and a ∈ E ;

∅ , if a, b ∈ E .

312 L. Valencia-Cabrera et al.

We denote by n · RHS(r, (1, λ), 0) the multiset of objects (a, 1, λ)n(b, 1, λ)n. In a
similar way, n · LHS(r, (1, λ), 0) and n ·RHS(r, (1, λ), 0) are defined when r is of
the form (a, in) ∈ R1.

Let r = (a, out; b, in) ∈ Ri, 2 ≤ i ≤ q, be an antiport rule of Π
and n ∈ IN. We denote by n · LHS(r, (i, σ), (p(i), τ)) the multiset of objects
(a, i, σ)n(b, p(i), τ)n. Similarly, we denote by n·RHS(r, (i, σ), (p(i), τ)) the multiset
of objects (a, p(i), τ)n(b, i, σ)n.

Let r = (a, out; b, in) ∈ R1 be an antiport rule of Π. We denote by
n · LHS(r, (1, λ), 0) the following multiset of objects:{

(a, 1, λ)n(b, 0)n , if b ∈ Γ \ E ;
(a, 1, λ)n , if b ∈ E .

Similarly, we denote by n ·RHS(r, (1, λ), 0) the following multiset of objects:{
(a, 0)n(b, 1, λ)n , if a ∈ Γ \ E ;

(b, 1, λ)n , if a ∈ E .

If Ct is a configuration of Π, then we denote by Ct + {(x, i, σ)/σ′} the multiset
obtained by replacing in Ct every occurrence of (x, i, σ) by (x, i, σ′). Besides, Ct+m
(resp., Ct\m) is used to denote that a multiset m of labelled objects is added (resp.,
removed) to the configuration.

4.1 Characterizing class P by means of systems from CSC(2)

In order to show that only tractable problems can be solved efficiently by using
families of P systems from CSC(2), we first state a technical result concerning
recognizer P systems from CSC(2) (see [7] for more details).

Lemma 4.1 Let Π = (Γ, Γ0, Γ1, E , Σ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout) be a
recognizer P system of degree q ≥ 1 from CSC(2). Let M = |M1 + . . .+Mq| and
let C = {C0, . . . , Cr} be a computation of Π. Then, we have

(1) |C∗0 | = M , and for each t, 0 ≤ t < r, C∗t+1 ∩ (Γ \ E) ⊆ C∗t ∩ (Γ \ E);
(2) for each t, 0 ≤ t ≤ r, C∗t ∩(Γ \E) ⊆ (M1+. . .+Mq)∩(Γ \E), and |C∗t ∩(Γ \E)| ≤

M ;
(3) for each t, 0 ≤ t < r, |C∗t+1| ≤ |C∗t |+M ;
(4) for each t, 0 ≤ t ≤ r, |C∗t | ≤M · (1 + t);
(5) the number of membranes created along computation C by the application of

separation rules is bounded by 2M · (1 + r).

Next, we present a deterministic algorithm A working in polynomial time that
receives as an input a P system Π from CSC(2) and an input multiset m of Π,
in such manner that algorithm A reproduces the behaviour of a computation of
Π + m. In particular, if Π is confluent, then algorithm A will provide the same
answer of the system Π.

Minimal Cooperation in P Systems with Symport/Antiport 313

The pseudocode of the algorithm A is described as follows:

Input: A P system Π from CSC(2) and an input multiset m
Initialization phase: C0 is the initial configuration of Π +m
t← 0
while Ct is a non halting configuration do

Selection phase: Input Ct, Output (C′t, A)
Execution phase: Input (C′t, A), Output Ct+1

t← t+ 1
end while

Output: Yes if object yes appears in the environment associated

with the halting configuration Ct, No otherwise

The algorithm A receives a recognizer P system

Π = (Γ, Γ0, Γ1, E , Σ, µ,M1, . . . ,Mq,R1, . . . ,Rq, iin, iout)

from CSC(2) and an input multiset m. Let M = |M1 + . . . +Mq|, p ∈ IN be
a natural number such that any computation of Π + m performs, at most, p
transition steps. Hence, from Lemma 4.1, we know that the number of membranes
in the system along any computation is bounded by 2M(1 + p) + q.

A transition step of a recognizer P system Π+m is performed by the selection
and the execution phases. Specifically, the selection phase receives as an input
a configuration Ct of Π + m at an instant t. The output of this phase is a pair
(C′t, A), where A encodes a multiset of rules selected to be applied to Ct, and C′t
is the configuration obtained from Ct once the labelled objects corresponding to
the left-hand side of the rules from A have been consumed. The execution phase
receives as an input the pair (C′t, A), and the output of this phase is the next
configuration Ct+1 of Ct. More precisely, configuration Ct+1 is obtained from C′t by
adding the labelled objects produced by the application of rules from A; that is,
the labelled objects corresponding to the right-hand side of the rules from A.
Selection phase.
Input: A configuration Ct of Π +m at instant t
C′t ← Ct; A← ∅; B ← ∅
for r = (u, out; v, in) ∈ Ri, 2 ≤ i ≤ q according to the order

chosen do
for each membrane (i, σ) of C′t according to the lexicographical

order do
nr ← maximum number of times that r is applicable to (i, σ)
if nr > 0 then
C′t ← C′t \ nr · LHS(r, (i, σ), (p(i), τ))
A← A ∪ {(r, nr, (i, σ), (p(i), τ))}
B ← B ∪ {(i, σ), (p(i), τ)}

end if
end for

end for

314 L. Valencia-Cabrera et al.

for r = (u, out; v, in) ∈ R1 according to the order chosen do
nr ← maximum number of times that r is applicable to (1, λ)
if nr > 0 then
C′t ← C′t \ nr · LHS(r, (1, λ), 0)
A← A ∪ {(r, nr, (1, λ), 0)}

end if
end for
for r = [a]i → [Γ0]i[Γ1]i ∈ Ri (i 6= 1) according to the

order chosen do
for each (a, i, σ) ∈ C′t according to the lexicographical

order, and such that (i, σ) 6∈ B do
C′t ← C′t \ {(a, i, σ)}
A← A ∪ {(r, 1, (i, σ))}
B ← B ∪ {(i, σ)}

end for
end for

This algorithm is deterministic and works in polynomial time. Indeed, the
running time of the previous algorithm is polynomial in the size of Π because: the
number of cycles of the first main loop for is of order O(|R| ·M ·p · q); the number
of cycles of the second main loop for is of order O(|R|); and the number of cycles
of the third main loop for is of order O(|R| ·M · p · q · |Γ |).
Execution phase.
Input: The output (C′t, A) of the selection phase

for each (r, nr, (i, σ), (p(i), τ)) ∈ A do
C′t ← C′t + nr ·RHS(r, (i, σ), (p(i), τ))

end for
for each (r, nr, (1, λ), 0) ∈ A do
C′t ← C′t + nr ·RHS(r, (1, λ), 0)

end for
for each (r, 1, (i, σ)) ∈ A do
C′t ← C′t + {(λ, i, σ)/σ0}
C′t ← C′t + {(λ, i, σ1)}
for each (x, i, σ) ∈ C ′t according to the lexicographical

order do
if x ∈ Γ0 then
C′t ← C′t + {(x, i, σ)/σ0}

else
C′t ← C′t + {(x, i, σ)/σ1}

end if
end for

Minimal Cooperation in P Systems with Symport/Antiport 315

end for
Ct+1 ← C′t

This algorithm is deterministic and works in polynomial time. Indeed, the
running time of the previous algorithm is polynomial in the size of Π because: the
number of cycles of the first main loop for is of order O(|R| ·M ·p · q); the number
of cycles of the second main loop for is of order O(|R|); and the number of cycles
of the third main loop for is of order O(|R| ·M · p · q · |Γ |).

Theorem 4.2 P = PMCCSC(2).

Proof. It suffices to show that PMCCSC(2) ⊆ P. Let X ∈ PMCCSC(2) and let
Π = {Π(n) | n ∈ IN} be a family of recognizer P systems from CSC(2) solving X,
according to Definition 5. Let (cod, s) be a polynomial encoding associated with
that solution. If u ∈ IX is an instance of the problem X, then u will be processed
by the system Π(s(u)) + cod(u).
Let us consider the following deterministic algorithm A′:

Input: an instance u of the problem X
Construct the system Π(s(u)) + cod(u).
Run algorithm A with input Π(s(u)) + cod(u).

Output: Yes if algorithm A returns Yes,
No otherwise.

The algorithm A′ receives as an input an instance u of the decision problem
X = (IX , θX) and works in polynomial time with respect to the size of the input.
The following assertions are equivalent:

• θX(u) = 1; that is, the answer of problem X to instance u is affirmative.
• Every computation of Π(s(u)) + cod(u) is an accepting computation.
• The output of algorithm A′ with input u is Yes.

Hence, X ∈ P.
�

5 Computational efficiency of systems in CDC(2)

In this section we study the ability to solve NP–complete problems of families of
recognizer P systems with membrane division whose communication rules (of type
symport/antiport) use a minimal cooperation (i.e., communication rules involving
at most two objects). Specifically, we give a polynomial time solution to HAM-CYCLE

problem, a well known NP-complete problem [2], by means of a family of such
kind of recognizer P systems, according to Definition 5 (see [15] for more details).

Let us recall that HAM-CYCLE problem is the following: Given a directed graph,
determine whether or not there exists a Hamiltonian cycle in the graph.

316 L. Valencia-Cabrera et al.

5.1 A polynomial time solution of HAM-CYCLE problem in CDC(2)

For each n,m ∈ IN, we consider the recognizer P system with symport/antiport
rules and membrane division of degree 11 + 2n+ n3

Π(〈n,m〉) = (Γ, E , Σ, µ,Mr (1 ≤ r ≤ 11) ,Ma1,j (1 ≤ j ≤ n), Ma2,j (1 ≤ j ≤ n) ,
Mei,j,k(1 ≤ i, j, k ≤ n) , Rr (1 ≤ r ≤ 11) , Ra1,j (1 ≤ j ≤ n) ,
Ra2,j (1 ≤ j ≤ n) Rei,j,k(1 ≤ i, j, k ≤ n))

defined as follows:

(1) Working alphabet:
Γ = Σ ∪ E ∪ {βr | 0 ≤ r ≤ n3 + 7} ∪ {b′r, b′′r , b′′′r , c′r, c′′r , c′′′r , c′′′′r | 1 ≤ r ≤ n3}∪

{(i, j)′k , (i, j)′′k | 1 ≤ i, j, k ≤ n} ∪ {(i, j)′′k,r | 1 ≤ i, j, k ≤ n ∧ 1 ≤ r ≤ n3}∪
{α0, a, a

′, a′′, b, b′, b′′, b′′′, c, c′, c′′, c′′′, c′′′′, yes, no},
where the input alphabet is Σ = {(i, j)k | 1 ≤ i, j, k ≤ n}, and the alphabet of
the environment is E = {αr | 1 ≤ r ≤ n3 + 6}

(2) Membrane structure µ: the root is labelled by 1, and the remaining nodes are
children of the root, being labelled by

2, 3, . . . , 11, a1,j (1 ≤ j ≤ n), a2,j (1 ≤ j ≤ n), ei,j,k (1 ≤ i, j, k ≤ n),

respectively.
(3) Initial multisets:
M1 = {α0} ∪ {βr | 1 ≤ r ≤ n3 + 7} ∪ {b′r, b′′r , b′′′r , c′r, c′′r , c′′′r , c′′′′r | 1 ≤ r ≤ n3 − 1};
M2 = {an, b, c};
M3 = {b′n3} ; M4 = {b′′n3} ; M5 = {b′′′n3};
M6 = {c′n3} ; M7 = {c′′n3} ; M8 = {c′′′n3} ; M9 = {c′′′′n3};
M10 = {yes} ; M11 = {no, β0};
Ma1,j = {a′n3} ,Ma2,j = {a′′n3}, 1 ≤ j ≤ n;
Mei,j,k = {(i, j)′′k,n3}, 1 ≤ i, j, k ≤ n.

(4) Rules of the system:
• Rules in R1:

1.1 Rules to control the output of the computations by counters of type αr.

(αr , out ; αr+1 , in) , 0 ≤ r ≤ n3 + 5.

Rules 1.2 and 1.3 produce the output of the computations:
1.2 (yes , out)
1.3 (noαn3+6 , out)

• Rules in R2:

2.1 Rules to produce all possible subsets of A′G in membranes labelled by 2 at
configuration Cn3+1:

[(i, j)k]2 → [(i, j)′k]2 [#]2, 1 ≤ i, j, k ≤ n.

Rules 2.2, 2.3, 2.4 and 2.5 allow to introduce objects a′, a′′, b′, b′′, c′′′, c′,
c′′, c′′′ and c′′′′ in membranes labelled by 2 at configurations Cn3+2, Cn3+3,
Cn3+4 and Cn3+5, respectively:

Minimal Cooperation in P Systems with Symport/Antiport 317

2.2 (a , out ; a′ , in); (a′ , out ; a′′ , in);
2.3 (b , out ; b′ , in); (b′ , out ; b′′ , in); (b′′ , out ; b′′′ , in);
2.4 (c , out ; c′ , in); (c′ , out ; c′′ , in); (c′′ , out ; c′′′ , in) ; (c′′′ , out ; c′′′′ , in);
2.5 (a′′ b′′′ , out); (b′′′ c′′′′ , out).
2.6 Rules to produce in each membrane labelled by 2 at configuration Cn3+2 a

subset of A′′G from a subset of A′G at configuration Cn3+1:

((i, j)′k , out ; (i, j)′′k , in) , 1 ≤ i, j, k ≤ n.

2.7 Rules to generate in each membrane labelled by 2 at configura-
tion Cn3+1 a subset of A′′G encoding a possible Hamiltonian cycle.
((i, j)′′k (i, j′)′′k′ , out), 1 ≤ i, i′, j, j′, k, k′ ≤ n;
((i, j)′′k (i′, j)′′k′ , out), 1 ≤ i, i′, j, j′, k, k′ ≤ n;
((i, j)′′k (i′, j′)′′k+1 , out), 1 ≤ i, i′, j, j′, k, k′ ≤ n, j 6= i′;
((i, j)′′k (i′, j′)′′k , out), 1 ≤ i, i′, j, j′, k, k′ ≤ n.

2.8 Rules to check if the subset represented by each membrane with label 2 at
configuration Cn3+3 encodes a Hamiltonian cycle of the input graph:

(a′′ (i, j)′′k , out), 1 ≤ i, j, k ≤ n.

• Rules in R3:
Rules to produce 2n·p copies of objects b′ in the skin membrane of configuration
Cn3+1:

3.1 (b′r , out ; b′r−1 , in), n ·m+ 1 ≤ r ≤ n3;
3.2 [b′r]3 → [b′r−1]3 [b′r−1]3, 2 ≤ r ≤ n ·m;
3.3 [b′1]3 → [b′]3 [b′]3;
3.4 (b′ , out).

• Rules in R4:
Rules to produce 2n·p copies of objects b′′ in the skin membrane at configuration
Cn3+1:

4.1 (b′′r , out ; b′′r−1 , in), n ·m+ 1 ≤ r ≤ n3;
4.2 [b′′r]4 → [b′′r−1]4 b′′r−1]4, 2 ≤ r ≤ n ·m;
4.3 [b′′1]4 → [b′′]4 [b′′]4;
4.4 (b′′ , out).

• Rules in R5:
Rules to produce 2n·p copies of objects b′′′ in the skin membrane at configura-
tion Cn3+1:

5.1 (b′′′r , out ; b′′′r−1 , in), n ·m+ 1 ≤ r ≤ n3;
5.2 [b′′′r]5 → [b′′′r−1]5 [b′′′r−1]5, 2 ≤ r ≤ n ·m;
5.3 [b′′′1]5 → [b′′′]5 [b′′′]5;
5.4 (b′′′ , out).

• Rules in R6:
Rules to produce 2n·p copies of objects c′ in the skin membrane at configuration
Cn3+1:

318 L. Valencia-Cabrera et al.

6.1 (c′r , out ; c′r−1 , in), n ·m+ 1 ≤ r ≤ n3;
6.2 [c′r]6 → [c′r−1]6 [c′r−1]6, 2 ≤ r ≤ n ·m;
6.3 [c′1]6 → [c′]6 [c′]6;
6.4 (c′ , out).

• Rules in R7:
Rules to produce 2n·p copies of objects c′′ in the skin membrane at configuration
Cn3+1:

7.1 (c′′r , out ; c′′r−1 , in), n ·m+ 1 ≤ r ≤ n3;
7.2 [c′′r]7 → [c′′r−1]7 [c′′r−1]7, 2 ≤ r ≤ n ·m;
7.3 [c′′1]7 → [c′′]7 [c′′]7;
7.4 (c′′ , out).

• Rules in R8:
Rules to produce 2n·p copies of objects c′′′ in the skin membrane at configura-
tion Cn3+1:

8.1 (c′′′r , out ; c′′′r−1 , in), n ·m+ 1 ≤ r ≤ n3;
8.2 [c′′′r]8 → [c′′′r−1]8 [c′′′r−1]8, 2 ≤ r ≤ n ·m;
8.3 [c′′′1]8 → [c′′′]8 [c′′′]8;
8.4 (c′′′ , out).

• Rules in R9:
Rules to produce 2n·p copies of objects c′′′′ in the skin membrane at configu-
ration Cn3+1:

9.1 (c′′′′r , out ; c′′′′r−1 , in), n ·m+ 1 ≤ r ≤ n3;
9.2 [c′′′′r]9 → [c′′′′r−1]9 [c′′′′r−1]9, 2 ≤ r ≤ n ·m;
9.3 [c′′′′1]9 → [c′′′′]9 [c′′′′]9;
9.4 (c′′′′ , out).

• Rules in R10:
Rules to produce an affirmative answer:

10.1 (αn3+6 c
′′′′ , in) ; (c′′′′ yes , out)

• Rules in R11:
Rules to control the negative answer of the computations by counters βr:

11.1 (βr out ; βr+1 , in), 0 ≤ r ≤ n3 + 6;
11.2 (βn3+7 no , out).

• Rules in Ra1,j , 1 ≤ j ≤ n:

Rules to produce 2n
3

copies of objects a′ in the skin membrane at configuration
Cn3+1:

a1,j.1 [a′r]a1,j → [a′r−1]a1,j [a′r−1]a1,j , 2 ≤ r ≤ n3;
a1,j.2 [a′1]a1,j → [a′]a1,j [a′]a1,j ;
a1,j.3 (a′ , out).

• Rules in Ra2,j , 1 ≤ j ≤ n:

Rules to produce 2n
3

copies of objects a′′ in the skin membrane at configuration
Cn3+1:

a2,j.1 [a′′r]a2,j → [a′′r−1]a2,j [a′′r−1]a2,j , 2 ≤ r ≤ n3;

Minimal Cooperation in P Systems with Symport/Antiport 319

a2,j.2 [a′′1]a2,j → [a′′]a2,j [a′′]a2,j ;
a2,j.3 (a′′ , out).

• Rules in Rei,j,k , 1 ≤ i, j, k ≤ n:

Rules to produce 2n
3

copies of objects (i, j)′′k in the skin membrane at config-
uration Cn3+1:

ei,j,k.1 [(i, j)′′k,r]ei,j,k → [(i, j)′′k,r−1]ei,j,k [(i, j)′′k,r−1]ei,j,k , 2 ≤ r ≤ n3;
ei,j,k.2 [(i, j)′′k,1]ei,j,k → [(i, j)′′k]ei,j,k [(i, j)′′k]ei,j,k ;
ei,j,k.3 ((i, j)′′k , out).

(5) The input membrane is the membrane labelled by 2 and the output region is
the environment of the system (labelled by 0).

5.2 An overview of the computations

Now we briefly show how each system Π(〈n,m〉) works in order to process any
directed graph with n nodes and m arcs.

We consider the ensuing polynomial encoding (cod, s) from HAM-CYCLE in Π:
for each instance G = (V,E) of HAM-CYCLE problem, with V = {1, . . . , n} and
E = {(i1, j1), . . . , (im, jm)}, we define s(G) = 〈n,m〉 and cod(G) = {(i, j)k |
(i, j) ∈ E, 1 ≤ k ≤ n}. The expression (i, j)k in cod(G) can be interpreted as
follows: arc (i, j) is “placed” in “position k” in a potential path. According to this
polynomial encoding, graph G will be processed by system Π(s(G)) with input
multiset cod(G). In what follows, we informally describe how system Π(s(G)) +
cod(G) works. The solution is structured in the following stages:

• Generation Stage: All possible combinations of arcs from the input graph, in-
cluding a code of their position in potential paths, are generated by using cell
division in an adequate way.

• Checking Stage: It is checked whether or not the different combinations of arcs
generated in the previous stage encode Hamiltonian cycles of the input graph.

• Output Stage: The system sends the right answer to the environment according
to the results obtained in the previous stage.

Generation stage

At this stage, the system generates all the possible subsets of arcs of the graph (in
fact, subsets of A′G) which contain their potential positions in a path according
to the notations introduced in Subsection 2.2. In this way, by applying rules of
type 2.1 at configuration C2n·m , there will be 2n·m membranes labelled by 2 such
that each of them encodes a different combination of arcs from the input graph.
Simultaneously, by applying rules of types 1, 2 and 3 from R3, R4, R5, R6, R7,
R8 and R9, 2n·m copies of objects b′, b′′, b′′′, c′, c′′, c′′′ and c′′′′ are produced in
membranes labelled by 3, 4, 5, 6, 7, 8, 9, respectively, and 2n

3

copies of objects a′, a′′

and (i, j)′′k are produced in membranes labelled by a1,j , a2,j , and ei,j,k, respectively.
The generation stage takes n3 steps.

320 L. Valencia-Cabrera et al.

Checking stage

At this stage, the system checks whether or not there exists a membrane labelled
by 2 at configuration Cn3+5 containing a subset of A′′G that encodes a Hamiltonian
cycle of G. This is done in 4 steps.

At step n3 +1, the contents of membranes labelled by 3, 4, 5, 6, 7, 8, 9, a1,j (1 ≤
j ≤ n), a2,j (1 ≤ j ≤ n) and ei,j,k (1 ≤ i, j, k ≤ n) are sent to the skin membrane
by applying rules 3.4, 4.4, 5.4, 6.4, 7.4, 8.4, 9.4, a1,j .2, a2,j .2, ei,j,k.3. From this
moment on, none of these membranes will participate in the evolution of the
configurations.

At step n3 + 2, objects a, b, c in membrane labelled by 2 at configuration Cn3+1

are replaced by objects a′, b′, c′ from the skin membrane by applying rules 2.2,
2.3, and 2.4. Simultaneously, by applying rules 2.6, each subset of A′G contained
in a membrane labelled by 2 at configuration Cn3+1 produces the “corresponding”
subset of A′′G. Besides, Cn3+2(10) = {yes} and Cn3+2(11) = {βn3+2 , no}.

At step n3 + 3, by applying rules 2.3 and 2.4, objects a′, b′, c′ in membranes
labelled by 2 at configuration Cn3+2 are replaced by objects a′′, b′′, c′′ from the skin
membrane. Simultaneously, by applying rules of type 2.7, each subset contained
in a membrane labelled by 2 at configuration Cn3+2 is transformed into a subset
encoding each possible path in the input graph. This way, according to Proposition
2.1, we have that the input graph (with n nodes and m arcs) has a Hamiltonian
cycle if and only if at configuration Cn3+3 there exists some membrane labelled by
2 at configuration Cn3+3 such that the subset of A′′G contained in it has size equal
to n. Besides, Cn3+3(10) = {yes} and Cn3+3(11) = {βn3+3 , no}.

At step n3 + 4, by applying rules 2.3 and 2.4, objects b′′, c′′ in membranes
labelled by 2 are substituted by objects b′′′, c′′′ from the skin membrane. Simul-
taneously, by applying rules 2.8, each object contained in the subset associated
with each membrane labelled by 2 at configuration Cn3+3 is sent to the skin mem-
brane cooperating with an object a′′. Therefore, the number of copies of object a′′

appearing in a membrane labelled by 2 at configuration Cn3+4 is equal to n − γ,
where γ is the size of the path in the input graph encoded by that membrane.
Then, the input graph (with n nodes and m arcs) has a Hamiltonian cycle if and
only if there exists a membrane labelled by 2 at configuration Cn3+4 such that it
does not contain any object a′′.

At step n3 + 5, by applying rules of type 2.5, objects a′′ and b′′′ in membrane
labelled by 2 at configuration Cn3+5 are sent to the skin membrane. Simultaneously,
rule (c′′′ , out ; c′′′′ , in) produces an object c′′′′ in each membrane labelled by 2
at configuration Cn3+5.

Output stage

Finally, the output stage takes 4 steps. Only membranes labelled by 2 at configu-
ration Cn3+5 containing some object b′′′ (i.e., membrane encoding a Hamiltonian
cycle) can evolve, and only rule (c′′′ , out ; c′′′′ , in) ∈ R2 is applicable to that
membrane. In this case, an object c′′′′ will appear in each membrane labelled by 2

Minimal Cooperation in P Systems with Symport/Antiport 321

at that configuration. Besides, if a membrane with label 2 at the mentioned config-
uration does not encode a Hamiltonian cycle of the input graph, then it contains
objects b′′, so rule (a′′ b′′′ , out) ∈ R2 will be applied. That is, the input graph has
a Hamiltonian cycle if and only if some object c′′′′ appears in the skin membrane
at configuration Cn3+6. Besides, Cn3+6(10) = {yes} and Cn3+6(11) = {βn3+6 , no}.

If the input graph has a Hamiltonian cycle, then only rules (αn3+6 c
′′′′ , in) ∈

R10 and (βn3+6 , out ; βn3+7 , in) ∈ R11 are applicable to configuration Cn3+6.
Otherwise, only rule (βn3+6 out ; βn3+7 , in) is applicable to that configuration.
Therefore, the answer of the problem is affirmative if and only if Cn3+7(10) =
{αn3+6 c

′′′′ , yes}. Besides, in any case, Cn3+7(11) = {βn3+7 , no}. Then, if there
exists a Hamiltonian path, then rules (c′′′′ yes , out) ∈ R10 and (βn3+7 no , out) ∈
R11 are applicable to configuration Cn3+7. Otherwise, only rule (βn3+7 no , out) ∈
R11 is applicable to that configuration. Hence, the answer of the problem is af-
firmative if and only if the skin membrane at configuration Cn3+8 contains object
yes (together with objects c′′′′, βn3+7, no), but no object αn3+6. Otherwise, the
skin membrane at configuration Cn3+8 contains objects βn3+7, no, αn3+6, but no
object yes.

At the last step, in cases when an affirmative answer results, rule (yes , out)
is applied to configuration Cn3+8, producing an object yes in the environment,
and the computation halts. Otherwise, rule (noαn3+6 , out) is applied to that
configuration, thus producing a negative answer.

5.3 Main result

Theorem 5.1 HAM-CYCLE ∈ PMCCDC(2).

Proof. The family of P systems with symport/antiport rules and membrane divi-
sion constructed in Section 3.2 verifies the following:

(a) Every system of the family Π is a recognizer P system with membrane division
and symport/antiport rules of length at most 2.

(b) The family Π is polynomially uniform by Turing machines because, for each
n,m ∈ IN, the rules of Π(〈n,m〉) of the family are recursively defined from
n,m ∈ IN, and the amount of resources needed to build an element of the
family is of a polynomial order in n, as shown below:
• Size of the alphabet: n6 + 12n3 + 29 ∈ Θ(n6);
• Initial number of membranes: n3 + 2n+ 11 ∈ Θ(n3);
• Initial number of objects: 9n3 + 3n+ 13 ∈ Θ(n3);
• Number of rules: n6 + 4n5 + n4 + 13n3 + 2n+ 30 ∈ Θ(n6);
• Maximal length of a rule: 2 ∈ Θ(1).

(c) The pair (cod, s) of polynomial–time computable functions defined in Subsec-
tion 5.2 is a polynomial encoding from HAM− CYCLE to Π.

(d) The family Π is polynomially bounded, sound and complete with regard to
(HAM-CYCLE, cod, s) (see Subsection 5.2).

322 L. Valencia-Cabrera et al.

Therefore, according to Definition 5, the family Π from CDC(2) solves HAM-CYCLE
problem in polynomial time with respect to the number of nodes.

�

Corollary 5.2 NP ∪ co-NP ⊆ PMCCDC(2).

Proof. It suffices to notice that HAM-CYCLE problem is an NP-complete problem,
HAM-CYCLE∈ PMCCDC(2), and the complexity class PMCCDC(2) is closed under
polynomial-time reduction and under complement.

�

6 Conclusions and open problems

The ability of cell-like P systems with symport/antiport rules involving at most
two objects to efficiently solve computationally hard problems, has been stud-
ied. Specifically, if further membrane separation rules are allowed (while keeping
the minimal cooperation restriction), then only problems in P can be solved in
polynomial time. Nevertheless, if membrane division rules are allowed (instead of
membrane separation rules), then NP–complete problems can be solved in polyno-
mial time. In summary, we have two important results concerning the polynomial
complexity classes associated with these kind of systems: (a) P = PMCCSC(2);
and (b) NP ∪ co-NP ⊆ PMCCDC(2).

Therefore, assuming that P is different from NP, a new frontier of the efficiency
has been obtained in Membrane Computing in terms of the kind of rules (sepa-
ration versus division) able to produce an exponential workspace in linear time.
That is, passing from allowing membrane separation rules to allowing membrane
division rules in the framework of P systems with symport/antiport rules which
use minimal cooperation, amounts to passing from non–efficiency to efficiency.

Acknowledgements

The work of L. Valencia-Cabrera, L.F. Maćıas-Ramos, A. Riscos-Núñez , and
M.J. Pérez-Jiménez was supported by Project TIN2012-37434 of the Ministerio
de Economı́a y Competitividad of Spain, cofinanced by FEDER funds. The work
of B. Song and L. Pan was supported by National Natural Science Foundation of
China (61033003, 91130034 and 61320106005).

References

1. T.H. Cormen, C.E. Leiserson, R.L. Rivest. An Introduction to Algorithms. The MIT
Press, Cambridge, Massachussets, 1994.

Minimal Cooperation in P Systems with Symport/Antiport 323

2. M.R. Garey, D.S. Johnson. Computers and Intractability A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, (1979).

3. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, F.J. Romero-
Campero. On the efficiency of cell-like and tissue-like recognizing membrane systems.
International Journal of Intelligent Systems, 24, 7 (2009), 747-765.

4. M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez, A. Riscos-Núñez, F.J. Romero-
Campero. On the power of dissolution in P systems with active membranes. In R.
Freund, Gh. Paun, Gr. Rozenberg, A. Salomaa (eds.) Membrane Computing, 6th
International Workshop, WMC 2005, Vienna, Austria, July 18-21, 2005, Revised Se-
lected and Invited Papers. Lecture Notes in Computer Science, 3850 (2006), 224-240.

5. L.F. Maćıas-Ramos, M.J. Pérez-Jiménez, A. Riscos-Núñez, M. Rius-Font. The ef-
ficiency of tissue P systems with cell separation relies on the environment. In E.
Csuhaj-Varjú, M. Gheorghe, G. Rozenberg, A. Salomaa, G. Vaszil (eds.) Membrane
Computing- 13th International Conference CMC 2012 Budapest, Hungary, August
28-31, 2012, Revised Selected Papers. Lecture Notes in Computer Science, 7762
(2013), 243-256.

6. L.F. Maćıas-Ramos, M.A. Mart́ınez-del-Amor, M.J. Pérez-Jiménez, A. Riscos-Núñez,
L. Valencia-Cabrera. The Role of the Direction in Tissue P Systems with Cell Sepa-
ration. Journal of Automata, Languages and Combinatorics, 19, 1-4 (2014), 185-199.

7. L.F. Maćıas-Ramos, L. Valencia-Cabrera, B. Song, T. Song, L. Pan, M.J. Pérez-
Jiménez. Membrane Fission: A Computational Complexity Perspective. Complexity,
2015, in press.

8. L. Pan, M.J. Pérez-Jiménez. Computational complexity of tissue–like P systems.
Journal of Complexity, 26, 3 (2010), 296–315.

9. A. Păun, Gh. Păun. The power of communication: P systems with symport/antiport,
New Generation Computing, 20, 3 (2002), 295–305.

10. I. Pérez-Hurtado, M.J. Pérez-Jiménez, A. Riscos-Núñez, M.A. Gutiérrez, M. Rius-
Font. On a partial affirmative answer for a Paun’s conjecture. International Journal
of Foundations of Computer Science, 22, 1 (2011), 55-64.

11. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, F. Complexity classes
in models of cellular computing with membranes. Natural Computing, 2, 3 (2003),
265–285.

12. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, A polynomial com-
plexity class in P systems using membrane division, Journal of Automata, Languages
and Combinatorics, 11, 4 (2006) 423–434.

13. M.J. Pérez-Jiménez, A. Riscos-Núñez, M. Rius-Font, F.J. Romero- Campero. A poly-
nomial alternative to unbounded environment for tissue P systems with cell division.
International Journal of Computer Mathematics, 90, 4 (2013), 760-775.

14. M.J. Pérez-Jiménez, A. Riscos-Núñez, M. Rius-Font, L. Valencia-Cabrera. The rel-
evance of the environment on the efficiency of tissue P systems. In A. Alhazov,
S. Cojocaru, M. Gheorghe, Y. Rogozhin G. Rozenberg, A. Salomaa (eds.) Mem-
brane Computing- 14th International Conference CMC 2013 Chisinau, Republic of
Moldova, August 20-23, 2013, Revised Selected Papers. Lecture Notes in Computer
Science, 8340 (2014), 308-321.

15. L. Valencia-Cabrera, B. Song, T. Song, L.F. Maćıas-Ramos, L. Pan, M.J. Pérez-
Jiménez. The Role of Cooperation in the Efficiency of Bioinspired Computing De-
vices, submitted 2015.

Computational Efficiency of P Systems with
Symport/Antiport Rules and Membrane
Separation

Luis Valencia-Cabrera1, Bosheng Song2, Luis F. Maćıas-Ramos1, Linqiang Pan2,
Agust́ın Riscos-Núñez1, and Mario J. Pérez-Jiménez1

1 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
Universidad de Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: lvalencia@us.es, lfmaciasr@us.es, ariscosn@us.es, marper@us.es

2 Key Laboratory of Image Information Processing and Intelligent Control,
School of Automation, Huazhong University of Science and Technology,
Wuhan 430074, Hubei, China
E-mail: boshengsong@163.com, lqpan@mail.hust.edu.cn

Summary. Membrane fission is a process by which a biological membrane is split into
two new ones in such a way that the contents of the initial membrane is separated and dis-
tributed between the new membranes. Inspired by this biological phenomenon, membrane
separation rules were considered in membrane computing. In this paper we deal with cell-
like P systems with membrane separation rules that use symport/antiport rules (such
systems compute by changing the places of objects with respect to the membranes, and
not by changing the objects themselves) as communication rules. Specifically we study
a lower bound on the length of communication rules with respect to the computational
efficiency of such kind of membrane systems; that is, their ability to solve computation-
ally hard problems in polynomial time by trading space for time. The main result of this
paper is the following: communication rules involving at most three objects is enough
to achieve the computational efficiency of P systems with membrane separation. Thus,
a polynomial time solution to SAT problem is provided in this computing framework. It
is known that only problems in P can be solved in polynomial time by using minimal
cooperation in communication rules and membrane separation, so the lower bound of the
efficiency obtained is an optimal bound.

1 Introduction

In a eukaryotic cell, the lipid membranes serve as concentration barriers allowing
to incorporate material from its environment (in the case of the cell membrane),
or exchange material between compartments. This is done by means of a simple

326 L. Valencia et al.

three-step process whose last step is membrane fission, consisting in splitting it
into two new membranes [6].

The biological phenomenon of membrane fission process was incorporated in
membrane computing [11] as a new kind of computational rules, called membrane
separation rules, in the framework of polarizationless P systems with active mem-
branes [1]. These rules were associated with different subsets of the working al-
phabet. In [7], a new definition of separation rules in the framework of P systems
with active membranes was introduced, where there exists a distinguished parti-
tion of the working alphabet into two subsets such that each separation rule is
associated with that predefined partition. By applying such a rule, two new mem-
branes are created, the object triggering it is consumed and the remaining objects
are distributed among the newly created membranes. A uniform and polynomial
time solution to SAT problem by a family of P systems with active membranes and
membrane separation rules was given in [1].

Networks of membranes, which compute by communication only in the form
of symport/antiport rules, were considered in [9]. These networks aim to abstract
the biological phenomenon of trans-membrane transport of couples of chemical
substances, in the same or opposite directions. Such rules are used both for com-
munication with the environment and for direct communication between different
membranes. Membrane fission was introduced into tissue-like P systems with sym-
port/antiport rules through cell separation rules yielding tissue P systems with cell
separation [8]. The computational efficiency of these systems was investigated and
a tractability border in terms of the length of communication rules was obtained:
passing from 1 to 8 amounts to passing from tractability to NP–hardness [8].
Furthermore, in [15], that frontier was refined in an optimal sense with respect to
communication rules length (passing from 2 to 3).

Cell-like P systems with symport/antiport rules were introduced in [10], and
their computational completeness (five membranes are enough if at most two ob-
jects are used in the rules) was shown. In this work, we investigate the compu-
tational efficiency of this kind of P systems when membrane separation rules are
allowed. Specifically, a polynomial time solution to SAT problem by using a family
of such systems that use communication rules with length at most 3, is provided.
The hardness of the design is high and a P-Lingua simulator [4] has been helpful
to check the validity of some modules in which the solution was structured

The paper is organized as follows. Section 2 briefly describes some preliminaries
in order to make the paper self-contained. In Section 3, the modeling framework
of P systems with symport/antiport rules and membrane separation is introduced.
Section 4 describes in detail the design of a family solving SAT problem efficiently.
The solution presented is informally outlined in Section 5. Then, a formal verifi-
cation of the solution is exhaustively presented in Section 6. The paper ends with
a summary of the results and some conclusions.

Efficiency of Symport/Antiport with Membrane Separation 327

2 Preliminaries

2.1 Languages and Multisets

An alphabet Γ is a non-empty set and their elements are called symbols. A string
u over Γ is a mapping from a natural number n ∈ N onto Γ . Number n is called
length of the string u and it is denoted by |u|. The empty string (with length 0) is
denoted by λ. A language over Γ is a set of strings over Γ .

A multiset over an alphabet Γ is an ordered pair (Γ, f), where f is a mapping
from Γ onto the set of natural numbers N. For each x ∈ Γ we say that f(x) is the
multiplicity of x in that multiset. The support of a multiset m = (Γ, f) is defined
as supp(m) = {x ∈ Γ | f(x) > 0}. A multiset is finite if its support is a finite set.
We denote by ∅ the empty multiset. Let us note that a set is a particular case of
a multiset when each symbol of the support has multiplicity 1.

Let m1 = (Γ, f1), m2 = (Γ, f2) be multisets over Γ , then the union of m1 and
m2, denoted by m1 + m2, is the multiset (Γ, g), where g(x) = f1(x) + f2(x) for
each x ∈ Γ . We say that m1 is contained in m2 and we denote it by m1 ⊆ m2, if
f1(x) ≤ f2(x) for each x ∈ Γ . The relative complement of m2 in m1, denoted by
m1 \m2, is the multiset (Γ, g), where g(x) = f1(x) − f2(x) if f1(x) ≥ f2(x), and
g(x) = 0 otherwise.

2.2 Graphs

Let us recall that a free tree (tree, for short) is a connected, acyclic, undirected
graph. A rooted tree is a tree in which one of the vertices (called the root of the
tree) is distinguished from the others. In a rooted tree the concepts of ascendants
and descendants are defined in a usual way. Given a node x (different from the
root), if the last edge on the (unique) path from the root of the tree to the node
x is {x, y} (in this case, x 6= y), then y is the parent of node x and x is a child of
node y. The root is the only node in the tree with no parent (see [2] for details).

2.3 Encoding ordered pairs of natural numbers

The pair function 〈n,m〉 = ((n + m)(n + m + 1)/2) + n is a polynomial–time
computable function from IN× IN onto IN which is also a primitive recursive and
bijective function.

3 P systems with symport/antiport rules with membrane
separation

In this section we introduce a kind of cell-like P systems that use communica-
tion rules capturing the biological phenomenon of trans-membrane transport of

328 L. Valencia et al.

chemical substances. Specifically, two processes have been considered. The first
one allows a multiset of chemical substances to pass through a membrane in the
same direction. In the second one, two multisets of chemical substances (located
in different biological membranes) only pass with the help of each other (i.e., an
exchange of objects between both membranes happens).

Next, we introduce an abstraction of these operations in the framework of P
systems with symport/antiport rules following [10]. In these models, the mem-
branes are not polarized.

Definition 1. A P system with symport/antiport rules and membrane separation
(SAS P system, for short) of degree q ≥ 1 is a tuple

Π = (Γ, Γ0, Γ1, E , Σ, µ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout),

where

1. Γ is a finite alphabet;
2. {Γ0, Γ1} is a partition of Γ , that is, Γ = Γ0 ∪ Γ1, Γ0, Γ1 6= ∅, Γ0 ∩ Γ1 = ∅;
3. E (Γ ;
4. Σ is an (input) alphabet strictly contained in Γ such that E ⊆ Γ \Σ;
5. µ is a rooted tree whose nodes are injectively labelled with 1, . . . , q (the root of

the tree is labelled with 1);
6.M1, . . . ,Mq are finite multisets over Γ \Σ;
7. Ri, 1 ≤ i ≤ q, are finite sets of communication rules over Γ of the form:

(a) Communication rules:
(a) Symport rules: (u, out) or (u, in), where u is a finite multiset over Γ

such that |u| > 0;
(b) Antiport rules: (u, out; v, in), where u, v are finite multisets over Γ such

that |u| > 0 and |v| > 0;
(b) Separation rules: [a]i → [Γ0]i [Γ1]i, where a ∈ Γ , i ∈ {2, . . . , q}, with

i 6= iout the label of a leaf of the tree;
8. iin ∈ {1, . . . , q} and iout ∈ {0, 1, . . . , q}.

A P system with symport/antiport rules and membrane separation of degree q ≥ 1

Π = (Γ, Γ0, Γ1, E , Σ, µ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout)

can be viewed as a set of q membranes, labelled with 1, . . . , q, arranged in a hierar-
chical structure µ given by a rooted tree whose root is called the skin membrane,
such that: (a)M1, . . . ,Mq represent the finite multisets of objects (symbols of the
working alphabet Γ) initially placed into the q membranes of the system; (b) E is
the set of objects initially located in the environment of the system (labelled with
0), all of them available in an arbitrary number of copies; (c) R1, · · · ,Rq are finite
sets of communication rules over Γ (Ri is associated with the membrane i of µ);
and (d) iout represents a distinguished region which will encode the output of the
system. We use the term region i (0 ≤ i ≤ q) to refer to membrane i in the case

Efficiency of Symport/Antiport with Membrane Separation 329

1 ≤ i ≤ q and to refer to the environment in the case i = 0. The length of rule
(u, out) or (u, in) (resp. (u, out; v, in)) is defined as |u| (resp. |u|+ |v|).

For each membrane i ∈ {2, . . . , q} (different from the skin membrane) we denote
by p(i) the parent of membrane i in the rooted tree µ. We define p(1) = 0, that
is, by convention the “parent” of the skin membrane is the environment.

An instantaneous description or a configuration at an instant t of a SA P system
is described by the membrane structure at instant t, all multisets of objects over
Γ associated with all the membranes present in the system, and the multiset of
objects over Γ − E associated with the environment at that moment. Recall that
there are infinite copies of objects from E in the environment, so that this set is not
properly changed along the computation. The initial configuration of the system
is (µ,M1, · · · ,Mq; ∅).

A symport rule (u, out) ∈ Ri is applicable to a configuration Ct at an instant t
if there exists a membrane labelled with i in Ct such that multiset u is contained
in such membrane. When applying a rule (u, out) ∈ Ri to such a membrane, the
objects specified by u are sent out of that membrane into the region immediately
outside (the parent p(i) of i). Note that this can be the environment in the case
of the skin membrane.

A symport rule (u, in) ∈ Ri is applicable to a configuration Ct at an instant
t if multiset u is contained in the parent of i. When applying a rule (u, in) ∈ Ri
to a membrane labelled with i, the multiset of objects u leaves the parent of such
membrane and enters into the region defined by that membrane.

An antiport rule (u, out; v, in) ∈ Ri is applicable to a configuration Ct at an
instant t if there exists a membrane labelled with i in Ct such that multiset u is
contained in such membrane, and multiset v is contained in the parent of i. When
applying a rule (u, out; v, in) ∈ Ri to such a membrane, the objects specified by u
are sent out of it into the parent of i and, at the same time, the objects specified
by v are brought into that membrane i.

A separation rule [a]i → [Γ0]i[Γ1]i ∈ Ri is applicable to a configuration Ct
at an instant t, if there exists an elementary membrane labelled with i in Ct,
different from the skin membrane, such that it contains object a. When applying
a separation rule [a]i → [Γ0]i [Γ1]i ∈ Ri to such a membrane in a configuration Ct,
triggered by object a, that membrane is separated into two membranes with the
same label; at the same time, object a is consumed; the objects (from the original
membrane) belonging to Γ0 are placed in the first membrane, while those from
belonging to Γ1 are placed in the second membrane. This way, several membranes
with the same label i can be present in the new membrane structure µ′ of the
system: for each membrane labelled with i 6= 1 we have an arc (p(i), i) in µ′ as a
result of the application of a membrane separation rule [a]i → [Γ0]i[Γ1]i.

Regarding the semantics of these variants, the rules of such P systems are
applied in a non-deterministic maximally parallel manner with the following im-
portant remark: when a membrane i is separated, the membrane separation rule

330 L. Valencia et al.

is the only one from Ri which is applied for that membrane at that step. The
new membranes resulting from separation could participate in the interaction with
other membranes or the environment by means of communication rules at the next
step – providing that they are not separated once again. The label of a membrane
precisely identify the rules which can be applied to it.

Let Π be a P system with symport/antiport rules and membrane separation.
We say that configuration Ct yields configuration Ct+1 in one transition step, de-
noted by Ct ⇒Π Ct+1, if we can pass from Ct to Ct+1 by applying the rules from the
system following the above semantics. A computation of Π is a (finite or infinite)
sequence of configurations such that: (a) the first term is the initial configuration
of the system; (b) for each n ≥ 2, the n-th configuration of the sequence is obtained
from the previous configuration in one transition step; and (c) if the sequence is
finite (called a halting computation) then the last term is a halting configuration
(a configuration where no rule of the system is applicable). All the computations
start from an initial configuration and proceed as stated above; only a halting
computation gives a result, which is encoded by the objects present in the output
region iout associated with the halting configuration. For each finite multiset w
over the input alphabet Σ, a computation of Π with input multiset w starts from
the configuration of the form (µ,M1, . . . ,Miin + w, . . . ,Mq, ∅), where the input
multiset w is added to the content of the input membrane iin. That is, we have an
initial configuration associated with each input multiset w over Σ in recognizer P
systems with symport/antiport rules. We denote by Π + w the P system Π with
input multiset w.

If C = (C0, C1, . . . , Cr) of Π is a halting computation, then the length of C,
denoted by |C|, is r. For each i (1 ≤ i ≤ q), we denote by Ct(i) the finite multiset of
objects over Γ contained in all membranes labelled with i (by applying separation
rules different membranes with the same label can be created) at configuration Ct.

3.1 Recognizer P systems with symport/antiport rules

Recognizer P systems were introduced in [14], and they provide a natural frame-
work to solve decision problems by means of computational devices in membrane
computing (i.e., P systems).

Definition 2. A recognizer P system with symport/antiport rules and membrane
separation of degree q ≥ 1 is a P system with symport/antiport rules and membrane
separation of degree q such that:

1. The working alphabet has two distinguished symbols yes and no;
2. initial multisets are finite multisets over Γ \ Σ such that at least one copy of

yes or no is present in some of them;
3. the output region is the environment (iout = 0);
4. all computations halt;

Efficiency of Symport/Antiport with Membrane Separation 331

5. if C is a computation of the system, then either symbol yes or symbol no (but
not both) must have been released into the environment, and only at the last
step of the computation.

Let us notice that if a recognizer P system has a symport rule of the type (u, in) ∈
R1 then the multiset u must contain some object from Γ \ E because on the
contrary, it might exist non-halting computations of Π.

We say that a computation C of a recognizer P system is an accepting compu-
tation (respectively, rejecting computation) if object yes (respectively, object no)
appears in the environment associated with the corresponding halting configura-
tion of C, and neither object yes nor no appears in the environment associated
with any non–halting configuration of C.

We denote by CSC(k) the class of all recognizer P systems with sym-
port/antiport rules and membrane separation (for elementary membranes) such
that the length of the communication rules of the system is at most k.

3.2 Polynomial complexity classes of recognizer P systems with
symport/antiport rules

Next, according to [13], we define what it means to solve a decision problem by a
family of recognizer P systems with symport/antiport rules and membrane sepa-
ration.

Definition 3. A decision problem X = (IX , θX) is solvable in polynomial time by
a family Π = {Π(n) | n ∈ N} of recognizer P systems with symport/antiport rules
and membrane separation or membrane separation, if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(n) from n ∈ N;

• there exists a pair (cod, s) of polynomial-time computable functions over IX
such that:
– for each instance u ∈ IX , s(u) is a natural number and cod(u) is an input

multiset of the system Π(s(u));
– for each n ∈ N, s−1(n) is a finite set;
– the family Π is polynomially bounded with regard to (X, cod, s), that is, there

exists a polynomial function p, such that for each u ∈ IX every computation
of Π(s(u)) + cod(u) is halting and it performs at most p(|u|) steps;

– the family Π is sound with regard to (X, cod, s), that is, for each u ∈ IX , if
there exists an accepting computation of Π(s(u)) + cod(u), then θX(u) = 1;

– the family Π is complete with regard to (X, cod, s), that is, for each u ∈ IX ,
if θX(u) = 1, then every computation of Π(s(u)) + cod(u) is an accepting
one.

332 L. Valencia et al.

According to Definition 3, we say that the family Π provides a uniform solution
to the decision problem X. We also say that ordered pair (cod, s) is a polynomial
encoding from X in Π and s is the size mapping associated with that solution. It
is worth pointing out that for each instance u ∈ IX , the P system Π(s(u))+cod(u)
is confluent, in the sense that all possible computations of the system must give
the same answer.

If R is a class of recognizer P systems, then we denote by PMCR the set of
all decision problems which can be solved in polynomial time (and in a uniform
way) by means of recognizer P systems from R. The class PMCR is closed under
complement and polynomial–time reductions (see [13] for details). Besides, we have
P ⊆ PMCR. Indeed, if X ∈ P then we consider the family Π = {Π(n) | n ∈ N}
where Π(n) = Π(0), for each n ∈ IN, and Π(0) is a P system from R of degree 1
containing only two rules (yes, out) and (no, out). Let us consider the polynomial
encoding from X in Π defined as follows: (a) s(u) = 0, for each u ∈ IX ; and (b)
cod(u) = yes if θX(u) = 1 and cod(u) = no if θX(u) = 0. Then, the family Π
solves X according to Definition 3.

4 On Efficiency of CSC(3)

The limitations on the efficiency of P systems with membrane separation whose
symport/antiport rules involve at most two objects, have been established [5].
Specifically, it has been proved that the polynomial complexity class PMCCSC(2)

is equal to class P: only tractable problems can be efficiently solved by using fam-
ilies of P systems with membrane separation which make use of symport/antiport
rules with length at most 2. In this Section we analyze the computational efficiency
of familes of P systems from CSC(3), and it is given a polynomial time solution to
SAT problem by means of a family of such P systems, in a uniform way, according
to Definition 3.

4.1 A polynomial time solution to SAT problem in CSC(3)

Let us recall that SAT problem is the following: given a Boolean formula in conjunc-
tive normal form (CNF), to determine whether or not there exists an assignment
to its variables on which it evaluates true. This is a well known NP-complete
problem [3].

We consider a family Π = {Π(t) | t ∈ IN} of recognizer P system from
CSC(3), such that each system Π(t), with t = 〈n,m〉, will process all instances of
SAT problem (an instance is a Boolean formula ϕ in conjunctive normal form with
n variables and m clauses) provided that the appropriate input multiset cod(ϕ) is
supplied to the system.

For each n,m ∈ IN, we consider the recognizer P system from CSC(3)

Efficiency of Symport/Antiport with Membrane Separation 333

Π(〈n,m〉) = (Γ, Γ0, Γ1, E , Σ, µ,M1, . . . ,Mq,R1, · · · ,Rq, iin, iout)

defined as follows:

(1)Working alphabet:

Γ = Σ ∪ E ∪ {αi,0,k, α′i,0,k | 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1}∪
{A1, B1, b1, b

′
1, c1, c

′
1, v1, q1,1, β0, β

′
0, β
′′
0 , γ0, γ

′
0, γ
′′
0 , γ
′′′
0 , f0, yes, no}∪

{f ′i | 0 ≤ i ≤ 3n+ 2m+ 1},∪{ρi,0, τi,0 | 1 ≤ i ≤ n},∪{δj,0 | 0 ≤ j ≤ m}

where the input alphabet is Σ = {xi,j , xi,j | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}, and the
alphabet of the environment is:

E = {αi,j,k, α′i,j,k | 1 ≤ i ≤ n− 1 ∧ 1 ≤ j ≤ 3(n− 1) ∧ 0 ≤ k ≤ 1}∪
{βj , β′j , β′′j , γj , γ′j , γ′′j , γ′′′j | 1 ≤ j ≤ 3(n− 1)}∪
{ρi,j , τi,j | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ 3n− 1}∪
{Ti,j , T ′i,j , Fi,j , F ′i,j | 1 ≤ i < j ∧ 1 ≤ j ≤ n}∪
{Ti,i, F ′i,i, Ti, Fi | 1 ≤ i ≤ n} ∪ {Ai, A′i, Bi, B′i | 2 ≤ i ≤ n+ 1}∪
{bi, b′i, ci, c′i | 2 ≤ i ≤ n} ∪ {vi | 2 ≤ i ≤ n− 1}∪
{yi, ai, wi | 1 ≤ i ≤ n− 1} ∪ {zi | 1 ≤ i ≤ n− 2}∪
{qi,j | 1 ≤ i ≤ j ∧ 2 ≤ j ≤ n− 1} ∪ {ui,j | 1 ≤ i ≤ j ∧ 1 ≤ j ≤ n− 2}∪
{ti,j , fi,j , ri,j , si,j | 1 ≤ i ≤ j ∧ 1 ≤ j ≤ n− 1}∪
{di,j,k, di,j,k | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ 1 ≤ k ≤ n− 1}∪
{fr | 1 ≤ r ≤ 3n+ 2m} ∪ {ei,j , ei,j | 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}∪
{δj,r | 0 ≤ j ≤ m ∧ 1 ≤ r ≤ 3n} ∪ {Ej | 0 ≤ j ≤ m} ∪ {S}

(2)The partition is {Γ0, Γ1}, where Γ0 = Γ \ Γ1 and

Γ1 = {T ′i,j F ′i,j | 1 ≤ i < j ∧ 1 ≤ j ≤ n} ∪ {F ′i,i | 1 ≤ i ≤ n}∪
{A′i, B′i | 2 ≤ i ≤ n+ 1}

(3)Membrane structure: µ = [[]2 []3]1. The input membrane is the membrane
labelled with 1.

(4)Initial multisets:

M1 = {αi,0,k, α′i,0,k | 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1} ∪ {ρi,0, τi,0 | 1 ≤ i ≤ n}∪
{β0, β′0, β′′0 , γ0, γ′0, γ′′0 , γ′′′0 , c1, c′1, b1, b′1, v1, q1,1, f0, yes}∪
{δj,0 | 0 ≤ j ≤ m} ∪ {f ′p | 1 ≤ p ≤ 3n+ 2m+ 1}

M2 = {A1, B1}
M3 = {f ′0, no}

(5) Rules in R1 :

1.1 Rules to generate in the membrane 1 of configuration C3p+1 (p = 1, . . . , n−
1) the objects T 2p−1

i,p+1, T
′2p−1

i,p+1 , F
2p−1

i,p+1, F
′2p−1

i,p+1 :

334 L. Valencia et al.

(αi,0,k, out;αi,1,k, in)
(α′i,0,k, out;α

′
i,1,k, in)

(αi,1,k, out;αi,2,k, in)
(α′i,1,k, out;α

′
i,2,k, in)

(αi,2,k, out;αi,3,k, in)
(α′i,2,k, out;α

′
i,3,k, in)


1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1

(αi,3p,k , out;αi,3p+1,k ∆
k
i,p+1 , in) : 1 ≤ i ≤ p ∧ 1 ≤ p ≤ n− 2 ∧ 0 ≤ k ≤ 1

(α′i,3p,k , out;α
′
i,3p+1,k ∆

′k
i,p+1 , in) : 1 ≤ i ≤ p ∧ 1 ≤ p ≤ n− 2 ∧ 0 ≤ k ≤ 1

(αi,3p,k , out;αi,3p+1,k , in) : p+ 1 ≤ i ≤ n− 1 ∧ 1 ≤ p ≤ n− 2 ∧ 0 ≤ k ≤ 1
(α′i,3p,k , out;α

′
i,3p+1,k , in) : p+ 1 ≤ i ≤ n− 1 ∧ 1 ≤ p ≤ n− 2 ∧ 0 ≤ k ≤ 1

(αi,3p+1,k , out;αi,3p+2,k , in) : 1 ≤ i ≤ n− 1 ∧ 1 ≤ p ≤ n− 2 ∧ 0 ≤ k ≤ 1
(α′i,3p+1,k , out;α

′
i,3p+2,k , in) : 1 ≤ i ≤ n− 1 ∧ 1 ≤ p ≤ n− 2 ∧ 0 ≤ k ≤ 1

(αi,3p+2,k , out;α
2
i,3p+3,k , in) : 1 ≤ i ≤ n− 1 ∧ 1 ≤ p ≤ n− 2 ∧ 0 ≤ k ≤ 1

(α′i,3p+2,k , out;α
′2
i,3p+3,k , in) : 1 ≤ i ≤ n− 1 ∧ 1 ≤ p ≤ n− 2 ∧ 0 ≤ k ≤ 1

(αi,3(n−1),k , out; ∆
k
i,n , in) : 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1

(α′i,3(n−1),k , out; ∆
′k
i,n , in) : 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1

where ∆0
i,j = Fi,j , ∆′0i,j = F ′i,j , ∆1

i,j = Ti,j , ∆′1i,j = T ′i,j .

1.2 Rules to generate in the membrane 1 of configuration C3p+1 (p =
0, 1, . . . , n− 1) the objects B2p

p+2, B
′2p
p+2, S

2p :

(β3p , out;β3p+1 Bp+2 , in)
(β′3p , out;β

′
3p+1 B

′
p+2 , in)

(β′′3p , out;β
′′
3p+1 S , in)

(β3p+1 , out;β3p+2 , in)
(β′3p+1 , out;β

′
3p+2 , in)

(β′′3p+1 , out;β
′′
3p+2 , in)

(β3p+2 , out;β
2
3p+3 , in)

(β′3p+2 , out;β
′2
3p+3 , in)

(β′′3p+2 , out;β
′′2
3p+3 , in)


0 ≤ p ≤ n− 3

(β3(n−2) , out;β3(n−2)+1Bn , in)
(β′3(n−2) , out;β

′
3(n−2)+1B

′
n , in)

(β′′3(n−2) , out;β
′′
3(n−2)+1 S , in)

(β3(n−2)+1 , out;β3(n−2)+2 , in)
(β′3(n−2)+1 , out;β

′
3(n−2)+2 , in)

(β′′3(n−2)+1 , out;β
′′
3(n−2)+2 , in)

(β3(n−2)+2 , out;β
2
3(n−2)+3 , in)

(β′3(n−2)+2 , out;β
′2
3(n−2)+3 , in)

(β′′3(n−2)+2 , out;β
′′2
3(n−2)+3 , in)


(β3(n−1) , out;Bn+1 , in)
(β′3(n−1) , out;B

′
n+1 , in)

(β′′3(n−1) , out;S , in)



Efficiency of Symport/Antiport with Membrane Separation 335

1.3 Rules to generate in the membrane 1 of configuration C3p+1 (p =
0, 1, . . . , n− 1) the objects T 2p

p+1,p+1, T
′2p
p+1,p+1, A

2p

p+2, A
′2p
p+2:

(γ3p , out; γ3p+1 Tp+1,p+1 , in)
(γ′3p , out; γ

′
3p+1 F

′
p+1,p+1 , in)

(γ′′3p , out; γ
′′
3p+1 Ap+2 , in)

(γ′′′3p , out; γ
′′′
3p+1 A

′
p+2 , in)

(γ3p+1 , out; γ3p+2 , in)
(γ′3p+1 , out; γ

′
3p+2 , in)

(γ′′3p+1 , out; γ
′′
3p+2 , in)

(γ′′′3p+1 , out; γ
′′′
3p+2 , in)

(γ3p+2 , out; γ
2
3p+3 , in)

(γ′3p+2 , out; γ
′2
3p+3 , in)

(γ′′3p+2 , out; γ
′′2
3p+3 , in)

(γ′′′3p+2 , out; γ
′′′2
3p+3 , in)



0 ≤ p ≤ n− 3

(γ3(n−2) , out; γ3(n−2)+1 Tn−1,n−1 , in)
(γ′3(n−2) , out; γ

′
3(n−2)+1 F

′
n−1,n−1 , in)

(γ′′3(n−2) , out; γ
′′
3(n−2)+1 An , in)

(γ′′′3(n−2) , out; γ
′′
3(n−2)+1 A

′
n , in)

(γ3(n−2)+1 , out; γ3(n−2)+2 in)
(γ′3(n−2)+1 , out; γ

′
3(n−2)+2 in)

(γ′′3(n−2)+1 , out; γ
′′
3(n−2)+2 in)

(γ′′′3(n−2)+1 , out; γ
′′′
3(n−2)+2 in)

(γ3(n−2)+2 , out; γ
2
3(n−2)+3 in)

(γ′3(n−2)+2 , out; γ
′2
3(n−2)+3 in)

(γ′′3(n−2)+2 , out; γ
′′2
3(n−2)+3 in)

(γ′′′3(n−2)+2 , out; γ
′′′2
3(n−2)+3 in)


(γ3(n−1) , out; Tn,n , in)
(γ′3(n−1) , out; F

′
n,n , in)

(γ′′3(n−1) , out; An+1 , in)

(γ′′′3(n−1) , out; A
′
n+1 , in)


1.4 Rules to generate in the membrane 1 of configuration C3n the objects

T 2n−1

i , F 2n−1

i (1 ≤ i ≤ n):

(ρi,0 , out; ρi,1 , in)
(τi,0 , out; τi,1 , in)
(ρi,1 , out; ρi,2 , in)
(τi,1 , out; τi,2 , in)
(ρi,2 , out; ρi,3 , in)
(τi,2 , out; τi,3 , in)


1 ≤ i ≤ n

336 L. Valencia et al.

(ρi,3p , out; ρi,3p+1 , in)
(τi,3p , out; τi,3p+1 , in)

(ρi,3p+1 , out; ρ
2
i,3p+2 , in)

(τi,3p+1 , out; τ
2
i,3p+2 , in)

(ρi,3p+2 , out; ρi,3p+3 , in)
(τi,3p+2 , out; τi,3p+3 , in)


1 ≤ i ≤ n ∧ 1 ≤ p ≤ n− 2

(ρi,3(n−1) , out; ρi,3(n−1)+1 , in)
(τi,3(n−1) , out; τi,3(n−1)+1 , in)

(ρi,3(n−1)+1 , out; ρ
2
i,3(n−1)+2 , in)

(τi,3(n−1)+1 , out; τ
2
i,3(n−1)+2 , in)

(ρi,3(n−1)+2 , out;Ti , in)
(τi,3(n−1)+2 , out;Fi , in)


1 ≤ i ≤ n

(Ai , out; ai , in)
(A′i , out; ai , in)
(Bi , out; ai , in)
(B′i , out; ai , in)

 1 ≤ i ≤ n− 1

(yi , out; zi wi , in) : 1 ≤ i ≤ n− 2
(yn−1 , out;wn−1 , in) :

}
(wi , out; ci+1 c

′
i+1 , in) : 1 ≤ i ≤ n− 1

(zi , out; vi+1 , in) : 1 ≤ i ≤ n− 2

}
(vi , out; y

2
i , in)

(ai , out; bi+1 b
′
i+1 , in)

}
1 ≤ i ≤ n− 1

(q1,1 , out; r1,1 , in)
(qi,j , out; r

2
i,j , in) : 1 ≤ i ≤ n− 1 ∧ i ≤ j ≤ n− 1

}
(ri,j , out; si,j ui,j , in) : 1 ≤ i ≤ n− 2 ∧ i ≤ j ≤ n− 2

(ri,n−1 , out; si,n−1 , in) : 1 ≤ i ≤ n− 1

}
(si,j , out; ti,j fi,j , in) : 1 ≤ i ≤ n− 1 ∧ i ≤ j ≤ n− 1

(u1,j , out; q1,j+1 q2,j+1 , in) : 1 ≤ j ≤ n− 2
(ui,j , out; qi+1,j+1 , in) : 2 ≤ i ≤ j ∧ 2 ≤ j ≤ n− 2

}
(Ti,j ti,j , out)
(T ′i,j ti,j , out)
(Fi,j fi,j , out)
(F ′i,j fi,j , out)

 1 ≤ i ≤ j ∧ 1 ≤ j ≤ n

Efficiency of Symport/Antiport with Membrane Separation 337

1.5 Rules allowing that each object xi,j (meaning that xi ∈ Cj) and xi,j
(meaning that ¬xi ∈ Cj) results in the corresponding ei,j and ei,j objects
with multiplicity 2n−1 in membrane 1 of configuration Cn+1.

(xi,j , out; d
2
i,j,1 ; in)

(xi,j , out; d
2

i,j,1 ; in)

}
1 ≤ i ≤ n ∧ 1 ≤ j ≤ m

(di,j,k , out; d
2
i,j,k+1 , in)

(di,j,k , out; d
2

i,j,k+1 , in)

}
1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ 1 ≤ k ≤ n− 2

(di,j,n−1 , out; ei,j , in)

(di,j,n−1 , out; ei,j , in)

}
1 ≤ i ≤ n ∧ 1 ≤ j ≤ m

1.6 Output rule with affirmative answer: (E0 f3n+2m yes ; out).

1.7 Output rule with negative answer: (f3n+2m no ; out).

1.8 Rules to generate in the membrane 1 of configuration C3n the ob-
jects E2n

1 , and in the membrane 1 of configuration C3n+1 the objects
E2n

0 , E2n

2 , . . . , E2n

m :

(δj,3p , out; δj,3p+1, in)
(δj,3p+1 , out; δ

2
j,3p+2, in)

}
0 ≤ j ≤ m ∧ 0 ≤ p ≤ n− 1

(δj,3p+2 , out; δj,3p+3, in) 0 ≤ j ≤ m ∧ 0 ≤ p ≤ n− 2

(δ1,3(n−1)+2 , out;E1, in)

(δj,3(n−1)+2 , out; δj,3(n−1)+3, in)
(δj,3n , out;Ej , in)

}
0 ≤ j ≤ m ∧ j 6= 1

(fp , out; fp+1 ; in) 0 ≤ p ≤ 3n+ 2m− 1

1.9 Rules to remove a part of the garbage:

(ti,k Ti,k , out)
(ti,k T

′
i,k , out)

(fi,k Fi,k , out)
(fi,k F

′
i,k , out)

 1 ≤ i < k ∧ 2 ≤ k ≤ n

(ti,i Ti,i , out)
(fi,i F

′
i,i , out)

}
1 ≤ i ≤ n

(bk Bk+1 , out)
(b′k B

′
k+1 , out)

(ck Ak+1 , out)
(c′k A

′
k+1 , out)

n− 1 ≤ k ≤ n

338 L. Valencia et al.

(6) Rules in R2 :

2.1 Separation rule: [S]2 → [Γ0]2 [Γ1]2.

2.2 Rules to produce objects Ti,i, Ai+1, F
′
i,i, A

′
i+1 in each membrane 2:

(Ai, out; ci c
′
i, in)

(A′i, out; ci c
′
i, in)

(Bi, out; bi b
′
i, in)

(B′i, out; bi b
′
i, in)

(bi, out;Bi+1 S, in)
(b′i, out;B

′
i+1, in)

(ci, out;Ti,iAi+1, in)
(c′i, out;F

′
i,iA

′
i+1, in)


1 ≤ i ≤ n

2.3 Rules to produce an object E1 in each membrane 2 of configuration C3n+1

and an object E0 in each membrane 2 of configuration C3n+2:

(Bn+1, out;E1, in)
(B′n+1, out;E1, in)
(An+1, out;E0, in)
(A′n+1, out;E0, in)

2.4 Rules to produce a truth assignment in each membrane 2 of configuration
C3n+1:

(Ti,j , out; ti,j , in)
(T ′i,j , out; ti,j , in)
(Fi,j , out; fi,j , in)
(F ′i,j , out; fi,j , in)

 1 ≤ i ≤ j ∧ 1 ≤ j ≤ n

(ti,j , out;Ti,j+1 T
′
i,j+1, in)

(fi,j , out;Fi,j+1 F
′
i,j+1, in)

}
1 ≤ i ≤ j ∧ 1 ≤ j ≤ n− 1

(Ti,n, out;Ti, in)
(T ′i,n, out;Ti, in)
(Fi,n, out;Fi, in)
(F ′i,n, out;Fi, in)

 1 ≤ i ≤ n

2.5 Rules to check clause Cj through the truth assignment encoded by a mem-
brane 2:

(Ej Ti, out; ei,j , in)
(Ej Fi, out; ei,j , in)

}
1 ≤ i ≤ n ∧ 1 ≤ j ≤ m

2.6 Rules to restore the truth assignment encoded by a membrane 2 which
makes clause Cj true:

(ei,j , out, Ej+1 Ti, in)
(ei,j , out, Ej+1 Fi, in)

}
1 ≤ i ≤ n ∧ 1 ≤ j ≤ m− 1

Efficiency of Symport/Antiport with Membrane Separation 339

2.7 Rules to send an object E0 to membrane 1 of configuration C3n+2m+1,
meaning that some truth assignment encoded by a membrane labelled with
2 makes the input formula ϕ true:

(ei,mE0 ; out)
(ei,mE0 ; out)

}
1 ≤ i ≤ n

(7) Rules in R3 :

3.1 Rules to produce objects f ′3n+2m+1 and no in the membrane 1 of configu-
ration C3n+2m+2.

(f ′p, out; f
′
p+1, in) 0 ≤ p ≤ 3n+ 2m

(f ′3n+2m+1 no ; out)

5 An overview of the computations

A family of recognizer P systems with symport/antiport rules and membrane sepa-
ration is constructed above. For an instance of SAT problem ϕ = C1∧· · ·∧Cm, con-
sisting of m clauses Cj = lj,1∨· · ·∨lj,rj , 1 ≤ j ≤ m, where V ar(ϕ) = {x1, · · · , xn},
and lj,k ∈ {xi,¬xi | 1 ≤ i ≤ n}, 1 ≤ j ≤ m, 1 ≤ k ≤ rj . Let us assume that the
number of variables, n, and the number of clauses, m, of the input formula ϕ, are
greater or equal to 2.

The size mapping on the set of instances is defined as s(ϕ) = 〈m,n〉, for each
ϕ ∈ ISAT, and the encoding of the instance ϕ is the multiset

cod(ϕ) = {xi,j : xi ∈ Cj} ∪ {xi,j : ¬xi ∈ Cj}

That is, xi,j (respectively, xi,j) denotes variable xi (respectively, ¬xi) belonging to
clause Cj . Then, the Boolean formula ϕ will be processed by the system Π(s(ϕ))
with input multiset cod(ϕ).

Next, we informally describe how the system Π(s(ϕ)) + cod(ϕ) works, in order
to process the instance ϕ of SAT problem. The solution proposed follows a brute
force algorithm in the framework of recognizer P systems with symport/antiport
rules and membrane separation, and it consists of the following phases:

• Generation phase: using separation rules, all truth assignments for the variables
associated with the Boolean formula ϕ(x1, . . . , xn) are produced. This phase
exactly takes 3n+ 1 computation steps.

• Checking phase: checking whether or not the input formula ϕ is satisfied by
some truth assignment generated in the previous phase. This phase takes, ex-
actly, 3m+ 1 steps, being m the number of clauses of the formula ϕ.

340 L. Valencia et al.

• Output phase: the system sends the right answer to the environment depending
on the results of the previous phase. This phase takes, exactly, 1 step if the
answer affirmative, and 2 steps if the answer is negative.

Generation phase

In this phase, all truth assignments for the variables associated with the Boolean
formula ϕ(x1, . . . , xn) are generated, by applying separation rules in membranes
labelled with 2. This way, after completing the phase, there will exist 2n membranes
labelled with 2 such that each of them encodes a different truth assignment of the
variables {x1, . . . , xn}.

This phase consists in a loop with n iterations and one additional final step.
Each iteration of the loop takes three steps and, consequently, this phase takes
3n+ 1 steps.

To do this, in the configurations of the kind C3p+2 (0 ≤ p ≤ n− 1) there exist
2p membranes labelled with 2 containing objects

Ap+2, A
′
p+2, Bp+2, B

′
p+2, Tp+1,p+1, F

′
p+1,p+1, S

along with 2p–tuples of objects (π1,p+1, π
′
1,p+1, . . . , πp,p+1, π

′
p,p+1), with π ∈

{T, F}, in such a way that the corresponding tuples are all different in the different
membranes.

Thus, a separation rule can be applied to each membrane labelled with 2.
As a consequence, in configuration C3p+3 (0 ≤ p ≤ n − 2) there will exist 2p+1

membranes labelled with 2. 2p of them will contain objects Ap+2 and Bp+2, as
well as (p+ 1)–tuples (π1,p+1, . . . , πp+1,p+1), with π ∈ {T, F}, in such a way that
πp+1,p+1 = Tp+1,p+1, and the corresponding tuples of these membranes are all
different. The other 2p membranes labelled with 2 contain the objects A′p+2 and
B′p+2, as well as (p + 1)–tuples (π′1,p+1, . . . , π

′
p+1,p+1) with π ∈ {T, F}, in such a

way that π′p+1,p+1 = F ′p+1,p+1 and the corresponding tuples of these membranes
are all different.

Finally, in configuration C3n there exist 2n membranes labelled with 2. 2n−1 of
them contain the objects An+1 and Bn+1, as well as n–tuples (π1,n, . . . , πn,n) with
π ∈ {T, F}, in such a way that πn,n = Tn,n and the corresponding tuples of these
membranes are all different. The other 2n−1 membranes labelled with 2 contain
the objects A′n+1 and B′n+1, as well as n–tuples (π′1,n, . . . , π

′
n,n) with π ∈ {T, F},

in such a way that π′n,n = F ′n,n and the corresponding tuples of these membranes
are all different.

This phase ends in the step 3n + 1, where configuration C3n+1 contains 2n

membranes labelled with 2, each one of them containing the objects An+1 and E1,
as well as n–tuples (π1, . . . , πn) with π ∈ {T, F}, and the corresponding tuples of
these membranes are all different.

Efficiency of Symport/Antiport with Membrane Separation 341

Simultaneously, during the generation phase, from the input multiset placed
initially in the skin membrane, 2n−1 copies of each object of that multiset are
generated in that membrane, corresponding to configuration Cn. Due to technical
reasons, we will change variables xi,j and xi,j by ei,j and ei,j , respectively. This is
accomplished by using the following rules from R1:

(xi,j , out; d
2
i,j,1 ; in) : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m

(xi,j , out; d
2

i,j,1 ; in) : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m
(di,j,k , out; d

2
i,j,k+1 , in) : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ 1 ≤ k ≤ n− 2

(di,j,k , out; d
2

i,j,k+1 , in) : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ 1 ≤ k ≤ n− 2
(di,j,n−1 , out; ei,j , in) : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m
(di,j,n−1 , out; ei,j , in) : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m


The cited multiset that codifies the input formula will be denoted by

(cod(ϕ))2
n−1

e .

Checking phase

This phase begins at computation step 3n + 2 and consists in a loop with m
iterations, taking each of them 2 steps. Hence, the checking phase takes 2m steps.

In the configuration C3n+1, the presence of an object E1 in each membrane
labelled with 2, along with the code of a truth assignment, marks the beginning of
this phase. In the first iteration of the loop, the truth assignments making clause
C1 of ϕ true are found. To do this, the following rules of R2 are applied:

(E1 Ti, out; ei,1, in)
(E1 Fi, out; ei,1, in)

}
1 ≤ i ≤ n

Simultaneously, in the computation step (3n+1)+2, the object E0 is incorporated
to each of the membranes labelled with 2 by means of the application of the
following rules of R2: (An+1, out, E0, in) and (A′n+1, out, E0, in).

At this point, the presence of an object ei,1 or an object ei,1 in a membrane
2 of the configuration C(3n+1)+1 indicates that this membrane codifies a truth
assignment making the first clause true.

In the next computation step, those membranes will incorporate an object E2

coming from the skin by applying the following rules from R2:

(ei,1, out, E2 Ti, in)
(ei,1, out, E2 Fi, in)

}
1 ≤ i ≤ n

This way, the presence of an object E2 in a membrane 2 of the configuration
C(3n+1)+2 indicates that this membrane codifies a truth assignment making true
the first clause and that is ready to check the second clause of the formula. That

342 L. Valencia et al.

is, from this moment, the membranes labelled with 2 not making true the first
clause will not evolve.

In the j-th iteration (2 ≤ j ≤ m) of the aforementioned loop, the truth assign-
ments making true the clause Cj of the formula are checked, taking into account
that only the truth assignments containing the object Ej will be checked, since
only these membranes make clauses C1, . . . , Cj−1 of ϕ true. This is accomplished
by applying the following rules from R2:

(Ej Ti, out; ei,j , in)
(Ej Fi, out; ei,j , in)

}
1 ≤ i ≤ n ∧ 1 ≤ j ≤ m

Then, the presence of an object ei,j or an object ei,j in a membrane 2 of the
configuration C(3n+1)+2·(j−1)+1 indicates that this membrane codifies a truth as-
signment making clauses C1, . . . , Cj of ϕ true. Following this, those membranes
will incorporate an object Ej+1 coming from the skin by applying the following
rules from R2:

(ei,j , out, Ej+1 Ti, in)
(ei,j , out, Ej+1 Fi, in)

}
1 ≤ i ≤ n ∧ 1 ≤ j ≤ m− 1

If the input formula ϕ is satisfiable, then in some membrane labelled with 2 of
the configuration C(3n+1)+2(m−1)+1 there will exist an object ei,m or an object ei,m.
This indicates that the truth assignment that this membrane codifies makes true
all the clauses from ϕ and, consequently, makes true the input formula. In this case,
the checking phase ends up by applying a rule fromR2 of the kind (ei,mE0 ; out) or
(ei,mE0 ; out) making an object E0 go to the skin membrane of the configuration
C(3n+1)+2(m−1)+2, where also the object f3n+2m has been produced.

If the input formula ϕ is not satisfiable, the no membrane labelled with
2 of the configuration C(3n+1)+2(m−1)+1 contains an object ei,m neither an
object ei,m. In this case, the checking phase ends up by applying the rule
(f ′3n+2m , out; f

′
3n+2m+1 , in) ∈ R3 (in fact, this is the only rule applicable to the

configuration C(3n+1)+2(m−1)+1).

The checking phase ends at step (3n+ 1) + 2(m− 1) + 2 = 3n+ 2m+ 1.

Output phase

If the input formula ϕ is satisfiable, then objects E0 and f3n+2m will appear in
the input membrane of the configuration C3n+2m+1 . Then, by applying the rule
(E0 f3n+2m yes ; out) in the skin membrane, the object yes is released into the
environment, providing and affirmative answer at computation step (3n + 1) +
2m+ 1 = 3n+ 2m+ 2.

If the input formula ϕ is not satisfiable, then objects f3n+2m and yes are
present in the skin membrane of the configuration C(3n+1)+2(m−1)+1 = C3n+2m,

Efficiency of Symport/Antiport with Membrane Separation 343

but not the object E0. In this case, the only applicable rule in the system is
(f ′3n+2m , out; f

′
3n+2m+1 , in) in the membrane 3 and in the next computation

step only the rule (f ′3n+2m+1 no ; out) ∈ R3 is applicable. Consequently, objects
f3n+2m, yes, f

′
3n+2m+1 and no appear in the skin membrane of the configuration

C3n+2m+2. Then, by applying the rule (f3n+2m no ; out) in the skin membrane, an
object no will be released into the environment, providing a negative answer in
the step 3n+ 2m+ 3.

Hence, the output phase takes 1 computation step in the case of an affirmative
answer, and 2 computation steps in the case of a negative answer.

6 A Formal Verification

In this Section we show that the family Π = {Π(〈n,m〉) | n,m ∈ IN} considered in
the previous section provides a polynomial time solution to SAT problem according
to the Definition 3.2. For that, we must prove that it is polynomially uniform
by Turing machines and that there exists a polynomial encoding (cod, s) of SAT
problem in the family Π such that Π is polynomially bounded, sound and complete
with regards to (SAT, cod, s).

6.1 Polynomial Uniformity of the Family

In this subsection, we shall show that the family Π = {Π(〈n,m〉) | n,m ∈ IN}
defined above is polynomially uniform by Turing machines. To this aim we prove
that Π(〈n,m〉) is built in polynomial time with respect to the size parameter m
and n of instances of SAT problem.

It is easy to check that the rules of a system Π(〈n,m〉) of the family are
recursively defined through the values n (that represents the number of variables
of the input formula) and m (that represents the number of clauses of the input
formula). The amount of resources to construct Π(〈n,m〉) is of a polynomial order
in the numbers n and m, as shown below:

1. The size of the working alphabet is of the order Θ(n2 ·m).
2. The initial number of cells is 3 ∈ Θ(1).
3. The initial number of objects in membranes is 9n+ 3m+ 17 ∈ Θ(max{n,m}).
4. The total number of rules is of order Θ(n2 ·m).
5. The maximum length of a rule is 3 ∈ Θ(1).

Therefore, there exists a deterministic Turing machine that builds the system
Π(〈n,m〉) in a polynomial time with respect to n and m.

344 L. Valencia et al.

6.2 Soundness and Completeness of the Family

In the first place, we are going to justify that in the skin membrane of the con-
figuration Cn objects ei,j appear such that xi,j ∈ cod(ϕ) and objects ei,j appear
such that xi,j ∈ cod(ϕ), each of them with multiplicity 2n−1.

Theorem 1. For each k (1 ≤ k ≤ n− 1), the membrane 1 of the configuration Ck
contains the following multiset of objects:

{d2ki,j,k | xi,j ∈ cod(ϕ) ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}∪

{d2
k

i,j,k | xi,j ∈ cod(ϕ) ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}

Proof. By bounded induction on k. Let us start analyzing the base case k = 1.
The membrane 1 is the input membrane of the system and, consequently, contains
the multiset of objects:

cod(ϕ) = {xi,j | xi ∈ Cj ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}∪
{xi,j | ¬xi ∈ Cj ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}

Then, by applying the rules from R1 of the kind

(xi,j , out; d
2
i,j,1 ; in)

(xi,j , out; d
2

i,j,1 ; in)

}
1 ≤ i ≤ n ∧ 1 ≤ j ≤ m

to the configuration C0, membrane 1 of C1 ends containing the multiset of objects:

{d2i,j,1 | xi,j ∈ cod(ϕ) ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}∪
{d2i,j,1 | xi,j ∈ cod(ϕ) ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}

Consequently, the result holds for k = 1.

By induction hypothesis, let us consider k such that 1 ≤ k < n− 1 and let us
suppose the result holds for k, that is, let us suppose that the membrane 1 of the
configuration Ck contains the multiset of objects:

{d2ki,j,k | xi,j ∈ cod(ϕ) ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}∪

{d2
k

i,j,k | xi,j ∈ cod(ϕ) ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}

Let us see that the result also holds for k + 1.

By applying the rules of R1 of the kind

(di,j,k , out; d
2
i,j,k+1 , in)

(di,j,k , out; d
2

i,j,k+1 , in)

}
1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ 1 ≤ k ≤ n− 2

to the configuration Ck results that the membrane 1 of Ck+1 contains the multiset
of objects:

Efficiency of Symport/Antiport with Membrane Separation 345

{d2k+1

i,j,k+1 | xi,j ∈ cod(ϕ) ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m} ∪

{d2
k+1

i,j,k+1 | xi,j ∈ cod(ϕ) ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m}

Consequently, the result holds for k+1. This ends up with the proof of the theorem.
�

Next, we are going to analyse the evolution of the system thurough every phase
in the proposed solution.

Generation phase

We will denote by (cod(ϕ))e the multiset of (cod(ϕ)) where the objects xi,j and
xi,j are replaced by ei,j and ei,j , respectively. If in the multiset (cod(ϕ))e each

object has multiplicity 2k, then we will denote it by (cod(ϕ))2
k

e .

Next, let us consider the formulas θ1(p), θ2(p) and θ3(p), where p = 0, 1, . . . , n−
1. These formulas indicate the relevant contents of the configurations C3p+1, C3p+2

and C3p+3, respectively.

The formula θ1(p) captures the contents of configuration C3p+1, corresponding
to the first step of each loop iteration. The formula θ1(p) is the following:

“In configuration C3p+1 the following holds:

• In the membrane labelled with 1 we can find as relevant objects:

– ρi,3p+1 and τi,3p+1 (for 1 ≤ i ≤ n), each of them with multiplicity 1 if r = 0
and multiplicity 2p−1 if p ≥ 1.

– δj,3p+1 (for 1 ≤ j ≤ m), each of them with multiplicity 2p.

– f3p+1, yes, f
′
0, . . . , f̂

′
3p+1, . . . , f

′
3n+2m+1, each of them with multiplicity 1.

– Ap+2 , A
′
p+2 , Bp+2 , B

′
p+2 , S, each of them with multiplicity 2p.

– Tp+1,p+1 , F
′
p+1,p+1, each of them with multiplicity 2p.

– If p = 0 it contains A1 , B1, each of them with multiplicity 1.

– If 0 ≤ p ≤ n− 2 then there also exist objects

? αi,3p+1,k, α
′
i,3p+1,k (for 1 ≤ i ≤ n−1 and 0 ≤ k ≤ 1), each of them with

multiplicity 2p−1, if 1 ≤ i ≤ n− 2, and with multiplicity 1 if p = 0.

? β3p+1, β
′
3p+1, β

′′
3p+1, each of them with multiplicity 2p.

? γ3p+1, γ
′
3p+1, γ

′′
3p+1, γ

′′′
3p+1, each of them with multiplicity 2p.

? yp+1 with multiplicity 2p+1.

? r1,p+1, r2,p+1, . . . , rp+1,p+1 with multiplicity 2p.

346 L. Valencia et al.

– If 1 ≤ p ≤ n − 2, it contains the objects Ap+1, A
′
p+1, Bp+1, B

′
p+1, each of

them with multiplicity 2p−1.

– If 1 ≤ p ≤ n − 1, it contains the objects Ti,p+1, T
′
i,p+1, Fi,p+1, F

′
i,p+1, for

1 ≤ i ≤ p, each of them with multiplicity 2p−1.

– If also 3p+ 1 ≥ n, then it contains (cod(ϕ))2
n−1

e .”

• There exist 2p membranes labelled with 2, each of them containing objects
bp+1, b

′
p+1, cp+1, c

′
p+1 with multiplicity 1. If p ≥ 1, then each membrane la-

belled with 2 has a p-tuple of objects (π1,p, . . . , πp,p) such that π ∈ {t, f} and
the corresponding tuples are all different in the different membranes. Thus, for
example, for p = 1, there exist 21 = 2 membranes labelled with 2 such that
both of them contain objects b2, b

′
2, c2, c

′
2 and, additionally, the first of them

contains the object t1,1 and the second one f1,1. For p = 2, there exist 22 = 4
membranes labelled with 2 such that all of them contain the objects b3, b

′
3, c3, c

′
3.

In addition, one of them contains t1,2, t2,2, the second one contains f1,2, t2,2,
the third one contains t1,2, f2,2 and the fourth one contains f1,2, f2,2.

• The membrane labelled with 3 contains the objects f ′3p+1 and no with multiplic-
ity 1.

The formula θ2(p) captures the content of the configuration C3p+2 correspond-
ing to the second step of each iteration of the loop. The formula θ2(p) is the
following:

“In configuration C3p+2 the following holds:

• In membrane 1 we can find as relevant objects:

– Objects ρi,3p+1 and τi,3p+1 (for 1 ≤ i ≤ n), each of them with multiplicity
2p.

– Objects δj,3p+1 (for 1 ≤ j ≤ m), each of them with multiplicity 2p+1.

– Objects f3p+1, yes, f
′
0, . . . , f̂

′
3p+1, . . . , f

′
3n+2m+1

– If 0 ≤ p ≤ n− 2, then it also contains objects

? αi,3p+1,k, α
′
i,3p+1,k (for 1 ≤ i ≤ n − 1 y 0 ≤ k ≤ 1), each of them with

multiplicity 2p−1 if p ≥ 1, and with multiplicity 1 if p = 0.

? β3p+1, β
′
3p+1, β

′′
3p+1, each of them with multiplicity 2p.

? γ3p+1, γ
′
3p+1, γ

′′
3p+1, γ

′′′
3p+1, each of them with multiplicity 2p.

? wp+1 and ap+1 with multiplicity 2p+1.

? s1,p+1 , . . . , sp+1,p+1, each of them with multiplicity 2p.

– If 0 ≤ p ≤ n− 3, then it also contains:

Efficiency of Symport/Antiport with Membrane Separation 347

? objects zp+1 with multiplicity 2p+1 and objects u1,p+1 , . . . , up+1,p+1,
each of them with multiplicity 2p.

– If 3p+ 1 ≥ n, then it also contains (cod(ϕ))2
n−1

e .”

• There exist 2p membranes labelled with 2, each of them containing objects
Bp+2, S,B

′
p+2, as well as objects Tp+1,p+1, Ap+2, F

′
p+1,p+1, A

′
p+2, all of them

with multiplicity 1. Also, if p ≥ 1, then each membrane labelled with 2 con-
tains 2p–tuples of objects (π1,p+1, π

′
1,p+1, . . . , πp,p+1, π

′
p,p+1), with π ∈ {T, F},

in such a way that in the different membranes, the corresponding tuples are
different with each other.

• The membrane labelled with 3 contains the objects f ′3p+1 and no.

The formula θ3(p) captures the contents of the configuration C3p+3 correspond-
ing to the third step of each loop iteration. The formula θ3(p) is the following:

“In the configuration C3p+3 the following holds:

• In the membrane 1 we can find as relevant objects:

– If 0 ≤ p ≤ n− 2, then there exist objects

? αi,3p+3,k, α
′
i,3p+3,k (for 1 ≤ i ≤ n−1 and 0 ≤ k ≤ 1), each of them with

multiplicity 2p.

? β3p+3, β
′
3p+3, β

′′
3p+3, each of them with multiplicity 2p+1.

? γ3p+3, γ
′
3p+3, γ

′′
3p+3, γ

′′′
3p+3, each of them with multiplicity 2p+1.

? ρi,3p+3 and τi,3p+3 (for 1 ≤ i ≤ n), each of them with multiplicity 2p.

? δj,3p+3 (for 1 ≤ j ≤ m), each of them with multiplicity 2p+1.

? f3p+3, yes, f
′
0, . . . , f̂

′
3p+3, . . . , f

′
3n+2m+1, each of them with multiplicity 1.

? bp+2, b
′
p+2, cp+2, c

′
p+2 , each of them with multiplicity 2p+1.

? t1,p+1, tp+1,p+1, f1,p+1, fp+1,p+1 and q1,p+2, qp+2,p+2, each of them with
multiplicity 2p.

? wp+1 and ap+1 with multiplicity 2p+1.

– If 0 ≤ p ≤ n− 3 then it also contains objects

? vp+2 with multiplicity 2p+1.

– If p = n− 1 then it also contains objects

? δj,3p+3 (for 1 ≤ j ≤ m), each of them with multiplicity 2p+1.

? f3p+3, yes, f
′
0, . . . , f̂

′
3p+3, . . . , f

′
3n+2m+1, each of them with multiplicity 1.

? Ti (for 1 ≤ i ≤ n), each of them with multiplicity 2p.

348 L. Valencia et al.

? E1 with multiplicity 2p+1.

– If, besides, 3p+ 1 ≥ n, then it also contains (cod(ϕ))2
n−1

e .

• There exist 2p+1 membranes labelled with 2. 2p of these membranes contain
objects Ap+2 and Bp+2, as well as (p + 1)–tuples (π1,p+1, . . . , πp+1,p+1) with
π ∈ {T, F}, in such a way that πp+1,p+1 = Tp+1,p+1 and the corresponding
tuples are all different in the different membranes.

The other 2p membranes labelled with 2 contain the objects A′p+2 and B′p+2,
as well as (p+ 1)–tuples (π′1,p+1, . . . , π

′
p+1,p+1) with π ∈ {T, F}, in such a way

that π′p+1,p+1 = F ′p+1,p+1 and the corresponding tuples are all different in the
different membranes.

• The membrane labelled with 3 contains the objects f ′3p+3 and no”.

Next, we are going to prove that the formula θ(p) ≡ θ1(p)∧ θ2(p)∧ θ3(p) is an
invariant of the loop associated to the generation phase.

Theorem 2. For each p = 0, 1, . . . , n− 1, the formula θ(p) ≡ θ1(p)∧ θ2(p)∧ θ3(p)
is true

Proof. By bounded induction on p. Let us start analyzing the base case p = 0;
that is, let us show that the formula θ(0) holds. For this, we have to prove that
the formulas θ1(0), θ2(0) and θ3(0) are true.

Let us recall that the initial configuration of the system, C0 is the following:

C0(1) = {αi,0,k, α′i,0,k | 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1} ∪ {ρi,0, τi,0 | 1 ≤ i ≤ n}∪
{β0, β′0, β′′0 , γ0, γ′0, γ′′0 , γ′′′0 , c1, c′1, b1, b′1, v1, q1,1, f0, yes}∪
{δj,0 | 1 ≤ j ≤ m+ 1} ∪ {f ′p | 1 ≤ p ≤ 3n+ 2m+ 1} ∪ cod(ϕ)

C0(2) = {A1, B1}
C0(3) = {f ′0, no}

Then, the following rules are applied to the membranes as stated:

• In membrane 1 the following rules from R1 are applied:

Efficiency of Symport/Antiport with Membrane Separation 349

(αi,0,k, out;αi,1,k, in) : 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1
(α′i,0,k, out;α

′
i,1,k, in) : 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1

(β0 , out;β1 B2 , in)
(β′0 , out;β

′
1 B
′
2 , in)

(β′′0 , out;β
′′
1 S , in)

(γ0 , out; γ1 T1,1 , in)
(γ′0 , out; γ

′
1 F
′
1,1 , in)

(γ′′0 , out; γ
′′
1 A2 , in)

(γ′′′0 , out; γ′′′1 A′2 , in)
(τi,0 , out; τi,1 , in) : 1 ≤ i ≤ n
(ρi,0 , out; ρi,1 , in) : 1 ≤ i ≤ n
(δj,0 , out; δj,1 , in) : 1 ≤ j ≤ m
(f0 , out; f1 , in)
(v1 , out; y

2
1 , in)

(q1,1 , out; r1,1 , in)
(xi,j , out; d

2
i,j,1 ; in) : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ 0 ≤ k ≤ 1

(xi,j , out; d
2

i,j,1 ; in) : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ 0 ≤ k ≤ 1


• In membrane 2, the following rules from R2 are applied:

(A1, out; c1 c
′
1, in)

(B1, out; b1 b
′
1, in)

}
• In membrane 3, the following rules from R3 are applied: (f ′0, out; f

′
1, in)

By applying the aforementioned rules, the configuration C1 holds the following:

• In the membrane labelled with 1 we have the objects:

– B2, S ,B
′
2, T1,1, A2, F

′
1,1, A

′
2, A1, B1, each one with multiplicity 1.

– Objects f1, yes, f
′
0, f̂
′
1, f
′
2, . . . , f

′
3n+2m+1

– Objects ρi,1 and τi,1 (for 1 ≤ i ≤ n), each one with multiplicity 1.

– Objects δj,1 (for 1 ≤ j ≤ m), each one with multiplicity 1.

– αi,1,k, α
′
i,1,k (for 1 ≤ i ≤ n− 1 y 0 ≤ k ≤ 1), each one with multiplicity 1.

– β1, β
′
1, β

′′
1 , each one with multiplicity 1.

– γ1, γ
′
1, γ

′′
1 , γ

′′′
1 , each one with multiplicity 1.

– y1 with multiplicity 21.

– r1,1 with multiplicity 1.

– For each 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m, objects d2i,j,1 such that xi,j ∈ cod(ϕ) and

objects d
2

i,j,1 such that xi,j ∈ cod(ϕ).

350 L. Valencia et al.

• There exists 1 membrane labelled with 2 containing objects b1, b
′
1, c1, c

′
1 with

multiplicity 1.

• The membrane labelled with 3 contains the objects f ′1 and no.

Hence, the formula θ1(0) is true.

At configuration C1, the following rules are applied to the stated membranes:

• In membrane 1, the following rules from R1 are applied:

(αi,1,k, out;αi,2,k, in) : 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1
(α′i,1,k, out;α

′
i,2,k, in) : 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1

(β1 , out;β2 , in)
(β′1 , out;β

′
2 , in)

(β′′1 , out;β
′′
2 , in)

(γ1 , out; γ2 , in)
(γ′1 , out; γ

′
2 , in)

(γ′′1 , out; γ
′′
2 , in)

(γ′′′1 , out; γ′′′2 , in)
(τi,1 , out; τi,2 , in) : 1 ≤ i ≤ n
(ρi,1 , out; ρi,2 , in) : 1 ≤ i ≤ n
(δj,1 , out; δ

2
j,2 , in) : 1 ≤ j ≤ m

(f1 , out; f2 , in)
(y1 , out; z1 w1 , in)
(r1,1 , out; s1,1 u1,1 , in)
(di,j,1 , out; d

2
i,j,2 ; in) : 1 ≤ i ≤ n ∧ 0 ≤ k ≤ 1

(di,j,1 , out; d
2

i,j,2 ; in) : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ 0 ≤ k ≤ 1


• In membrane 2, the following rules from R2 are applied:

(b1, out;B2 S, in)
(b′1, out;B

′
2, in)

(c1, out;T1,1A2, in)
(c′1, out;F

′
1,1A

′
2, in)


• In membrane 3, the following rule from R3 is applied: (f ′1, out; f

′
2, in).

As a result of this, configuration C2 verifies the following:

• Membrane 1 contains the following objects:

– f1, yes, f
′
0, f̂
′
1, f
′
2, . . . , f

′
3n+2m+1, with multiplicity 1.

– ρi,1 and τi,1 (for 1 ≤ i ≤ n), each one with multiplicity 1.

Efficiency of Symport/Antiport with Membrane Separation 351

– δj,1 (for 1 ≤ j ≤ m), each one with multiplicity 1.

– If 0 ≤ n− 2, then it also contains the objects

? αi,1,k, α
′
i,1,k (for 1 ≤ i ≤ n−1 and 0 ≤ k ≤ 1), each one with multiplicity

1.

? β1, β
′
1, β

′′
1 , each one with multiplicity 1.

? γ1, γ
′
1, γ

′′
1 , γ

′′′
1 , each one with multiplicity 21.

? w1 and a1 with multiplicity 21.

– If 0 ≤ n− 3, then it also contains:

? object z1, with multiplicity 21, and objects s1,1, u1,1, each with multi-
plicity 21.

• There exists only one membrane labelled with 2 containing objects B2, S,B
′
2,

as well as objects T1,1, A2, F
′
1,1, A

′
2.

• The membrane labelled with 3 contains the objects f ′1 and no.

Hence, the formula θ2(0) is true.

At configuration C2, the following rules are applied to the stated membranes:

• In membrane 1 the following rules from R1 are applied:

(αi,2,k, out;αi,3,k, in) : 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1
(α′i,2,k, out;α

′
i,3,k, in) : 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1

(β2 , out;β
2
3 , in)

(β′2 , out;β
′2
3 , in)

(β′′2 , out;β
′′2
3 , in)

(γ2 , out; γ
2
3 , in)

(γ′2 , out; γ
′2
3 , in)

(γ′′2 , out; γ
′′2
3 , in)

(γ′′′2 , out; γ′′′23 , in)
(τi,2 , out; τi,3 , in) : 1 ≤ i ≤ n
(ρi,2 , out; ρi,3 , in) : 1 ≤ i ≤ n
(δj,2 , out; δj,3 , in) : 1 ≤ j ≤ m
(f2 , out; f3 , in)
(a1 , out; b2 b

′
2 , in)

(w1 , out; c2 c
′
2 , in)

(u1,1 , out; q1,2 q2,2 , in)
(di,j,2 , out; d

2
i,j,3 ; in) : 1 ≤ i ≤ n ∧ 0 ≤ k ≤ 1

(di,j,2 , out; d
2

i,j,3 ; in) : 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ 0 ≤ k ≤ 1


• In membrane 2 the following separation rule from R2 is applied: [S]2 →

[Γ0]2 [Γ1]2

352 L. Valencia et al.

• In membrane 3 the following rule from R3 is applied: (f ′2, out; f
′
3, in).

Hence, configuration C3 verifies the following:

• In membrane 1, we can find the following relevant objects (the non-relevant
objects are a1, a

′
1, b1, b

′
1, which cannot trigger any rule of the system at that

instant):

– αi,3,k, α
′
i,3,k (for 1 ≤ i ≤ n − 1 and 0 ≤ k ≤ 1), each one with multiplicity

1.

– β3, β
′
3, β

′′
3 , each one with multiplicity 21.

– γ3, γ
′
3, γ

′′
3 , γ

′′′
3 , each one with multiplicity 21.

– Objects ρi,3 and τi,3 (for 1 ≤ i ≤ n), each one with multiplicity 1.

– Objects δj,3 (for 1 ≤ j ≤ m), each one with multiplicity 21.

– Objects f3, yes, f
′
0, . . . , f̂

′
3, . . . , f

′
3n+2m+1

– If 0 ≤ n− 2, there also exist objects:

? b2, b
′
2, c2, c

′
2, v2, each one with multiplicity 21.

? t1,1, f1,1 and q1,2, q2,2, each one with multiplicity 1.

• There exist 2 membranes labelled with 2. One of them contains objects A2, B2

and T11. The other membrane contains objects A′2, B′2 and F ′11.

• The membrane labelled with 3 contains objects f ′3 and no.

Hence, the formula θ3(0) is true and, consequently, the formula θ(0) is true; that
is, the result holds for p = 0.

By induction hypothesis, let p be such that 0 ≤ p < n− 1, and let us suppose
the result holds for p; that is, the formulas θ1(p), θ2(p) and θ3(p) are true. Let us
see that the result also holds for p + 1; that is, the formulas θ1(p + 1), θ2(p + 1)
and θ3(p+ 1) are also true.

Let us notice that the configuration C3(p+1)+1 is obtained from the configuration
C3(p+1) by applying the following rules:

• In membrane 1, the following rules from R1 are applied:

Efficiency of Symport/Antiport with Membrane Separation 353

(αi,3(p+1),k, out;αi,3(p+1)+1,k∆
k
i,p+1, in) : 1 ≤ i ≤ p ∧ 0 ≤ k ≤ 1

(α′i,3(p+1),k, out;α
′
i,3(p+1)+1,k∆

′k
i,p+1, in) : 1 ≤ i ≤ p ∧ 0 ≤ k ≤ 1

(αi,3(p+1),k, out;αi,3(p+1)+1,k, in) : p+ 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1
(α′i,3(p+1),k, out;α

′
i,3(p+1)+1,k, in) : p+ 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1

(β3(p+1) , out;β3(p+1)+1 Bp+2 , in)
(β′3(p+1) , out;β

′
3(p+1)+1 B

′
p+2 , in)

(β′′3(p+1) , out;β
′′
3(p+1)+1 S , in)

(γ3(p+1) , out; γ3(p+1)+1 T1,1 , in)
(γ′3(p+1) , out; γ

′
3(p+1)+1 F

′
1,1 , in)

(γ′′3(p+1) , out; γ
′′
3(p+1)+1 A2 , in)

(γ′′′3(p+1) , out; γ
′′′
3(p+1)+1 A

′
2 , in)

(τi,3(p+1) , out; τi,3(p+1)+1 , in) : 1 ≤ i ≤ n
(ρi,3(p+1) , out; ρi,3(p+1)+1 , in) : 1 ≤ i ≤ n
(δj,3(p+1) , out; δj,3(p+1)+1 , in) : 1 ≤ j ≤ m
(f3(p+1) , out; f3(p+1)+1 , in)
(v3(p+1)+1 , out; y

2
3(p+1)+1 , in)

(q1,1 , out; r1,1 , in) : if p = 0
(qi,j , out; r

2
i,j , in) : if p ≥ 1 ∧ 1 ≤ i ≤ j ≤ p+ 1


• In membrane 2, the following rules from R2 are applied:

(Ti,p+1, out; ti,p+1, in) : 1 ≤ i ≤ n
(T ′i,p+1, out; ti,p+1, in) : 1 ≤ i ≤ n
(Fi,p+1, out; fi,p+1, in) : 1 ≤ i ≤ n
(F ′i,p+1, out; fi,p+1, in) : 1 ≤ i ≤ n
(Ap+2, out; cp+2 c

′
p+2, in)

(A′p+2, out; cp+2 c
′
p+2, in)

(Bp+2, out; bp+2 b
′
p+2, in)

(B′p+2, out; bp+2 b
′
p+2, in)


• In membrane 3, the following rule from R3 is applied:

(f ′3(p+1), out; f
′
3(p+1)+1, in)

Hence, configuration C3(p+1)+1 verifies the following:

• In the membrane labelled with 1 we can find as relevant objects:

– ρi,3(p+1)+1 and τi,3(p+1)+1 (for 1 ≤ i ≤ n), each one with multiplicity 2p.

– δj,3(p+1)+1 (for 1 ≤ j ≤ m), each one with multiplicity 2p+1.

– f3(p+1)+1, yes, f
′
0, . . . , f̂

′
3(p+1)+1, . . . , f

′
3n+2m+1, each one with multiplicity

1.

– Ap+3 , A
′
p+3 , Bp+3 , B

′
p+3 , S, each one with multiplicity 2p+1.

354 L. Valencia et al.

– Tp+2,p+2 , F
′
p+2,p+2, each one with multiplicity 2p+1.

– β3(p+1)+1, β
′
3(p+1)+1, β

′′
3(p+1)+1, each one with multiplicity 2p+1.

– γ3(p+1)+1, γ
′
3(p+1)+1, γ

′′
3(p+1)+1, γ

′′′
3(p+1)+1, each one with multiplicity 2p+1.

– yp+2 each one multiplicity 2p+2.

– r1,p+2, r2,p+2, . . . , rp+2,p+2, with multiplicity 2p+1.

– Ap+2, A
′
p+2, Bp+2, B

′
p+2, each one with multiplicity 2p.

– Ti,p+2, T
′
i,p+2, Fi,p+2, F

′
i,p+2, for 1 ≤ i ≤ p + 1, each one with multiplicity

2p.

– In the case 1 ≤ p ≤ n−3, it also contains objects αi,3(p+1)+1,k, α
′
i,3(p+1)+1,k

(for 1 ≤ i ≤ n− 1 and 0 ≤ k ≤ 1), each one with multiplicity 2p.

– If 3(p+ 1) + 1 ≥ n, then it also contains (cod(ϕ))2
n−1

e .

• There exist 2p+1 membranes labelled with 2, each of them containing objects
bp+2, b

′
p+2, cp+2, c

′
p+2 with multiplicity 1. Besides, each one of them contains

a (p + 1)-tuple of objects (π1,p+1, . . . πp+1,p+1) such that π ∈ {t, f} and the
tuples are all different in the different membranes.

• The membrane labelled with 3 contains the objects f ′3(p+1)+1 and no with
multiplicity 1.

Hence, the formula θ1(p+ 1) is true. To prove that the formula θ2(p+ 1) is true,
we notice that configuration C3(p+1)+2 is obtained from configuration C3(p+1)+1 by
applying the following rules to the stated membranes:

• In membrane 1, the following rules from R1 are applied:

Efficiency of Symport/Antiport with Membrane Separation 355

(αi,3(p+1)+1,k, out;αi,3(p+1)+2,k, in) : 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1
(α′i,3(p+1)+1,k, out;α

′
i,3(p+1)+2,k, in) : 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1

(β3(p+1)+1 , out;β3(p+1)+2 , in)
(β′3(p+1)+1 , out;β

′
3(p+1)+2 , in)

(β′′3(p+1)+1 , out;β
′′
3(p+1)+2 , in)

(γ3(p+1)+1 , out; γ3(p+1)+2 , in)
(γ′3(p+1)+1 , out; γ

′
3(p+1)+2 , in)

(γ′′3(p+1)+1 , out; γ
′′
3(p+1)+2 , in)

(γ′′′3(p+1)+1 , out; γ
′′′
3(p+1)+2 , in)

(τi,3(p+1)+1 , out; τi,3(p+1)+2 , in) : 1 ≤ i ≤ n
(ρi,3(p+1)+1 , out; ρi,3(p+1)+2 , in) : 1 ≤ i ≤ n
(δj,3(p+1)+1 , out; δ

2
j,3(p+1)+2 , in) : 1 ≤ j ≤ m

(f3(p+1)+1 , out; f3(p+1)+2 , in)
(y1 , out; z1 w1 , in)
(r1,3(p+1)+1 , out; s1,3(p+1)+1 u1,3(p+1)+1 , in) : p+ 1 ≤ n− 2
(r1,3(p+1)+1 , out; s1,3(p+1)+1 in) : p+ 1 = n− 1
(di,j,3(p+1)+1 , out; d

2
i,j,3(p+1)+2 ; in) : 3(p+ 1) + 1 ≤ n− 1 ∧ 1 ≤ i ≤ n ∧ 0 ≤ k ≤ 1

(di,j,1 , out; d
2
i,j,2 ; in) : 3(p+ 1) + 1 ≤ n− 1 ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ 0 ≤ k ≤ 1

(di,j,3(p+1)+1 , out; ei,j ; in) : 3(p+ 1) + 1 = n ∧ 1 ≤ i ≤ n ∧ 0 ≤ k ≤ 1

(di,j,3(p+1)+1 , out; ei,j ; in) : 3(p+ 1) + 1 = n ∧ 1 ≤ i ≤ n ∧ 1 ≤ j ≤ m ∧ 0 ≤ k ≤ 1

• In membrane 2, the following rules from R2 are applied:

(ti,p+1, out;Ti,p+2 T
′
i,p+2 , in)

(fi,p+1, out;Fi,p+2 F
′
i,p+2 , in)

(bp+2, out;Bp+3 S, in)
(bp+2, out;B

′
p+3, in)

(cp+2, out;Tp+2,p+2Ap+3 , in)
(c′p+2, out;F

′
p+2,p+2A

′
p+3 , in)


• In membrane 3, the following rule from R3 is applied:

(f ′3(p+1)+1, out; f
′
3(p+1)+2, in).

Hence, configuration C3(p+1)+2 verifies the following:

• In membrane 1, we can find as relevant objects:

– Objects ρi,3(p+1)+1 and τi,3(p+1)+1 (for 1 ≤ i ≤ n), each of them with
multiplicity 2p+1.

– Objects δj,3(p+1)+1 (for 1 ≤ j ≤ m), each of them with multiplicity 2p+2.

– Objects f3(p+1)+1, yes, f
′
0, . . . , f̂

′
3(p+1)+1, . . . , f

′
3n+2m+1

– If p+ 1 ≤ n− 2 then it also contains objects

? αi,3(p+1)+1,k, α
′
i,3(p+1)+1,k (for 1 ≤ i ≤ n − 1 and 0 ≤ k ≤ 1), each of

them with multiplicity 2p.

356 L. Valencia et al.

? β3(p+1)+1, β
′
3(p+1)+1, β

′′
3(p+1)+1, each of them with multiplicity 2p+1.

? γ3(p+1)+1, γ
′
3(p+1)+1, γ

′′
3(p+1)+1, γ

′′′
3(p+1)+1, each of them with multiplic-

ity 2p.

? wp+2 and ap+2 with multiplicity 2p+1.

? s1,p+2 , . . . , sp+2,p+2, each of them with multiplicity 2p+1.

– If p+ 1 ≤ n− 3 then it also contains objects

? zp+2 with multiplicity 2p+2 and objects u1,p+2 , . . . , up+2,p+2, each with
multiplicity 2p+1.

– If, besides, 3(p+ 1) + 1 ≥ n, then it contains (cod(ϕ))2
n−1

e .

• There exist 2p+1 membranes labelled with 2 each of them containing objects
Bp+3, S,B

′
p+3, as well as the objects Tp+2,p+2, Ap+3, F

′
p+2,p+2, A

′
p+3 all of them

with multiplicity 1. Besides, each membrane labelled with 2 contains 2(p+ 1)–
tuples of objects (π1,p+2, π

′
1,p+2, . . . , πp+1,p+2, π

′
p+1,p+2) with π ∈ {T, F}, in

such a way that and the tuples are all different in the different membranes.

• The membrane labelled with 3 contains the objects f ′3(p+1)+1 and no.

Hence, the formula θ2(p+1) is true. To prove that the formula θ3(p+1) is true, we
notice that the configuration C3(p+1)+3 is obtained from the configuration C3(p+1)+2

by applying the following rules to the stated membranes:

• In membrane 1, the following rules from R1 are applied:

Efficiency of Symport/Antiport with Membrane Separation 357

(αi,3(p+1)+2,k, out;α
2
i,3(p+1)+3,k, in) : p+ 1 ≤ n− 2 ∧ 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1

(α′i,3(p+1)+2,k, out;α
′2
i,3(p+1)+3,k, in) : p+ 1 ≤ n− 2 ∧ 1 ≤ i ≤ n− 1 ∧ 0 ≤ k ≤ 1

(β3(p+1)+2 , out;β
2
3(p+1)+3 , in) : p+ 1 ≤ n− 2

(β′3(p+1)+2 , out;β
′2
3(p+1)+3 , in) : p+ 1 ≤ n− 2

(β′′3(p+1)+2 , out;β
′′2
3(p+1)+3 , in) : p+ 1 ≤ n− 2

(γ3(p+1)+2 , out; γ
2
3(p+1)+3 , in) : p+ 1 ≤ n− 2

(γ′3(p+1)+2 , out; γ
′2
3(p+1)+3 , in) : p+ 1 ≤ n− 2

(γ′′3(p+1)+2 , out; γ
′′2
3(p+1)+3 , in) : p+ 1 ≤ n− 2

(γ′′′3(p+1)+2 , out; γ
′′′2
3(p+1)+3 , in) : p+ 1 ≤ n− 2

(τi,3(p+1)+2 , out; τi,3(p+1)+3 , in) : p+ 1 ≤ n− 2 ∧ 1 ≤ i ≤ n
(ρi,3(p+1)+2 , out; ρi,3(p+1)+3 , in) : p+ 1 ≤ n− 2 ∧ 1 ≤ i ≤ n
(δj,3(p+1)+2 , out; δj,3(p+1)+3 , in) : p+ 1 ≤ n− 2 ∧ 1 ≤ j ≤ m
(τi,3(p+1)+2 , out;Ti , in) : p+ 1 = n− 1 ∧ 1 ≤ i ≤ n
(ρi,3(p+1)+2 , out;Fi , in) : p+ 1 = n− 1 ∧ 1 ≤ i ≤ n
(δ1,3(p+1)+2 , out;E1 , in) : p+ 1 = n− 1
(δj,3(p+1)+2 , out; δj,3(p+1)+3 , in) : p+ 1 = n− 1 ∧ 2 ≤ j ≤ m
(f3(p+1)+2 , out; f3(p+1)+3 , in)
(ap+1 , out; bp+2 b

′
p+2 , in) : p+ 1 ≤ n− 1

(wp+1 , out; cp+2 c
′
p+2 , in) : p+ 1 ≤ n− 1

(zp+1 , out; vp+2 , in) : p+ 1 ≤ n− 2
(u1,p+1 , out; q1,p+2 q2,p+2 , in) : p+ 1 ≤ n− 3
(ui,p+1 , out; qi,p+2 q2,2 , in) : p+ 1 ≤ n− 3 ∧ 1 ≤ i ≤ n− 1 ∧ 1 ≤ i ≤ p+ 1
(si,p+1 , out; t1,p+2 f1,p+2 , in) : p+ 1 ≤ n− 2 ∧ 1 ≤ i ≤ p+ 1

• In membrane 2, the following separation rule from R2 is applied: [S]2 →
[Γ0]2 [Γ1]2

• In membrane 3, the following rule from R3 is applied:
(f ′3(p+1)+2, out; f

′
3(p+1)+3, in)

Hence, the configuration C3(p+1)+3 verifies the following:

• In membrane 1, we can find as relevant objects:

– If p+ 1 ≤ n− 2, then there exist objects:

? αi,3(p+1)+3,k, α
′
i,3(p+1)+3,k (for 1 ≤ i ≤ n − 1 and 0 ≤ k ≤ 1), each of

them with multiplicity 2p+1.

? β3(p+1)+3, β
′
3(p+1)+3, β

′′
3(p+1)+3, each of them with multiplicity 2p+2.

? γ3(p+1)+3, γ
′
3(p+1)+3, γ

′′
3(p+1)+3, γ

′′′
3(p+1)+3, each of them with multiplic-

ity 2p+2.

? ρi,3(p+1)+3 and τi,3(p+1)+3 (for 1 ≤ i ≤ n), each of them with multiplicity
2p+1.

? δj,3(p+1)+3 (for 1 ≤ j ≤ m), each of them with multiplicity 2p+2.

358 L. Valencia et al.

? f3(p+1)+3, yes, f
′
0, . . . , f̂

′
3(p+1)+3, . . . , f

′
3n+2m+1, each of them with mul-

tiplicity 1.

? bp+3, b
′
p+3, cp+3, c

′
p+3 , each of them with multiplicity 2p+2.

? t1,p+2, tp+2,p+2, f1,p+2, fp+2,p+2 and q1,p+3, qp+3,p+3, each of them with
multiplicity 2p+1.

? wp+2 and ap+2, with multiplicity 2p+2.

– If p+ 1 ≤ n− 3, then it also contains objects:

? vp+3, with multiplicity 2p+2.

? q1,p+3, qp+3,p+3, each of them with multiplicity 2p+1.

– If p+ 1 = n− 1, then it also contains objects:

? δj,3(p+1)+3 (for 1 ≤ j ≤ m), each of them with multiplicity 2p+2.

? f3(p+1)+3, yes, f
′
0, . . . , f̂

′
3(p+1)+3, . . . , f

′
3n+2m+1, each of them with mul-

tiplicity 1.

? Ti (for 1 ≤ i ≤ n), each of them with multiplicity 2p+1.

? E1 with multiplicity 2p+2.

– If, besides, 3p+ 1 ≥ n, then it contains (cod(ϕ))2
n−1

e .

• There exist 2p+2 membranes labelled by 2. 2p+1 of them contain objects Ap+3

and Bp+3, as well as (p+ 2)–tuples (π1,p+2, . . . , πp+2,p+2) with π ∈ {T, F}, in
such a way that πp+2,p+2 = Tp+2,p+2 and all tuples are different.

The other 2p+1 membranes labelled by 2 contain the objects A′p+3 and B′p+3,
as well as (p+ 2)–tuples (π′1,p+2, . . . , π

′
p+2,p+2) with π ∈ {T, F}, in such a way

that π′p+2,p+2 = F ′p+2,p+2 and all tuples are different.

• The membrane labelled by 3 contains objects f ′3(p+1)+3 and no.

Hence, formula θ3(p+ 1) is true and, consequently, formula θ(p+ 1) is true. This
completes the proof of the theorem. �

Thus, when completing the aforementioned loop that corresponds to the gen-
eration phase, the formula θ3(n − 1) is true. Consequently, at configuration
C3(n−1)+3 = C3n, we have:

• In membrane 1, we can find as relevant objects:

– f3n, yes, f
′
0, . . . , f̂

′
3n, . . . , f

′
3n+2m+1, each of them with multiplicity 1.

– δj,3n (for 2 ≤ j ≤ m), each of them with multiplicity 2n.

Efficiency of Symport/Antiport with Membrane Separation 359

– E1, with multiplicity 2n.

– Ti, Fi (1 ≤ i ≤ n), each of them with multiplicity 2n−1.

– (cod(ϕ))2
n−1

e .

• There exist 2n membranes labelled by 2. Half of these membranes contain
objects An+1 and Bn+1, as well as n–tuples (π1,n, . . . , πn,n) with π ∈ {T, F},
in such a way that πn,n = Tn,n and all tuples are different.

The other 2n−1 membranes labelled by 2 contain the objects A′n+1 and B′n+1,
as well as n–tuples (π′1,n, . . . , π

′
n,n) with π ∈ {T, F}, in such a way that π′n,n =

F ′n,n and all tuples are different.

• The membrane labelled by 3 contains the objects f ′3n and no.

The generation phase ends with an additional computation step that allows
going from configuration C3n to configuration C3n+1, whose content is described in
the following theorem.

Theorem 3. At configuration C3n+1 we have:

• In the membrane labelled by 1 we can find as relevant objects:

– f3n+1, yes, f
′
0, . . . , f̂

′
3n+1, . . . , f

′
3n+2m+1, each of them with multiplicity 1.

– Ej (for 2 ≤ j ≤ m), each of them with multiplicity 2n.

– Bn+1, B
′
n+1, with multiplicity 2n−1.

– (cod(ϕ))2
n−1

e .

• There exist 2n membranes labelled by 2 each of them containing objects An+1

and E1, as well as n–tuples (π1, . . . , πn) with π ∈ {T, F}, in such a way that in
the different membranes, the corresponding tuples are different with each other.

• The membrane labelled by 3 contains the objects f ′3n+1 and no.

Proof. It is enough to take into account that configuration C3n+1 is obtained from
configuration C3n by applying the following rules to the stated membranes:

• In membrane 1, the following rules from R1 are applied:

(δj,3n , out;Ej , in) : 2 ≤ j ≤ m
(f3n , out; f3n+1 , in)

}
• In membrane 2, the following rules from R2 are applied:

360 L. Valencia et al.

(Bn+1 , out;E1 , in)
(B′n+1 , out;E1 , in)
(Ti,n , out;Ti , in) : 1 ≤ i ≤ n
(T ′i,n , out;Ti , in) : 1 ≤ i ≤ n
(Fi,n , out;Fi , in) : 1 ≤ i ≤ n
(F ′i,n , out;Fi , in) : 1 ≤ i ≤ n


• In membrane 3, the following rule from R3 is applied: (f ′3n, out; f

′
3n+1, in).

�

Let us notice that in configuration C3n+1 each of the 2n membranes labelled by
2 codifies a truth assignment associated with the variables {x1, . . . , xn}. Thus, if
one of these membranes contains object Ti (respectively, Fi), then the membrane
codifies a truth assignment that associates the true value (resp., the false value)
to the variable xi.

Checking phase

As we explained in the computation overview, the checking phase starts at com-
putation step 3n+ 2, and consists of a loop with m iterations, taking 2 steps each.
Hence, the checking phase takes 2m steps. It is worth pointing out that at step p
of this loop, clause Cp+1 is checked.

In this phase no separation rule is applied at any computation step, so all the
following configurations have exactly 2n membranes labelled by 2.

Let us consider the formula ν1(p), for 0 ≤ p ≤ m− 2, defined as follows:

“At configuration C(3n+1)+2p+1 we have:

• In membrane labelled by 1 we can find as relevant objects:

– f(3n+1)+2p+1, yes, f
′
0, . . . , f̂

′
(3n+1)+2p+1, . . . , f

′
3n+2m+1, each of them with

multiplicity 1.

– Ej (p+ 2 ≤ j ≤ m), each of them with multiplicity 2n.

– ei,j, such that xi,j ∈ cod(ϕ) and j ≥ p+ 2, as well as objects ei,j, such that
xi,j ∈ cod(ϕ) and j ≥ p+ 2. All these objects appear with multiplicity 2n−1.

• Each of the 2n membranes labelled by 2 contains an object E0.

• A membrane labelled by 2 encodes a truth assignment σ making true clauses
C1, . . . , Cp, Cp+1 of ϕ, if and only if it contains a (single) object ei,p+1 or an
object ei,p+1, for a given i, 1 ≤ i ≤ n. Besides, in that membrane, σ keeps all
its values, T and F , except for the i-th, which has been replaced by ei,p+1 (if
the object in its place in the previous configuration was Ti) or by ei,p+1 (if the
object in its place in the previous configuration was Fi).

Efficiency of Symport/Antiport with Membrane Separation 361

• The membrane labelled by 3 contains the objects f ′(3n+1)+2p+1 and no, both with
multiplicity 1.”

Let us consider the formula ν2(p), for 0 ≤ p ≤ m− 2, defined as follows:

“At configuration C(3n+1)+2p+2 we have:

• In membrane 1, we can find as relevant objects:

– f(3n+1)+2p+2, yes, f
′
0, . . . , f̂

′
(3n+1)+2p+2, . . . , f

′
3n+2m+1, each with multiplic-

ity 1.

– Ej (p+ 3 ≤ j ≤ m), each with multiplicity 2n.

– ei,j such that xi,j ∈ cod(ϕ) and j ≥ p + 2, as well as objects ei,j such that
xi,j ∈ cod(ϕ) and j ≥ p+ 2. All these objects appear with multiplicity 2n−1.

• Each of the 2n membranes labelled by 2 contains an object E0.

• A membrane labelled by 2 encodes a truth assignment σ making true clauses
C1, . . . , Cp, Cp+1 of ϕ, if and only if it contains object Ep+2. Besides, in that
membrane, σ keeps all its values, T and F .

• Membrane 3 contains objects f ′(3n+1)+2p+2 and no, both with multiplicity 1.”

Next, we are going to prove that the formula ν(p) ≡ ν1(p)∧ν2(p) is an invariant
of the loop associated to the checking phase.

Theorem 4. For each p = 0, . . . ,m− 2, formula ν(p) ≡ ν1(p) ∧ ν2(p) holds.

Proof. By bounded induction on p. Let us start analyzing the base case p = 0;
that is, let us show that the formula ν(0) is true. For this, we have to prove that
the formulas ν1(0) and ν2(0) are true.

First of all, we notice that configuration C(3n+1)+1 is obtained from configura-
tion C(3n+1) by applying the following rules to the stated membranes:

• In membrane 1, rule (f3n+1 , out; f(3n+1)+1 , in) from R1 is applied.

• In membranes labelled by 2, the following rules from R2 can be applied:

(E1 Ti , out; ei,1 , in)
(E1 Fi , out; ei,1 , in)
(An+1 , out;E0 , in)
(A′n+1 , out;E0 , in)


A membrane labelled by 2 encodes a truth assignment σ making true clause
C1 if and only if there exists a literal li0,1 in clause C1 that is true by σ. If
li0,1 = xk, then rule (E1 Tk , out; ek,1 , in) is applied; if li0,1 = xk, then rule

362 L. Valencia et al.

(E1 Fk , out; ek,1 , in) is applied. To sum up, either object ei,1 or object ei,1
appears in a membrane 2 if and only if the truth assignment associated to such
membrane makes true clause C1 of ϕ.

• In membrane 3, rule (f ′3n+1 , out; f
′
(3n+1)+1 , in) from R1 is applied.

Hence, configuration C(3n+1)+1 verifies the following:

• In membrane 1, we can find as relevant objects:

– f(3n+1)+1, yes, f
′
0, . . . , f̂

′
(3n+1)+1, . . . , f

′
3n+2m+1, each of them with multi-

plicity 1.

– Ej (2 ≤ j ≤ m), each of them with multiplicity 2n.

– ei,j , such that xi,j ∈ cod(ϕ) and j ≥ 1, as well as objects ei,j , such that
xi,j ∈ cod(ϕ) and j ≥ 1. All these objects appear with multiplicity 2n−1.

• Each of the 2n membranes labelled by 2 contains an object E0.

• A membrane labelled by 2 encodes a truth assignment σ making true clause
C1 of ϕ if and only if it contains a (single) object ei,1 or an object ei,1, for a
given i, 1 ≤ i ≤ n. Besides, in that membrane, σ keeps all its values T and F ,
except for the i-th. There are two possible cases: (a) if the i-th object was Ti in
the previous configuration, then it has been released to the skin membrane in
this step, and replaced by ei,1; and (b) if the i-th object was Fi in the previous
configuration, then it has been released to the skin membrane in this step, and
replaced by ei,1.

• Membrane labelled by 3 contains objects f ′(3n+1)+1 and no, both with multi-
plicity 1.

Hence, formula ν1(0) holds.

Next, let us show that formula ν2(0) also holds. For this purpose, let us notice
that configuration C(3n+1)+2 is obtained from configuration C(3n+1)+1 by applying
the following rules to the stated membranes:

• In membrane 1, the rule (f(3n+1)+1 , out; f(3n+1)+2 , in) from R1 is applied.

• In membrane 2, rules from R2 of the following kind are applied:

(ei,1 , out;TiE1+1 , in)
(ei,1 , out;FiE1+1 , in)

}
Obviously, these rule will be only applied to those membranes labelled by 2
containing an object ei,1 or an object ei,1; that is, to membranes codifying a
truth assignment making the first clause true. In this case, by using the previous
rule, (a) truth assignment value associated to such membrane is restored; and

Efficiency of Symport/Antiport with Membrane Separation 363

(b) object E2 is incorporated in order for the checking process of the second
clause to start. Only membranes labelled by 2 and codifying a truth assignment
making the first clause true will carry out this checking.

• In membrane 3, rule (f ′(3n+1)+1 , out; f
′
(3n+1)+2 , in) from R1 is applied

Hence, configuration C(3n+1)+2 verifies the following:

• In membrane 1, we can find as relevant objects:

– Objects f(3n+1)+2, yes, f
′
0, . . . , f̂

′
(3n+1)+2, . . . , f

′
3n+2m+1, each of them with

multiplicity 1.

– Objects Ej (3 ≤ j ≤ m), each of them with multiplicity 2n.

– Objects ei,j , such that xi,j ∈ cod(ϕ) and j ≥ 2, as well as objects ei,j , such
that xi,j ∈ cod(ϕ) and j ≥ 2. All these objects appear with multiplicity
2n−1.

• Each of the 2n membranes labelled by 2 contains an object E0.

• A membrane labelled by 2 encodes a truth assignment σ making true clause
C1 of ϕ, if and only if it contains an object E2. Besides, in that membrane, σ
keeps all its values, T and F .

• Membrane 3 contains the objects f ′(3n+1)+2 and no, both with multiplicity 1.

Thus, the formula ν2(0) holds and, consequently, also the formula ν(0) does;
that is, the result holds for the base case p = 1.

By induction hypothesis, let p be such that 0 ≤ p < m− 1 and let us suppose
that the result holds for p; that is, formulas ν1(p) and ν2(p) hold. Let us see that
the result also holds for p+ 1; that is, the formulas ν1(p+ 1) and ν2(p+ 1) are also
true.

In order to prove that the result holds for p+ 1,let us notice that configuration
C(3n+1)+2(p+1)+1 is obtained the configuration C(3n+1)+2(p+1) = C(3n+1)+2p+2 (let
us recall that the content of this configuration is known because we are assuming
that formula ν2(p) holds) by applying the following rules:

• In membrane 1, the following rule (f(3n+1)+2(p+1) , out; f(3n+1)+2(p+1)+1 , in)
from R1 is applied.

• In membrane 2, the following rules from R2 are applied:

(Ep+2 Ti , out; ei,p+2 , in) : 1 ≤ i ≤ n
(Ep+2 Fi , out; ei,p+2 , in) : 1 ≤ i ≤ n

}
By using these rules, if a membrane 2 codifies a truth assignment σ making
true clauses C1, . . . , Cp, Cp+1, then that membrane contains an object Ep+2 at

364 L. Valencia et al.

configuration C(3n+1)+2(p+1). Thus, if there exists a literal li0 of clause Cp+2

that is true by the truth assignment σ, then the following holds: if li0 = xk,
then the rule (Ep+2 Tk , out; ek,p+2 , in) would be applicable, and if li0 = xk,
then the rule (Ep+2 Fk , out; ek,p+2 , in) would be applicable.

• In membrane 3, the rule (f ′(3n+1)+2(p+1) , out; f
′
(3n+1)+2(p+1)+1 , in) from R3 is

applied.

As a result of this, at configuration C(3n+1)+2(p+1)+1 we have:

• In membrane 1, we can find as relevant objects:

– Objects f(3n+1)+2(p+1)+1, yes, f
′
0, . . . , f̂

′
(3n+1)+2(p+1)+1, . . . , f

′
3n+2m+1,

each of them with multiplicity 1.

– Objects Ej (p+ 3 ≤ j ≤ m), each of them with multiplicity 2n.

– Objects ei,j , such that xi,j ∈ cod(ϕ) and j ≥ p + 3, as well as objects
ei,j , such that xi,j ∈ cod(ϕ) and j ≥ p + 3. All these objects appear with
multiplicity 2n−1.

• Each of the 2n membranes labelled by 2 contains an object E0.

• A membrane labelled by 2 encodes a truth assignment σ making true clauses
C1, . . . , Cp, Cp+1, Cp+2 of ϕ if and only if it contains a (single) object ei,p+2 or
an object ei,p+2, for a given i, 1 ≤ i ≤ n. Besides, in that membrane, σ keeps
all its values, T and F , excepting the i-th. There are two possible cases: (a) if
the i-th object was Ti in the previous configuration, then it has been released
to the skin membrane in this step, and replaced by ei,p+2; and (b) if the i-th
object was Fi in the previous configuration, then it has been released to the
skin membrane in this step, and replaced by ei,p+2.

• The membrane labelled by 3 contains objects f ′(3n+1)+2(p+1)+1 and no with
multiplicity 1.

Hence, the formula ν1(p+ 1) holds.

Next, let us show that the formula ν2(p+1) is also true. For this purpose, let us
notice that the configuration C(3n+1)+2(p+1)+2 is obtained from the configuration
C(3n+1)+2(p+1)+1 by applying the following rules to the stated membranes:

• In membrane 1 the rule (f3n+2(p+1)+1 , out; f3n+2(p+1)+2 , in) from R1 is ap-
plied.

• In membrane 2, the following rules R2 are applied:

(ei,p+2 , out;TiEp+3 , in)
(ei,p+2 , out;FiEp+3 , in)

}

Efficiency of Symport/Antiport with Membrane Separation 365

In configuration C(3n+1)+2(p+1)+1, the truth assignment σ encoded by a mem-
brane 2 makes clauses C1, . . . , Cp, Cp+1, Cp+2 true if and only if that mem-
brane contains an object ei,p+2 or an object ei,p+2. In this case, a rule of the
type (ei,p+2 , out;TiEp+3 , in) or of the type (ei,p+2 , out;FiEp+3 , in). can be
applied. Besides, if neither object ei,j nor ei,j appears in a membrane 2 of
C(3n+1)+2(p+1)+1, then that membrane will not evolve any more.

• In membrane 3, rule (f ′3n+2(p+1)+1 , out; f
′
3n+2(p+1)+2 , in) from R3 is applied.

Hence, configuration C(3n+1)+2(p+1)+2 verifies the following:

• In membrane 1, we can find as relevant objects:

– Objects f(3n+1)+2(p+1)+2, yes, f
′
0, . . . , f̂

′
(3n+1)+2(p+1)+2, . . . , f

′
3n+2m+1,

each of them with multiplicity 1.

– Objects Ej (p+ 4 ≤ j ≤ m), each of them with multiplicity 2n.

– Objects ei,j , such that xi,j ∈ cod(ϕ) and j ≥ p + 3, as well as objects
ei,j such that, xi,j ∈ cod(ϕ) and j ≥ p + 3. All these objects appear with
multiplicity 2n−1.”

• Each of the 2n membranes labelled by 2 contains an object E0.

• A membrane labelled by 2 encodes a truth assignment σ making true clauses
C1, . . . , Cp, Cp+1, Cp+2 of ϕ, if and only if it contains an object Ep+3. Besides,
in that membrane, σ keeps all its values, T and F .

• Membrane 3 contains objects f ′(3n+1)+2(p+1)+2 and no with multiplicity 1.

Thus, the formula ν2(p+ 1) holds, consequently, it also formula ν(p+ 1) does;
that is, the result holds for p+ 1. This completes the proof of the theorem. �

From the Theorem 4 we deduce that the formula ν(m− 2) holds, and in par-
ticular, also formula ν2(m− 2) does. That is, at configuration C(3n+1)+2(m−2)+2 =
C(3n+1)+2(m−1) we have the following:

• In membrane, we can find as relevant objects:

– f(3n+1)+2m, yes, f
′
0, . . . , f̂

′
(3n+1)+2m, . . . , f

′
3n+2m+1, each of them with mul-

tiplicity 1.

– ei,m such that xi,m ∈ cod(ϕ) and ei,m such that xi,m ∈ cod(ϕ).

• Each of the 2n membranes labelled by 2 contains object E0.

• A membrane labelled by 2 encodes a truth assignment σ making true clauses
C1, . . . , Cm−2, Cm−1 of ϕ, if and only if it contains the object E(m−2)+2 = Em.
Besides, in that membrane σ, keeps all its values, T and F .

366 L. Valencia et al.

• The membrane labelled by 3 contains the objects f ′(3n+1)+2m and no with
multiplicity 1.

Then, configuration C(3n+1)+2(m−1)+1 is obtained from C(3n+1)+2(m−1) by ap-
plying the following rules to the stated membranes:

• In membrane 1 rule (f(3n+1)+2(m−1) , out; f(3n+1)+2(m−1)+1 , in) from R1 is ap-
plied.

• In membranes 2, the following rules from R2 can be applied:

(Em Ti , out; ei,m , in)
(Em Fi , out; ei,m , in)

}
• In membrane 3, rule (f ′(3n+1)+2(m−1) , out; f

′
(3n+1)+2(m−1)+1 , in) from R3 is

applied.

Hence, at configuration C(3n+1)+2(m−1)+1 we have the following:

• In the membrane, 1 we can find as relevant objects:

– f(3n+1)+2(m−1)+1 = f3n+2m, yes, f
′
0, . . . , f̂

′
3n+2m, f

′
3n+2m+1, each of them

with multiplicity 1.

• Each of the 2n membranes labelled by 2 contains an object E0.
• A membrane labelled by 2 encodes a truth assignment σ making true the

clauses C1, . . . , Cm−1, Cm of ϕ if and only if it contains an object ei,m or an
object ei,m; that is, the input formula ϕ is satisfiable if and only there exists a
membrane labelled by 2 that contains an object ei,m or an object ei,m.

• The membrane labelled by 3 contains the objects f ′3n+2m, no, each of them
with multiplicity 1.

Then, configuration C(3n+1)+2(m−1)+2 is obtained from C(3n+1)+2(m−1)+1 by ap-
plying the following rules to the stated membranes:

• In a membrane 2, a rule of the type (ei,m)E0 , out) or of the type (ei,m)E0 , out)
will be applied if an only if the truth assignment σ encoded by that membrane
makes the formula ϕ true.

• In the membranes 3, rule (f ′3n+2m , out; f
′
3n+2m+1 , in) from R3 will be applied.

Consequently, at configuration C(3n+1)+2(m−1)+1 we have the following:

• Membrane 1 contains an object E0 if and only if the input formula ϕ is satis-
fiable.

• Membrane 3 contains objects f ′3n+2m+1, no, each of them with multiplicity 1.

Then, the checking phase has finished.

Efficiency of Symport/Antiport with Membrane Separation 367

Output phase

Case 1: Affirmative output.

Let us assume that input formula ϕ is satisfiable. In this case, at configuration
C3n+2m+1, the skin membrane contains some object E0 and object f3n+2m, while
membrane 3 contains objects f ′3n+2m+1 and no.

Hence, in the next computation step (leading to configuration C3n+2m+2), rule
(E0 f3n+2m yes ; out) ∈ R1 will be applied sending object yes to the environment,
and providing an affirmative answer. At the same time rule (f ′3n+2m+1 no ; out) ∈
R3 will be applied sending to the skin object no. In this case, configuration
C3n+2m+2 is halting since object f3n+2m has been sent to the environment and,
consequently rule (f3n+2m no ; out) ∈ R1 cannot be applied.

To sum up, the affirmative answer is provided in the computation step (3n +
1) + 2m+ 1 = 3n+ 2m+ 2.

Case 2: Negative output.

If the input formula ϕ is not satisfiable, then in the skin membrane of config-
uration C3n+2m+1 objects f3n+2m and yes will appear, but not the object E0. In
this case, rule (E0 f3n+2m yes ; out) ∈ R1 will not be applicable to the configu-
ration C3n+2m+1 and, consequently, the only applicable rule to this configuration
being (f ′3n+2m+1 no ; out) ∈ R3. Therefore, in the skin membrane of configuration
C3n+2m+2 objects f3n+2m, yes, f ′3n+2m+1 and no appear, but not object E0. In
this case, the rule (E0 f3n+2m yes ; out) ∈ R1 will not be applicable, being rule
(f3n+2m no ; out) ∈ R1 the only applicable to the system. Execution of this rule will
send object no to the environment, providing a negative answer at computation
step 3n+ 2m+ 3.

Hence, the output phase takes 1 step in the case of an affirmative answer, and
2 steps in the case of a negative answer.

Corollary 1. SAT ∈ PMCCSC(3).

7 P-lingua simulator as a checker of the solution

The formal verification of a solution given in the framework of a computing model
is a necessary, and usually very complex to implement, task. In order to assist
researchers in designing P system families to efficiently solve hard problems and
verifying them, simulation tools are indispensable.

The solution to SAT problem by means of a family from CSC(3) presented in
Section 4 has been extraordinarily complex. It is structured into several modules,
each of them performing a specific task. Modules have been designed and checked
separately and subsequently incorporated into the general solution. The different

368 L. Valencia et al.

modules have been checked (in several relevant instances) with the help of the
P-Lingua simulator for the model CSC developed in [4]. Regarding the formal
verification, the simulator was used to check that the identified invariants were
corroborated in the corresponding configurations.

The P-Lingua source code that defines a cell-like P system belonging to the
family specified above and the corresponding MeCoSim custom application source
files can be found at [16].

7.1 Results of simulation

We have simulated several P systems of the defined family solving relevant in-
stances to SAT problem. Simulation results are shown in Table 1.

Table 1. Formula satisfiability and simulation time

Formula n m SAT Time (s)

(x̄1 + x̄2) · x1 · x2 2 3 F 0,233

(x̄1 + x̄2) · x2 · (x̄1 + x2) 2 3 T 0,224

(x1 + x2) · (x1 + x2 + x̄3) · x̄1 · x̄2 3 4 F 0,491

(x̄1 + x2) · x̄1 · x3 · (x̄1 + x3) 3 4 T 0,487

(x1 + x4) · (x1 + x̄4) · x3 · (x2 + x̄3 + x4) · x̄1 4 5 F 0,827

(x3+x̄4)·(x̄1+x2+x̄3+x4)·(x1+x2)·(x̄1+x2+x3+x4)·(x̄1+x3) 4 5 T 0,981

(x1 + x̄2 +x3 +x5) ·(x̄1 +x4) ·(x̄2 + x̄4) ·x4 ·x2 ·(x̄1 +x2 + x̄3 +x4) 5 6 F 2,369

(x3 + x4) · (x4 + x̄5) · (x̄1 + x2 + x̄3 + x̄4) · (x1 + x̄2 + x4)· (x1 +
x̄3 + x4) · (x3 + x5)

5 6 T 2,312

(x3 + x5 + x6) · (x3 + x̄4 + x5 + x̄6) · x̄3 · x̄6 · (x1 + x̄2 + x̄3 + x5 +
x6) · (x1 + x4 + x5) · (x̄5 + x6)

6 7 F 4,877

(x̄1 + x̄2 + x5) · (x2 + x3) · (x3 + x̄5 + x̄6) · (x̄1 + x2 + x̄3 + x4 +
x5 +x6) · (x̄2 + x̄3) · (x2 +x3 +x6) · (x1 + x̄2 +x3 +x4 +x5 +x6)

6 7 T 4,195

(x̄5 + x̄6 + x̄7) · (x3 + x̄4 +x7) · (x̄1 +x3 +x5 +x6 + x̄7) · (x1 +x3 +
x̄5 + x6 + x7) · (x2 + x6) · (x2 + x̄6) · x̄2 · (x2 + x3 + x4 + x̄5 + x7)

7 8 F 10,320

(x̄2 + x5 + x6 + x7) · (x2 + x̄4 + x̄5 + x̄7) · (x1 + x2 + x̄3 + x̄6 +
x7) · (x1 + x2 + x3 + x̄5 + x6 + x̄7) · (x̄3 + x̄5 + x6 + x̄7) · (x1 +
x2 + x̄3 + x̄7) · (x̄1 + x2 + x̄4 + x̄6) · (x3 + x5 + x6 + x̄7)

7 8 T 8,862

(x3+x4+x̄6+x̄8)·(x6+x̄7)·(x̄2+x3+x̄4+x5+x8)·x7·(x1+x̄2+x5+
x̄7+x̄8)·(x2+x7+x8)·(x̄6+x̄7)·(x1+x5+x̄8)·(x1+x̄4+x5+x̄6+x7)

8 9 F 16,364

(x1+x̄5+x̄6+x̄7+x̄8)·(x2+x3+x4+x̄6+x̄7+x8)·(x3+x4+x̄5+
x̄6+x̄7+x̄8)·(x̄1+x̄3+x̄4+x̄5+x6+x̄7+x8)·(x̄3+x̄7)·(x4+x5+x̄7)·
(x1+x3+x̄4)·(x1+x̄2+x̄3+x̄4+x̄5+x̄6+x̄7)·(x4+x̄5+x̄6+x7+x̄8)

8 9 T 18,856

Efficiency of Symport/Antiport with Membrane Separation 369

(x̄2 + x̄3 + x5 + x7) · (x2 + x5 + x6 + x7 + x9) · (x̄3 + x5 + x7 +
x8) · (x1 + x̄4 + x̄5 + x6 + x8) · (x̄2 + x3 + x5 + x7 + x8 + x̄9) ·
(x̄2 + x̄4 + x7 + x9) · (x̄2 + x4 + x6 + x9) · x1 · x5 · (x̄1 + x̄5)

9 10 F 34,669

(x3 +x8) · (x1 + x̄2 +x5 + x̄6 +x9) · (x3 +x6 +x9) · (x3 +x5 + x̄6 +
x̄8) · (x1 +x2 + x̄5 +x7 + x̄8 + x̄9) · (x̄1 +x2 + x̄4 +x5 + x̄6 + x̄7 +
x9) · (x1 +x2 +x4 + x̄6 +x8 + x̄9) · (x̄1 +x2 + x̄3 + x̄4 +x7 + x̄8) ·
(x̄1 +x2 +x3 +x5 + x̄6 +x8 + x̄9) · (x2 + x̄3 +x4 + x̄6 + x̄7 + x̄9)

9 10 T 36,450

Let us recall that in P systems of CSC(3), there is no replication of objects, but
a distribution of them. Consequently, in order to generate an exponential amount
of some objects, it is necessary to use the skin membrane, interacting with the
environment by using antiport rules with length 3 (in a computation step, an
object is released into the environment and, simultaneously, two objects enter the
system).

8 Conclusions

In this paper we have studied the computational efficiency of cell-like P systems
with symport/antiport rules and membrane separation. A uniform polynomial time
solution to SAT problem by a family of such P systems which uses communication
rules involving at most three objects is given, and the formal verification is shown.

Bearing in mind that PMCCSC(2) = P(that is, only tractable problems are
efficiently solved by families of P systems with symport/antiport rules and mem-
brane separation which uses communication rules with length at most two) an
optimal frontier of the efficiency has been obtained with respect to the length of
such rules. Specifically, we have shown that, in the framework of P systems with
symport/antiport rules and membrane separation, passing from 2 to 3 amounts to
passing from non–efficiency to efficiency, assuming that P 6= NP.

Acknowledgements

The work of L. Valencia-Cabrera, L.F. Maćıas-Ramos, A. Riscos-Núñez and M.J.
Pérez-Jiménez was supported by Project TIN2012-37434 of the Ministerio de
Economı́a y Competitividad of Spain. The work of B. Song and L. Pan was sup-
ported by National Natural Science Foundation of China (61033003, 91130034 and
61320106005).

References

1. A. Alhazov, T.O. Ishdorj. Membrane operations in P systems with active membranes.
In Gh.Păun, A. Riscos-Núñez, A. Romero-Jiménez, F. Sancho-Caparrini (eds.) Pro-
ceedings of the Second Brainstorming Week on Membrane Computing, Sevilla, 2-7

370 L. Valencia et al.

February 2004, Research Group on Natural Computing, TR 01/2004, University of
Seville, 37-44.

2. T.H. Cormen, C.E. Leiserson, R.L. Rivest. An Introduction to Algorithms. The MIT
Press, Cambridge, Massachussets, 1994.

3. M.R. Garey, D.S. Johnson. Computers and Intractability A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, (1979).

4. L.F. Maćıas-Ramos, L. Valencia-Cabrera, B. Song, T. Song, L. Pan, M.J. Pérez-
Jiménez. P-Lingua based software for cell-like P systems with symport/antiport rules.
Fundamenta Informaticae, 2015, in press.

5. L.F. Maćıas-Ramos, L. Valencia-Cabrera, B. Song, T. Song, L. Pan, M.J. Pérez-
Jiménez. Membrane Fission: A Computational Complexity Perspective. Complexity,
2015, in press.

6. S. Morlot, A. Roux. Mechanics of dynamic-mediated membrane fission. Annhual
Review of Biophysics, 42, (2013), 629–649.

7. L. Pan, T.-O. Ishdorj. P systems with active membranes and separation rules. Journal
of Universal Computer Science, 10, 5 (2004), 630–649.

8. L. Pan, M.J. Pérez-Jiménez. Computational complexity of tissue–like P systems.
Journal of Complexity, 26, 3 (2010), 296–315.

9. A. Păun, Gh. Păun, G. Rozenberg. Computing by communication in networks of
membranes, International Journal of Foundations of Computer Science, 13, 6 (2002),
779–798

10. A. Păun, Gh. Păun. The power of communication: P systems with symport/antiport,
New Generation Computing, 20, 3 (2002), 295–305.

11. Gh. Păun, G. Rozenberg, A. Salomaa (eds.). The Oxford Handbook of Membrane
Computing, Oxford University Press, Oxford, 2010.

12. Gh. Păun. Attacking NP-complete problems. In Unconventional Models of Com-
putation, UMC’2K (I. Antoniou, C. Calude, M. J. Dinneen, eds.), Springer-Verlag,
2000, 94-115.

13. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, F. Complexity classes
in models of cellular computing with membranes. Natural Computing, 2, 3 (2003),
265–285.

14. M.J. Pérez-Jiménez, A. Romero-Jiménez, F. Sancho-Caparrini, A polynomial com-
plexity class in P systems using membrane division, Journal of Automata, Languages
and Combinatorics, 11, 4 (2006) 423–434.

15. M.J. Pérez-Jiménez, P. Sośık. An optimal frontier of the efficiency of tissue P systems
with cell separation. Fundamenta Informaticae, in press, 2015.

16. The MeCoSim Web Site: http://www.p-lingua.org/mecosim/.

Author Index

Adorna, N. Henry, 77, 91
Alhazov, Artiom, 1, 9, 19, 45, 121
Aman, Bogdan, 63

Battyányi, Péter, 63

Cabarle, Francis George C., 77, 91
Cienciala, Luděk, 105
Ciencialová, Lucie, 105
Ciobanu, Gabriel, 63
Csuhaj-Varjú, Erzsébet, 105

Dı́az-Pernil, Daniel, 121, 131

Freund, Rudolf, 1, 9, 19, 45, 121, 131, 143

Gazdag, Zsolt, 159
Gheorghe, Marian, 179
Gutiérrez-Naranjo, Miguel A., 121, 131, 159, 195

Ipate, Florentin, 179
Ivanov, Sergiu, 19, 45, 143

Konur, Savas, 179

Leporati, Alberto, 131, 207
Llorente-Rivera, Domingo, 195

Maćıas-Ramos, Luis Felipe, 227, 301, 325
Manzoni, Luca, 207
Mart́ınez-del-Amor, Miguel A., 227
Mauri, Giancarlo, 207
Mierlă, Laurenţiu, 179

Oswald, Marion, 45

372 Author Index

Pan, Linqiang, 301, 325
Păun, Gheorghe, 245, 251
Pérez-Jiménez, Mario J., 77, 91, 227, 301, 325
Porreca, Antonio E., 207

Riscos-Núñez, Agust́ın, 301, 325

Song, Bosheng, 301, 325
Staiger, Ludwig, 143

Valencia-Cabrera, Luis, 301, 325
Vaszil, György, 63
Verlan, Sergey, 45

Zandron, Claudio, 207

